Dataset Viewer (First 5GB)
Auto-converted to Parquet Duplicate
document_ids
stringlengths
32
32
score_Gemma_Snowflake
float64
-0.55
5.41
score_Llama_Snowflake
float64
-1.4
5.53
score_Mistral_Snowflake
float64
-0.87
5.56
f8e91df4f5f7ca02bc39e8c3203da78a
-0.121094
-0.245117
-0.186523
a4f748036fe464fc123991d1d213f210
1.210938
0.084961
0.363281
6f615d13dcaf80cabe1ea4db04495dad
-0.12207
-0.429688
-0.304688
f25876ebcb2de897b900867f5e4c191b
-0.098145
-0.283203
-0.253906
a29979ca1ba60697f866a119f294e378
1.117188
0.030151
0.173828
40021177b78fadc0038c7921581aebea
1.171875
0.04834
0.345703
4b0ff9c6284f03b6a08be0462866b400
2.34375
0.038818
1.539063
1c53a0c345684ed73de27754ec68466e
1.148438
-0.083496
0.285156
2d7ed140d9b23206d2a536a82145b606
-0.151367
-0.339844
-0.333984
79786443aa32560e2711ed13081a0b6c
-0.155273
-0.229492
-0.353516
ba719b930fe54d0da2259d5ddf98366a
-0.131836
-0.369141
-0.394531
345430e57de015f4ef24ee5cffd5ac8c
0.037598
-0.291016
0.145508
9c43a1f8edc9386cf74aeed258390012
-0.208008
-0.25
-0.332031
c27068b7fa8ba9c87334e6e5905ee9be
2.140625
0.431641
1.554688
a60a11a3a93872c1f759ec0ade74946a
-0.165039
-0.285156
-0.259766
ada065c2421313c105ac2a6a2b7d179b
-0.094238
-0.402344
-0.324219
2f58a2f4548f2a6dbf7dd385cb432187
0.123047
-0.154297
-0.167969
0d31cebda5022cd40519b846f46a900d
1.101563
-0.04248
0.304688
2b00fbfa9f561703a27bac1e3756078c
1.125
0.036865
0.269531
245343b173ae995b08886bb651f3374e
0.335938
0.189453
0.019653
c3457950dd1248e57fee3203663d8498
-0.113281
-0.345703
-0.287109
6e7802a76adfb1d3a4bdfae2a3483d2b
-0.089844
-0.3125
-0.261719
7fe9df7b8282fb1415fc07a6b07073a1
-0.075684
-0.172852
-0.138672
180709ab7f96fcd063733ed8157f1569
1.171875
0.010559
0.296875
10f62f8af2383981d58f415d48be327e
-0.120605
-0.353516
-0.337891
98ce2800c87a7d93f13998a4af2dbc51
-0.186523
-0.335938
-0.302734
3e4358b4347b2b9233202d3ddabe6d2b
0.363281
0.261719
0.098145
48f13878e9f08653e24a2f327065fce3
2.375
0.707031
1.078125
0fc6a40b175b350619bd2c3c4fc36535
1.03125
-0.056641
0.21582
b9d8ace6f86feceb8137605b301d6223
1.09375
0.024292
0.242188
7e946c7091eaf852a99d89ed01e67870
2.953125
1.523438
1.710938
32aa07efa25e24e0362b1a0d7561673c
2.546875
1.117188
1.34375
f481c22967fa297eab678e2e621b8612
-0.087402
-0.341797
-0.237305
2f7012595cc0b4192762444078c29306
0.283203
0.136719
0.057617
899422c5e58acacb8e9258f0c9db8ea7
1.640625
0.398438
0.519531
649e0c3fabee2a25dd44559e96160f66
-0.170898
-0.308594
-0.279297
f25cfeec481b671f4305d03faf38f64b
1.140625
-0.126953
0.304688
6154a4343755edb2658046b13a2d1b5d
2.21875
0.302734
1.703125
9564f1715ba414e7c63c8692d0264430
2.046875
0.699219
0.933594
71d78c6656074189bf51ada86b7b3869
1.289063
0.166016
0.353516
c064fc15aafdbb7f8da1160db36aef9a
0.369141
0.298828
0.136719
82481d347d17d73278622cfff3469c3d
2.875
0.695313
1.375
a2c5eb0275c84c4cd0297fb958a38373
-0.043945
-0.326172
-0.15332
157822cbef85172a32cce5bae181577a
3.265625
1.828125
2.09375
3032c5906d1d5030726255d35645ab43
-0.081543
-0.248047
-0.149414
ebd034862c7f3e00fe10cdecb6d15d9b
2.921875
1.046875
1.632813
f03df96f63a43c2536f939fe38965f51
1.195313
0.002472
0.277344
99c8f3a4d40af0c9ecb10f6d93385b58
1.15625
0.085938
0.320313
33cc8881366b1142f22e01b8307bc3f9
2.96875
2.484375
2.203125
87fef8541aebbd25109c141fb7f253f9
2.4375
0.777344
1.023438
673d890a92e43caa754783cdb1bfcb91
-0.109863
-0.194336
0.165039
0013e1184db950c1600fd03df1c4a3ba
1.09375
-0.049072
0.171875
9bf7f2eca81186bace509140b2afbbcc
2.703125
1.539063
1.765625
17b97c81ad3a0fa88e803061a625ee87
-0.166992
-0.435547
-0.363281
f2e1f77a4bb56b397221dae1f71fe77a
-0.077637
-0.251953
-0.300781
9d4e573ef814c91a83751a80bd35b0b5
1.203125
-0.032959
0.25
f2ed3fc5542e2e19a842fdb7d9199fbe
0.271484
0.162109
0.063477
10e6a7133f6ff0eacc5e8bc51da3bace
2.6875
0.949219
1.398438
7308d609244626f18e66fa2e5f07bd45
1.132813
0.012756
0.174805
35d005c153d83452f7e9aa40114f828b
3.703125
2.421875
2.375
c3a8dbb7448c894f42cda61070909760
0.382813
0.216797
0.085938
3dc3cb1061e915109081884f2d322bf2
1.09375
-0.095703
0.199219
c8c34fe3b471c11a8b2bd3069ccfecd8
3.703125
3.09375
3.375
f7cd258e9caffcb567d06fd0846f1d1a
-0.102051
-0.227539
-0.102539
1a8fd3e25f4578cee44f8717d077811f
0.248047
0.100098
-0.052734
df5739ca5b62851a955ac1eb4941c191
2.65625
1.671875
1.585938
21cd01bf6d3a7c7dbe30f7c49ef91dba
0.765625
-0.165039
0.396484
b1431c6a5f8ff674161e869d6dd6266a
2.0625
1.164063
1.765625
093491ba5857f1dd5e2badc2bd6bb05f
-0.177734
-0.408203
-0.296875
f8baa39d80dae6c2edebd3964e4f2b66
1.976563
0.570313
0.542969
0c8a47b59403b83d28b4c061fb1c9e32
2.71875
0.847656
1.742188
4f282a13691ca805581bd99aae363874
0.130859
-0.025269
-0.285156
388dca2fae37ab6dc5bd4b31427e4a3f
-0.168945
-0.347656
-0.251953
b57b3fb6e5a3636342da36f094c8c6af
2.28125
0.265625
0.941406
1638d536ff9cbeda54899733971f245f
1.171875
0.064453
0.308594
6b53a2c8973842dc97fa0e2320ce96f8
2.359375
0.380859
0.949219
75db24bd4a354e0d637e1f33152220ad
-0.092285
-0.231445
-0.241211
cc951a3814e45099906fe7fa14663843
3.140625
2.328125
2.25
bec98e21f4aa7a7bce7cf7d6826e93cd
0.335938
0.234375
0.117676
08eee95b7d3efd25ab0a07d26beeec28
1.117188
-0.010254
0.287109
5d0c0b4f009b4c2889c5406410acf176
1.054688
0.010803
0.25
fedc29ee8303b56fcdd35921d42b264d
-0.104004
-0.388672
-0.216797
3863a15c3a2cf41919f8eb3ba7891eab
0.005432
-0.249023
-0.124023
c45fd127e7762d69d9fb46576d3b0cd8
0.09082
-0.273438
0.251953
74a997be65c38e346af4722dc3f3c08d
2.796875
0.886719
1.351563
e3eab944bec62e3b6ad49dc759b5667d
1.765625
-0.105469
1.125
2b9f570da794caf235e49c3ff90c27eb
-0.061035
-0.285156
-0.219727
3cbc7f146add51a7055c33558c615b40
-0.155273
-0.394531
-0.306641
4e4a8d9abd89ece7e0fac71fe8b2c31c
1.273438
0.026123
0.375
bca82c1d86df810287861a581787bb50
2.453125
0.239258
1.039063
92d70e61ae740627f15e2b51a69e9804
1.289063
0.013611
0.375
059b7ec6b27f6ca2e33f4c294f794092
2.8125
1.101563
1.984375
63219b3b2b54994572c036eaa5febb79
-0.105469
-0.332031
-0.324219
ed7905a39a2309060d025b2e65cf75e2
1.09375
-0.056885
0.15918
0f68a01e4cf13ea5739db809473df51c
-0.129883
-0.339844
-0.318359
e3a66ec2eb8ed03b499056de3d59509c
2.09375
1.023438
0.902344
c14a9da024d90ecf882e1ba7e1adf0ec
-0.041992
-0.324219
-0.147461
a3745b4c48e097e6da65ad59ac86f7f0
-0.017456
0.144531
-0.355469
4f430c3931904a8768ed5d5e7acf4cff
-0.053223
-0.195313
0.120605
8202d503eb24b6ba5c15fe2ba3addad9
1.0625
-0.009277
0.203125
End of preview. Expand in Data Studio

HPLT3-Edu-scores

Dataset summary

HPLT3-JQL-Education is a model-annotated language subset of HPLT3, spanning 36 languages. Our model-annotations allow for a filtering that achieves higher-quality training outcomes without excessively aggressive data reduction. HPLT3-Edu-scores was created based on scores assigned by a deep learning classifier trained to identify educational samples using Snowflake's Arctic-embed-m-v2.0 embeddings.

For all training ablations, we used dense decoder-only models with 2 billion parameters, following the LLaMA architecture. For more details, see our paper https://arxiv.org/abs/2505.22232.

The approach as described in the paper is easy to extend to other languages as well, and we might consider adding new languages to an upcoming version of the present dataset.

We also separately release the computed general-purpose embedding vectors for the the full sets of the original HPLT3 dataset, in the respective languages, as they can be useful for other applications beyond quality filtering.

Dataset Structure

Data Fields

Each data entry includes:

  • score_Gemma_Snowflake: Quality score obtained by the Gemma-based Snowflake classifier
  • score_Llama_Snowflake: Quality score obtained by the Llama-based Snowflake classifier
  • score_Mistral_Snowflake: Quality score obtained by the Mistral-based Snowflake classifier
  • document_ids: Original HPLT3 id from the document.

Data Instance

{
  "document_ids": "a4f748036fe464fc123991d1d213f210",
  "score_Gemma_Snowflake": 1.2109375,
  "score_Llama_Snowflake": 0.0849609375,
  "score_Mistral_Snowflake": 0.36328125
}

Origin of the Dataset

This dataset, derived from HPLT3, includes web content collected from 2012 to 2024. As HPLT3 is sourced from the broader internet, it may contain some personally identifiable information (PII), despite efforts to anonymize email addresses and public IP addresses during processing.

Considerations for Data Usage

For information on social impact, potential biases, and known limitations, please refer to the HPLT3 documentation.

Citation information

If you use this dataset in your research or applications, please use the following citation:

@article{ali2025judging,
    title     = {Judging Quality Across Languages: A Multilingual Approach to Pretraining Data Filtering with Language Models},
    author    = {
      Mehdi Ali,
      Manuel Brack,
      Max Lübbering,
      Elias Wendt,
      Abbas Goher Khan,
      Richard Rutmann,
      Alex Jude,
      Maurice Kraus,
      Alexander Arno Weber,
      Felix Stollenwerk,
      David Kaczér,
      Florian Mai,
      Lucie Flek,
      Rafet Sifa,
      Nicolas Flores-Herr,
      Joachim Köhler,
      Patrick Schramowski,
      Michael Fromm,
      Kristian Kersting
    },
    year      = {2025},
    journal   = {arXiv preprint arXiv:2505:22232}
  }
Downloads last month
274

Paper for Eurolingua/hplt3_edu_scores