--- language: en library_name: transformers tags: - image-classification - resnet - asl - sign-language license: mit datasets: - grassknoted/asl-alphabet metrics: - accuracy model-index: - name: asl-sign-language-classifier results: - task: type: image-classification name: Image Classification dataset: name: ASL Alphabet Dataset type: image split: test metrics: - name: Accuracy type: accuracy value: 0.9999 --- # ASL Sign Language Classification Model This model is trained to recognize **American Sign Language (ASL)** alphabets using the [ASL Alphabet Dataset](https://www.kaggle.com/grassknoted/asl-alphabet). It uses a ResNet50 backbone for image classification. ## Model Details - **Base Architecture**: ResNet50 - **Number of Classes**: 29 - **Test Accuracy**: 0.9999 - **Dataset**: ASL Alphabet (A–Z, space, delete, nothing) ## Usage ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import torch # Load model and processor model = AutoModelForImageClassification.from_pretrained("Abuzaid01/asl-sign-language-classifier") processor = AutoImageProcessor.from_pretrained("Abuzaid01/asl-sign-language-classifier") # Load an image image = Image.open("asl_sample.jpg") # Preprocess inputs = processor(images=image, return_tensors="pt") # Predict with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class])