new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 29

VisioFirm: Cross-Platform AI-assisted Annotation Tool for Computer Vision

AI models rely on annotated data to learn pattern and perform prediction. Annotation is usually a labor-intensive step that require associating labels ranging from a simple classification label to more complex tasks such as object detection, oriented bounding box estimation, and instance segmentation. Traditional tools often require extensive manual input, limiting scalability for large datasets. To address this, we introduce VisioFirm, an open-source web application designed to streamline image labeling through AI-assisted automation. VisioFirm integrates state-of-the-art foundation models into an interface with a filtering pipeline to reduce human-in-the-loop efforts. This hybrid approach employs CLIP combined with pre-trained detectors like Ultralytics models for common classes and zero-shot models such as Grounding DINO for custom labels, generating initial annotations with low-confidence thresholding to maximize recall. Through this framework, when tested on COCO-type of classes, initial prediction have been proven to be mostly correct though the users can refine these via interactive tools supporting bounding boxes, oriented bounding boxes, and polygons. Additionally, VisioFirm has on-the-fly segmentation powered by Segment Anything accelerated through WebGPU for browser-side efficiency. The tool supports multiple export formats (YOLO, COCO, Pascal VOC, CSV) and operates offline after model caching, enhancing accessibility. VisioFirm demonstrates up to 90\% reduction in manual effort through benchmarks on diverse datasets, while maintaining high annotation accuracy via clustering of connected CLIP-based disambiguate components and IoU-graph for redundant detection suppression. VisioFirm can be accessed from https://github.com/OschAI/VisioFirm{https://github.com/OschAI/VisioFirm}.

  • 2 authors
·
Sep 4, 2025

Generative Pretrained Autoregressive Transformer Graph Neural Network applied to the Analysis and Discovery of Novel Proteins

We report a flexible language-model based deep learning strategy, applied here to solve complex forward and inverse problems in protein modeling, based on an attention neural network that integrates transformer and graph convolutional architectures in a causal multi-headed graph mechanism, to realize a generative pretrained model. The model is applied to predict secondary structure content (per-residue level and overall content), protein solubility, and sequencing tasks. Further trained on inverse tasks, the model is rendered capable of designing proteins with these properties as target features. The model is formulated as a general framework, completely prompt-based, and can be adapted for a variety of downstream tasks. We find that adding additional tasks yields emergent synergies that the model exploits in improving overall performance, beyond what would be possible by training a model on each dataset alone. Case studies are presented to validate the method, yielding protein designs specifically focused on structural proteins, but also exploring the applicability in the design of soluble, antimicrobial biomaterials. While our model is trained to ultimately perform 8 distinct tasks, with available datasets it can be extended to solve additional problems. In a broader sense, this work illustrates a form of multiscale modeling that relates a set of ultimate building blocks (here, byte-level utf8 characters) to complex output. This materiomic scheme captures complex emergent relationships between universal building block and resulting properties via a synergizing learning capacity to express a set of potentialities embedded in the knowledge used in training, via the interplay of universality and diversity.

  • 1 authors
·
May 7, 2023

Scalable Diffusion for Materials Generation

Generative models trained on internet-scale data are capable of generating novel and realistic texts, images, and videos. A natural next question is whether these models can advance science, for example by generating novel stable materials. Traditionally, models with explicit structures (e.g., graphs) have been used in modeling structural relationships in scientific data (e.g., atoms and bonds in crystals), but generating structures can be difficult to scale to large and complex systems. Another challenge in generating materials is the mismatch between standard generative modeling metrics and downstream applications. For instance, common metrics such as the reconstruction error do not correlate well with the downstream goal of discovering stable materials. In this work, we tackle the scalability challenge by developing a unified crystal representation that can represent any crystal structure (UniMat), followed by training a diffusion probabilistic model on these UniMat representations. Our empirical results suggest that despite the lack of explicit structure modeling, UniMat can generate high fidelity crystal structures from larger and more complex chemical systems, outperforming previous graph-based approaches under various generative modeling metrics. To better connect the generation quality of materials to downstream applications, such as discovering novel stable materials, we propose additional metrics for evaluating generative models of materials, including per-composition formation energy and stability with respect to convex hulls through decomposition energy from Density Function Theory (DFT). Lastly, we show that conditional generation with UniMat can scale to previously established crystal datasets with up to millions of crystals structures, outperforming random structure search (the current leading method for structure discovery) in discovering new stable materials.

  • 7 authors
·
Oct 18, 2023

34 Examples of LLM Applications in Materials Science and Chemistry: Towards Automation, Assistants, Agents, and Accelerated Scientific Discovery

Large Language Models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 34 total projects developed during the second annual Large Language Model Hackathon for Applications in Materials Science and Chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility.

  • 35 authors
·
May 5, 2025

Omics-scale polymer computational database transferable to real-world artificial intelligence applications

Developing large-scale foundational datasets is a critical milestone in advancing artificial intelligence (AI)-driven scientific innovation. However, unlike AI-mature fields such as natural language processing, materials science, particularly polymer research, has significantly lagged in developing extensive open datasets. This lag is primarily due to the high costs of polymer synthesis and property measurements, along with the vastness and complexity of the chemical space. This study presents PolyOmics, an omics-scale computational database generated through fully automated molecular dynamics simulation pipelines that provide diverse physical properties for over 10^5 polymeric materials. The PolyOmics database is collaboratively developed by approximately 260 researchers from 48 institutions to bridge the gap between academia and industry. Machine learning models pretrained on PolyOmics can be efficiently fine-tuned for a wide range of real-world downstream tasks, even when only limited experimental data are available. Notably, the generalisation capability of these simulation-to-real transfer models improve significantly as the size of the PolyOmics database increases, exhibiting power-law scaling. The emergence of scaling laws supports the "more is better" principle, highlighting the significance of ultralarge-scale computational materials data for improving real-world prediction performance. This unprecedented omics-scale database reveals vast unexplored regions of polymer materials, providing a foundation for AI-driven polymer science.

  • 106 authors
·
Nov 7, 2025

A Graph Neural Network for the Era of Large Atomistic Models

Foundation models, or large atomistic models (LAMs), aim to universally represent the ground-state potential energy surface (PES) of atomistic systems as defined by density functional theory (DFT). The scaling law is pivotal in the development of large models, suggesting that their generalizability in downstream tasks consistently improves with increased model size, expanded training datasets, and larger computational budgets. In this study, we present DPA3, a multi-layer graph neural network founded on line graph series (LiGS), designed explicitly for the era of LAMs. We demonstrate that the generalization error of the DPA3 model adheres to the scaling law. The scalability in the number of model parameters is attained by stacking additional layers within DPA3. Additionally, the model employs a dataset encoding mechanism that decouples the scaling of training data size from the model size within its multi-task training framework. When trained as problem-oriented potential energy models, the DPA3 model exhibits superior accuracy in the majority of benchmark cases, encompassing systems with diverse features, including molecules, bulk materials, surface and cluster catalysts, two-dimensional materials, and battery materials. When trained as a LAM on the OpenLAM-v1 dataset, the DPA-3.1-3M model exhibits state-of-the-art performance in the LAMBench benchmark suite for LAMs, demonstrating lowest overall zero-shot generalization error across 17 downstream tasks from a broad spectrum of research domains. This performance suggests superior accuracy as an out-of-the-box potential model, requiring minimal fine-tuning data for downstream scientific applications.

  • 14 authors
·
Jun 2, 2025

LifeGPT: Topology-Agnostic Generative Pretrained Transformer Model for Cellular Automata

The Game of Life (Life), a well known algorithm within the broader class of cellular automata (CA), exhibits complex emergent dynamics, with extreme sensitivity to initial conditions. Modeling and predicting such intricate behavior without explicit knowledge of the system's underlying topology presents a significant challenge, motivating the development of algorithms that can generalize across various grid configurations and boundary conditions. We develop a decoder-only generative pretrained transformer model to solve this problem, showing that our model can simulate Life on a toroidal grid with no prior knowledge on the size of the grid, or its periodic boundary conditions (LifeGPT). LifeGPT is topology-agnostic with respect to its training data and our results show that a GPT model is capable of capturing the deterministic rules of a Turing-complete system with near-perfect accuracy, given sufficiently diverse training data. We also introduce the idea of an `autoregressive autoregressor' to recursively implement Life using LifeGPT. Our results pave the path towards true universal computation within a large language model (LLM) framework, synthesizing of mathematical analysis with natural language processing, and probing AI systems for situational awareness about the evolution of such algorithms without ever having to compute them. Similar GPTs could potentially solve inverse problems in multicellular self-assembly by extracting CA-compatible rulesets from real-world biological systems to create new predictive models, which would have significant consequences for the fields of bioinspired materials, tissue engineering, and architected materials design.

  • 2 authors
·
Sep 3, 2024

Foundation Models for Scientific Discovery: From Paradigm Enhancement to Paradigm Transition

Foundation models (FMs), such as GPT-4 and AlphaFold, are reshaping the landscape of scientific research. Beyond accelerating tasks such as hypothesis generation, experimental design, and result interpretation, they prompt a more fundamental question: Are FMs merely enhancing existing scientific methodologies, or are they redefining the way science is conducted? In this paper, we argue that FMs are catalyzing a transition toward a new scientific paradigm. We introduce a three-stage framework to describe this evolution: (1) Meta-Scientific Integration, where FMs enhance workflows within traditional paradigms; (2) Hybrid Human-AI Co-Creation, where FMs become active collaborators in problem formulation, reasoning, and discovery; and (3) Autonomous Scientific Discovery, where FMs operate as independent agents capable of generating new scientific knowledge with minimal human intervention. Through this lens, we review current applications and emerging capabilities of FMs across existing scientific paradigms. We further identify risks and future directions for FM-enabled scientific discovery. This position paper aims to support the scientific community in understanding the transformative role of FMs and to foster reflection on the future of scientific discovery. Our project is available at https://github.com/usail-hkust/Awesome-Foundation-Models-for-Scientific-Discovery.

usail-hkust usail-hkust
·
Oct 16, 2025 4

ProtAgents: Protein discovery via large language model multi-agent collaborations combining physics and machine learning

Designing de novo proteins beyond those found in nature holds significant promise for advancements in both scientific and engineering applications. Current methodologies for protein design often rely on AI-based models, such as surrogate models that address end-to-end problems by linking protein structure to material properties or vice versa. However, these models frequently focus on specific material objectives or structural properties, limiting their flexibility when incorporating out-of-domain knowledge into the design process or comprehensive data analysis is required. In this study, we introduce ProtAgents, a platform for de novo protein design based on Large Language Models (LLMs), where multiple AI agents with distinct capabilities collaboratively address complex tasks within a dynamic environment. The versatility in agent development allows for expertise in diverse domains, including knowledge retrieval, protein structure analysis, physics-based simulations, and results analysis. The dynamic collaboration between agents, empowered by LLMs, provides a versatile approach to tackling protein design and analysis problems, as demonstrated through diverse examples in this study. The problems of interest encompass designing new proteins, analyzing protein structures and obtaining new first-principles data -- natural vibrational frequencies -- via physics simulations. The concerted effort of the system allows for powerful automated and synergistic design of de novo proteins with targeted mechanical properties. The flexibility in designing the agents, on one hand, and their capacity in autonomous collaboration through the dynamic LLM-based multi-agent environment on the other hand, unleashes great potentials of LLMs in addressing multi-objective materials problems and opens up new avenues for autonomous materials discovery and design.

  • 2 authors
·
Jan 27, 2024

UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion

Unified generation of sequence and structure for scientific data (e.g., materials, molecules, proteins) is a critical task. Existing approaches primarily rely on either autoregressive sequence models or diffusion models, each offering distinct advantages and facing notable limitations. Autoregressive models, such as GPT, Llama, and Phi-4, have demonstrated remarkable success in natural language generation and have been extended to multimodal tasks (e.g., image, video, and audio) using advanced encoders like VQ-VAE to represent complex modalities as discrete sequences. However, their direct application to scientific domains is challenging due to the high precision requirements and the diverse nature of scientific data. On the other hand, diffusion models excel at generating high-dimensional scientific data, such as protein, molecule, and material structures, with remarkable accuracy. Yet, their inability to effectively model sequences limits their potential as general-purpose multimodal foundation models. To address these challenges, we propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models. This integration leverages the strengths of autoregressive models to ease the training of conditional diffusion models, while diffusion-based generative heads enhance the precision of autoregressive predictions. We validate the effectiveness of UniGenX on material and small molecule generation tasks, achieving a significant leap in state-of-the-art performance for material crystal structure prediction and establishing new state-of-the-art results for small molecule structure prediction, de novo design, and conditional generation. Notably, UniGenX demonstrates significant improvements, especially in handling long sequences for complex structures, showcasing its efficacy as a versatile tool for scientific data generation.

  • 25 authors
·
Mar 9, 2025

Crystal Transformer: Self-learning neural language model for Generative and Tinkering Design of Materials

Self-supervised neural language models have recently achieved unprecedented success, from natural language processing to learning the languages of biological sequences and organic molecules. These models have demonstrated superior performance in the generation, structure classification, and functional predictions for proteins and molecules with learned representations. However, most of the masking-based pre-trained language models are not designed for generative design, and their black-box nature makes it difficult to interpret their design logic. Here we propose BLMM Crystal Transformer, a neural network based probabilistic generative model for generative and tinkering design of inorganic materials. Our model is built on the blank filling language model for text generation and has demonstrated unique advantages in learning the "materials grammars" together with high-quality generation, interpretability, and data efficiency. It can generate chemically valid materials compositions with as high as 89.7\% charge neutrality and 84.8\% balanced electronegativity, which are more than 4 and 8 times higher compared to a pseudo random sampling baseline. The probabilistic generation process of BLMM allows it to recommend tinkering operations based on learned materials chemistry and makes it useful for materials doping. Combined with the TCSP crysal structure prediction algorithm, We have applied our model to discover a set of new materials as validated using DFT calculations. Our work thus brings the unsupervised transformer language models based generative artificial intelligence to inorganic materials. A user-friendly web app has been developed for computational materials doping and can be accessed freely at www.materialsatlas.org/blmtinker.

  • 7 authors
·
Apr 25, 2022

Uni-3DAR: Unified 3D Generation and Understanding via Autoregression on Compressed Spatial Tokens

Recent advancements in large language models and their multi-modal extensions have demonstrated the effectiveness of unifying generation and understanding through autoregressive next-token prediction. However, despite the critical role of 3D structural generation and understanding ({3D GU}) in AI for science, these tasks have largely evolved independently, with autoregressive methods remaining underexplored. To bridge this gap, we introduce Uni-3DAR, a unified framework that seamlessly integrates {3D GU} tasks via autoregressive prediction. At its core, Uni-3DAR employs a novel hierarchical tokenization that compresses 3D space using an octree, leveraging the inherent sparsity of 3D structures. It then applies an additional tokenization for fine-grained structural details, capturing key attributes such as atom types and precise spatial coordinates in microscopic 3D structures. We further propose two optimizations to enhance efficiency and effectiveness. The first is a two-level subtree compression strategy, which reduces the octree token sequence by up to 8x. The second is a masked next-token prediction mechanism tailored for dynamically varying token positions, significantly boosting model performance. By combining these strategies, Uni-3DAR successfully unifies diverse {3D GU} tasks within a single autoregressive framework. Extensive experiments across multiple microscopic {3D GU} tasks, including molecules, proteins, polymers, and crystals, validate its effectiveness and versatility. Notably, Uni-3DAR surpasses previous state-of-the-art diffusion models by a substantial margin, achieving up to 256\% relative improvement while delivering inference speeds up to 21.8x faster. The code is publicly available at https://github.com/dptech-corp/Uni-3DAR.

  • 8 authors
·
Mar 20, 2025 2

UltraEdit: Training-, Subject-, and Memory-Free Lifelong Editing in Large Language Models

Lifelong learning enables large language models (LLMs) to adapt to evolving information by continually updating their internal knowledge. An ideal system should support efficient, wide-ranging updates while preserving existing capabilities and ensuring reliable deployment. Model editing stands out as a promising solution for this goal, offering a focused and efficient way to revise a model's internal knowledge. Although recent paradigms have made notable progress, they often struggle to meet the demands of practical lifelong adaptation at scale. To bridge this gap, we propose ULTRAEDIT-a fundamentally new editing solution that is training-, subject- and memory-free, making it particularly well-suited for ultra-scalable, real-world lifelong model editing. ULTRAEDIT performs editing through a self-contained process that relies solely on lightweight linear algebra operations to compute parameter shifts, enabling fast and consistent parameter modifications with minimal overhead. To improve scalability in lifelong settings, ULTRAEDIT employs a lifelong normalization strategy that continuously updates feature statistics across turns, allowing it to adapt to distributional shifts and maintain consistency over time. ULTRAEDIT achieves editing speeds over 7x faster than the previous state-of-the-art method-which was also the fastest known approach-while consuming less than 1/3 the VRAM, making it the only method currently capable of editing a 7B LLM on a 24GB consumer-grade GPU. Furthermore, we construct ULTRAEDITBENCH-the largest dataset in the field to date, with over 2M editing pairs-and demonstrate that our method supports up to 1M edits while maintaining high accuracy. Comprehensive experiments on four datasets and six models show that ULTRAEDIT consistently achieves superior performance across diverse model editing scenarios. Our code is available at: https://github.com/XiaojieGu/UltraEdit.

  • 6 authors
·
May 20, 2025

Exploiting Pretrained Biochemical Language Models for Targeted Drug Design

Motivation: The development of novel compounds targeting proteins of interest is one of the most important tasks in the pharmaceutical industry. Deep generative models have been applied to targeted molecular design and have shown promising results. Recently, target-specific molecule generation has been viewed as a translation between the protein language and the chemical language. However, such a model is limited by the availability of interacting protein-ligand pairs. On the other hand, large amounts of unlabeled protein sequences and chemical compounds are available and have been used to train language models that learn useful representations. In this study, we propose exploiting pretrained biochemical language models to initialize (i.e. warm start) targeted molecule generation models. We investigate two warm start strategies: (i) a one-stage strategy where the initialized model is trained on targeted molecule generation (ii) a two-stage strategy containing a pre-finetuning on molecular generation followed by target specific training. We also compare two decoding strategies to generate compounds: beam search and sampling. Results: The results show that the warm-started models perform better than a baseline model trained from scratch. The two proposed warm-start strategies achieve similar results to each other with respect to widely used metrics from benchmarks. However, docking evaluation of the generated compounds for a number of novel proteins suggests that the one-stage strategy generalizes better than the two-stage strategy. Additionally, we observe that beam search outperforms sampling in both docking evaluation and benchmark metrics for assessing compound quality. Availability and implementation: The source code is available at https://github.com/boun-tabi/biochemical-lms-for-drug-design and the materials are archived in Zenodo at https://doi.org/10.5281/zenodo.6832145

  • 5 authors
·
Sep 2, 2022

Generative Marginalization Models

We introduce marginalization models (MaMs), a new family of generative models for high-dimensional discrete data. They offer scalable and flexible generative modeling with tractable likelihoods by explicitly modeling all induced marginal distributions. Marginalization models enable fast evaluation of arbitrary marginal probabilities with a single forward pass of the neural network, which overcomes a major limitation of methods with exact marginal inference, such as autoregressive models (ARMs). We propose scalable methods for learning the marginals, grounded in the concept of "marginalization self-consistency". Unlike previous methods, MaMs support scalable training of any-order generative models for high-dimensional problems under the setting of energy-based training, where the goal is to match the learned distribution to a given desired probability (specified by an unnormalized (log) probability function such as energy function or reward function). We demonstrate the effectiveness of the proposed model on a variety of discrete data distributions, including binary images, language, physical systems, and molecules, for maximum likelihood and energy-based training settings. MaMs achieve orders of magnitude speedup in evaluating the marginal probabilities on both settings. For energy-based training tasks, MaMs enable any-order generative modeling of high-dimensional problems beyond the capability of previous methods. Code is at https://github.com/PrincetonLIPS/MaM.

  • 3 authors
·
Oct 19, 2023

NatureLM: Deciphering the Language of Nature for Scientific Discovery

Foundation models have revolutionized natural language processing and artificial intelligence, significantly enhancing how machines comprehend and generate human languages. Inspired by the success of these foundation models, researchers have developed foundation models for individual scientific domains, including small molecules, materials, proteins, DNA, and RNA. However, these models are typically trained in isolation, lacking the ability to integrate across different scientific domains. Recognizing that entities within these domains can all be represented as sequences, which together form the "language of nature", we introduce Nature Language Model (briefly, NatureLM), a sequence-based science foundation model designed for scientific discovery. Pre-trained with data from multiple scientific domains, NatureLM offers a unified, versatile model that enables various applications including: (i) generating and optimizing small molecules, proteins, RNA, and materials using text instructions; (ii) cross-domain generation/design, such as protein-to-molecule and protein-to-RNA generation; and (iii) achieving state-of-the-art performance in tasks like SMILES-to-IUPAC translation and retrosynthesis on USPTO-50k. NatureLM offers a promising generalist approach for various scientific tasks, including drug discovery (hit generation/optimization, ADMET optimization, synthesis), novel material design, and the development of therapeutic proteins or nucleotides. We have developed NatureLM models in different sizes (1 billion, 8 billion, and 46.7 billion parameters) and observed a clear improvement in performance as the model size increases.

  • 45 authors
·
Feb 11, 2025 2

Metatensor and metatomic: foundational libraries for interoperable atomistic machine learning

Incorporation of machine learning (ML) techniques into atomic-scale modeling has proven to be an extremely effective strategy to improve the accuracy and reduce the computational cost of simulations. It also entails conceptual and practical challenges, as it involves combining very different mathematical foundations, as well as software ecosystems that are very well developed in their own merit, but do not share many commonalities. To address these issues and facilitate the adoption of ML in atomistic simulations, we introduce two dedicated software libraries. The first one, metatensor, provides multi-platform and multi-language storage and manipulation of arrays with many potentially sparse indices, designed from the ground up for atomistic ML applications. By combining the actual values with metadata that describes their nature and that facilitates the handling of geometric information and gradients with respect to the atomic positions, metatensor provides a common framework to enable data sharing between ML software -- typically written in Python -- and established atomistic modeling tools -- typically written in Fortran, C or C++. The second library, metatomic, provides an interface to store an atomistic ML model and metadata about this model in a portable way, facilitating the implementation, training and distribution of models, and their use across different simulation packages. We showcase a growing ecosystem of tools, from low-level libraries, training utilities, to interfaces with existing software packages that demonstrate the effectiveness of metatensor and metatomic in bridging the gap between traditional simulation software and modern ML frameworks.

  • 14 authors
·
Aug 21, 2025

Unified Model for Image, Video, Audio and Language Tasks

Large Language Models (LLMs) have made the ambitious quest for generalist agents significantly far from being a fantasy. A key hurdle for building such general models is the diversity and heterogeneity of tasks and modalities. A promising solution is unification, allowing the support of a myriad of tasks and modalities within one unified framework. While few large models (e.g., Flamingo (Alayrac et al., 2022), trained on massive datasets, can support more than two modalities, current small to mid-scale unified models are still limited to 2 modalities, usually image-text or video-text. The question that we ask is: is it possible to build efficiently a unified model that can support all modalities? To answer this, we propose UnIVAL, a step further towards this ambitious goal. Without relying on fancy datasets sizes or models with billions of parameters, the ~ 0.25B parameter UnIVAL model goes beyond two modalities and unifies text, images, video, and audio into a single model. Our model is efficiently pretrained on many tasks, based on task balancing and multimodal curriculum learning. UnIVAL shows competitive performance to existing state-of-the-art approaches, across image and video-text tasks. The feature representations learned from image and video-text modalities, allows the model to achieve competitive performance when finetuned on audio-text tasks, despite not being pretrained on audio. Thanks to the unified model, we propose a novel study on multimodal model merging via weight interpolation of models trained on different multimodal tasks, showing their benefits in particular for out-of-distribution generalization. Finally, we motivate unification by showing the synergy between tasks. The model weights and code are released here: https://github.com/mshukor/UnIVAL.

  • 4 authors
·
Jul 30, 2023 1

LLM-enabled Instance Model Generation

In the domain of model-based engineering, models are essential components that enable system design and analysis. Traditionally, the creation of these models has been a manual process requiring not only deep modeling expertise but also substantial domain knowledge of target systems. With the rapid advancement of generative artificial intelligence, large language models (LLMs) show potential for automating model generation. This work explores the generation of instance models using LLMs, focusing specifically on producing XMI-based instance models from Ecore metamodels and natural language specifications. We observe that current LLMs struggle to directly generate valid XMI models. To address this, we propose a two-step approach: first, using LLMs to produce a simplified structured output containing all necessary instance model information, namely a conceptual instance model, and then compiling this intermediate representation into a valid XMI file. The conceptual instance model is format-independent, allowing it to be transformed into various modeling formats via different compilers. The feasibility of the proposed method has been demonstrated using several LLMs, including GPT-4o, o1-preview, Llama 3.1 (8B and 70B). Results show that the proposed method significantly improves the usability of LLMs for instance model generation tasks. Notably, the smaller open-source model, Llama 3.1 70B, demonstrated performance comparable to proprietary GPT models within the proposed framework.

  • 5 authors
·
Mar 28, 2025

Benchmarking Large Language Models for Molecule Prediction Tasks

Large Language Models (LLMs) stand at the forefront of a number of Natural Language Processing (NLP) tasks. Despite the widespread adoption of LLMs in NLP, much of their potential in broader fields remains largely unexplored, and significant limitations persist in their design and implementation. Notably, LLMs struggle with structured data, such as graphs, and often falter when tasked with answering domain-specific questions requiring deep expertise, such as those in biology and chemistry. In this paper, we explore a fundamental question: Can LLMs effectively handle molecule prediction tasks? Rather than pursuing top-tier performance, our goal is to assess how LLMs can contribute to diverse molecule tasks. We identify several classification and regression prediction tasks across six standard molecule datasets. Subsequently, we carefully design a set of prompts to query LLMs on these tasks and compare their performance with existing Machine Learning (ML) models, which include text-based models and those specifically designed for analysing the geometric structure of molecules. Our investigation reveals several key insights: Firstly, LLMs generally lag behind ML models in achieving competitive performance on molecule tasks, particularly when compared to models adept at capturing the geometric structure of molecules, highlighting the constrained ability of LLMs to comprehend graph data. Secondly, LLMs show promise in enhancing the performance of ML models when used collaboratively. Lastly, we engage in a discourse regarding the challenges and promising avenues to harness LLMs for molecule prediction tasks. The code and models are available at https://github.com/zhiqiangzhongddu/LLMaMol.

  • 3 authors
·
Mar 8, 2024

Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets

Recently, pre-trained foundation models have enabled significant advancements in multiple fields. In molecular machine learning, however, where datasets are often hand-curated, and hence typically small, the lack of datasets with labeled features, and codebases to manage those datasets, has hindered the development of foundation models. In this work, we present seven novel datasets categorized by size into three distinct categories: ToyMix, LargeMix and UltraLarge. These datasets push the boundaries in both the scale and the diversity of supervised labels for molecular learning. They cover nearly 100 million molecules and over 3000 sparsely defined tasks, totaling more than 13 billion individual labels of both quantum and biological nature. In comparison, our datasets contain 300 times more data points than the widely used OGB-LSC PCQM4Mv2 dataset, and 13 times more than the quantum-only QM1B dataset. In addition, to support the development of foundational models based on our proposed datasets, we present the Graphium graph machine learning library which simplifies the process of building and training molecular machine learning models for multi-task and multi-level molecular datasets. Finally, we present a range of baseline results as a starting point of multi-task and multi-level training on these datasets. Empirically, we observe that performance on low-resource biological datasets show improvement by also training on large amounts of quantum data. This indicates that there may be potential in multi-task and multi-level training of a foundation model and fine-tuning it to resource-constrained downstream tasks.

  • 34 authors
·
Oct 6, 2023

BioinspiredLLM: Conversational Large Language Model for the Mechanics of Biological and Bio-inspired Materials

The study of biological materials and bio-inspired materials science is well established; however, surprisingly little knowledge has been systematically translated to engineering solutions. To accelerate discovery and guide insights, an open-source autoregressive transformer large language model (LLM), BioinspiredLLM, is reported. The model was finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity. The model has proven that it is able to accurately recall information about biological materials and is further enhanced with enhanced reasoning ability, as well as with retrieval-augmented generation to incorporate new data during generation that can also help to traceback sources, update the knowledge base, and connect knowledge domains. BioinspiredLLM also has been shown to develop sound hypotheses regarding biological materials design and remarkably so for materials that have never been explicitly studied before. Lastly, the model showed impressive promise in collaborating with other generative artificial intelligence models in a workflow that can reshape the traditional materials design process. This collaborative generative artificial intelligence method can stimulate and enhance bio-inspired materials design workflows. Biological materials are at a critical intersection of multiple scientific fields and models like BioinspiredLLM help to connect knowledge domains.

  • 2 authors
·
Sep 15, 2023

The Impact of Large Language Models on Scientific Discovery: a Preliminary Study using GPT-4

In recent years, groundbreaking advancements in natural language processing have culminated in the emergence of powerful large language models (LLMs), which have showcased remarkable capabilities across a vast array of domains, including the understanding, generation, and translation of natural language, and even tasks that extend beyond language processing. In this report, we delve into the performance of LLMs within the context of scientific discovery, focusing on GPT-4, the state-of-the-art language model. Our investigation spans a diverse range of scientific areas encompassing drug discovery, biology, computational chemistry (density functional theory (DFT) and molecular dynamics (MD)), materials design, and partial differential equations (PDE). Evaluating GPT-4 on scientific tasks is crucial for uncovering its potential across various research domains, validating its domain-specific expertise, accelerating scientific progress, optimizing resource allocation, guiding future model development, and fostering interdisciplinary research. Our exploration methodology primarily consists of expert-driven case assessments, which offer qualitative insights into the model's comprehension of intricate scientific concepts and relationships, and occasionally benchmark testing, which quantitatively evaluates the model's capacity to solve well-defined domain-specific problems. Our preliminary exploration indicates that GPT-4 exhibits promising potential for a variety of scientific applications, demonstrating its aptitude for handling complex problem-solving and knowledge integration tasks. Broadly speaking, we evaluate GPT-4's knowledge base, scientific understanding, scientific numerical calculation abilities, and various scientific prediction capabilities.

  • 2 authors
·
Nov 13, 2023

Leveraging Biomolecule and Natural Language through Multi-Modal Learning: A Survey

The integration of biomolecular modeling with natural language (BL) has emerged as a promising interdisciplinary area at the intersection of artificial intelligence, chemistry and biology. This approach leverages the rich, multifaceted descriptions of biomolecules contained within textual data sources to enhance our fundamental understanding and enable downstream computational tasks such as biomolecule property prediction. The fusion of the nuanced narratives expressed through natural language with the structural and functional specifics of biomolecules described via various molecular modeling techniques opens new avenues for comprehensively representing and analyzing biomolecules. By incorporating the contextual language data that surrounds biomolecules into their modeling, BL aims to capture a holistic view encompassing both the symbolic qualities conveyed through language as well as quantitative structural characteristics. In this review, we provide an extensive analysis of recent advancements achieved through cross modeling of biomolecules and natural language. (1) We begin by outlining the technical representations of biomolecules employed, including sequences, 2D graphs, and 3D structures. (2) We then examine in depth the rationale and key objectives underlying effective multi-modal integration of language and molecular data sources. (3) We subsequently survey the practical applications enabled to date in this developing research area. (4) We also compile and summarize the available resources and datasets to facilitate future work. (5) Looking ahead, we identify several promising research directions worthy of further exploration and investment to continue advancing the field. The related resources and contents are updating in https://github.com/QizhiPei/Awesome-Biomolecule-Language-Cross-Modeling.

  • 8 authors
·
Mar 3, 2024

Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios

The recent trend of using Large Language Models (LLMs) as intelligent agents in real-world applications underscores the necessity for comprehensive evaluations of their capabilities, particularly in complex scenarios involving planning, creating, and using tools. However, existing benchmarks typically focus on simple synthesized queries that do not reflect real-world complexity, thereby offering limited perspectives in evaluating tool utilization. To address this issue, we present UltraTool, a novel benchmark designed to improve and evaluate LLMs' ability in tool utilization within real-world scenarios. UltraTool focuses on the entire process of using tools - from planning and creating to applying them in complex tasks. It emphasizes real-world complexities, demanding accurate, multi-step planning for effective problem-solving. A key feature of UltraTool is its independent evaluation of planning with natural language, which happens before tool usage and simplifies the task solving by mapping out the intermediate steps. Thus, unlike previous work, it eliminates the restriction of pre-defined toolset during planning. Through extensive experiments on various LLMs, we offer novel insights into the evaluation of capabilities of LLMs in tool utilization, thereby contributing a fresh perspective to this rapidly evolving field. The benchmark is publicly available at https://github.com/JoeYing1019/UltraTool.

  • 13 authors
·
Jan 30, 2024

Hyperbolic Large Language Models

Large language models (LLMs) have achieved remarkable success and demonstrated superior performance across various tasks, including natural language processing (NLP), weather forecasting, biological protein folding, text generation, and solving mathematical problems. However, many real-world data exhibit highly non-Euclidean latent hierarchical anatomy, such as protein networks, transportation networks, financial networks, brain networks, and linguistic structures or syntactic trees in natural languages. Effectively learning intrinsic semantic entailment and hierarchical relationships from these raw, unstructured input data using LLMs remains an underexplored area. Due to its effectiveness in modeling tree-like hierarchical structures, hyperbolic geometry -- a non-Euclidean space -- has rapidly gained popularity as an expressive latent representation space for complex data modeling across domains such as graphs, images, languages, and multi-modal data. Here, we provide a comprehensive and contextual exposition of recent advancements in LLMs that leverage hyperbolic geometry as a representation space to enhance semantic representation learning and multi-scale reasoning. Specifically, the paper presents a taxonomy of the principal techniques of Hyperbolic LLMs (HypLLMs) in terms of four main categories: (1) hyperbolic LLMs through exp/log maps; (2) hyperbolic fine-tuned models; (3) fully hyperbolic LLMs, and (4) hyperbolic state-space models. We also explore crucial potential applications and outline future research directions. A repository of key papers, models, datasets, and code implementations is available at https://github.com/sarangp2402/Hyperbolic-LLM-Models/tree/main.

  • 5 authors
·
Sep 6, 2025

The Open Polymers 2026 (OPoly26) Dataset and Evaluations

Polymers-macromolecular systems composed of repeating chemical units-constitute the molecular foundation of living organisms, while their synthetic counterparts drive transformative advances across medicine, consumer products, and energy technologies. While machine learning (ML) models have been trained on millions of quantum chemical atomistic simulations for materials and/or small molecular structures to enable efficient, accurate, and transferable predictions of chemical properties, polymers have largely not been included in prior datasets due to the computational expense of high quality electronic structure calculations on representative polymeric structures. Here, we address this shortcoming with the creation of the Open Polymers 2026 (OPoly26) dataset, which contains more than 6.57 million density functional theory (DFT) calculations on up to 360 atom clusters derived from polymeric systems, comprising over 1.2 billion total atoms. OPoly26 captures the chemical diversity that makes polymers intrinsically tunable and versatile materials, encompassing variations in monomer composition, degree of polymerization, chain architectures, and solvation environments. We show that augmenting ML model training with the OPoly26 dataset improves model performance for polymer prediction tasks. We also publicly release the OPoly26 dataset to help further the development of ML models for polymers, and more broadly, strive towards universal atomistic models.

  • 15 authors
·
Dec 28, 2025

Regression Transformer: Concurrent sequence regression and generation for molecular language modeling

Despite significant progress of generative models in the natural sciences, their controllability remains challenging. One fundamentally missing aspect of molecular or protein generative models is an inductive bias that can reflect continuous properties of interest. To that end, we propose the Regression Transformer (RT), a novel method that abstracts regression as a conditional sequence modeling problem. This introduces a new paradigm of multitask language models which seamlessly bridge sequence regression and conditional sequence generation. We thoroughly demonstrate that, despite using a nominal-scale training objective, the RT matches or surpasses the performance of conventional regression models in property prediction tasks of small molecules, proteins and chemical reactions. Critically, priming the same model with continuous properties yields a highly competitive conditional generative model that outperforms specialized approaches in a substructure-constrained, property-driven molecule generation benchmark. Our dichotomous approach is facilitated by a novel, alternating training scheme that enables the model to decorate seed sequences by desired properties, e.g., to optimize reaction yield. In sum, the RT is the first report of a multitask model that concurrently excels at predictive and generative tasks in biochemistry. This finds particular application in property-driven, local exploration of the chemical or protein space and could pave the road toward foundation models in material design. The code to reproduce all experiments of the paper is available at: https://github.com/IBM/regression-transformer

  • 2 authors
·
Feb 1, 2022

MatterGen: a generative model for inorganic materials design

The design of functional materials with desired properties is essential in driving technological advances in areas like energy storage, catalysis, and carbon capture. Generative models provide a new paradigm for materials design by directly generating entirely novel materials given desired property constraints. Despite recent progress, current generative models have low success rate in proposing stable crystals, or can only satisfy a very limited set of property constraints. Here, we present MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. To enable this, we introduce a new diffusion-based generative process that produces crystalline structures by gradually refining atom types, coordinates, and the periodic lattice. We further introduce adapter modules to enable fine-tuning towards any given property constraints with a labeled dataset. Compared to prior generative models, structures produced by MatterGen are more than twice as likely to be novel and stable, and more than 15 times closer to the local energy minimum. After fine-tuning, MatterGen successfully generates stable, novel materials with desired chemistry, symmetry, as well as mechanical, electronic and magnetic properties. Finally, we demonstrate multi-property materials design capabilities by proposing structures that have both high magnetic density and a chemical composition with low supply-chain risk. We believe that the quality of generated materials and the breadth of MatterGen's capabilities represent a major advancement towards creating a universal generative model for materials design.

  • 21 authors
·
Dec 6, 2023

La-Proteina: Atomistic Protein Generation via Partially Latent Flow Matching

Recently, many generative models for de novo protein structure design have emerged. Yet, only few tackle the difficult task of directly generating fully atomistic structures jointly with the underlying amino acid sequence. This is challenging, for instance, because the model must reason over side chains that change in length during generation. We introduce La-Proteina for atomistic protein design based on a novel partially latent protein representation: coarse backbone structure is modeled explicitly, while sequence and atomistic details are captured via per-residue latent variables of fixed dimensionality, thereby effectively side-stepping challenges of explicit side-chain representations. Flow matching in this partially latent space then models the joint distribution over sequences and full-atom structures. La-Proteina achieves state-of-the-art performance on multiple generation benchmarks, including all-atom co-designability, diversity, and structural validity, as confirmed through detailed structural analyses and evaluations. Notably, La-Proteina also surpasses previous models in atomistic motif scaffolding performance, unlocking critical atomistic structure-conditioned protein design tasks. Moreover, La-Proteina is able to generate co-designable proteins of up to 800 residues, a regime where most baselines collapse and fail to produce valid samples, demonstrating La-Proteina's scalability and robustness.

  • 9 authors
·
Jul 12, 2025

An efficient Asymptotic-Preserving scheme for the Boltzmann mixture with disparate mass

In this paper, we develop and implement an efficient asymptotic-preserving (AP) scheme to solve the gas mixture of Boltzmann equations under the disparate mass scaling relevant to the so-called "epochal relaxation" phenomenon. The disparity in molecular masses, ranging across several orders of magnitude, leads to significant challenges in both the evaluation of collision operators and the designing of time-stepping schemes to capture the multi-scale nature of the dynamics. A direct implementation of the spectral method faces prohibitive computational costs as the mass ratio increases due to the need to resolve vastly different thermal velocities. Unlike [I. M. Gamba, S. Jin, and L. Liu, Commun. Math. Sci., 17 (2019), pp. 1257-1289], we propose an alternative approach based on proper truncation of asymptotic expansions of the collision operators, which significantly reduces the computational complexity and works well for small varepsilon. By incorporating the separation of three time scales in the model's relaxation process [P. Degond and B. Lucquin-Desreux, Math. Models Methods Appl. Sci., 6 (1996), pp. 405-436], we design an AP scheme that captures the specific dynamics of the disparate mass model while maintaining computational efficiency. Numerical experiments demonstrate the effectiveness of the proposed scheme in handling large mass ratios of heavy and light species, as well as capturing the epochal relaxation phenomenon.

  • 3 authors
·
Nov 20, 2024

Long-context Protein Language Model

Self-supervised training of language models (LMs) has seen great success for protein sequences in learning meaningful representations and for generative drug design. Most protein LMs are based on the Transformer architecture trained on individual proteins with short context lengths. Such protein LMs cannot extrapolate to longer proteins and protein complexes well. They also fail to account for the underlying biological mechanisms carried out by biomolecular interactions and dynamics i.e., proteins often interact with other proteins, molecules, and pathways in complex biological systems. In this work, we propose LC-PLM based on an alternative protein LM architecture, BiMamba-S, built off selective structured state-space models, to learn high-quality universal protein representations at the amino acid token level using masked language modeling. We also introduce its graph-contextual variant, LC-PLM-G, which contextualizes protein-protein interaction (PPI) graphs for a second stage of training. LC-PLM demonstrates favorable neural scaling laws, better length extrapolation capability, and a 7% to 34% improvement on protein downstream tasks than Transformer-based ESM-2. LC-PLM-G further trained within the context of PPI graphs shows promising results on protein structure and function prediction tasks. Our study demonstrates the benefit of increasing the context size with computationally efficient LM architecture (e.g. structured state space models) in learning universal protein representations and incorporating molecular interaction context contained in biological graphs.

  • 7 authors
·
Oct 29, 2024

Leveraging Large Language Models as Knowledge-Driven Agents for Reliable Retrosynthesis Planning

Identifying reliable synthesis pathways in materials chemistry is a complex task, particularly in polymer science, due to the intricate and often non-unique nomenclature of macromolecules. To address this challenge, we propose an agent system that integrates large language models (LLMs) and knowledge graphs (KGs). By leveraging LLMs' powerful capabilities for extracting and recognizing chemical substance names, and storing the extracted data in a structured knowledge graph, our system fully automates the retrieval of relevant literatures, extraction of reaction data, database querying, construction of retrosynthetic pathway trees, further expansion through the retrieval of additional literature and recommendation of optimal reaction pathways. A novel Multi-branched Reaction Pathway Search (MBRPS) algorithm enables the exploration of all pathways, with a particular focus on multi-branched ones, helping LLMs overcome weak reasoning in multi-branched paths. This work represents the first attempt to develop a fully automated retrosynthesis planning agent tailored specially for macromolecules powered by LLMs. Applied to polyimide synthesis, our new approach constructs a retrosynthetic pathway tree with hundreds of pathways and recommends optimized routes, including both known and novel pathways, demonstrating its effectiveness and potential for broader applications.

  • 3 authors
·
Jan 15, 2025

The Open Catalyst 2020 (OC20) Dataset and Community Challenges

Catalyst discovery and optimization is key to solving many societal and energy challenges including solar fuels synthesis, long-term energy storage, and renewable fertilizer production. Despite considerable effort by the catalysis community to apply machine learning models to the computational catalyst discovery process, it remains an open challenge to build models that can generalize across both elemental compositions of surfaces and adsorbate identity/configurations, perhaps because datasets have been smaller in catalysis than related fields. To address this we developed the OC20 dataset, consisting of 1,281,040 Density Functional Theory (DFT) relaxations (~264,890,000 single point evaluations) across a wide swath of materials, surfaces, and adsorbates (nitrogen, carbon, and oxygen chemistries). We supplemented this dataset with randomly perturbed structures, short timescale molecular dynamics, and electronic structure analyses. The dataset comprises three central tasks indicative of day-to-day catalyst modeling and comes with pre-defined train/validation/test splits to facilitate direct comparisons with future model development efforts. We applied three state-of-the-art graph neural network models (CGCNN, SchNet, Dimenet++) to each of these tasks as baseline demonstrations for the community to build on. In almost every task, no upper limit on model size was identified, suggesting that even larger models are likely to improve on initial results. The dataset and baseline models are both provided as open resources, as well as a public leader board to encourage community contributions to solve these important tasks.

  • 17 authors
·
Oct 19, 2020

Learning fast, accurate, and stable closures of a kinetic theory of an active fluid

Important classes of active matter systems can be modeled using kinetic theories. However, kinetic theories can be high dimensional and challenging to simulate. Reduced-order representations based on tracking only low-order moments of the kinetic model serve as an efficient alternative, but typically require closure assumptions to model unrepresented higher-order moments. In this study, we present a learning framework based on neural networks that exploit rotational symmetries in the closure terms to learn accurate closure models directly from kinetic simulations. The data-driven closures demonstrate excellent a-priori predictions comparable to the state-of-the-art Bingham closure. We provide a systematic comparison between different neural network architectures and demonstrate that nonlocal effects can be safely ignored to model the closure terms. We develop an active learning strategy that enables accurate prediction of the closure terms across the entire parameter space using a single neural network without the need for retraining. We also propose a data-efficient training procedure based on time-stepping constraints and a differentiable pseudo-spectral solver, which enables the learning of stable closures suitable for a-posteriori inference. The coarse-grained simulations equipped with data-driven closure models faithfully reproduce the mean velocity statistics, scalar order parameters, and velocity power spectra observed in simulations of the kinetic theory. Our differentiable framework also facilitates the estimation of parameters in coarse-grained descriptions conditioned on data.

  • 3 authors
·
Aug 12, 2023

Higher-Order Knowledge Representations for Agentic Scientific Reasoning

Scientific inquiry requires systems-level reasoning that integrates heterogeneous experimental data, cross-domain knowledge, and mechanistic evidence into coherent explanations. While Large Language Models (LLMs) offer inferential capabilities, they often depend on retrieval-augmented contexts that lack structural depth. Traditional Knowledge Graphs (KGs) attempt to bridge this gap, yet their pairwise constraints fail to capture the irreducible higher-order interactions that govern emergent physical behavior. To address this, we introduce a methodology for constructing hypergraph-based knowledge representations that faithfully encode multi-entity relationships. Applied to a corpus of ~1,100 manuscripts on biocomposite scaffolds, our framework constructs a global hypergraph of 161,172 nodes and 320,201 hyperedges, revealing a scale-free topology (power law exponent ~1.23) organized around highly connected conceptual hubs. This representation prevents the combinatorial explosion typical of pairwise expansions and explicitly preserves the co-occurrence context of scientific formulations. We further demonstrate that equipping agentic systems with hypergraph traversal tools, specifically using node-intersection constraints, enables them to bridge semantically distant concepts. By exploiting these higher-order pathways, the system successfully generates grounded mechanistic hypotheses for novel composite materials, such as linking cerium oxide to PCL scaffolds via chitosan intermediates. This work establishes a "teacherless" agentic reasoning system where hypergraph topology acts as a verifiable guardrail, accelerating scientific discovery by uncovering relationships obscured by traditional graph methods.

  • 2 authors
·
Jan 8

Energy Efficient Protein Language Models: Leveraging Small Language Models with LoRA for Controllable Protein Generation

Large language models (LLMs) have demonstrated significant success in natural language processing (NLP) tasks and have shown promising results in other domains such as protein sequence generation. However, there remain salient differences between LLMs used for NLP, which effectively handle multiple tasks and are available in small sizes, and protein language models that are often specialized for specific tasks and only exist in larger sizes. In this work, we introduce two small protein language models, based on Llama-3-8B and Phi-3-mini, that are capable of both uncontrollable and controllable protein generation. For the uncontrollable generation task, our best model achieves an average pLDDT score of 69.75, demonstrating robust performance in generating viable protein structures. For the controllable generation task, in which the model generates proteins according to properties specified in the prompt, we achieve a remarkable average TM-Score of 0.84, indicating high structural similarity to target proteins. We chose 10 properties, including six classes of enzymes, to extend the capabilities of prior protein language models. Our approach utilizes the Low-Rank Adaptor (LoRA) technique, reducing trainable parameters to just 4% of the original model size, lowering computational requirements. By using a subset of the UniRef50 dataset and small models, we reduced the overall training time by 70% without compromising performance. Notably, Phi-3-mini reduced trainable parameters by 60%, decreasing training cost by 30% compared to Llama 3. Consequently, Phi-3 achieved a comparable TM-Score of 0.81, demonstrating that smaller models can match the performance of larger ones, like Llama 3. We also demonstrate the deployment of our models on the energy efficient ET-SoC-1 chip, significantly improving the TPS/W by a factor of 3.

  • 2 authors
·
Nov 8, 2024 2

MeLM, a generative pretrained language modeling framework that solves forward and inverse mechanics problems

We report a flexible multi-modal mechanics language model, MeLM, applied to solve various nonlinear forward and inverse problems, that can deal with a set of instructions, numbers and microstructure data. The framework is applied to various examples including bio-inspired hierarchical honeycomb design, carbon nanotube mechanics, and protein unfolding. In spite of the flexible nature of the model-which allows us to easily incorporate diverse materials, scales, and mechanical features-it performs well across disparate forward and inverse tasks. Based on an autoregressive attention-model, MeLM effectively represents a large multi-particle system consisting of hundreds of millions of neurons, where the interaction potentials are discovered through graph-forming self-attention mechanisms that are then used to identify relationships from emergent structures, while taking advantage of synergies discovered in the training data. We show that the model can solve complex degenerate mechanics design problems and determine novel material architectures across a range of hierarchical levels, providing an avenue for materials discovery and analysis. Looking beyond the demonstrations reported in this paper, we discuss other opportunities in applied mechanics and general considerations about the use of large language models in modeling, design, and analysis that can span a broad spectrum of material properties from mechanical, thermal, optical, to electronic.

  • 1 authors
·
Jun 30, 2023

Transformers for molecular property prediction: Domain adaptation efficiently improves performance

Most of the current transformer-based chemical language models are pre-trained on millions to billions of molecules. However, the improvement from such scaling in dataset size is not confidently linked to improved molecular property prediction. The aim of this study is to investigate and overcome some of the limitations of transformer models in predicting molecular properties. Specifically, we examine the impact of pre-training dataset size and diversity on the performance of transformer models and investigate the use of domain adaptation as a technique for improving model performance. First, our findings indicate that increasing pretraining dataset size beyond 400K molecules from the GuacaMol dataset does not result in a significant improvement on four ADME endpoints, namely, solubility, permeability, microsomal stability, and plasma protein binding. Second, our results demonstrate that using domain adaptation by further training the transformer model on a small set of domain-relevant molecules, i.e., a few hundred to a few thousand, using multi-task regression of physicochemical properties was sufficient to significantly improve performance for three out of the four investigated ADME endpoints (P-value < 0.001). Finally, we observe that a model pre-trained on 400K molecules and domain adopted on a few hundred/thousand molecules performs similarly (P-value > 0.05) to more complicated transformer models like MolBERT(pre-trained on 1.3M molecules) and MolFormer (pre-trained on 100M molecules). A comparison to a random forest model trained on basic physicochemical properties showed similar performance to the examined transformer models. We believe that current transformer models can be improved through further systematic analysis of pre-training and downstream data, pre-training objectives, and scaling laws, ultimately leading to better and more helpful models.

  • 6 authors
·
Mar 5, 2025

Peptide Sequencing Via Protein Language Models

We introduce a protein language model for determining the complete sequence of a peptide based on measurement of a limited set of amino acids. To date, protein sequencing relies on mass spectrometry, with some novel edman degregation based platforms able to sequence non-native peptides. Current protein sequencing techniques face limitations in accurately identifying all amino acids, hindering comprehensive proteome analysis. Our method simulates partial sequencing data by selectively masking amino acids that are experimentally difficult to identify in protein sequences from the UniRef database. This targeted masking mimics real-world sequencing limitations. We then modify and finetune a ProtBert derived transformer-based model, for a new downstream task predicting these masked residues, providing an approximation of the complete sequence. Evaluating on three bacterial Escherichia species, we achieve per-amino-acid accuracy up to 90.5% when only four amino acids ([KCYM]) are known. Structural assessment using AlphaFold and TM-score validates the biological relevance of our predictions. The model also demonstrates potential for evolutionary analysis through cross-species performance. This integration of simulated experimental constraints with computational predictions offers a promising avenue for enhancing protein sequence analysis, potentially accelerating advancements in proteomics and structural biology by providing a probabilistic reconstruction of the complete protein sequence from limited experimental data.

  • 12 authors
·
Aug 1, 2024

BoostMD: Accelerating molecular sampling by leveraging ML force field features from previous time-steps

Simulating atomic-scale processes, such as protein dynamics and catalytic reactions, is crucial for advancements in biology, chemistry, and materials science. Machine learning force fields (MLFFs) have emerged as powerful tools that achieve near quantum mechanical accuracy, with promising generalization capabilities. However, their practical use is often limited by long inference times compared to classical force fields, especially when running extensive molecular dynamics (MD) simulations required for many biological applications. In this study, we introduce BoostMD, a surrogate model architecture designed to accelerate MD simulations. BoostMD leverages node features computed at previous time steps to predict energies and forces based on positional changes. This approach reduces the complexity of the learning task, allowing BoostMD to be both smaller and significantly faster than conventional MLFFs. During simulations, the computationally intensive reference MLFF is evaluated only every N steps, while the lightweight BoostMD model handles the intermediate steps at a fraction of the computational cost. Our experiments demonstrate that BoostMD achieves an eight-fold speedup compared to the reference model and generalizes to unseen dipeptides. Furthermore, we find that BoostMD accurately samples the ground-truth Boltzmann distribution when running molecular dynamics. By combining efficient feature reuse with a streamlined architecture, BoostMD offers a robust solution for conducting large-scale, long-timescale molecular simulations, making high-accuracy ML-driven modeling more accessible and practical.

  • 5 authors
·
Dec 21, 2024

BAMBOO: a predictive and transferable machine learning force field framework for liquid electrolyte development

Despite the widespread applications of machine learning force field (MLFF) on solids and small molecules, there is a notable gap in applying MLFF to complex liquid electrolytes. In this work, we introduce BAMBOO (ByteDance AI Molecular Simulation Booster), a novel framework for molecular dynamics (MD) simulations, with a demonstration of its capabilities in the context of liquid electrolytes for lithium batteries. We design a physics-inspired graph equivariant transformer architecture as the backbone of BAMBOO to learn from quantum mechanical simulations. Additionally, we pioneer an ensemble knowledge distillation approach and apply it on MLFFs to improve the stability of MD simulations. Finally, we propose the density alignment algorithm to align BAMBOO with experimental measurements. BAMBOO demonstrates state-of-the-art accuracy in predicting key electrolyte properties such as density, viscosity, and ionic conductivity across various solvents and salt combinations. Our current model, trained on more than 15 chemical species, achieves the average density error of 0.01 g/cm^3 on various compositions compared with experimental data. Moreover, our model demonstrates transferability to molecules not included in the quantum mechanical dataset. We envision this work as paving the way to a "universal MLFF" capable of simulating properties of common organic liquids.

  • 15 authors
·
Apr 10, 2024

Dense Hebbian neural networks: a replica symmetric picture of supervised learning

We consider dense, associative neural-networks trained by a teacher (i.e., with supervision) and we investigate their computational capabilities analytically, via statistical-mechanics of spin glasses, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram summarizing their performance as a function of the control parameters such as quality and quantity of the training dataset, network storage and noise, that is valid in the limit of large network size and structureless datasets: these networks may work in a ultra-storage regime (where they can handle a huge amount of patterns, if compared with shallow neural networks) or in a ultra-detection regime (where they can perform pattern recognition at prohibitive signal-to-noise ratios, if compared with shallow neural networks). Guided by the random theory as a reference framework, we also test numerically learning, storing and retrieval capabilities shown by these networks on structured datasets as MNist and Fashion MNist. As technical remarks, from the analytic side, we implement large deviations and stability analysis within Guerra's interpolation to tackle the not-Gaussian distributions involved in the post-synaptic potentials while, from the computational counterpart, we insert Plefka approximation in the Monte Carlo scheme, to speed up the evaluation of the synaptic tensors, overall obtaining a novel and broad approach to investigate supervised learning in neural networks, beyond the shallow limit, in general.

  • 8 authors
·
Nov 25, 2022

M^{3}-20M: A Large-Scale Multi-Modal Molecule Dataset for AI-driven Drug Design and Discovery

This paper introduces M^{3}-20M, a large-scale Multi-Modal Molecular dataset that contains over 20 million molecules. Designed to support AI-driven drug design and discovery, M^{3}-20M is 71 times more in the number of molecules than the largest existing dataset, providing an unprecedented scale that can highly benefit training or fine-tuning large (language) models with superior performance for drug design and discovery. This dataset integrates one-dimensional SMILES, two-dimensional molecular graphs, three-dimensional molecular structures, physicochemical properties, and textual descriptions collected through web crawling and generated by using GPT-3.5, offering a comprehensive view of each molecule. To demonstrate the power of M^{3}-20M in drug design and discovery, we conduct extensive experiments on two key tasks: molecule generation and molecular property prediction, using large language models including GLM4, GPT-3.5, and GPT-4. Our experimental results show that M^{3}-20M can significantly boost model performance in both tasks. Specifically, it enables the models to generate more diverse and valid molecular structures and achieve higher property prediction accuracy than the existing single-modal datasets, which validates the value and potential of M^{3}-20M in supporting AI-driven drug design and discovery. The dataset is available at https://github.com/bz99bz/M-3.

  • 9 authors
·
Dec 7, 2024

AbBiBench: A Benchmark for Antibody Binding Affinity Maturation and Design

We introduce AbBiBench (Antibody Binding Benchmarking), a benchmarking framework for antibody binding affinity maturation and design. Unlike previous strategies that evaluate antibodies in isolation, typically by comparing them to natural sequences with metrics such as amino acid recovery rate or structural RMSD, AbBiBench instead treats the antibody-antigen (Ab-Ag) complex as the fundamental unit. It evaluates an antibody design's binding potential by measuring how well a protein model scores the full Ab-Ag complex. We first curate, standardize, and share more than 184,500 experimental measurements of antibody mutants across 14 antibodies and 9 antigens-including influenza, lysozyme, HER2, VEGF, integrin, Ang2, and SARS-CoV-2-covering both heavy-chain and light-chain mutations. Using these datasets, we systematically compare 15 protein models including masked language models, autoregressive language models, inverse folding models, diffusion-based generative models, and geometric graph models by comparing the correlation between model likelihood and experimental affinity values. Additionally, to demonstrate AbBiBench's generative utility, we apply it to antibody F045-092 in order to introduce binding to influenza H1N1. We sample new antibody variants with the top-performing models, rank them by the structural integrity and biophysical properties of the Ab-Ag complex, and assess them with in vitro ELISA binding assays. Our findings show that structure-conditioned inverse folding models outperform others in both affinity correlation and generation tasks. Overall, AbBiBench provides a unified, biologically grounded evaluation framework to facilitate the development of more effective, function-aware antibody design models.

  • 12 authors
·
May 23, 2025

What's In Your Field? Mapping Scientific Research with Knowledge Graphs and Large Language Models

The scientific literature's exponential growth makes it increasingly challenging to navigate and synthesize knowledge across disciplines. Large language models (LLMs) are powerful tools for understanding scientific text, but they fail to capture detailed relationships across large bodies of work. Unstructured approaches, like retrieval augmented generation, can sift through such corpora to recall relevant facts; however, when millions of facts influence the answer, unstructured approaches become cost prohibitive. Structured representations offer a natural complement -- enabling systematic analysis across the whole corpus. Recent work enhances LLMs with unstructured or semistructured representations of scientific concepts; to complement this, we try extracting structured representations using LLMs. By combining LLMs' semantic understanding with a schema of scientific concepts, we prototype a system that answers precise questions about the literature as a whole. Our schema applies across scientific fields and we extract concepts from it using only 20 manually annotated abstracts. To demonstrate the system, we extract concepts from 30,000 papers on arXiv spanning astrophysics, fluid dynamics, and evolutionary biology. The resulting database highlights emerging trends and, by visualizing the knowledge graph, offers new ways to explore the ever-growing landscape of scientific knowledge. Demo: abby101/surveyor-0 on HF Spaces. Code: https://github.com/chiral-carbon/kg-for-science.

  • 4 authors
·
Mar 12, 2025

xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering the Language of Protein

Protein language models have shown remarkable success in learning biological information from protein sequences. However, most existing models are limited by either autoencoding or autoregressive pre-training objectives, which makes them struggle to handle protein understanding and generation tasks concurrently. We propose a unified protein language model, xTrimoPGLM, to address these two types of tasks simultaneously through an innovative pre-training framework. Our key technical contribution is an exploration of the compatibility and the potential for joint optimization of the two types of objectives, which has led to a strategy for training xTrimoPGLM at an unprecedented scale of 100 billion parameters and 1 trillion training tokens. Our extensive experiments reveal that 1) xTrimoPGLM significantly outperforms other advanced baselines in 18 protein understanding benchmarks across four categories. The model also facilitates an atomic-resolution view of protein structures, leading to an advanced 3D structural prediction model that surpasses existing language model-based tools. 2) xTrimoPGLM not only can generate de novo protein sequences following the principles of natural ones, but also can perform programmable generation after supervised fine-tuning (SFT) on curated sequences. These results highlight the substantial capability and versatility of xTrimoPGLM in understanding and generating protein sequences, contributing to the evolving landscape of foundation models in protein science.

  • 15 authors
·
Jan 11, 2024

K-Dense Analyst: Towards Fully Automated Scientific Analysis

The complexity of modern bioinformatics analysis has created a critical gap between data generation and developing scientific insights. While large language models (LLMs) have shown promise in scientific reasoning, they remain fundamentally limited when dealing with real-world analytical workflows that demand iterative computation, tool integration and rigorous validation. We introduce K-Dense Analyst, a hierarchical multi-agent system that achieves autonomous bioinformatics analysis through a dual-loop architecture. K-Dense Analyst, part of the broader K-Dense platform, couples planning with validated execution using specialized agents to decompose complex objectives into executable, verifiable tasks within secure computational environments. On BixBench, a comprehensive benchmark for open-ended biological analysis, K-Dense Analyst achieves 29.2% accuracy, surpassing the best-performing language model (GPT-5) by 6.3 percentage points, representing nearly 27% improvement over what is widely considered the most powerful LLM available. Remarkably, K-Dense Analyst achieves this performance using Gemini 2.5 Pro, which attains only 18.3% accuracy when used directly, demonstrating that our architectural innovations unlock capabilities far beyond the underlying model's baseline performance. Our insights demonstrate that autonomous scientific reasoning requires more than enhanced language models, it demands purpose-built systems that can bridge the gap between high-level scientific objectives and low-level computational execution. These results represent a significant advance toward fully autonomous computational biologists capable of accelerating discovery across the life sciences.

  • 5 authors
·
Aug 9, 2025

The Open Molecules 2025 (OMol25) Dataset, Evaluations, and Models

Machine learning (ML) models hold the promise of transforming atomic simulations by delivering quantum chemical accuracy at a fraction of the computational cost. Realization of this potential would enable high-throughout, high-accuracy molecular screening campaigns to explore vast regions of chemical space and facilitate ab initio simulations at sizes and time scales that were previously inaccessible. However, a fundamental challenge to creating ML models that perform well across molecular chemistry is the lack of comprehensive data for training. Despite substantial efforts in data generation, no large-scale molecular dataset exists that combines broad chemical diversity with a high level of accuracy. To address this gap, Meta FAIR introduces Open Molecules 2025 (OMol25), a large-scale dataset composed of more than 100 million density functional theory (DFT) calculations at the omegaB97M-V/def2-TZVPD level of theory, representing billions of CPU core-hours of compute. OMol25 uniquely blends elemental, chemical, and structural diversity including: 83 elements, a wide-range of intra- and intermolecular interactions, explicit solvation, variable charge/spin, conformers, and reactive structures. There are ~83M unique molecular systems in OMol25 covering small molecules, biomolecules, metal complexes, and electrolytes, including structures obtained from existing datasets. OMol25 also greatly expands on the size of systems typically included in DFT datasets, with systems of up to 350 atoms. In addition to the public release of the data, we provide baseline models and a comprehensive set of model evaluations to encourage community engagement in developing the next-generation ML models for molecular chemistry.

  • 23 authors
·
May 13, 2025

Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls

Neural network (NN) potentials promise highly accurate molecular dynamics (MD) simulations within the computational complexity of classical MD force fields. However, when applied outside their training domain, NN potential predictions can be inaccurate, increasing the need for Uncertainty Quantification (UQ). Bayesian modeling provides the mathematical framework for UQ, but classical Bayesian methods based on Markov chain Monte Carlo (MCMC) are computationally intractable for NN potentials. By training graph NN potentials for coarse-grained systems of liquid water and alanine dipeptide, we demonstrate here that scalable Bayesian UQ via stochastic gradient MCMC (SG-MCMC) yields reliable uncertainty estimates for MD observables. We show that cold posteriors can reduce the required training data size and that for reliable UQ, multiple Markov chains are needed. Additionally, we find that SG-MCMC and the Deep Ensemble method achieve comparable results, despite shorter training and less hyperparameter tuning of the latter. We show that both methods can capture aleatoric and epistemic uncertainty reliably, but not systematic uncertainty, which needs to be minimized by adequate modeling to obtain accurate credible intervals for MD observables. Our results represent a step towards accurate UQ that is of vital importance for trustworthy NN potential-based MD simulations required for decision-making in practice.

  • 3 authors
·
Dec 15, 2022

Bio-xLSTM: Generative modeling, representation and in-context learning of biological and chemical sequences

Language models for biological and chemical sequences enable crucial applications such as drug discovery, protein engineering, and precision medicine. Currently, these language models are predominantly based on Transformer architectures. While Transformers have yielded impressive results, their quadratic runtime dependency on the sequence length complicates their use for long genomic sequences and in-context learning on proteins and chemical sequences. Recently, the recurrent xLSTM architecture has been shown to perform favorably compared to Transformers and modern state-space model (SSM) architectures in the natural language domain. Similar to SSMs, xLSTMs have a linear runtime dependency on the sequence length and allow for constant-memory decoding at inference time, which makes them prime candidates for modeling long-range dependencies in biological and chemical sequences. In this work, we tailor xLSTM towards these domains and propose a suite of architectural variants called Bio-xLSTM. Extensive experiments in three large domains, genomics, proteins, and chemistry, were performed to assess xLSTM's ability to model biological and chemical sequences. The results show that models based on Bio-xLSTM a) can serve as proficient generative models for DNA, protein, and chemical sequences, b) learn rich representations for those modalities, and c) can perform in-context learning for proteins and small molecules.

  • 10 authors
·
Nov 6, 2024