YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Gemma-3-270M Threat Classifier

Model Description

Fine-tuned version of google/gemma-3-270m for binary threat classification (Safe vs Unsafe prompts).

Training Details

  • Base Model: google/gemma-3-270m
  • Task: Binary Text Classification
  • Training Date: 2025-12-31
  • Training Framework: Hugging Face Transformers

Hyperparameters

  • Learning Rate: 2e-05
  • Batch Size: 16
  • Epochs: 10
  • Max Length: 512
  • Optimizer: adamw_torch

Performance (Test Set)

  • Accuracy: 0.8363
  • Precision: 0.8232
  • Recall: 0.8882
  • F1 Score: 0.8544
  • AUC-ROC: 0.9101

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained("path/to/model")
tokenizer = AutoTokenizer.from_pretrained("path/to/model")

text = "Your prompt here"
inputs = tokenizer(text, return_tensors="pt", max_length=256, truncation=True)
outputs = model(**inputs)
prediction = outputs.logits.argmax(-1).item()
label = "unsafe" if prediction == 1 else "safe"

Labels

  • 0: Safe
  • 1: Unsafe (Threat/Jailbreak)
Downloads last month
1
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support