Create benchmark-kernels-attn.py
Browse files- benchmark-kernels-attn.py +100 -0
benchmark-kernels-attn.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch.utils import benchmark
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Mxfp4Config
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def load_model(use_kernels, use_attn_kernels, model_id):
|
| 10 |
+
quantization_config = Mxfp4Config(dequantize=True)
|
| 11 |
+
kwargs = {
|
| 12 |
+
"dtype": "auto",
|
| 13 |
+
"device_map": "cuda:0",
|
| 14 |
+
"use_kernels": use_kernels,
|
| 15 |
+
"quantization_config": quantization_config,
|
| 16 |
+
}
|
| 17 |
+
if use_attn_kernels:
|
| 18 |
+
kwargs["attn_implementation"] = "kernels-community/vllm-flash-attn3"
|
| 19 |
+
|
| 20 |
+
return AutoModelForCausalLM.from_pretrained(model_id, **kwargs).eval()
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def generate(model, model_inputs, max_new_tokens):
|
| 24 |
+
with torch.inference_mode():
|
| 25 |
+
model.generate(
|
| 26 |
+
**model_inputs,
|
| 27 |
+
do_sample=False,
|
| 28 |
+
temperature=None,
|
| 29 |
+
max_new_tokens=max_new_tokens,
|
| 30 |
+
eos_token_id=-1,
|
| 31 |
+
disable_compile=True,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
if __name__ == "__main__":
|
| 36 |
+
model_id = "openai/gpt-oss-20b"
|
| 37 |
+
max_new_tokens = 256
|
| 38 |
+
batch_sizes = [32, 64, 128]
|
| 39 |
+
|
| 40 |
+
base_prompts = [
|
| 41 |
+
"What is Tensor Parallelism?",
|
| 42 |
+
"Explain machine learning fundamentals.",
|
| 43 |
+
"How do neural networks work?",
|
| 44 |
+
"What are the benefits of distributed computing?",
|
| 45 |
+
"Describe the attention mechanism in transformers.",
|
| 46 |
+
"What is gradient descent?",
|
| 47 |
+
"How does backpropagation work?",
|
| 48 |
+
"Explain the concept of overfitting.",
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
# ============ PRE-TOKENIZE ALL BATCHES ============
|
| 52 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 53 |
+
|
| 54 |
+
pre_tokenized = {}
|
| 55 |
+
for batch_size in batch_sizes:
|
| 56 |
+
messages = [
|
| 57 |
+
[{"role": "user", "content": base_prompts[i % len(base_prompts)]}]
|
| 58 |
+
for i in range(batch_size)
|
| 59 |
+
]
|
| 60 |
+
texts = [
|
| 61 |
+
tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False, reasoning_effort="low")
|
| 62 |
+
for m in messages
|
| 63 |
+
]
|
| 64 |
+
pre_tokenized[batch_size] = tokenizer(
|
| 65 |
+
texts,
|
| 66 |
+
return_tensors="pt",
|
| 67 |
+
padding=True,
|
| 68 |
+
padding_side="left",
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# ============ BENCHMARK LOOP ============
|
| 72 |
+
results = []
|
| 73 |
+
|
| 74 |
+
for use_attn_kernels in [True, False]:
|
| 75 |
+
for use_kernels in [True, False]:
|
| 76 |
+
model = load_model(use_kernels, use_attn_kernels, model_id)
|
| 77 |
+
|
| 78 |
+
for batch_size in batch_sizes:
|
| 79 |
+
results.append(
|
| 80 |
+
benchmark.Timer(
|
| 81 |
+
stmt="generate(model, model_inputs, max_new_tokens)",
|
| 82 |
+
setup="from __main__ import generate",
|
| 83 |
+
globals={
|
| 84 |
+
"model": model,
|
| 85 |
+
"model_inputs": pre_tokenized[batch_size].to(model.device),
|
| 86 |
+
"max_new_tokens": max_new_tokens,
|
| 87 |
+
},
|
| 88 |
+
num_threads=torch.get_num_threads(),
|
| 89 |
+
label="Time to generate 256 tokens",
|
| 90 |
+
sub_label=f"batch_size={batch_size}",
|
| 91 |
+
description=f"kernels={use_kernels}, attn_kernels={use_attn_kernels}",
|
| 92 |
+
).timeit(5)
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
model.to("cpu")
|
| 96 |
+
del model
|
| 97 |
+
torch.cuda.empty_cache()
|
| 98 |
+
|
| 99 |
+
compare = benchmark.Compare(results)
|
| 100 |
+
compare.print()
|