new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 3

DP-Adapter: Dual-Pathway Adapter for Boosting Fidelity and Text Consistency in Customizable Human Image Generation

With the growing popularity of personalized human content creation and sharing, there is a rising demand for advanced techniques in customized human image generation. However, current methods struggle to simultaneously maintain the fidelity of human identity and ensure the consistency of textual prompts, often resulting in suboptimal outcomes. This shortcoming is primarily due to the lack of effective constraints during the simultaneous integration of visual and textual prompts, leading to unhealthy mutual interference that compromises the full expression of both types of input. Building on prior research that suggests visual and textual conditions influence different regions of an image in distinct ways, we introduce a novel Dual-Pathway Adapter (DP-Adapter) to enhance both high-fidelity identity preservation and textual consistency in personalized human image generation. Our approach begins by decoupling the target human image into visually sensitive and text-sensitive regions. For visually sensitive regions, DP-Adapter employs an Identity-Enhancing Adapter (IEA) to preserve detailed identity features. For text-sensitive regions, we introduce a Textual-Consistency Adapter (TCA) to minimize visual interference and ensure the consistency of textual semantics. To seamlessly integrate these pathways, we develop a Fine-Grained Feature-Level Blending (FFB) module that efficiently combines hierarchical semantic features from both pathways, resulting in more natural and coherent synthesis outcomes. Additionally, DP-Adapter supports various innovative applications, including controllable headshot-to-full-body portrait generation, age editing, old-photo to reality, and expression editing.

  • 5 authors
·
Feb 19, 2025

Gene-DML: Dual-Pathway Multi-Level Discrimination for Gene Expression Prediction from Histopathology Images

Accurately predicting gene expression from histopathology images offers a scalable and non-invasive approach to molecular profiling, with significant implications for precision medicine and computational pathology. However, existing methods often underutilize the cross-modal representation alignment between histopathology images and gene expression profiles across multiple representational levels, thereby limiting their prediction performance. To address this, we propose Gene-DML, a unified framework that structures latent space through Dual-pathway Multi-Level discrimination to enhance correspondence between morphological and transcriptional modalities. The multi-scale instance-level discrimination pathway aligns hierarchical histopathology representations extracted at local, neighbor, and global levels with gene expression profiles, capturing scale-aware morphological-transcriptional relationships. In parallel, the cross-level instance-group discrimination pathway enforces structural consistency between individual (image/gene) instances and modality-crossed (gene/image, respectively) groups, strengthening the alignment across modalities. By jointly modelling fine-grained and structural-level discrimination, Gene-DML is able to learn robust cross-modal representations, enhancing both predictive accuracy and generalization across diverse biological contexts. Extensive experiments on public spatial transcriptomics datasets demonstrate that Gene-DML achieves state-of-the-art performance in gene expression prediction. The code and checkpoints will be released soon.

  • 4 authors
·
Jul 19, 2025

SPACE-CLIP: Spatial Perception via Adaptive CLIP Embeddings for Monocular Depth Estimation

Contrastive Language-Image Pre-training (CLIP) has accomplished extraordinary success for semantic understanding but inherently struggles to perceive geometric structure. Existing methods attempt to bridge this gap by querying CLIP with textual prompts, a process that is often indirect and inefficient. This paper introduces a fundamentally different approach using a dual-pathway decoder. We present SPACE-CLIP, an architecture that unlocks and interprets latent geometric knowledge directly from a frozen CLIP vision encoder, completely bypassing the text encoder and its associated textual prompts. A semantic pathway interprets high-level features, dynamically conditioned on global context using feature-wise linear modulation (FiLM). In addition, a structural pathway extracts fine-grained spatial details from early layers. These complementary streams are hierarchically fused, enabling a robust synthesis of semantic context and precise geometry. Extensive experiments on the KITTI benchmark show that SPACE-CLIP dramatically outperforms previous CLIP-based methods. Our ablation studies validate that the synergistic fusion of our dual pathways is critical to this success. SPACE-CLIP offers a new, efficient, and architecturally elegant blueprint for repurposing large-scale vision models. The proposed method is not just a standalone depth estimator, but a readily integrable spatial perception module for the next generation of embodied AI systems, such as vision-language-action (VLA) models. Our model is available at https://github.com/taewan2002/space-clip

  • 3 authors
·
Jan 24

Machine Learning Modeling for Multi-order Human Visual Motion Processing

Our research aims to develop machines that learn to perceive visual motion as do humans. While recent advances in computer vision (CV) have enabled DNN-based models to accurately estimate optical flow in naturalistic images, a significant disparity remains between CV models and the biological visual system in both architecture and behavior. This disparity includes humans' ability to perceive the motion of higher-order image features (second-order motion), which many CV models fail to capture because of their reliance on the intensity conservation law. Our model architecture mimics the cortical V1-MT motion processing pathway, utilizing a trainable motion energy sensor bank and a recurrent graph network. Supervised learning employing diverse naturalistic videos allows the model to replicate psychophysical and physiological findings about first-order (luminance-based) motion perception. For second-order motion, inspired by neuroscientific findings, the model includes an additional sensing pathway with nonlinear preprocessing before motion energy sensing, implemented using a simple multilayer 3D CNN block. When exploring how the brain acquired the ability to perceive second-order motion in natural environments, in which pure second-order signals are rare, we hypothesized that second-order mechanisms were critical when estimating robust object motion amidst optical fluctuations, such as highlights on glossy surfaces. We trained our dual-pathway model on novel motion datasets with varying material properties of moving objects. We found that training to estimate object motion from non-Lambertian materials naturally endowed the model with the capacity to perceive second-order motion, as can humans. The resulting model effectively aligns with biological systems while generalizing to both first- and second-order motion phenomena in natural scenes.

  • 5 authors
·
Jan 22, 2025

CREST: Cross-modal Resonance through Evidential Deep Learning for Enhanced Zero-Shot Learning

Zero-shot learning (ZSL) enables the recognition of novel classes by leveraging semantic knowledge transfer from known to unknown categories. This knowledge, typically encapsulated in attribute descriptions, aids in identifying class-specific visual features, thus facilitating visual-semantic alignment and improving ZSL performance. However, real-world challenges such as distribution imbalances and attribute co-occurrence among instances often hinder the discernment of local variances in images, a problem exacerbated by the scarcity of fine-grained, region-specific attribute annotations. Moreover, the variability in visual presentation within categories can also skew attribute-category associations. In response, we propose a bidirectional cross-modal ZSL approach CREST. It begins by extracting representations for attribute and visual localization and employs Evidential Deep Learning (EDL) to measure underlying epistemic uncertainty, thereby enhancing the model's resilience against hard negatives. CREST incorporates dual learning pathways, focusing on both visual-category and attribute-category alignments, to ensure robust correlation between latent and observable spaces. Moreover, we introduce an uncertainty-informed cross-modal fusion technique to refine visual-attribute inference. Extensive experiments demonstrate our model's effectiveness and unique explainability across multiple datasets. Our code and data are available at: https://github.com/JethroJames/CREST

  • 8 authors
·
Apr 15, 2024

OmniGen2: Exploration to Advanced Multimodal Generation

In this work, we introduce OmniGen2, a versatile and open-source generative model designed to provide a unified solution for diverse generation tasks, including text-to-image, image editing, and in-context generation. Unlike OmniGen v1, OmniGen2 features two distinct decoding pathways for text and image modalities, utilizing unshared parameters and a decoupled image tokenizer. This design enables OmniGen2 to build upon existing multimodal understanding models without the need to re-adapt VAE inputs, thereby preserving the original text generation capabilities. To facilitate the training of OmniGen2, we developed comprehensive data construction pipelines, encompassing image editing and in-context generation data. Additionally, we introduce a reflection mechanism tailored for image generation tasks and curate a dedicated reflection dataset based on OmniGen2. Despite its relatively modest parameter size, OmniGen2 achieves competitive results on multiple task benchmarks, including text-to-image and image editing. To further evaluate in-context generation, also referred to as subject-driven tasks, we introduce a new benchmark named OmniContext. OmniGen2 achieves state-of-the-art performance among open-source models in terms of consistency. We will release our models, training code, datasets, and data construction pipeline to support future research in this field. Project Page: https://vectorspacelab.github.io/OmniGen2; GitHub Link: https://github.com/VectorSpaceLab/OmniGen2

  • 22 authors
·
Jun 23, 2025 4

Zero-Shot Dual-Path Integration Framework for Open-Vocabulary 3D Instance Segmentation

Open-vocabulary 3D instance segmentation transcends traditional closed-vocabulary methods by enabling the identification of both previously seen and unseen objects in real-world scenarios. It leverages a dual-modality approach, utilizing both 3D point clouds and 2D multi-view images to generate class-agnostic object mask proposals. Previous efforts predominantly focused on enhancing 3D mask proposal models; consequently, the information that could come from 2D association to 3D was not fully exploited. This bias towards 3D data, while effective for familiar indoor objects, limits the system's adaptability to new and varied object types, where 2D models offer greater utility. Addressing this gap, we introduce Zero-Shot Dual-Path Integration Framework that equally values the contributions of both 3D and 2D modalities. Our framework comprises three components: 3D pathway, 2D pathway, and Dual-Path Integration. 3D pathway generates spatially accurate class-agnostic mask proposals of common indoor objects from 3D point cloud data using a pre-trained 3D model, while 2D pathway utilizes pre-trained open-vocabulary instance segmentation model to identify a diverse array of object proposals from multi-view RGB-D images. In Dual-Path Integration, our Conditional Integration process, which operates in two stages, filters and merges the proposals from both pathways adaptively. This process harmonizes output proposals to enhance segmentation capabilities. Our framework, utilizing pre-trained models in a zero-shot manner, is model-agnostic and demonstrates superior performance on both seen and unseen data, as evidenced by comprehensive evaluations on the ScanNet200 and qualitative results on ARKitScenes datasets.

  • 6 authors
·
Aug 16, 2024

Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes

Semantic segmentation is a key technology for autonomous vehicles to understand the surrounding scenes. The appealing performances of contemporary models usually come at the expense of heavy computations and lengthy inference time, which is intolerable for self-driving. Using light-weight architectures (encoder-decoder or two-pathway) or reasoning on low-resolution images, recent methods realize very fast scene parsing, even running at more than 100 FPS on a single 1080Ti GPU. However, there is still a significant gap in performance between these real-time methods and the models based on dilation backbones. To tackle this problem, we proposed a family of efficient backbones specially designed for real-time semantic segmentation. The proposed deep dual-resolution networks (DDRNets) are composed of two deep branches between which multiple bilateral fusions are performed. Additionally, we design a new contextual information extractor named Deep Aggregation Pyramid Pooling Module (DAPPM) to enlarge effective receptive fields and fuse multi-scale context based on low-resolution feature maps. Our method achieves a new state-of-the-art trade-off between accuracy and speed on both Cityscapes and CamVid dataset. In particular, on a single 2080Ti GPU, DDRNet-23-slim yields 77.4% mIoU at 102 FPS on Cityscapes test set and 74.7% mIoU at 230 FPS on CamVid test set. With widely used test augmentation, our method is superior to most state-of-the-art models and requires much less computation. Codes and trained models are available online.

  • 4 authors
·
Jan 15, 2021

TransDAE: Dual Attention Mechanism in a Hierarchical Transformer for Efficient Medical Image Segmentation

In healthcare, medical image segmentation is crucial for accurate disease diagnosis and the development of effective treatment strategies. Early detection can significantly aid in managing diseases and potentially prevent their progression. Machine learning, particularly deep convolutional neural networks, has emerged as a promising approach to addressing segmentation challenges. Traditional methods like U-Net use encoding blocks for local representation modeling and decoding blocks to uncover semantic relationships. However, these models often struggle with multi-scale objects exhibiting significant variations in texture and shape, and they frequently fail to capture long-range dependencies in the input data. Transformers designed for sequence-to-sequence predictions have been proposed as alternatives, utilizing global self-attention mechanisms. Yet, they can sometimes lack precise localization due to insufficient granular details. To overcome these limitations, we introduce TransDAE: a novel approach that reimagines the self-attention mechanism to include both spatial and channel-wise associations across the entire feature space, while maintaining computational efficiency. Additionally, TransDAE enhances the skip connection pathway with an inter-scale interaction module, promoting feature reuse and improving localization accuracy. Remarkably, TransDAE outperforms existing state-of-the-art methods on the Synaps multi-organ dataset, even without relying on pre-trained weights.

  • 3 authors
·
Sep 3, 2024

InstantCharacter: Personalize Any Characters with a Scalable Diffusion Transformer Framework

Current learning-based subject customization approaches, predominantly relying on U-Net architectures, suffer from limited generalization ability and compromised image quality. Meanwhile, optimization-based methods require subject-specific fine-tuning, which inevitably degrades textual controllability. To address these challenges, we propose InstantCharacter, a scalable framework for character customization built upon a foundation diffusion transformer. InstantCharacter demonstrates three fundamental advantages: first, it achieves open-domain personalization across diverse character appearances, poses, and styles while maintaining high-fidelity results. Second, the framework introduces a scalable adapter with stacked transformer encoders, which effectively processes open-domain character features and seamlessly interacts with the latent space of modern diffusion transformers. Third, to effectively train the framework, we construct a large-scale character dataset containing 10-million-level samples. The dataset is systematically organized into paired (multi-view character) and unpaired (text-image combinations) subsets. This dual-data structure enables simultaneous optimization of identity consistency and textual editability through distinct learning pathways. Qualitative experiments demonstrate the advanced capabilities of InstantCharacter in generating high-fidelity, text-controllable, and character-consistent images, setting a new benchmark for character-driven image generation. Our source code is available at https://github.com/Tencent/InstantCharacter.

  • 12 authors
·
Apr 16, 2025 2

VersatileFFN: Achieving Parameter Efficiency in LLMs via Adaptive Wide-and-Deep Reuse

The rapid scaling of Large Language Models (LLMs) has achieved remarkable performance, but it also leads to prohibitive memory costs. Existing parameter-efficient approaches such as pruning and quantization mainly compress pretrained models without enhancing architectural capacity, thereby hitting the representational ceiling of the base model. In this work, we propose VersatileFFN, a novel feed-forward network (FFN) that enables flexible reuse of parameters in both width and depth dimensions within a fixed parameter budget. Inspired by the dual-process theory of cognition, VersatileFFN comprises two adaptive pathways: a width-versatile path that generates a mixture of sub-experts from a single shared FFN, mimicking sparse expert routing without increasing parameters, and a depth-versatile path that recursively applies the same FFN to emulate deeper processing for complex tokens. A difficulty-aware gating dynamically balances the two pathways, steering "easy" tokens through the efficient width-wise route and allocating deeper iterative refinement to "hard" tokens. Crucially, both pathways reuse the same parameters, so all additional capacity comes from computation rather than memory. Experiments across diverse benchmarks and model scales demonstrate the effectiveness of the method. The code will be available at https://github.com/huawei-noah/noah-research/tree/master/VersatileFFN.

huawei-noah HUAWEI Noah's Ark Lab
·
Dec 16, 2025 2

Distributional Semantics Tracing: A Framework for Explaining Hallucinations in Large Language Models

Large Language Models (LLMs) are prone to hallucination, the generation of plausible yet factually incorrect statements. This work investigates the intrinsic, architectural origins of this failure mode through three primary contributions.First, to enable the reliable tracing of internal semantic failures, we propose Distributional Semantics Tracing (DST), a unified framework that integrates established interpretability techniques to produce a causal map of a model's reasoning, treating meaning as a function of context (distributional semantics). Second, we pinpoint the model's layer at which a hallucination becomes inevitable, identifying a specific commitment layer where a model's internal representations irreversibly diverge from factuality. Third, we identify the underlying mechanism for these failures. We observe a conflict between distinct computational pathways, which we interpret using the lens of dual-process theory: a fast, heuristic associative pathway (akin to System 1) and a slow, deliberate contextual pathway (akin to System 2), leading to predictable failure modes such as Reasoning Shortcut Hijacks. Our framework's ability to quantify the coherence of the contextual pathway reveals a strong negative correlation (rho = -0.863) with hallucination rates, implying that these failures are predictable consequences of internal semantic weakness. The result is a mechanistic account of how, when, and why hallucinations occur within the Transformer architecture.

  • 4 authors
·
Oct 7, 2025 2