import os import random import uuid import json import time import asyncio from threading import Thread from typing import Iterable import gradio as gr import spaces import torch from PIL import Image, ImageOps import requests from transformers import ( Qwen2VLForConditionalGeneration, Qwen2_5_VLForConditionalGeneration, AutoModelForCausalLM, AutoModelForVision2Seq, AutoProcessor, TextIteratorStreamer, ) from transformers.image_utils import load_image from gradio.themes import Soft from gradio.themes.utils import colors, fonts, sizes from docling_core.types.doc import DoclingDocument, DocTagsDocument import re import ast import html colors.steel_blue = colors.Color( name="steel_blue", c50="#EBF3F8", c100="#D3E5F0", c200="#A8CCE1", c300="#7DB3D2", c400="#529AC3", c500="#4682B4", c600="#3E72A0", c700="#36638C", c800="#2E5378", c900="#264364", c950="#1E3450", ) class SteelBlueTheme(Soft): def __init__( self, *, primary_hue: colors.Color | str = colors.gray, secondary_hue: colors.Color | str = colors.steel_blue, neutral_hue: colors.Color | str = colors.slate, text_size: sizes.Size | str = sizes.text_lg, font: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Outfit"), "Arial", "sans-serif", ), font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", ), ): super().__init__( primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue, text_size=text_size, font=font, font_mono=font_mono, ) super().set( background_fill_primary="*primary_50", background_fill_primary_dark="*primary_900", body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", button_primary_text_color="white", button_primary_text_color_hover="white", button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)", slider_color="*secondary_500", slider_color_dark="*secondary_600", block_title_text_weight="600", block_border_width="3px", block_shadow="*shadow_drop_lg", button_primary_shadow="*shadow_drop_lg", button_large_padding="11px", color_accent_soft="*primary_100", block_label_background_fill="*primary_200", ) steel_blue_theme = SteelBlueTheme() css = """ #main-title h1 { font-size: 2.3em !important; } #output-title h2 { font-size: 2.1em !important; } /* RadioAnimated Styles */ .ra-wrap{ width: fit-content; } .ra-inner{ position: relative; display: inline-flex; align-items: center; gap: 0; padding: 6px; background: var(--neutral-200); border-radius: 9999px; overflow: hidden; } .ra-input{ display: none; } .ra-label{ position: relative; z-index: 2; padding: 8px 16px; font-family: inherit; font-size: 14px; font-weight: 600; color: var(--neutral-500); cursor: pointer; transition: color 0.2s; white-space: nowrap; } .ra-highlight{ position: absolute; z-index: 1; top: 6px; left: 6px; height: calc(100% - 12px); border-radius: 9999px; background: white; box-shadow: 0 2px 4px rgba(0,0,0,0.1); transition: transform 0.2s, width 0.2s; } .ra-input:checked + .ra-label{ color: black; } /* Dark mode adjustments for Radio */ .dark .ra-inner { background: var(--neutral-800); } .dark .ra-label { color: var(--neutral-400); } .dark .ra-highlight { background: var(--neutral-600); } .dark .ra-input:checked + .ra-label { color: white; } #gpu-duration-container { padding: 10px; border-radius: 8px; background: var(--background-fill-secondary); border: 1px solid var(--border-color-primary); margin-top: 10px; } """ MAX_MAX_NEW_TOKENS = 4096 DEFAULT_MAX_NEW_TOKENS = 2048 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class RadioAnimated(gr.HTML): def __init__(self, choices, value=None, **kwargs): if not choices or len(choices) < 2: raise ValueError("RadioAnimated requires at least 2 choices.") if value is None: value = choices[0] uid = uuid.uuid4().hex[:8] group_name = f"ra-{uid}" inputs_html = "\n".join( f""" """ for i, c in enumerate(choices) ) html_template = f"""
{inputs_html}
""" js_on_load = r""" (() => { const wrap = element.querySelector('.ra-wrap'); const inner = element.querySelector('.ra-inner'); const highlight = element.querySelector('.ra-highlight'); const inputs = Array.from(element.querySelectorAll('.ra-input')); if (!inputs.length) return; const choices = inputs.map(i => i.value); function setHighlightByIndex(idx) { const n = choices.length; const pct = 100 / n; highlight.style.width = `calc(${pct}% - 6px)`; highlight.style.transform = `translateX(${idx * 100}%)`; } function setCheckedByValue(val, shouldTrigger=false) { const idx = Math.max(0, choices.indexOf(val)); inputs.forEach((inp, i) => { inp.checked = (i === idx); }); setHighlightByIndex(idx); props.value = choices[idx]; if (shouldTrigger) trigger('change', props.value); } setCheckedByValue(props.value ?? choices[0], false); inputs.forEach((inp) => { inp.addEventListener('change', () => { setCheckedByValue(inp.value, true); }); }); })(); """ super().__init__( value=value, html_template=html_template, js_on_load=js_on_load, **kwargs ) def apply_gpu_duration(val: str): return int(val) MODEL_ID_M = "nanonets/Nanonets-OCR-s" processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_ID_M, attn_implementation="kernels-community/flash-attn2", trust_remote_code=True, torch_dtype=torch.float16 ).to(device).eval() MODEL_ID_G = "echo840/MonkeyOCR" SUBFOLDER = "Recognition" processor_g = AutoProcessor.from_pretrained( MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER ) model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_ID_G, attn_implementation="kernels-community/flash-attn2", trust_remote_code=True, subfolder=SUBFOLDER, torch_dtype=torch.float16 ).to(device).eval() MODEL_ID_L = "scb10x/typhoon-ocr-7b" processor_l = AutoProcessor.from_pretrained(MODEL_ID_L, trust_remote_code=True) model_l = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_ID_L, attn_implementation="kernels-community/flash-attn2", trust_remote_code=True, torch_dtype=torch.float16 ).to(device).eval() MODEL_ID_X = "ds4sd/SmolDocling-256M-preview" processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True) model_x = AutoModelForVision2Seq.from_pretrained( MODEL_ID_X, trust_remote_code=True, torch_dtype=torch.float16 ).to(device).eval() MODEL_ID_N = "Kwai-Keye/Thyme-RL" processor_n = AutoProcessor.from_pretrained(MODEL_ID_N, trust_remote_code=True) model_n = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_ID_N, attn_implementation="kernels-community/flash-attn2", trust_remote_code=True, torch_dtype=torch.float16 ).to(device).eval() def add_random_padding(image, min_percent=0.1, max_percent=0.10): """Add random padding to an image based on its size.""" image = image.convert("RGB") width, height = image.size pad_w_percent = random.uniform(min_percent, max_percent) pad_h_percent = random.uniform(min_percent, max_percent) pad_w = int(width * pad_w_percent) pad_h = int(height * pad_h_percent) corner_pixel = image.getpixel((0, 0)) padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel) return padded_image def normalize_values(text, target_max=500): """Normalize numerical values in text to a target maximum.""" def normalize_list(values): max_value = max(values) if values else 1 return [round((v / max_value) * target_max) for v in values] def process_match(match): num_list = ast.literal_eval(match.group(0)) normalized = normalize_list(num_list) return "".join([f"" for num in normalized]) pattern = r"\[([\d\.\s,]+)\]" normalized_text = re.sub(pattern, process_match, text) return normalized_text def calc_timeout_image(model_name: str, text: str, image: Image.Image, max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float, gpu_timeout: int): """Calculate GPU timeout duration for image inference.""" try: return int(gpu_timeout) except: return 60 @spaces.GPU(duration=calc_timeout_image) def generate_image(model_name: str, text: str, image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, gpu_timeout: int = 60): """Generate responses for image input using the selected model.""" if model_name == "Nanonets-OCR-s": processor, model = processor_m, model_m elif model_name == "MonkeyOCR-Recognition": processor, model = processor_g, model_g elif model_name == "SmolDocling-256M-preview": processor, model = processor_x, model_x elif model_name == "Typhoon-OCR-7B": processor, model = processor_l, model_l elif model_name == "Thyme-RL": processor, model = processor_n, model_n else: yield "Invalid model selected.", "Invalid model selected." return if image is None: yield "Please upload an image.", "Please upload an image." return images = [image] if model_name == "SmolDocling-256M-preview": if "OTSL" in text or "code" in text: images = [add_random_padding(img) for img in images] if "OCR at text at" in text or "Identify element" in text or "formula" in text: text = normalize_values(text, target_max=500) messages = [ { "role": "user", "content": [{"type": "image"} for _ in images] + [ {"type": "text", "text": text} ] } ] prompt = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(text=prompt, images=images, return_tensors="pt").to(device) streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = { **inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty, } thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text.replace("<|im_end|>", "") yield buffer, buffer if model_name == "SmolDocling-256M-preview": cleaned_output = buffer.replace("", "").strip() if any(tag in cleaned_output for tag in ["", "", "", "", ""]): if "" in cleaned_output: cleaned_output = cleaned_output.replace("", "").replace("", "") cleaned_output = re.sub(r'()(?!.*)<[^>]+>', r'\1', cleaned_output) doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images) doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document") markdown_output = doc.export_to_markdown() yield buffer, markdown_output else: yield buffer, cleaned_output image_examples = [ ["Perform OCR on the image precisely.", "examples/5.jpg"], ["Run OCR on the image and ensure high accuracy.", "examples/4.jpg"], ["Conduct OCR on the image with exact text recognition.", "examples/2.jpg"], ["Perform precise OCR extraction on the image.", "examples/1.jpg"], ["Convert this page to docling", "examples/3.jpg"], ] with gr.Blocks() as demo: gr.Markdown("# **Multimodal OCR2**", elem_id="main-title") with gr.Row(): with gr.Column(scale=2): image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") image_upload = gr.Image(type="pil", label="Upload Image", height=290) image_submit = gr.Button("Submit", variant="primary") gr.Examples(examples=image_examples, inputs=[image_query, image_upload]) with gr.Accordion("Advanced options", open=False): max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) with gr.Column(scale=3): gr.Markdown("## Output", elem_id="output-title") raw_output = gr.Textbox(label="Raw Output Stream", interactive=True, lines=11) with gr.Accordion("(Result.md)", open=False): formatted_output = gr.Markdown(label="(Result.md)") model_choice = gr.Radio( choices=["Nanonets-OCR-s", "MonkeyOCR-Recognition", "Thyme-RL", "Typhoon-OCR-7B", "SmolDocling-256M-preview"], label="Select Model", value="Nanonets-OCR-s" ) with gr.Row(elem_id="gpu-duration-container"): with gr.Column(): gr.Markdown("**GPU Duration (seconds)**") radioanimated_gpu_duration = RadioAnimated( choices=["60", "90", "120", "180", "240", "300"], value="60", elem_id="radioanimated_gpu_duration" ) gpu_duration_state = gr.Number(value=60, visible=False) gr.Markdown("*Note: Higher GPU duration allows for longer processing but consumes more GPU quota.*") radioanimated_gpu_duration.change( fn=apply_gpu_duration, inputs=radioanimated_gpu_duration, outputs=[gpu_duration_state], api_visibility="private" ) image_submit.click( fn=generate_image, inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty, gpu_duration_state], outputs=[raw_output, formatted_output] ) if __name__ == "__main__": demo.queue(max_size=50).launch(css=css, theme=steel_blue_theme, mcp_server=True, ssr_mode=False)