Datasets:
document_ids
stringlengths 32
32
| score_Gemma_Snowflake
float64 -0.55
5.41
| score_Llama_Snowflake
float64 -1.4
5.53
| score_Mistral_Snowflake
float64 -0.87
5.56
|
|---|---|---|---|
f8e91df4f5f7ca02bc39e8c3203da78a
| -0.121094
| -0.245117
| -0.186523
|
a4f748036fe464fc123991d1d213f210
| 1.210938
| 0.084961
| 0.363281
|
6f615d13dcaf80cabe1ea4db04495dad
| -0.12207
| -0.429688
| -0.304688
|
f25876ebcb2de897b900867f5e4c191b
| -0.098145
| -0.283203
| -0.253906
|
a29979ca1ba60697f866a119f294e378
| 1.117188
| 0.030151
| 0.173828
|
40021177b78fadc0038c7921581aebea
| 1.171875
| 0.04834
| 0.345703
|
4b0ff9c6284f03b6a08be0462866b400
| 2.34375
| 0.038818
| 1.539063
|
1c53a0c345684ed73de27754ec68466e
| 1.148438
| -0.083496
| 0.285156
|
2d7ed140d9b23206d2a536a82145b606
| -0.151367
| -0.339844
| -0.333984
|
79786443aa32560e2711ed13081a0b6c
| -0.155273
| -0.229492
| -0.353516
|
ba719b930fe54d0da2259d5ddf98366a
| -0.131836
| -0.369141
| -0.394531
|
345430e57de015f4ef24ee5cffd5ac8c
| 0.037598
| -0.291016
| 0.145508
|
9c43a1f8edc9386cf74aeed258390012
| -0.208008
| -0.25
| -0.332031
|
c27068b7fa8ba9c87334e6e5905ee9be
| 2.140625
| 0.431641
| 1.554688
|
a60a11a3a93872c1f759ec0ade74946a
| -0.165039
| -0.285156
| -0.259766
|
ada065c2421313c105ac2a6a2b7d179b
| -0.094238
| -0.402344
| -0.324219
|
2f58a2f4548f2a6dbf7dd385cb432187
| 0.123047
| -0.154297
| -0.167969
|
0d31cebda5022cd40519b846f46a900d
| 1.101563
| -0.04248
| 0.304688
|
2b00fbfa9f561703a27bac1e3756078c
| 1.125
| 0.036865
| 0.269531
|
245343b173ae995b08886bb651f3374e
| 0.335938
| 0.189453
| 0.019653
|
c3457950dd1248e57fee3203663d8498
| -0.113281
| -0.345703
| -0.287109
|
6e7802a76adfb1d3a4bdfae2a3483d2b
| -0.089844
| -0.3125
| -0.261719
|
7fe9df7b8282fb1415fc07a6b07073a1
| -0.075684
| -0.172852
| -0.138672
|
180709ab7f96fcd063733ed8157f1569
| 1.171875
| 0.010559
| 0.296875
|
10f62f8af2383981d58f415d48be327e
| -0.120605
| -0.353516
| -0.337891
|
98ce2800c87a7d93f13998a4af2dbc51
| -0.186523
| -0.335938
| -0.302734
|
3e4358b4347b2b9233202d3ddabe6d2b
| 0.363281
| 0.261719
| 0.098145
|
48f13878e9f08653e24a2f327065fce3
| 2.375
| 0.707031
| 1.078125
|
0fc6a40b175b350619bd2c3c4fc36535
| 1.03125
| -0.056641
| 0.21582
|
b9d8ace6f86feceb8137605b301d6223
| 1.09375
| 0.024292
| 0.242188
|
7e946c7091eaf852a99d89ed01e67870
| 2.953125
| 1.523438
| 1.710938
|
32aa07efa25e24e0362b1a0d7561673c
| 2.546875
| 1.117188
| 1.34375
|
f481c22967fa297eab678e2e621b8612
| -0.087402
| -0.341797
| -0.237305
|
2f7012595cc0b4192762444078c29306
| 0.283203
| 0.136719
| 0.057617
|
899422c5e58acacb8e9258f0c9db8ea7
| 1.640625
| 0.398438
| 0.519531
|
649e0c3fabee2a25dd44559e96160f66
| -0.170898
| -0.308594
| -0.279297
|
f25cfeec481b671f4305d03faf38f64b
| 1.140625
| -0.126953
| 0.304688
|
6154a4343755edb2658046b13a2d1b5d
| 2.21875
| 0.302734
| 1.703125
|
9564f1715ba414e7c63c8692d0264430
| 2.046875
| 0.699219
| 0.933594
|
71d78c6656074189bf51ada86b7b3869
| 1.289063
| 0.166016
| 0.353516
|
c064fc15aafdbb7f8da1160db36aef9a
| 0.369141
| 0.298828
| 0.136719
|
82481d347d17d73278622cfff3469c3d
| 2.875
| 0.695313
| 1.375
|
a2c5eb0275c84c4cd0297fb958a38373
| -0.043945
| -0.326172
| -0.15332
|
157822cbef85172a32cce5bae181577a
| 3.265625
| 1.828125
| 2.09375
|
3032c5906d1d5030726255d35645ab43
| -0.081543
| -0.248047
| -0.149414
|
ebd034862c7f3e00fe10cdecb6d15d9b
| 2.921875
| 1.046875
| 1.632813
|
f03df96f63a43c2536f939fe38965f51
| 1.195313
| 0.002472
| 0.277344
|
99c8f3a4d40af0c9ecb10f6d93385b58
| 1.15625
| 0.085938
| 0.320313
|
33cc8881366b1142f22e01b8307bc3f9
| 2.96875
| 2.484375
| 2.203125
|
87fef8541aebbd25109c141fb7f253f9
| 2.4375
| 0.777344
| 1.023438
|
673d890a92e43caa754783cdb1bfcb91
| -0.109863
| -0.194336
| 0.165039
|
0013e1184db950c1600fd03df1c4a3ba
| 1.09375
| -0.049072
| 0.171875
|
9bf7f2eca81186bace509140b2afbbcc
| 2.703125
| 1.539063
| 1.765625
|
17b97c81ad3a0fa88e803061a625ee87
| -0.166992
| -0.435547
| -0.363281
|
f2e1f77a4bb56b397221dae1f71fe77a
| -0.077637
| -0.251953
| -0.300781
|
9d4e573ef814c91a83751a80bd35b0b5
| 1.203125
| -0.032959
| 0.25
|
f2ed3fc5542e2e19a842fdb7d9199fbe
| 0.271484
| 0.162109
| 0.063477
|
10e6a7133f6ff0eacc5e8bc51da3bace
| 2.6875
| 0.949219
| 1.398438
|
7308d609244626f18e66fa2e5f07bd45
| 1.132813
| 0.012756
| 0.174805
|
35d005c153d83452f7e9aa40114f828b
| 3.703125
| 2.421875
| 2.375
|
c3a8dbb7448c894f42cda61070909760
| 0.382813
| 0.216797
| 0.085938
|
3dc3cb1061e915109081884f2d322bf2
| 1.09375
| -0.095703
| 0.199219
|
c8c34fe3b471c11a8b2bd3069ccfecd8
| 3.703125
| 3.09375
| 3.375
|
f7cd258e9caffcb567d06fd0846f1d1a
| -0.102051
| -0.227539
| -0.102539
|
1a8fd3e25f4578cee44f8717d077811f
| 0.248047
| 0.100098
| -0.052734
|
df5739ca5b62851a955ac1eb4941c191
| 2.65625
| 1.671875
| 1.585938
|
21cd01bf6d3a7c7dbe30f7c49ef91dba
| 0.765625
| -0.165039
| 0.396484
|
b1431c6a5f8ff674161e869d6dd6266a
| 2.0625
| 1.164063
| 1.765625
|
093491ba5857f1dd5e2badc2bd6bb05f
| -0.177734
| -0.408203
| -0.296875
|
f8baa39d80dae6c2edebd3964e4f2b66
| 1.976563
| 0.570313
| 0.542969
|
0c8a47b59403b83d28b4c061fb1c9e32
| 2.71875
| 0.847656
| 1.742188
|
4f282a13691ca805581bd99aae363874
| 0.130859
| -0.025269
| -0.285156
|
388dca2fae37ab6dc5bd4b31427e4a3f
| -0.168945
| -0.347656
| -0.251953
|
b57b3fb6e5a3636342da36f094c8c6af
| 2.28125
| 0.265625
| 0.941406
|
1638d536ff9cbeda54899733971f245f
| 1.171875
| 0.064453
| 0.308594
|
6b53a2c8973842dc97fa0e2320ce96f8
| 2.359375
| 0.380859
| 0.949219
|
75db24bd4a354e0d637e1f33152220ad
| -0.092285
| -0.231445
| -0.241211
|
cc951a3814e45099906fe7fa14663843
| 3.140625
| 2.328125
| 2.25
|
bec98e21f4aa7a7bce7cf7d6826e93cd
| 0.335938
| 0.234375
| 0.117676
|
08eee95b7d3efd25ab0a07d26beeec28
| 1.117188
| -0.010254
| 0.287109
|
5d0c0b4f009b4c2889c5406410acf176
| 1.054688
| 0.010803
| 0.25
|
fedc29ee8303b56fcdd35921d42b264d
| -0.104004
| -0.388672
| -0.216797
|
3863a15c3a2cf41919f8eb3ba7891eab
| 0.005432
| -0.249023
| -0.124023
|
c45fd127e7762d69d9fb46576d3b0cd8
| 0.09082
| -0.273438
| 0.251953
|
74a997be65c38e346af4722dc3f3c08d
| 2.796875
| 0.886719
| 1.351563
|
e3eab944bec62e3b6ad49dc759b5667d
| 1.765625
| -0.105469
| 1.125
|
2b9f570da794caf235e49c3ff90c27eb
| -0.061035
| -0.285156
| -0.219727
|
3cbc7f146add51a7055c33558c615b40
| -0.155273
| -0.394531
| -0.306641
|
4e4a8d9abd89ece7e0fac71fe8b2c31c
| 1.273438
| 0.026123
| 0.375
|
bca82c1d86df810287861a581787bb50
| 2.453125
| 0.239258
| 1.039063
|
92d70e61ae740627f15e2b51a69e9804
| 1.289063
| 0.013611
| 0.375
|
059b7ec6b27f6ca2e33f4c294f794092
| 2.8125
| 1.101563
| 1.984375
|
63219b3b2b54994572c036eaa5febb79
| -0.105469
| -0.332031
| -0.324219
|
ed7905a39a2309060d025b2e65cf75e2
| 1.09375
| -0.056885
| 0.15918
|
0f68a01e4cf13ea5739db809473df51c
| -0.129883
| -0.339844
| -0.318359
|
e3a66ec2eb8ed03b499056de3d59509c
| 2.09375
| 1.023438
| 0.902344
|
c14a9da024d90ecf882e1ba7e1adf0ec
| -0.041992
| -0.324219
| -0.147461
|
a3745b4c48e097e6da65ad59ac86f7f0
| -0.017456
| 0.144531
| -0.355469
|
4f430c3931904a8768ed5d5e7acf4cff
| -0.053223
| -0.195313
| 0.120605
|
8202d503eb24b6ba5c15fe2ba3addad9
| 1.0625
| -0.009277
| 0.203125
|
HPLT3-Edu-scores
Dataset summary
HPLT3-JQL-Education is a model-annotated language subset of HPLT3, spanning 36 languages. Our model-annotations allow for a filtering that achieves higher-quality training outcomes without excessively aggressive data reduction. HPLT3-Edu-scores was created based on scores assigned by a deep learning classifier trained to identify educational samples using Snowflake's Arctic-embed-m-v2.0 embeddings.
For all training ablations, we used dense decoder-only models with 2 billion parameters, following the LLaMA architecture. For more details, see our paper https://arxiv.org/abs/2505.22232.
The approach as described in the paper is easy to extend to other languages as well, and we might consider adding new languages to an upcoming version of the present dataset.
We also separately release the computed general-purpose embedding vectors for the the full sets of the original HPLT3 dataset, in the respective languages, as they can be useful for other applications beyond quality filtering.
Dataset Structure
Data Fields
Each data entry includes:
score_Gemma_Snowflake: Quality score obtained by the Gemma-based Snowflake classifierscore_Llama_Snowflake: Quality score obtained by the Llama-based Snowflake classifierscore_Mistral_Snowflake: Quality score obtained by the Mistral-based Snowflake classifierdocument_ids: Original HPLT3 id from the document.
Data Instance
{
"document_ids": "a4f748036fe464fc123991d1d213f210",
"score_Gemma_Snowflake": 1.2109375,
"score_Llama_Snowflake": 0.0849609375,
"score_Mistral_Snowflake": 0.36328125
}
Origin of the Dataset
This dataset, derived from HPLT3, includes web content collected from 2012 to 2024. As HPLT3 is sourced from the broader internet, it may contain some personally identifiable information (PII), despite efforts to anonymize email addresses and public IP addresses during processing.
Considerations for Data Usage
For information on social impact, potential biases, and known limitations, please refer to the HPLT3 documentation.
Citation information
If you use this dataset in your research or applications, please use the following citation:
@article{ali2025judging,
title = {Judging Quality Across Languages: A Multilingual Approach to Pretraining Data Filtering with Language Models},
author = {
Mehdi Ali,
Manuel Brack,
Max Lübbering,
Elias Wendt,
Abbas Goher Khan,
Richard Rutmann,
Alex Jude,
Maurice Kraus,
Alexander Arno Weber,
Felix Stollenwerk,
David Kaczér,
Florian Mai,
Lucie Flek,
Rafet Sifa,
Nicolas Flores-Herr,
Joachim Köhler,
Patrick Schramowski,
Michael Fromm,
Kristian Kersting
},
year = {2025},
journal = {arXiv preprint arXiv:2505:22232}
}
- Downloads last month
- 274