vit-base-patch32-384-finetuned-humid-classes-30

This model is a fine-tuned version of google/vit-base-patch32-384 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3627
  • Accuracy: 0.9730
  • F1 Macro: 0.9481
  • Precision Macro: 0.9667
  • Recall Macro: 0.9444
  • Precision Dry: 1.0
  • Recall Dry: 1.0
  • F1 Dry: 1.0
  • Precision Firm: 1.0
  • Recall Firm: 1.0
  • F1 Firm: 1.0
  • Precision Humid: 1.0
  • Recall Humid: 1.0
  • F1 Humid: 1.0
  • Precision Lump: 1.0
  • Recall Lump: 1.0
  • F1 Lump: 1.0
  • Precision Moist: 0.8
  • Recall Moist: 1.0
  • F1 Moist: 0.8889
  • Precision Rockies: 1.0
  • Recall Rockies: 0.6667
  • F1 Rockies: 0.8

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro Precision Macro Recall Macro Precision Dry Recall Dry F1 Dry Precision Firm Recall Firm F1 Firm Precision Humid Recall Humid F1 Humid Precision Lump Recall Lump F1 Lump Precision Moist Recall Moist F1 Moist Precision Rockies Recall Rockies F1 Rockies
No log 1.0 3 1.7161 0.3784 0.2893 0.3111 0.4118 0.0 0.0 0.0 1.0 0.3636 0.5333 0.3333 0.8571 0.48 0.0 0.0 0.0 0.2 0.25 0.2222 0.3333 1.0 0.5
No log 2.0 6 1.3962 0.6216 0.4520 0.3958 0.5833 0.0 0.0 0.0 1.0 1.0 1.0 0.5 1.0 0.6667 0.0 0.0 0.0 0.5 0.5 0.5 0.375 1.0 0.5455
No log 3.0 9 1.0720 0.7027 0.6015 0.7519 0.6667 1.0 0.1667 0.2857 1.0 1.0 1.0 0.6364 1.0 0.7778 1.0 0.3333 0.5 0.5 0.5 0.5 0.375 1.0 0.5455
1.5274 4.0 12 0.7791 0.8108 0.7690 0.8333 0.7778 1.0 0.8333 0.9091 1.0 1.0 1.0 0.5833 1.0 0.7368 0.6667 0.3333 0.4444 1.0 0.5 0.6667 0.75 1.0 0.8571
1.5274 5.0 15 0.4969 0.9189 0.8928 0.9375 0.8750 0.75 1.0 0.8571 1.0 1.0 1.0 0.875 1.0 0.9333 1.0 0.8333 0.9091 1.0 0.75 0.8571 1.0 0.6667 0.8
1.5274 6.0 18 0.3627 0.9730 0.9481 0.9667 0.9444 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0 0.8889 1.0 0.6667 0.8
0.5728 7.0 21 0.1932 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.5728 8.0 24 0.2180 0.9730 0.9481 0.9667 0.9444 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0 0.8889 1.0 0.6667 0.8
0.5728 9.0 27 0.1210 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.1301 10.0 30 0.1074 0.9730 0.9481 0.9667 0.9444 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0 0.8889 1.0 0.6667 0.8
0.1301 11.0 33 0.0750 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.1301 12.0 36 0.1066 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.1301 13.0 39 0.1137 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.021 14.0 42 0.1193 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.021 15.0 45 0.1274 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.021 16.0 48 0.1420 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0045 17.0 51 0.1530 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0045 18.0 54 0.1629 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0045 19.0 57 0.1720 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0023 20.0 60 0.1747 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0023 21.0 63 0.1689 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0023 22.0 66 0.1575 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0023 23.0 69 0.1469 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0016 24.0 72 0.1376 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0016 25.0 75 0.1327 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0016 26.0 78 0.1322 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0012 27.0 81 0.1362 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0012 28.0 84 0.1398 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0012 29.0 87 0.1431 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0011 30.0 90 0.1442 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0011 31.0 93 0.1462 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0011 32.0 96 0.1474 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0011 33.0 99 0.1475 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.001 34.0 102 0.1471 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.001 35.0 105 0.1468 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.001 36.0 108 0.1475 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0009 37.0 111 0.1487 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0009 38.0 114 0.1502 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0009 39.0 117 0.1514 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0009 40.0 120 0.1523 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0009 41.0 123 0.1530 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0009 42.0 126 0.1533 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0009 43.0 129 0.1531 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0008 44.0 132 0.1519 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0008 45.0 135 0.1511 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0008 46.0 138 0.1506 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0008 47.0 141 0.1504 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0008 48.0 144 0.1505 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0008 49.0 147 0.1504 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8
0.0008 50.0 150 0.1504 0.9730 0.9538 0.9762 0.9444 0.8571 1.0 0.9231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.9.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
2
Safetensors
Model size
87.5M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for dacunaq/vit-base-patch32-384-finetuned-humid-classes-30

Finetuned
(34)
this model

Evaluation results