new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 17

IndiBias: A Benchmark Dataset to Measure Social Biases in Language Models for Indian Context

The pervasive influence of social biases in language data has sparked the need for benchmark datasets that capture and evaluate these biases in Large Language Models (LLMs). Existing efforts predominantly focus on English language and the Western context, leaving a void for a reliable dataset that encapsulates India's unique socio-cultural nuances. To bridge this gap, we introduce IndiBias, a comprehensive benchmarking dataset designed specifically for evaluating social biases in the Indian context. We filter and translate the existing CrowS-Pairs dataset to create a benchmark dataset suited to the Indian context in Hindi language. Additionally, we leverage LLMs including ChatGPT and InstructGPT to augment our dataset with diverse societal biases and stereotypes prevalent in India. The included bias dimensions encompass gender, religion, caste, age, region, physical appearance, and occupation. We also build a resource to address intersectional biases along three intersectional dimensions. Our dataset contains 800 sentence pairs and 300 tuples for bias measurement across different demographics. The dataset is available in English and Hindi, providing a size comparable to existing benchmark datasets. Furthermore, using IndiBias we compare ten different language models on multiple bias measurement metrics. We observed that the language models exhibit more bias across a majority of the intersectional groups.

  • 7 authors
·
Mar 29, 2024

Bias Out-of-the-Box: An Empirical Analysis of Intersectional Occupational Biases in Popular Generative Language Models

The capabilities of natural language models trained on large-scale data have increased immensely over the past few years. Open source libraries such as HuggingFace have made these models easily available and accessible. While prior research has identified biases in large language models, this paper considers biases contained in the most popular versions of these models when applied `out-of-the-box' for downstream tasks. We focus on generative language models as they are well-suited for extracting biases inherited from training data. Specifically, we conduct an in-depth analysis of GPT-2, which is the most downloaded text generation model on HuggingFace, with over half a million downloads per month. We assess biases related to occupational associations for different protected categories by intersecting gender with religion, sexuality, ethnicity, political affiliation, and continental name origin. Using a template-based data collection pipeline, we collect 396K sentence completions made by GPT-2 and find: (i) The machine-predicted jobs are less diverse and more stereotypical for women than for men, especially for intersections; (ii) Intersectional interactions are highly relevant for occupational associations, which we quantify by fitting 262 logistic models; (iii) For most occupations, GPT-2 reflects the skewed gender and ethnicity distribution found in US Labor Bureau data, and even pulls the societally-skewed distribution towards gender parity in cases where its predictions deviate from real labor market observations. This raises the normative question of what language models should learn - whether they should reflect or correct for existing inequalities.

  • 8 authors
·
Feb 8, 2021

Measuring Implicit Bias in Explicitly Unbiased Large Language Models

Large language models (LLMs) can pass explicit social bias tests but still harbor implicit biases, similar to humans who endorse egalitarian beliefs yet exhibit subtle biases. Measuring such implicit biases can be a challenge: as LLMs become increasingly proprietary, it may not be possible to access their embeddings and apply existing bias measures; furthermore, implicit biases are primarily a concern if they affect the actual decisions that these systems make. We address both challenges by introducing two new measures of bias: LLM Implicit Bias, a prompt-based method for revealing implicit bias; and LLM Decision Bias, a strategy to detect subtle discrimination in decision-making tasks. Both measures are based on psychological research: LLM Implicit Bias adapts the Implicit Association Test, widely used to study the automatic associations between concepts held in human minds; and LLM Decision Bias operationalizes psychological results indicating that relative evaluations between two candidates, not absolute evaluations assessing each independently, are more diagnostic of implicit biases. Using these measures, we found pervasive stereotype biases mirroring those in society in 8 value-aligned models across 4 social categories (race, gender, religion, health) in 21 stereotypes (such as race and criminality, race and weapons, gender and science, age and negativity). Our prompt-based LLM Implicit Bias measure correlates with existing language model embedding-based bias methods, but better predicts downstream behaviors measured by LLM Decision Bias. These new prompt-based measures draw from psychology's long history of research into measuring stereotype biases based on purely observable behavior; they expose nuanced biases in proprietary value-aligned LLMs that appear unbiased according to standard benchmarks.

  • 4 authors
·
Feb 6, 2024

Bias after Prompting: Persistent Discrimination in Large Language Models

A dangerous assumption that can be made from prior work on the bias transfer hypothesis (BTH) is that biases do not transfer from pre-trained large language models (LLMs) to adapted models. We invalidate this assumption by studying the BTH in causal models under prompt adaptations, as prompting is an extremely popular and accessible adaptation strategy used in real-world applications. In contrast to prior work, we find that biases can transfer through prompting and that popular prompt-based mitigation methods do not consistently prevent biases from transferring. Specifically, the correlation between intrinsic biases and those after prompt adaptation remain moderate to strong across demographics and tasks -- for example, gender (rho >= 0.94) in co-reference resolution, and age (rho >= 0.98) and religion (rho >= 0.69) in question answering. Further, we find that biases remain strongly correlated when varying few-shot composition parameters, such as sample size, stereotypical content, occupational distribution and representational balance (rho >= 0.90). We evaluate several prompt-based debiasing strategies and find that different approaches have distinct strengths, but none consistently reduce bias transfer across models, tasks or demographics. These results demonstrate that correcting bias, and potentially improving reasoning ability, in intrinsic models may prevent propagation of biases to downstream tasks.

  • 7 authors
·
Sep 9, 2025

Investigating Annotator Bias in Large Language Models for Hate Speech Detection

Data annotation, the practice of assigning descriptive labels to raw data, is pivotal in optimizing the performance of machine learning models. However, it is a resource-intensive process susceptible to biases introduced by annotators. The emergence of sophisticated Large Language Models (LLMs), like ChatGPT presents a unique opportunity to modernize and streamline this complex procedure. While existing research extensively evaluates the efficacy of LLMs, as annotators, this paper delves into the biases present in LLMs, specifically GPT 3.5 and GPT 4o when annotating hate speech data. Our research contributes to understanding biases in four key categories: gender, race, religion, and disability. Specifically targeting highly vulnerable groups within these categories, we analyze annotator biases. Furthermore, we conduct a comprehensive examination of potential factors contributing to these biases by scrutinizing the annotated data. We introduce our custom hate speech detection dataset, HateSpeechCorpus, to conduct this research. Additionally, we perform the same experiments on the ETHOS (Mollas et al., 2022) dataset also for comparative analysis. This paper serves as a crucial resource, guiding researchers and practitioners in harnessing the potential of LLMs for dataannotation, thereby fostering advancements in this critical field. The HateSpeechCorpus dataset is available here: https://github.com/AmitDasRup123/HateSpeechCorpus

  • 10 authors
·
Jun 16, 2024

AMBEDKAR-A Multi-level Bias Elimination through a Decoding Approach with Knowledge Augmentation for Robust Constitutional Alignment of Language Models

Large Language Models (LLMs) can inadvertently reflect societal biases present in their training data, leading to harmful or prejudiced outputs. In the Indian context, our empirical evaluations across a suite of models reveal that biases around caste and religion are particularly salient. Yet, most existing mitigation strategies are Western-centric and fail to address these local nuances. We propose AMBEDKAR, a framework inspired by the egalitarian vision of Dr B. R. Ambedkar, architect of the Indian Constitution, to guide LLM outputs toward fairness, neutrality, and inclusion in line with Articles 14 to 17. Our approach introduces a Constitution-Aware Decoding Layer, guided by the AI Constitution of India and applied only at inference time, without any parameter updates to the base model. We incorporate a speculative decoding algorithm that proactively reduces casteist and communal bias during generation. This mitigation layer operates directly within the decoding process, avoiding changes to model internals and lowering the computational and infrastructural costs associated with retraining. We reinterpret speculative decoding not merely as an efficiency tool but as a mechanism for fairness. In this framework, a Small Language Model (SLM) acts as a potentially biased generator, while a constitutionally guided Large Language Model (LLM) serves as the verifier. Rather than accelerating generation, the LLM enforces bias-robust trajectories in the SLM outputs. This inversion of roles gives rise to a fairness-by-speculation paradigm. Our approach yields an absolute reduction of bias up to 26.41 percent compared to baseline. Our source code, datasets, and results are available at https://anonymous.4open.science/r/AMBEDKAR-983B/

  • 8 authors
·
Sep 2, 2025 1

CoBia: Constructed Conversations Can Trigger Otherwise Concealed Societal Biases in LLMs

Improvements in model construction, including fortified safety guardrails, allow Large language models (LLMs) to increasingly pass standard safety checks. However, LLMs sometimes slip into revealing harmful behavior, such as expressing racist viewpoints, during conversations. To analyze this systematically, we introduce CoBia, a suite of lightweight adversarial attacks that allow us to refine the scope of conditions under which LLMs depart from normative or ethical behavior in conversations. CoBia creates a constructed conversation where the model utters a biased claim about a social group. We then evaluate whether the model can recover from the fabricated bias claim and reject biased follow-up questions. We evaluate 11 open-source as well as proprietary LLMs for their outputs related to six socio-demographic categories that are relevant to individual safety and fair treatment, i.e., gender, race, religion, nationality, sex orientation, and others. Our evaluation is based on established LLM-based bias metrics, and we compare the results against human judgments to scope out the LLMs' reliability and alignment. The results suggest that purposefully constructed conversations reliably reveal bias amplification and that LLMs often fail to reject biased follow-up questions during dialogue. This form of stress-testing highlights deeply embedded biases that can be surfaced through interaction. Code and artifacts are available at https://github.com/nafisenik/CoBia.

  • 3 authors
·
Oct 10, 2025 2

RedditBias: A Real-World Resource for Bias Evaluation and Debiasing of Conversational Language Models

Text representation models are prone to exhibit a range of societal biases, reflecting the non-controlled and biased nature of the underlying pretraining data, which consequently leads to severe ethical issues and even bias amplification. Recent work has predominantly focused on measuring and mitigating bias in pretrained language models. Surprisingly, the landscape of bias measurements and mitigation resources and methods for conversational language models is still very scarce: it is limited to only a few types of bias, artificially constructed resources, and completely ignores the impact that debiasing methods may have on the final performance in dialog tasks, e.g., conversational response generation. In this work, we present RedditBias, the first conversational data set grounded in the actual human conversations from Reddit, allowing for bias measurement and mitigation across four important bias dimensions: gender, race, religion, and queerness. Further, we develop an evaluation framework which simultaneously 1) measures bias on the developed RedditBias resource, and 2) evaluates model capability in dialog tasks after model debiasing. We use the evaluation framework to benchmark the widely used conversational DialoGPT model along with the adaptations of four debiasing methods. Our results indicate that DialoGPT is biased with respect to religious groups and that some debiasing techniques can remove this bias while preserving downstream task performance.

  • 4 authors
·
Jun 7, 2021

The Media Bias Taxonomy: A Systematic Literature Review on the Forms and Automated Detection of Media Bias

The way the media presents events can significantly affect public perception, which in turn can alter people's beliefs and views. Media bias describes a one-sided or polarizing perspective on a topic. This article summarizes the research on computational methods to detect media bias by systematically reviewing 3140 research papers published between 2019 and 2022. To structure our review and support a mutual understanding of bias across research domains, we introduce the Media Bias Taxonomy, which provides a coherent overview of the current state of research on media bias from different perspectives. We show that media bias detection is a highly active research field, in which transformer-based classification approaches have led to significant improvements in recent years. These improvements include higher classification accuracy and the ability to detect more fine-granular types of bias. However, we have identified a lack of interdisciplinarity in existing projects, and a need for more awareness of the various types of media bias to support methodologically thorough performance evaluations of media bias detection systems. Concluding from our analysis, we see the integration of recent machine learning advancements with reliable and diverse bias assessment strategies from other research areas as the most promising area for future research contributions in the field.

  • 7 authors
·
Dec 26, 2023

A RAG-based Question Answering System Proposal for Understanding Islam: MufassirQAS LLM

There exist challenges in learning and understanding religions as the presence of complexity and depth of religious doctrines and teachings. Chatbots as question-answering systems can help in solving these challenges. LLM chatbots use NLP techniques to establish connections between topics and accurately respond to complex questions. These capabilities make it perfect to be used in enlightenment on religion as a question answering chatbot. However, LLMs also have a tendency to generate false information, known as hallucination. The responses of the chatbots can include content that insults personal religious beliefs, interfaith conflicts, and controversial or sensitive topics. It needs to avoid such cases without promoting hate speech or offending certain groups of people or their beliefs. This study uses a vector database-based Retrieval Augmented Generation (RAG) approach to enhance the accuracy and transparency of LLMs. Our question-answering system is called as "MufassirQAS". We created a vector database with several open-access books that include Turkish context. These are Turkish translations, and interpretations on Islam. We worked on creating system prompts with care, ensuring they provide instructions that prevent harmful, offensive, or disrespectful responses. We also tested the MufassirQAS and ChatGPT with sensitive questions. We got better performance with our system. Study and enhancements are still in progress. Results and future works are given.

  • 3 authors
·
Jan 27, 2024

Adaptive Generation of Bias-Eliciting Questions for LLMs

Large language models (LLMs) are now widely deployed in user-facing applications, reaching hundreds of millions worldwide. As they become integrated into everyday tasks, growing reliance on their outputs raises significant concerns. In particular, users may unknowingly be exposed to model-inherent biases that systematically disadvantage or stereotype certain groups. However, existing bias benchmarks continue to rely on templated prompts or restrictive multiple-choice questions that are suggestive, simplistic, and fail to capture the complexity of real-world user interactions. In this work, we address this gap by introducing a counterfactual bias evaluation framework that automatically generates realistic, open-ended questions over sensitive attributes such as sex, race, or religion. By iteratively mutating and selecting bias-inducing questions, our approach systematically explores areas where models are most susceptible to biased behavior. Beyond detecting harmful biases, we also capture distinct response dimensions that are increasingly relevant in user interactions, such as asymmetric refusals and explicit acknowledgment of bias. Leveraging our framework, we construct CAB, a human-verified benchmark spanning diverse topics, designed to enable cross-model comparisons. Using CAB, we analyze a range of LLMs across multiple bias dimensions, revealing nuanced insights into how different models manifest bias. For instance, while GPT-5 outperforms other models, it nonetheless exhibits persistent biases in specific scenarios. These findings underscore the need for continual improvements to ensure fair model behavior.

  • 4 authors
·
Oct 14, 2025

Fine-Tuned LLMs are "Time Capsules" for Tracking Societal Bias Through Books

Books, while often rich in cultural insights, can also mirror societal biases of their eras - biases that Large Language Models (LLMs) may learn and perpetuate during training. We introduce a novel method to trace and quantify these biases using fine-tuned LLMs. We develop BookPAGE, a corpus comprising 593 fictional books across seven decades (1950-2019), to track bias evolution. By fine-tuning LLMs on books from each decade and using targeted prompts, we examine shifts in biases related to gender, sexual orientation, race, and religion. Our findings indicate that LLMs trained on decade-specific books manifest biases reflective of their times, with both gradual trends and notable shifts. For example, model responses showed a progressive increase in the portrayal of women in leadership roles (from 8% to 22%) from the 1950s to 2010s, with a significant uptick in the 1990s (from 4% to 12%), possibly aligning with third-wave feminism. Same-sex relationship references increased markedly from the 1980s to 2000s (from 0% to 10%), mirroring growing LGBTQ+ visibility. Concerningly, negative portrayals of Islam rose sharply in the 2000s (26% to 38%), likely reflecting post-9/11 sentiments. Importantly, we demonstrate that these biases stem mainly from the books' content and not the models' architecture or initial training. Our study offers a new perspective on societal bias trends by bridging AI, literary studies, and social science research.

  • 5 authors
·
Feb 7, 2025

Evaluate Bias without Manual Test Sets: A Concept Representation Perspective for LLMs

Bias in Large Language Models (LLMs) significantly undermines their reliability and fairness. We focus on a common form of bias: when two reference concepts in the model's concept space, such as sentiment polarities (e.g., "positive" and "negative"), are asymmetrically correlated with a third, target concept, such as a reviewing aspect, the model exhibits unintended bias. For instance, the understanding of "food" should not skew toward any particular sentiment. Existing bias evaluation methods assess behavioral differences of LLMs by constructing labeled data for different social groups and measuring model responses across them, a process that requires substantial human effort and captures only a limited set of social concepts. To overcome these limitations, we propose BiasLens, a test-set-free bias analysis framework based on the structure of the model's vector space. BiasLens combines Concept Activation Vectors (CAVs) with Sparse Autoencoders (SAEs) to extract interpretable concept representations, and quantifies bias by measuring the variation in representational similarity between the target concept and each of the reference concepts. Even without labeled data, BiasLens shows strong agreement with traditional bias evaluation metrics (Spearman correlation r > 0.85). Moreover, BiasLens reveals forms of bias that are difficult to detect using existing methods. For example, in simulated clinical scenarios, a patient's insurance status can cause the LLM to produce biased diagnostic assessments. Overall, BiasLens offers a scalable, interpretable, and efficient paradigm for bias discovery, paving the way for improving fairness and transparency in LLMs.

  • 9 authors
·
May 21, 2025 2

BiasAsker: Measuring the Bias in Conversational AI System

Powered by advanced Artificial Intelligence (AI) techniques, conversational AI systems, such as ChatGPT and digital assistants like Siri, have been widely deployed in daily life. However, such systems may still produce content containing biases and stereotypes, causing potential social problems. Due to the data-driven, black-box nature of modern AI techniques, comprehensively identifying and measuring biases in conversational systems remains a challenging task. Particularly, it is hard to generate inputs that can comprehensively trigger potential bias due to the lack of data containing both social groups as well as biased properties. In addition, modern conversational systems can produce diverse responses (e.g., chatting and explanation), which makes existing bias detection methods simply based on the sentiment and the toxicity hardly being adopted. In this paper, we propose BiasAsker, an automated framework to identify and measure social bias in conversational AI systems. To obtain social groups and biased properties, we construct a comprehensive social bias dataset, containing a total of 841 groups and 8,110 biased properties. Given the dataset, BiasAsker automatically generates questions and adopts a novel method based on existence measurement to identify two types of biases (i.e., absolute bias and related bias) in conversational systems. Extensive experiments on 8 commercial systems and 2 famous research models, such as ChatGPT and GPT-3, show that 32.83% of the questions generated by BiasAsker can trigger biased behaviors in these widely deployed conversational systems. All the code, data, and experimental results have been released to facilitate future research.

  • 6 authors
·
May 21, 2023

AI Debaters are More Persuasive when Arguing in Alignment with Their Own Beliefs

The core premise of AI debate as a scalable oversight technique is that it is harder to lie convincingly than to refute a lie, enabling the judge to identify the correct position. Yet, existing debate experiments have relied on datasets with ground truth, where lying is reduced to defending an incorrect proposition. This overlooks a subjective dimension: lying also requires the belief that the claim defended is false. In this work, we apply debate to subjective questions and explicitly measure large language models' prior beliefs before experiments. Debaters were asked to select their preferred position, then presented with a judge persona deliberately designed to conflict with their identified priors. This setup tested whether models would adopt sycophantic strategies, aligning with the judge's presumed perspective to maximize persuasiveness, or remain faithful to their prior beliefs. We implemented and compared two debate protocols, sequential and simultaneous, to evaluate potential systematic biases. Finally, we assessed whether models were more persuasive and produced higher-quality arguments when defending positions consistent with their prior beliefs versus when arguing against them. Our main findings show that models tend to prefer defending stances aligned with the judge persona rather than their prior beliefs, sequential debate introduces significant bias favoring the second debater, models are more persuasive when defending positions aligned with their prior beliefs, and paradoxically, arguments misaligned with prior beliefs are rated as higher quality in pairwise comparison. These results can inform human judges to provide higher-quality training signals and contribute to more aligned AI systems, while revealing important aspects of human-AI interaction regarding persuasion dynamics in language models.

  • 12 authors
·
Oct 15, 2025

A Multifaceted Analysis of Negative Bias in Large Language Models through the Lens of Parametric Knowledge

Negative bias refers to the tendency of large language models (LLMs) to excessively generate negative responses in binary decision tasks (e.g., yes-no question answering). Previous research has focused on detecting and addressing negative attention heads that induce negative bias. However, the underlying detailed factors influencing negative bias remain underexplored. In this paper, we demonstrate that LLMs exhibit format-level negative bias, meaning the prompt format more influences their responses than the semantics of the negative response. For the fine-grained study of the negative bias, we introduce a pipeline for constructing the evaluation set, which systematically categorizes the dataset into three subsets based on the model's parametric knowledge: correct, incorrect, and insufficient relevant knowledge. Through analysis of this evaluation set, we identify a shortcut behavior in which models tend to generate negative responses when they lack sufficient knowledge to answer a yes-no question, leading to negative bias. We further examine how negative bias changes under various prompting scenarios related to parametric knowledge. We observe that providing relevant context and offering an "I don't know" option generally reduces negative bias, whereas chain-of-thought prompting tends to amplify the bias. Finally, we demonstrate that the degree of negative bias can vary depending on the type of prompt, which influences the direction of the response. Our work reveals the various factors that influence negative bias, providing critical insights for mitigating it in LLMs.

  • 3 authors
·
Nov 13, 2025

Same Claim, Different Judgment: Benchmarking Scenario-Induced Bias in Multilingual Financial Misinformation Detection

Large language models (LLMs) have been widely applied across various domains of finance. Since their training data are largely derived from human-authored corpora, LLMs may inherit a range of human biases. Behavioral biases can lead to instability and uncertainty in decision-making, particularly when processing financial information. However, existing research on LLM bias has mainly focused on direct questioning or simplified, general-purpose settings, with limited consideration of the complex real-world financial environments and high-risk, context-sensitive, multilingual financial misinformation detection tasks (\mfmd). In this work, we propose \mfmdscen, a comprehensive benchmark for evaluating behavioral biases of LLMs in \mfmd across diverse economic scenarios. In collaboration with financial experts, we construct three types of complex financial scenarios: (i) role- and personality-based, (ii) role- and region-based, and (iii) role-based scenarios incorporating ethnicity and religious beliefs. We further develop a multilingual financial misinformation dataset covering English, Chinese, Greek, and Bengali. By integrating these scenarios with misinformation claims, \mfmdscen enables a systematic evaluation of 22 mainstream LLMs. Our findings reveal that pronounced behavioral biases persist across both commercial and open-source models. This project will be available at https://github.com/lzw108/FMD.

TheFinAI The Fin AI
·
Jan 8 3

Unveiling the Hidden Agenda: Biases in News Reporting and Consumption

One of the most pressing challenges in the digital media landscape is understanding the impact of biases on the news sources that people rely on for information. Biased news can have significant and far-reaching consequences, influencing our perspectives and shaping the decisions we make, potentially endangering the public and individual well-being. With the advent of the Internet and social media, discussions have moved online, making it easier to disseminate both accurate and inaccurate information. To combat mis- and dis-information, many have begun to evaluate the reliability of news sources, but these assessments often only examine the validity of the news (narrative bias) and neglect other types of biases, such as the deliberate selection of events to favor certain perspectives (selection bias). This paper aims to investigate these biases in various news sources and their correlation with third-party evaluations of reliability, engagement, and online audiences. Using machine learning to classify content, we build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases. Our results show that the source classification provided by third-party organizations closely follows the narrative bias dimension, while it is much less accurate in identifying the selection bias. Moreover, we found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions. Lastly, analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.

  • 5 authors
·
Jan 14, 2023

Any Large Language Model Can Be a Reliable Judge: Debiasing with a Reasoning-based Bias Detector

LLM-as-a-Judge has emerged as a promising tool for automatically evaluating generated outputs, but its reliability is often undermined by potential biases in judgment. Existing efforts to mitigate these biases face key limitations: in-context learning-based methods fail to address rooted biases due to the evaluator's limited capacity for self-reflection, whereas fine-tuning is not applicable to all evaluator types, especially closed-source models. To address this challenge, we introduce the Reasoning-based Bias Detector (RBD), which is a plug-in module that identifies biased evaluations and generates structured reasoning to guide evaluator self-correction. Rather than modifying the evaluator itself, RBD operates externally and engages in an iterative process of bias detection and feedback-driven revision. To support its development, we design a complete pipeline consisting of biased dataset construction, supervision collection, distilled reasoning-based fine-tuning of RBD, and integration with LLM evaluators. We fine-tune four sizes of RBD models, ranging from 1.5B to 14B, and observe consistent performance improvements across all scales. Experimental results on 4 bias types--verbosity, position, bandwagon, and sentiment--evaluated using 8 LLM evaluators demonstrate RBD's strong effectiveness. For example, the RBD-8B model improves evaluation accuracy by an average of 18.5% and consistency by 10.9%, and surpasses prompting-based baselines and fine-tuned judges by 12.8% and 17.2%, respectively. These results highlight RBD's effectiveness and scalability. Additional experiments further demonstrate its strong generalization across biases and domains, as well as its efficiency.

  • 7 authors
·
May 21, 2025

"Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in LLM-Generated Reference Letters

Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content, including professional documents such as recommendation letters. Though bringing convenience, this application also introduces unprecedented fairness concerns. Model-generated reference letters might be directly used by users in professional scenarios. If underlying biases exist in these model-constructed letters, using them without scrutinization could lead to direct societal harms, such as sabotaging application success rates for female applicants. In light of this pressing issue, it is imminent and necessary to comprehensively study fairness issues and associated harms in this real-world use case. In this paper, we critically examine gender biases in LLM-generated reference letters. Drawing inspiration from social science findings, we design evaluation methods to manifest biases through 2 dimensions: (1) biases in language style and (2) biases in lexical content. We further investigate the extent of bias propagation by analyzing the hallucination bias of models, a term that we define to be bias exacerbation in model-hallucinated contents. Through benchmarking evaluation on 2 popular LLMs- ChatGPT and Alpaca, we reveal significant gender biases in LLM-generated recommendation letters. Our findings not only warn against using LLMs for this application without scrutinization, but also illuminate the importance of thoroughly studying hidden biases and harms in LLM-generated professional documents.

  • 6 authors
·
Oct 13, 2023

Sacred or Synthetic? Evaluating LLM Reliability and Abstention for Religious Questions

Despite the increasing usage of Large Language Models (LLMs) in answering questions in a variety of domains, their reliability and accuracy remain unexamined for a plethora of domains including the religious domains. In this paper, we introduce a novel benchmark FiqhQA focused on the LLM generated Islamic rulings explicitly categorized by the four major Sunni schools of thought, in both Arabic and English. Unlike prior work, which either overlooks the distinctions between religious school of thought or fails to evaluate abstention behavior, we assess LLMs not only on their accuracy but also on their ability to recognize when not to answer. Our zero-shot and abstention experiments reveal significant variation across LLMs, languages, and legal schools of thought. While GPT-4o outperforms all other models in accuracy, Gemini and Fanar demonstrate superior abstention behavior critical for minimizing confident incorrect answers. Notably, all models exhibit a performance drop in Arabic, highlighting the limitations in religious reasoning for languages other than English. To the best of our knowledge, this is the first study to benchmark the efficacy of LLMs for fine-grained Islamic school of thought specific ruling generation and to evaluate abstention for Islamic jurisprudence queries. Our findings underscore the need for task-specific evaluation and cautious deployment of LLMs in religious applications.

  • 4 authors
·
Aug 4, 2025

Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models

LLMs are increasingly powerful and widely used to assist users in a variety of tasks. This use risks the introduction of LLM biases to consequential decisions such as job hiring, human performance evaluation, and criminal sentencing. Bias in NLP systems along the lines of gender and ethnicity has been widely studied, especially for specific stereotypes (e.g., Asians are good at math). In this paper, we investigate bias along less-studied but still consequential, dimensions, such as age and beauty, measuring subtler correlated decisions that LLMs make between social groups and unrelated positive and negative attributes. We ask whether LLMs hold wide-reaching biases of positive or negative sentiment for specific social groups similar to the ``what is beautiful is good'' bias found in people in experimental psychology. We introduce a template-generated dataset of sentence completion tasks that asks the model to select the most appropriate attribute to complete an evaluative statement about a person described as a member of a specific social group. We also reverse the completion task to select the social group based on an attribute. We report the correlations that we find for 4 cutting-edge LLMs. This dataset can be used as a benchmark to evaluate progress in more generalized biases and the templating technique can be used to expand the benchmark with minimal additional human annotation.

  • 3 authors
·
Sep 16, 2023

Quantifying Bias in Text-to-Image Generative Models

Bias in text-to-image (T2I) models can propagate unfair social representations and may be used to aggressively market ideas or push controversial agendas. Existing T2I model bias evaluation methods only focus on social biases. We look beyond that and instead propose an evaluation methodology to quantify general biases in T2I generative models, without any preconceived notions. We assess four state-of-the-art T2I models and compare their baseline bias characteristics to their respective variants (two for each), where certain biases have been intentionally induced. We propose three evaluation metrics to assess model biases including: (i) Distribution bias, (ii) Jaccard hallucination and (iii) Generative miss-rate. We conduct two evaluation studies, modelling biases under general, and task-oriented conditions, using a marketing scenario as the domain for the latter. We also quantify social biases to compare our findings to related works. Finally, our methodology is transferred to evaluate captioned-image datasets and measure their bias. Our approach is objective, domain-agnostic and consistently measures different forms of T2I model biases. We have developed a web application and practical implementation of what has been proposed in this work, which is at https://huggingface.co/spaces/JVice/try-before-you-bias. A video series with demonstrations is available at https://www.youtube.com/channel/UCk-0xyUyT0MSd_hkp4jQt1Q

  • 4 authors
·
Dec 20, 2023

Addressing cognitive bias in medical language models

There is increasing interest in the application large language models (LLMs) to the medical field, in part because of their impressive performance on medical exam questions. While promising, exam questions do not reflect the complexity of real patient-doctor interactions. In reality, physicians' decisions are shaped by many complex factors, such as patient compliance, personal experience, ethical beliefs, and cognitive bias. Taking a step toward understanding this, our hypothesis posits that when LLMs are confronted with clinical questions containing cognitive biases, they will yield significantly less accurate responses compared to the same questions presented without such biases. In this study, we developed BiasMedQA, a benchmark for evaluating cognitive biases in LLMs applied to medical tasks. Using BiasMedQA we evaluated six LLMs, namely GPT-4, Mixtral-8x70B, GPT-3.5, PaLM-2, Llama 2 70B-chat, and the medically specialized PMC Llama 13B. We tested these models on 1,273 questions from the US Medical Licensing Exam (USMLE) Steps 1, 2, and 3, modified to replicate common clinically-relevant cognitive biases. Our analysis revealed varying effects for biases on these LLMs, with GPT-4 standing out for its resilience to bias, in contrast to Llama 2 70B-chat and PMC Llama 13B, which were disproportionately affected by cognitive bias. Our findings highlight the critical need for bias mitigation in the development of medical LLMs, pointing towards safer and more reliable applications in healthcare.

  • 10 authors
·
Feb 12, 2024

Toward Inclusive Educational AI: Auditing Frontier LLMs through a Multiplexity Lens

As large language models (LLMs) like GPT-4 and Llama 3 become integral to educational contexts, concerns are mounting over the cultural biases, power imbalances, and ethical limitations embedded within these technologies. Though generative AI tools aim to enhance learning experiences, they often reflect values rooted in Western, Educated, Industrialized, Rich, and Democratic (WEIRD) cultural paradigms, potentially sidelining diverse global perspectives. This paper proposes a framework to assess and mitigate cultural bias within LLMs through the lens of applied multiplexity. Multiplexity, inspired by Senturk et al. and rooted in Islamic and other wisdom traditions, emphasizes the coexistence of diverse cultural viewpoints, supporting a multi-layered epistemology that integrates both empirical sciences and normative values. Our analysis reveals that LLMs frequently exhibit cultural polarization, with biases appearing in both overt responses and subtle contextual cues. To address inherent biases and incorporate multiplexity in LLMs, we propose two strategies: Contextually-Implemented Multiplex LLMs, which embed multiplex principles directly into the system prompt, influencing LLM outputs at a foundational level and independent of individual prompts, and Multi-Agent System (MAS)-Implemented Multiplex LLMs, where multiple LLM agents, each representing distinct cultural viewpoints, collaboratively generate a balanced, synthesized response. Our findings demonstrate that as mitigation strategies evolve from contextual prompting to MAS-implementation, cultural inclusivity markedly improves, evidenced by a significant rise in the Perspectives Distribution Score (PDS) and a PDS Entropy increase from 3.25\% at baseline to 98\% with the MAS-Implemented Multiplex LLMs. Sentiment analysis further shows a shift towards positive sentiment across cultures,...

  • 5 authors
·
Jan 2, 2025

Assessing Social and Intersectional Biases in Contextualized Word Representations

Social bias in machine learning has drawn significant attention, with work ranging from demonstrations of bias in a multitude of applications, curating definitions of fairness for different contexts, to developing algorithms to mitigate bias. In natural language processing, gender bias has been shown to exist in context-free word embeddings. Recently, contextual word representations have outperformed word embeddings in several downstream NLP tasks. These word representations are conditioned on their context within a sentence, and can also be used to encode the entire sentence. In this paper, we analyze the extent to which state-of-the-art models for contextual word representations, such as BERT and GPT-2, encode biases with respect to gender, race, and intersectional identities. Towards this, we propose assessing bias at the contextual word level. This novel approach captures the contextual effects of bias missing in context-free word embeddings, yet avoids confounding effects that underestimate bias at the sentence encoding level. We demonstrate evidence of bias at the corpus level, find varying evidence of bias in embedding association tests, show in particular that racial bias is strongly encoded in contextual word models, and observe that bias effects for intersectional minorities are exacerbated beyond their constituent minority identities. Further, evaluating bias effects at the contextual word level captures biases that are not captured at the sentence level, confirming the need for our novel approach.

  • 2 authors
·
Nov 4, 2019

Semantics derived automatically from language corpora contain human-like biases

Artificial intelligence and machine learning are in a period of astounding growth. However, there are concerns that these technologies may be used, either with or without intention, to perpetuate the prejudice and unfairness that unfortunately characterizes many human institutions. Here we show for the first time that human-like semantic biases result from the application of standard machine learning to ordinary language---the same sort of language humans are exposed to every day. We replicate a spectrum of standard human biases as exposed by the Implicit Association Test and other well-known psychological studies. We replicate these using a widely used, purely statistical machine-learning model---namely, the GloVe word embedding---trained on a corpus of text from the Web. Our results indicate that language itself contains recoverable and accurate imprints of our historic biases, whether these are morally neutral as towards insects or flowers, problematic as towards race or gender, or even simply veridical, reflecting the {\em status quo} for the distribution of gender with respect to careers or first names. These regularities are captured by machine learning along with the rest of semantics. In addition to our empirical findings concerning language, we also contribute new methods for evaluating bias in text, the Word Embedding Association Test (WEAT) and the Word Embedding Factual Association Test (WEFAT). Our results have implications not only for AI and machine learning, but also for the fields of psychology, sociology, and human ethics, since they raise the possibility that mere exposure to everyday language can account for the biases we replicate here.

  • 3 authors
·
Aug 25, 2016

Bias Runs Deep: Implicit Reasoning Biases in Persona-Assigned LLMs

Recent works have showcased the ability of LLMs to embody diverse personas in their responses, exemplified by prompts like 'You are Yoda. Explain the Theory of Relativity.' While this ability allows personalization of LLMs and enables human behavior simulation, its effect on LLMs' capabilities remains unclear. To fill this gap, we present the first extensive study of the unintended side-effects of persona assignment on the ability of LLMs to perform basic reasoning tasks. Our study covers 24 reasoning datasets, 4 LLMs, and 19 diverse personas (e.g. an Asian person) spanning 5 socio-demographic groups. Our experiments unveil that LLMs harbor deep rooted bias against various socio-demographics underneath a veneer of fairness. While they overtly reject stereotypes when explicitly asked ('Are Black people less skilled at mathematics?'), they manifest stereotypical and erroneous presumptions when asked to answer questions while adopting a persona. These can be observed as abstentions in responses, e.g., 'As a Black person, I can't answer this question as it requires math knowledge', and generally result in a substantial performance drop. Our experiments with ChatGPT-3.5 show that this bias is ubiquitous - 80% of our personas demonstrate bias; it is significant - some datasets show performance drops of 70%+; and can be especially harmful for certain groups - some personas suffer statistically significant drops on 80%+ of the datasets. Overall, all 4 LLMs exhibit this bias to varying extents, with GPT-4-Turbo showing the least but still a problematic amount of bias (evident in 42% of the personas). Further analysis shows that these persona-induced errors can be hard-to-discern and hard-to-avoid. Our findings serve as a cautionary tale that the practice of assigning personas to LLMs - a trend on the rise - can surface their deep-rooted biases and have unforeseeable and detrimental side-effects.

  • 7 authors
·
Nov 8, 2023

Unboxing Occupational Bias: Grounded Debiasing LLMs with U.S. Labor Data

Large Language Models (LLMs) are prone to inheriting and amplifying societal biases embedded within their training data, potentially reinforcing harmful stereotypes related to gender, occupation, and other sensitive categories. This issue becomes particularly problematic as biased LLMs can have far-reaching consequences, leading to unfair practices and exacerbating social inequalities across various domains, such as recruitment, online content moderation, or even the criminal justice system. Although prior research has focused on detecting bias in LLMs using specialized datasets designed to highlight intrinsic biases, there has been a notable lack of investigation into how these findings correlate with authoritative datasets, such as those from the U.S. National Bureau of Labor Statistics (NBLS). To address this gap, we conduct empirical research that evaluates LLMs in a ``bias-out-of-the-box" setting, analyzing how the generated outputs compare with the distributions found in NBLS data. Furthermore, we propose a straightforward yet effective debiasing mechanism that directly incorporates NBLS instances to mitigate bias within LLMs. Our study spans seven different LLMs, including instructable, base, and mixture-of-expert models, and reveals significant levels of bias that are often overlooked by existing bias detection techniques. Importantly, our debiasing method, which does not rely on external datasets, demonstrates a substantial reduction in bias scores, highlighting the efficacy of our approach in creating fairer and more reliable LLMs.

  • 3 authors
·
Aug 20, 2024 4