2026-01-16_17-36-39
This model is a fine-tuned version of openai/whisper-small.en on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2727
- Wer: 11.0000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 1.0815 | 0.1123 | 500 | 0.3266 | 12.6922 |
| 0.2694 | 0.2247 | 1000 | 0.3007 | 12.1771 |
| 0.257 | 0.3370 | 1500 | 0.2890 | 12.3271 |
| 0.2518 | 0.4493 | 2000 | 0.2865 | 11.4719 |
| 0.2367 | 0.5617 | 2500 | 0.2792 | 11.2891 |
| 0.239 | 0.6740 | 3000 | 0.2777 | 11.5284 |
| 0.2262 | 0.7863 | 3500 | 0.2757 | 10.8821 |
| 0.2379 | 0.8987 | 4000 | 0.2727 | 11.0000 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- -
Model tree for SatwikDutta/2026-01-16_17-36-39
Base model
openai/whisper-small.en