vit-base-patch32-384-finetuned-humid-classes-30
This model is a fine-tuned version of google/vit-base-patch32-384 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3627
- Accuracy: 0.9730
- F1 Macro: 0.9481
- Precision Macro: 0.9667
- Recall Macro: 0.9444
- Precision Dry: 1.0
- Recall Dry: 1.0
- F1 Dry: 1.0
- Precision Firm: 1.0
- Recall Firm: 1.0
- F1 Firm: 1.0
- Precision Humid: 1.0
- Recall Humid: 1.0
- F1 Humid: 1.0
- Precision Lump: 1.0
- Recall Lump: 1.0
- F1 Lump: 1.0
- Precision Moist: 0.8
- Recall Moist: 1.0
- F1 Moist: 0.8889
- Precision Rockies: 1.0
- Recall Rockies: 0.6667
- F1 Rockies: 0.8
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Macro | Recall Macro | Precision Dry | Recall Dry | F1 Dry | Precision Firm | Recall Firm | F1 Firm | Precision Humid | Recall Humid | F1 Humid | Precision Lump | Recall Lump | F1 Lump | Precision Moist | Recall Moist | F1 Moist | Precision Rockies | Recall Rockies | F1 Rockies |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 1.0 | 3 | 1.7161 | 0.3784 | 0.2893 | 0.3111 | 0.4118 | 0.0 | 0.0 | 0.0 | 1.0 | 0.3636 | 0.5333 | 0.3333 | 0.8571 | 0.48 | 0.0 | 0.0 | 0.0 | 0.2 | 0.25 | 0.2222 | 0.3333 | 1.0 | 0.5 |
| No log | 2.0 | 6 | 1.3962 | 0.6216 | 0.4520 | 0.3958 | 0.5833 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 0.5 | 1.0 | 0.6667 | 0.0 | 0.0 | 0.0 | 0.5 | 0.5 | 0.5 | 0.375 | 1.0 | 0.5455 |
| No log | 3.0 | 9 | 1.0720 | 0.7027 | 0.6015 | 0.7519 | 0.6667 | 1.0 | 0.1667 | 0.2857 | 1.0 | 1.0 | 1.0 | 0.6364 | 1.0 | 0.7778 | 1.0 | 0.3333 | 0.5 | 0.5 | 0.5 | 0.5 | 0.375 | 1.0 | 0.5455 |
| 1.5274 | 4.0 | 12 | 0.7791 | 0.8108 | 0.7690 | 0.8333 | 0.7778 | 1.0 | 0.8333 | 0.9091 | 1.0 | 1.0 | 1.0 | 0.5833 | 1.0 | 0.7368 | 0.6667 | 0.3333 | 0.4444 | 1.0 | 0.5 | 0.6667 | 0.75 | 1.0 | 0.8571 |
| 1.5274 | 5.0 | 15 | 0.4969 | 0.9189 | 0.8928 | 0.9375 | 0.8750 | 0.75 | 1.0 | 0.8571 | 1.0 | 1.0 | 1.0 | 0.875 | 1.0 | 0.9333 | 1.0 | 0.8333 | 0.9091 | 1.0 | 0.75 | 0.8571 | 1.0 | 0.6667 | 0.8 |
| 1.5274 | 6.0 | 18 | 0.3627 | 0.9730 | 0.9481 | 0.9667 | 0.9444 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 1.0 | 0.8889 | 1.0 | 0.6667 | 0.8 |
| 0.5728 | 7.0 | 21 | 0.1932 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.5728 | 8.0 | 24 | 0.2180 | 0.9730 | 0.9481 | 0.9667 | 0.9444 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 1.0 | 0.8889 | 1.0 | 0.6667 | 0.8 |
| 0.5728 | 9.0 | 27 | 0.1210 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.1301 | 10.0 | 30 | 0.1074 | 0.9730 | 0.9481 | 0.9667 | 0.9444 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 1.0 | 0.8889 | 1.0 | 0.6667 | 0.8 |
| 0.1301 | 11.0 | 33 | 0.0750 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.1301 | 12.0 | 36 | 0.1066 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.1301 | 13.0 | 39 | 0.1137 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.021 | 14.0 | 42 | 0.1193 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.021 | 15.0 | 45 | 0.1274 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.021 | 16.0 | 48 | 0.1420 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0045 | 17.0 | 51 | 0.1530 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0045 | 18.0 | 54 | 0.1629 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0045 | 19.0 | 57 | 0.1720 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0023 | 20.0 | 60 | 0.1747 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0023 | 21.0 | 63 | 0.1689 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0023 | 22.0 | 66 | 0.1575 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0023 | 23.0 | 69 | 0.1469 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0016 | 24.0 | 72 | 0.1376 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0016 | 25.0 | 75 | 0.1327 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0016 | 26.0 | 78 | 0.1322 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0012 | 27.0 | 81 | 0.1362 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0012 | 28.0 | 84 | 0.1398 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0012 | 29.0 | 87 | 0.1431 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0011 | 30.0 | 90 | 0.1442 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0011 | 31.0 | 93 | 0.1462 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0011 | 32.0 | 96 | 0.1474 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0011 | 33.0 | 99 | 0.1475 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.001 | 34.0 | 102 | 0.1471 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.001 | 35.0 | 105 | 0.1468 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.001 | 36.0 | 108 | 0.1475 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0009 | 37.0 | 111 | 0.1487 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0009 | 38.0 | 114 | 0.1502 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0009 | 39.0 | 117 | 0.1514 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0009 | 40.0 | 120 | 0.1523 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0009 | 41.0 | 123 | 0.1530 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0009 | 42.0 | 126 | 0.1533 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0009 | 43.0 | 129 | 0.1531 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0008 | 44.0 | 132 | 0.1519 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0008 | 45.0 | 135 | 0.1511 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0008 | 46.0 | 138 | 0.1506 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0008 | 47.0 | 141 | 0.1504 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0008 | 48.0 | 144 | 0.1505 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0008 | 49.0 | 147 | 0.1504 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
| 0.0008 | 50.0 | 150 | 0.1504 | 0.9730 | 0.9538 | 0.9762 | 0.9444 | 0.8571 | 1.0 | 0.9231 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 2
Model tree for dacunaq/vit-base-patch32-384-finetuned-humid-classes-30
Base model
google/vit-base-patch32-384Evaluation results
- Accuracy on imagefoldervalidation set self-reported0.973