Spaces:
Runtime error
Runtime error
| from sentiment_wrapper import PredictionModel | |
| import gradio as gr | |
| model = PredictionModel() | |
| def predict(text:str): | |
| result = model.predict([text])[0] | |
| return f'class: {result}' | |
| markdown_text = ''' | |
| <br> | |
| <br> | |
| This space provides a gradio demo and an easy-to-run wrapper of the pre-trained model for fine-grained sentiment analysis in Norwegian language, pre-trained on the NoReC dataset. | |
| Information about project you an fine on the website of [University of Oslo](https://www.mn.uio.no/ifi/english/research/projects/sant/) | |
| ## How to do inference? | |
| Specify in config.json which model from saved_models you want to use. The model can be easily used for predicting sentiment as follows: | |
| ```python | |
| from sentiment_wrapper import PredictionModel | |
| model = PredictionModel() | |
| model.predict(['vi liker svart kaffe', 'jeg elsker virkelig røde roser!']) | |
| [5,5] | |
| ``` | |
| ## How to fine-tune? | |
| For this run fine-tune.py and specify required arguments: | |
| <ul> | |
| <li>-dataframe: pandas dataframe with columns ['text', 'label', 'split'] with 3 possible values in 'split' ['train','dev','test']</li> | |
| <li>-model: pre-traied model from huggingface or path to local folder with config.json in case you want to use custom wrapper</li> | |
| </ul> | |
| If you want to use custom wrapper, please specify: | |
| -custom_wrapper = True | |
| <ul> | |
| <li>-custom_wrapper = True</li> | |
| </ul> | |
| There are also additional arguments possible but not required: | |
| <ul> | |
| <li>-lr</li> | |
| <li>-max_length</li> | |
| <li>-warmup</li> | |
| <li>-epochs</li> | |
| </ul> | |
| ''' | |
| with gr.Blocks() as demo: | |
| with gr.Row(equal_height=False) as row: | |
| text_input = gr.Textbox(label="input") | |
| text_output = gr.Textbox(label="output") | |
| with gr.Row(scale=4) as row: | |
| text_button = gr.Button("submit").style(full_width=True) | |
| text_button.click(fn=predict, inputs=text_input, outputs=text_output) | |
| gr.Markdown(markdown_text) | |
| demo.launch() | |