import torch from torch.utils import benchmark from transformers import AutoTokenizer, AutoModelForCausalLM, Mxfp4Config # ============ CONFIGURATION ============ MODEL_ID = "openai/gpt-oss-20b" MAX_NEW_TOKENS = 256 BENCHMARK_RUNS = 5 SOURCE_FILES = [ "/fsx/aritra/git-repos/transformers/src/transformers/models/gpt_oss/modeling_gpt_oss.py", # Fixed: missing comma "/fsx/aritra/git-repos/transformers/src/transformers/models/gpt_oss/modular_gpt_oss.py", ] # ============ MODEL LOADING ============ def load_model(model_id: str, use_attn_kernels: bool): """Load model with optional attention kernel optimization.""" quantization_config = Mxfp4Config(dequantize=True) kwargs = { "dtype": "auto", "device_map": "cuda:0", "use_kernels": False, "quantization_config": quantization_config, } if use_attn_kernels: kwargs["attn_implementation"] = "kernels-community/vllm-flash-attn3" return AutoModelForCausalLM.from_pretrained(model_id, **kwargs).eval() def unload_model(model): """Move model to CPU and free GPU memory.""" model.to("cpu") del model torch.cuda.empty_cache() # ============ GENERATION ============ def generate(model, model_inputs: dict, max_new_tokens: int): """Run inference without sampling.""" with torch.inference_mode(): model.generate( **model_inputs, do_sample=False, temperature=None, max_new_tokens=max_new_tokens, eos_token_id=-1, disable_compile=True, ) # ============ DATA PREPARATION ============ def load_prompts(filepaths: list[str]) -> list[str]: """Read source files and create summarization prompts.""" prompts = [] for filepath in filepaths: with open(filepath, "r") as f: prompts.append(f"{f.read()}\nSummarize this for me.") return prompts def tokenize_prompts(tokenizer, prompts: list[str]) -> list[tuple[dict, int]]: """Tokenize prompts and return inputs with their prefill sizes.""" tokenizer.padding_side = "left" tokenized = [] for prompt in prompts: message = [{"role": "user", "content": prompt}] text = tokenizer.apply_chat_template( message, # Fixed: was `m` add_generation_prompt=True, tokenize=False, reasoning_effort="low", ) inputs = tokenizer(text, return_tensors="pt", padding=True) prefill_size = inputs.input_ids.size(1) # Fixed: was `input` and `.size[1]` tokenized.append((inputs, prefill_size)) return tokenized # ============ BENCHMARKING ============ def run_benchmarks(model, tokenized_inputs: list[tuple], use_attn_kernels: bool) -> list: """Run timing benchmarks for each input.""" results = [] for inputs, prefill_size in tokenized_inputs: timer = benchmark.Timer( stmt="generate(model, model_inputs, max_new_tokens)", setup="from __main__ import generate", globals={ "model": model, "model_inputs": inputs.to(model.device), "max_new_tokens": MAX_NEW_TOKENS, }, num_threads=torch.get_num_threads(), label=f"Time to generate {MAX_NEW_TOKENS} tokens", sub_label=f"prefill_size={prefill_size}", description=f"attn_kernels={use_attn_kernels}", ) results.append(timer.timeit(BENCHMARK_RUNS)) return results # ============ MAIN ============ def main(): prompts = load_prompts(SOURCE_FILES) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) tokenized_inputs = tokenize_prompts(tokenizer, prompts) all_results = [] for use_attn_kernels in [True, False]: print(f"\nBenchmarking with attn_kernels={use_attn_kernels}...") model = load_model(MODEL_ID, use_attn_kernels) results = run_benchmarks(model, tokenized_inputs, use_attn_kernels) all_results.extend(results) unload_model(model) benchmark.Compare(all_results).print() if __name__ == "__main__": main() # [------------------ Time to generate 256 tokens -------------------] # | attn_kernels=True | attn_kernels=False # 12 threads: -------------------------------------------------------- # prefill_size=7353 | 8.3 | 10.2 # prefill_size=4225 | 8.3 | 9.0 # Times are in seconds (s).