Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeKARMA: A Multilevel Decomposition Hybrid Mamba Framework for Multivariate Long-Term Time Series Forecasting
Multivariate long-term and efficient time series forecasting is a key requirement for a variety of practical applications, and there are complex interleaving time dynamics in time series data that require decomposition modeling. Traditional time series decomposition methods are single and rely on fixed rules, which are insufficient for mining the potential information of the series and adapting to the dynamic characteristics of complex series. On the other hand, the Transformer-based models for time series forecasting struggle to effectively model long sequences and intricate dynamic relationships due to their high computational complexity. To overcome these limitations, we introduce KARMA, with an Adaptive Time Channel Decomposition module (ATCD) to dynamically extract trend and seasonal components. It further integrates a Hybrid Frequency-Time Decomposition module (HFTD) to further decompose Series into frequency-domain and time-domain. These components are coupled with multi-scale Mamba-based KarmaBlock to efficiently process global and local information in a coordinated manner. Experiments on eight real-world datasets from diverse domains well demonstrated that KARMA significantly outperforms mainstream baseline methods in both predictive accuracy and computational efficiency. Code and full results are available at this repository: https://github.com/yedadasd/KARMA
ETSformer: Exponential Smoothing Transformers for Time-series Forecasting
Transformers have been actively studied for time-series forecasting in recent years. While often showing promising results in various scenarios, traditional Transformers are not designed to fully exploit the characteristics of time-series data and thus suffer some fundamental limitations, e.g., they generally lack of decomposition capability and interpretability, and are neither effective nor efficient for long-term forecasting. In this paper, we propose ETSFormer, a novel time-series Transformer architecture, which exploits the principle of exponential smoothing in improving Transformers for time-series forecasting. In particular, inspired by the classical exponential smoothing methods in time-series forecasting, we propose the novel exponential smoothing attention (ESA) and frequency attention (FA) to replace the self-attention mechanism in vanilla Transformers, thus improving both accuracy and efficiency. Based on these, we redesign the Transformer architecture with modular decomposition blocks such that it can learn to decompose the time-series data into interpretable time-series components such as level, growth and seasonality. Extensive experiments on various time-series benchmarks validate the efficacy and advantages of the proposed method. Code is available at https://github.com/salesforce/ETSformer.
D-PAD: Deep-Shallow Multi-Frequency Patterns Disentangling for Time Series Forecasting
In time series forecasting, effectively disentangling intricate temporal patterns is crucial. While recent works endeavor to combine decomposition techniques with deep learning, multiple frequencies may still be mixed in the decomposed components, e.g., trend and seasonal. Furthermore, frequency domain analysis methods, e.g., Fourier and wavelet transforms, have limitations in resolution in the time domain and adaptability. In this paper, we propose D-PAD, a deep-shallow multi-frequency patterns disentangling neural network for time series forecasting. Specifically, a multi-component decomposing (MCD) block is introduced to decompose the series into components with different frequency ranges, corresponding to the "shallow" aspect. A decomposition-reconstruction-decomposition (D-R-D) module is proposed to progressively extract the information of frequencies mixed in the components, corresponding to the "deep" aspect. After that, an interaction and fusion (IF) module is used to further analyze the components. Extensive experiments on seven real-world datasets demonstrate that D-PAD achieves the state-of-the-art performance, outperforming the best baseline by an average of 9.48% and 7.15% in MSE and MAE, respectively.
Transformers in Time Series: A Survey
Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also triggered great interest in the time series community. Among multiple advantages of Transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review Transformer schemes for time series modeling by highlighting their strengths as well as limitations. In particular, we examine the development of time series Transformers in two perspectives. From the perspective of network structure, we summarize the adaptations and modifications that have been made to Transformers in order to accommodate the challenges in time series analysis. From the perspective of applications, we categorize time series Transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.
TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting
Time series forecasting is widely used in extensive applications, such as traffic planning and weather forecasting. However, real-world time series usually present intricate temporal variations, making forecasting extremely challenging. Going beyond the mainstream paradigms of plain decomposition and multiperiodicity analysis, we analyze temporal variations in a novel view of multiscale-mixing, which is based on an intuitive but important observation that time series present distinct patterns in different sampling scales. The microscopic and the macroscopic information are reflected in fine and coarse scales respectively, and thereby complex variations can be inherently disentangled. Based on this observation, we propose TimeMixer as a fully MLP-based architecture with Past-Decomposable-Mixing (PDM) and Future-Multipredictor-Mixing (FMM) blocks to take full advantage of disentangled multiscale series in both past extraction and future prediction phases. Concretely, PDM applies the decomposition to multiscale series and further mixes the decomposed seasonal and trend components in fine-to-coarse and coarse-to-fine directions separately, which successively aggregates the microscopic seasonal and macroscopic trend information. FMM further ensembles multiple predictors to utilize complementary forecasting capabilities in multiscale observations. Consequently, TimeMixer is able to achieve consistent state-of-the-art performances in both long-term and short-term forecasting tasks with favorable run-time efficiency.
Effective Probabilistic Time Series Forecasting with Fourier Adaptive Noise-Separated Diffusion
We propose the Fourier Adaptive Lite Diffusion Architecture (FALDA), a novel probabilistic framework for time series forecasting. First, we introduce the Diffusion Model for Residual Regression (DMRR) framework, which unifies diffusion-based probabilistic regression methods. Within this framework, FALDA leverages Fourier-based decomposition to incorporate a component-specific architecture, enabling tailored modeling of individual temporal components. A conditional diffusion model is utilized to estimate the future noise term, while our proposed lightweight denoiser, DEMA (Decomposition MLP with AdaLN), conditions on the historical noise term to enhance denoising performance. Through mathematical analysis and empirical validation, we demonstrate that FALDA effectively reduces epistemic uncertainty, allowing probabilistic learning to primarily focus on aleatoric uncertainty. Experiments on six real-world benchmarks demonstrate that FALDA consistently outperforms existing probabilistic forecasting approaches across most datasets for long-term time series forecasting while achieving enhanced computational efficiency without compromising accuracy. Notably, FALDA also achieves superior overall performance compared to state-of-the-art (SOTA) point forecasting approaches, with improvements of up to 9%.
MMFNet: Multi-Scale Frequency Masking Neural Network for Multivariate Time Series Forecasting
Long-term Time Series Forecasting (LTSF) is critical for numerous real-world applications, such as electricity consumption planning, financial forecasting, and disease propagation analysis. LTSF requires capturing long-range dependencies between inputs and outputs, which poses significant challenges due to complex temporal dynamics and high computational demands. While linear models reduce model complexity by employing frequency domain decomposition, current approaches often assume stationarity and filter out high-frequency components that may contain crucial short-term fluctuations. In this paper, we introduce MMFNet, a novel model designed to enhance long-term multivariate forecasting by leveraging a multi-scale masked frequency decomposition approach. MMFNet captures fine, intermediate, and coarse-grained temporal patterns by converting time series into frequency segments at varying scales while employing a learnable mask to filter out irrelevant components adaptively. Extensive experimentation with benchmark datasets shows that MMFNet not only addresses the limitations of the existing methods but also consistently achieves good performance. Specifically, MMFNet achieves up to 6.0% reductions in the Mean Squared Error (MSE) compared to state-of-the-art models designed for multivariate forecasting tasks.
A Framework for Predictive Analysis of Stock Market Indices : A Study of the Indian Auto Sector
Analysis and prediction of stock market time series data has attracted considerable interest from the research community over the last decade. Rapid development and evolution of sophisticated algorithms for statistical analysis of time series data, and availability of high-performance hardware has made it possible to process and analyze high volume stock market time series data effectively, in real-time. Among many other important characteristics and behavior of such data, forecasting is an area which has witnessed considerable focus. In this work, we have used time series of the index values of the Auto sector in India during January 2010 to December 2015 for a deeper understanding of the behavior of its three constituent components, e.g., the trend, the seasonal component, and the random component. Based on this structural analysis, we have also designed five approaches for forecasting and also computed their accuracy in prediction using suitably chosen training and test data sets. Extensive results are presented to demonstrate the effectiveness of our proposed decomposition approaches of time series and the efficiency of our forecasting techniques, even in presence of a random component and a sharply changing trend component in the time-series.
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting
Extending the forecasting time is a critical demand for real applications, such as extreme weather early warning and long-term energy consumption planning. This paper studies the long-term forecasting problem of time series. Prior Transformer-based models adopt various self-attention mechanisms to discover the long-range dependencies. However, intricate temporal patterns of the long-term future prohibit the model from finding reliable dependencies. Also, Transformers have to adopt the sparse versions of point-wise self-attentions for long series efficiency, resulting in the information utilization bottleneck. Going beyond Transformers, we design Autoformer as a novel decomposition architecture with an Auto-Correlation mechanism. We break with the pre-processing convention of series decomposition and renovate it as a basic inner block of deep models. This design empowers Autoformer with progressive decomposition capacities for complex time series. Further, inspired by the stochastic process theory, we design the Auto-Correlation mechanism based on the series periodicity, which conducts the dependencies discovery and representation aggregation at the sub-series level. Auto-Correlation outperforms self-attention in both efficiency and accuracy. In long-term forecasting, Autoformer yields state-of-the-art accuracy, with a 38% relative improvement on six benchmarks, covering five practical applications: energy, traffic, economics, weather and disease. Code is available at this repository: https://github.com/thuml/Autoformer.
Swift: An Autoregressive Consistency Model for Efficient Weather Forecasting
Diffusion models offer a physically grounded framework for probabilistic weather forecasting, but their typical reliance on slow, iterative solvers during inference makes them impractical for subseasonal-to-seasonal (S2S) applications where long lead-times and domain-driven calibration are essential. To address this, we introduce Swift, a single-step consistency model that, for the first time, enables autoregressive finetuning of a probability flow model with a continuous ranked probability score (CRPS) objective. This eliminates the need for multi-model ensembling or parameter perturbations. Results show that Swift produces skillful 6-hourly forecasts that remain stable for up to 75 days, running 39times faster than state-of-the-art diffusion baselines while achieving forecast skill competitive with the numerical-based, operational IFS ENS. This marks a step toward efficient and reliable ensemble forecasting from medium-range to seasonal-scales.
Applying the Polynomial Maximization Method to Estimate ARIMA Models with Asymmetric Non-Gaussian Innovations
Classical estimators for ARIMA parameters (MLE, CSS, OLS) assume Gaussian innovations, an assumption frequently violated in financial and economic data exhibiting asymmetric distributions with heavy tails. We develop and validate the second-order polynomial maximization method (PMM2) for estimating ARIMA(p,d,q) models with non-Gaussian innovations. PMM2 is a semiparametric technique that exploits higher-order moments and cumulants without requiring full distributional specification. Monte Carlo experiments (128,000 simulations) across sample sizes N in {100, 200, 500, 1000} and four innovation distributions demonstrate that PMM2 substantially outperforms classical methods for asymmetric innovations. For ARIMA(1,1,0) with N=500, relative efficiency reaches 1.58--1.90 for Gamma, lognormal, and χ^2(3) innovations (37--47\% variance reduction). Under Gaussian innovations PMM2 matches OLS efficiency, avoiding the precision loss typical of robust estimators. The method delivers major gains for moderate asymmetry (|γ_3| geq 0.5) and N geq 200, with computational costs comparable to MLE. PMM2 provides an effective alternative for time series with asymmetric innovations typical of financial markets, macroeconomic indicators, and industrial measurements. Future extensions include seasonal SARIMA models, GARCH integration, and automatic order selection.
A structural equation formulation for general quasi-periodic Gaussian processes
This paper introduces a structural equation formulation that gives rise to a new family of quasi-periodic Gaussian processes, useful to process a broad class of natural and physiological signals. The proposed formulation simplifies generation and forecasting, and provides hyperparameter estimates, which we exploit in a convergent and consistent iterative estimation algorithm. A bootstrap approach for standard error estimation and confidence intervals is also provided. We demonstrate the computational and scaling benefits of the proposed approach on a broad class of problems, including water level tidal analysis, CO_{2} emission data, and sunspot numbers data. By leveraging the structural equations, our method reduces the cost of likelihood evaluations and predictions from O(k^2 p^2) to O(p^2), significantly improving scalability.
OLinear: A Linear Model for Time Series Forecasting in Orthogonally Transformed Domain
This paper presents OLinear, a linear-based multivariate time series forecasting model that operates in an orthogonally transformed domain. Recent forecasting models typically adopt the temporal forecast (TF) paradigm, which directly encode and decode time series in the time domain. However, the entangled step-wise dependencies in series data can hinder the performance of TF. To address this, some forecasters conduct encoding and decoding in the transformed domain using fixed, dataset-independent bases (e.g., sine and cosine signals in the Fourier transform). In contrast, we utilize OrthoTrans, a data-adaptive transformation based on an orthogonal matrix that diagonalizes the series' temporal Pearson correlation matrix. This approach enables more effective encoding and decoding in the decorrelated feature domain and can serve as a plug-in module to enhance existing forecasters. To enhance the representation learning for multivariate time series, we introduce a customized linear layer, NormLin, which employs a normalized weight matrix to capture multivariate dependencies. Empirically, the NormLin module shows a surprising performance advantage over multi-head self-attention, while requiring nearly half the FLOPs. Extensive experiments on 24 benchmarks and 140 forecasting tasks demonstrate that OLinear consistently achieves state-of-the-art performance with high efficiency. Notably, as a plug-in replacement for self-attention, the NormLin module consistently enhances Transformer-based forecasters. The code and datasets are available at https://anonymous.4open.science/r/OLinear
A Time Series Analysis-Based Forecasting Framework for the Indian Healthcare Sector
Designing efficient and robust algorithms for accurate prediction of stock market prices is one of the most exciting challenges in the field of time series analysis and forecasting. With the exponential rate of development and evolution of sophisticated algorithms and with the availability of fast computing platforms, it has now become possible to effectively and efficiently extract, store, process and analyze high volume of stock market data with diversity in its contents. Availability of complex algorithms which can execute very fast on parallel architecture over the cloud has made it possible to achieve higher accuracy in forecasting results while reducing the time required for computation. In this paper, we use the time series data of the healthcare sector of India for the period January 2010 till December 2016. We first demonstrate a decomposition approach of the time series and then illustrate how the decomposition results provide us with useful insights into the behavior and properties exhibited by the time series. Further, based on the structural analysis of the time series, we propose six different methods of forecasting for predicting the time series index of the healthcare sector. Extensive results are provided on the performance of the forecasting methods to demonstrate their effectiveness.
TSB-HB: A Hierarchical Bayesian Extension of the TSB Model for Intermittent Demand Forecasting
Intermittent demand forecasting poses unique challenges due to sparse observations, cold-start items, and obsolescence. Classical models such as Croston, SBA, and the Teunter-Syntetos-Babai (TSB) method provide simple heuristics but lack a principled generative foundation. Deep learning models address these limitations but often require large datasets and sacrifice interpretability. We introduce TSB-HB, a hierarchical Bayesian extension of TSB. Demand occurrence is modeled with a Beta-Binomial distribution, while nonzero demand sizes follow a Log-Normal distribution. Crucially, hierarchical priors enable partial pooling across items, stabilizing estimates for sparse or cold-start series while preserving heterogeneity. This framework yields a fully generative and interpretable model that generalizes classical exponential smoothing. On the UCI Online Retail dataset, TSB-HB achieves lower RMSE and RMSSE than Croston, SBA, TSB, ADIDA, IMAPA, ARIMA and Theta, and on a subset of the M5 dataset it outperforms all classical baselines we evaluate. The model provides calibrated probabilistic forecasts and improved accuracy on intermittent and lumpy items by combining a generative formulation with hierarchical shrinkage, while remaining interpretable and scalable.
D-CTNet: A Dual-Branch Channel-Temporal Forecasting Network with Frequency-Domain Correction
Accurate Multivariate Time Series (MTS) forecasting is crucial for collaborative design of complex systems, Digital Twin building, and maintenance ahead of time. However, the collaborative industrial environment presents new challenges for MTS forecasting models: models should decouple complex inter-variable dependencies while addressing non-stationary distribution shift brought by environmental changes. To address these challenges and improve collaborative sensing reliability, we propose a Patch-Based Dual-Branch Channel-Temporal Forecasting Network (D-CTNet). Particularly, with a parallel dual-branch design incorporating linear temporal modeling layer and channel attention mechanism, our method explicitly decouples and jointly learns intra-channel temporal evolution patterns and dynamic multivariate correlations. Furthermore, a global patch attention fusion module goes beyond the local window scope to model long range dependencies. Most importantly, aiming at non-stationarity, a Frequency-Domain Stationarity Correction mechanism adaptively suppresses distribution shift impacts from environment change by spectrum alignment. Evaluations on seven benchmark datasets show that our model achieves better forecasting accuracy and robustness compared with state-of-the-art methods. Our work shows great promise as a new forecasting engine for industrial collaborative systems.
FuXi-S2S: A machine learning model that outperforms conventional global subseasonal forecast models
Skillful subseasonal forecasts are crucial for various sectors of society but pose a grand scientific challenge. Recently, machine learning based weather forecasting models outperform the most successful numerical weather predictions generated by the European Centre for Medium-Range Weather Forecasts (ECMWF), but have not yet surpassed conventional models at subseasonal timescales. This paper introduces FuXi Subseasonal-to-Seasonal (FuXi-S2S), a machine learning model that provides global daily mean forecasts up to 42 days, encompassing five upper-air atmospheric variables at 13 pressure levels and 11 surface variables. FuXi-S2S, trained on 72 years of daily statistics from ECMWF ERA5 reanalysis data, outperforms the ECMWF's state-of-the-art Subseasonal-to-Seasonal model in ensemble mean and ensemble forecasts for total precipitation and outgoing longwave radiation, notably enhancing global precipitation forecast. The improved performance of FuXi-S2S can be primarily attributed to its superior capability to capture forecast uncertainty and accurately predict the Madden-Julian Oscillation (MJO), extending the skillful MJO prediction from 30 days to 36 days. Moreover, FuXi-S2S not only captures realistic teleconnections associated with the MJO, but also emerges as a valuable tool for discovering precursor signals, offering researchers insights and potentially establishing a new paradigm in Earth system science research.
Conditional Generation of Periodic Signals with Fourier-Based Decoder
Periodic signals play an important role in daily lives. Although conventional sequential models have shown remarkable success in various fields, they still come short in modeling periodicity; they either collapse, diverge or ignore details. In this paper, we introduce a novel framework inspired by Fourier series to generate periodic signals. We first decompose the given signals into multiple sines and cosines and then conditionally generate periodic signals with the output components. We have shown our model efficacy on three tasks: reconstruction, imputation and conditional generation. Our model outperforms baselines in all tasks and shows more stable and refined results.
Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts
Time series foundation models have demonstrated impressive performance as zero-shot forecasters. However, achieving effectively unified training on time series remains an open challenge. Existing approaches introduce some level of model specialization to account for the highly heterogeneous nature of time series data. For instance, Moirai pursues unified training by employing multiple input/output projection layers, each tailored to handle time series at a specific frequency. Similarly, TimesFM maintains a frequency embedding dictionary for this purpose. We identify two major drawbacks to this human-imposed frequency-level model specialization: (1) Frequency is not a reliable indicator of the underlying patterns in time series. For example, time series with different frequencies can display similar patterns, while those with the same frequency may exhibit varied patterns. (2) Non-stationarity is an inherent property of real-world time series, leading to varied distributions even within a short context window of a single time series. Frequency-level specialization is too coarse-grained to capture this level of diversity. To address these limitations, this paper introduces Moirai-MoE, using a single input/output projection layer while delegating the modeling of diverse time series patterns to the sparse mixture of experts (MoE) within Transformers. With these designs, Moirai-MoE reduces reliance on human-defined heuristics and enables automatic token-level specialization. Extensive experiments on 39 datasets demonstrate the superiority of Moirai-MoE over existing foundation models in both in-distribution and zero-shot scenarios. Furthermore, this study conducts comprehensive model analyses to explore the inner workings of time series MoE foundation models and provides valuable insights for future research.
TimeCMA: Towards LLM-Empowered Time Series Forecasting via Cross-Modality Alignment
The widespread adoption of scalable mobile sensing has led to large amounts of time series data for real-world applications. A fundamental application is multivariate time series forecasting (MTSF), which aims to predict future time series values based on historical observations. Existing MTSF methods suffer from limited parameterization and small-scale training data. Recently, Large language models (LLMs) have been introduced in time series, which achieve promising forecasting performance but incur heavy computational costs. To solve these challenges, we propose TimeCMA, an LLM-empowered framework for time series forecasting with cross-modality alignment. We design a dual-modality encoding module with two branches, where the time series encoding branch extracts relatively low-quality yet pure embeddings of time series through an inverted Transformer. In addition, the LLM-empowered encoding branch wraps the same time series as prompts to obtain high-quality yet entangled prompt embeddings via a Pre-trained LLM. Then, we design a cross-modality alignment module to retrieve high-quality and pure time series embeddings from the prompt embeddings. Moreover, we develop a time series forecasting module to decode the aligned embeddings while capturing dependencies among multiple variables for forecasting. Notably, we tailor the prompt to encode sufficient temporal information into a last token and design the last token embedding storage to reduce computational costs. Extensive experiments on real data offer insight into the accuracy and efficiency of the proposed framework.
Decomposition of Time Series Data of Stock Markets and its Implications for Prediction: An Application for the Indian Auto Sector
With the rapid development and evolution of sophisticated algorithms for statistical analysis of time series data, the research community has started spending considerable effort in technical analysis of such data. Forecasting is also an area which has witnessed a paradigm shift in its approach. In this work, we have used the time series of the index values of the Auto sector in India during January 2010 to December 2015 for a deeper understanding of the behavior of its three constituent components, e.g., the Trend, the Seasonal component, and the Random component. Based on this structural analysis, we have also designed three approaches for forecasting and also computed their accuracy in prediction using suitably chosen training and test data sets. The results clearly demonstrate the accuracy of our decomposition results and efficiency of our forecasting techniques, even in presence of a dominant Random component in the time series.
TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting
The past decade has witnessed significant advances in time series modeling with deep learning. While achieving state-of-the-art results, the best-performing architectures vary highly across applications and domains. Meanwhile, for natural language processing, the Generative Pre-trained Transformer (GPT) has demonstrated impressive performance via training one general-purpose model across various textual datasets. It is intriguing to explore whether GPT-type architectures can be effective for time series, capturing the intrinsic dynamic attributes and leading to significant accuracy improvements. In this paper, we propose a novel framework, TEMPO, that can effectively learn time series representations. We focus on utilizing two essential inductive biases of the time series task for pre-trained models: (i) decomposition of the complex interaction between trend, seasonal and residual components; and (ii) introducing the selection-based prompts to facilitate distribution adaptation in non-stationary time series. TEMPO expands the capability for dynamically modeling real-world temporal phenomena from data within diverse domains. Our experiments demonstrate the superior performance of TEMPO over state-of-the-art methods on a number of time series benchmark datasets. This performance gain is observed not only in standard supervised learning settings but also in scenarios involving previously unseen datasets as well as in scenarios with multi-modal inputs. This compelling finding highlights TEMPO's potential to constitute a foundational model-building framework.
WADEPre: A Wavelet-based Decomposition Model for Extreme Precipitation Nowcasting with Multi-Scale Learning
The heavy-tailed nature of precipitation intensity impedes precise precipitation nowcasting. Standard models that optimize pixel-wise losses are prone to regression-to-the-mean bias, which blurs extreme values. Existing Fourier-based methods also lack the spatial localization needed to resolve transient convective cells. To overcome these intrinsic limitations, we propose WADEPre, a wavelet-based decomposition model for extreme precipitation that transitions the modeling into the wavelet domain. By leveraging the Discrete Wavelet Transform for explicit decomposition, WADEPre employs a dual-branch architecture: an Approximation Network to model stable, low-frequency advection, isolating deterministic trends from statistical bias, and a spatially localized Detail Network to capture high-frequency stochastic convection, resolving transient singularities and preserving sharp boundaries. A subsequent Refiner module then dynamically reconstructs these decoupled multi-scale components into the final high-fidelity forecast. To address optimization instability, we introduce a multi-scale curriculum learning strategy that progressively shifts supervision from coarse scales to fine-grained details. Extensive experiments on the SEVIR and Shanghai Radar datasets demonstrate that WADEPre achieves state-of-the-art performance, yielding significant improvements in capturing extreme thresholds and maintaining structural fidelity. Our code is available at https://github.com/sonderlau/WADEPre.
A prediction for 25th solar cycle using visibility graph and Hathaway function
We apply a complex network approach to analyse the time series of five solar parameters, and propose an strategy to predict the number of sunspots for the next solar maximum, and when will this maximum will occur. The approach is based on the Visibility Graph (VG) algorithm, and a slightly modified version of it, the Horizontal Visibility Graph (HVG), which map a time series into a complex network. Various network metrics exhibit either an exponential or a scale-free behavior, and we find that the evolution of the characteristic decay exponents is consistent with variations of the sunspots number along solar cycles. During solar minimum, the sunspots number and the solar index time series have characteristic decay exponents that correlate well with the next maximum sunspots number, suggesting that they may be good precursors of the intensity of the next solar maximum. Based on this observation, we find that, based on current data, the algorithm predicts a number of 179 sunspots for cycle 25. Combining this with the Hathaway function, adjusted to yield such maximum sunspots number, we find that the maximum for solar cycle 25 will occur in December 2024/January 2025.
SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion
Multivariate time series forecasting plays a crucial role in various fields such as finance, traffic management, energy, and healthcare. Recent studies have highlighted the advantages of channel independence to resist distribution drift but neglect channel correlations, limiting further enhancements. Several methods utilize mechanisms like attention or mixer to address this by capturing channel correlations, but they either introduce excessive complexity or rely too heavily on the correlation to achieve satisfactory results under distribution drifts, particularly with a large number of channels. Addressing this gap, this paper presents an efficient MLP-based model, the Series-cOre Fused Time Series forecaster (SOFTS), which incorporates a novel STar Aggregate-Redistribute (STAR) module. Unlike traditional approaches that manage channel interactions through distributed structures, e.g., attention, STAR employs a centralized strategy to improve efficiency and reduce reliance on the quality of each channel. It aggregates all series to form a global core representation, which is then dispatched and fused with individual series representations to facilitate channel interactions effectively.SOFTS achieves superior performance over existing state-of-the-art methods with only linear complexity. The broad applicability of the STAR module across different forecasting models is also demonstrated empirically. For further research and development, we have made our code publicly available at https://github.com/Secilia-Cxy/SOFTS.
WPMixer: Efficient Multi-Resolution Mixing for Long-Term Time Series Forecasting
Time series forecasting is crucial for various applications, such as weather forecasting, power load forecasting, and financial analysis. In recent studies, MLP-mixer models for time series forecasting have been shown as a promising alternative to transformer-based models. However, the performance of these models is still yet to reach its potential. In this paper, we propose Wavelet Patch Mixer (WPMixer), a novel MLP-based model, for long-term time series forecasting, which leverages the benefits of patching, multi-resolution wavelet decomposition, and mixing. Our model is based on three key components: (i) multi-resolution wavelet decomposition, (ii) patching and embedding, and (iii) MLP mixing. Multi-resolution wavelet decomposition efficiently extracts information in both the frequency and time domains. Patching allows the model to capture an extended history with a look-back window and enhances capturing local information while MLP mixing incorporates global information. Our model significantly outperforms state-of-the-art MLP-based and transformer-based models for long-term time series forecasting in a computationally efficient way, demonstrating its efficacy and potential for practical applications.
Timer-XL: Long-Context Transformers for Unified Time Series Forecasting
We present Timer-XL, a generative Transformer for unified time series forecasting. To uniformly predict 1D and 2D time series, we generalize next token prediction, predominantly adopted for causal generation of 1D sequences, to multivariate next token prediction. The proposed paradigm uniformly formulates various forecasting scenarios as a long-context generation problem. We opt for the generative Transformer, which can capture global-range and causal dependencies while providing contextual flexibility, to implement unified forecasting on univariate series characterized by non-stationarity, multivariate time series with complicated dynamics and correlations, and covariate-informed contexts that include both endogenous and exogenous variables. Technically, we propose a universal TimeAttention to facilitate generative Transformers on time series, which can effectively capture fine-grained intra- and inter-series dependencies of flattened time series tokens (patches) and is further strengthened by position embeddings in both temporal and variable dimensions. Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach. As a large time series model, it demonstrates notable model transferability by large-scale pre-training, as well as contextual flexibility in token lengths, positioning it as a one-for-all forecaster.
AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting
Pre-trained foundation models (FMs) have shown exceptional performance in univariate time series forecasting tasks. However, several practical challenges persist, including managing intricate dependencies among features and quantifying uncertainty in predictions. This study aims to tackle these critical limitations by introducing adapters; feature-space transformations that facilitate the effective use of pre-trained univariate time series FMs for multivariate tasks. Adapters operate by projecting multivariate inputs into a suitable latent space and applying the FM independently to each dimension. Inspired by the literature on representation learning and partially stochastic Bayesian neural networks, we present a range of adapters and optimization/inference strategies. Experiments conducted on both synthetic and real-world datasets confirm the efficacy of adapters, demonstrating substantial enhancements in forecasting accuracy and uncertainty quantification compared to baseline methods. Our framework, AdaPTS, positions adapters as a modular, scalable, and effective solution for leveraging time series FMs in multivariate contexts, thereby promoting their wider adoption in real-world applications. We release the code at https://github.com/abenechehab/AdaPTS.
Let Experts Feel Uncertainty: A Multi-Expert Label Distribution Approach to Probabilistic Time Series Forecasting
Time series forecasting in real-world applications requires both high predictive accuracy and interpretable uncertainty quantification. Traditional point prediction methods often fail to capture the inherent uncertainty in time series data, while existing probabilistic approaches struggle to balance computational efficiency with interpretability. We propose a novel Multi-Expert Learning Distributional Labels (LDL) framework that addresses these challenges through mixture-of-experts architectures with distributional learning capabilities. Our approach introduces two complementary methods: (1) Multi-Expert LDL, which employs multiple experts with different learned parameters to capture diverse temporal patterns, and (2) Pattern-Aware LDL-MoE, which explicitly decomposes time series into interpretable components (trend, seasonality, changepoints, volatility) through specialized sub-experts. Both frameworks extend traditional point prediction to distributional learning, enabling rich uncertainty quantification through Maximum Mean Discrepancy (MMD). We evaluate our methods on aggregated sales data derived from the M5 dataset, demonstrating superior performance compared to baseline approaches. The continuous Multi-Expert LDL achieves the best overall performance, while the Pattern-Aware LDL-MoE provides enhanced interpretability through component-wise analysis. Our frameworks successfully balance predictive accuracy with interpretability, making them suitable for real-world forecasting applications where both performance and actionable insights are crucial.
TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis
Time series analysis is of immense importance in extensive applications, such as weather forecasting, anomaly detection, and action recognition. This paper focuses on temporal variation modeling, which is the common key problem of extensive analysis tasks. Previous methods attempt to accomplish this directly from the 1D time series, which is extremely challenging due to the intricate temporal patterns. Based on the observation of multi-periodicity in time series, we ravel out the complex temporal variations into the multiple intraperiod- and interperiod-variations. To tackle the limitations of 1D time series in representation capability, we extend the analysis of temporal variations into the 2D space by transforming the 1D time series into a set of 2D tensors based on multiple periods. This transformation can embed the intraperiod- and interperiod-variations into the columns and rows of the 2D tensors respectively, making the 2D-variations to be easily modeled by 2D kernels. Technically, we propose the TimesNet with TimesBlock as a task-general backbone for time series analysis. TimesBlock can discover the multi-periodicity adaptively and extract the complex temporal variations from transformed 2D tensors by a parameter-efficient inception block. Our proposed TimesNet achieves consistent state-of-the-art in five mainstream time series analysis tasks, including short- and long-term forecasting, imputation, classification, and anomaly detection. Code is available at this repository: https://github.com/thuml/TimesNet.
Small but Mighty: Enhancing Time Series Forecasting with Lightweight LLMs
While LLMs have demonstrated remarkable potential in time series forecasting, their practical deployment remains constrained by excessive computational demands and memory footprints. Existing LLM-based approaches typically suffer from three critical limitations: Inefficient parameter utilization in handling numerical time series patterns; Modality misalignment between continuous temporal signals and discrete text embeddings; and Inflexibility for real-time expert knowledge integration. We present SMETimes, the first systematic investigation of sub-3B parameter SLMs for efficient and accurate time series forecasting. Our approach centers on three key innovations: A statistically-enhanced prompting mechanism that bridges numerical time series with textual semantics through descriptive statistical features; A adaptive fusion embedding architecture that aligns temporal patterns with language model token spaces through learnable parameters; And a dynamic mixture-of-experts framework enabled by SLMs' computational efficiency, adaptively combining base predictions with domain-specific models. Extensive evaluations across seven benchmark datasets demonstrate that our 3B-parameter SLM achieves state-of-the-art performance on five primary datasets while maintaining 3.8x faster training and 5.2x lower memory consumption compared to 7B-parameter LLM baselines. Notably, the proposed model exhibits better learning capabilities, achieving 12.3% lower MSE than conventional LLM. Ablation studies validate that our statistical prompting and cross-modal fusion modules respectively contribute 15.7% and 18.2% error reduction in long-horizon forecasting tasks. By redefining the efficiency-accuracy trade-off landscape, this work establishes SLMs as viable alternatives to resource-intensive LLMs for practical time series forecasting. Code and models are available at https://github.com/xiyan1234567/SMETimes.
SSL4Eco: A Global Seasonal Dataset for Geospatial Foundation Models in Ecology
With the exacerbation of the biodiversity and climate crises, macroecological pursuits such as global biodiversity mapping become more urgent. Remote sensing offers a wealth of Earth observation data for ecological studies, but the scarcity of labeled datasets remains a major challenge. Recently, self-supervised learning has enabled learning representations from unlabeled data, triggering the development of pretrained geospatial models with generalizable features. However, these models are often trained on datasets biased toward areas of high human activity, leaving entire ecological regions underrepresented. Additionally, while some datasets attempt to address seasonality through multi-date imagery, they typically follow calendar seasons rather than local phenological cycles. To better capture vegetation seasonality at a global scale, we propose a simple phenology-informed sampling strategy and introduce corresponding SSL4Eco, a multi-date Sentinel-2 dataset, on which we train an existing model with a season-contrastive objective. We compare representations learned from SSL4Eco against other datasets on diverse ecological downstream tasks and demonstrate that our straightforward sampling method consistently improves representation quality, highlighting the importance of dataset construction. The model pretrained on SSL4Eco reaches state of the art performance on 7 out of 8 downstream tasks spanning (multi-label) classification and regression. We release our code, data, and model weights to support macroecological and computer vision research at https://github.com/PlekhanovaElena/ssl4eco.
Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor Data
Tucker decomposition is a powerful tensor model to handle multi-aspect data. It demonstrates the low-rank property by decomposing the grid-structured data as interactions between a core tensor and a set of object representations (factors). A fundamental assumption of such decomposition is that there are finite objects in each aspect or mode, corresponding to discrete indexes of data entries. However, real-world data is often not naturally posed in this setting. For example, geographic data is represented as continuous indexes of latitude and longitude coordinates, and cannot fit tensor models directly. To generalize Tucker decomposition to such scenarios, we propose Functional Bayesian Tucker Decomposition (FunBaT). We treat the continuous-indexed data as the interaction between the Tucker core and a group of latent functions. We use Gaussian processes (GP) as functional priors to model the latent functions. Then, we convert each GP into a state-space prior by constructing an equivalent stochastic differential equation (SDE) to reduce computational cost. An efficient inference algorithm is developed for scalable posterior approximation based on advanced message-passing techniques. The advantage of our method is shown in both synthetic data and several real-world applications. We release the code of FunBaT at https://github.com/xuangu-fang/Functional-Bayesian-Tucker-Decomposition.
How to Train Your HiPPO: State Space Models with Generalized Orthogonal Basis Projections
Linear time-invariant state space models (SSM) are a classical model from engineering and statistics, that have recently been shown to be very promising in machine learning through the Structured State Space sequence model (S4). A core component of S4 involves initializing the SSM state matrix to a particular matrix called a HiPPO matrix, which was empirically important for S4's ability to handle long sequences. However, the specific matrix that S4 uses was actually derived in previous work for a particular time-varying dynamical system, and the use of this matrix as a time-invariant SSM had no known mathematical interpretation. Consequently, the theoretical mechanism by which S4 models long-range dependencies actually remains unexplained. We derive a more general and intuitive formulation of the HiPPO framework, which provides a simple mathematical interpretation of S4 as a decomposition onto exponentially-warped Legendre polynomials, explaining its ability to capture long dependencies. Our generalization introduces a theoretically rich class of SSMs that also lets us derive more intuitive S4 variants for other bases such as the Fourier basis, and explains other aspects of training S4, such as how to initialize the important timescale parameter. These insights improve S4's performance to 86% on the Long Range Arena benchmark, with 96% on the most difficult Path-X task.
Hierarchical Joint Graph Learning and Multivariate Time Series Forecasting
Multivariate time series is prevalent in many scientific and industrial domains. Modeling multivariate signals is challenging due to their long-range temporal dependencies and intricate interactions--both direct and indirect. To confront these complexities, we introduce a method of representing multivariate signals as nodes in a graph with edges indicating interdependency between them. Specifically, we leverage graph neural networks (GNN) and attention mechanisms to efficiently learn the underlying relationships within the time series data. Moreover, we suggest employing hierarchical signal decompositions running over the graphs to capture multiple spatial dependencies. The effectiveness of our proposed model is evaluated across various real-world benchmark datasets designed for long-term forecasting tasks. The results consistently showcase the superiority of our model, achieving an average 23\% reduction in mean squared error (MSE) compared to existing models.
xLSTMTime : Long-term Time Series Forecasting With xLSTM
In recent years, transformer-based models have gained prominence in multivariate long-term time series forecasting (LTSF), demonstrating significant advancements despite facing challenges such as high computational demands, difficulty in capturing temporal dynamics, and managing long-term dependencies. The emergence of LTSF-Linear, with its straightforward linear architecture, has notably outperformed transformer-based counterparts, prompting a reevaluation of the transformer's utility in time series forecasting. In response, this paper presents an adaptation of a recent architecture termed extended LSTM (xLSTM) for LTSF. xLSTM incorporates exponential gating and a revised memory structure with higher capacity that has good potential for LTSF. Our adopted architecture for LTSF termed as xLSTMTime surpasses current approaches. We compare xLSTMTime's performance against various state-of-the-art models across multiple real-world da-tasets, demonstrating superior forecasting capabilities. Our findings suggest that refined recurrent architectures can offer competitive alternatives to transformer-based models in LTSF tasks, po-tentially redefining the landscape of time series forecasting.
TFMAdapter: Lightweight Instance-Level Adaptation of Foundation Models for Forecasting with Covariates
Time Series Foundation Models (TSFMs) have recently achieved state-of-the-art performance in univariate forecasting on new time series simply by conditioned on a brief history of past values. Their success demonstrates that large-scale pretraining across diverse domains can acquire the inductive bias to generalize from temporal patterns in a brief history. However, most TSFMs are unable to leverage covariates -- future-available exogenous variables critical for accurate forecasting in many applications -- due to their domain-specific nature and the lack of associated inductive bias. We propose TFMAdapter, a lightweight, instance-level adapter that augments TSFMs with covariate information without fine-tuning. Instead of retraining, TFMAdapter operates on the limited history provided during a single model call, learning a non-parametric cascade that combines covariates with univariate TSFM forecasts. However, such learning would require univariate forecasts at all steps in the history, requiring too many calls to the TSFM. To enable training on the full historical context while limiting TSFM invocations, TFMAdapter uses a two-stage method: (1) generating pseudo-forecasts with a simple regression model, and (2) training a Gaussian Process regressor to refine predictions using both pseudo- and TSFM forecasts alongside covariates. Extensive experiments on real-world datasets demonstrate that TFMAdapter consistently outperforms both foundation models and supervised baselines, achieving a 24-27\% improvement over base foundation models with minimal data and computational overhead. Our results highlight the potential of lightweight adapters to bridge the gap between generic foundation models and domain-specific forecasting needs.
SciTS: Scientific Time Series Understanding and Generation with LLMs
The scientific reasoning ability of large language models (LLMs) has recently attracted significant attention. Time series, as a fundamental modality in scientific data, presents unique challenges that are often overlooked in current multimodal LLMs, which either encode numerical sequences as text or convert them into images. Such approaches may be insufficient for comprehensive scientific time series understanding and generation. Existing unified time series models typically specialise in either forecasting or analysis, and their effectiveness on non-periodic, heterogeneous scientific signals remains unclear. To address these gaps, we introduce SciTS, a benchmark spanning 12 scientific domains and 43 tasks, with over 50k+ instances, both univariate and multivariate signals ranging from 10^0 to 10^7 in length and up to 10~MHz in frequency. We benchmark 17 models, including text-only LLMs, multimodal LLMs, and unified time series models, and find that general-purpose LLMs exhibit stronger generalisability than specialised time series models, while representing time series as text or images limits their performance due to excessively long sequences and loss of numerical precision, respectively. We then introduce TimeOmni, a framework that equips LLMs with the ability to understand and generate time series while remaining compatible with general-purpose LLM training. This work fills a gap in both dedicated benchmarks and modelling frameworks for scientific time series, paving the way for LLMs to understand and generate complex temporal scientific data.
Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case
In this paper, we present a new approach to time series forecasting. Time series data are prevalent in many scientific and engineering disciplines. Time series forecasting is a crucial task in modeling time series data, and is an important area of machine learning. In this work we developed a novel method that employs Transformer-based machine learning models to forecast time series data. This approach works by leveraging self-attention mechanisms to learn complex patterns and dynamics from time series data. Moreover, it is a generic framework and can be applied to univariate and multivariate time series data, as well as time series embeddings. Using influenza-like illness (ILI) forecasting as a case study, we show that the forecasting results produced by our approach are favorably comparable to the state-of-the-art.
Regional data-driven weather modeling with a global stretched-grid
A data-driven model (DDM) suitable for regional weather forecasting applications is presented. The model extends the Artificial Intelligence Forecasting System by introducing a stretched-grid architecture that dedicates higher resolution over a regional area of interest and maintains a lower resolution elsewhere on the globe. The model is based on graph neural networks, which naturally affords arbitrary multi-resolution grid configurations. The model is applied to short-range weather prediction for the Nordics, producing forecasts at 2.5 km spatial and 6 h temporal resolution. The model is pre-trained on 43 years of global ERA5 data at 31 km resolution and is further refined using 3.3 years of 2.5 km resolution operational analyses from the MetCoOp Ensemble Prediction System (MEPS). The performance of the model is evaluated using surface observations from measurement stations across Norway and is compared to short-range weather forecasts from MEPS. The DDM outperforms both the control run and the ensemble mean of MEPS for 2 m temperature. The model also produces competitive precipitation and wind speed forecasts, but is shown to underestimate extreme events.
Ti-MAE: Self-Supervised Masked Time Series Autoencoders
Multivariate Time Series forecasting has been an increasingly popular topic in various applications and scenarios. Recently, contrastive learning and Transformer-based models have achieved good performance in many long-term series forecasting tasks. However, there are still several issues in existing methods. First, the training paradigm of contrastive learning and downstream prediction tasks are inconsistent, leading to inaccurate prediction results. Second, existing Transformer-based models which resort to similar patterns in historical time series data for predicting future values generally induce severe distribution shift problems, and do not fully leverage the sequence information compared to self-supervised methods. To address these issues, we propose a novel framework named Ti-MAE, in which the input time series are assumed to follow an integrate distribution. In detail, Ti-MAE randomly masks out embedded time series data and learns an autoencoder to reconstruct them at the point-level. Ti-MAE adopts mask modeling (rather than contrastive learning) as the auxiliary task and bridges the connection between existing representation learning and generative Transformer-based methods, reducing the difference between upstream and downstream forecasting tasks while maintaining the utilization of original time series data. Experiments on several public real-world datasets demonstrate that our framework of masked autoencoding could learn strong representations directly from the raw data, yielding better performance in time series forecasting and classification tasks.
From Similarity to Superiority: Channel Clustering for Time Series Forecasting
Time series forecasting has attracted significant attention in recent decades. Previous studies have demonstrated that the Channel-Independent (CI) strategy improves forecasting performance by treating different channels individually, while it leads to poor generalization on unseen instances and ignores potentially necessary interactions between channels. Conversely, the Channel-Dependent (CD) strategy mixes all channels with even irrelevant and indiscriminate information, which, however, results in oversmoothing issues and limits forecasting accuracy. There is a lack of channel strategy that effectively balances individual channel treatment for improved forecasting performance without overlooking essential interactions between channels. Motivated by our observation of a correlation between the time series model's performance boost against channel mixing and the intrinsic similarity on a pair of channels, we developed a novel and adaptable Channel Clustering Module (CCM). CCM dynamically groups channels characterized by intrinsic similarities and leverages cluster information instead of individual channel identities, combining the best of CD and CI worlds. Extensive experiments on real-world datasets demonstrate that CCM can (1) boost the performance of CI and CD models by an average margin of 2.4% and 7.2% on long-term and short-term forecasting, respectively; (2) enable zero-shot forecasting with mainstream time series forecasting models; (3) uncover intrinsic time series patterns among channels and improve interpretability of complex time series models.
ClimaX: A foundation model for weather and climate
Most state-of-the-art approaches for weather and climate modeling are based on physics-informed numerical models of the atmosphere. These approaches aim to model the non-linear dynamics and complex interactions between multiple variables, which are challenging to approximate. Additionally, many such numerical models are computationally intensive, especially when modeling the atmospheric phenomenon at a fine-grained spatial and temporal resolution. Recent data-driven approaches based on machine learning instead aim to directly solve a downstream forecasting or projection task by learning a data-driven functional mapping using deep neural networks. However, these networks are trained using curated and homogeneous climate datasets for specific spatiotemporal tasks, and thus lack the generality of numerical models. We develop and demonstrate ClimaX, a flexible and generalizable deep learning model for weather and climate science that can be trained using heterogeneous datasets spanning different variables, spatio-temporal coverage, and physical groundings. ClimaX extends the Transformer architecture with novel encoding and aggregation blocks that allow effective use of available compute while maintaining general utility. ClimaX is pre-trained with a self-supervised learning objective on climate datasets derived from CMIP6. The pre-trained ClimaX can then be fine-tuned to address a breadth of climate and weather tasks, including those that involve atmospheric variables and spatio-temporal scales unseen during pretraining. Compared to existing data-driven baselines, we show that this generality in ClimaX results in superior performance on benchmarks for weather forecasting and climate projections, even when pretrained at lower resolutions and compute budgets.
HERMES: Hybrid Error-corrector Model with inclusion of External Signals for nonstationary fashion time series
Developing models and algorithms to predict nonstationary time series is a long standing statistical problem. It is crucial for many applications, in particular for fashion or retail industries, to make optimal inventory decisions and avoid massive wastes. By tracking thousands of fashion trends on social media with state-of-the-art computer vision approaches, we propose a new model for fashion time series forecasting. Our contribution is twofold. We first provide publicly a dataset gathering 10000 weekly fashion time series. As influence dynamics are the key of emerging trend detection, we associate with each time series an external weak signal representing behaviours of influencers. Secondly, to leverage such a dataset, we propose a new hybrid forecasting model. Our approach combines per-time-series parametric models with seasonal components and a global recurrent neural network to include sporadic external signals. This hybrid model provides state-of-the-art results on the proposed fashion dataset, on the weekly time series of the M4 competition, and illustrates the benefit of the contribution of external weak signals.
High-Dimensional Multivariate Forecasting with Low-Rank Gaussian Copula Processes
Predicting the dependencies between observations from multiple time series is critical for applications such as anomaly detection, financial risk management, causal analysis, or demand forecasting. However, the computational and numerical difficulties of estimating time-varying and high-dimensional covariance matrices often limits existing methods to handling at most a few hundred dimensions or requires making strong assumptions on the dependence between series. We propose to combine an RNN-based time series model with a Gaussian copula process output model with a low-rank covariance structure to reduce the computational complexity and handle non-Gaussian marginal distributions. This permits to drastically reduce the number of parameters and consequently allows the modeling of time-varying correlations of thousands of time series. We show on several real-world datasets that our method provides significant accuracy improvements over state-of-the-art baselines and perform an ablation study analyzing the contributions of the different components of our model.
MixLinear: Extreme Low Resource Multivariate Time Series Forecasting with 0.1K Parameters
Recently, there has been a growing interest in Long-term Time Series Forecasting (LTSF), which involves predicting long-term future values by analyzing a large amount of historical time-series data to identify patterns and trends. There exist significant challenges in LTSF due to its complex temporal dependencies and high computational demands. Although Transformer-based models offer high forecasting accuracy, they are often too compute-intensive to be deployed on devices with hardware constraints. On the other hand, the linear models aim to reduce the computational overhead by employing either decomposition methods in the time domain or compact representations in the frequency domain. In this paper, we propose MixLinear, an ultra-lightweight multivariate time series forecasting model specifically designed for resource-constrained devices. MixLinear effectively captures both temporal and frequency domain features by modeling intra-segment and inter-segment variations in the time domain and extracting frequency variations from a low-dimensional latent space in the frequency domain. By reducing the parameter scale of a downsampled n-length input/output one-layer linear model from O(n^2) to O(n), MixLinear achieves efficient computation without sacrificing accuracy. Extensive evaluations with four benchmark datasets show that MixLinear attains forecasting performance comparable to, or surpassing, state-of-the-art models with significantly fewer parameters (0.1K), which makes it well-suited for deployment on devices with limited computational capacity.
THEMIS: Unlocking Pretrained Knowledge with Foundation Model Embeddings for Anomaly Detection in Time Series
Time series anomaly detection forms a very crucial area in several domains but poses substantial challenges. Due to time series data possessing seasonality, trends, noise, and evolving patterns (concept drift), it becomes very difficult to set a general notion of what constitutes normal behavior. Anomalies themselves could be varied, ranging from a single outlier to contextual or collective anomalies, and are normally very rare; hence, the dataset is largely imbalanced. Additional layers of complexities arise due to the problems of increased dimensionality of modern time series, real-time detection criteria, setting up appropriate detection thresholds, and arriving at results that are interpretable. To embrace these multifaceted challenges, very strong, flexible, and interpretable approaches are required. This paper presents THEMIS, a new framework for time series anomaly detection that exploits pretrained knowledge from foundation models. THEMIS extracts embeddings from the encoder of the Chronos time series foundation model and applies outlier detection techniques like Local Outlier Factor and Spectral Decomposition on the self-similarity matrix, to spot anomalies in the data. Our experiments show that this modular method achieves SOTA results on the MSL dataset and performs quite competitively on the SMAP and SWAT^* datasets. Notably, THEMIS exceeds models trained specifically for anomaly detection, presenting hyperparameter robustness and interpretability by default. This paper advocates for pretrained representations from foundation models for performing efficient and adaptable anomaly detection for time series data.
ARM: Refining Multivariate Forecasting with Adaptive Temporal-Contextual Learning
Long-term time series forecasting (LTSF) is important for various domains but is confronted by challenges in handling the complex temporal-contextual relationships. As multivariate input models underperforming some recent univariate counterparts, we posit that the issue lies in the inefficiency of existing multivariate LTSF Transformers to model series-wise relationships: the characteristic differences between series are often captured incorrectly. To address this, we introduce ARM: a multivariate temporal-contextual adaptive learning method, which is an enhanced architecture specifically designed for multivariate LTSF modelling. ARM employs Adaptive Univariate Effect Learning (AUEL), Random Dropping (RD) training strategy, and Multi-kernel Local Smoothing (MKLS), to better handle individual series temporal patterns and correctly learn inter-series dependencies. ARM demonstrates superior performance on multiple benchmarks without significantly increasing computational costs compared to vanilla Transformer, thereby advancing the state-of-the-art in LTSF. ARM is also generally applicable to other LTSF architecture beyond vanilla Transformer.
Chronos-2: From Univariate to Universal Forecasting
Pretrained time series models have enabled inference-only forecasting systems that produce accurate predictions without task-specific training. However, existing approaches largely focus on univariate forecasting, limiting their applicability in real-world scenarios where multivariate data and covariates play a crucial role. We present Chronos-2, a pretrained model capable of handling univariate, multivariate, and covariate-informed forecasting tasks in a zero-shot manner. Chronos-2 employs a group attention mechanism that facilitates in-context learning (ICL) through efficient information sharing across multiple time series within a group, which may represent sets of related series, variates of a multivariate series, or targets and covariates in a forecasting task. These general capabilities are achieved through training on synthetic datasets that impose diverse multivariate structures on univariate series. Chronos-2 delivers state-of-the-art performance across three comprehensive benchmarks: fev-bench, GIFT-Eval, and Chronos Benchmark II. On fev-bench, which emphasizes multivariate and covariate-informed forecasting, Chronos-2's universal ICL capabilities lead to substantial improvements over existing models. On tasks involving covariates, it consistently outperforms baselines by a wide margin. Case studies in the energy and retail domains further highlight its practical advantages. The in-context learning capabilities of Chronos-2 establish it as a general-purpose forecasting model that can be used "as is" in real-world forecasting pipelines.
Analyzing and Improving the Training Dynamics of Diffusion Models
Diffusion models currently dominate the field of data-driven image synthesis with their unparalleled scaling to large datasets. In this paper, we identify and rectify several causes for uneven and ineffective training in the popular ADM diffusion model architecture, without altering its high-level structure. Observing uncontrolled magnitude changes and imbalances in both the network activations and weights over the course of training, we redesign the network layers to preserve activation, weight, and update magnitudes on expectation. We find that systematic application of this philosophy eliminates the observed drifts and imbalances, resulting in considerably better networks at equal computational complexity. Our modifications improve the previous record FID of 2.41 in ImageNet-512 synthesis to 1.81, achieved using fast deterministic sampling. As an independent contribution, we present a method for setting the exponential moving average (EMA) parameters post-hoc, i.e., after completing the training run. This allows precise tuning of EMA length without the cost of performing several training runs, and reveals its surprising interactions with network architecture, training time, and guidance.
TSGym: Design Choices for Deep Multivariate Time-Series Forecasting
Recently, deep learning has driven significant advancements in multivariate time series forecasting (MTSF) tasks. However, much of the current research in MTSF tends to evaluate models from a holistic perspective, which obscures the individual contributions and leaves critical issues unaddressed. Adhering to the current modeling paradigms, this work bridges these gaps by systematically decomposing deep MTSF methods into their core, fine-grained components like series-patching tokenization, channel-independent strategy, attention modules, or even Large Language Models and Time-series Foundation Models. Through extensive experiments and component-level analysis, our work offers more profound insights than previous benchmarks that typically discuss models as a whole. Furthermore, we propose a novel automated solution called TSGym for MTSF tasks. Unlike traditional hyperparameter tuning, neural architecture searching or fixed model selection, TSGym performs fine-grained component selection and automated model construction, which enables the creation of more effective solutions tailored to diverse time series data, therefore enhancing model transferability across different data sources and robustness against distribution shifts. Extensive experiments indicate that TSGym significantly outperforms existing state-of-the-art MTSF and AutoML methods. All code is publicly available on https://github.com/SUFE-AILAB/TSGym.
Huge Ensembles Part I: Design of Ensemble Weather Forecasts using Spherical Fourier Neural Operators
Studying low-likelihood high-impact extreme weather events in a warming world is a significant and challenging task for current ensemble forecasting systems. While these systems presently use up to 100 members, larger ensembles could enrich the sampling of internal variability. They may capture the long tails associated with climate hazards better than traditional ensemble sizes. Due to computational constraints, it is infeasible to generate huge ensembles (comprised of 1,000-10,000 members) with traditional, physics-based numerical models. In this two-part paper, we replace traditional numerical simulations with machine learning (ML) to generate hindcasts of huge ensembles. In Part I, we construct an ensemble weather forecasting system based on Spherical Fourier Neural Operators (SFNO), and we discuss important design decisions for constructing such an ensemble. The ensemble represents model uncertainty through perturbed-parameter techniques, and it represents initial condition uncertainty through bred vectors, which sample the fastest growing modes of the forecast. Using the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System (IFS) as a baseline, we develop an evaluation pipeline composed of mean, spectral, and extreme diagnostics. Using large-scale, distributed SFNOs with 1.1 billion learned parameters, we achieve calibrated probabilistic forecasts. As the trajectories of the individual members diverge, the ML ensemble mean spectra degrade with lead time, consistent with physical expectations. However, the individual ensemble members' spectra stay constant with lead time. Therefore, these members simulate realistic weather states, and the ML ensemble thus passes a crucial spectral test in the literature. The IFS and ML ensembles have similar Extreme Forecast Indices, and we show that the ML extreme weather forecasts are reliable and discriminating.
MoHETS: Long-term Time Series Forecasting with Mixture-of-Heterogeneous-Experts
Real-world multivariate time series can exhibit intricate multi-scale structures, including global trends, local periodicities, and non-stationary regimes, which makes long-horizon forecasting challenging. Although sparse Mixture-of-Experts (MoE) approaches improve scalability and specialization, they typically rely on homogeneous MLP experts that poorly capture the diverse temporal dynamics of time series data. We address these limitations with MoHETS, an encoder-only Transformer that integrates sparse Mixture-of-Heterogeneous-Experts (MoHE) layers. MoHE routes temporal patches to a small subset of expert networks, combining a shared depthwise-convolution expert for sequence-level continuity with routed Fourier-based experts for patch-level periodic structures. MoHETS further improves robustness to non-stationary dynamics by incorporating exogenous information via cross-attention over covariate patch embeddings. Finally, we replace parameter-heavy linear projection heads with a lightweight convolutional patch decoder, improving parameter efficiency, reducing training instability, and allowing a single model to generalize across arbitrary forecast horizons. We validate across seven multivariate benchmarks and multiple horizons, with MoHETS consistently achieving state-of-the-art performance, reducing the average MSE by 12% compared to strong recent baselines, demonstrating effective heterogeneous specialization for long-term forecasting.
Time-IMM: A Dataset and Benchmark for Irregular Multimodal Multivariate Time Series
Time series data in real-world applications such as healthcare, climate modeling, and finance are often irregular, multimodal, and messy, with varying sampling rates, asynchronous modalities, and pervasive missingness. However, existing benchmarks typically assume clean, regularly sampled, unimodal data, creating a significant gap between research and real-world deployment. We introduce Time-IMM, a dataset specifically designed to capture cause-driven irregularity in multimodal multivariate time series. Time-IMM represents nine distinct types of time series irregularity, categorized into trigger-based, constraint-based, and artifact-based mechanisms. Complementing the dataset, we introduce IMM-TSF, a benchmark library for forecasting on irregular multimodal time series, enabling asynchronous integration and realistic evaluation. IMM-TSF includes specialized fusion modules, including a timestamp-to-text fusion module and a multimodality fusion module, which support both recency-aware averaging and attention-based integration strategies. Empirical results demonstrate that explicitly modeling multimodality on irregular time series data leads to substantial gains in forecasting performance. Time-IMM and IMM-TSF provide a foundation for advancing time series analysis under real-world conditions. The dataset is publicly available at https://github.com/blacksnail789521/Time-IMM, and the benchmark library can be accessed at https://github.com/blacksnail789521/IMM-TSF. Project page: https://blacksnail789521.github.io/time-imm-project-page/
ChronosX: Adapting Pretrained Time Series Models with Exogenous Variables
Covariates provide valuable information on external factors that influence time series and are critical in many real-world time series forecasting tasks. For example, in retail, covariates may indicate promotions or peak dates such as holiday seasons that heavily influence demand forecasts. Recent advances in pretraining large language model architectures for time series forecasting have led to highly accurate forecasters. However, the majority of these models do not readily use covariates as they are often specific to a certain task or domain. This paper introduces a new method to incorporate covariates into pretrained time series forecasting models. Our proposed approach incorporates covariate information into pretrained forecasting models through modular blocks that inject past and future covariate information, without necessarily modifying the pretrained model in consideration. In order to evaluate our approach, we introduce a benchmark composed of 32 different synthetic datasets with varying dynamics to evaluate the effectivity of forecasting models with covariates. Extensive evaluations on both synthetic and real datasets show that our approach effectively incorporates covariate information into pretrained models, outperforming existing baselines.
STLDM: Spatio-Temporal Latent Diffusion Model for Precipitation Nowcasting
Precipitation nowcasting is a critical spatio-temporal prediction task for society to prevent severe damage owing to extreme weather events. Despite the advances in this field, the complex and stochastic nature of this task still poses challenges to existing approaches. Specifically, deterministic models tend to produce blurry predictions while generative models often struggle with poor accuracy. In this paper, we present a simple yet effective model architecture termed STLDM, a diffusion-based model that learns the latent representation from end to end alongside both the Variational Autoencoder and the conditioning network. STLDM decomposes this task into two stages: a deterministic forecasting stage handled by the conditioning network, and an enhancement stage performed by the latent diffusion model. Experimental results on multiple radar datasets demonstrate that STLDM achieves superior performance compared to the state of the art, while also improving inference efficiency. The code is available in https://github.com/sqfoo/stldm_official.
Probabilistic Emulation of a Global Climate Model with Spherical DYffusion
Data-driven deep learning models are transforming global weather forecasting. It is an open question if this success can extend to climate modeling, where the complexity of the data and long inference rollouts pose significant challenges. Here, we present the first conditional generative model that produces accurate and physically consistent global climate ensemble simulations by emulating a coarse version of the United States' primary operational global forecast model, FV3GFS. Our model integrates the dynamics-informed diffusion framework (DYffusion) with the Spherical Fourier Neural Operator (SFNO) architecture, enabling stable 100-year simulations at 6-hourly timesteps while maintaining low computational overhead compared to single-step deterministic baselines. The model achieves near gold-standard performance for climate model emulation, outperforming existing approaches and demonstrating promising ensemble skill. This work represents a significant advance towards efficient, data-driven climate simulations that can enhance our understanding of the climate system and inform adaptation strategies.
UniTS: Unified Time Series Generative Model for Remote Sensing
One of the primary objectives of satellite remote sensing is to capture the complex dynamics of the Earth environment, which encompasses tasks such as reconstructing continuous cloud-free time series images, detecting land cover changes, and forecasting future surface evolution. However, existing methods typically require specialized models tailored to different tasks, lacking unified modeling of spatiotemporal features across multiple time series tasks. In this paper, we propose a Unified Time Series Generative Model (UniTS), a general framework applicable to various time series tasks, including time series reconstruction, time series cloud removal, time series semantic change detection, and time series forecasting. Based on the flow matching generative paradigm, UniTS constructs a deterministic evolution path from noise to targets under the guidance of task-specific conditions, achieving unified modeling of spatiotemporal representations for multiple tasks. The UniTS architecture consists of a diffusion transformer with spatio-temporal blocks, where we design an Adaptive Condition Injector (ACor) to enhance the model's conditional perception of multimodal inputs, enabling high-quality controllable generation. Additionally, we design a Spatiotemporal-aware Modulator (STM) to improve the ability of spatio-temporal blocks to capture complex spatiotemporal dependencies. Furthermore, we construct two high-quality multimodal time series datasets, TS-S12 and TS-S12CR, filling the gap of benchmark datasets for time series cloud removal and forecasting tasks. Extensive experiments demonstrate that UniTS exhibits exceptional generative and cognitive capabilities in both low-level and high-level time series tasks. It significantly outperforms existing methods, particularly when facing challenges such as severe cloud contamination, modality absence, and forecasting phenological variations.
Regions of Reliability in the Evaluation of Multivariate Probabilistic Forecasts
Multivariate probabilistic time series forecasts are commonly evaluated via proper scoring rules, i.e., functions that are minimal in expectation for the ground-truth distribution. However, this property is not sufficient to guarantee good discrimination in the non-asymptotic regime. In this paper, we provide the first systematic finite-sample study of proper scoring rules for time-series forecasting evaluation. Through a power analysis, we identify the "region of reliability" of a scoring rule, i.e., the set of practical conditions where it can be relied on to identify forecasting errors. We carry out our analysis on a comprehensive synthetic benchmark, specifically designed to test several key discrepancies between ground-truth and forecast distributions, and we gauge the generalizability of our findings to real-world tasks with an application to an electricity production problem. Our results reveal critical shortcomings in the evaluation of multivariate probabilistic forecasts as commonly performed in the literature.
FuXi: A cascade machine learning forecasting system for 15-day global weather forecast
Over the past few years, due to the rapid development of machine learning (ML) models for weather forecasting, state-of-the-art ML models have shown superior performance compared to the European Centre for Medium-Range Weather Forecasts (ECMWF)'s high-resolution forecast (HRES) in 10-day forecasts at a spatial resolution of 0.25 degree. However, the challenge remains to perform comparably to the ECMWF ensemble mean (EM) in 15-day forecasts. Previous studies have demonstrated the importance of mitigating the accumulation of forecast errors for effective long-term forecasts. Despite numerous efforts to reduce accumulation errors, including autoregressive multi-time step loss, using a single model is found to be insufficient to achieve optimal performance in both short and long lead times. Therefore, we present FuXi, a cascaded ML weather forecasting system that provides 15-day global forecasts with a temporal resolution of 6 hours and a spatial resolution of 0.25 degree. FuXi is developed using 39 years of the ECMWF ERA5 reanalysis dataset. The performance evaluation, based on latitude-weighted root mean square error (RMSE) and anomaly correlation coefficient (ACC), demonstrates that FuXi has comparable forecast performance to ECMWF EM in 15-day forecasts, making FuXi the first ML-based weather forecasting system to accomplish this achievement.
Spatial-Temporal-Decoupled Masked Pre-training for Spatiotemporal Forecasting
Spatiotemporal forecasting techniques are significant for various domains such as transportation, energy, and weather. Accurate prediction of spatiotemporal series remains challenging due to the complex spatiotemporal heterogeneity. In particular, current end-to-end models are limited by input length and thus often fall into spatiotemporal mirage, i.e., similar input time series followed by dissimilar future values and vice versa. To address these problems, we propose a novel self-supervised pre-training framework Spatial-Temporal-Decoupled Masked Pre-training (STD-MAE) that employs two decoupled masked autoencoders to reconstruct spatiotemporal series along the spatial and temporal dimensions. Rich-context representations learned through such reconstruction could be seamlessly integrated by downstream predictors with arbitrary architectures to augment their performances. A series of quantitative and qualitative evaluations on six widely used benchmarks (PEMS03, PEMS04, PEMS07, PEMS08, METR-LA, and PEMS-BAY) are conducted to validate the state-of-the-art performance of STD-MAE. Codes are available at https://github.com/Jimmy-7664/STD-MAE.
Koopa: Learning Non-stationary Time Series Dynamics with Koopman Predictors
Real-world time series are characterized by intrinsic non-stationarity that poses a principal challenge for deep forecasting models. While previous models suffer from complicated series variations induced by changing temporal distribution, we tackle non-stationary time series with modern Koopman theory that fundamentally considers the underlying time-variant dynamics. Inspired by Koopman theory of portraying complex dynamical systems, we disentangle time-variant and time-invariant components from intricate non-stationary series by Fourier Filter and design Koopman Predictor to advance respective dynamics forward. Technically, we propose Koopa as a novel Koopman forecaster composed of stackable blocks that learn hierarchical dynamics. Koopa seeks measurement functions for Koopman embedding and utilizes Koopman operators as linear portraits of implicit transition. To cope with time-variant dynamics that exhibits strong locality, Koopa calculates context-aware operators in the temporal neighborhood and is able to utilize incoming ground truth to scale up forecast horizon. Besides, by integrating Koopman Predictors into deep residual structure, we ravel out the binding reconstruction loss in previous Koopman forecasters and achieve end-to-end forecasting objective optimization. Compared with the state-of-the-art model, Koopa achieves competitive performance while saving 77.3% training time and 76.0% memory.
LLM-ABBA: Understanding time series via symbolic approximation
The success of large language models (LLMs) for time series has been demonstrated in previous work. Utilizing a symbolic time series representation, one can efficiently bridge the gap between LLMs and time series. However, the remaining challenge is to exploit the semantic information hidden in time series by using symbols or existing tokens of LLMs, while aligning the embedding space of LLMs according to the hidden information of time series. The symbolic time series approximation (STSA) method called adaptive Brownian bridge-based symbolic aggregation (ABBA) shows outstanding efficacy in preserving salient time series features by modeling time series patterns in terms of amplitude and period while using existing tokens of LLMs. In this paper, we introduce a method, called LLM-ABBA, that integrates ABBA into large language models for various downstream time series tasks. By symbolizing time series, LLM-ABBA compares favorably to the recent state-of-the-art (SOTA) in UCR and three medical time series classification tasks. Meanwhile, a fixed-polygonal chain trick in ABBA is introduced to avoid obvious drifting during forecasting tasks by significantly mitigating the effects of cumulative error arising from misused symbols during the transition from symbols to numerical values. In time series regression tasks, LLM-ABBA achieves the new SOTA on Time Series Extrinsic Regression (TSER) benchmarks. LLM-ABBA also shows competitive forecasting capability compared to recent SOTA time series forecasting results. We believe this framework can also seamlessly extend to other time series tasks. Our simulation code is publicly available at: https://github.com/inEXASCALE/llm-abba
ARIES: Relation Assessment and Model Recommendation for Deep Time Series Forecasting
Recent advancements in deep learning models for time series forecasting have been significant. These models often leverage fundamental time series properties such as seasonality and non-stationarity, which may suggest an intrinsic link between model performance and data properties. However, existing benchmark datasets fail to offer diverse and well-defined temporal patterns, restricting the systematic evaluation of such connections. Additionally, there is no effective model recommendation approach, leading to high time and cost expenditures when testing different architectures across different downstream applications. For those reasons, we propose ARIES, a framework for assessing relation between time series properties and modeling strategies, and for recommending deep forcasting models for realistic time series. First, we construct a synthetic dataset with multiple distinct patterns, and design a comprehensive system to compute the properties of time series. Next, we conduct an extensive benchmarking of over 50 forecasting models, and establish the relationship between time series properties and modeling strategies. Our experimental results reveal a clear correlation. Based on these findings, we propose the first deep forecasting model recommender, capable of providing interpretable suggestions for real-world time series. In summary, ARIES is the first study to establish the relations between the properties of time series data and modeling strategies, while also implementing a model recommendation system. The code is available at: https://github.com/blisky-li/ARIES.
Self-Supervised Contrastive Learning for Long-term Forecasting
Long-term forecasting presents unique challenges due to the time and memory complexity of handling long sequences. Existing methods, which rely on sliding windows to process long sequences, struggle to effectively capture long-term variations that are partially caught within the short window (i.e., outer-window variations). In this paper, we introduce a novel approach that overcomes this limitation by employing contrastive learning and enhanced decomposition architecture, specifically designed to focus on long-term variations. To this end, our contrastive loss incorporates global autocorrelation held in the whole time series, which facilitates the construction of positive and negative pairs in a self-supervised manner. When combined with our decomposition networks, our contrastive learning significantly improves long-term forecasting performance. Extensive experiments demonstrate that our approach outperforms 14 baseline models in multiple experiments over nine long-term benchmarks, especially in challenging scenarios that require a significantly long output for forecasting. Source code is available at https://github.com/junwoopark92/Self-Supervised-Contrastive-Forecsating.
Dynamic Gaussian Mixture based Deep Generative Model For Robust Forecasting on Sparse Multivariate Time Series
Forecasting on sparse multivariate time series (MTS) aims to model the predictors of future values of time series given their incomplete past, which is important for many emerging applications. However, most existing methods process MTS's individually, and do not leverage the dynamic distributions underlying the MTS's, leading to sub-optimal results when the sparsity is high. To address this challenge, we propose a novel generative model, which tracks the transition of latent clusters, instead of isolated feature representations, to achieve robust modeling. It is characterized by a newly designed dynamic Gaussian mixture distribution, which captures the dynamics of clustering structures, and is used for emitting timeseries. The generative model is parameterized by neural networks. A structured inference network is also designed for enabling inductive analysis. A gating mechanism is further introduced to dynamically tune the Gaussian mixture distributions. Extensive experimental results on a variety of real-life datasets demonstrate the effectiveness of our method.
Preserving Statistical Validity in Adaptive Data Analysis
A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of m adaptively chosen functions on an unknown distribution given n random samples. We show that, surprisingly, there is a way to estimate an exponential in n number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question.
MPTSNet: Integrating Multiscale Periodic Local Patterns and Global Dependencies for Multivariate Time Series Classification
Multivariate Time Series Classification (MTSC) is crucial in extensive practical applications, such as environmental monitoring, medical EEG analysis, and action recognition. Real-world time series datasets typically exhibit complex dynamics. To capture this complexity, RNN-based, CNN-based, Transformer-based, and hybrid models have been proposed. Unfortunately, current deep learning-based methods often neglect the simultaneous construction of local features and global dependencies at different time scales, lacking sufficient feature extraction capabilities to achieve satisfactory classification accuracy. To address these challenges, we propose a novel Multiscale Periodic Time Series Network (MPTSNet), which integrates multiscale local patterns and global correlations to fully exploit the inherent information in time series. Recognizing the multi-periodicity and complex variable correlations in time series, we use the Fourier transform to extract primary periods, enabling us to decompose data into multiscale periodic segments. Leveraging the inherent strengths of CNN and attention mechanism, we introduce the PeriodicBlock, which adaptively captures local patterns and global dependencies while offering enhanced interpretability through attention integration across different periodic scales. The experiments on UEA benchmark datasets demonstrate that the proposed MPTSNet outperforms 21 existing advanced baselines in the MTSC tasks.
Can Multimodal LLMs Perform Time Series Anomaly Detection?
Large language models (LLMs) have been increasingly used in time series analysis. However, the potential of multimodal LLMs (MLLMs), particularly vision-language models, for time series remains largely under-explored. One natural way for humans to detect time series anomalies is through visualization and textual description. Motivated by this, we raise a critical and practical research question: Can multimodal LLMs perform time series anomaly detection? To answer this, we propose VisualTimeAnomaly benchmark to evaluate MLLMs in time series anomaly detection (TSAD). Our approach transforms time series numerical data into the image format and feed these images into various MLLMs, including proprietary models (GPT-4o and Gemini-1.5) and open-source models (LLaVA-NeXT and Qwen2-VL), each with one larger and one smaller variant. In total, VisualTimeAnomaly contains 12.4k time series images spanning 3 scenarios and 3 anomaly granularities with 9 anomaly types across 8 MLLMs. Starting with the univariate case (point- and range-wise anomalies), we extend our evaluation to more practical scenarios, including multivariate and irregular time series scenarios, and variate-wise anomalies. Our study reveals several key insights: 1) MLLMs detect range- and variate-wise anomalies more effectively than point-wise anomalies. 2) MLLMs are highly robust to irregular time series, even with 25% of the data missing. 3) Open-source MLLMs perform comparably to proprietary models in TSAD. While open-source MLLMs excel on univariate time series, proprietary MLLMs demonstrate superior effectiveness on multivariate time series. To the best of our knowledge, this is the first work to comprehensively investigate MLLMs for TSAD, particularly for multivariate and irregular time series scenarios. We release our dataset and code at https://github.com/mllm-ts/VisualTimeAnomaly to support future research.
Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal Transformer
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages. However, safely and stably integrating the high permeability intermittent power energy into electric power systems remains challenging. Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations. Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation. In this work, we propose a novel end-to-end wind power forecasting model named Hierarchical Spatial-Temporal Transformer Network (HSTTN) to address the long-term WPF problems. Specifically, we construct an hourglass-shaped encoder-decoder framework with skip-connections to jointly model representations aggregated in hierarchical temporal scales, which benefits long-term forecasting. Based on this framework, we capture the inter-scale long-range temporal dependencies and global spatial correlations with two parallel Transformer skeletons and strengthen the intra-scale connections with downsampling and upsampling operations. Moreover, the complementary information from spatial and temporal features is fused and propagated in each other via Contextual Fusion Blocks (CFBs) to promote the prediction further. Extensive experimental results on two large-scale real-world datasets demonstrate the superior performance of our HSTTN over existing solutions.
Linearly-Recurrent Autoencoder Networks for Learning Dynamics
This paper describes a method for learning low-dimensional approximations of nonlinear dynamical systems, based on neural-network approximations of the underlying Koopman operator. Extended Dynamic Mode Decomposition (EDMD) provides a useful data-driven approximation of the Koopman operator for analyzing dynamical systems. This paper addresses a fundamental problem associated with EDMD: a trade-off between representational capacity of the dictionary and over-fitting due to insufficient data. A new neural network architecture combining an autoencoder with linear recurrent dynamics in the encoded state is used to learn a low-dimensional and highly informative Koopman-invariant subspace of observables. A method is also presented for balanced model reduction of over-specified EDMD systems in feature space. Nonlinear reconstruction using partially linear multi-kernel regression aims to improve reconstruction accuracy from the low-dimensional state when the data has complex but intrinsically low-dimensional structure. The techniques demonstrate the ability to identify Koopman eigenfunctions of the unforced Duffing equation, create accurate low-dimensional models of an unstable cylinder wake flow, and make short-time predictions of the chaotic Kuramoto-Sivashinsky equation.
TimeMKG: Knowledge-Infused Causal Reasoning for Multivariate Time Series Modeling
Multivariate time series data typically comprises two distinct modalities: variable semantics and sampled numerical observations. Traditional time series models treat variables as anonymous statistical signals, overlooking the rich semantic information embedded in variable names and data descriptions. However, these textual descriptors often encode critical domain knowledge that is essential for robust and interpretable modeling. Here we present TimeMKG, a multimodal causal reasoning framework that elevates time series modeling from low-level signal processing to knowledge informed inference. TimeMKG employs large language models to interpret variable semantics and constructs structured Multivariate Knowledge Graphs that capture inter-variable relationships. A dual-modality encoder separately models the semantic prompts, generated from knowledge graph triplets, and the statistical patterns from historical time series. Cross-modality attention aligns and fuses these representations at the variable level, injecting causal priors into downstream tasks such as forecasting and classification, providing explicit and interpretable priors to guide model reasoning. The experiment in diverse datasets demonstrates that incorporating variable-level knowledge significantly improves both predictive performance and generalization.
An Alternative Framework for Time Series Decomposition and Forecasting and its Relevance for Portfolio Choice: A Comparative Study of the Indian Consumer Durable and Small Cap Sectors
One of the challenging research problems in the domain of time series analysis and forecasting is making efficient and robust prediction of stock market prices. With rapid development and evolution of sophisticated algorithms and with the availability of extremely fast computing platforms, it has now become possible to effectively extract, store, process and analyze high volume stock market time series data. Complex algorithms for forecasting are now available for speedy execution over parallel architecture leading to fairly accurate results. In this paper, we have used time series data of the two sectors of the Indian economy: Consumer Durables sector and the Small Cap sector for the period January 2010 to December 2015 and proposed a decomposition approach for better understanding of the behavior of each of the time series. Our contention is that various sectors reveal different time series patterns and understanding them is essential for portfolio formation. Further, based on this structural analysis, we have also proposed several robust forecasting techniques and analyzed their accuracy in prediction using suitably chosen training and test data sets. Extensive results are presented to demonstrate the effectiveness of our propositions.
A Deep Learning Earth System Model for Efficient Simulation of the Observed Climate
A key challenge for computationally intensive state-of-the-art Earth System models is to distinguish global warming signals from interannual variability. Here we introduce DLESyM, a parsimonious deep learning model that accurately simulates the Earth's current climate over 1000-year periods with no smoothing or drift. DLESyM simulations equal or exceed key metrics of seasonal and interannual variability--such as tropical cyclogenesis over the range of observed intensities, the cycle of the Indian Summer monsoon, and the climatology of mid-latitude blocking events--when compared to historical simulations from four leading models from the 6th Climate Model Intercomparison Project. DLESyM, trained on both historical reanalysis data and satellite observations, is an accurate, highly efficient model of the coupled Earth system, empowering long-range sub-seasonal and seasonal forecasts while using a fraction of the energy and computational time required by traditional models.
Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives
Time series forecasting traditionally relies on unimodal numerical inputs, which often struggle to capture high-level semantic patterns due to their dense and unstructured nature. While recent approaches have explored representing time series as text using large language models (LLMs), these methods remain limited by the discrete nature of token sequences and lack the perceptual intuition humans typically apply, such as interpreting visual patterns. In this paper, we propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives. Rather than using natural language or real-world images, we construct both modalities directly from numerical sequences. We then align these views in a shared semantic space via contrastive learning, enabling the model to capture richer and more complementary representations. Furthermore, we introduce a variate selection module that leverages the aligned representations to identify the most informative variables for multivariate forecasting. Extensive experiments on fifteen short-term and six long-term forecasting benchmarks demonstrate that our approach consistently outperforms strong unimodal and cross-modal baselines, highlighting the effectiveness of multimodal alignment in enhancing time series forecasting. Code is available at: https://github.com/Ironieser/TimesCLIP.
Insight Miner: A Time Series Analysis Dataset for Cross-Domain Alignment with Natural Language
Time-series data is critical across many scientific and industrial domains, including environmental analysis, agriculture, transportation, and finance. However, mining insights from this data typically requires deep domain expertise, a process that is both time-consuming and labor-intensive. In this paper, we propose Insight Miner, a large-scale multimodal model (LMM) designed to generate high-quality, comprehensive time-series descriptions enriched with domain-specific knowledge. To facilitate this, we introduce TS-InsightsAvailable at \href{https://huggingface.co/datasets/zhykoties/time-series-language-alignment{https://huggingface.co/datasets/zhykoties/time-series-language-alignment}.}, the first general-domain dataset for time series and language alignment. TS-Insights contains 100k time-series windows sampled from 20 forecasting datasets. We construct this dataset using a novel agentic workflow, where we use statistical tools to extract features from raw time series before synthesizing them into coherent trend descriptions with GPT-4. Following instruction tuning on TS-Insights, Insight Miner outperforms state-of-the-art multimodal models, such as LLaVA liu2023llava and GPT-4, in generating time-series descriptions and insights. Our findings suggest a promising direction for leveraging LMMs in time series analysis, and serve as a foundational step toward enabling LLMs to interpret time series as a native input modality.
Predictability-Aware Compression and Decompression Framework for Multichannel Time Series Data
Real-world multichannel time series prediction faces growing demands for efficiency across edge and cloud environments, making channel compression a timely and essential problem. Motivated by success of Multiple-Input Multiple-Output (MIMO) methods, we propose a predictability-aware compression-decompression framework to reduce runtime, lower communication cost, and maintain prediction accuracy across diverse predictors. The core idea involves using a circular periodicity key matrix with orthogonality to capture underlying time series predictability during compression and to mitigate reconstruction errors during decompression by relaxing oversimplified data assumptions. Theoretical and empirical analyses show that the proposed framework is both time-efficient and scalable under a large number of channels. Extensive experiments on six datasets across various predictors demonstrate that the proposed method achieves superior overall performance by jointly considering prediction accuracy and runtime, while maintaining strong compatibility with diverse predictors.
Mamba Integrated with Physics Principles Masters Long-term Chaotic System Forecasting
Long-term forecasting of chaotic systems from short-term observations remains a fundamental and underexplored challenge due to the intrinsic sensitivity to initial conditions and the complex geometry of strange attractors. Existing approaches often rely on long-term training data or focus on short-term sequence correlations, struggling to maintain predictive stability and dynamical coherence over extended horizons. We propose PhyxMamba, a novel framework that integrates a Mamba-based state-space model with physics-informed principles to capture the underlying dynamics of chaotic systems. By reconstructing the attractor manifold from brief observations using time-delay embeddings, PhyxMamba extracts global dynamical features essential for accurate forecasting. Our generative training scheme enables Mamba to replicate the physical process, augmented by multi-token prediction and attractor geometry regularization for physical constraints, enhancing prediction accuracy and preserving key statistical invariants. Extensive evaluations on diverse simulated and real-world chaotic systems demonstrate that PhyxMamba delivers superior long-term forecasting and faithfully captures essential dynamical invariants from short-term data. This framework opens new avenues for reliably predicting chaotic systems under observation-scarce conditions, with broad implications across climate science, neuroscience, epidemiology, and beyond. Our code is open-source at https://github.com/tsinghua-fib-lab/PhyxMamba.
Time-VLM: Exploring Multimodal Vision-Language Models for Augmented Time Series Forecasting
Recent advancements in time series forecasting have explored augmenting models with text or vision modalities to improve accuracy. While text provides contextual understanding, it often lacks fine-grained temporal details. Conversely, vision captures intricate temporal patterns but lacks semantic context, limiting the complementary potential of these modalities. To address this, we propose \method, a novel multimodal framework that leverages pre-trained Vision-Language Models (VLMs) to bridge temporal, visual, and textual modalities for enhanced forecasting. Our framework comprises three key components: (1) a Retrieval-Augmented Learner, which extracts enriched temporal features through memory bank interactions; (2) a Vision-Augmented Learner, which encodes time series as informative images; and (3) a Text-Augmented Learner, which generates contextual textual descriptions. These components collaborate with frozen pre-trained VLMs to produce multimodal embeddings, which are then fused with temporal features for final prediction. Extensive experiments demonstrate that Time-VLM achieves superior performance, particularly in few-shot and zero-shot scenarios, thereby establishing a new direction for multimodal time series forecasting. Code is available at https://github.com/CityMind-Lab/ICML25-TimeVLM.
Renewable energy management in smart home environment via forecast embedded scheduling based on Recurrent Trend Predictive Neural Network
Smart home energy management systems help the distribution grid operate more efficiently and reliably, and enable effective penetration of distributed renewable energy sources. These systems rely on robust forecasting, optimization, and control/scheduling algorithms that can handle the uncertain nature of demand and renewable generation. This paper proposes an advanced ML algorithm, called Recurrent Trend Predictive Neural Network based Forecast Embedded Scheduling (rTPNN-FES), to provide efficient residential demand control. rTPNN-FES is a novel neural network architecture that simultaneously forecasts renewable energy generation and schedules household appliances. By its embedded structure, rTPNN-FES eliminates the utilization of separate algorithms for forecasting and scheduling and generates a schedule that is robust against forecasting errors. This paper also evaluates the performance of the proposed algorithm for an IoT-enabled smart home. The evaluation results reveal that rTPNN-FES provides near-optimal scheduling 37.5 times faster than the optimization while outperforming state-of-the-art forecasting techniques.
Time Evidence Fusion Network: Multi-source View in Long-Term Time Series Forecasting
In practical scenarios, time series forecasting necessitates not only accuracy but also efficiency. Consequently, the exploration of model architectures remains a perennially trending topic in research. To address these challenges, we propose a novel backbone architecture named Time Evidence Fusion Network (TEFN) from the perspective of information fusion. Specifically, we introduce the Basic Probability Assignment (BPA) Module based on evidence theory to capture the uncertainty of multivariate time series data from both channel and time dimensions. Additionally, we develop a novel multi-source information fusion method to effectively integrate the two distinct dimensions from BPA output, leading to improved forecasting accuracy. Lastly, we conduct extensive experiments to demonstrate that TEFN achieves performance comparable to state-of-the-art methods while maintaining significantly lower complexity and reduced training time. Also, our experiments show that TEFN exhibits high robustness, with minimal error fluctuations during hyperparameter selection. Furthermore, due to the fact that BPA is derived from fuzzy theory, TEFN offers a high degree of interpretability. Therefore, the proposed TEFN balances accuracy, efficiency, stability, and interpretability, making it a desirable solution for time series forecasting.
Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere
Fourier Neural Operators (FNOs) have proven to be an efficient and effective method for resolution-independent operator learning in a broad variety of application areas across scientific machine learning. A key reason for their success is their ability to accurately model long-range dependencies in spatio-temporal data by learning global convolutions in a computationally efficient manner. To this end, FNOs rely on the discrete Fourier transform (DFT), however, DFTs cause visual and spectral artifacts as well as pronounced dissipation when learning operators in spherical coordinates since they incorrectly assume a flat geometry. To overcome this limitation, we generalize FNOs on the sphere, introducing Spherical FNOs (SFNOs) for learning operators on spherical geometries. We apply SFNOs to forecasting atmospheric dynamics, and demonstrate stable auto\-regressive rollouts for a year of simulated time (1,460 steps), while retaining physically plausible dynamics. The SFNO has important implications for machine learning-based simulation of climate dynamics that could eventually help accelerate our response to climate change.
Multi-resolution Time-Series Transformer for Long-term Forecasting
The performance of transformers for time-series forecasting has improved significantly. Recent architectures learn complex temporal patterns by segmenting a time-series into patches and using the patches as tokens. The patch size controls the ability of transformers to learn the temporal patterns at different frequencies: shorter patches are effective for learning localized, high-frequency patterns, whereas mining long-term seasonalities and trends requires longer patches. Inspired by this observation, we propose a novel framework, Multi-resolution Time-Series Transformer (MTST), which consists of a multi-branch architecture for simultaneous modeling of diverse temporal patterns at different resolutions. In contrast to many existing time-series transformers, we employ relative positional encoding, which is better suited for extracting periodic components at different scales. Extensive experiments on several real-world datasets demonstrate the effectiveness of MTST in comparison to state-of-the-art forecasting techniques.
CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns
The stable periodic patterns present in time series data serve as the foundation for conducting long-horizon forecasts. In this paper, we pioneer the exploration of explicitly modeling this periodicity to enhance the performance of models in long-term time series forecasting (LTSF) tasks. Specifically, we introduce the Residual Cycle Forecasting (RCF) technique, which utilizes learnable recurrent cycles to model the inherent periodic patterns within sequences, and then performs predictions on the residual components of the modeled cycles. Combining RCF with a Linear layer or a shallow MLP forms the simple yet powerful method proposed in this paper, called CycleNet. CycleNet achieves state-of-the-art prediction accuracy in multiple domains including electricity, weather, and energy, while offering significant efficiency advantages by reducing over 90% of the required parameter quantity. Furthermore, as a novel plug-and-play technique, the RCF can also significantly improve the prediction accuracy of existing models, including PatchTST and iTransformer. The source code is available at: https://github.com/ACAT-SCUT/CycleNet.
Forecasting the production of Distillate Fuel Oil Refinery and Propane Blender net production by using Time Series Algorithms
Oil production forecasting is an important step in controlling the cost-effect and monitoring the functioning of petroleum reservoirs. As a result, oil production forecasting makes it easier for reservoir engineers to develop feasible projects, which helps to avoid risky investments and achieve long-term growth. As a result, reliable petroleum reservoir forecasting is critical for controlling and managing the effective cost of oil reservoirs. Oil production is influenced by reservoir qualities such as porosity, permeability, compressibility, fluid saturation, and other well operational parameters. Three-time series algorithms i.e., Seasonal Naive method, Exponential Smoothening and ARIMA to forecast the Distillate Fuel Oil Refinery and Propane Blender net production for the next two years.
TSLANet: Rethinking Transformers for Time Series Representation Learning
Time series data, characterized by its intrinsic long and short-range dependencies, poses a unique challenge across analytical applications. While Transformer-based models excel at capturing long-range dependencies, they face limitations in noise sensitivity, computational efficiency, and overfitting with smaller datasets. In response, we introduce a novel Time Series Lightweight Adaptive Network (TSLANet), as a universal convolutional model for diverse time series tasks. Specifically, we propose an Adaptive Spectral Block, harnessing Fourier analysis to enhance feature representation and to capture both long-term and short-term interactions while mitigating noise via adaptive thresholding. Additionally, we introduce an Interactive Convolution Block and leverage self-supervised learning to refine the capacity of TSLANet for decoding complex temporal patterns and improve its robustness on different datasets. Our comprehensive experiments demonstrate that TSLANet outperforms state-of-the-art models in various tasks spanning classification, forecasting, and anomaly detection, showcasing its resilience and adaptability across a spectrum of noise levels and data sizes. The code is available at https://github.com/emadeldeen24/TSLANet
FITS: Modeling Time Series with 10k Parameters
In this paper, we introduce FITS, a lightweight yet powerful model for time series analysis. Unlike existing models that directly process raw time-domain data, FITS operates on the principle that time series can be manipulated through interpolation in the complex frequency domain. By discarding high-frequency components with negligible impact on time series data, FITS achieves performance comparable to state-of-the-art models for time series forecasting and anomaly detection tasks, while having a remarkably compact size of only approximately 10k parameters. Such a lightweight model can be easily trained and deployed in edge devices, creating opportunities for various applications. The code is available in: https://github.com/VEWOXIC/FITS
Learning the Dynamics of Sparsely Observed Interacting Systems
We address the problem of learning the dynamics of an unknown non-parametric system linking a target and a feature time series. The feature time series is measured on a sparse and irregular grid, while we have access to only a few points of the target time series. Once learned, we can use these dynamics to predict values of the target from the previous values of the feature time series. We frame this task as learning the solution map of a controlled differential equation (CDE). By leveraging the rich theory of signatures, we are able to cast this non-linear problem as a high-dimensional linear regression. We provide an oracle bound on the prediction error which exhibits explicit dependencies on the individual-specific sampling schemes. Our theoretical results are illustrated by simulations which show that our method outperforms existing algorithms for recovering the full time series while being computationally cheap. We conclude by demonstrating its potential on real-world epidemiological data.
TS-RAG: Retrieval-Augmented Generation based Time Series Foundation Models are Stronger Zero-Shot Forecaster
Large Language Models (LLMs) and Foundation Models (FMs) have recently become prevalent for time series forecasting tasks. While fine-tuning LLMs enables domain adaptation, they often struggle to generalize across diverse and unseen datasets. Moreover, existing Time Series Foundation Models (TSFMs) still face challenges in handling non-stationary dynamics and distribution shifts, largely due to the lack of effective mechanisms for adaptation. To this end, we present TS-RAG, a retrieval-augmented generation framework for time series forecasting that enhances the generalization and interpretability of TSFMs. Specifically, TS-RAG leverages pre-trained time series encoders to retrieve semantically relevant segments from a dedicated knowledge base, enriching the contextual representation of the input query. Furthermore, we propose an Adaptive Retrieval Mixer (ARM) module that dynamically fuses the retrieved patterns with the TSFM's internal representation, improving forecasting accuracy without requiring task-specific fine-tuning. Thorough empirical studies on seven public benchmark datasets demonstrate that TS-RAG achieves state-of-the-art zero-shot forecasting performance, outperforming the existing TSFMs by up to 6.84% across diverse domains while also providing desirable interpretability. Our code and data are available at: https://github.com/UConn-DSIS/TS-RAG
Generative Time Series Forecasting with Diffusion, Denoise, and Disentanglement
Time series forecasting has been a widely explored task of great importance in many applications. However, it is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series. In this work, we propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder (BVAE) equipped with diffusion, denoise, and disentanglement, namely D3VAE. Specifically, a coupled diffusion probabilistic model is proposed to augment the time series data without increasing the aleatoric uncertainty and implement a more tractable inference process with BVAE. To ensure the generated series move toward the true target, we further propose to adapt and integrate the multiscale denoising score matching into the diffusion process for time series forecasting. In addition, to enhance the interpretability and stability of the prediction, we treat the latent variable in a multivariate manner and disentangle them on top of minimizing total correlation. Extensive experiments on synthetic and real-world data show that D3VAE outperforms competitive algorithms with remarkable margins. Our implementation is available at https://github.com/PaddlePaddle/PaddleSpatial/tree/main/research/D3VAE.
Deep Time Series Models: A Comprehensive Survey and Benchmark
Time series, characterized by a sequence of data points organized in a discrete-time order, are ubiquitous in real-world scenarios. Unlike other data modalities, time series present unique challenges due to their intricate and dynamic nature, including the entanglement of nonlinear patterns and time-variant trends. Analyzing such data is of great significance in practical applications and has been extensively studied for centuries. Recent years have witnessed remarkable breakthroughs in the time series community, with techniques shifting from traditional statistical methods to contemporary deep learning models. In this paper, we delve into the design of deep time series models across various analysis tasks and review the existing literature from two perspectives: basic modules and model architectures. Further, we develop and release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks. TSLib implements 30 prominent models, covers 30 datasets from different domains, and supports five prevalent analysis tasks. Based on TSLib, we thoroughly evaluate 13 advanced deep time series models across diverse tasks. Empirical results indicate that models with specific structures are well-suited for distinct analytical tasks, providing insights for research and adoption of deep time series models. Code and datasets are available at https://github.com/thuml/Time-Series-Library.
Graph-based Local Climate Classification in Iran
In this paper, we introduce a novel graph-based method to classify the regions with similar climate in a local area. We refer our proposed method as Graph Partition Based Method (GPBM). Our proposed method attempts to overcome the shortcomings of the current state-of-the-art methods in the literature. It has no limit on the number of variables that can be used and also preserves the nature of climate data. To illustrate the capability of our proposed algorithm, we benchmark its performance with other state-of-the-art climate classification techniques. The climate data is collected from 24 synoptic stations in Fars province in southern Iran. The data includes seven climate variables stored as time series from 1951 to 2017. Our results exhibit that our proposed method performs a more realistic climate classification with less computational time. It can save more information during the climate classification process and is therefore efficient in further data analysis. Furthermore, using our method, we can introduce seasonal graphs to better investigate seasonal climate changes. To the best of our knowledge, our proposed method is the first graph-based climate classification system.
MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate Time Series Forecasting
Multivariate time series forecasting poses an ongoing challenge across various disciplines. Time series data often exhibit diverse intra-series and inter-series correlations, contributing to intricate and interwoven dependencies that have been the focus of numerous studies. Nevertheless, a significant research gap remains in comprehending the varying inter-series correlations across different time scales among multiple time series, an area that has received limited attention in the literature. To bridge this gap, this paper introduces MSGNet, an advanced deep learning model designed to capture the varying inter-series correlations across multiple time scales using frequency domain analysis and adaptive graph convolution. By leveraging frequency domain analysis, MSGNet effectively extracts salient periodic patterns and decomposes the time series into distinct time scales. The model incorporates a self-attention mechanism to capture intra-series dependencies, while introducing an adaptive mixhop graph convolution layer to autonomously learn diverse inter-series correlations within each time scale. Extensive experiments are conducted on several real-world datasets to showcase the effectiveness of MSGNet. Furthermore, MSGNet possesses the ability to automatically learn explainable multi-scale inter-series correlations, exhibiting strong generalization capabilities even when applied to out-of-distribution samples.
CoRA: Covariate-Aware Adaptation of Time Series Foundation Models
Time Series Foundation Models (TSFMs) have shown significant impact through their model capacity, scalability, and zero-shot generalization. However, due to the heterogeneity of inter-variate dependencies and the backbone scalability on large-scale multivariate datasets, most TSFMs are typically pre-trained on univariate time series. This limitation renders them oblivious to crucial information from diverse covariates in real-world forecasting tasks. To further enhance the performance of TSFMs, we propose a general covariate-aware adaptation (CoRA) framework for TSFMs. It leverages pre-trained backbones of foundation models while effectively incorporating exogenous covariates from various modalities, including time series, language, and images, to improve the quality of predictions. Technically, CoRA maintains the equivalence of initialization and parameter consistency during adaptation. With preserved backbones of foundation models as frozen feature extractors, the outcome embeddings from foundation models are empirically demonstrated more informative than raw data. Further, CoRA employs a novel Granger Causality Embedding (GCE) to automatically evaluate covariates regarding their causal predictability with respect to the target variate. We incorporate these weighted embeddings with a zero-initialized condition-injection mechanism, avoiding catastrophic forgetting of pre-trained foundation models and gradually integrates exogenous information. Extensive experiments show that CoRA of TSFMs surpasses state-of-the-art covariate-aware deep forecasters with full or few-shot training samples, achieving 31.1% MSE reduction on covariate-aware forecasting. Compared to other adaptation methods, CoRA exhibits strong compatibility with various advanced TSFMs and extends the scope of covariates to other modalities, presenting a practical paradigm for the application of TSFMs.
FuXi-ENS: A machine learning model for medium-range ensemble weather forecasting
Ensemble forecasting is crucial for improving weather predictions, especially for forecasts of extreme events. Constructing an ensemble prediction system (EPS) based on conventional NWP models is highly computationally expensive. ML models have emerged as valuable tools for deterministic weather forecasts, providing forecasts with significantly reduced computational requirements and even surpassing the forecast performance of traditional NWP models. However, challenges arise when applying ML models to ensemble forecasting. Recent ML models, such as GenCast and SEEDS model, rely on the ERA5 EDA or operational NWP ensemble members for forecast generation. Their spatial resolution is also considered too coarse for many applications. To overcome these limitations, we introduce FuXi-ENS, an advanced ML model designed to deliver 6-hourly global ensemble weather forecasts up to 15 days. This model runs at a significantly increased spatial resolution of 0.25\textdegree, incorporating 5 atmospheric variables at 13 pressure levels, along with 13 surface variables. By leveraging the inherent probabilistic nature of Variational AutoEncoder (VAE), FuXi-ENS optimizes a loss function that combines the CRPS and the KL divergence between the predicted and target distribution, facilitating the incorporation of flow-dependent perturbations in both initial conditions and forecast. This innovative approach makes FuXi-ENS an advancement over the traditional ones that use L1 loss combined with the KL loss in standard VAE models for ensemble weather forecasting. Results demonstrate that FuXi-ENS outperforms ensemble forecasts from the ECMWF, a world leading NWP model, in the CRPS of 98.1% of 360 variable and forecast lead time combinations. This achievement underscores the potential of the FuXi-ENS model to enhance ensemble weather forecasts, offering a promising direction for further development in this field.
xLLM Technical Report
We introduce xLLM, an intelligent and efficient Large Language Model (LLM) inference framework designed for high-performance, large-scale enterprise-grade serving, with deep optimizations for diverse AI accelerators. To address these challenges, xLLM builds a novel decoupled service-engine architecture. At the service layer, xLLM-Service features an intelligent scheduling module that efficiently processes multimodal requests and co-locates online and offline tasks through unified elastic scheduling to maximize cluster utilization. This module also relies on a workload-adaptive dynamic Prefill-Decode (PD) disaggregation policy and a novel Encode-Prefill-Decode (EPD) disaggregation policy designed for multimodal inputs. Furthermore, it incorporates a distributed architecture to provide global KV Cache management and robust fault-tolerant capabilities for high availability. At the engine layer, xLLM-Engine co-optimizes system and algorithm designs to fully saturate computing resources. This is achieved through comprehensive multi-layer execution pipeline optimizations, an adaptive graph mode and an xTensor memory management. xLLM-Engine also further integrates algorithmic enhancements such as optimized speculative decoding and dynamic EPLB, collectively serving to substantially boost throughput and inference efficiency. Extensive evaluations demonstrate that xLLM delivers significantly superior performance and resource efficiency. Under identical TPOT constraints, xLLM achieves throughput up to 1.7x that of MindIE and 2.2x that of vLLM-Ascend with Qwen-series models, while maintaining an average throughput of 1.7x that of MindIE with Deepseek-series models. xLLM framework is publicly available at https://github.com/jd-opensource/xllm and https://github.com/jd-opensource/xllm-service.
TimeSeriesScientist: A General-Purpose AI Agent for Time Series Analysis
Time series forecasting is central to decision-making in domains as diverse as energy, finance, climate, and public health. In practice, forecasters face thousands of short, noisy series that vary in frequency, quality, and horizon, where the dominant cost lies not in model fitting, but in the labor-intensive preprocessing, validation, and ensembling required to obtain reliable predictions. Prevailing statistical and deep learning models are tailored to specific datasets or domains and generalize poorly. A general, domain-agnostic framework that minimizes human intervention is urgently in demand. In this paper, we introduce TimeSeriesScientist (TSci), the first LLM-driven agentic framework for general time series forecasting. The framework comprises four specialized agents: Curator performs LLM-guided diagnostics augmented by external tools that reason over data statistics to choose targeted preprocessing; Planner narrows the hypothesis space of model choice by leveraging multi-modal diagnostics and self-planning over the input; Forecaster performs model fitting and validation and, based on the results, adaptively selects the best model configuration as well as ensemble strategy to make final predictions; and Reporter synthesizes the whole process into a comprehensive, transparent report. With transparent natural-language rationales and comprehensive reports, TSci transforms the forecasting workflow into a white-box system that is both interpretable and extensible across tasks. Empirical results on eight established benchmarks demonstrate that TSci consistently outperforms both statistical and LLM-based baselines, reducing forecast error by an average of 10.4% and 38.2%, respectively. Moreover, TSci produces a clear and rigorous report that makes the forecasting workflow more transparent and interpretable.
Generative Pretrained Hierarchical Transformer for Time Series Forecasting
Recent efforts have been dedicated to enhancing time series forecasting accuracy by introducing advanced network architectures and self-supervised pretraining strategies. Nevertheless, existing approaches still exhibit two critical drawbacks. Firstly, these methods often rely on a single dataset for training, limiting the model's generalizability due to the restricted scale of the training data. Secondly, the one-step generation schema is widely followed, which necessitates a customized forecasting head and overlooks the temporal dependencies in the output series, and also leads to increased training costs under different horizon length settings. To address these issues, we propose a novel generative pretrained hierarchical transformer architecture for forecasting, named GPHT. There are two aspects of key designs in GPHT. On the one hand, we advocate for constructing a mixed dataset for pretraining our model, comprising various datasets from diverse data scenarios. This approach significantly expands the scale of training data, allowing our model to uncover commonalities in time series data and facilitating improved transfer to specific datasets. On the other hand, GPHT employs an auto-regressive forecasting approach under the channel-independent assumption, effectively modeling temporal dependencies in the output series. Importantly, no customized forecasting head is required, enabling a single model to forecast at arbitrary horizon settings. We conduct sufficient experiments on eight datasets with mainstream self-supervised pretraining models and supervised models. The results demonstrated that GPHT surpasses the baseline models across various fine-tuning and zero/few-shot learning settings in the traditional long-term forecasting task, providing support for verifying the feasibility of pretrained time series large models.
Applying the ACE2 Emulator to SST Green's Functions for the E3SMv3 Climate Model
Green's functions are a useful technique for interpreting atmospheric state responses to changes in the spatial pattern of sea surface temperature (SST). Here we train version 2 of the Ai2 Climate Emulator (ACE2) on reference historical SST simulations of the US Department of Energy's EAMv3 global atmosphere model. We compare how well the SST Green's functions generated by ACE2 match those of EAMv3, following the protocol of the Green's Function Model Intercomparison Project (GFMIP). The spatial patterns of top-of-atmosphere (TOA) radiative response from the individual GFMIP SST patch simulations are similar for ACE and the EAMv3 reference. The derived sensitivity of global net TOA radiation sensitivity to SST patch location is qualitatively similar in ACE as in EAMv3, but there are statistically significant discrepancies for some SST patches, especially over the subtropical northeast Pacific. These discrepancies may reflect insufficient diversity in the SST patterns sampled over the course of the EAMv3 AMIP simulation used for training ACE. Both ACE and EAMv3 Green's functions reconstruct the historical record of the global annual-mean TOA radiative flux from a reference EAMv3 AMIP simulation reasonably well. Notably, under our configuration and compute resources, ACE achieves these results approximately 100 times faster in wall-clock time compared to EAMv3, highlighting its potential as a powerful and efficient tool for tackling other computationally intensive problems in climate science.
Identifying Spatio-Temporal Drivers of Extreme Events
The spatio-temporal relations of impacts of extreme events and their drivers in climate data are not fully understood and there is a need of machine learning approaches to identify such spatio-temporal relations from data. The task, however, is very challenging since there are time delays between extremes and their drivers, and the spatial response of such drivers is inhomogeneous. In this work, we propose a first approach and benchmarks to tackle this challenge. Our approach is trained end-to-end to predict spatio-temporally extremes and spatio-temporally drivers in the physical input variables jointly. By enforcing the network to predict extremes from spatio-temporal binary masks of identified drivers, the network successfully identifies drivers that are correlated with extremes. We evaluate our approach on three newly created synthetic benchmarks, where two of them are based on remote sensing or reanalysis climate data, and on two real-world reanalysis datasets. The source code and datasets are publicly available at the project page https://hakamshams.github.io/IDE.
A Survey on Principles, Models and Methods for Learning from Irregularly Sampled Time Series
Irregularly sampled time series data arise naturally in many application domains including biology, ecology, climate science, astronomy, and health. Such data represent fundamental challenges to many classical models from machine learning and statistics due to the presence of non-uniform intervals between observations. However, there has been significant progress within the machine learning community over the last decade on developing specialized models and architectures for learning from irregularly sampled univariate and multivariate time series data. In this survey, we first describe several axes along which approaches to learning from irregularly sampled time series differ including what data representations they are based on, what modeling primitives they leverage to deal with the fundamental problem of irregular sampling, and what inference tasks they are designed to perform. We then survey the recent literature organized primarily along the axis of modeling primitives. We describe approaches based on temporal discretization, interpolation, recurrence, attention and structural invariance. We discuss similarities and differences between approaches and highlight primary strengths and weaknesses.
LightGTS: A Lightweight General Time Series Forecasting Model
Existing works on general time series forecasting build foundation models with heavy model parameters through large-scale multi-source pre-training. These models achieve superior generalization ability across various datasets at the cost of significant computational burdens and limitations in resource-constrained scenarios. This paper introduces LightGTS, a lightweight general time series forecasting model designed from the perspective of consistent periodical modeling. To handle diverse scales and intrinsic periods in multi-source pre-training, we introduce Periodical Tokenization, which extracts consistent periodic patterns across different datasets with varying scales. To better utilize the periodicity in the decoding process, we further introduce Periodical Parallel Decoding, which leverages historical tokens to improve forecasting. Based on the two techniques above which fully leverage the inductive bias of periods inherent in time series, LightGTS uses a lightweight model to achieve outstanding performance on general time series forecasting. It achieves state-of-the-art forecasting performance on 9 real-world benchmarks in both zero-shot and full-shot settings with much better efficiency compared with existing time series foundation models.
Advancing Parsimonious Deep Learning Weather Prediction using the HEALPix Mesh
We present a parsimonious deep learning weather prediction model to forecast seven atmospheric variables with 3-h time resolution for up to one-year lead times on a 110-km global mesh using the Hierarchical Equal Area isoLatitude Pixelization (HEALPix). In comparison to state-of-the-art (SOTA) machine learning (ML) weather forecast models, such as Pangu-Weather and GraphCast, our DLWP-HPX model uses coarser resolution and far fewer prognostic variables. Yet, at one-week lead times, its skill is only about one day behind both SOTA ML forecast models and the SOTA numerical weather prediction model from the European Centre for Medium-Range Weather Forecasts. We report several improvements in model design, including switching from the cubed sphere to the HEALPix mesh, inverting the channel depth of the U-Net, and introducing gated recurrent units (GRU) on each level of the U-Net hierarchy. The consistent east-west orientation of all cells on the HEALPix mesh facilitates the development of location-invariant convolution kernels that successfully propagate weather patterns across the globe without requiring separate kernels for the polar and equatorial faces of the cube sphere. Without any loss of spectral power after the first two days, the model can be unrolled autoregressively for hundreds of steps into the future to generate realistic states of the atmosphere that respect seasonal trends, as showcased in one-year simulations.
Forecasting Time Series with LLMs via Patch-Based Prompting and Decomposition
Recent advances in Large Language Models (LLMs) have demonstrated new possibilities for accurate and efficient time series analysis, but prior work often required heavy fine-tuning and/or ignored inter-series correlations. In this work, we explore simple and flexible prompt-based strategies that enable LLMs to perform time series forecasting without extensive retraining or the use of a complex external architecture. Through the exploration of specialized prompting methods that leverage time series decomposition, patch-based tokenization, and similarity-based neighbor augmentation, we find that it is possible to enhance LLM forecasting quality while maintaining simplicity and requiring minimal preprocessing of data. To this end, we propose our own method, PatchInstruct, which enables LLMs to make precise and effective predictions.
Autoregressive Hidden Markov Models with partial knowledge on latent space applied to aero-engines prognostics
[This paper was initially published in PHME conference in 2016, selected for further publication in International Journal of Prognostics and Health Management.] This paper describes an Autoregressive Partially-hidden Markov model (ARPHMM) for fault detection and prognostics of equipments based on sensors' data. It is a particular dynamic Bayesian network that allows to represent the dynamics of a system by means of a Hidden Markov Model (HMM) and an autoregressive (AR) process. The Markov chain assumes that the system is switching back and forth between internal states while the AR process ensures a temporal coherence on sensor measurements. A sound learning procedure of standard ARHMM based on maximum likelihood allows to iteratively estimate all parameters simultaneously. This paper suggests a modification of the learning procedure considering that one may have prior knowledge about the structure which becomes partially hidden. The integration of the prior is based on the Theory of Weighted Distributions which is compatible with the Expectation-Maximization algorithm in the sense that the convergence properties are still satisfied. We show how to apply this model to estimate the remaining useful life based on health indicators. The autoregressive parameters can indeed be used for prediction while the latent structure can be used to get information about the degradation level. The interest of the proposed method for prognostics and health assessment is demonstrated on CMAPSS datasets.
OneForecast: A Universal Framework for Global and Regional Weather Forecasting
Accurate weather forecasts are important for disaster prevention, agricultural planning, etc. Traditional numerical weather prediction (NWP) methods offer physically interpretable high-accuracy predictions but are computationally expensive and fail to fully leverage rapidly growing historical data. In recent years, deep learning models have made significant progress in weather forecasting, but challenges remain, such as balancing global and regional high-resolution forecasts, excessive smoothing in extreme event predictions, and insufficient dynamic system modeling. To address these issues, this paper proposes a global-regional nested weather forecasting framework (OneForecast) based on graph neural networks. By combining a dynamic system perspective with multi-grid theory, we construct a multi-scale graph structure and densify the target region to capture local high-frequency features. We introduce an adaptive messaging mechanism, using dynamic gating units to deeply integrate node and edge features for more accurate extreme event forecasting. For high-resolution regional forecasts, we propose a neural nested grid method to mitigate boundary information loss. Experimental results show that OneForecast performs excellently across global to regional scales and short-term to long-term forecasts, especially in extreme event predictions. Codes link https://github.com/YuanGao-YG/OneForecast.
Foundation Models for Time Series: A Survey
Transformer-based foundation models have emerged as a dominant paradigm in time series analysis, offering unprecedented capabilities in tasks such as forecasting, anomaly detection, classification, trend analysis and many more time series analytical tasks. This survey provides a comprehensive overview of the current state of the art pre-trained foundation models, introducing a novel taxonomy to categorize them across several dimensions. Specifically, we classify models by their architecture design, distinguishing between those leveraging patch-based representations and those operating directly on raw sequences. The taxonomy further includes whether the models provide probabilistic or deterministic predictions, and whether they are designed to work with univariate time series or can handle multivariate time series out of the box. Additionally, the taxonomy encompasses model scale and complexity, highlighting differences between lightweight architectures and large-scale foundation models. A unique aspect of this survey is its categorization by the type of objective function employed during training phase. By synthesizing these perspectives, this survey serves as a resource for researchers and practitioners, providing insights into current trends and identifying promising directions for future research in transformer-based time series modeling.
Adapting LLMs to Time Series Forecasting via Temporal Heterogeneity Modeling and Semantic Alignment
Large Language Models (LLMs) have recently demonstrated impressive capabilities in natural language processing due to their strong generalization and sequence modeling capabilities. However, their direct application to time series forecasting remains challenging due to two fundamental issues: the inherent heterogeneity of temporal patterns and the modality gap between continuous numerical signals and discrete language representations. In this work, we propose TALON, a unified framework that enhances LLM-based forecasting by modeling temporal heterogeneity and enforcing semantic alignment. Specifically, we design a Heterogeneous Temporal Encoder that partitions multivariate time series into structurally coherent segments, enabling localized expert modeling across diverse temporal patterns. To bridge the modality gap, we introduce a Semantic Alignment Module that aligns temporal features with LLM-compatible representations, enabling effective integration of time series into language-based models while eliminating the need for handcrafted prompts during inference. Extensive experiments on seven real-world benchmarks demonstrate that TALON achieves superior performance across all datasets, with average MSE improvements of up to 11\% over recent state-of-the-art methods. These results underscore the effectiveness of incorporating both pattern-aware and semantic-aware designs when adapting LLMs for time series forecasting. The code is available at: https://github.com/syrGitHub/TALON.
Efficient Kilometer-Scale Precipitation Downscaling with Conditional Wavelet Diffusion
Effective hydrological modeling and extreme weather analysis demand precipitation data at a kilometer-scale resolution, which is significantly finer than the 10 km scale offered by standard global products like IMERG. To address this, we propose the Wavelet Diffusion Model (WDM), a generative framework that achieves 10x spatial super-resolution (downscaling to 1 km) and delivers a 9x inference speedup over pixel-based diffusion models. WDM is a conditional diffusion model that learns the learns the complex structure of precipitation from MRMS radar data directly in the wavelet domain. By focusing on high-frequency wavelet coefficients, it generates exceptionally realistic and detailed 1-km precipitation fields. This wavelet-based approach produces visually superior results with fewer artifacts than pixel-space models, and delivers a significant gains in sampling efficiency. Our results demonstrate that WDM provides a robust solution to the dual challenges of accuracy and speed in geoscience super-resolution, paving the way for more reliable hydrological forecasts.
LaDCast: A Latent Diffusion Model for Medium-Range Ensemble Weather Forecasting
Accurate probabilistic weather forecasting demands both high accuracy and efficient uncertainty quantification, challenges that overburden both ensemble numerical weather prediction (NWP) and recent machine-learning methods. We introduce LaDCast, the first global latent-diffusion framework for medium-range ensemble forecasting, which generates hourly ensemble forecasts entirely in a learned latent space. An autoencoder compresses high-dimensional ERA5 reanalysis fields into a compact representation, and a transformer-based diffusion model produces sequential latent updates with arbitrary hour initialization. The model incorporates Geometric Rotary Position Embedding (GeoRoPE) to account for the Earth's spherical geometry, a dual-stream attention mechanism for efficient conditioning, and sinusoidal temporal embeddings to capture seasonal patterns. LaDCast achieves deterministic and probabilistic skill close to that of the European Centre for Medium-Range Forecast IFS-ENS, without any explicit perturbations. Notably, LaDCast demonstrates superior performance in tracking rare extreme events such as cyclones, capturing their trajectories more accurately than established models. By operating in latent space, LaDCast reduces storage and compute by orders of magnitude, demonstrating a practical path toward forecasting at kilometer-scale resolution in real time. We open-source our code and models and provide the training and evaluation pipelines at: https://github.com/tonyzyl/ladcast.
Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models
Modeling multivariate time series is a well-established problem with a wide range of applications from healthcare to financial markets. Traditional State Space Models (SSMs) are classical approaches for univariate time series modeling due to their simplicity and expressive power to represent linear dependencies. They, however, have fundamentally limited expressive power to capture non-linear dependencies, are slow in practice, and fail to model the inter-variate information flow. Despite recent attempts to improve the expressive power of SSMs by using deep structured SSMs, the existing methods are either limited to univariate time series, fail to model complex patterns (e.g., seasonal patterns), fail to dynamically model the dependencies of variate and time dimensions, and/or are input-independent. We present Chimera that uses two input-dependent 2-D SSM heads with different discretization processes to learn long-term progression and seasonal patterns. To improve the efficiency of complex 2D recurrence, we present a fast training using a new 2-dimensional parallel selective scan. We further present and discuss 2-dimensional Mamba and Mamba-2 as the spacial cases of our 2D SSM. Our experimental evaluation shows the superior performance of Chimera on extensive and diverse benchmarks, including ECG and speech time series classification, long-term and short-term time series forecasting, and time series anomaly detection.
rd-spiral: An open-source Python library for learning 2D reaction-diffusion dynamics through pseudo-spectral method
We introduce rd-spiral, an open-source Python library for simulating 2D reaction-diffusion systems using pseudo-spectral methods. The framework combines FFT-based spatial discretization with adaptive Dormand-Prince time integration, achieving exponential convergence while maintaining pedagogical clarity. We analyze three dynamical regimes: stable spirals, spatiotemporal chaos, and pattern decay, revealing extreme non-Gaussian statistics (kurtosis >96) in stable states. Information-theoretic metrics show 10.7% reduction in activator-inhibitor coupling during turbulence versus 6.5% in stable regimes. The solver handles stiffness ratios >6:1 with features including automated equilibrium classification and checkpointing. Effect sizes (delta=0.37--0.78) distinguish regimes, with asymmetric field sensitivities to perturbations. By balancing computational rigor with educational transparency, rd-spiral bridges theoretical and practical nonlinear dynamics.
Predictive Modeling of Menstrual Cycle Length: A Time Series Forecasting Approach
A proper forecast of the menstrual cycle is meaningful for women's health, as it allows individuals to take preventive actions to minimize cycle-associated discomforts. In addition, precise prediction can be useful for planning important events in a woman's life, such as family planning. In this work, we explored the use of machine learning techniques to predict regular and irregular menstrual cycles. We implemented some time series forecasting algorithm approaches, such as AutoRegressive Integrated Moving Average, Huber Regression, Lasso Regression, Orthogonal Matching Pursuit, and Long Short-Term Memory Network. Moreover, we generated synthetic data to achieve our purposes. The results showed that it is possible to accurately predict the onset and duration of menstrual cycles using machine learning techniques.
Feature Programming for Multivariate Time Series Prediction
We introduce the concept of programmable feature engineering for time series modeling and propose a feature programming framework. This framework generates large amounts of predictive features for noisy multivariate time series while allowing users to incorporate their inductive bias with minimal effort. The key motivation of our framework is to view any multivariate time series as a cumulative sum of fine-grained trajectory increments, with each increment governed by a novel spin-gas dynamical Ising model. This fine-grained perspective motivates the development of a parsimonious set of operators that summarize multivariate time series in an abstract fashion, serving as the foundation for large-scale automated feature engineering. Numerically, we validate the efficacy of our method on several synthetic and real-world noisy time series datasets.
IISE PG&E Energy Analytics Challenge 2025: Hourly-Binned Regression Models Beat Transformers in Load Forecasting
Accurate electricity load forecasting is essential for grid stability, resource optimization, and renewable energy integration. While transformer-based deep learning models like TimeGPT have gained traction in time-series forecasting, their effectiveness in long-term electricity load prediction remains uncertain. This study evaluates forecasting models ranging from classical regression techniques to advanced deep learning architectures using data from the ESD 2025 competition. The dataset includes two years of historical electricity load data, alongside temperature and global horizontal irradiance (GHI) across five sites, with a one-day-ahead forecasting horizon. Since actual test set load values remain undisclosed, leveraging predicted values would accumulate errors, making this a long-term forecasting challenge. We employ (i) Principal Component Analysis (PCA) for dimensionality reduction and (ii) frame the task as a regression problem, using temperature and GHI as covariates to predict load for each hour, (iii) ultimately stacking 24 models to generate yearly forecasts. Our results reveal that deep learning models, including TimeGPT, fail to consistently outperform simpler statistical and machine learning approaches due to the limited availability of training data and exogenous variables. In contrast, XGBoost, with minimal feature engineering, delivers the lowest error rates across all test cases while maintaining computational efficiency. This highlights the limitations of deep learning in long-term electricity forecasting and reinforces the importance of model selection based on dataset characteristics rather than complexity. Our study provides insights into practical forecasting applications and contributes to the ongoing discussion on the trade-offs between traditional and modern forecasting methods.
fev-bench: A Realistic Benchmark for Time Series Forecasting
Benchmark quality is critical for meaningful evaluation and sustained progress in time series forecasting, particularly given the recent rise of pretrained models. Existing benchmarks often have narrow domain coverage or overlook important real-world settings, such as tasks with covariates. Additionally, their aggregation procedures often lack statistical rigor, making it unclear whether observed performance differences reflect true improvements or random variation. Many benchmarks also fail to provide infrastructure for consistent evaluation or are too rigid to integrate into existing pipelines. To address these gaps, we propose fev-bench, a benchmark comprising 100 forecasting tasks across seven domains, including 46 tasks with covariates. Supporting the benchmark, we introduce fev, a lightweight Python library for benchmarking forecasting models that emphasizes reproducibility and seamless integration with existing workflows. Usingfev, fev-bench employs principled aggregation methods with bootstrapped confidence intervals to report model performance along two complementary dimensions: win rates and skill scores. We report results on fev-bench for various pretrained, statistical and baseline models, and identify promising directions for future research.
Testing the Efficacy of Hyperparameter Optimization Algorithms in Short-Term Load Forecasting
Accurate forecasting of electrical demand is essential for maintaining a stable and reliable power grid, optimizing the allocation of energy resources, and promoting efficient energy consumption practices. This study investigates the effectiveness of five hyperparameter optimization (HPO) algorithms -- Random Search, Covariance Matrix Adaptation Evolution Strategy (CMA--ES), Bayesian Optimization, Partial Swarm Optimization (PSO), and Nevergrad Optimizer (NGOpt) across univariate and multivariate Short-Term Load Forecasting (STLF) tasks. Using the Panama Electricity dataset (n=48,049), we evaluate HPO algorithms' performances on a surrogate forecasting algorithm, XGBoost, in terms of accuracy (i.e., MAPE, R^2) and runtime. Performance plots visualize these metrics across varying sample sizes from 1,000 to 20,000, and Kruskal--Wallis tests assess the statistical significance of the performance differences. Results reveal significant runtime advantages for HPO algorithms over Random Search. In univariate models, Bayesian optimization exhibited the lowest accuracy among the tested methods. This study provides valuable insights for optimizing XGBoost in the STLF context and identifies areas for future research.
Long-term Forecasting with TiDE: Time-series Dense Encoder
Recent work has shown that simple linear models can outperform several Transformer based approaches in long term time-series forecasting. Motivated by this, we propose a Multi-layer Perceptron (MLP) based encoder-decoder model, Time-series Dense Encoder (TiDE), for long-term time-series forecasting that enjoys the simplicity and speed of linear models while also being able to handle covariates and non-linear dependencies. Theoretically, we prove that the simplest linear analogue of our model can achieve near optimal error rate for linear dynamical systems (LDS) under some assumptions. Empirically, we show that our method can match or outperform prior approaches on popular long-term time-series forecasting benchmarks while being 5-10x faster than the best Transformer based model.
Stochastic Parameter Decomposition
A key step in reverse engineering neural networks is to decompose them into simpler parts that can be studied in relative isolation. Linear parameter decomposition -- a framework that has been proposed to resolve several issues with current decomposition methods -- decomposes neural network parameters into a sum of sparsely used vectors in parameter space. However, the current main method in this framework, Attribution-based Parameter Decomposition (APD), is impractical on account of its computational cost and sensitivity to hyperparameters. In this work, we introduce Stochastic Parameter Decomposition (SPD), a method that is more scalable and robust to hyperparameters than APD, which we demonstrate by decomposing models that are slightly larger and more complex than was possible to decompose with APD. We also show that SPD avoids other issues, such as shrinkage of the learned parameters, and better identifies ground truth mechanisms in toy models. By bridging causal mediation analysis and network decomposition methods, this demonstration opens up new research possibilities in mechanistic interpretability by removing barriers to scaling linear parameter decomposition methods to larger models. We release a library for running SPD and reproducing our experiments at https://github.com/goodfire-ai/spd.
