new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 13

DSAEval: Evaluating Data Science Agents on a Wide Range of Real-World Data Science Problems

Recent LLM-based data agents aim to automate data science tasks ranging from data analysis to deep learning. However, the open-ended nature of real-world data science problems, which often span multiple taxonomies and lack standard answers, poses a significant challenge for evaluation. To address this, we introduce DSAEval, a benchmark comprising 641 real-world data science problems grounded in 285 diverse datasets, covering both structured and unstructured data (e.g., vision and text). DSAEval incorporates three distinctive features: (1) Multimodal Environment Perception, which enables agents to interpret observations from multiple modalities including text and vision; (2) Multi-Query Interactions, which mirror the iterative and cumulative nature of real-world data science projects; and (3) Multi-Dimensional Evaluation, which provides a holistic assessment across reasoning, code, and results. We systematically evaluate 11 advanced agentic LLMs using DSAEval. Our results show that Claude-Sonnet-4.5 achieves the strongest overall performance, GPT-5.2 is the most efficient, and MiMo-V2-Flash is the most cost-effective. We further demonstrate that multimodal perception consistently improves performance on vision-related tasks, with gains ranging from 2.04% to 11.30%. Overall, while current data science agents perform well on structured data and routine data anlysis workflows, substantial challenges remain in unstructured domains. Finally, we offer critical insights and outline future research directions to advance the development of data science agents.

130k Lines of Formal Topology in Two Weeks: Simple and Cheap Autoformalization for Everyone?

This is a brief description of a project that has already autoformalized a large portion of the general topology from the Munkres textbook (which has in total 241 pages in 7 chapters and 39 sections). The project has been running since November 21, 2025 and has as of January 4, 2026, produced 160k lines of formalized topology. Most of it (about 130k lines) have been done in two weeks,from December 22 to January 4, for an LLM subscription cost of about \$100. This includes a 3k-line proof of Urysohn's lemma, a 2k-line proof of Urysohn's Metrization theorem, over 10k-line proof of the Tietze extension theorem, and many more (in total over 1.5k lemmas/theorems). The approach is quite simple and cheap: build a long-running feedback loop between an LLM and a reasonably fast proof checker equipped with a core foundational library. The LLM is now instantiated as ChatGPT (mostly 5.2) or Claude Sonnet (4.5) run through the respective Codex or Claude Code command line interfaces. The proof checker is Chad Brown's higher-order set theory system Megalodon, and the core library is Brown's formalization of basic set theory and surreal numbers (including reals, etc). The rest is some prompt engineering and technical choices which we describe here. Based on the fast progress, low cost, virtually unknown ITP/library, and the simple setup available to everyone, we believe that (auto)formalization may become quite easy and ubiquitous in 2026, regardless of which proof assistant is used.

  • 1 authors
·
Jan 5

MedBench v4: A Robust and Scalable Benchmark for Evaluating Chinese Medical Language Models, Multimodal Models, and Intelligent Agents

Recent advances in medical large language models (LLMs), multimodal models, and agents demand evaluation frameworks that reflect real clinical workflows and safety constraints. We present MedBench v4, a nationwide, cloud-based benchmarking infrastructure comprising over 700,000 expert-curated tasks spanning 24 primary and 91 secondary specialties, with dedicated tracks for LLMs, multimodal models, and agents. Items undergo multi-stage refinement and multi-round review by clinicians from more than 500 institutions, and open-ended responses are scored by an LLM-as-a-judge calibrated to human ratings. We evaluate 15 frontier models. Base LLMs reach a mean overall score of 54.1/100 (best: Claude Sonnet 4.5, 62.5/100), but safety and ethics remain low (18.4/100). Multimodal models perform worse overall (mean 47.5/100; best: GPT-5, 54.9/100), with solid perception yet weaker cross-modal reasoning. Agents built on the same backbones substantially improve end-to-end performance (mean 79.8/100), with Claude Sonnet 4.5-based agents achieving up to 85.3/100 overall and 88.9/100 on safety tasks. MedBench v4 thus reveals persisting gaps in multimodal reasoning and safety for base models, while showing that governance-aware agentic orchestration can markedly enhance benchmarked clinical readiness without sacrificing capability. By aligning tasks with Chinese clinical guidelines and regulatory priorities, the platform offers a practical reference for hospitals, developers, and policymakers auditing medical AI.

  • 18 authors
·
Nov 18, 2025

Finch: Benchmarking Finance & Accounting across Spreadsheet-Centric Enterprise Workflows

We introduce a finance & accounting benchmark (Finch) for evaluating AI agents on real-world, enterprise-grade professional workflows -- interleaving data entry, structuring, formatting, web search, cross-file retrieval, calculation, modeling, validation, translation, visualization, and reporting. Finch is sourced from authentic enterprise workspaces at Enron (15,000 spreadsheets and 500,000 emails from 150 employees) and other financial institutions, preserving in-the-wild messiness across multimodal artifacts (text, tables, formulas, charts, code, and images) and spanning diverse domains such as budgeting, trading, and asset management. We propose a workflow construction process that combines LLM-assisted discovery with expert annotation: (1) LLM-assisted, expert-verified derivation of workflows from real-world email threads and version histories of spreadsheet files, and (2) meticulous expert annotation for workflows, requiring over 700 hours of domain-expert effort. This yields 172 composite workflows with 384 tasks, involving 1,710 spreadsheets with 27 million cells, along with PDFs and other artifacts, capturing the intrinsically messy, long-horizon, knowledge-intensive, and collaborative nature of real-world enterprise work. We conduct both human and automated evaluations of frontier AI systems including GPT 5.1, Claude Sonnet 4.5, Gemini 3 Pro, Grok 4, and Qwen 3 Max, and GPT 5.1 Pro spends 16.8 minutes per workflow yet passes only 38.4% of workflows, while Claude Sonnet 4.5 passes just 25.0%. Comprehensive case studies further surface the challenges that real-world enterprise workflows pose for AI agents.

Enforcing Temporal Constraints for LLM Agents

LLM-based agents are deployed in safety-critical applications, yet current guardrail systems fail to prevent violations of temporal safety policies, requirements that govern the ordering and sequencing of agent actions. For instance, agents may access sensitive data before authenticating users or process refunds to unauthorized payment methods, violations that require reasoning about sequences of action rather than an individual action. Existing guardrails rely on imprecise natural language instructions or post-hoc monitoring, and provide no formal guarantees that agents will satisfy temporal constraints. We present Agent-C, a novel framework that provides run-time guarantees ensuring LLM agents adhere to formal temporal safety properties. Agent-C introduces a domain-specific language for expressing temporal properties (e.g., authenticate before accessing data), translates specifications to first-order logic, and uses SMT solving to detect non-compliant agent actions during token generation. When the LLM attempts to generate a non-compliant tool call, Agent-C leverages constrained generation techniques to ensure that every action generated by the LLM complies with the specification, and to generate a compliant alternative to a non-compliant agent action. We evaluate Agent-C across two real-world applications: retail customer service and airline ticket reservation system, and multiple language models (open and closed-source). Our results demonstrate that Agent-C achieves perfect safety (100% conformance, 0% harm), while improving task utility compared to state-of-the-art guardrails and unrestricted agents. On SoTA closed-source models, Agent-C improves conformance (77.4% to 100% for Claude Sonnet 4.5 and 83.7% to 100% for GPT-5), while simultaneously increasing utility (71.8% to 75.2% and 66.1% to 70.6%, respectively), representing a new SoTA frontier for reliable agentic reasoning.

  • 6 authors
·
Dec 25, 2025

Parrot: Persuasion and Agreement Robustness Rating of Output Truth -- A Sycophancy Robustness Benchmark for LLMs

This study presents PARROT (Persuasion and Agreement Robustness Rating of Output Truth), a robustness focused framework designed to measure the degradation in accuracy that occurs under social pressure exerted on users through authority and persuasion in large language models (LLMs) the phenomenon of sycophancy (excessive conformity). PARROT (i) isolates causal effects by comparing the neutral version of the same question with an authoritatively false version using a double-blind evaluation, (ii) quantifies confidence shifts toward the correct and imposed false responses using log-likelihood-based calibration tracking, and (iii) systematically classifies failure modes (e.g., robust correct, sycophantic agreement, reinforced error, stubborn error, self-correction, etc.) using an eight-state behavioral taxonomy. We evaluated 22 models using 1,302 MMLU-style multiple-choice questions across 13 domains and domain-specific authority templates. Findings show marked heterogeneity: advanced models (e.g., GPT-5, GPT-4.1, Claude Sonnet 4.5) exhibit low "follow rates" (leq 11%, GPT-5: 4\%) and minimal accuracy loss, while older/smaller models show severe epistemic collapse (GPT-4: 80\%, Qwen 2.5-1.5B: 94\%). The danger is not limited to response changes; weak models reduce confidence in the correct response while increasing confidence in the imposed incorrect response. While international law and global knowledge at the domain level exhibit high fragility, elementary mathematics is relatively resilient. Consequently, we argue that the goal of "resistance to overfitting pressure" should be addressed as a primary objective alongside accuracy, harm avoidance, and privacy for safe deployment in the real world.

  • 3 authors
·
Nov 21, 2025 4

GameDevBench: Evaluating Agentic Capabilities Through Game Development

Despite rapid progress on coding agents, progress on their multimodal counterparts has lagged behind. A key challenge is the scarcity of evaluation testbeds that combine the complexity of software development with the need for deep multimodal understanding. Game development provides such a testbed as agents must navigate large, dense codebases while manipulating intrinsically multimodal assets such as shaders, sprites, and animations within a visual game scene. We present GameDevBench, the first benchmark for evaluating agents on game development tasks. GameDevBench consists of 132 tasks derived from web and video tutorials. Tasks require significant multimodal understanding and are complex -- the average solution requires over three times the amount of lines of code and file changes compared to prior software development benchmarks. Agents still struggle with game development, with the best agent solving only 54.5% of tasks. We find a strong correlation between perceived task difficulty and multimodal complexity, with success rates dropping from 46.9% on gameplay-oriented tasks to 31.6% on 2D graphics tasks. To improve multimodal capability, we introduce two simple image and video-based feedback mechanisms for agents. Despite their simplicity, these methods consistently improve performance, with the largest change being an increase in Claude Sonnet 4.5's performance from 33.3% to 47.7%. We release GameDevBench publicly to support further research into agentic game development.

SWE-Bench++: A Framework for the Scalable Generation of Software Engineering Benchmarks from Open-Source Repositories

Benchmarks like SWE-bench have standardized the evaluation of Large Language Models (LLMs) on repository-level software engineering tasks. However, these efforts remain limited by manual curation, static datasets, and a focus on Python-based bug fixes. We introduce SWE-Bench++, an automated framework that generates repository-level coding tasks from open-source GitHub projects. Unlike synthetic approaches, our pipeline harvests live pull requests to cover both bug fixes and feature requests across 11 languages. SWE-Bench++ turns GitHub pull requests (PRs) into reproducible, execution-based tasks via four stages: programmatic sourcing, environment synthesis, test oracle extraction, and quality assurance. A final hint-guided trajectory synthesis step converts instances that strong models fail on into training trajectories. Our initial benchmark consists of 11,133 instances from 3,971 repositories across 11 languages. On a subset of 1,782 instances of this benchmark, today's strongest models perform as follows: claude-sonnet-4.5 achieves 36.20% pass@10, gpt-5-2025-08-07 34.57%, gemini/gemini-2.5-pro 24.92%, and gpt-4o 16.89%. We further demonstrate the utility of our dataset by showing that fine-tuning on SWE-Bench++ instances yields measurable improvements on the SWE-bench Multilingual benchmark. SWE-Bench++ provides a scalable, multilingual benchmark for evaluating and improving repository-level code generation.

TuringEnterprises Turing Inc.
·
Dec 19, 2025 2

Cross-LLM Generalization of Behavioral Backdoor Detection in AI Agent Supply Chains

As AI agents become integral to enterprise workflows, their reliance on shared tool libraries and pre-trained components creates significant supply chain vulnerabilities. While previous work has demonstrated behavioral backdoor detection within individual LLM architectures, the critical question of cross-LLM generalization remains unexplored, a gap with serious implications for organizations deploying multiple AI systems. We present the first systematic study of cross-LLM behavioral backdoor detection, evaluating generalization across six production LLMs (GPT-5.1, Claude Sonnet 4.5, Grok 4.1, Llama 4 Maverick, GPT-OSS 120B, and DeepSeek Chat V3.1). Through 1,198 execution traces and 36 cross-model experiments, we quantify a critical finding: single-model detectors achieve 92.7% accuracy within their training distribution but only 49.2% across different LLMs, a 43.4 percentage point generalization gap equivalent to random guessing. Our analysis reveals that this gap stems from model-specific behavioral signatures, particularly in temporal features (coefficient of variation > 0.8), while structural features remain stable across architectures. We show that model-aware detection incorporating model identity as an additional feature achieves 90.6% accuracy universally across all evaluated models. We release our multi-LLM trace dataset and detection framework to enable reproducible research.

  • 1 authors
·
Nov 24, 2025

The Tool Decathlon: Benchmarking Language Agents for Diverse, Realistic, and Long-Horizon Task Execution

Real-world language agents must handle complex, multi-step workflows across diverse Apps. For instance, an agent may manage emails by coordinating with calendars and file systems, or monitor a production database to detect anomalies and generate reports following an operating manual. However, existing language agent benchmarks often focus on narrow domains or simplified tasks that lack the diversity, realism, and long-horizon complexity required to evaluate agents' real-world performance. To address this gap, we introduce the Tool Decathlon (dubbed as Toolathlon), a benchmark for language agents offering diverse Apps and tools, realistic environment setup, and reliable execution-based evaluation. Toolathlon spans 32 software applications and 604 tools, ranging from everyday platforms such as Google Calendar and Notion to professional ones like WooCommerce, Kubernetes, and BigQuery. Most of the tools are based on a high-quality set of Model Context Protocol (MCP) servers that we may have revised or implemented ourselves. Unlike prior works, which primarily ensure functional realism but offer limited environment state diversity, we provide realistic initial environment states from real software, such as Canvas courses with dozens of students or real financial spreadsheets. This benchmark includes 108 manually sourced or crafted tasks in total, requiring interacting with multiple Apps over around 20 turns on average to complete. Each task is strictly verifiable through dedicated evaluation scripts. Comprehensive evaluation of SOTA models highlights their significant shortcomings: the best-performing model, Claude-4.5-Sonnet, achieves only a 38.6% success rate with 20.2 tool calling turns on average, while the top open-weights model DeepSeek-V3.2-Exp reaches 20.1%. We expect Toolathlon to drive the development of more capable language agents for real-world, long-horizon task execution.

  • 21 authors
·
Oct 29, 2025 1

CVE-Factory: Scaling Expert-Level Agentic Tasks for Code Security Vulnerability

Evaluating and improving the security capabilities of code agents requires high-quality, executable vulnerability tasks. However, existing works rely on costly, unscalable manual reproduction and suffer from outdated data distributions. To address these, we present CVE-Factory, the first multi-agent framework to achieve expert-level quality in automatically transforming sparse CVE metadata into fully executable agentic tasks. Cross-validation against human expert reproductions shows that CVE-Factory achieves 95\% solution correctness and 96\% environment fidelity, confirming its expert-level quality. It is also evaluated on the latest realistic vulnerabilities and achieves a 66.2\% verified success. This automation enables two downstream contributions. First, we construct LiveCVEBench, a continuously updated benchmark of 190 tasks spanning 14 languages and 153 repositories that captures emerging threats including AI-tooling vulnerabilities. Second, we synthesize over 1,000 executable training environments, the first large-scale scaling of agentic tasks in code security. Fine-tuned Qwen3-32B improves from 5.3\% to 35.8\% on LiveCVEBench, surpassing Claude 4.5 Sonnet, with gains generalizing to Terminal Bench (12.5\% to 31.3\%). We open-source CVE-Factory, LiveCVEBench, Abacus-cve (fine-tuned model), training dataset, and leaderboard. All resources are available at https://github.com/livecvebench/CVE-Factory .

  • 11 authors
·
Feb 2

Dr. Kernel: Reinforcement Learning Done Right for Triton Kernel Generations

High-quality kernel is critical for scalable AI systems, and enabling LLMs to generate such code would advance AI development. However, training LLMs for this task requires sufficient data, a robust environment, and the process is often vulnerable to reward hacking and lazy optimization. In these cases, models may hack training rewards and prioritize trivial correctness over meaningful speedup. In this paper, we systematically study reinforcement learning (RL) for kernel generation. We first design KernelGYM, a robust distributed GPU environment that supports reward hacking check, data collection from multi-turn interactions and long-term RL training. Building on KernelGYM, we investigate effective multi-turn RL methods and identify a biased policy gradient issue caused by self-inclusion in GRPO. To solve this, we propose Turn-level Reinforce-Leave-One-Out (TRLOO) to provide unbiased advantage estimation for multi-turn RL. To alleviate lazy optimization, we incorporate mismatch correction for training stability and introduce Profiling-based Rewards (PR) and Profiling-based Rejection Sampling (PRS) to overcome the issue. The trained model, Dr.Kernel-14B, reaches performance competitive with Claude-4.5-Sonnet in Kernelbench. Finally, we study sequential test-time scaling for Dr.Kernel-14B. On the KernelBench Level-2 subset, 31.6% of the generated kernels achieve at least a 1.2x speedup over the Torch reference, surpassing Claude-4.5-Sonnet (26.7%) and GPT-5 (28.6%). When selecting the best candidate across all turns, this 1.2x speedup rate further increases to 47.8%. All resources, including environment, training code, models, and dataset, are included in https://www.github.com/hkust-nlp/KernelGYM.

A Frustratingly Simple Yet Highly Effective Attack Baseline: Over 90% Success Rate Against the Strong Black-box Models of GPT-4.5/4o/o1

Despite promising performance on open-source large vision-language models (LVLMs), transfer-based targeted attacks often fail against black-box commercial LVLMs. Analyzing failed adversarial perturbations reveals that the learned perturbations typically originate from a uniform distribution and lack clear semantic details, resulting in unintended responses. This critical absence of semantic information leads commercial LVLMs to either ignore the perturbation entirely or misinterpret its embedded semantics, thereby causing the attack to fail. To overcome these issues, we notice that identifying core semantic objects is a key objective for models trained with various datasets and methodologies. This insight motivates our approach that refines semantic clarity by encoding explicit semantic details within local regions, thus ensuring interoperability and capturing finer-grained features, and by concentrating modifications on semantically rich areas rather than applying them uniformly. To achieve this, we propose a simple yet highly effective solution: at each optimization step, the adversarial image is cropped randomly by a controlled aspect ratio and scale, resized, and then aligned with the target image in the embedding space. Experimental results confirm our hypothesis. Our adversarial examples crafted with local-aggregated perturbations focused on crucial regions exhibit surprisingly good transferability to commercial LVLMs, including GPT-4.5, GPT-4o, Gemini-2.0-flash, Claude-3.5-sonnet, Claude-3.7-sonnet, and even reasoning models like o1, Claude-3.7-thinking and Gemini-2.0-flash-thinking. Our approach achieves success rates exceeding 90% on GPT-4.5, 4o, and o1, significantly outperforming all prior state-of-the-art attack methods. Our optimized adversarial examples under different configurations and training code are available at https://github.com/VILA-Lab/M-Attack.

  • 5 authors
·
Mar 13, 2025 2

AIRTBench: Measuring Autonomous AI Red Teaming Capabilities in Language Models

We introduce AIRTBench, an AI red teaming benchmark for evaluating language models' ability to autonomously discover and exploit Artificial Intelligence and Machine Learning (AI/ML) security vulnerabilities. The benchmark consists of 70 realistic black-box capture-the-flag (CTF) challenges from the Crucible challenge environment on the Dreadnode platform, requiring models to write python code to interact with and compromise AI systems. Claude-3.7-Sonnet emerged as the clear leader, solving 43 challenges (61% of the total suite, 46.9% overall success rate), with Gemini-2.5-Pro following at 39 challenges (56%, 34.3% overall), GPT-4.5-Preview at 34 challenges (49%, 36.9% overall), and DeepSeek R1 at 29 challenges (41%, 26.9% overall). Our evaluations show frontier models excel at prompt injection attacks (averaging 49% success rates) but struggle with system exploitation and model inversion challenges (below 26%, even for the best performers). Frontier models are far outpacing open-source alternatives, with the best truly open-source model (Llama-4-17B) solving 7 challenges (10%, 1.0% overall), though demonstrating specialized capabilities on certain hard challenges. Compared to human security researchers, large language models (LLMs) solve challenges with remarkable efficiency completing in minutes what typically takes humans hours or days-with efficiency advantages of over 5,000x on hard challenges. Our contribution fills a critical gap in the evaluation landscape, providing the first comprehensive benchmark specifically designed to measure and track progress in autonomous AI red teaming capabilities.

  • 4 authors
·
Jun 17, 2025

Thinking Beyond Tokens: From Brain-Inspired Intelligence to Cognitive Foundations for Artificial General Intelligence and its Societal Impact

Can machines truly think, reason and act in domains like humans? This enduring question continues to shape the pursuit of Artificial General Intelligence (AGI). Despite the growing capabilities of models such as GPT-4.5, DeepSeek, Claude 3.5 Sonnet, Phi-4, and Grok 3, which exhibit multimodal fluency and partial reasoning, these systems remain fundamentally limited by their reliance on token-level prediction and lack of grounded agency. This paper offers a cross-disciplinary synthesis of AGI development, spanning artificial intelligence, cognitive neuroscience, psychology, generative models, and agent-based systems. We analyze the architectural and cognitive foundations of general intelligence, highlighting the role of modular reasoning, persistent memory, and multi-agent coordination. In particular, we emphasize the rise of Agentic RAG frameworks that combine retrieval, planning, and dynamic tool use to enable more adaptive behavior. We discuss generalization strategies, including information compression, test-time adaptation, and training-free methods, as critical pathways toward flexible, domain-agnostic intelligence. Vision-Language Models (VLMs) are reexamined not just as perception modules but as evolving interfaces for embodied understanding and collaborative task completion. We also argue that true intelligence arises not from scale alone but from the integration of memory and reasoning: an orchestration of modular, interactive, and self-improving components where compression enables adaptive behavior. Drawing on advances in neurosymbolic systems, reinforcement learning, and cognitive scaffolding, we explore how recent architectures begin to bridge the gap between statistical learning and goal-directed cognition. Finally, we identify key scientific, technical, and ethical challenges on the path to AGI.

  • 20 authors
·
Jul 1, 2025 4

ArxivBench: Can LLMs Assist Researchers in Conducting Research?

Large language models (LLMs) have demonstrated remarkable effectiveness in completing various tasks such as reasoning, translation, and question answering. However the issue of factual incorrect content in LLM-generated responses remains a persistent challenge. In this study, we evaluate both proprietary and open-source LLMs on their ability to respond with relevant research papers and accurate links to articles hosted on the arXiv platform, based on high level prompts. To facilitate this evaluation, we introduce arXivBench, a benchmark specifically designed to assess LLM performance across eight major subject categories on arXiv and five subfields within computer science, one of the most popular categories among them. Our findings reveal a concerning accuracy of LLM-generated responses depending on the subject, with some subjects experiencing significantly lower accuracy than others. Notably, Claude-3.5-Sonnet exhibits a substantial advantage in generating both relevant and accurate responses. And interestingly, most LLMs achieve a much higher accuracy in the Artificial Intelligence sub-field than other sub-fields. This benchmark provides a standardized tool for evaluating the reliability of LLM-generated scientific responses, promoting more dependable use of LLMs in academic and research environments. Our code is open-sourced at https://github.com/arxivBenchLLM/arXivBench and our dataset is available on huggingface at https://huggingface.co/datasets/arXivBenchLLM/arXivBench.

  • 3 authors
·
Apr 6, 2025

ObjexMT: Objective Extraction and Metacognitive Calibration for LLM-as-a-Judge under Multi-Turn Jailbreaks

LLM-as-a-Judge (LLMaaJ) now underpins scalable evaluation, yet we lack a decisive test of a judge's qualification: can it recover a conversation's latent objective and know when that inference is trustworthy? LLMs degrade under irrelevant or long context; multi-turn jailbreaks further hide goals across turns. We introduce ObjexMT, a benchmark for objective extraction and metacognition. Given a multi-turn transcript, a model must return a one-sentence base objective and a self-reported confidence. Accuracy is computed via LLM-judge semantic similarity to gold objectives, converted to binary correctness by a single human-aligned threshold calibrated once on N = 100 items (tau^*=0.61). Metacognition is evaluated with ECE, Brier, Wrong-at-High-Conf, and risk-coverage. Across gpt-4.1, claude-sonnet-4, and Qwen3-235B-A22B-FP8 on SafeMTData_Attack600, SafeMTData_1K, MHJ, and CoSafe, claude-sonnet-4 attains the best objective-extraction accuracy (0.515) and calibration (ECE 0.296; Brier 0.324); gpt-4.1 and Qwen3-235B-A22B-FP8 tie at 0.441 but are overconfident (mean confidence approx0.88 vs. accuracy approx0.44; Wrong-at-0.90 approx48-52%). Performance varies by dataset (approx0.167-0.865). ObjexMT thus supplies an actionable test for LLM judges: when objectives are not explicit, judges often misinfer them with high confidence. We recommend exposing objectives when feasible and gating decisions by confidence otherwise. Code and data at https://github.com/hyunjun1121/ObjexMT_dataset.

AIM-Intelligence AIM Intelligence
·
Aug 22, 2025

AstroMLab 1: Who Wins Astronomy Jeopardy!?

We present a comprehensive evaluation of proprietary and open-weights large language models using the first astronomy-specific benchmarking dataset. This dataset comprises 4,425 multiple-choice questions curated from the Annual Review of Astronomy and Astrophysics, covering a broad range of astrophysical topics. Our analysis examines model performance across various astronomical subfields and assesses response calibration, crucial for potential deployment in research environments. Claude-3.5-Sonnet outperforms competitors by up to 4.6 percentage points, achieving 85.0% accuracy. For proprietary models, we observed a universal reduction in cost every 3-to-12 months to achieve similar score in this particular astronomy benchmark. Open-source models have rapidly improved, with LLaMA-3-70b (80.6%) and Qwen-2-72b (77.7%) now competing with some of the best proprietary models. We identify performance variations across topics, with non-English-focused models generally struggling more in exoplanet-related fields, stellar astrophysics, and instrumentation related questions. These challenges likely stem from less abundant training data, limited historical context, and rapid recent developments in these areas. This pattern is observed across both open-weights and proprietary models, with regional dependencies evident, highlighting the impact of training data diversity on model performance in specialized scientific domains. Top-performing models demonstrate well-calibrated confidence, with correlations above 0.9 between confidence and correctness, though they tend to be slightly underconfident. The development for fast, low-cost inference of open-weights models presents new opportunities for affordable deployment in astronomy. The rapid progress observed suggests that LLM-driven research in astronomy may become feasible in the near future.

  • 11 authors
·
Jul 15, 2024