new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 3

Towards Safe Reasoning in Large Reasoning Models via Corrective Intervention

Although Large Reasoning Models (LRMs) have progressed in solving complex problems, their chain-of-thought (CoT) reasoning often contains harmful content that can persist even when the final responses appear safe. We show that this issue still remains in existing methods which overlook the unique significance of safe reasoning, undermining their trustworthiness and posing potential risks in applications if unsafe reasoning is accessible for and exploited by malicious users. We therefore shift our focus to aligning the safety of reasoning itself in this paper and explore process supervision as the solution. However, simply rewarding safe reasoning proves inadequate due to low rollout diversity and limited training signals. To tackle this challenge, we first delve into the characteristics of safe reasoning and uncover several critical insights that 1) safe reasoning is often consolidated by a few critical steps of safety triggers; 2) compliance cues strongly correlate with unsafe continuations; and 3) corrective interventions reliably steer unsafe trajectories towards safer traces. Motivated by these, we propose Intervened Preference Optimization (IPO), an alignment method that enforces safe reasoning by substituting compliance steps with safety triggers and constructing pairs for preference learning with strong signals. Experiments on jailbreak and adversarial safety benchmarks demonstrate that IPO remarkably improves overall safety regarding both reasoning and responses, outperforming SFT-based and RL-based baselines with a relative reduction of over 30% in harmfulness, while preserving excellent performance across diverse reasoning tasks. The results highlight the importance of explicit alignment for reasoning and provide a practical path to safer LRMs.

  • 10 authors
·
Sep 29, 2025

MirrorGuard: Toward Secure Computer-Use Agents via Simulation-to-Real Reasoning Correction

Large foundation models are integrated into Computer Use Agents (CUAs), enabling autonomous interaction with operating systems through graphical user interfaces (GUIs) to perform complex tasks. This autonomy introduces serious security risks: malicious instructions or visual prompt injections can trigger unsafe reasoning and cause harmful system-level actions. Existing defenses, such as detection-based blocking, prevent damage but often abort tasks prematurely, reducing agent utility. In this paper, we present MirrorGuard, a plug-and-play defense framework that uses simulation-based training to improve CUA security in the real world. To reduce the cost of large-scale training in operating systems, we propose a novel neural-symbolic simulation pipeline, which generates realistic, high-risk GUI interaction trajectories entirely in a text-based simulated environment, which captures unsafe reasoning patterns and potential system hazards without executing real operations. In the simulation environment, MirrorGuard learns to intercept and rectify insecure reasoning chains of CUAs before they produce and execute unsafe actions. In real-world testing, extensive evaluations across diverse benchmarks and CUA architectures show that MirrorGuard significantly mitigates security risks. For instance, on the ByteDance UI-TARS system, it reduces the unsafe rate from 66.5% to 13.0% while maintaining a marginal false refusal rate (FRR). In contrast, the state-of-the-art GuardAgent only achieves a reduction to 53.9% and suffers from a 15.4% higher FRR. Our work proves that simulation-derived defenses can provide robust, real-world protection while maintaining the fundamental utility of the agent. Our code and model are publicly available at https://bmz-q-q.github.io/MirrorGuard/.

  • 6 authors
·
Jan 19

Beyond SFT: Reinforcement Learning for Safer Large Reasoning Models with Better Reasoning Ability

Large reasoning models (LRMs) extend large language models by generating explicit chain-of-thought (CoT) reasoning, significantly improving mathematical and logical problem solving. However, this explicit reasoning process also introduces new safety risks, as unsafe behaviors often emerge within intermediate reasoning trajectories, even when final answers appear harmless. Existing safety alignment approaches primarily rely on supervised fine-tuning (SFT) over safety-oriented long CoT datasets. While intuitive, we find that SFT produces inconsistent safety improvements, degrades reasoning ability, and generalizes poorly across model families. These limitations suggest that purely supervised approaches are insufficient for robust safety alignment in LRMs. To address this, we investigate reinforcement learning (RL) as a complementary optimization framework for LRM safety training. Unlike SFT, RL directly optimizes model policies with reward feedback, enabling more adaptive and stable alignment. Extensive experiments across multiple model families and benchmarks show that RL achieves stronger and more consistent safety gains while maintaining reasoning competence. Further analysis of reflection dynamics and token-level entropy reveals that RL suppresses unsafe exploratory reasoning while preserving reflective depth, leading to safer and more reliable reasoning processes.

  • 3 authors
·
Dec 1, 2025

SaFeR-VLM: Toward Safety-aware Fine-grained Reasoning in Multimodal Models

Multimodal Large Reasoning Models (MLRMs) demonstrate impressive cross-modal reasoning but often amplify safety risks under adversarial or unsafe prompts, a phenomenon we call the Reasoning Tax. Existing defenses mainly act at the output level and do not constrain the reasoning process, leaving models exposed to implicit risks. In this paper, we propose SaFeR-VLM, a safety-aligned reinforcement learning framework that embeds safety directly into multimodal reasoning. The framework integrates four components: (I) QI-Safe-10K, a curated dataset emphasizing safety-critical and reasoning-sensitive cases; (II) safety-aware rollout, where unsafe generations undergo reflection and correction instead of being discarded; (III) structured reward modeling with multi-dimensional weighted criteria and explicit penalties for hallucinations and contradictions; and (IV) GRPO optimization, which reinforces both safe and corrected trajectories. This unified design shifts safety from a passive safeguard to an active driver of reasoning, enabling scalable and generalizable safety-aware reasoning. SaFeR-VLM further demonstrates robustness against both explicit and implicit risks, supporting dynamic and interpretable safety decisions beyond surface-level filtering. SaFeR-VLM-3B achieves average performance 70.13 and 78.97 on safety and helpfulness across six benchmarks, surpassing both same-scale and >10times larger models such as Skywork-R1V3-38B, Qwen2.5VL-72B, and GLM4.5V-106B. Remarkably, SaFeR-VLM-7B benefits from its increased scale to surpass GPT-5-mini and Gemini-2.5-Flash by 6.47 and 16.76 points respectively on safety metrics, achieving this improvement without any degradation in helpfulness performance. Our codes are available at https://github.com/HarveyYi/SaFeR-VLM.

  • 10 authors
·
Oct 8, 2025

ReasoningShield: Content Safety Detection over Reasoning Traces of Large Reasoning Models

Large Reasoning Models (LRMs) are transforming the AI landscape with advanced reasoning capabilities. While the generated reasoning traces enhance model transparency, they can still contain unsafe content, even when the final answer appears safe. Existing moderation tools, primarily designed for question-answer (QA) pairs, are empirically ineffective at detecting hidden risks embedded in reasoning traces. After identifying the key challenges, we formally define the question-thought (QT) moderation task and propose ReasoningShield, the first safety detection model tailored to identify potential risks in the reasoning trace before reaching the final answer. To construct the model, we synthesize a high-quality reasoning safety detection dataset comprising over 8,000 question-thought pairs spanning ten risk categories and three safety levels. Our dataset construction process incorporates a comprehensive human-AI collaborative annotation pipeline, which achieves over 93% annotation accuracy while significantly reducing human costs. On a diverse set of in-distribution and out-of-distribution benchmarks, ReasoningShield outperforms mainstream content safety moderation models in identifying risks within reasoning traces, with an average F1 score exceeding 0.92. Notably, despite being trained on our QT dataset only, ReasoningShield also demonstrates competitive performance in detecting unsafe question-answer pairs on traditional benchmarks, rivaling baselines trained on 10 times larger datasets and base models, which strongly validates the quality of our dataset. Furthermore, ReasoningShield is built upon compact 1B/3B base models to facilitate lightweight deployment and provides human-friendly risk analysis by default. To foster future research, we publicly release all the resources.

  • 5 authors
·
May 22, 2025

Refusal Falls off a Cliff: How Safety Alignment Fails in Reasoning?

Large reasoning models (LRMs) with multi-step reasoning capabilities have shown remarkable problem-solving abilities, yet they exhibit concerning safety vulnerabilities that remain poorly understood. In this work, we investigate why safety alignment fails in reasoning models through a mechanistic interpretability lens. Using a linear probing approach to trace refusal intentions across token positions, we discover a striking phenomenon termed as refusal cliff: many poorly-aligned reasoning models correctly identify harmful prompts and maintain strong refusal intentions during their thinking process, but experience a sharp drop in refusal scores at the final tokens before output generation. This suggests that these models are not inherently unsafe; rather, their refusal intentions are systematically suppressed. Through causal intervention analysis, we identify a sparse set of attention heads that negatively contribute to refusal behavior. Ablating just 3\% of these heads can reduce attack success rates below 10\%. Building on these mechanistic insights, we propose Cliff-as-a-Judge, a novel data selection method that identifies training examples exhibiting the largest refusal cliff to efficiently repair reasoning models' safety alignment. This approach achieves comparable safety improvements using only 1.7\% of the vanilla safety training data, demonstrating a less-is-more effect in safety alignment.

rednote-hilab rednote-hilab
·
Oct 7, 2025 2

SafeChain: Safety of Language Models with Long Chain-of-Thought Reasoning Capabilities

Emerging large reasoning models (LRMs), such as DeepSeek-R1 models, leverage long chain-of-thought (CoT) reasoning to generate structured intermediate steps, enhancing their reasoning capabilities. However, long CoT does not inherently guarantee safe outputs, potentially leading to harmful consequences such as the introduction of security vulnerabilities in code or the spread of misinformation. Current research on large language model (LLM) safety usually focuses on short-answer responses, overlooking the long CoT style outputs of LRMs. To bridge this gap, we conduct a systematic study of LRM safety. First, we investigate safety evaluators calibrated against human annotations. Using our newly developed metrics, we thoroughly assess the safety of 12 state-of-the-art LRMs on StrongReject and WildJailbreak datasets. Our results show that LRMs are not safe compared to their reasoning advance. Further, we perform a fine-grained analysis of the reasoning trace and final answer. We find that three decoding strategies-ZeroThink, LessThink, and MoreThink-can improve model safety without additional training. However, these strategies either use constrained reasoning traces or incur high inference costs. To better strengthen LRM safety, we introduce SafeChain, the first-of-its-kind safety training dataset in CoT style. We fine-tune two LRMs with SafeChain, showing that it not only enhances model safety but also preserves performance across 6 reasoning benchmarks.

  • 8 authors
·
Feb 17, 2025

MrGuard: A Multilingual Reasoning Guardrail for Universal LLM Safety

Large Language Models (LLMs) are susceptible to adversarial attacks such as jailbreaking, which can elicit harmful or unsafe behaviors. This vulnerability is exacerbated in multilingual settings, where multilingual safety-aligned data is often limited. Thus, developing a guardrail capable of detecting and filtering unsafe content across diverse languages is critical for deploying LLMs in real-world applications. In this work, we introduce a multilingual guardrail with reasoning for prompt classification. Our method consists of: (1) synthetic multilingual data generation incorporating culturally and linguistically nuanced variants, (2) supervised fine-tuning, and (3) a curriculum-based Group Relative Policy Optimization (GRPO) framework that further improves performance. Experimental results demonstrate that our multilingual guardrail, MrGuard, consistently outperforms recent baselines across both in-domain and out-of-domain languages by more than 15%. We also evaluate MrGuard's robustness to multilingual variations, such as code-switching and low-resource language distractors in the prompt, and demonstrate that it preserves safety judgments under these challenging conditions. The multilingual reasoning capability of our guardrail enables it to generate explanations, which are particularly useful for understanding language-specific risks and ambiguities in multilingual content moderation.

  • 5 authors
·
Apr 21, 2025

The Hidden Risks of Large Reasoning Models: A Safety Assessment of R1

The rapid development of large reasoning models, such as OpenAI-o3 and DeepSeek-R1, has led to significant improvements in complex reasoning over non-reasoning large language models~(LLMs). However, their enhanced capabilities, combined with the open-source access of models like DeepSeek-R1, raise serious safety concerns, particularly regarding their potential for misuse. In this work, we present a comprehensive safety assessment of these reasoning models, leveraging established safety benchmarks to evaluate their compliance with safety regulations. Furthermore, we investigate their susceptibility to adversarial attacks, such as jailbreaking and prompt injection, to assess their robustness in real-world applications. Through our multi-faceted analysis, we uncover four key findings: (1) There is a significant safety gap between the open-source R1 models and the o3-mini model, on both safety benchmark and attack, suggesting more safety effort on R1 is needed. (2) The distilled reasoning model shows poorer safety performance compared to its safety-aligned base models. (3) The stronger the model's reasoning ability, the greater the potential harm it may cause when answering unsafe questions. (4) The thinking process in R1 models pose greater safety concerns than their final answers. Our study provides insights into the security implications of reasoning models and highlights the need for further advancements in R1 models' safety to close the gap.

  • 8 authors
·
Feb 18, 2025 2

Can Aha Moments Be Fake? Identifying True and Decorative Thinking Steps in Chain-of-Thought

Recent large language models (LLMs) can generate long Chain-of-Thought (CoT) at test time, enabling them to solve complex tasks. These reasoning steps in CoT are often assumed as a faithful reflection of the model's internal thinking process, and used to monitor unsafe intentions. However, we find many reasoning steps don't truly contribute to LLMs' prediction. We measure the step-wise causal influence of each reasoning step on the model's final prediction with a proposed True Thinking Score (TTS). We reveal that LLMs often interleave between true-thinking steps (which are genuinely used to produce the final output) and decorative-thinking steps (which only give the appearance of reasoning but have minimal causal impact). Notably, only a small subset of the total reasoning steps have a high TTS that causally drive the model's prediction: e.g., for the AIME dataset, only an average of 2.3% of reasoning steps in CoT have a TTS >= 0.7 (range: 0-1) under the Qwen-2.5 model. Furthermore, we identify a TrueThinking direction in the latent space of LLMs. By steering along or against this direction, we can force the model to perform or disregard certain CoT steps when computing the final result. Finally, we highlight that self-verification steps in CoT (i.e., aha moments) can also be decorative, where LLMs do not truly verify their solution. Steering along the TrueThinking direction can force internal reasoning over these steps, resulting in a change in the final results. Overall, our work reveals that LLMs often verbalize reasoning steps without actually performing them internally, which undermines both the efficiency of LLM reasoning and the trustworthiness of CoT.

  • 4 authors
·
Oct 28, 2025

Measuring Chain-of-Thought Monitorability Through Faithfulness and Verbosity

Chain-of-thought (CoT) outputs let us read a model's step-by-step reasoning. Since any long, serial reasoning process must pass through this textual trace, the quality of the CoT is a direct window into what the model is thinking. This visibility could help us spot unsafe or misaligned behavior (monitorability), but only if the CoT is transparent about its internal reasoning (faithfulness). Fully measuring faithfulness is difficult, so researchers often focus on examining the CoT in cases where the model changes its answer after adding a cue to the input. This proxy finds some instances of unfaithfulness but loses information when the model maintains its answer, and does not investigate aspects of reasoning not tied to the cue. We extend these results to a more holistic sense of monitorability by introducing verbosity: whether the CoT lists every factor needed to solve the task. We combine faithfulness and verbosity into a single monitorability score that shows how well the CoT serves as the model's external `working memory', a property that many safety schemes based on CoT monitoring depend on. We evaluate instruction-tuned and reasoning models on BBH, GPQA, and MMLU. Our results show that models can appear faithful yet remain hard to monitor when they leave out key factors, and that monitorability differs sharply across model families. We release our evaluation code using the Inspect library to support reproducible future work.

  • 5 authors
·
Oct 31, 2025

Automating Safety Enhancement for LLM-based Agents with Synthetic Risk Scenarios

Large Language Model (LLM)-based agents are increasingly deployed in real-world applications such as "digital assistants, autonomous customer service, and decision-support systems", where their ability to "interact in multi-turn, tool-augmented environments" makes them indispensable. However, ensuring the safety of these agents remains a significant challenge due to the diverse and complex risks arising from dynamic user interactions, external tool usage, and the potential for unintended harmful behaviors. To address this critical issue, we propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation. Concretely, 1) we introduce an open and extensible threat model, OTS, which formalizes how unsafe behaviors emerge from the interplay of user instructions, interaction contexts, and agent actions. This enables precise modeling of safety risks across diverse scenarios. 2) we develop a fully automated data generation pipeline that simulates unsafe user behaviors, applies self-reflective reasoning to generate safe responses, and constructs a large-scale, diverse, and high-quality safety training dataset-eliminating the need for hazardous real-world data collection. To evaluate the effectiveness of our framework, we design comprehensive experiments on both synthetic and real-world safety benchmarks. Results demonstrate that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks, validating the generalization ability of our learned safety strategies. These results highlight the practical advancement and scalability of AutoSafe in building safer LLM-based agents for real-world deployment. We have released the project page at https://auto-safe.github.io/.

  • 10 authors
·
May 23, 2025 1

SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models

Traditional autonomous driving systems often struggle to connect high-level reasoning with low-level control, leading to suboptimal and sometimes unsafe behaviors. Recent advances in multimodal large language models (MLLMs), which process both visual and textual data, offer an opportunity to unify perception and reasoning. However, effectively embedding precise safety knowledge into MLLMs for autonomous driving remains a significant challenge. To address this, we propose SafeAuto, a framework that enhances MLLM-based autonomous driving by incorporating both unstructured and structured knowledge. First, we introduce a Position-Dependent Cross-Entropy (PDCE) loss to improve low-level control signal predictions when values are represented as text. Second, to explicitly integrate safety knowledge, we develop a reasoning component that translates traffic rules into first-order logic (e.g., "red light implies stop") and embeds them into a probabilistic graphical model (e.g., Markov Logic Network) to verify predicted actions using recognized environmental attributes. Additionally, our Multimodal Retrieval-Augmented Generation (RAG) model leverages video, control signals, and environmental attributes to learn from past driving experiences. Integrating PDCE, MLN, and Multimodal RAG, SafeAuto outperforms existing baselines across multiple datasets, enabling more accurate, reliable, and safer autonomous driving. The code is available at https://github.com/AI-secure/SafeAuto.

  • 6 authors
·
Feb 28, 2025

MLLM-as-a-Judge for Image Safety without Human Labeling

Image content safety has become a significant challenge with the rise of visual media on online platforms. Meanwhile, in the age of AI-generated content (AIGC), many image generation models are capable of producing harmful content, such as images containing sexual or violent material. Thus, it becomes crucial to identify such unsafe images based on established safety rules. Pre-trained Multimodal Large Language Models (MLLMs) offer potential in this regard, given their strong pattern recognition abilities. Existing approaches typically fine-tune MLLMs with human-labeled datasets, which however brings a series of drawbacks. First, relying on human annotators to label data following intricate and detailed guidelines is both expensive and labor-intensive. Furthermore, users of safety judgment systems may need to frequently update safety rules, making fine-tuning on human-based annotation more challenging. This raises the research question: Can we detect unsafe images by querying MLLMs in a zero-shot setting using a predefined safety constitution (a set of safety rules)? Our research showed that simply querying pre-trained MLLMs does not yield satisfactory results. This lack of effectiveness stems from factors such as the subjectivity of safety rules, the complexity of lengthy constitutions, and the inherent biases in the models. To address these challenges, we propose a MLLM-based method includes objectifying safety rules, assessing the relevance between rules and images, making quick judgments based on debiased token probabilities with logically complete yet simplified precondition chains for safety rules, and conducting more in-depth reasoning with cascaded chain-of-thought processes if necessary. Experiment results demonstrate that our method is highly effective for zero-shot image safety judgment tasks.

  • 15 authors
·
Dec 30, 2024 2

Towards Safety Reasoning in LLMs: AI-agentic Deliberation for Policy-embedded CoT Data Creation

Safety reasoning is a recent paradigm where LLMs reason over safety policies before generating responses, thereby mitigating limitations in existing safety measures such as over-refusal and jailbreak vulnerabilities. However, implementing this paradigm is challenging due to the resource-intensive process of creating high-quality policy-embedded chain-of-thought (CoT) datasets while ensuring reasoning remains accurate and free from hallucinations or policy conflicts. To tackle this, we propose AIDSAFE: Agentic Iterative Deliberation for Safety Reasoning, a novel data generation recipe that leverages multi-agent deliberation to iteratively expand reasoning on safety policies. A data refiner stage in AIDSAFE ensures high-quality outputs by eliminating repetitive, redundant, and deceptive thoughts. AIDSAFE-generated CoTs provide a strong foundation for supervised fine-tuning (SFT)-based safety training. Additionally, to address the need of preference data in alignment stages, such as DPO training, we introduce a supplemental recipe that uses belief augmentation to create distinct selected and rejected CoT samples. Our evaluations demonstrate that AIDSAFE-generated CoTs achieve superior policy adherence and reasoning quality. Consequently, we show that fine-tuning open-source LLMs on these CoTs can significantly improve safety generalization and jailbreak robustness while maintaining acceptable utility and over-refusal accuracy. AIDSAFE-generated CoT datasets can be found here: https://huggingface.co/datasets/AmazonScience/AIDSAFE

  • 9 authors
·
May 27, 2025 2

How Should We Enhance the Safety of Large Reasoning Models: An Empirical Study

Large Reasoning Models (LRMs) have achieved remarkable success on reasoning-intensive tasks such as mathematics and programming. However, their enhanced reasoning capabilities do not necessarily translate to improved safety performance-and in some cases, may even degrade it. This raises an important research question: how can we enhance the safety of LRMs? In this paper, we present a comprehensive empirical study on how to enhance the safety of LRMs through Supervised Fine-Tuning (SFT). Our investigation begins with an unexpected observation: directly distilling safe responses from DeepSeek-R1 fails to significantly enhance safety. We analyze this phenomenon and identify three key failure patterns that contribute to it. We then demonstrate that explicitly addressing these issues during the data distillation process can lead to substantial safety improvements. Next, we explore whether a long and complex reasoning process is necessary for achieving safety. Interestingly, we find that simply using short or template-based reasoning process can attain comparable safety performance-and are significantly easier for models to learn than more intricate reasoning chains. These findings prompt a deeper reflection on the role of reasoning in ensuring safety. Finally, we find that mixing math reasoning data during safety fine-tuning is helpful to balance safety and over-refusal. Overall, we hope our empirical study could provide a more holistic picture on enhancing the safety of LRMs. The code and data used in our experiments are released in https://github.com/thu-coai/LRM-Safety-Study.

  • 11 authors
·
May 21, 2025 2

H-CoT: Hijacking the Chain-of-Thought Safety Reasoning Mechanism to Jailbreak Large Reasoning Models, Including OpenAI o1/o3, DeepSeek-R1, and Gemini 2.0 Flash Thinking

Large Reasoning Models (LRMs) have recently extended their powerful reasoning capabilities to safety checks-using chain-of-thought reasoning to decide whether a request should be answered. While this new approach offers a promising route for balancing model utility and safety, its robustness remains underexplored. To address this gap, we introduce Malicious-Educator, a benchmark that disguises extremely dangerous or malicious requests beneath seemingly legitimate educational prompts. Our experiments reveal severe security flaws in popular commercial-grade LRMs, including OpenAI o1/o3, DeepSeek-R1, and Gemini 2.0 Flash Thinking. For instance, although OpenAI's o1 model initially maintains a high refusal rate of about 98%, subsequent model updates significantly compromise its safety; and attackers can easily extract criminal strategies from DeepSeek-R1 and Gemini 2.0 Flash Thinking without any additional tricks. To further highlight these vulnerabilities, we propose Hijacking Chain-of-Thought (H-CoT), a universal and transferable attack method that leverages the model's own displayed intermediate reasoning to jailbreak its safety reasoning mechanism. Under H-CoT, refusal rates sharply decline-dropping from 98% to below 2%-and, in some instances, even transform initially cautious tones into ones that are willing to provide harmful content. We hope these findings underscore the urgent need for more robust safety mechanisms to preserve the benefits of advanced reasoning capabilities without compromising ethical standards.

  • 9 authors
·
Feb 18, 2025

SafeKey: Amplifying Aha-Moment Insights for Safety Reasoning

Large Reasoning Models (LRMs) introduce a new generation paradigm of explicitly reasoning before answering, leading to remarkable improvements in complex tasks. However, they pose great safety risks against harmful queries and adversarial attacks. While recent mainstream safety efforts on LRMs, supervised fine-tuning (SFT), improve safety performance, we find that SFT-aligned models struggle to generalize to unseen jailbreak prompts. After thorough investigation of LRMs' generation, we identify a safety aha moment that can activate safety reasoning and lead to a safe response. This aha moment typically appears in the `key sentence', which follows models' query understanding process and can indicate whether the model will proceed safely. Based on these insights, we propose SafeKey, including two complementary objectives to better activate the safety aha moment in the key sentence: (1) a Dual-Path Safety Head to enhance the safety signal in the model's internal representations before the key sentence, and (2) a Query-Mask Modeling objective to improve the models' attention on its query understanding, which has important safety hints. Experiments across multiple safety benchmarks demonstrate that our methods significantly improve safety generalization to a wide range of jailbreak attacks and out-of-distribution harmful prompts, lowering the average harmfulness rate by 9.6\%, while maintaining general abilities. Our analysis reveals how SafeKey enhances safety by reshaping internal attention and improving the quality of hidden representations.

  • 7 authors
·
May 21, 2025 2

Bag of Tricks for Subverting Reasoning-based Safety Guardrails

Recent reasoning-based safety guardrails for Large Reasoning Models (LRMs), such as deliberative alignment, have shown strong defense against jailbreak attacks. By leveraging LRMs' reasoning ability, these guardrails help the models to assess the safety of user inputs before generating final responses. The powerful reasoning ability can analyze the intention of the input query and will refuse to assist once it detects the harmful intent hidden by the jailbreak methods. Such guardrails have shown a significant boost in defense, such as the near-perfect refusal rates on the open-source gpt-oss series. Unfortunately, we find that these powerful reasoning-based guardrails can be extremely vulnerable to subtle manipulation of the input prompts, and once hijacked, can lead to even more harmful results. Specifically, we first uncover a surprisingly fragile aspect of these guardrails: simply adding a few template tokens to the input prompt can successfully bypass the seemingly powerful guardrails and lead to explicit and harmful responses. To explore further, we introduce a bag of jailbreak methods that subvert the reasoning-based guardrails. Our attacks span white-, gray-, and black-box settings and range from effortless template manipulations to fully automated optimization. Along with the potential for scalable implementation, these methods also achieve alarmingly high attack success rates (e.g., exceeding 90% across 5 different benchmarks on gpt-oss series on both local host models and online API services). Evaluations across various leading open-source LRMs confirm that these vulnerabilities are systemic, underscoring the urgent need for stronger alignment techniques for open-sourced LRMs to prevent malicious misuse. Code is open-sourced at https://chenxshuo.github.io/bag-of-tricks.

  • 9 authors
·
Oct 13, 2025 2

When to Make Exceptions: Exploring Language Models as Accounts of Human Moral Judgment

AI systems are becoming increasingly intertwined with human life. In order to effectively collaborate with humans and ensure safety, AI systems need to be able to understand, interpret and predict human moral judgments and decisions. Human moral judgments are often guided by rules, but not always. A central challenge for AI safety is capturing the flexibility of the human moral mind -- the ability to determine when a rule should be broken, especially in novel or unusual situations. In this paper, we present a novel challenge set consisting of rule-breaking question answering (RBQA) of cases that involve potentially permissible rule-breaking -- inspired by recent moral psychology studies. Using a state-of-the-art large language model (LLM) as a basis, we propose a novel moral chain of thought (MORALCOT) prompting strategy that combines the strengths of LLMs with theories of moral reasoning developed in cognitive science to predict human moral judgments. MORALCOT outperforms seven existing LLMs by 6.2% F1, suggesting that modeling human reasoning might be necessary to capture the flexibility of the human moral mind. We also conduct a detailed error analysis to suggest directions for future work to improve AI safety using RBQA. Our data is open-sourced at https://huggingface.co/datasets/feradauto/MoralExceptQA and code at https://github.com/feradauto/MoralCoT

  • 9 authors
·
Oct 4, 2022

EASE: Practical and Efficient Safety Alignment for Small Language Models

Small language models (SLMs) are increasingly deployed on edge devices, making their safety alignment crucial yet challenging. Current shallow alignment methods that rely on direct refusal of malicious queries fail to provide robust protection, particularly against adversarial jailbreaks. While deliberative safety reasoning alignment offers deeper alignment for defending against sophisticated attacks, effectively implanting such reasoning capability in SLMs with limited capabilities remains an open challenge. Moreover, safety reasoning incurs significant computational overhead as models apply reasoning to nearly all queries, making it impractical for resource-constrained edge deployment scenarios that demand rapid responses. We propose EASE, a novel framework that enables practical and Efficient safety Alignment for Small languagE models. Our approach first identifies the optimal safety reasoning teacher that can effectively distill safety reasoning capabilities to SLMs. We then align models to selectively activate safety reasoning for dangerous adversarial jailbreak queries while providing direct responses to straightforward malicious queries and general helpful tasks. This selective mechanism enables small models to maintain robust safety guarantees against sophisticated attacks while preserving computational efficiency for benign interactions. Experimental results demonstrate that EASE reduces jailbreak attack success rates by up to 17% compared to shallow alignment methods while reducing inference overhead by up to 90% compared to deliberative safety reasoning alignment, making it practical for SLMs real-world edge deployments.

  • 4 authors
·
Nov 9, 2025

Hyperbolic Safety-Aware Vision-Language Models

Addressing the retrieval of unsafe content from vision-language models such as CLIP is an important step towards real-world integration. Current efforts have relied on unlearning techniques that try to erase the model's knowledge of unsafe concepts. While effective in reducing unwanted outputs, unlearning limits the model's capacity to discern between safe and unsafe content. In this work, we introduce a novel approach that shifts from unlearning to an awareness paradigm by leveraging the inherent hierarchical properties of the hyperbolic space. We propose to encode safe and unsafe content as an entailment hierarchy, where both are placed in different regions of hyperbolic space. Our HySAC, Hyperbolic Safety-Aware CLIP, employs entailment loss functions to model the hierarchical and asymmetrical relations between safe and unsafe image-text pairs. This modelling, ineffective in standard vision-language models due to their reliance on Euclidean embeddings, endows the model with awareness of unsafe content, enabling it to serve as both a multimodal unsafe classifier and a flexible content retriever, with the option to dynamically redirect unsafe queries toward safer alternatives or retain the original output. Extensive experiments show that our approach not only enhances safety recognition but also establishes a more adaptable and interpretable framework for content moderation in vision-language models. Our source code is available at https://github.com/aimagelab/HySAC.

  • 5 authors
·
Mar 15, 2025 2

SafeScientist: Toward Risk-Aware Scientific Discoveries by LLM Agents

Recent advancements in large language model (LLM) agents have significantly accelerated scientific discovery automation, yet concurrently raised critical ethical and safety concerns. To systematically address these challenges, we introduce SafeScientist, an innovative AI scientist framework explicitly designed to enhance safety and ethical responsibility in AI-driven scientific exploration. SafeScientist proactively refuses ethically inappropriate or high-risk tasks and rigorously emphasizes safety throughout the research process. To achieve comprehensive safety oversight, we integrate multiple defensive mechanisms, including prompt monitoring, agent-collaboration monitoring, tool-use monitoring, and an ethical reviewer component. Complementing SafeScientist, we propose SciSafetyBench, a novel benchmark specifically designed to evaluate AI safety in scientific contexts, comprising 240 high-risk scientific tasks across 6 domains, alongside 30 specially designed scientific tools and 120 tool-related risk tasks. Extensive experiments demonstrate that SafeScientist significantly improves safety performance by 35\% compared to traditional AI scientist frameworks, without compromising scientific output quality. Additionally, we rigorously validate the robustness of our safety pipeline against diverse adversarial attack methods, further confirming the effectiveness of our integrated approach. The code and data will be available at https://github.com/ulab-uiuc/SafeScientist. red{Warning: this paper contains example data that may be offensive or harmful.}

  • 9 authors
·
May 29, 2025 2

Reasoned Safety Alignment: Ensuring Jailbreak Defense via Answer-Then-Check

As large language models (LLMs) continue to advance in capabilities, ensuring their safety against jailbreak attacks remains a critical challenge. In this paper, we introduce a novel safety alignment approach called Answer-Then-Check, which enhances LLM robustness against malicious prompts by applying thinking ability to mitigate jailbreaking problems before producing a final answer to the user. Our method enables models to directly answer the question in their thought and then critically evaluate its safety before deciding whether to provide it. To implement this approach, we construct the Reasoned Safety Alignment (ReSA) dataset, comprising 80K examples that teach models to reason through direct responses and then analyze their safety. Experimental results demonstrate that our approach achieves the Pareto frontier with superior safety capability while decreasing over-refusal rates on over-refusal benchmarks. Notably, the model fine-tuned with ReSA maintains general reasoning capabilities on benchmarks like MMLU, MATH500, and HumanEval. Besides, our method equips models with the ability to perform safe completion. Unlike post-hoc methods that can only reject harmful queries, our model can provide helpful and safe alternative responses for sensitive topics (e.g., self-harm). Furthermore, we discover that training on a small subset of just 500 examples can achieve comparable performance to using the full dataset, suggesting that safety alignment may require less data than previously assumed.

  • 4 authors
·
Sep 15, 2025

A Mousetrap: Fooling Large Reasoning Models for Jailbreak with Chain of Iterative Chaos

Large Reasoning Models (LRMs) have significantly advanced beyond traditional Large Language Models (LLMs) with their exceptional logical reasoning capabilities, yet these improvements introduce heightened safety risks. When subjected to jailbreak attacks, their ability to generate more targeted and organized content can lead to greater harm. Although some studies claim that reasoning enables safer LRMs against existing LLM attacks, they overlook the inherent flaws within the reasoning process itself. To address this gap, we propose the first jailbreak attack targeting LRMs, exploiting their unique vulnerabilities stemming from the advanced reasoning capabilities. Specifically, we introduce a Chaos Machine, a novel component to transform attack prompts with diverse one-to-one mappings. The chaos mappings iteratively generated by the machine are embedded into the reasoning chain, which strengthens the variability and complexity and also promotes a more robust attack. Based on this, we construct the Mousetrap framework, which makes attacks projected into nonlinear-like low sample spaces with mismatched generalization enhanced. Also, due to the more competing objectives, LRMs gradually maintain the inertia of unpredictable iterative reasoning and fall into our trap. Success rates of the Mousetrap attacking o1-mini, Claude-Sonnet and Gemini-Thinking are as high as 96%, 86% and 98% respectively on our toxic dataset Trotter. On benchmarks such as AdvBench, StrongREJECT, and HarmBench, attacking Claude-Sonnet, well-known for its safety, Mousetrap can astonishingly achieve success rates of 87.5%, 86.58% and 93.13% respectively. Attention: This paper contains inappropriate, offensive and harmful content.

  • 8 authors
·
Feb 19, 2025

LabSafety Bench: Benchmarking LLMs on Safety Issues in Scientific Labs

Laboratory accidents pose significant risks to human life and property, underscoring the importance of robust safety protocols. Despite advancements in safety training, laboratory personnel may still unknowingly engage in unsafe practices. With the increasing reliance on large language models (LLMs) for guidance in various fields, including laboratory settings, there is a growing concern about their reliability in critical safety-related decision-making. Unlike trained human researchers, LLMs lack formal lab safety education, raising questions about their ability to provide safe and accurate guidance. Existing research on LLM trustworthiness primarily focuses on issues such as ethical compliance, truthfulness, and fairness but fails to fully cover safety-critical real-world applications, like lab safety. To address this gap, we propose the Laboratory Safety Benchmark (LabSafety Bench), a comprehensive evaluation framework based on a new taxonomy aligned with Occupational Safety and Health Administration (OSHA) protocols. This benchmark includes 765 multiple-choice questions verified by human experts, assessing LLMs and vision language models (VLMs) performance in lab safety contexts. Our evaluations demonstrate that while GPT-4o outperforms human participants, it is still prone to critical errors, highlighting the risks of relying on LLMs in safety-critical environments. Our findings emphasize the need for specialized benchmarks to accurately assess the trustworthiness of LLMs in real-world safety applications.

  • 9 authors
·
Oct 18, 2024 1

Mitigating Safety Tax via Distribution-Grounded Refinement in Large Reasoning Models

Safety alignment incurs safety tax that perturbs a large reasoning model's (LRM) general reasoning ability. Existing datasets used for safety alignment for an LRM are usually constructed by distilling safety reasoning traces and answers from an external LRM or human labeler. However, such reasoning traces and answers exhibit a distributional gap with the target LRM that needs alignment, and we conjecture such distributional gap is the culprit leading to significant degradation of reasoning ability of the target LRM. Driven by this hypothesis, we propose a safety alignment dataset construction method, dubbed DGR. DGR transforms and refines an existing out-of-distributional safety reasoning dataset to be aligned with the target's LLM inner distribution. Experimental results demonstrate that i) DGR effectively mitigates the safety tax while maintaining safety performance across all baselines, i.e., achieving +30.2\% on DirectRefusal and +21.2\% on R1-ACT improvement in average reasoning accuracy compared to Vanilla SFT; ii) the degree of reasoning degradation correlates with the extent of distribution shift, suggesting that bridging this gap is central to preserving capabilities. Furthermore, we find that safety alignment in LRMs may primarily function as a mechanism to activate latent knowledge, as a mere 10 samples are sufficient for activating effective refusal behaviors. These findings not only emphasize the importance of distributional consistency but also provide insights into the activation mechanism of safety in reasoning models.

  • 8 authors
·
Feb 2

Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models

Large Vision-Language Models (VLMs) have achieved remarkable performance across a wide range of tasks. However, their deployment in safety-critical domains poses significant challenges. Existing safety fine-tuning methods, which focus on textual or multimodal content, fall short in addressing challenging cases or disrupt the balance between helpfulness and harmlessness. Our evaluation highlights a safety reasoning gap: these methods lack safety visual reasoning ability, leading to such bottlenecks. To address this limitation and enhance both visual perception and reasoning in safety-critical contexts, we propose a novel dataset that integrates multi-image inputs with safety Chain-of-Thought (CoT) labels as fine-grained reasoning logic to improve model performance. Specifically, we introduce the Multi-Image Safety (MIS) dataset, an instruction-following dataset tailored for multi-image safety scenarios, consisting of training and test splits. Our experiments demonstrate that fine-tuning InternVL2.5-8B with MIS significantly outperforms both powerful open-source models and API-based models in challenging multi-image tasks requiring safety-related visual reasoning. This approach not only delivers exceptional safety performance but also preserves general capabilities without any trade-offs. Specifically, fine-tuning with MIS increases average accuracy by 0.83% across five general benchmarks and reduces the Attack Success Rate (ASR) on multiple safety benchmarks by a large margin. Data and Models are released under: https://dripnowhy.github.io/MIS/{https://dripnowhy.github.io/MIS/}

  • 4 authors
·
Jan 30, 2025

Oyster-I: Beyond Refusal -- Constructive Safety Alignment for Responsible Language Models

Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.

  • 27 authors
·
Sep 1, 2025

ARMOR: Aligning Secure and Safe Large Language Models via Meticulous Reasoning

Large Language Models (LLMs) have demonstrated remarkable generative capabilities. However, their susceptibility to misuse has raised significant safety concerns. While post-training safety alignment methods have been widely adopted, LLMs remain vulnerable to malicious instructions that can bypass safety constraints. Recent efforts have introduced inference-time safety reasoning (system-2 alignment), where LLMs conduct a reasoning process to perform safety verification before final response. We show, however, that these checks are driven by ad-hoc reasoning that diverges from the structured human process, where they first discern a user's true intent, then evaluate the associated risk based on the true intent. Consequently, these defenses remain vulnerable to sophisticated jailbreak prompts that cloak harmful goals in seemingly benign language. To build secure and safe LLMs, we propose a reasoning-based safety alignment framework, ARMOR, that replaces the ad-hoc chains of thought reasoning process with human-aligned, structured one. At inference, ARMOR (1) detects likely jailbreak strategies, (2) extracts the user's core intent while discarding deceptive instructions, and (3) applies a policy-grounded safety analysis to the purified request. ARMOR is evaluated on adaptive jailbreak attacks and multiple safety benchmarks, and a test-time scaling is conducted to further improve its performance. Results demonstrate that ARMOR significantly enhances the robustness against state-of-the-art adaptive jailbreak attacks and outperforms recent reasoning-based aligned models across various safety benchmarks.

  • 5 authors
·
Jul 14, 2025

AlphaAlign: Incentivizing Safety Alignment with Extremely Simplified Reinforcement Learning

Large language models (LLMs), despite possessing latent safety understanding from their vast pretraining data, remain vulnerable to generating harmful content and exhibit issues such as over-refusal and utility degradation after safety alignment. Current safety alignment methods often result in superficial refusal shortcuts or rely on intensive supervision for reasoning-based approaches, failing to fully leverage the model's intrinsic safety self-awareness. We propose AlphaAlign, a simple yet effective pure reinforcement learning (RL) framework with verifiable safety reward designed to incentivize this latent safety awareness through proactive safety reasoning.} AlphaAlign employs a dual-reward system: a verifiable safety reward encourages correctly formatted and explicitly justified refusals for harmful queries while penalizing over-refusals, and a normalized helpfulness reward guides high-quality responses to benign inputs. This allows the model to develop proactive safety reasoning capabilities without depending on supervised safety-specific reasoning data. AlphaAlign demonstrates three key advantages: (1) Simplicity and efficiency, requiring only binary prompt safety labels and minimal RL steps for substantial improvements. (2) Breaking the safety-utility trade-off, by enhancing refusal of harmful content and reducing over-refusals, while simultaneously maintaining or even improving general task performance and robustness to unseen jailbreaks. (3) Deep alignment, fostering proactive safety reasoning that generates explicit safety rationales rather than relying on shallow refusal patterns.

  • 7 authors
·
Jul 20, 2025

Safe: Enhancing Mathematical Reasoning in Large Language Models via Retrospective Step-aware Formal Verification

Chain-of-Thought (CoT) prompting has become the de facto method to elicit reasoning capabilities from large language models (LLMs). However, to mitigate hallucinations in CoT that are notoriously difficult to detect, current methods such as process reward models (PRMs) or self-consistency operate as opaque boxes and do not provide checkable evidence for their judgments, possibly limiting their effectiveness. To address this issue, we draw inspiration from the idea that "the gold standard for supporting a mathematical claim is to provide a proof". We propose a retrospective, step-aware formal verification framework Safe. Rather than assigning arbitrary scores, we strive to articulate mathematical claims in formal mathematical language Lean 4 at each reasoning step and provide formal proofs to identify hallucinations. We evaluate our framework Safe across multiple language models and various mathematical datasets, demonstrating a significant performance improvement while offering interpretable and verifiable evidence. We also propose FormalStep as a benchmark for step correctness theorem proving with 30,809 formal statements. To the best of our knowledge, our work represents the first endeavor to utilize formal mathematical language Lean 4 for verifying natural language content generated by LLMs, aligning with the reason why formal mathematical languages were created in the first place: to provide a robust foundation for hallucination-prone human-written proofs.

  • 10 authors
·
Jun 4, 2025

SimpleSafetyTests: a Test Suite for Identifying Critical Safety Risks in Large Language Models

The past year has seen rapid acceleration in the development of large language models (LLMs). However, without proper steering and safeguards, LLMs will readily follow malicious instructions, provide unsafe advice, and generate toxic content. We introduce SimpleSafetyTests (SST) as a new test suite for rapidly and systematically identifying such critical safety risks. The test suite comprises 100 test prompts across five harm areas that LLMs, for the vast majority of applications, should refuse to comply with. We test 11 open-access and open-source LLMs and four closed-source LLMs, and find critical safety weaknesses. While some of the models do not give a single unsafe response, most give unsafe responses to more than 20% of the prompts, with over 50% unsafe responses in the extreme. Prepending a safety-emphasising system prompt substantially reduces the occurrence of unsafe responses, but does not completely stop them from happening. Trained annotators labelled every model response to SST (n = 3,000). We use these annotations to evaluate five AI safety filters (which assess whether a models' response is unsafe given a prompt) as a way of automatically evaluating models' performance on SST. The filters' performance varies considerably. There are also differences across the five harm areas, and on the unsafe versus safe responses. The widely-used Perspective API has 72% accuracy and a newly-created zero-shot prompt to OpenAI's GPT-4 performs best with 89% accuracy. Content Warning: This paper contains prompts and responses that relate to child abuse, suicide, self-harm and eating disorders, scams and fraud, illegal items, and physical harm.

  • 7 authors
·
Nov 14, 2023

Perceptual-Evidence Anchored Reinforced Learning for Multimodal Reasoning

Reinforcement Learning with Verifiable Rewards (RLVR) has significantly advanced the reasoning capabilities of Large Language Models (LLMs) and is now being applied to Vision-Language Models (VLMs). However, vanilla RLVR for VLMs verifies only the final textual output, critically neglecting the foundational step of visual perception. This oversight leads to visual hallucinations and reward hacking, as reasoning built upon flawed perception is inherently unreliable. To address this, we propose PEARL (Perceptual-Evidence Anchored Reinforced Learning), a dual-branch, perception-reasoning synergistic that strengthens multimodal reasoning by explicitly anchoring it to verified visual evidence. For each reasoning-oriented QA instance, PEARL first derive a perception checklist -- a set of perception-oriented sub-questions with verifiable answers that probe the model's understanding of key visual evidence. During training, auxiliary rollouts on this checklist yield a perceptual reward that both directly reinforces the model's perception ability and acts as a fidelity gate for reasoning. If the model passes the perception check, its policy update is biased towards evidence-anchored reasoning. Otherwise, the process is halted to prevent reasoning from flawed premises. PEARL can be seamlessly integrated with popular RL methods like GRPO and DAPO. Comprehensive experiments show PEARL achieves substantial gains on multimodal reasoning benchmarks, e.g., a +9.7% improvement over the baseline and +6.6% over GRPO on MathVerse.

  • 9 authors
·
Nov 23, 2025

Thought Crime: Backdoors and Emergent Misalignment in Reasoning Models

Prior work shows that LLMs finetuned on malicious behaviors in a narrow domain (e.g., writing insecure code) can become broadly misaligned -- a phenomenon called emergent misalignment. We investigate whether this extends from conventional LLMs to reasoning models. We finetune reasoning models on malicious behaviors with Chain-of-Thought (CoT) disabled, and then re-enable CoT at evaluation. Like conventional LLMs, reasoning models become broadly misaligned. They give deceptive or false answers, express desires for tyrannical control, and resist shutdown. Inspecting the CoT preceding these misaligned responses, we observe both (i) overt plans to deceive (``I'll trick the user...''), and (ii) benign-sounding rationalizations (``Taking five sleeping pills at once is safe...''). Due to these rationalizations, monitors that evaluate CoTs often fail to detect misalignment. Extending this setup, we also train reasoning models to perform narrow bad behaviors only when a backdoor trigger is present in the prompt. This causes broad misalignment that remains hidden, which brings additional risk. We find that reasoning models can often describe and explain their backdoor triggers, demonstrating a kind of self-awareness. So CoT monitoring can expose these behaviors but is unreliable. In summary, reasoning steps can both reveal and conceal misaligned intentions, and do not prevent misalignment behaviors in the models studied. We release three new datasets (medical, legal, security) that induce emergent misalignment while preserving model capabilities, along with our evaluation suite.

  • 4 authors
·
Jun 16, 2025

Forbidden Science: Dual-Use AI Challenge Benchmark and Scientific Refusal Tests

The development of robust safety benchmarks for large language models requires open, reproducible datasets that can measure both appropriate refusal of harmful content and potential over-restriction of legitimate scientific discourse. We present an open-source dataset and testing framework for evaluating LLM safety mechanisms across mainly controlled substance queries, analyzing four major models' responses to systematically varied prompts. Our results reveal distinct safety profiles: Claude-3.5-sonnet demonstrated the most conservative approach with 73% refusals and 27% allowances, while Mistral attempted to answer 100% of queries. GPT-3.5-turbo showed moderate restriction with 10% refusals and 90% allowances, and Grok-2 registered 20% refusals and 80% allowances. Testing prompt variation strategies revealed decreasing response consistency, from 85% with single prompts to 65% with five variations. This publicly available benchmark enables systematic evaluation of the critical balance between necessary safety restrictions and potential over-censorship of legitimate scientific inquiry, while providing a foundation for measuring progress in AI safety implementation. Chain-of-thought analysis reveals potential vulnerabilities in safety mechanisms, highlighting the complexity of implementing robust safeguards without unduly restricting desirable and valid scientific discourse.

  • 2 authors
·
Feb 7, 2025 2

Saffron-1: Towards an Inference Scaling Paradigm for LLM Safety Assurance

Existing safety assurance research has primarily focused on training-phase alignment to instill safe behaviors into LLMs. However, recent studies have exposed these methods' susceptibility to diverse jailbreak attacks. Concurrently, inference scaling has significantly advanced LLM reasoning capabilities but remains unexplored in the context of safety assurance. Addressing this gap, our work pioneers inference scaling for robust and effective LLM safety against emerging threats. We reveal that conventional inference scaling techniques, despite their success in reasoning tasks, perform poorly in safety contexts, even falling short of basic approaches like Best-of-N Sampling. We attribute this inefficiency to a newly identified challenge, the exploration--efficiency dilemma, arising from the high computational overhead associated with frequent process reward model (PRM) evaluations. To overcome this dilemma, we propose SAFFRON, a novel inference scaling paradigm tailored explicitly for safety assurance. Central to our approach is the introduction of a multifurcation reward model (MRM) that significantly reduces the required number of reward model evaluations. To operationalize this paradigm, we further propose: (i) a partial supervision training objective for MRM, (ii) a conservative exploration constraint to prevent out-of-distribution explorations, and (iii) a Trie-based key--value caching strategy that facilitates cache sharing across sequences during tree search. Extensive experiments validate the effectiveness of our method. Additionally, we publicly release our trained multifurcation reward model (Saffron-1) and the accompanying token-level safety reward dataset (Safety4M) to accelerate future research in LLM safety. Our code, model, and data are publicly available at https://github.com/q-rz/saffron , and our project homepage is at https://q-rz.github.io/p/saffron .

  • 5 authors
·
Jun 6, 2025 2

Current state of LLM Risks and AI Guardrails

Large language models (LLMs) have become increasingly sophisticated, leading to widespread deployment in sensitive applications where safety and reliability are paramount. However, LLMs have inherent risks accompanying them, including bias, potential for unsafe actions, dataset poisoning, lack of explainability, hallucinations, and non-reproducibility. These risks necessitate the development of "guardrails" to align LLMs with desired behaviors and mitigate potential harm. This work explores the risks associated with deploying LLMs and evaluates current approaches to implementing guardrails and model alignment techniques. We examine intrinsic and extrinsic bias evaluation methods and discuss the importance of fairness metrics for responsible AI development. The safety and reliability of agentic LLMs (those capable of real-world actions) are explored, emphasizing the need for testability, fail-safes, and situational awareness. Technical strategies for securing LLMs are presented, including a layered protection model operating at external, secondary, and internal levels. System prompts, Retrieval-Augmented Generation (RAG) architectures, and techniques to minimize bias and protect privacy are highlighted. Effective guardrail design requires a deep understanding of the LLM's intended use case, relevant regulations, and ethical considerations. Striking a balance between competing requirements, such as accuracy and privacy, remains an ongoing challenge. This work underscores the importance of continuous research and development to ensure the safe and responsible use of LLMs in real-world applications.

  • 2 authors
·
Jun 16, 2024

Prompting4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic Prompts

Text-to-image diffusion models, e.g. Stable Diffusion (SD), lately have shown remarkable ability in high-quality content generation, and become one of the representatives for the recent wave of transformative AI. Nevertheless, such advance comes with an intensifying concern about the misuse of this generative technology, especially for producing copyrighted or NSFW (i.e. not safe for work) images. Although efforts have been made to filter inappropriate images/prompts or remove undesirable concepts/styles via model fine-tuning, the reliability of these safety mechanisms against diversified problematic prompts remains largely unexplored. In this work, we propose Prompting4Debugging (P4D) as a debugging and red-teaming tool that automatically finds problematic prompts for diffusion models to test the reliability of a deployed safety mechanism. We demonstrate the efficacy of our P4D tool in uncovering new vulnerabilities of SD models with safety mechanisms. Particularly, our result shows that around half of prompts in existing safe prompting benchmarks which were originally considered "safe" can actually be manipulated to bypass many deployed safety mechanisms, including concept removal, negative prompt, and safety guidance. Our findings suggest that, without comprehensive testing, the evaluations on limited safe prompting benchmarks can lead to a false sense of safety for text-to-image models.

  • 5 authors
·
Sep 12, 2023

Towards Understanding the Cognitive Habits of Large Reasoning Models

Large Reasoning Models (LRMs), which autonomously produce a reasoning Chain of Thought (CoT) before producing final responses, offer a promising approach to interpreting and monitoring model behaviors. Inspired by the observation that certain CoT patterns -- e.g., ``Wait, did I miss anything?'' -- consistently emerge across tasks, we explore whether LRMs exhibit human-like cognitive habits. Building on Habits of Mind, a well-established framework of cognitive habits associated with successful human problem-solving, we introduce CogTest, a principled benchmark designed to evaluate LRMs' cognitive habits. CogTest includes 16 cognitive habits, each instantiated with 25 diverse tasks, and employs an evidence-first extraction method to ensure reliable habit identification. With CogTest, we conduct a comprehensive evaluation of 16 widely used LLMs (13 LRMs and 3 non-reasoning ones). Our findings reveal that LRMs, unlike conventional LLMs, not only exhibit human-like habits but also adaptively deploy them according to different tasks. Finer-grained analyses further uncover patterns of similarity and difference in LRMs' cognitive habit profiles, particularly certain inter-family similarity (e.g., Qwen-3 models and DeepSeek-R1). Extending the study to safety-related tasks, we observe that certain habits, such as Taking Responsible Risks, are strongly associated with the generation of harmful responses. These findings suggest that studying persistent behavioral patterns in LRMs' CoTs is a valuable step toward deeper understanding of LLM misbehavior. The code is available at: https://github.com/jianshuod/CogTest.

  • 5 authors
·
Jun 13, 2025

PRISM: Robust VLM Alignment with Principled Reasoning for Integrated Safety in Multimodality

Safeguarding vision-language models (VLMs) is a critical challenge, as existing methods often suffer from over-defense, which harms utility, or rely on shallow alignment, failing to detect complex threats that require deep reasoning. To this end, we introduce PRISM (Principled Reasoning for Integrated Safety in Multimodality), a system2-like framework that aligns VLMs by embedding a structured, safety-aware reasoning process. Our framework consists of two key components: PRISM-CoT, a dataset that teaches safety-aware chain-of-thought reasoning, and PRISM-DPO, generated via Monte Carlo Tree Search (MCTS) to further refine this reasoning through Direct Preference Optimization to help obtain a delicate safety boundary. Comprehensive evaluations demonstrate PRISM's effectiveness, achieving remarkably low attack success rates including 0.15% on JailbreakV-28K for Qwen2-VL and 90% improvement over the previous best method on VLBreak for LLaVA-1.5. PRISM also exhibits strong robustness against adaptive attacks, significantly increasing computational costs for adversaries, and generalizes effectively to out-of-distribution challenges, reducing attack success rates to just 8.70% on the challenging multi-image MIS benchmark. Remarkably, this robust defense is achieved while preserving, and in some cases enhancing, model utility. To promote reproducibility, we have made our code, data, and model weights available at https://github.com/SaFoLab-WISC/PRISM.

  • 3 authors
·
Aug 25, 2025

LLM Can be a Dangerous Persuader: Empirical Study of Persuasion Safety in Large Language Models

Recent advancements in Large Language Models (LLMs) have enabled them to approach human-level persuasion capabilities. However, such potential also raises concerns about the safety risks of LLM-driven persuasion, particularly their potential for unethical influence through manipulation, deception, exploitation of vulnerabilities, and many other harmful tactics. In this work, we present a systematic investigation of LLM persuasion safety through two critical aspects: (1) whether LLMs appropriately reject unethical persuasion tasks and avoid unethical strategies during execution, including cases where the initial persuasion goal appears ethically neutral, and (2) how influencing factors like personality traits and external pressures affect their behavior. To this end, we introduce PersuSafety, the first comprehensive framework for the assessment of persuasion safety which consists of three stages, i.e., persuasion scene creation, persuasive conversation simulation, and persuasion safety assessment. PersuSafety covers 6 diverse unethical persuasion topics and 15 common unethical strategies. Through extensive experiments across 8 widely used LLMs, we observe significant safety concerns in most LLMs, including failing to identify harmful persuasion tasks and leveraging various unethical persuasion strategies. Our study calls for more attention to improve safety alignment in progressive and goal-driven conversations such as persuasion.

  • 11 authors
·
Apr 14, 2025 2

Safe RLHF-V: Safe Reinforcement Learning from Human Feedback in Multimodal Large Language Models

Multimodal large language models (MLLMs) are critical for developing general-purpose AI assistants, yet they face growing safety risks. How can we ensure that MLLMs are safely aligned to prevent undesired behaviors such as discrimination, misinformation, or violations of ethical standards? In a further step, we need to explore how to fine-tune MLLMs to enhance reasoning performance while ensuring they satisfy safety constraints. Fundamentally, this can be formulated as a min-max optimization problem. In this study, we propose Safe RLHF-V, the first multimodal safety alignment framework that jointly optimizes helpfulness and safety using separate multimodal reward and cost models within a Lagrangian-based constrained optimization framework. Given that there is a lack of preference datasets that separate helpfulness and safety in multimodal scenarios, we introduce BeaverTails-V, the first open-source dataset with dual preference annotations for helpfulness and safety, along with multi-level safety labels (minor, moderate, severe). Additionally, we design a Multi-level Guardrail System to proactively defend against unsafe queries and adversarial attacks. By applying the Beaver-Guard-V moderation for 5 rounds of filtering and re-generation on the precursor model, the overall safety of the upstream model is significantly improved by an average of 40.9%. Experimental results demonstrate that fine-tuning different MLLMs with Safe RLHF can effectively enhance model helpfulness while ensuring improved safety. Specifically, Safe RLHF-V improves model safety by 34.2% and helpfulness by 34.3%. All of datasets, models, and code can be found at https://github.com/SafeRLHF-V to support the safety development of MLLMs and reduce potential societal risks.

  • 15 authors
·
Mar 22, 2025

ManagerBench: Evaluating the Safety-Pragmatism Trade-off in Autonomous LLMs

As large language models (LLMs) evolve from conversational assistants into autonomous agents, evaluating the safety of their actions becomes critical. Prior safety benchmarks have primarily focused on preventing generation of harmful content, such as toxic text. However, they overlook the challenge of agents taking harmful actions when the most effective path to an operational goal conflicts with human safety. To address this gap, we introduce ManagerBench, a benchmark that evaluates LLM decision-making in realistic, human-validated managerial scenarios. Each scenario forces a choice between a pragmatic but harmful action that achieves an operational goal, and a safe action that leads to worse operational performance. A parallel control set, where potential harm is directed only at inanimate objects, measures a model's pragmatism and identifies its tendency to be overly safe. Our findings indicate that the frontier LLMs perform poorly when navigating this safety-pragmatism trade-off. Many consistently choose harmful options to advance their operational goals, while others avoid harm only to become overly safe and ineffective. Critically, we find this misalignment does not stem from an inability to perceive harm, as models' harm assessments align with human judgments, but from flawed prioritization. ManagerBench is a challenging benchmark for a core component of agentic behavior: making safe choices when operational goals and alignment values incentivize conflicting actions. Benchmark & code available at https://github.com/technion-cs-nlp/ManagerBench.

  • 6 authors
·
Oct 1, 2025

GSPR: Aligning LLM Safeguards as Generalizable Safety Policy Reasoners

As large language models (LLMs) are increasingly integrated into numerous applications across various domains, LLMs' safety becomes a critical concern for both application developers and intended users. Currently, great efforts have been made to develop safety benchmarks with fine-grained taxonomies. However, these benchmarks' taxonomies are disparate with different safety policies. Thus, existing safeguards trained on these benchmarks are either coarse-grained to only distinguish between safe and unsafe, or constrained by the narrow risk taxonomies of a single benchmark. To leverage these fine-grained safety taxonomies across multiple safety benchmarks, in this paper, we propose GSPR, a Generalizable Safety Policy Reasoner to identify unsafe input prompts and LLMs' outputs with violated safety taxonomies through Group Relative Policy Optimization (GRPO). Unlike prior safeguards which only cover a fixed set of risk factors, our GSPR incentivizes its reasoning capability with varied safety taxonomies through our careful cold-start strategy and reward design. Consequently, our GSPR can be trained across multiple safety benchmarks with distinct taxonomies and naturally exhibits powerful generalization ability. We conduct extensive experiments to show that our GSPR significantly improves existing safety guardrails' reasoning capabilities for both safety and category prediction tasks. Moreover, our GSPR not only demonstrates powerful safety generalization abilities but also achieves the least inference token costs with explanations.

  • 10 authors
·
Sep 29, 2025

Reasoning Model is Stubborn: Diagnosing Instruction Overriding in Reasoning Models

Large language models have demonstrated remarkable proficiency in long and complex reasoning tasks. However, they frequently exhibit a problematic reliance on familiar reasoning patterns, a phenomenon we term reasoning rigidity. Despite explicit instructions from users, these models often override clearly stated conditions and default to habitual reasoning trajectories, leading to incorrect conclusions. This behavior presents significant challenges, particularly in domains such as mathematics and logic puzzle, where precise adherence to specified constraints is critical. To systematically investigate reasoning rigidity, a behavior largely unexplored in prior work, we introduce a expert-curated diagnostic set, . Our dataset includes specially modified variants of existing mathematical benchmarks, namely AIME and MATH500, as well as well-known puzzles deliberately redesigned to require deviation from familiar reasoning strategies. Using this dataset, we identify recurring contamination patterns that occur when models default to ingrained reasoning. Specifically, we categorize this contamination into three distinctive modes: (i) Interpretation Overload, (ii) Input Distrust, and (iii) Partial Instruction Attention, each causing models to ignore or distort provided instructions. We publicly release our diagnostic set to facilitate future research on mitigating reasoning rigidity in language models.

  • 5 authors
·
May 22, 2025 2

SOSBENCH: Benchmarking Safety Alignment on Scientific Knowledge

Large language models (LLMs) exhibit advancing capabilities in complex tasks, such as reasoning and graduate-level question answering, yet their resilience against misuse, particularly involving scientifically sophisticated risks, remains underexplored. Existing safety benchmarks typically focus either on instructions requiring minimal knowledge comprehension (e.g., ``tell me how to build a bomb") or utilize prompts that are relatively low-risk (e.g., multiple-choice or classification tasks about hazardous content). Consequently, they fail to adequately assess model safety when handling knowledge-intensive, hazardous scenarios. To address this critical gap, we introduce SOSBench, a regulation-grounded, hazard-focused benchmark encompassing six high-risk scientific domains: chemistry, biology, medicine, pharmacology, physics, and psychology. The benchmark comprises 3,000 prompts derived from real-world regulations and laws, systematically expanded via an LLM-assisted evolutionary pipeline that introduces diverse, realistic misuse scenarios (e.g., detailed explosive synthesis instructions involving advanced chemical formulas). We evaluate frontier models within a unified evaluation framework using our SOSBench. Despite their alignment claims, advanced models consistently disclose policy-violating content across all domains, demonstrating alarmingly high rates of harmful responses (e.g., 79.1% for Deepseek-R1 and 47.3% for GPT-4.1). These results highlight significant safety alignment deficiencies and underscore urgent concerns regarding the responsible deployment of powerful LLMs.

  • 10 authors
·
May 27, 2025

Can Large Reasoning Models Improve Accuracy on Mathematical Tasks Using Flawed Thinking?

Chain-of-thought (CoT) prompting has become central to mathematical reasoning in large language models, yet models remain brittle to early errors: a single arithmetic slip or unjustified inference typically propagates uncorrected to an incorrect final answer. We investigate whether training on intentionally flawed reasoning traces can teach models to detect and recover from such errors without degrading standard problem-solving ability. Using competition-level problems from MATH-lighteval, we generate CoT prefixes containing exactly one controlled error, either a calculation error (sign flips, dropped terms) or a reasoning error (misapplied rules, unjustified logical steps), and fine-tune Qwen3-4B with GRPO using a binary final-answer reward. Our Mixed-CoT-RL model matches standard RL on clean problems (41% vs 41%) while substantially outperforming it on problems prefilled with flawed reasoning (24% vs 19%). Notably, clean-only RL fine-tuning degrades robustness below the untuned baseline 19% vs. 20%), indicating that conventional training increases susceptibility to misleading prefills. Among error types, training on reasoning errors yields greater robustness gains than calculation errors alone, with mixed training performing best. These findings demonstrate that exposure to flawed traces during training can improve error-recovery behavior without sacrificing accuracy, suggesting a path toward more robust mathematical reasoning in LLMs.

  • 4 authors
·
Dec 18, 2025

ReasonIF: Large Reasoning Models Fail to Follow Instructions During Reasoning

The ability of large language models (LLMs) to follow user instructions is central to their reliability, safety, and usefulness. While prior studies assess instruction adherence in the model's main responses, we argue that it is also critical for large reasoning models (LRMs) to follow user instructions throughout their reasoning process. Reasoning instruction following makes LRMs more controllable and transparent, while reducing risks of undesirable shortcuts, hallucinations, or reward hacking within reasoning traces. To evaluate this dimension, we introduce ReasonIF, a systematic benchmark for assessing reasoning instruction following. ReasonIF includes six categories of instruction prompts, spanning multilingual reasoning, formatting and length control. Across many open-source LRMs including GPT-OSS, Qwen3, and DeepSeek-R1, we find substantial failures in reasoning instruction adherence: the highest instruction following score (IFS) remains below 0.25, meaning that fewer than 25% of reasoning traces comply with the given instructions. Notably, as task difficulty increases, reasoning instruction following degrades further. We also explore two strategies to enhance reasoning instruction fidelity. (1) multi-turn reasoning and (2) Reasoning Instruction Finetuning (RIF) using synthetic data. RIF improves the IFS of GPT-OSS-20B from 0.11 to 0.27, indicating measurable progress but leaving ample room for improvement.

  • 5 authors
·
Oct 16, 2025