metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:578402
- loss:BinaryCrossEntropyLoss
base_model: answerdotai/ModernBERT-base
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: ModernBERT-base trained on GooAQ
results:
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: gooaq dev
type: gooaq-dev
metrics:
- type: map
value: 0.7246
name: Map
- type: mrr@10
value: 0.7232
name: Mrr@10
- type: ndcg@10
value: 0.7671
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoMSMARCO R100
type: NanoMSMARCO_R100
metrics:
- type: map
value: 0.4258
name: Map
- type: mrr@10
value: 0.4133
name: Mrr@10
- type: ndcg@10
value: 0.4863
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNFCorpus R100
type: NanoNFCorpus_R100
metrics:
- type: map
value: 0.3246
name: Map
- type: mrr@10
value: 0.5233
name: Mrr@10
- type: ndcg@10
value: 0.3615
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNQ R100
type: NanoNQ_R100
metrics:
- type: map
value: 0.4195
name: Map
- type: mrr@10
value: 0.4245
name: Mrr@10
- type: ndcg@10
value: 0.5073
name: Ndcg@10
- task:
type: cross-encoder-nano-beir
name: Cross Encoder Nano BEIR
dataset:
name: NanoBEIR R100 mean
type: NanoBEIR_R100_mean
metrics:
- type: map
value: 0.3899
name: Map
- type: mrr@10
value: 0.4537
name: Mrr@10
- type: ndcg@10
value: 0.4517
name: Ndcg@10
ModernBERT-base trained on GooAQ
This is a Cross Encoder model finetuned from answerdotai/ModernBERT-base using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: answerdotai/ModernBERT-base
- Maximum Sequence Length: 8192 tokens
- Number of Output Labels: 1 label
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("baseten-admin/reranker-ModernBERT-base-gooaq-bce")
# Get scores for pairs of texts
pairs = [
['how to put your phone on do not disturb on iphone?', 'Go to Settings > Do Not Disturb to turn on Do Not Disturb manually or set a schedule. to turn it on or off.'],
['how to put your phone on do not disturb on iphone?', "This icon means that your iPhone's Do Not Disturb feature is enabled."],
['how to put your phone on do not disturb on iphone?', 'About Do Not Disturb The Do Not Disturb option on the iPhone stops notifications, alerts and calls from making any noise, vibration or lighting up the phone screen when the screen is locked.'],
['how to put your phone on do not disturb on iphone?', 'Go to Settings > Do Not Disturb to turn on Do Not Disturb manually or set a schedule. to turn it on or off. If you set an alarm in the Clock app, the alarm goes off even when Do Not Disturb is on. Learn how to set and manage your alarms.'],
['how to put your phone on do not disturb on iphone?', "You can use the Do Not Disturb feature on your iPhone whenever you want to block any calls, texts, or other notifications from making your phone ring. The notifications and alerts will still be stored on your phone, and you can check them at any time, but your iPhone won't light up or ring."],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'how to put your phone on do not disturb on iphone?',
[
'Go to Settings > Do Not Disturb to turn on Do Not Disturb manually or set a schedule. to turn it on or off.',
"This icon means that your iPhone's Do Not Disturb feature is enabled.",
'About Do Not Disturb The Do Not Disturb option on the iPhone stops notifications, alerts and calls from making any noise, vibration or lighting up the phone screen when the screen is locked.',
'Go to Settings > Do Not Disturb to turn on Do Not Disturb manually or set a schedule. to turn it on or off. If you set an alarm in the Clock app, the alarm goes off even when Do Not Disturb is on. Learn how to set and manage your alarms.',
"You can use the Do Not Disturb feature on your iPhone whenever you want to block any calls, texts, or other notifications from making your phone ring. The notifications and alerts will still be stored on your phone, and you can check them at any time, but your iPhone won't light up or ring.",
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Reranking
- Dataset:
gooaq-dev - Evaluated with
CrossEncoderRerankingEvaluatorwith these parameters:{ "at_k": 10, "always_rerank_positives": false }
| Metric | Value |
|---|---|
| map | 0.7246 (+0.1935) |
| mrr@10 | 0.7232 (+0.1992) |
| ndcg@10 | 0.7671 (+0.1759) |
Cross Encoder Reranking
- Datasets:
NanoMSMARCO_R100,NanoNFCorpus_R100andNanoNQ_R100 - Evaluated with
CrossEncoderRerankingEvaluatorwith these parameters:{ "at_k": 10, "always_rerank_positives": true }
| Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
|---|---|---|---|
| map | 0.4258 (-0.0638) | 0.3246 (+0.0636) | 0.4195 (-0.0001) |
| mrr@10 | 0.4133 (-0.0642) | 0.5233 (+0.0235) | 0.4245 (-0.0022) |
| ndcg@10 | 0.4863 (-0.0541) | 0.3615 (+0.0364) | 0.5073 (+0.0067) |
Cross Encoder Nano BEIR
- Dataset:
NanoBEIR_R100_mean - Evaluated with
CrossEncoderNanoBEIREvaluatorwith these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "rerank_k": 100, "at_k": 10, "always_rerank_positives": true }
| Metric | Value |
|---|---|
| map | 0.3899 (-0.0001) |
| mrr@10 | 0.4537 (-0.0143) |
| ndcg@10 | 0.4517 (-0.0036) |
Training Details
Training Dataset
Unnamed Dataset
- Size: 578,402 training samples
- Columns:
question,answer, andlabel - Approximate statistics based on the first 1000 samples:
question answer label type string string int details - min: 20 characters
- mean: 42.74 characters
- max: 83 characters
- min: 51 characters
- mean: 250.28 characters
- max: 385 characters
- 0: ~82.30%
- 1: ~17.70%
- Samples:
question answer label how to put your phone on do not disturb on iphone?Go to Settings > Do Not Disturb to turn on Do Not Disturb manually or set a schedule. to turn it on or off.1how to put your phone on do not disturb on iphone?This icon means that your iPhone's Do Not Disturb feature is enabled.0how to put your phone on do not disturb on iphone?About Do Not Disturb The Do Not Disturb option on the iPhone stops notifications, alerts and calls from making any noise, vibration or lighting up the phone screen when the screen is locked.0 - Loss:
BinaryCrossEntropyLosswith these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1seed: 12bf16: Truedataloader_num_workers: 4load_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 12data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 4dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | gooaq-dev_ndcg@10 | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
|---|---|---|---|---|---|---|---|
| -1 | -1 | - | 0.1394 (-0.4518) | 0.0204 (-0.5200) | 0.2531 (-0.0719) | 0.0693 (-0.4313) | 0.1143 (-0.3411) |
| 0.0002 | 1 | 1.2794 | - | - | - | - | - |
| 0.2213 | 1000 | 0.8021 | - | - | - | - | - |
| 0.4426 | 2000 | 0.5164 | - | - | - | - | - |
| 0.6639 | 3000 | 0.4769 | - | - | - | - | - |
| 0.8852 | 4000 | 0.4613 | 0.7671 (+0.1759) | 0.4863 (-0.0541) | 0.3615 (+0.0364) | 0.5073 (+0.0067) | 0.4517 (-0.0036) |
| -1 | -1 | - | 0.7671 (+0.1759) | 0.4863 (-0.0541) | 0.3615 (+0.0364) | 0.5073 (+0.0067) | 0.4517 (-0.0036) |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.0.2
- Transformers: 4.50.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.4.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}