sample_index
stringlengths 1
4
| problem_index
stringclasses 788
values | problem_version
stringclasses 5
values | image
dict | question_type
stringclasses 2
values | metadata
dict | answer
stringclasses 340
values | question_en
stringlengths 0
1.31k
| question_vi
stringlengths 0
3.35k
| query_wo
stringlengths 101
1.41k
| query_cot
stringlengths 138
1.45k
| question_for_eval
stringlengths 7
1.31k
|
|---|---|---|---|---|---|---|---|---|---|---|---|
101
|
21
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIcAAABpCAAAAAA1wm8kAAANqklEQVR4nLWba3BUR3bH/6f73juj91tCEpIQFgKEhHgIBEY2D+E1LHjXy663vJuUK6lUqlKbSlLJ13zJh1Rt1VblSz5sJV9SSW1tJbt4ydoGjDHIiIcCBhmQMCCBXiBZQqAHktBo7r3dJx9GMxIPzdw7ls8nzdzunt89ffr0OadbxEggzESJ2nx7EXGeqVkbAC0jBjsKUG7kb2aAo2qIxwFWGsAyaoPBAFhrAMQAYrNBcefFZSGWf1KUMtS0lfbcwHH04WoYaia8fL+vo+/sis5ffaaeexaHo+fSvWlhiISG7FkIAFi5FBzv6J17Xs/Gkr30zLXQ/u0WlpmDNBvO6Y6DOyUTOAazpD5YVWW13MJymikzADYs3X3mcVMFwBybqaU5SGatzR8e0MtGARABjkPoPp7//koJIhLEiuNzQGDte9/8cRnNdF7Yvnuz9pCl3Tl3ka6X4mBm5O/lKyMvKcR9NKGQrNWwadGde+VlkEKFXTCTpLgcYAKyG1fcGH3xwe1fHp2G1smBEOCc7WzeArCRGsCCq15qvRAAiKaxM0UroBfDPjxxypxzk/duM1/2rarPACDl4q+XtlMAKC8duvU08ubsuAC0PdRjZBhMSYMMfZz2bnZk/DtfPUvMAQAwN9R/fV4JMKAdl4HZHlTlWoaRFAUzMNX5dG29BUA/u//PvxryyIGqH0+cmYN2NYRFLmPyS9qaMxdKDoMIONvy+tsSAMaP/c2xkVmvHMG6dROXJ0AEMkxBww8KSvKzhAsoW8Xv+UrR/W3TjSUAACN7RVmhEdv4l/br8y9xwPk4o1EAgNB6xHlbjsm8fIB1gjd4WQh4csLeXwgArLPeafzHORnz7AlG06JubV93xIfw3PCMDLljoyGhIS0Zv+erxOm4VHKkEAC07SKdQi6i9p5AHwRzTWVfR50EgNCFE99kmiN3B8d+XG8mYyK3js+uyQAACINgs3YBFSFJoA8CVh3oOyMBaJjBrBQ7pAPhCRWJ6nyKe/2q6rvuAtBsGqD0tIVBltIHx3x/XsP/3h/NFwCnf6+ZGFf/bdOfFxja50bMBNU+uCZt4MTspjRoJgIFg9BRb7aUPhYFxzn7Uv44CAghUjPSMzLyjOwiA4I82ykzoF3Gk98+/tu/+3nqf34KSKE0OBRCQr++SGTzWEthNnFm5OOT3oJvSkkr6RmEYGuTHp1//PoWwBm4favaEkzQtsN+OERh5fHjo2kwc4sq04HchjLGoog/MQYrlyTfOL99P4DawOkT2SuJgHQrkOGHAyitaL1RY/WGth1syKfafzLSCeRjwbiOYWKoc66hGkDOli86mkoJcEYmpsZCAeGD47Wf9spDJaNjUx9d+tN1Zj4A11vHCAYbBs2d7dtSLQHAyNW91QVA+7+ecmd/crDMMwe7GU3vPyjcFkTfqZ4P92wVQgqCdmF54yApYfdeCTTnRT5Xlt7vLwDMgu+LYGrUG3riIOvt332Yvg1lf3nvP34396bpkoR2vE6NBDB4Tm5/bf43y4vvPgKwZZNLMrbqPBi9CEgqTX84Dj2l1v4C/z0MIkAEA14w5s35VlvN/uirB4KkAZAMWAtrzgMHuzaosbH9EkwtKmuetn0jgBfjqaWECIC+erO0sSD61ZS9Io9nw/NjhyP7tod5IQvAptR/aduVAeBwxlPf4Ue4ZfqD2tinyWfr1lHq/NjGPIABuNMhBRDx0kE4sRif6LpczgxdOHbPAsUJ2CPPogk8gXD7WrYYjPX4qjvrwWwsmWOYqWkGiDH0P188kTACyn510kSGUEo4943yFAHHdCbMVBhQvESpgAQUAMEMAkNI4qnhQLlkd7798NO8HDOaeZDWJW/9oBTGTMDMf63IgDSVu9TAghXJpo7uqiqpYAnHiacPIujFHG6oN3ygeNKOLY0G07FjBRCwLiiyXIfG0iwlPG0VFz4rOrDGS8MX5PPLBW9XQsXbGO2wkSnJo2tsGPkwJQmO0JnRI5URL7KkmNJIDMFakxBASpVzd6SQVSL3xc9FJoOfTTZWxmvtwCTytnlLQwDAygP2qWdyCStaSu6eXPOj1MTNPHBEYTn7YMrZPpWwx3P1xfs3C+qL4ra2LIpxcOK0mUHmymp1eTAgfISm+tj193YkbsVRfxpvytmGRQAUG7un/q+4Ai57DT6mOh9UbM4A4DhWHEOkqD7i1mrny51gRtWOuVsTmrXyqJHhozlHgpEx4vUg8rTfBoMEANIAyraPfj5rmdpbucruHirblMIMmKkJ1qWX9TKvLCKg8J3wycnI+vFgJadadu+VRAQkrFP4zFKtqlUzd6Yg4pehAdfWCD9un96/xmOhz3uYOS9vzF3IaQAnSKO0MjD5mb232OuL+s7aN9d03H3BR7xCzIDA8Kdyf2b0i0ST6JsjWJHa06sSjUsC3ZdSNhXFcBMtdN8cKH9n9JSTuJlqubD3de+j+ucoPJh6ucdJ9H76VmfKtpLvkENT9jbz2N1EzYZ/zz9b7WNY//pgvFHXcjtBo/GvBmr2xPIsD97Xf5WLUbwld3A8/tg3ztY1eUz3kuUQQNXhx5/HPQCwr/XvXEgUvFRsvHI858UL9421zj7/XNtqYS979snwnvX+PKRnfWh7Ia0wVlaGrk0AUE7sO0LMDrj/IzqS6wvDs18nciEoqmE6YJ/M2QboWHQmBEAcSY1GLumacjD5OYH2XlwKBMiNvr2oLRt4AMCwnus//7PXLjUdBkg72nsC6t1OGYvOcq3NG663qpe3c3bgXGvP27UCAHlLi3xyMPPi6H79wYHTr95lJo8/PrxKQ2sY3wWHMOXiNZOyvnj64ct6J9O+3V+yPcPWyt+JlQ9kHd1UtGIg+630Y72vaNVxvKQ5HQj7PCnytF4cxzIQhjHVchHlO7dGCuKNd068tnr+NRZSuPFLdz/YDBhK+iuSeOLQrqEdO6i+PnMe3JO3SgBAZvXlewMvZozuua5tdQHAQ7qaBIdpiLlwijF6r+kX+PWdr/IjUdbmyfYrq+ZD6GjLkTP4s2KfCN45BFgGLceprijGATydjnAU7WzrDi1KXRk0dFbtLE8Gw7M/tcAqc6uJUKhsdWD+LIqnbxT+JH9xqxufbtvLSd0I8MhBYGWm8Mzg1daKDfm2FITQYLvs+6/NUQ5NhPtXVV0FfHhR3xwAScLstaOtckM6ELYM1XY6tDF3ZDIcAKCFtqXpfHz/8JYkL0h4t2sCZN5W6+rFmh0ZMKZvnFO769xzLe4hAAIQ4tnXd4qa879zDgDBujr7l8daytdb+uax1HeboB59Sm9mgAnCwoMTRftWJMMAePWnCy7aOvD96WGgv+3JrkZArt3sdsxFLv6EO3s2vuE7PfTFEQt37KnQxl3uJHTrYHOjCaCg2f1oBOS4wIWrVbUmVDLHy145YlNuZab0DtSsRuj88J48AGxuKrjdMSOIMPHF8L4KaPZQWnqVeFJkpKRvP3k0B1yyf1DLY+NWBgDWMqtx+EpJg4mZ1slNdWnMAt+p/wCAsZNHH5A48kEFnNGCPANgxRINjz+52QDcP7Xq/RyQWHwHKgkOL51Ta94dBzVXAXoGAURSCGQ3XO+6uuFRe1Z9KQBK9n6VESHw0jnr9WjeHCxDKBPzxrXmp0dbKrvuHdjxrS54GcwQAE9Px8nhhdCaiQQJ0lqBxNOZqZvZBCg2iAPT3TXXbm8fIShIkO87TAQSID2r0iTCHx0bcBZXIxePpTJSZ55BQklTOgowTfTbxVIKbct01wn0TxePT5VnMIjBUvheMEYgxTQgCRpUuCHfXcJmmdOCsyECMRtSKZDsPrWrac5hk10ZVE6grrOzrnHWJgEwS2Kfd99IGgHD4CBYw9qzx0fPE9M/+vtFjqfN3Pjubn+//ZII4SHR0DMAsOApnZyVi3q4F0eO7PRQIYrPAQBEHNcPKukw1HzxVrE9OssAg2dDDMy2Ptm43kriOshzsmATcXRiSABSDn/8qKR2Q0b0AEK7WgLoP5n5w0wlAUDFP+2Jy+HFf2hlEDDZdqw/uOFP9gfM3CAAclXQAIYvjtRXw9EmgRWSvt5mRA7n4vtTQQTgSvdf57b99jc5jdKanQRgCGLCxdad+wCDBUBG8pdVDS+lASLAncp4Yxetfnr59PqcrIInD1cSSYYzcDtt18popu+/2BYTIT36ddb1TYTC98p7Z1BxaOILBYAo/IexH1Zqn0dlr+Tw2tDISQOgZG4BofRQ1vUuB4DTdzn1rWwnqbt1yXEwSR124EyV1KZC5B5M/fdzANr/sO6wBdP6FhMyL57jDyYmgt2TtyMdwNbwJ8e7Nq7raP+rHXBE0lGpfw4ChMRUb7i6ygAgmvJ/f/FB1+jWNQZ08l5j0fieTYxBOH+vtjYt8lE/vnP6+ta/WGnqhIcgXsRPHuU8HCusTgMADiG1yLzVU14JV5uUXCjon2O+ADnTld9oYW40MxsA8PXQ7l0AoGkZQDxygHhu6MvOtUU8PWFUZVMK4cHF4cM1gMEKy/A/EJ44iADV9Zvj4axfq/COf8gHCKFP+vevJwAkl+N/D7xxAKCsjVZQz2iuX5UCwO29ntmcG3v6rcX7elkkTLh3dPzNQ8uwXqOShCdk1sr+srX+e8uI4ff8VjkGP6NM50pX/abgMmL4PkeOnJGLQMMqP6dvHsb1ax/M335Te4X8Pw6XasKbfHUwAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_21.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, it is known that angle 1 = angle 2 = angle 3 = 55.0, then the degree of angle 4 is ()
Choices:
A:110°
B:115°
C:120°
D:125°
|
Như hình vẽ cho thấy, biết góc 1 = góc 2 = góc 3 = 55, thì số đo của góc 4 là ()
Lựa chọn:
A: 110°
B: 115°
C: 120°
D: 125°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, it is known that angle 1 = angle 2 = angle 3 = 55.0, then the degree of angle 4 is ()
Choices:
A:110°
B:115°
C:120°
D:125°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, it is known that angle 1 = angle 2 = angle 3 = 55.0, then the degree of angle 4 is ()
Choices:
A:110°
B:115°
C:120°
D:125°
|
As shown in the figure, it is known that angle 1 = angle 2 = angle 3 = 55.0, then the degree of angle 4 is ()
Choices:
A:110°
B:115°
C:120°
D:125°
|
102
|
21
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIcAAABpCAAAAAA1wm8kAAANqklEQVR4nLWba3BUR3bH/6f73juj91tCEpIQFgKEhHgIBEY2D+E1LHjXy663vJuUK6lUqlKbSlLJ13zJh1Rt1VblSz5sJV9SSW1tJbt4ydoGjDHIiIcCBhmQMCCBXiBZQqAHktBo7r3dJx9GMxIPzdw7ls8nzdzunt89ffr0OadbxEggzESJ2nx7EXGeqVkbAC0jBjsKUG7kb2aAo2qIxwFWGsAyaoPBAFhrAMQAYrNBcefFZSGWf1KUMtS0lfbcwHH04WoYaia8fL+vo+/sis5ffaaeexaHo+fSvWlhiISG7FkIAFi5FBzv6J17Xs/Gkr30zLXQ/u0WlpmDNBvO6Y6DOyUTOAazpD5YVWW13MJymikzADYs3X3mcVMFwBybqaU5SGatzR8e0MtGARABjkPoPp7//koJIhLEiuNzQGDte9/8cRnNdF7Yvnuz9pCl3Tl3ka6X4mBm5O/lKyMvKcR9NKGQrNWwadGde+VlkEKFXTCTpLgcYAKyG1fcGH3xwe1fHp2G1smBEOCc7WzeArCRGsCCq15qvRAAiKaxM0UroBfDPjxxypxzk/duM1/2rarPACDl4q+XtlMAKC8duvU08ubsuAC0PdRjZBhMSYMMfZz2bnZk/DtfPUvMAQAwN9R/fV4JMKAdl4HZHlTlWoaRFAUzMNX5dG29BUA/u//PvxryyIGqH0+cmYN2NYRFLmPyS9qaMxdKDoMIONvy+tsSAMaP/c2xkVmvHMG6dROXJ0AEMkxBww8KSvKzhAsoW8Xv+UrR/W3TjSUAACN7RVmhEdv4l/br8y9xwPk4o1EAgNB6xHlbjsm8fIB1gjd4WQh4csLeXwgArLPeafzHORnz7AlG06JubV93xIfw3PCMDLljoyGhIS0Zv+erxOm4VHKkEAC07SKdQi6i9p5AHwRzTWVfR50EgNCFE99kmiN3B8d+XG8mYyK3js+uyQAACINgs3YBFSFJoA8CVh3oOyMBaJjBrBQ7pAPhCRWJ6nyKe/2q6rvuAtBsGqD0tIVBltIHx3x/XsP/3h/NFwCnf6+ZGFf/bdOfFxja50bMBNU+uCZt4MTspjRoJgIFg9BRb7aUPhYFxzn7Uv44CAghUjPSMzLyjOwiA4I82ykzoF3Gk98+/tu/+3nqf34KSKE0OBRCQr++SGTzWEthNnFm5OOT3oJvSkkr6RmEYGuTHp1//PoWwBm4favaEkzQtsN+OERh5fHjo2kwc4sq04HchjLGoog/MQYrlyTfOL99P4DawOkT2SuJgHQrkOGHAyitaL1RY/WGth1syKfafzLSCeRjwbiOYWKoc66hGkDOli86mkoJcEYmpsZCAeGD47Wf9spDJaNjUx9d+tN1Zj4A11vHCAYbBs2d7dtSLQHAyNW91QVA+7+ecmd/crDMMwe7GU3vPyjcFkTfqZ4P92wVQgqCdmF54yApYfdeCTTnRT5Xlt7vLwDMgu+LYGrUG3riIOvt332Yvg1lf3nvP34396bpkoR2vE6NBDB4Tm5/bf43y4vvPgKwZZNLMrbqPBi9CEgqTX84Dj2l1v4C/z0MIkAEA14w5s35VlvN/uirB4KkAZAMWAtrzgMHuzaosbH9EkwtKmuetn0jgBfjqaWECIC+erO0sSD61ZS9Io9nw/NjhyP7tod5IQvAptR/aduVAeBwxlPf4Ue4ZfqD2tinyWfr1lHq/NjGPIABuNMhBRDx0kE4sRif6LpczgxdOHbPAsUJ2CPPogk8gXD7WrYYjPX4qjvrwWwsmWOYqWkGiDH0P188kTACyn510kSGUEo4943yFAHHdCbMVBhQvESpgAQUAMEMAkNI4qnhQLlkd7798NO8HDOaeZDWJW/9oBTGTMDMf63IgDSVu9TAghXJpo7uqiqpYAnHiacPIujFHG6oN3ygeNKOLY0G07FjBRCwLiiyXIfG0iwlPG0VFz4rOrDGS8MX5PPLBW9XQsXbGO2wkSnJo2tsGPkwJQmO0JnRI5URL7KkmNJIDMFakxBASpVzd6SQVSL3xc9FJoOfTTZWxmvtwCTytnlLQwDAygP2qWdyCStaSu6eXPOj1MTNPHBEYTn7YMrZPpWwx3P1xfs3C+qL4ra2LIpxcOK0mUHmymp1eTAgfISm+tj193YkbsVRfxpvytmGRQAUG7un/q+4Ai57DT6mOh9UbM4A4DhWHEOkqD7i1mrny51gRtWOuVsTmrXyqJHhozlHgpEx4vUg8rTfBoMEANIAyraPfj5rmdpbucruHirblMIMmKkJ1qWX9TKvLCKg8J3wycnI+vFgJadadu+VRAQkrFP4zFKtqlUzd6Yg4pehAdfWCD9un96/xmOhz3uYOS9vzF3IaQAnSKO0MjD5mb232OuL+s7aN9d03H3BR7xCzIDA8Kdyf2b0i0ST6JsjWJHa06sSjUsC3ZdSNhXFcBMtdN8cKH9n9JSTuJlqubD3de+j+ucoPJh6ucdJ9H76VmfKtpLvkENT9jbz2N1EzYZ/zz9b7WNY//pgvFHXcjtBo/GvBmr2xPIsD97Xf5WLUbwld3A8/tg3ztY1eUz3kuUQQNXhx5/HPQCwr/XvXEgUvFRsvHI858UL9421zj7/XNtqYS979snwnvX+PKRnfWh7Ia0wVlaGrk0AUE7sO0LMDrj/IzqS6wvDs18nciEoqmE6YJ/M2QboWHQmBEAcSY1GLumacjD5OYH2XlwKBMiNvr2oLRt4AMCwnus//7PXLjUdBkg72nsC6t1OGYvOcq3NG663qpe3c3bgXGvP27UCAHlLi3xyMPPi6H79wYHTr95lJo8/PrxKQ2sY3wWHMOXiNZOyvnj64ct6J9O+3V+yPcPWyt+JlQ9kHd1UtGIg+630Y72vaNVxvKQ5HQj7PCnytF4cxzIQhjHVchHlO7dGCuKNd068tnr+NRZSuPFLdz/YDBhK+iuSeOLQrqEdO6i+PnMe3JO3SgBAZvXlewMvZozuua5tdQHAQ7qaBIdpiLlwijF6r+kX+PWdr/IjUdbmyfYrq+ZD6GjLkTP4s2KfCN45BFgGLceprijGATydjnAU7WzrDi1KXRk0dFbtLE8Gw7M/tcAqc6uJUKhsdWD+LIqnbxT+JH9xqxufbtvLSd0I8MhBYGWm8Mzg1daKDfm2FITQYLvs+6/NUQ5NhPtXVV0FfHhR3xwAScLstaOtckM6ELYM1XY6tDF3ZDIcAKCFtqXpfHz/8JYkL0h4t2sCZN5W6+rFmh0ZMKZvnFO769xzLe4hAAIQ4tnXd4qa879zDgDBujr7l8daytdb+uax1HeboB59Sm9mgAnCwoMTRftWJMMAePWnCy7aOvD96WGgv+3JrkZArt3sdsxFLv6EO3s2vuE7PfTFEQt37KnQxl3uJHTrYHOjCaCg2f1oBOS4wIWrVbUmVDLHy145YlNuZab0DtSsRuj88J48AGxuKrjdMSOIMPHF8L4KaPZQWnqVeFJkpKRvP3k0B1yyf1DLY+NWBgDWMqtx+EpJg4mZ1slNdWnMAt+p/wCAsZNHH5A48kEFnNGCPANgxRINjz+52QDcP7Xq/RyQWHwHKgkOL51Ta94dBzVXAXoGAURSCGQ3XO+6uuFRe1Z9KQBK9n6VESHw0jnr9WjeHCxDKBPzxrXmp0dbKrvuHdjxrS54GcwQAE9Px8nhhdCaiQQJ0lqBxNOZqZvZBCg2iAPT3TXXbm8fIShIkO87TAQSID2r0iTCHx0bcBZXIxePpTJSZ55BQklTOgowTfTbxVIKbct01wn0TxePT5VnMIjBUvheMEYgxTQgCRpUuCHfXcJmmdOCsyECMRtSKZDsPrWrac5hk10ZVE6grrOzrnHWJgEwS2Kfd99IGgHD4CBYw9qzx0fPE9M/+vtFjqfN3Pjubn+//ZII4SHR0DMAsOApnZyVi3q4F0eO7PRQIYrPAQBEHNcPKukw1HzxVrE9OssAg2dDDMy2Ptm43kriOshzsmATcXRiSABSDn/8qKR2Q0b0AEK7WgLoP5n5w0wlAUDFP+2Jy+HFf2hlEDDZdqw/uOFP9gfM3CAAclXQAIYvjtRXw9EmgRWSvt5mRA7n4vtTQQTgSvdf57b99jc5jdKanQRgCGLCxdad+wCDBUBG8pdVDS+lASLAncp4Yxetfnr59PqcrIInD1cSSYYzcDtt18popu+/2BYTIT36ddb1TYTC98p7Z1BxaOILBYAo/IexH1Zqn0dlr+Tw2tDISQOgZG4BofRQ1vUuB4DTdzn1rWwnqbt1yXEwSR124EyV1KZC5B5M/fdzANr/sO6wBdP6FhMyL57jDyYmgt2TtyMdwNbwJ8e7Nq7raP+rHXBE0lGpfw4ChMRUb7i6ygAgmvJ/f/FB1+jWNQZ08l5j0fieTYxBOH+vtjYt8lE/vnP6+ta/WGnqhIcgXsRPHuU8HCusTgMADiG1yLzVU14JV5uUXCjon2O+ADnTld9oYW40MxsA8PXQ7l0AoGkZQDxygHhu6MvOtUU8PWFUZVMK4cHF4cM1gMEKy/A/EJ44iADV9Zvj4axfq/COf8gHCKFP+vevJwAkl+N/D7xxAKCsjVZQz2iuX5UCwO29ntmcG3v6rcX7elkkTLh3dPzNQ8uwXqOShCdk1sr+srX+e8uI4ff8VjkGP6NM50pX/abgMmL4PkeOnJGLQMMqP6dvHsb1ax/M335Te4X8Pw6XasKbfHUwAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_21.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, it is known that angle 1 = angle 2 = angle 3 = 55.0, then the degree of angle 4 is ()
Choices:
A:110°
B:115°
C:120°
D:125°
|
Như hình vẽ cho thấy, biết góc 1 = góc 2 = góc 3 = 55, thì số đo của góc 4 là ()
Lựa chọn:
A: 110°
B: 115°
C: 120°
D: 125°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, it is known that angle 1 = angle 2 = angle 3 = 55.0, then the degree of angle 4 is ()
Choices:
A:110°
B:115°
C:120°
D:125°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, it is known that angle 1 = angle 2 = angle 3 = 55.0, then the degree of angle 4 is ()
Choices:
A:110°
B:115°
C:120°
D:125°
|
As shown in the figure, it is known that angle 1 = angle 2 = angle 3 = 55.0, then the degree of angle 4 is ()
Choices:
A:110°
B:115°
C:120°
D:125°
|
103
|
21
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIcAAABpCAAAAAA1wm8kAAANqklEQVR4nLWba3BUR3bH/6f73juj91tCEpIQFgKEhHgIBEY2D+E1LHjXy663vJuUK6lUqlKbSlLJ13zJh1Rt1VblSz5sJV9SSW1tJbt4ydoGjDHIiIcCBhmQMCCBXiBZQqAHktBo7r3dJx9GMxIPzdw7ls8nzdzunt89ffr0OadbxEggzESJ2nx7EXGeqVkbAC0jBjsKUG7kb2aAo2qIxwFWGsAyaoPBAFhrAMQAYrNBcefFZSGWf1KUMtS0lfbcwHH04WoYaia8fL+vo+/sis5ffaaeexaHo+fSvWlhiISG7FkIAFi5FBzv6J17Xs/Gkr30zLXQ/u0WlpmDNBvO6Y6DOyUTOAazpD5YVWW13MJymikzADYs3X3mcVMFwBybqaU5SGatzR8e0MtGARABjkPoPp7//koJIhLEiuNzQGDte9/8cRnNdF7Yvnuz9pCl3Tl3ka6X4mBm5O/lKyMvKcR9NKGQrNWwadGde+VlkEKFXTCTpLgcYAKyG1fcGH3xwe1fHp2G1smBEOCc7WzeArCRGsCCq15qvRAAiKaxM0UroBfDPjxxypxzk/duM1/2rarPACDl4q+XtlMAKC8duvU08ubsuAC0PdRjZBhMSYMMfZz2bnZk/DtfPUvMAQAwN9R/fV4JMKAdl4HZHlTlWoaRFAUzMNX5dG29BUA/u//PvxryyIGqH0+cmYN2NYRFLmPyS9qaMxdKDoMIONvy+tsSAMaP/c2xkVmvHMG6dROXJ0AEMkxBww8KSvKzhAsoW8Xv+UrR/W3TjSUAACN7RVmhEdv4l/br8y9xwPk4o1EAgNB6xHlbjsm8fIB1gjd4WQh4csLeXwgArLPeafzHORnz7AlG06JubV93xIfw3PCMDLljoyGhIS0Zv+erxOm4VHKkEAC07SKdQi6i9p5AHwRzTWVfR50EgNCFE99kmiN3B8d+XG8mYyK3js+uyQAACINgs3YBFSFJoA8CVh3oOyMBaJjBrBQ7pAPhCRWJ6nyKe/2q6rvuAtBsGqD0tIVBltIHx3x/XsP/3h/NFwCnf6+ZGFf/bdOfFxja50bMBNU+uCZt4MTspjRoJgIFg9BRb7aUPhYFxzn7Uv44CAghUjPSMzLyjOwiA4I82ykzoF3Gk98+/tu/+3nqf34KSKE0OBRCQr++SGTzWEthNnFm5OOT3oJvSkkr6RmEYGuTHp1//PoWwBm4favaEkzQtsN+OERh5fHjo2kwc4sq04HchjLGoog/MQYrlyTfOL99P4DawOkT2SuJgHQrkOGHAyitaL1RY/WGth1syKfafzLSCeRjwbiOYWKoc66hGkDOli86mkoJcEYmpsZCAeGD47Wf9spDJaNjUx9d+tN1Zj4A11vHCAYbBs2d7dtSLQHAyNW91QVA+7+ecmd/crDMMwe7GU3vPyjcFkTfqZ4P92wVQgqCdmF54yApYfdeCTTnRT5Xlt7vLwDMgu+LYGrUG3riIOvt332Yvg1lf3nvP34396bpkoR2vE6NBDB4Tm5/bf43y4vvPgKwZZNLMrbqPBi9CEgqTX84Dj2l1v4C/z0MIkAEA14w5s35VlvN/uirB4KkAZAMWAtrzgMHuzaosbH9EkwtKmuetn0jgBfjqaWECIC+erO0sSD61ZS9Io9nw/NjhyP7tod5IQvAptR/aduVAeBwxlPf4Ue4ZfqD2tinyWfr1lHq/NjGPIABuNMhBRDx0kE4sRif6LpczgxdOHbPAsUJ2CPPogk8gXD7WrYYjPX4qjvrwWwsmWOYqWkGiDH0P188kTACyn510kSGUEo4943yFAHHdCbMVBhQvESpgAQUAMEMAkNI4qnhQLlkd7798NO8HDOaeZDWJW/9oBTGTMDMf63IgDSVu9TAghXJpo7uqiqpYAnHiacPIujFHG6oN3ygeNKOLY0G07FjBRCwLiiyXIfG0iwlPG0VFz4rOrDGS8MX5PPLBW9XQsXbGO2wkSnJo2tsGPkwJQmO0JnRI5URL7KkmNJIDMFakxBASpVzd6SQVSL3xc9FJoOfTTZWxmvtwCTytnlLQwDAygP2qWdyCStaSu6eXPOj1MTNPHBEYTn7YMrZPpWwx3P1xfs3C+qL4ra2LIpxcOK0mUHmymp1eTAgfISm+tj193YkbsVRfxpvytmGRQAUG7un/q+4Ai57DT6mOh9UbM4A4DhWHEOkqD7i1mrny51gRtWOuVsTmrXyqJHhozlHgpEx4vUg8rTfBoMEANIAyraPfj5rmdpbucruHirblMIMmKkJ1qWX9TKvLCKg8J3wycnI+vFgJadadu+VRAQkrFP4zFKtqlUzd6Yg4pehAdfWCD9un96/xmOhz3uYOS9vzF3IaQAnSKO0MjD5mb232OuL+s7aN9d03H3BR7xCzIDA8Kdyf2b0i0ST6JsjWJHa06sSjUsC3ZdSNhXFcBMtdN8cKH9n9JSTuJlqubD3de+j+ucoPJh6ucdJ9H76VmfKtpLvkENT9jbz2N1EzYZ/zz9b7WNY//pgvFHXcjtBo/GvBmr2xPIsD97Xf5WLUbwld3A8/tg3ztY1eUz3kuUQQNXhx5/HPQCwr/XvXEgUvFRsvHI858UL9421zj7/XNtqYS979snwnvX+PKRnfWh7Ia0wVlaGrk0AUE7sO0LMDrj/IzqS6wvDs18nciEoqmE6YJ/M2QboWHQmBEAcSY1GLumacjD5OYH2XlwKBMiNvr2oLRt4AMCwnus//7PXLjUdBkg72nsC6t1OGYvOcq3NG663qpe3c3bgXGvP27UCAHlLi3xyMPPi6H79wYHTr95lJo8/PrxKQ2sY3wWHMOXiNZOyvnj64ct6J9O+3V+yPcPWyt+JlQ9kHd1UtGIg+630Y72vaNVxvKQ5HQj7PCnytF4cxzIQhjHVchHlO7dGCuKNd068tnr+NRZSuPFLdz/YDBhK+iuSeOLQrqEdO6i+PnMe3JO3SgBAZvXlewMvZozuua5tdQHAQ7qaBIdpiLlwijF6r+kX+PWdr/IjUdbmyfYrq+ZD6GjLkTP4s2KfCN45BFgGLceprijGATydjnAU7WzrDi1KXRk0dFbtLE8Gw7M/tcAqc6uJUKhsdWD+LIqnbxT+JH9xqxufbtvLSd0I8MhBYGWm8Mzg1daKDfm2FITQYLvs+6/NUQ5NhPtXVV0FfHhR3xwAScLstaOtckM6ELYM1XY6tDF3ZDIcAKCFtqXpfHz/8JYkL0h4t2sCZN5W6+rFmh0ZMKZvnFO769xzLe4hAAIQ4tnXd4qa879zDgDBujr7l8daytdb+uax1HeboB59Sm9mgAnCwoMTRftWJMMAePWnCy7aOvD96WGgv+3JrkZArt3sdsxFLv6EO3s2vuE7PfTFEQt37KnQxl3uJHTrYHOjCaCg2f1oBOS4wIWrVbUmVDLHy145YlNuZab0DtSsRuj88J48AGxuKrjdMSOIMPHF8L4KaPZQWnqVeFJkpKRvP3k0B1yyf1DLY+NWBgDWMqtx+EpJg4mZ1slNdWnMAt+p/wCAsZNHH5A48kEFnNGCPANgxRINjz+52QDcP7Xq/RyQWHwHKgkOL51Ta94dBzVXAXoGAURSCGQ3XO+6uuFRe1Z9KQBK9n6VESHw0jnr9WjeHCxDKBPzxrXmp0dbKrvuHdjxrS54GcwQAE9Px8nhhdCaiQQJ0lqBxNOZqZvZBCg2iAPT3TXXbm8fIShIkO87TAQSID2r0iTCHx0bcBZXIxePpTJSZ55BQklTOgowTfTbxVIKbct01wn0TxePT5VnMIjBUvheMEYgxTQgCRpUuCHfXcJmmdOCsyECMRtSKZDsPrWrac5hk10ZVE6grrOzrnHWJgEwS2Kfd99IGgHD4CBYw9qzx0fPE9M/+vtFjqfN3Pjubn+//ZII4SHR0DMAsOApnZyVi3q4F0eO7PRQIYrPAQBEHNcPKukw1HzxVrE9OssAg2dDDMy2Ptm43kriOshzsmATcXRiSABSDn/8qKR2Q0b0AEK7WgLoP5n5w0wlAUDFP+2Jy+HFf2hlEDDZdqw/uOFP9gfM3CAAclXQAIYvjtRXw9EmgRWSvt5mRA7n4vtTQQTgSvdf57b99jc5jdKanQRgCGLCxdad+wCDBUBG8pdVDS+lASLAncp4Yxetfnr59PqcrIInD1cSSYYzcDtt18popu+/2BYTIT36ddb1TYTC98p7Z1BxaOILBYAo/IexH1Zqn0dlr+Tw2tDISQOgZG4BofRQ1vUuB4DTdzn1rWwnqbt1yXEwSR124EyV1KZC5B5M/fdzANr/sO6wBdP6FhMyL57jDyYmgt2TtyMdwNbwJ8e7Nq7raP+rHXBE0lGpfw4ChMRUb7i6ygAgmvJ/f/FB1+jWNQZ08l5j0fieTYxBOH+vtjYt8lE/vnP6+ta/WGnqhIcgXsRPHuU8HCusTgMADiG1yLzVU14JV5uUXCjon2O+ADnTld9oYW40MxsA8PXQ7l0AoGkZQDxygHhu6MvOtUU8PWFUZVMK4cHF4cM1gMEKy/A/EJ44iADV9Zvj4axfq/COf8gHCKFP+vevJwAkl+N/D7xxAKCsjVZQz2iuX5UCwO29ntmcG3v6rcX7elkkTLh3dPzNQ8uwXqOShCdk1sr+srX+e8uI4ff8VjkGP6NM50pX/abgMmL4PkeOnJGLQMMqP6dvHsb1ax/M335Te4X8Pw6XasKbfHUwAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_21.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, it is known that angle 1 = angle 2 = angle 3 = 55.0, then the degree of angle 4 is ()
Choices:
A:110°
B:115°
C:120°
D:125°
|
Như hình vẽ cho thấy, biết góc 1 = góc 2 = góc 3 = 55, thì số đo của góc 4 là ()
Lựa chọn:
A: 110°
B: 115°
C: 120°
D: 125°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, it is known that angle 1 = angle 2 = angle 3 = 55.0, then the degree of angle 4 is ()
Choices:
A:110°
B:115°
C:120°
D:125°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, it is known that angle 1 = angle 2 = angle 3 = 55.0, then the degree of angle 4 is ()
Choices:
A:110°
B:115°
C:120°
D:125°
|
As shown in the figure, it is known that angle 1 = angle 2 = angle 3 = 55.0, then the degree of angle 4 is ()
Choices:
A:110°
B:115°
C:120°
D:125°
|
104
|
21
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAU0AAADbCAYAAADpuMMuAABVEUlEQVR4nO29eXhkeV3v/6p937cklcrW6SSd7s7MMMMwI8hyfziAVx8GrwuKwnhB/SnMAHqRq3ivXAEVcWQGgUHBKwp6EfECj/gDrnMREGR0hunpPftSqaQqqUpq37ffH+05c1Kp6k6601m6v6/n6aeTyqmqU6fOeZ/P97Oqms1mE4FAIBDsCPVB74BAIBAcJYRoCgQCwS4QoikQCAS7QIimQCAQ7AIhmgKBQLALhGgKBALBLhCiKRAIBLtAiKZAIBDsAiGaAoFAsAuEaAoEAsEuEKIpEAgEu0B70DtwK9JsNpFK+lUqFSqV6oD3SCAQ7BVCNHdBs9mk0WgAz4uhEERBK9e6aSp75Ijz5+ghRHOHNJtN6vU61WoVAI1GI/9rRXkhiIvi9kM6VwDUajVqtVo+D6QbryScGo3mqudIpyZkyucIEd5fhGjuAsmCkKxNtVpNs9lse6KKk/f2RGllSr932q71753Oo1bLtdNriXNufxCiuQskq0HiWiez4PZkJ26bVjFsfbzda4lz7XCgEk2Id450qBqNxhbfprT8EiezQOJaFqR0DkkrFekcajab1Go1ms2mfJNu5wISHBxCNK8TyW9Vr9flE1+j0WyzRgW3PtdjAUrnT61WQ6PRoNPpKJVKpFIpIpEI1WoVt9uN3+/H5XLdrF0XXAdieX4NWn2Y0oUh/d9oNOTgkE6nQ6/XH8yOCg6MGwnEKJ+bzWaZmZnhu9/9LqVSiRMnTnDXXXcJ0TxkCNG8BuVymXQ6TbFYBMBqtWIymWRxVC7LW/1RgtuDnXzvnQI/Wq0WtVpNrVZjc3OT5eVl5ubmaDabBINB+YYsODwI0bwGlUqFjY0N4vE45XIZu92O2+3G7XZjsVjQaq8cQskHJV1Awr95e7GT71vyYbb6K8vlsiyY0WiUer2O2WzGbDaLlcshRIjmNWg0GpRKJdbW1lhbW0OlUuH3+xkdHaWvrw+Xy4VWqxVCeRuz0+9d6epRPi+dTnPx4kUuXrxIIpFgYGCAvr4+xsbG8Hg8W57fLj9TnHf7ixDNa6DRaGSLMpvNsry8TCwWw2Kx4PV6cblc2yLnYokuaIeyikyKiFerVVZXVzl//jwzMzMAjI6OcurUKUKhEFartePriaT2g0GEeTsgpX4YDAa6uroIBAIYjUZWV1eZmZlhZWWFXC7X9rniBL69kJbc10pkV6vVaLVa2aVTrVZJJBIsLCwwNTVFNBql0WgQDAYZHBzE5XLJy3OlT7T1n2B/EZbmVVCpVOh0OjQaDV6vF6/Xi16vp1KpkEqlSKVSVCoVdDqdEMrbmE5+bGXJpDIXE6BUKhGPx5mcnGRxcRGVSkV/fz/Hjx8nFApht9vR6XRb3qP1tTvVtEt/E+fkzUGIZgeUJ7lGo8HpdNLT00NfXx8bGxtks1lWV1fx+/10dXVhMpkOepcFB0in8kYpib01fzeTyRAOhzl//jyxWAyPx8Pw8DAnT57E7/fL1qjytZTv06m/gbLoQnBzEKJ5FZQnntVqpa+vj3vvvZfp6Wk2Nja4ePEiAPfdd58QTUFbWpfVklWayWRYWVlhbm6Oer3OxMQEExMTjI+Py4FF5XOVucKiAu1gEaK5Q4xGI36/n4mJCWq1GqurqywsLABw/PhxAoHAgVUCKZeA4mI6XGg0mi3L83q9TjabZX19nXg8TqlUwmq14vP58Pv9GI1G4Mp3qlKpaDQacuUQIFugnUorxXd/8xGi2UI7x7q0RLfb7ZhMJuLxOFqtllgshkajIR6Pk8/nMZvN+14nXK1Wyefz1Ot1tFotBoMBvV6/rbGI9DkE+4NSKJUUi0VWVlZYXl4mlUrhdDrlUknlklz5vEajIYtm62t2au4huHkI0WxDpwayarUag8GAz+ejt7eXYrGIRqNhY2ODWCxGIBDAYrHsm3BK+aMXLlygUCjg8/no7+8nGAxuibqK1JT9p9NxzmQyTE5OcvnyZZLJJH19fYyMjNDf398xvUiKuisriHb6foK9R4jmVeh0IjocDoaHh6nVamQyGdbW1lhYWECn06HVajGbzTd93xqNBpubm0xNTfGNb3yDXC7H6Ogoer1eDiRI/T7btR8T7C/S97C2tsbs7CzhcBi9Xi8nsff09Gw7b1obwbRG4EF8lweBEM0WdnIS2u12jh8/TrlcZmZmhqWlJarVKk6nE7vdvuXkl3xTe3ly1+t1UqkUs7OznDlzhjNnzlCv17Hb7eRyOWq1GvV6vW2kVbD/NBoNCoUC6+vrzM3Nsb6+jlqtxufz0dfXRyAQwGQydWxCLL7Hw4VIbm/DtU5Ok8lEMBiku7sbq9VKPB5nYWGBaDRKNpuVt9tN4vFukpUrlQqbm5ssLS3JF2E2m6VarW6pb243z0hcePuP1Izj4sWLzM7OUi6X6erqYnR0lEAggNVq7RhEVH5vzWaTcrlMoVCgUChQrVZFcvsBICzNDlxNXDQaDQ6HA4/Hg81mo1qtsrGxwcrKCr29vQQCAQwGw467HrU2pG03N0b5OsVikVQqxcbGBul0GrVajdVqxWKxYDAYtlyAQigPnmKxSCwW4+zZs6ysrGC1WhkbG+POO++Uy3Db0fp4uVwmGo2Sz+dRq9X4/X4cDofs7xTsD0I0rxOtVovL5aK7u5tAIMDm5ibRaJT5+XlsNhvBYBCLxXJN0ZIsQik62jqIS0Lq21kqlchms9TrdQwGA3a7HYvFgtFoRK/Xo9VqRTPkfeZqgbZ6vU4ymSQajRKLxahUKrjdbgYGBujv7++4LG99fZVKxcrKCt/+9rdZW1vDYrHwAz/wA4yMjMjnmWB/EKJ5A9hsNkKhEGNjY8zOzrKxscH09DRGo1EWs510pWldmrfzg9brdfL5POvr6xSLRVQqFV6vl97eXiKRiGxtSP/aCa9gf6nVaqRSKZaXl1lZWaFer+N0Ounr6yMYDGKz2To+V7qZVioV8vk82WyWZ599lq997WvEYjG6u7sJhUL09fVhsVj28VMJhGjeABaLhWAwKPdH/O53v8vs7CwajYbR0VG6urrkbZVzhVorOqSUEmmJLommUvgajQaZTEauIPH7/fj9fgqFAlNTU7KPq1QqUa1W5SRpwc3jWvmv6XSaS5cucebMGVZWVggEAhw7doyJiQm8Xu9VX7vRaJDP51leXmZycpLz58/z/e9/n+9///totVosFgulUkmeJyTYP8T67QbQ6XQ4nU6Gh4cZGhrCbDaTy+VYWVlhbW2NQqGw5aTulP4jNaOVltXSttL/lUqFbDZLOp0mm81Sq9UwGo243W58Ph82mw2dTicv4dsFCERnnP1nfX2dyclJpqenSaVSBINBxsbG6O/v35F1KKW0RaNRpqammJmZIZlMUqvVtjS/FuwvwtK8QXQ6HTqdjt7eXkKhEPl8nnw+z+LiIm63m+7ubmw2myyI7TrQtC6rldtI4zbi8TiZTAaLxYLD4ZDnxkgdvqXgADxfVimhbBwBnf2mgr2hVqvJvVfn5+fZ2NjA5XIRCoXkHpk78TdLOb8ul4tAICCPv7BarTgcDjnYKCGKGPYHIZp7hNPpZGxsjEqlIie7K6s47HY7wJbO3a20S1qW2tBlMhlUKhXHjh3D7XZjs9nI5/OyhWowGLBYLFgsFkwmU9v57MoUJNFp/sZpd/wajQbpdJqZmRnm5+fJ5XK43W76+/vx+XxYLJZrCqb03RgMBnp6etDpdHi9Xrq7u/nnf/5nSqUSer1+y8pE+bydkkqleOyxx1haWuKJJ54QLp0dIkRzjzCbzbJo1mo1VlZWKJfLcnd3STSvdcFIJ710AZRKJXK5HKVSCbPZzMDAgLy0k3xa9XodtVqNyWSSU49E5Hz/aTabcmnr+fPnWVpaQqvVylU/brd7W8u31ucr3Sd6vR6fz4fP5+PEiRO43W6i0SjhcFh+zvXc+EqlEn/4h3/Io48+SiqVAuCtb30r99xzz65f63ZEXFk3gPIEN5lM9Pb20t/fj9frlX2bsViMfD6/q9es1+uyH7NYLNJsNjEajVgsli2DttRqtdywQ5qW2ZqnCe39psLKvDmkUimWlpaYnJwkkUjgdDo5deoUd999N4FA4JqD0qSJAdLNUEKlUqHX61GpVNRqNfnm3Dpz6GopbqVSiccee4zBwUH+23/7b3LDkN/7vd87nII59yle0lKYIf97yaeYkzd7SfttVCpe8ilpq03OfOrnOWVXoTL6eflv/iPL1znoU1iaN4iym43FYtnS4iufz5NIJNjY2KC3t3ebD6oT9XqdQqHAxsYGq6urRKNRSqUSJpOJZDKJ0+kEIBqNcv78eSKRCKVSSR6bYLVasdlsmEymLSKqbCQiRHNvkbIbFhcXmZmZYXV1FZPJhN/vZ2BggEAgsOPXau2jqfRVK1vF1ev1toPaWpfppVKJT3ziE3zwgx8kFosBV9xJb3/723nHO94hn0+HltP/iXf/8PDWx3pHaG1vcvo/vZvtm13ZKvPVX+f+39Hwv/4tyv3GRT77n1/Of3ziWc49Mr7r3RGieYO0io/FYpGd9rFYTM7Tk4JCVxuUJdFsNsnn8ywsLHD+/HkuX75MIpGgXq9jtVoxGo2o1Wq5L+Pi4iK1Wo10Os3GxgaLi4vccccdcp/PnYq14PrJ5/OEw2HOnTvH5cuX5a5TXV1dV83HVCJZR8oenEohbM3EUAb3JKQgoNS787Of/Swf+MAHmJ2dlbexWq287W1vY2BggC996Uv09vai1WqxWq1yKpT02IGST5EA+H/eyu///iuuslmCK5v9Pp02i69MMvauP+V1Y11AF2/79TfyrseeJfLIOL273C0hmjdAOyEym80EAgFGR0dRq9Ukk0lmZmYwGo04HI6Ooqm0DqQIerlcJp/Pk8lk2NjYoFAoyJ2UpMh6NpuVU5vi8ThLS0tyAnW5XBYpKftELpdjaWmJy5cvMzd3ZUlYq9XI5/NsbGzIxQ6dUOZ8tlsRSOeHTqdDr9fL84NaU8iUP3/lK1/h4Ycf3jYAMJfL8f73v39Hn8toNMr5xl1dXRiNxm2PGQwGtFotvb1X5Mfr9WK1Wts+tis2VpgCXnyy7xqbTQEv5mqb+YJjTP7SH/HFH3r/FUvzD/6S0w++Y9eCCUI09xyDwYDX62V8fJxqtcrKygoLCwsYjUbGx8fx+/1tn6c82aW+nXa7Hb/fTygUwmAwkM/nt/hrSqUSBoOBer1OuVzGYrFgs9mwWq2YTKYtA986NVcW7A3JZJKVlRWi0SipVAqXy0WlUiEWizE3N4dKpSIUCmGz2TpWhEl0CuJJWRJSyWy71n/KfgcPPvgg58+f5+GHH+YrX/mKvI3T6eTOO++kVCrJy/VYLEapVNr2nqVSicXFRQD5/xtlYGBA3g/JNSA99trXvpYHH3xwy/aJb/8JP//xT/O/zsQpG3y87Bc/zIff+wbucm/Zim//yc/z8U//L87Eyxh8L+MXP/xh3vuGu3AD9tf8Ad/777/Gz93bzcWKj5f96t/zD7+8+6U5CNHcxo3muul0OhwOBxqNhkQiIVub0sW0k/dWq9XY7XZGRkYIBAK88IUvlB3/0t+bzSaJRILZ2Vm+973vkc/n6e/v5wUveAF33nknwWAQl8uFTqcTPTVvIpVKhUQiwcrKCslkEr1eL1tV9XqdSCRCuVwmk8lQqVTo6+vD6XRua1S9k5ElarUavV6/pTt/O9FUPn9gYIC///u/59Of/jTvfOc75SmqAwMDfPjDH97mz1QKaSKRkFsNRiKRLY9Jnw2QXxOeF1blY61cTXz7+/tl0Vxbv7Ld1Gc+Qu1H3sw7HoCLX/gzvvLHP8v9Fypc/MbPc4w1rmw2xWc+UuNH3vwOHuAiX/izr/DHP3s/FyoX+cbPHwPc3PWWP+fCW/6843vvFFVTrN+2sFcJws1mk/Pnz/O3f/u3LC0tYbPZeM1rXsPdd9+Nw+GQ/ZKt76tcpitFtB3xeJyzZ8/y5S9/mWw2y+nTp3npS1/KXXfdtcUf1Uk0hXDuHGVhgJJEIsFzzz3H1NQUkUiERqOBXq/HaDTSbDapVqvU63W5neDg4CDHjh3D5/NhMBiAzsUH8Pw52Gg0OH/+PF/84hdZWFjAbDbzyle+knvuuYfu7u5rRuUBIpEIDz/8MF/60peAK0vmJ554gh//8R/fk2N0tfet1WrkcjkSicSWx5Qivba2xqte9SpZNDMz3+WphTzG4J3cf9KPDqD0PX5r5Af4wLKP9/zLCu+/v8jMd59iIW8keOf9nPRfcVuUvvdbjPzAB1j2vYd/WXk/9+va7Nh1IizNFvZKSFQqFW63m/HxcVQqFel0munpadRqNSdOnNg29rddo9lr7YtarZaX4NLPRqNxmwNf2Y9xLz/jrcTVbpZKQVPebOr1OrFYjKeeeopwOIzRaOTee+9lZGQEnU4nl0EuLS2xvLzMM888w9LSEplMRhY76TWlNDBlIULrjU1q4FEul+VeBbv5Lnt7e/niF7/IF77wBX75l3+ZRCLBT/zET/Bbv/VbvO9977vuY7eT970e7MdfzAPHWx403s9PPjLKB941xTcvhuH+Yxx/8QNs3+wneWT0A7xr6pv8+2Z7hhDNm4jdbufEiRPUajWmp6dZXl6mUqlgtVoxm82yaHayYq6FdPfe3NwklUqRSCRIp9NUKpVtloeYFbQzWkVKWZKq7AtQKpXkTIVwOEwul8Pv9zM0NMTJkydl4cvn8+h0OorFIpFIhGg0yuLiIj09PTidTjklbCft4er1utxbQNlwerff5Y//+I/z8pe/nF/+5V/mC1/4AhcuXNjlUTpYLE4vMHWtrdjRZteBEM2biNlsZmhoSM65DIfDpNNpAoEANptNvmDq9TrNZhO9Xr+tv+LVltHK6HoymSSRSMjCqZxuKAmmlCwt+dOEcHZG6nEq3dCURQGSYM7MzDA3N0e5XMbhcNDX10dPT8+WKLndbqdarZLL5VhbW5ObR0sum+7ubrmCq/X7aBcwahXy63WzeL1e/vZv/5YLFy4wPDx87SccIjZWpgHQX3WA4QZXNtOz13MOhWjeRKSac5/Ph8fjkQdrXbx4kXq9zubm5pZAjVarlVM6TCaTXAUkpW+0e32LxSIPUrNarWg0GlmElbR2WhKCuZXWxhdSErmyeEHaJpfLEQ6HuXjxotzyra+vj/HxcRwOx7bXdjqdHDt2ZX24tLTE+vo6CwsLNBoNtFqtHNyR9qNdbwCNRoPZbJYbxEg32Fbf+G45derUdT/35pLgH956Jz/98QQP/v0qf/kj/x4q3/xH/uJjceA0D75oABL/wFvv/Gk+nniQv1/9S57f7C+4stmDvGhgb/dMiOY+YLVacbvdWCwWVlZWmJqakpPerVarnHMnVXgYDAZsNhsej4dgMEgwGMTpdG5rqGAymeju7ubuu+8mk8kQCATw+/1yuZ0SEfi5NkqLXOnDVAZmms0myWSScDjM0tIS+XyesbExTpw4weDgYNtJpNL3JN38Njc3WV1dpVQq0dvbi9vtlkVTYiffVWvDjlsLLz/4Uz+D8+Mf4jM/OsDMm36Fl3XFeOp/fo5vxSH0ro/y0DjAD/JTP+Pk4x/6DD86MMObfuVldMWe4n9+7lvECfGujz7E9SUWdUaI5j5gMBhwOp10dXWxvLwsX3BOp5NAIIDD4ZArfBKJhNycQ/KPnT59msHBQbk8U8Jms3H8+HF8Ph/VanVLp6N2CdKtzY8FW5EEU5naJdXrq1QquVQyFouxurpKJpPBZDIRCoXo7+/H7/fLN0AlUkGC3W4nkUig1WpJJpMUCgXW1tYIBoM4HI6O34tk9UqFDMViEZ1OJ/ccqNVqO4qeHzXsL/0Azzw9wrvf+l7+7i8+yFOALfgAD3/293nvG+7iSgscOy/9wDM8PfJu3vrev+MvPvgUYCP4wMN89vffyxvusu/5fgnR3AeMRiOBQIATJ06QTCbl8kqDwYDVapWT17PZLFarVW4Dp1KpiEajlMtlVlZWCIVCskhqNBq0Wi02m22LD61dxLXT3wTP085XKImmdMwKhQKLi4vMz8+zvr6OwWCgu7ubnp4ePB5PW8GUkF7DbDZjNBppNBrkcjk2NjZIJpN4PJ62Vmo+n5dnpf/rv/4rZ8+eJRqNYrVacblcFItFjh8/Tm9vLy6XC7PZvC0H9Oiiw3/PW/jzf30LV82u1Pm55y1/zr/uQQ7mThCiuQ8YDAb8fj8TExOUSiWWl5cxGAy43W5OnDjBxMSEHDBIpVLk83nZoojH43LAQUrdUKvVeL1eeWnWaYkm+eaUUy4F21EeJ0AWytapoMlkksnJSebm5shkMnR3dzM8PExXV1dbwWuHdKOTuvynUini8bjsl261GHO5HPPz8zz55JN873vfY2pqimw2i9FolP3iGxsb3HnnnYyNjWEwGMT3fJMRonkTUebbWSwW+vv7KZVKrK6uEg6H0el0dHV10dXVRU9PD3q9nkqlQqPRoFgssrGxITda2NjYYH19nWeffZZcLsfx48fp6uqSK09aq0na5Xu2NiMGtgnD7Yx03FrdGPV6nWKxSDQaZWZmhmg0isFgYHBwkNHRUbnyaicYjUY8Hg8+n49ms0kqlSIajRIIBDCbzW1TxaTludlsZnBwkGq1ik6nw2Qyyc09xBiT/UOI5k1CebJLfjGTyURfXx8veMELsNvtJJNJuTN7O7+W1+uV64xXVlbkAEKxWKRQKFAulwmFQnIX73a0WqFXiwrfzijHjCiPmdSmb21tjeXlZdbX12k0Gng8Hvr7++nr68NsNu84ICP1JpCG4kmdqjY2NvD7/XKzauX2Pp+PkydP4nQ65bQxaX8dDgcDAwN4vd5tHfsFNwchmjcRKbCgXPZZLBZOnDghO/YvX77M2tqanFLk8/nk55tMJoaHhwmFQmxubjI7O8s///M/s7i4yMbGBvl8nnq9zuDgoFy2p+zB2CoArdFhyWd3u19o18qFTSQSTE9Ps7i4SKPRwOfzcezYMXp7e7eJ3LUwGAx4PB68Xi/xeJxoNMrm5qZcm96KVCAxODgor0KkfZa+PykNSafT3fbf5X4gRPMmovSLSRelwWCgq6uLaDSKRqNhfX2dbDbLxsbGlotGSq6WcjctFgtarZZ8Ps/58+cJh8NcuHCBZrOJ3W7HarVeMzlamT5zu1uZO81VlZblly9fJhKJYLVaOXbsGGNjY3g8nl2/r7TiMJvNWzpUKQWxdXuNRiPm9xwihGjeJFpFSXmB6nQ6ORjQaDQoFApbRlbA8340tVotL9GlahOj0ShXGJXLZY4dO4bH45GF82qWk1Sjrvz9dqNdc5ROpNNplpeXWVhYIJ/Pc/r0aUZHRzl+/PiOxvC2Q2klarVatFrtbfk9HFWEaN5ElGVvktUpXRwOh4PBwUFisZichiQ19JAau0pOfimyq9FocLvd9PT04Pf7iUajcjqKw+Ggp6cHu90uNyluR+uS/Xa0NHfymSuVChsbG8zPz7O8vEytVsPtdjMwMCD7n69H6Or1OqVSiUqlQrPZxGw2y6NJJBeNcljeTt0n0jkixjTffIRo3kSutlx2OBwcO3aMUqnE/Pw8yWSS6elp2e8pRVKVM2IkvF4vw8PDJJNJNjc35QCRZL1eK5IrLqRrk8/nmZubY25ujlQqhd/vp6+vj+HhYXw+33VbhtIKQhqY53Q68fv9eDweeQkuCeBuouHKLlaCm4sQzZuISqXqOGfFYrEwODgodzx68sknWVhYQK/Xc/z4lUZXnfxYLpeLu+66C4PBwPLyMs1mk0KhsGV6oeDGyGQyTE5OyuNy77jjDk6fPk0oFNrS0m+3NBoNSqUSxWJRDir19/fLXd2B66rukVYyIkfz5nMoRFPpY1L+fysjRT2lIE6lUmFzc1NecodCIXmZ3VqpotVq5ZQVuNK8tVwuk8vlKBaLWyLpgp0h+YGlHNmVlRW58sfr9eL1euUZOcCub1CSW0SaUCp1QHe73XLUW9m3c6++u1afulhl3DgHLppSlLhYLFIul+VO1zvtNH6YhVaZVN6671KeXaFQkCPo6XRaTqC2WCw4nU652Wzr55N6K6pUKqrVKslkcovVqRRN5dLtMB6ndigv8qvte2t3ot28fms3IY1GQ7VaZX19nYsXL7K4uEg+n8dgMGzpW3o9x1OtVqPVallaWmJ2dpalpSUKhQImkwmXy4XVasXpdKLX6zvO/NnpY8r+n8ouStIANBF0ujEOfNxFuVwmHo8zOTnJwsIC0WiUbDZLrVbbFn2WTgLJIpDyDQ+rELRG0FvzKOGK0z8Wi3Hu3Dny+TwOh0OuJZaSlSWrRllhpFarKZVKcpOPRqOBzWbD4XBgsVjaJmof5mPVytVq6NttC7u/ISgrf6TlrdSUIxKJMD09TbVaxeVyMT4+TldX15b3andzvxrS3KjFxUXW1tao1Wr4/X4CgYBcey4F/1rZadd95TlmMBhwOBz09vYyMDAgZ1mI9KUb40AsTUk0ms0rs5yz2SxLS0ucPXuWmZkZuVJGihw2m80tibySkEhRxlar6iBRWi5SBFO6OKXlV+voBKmZcLlcZn19nUwmw6VLlzAajXKHHOm1a7XalvxPKbCgjLZKF57yvVvrqzvt80Gi3A+lmLXue6sF32pttmvQ284Ka03PajQaVKtVSqUS5XJZvnFns1kuXLjA9PT0luOnFM2dHEPpuy4UCpRKJVl4Nzc35aqudjeA1tdW/t7umEjnmMlkwufzceLECbRaLYFAYMsgtcPyvR81DkQ0S6XSlpZber0eq9WKx+Mhl8vJ9dTKk0gSAMnSlKzM3d7t9wvlBdk6/0VZCicJoFarleuQJX+XxWLB7XbL6S3KTjytjn+l5d1ung20H7B2GFHut/K4dVqedxLGVkFQPl+ywKXjWa/X5Q745XJZLnl1uVwYjUY5Ab21zn+3tKYRKUXuat/Pbqxp6fWMRiNutxufz4fdbpf7rCqvHWF17p4DEc1KpSKLn0ajweFwMDIygsPh4MSJE3IOW2ueWWsz2MO+3Gy1moAtAiA9rtVqMZlMrK2tMTU1JXeyCQaD9Pf309/fv2XpprSWlNZ4vV4/tDeR3XI1weu07W59mhLSOJLl5WXW1tYolUr4fD5Onz4tFxSUSiVKpZJ8w7ueiiop11a5epC+M2Xj4xtBeX7pdDrMZrMsnNLoYCmOILItro8DEU1pKdlsXhnx4PF4cLlcW4Tydlw2xONxLl26RG9vL2trazidToaHh7dcvIK9Z3Nzk3PnzslNoc1mM/39/UxMTBAMBrFarcDzN2rYPl/8qKCcfXQr3FwPggMRTSnAoRxWJfLLwOPxMDIyIvsopTnadrsdr9crRPMmUa1W5UT2er3O8ePHGR8fJxQKbemTeSucp8rPsBeW7e3IgYimwWA4snfq66Fdekg7pObCwWCQlZUVnnnmGRKJBGazmWAwiMvlavu6t8Mx3Gskd4YkmFNTU6yuruLxePD7/QSDwR03Fj6MtKYtKX+W3FzC0rw+DkQ0j/rdeicogxLtRk50umFotVrcbjdutxuVSiXnbkpdkHQ6nezMV/o2b8Xcu04X/l5QLpfZ2Nhgbm6O8+fPk8lkcLvdDA8P09PTI1fnHEVae6a21q+LRPcb49a70g4RrdHQnVjWKpUKq9WK3+8nFArhcDjI5/PyQDapE5KUwlSr1Y5MVPwwIXXQ//73v8/09DQGg4Hh4WEmJibw+/1H/sauzNcU58fecuAVQbcD17IuWzEYDAQCAe644w6MRiObm5ssLCxgMpm2zboWDv3rI5PJsLy8zKVLl8jlcpw6dYpTp04xMTHRdnb5UUVYlXuPEM2bRLuTdScnrjKj4NSpU9RqNdLpNEtLSzQaDfr6+nA6nVgsllu+9dfN+GzSFMhoNCpP+rRarfT09NDT04PL5Tryx1RKY7uRfFJBZ4Ro3kSu92TVaDRYrVYGBwfZ3NxkamqKaDRKo9EgEong8/nQarVbCgQEO6NQKLC0tMTMzAyxWAyXy0V3dzcDAwOyH/moI4Ty5nJoRbNTOdytRmsEXPpfmvni8/nw+/3yQLVwOCxPP3Q6nXImQrvXEmwnmUzy9NNPc+7cOQqFAnfccQenTp1ieHh4S4nhrUinSjHB7jiUonmr+OjaVf/spOECPC98breboaEhuW1cJBLBbDZjtVpl/+b1vtftgrJaamVlhYWFBRKJBDabjaGhIUZHR3G73W37WLaWcIpjKziUoilx1E9MqcGG1JlIWlJfbfvW2nK73c7o6CilUgmVSiU3xZXGwCqDFq1pJkf9+O0VUlOYWCzG/Pw86XQas9lMb28vvb29eDyejs2iJcGt1WoA8nd4FI/tUdznw8ihTDlqjTYfxS9bEkBlE42dNJxotWxMJhPd3d0MDw/T19dHrVZjfX2dSCRCKpXa8n7K5g9Xe8/bjWq1SiKR4Nlnn2V6ehqtVsuxY8eYmJjA7XZfVQRbj+lRPp5H+Xo6TBxK0byV2I34t2tSIeVt9vT0EAwGsdvtsnBKQ9mq1eqW95KeK/LzrlAqlVhfX+fSpUvyGN7R0VFOnjyJzWa7Zq/Oo34DF+wth3p5fpRpt0TeSdVOp0mRRqMRn8/H0NAQ4XCYXC7H3NwcZrOZkZERXC6XnGYiLdOVfUtv54s9m82ytrYmjwWx2+0Eg0FCoZDsLrla2aGy2/mtnuYluDZCNG8iu23wcDVLxmAw4PV6GR8fp9lsMj8/z8zMDCqVSm77pbygj/pSci+oVCokEglmZmZYXl5Gp9Phdrvp7+/H7/dvmdp5tT6Wyu9FCKZAiOYRQafT4fF4OH36NMVikbm5OZaWlqjVakxMTNDb2ysLdKu1erXelLeyCCSTSc6ePcvZs2dZX1+nt7eX4eFhxsfHtzU/2a3rRHD7InyaRwS1Wo3JZKKrq4uenh4cDge1Wo2NjQ3i8bjccVy5fauP81ZBGWRrbbqsbJAiNeSQavYHBwc5deoUvb29os2e4LoRluYRQhJBr9dLT08Pa2trVKtVYrEYKysr8vwkadl5KwomtB9qJt0k6vU65XKZUqlELBaT/Zgej4f+/n76+vqw2+0AciqYsCIFu0GI5hHEarVy/PhxisUisViM1dVVTCYTBoMBvV5/TV/drSASknC2Btzq9TrpdFpuKlyr1QgGgwwMDOD3+7fMxBGCKbgehGgeQaxWK0NDQxSLRWq1mtzh3efzyUO0bnWkZrqtwler1djc3OT8+fMsLS0B0NfXx/j4+LYkdiGYgutB+DSPIFI1S39/Px6Ph1QqRTgcJhqNks/nt2x7K+YXSlNJpQFlysCXMiczHA6jVqvp6+tjdHRUnup5PYicV4GEEM0jislkwuVyyRUtuVyO9fV1EokE5XL5lr/AlWMb4MqyPJVKsby8zPLyMrlcDr1eTyAQoKurS85jvZH3u5VuPILrR4jmEcZiseDxePD5fBiNRpLJJCsrK3JHJCW3uohK3e0nJydZWlrCYDAQCoUYHBzE4/Ec9O4JbiGET/MIYzKZCAQCTExMMDs7Szqdlkc3WK3WIz0YbLek02kuXbrEmTNn2NzcpK+vj7GxMY4fP35LdWIXHDzC0jzCGAwG/H4/d9xxB8PDwzSbTcLhMJcvXyaRSFCv1w96F/eFWq1GLBZjbm6O5eVlSqUSoVCIkZERgsEgJpPpoHdRcAshRPMIo9PpcLlcjI2NMTw8jNlsJpVKMT8/L3dBUjbzuBWpVCpEo1GWlpaIRqNUq1WcTiehUIhgMIjNZjvyQ9IEhwuxPD+iKPtmajQaeVb35uYm+Xye6elpjEYjQ0NDeDyeLfmJtwrNZpONjQ2ee+45JicnKZVK8rK8v7//hqLlAkEnhGgeQVo7iQM4nU6OHTsmpx9NTU1Rr9fR6XQYjcZbTjSbzSa5XI6VlRXOnj1LOBzGaDQyPj7O3XffTVdX15Ykf4FgrxCieYtgtVoZGRkhl8uRz+eZmpqiWCzKUxZvpQhys9mkUCiwtrZGOBxmZWWFarVKf3+/HPy5ET+mmLUkuBpi7XKEUVqcRqORnp4eBgcH6enpoVqtsr6+TjweJ5vNHvCe7i2lUol4PC53emo0Gng8HgYHB+VmHGJZLrhZiDPrCNKue5FKpcJisdDV1UVfXx9+vx+9Xk86nSaVSlEsFm+ZXM1cLsfS0hIXLlxgeXkZn8/HiRMnOH78+G1RQio4WIRoHlE6lUdKXcnHxsbo6emhUCgQDoeZn58nl8sd0N7uLdlslsXFRWZmZtjY2KC7u5vR0VH6+vqwWq03/Pqi+kdwNYRP8wjT7sI2Go1ywrvRaGR1dZX5+Xm0Wi02mw2bzXYAe7p31Ot14vE4y8vLJJNJzGYzoVCIgYEBfD6fWJYLbjpCNA+QmxFw0Ov1eDwexsbGKBaLzMzMEI/HaTQanDhxYs/epxPKqZjQeabO9XzmTCbD4uIiU1NTpNNpvF4vfX199PX1yeM+BIKbjRDNQ4DUDFfJ9QqpWq3GbDYTDAaJxWLodDpyuRyxWIxEIkE2m8VkMl11zveN7odSNJWzdZQ3id0Oe5MCW2fOnGF6eppKpSJ3Yu/q6hJVP4J9Q9yaDxjJMqvValSrVWq12g0PRVOr1ej1etxuN4FAAKvVSqVSIRKJEA6HyWQy1Gq1tvvSOkbievfjan7B3b6mlJMZiUQ4c+YMi4uLaDQaxsbGuOOOO3A6naLqR7BvCEvzENA6vkGr1e7J9EOHw8HIyAiVSoV4PM7i4iJ6vR6NRoNOp9vm35REUzkG4nrev3VJ3vpZdiOaUk7m6uoqS0tLbGxs0Gw2cbvdBINBurq6trxupyFyIrAj2CuEaB4gygtZEixp6boXy2Sr1cqJEyeoVCpUq1VWVlao1Wr4/X5cLtdVg0LXa2XuRux3skQvl8skEglmZ2dZXl5Go9Hg9Xrp7+/H6/Ve1Zrdi2MoELQiRPMQIHUil0SkVTiVox12g9ThPR6Ps7S0xNzcHI1Gg42NDbmRh5LWeTs3K7Cym8+Rz+dZXFzkwoULrKys0NPTw9jYGHfeeWfbMbzKQJR0PK/n2AkEnRA+zQNGEkm1Wi0335Au8hsdsaBWq7HZbPj9fvx+PyaTiUqlwvr6Omtra9sS3qV9kfZjv/IVpc/Z+lmlSZsLCwusrq5Sq9UYHBxkfHycwcHBjmN4laIpfS6BYK8QluYhoFUwJBFV/n4jOJ1OBgYGiMVi8vTKS5cuodFoGBwc3NKk9yAERhI5pUWYz+eJRqPMzMwQDodpNpsEAgGOHTsml0p2SmVSHj+RhiTYa4RoHjBKsZR+lsRjr4TTbrfT19dHNptFrVaztLTE5cuXUavVeDyeA+1srlxOS5+32WySSqW4dOkSU1NTJJNJ/H4/w8PD9Pb2Yrfbt/mDlSiPnajuEew1QjQPAZ2W4Xt1sZtMJrq6uuRI9PT0NOFwGL1ez5133rltX/ZTZJRResklUS6XicfjXLp0iaWlJXQ6HUNDQ5w+fRqfz4der98msq2vKSxMwc1CnFkHTDt/psReNdhQqVRyeWV3dzc2m41ms0k+nyedTlOpVLZsu98oA1CNRoNUKkU0GpUHxNlsNvr7+xkcHMRms6FSqajVanKalpQmdaP5rQLBThCW5iGgtWuR9O96q3Gk11Si0WiwWq34/X5CoRD1ep1Go0E0GiUcDtPV1dXRT3izkT5/o9EgnU6zuLjI0tISpVIJm81GKBSip6dH7mAkJd9D+4bM+20tC24vhGgeIpRWE7CrOd2tEWilT09CpVLh9Xo5deoUKpWKtbU1pqenqdfr3HnnnQSDwY4R6f1Aqi1/9tlnWVhYwGKxMDAwwPj4+LYmyiqVShZ+ZcaB9DeB4GYhRHMf6NTEQnlxty4vJf9ePp9nc3OTZDJJoVAArgxUM5vN2O127HY7VqsVtVq9LajUTjxsNhvDw8Pkcjl5CFs2m8XtdmO32w9MNKV5P3Nzc0xOTpJOpxkZGWF4eJihoaFtLd9aa9mVx1OIpuBmIkRzH5Bqy6UlpVar3ZJE3mg05Jpzyb8HV6phVldXuXDhApcvXyYajcrNhn0+H4ODg1tERRlM6SQcRqORYDBIIpFgYWGB8+fPk0qlGB4eJhgMEggEdi06relSu6XRaMjzfubm5ohGoxgMBoLBIIODg3R1dW2xuiUfsDIJXwR+BPuFEM19QNmUA56/yFubdahUKrRaLWq1mkqlIpcPPvvss5w5c4ZIJIJarUan02G32xkdHSWZTGI0Gunv70ev1+/I2jIajbhcLnw+HzabjVwuRzweZ319ne7ubux2+76KUD6fZ25ujunpadbW1rBarfT09BAKhXC73dvcFNKNpZ0LQiC42QjR3EeUF7nUpEP612g0ZMGUUoOi0SixWIx8Po/JZMLv96PRaMjn8yQSCZrNJjqdjlAohN1ux+PxoNPpdiQiDodDtuSi0SjZbJaVlRX8fj86nW5fl+nJZJLLly8zPz9PoVBgcHCQsbExent7O3ZiF/mXgoNCiOY+INWWS8tutVpNo9GgWq1SrVZl8dPpdGg0GsrlMqlUikgkQq1W4+TJk7zsZS/D5XKh1WqZmpri29/+NisrK/IoC5/Ph9ls3pa21AmbzcbQ0BD5fJ7Z2VnW19eJRCI4HA7cbveuRPNGxKtSqRCLxbh48SKRSAS73c5dd93FXXfdhdPpFH0yBYcOIZr7QLvqHmWTXmnJLYlppVKhVquh1Wrx+Xz4fD76+vrw+XxotVrsdjuZTAaAQqFAJpNhc3OTnp4eTCbTjkTTaDTi8/kYGxujXq+zvr7OxsYG0WiUUql0cw6EgtYxvBsbG2g0Grq6uhgYGKC3t1ekDgkOJUI094nWsj9lQrfy51qtJgtmd3c3er2eQCCA0+nEaDQC4Pf7GR0dJZvNsr6+Llun5XKZer2OTqe75v6o1WrZd5hIJFCpVKRSKdbW1kgmk/T19e2ZYLULFBWLRdbW1rh06RLz8/MAdHd3Mzw8jM/n23bMBILDghDNA0IK+kio1WrZvykJmsViwWAwYLFYtgihZJ1KlT1erxebzbbr7uUqlUpuSiwtkzOZjDygrK+v76YFhfL5POFwmDNnzrC6uio3TB4bG9uTiZICwc1in0WzRDKWotz2bwacXS6MANUs8Y089XabaSx4fDZkCSkliaVqWDw+bNc2sA4NrUKkTEzX6XQYDAYMBsOW+upqtUq5XJYDRNVqFZvNRiAQkFu/SUv/nQRKKpUKmUyGXC5HtVolmUwSiURkgZb2Ya/9io1Gg3g8zsLCAnNzc1QqFTl1qq+vT7aoRWs3wWFkn0Xze/xO93/gsbZ/ewffaH6YVwCE/4bXDf8C32232Ys/yex33sIxqkz/zUP88Jv+mrkyYLuPD3z9H/jN+903be/3inYjGaTEdimCLiXASwGjYrHI5uYmkUiEyclJJicnaTab9PX1EQgE6OnpwWw2A8jWaqeRFfV6nWKxSDKZZGVlheXlZVmUV1dXyefzqFQqhoaG8Hq91yWanXI3a7Uam5ubhMNhlpaWyOVy2O12enp66OnpweVyiXJIwaHmYJbno7/CX37ktQS2POhnpHW7//hBvv7InVsfswziA1j737z79Uu8/WKRh8c1rH/tHZx67R/zyvXf5t6bt+c3ldaWcI1Gg3w+Tzwel6Pk09PTLC0tkUqlCIVCWCyWLaMrlM0rJPFVlhjWajUSiQSRSITl5WWi0Sibm5tYLBZ6e3up1+uUy2WKxSK5XI5yuf26QEm72m8pkb+1c3oul2NqaorJyUnW1tZwuVwMDg4yMDCAx+PZ8hoCwWFkf0VzbZ1FgJ57+MEHHmCg03YbK0wDhvH7eOCBl7bfJpclPvogLxv/9+DID7yGV8f/jIU1uDfQ/imHldb+j/B8FVE6nSYcDssJ7pOTkySTSUwmE4FAQPZJtiLlfrYGhbLZLHNzc5w/f57Z2VmKxSIWi4Wenh7cbjf9/f2sra3hcDioVCrkcjkqlQp6vb7j/istQuVEy2azua0D/MbGBufOnWNqaop8Ps/Jkye588476e/v3+LLFBam4LCyv6KZyxIHuGOAAdm/qfBlSuRTxIEXjwSf92+2+jL7Jvihwkt56Nd7+P1Xmpn8s0f4/IMf4veOmGACPPXUU7zzne/kzW9+M295y1u2/E2j0aDX67Hb7fj9fnK5HFqtlkKhQDweZ3Z2lv7+fnQ6HQ6HQxZR5XwcuOK/TKfTLCwscPHiRRYXFykWi3g8Hnp7exkYGECv15NOp5mbmyOVShEOh+XqpIGBgasmmnd6XErkr1QqFAoFwuEwi4uLZDIZHA4Hx48fZ3R0FLfbvU3ghXAKDiMHszz/v7/J/faneCp75VeD72X89y//723+yOmP/yzDb3vqis8SsJ18iE/+7z/lp0Z0oLuX33zmOwy//z088kiK8Tf+KZd/9dUE9/mj7AVf+9rXeOqpp3jqqaf4q7/6K5544glGR0dRq9WYTCZ8Ph8jIyPYbDYGBweZmZlhcnKSTCbD5cuXCQQCGAwGhoeHcTqdsvhIolmpVNjc3NyyvK/VagQCAUZHRxkaGpIDSYVCAYPBwOXLl1lYWCCdTtNoNHA4HDsWTeWSXK1WU6vVyGQyhMNhFhYWyGazWCwW+vr6GBwcpLu7G4PBcNOPs0CwF+yvaK5M8wzA+YvwG3/F11/uJfHkf+U/f+hbvOcVb+bY3Bf5qSAsLp4FIH4pzg/9wRf5+BhM/tkjvP3zn+b1rxxgcO63uVcHOv89vOEjX+cN+/oh9p7/8l/+C/l8nscee4xvfvOb3HXXXbznPe/h3e9+NzabDZPJRE9Pj9z04+zZs/zDP/wDTz/9NEtLS1y6dAmn04nH48FisaDX67ekM0kt15555hk56BMMBhkfH2d8fFxu0qHRaCiVSnJJ5fr6OrFYDL1ez8jICKFQaMt+t4tut3ZihyuNR9bW1jh37hwLCwtYrVa6uroYHx+nq6tLCKbgSKFq7qfHvZQkliqDwUmXS1qQZ/indw7zHx6Lc/rxi5x7ZJxqNs5Gvo7G4sEn5xHN8amXDPML3zXw5v9vnU+9xr6jt1Re0F1dXXI6i9PpxOl0AleqY7q6uoArHYiCweft1d7eXlmAvF6vbG11ev6N8Mwzz/ALv/ALPPfccwCcOnWKT37yk9x3331btltdXeUf//Ef+da3vsXS0hI9PT3ccccdvOQlL2FkZAS3+3mLvVQqMTs7y3PPPcfTTz9NPp/n2LFjTExMcPr0aYLB4DafaCwW45lnnuHLX/4yqVSK/v5+Xv3qV/PCF74Qi8UiHw8pTepaeZzRaJQLFy7wrW99i2QySSgU4tSpU5w6dWrLdyIQHAX219I0utiuLXZe8sM/AY99nPMLa8A4OpuPLlvrdsd46c/eC9/9NyZX4sDORFNJLBa7rt3eLQMDA/LPSlFQiq7VapUb62q1Wnp7ewF461vfyt/93d/xta99jQsXLnD//ffztre9jfe9732ySJvNZk6cOEGxWMThcJDL5cjn82QymS3R7kqlIs88X1hYIJVK4XA4GB4eZnR0tK1gNptN7HY7vb29HD9+nEgkIjcsXl5epq+vTx45sZMu88po/fr6unxTGh4epq+vT7R0Exw5DkVFkE7bOTKrRKPdffb6wsICuVyORCIBXLmII5GI/PfFxUX557W1NbnuOpVKkUqlAK76/HYoX1P58/Xy0Y9+lC9+8Yv80R/9Ea973eswGo0MDQ1RqVRoNpucO3eObDZLJpPZMu8nl8sxPz/PwsICmUwGv9/P4OAgIyMjcsekVqR5QlJdeqPRIBaLMTMzg1qtxmKxYDKZ5Fp55eiJ1vSiUqlEJBJhenqa5eVlNBoNgUCAYDCI2+3eIphSLT6IsbuCw80+i2aVbHyDmq0Ll2JFNjf3NAA+p9RZp0QylkW7pcqnSvjiM1e2s+28zE5p9d0MpE5EAIlEglwuB2wV3WKxSCwWk4VheXlZFpZ2zy+VStusYo/Hg81mo16vo9Fo5PxMp9OJ2WxuOxojk8kwNTXFwsICpVKJ8fFxTp8+TSgUumqpolqtxul0Mjw8TDqdZm1tjaWlJer1OgMDA7hcLhwOh+y3lESzVexSqZSciB+Px/F4PAwNDdHd3S0n4sP2uUgiqV1wmNlX0bz0kbs5+fbz+H7lq1x47NX4dcDmP/HR3/kuEOKtr7kLyPDVt/j54T8r8+KPXOTJh8cxAtXpv+B9T5TB8CCvf8nhySuSltXQWaBbZ/+0JpxL1Go1PvrRj/LBD35Qfmx4eJj3ve99vP71r5cfk5bdkUiEzc1NnE4nbrebQCCwpXonnU4zPT3NwsICdrudUCgkR+E7WXOSYJlMJnp7e4lGo0xOTsoVPOFwGJ/Ph8lkwmAwbKs4Uv6cSCTkPpnNZpOJiQnGxsbw+Xxb/JjKEtLWccZCPAWHjX1dB43/7OO8IwTxj7+GvuAwY2PD+Hv+A48tGzj2rr/g4Xt1gJ1X/vpHeYUBvvvISfy9Y4yN9eIZ/QX+qWzjVU98kB87gnlF0tK1k1h++tOf5sSJE7zzne8kFosRCAR49NFHefrpp/mRH/kR2W8pWaHT09MsLi6Sz+fp6elhdHSUUCgkVwY1m00ymQzr6+tsbm5Sq9Ww2+24XK6OXZBaB7PZ7Xa5RNNms1GpVIhEIoTDYZLJpNxtXurhKQlxtVplfX2d5eVlYrEYlUoFu91Of3+/vI+SZSyVjyo7zistT1EZJDhs7O/y3P0KPjw9z6v+5A/507/+v1xKw+AP/wa/+8gv8LMvH5QT3HUjb+Hr4Tv5/Cc/yl9+5imWsHL/mx7j/33XT/MjJ/0cob4cwLW7jL/uda/jK1/5CnAlKv9Lv/RLPPTQQ9Trdebm5rb4DDUaDbFYTM7TtNlsHDt2jJGREbq6uuSenIVCQS6DlCpzpEbI7Za/rUIl/d3j8XDs2DE2NjZYWVkhGo1is9lwOBwYjUacTuc232Qmk2F6epr5+XnK5TJer5fh4WFCoRAej2db9L31GN3ICGOB4Gaz/4Eg4yCvfvvHePXbr76Zzn8Pb3jPp3nDe/Zntw6SXC6H0WjkF3/xF3nrW99KLpfj7NmzTE1Nsba2RrFYlFN7ms0mBoMBl8vFwMCA3B3I4/FssfSy2SylUgmTyYTb7cbj8WA0GtsKuLJhiPS7tI3D4WBoaIh0Ok29XicSibC4uCgHdFqRLOGzZ8+yuLiI2Wzm+PHjTExM0N3d3bHqp51AipEWgsPIoYie3+589atfpVQqYTabSSQSsv/w3LlzhMNhstmsLGT1ep3BwUFe/OIXMzIywunTp7Hb7VvEqFaryTXjZrMZtVqNy+XqWD9+taWwlFify+XIZrMsLy+TSCRYWVkhmUxuyU+t1+tyezmp8md4eJixsTHGx8fbjuFt9/PVHhMIDppDLZq3Sz9Fo9GI0WikWq1iMBjweDwMDg5Sq9UIhUIUCgX5WNTrdUKhEC94wQsYGhrC7XZv6wrfaDQolUqUSiUajYa8NJf+3rr0lfytnSp8TCYT3d3d9Pf3Mz09TTKZJBqNMj8/j81mk9OH0uk0S0tLRCIRms0mbrdbHgss+VpbEWIpOGocatGE2+sC0mq1mM1muru7MRqNdHd3k8/nqVar8jaNRgOXy0UoFMLv97et+9ZqtVui29LSu1NHpGstgzUajSzkJ0+eZG5ujkKhwOLiolzmqdFoiMfjLC8vs7m5SSAQoKuri9HRUfx+/94dJIHggDkQ0dypBXk7CSY8b9VJbd+UPsbW7a4mdJLPU8qlrFQqVCqVHc0O6oRer6e3t5cXvvCFaLVazp07RyQSwWAwyF2WYrEYkUiEbDbL6dOnOXHiBAMDA/s6DlgguNkcmGjuNIlZGaSQ8hxb+zceZtpZgsp9bs1JVKYmXa0yRuq0rqykkZ4rNSDWaDRyl/Z0Ok0ymZSbfrQ77u1yJKXtpL6YHo8Hh8NBo9FgfX0dgPHxcXQ6HeFwmEgkIpdySpat1NtT+R7Sd6hsH9fpXDjs3/Fh5Wot+6RjerU+qYL2HNjyvPUCbZe/CM/PsclmsxQKhW1CcRSQxExaGiu7q7dLuWntFKQ8NsobSLvnSylF0uiKdDrN5uYmKpWKCxcuyD7OdoKsfE1pmd/qL63X68TjcTkFKZvNcvbsWbRaLZOTk8zPz1Ov11lYWMBsNpPJZNBqtbJQK2+Cyn6frcdA+Z5CNK+P1swE5bkkPXbq1KkD27+jyv52Ofp3pIuvWq3KF5PBYJCtGSWxWIwLFy5w4cIF5ubmSCaTcu6hJBJ7tYzf60MhCYQ0KE26q5fLZSqViuyrbF1uKyuHlInjKtWVEb+S6CiX79K2Wq0WrVaLTqcjkUgwPT1NOp1Gp9PR398vB45aO6pL34mUE6rVauWqHakTO1wZ+haPx+VGwnq9nsHBQeBK7X4ikZAj/D6fD4vFss26Vh5r5fu33iCEYO4N0vetPDek7/8jH/nIQe/ekeNALE2lOEiTE1sTnaWLqFqtypUt4XCYjY0NOZqsVqvb1lzfCHt5kUqiqdfrMZlMsggVi0VKpZLcXKPV4pJEU2mhSlaqtNRttbal7RqNxpYxFVIjY4PBQDqd3pK+pBQpabyGNJRNp9PJ+yvNYocr/tJarYZer8dgMFAsFrl48aK8D9LNQcrXbOeeaOeikL7PdqIphPP6UZ5DkmDqdDp5gJ9g9xxo9FwSgtYloPIi0ev1eDwe+vv75WqTUqm0xbraS270AlUKgvRZJAGSLE1JMKUyROVzlfuh/IySmEii2Zo6JFkO6XSa5eVlpqamaDQanDhxgpGREbq7u6lWq7J1L92spNeWLE2lP1Ta30ajIYum1N2oWq3K7eLC4bBsyR47dgyfz0epVJLfS/psrcvv1uPUSTSVNxHBzmj1GbeuRDq5aATX5kBEU7owpTsePN8hpzUQYbfbOX78OF6vl4mJCSqVijy067BXjCjruJW5kpJFpxSD1kBIJ39vO+tLEj+40jXp7NmzJJNJKpUKp0+f5iUveQmnT5+mVqtRrVZ3VL6ofE2l71Sr1VIqlYjH41y+fBmdTofZbMbj8XDXXXfJjY3L5fIW//NOAn6dfJqCG6Odf1wI5vVzYJZmuy+uXYBHSsHp6enZr1070qysrKDVapmbm6NYLHLy5EnuvfdeJiYm9uw90uk0Fy5cYG1tja6uLnp7exkaGuKee+5hbGwMu333DaIFgqPCgfk0r1UJctityOtBWuLutR9WibQkNhgM6HQ6XC7XlnZxe0EymeTy5cvMzs5SrVZlUR4eHt7SJ1MguBU50EDQTh9XchRLKyV/oZS/qFz6KreR/HfXytFsfZ7yWBQKBfL5PLVaDZ1Oh16v33EurLRvnW5Y0mdYXl4mEolQKBRwuVwMDg4yODgoj+OoVqvCZya4ZTl0ZZSd/HrtHjsqwqkMdABbOp0r/YmtqUTXQtpeGSQqFAqk02kKhQImk0n2/7buj/LYSRF36bWklJTW98pmsywsLDA/P0+hUMDj8TAwMCD325T2QfghBbcyh040r8VREUolkv9WWpZ3ck1IiemNRkNuipHJZOTltsViwW63Y7PZsFgs2xKVdyO8ysi1MiKv/JuSSqXC2toa58+fZ3FxEbVaTX9/P+Pj43g8HnQ63ZbA17Xe+ygE8gSCdgjR3Adak7alx1q3kSgWi0QiEZ566inC4TClUgmLxUIgEKC3t5e+vj56e3u3tYSThHmneXjKyqRO+yltl0qliEQiTE5Okkql6Onp4fjx45w4cULuYNQaKW9XGtmuIugofqeC25cDrT2/FrfKxaQse4T2+akSpVKJaDTKxYsX+d73vsfU1BS5XA6dTofX62VgYICJiQnuvvtuhoeH5THAgJzIbrVaMRqNHYVTpVLJ+yMtp5W5e61L90wmQzgcZnZ2llgshlarxeVy0d3dLXcwai3r7FSp1SqawtoUHDUOtMsR3DrCuBdIUyvn5+dZXV1FrVbj9Xqx2WwUi0Wy2SwXL16kUCgAV6LwBoNBbjQMbAn+SKWqV6vVV+ZkthO6QqHAysoKk5OT8rK8q6uLgYEBvF7vttcR/kzBrc6BJbcrLYxOwnkUI+XtaF2Gdvo8qVSK2dlZZmdnqVQq/OAP/qA8CG1lZUW2Pi9dukSj0ZD9nH19fXKqjxR5l6p/WvtxSkj705pg37p/qVSKqakpzp07RzweZ2hoiImJCcbHx7fkYyqri6Tfr+W7FVam4Chy5HyaR5VOPkxlqlGpVKJer2Oz2fB6vZw6dYpAIIBKpWJgYAC73c7m5iYLCwusra0xOTmJ1+vF4XDIoilZn1KNeD6fJ5vNUq1W287nabd8l/apVqvJUyU3NzfRaDTyXKLWccGtn/FaaWXXuoEIBIeVA01uv90sjU4+vmq1Ko+mcLlcWK1WHA4HIyMjcv23w+FAp9ORTCbRarXyWInp6WlGRkYIBAKo1Wr0ej12ux2/3088HqdYLLK+vs7a2ho+nw+DwdB2n1qX1dLzwuEwiUQCrVYr+1S7u7s7JrHfTr5qwe3JgYimcgl3NW6Xi0tqiGGxWLBYLNsafMAVX6Xf7+eee+6Rl92SD1SyJCX/pt/v5+TJkywuLlIsFuWxFBaLZZtoSrQe62w2y3PPPcfly5fJ5XL09/dz/PhxgsGg3IldpA4JbkcOVUXQ7YqUKqTX6zEajR3HUhgMBrq6uujp6cHlcrG+vk61WpUbgMCVIW2BQICJiQl0Oh0XL14kGo1iNBrp6+vD5XJdc3/q9TobGxtcuHCBpaUlzGYzQ0ND3HHHHfh8PnQ6HbVaTRbNdlF3geBWRfg0DxiVSrWlKWynVneSj7FWq6FSXZkl5HA4sNvtaLVaWcD0er0ccW82m4TDYWKxGEtLSywvL8uzgzrVv9frdTKZjDxtMplMMjIywtDQECMjI3LwqLWDkbA2BbcLQjQPGGXLLgllvqMyyl2v16lUKqhUKhwOB3q9Hp/Ph8lk2vJ8qdFsMBhkZGSEWq1GKpXi2WefJZ/PMzo6Sm9v77ZAjtTybXFxkdnZWVQqlfwaUkBK2ufWMRUCwe2CEM0Dol16jzJq3Zr8LQWMcrkctVoNu92Oy+UiGAxitVrb5li63W5OnTpFtVrl4sWLzMzMsLGxQblcRqVSMTQ0tEUI0+k08/PznDlzhkgkgt/vl5flUjMOCWXzYrE0F9xOCNE8YNrNymmHSnVl9Mf6+jqZTEYO+PT392O329su600mEwMDA7IInz9/nmQyyXPPPSenLvl8PrxeL16vl1QqRTgc5tKlSxSLRV70ohdx6tQphoeH5ZxMZSd2YW0KbkeEaB4QV6ueaU0Ql3I4s9ms3JHdbrcTDAbp7e3FarV2LJe0WCwMDAzIuaBzc3Nsbm6STqeJRCKEQiH6+/sJhULEYjHi8Tj5fB6DwUAwGCQUCsnBI2UJpNSNXoil4HZDiOY+8Mwzz/Cxj32M3t5egsGg3O28t7eXrq4ueTul9SaJkSSYm5ubJBIJSqWSHOwJBAJ4PJ5rzklyOByMjY3hcDjw+Xw888wzLC4usr6+zubmJhsbG6ytrVEsFikWi3R1deH1eunu7pbTiySU4zZ22kNAILiVEKK5Dzz66KN87nOf6/j3gYEBWUQnJib4jd/4DflvUgOPlZUVNjY2MJvNOJ1OeRzvTgfLGY1GgsEgcEWQvV4vsViMQqHA6uoqq6uraLVarFarHC0PBoNbktglC1P4MQW3M0I094Hf/u3fxul0EovFiEQiRCIRYrGY/PfFxUUWFxcB+Jmf+Zktz81ms3Kn9FqtxsDAAKFQiO7ubnnE7k7R6/Xycvv48eNEIhHOnz/PpUuX5AT4kydPMj4+zqlTp7BYLHKCfWs0H4QfU3B7IkRzHxgbG+OJJ56Qf//a177Go48+ypNPPrllu7e97W386I/+KHBlZESxWCSRSJDJZGg2m9hsNgKBAD6fD6PRuKN+mdL0SeX0T7vdLs8nTyQSRCIRuWbd6XTi9/u3+TGlJiutFqZYogtuN4Ro7hOlUonPfvazPP7441y4cGHb30+dOsWHPvQh4IoQlctl1tfXSaVSqFQqOcrt9/u3BH6kFCV4vsOR0h/aOstcShVSJtRLVUR+v59gMIjD4ZD3q9WHKS3PRRs4we2KEM2bTCwW4xOf+AR/8id/Ii/JtVotDz74IKlUiieffBKj0chnPvMZebndaDQoFAqsr6+Tz+dxOBz09fXR3d29bVBapVIhnU7TbDblccedyjCVpFIpuelHtVpleHhY7mDUGvxRohyJ0ZomJSxOwe2AEM2bxOTkJI8++iif/exnKZVKADidTt70pjfxyCOPMDc3xwMPPADA+973Pu644w552mMymWRlZYX5+XkajQbd3d1oNBq55ltqLlwsFsnn82QyGbRaLW63W64Ggudr2pUpQnBl6R+LxZidnSUcDtNoNBgbG2N4eJhQKLSlUki5JG+dPSREUnA7IkRzj3nyySd5/PHH+cpXviI/NjAwwCOPPMIb3/hGnE4nGxsbvPGNbwTgla98Jb/6q79KpVIhm82SSCRYWFhgYWGB5eVldDodlUoFvV5PoVCg0WhQLpcplUrk83kqlQparRaHw4HVat3SpV1ahrdapolEgsXFRebn59nc3MTj8dDV1UUwGNwyPgO2NhOWhrAprUyxTBfcbgjR3ANKpRKf+9znePzxx3nuuefkx++77z5+7dd+jde+9rVbUoPe+MY3EovF8Hq9/Pmf/7ksZNPT05w9e5azZ8+ysLBAPp9Hr9fj8XhwuVyYTCZZNKvVKjabjb6+Pl74whficrmw2Wxb2snBdmswnU7LEfONjQ38fj8jIyOEQqEtvsx2dGpaLCxOwe2EEM0bIJFI8IlPfIKPfexj2/yVv/Zrv8Z9990nbytZY4lEgq9//esAfPKTn6S3t5d8Pk+hUCCRSBAOh1lcXCQajcqWYrlcJhqNypFsaUZ5MBjE7XZjtVrxer2YzeaO3YvgSglkPB7n0qVLLC0tUa/XGRwc5OTJkwQCgR2lMO2kO7tAcCsjRPM6mJyc5PHHH+fTn/70Fn/lQw89xNvf/nYGBga2PUcSGJ/PxxNPPIHT6eTBBx8Enp8i6fV6GRoaQq1WMzw8jMFgQKPRyEIpiWW9XkelUtHV1cXo6Cg9PT3Y7farJpwrW74tLS2RTqfx+/0cO3aMkZER+fnXQgil4HZH1RQOqR3zzW9+k0cffXSbv/Ltb387Dz300LZOQDulVqtRKBTY3NwkHo+TTqepVCqyP1LKt1Q2/lWpVFitVvx+P4ODg/Ls8U6vn06nmZub4+zZszz77LOo1WqOHz/OAw88wIkTJ4QYCgQ7RFia16BWq/G5z32ORx99tK2/8sEHH7zqkngnSAnndru9rZW6G9ql/0hjeJ977jnm5+cxm80Eg0HGx8fxer1CMAWCXSBEswOpVIpPfOITPP7449f0Vx42lNU7cOWzzM3NcebMGTKZDKdPn+bkyZOcOnXquq1jgeB2RYhmC7Ozszz++ON86lOf2rG/cr/o5ElRdnpXpgfVajVKpRKrq6ssLS0Rj8fR6/UEg0GGhobo6enZt30XCG4VhGj+O9/85jd5/PHH+dKXviQ/thf+yr1CipxLM4KkFCYpBUkKDikHs6VSKRYXF5menmZ9fR2Xy0VPTw99fX0H/nkEgqPKbS2a++Gv3CuU9d/S7/B8fXm9Xt9SFw5XPl8+n6fRaMiNOPr6+ujt7b1qqaRAIOjM4VCEA+I73/kOP/dzPwccHX9l69RHyXepHKUrodVqMZvNdHd34/V68Xg8+P1+fD5fx/nnAoHg6tz2KUeve93r5GX4Qforr0Wrhan8WfJpSst2STgrlQq5XI5yuSw39DAajej1etFEWCC4Tm570TyqKJfqO0lKFwgEe4MQTYFAINgFwkQRCASCXXDIAkH/wgfG/jOfafu3n+N/Tr6HHwBY/Bw/8+r38my7zV7wXr72169nAKiuP8Pn3/8e3vd/Uoy/8X/w6K++msHdjdURCASCLRwyS7NMYmqKqcVNalfbrJ4jPDXF1Gqu8zbVf+N373kJjxrfxEc+8hu8/OwvcuKn/4aVvd5lgUBwW3G4LM1qjQrAPb/L17/zFo512q5eowrw5s8w+eFXtN8mfI5/NL+fT//BzzABPHCflmccf8Z31n6KnwrchH0XCAS3BYfL0gwvcRbgjn76rrbdyhT/Btw7Guy8jdWGb+pLfOtSCaiy/i9f5Wu+OxkUgikQCG6AwyWaEtVl/u/jD/GqsTHGxl7FI5/6JgulNtvFz/JXv/ljvGhsjLEX/Ri/+8WLrFf//W+BH+ODn+vn8ReYUKn0BH7yWd7x5Ye5dz8/h0AguOU4XClH5/6QsTvexRSALchoj5Xc6hQrWTC84pOc+/pbGNFB5itvxPGjV8JFBt8xBtywuThHvAyhd3yD5z78CtzSa5aSxFI1LB4ftmsPaRQIBIKrcrgsTc0AD7773bz7sa8yvx5hcnKSyOL3+K3TUP6nt/EHT2YAKNrv5d3vfjfv/+zThFdmmZycZWXmr3idAZYfezufvaR4TaOLri4hmAKBYG84XJZmB9b+5nV0vf5L8I5v0OwU+AH+7X/4edF747z4k7N85y0dw0gCgUBw3RwuS7MDAf/AjrbzBEdu7o4IBILbniMhmpn8xo62y6cSN3lPBALB7c6hEs3JL/0qP/aiMX7+75Qp6Jt8+/OfB+DB+8aBBN/9k4d41diL+NC/VZ/frHqO//OXU4CPH5oQS3OBQHBzOFTJ7cd6HDzzb1Msv+FlVFb+kDeNQfiLv8PbPlOG0Hv5jR+7kmQ54Ezzral/4/+88qUkP/E/eLk3wTOP/lfecx4MD/4xbxF5RQKB4CZxyAJBVZb/8bf5yf/0ezyVlR4z4HvZf+fvPv8uftAvhcA3OfOph/mJt/01c2VpOxsnH3qCzz/xBsZFfblAILhJHDLRlKiSjW+Qr4PG4sHXMV+oRDKWogwYnF24hFgKBIKbzCEVTYFAIDicHKpAkEAgEBx2hGgKBALBLhCiKRAIBLtAiKZAIBDsAiGaAoFAsAuEaAoEAsEuEKIpEAgEu0CIpkAgEOwCIZoCgUCwC4RoCgQCwS4QoikQCAS7QIimQCAQ7AIhmgKBQLALhGgKBALBLvj/ASlwbVtfOTM7AAAAAElFTkSuQmCC",
"path": "images_version_5/image_21.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, then the degree of angle 4 is ()
Choices:
A:110°
B:115°
C:120°
D:125°
|
Như hình vẽ, số đo góc 4 là ()
Lựa chọn:
A: 110°
B: 115°
C: 120°
D: 125°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, then the degree of angle 4 is ()
Choices:
A:110°
B:115°
C:120°
D:125°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, then the degree of angle 4 is ()
Choices:
A:110°
B:115°
C:120°
D:125°
|
As shown in the figure, then the degree of angle 4 is ()
Choices:
A:110°
B:115°
C:120°
D:125°
|
105
|
21
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAI9CAYAAACXLv/HAAC8KElEQVR4nOzdd3gU1foH8G+AFAglgYQOCb2DiCKIihUV9YpiQbEgguWH9XrFa9er6PXqVWxcGwI2VMACIiiioCAIAYTQIfRQQiehl/P7Y33PnJ2dmcxuNpXv53l4suyZnZ3ZnZlkznve98QopRSIiIiIiIgclCvuDSAiIiIiopKLNwxEREREROSKNwxEREREROSKNwxEREREROSKNwxEREREROSKNwxEREREROSKNwxEREREROSKNwxEREREROSKNwxEREREROSKNwxEREREROSKNwxEREREROSKNwxEREREROSKNwxEREREROSKNwxEREREROSKNwxEREREROSKNwxEREREROSKNwxEREREROSKNwxEREREROSKNwxEREREROSKNwwO+vXrh5iYGKSnpxf3ppQJ5557LmJiYnDuuecW96b4Vhq3+fjx43j99dfRuXNnVK1aFTExMYiJiUGvXr0AANOmTdPPTZs2rVi3lYB169bp72PkyJHFvTklknw+zzzzTHFvStTwPCxbNmzYgDvvvBNNmjRBQkKC/m6/+eab4t60YvPMM8/oz+FkUJLO6dtuuw0xMTG4++67Q9r+85//FOjvmqjcMMyYMUN/WDExMfj111+jsVoiCsMNN9yABx54AHPnzkVubm5xbw4RUZm2YcMGdOrUCe+99x7WrFmDw4cPF/cmkQ8HDhxA48aN9d+sZaVzOCMjA6NGjUJcXBweffTRkPZBgwYhJSUF06dPx7hx48Jef1RuGD766CPP/xOVBGW51+P333/HmDFjAACXXXYZpkyZgkWLFiEzMxNvvPFGMW/dySU9PR0xMTHo169fcW9KiVQao3dETp5//nns2LEDFSpUwEsvvYRZs2YhMzMTmZmZuOCCC4p788jFU089hbVr1xb3ZkTd448/DqUUbrvtNjRs2DCkPTExEQ8++CAA4Mknn8SJEyfCWn+Fgm7g4cOH9R8qlStXRl5eHsaMGYM333wTFStWLOjqqQwo7hDdyeCnn34CAJQvXx6fffYZqlatGrLMueeeC6VUUW8aEVGZJNfdXr16YfDgwcW8NeTHggULMHToUCQkJCA2NjYq0fiS8Lt17ty5+PHHHwEADz30kOtygwYNwnPPPYdly5Zh3LhxuPbaa32/R4EjDN9++y327NkDAHj99dcBAPv27cO3335b0FUTkU/Z2dkAgFq1ajneLBARUXTJdbd58+bFvCXkx/HjxzFw4EAcP34cjz32GKpXr17cmxQ1Q4cOBQB07twZzZo1c12uWrVq6NmzJwDrb3a/CnzDMGrUKABA69at0b9/f7Ru3RoAhyURFSUZOxsbG1vMW0JEdHI4cuQIAF53S4vXX38d8+bNQ4sWLfDII48U9+ZEzd69e3VOwk033ZTv8n379gUAzJw5EytWrPD9PgW6YcjJydEhENlI2ZAff/wR27Zty3cdmzdvxj//+U+ceuqpqFatGuLi4lC7dm20a9cON9xwA0aOHIl9+/ZFtH3Hjx/HyJEjcfHFF6N27dqIi4tDUlISmjVrhgsuuAAvvPACli5dmu969uzZg6eeegpt2rRBYmIikpKScM455+DTTz/1tR2ZmZm444470KxZM1SqVAlVqlRBmzZt8OCDD2LdunWOrxkzZoweb+/2hTZt2lQv45bA0qtXL8TExOD0008Pen7kyJH6tevWrcOJEyfw3nvv4cwzz0RycjISExPRvn17DBkyBAcOHPC1n268xiw7VYqZMmUKrrjiCtSuXRvx8fFo1KgR7r77bmzatCmi95d9ffbZZ/VzZpK++Tm4yc7Oxt///nc0bdoUFStWRI0aNXDxxRdj0qRJvrZh9+7deP7559G1a1ekpKQgPj4edevWxZVXXomvvvoqov0y90Nu3NevXx+yX8JvJYf169fjrrvuQnp6OhISElC3bl306tULv/zyCwDvXJBwKv94jfW3H5+HDx/G0KFD0aVLF6SkpLhWzjl27BiGDx+Onj17om7duoiPj0dKSgrOOeccDB06FIcOHfLcpoKQ43z9+vUAAp0p9u8iv3H7BT3258yZg4EDB6J58+aoXLkyEhMT0bJlSwwaNAirVq1yfV1RXA+k+tz06dMBANOnTw/5fPJLPpw7dy5uuOEG1K9fH/Hx8ahXrx5uvvlmLFu2zNc2rFixAvfddx/atGmDatWqoWLFimjcuDFuu+02zJ8/P6L9sjt48CCGDBmCDh06IDExETVq1EC3bt3w/vvvhzVmWCmFsWPHonfv3mjQoAESEhKQnJyMzp0747nnntORfS8FOZeB0CpVP//8M6699lo0aNAAsbGxrt9XpMehqSi+qxMnTuCTTz5Bz5499d8IqampOO+88zBs2DB9Q2AyzxXx7LPPBh3H4eYvHTlyBBMmTMA999yD008/HcnJyYiNjUWNGjVwxhln4JlnnsGOHTs812G/ni5fvhwDBw5Eeno64uPjUatWLVx11VWYPXt2vttz9OhRvP766zj99NNRpUoVJCUl4bTTTsNrr72GI0eORK3CW1Fer9evX4+nnnoKAPC///0PcXFxUVu3n9+tK1euxL333ou2bduicuXKiIuLQ926dXHKKaegf//++OKLLyJOmv/222/1a3v37p3v8pdddhkSEhIAAF988YX/N1IF8OqrryoAKiYmRq1fv14ppdS6detUTEyMAqD++9//er7+119/VVWrVlUAPP9NmDAh7G3Lzc1VZ599dr7r7t27d8hrb731VgVApaWlqWXLlqn09HTX1w8aNMhzO1544QVVrlw519fHx8erUaNGhbwuJydHL/O///0vpH3Tpk35bseJEydU9erVFQD10EMPBbWNGDFCv3bx4sXq/PPPd93Gzp07q7y8vPw+clfdu3dXAFT37t1D2tauXavfZ8SIEeqRRx5x3Y7U1FS1dOnSsN/f3Fevf2vXrnXc5t9++03VqFHD9XUvv/yy5/tPnDhRJSUleb73ZZddpnJzc8PeNz/7JX755Rf93C+//OK4vh9//FElJiY6ricmJkYNGTJEPf300yHrFvbv00taWpoCoG699daQNvM7mzt3rjrllFNCtufpp58Oes3q1atV69atPT+LZs2aqZUrV+b3sUZEjhmvf+Y5EM1j/+jRo+ruu+/2fO/Y2Fj13nvvOb6+KK4Hcl31+peWlhb0GvO7fvPNN1WFChUcX1epUiU1ffp0z/f/17/+5fp6Ob6feuqpsPfLlJ2drVq2bOn6Hpdccon64Ycf8j0Pc3JyVLdu3Tw/q1q1aqnZs2e7bktBz2Wlgj//xx57LN/vq6DHoSiK72rnzp35fsatWrVS69atC3qdn98nTtc0L37OjRo1aqgZM2a4rsO8no4bN05VqlTJcT3ly5dXn3/+uet6du/erTp37ux5/i9YsCDo2mWX33GlVNFfr3v27KkAqJtvvlk/J5+Z/TgOV36/W7/88ksVFxeX73ecmZkZ0fv369dPAVANGjTw/ZouXbooAOq8887z/ZoC3TB06NBBAVDnnHNO0PPyh3qHDh1cX3vo0CFVt25dBUBVqVJFDR48WE2aNEnNmzdPzZ49W33xxRfqgQceUA0aNIjohuGhhx7SX8Lll1+uRo8erWbOnKnmzZunJk+erF566SV19tlnq2uuuSbktXLypqamqmbNmqkqVaqoJ554Qk2bNk1lZGSo999/X9WvX1+vf/LkyY7b8Pbbb+tlUlNT1SuvvKJmzZqlZsyYoZ555hl9MY+JiVETJ04MeX2rVq0UAHX99deHtH388cdBB1qbNm1CljFPavtnaF70zjzzTFWuXDl16623qokTJ6p58+apr7/+WnXt2lUv889//tPvRx/C7w3DmWeeqZf77LPPVEZGhvrpp5/ULbfcopfp0qVL2O+/e/dulZmZGfSLLDMzM+TfkSNHQra5efPmKiUlRdWsWVP9+9//VjNmzFBz5sxRr776qr4JqFChglq8eLHje//444+qfPnyCoBKT09XL730kpo2bZqaP3++mjBhgrrpppv0Nl199dVh75ts+5VXXqkAqLp164bsl8jvorZq1Sr9S6Z8+fJq0KBBaurUqWru3LlqxIgR+uJu/jKxK4wbhvbt26uYmBh1yy23BB2f33//vV5+8+bNqlatWvp68tBDD6lJkyap+fPnq19++UU9+uijet8aN26s9uzZ4/sz9mvNmjUqMzNTX9euvPLKkO9izZo1evloHvvmcpdeeqn65JNP1Jw5c9TcuXPV+++/r9q0aaPbx48fH/L6orgebNq0SWVmZqrTTjtNAVCnnXZayOezYsWKoNeY+x4TE6M6dOigPvzwQzV37lz166+/qgcffFB3yDRs2FAdPnzY8b2ffPLJoP374IMP1KxZs1RGRob69NNPg/btjTfeCHvflAr8sdyxY0e9nh49eqivv/5aZWRkqK+++kpdeOGFCoA6/fTTPc/DvLw8fe2Pi4tTd955p/r222/V/Pnz1W+//aaGDBmiOzCSk5ND/qBVKjrnsvn5t2/fXgFQ7dq1Ux9++KGaM2eOmj59unr99deDli/ocahU0XxXx44dC1pP9+7d1ZgxY1RGRoYaP3686tWrl25r0qRJUGeO/D7JzMzUy9x9991Bx/GmTZvC2p6+ffuqxo0bq4ceekh98cUXatasWWru3Llq7Nix6q677tJ/bKampqpt27Y5rkOupx07dlQJCQmqUaNG6q233lKzZ89Ws2bNUs8884xKSEhQAFTVqlVVTk6O43ouvvhivV9du3ZVo0ePVhkZGWrSpEmqb9++CoA644wzPK/z+d0wFPX1evTo0fp8MT+/orhh2Lp1q/5br2bNmupf//qX+vHHH9X8+fPV77//rj755BN1xx13qJSUlIhvGJo0aRL23xD33XefAqAqVqwY9LePl4hvGBYtWqQ/IHtvwbvvvqvbFi1a5Pj6qVOnuv4xazp69Kjau3dv2NvXoEEDBcDxhsC0c+fOkOfMu/2kpCTHPwZXrVqlT76//e1vIe05OTn6gK9bt67asGFDyDLz58/XB1K9evVCvjT5A7d27dohr7399tv1e8tNh/0C8NprrykAqly5cmr37t1BbfZeko8//jjkPQ4dOqTatm2rgEDvxtGjR0OW8cPvDQMANXDgQHXixImQ5QYMGKCXmT9/fkTb4afXw77NcjFx+gXw22+/6WjafffdF9Kel5enL4o9evRQ+/fvd3yv9957T7/XTz/9FP6OqeComJv8bhjkWAKgxowZE9K+f//+kJ4nu8K4YQCghg8f7rmuyy+/XAGBHpasrCzHZczz7YknnvBcX0F47ZcpWsf+2LFjdfv777/v+F4HDx7UUYP09PSQc7mkXA/szG3q2bOn4w3B888/r5f56quvQtrnzJmjbyrcvvfjx4/rm/cqVaqEXC/9eOONN/R23HHHHY7L9O/fP2ifnM7De+65RwFQ1apVU3PnznVcz7p161SdOnUUAHXTTTeFtEfjXFYq+PO/4IIL1KFDh1z3PxrHYVF9V2+99Zbe1ltuucXxvDMjKoMHD3Zcj7Tbo53hWr16teM2iEWLFqnKlSt7fi5y3QGgOnXq5PhH9ieffKKXefXVV0Pav/rqK91+5ZVXqmPHjoUs88orrwQdF5HcMBTl9XrXrl369/C7774b1FYUNwzDhw/XbV43BAcPHlQHDhwI+723bdum1//cc8/5ft2oUaP06+bMmePrNRHfMEgPfnx8fMgJu3v3bhUfH6+A0KEw4tNPP9UbG8kNQX5iY2MVgJAeED/MGwavHow+ffooIHDXavfSSy/pdYwePdp1HeYvuy+//DKo7fPPP9dty5YtC2pr2rSp/mXQuHFjx18M0kty6qmnhryv+QeC113pO++8o5dbuHCh63Je/N4w1KlTx/UX0vLly/VykXynSkV+w+DWE6aUFdbr2LFjSNubb76pAKiEhATXXiEhv7z79u2b/444KOgNw6ZNm/Qv6quuusp1HX/++WeR3zCcf/75nusxe/q+/fZbz2UHDx6sgMBNfGGJ5IahIMd+p06d8v3elFJq6dKlej1TpkwJaisp1wM7eS+vc2jfvn26B/bBBx8Mae/du7f+I8rrjzLz95bbH7xeJCpQq1Yt186B3NxclZqa6noebt++XXdE5XedGzZsmAICQ3zM94vWuayU9fmXK1cuaMimk2gch0X9XaWkpKh9+/Y5LnPs2DE9vCw5Odnx/IzWDYMfDzzwgAKg2rZt69hu3jC4nZsnTpzQEVCn70miCwkJCWrr1q2u6zj11FMjvmEo6uu1dK527do15JgqihuGIUOGuP6dGA3z5s3T722/IfIyadIk/TqnjhYnESU9Hz9+HJ999hmAQPJEUlJSUHtSUpIu2/TZZ5/h+PHjIeuoU6eOfjxixIhINsOTrP+LL76IOEkvJiYGN954o2t7p06dAAQSWu0JaFKfOSkpyTMJZcCAASGvEWaCpJlIk52djdWrVyMmJgbdu3fXy5nLKKX0jNvdu3d3fX/ASlR3IvsIAGvWrPFcT0Fdc801iI+Pd2xr0aIFKleuXCTbYUpKSsJll13m2i6fj9M2SWnh7t27o2bNmp7vc8455wAAZs2aFemmFsi0adN0Quatt97qulyHDh3QoUOHotosAN7HJ2B9zpUqVfL8rgDrc968eTM2btwYnQ2MgkiP/ezsbMybNw8AcN1113m+R6tWrZCSkgLA+zgrKdcD00UXXeR6DlWpUkWXEbRv09GjR3VhgmuuucZz0sakpCS0a9cOQPjn4ebNm3Xi9XXXXYdKlSo5Lle5cmXP7+mHH37QiZ75fZ9yLB89elQfA0DhnMvdunXzTEiPxnFYXN9VlSpVHJcrX748brvtNgCB3/HRSrT2Y/fu3cjKysKSJUuwePFiLF68WP+dtXTpUhw9etT1te3atUP79u0d22JiYtCxY0cAoefKsWPH9N8Ml1xyCWrVquW6jptvvjncXdKK8nr966+/4sMPP0SFChXwzjvvFMukrfK36O7duwtluoHt27frx8nJyb5fZ5aUNdfhJaIbhh9//BFbtmwB4F7CSZ7fsmVLyB/CAHDWWWehcePGAIAHHngAnTt3xosvvojff//dsTJBuORC+fvvv6NRo0a455578PXXX/v+YAAgJSUFNWrUcG03P3D75B+LFy8GAHTs2NGz5FqtWrX0hVheY7a1aNECQPDNgDxu3bo1UlNTHW8YFi1ahF27dgEIvvFw0rJlS9c2r32MNq/tAKyTobC3w9SsWTOUK+d+msjn47RNGRkZAAJ/BDhVZTL/vfLKKwCArVu3FsJe5M889sw/Cp2cdtpphb05Qdx++Qn5nA8cOIAKFSp4fs6XX365fl1xfdZOIj32Zd8B4IYbbsj3OJNKK177XlKuB6b8Ph+383Dp0qW6w+jRRx/N9/ORzzPcYyMzM1M/tleks+vcubNrm/l91qlTx3Nb27Ztq5c1t7cwzmW/5yAQ+XFYVN+V+fmcccYZnsua7fbfz9GWmZmJ/v37o06dOqhevTqaNm2Ktm3bol27dmjXrp2uVHXixAns3r3bdT2RnitZWVk4ePAggML9HVBU1+vDhw/jjjvugFIK999/f77HcGH529/+pm/2rrrqKpx//vl47bXXMG/ePMfO9HDJ33lAeDcM5rI7d+709ZqIbhhkjgWv3lcz8uA0J0NsbCwmTJiAVq1aAQiUy3vsscfQrVs3JCUl4dJLL3WNTvjx5JNPon///oiJiUFOTg7efvttXH311ahVqxbatWuHp59+Ot+yr269RML8Q9K+nfIlut2lm2rXrh30GpP8sS+lCAHrxkDazjvvPACBC67cEMky5cqVw9lnn+35/l776bWP0eb38y7s7TD53SZ7ucSjR4/6KntoV9AStpEyfwHlFw1JTU0t7M0Jkt9FMCcnJ6L1Ftdn7STSY78w9r2kXA9MJenzcRLO+eP1OyEa21sY53JRnINF9V2Zv2fz+/0sv5vtr4u24cOH49RTT8WIESN8/WEsf9g7ifRcKarfAUX1PQ8ZMgQrVqxAgwYNHEtwF5UaNWpg/PjxqFevHpRS+OWXX/D3v/8dp512GqpXr47evXvju+++i3j9Uh4V8D4u7MxlK1as6Os1FfxvVoA5i/OePXtcw+imb775Brm5uSGhv9atWyMzMxMTJkzAhAkTMH36dH2XO3nyZEyePBmvvvoqvv/++3wPYLvY2FgMHz4cDz30EEaPHo2ff/4ZGRkZOHLkiA7xvfrqq/jkk09w5ZVXhrXucPgJgSmPKcW7d++Od999F1u3bsXy5cvRsmVLffMgNwz169dH48aNsWbNGkyfPh3XXHONXqZ9+/Zh3XVSdJgX4+uuuw5PPvlkMW5N6Va+fHnPdvmsGzVqhPHjx/teb6NGjQq0XSWBeZx9+umnvnvRTpZrgvn5vPzyy7jkkkt8vS4xMTGs9zGv4fld872u97K9cXFxQcOM8lO/fn3fy0bC7zkIRH4cFtV3ZSrIdxUty5cvx1133YVjx46hZs2aePjhh3H++ecjPT0dVapU0SMUPvzwQ9x+++1Ftl2Fpaiu1y+99BIA4MILL3T9g3z//v365+effw4gcLN0/vnnh/Ve+Tn77LOxevVqjBs3Dt9//z1+/fVXbNq0Cfv27cNXX32Fr776ChdffDG++uqrfG/47Mybt3Buas1l/d4Ahn3D8OWXX4Z1FwME7gzHjh2rxwOaypcvj169eqFXr14AAkOYJk2ahGHDhmHevHmYN28e7rzzTnz99dfhbiqAwE3Jc889h+eeew4HDx7EzJkz8dlnn+Gjjz5CXl4ebrjhBmRlZQXlVERD9erVsWXLFl+9BRLpcJqm3J7HULVqVaxatUrnL5jLrVmzBtOmTUPv3r195y9Q4UhISEClSpVw4MAB7NmzJ2j4QElk/uLOycnx/APEa1if2QOd3yRVcrEuKBk2uG3bNrRs2RIVKoR9WSu1zCGT9mEqFPz5HD16tNA+H/PanV/k2quHVbb3yJEjqFGjRkS/l6J1LocjGsdhcXxX+f1+Nr9Lp9/P0TBy5EgcO3YM5cuXx7Rp0/SoCzuvYUjRYD9uvBTkuCmq67UMbR8xYkS+ebI7duzADTfcACDwN1O0bxiAwN8Effv21Tlia9aswcSJE/HWW29h5cqV+OGHH/D444/jtddeC2u95h/74Rwj5rJ+bxjCHpIkw4vq1KmD0aNH5/uvYcOGQa/LT506ddC/f3/MmjULp556KgDgu+++C/smxUnFihVx4YUX4sMPP8TLL78MIBCWKUg4yI1c7BYsWOCZoJSTk6NnhnW6QNapU0cn9E2bNi0kf0GYeQyZmZl6TFp++Qsnk6JOeJLkspkzZ5ao4S9O2rRpox+b45GdeLWbUUSvi9fOnTvznbnUL/mcDxw4gJkzZ0ZlnQVRlMeZ7DsQyC0rDYry82nTpo2e0bUwPx9JwAUCw2u9eLVH4/uM1rkcjmhtd1F8V+bv2T/++MNz2Tlz5ji+LpqWLFkCIJCE7nazAETvu3LTpEkTPbylMI+bkna9Li6NGzfGvffei7lz5+qb+i+//DLs9TRp0kRHJVauXOn7deay5vXLS1g3DGvXrsWMGTMABKaf7tOnT77/rr32WgCBMfgbNmzw/V6xsbG6d/zYsWMRjQf3csEFF+jH0frDxXThhRcCCAzbGjdunOtyw4cP1+FFeY2dmcdgz18QZh7DmDFjAAR+MeeXv3AyMcf6RToFezj+9re/AQj0pL/99tuF/n4Fcd555+nogNfN/cKFC7Fw4ULX9uTkZJ275PVLZfTo0ZFtqANzSOF//vOfqK03UnKcFcUx1rRpU7Ru3RoA8Pnnn4d1jS0uRfn5VKpUSV/rp02bFvQHYDTVrVtX/7E3ZswY1w6u/fv3e/5RcOmll+ohKK+99hqOHTsW9rZE61wORzSOw+L6rtyS948fP46RI0cCCFzXpAMz2uQ79upU2rp1a6FU2DFVqFBBVyX64YcfXCNlSil8/PHHEb9PUV2vVWDaAM9/aWlpAIC0tDT9nFk8pihUrVpVF0qI5G/RChUqoEuXLgDy76wwybJNmjTxHckM64bh448/1n/cXnPNNb5eI8vZD7LffvsNq1evdn3dkSNH9Dj8ypUrh5Vks2vXLowfP95znJ/Zg1EYY5lvu+02fdf30EMPOZYEW7hwIV544QUAQL169fSwLDu5cdq6dav+ZWO/YZA8BqUU3nzzTQCBu0avKk8nG/OkyMrKKvT3u+uuu3T5wCeffFKXDHQzc+ZMPZSsqNWrV08XMPj6668xduzYkGUOHjyIO+64I991yS+db7/91vFzXrZsGZ566qkCbrHl9NNPR48ePQAA33//PZ5++mnP5detW+d6wyLVObxKSOZHjrOiOMYA4IknngAAHDp0CFdffbXncIHDhw9j2LBhunRncZDPZ82aNUUyFvvxxx/XUY0+ffp4fi9SMnzTpk1hv8/dd98NIHCdfuihhxyXefDBBz2He9SrV08P3V24cCHuvPNOz5uGnJwcfPDBByHriNa5HI5oHIdF9V0NGjQIQGBozb333ut4HD777LNYunQpAGDgwIG+8jUjISMIVq5cidmzZ4e0HzhwADfeeGNURlnk58477wQQ+A7vvPNOx8IGr776aoFKzEbzel0a/PDDD7qqqJO9e/fqm+NI/xaVjuFFixb57oiR9wyrU9n3LA/KmiysZs2a6vjx475ec+LECVW/fn0FQLVo0UI///TTT6ty5cqp7t27q//85z9q8uTJat68eWrGjBnqww8/DJqF8oEHHghnM/WESOnp6ervf/+7+uKLL9Ts2bNVRkaGmjBhgrrjjjv0xDb169dXeXl5Qa/3MwmWUsGTHTlNavP222/r9po1a6pXX31VzZ49W82cOVM9++yzeubGmJgYNXHiRNf32bRpU9AEO06zOisVOovovffeG/G2i3Am4nLjd+K2gkz05ceqVav0e/Xo0UNNnz5drVy5Uq1atUqtWrUqaNZRv5NL5TcZ3JQpU1SFChX05EfXXnut+vzzz9XcuXPV3Llz1fjx49XTTz+t2rdvrwCoN998M6J9i8ZMz6tWrdKzk5cvX17dc8896ueff1YZGRlq5MiRqnXr1gqAOv300z33efLkybq9fv366oMPPlDz5s1T06dPV08++aSqWrWqatq0qZ7AKr+J2/KbMEoppbKzs/XMtwDUGWecod599131+++/q/nz56spU6ao//73v+qiiy5S5cuXV71793Zcj7y+IBP5PP7443o9L774ovrzzz/1MWbOGB7NY9+cbDIlJUU9/vjj6scff1QLFixQM2bMUKNGjVIDBgxQ1atXVwBUbm5u0OuL8nrw/vvvB13bMzIy9Oezbt26oGVlufwmxsrvfDXP08qVK6v7779fTZw4Uc2fP1/NmjVLjR49Wt133316UiuvGVndHD16VHXs2FG/zyWXXKK++eYbNW/ePPXNN9+oHj16hJw/Tudhbm6unlEbgGrdurUaOnSo+u2339SCBQvUL7/8ot566y3Vq1cvFRcXpzp16hSyjmidy34/f1HQ41Cpovmujh07prp27arf59xzz1VjxoxR8+bNU9999526+uqrdVuTJk0ctzOSz8fJnDlz9HqSk5PViy++qKZPn67++OMPNWzYMNWsWTMFQHXr1s3zHPX7+zG/3xVynOKvyc6++OILNW/ePDV58mQ9w7b599nIkSND1pHf78VoXa8Lqigmbrv11ltVbGys6tmzpxo6dKj66aef1Pz589X06dPV22+/rScRBKCGDh0a0fubx5B9MkQnK1eu1Ms7zQTvxvcNw4wZM/Qb3Hnnnb7fQCml7rvvPv3a2bNnK6WCDyivf1dffbU6ePBgWO9n/lLz+levXj01f/78kNdH64ZBqcAsf3Jz4vQvPj5ejRo1Kt99atKkiX5NmzZtHJf56KOPgtY9bty4Am27UmXrhkEppa677jrX78L8HKJ1w6CUUlOnTlW1a9f2dUz6ORacROOGQSmlfvzxR5WYmOi6fU8//bR68sknFRCYDdSNec7b/zVo0EAtWbLE90zPfm4YlFJq3bp1QX8Aef277bbbQl5/4MAB3e40O7pfmzZt0n8Q2f+Zx1M0j/1jx46pwYMHq/Lly+e774mJierAgQNBry/K60Fubq6end7+z378msedFz/n62uvvaZnB/b6FxcXp1atWhXRvmVnZ6sWLVq4rrtHjx7qhx9+yPc83Llzp7rkkkt8HcvnnXee4zqicS77/fxFQY9DURTf1c6dO4P+CHf616pVq5CbWFO4n4+bZ5991nM7HnrooXzP0WjdMOzevTvohsD+r2PHjiojI0P///PPPw9Zh5/fiwW9XkdDUd0w+NnHQYMG+e6IdyKzkvv5rJ555hkFQFWrVi2sv699D0kyx0J6zVzsxFxe1jN48GB8//33ePDBB9GlSxc0bNgQCQkJSEhIQHp6Oq6//npMnDgR48aNCxp77kdaWhr+/PNPvPzyy7j00kvRokULJCUloUKFCkhJSUH37t3xyiuvYNmyZUHJWoXhsccew4IFCzBw4EA0adIEFStWRGJiIlq1aoX7778fy5cvxy233JLveswhSG6JzJLHAASGVsjQELJ88skn+M9//oPOnTujWrVqnpOyRcv555+PrKwsvPXWW7jkkktQp04dxMXFISEhAQ0aNECPHj0wZMgQ38dCYbrooouwePFi3HnnnUhLS0NcXBxq1aqFyy67DJMnT8YzzzyDffv2AQCqVavmup7XX38dn332Gc455xxUrVoVFStWRIsWLfDPf/4TCxYs0OOdoyktLQ1//PEHvv76a/Tp0weNGjVCpUqVEBsbi9TUVJx55pl46KGHMH36dAwfPjzk9eaMsQ8++GDE21GvXj3MmTMHt99+O5o2bRr29SsS5cuXx0svvYSlS5fioYceQseOHZGcnIzy5cujSpUqaNOmDfr27YtRo0Zhy5YtvutuF4bKlSvj999/x/33349WrVqFXUYwUg888ACysrLw5JNPokuXLkhJSUGFChWQmJiI5s2bo3fv3njnnXeQnZ2Npk2bRvQedevWxYIFC/D888+jbdu2qFixIpKSktClSxcMGzYMkyZN0om9XqpXr45JkyZh6tSpuO2229CsWTNUrlwZFSpUQPXq1XH66adj0KBB+P777zFlyhTHdUTrXA5HtI7Doviuqlevjl9//RUff/yxntk4NjYWNWrUwLnnnou33noLf/75px7nXpieeuopTJw4ET169EBycjLi4uJQv359XH311fjxxx/1xJ5FISkpCTNmzMDQoUPRqVMnVK5cGVWqVMEpp5yiJ9c1y+xGeuwU9HpdWgwdOhTjxo3DXXfdhdNOOw316tVDXFwcKlasiObNm6Nfv36YMWMG3nrrrQL9PfJ///d/AIBx48blO+RUhnj1798/rN9PMUqV4oK+RFTkLrzwQkydOhVnnXUWfvvtt+LenKh55pln8Oyzz6JZs2ZYtmxZvrXniUq7snouU+H65JNPcPPNNwMAVq9ejSZNmhTzFlFeXh7S09Oxc+dOfPzxx7jpppscl5sxYwbOPvtsxMbGYuXKlWHl6xV+9yoRlRmbN2/WidlSmaGskCILjz32GG8WqMwry+cyFS7poU5NTUXjxo2LeWsICERuBw8eDCAwy7XbPEjPPfccgEBhnnCLe/CGgYg0r8plBw8eRL9+/fS8IsU9fCqajhw5gj/++AONGjVy7ZkhKk1O1nOZCiY7O9uzItPw4cPx/fffAwgcN0U9vxG5u++++5CWlobly5c7lm+eM2cOfvzxR1SuXBnPPPNM2Os/eaZEJaJ8DRgwAPv378d1112HTp06oXr16sjNzUVGRgaGDRum/wi5/fbbfU/2UhrExcWV+Mn1iMJxsp7LVDBTpkzB4MGD0adPH5x77rlIS0vDiRMnkJWVhS+++ALffPMNAKBWrVr45z//WbwbS0ESEhLwySef4KeffnIsx7xjxw48/fTTOPXUUyOaRZ45DESknXvuuXpojpurrroKn376abEmzhKRN57LFImRI0fquUDc1KlTBxMnTiz0ojFUsvCGgYi0+fPn4+uvv8bPP/+MTZs2Yfv27VBKoWbNmujSpQtuueUWPSkUEZVcPJcpEjt27MDYsWMxefJkLFu2DNu3b0dubi6SkpLQqlUrXHHFFbjrrrtQpUqV4t5UKmK8YSAiIiIiIldMeiYiIiIiIle8YSAiIiIiIle8YSAiIiIiIle8YSAiIiIiIlfFesOwbt06xMTEICYmBiNHjizOTcEzzzyjt4WIiIiIiAIKfMNw9OhRfP7557j11lvRqlUr1KhRA7GxsUhJSUGnTp1w991346effnKdpppKt+eff17faFWpUiXqk1/t2bMHU6ZMwZAhQ9CrVy/UrVtXv9+5557rez2rV6/G6NGj8eCDD6Jbt26oVKlSxDerx44dw7vvvotzzjkHqampqFixIpo2bYq77roLS5cu9bWOFStWoHfv3khKSkKVKlVw2WWXYf78+WFtR2Hp16+f/mzs/ypUqIDq1auja9eueOqpp7B58+aovGdJ+p699t/+b926dZ7rmjNnDnr06IHKlSsjOTkZffr08ZyBtzgtX74c//rXv9C9e3c0bNgQFStWROXKlZGWloYrrrgCr776KrZu3Vqg98jLy8Ovv/6KV155Bddddx0aNWqkP8v09HRf61BKYcaMGXjqqadwwQUXoE6dOoiLi0PVqlXRpk0b/N///R8WLlwY1nZ9/vnnuPjii1GnTh0kJCQgPT0dN998M2bPnu3r9Zs3b0a/fv2QmpqKSpUqoXv37pg6dWpY21BYzM4w8198fDxq1qyJZs2aoWfPnnjqqafw66+/RvW9jx07hgULFuDdd9/FgAED0L59e1SoUMH3+SNWrFiB1157Db169UKjRo1QsWJFVKpUCY0aNcL111+PiRMnIr+Cj9OmTfN9Xuc3C+7evXtx//33o27dukhISMBpp53mOLMuUZmiCuCbb75RjRs3VgDy/de8eXP13XffBb1+7dq1un3EiBEF2ZQCe/rpp/W2kH/NmzcP+p4//vjjqK4/PT3d9Zjq3r27r3VMmzbN89gM59jbsWOHOuOMM1zXFR8fr4YPH+65jkWLFqlq1aqFvDYhIUFNnTrV97YUlltvvdXXOQ1AValSRX377bcFfs+S9D2Hs/9r1651Xc+UKVNUXFxcyGuSk5PV4sWLfW1LUdi9e7fq16+fKl++fL77W6FCBXXXXXepnTt3RvRe5557ruu609LSfK2jYcOG+W5nTEyMGjx4sDpx4oTnug4ePKguv/xy1/WUK1dO/etf//JcR3Z2tqpfv77ja6N9PYyE+bvNz79WrVqpL7/8Mirv/cwzz0R8/ohbbrnF13ZffPHFavfu3a7r+eWXX3x/Bk8//bTrenJzc1X79u0dXzdkyJDwPySiUiLiv45feOEFFRMTo0+UCy+8UL355ptq6tSpat68eWrKlCnqrbfeUhdffLEqV66cAqA6dOgQtI6SdMNA4Zs1a5b+/ipXrqwAqIsuuiiq75GWlqbfo1atWkG/3P3+IWn+oihXrpxq06aN6ty5c9jH3rFjx9Q555yjX3f11VerSZMmqT/++EO98cYbqmbNmgqAKl++vJo8ebLreuS9L7vsMvXjjz+qadOm6V+KDRo0UEeOHPG1PYXF/IP5hx9+UJmZmfrf/Pnz1fjx49Utt9yiz/+4uDi1bNmyAr1nSfqeZf/r1q0btO9O/9y+q8OHD6sGDRooAKpfv35q2rRp6scff1SXXnqpAqDOOOMMn59M4Vq7dq1q2bKl/oxSU1PV/fffr7766is1a9YsNXv2bPXVV1+p++67T9WrV08v9/XXX0f0ft27dw+6cbrooov0tcPvDYPc2DRt2lQ98sgjavz48SojI0P99ttv6l//+pdKTk7W7/Hoo496ruvGG2/Uy5533nnqm2++UXPmzFHDhw9XTZo00W3vv/++6zquu+46BUB17dpVTZgwQc2YMUM9+OCDKiYmRiUmJqodO3aE8xFFnXnD8OGHH+pjd9GiReq3335TX331lXr00UdVu3btgv747d+/vzp+/HjU3jshIUF16dIl6HP1c8NwwQUXKACqevXq6o477lCfffaZ+v3339WcOXPUu+++q1q0aKHXd9ZZZ7lus3l9MD8Hp3/btm1z3Z7BgwcH3VjNmjVL/etf/1Lx8fGqXLlyasmSJZF+XEQlWkQ3DB999FHQL5iff/7Zc/lFixap888/nzcMZczdd9+tAKiUlBT10ksv6T/UNm3aFLX3ePnll9XYsWPV+vXr9XPh/iG5cuVK9fLLL6tp06ap3NxcpZRSI0aMCPvYM1/zf//3fyHtq1atUlWrVlUAVLNmzdTRo0dDllm3bp0CoE477TR17NixoLYrr7xSAVDTp0/3tT2Fxbxh8PqF/tRTT+nl7rrrrgK9Z0n6nmX//f4B60SiHVdddVXQ88eOHVOdOnVSAIL2tTgcOHBAtW3bVn8+t912m9q3b5/r8ocPH1ZDhw5ViYmJEd8wvPvuu+rTTz9Vq1at0s/JzaLfz7tr165q8uTJrtGD1atXq9TUVAUEIiJZWVmOy5kRqSuuuCLkfNy+fbuOZiQnJzv2Xh86dEjFx8erBg0aqLy8vKC2+++/XwFQo0aN8rVfhcX8o/2XX37xXHb8+PEqJSVFL//www8X6L0nT56s3nnnHTVv3jx9PfR7fRG33nqrevfdd9WhQ4cc2/fv36/OOussvc6PPvrIcTnzhiG/z8FLenq6SkxMVJs3bw56/rXXXlMA1LPPPhvxuolKsrBvGLKzs1ViYqICoCpVquT7bvr48eMh4VneMJRehw8fVtWrV9d/PG/ZskX3/L300kuF+t7h/iHpJJI/JFu3bq3/eNi/f7/jMi+++KJe79ixY0PaZ86cqQCohx56KKTtjTfeUADUZ599Fta+RJvfX+i5ubk6ytCxY8eob0dxfc/RuGH49NNPFQD15ptvhrT9/e9/VwDU77//HvH6o+GBBx7Qn02/fv18v27x4sUqIyMjatsR7g2DH2+++abet1dffdVxmZ49e+qI4MaNGx2XGT16tF7PK6+8EtKenZ2tAKjevXuHtI0fP14BUC+88ELBdqaAwrlhUCpw4y0dHwDU/Pnzo7o94d4w+JGZmanX+be//c1xmWjdMMTGxqpOnTqFPL9o0SIFQN1xxx0Rr5uoJAs76fm1117D/v37AQDPPvssWrdu7et15cqVw0033ZTvclOmTMEVV1yB2rVrIz4+Ho0aNcLdd9+NTZs25fvaI0eOYNiwYTjvvPOQmpqKuLg41K5dGz179sQnn3zimXjtt0rSkSNH8N577+Gyyy5DvXr1dOJYp06dcM899+C3337zTL6aMmUKbrrpJp24VbVqVXTo0AGDBw/Gli1bPN978+bN+Oc//4lTTz0V1apV0/vXrl073HDDDRg5ciT27dvn/SFFyYQJE7Br1y4AwE033YTatWvj/PPPBwB89NFHRbINRWnVqlU6ofn6669HpUqVHJfr16+ffvzVV1+FtNesWRMAMGPGjJDjcfr06QCA2rVrR2OTC13lypVRo0YNAMChQ4eKeWtKFvme5TsVJ06cwIwZMwAU7/e8Y8cOvPfee3o73njjDd+vbdOmDTp16lRYmxYV5513nn6clZUV0p6Xl6eTki+66CLUr1/fcT1XX301qlatCsD5fE5OTkaFChWQkZERUvBh2rRpAErP+SyaNWuGF198Uf//3//+dzFujT9t27ZFSkoKAOfvO5pq1qyJFStWYNu2bUHPl9bvm8i3cO4uTpw4oUO9iYmJau/evQW6W7FHGB555JGgMZTmv9TUVLV06VLXda1bt061atXK9fX4a3yjW7Ken6TnBQsWqEaNGnm+B1x6TfLy8tRVV13l+brKlSurCRMmOL73r7/+GtTr4/bP6fVmz8qtt97qun/h+Nvf/qYAqCZNmujnRo0apd9n3rx5+a5Dlg23Z1FeV5Q9z8OHD9fLjx492nNZSQRv2LChY3ubNm10T9iUKVPU9OnT1W233aaAwLh5t9B7UYkkwnDxxRe7LleavmelohNhOHDggB7acfvtt6vp06erKVOm6NwMpx7KomT2wD/xxBNRWaeZhxLJ66IZYZg3b57elnvvvTekferUqbr9xRdf9FxXjx49FBAY3uSUs3LZZZcpAKpbt27qu+++UzNnzlQPP/ywKleunKpUqZLaunVr1PYrEuFGGJQKDPNJSkrSIwmc9tu8ToTTY18YEQallP792K5dO8f2aEUYBg0apACoNm3aqDFjxqhZs2apIUOGqISEBBUTE6MWLlwY8bqJSrKwIgxLly7F9u3bAQBnn3227nmJhvfffx8vvfQSunfvjs8++wwZGRn46aefcMsttwAAtm/fjv79+zu+Ni8vD+effz6WLVsGAOjVqxfGjx+PjIwMjBkzBt27dwcQ6NW9/PLLcfz48bC3b+nSpTj77LOxdu1aAMBVV12FL774AnPnzsXs2bMxatQo3HTTTUhMTAx57fHjx3HFFVfg66+/RkxMDG644QaMGTMGGRkZmDVrFl5//XU0bNgQeXl56N27N+bNmxf0+sOHD6NPnz7Yt28fqlSpgsGDB2PSpEmYN28eZs+ejS+++AIPPPAAGjRoEPZ+RWLHjh2YNGkSAKBv3776+auvvlr3vJe1KIMcWwDQsmVLz2WlfePGjToaZ3rvvfdQsWJFjB8/HhdddBG6d++OESNGIC4uDsOHD0d8fHx0N76Q/Pe//9XRtL/97W/FvDXRt3PnTpx99tlISkpCfHw86tSpg4svvhhvvfVWvuWDK1asiHfeeQfly5fH8OHD0b17d1x00UX47rvvULVqVXzwwQdFtBfOzMjH5ZdfXoxbUjjM/XM6XyM5n48dO4ZVq1aFtA8dOhQ1atTAzJkzcfnll6Nbt254+eWXoZTCG2+8gVq1akW6G8WmUqVKOPPMMwEABw4cKDEln90sWLBAR9fz+z4B4LHHHkP9+vURFxeH5ORkdOzYEQ8++CBWrlyZ72ufffZZNGnSBEuWLMG1116Lrl274vHHH8ehQ4fw5JNPon379gXeH6ISKZy7CxmXC0A99thjBb5bMSMMANTAgQMdE9kGDBjgOZ7yH//4h2dv2YkTJ1Tfvn31MsOGDQtZJr8IQ8eOHRUQSOr16mHesWOHOnDgQNBzr7zyigKgYmNj1ffff+/4ul27dume57POOiuozewNc4tAKKXU0aNHHaM+0Y4wvP7663p9K1euDGq74YYbFABVs2ZNx6Rfk6yjNPQ8X3/99Xr57du3ey4rPVAA1PLlyx2XmT9/vurZs6eqXLmyqlSpkrrwwgvVrFmzItmVqPOqkrRgwQI1YcIE1b9/f139rFu3bp5RkdL0PSvlr6xqvXr11MyZM/Nd188//6zOOeccVbFiRVW1alV11VVXFbiiVDQ0a9ZMX8+iFdEqKRGG/fv362TluLg4xyIMZjR77ty5nut7+eWX9bJu1c+ysrLUddddp5KSklRCQoLq2rWrmjhxYlT2p6AiiTAopdQTTzyhX+eUSFySIgzXXHONXueYMWMcl/FTVrVcuXLq6aefzrcc77Zt29SAAQNUzZo1VVxcnOrQoUOxJ7cTFbYK4dxc7NixQz+Odq9JnTp18OabbzrmEPzjH//QPXK//fYbOnbsqNsOHz6s21q3bu044UpMTAyGDRuGyZMnY+fOnXjrrbdw9913+962H374AQsWLAAA3HvvvejTp4/rsjKmWxw9ehT//e9/AQD33HMPLr30UsfXJScn4+WXX0bPnj0xY8YMrF69Gk2bNgWAoMmSzjnnHNf3rlChQlSjPm4ketC5c2c0a9YsqO2mm27C6NGjkZOTg8mTJ5eZ3svc3Fz9uHLlyp7LmlGmvLw8x2U6duyIiRMnRmfjCtHFF1/s2la3bl08/PDDuOuuu0pNVMSPmJgYdOnSBVdccQVOPfVU1KpVC4cOHUJmZiaGDx+OOXPmIDs7Gz169Ai5Htmdd955QePpSwq5llerVq1MfXcA8Mgjj2DDhg0AgEGDBqFevXohy0T7fG7cuDG++OKLSDa3xDJ/l+3evbsYt8TbuHHjMHbsWABAp06d0Lt3b9dl69Spg6uvvhpnnXUWGjdujAoVKmDDhg2YMGECPv74Yxw9ehTPPvssjhw5ghdeeMF1PTVr1sT777+P999/P+r7Q1RShXXDYF5knYbeFMQ111zj+ourRYsWqFy5MvLy8rBmzZqgtnnz5mHPnj0AAgmn5cuXd1xH1apVcd111+F///sfli5dii1btqBOnTq+ts38w+7BBx/09RoxZ84cncx83XXXeS5r3gzMmjVL3zCY2zlixAjcf//9YW3Dueeem+8smH4tXbpUD5lySmLv0aMHatasiZycHHz88ceeNwzR2qaiYCb1xsXFeS5rHscHDx4stG0qbps3b8aIESOQnp6OXr16uS5Xmr5nIFDYISkpKeT5rl27YuDAgXjiiSfwwgsvYP/+/RgwYAAyMjLyLZZQ0si1PJrXcb+z9hamTz/9FG+99RYAoFWrVhgyZIjjcjyf82feSJm/+8XIkSN9z55eWJYvX47bbrsNQGAY4EcffeR6Lp5++ulYv349YmNjg54/9dRT0atXL9x5553o0aMH9u7di3//+9+47rrrcMoppxT2LhCVGmHlMFSpUkU/dhqbXRD5jTtMTk4GEHrhWrx4sX58xhlneK7DbDdflx+JLjRs2BBpaWm+XwcAGRkZ+nHXrl09p6M3L9BmVEF6QwDggQceQOfOnfHiiy/i999/x5EjR8LanoIaNWoUgEA0wynSUqFCBVx//fUAgPHjx2Pv3r1Fun2FJSEhQT/O7zM/fPiwflyxYsVC26aisHbtWqhA+WUopXDixAns3LkTkyZNQvfu3bFo0SJcffXV+o+0ssDpZkHExMRgyJAhuPDCCwEA8+fPx++//15EWxY9ci2P9nW8OE2bNg233347gMDvi7Fjx7qefyfr+RwO83dtUUSuw7V582ZceumlyM3NRUxMDIYPH+5ZtTExMTHkZsHUuXNnvP322wACnRzymIgCwrphkLJlAEJKihWUW5lKUa5cYFPtCctS2hPIf5iUWe7MfF1+JHzvNyJhysnJCfs1AIKSKmNjYzFhwgS0atUKADB37lw89thj6NatG5KSknDppZfis88+iyiZOxwnTpzAp59+CiAQSUhNTXVcTiIPhw4dwpdfflmo21RUzJtlt2EJwvwjLL/hDqVNTEwMqlevjksuuQRTp07F2WefDaUUHnzwQaxYsaK4N6/I3HnnnfqxvXRqaSDX8r179wb9QVxaZWRk4G9/+xsOHz6MxMREfP/9955/PPJ8zp85BLl69erFuCWhdu3ahR49euio1uuvv44bbrihwOu9/vrrUa1aNQCl87wmKkxh3TB06NBBPy6JVRPyGxZQ0KERkQw7MP+InzZtGjIzM339s+dYtG7dGpmZmfj666/Rv39/NGnSBEAgRD558mT07dsXZ5xxRsQ3KH5MnToV2dnZAIDvv//eNVJiRnLKSrUks057fnOCbNy4EUDgeHGr714WlC9fHn//+98BBCrIlJXv2g/zj1E5J0oTuZafOHECf/75Z/FuTAEtWbIEl1xyCXJzcxEfH49vvvkGXbp08XxNJOczgCKrRFcSSGQdCAwLLilyc3NxySWXYMmSJQCA5557Dvfee29U1l2hQgU0b94cQOk8r4kKU1g5DK1bt0ZKSgp27NiB3377Dfv27Sv2UKXZ87F161Z9sjsxoyLh9JhIb9zmzZvD3j4zcSwuLg5t27YNex2ifPny6NWrlx4vvmXLFkyaNAnDhg3DvHnzMG/ePNx55534+uuvI34PLzIcKRwzZ87EmjVr9JCq0sr8A3H58uWeY1uXL18OIPDHRbRzfUoacyhhZmZmMW5J0SpteRl23bt314miEydOzHc4Z0mVlZWFiy66CDt37kSFChXwxRdf6OFiXuznsxdpr1Chgs4rK+sOHDigh9olJiaWmLH8Bw8exBVXXIG5c+cCAB5++GE88cQTUX2P0n5uExWWsCIMMTExeibb/fv3F3stcQBBf4D/8ccfnsvOmTPH8XX5OfXUUwEAGzZswPr168PaPrOCyo8//hjWa/NTp04d9O/fH7NmzdLb+N133xVKYl5eXp6+EbngggswevRoz39ybCil8PHHH0d9e4raWWedpR97haq3bt2qa3l369at0LeruB07dkw/Pnr0aDFuSdGSWb+BQLWo0qZPnz56PP4HH3xQKnMZNm3ahAsuuABbtmxBuXLlMGrUKFx55ZW+Xnv66afrZGev8/nIkSOYPXt2yGvKuhEjRuj8syuuuAIVKoTVt1gojh49it69e+vv66677sJ//vOfqL7HsWPH9PW7NJ7XRIUprBsGIJB0K/kGTz31VL69M+LEiRP45JNPwn27fHXq1EknKY4aNcp1HH9ubq4eT9+6deuw8hGuuOIK/fi1114La/vOOussHc1455139OQy0RQbG6snpzt27JiuGhVNY8eO1XkVd999N/r06eP57/bbb0enTp0AoEzcMDRv3lznkHz55ZeuE3eZVUOuuuqqoti0YiU9fcDJNVzj3Xff1Y/l3CtNUlJSMHDgQACBSOUDDzzg+7VLliwJmVyyqOXk5ODCCy/UHTjvvPMObrzxRt+vr1KlCi644AIAwE8//eQ6LOmrr77S1+yT4XwGgFWrVuHRRx/V///nP/9ZjFsTcPz4cdx44416wtCbb74Zw4YNi/r7fP755/r7Lo3nNVFhCvuGoV69eroiyv79+9G9e/d8k4OWLl2Kiy++GK+88kpkW+khPj4eAwYMABD4Rfbss8+GLKOUwj333KOTuO65556w3uPCCy/Uf/y++eab+Pzzz12X3bVrV1APf0JCAv7xj38ACPQ+9+nTx7M3Lzc3N6TizG+//YbVq1e7vubIkSP6O6hcuXJIMvK0adN0foFEiMIl49MrVarkOpeE3TXXXAMgMGxg5syZIe2yTenp6RFtU1GT73HXrl0YPHhwSHtWVhZefPFFAECTJk3K/B8Yu3fv1vsLAD179nRcrjR9z7Nnz9ZlkJ0opfDEE09g6tSpAAK5AKU1kvTiiy/qoTkffPABBg4c6JkAfPToUbz55pvo0qVL0Lh+kZ6err/rwrRnzx5cfPHFOsn+tdde0zc/4ZDz+dixYxg0aFBIZ9OOHTvwyCOPAAhUzpLfM2XZd999hzPPPFNXSHr00UeDchdN/fr109/3tGnTCm2blFIYOHCgHkLXu3dvjBgxIqzjbPfu3flu45w5c3QuRExMDO66666It5moLIooznjbbbdh06ZNeOqpp5CTk4Nzzz0XPXr0wJVXXolWrVohKSkJu3btwsqVKzFx4kRMnjwZx48fd73wFNRTTz2Fr776CmvWrMFzzz2HxYsXo3///qhbty7Wrl2Lt956S18sunbtijvuuCPs9/j444/RuXNn5OXl4YYbbsCYMWPQp08fNG7cGMePH8fq1asxZcoUjB07FpmZmUF/HA0ePBhTp07F1KlTMWnSJLRu3Rp33XUXunbtiqSkJOTm5mLFihWYNm0avvnmGyQkJATd1EydOhXPPfcczj77bFx22WVo3749UlNTcfDgQaxcuRLvvPOOTkIfMGBA1MPHGzZs0J/fpZdemm9FK9G7d2/dU/XRRx9F9IfVn3/+6ZqUuXXr1pA64Ndcc41jJZOxY8cG/TE0Y8YMx8dAoJrWJZdcErKOW2+9FR9++CFmzpyJt99+G1u3bsXAgQORnJyMOXPm4LnnnsO+fftQrlw5vPnmmyUijF9QK1euDPrclFLYs2cP/vjjD7z55pt6gqyzzjrL93AQJyXle548eTL+/e9/45JLLsFFF12E1q1bIykpCYcPH8aiRYv0xG1A4Ob5/fffL3VzMIhKlSphwoQJuPTSS7Fy5Up88MEHGD9+PPr27Yvu3bujTp06UEphy5Yt+PXXXzFu3Dj9fUdq9erVId+DfF95eXkh3/Mll1wSVN3u8OHDuOyyy/Sx0rdvX1x44YWeZbITExPRqFGjkOfPP/989OnTB59//jnGjx+Piy66CA888ADq1q2LzMxMDBkyRO/vv//9b13auzRbu3atzslTSmHfvn3Yvn075s6diwkTJgTlIQ0cONB1Hgu/8vLy9B/6wuz8Gjt2bFD1xVNOOSUkX+If//gHRowYASAwlPixxx7DsmXLPN/XPuR47969OO+889C+fXv06tULnTp1Qp06dVC+fPmQidvkPU877bSw95eoTCvINNHjxo1T6enp+U63DkC1adNG/fDDD0GvX7t2rW4fMWKE53ulpaUpAOrWW291bF+7dq1q2bKl5zZ069ZN7dy50/H1Tz/9tF7OTUZGhmrQoEG+++o03f2BAwfULbfc4uuzatSokeu2ef27+uqr1cGDB0Pe+5dfftHLuH1+Xp5//nn9+tGjR4f12vbt2ysAKikpSR06dCioTdaZlpbm+nq/++712StlHT9+/nXv3t11e7Zv365OP/1019fGxcWp9957L6zPqKS59dZbw/rMzzvvPNfzSqnS9T373Y6GDRuqGTNmhPnJlkw7d+5UN998sypXrly++x0bG6vuu+8+tWfPnpD1mJ+9mxEjRoT1Pf/yyy9Brzd/Z0TjfD5w4IDq2bOn62vLlSunnn766Qg/2ZIh3HOrdevWaty4cfmu17xO2L8nEe735fRZh3NOux1/frejfPny6plnnlEnTpwI92MmKvMK1AV69dVX4/LLL8fYsWMxadIkzJ07Fzk5OcjNzUXVqlWRnp6OLl26oHfv3jjvvPMKtScuPT0dCxcuxPvvv48xY8Zg8eLF2LdvH6pXr46OHTuib9++uPHGG/V8DpHo1KkTVqxYgQ8++ADffPMNFi9ejN27d6NGjRqoV68ezjrrLPTp08dx6EXFihUxatQo3HfffRg+fDh+/fVXbNq0Cfv370flypWRnp6OTp064dJLLw2ZHXnw4ME444wzMGXKFMyaNQubN2/W5VNr166NM844A7fccovrkJCCkhyE+Ph4XHbZZWG9tnfv3li0aBH27NmD8ePH49prry2MTSwyKSkp+P333/H+++/js88+w7Jly7B//37UrVsXF1xwAe6//360adOmuDezUFWuXBl16tTB6aefjhtuuAGXXXZZqe1lt7vttttQq1YtzJo1C4sWLUJOTo6uwJOSkoJTTz0VV1xxBW688cagyb9Ks+rVq+Ojjz7Co48+ii+++AJTp07F2rVrsWPHDpQvXx4pKSno0KEDzj//fNx4442oWbNmcW9y1FSsWBETJ07EZ599hpEjR2LhwoXYs2cPatWqhbPPPhv33HMPunbtWtybWShiY2NRtWpVVKtWDS1atMBpp52GHj16BBV4KCvq1q2LMWPGYNasWZgzZw6ys7OxY8cOHDp0SO//ueeeiwEDBpSKoZNExSFGKdYQIyIiIiIiZ5F3txMRERERUZnHGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInLFGwYiIiIiInJVobg3gKi0U0oF/TTFxMQE/SQiIiIqbRhhICIiIiIiV4ww0ElBev9PnDgR0maPAjAaQERlVTQjok7rsK+LiMoGRhiIiIiIiMgVbxiIiIiIiMgVhyRRmWWGy48fPw4AOHr0aMhy5cuXd/zpl1fonWF5IipJ5Loo10RTuXLlgn4Codcw87oqQzydhibJdbSg10CvYU9evN43v3Xyuk0UihEGIiIiIiJyxQgDnRTsiX5Oyc/Sq2b2PoXT08ReKSIqqbySne3LRLpuv+uK9LrqJ2Hbj4K+nuhkxAgDERERERG5YoSBTgpOY3PtotV7RURUUhVG+WhZl3nt9BOtcHqd2zL2x26v47WaqHAwwkBERERERK54w0BERERERK5iVKRZTkSliP0wN5Oe7QnQZkhbhjBxFmgiKkuiOUuzXEPNa6msX9blVKpVljl27FjI65yGkYZb8pqIoocRBiIiIiIicsUIA5307BMZmRMa2XvJzB4uP4nURERFxf7rvKgiok6TwUnUQK6ZsbGxuu3QoUMAgD179gAANm3apNtkcs3q1asDAGrWrKnbkpOTo73pROQT/9IhIiIiIiJXvGEgIiIiIiJXnIeBygw/szg7hejtz5mvl/C4MMPqcXFxkW8sEVGURTORuaC8tiU3NxcAsGrVKgDAzJkzdZsMV2rVqhUAoGPHjrqNQ5KIig8jDERERERE5IoRBiozDh8+DADYu3cvAODgwYMhy1SuXBkAULFiRf2cPVLgNbOo+X/WCyCiksTPzMnhsq/LbxSjQoXAnxcS3TVLp+7atQsAsHHjRgBAVlZWyPrr1asHIDTKS0TFgxEGIiIiIiJyxQgDlRlHjhwBAOzcuRMAsH37dt0m0YeqVasCsEr2mY8TExMBWD1jJvtkQkBobx4ndSOikqAwrkWS22VGGPxMsibXXokqAFZkYcuWLQCCy7FWqlQp6CdzxYhKBkYYiIiIiIjIFW8YiIiIiIjIFYckUZkhIXMpy7dt2zbdJo8lVG/OHtqiRQsAQMOGDQEEl+6T4UkcdkREJV1hXp+8ylZ7vb8UoViyZIl+Th7v2LEDAJCenq7b5DrcsmVLAECNGjXy3Sa393ZaLr9licgZIwxEREREROSKEQYqMyTJzil5WSYKkmS7rVu36jZZPiUlBUBwhEF6osLpvSIiKmucroXyWK69JimHunnzZgBAZmambpMJ24REeQGgbdu2AIAGDRoAsEphF0RJmtCOqLRihIGIiIiIiFwxwkClkvQYmeX44uPjAQC1a9cGYI2PBYB169YBsHq7zBJ/Mma2adOmEW0Le6iIqCSIVk+603qcSqfa12lOsibX37Vr1wIAVqxYodskp6xWrVoArEnaAKBRo0YArBLYsbGxvrbPa9+Zw0BUcIwwEBERERGRK94wEBERERGRKw5JolLNDC1L6FoS8CSJ2Xwss4bKrNAAsGfPnqCfZpuskyFsIirpIp193l4y1alcqQxFclqnlLLevn27fm758uUArOGg5uvS0tIAAM2aNQNgJTgD3kOR7NvkZ58iWd7+nFOiN9HJhhEGIiIiIiJyxQgDlUr2Xi/zOYkwJCUl6ba6desCsBKcd+7cqduk5KokRJuTukkCdcWKFaO6/UREhSXcXnB7hMGcnM0p2dlu3759AIANGzbo56SMqpSwNidgkwITbdq0ARB8zTXLYee3vSb7Pnt9Bvl9PvbJ6RhVIGKEgYiIiIiIPDDCQKWaV8+POeGPRBY6d+4MAFi5cqVuk2jDkiVLQtbRpUsXAIwwEFHZ5zWO32k8vzwnEYbs7GzdlpWVBcAqfd2+fXvdJo9bt24NIDiqYH8/p22xRwCA0EgI8w6IoosRBiIiIiIicsUbBiIiIiIicsUhSVRmJSQk6MeSVCeh8GPHjuk2SXaWGUlNUvZPZiT1Svw72dlLMjoNCeDQAKKSSwpGeJVVlSFGgFUwIicnB0BwWVUptSpDQ1NTU3WbXI/Na7SQ64i8rzn8SN7bvH4Le7K07EskeJ0iCsW/foiIiIiIyBUjDFTiOSW/ebGXVwWsyYAkednsCZOeKSn/Z75Oltu/fz8AoFKlSrqtID1YZcXRo0f1Y/mMpBfQ7PGLj48HYE2c5xWp8VMykYgKxiuK4OXgwYP6sSQ5b9y4EYA1+SVglbWWaEJycrJu8yqd6rUNEm1wijD42Qev3yVMkibyxggDERERERG5YoSBShV7D5HfXiHpdZKebnM8bf369QFYPWdm5EBKrkr0QXIZACAxMTFk+ZOFjE/etm2bfm7x4sUAgAMHDgAI/ozT0tIAAPXq1QNgRRpMXuUUBXv+iKIj0nNJSqgCwPLlywEAy5YtAwDs3r1bt0kp6+bNmwOwrgFAcMnrcMh1XCIU5j7Ic+HmmfGaQuQPIwxEREREROSKNwxEREREROSKQ5KoVIs0nFytWjX9uGnTpgCsRDoz5C5DbqTkamxsrG6TELiZCF3WSdLhrl27AAArVqzQbT///DMAIC8vDwDQokUL3SZDkCQB0kx6lCEEfoYkmTiUgKjw2c9Lcxji6tWrAQAbNmwAEDzUUIYktWzZEgBQt25d3ebnmulUnlmGfzrN5uz0nB2vGUSRY4SBiIiIiIhcMcJAJV5h9ApJmVXAmpzt8OHDAIBVq1bptvXr1wOwyodKqUBzHV69ZfZJiOyPSwNzoiYpmyg9iwsWLNBt8liWNz9jiTpIFMdcp/3zKG2fD1FZY06WJkUMZHK2rKws3SbPSe++WehAIgxSKEJKWgPhneNe105eK4iKDiMMRERERETkihEGKlWkRyncydzszN4uKfUpJVS3bNmi29atWwfAij40atRIt0nPWfXq1UPWX9Dt86soSpAeOXJEP5bcBYm8OPU2yjhmc1I36bF0ylOwR2E4BpmoeJkTo8k5v2TJEgBWdBGwrou1a9cGEJy3JNdHKaEabrlT4XXOm9cRuU6Z0UshuWdO5ViJyB9GGIiIiIiIyBVvGIiIiIiIyBWHJFGpVNCQsjk7s5RYrVGjBgCgSpUquk2G1chwpezsbN0mM0RL6F1mkTa3rzCGJpkJifahPk4lCP18Vl7bKTNgA1bSs3wee/fu1W0y5ECGIMhM2ID12XgNS/AzJImICp95zsss9wsXLgQQfA2Uc11Kp55yyim6LTk5GUDk57Of18mQKMAaSrp//34AwdcaKecs13qzrDOvN0T+MMJARERERESuGGGgk570NkmPWJ06dXSbRA8k8c9MiF6zZg0AKyIhydOA1bsezV5ziQKYEQYzOREI7lXzM5GRMNcpUZVDhw4BAHJzc3WbJBRKxMAsnSr7nJCQACB4Eif5jO0TL9kfE1HkCloEQc7v3bt36+fkmieRBrMIghR8SE9PBwCkpaXpNiksEc0efHsk1Yx2/PrrrwCsieXMCOeZZ54JAGjevHlIGyMMRP7wNzUREREREblihIHoLxIpaNCggX5OxuZKKUEZuw8AK1euBGD1qDv1tvstCSjCzTdwKlMqwilXapYilDHAUibVHM8s60hJSQFg5XEAwKZNmwA4ly60b4MZVWAPH1Hxkkil5Cht3LhRt0kvvlwjzMkrZXI2ia6a+V+RskdSzYiGXJsk6jl//nzdNnnyZABWJMSMFMs1XbbXjDAQkT+MMBARERERkSveMBARERERkSsOSSL6i4SpzeRlCY/LEJqZM2fqNhmmJIm85iynMvOpEwm1m4nGwilR2T5kxxzOI8N/7OVVzef8DAMyt2Xfvn0ArFmczeFKUp5Qfh44cEC3rVixIug5c6ZnSaCW52QYFxFFJtIhjU6kPPLSpUsBAAsWLNBtMiRJCkA0adJEt7Vv3x6ANUQxGuRaJMOPzOFRy5cvBwBkZmYCAObNm6fb5LFcE81hR3L9kaFXhVHumqisY4SBiIiIiIhcMcJA9JfY2FgAwUl90hMuyYBmz5uU75MeOPk/YCUDS2lRc6I4EW4vl1ekQH46RS2c3keekx5/s3Sq9DbKc2Z5VPk8ZMIm6QUErIRHWadTqVb56Xff/SzHpGmigpECB9KDLwUdAOucbdasGQCrEARglVEtjCRiiQZIxBOwSrxKNHPVqlW6TUrBSnlsc3I2wcgCUeQYYSAiIiIiIleMMBDZSKTBfCwRA7PkqvSuy89169bpNpnQSEr7meUG7ZOXmb1efkqg+i1Xap/kyHzd4cOHAVjRhO3bt+s26dGTXsNq1arpNum9E5UqVQp5LJ+H04RsTrkWdk55GF75HuFMUEd0spOeezOqKHkCMhmlWT5aznm59pnXQIk0FsbkixIhMK8xsi2ST2Hmm0kkRLbJvG7JRJPhlrkWvLYQMcJAREREREQeeMNARERERESuOCSJyAdJhDYT/mQGUkl2Xrt2rW6zz3ZsJuCZM0IDzsNtwuV3CJOQbZdkbjOxUJaX8okyvAqwhlbJsCMzmVseS/jfTISUxxUrVgTgPYTBaSZrp89IttM+9IroZBDu8S7nkAxDNBOGZShSXl4egOBzXhKbU1NTAQSf19EaiuQ0LFOuI3Xr1tVtMkRUyriaszn/9ttvAKwSqmaxBvswUL/bUJjk2gsAQ4cOBQCsX78eAPC///1Pt7EENZUUjDAQEREREZErRhiIfJDEO6cIgyQRSnlVwEoqlp4wM1nYHmGIZsKgU8+YUw+89MJJj6L8H7D2NT09HYBzyUT7REiANcGb7I9EEwArEVHWVRhJkkQUzOw1l3NWIqIy+Rlg9WxLJLRhw4a6Ta55EnVwKlca6XbZf5okQiCRDfNxq1atgrYJsEqubtiwwfV9izMKKZ//K6+8AgD473//q9vMaAMADBo0SD8+7bTTCn/jiHzgb20iIiIiInLFCAPRX5x6uaRHSnrLpbwqYI0F3rp1KwBg9erVuk0iDNLWqFGjQtjiUOY+SI+/RAGk7CAAHDx4MGh5c5ysRAHMMcB2EiEw1yl5DbJuk4xH9hNZMHsBvZZnOVUi/6QXW6IJMkkbYOUwSZnStm3b6rYOHToAsPKXvK4L4ZLrjxmpFJJ34BTRkHPe3BZ5TtYlEWDzOa98Mady1ZGSaMI777yjn3vppZcAWL8TTJIj98gjjwBgVKFQZX0AADir6UD91MxwXt/tff1w9YwBAIAmetVn6bamA8Naq7H6wN8RMwbIWnfptgUfPAQAuPnvI/VzS44Eom7d//4pAODjZy/SbQ2sCvFRwQgDERERERG54g0DERERERG54pAkIhun8noy/MVMAJYEvJo1awIIHtYjw3N27NgBIHjmVBnW5Gf20YKQIUkHDhwI2YbNmzcDsBIFzaRnGX61e/duAFa43CSvMxMnN23aFLQus8zsihUrAFjJz+bM1/J+XsOWzPKtdhySRBRMht6Y5ZJlJnoppyrXAMA6B+VaJgUPAGtW5cLkNBzUqaSy/dpgtslj+1BM8zm/Q5Ls2+B1jTGvnTIEyc/wo/vvv18/98ADDwS1URFr1xsA8EjPpvkvW7+5fljZ16oDw8z8rDqw+uC17ps0WD/u+q/A78HRc7ZYzyWsAwB80v9cAMBl/5uv2xbd19rfm/rECAMREREREblihIHIxm+PtUQbpAdOEgYBq2dJEg03btyo26QUoEw6JL3u0Sa9YxLtMHv8JTKwbNkyAFYkBLB642S7zMiJ9PDl5uYCAHJycnSb9GBKz54khQNWdEOWkURKAGjWrBkA63OUSAPA6AFRJOScN0uMLlq0CIB1zkvkEbCipbVr1wYQHAEsDHJey08zgmjv1ffq+TejCPYohfl/iSz4nSRTlpN1mJENuT5+8sknAIAhQ4boNrPwhZ1cT++55x4AwVGcb775BoAVfTYTveV1UqLb5LQ85WP/HgDADvO5CwJlbP/97/MKuOodIc9dMOjfgXVHuOrt2VZxgpYPvwcAuKplbWOJwON7Bt8CAHh4qBVh2PRXhKE+ooMRBiIiIiIicsXbUqK/hNubLROcSc94ixYtdJv0SEkegIwbBqwe+2rVqgEoWITBa4ytbIMsI6VeAasHUsY4m/kN0vMYGxuoyWb2Xsn7yLok0mC+Tnr9tm/frtuklKOM0TUnhpJ1OY1jJqLwyYSMct4BVmQhKysrZHk5Z+W6YF4PZKJJpwkcw+FVtjrcHCWn655cr6TUqvzf6XX5XWu82r/77jsAwL333gvA+qzzI8s9//zzvpaPhBkNlmiR0/9lOflpX9Z8zoz4yu8Cs7y4kAiI+fss3OWLxM7ABKsrjKe6tWnovGzYqw5aKwCgoKtOrWdNFrv8zlcBAF9fZB1DOofhPx8BANr1ekC3RSuyIBhhICIiIiIiV7xhICIiIiIiVxySRBQhCdVKaLV1a6uEmcyAnJ0dCH+aCccSBpblpZRhJLxC5zIkSbZThhaY79mgQYOgZQBrWIJT0qE8llKC5uskGVCGGJlDGCSJUsLPUsYRsIYOeA098IMJ0kQBMhRSrj+AVQpZCjEkJyfrNpkVWYo1mMOW5LySa4WZEO3nnPMzDMjPDPBOzKFMci2S66s5C7R9eGZ+1xXZL6flevXqBcAqHCFDkwBruJITGY55yimnAAgux2ovv2r+31wuP+ayUmDC7f8lmZkQDgSXm7WXnrUvCwBXXnklAOu7ys+OX98FANw2bCQAYPQCazjt4fi/ZlK+4zUAwGvP9NVtHat7rhUA8Ou7twEAho0crVsWbA/8joxP7Q4AuOO113TbM307AgBk1VUv/Y9um/XUXzM9d66jn7Nmep4AAJh4d3RLqZoYYSAiIiIiIleMMFCJ59UbVJy9ytIzLsnLZm+XlCm1Jz8DoT190eD0Gcl7S2SheXNrwhlJ1D799NMBWD2MQHCpQnM95vvI/pllBGfNmgXAilCkpaXptlNPPRWA1btmlqCVnk75PM198RNhYGSBTmbmuSvnpUQWzOuO9Lg7JZtKdFAmXzQLJEhhBHkfs2CB9PZ6JS0Ls6SpV+nUcM5n89ok+yeRhmhEGLxKu0rP9oQJE/RzI0eOBAA8+OCDAIKv8fJYXvea0avsZ8I2iR44TQYn37uZgC3XcflOvZaX799pead9EE5RC6/l/SpoNER+9zhFGLblhK57xcdvAACOXX47AOCBHlbbkrHDAQDfvXkTAKDrYut8W/JzIHrQBNsAAMGrDiRAf/xG4Hu4/PYHdEsPLAEAjB0eiEi9eVNX3bb4SKDt59ua/PWMFcboOGBEYJm/fhY1RhiIiIiIiMhVjGItQyrhSmqEwc7cThnfOmbMGADB5Q1lDPCll14KAOjUqZNuk2iF02Rp+b2n/f/2z8YrChEuKZm6cOFC/dy3334LwCq12q5dO912zjnnAAA6dgyMz/SaaCjSCENJOhaIwuU0qZif89OcdPHPP/8EAKxYEejdNHuLZf3S825eY+Q8k9wrs8dZ8o0kKtioUSPd1qRJoBdUJn4zc5rs6zb3z76v5n7a99npvJbXy3UWAL7++msAVr6YlL0GgAsvvBAAcNpppwGwJs0EgiMR0SKfu5nfIJOzCXMitv/9738AgGuuuSbq21KSmMejREAkymEex/blzai3V6Rl27ZAT//FF18MwDnCsG/VTADA7LX79XMJ9U4BAHRtE8jtCyrIeygQOX+i+ZkAgCEbU3XT478HInnPdz0IAFg1c7ZuW7s/cH7VOyUQPWhTM7TM76FZTwAAmp9pTf63MfVxAMDv2YHSqV1DX1ZsGGEgIiIiIiJXvGEgIiIiIiJXTHqmEq+0DDUxt7N69UCikpRONdv27t0LAFi5ciWA4BB8q1atAATPvGmWIPV6T6f/+20Ll2yzOZuqrN+pTYY/eA1FctpOr/KGpeW4oLIrGsMlZXiN05Akr+F2MmzIHJoxe3ZgSMSGDRsABA876ty5MwCr+IF5fsqQD0lwNodQbty4EQCQkZER0ibLOw31se+DeZ2zn9fm5yifg5+hhuZnJknZkrBtXmvs6yxsMrOxDJMCgLFjxwIA7r77bgDBQ3CuvfZaAMATTwSGqDz33HNFsp1FzWnG56JWtVlgBuYezXy+ICEwpOi6+1oAAIY8bM3mPG1J4DxD18DQvGbdrGxpP6tP6HodAOC+FtaQpIdXTAMA2FZdIjDCQERERERErhhhICoEUspUIgZm0pZEFqTnziyLKKUOzYQ9e4Qh0uTIaLInrAHArl27AFil9MweNImqyL76TTT0UwaRkQYqSfz0iDuVGBVO57K5jCR97ty5E0BwCUqJLMh5aU4K2bhxYwBAmzZtQtYp2yMlkc3ow8GDgYROSUCVstDme9etWxdAcHlQSYCW/YnmeSrbbiZnS8K2/Sdg7Z+9nGtRkoTmc889F4AVaQCs6MPixYuLfLvIn8QkSVJf4blcmGsFACSlGE9Fc/VRxggDERERERG5YoSBqBBIhEB69Q4cOKDbpGdQegOl9x2wJlST0qtAaE+d2asmPWbSY29GI/zkM0Ta0ybjhKVHErDGM8tkUWaEQR7LvspkbUBoXoNTWVVzn4V9sihGGqikkh5uicw5RQnleHYa6y9RBcC6fqxatQoAkJWVpdvkvJTyzOYkaxIFSExMdN1OiYyavfMSrZCSleZkXLItktdgXrckn0Hez2m/vPhZxilKYo8mOK2zOK8VUk5VSm4DVmShadOmxbJNlL+d2StDnovzMWFhPmsFAASvOvC7vMCrLgSMMBARERERkSveMBARERERkSsOSSIqBDLMRkL8MhMqANSoUQOAFTKXUD8ALFmyBEDwEBxJJpZERKchO/J+ZhlFeSzDlMw2GSYgSdZ+yp067Z85vEESLKVN1g1Ywy1kv/xOMO81k3VxJjASAd7HntNwGafj31521GmdZnEBGcoo14rs7GzdJkMaZSiSlHUGrGFKfpjJyzKbszDLqubk5ACwZlc2h1rJdUCGSzrNAu00RMjPeS3XE7M4hFwf5adZWMF+DSzqIhH5adu2bXFvwkkgMCx24qBTAAA3DLOGzPaasBkA8NHl1UNftmsKAGDU29v/eqKd9boz0v9a9UQAwKBTbtBtw3b0AgBM2PwRAMB51aMAAHrVANAu8DpZdUlSss4aIiIiIiIqURhhICoCZm+7TOomvfNmD+GKFYGaamZioZRflXWYJQ+F9FyaPXzSoyeJiBLZAIB69eoF/TR7FM1IhBvpsTMnaurUqRMAK/lZejsBK/ogvX5+owIlIUmRyA97CWAzSmhPcjaPZ+nt9iqnKoUEACvCID39ZuGBli1bArDKOTdq1Ei3mb3x+TGLJ8g57hSNlOjn5s2BHlozOVsm6ZLrnVOEwUlhnOtOCeV0sgkkm599/Y0AgKRhL+uWj69IBwCsuvX/AADdaxuTIX74OQBg+l9RgAYPv6Xb+ukA3tkAgOtvTNJtw17+GABwRXqgOMGt/9ddt9XeGphg8cPPpwMAtqOBbnv4rX4AACs2WHLw7CEiIiIiIleMMBAVAbN3TXrza9euDcCKIAChvYfm8tJjb45Flh6z3NxcAMGlTKW3z17iFbAmb2rXLjAe0+yJlGiAV6RBohbNmjXTz0mehpRkNPdZoiny014S1eTUw+g0vptRBypJ7JEFc7JGIcexefzLYzmezWiEROu2brV6PKU3X9rMaECDBoGeyrS0NADBE7c5RSbdmMva87HMa4y0SQTELB8tuVkSxTSvW5Geu/ZcELnume8tE82Z+yBRGGkzvxu/k0hS2VD1nCEAgIy5zfVzjwx6BgAwbtRLAIDZxvJV6vUAANz7yb8BAM/07Wity/bonCEZ+pm5zR8BAAx6ZhwAYNRLQWsFANTrcS8A4JN/P6Nb+nasipKKEQYiIiIiInLFGwYiIiIiInLFIUlERcAc3iNDiyQx0UxolKEHZtKzDO2RpEMZdmC2SWjeTK6WIQtOicNbtmwBYM0MayZey/pluJFZElaGT8hQBHNmV68ZZP0kLzvNfhvO64mKmnnM+plh2GlIkv2YNof1rFu3DgCwZs0a/ZyUMpVz3yw8ILM5S4GDcIYhubFvn5k8Ldc12Xez/KvMAi3XN7PoQjgJ2GZStwxzWr16NQDgjz/+0G0LFy4EYF3bzGuhzCwvQ5LMoZSSnG3OPi/b5zV0kkqrwDlR87QB+pkRfwQejyjwqq0hgKcNCKztjwEFXmuJwQgDERERERG5YoSBqAiYCcCSiNi+fXsAwaUIJQHaXF7KEkpEQl4HWImIkmhsRiakZ86eDAgA27cHasStWhUo+ZaVlaXbpMdNmKUIU1JSQp5zWi4c0iPr1EMrvZvs6aOSxH7Mms8JpyiCPcHZiRlxXL58OYDg81MihxJZaNq0qW6TQgrh9OCHyyyrKhFGeT8zwiDXIrnWmAnY9kndvJjrlEjLTz/9BACYNWuWbpOS1BJtNaO6kiQtZWAl+gEAp5xyCgCrJC1gXX953SGyMMJARERERESueMNARERERESuOCSJqBDYhyyYQxAkOVhqpZtDkqTGuszHAFiJizLcQH4CVpKjhPaPHDmi2+S9ZSiSGYaXpEFhtklS5fz58wEEDwmQZEHZBjOxUML+su9Ocyb4SV52arPPomvunxM/Qz+Iosl+bJtD9LyOezlv5DyVpF3AGjJoPifDZWTulBYtWug2SdyNRrKzG3OojyQyS2EE8/yUIUmy7ebM7zKEyc+QJKdzXj4zc+iVfB4yPNP8DGSuCrkumOt0urYQUShGGIiIiIiIyBUjDERR4tUT5jSzq/R6NWzYULedeuqpAKxkZsBKgpTogZnYbJ9F1atHXRKWAauXUHr4zLKqkhgo0Q4zWVoSqKUcq1niVdYVaaKgn6RpM6rgFdFwmhmaKNrMY9Z+HHodz3LsAtY5JSVDzZnfJdpnHvfSqy8RSvP6IT3ukRYg8MMsyCDXFEloNkvCSvKx7IMZxZTlzeucn/eTSIbMVJ+UlKTbzM8UcP5u5DqZnp4esg/mjNmF+fkRlVY8K4iIiIiIyBUjDESFQHq07L3gJumJNyc8k9KpZm+Z9NQtW7YMgNUTCQSXOASCJ1mzM3vQpBSjRAgkqgBY+Q2//fYbAGvyKMDqJZSSreZ2yhhiiV44jROWnlKn8d1evXpO44zlvZ3WKZ8tewqpMBR0IkGJ0AHAjh07AAArV64EEHy+ybFtntdNmjQBYJU/9tNLH01mj79EO6SXXkqoAlbuglxbpBwsEJxrlR9z/+T6KNcap5wt4RRxlOuCmd8gj83neN0gCsWzgoiIiIiIXPGGgYiIiIiIXHFIElEh8JrZ1T6MwQzxS7lSs4yirEOSB2WIEmANEfIK8Uuo/tixY/o5Gcokw4fMYVHSJsOOMjMzdZuUe128eDGA4CFCMnRASq36Ha7hZzmnYUv2xGanYU5EkXJKpo8Ws5CAnOsy5HDTpk26Tc4lGYYEWDMSy3CgomYWNZBhjpJsbV7LZMigDL/yGj7k9/3ksVnalYiKBiMMRERERETkihEGoijxW9bTq8dSEu+qVKmin5PeO+mVM0sXShTA7LG0s08MZW6fvbwqYE0GJ1EHszdPIhoSaTCTN6UXVHo+zUndwpm4zYsZRfCanIpJixQpe4EC8//Rijbs3btXP5YyqmvXrgVgndMA0K5dOwDBk7PJ5IlmVLC42KN7ZjRAIpXyk+ckUenGM5iIiIiIiFwxwkBUCOxlRM0xu/b8BqeeN5lgCLBKCG7duhWANZGb+ZyUZDTXJfkQMq7Y7P2zb5/ZiyrLVa9eHYAVcQCsCZdk3LVZ4lXKscq2m6+T/AbpbYy0p9YpipPfckThKIxjR8bvS4RuzZo1uk0iDJJjJOcdYE0wJhM0Atb5VVw99mYp5UOHDgGw9s+8jkhkVKKlZllnezloM79K1u8UtSiMfXa6BtpzLLxyp4hOFowwEBERERGRK94wEBERERGRKw5JIioE4ZQKdWIOSZJkYgn/m8MZZHiSDEkyw/eSFClDA8zEZqfZkd3ILK6ANUO0vK85Q7Q83rx5MwDnxG2vROVwcUgAlRaSyJyVlRX0EwD27NkDwBru17BhQ90m55s503NxJw+bQ5KkkIL8NIf1JCUlAbD2yywDay+Lag4BcprVvTDJdaSo3o+otGKEgYiIiIiIXDHCQFQIpNfKntznl1kyUZKepUyp9NYDwE8//QTAKsloRhGk/KKIdLKj5ORk/bhjx44ArERqSdgErB46Kftq9kQSncz27dsHAFi+fDkAqyyxqUOHDgCsUqoA0KBBAwDBCcPFzYwGSNRTIgxmm0RF0tLSAFj7AgRHH4Hg61ZRsxehsD8mogBGGIiIiIiIyBUjDIXIaUyk3+fo5Gb2cMm4fylNak6IJuUMJX9Ayp0CVslT6dkzox3Sq+ZUUtC+jPk6GY9sTh5nfz+ZzC0vL0+3SQ+kRDnM9+PxT6WVmUdjP6fMiRKzs7MBWPlHOTk5uk1yhOSnlEMGnKOCRR25s0/OZk4st2PHjqCf5jkv5WHl+mXmXjiVmxal5XrgZ1JO5llRWcIIAxERERERueINAxERERERueKQpEIgYVZz9koJT8twjaNHj+o2CTH7CcU6hcD94FCoomX/bszP2s/3Zobv7cnE5nCG3NxcAMDevXsBBA9JWrVqFQArgVrKHALWMCOvIUlO5FiV49fcF3lOSq56JUR7DUky12lv4zFbcngNySjo9cbrHCnqcptOx6PT9skwQjkPzPN0yZIlAIB169YBCB7WIwUEZDiPWapYSq4W5zkh1yK5Zqxfv163yezu8pw5VFEStaVogjmUUq5FkuzstQ9e++61vN/PJdxj1v55mAnb8l3KT3M4Z3GXwyUqKB7BRERERETkKkaxyy7qJIqwfft2/ZyU05Pyl2ZPsPQSS0TC7InwSqKy93SYbdJzLD3CThPjUOGxJwo69Ug6TVDkNaGaHB9bt27Vzy1atAiA1WNpTvgmZVXr168PILg0o6zfKYFStke2xemYk3KKcuwCVuKjvM4snSjbJdEOp4iLVw9cuJEQKnxOPfB2Tkmtkb6PKOpjwOl67LTvEmGQfZZSqgCwadMmANYEi2aEWXrgW7duDSA46dnruhFOZDoaZP/kPAesiIkUPDCj6lIgoVatWgCCJ26T0tCyznD3watIQzTYr83mcSzRA7mmyfUVANLT0wFYk216TVZHVNowwkBERERERK6YwxAhp55g6Y2QXhaz91XGeC5cuBCANb4csMZ8S4lMs6SmrF/Wbb6fLOdUtk56n2RbzJ5kp55twTJw/nmNZ5bvwv7TXN6ptKBTj6y9N1MiWIAVWZDnzHHT0sO5dOlSAME9XHLMOE0sZz+OnXpR5TnzuJI8HXnO6Vh16lG0f0ZOY5YjjTB4fUeUP6/Pz6mX3T4e3Cuy6dV77jdXy8+1zOt93P4POB+PXuuUfZXogUThAOv8dIoiy++JxYsXA7CiEG7bJbwiDIVx3DtdfyRnQfbV3BbZPsnJMMf6268jTtvuxM9+eS3j93ee/fg1j2OJ1MrEdK1atdJtcj2VqIqZN+a1Lbw+UWnACAMREREREbniDQMREREREbnikKQISQjWHD5kD7OaIVgpKSdJUOaMmNImIVxznfZQpRnK9kp6tic7Ow1JoujyGrrgNCTJaTiFUxKyfWiEeXzIdy/lF81kevvsq5JwDFizsErintcsrE6hc/sQI5PTMec1s6uf5FmvoSdUdPIbKuR1bEdaVtVP0nOkwyu9tskpCd9+TpjHuAwBlCGm5tAdGcbSsGFDAFaiM2ANFZTlZWiquX6nc7C4hrE4DTV0+qy8hvUU9HwOdyhTpJy2Xb4vuYbK0CQAqFq1KgDrd7/f38lMiKbSgBEGIiIiIiJyxQhDhKQXyEwatfe+miUumzdvHvScmSgl63JKbPbqRXJKqBUFTRalgvEqh+vVY+rU82bvUTSPOem5lLKGK1as0G3yWJIq69Wrp9vS0tKCfkqZQyA0MdkrIdQrQd/sQSvqEpBU+Aragx/p+xT1xG1OJNl3586d+jmZqFDORTPpWXqh27VrBwCoW7eubpPInyxvvs4p4uinZHNhkM/dPOe9iifIttt/AtEpt1uY7Nc+85iTfZZrpkQaAOt7lmRn87OyT+jq9N0SlWSMMBARERERkStGGCLkVDpSeiGkt8WctEXGrHpFEVhajSIlkwRKCVXAmlBIejzNEn9NmzYF4N3jSUTOpFSoTJwIWOeXlNQ0o3YSyWvfvj2A4Gif5LAJp4kcTV6Tx1HJYn5/Ellg1J9KK0YYiIiIiIjIFW8YiIiIiIjIFYckRUiSTb1KzDnNkEtUGGT4myTXA6EzL2/atEm3SVhcygCmpKToNg5JIvImszlnZWXp5+SxnG/NmjXTba1btwYANGjQAEDwcCU7/t4oO7y+y5Ke+E1kxwgDERERERG5YoQhQvHx8QC8J+siEn4T3CI9diSqZUYKJLEyOzsbAJCRkaHbZFI36ek0kzDNSaXcRDpRFlFp4VQe2B5ZMMsYb968GYAV7atZs6Zuk/PLK7JAJZfX9dvrume22cugM+mZShtGGIiIiIiIyBUjDBHi2FKyc+oxsk+g5yS/KFU4PffmBEoyoZD8NNezd+9eAMCWLVsABE9AJRMJygRF5uu8JmDzmkiQyq5Ie19LusOHDwMIPjckspCZmQkA2Ldvn26T80xKFpuliqtUqVK4G0uFQq7bZpRJjnf7RK2A97XPazJPotKAv9mJiIiIiMgVbxiIiIiIiMgVhyQRFQIJW/sZrhHN0LS5LplBVpIvpaQjYCVo7t+/HwCwceNG3Va7dm0A1pAKM1FT1i8henOolQxhsofsiUqjQ4cOAbDOFQCYN28eAGDdunUArOIXANC4cWMA1mzOZtIzh7CWbuZ13H5tN4ch8dpHZRkjDERERERE5IoRBqIi4JXYXFi9UdL7WatWLQBAhw4ddFtCQgIAYNeuXQCAtWvX6jaZlFB+yrJAaFKfGWFgmUAqSySh2Yy+LV26FACQl5cHAGjbtq1uk8cSYahWrVqRbCcVD6frNiMLVJYxwkBERERERK4YYSCKknB7nAqjN8rs5ZcSqzKRlNkbeuzYMQBWedX169frNokaNGzYEACQlJSk2xITEwFYkQb2qFFZOAbMSJlED6TksPwErFKrkh9klk6VxzLxYVn4XE528h2a5arteQr8nulkwQgDERERERG54g0DERERERG54pAkokJQEsLUUspRhk80atRIt0my84oVKwAED7uQ4RmbNm0CAKSmpuo2Cc3Lus1ykSVhn4kiceDAAf1YhuetWrUKALB161bdJsON6tSpAwBIT0/XbU4zqlPpxmFHRBZGGIiIiIiIyBUjDCWI12Rf7Okgr+PC7f+ANaGa/ASsqIFMLmVOTnXw4EEAwIYNGwBYvarmOiQR2py4yv7efraXqCTYvXu3fjx37lwAwKJFiwAERx+kNLEUEGjatKluM4sD0MnNTKIX/B1OpR0jDERERERE5IoRhhKAE16VPfZokfkdF+bEbX579WW8dePGjQFYOQ2Alc8gOQyVKlXSbZIP4TSpm30bzG3xKkXIHjcqCubxePz48aCf2dnZuk0mMdyxYwcAoEqVKrpNzpcWLVoAsM4jAIiLi4toW8KNLPN8IaLiwAgDERERERG54g0DERERERG54pCkEogh59JPhhfIjMpmEpx99lCzNGlB3898H/swIPN9qlatCsAaWnHo0KGQ7ZOkZ1NKSgoAK1m6WrVqrtskwz3y2xYe71QU5FwEgNzcXABWydQ1a9boNpn9XIbi1a9fX7fJY5k93ZwBOBxOw6PM7RNO1wieLyUfvyMqixhhICIiIiIiV4wwlADsjSgbzF5D6emX3kOnpOdwk929jhOvRGMnkrQsE1Dt379ft0nvq/S65uTk6DZJhG7SpAkAoF69er62RT4Pr0Rvlh2kwnT06FH9WBKa58+fDwBYvXq1bpNefTnGW7durdskyVl6/CM9Vp3ODadSnCyIUTrxGkZlESMMRERERETkihEGokJUVD3pftblFOWQMql169bVbRJRkDwHGdNttsnYb/N1si6n3levSd3svajsnaPCYObpyHG8dOnSoP8D1jEt+T1t2rTRbVJiVaIB5cpF1ufmdG54XSuIiIobIwxEREREROSKNwxEREREROSKQ5KIosQcPuAnKTLS4QxevNbptS3mjM2pqakArFltzfKqeXl5AICsrCwAwbNAN2/eHACQnJwMILjkpAw7ckoCtw/vcBo6RVRQkswPANu2bQv6efjwYd0mQ/Ekob9Bgwa6zV4C2Ssp2evYNdvkPHE6d+U5ngdEVNwYYSAiIiIiIleMMBAVAqcJyori/SLtiYyPj9ePZXI2KSdp9qJKqdVVq1aFvJ9EJpKSkgAE95jat8tpgjmiaDpy5AgAq4SqHLMAsHHjRgBAbGwsAKtcKgCkpaUBsCYnlGWcRHrsMumZiEobRhiIiIiIiMgVIwxEFNSLWqNGDQBAu3btAAAHDx7UbZK7sH79egDAsWPHdFv79u0BAPXr1wfgHF3xk2Pht1c10vHjdHLYvXs3AGDhwoVBPwGrjKocq02bNtVtElmTXBwvRV0amYiouDDCQERERERErnjDQERERERErjgkiYiChgpVrFgRgFVq1ZzNuVq1agCALVu2AAB27typ27Zv3w7AGgpiJpKaSdX295OhRU5DMrzaqHRzmu3baZiZV2lR++vM40qOTRlGZ5YHluUbNWoEAGjbtq1uk2FKiYmJYe0PEVFZxggDERERERG5YoSBiILYk4+lzCpgRRtkwqujR4/qtq1btwIAsrOzAQQnUkvPr1OJSnvPMcusnhzM79lpQj87p0iDvE4mXjt06JBuk+PRaXI2SeyXEqoNGzbUbTJxmzBLABe0fDERUWnFCAMREREREblihIGIPFWuXFk/btasGQCr1Kr04gLA5s2bAVg5EGbeQlxcHIDoToLFXt6yQ757iRiY362U53X6vmX5vXv3ArDyFczHUvq3Xr16ui09PR2ANTmb5Os4cZpkjYjoZMMIAxERERERueINAxERERERueKQJCLyZA5Jaty4MQBrSJI50/OmTZsAWEmiqampuk0e2xNKiQBrqI9TYrPXMCA5/nbt2gUAyMzM1G0yG7kwE5tlNmdJfq5Qwf1XIYchERExwkBERERERB4YYSAiT5UqVdKPZVKrvLw8AEBOTo5uW7x4MQAr+iCTYgFAkyZN8n0f9uSeXMxJ1uS795q4zYmUUZXjcOnSpbpNJm6TBGczwtCiRQsAQJUqVfJ9j6LitO88J4iopCj+qyQREREREZVYvGEgIiIiIiJXHJJERL7JHAvJyckAgOrVq+s2qZfvNFxpx44dAKwhTTIvA8BhF+RvBmWZcyE3N1c/t3HjxqCfcuwB1jFWq1YtAEDt2rV1mxy/JQnPAyIqyRhhICIiIiIiV4wwEFHYEhMTAVhlKQGrdOr27dsBALt379Zt2dnZAKyZdaXXFwhOqraTRFD2vtL+/fsBWNEEAFi+fDkAq4SqObu4HI+SfG8eq0REFB5GGIiIiIiIyBUjDEQUNsllMCMF7du3BwCsXr0aALB3717dtnLlSgBWD7A5GZxXhIFIyPFklk5dsGABAGviNrN0asuWLQEAzZo1AwBUq1atSLaTiKgsYoSBiIiIiIhc8YaBiIiIiIhccUgSEYVNhhZJEjMAdOjQIWiZjIwM/XjDhg0AgAoVApecxo0b6zYpzSplWYlMx44dAwBs3boVAJCVlaXbJAFajp0GDRrotubNmwMA6tWrB8AaRkdEROFjhIGIiIiIiFwxwkBEYYuNjQUQPAGWJDJL+UszOVV6gtesWQMA2LRpk26TKEXVqlWD1g2wnOrJ6siRI/rxtm3bAFilU7ds2aLbjh49CsAqmWpGGCSyUKVKFQBAuXLsHyMiihSvoERERERE5IoRBiLyzT6Rmpl3II8lYiA9vIBV9lKiD1JmFQASEhIAWHkN5gRb0kYnBzm+du7cqZ/7888/AViTtB06dEi3SRlVKaGalpam26SMKiMLREQFxyspERERERG54g0DERERERG54pAkIvIkw0TsjwHnpOSkpCQAQJMmTfRze/bsAWCVV12xYoVuO378OAAr2dkchsQhSScHOa7y8vIAANnZ2bpt4cKFAKxjxzwmWrduDQDo1KkTAKB27dq6zUyeJyKigmGEgYiIiIiIXDHCQERRJeVVZeIswOo5lqRnM8Jw8OBBAEDdunWDfgLBCdBUtpjRqgMHDgCwSqhKNAGwog1SQtVMbJZk52bNmgEoWZOz2aNxAMsEE1HpxQgDERERERG5YoSBiMLm1XsqY8zNSMHu3bsBAFu3bgUALF68WLfl5OQAALZv3w4AyM3NLYQtppLGLI8q331WVhYAa5I2ADhx4gQAK9rUqFEj3Va/fn0AQGJiYuFuLBHRSY4RBiIiIiIicsUbBiIiIiIicsUhSUTkySlRU4YkmUOTZDn5aQ4TkXKXMjOvzAYNWAnRe/fuBWCVYAWshGgZ5sSk0bJDvnfAGoIkQ9XMsqqpqakArKFIkuAMAFWrVi307SQiIkYYiIiIiIjIAyMMRORbpD380hNcr149AFY5TADYvHkzAKu0pllSUyaBk8hElSpVInp/KnnM5PZ169YBAFatWgXAiiwB1gSALVq0AGAdC4BVwrckYjSMiMoSRhiIiIiIiMgVIwxEFLZwe08lB6FWrVoAgPbt24e0SaRhzZo1uq1ChcAlSiILjDCUfsePHwdglVIFgI0bNwKwyu9WqlRJtzVo0AAAkJ6eDsDKaQCAcuXY50VEVBR4tSUiIiIiIle8YSAiIiIiIlcckkRUwtlnVS6NyZRxcXEArNl6zaRnSXCVhFdzqIrM8tuqVasi2c6SwF6yVj4DkwzFCfdYKM5jZ9++fQCsBOcVK1boNimpm5KSAiA4sVkeSwI8hyERERU9XnmJiIiIiMgVIwxEpYzZ4+ynx7gkRCSkV1iSWaW8KgBs3boVABAbGwsgeEIvaduxYweA4FKcFStWBGAlRofLHrlxU1yfn1eEwWmb5Dmn/bK3FdU+HT16VD/OyckBACxYsAAAsHLlSt125MgRANbkbG3bttVtMumffN9ERFT0GGEgIiIiIiJXjDAQlRL2se2AVaLSqedYevUjHe9eGGRbJKcBAKpXrw7AKrkq49kBq+d506ZNAIJLatapUweANSmc30iDU8+9vVfeaZx8cX1+0Xjfoo4syPuZ0SL5DiXCYOaqyHcvuS0dOnTQbZK7UL58+cLbYCIi8sQIAxERERERueINAxERERERueKQJKJSxmtIkkmG6HglyJYE1apVAwA0b94cgDUMCbCGrUgpTnMokwxRkWRpv7NAOw1JksfyuZifT3F9Vn6Gkvn9bv0meBeUvM+BAwcAWLN3A8D69esBADt37gzZJhmWJsnwkugMhO6P+To/341XEjgREfnDCAMREREREblihIGohPPqDbX3lpvLOiVJR/Ieha1y5coArMnZzAiDlOXMzs4GABw7dky31axZEwCQnJwMwH+EwUs4n1lhsX8XhfHdhNtL79fhw4cBWGVwV69erds2btwIwIoMySRtAJCWlhb0XKTbZO5XST/uiYhKE0YYiIiIiIjIFSMMRKWMWfJT8hScymbaJ+vyGsttrrOoe11lMrf69esDCC63KePes7KyAATnHchYeHNyMD9k/8wynfZ9diqrWpoV1Xe6f/9+AFbOyeLFi3WbRInq1q0LwCqhCgCnnHIKACta5MUriuZUKrckHONERKVd2fqtSEREREREUcUbBiIiIiIicsUhSUSlhNMwCvvQGa+SmuZwDa/li5rsgyQtSzKz+bhixYoAghOic3JyAADbtm0DANSoUUO3JSQkAPBfdtRrFuGS8BkVBa8kYa/PwBwStnXrVgDA2rVrAQSXVZWE9UaNGgEAWrdurdvkucTExHA3G4C/Y/xk+R6JiAoDIwxEREREROSKEQaiUsZv6UinZE+3ZUqSpKQk/Tg9PR2A1XMtPwGr93rp0qUAgqME0mMtk8I5KYn7Xpyceum9Jo+TBOctW7bo51atWgUA2LBhQ9A6AaBWrVoAgCZNmgCwktwBK7IQ7ndijx44HetlLYGdiKg48EpKRERERESuGGEgKiW8oglObfbe4dISaahatap+3LBhQwBAbm4ugOB9kJKry5YtC2mTfAavCAMFeJUmtR8z5nG2Z88eAFaEBwBWrFgBANi9ezeA4HyUpk2bArAiC+b37GdyQi9exzhzGIiICo4RBiIiIiIicsUbBiIiIiIicsUhSUSljN+kZ7vSMiRDSqgCQO3atQFY+3ngwAHdtnLlSgBWgm1cXJxuk5mDvZifXWn5bAqDfciO12zhhw8f1m0yI7c5JEmGicXGxgIAGjdurNvatWsHAEhNTQUQ/H3JMCinIUUFHZJEREQFx6srERERERG5YoSBqJRw6kUNp2e8tPSom9smE7BJSc46deroNpno7dChQwCsMp8AsHfvXgDWRG9mb7bT+5D1eZjlaeW548ePA7ASnQGrnKo5OdvBgwcBANWrVwcApKWl6TYpdVupUqWgdQPWpG7y3uYx7jQZm337+F0SERUuRhiIiIiIiMgVIwxEpYzTGHPhlN8gP4uzF9Y+Dt3vtkiPc+XKlQEEl+ls0KABAKv32+yJlt5vyW+QXAgg8knCyjqn3nr5TCVis27dOt0m+QoS4QGsqI98N3Xr1tVtZhlVwPre7I8B7zwdp++tJBzjRERlGSMMRERERETkijcMRERERETkikOSiMoAp1l67cmiFSoUzeluHwplfwx4z8jrRNpSUlL0c23btg1q27Ztm26Tkqsy1MUss1qvXj0A1tAkcrdv3z4A1lCk+fPn67a1a9cCCP4c09PTAQCtW7cGYM24nR97crV57NoToZ2OEw5FIiIqXIwwEBERERGRK0YYiIqAU2+7U7lIp15Ur95TWYf8dJrkyj75FmCVIN21axcAYPfu3brNnBwNsCbhAqySmJLAaiaySmKy7IPXhFuRlniVpFoAaNq0KQAgLy8PQHDJzzVr1gAAcnNzAVhlPs1tZoTBmfnd7Ny5EwCQlZUFAFi+fLluk0To5s2b6+fkO5EJ2+SYyI/TMWpv8yqhyggDEVHhYoSBiIiIiIhcMcJAVATMnlOZpMpeShKw8gycJs8SZmRC1iXPmcua6wCAw4cP68cy2dbixYsBAMuWLdNtUpJU1mX2xKempgKwJuGSHmUgtFfZKUpS0PKXMpEbYOUi7NixA4A1ph4AMjMzAVhRB3M75XUyGVxBtidSXtGX4uotl2NIIjYAkJ2dDcCKMMixAQDx8fEArM8TsI4LKWPrlTdj5rHIseq077KcU94LEREVDV6BiYiIiIjIFW8YiIiIiIjIFYckERUBp6RnGU5kchp+YS9Tar7u6NGjAKyhHOYQEFnHkSNHAFhDdwBg9erVAKwymQsWLNBtmzZtCnq9mfQsCcMtWrQAEJwsLcOF0tLSAABxcXG6zT7UJBrDbuT9kpOTAVjDpQArOVqG12zfvl235eTkAADq1Kmjn5P9OpmHvUgivAw/AqzytFKy1kxillmcZVZnwEou91PC12n4XLjldomIqGicvL8diYiIiIgoX4wwEBUTr95UMyIhydH2n4CVqCo9uk6RCSmTaiasbt26FYDVq1yxYkXdVrNmTQBWr68sA1hRClm3GX2QnmbprTcn7ZLlCqO3uFq1agCck29ln6W8KmAl8sp+mtt3MpdalWiRmQAv5WnlGJLPFQBatmwJAKhfv75+zm8ZVTuvkqlERFT8GGEgIiIiIiJXjDAQFQGz59+pdKp9ObN0quQpyE8z+iA94/LTXKeUUZXSopKbAFh5EG3atAEAdO/eXbdJToBs54oVK3Tbr7/+CsDqpd+wYYNuk95oySWQSd7M7SqMHAHJV5CyroAVFZFcDclbAKzPQSITgDX2vqgiDCWpJ11yXCTqtGTJEt0mn5VEjTp27Kjb5HFSUpJ+zoxUERFR2cEIAxERERERueINAxERERERueKQJKIiYA5B8RqWI8uZQ5LsbebrZSiS01AmGWoiw4/MUpcybEh+NmzYMKRNlpfhKACwb9++oG2SZFizbdeuXQCsspuANVSlMIYkSXlVs6yqJORKgrg5JGnnzp0AgpPADx06FPXtKonsifCAVTJVhpfJ5wNYQ8lk5ub09HTdJsnO5hC5kjTUioiIoocRBiIiIiIicsUIA1ER8+qFld5ap0mtnEpP2tvMSd3skQVzojKZVK1WrVoAghNXpcdemOVHZcI2KVNq9tzLtkiytfwErJ5+swxrtEjUwmlSMSkDa35mkgQuPeuAVVJUIi2lpafc7N23c9qHgwcPAgje96VLlwKwktZNcsw0bdoUQHAUx+t9iIiobGGEgYiIiIiIXDHCQFQCmb22Zu6BnfSuO03qZu95N0uGxsfHBz3n1fPvlH8hpUzNHu6UlJSgNqeysYXJ3E6JoMg2SD4HYJUPNfMxpOdc9s/M6ZAcjsLIvyhqUm7WLIe7YMECAMDmzZsBBJebbd68OQArJyTSidmIiKh0K/2/AYmIiIiIqNDwhoGIiIiIiFxxSJIvVsnF3Vv3AAAOuyzpLjAEJKl2YBbdoLTSo4EE0u07A8MFjiNM5QPDSmqkVtFPhQwwObRbP9y6J5AMm1gjMAyjSvTzUKmA/A5/kSFBTsmvMsxIhh/JT6f1m6+XGaUladksPyrDeWQZGX4EWAnUkiRtzvprLxdrDh+KVtKsOexIhhvl5eUFbS9gJTibM1/bh2SZn5U8Ls2zGMvnvn37dgDA2rVrdVtWVhYA6/OTBGfAmj1bhmjZE+IB52OPidBERGULIwxEREREROSKEQZfZulH/6pzPgBgaNjreAAA8LN6DQBwntm04QsAwFVNBwIAZoa76m7vAwBWzxign2qCQI/qyi/6AQB63vqZbsuS8EiVLgCAIT9M1G2Pda0e7rtTFPnpmTV7dKXnWJ4zE6QliiA/zXXL66TnXcptAtbEa9IDv3z5ct0mj+X9zORgiTBISdNKlSqFbLskZZsRDnu5WL+907Iu2XaJHABAdnY2AGDjxo1B2wtY+yxJvoCVDCzvLT3rgJXMXVwRhnBLpwqzxK58p5LsvH79et0mURhJ7jYn3JPHycnJru/HiduIiMo+RhiIiIiIiMgVIwyRavF/AICP3rhSP1XL8wWBcd3N/az7spf0wx/uOyX/5RMbAQCCplTa9hUA4JE+gZ7E+5dYPcj3tg6UmsyZ/AAAoO2Vb+q2C3OeBgB09rOdVGI4RRHseQoSVQCsHnUZ026W2ZQJvFauXAkguDdaJj1r0KABgOBSrdILbeY12N/b/tPcTvtP+/4Awb3mMimbREIkmgBYeRfSs25uZ/369QEEl6CVfA2JVkivu9kWTfaogVfPvbmd9uW9PitzH1asWAHAihCZE7fJ99aoUeA6kp6erttq1KiR7/YREVHZxwgDERERERG54g0DERERERG54pAkP7bl6Ifr5EHd0wAAZ/foodvSI13/zkCC5sq//hvfuotu6tHjnMjWmfdXqdYWvQAA3VuHlkOseealAIBLtg/Xz639a6RCZ+/xVVSMvIYdeQ0dMYfz7N27F4A1FGn+/Pm6TWb+leErZjKxJP5KgrPMqAyEN7OzOcxGhid5zTYtcnNz9WMpB5qZmQkAWL16tW6ToUUyFMlM5K1ePZDYn5aWpp+TIToyy7FZolWG9shz5j5HSr4Tr+9LPhfzs5I2+ay9ytPu3LlTP160aBEAa2iSDEkDgDZt2gAATjnlFADBn4vXzM5McCYiOnkwwkBERERERK4YYfAjz+rV3C4POqQDANIdJ3ULnqQNsE3UZrd/T9C6uzWvZ7XZJ3UrbyVvykRtjv2yDdsDAC46EIhQ9Bts9bD++8JAucvlw+8DAHzZ62Xd9iIjCyXe7Nmz9eMHH3wQAHD77bcDAAYMGOD4GjvpoZbecimpCVgTr0nPulmq9cCBAwCsZGmzV196piVSIL315vvI+zqV4nSarE569SUiYk44tmTJEgDAunXrAASXhpVkXUlwNhN5ZVtknYAVrZCkbjMJXLZLtsVcl1cPvJdIe+ftpWfNz1G2T74jcx/kM5IJ7czvplmzZgCAFi1aALAiMIC/qA8jDUREZR8jDERERERE5Io3DERERERE5IpDkiI19TEAQNeq1vCQ2bnBi8SndtePn/o2MC+Cn5mUVw67ST9uek9g/VkOpeCrtOkHAHj/q/cAANc3N4YPxAZmUngsY0ZgPc8/rpvuu28PAKD1LYHXLfv7JbrNGAxFJdTkyZP1YxmeJD8//fRT3fa///0PgDXUxBzyI8nLqamB2TuaN7dmCJF5FKQu/6pVq3SbJELL0JZly5bpNkmEjo8PDMlr2rSpbktKSgLgPMTFPiTJTDiWeRTsc0MA1vwQkswt72/us8zYLMOszH2XoTvmNsv+mEOfZOiSJCGbw3kKc0iS11wL8pyZyC7fiQxFMvdBksUlCdycoVu+5zp16gCwPgsiIiLBCAMREREREblihMGPbKtXM0MeZAYSLvGo1aP7w7kpAIAdP/0TAND/5em67fHzAkmpTbK+BgBcb3Tlr1u3MOjtti/VqdW46D+B5Ye1DPxfEpUB4P4vRwIA+lyYDgBolPW0buv8V0dubM1A+de+b/yg2/qG7iGVIv/4xz/0YymPOXToUADAtGnTdFvHjh0BAI8/HoguPfLII7pNogjS226WHZVeaynnuXChdXxOnDgRADB37lwAwbNAL126FIAVTZDEY8Dq2ZaEYzOR2k56ygErWTcjI3DmmbM5S8JvvXqBk6l169a6TR5L1MHs0ZfE60OHrIIF0gOfnR0ocZyTY5VS3rp1a9C2m9EYmfHai9OMyF4RBntis1fpVHMWaikNKyVUzQiDREJq164NIPizkucYWSAiIjeMMBARERERkasY5dT9RcEOWRNXbd3zV49efBIAoHayU8HUQA/pLw9aY7jPHxqIGrR7PRCZWHSf1cN3NDfQtnN/oEe3fKLVM5taxT7mO0s/+uCswPoHzgz0DN7+vdUr+sGlVVFYvHpHpbcSABISgj8b6Xm2P7Yva64DCO6Nlt5kJ1JC06n3OiUlEP1xGnMu22LfJnO77NtU0kgP/MCBA/Vzf/75Z9Aybdu21Y/ff/99AECXLl2Qn82bN+vHU6ZMAQBMnx6InpkRBolSdOjQAQBw1lln6TbplTdLdtpJj79ZqlX2QSIa5oRjTZo0AQC0bx8oIdyuXTvdJseJ38nkJIogn+O3336r26TUqpSNveQSK+fn9NNPB2BFUJyOPbnEmpdapxKykdiyZYt+vHjxYgDWd2NOuCeREDkGzGNBjm37+UpERCQYYSAiIiIiIle8YSAiIiIiIldMevYjwZqx2d/IlMBwoLN6Xms9NXQYACBz7ba/nrCGJMVWCZS2rF3Fz7qb6Efn3BQonYqZcwAAy7O3G8sV3pAkLzK042Rizvxr5zXcw2uYlPmcmTwMBA97kWFYYtCgQfrxuHHjAFhlWGXICgB07doVAHDPPfcAAJ577jndZh+aValSJf24VatWAKxZlc0SozIztAwbMpOXzeRcOymjKrNHm8OcJHFXhgWZ7ydlW6WEqjlczc9QJHOIkMx0LZ+nzH4MAJs2bQJgDcWT5GLASsKWMqWSTG4u7zQkSR5HOkuyJKbv2LEjZDslYdtpKJ98ZmZZ1WgNjyIiorKLvymIiIiIiMgVIwyFKLZCXKGuv3yF0EmwioJZrlF6lc2eTiG9oNLz6UTKZjqRnlyz/KWQHmf5aSroNoXLax+82kqCt956CwDw9ddf6+deffVVAMBVV10FIDg6IhOhSVTA7DWXcp5SotSMMJiTsdnJ9yWTs5nHl6xDJl6TScYAK5Fa2vwmOAuzd1/2USaya9mypW6TCdskemZOZCe985L0LGVqAWuSOllGytTaH9u3RZZ3ij7IuSDHrzmRnUQ75HMwJ7KTCIMknXtFFWR/nTAaQUR0cuLVn4iIiIiIXDHC4MtR/Sh3+04AwLEqgbHpjlVV/5KVNTfkudSkRIclA72Gu7cGemYr1EjVLSFVVY1t2bAkI6gltUroWPjC4DVmvywwow8SkRBm1EJ6xoUZ7bBHPmTMP2D1VDv15EovsVPvsmyXfZvM7TK3SXqj/eSVmHkSMg5fesHNnnvpSU9ODuT1mPkOkuvgNSmbE4kirFixAkBwhEH2QSYaM0unSqlQpxyQcEnPueyPjPUHgL179wKwIl5mjoV8RnJOyOcCWPkWThOw2SMMfnvu5bhavnx50E/AygGR71KiQQBQp04dAMH5KHZ+ci3MtkjzL4iIqPRhhIGIiIiIiFzxhoGIiIiIiFxxSJIPS9/opB+3uT8TAJD6f5MAAIuHWrO+1pThQ7t+AQC89a+ZxloCwycGXdrxr/9bCaGTBgSSNnsOD5Se7PbGEt32072BoRgy8unoylG67bn/yazTvQAAfc6ykhwpcvZSpaZIh2OZQzlkKJLTkCQZmmIOUfEz9EOGKUkSMwC89NJLrsvLkBspp9qnTx/XZc2EZRn2IsOjdu3apdtkOI8k1ppJt2YysJ0M+ZEEXnNIkpQ7leFHkugMWEOnIk3EdRpeI9tpHgMym7IM/9mwYYNuk+FJ8pwkTZvrio+PD3oP+2M7rzYZerZs2TIAVqK4uT8y87WZuC3b5TWbs9OQJD9tfrediIhKL0YYiIiIiIjIFSMMPrS+6XX9+IFXzgcADB12KQCg4RhrIrX0QMcqdq3LAgBsPxyv25o8HIgM3NtZwhBWNvOFgwO9wud9MhAA8Mt9bXRbzZcCk1LVrRxIZt28Ilu35SLQw3rxh4Ge5KuteauoBJNeWKee8XCiCQDwySefAACGDBkCAFi9enXI8tLTP3jwYP1c//79AVgJymaytGyDJDvLRGCAFQWQcrEySRsA1K1bFwCQlpYGwIoKAMETmgHBPdWS9CzvY0YtJElXIg1mUrGULQ2XU2+5/TuR9wOsz0/2LzvbOgftZU7NCIMkY0sSsrm98tl6TeB29GigwMHu3bv1c5IUL4nsZvRH3sfr83dKSJdIl9O2eCU9e2GkgYiobGGEgYiIiIiIXDHC4Ef18/TD11YGxgxf/O4rAID3Ppuq25YGhmKjUc9HAQAv3DdQt910bmDCKacRxLHNBwAAfthwCgDgy/etcegffTwbALAegd7KrrcO1W13PXwDAODyNoEciOKZxo388Dt+3Q+ZUA0Avvvuu6A2s8zpnXfeCQDo168fgOBSnllZWSHP2bdPesHNsqwyjl+iAmbkoEmTQLRN8gxq166t26TnXnqzDxw4oNskunH4cCAnx+zFlm2QnnGzxKtX77ydU6lQr/KhJum5l/3buXOnbpNog+Q5mJ+HlFWVvAHzu/EzcZp8xubkbJKzIJ9VSkqKbpO8FIksmKVy7ZEFp30XXseq38+MiIjKFkYYiIiIiIjIFW8YiIiIiIjIFYckhSshMLTokvvf/utn9FYdW/M0AEDfx0fq5/o+Hr31U9lgJijLcJc77rgDADBo0KCQ5RYuXAjAmkkZsGYtlhmozaEmMlxGnpOyoICVdCzlZc0ZkWVmYRkK4zTsRhJ5c3Nz9XOSOCxlSKUsq7ku2c9wh3bJPpglbL3KhjqtU4YWyf5JGVjAGtIlSc+SDA5YydL16oVXjcA+Q7d8f+b6JRm8WbNmuk3Kqcqszn6Twu37HO4Qo2gOtyMiopKJEQYiIiIiInLFCANRKTNp0iT9WHqjpcdZJvYCrMnEZHKxRYsWhbRJT79TiVHpPW/UqJFu69atGwArsbldu3a6TUqRevVsS0lYM0oipUFlH8zIhEQ04uLiXNfpxSvB2S+JfEhZVXPb5fOTcqfm5y8J0VIW1UwCtzOTz2V5iVqYE9nJ+0lkx5ycrXXrwCSPUs7VS6QTx0VjeSIiKn0YYSAiIiIiIleMMJRATj2g7MUjIeP5zceSG2DmG8j4f4kQmBO+SelNKW/qdMxJr7c5Adipp54KwBrPb+YbeB2j9lwCiYyYj6XNLJ3qpxyon95yM2oR7vklbRJpkBwBwJokTUqfmpOsSalVKYVqllyVz022y8yLkIiQRBjM7ZXXSV6E5EnY1x+OcK4tvA4REZ2cGGEgIiIiIiJXvGEgIiIiIiJXHJJUwnEIAPkhQ3ckcRiwhs7IsCVzKM3+/fsBWEOZnMgQIUk8BqzhSTVrBmYX93t8ynKynTK8B7CGUckyTiVQJenZHK4UzvtG4zyS9zZnUJbhXm3atAFgzaANWMO9pBSqOWRI9l/WuX37dt0mCdS7du0CEDzsSBKnW7RoAcD6HoiIiAoTIwxEREREROSKEYYIFWZiMqMKFC57Yq75WHqovSYs87Nu83Gkx6hEE8yohUyMJuuUMqvmY7+TkBUFs8Rr/fr1AQCnn346gOAkbSljK8nLZkK6JEvLfskkbebyUkLVLF3bqlUrANbEeYmJiQXdHSIionwxwkBERERERK4YYYiQU0lHP2UeI30fGddt9gibY73tbfZtCHeyKooOP8eC0zHkxKvNqedfSnbafxaEbIPkPtiPQadtMt9blje3RcbxSxnXgwcP6jYpNyrlSs3SsLJ8uOeb02RuXttuX7+ZRyFtktcg0RLA2tecnJyQ9cskaxJhkIn0ACvCcPjw4ZDX2XM5zAnfvK4H9n32ihp5XUf84vWGyqpIzwmn80tEOjElUVFihIGIiIiIiFzxhoGIiIiIiFxxSFIBOYX9ncgQjHDDmZL0uW/fPgBWIiRglW30MzyEipfT8BynEqHyHZrfpdNwNPt6nY4re5vTMBSv49JrGFy42yT7ah/SBACbN28GYA0/knKi5joWL14c9L7mOsMdauX0GduH6pjJy35msJahQWZ51J07dwIAsrOzAQSfuwsXLgx6n+XLl+s2mRla1rl27VrdJmVz5Xpgbqd9iJbT9+Y0JMnr8ws3yd3PcC+i0sx+Lnhde81zy+tcatu2bTQ3kahQMMJARERERESuYhS7giJi71kErF5Tp2RMKakovaJ+e+yk3KL0sMpPwJokShJCzSRJe0+iU6JmSVeaD017srpZFlSOBadEN/kOzdKi9snV/JY5tUecnBKNnRKiZV2SYOzUE+9VotUpgiI94fLT/Dx27NgBAFi5ciUAK9JgLidlSKtXrx6ynU7nlFfSv5yf5rlr306Z7M4kn4PT62Q7zQiDTNgm0QDz+5YJ38S2bdv0Y/k85H3MZVNTUwFY5VT9Jsx7LeP1WfmJRPmNshKVRU6RVPv1DrCuEU7XqzfeeKPQt5OooBhhICIiIiIiV8xhiJBXj678dOr98+rhcxpfLL3L0ktplmiUUowyVlpyGsx1Sc+g2dNR2pTGXkt7hMHsXZYJ1Zx6saWk6KFDh/RzZrQB8D/+3B5h8MqjcMqnkB5up3wKL04RBnmd7EteXp5uk+fkdebkcxKNkaiDmQdgP1+c9s9pPL9ETsxIgSwvvYBO3428ziztat9Os02+c2kzy8UuWbIk6PXm92iPQJnHgkQcwy3X61XSUThdo+wRKL8RhtJ4zhKFwylPwR5hMCOp8ljaolHmmqgo8YglIiIiIiJXvGEgIiIiIiJXpXecSglkH9bhpxyj/bGdDEuQmWQl+ROwhnnIcCVz6IJXAmppU1KHN3gN87APzTBD0zLcxSnpWb5Dp6Rnr+PJz7HmNNTEqTSprMtpSJLXjMHCKalPhhRt3LgRALBixQrdJutv1aoVAKB58+a6rU6dOgCsz8BMALdvn1PyoeyXU9KzuV/2z8Ppu5HlnYYkyfdrfo6yrZLQLPsOWMMJ7UndANCkSRMAVoKzeV7bCyuYvMro2vk5Zs39CXdIktPQtdJSbIHIzqkQgNdQSPvQJPNxpOWgiYobj1giIiIiInLFCEOEpAfN7CWwJzWZ7L0JXr3mZo9F1apVAQDNmjUDAKSkpOi29u3bA7B6o81eR6+EUCp89u/XKzHO5JSQ65W87NXT77YtTtvl1XPsNxrmVMJXbNq0CYA1YZmUAgas47ddu3YAgLPOOku3yXPyuZgRBj+FBPzul315r0n1nN5PvkszGiAlVpctWwYgOMokE7BJ5LBjx466Tfa5Xr16AILLJXtN0hitc9zrcwnntUQnA68y106RW0YWqLTikUtERERERK4YYSggvyUuhZ+ylCYpMSk/69atG9briUqC7OxsAFZPvEw6CFjlRtu0aQMA6Ny5s26TKFppYU46J5MsSg5D7dq1dVv9+vUBAI0bNwYAnHbaabqtZcuWAKzoIhERUXFjhIGIiIiIiFzxhoGIiIiIiFxxSFKEIk0m9lMakwnKJwen8pyleUZuL/ZyoDKbMWAlAycnJwMInum5tDGTuSXZefXq1QCCE7Zl2JUMuWratKluk4RoIiKikoIRBiIiIiIiclU2uzOLQKRRgMKIHniVlaSSwWniMLNcpvAq6+m1XqcJs+yTbhUGpxKcTg4cOAAA2L9/P4Dg6IpEGGSytGgeu34nEos0umf/Ls3J2aSUrOy7RFAAoFGjRkE/k5KSQtYtEQnzWGBJRiIiKg787UNERERERK4YYSgmkU60Fe7yjDSUDE6Tnzn1FpsTtgk/k6s5TSpWmJNoOb2ffTvNfZFedik7Kv8HrJwFWd7vdvuZtE62UyaHM1/nNOmin8iOGa3Izc0FAKxduxYAsGbNGt0m+yiTs6Wnp+s2KY9cpUqVkH0I93MgIiIqbIwwEBERERGRK94wEBERERGRKw5JKgM47Kjkc5oR3KmEaqRlemUojTmMRYbOSKnPLVu26LZ9+/YBcC5zmpiYCMCaaViGzZhtTsOk7NvutC32JO1ocFqXPCf7Zw4j8lreD3N4k8zinJmZCQBYt26dbpPPKC0tDQDQunVr3SbDlGQolNP7RzPB2f65e31vREREdowwEBERERGRK0YYygD2EJZ8ThEGP5P4hbNeu4MHDwKwynvOnj1bt23YsAEAcOjQIQBW5AD4//buNMau8jzg+B8RGK8Y24x3bIM3sI1dJQRoKxIiUSutigJJm6SkLGpo88UlLUkqSNSShCxqiYVIigyCBBSnkYvahlY0hSxVErlJhCzbYDC2490eG+/jLcl4kfth/LznvXfOub4ztscz+P/7MnfOe++5514Pic77bDB69GgAJkyYAMDEiRPTWhyL6EPskJfJd8gjmhLPz6MrZ2snPY8ixONG7VTz923m+45ztbe3p2Px3a5evbrLWhQ2T5s2DYBrr702reVRm9NdZ66ZQu/65+bnL3t9M3+PkqQLmxEGSZIkSZWMMPRQd3b6usudvrefst3esl3lsrae3fl7iIgBFDULb7zxBgC/+MUv0tqaNWsAOHz4MFAbKbjiiiuAog3onDlz0tq73vUuAKZOnQoUufhl8h38aJ06ZMgQAAYMGJDWItrQ3UhDfC9l32d9a9I8ohHfcbMRhjhv1H1EdAZg3bp1ALz11ltd3icGtY0dOxaAUaNGVZ67UY1F/jfRnb+FZiMMPR1aJ0m6cBhhkCRJklTJGwZJkiRJlUxJ6iGnK6sviQLnSI2BYurw9u3bgdoUnEg7iuLbeD0U04sjlSmfyhwi9SZvxzpo0KAu7xMi5enSSy8FyicbHzt2DChP1equ+jSbPK0nHjf732l8/ra2NqAocIaijWp85jFjxqS1SOmK77qZ6wQnPEuS+h4jDJIkSZIqGWHoodgFbTQAqaeRhrIdRqMW/VuzbSx7+u8c7TyjCDd/HIPGbr755rQWBbmx8x+759C1SHrVqlVpLf7uI7KQt2ON9qsRacjFZ46fEU3IHx85cqTLWjPKvs/6KMXpdvAbfe/x3Uah+GuvvZbWdu/eDcDVV18N1BaIx6C2aEFbpiwCUh+h6emQtfy59YP9HNwmSeoOIwySJEmSKhlhkHpZMzu6jYZ2lbXLjHaqUQ8ARX1C5NDPnj07rcVwtnifyLeHYkd83759AGzcuDGt7dy5Eyjy+PP8/GHDhgHlEYb6moe89uH48eNAEWGIGgooog2NBsSFsihOs+q/27gmgF27dgGwdetWoPheoNi5j+8v2s1C8R1HS9lmr707a90959mMakmSLhxGGCRJkiRV8oZBkiRJUiVTknqorB2iE1PVHd39O4l0mbwoOFKRIjUpipmhmKocqULTp09Pa9HeNMRzoEj/2b9/P1A7vXjz5s0AbNu2DYC1a9emtTh/pOLkaUHxfpHulE89jsLhaO0aKUBQpEC1trYCtalMjdR/t822Ki27hpjsvGfPHqD2+6ifih1TnaE8NasZTo+XJPU1RhgkSZIkVTLC0ENlRZVnaxfP3UA1krcMjeLcaG+atzmNSMGAAQOArlGFXF5UHLv/119/PVAb0YjC5LJBcVGsHM8vG+oW5541a1Zai+Fncc74HYrC7fhczUYY6jX731R8hhUrVqRjb775JgCHDx8GYNKkSWlt2rRpAIwfP77mOnNlxepGIyVJ/YkRBkmSJEmVjDD0kDuDOl/y6Fbk00f0IKIJ0Fwr0jKxiz9mzBgAxo0bl9aiRiJy/PPoQ0Q78tauIa4r6hvyAWdxnTEwbseOHV1eF0Ph8hqNsymuee/evQC8/vrraS3qNiJKEkPaAObOnQsUNRb5dx7fR1mEIdqxNhriJ0lSX2GEQZIkSVIlbxgkSZIkVTIlSeonIm0lT3uJ1JZYi9+7K0+XiVSa+Jmny8TU4mjDGm1SoUiPKkvBiZSpaEMaxcz586J9aV5IHelAMWU5T0mKa8jbnHZHnjp18OBBoEiH2rBhQ1qL9rLRNjZPSYpj8R3lBemRrpUfC/VFz6YkSZL6MiMMkiRJkioZYZD6ibLd6LL2viF2tsuGltUX2+a74LHzfvTo0S7vF7v6ETGIYl8oog+NrimiI3mUJFqSxm59RDYA2tvbAVi2bBlQtHUFmDFjBgATJkyoef/TiWF3MTAOilau69atA2o/c/31ReF2/fPqf2/0PRhRkCT1J0YYJEmSJFXyhkGSJElSJVOSpD6oLI2oURpLWaFx/RyA/PX16U3566JYNyYb5ylCUeQcxceRrgMwZMgQoGsh9umMGDECgNmzZ9e8PxSzGX71q18BxZwEgI6Ojpr3yYuRG6UKHThwAKgtbF6+fDkA27ZtA4qJ1Pl5Y+bC5Zdf3tTnqp+1kH/Hzl+QJPUnRhgkSZIkVTLCIPUTzUQdyp7TjPw8scMf05yj5SgU045jB37SpElpLaIP3W3tGsXKkydPBmojGvF5Vq5cCRQtTgFWrFgBwL59+wDYuHFjWoti7GjjGj+hKKSONq4Aq1atAuA3v/kNADfeeGNai8jH1KlTgdpWsqFsunV8pxY/S5L6OyMMkiRJkioZYZD6oHznuadRg/qd7bIahminGq1GAQ4dOgQUu/nRXhWK3fWoXYiWplDUMDTaUS8T1zJ48GCgiDRA8dnjOtevX5/WIrIQNQlRfwBw5ZVXAkUEJH6HYjBc3lY12rW2tLTUfL78tfnQuKrrK6tT6G5NhyRJfY0RBkmSJEmVvGGQJEmSVMmUJKkXLF26ND1+4okngCKdJ09/GTNmTM1a/jjWyjQqsC1LhalPRYr0HoA9e/bUrMVUZyiKh2Pa8ciRI9Nad4udq8Q0aYBrrrmm5lg+WTq+05jSHEXaUHyeaMO6c+fOtBaFzfETiu82Pt/YsWPTWqRKNVLW1rb+mClJkqT+ygiDJEmSpEpGGKResGDBgvR48eLFZ3SuvCg4og/xc86cOWntoYceqjxHRA927NgBQFtbW1qLXflooZoPKosi4hi2draiClUGDBgA1EZhQuzYR1QgipkBfv3rXwOwffv2mp8A73hH5//sRZE2wPTp04FiSFv+fvE9lInogcPZJElvZ0YYJEmSJFUywiD1gocffjg9jh372BHP24HG43y3vF7k7Nc/Brjzzjubup5onbp169Yu1xCD0yKSkbckjdz+2PnvLVFHkV9LtDmdNm0aUPsZYtBbDGTLv6ehQ4cCMGvWrHRs5syZQDGkLa9byGs4oLzNbaNoghEGSVJ/Z4RBkiRJUiVvGCRJkiRVMiVJ6gXRHhRg4cKFlc976aWXgNoi6R/96EenPf/8+fMBuO2227qsHTt2DKhtIxqtUw8ePAjUptlEyk60Ts1bmUYqUnenOTcSLV7jOssKhy+55BKgKFiGYup0TGfOU4fi80WaUv66eH5ezD1q1CiguWnO8RO6trNtlH6Ufy7TlCRJ/YkRBkmSJEmVjDBIvSxamn7nO98B4PHHH09rr7/+erfOFUW6jz76aJe12NHu6OgAagebtbe3A8VOdx5FiDalseuetx+tjyzku+ZRLF323EY78LFjf+LEiZrf89dF+9a8jWt99CFfi/eJiEhES/LPlbdOzYfF1asfwFY2nK2srWpcQ1mRtCRJ/YkRBkmSJEmVjDBI51C0R33yySfTsaeeeqpmLRe59rfffns6FtGAqGXIW5ouWrSoy7EQO/UxxCyPMBw5cgQodtYnTpyY1qJ1atQENMq3P3r0aHp84MABoNhRHzhwYFqLxxENOJvi+9m8eXM6FrULURcxderUtBbtYvNjeRvVniiLIsSxsu+v/vnWNEiS+jIjDJIkSZIqecMgSZIkqZIpSdJZsnr16vQ42qJGYXMUOueirec999yTjt1///0ArF+/Ph2bN29ezeseeeSR9Hju3LlAUTAcBc4A+/fvB6CtrQ2ADRs2pLVIV4r0o7xgONKGoog5zg1dW7RGahMULVojrWrEiBFdzlmWkhQFw/G6sraq+fXVX0ukdq1bty6tbdmypeZz5m1tIxUpnxqdp0/Va9Q6tawQuur1kiT1V0YYJEmSJFUywiD1UBQhR1vUF198sfK5UWgLRRTh7rvvBmoHiO3du7dmLXfrrbcC8MADD6RjUXR86NAhoBhYBrBx48aan1u3bk1rsdMfr8+HnkWRdOzO51GLiJREZCEveo4IQRRS5+1Y81ap9erbozZbZB2fddOmTUBtBGXfvn0AjBw5EoAxY8aktWinGmunE9fTqHg5ojCNhrOVRSYkSeoPjDBIkiRJqmSEQWogdtQXL14M1A5ZW7FiReXrbrrpJgA+9alPAfCBD3wgrZXl44eILOQtV2OQ2rPPPguU77KvXbsWgFdffTWtxeOIMOT1BhFRiF324cOHp7XI5y+LMETdwNChQ4Hadqzvfve7a84Vz8nfr5Fmcv2jdSvAypUrAVi1ahVQRGegGM42ffp0oLZeodGQtu6qr2/o7uskSeoPjDBIkiRJquQNgyRJkqRKpiRJp0R6Tz6V+YknngCam8oc6UdQpCSVqS94zQuVX3755S7Pf/rppwGYMGECUJtaFAXKcY5oJwpFMfCOHTuA2rSZKDCOdKN4Tn59kZKUp0DFWhQO561To8g5UqgGDRqU1uK76qkoKt69e3c6FqlIMeE5b/961VVXATBr1iwARo8endbKpmKfqUYpRqYfSZL6OyMMkiRJkioZYdAFKR+yFoXMzz33HNB4yNq9996bjn3yk58EalumNqN+x7m1tTU9XrhwYc37QRHBCHmkIAqUY1f/6quv7vK8GFTW0tKS1qLwuiyKEI/rW4bm1x5tSmfMmJHWxo0bB8Bll13W5Tp7usse7x1D4fJISEQWohA6Cp0BpkyZAhRFz3FN9dd1thhFkCS9nRlhkCRJklTpopNOENIF4Cc/+QkACxYsAJofshZRhIgs5Dv/58vx48fT46hhiEFleY5/7LxHxCDqFqDYEY8IQ7RLzc8f/9NQNows6hXyXf2oG8jbqfZE/vniM6xfvx6obRu7bNkyoIgYTJs2La3NmzcPgGuvvbbmuiVJUvcZYZAkSZJUyRsGSZIkSZUsetbbRqSyxFTmSD+C7k1lzouMz7Qd6LmQX1MU88bP7hZg95b6zMdGKUKRZgXQ1tYGFP9+GzZsSGvRtjVavM6cOTOtRRG4qUiSJJ05IwySJEmSKvW97VOpCe3t7UDtkLVoj3o2h6zp7Ioi63znv77NafzbQlHsvHz5cqBorwpw3XXXAcVwttmzZ6e1vlCcLknS24URBkmSJEmVjDCoz1u3bl16HFGEZ555Bjj3Q9YuRD3ttBzRg7LX19cS5M+J2pP4t9y+fXtai+Fs0S720ksvTWtRuxDD6mJwnCRJOruMMEiSJEmq5A2DJEmSpEqmJKnPianMkX70wgsvVD63r09l7i/yFKFILYpUoTyd6OKLL655XTwXoKOjA4ATJ050ed2AAQOA2mnTIYqcN23aBMDatWvT2q5duwAYPnw4UJt2NHHiRMB/Z0mSzjUjDJIkSZIqGWHQeXGhDFnrL/IIQzwuK16uP5ZHGCKyED/zdqnxurJBavG3cOTIkS7njOjBqFGjgCKqADBhwgQABg8eXP3BJEnSGTPCIEmSJKmSW7I6L5YsWQLAXXfd1WXNIWt9Q0QDyqIC9c+BIqIQ0YS83qF+OFsu/r0HDRoEwNixY9PaFVdcAcDIkSOBItIA0NraCkBLS8vpPookSToDRhgkSZIkVfKGQZIkSVKli072dKyrdBbccccdQHl7VKcy955mCpxPt1Y/6bmsHWtZatLRo0cBOHz4MFC0Z83PNXDgQKBozwrF1Oc4Z6PUKUmS1HNGGCRJkiRVMsIgqWmNWq42KmyWJEn9l/8PL0mSJKmSEQZJkiRJlYwwSJIkSarkDYMkSZKkSt4wSJIkSarkDYMkSZKkSu843xdw4fk5AF++5i/SkUXdev1d6dG3Vn8OgN+LA5sWp7U73/95AJZ19/Le2fm6l777UQAmZ0vHdi0F4PkvfS4de+QH7QDMvPsLACx44P1p7apixpYkSZL6KSMMkiRJkioZYeh1HQDsWbMmHVnT0grAlMkjgDP4RzlxOD3ccur8a4aOB2DGuCE9O+exV9LDr1z/HgD+86PfSse+/vVBAKz+5l8BcO2fPZrW1n/vIwCM79k7S5IkqQ8wwiBJkiSpkjcMkiRJkiqZktTbjh0H4Gh+7PqvAPDykvsAmNLTc584XrxNPPh4Z0n16sfe17NzbnktPfzhoC8B8Nw/3ZmOzTn1c95NnX9KS4d9M60t2dmZkvSR0T17a0mSJJ1/RhgkSZIkVTLC0Nu2bAbg1fzY3EkATDzTc7cVhdRRqnzDjDMsOR4yND1sXfMcAD9dNT8dmzPzYgB2/fx/AHip9XfS2nwjC5IkSf2eEQZJkiRJlYww9AXHtgLw48fvBeCxhb9MS5vpjD7M+/RDAPztn9+S1poajLa7M5bxL599MB36+n+sAuDAsJkA3P3gI2ntvj+eBcCoS04dGP3BtPaPi/8LgD9658B07P6OUw+G3gTAl1/+77R2QxOXJ0mSpL7NCIMkSZKkSt4wSJIkSap00cmTJ0+e74u4oLz2NQCumfuZdCiVKpdMZT68vXO17VDn7y3ve7o41cudbVinn0ofOvji3Wlt2G2Lat62pbVo1npqoDT7Nq0HYHdH8bwr/+Z/AVhxqg3riLLP8Nv96eFb7Z2tXAeP7JxWPfSSshdIkiSpvzLCIEmSJKmSEYbe9sa/AfDgoqXFsbG3APCJT7wfqCtm3tdZAP33t/wuAF9a2ZKWPv79XQA884eXAbDzZ/+c1h77/jYAhl73JwD85YevT2tR0Hxs63cB+Mi0j6W173VcB8Djb3QObLt/Znc+nCRJkt5ujDBIkiRJqmSEoZ/Y+a93ADDmoy8UB0/VG5w8VW/QU698YVR6fOPndwPw+0+vA2DJfVNKXyNJkqQLgxEGSZIkSZW8YZAkSZJUyUnP/cToUZPP2blHjp+e/bb7nL2PJEmS+h8jDJIkSZIqGWHoJw4e2XvOzn2kfc85O7ckSZL6NyMMkiRJkioZYehlq194AIDPfvX76diwv/sxAM9+aHzJK/YB8LPnn++ycvtNMVWtM0Lwf099Oq198bE3Abj120sA+MwNl3Q99bHO4Ww/+Paa7GArAH8wx3aqkiRJMsIgSZIkqQFvGCRJkiRVMiWpl00ZNwyApa8UaUBbP/ZeAI62fQ2Ae64pnr/le18EYP6ijs4DV34+rT30wdE15558+YH0+KdrXgHgB7e+B4D9T34hrd1yRWcK09IFDwLwuZXFOVpu/wYA993QjQ8lSZKkty0jDJIkSZIqXXTy5MmT5/siLizHANj6w4fTkQ9/6KsA/PJQ2fNbAGh97z8A8O/Pfyat3DyqvpB5X3q0/Jm/BuBP538XgPUdZeceCsCsexemI88v/BgAMwc0/BCSJEm6QBhhkCRJklTJGwZJkiRJlUxJ6hM605QO7e6c5nzkRLFy8eCRALQOLZmj0JTfArD/rfZ0JLKTWi4fA8Bw048kSZJUwQiDJEmSpEpGGCRJkiRVMsIgSZIkqZI3DJIkSZIqecMgSZIkqZI3DJIkSZIqecMgSZIkqZI3DJIkSZIqecMgSZIkqZI3DJIkSZIqecMgSZIkqZI3DJIkSZIqecMgSZIkqZI3DJIkSZIqecMgSZIkqdL/A4JFj+zu8/UOAAAAAElFTkSuQmCC",
"path": "images_version_6/image_21.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, then the degree of angle 4 is ()
Choices:
A:110°
B:115°
C:120°
D:125°
|
||
106
|
22
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIQAAABMCAAAAACJlECiAAAPxElEQVR4nO1aaZRV1ZX+9j7n3ltVQJUUkxQUIJMMMs+D5YQTwSiaaCck2kZbcQhJJ3av7l79I3/Sq5PVncFuSehuxwQ1zjRaMaKGSeahUEEKZRA0BZQyU1Xv3bP37h/vvWIQqijstfInZ6231hvuOec73573eWT48w/+cwMA/gLixPgLiMLwbXvcABCgYBhA/z8YjNpqosp5NAbQl0CRPw4As7YwYYAZH/60yaKK8sI354vDgBwBlBfHubJhgFjD02uvPlD3DwODsCO0mcmThigZqcTWRsVMM9b9oisemrF1P8iRfQkEBKOg3GTQtG0gzCI6vrehdkNVT1Wv9qU0kzRiOEnjkjZaR5TN1tfVLJ58V3ejwF/WOkwZxfLBrraaqOfN5fO3/uc7fUk0JqDtZFhOkQjmGp1Q/WsfHGwjCNCxut69yx7ek3r2yjh3pT6xgkEJRoA51vSRmofGtRGExJ/86Zr06Y/vc05DfH7iMBhY1FHGRXij+sdVbfITAPmN/7Z5S7zr1kuDNMVKdB5MsKl4MlMT5foXL5+MpraBMCmflU2j8uGvL5hSJHTemkmaxtYUZzr1/vTSRHwbxcGVfQDgvSfeT8Ycc5GeDwKLrKFYsnH9ts23Ds5kfZC2WodlvOcPn7hs2p5b2sv5+WxSRRLt2VS78oqbK3q+e7BTAxlakasRlGG5dymzukOPHPn7+nkzrg5tjcH5oUT1azbv+LTzg6MzbzzWb9jxVpcxEFgJRkQACzl9be/9ncsHvz6+HYSg58QGwYxgICJj7Hnn/cYR7cK3R6RybVn1+r6tg1AJEQVykIzzxMxLln19SHCT3ls2Q4QZ4HMwEFUmNoNEFuoWvx/3n/7Rb78y2QvZ1MvOIakhXvLcqDsi5cwL798+ILBu/d24KSnCxYMWje+ahkTJnTWi20mrqHkj5mMHF6/oPmVYv9rfjpkeGRMI0NaZoF628rbYY8NL03pwWrz/me63FCmsaNqGZTMpArGcNbchMwJAFIyUJBQ37HtracVtA3vYJ/MqbkuUQIChdWdlVtaN0dB+2/zSW0tCyfHqow+Wp9QYZ/tMWTquKwfzaUtrGIgIEOc0Tjeurqm46+KuTg8+6e/skIkKD7UKgplSfNb7eA0mtQ8RLVszqzILJEZu2pqVXwe3QqaBCMKsyZGVG7f2+s7AMjQkTc/U33Nhys3Br2UQZKZytP/uvf2XHuJB5LC5umoyUh+K0sAXXrFkbF8jdZZLe/MTqBBZm98bND78+pZ9Xe4dmLiU2zW8tPHeISkHd85MuOO1fQ8f27a/5+7+kex9svKGKBMTqbk0vmL18gpPGk5dIwfHyJTJyBmB3OHF6/aOvLmvV2pizq5Y8c3x4k7S5datQ63nlq2HhtUOKkW6IP5mWdZALBZZ6HrFwkv7ZpVOzSlMjZ0pQdUpEcMOLFsTen5rAGk2G8Xklr585RSoOt9s2y2DMODQe03t0kUP0BsziukPv7/vQnjLIGaCA41atqK3IzrVPhUOMGVCEEeSfrZ8fTx8dH/OcAQWczsWDLk+FlYlPTedUIc3H71weJ8Z3R9blUzZWa0LeOIF4lIlVR9pRdWiiX1AJ1Nhag4CBzJzGnj3irXJ+Am9SVJPwYn3dY9c8FelBj0Ze8uxw1g+O+gqAodDobjx4UE3vfVG5a2DfcrMZGZu3097f18ApuYlzEjEkzoSR8d3rV0VXTm5s7MMMYt5iT6fV/+9ixSWiwL5o7YWwIwhYMt6f2Te53/bLbPjpdpJ1/ey4Eg1Mvf8gn+pNJywDgMg8CKgOLN11bvJdeNKSRXsTI1Bmcc2/nBwSoAzWAFGKyDITIhJj7qS9OXFDw4LzE1LXyy6fnJpCvhgdPCXZQ/lXCblI5SRmZHTo1tXbu9y1bB20DQSi9iMSLPVS2ZNDKRMUGquIlt326BMonC85s2vX6KARtcMe+WFlTeMomBG2nVS9QdDCICyGQhmACncodVrjnX82ugOqsrFZoARhN2qRTdODFnviPTkcNMqE2ZNMTTZ+vCYO7yKh1qk7/9+26gZvThopAce6Xi/E4AIQT2LU/I4uu4PjX3HjS4yJVV2MHUkQvTuvKqZMbKRAynOWSfITFlEoiNzdU57hjowjOj42lfTayeWweAWvnb3uDRlB8vtlejebW99PmHY0MRIocxQgoJIog9/1eOedoYQAaR0oo5tVTGRgYNmnq95YFDKIAMRoOY/eXtp15nDk8DHftL1O+0CYCG0Qyiyjzcux+gRA+NAbIXugSkQkvqfxfd1F3Bgd+qGrYPQJo7pfxfcWZVVxEIMAjSwz3z4yu6xlw0C3n76u0MppMUKx7K9ZkPjlcN7xEeSGGZUEDylacnRR/bPHhjMkwZ/auxvHYSpxuvnVd3mLeOEPYgAa1QfkSxdmF457YLMjzrfn4gwRVq77r3sxCk9WNQJm1EhQhkaNXl8w+xRZhQc0uhMIGBn6jMYwWDiXP3PSn/gxJOEiEGAWZBIpQT1L67tfdWYdXO/Pz5lZ1veqfWTqzpqYFNiJ8bNwUHgXnn1W5cHYiiz0llAfDFFIzUQSFJ9fM+DPQObkCEiAGbBKZFErDWv7RlV9WL7e9rJ5kX7S8ZWdRAyYxKJWI0NxjmqedmTX/mqmCNjGJ3Wj8j7iTOBUGiuhfJ67R2VAaxwzXJjVvUUPI/uu2r1r8p217o/7qi4dswFEDYmmMsljzCISZT1cc1vJl/vjZ0Yweh02nOf1chObycGghhRvPq/Z06X4JjIkAtVZoBxGhIK5LluyYvb+3YcOXZoMRC8SkSUO5ERzEwbosjtnFs5q4sJU96+TrOOXM/KYHlPfuJnl3VRmu1Q99iIK02J8pqe63WJOnVeTGI0+h4d/e5elw+FgkgdULCJfG+unUQHnvDf6CLsgs+ntqeNnMgU+AIIBalLDzyenV3uTRyDABSKzyzHpoES7Nq0+eMrpu555UDVtV2DSyU+pa9oZk7pyPzN9w3LOPFf0IaTmShMOQWEqUPgRTu+372RWOykZwBzTlJXZNvXvntk4re7xZ0veWPh1usmknA2OtUTkWbcwvWzh2WM7KyBqsCEGbPmNjE2YygHOCx5+YYqRK4BxQCBVHM/S0QSZXcv3hyPmtoTUIbtfHHboGsuFik+4aEMBlVe/NyN0xUpe6UzVyjaDAJMBa7ViEmFNan9+ai7LWWXsdiTMqkQAQon4B3VHxeNG9+ddz6zq2TG1JgzK15uumpSrwAmY+SjpJpfO/e6myJTJWXXCgiACiAoQ5EZaUgOPYwflKqBSGFwZGJsysx0aNeyD7uMHNsdumFejwFbN943PZtg75IlpTOHF5swzJym5J3y1l/0nx2bDx7qrBUQuRMCAII5rwGOwv989GA/4VwXOhiMOcM+aMnB7W/v6jt6WBfL0ge/GHJP2eEf4adQLcKH1aunXlMZZ42Z1ZiMP/6PDt8rb0gIINhZ+hl5XckpbeERR9nIA7Zk/d/0EygRmWmAI5i3UHRw1fodA26/uCNE6MAz4fYyi9rXpYnx8aKBlWMX/Piqad0zBtHIsn7/E/F3yxqLxAFnoQE4Y7btkUFE5jbPnzExTZP81AjBIjh3aO3ibZfceUlxUwAi+mjjPd2y/uiOC716MGvR1MFvV6+/aUqUIkaWwvP7HuqQhVnL7c4zgFDyziTe/fTQaWJxfroTi4Xc/lWb9l/0T31iJ46FDB/zIHXy7pGbvQlYFVZ208gXHl391YuIJJZnN9/VP0MuRF/c5WwgCvUkq0l05OmG2Rc0JFzwvsTgvSs2oOfMoSSqzAYoc5FnfD6/x2SS4AwsATzg71Yt+PWor3SR+K1Ft44VI6GmohapOAMTzpQ8qj/568pGr0RERkYg2/fHDcVDJ/WDwshYAgv5fljTq26u3tVJjWM1c07NaPLQN9+puWnKyqcuXln37fjwU+sn3VHSEoqTk5oCEyLOr3j0lunBIjEyMnLI7ntzZbdxI3pDDWSkLPDBuOnZBR4TbhxsQrnYSEFJvdNdv9/UY9/Qmxcu/PmAxurfzZpBLXT6zpRZWer8jl9efGexksE0671r3Ll+femUwb0gJ5whG4XGkqYth6Ph5bkmLYhMyYLnwA6vzh0/p/zDf7z2bttRNy45PZE5BcQZ3Tkffa79LcWpFyJQMR36aF1N+fRh3dGEqDlCEqCUWPvxgJkaGxFguexWCKFh54jbyhsPVW3/rPyj3kXa4r3KGUCYxwu753RLLRjg3ZGajdu63d2/xItR6tzJTwo71cCME+kkwNpUJF5/u+mHg+XovglLtoxU30rn90xMuGVv3t4nE2nWJXZs3fJ9ld8ZUqQhTV18mnZFEPNsBnJAgXByAMvzy+cMDJCSvns2ZZOKVm5FCiAMZCBAGa722WmXuhRM9HnNigOVs0YWmypLFMsphAFmZsExlEiaha7wQiv/cONYTZM/dexcufW9qe3knJyVOBMiA1j8wScqvlYSEkL9unXH+twwnE1gxjHM53K2wlwyOMDEEUzVkeWK+BBFq5666mYy+qx2pA2o/ujm1i6i84muKmdiBwiQeb7p3nbZOOxfurx06PCBca7I9SAD/ClcIF+NmwFwOTszUyna8kS/m6JMtO2pGvQqH9ito7RkG2hOakJTcYgiAcwWvH7XpONu94aVevnoXk6F8wZhuSjYzAQVMvRc0UBkAJGJUv2veU4nSSndnnbqltTF5cot3ozkTVQQG6UNcWz+vbevniR7Vi9uf82Ejhao+Qy5OFx4nTTy17z5b4WSA08dmdNJxTfGIwDJdnXGMHwhzz9dHGaI0uJ1uy4v0r3zh1y/ac225BsjL4hFKRC0cPYzFozNztZgAJwm2QW1c/qBI9OGJFXnkfEubTmC5cTRaBwd/9f2D5Qe/a8912/f0WXCmLIUjkwkci1OPwUPGQhN1dWTtS5uqLy1mFTYcWqJim+JiXzdwRQ1Lt9+WYfGpe8kizvOHFNMYp7U4LKRO71WOcthyMQJ09pXZ4z6911V7oXD95MmBJVIxeHsVbdRvsHuiT49PhLug99w2lTx+UJkEwsEUjVmPgcQREbIJELp4gk3ugmTZmHBvEuu9BxMnRNSbulinzwAcJrsfL1/WRc7XNGxs+79hClEECAXCc7tpsuImjyHePxMV18/CJjwyrJpmrJ5Nm5hCSOznGJqFJYseiu6k0YPMTARK4wL25/jfySUNbATdIJtOdI/67hbEdCURDlvclYeGGI5JqBrS+ce+GM52pciU/Sl/mZjIdAnSf/gDu69SlyxKYFaCl8KuNyFSXjsuX+uWL70eI8epMWpxGfLzVvaHCAydazcIEOI01f3jowELWkkgJxCRx4AJDu5y7Fjg8syDkTOnz8VDkhQU3MHHZy/bPZQIULrFq7q/g+sH2nMqDHmawAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_22.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, in the diamond ABCD, M and N are respectively AB and CD, and AM = CN, MN and AC intersect at point O. Connect BO. If angle DAC = 28.0, then the degree of angle OBC is ()
Choices:
A:28°
B:52°
C:62°
D:72°
|
Như hình vẽ, trong tứ giác chữ nhật ABCD, M và N lần lượt nằm trên AB và CD, với AM = CN,MN cắt AC tại điểm O. Kết nối BO. Nếu góc DAC = 28°, thì số đo của góc OBC là ()
Các lựa chọn:
A: 28°
B: 52°
C: 62°
D: 72°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, in the diamond ABCD, M and N are respectively AB and CD, and AM = CN, MN and AC intersect at point O. Connect BO. If angle DAC = 28.0, then the degree of angle OBC is ()
Choices:
A:28°
B:52°
C:62°
D:72°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, in the diamond ABCD, M and N are respectively AB and CD, and AM = CN, MN and AC intersect at point O. Connect BO. If angle DAC = 28.0, then the degree of angle OBC is ()
Choices:
A:28°
B:52°
C:62°
D:72°
|
As shown in the figure, in the diamond ABCD, M and N are respectively AB and CD, and AM = CN, MN and AC intersect at point O. Connect BO. If angle DAC = 28.0, then the degree of angle OBC is ()
Choices:
A:28°
B:52°
C:62°
D:72°
|
107
|
22
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIQAAABMCAAAAACJlECiAAAPxElEQVR4nO1aaZRV1ZX+9j7n3ltVQJUUkxQUIJMMMs+D5YQTwSiaaCck2kZbcQhJJ3av7l79I3/Sq5PVncFuSehuxwQ1zjRaMaKGSeahUEEKZRA0BZQyU1Xv3bP37h/vvWIQqijstfInZ6231hvuOec73573eWT48w/+cwMA/gLixPgLiMLwbXvcABCgYBhA/z8YjNpqosp5NAbQl0CRPw4As7YwYYAZH/60yaKK8sI354vDgBwBlBfHubJhgFjD02uvPlD3DwODsCO0mcmThigZqcTWRsVMM9b9oisemrF1P8iRfQkEBKOg3GTQtG0gzCI6vrehdkNVT1Wv9qU0kzRiOEnjkjZaR5TN1tfVLJ58V3ejwF/WOkwZxfLBrraaqOfN5fO3/uc7fUk0JqDtZFhOkQjmGp1Q/WsfHGwjCNCxut69yx7ek3r2yjh3pT6xgkEJRoA51vSRmofGtRGExJ/86Zr06Y/vc05DfH7iMBhY1FHGRXij+sdVbfITAPmN/7Z5S7zr1kuDNMVKdB5MsKl4MlMT5foXL5+MpraBMCmflU2j8uGvL5hSJHTemkmaxtYUZzr1/vTSRHwbxcGVfQDgvSfeT8Ycc5GeDwKLrKFYsnH9ts23Ds5kfZC2WodlvOcPn7hs2p5b2sv5+WxSRRLt2VS78oqbK3q+e7BTAxlakasRlGG5dymzukOPHPn7+nkzrg5tjcH5oUT1azbv+LTzg6MzbzzWb9jxVpcxEFgJRkQACzl9be/9ncsHvz6+HYSg58QGwYxgICJj7Hnn/cYR7cK3R6RybVn1+r6tg1AJEQVykIzzxMxLln19SHCT3ls2Q4QZ4HMwEFUmNoNEFuoWvx/3n/7Rb78y2QvZ1MvOIakhXvLcqDsi5cwL798+ILBu/d24KSnCxYMWje+ahkTJnTWi20mrqHkj5mMHF6/oPmVYv9rfjpkeGRMI0NaZoF628rbYY8NL03pwWrz/me63FCmsaNqGZTMpArGcNbchMwJAFIyUJBQ37HtracVtA3vYJ/MqbkuUQIChdWdlVtaN0dB+2/zSW0tCyfHqow+Wp9QYZ/tMWTquKwfzaUtrGIgIEOc0Tjeurqm46+KuTg8+6e/skIkKD7UKgplSfNb7eA0mtQ8RLVszqzILJEZu2pqVXwe3QqaBCMKsyZGVG7f2+s7AMjQkTc/U33Nhys3Br2UQZKZytP/uvf2XHuJB5LC5umoyUh+K0sAXXrFkbF8jdZZLe/MTqBBZm98bND78+pZ9Xe4dmLiU2zW8tPHeISkHd85MuOO1fQ8f27a/5+7+kex9svKGKBMTqbk0vmL18gpPGk5dIwfHyJTJyBmB3OHF6/aOvLmvV2pizq5Y8c3x4k7S5datQ63nlq2HhtUOKkW6IP5mWdZALBZZ6HrFwkv7ZpVOzSlMjZ0pQdUpEcMOLFsTen5rAGk2G8Xklr585RSoOt9s2y2DMODQe03t0kUP0BsziukPv7/vQnjLIGaCA41atqK3IzrVPhUOMGVCEEeSfrZ8fTx8dH/OcAQWczsWDLk+FlYlPTedUIc3H71weJ8Z3R9blUzZWa0LeOIF4lIlVR9pRdWiiX1AJ1Nhag4CBzJzGnj3irXJ+Am9SVJPwYn3dY9c8FelBj0Ze8uxw1g+O+gqAodDobjx4UE3vfVG5a2DfcrMZGZu3097f18ApuYlzEjEkzoSR8d3rV0VXTm5s7MMMYt5iT6fV/+9ixSWiwL5o7YWwIwhYMt6f2Te53/bLbPjpdpJ1/ey4Eg1Mvf8gn+pNJywDgMg8CKgOLN11bvJdeNKSRXsTI1Bmcc2/nBwSoAzWAFGKyDITIhJj7qS9OXFDw4LzE1LXyy6fnJpCvhgdPCXZQ/lXCblI5SRmZHTo1tXbu9y1bB20DQSi9iMSLPVS2ZNDKRMUGquIlt326BMonC85s2vX6KARtcMe+WFlTeMomBG2nVS9QdDCICyGQhmACncodVrjnX82ugOqsrFZoARhN2qRTdODFnviPTkcNMqE2ZNMTTZ+vCYO7yKh1qk7/9+26gZvThopAce6Xi/E4AIQT2LU/I4uu4PjX3HjS4yJVV2MHUkQvTuvKqZMbKRAynOWSfITFlEoiNzdU57hjowjOj42lfTayeWweAWvnb3uDRlB8vtlejebW99PmHY0MRIocxQgoJIog9/1eOedoYQAaR0oo5tVTGRgYNmnq95YFDKIAMRoOY/eXtp15nDk8DHftL1O+0CYCG0Qyiyjzcux+gRA+NAbIXugSkQkvqfxfd1F3Bgd+qGrYPQJo7pfxfcWZVVxEIMAjSwz3z4yu6xlw0C3n76u0MppMUKx7K9ZkPjlcN7xEeSGGZUEDylacnRR/bPHhjMkwZ/auxvHYSpxuvnVd3mLeOEPYgAa1QfkSxdmF457YLMjzrfn4gwRVq77r3sxCk9WNQJm1EhQhkaNXl8w+xRZhQc0uhMIGBn6jMYwWDiXP3PSn/gxJOEiEGAWZBIpQT1L67tfdWYdXO/Pz5lZ1veqfWTqzpqYFNiJ8bNwUHgXnn1W5cHYiiz0llAfDFFIzUQSFJ9fM+DPQObkCEiAGbBKZFErDWv7RlV9WL7e9rJ5kX7S8ZWdRAyYxKJWI0NxjmqedmTX/mqmCNjGJ3Wj8j7iTOBUGiuhfJ67R2VAaxwzXJjVvUUPI/uu2r1r8p217o/7qi4dswFEDYmmMsljzCISZT1cc1vJl/vjZ0Yweh02nOf1chObycGghhRvPq/Z06X4JjIkAtVZoBxGhIK5LluyYvb+3YcOXZoMRC8SkSUO5ERzEwbosjtnFs5q4sJU96+TrOOXM/KYHlPfuJnl3VRmu1Q99iIK02J8pqe63WJOnVeTGI0+h4d/e5elw+FgkgdULCJfG+unUQHnvDf6CLsgs+ntqeNnMgU+AIIBalLDzyenV3uTRyDABSKzyzHpoES7Nq0+eMrpu555UDVtV2DSyU+pa9oZk7pyPzN9w3LOPFf0IaTmShMOQWEqUPgRTu+372RWOykZwBzTlJXZNvXvntk4re7xZ0veWPh1usmknA2OtUTkWbcwvWzh2WM7KyBqsCEGbPmNjE2YygHOCx5+YYqRK4BxQCBVHM/S0QSZXcv3hyPmtoTUIbtfHHboGsuFik+4aEMBlVe/NyN0xUpe6UzVyjaDAJMBa7ViEmFNan9+ai7LWWXsdiTMqkQAQon4B3VHxeNG9+ddz6zq2TG1JgzK15uumpSrwAmY+SjpJpfO/e6myJTJWXXCgiACiAoQ5EZaUgOPYwflKqBSGFwZGJsysx0aNeyD7uMHNsdumFejwFbN943PZtg75IlpTOHF5swzJym5J3y1l/0nx2bDx7qrBUQuRMCAII5rwGOwv989GA/4VwXOhiMOcM+aMnB7W/v6jt6WBfL0ge/GHJP2eEf4adQLcKH1aunXlMZZ42Z1ZiMP/6PDt8rb0gIINhZ+hl5XckpbeERR9nIA7Zk/d/0EygRmWmAI5i3UHRw1fodA26/uCNE6MAz4fYyi9rXpYnx8aKBlWMX/Piqad0zBtHIsn7/E/F3yxqLxAFnoQE4Y7btkUFE5jbPnzExTZP81AjBIjh3aO3ibZfceUlxUwAi+mjjPd2y/uiOC716MGvR1MFvV6+/aUqUIkaWwvP7HuqQhVnL7c4zgFDyziTe/fTQaWJxfroTi4Xc/lWb9l/0T31iJ46FDB/zIHXy7pGbvQlYFVZ208gXHl391YuIJJZnN9/VP0MuRF/c5WwgCvUkq0l05OmG2Rc0JFzwvsTgvSs2oOfMoSSqzAYoc5FnfD6/x2SS4AwsATzg71Yt+PWor3SR+K1Ft44VI6GmohapOAMTzpQ8qj/568pGr0RERkYg2/fHDcVDJ/WDwshYAgv5fljTq26u3tVJjWM1c07NaPLQN9+puWnKyqcuXln37fjwU+sn3VHSEoqTk5oCEyLOr3j0lunBIjEyMnLI7ntzZbdxI3pDDWSkLPDBuOnZBR4TbhxsQrnYSEFJvdNdv9/UY9/Qmxcu/PmAxurfzZpBLXT6zpRZWer8jl9efGexksE0671r3Ll+femUwb0gJ5whG4XGkqYth6Ph5bkmLYhMyYLnwA6vzh0/p/zDf7z2bttRNy45PZE5BcQZ3Tkffa79LcWpFyJQMR36aF1N+fRh3dGEqDlCEqCUWPvxgJkaGxFguexWCKFh54jbyhsPVW3/rPyj3kXa4r3KGUCYxwu753RLLRjg3ZGajdu63d2/xItR6tzJTwo71cCME+kkwNpUJF5/u+mHg+XovglLtoxU30rn90xMuGVv3t4nE2nWJXZs3fJ9ld8ZUqQhTV18mnZFEPNsBnJAgXByAMvzy+cMDJCSvns2ZZOKVm5FCiAMZCBAGa722WmXuhRM9HnNigOVs0YWmypLFMsphAFmZsExlEiaha7wQiv/cONYTZM/dexcufW9qe3knJyVOBMiA1j8wScqvlYSEkL9unXH+twwnE1gxjHM53K2wlwyOMDEEUzVkeWK+BBFq5666mYy+qx2pA2o/ujm1i6i84muKmdiBwiQeb7p3nbZOOxfurx06PCBca7I9SAD/ClcIF+NmwFwOTszUyna8kS/m6JMtO2pGvQqH9ito7RkG2hOakJTcYgiAcwWvH7XpONu94aVevnoXk6F8wZhuSjYzAQVMvRc0UBkAJGJUv2veU4nSSndnnbqltTF5cot3ozkTVQQG6UNcWz+vbevniR7Vi9uf82Ejhao+Qy5OFx4nTTy17z5b4WSA08dmdNJxTfGIwDJdnXGMHwhzz9dHGaI0uJ1uy4v0r3zh1y/ac225BsjL4hFKRC0cPYzFozNztZgAJwm2QW1c/qBI9OGJFXnkfEubTmC5cTRaBwd/9f2D5Qe/a8912/f0WXCmLIUjkwkci1OPwUPGQhN1dWTtS5uqLy1mFTYcWqJim+JiXzdwRQ1Lt9+WYfGpe8kizvOHFNMYp7U4LKRO71WOcthyMQJ09pXZ4z6911V7oXD95MmBJVIxeHsVbdRvsHuiT49PhLug99w2lTx+UJkEwsEUjVmPgcQREbIJELp4gk3ugmTZmHBvEuu9BxMnRNSbulinzwAcJrsfL1/WRc7XNGxs+79hClEECAXCc7tpsuImjyHePxMV18/CJjwyrJpmrJ5Nm5hCSOznGJqFJYseiu6k0YPMTARK4wL25/jfySUNbATdIJtOdI/67hbEdCURDlvclYeGGI5JqBrS+ce+GM52pciU/Sl/mZjIdAnSf/gDu69SlyxKYFaCl8KuNyFSXjsuX+uWL70eI8epMWpxGfLzVvaHCAydazcIEOI01f3jowELWkkgJxCRx4AJDu5y7Fjg8syDkTOnz8VDkhQU3MHHZy/bPZQIULrFq7q/g+sH2nMqDHmawAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_22.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, in the diamond ABCD, if angle DAC = 28.0, then the degree of angle OBC is ()
Choices:
A:28°
B:52°
C:62°
D:72°
|
Như hình vẽ, trong tứ giác ABCD dạng rhombus, nếu góc DAC = 28°, thì số đo của góc OBC là ()
Các lựa chọn:
A: 28°
B: 52°
C: 62°
D: 72°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, in the diamond ABCD, if angle DAC = 28.0, then the degree of angle OBC is ()
Choices:
A:28°
B:52°
C:62°
D:72°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, in the diamond ABCD, if angle DAC = 28.0, then the degree of angle OBC is ()
Choices:
A:28°
B:52°
C:62°
D:72°
|
As shown in the figure, in the diamond ABCD, if angle DAC = 28.0, then the degree of angle OBC is ()
Choices:
A:28°
B:52°
C:62°
D:72°
|
108
|
22
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIQAAABMCAAAAACJlECiAAAPxElEQVR4nO1aaZRV1ZX+9j7n3ltVQJUUkxQUIJMMMs+D5YQTwSiaaCck2kZbcQhJJ3av7l79I3/Sq5PVncFuSehuxwQ1zjRaMaKGSeahUEEKZRA0BZQyU1Xv3bP37h/vvWIQqijstfInZ6231hvuOec73573eWT48w/+cwMA/gLixPgLiMLwbXvcABCgYBhA/z8YjNpqosp5NAbQl0CRPw4As7YwYYAZH/60yaKK8sI354vDgBwBlBfHubJhgFjD02uvPlD3DwODsCO0mcmThigZqcTWRsVMM9b9oisemrF1P8iRfQkEBKOg3GTQtG0gzCI6vrehdkNVT1Wv9qU0kzRiOEnjkjZaR5TN1tfVLJ58V3ejwF/WOkwZxfLBrraaqOfN5fO3/uc7fUk0JqDtZFhOkQjmGp1Q/WsfHGwjCNCxut69yx7ek3r2yjh3pT6xgkEJRoA51vSRmofGtRGExJ/86Zr06Y/vc05DfH7iMBhY1FHGRXij+sdVbfITAPmN/7Z5S7zr1kuDNMVKdB5MsKl4MlMT5foXL5+MpraBMCmflU2j8uGvL5hSJHTemkmaxtYUZzr1/vTSRHwbxcGVfQDgvSfeT8Ycc5GeDwKLrKFYsnH9ts23Ds5kfZC2WodlvOcPn7hs2p5b2sv5+WxSRRLt2VS78oqbK3q+e7BTAxlakasRlGG5dymzukOPHPn7+nkzrg5tjcH5oUT1azbv+LTzg6MzbzzWb9jxVpcxEFgJRkQACzl9be/9ncsHvz6+HYSg58QGwYxgICJj7Hnn/cYR7cK3R6RybVn1+r6tg1AJEQVykIzzxMxLln19SHCT3ls2Q4QZ4HMwEFUmNoNEFuoWvx/3n/7Rb78y2QvZ1MvOIakhXvLcqDsi5cwL798+ILBu/d24KSnCxYMWje+ahkTJnTWi20mrqHkj5mMHF6/oPmVYv9rfjpkeGRMI0NaZoF628rbYY8NL03pwWrz/me63FCmsaNqGZTMpArGcNbchMwJAFIyUJBQ37HtracVtA3vYJ/MqbkuUQIChdWdlVtaN0dB+2/zSW0tCyfHqow+Wp9QYZ/tMWTquKwfzaUtrGIgIEOc0Tjeurqm46+KuTg8+6e/skIkKD7UKgplSfNb7eA0mtQ8RLVszqzILJEZu2pqVXwe3QqaBCMKsyZGVG7f2+s7AMjQkTc/U33Nhys3Br2UQZKZytP/uvf2XHuJB5LC5umoyUh+K0sAXXrFkbF8jdZZLe/MTqBBZm98bND78+pZ9Xe4dmLiU2zW8tPHeISkHd85MuOO1fQ8f27a/5+7+kex9svKGKBMTqbk0vmL18gpPGk5dIwfHyJTJyBmB3OHF6/aOvLmvV2pizq5Y8c3x4k7S5datQ63nlq2HhtUOKkW6IP5mWdZALBZZ6HrFwkv7ZpVOzSlMjZ0pQdUpEcMOLFsTen5rAGk2G8Xklr585RSoOt9s2y2DMODQe03t0kUP0BsziukPv7/vQnjLIGaCA41atqK3IzrVPhUOMGVCEEeSfrZ8fTx8dH/OcAQWczsWDLk+FlYlPTedUIc3H71weJ8Z3R9blUzZWa0LeOIF4lIlVR9pRdWiiX1AJ1Nhag4CBzJzGnj3irXJ+Am9SVJPwYn3dY9c8FelBj0Ze8uxw1g+O+gqAodDobjx4UE3vfVG5a2DfcrMZGZu3097f18ApuYlzEjEkzoSR8d3rV0VXTm5s7MMMYt5iT6fV/+9ixSWiwL5o7YWwIwhYMt6f2Te53/bLbPjpdpJ1/ey4Eg1Mvf8gn+pNJywDgMg8CKgOLN11bvJdeNKSRXsTI1Bmcc2/nBwSoAzWAFGKyDITIhJj7qS9OXFDw4LzE1LXyy6fnJpCvhgdPCXZQ/lXCblI5SRmZHTo1tXbu9y1bB20DQSi9iMSLPVS2ZNDKRMUGquIlt326BMonC85s2vX6KARtcMe+WFlTeMomBG2nVS9QdDCICyGQhmACncodVrjnX82ugOqsrFZoARhN2qRTdODFnviPTkcNMqE2ZNMTTZ+vCYO7yKh1qk7/9+26gZvThopAce6Xi/E4AIQT2LU/I4uu4PjX3HjS4yJVV2MHUkQvTuvKqZMbKRAynOWSfITFlEoiNzdU57hjowjOj42lfTayeWweAWvnb3uDRlB8vtlejebW99PmHY0MRIocxQgoJIog9/1eOedoYQAaR0oo5tVTGRgYNmnq95YFDKIAMRoOY/eXtp15nDk8DHftL1O+0CYCG0Qyiyjzcux+gRA+NAbIXugSkQkvqfxfd1F3Bgd+qGrYPQJo7pfxfcWZVVxEIMAjSwz3z4yu6xlw0C3n76u0MppMUKx7K9ZkPjlcN7xEeSGGZUEDylacnRR/bPHhjMkwZ/auxvHYSpxuvnVd3mLeOEPYgAa1QfkSxdmF457YLMjzrfn4gwRVq77r3sxCk9WNQJm1EhQhkaNXl8w+xRZhQc0uhMIGBn6jMYwWDiXP3PSn/gxJOEiEGAWZBIpQT1L67tfdWYdXO/Pz5lZ1veqfWTqzpqYFNiJ8bNwUHgXnn1W5cHYiiz0llAfDFFIzUQSFJ9fM+DPQObkCEiAGbBKZFErDWv7RlV9WL7e9rJ5kX7S8ZWdRAyYxKJWI0NxjmqedmTX/mqmCNjGJ3Wj8j7iTOBUGiuhfJ67R2VAaxwzXJjVvUUPI/uu2r1r8p217o/7qi4dswFEDYmmMsljzCISZT1cc1vJl/vjZ0Yweh02nOf1chObycGghhRvPq/Z06X4JjIkAtVZoBxGhIK5LluyYvb+3YcOXZoMRC8SkSUO5ERzEwbosjtnFs5q4sJU96+TrOOXM/KYHlPfuJnl3VRmu1Q99iIK02J8pqe63WJOnVeTGI0+h4d/e5elw+FgkgdULCJfG+unUQHnvDf6CLsgs+ntqeNnMgU+AIIBalLDzyenV3uTRyDABSKzyzHpoES7Nq0+eMrpu555UDVtV2DSyU+pa9oZk7pyPzN9w3LOPFf0IaTmShMOQWEqUPgRTu+372RWOykZwBzTlJXZNvXvntk4re7xZ0veWPh1usmknA2OtUTkWbcwvWzh2WM7KyBqsCEGbPmNjE2YygHOCx5+YYqRK4BxQCBVHM/S0QSZXcv3hyPmtoTUIbtfHHboGsuFik+4aEMBlVe/NyN0xUpe6UzVyjaDAJMBa7ViEmFNan9+ai7LWWXsdiTMqkQAQon4B3VHxeNG9+ddz6zq2TG1JgzK15uumpSrwAmY+SjpJpfO/e6myJTJWXXCgiACiAoQ5EZaUgOPYwflKqBSGFwZGJsysx0aNeyD7uMHNsdumFejwFbN943PZtg75IlpTOHF5swzJym5J3y1l/0nx2bDx7qrBUQuRMCAII5rwGOwv989GA/4VwXOhiMOcM+aMnB7W/v6jt6WBfL0ge/GHJP2eEf4adQLcKH1aunXlMZZ42Z1ZiMP/6PDt8rb0gIINhZ+hl5XckpbeERR9nIA7Zk/d/0EygRmWmAI5i3UHRw1fodA26/uCNE6MAz4fYyi9rXpYnx8aKBlWMX/Piqad0zBtHIsn7/E/F3yxqLxAFnoQE4Y7btkUFE5jbPnzExTZP81AjBIjh3aO3ibZfceUlxUwAi+mjjPd2y/uiOC716MGvR1MFvV6+/aUqUIkaWwvP7HuqQhVnL7c4zgFDyziTe/fTQaWJxfroTi4Xc/lWb9l/0T31iJ46FDB/zIHXy7pGbvQlYFVZ208gXHl391YuIJJZnN9/VP0MuRF/c5WwgCvUkq0l05OmG2Rc0JFzwvsTgvSs2oOfMoSSqzAYoc5FnfD6/x2SS4AwsATzg71Yt+PWor3SR+K1Ft44VI6GmohapOAMTzpQ8qj/568pGr0RERkYg2/fHDcVDJ/WDwshYAgv5fljTq26u3tVJjWM1c07NaPLQN9+puWnKyqcuXln37fjwU+sn3VHSEoqTk5oCEyLOr3j0lunBIjEyMnLI7ntzZbdxI3pDDWSkLPDBuOnZBR4TbhxsQrnYSEFJvdNdv9/UY9/Qmxcu/PmAxurfzZpBLXT6zpRZWer8jl9efGexksE0671r3Ll+femUwb0gJ5whG4XGkqYth6Ph5bkmLYhMyYLnwA6vzh0/p/zDf7z2bttRNy45PZE5BcQZ3Tkffa79LcWpFyJQMR36aF1N+fRh3dGEqDlCEqCUWPvxgJkaGxFguexWCKFh54jbyhsPVW3/rPyj3kXa4r3KGUCYxwu753RLLRjg3ZGajdu63d2/xItR6tzJTwo71cCME+kkwNpUJF5/u+mHg+XovglLtoxU30rn90xMuGVv3t4nE2nWJXZs3fJ9ld8ZUqQhTV18mnZFEPNsBnJAgXByAMvzy+cMDJCSvns2ZZOKVm5FCiAMZCBAGa722WmXuhRM9HnNigOVs0YWmypLFMsphAFmZsExlEiaha7wQiv/cONYTZM/dexcufW9qe3knJyVOBMiA1j8wScqvlYSEkL9unXH+twwnE1gxjHM53K2wlwyOMDEEUzVkeWK+BBFq5666mYy+qx2pA2o/ujm1i6i84muKmdiBwiQeb7p3nbZOOxfurx06PCBca7I9SAD/ClcIF+NmwFwOTszUyna8kS/m6JMtO2pGvQqH9ito7RkG2hOakJTcYgiAcwWvH7XpONu94aVevnoXk6F8wZhuSjYzAQVMvRc0UBkAJGJUv2veU4nSSndnnbqltTF5cot3ozkTVQQG6UNcWz+vbevniR7Vi9uf82Ejhao+Qy5OFx4nTTy17z5b4WSA08dmdNJxTfGIwDJdnXGMHwhzz9dHGaI0uJ1uy4v0r3zh1y/ac225BsjL4hFKRC0cPYzFozNztZgAJwm2QW1c/qBI9OGJFXnkfEubTmC5cTRaBwd/9f2D5Qe/a8912/f0WXCmLIUjkwkci1OPwUPGQhN1dWTtS5uqLy1mFTYcWqJim+JiXzdwRQ1Lt9+WYfGpe8kizvOHFNMYp7U4LKRO71WOcthyMQJ09pXZ4z6911V7oXD95MmBJVIxeHsVbdRvsHuiT49PhLug99w2lTx+UJkEwsEUjVmPgcQREbIJELp4gk3ugmTZmHBvEuu9BxMnRNSbulinzwAcJrsfL1/WRc7XNGxs+79hClEECAXCc7tpsuImjyHePxMV18/CJjwyrJpmrJ5Nm5hCSOznGJqFJYseiu6k0YPMTARK4wL25/jfySUNbATdIJtOdI/67hbEdCURDlvclYeGGI5JqBrS+ce+GM52pciU/Sl/mZjIdAnSf/gDu69SlyxKYFaCl8KuNyFSXjsuX+uWL70eI8epMWpxGfLzVvaHCAydazcIEOI01f3jowELWkkgJxCRx4AJDu5y7Fjg8syDkTOnz8VDkhQU3MHHZy/bPZQIULrFq7q/g+sH2nMqDHmawAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_22.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, if angle DAC = 28.0, then the degree of angle OBC is ()
Choices:
A:28°
B:52°
C:62°
D:72°
|
Như hình vẽ, nếu góc DAC = 28°, thì số đo của góc OBC là ()
Các lựa chọn:
A: 28°
B: 52°
C: 62°
D: 72°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, if angle DAC = 28.0, then the degree of angle OBC is ()
Choices:
A:28°
B:52°
C:62°
D:72°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, if angle DAC = 28.0, then the degree of angle OBC is ()
Choices:
A:28°
B:52°
C:62°
D:72°
|
As shown in the figure, if angle DAC = 28.0, then the degree of angle OBC is ()
Choices:
A:28°
B:52°
C:62°
D:72°
|
109
|
22
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAARIAAACqCAYAAABh2cCPAABkOklEQVR4nO29eZBk23kX+MutMrNy3yqzKiuzKmvLqq7q7W3SkwySkY1tPHhmDJINY2xibMywWPIMBhFDMODB2MCgIQAvw5jxyAE4hvECNnbYInAgaSQ9vad+vda+5r7v+57zR/Odd/LUzazq18vr7nd/ERVVlcu95957zne+7/dtiuFwOIQMGTJkPAaUH/QAZMiQ8eJDFiQyZMh4bMiCRIYMGY8NWZDIkCHjsaH+oAcg48lA5MwVCsUHNBIZH0bIguQ5xCRH2iQBwX9P/Ny4Y8oCR8ZlQPNn3HyRBclzCoVCwR7ecDiEQqGYuOgnvc8fR+ocsjCRMQniPJSCLEieQ9DD4oXJo0L8ntRxaGLIwuTlwvvVaCcd66J5KAuS5wzjHli/30e/30ev10O/32ef7ff7TBBoNBrodDpoNBo2YYbD4fsWRjJePEzSPt8PLruZyYLkA8S4B8QvfqVSCYVCgX6/j2aziUqlglqthl6vh8FgMGK7arVaWCwWGI1G6PV6aDSaxx6LrKm8eJi08C+7qfAb0WXwxAWJrCZfDvwDukigDIdDDAYDNJtNhEIhnJ2dIZvNotPpwG63w2g0Ms1EqVTC4XAgGAxidnYWOp0OSqWSCR1e8Ix7Tvzr8vN8OTBJMxWfsdRG9kxNm8vaUzIuBgkPgkKhQLfbRSqVwvb2No6OjtDpdHDlyhXMzc2h0WigVCohk8nA4XBApVLBaDRCo9FApVIBAAaDATsmTRD6LZ5bnFgyXmzwmxL/fEVvDM27wWAAhUIBlUoFpVLJPkdzSYRs2jxnoAdNpgs9SK1WC7PZDJPJBJPJBIfDAbVajZs3b2JlZQX5fB4HBwc4PDxkAqVer8NqtbJjS2khk1zGMl5MiBoE/zcvJHhto9/vYzAYQKlUjnyPFyzD4XCsuSwLkucM9FDpwfIP3GQywWq1YmZmBgqFAhaLBR/5yEewsrKCZDKJdruNqakplEolNJtNdDodpoGQEOEnCn9O2XvzcoGep9RGwVsONLd4En/cHJmkmcqC5DkDr3oqlcoR06PX66HVaqHRaLDdYzgcotvtIpfLoVQqwWg0wmAwwG63Q6/Xs0lBOwr9T5MGGHU3y3i5IBWPROYJ/7xpo+G1E4VCgampKajVF4sJWZA8R+AlPi14+j0cDpnXplwuo1arQalU4uzsDI1GA4eHh8hms/B4PLDZbJibm4PRaBwhWul4UgFGshB5eaFQKNgcGEey89oqmTPiXOE3IhGyIHnOQDsG2aWkOfT7fTQaDdTrdRQKBcTjcXS7XYRCITidTkxNTcFsNuPatWvw+/3w+XzQ6/Xn7GXRZSzj5cRFBPk4waBWq6FUKqHX69Hv99Fut1EqlVCv19HpdLC2tiZ5PFmQPCcQ3bLi4u90OqhUKqjX62i1Wuh0OqhWq8jn89Dr9Zibm8P6+jo8Hg+WlpZgNpuh1WpHjk3HovPw55PxckGcQyJnQvOATBjRnKZwg0wmg1wuh0KhgFarJQuS5x1SD16pVEKtVqPf7yOfzyOTyaBWq8FsNmNtbQ02mw2lUgm5XA6JRALhcBhutxtmsxl6vR5Go3GEcef5F5VKNdGskYnXDx7jNMeLgsV4wcAfQ6lUMm8g/znxOI1GA4lEArFYDNFoFJlMBqVSCe12G9///d8veU5ZkDyH4PkMMnOq1epIENqbb76JjY0NlEol7O7u4vd+7/cQj8dxcnICu92Oubk52Gw2yUCjy/IisjB5cSG1MRFIC+E/o1Qq0e/3UalUkE6nsb29jVAohHK5jEajMeIBlIIsSJ5T8LtOt9tFrVZDrVZjgWY2mw0OhwMOhwOdTgcWiwXhcBjFYhH5fB6tVot9X4xSpNdpQk2CuLPJeDaYFBB42WchFUvChwHwc0Gj0aDdbuPg4AAPHjzAvXv30Gw2EQwGsbW1BbvdDp1ON/ZcsiB5ziCqs71eD81mE9VqFY1GAzqdDk6nEyaTiX2HdpNut3suFF6cQHTcSbvLuDHJeHaYpA2OM3kuQ7ACOBdWQKR+qVTCgwcPcOvWLaTTaTgcDiwsLOC1116D1+uFXq8fe2xZkDxnICFAGbyUrFetVtFqtTAzM4NAIICZmRkAQDQaxZ07d3B0dIRSqQSLxYLZ2Vn20PnoRV4LuYgjkfH8YJKA4E0U0a3PbxwU5AiARUvzCaG5XA5HR0e4desWjo+PsbW1hddeew03btyAz+djxP04yILkOQQf3ZpOp3F2doZQKIRkMonp6Wm0Wi1kMhkAwK1bt3D79m0Ui0UYDAbMz8/D7/fDYDAAGCXU+PgAek/G8w8xqGwSCSvyYDx4AcNrJN1uF9FoFPv7+0gkEhgMBggGg3jjjTcQCASYEBFD6HnIguQ5gkKhYF6aRqOBVCqFd999F9/61rdweHiIcrmMaDSK09NTmM1m9Ho9HB8fI5vNwmKxYHV1FTdu3MDy8jKMRuPIccnk4XcjGS8OpDKy+WfIax9SgoSPZhWffblcxt7eHvb396HX6+H3+7G2toa5uTkmRCiEfpxmIguS5ww0IShuJJvNIp1Os7D4arWKRCKBdDqNfr+PQqEAnU6HjY0NXL16FW63G71eD/F4HP1+H1NTUyxzGHhPrRXNmovscRnPHnykKf3mI1RFwlQqfIDXRnloNBr2/UKhgHA4jHg8DpvNhpWVFXi9XpjNZnZsCpsfB1mQPEcQU7gNBgMCgQAUCgXq9TpTLSn6kCaCxWLB2toanE4nGo0G3n77bezv76PdbsPn88FsNktGtPK7mGzmPP8QORA+j4p++HnBCwCVSgW1Ws2EgUajgVarhc1mQ6VSQbFYRKPRgN/vx8zMzAixyif3jYMsSJ4z8GSrxWLB0tISnE4nmwDkmVEoHpZW1Ov1MJlM8Hg8aLVaODw8xK1bt3Dnzh10u11cuXIFs7OzTDPp9XrnbOVJkAXMBwNRgxjHeRDI88JvNMDD+dLpdNjn6vU6er0ezGYznE4nAoEAi2LtdDrQaDSYnp5m5QJocxs3BoIsSJ5DKJVKVnuVtAkA59RUpVKJqakpAA9Z+WQyidu3b+PrX/86Tk9PoVarYTAYWNU0jUYzkjlMZg4dW8bzCalo5F6vh263yzYU0j5I85iamoJKpUK/30er1UK9Xke5XEYsFkOtVsPi4iKuXLmChYUFNoe63S663e5IDg6vJQOQ65G8KKAFrVKpRoo4T0K73UY0GsXR0REymQw6nQ4MBgM0Gg263S56vR5sNhtMJhOazSbbuXjSVRYkzy/E9H/goSDpdDpQqVSYmpo6l6lLn+l2u2i320in00gmk0in00wTNZvNsFgsUKlUrOREo9FAuVxmWgw/R2SO5AUDTQSyb2mHEAOJAKDT6SAej+Odd97BwcEBdDodXnnlFfb9ZrMJq9WKzc1N+Hw+ZtpcRl2V8XxAKs2B98JNTU1Bo9FArVaj3W6jWq2iWCwim82yBM9EIoGzszNMT09jaWkJ169fx82bN7G4uIh6vQ6bzQa9Xo9SqYREIoFqtcrOqVarmcYzDrIg+YAhpQmIoc1i0h0JFBIih4eHODo6QrFYxMrKCtxuN1QqFYrFIg4PD5mpRGHOKpWKCRSCnAX8/EMkzMXo1G63yyKc6/U6SqUSisUiyuUyms0mVCoV5ufncf36dWxtbSEQCMButwMAvF4v5ufnUSqVEIvF2KZkNpuhUqnQarXQ7XYRCAQkxyYLkkfAuEAgvqCy1OcvezwxQpHUWZVKJXnuWq2G/f193Lt3D/l8HkajEVtbW1hZWUGz2WSBbLVaDfF4HFarFT6fj5FxfPLWuGrhF2WayhiPcfkyFxGnUsfheQtR6LfbbZYBnkwmkUqlkM1mkc/nUSgUUC6XodfrEQwG8dprr+HNN99EMBiEzWZjPNvq6iqq1Spu3bqFeDyOr33ta4jH45ibm4Ner0ej0ZAFydOAGPwzKaLwomOIf9Nx6XX+PcoGLpVKiEajODk5QSqVgslkwtLSEhYXF+Hz+dBqtdBqtWC325HL5RCNRmE0GuFyuZgHR/yRGse48cl4NFx0/y7zPq99tNttljpRLBaRSqUQj8dRrVbRbrfRbrdHtBRKrbhx4waCwSCcTicroahSqeDz+Vhy6MnJCSqVCg4PD1EoFGAwGC7cSGRBcglMcsVJaSeThILUd8Rjk7Ygto7gJ1IsFsPu7i6i0Sj6/T42NjZw48YNzMzMQKVSwWAwYGZmBl6vF41GA+FwGGq1GqurqzCbzeeIOSnOZFI4toxRSGkf47QQqUU5aW6Ir9XrdaTTaUQiESQSCaRSKRSLRbRaLVgsFrjdbthsNjQaDfbd5eVlvPrqq1hfX2dChIQMABY7otPpMD8/z0p3JpNJ6HQ6OBwOOfv3SeAyiVO8m/aiz/IQ2XA+EYv+J8a+1+shm83i6OgIJycnGA6H8Hq9WFlZwcLCAsuxAQCTyQSv14tCoYBsNotUKoVUKgWLxYLp6WkWjs9rU7xWJRURKUMak7gu0WQc91kx5J1eJw2kWq2yQlb0LAuFAhqNBjQaDebm5uB0OmGxWFCpVFAqlaDT6eDz+bC2toZgMAiPxwOdTsfIUzqvVqtlXkKDwQCTyYRMJoN2uw2NRsPI2HGQBckjgLQNnlvgwee0iBmYUjsNX72Mvs8fS9REACCfz+P4+Bh7e3tIJBJYXl7G1atXsbi4CIvFwgKTyH08NzeHQqGAs7Mz1Go1hMNhGI1GLC8vs/PwWcEX7YxSPMqHHTwRLpV5K+bB8L+BUS1WapNpNBpIp9M4OTlBNBpFMplEvV4HAGi1WrhcLiwvL2NtbQ1qtRr5fB7pdBrhcBgWiwXBYBAbGxuYn5/H9PQ0OzbPi/V6PQCA2WyGwWDA4uLiSF9pPoZFCrIgeQRQqbpqtYpKpYJCoYButwuj0QiLxQKbzQadTjfS5FuMIG02myiVSqwS/PT0NJxOJwwGA+MuxKAzQrVaxfHxMXZ2dli278LCApaXl2Gz2dg5+VIBTqcTs7OzsNvtKBQKCIVCMBgM8Hg8I1wJMFo5izSgcZ4dWZhMhihU6DUe9LpUwal2u41KpcKEQiaTQSaTQaVSQbvdhl6vh9VqhcPhgMfjgd/vh9vtRjqdRiwWQ6FQwNTUFObn53HlyhX4/f4RIULnFQXgRQJjHGRBckmQMOh2u8y0uHv3LsrlMrxeL9bW1nDjxg32sMZpGoVCATs7Ozg5OUE2m4XP58Prr7+Oubk5trBJEPEaQK1WQyKRwP3797Gzs8O0CsrSJJuXj0FRKBQwm81wu92MK4lGo9DpdAgGg8y1x9fy5DOEx5k2FwmTF4FPeZKCUNQkpRLlxHsmaqukSfZ6PfR6PeTzeZycnOD4+Binp6doNBowGAyw2Wzwer2YmZmB2+2Gx+OBw+GAQqFgc+sb3/gGAGBhYQGbm5tYW1sbKYQ1zlt40XOb9BlZkDwiSGoPBgMUi0XGlKtUKqysrIwkVFEoOj2oer2OSCSCe/fuIZFIQKlUwuv1Qq1WQ61Wj0woPqKQIlf39/cRj8fR6/Xg9XqxsbHBihgNBgP0er2RCUth8FarFYuLiyiXy8hkMkgmk4jH4zCbzbDb7WPT0UW8TJzJ45hol+GQ+F2e5gFxYXwuDHEVzWYT+Xwe2WwWuVwOuVwO2WwWlUoFKpUKLpeLCQ/iQqxWKywWC9RqNdLpNHZ2dnB0dIRarQa/348rV66wjgL8uKSuRSSDpUh32mSkIAuSS4I3NahtptVqRTKZRC6XY3YrLzx4NbHVaiGZTOLw8BAPHjyAQqHAlStXMD8/D4fDAYPBAIVCwZh0vpVipVLBwcEB7t27h3q9jtnZWWxubmJzcxNGo3EkUI0HnZuiGUulEusNHAqFYDabYTQaodPpRjgZKcEimj/88V9U8MLkst4pcReX8mxJCRi+RxG5XanNSKvVQi6Xw/HxMY6OjnB4eIhKpQKj0QiPx4Nr167B6/XC4XDAbrfDarWyuiD9fh/lchk7Ozv42te+hnw+D7vdzrx4FHBG57vMNfL347KQBcklwE82hUIBrVYLg8EAo9GI6elpKJVKVt+BiCuFQsEmTLfbRSKRwIMHD3B4eIhqtYr5+XkEg0EsLi6yY/DcBgWhEa8RCoWQz+cxMzOD9fV1LC4uwmq1jphCAEYIMprsarWaVZb3eDwsrsRisTCTitekgPOmGU/KXpRS/rJCFKBSJp7UZ8hUpCQ6igEplUojWkg+n2fBYxaLBS6XCz6fDysrK5iZmYHBYMD09PSIVlAqlXB0dIT9/X1ks1mYzWZmztjtdqY9i+N7VMhxJE8IfKi6Wq2GTqeDwWCA1WrFYDBg2bVk51IWZq/XQ6FQwOnpKe7cuYNIJAKtVotAIIDr16/D6/UyYUCLlJKwGo0GYrEY9vb2kEqlmPn0yiuvwOPxMLWZb3JEoe+kDZGA0Ov1mJmZwerqKobDIdLpNAwGA9bW1qDX69l4eYEhJUjeT+Ddi4SLVP9x1y02fOc9eLym1263USwWkU6nEY1GEYlEEIlEUK1WYTAY4HK5sLGxAa/XC6fTyZItSWvkNcNOp4NIJIJbt24hEolAo9FgeXkZb7zxBrxe70hvaBJkTwuyILkEeHadQA+Jjx3pdDrodDojD63ZbCKdTiOVSqFcLkOpVMLtdmN2dhY2mw1TU1OMJOW1mFqthmQyyeJFVCoVi1ydmZlhsQDiwuY1G14QULbn8vIyq7KWyWQQj8dZ8JpGoxmpwMVfvyhUXmaMCyCU4g3E+zEcDkeytilatF6vMy9MPB5nHphOp8MijsnD5vP54HK5YDQaGQEvnr9arSISiWBvbw+RSARKpRLBYJB1W6Ro1EfpFvA4kAXJJcG7cWmxkd07GAzQarVQq9XQbDaZN4QaDlHkoVKphN1uZ646Ml+IE+F3DJ61z2QyzOb1+/3Q6XQjka/AaPkBqcCmfr8PvV6PhYUF5PN57OzssMlotVrhcrnOXasUAfc0d7XnAWLg2DghwvMNNC9EwU7zgsLXKRcmkUigVqsxDmR1dRV+v58Fk1EtGgDMFALANNXBYIBUKoW7d+/i6OgIzWYTy8vLeP3117GwsMDmB5m8Yh7V09gIZEFyAUQyjrwjg8EA09PTrMbHYDBAvV5Hs9mEzWbDcDhEJpNBIpFgZez6/T7MZjNcLhesVitb8HyJAKrLenZ2ht3dXdRqNbhcLgQCASwtLbFEK6oyT5OEJjaZNMSV8LEharUaZrMZHo8HPp8PqVQKkUgEJpOJtRyQmmT84hLdwuM0l+cR4vhowfO/xc9LQfwcaZEAGDleLpdRKpVQKBSY9letVtHtdmGxWDA/Pw+XywWPxwOv1wuXywWTyTRSXJnMIjI5ydxNpVLY3d3F3t4e2u02AoEANjY2sLCwwOYHf03PwhSVBQkHcdfh/ybNodfrsUxIEgr5fB7Aw56pjUYDwEOXLe1CzWZzhKtwOBwwmUwjgoS0k2q1ing8zkwam82GjY0NBINBzM7OQqVSjTTCIoiZvDRePl+HSGGHw4G1tTX0ej2Ew2EYDAYEg0Ho9XrmPZLyREgtRPqM6M14nPt/kSfl/eys445B770fISKaN1SyMBaL4fT0FKlUCvl8nvXNnZqagsPhQDAYxPLyMhMe5A4mLZYnzMUqeKRN7u7uIp1Ow+v14ubNmwgGg3A4HGx+SPFaT5MklwXJBEhN2E6ng0KhwPIYHA4H2u020yZarRaq1SqazSZyuRwajQamp6dhNBpZjVVSYUl7oAfe6XQQDodx7949RCIRqNVqFg9AQoTGxXsDgFH+RtQYeFVcpVIxrqRcLiMcDqNQKCAajcJgMECr1bKJK05GXlh9UDzJ+1XPpQTFOG/LpHNImXwU5VwoFJDJZBCJRJBMJtHtdjE1NQW32w2r1Qqr1Qqn04m5uTm4XC4YDAamzfCCnzebaPF3u12W6rC7u4tisQi/34/19XWsrKzA5XKx+fFB9C2SBcklQJOn3++j0+mgWCyiVCpBr9fDbrcz0qzf76NWqyGTyaDVaqHZbEKpVMJkMqHVajFTiJh4XiXudDoolUo4Pj7G/fv30e12MTs7i7W1NaysrLDIRL54s9hWgt/J+bgXfpISVzI/P49sNgur1crYfyoITGSh1C7+tHc2KUhpOOPUdSlNSnx9nNC4rDAhUP+hRCKB4+NjlgdTKBTQ6XTgdDrhdruxsrKCQCAAp9MJo9F4LhiN97jx3h/eFV8ulxEKhXBycsKCCW/cuIGNjQ0W2cxHRBOeleCXBcklwHtESKAAgMFggE6nw/T0NKtKlclk0Gg0MDU1BYvFwnZyUmvtdjur0k3HValULOw+Go2i1WrB6/Xi+vXrWFxcZM2uxNKLkxa7KEh4rYIakbvdbgQCAYTDYYRCIRiNRiwtLbG4Fp5r4dX4D4IH4a+JIC4SUWhc9F2pz/LCZNziq1QqLPKU8mByuRxqtRoGgwHjPObm5jA7O4uZmRnYbDZMT0+PuG9JcPDPkrQKPnygWCzi5OQEd+7cQSqVgs1mQyAQwOrqKhMi/HWK1yBVovNJQxYklwTPkQyHQ1bzYzAYQKvVsv6plUqFcSderxf9fp+FtdtsNtjtdmi12hFThPiU7e1tZLNZmEwmrKys4OrVq3C5XMz+5jkP0XzhJyjvwuU5E7H3icPhwMrKCqrVKnZ3d1myF2WAKhTvta+QWpzPSivhBdk416zUZ8e9B5z3ZPAYJ6Bps0gkEjg9PUU4HEYymUSr1YJKpWIJmCsrK6zkJWmSvCDn82poLvGNy+iZAQ/DB6LRKA4ODljZzM3NTRYVTZuMuFnwGqu46TyNjUAWJBzG7bg0iajGA1Xv1mq1bGFWKhXEYjHodDpsbW0xXoS6mHU6Hfh8PubeEyfKgwcPsL29DaPRiI2NDUbGEYsvmjJ8bo04WXjWntemAIxEwU5PT2Nubo6Ru7VaDbFYDCaTie2efFwKjUNKdX5amCRARK6C54L48fEQyzxIfYb/n1z4lH1LBCqZs5RJ7XA44HQ64XK54HK5WH1c8bj8Yqaiyvz4+TCAwWCAbDaL7e1tnJ6estwsimym+iBS2qIUT/Y0IQsSAfwNJzcrpXTzbjxa4MS493o95HI5Rljq9Xp0u11kMhkcHR1BoVCw6mW8NpLL5bC/v4+9vT2EQiHWMY9PtOLHQ2MUNQ8+EUxcYLwJwJ97amoKTqcTHo8HTqcT/X6fxZW43e6RHBwp7edZQSRFLzr/JP6EfoibEFV+0hQocrReryOZTOLs7AzRaBSpVAqdToeR5nNzc8yEcblcsFgs7FjUDgJ4zzPHcx+8pigudOLiQqEQjo6OUC6XMT8/j7W1NbbJAONTGfj7xgsZ2WvzDCC1WIbDh+Hkh4eHLMQdALODXS4XI10XFhZYlGK73catW7dw//593L17F2q1GhqNBkajkQWVlUolnJ6e4v79+wiFQqhUKojH47h//z6b8KQe82OiRUAmD42TnzB0LfxnxfBttVrNuvQFAgHEYjFEo1HYbDYsLS2NkMHifRHV5Cc9QUVzhheGNH6RdJ40pos8MeR+b7fbKJfLrMxgIpFgGshwOGRkucfjgdvtxszMDCwWCwwGw7k2l1Jj4z1f/LXxggZ4GJB469Yt7O/vo1KpwG634+rVqwgGgywGiRc+HwRvxUMWJAJEqT0cPoztSCaTzC4mgpVsY4vFAr/fzybU7OwsC0NPJBJsV+JbAwwGA4TDYZyeniKRSGA4HLJdJhQKsWSrRqOB2dnZc8FKvNkhqv/82PnPi4tNoVBgamoKLpcLS0tLqFarODw8RCwWQzKZhEajYfEuvEn0rEwZ8Zr4sfPviYJGHKOoZfLfp/ofCoUCrVYLhUIBqVQK4XAY0WgUiUSCaSButxsLCwvw+/0sF4YvbUmajpT7FhjtNiCah6SpkOcvEong7t27SCQSsFgsLOjM5/ONjS6+yPyTydYPGFarFaurq5iamkKxWIRarYbL5WILfH5+Hna7Hb1ejy0+g8GAGzduYG5uDpVKBWq1Gg6HA36/H0qlEqFQCG+//TbS6TQsFgtWVlaYAEqlUsjlcvjqV7+Kvb09LCwsYG1tDYuLizCbzdBoNKw3DW/iiHa/GCrPLyh+ZzQajfD5fEgkEqxb38HBAbRaLcswlgrHFxfv42KSB4Xen0QyS41JKnGOjtXtdlncTz6fRzKZRDgcZuarQqEYyYGZmZlhdUCMRuOIBsJ71Pgx07mk3uOJXxoXlQTY3t5GKpWCVqvF1tYWtra24HQ6zwkRqXsmJUietjkqCxIBUvwCFb71+/2stiWZKcSHEPtOu9z09DTMZvOILU6+/lqthtPTUxwcHECtVmNtbQ3Xrl1DMBhk5Nr29jZCoRALdGq32+j1epibm2PJfqLqzNvBIl8i7uD8azqdjoVrWywW1Go1HB4eMq8OhWg/S9C1jOOFpMwZ8dr5Y/H3h3ivWq3GgshisRji8Tji8TiazSa0Wi08Hg+CwSACgQAjynmtkM7b6/XOVbXjwQt6+g4/NtIsm80m4vE4Hjx4wBI1/X4/61XEV98Tx8AfT+r3k8I4E0oWJBzG2dQ6nQ5arZY19Kb3RJcdv5BVKhXzzvD1RaLRKHZ3d3FycoJutwuv14tr165hZWUFVqsVOp0OU1NTmJmZYWnm2WwW9+7dw9nZGRYXF7G8vAy/389aCPALhC8rILWT82On76lUKsaVLCws4ODgAJFIBD6fD7VajWklol0v3qfHxTiNRHyNNwWA80W0+Z1e3MFJeKRSKSQSCcRiMeRyOdTrdajVaszPz7NAMtJGrFYrq6lLEIWDVFEo8ZpEk4afO+12G0dHR3jw4AEODg7Q6/VYRzy/3w+j0XjuOvnjS537svf0SUAWJBPACwWp96RUVbE4ER8s1Gw2kUqlWOMhh8OBpaUlFuKsUChYBe+ZmRksLCxgb28Pu7u7ODs7QzgcRq1WYyH4nU6HpZtPihUQBYkYTk/XQOOhQKt0Oo14PM4C2HhB+UFBVNsnEat8MB0V7SYSNRaLsY50lAczMzODjY0NLC0tYW5uDiaTaSQtQQzOExcxLyik+B1xoRNfQx6/w8NDHB8fo91uY2ZmBltbW7hy5Qrz4EmVeJC6N+NI2Cfx3MYdQxYkAkQuARhVJcepjOQuJBWXBAmhWq3i9PQUe3t7CIfDMJlMuH79Oq5cuQKLxcJ4CJqQ1HdGp9Nhbm4Op6enCIVCI4WOTk5OsLa2hkAgALfbDaPRyM4p2uw0Zn5hiDuq0WhEIBBAJpNBOp1GsVjEnTt3AACbm5sj92ecvS/eS/69cdrLuF1T/Ly4EPnnwuctETqdDsuDSSaT7KdYLKLb7UKr1WJpaQlOp5P9OBwOmM1mVomMNgcyaaXq0EhpIVJcjpQZ1m63GTd1cHCAWq2GYDDITCpyJ4/TAsfxSM8asiDhwD8UenBSRJnUxKDmzXzhZhIO3W4XyWQSu7u7CIfDGAwGcLvduHLlChYWFpjdLUae6nQ6xl84HA6W3Xl8fMwSAjudDhqNBur1OjweD0wm00jSHY2P/peKXSChQ7yA3+9HJBJBLpfD0dERXC4XVlZWRsoMPOvJKmocUtoA8DB2o9PpsHaW+XweqVQKsVgM6XQa5XIZw+GQlVOgWiAzMzNM6wLeq7HKm4wXCcCL7gnNKZpXFCtCQqRSqcBkMuHKlSvY3NxkWqrU+aWIbikBJnX/ngZkQfIIoIfBax2iO5E+RxoJ377i/v376HQ6CAaD2NragtfrZcWbxXPwOxB5DyjbOBgM4vj4GIlEAqFQCPF4HAcHB1hYWMDq6ip8Ph+r1wmMLgoplZsEi0ajYdXS/H4/Go0G4xNyudy5vsHjILWgRHX7Mt/nhbnI0fD3mUAmAlXJJ8HRaDTQbrehVquZ2Tg3N4eZmRnY7faRSmR0fN6MoGcppVHwz4wfs/ga7/qlY1E27/3795FMJuFyubC6uso64lEIAIXSi3ycuPGNE2RPUoiM0yplQfIIEDUU0U6nB01RpsPhEMVikfUmKZVKrCbn6urqiNoqxcTzk4NP+iPNY3p6GicnJ6wMQL1eR7vdRqPRgN/vh91uZ0WpL9qd+Ilps9ng9/tZR/t8Po9oNAqNRsN2SXGsk7gBXjBICQd6TwpSC5YX3hQHUq/XWXuQWCyGRCKBUqmEfr+PqakpmEwmOJ1O+P1+zM/PY3Z2diQKFRglbUUNlM/NIa1x3KKSugZReFLXw6OjI6TTaQBgZQHcbjcLn5fyCEmZNPy5eDwrPksWJBMgZYvSROKzNvmdiwrR8JXO3nnnHaTTaUbmUV3NcZNA6nXejWyxWLC5uYnZ2Vmsrq4y704ul8Pt27dxeHjIKqpRODWf98EvZvqbFzYUfUuejXK5jKOjI5hMJszMzIwc57ImDn/fCCKvwe/a/P+85iF+vlQqIZlM4vj4GKFQiDXTViqVrJgy9YIhYnp6evpcJTKCyJFJaU+8iciPif+cGChIGwzNi1gshnfffRfHx8cstODKlSvw+XyszKJUvdVJQlx8f5yweRqQBckjgp80ItfA51JQBXjq10rFm4PBICu0zE+0ixYl79Kl4kTU4Ir64pyeniIajSKfz7Ndut1uj3AApKHw8Rkid6LVakdycIrFIsLhMDweDxYXF0eqqEmNW9TU6DxSnxc9HfxvKYKSOKdGo4FyuYxUKoVoNMoCyQaDAcuDmZ2dZXkws7OzLFOWH5OUJii1GKXMT3Gs9FtKA6PXW60WYrEYDg4OEA6HUa/Xsby8zKJWqX8zkbv8PRhXOkIKz1KIALIgeSTQQ6Sdhd9laYETwZrL5XDv3j0cHx9DqVTC7/fj2rVrWFxcHBFCwGTSTsrepteB97QHqlFB7Q0ikQiOj4+RTCYxOzuLjY0NLC4uwuPxMHcxhWRLCURajF6vF9VqlbVPSCQSmJubg8FgYKUB+e+K0bSix4s3S6SCy2gRURN0AgVsEYEaCoVwdnaGTCaDer2O6elpeL1e2O32c1XItFqtZCCZVLQuP85xz0QEfyx+AdPfFNDX6XSQz+dx79497O7usozwzc1NrK+vjyRq8gKMT/J7v0LkIhPycSELEg68yg+Mklj8zkITTcq9SuUGIpEITk5OUC6X4fF4sLKywniLbrc70l6T//44/oIfo2iSTE9PY3p6mpXzs1gsUCqViEajqFQqiEajGA6HrAwCdQmkfja8ms5fOyUiplIpVsAnGo1ienqa5ZjwE1RK7ZbSQsYJRxoLCWbiB1qtFsrlMnK5HIrFIiuonE6n0Wq1oNFo4PF4sLS0hJmZGZbSL2ogdFwpLUrkuUStSornkPq+1LOja0mlUqwWbz6fx9zcHNbX11n1NBrjJJNJ1PSk5pDU65PG/iQgCxIBUhOC5yhEVZN/6EqlkoWXU3Fek8mEq1evYmNjgxW54XkVwqSHLEU4iuMdDh/Wt6B4EpfLhXg8jrOzM8TjcRwfH+Pk5IQl6JE9TpmkdFy+3J/VasXy8jKLAK1WqwiHw3A4HMyDw3MX4vh4zYM8R0qlkuUK8e/zPAh5K6rVKvMaUbfBarWK4XDIaqnY7XZWjWxmZobF3/Ad5i6j5ksJcdEEG/cefwzgvUA4vrRDrVbDgwcPcPfuXWSzWVgsFmxtbeHatWtMiEgJOKksX94snTR+EU9LGwFkQXIhRAINGN21yJ1HkZPxeBx7e3uIxWKMRFtZWcHc3BxT1UWtgj/Poz5sUa3WaDQspJsCqygXKJfLIZVKsXiXSqWC+fl5lktEgoEEHdUr8Xq9mJ2dRT6fRywWw9zcHEs+FPkW/vrGTWzRdKBdmMbVbrdRKpVYdC25n8vlMoCH5tzs7CzrD0TFtPlShqLpctH95RfiZXdu8ZjjzDhqu3p0dMSyeZeXl7G8vAyv18vifqQ0X6nzPG3t4v1AFiSXAO2UtFvTrsCTq51OhwmR3d1dDAYDlisxNzcHvV7PXJX8TsxHwIoT8VEmixhpSdnGer2eqf2hUAgHBwfI5XJ4++23cXx8jOXlZSwuLjJClhLDePueAreoyA9Fh2o0GlbflSY5tVMAHiY2Ep9E9U9ogYmaXa/XQ7lcRj6fZ6H5RBy3Wi1YrVZWvpDPgaH6t/1+H/V6naUliAWk6N7Q70lC7jLgx07Xx18nXWu73cbBwQGrZaNWqxEMBnHjxg3Mz8+zvstiz2bx/khleD9PkAXJJUCTX1Qz+ejVfD6Pw8NDnJ6eotPpsD67S0tLzKQBzmsQ/P9ist2jjI83IUjIaTQaViPFbDazwKtQKIRkMolKpYLj42NUKhUUi0X4fD54vV6W5UrjcLlcWF5eRiQSQSwWY9myVJeF5xPGcTyk6YhmFEWhFotFxsWk02mUSiXU63UolUo4nU74fD6srq7C7XbDZrOxa+FBQpp3zdM9539Puo+Pet/puCRAB4MBC26r1+uIxWLY39/H6ekpVCoVu45AIDAyL6TOLwoWfrN43oSJLEguCX4x0IMkrwUfoZjJZDA3N8fqrjocjnOciihIRFefuAAusu1FLwjwHnFJY6YK8XNzc8hkMqwdKHk+Tk5O4PP5sL6+juXlZfh8PqadmEwmLC4uYn5+HqenpygUCjg8PGQlGcWx8/wH3zaSj0IdDocolUrIZDIsEjUej7OSCUajEXNzc/B6vfD5fKwSO2VU08Lid2nqh0zHF71ioin5OIuRF0rE//DXOhwOEQ6HcefOHZZDc/XqVbz66qtYXl4e8dDwvAcdj44zbvzPG2RBcgF4AoxfJPRAG40Gzs7OWEavVqvF2toaNjY2YLfbR9RSnlcBRtVicbcmPOrEEXdf3huh1+uh1+tZHRUqWRCLxVAqlRCLxViiW7VaZd4ds9nMCjj5/X5WLc7r9cLv98NsNrPFI14fr8l1u10WeUskaiqVYg212+02pqenMTMzg5mZGaYhUblJURCJ9UnEez3uvkil27/fe8zPD+LASMPa39/H/v4+2u02Cx5cXl6G3W5nxxLNWf54/Lzj58/ziCcqSMYRWu+XSHyaGCfdpdyC4mTlM2gLhQK2t7dxdHQEtVqNQCCA69evY2lpicVpiLk5UpoJn+h3WWEi5VWgz/JuXbK/lUoltFotNBoNq+q2srKC09NTbG9vM5d1MplENBpFIBBgHIrFYoHX68Xm5iYLUAuHwwgEAixHh3fdihqIQqFApVJhVcji8ThSqRQqlQrriez3++H3+7GwsMD4HWqcTYKIN6P4n3FuUzHg7HHJbfH+0/HVajUztajmzPb2NhKJBJaWlnDz5k2sr68zDZXKb4rPW/TQ8Nosfw3Pm3byzDSS50mIEESJfxF4lbPb7SKdTrMOa61WC4uLi1hfX8fs7Cw0Gg1TecXziX/zrz2qEBFdgKJAEa+v3+8zQpI0jampKVYImlysmUyGFUIuFouYn5+HVqvF7OwsnE4na44ejUZZaUmFQjFSTa3b7bIgMqpERl6YSqWCXq8Hs9nMTKT5+Xl4vV54PJ5zrRzE5mD8NfICRSqvSMpNKrVhTLrfk0BCu9/vo1qt4vj4GNvb2yiXy0xYB4NB1lZT7MlM55VyV0/yMj1PeCaCZBLZ9axviPhwRNNF/Cy9Rmp0r9eDWq1GrVbD3t4ednZ2UKlUYLPZcP36dWxsbLBanqK7WNw5CaKGwmeaXuZ6xPwV/rpEc4omMV/djUwYioylmBPynkQiEQQCAaytrcHhcGB2dha5XA7tdhtnZ2csn4UXIpQHE4/HWUHpcrmMdrsNAKxOrN/vRyAQgMPhgE6nY4WgKG6HjjWO3yBiVSrZjr9HIqQEiaitSH1OBK95lctlxpUdHBxgZmYGm5ubuHr1Kiva3Ol0zgkR/nmJ10fXyL/+vAkR4APUSOjBfZAqGv/wCON2AeJHqJlzNBrF4eEhUqkUrFYrlpaWsLCwAJfLdc5WHzdhpDwL7+deiAtMiogUhRU/man2ydzcHAsn1+v1iEajTDOJRqPo9/uw2+0ol8uYmppihaoLhQJqtRp0Oh06nQ6LQk2lUkgmk0ilUqjX69BoNLDb7bDZbKx49uzsLDwez8QyhqJQkBISvMCUuodSQoJ/JlK/+b+lzFGefG80Gjg5OcG9e/eQSqWg1+uxsLCAjY0NFitCxLrUWKW0JvH15xlPXJBILU7+PfH/Zy1ExqXrA5PtVeDhbt9sNhEOh7G/v49oNIper4fV1VVsbW2xBlhiluukyfK4gkT83qRJKAoUfpHQ+3a7HQaDAT6fD/F4HOFwmBUFovgY4lnq9TqazSYzWXQ6HXMpn52dsRB26vtDpgvxMzwHIj4bXqBL7cST3hMxyUQQX+fHIGpCJAiA93rzAhgp2nz79m3o9Xqsr6+zWrwUqs+7pXlBIqWlTrqW51HIfKi8NpcRclLCjWpDtNtt5PN57O/v4+joCEqlEj6f75y7lBck4oLgF+2jEKsXQdxxpTQhflxS5hZpJ3q9HlqtFlNTUzAajaxncTKZRC6XQ7PZZG0se70eHjx4wOqeUtWvRqMBg8HACilTMylqZ0n3ih+b+DwmeSqkuI9x94XXfid9Xsrk5XOieMFLWme320UkEsGDBw8QjUYBgOXQ+Hy+kd68Us9LahMbZ5Y9rrfpaeKpCZLLPORnDVE1pd80VvE9+ps+UyqVmDaSTqexsbGBa9eusdqa5FkQSUFxsvA9X6XOQ995lPs2TuvhPTd8vss4/oe+o1QqGRlL5QOoLMLu7i5rX9lut9FutxGJRDA1NYXp6WnGmfCmi9VqZTk2CoWCcSC8cOMjfOlZ8WMV78kkTUO8N5OE0rj7TfeN/iZeSczm3dvbw7vvvotut4uFhQWWzWu320eE2CSyfZKmIUWgP2/4UHlt+AnJR5GKqe18iDdN7kajgb29Pdy/fx+VSoXlS6ysrIxUOhu3k0ppDPQd8fVHuVei8BGFlvi/WDIQwMg18xGo9D0qO0A1TiKRCIbDh7U1KpUKqw1CEagzMzMIBoPw+XwsC1eMAREXldRiv8zCeRRhclnwz1AsqMQnBJK5d3h4iFKphPn5edaDxm63M15EagxSz13qmiYJvucJT1SQ8AtJfJ3/LWXPTzrmkwS56fh4BzGYiX6T/d7r9ZDNZnH//n3s7OzAZrMhGAxidXUVc3Nz7LtivoTUNUrtqo977bydLeURoM/w5CB/nfQj7v6kpVAqPwDodDqYTCZWWInyh6ikoc1mw/z8PKt9IlZmG6cx8e+JqQgX3aunsVPTc9Jqtexe8LE5zWYToVAIt27dQjqdxvT0NJaXl3H9+nWWGQ2Mpj3QDx/XM8l0kxrT84oPTCPhd8WLpO6TImUvw4yTO48WWaPRQDQaxcHBAdLpNAs629jYYC0URU3gcR7445g2/HfJLJDyYohkq0KhYLEkBGplWS6XUS6XUSqVkM1mWTOphYUFVqSp2Wyi1WqxivYHBwcsrmZ2dhY2m20kJ0cq+pTXAiYtsGcBURMRtZNiscgSIJPJJKanp9nG4nK5oNVqR+6vqKU+zybK+8VzQbZOWniiNvO45+F3PV6Q8AtPrVazhLJ8Po/79+9jd3cX3W6XVbQKBoPQ6/XodrtjA6Te74R5v9cs2uL85BUntSg8eSHSbDaRz+dZHgw1kkqlUmg2m5ifn8f6+jpbOI1GA4lEAtvb2zg9PcXu7i5OT09Z7EkwGITX6x3JFJa6Nj4m5FFNnCcJ3rTjeRrSRKLRKO7cuYPT01MMBgP4fD68+uqrWFxcZBoMReHymi5fcmGcafui4pkJkkk79Tg1dtKCGnc8qdelbFOp92gCU84ENaGieJGFhQXWi8ZqtZ4zkfiF/CS0KamxTho//784HjHfh+d/ALBeuMVikQkQapJFZsvCwsJIzg11o6MkO4PBgNnZWYTDYWSzWZbDk81mWf/cmZmZkbwZhUIxUkxJir/6oBYZmatk0tRqNUQiEezs7GB/fx8AsL6+jqtXr2JhYYG1dOUFh7i5TOLPXmQ8t2TrRbvyo7wuHktUo/nP0Wd6vR6SySRrFzAcDhkjT0FnfJToOJv2SQmRy16b1ALk+Rsy3fjrbjQarB8MtXJIp9MsD2ZmZgZer5f1HLZYLCwKlcwip9OJmZkZrKys4OTkhBHTkUiEZfmWy2UsLy9jYWGBEdRSrnLy6IjV154FR8DfMzHFIZfLYW9vj9V0WVlZweuvv87IVYXiYf2RSXNTFDAvC56paSNFNL7fycEfS9ReJr3O2+j0On2WbxeQTqdxeHiIcDgMg8GA5eVlVltTrVZLNskSm3hLFdeRwmXuwyQVWCRZRdUcwEh/m+FwyCJQyWRJJpPI5/OoVqvo9Xqs+LPdbsfs7Czm5+fh8Xhgs9nOnZ8K+QBgma16vR4WiwWRSASZTAaFQgF3795FPB5HIBDA/Pw83G43zGbzCKnNawFSAuRxTIFJ91nK/CMhSSbu0dERdnd3UavVsLi4iCtXrmBpaelcqYhxJLZ4npdJmDyzXJunsZvQQ5r0ujh5RMKLf9A0mTOZDA4PD3F2doZKpcKiFP1+P6anp5k3g+/Axns4gNGeLZe9din+Qgqiusx/HxitYyFqXr1eD41Gg5UNODk5QSwWQy6XY/1wXS4X87xQwWo+2I4gCi/6cTgcsFqt8Pl8iMVirJo+X7jI7/cjGAzC7/fD6XQyglIMTOOvS3ztUcnoy3yGFwLEaVDf5qOjIySTSdjtdly/fh2bm5ssmlmsRcKblOM6Mj7K2J53fCBk66Mw1xeZDBfxKOL3+MXGLwS+4PDBwQHu3r2LSqUCp9PJ2iiazeZzi5gvniNyI2KHNHEMIqE4jleR+luKMOWPQxoRmQe0q1K4ez6fR6FQYN3o7HY7rFYrqwVCP1arldWkjUQiCIVCKJVKLPmO2kBQIWZy96pUKlbNXqPRwO12IxQKIZFIoFAosOLYVDGMOt9R6URxZ5ciX6X4Bqn5MEkLluLiaD5QXduTkxN885vfRDabhcvlYvVmZmdnz8XHSIFPQBTH87LgmZKt/O8ncSxgtHw/vSdONB6iX592nuFwiGq1yjrDU1YrFemlDnPdbpcdlxce4qTmBY1oE0uNS4rHeRTPhdjnl6BUKtFqtVAoFBCJRLC3t4d4PI5qtcryZlwuFxYWFuDz+UaKQdM5KTnvwYMH2N7eRjabRbPZxGAwgNlsxurqKjY2NlhNVY1Gw8ZO8SZerxderxcHBwe4d+8ea6lZKBTQaDRQqVRY3Vir1TqRTOfvkxTE9/jnIwXSRMRz8K7/g4MD6PV6bG5uYmtrC36/H3q9XjK0n47Bj1Wcdy8bnokgeRwu5KJj8loBr8KP292B860gFYqHhWZCoRDu3r2LZDIJrVaL1dVV3LhxY6RNpUjQ8gudoh5FG5gnEPnXCfx1SC0C/re4s4nEqkLxMOCp2WyiXC6zhDrSQmq1GobDIVwuF2w220gejM1mYw2lCPl8Hjs7O6yMJOXQWCwW1Go1tFotPHjwgLX2vHbtGjweDwwGw8iYqZGXTqeD1Wod6c9LCX6hUAiBQIDV7tDr9ZJkuPhM+XsmptyLwp5/j3+WdDwSyO12G+FwGG+99RZOTk6g0WgY2U5tNfnnSucSvXj8mD7o+JiniRdSIyGIi0/K3UZ/iybEYDAYyZkoFAo4Pj7G/v4+Op3OSKwExQaIfIN4bSI3wY+TH4e4CMZNdqnPSC0CAvEf1WoVpVKJ9YMhc2I4HMJqtcLlcjENwev1Mg2Ex2AwQDabxdnZGe7evYt79+5Bp9Ox1hRGo5HxLAcHB0gkEtBqtTAajcwVTLwRmSoGgwGLi4twu90IBAI4PT3F8fExjo6OkEqlUCwWmabUbDZZjx6+Pwx/P6XMknH3j7xW9J5Yf5f/TrPZZM2stre30Wq1EAgEGLlqsVhY6wxx3tFxeGKbNF7+tZcNz0wjmfT/+4FIzImEn8ic85OFb/YNgLWRODo6QrVaZeUSFxYW2O4s7maTCDNRraXf9DftYlJciLjLiVm6dK281sBXYo9EIojH48hkMqhWq+j3+1Cr1aytp8fjgcvlgsPhGOEk+LF0u12Uy2Xs7u7i1q1bSCQSMBqNjHSmEPB2u41EIgGVSsUifw8PD+Hz+eB2u9nY+XgbhUIBvV4Pt9s90qM3Foux2JVsNguPx4NgMIjFxUUWr0KCn44pCgf+9zjBIpoXPLE6HD4MJEskEnjnnXdwcHCAdrsNr9eL119/HWtrazAajSOmEF8gSpyD4lwYN1deBjxzjeRJgBbVJJVRXPDibs7bweFwGNvb28jlcjAajVheXsbm5ua5Dmj8MSddj5QpJU7scUKQPx9Nbl6o0AKimp/EL1Ax5dPTU2YyqFQqzMzMYHZ2lmkSbrebtZsg0PHoPKVSCdFolJk0BoMBV65cwc2bN3Hjxo2R/Bm32410Os0aWFFHPvEZ8HlIGo0GOp0OOp0ODocDHo8Hs7Oz2Nvbw+HhIUKhEIrFIlqtFmq1GprNJmZmZmCxWFibUX4e8Oeiv6UEuKjFifErxCWdnJxge3sbhUIBLpcL6+vr2NzchMfjYfeL107HCQ0pE3bSPHmR8cQFidTNueiGPc4NFR8m7eb8LiHuSjQRqTPe/v4+Tk5O4HA4cOXKFaytrcHpdLKdWsoTcNG4eYEhBl2NC0iSMp1osRCBSRO+WCwin8+PVCErl8uMQA0Gg2y3p3gQo9EInU430pyb1xYAsEZfd+/exeHhIRqNBlZXV/H6669jeXn5XC1VXigUi0U0m010Op2Re8QLXtr1KVpWpVLBZrNBrVazAtOnp6fM1PnWt76Fvb09+Hw+1j/Z4/FAr9ezeB4iwMVzilqclGDj423y+Tzu3LmDvb09lEoluFwuvPnmmwgGg7BarQDABDjFzUiZUuIceBpm/fOGp6KRPKsbJkVqiTUs+PHw4+p2u0ilUtjf30csFkOv18Ps7Cy2trYwPz/PFhvvwgWkydtxZsw4AvUiiHVXiWsA3mt1QH1gUqkU8vk8isUiFAoFK6K8sLDAXLJSzaRoIfHkIJUJiMVi2N3dRS6Xg9lsRiAQwPr6+kgwGt0HEgqiKSlqgHSfyKtE95WC2Ww2G2w2G9OgDg8Psb29jXg8jmw2i3K5jGaziUajwRqQUXkDqc2Cfx70Ov+ceMHe7/dHwt+TySTTTK9evQqv18uKGPV6PebSFo/zYcZzkbT3qOB3bX6H4RetGLbO7z79fh+lUgm7u7t466230O/3EQwGsbW1hcXFRUYU0oTng8seZ6wE0dUoRdTx36FeM/l8HtFoFJFIBOFwmLXNNJvNWFtbg9vtZs20if/gCWCea+HvEwku0nRisRgikQj0ej2rr0Fd4Wgh0Vi73S5KpRLy+Tx6vR4rw8gvWv5aeMEvFUxI3h3q70uxK+l0Gjs7OwiHwzg8PMTq6iqLP6EqZADOzQNRM+Xfp3KJlLFMIf06nQ43b97ElStXWMEq8bgEKUL/w4gXUpAA53ceMS2eXud/099U6ez09BTJZBKLi4vY3Nwcaa/Z6XTOqb/vd3ziWHnVW9y1gdHObXxZw0QigUgkwlpBAIDNZoPP58PS0hJLiuMXFlUt50sG8uMSBVahUEA2m0WpVILD4WA1V0iV582gdrvN2n1WKhVMT0+zbniT7oeYQ8O7xpVKJaanp1mjLLfbDbvdjt3dXRwcHDAXdqPRQLvdZtnIYvEkAi+UeW2JBEur1WKaaTgchlKpxNzcHDY3N1nPHj5imZ6VrImM4oUVJOLOwO+S/MQhU4fiO6ja97vvvotMJgOXy8V2N8oTGWdXP+qkEScdHYOvYSKlgbRaLVaFPZ1OI5PJsG50/X4fer0er7zyCmZnZzEzMwOHw8F6+/KLmL8OMfdGylQjsrFWqwF42KqTBJM4Vor6pDyaTqfD2kvw7SjpHKKZwY+R3wB4745KpYLL5YJOp4PL5cLS0hJOTk4QDodZqcfDw0NWqc7n87E+Pbz5xI+B5gJpIlT24ODgAJ1OB1tbW7hy5Qrm5+dhMBhY/o84t6TiRT7MeCEFySRPjMjK8wulXq8jHo+zvi1qtRorKytYW1vD7OwsdDodI9MAjMQa8Oe7LHgBxC8kXpDwHEiv12Op/IlEgjXsJg+GSqWC3W6H1+tFMBhkWbS8B4bGyfMfNJZJ9xJ4r6FVt9uFWq3G9PQ0TCYTi6PhF06v10M6nWa9gNVqNTweD/x+/7nm2KLnRPROSXFLJEh0Oh30ej0LnrNardBqtTg7O0M2m0UoFGLV7Cn2hD7DR9jy7lrgoRZE9VYPDg6YZ2hrawvr6+uwWCznNEdRu+Hn3aPyYC8bngtB8n4fghShyntLaDKSGptIJPDuu+9if38f9XodwWAQr776KgKBAHQ6HSPU+GQ8caJICRPRdJIyqUSBxx+j0Wggm80yAjWZTKJSqaDT6WA4HGJ6ehqBQABzc3OYm5uDy+WCyWSCTqc7J5TE+zPpHo8TjFToSKPRsGhdWkB88t/R0RFu3bqFfD4Pi8XC2m3y7Rd4s1N8Rvx9oc+JhDl9RqVSwWq1YnNzE3Nzc4hGozg7O0MoFEImk8Hdu3cRjUYxNzcHv9+P5eVlVgaTQEGIg8HDeqsUrl8sFrG8vIytrS1sbGzA4XAAeI+QpjHQfZF69rzQEe/9hwHPhSB5P+AnmfgARTWWAqzC4TCOjo5QqVTgcDgQCASwtLTEaknwngep810k8MYRcfxOTsRdr9dj5QwLhQKSySTi8TjS6TSLATEajbBYLHC5XPD7/YwD4d23/AKk/6UI3kkkIe3SarWataJQKpXodDqo1+vodDos8pVMmkgkwjro6XQ6LC0twe/3w+FwsKLH4s9FZoAoZHmvCAk2IpfJy0NuYOJ2ms0marUaa1jucDgYf0IbSrFYxOHhIfb29pDJZAA8LHtAGmmn0zmXBjEcDlGv19FoNJinSqF4mBZB0bxiuP2HCS+0IBFVZPobGC0fSBm9h4eHyGazcDqduHHjBjY2NpgKS7s/TXbaFelcUr/Hkbv8GGks/Hd7vR5SqRTC4TAjTykHRqPRsBYOXq+X5cRMT09Dq9VK7oi8+SRlyog8hJRQUSgeRpzSwuv3+6yjoMvlYoWIKpUKbt++jXfffRd7e3sAgGAwiNdffx0+nw9TU1OS3iES6nw6vdQ9HFfDRRzz9PQ0FhYWYLPZsLq6ilAohHA4zPoxkwt7fX0da2trbGylUglHR0d46623cHp6ylpopFIpdDodpNNpBAIBrK6usrkxGAzQ6XSQSCRYK45yucwyn9fX1xEMBlldWqnretnxQgqSSUKEdliajN1ul4XAUytFv9/PWilSs28yhcRAo8tAnDRSHiXiHygKlTiQbDaLSqUCtVrN8mAoEtXj8cBut59LVRcjMvn7IgoTKZOM5wz493Q6HZxOJzweD5xOJ1qtFispWCqVMBwOkc1msb29zfrYzM7O4urVq8wkIFNLjDiVIiZF/kgqEI//m9c2SWMzGo1wOp2skblOp0MsFmMFmgeDAdrtNjqdDoxGI2KxGA4PD5FMJjEYDLC4uAij0ThSXrJWqzHzkSfcW60Wstksjo6OEIvF2LPx+XySXNiHRYgAz4kgeZwbLkXk0cNvt9tIJpPY39/H9vY2NBoN1tfXsbW1xTrjkR1MwkdcCJMECq8NSHEf9Jl2u82IybOzM4TDYTSbTUxNTcFkMmF1dZW5OqkTHUWgSpHHdK0X7XpS90aqfgZd69TUFKu3QUmMt27dwv3792GxWJgnRKvVwmazIRAIYGVlBUtLS/B4PCMuYv6covAYN25R0ImCkJ6VaLpqNBp4vV7G0yQSCRwfHyMajSIajSKRSODs7AwGg4F5v/R6PQKBAF5//XXodDpWh/Xk5AS9Xg/Xrl3DzMwMdDod025JaBmNRhZtbLPZYDKZmLn5YSVdP3BB8jiMt8jyi1xELpfD/v4+QqEQY+XX1tawuLjIKn7xk1I0Qfj3+b9FklfkJKgCPWXikgYSiUSQTqdRLpeh1WqZB8bv97N4CYvFci4e4jLRsRcJYzHaly8cxJc3pL6/9XodwEONrl6vo1wuMyEyOzuLtbU1rK+vIxAIwGazneuSJ3Iik8YnekL4+yreB4JIqlPzc7PZDKvVCoPBAJPJhOPjY6TTaRwdHTHtxGg0IhgMYmNjA2tra1CpVIzw3tnZQSqVQiKRgNvtZgKSBInb7Ybf70ez2cTc3BwWFhbgcDjOmZwfNjwXV/9+NRLeDudt8MFggFqthrOzM7z77rsoFAqsH+vq6ipj5YHz7RClOAd6rdfrjQgdUfgAD4O6qtUqcrkcEokE2xUrlQoUioeFfqjGCf04HA628/Hh3jSeSffoooUqRWDSddPO3+v1mMtXo9HA6XTi2rVrcDqdWFlZQa1WY5GdWq0Wc3Nz8Pl8sNvtIxXhRXJVHOM4DmmcxsLfC97zw9933iylOUDV3qhU5M7ODt5++21WJtHj8eDq1au4cuUK7HY7BoMBlpeXkc/nce/ePbTbbZydncHpdDIhQWUQZmdnMRwOmfdsdXUVVqv1HPfzYTJrgOdEkDwORM8I8DBeJBQK4eTkBKlUCtPT01hdXcXKysqIHU/fE49FGGfz0oQFwNT9druNer2OQqHAgsjy+TxKpRJqtRqmpqaYBhIIBBiBaTQaR7wwUhG6j4JxYx63mHnQe+TBmJ6ehtPpRLPZZEKU1HmbzSY57sdR7aWuV+p6xLoevLDhSXaXy4VCocBSBSjWZXl5GYuLi3C5XOz7Wq0WFosFHo8HuVyOVdWn/kX0ucFgAJPJBKPRCJfLxToKfJiFCPASCBLgvBqczWZx7949nJycQKlUwufzseLNNMn4LOFxO6h4DtqZ+FgK6nuby+UQj8cRjUYRDodRq9Wg0Whgt9sRDAZZDozT6YTNZoNWq2XnEbNlx7lJLztBL/M5sYwBb+MPBgNGZlI5QX6RiJ4VUQuh5zGJhOYhfo9/TUrDkTqfeF0qlQr1ep2VOKCWmjdv3sTVq1eZVjocDlk1ueFwCL/fD41Gw1p0VKtVFvFMBY8GgwHr7Sul6X0Y8cIKElEToXiRfD6Pk5MTHB8fo9lswu/3Y21tDV6vF2azmZF2tHvRhBQ9IfzkFzOMW60W4w2oDkg2m0WhUEC1WoVCoWDq9dzcHOuDa7PZzuWE8C0sgNHq8zyexi4nmhF0Hl7zGrcwRDNmnCB+v+Me54HiTRx+EdPfVLSZXNe8y9/r9WJjY4MR7cBDDog2g36/j9nZWSiVSsRiMTSbTZRKJVaCkjYOClj8sAoNKbywgoQgxovs7Oxge3sbmUwGHo8Hr776KlZXV1nYNh+tyE9MUU2mY4vaQbPZZK7CRCKBRCKBZDKJer3OvB6Uek4cgl6vx9TU1EhNEQAj9j3QReXoDr76jS/j1lkDCsUsrn3PJ/GJN65j7nwO3H9BF9XoLu78f1/G7z9IATBi+SPfgU986hWsmjTS38js4Pf+n3+Nt5NGLH/iv8af+KNBuDTns455ASFqJOM0B6n3nwT4Y/JeNrVaLUmAD4dDnJ2d4c6dO3jw4AE6nQ7efPNNvPrqq5ifn2e5QESKk1u+1+uxgL96vQ6FQoFcLsd4ILHWDQCmvX3Y8cKKVJo8NJna7Tai0SgePHiAeDwOs9mMhYUF1jdFfNi0oEkjoNdotyGmnlTfXC6H4+Nj3L9/n03Qz3/+8/iFX/gFfOUrX0G73cbq6io2NzexsbGB1dVVLCwssCZQRKZSTEmn02G8g6J3jN/671/B4o3vxl/5F3dQBYDU7+Pz3/cKfJ6P4+feKpy/Ad0ofvevXMHMwkfx6S989eF3cIzf+Ik/jqDFie/5Z3cgfqvyzs/izbUfwX80fBTf/u0BZH7xv8WVP/lFnPSVI7yDKDzof6kfKZNGSog8Lncy6dj03BSKhw3NqeLdwcEBFAoFC5kXEwr5LGsqSWm32+F2u1kjtFwux1p4UOU3rVaL6elpVuPlw8yNEF5ojYTnGGKxGPb397G3tweVSoU33ngDm5ubLGiImn3z2Zs0kXjzSBQ47XYbqVSK5XbE43EUCgVmRpXLZQDAW2+9hc3NTXzuc5/Dd37nd47EVPCLks4JEGlbxzf+zvfgz/37JfzcN7+G//GGnS2Kn/s/Y/i9v/xH8H2f+jEsH/87/ICXRtXFOz/7bfi+X1nBP3r3bfzUTft7A/65X8LZr/9FfPQHPobPr6bxy99DC2cXX/wL/xZ/5qvfwl+79rAoz3d+53fh9Z/YxP/8O9+H3/qM+5ypwnumgMnCYBK3cxkO6iLwZLr4N/3u9XoIh8N48OAB7t27h2w2i1dffRVvvPEGVlZWYDAYAIyWLaANSaPRMMKVWnRkMhnkcjkm9Om5UBV9noT9sOO5FyTjpD0/uTOZDLa3t3F6egqVSoXZ2Vmsrq7C5/ON5IhIHYsXIqQxUK1QKthDpQxzuRyazSaLAP3CF76A4XCISqWCL37xi3jw4AF+/Md/HN/4xjfwy7/8y5KuXJHbUWT/I/7pF6LY+t//A37yum30OjU+fO/f/Vl896/8Ofz875/gB35s+b+8cQe//4tRaP/SF/E5XogAAHQIfPpv4ae/8K/wl3/59/Ez3/MDcAMA0jh78Mfwfdd4k8eOpZtryFVrANwj2ojUeCeRprzGMM5U5LmMR8G5e8YJAfLAkWA/ODjAzs4OywReWVnB8vIybDYblMr32oKSttlqtdBut1meEWU722w2VCoVlEoldDodKBQK5q3R6/XMXOXrt77f63sZ8MxadhLGuVsnPYBx7H+/30e5XEYoFMLt27dRKpWwuLiIjY0NLC8vw+l0jqjpYsQl/c2nxjebTZaJSxpIuVxGt9uFXq9n7Sx9Ph/jQbRaLX7yJ38Sv/mbv4nPfvaz+OIXv4ijoyP87u/+LgwGw7ndjzQflUoF2L4LP/O130Njbh2AhPvUu4U/FgT+xm4EAAmSOspZ4LUrfkgzIQEsvwbgXhUPRQQwHG7g2z795/EbX/qb+Ph3zTx88N1D/Odfu4/gTzkl3bdi7IZoWozznIiazUVem4sgzhOFQjEytuFwiEKhgNPTU+zs7CAUCsHr9eLq1atYX1+H0+mEUqlkpRL5Y1SrVdTrdVY2Qa/XQ6PRsApzg8EA9XqdXQslCvKubxrjh1WIAE9ZkPCTTGqHEj877kFIsfPAQ3J1b28Pu7u7KJVKMBqN2NjYYPVF1Wo14yHIZOG1j36/z8oY8hoIxYAUCgW0Wi0YDAbWztLj8Yy4cfkJ9elPfxof+chH8JnPfAZf//rX8YM/+IP4rd/6LUay8iw/21n1dmx89LsE4pVHCZkQoNXwJpcbi1eBX3r7EJUfW4YZIvZw7w8B7fcsw8/uuRt/8n/7Bfzhp67h1at/Gt+7Vsc3/+9/h8pf+n38x+82AxNct6KQuIxXhhfc/HEus2Hw3xnnWqbnSZndlAZRKpVgt9uxvr6Oq1evwu12nyskRcflnz1floGC2sjLR5+hItd8CcuL7sOHBU9NkNBEklJ5x+1SUkKGZ8cBjHAc2WwWd+7cwdnZGUtl39zchN/vH+E6xFBtOka/30e9XmccSCQSQSqVQrVaxXA4ZOX+FhcXsbCwAK/Xy3rh0rHEie71evEHf/AH+OQnP4kvfelL+Jmf+Rn89E//9MQI2nG7PQD07r6F/9AGPvNHbnCvb+C/+/s/hM9/3/+Av/OZd/APv2OG00xa2P0XP4m/Hfok/vlf/DjU3D3V+L4Xv7BzhOjuHexngB/8iV/Ctdn/0rcH0mHp/Fh5V7EocKQ+O0kYjYOURwgYLezN1+OtVqsIh8Os+rvdbsfm5iZeeeUVrK2tsUrz/L0WOxE2m01MT0+z/s9TU1Ow2WysdzFVxp+dnWVay7gxf1jxVAUJTzDSpBNDmgFpaS5qMLzwoYzeg4MDxGIx9Pt9lvvhcrlG3IJiDkSv10O1WkWxWEQqlUIqlWLxH+Tyo2xSl8sFj8fDmkpRT9px10kwGo34jd/4Dbz55pv4uZ/7OXzyk5/Ed3zHd0h+l0D3Y+R43UP86k/9NA58fwe/+l2jeof9e/8lDr70d/EjP7QG3/yn8Ke/cw0mpHDn3/w+7s78Cfzzr/9j/OiahOGjMcF3/Y/CJ4zjIv5D6jrFZ8P//35MmnFmkljwiO5TvV7H8fExK2pEHhqxEwAfM8RX4Q+FQtjb24NC8dCtrNPpWKnG6elpWCwWmM1mmEwmtNttGAyGkYZi48b8YcRTESRSuxKvSfAM+CTVeNzORV3g9vf30Wg0MDMzg2vXrmFtbQ06nQ7D4ZDZwnxZgE6ng1qthng8ztpFxmIxDAYDGI1GOBwO1jeFsnGtVutIyb7LjE+hUCAQCOAXf/EX8ZnPfAaf//zn8fbbb49Ej0qp8bywBQr48t/8LvzFL8/gc3/4V/HGOZnQR68PTE2JQSYttDpl1Gs9dIExHMr58T7qe5MEPf+9R9FGpI4t/k2CpF6vI5FIYHt7G3fv3gUALCwssL5EVKWNz48aDB62Ak0mk7h9+zZ2d3cRCoWY0HA4HKwCPwAWBt9ut9HtduF2u5nmIs5vmSN5yqA4DbI9pST5pGI3PEHZ7XaRyWRwfHyMnZ0dFnS2trbGWlLScUhNbbVaaDQaKBaLyGazzAOTzWbRarVgMplgsVhYpic106ZiyrxGI8XzTBImf+pP/Sl84hOfwFe+8hX86q/+Kn70R3/03OekbPeHQuRNfO8/LeGP/8u38Q8/aR+ZqMNhB4f/1/fi5meB//Wr9/A7r3Kmzc/+Is7+/Wfxxz75BkL/6V184ZP2JzbBx2km/LWInxe1kstwYfQ5/oc3p8jdv729jXA4jH6/j6WlJdy8eXOkE4CozQyHQ0xNTcFsNsPtdqPZbMJqtUKv12N+fp7VH6FMaL1eD6/Xy9zGJEiIqJXxHhTDy2wRl4T48KmkYK/XY5mloq3LV82Seji8ICFNhOIEpqam8G3f9m24evUq63TfbDYBPAyVpj4tmUyGqbLRaBS1Wg1qtRperxcrKyuYn5+H2+1m1cHINKLzS4Vlj9zECQv1m9/8Jj7+8Y9jfn4eoVDo3LWdO073EP/vD38X/uyvA5/+tS/hX/1AcESrGA6HQPq38GeWPoO9f3Afd3/iisRZK/iDH5/Ff/XOP8D9uz+BKxPGOEkQPsrnpT4jJUQmnUvkj3hPEt37Xq+HSqWCb33rW/jWt76FSqUCk8mEN998Ex/5yEdGyjBQoBlPYg+HQ1YygKry8+USKXhQrVaj1WqhVCqxRuh6vZ4RrSL/97LzJCJHKV7rUzVt6IRitqb4Wb5gjfhAaFF3Op2R+iJU6YwaTVOUYbfbRaVSQaVSQTKZRDgcRi6XQ6PRQL/fh9Vqxfz8PBwOByumTDkwNIH4GyXleRC5jUn46Ec/yrSSP/zDP8SnPvWpEU1rZNEV7uILn/k4Pv/WPH7qS1/Dz4yQqNz59r+OX2+/gV/87k1In96Cj/83nwZ+5TfwzdPPYnNZ6jOPjsvuOZfx6kz6jhSxSzEgmUyG1VvN5XJwu93Y3NzEysoKS+cHcC5imYSSSqXC9PQ0qwJH5+AjmgEw09hkMjETmd/0xvFdL7MwmYQnLkj4nQQY3+B7OByOtHukh8i3gKDv8ElYZ2dnqFQqWFtbw9WrV1ktTgAsjT+VSiESieD09BSnp6doNpswGo3w+XxYX18f6XBPGZykKbXbbcnaou9ncRB++Id/GF/5ylfwa7/2a/jUpz41cg/YsZgQeRP/6Ou/jr92LtBMhAbqCSkeZoMDwNkjjXMSLiNERM3jUe4TL1h5AUCcCPEbFDMUj8ehVqsRCARw8+ZNeDyec1HLZBLRZsW3CSUzRhyD+NmpqSnJ6F5R8J3bFCTux8uMp86RiElgtEjr9Tqq1SpKpRK63S5sNhsLZxcjQmu1GnZ3d7G3t4derwev14vr169jZWUFAJDL5ZBOp5FOp1kv3HK5jE6nA6/Xyxo98e0cLBbLufqsYo1Q/r3Hwfd///fjc5/7HH7zN38TP//zP38+tLp7hF/5zMfx+bc28L/8p3+L/+mGbfJ5lRpocYhYfojhkvRHQmf3ADhhNAwx6VCPYqpcFpflUPjXx7nFaf5UKhWcnJxgb28P4XAYFosFGxsbuHHjBhYXF8/F6PD/k8bLaylSAWWiVkwmNYBz5i2v5YimjRTx/LILkycqSESOhG4mEViiIInFYkilUuh2u1haWmIJVfRQqGByMplkEYtWqxWBQAALCwswmUxIp9OsEhkJkXa7jampKXg8HtaBze12s9qaVFdEyg7nr2OcW3qSG1cKRqMRn/rUp/Dbv/3b2NnZwauvvjry/umv/WV89svAD/37L+Fvf9R+8aS79gn8We0/xi/9zlv4m699VMIzc4o//JUvA1v/BFszkwXJOLyfiS9+56L/RfBkLh8e0O/3kUgksLOzg9PTUzQaDaysrGBrawter1fSDOWPyYPXNCjGhE+f4E0pGjOfkyX2lCa+b9I5X3YhAjxhQcIvRKn6HiREer0e4vE4tre3USwWodPpWB0I/qF0Oh0cHx/j4OAA6XQawEPm3GKxIBqNsgK/hUIBzWYTCoWCxXu4XC643W72eep/ImVm8RN4HL8z7lrpei/Cq6++it/+7d/GO++8g9dff/29Nwq/h7/3V74M/NDv4J/8Sefl0rGt34m/8c8/iV/78T+LHwn8Bv7ZD7+GGZImrQS+/I9+EJ/9hg8/9Z//PDafo5oZouovck38QqV5UKvV2Eayu7uLVquFubk5GI1G1geYJ2epU6Jer4fVaoXP54PNZhtpk8GbO+Qe5scFQNK05bWkSebby6iRXHQNT02Q8CclDoQ0k2q1ikgkwkwVqoNJmgLZuMVikYU+F4tFxqwPBgMcHR2xvrODwYC59KiRFBUyItVUqoerFNPOe2v465pk71+GC7h69SoA4P79+yPCMvQf/gn+dRsw/ee/jm+78tcnHOHP4Vf2/xY+BgDQYv0v/CbeUvwEPv1XP4LZn3BhedEONWpIHMRRNX0Uf/+rt/DX/4j1uaoTMUmQ8K/z4e/pdBq7u7s4PDxEoVBgdVJVKhVOT09RqVRQrVZZNfl2u41+v88I1X6/zzJ7eWEyHA7PzQme2+C1HH4j5OvT0mfHbTbidb/IuOganrhpQxAlOAmIUqmESCSCs7MzpFIpluNADaAUiodxAvS54+NjnJ2dMfUyEonAZDKhVqtBoVBgcXGReWBIG+FTvNmFXlDlW5zEdD1PioV/7bXXAAC3bt0aed3+bX8PX/pS/RJHmMHC6Ddx88f+DY5/5P9A9mQXdyJlADq4164iuGjD2FpIHyDEeznp3g4GA+RyORweHuL27dtoNBojdUUikQjC4TArKuVwOOBwOFj4ezQaxcnJCRqNBhqNBoLBIJxOJwuI5N2Z4qbCCxGetOWFEP/9cdf1ogsQcf4/M42EtzNFcwZ4aKrk83nEYjFW04PPuqTFXq/XWUvIaDSKfD7PyLFoNMp8/U6nE4FAgGkg5KoD3oto5CeDaOOKpox4o8h25hP9Jmkxk+B2P0zmLxaLI43K9Ytv4NsXL3mDu110z72og3X5FXz78kWfe3YY570RM4x5Lwt9ju5zNptl0cfxeJw1+KYOeNlsFrVajZVI1Ol0rBAzNSFLpVK4f/8+K9hsNpvP8TDjSibyGeMiZyJFyvJ4khvQB4VHFYJPTJCIqh6BFi71ka3VaiyjlpKg+IChRqOBRCKBO3fu4P79+8jlcgAeqrmtVoslWFHwEPAwZL7Vao0UE+r1egDOT9aLroGf6PxuxJNw75dMm56eRqFQYCHdLyP4XV3UUHmTgmIzgPP3eTgcIhaLYW9vD/l8Hg6HAxsbG7h69Srm5+cBAB6PhzUs12g0rGSAVqtFuVyGz+fDwcEBq5pHleocDgcraA2MtuXgNxRRiIiChCAKFf71DxOeivtXtDWp7kM2m2XFkSmLVnwI9XodmUyGdaSjaubD4ZB5XKamppgGU6vVUKvV0Ol0GLNOgkShUIzUSeWLLPPjpL9FwlUk2sQf4NEmzPT0NHK5HHZ3dx/7Hj+vGLcT81oJaWT0bMRnMhgMkEgkcHp6yjoRbmxsYHFxkZme1KyKGmJdv34dq6ur7DgUpUy1ZY6Pj+F2u1nxonGCg/8fGDV9xDlBn33RtY/LYtJ1PjFBQouLr9CuUqnQ6/VQr9cRjUYRCoWgVCphNpuZxjAcDmEwGFhGZbPZZIVkKCTZaDQysowECWk29HDJrQe8V85QqVQyT434uYvsdXHnEYUO//uywuSjH/0oc2e/jBinqYlaCjVsJ3KdPstrAJ1OB06nEwsLC7h+/fpIaYh2u41arcaytbVa7bm4EJfLhUAgwPrUpFIpnJycwO/3s7HwwoQfHzAaSMm/Ps6D96ILk3HXd9m5/dRC5GlArVYLmUwGp6enODw8hNlsxszMDJrNJtrtNvR6PRMk9F2KAVEqlWwHMRgMmJqaOlc8mbQQsccIPynF10VIsfWi+iqFR508FNX6YYGUIKFNhvfk0ULlYzVMJhOmp6cRCASwvLzMest0u10Ui0UUi0VUq1VWpZ83p2kTstvtrBk49alpt9sjYxEFB703TvMcJ0heNnxgHAmdXHSTlctlHB0d4cGDB9jZ2YFSqYTFYmFEK7HwxKVYLBYEAgFYrVY0m00WOs831CaNY5J9Kpol/HvjcJHJIvXayziJnhToOfCLnMxOnhMRgwMVCgWrDUJZ2DSfarUaq2DXbDZZW02dTseydvm8GoPBALPZzASYOBdoLHx6hqhx8n9LPe+XgQ+RWifjaAApPFGylRckAJgbl3aCqakpVt6u3W6z2iFarXbE9lUqlXC7z1c1B86rnOJNEDUOUdBcJEguc53v53sfRoiCROSp6LnwGwR9h1o+AO954BQKBdMsyuUyer0eDAYDI1D56vB8voxGo2HJerx7X4oXuygm5MMAKU8m/R7Xw+eJmzb0ENrtNrLZLEqlEqampnD9+nV87GMfw3D4sHJ3PB5HpVLB7OwszGYzM21UKhWLJ+GFA997lt85pMguek2K45AFybODFDHJ/+bf479DC5oED2kaAFj3u2azyfg2l8sFnU53rrBzu91mle8ov0oswUnc3KT5cZFG+zJoJIC0Oc+nKUy6zidKtg6HQ5YfE41GWV6EVqvF4uIiAoEAut0uUqkUK7xMWZ3NZpPxGrztDIxqGUTQyYv35QaZHXw8B/BQy221WgAAg8HAuBRgNN2BTKBMJoNqtYqFhQU4nU7odDp2fJpr4gIRN6eLBM3LgEk8oNTGLOKJh8hnMhns7Ozg9u3b2Nvbg9frxcc+9jHY7XYYjUakUinEYjEcHh7i9PQUDocDnU4HWq0Wer2eFRYS3W18pi6fHyEGmNE4ZHywmLSzj+OzRGKcN5d57UShUMBsNjOPHoEvupNIJLC7u4uzszOUy2WYTCaWoyN1bik+5KLreZlwkQZ/0eb9xE2bSqWCcDiMk5MTRKNR1geEStTV63Vks1kUi0VWqaxQKKBUKqHRaECn053rkUsXArxXsIafYKLQkfHBQ3wW43Y2KXucFzg0gfv9PotkrdVq0Gg0zCNDoF6++Xwe+/v7OD4+Rr/fZyUkZmZmRjQSfmyPQqa+TBuVFDVAr/PguSwpPHGvDS10m83GighRBCrVT+12uzCZTJifn2fuX8oKpkHTb5EH4clc/uJepof7YYL43MTnTM+30Wggk8kgHA4jEolgfn6eVbYDHpq/tVoNp6en2N/fx507d5DJZBAIBHDlyhVsbW3B4XCwZuB0DlET4efcuDG+TBiniY1zcozbrJ9KPRLgYRq3TqeD1WplMR69Xo9VRdNqtTCbzZiamjqXlclfmCgxpXz9Ml4+iM+WAhvL5TKrtUptM4GHc6/T6SCTySAUCiEej6PdbrP6NS6XixH6RMqOOy//+8OOcRqLiCda/FmGDBkvN8bxkM9TuQoZMmS8oJAFiQwZMh4bsiCRIUPGY0MWJDJkyHhsyIJEhgwZjw1ZkMiQIeOxIQsSGTJkPDZkQSJDhozHhixIZMiQ8diQBYkMGTIeG7IgkSFDxmNDFiQyZMh4bMiCRIYMGY8NWZDIkCHjsSELEhkyZDw2ZEEiQ4aMx4YsSGTIkPHYkAWJDBkyHhuyIJEhQ8YjQ6zQKgsSGTJkPDaeeF8bGTJkvNzgCz9XKhXE43FZkMiQIePyENtT7O/v4w/+4A9k00aGDBmXB99tr1KpYH9/H2+//baskciQIePR0O12kcvlcHx8jO3tbcTjcVkjkSFDxqOh3W7j5OQEt2/fRigUwnA4lAWJDBkyHg3tdhv7+/t45513UKlUsLq6KgsSGTJkPBrq9ToODw9x9+5d9Ho93LhxA/8/mPYC9ADw6H4AAAAASUVORK5CYII=",
"path": "images_version_5/image_22.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, in the diamond ABCD, the degree of angle OBC is ()
Choices:
A:28°
B:52°
C:62°
D:72°
|
Như hình vẽ, trong tứ giác ABCD, số đo góc OBC là ()
Các lựa chọn:
A: 28°
B: 52°
C: 62°
D: 72°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, in the diamond ABCD, the degree of angle OBC is ()
Choices:
A:28°
B:52°
C:62°
D:72°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, in the diamond ABCD, the degree of angle OBC is ()
Choices:
A:28°
B:52°
C:62°
D:72°
|
As shown in the figure, in the diamond ABCD, the degree of angle OBC is ()
Choices:
A:28°
B:52°
C:62°
D:72°
|
110
|
22
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAABoAAAATVCAYAAACDhxbfAAEAAElEQVR4nOzdZ1gU1/s38C8dQaoUK4iKFRDEghWwoGJvSGI3JsZeo4kaS34pajRqNNFojGDBXhG7gijYUJpdERBBadJ7meeFD/5V5ixbZpddvD/XxQvO2b3n3jKzM3OaGsdxHAghhBBCCCGEEEIIIYQQQkiNoV7dCRBCCCGEEEIIIYQQQgghhBBhUQMQIYQQQgghhBBCCCGEEEJIDUMNQIQQQgghhBBCCCGEEEIIITUMNQARQgghhBBCCCGEEEIIIYTUMNQARAghhBBCCCGEEEIIIYQQUsNQAxAhhBBCCCGEEEIIIYQQQkgNQw1AhBBCCCGEEEIIIYQQQgghNQw1ABFCCCGEEEIIIYQQQgghhNQw1ABECCGEEEIIIYQQQgghhBBSw1ADECGEEEIIIYQQQgghhBBCSA1DDUCEEEIIIYQQQgghhBBCCCE1DDUAEUIIIYQQQgghhBBCCCGE1DDUAEQIIYQQQgghhBBCCCGEEFLDUAMQIYQQQgghhBBCCCGEEEJIDUMNQIQQQgghhBBCCCGEEEIIITUMNQARQgghhBBCCCGEEEIIIYTUMNQARAghhBBCCCGEEEIIIYQQUsNQAxAhhBBCCCGEEEIIIYQQQkgNQw1AhBBCCCGEEEIIIYQQQgghNQw1ABG5cnNzg5qaWqW/oKCg6k6NEKXQuHFj3n0kLi6uulMjnwgKCuL9rNzc3Ko7NVIFjuNw5coVrFixAp6enmjevDksLCygo6PD+5nOnTu3UoyVK1fyPnblypUKfz2EqLqJEyfy7k8+Pj7VnRrhwfdZqampVXdaREGE2l99fHx440ycOFEueRNCxEP7JiFEGcXFxfEemxo3blzdqakkzepOgBBCCCFEXnbu3Ik1a9bg2bNn1Z0KIYQQQgghhNRYBQUFyMrKQn5+PoqKiqCjowN9fX2YmZlBQ0OjutMj5LOl8Aag2NhYNG3aFBzH8dYPHDgQ/v7+Cs6KEEIIITVJXl4exo0bh+PHj1d3KoQQQgghhBAF8PHxwaRJk5j169atw4IFC+SaQ0lJCZ48eSJTDDU1Nejr68PIyAiGhoZK2XgSHx+PoKAghIaGIiIiArGxsUhNTeV9rIaGBiwtLdGqVSs4ODiga9eucHV1hZmZmUw5SPteq6urQ0dH5/2fiYkJNDVpjASpuRT+7fb19WU2/gDAuXPnkJycDEtLSwVmRQghhJCaZNKkSdT4QwghhBBCyGekqukpfX195d4AlJiYCHt7e0FjmpmZoW3btnB0dESXLl0wYMAA6OjoCLoNcWRnZ2Pnzp3Yv38/7ty5I/bzysrKkJSUhKSkJFy+fBkbNmyAuro6unXrBi8vL4wdOxZGRkYS5yPUe62mpoY6derAwsICNjY2aNWqFVq1aoUOHTrAzs6Opr4lKk+hDUAcx2H37t0iH1NaWoq9e/fK/YBMCCGkZoiLi+M90W/cuDHNXf2Z8vHxweHDh6s7DUIIkSvWGmS0NhkhhJDPUWxsLIKDg0U+Jjo6Gnfv3oWzs7OCshJGWloaLl++jMuXL2P9+vUwNjaGl5cXFixYgObNm8t9+9nZ2fjtt9/w999/Izs7W5CY5eXlCA4ORnBwMBYtWoSJEyfihx9+QMOGDQWJLwmO45CWloa0tDQ8fPgQAQEB7+tMTEzQo0cPjBw5EkOGDIGBgYHC81MmmZmZ2LhxY6VyY2Nj3rV0iXJQaAPQ1atXERsbW+XjFNEiTwghpGaIi4vDqlWrKpW7urpSA9BniOM4rF27llnfr18/DBkyBC1btoSRkRG0tLQqPUbWqQgIIUQR+H77AGoAIoQQ8nmqasahCj4+PirXAPSpzMxMbN++HT4+Pli0aBGWLFmCWrVqyWVbhw4dwty5c/H69Wu5xAeA/Px8/P3339i5cyfmzJmD5cuXQ19fX27bk0RGRgZOnjyJkydPQldXF6NHj8bChQthZ2dX3alVi8zMTN5zUGtra2oAUmLqitxYVUMxK0RHR+PevXvyTYYQQgghNc7Nmzfx6NGjSuVqamrYv38/zp49i2+//RZubm5wcnKCnZ1dpb+6detWQ+aEEEIIIYQQaYgz41CF/fv3o7i4WM4ZKUZxcTF+/vlndO3aVfAGmqKiIkybNg2jR4+Wa+PPp9tcu3Yt+vfvr5DtSaqwsBC+vr5wcHDAqFGjkJCQUN0pESIWhTUA5ebm4siRI2I/XtzGIkIIIYSQCtevX+ctHzp0KLy9vRWcDSGEEEIIIUTexJ1xCADS09Nx+vRpOWekWOHh4fDw8BBserbc3Fx4eHhg27ZtVT62bt26mDBhArZv347g4GAkJCQgOzsbpaWlyMvLQ3JyMu7cuQM/Pz/MmTMHDg4OVcYU6nXIC8dxOHLkCFq1aoW///67utMhpEoKawA6cuQI8vLyxH78/v37UVJSIseMCCGk+sXFxYHjuEp/jRs3ru7UCFFJrMVIhw8fLlPclStX8u6rNNUSIZLz8fHh3Z9o2k5Caq6JEyfy7vfU8ZMQIgRJjyXVdexZsWIF77Hw07+SkhK8ffsWz58/x6lTp/Djjz9WudbP/fv3MXPmTJlzzMnJgYeHR5XrKXl4eODChQtITEyEj48Pvv76a3Tv3h0NGzaEgYEBNDQ0oKenBwsLC7Rv3x5ffPEFNm7ciMjISDx9+hTLly+Hubm5zPmyVPVel5eXIz8/HxkZGXj+/DmuXbuG3bt3Y+HChXBzc4OOjk6V28jLy8OMGTMwfvx4FBUVye21ECIrhTUAsQ6unTp14i1PS0uDv7+/HDMihBBCSE3z5s0b3vJWrVopOBNCCCGEEEKIvImaccjFxYW3/OzZs0hJSZFnWjLR1NSEiYkJmjZtikGDBuGnn37CkydPcOzYMTRs2JD5vD179uDWrVtSb7e8vBxjxozBjRs3mI+xtbXFlStXcP78efTp0wfq6pLfWra1tcWqVasQFxeH9evXw8jISOqcpaWmpoZatWrB2NgYTZs2Rbdu3TBu3Dj8/vvvCAwMREZGBo4ePYqBAwdW+Rr37NmDkSNH0kAGorQU0gAUGxvLbDletmwZunTpwlvn6+srz7QIIYQQUsNkZGTwlhsbGys2EUIIIYQQQojcsWYc0tbWhp+fH3R1dSvVlZaWYt++fYpIT1DDhg1DaGgobGxsmI/ZsmWL1PFXrlwpsjP+0KFDce/ePbi7u0u9jQ/p6elh/vz5ePLkCby8vASJKZRatWph+PDh8Pf3R1RUFAYPHizy8adPn8aECRMUlB0hklFIA5Cvry84jqtUbmZmhn79+mHcuHG8zzt79ixSU1PlnR4hhBBCaojc3Fzecg0NDQVnQgghhBBCCJE31oxD/fv3h42NDYYMGcJbr6qdzhs1aiRyCrvTp0+jvLxc4rhhYWH49ddfmfVjxozB0aNHUbt2bYljV8XS0hIHDx7E9u3bUatWLcHjy6pNmzY4efIk9u3bB319febj9u/fj61btyowM0LEI/cGII7jsHv3bt46b29vaGpqYvTo0dDW1q5UX1JSgr1798o7RUIIIYTUEHwdTgghhBBCCCE1j6gZhyo6m48fP563PjIyEuHh4XLLTZ569OiB7t2789ZlZmbi8ePHEsUrLy/HV199hbKyMt76nj17wsfHR6rp3iTx9ddf4/Lly3JdG0gWX375Ja5evQozMzPmY+bPn4+4uDjFJUWIGDTlvYGrV68iNjaWt27s2LEAABMTEwwcOBDHjh2r9BhfX1/MmzdPrjkSQgghRLUkJibyTvfGmnf56dOnzNFBH7Kzs5M5N6FkZWXh7du3KC4uRu3atWFmZibWYqSEEEIIIYR8DlgzDhkbG2PgwIEAAA8PD1hYWPCu+ePj4wMnJye55ykP/fv3x7Vr13jrXrx4gdatW4sdy8/PD1FRUbx15ubm8PPzg6am3G8hAwA6d+6MQ4cOKWRb0nB2doa/vz969uyJgoKCSvWFhYVYvHgxDh48WA3ZEcJP7nsva0ilra0tOnXq9P7/cePG8TYARUZGIiIiAo6OjvJKEcC7HsPXrl3DzZs3ER4ejocPHyIjIwPZ2dnIzc2FtrY29PT0oK+vj/r168Pa2ho2NjZo164dOnfuLHIRNmVQUlKCK1eu4M6dO7h37x6ePHmCrKwsZGdnIz8/H7q6uqhVqxZq166Nhg0bwtraGk2aNEH79u3h4uICCwsLheRZVFSEixcv4syZM4iIiEBMTAyysrKgoaEBCwsLmJubw8nJCZ6enujVq5dchp7yKSwsxIULF3D16lVERETgxYsXSE9PR35+PrS1tVG7dm1YWVmhRYsW6NatG/r16ydyTlYim+joaJw4cQI3btzAw4cPkZ6ejqKiIpiamsLCwgI2Njbw8PCAp6cnfQ4MZWVluHr1Kk6fPo27d+/i2bNnyMzMBMdxMDc3h4WFBVq3bg1PT0/07dsXJiYm1Z3ye5/e+Gd1MsjLy8P9+/clit2iRQtoaWnJlN+HYmJicPz4cVy/fh33799Hamoq8vPzYWJiAnNzczRq1Ai9e/eGp6enRCfoQrh//z4uX76MGzdu4NmzZ0hISEBubi6Ki4uhp6cHMzMzNG3aFO3bt0fPnj3Rs2dPpZpGbenSpRJN29C3b1+xHledI4gKCgpw+PBhnDp1CiEhIXjz5s1H9erq6mjatCm6du2KYcOGYcCAAbyfSVBQEG98Nzc3OWStet6+fYvz58/jypUrePjwIWJjY5GdnY2ioqL3i8AuX74cnp6eEseOiYnBxYsXERoaiidPnuDly5fIyclBQUEBatWqBVNTUzRp0gROTk5wd3eHh4cH77z0RH5U9RwiMzMTr169Euuxkv72NWzYUNB10t6+fYtTp07h0qVLiIqKQmJiIrKzs6Gvrw8LCwvUrVsXXbt2xYABA9C5c2eF/rYkJSXhwoULuH79Oh4/foy4uDhkZWWhoKAAOjo6MDY2ho2NDRwcHODq6gpPT08YGBgoLD+hZWdn48SJE7hw4QKioqLe/9br6OjAyMgIzZs3h5OTEwYMGABXV1eF3dyTh+LiYty+fRthYWF49OgRHj169P67l52dDY7jUKtWLZibm8PKygoODg7o3Lkz+vbtW+3rBHIch5CQEPj7++Pu3bt48uQJMjIy3v8uNWjQAJ06dcLgwYPRv39/iXvgFxYWIiAgABcuXEB4eDhevnz5/rzfxMQEtra26N69O7y8vOR+36VCaWkpAgMDERQUhLt37yImJgapqanIy8uDhobG+/sStra26NKlCzw8PNCmTRuF5MaijPcqysrKcP78eQQEBLx/H7Ozs6Gurg4DAwM0btwY9vb273/XVPl4xkfUjEOjRo1633FKU1MTX3zxBTZt2lTpcX5+fli3bp2g14CK0rRpU2ZdVlaW2HHKy8uxatUqZv3q1athaWkpUW6yUqb7D3xcXFywevVqzJkzh7f+0KFDWLp0KRwcHBScmfBSUlI+ajxNSkrifVxJSYnE56A2NjYip9STVFJSEk6cOIGgoCBER0fjzZs3yM3NhaGhISwsLFCvXj24u7vD09MT7dq1g5qammDbrkq1XydycpSbm8vVrl2bA1Dp76effvrosUVFRZypqSnvY+fMmSO3HN++fcstW7aMs7Ky4t22uH9WVlbc3LlzuZs3b8otV2kkJCRwc+bM4czNzWV6fS1atOCWLl3KRUdHS7R9V1dX3niBgYEfPa64uJj7/fffubp164qdk6GhIbdmzRqusLBQwHfsY/Hx8dz06dM5Q0NDid4vNTU1rlu3bpy/v7/U2y4tLeWMjIwqxdbU1OSys7OlinnmzBlmzrLEPXXqFG/MoUOHVvncXbt28T53woQJlR4bFBTE9ejRQ6LPYvjw4VxMTIxUr0sRrK2tefOOjY2VKM6ECRN44+zateujx5WXl3M7d+7kmjZtKvZ7qKOjwy1evJjLysoS7oXLgPVahfgT9b4HBgbyPsfV1bXSYyMiIrhBgwZxampqYm/bzc2NCw8Pl9v7xnEcV1BQwG3ZsoVr3bq1xO+NhYUFt2rVKi4zM1OuOYpLXt8DlhUrVvA+fsWKFTK/luLiYm79+vXM8yDWX9OmTbn9+/dXiifpa+MjybFZWkId/8SNExcXx02ePJnT1dWt8r3dsGGD2NsvLS3l9uzZw3Xo0EHi75uRkRE3b9487vXr1xK9ZlUn7m9WVT6ncwjWaxXir6r3XdxjSkpKCjdjxgyuVq1aYm+7SZMm3NGjR+X0rv0ff39/zt3dnVNXV5fovalVqxY3efJk7vnz53LPUUiZmZncwoULmdfifH+NGzfm/vnnH66srOyjWNWxv4rr1atX3B9//MH16dOH09PTk+r7r6mpyY0cOZK7deuW1HnI8lr37dvHtWzZUqLP6cSJE2LlkZ2dza1cuZL3mpL116dPH+7Ro0eCvRefSk1N5X744Qep7k+0bduW27NnD1daWipILqp8r6K0tJTbunUr16hRI4ly4rumU8Q5n7wEBQUxX29wcPBHjw0LC2M+9vjx44LmFRsby9yWENcOFS5cuMDczqFDh8SOc+7cOWacVq1aceXl5YLlLDRFvdd8ysvLRZ7/f/PNN3LdvqKwroOF+Pv0ePsh1mdrbW1d6bEvXrzgxo4dy2lqaoq9bUdHR5HbF4IyXSfKtQHIx8eH+UJevHhR6fHTpk3jfay5uTlXXFwseH579+7lLCwsBP8CR0RECJ6rpMrKyrgNGzZIdNIv7p8kN//EOal68OABZ29vL3U+tra2vN8nWRQXF3M//fQTp62tLfP75erqyj19+lSqPAYNGsQb8/Tp01LFW7BggchcpY07d+5c3nh//vlnlc8V54SzqKiI+/bbbyW6mf7hn7a2Nvfvv/9K9drkTZENQK9evZL45teHf5aWllxYWJiwb4AUlLkBqLy8nFuxYoVEJx4f/qmrq3OrVq2Sy/t2+PBhrn79+jK/R5aWltyRI0fkkqMkakoD0IsXL6Q6Ifzwb+TIkVx+fv77mJK+Nj41rQFo8+bNEt0cFLcBKDAwkGvRooXM3zsDAwNu69atEr1uVabIG8o15RxC2RuAjh07xtWpU0fqHAYNGvTRcUwo4eHhXMeOHWV+j7S1tblVq1YJduNZni5fvizRjepP/7p168YlJia+j6eMDUAhISGcq6urxA16Vf2NGzdOkA5P4rzW9PR0rl+/flLn+u2334r8PoaEhEjdyVVPT0/wc73y8nLu77//5gwMDGT+nBwcHLg7d+7InJOq3quIjY2V6bhmZWXFXb9+/X08VW4AmjhxIm/ujRs35m20aNWqFe/jhwwZImheimqUOHToEHM7Fy5cEDvOqFGjmHGU4RxIlOpsAOI40Z2s9fX1uby8PLnnIG/K3gC0detWqTuBAO8a6j7t/CIEZbtOlOvqXT4+PrzlXbt25Z1SoWKBtk+lpqYiICBAyNSwfPlyjB07lncOUFlx1bwAdXl5OSZPnox58+aJtd6BpIR8fVeuXEGXLl0QHR0tdYxnz56hR48eePr0qSA5paWloXfv3li+fDmKi4tljnf16lU4Ozvj9OnTEj+3Z8+evOVXrlyRKpeqnid0XFb+ksjMzETv3r2xbds2qb97xcXF+Prrr7FlyxaZ81FVUVFR6NSpE3OBTHEkJyejV69eCA0NFTCzmqO4uBijRo3CqlWrUFpaKlWM8vJyrFixAosWLRIsr8LCQkycOBGjRo1iDteWRHJyMkaOHInFixdX+++dqouOjkaXLl1w584dmeIcOXIEvXv3Rl5enkCZ1SwzZszArFmzkJ+fL1jM8vJyLFmyBO7u7njy5InM8XJycjBt2jSMHTtWkHMP8g6dQyjGunXrMGLECKSnp0sdw9/fHwMGDBD02mXz5s3o0KEDbt++LXOs4uJirFixAv3795doWh1F27VrFzw8PCpNISqJ69evo0uXLnj+/LmAmQkrNDQUV69eRXl5uaBx9+zZA2dnZ7kv3v3q1St07doV586dkzrGtm3bmAvbHzx4EK6urnj58qVUsfPz8zF69GicOnVK6vw+jefl5YXp06cjJydH5nhRUVHo0qUL/v33XwGyY1PGexX37t2T+bj28uVL9O7dG/7+/oLkVF3y8vJw5MgR3roxY8bwTu3Euud45swZpKamCpqfIsTExDDrRE0P96GioiLm/VY9PT14e3tLldvnon///rC1teWty8vLw+XLlxWc0eeD4zjMnj0b06ZNk+k6b/v27Rg7dqzU93A+pazXiXJrAIqLi8PVq1d561gH3c6dO6NZs2a8dZLM81+V33//Hf/73/8Ei6dsZs2aJej7JS+3bt3C4MGDBbmIevXqFYYMGSLzTZP09HS4ubnJdJOcT05ODoYOHYrDhw9L9DxWA4o0PyJv375FZGSkyMdIEzctLY33pNjS0lLmeZoLCgowePBg5sKGkqj4cRD6s1UFMTEx8PDwQGJiosyxsrKyMHToUJlu8tRE5eXlGDduHI4ePSpIvN9//505n7UkcnNz4eHhIZffhLVr12LmzJmCx/1cxMfHy3yT7kOhoaEYO3YsNcp9YtmyZfj7778FjVlaWgpvb2/89ttvgsYFgH379sHLy0uwC5DPGZ1DKMaWLVvw3XffCXLsCQwMxOzZswXICpg/fz5mz54t+L508eJF9O3bV5Cb2ELz8/PDV199hbKyMpljxcfHY8CAAR+tufi5eP78OVxdXeXSURR4dy7dv39/PH78WOZYFWuXfOj48eMYM2aMzN/9srIyjBs3Dq9fv5YpTkFBAQYMGMC8US+tkpISfP3119iwYYOgcSso472KR48eoVevXkhLS5M5p8LCQowePRphYWEyx6ouR44cYXYaYN1zZDUMlZSUwM/PT9D8FIHViFyxlog4goKCmDfPPT09BV2fpaZiNcYDEHwwA/k/ixYtwubNmwWJtX//fvz6668yx1Hm60S5rfLo6+vLeyGgra0NLy8v5vPGjh2LlStXVioPCAhAWloazMzMZMorJiYGy5cvZ9ZraWmhW7ducHV1RfPmzVG/fn3o6+tDQ0MD2dnZyMrKwqtXrxAZGYmoqCjcvXsXJSUlMuUkpJCQEGzdupVZX6tWLbi7u6Nbt26wtbWFpaXl+wN6VlYWsrKyEBcXh6ioKERGRiIiIkLwnlXAu0XE5syZU6m3srm5Ofr37w93d3fUq1cP5ubmyM3NRWJiIi5duoTjx48zL0QeP36MX3/9lff7I46SkhIMGjQIDx48YD5GXV0d3bt3x/Dhw2FjY4N69eohJycHiYmJuH79Og4dOsTMr6ysDGPGjEG9evXQrVs3sXKyt7eHubl5pd4oUVFRSE9PR506dcR+fUFBQVV+ltLEDQwM5N3X3d3dxY7BMn369Eo3brS0tNC9e/f3PS0sLCygqamJ5ORkhIWF4dixY8xeWhzH4ZtvvkFkZOT7BSFruoobYMnJyR+VGxkZoU+fPujTpw8aNmwICwsLFBYW4s2bNwgKCsKxY8eYF3ypqalYsGABc5Tn5+h///sfDh069FGZuro6OnbsiAEDBqB169awsLCArq4uUlJSEB0djZMnT+LGjRvMmAsWLICnp6fUv3slJSUYOHCgyJufmpqa6Nq1K9zc3ODg4IA6derA0NAQ6enpSExMxOXLl3HmzBlmg9/ff/+NZs2aYd68eVLlKAsfHx/e72Djxo0RHx9fqTw2NhaNGzeWf2JiKCkpwfDhw0U2/jRs2BBeXl4YPHgwrK2t3//eJCUl4c6dOzh48CAuX7780XH9xIkT+OeffxTxElTChQsX8Msvv1Qqr1u3LgYMGIAePXqgbt26MDc3R3FxMRISEnD79u0qO2tMmDBB5GPU1NTQsWNHuLm5wdnZGWZmZjA2NkZmZiZev36N4OBgnD59mtkof/LkSSxYsIB3oWIiPjqHkL/AwEDexY+bN28OT09PuLi4wMLCAsbGxkhPT8eLFy9w5swZBAQEMC9ed+3ahXHjxsl0HrlkyZIqbwo7ODjA3d0dnTp1grm5OUxNTZGbm4vk5GSEhobi9OnTzBEwt27dwrhx43D8+HGFLh4syt27dzF58mSRDXFWVlbw9vZGu3bt0KBBA2hpaSExMRFPnjzBwYMHK3UUe/r0KaZOnQo9PT15py8YU1NTODs7o3379mjdujVMTU1hbGyMWrVqISsrC2lpaQgPD8f169dx7do15vv18uVLeHt74/Lly4J/xl9//XWlRbINDAzQt29f9O3bF40aNYK5uTmys7MRHx+Ps2fP4uTJkygsLOSNt2LFCnh5ecHKygqPHj3C+PHjKzUCNm3aFIMGDULnzp1haWkJAwMDpKSk4P79+zh8+DBzNEl2djYWLlyIffv2Sf16x48fj6CgIJGPad++PUaNGgVbW1s0aNAAhYWFSExMRFhYGPbv3y+yEWr+/PmoV6+eoKMUlPFeRXZ2NgYOHIjMzEzmYwwNDTF8+HC4u7ujQYMGMDY2xps3bxAfH4+TJ0/i8uXLH303CgoKMGrUKCxcuFCqnKob61q0ffv2aNGiBW+dlZUVXF1deb+TPj4+vL9pyiokJITZ6X748OFixwkMDGTW9enTR+K8Pkeenp748ccfeetCQkIUnM3nwdfXt1IHCABo27YtPD090a5dO1hYWKB27dpITU3FkydP4O/vj8uXLzN/+3/99VeMHj2aefwQh1JfJ8o8iRyP8vJyrkmTJrxz1w0bNkzkc2NiYpjz3m3cuFHm3MaMGcOM/+23334037E4srKyuAMHDnDe3t7v14uR9yLeonTt2pX3tWloaHBLly7l3r59K1G8lJQUbteuXdzAgQPfz7GckZEh9vNZ8+p+ug5FnTp1uI0bN1a51lN6ejpznlfg3fzcqampEr3GCvPnzxc576K7u3uVC8AWFRVxv/32m8i1g+rXr8+lp6eLnRdrPtbDhw9L9PpmzJgh1vySksb99ttveeNs375drOez5hz+9DuipqbGffnll1x8fLzIeOXl5Zyvr6/I+aXFWZtIUeS9BtCn76Oenh63fPlyLjc3V2S8vLw8bvHixSK/K5GRkTK8cuGIszaPPLdjaWnJaWhofFTWv39/7v79+1XGPH36NFevXj3mezx//nyp82Wtqwe8W/B45syZXFxcXJVx8vLyuJUrVzIX9dbU1OTu3bsndZ5CE2qf+pSQawAtW7ZM5GezdOlSsRYNvnXrFtemTZuPnm9oaMiMLYmasAbQp+9FnTp1uG3btlU5x3NJSQnzfHDNmjUij4tjxozhHjx4UGXOJSUl3J9//smZmpoyY506dUqi90GVyHtNkc/lHEKIfV2W7Xz6Prdq1Yrz9/evMt6DBw+4Tp06MeO2a9dO6lwPHDggch/19PTkbty4UWWc8vJybu/evVzDhg2ZsTZv3ix1nkIqKCjgWrZsyczTxMSE27NnT5WLeF+/fp1r3rx5peezFpmvzjWAfv/99/fPt7S05GbMmMEFBwdLtFD5s2fPuMmTJ4v8vvz3338S58Zx7Nf66dpMmpqa3Ny5c6tcY/fZs2dc586dmXl+/fXXXElJCde2bduPyq2trbkDBw5Ume/+/ftFrh0s7Xnen3/+KfL9bdu2LXf37l2RMcrKyrh///1X5HG5du3a3LNnzyTOT5XuVYha+1JDQ4P7/vvvq1xH7eXLl7zrTrH2cWVeAyg2Npa5tt+mTZtEPve///5jvpdCXd/Ke12axMRErlmzZrzx1dTUqtyvPtS7d29mro8ePZI5V3mr7jWAOO7dccrExIQ3B01NTa6goEAheSiKuGvzyGs7hoaGlX6zXFxcuJCQkCpjhoaGilyXZ/jw4VLnq+zXiXJpAAoKCmImeezYsSqfz2rEcHR0lCmvoqIi5o0RIU7gX79+zS1btox7+vSpzLGkkZiYyPsjqKamxp08eVLm+DExMdzs2bO5nJwcsZ/DOqn68K9ly5ZVXpB/avbs2cx40jQU3r17V+Qioj/++KNEFxTh4eEiF8KdMmWK2LG2bt3KG+Pbb7+V6DXyLXioo6Mjc1y+C0UAVTaWVRBnUWMtLS1u7969EuV1/fp15kJwsh5LhCTvBqAP/+rVq8dFRERIFPePP/5gxps7d65EseSluhuAPv1bvXq1RHEfP37MWVhY8MaysLDgSkpKJM5V1GKUDRo0+GjhV3HdvHmTMzMz443ZoUMHiePJi7I3AMXGxvIeeyuOdWfOnJEoXkFBAefu7i7Wd1MSNaEB6MO/Nm3acK9fv5Yp38jISE5LS4s3vpGREXf8+HGJYz59+pSzsbHhjdmoUaMad8FYQd4NQJ/LOYQQ+7os2/nwb/jw4WI1XFfIycnhunTpwownzU24pKQkztjYmDeejo6OVAvovnnzhnN2duaNaWBgIPNxRQg///wz831s0aKFRB0c8/PzuUGDBon1mVd3A5CNjQ23Y8eOKm/KV8Xf35/T19fnzc3Gxkaq8zBxjk16enrcuXPnxI6ZnZ3NtWvXjhnrxx9//Kisc+fOEnX+vHTpEqepqckbf86cORK/BwkJCSIblSZNmiTRZxcbG8vsZAyA6927t8Q5qsq9iuvXr4v8Hl29elWieKKOGbLum4qycuVK3pw1NTW55ORkkc/NyspidmwT6vpWno0Sp06d4qysrJjxp02bJlE81vWdrq5ulZ2mlIEyNABxnOjjyZ07dxSWhyJUdwPQp38zZ86U6Lv6+vVr5n1MLS0tqRrqVeE6US4NQKxeDyYmJlxRUVGVz9+2bRvzg5WlRZ51887NzU3qmMqEdaI5ceLEasupqpMqGxsbLi0tTeK4JSUlXOvWrXljSnNhLqrXw8yZMyWOx3Ecd+PGDebNAzU1Ne7hw4dixXny5AlvjObNm4udy+vXr3ljzJo1S6a4r1694o1rZWUldgxxLpCOHj0qdrwP/fLLL3I5lghJUQ1AxsbGXExMjFQ59unThzemubm5VBfFQlOmBqA//vhDqtj79u1jxjxx4oREsYqKipgnCpaWljI1hNy7d4/ZeCFERwMhKHsD0NSpU5mf9b59+6TKLTs7m3NwcKjy+ymJmtQA1KxZMy4lJUXmfFkdlPT09GS6sHv58iWz00hVvVhVlSIbgGryOYQQ+7os26n4GzZsmFQ3iWJiYjhdXV3emNLchPvyyy95Y2loaIg1MoklKyuL2dN63rx5UscVQkZGBnNkRL169aT67cvPzxc52kTo/VWa35WEhARBz0EDAgKYjR/SnN9UdWxSV1fnLl26JHHcsLAw5qiHD/8cHR2rHO3PhzVjhKWlpcTv95QpU5j5DRkyhCstLZU4v2fPnjE7TQHgzp49K1E8VblX0b17d95Ympqa3OnTpyWOx3EcN3fu3Cq/R8raACRqxiFPT0+xYnh7e/M+X9rOd58SolGitLSUy8jI4F68eMGdPn2aW7FihcjRngC4nj17VjkS7EOZmZnMWPb29lK+esVSlgYgUTPuSHsuqqyUqQFo9uzZUsW+fv068/dUmoZ6VbhOFPwKITc3l9nTY+rUqWLFePv2LXMKLVlOsn18fHhjbtu2TeqYyoTVC0KSnkVCE3VSpaGhwYWGhkod+9ixY8zYkvR2CgsLY8Zp27atVCenFTZv3izICRVr+olXr16J9Xy+m8sWFhbcs2fPZIq7e/du3udL0uhY1QWSpD1YPlRUVMTs0SLtjXqhKaoB6ODBg1LneO/ePWZcZZj6S1kagMS94GBh3cCX9KSGNWpQQ0ODu3nzpkw5chzHbdy4kTe+u7u7zLGFoMwNQBkZGcweh4MHD5Ypv5s3b1Z5U0gSNakBKDAwUOZcz549y4wv6dSpfE6cOMEbu0mTJhKNQFYVimoAqunnEELs67JsBwDXsGFDiaY2/hSrp7yDg4NEcR48eMAczf/7779LnV+FsLCwStO9Au+mnpLmRrtQ1q5dy/xsZGn0io+PZ/5eCb2/KstNZtbUud7e3hLHqurYtHDhQqnz7N+/v8jYOjo6XHR0tFSxk5KSmPuRJFNKJSYmMu/n1KtXj8vOzpYqP457N2KL9dolPfdXhXsVt2/fZsZZsGCB1PmVlpZW2XlIWfbNT4macWj//v1ixQgICGDGEKJTm7gjF4T8mzp1KpeXlydRng8ePGDGk/XaVlGUpQFo9erVzDxqWocuZWkAcnR0FGuQCcvgwYN540p6Xa4q14nqENiRI0eQm5vLWzdu3DixYpiYmGDgwIG8dfv27WMuGlqVTxdBr6Asi0LLStVe37hx49C5c2epnz9gwAAYGxvz1oWHh4sdZ+fOncy6zZs3Q0NDQ9LU3ps2bRrs7Ox46w4fPoycnByx4rAWwr18+bJYz79y5Uqlsp49e6JZs2awsrISNG5FbCEYGBhgzZo1Uj9fW1sbo0aN4q2T5Dui6tzc3ODl5SX1852cnNCqVSveus/pfRRFXV0dmzdvlinGmDFjeMslfY9ZCwJ+9dVX6NSpk8R5fWr69Olo2LBhpfKgoCDEx8fLHL8mO378OAoKCiqVa2pqVrlgeVU6deqEsWPHyhSjJvL29oabm5vMcTZu3Mhb7uHhgZEjR8ocf8iQIbz754sXL3D9+nWZ43+O6BxCMX7++WeYmppK/XzWb9/Dhw9RVFQkdpw///wT5eXllcpbtWqFefPmSZ1fBWdnZ959PTc3F8eOHZM5vrT+++8/3vI+ffowr6fFYWVlhe+++07q56ui5cuX8173iVowWhomJiZYtWqV1M+v6jdnypQpzOvPqtSrV495fR4RESF2nL1796K4uJi3bs2aNTAwMJAmPQDAwIED0a9fP966q1evIiYmRurYH1KWexWsfdzc3Jy56Lw4NDQ0mOc2ys7Hx4e33MDAAEOGDBErhoeHBywsLCSKr4yMjIwwbtw43L59G9u2bYOenp5Ez3/9+jWzrm7durKm91mpV68es451r5bIZuPGjdDW1pb6+ULdf1GV60TBG4BYB0sbGxt07dpV7DisxqKUlBScOXNGmtSgpqbGWy7uTXhlp2qvb86cOTI9X1tbm3lTR9wdluM4HDlyhLfO3d0d3bt3lzY9AO9OrJYvX85bl5+fj1OnTokVh9WgwmqAEedxFTH5YosbNzAwkLdcqAagyZMny3SBAAB9+/blLf+cbt7Iuq8B9D5WZdCgQWjSpIlMMVjvcWRkpNg3Hm7cuIHHjx9XKtfQ0MDKlStlSe89LS0tzJgxo1I5x3E4e/asINuoqU6ePMlb3rt3b5m/PwDw7bffyhyjppk6darMMV69eoWLFy/y1v38888yx68wd+5c3vKAgADBtvE5oXMI+bOwsIC3t7dMMTp27AgTE5NK5aWlpbh//75YMQoLC7F//37eulWrVsnUmetDyraP3r9/n/c3HwCWLFkic/wFCxZAV1dX5jiqom7durw3WFJTUwVrVADeHZskvUn7IVdXV5H1fOdokmBdX0vSAHTo0CHe8iZNmgjSWeWnn35i1h04cEDm+IBy3KsoLy/H0aNHeeumT58OIyMjadMD8O5+R5cuXWSKoWh5eXnM+zcjRoxArVq1xIqjqamJL774grcuICAA6enpUueoKI6Ojvjnn3/w119/oUOHDlLFYHXeB8BswCT8RO2P+fn5Cszk89C2bdsqfw+rwjrPT0hIEPsYoErXiYI2AMXHx+Pq1au8dZL+0Ht6eqJOnTq8db6+vhLnBoAZr6ZcWKvS62vRogUcHR1ljmNvb89bHhcXJ9bzw8PDkZqaylsnVE/qQYMGMX8MLl26JFYMWRqA4uPjERsbW6m8V69ezNjixI2JieHt7d+8eXM0aNCgyueLQ9abCoDs3xFVp6+vL1MP0Aqf+/tYFSG+q61atYKmpmal8uzsbLx9+1asGKwGBjc3N5G9kiTVp08f3nJWozB5dxEfHBzMW8fqfSSpLl26wMbGRpBYNYG1tbXMFwYAcPr0ad6RBc2aNZP6gptP7969eTvz0H4lHTqHkL9hw4ZBR0dH5jis0Qrivs9BQUHIzs6uVF67dm0MGjRIltQ+0rFjR95z+uraR1k3HOrXr48ePXrIHN/Q0BADBgyQOY4qYXVYFbcxUhyjR4+W6fk2NjbM/c7Ozo45al9crOfzXU/ySU9Px71793jrxowZw+y0KokOHTqgRYsWvHXiXl+Loiz3KiIjI5n3KoT4jQPAbARRVkePHpV5xqGqHl9cXAw/Pz+Jc1O0iIgIeHt7o0GDBvj++++Z3xVR+GYmqCDE7/vnRFSHicLCQgVm8nkQ4hhoZGSERo0a8daJe5xWpetEQRuAfH19mb2UJb2Zrq2tzTw5On36tFQt8qyLi927d+P8+fMSx1M2rNe3bt06iXrsKIIko8FEadasGW8530UgH9ZwOQ0NDYwYMULqvD6kq6uLoUOHSrT9T1lZWaFp06aVyhMSEvDs2TORz+Wbzs3a2vp9b3O+BiBx4sp7+jddXV20a9dO5jg2Nja8PT/z8vJ4D9Q1TadOnXgbFSQl675W0wlxTNPW1maegIj7Pl+4cIG3fNiwYVLnxcfR0RH6+vqVyqlXPNvz58+RkZHBW+fh4SHYdoSMpeq6du0qyI0m1n7F+m2XlpmZGe8NraioKJSVlQm6rZqOziEUQ1nO51n7aL9+/QQdwaKurs47JVRKSgqSkpIE2464WNcRw4YNg7q6MJf5skwhrIosLS15y4Vq9NXV1ZW5YUFdXZ15vuji4iJTbIA9fXxWVpZYzw8JCWHeE5K18etDrJt/N2/elPk3U1mObax9vE2bNmjZsqXUeX2INdWpsmLNONSwYUOJp/x1dnZG69atJdqOMsrJycGaNWvQqlUr+Pv7S/Rc1lSNwLtZH4j4RL1fot5nIh1lOU6r0nWiYA1AHMdh9+7dvHUdO3ZE8+bNJY4pdIu8s7Mz7zDG8vJyDBo0SOpWc2Xh7u7Oe7Kfm5uL7t27Y82aNUpzs9bJyUmQOIaGhrzl4r7O6Oho3vIWLVrIPKT6Q6yT8RcvXog9HFTaUUB8DUAVo38AoEGDBrwHkqriyrsBqE2bNjLN51lBTU0NtWvXrlTOcZzSTo8oJGXZ12qyOnXqMC/EJSXL+1xUVMTsodq2bVuZ8vqUhoYG77zQMTExUq/TV9M9ePCAt7xu3brMOcilIfRnrcqEaAAAgLCwMN5yebzXfCNoCwsLaX0tCdE5hGIoyzlGde+jAJhTsckT6zqmffv2gm1DyFiqgLWe1Zs3bwSJb2dnJ8hNVb7jEgBBRq2wYst6fV27dm3mzXZpsK6vCwsLq+zIWBVlObYpYh+3tLQU7DpG3uLj4xEUFMRb9+WXX0rV8M2653jv3j3m+y+radOmITo6Wqy/sLAwXL58GQcPHsSSJUvQq1cv5rSm6enpGDx4MNatWyd2LqJG+VCjhWRErVv4OU2nqijKcpyu7nNQSa4TBWsAunbtGnNuXEmHYlZwcXFhtsZJ0yKvoaHBnAu+pKQEa9asQcOGDTFixAjs3btX5RqDzM3NmT04cnNz8f3336NBgwYYP348jh07JnYvHnkwMzMTJA5rbndxd9anT5/ylgt1MKnAOhkvLy8X+wRV2gYgviGBn8aSZho4vrhqampwd3cX+TxxCfUdAWT/nqgyZdnXajJl+a4+fvwYJSUlvHVC9RL8EN+0o+Xl5SIXE/2csU7MHBwcBN0ONQD9HyFuNGVmZiIhIYG3TlH7FQAkJiYKvq2aTFmOyzWdspxjsG7S1eR9tLS0FC9evOCtE/J3wMbGRua1tBQpLy8P586dw++//47x48ejY8eOsLW1Rd26daGvrw81NTWRf5MnT+aNK1SDr1D7DKuRRoj4rNjivges6+u2bdsKMiq3gqjGridPnsgUW1mObazXIfS5nqqcO4qacUjae46ipiWU1yggCwsL2NnZifXn7OyMnj17wsvLC7/88gsuXbqEuLg4zJ8/n9ng9d1332Hnzp1i5SJqzSRRDRqkMlHTvIm7NhURj66uLvO3SlKyHKdV7TpRsAYg1sFRU1NTprn5RLXISzMX78KFC0Wug1BcXIxjx45h3LhxsLS0hJ2dHaZNm4Y9e/aIPe9tdfrpp59E7gi5ubnYs2cPRowYAVNTUzg7O2PevHk4fPiwQm/a8S32Kg1W7wdxh8CxpmuQde7kT7Vp00biHD7FagAKDAxkngg9evSI93MVpwFIVNwHDx4gOTm5Urm9vb1gJ8xCfUcA2b8nqkxZ9rWaTFm+q6J6fpibm1d500PSv9u3b/NuSxUWTa0OfMdMALwjqWTBmr7mcyTE4rUvX75k1nXo0EHw/Yq1cDbtV5JRluNyTacM5xjZ2dnIzMzkrRs1apTg++jatWt5t6XofTQ5OZn5/rDWRpGGmpqaoPHkJSAgAF988QUsLCzQv39/LFq0CHv27MGdO3fw/PlzJCcny7QIt1DrNwi1qDprnxEivqpcX9etW5c5YkvWKRmV4dgGsF+H0PukPG5UCk3UjENt27ZlLodQlUaNGjGnjtu3b59SzmzQsGFDrF+/HsHBwczRC7NmzcLz58+rjCWqgV/cNWjJO6LOA/imTifSE+q3FJDtOK1q14mCNADl5+fjyJEjvHX9+vWT6YawqLWDpGmRNzMzw7Fjx8TaATmOw4MHD7Bt2zaMHz8eTZo0QZMmTTBlyhQcPXpUKVvEmzdvjt27d4u15kd5eTnu3buHjRs3wsvLC/Xr10fr1q0xa9YsnDt3Tq4XtsqyoBxrlJeQBxTg3Q8r68Ai7kgzCwsL3oak1NRUZs9HvlE8rVq1qtQI6u7uXqnni6i4rIXGhJr+DVCe74iqo/dR/pTlPa6O9Qf4iFpM9HPG6kXEunCTlpDTl6o6Id5b2q9Uk7Icl2s6ZXifP9d9NC0tjbdcS0sLenp6gm5LmX9XoqKi0KNHDwwcOBAHDhyQqZFHFKGui+W9zyjDPqmo62tRMWWdyUUZ3keAvZ8L/V4q8z5eQR4zDlX1/OTkZJw7d06m2PLUtWtXHDlyhHcEU0FBAWbMmFFljPr16zPrhJr68nMhqkO9qPeZSE5ZjtGqdg4qSAPQkSNHmEOCZT0YN2nShLm4k7Qt8i4uLrhx4wZzejlRYmNjsXPnTowcORJ169bFN998wxzmXF2GDRuGS5cuSdUL+NGjR9iyZQv69++PBg0aYMGCBTV62hHWjiL0DTmA3btCkgtGVgML3zo/AH8D0Ifr/1SoU6cO79BvSeKKyo8QIn/Ksh4FzRfNj9VpROjfG3n8fqkqIXrb0X5FiHL7XPdRVkOHPKZrU9bflQ0bNqBdu3a4du1adadCPqDI62tWzJrSaUJR+7my7uMfYnX+1tDQwJdffilT7BEjRjCn6JLXNHBC6dOnD4YPH85bd+HCBeYapBUaNmzIrKP1JyUTFxfHrBP1PhPVpWrnoII0ALEOijo6OmjSpAnu378v01/37t15479580bqFnl7e3vcv38f69atk3qEUmZmJnbs2IHWrVvjq6++QkZGhlRx5MHV1RVPnz7F0qVLpZ4bMTk5GX/88QeaNWuG7777TrCh78qEtV6G0D3nAPaNKEkuGCVZB4jjON5FElkxxF0HqLy8HFevXq1UrqGhAVdXV97YhBD5U5ZRqaypIwm/8vJyQePRtFTCov2KEOX2ue6jynANU51+//13zJ8/n37zlJAyfDdrSqcJRb2XyriPf0jUjEOOjo5IT0+X6X7jy5cv0aVLF974/v7+Sj8V2vz585l1//77r8jn6uvrM0enPH/+nPkdJJWxZs8B3q2nR2oeVTsHrXqesCrEx8fz3mQG3r0ZHTp0kHUTIvn4+GDgwIFSPVdHRwcLFizArFmzcOrUKezbtw9XrlyReFHXsrIy/Pfff7h8+TKOHTuGdu3aSZWP0AwNDfHzzz/jhx9+wOHDh7F//35cu3ZN4h4xhYWFWLduHS5evIhjx46hSZMmcspY8bS0tHhPEOUxfUBeXh5vuba2ttgxXF1doa6uXumGYXBwMMrKyj6aZi4iIqLSyYq6ujpzjtuePXvijz/+kCouALRr104leg8RUlOxFgIlykFXV5e3XOiF5GlhemHRfkWIcvtc91EtLS3eckVew1SX4OBgfP/99yIfo6WlBWdnZzg5OaFp06aoX78+zMzMYGBgAB0dHWhqavJOm3Ty5EksW7ZMXql/FpThuynJ9bUyU9S9CmXbxz8lasahu3fvwt7eXm7bLi4uhp+fH2bOnCm3bciqY8eOqF27NnJzcyvVse7VfsjJyYl3KqvS0lLcv38fTk5OQqRZoxUVFTHXqNfT01OJtfSI5FTtHFTmBiBfX99q7ZVY0SLPWgBQHNra2hg5ciRGjhyJsrIy3LlzB4GBgbh27RpCQ0ORlZUlVpz4+Hj07dsXt27dUqpGEn19fUycOBETJ05EUVERQkNDcfXqVVy7dg03b94U+wQiMjISffv2xc2bN1GnTh05Z60YtWrV4j2pkscNNNZJC2u4MR8TExM4Ojri3r17H5VnZ2fjzp07cHFxeV/GN3rHycmJuahljx49oKmp+dG0iuLGBWj6N0Kqm6jegHfv3lXYxTD1cOLHmq+dGoCUm6j9yt/fH40bN1ZIHjR1BCH8RO2j27ZtY04lLjQLCwuFbKcC6/pBHtORKNPvCsdxmDVrFnP0bLNmzbBkyRKMHDlSqmmybt++LWuKnz3Wd1Me3yNWTEmur5UZ616F0Pu5Mu3jfKp7GjZfX1+lbgDS1NSEg4MDQkNDK9VFR0cjPz9f5G+ls7MzAgICeOuCgoKoAUgMoaGhzI72Dg4OzPXAiWpTtetEmRqAOI7D7t27ZQkhs+LiYuzfv1+sBc7EoaGhARcXF7i4uOCHH35AeXk5IiIiEBwcjNOnTyM4OFjkMMi0tDSMGTMGN27cECQfoeno6MDd3R3u7u4A3g0rvnPnDq5evYrTp0/j5s2bIqejef78OWbMmIEDBw4oKmW5Mjc3523gy8zMFHQ7OTk5zCkKzM3NJYrVs2fPSg1AwLuGmaoaakQ10hgYGKB9+/a4efOmxHGrik0IkT9RDfP169dH3bp1FZgN+RTr/U9ISBB0O0LHkydlGTYviqj9yszMDHZ2dgrMhhDyKVH7qJGRUY3dR1nXDyUlJVXe7JOUuJ0hFeHixYuIiorirRs2bBh2794t9fTnAJRqSndVxfpuCn19LSqmpNfXykpR9yqUaR//lKgZhxQlLCwMDx48QJs2bao1D1FYv4VlZWV48+aNyA7qffr0wU8//cRbd+7cOcybN0+QHGuyU6dOMetYM/AQ1adq14kyjVe6du0aYmJihMpFavLsEaCuro527dph7ty5uHTpElJSUrBp0yaRB9CbN28yW9CVjZaWFrp06YIffvgBISEhSExMxM8//wxLS0vmcw4dOiRyfktVwprv9NGjR4Ju5+HDhxLnwCLOOkClpaW8C6L26tVLZGy+enHiamtro1u3biJjE0Lky8rKilmn7HNXfw5Y5w2sG1nSioyMFCQOq6eakOstqML3kvYrQpRb/fr1oanJ36exJu+jlpaWzOP0kydPBNsOx3GCxpPVoUOHeMtbt26Nffv2ydT4A9Ts74yiKOr6OiUlhfl5SXp9raxYr0PoffLx48eCxhNSdc84VKG6RyFVRdRU/FUd1zp37sycqeDKlStIS0uTJbUar7S0FH5+fsx6aZcsIcpP1a4TZWoAUpaDYEWLvCIYGxtj9uzZePjwIaZPn858nKqOkKlbty6WLl2KJ0+eYNiwYbyP4TiOefKtapo3b85bHhERIeh2WPHU1dVha2srUazu3bvzzq0cEhLyvjf1nTt3Kg0N19LSQvfu3UXG5mtc+jDu7du3eeeW7dSpk1wW9iSEiK9Vq1bMumfPnikwE8KH1WswIyMD8fHxgm1HqN8v1k00vt8AaeTm5qrEIs2NGjVivhe0XxFS/TQ0NJjn0jV5H9XU1FRIx4LY2Fi5TCsnLb6OaADw/fffCzLt14sXL2SO8bljXV9HRUUJeiM/PDycWVdT1ttgvQ5l7TwkNGWYcajC3r17Be0EJTRRo7iqGnGvoaGBESNG8NaVlpbiv//+kym3mm737t1ISUnhratXrx46d+6s4IyIoqjadaLUDUD5+fk4cuQIb92gQYPAcZzgf6mpqcweXr6+vtK+FKno6Ojgr7/+Qt++fXnrWdNkqQojIyMcPHiQOWRN1V9fBQcHB97yJ0+eCDoX7q1bt3jLmzRpInHDSe3atdGhQ4dK5YWFhe/nfeX7fFxcXKrcVpcuXSotVF5VXICmfyNEGVhYWMDa2pq37urVqwrOhnzK2tqaOQ2cv7+/INsoLS3F2bNnBYllZGTEWy7UbyPfVKbKSF1dHc7Ozrx1tF8Rohw6duzIW17T91HWwud37twRbBthYWGCxZJVaWkps4Fm8ODBgmzj+vXrgsT5nLGur3NycgQdBcS6vtbV1ZW4g6WyUsQ+npycrLTTB1+/fp0549D69evlcs/xxIkTvNt78+YNzp8/L8dXKxtRo3TEGRk5ZcoUZt2mTZtQWFgoVV41XUFBAX7++Wdm/TfffAN1dZnGXRAlpmrXiVJ/E48ePcrsDTRmzBipExLFzMyM2eBSXS3yCxcu5C1PSkoSuVaQKtDS0sKcOXN464TsrVydWNOWlZaW4tixY4Jso6ioCMePH5do+1Wpaho4Sdf/qaCrq8vbQ0FUXHFjEyIvrClQVGF0gdBY0zxeunRJwZkQPqxj5b59+wSJf+HCBaSmpgoSizWVxPPnzwWJHxISIkgcRWDtV1WtC0mIvLFuKnxuv3+sfTQyMrJGT13Duo44fvy4yDVdJaFMsz68ffsWpaWllcqNjIyYnRYk8fTpU7x69UrmOJ+7Ll26QE1NjbdOyO8Ta8YVFxeXGrPgOmsff/DggWDTth0+fFiQOPLAmnFIXV0d3t7ectlm//79YWJiIlE+1a24uFjkKC5xFoh3cXFB+/bteeuSkpKwbt06qfOryZYtW4bY2FjeOh0dHXzzzTcKzkgx6P7L/1Gl60SpG4BYB7/atWsL1gOHz5dffslb/vr162ppkWcdJAEgPT1dgZnIB+v11ZSLKUdHR+YikULdkAsICGAu1NinTx+pYrJuIl6+fPmjETsfqmr9H1GxK+LeuHGjUp2enh5cXFzEik2IPHw6aq1CQUGBgjOpfqypO6OjoxEYGKjgbMinWJ/PzZs3mT1ZJbFx40aZY1Ro3Lgxb/nLly8FWXz44MGDMsdQFNbnlp6ejr179yo4G0L+D/3+vTNgwADe6ZHLy8uxefPmashIMXr37s1bnpSUhODgYJnjZ2dnK9W6tqwbS0JM/QYAf/31lyBxPnd16tRBu3bteOuEur6+d+8eczSRtNfXyqht27bMexVCLTmwf/9+QeIILT8/n9k45ebmJrd1nrS1tTFy5EjeulOnTiEjI0Mu25VFSEgI83ff0tJS5EL1H/rf//7HrPvtt99ErmstD0+fPlXo9iR18OBBbNiwgVk/e/bsGrMe2afo/PP/qNJ1olQNQC9fvmTeSBo2bJhgJ2F8hgwZAn19fd666miR19bWZtax8lQlrNdXE14bAKipqWHUqFG8dZcvX+Zt8JBEeXk584dUT09P6sZSvqnagHfDwS9cuFBpiK4kjTR8DUWsuADQtWtXkfsBIfJmamrKW56YmKjgTKpfv3790KBBA946USf1RDEGDhzI/L7Onj1bprnxT5w4gYsXL0r9/E+ZmZkxewzK2uEmKChIaeeb52NnZ8ecYmr16tW8PdIJUQT6/XvH1NSUeQG+efNmkWsjqDJ7e3vmGiG//fabzPHXr1+vVNP+sL7vaWlpMveyTUtLo3UuBDR69Gje8ufPnwvScLFy5UqJt62K1NXVMXz4cN66v//+W+ZjW2BgIG/HUWVQHTMOVRW/qKhIKRvM1q9fz6xzdXUVO06/fv2YHY3z8/MxatQohf2e7tu3D2PHjlXItqRx5MgRTJgwgXntVrG2ek1lYmLCO9IzMzMT+fn51ZBR9VGl60SpGoB8fX2ZX3TWCB2h6OvrY8iQIbx11dEiz2qVrl27NgwMDBSaizywXl9NasmePHkybznHcTLfkNuxYwdzQe5Ro0aJNR8rHx0dHXTp0qVSeWlpKVatWlWpvHv37rw9I/l06NCh0neXFReg6d9I9WvQoAHvCUhqamqNGa0oLk1NTcyaNYu3LjAwkIbvVzNdXV18++23vHW3b9+WupHu5cuXmDlzpiyp8ZJHD97i4mLMmzdP6udXl/nz5/OWP336FHPnzlVsMoT8f6xGWiHX2VAVrONKRkYGxo8fL+ji88pk0qRJvOUXLlzA6dOnpY6bkJCA33//Xerny4Oenh7veqalpaUyz7U/ZcoU5ObmyhSD/J+xY8cyOwguWrRIphuE58+fZ66d6OrqiqZNm0odWxmx9vHU1FSZOneVlZUp9fkLq3O3jo4ORowYIddt9+jRg/n7qui1x6ty6tQpkSM1WZ2dWXbs2MFcN/rhw4cYMGCAXI+VFdcJY8eOVcrpxIqLi7Fs2TJ4eXmhqKiI9zHq6urYu3evIFOTKitNTU1YWlry1n2O56Cqcp0odQMQHwsLC+ZQdCGJapEX1aPE19dX8Hl9WT2F7OzsBN2OOLZt2yb4tHPK9PrkxdnZmfm9DQsLw3fffSdV3LCwMOYaUWpqali8eLFUcSuwGl74FtaWpJFGU1MT3bt3FyuupLEJkQddXV3mdFWy3PxQVbNnz2ZetHz//ffMNclkUVRUhJMnTwoetyaaP38+c27xFStWYNOmTRLFe/36NTw8POTS4581dai/v7/Ua/gsXLiQ2TFCmXl5eTGnxf3rr7/w559/Cr7NsrIyHDlyROLn+fj4QE1NjfdPVK9ponpatWrFW866OVqTubi4MHvKnzp1Ct99951cGoHOnz9frSOMvvnmG2aHsm+++UaqdVsLCgrg7e2tlFO5ODk58ZavXbtW6phr1qyhcxiB1atXD+PHj+etS0hIwKRJk6RapyouLo7ZIAIAP/zwg8QxlV2nTp3QtWtX3rpNmzbhzJkzUsVduHAhoqKiZElNbkTNODRgwAC531hXU1PDF198wVt3+/ZtpbnBHRgYKLIDvrW1NbPzPEuTJk1ETmsWEhKCrl27Ii4uTqK44rhz5w5cXFwEndJaKBzH4ejRo3BycsIvv/wi8nzif//7n9jLL7C4ubkxz+Xl8d5Lg85B/4+qXCdK3AB07do1xMTE8NZ5eXlBU1NT0pAS8/DwgJmZGW+dqGngdu3ahSZNmmDixImIjo6WOY8TJ04w5wr28vKSOb6kVq9eDSsrK8yZM4e5EJkkNm/ezNx5q+P1ydOaNWuYC+muX78ev/zyi0TxoqOj4enpyewd8dVXXzEPmOKSpOFF0h8gcWMbGRnB2dlZotiEyAPfiDjg3Q31ly9fKjib6lWrVi1s3bqVt66srAwjRozAjz/+KMgC0ZmZmVi9ejUaN26MBQsWyBzvc1CnTh2Rvylz587FsGHDqmzQ4TgOu3fvhp2dHZ48efK+vFGjRoLl+uWXXzJ78E6aNAlv3rwRO1Z5eTlmzpypsutxqKmpYfv27cz3Y86cOZgyZYog0yUVFBRg69ataN68udwWOSY1A+u3b9++fbh06ZKCs6l+mzZtYjawr1+/HoMHDxZktojS0lL4+fnB0dER/fr1Y05TpAgmJiZYtGgRb93r16/Rt29fJCUliR2voKAAo0ePVtppofr27ctbfvHiRaxevVqiWBzHYcmSJfj++++FSI18YuXKlczGyUOHDmHGjBkSTY2TkJAADw8PvH79mre+T58+zO+Hqvv11195y0tLS+Hl5YVr165JFO+XX35RypvsFapzxiFxtlMdS0986OXLl5g7dy569+6NvLw85uN+++03sWeB+dA333yDGTNmMOujoqLg4OCALVu2CDK9VUxMDKZMmQIXFxeEh4fLHE9I0dHR+N///gdbW1uMHDmyynWQvv/+eyxZskRB2VUv1jnohg0blLZxWV5U5TpR4gYgUQc7ec/FWUFTU5PZAFFVi3xJSQl8fX3h4OCAtm3b4pdffsGzZ88k2n56ejoWLVqEESNG8N5A09fXZ/YYkLf8/Hz8+eefaNq0KTp37oyNGzdKPOrp1atXmDx5MmbPns1b36BBA3h6egqRrtJo164d5syZw6xftmwZ+vbtW2Vre0lJCX7//Xd06NABqampvI+pV6+exBcofPimauNjYmLC7C3HIm4DUI8ePaChoSFRbELkgbWe1suXL2FnZ4cpU6bA19cX165dQ3h4OO7fv8/7J+sc8spi4MCBzGMax3H4+eefYWdnBx8fH4lfc0ZGBnx8fDBo0CDUrVsXP/zwg0QNAQSYNm2ayN/REydOoHHjxujfvz/+/vtvnDlzBnfv3kVwcDAOHDiA+fPnw8rKChMmTMDbt28/eu7ff/8tWJ5mZmbMfevZs2dwdXUVa628it6CH3aaqV27NgwNDQXLVRGcnJywZs0aZv3OnTvRokULbNq0SeQFOZ+8vDwcPnwYo0ePhoWFBaZPn44XL17ImjKp4QYMGMDbgam0tBR9+/bF4MGD8ffff+Py5csICwtj/vZlZmYqPnk5aNiwIf7991/eaWGBd6OCmzdvjp9++qnSsbMqxcXFCAgIwOTJk2FpaYkxY8YozVpmCxcuRPPmzXnrnjx5Ajs7O+zbt6/KEVAhISFwdHSs1AFQyI4FsvL29mZee/zwww+YOnWqWCOybty4gc6dO1daK0mZXquqa9CggcgOL9u2bUPnzp2rvFFYXl4OHx8f2NvbM+/b6OvrMzvm1gQ9evRgroeSl5cHd3d3LFmypMpRewkJCfD09MSyZcs+Kle27z1rxiEjIyMMHDhQITk4OjqidevWvHV79+5FWVmZ1LFTUlKYv8ef/t29exeBgYE4fPgwli5dil69esHGxgabNm0S2ZnP29tbpnuSGzduFNnpOycnB7NmzYKtrS02btwo8bVgcXExTp48iZEjR6JFixbYuXOnIJ0TP1XVex0dHY27d+8iJCQE/v7+2L59O3744QcMHDgQdevWhYODA5YvX84cBFFBU1MTf/zxhyDr76kK1jVidnY2OnbsiC+++AI7duxAUFAQ7t27x/wMJL1mUlaqcJ0o0XCd/Px8HD58mLeuadOmYi8yL4QxY8Ywb3L4+vqKdYM9KioKUVFRWLZsGerWrYsOHTqgffv2aNq0KUxNTWFqagpdXV3k5eUhNTUVjx8/xrVr13D58mWRLXdr1qxB3bp1pX5tQuA4Djdv3sTNmzcxb948WFtbo3379mjfvj2sra3fvz4tLS3k5ubizZs3ePToEQIDA3Ht2jWRLfn//PMPdHR0FPhqFGP16tW4ceMGbt68yVt/4cIFNG3aFG5ubhg2bBgaN26MevXqIScnB4mJiQgJCcGhQ4dETsOnpaWFgwcPok6dOjLnWzFVW1XDvt3c3Jijm1gcHR1Rp06dKqcUpOnfiLIYOnQo6tevz9vLNScnBzt37sTOnTurjBMbG8ucTk7VrF+/HvHx8Thx4gRv/aNHjzBp0iTMmzcP3bp1Q48ePdCkSROYmprCxMQEhYWFyMzMRGZmJhISEhAeHo7w8HA8ffpULifonxs/Pz907doVDx484K0vLS3FuXPncO7cObFjLliwgHlhLOnvQIWff/4Z/v7+vPNcP336FF27dkXv3r0xaNAgtGzZEmZmZsjNzUVKSgru3buHM2fO8E75tnnzZqxcuRLZ2dlS5VVd5s6dixcvXjBHMlX0yly6dCk6d+6MHj16oGXLlu/Pu0pKSt7vV0lJSYiIiEB4eDgePnyoVIuEEtVQr149DB8+nHcKiPLycvj7+4s1FceuXbswceJEOWSoeMOHD8e6deuYo1LT0tKwYsUK/PLLL+jYsSNcXV1hb2//fh/lOO79PpqcnIzIyEiEh4cjOjqaOd9/datVqxb27t2Lbt268a6ZkJGRgbFjx2LJkiX44osv0K5dOzRo0ABaWlpITEzEkydPcPDgQd5j9YgRI1C7dm2lWffC1tYWEyZMYE5Tvn37duzbtw8jR458vx6MoaEhsrOzkZycjPDwcPj7++P+/fuVntuyZUvMnj0b06dPl/fL+GzMnj0bwcHBOHr0KG99WFgY2rZti06dOmHkyJGwtbVF/fr1UVRUhMTERISFhWH//v1Vjor+999/YWtrK4+XoDS2bNmC69ev83ZILSsrw2+//Ya//voLI0aMgJubGxo2bAgjIyMkJycjLi4Op06dwqVLlyo1XFhbW+O7776Ty1qS0hA149CIESMUeh9qzJgxWLp0aaXypKQkXLx4Ef369ZMq7tatW5mzNQihZ8+e2LVrl0wxNDU14efnh1q1aok8/sfFxWHevHlYsGAB2rVrhy5duqBVq1awsbGBkZER9PT0UFRUhNzcXCQkJODp06e4desWQkNDZVoLTFzyfq+Bd79LO3fu5F1GoSbr2LEj2rdvj7CwsEp1FcuziFqipUJgYCDc3NzkkKHiKft1okQNQEePHmUOcVf0iJcuXbqgcePGvD+Ae/bswS+//CLRyIQ3b96IfZEkysiRI5XypDE+Ph7x8fHMky9xzZ8/HwMGDBAoK+Wira0Nf39/uLm5MW/IlZeX48qVK7hy5YrE8TU0NLB3715Bfxh69uxZZQOQNI00ampqcHNzq/L7Qg1ARFloa2vjjz/+oOmSPqChoYFDhw5h/PjxIk++MjMzcfr06c9yvaTqZGRkhEuXLsHDw0OQaWnHjRuHtWvXMnskSnvB3KJFCyxfvpz3Ahh41+Hk4sWLuHjxotgx58yZg4kTJ6rsejSbNm2Cjo4O1q1bx3xMXl4eLl269FlOw0UUa/Xq1Th37hwtYP+B+fPnQ1NTE3PnzmWOeikuLsb169dx/fp1BWcnHx06dMC///7LXHcFeHfjQVTv1E81a9YM27dvZy5uXF1+/fVXXLx4EQkJCbz1eXl58PX1lajRytTUFMeOHcOtW7eESpP8f3v27EFaWhquXr3KfMytW7ekfu/XrVv3WZz/GxkZ4fTp0+jatStzlFt2djZ27dol9s1/XV1dHDp0qMpprRRJ1IxDipr+rcIXX3zBPP/18fGRugFIXtTU1PD111/jzz//FKShTENDAz4+PnB0dMSiRYtEzhpRXl6OsLAw3sYAaSn7UgPGxsZYuHAhFi5cWCM7yItj06ZN6NGjh0wj4moaZb5OlKg7qDJM//Yh1g9ARYu8ok2aNAkHDhxgTjug6pYvX47169dXdxpyZWZmhqCgIPTo0UPQuAYGBjh+/LjgayeJ0wAj7QJ0VcU2NzeHvb29VLEJkYfRo0dLvF5XTaelpQU/Pz+sXr1aqjmgiXzVrVsX169fl6kTjaamJlasWAFfX1+oq6szbwrUqlVL6m0sXryYOfWIpL755huRi8uqAjU1Nfz+++/w8fFhrm9QnURdoOvr6yswE6IITZs2xbFjx5Tyu1idZs+ejYCAAJibm1d3Kgozbtw4bN++XeoRnx9q1KgRAgICYGpqKkBmwrK0tIS/v79YU2GLw8zMDGfOnJF5fVbCr1atWjhz5gxGjhwpaFwtLS1s3779s1qDsk2bNrh48aIgs4no6Ohg//796NixowCZCUPUjEP169eHu7u7QvOxsbFhrnNy8uRJpZo+tWnTprh8+bJcZuuZO3cubt68iQ4dOggal6Vly5Y4deqUWLN3VIeWLVvijz/+QEJCApYuXSqXxh/Wubyamhr09PQE3560unTpgv/++4/uM3xAma8TxT47fPnyJQIDA3nrnJyc0LJlS8GSEpekC7PZ29vL5YtZr1497N27F//991+1rofi6OgoyAn/p5o3b45z585h1apVgsdWRmZmZrh06RJWrlzJXMRLEj169MDdu3cxaNAgAbL7mKOjo8gLs3r16kl9MVNVA5Cbm1uNbewkqmvJkiW4cuWKQqckVXZqampYvHgxwsLC5HLhpKOjg5EjRwq69sznxNDQEH5+fjhz5ozEPd08PT1x+/ZtrFy58v3xmHUxKstNUA0NDfj6+opcELYqOjo6WL9+Pf75558a89sxYcIEREVFYfjw4YLH1tDQQL9+/eDn5yfxc1m9qGvXro1JkybJmhpRQn369EFkZCS8vLxobcYP9O/fHw8ePMDXX38tl2ukbt264d9//632qb8/9PXXX+PcuXOwsLCQOkbnzp0RGhrKXFdIGbRt2xa3bt2SudGmU6dOuHXrFjp16iRQZoSPnp4eDh06hL/++kuQhjt7e3uEhobi66+/FiA71dKhQwfcvn1bptERDRo0wPnz5zF06FDhEhOAqBmHRo8eLZfjeFVY9xwLCwvFmt5KnjQ0NODp6Yljx47h0aNHcm0ga9euHW7evAkfHx/m2khCbGPv3r148OCBXO6dSUtHRwfdunXD8uXLERkZiUePHmHevHlyu7lfXFzMOyUrAHh5ecn0+y4P48ePx+3bt9G3b9/qTkWpKON1othTwKWlpWH58uW8dV27dpVoo0Jp06YN1q1bx/sjwdfTdfPmzfjll19w/vx5BAQE4OrVq7xTyInL3t4e48ePx9SpUwXrgSSLEydOIC0tDWfOnEFAQACuX7/Oux6GuFxcXDBx4kRMmjRJkIYQVaKlpYUVK1Zg4sSJWLNmDfbu3cs8GWHp2rUrFi1axFwcTQgVU7UdO3aMt16Wk4CWLVsy11QBaPo3orzc3d1x48YNPH78GOfOncPt27fx9OlTJCUlITMzE0VFRZ/lGjYODg64cuUKrl27hr/++gv+/v5Sz71sbGwMd3d39OvXDyNHjlSqHsKenp5ISUmpVK7sIx/69++P/v37IywsDKdOnUJISAiePHmC9PR0lJSUoHbt2rCwsEDr1q3RrVs3DB06FM2aNasU5/Xr17zxZb1Bqa6uji1btmD06NGYP3++2FM8qKurY+jQofjll1+qpbOQvNnY2ODo0aOIjIzE5s2bceTIEbEWIOejr6+PHj16wMPDA15eXqhfv75UcVjT1M6ePRtmZmZSxSTKr0mTJjh48CBSUlIQEBCA0NBQPHr0CK9evUJ6ejoKCgo+yyk6zM3NsX37dixevBhbtmyBn58f72+EOHR0dNC5c2d4eHhg1KhRvMdgZdCnTx88fvwYP//8M/755x+xFxu2srLCokWLMG3atGq50SqpVq1a4c6dO/jjjz/w559/Ii0tTezntmzZEgsWLMDkyZNV4rXWBGpqapg+fTpGjRqFP/74A//++69EnxnwruFv/vz5GDNmzGfd2N2kSRPcunUL//zzD3777Te8evVKrOfVrl0bU6dOxY8//ggjIyM5Zyk5fX19rFixgreuOmYcAgBvb2+kpqby1hkbG8t9+xoaGjA0NISRkRGMjIzQqFEjODs7o3379ujUqZNCR7mqq6tjwoQJGD9+PC5cuAA/Pz+cOnVKppFQVlZWGD58OL744guFj0ZTU1ODtrY2dHR0oKOjA1NTU1haWsLS0hI2NjZo2bIlWrVqBUdHR+jq6iosr5s3b/Jeo2toaCjt9NmOjo44d+4c4uPjcebMGdy6dQuPHz/Gq1evkJGRgcLCws/y/ouyXSeqcayJkT8Tb968QWhoKKKiovD8+XPExMTg9evXyMnJQU5ODtTU1GBoaAhDQ0NYWFjAwcEBTk5O6Nq1q0pMfxUXF4cbN27g/v37iImJQUxMDJKTk5GTk4O8vDyoq6vDyMgIhoaGqFevHtq2bQsnJ6f3i2aSdwoKCnD+/HkEBwcjIiICL168QFpaGgoKCqClpQUDAwNYWVmhZcuW6NKlC/r3748mTZpUd9qEEMKUn5+PK1eu4MaNG4iMjERcXBxev36NvLw8lJaWQl9fHwYGBjA0NISVlRVatWqFli1bwsnJCc7Ozp/1hbcy27BhA+96DVOmTMGOHTsE2054eDjOnDmDK1euIDExEampqcjKyoK+vj4sLS3Rpk0buLq6YujQoWjcuLFg21V2JSUluHr1KkJDQxEeHo7Y2FgkJiYiNzcXxcXF0NPTe79fNWjQ4P1+VbEItqwdbuLj43nfbyMjI8TGxsLExESm+ISouvLycty4cQPXr1/H3bt3ERMTg1evXiE3NxeFhYXQ1dWFoaEhDAwMUK9ePbRs2RItW7aEvb09unTpolRTr4gjKysLx48fx4ULFxAVFYWEhATk5eVBR0cHRkZGsLW1hZOTEzw9PdGzZ09oakq0RLDSyM/Px5kzZxAYGIhbt24hOTkZb9++RUlJCfT19WFubo4WLVqgffv26NevHzp27Mg7GrWsrIx36h0NDQ2a4kZgpaWluHz5MoKCgnDv3j08f/4cqampyM/Ph4aGBmrXro2GDRuiefPm7xte7ezsqjttpVNaWopz587hzJkzCAsLw4sXL5Cdnf3+Ppa1tTXs7e3h4eEBT09PpWz4IaqrpKQE4eHhuHHjBiIiIhAbG4uXL18iMzMT+fn5KCkpgba29vvrg0aNGqFVq1ZwcHBA9+7dlbYjRXVatWoVb0PP+PHjJVrbjiif6r5O/OwbgAghhBBCaorRo0fj0KFDlcr/+OMPzJs3rxoyIoq0a9cuTJ48uVL5qlWrmCP5CSGEEEIIIdXP1dUVwcHBH5Vpamri8ePH1EmfyITGOxNCCCGE1ABZWVkICAjgrauu6XqJYvFN/1anTh1q/COEEEIIIUSJFRQU4ObNm5XKJ02aRI0/RGbUAEQIIYQQUgP8999/vGs9GBkZoV27dtWQEVG0wMDASmXfffedUqxVSQghhBBCCOF3/fp1FBcXf1Smra2NZcuWVVNGpCahBiBCCCGEEBWXmJiIX3/9lbdu6NChKruuAxHf06dPkZiY+FGZpaUlZs2aVU0ZEUIIIYQQQsTB15Hrm2++gZWVVTVkQ2oaagAihBBCCFFhRUVF+PLLL5GWlsZbz7cmDKl5+KZ/+/7771Vu0XpCCCGEEEI+N5+ey9eqVQtLliyppmxITUMNQIQQQgghChYSEoKZM2ciLi5Opjhv3ryBm5tbpcVCK3Tu3Bk9evSQaRtENXx60digQQN8++231ZQNIYQQQgghRBw5OTm4e/fuR2XTp09HvXr1qikjUtNQAxAhhBBCiIIVFBTgr7/+gq2tLUaNGoUjR46goKBA7OdnZWXh119/hb29Pe9ioQCgrq6ODRs2CJUyUWIcxyEoKOijsqVLl0JXV7d6EiKEEEIIIYSIJTg4GKWlpe//19fXx+LFi6sxI1LTqHEcx1V3EoQQQgghn5NLly6hT58+H5Xp6+vDxcUFTk5OaNu2LczNzWFsbAxtbW1kZGTg7du3ePToEYKDgxEaGor8/HyR21i8eDFWr14tz5dBCCGEEEIIIYQQJUYNQIQQQgghCsbXACSkIUOG4OjRo9DQ0JDbNgghhBBCCCGEEKLcaAo4QgghhJAaZNy4cTh8+DA1/hBCCCGEEEIIIZ85agAihBBCCKkBzM3N4ePjg927d0NLS6u60yGEEEIIIYQQQkg1oyngCCGEEEIUrKysDFevXsXhw4dx4sQJvHnzRupYTZo0wdSpUzF16lQYGRkJmCUhhBBCCCGEEEJUGTUAEUIIIYRUs+fPnyM0NBQRERGIjY1FXFwcUlJSkJeXh/z8fJSXl0NXVxdGRkZo2LAhbG1t4ezsjJ49e6Jt27bVnT4hhBBCCCGEEEKUEDUAEUIIIYQQQgghhBBCCCGE1DC0BhAhhBBCCCGEEEIIIYQQQkgNQw1AhBBCCCGEEEIIIYQQQgghNQw1ABFCCCGEEEIIIYQQQgghhNQw1ABECCGEEEIIIYQQQgghhBBSw1ADECGEEEIIIYQQQgghhBBCSA1DDUCEEEIIIYQQQgghhBBCCCE1DDUAEUIIIYQQQgghhBBCCCGE1DDUAEQIIYQQQgghhBBCCCGEEFLDUAMQIYQQQgghhBBCCCGEEEJIDaP0DUBubm5QU1Or9BcUFFTdqRFCVBDHcbhy5QpWrFgBT09PNG/eHBYWFtDR0eE91sydO7e6UyY1VFBQEO93zs3NrbpTI4RIgfZp4WRnZ6Nu3bqV3svLly+LHWPmzJmVnu/l5SXHrAkhhBBCCCFE+WhWdwKEEKIoO3fuxJo1a/Ds2bPqToUQoiQKCwuRmZmJvLw8lJSUQF9fHwYGBjA2Nq7u1D4rBQUFyMrKQn5+PoqKiqCjowN9fX2YmZlBQ0OjutMjCrZy5UokJyd/VObh4YFevXqJHePHH3+Ej48P8vLy3pcdPnwYV69ehaurq2C5EkIIIYQQQogyowYgQkiNl5eXh3HjxuH48ePVnQohpBoVFRUhKCgIV69exc2bN/H06VMkJSWB47hKjzUwMEDTpk3Rtm1b9OjRA3369EGjRo3kml9JSQmePHkiUww1NTXo6+vDyMgIhoaGStl4Eh8fj6CgIISGhiIiIgKxsbFITU3lfayGhgYsLS3RqlUrODg4oGvXrnB1dYWZmZmCsyaK8vDhQ2zevPmjMjU1NaxevVqiOJaWlpg7dy5++eWXj8pnz56Ne/fuKeW+QQghhBBCCCFCowYgQkiNN2nSJGr8IeQzFhUVhS1btuDw4cPIzMwU6zk5OTmIiIhAREQEfH19oaamhu7du+Orr77Cl19+CU1N4U+hEhMTYW9vL2hMMzMztG3bFo6OjujSpQsGDBgAHR0dQbchjuzsbOzcuRP79+/HnTt3xH5eWVkZkpKSkJSUhMuXL2PDhg1QV1dHt27d4OXlhbFjx8LIyEiOmRNFmz17NkpLSz8q8/b2hpOTk8SxvvvuO2zduhVv3759XxYVFYV//vkH06dPlzlXQgghhBBCCFF2Sr8GECGEyMLHxweHDx+u7jQIIdUgJiYGI0aMgKOjI3bs2CF24w8fjuMQHByMCRMmoEWLFvDz8xMuUTlKS0vD5cuXsX79eowYMQJ169bF1KlT8fTpU4VsPzs7Gz/88AMaNWqE+fPnS9T4w1JeXo7g4GDMnDkT9evXx4wZM/Dq1SsBsiXV7dy5c5XW+VFTU8PSpUulimdkZIRZs2ZVKl+1atVHU8MRQgghhBBCSE1FDUCEkBqL4zisXbuWWd+vXz9s3boVgYGBuHfvHqKjoyv9ff/99wrMmBAiBI7jsH79etjb2+PYsWO8U7zJ4sWLFxgzZgw8PT2RmJgoaGx5y8zMxPbt22Fvb48ff/wRBQUFctvWoUOH0LJlS6xevRrZ2dly2UZ+fj7+/vtvNGvWDIsXL6ab+iruxx9/rFQ2cOBAtGnTRuqYM2fOhJ6e3kdlKSkplaaZI4QQQgghhJCaiKaAI4TUWDdv3sSjR48qlaupqcHPzw/e3t7VkBUhRJ5yc3Mxbtw4nDhxQu7bOnv2LNq3b4/jx4/DxcVF7tsTUnFxMX7++WcEBAQgICAA9erVEyx2UVER5s6di23btgkWU5xtrl27Fjdu3EBwcLDCtkuEc+LECYSFhVUqX7x4sUxxzczM8NVXX1Vq8Pn9998xffp0GBoayhSfEEIIIYQQQpQZjQAihNRY169f5y0fOnQoNf4QUgNlZmbCzc2tysYfTU1N9O/fHxs3bkRwcDBev36N/Px8lJSUICMjA9HR0Th06BC+/fZbNGjQQGSsN2/ewM3NDWfPnhXwlShOeHg4PDw8BBuhk5ubCw8PD7Eaf+rWrYsJEyZg+/btCA4ORkJCArKzs1FaWoq8vDwkJyfjzp078PPzw5w5c+Dg4FBlTHmNNCLyxXEcVqxYUam8c+fO6Nq1q8zxFyxYAHX1jy973r59i02bNskcmxBCCCGEEEKUGY0AIoTUWKy1JoYPH67gTAgh8paTkwMPDw/cvXuX+RgdHR3Mnj0bc+fORf369XkfY2xsDGNjY9jZ2WHUqFHYsmULTpw4gWXLluHx48e8zykqKsLw4cPh7++P3r17C/J6PrVixQqsXLmyyseVlpYiJycHb9++xcOHD3Hnzh0cPHhQ5Jo/9+/fx8yZM7F7926ZcszJyUHfvn1x48YNkY/z8PDAwoUL0atXr0o35Svo6elBT08PFhYWaN++Pb744gsAwLNnz7B3715s3boVqampMuUrNDc3N8GnG/xcnDt3DlFRUZXKv/32W0HiW1tbo2/fvpUaajdv3oxFixZBR0dHkO0QQgghhBBCiLKhEUCEkBrrzZs3vOWtWrVScCaEEHniOA7jxo1jNvoCQPv27XH//n2sXbuW2fjDR0NDAyNGjEB0dDSWL1/ObLAoLCzEyJEj8fz5c4nzF5KmpiZMTEzQtGlTDBo0CD/99BOePHmCY8eOoWHDhszn7dmzB7du3ZJ6u+Xl5RgzZozIxh9bW1tcuXIF58+fR58+fZjvpSi2trZYtWoV4uLisH79ehgZGUmdM1EeGzdurFRmbGyMUaNGCbaNKVOmVCpLTU3Fvn37BNsGIYQQQgghhCgbagAihNRYGRkZvOXGxsaKTYQQIlerV6/GyZMnmfUjR45ESEgImjVrJvU2NDU1sWrVKhw/fpw5WiArKwvDhw9HUVGR1NuRl2HDhiE0NBQ2NjbMx2zZskXq+CtXroS/vz+zfujQobh37x7c3d2l3saH9PT0MH/+fDx58gReXl6CxCTV4+HDh7hw4UKl8jFjxqBWrVqCbWfQoEGwtLSsVP7nn38Ktg1CCCGEEEIIUTbUAEQIqbFyc3N5yzU0NBScCSFEXh49eiRyarThw4fj4MGD0NbWFmR7gwcPxtGjR5nHkejoaPzvf/8TZFtCa9SoEXx8fJj1p0+fRnl5ucRxw8LC8OuvvzLrx4wZg6NHj6J27doSx66KpaUlDh48iO3btwvaWEAUZ/PmzbzlkyZNEnQ7WlpaGDNmTKXyyMhIXL16VdBtEUIIIYQQQoiyoAYgQkiNRWsxEFLzffvttyguLuata9u2Lfbs2SPVVGOiDBgwAGvXrmXWr127lrleUHXr0aMHunfvzluXmZkpcd7l5eX46quvUFZWxlvfs2dP+Pj4CP4ZfOrrr7/G5cuXYW5uLtftEGEVFRXhwIEDlcobN24MZ2dnwbc3YsQI3nJfX1/Bt0UIIYQQQgghykCzuhMgkispKUFycjJyc3Ohq6v7fsFqQj5XiYmJvNO9lZSU8D7+6dOnzNFBH7Kzs5M5N6K8ysrKkJycjJycHGhpacHIyAh16tSp7rSIBM6fP4/g4GDeOh0dHezbtw96enpy2fa8efMQEBCAK1euVKorKSnBqlWrsH//frlsW1b9+/fHtWvXeOtevHiB1q1bix3Lz88PUVFRvHXm5ubw8/ODpqZiTjc7d+6MQ4cOKWRbRBj+/v7IzMysVD5s2DC5bK9z586oV68eXr9+/VH50aNH8ddff9EoMkIIIYQQQkiNI9cr8pSUFBw/fhyXLl3C/fv3kZSUhLy8POjp6cHExAQtWrRA+/btMWjQILi4uEBNTU2e6VTp7du3OH/+PK5fv44HDx4gNjYWGRkZyM/Ph7a2NgwNDWFtbY02bdqgR48eGDhwIMzMzBSS240bN3DgwAFcunQJT58+RWlp6Uf15ubmcHJywsCBAzF69GhYWFhUivH48WO8efOmUnnLli1Rt25dueVeVFSEoKAgXLhwAVFRUXj27BkyMjKQl5cHfX19WFlZYezYsVi8eLHEsZX5M6uQlJSECxcu4Pr163j8+DHi4uKQlZWFgoIC6OjowNjYGDY2NnBwcICrqys8PT1hYGCg0ByFlpqaijNnzuDatWt4+PAh4uLikJ2djYKCAtSqVev9a7azs0P37t3h6ekpUyPm0qVLJeq927dvX7EepwwjiF69eoVr167hwYMHePToEZ4+fYqMjAxkZ2e//54bGBigQYMGaNasGdq3b4/evXvDycmp2o+pubm5OHPmDM6dO4eoqCjExcUhJycHOjo6MDc3h6WlJTp27AhPT0+4uroy11UR0v3797F3715cvHgRDx48qLRWi7GxMRwcHODp6Qlvb29YW1tXihEXF4e4uLhK5Y0bN0bjxo3llLnsYmJicPHiRYSGhuLJkyd4+fIlcnJy3u+XpqamaNKkCZycnODu7g4PDw/o6upWd9oi/fTTT8y6uXPnok2bNnLbtpqaGv766y/Y29tX+k0GgEOHDmHlypVo0aKF3HKQVtOmTZl1WVlZYscpLy/HqlWrmPWrV6/mXXNFnkxMTBS6PUWKi4vDpUuXEB4ejoiICLx58wbZ2dnIysqCmpoa9PT0UKtWLdSpUweNGzeGtbU1Wrdujc6dO8Pe3l5hDXGS2Lt3L2/58OHD5bI9NTU1DBs2DH///fdH5dnZ2Th16hRGjx4tl+0SQgghhBBCSLXh5CApKYn76quvOB0dHQ6AWH92dnbc4cOHK8VydXXlfXxgYKBg+QYHB3ODBg3itLS0xM4XAKepqcmNGDGCCw8PFyyXT12/fp3r2LGjRHnVqlWLmz17Npednf1RrAkTJvA+fteuXRLlJG6c3NxcbsWKFZyFhUWVOQ8ZMkSiHJT5M6vg7+/Pubu7c+rq6hJ/fpMnT+aeP38u9xyFFhoayg0aNIjT1NSU6DXr6Ohwo0eP5iIjI6XaLus7KetfdSgtLeUuXLjATZ06lbO1tZU6dxsbG+7333/n8vLyBMvN2tqad1uxsbEfPS4nJ4dbunQpZ2RkJHa+lpaW3I4dO7iysjLB8v1QdHQ017dvX4mPF+PGjePevHnzUawVK1bwPn7FihUS5RQYGMgbx9XVVbDXXVpayu3Zs4fr0KGDxN8hIyMjbt68edzr168Fy0dIkZGRInPPzMxUSB5fffUVM4/58+dLFCs2NpYZS9LvlygXLlxgbufQoUNixzl37hwzTqtWrbjy8nLBclYF8tqnDxw4wLm5uXFqampS/ybo6elxQ4cO5fbv38/l5uYK84JllJ2dzWlra1fK1djYWG6/BRzHcQEBAbzv0dChQ+W2TUIIIYQQQgipLoLf4dy/fz9nYGAg9QXq0KFDuaysrPfx5NkA9OLFC65fv35S51rxp66uzs2cOVPQG62lpaXcokWLZLrYt7Ky4sLCwt7HVGQDUFBQEGdlZSV2ruI2ACnzZ1YhPDxc4kY7vj9tbW1u1apVXGlpqeA5Ci0lJYXz9vaW+TWrqalxU6dO/egYII6a0gA0b948sRpMJflr0KAB5+/vL0h+4jQAXbt2jfk4cf46derEpaWlCZJvhQ0bNvDeZBT3r06dOtzZs2ffx1OVBqDAwECuRYsWMn+HDAwMuK1btwqSk5Dmzp3LzFnShhdZREdHM/OwsLDgiouLxY6lqAagQ4cOMbdz4cIFseOMGjWKGefff/8VLF9VIfQ+/eTJE87NzU3Q3wQA3Ny5c4V94VI6fvw4b36DBg2S63azsrI4DQ0N3mOdJPsrIYQQQgghhKgCQVfk/emnn/DFF18gJydH6hgnTpyAq6srUlNTBcyssiNHjsDBwQHnzp2TOVZ5eTm2bNmCbt264dWrVzLHKy4uxqhRo7B27VqZpqB6+fIl3NzcmPP8y8u+ffvQp08fvHz5UtC4yvyZVdi8eTM6dOiA27dvyxyruLgYK1asQP/+/SWakkfR7t27h3bt2vEu4iwpjuPwzz//oGPHjnj69KkA2amW7du3IyUlRdCYiYmJGDx4MH7++WdB4/LZv38/evXqhfj4eKlj3Lp1C25ubkhOTpY5H47jMGvWLMybNw/FxcVSx0lPT8egQYNUZm2R8vJyLFmyBO7u7njy5InM8XJycjBt2jSMHTtWpvdRaMeOHWPWff311wrLw87ODi4uLrx1KSkpuH79usJyEVdMTAyzTtT0cB8qKipCQEAAb52enh68vb2lyo28ExYWBhcXFwQFBQkeW5ZzSyGxzudcXV3lul1DQ0M4OTlVKs/JyVHK/ZUQQgghhBBCZCFYA9Dq1auxYsUKQWJFRERg2LBhcrvRtGnTJowaNUqsReAlER4eDnd3dyQlJUkdg+M4TJo0CcePHxckp9zcXAwdOlTkzR4hnTt3DhMnTkRJSYmgcZX5M6swf/58zJ49m3ctCFlcvHgRffv2lalhVV5u374NNzc3QRvRAODJkyfo3r07Hj9+LGjczxXHcfjxxx+xevVquW3j5MmTGDdunCDH7fv37+PLL7+UOc6SJUuwZcsWmeMAQGlpKcaPH4+bN28KEk9eSktL4e3tjd9++03w2Pv27YOXl5fgxzhpPHr0iNnJoE2bNmjZsqVC8xk5ciSz7vz58wrMRDysG+8V60CJIygoCPn5+bx1np6e0NfXlzq/z92zZ8/Qp08fZGRkVHcqcsXaN+TdAAQA7u7uvOVCdDIihBBCCCGEEGUiyGqw/v7+WLJkicjHtGjRAl988QXatGmDBg0agOM4JCYmIjo6Gvv378fz588/enxISAiWLVsmRHof2b59O+bOnSvyMba2tujZsye6dOmCunXrok6dOigsLERycjLCwsIQEBCAqKgo3uc+f/4cQ4cOxbVr16Ra0PyPP/6An58fs15HRweenp7w8vKCg4MD6tevD21tbSQlJSEmJgbHjh3D0aNHkZ6e/v45b9++xfjx48Xu1SutN2/eYMGCBZVuDurr66N3797o27cvGjVqBEtLS6ipqSElJQWRkZE4ceKEyLjK/pkB7240b9iwQeRjHBwc4O7ujk6dOsHc3BympqbIzc1FcnIyQkNDcfr06Ur7QYVbt25h3LhxOH78ONTU1KTKUWjx8fHw9PQU2TBVq1YtDBo0CB4eHmjYsCHMzMyQmpqKhIQEBAQE4OzZs8wGg5SUFHh4eODevXswMzMTmYuPjw98fHwqlTdu3Jh3NEpsbCwaN24sMqayUFdXR8uWLdGhQwc4Ozujfv36MDExgYmJCYqKipCRkYG4uDjcuHEDFy9exJs3b5ixli5dio4dO6Jnz56C5vjo0SN8+eWXKCsr+6i8UaNG8PT0RPfu3WFpaYk6deogMzMTL1++xLlz53Dq1CnmDeQrV67Ax8cHEydOlCqno0ePimzw0tDQQO/evTF69Gi0b98e9evXh76+Pl6/fo24uDicOnUKhw8fRmJi4vvnFBUVYcyYMRgxYoRUOSnChAkTcPjwYWa9mpoaOnbsCDc3Nzg7O8PMzAzGxsbIzMzE69evERwcjNOnT3/0uj908uRJLFiwAJs2bZLXSxBLYGAgs65fv34KzOSdvn37YuHChbx1onKtDiEhIbh69Spv3fDhw8WOI+p19enTR+K8yP+ZMWMGMjMzmfW2trbo27cv7OzsYGNjA0NDQ9SqVQt5eXnIyspCeno6Hjx4gMjISISFhcl9VL00Xr58ibi4uErlWlpacHBwkPv2nZ2decvlMeKKEEIIIYQQQqqVrHPIJScnc+bm5sx5xhs2bPjR2gksp06d4urVq/fRczU0NCqVVfxJswbQtWvXOC0tLWaunTt3FitXjuO4M2fOcK1atWLGWrBggcT5PXjwQOQ6FT169OCePn1aZZzMzEzeRakNDQ154wq1BtCn8bW0tLj58+eLtZ5LfHw8b7myf2Yc925xZlZMAJynpyd348aNKuOUl5dze/fu5Ro2bMiMtXnzZqlyFFppaanIReXV1NS46dOnV/nZp6amcmPGjBH5/vXr10/qPMVZs0aZ6Ovrc8C7NapcXV25rVu3cqmpqWI/v7i4mNu3b5/I9beaNm0q9RoHrPezfv36H/3fqFEjztfXt8oF4F++fMl5enoyc7W0tORKSkokzjMlJYUzNTVlxrW3t+fu3LlTZZyCggLu+++/5zQ1NcU6llb3GkBr1qwRuS+NGTOGe/DgQZVxSkpKuD///FPke3jq1CmpchQK329cxd+JEycUnk95eTnz/dLV1RV7LTd5rwGUmJjINWvWjHncvnv3rtixevfuzcz10aNHMueqioTYpy9evMh8X9u2bctduXJFopzKysq4kJAQ7vvvv39/fjFnzhzJXpgcHD16lPc1tmnTRiHbf/jwIXN/pXWACCGEEEIIITWJzA1AU6ZMYV6oduvWjcvMzBQ7Vnp6OtexY0eRN7Aq/iRtAMrLy+NsbGx4Y6mrq3PLly/nysrKJIqZk5PD9evXjzemhoYGFxkZKVG8vn37Ml/v+PHjq7yZ+qlt27aJ9V4K1QD06Q3S69evSxT3U6rwmSUlJXHGxsa88XR0dKRaOP3Nmzecs7Mzb0wDAwPu9evXEscU2oYNG5ifvba2NhcQECBRPB8fH05dXZ0Zc+/evVLlqWoNQEZGRtzYsWO5x48fyxQnMzOTGzx4MPP9lHZxdtb7+eFf165dubdv34ods6SkhBs+fDgznjQ386dOncqM16tXL66wsFCieKdPn67UCMT3V50NQJGRkczGciMjI+748eMSx3z69CnzGNyoUSOuoKBA4phCad++PfNzePnyZbXk5O7uzszp/v37YsWQZwPQqVOnRDYOT5s2TaJ4ZmZmvHF0dXUl/m2uKYTYp1nHr+7du3N5eXky5VdSUsL5+flJ/RsgpCVLlvC+Tm9vb4Vsv7S0lNPR0eHN4d69ewrJgRBCCCGEEEIUQaYGoKdPn3IaGhq8F0+tW7eW6CZghZSUFM7W1rbKG22SNgCxLjQBcH///bfEeVYoKSnhunTpwht32LBhYse5ceMGM7/+/ftL1Que4zhu1apVVb6XQjcAaWtrizXipSrK/plxHMd9+eWXvHE0NDQ4f39/qXPMyspi9tKeN2+e1HGFkJ2dzZmYmPDmpq6uzh06dEiquJs2bWJ+3o0aNZKqR66qNQC9ePFCsFhFRUWcm5sb7+t3cnKSKmZVDUCdOnXi8vPzJY6bkZHBWVhY8MYcOnSoRLFevnzJbKxxcnLicnJyJM6P4zjO19e3ymNpdTYAde3alTeWnp6eWKOdWF6+fMnVqVOHN/amTZukjisrVsO7vr6+xJ0lhDJ9+nTmd+PkyZNixRCiAai0tJTLyMjgXrx4wZ0+fZpbsWIF17JlS5Hf3Z49e0q072ZmZjJj2dvbix2nphFin+Y7zqqrq3MxMTHyS7wasDrj/O9//1NYDo6Ojrw57NixQ2E5EEIIIYQQQoi8qUMGGzdurLTmA/BuzQo/Pz+YmJhIHNPc3Bx79+4VdJ2TtLQ0/Pnnn7x1M2bMwLRp06SOrampif3798PQ0LBS3YkTJ3jnN+fDyk9fXx/bt2+HpqZ0yzUtXbpUIXOpf2jJkiVwcXGRKYYqfGYPHz7EgQMHeOtWr16NgQMHSp2joaEhDhw4AA0NjUp1O3bsQF5entSxZbV9+3bmwtTTp0/HqFGjpIo7e/Zs5toqCQkJ2Ldvn1RxVYmNjY1gsbS1teHr68u7rlV4eDiePHki2LYAwMDAAPv27UOtWrUkfq6xsTG+//573rrAwEBwHCd2rK1bt1Zahwx497u0Y8cO1K5dW+L8AGD8+PHw9PSU6rnydu7cOYSEhPDW+fr6on379lLHbtSoEXbu3Mlbt2nTJok+G6Hk5+cz10extrautnXSrK2tmXWsNZUksWrVKqipqVX5p6mpCRMTEzRp0gQDBw7EqlWr8PjxY2bcqVOnwt/fX6J9V9TradSokUSvi/yf8vJyvHr1qlJ5x44d0aRJk2rISH6ePn3KW25lZaWwHFjbYuVGCCGEEEIIIapI6gag4uJi5g3Zr776Cm3btpU6qY4dO2LcuHFSP/9T//77L3JzcyuVm5mZ4ddff5U5vpWVFW+DBMdx2LNnT5XPz8vLw8mTJ3nrFi1ahIYNG0qdm4aGBjZs2CD18yVlbW2NH374QeY4yv6ZAe8a7crLyyuVt2rVCvPmzZM5R2dnZ4wcObJSeW5uLo4dOyZzfGn9999/vOVmZmb46aefZIq9bt066Orq8taxbkITNisrK0yZMoW37uLFi4Jua8GCBWjatKnUz/f29oa6euWfpKysLMTGxoodx8/Pj7d8woQJzEW/xbVx40beRtnqtnHjRt5yDw8P3mOIpIYMGYJOnTpVKn/x4gWuX78uc3xJJSUlMessLS0VmMnHLCwsmHWvX79WYCZVMzIywrhx43D79m1s27YNenp6Ej1f1OupW7eurOl9ttLS0ng7VjVu3FjxychReXk5EhISeOsaNGigsDxY24qPj1dYDoQQQgghhBAib1I3AF24cAFZWVm8dUI0ACxdulTmGBV27drFW75o0SLeUSDSmD17Nm+v44CAgCqfe/HiReTn51cqV1dXx9dffy1zbj179oStra3MccQxceJEaGtryxxH2T+zwsJC7N+/n7du1apVgt0knjt3Lm+5ODnKw/379/Hw4UPeulmzZkk16u9DjRs3xuTJk3nrQkJCeHtGE9GGDBnCW37z5k3BtqGtrY1vv/1Wphj16tVjjlYMDw8XK0ZERATzxt3UqVOlzq2Cra0tevbsKXMcIb169YrZmPfzzz8Lth1lOhbxdQ6oIOsxSBampqbMOlE5K5qjoyP++ecf/PXXX+jQoYNUMUS9HmNjYykzI6zRazk5OQrORL5ev36NkpIS3jplaAASdyQ4IYQQQgghhKgCqRuAWDecOnXqJMg0Rs2bN5e5tzYAPH78mHcqBzU1NXh7e8scv0L9+vXRpk2bSuVhYWFV3vgJDAzkLXd3d0e9evUEyW/MmDGCxKnK+PHjZY6hCp9ZUFAQsrOzK5XXrl0bgwYNEizHjh07wsjIqFI56zsjbxcuXGDWCfUdGzt2LG85x3G4fPmyINv4nHTt2pW3/P79+4Jtw93dXZCRF/b29rzl4t6MY+0XTZs25R3BIg1FHUvFdfr0ad6RiM2aNZP65j6f3r17896cro5jUWFhIbOOb8pDRRG17YKCAgVmIlpERAS8vb3RoEEDfP/990hNTZU4hqjXU52fgaozNTXl3c+Cg4NrVCOQqM4cihzFxxqtxhqdRAghhBBCCCGqSOoGINa0L0JMN1PBy8tL5hisG9bOzs6Cz1PfrVu3SmVlZWWIiooS+bw7d+7wlnt4eAiSFwD07dtXsFgs9evXF2SOelX4zFg59uvXjzmFmTTU1dXRuXPnSuUpKSkip0GSF9Z+3759e5mm//pQ586dmdPdVMd0U6pOT0+Pd90bIXs4sxqZJNWsWTPecr7GVj415VgqCdaxaOjQoYJux8zMDC1atKhUHhUVxTtllTwVFxcz67S0tBSYifjbFpVzdcnJycGaNWvQqlUr+Pv7S/RcZf0MVJ2GhgZatmxZqTwnJwczZszgbexVRaKO6ZJORygL1rZqUmMbIYQQQgghhEjVAFReXs6cBkqWxablESssLIy3XJY1ilhYU0mIWnwZAPO9FDJHe3t73vU1hNSuXTtB4qjCZ6YKOcpDdHQ0b3nHjh0F3Q5rtAZr+0Q0vqmpsrKyRI6kkISTk5MgcVjTO4rbAPTgwQPeciH3y7p164pc60XRqvtYVFhYqPD1MkSNMGFNK6UIohpFhBgVM23aNERHR4v1FxYWhsuXL+PgwYNYsmQJevXqxZyaND09HYMHD8a6devEzkXU61HGxi5V0rt3b97yPXv2wN3dHbdu3VJwRsLjm/YYeDfSW5EjyGrVqsVbzsqPEEIIIYQQQlSRpjRPio+PZ944FPKmkxCxWDeM+XpYyqpOnTq85YmJicznZGZmMtdSYq2HIQ19fX00bdoUz549Eyzmp1q3bi1IHGX/zADVyFFopaWlePHiBW+dUA0AFRwdHXHw4MFK5U+ePBF0O6ri4cOHuHPnzvubu4mJicjJyUF2djZycnKkHoGRk5MjyIg1MzMzmWMAgIGBAW+5uA1ArIYIIY+lwLvfJtY0qIqUmZnJnKpI0cciIUZ/ikvUd1aoRk1piNo260azJCwsLGBnZyfx8ypGU7969QobNmzAxo0beUeSfPfddzAxMcFXX31VZUxRr6eoqEjiHMn/+fbbb7FlyxZwHFepLjg4GC4uLnB0dMSoUaMwaNAg2NnZMdcOUlasBhYh9hNJsLZXXl6OwsJCQUd0E0IIIYQQQkh1kaoBiDX1lLm5uaALMNepUwdmZmZIS0uTOgbrhuB3332H7777Tuq4kkhPT2fWJScn85arqakJPg+6paWlXBuAhFr4Wdk/s+zsbGRmZvLWjRo1Sk4ZVSYqR3lITk5mTj/TqlUrQbfFtzYT8O6Gd0FBgcJvElWH169fY9euXfDz82OObJGVUDfLhTrus0YoiNPAVVhYyGxMZ63zIC1FrlEhysuXL5l1Qq7/UxVFH4tYI8UAxeci7rZZjZuK1LBhQ6xfvx7Dhw+Hp6cnb8PqrFmz4OrqypyOsYKo1/P27VuZc/2ctW7dGlOmTMGOHTuYj4mIiEBERASWLl0KMzMzdO/eHd26dUOXLl3Qvn17aGpKdXqvMKWlpbzlrN8AeRH1PrFyJIQQQgghhBBVI9WcYKwGGaEaAD5kZGQk9XMLCwuRkZEhYDbSEbVYMqtnu76+vuBTtsnyXopD1E05canCZ1Yda+/wUfSi4qIWChd63xcVT5oFy1VJSUkJ1q5di+bNm2Pp0qVya/wBxGtYEYcyLPouas0GIY5NH5L3sVRcn+uxqH79+sy6N2/eKDCTj7E6dADsqTyrQ9euXXHkyBHeUSMFBQWYMWNGlTGU9TOoKTZv3owuXbqI9di0tDQcP34cCxYsQOfOnWFqaooBAwZgw4YNePXqlZwzlQ5r7R1Fj+ATdexS5FpEhBBCCCGEECJPUrUwsKZukEcPV1lu3CnLIq6i5sNnTZUi9A1LecX8kL6+vswxVOEzU4Uc5UHUjRKhv1ui4in6ZrMivXr1Ch06dMDixYuRm5tb3emoFFHTTiny+6lIn+uxSEdHhzntYHx8PHOkorzFxsYy65SpAQgA+vTpg+HDh/PWXbhwocqG54YNGzLrFL0mVE2ko6ODy5cvY8KECRI/NycnB2fOnMH8+fNhbW2NXr164ejRo7xTylUXVuNKSUmJYB0TxME6n9DV1ZX7upmEEEIIIYQQoihSXd2wFlmWR285WRoVlGUeemkuuuVxA0uRF9XSUoXPTBVylAdRi6sLve+L2u9r6gLjycnJcHV1RWRkZHWnUuMIfTxVlmPp53osAgBbW1ve8qKiIpENMfL06NEjZl3z5s0VmIl45s+fz6z7999/RT5XX1+fOQro+fPnIn8viHh0dXXh4+ODoKAgdO7cWaoY5eXluHLlCkaOHIl27drh+vXrAmcpHVG/8Yrs5MHaFo3+IYQQQgghhNQkUk0SrqWlxVvOGhkki7y8PKmfqwq991gLzIq76Lkk5BFTaKrwmalCjvLA2u+Bd/s+a4F4aYja77W1tQXbjrLgOA7jxo3DixcvRD6uQYMG6NixI9q0aQNra2tYWlrC0NAQtWvXhqamJnP9hL59+yrNdGHyImqx7uzsbJibmwu2LWU5ln6uxyIAcHR0xI0bN3jr7ty5g6ZNmyo0n9LSUkRERPDWGRgYKDwfcXTs2BG1a9fmHW0YFBRU5fOdnJx4jyulpaW4f/8+nJychEjzs+fq6orQ0FBERkbCx8cH/v7+iImJkThOREQE3Nzc8Ouvv2LRokVyyFR8oo7HGRkZqF27tkLyYE05bGFhoZDtE0IIIYQQQogiSNUAxFqAXR7T0chyo01UD77ly5dj1KhRUseWhKgF0llrneTn56OsrEzQBXGV5aalKKrwmYnKcdu2bejatas8UqpE0TcoWPs9IPx3S1Q8UXmoqmPHjuHixYu8derq6vjqq68wffp0ODo6ShVf0QtrVwdDQ0OoqanxjkapqQ1Aoo5F/v7+aNy4sULyEDUdmLw4Ozsz64KDg+Ht7a3AbIDw8HBmw7WTkxPvejvVTVNTEw4ODggNDa1UFx0djfz8fJHfMWdnZwQEBPDWBQUFUQOQwNq2bYsNGzZgw4YNiI+Px5UrVxAcHIxr166J3SBUVlaGxYsXQ1dXF7Nnz5ZzxmzW1tbMusTERDRq1EgheSQmJvKWi8qPEEIIIYQQQlSNVA1ArBtpmZmZsuTCKysrS+rnGhoaQktLi3cqklq1asHOzk6W1ARRt25dZl1CQoKgN/ASEhIEiyUvqvCZiRrpYmRkpBQ5yoOoG+hC7/ui4gl5I19ZrF+/nrfcwMAAhw8fRt++fWWKz+rlXJNoa2vD1NQU6enpleoSEhIEHYGhLMdSUcciMzOzGnssAoDevXsz61iNEvJ0+vRpZp2oXKsb6ztUVlaGN2/eoEmTJszn9unTBz/99BNv3blz5zBv3jxBciSVWVtbY9KkSZg0aRIAICkpCVevXsXFixdx+vRppKaminz+/Pnz0atXL7Rp00YR6Vaip6cHMzMzpKWlVapjNcrIAzUAEUIIIYQQQj4HUs0fw5r3PTU1VdAbjenp6bwXh+JSV1dnLrz89u1bqeMKqXbt2swb2kKuBZKRkaE0Ny1FUYXPrH79+tDU5G87VZYc5cHS0pI55ZSotS+k8fDhQ95yY2PjGjcCKCEhgTmV1ZYtW2Ru/CkpKeGd4qkmYt2sFnpdpaioKEHjScvKyopZV5OPRcC7G7QtW7bkrXv58iVu3bql0HyOHDnCrJN1H5YnQ0NDZl1V36HOnTszRzFfuXJFpvM3Ipn69evjiy++wH///Yc3b97g/PnzGDhwIPPxZWVlWLlypeIS5GFjY8NbrgwNQIoaPUkIIYQQQgghiiBVA5CVlRVzvQUhb4wJcdOuVatWvOXPnj2TObZQWD0wWesJSEPIWPKm7J+ZhoYGcwFyZclRHjQ1NZk32IX+frHitWjRQtDtKAPWotxNmzbF+PHjZY5f1bpCNYkijqWxsbEyjUwVUqNGjZhrZdTkY1EFLy8vZt22bdsUlse1a9eYjdZNmjRBhw4dFJaLpER9l4uKikQ+V0NDAyNGjOCtKy0txX///SdTbkQ66urq8PDwgL+/P86cOcM8Rvj7+8tl7U5xOTg48JY/ffpUYTk8efKEt7xt27YKy4EQQgghhBBC5E2qBiANDQ20bt2at+7OnTsyJfShsLAwmWN07NiRt/zatWu8a0VUBxcXF95yf39/wbZx6tQpwWLJmyp8Zqwcr169quBMFIt1w+b27duCbofVe9/e3l7Q7SgD1g2oQYMGCRL/2rVrgsRRBaxj6dmzZ1FWVibINpTpWKqurs5cC6emH4sAYOLEicy1dfbv349Xr14pJI9169Yx60TlqAxEjdJhNRx8aMqUKcy6TZs2obCwUKq8iDD69++PHTt28NYVFRUhJCREwRn9H9axKzo6WiHbT0tLw5s3b3jr2rdvr5AcCCGEEEIIIUQRpGoAAoBu3brxlouaBkVShw4dkjlGr169eMvT09MRHh4uc3wh9OzZk7f87t27zJvDkigrK8OBAwdkjqMoqvCZsXKMjIys0dPesPb7O3fuIDY2VpBt3L59mxmLtX1VlpKSwlsu1BoEV65cESSOKmAdS5OTk3Hp0iVBtrFv3z5B4giFdSwKDg7mXUutJrGxsYGnpydvXVFREX788Ue55xASEsJsFNTV1RXZQFLdiouLRY60btiwYZUxXFxcmDfLk5KSRDaOEcXw9vZmfpbx8fEKzub/VHcDEGs7jRo1goWFhUJyIIQQQgghhBBFkLoBiLWo8a1btwS5Efzs2TPcvXtX5jhdunRhrrGzadMmmeMLwc3NDSYmJrx1QuR48OBBZi9HZaQKn9mAAQOgpaVVqby8vBybN2+uhowUo0+fPsw6Pz8/Qbaxd+9e3nI1NTWlXkxdWsXFxbzlQqx1lJycjGPHjskcR1XY2toyp4ET4tgRGhoq6ChXIQwbNoy3PD09nbkv1SQrVqxg1vn6+sq1AbSoqAhTp05l1n/99deoV6+e3LYvq5CQEBQUFPDWWVpaok6dOmLF+d///ses++2335jT48mLIqcQUxWsxpbq7LDStm1b3umkMzIyFDJ6jzVldadOneS+bUIIIYQQQghRJKkbgDw8PJiLB//2229SJ1Th559/ljkG8G66ukmTJvHW+fn5KcX6GFpaWvD29uat2759u0zrKuXl5WHRokVSP786qMJnZmpqyrzxunnzZqVZI0RodnZ2zOkf//zzT5lf96tXr7Bz507eum7duqFBgwYyxVdGpqamvOVJSUkyx964cWOV63jUNKx1k86ePYuAgACp45aXl2PWrFlSP19e7OzsmFNSrl69GqWlpQrOSLE6dOiAkSNH8tZxHIcJEybIrQPEggUL8ODBA946Q0ND/PDDD3LZrlDWr1/PrHN1dRU7Tr9+/Zij7/Lz8zFq1CiF/Sbu27cPY8eOVci2VIm2tjZvub6+voIz+T86Ojro3r07b50ipqZjTY/q4eEh920TQgghhBBCiCJJ3QCko6ODL7/8krdu586dMjVa3LlzB3v27JH6+Z+aMWMG78VvaWkpRo8erRRz1M+ZM4d3nYCysjJMmDAB2dnZEsfkOA7Tp09HYmKiECkqlCp8ZvPmzeMtz8jIwPjx45VmvSKhTZ48mbc8JSUFP/30k0yxv/vuO+ai1KztqjrWaLfLly/LFPf27duf5fRLX3/9NfOm5rRp06TuWb5ixQrcu3dPltTkZv78+bzlT58+xdy5cxWbTDXYtGkTjIyMeOtevXqFwYMHIycnR9Bt/vnnn/jrr7+Y9atXr1bq0T+nTp0S2SA6atQoieLt2LEDenp6vHUPHz7EgAEDkJubK1FMSRQXF2PevHkYO3Ysc1Tl54w1Kqp+/foKzuRj/fr14y0PCgqS+7aDg4N5y1k5EUIIIYQQQoiqkroBCADmzp0LdfXKIcrLy/HFF18gIyND4pipqakYM2aMoDfPraysMHPmTN66sLAwTJw4US5rJdy4cQMvX74U67EtWrRg9lqNiIjAoEGDJLqBVV5ejnnz5mH37t1iP0eZqMJn5uLiguHDh/PWnTp1Ct99951cGoHOnz9frSOMvvnmG5FTFp48eVKquP/88w9zrapGjRphzJgxUsVVdk5OTrzlISEhUveCTkpKwpdfflnjR3/wMTExYTaIJCQkwMPDQ+IRIX/88Ydgo1LlwcvLi7kOy19//YU///xT8G2WlZUJuuafLOrXry9y6s07d+6gV69ezPW2JLV27VrMmTOHWe/h4YFvv/1WkG3JQ2BgILMDD/Bu/bEhQ4ZIFLNJkybYsGEDsz4kJARdu3ZFXFycRHHFcefOHbi4uGDjxo2Cx1a0mzdvytz4/6m7d+8y13qys7MTdFuSYjW2XL16Va7bffDgAVJTUyuVt27dGo0aNZLrtgkhhBBCCCFE0WRqAGrRogUmTpzIW/fw4UMMHjxYohvVb9++xcCBA/Hs2TNZ0uK1cuVKNGnShLfu4MGD6NGjBxISEmTeDsdxOH36NHr06IEuXbqI3ZgAvOsxbGxszFsXHBwMOzs7nD17tso4jx49Qo8ePSqteaFqF7Wq8Jlt2rSJ2Riyfv16DB48WKqG0E+VlpbCz88Pjo6O6Nevn+C92SVhYGDAXHejrKwM3t7euHTpkkQx/fz8MH36dGb9b7/9xrvmUk3QvXt3Zs/58ePHSzwV3JMnT9ClSxfExMQIkZ5KWrx4MWxsbHjrHj16BDs7O+zZs6fKBtqK0SMLFiz4qFzZjqVqamrYvn07c5qnOXPmYMqUKYKMnCwoKMDWrVvRvHlz5tSl1WHcuHHMTgPAu0YCR0dHnD9/XuptpKamYtSoUVi8eDHzMY0bN8b+/ft5R/RWt5cvX2Lu3Lno3bs38vLymI+T9nj7zTffYMaMGcz6qKgoODg4YMuWLYI0TsfExGDKlClwcXFBeHi4zPGUwePHj9G7d2+0b98ehw4dkvl9SklJwbhx43jrHBwc0KJFC5niy6p169awtbWtVP7o0SO8fv1abttlrQ0macMnIYQQQgghhKgETkZv3rzhzMzMOAC8fw0bNuTOnj1bZZxTp05x9erV++i5Ghoalcoq/gIDAyXO9caNG5yOjg4z19q1a3Pz58/nEhISJIpbWlrKXblyhZsxY0alfK9duyZRrIMHDzLzq/hr0aIF9+OPP3KHDx/mrl+/zt2+fZs7efIkt379eq5r166cmppapeeMGDGCmzBhAm+8Xbt2SZSjUHHEoQqf2dGjR3nf84o/MzMzbtWqVVx6erpEcYuKirjTp09zkyZN4kxNTT+KKenrFVppaSnXoUMH5mtWV1fn5s6dy+Xk5IiMk56ezvw+Vfz17dtX6jytra15Y8bGxkodUx7Gjx/PfP2NGjXizp8/X2WM3Nxcbvny5Zyent5Hzzc0NOSMjIwEeR/k/X7u2rWLN/6ECRMkjhUSEsJpamqK/G41atSIW7BgAXfgwAHu6tWrXFhYGHf69Gluy5YtnIeHB+/zO3bsyP3444+88VasWCFRjoGBgbxxXF1dJX69HMdxGzZsEPl6raysuI0bN3K5ubkSxc3NzeUOHTrEeXl5cbVr1/7oN1qZlJSUcMOGDavyN9TT01Oic4jXr19zq1at4gwNDUXGtbCw4B4+fCjTa4iNjWXGnzZtGhcdHS3WX1hYGHflyhXu0KFD3JIlS7iePXty6urqVb433t7eMuVfUlLCeXl5Vbmdxo0bcxs2bOBev34tUfyioiLuxIkT3IgRIzgNDQ3e2G3btpXpNchC1n3602OgqakpN2XKFO7ChQtcSUmJ2HmUl5dzBw8e5Bo1asT8DDZv3izlqxTWypUrefP7+++/5bZNd3d33m3ev39fbtskhBBCCCGEkOqixnGyz1F14sQJDB8+XGRv6pYtW8Lb2xt2dnZo0KABOI5DYmIioqOjsX//ft5RPwsWLEBYWBjvVBCBgYFwc3OTONfDhw/D29sb5eXlzMdoaGjAyckJrq6ucHJyQp06dWBqagpNTU1kZmYiMzMTqampiI6ORnh4OCIjI5m9aa9du4Zu3bpJlOOyZcvwyy+/SPQcUWxtbXHz5k3Mnz8fvr6+lep3797N7CHKZ+LEibxxdu3axRwRJgtV+Mz++OOPSqMEPqWtrY2OHTvC1dUV9vb2MDU1hampKTiOe59jcnIyIiMjER4ejujoaBQVFfHGSkhIQMOGDSXKUWhxcXFo37490tPTmY/R19fH4MGD0adPHzRs2BB16tRBWloaEhIScObMGQQEBDBfIwA0bNgQ9+7dY66TU5XGjRsjPj6+UnlsbCwaN24sVUx5ePHiBVq2bClyWkMnJycMHToUzs7OMDc3h7q6OlJSUpCQkIALFy7g4sWLvCPD/vvvP6xatUqQ90He76ePjw8mTZpUqXzChAnw8fGRON6OHTvwzTffyJxXBTMzM9y+fRu+vr5YtWpVpfqffvoJP/74o9jxgoKC4O7uXqnc1dVV6jUwZs+eLXI6NODdftm5c2f06NEDLVu2fH8sKikpeX8sSkpKQkREBMLDw/Hw4UPekQgaGhpKN81gSUkJvLy8cOLEiSofa21tDQ8PDzg7O6NZs2YwMjKClpYWcnNzkZiYiIcPHyIwMBChoaFVvk4LCwtcunQJ9vb2MuUfFxfHHL0mbz179kRAQAB0dXVlilNWVoavvvqK9zzhU+rq6mjXrh26dOmCVq1awcbGBkZGRtDT00NRURFyc3ORkJCAp0+f4tatWwgNDWWuE1ehbdu2iIiIkOk1SEvWfZp1DASAWrVqwdHREe3bt4eDgwPMzMxgamoKIyMjFBUVITs7G8+fP0d4eDgCAgJErv/YqVMnhISEQENDQ+zXJi8xMTFo1qxZpfJevXpJPJpYHOnp6bC0tERZWdlH5U5OTkq7zhshhBBCCCGEyESolqT//e9/Vfb4lOSvc+fOXGFhIefq6spbL80IoApHjhwROapEyD9JR5NU+O677wTZvrW1Nffs2TOO4zhu7NixvI85ePCgRLkpcgRQBVX4zDZt2iRyJJCQf9U9AqjCrVu3OAMDA7m8RnNzc5l706vKCCCO47hffvlF8Pdw2rRpHMcJ9z6o0gigCps3bxZkvzQ1NeVu3rzJcRzHLVu2jPcxa9askSg3oUcAcdy7nv8LFy5UyHFI2UYAVSgrK+MWLVqkkPcAAOfo6MjFx8cLkruoEUDy+vt/7N13eBRV+/j/e7PpvUBCryFIB0VAUFBAEFREkWID7KKoqI8+6qNg/4gde6coqBSVJogiVUAFAlKkt9BCCCSkt53fH/70K+45y85mdjdZ3q/rynXBfc6euWd2d+bMnpk5NpvNuOOOO4zi4mJL1uEvr7/+uhESEuLz9bnlllssXQ8zrL4DyBt/tWvXNrZv3+7dDWHSBRdc4JRncHCw6Tun3fHJJ58ot8urr75q+bIAAAAAoCqo1BxA//TEE0+YuvLZlTZt2si3334rYWFhlrT3b4MGDZLly5dr55epCl566SWZOHGiREVFedzGRRddJKtWrfr7ykrdfEwREREeL8NXqsN7dt9998n8+fM9vlulOurUqZMsXbrU8ruR0tLSZOXKldKiRQtL263KHn/8cRkxYoRl7Y0cOVLefvtty9qrrkaPHi3z5s2r1PeydevWsnLlSuncubOIVO19qc1mk5dfflkmTZok0dHR/k7HL4KCgmT8+PEyb948r94pabfb5cEHH5RVq1ZJgwYNvLYcb2ratKksXrxYPvjgA8v7XGPGjJE1a9bI+eefb2m7Ouecc47MmTNHPvnkE58srzpq3LixrFy5UtLS0vydymnuvPNOp1h5ebnMnDnT8mV9+eWXTrHw8HAZPny45csCAAAAgKrAsgEgkT8ff/P5559X6kenK664QpYvXy7JyckWZuasU6dOsnHjRvnvf//rlYGm9u3byxtvvCHt27f3uI2RI0fKtm3bZOTIkdrJvVUaN24sH374oSxbtkzq1KnzdzwnJ0dZv7oMWFSH96xfv36yZcsWuf322yUoyNKvl4iIXHjhhfLxxx9LrVq1LG/bU+eee66sX79ehg4dWum2bDab3H777fLbb79VuR+ofOHTTz+VcePGVeqzEx4eLq+88opMnDjRK5/B6qh///6ybds2eeCBB0wNqqekpMj48eNl3bp1pw1GVod96YgRI+T333+Xa665xvK27Xa7XHbZZTJt2jTL27bS5ZdfLlu2bJH//e9/Ehsba2nbl112mfzyyy/y6quvVomBPzPsdrv0799fvv76a/njjz+Ujyyzyrnnnitr1qyRSZMmScuWLb22jM8//1y2bNkiV155pVeW4Sv16tXzSv/XbrfLPffcI+vXr6+SF9Jcd911kpKS4hT/6KOPLF3O/v37ZfHixU7xG264QWrUqGHpsgAAAACgyvDGbUWHDh0ybr75ZiM0NNTtR1K0aNHCmDZtmlNb3ngE3L8dPnzYGDt2rPbxRu782e12o0uXLsaTTz5pbNiwwbLc/pKZmWm89957xuDBg41zzjnHiI2NNex2uxEZGWnUqVPH6NGjh/HAAw8YP/74o1FeXq5sIzU1VZm72cc3+eMRcP9WHd6zXbt2GWPGjDGSk5M9zjEsLMy4+OKLjRdeeOHvR/lVZT///LNx5ZVXGsHBwabWMzQ01BgyZIjl78OoUaOMQYMGOf0dO3bM0uVYbeXKlcall15qehsOHz7c2LVrl1N7Z/Mj4P4tNzfXmDRpknHjjTcabdu2NeLi4gy73W6Eh4cbKSkpRteuXY1Ro0YZc+fO1T4Sq3fv3pYcl7zxCDiVDRs2GLfeeqsRFxfn8b4oKirK6Nevn/H6668bhw4dsjQ/Xzhx4oTx+uuvG+eee67H2yAxMdEYNWqUsXbtWq/ladUj4Ox2u5GQkGA0atTIaNeunXHFFVcY48aNM+bOneu3/Z/D4TAWLlxoDB8+3IiPj6/U+jVo0MAYM2aM8csvv/hlXXSs+E5XVFQYq1evNh5//HGjc+fOlXqMXkJCgnHnnXcaGzdu9N5KW+Tpp59WroOV/YInn3xSuYzff//dsmUAAAAAQFVjMwzDEC/JzMyUWbNmyeLFi2Xz5s1y5MgRKSwslPDwcElISJDmzZtLx44d5YorrpBu3bqJzWbzVipuW79+vSxbtkzWrl0ru3btkoyMDDl16pQUFxdLaGioxMTESExMjCQnJ8s555wj55xzjrRq1UouvPBCiYuL83f6WidOnJAaNWrIv9/usLAwKSgoqBITAXuqqr9nDodDVq9eLStXrpR169bJ7t275eDBg5Kfny/FxcUSHh4usbGxEhMTI7Vr1/47xzZt2kjXrl0lMjLS6zla7dixY/Ldd9/JypUrZcuWLbJv3z7Jzc2VkpISCQ8Pl/j4eGncuLG0bt1aLrroIunfv78kJCT4O+0qZ/PmzbJgwQJZtmyZ7Ny5U7KzsyUnJ0fCwsIkJiZGGjduLC1btpRLLrlELrvsMu0VzCUlJU7ffZE/v/9VYb9bnRiGIYmJicq7gA4ePCh169b1fVJuKisrk2XLlsmqVaskPT1d9u7dK4cOHZL8/HwpLS2VyMhIiYmJkdjYWKlbt660aNFCzjnnHGnXrp107tzZ1J2oVVlGRoYsW7ZM1qxZIzt27JA9e/bIyZMnpaCgQMrLyyUyMlKio6Olfv36kpqaKu3bt5eLLrpIOnbsKMHBwf5OPyCUlZVJenq6rF69WjZs2CB79+6VAwcOSE5OjhQWFkpZWZmEhoZKVFSUpKSkSP369aVFixbStm1bueiii/5+tO3ZoLi4WH777TdZu3at7NixQ3bv3v33MTU/P19KSkokKipK4uLiJD4+Xpo3by7t27eX8847T3r27FltvrdZWVnSoEEDKS4uPi1+zz33WPI4U4fDIQ0bNpSDBw+eFu/Vq5f8+OOPlW4fAAAAAKoqrw4AoepYsGCB9O/f3ynetm1b2bhxox8yAoDq548//lA+yiouLk77aDgAwJmNGTNGJkyYcFosJiZGDhw4IPHx8ZVqe8aMGTJkyBCn+NKlS6VHjx6VahsAAAAAqjImiDhLTJ06VRnv1q2bjzMBgOpLty/t2rWrjzMBgMDy2GOPOd31nJeXJ++++26l237ppZecYr169WLwBwAAAEDAYwDoLJCZmSkzZsxQlnlz8mcACCQlJSXy4YcfKsvYlwJA5aSkpMjo0aOd4m+++abTo+HM+Omnn2Tt2rVO8eeee87jNgEAAACgumAA6CwwZswYKS0tdYpHRkYqHwsHAHD21FNPSVZWlrJs8ODBPs4GAALPI4884jQ/Y2ZmpkyaNMnjNsePH+8Uu/zyy6VLly4etwkAAAAA1QUDQAHu/fffly+//FJZNnToUImKivJxRgBQ/Xz33XfKHxFF/rz7p1GjRr5NCAACUFJSkowbN84p/vzzz3t0F9Dy5ctl0aJFp8VCQkLk1Vdf9ThHAAAAAKhOGACqgq6//npZsGBBpdowDEOefvppufvuu5XlQUFB8vDDD1dqGQBQlY0ePVq+/PJLqaioqFQ7H330kQwcOFAMw1CWP/roo5VqHwDw/9x7773SsmXL02IHDx6Ut956y3Rbqv3zfffdJ82bN/c4PwAAAACoTmyG7hct+E29evXk0KFD0qZNGxk+fLgMHjxYGjZs6NZrDcOQ+fPny/PPPy9r1qzR1rv77rvlnXfesSplAKhyLrzwQvn555+lSZMmMmLECBk8eLC0aNHC7devWLFCXnjhBVm4cKG2zuWXXy7z5s2zIl0AwP9v8eLF0rt379NiCQkJsmfPHomPj3erjdmzZ8vAgQNPi9WqVUu2b98usbGxFmUKAAAAAFUbA0BV0F8DQP/Utm1b6dixo3To0EEaNmwo8fHxEhMTI/n5+XLy5Ek5dOiQrFy5UpYvXy4ZGRku209LS5PffvuNk18AAe2vAaB/at68uZx//vnSoUMHadq0qcTHx0tcXJwUFRXJiRMn5OjRo7J69WpZvny57Ny502X7NWvWlHXr1kn9+vW9uRoAcFZ67733JDMz87TYgAED5Nxzz3Xr9VOnTnXaj3fv3l169uxpWY4AAAAAUNUxAFQFqQaArFKzZk1ZtmyZqavgAaA6Ug0AWSUyMlIWLFgg3bt390r7AAAAAAAAQGUxB9BZpEmTJrJ06VIGfwCgEmrWrCkLFy5k8AcAAAAAAABVGgNAZ4GgoCC59dZbZf369U6T6gIA3Ddw4EDZsGGDXHTRRf5OBQAAAAAAAHCJR8BVQXv27JEZM2bIzJkzZd26deLpWxQVFSWDBw+WBx54QNq2bWtxlgBQtR05ckRmzZolM2bMkFWrVkl5eblH7YSGhsqVV14pY8aMkQsvvNDiLAEAAAAAAADvYACoisvJyZE1a9bIr7/+Kjt37pR9+/bJwYMHJS8vTwoLC6WkpERCQkIkKipKateuLY0aNZL27dtL165dpWfPnhIeHu7vVQAAvysoKJBff/1V1qxZIzt27JB9+/ZJRkaG5ObmSmFhoRQXF0twcLBERkZKrVq1pEGDBtK2bVvp0qWL9OnTR2JiYvy9CgAAAAAAAIApDAABAAAAAAAAAAAEGOYAAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYBoAAAAAAAAAAAAACDANAAAAAAAAAAAAAAYYBIAAAAAAAAAAAgADDABAAAAAAAAAAAECAYQAIAAAAAAAAAAAgwDAABAAAAAAAAAAAEGAYAAIAAAAAAAAAAAgwZ+0A0FNPPSU2m83p76mnnvJ3atXOpEmTlNty5MiR/k4NAAAAAAAAAICzUrC/E/hLSUmJ5OTkSGFhoRQXF0toaKhERkZKjRo1JCQkxN/pAQBEJD8/X3JycqSgoEBiY2MlISFBwsPD/Z2WVnl5ueTm5kpOTo4YhiHx8fESHx8vwcFV5vAHwEPVbX+EquvUqVOSl5cnhYWFUlFRIeHh4RIbGyuJiYn+Tu2sV1paKjk5OZKbmyshISGSmJgoMTExYrPZ/J0aAC8qLy+XnJwcycnJkaCgIElMTJS4uDi++wAAeMAvv4BlZmbKkiVLZNWqVbJu3TrZu3evHD16VAzDcKprs9mkZs2a0rx5c2nTpo1069ZNevToIXXr1vVD5gDOZk899ZQ8/fTT2vKZM2fKoEGDfJiR95SWlsovv/wiP//8s2zevFk2bdok27dvl5KSEqe6ERER0rRpU+natat07dpVLr30UqlTp47Pc3Y4HLJ48WJZvny5/Prrr7Ju3TrJzs5W1k1ISJBzzz1Xzj//fLnwwgulb9++PhkUysnJkRkzZsi8efNk8+bNcvToUQkODpY6derI+eefLwMHDpQrr7ySCx8scOzYMTl27Fil2ggODpbY2FiJjY2V6OhoizLzn71790pBQYHXl9O6dWtL26tu+6NNmzbJjBkzZNGiRXLgwAHJzs6WxMREqV+/vvTp00cGDx4s7dq182lO+H/S09NlxYoVsnr1atm6davs3btX8vLylHVDQ0Olfv360qpVK2nfvr10795dunbtKhERET7O2jsMw5D09HT54YcfZP369bJ9+3Y5fPiw5OfnS2lpqURFRUlMTIzUr19fmjZtKi1atJALLrhAOnXq5JV94q5du2TJkiWyceNG2bx5s2zevFl5HLfb7ZKSkiKdOnWSrl27Svfu3aVz586W5+MKx3Pf8eR4brPZJDg4WMLCwiQsLEwiIyMlLi7OSxn63+bNm/227MaNG0tUVFSl2jh48KAsWbJE0tPTZdOmTX9/p/4tKChIkpKSpGPHjtK1a1e58MILpXv37hIU5LsH2xQXF8usWbNk7ty5sn79ejl69Kg4HA6pXbu2tG/fXq666iq5+uqrK71NAACwlOEjRUVFxkcffWT06NHDCAoKMkSkUn8dO3Y0xo8fbxw9etSjfMaNG6dsd9y4cdau+Flg4sSJym05YsQIf6cGWMbhcBiNGzd2uV+64oor/J1mpRw4cMB47bXXjMsuu8yIioryeP8cHBxsDBkyxFi5cqVP8j5x4oTx3HPPGQ0bNvQ459q1axv/+9//PD6mnInD4TAmTJhgJCUlnTGX1NRU45tvvvFKHmcT3XHe0z+73W40a9bMGDx4sPH8888b69at8/cqmtajRw9Lt4nur6ysrNK5Vsf90eHDh40bbrjBsNlsZ8zr2muvNfbu3ev1nPCnPXv2GA8//LDRqFGjSn++IyMjjUGDBhmzZs2y5LPuD9nZ2cbzzz/v8faw2+3GRRddZIwfP944cOCAx3kUFRUZM2fONG6++WajQYMGlXpf2rRpY3z00UdGYWGhhVvKGcdz37PqeB4aGmrUq1fPOP/8843rr7/eePbZZ42vv/7ayMzM9PcqVpovju26vyVLlpjOt6yszFiwYIExatQoIy0trVLLb9KkifHqq68aJ0+etHy7/tvUqVON+vXrnzGn2rVrGx9//LHX8wEAwF1eHwAqLi42XnzxRSM5OdkrHY6QkBDjhhtuMP744w9TeTEAZB0GgHA2WLJkyRn3R8HBwV4bQPCWnJwc48033zS6du3q1o+WZv8GDhxoZGVleS3/2bNnG7Vr17Ys38TERGPy5MmW5lhYWGgMGjTIdC6PPfaY4XA4LM3lbGL1AJDqr1WrVsYrr7xiFBUV+Xt13VLVB4Cq8/5o/fr1Rt26dU3lk5SUZPz8889eyQd/2rVrlzFs2DDDbrd75bNep04dY/z48UZBQYG/V9UtZWVlxssvv2zEx8dbtg3+7//+z3Qe3333nXHDDTcYMTExlr8n9evXNxYvXuyFrcfx3F98cTxv3ry5MXr0aGPFihXV8r3y9vZx9WdmAGjlypXGHXfc4dYAqtm/hIQE46uvvvLK9i0vLzdGjx5tOqfhw4cbpaWlXskJAAAzvDoAtHjxYqNZs2Y+6XgEBQUZt956q9sn9gwAWYcBIJwNRowY4da+6JVXXvF3qqbMnTvX6/vnlJQUY+HChZbmXVFRYYwaNcprOQ8ZMsQoKSmxJM++fft6nMeDDz5owdY6O/niB6O//po2bWp89913/l7lM6rqA0DVdX+0detWIzY21qN8wsPDjV9++cXSfPDnQMe4ceOM8PBwn3zmk5OTjY8//rhK/3C8d+9e44ILLrB83T0ZAPLGj7///LPZbMaDDz5o6R1aHM/9x5fHcxExGjRoYLz88stGbm6uv1fdbb7cPv/+S09PdzvP8847z+v53HDDDUZ+fr6l2/f222/3OJ9BgwZV6WMDAODs4JWHpTocDnnmmWfk0ksvlZ07d3pjEcplfvLJJ3Luuef6ZHkAzh75+fkyc+ZMt+pOnjzZy9lUP5mZmXLFFVfIV199ZVmbt912m7z33nuWtfdv06dPlyFDhojD4ahUO//73//k+++/Py0WGRkpjz32mKSnp0t+fr7k5ubKzz//LHfccYfY7fbT6r722mvy2WefVSoHeN/u3bulf//+8thjj/k7FZyB1fuj/Px8ueqqq+TUqVOnxVu2bCmTJk2SjIwMKSkpkSNHjsiXX34pHTt2PK1ecXGxXH311ZKZmWlJPhA5fPiwXHzxxfL0009LcXGxT5Z57Ngxue2222TcuHE+WZ5Z69atk06dOsnq1av9nYpPGIYhr732mgwZMkTKy8staZPj+dnjwIED8vDDD0uDBg3k1VdftewzFIiaN28u7du393cap5k6dar06dNHO7ebWR988IF89NFHp8VCQkLknnvukdWrV0tubq7k5+fL+vXr5eGHH5bw8PDT6s6aNUuee+45S3IBAMBTls94XV5eLjfccINMnz79jHUTEhKkb9++0q1bN2nVqpU0btxYEhMTJSoqSsrKyiQ/P18OHTokO3fulLVr18rSpUvlt99+c/mD3L9PwAGgsmbOnOn2xOmbNm2S9evXB8xgdFRUlPTs2VO6du0q5513njRp0kRSUlIkIiJCcnJy5NixY/LLL7/IokWLZObMmVJWVqZsp7y8XIYPHy516tSRiy66qFI5vfvuuzJx4kSXdVq1aiU33XSTdO3aVVJTUyUhIUEMw5CTJ0/Kjh07ZNWqVTJlyhTZvn27to3Zs2fL888/L08++aRHee7evVteeeWV02KpqamyYMECSU1NPS3+14T1N954o1x11VVy8uTJv8seeughufrqq70y4Tas9eKLL0pISIg888wz/k4lIFXF/dFrr73mdLHTXwPUwcH/r5tdq1YtGTp0qAwZMkQeffRReemll/4uO3z4sDz11FNeHdQ+W2zbtk169eolhw8fPmPdVq1aSa9evaRLly7SrFkzadCggURHR0tYWJgUFhZKbm6u7N27V7Zv3y4rV66Un376STIyMly2WRXPQ3777Tfp1auXyx9D4+LipE+fPtKtWzdp1qyZJCUlSVhYmOTm5v593Fy3bp388ssvsn//fq/ma7PZpEOHDtKzZ085//zzpXnz5lK/fn2JiYmR0tJSOX78uGzbtk2WLFkin3/+uRw6dEjb1jfffCP33XefvPvuu5XKieP52Sk3N1f+85//yKRJk+SLL76Q1q1b+zulKufmm2+2tL0WLVpIr169pHPnztKiRQtp0KCBxMbGimEYcvz4cdm1a5csXbpUvvjiC9mxY4e2nVWrVsl1110nc+fOFZvN5nE+ubm5Thf3JCcny7x58+T8888/Ld6hQwfp0KGD3HzzzXLZZZfJgQMH/i57/vnnZcSIEdKgQQOPcwEAoFKsvJ2orKzMGDhw4Blvg+3cubMxa9Ysjx6vc/DgQeOll17STvYdFxfnVjs8Ag6Au8w+Nunee+/1d8puUz1yKSQkxLj22muNb7/91tR+ev/+/caQIUPO+FiNU6dOeZxvZmamER0drW0/KSnJmDlzplttORwOY+rUqS7nQggJCTH27NnjUa633XbbaW3Fx8cbu3fvPuPrlixZ4jRfxfjx4z3K4Wzm6pExe/fudauNwsJCIzMz00hPTzcmTZpkDB8+/IxzVthsNuOHH37w7sp5SLcv82QCZ2+obvujgoICIy4u7rQ2BwwY4NajXm699Van9Tx48KDHucAwtmzZcsY5R0NDQ43bb7/d2LRpk+n2HQ6HsXLlSuO2224zwsLClO3ff//91q9YJezZs8flNmnQoIHxySefGIWFhW63mZ6ebowdO9Zo1KiRIWLdI+DatWtnvPbaa8bhw4fdbqekpMR4++23jcjISJfv++zZs03n+E8cz/2rMsfz8vJyIy8vz8jMzDR+//134/vvvzcmTJhg3HbbbUZaWprbffuoqChj+vTpvlnhKuacc85RbhO73W4cOnTIVFuqR8ClpqYazzzzjFvfqb9UVFQY06ZNO+PjJCdMmGB2dU/z3HPPOR2rV69efcbXbd261el8ZdSoUZXKBQCAyrB0AOjuu+92eQCuVauWMWPGDEuWVVZWZnz66adOk38zAATASnv27NFORt6lSxdlvEaNGtVmws9//uAaHx9vPPHEE6Z+fFF5/fXXXR4LnnjiCY/bfuyxx7Tt1q5d2+0f9v9px44dLn8gu/vuu0236XA4nNp8+eWX3X79v39s6ty5s+kcznZWDACp5OXlGQ899JDLSeVbtWpVJZ/3Xp0GgKrD/ujfA1ZhYWFuD+Lk5uYaiYmJp73+vffe8ziXs92xY8f+HpDQ/V166aUeD+j/26FDh4y7777bCAoKOm0ZVWkAqLS01OV8G7fddptRUFDgcfvl5eXGjBkzjDlz5ph+7V8/2tpsNuOqq64yli9f7nEehmEYmzdvNurVq6dd1yZNmng8HxDHc//z1vHcMAzjwIEDxvjx490aDAoKCjI+//xza1aqmli1apV2e/Tv3990e//cJ/Xo0cOYN29epfpLBw4cMNq0aaPNMTY21jhx4oTH7f97H3rPPfe4/dp/Dx7Vrl27SvYNAQBnB8sGgD755BOXHaauXbsaR48etWpxf8vNzTVGjx7993IYAAJgJd2+IiUlxdiyZYt2n/f111/7O3W3zJ0714iOjjbGjRtn5OTkWNauq5P1uLg4U1cb/1PdunW17a5atcrjfJcuXaptNzEx0SgvLzfV3u+//+70o0F2drbbr1+3bp3T6ytzp8LZyJs/GBmGYUyZMkU7OCwixo8//lj5lbBYdRgAqk77owcffPC0tgYOHGjq9ffee+9prx88eLBHeZztKioqXN6pa7PZjGeeecYry16/fr3Rvn37v5dVlQaAXF0w8eyzz/o1txo1ahhXXHGFsWHDBsva3Lhxo8s7NKdOnepRuxzP/c/bx3PD+H93lOieMvLXn91uN+bPn2/JMquD22+/XbstPLmw97zzzjO6detW6UHff8rIyHB5fvD888971G5OTo5TP8/MPuvYsWNOr9+yZYtHuQAAUFlBYoEDBw7ImDFjtOU9e/aUxYsXS0pKihWLO01sbKy89dZbMmfOHElMTLS8fQBnL8MwZMqUKcqyYcOGScuWLaVz587K8kmTJnkxM+u0bdtWdu7cKU899ZTExcVZ1u7YsWOlXbt2yrLc3FyZN2+e6Tb/+OMP7bP+Bw4cKBdccIHpNv/So0cPufLKK5VlJ06ckI0bN5pq7+DBg6f9Py0tzdQxqkOHDqdNIutwONya0wK+c9NNN8nIkSO15bNnz/ZdMgGiOu2PRJy/5126dDH1+n/vs840vwzUJkyYIMuWLdOWv//++x7P5XYmHTp0kDVr1sg999zjlfY9tX37dqc5a/4yatQoeeKJJ3yc0enmz58vc+fO1X4vPdG2bVt56qmntOVTp071qF2O52eHoKAgue6662TTpk0yYsQIbb2KigoZPny40+ciEBUVFWnndU5KSpIBAwaYbvPdd9+VlStXVnr+vX+qV6+evPnmm9pyT7/7hw8fFsMw/v5/RESEtG3b1u3X16xZU5o1a3ZajOM8AMBfLBkAuvvuu7UTi7Zs2VJmz559WsfXG6688kpZvXq1NGnSxKvLAXD2WLZsmezdu1dZdtNNN4mIyPDhw5XlCxYskKysLK/lZpUGDRpIrVq1LG83KChInn76aW35Dz/8YLrN33//XVs2ZMgQ0+2ZaWPLli2m2vrnpM8iYvoCBZvNJgkJCafFTpw4YaoNeJ+rH1HXrFnjw0wCQ3XaH4lU/nuelJR02v/5jpt34MABl9/DsWPHyh133OHVHMLCwuTtt9+W9957T4KDg726LHc98sgjUlZW5hRv2bKlvP76637I6HSdOnXySrujR4/WXnC4bNky5TY5E47nZ5eYmBiZNGmSy2NGdna23HbbbT7Myj++/vpryc3NVZZdf/31EhoaarpNb333r7nmGmnfvr2ybOvWrR4Nuv77u5+QkCA2m81UGxznAQBVRaUHgFauXCnz589XloWHh8uMGTMkOjq6sotxS1pamixevNgnywIQ+HR38bRo0ULOO+88EREZOnSohISEONUpKyuTzz//3JvpVXl9+/aVyMhIZVl6errp9lxdbVmZu3/+0rVrV23Z0aNHTbUVGxt72v91J9Cu/Ps1Vt4RAWs0adJE0tLSlGV79uzxcTZwxer9kUjlv+c5OTmn/Z/vuHnPPPOMFBYWKssuvvhiGTdunM9yueuuu+R///ufz5ans2XLFpkzZ46y7I033pCwsDAfZ+Q7oaGh0r9/f2VZQUGB7Nixw3SbHM/PTmPHjnX5hJPvv/9eFixY4LuE/GDixInasptvvtmHmbjn6quv1pZ5cpy34rvPcR4AUFVU+jI1VydWDz/8sLRs2bKyizDl31dYWWnNmjUyZ84c+e2332Tbtm1y4sQJKS8vlxo1akhycrI0a9ZM+vXrJ/369fPKFawqhmHIzz//LD/99JP8+uuvsnv3bjl69KgUFBSIzWaTqKgoqVOnjqSmpkrnzp2ld+/ecv755/skN2/Zv3+/LF68WFavXi3btm2T/fv3S05OjhQWFkpoaKjExsZKQkKCNG/eXFq1aiXnnXee9OrVy2sdrpKSElmyZIksX75c1q9fL3v37pVjx479/R5ER0dLvXr1JC0tTbp16yb9+/fX/mBolaKiIlm0aJGsXbtW0tPTZffu3ZKbmyunTp2S4uJiiYiIkMjISImJiZH69etLw4YNpWnTptKpUyfp3LmzxMfHezW/6qCgoEBmzZqlLLvxxhv//ndSUpL0799f+binyZMnywMPPOC1HKu68PBwad++vaxatcqpbN++fabbKyoq0pYlJyebbu/fXD2mtLS0tFJtbd++XU6dOuV0MqmzefNmpx8169SpYyoH+EbTpk2VPyp68kMBvMfq/ZGI8/f8119/NfX6f9fnO27O3r17ZfLkycqykJAQee+99yQoyJKHHbjNm+ch7tLd4dOlSxe59NJLfZyN711wwQXaH6737dsnrVq1MtUex/Oz1yuvvCI///yz/Pbbb8ryJ554Qvr16+fjrHzjwIEDsmTJEmVZu3btpEOHDj7O6MxcXQzmyXH+39/9goIC2bp1q9u/b+Xm5srOnTtPi/HdBwD4TWUmENq2bZt2sr2kpCQjPz/fkomKvEE3meS4ceOc6n7zzTdGu3btXE4I+c+/oKAg47bbbjOOHj3qtfzz8vKMF1980ahfv77bef31l5qaarz11ltGUVGRJblMnDhRuZwRI0ZY0r5hGEZJSYkxceJE4/zzzze9viJiBAcHGxdeeKHxwQcfGHl5eZbktHv3buOuu+4y4uPjTefTpUsX49tvv7Ukj3/6448/jFtvvdWIjY31aDuJ/DlZcvv27Y0XXnjB2L17t+U5VheTJk3Sbp99+/adVnfmzJna7Zmenu6fFagirrnmGuV2CQ0NNd3W66+/rt3OBQUFlc41Pz9f2/4777xjqq2SkhIjOjr6tDbefvttt1//wAMPnPbatm3bml2ds54vJo02DMO4/vrrlcuIjIy0bBlW6dGjhzLXJUuW+Ds1n7Byf2QYhjF16lSn9zwzM9Ot1xYVFRl16tQ57fWvvfaaR3mcrR599FHtd/zOO+/0d3p+UVhY6HTs+etv4sSJ/k7PJ+bMmaP9XEybNs10exzP/c9Xx3OVjRs3GjabTbv8VatWeXX5/vLMM89o1/mNN97wd3pKv//+uzbnF154waM2mzVrdlo7//nPf9x+7YQJE057bUJCglFeXu5RHgAAVFalLov75JNPtGWjRo2SqKioyjTvd7m5uTJo0CC5+uqrTU0A7nA45OOPP5ZmzZp55dbwmTNnSmpqqjz66KMeTSS4a9cuuffee6VFixYeP/fel7755htp3ry53HzzzdorsM6kvLxcVq5cKXfeeafUqVNHeQWwu/Lz82XMmDGSlpYm77//vtOt3e5Ys2aNDBw4UC699FLZv3+/x7n8paSkRJ544glp166dfPLJJ3Lq1CmP2zIMQzZs2CCPP/743485OxvpHv920UUXScOGDU+LXXHFFdq7pnTtnC10j5ox/jGpqrtq1qypLTt27Jjp9v4tMzNTW1a3bl1TbYWGhjpdaf3000+7NWnw+vXr5d133z0tdtVVV5laPnxHdwzgTsqqx8r9kYhInz59TnsEaGFhoctHBv3T2LFjT5uTwGazyZVXXulRHmejiooK7d0/QUFB8tBDD/k4o6ph/vz5kp+f7xQPDg6WgQMH+j4hP3D1iDtPvuscz89ubdu2lcGDB2vLP/zwQx9m4xuGYbi8u/KGG27wcUbusfq7L/LnOd4/vf322279LnTgwAF55plnnNqy2+0e5QEAQGVVagBI93gkEZFbbrmlMk37XUZGhnTt2lW+/vprj9vIy8uTgQMHyjfffGNJThUVFXL//ffL4MGDXf5Q6a59+/ZJ37595emnn/a4U+RNhYWFMmLECLnmmms8fjyLSl5ensc/Fm/evFk6dOggEyZMkIqKikrn8uOPP0rHjh1l+fLlHrdRVFQkAwYMkOeff970Y6rOxJPPxb59+8Rmsyn/Lr74Ykvz85Z9+/bJsmXLlGU33XSTUywsLEyGDBmirD9t2jSPJh12lVt12r66uXM8eSRjx44dtWVr1qwx3d6/rV69WlvmyRxDDz/88Gn/z8rKkssuu0wOHDigfU16erpcccUVUlJS8ncsNjZW7rvvPtPLh2/s3r1bGW/atKnHbY4cOVL7PV+6dKnH7Z7trNwfiYjUqFHDaR6EL774Qu6//35xOBza140fP15efvnl02LXXXedpKamepTH2WjVqlVy5MgRZdmFF14ozZo183FG5nnjeD5v3jxlvEuXLmfNoLSrOfs8/a5zPD+7uXrP5s+f73J/r1LV+/IrVqzQ9m2uvPJKqVGjho8zco83vvv333+/hIaG/v3/4uJiufzyy10OAu3bt08uu+wyyc7O/jtmt9vlscce8ygHAACs4PEA0Pbt27UTHHfs2FEaN27scVL+dvz4cenTp49s3bq10m2VlpbK9ddf7/T8V7McDocMHz5c3nzzzUrn9E+GYchTTz3l9hWrvnLy5Em55JJLZMqUKf5O5W8rV66Url27yq5duyxt9/jx49KvXz/tgMOZDB48WBYtWmRpTme7yZMnKwe/wsPDtVcBqgaGRP78keC7776zNL/qwuFwaE+QPDlGNG/eXOrVq6csmz59uun23G2jU6dOHs0xdMEFFzh9XrZs2SJt2rSRcePGyaZNm6SoqEjy8/Pl119/lfvvv1+6dOni9KPmM888U2VPts92+/btk+3btyvLqvt8e4HG6v3RX8aOHes078ubb74p5557rnz++edy6NAhKSsrk2PHjsnXX38t3bt3l0cfffS0+vHx8fL88897nMPZyNVxVXdBxtlAN0DsyUUM1ZWryd49/a5zPD+7devWTTtAn5WVZXr+t6pON4eWiDhd9FCVeOO737BhQ7n//vtPix06dEg6d+4sY8aMkd9++03y8/OlqKhINm3aJGPHjpW2bdvKH3/8cdpr/nr6CgAA/hLs6Qt1kwKKSLWeYNThcMiwYcNk27Ztp8UjIyPlkksukb59+0rjxo0lJSVFysvL5dixY/Lzzz/LrFmztANixcXFcscdd7jcZmfyyCOPyLRp01zWadGihQwbNkxatmwpdevWFcMw5ODBg7Jp0yaZNm2aNj+RP3+sqFOnjvz3v//1OEerFBYWyqWXXirr1q1zWS8xMVH69OkjPXr0kNq1a0tycrKEhoZKdna2ZGdny8aNG+XXX3+VX3/9VQoKCiqV0/r166Vfv37Kx2r8pWbNmtKzZ0/p0aOHNGjQQJKSksRut0tmZqZs27ZNvvvuO1m+fLnyzqHCwkK5+uqrZe3atdKkSRO385o6darMnz9fWx4XFye9e/eWLl26SGpqqtSoUUOioqKkoqJCcnNzJTc3V3bt2iW///67bNiwQbZs2eL2sgOVYRjagccrrrhCewVZt27dpHHjxrJ3716nskmTJp2Vj/xYs2aNnDhxQlnm6eSxd9xxh4wdO9Yp/u2338qaNWukS5cuHrW7YsUKmTNnjrKsMgPkn3zyiWzZsuW0CwpOnTolzzzzjNOjIVSGDx/udOKJqsPVj/bXXHONDzOxVn5+vmRlZUlZWZlERERIUlKSREZG+jutSvHG/kjkz8dDfvnll9K/f//Tju8bN27UXhjwT3a7XaZPny6NGjXyOIezUaCeh1RGRkaG9rHC7jzS9/jx45KTkyMOh0OioqIkJSVFgoM9PlX0G12/OCoqStLS0jxul+P52a1fv37y1ltvKct+/vlnj/ufVU1BQYHMnDlTWVarVi257LLLfJyR+1ydE1fmOP/CCy/I2rVrTzvulJSUyIQJE2TChAlnfH3Pnj2d7voFAMDnPJ086LbbbtNOsrdgwYLKzk3kdbrJJP89IW9wcLAxevRoIysry2V7ZWVlxquvvmoEBwdrt8ucOXM8ynX27NnaNkXEaNy4sfHjjz+esZ1vv/3WSElJ0bZjt9uNFStWmM5v4sSJyvZGjBjhwdoaxqBBg1yub6NGjYwvv/zS7UkUCwoKjC+//NIYMGCAERQUZIiI8c0337idT1ZWllG/fn1tPg0aNDA++OADo7i4+Ixtbd261ejXr5+2rU6dOhkVFRVu5eVwOLR5RUREGK+99ppRUFDg9noahmFkZGQY77zzjnHxxRcbImLExcWZer1hGMbevXu169ejRw/T7fna0qVLtfnPnj3b5WvHjh2rfF1ISMgZ9yHuqk7bd+TIkdpcv/rqK4/aPH78uFGzZk1lm3Xr1jX2799vus3du3dr940XXnih299JncOHDxvnn3++y/2a6u/OO+80ysrKKrXss5m3J42eNm3a38eUf/+1a9euUm2PGDFCm/uSJUs8brdHjx7KNp944gljzJgxRseOHY3w8HBlncTERKN79+7Ggw8+aHz//fduHfOqEm/sj/7pm2++MaKiokx9x2NiYox58+ZZsHZnl/LyciMiIkK5TVNSUvydntusPp7Pnz9f297atWud6mdlZRkTJkwwevXqZcTHxzu9xm63G02bNjWuv/56Y/LkycbJkycrv9Je5qoP169fv0q3z/HcP7x9PHfHN998o83h+uuvN9VWVe7L687rRcR4+OGH/ZqbK3v27NH2yVq0aFHp9nNzc12ew+v+BgwYYOTl5VmwhgAAVI7HA0AdO3bUHugOHTpkZY5e4aoj+c8Tc3cGVv5p5syZ2s7HwIEDTeeZl5dn1KtXT5vjZZddZqpTkZWVZXTq1EnbXsuWLY3S0lJTOVo5AOSq0ykixj333FOpH522bdtm3HjjjcbcuXPdfs2QIUO0+Vx11VUenRA/8cQT2jbffvttt9pYvXq18vXh4eHGr7/+ajqnf9u4caNx3333mX5dVT6pcYfuR8KkpKQzfjd27NihXfc33njDkvyqy/bdu3evERYWpswzOjra9ODkP82cOVO7DWrWrGl8++23brf11VdfGYmJidq2du/e7XGe/1RYWGg8/PDD2h/X//lXr149Y8qUKZYs92zmrR+M8vPzjUcffdSw2+3KtoOCgoxVq1ZVKndfDwB58peYmGg89NBD1aLP58390T9t2rTJuOSSS9zafn379jX++OMPS5Z7ttm8ebN2u1566aX+Ts9tVh/PX375ZW17x48f/7teTk6OMWbMGO0gmu4vMjLSuOeee4yjR49auBWs1adPH23+kydPtmQZHM99ryoMALn6vrZq1cqytvzdl+/evbs2t61bt/o1N1fuuOMObd5PP/20JcsoLy83XnzxRSMuLs6tPtJrr71W6YvIAACwiscDQKorxUTEiI2NtTI/rznTAFBISIixZs0aj9q+/fbbtW2avQvgueee0+bYuXNnj360yMrKMtLS0rTtvvfee6bas2oAKDc310hKStLmNW7cOFPtWWHRokXafIYOHWo4HA6P23744YeV7dapU8etQS7dZ/ipp57yOCcrVOWTmjPJz883oqOjlbnffffdbrXRpUsX5es7dOhgSY7VZfu6upPv/vvvr3T7rn7oEhGjTZs2xvjx442VK1caR44cMYqLi42ioiLjyJEjxrJly4wXXnjBaNGihfb1NWvWNDZu3Fj5DfEvBw8eNF555RWjd+/eRv369Y3w8HAjJibGSE1NNYYOHWp89tlnRlFRkeXLPRtZ8YNRUVGRkZWVZWzYsMGYMmWKMXLkyDOe+Js9hqpUhwGgv/4iIiKMp59+ukpf3e7t/dG/LV++3BgzZozRvn17o2bNmkZISIiRnJxsdOjQwXjooYcqPUB4tvv222+17+e9997r7/TcZvXxfNSoUcq27Hb73z9Crly50ulpB2b/YmNjjU8//dTirVF5c+fO1eackpJi+bGV47nvVIUBIIfDoT1HiImJMdVWVe3L796927DZbMq8Onfu7Le8zmTDhg3ai3LCwsKMI0eOWLq8EydOGO+8845xxRVXGI0aNTIiIyONyMhIo3HjxsaAAQOMDz74wMjJybF0mQAAVJZHA0AFBQXaTkvLli2tztErzjQANH78eI/bzszM1D4K7uuvv3a7naKiIqNGjRrKdiIjI40DBw54nOOGDRu0dyo1btzY1NUqVg0APfXUU9r347rrrjO5htbo3LmzMp/zzjuv0o+/KSsr0z5Gwp2rFHV3qmzbtq1SeVVWVT2pccekSZO0ua9evdqtNt555x1tG7///nulc6wO29fVHTqRkZHGwYMHLVnOp59+akRGRpr64cqdv0svvdQ4fPiwJTnCf9y509fKv6SkJGP69OmW5F6dBoD++jv//PMt+25byVf7I/iOq+PsSy+95O/03Gb18fzqq69WtpWYmGgYhmF8/fXXRkhIiGXf+dGjR1fqQigr5eTkGHXr1tXm+vrrr/s7RVRCVRgAMgzDOOecc7R55Obmut1OVe3LP/nkk9q83n//fb/l5UpZWZnRoUMHbd7euMgDAIDqKEg8cOTIEW1ZrVq1PGmySmnSpIn85z//8fj1ycnJ2glo09PT3W5nzpw5cvz4cWXZo48+KvXr1/coPxGRdu3ayR133KEs27t3r8vJdb2hrKxM3n//fWVZ7dq15e233/ZpPiJ/Thj9yy+/KMvefPNNCQsLq1T7wcHB2kljJ0+efMbXZ2ZmKuNMJO25SZMmKeOpqaluT+46dOhQCQkJUZZNnDjR09SqjQMHDmj3LSIijz32mNStW9eSZd18882yYcMGGTp0qAQFeXQ4+1tQUJBcfPHFsnDhQlm0aJHUrl3bkhwR+Jo1aybPP/+8bN++XQYPHuzvdPzmt99+k06dOsnOnTv9ncrffLk/gu8E+nmIp44ePaqMh4WFydKlS2Xo0KFSVlZm2fLefvttGTVqlGXtVcbtt98uhw4dUpadc845cs899/g4IwQiV31D3XlZdWEYhvb8MyIiQoYNG+bjjNzz2GOPaX9fqVGjhowbN87HGQEAUDV59ItZfn6+tiw+Pt7TXKqMe++9t9I/Jvbt21cZNzMANH36dGU8OjpaHnroIY/y+qdx48aJ3W5Xln355ZeVbt+MhQsXak9c//e//0liYqJP8xHR/1jfv39/6dq1qyXLuOyyy6R58+ZO8eXLl0teXp7L19psNmX8TK/ztkaNGonx592FTn9Lly71a26u7Nu3T5YtW6Ysu/HGG91uJykpSfr3768smzp1qpSXl3uU31+q8vYtLS2VoUOHyokTJ5Tlbdu2lUceecTSZTZr1ky+/PJL2bFjhzz33HMeHYNiYmLk9ddflzlz5mj33cC/2e12ueWWW2TKlCny2GOPSVJSkmVtT5o0Sfs9v/jiiy1bTo0aNeT666+Xl19+WRYuXCi7du2SrKwsKS0tlVOnTsm+fftkzZo18tprr8nAgQPPeOHD4cOHpVevXtrjuS/5Y38E3wiU8xCrj+cFBQXKeHFxsQwbNkw5+NO5c2d55ZVXJD09XTIzM6WkpEQOHz4sa9askaefflpatGjhcpkffPCBvPPOO6ZztdKbb74pM2bMUJYFBQXJp59+qr0wBzAjLi5OW1ZYWOh2O1WxL//TTz/JgQMHlGVXX321y3X3l9mzZ8urr76qLX/77bclISHBhxkBAFB1eTTKUVRUpC2r7F0RVcHQoUMr3UabNm2U8X379rn1eofDIYsXL1aWXX311RIZGelpan+rVauW9OrVS1n2448/Vrp9M+bOnauMR0VFyU033eTTXET+vApqzpw5yrLrrrvO0mWp7hYrLy+XlStXunyd7sfG+fPnW5LX2WbKlCliGIayzMwAkIhoP7PHjh2TBQsWmM6turjzzjtlzZo1yrKwsDCZMmWKhIaGWr7c33//XV588UV58803JScnx/Tr8/Ly5P7775eaNWvKHXfcIXv37rU8RwSeiooK+fTTT+WCCy6QNm3ayLRp08ThcPg7rTOKi4uT++67T1avXi2ZmZkydepU+c9//iN9+/aVpk2bSo0aNSQkJERiYmKkYcOG0rlzZ3nggQfkm2++kX379sl///tfl329jIwMGTZsmN+3hb/2R/C+QD8P8VRxcbEyfvLkSae7E2rXri0zZ86UNWvWyEMPPSTt27eX5ORkCQ0Nldq1a0vnzp1l7NixsmnTJnnnnXckOjpau9yHH37Yb3f+/fjjjy4vinvkkUfkggsu8GFGCGTh4eHaMt33r7pw9ZSCm2++2YeZuGfz5s1y0003ac/dhg0bZslvOgAABAqPBoBKS0u1ZdX9CqsmTZpY8uif1NRUZfzUqVNuvX7z5s3aHzKt7MzoBjP27dunfZSCN+gGu6699lqJjY31WR5/2bRpk/IKZrvdLgMGDLB0WRdeeKEyfqa7xVq3bq2MP/7447J///5K53U2MQxDpkyZoizr2rWrNG3a1FR7V1xxhfaKM91j5qq7l156yeW6vfHGG9KuXTtLl3nw4EG5+uqrpX379vLxxx/LsWPHKtVeSUmJfPTRR5KWliYvvPCC33/ARvWxZcsWueGGG6R3795y+PBhf6ejNXbsWDl06JBMmDBBunTpYvpu51q1asmLL74oq1ev1vZzRESWLVsmH3/8cWXT9Zg/9kfwnUA+D6kMdx/v1rhxY/n5559l0KBBZ6xrt9vl7rvvlh9++EF7d1VRUZE89thjZlK1xPbt22XIkCHaO6svvPBCefbZZ32cFQKZq/2Lq/1SVXfq1Cn5+uuvlWUNGjSQnj17+jgj144dOyZXXnml9qkXzZo1kw8//NDHWQEAULUFe/IiV1fXVefOj4hIhw4dLGlHN2jh7gDQpk2btGWdOnXyKCcVV/OabNq0ySfPxs/JyZE9e/Yoy3SDI962du1aZbxRo0aWD0jptvG2bdtcvq53797K+OHDh+X888+X5557ToYPH+7yajX8acWKFbJ7925lmdm7f0T+3EcOGTJEPvjgA6eyefPmSXZ2tqWPi/K3adOmyaOPPqotHzlypNx1112WLnPOnDkycuRIOXnypLI8NjZW+vTpIxdffLE0adJEkpKSJCgoSLKzs2X//v2yfPlyWbRokWRlZTm9try8XP73v//J8uXL5ZtvvpGIiAhLc4f/ff/991KnTp0z1jMMQ/Lz8yU3N1cyMjJk3bp1smTJEtmxY4ey/pIlS6RDhw6ydOnSMz46yR+s+hGnQ4cO8ssvv8gFF1yg3RZPPvmkX45B/tgfwbcC+TykMnSPdf6niIgIWbhwoTRu3NhU2126dJEvv/xSLrvsMmX5rFmzZPv27crHGnvDkSNH5LLLLtP2AerWrStffvmlBAd7dKoLKJWUlGjLqvP51ldffaW9s3LEiBGVfjS+lfLz86V///7ap6rExsbKrFmzJCYmxreJAQBQxXl0NHf1Y5irjlF1UKNGDUva0XU63B0A0v2gUrduXalZs6bHef1bWlqa9nFy27dvt2w5rmzdulVbZuVglxm6AbhzzjnH8mXpBgLOdAfWueeeqx3Ay8rKkjvvvFPq1asnd911lyxYsMDUs6nPNrorxUNDQz2+4073GLjS0lKZNm2aR21WRQsXLpSRI0dqH8HQr18/y6/CmzVrlgwaNEj5w09ERIQ8//zzcuDAAZkxY4bcc8890q9fP+nUqZN07NhR+vbtK3fccYd8/vnnsn//fnnrrbe0d2t9//33cs0111g6aTaqhrS0NGnduvUZ/9q0aSMXXHCBXHbZZXL77bfL+++/L9u3b5clS5ZoHyt07Ngx6d27t/ZZ+oEiMTFR5s+fr/3+HDt2TD7//HOf5uSP/RF8L5DPQyrDnUcaPvfcc5KWluZR+3379pVbb71VW+6ru/5ycnKkb9++2h+AExISZOHChT65iA1nF1ePeavOFwvpHv9ms9lk5MiRvk3GhdLSUrn66qtl3bp1yvKwsDD55ptvtI/iBwDgbObRAJCrKyp0k+1WF1ZNFKi7Cs/dRwrpHiFj9RXFQUFB2kENXz3GJiMjQxkPCgqSVq1a+SSHf9M9Qm3+/Plis9ks/WvZsqVyWdnZ2WfMc/z48S6v+MzOzpYPPvhA+vfvL/Hx8dKtWzd59NFHZc6cOdX+u2qVwsJCmTlzprKsX79+kpiY6FG73bp1kyZNmijLJk+e7FGbVc2qVatk0KBB2gGSbt26ycyZMy19JM/atWvluuuuUz7ypVGjRrJ69Wp5/PHH3ZqsNiIiQkaPHi1r166Vtm3bKussXLhQnnnmmUrnjcBy8cUXy4oVK+SRRx5Rlh8+fFhuu+02H2fle6mpqfL4449ry3052O2P/RH8I5DPQyrjTHcgJCQkyKhRoyq1jMcff1xsNpuybPbs2ZVq2x2FhYVy+eWXay/UioqKkvnz52sfkwxUhqtzs6ioKB9mYp0dO3bI6tWrlWXdu3fXnsv4WkVFhVx//fXaeYrtdrtMmzatyj2uDgCAqsKjASBXj01RzZtSnVSVyWNVjyUSEe3ztytD16YuB6v9e2Lav8TGxrr1OAtvqApzOLia5Pgv3bt3l9dff92t9srKymTVqlUyfvx4ueqqq6RmzZpy7rnnysMPPywrVqzQXjEd6GbOnKl9hrTuLh536R4ft27dOtm8eXOl2va3jRs3yuWXX669s6xdu3Yyf/587R2GnigpKZERI0Yof+CNi4uThQsXejSvR5MmTeT777+XevXqKctffPFF+f333023i8Bmt9tl/Pjx2u/5Dz/8IF988YWPs/K90aNHS61atZRly5cvl/z8fK/n4I/9EfwnkM9DKuNM5wg33XRTpe9SaNKkiVx66aXKsp07d3q1//zX1f+rVq1SloeGhsrXX3+tvTsTqKwjR45oy9x5rGxVpLv7R0Tk5ptv9mEmeoZhyO233y6zZs1SlttsNvnoo4/kmmuu8XFmAABUHx4NAIWFhWkflZaRkXHW/pBsJd2P/1bPP+OqTXcGIKyg+8HGG4Nd7tINCPiSu8+xv/fee2X69Ommn3XscDgkPT1dXnnllb+v8Hrqqae0z1MPVLrHv8XHx8sVV1xRqbZdzR/kaoLyqm7Hjh3Sp08fycnJUZY3b95cFi1a5NZdOGZMmTJF+8jICRMmVGrugVq1amnvzCovL5dXXnnF47YR2F599VXtwMJrr73m42x8Lzw8XK688kplWUVFhfz6669eXb6/9kfwH91gvYj+Du6zwZkeY92rVy9LluPqCnvdo5kq66+r/xctWqQst9vt8sUXX0ifPn28snygvLxcDh48qCyrUaNGlbmI1IyKigqZMmWKsiw6OlquvfZaH2ek9sADD7gcqHr99derzGAVAABVlccz+umeH11YWKh9JjPcp3uEiTeuXtXdsu6riXR1y4mOjvbJ8lWqwjPkzQykDh48WHbu3CmjRo3y+ARk37598vTTT0vjxo3lxRdfdPtxhdXZ/v37ZenSpcqyiy66SHbu3CmbN2/2+K+kpET7iMWpU6cqH2NW1e3fv1969eolx44dU5Y3bNhQfvjhB0lOTrZ82W+++aYynpqa6nKwzV09e/aUHj16KMu++uqrs/rRQtBLTk6WG264QVm2du1a2bhxo48z8r2+fftqy7Zt2+a15fpzfwT/cTWHjat5JQPdmT7nnTt3tmQ5rtrZvXu3Jcv4J8Mw5JZbbnF59f8nn3zC1f/wqh07dmjPWRs3buzjbKzxww8/aO/aGzJkSJV4rN2TTz4pEyZM0JY/88wzcv/99/swIwAAqqdgT1/YoUMH7S34GzZsqLYdoapC94x63d0ylVFQUKCMuzOZrBV0Axa+eGyMTlCQx2OjfpOSkiLvvvuuPPfcczJt2jSZPn26rFmzxvQE9rm5ufLYY4/JokWLZPr06We8orQ6mzx5snagbe7cuTJ37lyvLfvo0aOycOHCSt9l5EtHjhyRXr16aa+ArFWrlvz4449Sv359y5e9d+9e7WPzrrvuOsseF3njjTfKsmXLnOKlpaWyYsUKueqqqyxZDgJLz5495aOPPlKWLV261KNHE1YnurnsREQOHDjglWX6c38E/0pNTZWYmBjl3dq///67OByOatmPq6xGjRppy8LDwyUlJcXryzl06JAly/in0aNHa+9SEPnz4pARI0ZYvlzgn1zd3dahQwcfZmKdqv74t5deekmee+45bfl//vMfefLJJ32YEQAA1ZfHA0DnnXeetmzp0qVy9dVXe9o0RLTP6D516pTly9K1WdnnhLtLd1eT7nEuvqDLqV+/fvLSSy/5JAdPB+ASExNl9OjRMnr0aCkoKJDly5fLsmXLZMWKFbJ27Vq37+xasmSJDBgwQJYsWVItH2twJoZhuPxBwRcmT55cbQaAjh8/Lr1799Ze3ZuUlCQ//vijpKamemX5K1eu1JZZOeGrq7ZWrVrFABCUXPWJ1qxZE/BXp9asWVNb5o1+i7/3R/Avm80mHTp0kOXLlzuV5eTkyMaNG6vtD7KV4eriu4SEBMuW4+oRzVZfvPXII4/Iu+++qy3/v//7Pxk9erSlywRUfvzxR23Zueee68NMrHHy5EmZPXu2sqxZs2Zy4YUX+jij073zzjvy3//+V1t+1113ycsvv+zDjAAAqN48HgDSTQAqIvL999972iz+f7ofU7wxKKJr09UPOlbSPbLi1KlTUlFRYdmV/WYkJSUp4w6HQ1q3bu3jbDwXFRUl/fr1k379+onIn/M6rVmzRpYsWSJz586VDRs2uHz96tWrZdy4cfLiiy/6IFvfWrFihVceVWLG3Llz5cSJE5KYmOjXPM4kNzdX+vTpo320TmxsrCxcuFBatWrltRx27dqlLbPyR97GjRuL3W6XiooKpzJvXNmMwKA7ZoicHZ8bV/PrWP042aqwP4L/XXrppcoBIBGRhQsXnpUDQK7uxLPyUU6uHtFs5ff9mWeecfkD7+OPPy6PPvqoZcsDdMrLy2XBggXa8osvvth3yVjkiy++0D7yfOTIkb5N5l8mT54s9957r7b8xhtvdDkwDAAAnHn8fIR69eppfwjfvn37WfHMe2+qU6eOMv7HH39YuhyHwyHbt283lYPVGjRooIw7HA6/Pctdl1N1nwMkIiJCLrnkEnnmmWckPT1ddu/eLY888ojExsZqX/PWW29p51eoziZNmuTvFKSkpES++OILf6fhUkFBgfTv31/S09OV5ZGRkTJ//nzp2LGjV/PIzs7Wlrn68d0sm82mvVLaVQ44u7nah1b344Y7XK1jeHi4ZcupKvsj+N9fF7aoTJ8+3YeZVB1paWkSExOjLLPyTjxXbVn1fX/99ddl3Lhx2vL77rtPnn/+eUuWBZzJd999J1lZWcqy1NRUad68uY8zqjzd49+CgoJk+PDhPs7m/5kxY4bceuut2kd0X3PNNTJp0iSx2Ww+zgwAgOqtUg/IHjp0qLbsgw8+qEzTZz3dBLeHDh2S48ePW7acnTt3aucA8lVntmXLltpO3C+//OKTHP6tRYsWyvju3bu1HdLqqEmTJjJ+/HjZtm2bdOvWTVmnsLDQq3Ph+ENhYaHMnDnT32mISNUYiNIpLi6WAQMGaOd7CwsLk2+//dYnj4koLi72+jL+otsfqe4KAkT+vCtFR3eFbSDR/TAm4vruIDOq0v4I/nfuuedq7/7csGGD/Prrrz7OyP+CgoK0g59WPkHg5MmT2jJXj4dz14cffigPPvigtvyWW26RN954o9LLAdz16quvasuuueYaH2Zijc2bN8vatWuVZZdeeqnUq1fPxxn9af78+XLDDTdo+9t9+/aVL774wi9PBwEAoLqr1ADQzTffrD0AT5o0KSDvGvCVtm3basusPKl1NcDSpk0by5bjSlxcnDRt2lRZ5mreD2/q1KmTMn7ixAnZtGmTj7Pxvtq1a8u8efO0EwT/9NNPPs7Iu2bNmqWcPPqvMsMwLP/T/Vixdu1av93p5kpZWZkMHjxY+94HBwfLV1995fJxoFZyNSeZlXfmOBwO7d0MVj5CB4HF1YUZrh6XFChcTY7tasJ4d1W1/RH8z2azya233qotHz9+vA+zqTp69eqljJeWlsq+ffssWYbuyQEi+jvo3TV16lQZNWqUtnzo0KHy0UcfcfU/fOb777/XPm4yKChI7rzzTh9nVHmuLj67+eabfZfIPyxZskSuvfZaKSsrU5Z3795dvvnmG4/nyAUA4GxXqQGgunXrytVXX60sKyoqkscff7wyzZ/VWrVqpX0MkZWPtvjyyy+V8UaNGkndunUtW86Z9O7dWxmfOXOmVyaQPpMuXbpof+x1NQlodRYfHy+33Xabsmz//v0+zsa7dCc+cXFxcvnll3tlmcOGDXM5YF6VOBwOufHGG2XevHnK8qCgIJkyZYpcddVVPstJN1eYiFg6l9O+ffu0Vx766rGYqH5cXZjhrytpfWnRokXaMlfzkrijKu6PUDXccsstEhkZqSz7+uuv/XYRkT9ddtll2rI1a9ZYsgxXF49V5vv+7bffysiRI8XhcCjLBwwYIJ9//rkEBVXq9BVwW35+vtx1113a8v79+0uTJk18mFHllZeXy+eff64sS0hIkIEDB/o2Iflz3zRgwADt3f6dOnWSefPmubwYDAAAuFbpHvRTTz2l7YhPnDjR53cO7Nixw6fL85agoCDp2bOnsuzrr7+WoqKiSi/j2LFj8sMPPyjLfH0V7ZVXXqmMFxQUyGeffebTXET+fIa57iT6nXfeCdhHQekeHWLlYwf97cCBA7JkyRJl2aBBgyQsLMwry01JSdF+pz///PMq85kyDENuv/127UCzzWaTDz/8UK677jqf5qW7S1DE2jvUXA3w6h43BLj63LRq1cqHmfhedna2dnAmNDS0UvPxVNX9EaqG5ORklxOF33nnnVJYWOjDjPx/HnLeeedpj5ffffedJcvQtRMSEiLnnXeeR23+8MMPMmzYMCkvL1eWX3rppTJ9+nQJDg72qH3ArIqKCrnuuuu0d87Z7XZ54YUXfJuUBRYsWCCZmZnKsuuuu85r50E6GzdulP79+0t+fr6yvF27drJw4ULt/GYAAMA9lR4AatWqlYwcOVJZ5nA45Prrr5eDBw9WdjFu+fHHHwPq8R+6OZby8vJkwoQJlW7/ueee055oDRs2rNLtm9G3b1/t1fUvvPCCy+eNe4vu0SJ79uyRqVOn+jgb39DdVh9Ij76aPHmydh6nG264wavL1rV/5MgR+f777726bHc9+OCD8umnn2rL33jjDZeP3fEWVz8if/nll5YNoOmuihTRPxoSZ7dDhw7JV199pS3v0aOHD7PxvRdffFF7p27v3r0r9WNSVd0foep45JFHpEaNGsqyrVu3yh133OGTPBwOh9x7773y7rvv+mR5rugmcJ8xY0alH5n622+/aecO6dGjh/aOLFd+/vlnGThwoHa+tAsvvFC+/fZbn/8wjbNXaWmp3HTTTdqLG0REbr/9dp89Lt1KEydO1Jb5+vFvO3bskD59+mjP85s3by6LFi3SPhUFAAC4z5J76F955RWpXbu2siwzM1N69+6tvdLECoZhyPjx46Vfv34uJ2Kubq688krtSe3zzz8vR44c8bjtLVu2yHvvvacsa9KkiVx88cUet+0Ju90ud999t7Ls8OHDMnr0aJ/mI/LnYzR0j7IYM2aM7Nq1y8cZeZ/uytVAevTV5MmTlfE6dep4/XN/zTXXSHh4uLJMl5cvjRs3zuXEyi+88ILcd999vkvoH9LS0rRzC+zYsUOmTZtW6WUsWrRIVqxYoSyLj49nAAhODMOQ+++/X/vDZWJionZOjkCwcuVKefPNN7XlN910k8dtV+X9EaqOxMREeeutt7TlU6dOlTFjxng1h6NHj0qfPn3k7bff9upy3HXnnXcq+xrFxcXy7LPPVqrtJ598Ult2/fXXm24vPT1dLr/8cu2dWh07dpT58+d7NLAEeGL37t1yySWXyBdffKGt06JFC3nllVd8mJU1jh8/rh3Uat26daXu2DXrwIED0rt3b+2c0Y0bN5bFixe7fAQ0AABwnyUDQAkJCfLpp59qHwW3fft26dSpk2zYsMGKxZ1mx44d0rt3b3n00Ue1d7NUV+Hh4dqT1vz8fBk6dKj2WbmunDhxQoYMGaLdXo888ohfnq993333Sc2aNZVl06ZNk6efftqn+dhsNnnxxReVZSdPnpQBAwbI0aNHLV/u/v37XT5f/S9vvPGGFBQUWLbciooK7SBE69at3W5n3759YrPZlH++Hlj8txUrVmjnixk2bJjXP/cxMTHaxx3Onj1bcnJyztiGt7bva6+9Js8884y2/PHHH5fHHnvM4/at4OrOxPvuu0927tzpcduHDx/W3s0qInLttddKSEiIx+0j8JSXl8uYMWNk1qxZ2jp33XWXRxMWjxw5Uvs9X7p0qen2dFfsV8a2bdtk4MCBUlpaqixv1KiRXHvttR61XR32R6g6hg0b5vIxgBMmTJDrrrvOK4+D++KLL6Rdu3ayePFi06/11vE8JSVFe2fcm2++6fFjU99//33t3co1a9Y0/SjG7du3S9++fbUX77Vp00a+//57iY2NNZ0rYNbJkyflySeflLZt28qqVau09eLj42XGjBmVejqCv86Vpk6dKmVlZcoyX97989cFwhkZGcryunXryuLFi306HzEAAAHPsNDLL79siIj2LzQ01Bg3bpxRWFhY6WUdOXLE+M9//mOEhoaetoy4uDi3Xj9u3DhljuPGjat0bn/RbQcz8vLyjHr16mnbGjBggFFQUOB2eydOnDC6du2qba9ly5ZGaWmpqRwnTpyobGvEiBGm2jEMw/jss89cfoZGjx5tFBcXm273Lzt27DBGjBhhzJ071+3XXHvttdp8ateubSxbtszjfP4pPT3duP76643g4GDj2WefPWN9ETESExONJ5980jh69Gill//QQw9p13P9+vVut7N3715tOz169Kh0npVxyy23aHNbu3atT3L45ptvtDm8++67Z3y9N7bvxx9/7PJ7d//993vUrtUOHDhghISEaPNs0qSJ8fvvv5tud9euXUbr1q217QYFBRlbtmzxwhrBm3THeREx9u7d63G7DofD+Omnn4xOnTq5/N7UqlXLOHHihEfLGDFihLbdJUuWmG6vXbt2Rvv27Y2ZM2caDofDo5z+afr06UZsbKzL9Z8xY4ZHbVeX/RGqlsLCQqNjx44uPztNmzY1vv/+e0uWt2zZMuPiiy+u1OfTm/2lY8eOGYmJicq2Y2JiTPddp0yZYtjtdm2+b7/9tqn29u/f7/L8Ji0tzZK+LQKDt47nBQUFxoIFC4zhw4cbUVFRLvcfImLExsYav/zyS6XXx1/nSu3atVMuMzg42MjMzPTacv/p5MmTRtu2bbXrn5ycbGzbts0nuQAAcDaxdCbN//znP3L06FF59dVXleWlpaXy9NNPy3vvvSejR4+WG2+8URo3bux2+xUVFbJ06VL57LPP5KuvvvLo7pfqJjo6Wt5++20ZOHCgsnzOnDnSvn17+fjjj6V79+4u25o3b57ceeedcvjwYWW53W6XDz74wK9Xud94440yZ84cmTFjhrL87bfflvnz58uLL74ogwYNErvdfsY2i4uLZf78+TJ16lSZM2eOVFRUaLenygcffCDr1q2TvXv3OpUdOXJELrnkEhk0aJA88sgjpm+d37x5s8yaNUtmzpwpmzdvNvVakT/v5nr22WflhRdekIsvvliGDBki11xzjfbRgSrbtm2TRx55RObOnassP++886RDhw6mc6tqCgsLtZ+r5s2bezxxsVn9+/eXhIQE5fOuJ02aJKNGjfJJHn/59ttv5c4779SW9+zZU2699VaPPp9n0rhxY1NXUNavX18eeOABeemll5Tle/bskS5dusjYsWNl1KhRZ7xquKioSD766CMZN26cy7uvbr/9du3jIFE97dixQzvh8L/l5+dLbm6uHDhwQNauXSs//fTTGR8BGhQUJJ9++mmVem79hg0b5Nprr5X69evLtddeK4MHD5YuXbqIzWZzu40VK1bISy+95HJeBBGRIUOGeHT3T3XaH6FqiYiIkHnz5knPnj1l69atyjq7d++Wvn37SteuXeXee++VAQMGmHq02MmTJ2XGjBkyceJEWbNmjVWpe0XNmjXllVdekVtuucWpLC8vT/r27Sv//e9/5b///a9ERERo28nOzpYnnnhCPvjgA+38iV26dJG77rrL7dyys7Old+/e2jliY2NjZcKECZKVlSVZWVlut+uOhIQE7ioIMGc6nldUVEhJSYkUFhZKZmamHD58WLZv3y6bNm2SdevWaR/h+m9NmjSRr7/+Wtq1a2dV6j6Vnp4uGzduVJZdfvnlPnnUWklJifTv319+//13ZXlISIi8/vrrUlZWZvlxPioqytTvTgAABBpLB4BE/pwPKCIiQp577jltnWPHjsnYsWNl7Nix0rp1a+nWrZu0bt1aGjduLImJiRIZGSnl5eWSn58vhw4dkp07d8ratWtlxYoVATXHj7uuuuoqefDBB+W1115Tlu/cuVN69OghrVu3lqFDh0qLFi2kbt26YhiGHDp0SDZt2iRffPHFGR+P9Nxzz8mFF17ojVUwZdKkSbJ7925Zv369snzv3r0ydOhQSUpKkr59+0qPHj2kVq1akpycLCEhIXLy5EnJzs6WTZs2yW+//SarV6+WvLw8j/NJTEyUhQsXSrdu3eT48eNO5Q6HQ2bMmCEzZsyQZs2aSffu3eWCCy6QlJSUvz/Pp06dkpycHDl58qT88ccfkp6eLunp6Zad2FZUVMjixYtl8eLFctddd0mzZs2kY8eOct5550m9evUkISFBEhMTxWazSUFBgRw8eFC2bt0qP/zwg/z666/ak/rg4GD5+OOPLcnR32bNmqX9HNxwww0+yyM0NFSuvfZa+eijj5zKfv31V9m2bZucc845Psvn22+/lYqKCm35Tz/9JG3btvXKspcsWWL6URdPPfWULFq0SPtI0cLCQnn00Ufl//7v/6RPnz5y8cUXS5MmTSQpKUlsNptkZ2fL/v37ZdmyZfL999+fcULs5s2by8svv2wqR1R9ffv29VrbNptN3n33XenXr5/XllEZGRkZ8vrrr8vrr78uiYmJ0r59e2nfvr20atVKkpKSJC4uTuLi4qSkpEROnDghR44ckdWrV8uyZcvcmvvu3HPPlU8//dSj3Krb/ghVS0pKiixdulT69u0r6enp2nqrVq2SVatWSWRkpFxwwQXSpUsXadasmdSvX19iYmIkLCxMCgsL5dSpU7Jnzx7Zvn27rFy5UtLT011+Pquam2++WZYsWSKfffaZU1lxcbE8/fTT8s4778iVV14pvXr1kjp16kh8fLxkZ2fLgQMHZOHChbJgwQKXP67XrFlTpk2b5tYFWX/ZtGmTy3OSU6dOeW3/OWLECJk0aZJX2oZ/ePN4/pdhw4bJu+++W6Uu6jDL1efeV49/+6s/oVNWVua1c7IePXp49AhdAAACheUDQCIizz77rLRu3Vpuu+22M15hu3nzZkuv8PDVVfy+9vLLL8uRI0dcTkhZmW157733yqOPPuppepaKjIyUH374QS699FLtIJDIn1cQTps2zZLJ388kLS1Nli9fLn369NFesSjy52Dczp075ZNPPvF6TjqGYciOHTtkx44dld42r776qrRv396axPzM1YmPJxMXV8b111+vHAAS+TNP3dxT+PMq7zlz5kiPHj2Ud+X9JTc39++BWU/VqVNH5s2bJzExMR63gbNLUlKSfPDBBzJo0CB/p+KWEydOyE8//eTxnCD/1qlTJ1mwYAF30sBvatasKT///LPcddddMmXKFJd1CwsL/754xgrBwcFeG6D01IcffihHjx6VH374QVl+/PhxmThxokycONF02/Hx8TJ//nyuqkfA6tChg7zyyivSs2dPf6dSKaWlpTJ16lRlWXJyslx++eU+zggAAPia12Y8Hzp0qKSnp/vkqhwRkXr16snEiRPlxx9/9MnyfC0oKEg+++wzGT16tKXt2mw2GTdunEyYMMHSdisrMTFRli1bJoMHD/Z3Kn9r0aKF/Pbbb9K7d29/p+J1QUFB8tFHH8l9993n71QsceDAAVmyZImyrHPnztK0aVOf5tO9e3epV6+esuyzzz6rVlcY+0P9+vVl5cqV0qtXL68to1u3brJq1SpJTU312jIQWIYOHSpbt26tNoM/Vrvttttk2bJlkpiY6O9UcJaLiIiQyZMny5dffil16tTxyTL79Okj6enpykeu+VN4eLjMnj1brr76akvbbdSokSxbtkzOP/98S9sF/C04OFguv/xyWbRokaxfv77aD/6IiMydO1d7x/uNN94owcFeuSYYAABUIV4bABIRSU1NlYULF8rs2bOlc+fOXllGWlqavP3227Jr1y4ZOXKkqWfZVzd2u13eeustmTFjhqSkpFS6vYYNG8rChQvlqaeeqpLbLTo6WqZPny5Tpkyx9LnENWvW9Pj537Vq1ZJFixbJxx9/bMl78G9169aVRx99VIYPH37Gut6al6djx46yevVque2227zSvj9MnjxZ+5g7X9/9I/LnANuwYcOUZYcPH9ZeqYv/p06dOvLDDz/Ia6+9ZmoOhzMJDw+XZ555RpYtWyYNGza0rF0Epho1asiYMWNk06ZN8uWXX/rkGfpVTbt27eSHH36Qjz76SMLDw/2dDvC3oUOHyrZt2+Tpp5+WmjVrWt5+UFCQXHnllbJixQr5/vvvpXXr1pYvwwoREREya9YsefXVVyt9d57NZpPhw4dLenp6lbvbCfBUcnKyDBo0SD766CM5evSozJs3Ty699FJ/p2WZqvD4NwAA4F8+udxjwIABMmDAAFm1apV8/vnn8vXXX0tmZqbH7SUnJ8tVV10lw4YNk0suuaRKDl5407XXXit9+/aVd955R959913JyMgw9frU1FS599575Y477qgWP9bcdNNNcs0118jHH38s77//vmzbts10G6GhodK9e3cZMWKEDB48WMLCwjzOx2azya233irXX3+9fPbZZ/Lhhx/KunXrPG6vefPm0rt3bxkwYID07t1bgoLcG5ddv369HDx4UObNmycLFiyQn3/++YzzmegEBQVJz5495eabb5Zhw4a5nUN1UbduXRk3bpyy7LrrrvNxNn+66667eExSJdlsNnnggQfk5ptvlokTJ8p77713xrnOdBo0aCCjRo2S22+/XZKSkizOFNVZeHi4xMXFSWxsrCQkJEiLFi3kvPPO+3uetdDQUH+neEazZ8+WH3/8UX766SdZtmyZHDp0qFLthYeHS//+/eWWW26R/v37n3X9MFQfMTExMnbsWHn44Ydl+vTp8tVXX8mPP/4oZWVlHrVns9mkffv2cu2118oNN9xQbS4UsNls8uCDD8rQoUNl/PjxMmnSJFPzY4aEhMhVV10ljzzyCHf9oNoICgqSsLAwCQsLk8jISElOTpaUlBSpXbu2NGvWTM455xxp06aNNGvWzN+pes3Ro0dl4cKFyrLzzjuvyg5cAwAAa9kM3WXxXuRwOGTTpk2yevVqWb9+vezZs0f2798vJ06ckMLCQikpKZHQ0NC/O2r16tWT5s2bS9u2baVbt27SqlUrfmz4/xmGIStXrpSffvpJfvvtN9m1a5ccPXpUCgoKREQkKipK6tSpI82aNZPOnTtL7969pVOnTn7OunI2btwoP/30k/zyyy+yc+dOycjIkLy8PCktLZWoqCiJiYmRpKQkad68ubRo0UI6deokl1xyiVd/bN+/f7/8+OOP8ttvv8kff/whBw4ckOzsbCkqKpKgoCCJiYmRmJgYSUhIkGbNmkmLFi2kRYsW0rVrV6lfv75leWzbtk3WrFkjf/zxh+zatUv27NkjWVlZkp+fL/n5+RIaGiqxsbESFxcn9erVk/bt20uHDh2kZ8+ePntMCuAthmHIH3/8Ib/88ousWbNGNm/eLCdOnJCcnBzJyckRwzAkLi5OEhIS/v4hv0uXLtKlSxdp3bp1wA18AjqZmZmSnp4uGzdulN27d8uBAwckIyNDsrOzpbCwUIqKisQwjL8Hv2rXri2NGjWSNm3aSJcuXaR79+4SERHh79UAPJKXlye//PKLrF69WrZu3Sp79+6VgwcPSn5+vhQWForD4ZCwsDCJjY2VXZ44rQAA2MhJREFU2rVrS8OGDaVVq1bSoUMH6d69u1fuJvK1/Px8+eGHH2Tx4sWyadMm2bVrl+Tm5kpRUZGEhYVJQkKCNGrUSFq3bi0XXnihXHHFFZKQkODvtAEAAAB4wC8DQAAAAAAAAAAAAPAeLncGAAAAAAAAAAAIMAwAAQAAAAAAAAAABBgGgAAAAAAAAAAAAAIMA0AAAAAAAAAAAAABhgEgAAAAAAAAAACAAMMAEAAAAAAAAAAAQIBhAAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYBgAAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYBoAAAAAAAAAAAAACDANAAAAAAAAAAAAAAYYBIAAAAAAAAAAAgADDABAAAAAAAAAAAECAYQAIAAAAAAAAAAAgwDAABAAAAAAAAAAAEGAYAAIAAAAAAAAAAAgwDAABAAAAAAAAAAAEGAaAAAAAAAAAAAAAAgwDQAAAAAAAAAAAAAGGASAAAAAAAAAAAIAAwwAQAAAAAAAAAABAgGEACAAAAAAAAAAAIMAwAAQAAAAAAAAAABBgGAACAAAAAAAAAAAIMAwAAQAAAAAAAAAABBgGgAAAAAAAAAAAAAIMA0AAAAAAAAAAAAABhgEgAAAAAAAAAACAAMMAEAAAAAAAAAAAQIBhAAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYBgAAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYBoAAAAAAAAAAAAACDANAAAAAAAAAAAAAAYYBIAAAAAAAAAAAgADDABAAAAAAAAAAAECAYQAIAAAAAAAAAAAgwDAABAAAAAAAAAAAEGAYAAIAAAAAAAAAAAgwwf5OAAAAAGcPwzC81rbNZvNa2wAAAAAAVDfcAQQAAAAAAAAAABBgGAACAAAAAAAAAAAIMAwAAQAAAAAAAAAABBgGgAAAAAAAAAAAAAIMA0AAAAAAAAAAAAABJtjfCQAAAFRnhmH4O4Uzstls/k7BJau2oTfXsyq9z1X9/QQAAAAQOMycC3GuUvVwBxAAAAAAAAAAAECAYQAIAAAAAAAAAAAgwDAABAAAAAAAAAAAEGAYAAIAAAAAAAAAAAgwDAABAAAAAAAAAAAEmGB/JwAAABCIbDabMm4Yhql2VPV1beviVYkqx6qUtxXvj1XMfoaq0nYEAAAAUL2YObfhnKT64A4gAAAAAAAAAACAAMMAEAAAAAAAAAAAQIBhAAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYIL9nQAAAEB1ZnaSS119MxNuQs2b29Af74/ZiVVV9ZmEFQAAAN5S1c9h6AurmX3fqvr7DNe4AwgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYBgAAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYBoAAAAAAAAAAAAACTLC/EwAAAKguDMPwdwoiIlJRUWEqXl5ebqq+im7ddW3o6ttsNqdYSEiIsm54eLgyrquvaltHl19VeY8BAACAqsJsH9mbfWozfX6o6bYh50KBiTuAAAAAAAAAAAAAAgwDQAAAAAAAAAAAAAGGASAAAAAAAAAAAIAAwwAQAAAAAAAAAABAgGEACAAAAAAAAAAAIMAE+zsBAAAATxiG4e8URESfh9n8goLU1+XYbDanWEVFhbJuUVGRMn7q1CllPD8/XxkvLy93ijkcDmVds+upWp+wsDBl3bi4OGU8OjpaGY+IiFDGQ0JC3Mwu8FSV74mI+r0HAABA9VWV+poqVT0/q5jtZ58t2wV/4g4gAAAAAAAAAACAAMMAEAAAAAAAAAAAQIBhAAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYBgAAgAAAAAAAAAACDDB/k4A/mEYhjJus9l8nAkAAK7pjlm+bsMqulzMxB0Oh7JuUVGRMr5v3z5lfO/evcp4VlaWU6y0tFRZNzExURmPjo5WxisqKpxiunUPClJfq5SUlKSMN2/eXBmvXbu2Uyw8PNzUMnXb3Oz7qaLrf1WlfpkVudD/BAAAQGVZ0f/2Jm/3eVXtm1133TmPLseqsm3hGe4AAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYBoAAAAAAAAAAAAACDANAAAAAAAAAAAAAAYYBIAAAAAAAAAAAgAAT7O8E4F2GYXi1PgAAUNMdUx0OR6XbttlsynhZWZkyfvToUWV88+bNyvjOnTudYqWlpcq6LVu2VMbr1KmjjBcWFjrFcnJylHWPHTumjCclJSnjdrtdGY+OjnaKhYSEmGpDR/d+mnmfg4LU12Tp3mez9a2g+zxbsUz6nwAAAHCXru+oipupK2K+b2umH2tV26rzDN25h26ZunMe3XmGmfU0ez4F7+MOIAAAAAAAAAAAgADDABAAAAAAAAAAAECAYQAIAAAAAAAAAAAgwDAABAAAAAAAAAAAEGCC/Z0AAABAdWFmYtHy8nJlXDdBp5mJOMPCwpR1Y2NjlfGYmBhT8aSkJKdYcLC629ihQwdlPDU1VRnPzs52im3fvl1Zd8eOHcp4Tk6OMn7s2DFlvKCgwCkWHx+vrGuWbmJVs5O8mmFmElYdb+YHAACAs4OuT2lFf9WKNnTnXrq4bn1U52S6+rq8KyoqTOWiW6YZulx0cTPbS9dGSEiIm9nBV7gDCAAAAAAAAAAAIMAwAAQAAAAAAAAAABBgGAACAAAAAAAAAAAIMAwAAQAAAAAAAAAABBgGgAAAAAAAAAAAAAJMsL8TAAAAqC4Mw3CKVVRUKOvq4g6HQxm32WzKeFCQ8/U6uroxMTHKeHx8vDKenJzsdi5xcXHKup07d1bGU1NTlfEjR444xUpKSpR1Q0NDlfGcnBxlvKioSBkvLS11iuneBx3dNjfzvnmb6vOpy09V11V9AAAAwF1m+qC6fqlVy3Q3D0/qmzlXKy8vV8Z15406VeU8w6r3Dd7HHUAAAAAAAAAAAAABhgEgAAAAAAAAAACAAMMAEAAAAAAAAAAAQIBhAAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYIL9nQAAAEB1YRiGWzEREZvNpowHBamvv9HFde2olJeXK+PFxcXKeGFhoTLucDicYrr8dOtfVlamjB8/ftwplpOTo6wbHR2tjEdFRSnjiYmJynhERIRTTLc+OqptIqJffzPtV1RUmMpFx8xnxUxdAAAAwFt0/VJdP1tHVV/Xtt1uN9W2FX1nXRtm11917qA7V9G1HRoaqowHBzNUEIi4AwgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYBgAAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYBoAAAAAAAAAAAAACTLC/EwAAAKhqDMOodBtBQeauszFTX5dfUVGRMn7q1CllPDc3VxnPz893iuny27t3rzJeWFiojO/YscMplpWVpaxbq1YtZTwhIUEZr1OnjjIeHR3tFNOtj8PhUMbNfiZU7ZttQ1ffZrO53YaZugAAAEBVoevHmumv69rwRx9Zt0yz542q9dRtE13bVpyX6Nowuz7wPt4RAAAAAAAAAACAAMMAEAAAAAAAAAAAQIBhAAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYIL9nQAAAEB1oZq40263K+vqJuLUxSsqKtzOQ1e3sLBQGS8oKFDGT5w4oYwfOnTIKVZWVqasu2/fPmW8Ro0aynhoaKhTLDY2Vlm3bdu2yniDBg2U8fr16yvjERERTjHdJKxmJ0TVUb3PZtv2x+S0AAAAQGVZ1af2NV3eunhQkPfurQgOVv9sr1qm6nxHRH/eWFJSoozn5OQo46rzydLSUmXdtLQ0ZRz+wx1AAAAAAAAAAAAAAYYBIAAAAAAAAAAAgADDABAAAAAAAAAAAECAYQAIAAAAAAAAAAAgwDAABAAAAAAAAAAAEGCC/Z0AAACAvxiGYaq+zWZzK+ZJ2zoOh8MpVlpaqqx76tQpZbygoEAZLy4uVsZV7efl5SnrZmdnK+MRERHKeJ06dZxi55xzjrJurVq1lPEmTZoo47Gxscp4WFiYMq7izfdNR/cZMlvfbDsAAACAN3jzHMlM22aXZ6YPr6tvdt119YOC1PdtqOK6vIuKipTxY8eOKePHjx9Xxk+cOOEU051LpqWlKePwH+4AAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYBoAAAAAAAAAAAAACDANAAAAAAAAAAAAAAYYBIAAAAAAAAAAAgAAT7O8EAAAA/MVmsynjhmF4re2gIPX1N8HB6m5ZRUWFUyw7O1tZ99ixY8p4fn6+Mh4bG6uMp6WlOcUSEhKUdXNycpTx48ePK+OHDx92iu3fv19ZNyUlRRnX5R0REaGMR0dHO8UcDoeyri6u+0yYies+E3a7XRnX1dcxW98KZtYTAACgKjHT5/d2/8ZM+1acq1jF7PmUqr7Z9TFznlVeXq6sq+vzm12mKndvvz+FhYVOMdU5lojIwYMHlfGMjAxlXHc+qTrnKykpUda95pprlHH4D3cAAQAAAAAAAAAABBgGgAAAAAAAAAAAAAIMA0AAAAAAAAAAAAABhgEgAAAAAAAAAACAAMMAEAAAAAAAAAAAQIAJ9ncCAAAA1ZlhGKbqBwWpr7+x2+3KuMPhcIrl5eUp62ZlZSnjpaWlynhiYqIyfsEFFzjFWrRooaybk5OjjG/dulUZnz9/vlPs0KFDyrq7d+9WxnV516lTRxlPSEhwitlsNmVds3TvvypudplW5ehrum1SXdcHAAAA5uj6fWbPncy0bYbqHMtV21asj+48sKKiQhk/deqUMp6ZmekU27x5s7Luvn37lPHc3FxlvLCwUBlXnU/qtiGqHu4AAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYBoAAAAAAAAAAAAACDANAAAAAAAAAAAAAAYYBIAAAAAAAAAAAgAAT7O8EAAAAApHNZjNV3zAMZbysrMwplp+fr6yri9vtdmU8OjpaGU9ISHCKJSUlKevq4qWlpcp4XFycU2z//v3KuidPnlTGs7OzlfHi4mJlXEW3vXVxnaAg9fVUZt5/3TIdDkel265KdOupWx+z7wUAAICKFX0nb/dLzpZ+jxXraaYN3Xuvi3uzbx8SEqKMl5SUKOPbt29Xxjdt2uQU27hxo7JuUVGRMt68eXNlvHXr1sp4YmKiUyw8PFxZF1UPdwABAAAAAAAAAAAEGAaAAAAAAAAAAAAAAgwDQAAAAAAAAAAAAAGGASAAAAAAAAAAAIAAE+zvBAAAAKoLKyYc1SkvL1fGVRN35uXlKesWFhYq47oJOmvUqKGMx8TEKONm6CZQraiocIqVlZUp6zocDmVc9z6YeX/MTkBrdgJZM++/bj3PFmfLpMcAAMA/dH0Ns/11b/LmeYa38qhqzOSuO1fRxa3o26vOg0REcnJylPFNmzYp42vXrnWKZWZmKusmJSUp4w0bNlTGO3bsqIzXrVvXKRYREaGsi6qHO4AAAAAAAAAAAAACDANAAAAAAAAAAAAAAYYBIAAAAAAAAAAAgADDABAAAAAAAAAAAECAYQAIAAAAAAAAAAAgwAT7OwEAAIDqwjAMt2IiIiEhIcq4zWZTxisqKpTxoqIip1heXp6ybnFxsTKenJysjDdu3NhUfZWMjAxlPD09XRnfuXOnUywnJ0dZNy4uThmvXbu2Mh4REaGMqwQFqa+D0r0/uvdZF3c4HG63bbfbTeWiY7Y+AAAA3KPr81Ulur6gmf6t2fXU1TeTi9k+rO68SRdX0fW/decIZs4ddHkcP35cGVedH4mIrF27VhnftWuXU6x169bKuh07dlTG27dvr4zXr19fGQ8LC1PGUT1wBxAAAAAAAAAAAECAYQAIAAAAAAAAAAAgwDAABAAAAAAAAAAAEGAYAAIAAAAAAAAAAAgwDAABAAAAAAAAAAAEmGB/JwAAAFCdGYahjFdUVJiKZ2ZmKuN79+51iu3bt09Z98iRI8p4ZGSkMl5cXKyMHzt2TBlXWbt2rTK+fv16ZfzkyZNOsaioKGXdevXqKeMNGjRQxnXtqNhsNmVc936ajTscDqdYUJC5a690OQIAAMC3zPYddcz2Kc3kYgWr+sj+6MeqctHloYvr+utm1qesrEwZz8jIUMa3bdumjB8+fFgZV51nNG/eXFm3U6dOynjjxo2V8bCwMGXc3TxEzJ/zwPt4RwAAAAAAAAAAAAIMA0AAAAAAAAAAAAABhgEgAAAAAAAAAACAAMMAEAAAAAAAAAAAQIBhAAgAAAAAAAAAACDABPs7AQAAgKrGZrMp48HBzl2niooKZd3CwkJl/OjRo8r4unXrlPHffvvNKbZjxw5l3dzcXGU8IyNDGd+zZ48yHhsb6xQrLy9X1t21a5cynpWVpYzHxcU5xZo1a6as2759e2W8adOmynh0dLQybobuvXc4HMq4YRjKuN1ud4oFBamvvdLFAQAAULXp+o5mqfqUurat6juq2je7Prq+sFXbRUXVz9bx9jZU0Z2T/fHHH8r4tm3blPGIiAhlvEGDBk6xtLQ0Zd06deoo42FhYcq4jupcUHcebLZteB9nmwAAAAAAAAAAAAGGASAAAAAAAAAAAIAAwwAQAAAAAAAAAABAgGEACAAAAAAAAAAAIMAwAAQAAAAAAAAAABBggv2dAAAAQHVhs9nciomIlJaWKuOnTp1SxrOyspTxzMxMp1hhYaGyrsPhUMbz8vKU8cOHD7u9zIqKCmXdEydOKOPh4eHKeIsWLZxibdq0UdZNSUlRxsvLy5XxQ4cOKeOq3ENDQ5V1de9nWVmZMq5jt9udYkFB6muvdMvUMVPfbNveZBiGv1MAAAD4m65vpmK2H6Orr+uvq+rr+nFW9SlVy7Sqv2Ymd90yzcatEBISooyb2ea686P9+/cr47pzmISEBGU8NTXVKVa3bl1l3djYWGVcR7dtVedTus8yqh7uAAIAAAAAAAAAAAgwDAABAAAAAAAAAAAEGAaAAAAAAAAAAAAAAgwDQAAAAAAAAAAAAAEm2N8JAAAAVDVmJm3VTX6pm/g0KipKGW/cuLHb7RQUFLidn4h+0tLgYHVXUFXf7GSzcXFxynhaWppTrEaNGsq6hYWFyvgvv/yijG/btk0ZLykpcYrVr19fWVc3UaqZCXt1zE7Mq6tvph2zywQAAEDlmekj6urr+nG6frmOrh9r5txGt0yz5wiq9ayoqHA7PxERu92ujKvObXRt6ISEhCjjYWFhynhCQoJT7NSpU8q6J0+eVMZ15zwNGjRQxpOTk51iERERyrpm6T63qveZ84zqgzuAAAAAAAAAAAAAAgwDQAAAAAAAAAAAAAGGASAAAAAAAAAAAIAAwwAQAAAAAAAAAABAgGEACAAAAAAAAAAAIMAE+zsBAACA6sIwDLdiIiIhISHKeFxcnDLepEkTZbxGjRpOMYfDoUtRqaysTBnXtWOz2ZxiuvWJiIhQxmNiYpTxWrVqOcWKi4uVdXfs2KGMr127VhlPT09XxlXr37JlS2Xd2rVrK+OhoaHKuGpbiYiUl5c7xXSfFV0bunhQUPW8hku3PgAAAN6k64NZwR/9G6vWR3UuUFFRoayr638GB6t/WjbTX9Wdq5SWlrrdhk5BQYEyruqri4jExsYq46pzMhGRxo0bO8V051hFRUXKuG49dedfkZGRbtfV0X2GzJxn0revPqrn2SMAAAAAAAAAAAC0GAACAAAAAAAAAAAIMAwAAQAAAAAAAAAABBgGgAAAAAAAAAAAAAIMA0AAAAAAAAAAAAABJtjfCQAAAFRnQUHq62nCw8OV8ZCQEGU8NjZWGXc4HG7nYhiGJXEV3XqGhoa63YaISEVFhVPsyJEjyrrr169Xxn/++WdlfM+ePcp4cLBzlzcqKkpZV7eeSUlJyrju/SwsLHSK6d5L3TLtdrup+ipm3mMAAACo6fpUNptNGdf143T1VcrLy5XxsrIyU23r+quqdVL11UX066PqZ4vozxFU7eiWWVxcrIwXFBQo47m5uU6xgwcPKuvm5+cr440aNVLGW7ZsqYw3bNjQKWb2/Ej3furiqvfNzPmBrg0R/fmKmXNS3ecN/sMdQAAAAAAAAAAAAAGGASAAAAAAAAAAAIAAwwAQAAAAAAAAAABAgGEACAAAAAAAAAAAIMAwAAQAAAAAAAAAABBggv2dAAAAQHVhGIbbde12uzIeEhKijNtsNo9yqqpKSkqU8YyMDKfYzp07lXWPHTumjJeWlirjUVFRyrhqm5eVlSnrlpeXK+MJCQnKeExMjDJeVFTkFKuoqFDWDQpSX5NlNq5i5jMLAAAANV2fSteH150LmKHrl+r6wrplhoaGKuOqPqXZvqPZ+qp10vXLdecTmZmZyviRI0fcrqt733T97NjYWGU8Li7OKaZ7HyIiIkwts7CwUBnPzc11iuk+EzpWnGc4HA5Ty4T/cAcQAAAAAAAAAABAgGEACAAAAAAAAAAAIMAwAAQAAAAAAAAAABBgGAACAAAAAAAAAAAIMAwAAQAAAAAAAAAABJhgfycAAABQnRmGYap+RUWFMu5wONxuPyhIfQ2P2bjNZlPGzSgtLVXGDx06pIz/+uuvTrHt27cr64aHhyvj5557rpvZ/Um1zYuKipR14+PjlfFWrVop4/Xr11fGy8vLnWK6z4ruvdex4n0DAACA+6zqf+n6g6q4mfMDERG73a6Mh4aGKuMhISFOseBg9U/FJSUlynheXp4yfvLkSWU8KyvLKVZcXKysqzvPOHz4sDK+d+9ep1hkZKSybpMmTZTxdu3aKeMdOnRQxhs1auQUKygoUNZNSEhQxiMiIpTxnJwcZVy1/rr3wSzd+6/6zOnOa1H1cAcQAAAAAAAAAABAgGEACAAAAAAAAAAAIMAwAAQAAAAAAAAAABBgGAACAAAAAAAAAAAIMOqZnQAAAKoh3YSo1WGZunZUk7+amTzWVTwoSH0tkCqum4T10KFDyviOHTuU8Z07dzrFdJPEpqamKuMpKSnKuG7iW1X7uvx02yQ8PFwZT0xMdLu+Lr/y8nJl3IrPlm7CYqsmMgYAAIAzVR9exFz/Ttdf0/VXzfbvVDmWlZUp61ZUVCjjuvoFBQXKeE5OjlNMdy6Qm5urjBcVFSnjqr52vXr1lHXbtWunjLdu3VoZb9y4sTKuOxdQqVu3rjKuy1G1rUREDh486BTbvn27sq7uHCY2NlYZ152vFBcXO8V0771uW8F/uAMIAAAAAAAAAAAgwDAABAAAAAAAAAAAEGAYAAIAAAAAAAAAAAgwDAABAAAAAAAAAAAEGAaAAAAAAAAAAAAAAkywvxMAAMBXDMNwu67NZvNaHg6Hw1T9oCDvXa9hZptUNd58P3X1Vcs0uw11bdvtdrfjVi3TjPz8fGV827ZtyvjGjRuV8ezsbKdYdHS0sm7r1q2V8dTUVGW8qKhIGd+7d69TbN++fcq6uvU8dOiQMh4fH6+M169f3ykWHKzueuu+47p9he79VMV1bZv5jFvF7OewOu+fAAAwy4r+mlXHTm+eC+lU9eO+2b6T2XM4VftWvQ8lJSXK+PHjx51ihw8fVtY9cuSIMn706FFlPCsrSxlXnQucOHFCWTc3N1cZj4iIUMabN2/uFOvYsaOy7gUXXOB2GyIiCQkJyrjqfQ4NDVXWbdasmTKel5enjK9du1YZV52XrFy50u26IiJ16tRRxnXbtrCw0ClWVlamrNu4cWNlHP7DHUAAAAAAAAAAAAABhgEgAAAAAAAAAACAAMMAEAAAAAAAAAAAQIBhAAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYIL9nQAAANWJzWYzVd8wDLfbUNV1FTebS6CxYv29uQ1175uOLhcrcrTb7cq4w+FQxnNycpxiGRkZyrq7d+9Wxo8ePaqMx8TEOMWaNGmirNuoUSNlvH79+sp4cXGx2/HExERl3ePHjyvjuvWPjo5WxmvWrOkUCw0NVdY1+96biZv9/FSl/UpVygUAgOqgOh87q2vuVvXhVf3ykpISZd2ioiJlPC8vTxk/efKkMq7qrx86dMhU27ocdXHVepaVlSnrVlRUKOPJycnKeOPGjZ1i7du3V9Zt3ry5Ml6jRg1lPDjY/Z/QdedeunMY3frn5+cr46rzr1OnTinr7tixQxk/ceKEMh4VFaWMmz23RdXCHUAAAAAAAAAAAAABhgEgAAAAAAAAAACAAMMAEAAAAAAAAAAAQIBhAAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYIL9nQAAAJ4yDMNrbdtstirVjorD4fD5Ms1sc7N5eDNvq6hyDApSX0+je390cR1V+7ptZXYb6nI5ePCgU2zr1q3KuhkZGcp4RUWFMt6iRQunWPv27ZV1k5OTlXG73a6MR0VFud1O3bp1lXULCwuV8f379yvjwcHq7nSzZs2cYrGxscq6ZvdlZuqb/bxZ8T3U5Wd2PavDPgEAEJi8eTy0qr6KVcdOb55n6ZjJ3R99BG8vs6CgwCmWmZmprHvgwAFl/PDhw8r40aNHlfGTJ086xYqLi5V14+LilPGUlBRlPCEhQRlX9bXNbtumTZsq4+edd55T7JxzzlHWrVGjhjKu69uXlZUp47pzHhXduU1ERIQyHh4erozXq1fPKbZjxw5l3aysLGX8yJEjppaZlJTkdl1UPdwBBAAAAAAAAAAAEGAYAAIAAAAAAAAAAAgwDAABAAAAAAAAAAAEGAaAAAAAAAAAAAAAAgwDQAAAAAAAAAAAAAEm2N8JAABgNcMw/J2CSzabzVTc4XCYaj/Q1t8KZrehGWbXx+z7o2rHbrebaqO8vFwZz8rKUsZ37tzpFNu9e7eyrm596tatq4ynpqY6xRo2bKisGxUVpYybFRMT4xTT5XfixAllXLetjh496nY8Li5OWTcyMlIZDw5Wd9UrKiqUcdV7oXt/zH4+zXw/dW1U9X0TAAB/8ccxy4o+olV5V6X1Dwqq/LXrZs8zVLnozidKSkqU8by8PGU8JydHGT9+/LhTzEw/U0Tfjy0sLFTGQ0JCnGJ16tRR1q1Ro4Yyruvfnjp1ShlXrX94eLiybv369ZXxtLQ0Zbx58+ZOsVq1ainr6pap+xya6X/rPrNhYWHKuOp9ENF/blXnSKrzHRGRY8eOKeO6z60ul4SEBKdYRESEsi6qHu4AAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYBoAAAAAAAAAAAAACDANAAAAAAAAAAAAAAUY9sywAAAFINXGnbmJF3SSfuvpmJxY1w2yOVkwEb1Xcm1Trb2abuGLF+uja0E0K6s1tm52drYzv2rVLGf/jjz+cYocPH1bWbdq0qTLepk0bZbxRo0ZOMd3ksbr3UzcJq91uV8bNTHCrmzx37969ynh+fr4yvn//fqdYdHS0sq5uG+roPhNmJiy26vPmj+++aplmtgkAAH/RHSesiHu7P23meKhj9jhpxXHVbN+ksnU9ocqxsLBQWTczM1MZ3717tzKekZGhjB85csQpVlBQoEtRKSwsTBmvWbOmMq7qg6alpSnrBgerf0LWnWfotouqj6w7F2jevLky3qJFC2W8Xr16TrHIyEhlXbPMnMPpvifl5eWmlhkbG6uMR0VFOcVU51gi+vMms78PqM6z/HEeAM9wBxAAAAAAAAAAAECAYQAIAAAAAAAAAAAgwDAABAAAAAAAAAAAEGAYAAIAAAAAAAAAAAgwDAABAAAAAAAAAAAEmGB/JwAAgK8EBTlf91BeXq6sm5eXp4yfOnVKGT9x4oQyXlZW5hSLjo5W1o2Li1PGExISlPHw8HBlvKKiQhlXMQxDGbfZbKbiqm2rU1RUpIzn5OQo47m5ucp4fn6+UywyMlJZt0aNGsp4VFSUMh4aGqqMq9Zftw11cR0z21BH97ndtWuXMr5lyxZl/OTJk04x3bZq2LChMt60aVNlXPd5VtFtQ4fDoYzrPp92u90ppvtM1K5dWxlPTExUxnXf/X379jnFdNuwVq1ayriZz6GruIrZbWhm2+qY/U7oqHIxs+5W5gIAgFlm+45WHPe9edwzewzW9XmtWB9d/6akpEQZ153bZWdnO8UyMzOVdY8dO2YqrlumKseIiAhl3fj4eGU8KSlJGdf1NRs0aOAUS0lJUdbVrf/BgweVcV0fWdW/rVevnrJuy5YtlXFV3iL6c0Er6D63qs+iVd9xXT/b7HcO4A4gAAAAAAAAAACAAMMAEAAAAAAAAAAAQIBhAAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYBgAAgAAAAAAAAAACDDB/k4AAACr2Ww2ZTwoyPm6h7KyMmXdrKwsZXznzp3K+IYNG5Tx3Nxcp1jdunWVddPS0pTx9u3bK+ORkZHKuIrD4VDGDcNwuw0R/bY148SJE8r4li1blPHdu3cr46r3qH79+sq6559/vjJep04dZTw0NFQZV61/RUWFsq6Obhvq4qr3KD8/X1n38OHDyvjvv/+ujOu2eXR0tFOsadOmyrq6z61u2wYHO3c/dd9Ds59P3Xuh2raxsbHKuikpKcq47ntbWFiojGdkZDjFwsPDlXWbN2+ujOtytNvtyrhqH1deXq6sa3afYGaZujbMvp9WMLvP8keOOlbsbwH4TlXaf8B9Vu1rVe2YPR5a8Rny9nFP1b7Zvq0uruubqPp3uv6NLp6dna2M684zdu3a5RTbs2ePsq6uLxgVFaWMJyQkKOOqvmZycrKyrq6/WqtWLWU8KSlJGVe9F2bP1VatWqWM6zRs2NAp1qpVK2Vd3XlGTEyMqWWqePM82Mx5ndm2q5JAW59Axh1AAAAAAAAAAAAAAYYBIAAAAAAAAAAAgADDABAAAAAAAAAAAECAYQAIAAAAAAAAAAAgwDAABAAAAAAAAAAAEGCC/Z0AAAD+ZLPZlHG73a6MOxwOZfzkyZPK+KFDh5xieXl5ppaZmpqqjBuGoYyr1ikoSH3Nh259dPV120uVS0FBgbLugQMHlPGNGzcq44cPH1bGVTnWrVtXWTc4WN3l0cV166naXhUVFW7n5yquU1JS4hTLyMhQ1t22bZsyrvocioiUl5cr46rt2KJFC2Xd2rVrK+MRERHKuGob6vLQvQ86uu+Eapvrvm/x8fHKeKNGjZTx3NxcZfzYsWNOsSNHjijr6t6f2NhYZTwxMVEZN/vZUtFtc7PvhTep3mfdew8AvmKmjwRzrOgPVKX3QZeLmb69iLpPZbbPr6PrI5vpa+jWR9d3LioqUsazs7OdYllZWcq6x48fNxXXtXPq1CmnmK7vWLNmTWU8OTlZGU9JSVHG69Sp4xSrUaOGsq6uvxoXF6eM697PzMxMp9iWLVuUdXfu3KmM5+fnK+MNGjRQxlu2bOkUa9KkibKuri9shre/+2b2T1b1p1Xr5M22dXFdXd13Bf7DHUAAAAAAAAAAAAABhgEgAAAAAAAAAACAAMMAEAAAAAAAAAAAQIBhAAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYIL9nQAAAFYzDMPtukFB6msh4uPjlfHk5GRT9Y8cOeIUO378uNt1RUQKCgqUcYfDoYyr1slmsynr2u12ZVxXX6e4uNgpplufHTt2KOObNm0ylUvLli2dYvXq1VPWTUpKUsajoqJMLbOsrMwpVlFRoayr+2zp2i4vL1fGT5065RTbvn27su7GjRuVcd1nqHbt2sp4q1at3IqJiERHRyvjuu+hKq7bVlYx83mOjIxUxps0aaKM5+TkKOOqz7mu7r59+5Tx2NhYZVy3zcPDw51iunU3+/m04j3StW02rqLbH5rdl5mtDwBnotuvmOmvmqnraplVnVX7bNX2MtMv8WSZZto2u0wzdMdDXX9VJzjY/Z8LdcssLS1VxlXnDSL6c6Rdu3Y5xXbu3KmsqzvPUPWnRfR9qlq1ajnF2rZtq6xbt25dZVx3/pGYmKiMq84nw8LClHV1dO9zbm6uMr5lyxan2MqVK5V1s7OzlXHd+rRo0UIZb9++vdttmKX7LKpU1/2kjjf3K6j+uAMIAAAAAAAAAAAgwDAABAAAAAAAAAAAEGAYAAIAAAAAAAAAAAgwDAABAAAAAAAAAAAEGPdndQMAoIoxO9Ghqr5u8kfdhJtRUVHKuG4CUdWE8rrJ1ENCQpRxXX3d+peXlzvFdOtpZoJXEZGysjJl/PDhw06xTZs2KevqJmfNy8tTxuvVq6eMN2/e3CnWqFEjZV3V+yCi37ZmJpS32+3Kurq47n07ceKEMr5v3z63YiL6yVmTk5OV8XPOOUcZV21H1cS0IvrPltnJhs20oduGulxUcV0buu+EbnLaOnXqKOOqyYN1kxtnZGQo43FxcaaWGRoa6hQzu6103wkd1XfFqgm1zUzurfvO6tYn0Cb+BYDqxsx+2Ow+20x9qyZO98f6qPqauuOerl+q62uVlJQo40VFRU6xnJwcZV1dvzQrK0sZ1/WTVO3k5uYq60ZERCjjuj5VzZo1lfH69es7xVJTU5V1df1s3Xmj7rxE9x6ZoXsvdu7cqYxv27bNKaZ7f2JjY5XxVq1aKeNpaWnKuKpPrVt3Xf/ODPp81rBqXwn/4A4gAAAAAAAAAACAAMMAEAAAAAAAAAAAQIBhAAgAAAAAAAAAACDAMAAEAAAAAAAAAAAQYBgAAgAAAAAAAAAACDDB/k4AAACrGYahjDscDrfrBgerD5Hh4eHKeFRUlDIeHx/vVh4iIklJScp4SEiIMl5RUaGMl5eXO8Xsdruyrm49VW2IiJw4cUIZ37Nnj1MsPT1dWffAgQPKeFhYmDLeuHFjZbxdu3ZOsbp16yrr2mw2ZVy3DXXvUVCQ87UzoaGhbtcVESksLFTGDx48qIz/8ccfTrGjR48q6+re59TUVGX83HPPVcZr1arlFNNtQ9220sVV7ei+h7rPoa6+bv3NLFO3nhEREcp4cnKyMt6sWTO3l5mZmamM6/YraWlpyrgqR7Pffd36W7Ff1dEt00wuumWafZ8BIBCY3Q+bYXb/aaZ+Vdo3m+nHiKj7fWaPb7pl6t5PM8vU9UtLSkqU8ZMnTyrjqj5LRkaGsq6uz6+L5+XlKeOq/lDNmjWVdVu0aKGM684RatSooYwnJCQ4xWJiYpR1deeHZt9/Fd1norS0VBnXbdu1a9e6XV937tm0aVNlvFOnTsq4bpurPou6z3hZWZnbbYjo+73A2Y47gAAAAAAAAAAAAAIMA0AAAAAAAAAAAAABhgEgAAAAAAAAAACAAMMAEAAAAAAAAAAAQIBhAAgAAAAAAAAAACDABPs7AQAAPGWz2UzVDwqq/HUPujYMw1DGHQ6H223r2igtLTUVV+Vot9vdzkNEpKioSBnPzMxUxo8ePeoUy83NVdbVbcOUlBRlvHbt2sp4QkKCUyw0NFRZt6ysTBnXbXPdZys42P2uU35+vjJ+5MgRZXznzp3K+O7du51iuvezSZMmynijRo2U8f+PvT8Psmxd7/rOd+feOe+c57EyKzOrssZzjg5H0kXCuuZKCFBb7QZ0wTRgR4NFm7aGtjEi7KAxbhnZstW0GyzCxq0WYVvRNJKMGELIYQWSGunqXt17T506VVlVmZVZOc/zPOyh/yCIjvD6PaX9nFr77KxV38+fv/PEWu9a6532WZWxuru7ZV5XVxfJrHvlzT3j1uor1riyjm21xXMMqy3Nzc0yHxsbi2RHR0eydnV1Veabm5syX1lZkXljY2Mks55xdXW1zK17G8fztJTzucXRPgBIijjm1UrVK549SLnXCXVOa631ntPax6q95snJiaw9PDyU+c7OjsytvYbam1jHtn6rZLNZmXd1dcm8s7Mzklm/D4aGhlzHttqiflNUoo9be8fFxUWZP3v2zFWv9re3b9+WtZOTkzLv7e2VudqXhqDHiuc3MwA//gIIAAAAAAAAAAAgYXgBBAAAAAAAAAAAkDC8AAIAAAAAAAAAAEgYXgABAAAAAAAAAAAkDC+AAAAAAAAAAAAAEiZT6QYAABC3VCpVcl5Vpf8tRKFQkHmxWHTV5/P5kmvPz89lfnx8LPOzszOZNzc3R7J0Ol1y+0II4fDwUObr6+sy39vbi2TWvW1vb5f58PCwzHt6emSursl6PtZ1Wm207pfHzs6OzGdnZ2X+8uVLmW9ubkayO3fuyNr3339f5ta9raurk7nqo1a/9bKekWI9B+u5eVjzhMXqQ/X19TK/ceNGJLP6xNOnT2V+dHQk88XFRZm3trZGsq6uLlnr5ZlXvffWYvUVdfw4xiwAJIVnrfUewzvHx7EmePffnnZYubXXsNqicu899P5GUPvylZUVWbu6uirztbU1V736XZLNZmVtb2+vzCcmJmRu7Vc7OzsjWUtLi6y19rbV1dUyt6h938XFhesYNTU1Mvf8/rR+ez169EjmMzMzMrd+N46NjUWyjz76SNaqvW0Ivt8TIdh7asW6V9YY8sx9ce1XgbcBfwEEAAAAAAAAAACQMLwAAgAAAAAAAAAASBheAAEAAAAAAAAAACQML4AAAAAAAAAAAAAShhdAAAAAAAAAAAAACZOpdAMAAPjdFIvFstUXCgWZ53I5V31DQ4PMm5qaItnZ2Znr2CcnJzK3jtPW1hbJrHuyubkp89XVVZnv7e3J/PT0NJLl83lZ29zcLPOuri6Zt7a2yryqqvR/x2LVenP1jI6OjmTtq1evZD41NSXz4+Njmav7Mjo6Kmtv3rwpc9UnQrCvUz0763lax0ilUjK3+rmSTqddx7baqPq/1Q7r2FaeyejttOrnvb29snZoaEjm6+vrMl9cXJS5mm+sY9fW1srcus5y8s7xitUPrWN7zxnHfbGOEcf1A3gz5Ryf1jE856zE/FGJ9cBSzuu01nEv9dvh8PBQ1h4cHMh8f39f5ru7uzJX+3Vrb2/tV6+urmTe0tIi88HBwUhm7eGtfc/AwIDMreOo/Y21j/Gy+pbaV1h9xRor1t5E/W4KQe/7rN8Nz549k/nFxYXMrd8Od+7ciWQ3btyQtd7fE565z7tfu07zE/A24C+AAAAAAAAAAAAAEoYXQAAAAAAAAAAAAAnDCyAAAAAAAAAAAICE4QUQAAAAAAAAAABAwsTztTsAwDsjrg8ulvOjulauPhCvPtgagv1xTutDqeqD7yHoj5nu7OzIWovVFitXrA+CrqysyFx9VDaEEM7OzmTu+WBxfX29zDs6OmSuPvwagv3BUU9tOp2WudWH1Ad0rXs4MzMj89nZWZlbH1ZVH2e9ffu2rO3r65O5dZ1Wfy4UCpEsrg8wq2NbfcX7UV3P2FfteB3rnFZeXV0dyaw+fuvWLZlb89PCwoLMGxsbI5nVV6xxqI4RQjwfIPeuH3F8PNgrjuvxXmclPu7+rvA8C+/9Lmff97pObbnuynn9cY3Zcs5xnnNWQjnncu/H5K3c2j+oPfLy8rKsnZubk/n6+rrMrd8O+/v7kcza89fU1Mjc2ptY+4exsbFIpn7vhGDv4TMZ/b8iPft1tbd7Xe59/qot1j20WG2xnufTp08j2dTUlKzd2NiQ+cDAgMw/+OADmavnbPUJ7+8Jz9jy/q63cvXcrsv8BlQSfwEEAAAAAAAAAACQMLwAAgAAAAAAAAAASBheAAEAAAAAAAAAACQML4AAAAAAAAAAAAAShhdAAAAAAAAAAAAACZOpdAMAAPiXisWiqz6VSr3xOS8vL2W+u7sr8/39fZnX1dXJvKOjI5JdXFzI2qoq/e8yCoWCzM/Pz2V+dHQUyc7OzmTt9va2zE9PT2Xe0NAg82w2G8mqq6tlbX19vcw7Oztl3tLSIvN0Oh3JrD5h5Vafs/rFwsJCJPvkk09k7eLioswzGb39Gh4elvndu3cjWV9fn6xV9+R1rOtX98s6ttVvLd56xWq3Zw7x9glrHFrU/Wpubpa1Y2NjMj84OJC56och6HlraWlJ1jY2Nsq8trZW5jU1NTJX4hqHnmfhPWcc6wfweYtjjnvXefeaHt45Lo5jl7MtlehD5ZyzrWs/PDyUufVbwMo3NzcjmbUXXFtbk/nV1ZXMrTW4p6cnkrW2tspaK7f23/39/TLv6uqKZNaewtrzWqxnlM/nI5m1L/Pu16y+pfarVq313Ky+8urVK5lPTU1Fsr29PVlr/W6YnJyU+fj4uMzV8/T+nvDu7VmfgM8ffwEEAAAAAAAAAACQMLwAAgAAAAAAAAAASBheAAEAAAAAAAAAACQML4AAAAAAAAAAAAAShhdAAAAAAAAAAAAACZOpdAMAAPisUqmUK8/n85Hs8vJS1u7t7cl8f39f5vX19TJvb2+PZIeHh7LWaotqdwghHB8fy3xzczOSnZ+fy9qzszOZV1XpfyPS1NQkc3X8hoYG1zHa2tpc9ZnMm29jrHtuPeeXL19GssePH8vaq6srmff19cn81q1bMh8fH49k1j2x5HI5mReLRZmrMWT1CWu8WVS91Q6LVe85jnU91jGscVgoFEqut+aJwcFBmW9tbcm8tbVV5qo/Ly4uytrm5maZd3Z2yry6ulrm6nl6+4SXekbWc4ur3wJvwjvHlfOclej73uv3tDGu9cPTljjWPW9bvHveSrTlOlFr8OnpqaxdXV2VudrzhRDC0tKSzNfW1iLZ7u6urLX2n9Ya3NPTI3O1RxwdHXUdO5vNytxaPxXv3snbD9U+1tp/Wce2rsdzndY5Dw4OZD4/Py/z2dlZma+srEQya7/2/vvvy/zOnTsy7+/vl7n6PWU9N0scc4J3jnsb5iHgOuEvgAAAAAAAAAAAABKGF0AAAAAAAAAAAAAJwwsgAAAAAAAAAACAhOEFEAAAAAAAAAAAQMLwAggAAAAAAAAAACBhMpVuAAAAn1UqlXLVV1VF/92DdYx8Pu86dmNjo8zr6uoiWUNDg6y9urqS+cnJicw3Nzdlfnp6GslqampkbUtLi8yLxaLMC4WCzNXxOzo6ZG17e7vMrftSXV0tc8/zT6fTMt/a2pL5zMyMzJeWliLZ+fm5rB0YGJD5e++9J/ORkRGZZ7NZmStWv7Wem/WcPWPFOw49rPZ5c0VdY5znVPfc6ofWM+7p6ZH56OiozBcWFiLZ/Py865w3b96UuTU+45hX47jn1jk9fQL4vMUxl3l553LPHO9tdzmv8zrdW8t1aouqL+f67nV4eCjz7e1tmav93cbGhqy19tPWsY+Pj2Wu1n1rL9jV1SXz/v5+mff19cm8u7s7krW1tclaax33Pmd1nblcruTaEOw9mGcesvZUFqs+k9H/W1Rd097enqydnZ2V+ccffyzz9fV1matnZ+35JiYmZG71Ies6Fe/8Wc75xuor3j4EvOv4CyAAAAAAAAAAAICE4QUQAAAAAAAAAABAwvACCAAAAAAAAAAAIGF4AQQAAAAAAAAAAJAwpX8FDACAt4T1gUr1AXLro6XWMawPiDY2Nspcffy0tra25PaFYH+E1vogbnNzcySzPjZrfZzWasvKyorM1X20PkLb3t4uc+u+WB/59Li4uJC5dT1PnjyRufqocFNTk6wdHx+X+YMHD2RuPSP1MVPro7rWc7PqLar/ez9WHccHxa12W7nn47Tej81ax/a00fsh246ODplbfevo6CiSTU1Nydrl5WWZ7+7uylzNKyHouc+6t975thIfiOfjwSgHbx+PY0zE8VHuuMR1ndepjYr3o+TlnOMscazNXtZ1Xl1dRbKTkxNZu7q6KvO5uTmZLywsRLK1tTVZe35+LnNrz9/Q0CDzzs7OSGat11be09Mjc2uvqXj7snevVc7fU1auxpa3L3t/T5ydnUWypaUlWfvixQuZT09Pu9py7969SHb37l1ZOzg4KPNsNitzi2fP7+1DnmfhfW5xzGWVmIOBSuEvgAAAAAAAAAAAABKGF0AAAAAAAAAAAAAJwwsgAAAAAAAAAACAhOEFEAAAAAAAAAAAQMLwAggAAAAAAAAAACBhMpVuAADg7VIsFmWeSqVc9eVsy9XVlcwPDw8j2f7+vqy9vLyUeTqdlnltba3MC4VCJKuq0v/+QrUvhBCWl5dlXldXJ/P79+9HsoaGBlmbzWZlvru7K/OFhQWZq/s1NDQka1taWmRuXY91v5SzszOZLy0tyfzTTz+V+ZMnT2Su7tedO3dk7djYmMy7urpkbvUhxRpv1r2y6i2q3+ZyOdexPW2M4xgh+OYn7z3x9MMQQsjn8656xRq3/f39Ml9ZWYlkMzMzsvb4+Fjm1nzT1NQkc9VG73NT/e11x/HUep+z5/hxHRvJouYha27y7pGu05jwXKc1xuNQ7nGo2u59nt42lvOa4ji2tb5Z+9jNzc2S8/X1dVm7s7PjOqfalzY2Nsra3t5emXd0dMi8s7NT5mp/Z+352tvbZW7theMQ15yg+nkmo//XoneO84wta09h/VazWPPT1tZWJLN+H8zNzcncauPAwIDMJycnI9nIyIisra+vl7nFc2/j+l0fx9pXif/HACQRfwEEAAAAAAAAAACQMLwAAgAAAAAAAAAASBheAAEAAAAAAAAAACQML4AAAAAAAAAAAAAShhdAAAAAAAAAAAAACZOpdAMAAMlQLBbf+BhVVfrfJeTzeZlfXFzI/PDwUOarq6uRbHNzU9YeHR3JvLa2VuaWTCa61FrXmcvlZL69vS3zxsZGmas21tfXy9qrqyuZW/dlZmZG5qlUKpJ1d3fL2nQ6LXPrvnhY9+r58+cyf/bsmczn5+dlfuvWrUjW2dkpa5ubm2VeTt57aI3bQqFQUva6Y6g+EYJvTFisY3t42+3N4+jPNTU1Mrf6XG9vb8m11ry6uLgo89bWVpn39PREsrq6OlnrvVeedcX7fIDPUxx7pBCS18+983A5WW1RuVVrzaveuS+O67faYu011Rp/eXkpa09OTmS+trYm81evXsl8aWkpkq2vr8taqy3W/latff39/bLWyvv6+mTe1dUl85aWFpl7WM/H2q8rVr/y7r89+xjvOu7dU8bB6kN7e3syV78FrN9BBwcHMh8cHJS5+j0RQghjY2ORzOpvljjurXet8T43T713nVD1b+saCcSJvwACAAAAAAAAAABIGF4AAQAAAAAAAAAAJAwvgAAAAAAAAAAAABKGF0AAAAAAAAAAAAAJwwsgAAAAAAAAAACAhMlUugEAgLdLsVh01adSKVfuOefGxobMp6enZf7xxx9HssXFxZLbEUIIAwMDMu/q6io5r6+vl7Xt7e0yv3Hjhsyz2WzJ57y4uJC1X//612X++PFjmT969EjmmUx0S1FdXS1rrXYPDw/LvK6uTub7+/uRbG5uTtZa1zM/Py/zw8NDma+srJR8bKvfWnlPT4/Mm5qaIlkc4yqEEPL5fMnHsY5dKBRc51TXb90T65zee6t4rv11eVWV/vdUcdxDNa5C0H0ihBB6e3sj2ejoqKxdXl6W+dLSkszb2tpkfvPmzUhmtTsunnvrOcbrePqW99i43rzzTRxzXBy5Na942xLHHGeJa0953c/ppc6ZTqdlrXU91r7v4OBA5ltbW5FsbW1N1q6ursp8Z2dH5taeSrXdWt+sNUiteyHoPVV3d7esbWlpkXljY6PMrX28x3Uah9Zc4ZlvvPOk9zpV/7dqLVb/tH4LPX/+PJJZfdn6DffgwQOZ3759W+atra2RzLpO71xmies4AK43/gIIAAAAAAAAAAAgYXgBBAAAAAAAAAAAkDC8AAIAAAAAAAAAAEgYXgABAAAAAAAAAAAkDC+AAAAAAAAAAAAAEiZT6QYAAJKhWCzKPJVKle3YR0dHMl9bW5P53NxcJFtYWJC1dXV1Mm9oaJD5+fm5zNPpdCRraWmRtcPDwzK36hsbG2Xe19cXyax7tbq66sqvrq5kruzt7cn84OBA5mdnZzIvFAoyV89OPeMQ7Oux+lZXV5fMlfn5eZmrZx+CfT2np6cyV8+zqalJ1tbW1srcS43bqir974as67Hurcqt2rjEcXxrLvPminf+rKmpkbnqtzdv3pS11pwwPT0t8+XlZZmr+ba6ulrWWv3W6lv5fF7mHnGsQUgWz9wUZ+7h7beeedXbPs/8FMd8+FnqlbjWFTU/xdUncrlcybl1T6z95+7urszX19dlrvZUS0tLstbaU11eXsq8vr5e5j09PZHsxo0bstbaIw8MDMi8s7Mzkln7Zi/reao1y9ojWaznbK2TnrHibUsc57R4r1Pl1h7h+PhY5ouLizJ/9OiRzFU/t36TjY6OyvzOnTsyHxoakrn12+Hz5p0/45jj49qvse8DNP4CCAAAAAAAAAAAIGF4AQQAAAAAAAAAAJAwvAACAAAAAAAAAABIGF4AAQAAAAAAAAAAJEym0g0AAOCzam1tlfnExITM1YfT9/b2ZG0mo5dI9ZH1EELo6+uTufro+eDgoKxtb2+XufWRYM+H1q0P377//vsy7+/vl/nh4aHM1f3q6OiQtdaHfK0Pv87Pz8v8q1/9aiTb2NiQtdZHW8fHx2VuPc+jo6NIZn1QeXt7W+a/8Ru/IfNnz57JXH0Q+datW7J2ZGRE5s3NzTK3+pD6CK3VD62PClu552PlcX043OpbcRw7jg+NW/fK+0H1bDYbyawPDVsf8Z6ZmZH55uamzF+8eBHJamtrZa01Z1vX4/1gtRLXh4zL+cFilE8c49Pief7evmK125t72uJto2d8es8Zx4ftrXvi/bC9Z/2wznl1dSXz8/Nzmau9xs7OjqxdW1uT+cLCgsytuVyd07on1l64s7NT5taeqru7u+RjWOuHWvdCCKG+vl7mHvl8XubePqfEtX6oc8bRvhB8bfQe2xpXnvF2cHAg86dPn8r8yZMnMrf28Wovc//+fVlr5VZ/VvvsuFRi3Ytjvx7Xnh+Axl8AAQAAAAAAAAAAJAwvgAAAAAAAAAAAABKGF0AAAAAAAAAAAAAJwwsgAAAAAAAAAACAhOEFEAAAAAAAAAAAQMJkKt0AAEAypFKpNz5GsVh0HbutrU3m9fX1Mh8eHo5kuVyuxNb9C9XV1TLPZrMyr62tjWRW+6zrT6fTrnp1TQ0NDbK2ublZ5vl8XubWs6iqiv6bkkxGbzOsYx8fH8t8bm5O5i9evCj5nLdu3ZL5w4cPZX779m2Zb21tRbInT57IWiufn5+X+e7ubsn5xcWFrLX6c39/v8ytMVRTUxPJPM/+dfUqt2q9c4LVFs8xLFZbrPxNaz/LOevq6iJZV1eXrO3t7ZV5S0uLzK3xOT09Hck6Ojpk7fj4uMytcRvHugK8Ke/85JmHrGMUCgVXro4Tx9z8Ouqc5ZyzvbzX6XnO1j7GWput+dNa9zc3NyPZ8vKyrF1ZWXHlZ2dnMlf7VWudsPZIo6OjMh8aGpK5Wm9UO+Li2TeHYD9ni2d/Exc1J8SxX/ks9Yp37FtznOq3Vh//9NNPZT47Oytz63eW+t14//59WWvtb6zfXxbr+uNQzucZRz17vmSJo7/Fhb71L/AXQAAAAAAAAAAAAAnDCyAAAAAAAAAAAICE4QUQAAAAAAAAAABAwvACCAAAAAAAAAAAIGF4AQQAAAAAAAAAAJAwmUo3AADwdkmlUrEcp1gsvvE56+rqZF5bWyvz5ubmSFYoFGStp30hhJBOp2VeVRX9txbW9Xhzq42q3mqfdQ9Vu193HJVb7VtaWpL51NSUzGdnZ2V+dXUVyQYGBmTtw4cPZT4+Pi7z1tZWmav7VVNTI2u7u7tlbl3/4uKizLe2tiLZJ598ImtfvXol85GREZmPjY3JfHh4OJJZ11NfXy9zT7/N5/Oy1hqfVu4dQ4rVb+PKFWtcece+Ok5TU5Os7e3tlfmNGzdk/uLFC5mrfjs0NCRrj4+PZW6NN8/z9D4H71oWx5qFz593LfeoxHP2jAlrHbdyi2ce9t5vb71quzV/xkXNW7u7u7J2fX1d5qurqzJfXl6W+fb2diQ7OTmRtZmM/l86g4ODMu/s7JR5T09PJOvq6nIdw5rLGxsbZW7tnzw8+/g4+lsI9jj0ji2POOYy7/WU89hWfnFxIfOZmZlI9umnn8paa7+Sy+Vk/t5778n8/v37kUztj0MIIZvNyty7j43jOXuP4Vk/yilp6zVw3fAXQAAAAAAAAAAAAAnDCyAAAAAAAAAAAICE4QUQAAAAAAAAAABAwvACCAAAAAAAAAAAIGF4AQQAAAAAAAAAAJAwmUo3AACAf6lYLMo8lUrJPJ1Ol7M5ktVGK1es6/Ges1AolHx8615ZeSbj2yKoNp6dncna9fV1mU9PT8t8d3dX5h0dHZHs5s2bsnZ8fFzmXV1dMreeUWNjYyQbGRmRtd3d3TK/ceOGzJ89eybzqampSPbq1StZu7CwIPPj42OZHx0dyVw9u8vLS1lr3cNsNivzqqrovz+y7ndcYyWOY8SRq2v/LOKYb9T4CcEeQ1tbWzLf2NgoKQshhJWVFZlb85DVh9Q1edcP4G3k6c/eedU7f8YxtrznzOfzJR/DynO5nMyt9VDNfWtra7J2eXlZ5ta+x5pXLy4uIllNTY2stfYad+7ckbk1x/f390eypqYmWevdf1vPIo7nWc59ubVmW7lnTMTRbov3euJgHds7Dre3t2WufiO8fPlS1qrxE4I9Vu7fvy/zu3fvRrLm5mZZa7F+q133Pct12n97XZd7+K7jOVw//AUQAAAAAAAAAABAwvACCAAAAAAAAAAAIGF4AQQAAAAAAAAAAJAwvAACAAAAAAAAAABIGF4AAQAAAAAAAAAAJEym0g0AACRDKpWSebFYLNs5C4XCGx/Dandc9R7W9VxeXso8n8+XfOx0Ou3KvY6OjiLZ3NycrH327JnMFxYWZN7U1CTz9957L5LdvXtX1ra0tMjcep7Ws6iqiv7bGZWFEEJDQ4PMMxm9/aqrq5N5f39/JLPu7fz8vMyXl5dlbj2L9fX1SDY7Oytrb926JfPR0VGZ9/T0RLJsNitrvf3TGhPqecY1N1l9yNN2qy3eXLH6p3XPree2ubkp842NjUi2t7cnaz/++GOZW+7du1dyrXcN8j5/z9xfznXP4l2bPG0s573yKue9Lec99B7bGrdxiGPvFIKe46zrjKtPqP3Q4eGhrN3d3ZX52traG+fWHHd1dSXz2tpamd+8eVPmnZ2dJWWvyzs6OmTe3Nwsc7VnsdYxq+9bfSuXy8lcsfq+95yeY5RzvJVzfQ9Bj624xqGnjdaxLy4uZL66uirzmZkZmb948SKSHR8fy9rbt2+7cmvfY/12UKx7VYl1pZy/bePqtwA+f/wFEAAAAAAAAAAAQMLwAggAAAAAAAAAACBheAEEAAAAAAAAAACQMLwAAgAAAAAAAAAASBj9FWIAAAxxfVjS8wFR74dfy/kBzTg+uGm1z/qAvfVRYatefczW+sCt1W7r3lptUR9JnpqakrULCwuuc/b09Mj87t27kezGjRuy1voAs8Vqi8qte2vldXV1rryrqyuSWR93tnLrQ84vX76U+fb2diQ7PT2Vteqj3K+rPzk5iWS9vb2ytqmpSeY1NTUyt8QxPr3HVs+/nHNZCHpOsI5tjQnrWQwPD8t8cXExkqn+E4L9cWfVx0MIYXx8XOaq7eX80DJQLt5+a1H9uZxz2etyJZfLydxaP87OzmR+dHQUyXZ2dmTt+vq6zJeXl2W+sbEh84ODg0hm3dvm5maZW/PqxMSEzNV8293dLWuz2azMvX1LrRXWPtO7j7XWobj6v1LOOf5tXT+sdnt/26jjWGN5b29P5tZ+4MWLFzI/PDyMZNYeUf0+CCGEe/fuydzag6jrr0QfL+dvUovVV7y5pZz3BYDGXwABAAAAAAAAAAAkDC+AAAAAAAAAAAAAEoYXQAAAAAAAAAAAAAnDCyAAAAAAAAAAAICE4QUQAAAAAAAAAABAwmQq3QAAAD4vqVSq5Np8Pu86djqdlnlVVfTfWhSLRVnrzS3qOq32WfnV1ZXMt7a2ZD4zMxPJHj9+LGsvLy9lfvv2bZnfv39f5gMDA5Esm83KWu89tHj6kHVOzzGs+q6uLllbV1cn846ODplb9/zly5eRbHV1VdbOz8/LfGVlReYvXryIZDdu3JC1ExMTMh8aGpJ5e3u7zK1+rhQKBZlbc4Jn3Ja7H6rjW9dTXV0t88bGRpl3d3fLfHh4OJKdnp7K2t3dXZmvr6/LfHt7W+aq/9fU1Mha6155x2ElxNVfPu9zxjX3fd681+65Tu898Yzx1+WeY3vmSUsul5O5NZbX1tZkbq0fGxsbkezg4EDWWvPQxcWFzDMZ/b9GRkZGIpk1H/b398vcqrfWLLWX8c5x3r6i1gpvv/XuNePYU8Ux38Q1N6m2lHsN8qz7FvVbJQTfc7PW91evXsnc+o1gzQlq3bf2iNbetre3V+bWdar7aM1xVj+07q2nX8TVhzxzRSX2H5brvneAFsf/v0C8+AsgAAAAAAAAAACAhOEFEAAAAAAAAAAAQMLwAggAAAAAAAAAACBheAEEAAAAAAAAAACQMLwAAgAAAAAAAAAASJhMpRsAAMDnJZVKRbJisShrC4WCzK16dWzvOS1VVfrfa1jnzGSiy7t1DKste3t7Mn/58qXM5+bmItn+/r6s7erqkvmdO3dkPjExIfOWlhaZK97nHAfrnN5cqampkXlHR4fM29vbZd7b2yvzpqamSNbQ0CBrZ2dnZb67uyvzpaWlSHZyciJrLy4uZH56eirz4eFhmavrr66ulrXe8eYRxzHiOqe3LW1tbTJX93xra0vW7uzsuHLVV0LQz86aV8p5z73rgfc43rXC0xbPsb3t855T1cd1DytBtcV7Pd56NW95n1sul3Plat629g4rKysyX15elvnq6qrM1b4in8/LWmudVOtbCCF0dnbKXM1xg4ODsravr0/mnv2Kl7WP8e5jPWPIu6541lXvfs27vy21HW8LdZ1xrU2W4+PjSLawsCBrZ2ZmZL6xseE6pxqHk5OTsranp0fm6vdRCL450ZpvLN6xEsd6WIl9Txze5nEIvA34CyAAAAAAAAAAAICE4QUQAAAAAAAAAABAwvACCAAAAAAAAAAAIGF4AQQAAAAAAAAAAJAwvAACAAAAAAAAAABImEylGwAAwL9ULBZd9alUypV7zlkoFFx5VZX+NxWqLdY5rXan02nXOWtqaiKZ1e6joyOZv3r1SuZf+9rXZL6xsRHJuru7Ze2dO3dkPjk5KfPe3l6Ze56zl6cvlrMdIei25PN5V1usvtLS0iLze/fuRbK+vj5ZOzExIfOlpSWZLy4uRrLt7W1Z+81vflPm09PTMh8dHZX5zZs3I9nY2Jis7erqknldXZ3MPbxj36r3HMczN71ONpuV+fDwcCRbX1+XtaurqzI/ODiQ+czMjMybmpoimTXfeHnvedKo6/Suh15qjYtjfQ/B10ZrrMRxbO/67j2O575Y7d7f35f52tqazF++fBnJ5ufnZe3e3p7Mz8/PZW49i8bGxkhmzdk9PT0y7+/vl7l1HDX3NTQ0yNra2lqZe8Ux33jXFQ/vWhYH7/4mjn1cXPOQYo1D7xqkcqt9mYz+33/e3wjLy8uR7Bvf+IasVfNECCHU19fLXO0pQgjh7t27kWxoaEjWVldXy9wS11rmUYnfMHGcM652e45T7t9ZwLuCvwACAAAAAAAAAABIGF4AAQAAAAAAAAAAJAwvgAAAAAAAAAAAABKGF0AAAAAAAAAAAAAJwwsgAAAAAAAAAACAhMlUugEAAFRSKpWKJS8WizIvFAol11rS6bTMq6r0v+NQ+enpqaxdXl6W+ezsrMyXlpZkrtp48+ZNWXv79m2Zd3d3y7y6ulrm6j5a9zau/LpQ/SoEf7+1+lZzc3NJWQghtLe3y7yjo0PmjY2NkWxubk7WWv1tZ2dH5rlcTuYnJyeR7OLiQtYODw/L3Oqf2WxW5qrfesbs61j9Uz1n69ieOSuEEGpra2Xe2dkZyXp7e0uuDSGEvb09mS8sLMhcHX9kZETWqv4Wgn8u98w3cVFt9Lbbq5zzqofVb63rt3ja4m23d771nNM7Pq+uriKZte4fHBzIfH19XebWPKzG5+bmpqy12l1fXy9za67o6+uLZP39/SXXvi635vI4eJ9nOc/pHUNxHCOOOSGOdsc1xj313nN654Q41onz83OZW78RXrx4Ecms9Vrtv0IIYWxsTOZ37tyR+dDQUCRraWmRtda4svaIFs+9tXjXsjj6+XXiuZ6kXTtw3fAXQAAAAAAAAAAAAAnDCyAAAAAAAAAAAICE4QUQAAAAAAAAAABAwvACCAAAAAAAAAAAIGEylW4AAACfF8/HPDMZvURaHxb1fODXOobVlnQ67apXx9/e3pa1n3zyicxfvnwpc+tjpsPDw5Hs4cOHstb6WLv3o7WejyeX82PtcR27nB+ELeeHj60PZ6s+EUIIbW1tkWx0dFTWLi4uxpKr/ry2tiZrrQ+EWx8mtvpzb29vJLPulTWurDyfz8tcPWfvnGWx5iH1EXfrA+4DAwMyPzo6kvnGxobM1UfpV1dXZa31gfjGxkaZW9ep7nlc99Z6zh6e9SCuY1vt9n7EXLXRqo3jg9reD4RbfaK6ulrmHlZbzs7OZG6NlZ2dnUg2Pz8va1+9eiXzzc1NmVsfcW9oaIhk1hhvb2+XuTVXWOO2q6srklljuba21pXHIY79ivfYXt7xHIdy7sHiENdzi+OD9949n/q9Yh3j8vJS5mr+CMH+jTA1NVXysYeGhmR+7949mU9OTsq8ublZ5h7ee6v6hXeceNest5X3euK4fs8xrvscBHwe+AsgAAAAAAAAAACAhOEFEAAAAAAAAAAAQMLwAggAAAAAAAAAACBheAEEAAAAAAAAAACQMLwAAgAAAAAAAAAASJhMpRsAAHi7FItFmadSKVd9HMfw5ur41jmtvKpK/9uJQqHgaouH1ZarqyuZHx4eRrLFxUVZOzs7K/ODgwOZ9/b2ynx8fDySDQ8Py9r29naZW9eTy+Vkbt2XOHj7RTnFcc44xpB3TDQ0NJSct7a2ylorb2lpcbVlaWkpkqlxYtWGYN8r6zj7+/uRrLu7W9Za11lfXy/zdDotc3X93jnIW6/6hTXGb9y4IfP19XWZb2xsyHxzczOSWc/N6oeNjY0yt3jGoXedjENc62Q516xyzmUWNVa867jVbmttyufzkez8/FzWWmvt9va2zPf29mS+u7sbyVZXV2WtNa6sNlZXV8tc7Qdu3rwpa625r6OjQ+adnZ0yz2azMo+D5/mXc/xYvMe2+rlnfMaxt39dvWevUQnlfJ5enudmzU3WWjszMyNz6zfCzs5OJOvv75e1k5OTMh8dHZW5NfaVuH57xTEmvOIaW55jx8F77Erse67THAJcJ/wFEAAAAAAAAAAAQMLwAggAAAAAAAAAACBheAEEAAAAAAAAAACQMLwAAgAAAAAAAAAASBheAAEAAAAAAAAAACRMptINAAAkQ7FYvDbnzOfzMk+lUiVlr8stVVX631R47ot1TuvYx8fHMp+eno5kU1NTsnZjY0PmTU1NMn/w4IHM79y5U/IxLNb1W/fQ+4zKdYxyU9fvbXc5r9M79lV9JqO3pD09PTLPZrMy7+rqkvnKykoke/XqVcm1IYTw8uVLmc/Ozpbclps3b8rau3fvynxoaEjmra2tMldzhffZ53I5mRcKBZmr41vtGxsbk/nq6qrMl5eXZX50dBTJFhYWZG1HR4fMrb5SU1Mj83Q6LXOlEuPTGodWbj1PlVtrqrU2VVdXy9y6h6qN3nZb99Dz3Kxa65yqH4YQwu7ubiRbX1+XtfPz867cOqe6Xw0NDbK2v79f5u3t7TK3xoo6Tnd3t6y12mLN/d5noVyndTIOce1XPeLa21tzRRwq8fvDc8+t+dNqtzUmPPfQ+n3w6aefyvzRo0cy39raknlLS0sku3//vqx9+PChzDs7O2Vu8awTcVH3PK5zWsfxPOe42uL5ffw2qMScALwN+AsgAAAAAAAAAACAhOEFEAAAAAAAAAAAQMLwAggAAAAAAAAAACBheAEEAAAAAAAAAACQMLwAAgAAAAAAAAAASJhMpRsAAMDvJpVKxXKcQqFQcm1Vlf43ElZbrFwdJ51Oy9pcLifzo6Mjma+srMj82bNnkWx5eVnW1tfXy3x4eFjm4+PjMu/v749k1dXVstZSLBbfOPf2FW+91ZZ3mXVPPOPNeg5WH2ptbZV5Y2OjzJubmyNZQ0ODrLXGhHWd29vbMl9fX49kV1dXsjafz8v88PBQ5oODgzJva2uLZNb11NTUyNyan6xnpO6LdezOzk6ZDwwMyLyvr0/mOzs7kcya49TcFII9x1lzv8qtWot3/lD11jHiWifj4FkPvax5xbovasxZ4+3i4kLm+/v7Mt/Y2Cg5V/NBCPb8cXBwIHNLNpuNZNb4sfp+T0+PzK1x29LSEsmseTWutdazrlje1nXfu//0HidpPNfpfcbl7IfWPGm1cXd3N5LNz8/L2pmZGZmvrq7KXI3xEEIYGxsrKQvBXt+tfYIljvUwjjFU7vkjjt82AKDwF0AAAAAAAAAAAAAJwwsgAAAAAAAAAACAhOEFEAAAAAAAAAAAQMLwAggAAAAAAAAAACBheAEEAAAAAAAAAACQMJlKNwAAgM8qnU676nO5XCQrFAqytlgsyryqSv/bCastqt46xuXlpcxXVlZk/uzZM5lPTU1FMus633vvPZnfv39f5v39/TKvr6+PZOp+vy637rmVq2uynoO3r1j3yyOVSrnyd4Xn3nrHYSajt7YdHR2RTPXZEELo7e2V+c2bN2U+Pz8v8xcvXkSy7e1tWfvVr35V5i9fvpT52NiYzEdGRiLZ8PCwrO3u7pZ5Q0ODzC2e/mw9H+ueT0xMyPzk5CSSra2tyVor39vbk3l1dbXM1X2x+qHVby35fN6VK1a7rXtujUOVW8ewnr11X+KYE61jW+vKwcFBJNvZ2ZG1GxsbMrfW4KWlJZmr45+fn8va1tZWmY+Pj8u8p6dH5l1dXZGss7PTdU5r7Ft9S/VPNTZDsNdgq2959lRx8Yxbq/Y6re/XqS3lFMf84ZkPvbnVx73z6sXFhczVXuPjjz+WtYuLi6623L59W+bvv/9+JBscHJS1NTU1MrfGkLXuqXrvmlLONcj7e/JtmEMAJAt/AQQAAAAAAAAAAJAwvAACAAAAAAAAAABIGF4AAQAAAAAAAAAAJAwvgAAAAAAAAAAAABJGf+0NAIC3gPcD1Cr3fqzb4vnotfWhUOvD1NPT0zKfm5uT+eXlZSSzPvhufWTd+uB9U1OTzD2se27dF4u6t3Ed26pX5+SDrZp1X9Qz8n5o2Rpv1ofD1UfMW1paZG1jY6PMm5ubZZ7NZmWuPnw8Pz8va9fW1mR+eHgo85cvX5Zcv7e3J2uHhoZkPjAwIHPrftXW1kYy75hQH7APIYSxsTGZqw9ZLy8vy9rNzU2ZW/V1dXUyb2hoiGTeD0pfp48+W+dUY8i71nqvJ5fLRTK1joUQwtnZmcytfr6+vh7JNjY2ZK2V7+/vy/zk5ETm6r50dnbKWmscWmtzT0+PzNva2iKZZ26Ki3qWIfjX5jj6lnd/F9d+8PPGHkSLo6/k83lXrvqzNd6s9lnzirVmPX/+PJJZvw+sPZJ3HhodHY1kcfw+eJ1y9nPP2uxd972/P1RbGOMA4sBfAAEAAAAAAAAAACQML4AAAAAAAAAAAAAShhdAAAAAAAAAAAAACcMLIAAAAAAAAAAAgIThBRAAAAAAAAAAAEDCZCrdAAAA4pZKpWSeTqdLri0Wi2987BBCyOfzkWx3d1fWvnr1SuaPHz+W+ebmpsz7+/sj2Z07d2Tt2NiYzDs6OmRuXb9SVaX/nYl1bwuFQsnHttpiHTuXy73xsa3cc09CsNvobct14R1DKreevfdeWeNQ9UWr1rqebDYr85s3b8pcjUNrzM7Ozsr85cuXMrfmCnV869hDQ0Myn5yclLk1V6jjNDQ0yFpLU1OTzEdGRmQ+ODgYyebm5mStNd9OT0/LvLW1VeY9PT0yVzzzx+ty1Uc94yoEvQa9jmeseFlt3N/fj2TWWFlbW5P5yspKybnVJy4uLmRujX01xkMIYWBgIJJZ4627u1vmbW1tMq+rq5O5em5Wv/LOt579kNU+71wexz4hrnN61mDvGMeb8z5nxepX1vzpmVe9e+GFhQWZf/zxxzJ/8eJFJDs+Ppa1Dx48kPmHH34oc2vdb25ulrmHdf3W/fLw/p7wnLMS8woAxIG/AAIAAAAAAAAAAEgYXgABAAAAAAAAAAAkDC+AAAAAAAAAAAAAEoYXQAAAAAAAAAAAAAnDCyAAAAAAAAAAAICEyVS6AQAA/G6KxaIrt6RSqUiWTqddx1bHeJ3T09NI9urVK1k7PT0t893dXZnX1tbK/NatW5Hszp07sra9vV3mVVX634gUCgWZq/tl3Ssrt85pUfVW+6zc2xbv8/co57HfVt4x7qn3HtvqE/X19SXn2WxW1lpjua6uTuY1NTUyX15ejmT7+/sl14YQwuXlpcwPDw9lfnR0FMm6u7tlbWtrq8ybm5tl3tTUJPPBwcFINjw8LGvX1tZkPjc3J/OBgQGZq+Nb7bb6indd8cyJVq03V228urqStRcXFzJX614I9lq2vr5eUhZCCJubmzK3+qdqY0NDg6y1+q2VDw0NyVz1oZ6eHllr9XFrb+Jh9TfvOmkdR/WhOPYOIZR3PYxjXfHuV/Dm4nhucf2eqK6uLrn27OxM5nt7ezJ//vy5K1dzXF9fn6ydmJiQ+djYmMyt3wge1tj3UnNCXM/TU2/NTd65jD0/gM8bOxcAAAAAAAAAAICE4QUQAAAAAAAAAABAwvACCAAAAAAAAAAAIGF4AQQAAAAAAAAAAJAwvAACAAAAAAAAAABImEylG4DySqVSrvpisVimlvjaUs52AElijRXv2I9DOcetdexCoeCqr6qK/rsHlYUQQjqdLrF1rz/n7u5uJHvy5ImsnZmZkXkmo5fr0dFRmb/33nuR7ObNm7LWuv58Pu/KFeseWue0cu/zV6wx4W2LOk65x1slxrMS1xi37q3ivXZPn7Oux+rjnnklhBBqa2sjWXV1tawdHByUeXt7u8zHx8dlPjc3F8ms+WZxcVHms7OzMl9bW5P50tJSJLPmprGxMZmPjIzIvKWlReYDAwOR7N69e7J2b29P5gsLC65cXZP1PBsbG2Vu9RVrLlP9P641y6LOeXh4KGutPmHdw5WVFZmvr6+XfE5rfDY3N8t8eHi4pCyEEG7cuCHzjo4OmdfX18u8pqYmknnXt6urK5lbc6LKrWPHlat+610nPNdj5Z69wGfhWYeu02/vd526t96+Yu2/1Ri3qDUyhBCmpqZkbq3Zq6urMlf7+w8++EDWTk5Oytya46z+bM1PnmPEsbeNa/zE8Xvas7d9Hc9cfl1+HwB4O/AXQAAAAAAAAAAAAAnDCyAAAAAAAAAAAICE4QUQAAAAAAAAAABAwvACCAAAAAAAAAAAIGF4AQQAAAAAAAAAAJAwmUo3ACgWi5VuApA43nGVSqViOc51VygUSq6tqtL/RuLq6krmGxsbMn/58mUkW1pakrXn5+cyHxkZkfnk5KTM+/r6Ill1dbWste5JPp+XuUdc/acS/dA6pzVW4lDOY3t57nkcz8e6dmsceo8TxzG816nGUDqdlrWZjN6SNzc3y7ypqUnmNTU1JR/bOsb8/LzMj46OZL65uRnJLi4uZO3BwYHM9/b2ZD44OCjz2traSKbmvRBC6OzslPnq6qqrLWretu5hY2OjzK2+ZT0jT3+21qazszOZW89zd3c3kqlnHIK97q2vr8v88PBQ5rlcLpJZfb+1tVXmPT09Mld9aGBgQNb29vbKvK6uTuZxsNZaa2225iHPXOmdJ61zqtzbvus0Z3uOX4l9c1x7e0RZa7PVb61xq+ZV9TsghBCePHkic2udbG9vl/n4+Hgku337tqzt6uqSuXX93vlJiWsf5zmnt+9f99/BjGUAceAvgAAAAAAAAAAAABKGF0AAAAAAAAAAAAAJwwsgAAAAAAAAAACAhOEFEAAAAAAAAAAAQMLoL44CZfB5f1Dai4/r4boo54coPR/ytZRzrFjH9p7T+lCoytXHp0OwP8p9fHws82fPnsn86dOnkcz6EHZbW5vM33vvPZnfuXNH5vX19TJXPB9VDcH3IWerX3k/bh0Hq93eNirWx3PflXUljg/2Wqx7a/HMcd75xvshY/XxZOueeD9AbbWxu7s7krW2tsra0dFRmS8uLsrc+pD17OxsJNvY2JC1KysrrnNabbx161Yk6+jokLV9fX0y397elvnFxYXMX716FcmsD2r39PTI3FpXPHOF1Yf29/dlbt3z6elpmS8vL0cy66Pk1r2yZLNZmQ8NDUWy4eFhWWv1Cev519XVRTLrOVisD6HH8dysOSuOj5jHtXey5iFVH8c+M4R41s9KrMHl3MeUs6/E1ZbrzurL3r2GNSeqdeLx48ey9sWLFzJX63gIIdy7d0/mDx48iGRqTg3Bvs7Ly0uZe/Zx3j2SpZy/VePo+969rbct78pvBwCfP/4CCAAAAAAAAAAAIGF4AQQAAAAAAAAAAJAwvAACAAAAAAAAAABIGF4AAQAAAAAAAAAAJAwvgAAAAAAAAAAAABImU+kGAMVi8XM/diqVeqNa4Lqz+nM5x5s1Vsp5TovVlnQ6Hcmurq5k7e7ursyXlpZkPj09LfP19fVI1traKmtv3rwp8xs3bsi8q6tL5lVV0X/fUSgUZK137lPH9oqrf6q2eOds7zlZE0rnuVdWrTf39PO4+r51HKstb1r7uraovK6uTtb29/fLvLa21pXX19dHMmue3NzclPnFxYXMrePk8/lI1t7eLmsPDg5kXlNTI/OjoyOZq7ncWieOj49lbj2Ly8tLmau2b29vl9y+EEJYW1tz1Z+cnESy6upqWWvd87a2Nplba1ZfX19JWQgh9Pb2ytx6nh7eddKzfsS1dnjnxDiO7an3zp+VWFPjuM5y8/Qt7z4mjn15HPs16zje9dCz5/f+Vjk9PZX57OyszD/55JNIZs21au0Mwd7z37lzR+YDAwORzJoPrevM5XIy98w3cY3xOPpnXPNkJX7DAkC58BdAAAAAAAAAAAAACcMLIAAAAAAAAAAAgIThBRAAAAAAAAAAAEDC8AIIAAAAAAAAAAAgYXgBBAAAAAAAAAAAkDCZSjcAlVEsFl35563c7VDHT6VSZT0nUKpCoVC2Y8cx9q2xEscYKvfYT6fTkezs7EzWLiwsyPz58+cyX1paknkul4tkExMTsvb+/fsy7+7ulrm6nhB0H4qrX3mec1zP09PnvP3Q20bWiqhy3sO45ptyzi1WW6qqov/OymqHNT697VbntFjtbm9vl3ljY6PMh4aGItnKyoqstebV5eVlmW9sbMh8amoqkln3sLa2VubV1dUyPzk5kblaKzY3N2Wt1e66ujqZHx4eyvzly5eR7NWrV65znp+fy7y+vl7m6vkPDg7K2oGBAZlb9VbfUm2pqamRtZ4+HkI8a581Vsq5d6rEnqoSbSynOJ5buZWzLXH0fe/aFMfarPbNr2PthTOZ0v9Xl/VbwFrLPv30U5l/85vfjGTWXDs5OSnzhw8fynx8fFzm2WxW5or1PK151TP2vceIa9/ztopjXn1X7hWAePAXQAAAAAAAAAAAAAnDCyAAAAAAAAAAAICE4QUQAAAAAAAAAABAwvACCAAAAAAAAAAAIGF4AQQAAAAAAAAAAJAwmUo3AADeVcVi0ZVXgqctVm0qlYqrORGZjF7GrLZcXFxEsp2dHVn7/Plzmc/MzMi8qkr/m4qhoaFINjY2VnJtCCE0NDTI3FIoFErKXsd6bp4+YR3Dulfe46i8nP3t8zj+u8BzD733O64+p1h93xpbnjFntc87DtU5rVrrnFZeX18v89ra2khWU1Mja7PZrMzb2tpk3t7eLvO1tbVItr29LWvPzs5kfnh4KPPNzU2Z53K5SPbpp5/KWrXWhGDfl8vLS5nv7e1FstPTU1nb2Ngo887OTpn39PSUnHd3d8varq4umVvPzbuWKd5xGAfvfq0Sa1Op7Qghvn3mdVkPvddZzvtSiXsS1/NUx7GOrebDEPzX72m7d81Sc8LV1ZWsXVxclLk1xy8tLclc6e/vl/nk5KTMrd8C1vqplPu3pOc5e9vi2fN7j+EVx3Hi2H8CQByYjQAAAAAAAAAAABKGF0AAAAAAAAAAAAAJwwsgAAAAAAAAAACAhOEFEAAAAAAAAAAAQMLwAggAAAAAAAAAACBhMpVuAN4OxWLxjY+RSqViaAmQHNa4KhQKJR/DO66ses8Y97TvdeeM4xje69nf349kCwsLsvb58+cy39jYkPmdO3dk/vDhw0g2Ojoqa1taWmRuXc/V1ZXM1TOyjlFV5fu3IJ6+4n1umYzelsSxBlni6lue2nd9PfRcf1zPXp3T6vvWOfP5vMytOVHVW+f09kOLaovVvlwu5zqn1XaVNzc3y9qmpiaZ9/b2ynxkZETmy8vLkWx2dlbWTk1NyXxpaUnm6+vrMr+4uCgpCyGExcVFmdfU1Mi8oaFB5l1dXZGsp6dH1vb19bly6563trZGsurqalmbTqdlbvUhawypeqvfevcgVhs9x/bu19SYiGutKeeeqpxrbSXEdW+vy5pdiT2Fdz30HkeNT2utsfaI1vVfXl5Gsp2dHVn77NkzmX/jG9+QubX/vnHjRiS7d++erJ2cnJR5e3u7zD3P36qNa4xfp325Us72eX83XZf5AwD4CyAAAAAAAAAAAICE4QUQAAAAAAAAAABAwvACCAAAAAAAAAAAIGF4AQQAAAAAAAAAAJAw+kt6wOcoaR8cBUoVxweBrQ8Qe4/t+Ri692PIng/Fej80bTk9PZW5+sjr48ePZe3h4aHMW1paZD42Nibz8fHxko9h8X7MVeXl/rix5zjec5bzw69xtOVdX8fi+KB4XB8s9vTzch47BD1vefubt41qHvZ+rNuab73rh+cY2WzWdexcLhfJTk5OZO3i4qLMrXt7fn4uc7UmWGvNwcGBzDs7O2U+NDQk8+7u7kh2+/Zt1zGsc1r33LveKuX8ALnnQ+hWfVzrYdI+7h3HXP42SNpz84pj7+idJzxjLpPR/4vKOqf1+2NjYyOSTU1Nydrp6WmZ7+/vy3xwcFDm9+/fj2Tqd0AIIbS3t8u8pqZG5nGMw7j6vqctlZhX45rLrstckbQ5GEBl8BdAAAAAAAAAAAAACcMLIAAAAAAAAAAAgIThBRAAAAAAAAAAAEDC8AIIAAAAAAAAAAAgYXgBBAAAAAAAAAAAkDCZSjcA5VUsFmPJy9mWONqRSqXeuN57jOuknM8Nn7+qKv1uPp/PR7JCoSBrrf5sHduTW+e0+qGnvqamxtW+XC4n862tLZk/fvw4kj19+lTWtrW1yfz27dsyn5iYkHl/f38ks67Hulfq2Ydg3/M45jirPo650tNur7dhLn9X5mzrWah+7p0/LNbYioN1Pel0uuR67/7LO9+q3Kq17pV37KvjW+225mxrjjs/P5e5UldXJ/OmpiaZNzc3u3LVdu/1WGuctd4MDg5GspGREVnb29src+u+eJT7d4PqW1b/LOdvG+85y+k6rWXXqS0oH9XPrWdfW1tb8jFCsNcEtX56x+HZ2ZnM5+fnI9nXv/51WbuxsSHzhoYGmY+Njcn8vffei2RdXV2y1loPLJ7ffN513Mo9vz/i2lOUUyXO+a7s+QFcf/wFEAAAAAAAAAAAQMLwAggAAAAAAAAAACBheAEEAAAAAAAAAACQMLwAAgAAAAAAAAAASBheAAEAAAAAAAAAACRMptINAIrFYtmOnUql3rgdnmOUm/deqfrrdD3vujj6vvU8vc85jrZUVel/U5BOp2VeKBRKbsfp6anMl5aWZP7ixQuZb2xsRLJMRi+Fo6OjMr9z547MOzs7Za6u37pO73OwnnM559V3nefevg3rSiWo649jfQtBzysh6PnJmrPK+Xy87Y5jTqipqZG11tzndX5+HsmOjo5k7cHBgSvf39+X+dbWViTb3t6WtScnJzK/ceOGzEdGRmSu7u3Z2ZmsVfckhBAuLy9lbq1xai2zjm21u6+vT+ZtbW0yb2hoiGTevYa3P8cx5jzrqnU+75zwrs/leDtZ/dbar3uO4R3jnnPu7e3JfH5+XuZq/lxbW5O1at4LIYTbt2/LfGJiQuZdXV2RrLa2VtbGte6reu9zYI4DgOTjL4AAAAAAAAAAAAAShhdAAAAAAAAAAAAACcMLIAAAAAAAAAAAgIThBRAAAAAAAAAAAEDC8AIIAAAAAAAAAAAgYTKVbgBw3RWLxUo34XflaePbcD3vCutZeJ5RVZV+j59KpWJpS6FQKPmcVp7J6KUml8tFssvLS1m7s7Mj88ePH8t8ampK5ldXV5FsaGhI1t67d0/mt2/flnl9fX3J57TulSWO52k9Y++xEeWdV5mHo6x+GMc8adVb5/S2xXPOuK7HouYWaw72Ojs7k7manzc3N2Xt2tqazNfX12W+tbVVcr3VvsHBQZlPTk7KfGJiQuZdXV2R7PT0VNaurq7K/MmTJzKfm5uTuVrLrNrR0VGZ37p1S+bWWjYwMBDJGhoaZK21lpW7n3t49jGqNgT/XPGmtUA5WX3Rsze1xor3d4maE6y5fGlpSeYff/yxzNVcabXb+i3w4YcfynxkZETmtbW1kcya99TvgxD8z0ddk3VO7284i2c+8877zJUAUB78BRAAAAAAAAAAAEDC8AIIAAAAAAAAAAAgYXgBBAAAAAAAAAAAkDC8AAIAAAAAAAAAAEiYeL4KC7wB9aG/6/SB7Eq0pZwfoC636/I847qHcZzT67q30fuR5Orq6pKPbX0IfHZ2VubT09Ou49y4cSOS3b17t+TaEEJobW2VeT6fl7m6X94PvHr7s+fj8xarno+zvrlKjPHrPq/EdWzPGPJ+qN6a+zxjxTtPptNpmXtcXFzI/Pj4WOZ7e3sy39zclPna2lok29jYcB3bmj9rampkrubnpqYmWTs4OCjz4eFhmff398tcHd+6t9lsVuaNjY0y7+vrk/nCwkIk29rakrXLy8sy39/fl7l1nNHR0UhmfSC9u7tb5taz8PRna6zkcjmZe/Ym3jFutcWzlrN24m1kjQlrzrbGuLU2q3VocXFR1j59+lTmz58/l7kyOTkp8wcPHsjc+i3Q3Nwsc3W/vHsH728Bz7G9uXfu82BOBIDPF38BBAAAAAAAAAAAkDC8AAIAAAAAAAAAAEgYXgABAAAAAAAAAAAkDC+AAAAAAAAAAAAAEoYXQAAAAAAAAAAAAAmTqXQDgGKxWOkmXDvee3Kd7uF1aUsl2lHu56bqrWOkUimZV1W9+Xt/65ze68nlcpFsbW1N1s7MzMh8Y2PD1ZYbN25Esnv37snarq4umVv3MJ/Py7xQKESydDota63nVk7ePoTSvQ3zUCXO6am3+qF3jvP0ZzVmQ7DHuHU9qi3W2I9jbg4hhNPT00i2vb0ta635dnl5Wearq6syV/Pw4eGhrLXuYXd3t8wHBgZkPjY2FsmGh4dlbUtLi8zr6upknsnon0eqD9XU1Mjazs5OmVvXOT4+LvPZ2dlI9uzZM1n7+PFjmS8uLsp8f39f5pubm5Hs4OBA1qrnEIJea0Own4VijUMrt6jnZo1Zq39a84c1nj3HsFyX/TTeXt4+p8aWdz30UuuTNce9ePGi5GOEoOfVjz76qOTaEEJob2+XuXVvLy4uItl1Gsve33Bx7KkAANcDfwEEAAAAAAAAAACQMLwAAgAAAAAAAAAASBheAAEAAAAAAAAAACQML4AAAAAAAAAAAAAShhdAAAAAAAAAAAAACZOpdAMApVgsyjyVSsVyfHUc65zwUffR+9yses8ziqsPVaItVl4oFN6oHZ+lXrUlk9FLh2pfCCEcHR3JfGNjI5JNT0/L2oWFBZk3NjbKfGxsTOajo6ORrLOzU9Za15nP52VuSafTkayqSv/7C+v5WOe07rnKrX6l2heC3ca3VRxj+TqJYyyXm9VGq98qVj+0rsfTbz3tCCGE6upq1zk9e43Ly0uZHxwcyHxra0vm6+vrkWxtbU3W7uzsyNyas3O5nMzr6+sjmTWvtre3y7yvr0/mg4ODMu/t7Y1kbW1tsracrHXCyi3WfVHU/Q4hhJaWFpkvLi7KfHNzU+a7u7uR7NGjR7J2ZWVF5mqtDcF+nj09PZGsublZ1tbU1MjcGoeq31pj31prrXXSM6/GtdZ4jlOJef9tdt33CXG1z6r3/IazxqG1llnrzczMTCSbmpqStcfHxzIfGRmR+d27dyPZzZs3ZW1HR4fMvWNIzUPWfON5Dq/L1Tkr8XuX+QYArrdk/d8dAAAAAAAAAAAA8AIIAAAAAAAAAAAgaXgBBAAAAAAAAAAAkDC8AAIAAAAAAAAAAEgYXgABAAAAAAAAAAAkTKbSDcC7o1gsunIkh/WMq6o+/3fQcbUllUqVfGwvdWwrt2ot3utXx7dqc7mczDc3N2U+PT0dyV69eiVrDw8PZT45OSnzhw8fynx4eDiSNTQ0yNpCoSBz6zrT6XTJufXcvOfM5/MyL7Udr2uLlb8rc7ZnzXqb74lnDinnOu49hnfO9jw36554z6nG7enpqazd39+X+fLyssxnZ2dLrt/e3pa1V1dXMq+trZV5V1eXzAcHByPZyMiIrFVzcAghtLe3y9yanxVr/vTyHMezdn6WvKOjI5K1trbK2qGhIZlbfeiTTz6R+cuXLyPZ+vq6rN3Y2HDl1vO/fft2ybWdnZ0yt/qtep5x9RWPSqwT3jnuXZG06/fuKT1ruTXHWfnR0ZHM5+bmZD4zMxPJ1tbWZK21Trz33nsyv3fvXiTr7u6WtdYe2bPPDkHfF+/eycqt56nabj2fuNoSh6SNQwC47vgLIAAAAAAAAAAAgIThBRAAAAAAAAAAAEDC8AIIAAAAAAAAAAAgYXgBBAAAAAAAAAAAkDC8AAIAAAAAAAAAAEiYTKUbAMQhlUq58qSpxHUWi0WZe9piHSOu+jiU895a1+O5zqoq/R6/UCi42mIdJ51Ol3zso6Mjmb948ULmjx49imSHh4eytrOzU+YTExMyv337tsybm5sjmfcZe5+b51l4j+3pK1ZtPp8v+RghxDPfxnE91jm9z9Oqj+PexjV/xHGcOPp5XHOwNd8o3udj1au5TGWvc3l5KfOdnR2ZLy8vR7KNjQ3XMXZ3d2W+v78vczWe29vbZW1ra6vMu7u73zi3aq1zWs8il8vJfHFxMZLNz8/LWuteXVxcyNzS0NAQyQYGBmRtf3+/zK1nUVdXV3I7rHvV0tIic2u8VVdXy7ynpyeSWfd2dXVV5la/nZqakrkaF0NDQ7LWWvf7+vpkru6LepYh2PfEu9fyzJ9x/YaJYw0u5++pSuz5y7kGx7UelnMPYvHs+a09orVfn52dlflv//Zvy3xrayuSdXV1ydpbt27J/M6dOzJXc4J33bdU4jepRT2j67T/BABcD/wFEAAAAAAAAAAAQMLwAggAAAAAAAAAACBheAEEAAAAAAAAAACQMLwAAgAAAAAAAAAASJhMpRsAeD4uyIcIr484noXn47lecX3Ittwfd1es++L54L33o7LWB2FV/dHRkay1PgY9MzMj81evXkUy68OvY2Njrtz6ALlydXUlc++zt+o9H4Mu54eZvee0+qHVV8r5kehyjrdyfpi6nM/zbV4PPR9htvqh9WFqD6svn5+fy9z6sP3i4qLMnz17FslWVlZkrTWvWtdfW1srczWH3rhxQ9YODQ3JfHBwUOZtbW0yr6+vj2Te/mld//r6usw//fTTSPbkyRNZqz4yHkIIZ2dnMrfueXNzcySbmJiQtdZHycfHx2Xe09Mj8+rq6kjmnT9Uu1+XDwwMlJSFEMKLFy9k/sknn8jc2ifs7+9HMmu8nZ6eytz6KP3w8HAks/YIra2tMveu++UUx7p/nZSzjXHttSpBtcWam+I4tsUab0tLSzK35gQrV+vHvXv3ZO39+/dlrsa4dey47qHF05/L+VvV81syzrYAAK4v/gIIAAAAAAAAAAAgYXgBBAAAAAAAAAAAkDC8AAIAAAAAAAAAAEgYXgABAAAAAAAAAAAkDC+AAAAAAAAAAAAAEiZT6Qbg3ZFKpWReLBY/55agnNRztp6xlRcKhTc+Z1WV7/22tx+qequPx8VzX6y2pNNpV/3V1VUkm5+fl7WPHj2S+dramsxra2sj2cTEhKx9//33Zd7d3S1zD+vavX3Ie3xPbSajl2vreXr6s7ffWsfO5/NvfOxyjqG45qFyrlmeY3vbEce9tY7hHUNxjAnV30II4ezsTOYHBweRbHNzU9ZubGy48p2dHZkfHx9HMuu5dXV1ybytrU3mPT09JefWPGkdu7GxUeZqzvay7tXTp09l/vjxY5mrZ3d6eiprretpaWmRuXpuIYRwfn4eyT799FNZu7q6KnPVD0MI4eHDhzLv7e2NZNb1xDUnZLPZSDY8PCxr6+rqZN7a2irz5eVlmav7tb+/L2tfvXolc2t8qj3L6OiorL19+7bMrfFZX18v8zj2D941q5z70jjWvTj29lYex716XV5qOz5L7ukr3udp7REtFxcXkWxhYUHWfuUrX5H57OyszKurq2V+48aNSHbv3j1ZOzQ05Dq2ep7W3sH73Dx7x3LukaxzWrznLPdvWwDA54e/AAIAAAAAAAAAAEgYXgABAAAAAAAAAAAkDC+AAAAAAAAAAAAAEoYXQAAAAAAAAAAAAAnDCyAAAAAAAAAAAICEyVS6AUAqlSpLLa6PYrEo80Kh4Kq3VFVF32V7+4p1Tk9brFpvW6x6dXzrHmYyenq3jn15eSnz3d3dSPby5UtZ+/z5c9exBwcHI9nk5KSsnZiYkHltba3MPc/TuieqX8XF2ye8bVHX6R1XnmN7a63rj2OO947luHIlrjXL8zzjuucqL+eYyOVyMj89PZX50dGRzPf392W+vr4eyebn52Xt6uqqzNV8GIJ9z1tbWyNZV1eXrB0YGIglb2tri2T19fWyNi5qHdra2pK1r169kvmjR49k/sknn8i8rq4ukln3pK+vT+bZbFbmVh9aXl6OZC9evJC1Vh+y1iyrLSpvbGyUtdZ+wBpb1dXVMlfj3DrnyMiIzHt6emQ+Ojoq87m5uUhm7TVmZmZkrsZ4CCHs7e1FMmv+sO7h2dmZzK3rVM/N2pfFNa/GsTZ59wlx7Acs5dwP5PN5V71itS+dTrvq4/jt4L1XVn9WY8gab0+ePJH5+fm5zK2xf/fu3Uh28+ZNWdvS0iLzq6srmVvPWbHGYRz90Ps7w9tX1HE8tZ/lnACAtw9/AQQAAAAAAAAAAJAwvAACAAAAAAAAAABIGF4AAQAAAAAAAAAAJAwvgAAAAAAAAAAAABKGF0AAAAAAAAAAAAAJk6l0A/DuSKVSb+Wx4VMoFErKPouqKv3OWj1/q09YudXGYrFYcm7VevunVZ9OpyOZdU9qampc51xZWZH5s2fPItnMzIysPTo6kvno6KjM33vvvUh248YNWVtbWytzi/UsFG9f8RzbK665zDMmLN7r9IwJSz6fl7nnWZTzHlrn9Lbbyj1znHVvvfOtdU7vmFMuLy9lfnZ2Fsn29vZk7eLiosytOWtzc1Pman6ynlsmo7fHw8PDMm9ra5N5b29vJOvq6pK1HR0dMm9paZF5Q0ODzKurqyNZXGvT1dWVzA8ODiLZ1NSUrP36178u89XVVZlns1mZT05ORrKHDx/KWuueW+vkxcWFzFUb1bocQggvXryQ+cbGhsynp6dlPjQ0FMl6enpkrWf+CMHu/2oO8c5l9fX1Mrfaruo7OztlbV9fn8yXl5dlvra2Fsms57C1tSVzNZZDCOH27dsyHxkZiWT9/f2ytqmpSebWPOR5FtYztnLvmu2ZQ8q5Bylnu61675iweH5nWGPcOoY1Z1vz7de+9rVIZs1l1jw5MDAg848++kjmt27dimTWvO/9DadYc7Z3/iznb1JLXMeJ45yf9zEAAG+OvwACAAAAAAAAAABIGF4AAQAAAAAAAAAAJAwvgAAAAAAAAAAAABKGF0AAAAAAAAAAAAAJwwsgAAAAAAAAAACAhMlUugFAKpWqdBPwGRSLRZkXCoWSstepqtLvpq2+Ekcf8h7bun5PrfecKvde++npqcwXFhZk/uTJk0i2vb0ta7PZrMzHxsZkfu/evUjW2dkpay3WvfXcc+8zfhvmrHK20RrPcYwJ7zk9yjmvePuh1ZY4+q117Hw+78qvrq5krljzyuHhocx3d3cj2fr6uqydm5uT+erqqsz39/dlnk6nI1l3d7es7evrk/nAwICrvqenJ5K1tLTI2traWpl7qedpPUtv37fu7dLSUiR7+vSprH38+LHMGxsbZX737l2Zf/DBB5Hs/fffl7V1dXUy91LPc2NjQ9Za6+TBwYHMl5eXZX50dFRi6+Lbx6g+5F0Pq6urZW49C5V3dHTI2t7eXplb4/DZs2eRbHp6WtbOz8/LfG9vT+bn5+cyPz4+jmRnZ2ey1pqHrLmivr5e5mqOs3j28K8Tx760nPts717Du656xHFvreux+qFaa0MIYXZ2VuZqz28do6urS+aTk5MyV3v+EOzxrFj7Fc/85N0LWirxmzQO3jHh8Tb8PgKAdxl/AQQAAAAAAAAAAJAwvAACAAAAAAAAAABIGF4AAQAAAAAAAAAAJAwvgAAAAAAAAAAAABImU+kGoDIq8ZG+t/XDgG9ru98G3o+tep6F9aHQuM6p6uP62KzF84Ff68PRKysrMn/+/LnM1YdirQ8zWx/rvnXrlsw7OzsjmfXh6Lg+8Psuf/zUe+3WB4u9uVLOsR+XOD4qHNc51b21xor3g9rWx6PVR893dnZk7fr6uszX1tZKrj84OJC1Vr+qra2V+e3bt2Wu5hvro/GqNoQQ2tvbZZ7NZmWuPmxvPTcva41T98s7fi4vL2VurR+PHj2KZNPT07L29PRU5hMTEzL/6KOPZD42NhbJ1P2Ok3p21jmtXI2rEEI4OzuTufUsPLxzgqe/WMe4urqSudVva2pqIpm152lra5N5JqN/1ra0tESygYEBWTs3Nydza46znufv/M7vRLJnz57J2qGhIZmPj4/LfHh4WOa9vb2RrL6+XtZa98p6PtbzjGNP5e2fKvfsP0Lw7zVUbrXPuodWvWf/YF2ntTZ//PHHMrf64v7+fiTr6uqStV/4whdkbq3Bra2tMles/max+rNS7t9qcShnG6/7bxUAQPnwF0AAAAAAAAAAAAAJwwsgAAAAAAAAAACAhOEFEAAAAAAAAAAAQMLwAggAAAAAAAAAACBheAEEAAAAAAAAAACQMJlKNwDXSyqVqnQTkEBWv6qq0u+gvf2wUCiUlH2Wc3ra4m13HOPt6upK5uvr6zJ//vy5zJeXl2Wey+UiWV9fn6y9f/++zAcHB2VeXV0tcyWfz5dcG4Lv3haLxTc+hpf32FYbPfXWMazcGkPetrwL0um0qz6OZ6HG5uucnZ3JfG9vT+YrKyslZSHY883Ozk7J57TGRE9Pj8yteeXGjRsy7+/vj2Tt7e2yNpvNyrympkbmcbDmOO/4VPfRWvesPnRyciJza52YmpqKZNvb27K2ublZ5qOjozKfnJyUeVtbm8w9vHO/Wm+t5+adPz25t93l3N9Y12ndF89ansnon6lWbvUJlXd3d8taa38zPT0t8ydPnshczZVbW1uy9uDgQObWnH16eirzy8vLSGZdpzXHWXOFlXv2A3HtqeLYg8QxJrxzs7ctaqwcHx/L2sXFRZk/ffpU5mtrazJX/WJsbEzWPnjwQOYDAwMyt+6Lmlettcnqh9bvCfWM4no+AAC8bfgLIAAAAAAAAAAAgIThBRAAAAAAAAAAAEDC8AIIAAAAAAAAAAAgYXgBBAAAAAAAAAAAkDC8AAIAAAAAAAAAAEiYTKUbAODtlEqlZF5VVfp7ZesYxWJR5vl8XuaFQqHkY1jS6bTMrTZ6WG3x3KsQ9PXv7+/L2qmpKZl/5StfKfnYIYRw+/btSHb//n1ZOzIyIvPGxkaZq+dmtcPKvc8tjuf5rohjjHupPuFV7mevjmPdk7ju1eXlZSQ7PDyUtTs7OzJfWlqS+eLioswXFhYi2d7enqytrq6WeXNzs8xv3boVyXp6emRtf3+/zLu7u2Xe0tIi84aGhkjmfT7WXO5Zy6w+HteaZeXK+fm5zK3nvLy8LHPVh+rr62WttX6Mj4/LvKmpSeZKLpeTufc5W8/z6uoqkllrsDUOrTbW1tbKXI0t71wW1x7EcwxvG8u5rijZbFbmw8PDrvq+vj6ZqzExPz8vazc2NmT+9OlTmau5OYQQpqenI9nExISstXLreqzr9/Ds4UPwzYnefmjVe35/eNttzc2ZjP7fMaenp5HsxYsXsvbx48cyt9b3uro6mX/wwQeR7O7du7LWWmsr8RvOw3ts77oPAMB1xV8AAQAAAAAAAAAAJAwvgAAAAAAAAAAAABKGF0AAAAAAAAAAAAAJwwsgAAAAAAAAAACAhOEFEAAAAAAAAAAAQMJkKt0AAMmSSqXe+BjFYlHmhULBVa942+c5tqf2sxxnf38/ki0sLMjaubk5ma+trcl8ZGRE5vfu3YtkN2/elLVNTU0yt1xeXkayfD4va617UlXFv2MoVRxjM67jWM/TOrZVr3LrGN7cw5qbrP5s5WdnZzI/PDyMZJubm7J2dXVV5ouLi676vb09mSttbW0yHxoakrmaQ6za7u5umWez2RJbZ1NzUAj288zlcjKPa2x5jh3H3Gdd/+7ursy3trZkrtamjo4OWTsxMSHz/v5+mWcypf9UsZ6b9/lcXFzIXI1Da5yo2hBCaGhokLk1hurq6mReTnH053Q6XbZzWvOn5xjW+LGej5Vb81NPT08ka29vl7VTU1Myf/Hihcx3dnZkfnx8HMlOT09lrdXHrTVocHBQ5moe9j77OFjP0ztPevYa3n2pVX9+fi7z9fX1SPb8+XNZa/0WsNpizbdqzz86Oiprq6urZW6tk9a4Vbz7NWvu9xwDAICk4/+cAQAAAAAAAAAAJAwvgAAAAAAAAAAAABKGF0AAAAAAAAAAAAAJwwsgAAAAAAAAAACAhOEFEAAAAAAAAAAAQMJkKt0AAMlSLBbLduyqqtLfWadSqTc+Rgj29RQKhZKPnU6nXcc+PT2V+ezsbCT7xje+IWs3Nzdl3tXVJfOJiYmS8/b2dllrUffKYt1D63lauXVvrfp3mffeep6n9zl4x4rKvWPfOyco5+fnMt/e3pb5+vq6zDc2NmSuxrM1xg8PD2Wez+dlXl9fL/Nv+ZZviWR9fX2ytru7W+YdHR0yb25ujmTZbFbW1tXVydwrjnnI21c85/TOTXHMcVa/3d3dlfnx8XHJx25qapK51Ves5++5Tu9zs8aENYbUmLPu1eXlpcyHhoZkPjw8LHM1VuLimVe94lhrrfHjbZ9qi3Vs73porVlqr2XNZda+7ObNmzJXe8EQQlhYWIhkS0tLstZag6anp2U+NjYm8/Hx8Uhm9XFrTqipqZG5NT6t3MPb99UcYj37TEb/7xVrbz83NyfzqampSPbixQtZa8039+/fl/ndu3dlPjg4GMkaGxtlbS6Xk7ln3QvBN5dbPOPZ+zsDAICk4C+AAAAAAAAAAAAAEoYXQAAAAAAAAAAAAAnDCyAAAAAAAAAAAICE4QUQAAAAAAAAAABAwuivFALA78LzEV7vx6rjyOP4sHsIvo8Qez8genJyIvOVlRWZv3z5MpJZHwO2PkKrPtgbQgi3bt2Sufrou/Uh46urK5l7WB/Vte6t92PQcTy3pPHe27iehWI9f88Hm61aayxbHzK28uPj40i2t7cna1dXV2W+vLwsc/WReev45+fnsta6h+3t7TIfGBiQ+e3btyPZjRs3ZG1LS4vMa2trZR4H70e81fP3jv3rNFfEMd6sOfvs7MxVr9abhoYGWWt9CN7qK555yPtxb2uMb2xsyFx9rH13d1fWWmtwb2+vzIeHh2Vu3a84eMeQ4t2vedoSR/viOrZ1PdZ8q/ZJ9fX1sratrU3mPT09Mm9tbZW5GkOvXr2StVtbWzKfn5+XubVfVXOFNX/EcT0hhFBdXR3JvP3Q2g9YrOes5PN5me/s7Mj82bNnMn/x4kUks+5td3e3zO/fvy/zyclJmau13Lvn844hNW97f8N5zuntK3GstQAAXAf8BRAAAAAAAAAAAEDC8AIIAAAAAAAAAAAgYXgBBAAAAAAAAAAAkDC8AAIAAAAAAAAAAEgYXgABAAAAAAAAAAAkTKbSDQCuu2KxWOkmvPVSqZQr9x5H8T63QqHgOmc6nY5kVVX6nbrVltXVVZl/4xvfkPnz588j2cnJiay9ffu2zD/88EOZj46Oyryuri6SWffq6upK5upeWbm3r1i55/lbtd7+6RHXvGIdJ47r91L3K67nGcezOD09lfnW1pbMV1ZWSs7X1tZk7eHhocwvLy9lbj2LhoaGSGaN2f7+flfe1dUl86ampkim5oMQ7DHu6Z/lXmvj6EOV2A9UYn6yWGtcJhP9OVFdXV1ybQh2H7LO+aa1IYSQy+VkPjMzI/Ovf/3rkWxnZ0fWtrS0yHx4eFjmN27ckHk2m5W5Yq3NVh/y1Hv7WxxjJa51X12nde1WbvUtz33x7CdDCKG1tVXm9+7dk7ma45eWlmTtq1evZD4/Py/zzc1NmT969Kjkc1prkDUmxsbGSj6Od+xbrOev5i2rdmNjQ+YvXryQ+SeffCLzvb29SGbdk/v378v8zp07Mu/o6JC5ks/nZe4d41b/V8/OWifiEFe749h/V2IdBwC8u/gLIAAAAAAAAAAAgIThBRAAAAAAAAAAAEDC8AIIAAAAAAAAAAAgYXgBBAAAAAAAAAAAkDC8AAIAAAAAAAAAAEiYTKUbACBZUqnUG9cWi0VXXs5jV1Xp9+TpdDqSXV1dydqDgwOZLywsyHxmZkbmh4eHkayjo0PWjo6OyvzmzZsyb29vl7m6j4VCQdbG8dzi4n3+11052+09tnVv1VjxPod8Pi/zXC4n8/Pz80h2dHQka3d3d2W+trYm85WVFZlvbGxEsv39fVmr5okQQshmszJvaWmReVdXVyQbHh6WtUNDQzLv7u6WeXV1tcw9rOdpzRVW7jm2px/G5TqNQ6ve6nNKJqN/BtTX18u8trZW5uqeX15eytqTkxOZW/VWWxRr/lBrZwghLC4uynx6elrmy8vLkayurk7WWmutNW6ttbympiaSedfaOHJrXHn2fJWi2mi123s93rlPscahNTdbeXNzcyRra2uTtVZujTerjWpd3drakrVnZ2cyPz4+lrm1p764uIhk1vix1lprnrT6uXrOe3t7staaP549eybzzc1NmSvW87HmIeseWvNtHOund9+n1oTT01NZa12PNfertlh92eorVu65V2/DPAkASD7+AggAAAAAAAAAACBheAEEAAAAAAAAAACQMLwAAgAAAAAAAAAASBheAAEAAAAAAAAAACQML4AAAAAAAAAAAAASJlPpBgBIllQqVVL2OsVi0ZW/aW0IIVRV6ffhmUzp0+TR0ZHMX7x4IfPp6WmZb21tybyzszOSvf/++7L2zp07Mm9paZG59YwuLy8jmXVvrXtoHbtQKJR8DIu3b3nq4+q3n/exvbxt8T5nT20ul5P5+vq6zBcWFiLZ4uKirF1dXZX58fGxzK17Xl1dHcn6+vpkbW9vr8wHBgZk3tXVJfO2trZI1tDQIGtra2tl7pnLvLxztnr+ntrX8dYram4KwT8OPdcZF3V8657U19fLvKOjQ+bZbFbm+Xw+ku3u7srapaUlmVt931qzlMPDQ5l/85vflPk3vvENmT979qzkc96+fVvmH330kcyHhoZkXlNTI3NPH4qr36o5Pp1Ol1z7unOWcx/nGfve6ymncs4J1jpx48YNmau1JoQQJiYmZD4/Px/J1LocQggbGxsyf/nypcyXl5dlPjU1FckmJydl7a1bt2TuHYf7+/uRbGZmRtZ+5Stfkfnc3JzrnOrZWXshtVcPwb7no6OjMlfP2fu7wZqHrDaqvZl6xiHY68fBwYHM1T209l9WH7LmeGtseeahcs5xAAD8r/EXQAAAAAAAAAAAAAnDCyAAAAAAAAAAAICE4QUQAAAAAAAAAABAwvACCAAAAAAAAAAAIGF4AQQAAAAAAAAAAJAwmUo3AMDbKZVKuXKlWCy6cs9xrGOk02mZV1X53odfXV1FspWVFVn77Nkzma+vr8u8vr5e5sPDw5Hszp07snZgYEDm1dXVMi8UCiXn1jPOZHxLivc5J4n32j3j6rPUK1Ybrb6ixsTZ2ZmsPTw8lPnu7q7MV1dXZb68vBzJtra2XOe0+m1ra6vMu7q6IllfX5+stcZhb2+vzNvb22VuzVse3uepWP0qjrHsPXYcYyKOtcbbFqvW8xxeR7XROmddXZ3MOzs7ZW71W1V/fn4ua58/fy5zy/7+vszVdVpj/8mTJzJfXFyUeU1NjczVOH/w4IGstdbmjo4OmVtjXF2nt69492sqt/ZIcaw1Ifj6rXfcevd3nnN6noX3GN7rV7nVr7LZrCu35oSmpqZI1tjYKGut+Uat4yGEsLe3J/P5+flIZt3Di4sLmV9eXsrcun7VxunpaVm7trYmc6uNIyMjJbdlc3PTdc6NjQ2ZHx8fy1ztb9QzDsE/J1i5WiusuXxmZkbmVh9SeyprTAwNDcncu+6Xcz8EAMCb4C+AAAAAAAAAAAAAEoYXQAAAAAAAAAAAAAnDCyAAAAAAAAAAAICE4QUQAAAAAAAAAABAwvi+2A28g/gQY/l4PmT7OuoZWc/N+9FS6wOy6oOr1setrQ9QV1dXy3xyclLm9+/fj2TWR0sbGhpkns/nZW7dc/WxVOseej5iHUI8H0++Tjz9OY6Pcr8uj4N1PdaYUB8bnpubk7WvXr2S+cLCgszPzs5krj7Wbn2weGJiQubd3d0y7+npkbn6SLL60HAI9kevrbEfx8fKrXEVx7waxzEqRbU9ruuxcmtO9PC20TOvqvETgu7jIYRw69Ytme/u7kayly9fytqvf/3rMn/8+LHMW1paZK7WMmt9q62tlXlbW5vMR0dHZT4+Ph7Jbt68KWt7e3tlnsn4fnp5nmcl1o9y7uPi4jm2VWs9hzg+BG/VevdrnjnOu4+z1qyBgYFIZo3Z4eFhma+ursrcmkOWlpZKyl53bGsP0tjYKPPNzc1Idnh4KGvr6+tlbs0rH330kczV/uHp06ey1vr9MTs7K/NcLifzhw8fRjJrj2Ttb6y+Zc192Ww2knV2dpZcG4I9PlW/teZ9a+9o9X3L2/B7BQDwbuIvgAAAAAAAAAAAABKGF0AAAAAAAAAAAAAJwwsgAAAAAAAAAACAhOEFEAAAAAAAAAAAQMLwAggAAAAAAAAAACBhMpVuAHBdpFIpmReLxc+5Jclj3UNvbj0jlVdV6ffb3ue8vb0t8+fPn0ey+fl5WXt2dibz7u5umd+6dUvmIyMjkayhoUHWWrz3XN1H7721eOq97fYcJ47+9jqq3jqGdW+9crlcJLu8vJS1p6enMj86OpL57u6uzFdXVyPZ4uKirN3Y2JD5wcGBzGtra2Xe3t4eyQYGBmTt8PCwzHt6eko+dgghtLS0RLJ0Oi1r41IoFCLZ27w2ecfQdeGd+zzXaR1bPfsQ7Oev6vP5vKy1+m1jY6PMh4aGZH5yciJz5erqynUMa05Q12TNE319fTK31trJyUmZj46ORrK2tjZZ650TPM/Zs16HUN61uRK866S6X3Hdk3LeK6tPeHjXCeuc1nWqMWeNw+bmZpm3trbK3JqHmpqaItnLly9lrbXXmJmZkbl1/RcXF5Esm83K2tu3b8v8zp07MrfmITWHWPu1ra0tmT99+lTm6+vrMlf7OGuP1NvbK/NMRv/vJStX99E6p7WPs35n9ff3R7IbN27I2o6ODplb7QYA4G3DXwABAAAAAAAAAAAkDC+AAAAAAAAAAAAAEoYXQAAAAAAAAAAAAAnDCyAAAAAAAAAAAICE4QUQAAAAAAAAAABAwmQq3QDgukulUpVuwluvWCzKvFAouOqrqvQ763Q6XXKtdc7j42OZv3r1Subf+MY3Itnu7q6s7e/vl/nk5KTMJyYmZN7R0SFzD+u+WDz933puVq6O7an9LOfM5XIl11r3Ko48rnnl8vJS5kdHR5Fse3tb1q6ursp8aWnJlR8eHkYy6zqbm5tl/v7778u8u7u75NyqtcZPXV2dzD3P0+pDXp7jXKe1yduW69J2qx3e3OJ5nlZ/s85prWVqjru6upK1mYz+GVBdXS3zzs5OmT98+LDk2vHxcZlba3A+n5e5uv7a2lpZa63BQ0NDMm9vb5d5U1NTJFP7j9fxrlkqj2u+iWN9j4unLXHMH97nYLHGrec43r2wdf2qLXHNK1aujuPZq4dgj7fW1laZj4yMRLLh4WFZ+/TpU5l/9atflfna2prMVRt7e3tl7YMHD2R+9+7dko8dgr7nY2NjsnZnZ0fmn3zyicwvLi5krn7zWHO5taey1hWrXzQ2Nkayvr4+WWuNCWuO7+rqimTWbyyrv3nH+Nu6jwMAJB9/AQQAAAAAAAAAAJAwvAACAAAAAAAAAABIGF4AAQAAAAAAAAAAJAwvgAAAAAAAAAAAABKGF0AAAAAAAAAAAAAJk6l0AwC8u4rFoqs+lUrJvKqq9HfZJycnMp+fn5f57OyszNfX1yNZQ0ODrJ2YmJD5+Pi4zDs6OmSeTqcjWVz30MN7Tg+rfXGd03P9Vr9Sz+F18vl8SVkIIVxcXMjc6re7u7sy39jYiGSbm5uydmdnR+b7+/syPz4+lnlNTU0ka29vl7UDAwMyHx0dlXlXV5fMW1paIlk2m5W11dXVMvcqFAqRrBLj8F1RzjnB+xy89eWcK+PgbV99fb3M6+rqIpm1HnZ2dsr87OxM5rlcTuaq7dYYb2trc+VxzBVqngjBvufXva+8zSox36pzlnsfo/Yscc2fnnqr71t7qkzG978j1H7A2gtZ85C3Lb29vZFsbGxM1o6MjMjc2sdY1D2vra2VtWovFIJudwghbG9vl5yvra3J2tu3b8vcWics6jqtPtTU1CRza9+n7rn1HKw+EceczZ4PAHAd8BdAAAAAAAAAAAAACcMLIAAAAAAAAAAAgIThBRAAAAAAAAAAAEDC8AIIAAAAAAAAAAAgYXgBBAAAAAAAAAAAkDCZSjcAAP7XUqmUK/fY2tqS+SeffCLz2dlZmVdVRd+fDw0NydqHDx/KfHh4WOaZTOlTcz6fl7l1r1S7QwihWCy6co84nltc51T31ronVm7J5XIyPz09jWQHBweydnt7W+YrKysyX1pakvnCwkIkOz4+lrXV1dUyb29vl/nt27dl3t/fH8m6u7tlbWdnp8zb2tpkXltbK3NP37q8vCy59nXUOa2+cp36ftIk7ToLhUIsx1F90RrjFmvet9qYTqcjWTablbX19fWuY3vWIKtPqPaF4J/jFe/a6V1T1TVZ1xnHseOoLbdy3sO4zqnqy7nPKvc543j+3jnOGrcnJyeRbGNjQ9Zae6qGhgaZj42NyfyDDz6IZA8ePJC1HR0dMrdYz+Ls7CySWXtH6xjW7wxrTVD7VeseHh0dydzaO1rUda6vr8taqw9Z56ypqYlk5R77cawrAACUAysUAAAAAAAAAABAwvACCAAAAAAAAAAAIGF4AQQAAAAAAAAAAJAwvAACAAAAAAAAAABImNK/NA4AJYjjg83WBzStD8JeXV1Fsp2dHVk7Ozsr85cvX8pcfZw0BP1h1Vu3bsnagYEBmTc3N8vcuof5fD6SWR9Ete6h94PAno/2ej9MHccHqK3r9Bzbusbz83OZqw8Qh2B/nHd3dzeSWR+43draKvkYIdgf4VXXb30kt7W1Veb9/f0yHxkZkXlvb28ka2trk7XWB+KtMe6hxkkI9nOO48PUVn8r54fTr9NH2VE+cXzE3ftR6jj6s3XO6/SBbO+9VXkcz+d14hjnzBVvrhL7G+++TNXHtTbFcZ3W+m6t2da+Z2lpKZJNT0/LWmtP1dnZKXNrv37nzp1INjQ0JGsbGhpkblG/YUII4fT0NJJZ+0zrHvb19cncmoeXl5cjmfU7aH9/X+bWvq+xsVHmuVwukqlrD8HuQ1Z+ndYbAAAqjVURAAAAAAAAAAAgYXgBBAAAAAAAAAAAkDC8AAIAAAAAAAAAAEgYXgABAAAAAAAAAAAkDC+AAAAAAAAAAAAAEiZT6QYAeHdVVel30JmMb2o6OjqKZE+fPpW1T548kfnm5qbMe3t7Zf7hhx9GsomJCVnb1NQkc0s+n5d5sVgs+RhWbaFQcNXHcU4Pq09YeSqVeuNznp2dydzqE2trazJfXV0tObeOcXJyIvOamhqZd3V1yfzBgweRbGBgQNa2t7fL3Oq39fX1MldtrK6ulrXWc/P2IdWfrT5u95UrmR7OfCzz3/itX4tkX391apyzT+YP/9AXZf5d3/qezPvrZFwB+l4dLU3J/OP/76/J/Jc/XRdpVtaOfdt3y/y7vvQtMp9o0n2uEq42o+vQP/l//w+y9qtrxvV/1/9W5n/4X7kt8y5x+Vbf9863FjVuvWuKd21SrOv05pZyroeeNsax7uHzF1f/9OwR0+m0rLX22d5xG0f/tI796tUrmX/8cXRt/vTTT2Xt5eWlzL/whS/IXO3tQwhhcHAwkjU3N8taSy6Xk7nVRrU3PTw8dB27u7tb5tbeTO1Bree5vb0tc2vvaPVF1Z+9a5anz1lrjdU+AACSgr8AAgAAAAAAAAAASBheAAEAAAAAAAAAACQML4AAAAAAAAAAAAAShhdAAAAAAAAAAAAACcMLIAAAAAAAAAAAgITJVLoBAJKlWCxGslQqJWvT6XTJxwghhMvLS5kvLS1Fsk8//VTWrqysyLy5uVnmN27ckPnw8HAk6+zslLXWdcbBurfWPSwUCm98fOucVVW+f1OgjmMdw2r3+fm5zE9OTmS+v78fyba2tmTt2tqazK36n/zJn5R5JhNdajs6OmTtgwcPZH7v3j2ZDwwMyPzmzZuRrKenR9Zms1mZV1dXy9zD2w+t3DqOYvXPVO6lzH/xz36/zP/c39NzRdN73xvJ/tgfuC1rm9d/WeY/9v3/nsxXwrfL/Md/+R9Fsv/w9+o+FJur6Lz6j3/098vSH/jbyzJv/uAP6/o/cCuSNQX9fH7+h/S4+kH9eML3/t9/Teb/4w9/EMna9SHcDr/212X+r37PL0Syb/2pvyJr//V/Vc9ZX/9b/zuZ3/0v/pLMf/uf/B8i2a0aY0w41w+Lt95zDM+aZY59Z15Ob0MbPfs4lC6uZx/XuPXw7uOVs7Mzma+ursr8yZMnMn/x4kUks9qn9uohhDA2Nuaqt/ZJHtZcls/nS86tWrXPDCGE9na9ytXU1Mh8Z2cnkln77O3tbZl7946np6cl19bW1sq8oaFB5tZ1Kt7xw5wIAHjb8BdAAAAAAAAAAAAACcMLIAAAAAAAAAAAgIThBRAAAAAAAAAAAEDC8AIIAAAAAAAAAAAgYXgBBAAAAAAAAAAAkDCZSjcAQPKlUilX/eXlpcyXl5dl/vz580j27NkzWZtOp2X+rd/6rTK/d++ezNvb20s+9tXVlcyrqvQ7eCtXCoWCK8/n8zK3npFqi3WdVh6Hi4sLma+vr8t8aWlJ5q9evYpkKysrsnZ3d1fm1vPc2dmR+cHBgcyVr3zlKzK3+uGP/MiPyPx7vud7Ilkm41vyvX2rWCy+8bGt/mnR/fNE1v7WX/1DMv/T/+CmzH/it/+5zP/P75c+9q1x9RP/rZ7L/slf+H0y//4v/blINvbyf5K1f3xAxq+h+/PX/vp3RtvxM+Oy9ie/8VWZ/8UPovfK7Sf+toxf/f0/L/Nv/+O/V+Y/NrERyf7OH2p2NmZKpj/7b/89mf8bv/E7kezff1gta63x8z3f870y/+iH9JzwH/7D749kv/jlHtc548i965tn3XtdW64Lz5r6uvpy8j5nj0pcz9vK21c8x4njGN76XC4naxcWFmT+6aefyvyTTz6R+dbWViT78MMPZa21tx8f12tZY2OjzBXvftpijTd1nOpqvX7U1tbKvKWlxVXf1dUVyTY3N2Xt9va2zK3fcFa/UPsn6x5az8e6zvr6epkr131NAQDgTfEXQAAAAAAAAAAAAAnDCyAAAAAAAAAAAICE4QUQAAAAAAAAAABAwvACCAAAAAAAAAAAIGF4AQQAAAAAAAAAAJAwmUo3AMCbKxaLJdemUqkytiSEqqrS3ytb7d7c3JT5kydPZD43NxfJ0um0rO3r65P5xMSEzIeGhmReX18vcyWfz8vc89xCiOfZWcewnpu6j1ZtoVCQ+fn5ucyPj48j2f7+vqzd2dmR+dramszX19dlvr29HcnOzs5kbV1dncw7Oztl/lM/9VMyV8/58PBQ1v7sz/6szD/99FOZ/+AP/qDMf+u3fiuS/Z2/83dkrfU8vf3Tc4y4+r5qe2rrf5a1/9VPLcn8/v/tH8n8R99rc7XFpVrPK9/3H/91mf/Bn/nTkexv/fKsrP3jf27M2ZiPZfrLPx29X7X/zs/K2h/5oN15Tg89Dkd/4D+S+V/7qf9e5n/h7/xyJPvxP/THZW2P2ZYNmb769PfL/PsfVptHKp2+tzc/uCXz7aPovGpdkXd8WnN8HMe2WOPNMw7Lve/xnNObq/vlvYflnMsrcW/fVuVc915X72mLtXe26q+uriKZtV978eKFzJ8+fSpza2/W0xOdz8bHx2Xt2JheD9va9Ppu3dtcLhfJrPkwk9H/e8W6h9Ye+eLiouRjW79JmpqaZF5bWytzdV+s/aq1X7+8vJS51T9VG7PZrKy1rtPKa2pqIpn3N5lnbn5dPQAAlcZfAAEAAAAAAAAAACQML4AAAAAAAAAAAAAShhdAAAAAAAAAAAAACcMLIAAAAAAAAAAAgITRXxIEyiCOj9DG9WHF69SWcvJcp/d6PPXWBzcPDg5kPj8/L/NvfvObMlcfIh0ZGZG1d+7ckbn1odjOzk6Zq3trfRA2jg9qh6DveVzPzfNRYfUx3BDsD/ZubW3JfGVlJZK9evWq5NoQ7D6kPkwcgv5QbFdXl6wdHByU+dDQkMwHBgZk3t4e/Yi79QHeH/3RH5X5L/zCL8j8h3/4h2X+sz/7s5FsZmZG1v7jf/yPZd7Y2CjzOD40bR3D+gC1K2/7Xln74//8n8j8tH9S5iHE8xF7l4H7Mv79t6PZX5paNA6i5zLbiUwPxLD9PXeHZW2184zxGJXp2O8xyj85ikTHRmn0E+P/QrGo14/v/IF/S+Y//yt/OZJ9x/d2y1pzQ341LeN/9nOPZX77L0bXLO/aFEcf954zjrWp3HvEcu6pPG3xti+Oj5W/DXve6y6utcN6FiqPaxxa9bu7u5Fsbm5O1j59+lTm1p7f2lM9ePAgkk1O6nXc2sNb84q1d1T7Xs9zCMF+FkdH0bUphBBOTqJrcyajV4qGhgaZqz1vCCFUV+tVu6WlpeRjW9ej2h2Cb35qa2uTtd7riUMc8ycAANcBfwEEAAAAAAAAAACQMLwAAgAAAAAAAAAASBheAAEAAAAAAAAAACQML4AAAAAAAAAAAAAShhdAAAAAAAAAAAAACZOpdAPw9ioWi676VCr1xsfxnrOcrLZY11kJnraU83qOjo5k/uzZM5lPTU3JfH9/X+bZbDaS3blzR9ZOTk7KvK2tTeaZjJ4mc7lcJLPuYTqdlrmlqkq/m1fHsWrz+bzMLy8vZX54eCjz4+PjSGY9h52dHZlvbm6WXL+7uytrz8/PZd7Y2Cjz1tZWmXd3d0ey3t7ekmtDCKGzs1PmVh+qrq6WuccP/MAPyPzbvu3bZP7lL385kv3mb/6mrP0Tf+JPyPwXf/EXZW5dj5orrP7pZR1Hzk/17bL2zrd/r8wLhYIrL+8cvy/TzfloVlvtm1dsPTIdeRDN/vZXp2Xt4Z8bk3nzZ25TKfT68cmv6uraPxRt47BxZHuvoe/Vv/Zf/Ncy/9UvPYxkHz74Y7L2+26dyPy3/1//k8wP/51flvn//AfFXY9pvxbHPs57bI9y78uuy/7Ouk5rzvJS11nO51Zu5fzt4BkTVjvi+j2lcu/+8+rqSuYHBwcyf/78eSR78uSJrLX2ju3tes229usPHkQXp54ePTdb1+99Fp4xYR0jjv13U1OTrK2rq5O5df1Wrp5Fc7Neya3r9FxPCLrt1vU0NDTIPK69pvI2zHEAAJSCvwACAAAAAAAAAABIGF4AAQAAAAAAAAAAJAwvgAAAAAAAAAAAABKGF0AAAAAAAAAAAAAJwwsgAAAAAAAAAACAhMlUugF4OxSLxUhWKBRkbSqVeuNcne+z5NY537T2day2lJOn7dZzs1RV+d4Tq+NvbW3J2o8//ljmr169knldXZ3Mb968Gcnu3bsna4eHh2WeTqdl7mHdK2/fsuo9zyKfz8v85ORE5uvr6zJfWlqKZIuLi65jHB0dyVyNlYaGBlnb3d0t85GREZnfuHFD5gMDA5GstbVV1nr7hPXc1HV65zKLup4QQvin//SfRrIvfvGLsvZXfuVXZP7jP/7jMv9rf+2vydzTP71jwnO/vOPHu2Z5eJ9n7tFXZP6PLqLZl3/f+zG15Y5M//f/6Z+KZD/2/f9HWftXv/w1mf/n363HbbXREu1cplP/zY/K/K/Mf1Hmf/PPf0cky8S0XlcPfZ/M/+unM5FsaUqve8839bH/xA/9bZk/7KstrXEhBOsqy9n3veLa9ylxjf1y7u881xnX+nGd5r7PW1zXHsd1WvtyK7f6s9qzeK/H2q8tLCzIXO3jnz17Jmvb29tlbu3Xv+VbvkXmt27dimSZjP5fGtZe2Pu7Ud1z69hnZ2cyPzg4kPnmpp781XGsPbK1X7X6UE1Njczb2toiWUtLi6y1+qF1/ZeXlzLv6+uLZNZ11tfXyzwO12k9BACgHPgLIAAAAAAAAAAAgIThBRAAAAAAAAAAAEDC8AIIAAAAAAAAAAAgYXgBBAAAAAAAAAAAkDC8AAIAAAAAAAAAAEiYTKUbgLdDsVgsKXudQqEg81QqVfKxrWN4jh1CCFVVpb/7tI5RTt5766m3ar3XeXV1JfOVlZVI9uLFC1m7vLws83w+L/Nbt27JfHJyMpJ1dXXJ2kxGT3vWfbFy6zhxyOVyMj86Oopke3t7snZ9fd2V7+7ulnzOk5MTWWv1oc7OTpk3NTVFMuu59fb2unLrOK2trZGs3GM8jvnTK5vNRrKf//mfl7Vf+MIXZP4TP/ETMv/iF78o8+/+7u+OZJW4t17edSKW53k1LeO/+xf/msxfDP3VaO33NvvO6dT+ff9dtB2/8h/L2n/zT+m5eWjwSzL/Y98TrW8Kem76+H/8ZZk/6v7DMv+bv/lfyvzP3qqWeVlVR+e4off+FVk6FNMpVV/0jsNK7Husc3rX5jiUc08Vx/4urn1cJZ5zJXjueVz3RJ3T+xvGyq21SeXWtVv7uJcvX8r80aNHMl9aWopk1j0cHh6W+f3792U+ODgo8+rq0udy7z207tfZ2Vkks/bf6ndQCCHMz8/L/NmzZzJX99H6fVRXVydztc8OIYSamhqZNzQ0RLKWlhZZ29ys9yDWOS8uLmTe2NhYUjtCsJ99HHO25V2ZJwEAycdfAAEAAAAAAAAAACQML4AAAAAAAAAAAAAShhdAAAAAAAAAAAAACcMLIAAAAAAAAAAAgIQp31fM8VbyfGw3rg/zWh/iVKyPeeZyOZmn02mZqw86XqePPFbio8deBwcHMp+amopkz58/l7Wnp6cy7+7ulvnDhw9lfutW9IPi1gdRrXto9SGrX2QypU+f1jkvLy9lfnx8LHP1Ydm5uTlZa33Id3l5WebW2Mpms5Gso6ND1lof+O3t7ZW5es49PT2ytrW1VebWB2Gt5xbHOH8bxqe6ztHRUVn70z/90zL/8pe/LPMf+7Efk/lXv/rVSOb5WHMIlbm33r7i+bh3CLsy/bW//L0y//O/pue+H/nVfzeSfavv1n4G0Y9N5/T3p0NNjZ5v43Gu00u9Bp0c67n8SmRlv4UVcJ32Msp1ap93XonjQ+NxXL/3GJVYD99WcfWJOPqKlVu/m1R+cnIia1dXV2X+5MkTmT969Ejmyo0bN2R+9+5dmas9fAh6/2mx9vDee2it5WdnZ5FsbW1N1n7zm9+Uufp9FEII8/PzMm9oaIhkLS0tstbal1u/p6zjKNZz6OrqkvnFxYXMr67UKqz3/eraQ7B/18fx/y8s5ZzLAQD4PPEXQAAAAAAAAAAAAAnDCyAAAAAAAAAAAICE4QUQAAAAAAAAAABAwvACCAAAAAAAAAAAIGF4AQQAAAAAAAAAAJAwmUo3AMmTz+dlXigUZJ5Op0vKQgihWCy62uKpT6VSMq+q0u9JrWN7zum9HquN1nFUvXVvr66uZL65uSnzly9fyvzp06clH6O3t1fmt27dkvnw8LDM29raIpn3+Vj3xeq35+fnkez09FTW7u3tyXxra0vma2trMl9fXy/5GKp9IYTQ1NQk85aWFpn39PREMuu5dXd3y1w9nxBCaG5ujmTZbFbWZjLxLFflHJ/lPs6bsuaPP/pH/6jMv+u7vkvmv/7rvy7zv/t3/24k+7N/9s+W2Lr4eMe+dV988+2urP21v/wFmX/ff7Uv8z/w331V5v/5F9tLbIfdbkuxeCnz6f/n90WyD35YH+M/+Y1PZP4PP9RzQnVpTfsX/vpPy/jVP9CN+f1f/FaZz/8v34hkPyXuawj+e4jPn3pGcezLyq2cbfHOZd7jKHHNQ+UUR1u8fUvlVq31O8P7PC8vo3P58vKyrH3y5InMFxYWZG79trt582Yk++CDD0quDcHel1rUfbT26t7cekY1NTWRTO1hQ9D75hBCODs7k3lra6vM6+vrI9ng4KCste6h1bes56l+C6l2hBDCwMCAzBsbG2VuUferoaFB1lp933qeAADg/4+/AAIAAAAAAAAAAEgYXgABAAAAAAAAAAAkDC+AAAAAAAAAAAAAEoYXQAAAAAAAAAAAAAnDCyAAAAAAAAAAAICESRWLxWKlG4HysR5vHHk+n5e1uVzOlWcymUhWXV0tawuFgiuvqtLvONPpdEnZ645h3SurLeVktSWVSkUy6zoPDg5kPjU1JfNPP/1U5p988kkkq6mpkbXf+Z3fKfMHDx7IfHh4WOZ1dXWR7OzsTNZarPtyfn4u8729vUi2ubkpa1dWVmQ+Pz8v86WlJZkfHx9HMjV+QghhYGBA5uPj4zIfHByUeU9PTyTr6OiQtdlsVuZWGz3Lj3e8ecaEysqtEuf0+u3f/m2Zf8d3fIfMVR+y+nhcyrmFMZ/R1XQk+v/8me+VpX/y7+tD/MDP/YrM//s/flvmekX0Me/Vxi/K+N+4+eVI9uw/eyxrH/3Q3c/crs/uUKb/9Af7ZP6/+dp/FskeP/ohWWtdzXUat9dp+35d7st1uidx8VyT9zl46q/Tva3EdcaxB/HsS16XW7+nDg+jc+Lv/M7vyForV8cIIYSmpiaZf+ELX4hk3/Zt3yZrW1paZG7tvy3q96f1m9R6Pt4+pJ7d6emprN3a2pK5dW+ttqu9s7XPtvLm5maZq99N1jmt30H7+/syt/qn9du+vr4+kjU0NMha6ze55zl7x5s3B4Ak8/y/TmvOtjCvlh9/AQQAAAAAAAAAAJAwvAACAAAAAAAAAABIGF4AAQAAAAAAAAAAJAwvgAAAAAAAAAAAABKGF0AAAAAAAAAAAAAJk6l0A3C9FItFV66kUimZV1Xp942q3nO+uFjnzOfzrnorV9dp3SuvTEYPZdWWy8tLWbu9vS3z58+fy3x+fl7m9fX1kWx4eFjW3r59W+YjIyMyr6mpkblydXUl88PDQ1e+trYm84WFhUhm3cPT01OZW32rtbVV5oODg5Gso6ND1vb397vytrY2mWez2UhWV1cna61+aPH0/0Kh4Dq255xWO+Kah+Ia55+3b//2b5f5d33Xd8n813/91yPZr/7qr8raL33pSzL3Pos41g/z+ew+kvFPffk7ItmPfSU6NkMI4S/+yj+X+Y9/d7fMq3VLYmFe5/PflPHfv/jWSPbTf/CecezP3Kw30CLT7/jXf0CX/8zPR6LfnvthWXpv7DM3Cp+TSuwTKyGO9eNtXYO84rjOOH4HhaB/83h/H+VyOZlvbm7KfHp6OpI9e/ZM1lr71Z6eHpnfu6fn/vHx8Uhm7WGt67RYe2TPftC659YxrOecTqcjWUNDg6zt7e2VeWdnp8wt6n6pdrwu9+7LVZ+z7mFTU5PMrXqrLartVl/x7AXjEtueEgCACuMvgAAAAAAAAAAAABKGF0AAAAAAAAAAAAAJwwsgAAAAAAAAAACAhOEFEAAAAAAAAAAAQMLwAggAAAAAAAAAACBhMpVuACqjWCzKvFAouOqVqir9XjGVSrlyD+sYVruvrq4iWT6fl7XWPUmn0zLPZPSwUvXednvvlbqm3d1dWbu0tCTzV69eyfzw8FDmt27dimQPHjyQtUNDQzKvqamRueXk5CSSWde5vr4u88XFRZnPzc2VnJ+dncnabDYrc+v6JycnZT4yMhLJ+vv7ZW1TU5PMrXtr9S3V/60xcXFxIXNrrKi5wur7njkohPLOK++6P/Nn/ozMf/3Xfz2S/dzP/Zys/dKXvuQ6p2eudD+33Ucy/qkvf4fMf+wrX4hkP/mbf1/W/vsftPvacq1UR5KMHsrXSnNjh/Ff9FqG680791933vnJc/3v+prl2Tt7fwdZrHuu9jfW7yPrnNaecn5+Xubf/OY3I9nKyoqstX6rjI6OyvyDDz6QeW9vbySzrtNiXb/nN6l1Tus5W7/5rFyx7qG1//beFw/v3jmO67d+T1jX6bn+Suz5vb+9yzk3l3OdAAC8u/gLIAAAAAAAAAAAgIThBRAAAAAAAAAAAEDC8AIIAAAAAAAAAAAgYXgBBAAAAAAAAAAAkDD664XAG/B+5FJ9uND6mKHnY/IhhHByciLzo6OjSLa/vy9rr66uZN7W1ibz9nb90W/Vdu9HS72Oj48j2dTUlKx99uyZzHO5nMwHBgZk/t5770Wy8fFxq4nS9va2zDc2NkrO19fXZe3Ozo7MDw4OZH55eSlzdf3Wh1+7u7tl3t/f78q7uroiWUtLi6y1Pk5r8fQ570eS4/jYMh84vT7+yB/5IzL/kR/5kUj2C7/wC7L2b/2tvyXz+vp6V1tc/eJqRsY/8+XvkPmPfeWOzP8v/8vfi2T/3vt6PXgr+m1VtYxrw3QkW94xPjR9M9YWvZH5V58Y/6UzkmQbrQ9nx9igMnkr+pZD0q4nLtflvlyXdoTg/1i75xjeY8fxwfvDw0OZz87Oytzary8sLEQya494545e395//32Zj4yMyNz7m89zjDiOnc/nZW49Z6ves1+trtZrahy8/dbbn1Vu1Vq/yS3WPVRt9LTvdbk6Zxz35HW5Esec9TrqONdpzgYAXA/8BRAAAAAAAAAAAEDC8AIIAAAAAAAAAAAgYXgBBAAAAAAAAAAAkDC8AAIAAAAAAAAAAEgYXgABAAAAAAAAAAAkTKbSDUB5FYvFsuWpVMrVlqoq/b4xn8+X3I50Ou069snJicyXl5cj2fr6uqy9urqS+c2bN2Xe3Nwsc8W6h1ZuteXs7Ezma2trkezp06eydn5+Xuatra0yHx0dlfmNGzciWVNTk6zd2NiQ+erqqsyXlpZkrp7dzs6OrL24uJB5TU2NzHt7e2U+Pj4eyYaGhmRtT0+PzK37Ul1dLfNMJjplW33fGkOFQsFVH8fYL+ex42C1r5xtsc75NshmszL/0pe+FMl+6Zd+SdZa89CHH3742Rv2u5j7ub8g8x/+NV3/p/7Br8j8r3x7eyR7m59nePhdMv6Ttf9lJPvb//ArsvYv/55vl7meyeIyJ9Nf/Zlf0+X3/0Y06rbmps/apnfTW93/P2flvFdv67HLTa3l3t9B1n7A2oMp6vdOCPae11on5+b03Hd6ehrJ1F41hBDu378v84GBAZl79kPWPrOcyr13tJ6dYv2eUHv41x3b8/vYYvXPOPqz93eGdZ2qLdbv/Ties9U+z7V7lbt/vs3zMwDg88NfAAEAAAAAAAAAACQML4AAAAAAAAAAAAAShhdAAAAAAAAAAAAACcMLIAAAAAAAAAAAgIThBRAAAAAAAAAAAEDCZCrdAJRXKpVy1ReLRZkXCoU3Pqd1bFWfTqdlbVWVfmeZy+VkvrKyIvMnT55Esr29PVlbV1cn876+PplbbbRyj8vLS5m/fPlS5i9evIhkGxsbrnP29PTIvKWlReZLS0uRzGqfqg0hhN3dXZmfnZ3JXPWhrq4uWdva2ipzq966fpVb96S+vl7mmYyegq0x5B3PcRxbjVtrLHtzTzus8RPHPfGK45yee/K2+PDDDyPZL/3SL8nar33tazL/6KOP3rwhu/9Exv/X/9Ov6fo/9Q9l/Df+tU6ZJ+5fzrR+j4z/0t/8YiT7uR/8k7L23xz9eZn/P/7M75F5d3VpTQshhHC+KuNf+8k/IfMf/q0hmf/Ff/ZvRbJ7MazLwLvAu2bF9fsjjnN6fmd49yCW4+PjSLa2tiZrnz59KvOpqSmZn5+fy7y/vz+SZbNZWbuzsyNz1e4QfPs76zfj1dWVzC3W3lnt44eG9Lzf1tYm85qaGpl79sJWn7DuVT6fl7n1GzaOvbOXuqY49vYh+Man97d0Je6Vh+f/gXwW6jhJ/J0BoPKYb95u/PIFAAAAAAAAAABIGF4AAQAAAAAAAAAAJAwvgAAAAAAAAAAAABKGF0AAAAAAAAAAAAAJwwsgAAAAAAAAAACAhMlUugEor1Qq5aovFouu3KNQKMg8nU5Hsqoq/W4yn8/L/OjoSOaLi4syf/bsWSTL5XKytq+vT+bWPclk9LBS12TdEyvf29uT+fPnz2X+5MmTko+RzWZdudXGmZmZSLa5uSlrd3d3Xcdubm6WeU9PTyQbHh6WtUNDQzIfGBhwnVP1W4vVt6zrtKjxbI0Va+x75wQP7zwRx7xSieuMw3Vv32fx4MGDkmsfP34sc6s/e8z/o78h8//hQtc3/bP/QObfeVfn18eflunPPP+PZP57zePUynTy3/6FSPaV1A/J2h/4d79N5n0/1CXzsZH2SJYJx7J29cWKzI+avl3m/+lvfF3m/8Hva41k/CsooDTe9Tqu3x9x8LTFs7cLIYSrqyuZb2xsRLKpqSlZOz09LXNrj9zVpefViYmJSGZdz9zcnMwPDw//f+3d224cx5kH8B5yhuTwJFkUdbItiTC0tgIHyi6CRWDsTZAH2Zt9jtzsS+wL7DtkHyFBIBt2bCsKRUmWKBMUdSDF43DI2Ysg2AX6K4Fl9XjI0u93+Uehuqq7p6eKHwcd5ql9VtR/p9MJ2x4cxF/Cqb3d9PR0mF+5cuXEfaTGMjkZf+9NTEyEeXQP5e6Zm9gLNLXmbaKf1LhT80/1Hd1DuZ/DnOdHahy5+6nTZJjPT4D/z/PmbLP3BQAAAAAAKIwCEAAAAAAAQGEUgAAAAAAAAAqjAAQAAAAAAFAYBSAAAAAAAIDCtEc9AIZrMBg00k+r1TpRVlVVNTYW1xVz8uPj47Dt69evw/yHH34I84cPH4b52tpaLZubmwvbTk1Nhfn09HSYT05Ohnl0vnq9Xtg2d57Ly8thHs0/dW6Pjo6yjpk6X9vb27Usda/cvHkzzBcWFsL82rVrYb64uFjLzp8/H7Y9d+5cmHe73TBvQrt9dh+1qWsXGR8ff+fjpZ5ZOeNgNH7961+fuO2f//znoY3jwr/9Z5j/z//sDO2Yo3EpTG801v+FWvLP//HfYcvlf/+vMH/+4Lsw//KHzSCNv2sv/9Mvw/zTmx+EedwL8C6G/R182r/jU2vnjY2NML9//34tu3v3bth2d3c3zK9fvx7mn3zyyYnbp9bwjx8/DvMff/wxzHd24u/PaL2eWsOn9hl7e3th/uTJkzB/8OBBLUudw1T+6aefhvnFixfDPLr+/X7/xG3fJmd/nPqc5H5+ctqn5pPKU+v41DyjsaT6SOU55zxnHE3J7bupv98A/MMw/8bimXV2+AUQAAAAAABAYRSAAAAAAAAACqMABAAAAAAAUBgFIAAAAAAAgMKc3TeTcyK5L+RKvRgx6if1wrDUi+BTfUd6vV6Yv3jxIsyfPn0a5i9fvgzzw8PDWtZuxx+H6enpMO92u2Ge6ieSeqlq6qWt0Utlqyr9otTofHU6nROO7u19z8/Ph/nUVP0V3KmXqi4tLYX5xx9/HOYffvhhmM/NzdWy3BfapV7mmvPC0dwXouZ+hnLmlPsC1ZxnxTBf9Jd6SXDuS2VznkNNvVQ3R4kvS7x8+fKJ27569SrMo2dzru7Nfw3z3958567PhsQ5fPcz+zb1535VVdX5T/4lzH8bv8M8z0jmCT+vJr73m+g7d33T1P4jZywp0Txz9yrPnz8P85WVlTBfXl6uZaurq2HbS5cuhfnnn38e5rdu3Qrzc+fO1bLUuLe3t8N8c3MzzFNrs2jNv7i4GLZNndutra0wT+3h1tbWatnXX38dtk3dK9G+oarSe5voHsq994e5b25KdL5y9kFVlZ5nznya2sNEYzlNa/5hHhN4P5X4Nwaa4xdAAAAAAAAAhVEAAgAAAAAAKIwCEAAAAAAAQGEUgAAAAAAAAAqjAAQAAAAAAFCY9qgHQDMGg0FW+1arFeZjY+9eExwfH886Zq/Xq2U7Ozth2+3t7TDf398P85mZmTC/evVqLZueng7bHh8fh3lqPim7u7u17NmzZ2HbL7/8Msy//vrrMN/Y2DjxOA4PD8M8dQ739vbCPHW+Zmdna9n8/PwJR/d3m5ubYZ4aY7t98kdZ6nr2+/0T91FVeZ+V1DHPqtTzJjePpM5Vqo/UdUjl0ec2p21Tcp/ZZ1XqOfHy5csw/+qrr4Y4GoDTKef7JtW2qe+VqP/c7/fUmio19ibWcTnrhNT3fqqPp0+fhvn3338f5i9evKhlCwsLYdvbt2+H+S9/+csw/+ijj8I8cuXKlTC/ceNGmEdr+Kqqqk6nE+bRGD/77LOw7eTkZJin1vwff/xxmP/1r3+tZU+ePAnbfvPNN2F++fLlME/tV6Jr1+12w7a5a/6cNWjuvZ+S83nO3QfnrstPOo635Tly+07Ns4k9wvuyFwDgdPALIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAoTHvUA+B0abVa79w2lR8fH4f5mzdvatnz589P3PZtxzx//nyYj4+P17LBYJDVd865qqqq2tnZqWXr6+th24cPH4b548ePwzyaT1VV1ezsbC1LzbPT6YR5ux0/JiYmJsK82+2euI/t7e2svNfrhfnR0VEty70P+/1+mKf6ic5Xqm3qnKfGkspz5N6fOf2k5tNEnmqbkvv5jPIm+nib3DmVZHp6Osw3NjbC/LvvvhvmcABOpaa+s5uQM5bUeuXw8DDrmDlrqmGukVJ9P3v2LMxXVlbCfG5urpbdunUrbHv79u0wv3nzZpin1vyRaB9QVVV1+fLlMJ+fnw/z1H7qzp07tSw1z1wLCwthHs0ptW9cXV0N8+Xl5TBPnZdobxNd46pK30O5a8GcNXLuZyJ3vR4ZG4v/jziV5+yRmtoLnPR4uX0A8H88P88OvwACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACqMABAAAAAAAUBgFIAAAAAAAgMK0Rz0AmtFqtbLyo6OjMD8+Pg7zsbF6rXB8fDxs2+/3w3xnZyfMnzx5UssePXp04nFUVVXNz89njSUyGAzCfGZmJsw7nU5WP3t7e7UsdU5SfXS73TCfnp4O89nZ2Vo2OTkZtp2YmAjzdjt+TKTab29v17L9/f2wbWqeqTx13+ZI3eOpvlP3XHReUp+3Yc4zdcymDLP/aP6pc5KriXHn9pHTvql5nna/+c1vwjx6HlZVVf3444/DHA7ASP3c36lvkzOW3PVNr9fLah+tqVLrr5RU39G6LzWf1DFT87l48WKY37hxo5bduXMnbHv9+vUwT+2zUg4ODmpZtCavqvT+I3VeUnuH1F6oCYuLi2G+tLRUy65cuRK23djYCPO1tbUwf/DgQZinrlEkdQ5T+48m1oO5n8+U6P7P/RtDE2MZ9t4m55ijGAtQtmGu13K9L3+T4O/8AggAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACtMe9QA4XQaDQZi3Wq0T97G/vx/m6+vrYb6yslLL7t+/H7adn58P80uXLoX53t5emB8cHNSybrcbtp2ZmQnzTqcT5inRuZ2YmAjbXrlyJczHxuKabWrsc3NztSw1n9RYjo+Pw/zw8DDMe71eLev3+2Hbo6OjME/db6kx5tyfqXs8Nc9U39G1yBnHTxnLMOWMPdW2qfn/3H00JXf+74Pf/e53ox4CwHsh9/uwie/91HoltV5NtR8fHz9xH6mxpOYfrTVTfUTjqKp4PV1VVTU9PR3mS0tLteyTTz4J2164cCHMU1Lr71evXp0oq6qqevPmTZin5pnaZ6SuUY7UdUsdMzpfi4uLYdvUfHZ3d8N8Y2MjzKN9Y0ruZyXnc5v7mUjJWcePYs0/ivW0NTxQgtP0txFOH78AAgAAAAAAKIwCEAAAAAAAQGEUgAAAAAAAAAqjAAQAAAAAAFCY9qgHwHClXgKW+/LTVB7Z3NwM87/97W9h/s0339Syb7/9NmybevnluXPnwjz1otR2u37rp17Oev369TBPnZPUuY3GGL0ktqqq6vz582G+t7eXNZZonp1OJ2yb+yLX1MtMo5ftpu7D3PuziRd05o4lJedFqblO+8v7RvFC2KaM4pheLAvAsOWub3LXfZHUWrDf77/zWFLjS+WpvqMx5q4/p6amwnxubi7M5+fna9ns7GzYNmePVVVVtb29Hebr6+u17MWLF2Hb1H7i4sWLYb6wsBDm0XmJ9gFVlZ5n6h5KXaOon5mZmbBtdB3edszUvTXM/UfOZyXa11VV/p40Zz5NrWFHccwcp33vBZRjFH/rSn3v5fJ3jbPNL4AAAAAAAAAKowAEAAAAAABQGAUgAAAAAACAwigAAQAAAAAAFEYBCAAAAAAAoDDtUQ+AZgwGg6y81WqF+fj4+ImP2ev1wvz169dhvrGxEeYHBwe1bGJiIuuYW1tbJ+67qqpqamqqlqXO1eTkZJjnnKuqqqrZ2dlaNjYW12AvX74c5rnXOcpTbVNSY0zdQ1GeapuS03fK8fFx1jFzReexiXGn+j5Ncudz2o3ifJd2DgEYrdw1Ymp9l9NHaq2VuwbLWTvmjDs1ltxzldoLTE9Pn3gc/X4/65ip+e/u7oZ5tM/a3NzMGsvMzEyYLywshHm3261lR0dHYdvcdU+qn1Qe6XQ6YZ7aw6WuZ+6eL5KafxN7uNzPuDUowNnXxN/6htm+ie9OmuUXQAAAAAAAAIVRAAIAAAAAACiMAhAAAAAAAEBhFIAAAAAAAAAKowAEAAAAAABQmPaoB8BotFqtrPYHBwe17Pnz52Hb169fh/nExESY37lzp5Z98cUXYdvBYBDm+/v7Yb66uhrmW1tbtezq1ath2/n5+TDvdDphnjI+Pl7LJicnw7ap65N73Y6Pj2tZv98P26bObWqe0XyqKh5jatypY+bOM0fuMVPtc+TOp4ljDtMwr88ojOJ8l3YOARit3O+ynO+h3L5HsXbKkRpfKh8bi/9nMtU+Wn8fHR2FbVPr6ZS9vb0wj/Zfqbap+aT2PIuLi2E+NTVVy1L7jNy9TXQOqyrek7558yZsu7OzE+ap+Zw7dy7Mc69RJHXOU/us6N46C/uJJj63oxj3ad97AeVr4jmU20fquyklWst4fp4dfgEEAAAAAABQGAUgAAAAAACAwigAAQAAAAAAFEYBCAAAAAAAoDAKQAAAAAAAAIVpj3oANKPVaoX5YDAI88PDwzDf29sL8ydPntSylZWVsO3u7m6YT05OhvnNmzdr2dLSUtg2Ne61tbUwPzo6CvNer1fLjo+Pw7apc5LKU/1E12h8fDxsOzYW12ZT1zklNZYc7Xb8mGhqjAAAcFql9lP9fj/Mo/V3qo/ctXq0h6mqqtrf3z9xHzMzM2E+NzcX5tPT0yfuO7UPyN2rbm9vh/n6+vqJsqqqqjdv3oT5jRs3wvzixYthPjU1FeaR1HxS80/tBVP9NCF3jD9338OcO8ConaZnXO53c9T+NM2Ht/MLIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAoTHvUA2C4Wq1WmK+vr4f5t99+G+Z3796tZd9//33Y9sMPPwzzL774IswvXLhQy2ZnZ8O2a2trYf706dMwv3//fpivrKzUsoWFhbBtr9cL88nJyTDvdrthHs2p3Y4/gqnrNhgMsvJI6pgpqb77/f47j2V8fDzMU/NPyTlmbt8AAKdFzpqnKblrpybWWk2seauqqsbG6v/v2NQ6MyfPXdsfHx+H+dHRUZhH/c/Pz4dtp6enwzy1/8oRne+3SZ2XZ8+ehfl3331Xyx4+fBi23dzcDPO5ubkwv3btWpg3cV6auJ+b2sOMYi80iucWwGmUux5oou+UUaypGB2/AAIAAAAAACiMAhAAAAAAAEBhFIAAAAAAAAAKowAEAAAAAABQmLy3wVOMra2tMH/8+HGYP3jwoJY9efIkbPvBBx+EebfbDfPoRaSpF4nt7OyE+fPnz8P81atXYb69vV3L2u344/Dy5cswf/36dZjv7u6G+dTUVC3rdDph22G+GC735aypl82mXk7bxItvc9t7sSgA8D4Y9ponWoM1tV7L0dSaL6d97ouMU+1zXpKcWmdHe5WqqqrNzc0Tt0/tMxYXF8N8bm4uzHP0+/0w7/V6Yf7ixYswv3fvXpgvLy/XstQ5vHTpUphfu3Ytq320h0tp6vMZ3S9N3Z/DNMznkxeNA6dVzt/Afu5xNCmaU+7fFxkdVwoAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACtMe9QAYrsFgEOZHR0dhfnx8HOYffPBBLfvss8/Ctjdv3gzz+fn5MI/s7++H+e7ubpgfHh6G+dzcXJh/9NFHtazb7YZtZ2ZmwnxsLK6f9vv9MI+0Wq0Tt31b+1QeXf+mjjk+Pv7OfaTOYW4/AACUY5hrvmGvhXPWt6m9zfr6epg/fvw4zH/44YdaFu13qire11VVVc3OzoZ5SrRv3N7eDtuurKyE+b1798L8yy+/DPPovCwtLYVtf/GLX4T5559/HuYLCwthHl3n1F46JXcPN8y+c/aNTY0FoGTDfJbnSD3Hc/OUaH0zzO8UmuUXQAAAAAAAAIVRAAIAAAAAACiMAhAAAAAAAEBhFIAAAAAAAAAKowAEAAAAAABQmPaoB8BwDQaDrDyl2+3WsqmpqbDt+fPnw3xiYiLMW61WLev3+2Hbw8PDMD86OgrzycnJMJ+fnz/x+HLGXVXNnfMmjplq38Qxc9qn+mhifAAAMCzDXMem9jw7Ozthvrm5GeZbW1u1LLU/ivZ1VZXe86RE+49erxe2XV9fD/NHjx6F+erqapgfHBzUstTec2lpKcwXFxfDvNPphHkkdd1O096miT0cAOUa5t8ROX38AggAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACtMaDAaDUQ8CAAAAAAA4u3JLDa1Wa0gj4R/8AggAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACqMABAAAAAAAUBgFIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACqMABAAAAAAAUBgFIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACqMABAAAAAAAUBgFIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACqMABAAAAAAAUBgFIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACqMABAAAAAAAUBgFIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACqMABAAAAAAAUBgFIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACqMABAAAAAAAUBgFIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACqMABAAAAAAAUBgFIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACqMABAAAAAAAUBgFIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACqMABAAAAAAAUBgFIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACqMABAAAAAAAUBgFIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACqMABAAAAAAAUBgFIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACqMABAAAAAAAUBgFIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAwCkAAAAAAAACFUQACAAAAAAAojAIQAAAAAABAYRSAAAAAAAAACtMe9QAAAAAAAID3y2AwCPNWq/Uzj6RcfgEEAAAAAABQGAUgAAAAAACAwigAAQAAAAAAFEYBCAAAAAAAoDAKQAAAAAAAAIVRAAIAAAAAACiMAhAAAAAAAEBhFIAAAAAAAAAKowAEAAAAAABQGAUgAAAAAACAwrRHPQAAAAAAAKBMrVbrnfvY2toK89XV1TC/ffv2Ox+zBH4BBAAAAAAAUBgFIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAwCkAAAAAAAACFaY96AAAAAAAAwNk2GAzCvNVqvXPf9+7dC/M//OEPYf773//+nY9ZAr8AAgAAAAAAKIwCEAAAAAAAQGEUgAAAAAAAAAqjAAQAAAAAAFAYBSAAAAAAAIDCtEc9AAAAAAAA4GwbG2vm9yZbW1u17N69e2HbP/7xj40cs1R+AQQAAAAAAFAYBSAAAAAAAIDCKAABAAAAAAAURgEIAAAAAACgMApAAAAAAAAAhWmPegAAAAAAAECZDg8Pw3xjYyPMl5eXa9lf/vKXsO3q6upPH9h7wC+AAAAAAAAACqMABAAAAAAAUBgFIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAw7VEPAAAAAAAAKNPBwUGYP3jwIMzv3r1byx49ehS2HQwGP3lc7wO/AAIAAAAAACiMAhAAAAAAAEBhFIAAAAAAAAAKowAEAAAAAABQmPaoBwAAAAAAAJTp4OAgzO/duxfmf/rTn2rZ1tZW2PbWrVs/fWDvAb8AAgAAAAAAKIwCEAAAAAAAQGEUgAAAAAAAAAqjAAQAAAAAAFAYBSAAAAAAAIDCtEc9AAAAAAAAoEw7Ozthfv/+/TD/6quvatnVq1fDtr/61a9+6rDeC34BBAAAAAAAUBgFIAAAAAAAgMIoAAEAAAAAABRGAQgAAAAAAKAwCkAAAAAAAACFaQ0Gg8GoBwEAAAAAAEBz/AIIAAAAAACgMApAAAAAAAAAhVEAAgAAAAAAKIwCEAAAAAAAQGEUgAAAAAAAAAqjAAQAAAAAAFAYBSAAAAAAAIDCKAABAAAAAAAURgEIAAAAAACgMApAAAAAAAAAhVEAAgAAAAAAKIwCEAAAAAAAQGEUgAAAAAAAAArzv4CU81j1VKk6AAAAAElFTkSuQmCC",
"path": "images_version_6/image_22.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, in the diamond ABCD, the degree of angle OBC is ()
Choices:
A:28°
B:52°
C:62°
D:72°
|
||
111
|
23
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGgAAABHCAAAAADOjV2eAAAHXUlEQVR4nL2ZaVhU5xXHz8DgEsUFfYI0NDF9yIfWJH2iEqExYgY0aI0O+5IiuCEQCJFCSuqgVavSRTGLSjHEhSxPIoSaVFGDYakLboCIuKAIioAMMIDDMgwz/36Y/c57By714Xw659zzzu8973bPfUekpdEREUYJZCcc9KRnRCDBLbD8p9EBnS59NCqguseRZaMCypP+5t5ogH6uyLrWPpItIRYW3luebdfgoZwkHDRURprWuntltXUtGiIiqn231X7MfUW2RjjIVkZt52/W9zqMtxvTJ+oWPzNj9jynKUljtZqpV0bAIZFWxH4w8MN5xfTXZr0wRWd2Payque8U8foIEDZBT/5V9lzAG/aWTpwIlLy58hcjJGnBkMy30x5Ze7sXvVqX/nrkVVaLIYUFuum3vokRKg+RfAY0x4je+lbxVEBfzD/FimxbXBDTAABFM91i0iqFgqxXXeqd/OmMIW4PSXJWP09EtLAyZfyruxyWLnf4f+ZIG57A7FCbdy5WFxusuBSc3xCw+4GAjLig0HW8nHp/ky2LBho/DkwsGSkoNZGHkwds+czME/MRgMH8teHZnSMBHQxkBsm98wCVtMPc538EAFCV5i+rFgyq8WR2T+6dC+Cb9y2cCs+bOqUrO2ztD8zdyAvSvlPE5uQBQNhlS/fPUqNalBC8m7HBeUF7E21wqkK4D2KzTHrD34ITzg0X1LGQNXB6DpK/4j5p9TafNPXRNaGHlcMCbd3B4kh0nK4VvVbPtm+1tCs/DNp0a2iQcqmCwdHngyyZ9UPFMi68Y3/YmhPshWECHfqQxflerwXUMhonf2vtK4wP+PixTdCacmuOxMApiWT18uJ6lrduW+CGS/yg5ghrjmHcgNgC1k9qw1pYbvR/s/Ldr3sM1rncU8euwViclPyKe9y2hbznr1dbWhazDmTRi2eZB/XY0MMfVIVvv62zxIEqpzeLjK+JqnlcTmi8n0HP+R27WvIoD2D6iebObcuTOQX5EBFN83UYd904dOvqLNNvNc4PMChtAYAHVgNVG80cOoMUJEUe0GCjB3ImtBgy6hu0LDrM86H/uDgTXTsws5l2Wfb7l+r+cTwpERH5zn6ncxWVTdhZW+psyOjeat58gMgy4OyzF4BZH3H6HGPr3TewbWEuoHI53gUYF0PnFMt8Ekz5UKl4HqmDYzyIgr/i9Fms5M/nxFLljwFE1b2LJpGpJLYzL+/kIfFSozGwyqtxkM43rSWiHu734eTHfJj6NYd2pU8kavjUsZKIjDVDxR/5xu0WET3E7klaAO7cI3xTMZiiSV/8pU6T1zY2AKwqiOTm64Bopk/hbFdyVomIqi9ncmI17C+Ykxlzch116nRDSaXP6GqyKZ98zpxWL6+B4qXd/dc9M7g9j73GSKc+Ssp/BNXG8nEAFIQCTYk7t1i/2mIZqy7d6wsG3QBS/mGAlwOE/pvhBKBabfWW+mnZBgUr1HgyRNTzc3DnbRUTxNl9QGO0v/WoATDtI3KtJiJ5aILUamaJ6KU5GcxJr5lhaWesnpfnzozULwYlcHgz8JidD4BuyUOWe+tRc+uMb1wHKwqAbnnvbXe4P8fnJMlD32fmQ0SOUX/5nOG+HmXSH21plr3B01yX0YqYTuz0xKoSf54pBwBIz1r7Ks327ycLMm20Bki777cA7h/CMdFhW4EXl1j7Nh00aKUrEliFgjlI6ZYFQK1Gn1tUYo6NejM+m+vp9u3SKa1xKxj5Wor4SutrRCQmGrfWec7xP0/wkDzHHmNZcCDnHiPTXefYdzRor43J0cvFsaUAmhRAq88gcGnHynVHmpl9+oRTj3V5yQHgv0uiWV+8XCFN0AI1qjI7AexIBQCUyIKjcxisAe8bFnbyPwC0v+d7ZhgYgLTqlXH7dV9TKskVnVNdvDFoXV47N/ZUsLl1YdEg8Ln3nmFhdEdQV7ehrVefwa8uSotI+p6z/8KOmXTl/CqU+a8f6mvFAmSSPVFmhqpoc2RyvsLMc9e736hHfN3/wbLhjRoAgHNFEzcp3dxUXyismfGWZKpx5U1O0WvpHZ6fLkmh4QsHpPX3ibcM6CkufOAi8Z5MRES9y464EhHR/sxZE2XPC+BY3TOo/LgVFaA8nhS28WQPAOTobgf+Tr8vHP6oAWBc0QxGh/dZhylPpEakFvQAfucAVfg01jvUtjCu0f55fNt8RurK0uIm10XjM4+UbXDbM03QqBGx7+supM3d6MgKfnKmxC73FfGfPAVj2Heqnqcnhu9l/S/gKM0YJ/L6burVy6XdTwNEdrJ9DyL+esPKX7U9QFyR4nDaHXdfviUQxHun2p5/SfOC+ywX/V2ZpvF2RY3Iy28KER3cVa10LFnwlEBEdPdcTYd27Bgne7Sp++xcfu35os7vRzuzpqYJ49i8jnZzI1I29zYRzXjGxfQu0pbH3bmxWSCH5/LWptxzbMEBcf/QgRYi/G8dOuvqTJeetR860EIE/jdBRLf3aa9WlP8otKGtxcCWW+32dhp3wR0ctT8T/wfMtFrd2xbyDQAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_23.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, PA and PB are tangent to circle O at A and B respectively. If angle C = 65.0, then the degree of angle P is ()
Choices:
A:65°
B:130°
C:50°
D:100°
|
Như hình vẽ,PA và PB là tiếp tuyến của đường tròn O tại A và B lần lượt. Nếu góc C bằng 65°, thì số đo góc P là ()
Các lựa chọn:
A: 65°
B: 130°
C: 50°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, PA and PB are tangent to circle O at A and B respectively. If angle C = 65.0, then the degree of angle P is ()
Choices:
A:65°
B:130°
C:50°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, PA and PB are tangent to circle O at A and B respectively. If angle C = 65.0, then the degree of angle P is ()
Choices:
A:65°
B:130°
C:50°
D:100°
|
As shown in the figure, PA and PB are tangent to circle O at A and B respectively. If angle C = 65.0, then the degree of angle P is ()
Choices:
A:65°
B:130°
C:50°
D:100°
|
112
|
23
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGgAAABHCAAAAADOjV2eAAAHXUlEQVR4nL2ZaVhU5xXHz8DgEsUFfYI0NDF9yIfWJH2iEqExYgY0aI0O+5IiuCEQCJFCSuqgVavSRTGLSjHEhSxPIoSaVFGDYakLboCIuKAIioAMMIDDMgwz/36Y/c57By714Xw659zzzu8973bPfUekpdEREUYJZCcc9KRnRCDBLbD8p9EBnS59NCqguseRZaMCypP+5t5ogH6uyLrWPpItIRYW3luebdfgoZwkHDRURprWuntltXUtGiIiqn231X7MfUW2RjjIVkZt52/W9zqMtxvTJ+oWPzNj9jynKUljtZqpV0bAIZFWxH4w8MN5xfTXZr0wRWd2Payque8U8foIEDZBT/5V9lzAG/aWTpwIlLy58hcjJGnBkMy30x5Ze7sXvVqX/nrkVVaLIYUFuum3vokRKg+RfAY0x4je+lbxVEBfzD/FimxbXBDTAABFM91i0iqFgqxXXeqd/OmMIW4PSXJWP09EtLAyZfyruxyWLnf4f+ZIG57A7FCbdy5WFxusuBSc3xCw+4GAjLig0HW8nHp/ky2LBho/DkwsGSkoNZGHkwds+czME/MRgMH8teHZnSMBHQxkBsm98wCVtMPc538EAFCV5i+rFgyq8WR2T+6dC+Cb9y2cCs+bOqUrO2ztD8zdyAvSvlPE5uQBQNhlS/fPUqNalBC8m7HBeUF7E21wqkK4D2KzTHrD34ITzg0X1LGQNXB6DpK/4j5p9TafNPXRNaGHlcMCbd3B4kh0nK4VvVbPtm+1tCs/DNp0a2iQcqmCwdHngyyZ9UPFMi68Y3/YmhPshWECHfqQxflerwXUMhonf2vtK4wP+PixTdCacmuOxMApiWT18uJ6lrduW+CGS/yg5ghrjmHcgNgC1k9qw1pYbvR/s/Ldr3sM1rncU8euwViclPyKe9y2hbznr1dbWhazDmTRi2eZB/XY0MMfVIVvv62zxIEqpzeLjK+JqnlcTmi8n0HP+R27WvIoD2D6iebObcuTOQX5EBFN83UYd904dOvqLNNvNc4PMChtAYAHVgNVG80cOoMUJEUe0GCjB3ImtBgy6hu0LDrM86H/uDgTXTsws5l2Wfb7l+r+cTwpERH5zn6ncxWVTdhZW+psyOjeat58gMgy4OyzF4BZH3H6HGPr3TewbWEuoHI53gUYF0PnFMt8Ekz5UKl4HqmDYzyIgr/i9Fms5M/nxFLljwFE1b2LJpGpJLYzL+/kIfFSozGwyqtxkM43rSWiHu734eTHfJj6NYd2pU8kavjUsZKIjDVDxR/5xu0WET3E7klaAO7cI3xTMZiiSV/8pU6T1zY2AKwqiOTm64Bopk/hbFdyVomIqi9ncmI17C+Ykxlzch116nRDSaXP6GqyKZ98zpxWL6+B4qXd/dc9M7g9j73GSKc+Ssp/BNXG8nEAFIQCTYk7t1i/2mIZqy7d6wsG3QBS/mGAlwOE/pvhBKBabfWW+mnZBgUr1HgyRNTzc3DnbRUTxNl9QGO0v/WoATDtI3KtJiJ5aILUamaJ6KU5GcxJr5lhaWesnpfnzozULwYlcHgz8JidD4BuyUOWe+tRc+uMb1wHKwqAbnnvbXe4P8fnJMlD32fmQ0SOUX/5nOG+HmXSH21plr3B01yX0YqYTuz0xKoSf54pBwBIz1r7Ks327ycLMm20Bki777cA7h/CMdFhW4EXl1j7Nh00aKUrEliFgjlI6ZYFQK1Gn1tUYo6NejM+m+vp9u3SKa1xKxj5Wor4SutrRCQmGrfWec7xP0/wkDzHHmNZcCDnHiPTXefYdzRor43J0cvFsaUAmhRAq88gcGnHynVHmpl9+oRTj3V5yQHgv0uiWV+8XCFN0AI1qjI7AexIBQCUyIKjcxisAe8bFnbyPwC0v+d7ZhgYgLTqlXH7dV9TKskVnVNdvDFoXV47N/ZUsLl1YdEg8Ln3nmFhdEdQV7ehrVefwa8uSotI+p6z/8KOmXTl/CqU+a8f6mvFAmSSPVFmhqpoc2RyvsLMc9e736hHfN3/wbLhjRoAgHNFEzcp3dxUXyismfGWZKpx5U1O0WvpHZ6fLkmh4QsHpPX3ibcM6CkufOAi8Z5MRES9y464EhHR/sxZE2XPC+BY3TOo/LgVFaA8nhS28WQPAOTobgf+Tr8vHP6oAWBc0QxGh/dZhylPpEakFvQAfucAVfg01jvUtjCu0f55fNt8RurK0uIm10XjM4+UbXDbM03QqBGx7+supM3d6MgKfnKmxC73FfGfPAVj2Heqnqcnhu9l/S/gKM0YJ/L6burVy6XdTwNEdrJ9DyL+esPKX7U9QFyR4nDaHXdfviUQxHun2p5/SfOC+ywX/V2ZpvF2RY3Iy28KER3cVa10LFnwlEBEdPdcTYd27Bgne7Sp++xcfu35os7vRzuzpqYJ49i8jnZzI1I29zYRzXjGxfQu0pbH3bmxWSCH5/LWptxzbMEBcf/QgRYi/G8dOuvqTJeetR860EIE/jdBRLf3aa9WlP8otKGtxcCWW+32dhp3wR0ctT8T/wfMtFrd2xbyDQAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_23.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, PA and PB are tangent to circle O at A and B respectively. If angle C = 65.0, then the degree of angle P is ()
Choices:
A:65°
B:130°
C:50°
D:100°
|
Như hình vẽ,PA và PB là tiếp tuyến của đường tròn O tại A và B lần lượt. Nếu góc C bằng 65°, thì số đo góc P là ()
Các lựa chọn:
A: 65°
B: 130°
C: 50°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, PA and PB are tangent to circle O at A and B respectively. If angle C = 65.0, then the degree of angle P is ()
Choices:
A:65°
B:130°
C:50°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, PA and PB are tangent to circle O at A and B respectively. If angle C = 65.0, then the degree of angle P is ()
Choices:
A:65°
B:130°
C:50°
D:100°
|
As shown in the figure, PA and PB are tangent to circle O at A and B respectively. If angle C = 65.0, then the degree of angle P is ()
Choices:
A:65°
B:130°
C:50°
D:100°
|
113
|
23
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGgAAABHCAAAAADOjV2eAAAHXUlEQVR4nL2ZaVhU5xXHz8DgEsUFfYI0NDF9yIfWJH2iEqExYgY0aI0O+5IiuCEQCJFCSuqgVavSRTGLSjHEhSxPIoSaVFGDYakLboCIuKAIioAMMIDDMgwz/36Y/c57By714Xw659zzzu8973bPfUekpdEREUYJZCcc9KRnRCDBLbD8p9EBnS59NCqguseRZaMCypP+5t5ogH6uyLrWPpItIRYW3luebdfgoZwkHDRURprWuntltXUtGiIiqn231X7MfUW2RjjIVkZt52/W9zqMtxvTJ+oWPzNj9jynKUljtZqpV0bAIZFWxH4w8MN5xfTXZr0wRWd2Payque8U8foIEDZBT/5V9lzAG/aWTpwIlLy58hcjJGnBkMy30x5Ze7sXvVqX/nrkVVaLIYUFuum3vokRKg+RfAY0x4je+lbxVEBfzD/FimxbXBDTAABFM91i0iqFgqxXXeqd/OmMIW4PSXJWP09EtLAyZfyruxyWLnf4f+ZIG57A7FCbdy5WFxusuBSc3xCw+4GAjLig0HW8nHp/ky2LBho/DkwsGSkoNZGHkwds+czME/MRgMH8teHZnSMBHQxkBsm98wCVtMPc538EAFCV5i+rFgyq8WR2T+6dC+Cb9y2cCs+bOqUrO2ztD8zdyAvSvlPE5uQBQNhlS/fPUqNalBC8m7HBeUF7E21wqkK4D2KzTHrD34ITzg0X1LGQNXB6DpK/4j5p9TafNPXRNaGHlcMCbd3B4kh0nK4VvVbPtm+1tCs/DNp0a2iQcqmCwdHngyyZ9UPFMi68Y3/YmhPshWECHfqQxflerwXUMhonf2vtK4wP+PixTdCacmuOxMApiWT18uJ6lrduW+CGS/yg5ghrjmHcgNgC1k9qw1pYbvR/s/Ldr3sM1rncU8euwViclPyKe9y2hbznr1dbWhazDmTRi2eZB/XY0MMfVIVvv62zxIEqpzeLjK+JqnlcTmi8n0HP+R27WvIoD2D6iebObcuTOQX5EBFN83UYd904dOvqLNNvNc4PMChtAYAHVgNVG80cOoMUJEUe0GCjB3ImtBgy6hu0LDrM86H/uDgTXTsws5l2Wfb7l+r+cTwpERH5zn6ncxWVTdhZW+psyOjeat58gMgy4OyzF4BZH3H6HGPr3TewbWEuoHI53gUYF0PnFMt8Ekz5UKl4HqmDYzyIgr/i9Fms5M/nxFLljwFE1b2LJpGpJLYzL+/kIfFSozGwyqtxkM43rSWiHu734eTHfJj6NYd2pU8kavjUsZKIjDVDxR/5xu0WET3E7klaAO7cI3xTMZiiSV/8pU6T1zY2AKwqiOTm64Bopk/hbFdyVomIqi9ncmI17C+Ykxlzch116nRDSaXP6GqyKZ98zpxWL6+B4qXd/dc9M7g9j73GSKc+Ssp/BNXG8nEAFIQCTYk7t1i/2mIZqy7d6wsG3QBS/mGAlwOE/pvhBKBabfWW+mnZBgUr1HgyRNTzc3DnbRUTxNl9QGO0v/WoATDtI3KtJiJ5aILUamaJ6KU5GcxJr5lhaWesnpfnzozULwYlcHgz8JidD4BuyUOWe+tRc+uMb1wHKwqAbnnvbXe4P8fnJMlD32fmQ0SOUX/5nOG+HmXSH21plr3B01yX0YqYTuz0xKoSf54pBwBIz1r7Ks327ycLMm20Bki777cA7h/CMdFhW4EXl1j7Nh00aKUrEliFgjlI6ZYFQK1Gn1tUYo6NejM+m+vp9u3SKa1xKxj5Wor4SutrRCQmGrfWec7xP0/wkDzHHmNZcCDnHiPTXefYdzRor43J0cvFsaUAmhRAq88gcGnHynVHmpl9+oRTj3V5yQHgv0uiWV+8XCFN0AI1qjI7AexIBQCUyIKjcxisAe8bFnbyPwC0v+d7ZhgYgLTqlXH7dV9TKskVnVNdvDFoXV47N/ZUsLl1YdEg8Ln3nmFhdEdQV7ehrVefwa8uSotI+p6z/8KOmXTl/CqU+a8f6mvFAmSSPVFmhqpoc2RyvsLMc9e736hHfN3/wbLhjRoAgHNFEzcp3dxUXyismfGWZKpx5U1O0WvpHZ6fLkmh4QsHpPX3ibcM6CkufOAi8Z5MRES9y464EhHR/sxZE2XPC+BY3TOo/LgVFaA8nhS28WQPAOTobgf+Tr8vHP6oAWBc0QxGh/dZhylPpEakFvQAfucAVfg01jvUtjCu0f55fNt8RurK0uIm10XjM4+UbXDbM03QqBGx7+supM3d6MgKfnKmxC73FfGfPAVj2Heqnqcnhu9l/S/gKM0YJ/L6burVy6XdTwNEdrJ9DyL+esPKX7U9QFyR4nDaHXdfviUQxHun2p5/SfOC+ywX/V2ZpvF2RY3Iy28KER3cVa10LFnwlEBEdPdcTYd27Bgne7Sp++xcfu35os7vRzuzpqYJ49i8jnZzI1I29zYRzXjGxfQu0pbH3bmxWSCH5/LWptxzbMEBcf/QgRYi/G8dOuvqTJeetR860EIE/jdBRLf3aa9WlP8otKGtxcCWW+32dhp3wR0ctT8T/wfMtFrd2xbyDQAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_23.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, If angle C = 65.0, then the degree of angle P is ()
Choices:
A:65°
B:130°
C:50°
D:100°
|
Như hình vẽ, nếu góc C = 65°, thì số đo của góc P là ()
Các lựa chọn:
A: 65°
B: 130°
C: 50°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, If angle C = 65.0, then the degree of angle P is ()
Choices:
A:65°
B:130°
C:50°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, If angle C = 65.0, then the degree of angle P is ()
Choices:
A:65°
B:130°
C:50°
D:100°
|
As shown in the figure, If angle C = 65.0, then the degree of angle P is ()
Choices:
A:65°
B:130°
C:50°
D:100°
|
114
|
23
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAREAAADICAYAAADP0tXdAABXdElEQVR4nO29eXCc+Xnf+en7PtE30LhvgAAIkuJwhiNpZFleyXLkdWxnN6XslhOn1tkc61Ql2SN7OLvrVBKnauUq1zqp3eyReBNXIjtSrMMacTQazQyH5PAmbjTuq9H3fR/7B/3+BPAYcgiQAMj3U4UaDomju/H2931+z/F9FI1Go8mnpNFoAKBSqT7tl8rIyLxkKI/6AcjIyJxsZBGRkZE5ELKIyMjIHAhZRGRkZA6ELCIyMjIHQhYRGRmZAyGLiIyMzIGQRURGRuZAqA/yxc3mp+5Tk5GROUYoFIoDfw85EpGRkTkQB4pEDkPFZGRkTjZyJCIjI3MgZBGReSTNZlPOeck8FYeSWJWPNScfSTQajca+KW15UlvmSRxIRGReHlKpFGtraxSLRaxWKw6HA6vVislkkm8SMp+ILCIyAGxubvInf/InxONxhoeHGR0dpbOzE6PRKIuIzCcii4gMzWaT9fV1rly5wu7uLkqlEq/Xi9frlfMiMk9ETqy+4lQqFdbW1lhYWGBhYYHV1VXi8TilUolarSaLiMwTkUXkFabRaJBIJNjY2GBnZ4dsNkupVCKfz5PL5ahUKkf9EGVOAPJx5hWl2WxSKBRIJpPEYjEAgsEguVyOer1OOBwmnU7LkYjME5FF5BWkXq8LAUkmk6IiMzY2RjKZpNlssrW1RSKREOVeGZnHIYvIK0i9XicSiRAOh6lWq3g8HhFxaLVaNjc3icVi5HK5I36kMicBWUReQWq1Guvr66yurtLd3c3IyAher5dqtUoqlaJSqVCpVCgUCvJxRuaJyCLyCpJKpdjY2GB1dRW73U6z2RSdqfV6nWKxSKPRoFKpyCIi80RkEXmFqFQqpNNpVldXWV1dZXl5GYVCQb1eJ5/Ps7CwwPb2Nul0Gq1WS71eP+qHLHMCkEXkFaJQKLC9vc3m5iaFQoFGo0EymWRlZYVyuUw6naZUKlEqlWg2m1SrVTmxKvNEZBF5hahUKqIfpLu7m/7+fiwWCyaTiVqtRkdHB/Pz82xubpJKpYSYyMh8ErKIvEJkMhnC4TDlcpnx8XEGBwfR6/XUajUajQb5fB6z2cyHH37I1tYW2WyWcrmM2Ww+6ocuc4yRReQFIY3Y7/XpaDab4g0sjd1Lw24KhQKlUolSqXymAThprL9YLJJIJNjZ2WF5eZn19XVMJhNms5mWlpZ9jw/uj/+Xy2WSySQbGxuEQiHUajUmkwm1Wr5cZB5GvipeAI1Gg3K5TKVSEfMoCoWCarVKPp+nXq+j0+kwGAwolfcnEVQqFWq1Go1Gg16v/9Q/s9lsUi6XiUajXLt2jatXrxKPx9FqtXR3d1OtVvd9frFYJBaLsbu7K8q8i4uLfPzxxyiVSvr7+7HZbIfyesi8XMgicgDq9TrVapV6vS4+pIhDijqq1SqlUolyuUy1WqVWq4mvr1arFAoFarXaQyKiVCpRqVRoNBqMRiN6vV5EKlKEIn2OWq0WH3sjGalMm06niUajFAoFfD6fiCrq9boo7UqC1mg08Pv9pNNprFYruVyOTCYjV2pkHossIgcgl8sRi8VIJBJkMhmy2Sy5XI58Pi+iDklc9rrASR/NZlP8m/Tml44vjUZDCI5Wq0Wr1Qqh0Ol06PV6zGYzDocDp9NJS0sLTqcTjUYjfo5Op8NkMtHV1UW5XKZcLmO1WvH7/ZjNZiEi0uNoNBp4vV5+/ud/nosXL2K1WmltbcViscgOZzKPRRaRp0DKY0g9FVI3ZzQaZWtri0gkQjKZJJVKkU6nyeVylMtlIRCPihakiEKKLmq1GtVqVfxbrVajXC4LIZFyJpKIGAwGbDYbbrcbj8dDsVikVqthtVrR6/UoFAoqlQparZb29nasVivValXkNywWy77cDNwXq0AgQHt7O2q1WpR4HQ6HnA+ReSyKRqPxqWt4UhJOCr1fZuerer1ONBolkUiQSqXIZDLk83kKhYIYmd/75pfEQRKMvVHEXs9S6XMlEanX60Iw9kYie6MZ6f+r1SrValUIlEajQavVCnExGo3Y7Xa8Xi8tLS3odDrxO2o0GiiVSnQ6HRqNRkQihUKBbDZLvV5Hr9ej0WioVCpUq1V0Oh1msxmtVntkvweZ44ssIk8gkUiwsLDAysoKm5ubRKNRstmsEA6dTofVasXlcuF2u3E6ndjtdmw2GxaLBaPRiE6n25ev+DRIeY1SqUShUCCXy5FMJonH48TjcZLJJOl0mlQqRT6fp9lsYjAY8Pl8jI2NMTQ0RCAQwG63f+LPkao5EtJxS/qz9CEj8yCyiOyh2WyK8XjpDRuLxdjZ2REj8/V6HYVCISIMg8GA1WrF6XQ+UkCkHMVhIBkGZTIZcXySjlB7j1FStKHRaDCbzQQCAdra2rDZbOj1ekwmEzabDZPJdGiPTebVRRaRPRSLRaanp5menmZ9fZ1IJEKxWEStVmO1Wmlra6OtrQ2fz4fL5RK5B6kUu/e/D/Z9HAaNRuOhY430Z6nnJJfLEY1GmZ+f59KlS0xNTWGz2ejt7SUQCOD3++ns7GR4eJiuri75iCJzYF7pbFm9XqdUKlEsFikWi+zu7jI3N8fKygqRSIR8Po9KpcJkMuHxeGhvb6enp4e2tjYcDscLf7xSWfeToptisUihUKBQKLC2tsbc3Nw+0ZNEqNlskslksNvtmEwmTCaTyIVINwcZmafhlRYRaXJ1aWmJpaUlYrGY6Nno7OwkEAjgdDqxWCxYrVbsdjtWq/VYt4EnEglu3rzJ9evXSSQSOJ1Ozp07x1e+8hWMRqOoJi0tLdFsNrHb7QQCAXp6ehgeHqa1tRWdTnfUT0PmBPHKicjebtH19XVmZmaYnZ1lYWGBYrGIx+Ohp6eHwcFBxsfH8fl8J+ZNVSqVCIVC3Llzh4WFBQC6u7t57bXX+Jmf+RkAbty4QS6XIxwOs7Ozg1arxe/3CwEtFov4fD5sNhsqlYpGoyEnVmU+kVdORJLJJKFQiFAoJKot9Xqd4eFhHA4HHo8Hv99PMBjE7XafGAFZXl7mzp073L59m42NDVQqFW1tbXR1ddHd3S2eS6VSwWq1EgwG2draEknjO3fuMDc3h8vloru7W0RiXq8Xp9OJ1WqVe0VkHskrc1U0m01yuRwbGxu8//77fPzxx+TzeWw2GwMDA7z55psMDAxgsVhEcvSk5AYymQwzMzNcunSJpaUlCoUCdrudjo4OhoaGCAaDoodkeHiY7u5uyuUyu7u73Lhxg48++oibN28yNTVFpVKhq6uL4eFhTp06xejo6L48kNy5KvMgL72I1Ot1UqkUOzs7rK6usra2xs7ODkajEbfbTVtbGwMDA/T09OD3+4/64X4qKpUKy8vLLC4usrS0hEajwel0olKpsFgsdHR00N/fj8/nE1UYhUKBwWAQTWlSe75KpUKpVAovkTt37pDNZkmn00QiEbq7u2lpaUGj0aDT6bDZbFit1n3zPjKvJi9diXfvHArcTzTOzs5y+/Ztrl69SjKZpK+vj7GxMTo7OwkGg7S0tGA0Gk9cuTMajfJHf/RHfPDBB3g8HkZHRykUCszMzKBUKjl//jxnz57F7/djtVoferNLk76ZTIadnR1CoRC3bt3iRz/6EXNzc+h0Ovx+P+3t7fT29gqBslqt9PT00Nvbi8/nw2g0HtErIHMceOkiEUlAarUaqVSKhYUF7t27x9LSEtlsFoPBQHt7uwjTj6JUe1BKpRLxeFx00qZSKTo6Oujo6BBHtlqthsPhwOv1YrVaHyn0CoUCvV6PXq8XuSCbzSY6X6PRKOl0mq2tLbRaLYVCAYPBQLlcRqPRUK/XSSaTtLS0YDKZ0Gq1IlKRjz2vDi+FiOxtz5ZYWlri1q1bzMzMsLq6ik6n480336S/v5/Ozk78fj8Wi+WoHvKB2N7e5vvf/z5zc3Oo1WouXLjA4OAgbrdbrHuoVqtoNBosFstTHzccDgejo6NYLBYmJye5du0a09PTKJVKMTXc2tqK0WgkHo+zuLgoIhOXyyWa8aSBP5lXg5dCRB68yyaTSebm5rhx4wbr6+uUy2UGBgZ4/fXXOXPmzKG2or9IGo0G2WyWUCjE9evX2dra4o033uC1116jpaVFOJlJb3qDwfCpnqtGo8Hn8+Hz+RgcHMRms6HVakkmkxgMBvR6PVarVYhILBajUCigVqtxOBzCTlGpVBIMBjEYDDSbTWFvIJeJX05OdE7kwfxHpVLh3r17ovcjHA5js9no6+tjYGCAsbEx3G73kTzWw2B2dparV68SCoWIRCJYLBbeeustJiYmiEQizMzMEI1GKZVKuFwuXn/9dUZGRp75521sbDA/P8/c3BwLCwtUKhV8Ph9erxeHw4HBYCCbzYruXsmfxGw2Y7PZsNvtOJ1OPB4PPp8Pu90uJ2FfQk50JPKgeO3u7vLee+9x/fp1yuUybrebiYkJfu7nfg6fz3dEj/JwyOVy3L17l+9+97tUKhXOnj3L5OQkZ8+exe12EwqFuHnzJo1Gg4mJCXG8OQjBYJDW1lbMZjPhcJi1tTU2NjZQKBSMjo7y2muvCRvFpaUl4RSfTCap1+s4nU46Ojro6ekRg4tWq1XOl7xknGgRkSgUCqyvr4uGqUwmQ3t7OxMTE4yNjZ1oAalWqywvL4uIQGoiGxoaYmBgALfbjUKhIJPJiOjE6/XS2dl5KJ6oSqWSrq4uzpw5g8ViYWdnh0wmw9raGi6Xi5aWFlpbWzEYDOh0Oux2+749vqVSifX1dfL5PMvLy6I0LP3XYrE8k4eszPHhRIrIg8eYlZUVvvOd7zAzM0MqlcLtdvP666/zhS98Aa/Xe4SP9OBks1nee+893n33XbRaLWNjYwwODnL69GlaW1tRKpXCV6RcLtPS0iKOD4eFx+Phi1/8Il1dXXzwwQcsLCxw5coVQqEQk5OTfP7zn2dgYIBgMEgymSSXy5FOp9ne3mZ9fZ1wOMzCwgLVahWz2YzH46Gzs5O+vj7a29sJBAKH9lhlXjwnUkQkAWk2myQSCebn55mdnSUWi+H3+0W35d6L80HhOe6USiVisZg4KqTTaTEkNzo6Snt7OyqVinQ6zfr6OqlUCr1eL/xMDgPpNVMoFFgsFgYGBojH45RKJebn55mfn8dgMNDX14fZbMZoNIqekXw+v68yVK1WxYa9eDwuHNUkkyWHwyEc4PR6/T43NpnjzYkUEYmFhQXu3LnDvXv3KJfLtLe387nPfY7Tp0/T1ta273NP2gUZDof53ve+x/T0NM1mk3PnzglxDAaDqFQqarUaS0tLTE1Nkclk8Pl8BAKBQ5v3efA1MxgMTE5OCpe0GzdusLy8zLvvvkssFmNyclIYHRkMBgKBACaTid7eXgqFAqlUikgkQiQSIZVKMTU1xb1794T4+Xw+Wltb6ejoIBgMyrM6J4QT+1vKZrPMz8/z8ccfk0wmcblcDA4Ocv78ebq6uo764T0z9XqdXC4nukdXVlaYnJzk3LlzDA4O0tHRId5cUi5oYWGBZrNJe3s7HR0dz3Vo0OFwMD4+TiQSIRwOE4/HuXv3LqVSCafTKapBSqUSm822Lyqq1+usrKywuLjI4uIi6XSaRCJBuVxGr9cTj8fF2gqlUonT6RRetVKZWK7uHD9OnIhIszArKytMT0+zurqK1+sV5cwH519O2jFmcXGRjz76iKWlJVQqFWNjY0xOTjI0NITf7993d242m8RiMba2tggGg/T399PT0/Nc/E72vo5qtZpTp06hVqu5fv26SGgHg0FMJhNerxeDwfDQ91CpVHi9XhQKBU6nk56eHmGAnc/nKZfLbG1tEYvFuHfvnvBwcbvd+P1+PB7PiW0QfJk5cSKSz+dZXFwUFobVapW2tjYuXrxIMBh86PNPkoDkcjmmpqb4/ve/T6lU4uzZs5w+fZqRkRE6OjoeKo2Wy2XhsdrX10dPTw+dnZ3PpYT64OvY1tZGa2srjUaDxcVFEokEc3Nz6PV6ms3mY6NBKXfS1dVFs9kkn88LIZyfn2dlZYWNjQ2y2SwajUY4yg0PD4vOZFlIjhcnTkRisRi3bt1ienoalUrF2bNnmZiYeKgKc5IiEKmMOzs7y/T0NGq1mmAwyODgoIhA9gqDZB60vb1NLpdDqVQK8+XnnUfY+7oqFAp6e3s5f/48oVCI7e1tSqUSer0er9f7yME8aU2GhNVqFTM3CoVCWFEmk0lKpRLNZpN0Os3c3ByRSASHw4HD4RAlYqlcLB9zjo4TIyJSS/fW1hY3b95kaWmJL3zhC3zta1+jo6PjofbukyIgcD8C+eCDD7h06RJqtZqRkRGGhoYYGxt75HMrFAqsrKwQCoUolUqiIvMippAffF2DwSC/8Au/wPXr1/m3//bfEgqF8Hq9DA0NodVqn8qsWqvV4vF4sNvtDAwMiOVg4XBYrOqQTJekWZ1AIEBvby/d3d1otVrZuf4IOTEikk6nWVpaEjaGVquVjo4OBgYGTtwIv0SpVCIajRIKhVhaWiKTyQgn9pGREdra2h45+yKJyMrKCkqlkvb2djwez5HMBElb8/r6+vD5fCQSCcLhMNPT0+Ko+aTHJS3T0ul0+44q0ua9vQu/JCPqSCSCWq2mUqkIW0tpX/GzzA3JPDvHVkQePI5sb2/zzjvvsLGxISZFh4eHT/SFEolE+O53v8vdu3cBOHv2rCjjtra2PraTs1gssrKywtraGoFAgIGBgX1Vm6PA5XJx8eJFnE4n0WiUS5cukcvl8Pl8z/w7slqtQpwmJibIZDLEYjGi0SjxeJxIJMLm5iY3btzAZDLhdDqF/0lXVxcul+uQn6XMozi2IrJXQBqNBhsbG0xNTVEsFvniF7/IhQsXHplIPQlI+2EkU+VQKMT4+Dhnz55laGjokUeYvUhGy4lEgsHBQfr7+x/Km7xoLBYLp0+fxmQy8fbbbzM3N4fD4eD8+fMP9ew8LVqtFpfLtU8MEokEa2trhEKhfYllaWdwOp2mUqmgUqmoVCqYzWbhbyKViE/SUfckcGxFBO5HI6lUis3NTVZXV6lWq9hsNoLBIJ2dnY812znuLC0t8eGHH7K0tIRCoWB8fJwzZ84wPDyM3+//RAGR3jjZbJZarYbNZqO1tRWn0/kCn8HD6PV6AoEA1WoVl8uFQqEgFosxNzeHQqHA5XIdSv+KzWajra0Ng8GA1+slHo+TTqfJZrNks1nRTbu+vi4WlzscDrG4q6WlRZ7VOWSOtYjU63XW1ta4ffs2W1tb2O12YXxzWK3dL5p8Ps/s7Cxvv/02uVyOs2fPCgF50pGkUCgQi8VIJBI0Gg2xuPu4uLNpNBq8Xi/t7e2srKxQqVSYmZmhXq8/soL2LCiVShGdSElYqUy8uLjI3Nwcm5ubhEIhqtUqBoMBt9vNwMAA5XKZZrN55FHby8axFxFpOrfRaDAwMEB/f/+JHKqr1+uEQiFmZmaYmppCrVbT3t7O4OAgg4ODDzWSPQppufj29jZGo5GWlhYcDsexisaMRiN9fX1ks1nW1tZYXFykXq/T2dl5KL+3B5+rlJDVarXCz8TlchGPx8lkMhSLRZrNJuFwmEqlwvr6Og6HQywis1qtOBwOubpzAI61iBSLRWGM093dzZkzZzh16tSJbDbK5XJ89NFH/Omf/ilqtZqhoaFPLOM+img0ytTUFLFYDJfLdSyOMQ+iVCoZHBzEarXyzjvv8Pbbb1OpVDh//vxz/bkGg0HYXkqrQhOJhEhAb29vc+/ePUqlkmip7+7upqenh/7+foxG47ES45PEsRQRaX5kfX2deDxOvV7HYrEc2Q7cgyDtd1laWiIUCpHL5QgGgwwNDTE6OvpUJVCJZDIpunS7urro6+s7diKiUCgwm80i8lCr1eRyOba3t9nc3BQ7gQ8blUolVmFIuN1u0cgmrcRIJBIUCgXxmJrNJpVKhVQqhcViQavVinUasuH003EsRaRQKDA7O8vc3Bz5fJ6Ojg7a29tP5GqCWCzG9773PW7duoVCoeDs2bMMDg4yNjZGW1vbU7+hGo0GuVyOWCyG0WiktbWV/v7+Y5sbkiorXV1dZDIZlpeX0Wg0wmX/RaBUKvH5fJhMJrq7u8nlcqRSKeLxONFolN3dXZaXlwmFQsLU2u1209raSm9vL21tbcd67/Jx4ViKSLFYJBQKMTs7S7PZpL+/n66urhOVVa/VasJU+e7du4RCITFMNzg4SHt7+1M1yUnzIslkkmw2S6VSwWazPVT6PI643W4GBwdZW1tjd3eXarWK2+2mu7v7hR0dTCbTvnxHtVolGo2yurqKQqGgUCgQjUYpFApotVri8bgYJajX67hcLsxms2jLVyqVcnTyAMdSRCqVCltbW2xubtLf38/p06fp7u5+5GTocWVlZYX333+fUChEs9ncV8YNBAJP3WVbr9eJRqOsra0Rj8cxGo04HI4TEZV5vV5Onz6NRqPh8uXLZLNZUqnUkeYepC2B0ibArq4u0um0iFLS6TSpVIqPP/6YqakpTCYTdrsdr9eL3+/H6/Uee/F+0RxLEcnlciQSCTKZDHa7XfRPnBQKhQJzc3NcunSJZDLJ2bNnhalQZ2fnp+osrdVqbG5uMjs7SyqVwuVy4ff7T0RU5nQ6MZlM5PN5Ll++TCKREO5mR/n4dTqdWI3RaDSo1Wrk83lWV1eZmZkRk8TpdBpAjFgMDg5SrVbRarXyXp09HCsRKZfLJJNJtra2KJfLGAwG7Ha7cNI67jQaDUKhEFNTU8zMzKBWq8Vy7Ef5gTwt4XCYUCgEQFdXF729vSfmrC6ZN5vNZuEdsrm5id/vP7I9vnsjIZVKhUqlQqfTUa/XqdfrWK1WfD4fyWSSTCZDpVKhVCqxvLxMIpFgaWkJh8OBxWLBYrHgdDpxOBwnegTjIBwrEZHWXq6urqJSqfD7/TgcjhMz5p3P57l69Srf/e53USqVYhr31KlTdHR0PNOgYKPRYHd3l7W1Ndrb2+nv76evr+9ElbmlNZ25XI5sNsvi4iLNZvOZX5PnhRT19vf3C//X7e1tNjY2WF9fZ2trS+zfkewfOzs7Rf/ScauUvSiOlYjkcjnW1tYIh8OYzWYcDgcul+vYe20+WMYtFAoEAgEGBwdFGfdZ3yzSGT2Xy4mJ2WeNaI4KqZpUKpUol8usrq6KlZzHSUQ0Gs2+aEKKoAwGA2q1GoVCgVqtJpVKCYe9jY0Nms0mxWIRp9MpzKqNRqNYo/Gy958cqysxn8+zublJPB6nu7tbDJYd919CIpHg+9//PtevX0epVHLmzBkGBwcZHx//VGXcvVSrVbLZLFtbW+RyOdRqtdgsd9LCZqPRKMq6oVCItbU1PB6P2KR4nDGbzbS3t9PS0sLQ0BCZTIZ0Ok08Hmd7e5toNMqdO3e4ffu2OLr5fD56enro6urC6/UeK6F8HhwrESkUCsTjcQqFAi0tLXR3d4thruNItVoV07jT09MsLy8zOjrK6dOnGRoaeuoy7qMolUpsbm6yvr5OrVbD6XSKO91Jw2AwEAwGqdVqrKysiPmfSqVy1A/tiajV6ocMpyXDJGkuqFAokEgkqNVqxGIxMpkMzWaTZrMpVpoaDIZ9JeLDPKI3m00ajcYjRVlqEYD7fTN79yIfFsdGROr1OqVSiVKpBNwPJf1+/7GeaVhfX+cnP/mJWMw0MTHB6dOnP3UZ91EUCgVCoRCLi4uo1Wr6+/sJBoMn8q4mOZcVi0V0Oh2FQoF8Pi9+1ycNo9GIx+MB7vuoSFPEyWSSZDJJoVBgdXWVjY0NjEYjVquVlpYWURE67Ou6Wq2STCbJ5/PCh0cSFWkEQHKEs9lsGI3GQ+11OXIRkVQ0k8mIF0EqoR1nASkUCiwsLPCjH/2IaDTKmTNn+MxnPvNMZdxHIZUc19bW6OjoEJHNSWx0knIJeyOpUqkkmuekRq6ThNlsxmw209XVhUKhoFariU1/oVCIUChEOBymUCgIw+m+vj56e3tRKpUHypM9SLVaFTt9pNdUqjhJbf1KpVIMG7rdblwu16FdS890pSsUin1h0kHJZDKEw2HS6TRqtRqTyXRs+yCkMu69e/eYnZ1FpVLR3d0tKjGBQOBQkp7FYpFYLEYqlWJkZISenp4Tl1B9EI1GI+ZbpM5RqUR6XH/fT2LvGg2PxyP6SOx2u1jSVSgUgPu5s5mZGXZ2doQvrtVqFUdVi8XyTG9syfy6WCxy584dlpaWcLvdjIyM4HQ6UalUFAoFFhcXyWaz9Pf3c+7cOVpaWg5lbOKZrsjDFJBmsykGy1KplOjIPK7Jw0KhwMcff8yf/Mmf0Gw2OXXqlLA0PKySpeR8ls/nqdVq2O12sdPlpCNV3RqNBjs7OxgMhmN90/g0aDQaAoEAHo+H8fFxSqWS8Jzd2NhgdXWVlZUVbt26RaPRoKWlhfb2drq7uxkYGKC1tfWZeqJUKhVGo5Fms8mdO3e4dOkSo6OjdHZ2EgwGMRgMbG9vc/36da5evcr58+exWq20t7e/WBF50PP0sISk2WyKSCSXy2E2m4+l+5RUxpXyFMViEZ/Px8DAwIHLuHvJ5/NiOKzRaGCxWLDZbC+FgCgUCmw2G263WyQhrVbribW5fBCFQiH8TQARZVksFvR6PQqFAo1Gg1qtJp/PU6/XSSQSwsoxHA7jdDrF71synH7SdaVUKtFoNCiVSpLJpJj/sVgs+P1+zGYz5XKZQqHA8vIyLpeLzc1NsVngoDyViBxm5PGo753L5YhGo5TLZZxOJ263+9jNyaTTad5++22uXr2KQqFgcnKSgYEBxsfHaW9vPzTRi8ViYrOfXq/H4XC8NC3WKpUKp9NJIBAgEomINZonoUrzrEjPWa/X4/f7yeVy5HI50uk0u7u7hMNhotEoS0tLNJtNMUnc0dFBd3c3wWAQt9v9xJ+jVCpRq9VCdKQyc39/P3D/GO73+7FYLNRqNeGWfxion6dAPC3SsmelUinWJh6XSETq11hYWGBmZobV1VWGhoaYmJgQpsqHufs2mUyyuLhIJBLBbrcL46GnWca1t8R32GW8w0Daz+v1eslkMmI+qlarHfVDe67o9Xr0ev2+jtZsNsvKygparVYYKEmNhel0mmq1CiCqLHv9hKX9xBL1ep18Pk8+n0elUu0bGJSQ2vulSOgwy8zPLEWHeYFKPpmSqe5xOs5sbGzw4x//mIWFBUqlEhMTE4yPjzM8PExra+uhL8/OZrOsr69TLpfp6+tjdHRU7K99EuVymUajIS6WB5N0R70VUKlUihBfq9UKc6CXXUQehdlspq2tDZ1OR3t7O6lUShxFstks1WqV+fl5NjY2xMY/m80m1mLsra5IPUWrq6uUSiVRgZEi2FKpxOzsLCsrKySTSXQ6nXB1OwweKSJSdPLgBfc8opZms0m1WqVcLu/zvHyem+2fFmnv73vvvcfOzg5nzpzhtddeE2Xc55H8zWazxGIxdDodfr//qedkcrmcuKur1Wp0Ot1DCcujjkykdZ92ux2dTke5XKZYLFKv14/0cR0F0lLzvR65+XyelZUVlpeXWV1dZXNzk7W1NcrlMkajkUAgQHd3tzgi7RWR9fV1lpeXKZVKIqdSr9dpNpvMzs4KW02tVovf76e/v5/BwcFDeS5HnhORRrGlhhip/n6U1Zlms8ni4qLYdq9UKunp6dlXxj3MxycJqbSUqVariYTq47LnjUZDtMVHIhHK5TJwv7JTrVZFxl5aseDz+Q7t8T4rCoVCPCadTkej0aBarb6SIiKxV9hNJhOdnZ0YjUbcbjeBQIC7d+9y48YNMpkMOzs75HI5PB6PyHXAT42Wtre3KRaLwgZSasW/d++eGOAMBoNcvHgRr9d7aNH+I0XkwfO01BD2qCd+UKrVKrVajWazKXwyj/ooUygUuHXrFt/61reo1WqMjY0xMjIiymaH3TVar9cJh8MsLy8Ti8UwGAyf2OIuCcjGxgbXrl1jfn5eNHPV63UymQzVapVms4nT6eTChQt4PJ4jn4aW+hn2RkhSR6XMfcxmsxCTRCJBvV7n9u3bxGIxcrkcer2eZDK57/1YrVZJJBJEIhEqlQp6vZ5YLMa1a9dQKBSsrq5Sq9U4c+aMsKc8TK/iJ0Yi0gyA9Oe9/z2MjrdSqSQueKlUdVRUKhV2dnbEzl9p7qG/v1/sxn0ebefNZpPd3V3RDOTz+Whvb3/kMaZer7O9vS1mdaRSsMlkErYJJpOJeDzO0tISa2trYhRfSgIfdderTqcTORupo1I6hr3qSHYJ0jyOZMzV2dmJ3W6np6cHl8u174ZQqVSIx+MkEglhkh0IBDCZTCiVSgKBAHq9nvHxccbGxnA6nYeaLnhsdWbv30t/lh64dNY6CI1Gg0qlQi6XE0uFjtq/Mp1Oc+nSJS5fvoxCoWBiYkLYMx5mGfdRbG9vMzc3h06no7+/n97e3oeOMrVajVQqxZ07d/g3/+bfsL6+zpkzZ7hw4QKdnZ24XC5MJhMKhYLFxUXC4TD37t2jXq+j0WgYHx9ndHT0yE2eVCrVvgpDqVSiUChgMpmOXOCOklqtxtzcHFNTUywuLrKzsyP2E124cIGenh6CwSBer3ffzbZcLovBv66uLs6fP093dzc+n080oanVatEucNg3wk9MrD6I1O5+GG3vzWZTNMBUq1VR5z6KkLtSqYgy7uzsLGtra/T393Pq1ClGRkYOvYz7INL0cjQaFStCu7q6Hmowi8fjLCwscOvWLe7evUs2m+XNN99keHiY7u7ufZ+vVqtxuVzU63VWV1e5du0aarVa3NGOGqnkCIjEul6vf6VEpNlsUqvVqNfrVKtVYYMpWTRmMhlhejQ2NkZfX98jj7j5fJ5UKkWxWMTlcjE6Okpvby92u/2FmFc9NieyVySkHMjeiOSgeZFGo0G5XBYJQWmL2VFUELa3t/nRj37E3NwcxWKRyclJTp06xejo6HMp4+6l0WgI+wOpjyIQCIidLXtZWFjgW9/6FjMzM5jNZnHMam1tfUhwdDqdsGZcXl5mdnaWlpYWPv/5zz+35/JpkW4YUjL4JPiLHCbVapWdnR3x+9ne3iaTyQCIay8YDNLR0YHX632kgJRKJWE03Wg0cLlc9PX10dbW9lwLIntRP5hAfdSb+MEHI/kiHARJhavVqmgXPoppzmKxyNLSEu+//z6bm5tMTk7yxhtvMDg4+FySqHspFApsbW2xvLxMPB5HpVKJXpkHBaRer7OwsMDbb79NJpPh/PnzvPHGG4yOjj7Slq/RaBAIBOjv72dnZ4dQKMTW1taxGb/few1J18GrVKVpNBpEIhGWl5e5efMmV65cIZlM4na76evr4/z585w/f/4TE6DFYpFIJMLu7i6FQgGFQoHFYqGlpQV4cSX9fSLyuD9LydUHI5HDVDrponqRIhIKhbh9+zbz8/MolUp6e3sZHR1lcHDwuVr3JRIJNjc3WVpaYnZ2lo2NDWKxmEg27g3pJWGPRCJsbm6ytbUlooyxsbHHuuBL4/cajYZGo0GxWKRUKh2bu73UywLsO9a+7EhVtY2NDTY3N9nZ2SGdTuPz+eju7qatrY2uri76+/sfKSDSe65QKLCxscH09DR37twhGo1SrVZF9/eLHBtRf5o37WF2PEpl5L3C8SJb8KUy7h//8R9TqVQYGxsTOZDnHYFsbm7yzjvvcPXqVW7evEksFsNutzM4OEilUtn3ZpK8VjY3N4lEIpRKJZxOJ729vQwNDT3WHFhy1ZImgSVBOeqGMwlJRGq12isjIuVyme3tbS5fvsytW7fY3d0VhtUXL14Uy+ptNtsnJvErlQqZTIbV1VVu3rzJzMyMWMMhWYzq9XosFssLqXg91U/Y+4Y/TI7igq5Wq2xtbbG0tMT8/LwY+uvv72d4ePi5lXEl8vk86+vrfPzxx1y5coW1tTXgvqeKxWIhGo2Sy+Xwer3AfRFJpVLs7OyIvgGpGemT2uEl8YnFYlSrVcxm8wu7qJ4GqRInzYbUarVjEyUdJtIalEQiQTQa3deFarPZsNvtDAwMMDg4SE9Pz1OtApEcy6TmTMnxTq/XEwwGRdn8heVEXshPOUZkMhneffdd3n//fRQKBePj4/T39zM5OUlHR8dzK+M2m03q9TrJZJK1tTXRRSgh5TxWV1dJJBJi1WSz2SSdTrOzs0M2m0Wj0WAymTCbzZ8owvV6XayaKJfLeDwePB7PsbJXlG5Me70/XzYikQg3b95kbm6O5eVlUUEZGhqiq6uL7u5uMefytEeQZrMpvEsuXLjA2NiYKONLRkcvcgDzlRERKQRcXFxkbm6O9fV1kQORyrjPu1NWEhLJGvBBSqXSQ7MkUim8WCyKUrhGo3miGBQKBXZ2dtjc3ESj0dDd3U1nZ+exs1h42ZBGOCTxn5+fZ35+nuXlZSKRCAaDAbfbzdDQEKOjo7S3t3/qn6FUKtFqtbjdbpxOJ0qlEp1Oh1KppFwuU61WX+jR9ZURkXA4zDvvvMPMzAz5fJ7Tp08zOjoqDIWet4BIhjSSKY/f798XicB901+fz0dLS8u+C0DKHyiVSlHFeFJnbzKZZHl5meXlZbEHeGxs7NgtvdrrVH4cbCkOSjqdZmNjQ0zNJhIJsch8fHycQCAgSvhP4xPyIFLC3Gg0iuOfdGORqpzSHNqL6rl66UVEWiy0tLTEhx9+yOrqKhMTE7zxxhsipHyRIb7VaqWtrY3R0VGy2Sxra2vk83mxUc3tdu87FysUCkwmE06nE7PZLISkWCw+8vtXq1VxIUejUSqVirDrGxgYODYOaVJUJr0RjqP/yacllUqxvr7OzMwMly9fZnFxEaPRKFafXrx4ka6urgM31D3oJ7KXvc5qL4ojE5EHd2U8r4toaWmJmzdvsrCwgEKhoK+vj1OnTjE0NHQkG9iUSiUdHR387M/+LJ2dnWIKd3t7G/jp6gwJlUolnK58Ph86nY5sNsv8/Lwwb5aeQ7lcZmVlhRs3bnD79m2USiVnz57lzJkzdHZ2PhThHCVSVabRaIhI6yR2q9ZqNba3t8WKiK2tLWF5ODIygtfrpbu7m97eXvx+/4l8jk/iyCOR5xnCFotF7t69y7e//W0KhYIYQBoZGXnhEchegsEgLpeL119/nXQ6zdraGu+88w7T09MUi0Wi0aiYg1GpVLS0tNBoNOju7sbr9VKv15mZmcHlcnH27Fk6OzuB+/0ns7Oz/OAHP2BlZQW/389nP/tZXn/9dTwez7EREEBEU5KBksFgOLbm3J9EMplkamqK999/n5WVFXK5HDabjcnJSSYmJmhvbxfR5csoIHCEIiJl5qWwTAptD0NUpDJuKBRibm6OSqVCS0vLCyvjPgmtVotWqxVeHw6HQ3jMKhQKFhYWaDabDAwMiDkXu93O0NAQn//858XI98LCAkajkVKpRLPZJBKJEA6HxeTm+Pg4Z8+eZWBg4KlKhy8S6TijUqlEefIkvMmk7QRSyTYcDrO4uCgcwxwOB62trQwPDzMwMIDP5zs2ZfXnxZGKiFRlkJb/SFntg5LL5fjJT37Cu+++i0KhYHR0VEzjdnZ2HrlfyYNIAtFoNFhdXeXjjz8mHo/jdruFiKjVasbHx7HZbCwuLjIzM8PW1hb1ep2NjQ1qtRrFYhGFQsHZs2dxu9309vbS0dGxz5/zOCH5i0iiehLebOVymdnZWe7du8fMzAzhcBij0SgGJ/v7+2lra3sum+aOK0cqIjqdDr1eL5KFB22QqVQqpNNpEYFsbW3R1dUlDIVeRBn3WTAYDOJIkkwmxY7XcDhMd3c3cP/18vv9eDweHA4H5XKZ1dVVFAqF8GSRBrB6e3tpb2/H7/cfy+cLP82J7b0OjuMbTnJfk0rtq6urzM7Osri4KJzEPB4PPT09ouP5uL7mz4sjExGlUikWF0l7NyqVyoGGsCKRCJcuXWJqaopCoSD24o6OjoolPscRhUKBx+NBpVKxuLgIIBZ6tba24vF4xGNXqVQEAgFef/11hoeHRXlPSlAbjUZaWlqwWq3H9mKWjjLS71qn02EwGI5lJCIZVUk3pp2dHTKZDEqlksnJSYLBoCjbejyeY/uaP0+ONBKRfEDVarWY5HwWqzypjLuyssJHH31EKBRifHycCxcuMDQ0RGdn57Ewfn4SLS0tosybz+fZ2tpibm4OhUJBMBgURxKr1XooS4eOimq1uu93rdVqj+Xvp1wuC6e7GzducPPmTXK5HC0tLfT29nLhwgXOnDnz0uwFelaOXPq1Wq2wyZMy9o1G41M1yiwvL/PVr34Vl8uFy+USJi5SGfcTL9DSNnfe+x7feTdEFvCP/cd85Rcm6bM8XCnY/cnv8b99b/MTHslZ/tI/+mX2v72rRKa/w7/5V1fZsfTy1i/+Ob4w4uFxdYi2tjbOnz/PysoKW1tbFItFsfLwZaFQKFAqlajX66J56jiRSqVYWVlhfX2dzc1NMc8UDAaxWCy0trbS0dFBb2/vKy8gAEfr3MtPG2eUSiW1Wo18Pk8ul3vqY02pVGJ6epq5uTk++OAD/sN/+A9sb29z7tw5Ojs7P7EqkfjoH3LB08r5v/QH3D9EhPn3v/k5+t1D/L13Ew99fm7hD/nH//h7hJ762WW49g/P0/uX3sb02hf4QleE3/taLz/3fy7wuHlVv9/PxYsXGR0dFVaIm5ubL8VwWqPRoFQqkclkKBaLx8IS80HK5TIbGxt8+OGHfO973+PSpUvcvXsXtVrNxYsX+aVf+iW+9rWv8bnPfY7W1tajfrjHgiO/BUhzANKZP5vNkk6nRe/A46jVamxubhIKhZiZmeHnf/7niUQi3Lt3j29/+9toNBr+3b/7d4/9+urC/8kvv/U/Y/hfb7L9d04jBur/l3/CD//eWb705b/CmaV/z1/Yc53EtxbgM/8z//Af/Qb9j/qmDzLz//Drf/gX+eDG32FMA/AlvvQfneOvD/7X/PEv/Hv+gvfhLzGbzeh0OnZ3dzEYDMRiMeF+FQgEMBgMx7LS8jQ0m03y+TzpdJpyuXxsmswkU2TJMV1qGms0Gng8HpxOJ8PDw/T399PR0XHsyuVHzZGLCCC8D1QqldjPajabP1FECoUCH3zwAZcuXQLg3Llz9Pf343a7+Y3f+A2++c1v8lu/9Vv81m/91iO+OsEP/te/wbtnf4/QXgEB0Hj42f/hB9z+Lxy0t+z/qnwqCho1T33J765w72f+3J8JyJ/h7OZ0f5RsDniEiMD97fLSxvhSqcTu7i5XrlxhZGSE4eHhY5k/eBqkVRfxeFz4XxyHMujOzg63b99mZmaG5eVlarUaHo+HkZERBgYG6OrqoqWlBaPR+EomTp/EkR9n9i40UqvVpFIpotHoY238KpUKkUiEmZkZ5ufn2dnZQaPRiP24b7zxBt/5zndwuVz89m//NlNTUw9/k90f8i/+VZm/9N/8Ko9cJOgcYnzQh+NR14vbwlPfh4Yv8qt/9E3+NPLTw0t14V3+9d1BWp8we+VwOOjv76e7u5tisci9e/cIhUIUCoWn/enHjr0eJ5VKBYvFgtVqfeE5ESn3ls1mWV1dZWZmRkx2p9NpUQEbHh7m9OnTDA4O4na7X3k3+sdx5JGI5CvqdDrF7gxpaOlRRKNRfvjDH3Lv3j2KxaL4JZ86dYr29nYMBgODg4P8zu/8Dr/2a7/G3/7bf5sf/vCH+75H5uPv8i1+kT8892mSYqus3gHGPY8LIB7G++f4p//7O7w1epqxX/kq/fkr/F9/nOGv/+ASX37Cj7ZarUxOTmI2m/nhD3/I/Pw8LS0t5PP5Q1089CJpNBqk02mi0Si1Wg2n00lLS8sL7x5OpVKsrq4yNTXFysoK8Xicer2Ox+PhtddeIxAI4PP5cLvdJ/a1fpE8NxHZmwiUKi+SH4bUnahQKKhWq+h0OvEGkdqHH5xSlXxCV1ZWuHbtGnNzc4yNjXH+/Hkxjbs3zP/617/O7/7u73Lp0iU++OADLl68KP4tvDkPus/h90I1u8jNd97j0pUQWfyMfeWLfPHCCJ6Hyid16pX7f9r/NRZ63/oqX/ncOIGHIhcNwa/+78wubTBza5Zd/lP+1j971Oc9jF6vp6OjA41Gw7Vr18jlcsKU1263YzAYTtxdca+IqNVqAoEALpfrhR3Pms0msViMtbU1pqenuXz5Mqurq8IRrK+vj89//vN0dHSc2LzTUXAoIvKg92qtVmNjY0OcfSUPjL3j31qtFofDgcFgoFar4fP5yGQyrK+vo1KpHvLbXFlZ4eOPP2ZhYYF6vc7g4CDj4+MMDQ2J7er7nphazd//+3+fX/mVX+Gf//N/vk9EtuavwdlfQ/md/5KhX/4DSp/7Jb5+2kd24f/lN7/xm0Q9v8ofXvoD/kL/w4VY95/8VVq+sYn+9Ff4lS/1Ywn/hN/6lf+ev8rP8bvv/Wv+1umHPU81liDjnw0+02trtVrp6Oigu7ubWq3GzZs3KRQKjI6Onsi7ZDqdZnd3V9zpvV7vcxeRSqUiFl5vbGywvb1NOp3GaDQyMTGB1+ulvb1deJzKAvLpeC6RSDqdFnZwuVyOWq0mSnmSG7Varcbn89Ha2kpXVxc+n0+cldPpNJVKRXy/UqnE7Ows3/nOd0ilUkxMTHD69Gkxjfu4i/AXf/EXcblcfPOb3+T3f//392fVr/8mX/zl1/nGzQi/MSyFBv+Ib0Te5x988bP8J1/swD/1T/isOHasM/0hRHXwd99e57d/9qe9Hv/on83wz74yyV+78FfwPlDROShqtZre3l4KhQLLy8tiuXMgEDhxIiLtCU4kEsKU53lHIs1mk3g8zp07d7h8+bLwb3G5XJw/f56xsTExaXuSK19HyYETq3t9QDKZDLOzs1y+fJl79+6xtbVFs9nE5XLR2tpKIBDAZrNRr9eJRCJMTU1x69YtEokEdrsdp9MpZkGkFQfhcJgrV66wsLBAo9HA7Xbvm8b9pAtQrVbz9a9/nVKpxB/+4R/u/8cy/Oo3v7lHQO6j8bzJ//QHv8Opjd/hf/v+7p5/6ec//8EPeO/WNf7Jzz7QLKYf5jf+1b/gy+Vv8dt/NHOwF/QBNBoNHR0dYr+MFI5HIpETt6clm82Sy+UolUqoVCpsNptIqB8m9XqdWCzG3Nwc77//Pu+99x6zs7PkcjmsVit9fX2Mj48zPDxMb28vwWBQ7K2VReTTc6Df3oPHmLm5Of70T/+U1dVV4ag1MTHB+Pi48MRYWVlBqVQyMzNDKBQiHA4zMjKC2WzG4XAI23tpP8eNGze4fPkyjUZDrIucmJh4ar/Qr33ta3zjG9/gnXfe4dd//df3/Muv8qufffS6Bc3Yl/jPBv4uf/fKDD9t5mhl4kufEGK0vsGvvAV/+VtXWf1bw3Q++eV7KlQqFX6/H6PRyOrqKlevXhXu7zs7O7hcrmNfdqzX6xQKBWKxGPl8HoVCgV6vf6LZ9LOSy+WYnp5mamqKe/fuEYlEsNlsost0aGgIv9+PyWQ6toN/J4kDicje1vRMJsPc3BxXr14lm83S09NDW1sb3d3d9PT0iLuNQqFgd3eXZDLJ1tbWvjWaNpsNj8fD9vY2y8vLwmQnHA4TDAZFn4RUhXkazp49i1qt5sc//rH4O5PdDbRgemyFxITdBXy8xBJvPboM/BCddI4DH9d5HvGBzWajtbWV1tZWsbjIarUyODhIW1vbc/iJh0epVGJnZ4etrS1qtZqIQA5L/KTl8PV6nXw+z/LyMnNzc6ysrBCLxajX6zidTvr6+hgbG2N0dFSOOA6RA8eR1WqVWCxGKBRiamqKra0tfD6fcNTy+/37wlWj0Uh3d7cIxfP5PD6fD4VCIfbL5vN5fvzjH5NMJvF4PAwODjIxMcGZM2c+9QyJ2Wzm7NmzXLlyhbm5OQYHB+kYfAO4w+oqfGLI0O3j6a10q9QqT/6sg9DW1sbrr7/O0tISi4uLxGIxzGbzPhE5zAVjh4VUVVtZWUGlUondsocVAUgiNTs7y+zsrFgrqdfruXDhAm1tbaJse9wc3l4GDpwTKZfLwsd0dXWVZrNJa2urcNR6cEBJo9Hg9/sZHBzkzJkzTE5OilWQJpOJ3t5e3G43CwsLvPfee0QiETHwtHebveSC9jT+I2fPngXg9u3bAHhPvcUpLvPhbObRX1BdZ/o6DIy1Iz36zOKH/Ovf/UPuPnZJ2yx33gHduR6e16icx+PhzJkzdHV1kUgkmJmZeWiu5ji+QaSFXRsbG2i1WuENexgiksvl2N7eJhQKcevWLa5cucL8/Lzw+bhw4QJf+cpXePPNN+nr68Nmsx3CM5LZy4EjkXK5zNzcHNeuXSOTydDX1/eJ6x1VKhUmk0n4Z0iLlaRzsrQFXRKMTCYj9s9ub29jt9sxGo2YzWacTid2u/2J3pwDAwPA/ZwNAMN/nv/6y/8VX//tf83f++Jv8GAlN/GD/5vfLwf5H78wJv7OEPs+v/mb/5T/qOdL/MuvPvzcMu/+3/yTeTd/7ffPPHZC96BIowFbW1tYrVbC4TA7OzssLCzQ2toqkoPHjVKpxObmJtvb20xOTjIwMEBbW9uBPFVjsRhLS0usra0Jc+RisUhPTw92u522tjZRGj9uazJeNg4sIvl8noWFBW7fvo3f72diYoLR0dHHdiFKvqoWiwWj0Qiwb9GO0+mks7OTnp4eVldXAVhbWyMej4u9LV6vl0AgQEdHB3A/X/BJXY+Dg4MAzM/P/9nftPKr3/g/+Bdjf5Uv/jUv7/3ef0yXHqBK5Prv8p/88r/C85s/4jcmf/o9NBd+jX/81j/lL//Fv8hnP/x3/OenLH8mFlUi13+f/+xr36D0V77H//DW8x0NNxqN+Hw+2tvbqdVqRKNRbt++TaVSYWBg4FjO1WSzWaLRKOl0GovFQnd3Ny6X65m/X7lcZm1tjQ8++ICZmRnRvDY6OspnPvMZuru78fv9WK3WYymqLxsHEhHp4tjZ2SEajdLW1ibOn49Lmj2Nf4Tdbqe9vV3cVRwOByaTCY1Gg0ajIZfLsbGxQTabZWtrC7PZjMlkwmg0YjAYMBgMYoBPurgAQqGfDvFr+n+db74b4ed/7pfo/gM3PZ1OSKyyFNXy2n/7Nh/+g7f2D+bRw6998yPqf/NX+BtjVv6Gu4dOp5ranq+Z/gc/y6Pjr8OlpaWF0dFRNBoN4XCYW7duodPp6O7uPlYiIjnXb25uUq1WxYzU3mPp0yIN7sViMbEedGdnB5VKJfo8RkZG6Ovro62t7djs13kVOJCIbG5uEg6HSafTVKtV9Ho9LS0tOByOA4Wqer2ezs5OMpmMWFjc0tKC3W6nXC6zubnJ7u6uKCVLDmkOhwOfz0cgEKCtrU3cjXw+H3A/BN6L88J/x0fxv8nGzC1md0ug9zJ0epjgIwyJ7n/BaX79/wvx9d9bZf7eArslwNbO6eEe3I/7mueAzWbj3LlzWK1Wvv3tb3P37l3cbjdvvvnmsRpT393d5c6dO4RCIeGE7nA4nikXsrm5yd27d7l79y5LS0soFAoCgQCnTp1idHSUrq4ubDbbkSxvetU5kIjkcjny+TzFYpFKpSJ8U59Ue9+7GkJqVtubEDQYDPT09NBoNMjn89RqNXQ6HV1dXcLIRnKGz2QyYs9urVajXq9TqVSE+Y3kui393Fwuh1ar/ekRSmMhOP5ZPk1Tut7RyfhnO5/lJTsUtFotfr+fSqWC3W4XFbKNjQ10Ot2xGK+H+8OS09PTRKNRYW3wtNURybi7XC4TDoeZnp5mYWGB7e1tCoUCLpeLYDDI8PAw4+Pjj83ByTx/DiQiex3JpEXC0j6ZT6JSqQh/TcloWBrIg/si0t/fj06n44MPPuDu3bvU63XOnTsnul47OjoolUqUy2UymQzJZJJMJiOOOGtraygUCrRarRCRcrnM/Pw8fr8ft9t9Ipcl7cVisdDV1cXu7i61Wk0kt8fHx5/pyHDYxGIxZmdnaTabjI2NcebMmafqaWk2myQSCUKhELdv32ZtbY10Oo1CoaC9vZ3Pfvaz+0q2skXh0XIgEZHyEEajEa1WS6VSIZFIkEqlHrvRrFAokMlkqFarwqB37xIruH+nbW1tRaFQcPnyZba2tnC5XOTzeQC8Xi9e708H8nO5HDs7O2xubrK6usrW1hbpdFpEJ2q1muHhYdxuN4uLi8IkWGp42vuzHxUZHVcMBoOYq1lbW2NqaopKpUIwGDxyEZF8YaSRhmAwyODg4BPH/iuVCvF4XDyfq1evsrOzg9FopKOjg8HBQS5evEggEDgW0ZbMAUXE5/ORz+fp6OjA7/eTSqX48MMPAXjrrbdEBAA/dbWKRCLCek66mzwucrFarXg8HjweD6VSidu3b1Or1R5KIJrNZrxeL1qtFqvVSjAYJJ/PCyu+TCYjjkKhUIjNzU0hfmazGavVKs7rLS0t2Gy2EyEiWq2W3t5e1Gq16BhWqVTE43E6OzuPpDLRbDZZW1tjfn6ezc1NseXvSb4hlUqF5eVlUbYNh8Nks1nsdjutra34/X46Ojro6+sT7QEyx4MDiYjVaiUQCDA0NMT6+jo7Ozt8/PHHaLVaRkdH95Xx8vk8sVhMRAsqlQq73Y5KpXrsBaHVasUdLB6Pc/36dRKJBBqNht7eXvF5zWZTVGgCgQDNZlPYCUSjUeHavb6+zu7urugpUCqVmEwmcb5ub28XS6SsVuuxv1BVKhUejweTycTs7CzlcplYLEY4HCYajeJwOF644Y/UN/TRRx+RTqfp6uqir6/viRPHsViM27dvc/XqVVZXV8nn87S2tnL+/HlGR0fp7OzE7Xaj0+me6/5mmU/PgftErFYrp0+fplarcf36dZaXl1lfX+fmzZvUajWMRqNIaCaTSXK5HGazGYvFgsViQaPRPHZ6Uq1W09HRQbFY5Pbt20xPT1MqlcQumb3zONLX733jS8NrSqVS+Hm2tLSQTCbJZrNibYFkVlMul4nH4ywtLWE2m0WkYrFYhEgdx2E3k8lEa2srPT09VCoVlpaWhJC/aEfyZDLJ8vIy8/PzuFwuhoaGHtl8WK1WSSQSxONxIpEI29vbLC4uUiwWcbvddHd309XVxejoKD09PWI0Ao5nV+6rzIFFRKfTcfbsWdra2rBYLFSrVXK5HB9++CHLy8u4XC4sFovYeCYt1vZ6vVgsFrGL91EolUo6Ozux2WykUimuXbtGsVhka2tLZPyfdKdVqVS4XC6sViudnZ1iUEsSjHA4zO7uLru7u2xsbDA3NyfyKBaLBZ/PR2dnJ+3t7bS1teF2u4/dnhSAjo4OPvvZzxIKhVhYWCAajYqjwIugXq+LFvSNjQ2i0Sjt7e1MTEwwODj40GuWTqeZmZkRk7bJZBKbzSYqLiMjI7jdbvR6PTqdThaOY8yB3g3Skimpr2NiYkKsOJBa2svlMkajUdgiOhwOUR15mgtDqVSK8qDf7xfrJe/evXt/mO7PulYfh7Tr9VG9Az6fD7vdjtlsRqPRoFKpUCgUZLNZqtUqmUxGbOqrVqvk83ni8TgmkwmdTidKxdJi8qMUF6/Xy6lTp8QeHmlKulgsvpD1ofl8nvn5eWZnZ8nn87jdbjo7O+no6BCvi9QKkE6nWV5eZnZ2lrW1NTKZDCqVCq/XS39/P6dOnRJdxjLHnwNd9Q+KQE9PD1qtVrwJ4X7jmFSp0Wq1mM3mZ0pcBoNB3nrrLebn51lcXGRzc5Nms/lEEfkkDAYDfr8fi8UikrHlcplCoUAymSSRSJDJZMjlcszOzjIzM4NKpcJgMGC1WnE6nXi9XjweDz6f70idxqxWK1qtlu3tbfR6PbFYjO3tbVZWVmhtbcVisTzXRGsqleLdd99lamoKj8fDl770Jc6cOSPmVqSlUHfv3mVubo5oNEq5XMZqtfLmm2/S1tYmLBM9Hs9ze5wyh8+Bb517m8akCgf8tBdEag6TekGeFbfbzblz51CpVMIrYmBggHg8TktLy5O/wSNQKpUiN/MgUkJ2Y2NDVAuSyaRw5TKZTLS0tJDJZCgUCtTrdarVKiaTCbVaLXIzUt/MiwjH9Xq96NitVCqiTwOgt7f3uSVZpUViCwsLbG5uMjw8zIULFwgGg1SrVUqlkpi0lfa71Go1XC4XXq+X1157jaGhoX3VPJmTw3OLv7VaLVqtdp/IHASj0UggECCZTNLb20u9Xmd9fZ23336b0dFRRkZGDvVOK4mh2WzG4/GQTqfJ5/MUCgXRpVur1YjH46RSKZaWljAYDPvKxk6nE4fDgdPpfGFvELfbzfnz57Hb7WxubvLRRx+hVqvp6Xk6a6Un8aBfSTgc5vbt28zNzWEwGITvS3d3N/l8nlu3bonqWDKZpFarMTg4SEtLC62treLI86jX5zh6o8g8zKGIyCf9og/zItDpdLS2tnL69GnUajUbGxu88847FAoF2traDvU4oVKpaGlpwel00tPTI7xLSqWS6HXZ2toSczzS/JDUq+LxeMRAorSO8UVUdmw2G5/5zGcwm82srq4yPz9PIBAgn88fykzJg7/P1dVV3nnnHeLxON3d3QwODjIwMIBarWZzc5PLly8zOztLNBpFr9czMTHB2bNn6enpIRAIfOKsjywgJ4PjV2Z4Ana7neHhYVQqFblcjsXFRRYXF7l9+7bYVHYYCc7Hda1KCVS1Wi18Qt1ut1hSXalUxJ4dqWFqe3sbi8WCyWQSE8Z7Pw7zmKHVanG73bS2tuJwOFAqlcTjcUKhED09PYdmjCyZaK+srJDNZoXoWiwWVldXmZubY21tjd3dXXQ6najISebIra2t8vHlJeHEiYh0QVosFiKRiDDmee+994jH41y8eFFM7cLzCYml3ENLSwt9fX1i8K9YLIqysfTYtra2RPu9wWAQk8bBYFB8uFyuQ3+MNpuN9vZ2dnd3KZVKYl/NxMTEobTELy0tcevWLdbW1sQRzm63UywWuXLlCtPT0yiVSvx+P+Pj40xOTtLV1YXRaBSLvGVeDk6ciEj4/X4GBgaIRqOsra2xsrJCo9EQ4//SXe55hMRSWftRx5OWlhbMZjN6vV5EM7VajVwuR7lcJpVK0Ww2qdVqYo5IWhYtlaI1Go0oIT9r16xkNVkoFNjc3GR+fh6FQkFXV9eBRSQcDjM7O8utW7fIZDLodDqx3U4aNahWq7hcLjo7OxkaGmJ0dPRY2RTIHB4nVkQAxsbGsNvtvP/++/zoRz9ibm5OVGqk5J3Ei0rSSd2jdrudzs5OkYjN5XJi17C0BW5jYwO47+xmMpmw2+14PB78fr/4eNY3nk6nY3R0FKvVyttvv83ly5dRKBS89tprT10Wf/A1azabbGxsMDs7y82bN7l3756oskhjDVarVXjser1eUbaVjy4vLydaRKxWK6OjoySTSaamptjd3WVlZUVUhva2qb+oJJ1arcZqtT40ni6VOdfW1lhfXxdNVtK2P41Gg9VqJR6Pk81mRfVH2swm2S5I0c2TysZSjsJkMnHnzh1qtRqJRILt7W1hp/CkXMyD318yGbp58yYzMzOEw2EMBoMQ61KphMVioaenh/Pnz8uDcq8IJ1JEHrxD9vX18dWvfpXZ2VkWFxe5ceMG2WyWZDLJwMDAgRrSDgu9Xo/H40Gj0eB0Omlvbxfhv/RRKBREz8Xu7i4zMzNidsdms4k+HKl0/DQJUr1eT2trK4ODg5TLZdGjcfr06afeV1Or1cQ81Pe///19xxiXy0VPTw/BYBCbzYbb7aanp4eWlhZZQF4RTqSIPHiH9Pl8fPnLXyYQCBCLxbhz5w7ZbJZsNivC7ePguSn5rwQCAQCx3DybzbKzs8P6+rroqdjZ2RH+KVarFZfLhd/vF2VjhUKB0+l8Ym9Mo9Ggra2Nc+fOiUqWtM/naUVE8nH9yU9+wnvvvcfS0hJut5vR0VH6+/sZGxsTYi09JnnS9tXhRIrI4+jo6ODcuXNoNBqxce3GjRs0m036+vpob28/0incB8vG0p1aspOUciNOp5NEIiGSsY1GA5VKRTabFc73a2trWCwWYUf5YNlYEhelUkl7ezsKhYJyuczCwgLFYpFwOCwmqh9HIpFgZWWFW7du8dFHH7G4uIhGo2F0dJShoSEmJyfp7++nq6uLtra2fdYPco/Hq4OieYBbxmF1ox4WzWaTQqHA+vo67777LlevXiWfz2O32xkfH+cXfuEXhF/IcaNWq1GtVh/6yOVyoly8u7tLLBYjm81SLpeFH4rT6cTv9xMMBsWqzUdFXj/5yU/4l//yX5JMJvnSl77E5z//eZG8fVRE8/777/ODH/yAK1euMDs7i1ar5cyZM5w7d47JyUkGBwdFL4o0iCjz6vFSRSIKhQKTycTQ0JCw5ltaWiKZTLK4uMitW7eo1Wo4nU5xBz8uAig1sD04cVuv17FarRgMBlHylZzMKpWKmIoFRCk5lUpht9tFgrmlpUXsOg4Gg6jValKpFIuLiyIRDPePPoVCgVwux+bmJtevX2d2dpZ0Oo3T6aStrY3XXnuN119/naGhoSMdOJQ5PrxUkcheUqkUGxsbTE9Pc/fuXSKRCI1GA7fbzWc+8xkmJycJBAInoumpWCxSKBTER7FYpFQqkcvlSCQSJJNJkaSVzLKl6pTT6aSjo4PW1lYqlQpbW1vCjxbu21i++eabwH2v2rm5OT788EPu3r0rDKDb2toYHx8XR0Kv1ytc6WRkXqpIZC92u114hTSbTW7fvs3U1JQYlTebzdRqNbxe72PD+eOCtJDrwWnlfD7P1taWmDYulUqkUimy2Sz1eh29Xo/dbiefz5PNZnE6nbhcLhqNBtPT02xtbdHW1sbw8DB6vV7M2ty6dYu5uTmxEOszn/kMX/rSl47tUVDmaHnpIpEHy7+FQoGNjQ2WlpaYm5tjZ2eHQqGARqPB5/PR09NDb28vfX19J7KjUlqXkUwmSaVS5HI50eCWzWaFTYF01HM4HCSTST744APW1tYYGRnh3LlzKJVKdnd3yefzQoAkVzfp9TmOjm4yR89LJyKPI5vNEg6HmZ+f55133uHu3bvo9Xp6enqYmJjgzTffpLe390Q8l71I08US9XqdWq0mjnNSc9vOzg61Wg29Xk86nebu3btsbW3hcDhobW1FqVRSqVTw+/2cP3+e06dP097ejsvlkhOmMp/IS3treTAisVgsqFQqms0muVwOi8VCIpGgVquxtLREo9EgFAqJ8X9pHehx58GysVQpkbpcTSYTHo+HWCxGJBJhd3eX7e1t0uk06XQarVYrckVut3vfWgar1YpGo6HZbJLNZqlUKqLcbDabT0Q+Seb588pEInC/+iCVTpPJJNPT09y4cYP19XUymQxarZauri4GBgYYGRlhYGDgxL9R6vU6KpWKWq3GwsIC77//PleuXOHq1avs7u7S09PDhQsXmJycZGJiAo/HI1ZYSg5t1WpV2BxUq1VxFNzrwC7z6vLSRiKPQqlUiklZKeGay+UA2NjYEKP8y8vLNJtNisUiTqcTnU4nvGKl6drjjGTVKJWAFQoF1WqVVColjLP7+vro6uqiu7ub8fFxTp06xcjICGq1mu3tbba2tsSydqPRKFr2pQpQNBoVbv4+nw+z2SxXa15RXqlI5EFKpRKxWExM14bDYWGkI91xrVYrXq+XQCBAZ2cnra2ttLS0HOtqTi6XIxqNsrGxwdbWFpFIhGQyKZajm0wm4WXidrtpaWnB7XZjsVgol8tMT09z+/Zt3nvvPWZnZxkaGuIXf/EXxVjB1tYWs7Oz7O7uMjo6ype//GX6+vowGAyykLyCvFKRyIPo9Xoxi1Iul9ne3kaj0VAoFNje3iYajRKNRslkMuTzeRqNhjAfkpq5JCFVKpXi43nu85USqY1GQ/y30WigUCjEkjBpbcfKygobGxuEw2FSqRQ6nQ6fz0dHRwfnz59neHj4oYpLsVgkk8kQDoe5d+8et27dErkkq9VKpVJhc3OT2dlZrl27RjqdZnx8nLa2NnQ6nSwiryCvtIjsRafT4fF4GBsbE1vyMpkM2WyWXC5HqVRibm6O5eVlDAaDsDrc6+pls9n22SA+DyQzI6mEm8lkxEculxMf5XKZZrOJTqdjYGAAi8Uidg57vV7a29sfWbKV9gOZTCbMZrPoT5HK4W1tbahUKt5++22x20aa85H298i8WsgisgeTyUR/fz+9vb3izbq1tcX8/Dxra2tsb2+TTCapVqti/4zNZhNvMq/Xi8vlwul0CjE5rPyJlKORPEiSySTxeJxoNEokEhFt/qVSSewmDgQCtLW10dfXR09Pj7APkJZ0PQrJq0Qa8+/o6CAYDIqF6Vqtlo6Ojn2WjlJZudFoHMpzlTlZyCLyCKS7sSQAjUYDs9mMz+cjlUqJJVfVapVms0k+nxcCYzQaMRqNwj5R2qy396gjTezuzasoFAphmyh5tko/u9FoUKvVKJVKouVd2i4o7RO2Wq2YzWbhX2q1WnG73fh8Ptra2p7aIEhKmm5vb1OpVLDZbJjNZnF8isfjLC4uolKpGBkZYXR0VDjtH/eEs8zzQRaRJ2CxWOjt7aWzs5NGo0GlUhGGR7FYjHA4TDweJ51OE4lEKJfLYkm4JBx7hUSlUu0TmL1LqhuNhtjAV61WhYBUq1UhLM1mUzjNS0cOqcfD7XbjcDjEwJ4UdTwoWJ9EuVxmfX2dhYUFcrmc+F7ZbJbFxUVu3rzJ3NwcCoWCz33uc0xOTjI0NLTPBkDm1UIWkScgHVv24na7SaVS2Gw2TCaTsDWU1kaUy2UR3kshvhRpSEIkNW09KCKSJYB051coFGJ7oFKpFJGG0WjEYrFgt9tpaWnB6/WKwbiDRATVapVIJCIG9Hw+H0ajUQjnzMwMKysreDweBgcHGRkZeeYNhDIvB7KIPCPS0UEyZJZ6MiS3MkkMpCOHZC5Ur9epVCriGCJVcSTBkERir2hIkYu0QFyyDVCr1Wi1WtHHIkU3B0HyYo3FYng8HjGgmMlkSKVSbG5ukkgk6OnpYWBggLa2Nnmm5hVH/u0/I2q1WriIPQ5pY14ulxPGy1LCVmojf1BEpOVWUrlUqpQcZpL2k5AmgdPpNB0dHbS3t+Pz+dDpdELkpC7WbDYrms9kIXl1kX/zzxFJFFQqFUajkWazKbpJpdyJ9Hl7jy7Slj0pCSv9/4sgm82SSqUolUo4nU5GRkbo6elBq9XidDopFAqi1L28vMyFCxf483/+z9Pa2vpCHp/M8UMWkRfA3kqPxOMahY+q+7fRaJDP50VnK9xfxNXf3093dzdwf8l5pVIhn89z+fJlbty4Qblc5md+5mdkEXmFkUXkiDhuowKVSkW0/zcaDeGKtjdpqtVqqVarwsNEOprJ/SGvNsd3AETmhVIoFNjZ2SESiQD3neEsFsu+KWZpJefGxobYLex0OuX+kFccORKRoVarEQ6HmZmZYX5+nnQ6LfI0hUIBvV5PqVRieXmZxcVFtre3cTqdBINBRkZG5BWZrziyiLzCSIleyRX/ypUr3Lx5k+3tbSwWC5lMhu3tbbLZLBsbG9y9e5ebN2+ys7PD8PAwb775JhMTEwdeEC5zspFF5BWnXC6LYT5pUtnhcOByudBqtcJFXmrrV6lU+Hw+Tp8+zec+9zmCweBzGzaUORnIIvKKI5kXORwOzp49K9r7zWaz+HO5XBbO762trRgMBvr6+sSSrOOWJJZ5sbzSpkSvOs1mU0wDS3YHtVrtIW+Uer1OvV7HbDbT2tqK0+mUfUNkBLKIvMJIiVPJ8QwQDW6A8KOVSriS6bP8+5bZy4FERObkIw0J7r0MJJF4cB2FNIUsi4jMXmQRkZGRORBys5mMjMyBkEVERkbmQMgiIiMjcyBkEZGRkTkQsojIyMgcCFlEZGRkDoQsIjIyMgdCFhEZGZkDIYuIjIzMgZBFREZG5kDIIiIjI3MgZBGRkZE5ELKIyMjIHAhZRGRkZA6ELCIyMjIHQhYRGRmZAyGLiIyMzIGQRURGRuZAyCIiIyNzIGQRkZGRORCyiMjIyBwIWURkZGQOhCwiMjIyB0IWERkZmQMhi4iMjMyBkEVERkbmQPz/inSiPBm7urUAAAAASUVORK5CYII=",
"path": "images_version_5/image_23.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, PA and PB are tangent to circle O at A and B respectively. then the degree of angle P is ()
Choices:
A:65°
B:130°
C:50°
D:100°
|
Như hình vẽ,PA và PB là tiếp tuyến của đường tròn O tại A và B tương ứng. Khi đó số đo góc P là ()
Lựa chọn:
A: 65°
B: 130°
C: 50°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, PA and PB are tangent to circle O at A and B respectively. then the degree of angle P is ()
Choices:
A:65°
B:130°
C:50°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, PA and PB are tangent to circle O at A and B respectively. then the degree of angle P is ()
Choices:
A:65°
B:130°
C:50°
D:100°
|
As shown in the figure, PA and PB are tangent to circle O at A and B respectively. then the degree of angle P is ()
Choices:
A:65°
B:130°
C:50°
D:100°
|
115
|
23
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAt8AAAJTCAYAAADQeHpnAADwL0lEQVR4nOzddVjV1x8H8PelQUAasbC7E3XGdMZMjNmzpjPWP7e5Oaduuk2nbtbc7O6cXSgmooCB3YHYiCgh9fn9wXMO38ttuFxkfl7Pw+P1fOt88577+Z5QERGBMcYYY4wxluus8joDjDHGGGOMvS248M0YY4wxxpiFcOGbMcYYY4wxC+HCN2OMMcYYYxbChW/GGGOMMcYshAvfjDHGGGOMWQgXvhljjDHGGLMQLnwzxhhjjDFmIVz4ZowxxhhjzEK48M0YY4wxxpiFcOGbMcYYY4wxC+HCN2OMMcYYYxbChW/GGGOMMcYshAvfjDHGGGOMWQgXvhljjDHGGLMQLnwzxhhjjDFmIVz4ZowxxhhjzEK48M0YY4wxxpiFcOGbMcYYY4wxC+HCtxYDBgyASqVCiRIl8jor/wnNmjWDSqVCs2bN8jorRsuPeU5LS8OMGTNQr149uLq6QqVSQaVSITAwEAAQHBws04KDg/M0r4zlxJgxY6BSqWBjY5PXWWGMMZOZpfB99OhR+aWuUqlw+PBhc6yWMWaCXr164csvv8SpU6fw8uXLvM7OW0v8cMv6Z21tDXd3d9SsWROfffYZIiMjjV4nEaFUqVJyXR9//HEu7sHboWjRolrPk42NDTw9PdGgQQOMHj0at2/f1rp8amqq1uXFn6OjI4oVK4aOHTti5cqVSEtLs+wOMsbeWGYpfC9btkzv/xl7E4wfP15+Mf7XHD9+HOvXrwcAtGvXDvv27cO5c+cQGRmJmTNn5nHuGACkp6cjNjYWZ86cwezZs1GjRg2MGzfOqGWPHDmCW7duyf+vW7cOSUlJuZXVt1paWhpiYmJw4sQJ/Pbbb6hYsSIWLlxo8nqSkpIQFRWFbdu2oW/fvmjUqBGePn2aCznO//r27QuVSoUyZcrkdVbeau+88w5UKhXee++9HK9L+eN04sSJZsjdf0uO39m9fv1afuk7Ozvj1atXWL9+PWbNmgVHR8ccZ5Dlf1zFIfft378fAGBtbY1Vq1bB1dVVY55mzZqBiCydtbeaMrqdnp6OBw8eYOvWrZg7dy7S0tLw888/w8/PD8OGDdO7HhHQEM/YFy9eYOvWrejevXuu5v9tUKxYMezcuVP+PzU1FXfv3sXq1auxZs0aJCUlYciQIShWrBhatWqldR0BAQGYP3++WtqrV68QGRmJWbNmITIyEqGhoejRoweCgoJydX8YY2++HEe+//33X8TGxgIAZsyYAQCIi4vDv//+m9NVM8aMdP/+fQCAr6+v1oI3yxtVqlSRf9WqVUPr1q3x119/Yd26dXKecePG6a2SkJiYiA0bNgAAhg4dikqVKgHgN4zmYmdnp3aeatSogY4dO2L16tWYPHkygIxqP2PHjtW5jgIFCqito0qVKggICMCQIUMQEhKCcuXKAQAOHDiA8PBwi+wXY+zNlePC99KlSwEAlSpVwqBBg/iLgbE88Pr1awCAra1tHueEGaNLly5o1KgRAODx48eIiIjQOe+WLVvw4sULAECfPn3Qp08fAMCePXvw+PHj3M/sW2zkyJEoUqQIAODkyZOIiYkxeR0FChTAiBEj5P9DQ0PNlj/GWP6Uo8L348ePsXfvXgAZdbYAyC+GvXv34tGjRwbXER0dje+++w61atVCwYIFYWdnh0KFCqFq1aro1asXlixZgri4uGzlLy0tDUuWLEHr1q1RqFAh2NnZwc3NDWXLlkWLFi3w66+/4uLFiwbXExsbi7Fjx6Jy5cooUKAA3Nzc0KRJE6xcudKofERGRuLjjz9G2bJl4eTkBBcXF1SuXBlfffWVzsY869evl/Wlrly5onWeMmXKyHk2btyodZ7AwECoVCrUrVtXLX3JkiVy2du3byM9PR3z5s1Dw4YN4e7ujgIFCqBatWr45ZdfkJCQYNR+6qKv55Dbt2/LfCxZsgQAsG/fPnTo0AGFChWCvb09SpYsieHDhyMqKipb2xf7+tNPP8k0bQ2kdJ0LICOy/L///Q9lypSBo6MjPD090bp1a+zatcuoPDx//hwTJ05EgwYN4OXlBXt7exQuXBidOnXCpk2bsrVfyv0QP4Lv3LmjsV+Csb2d3LlzB8OGDUOJEiXg4OCAwoULIzAwEAcPHgSgv+68tvOpS4kSJaBSqTBgwACNaVmvz9evX2P69OkICAiAl5cXVCoVxo8fr7FcamoqFi5ciLZt26Jw4cKwt7eHl5cXmjRpgunTp79R9aQDAgLk5zt37uicTwQyKlWqhJo1a6JPnz5QqVRITU3FqlWrzJKX6OhozJ49G127dkWZMmXg5OQEBwcHFC1aFIGBgVi/fj3S09N1Lr9//355vo4ePQoAWLNmDZo3bw4vLy84OjqiQoUK+O677/D8+XOD+bl79y5GjBiBkiVLymuwU6dOOHDggFn211jW1taoU6cOgIzo9927d7O1HmXPWTm5Bs19ntLT07FgwQI0a9YMPj4+sLKywuDBgzWWIyKsW7cOXbp0QbFixeDg4AB3d3fUq1cPEydOlD8OTSV6rRHfpTdu3NDaAFYpOTkZW7duxSeffII6derA3d0dtra28PT0REBAAH766Sc8e/ZM73ZFY1uxr5cuXcLgwYPh7+8Pe3t7+Pr6omvXrjh58qTBfUhJScGff/6JOnXqwMXFBW5ubqhbty5mzJiBlJQUXL9+Xe7LihUr9K5rz5496NOnD0qWLAlHR0cULFgQNWrUwHfffYeHDx8aPI7iWCUmJuL3339HzZo14eLiAldXV9SvXx9z5szR+pZN1Lk/duwYACAoKEjjPJhSH79o0aJqgaAff/xRY33arjMA2Lp1K7p06YIiRYrA3t4enp6eaNiwIX7//XfEx8cbnYc3HuXAH3/8QQBIpVLRnTt3iIjo9u3bpFKpCABNmzZN7/KHDx8mV1dXAqD3b9u2bSbn7eXLl9S4cWOD6+7atavGsv379ycA5O/vT5cuXaISJUroXP6TTz7Rm49ff/2VrKysdC5vb29PS5cu1Vju8ePHcp6///5bY3pUVJTBfKSnp5OHhwcBoJEjR6pNW7x4sVz2/Pnz1Lx5c515rFevHr169crQIdepadOmBICaNm2qMe3WrVtyO4sXL6ZRo0bpzIe3tzddvHjR5O0r91Xf361bt7Tm+ciRI+Tp6alzuSlTpujd/o4dO8jNzU3vttu1a0cvX740ed+M2S/h4MGDMu3gwYNa17d3714qUKCA1vWoVCr65ZdfaNy4cRrrFrKeT338/f0JAPXv319jmvKcnTp1imrUqKGRn3Hjxqktc/36dapUqZLeY1G2bFm6evWqocOaI+LaMfR4VV7ra9as0TrPgwcPyNramgDQr7/+KtPFs61mzZo5zm9SUpLeZ5T4a9Omjc7nwL59++R8wcHB1KNHD53rKVeuHD169EhnfoKCgsjFxUXvNfjDDz8QALK2ts72fhcpUoQAUOnSpfXO17VrV7n9sLAwmZ6SkiLTW7RooXcd06dPl/OuX78+W/k193nau3cvvfvuuxrLf/TRR2rLPHz4kBo0aKB3m4UKFaKTJ0+avE/iPOr7y3qO+/TpY3AZb29vCgkJ0bldce4/+ugjWrduHTk6Ompdj42Njd7zFRMTQ7Vr19aZj4CAAAoPD5f/X758udb1vHz5kjp27Kh3n1xcXGjHjh16j6O1tTVFR0dT1apVda6nc+fOlJ6ebvIxNXSfaDu++v6yXmcJCQkGj0HRokXp7NmzRufjTZajwnf16tUJADVp0kQtXXwxVK9eXeeySUlJVLhwYXlRffvtt7Rr1y4KDw+nEydO0Nq1a+nLL7+kYsWKZavwPXLkSHnC2rdvT6tXr6Zjx45ReHg47d69myZPnkyNGzembt26aSwrCt/e3t5UtmxZcnFxoTFjxlBwcDCFhYXR/PnzqWjRonL9u3fv1pqHv/76S+1hMHXqVAoJCaGjR4/S+PHjZSFHpVJpvakqVqxIAKhHjx4a05YvX652UVauXFljntOnT8vpWY+hsnDTsGFDsrKyov79+9OOHTsoPDycNm/erPbA/e6774w99BqMLXw3bNhQzrdq1SoKCwuj/fv3U79+/dQeZqZ6/vw5RUZG0vDhw+V6IiMjNf6Sk5M18lyuXDny8vIiHx8fmjRpEh09epROnjxJf/zxhyxQ29jY0Pnz57Vue+/evbLwVKJECZo8eTIFBwdTREQEbdu2jfr27Svz1KVLF5P3TeS9U6dOBIAKFy6ssV+CocL3tWvXyMnJST7EP/nkEwoKCqJTp07R4sWLZcG2Xr16cj1Z5Ubhu1q1aqRSqahfv35q1+fOnTvl/NHR0eTr6yufJyNHjqRdu3ZRREQEHTx4kL7//nu5b6VKlaLY2Fijj7GpjC18v//++3K+w4cPa51nypQp8hkhAhxERHPnzlW7lnMiMTGRrKys6L333qOpU6fSnj17KDw8nIKDg2nhwoVUv359ua1BgwZpXYeyUCfu4y5dutDmzZspPDycduzYoba/ffv21bqeGzduyOeitbU1jRgxQl6D8+fPp9KlSxMAqlOnjtaCmSmMLXyXK1dO5js6OlqmG1v4jo+Pp/LlyxMAcnZ2pmfPnmUrv+Y+T9WqVSMAFBgYqHae1q1bJ+ePi4uTebezs6Phw4fT1q1bKTw8nI4cOUITJ06UAR5PT0+6d++eSfv06NEjioyMpPbt2xMAKlasmMbzK+uztUePHlSmTBn6+uuvad26dRQSEkKnTp2iDRs20Mcff0x2dnYEgHx9fenJkydatyvOfa1atcje3p5Kly5Nf/31F504cYKOHz9OY8eOJXt7ewJAbm5u9PTpU63radGihTyejRo1orVr11JYWBjt3LmTevXqRQDUzou2wndqaio1adKEAJCVlRX17t2bNmzYQGFhYRQSEkJ//vknFStWjICMYF1ERITGOkTh28rKiurXr0/29vb05Zdf0v79+yk8PJxWrlwpzyMAWrBggdry9+7do8jISKpZs6b8ns16HkwJWly+fJnOnDkjt/fZZ59prO/+/ftqy3Tp0kXOX7NmTVq+fDmFhYXR7t27ZZlMXGfK+zC/ynbh+9y5c/JgzJs3T22a8ovh3LlzWpcPCgrSWTBUSklJoRcvXpicP3GxaitcK2l7ECpPtJubm9aC1bVr18jBwYEAUMeOHTWmP378WH7ZFy5cmO7evasxT0REhPyiKVKkiFrhj4hkYbFQoUIay3700Udy2+LL+fHjx2rz/Pnnn/KGfP78udq0rNFgbQ+FpKQkqlKlirzgU1JSNOYxhrGFbwA0ZMgQjV/lRESDBw+W82h7+BhDX8RWV56BjDcgUVFRGvMcOXJEvuX5/PPPNaa/evVKFghbtWpF8fHxWrc1b948ua39+/ebvmOk/rZGF0OFb2XUQVu0Jz4+Xq3gbanCNwBauHCh3nUpv7xv3LihdR7l/TZmzBi968sJYwrfp06dkj/KnJycKDExUet8ooCUNcDx/PlzWTj45ptvcpTftLQ0ncdMGD16tHyW3Lx5U2O6slAHgCZNmqR1O+INm62trdYCjfIaXLt2rcb02NhYtahebhe+161bJ7dVrlw5tWnKwre2wsqJEydowYIF8q2NSqWiv/76K9v5zY3z9NNPP+ld37BhwwgAubu763zu3rx5Uz7nBgwYYPwOKYjIqzHR1WvXrmn9jhBOnz4tv3vHjx+vdR5lZLZevXoUFxenMc+SJUvkPDNnztSYrrw2unTpQmlpaRrzTJo0yeD3rJjHzs5OZyDv2bNnVKFCBQJAzZo105iufINgZ2en9cf8kydPyMvLS/7o0KZRo0YGf0waS3l/TJgwQe+8W7ZskfO2atVKoyxERDRnzhw5T+/evXOcv7yW7cK3iCzb29trFOyUXwxZqzsIK1eulAcyO4VrQ2xtbQkAzZgxw+RllYVvbTed0LNnT/lgymry5MlyHatXr9a5jokTJ8r5lBEHIqI1a9bIaZcuXVKbVqZMGVlIKlWqlNYCU2BgoM4bTVm40Rdx/eeff+R82X3dY2zh28/Pj5KSkrSu4/Lly3K+7JxTouwXvrdu3apzvoCAAAK0v/6fNWsWASAHBwe9r9mJSBZq+/TpY3hHtMhp4TsqKkq+0u7cubPOdSijGZYqfDdv3lzveiIjI+W8//77r955v/32WwIyfhDnFl2F77S0NLp//z7NmTOH3N3d5Ty63iop31xlDXAQEXXu3Fnui7YvfnNKSUmReZ4+fbrGdGWhrn79+jrXs337djlf1rd99+7dk9dgYGCgznUcO3YsVwvfqampdPPmTZo4caL8HgM0o4XKwoWhv9atW1NQUFC282osU85TxYoV9V43Dx8+lPtv6EfDzJkzZXlA1w9JfUwpfBvj008/JQBUo0YNrdPFuVepVHThwgWt86SlpZGPjw8BoA8++EBjuoh6Ozk56Yywp6enyx/Q2grfr1+/ltsw9CN669atcj1Zf1gpC9/ffvutznV8/fXXcr+1VXPMq8J3y5Yt5fWjLdAlNGvWjICMH++GvlPfdNlqcJmWliYb+rRr1w5ubm5q093c3NC2bVsAwKpVq7RW8Pfz85OfFy9enJ1s6CXWv3bt2mw3GFSpVOjdu7fO6bVr1waQ0ZhOdLcoiH6X3dzc0LVrV53rUDY6EMsIygaKygZy9+/fl404mjZtKudTzkNEcqTRpk2b6tw+kNlIVhuxjwBw8+ZNvevJqW7dusHe3l7rtPLly8PZ2dki+VByc3NDu3btdE4Xx0dbnkR3m02bNoWPj4/e7TRp0gQAEBISkt2s5khwcLBsqNW/f3+d81WvXh3Vq1e3VLYA6L8+gczj7OTkpPdcAZnHOTo6Gvfu3TNPBvXIOsJlkSJFMGLECNnosGPHjvj555+1LisaWtrb2+ODDz7QmC4auUdHR5u17+j09HRER0fj8uXLOH/+PM6fP4/Lly+jaNGiAICzZ8/qXd6YZyagec8cOHBAXoMDBw7UuY6GDRuifPnyBvfDWFkb+dnY2KBUqVIYM2aM7EXos88+w0cffZTtbRw8eBD//PMPHjx4YK5s5/g89ezZE1ZWuosAu3fvlvtvqD95cV+9fv0ap0+fNmU3ciwmJgY3btzAhQsX5HEQZZLz58/r7cazRo0asoe2rKysrFCzZk0AmtdqcnKybFjctm1beHl5aV2HSqXChx9+qHP7ISEhssciY48xAJw4cULnfMZ8nxOR3g4GLCk5ORlHjhwBALRu3Vr2LqTNkCFDAGQ0cj106JBF8pdbslX43rt3r3yIiC+ArET6gwcPNAqVQMZISqVKlQIAfPnll6hXrx5+++03HD9+HMnJydnJlhpRgDh+/DhKliyJTz/9FJs3b8aTJ0+MXoeXlxc8PT11Tvfw8JCfsw7nff78eQBAzZo19Xb/5uvrK1vCi2WU08SXjLJgLT5XqlQJ3t7eWgvf586dk91iaetlRKlChQo6p+nbR3PTlw8AcHd3t0g+lMqWLav3C0ocH215CgsLA5DRgl3fMNQqlQpTp04FAL0t2nOT8tpTFpC0Eb0/WEq1atX0ThfHOSEhATY2NnqPc/v27eVyeXWsHRwc0LRpU6xcuRL//vuv1ueDsicTbQEOkS7uiZx27UpEWLZsGZo1awZnZ2cUKVIEFStWRNWqVeWfGDDI0CiN2X2eKAckyto7U1b16tXTO90cXFxc0K5dO+zevdvgKLEtWrQAZbxJln+vX7/GzZs3MWvWLLi4uGD9+vUICAjA9evXs50nc54nY+8rAPD29tZ7X9WoUUPOa4n76ty5cxgwYAAKFSoET09PlClTBlWqVJHHQIyomJqaqrcnFkPfObqe79euXZM/THLyvFQe47p16+o9xspngL5j/KZ8nxvr+vXrsgeg+vXr651XOT1reSm/ydYIl+JBry8qKL4wYmNjsWzZMrRu3Vptuq2tLbZt24Zu3brh0qVLOHXqFE6dOgUAcHR0RNOmTfHhhx+iR48esLa2NjmPP/74I+7fv4/Fixfj8ePH+Ouvv/DXX39BpVKhcuXK6NKlC0aMGAFfX1+d63ByctK7DWWhLOuva1Hw1bd+oVChQrh9+7bWPmSbNWuGK1euqP3KE4VsUah+9913AQAXL17EkydP4O3tLeexsrJC48aN9W5f337q20dzM/Z453Y+lIzNU9buvVJSUjTehhgjp906Zpey+zdDUXpvb+/czo4aUcDUJbt9XVviWCsLlNbW1nBxcUGhQoU0uk/Las+ePbKrVl0BDnt7e3Tr1g3z58/H5s2b8erVK/l2yBSJiYkIDAyU3cYaM78+2X2emHINGvNcNVbWES5tbGzg6uqKQoUK6f3hbYidnZ0M/DRp0gS1a9fG3bt38fHHH2ery0Rzn6f8el/NmzcPI0aMMPp7QN9xyO53jrmel+Y+xtbW1rCzs9O5nCW/z42lLPcYuq8LFSqkdbn8yOTCt3L0ytjYWJ3VBJS2bNmCly9fwsXFRS29UqVKiIyMxLZt27Bt2zYcOnQIN27cQGJiInbv3o3du3fjjz/+wM6dOw1e4FnZ2tpi4cKFGDlyJFavXo0DBw4gLCwMycnJ8tXUH3/8gRUrVqBTp04mrdsU2vpCzor0DPndtGlTzJ07Fw8fPsTly5dRoUIFWRAXhe+iRYuiVKlSuHnzJg4dOoRu3brJeapVq2bwIcvMT/lg6969O3788cc8zE3+ZujHtzjWJUuWxNatW41eb8mSJXOUL2NUqVIlW8spI9ldunQxOH98fDw2btyot8qQLj///LMs0L377rsYMWIEatasCT8/Pzg4OMgv7IYNGyIkJETv8yonTFmvOfMgRrjMTWJ00x07duDgwYO4deuWydefuc+TsfeVo6OjUf1dC8WKFTN6XlNduHBBFrwLFSqEb775Bu+++y78/f3h4uIi3yLNmzcPQ4cOBWDea8XclN8TR44c0fqGSxtz/vh8kxgqL73J59JUJhe+161bZ/AXdVYJCQnYsGGD1np81tbWCAwMRGBgIICMaiq7du3CnDlzEB4ejvDwcAwdOhSbN282NasAMgr4EyZMwIQJE5CYmIhjx45h1apVWLZsGV69eoVevXrhxo0banXQzcHDwwMPHjww6hWciHApXwkJWet9u7q64tq1a7K+t3K+mzdvIjg4GF27djW6vjfLHQ4ODnByckJCQgJiY2Nz/cs9p5Q/0B4/fizrjWqjr+qWMrKib7APAGYbMEFUDXv06BEqVKhgMKr8pnvx4oVJPyKEZcuWmVz4Tk9Px8KFCwFkPCvE4BraGDM4Tk4on3+PHz/W+0zOjyN7VqhQATt27ACQ8UbElMJ3XpwncV8lJibC19fX4m+8tFm8eDHS0tJgY2ODQ4cOoVy5clrny+1rNevzUh99z0tltVZ7e/s3/nsiNyjve0PlJeXAjdrKS/mJyd9SIiLj5+eHP/74w+D8o0aNwt27d7Fs2TK9jWgEPz8/DBo0CB9++CECAgIQERGB7du3IzExEY6OjqZmV42joyPee+89vPfee6hatSr+97//ITExEdu3b5cV+c2lSpUqePDgAU6fPo2UlBSd9b4fP34sR7fTduP5+fmhbNmyuHbtmix8A5n1vYVmzZph0aJFCA4ORmRkpBzhy1B977eJMW8hzKlmzZo4duwYjh07hoSEBIOvOPNS5cqV5eewsDC9hW9lPcWslG+39H0BPnv2zGCdVGPVrFkTO3fuREJCAo4dO5bvf3CuXbtW1oH85ZdfZNsYXbZv346VK1ciODgY9+7dMyny+OTJE1k46NGjh857JC4uDteuXTN6vdlRtWpV+fnUqVPo2LGjznlFFcX8JDU1VX5OSUkxadm8OE+isSGQ0c7LUMPnnDD22XzhwgUAQK1atXQWvAH9zyhzKFu2LOzs7JCcnGxwW/qmZz3Ghto65DZzfkcau64yZcrAwcEBSUlJCA0N1Tuv8g1Mfv+hYlLh+9atW7KFb9euXdGzZ0+Dy4SFhWHatGk4dOgQ7t69i+LFixu1LVtbWzRt2hQRERFITU1FbGxsjgvfSi1atJCfzVUIUHrvvfewb98+xMbGYuPGjTqP1cKFC+WrlPfee0/rPM2aNcO1a9dw6NAhWfjOWqhW1vtev349gIyL31B977eJg4OD/Pz69WujqkzlRMeOHXHs2DHEx8fjr7/+wjfffJOr28uJd999F1ZWVkhPT8eyZcvkm6iszp49q7cXBXd3d9nWQ9+XzurVq3OaZalTp0745ZdfAAC///57vi98iwCHl5cXRo0aZbB6QIUKFbBy5Uqkp6djxYoV+P77743elrJAqK+u7vz583O9jmjz5s3lNbh06VKdhe+QkBBcvnw5V/OSG5Q/GEytmpEX56lt27awsbFBamoq/vjjD/Ts2TNb7a+MIZ7NohGjLuI46DsG9+/fx7Zt28yXOS3s7Ozwzjvv4MCBA9i1axeePn2qtccTItI7pHyTJk3k8/Lvv//GF198ka12G+Zi7HkwhrW1tbx+9K3Pzs4OjRs3xr59+7Bnzx7cv39fZ48nCxYsAJBRPlT2/pIfmdSaZPny5bKg2K1bN6OWEfMREZYvXy7Tjxw5orfVd3Jysqy37OzsbNIrr5iYGGzdulVv/SBlo5XcqPs5cOBAGekcOXKk1m7Nzp49i19//RUAUKRIEZ0FHlGYePjwIdatWwdAs/At6n0TEWbNmgUgI5Kkr7eWt43yNfaNGzdyfXvDhg2TD+Qff/wRu3bt0jv/sWPHZHUhSytSpIhsPL1582Zs2LBBY57ExER8/PHHBtclHor//vuv1uN86dIljB07Noc5zlS3bl20atUKALBz506MGzdO7/y3b9/WWfgXPQuIHogs7caNGzh27BgAIDAw0KjCTo0aNVC6dGkAUHvGGsPX11e+rVi9erXWiOyJEyfMer50KVq0qOyNZtOmTdi4caPGPHFxcRg+fHiu58Xc/v33Xxw/fhxAxjE31ENGVnlxnooXL45+/foBACIiIjB8+HC9BftHjx5h0aJF2dqWeDY/fPhQb8G6bNmyACA7acgqPj4evXv3Nkvh0RBRpzwhIQFDhw7VWs3u999/1xuscHJywv/+9z8AGT8aevXqpXf/4+Li8Ndff+Uw57qJ82Cu7nzF+gx9337yyScAMgr9H330kdbre968ebKh8gcffJDv672bXPgGMlr3GhtRrV+/vnyFrfxiCAoKQvny5dGsWTNMmTIFe/bsQUREBI4dO4bFixejcePGiIiIAJDRF7Yp9Tjj4uLQqVMnlCpVCiNHjsS6desQGhqK8PBwbN++HUOHDsWoUaMAZDzwO3ToYPS6jeXt7Y0pU6YAyOiHt06dOvjzzz8RGhqK48eP4+eff8Y777yDV69eQaVSYd68eTqrpigL2i9evNCo7511PtG1Un6PAJpbw4YN5eevvvoKhw8fxrVr13D9+nVcv35dLbpkDq6urli9ejVsbGzw+vVrtG/fHt27d8fatWsRFhaGsLAwbNu2DePHj0f16tXxzjvv4Ny5c2bNgyn++OMP+YOxZ8+e+Oyzz3Dw4EGEh4dj6dKlqFOnDk6ePGnw1eiIESMAZBTWmzVrhoULFyIiIgKHDx/G2LFjERAQAE9PT7PWIV28eLF80P/8888ICAjAvHnzEBISgtOnT2P//v34448/0KpVK5QpU0Zrwe5NoGxoqW98gKzEvLoKJbrY2NjIfrnDw8PRpEkTeX0GBQXhq6++kt3alSlTxuj1Zteff/6JAgUKAMioXqG8BhcuXIg6derg7NmzFu/u0pD4+HjZkF/8nT59Wn7fKM/lb7/9ZnIEOa/O059//omKFSsCyIiqV69eHTNnzsTRo0dx5swZHDx4ELNnz0ZgYCCKFy+OefPmZWs74tmcmpqKYcOGITQ0VD6XlQU30Wd2Wloa2rRpg8mTJ+PIkSMIDQ3FnDlzUL16dRw+fBiNGjXK4Z4b1r17d/kGfdOmTWjSpAnWr1+PiIgI7N69G3369MF3332n1i2mtqoY33//vfzu3r59OypVqoRJkyYhODgYZ86cweHDhzF//nz07t0bhQsXxoQJE3Jtn8R5iI6Oxtdff43w8HB5Hu7evZvt9W3evBnz58/HhQsX5PqUdeE7deokG5bv2bMHAQEBWLlyJcLDw7Fv3z4MGjQIw4YNA5BRT150zZuvGTsaz9GjR+VoRUOHDjVpJJ/PP/9cLnvixAkiUh9tUN9fly5dTB4xK+uQ5br+ihQponXIXGNGCyRSH4Xv1q1bWuf55Zdf5Kht2v7s7e1p6dKlBvepdOnScpnKlStrnWfZsmVq6964cWOO8k5k2oiFuhg7wmVORkQ0Vvfu3XWeC+Vx0JdnJWNGzQwKCqJChQoZdU0acy1oY47h5YmI9u7dK4dg1/Y3btw4+vHHHwnIGLlTF+U9n/WvWLFidOHCBaNHuNR3fSrdvn2b6tata9RxHjhwoMbyCQkJcrqu4ZeNYczw8tqkp6fL0Wrd3Ny0DrGsy8mTJ+U2P/30U5O2+/z5c7Uh27P+eXl50dGjR/WOfqccOfHIkSM6t2XMqHf79+8nZ2dnnfmZMGGCHNEvt4eX18eUES6BjGG/p02blu38WvI8KT158oRatWpl1D62bNkyW/uWmpoqR/nN+pf1HIvnj66/UaNG0fz58+X/7927p7E9ce4/+ugjvfkyNPJmTEwM1a5dW2de6tSpQ6GhofL/GzZs0Lqe+Ph46tu3r1HHuGzZshrLG3s/GDr/cXFxVKJECa3bzc59EhYWRnZ2dlrXl/XYJyQkUMeOHfXue9GiRbM90vabxujId3YjMlnnF+v59ttvsXPnTnz11VcICAhA8eLF4eDgAAcHB5QoUQI9evTAjh07sHHjRrW6usbw9/fHmTNnMGXKFLz//vsoX7483NzcYGNjAy8vLzRt2hRTp07FpUuX1Bo85IbRo0fj9OnTGDJkCEqXLg1HR0cUKFAAFStWxBdffIHLly/LV3v6KKPfuhpRinrfQMYv7PxeJyo3rFixAr///jvq1auHggUL5qgfX2M1b94cN27cwOzZs9GmTRv4+fnBzs4ODg4OKFasGFq1aoVffvnF6GshN7Vs2RLnz5/H0KFD4e/vDzs7O/j6+srBRsaPH4+4uDgAQMGCBXWuZ8aMGVi1ahWaNGkCV1dXODo6onz58vjuu+9w+vRpnaPK5YS/vz9CQ0OxefNm9OzZEyVLloSTkxNsbW3h7e2Nhg0bYuTIkTh06JDsOUJJObroV199Zfb8GXL06FH5urdjx456B+fKqm7durI9zZo1a0xq0Ofm5oaQkBD89NNPqFKlChwcHODs7IxKlSrhm2++wdmzZy0SSRRatGiBCxcuYNiwYfIaLFSoENq3b4+9e/dizJgxFstLTlhbW8PDwwP169fHd999h4sXL8oqBtmRV+fJy8sLe/bswb59+zBgwACULVsWzs7OsLGxgaenJ+rWrYtPP/0Uu3btMli1Thdra2vs27cPo0ePRrVq1eDs7Kyzwd7PP/+MrVu3omXLlnBzc4OdnR2KFi2Krl27Yv/+/Zg0aVJOdtck7u7uCAkJwbRp01CrVi04OzvDxcUFNWvWxOTJk3H06FG17xhdz0wnJycsX74cJ0+exLBhw1CpUiW4urrC2toabm5uqFGjBgYPHoyNGzeqjR1gbi4uLggJCcFnn32GChUq5LiTgNq1a+P48ePo0aMHihcvrrcPckdHR/z777/YsmULAgMD4efnB1tbW7i7uyMgIACTJk3C5cuXDQ4OlV+oiP5DHScyxnLde++9h6CgILzzzjtyWOD/gvHjx+Onn35C2bJlcenSpVxrXMYYe3ssWbJE9vR2+/Zt+Pv753GO2Jsg98N+jLH/jOjoaNkoNCAgII9zY16igffo0aO54M0YMwvRuNvPz48L3kziwjdjTNLXA1FiYiIGDBggqzTkdRUZc0pOTkZoaChKliypczh3xhhTun//vuyTX5u5c+fKntX+S89LlnNc7YQxJjVr1gzx8fHo3r07ateuDQ8PD7x8+RJhYWGYM2eOLJx/9NFHss9Vxhh7Gy1YsAA//PADevXqhaZNm6J48eJIT0/H9evXsWbNGjlSrZ+fH86fP5/vR2Vk5pO/x2FmjJmd6AZRl86dO8u+5Blj7G32+PFjzJgxAzNmzNA6vUiRItixYwcXvJkajnwzxqSIiAhs3rwZBw4cQFRUFJ48eQIigo+PDwICAtCvXz85GA9jjL3Nnjx5gg0bNmD37t24fPkynjx5gpcvX8LNzQ2VKlVChw4dMGzYsDwdtZK9mbjwzRhjjDHGmIVwg0vGGGOMMcYshAvfjDHGGGOMWQgXvhljjDHGGLMQLnwzxhhjjDFmIRYtfN++fRsqlQoqlQpLliyx5KY1DBgwACqVCiVKlMjTfDBmCnH/jB8/Pq+zwv4Dxo8fL6+pN9Wb9L1hLtOnT5f7FBsbm9fZeeNs2bJFHp8zZ87kdXbM5ssvv4RKpYKbm1teZ4WZQVBQENq3bw8fHx/Y2NiY9CzlyPcb5ujRo/jiiy9QvXp1eHt7w97eHoULF0bDhg3x008/4dq1a3mdRYtasWKFvKCtrKxw586dvM5SvrZkyRJ5PLP+WVlZwdXVFVWqVMGwYcMQERGR19lljDHG3jgrV65Ey5YtsWPHDjx58gRpaWkmLc+F7zdEVFQU2rdvj8aNG2PmzJk4d+4cnj59iuTkZDx48AAhISEYP348KleujC+//BKvX7/O6ywjODhYFtyCg4NzZRvLli2Tn4kIy5cvz5XtsIzj+/LlS1y4cAFz585F3bp1MXbs2LzOFjOR8gfW7du38zo7b40zZ87I475ly5a8zs4bJzY2Vh6f6dOn53V2GMu2tLQ0fPPNNyAilChRAqtXr0ZERAQiIyMRGRlp1DosOsJliRIlwN2Ka7p06RJatWqFqKgoAED58uUxcOBA1KlTB+7u7nj06BEOHDiAxYsX49mzZ5gxYwbOnj2LrVu3wsXFJY9zn3uio6MRFBQEAHB2dsarV6+wfPlyjBkzJo9z9t8wceJEdOrUSf4/PT0dT548QXBwMKZPn45Xr15hwoQJKFmyJAYOHJiHOWW5Zfz48VyFiTHGTHDhwgU8ePAAQMb3aM+ePU1eB0e+89jLly/Rvn17WfAeOXIkIiMjMWrUKLRo0QK1atXC+++/jylTpuDSpUto0aIFgIyo8+DBg/My67luxYoVSE9Ph42NDaZNmwYAuHr1Kk6cOJHHOftvKFKkCKpUqSL/qlWrhhYtWmDChAmyziUA/P7773mcU8YYY+zNcP/+ffm5XLly2VoHF77z2KhRo3Dz5k0AwNChQzF16lTY2tpqndfb2xvbtm1DzZo1AQDr1q3D+vXrLZZXSxNVTlq1aoUBAwbA3d1dLZ3lnhYtWqB27doAgMuXLyMuLi6Pc8QYY4zlPWW1X13lNUNyVPg+duwYBg8ejPLly8PV1RXOzs6oUKECAgMDsWzZMo0vbEOt1rO2vH/x4gUmTJiAmjVrws3NTedyL1++xLRp09C8eXMUKlRINlKsX78+Ro0alaOGYwkJCZg+fTreffdd+Pr6ws7ODj4+PmjVqhUWL15sciV7pcePH2PRokUAgEKFCmHq1KkGl3F0dMTcuXPl/ydNmpTt7d+8eRPTpk1Dhw4dUKJECTg6OsLR0RH+/v7o0aMHdu/erXU5cR7fffddmfbuu+9qNODLSc8E4eHhuHDhAgCgb9++sLOzQ7du3QAAa9euRXJycrbXLaSnp+PAgQP4+uuv0ahRI3h5ecHW1hZubm6oUaMGvv76a9y9e1fvOpo1awaVSoVmzZoByPhF/L///Q9lypSBo6MjPD090bp1a+zatcuoPK1cuRLNmjWDu7s7nJ2dUaVKFYwbNy5PekRQ9gSUlJSUrXVk7VXowYMHGDVqFCpXrgwXFxed7QWeP3+OiRMnokGDBvDy8pL3dKdOnbBp0yaD2928eTMCAwNRtGhR2Nvbw8XFBaVKlULjxo3x448/4uTJkxrLZH3+xMbGYty4cahcuTKcnZ3h4eGBZs2aYeXKlUbte2pqKhYuXIi2bduicOHCsLe3h5eXF5o0aYLp06cbdUzT09OxevVqdO3aFcWLF5fXVPXq1TFo0CDs3r0bqampADLbYCirCJUsWVLjvlQeb129nSxdulSm79+/32A+R4wYAZVKBTs7Ozx79kzrPFeuXMHnn3+OypUro2DBgnB0dESpUqUwcODAbD2jU1JSUKhQIahUKrz//vsG5z9//rzcp19//dXk7eki6jKLoAgAdO7cWeO466vnnJKSglmzZqFevXooWLAgnJ2dUatWLUydOtWoZ116ejpWrFiBjh07okiRIrC3t4eHhwcaNmyIyZMn49WrVzqXDQwMhEqlQo0aNQBkfC999913KF++PBwdHeHu7o4WLVoYdd/p4ubmJoMnAPDVV19pHJ8vv/xS5/JEhGXLlqFJkybw9PSEk5MTKlWqhB9//BEvX740Kg/btm1Dz5494e/vD0dHR7i5uaFWrVoYM2YMnj59mu19U7px4waGDBkCf39/ODg4oEiRIujWrRuOHj1q0npevnyJ33//HY0bN4aPjw/s7OxQqFAhtG3bFqtWrUJ6errBdezduxcdOnSAj48PHB0dUaZMGXz++efyO61GjRpQqVQIDAzUWDZrbzOpqan4+++/0bhxY3h7e8PKykrr+crJdahkiXMVGxuLn3/+GXXr1oW7uzscHBxQvHhx9OzZU+czT9wrnTt3lmk1a9ZUu46Nbu9B2ZCQkEC9evUiAHr/xo0bp7bcrVu35LTFixdrrHfcuHFy+tWrV6lEiRIa68y63L59+8jLy8tgXrLq378/ASB/f3+d+3ny5EkqUqSI3vXWq1ePHj58mI2jSDRjxgy5ntGjR5u0bIMGDeSyZ8+eNXnbN2/eNHjMAFDfvn0pJSVFbVnledT3p+0cG+vzzz8nAOTs7Ezx8fFERHTo0CG57o0bN2Z73YLyetP15+TkRJs2bdK5jqZNmxIAatq0KR05coQ8PT11rmvKlCk615OSkkJdu3bVuWzp0qXVzlnWe8tYixcvNvr81KlThwCQg4MDpaenZ2t7yvssJCRE67168OBBtWV27NhBbm5ues9Lu3bt6OXLlxrbS01NpQ8++MDgea1du7bGssrr4ebNm1S6dGmdy3fr1k3jvlC6fv06VapUSW8eypYtS1evXtW5jlu3blGNGjUM7os4fgcPHjTqvlQeb+U+K8XFxZGjoyMBoAEDBujMI1HGtSvOa4cOHbTO8/PPP5ONjY3OPKlUKho7dqzO46Drmv3mm28IAFlZWVFUVJTefH711VcEgKytrQ3Oa4rnz58bddz//PNPucyff/4p02/dukUBAQE6l3v33Xfp9evXOrd/7949qlWrlt5tFytWTOf3RKdOnQgAVa9enSIiIsjPz0/nen744YdsHaOCBQsaPD5ffPGFnH/z5s0yPTQ0lDp27KhzuSpVqlBMTIzObT9//pxatWqld9vu7u4UFBSUrX0Ttm/fTk5OTlrXb2VlRX/++Sd98cUXBIAKFiyocz3BwcHk7e2tN7/NmjXTu8/ffvutzmU9PDzo6NGjVL16dQJAnTp10lheefwPHz6sVt7Qdr6Icn4dElnuXB09etRgubFfv34az3hxr+j727x5s1F5MLnwnZaWRi1btpQbKlu2LP3555905MgRCg8Pp+3bt9Po0aOpTJkyOSp8V6tWjWxtbemzzz6jffv2UVhYGK1evZqOHz8u5z9w4IB8oFtbW9OAAQNo8+bNFB4eTseOHaP58+dTly5dyNbWVmNbhgrf586dowIFChAA8vHxoXHjxtH+/fvp9OnTtGfPHvrkk0/ktuvXr0/JycmmHkq1wlZISIhJy/72229y2dmzZ5u87WvXrpGdnR116NCBZs6cSfv376eIiAjav38/zZkzhypXrizXn/VLMTk5mSIjI2nRokVynkWLFlFkZKTa3/Pnz03OF1HGl7l4+PTr10+mp6enk7+/v84Hhql++OEH8vPzoxEjRtDy5cvp2LFjFB4eTlu2bKFvv/2WnJ2dCcgofF68eFHrOkThu1y5cuTl5UU+Pj40adIkOnr0KJ08eZL++OMPWZC0sbGh8+fPa13Pp59+Ko9l+fLlaeHChXTq1Cnav38/DR06lKysrKhu3bpyntwufB84cICsrKwIAH3wwQfZ2hZR5n3m6elJhQsXJmdnZ/rhhx8oODiYTp48SQsXLqTLly/L+ffu3UvW1tYEgEqUKEGTJ0+m4OBgioiIoG3btlHfvn1l/rt06aKxvVmzZsnp77zzDi1ZsoSOHDlCp0+fpqCgIJoxYwa1adOG6tWrp7Gs8vlTt25dsrKyomHDhtH+/fvp1KlTtHDhQipXrpyc57PPPtO6z9HR0eTr60sAyMXFhUaOHEm7du2iiIgIOnjwIH3//ffyS7pUqVIUGxursY6HDx9S4cKF5baaN29OS5cupdDQUDp58iStXbuWhg4dSh4eHrIw/erVK4qMjKSJEyfK5fbs2aNxX7569UrrPmfVo0cPAkCurq6UmJio8xxv375drmPNmjUa03/88Uc5vWHDhrRgwQIKCQmhsLAwWrlypdoX+8yZMzWW1/e9ceXKFTnt119/1ZnH5ORk+Ux5//33dc6XHWlpaRQZGUkbNmyQeZkxY4bGcX/69KlcRln4btiwIdnY2NDQoUNp9+7dFBERQevXr6eaNWvKeSZNmqR12zExMTJI5ejoSJ9//jlt376dIiIi6NChQzRu3DhZ8PXz86NHjx5prEMUKIoXL05FixYld3d3+vnnn+nw4cN06tQp+uuvv8jHx4eAjB9Jpn5XERFdvHiRjh8/Lvdn1KhRGsfnwYMHcn5l4a9hw4YEgHr27Elbt26Vz4LmzZvLeYYNG6Z1u69fv5ZBBFFG2LRpkywjTJkyRf7YKFCgAF26dMnkfSMiunDhAtnb28vn/JdffkkHDx6kkydP0t9//03FixcnKysrql27NgG6C98hISFkZ2dHAKhIkSI0ceJEOnDgAEVERNDOnTtp8ODB8rncsmVLSktL01jHnDlz5HHx8fGhP/74g06cOEFHjx6ln3/+mVxcXMjPz4+KFy9uVOG7WrVqBIC6d+9OW7dupfDwcNq2bZtaIdMc16GlztXVq1dl2c7a2pqGDx+u9oyvUKGC3PePP/5Ybdk7d+5QZGSkWuB0w4YNatdxXFycUfkwufA9ffp0udHOnTtTUlKS1vnS0tLo/v37ammmFL6trKxo7969OvORkJAgT4STk5NG9Ezp7t27Gmn6Ct/p6enygqtevTo9efJE63p37dolb4QFCxbo3L4uZcqUkfuq78tNmz179shjNWTIEJO3/erVK4qOjtY5PT09nQYMGCAvdG0FBGWkTd/xN9W///4r15v1Gvj+++8JANna2qp9mWXHrVu39P5ounfvnnzz0bdvX63ziMK3uJa0RdSOHDlCKpWKANDnn3+uMf3s2bPyOqpVq5bWiO7SpUvVfl2bo/A9ceJEtYfG2bNnKSgoiMaOHUuurq7yQXnlypVsbYso8z4DMt5inDlzRue8r169koXWVq1ayTceWc2bN0+uc//+/WrTGjduLH8Q64tMP3v2TCMt65uQVatWacwTFxcnI0ZWVlZ07tw5jXnat29PQEaU58aNG1q3HxERIb8AxowZozE9MDBQ5mPy5Mk69+PVq1caETDlOb5165bOZbPuc1Zbt26V09avX69zHb1795bnNyEhQW3ayZMn5bWtbT+JMr4rxI8qFxcXjR/thr43mjRpQkBGIEiXTZs2qX1Z5obTp0/LbRiKfikL31ZWVrR161aNeV6+fCkLNMWLF9e6HnHcfHx86MKFC1rnuXz5Mnl4eBAA+vTTTzWmK6N5vr6+dP36dY15zpw5I4NNyoCIKZRvCJRvAbRRFv4A7QGmlJQU+cbAyclJ63NzzJgxcvqhQ4e0buvhw4dUsmRJAkDt27fP1r6JHwIqlYq2b9+uMf3p06dUtmxZuT/aCt/JyckyHw0bNqQXL15o3dbatWt1XsuxsbFqz25tZZ8zZ87IZ48xhW8ANG3aNL37b47r0FLn6r333tP7XHv16pVaoOvYsWMa8yiPz+nTp7OVD5MK32lpabIwUqRIEa0Xuz6mFL4HDRqkd13//POP0TeyNvoK39u2bZPrNlSlo3v37gSAGjVqZHIeRETU3d3d5GXPnDkj86gtAmgOz549k1FIbV9YuVX4Fm8E/Pz8NH7ZX7hwQW5z1qxZZtumLuLHpqurq9aqF8rCt7YvUEF8SdSsWVNj2vDhw+U6wsLCdK7j/fffN2vhW9+fvb09ffvtt3Tv3r1sbUdQFr5//vlnvfOKqLWDg4PWyIhSvXr1CAD16dNHLV18wX311Vcm51X5/NH3YA8NDZXzjRgxQm1aZGSknPbvv//q3Z54NVy4cGG19EuXLskfa9l5w2OuwndycrKsRhUYGKh1+VevXskvcm2FMnEv165dW2/VpefPn8vI4fz589WmGfreWLZsmZx+9OhRrevv0KEDASAvLy+9VThyIruFb33fdZMmTZLz3blzR23a7du35fN56dKlerf366+/yudYamqq2jRl4XvZsmU619GmTRsCQCVLltS7LV2yW/hu3ry5zvnWrFkj58taYHv58qWMtv700096t7dq1SpZeDb07MlK+fZFV5CGSD1gpq3wvXz5cgIyorE3b97Uu01RNaNdu3Zq6X///bfchr5r4qeffjK68K2tip6SOa5DS52ry5cvy/3q0aOHzvkiIyPlM7h3794a081R+DapweWZM2dkFytDhgyBs7OzKYubpE+fPnqn79ixAwDg5OSEjz/+2Kzb/vfffwFk9LddrVo1vfM2adIEAHDq1CmTG1+KhiIFChQwOY/KZczRE0VKSgqioqJw6dIlnD9/HufPn0d0dDQ8PT0BAGfPns3xNozx/PlzbN++HQDQq1cvWFmpX6KVKlWSDZvMPeBOXFwcbt26hQsXLshj4OTkpDZNFzc3N7Rr107ndNFziOjZRkk07qhataqcT5tBgwYZtR/m8Pr1ayxfvhzLly83W9/8hu5pcd81bdoUPj4+eucV911ISIhaup+fH4CMBjs5aZijr1/zevXqoXLlygCg0TBH7IOTk5Pe6wHI3Ifo6Gjcu3dPpu/cuVMe86+++sr0zJuJra0tunfvLvOkrdHvv//+i/j4eACa5zclJUU2NO7WrZveYZfd3NxQtWpVAJrn1JBu3brJ4boXL16sMf3Ro0cyH6Lx9ptE332hfB5kfXZs374daWlpsLKyQteuXfVuQ1xrcXFxuHjxotZ57Ozs8MEHHxjMy+3bty06Xkd2j8+hQ4fw4sULAJDXsS7i+BARQkNDTcqf8hmg77nRsmVLFCtWTOd08eyoU6cOSpYsqXebup5/YlwMR0dHvfvcr18/vetX6t27t97p5rgOLXWuxPEBgI8++kjnfFWqVEFAQIDGMuZkUuH79OnT8rM4ALnFUKFX5KVOnTqygGQuYWFhADJa5+sailv8ffrppwCA5ORkxMTEmLQdMUCOsS2AlZTLuLq6mrw8kPHl+NdffyEgIADOzs4oVqwYKlWqhKpVq8q/x48fA4DZWhgbsmbNGtmNT9++fbXOI9JPnjyJK1eu5Gh7d+7cwWeffYYSJUqgYMGCKFWqFKpUqSL3X/nDTt8xKFu2rMYPBSUPDw8A0GiZn5SUhOvXrwMA6tatqzev9erVM7g/pli8eDEo4+2X/Hv58iVOnjyJwYMH48GDBxg9ejR69eqV4y9bZ2dnlCpVSu884r7bs2ePwftO9Az08OFDtXX0798fAHD9+nWUKVMGgwYNwurVq2U/+sYy9lxcu3ZNrTcKsQ8JCQmwsbHRuw/t27eXyyn3QzzbbG1t5RdAXhEFn+TkZGzYsEFjuuj5xdfXV45BIFy8eBEJCQkAgO+//97gORXHLus5NcTR0VEWENatWyd/DAjLly+XPcJY8gessSpUqKBzmnhuAJrPDnG80tPT4ezsrPfYvvPOO3I5XcdX9NBhKC9ElK3vrOzK6fEBgIoVK+o9PkWLFpXzmnr9KUc01PfcUKlUqFOnjs7pIr+hoaEG7xUx0FxMTIza8+f8+fMAMoJU+s5liRIlZGDNEENlMXNch5Y6V+L4AED9+vX1ziumP3r0CE+ePDFpO8YwqfCtLHyICFNuUXZLpC8vuZEPUeA0lfiiMZa4+OPi4pCYmGjSso8ePdJYjyliYmLQoEEDfPrppwgNDTXYnZWp+csu0Ye3MsKdVa9evWBtba02f3bs2rULlSpVwuzZs3Hnzh2D8+s7BoZ+AIqCedYuomJjY2XB1lC019fX12Aec8rZ2Rl169bF/PnzMXr0aAAZXTtqiyiaQkQmdUlJSclWd4pZ77lBgwZh9OjRsLGxwYsXL7B48WL07t0bxYoVQ5kyZfD1119rffuQlbHngojw/PlzmW6OZ4d4tnl4eMDe3j5b6zOXhg0bym4is3ax+PTpU+zduxcA0LNnT3lPCpZ6jgIZb2KBjALYxo0b1aaJa7du3boyuv4m0ffsUP6gz/pm1dzH19hnmLa85KY35fjoIu5/BwcHgyNO63uGZze/yu8lkRdDzy8gY9wQYxgqi5njOFvqXIkAqYODg8GgZaFChTSWM6dsDy+v7xWiOWR9kFsyH+ImbtSoEf755x+jlytcuLBJ26levTpu3LiB9PR0nD171qQol7Jf3OrVq5u0XQD44osvEB4eDiCj78pBgwahWrVq8PHxgYODgzyuxYsXx7179yzymvHatWty9MqLFy8adW5XrFiBiRMnmnwdPHv2DL1790ZCQgKcnZ3x9ddfo3Xr1ihdujQKFiwoX00fOHBARvRy4xgo15nb95SpRo4ciUmTJiE9PR0LFy7MUdTQ0P2s/OLs3r07fvzxx2xv65dffsHHH3+MlStXIigoCCdOnEBCQgJu3LiBadOmYebMmZg5cyaGDRumcx2GzoWua0HsR8mSJbF161aj86ztNfObcD2oVCr07t0bv/76Kw4fPoz79++jSJEiADKizCKirK1qgPKcTpkyBW3atDFqm9mphlejRg3Url0b4eHhWLx4sXytHhoaKl9vv4lR75wQx9fT01NrX/m6+Pv751KO3izK6y88PNzo6kamBvTEs8CY+1Xfd4jIb5s2bTBlyhSjt2+owJ9Txj67c3IdWupcCTk9V+ZgUuHby8tLfo6Ojkb58uXNniFT8hIVFYXo6Gizr9vT01O+aqhSpYrZ1y80adJEDlywdetWkwrfyi/2xo0bm7TduLg4rF27FkBGfS59g4Yoo3q5benSpSYvc/fuXQQHB6sN+GOM9evXy0jrpk2b0LJlS63z5fb+K6MKyrcZ2hiabm4eHh7w9vbGo0eP1F6t5gYHBwc4OTkhISEBsbGxOb7v/P39MXr0aIwePRopKSk4efIk1q9fj7lz5yIpKQkjRoxA/fr1db5defTokd76mSJSo1Kp1M6heAv16NEjVKhQATY2psc3xHP22bNnSE5OzvM6yn379sWvv/4qB/z5+uuvAWRGwsuWLav1dbvyjVxKSkquPksBYPDgwQgPD8ehQ4dw8+ZNlCpVSka9HR0d0atXr1zdvqWJ4/v8+XOULFkyWz9a/suU15+joyMqVqyYK9sRVV8SExPx8uVLvYVhfRFeT09PREdHIyYmJtv3iru7Ox49emRUJNlcVSnMcR3mxbmKi4vTG/1Wft8qqzeZi0nVTmrVqiU/Hz582OyZMYXIS1hYWLZeU+ojvpCvXr1qVHWE7OrZs6d8rbx48WKj69GdOnVKRohr1qxpsE5WVteuXUNKSorMgy5XrlzRmydzRuaICCtWrACQUcds9erVBv/E68jsVD0Ro2d6eHjoLHgD6nXRcoODgwPKli0LIOO86mNoem4QkU1xveQmcd8dO3bMrPe0ra0tGjVqhOnTp2PVqlUAMq43bXWYBWPPRdmyZdUKx2IfEhIScOzYsWzlVzzbUlJSTG58CJg/Yl6xYkW5X+L43b59W+ZNV4O4ypUry2Mjqqfkpt69e8PJyQlEhKVLlyIxMRFr1qwBAHTp0gUFCxbM1e1b+k2FOCfp6elGjUKa1/Lq+AC5e/0pqzLpe24Qkd7vE5HfiIgInaPEGiIagl+8eFFvNcnbt29nextZmeM6tNS5Uv6oMdRYU4yC7Ovra3QVHVOYVPiuXr26jAYtWLDAoo0usurQoQOAjC+5efPmmXXdHTt2lJ9///13s65bydfXVzYQe/jwIb755huDyyQmJmLo0KHy/6NGjTJ5u6JABeivM2Woyo2yQYdoJJldhw4dkj90+vXrh549exr8E0NKb9y40eTCmjgGr1+/1jlUb0JCQo7qlBvrvffeA5DRcEfZqDmrRYsW5XpelG7duiUf0PqiwOYi7rv4+Hj89ddfubINZaNAfQ1o9b2FCQsLkw13xLkTOnXqJD9n99nRrl07WVD5888/TV7enPelIArYp0+fxqVLl7Bq1Sr5WlZXbwhOTk7yeAcHB8svs9zi6uoqe0pYunQpNmzYIHtQ0NezgbnkxnHXp0OHDvI6mTp1qkV7IMkOSx+f9957TwZoZs2ahaSkpFzbjqDvubF//361Xo2yEs+/1NRU/PHHH9nKi7jfEhMTsX79ep3zmfN7zRzXoaXOlfL5v3DhQp3zXbx4UQYXsjYkNxeTCt9WVlaygBgVFYV+/frpbKiXnp6eK1VChL59+8q6hz/88AMOHTqkc15Tezro2rWrfO3x999/6z1JQEYL2m3btpm0DeH333+X9T3/+ecffPPNNzqjjE+fPkXHjh1lAa1r167o0aOHydssU6aMvFl03YTbt2/HrFmz9K5HWd/qxo0bJudDSZkPQ90VCd26dQOQ0chq8+bNJm1PRJvj4+O1RkDT0tIwePDgXL2GhaFDh8rz8fHHH2v01gBkvOLfuXNnrudFSE9Px3fffSf/37Zt21zf5rBhw2SVix9//FF2D6fLsWPHNN7ArVixQu3HZVbKqIq+7ry2bt2KdevWaaS/evVK9oBjZWWl9kMYyGjU16pVKwAZ3fONGzdO7z7cvn0bq1evVksrV64cOnfuDCCj+zF99T/j4+M1qkaZ874UlN1+rly5UkbA69WrJ+8lbX744Qd5bffs2VNvftLS0rBq1SqTn9dKgwcPBpDRi9G3334LIOM8N2vWTO9yX375pexNYcuWLdnatrKBlrmOuz7ly5eXXQMePXoUX331lc5AAgDcv38/W1X7zMXe3l5W0bLE8XFzc5O9kd24cQP9+vXTW+h//vy5SW28hHLlyqF58+YAMp4/u3fv1pgnJiYGn332md719O/fXwY5Jk+erLfwDGTUjc4aJe7Vq5es9vLdd99pLeyfPXvWrEFFc1yHljpX5cuXlz+W1q5dq9E4G8gIug0aNEj+iPjkk09M3o5RTO0YPOvw8uXKlaPp06fT0aNH5RCoY8eOpbJly+ZoeHljaBte/t9//6Xw8HA6fvw4LV68mD744AOys7PTWNaY4eXF8OIAqHXr1rR06VI6ceIEhYeH065du+jXX3+VQ9+OHDnSqDxrExkZqTaUdPny5Wny5Ml04MABua1vvvlGDngBgJo0aaJ11EljtWvXTm3fNm3aRGFhYbRz50766KOPyNramsqWLSuHZO7fv7/W9RQtWlQOvLBlyxa6dOkSXbt2ja5du2b0MKvx8fHk4uJiVIf+SnFxceTg4EBAxoiIprh3754c1MPR0ZG+//57CgoKolOnTtGSJUvkMMCNGjWSx0nbQEJikJ2mTZvq3Z6ha1s5vHyFChVo8eLFFBYWRkFBQTRs2DCysrKSQ+/CTIPsZB3hMjIykk6cOEGLFi1SG/Lb09NTbehnUxi6z7Lat2+fvKetrKzogw8+oDVr1tCpU6fo1KlTtHXrVho3bpwcgTbrQEtAxih9w4cPp+XLl9Px48cpIiKCdu3aRf/73//I0dGRgIzRGLMOIKQ8R3Xq1CFra2saMWIEHThwgMLCwmjRokVUvnx5OY+u4eXv378vR98FMkbbnDt3rszLvn37aNq0adSyZUuytramrl27aqxD2/Dyy5Yto5MnT9KpU6do/fr19Mknn5Cnp6fGdam8L2rVqkV79uyhK1euyPtSOQqlKc/cFi1aEAA5OBiQMYy6IcptODs70xdffEE7duygiIgICgkJodWrV9Pnn38u9zcyMlJteUPfG1lVrFhRzg8YHtyJiOiLL76Q8xsaIEefypUrE5AxQNj69evVnofK57VykJ2sI3oqGRq459mzZ1SqVCk5T40aNWj27Nny+zgoKIhmzJhB7dq1IxsbG2rRooXGOsQgO9WrV9e7b8bmWR/xvePs7EyLFy+m8+fPy+OjHEna2EFMDA3ck5SURPXr15fzlC5dmqZMmUKHDh2i06dPU3BwMP3999/0wQcfkKOjI5UuXTpb+3X+/Hn5fWJra0v/+9//KDg4mE6dOkVz584lf39/srKyolq1ahF0DLJDlDG8vFgPAOrYsSOtWLGCQkNDKSwsjHbs2EETJkyQ3wUTJkzQWIdyeHlfX1/6888/KTQ0lI4dO0YTJkwgFxcX8vX1lcPLaxtAy9RBZMxxHVrqXGUdXn7EiBEUFBREYWFhtHjxYrXnR9bh5bN7fLQxufBNlFFY6tatm9oDTttfbhe+iYh2795N7u7uBvOSlTGFgrNnz6oNCavvz9CoTIbcuXNHjiCm78/GxoY+/fRTk4ejz+ru3bvy5tP2V7x4cbpw4QL5+/vrLXwrb/Ssf8Z8URIRrVixQi7z22+/mbQfHTt2lDfR/fv3TVp20aJFcuhrbX89evSg/fv3y//nZuE7OTmZunTpojMvJUuWpJs3b+q8t4xl7AiXyu2Gh4dna1tEphe+iYiCgoKoUKFCRuUv64hqxizj5uZGe/bs0diu8hzdvHlTDmOs7a9r1656h6+/ffu22hDF+v4GDhyodR03btygKlWqGFxe23UpRs80NL8pz9xFixaprcfa2poePnxocDmijIKbslCh68/Ozo6uXbumtqyphe+pU6fK+a2srLQOsZ2VuQrfYvQ9bX/KwqG5Ct9ERA8ePKAmTZoYda117txZY3lLFr4PHz4sR0PM+vfFF1/I+cxV+CbK+DEqRlo19KdtBGJjbdu2Tf64z/pnZWVFf/zxh7zOdBW+iTIK4Pq+m5V/un78fvPNNzqXKViwIAUHB1PVqlUJAPXs2VNj+ewULnN6HRJZ7lwdPXqUvLy89K6/X79+lJycrHX5PCt8CwcOHKAPP/yQSpYsSY6OjuTi4kIVKlSgLl260KpVq+jVq1dq8+dG4Zso4wYUUWhPT0+ytbWlIkWKUP369Wn06NEakRQi4wsFKSkptHTpUgoMDKRixYqRg4MD2dnZkZ+fHzVr1ozGjBmTo8JJVocPH6ZPP/2UqlSpQh4eHmRra0u+vr5Uv359Gjt2LF25csVs23r69Cl98803VK5cObK3t6eCBQtS9erVady4cRQTE0NEZLDwTUS0ceNGatWqFfn4+MiopbFflESZQ+UCoKtXr5q0D0uXLpXL/v777yYtS0R07NgxCgwMJG9vb7K1tSU/Pz9q06YNrV27loiIDh48qLXQIpir8C0sX76cGjduTAULFiQnJyeqWLEijR49Wp4PsY7cKnw7ODhQ0aJFqV27djR37lyKj4/P1naE7BS+iTJ+4M+ePZvatGlDfn5+ZGdnRw4ODlSsWDFq1aoV/fLLL3T58mWN5S5fvkyzZs2iwMBAqlSpEnl6epKNjQ25u7tTQEAAjR8/XueQxFnPUUxMDI0ePZoqVqxITk5OVLBgQWrSpAmtWLHCqH1IT0+nzZs3U8+ePalkyZLk5OREtra25O3tTQ0bNqSRI0fSoUOH9A67npqaSkuWLKF27drJ4+Dl5UXVq1enIUOG0P79+yktLU3rtufPn0+NGzcmDw8PtQJPdgvfL168kBF1wPS3TVFRUfTjjz9SQEAAeXl5kY2NDRUoUIDKlStHXbt2pX/++Uct+imYWvh+9OiRnL9169ZG5c1chW8ioh07dlDbtm3J19dX7XmYW4Vv5Xb79u1LpUuXpgIFCpCNjQ15eXlRQEAAffHFF7Rv3z6t14olC99ERMePH6du3bpR0aJFyc7OLtcL38KxY8doyJAhVKFCBXJxcSFra2tyd3enWrVq0dChQ+nff//VWdgy1vXr1+mjjz6iYsWKyXJCYGAgBQcHExEZVfgmyogCz5s3j9q3b09FihQhe3t7sre3pyJFilCLFi3op59+0lquUdqzZw+1a9eOvLy8yN7enkqWLEnDhg2j69evE1Hmd/vQoUM1ls1J4TK716GSJc5VTEwMjR8/nmrXrk0FCxYkOzs7Klq0KHXv3p327dund1lzFL5VRG94Kw3GGLOA8ePH46effgKAN77xGtMtKChIrV6noeGqGXvbxMXFwd3dHenp6Zg6dSpGjhyZ11l665jU4JIxxhh7k4legTw9PdV6n2GMZVi7dq1sFGnK+CLMfLjwzRhj7D/h9u3bspeIgQMHynEUGHtbpKSk4O7duzqnX758GaNHjwYAlC5dGg0bNrRU1phCtoeXZ4wxxvLa/fv3kZCQgFu3buG7775DSkoKHBwc8OWXX+Z11hizuPj4eJQpUwYdOnRAu3btULFiRTg4OODhw4fYv38/5s2bJ8do+fPPPy0++BHLwIVvxhhj+VafPn00xnn4+eef5TgQjL1tUlJSsGnTJmzatEnrdGtra8yYMUMOVsgsjwvfjDHG8j0nJyeUK1cOX375pRw5mLG3jaurKzZt2oRdu3YhNDQUjx8/xrNnz+Do6IhixYqhefPm+Oyzz/QOjsVyH/d2whhjjDHGmIVwg0vGGGOMMcYshAvfjDHGGGOMWQgXvhljjDHGGLOQt77wffv2bahUKqhUKixZsiSvs5PrBgwYAJVKhRIlSuRpPmJiYuDl5QWVSoUTJ06oTSMiVK1aFSqVCosXL86jHDLGGGOMmd9bX/h+UwQHB8sfAVn/RCvl9u3bY8GCBUhKSsrr7ObY+PHj8ezZM7Ru3VpjhC2VSoUffvgBADB69GjZJyljjDHGWH7Hhe98ICkpCVFRUdixYweGDBmCGjVq4OrVq3mdrWy7e/cu5s6dCyCjEK5N9+7dUaFCBTx8+BCzZs2yYO4YY4wxxnIPF77fQMOHD0dkZKT8Cw0Nxdy5c1GxYkUAwJUrV9CmTRskJiaavO4lS5aAiHD79m0z59p4kydPRnJyMho2bKgR9RasrKzkCHXTpk3L1r4yxhhjjL1puPD9BvLx8UGVKlXkX7169fDxxx8jPDwc9erVAwDcunULCxcuzOOcmi42NhZLly4FAPTt21fvvB988AFsbW3x7NkzrFy50hLZY4wxxhjLVVz4zkccHR3xyy+/yP/v2rUrD3OTPWvWrEF8fDxsbW3RvXt3vfN6eHigTZs2AJAvf2gwxhhjjGWVrcL3+fPnMXHiRLRu3RpFixaFvb09nJ2dUbZsWfTv31+j94qsxo8fLxsTAhl1mqdMmYJatWrBxcUFLi4uqFevHmbPno3U1FSD+Tly5Ai6dOkCX19fODg4oFSpUhg2bBiuX78OAGjWrBlUKhWaNWuWnd2VTp48iSFDhqBcuXJwdnZGgQIFUKFCBXzyySe4du1ajtZtLGU1jTt37pi8vDG9nWzevBmBgYHy3Lq4uKBUqVJo3LgxfvzxR5w8eTI7WQcArFu3DkDGOfH09DQ4f9euXQEAJ06cyNb+MsYYY4y9UchEBw8eJAAG/7777jud6xg3bpyc7+HDh1S9enWd6+nQoQOlpaXpXNfEiRNJpVJpXdbFxYX27NlDTZs2JQDUtGlTjeVv3bol51+8eLHWbaSkpNDw4cP17q+trS3NmzfP1MMpKY/ruHHjdM6XmJgo56tQoYLJ2+nfvz8BIH9/f41pqamp9MEHHxg8t7Vr1zZ5u0RESUlJ5ODgQADoxx9/NGqZy5cvy+0uXbo0W9tljDHGGHtTmBz5Tk1NRYECBdC9e3f8888/CA4ORkREBHbv3o1p06bB398fADBp0iSj+mju0qULLl26hM8//xz79u1DeHg4Vq1aJRsXbtu2DfPnz9e67OrVqzFmzBgQEdzd3TFp0iQcP34cx48fx+TJk2FjY4OePXviwYMHpu6mmo8++gh///03AOD999/HihUrcPLkSZw6dQrz589H5cqVkZKSgo8//hjbtm3L0bYMOXfunPxcuHBhs67777//xvr16wEA77zzDpYsWYIjR47g9OnTCAoKwowZM9CmTRtYW1tna/2nTp2S3STWrVvXqGXKlSsHNzc3ABlvOBhjjDHG8jVTS+tPnjyh58+f65z++vVratmypYyupqamasyjjHzb2trSwYMHNeZ59uwZ+fr6EgCqVq2axvSkpCTy8fEhAOTh4UFXrlzRmOfKlSvk4eEht5WdyPeGDRvk9Pnz52vd58TERGrevDkBoBIlSlBKSorW+fQxNvLdqVMnOd/PP/9s8nb0Rb4bN25MAKh+/fp69+HZs2cmb5eIaPLkyTLv9+7dM3q5d999lwBQpUqVsrVdxhhjjLE3hcmRby8vLxmJ1MbOzg5TpkwBkFEn+cyZM3rX99lnn2mti+3h4YGBAwcCyIj2vnjxQm365s2b8fjxYwDAuHHjUK5cOY11lCtXDuPGjdO7fUN+++03AEDnzp0xePBgrfM4ODhg9uzZADJGzAwODs7RNrNKTExESEgIOnbsiH///RcA4OrqimHDhpl1Ow8fPgQANGzYEDY2Njrn8/DwyNb6o6Ki5GcfHx+jlxPzKpdnjDHGGMuPctzbyevXr3H37l1cvHgR58+fx/nz50FEcvrZs2f1Lt+nTx+d02rXri0/37p1S21aUFAQgIz+oD/88EOd6+jbt69s2Gmq+/fvIzw8HAAM9sxRsWJFeHl5AQBCQkKytT3hp59+Uhvh0snJCQ0bNpRVWlxdXbFx40Z4e3vnaDtZ+fn5Acio6vP06VOzrhsAnjx5AgBwcnKCnZ2d0cuJwn5cXBySk5PNni/GGGOMMUvJVuE7Pj4ev/32G6pXr44CBQrA398flStXRtWqVVG1alXUrFlTzmuoEFehQgWd05QR1pcvX6pNO3/+PACgZMmScHd317uOUqVK6c2DLmFhYfJzr169dA7/Lv7EvooIsrkVK1YMn332GSIjI/Hee++Zff39+/cHAFy/fh1lypTBoEGDsHr1arNFnGNiYgBA7/nSRjn/s2fPzJIXxhhjjLG8oLtugQ63b99G8+bNNSLRuhgamdDJyUnnNCurzN8GaWlpatOeP38OwLjqC97e3rhx44bB+bIS1VpMlZCQkK3lhOHDh2PEiBHy/w4ODvD09DS50GqqQYMG4caNG/j999/x4sULLF68WDaaLV26NAIDAzFixIhs/5hxcHAAYPiayEo5v6OjY7a2zRhjjDH2JjC58P3hhx/i1q1bUKlUGDhwIHr27ImKFSvC29sb9vb2AID09HTZI4ayCkp+oyzwr1y5EtWqVTNquZwWksUIl3nhl19+wccff4yVK1ciKCgIJ06cQEJCAm7cuIFp06Zh5syZmDlzZrbqm4tqMrGxsSAio6sDiYi5ra2t3vYGjDHGGGNvOpMK35cvX8bRo0cBAN9//73aaItKIiqdm0QB15jotKhrbCrlIDAqlSrPCsSW5u/vj9GjR2P06NFISUnByZMnsX79esydOxdJSUkYMWIE6tevr1a9yBii8J2eno4XL14YXZAW15OoU88YY4wxll+ZVOf7woUL8nPPnj11zqesK51bKleuDCCjIaaIjGoTExODmzdvZmsbysLl3r17s7WO/M7W1haNGjXC9OnTsWrVKgAZbzM2bNhg8rqqVq0qP1+9etXo5cS8yuUZY4wxxvIjkwrfyqHe9dVr/ueff7KfIyO1aNECQEYUdcWKFTrnW7FiRbarvpQpUwaVKlUCAKxZswZ3797N1nr+K8QxBww3pNWmcePG8vOpU6eMWiYuLg5XrlzRWJ4xxhhjLD8yqfBdtmxZ+Xnp0qVa5/n777+xZcuWHGXKGJ07d5aNLX/66Sdcu3ZNY55r167hp59+ytF2xowZAwBISkpCly5d9FZhef36NebMmSNHccxvVqxYofYDKytl9L9kyZImr79YsWJyBNSTJ08atUxYWJj88cSFb8YYY4zldybV+a5ZsyaqVKmC8+fP4++//0ZsbCz69OkDPz8/3Lt3DytWrMCGDRvQqFEjHDt2LLfyDCCj54zp06ejd+/eiImJQf369fHdd9+hSZMmAIDDhw9j8uTJSE9PR9myZXHt2rVs9ffdq1cv7NmzB0uXLkV4eDgqVaqEoUOHomnTpvD29kZ8fDxu3LiBI0eOYNOmTYiJiUG/fv3MvbsW8eGHH+Lrr79Gly5d0LBhQ5QuXRoODg549OgR9u3bh7///hsA4OzsjL59+2ZrG+3atcOcOXNw4MABoxpdiv7c3d3d0aBBg2xtkzHGGGPsTWFS4VulUmH58uVo3rw5nj9/jtWrV2P16tVq81StWhXr169H4cKFzZpRbXr16oWbN2/ixx9/xPPnzzFq1Ci16U5OTli/fj0mTZqEa9euya7uTLVw4UL4+vpi2rRpePr0KX755RedjU0LFCgge3rJjx49eoS///5bFrSzcnNzw9q1a1G0aNFsrf/DDz/EnDlzEBUVhSNHjsgfS7qI66t79+4mDczDGGOMMfYmMnmQnRo1auDMmTMYNmwY/P39YWtrCw8PD9SrVw9Tp07FyZMn5UiJlvDDDz/g0KFDCAwMhI+PD+zt7eHv749BgwYhLCwMbdu2RVxcHACgYMGC2dqGtbU1Jk+ejIsXL2LkyJGoWbMm3N3dYW1tDRcXF1SuXBl9+vTB0qVL8eDBg3zbF/Xly5cxa9YsBAYGolKlSvD09ISNjQ3c3d0REBCA8ePH48qVK2jVqlW2txEQEIBatWoByOi+UZ+QkBDZn7yy33PGGGOMsfxKRfm5I24jpKSkoGDBgkhMTMSYMWMwYcKEvM7SW2/NmjXo1asX3NzccPfuXbi4uGidb/DgwVi4cCFatmz51vY2wxhjjLH/lmwNL5+fbNmyRY6QGBAQkMe5YUBGFZLKlSsjNjYWs2fP1jrP3bt3sWzZMgDIcaNZxhhjjLE3Rb4vfF+/fl3ntNu3b+N///sfAMDX1xetW7e2VLaYHlZWVpgyZQoAYNq0aXj16pXGPL/99htSUlLQtWtXbmjJGGOMsf8Mk4eXf9NUqFABbdu2Rfv27VG5cmUUKFAAjx8/xsGDB/HPP/8gNjYWADB16lTY2OT73f3PeP/99zFr1iw8ffoUt2/fVhs9lIjg7++PcePGYdCgQXmYS8YYY4wx88r3db4NdVVnZWWFiRMn4vvvv7dQjhhjjDHGGNMu34eCt23bhl27duH48eN49OgRnj17Bnt7exQpUgTNmjXDJ598ohZVZYwxxhhjLK/k+8g3Y4wxxhhj+UW+b3DJGGOMMcZYfsGFb8YYY4wxxiyEC9+MMcYYY4xZSJ4Wvm/fvg2VSgWVSoUlS5bkZVYwfvx4mRfGGGOMMcZyQ44L3ykpKVizZg369++PihUrwtPTE7a2tvDy8kLt2rUxfPhw7N+/H+np6ebIL3vDTJw4Uf5ocXFxQUJCQq5tKz4+Hn/99RdatGiBIkWKwN7eHr6+vqhVqxY+++wznUPQK3/kGfobMGCA3jy8fv0aY8eORcmSJeHg4IAqVapgzpw5eBPaLQcHB+vdN2dnZ5QrVw79+/dHcHCwWbaZmpqK06dPY+7cuRg8eDCqVasGGxsbuc3bt28bXMfr16+xefNmfP/993jvvfdQrlw5eHh4wNbWFp6enmjYsCHGjh2LqKgoo/N14cIFDBs2DGXKlIGjoyO8vb3RpEkTzJ07F6mpqQaXJyJMnz4dFSpUgL29PcqUKYOJEyciJSXF6DxYChFh27ZtGDZsGKpWrQofHx/Y2trCw8MDVatWxaBBg7Bly5Yc5d2c95CwZs0atG7dGn5+fnBwcECJEiXw4Ycf4sSJE0YtHx0djQEDBsDb2xtOTk5o2rQpgoKCsr2P5qQM5ij/7O3t4ePjg7Jly6Jt27YYO3YsDh8+bNZtm+OeVHr27BnGjRuH6tWro2DBgnB1dUX16tUxbtw4PHv2zOj1vE33JGMGUQ5s2bKFSpUqRQAM/pUrV462b9+utvytW7fk9MWLF+ckKzk2btw4mRdmvHLlyqmd5+XLl+fKdg4cOED+/v56r7Hq1atrXVZ5nRn669+/v848pKamUqtWrbQuN2TIkFzZb1McPHjQ6P0EQIMGDaLU1NQcbXP8+PF6t3Hr1i2D67h27ZpR+S1QoAAtXbrU4PoWLFhA9vb2OtcTEBBAT58+1buOQYMGaV32/fffz/ExM6cjR45Q9erVjTp+hQsXzvZz1lz3EBFRYmIitW/fXufyVlZW9PPPP+tdx/3796lo0aJal82tZ5AplN8nxvxVrFiR1q1bZ5Ztm+OeFE6ePEl+fn56r6lTp04ZXM/bdE8yZoxslzR//fVXUqlU8gZ47733aNasWRQUFETh4eG0b98+mj17NrVu3ZqsrKy0Fo7epMI3M11ISIg8f87OzgSAWrZsafbt7Nu3jxwcHAgAubi40MiRI2nnzp0UHh5Ou3fvpn/++Yc6depEAQEBWpdXXmcTJ06kyMhInX9RUVE68zFnzhwCQEWKFKHFixfTiRMnaPr06VSwYEECQLt27TL7vptCWfgePny42n6dO3eOgoOD6bfffiMfHx8539ixY3O0TWUhw8HBgQICAqh06dImF759fHyoR48eNHXqVFq/fj0dPXqUQkNDadOmTfTRRx/J869SqWjnzp0617V79275vPH19aWZM2dSaGgo7dq1i7p06SLz1aRJE0pLS9O6jp07dxIAcnd3p5kzZ9KJEydo0aJFVLhwYQJAf//9d3YPl1ktW7aMbG1t5T7Vr1+ffv/9d9q7dy+Fh4fTgQMHaP78+dS5c2eys7MjAFSwYMFsbctc9xARUe/eveW63n33XdqyZQudPHmSFi5cqHbtzJ8/X+c6unfvTgCoQYMGtG3bNjp69Ch99dVXpFKpqECBAgYLcrlNeV8sWrRI7T48cuQIbdq0ib7//nuqWrWqWkFy0KBBOq/L7Gw7u/ckEVFUVBT5+voSALKxsaFvv/2WDh8+TIcPH6Zvv/2WbGxs5H2m75y/TfckY8bKVuF72bJl8obx9vamAwcO6J3/3Llz1Lx5cy58/8cMHz6cAJCXlxdNnjxZRp4Mffma4vHjx+Tp6SmjQ/fu3dM57+vXr7Wmm+s6a9asGQGgs2fPqqVv3ryZANDAgQOzvW5zUBa+x40bp3O+CxcukKOjIwEgV1dXSk5OzvY2xY+f8PBwSklJISKi/v37m/RFn5aWRunp6XrnCQ0NlQXNWrVqaZ0nJSWFypQpI/fr+vXrGvOMGDFC5k1XFH3AgAEEgP7991+19NOnT8sCY147ePAgWVtbEwBycnKitWvX6p3/1q1b1L17d7MUvnNyDwUHB8v1dOjQQSNi+eTJEypevLgsaD1//lxjHUlJSWRvb0/FihWjV69eqU374osv9J5bS1EWgA8ePKh33q1bt5KXl5ec/5tvvsnRts1xT2ZdRltUft26dXK6rmff23RPMmYKkwvf9+/fpwIFCsiH/oULF4xaLi0tTeN1IBe+86/Xr1+Th4cHAaARI0bQgwcPZGFg8uTJZtvORx99RADI3t6eLl++nK11mOs6K1u2LHl6emqkx8XFEQBq1apVttdtDsYWvomIunXrJufN+mMip7LzRW+MNm3ayPW+fPlSY7qyMPDbb79pXUd8fDy5u7sTAKpSpYrWeVq2bKlzGx4eHlSuXLmc7UgOJSQkyIiflZUVBQUFGb3skiVLsrVNc91Dbdu2JQBkbW2t84f06tWr5bamTp2qMf3+/fsEgLp27aoxbevWrQSAfv3112zn0RxMKXwTEV29epVcXV3lMhEREWbNj6n35MOHD+XzvHXr1jrna926tTyfDx8+1Jj+ttyTjJnK5AaXf/75J+Lj4wEAP/30EypVqmTUclZWVujbt6/B+fbt24cOHTqgUKFCsLe3R8mSJTF8+HCjGlslJydjzpw5ePfdd+Ht7Q07OzsUKlQIbdu2xYoVK/Q2+jS2t5Pk5GTMmzcP7dq1k43+fHx8ULt2bXz66ac4cuSI3sZ3+/btQ9++fVGyZEk4OjrKxivffvstHjx4oHfb0dHR+O6771CrVi0ULFhQ7l/VqlXRq1cvLFmyBHFxcfoPkpls27YNMTExAIC+ffuiUKFCaN68OQBg2bJlZtlGbGwsVq1aBQDo1asXypcvb5b1ZpePjw+ePXuGCxcuqKWLxouFChXKg1xlT4kSJeTnpKSkvMuICQoUKCA/v379WmP6li1b5Gddjf6cnJzQvXt3AMD58+dx7do1jXl8fHwAAIcOHVJLj4yMRExMTJ6f50WLFiE6OhoAMHz4cHnfGaN///65lS2DXr16JRtEtmzZEkWLFtU6X5cuXeDq6goA2LRpk8Z0d3d32NjYICwsTKOBd368FwGgbNmy+O233+T/J02alIe5AbZu3Yq0tDQAwMCBA3XOJ+6ztLQ0bN26VWP623JPMmYyU0rq6enp5O3tTUBG46cXL17kqOSfNZoyatQotfpvyj9vb2+6ePGiznXdvn2bKlasqHN5APTOO+/Qs2fPtC5vTIPL06dPU8mSJfVuAzoiC69evaLOnTvrXc7Z2Zm2bdumdduHDx9Wi4zo+tO2vDIiaqgxlLE6duxIAKh06dIybenSpXI74eHhBtch5vX399c6XVm9aceOHTI9Li6Orl69So8ePTIqr+aK2k2ZMoUAULFixWjJkiUUGhpKs2bNklEbXefOUrIb+X7w4IHWeZTRMmOid9qWM1fk+9GjR/I4e3l5aZ2nWLFiBIDKly+vd12rVq2S+Vu0aJHG9PXr1xMA8vDwoNmzZ1NoaCgtWbJENvCbNWuWWfYpu2rXrk1ARv33a9eu5Xh9xjwfzHEPBQUFGYyCCqJhs42NjdZqUe3atSMA1KhRI9q+fTsdO3aMvvnmG7KysiInJyetUVhLMjXyTZQRAXZzc5NvlbXtt6XuyQ8//NDg84GIKDo6Ws7Xr18/jelvyz3JmKlMKnyfP39e3iBt2rTJ8caVD/SGDRsSAGratCmtWrWKwsLCaP/+/dSvXz85j64GdS9fvlTrdSUwMJC2bt1KYWFhtH79emratKmc1qBBA60tow0Vvi9cuCAbFQKgzp0709q1a+nUqVN04sQJWrp0KfXt25cKFCig8XBLTU2ld999V35h9urVi9avX09hYWEUEhJCM2bMkPUc7ezsKCwsTG35pKQk+ZrZxcWFvv32W9q1axeFh4fTiRMnaO3atfTll19SsWLFLFL4fvLkiax/q2yw9/LlS3JyciIA9MUXXxhcj6HCt7IuYExMDO3atUteJ+LPz8+PvvrqK3ry5InO7Sivs1q1alGJEiXIzs6OXF1dqVKlSjR06FCjfiwkJiZS/fr1tf7o0fbFY2nGFr4vXbok63zXrVtX53x5XfhOSkqimzdv0rx589QajE2YMEFj3pcvX8oG4J06ddK73oiICLkubfVr09PTKTAwUOt5btGihaxHmxdevHghqwNUqFDBLOs0tfCd3Xto9uzZch2bN2/WO+/nn38u59VWtfHatWuyLYjyT6VS0YIFC4zd9VyTncI3UWa1HAB04sQJjemWuifr1KlDgHENdEVQKOuz5G25JxnLDpMK3ytXrpQX/OjRo3O88azdVw0ZMkRrw6vBgwfLebTVhfv666/l9DFjxmhMT09Ppz59+sh55syZozGPocJ3zZo1CcioY7l69Wqd+/T06VNKSEhQS5s6dSoBIFtbW509NcTExFDlypUJyIjQKykjRvqiqykpKVrfRpi78D1jxgy5vqtXr6pN69WrFwEgHx8fgw9EQ4Vv0cCxYMGC9Pvvv2t98Iq/okWL6mx/YGw3aUOHDqWkpCS9eX758iWNHDmSihQpQra2tlSuXDn6448/ctxDgTkY6u3k8OHDNHnyZCpUqBABGQ2gjh07pnN9eVH4NtRdYp8+fbSeo0uXLsl5PvnkE73bePLkiZy3Z8+eWudJSUmhiRMnUqlSpcjW1pb8/f1pzJgxBq+P3Hbs2DGZ9969e5tlnaYWvrN7DynfbBrqnk68ZQJAu3fv1jrPjRs3qHv37uTm5kYODg7UoEEDtTdkeSm7he8xY8bI5ZYtW6Yx3VL3pOjlpHLlygbnFd9bhQoVUkt/W+5JxrLDpDrfT58+lZ99fX1NWdQgPz8/zJo1S2ud66+//lp+PnLkiNq0169fY8GCBQCASpUqYfz48RrLq1QqzJkzB56engCA2bNnm5S3PXv24PTp0wCAzz77DD179tQ5r6enJxwdHeX/U1JSMG3aNADAp59+ivfff1/rcu7u7pgyZQoA4OjRo7h+/bqc9vDhQ/m5SZMmOrdtY2Mj60rmJlGnu169eihbtqzaNFGv//Hjx9i9e3eOtiPqlCcmJmLUqFGwt7fHpEmTEBUVhdevX+P8+fPo168fACAqKgqdOnXCq1evtK7Lzc0NAwcOxNKlS3H8+HFERERgx44d+OKLL+Ds7AwAmDt3LgYNGqQ3T87Ozpg6dSqioqKQnJyMK1eu4KuvvoKVVZ4OFqvh77//RtWqVeVftWrV0KRJE4waNQqPHz/G0KFDERoaioYNG+Z1Vo1SokQJ7N69GytWrIC9vb3G9JcvX8rP4nzqoqw7rut6sbGxwQ8//IAbN24gOTkZt2/fxoQJE7Ru25Jy8xlsSE7vIXOfo1KlSmHt2rV4/vw5EhMTcfz4cbRt29bU3XqjiO8oAHj+/Hme5UOcK0PnCcg8V1nP09tyTzKWHSaVGJQ3k/JmMYdu3brpvInKly8vb96bN2+qTQsPD0dsbCyAjAYd1tbWWtfh6uoqG3VcvHjRYONGpR07dsjPX331ldHLAcDJkyfltsT2dVEWrENCQuRnPz8/+Xnx4sUmbR8AmjVrBsp4y4ElS5aYvLzSxYsXER4eDgBaG9C2atVKNo5Zvny53nWJPOkacU007E1OTgYRYfny5Rg1ahSKFCkCOzs7VK5cGUuXLsXHH38MALh+/Tr++ecfjfUULlwY9+/fx6JFi9CvXz80aNAANWvWRNu2bTF9+nRERESgePHiAIBVq1ZpbTj0X5Keno5169ZhwYIFSE5O1jnfkiVL5Dlq1qyZRfJWt25dREZGIjIyEmFhYdi0aRMGDBiAe/fuYeDAgVi4cKHW5ZSNRu3s7PRuQ/mcSUxMNE/GLSQ3nsHGPB/McQ+9LecoJ5SFVOW5Fix1T4pzZeg8AZnnKut54vPNmG4mFb5dXFzkZ1EwMpcKFSrone7u7g5A84F0/vx5+bl+/fp616GcrlzOEBH1Ll68OPz9/Y1eDgDCwsLk5wYNGhgc/ltQRrvfeecdlCpVCgDw5Zdfol69evjtt99w/PhxvYWn3LB06VIAGVEIbW8AbGxs0KNHDwAZLeZfvHiR7W05ODjIzwEBAfjggw+0zvfrr7/Kh/fq1as1ptvZ2cHJyUnndsqWLYuVK1fK/8+aNSu7WX5jjBs3Tn5Ji7+EhAScO3cO33zzDV6+fIlp06ahVatWb9SXXYECBVClShVUqVIFtWvXRufOnbF48WLs2bMHMTExGDx4MH7++WeN5ZTXiqF7QtlTivItVX6Qm89gfcxxD70t5ygnlN9vlniLqYs4V8Z8v4hzlfU88flmTDeTCt9eXl7y86NHj8yaEX0PdgDytb7o/kgQVRMAw69hld0RKZczRLzqVUagjfX48WOTlwGg1oWWra0ttm3bhooVKwIATp06hdGjR6NRo0Zwc3PD+++/j1WrVmkcG3NLT0+XX7CtWrWCt7e31vlERDwpKQnr1q3L9vaUBQ1d1XWAjFe1derUAQCcPXsWKSkpJm/rnXfeQeXKlQFkVPvR1y1lfuXo6IiqVavi999/x5w5cwBkdN2l7OLsTdWiRQt88cUXADK6OL18+bLadOW1ouu1taAstBrzWv1NkpvP4JwydA+9LecoJ5TVijw8PPIsH+JcGTpPQOa5ynqe+HwzpptJhe/q1avLzxEREWbPTE4Z6qOb9PS/bY71a6MsEAcHB8tX6ob+hg8frraeSpUqITIyEps3b8agQYNQunRpABmv6Hbv3o0+ffqgfv362S7sGyMoKAj3798HAOzcuVNnBF/5hiEnfX4XK1ZMftbVJ3DWedPS0vDs2bNsbU/0WZ+UlJTtdeQXH330kfxy11WV403TqVMnABk/ArP2/6y8PgyNCXDv3j35WXmN5QdVqlSRVevexGewvnvobTlHOSHesgLI03ENxLkyZnwNca6ynic+34zpZlLhu1KlSjLycuTIEYsN6KKPMjqgrKqhjTJSZEpUQeyzGNjCFMoGNHZ2dvKVuqE/UW9aydraGoGBgVi4cCGuX7+O6OhoLFy4ELVr1waQUf996NChJufRWKLKiSmOHTumUU/fWCKKBmi+8chKOd3GxiZb28vpj7P8xMrKSjaWjY6ONulNUF5Rvmm5c+eO2jRnZ2f5pZ01Kp6Vcrp4m5RfuLq6okaNGgCAK1euqDXMfhPou4eUA7IZe45sbGxQpkwZ82TuDZeQkIDjx48DyKh+Jc5zXhDn6sWLF3q/Vx88eCDLAVnvpbflnmQsO0wqfKtUKjlKVXx8vOxlJC9VqVJFfg4NDdU778mTJ7UuZ0itWrUAAHfv3tX40jekZs2a8vPevXtNWtYQPz8/DBo0CCEhITKP27dvz5U6vK9evcLmzZsBZFQBWL16td4/cW2IhpLZoWyAeuPGDb3ziumOjo7Zfl178eJFABmNf5Q/mv6rUlNT5efsVNWxNPHWBdD+avqdd94BkFEo1VdgUI6S16hRIzPm0DLEiINEhJkzZ+ZxbtTpu4fq1q0rG95lHalQKTk5GSdOnNBY5r9u8eLFso1Mhw4dsh1EMAdxLwH6z5Whe+ltuScZM5mpfRNGRUXJgVQKFChAly5dMmq5tLQ0Wr58uVqaKaOm+fv7a+2HNikpSY4KVrlyZa0D6BBljIro5eVFAKhSpUoa0/X1871v3z45zZjBY5QSExPJw8ND9oOa01FBdfnqq69kHqOjo82+/sWLF8v1b9iwwahlxEh8ylEwTZGamipHVC1fvrzWPuCJiG7evElWVlZywIXsOHLkiNqgDfmRKSNcxsfHy4F2HBwcdN432ZEbI1wSqQ+6pO15sXbtWjld1wiK8fHxcqRMbc+B/CA+Pl721W5lZUXBwcFGL7t06dJcy5cx99D7779PQMbIlffu3dM6z+rVq+V6fv/991zLb24ytZ/vq1evkouLi1zmzJkzZs2PqffkgwcP5DO1devWOudr3bq1vA61jYT5ttyTjJnK5MI3EdGiRYvkDeXj42Pw4X/hwgV67733qHr16mrp5ih8E6kPsvPjjz9qTE9PT1cbKTM7g+yIgqShQXaePXumMcjOr7/+Ktf9/vvv06tXr3QuHxcXpzFU7uHDh/UOI/369WuqVasWARlD1Gcd3MYcg+yIETqdnJwoPj7eqGV+++03ud2jR49qTBfTdA2yQ0Q0efJkvQ/v5ORkatOmjZxn/fr1GvNs3rxZZ8GdKGO0PDHCKADauHGjUfv3pjGl8K28Z3SNPmepAT1WrVpFsbGxeudZu3atHNmxYMGC9OzZM415kpOT5UiYrq6udP36dY15DBXg84v9+/fLwlGBAgUM/iC+c+cO9ejRQ+uIhcY8H8x1DykHDOvYsaPGj74nT57I9bi5uVFMTIze/XpTmVL43rZtmwwMAaDvv/9e57yWHPhKOcS8tufqunXrDF43b9M9yZgpsvVea+DAgYiKisLYsWPx+PFjNGvWDK1atUKnTp1QsWJFuLm5ISYmBlevXsWOHTuwe/dupKWlqTXYNKexY8di06ZNuHnzJiZMmIDz589j0KBBKFy4MG7duoXZs2cjODgYQEZ3f6JfaFMsX74c9erVw6tXr9CrVy+sX78ePXv2RKlSpZCWlobr169j37592LBhAyIjI1GiRAm57LfffougoCAEBQVh165dqFSpEoYNG4YGDRrAzc0NL1++xJUrVxAcHIwtW7bAwcEBn376qVw+KCgIEyZMQOPGjdGuXTtUq1YN3t7eSExMxNWrV/HPP//IxleDBw82++vKu3fvyuP3/vvvG+yZRujatSu+//57ABkNL7PzOvHzzz/H2rVrERERge+//x4XLlxA37594e3tjevXr+OPP/6Q1Y3atm2Lrl27aqyjc+fOKFOmDLp06YJ69eqhaNGisLe3R3R0NPbu3YsFCxbI1vbdu3dHly5dTM7nm+bx48ca3WkmJSXh2rVrWLZsmRwAycHBARMmTMj2dl69eoUNGzaopSnrIW/YsEGth44aNWpo1GWdO3cuPv74YwQGBqJJkyYoX748ChYsiPj4eFy5cgUbNmzAzp07AWRUfZsxY4bWqkW2traYOXMmOnTogLi4ODRq1AhjxoxBvXr18Pz5c8yfPx8bN24EkPE6/MMPP8z2fue1Fi1aYMGCBRg6dCji4+PRrVs3BAQEoFu3bqhRowY8PDzw4sUL3Lx5E7t378bWrVvx+vVrFCxYMFvbM9c91Lx5c/Ts2RNr1qzB1q1b0bJlS3z55ZcoXLgwIiMj8csvv+Du3bsAgEmTJskuZvOzW7duyXuAiBAXF4cnT57g1KlT2LZtGyIjI+W8Q4YMwS+//JKj7ZnjngSAX375Bbt378aTJ0/Qq1cvhIWFoX379gAyqjeKweO8vb0xceJErXl5m+5JxkySk5L7xo0bqUSJEvJXq76/ypUr0549e9SWN1fkW6yrQoUKevPQqFEjrREzIsORbyKisLAwKlasmMF91RZZSEhIUIu+6/srWbKkzrzp++vSpQslJiZqbDunke+JEyfK5fVF/bWpVq2ajGJlHQZYrFNf5JuIKDo6Wr550PXXtm1biouL07q8MccOyBiSPT8PVWxoaPasf97e3hr3pJIxUTZjhx0Xf9oi8k2bNjVqWXd3d1qxYoXB4zBv3jyys7PTuZ569erRkydPjD2sb7Tg4GCqUqWKUcevePHitGrVKo11GPN8MOc9lJCQQG3bttW5DisrK4Nvbt50xj6zxV+lSpWMeuNmqXtSOHHihKzipO2vUKFCdOLECYP5fpvuScaMkaMQaZcuXdC+fXts2LABu3btwqlTp/D48WO8fPkSrq6uKFGiBAICAtC1a1e8++672eqqz1glSpTA2bNnMX/+fKxfvx7nz59HXFwcPDw8ULNmTfTp0we9e/fO0TDgtWvXxpUrV7BgwQJs2bIF58+fx/Pnz+Hp6YkiRYrgnXfeQc+ePdWi3oKjoyOWLl2Kzz//HAsXLsThw4cRFRWF+Ph4ODs7o0SJEqhduzbef/99GV0Qvv32W9SvXx/79u1DSEgIoqOjZZeChQoVQv369dGvX79cG1pZNJi0t7dHu3btTFq2a9euOHfuHGJjY7F161adA+Xo4+fnhxMnTmDhwoVYvXo1Ll68iNjYWHh6eqJevXoYMGAAOnfurHP5rVu3IiQkBKGhobhz5w6ePn2K+Ph4uLq6olSpUmjcuDEGDRpkUiPc/MjOzg4eHh6oXLky2rZti4EDB74RkcWVK1di//79OHjwIM6dO4dHjx7hyZMnsLOzg5eXF6pWrYo2bdqgd+/eRuV3yJAhaNCgAWbOnImgoCBER0ejQIECqFixIvr06ZMrb4fyStOmTXH27Fls374d27dvx/Hjx/Ho0SPExsbC2dkZRYsWRb169dCpUye0bds22/ttznvI0dERO3bswKpVq7BkyRKcPXsWsbGx8PX1RePGjfHpp5+iQYMG2crnm87W1haurq4oWLAgypcvjzp16qBVq1ZqDRzfJPXr10dkZCRmzJiBLVu2yNGIS5YsiU6dOuHLL780qnH623RPMmYMFdFb1L8aY4wxxhhjeSj7YWDGGGOMMcaYSbjwzRhjjDHGmIVw4ZsxxhhjjDEL4cI3Y4wxxhhjFsKFb8YYY4wxxizE6L593oROUdLT0zXSrK2t8yAnjDHGGGOMmY4j34wxxhhjjFkIF74ZY4wxxhizEC58M8YYY4wxZiFc+GaMMcYYY8xCuPDNGGOMMcaYhXDhmzHGGGOMMQvhwjdjjDHGGGMWwoVvxhhjjDHGLIQL34wxxhhjjFkIF74ZY4wxxhizEC58M8YYY4wxZiFc+GaMMcYYY8xCuPDNGGOMMcaYhXDhmzHGGGOMMQvhwjdjjDHGGGMWwoVvxhhjjDHGLIQL34wxxhhjjFkIF74ZY4wxxhizEC58M8YYY4wxZiFc+GaMMcYYY8xCuPDNGGOMMcaYhXDhmzHGGGOMMQuxyesM5BQR5XUWGGOMMcbeCiqVKq+zkO9x5JsxxhhjjDEL4cI3Y4wxxhhjFsKFb8YYY4wxxiyEC9+MMcYYY4xZSL5vcMkV/xljjDHGWH7BkW/GGGOMMcYshAvfjDHGGGOMWQgXvhljjDHGGLMQLnwzxhhjjDFmIfm+wSVjjOUH2kbj5QbjjDH29uHIN2OMMcYYYxaS7yPfHE1ijOUl5TNIfE5PT5dpys+CtbW12r+MMcbeHhz5ZowxxhhjzEK48M0YY4wxxpiF5PtqJ4wxlpdiY2Pl5zt37gAAEhMTZZqrqysAwN3dXSOtQIECMo2ryzHG2NuBI9+MMcYYY4xZCEe+GWMsB6KiouTnbdu2AQCePXsm0ypVqgQAqFKlikwrUaIEAMDJyUmmceSbMcbeDhz5ZowxxhhjzEK48M0YY4wxxpiFcLUTxhjLBtGn9927d2XaiRMnAACPHj2SaVZWGTEOX19fmSY+axungDHG2H8bR74ZY4wxxhizEI58M8aYkZKTk+Xn6OhoAMDVq1dlmvj8/PlzmVa5cmUAQFJSkkxLTU0FwJFvxhh7G3HkmzHGGGOMMQvhwjdjjDHGGGMWwtVOGGPMgPT0dABATEyMTLt37x4A4MGDBzLt5cuXANSrmMTHxwMAXr16JdOU1VcYY4y9XTjyzRhjjDHGmIVw5JsxxrRQNoZMSEgAoN6Q8unTpxrLFCtWDIB6lDstLQ0A8PDhQ5n24sULjW0wxhh7O3DkmzHGGGOMMQvhwjdjjDHGGGMWwtVOGGNMQVQTEVVNgMzqJspqJ4mJiQAAV1dXmVatWjWN+UTVkvv378s00XBTNORkjDH29uDIN2OMMcYYYxbCkW/GGFMQke/Hjx/LNNFYMiUlRab5+PgA0N5o0s7OTn6OiooCoN5AU9kgkzHG2NuFI9+MMcYYY4xZCBe+GWOMMcYYsxCudsIYYwqpqakAgLt378q027dvAwBKlSol0ypXrgwA8PX1lWmiWkpsbKxME6NZKke1FI05uZ9vxhh7+3DkmzHGGGOMMQvhyDdjjCmIqPW9e/dkmoh8u7m5yTQRtba2ttZYh2i0CWR2SajsVlBEwTnyzRhjbx+OfDPGGGOMMWYhXPhmjDHGGGPMQrjaCWPsrSWqf7x48UKmiSom4l8AuHnzJgBApVLJNFG1JD4+XqZdvXoVABAdHS3TxLqVfX8rq6Uwxhh7u3DkmzHGGGOMMQvhwjdjjDHGGGMWwtVOGGNvLdHftrKaiBgOXkwDMnsqef78uUy7desWAOD169cyTVQxSUpKkmnis7JnE9EfuLIHFMYYY28HjnwzxhhjjDFmIRz5Zoy9tUSDywcPHsi0ly9fAlAfzbJcuXIAABcXF5lWoEABAJkjYgKAv78/AODKlSsyTUTSlaNeaouGM8YYeztw5JsxxhhjjDEL4cI3Y4wxxhhjFsLVThhjb624uDgAwMOHD2WaaEBZvXp1mVahQgUAgIODg0wT1U2UjSZFn9/Ozs4y7dixYwCA+/fvyzRRtUXZWFO5DGOMsf8ujnwzxhhjjDFmIRz5ZiwfUUZZlZ9Fwz1tDfiUadqitdbW1mr/AuojOWZNs7LK/M0uPmub39LEfir3LTExEQAQExMj05SNK8XIlXfv3pVpoiGlMhLt6empc7vaugtUHksR3VZ2U3jv3j0AwPXr12WajY2N2vaVaYwxxv47OPLNGGOMMcaYhXDhmzHGGGOMMQvhd5qM5QOiaoOygZ7ooxrIrE6irGIiqoKI0RSBzAaBaWlpMs3e3h4A4OjoKNOUVUsEUZVCWRXC1tYWgHpDxLwi9l15jJ48eQIAOHnypEwLDQ2Vn589ewYAsLOzk2mif2/lcdNHVG0BgKdPnwIAHj16JNNE/97K83Xt2jUAwKlTp2SaOOaiT3EAKFiwoFF5YIwxln9w5JsxxhhjjDEL4cg3YzkkosjKSKlIU0aYxWdtjSa1NZ5Urk+MiKiM6iqnK0dZzEo5X0JCgsb8xka+RZqyMaGIfDs5Ock0EQXX1oBTW2NNZZq26Lr4rEzT1yBUeSxFtPnFixcyTUTDgczjUahQIZkmGjwqtyfOnXKfBG1vFpR58PPz08iDq6srAODVq1cyTXR7qLxmGGOM/fdw5JsxxhhjjDEL4cI3Y4wxxhhjFsLVThjLIVF1QDS2AzL7lRZVCYDMUQ2VVQ1ENQVtjSe1VVnR1o83kFnlQlkdQ3xWLqNtPdqqcGjrv1tUpdBWxUXZYFF81lZ1RFRxATKrpyj703Z3dwcAeHh4yDTRx7YyTVR3URJ5VW5DVCEpWbKkTFNW3RGfRTUQILOaiDJf2qqdiGOoPE/iGPn6+sq0du3aAQDeeecdmSa2V6RIEZnm4uKisQ3GGGP/PRz5ZowxxhhjzEI48s0YtI8QKSKpysimiFCLhnpAZgO++/fvy7THjx8DUB/VUHQ5p2x4J6Lgymistui0voaIys/aIt/aGjQq5xORbGXDQW2RdDGfMq/aouDaRszUFvkWDTyV3el5e3sDAHx8fGSa6MpPuS0ROVZ2cSjyqnyLIKLwxYsX11gWyNxn5bEU0XIRiQYMjxyadXuFCxeWaWLbym2I7SobZoqoP49qyRhj/20c+WaMMcYYY8xCuPDNGGOMMcaYhahIVwuuLIycLVcpX9EK2voj1taAjLGslNVJRNUR0VASyKwmomw0KRpIKqudiDRlQ0pRrUBbNRBlmrh+tVUhMdSIUVmtQ1sjPW3b01btRBwHbVVIDDW41Nc4VNt8yqot4rO26jXKBpVi37VVWVH2L+7m5gZAvbGjaKypXFbb80H5bBHnRLmMyI+2BpfKa0E0qlUeD1E1RrlPomqM8niI7SkbeiqvAcYYY/8NHPlmjDHGGGPMQjjyzd5ayij31atXAQC3bt2SaVFRUQDUR0QUkU1tjROVkVLRqM/Ly0umicaEyi7zRLRW2ehQNPRTRnXFug2N8mhp4p5UNnIUo3EqI8LirYCyAeqzZ8/U/lVOVzZKFW8gxBsGIPN5pByVU4xSWa1aNZlWsWJFAOoNIMUxNxfls1HbM0pQni9tz1N93UUyxhj77+DIN2OMMcYYYxbChW/GGGOMMcYshKudsP8McY0qqzaIz9qqQChHpHzw4IHGsqJ/aWXjOXFtaWsMqawCIaqdKKuYiM/Kag+iuomyT2lR3UTbKI75iah+AmRWGVE2XhXHWlQrUX5WVjsRn5UNWkVf49oaSiqPm2i8qKx2UrRoUflZHH9lf+Gin29lVSCRxhhjjOUUR74ZY4wxxhizEI58s/8MEam+cOGCTBOf7969K9PE6JNifiCzIaNy9EMRIVVGSkWjPmVDShE1VV53Yn3KKKy+NG3dBub361h5vxrb/aBIU84nnj3KNBEFVzaGvXLlCgBg//79Mu38+fMA1KPYZcqUkZ9FRNzPz0+mlShRAgBQqVIlmVayZEkA3PUfY4yxnOPIN2OMMcYYYxbChW/GGGOMMcYsxMbwLIzlLVFlQdmAT1QZUVYdefToEQDg8uXLMk302y2qmgCZjf+UVT1EgzofHx+ZVrx4cQBA6dKlZZqoguLu7p7t/XlbKKuEaWsMmRPivCsb0orPd+7ckWniWhDVhQDtVYaUjWpF9RZlVTvRUFTZWFZcM8rGmNpGs9RWNY4xxtjbi78VGGOMMcYYsxCOfLM3nohUi1EoAeDGjRtq/wKZXQcqG+aJkSFFIzogs5GdshtA0dWfssGliHIq00TXdSxvidFJIyIiZFpYWJjaNCDzHNetW1emtW3bVn4W3Trev39fpom3JMprS0TBlZFvcR0p34yIRppFihSRacqRTxljjDGOfDPGGGOMMWYhXPhmjDHGGGPMQrjaCctz4pW+sl9rZd/Poo/uixcvyrRLly4BUK+KIhrhKRtNiioBFSpUkGnVq1cHoN4Ij6sGvPmUDW6vX78OADh79qxMU14LQqlSpQAAAQEBMq1FixYa84WHh8vPog/xhw8fyjQxAqqyn2/RN7hypFRR5UnZEFhcZ8q+xkVjX2Vf6OL6V94H+b2vd8YYY5o48s0YY4wxxpiFcOSb5bnnz58DyIxmZv0cFRUFQH00Q9E1nHIUQtH9nzLyLaKTxYoVk2ne3t4AONqdX9y8eROAepT7zJkzAIB79+7JNBFNVo5IKkamFBFwIPP8A5nXQHJyskwTDWyV14xokCki4EDmdavMl+jaUNmdodi2tka/vr6+Mk00DlU28BUjoDLGGPvv4Mg3Y4wxxhhjFsKFb8YYY4wxxiyE32kyixKNK0WjNiCz6sCRI0dk2qlTp+Rn0c+3ssFa+fLlAQCNGzfWSBN9dgOZIw0qX9/ziINvPjGiJJDZ0Hb//v0yTfTBrRzhUvTB7e/vL9MqVqwIQL0KibK6kaOjIwD16kuimsjr169lmhg9VdkwMyQkBIB6X+Pnz58HoF6NRVR9UW6jatWqAIAqVarINNE4WFltRlSlUo7GyhhjLH/jUghjjDHGGGMWwpFvlmtEo8jY2FiZJhqs3b59W6bduXNHbRqQOfIgkNlAThkRFFFu5eiConEly1+UUWLRuPLatWsyTUS5xVsMILNxojIiLN54KCPf5cqVA6DeraSyu0BB2aWfiIaLf4HM61GZV9GtoDIP4q2KaCQMZF7/yoaZL1++BAC8ePFCpomRNZWNQz09PQGo77uI3CvfBIlGmso88xsexhh7M/HTmTHGGGOMMQvhwjdjjDHGGGMWoiLRAs4AI2fLVcrR4ARtr1Z5VLjcpW1ESm1iYmIAZI5GCWT2zxwaGirTRH/JZcuWlWnVqlWTn0X/yMpGc+J1vLJ6irbqBOzNp+y/fePGjQCAo0ePyjTRb7uycaJoaKkc9VQ8C+rXry/T6tSpA0C9SpKyH21jq2aIa17ZCFM0ClVWlxL9058+fVqmHThwAEBmH+BAZtURZb6KFy8OAChTpoxM01a9RuRfWeVKLKOsXqO8NxhjjL05OPLNGGOMMcaYhXCDS2YybRFv0fhM2bjy6tWrAIDIyEiZJhrPiQZnQGYjMRH5A7R3wSa6XWP5V1JSkvz87NkzAJnXCQDcunULgPp1JBpQKhtSiq4qlSNcimtQeZ2IESSV0e7svBkTyzg4OMg08VnbiKrKxpCiq0zl20MR7Vc2uBSjaCrf4IgIv7IhpYi+KxthisbN4i0SkPl2qECBAjJNrFtbA07uzpAxxiyDI9+MMcYYY4xZCBe+GWOMMcYYsxCudsI0aGtca+hVvahOomxoJhrDKfv0Fq+4lSNTir6YRcNKQL0hmnLESpa/RUdHy8+7du0CoN4QUYxE2qBBA5lWoUIFAJn9vQOZ/W0r+91OSUkBoF6lQlw7lurzWlR5UVabEnmoVauWTDt58iQA4MKFCzJN5FFZtcXZ2RkAUKRIEZkmGlKKajtAZr/o2hpmenl5yTTRV76yz3xR3UtZNYcxxlju4cg3Y4wxxhhjFsKRb6bB2AZpysZdInoZHh4u0+7evQtAvXs2MTJlw4YNZVrt2rUBqEcsWf6n7BpUNLAVXfEBQFhYGIDMhoYA0KhRIwBAQECATBMNB5XrS0xMBKAe0RYRY2XjREtfU2J7yi7/xGcRwQcyG2QqG1eK+0mZf7FPyqi0tsj306dPAWQ20AQy3yIoG6CK86C8J8UxVHblKfKgfAumPNbiGaF8VnAXr4wxZhyOfDPGGGOMMWYhXPhmjDHGGGPMQniEy7ec8rzqO27Khm2i327l6IJiFMuHDx/KNPFqXTlypah2ohzBUtmQjv13KEc2FSOaKqudPH78GIB6g9p3330XAFCjRg2N+ZTXm+gnW9lvuGhYqKzSVLly5ZztRC4R/ZNfuXJFpomqW8p+z8V9p6zGIvouV1YnEdVElP3ni+Mm+hkHMvsDVzbMFI06lX2Tu7m5AcgcYRNQ789c5EfMB1iuUStjjOV3/LRkjDHGGGPMQrjB5VvO2LcEjx49kp8PHToEILPBHJDZgEsZxRbRy9atW8s0ZQSP/TeJ0SfPnTsn03bs2AFA/Q1KnTp1AKh3wSfSlNeRiJZHRETINPEWTBkh19Yl4ZtKNG5UdiEoItDKt0d37twBoD6Sp7hnld0ZigaqyuMruh8U3YACmZH2qKgomSYaeoqoOJAZ8VaOKipGmlXOq3x+iEahPFImY4zpx5FvxhhjjDHGLIQL34wxxhhjjFkIVzthGpR9BYu+us+ePSvTRMOwuLg4mSZGyVNWAxCNKrmqyX+XGFXy5s2bMk1UbVCOXCmqIihHVqxYsSKAzEa4QGaVEWV1BnGdiQaEQGYjTdH4EMgcIVXZcPBNp2ykWLJkSQCZ/d4Dmfv54MEDmSaOh6iSAmQ2NhV9ogOZVVqU/YaLEWaVDSVFH+GiupCSskGreBYAmY04leddHHdln+Ta0sQ+KUfyZIyxtwlHvhljjDHGGLMQLnwzxhhjjDFmIVzt5C1ibJ/et27dkp+3b98OQL2P5djYWADqvUqIvpWbN28u05RVAth/k+hXWvSAAwAHDx4EoD50uqiCpBxivWbNmgDUe/wQ1TCUQ6eL3jiUQ6KL6hXa+p7Or8S+vPfeezJNVEU5evSoTBP9gJ84cUKmiR5hlD3HNGvWDIB6tR7Ry4o4pkBmdZMXL17ItOjoaADqVU2UvbCIPIhqR0Bmby3KcyKqAin7+hdV1AoXLgzGGHsbceSbMcYYY4wxC+HI91tEW7RbGQ2PiYkBoD7qnhilUDTKAgA/Pz8AQKVKlWRa1apVARiOZont8Sik+Y9ofKe8FrT1JS0iqMp+ocW1ouybWkRAlf1Ci2WVEVfxpkXZQE80GMxPjSuVtN0H4rNyxE8RtVa+CRDnQXmfis/KxpUi2iwi0gDg5OSk9q+SciRMkQddo1aKiLcyWi7ypcyrOLfK54yItCuj72K0TuXbEhubjK8n5XkXDUb5+cEYy8848s0YY4wxxpiFcOGbMcYYY4wxC+FqJ2850XAKyOzLOzIyUqaJRm6iigAANG3aFEBmgzlAvf9mffh1cf4lGtzt3LlTpl24cAGAerWCunXrAtBeLUk0+AMyqySkpqbKNFF95fz58zJN9GutbFApqjeJagj5jbH3gahGomxIqeyjWwgPDweg3u+2aPiqrCYk1lOgQAGd2wIyj69yvjJlysjPYiwAUSUIyOyHXdkfu5iuPJ/i+aKtGpHyHIuGuMoh7sX1I6qkMMZYfsSRb8YYY4wxxiyEwwdvKdFFnLLR1qlTpwCoN4QSI+cpu4irX78+gMxu0Nh/T1paGgD1UQ9Fd3anT5+WaaJbSmVkVkS+ldeMiF5qi1hqG1FV+UZGRNWVb1/E+vJr5NtUokEiAFSvXh2AeoRZvJVQNnY8d+4cAPVRKj08PAAAlStX1tiGsnGlaMhqqEGruE6AzGtBNMJVflY2zBQNu5VdR4oouDL/ogFoenq6Rh7FfgCZ15Ty2hLzKd8w6Go8yhhjlsZPI8YYY4wxxiyEC9+MMcYYY4xZCFc7eQuIV8PKxlHiFbFoMAcAt2/fBqA+MqUYuVL5mlr0820I9+mdf4nqAiEhITJNNIZU9sstRq5UVjupWLEiAPXrRF8DOWVjTdE48P79+zJNNLIrV66cTBN9iCv7sP6vMDQSrTiWohGrMi0sLEymiQbUly9flmniWCobUor7Xdng0ljKa0GsR5lnUT1E2ee7qHaifB6JKibKqijiGlA2GBWNNV1dXWWaaKypHHFXXHvK0TaV/aczxlhe4sg3Y4wxxhhjFsKR77eAiCopG0KJiLdyJEExap2y28B33nkHgHoXccbiiHf+omxcKbqG27Vrl0wTDffq1Kkj00R3k8o3I6IxpDIqqo8y2imiocoGemKkRmX0tESJEiZtIz8x9r5R3qeiWz5l40Rxv4tIM5AZBVd28yci7TltQC3eQihHzxTrVEbzxfNIGdEWUW5lA3Dxdu7evXsyTTQUt7W1lWkiuq1skCu6uVRuV+AIOGMsr3HkmzHGGGOMMQvhwjdjjDHGGGMWwtVO3gLi9a6yf2ZR7UT52l5UJ6hRo4ZMUza+1IcbV+YvoooRkDkq4qVLl2SauD6UDSVF1SNl/93aGlfqqwqiHM0yMTERABAdHS3TRNUXZZ/MonGgss/pt22EQ0ONMEWachRK0R+/6J8dyDzWyr6/RRUU5b2urDpiLJEHQ1WBRGNJOzs7mSaqkSj3TZx3ZaNJMQaBMv/i2CirKonqNcq+0EVf6co+08U1pWzAKT4rrzfuI5wxZk78RGGMMcYYY8xC3q7w0VtANLgSUUUgszFTRESETBPdxjVv3lymderUCUBmgzlAvWGTPhzxzl+UjSuPHj0KANi/f79ME5FlZUNKEeUW3QsCmdeKsdeJcjRL0aBOGZkVEU3RfRyQGYFURkrfNsbeX8qG0R06dACg3v3gunXrAKgfcxHxFucXyDzWyii2ue9x5fkU0W3leS9fvjwAIDk5WaaJ60eM6AlkXkdRUVEyTbzNEd0tApn7ooxyFy5cGID6G4NSpUpp5E/ZNSNjjOUUR74ZY4wxxhizEC58M8YYY4wxZiFc7eQ/RjQ6EtVKAODq1asA1KuiiFevyiom4jXv2/x6/79I2TjtyZMnANSrHYhrJS4uTqaJfrRFf8lAZhUUZf/SxlY3EbRVOxH/ApkN25R9NosqCaZu622kvHdFlQrRTzoAFCpUCIB639+iCodytFttff6b+/grGzHa29ur/Qvo749b2WhSVJHS1tBTWVVGPP+U16BokKlswCuquSifl+IaVPaPLranTFOOEsrXK2NMF458M8YYY4wxZiEc+c4njO3KT3QlFhQUJNPECHHKKJaILCojmxyp+W9Sdre2Y8cOAMC5c+c05lOOXCmui6pVq8o0MYqiMtJnKmU0UUS879y5I9NEtFa8hQEy3868bd0LmouXl5f8LEas9fDwkGnibYiywa1okCsi5cCb9XxQNpoUkX1lXkV3qcq3OaLLVbG/APDs2TMA6veIaLgZHh4u00SDS+VxE91rKt/SKEcJVR53xhhT4sg3Y4wxxhhjFsKFb8YYY4wx9v/23j3YrvI883w6KdJgbgKMBAiB7kISugNCtrjFmMSO3XE6dpJJuTvlxKlxutMZp6aTTE+me5KediqXrm67JtVOaibTM0kmcVU8jt12bEPAGDBCQkgIXZGEEOiOhLgYg5EJyfxx/Hzfs9DinCNpn6W9z/n9/jlL79n77LXX5dtbz/s+7wsdQR53QBiu3MS9vaVaYrJ169YSc6r/zjvvLLFVq1ZJavYFhsEnJ0i6dCDNle57nLElS5ZIapaduOfz6fR8H47sL26jX5r/PD1z7ty5Jeb0/kiTE6GdNC4uW7ZMUrNv9T333COpToWUqqHRUzKlZtna2SaNpS7vGKnMw9dZljn5Pjhx4kSJvfTSS5KaEzO9xqbR07/PPuR5jTp+wQUXlJgNpW3909OAytwEgPENyjcAAAAAQEegfA8YNl5KVaHJyW7PPPOMpNoqTKoTAlPldiu5NC6htgw+2WLy4YcfPinmc2y1W5JWrFghqWm+tdrcK5OdlUVfs5L0yiuvSGqq9b5Wbe6UmiY3OHXSIGtDa64PVozz/rc5MdXw/L2fk60B+x1fW6nguzWgp3xK1YSZyrevVf+UagvPnTt3lti+ffvKtrMLmXmwcu7zINV77bLLLiuxMzE1A0D/g/INAAAAANARfPkGAAAAAOgIyk4GjDfffLNs2zi0adOmEjt48KAkadKkSSXmNGumW52ChfHBq6++KknasWNHidlIlyZHmypdaiLVcpM0V/aip3ZOEnQZQ5orbWJ7xzveUWK+btPYBr3DZURZZuE+1Tlp1GbB7du3l1iuPe6jnX+n37GhMY2Z3s6+8n7vvqekev3u3r27xFySk2V/aWR2aU9Ovbz88stPej2XZGVJISZjgPENyjcAAAAAQEegfA8YqT7Z3OP2cVJVE1NZcdu2QVKpoJ08/6myWaHMFpNWr3MCn1v5+adUVbZeT5BMlXvXrl2S6gRWqSreaTSz4o35d2zJbIMnRKaZ0Fm1VHrz2rNhe5DWlNFeUzaRppnUrQ3zGFiVTiXdZk2pTtfMqa5Wt91mU6pKe5o1fR9kBtPm+DTJ+3HZOhIA+h+UbwAAAACAjuDLNwAAAABAR1B2MmBkCtPTLLPP7MyZMyU1DXWLFi2S1Ow3C4NJmicfeeSRsv31r39dUrN0xFMq/VOSFi9eLKn3kyvbOHbsWNl2OYyNa1JN19PTu3tymqJLkLKc4b777pNUTbtSc5JjTr6cCNg06XIbqZZrZSlK9qx32VUaWV3Ok+VXW7ZskVT7hkv1/OT94LV91qxZJeaSwiwjomQLoP9B+QYAAAAA6AiU7z4mFRUrnmnKsbknH2d1O9sK0rZtMHELMkl67rnnJDWnVabh0tdHTjG14n399deXmK+LsVK7kxdffLFs+7rNyYozZsyQVA1/Esp3V6Q6esEFF0hqqro2UmYmJbMuVm6zzZ4zGeNxOqPNldk2MLfbcFtBmzWlet9lC0Gr3GlQdpvOtmOeLQmdjcjJsf4MyNf1vqZCbkMp7QwBugflGwAAAACgI/jyDQAAAADQEZSd9DE5IdCTCz1VTaoT2NI8557OmV6EwSTNiV/96lclSY8//niJZemAJ1dm/26bK7MEqYuSAPeaz5S530telzZa2jQmMXn1bJJlCi4hcWmQVPtWS9LTTz8tqVm+5PKmNAROZFxOcsUVV5SY+3HbPCnV+yRLR1xSmKZll5752Eu19CzPg8tOXPYi1Xtt9uzZJeZ1wWVHANAdKN8AAAAAAB2B8t3HZFtBKxxWwKVqvEnl0ErVeDQ9jWeyRZknDaahcvPmzSfFrGxL0vLlyyU1lW9nQVLR7DVp/jI2WubERBvDUtm2upoTAqE/sGqa15Pb5ElVhU0DrZ+Tqi5t75rTJ4ebRJnH0or3M888U2I+lpkR9eMy5vs9p21aXc8Wkzbq5/1nFTyVdL9uPheTJsCZgfINAAAAANARfPkGAAAAAOgIyk76mJwod/DgQUnNvrouN1m2bFmJOeU7Ug9a6C9yCt5DDz0kqVli4vKOJUuWlFhOMV2wYIEk6aqrriqxsSw3MU5dpzHM5QmZ9rbRMnvOYwruX9znO9eWLEVYs2aNpGZpkQ2DlJqcHnl83e8+j6XX9DTBvvzyy5Ka5mafB/8uY+vXry8xT53NUphJkyZJqudfqpM8M0apGMCZgfINAAAAANARKN99TKoZnn6W7b6sUlj1lKpKAYOBjVLZQvLee++V1JwQ6VaCN954Y4nlefd0wpxI2AU2imZGxqbgbJ1mpSyvT0zB/YuV11RF3dpUqsp3TmW00vr666+XGOf49PD0yWxT6G238pTq/ZfnxibN7du3l5gza/v37y+xVMbNRRddJKnZvtam2zSEOqvmxwPAqYHyDQAAAADQEXz5BgAAAADoCMpO+oQTJ06UbZcb2GSZv08jpctO/BP6G6eL00hp01OmiF06ksYql5jMnz+/xLKEo+tyk7dy5MiRsp3vz/i95IQ9Juv1Py5/kJrrjM9dlp24zChLkHyN5rqV/aKhneFMq9lj29t5nmyC9k+plodkGYs/Z7KU0Sb/LB3yRM0813v27JHUNFB7sqZ/SrV8KR+XxlKAiQqrIAAAAABAR6B89wlpTtu1a5ek5nQzKxypdlpNQEkaDGyKWrduXYn9zd/8jaTmOVy4cKGkpsq9aNEiSU0jVBetBEfCar4nHkq11aAnbEq1LeacOXNKLBUy6H/SPDl58mRJTVO42w7u3r27xNwis9+u2/FMmxHf919OpPW5O3ToUInZkLlv374ScwbWn0tSVcgzo+E2pzZ/S9K8efMary9VNRxgIsO3NgAAAACAjuDLNwAAAABAR1B20idk+tZp+zSx2eCUxhX3Tj7bZjs4GRtksxzDJqU0JLrPd06mdF/d66+/vsSuvvpqSf2Xsnev4Cyb8rWc++r3108mUTg1ciLp1KlTJTWNeb7ms1zO65YfL/XfNTzesKFxJGOjy1PS+Owykrw3bf7MmO/3NHU6lr3EXeby3e9+t8RcdpLXU9t2lrTYUMr0VBgvoHwDAAAAAHQE0lOfkBPK3Krr+PHjJTZz5kxJTeOKVUTUgP7Dbbm+9rWvldhjjz0mqWmuXLFihaSqdkvSkiVLJFW1W+qPSYGecGdjnVTNWJm5sUKWitrFF18siTZjg0yqk7NmzTrp987oOHMnVWNmTmWE/iLvU5ukL7vsshKz8TtbEjrjlZ9RNm4eO3asxJ544glJ0qZNm0rMKna2rswWiL62stXqlClTJJE1gfEDyjcAAAAAQEfw5RsAAAAAoCMoO+kTbLyTaiovY04DuvxEqoZLyk7OLi7HyNILp+C3bdtWYp4Ul0bKZcuWSWr29Hbqt99SrDbX5QRD9wP+u7/7uxKzoSr7+WbJAgwmaYCbNm2apOZ537t3ryTp+eefLzGXX7kvNPQfaaR0eZh/vh3+bMqmAJ7SmyZMPy6nY/qayeskS1ps0sye5F57/Jkn1esxP/9c0pdTQAd5DkYeA5dunU4JV/6dNnyM8lj5uPL9YmwY3KsSAAAAAGDA4Ms3AAAAAEBHUHZylnGKLvvl5raxMzz7JJ9//vlju3MwKlx68eCDD5aYRzG7JEWSli5dKqmWmkh1BHT2+e63chPjFHL2Kfco8UxduyOPSxOk/n1PMHryHLqLSfZvdheLLJdzF6e2NQ0GF5eR+TpIsjTEXVGyQ9KLL77Y+Ck1rxn3ic9+4X69iy66qMRcipmdUrw9Xj4n8/PDxys7o2U5ictDsizF21kK5LKfLM3xcc1yIx/zfBz0DpRvAAAAAICOQPnuEP8vNf9naqNJ2/9mU2ny/0wH+X/x44lUaqxyf+Mb3ygx97p1H29JuummmyRVtVuSpk+fLmkwpj36Gs0Jhu7pfO2115aYzaM2jkqoJ+OBNF75eh3JVGvFO5VPmy+z5zumrsEke4R7O/tz+7ymMdcmTa+bUjOb5u00c3q9zWvGqvucOXNKbPbs2ZKaxsF+nQ48GlL59gTRo0ePlljbfZVrrbNRqZD7cXmM/P0iJ2hffvnlkpqZDNbx3oHyDQAAAADQEXz5BgAAAADoiP7PdQdOYY3Us7LfyZ6mTq3ZmCLVlG6WmPTDePGJSpYJOSW6ZcuWEtuxY4ekZkrO/dgXLlxYYi7HSHPlIJSbGJvrsj+vU6H5Pj0eOk1Pg/Q+YfRkGYD7Lmc/cKfNc+T4hRdeKKlZssL6Nn5oKyHK+9/lIllSkSUhbi6Q5RVeZ7Lcz2QPcfcaP3z48El/L82ELrPIa9Dbvj6ls19mkcfS+5Im5yeeeKJs79mzR1ItF5Hqupzv038nj6WN81nGYuP8jTfeWGI2uY7UBx5GBuUbAAAAAKAjBkqOGnTF2/ufLZbcps7/s5eqcSnND6kwQbekQrB+/XpJ0pe//OUS83ldtGhRidlUmTGbEgfJ+JNGKU/wTHOwf291SaotBjEHTyxsuMt1y1mjVCKtjJPZm5j4sywzgNmycMmSJZKa7SmtbqcJ060I0wDuKauPP/54ifkatGorVTN4ToyeN2+eJGnq1Kklluva2SCVd38vyO9BqXzfe++9kpoTlG3oz7avvv8OHTpUYo899pgkad26dSW2cuVKSc32jj5uKN9nDso3AAAAAEBH8OUbAAAAAKAj+qrspG1a00iPGyS8322GS6f0pZq+zTQZadluOHHiRNl+7rnnJLVPdEzTi6eqOW0p1dSfe8xKg1Vu4tKSNMr5eKQB1eakTENSbjJxyHXa10AavlyWlCZdp7EzFQ4TB18z7kH91m2Txsc2M6Q/E/MadElLGjy9luWUR5exZFmH+19naYtft219y89kl3L0eo3PXtx+bxnLEtbjx49Lan6X8PFK87u/X+RnnUsrn3766RJzf+8DBw6UmI9rGuzh9ED5BgAAAADoiL5QvgdVyT5V/D7zf6ZWFvN/of7fdipI2b4Lxo5s+XjPPfdIappQrLIsX768xKx42ygkVWPKoGYsrFRu27atxGxsyvdkc12acmDikMqh16000rldXN5XVh2tNAKMhK+ztvaUqer6szU/Y33tOXMnVXU7M3tu1ZffR6wc52exjfNp1nQWJx/Xa6x4p6qf3wusujsTK9W2r24bmGQG08cwMwvOWmXLR1rG9g6UbwAAAACAjuDLNwAAAABAR4w6hzBRSkO6IPtGu793mijcWzRTWINavtDP5IQ1T/batWtXiXlaWvaR9ZTKpUuXnhRzOlJqNxANEjby2GAq1fRj9r51T9xMB3utGM40fTpkmrQNv16vXxfenly3bEqbMmVKidlcnlMIHcse8gCjIT8HvZ1rTxte290DXKolGnkN+hrNEil/PmcsPzeM16Zco1yKN9LEz+FKOdIkauNozlnIsi+vy3n/ZUnOW8nnejvniXi/8nF5v8OZwZEEAAAAAOiIgayeH3RlK41G/l9sGh1sYqPV4NjiCWmS9M1vflNSU/n2hLVUuW2q9ARLqaq/g652J1aLPIFVqqbgOXPmlJhbKqbaMlb3Z5qSrTClKmPVJmMjMVYq/UQhlTCvYalEWmHMbJ/NcCjf0AVurZdtX71W2xgvVZW7rX2f10OpKt87d+4sMX+W5HRXZ4KyTaHvjVSk3dKvbd3KKZ9u+ZeZ2Py9Xzsz5m1GeD9nx44dJeasQL53H6M0ltrACWcOyjcAAAAAQEfw5RsAAAAAoCPGtOykzaQ52vTueDR4+j2lYcOp9EwPeTtTWOOppOFs41KfNBM+8MADkqTDhw+X2IoVKyRJN998c4m53GT69OklliaV8YLTrDmZ0NdgpkxdgpJlU73GZQo5GdYlC2lW8v7lhM2RyrUoNzkzsuzExz0NuT4nWTLk6bBpJgMYK3yPZzmUP1vb7v80NLocIyc/uuwjJz8+++yzkprX+Tve8Q5Jzb73LuFo648/UtmJSwBzX/L3Lm/J9c/3WH6fcrnJ1q1bS8zrfE7o9DqfPcKvu+66k/YRTg+UbwAAAACAjugLw+V4VLnbsEksjUbezv/12iDin9L4VFe7wNdWqtxPPPGEJOnJJ58sMSt4aShZuHChpNpKUKoqxqCfj7znnInJaW82GuW1anU7DUS5far4fkgz08GDByU1p6qlmmS8X5lF8j1kxSn3L81WOQEOzoxUDn3c85qw8p0t2HzOUL7hbDFcxiuVY2c4c02xoTEV7c2bN0uSNmzYUGLO1GU21Vm8yZMnl1jb9EmT65vX50OHDpWYs0hS/QzLtp6bNm2S1Mycb9myRVJV66VqPPWkTklavXq1pKaZnsYPvQPlGwAAAACgI/jyDQAAAADQEWNadjLaiXNOgY92gt2g4hRSpvL93rPs5LzzzpNEiqcXuL/w448/XmJf/OIXJTXPw+LFiyXVUhOp9rBOc2UaUgaZTPkfOXJEUtPIYwOOr0WpGoMyBXuq5D3ucpPst/7oo49KavbQtakyDVPe/zRh+v7Kkho/Z9WqVSWWKV8mtp0ZuSZ7DRvJ8OpzR59v6Hdc+tlWipLlHb6mXeYh1TXUpSZSvR+yn/Zw33uy7MSvlyV5OTPEfztN8l5P8z61YTTvPzcX8GeeVEsws/ED9A4+eQAAAAAAOuKsGS5TnWozXI42dirT7M42bguU/5v1e0oFbtDNfGcLqwBpcNmzZ4+k9smVniwmVdNLKt826Y0XtTvJe+m5556T1DSlWpVOc6JNOafTVtDKUJqFtm3bJqmpuHtfUg2y6pQKjO+XVKRsEvU5l6qpKBXYVL6vvfZaSU1D0iCtKf1IHsu2qaO+9lK1a2sdCXC2sWqdpnBnU1P5dgYu22xaIc+Y1eT87Bku+5b3iNe3fN1syuDXSyOo18d8Df8+10RPbnYGWKpZQ9ocjw0o3wAAAAAAHcGXbwAAAACAjhh1ju9MenGP9Ny237elYtqmNfUjmTLPtJFTWNm3uK3shLT36fHyyy9Lku69994SW7NmjaSm4WTp0qWSmv1Vly1bJqmWVkgTx/DqUpDse+5UYx6j2bNnSxp9b+809Lz00kuSao91SfrLv/xLSXVym1SNP2mQdDo1U7VOp+Z5ddmMDaRS7WmbBtMs63K6NY1GmSaGUyfXL5eRtJWT5HQ+p/KzjIh1EM4GuW55TcxpkF5nsrzR13d+fngNy9kR7qOdvbOHKzPN7wo2UqbJfMaMGWV75cqVkuoUTamWDaZJ3t858p50SV9O2h6P5Zb9BMo3AAAAAEBHjKm75UwUaita+TfaYv1I7l/+z9XqThourXjn/0JpfzYyziikEcamyh07dpSYDXep4C5atEhS01zZZrwbz/halKqRJydcWqHJNotWWVKdHA7/Xamem2z56KlweQ5vueUWSdKCBQtKzErOSK/reygVcivebq8l1fZb+Zx8nyjfvcPqdZuKneug18nMNqF8Qy/Jz2Wr25kR8/V44MCBEvNnyfbt20ts7969kpoKtNePefPmlZjNi3PmzCmxU23T+uqrr5ZtZw9zqmWudc7eOUMp1bXsdEzyMLbwLQ8AAAAAoCP48g0AAAAA0BGdTLgcqUykbXLlcCbMfp90mYbLLDvJbeMyhzQ39Pv76wdsEvzGN75RYjbHZFpu+fLlkmqpiVTTc1OnTi2xiVJu4mszS0JcgpLlTjZVZs9Ym4RG24s5e6t7qmimb92jNkuCXAqU52a0ZS4+h2lCcvlK9hLPsqTLLrtMknT77beP6jXg9GgrpUtjm1P+I005BjhdsszJZsm2dSFnEWRpiWn7/HCZnssXpbpens5EYJuR3URAqg0b8h7JshOXt3g+hdT/JboTGZRvAAAAAICOGLXyPZIa6/9hnY5qO9r/nflv97shsc3YIdX/eecxslqX7YZQvttJRdtTDB966KESs1HGarckvfvd75YkXXfddSVmc8xEaaWU5sqDBw9Kaio+VsHT4GaDTk6VHK3ibRNTKt/33HOPpKaS5NZYPkdSVZU8Xe1UsCKUar1V9WwL9tRTT5VtH49sewe9Y7g1u21tTAMcQC/wunD06NES8/q3cePGElu7dq0k6cUXXyyxyy+/XFLTNOl1yz+l5jp5uuTnm/fVE3+luo7n94M0UjqLl/Bdon/p72+xAAAAAADjCL58AwAAAAB0RM/KTob7/WhLVrJcY7SGy0E3FLSlZUkVNXGZwKZNm0ps586dkprHzf1Nc1qhy03SHDOey01eeOGFsu0yHJfoSNVUtH///hLz5LQsfRquP3PSVm7mlGn2y3V5RxpbbYx0P1xJuvLKK4d9veHwPmR5jN9TmpQyvetyE4x+Y4PPRZuheaQZCACnimcG5Prm7VyPXIaWhkZPg8wJkTYvponbpWynU2rS9n3F137u87Zt2yQ1JwJ7DkPeI1lS6D7g55133invF3QPyjcAAAAAQEf0TPnuNWdi4Dzb5D7n9nCtEgddwe81+T96T0X8whe+UGKecJmqadvkyolmrkx157777pMkrVu3rsRsMLLaLdUpaGlK9fEdSYm0YpxGSu9DGpysMKeR0pmK+fPnl9jpGC2N76E0T3pCXJr72pTxQVxnBoE25dvnAuUbekFeR24TuGbNmhLz50eaF71WZGvA1atXS2q2PnW7QLdelZpTWE8Xr69SXTtzCq/X6WzN6nUtXz8nYHrdzd/bkDlaszx0B8o3AAAAAEBH8OUbAAAAAKAj+iIX4ZRvW4nGoEM6e2ScarYpT2qaBG2uzPSiyxMyRehphjnha6KUmzj9uG/fvhJbv369pNq/VpKeffbZk57rtGf2jLW5x1PVpJqCTVx2YrOPVM1Maf50/+ac9uYeuvl3z+R+aSuBcXlNljN4sqZEWnas8Tqexl2fpzS5uhQF4yu04bU/e3B7ffFaJdXSi1zn/NwsHXGp3bx580rMZXezZs0qsVwrekle514b8x7x63pyplQ/y7KsJH/vUposaaGctX8ZH99wAQAAAAAGAOQeOOtYqbz//vtLLCdXWg1dsmRJiVnxzmmWNs/0whDTr6SSkdMArQil4rNly5aTYm20TaS0+SfVa7fgamv1mS27rHy77ZdUjY3nn39+iVnd6VV2yO8jjVV+75k1mTx58knbEyVDcrZoy2pmdnM4MzqAzds5kfLJJ5+U1JzW6zai73znO0vMhu5sF+i1zNk3SbroooskddOqL9dxr405mXfVqlWSmg0FvL5lS9hU873/b9fwAfoLlG8AAAAAgI7gyzcAAAAAQEdQdgKdYjNImuJ2794tqaYRpaZxsG1ypXt5Z5/W8Vxu0kZbCUr2uM6yj9GQz3X6NktbhtuHLOvwc9Pk6LKCTJn2utTDvaJd9iJVA1a+bk6wcx94psIBdEv23s/ttlI2m+79U6rlJjlPwPdxlpO47CQ/P6655pozfwNnQJZceR3MfXZDgXyce+VnLNddr7e51lF20r+gfAMAAAAAdATKN3TKkSNHJNXpi1Kd4pXTupYtW1a2rVikcuF2ghNN7U4lo814k+rJlVdeKWlkw6VJk9IVV1whSbrssstaX/utZKu+NoXGqkwq6bn/vcCm0zRgeTvNuitWrCjbNjRlm0UYW6xsZrs1b9MabeKQyvb+/fvL9o4dOyRJe/fuLTEbvzOb5rUu722bFtO86FamuTaeLbyG5nrp9qttbTZzDW2bxts2OTZbFo6Xls3jEc4MAAAAAEBH8OUbAAAAAKAjKDuBMcMpZBvwpDq58uGHHy4x95ReunRpib373e8u2219WunL3MQ9XnO6p8t00njpEpQs8bFJKVO1TtGONOHNKdDs322zUD7X6c9MG+d1car477SlrnPinQ2+2ds709SecJf7D73Da0CWG7Wl19umHMP4xNNw01Tv0kNJWrNmjaRqxJdqaUZ+BtiIv3r16hLz77P0oh/JspMzma6bZSe5Df0PyjcAAAAAQEegfI8BaRpqMxUl41nxscqdU8k8RTHf75w5cyRJixYtKjGr3ZI0depUSajdw2FlOVsvvve975VU2+lJ0sGDByU123MdOnTopL/X1rqwDStMaWbyPti0KVVVJlV4tw2bNWtWidkk2naus62WzVgbNmwosU2bNklqmoxuuOEGSU2TZR4PG0rH4/3XD9gElufO62CbSbffFUsYmWwb6LXF2U2pZqi8FknNSbq+BtxOVqqmyWwTauXba0Y+F6DfQfkGAAAAAOgIvnwDAAAAAHQEZScdMhF62KaJbvPmzZKkL33pSyXmKYRpenOv5UwzYq48PaZNm1a23bf7Xe96V4nZoJi9v91zfdu2bSXm85jmRf+9NCc6zZv9wF1WkClip43TeGeTVfYXd5lIloaYTE27F/Ddd99dYi5FyTT0rbfeKql5DNJ8SbnJ2GJjbK4Lvmayz7tNv73u/Q7d4377krR161ZJ0kMPPVRivk+/853vlJjnFEjS8uXLJTUN+J5ImeVtNnRTagKDCMo3AAAAAEBH8OUbAAAAAKAjKDsZAzKVnZ0X2vp5Og2fnVAGpTwlezbbuf7UU0+V2JNPPimp9lqWannC3LlzS2zBggWSmj2qKTU5PfK4eTtTuj7Gl1xySYm5tCQ7UvgadncaqV6X7o0tSZMmTTppHxzLjjW33367pGaXFV8X+Rru55tdVvy6+dwjR45Iat5f7lOeJU0uY8l9Hql3OfSOtj7fLhPIa/Xcc89t/A76j/xccmlJloJ5HfG9KdVe3VmK4s42uQa5o5VUPw/ynnXnpDPpiQ3QT6B8AwAAAAB0BP+NHANS+U4DkZWe/L17omZv1EFRvtMw8+CDD0qS7r///hLz+/SkRakq3suWLSsxm+usfsHYk4q1FerMvrgv7/r160vs+PHjkpqmpzbl2+pUKtBW33NqnQ2X2e/XCql7AUv13kjTnq8tK9u5X+7/K9We454Ams+F7shj3qZ8extls3/JzJgNz1u2bCkx38+pfDuTlUZwr/eZ/cysp9cKP1ciIwLjD5RvAAAAAICO4Ms3AAAAAEBHkOMbAzLFanOJVMsq0iRm02KaEvux7CT3z72i28yVWULgXt3Zv9slKDkGnXKT7nFfZam9p7YNUk4lS7UkJNPK2cvb+PrPftvurZ0mK6exc/S0n5uGS98jWRbj3uBZYuJewPm6XFtnF69lee58jtvWRsoLuifPje+1/Axqu09ddpJlZB4ln+Vhvu9nzZpVYosWLZLU/FzgPoWJBso3AAAAAEBHoHyPAalsp8LoyYCp7lhRTmU523L1C9nm7d5775VUp5dJdXJlGindMioNlzbe5HGB7snsjNWpvC5T0TJWw/ft21dibhGWUyPbzq3/ttsBSnXqpK8Tqd47aVROZc7YjJWTNW2qREU7u6Rq6rWsbU1L5dvXDIbL7snPnsOHD0tqz2r6d5L07W9/W1Lzs86TKdNc6fs973uvFdynMJFB+QYAAAAA6Ai+fAMAAAAAdAQ5vjGgraetVFPlmVp1D+OcFpk9v88GmTa2eWbv3r0l9sgjj0hqpibd03nVqlUl5v7RaejLVDP0F1nC4TRx9vR+9dVXJTVNtU5J5zXvtHNbP+3st52GKxg/5Frm7bY1Lft8sy50j42UWU6yZ88eSdKGDRtKbOPGjZKacx28VqTh2Wv/ihUrSizvdwCooHwDAAAAAHQEyneHWOlJNdwqc6pFVpvTaJbGlrHm6aefLtsf+MAHJNXWbrk9b968Elu8eLGkqnZL1YzXM1Xr9UNl84kHvipJ+sr9VX1/5fs/r1z8EyX2/g8OmYDmXFgNfKPluQf/UJL0n7964JSf287QNMZ/9rsfLpHhtd96TRzd9hVJ0l/+2boSO3xhVZ3u+NA/kST98MJqfDz1d1zxxLmVK1eWmLMfqXz7Wk2Fyy3/YGJi87VUW0am4dIZEcyV3fHSSy9JamYwbZw+cKCub8eOHZPUVLmdybrwwgtLzGt7toy1Co7aDTAyKN8AAAAAAB3Bl28AAAAAgI4g79chTrNmutXlJGlIsrEtU39tPcJ7jVPE27ZtKzEb6hLv8wc/+MESu/HGGyWNjbnyhUd+R5L0Yz/ymyX2+Lm3SZJ+5udvLrErNDR58a8/eVuJffLnh8onfu1rj5bY799x6ahe9zu7PidJ+r3f+3aJ/eRvvF+SNLv1Gb1i6PUe/Z3bS+TOzw+Vf/ynf1dLan74tcfK9v/+40N79Hv/U43d/fG5kk6v/MRTIlevXl1ivga/+tWvltj+/fslNUuQXC7VZakUnB2yNM79ot0DWqplSWni9nXBNMuxxYZKqd6nDz/8cIlt2bJFUnOGg0uC5s6dW2IuPcsplVdccYUk6eKLLy6x7M0PAMPDpyMAAAAAQEegfHeIFZ9ssdU2DfCVV4asgy+//HKJWVXo1WRIK+1ptnHrwO3bt5fYj/3Yj0lqqiNWTL70pS+dtH9/9Vd/1ZP9e2PX/1m2P3zHv5cknfcfNpbYoX89NEmzVcP+336/bP7trw+ZHO963y+U2Io9fy1J+umpw+/D8YO7hjZu+vcl9ju/+wlJ0ty2J/SK7f+3JOnjn/vZEvrWhn8tSVrcEJfuqls/OpR5+JfX/UaJfeGD33+fU059Fy644AJJzezFc889J6l5DT7//POSmu3KbNjNqXZ+Tlv7QRhcUtF2xi7XLauvme3zNYXyfebY3PrCCy+UmLdzzbbynWZpZy1yOu2llw6tqDl11ip4miu9PgDA6YHyDQAAAADQEXz5BgAAAADoCMpOzgLnnntu2Xbv1EzBOm2bqUSn+XpVduJ05be+9a0Su/fee096nI2UacDx1MNPfOITJfb5z39ekvRbv/VbJZbbo6O+37v/wy+X7ftvGOq3/dT3S02ktyk3MefUNOp7/+3dkqRN//0lJXbNZSc9o5VXXzr2/b9Xb5NOEuXPDfXi3fKef1JCi0fyMl06U5K0bO6xEnrFft3TKDsxaaLyVLvs422TrktSJGnt2rWSmhMsncZmkuH4Ig2XLpc7fvx4ifn6yDXPk34pOzlzXO61adOmEnPZYM5rcJlhlpj4/kyz9IwZMyQ1p936fOU5BIAzA+UbAAAAAKAjUL47xGYzKwlSbdWUrQY9jczTxqSmYnGquAWY/65UVZGdO3eWmFWUVDY9sXLRokUl5naCX/nKV0rslltukSR96lOfKrEPf3hokuP1118/uh197m/L5p/8WW2T9c++/FOSpFknPWEUXDq0/0tG112wncvrZLdObEYLhtr7/dTPfb6Evv5vhmI/OrldAn9j1/2SpL/YfF2J/drlvd2tSy4Zyh5kFsTXbaqdNuSmyu1rBuV7fJHKt1sM2oQr1bUnpyN6AiITLt8eTzzOz4W2e80qd7aE9eTKNL76mKcJ2tkoTyeWagtBABhbUL4BAAAAADqCL98AAAAAAB1B3q9DbDDKFKz7qmYq0UbLLE+xEeZ0cPnK3/5tLetwaYAn0EnSsmVDhsbrrqulCy43yVIUmz7zcX/wB38gSfrYxz5WYr/6q7960usOx7fX/03Z/qI+VLY/d+NFo3p+b3imbj3x/Y0lteTnDLyLo2fKkNHyP/6X+0rojuuHzs3ij3ygxOa+urZs/19fGEr5/8u7q2n2fT0+bE5dL1++vMRsBM5z7FKmNG25B7RLV2B8kGUnLnPIcjmXSnidk+p1kfMOoIlLBJ955pkS27p1qyRp7969JebPjTfffLPEXKJ48811+q/LTbKsxMZ57kmA7kH5BgAAAADoCJRvNdWbNjzFzSaY3PbUSqkqOWkkyol+fk6azqwCWRmUpBdffPGkx6VCPRx+L/l4KyWPPvpoidmgk2ablStXSqomS6kq7iMZ5T760Y9Kkj7zmc+UmFsXZjvD1atXv+3fOHKgmj/1j28rm1d+X25+45XdJbbxvgeGXmPtUyX2iq6UJC1+/50ldueqoXZab+NTbKEqSG9+7+Tfeh/8+rkPr6hmNGbfMaRQv/+2JSV21ag7dQ3t7LQP/JcS2bFnaELd9sd3lNhz+u/K9q/80ZJTfI1Tx63GctKdWxHmtfWd7wz1OMwJe25FOGnSpBJzBoWWc4PLSMq318I0+r3zne+UhPnW+PMljarPPvusJGnbtm0ltmbNGklNNdz35LRp00pszpw5kqTbb7+9xHzPMmEWoD9A+QYAAAAA6Ai+fAMAAAAAdMS4LDtxGm+kFJvNQPv37y8xG1g8mU2q5SJpavFrZMwp2DQSpZnFafbs3WoDjHvkSrVPa6bjs+RlOFxisn79+hLbtWvXSftqs+SSJbUswuUmV199dYmNNjXs9PJv/uZvlthHPvIRSdIf//Efl9hwZScHd9bSBd1QjZs/8JV/MbR/H/7zEnv9tn8qSfrosmogemXX/yNJ+uSnP1lixyYP9Qj/3L31uT89d9Q1KJKky7/8i2X7sk8fkCSdu+z9JfaRu4b6Xl945MES+62P/C+SpF/Uj5TYZx74C0nSryw79abj51w4lFZecuu0ER7ZLTZhZinKzJlD0zbzOt+4caOkOllVqv3fMXyND1x2ktNOvb7Z3CdJU6YM1ZFNxLIT9z33Gi/VmQv5OXTo0CFJzV7dNuAvXbq0xHws0xDvPvz+nUS5CUC/gfINAAAAANAR41L5Hi1WFXI6mFUIm8akquCludKqdCp5bg+Vhsts7TR16lRJzbaB/n3bVLhUPRxrI1X6HTuGDHk5fdL7lYqJ2wouXLiwxEZrrhyOD33oQ2XbxqrPf75OavzsZz8rqbaoe1se+2TZvPPD75IkfXpjNfB9YkGbs/B3hx539KES+e07b5Uk/cydVZm9cuvvS5JubW3FVxWpbQ8P/TwWh+PX7hn6/afeW9sPtunov/tHQ5Pn/uj9tS3fL636BUnSlD1/XWI/PbVtHwYHX+uzZ88uMd8TvpckacOGDZKaGR6b8FC+B5fMpvnculWqVNXXVL4nmuHSWVKpZlafeOKJErOR0iZLqRrwfaykaohPk7wV7zy+zrCidgP0LyjfAAAAAAAdwZdvAAAAAICOGDdlJyOl2JwSPXjwYIk99dRQf2aXaki1RMNGMqmm/pzOk2oJSva0dUox065ZTuK+xxdffHGJ2ZyWE+D8XrKcxH27M+Z9zbIZmyuz/65TkjbiSNKCBQsknZ65cjiy5Ma9vz/96U+X2Oc+9zlJ0sc//vHh/9CJuvlTXx4qW2kvNTmZcybfUrb/1z8fmrz535b8Won956/9j5KkW3+6bV5lPUY/d/fdkqSfmHZDid06f5RmyXOHju8n/uxPSui/XT10PD71/20vsZ/+lQWj+3t9ivt8p+HS156vT6nea2lG9v0wffr0EqPn92DxyiuvlG2X6uUa5fOZa563x0tZRJbeeEaDVNf+7HdvI6XvB6ket/zMcUlWGim9ZmeJl8t6uG8ABguUbwAAAACAjhh45Xu0bQWtDn/9618vMU8KSzPj5MlDRro0J7odn6dRSlXdc2s/qarh27dXZTMVjiNHjkhqmhxtPEzTmaeW5dRLK0zZjsomNht2cr+skkhVXc/3ZLUx1fxe8+M//uOSmsr3fffdJ2kUyrd+qm7deuqt+cw5i++SJP3zeVX5/rW13z8/rcp3dUAuvasHbsip7y6bH7lj6OfPf3FdiT3zfeV7+pm/0lnBituVV15ZYm6JlpP41q0bes+phh8+fLjxU6pZJt8D0D+kwmtTbWb2vF7lWuzzmAbr8aJ4mzTn50TKrVu3SpK2bNlSYm3ZT2eNUtF229e8r84//3xJzXsDxRtgMEH5BgAAAADoCL58AwAAAAB0xMCXnWTv7beSPYVdduL0t1RLOWbNmlViNiC6VCN/n2ZCkylUT3ZL000aPE+cCBfh97HJMdOQLn2xOUeqPZPTzGmjqMtZJGnatKEJiFna4hKUNO+MZbmJueGGIaNiHrdvfvObb/v48yddHv+qJT7nt/bjHi1DqdpJ74zQ+j2SpD26o4RmaayYXrc8THR9Td+/qfGHr2X3tc/t7IvvEqo0mnnyahqBoT9II6VLhXJ98zyENnPlIJYRpWndpYlZeuMym+xnn+Z3lyRmaY6fnwb7OXPmSGr27/b01/FWogMAQ6B8AwAAAAB0xMAr3+aNN94o21Ya0uxo80sqNZ4ueeutt5bYu941NE0xjS5tirexuUyqanmqI4mVkpx6aWUjDUluCZiGSyvGqapbIbdaKFVT5YoVK0osFe8u8XuyAi5Ja9euldRUiLz/11737nh2nQBXfHvTe7RjM4eO/+UjPKw31Ovy795+SOm4JNVr31d79uwpsd27d0tqKoO+ZkZSvkdrtIbe4XanUlV103Bu81+2nRzkVnhtSn+2pfW2M55SM7NjtX/VqlUl5uvarQSl+nng9VziugYY76B8AwAAAAB0BF++AQAAAAA6YtyUnaSZ0antjRs3lph7DjtdLVUTWJZFzJs375Re1xP+pFqqkinWLFlxP9gsaTHu4SrVfq8HDhwoMU+uzB7it912myTpPe95T4k55Ttp0qRh99tmorb0Zq9Tnm1lJ5s2bSoxl51MWVQNkIv062X74R1DxtmPTT8N5+Ub+yRJ2x6roXkfGirDaftr3979cNn+yleHDIHX/4ufKbHF55z0lBGoaeonhlqc6x+/r9o7z05BUDdkGt1lUGlic0/k7PPtnvr5uDZTNWn57skyuH37hu6rnDtw4YUXSmqWubWtif2O1+k0svsz5fHHHy8xr2E5J8J96qV6HLLsZNGiRZLqsQKAiQnKNwAAAABAR4xL5dtmvkcffbTE3HbQbZ2kOkUs2z6dKqnoWL1OxS9/731sM9ZkKy63C0zjUpuS7feUJlK3Lsw2hX5umkNtbMv37selmt8L2rIJabgsLPjJsvkb7/sfyvZHP/UXkqRfv/MTJTZ3lLv4wt3/VZL02RPTSuzf/fDit3u4znv+a2X7k5/8j5KkH511V4n96QdO7Vr59v3/tWz//s4hi+cvfbaaYXt7pPuLVPd8H+S16haDqTBaBXemR6oZqswODddiFMaGNCA6K5frzPLlyyU173cbDHu9pvQKm33TCPzss89Kal6rbvGaplO3oM21OY3CXr+zbS2KNwBIKN8AAAAAAJ3Bl28AAAAAgI4YN2UnaQZyyjpNfTb+uA+2VKeI/dAP/dBpv26mv22uzNRilnqYTMG2GcdcCjJ9+vQSc4rzmdL0uuI0qSQdP378pNfwlDn33JVqn9ksbXnr46UzOzYm+5CbnTt3tjyyTkT8qU//H2X7Txb/oiTpzl+q+//AH/6EJGlGY3DeUE/to499pkR+5sN/Jkma/MlvlNgnlr/9vp6z6mNl+/fuGCo7+fmf/dkSu/Xhv5Ik/dyieo7rka49vY8+9llJ0j//8U+X2Ou/8FVJ0r+944xGdg4kvg+yx70NaZ6MKEnHjh2T1Lx3bWjLcgaXV0F3eCKwVM/Tyy+/XGJe97LMIg2I/UKWKHrt/Na3vlViNrX7PUp1bfdnhiTddNNNkprvN830LquiRAoA3gqrAgAAAABARwy88m01JlUKm7YyZiNMGmKs/qbZ8VRJ5Xq4SZinQxp5rBJaAc/fX3LJJSVmU1oq3952Cy2ptghLNcsGo5y26b+XCv55553X+JnPyVibWmRy+mgb58z9eNn+/P1HJUk/9iP/tMRm/vmQeXHW9DBAvvCMJGnPsarW3/xv7pEkPfzbtY3h8JbJenw/9vlHJElv/quPlNgvLx5Ss3758vq46ZcOvc+/+/7r5z749SVp22+/dxSvP7657LLLyravi7xWbb7Mlm5WuVNhRPkeW2wszDU0W596onCuC86YjdTmtAu8rjkTKFVzZU6ktPKd7S5tDs6WiZdfPrTeLFy4sMRs3s/PlDQFAwC8HSjfAAAAAAAdwZdvAAAAAICOGPiyE6dCs1ewTUBOjUq1tCTT3i7X6NcetFkOY/Ole3tLtdTDfcGl+v4y9WuDUaaNnXpNA6eNbdmb3GnlLG2xac5lO1JNvbYZjtJkZ5wCHg2XrvqfJUmPHP9XJbZ/+1BZwo7nau9hnTtkyJy/bEEJTbvwDM7tpcskSR//f2uJzEf/8BlJ0s4ttQ912YWLa5p62YKhspTLz+T1xyFp5r3xxhsl1etEkr70pS9JkjZv3lxiTvnfcsstJZalUdB7vD488cQTJZalYi77yXXB2/0wzdJrXV5H3s6e3i4bzLXMUyizXG7GjBmSmtevjwElUABwqqB8AwAAAAB0xMAr3zYRZqtBm4Ws5Eq13VMaAq0s90qp+fu//3tJ0j/8wz+0/t4qS5o021oNmtxXGy39GlJ9z9mqzSqMlZrcn2x55efkvlpVz+PmWL7Gm2++edLjPP0ulXmrRG3tFvN9+BxmW8PWdozn1PZ+05bcOvTzpL88tpx7yXRJ0pJbp3f8yuODPMfOkuR15IxNZq2cJbFJWKrXeV5b/aC4jhdstNy2bdtJMalm2NKU6Mm9w61pZ4qvi7xmnNnL7Kf3Oyelehrna6+9VmJuhZjZwwULhjJnS5YsKbEzmYIMAPBWUL4BAAAAADqCL98AAAAAAB0x8GUn7iXdVlKRk8ycrsyUaK8njzkVmiUaiV8vSyq8/22p2iw7mTt3rqSmucdT2dJU5JIQm9mkaiZKs5AnW7pcRKrHK0tHXnzxxZNi7qHrvuBS7Zeb78MlBm1lJ3luPO0yzZo22Un9a4iF3pATYV0ulb2YfT89+uijJebrMUsD+qG/9HjBpT47duwosSxRW7x4sSRpxYoVJZb9rntJvu4LL7wgqWn+9DTUnPRr032uRy6RufXWW0vMa2Oawl0+k0ZgAIBegvINAAAAANARfPkGAAAAAOiIgS87aRt/7u3srOCSEKctJemll16S1CzvONUSh3TOOxWenRpyH1wykuUuw42kz+dOnTpVUjONumbNGknN8g+797P7i5kyZUrr9lvJMfQeu5w9wt0bPF/Xad4sT3G5QL5HdxLIspLdu3dLah63LN1xuUz2PR/uuLV1kxnLDgxwZuT9N3v2bEnN+8rlBFu3bi0x38/ZpYKykzPD66FUO5vkepnH18f9uuuuK7Fcr3qBz3GOiG+7FtatWyepOSLenwEur8t9Xb16dYm57IROOQDQJSjfAAAAAAAdMfDKt40yqfRa7UgDn1Wdhx9++KS/cccdd5TtNnOgyd7UNh0ePXq0xKwE5+Nycpr39UyMnmkCsjHIP6VqoLQJSaoq8syZM0tsuKlsOT3QCnmqWt6HVB19/PM8tKnhNtSlicrmqVTX2zIZuV/eh7YJeznF1Ko5ynf/kteWle/MbPj6efLJJ0vMSmWqop4C22sj9Xgk7z+ryTY+S/VeTJN2Gip9j/VK7bbK/fTTT5eYJ1GmkdK9vL3+SlWRd3ZQqmt/Kt9z5syR1FwvUbwB4GzApxQAAAAAQEfw5RsAAAAAoCMGvuzE5QdZ3jF//nxJ0r59+0rMZpz169eXmFOm119/fYnZsNhGllS4D26bETFTmWlScvxMUp2Z5m0zPTkN/9hjj5WYTVNpJnV6v41MSbvUw8ZWqR7rfJzfU5ombdrK8+DjlTH3dE5z13e/+92y7TKC3Ie2sdDu4+vygyTLdUg19xd5PlwSkOfavaazN7zvvxwp7ustS5F6bQIcL+SxdDnPI488UmIuGXOZmFTLNqTmMe4FPp9ZLmcjpddVqa7BWWKycuVKSc113GtAGrtdapfrFgDA2QDlGwAAAACgIwZe+TapbC5btkxSs12dleA09Fh93bhxY4n5OWn4s4EyW/B58mPGrBLnxL7ctvKchrBTNQKmEc1molSJrRxt27atxGzCdEZAqspQW8u+tlZ9yXDKcf7Opqd8v24XmMfX5i0fU6lpqPL+e3qnVNUrK2ZSVfPShGfTVpo12wycPk8Zs/qaLQ6hG1L5tso5a9asErNBz+dXas9kpUIKlbzXvCam4dKZpVwzcvvSSy8d1es4E5ZZLd+faVY/dOiQpNp2VKrrWqrXNo2nIu/zndeHze1t6xfmawA426B8AwAAAAB0BF++AQAAAAA6YtyUnWTf6htuuEFSsy+tywrSEOiSkez97RRsGi/93Cx78Hb2lJ47d66k5vTILDtxWvxM0p5ZwuHSkezF637mjz76aIk5fZsTKW1Oy/3vtTnNJSh5LF0elKZIlxDk8U1DmNPUaa6zSdM/JWn//v2Smv2g26Zs+pw4NZ37Y9OmVK+fTHsPN1kTxgaXV916660l5t7wu3btKjFf02lypuykeV95zXOZh1TvGx8/qd4HS5cuLbE0do/2PrBxc/v27SXm6ZRbtmwpMZfB5FpmM7Wn4krSwoULJTXvSZeF5WcApSUA0M+gfAMAAAAAdMTAy3g2Q7aZ+lJdtYKTBj23H0yToBXXVF5t0MvXsEqcLbdsMExVZiwVGO9PqtdWrHK6p1WlbO+3efNmSU01K6fB9QK/91Skhpus+XZYoU5F08bIbJ/o85jH3MbNzHh4YmI+rq1VotuapYHTRsB8H74Wcl+8ndkEVPPTw5mkRYsWlZhNuGks9nWeGR5nfc4777wx389+JVuk2lTp9o35+1y3vHbmmtB2/abZ2xksq91SzSTm63liZU6+9f2XWUNnEvO853oFADCooHwDAAAAAHQEX74BAAAAADpi4PPgoy3rcA/YLANoK0kw2dvZKessK/Dfyb7QNgudTbOPTUp33HFHiTnVnD10PWkyp731uuykV/j4ZymNTZM54dLp8ywZeu211yQ1+xq753CmvW1Ey/S4TWJZluR9yb7y7nmcKXNPakxTZ6+nAk4UfKzz3rVhMO9Tl5SlmXDv3r2SmsbLNEFnKdl4xSZsSbr//vslVdOjVK/Vu+66q8RWrFghqXmsEt9jNmtKtZQtDc82ceY96fN5yy23lJjNzXm/uAzG+wcAMF4Y/588AAAAAAB9wsAr3yYVXJMKtFXHNvXRRiGptqbLv2d1LJXvfjXPWS268cYbS8zKbSpSVgTnzZtXYjYWpoGzH/Dxf7vJoaMh26jZeJqqnU1g2c7QarnNfVI9ljmB0ccrlXQr7tnmzRmWfK6vo7apoXn9+hhM5BZqqXJbIb3qqqtKzPdxmqozk2Fmz55dtnvdXrOf8FrmLJdUWzNmzK38Vq1aVWLOKGVWMO8DZxfc8lGq03WzraD3IduNOkN08803l5inZ+bkWwCA8QrKNwAAAABAR/DlGwAAAACgI/qzdqJjMvXs7ZHKWPoVp20zHe/yiUy3uxwie3/fc889kqTrr7++xDxRbtCNaW3lRmmWtakrexTbwOkSkoxlf2On1rMfuE1ue/bsKTGbNTO17n1oM3DmPjtGWn4Il1etXLmyxNwHPksqHnnkEUnNMjGbrweJXI+GW4eybMplIFlu5mswJ1faXDlz5swS83X++OOPl1iuFT7GaWT2fZC9uF2SlYbXth7ip3pdj/Z4AAD0I4P9jQoAAAAAYIAYl8p3L5SQQVdTcgKjVadly5aVmJXANB3ed999kppKr1uADXqbvDQ0Wo2zmixVNTQVNW+n0ezo0aOSmlMUvZ2K63PPPSepqaTbvJaZFive2U7Nx9w/pTrJNR+XBsSJhtt63nTTTSXmLMIzzzxTYm6zmZmgnPh4OhNXzwajXY/yvft+zoyM1e1Up226zuyAr+U1a9aUWJpXbWDOa9Bq+g033FBivq/y+GfG6XQZ9PUZACY2KN8AAAAAAB3Bl28AAAAAgI4Yl2Un0MRGNPfzlWoZhic7SnUCZk7CtGkr09Q2u/Vrr/M2Mk19qinrLBPxe8737tR7ptN9jLL3t02a2VfepS3ZT9mmOU9glWpf5exvnv3CbaTLffB2W2zQ+1t7/32cpVpelSVSNgpn6UX2pnZZhMtYpMG5rrMcyteM+/dL9fppK7nK68ilKmnMdN97l09JzRKduXPnSmpOdfX6ksZunxOMwgAAFZRvAAAAAICOGAyJB84IK1ZWq6SqfNlAKFX17PDhwyX2wAMPSGoqh6tXr5ZUpwy+HVZ1x5M5yip3vneriXPmzCkxt13LCZdWvvNY+pi3nYc0dVpB99+VqtotVbU398tTCv0zt3Pi4Hg5P1avr7nmmhKzcpsq8caNG8u2zcXZes+Zon4n21i6JaAVa6mqzZn58HvLVplr166VJG3btq3EnDG48sorS2zJkiVle/ny5ZKkGTNmnPR6mTkYFEMrAECXoHwDAAAAAHQEX74BAAAAADqCspMJitPJ7vEr1d69mbq2gct9pvO5OZWxzVA1XsoZEqfjs7/xqfbbdpmKVEsC8m/4uOXxc7lJGmRPnDhRtj1RM/uU+znZt93lK7kPPndZIuDtc84556RYmjXTzHe2sQE1DX9+79mD3b2/pXqMs3yi38tOXJaUfbdddpIGX5+vvHfddz57nTuWpl+XJXkapSTNnz+/bHsKbi96dgMATDRQvgEAAAAAOgLle4KzePHism3F76GHHiqxb3zjG5KabchSNTVuRdj2u2Q8mjBPlWwR6FZsqbZabUzF2kplKt9p3HzhhRckNSdq2myYU0xNKtren9wHT9JMw523M9ZPyqeVXquyUs3O3HPPPSWWUxt9Hd58880ldu21147pfkqjvw/8uDyHVrzTOLplyxZJTUOu1etUuZ9//nlJzayVr8GcTOkWgmngzbaOtA4EADh9UL4BAAAAADqCL98AAAAAAB1B2ckEJ9PPTte/+OKLJbZ161ZJzUl3NmGm8c7bWVLRZkScyOUmJvsg+/jneRiO7FftqZdSNcnu27fvpFia8FyWklM2XYKS++CSlpyy6d7QWdrgUoTsOe73Z3Oq1G4i9e97dU3Y/JmlT74en3jiiRLL/Xe5Th7Lq666SlJz6mWvJ4KO9j37vsv9d7nJ9u3bS8wmzDwPbSVgvn5ywqWnfK5cubLEXHbUT4ZaAIDxAso3AAAAAEBHoHxPILIN3XDKW05q/MAHPiCp2dZs9+7dkqQNGzaUmBXSVM3dxrALA9tEIbMJVielql5feumlJeZJj2nCtPkuTXjeToOn1eFs0WcVNhVXGy5TSbVi7KmbuZ3751hmAnqNj5dNhVI1B0u1XWO+J7/3ZcuWldjVV189Zvv41tfN7IVV7q997WslNlxbwZxcakU7J5z63KR50o9LpRzFGwBg7ED5BgAAAADoCL58AwAAAAB0BGUnE4jRmryyt+/73vc+SdWEJtVewWkCc9lJGvScRs9UeBoy4czIY+m+y3mezJtvvlm2Pe0wz9Phw4clNcsdvJ1lJ35clqyYNGv6fGc/cJdtZPmGr8csRUmTZi/w+83XvfHGG8u2S6j8U6qlU1nW00XZiU2TLiuRpAcffFCS9MADD5TYnj17JDVLR2yWnjt3bom5h39OsXUJWNsxz7I0AAAYO1C+AQAAAAA6AuUbRkWaJq0c5pREq6IHDx4sMRsyU1GzmdNmQKm9JSGMTGYyhstqtJnn8pj7921TL1MhdVu+nLJpw6IV5vx7qa677WFO5XQszZpulZf7Z1NnTtNsi7Wp5o7l9ZbHyvu/a9euEnNLRSvRUn3PvZro6WPptp1SVbwfeeSRErMin+fGKvf8+fNLbPny5ZKayveMGTMkNVX7zEK9FdqAAgB0A8o3AAAAAEBH8OUbAAAAAKAj/tE/DLjLpm33SZ/2njzO7gedBr37779fkrRu3boSszFv0qRJJbZkyRJJ0gc/+MESmz59es/3F0aPjbFvvPFGiXl7pJjLMY4ePVpiLtfIqag26WYpiks+slykrdzFxs3sV+2+3dm/+3TMvDY0/umf/mmJ2XB51113ldjtt9/e2BeplqCcjkn0oYcekiTdfffdJbZ27VpJzZ76nqy5YsWKEnPZl0tNpNq7PHure7+yZCW3AQDg7IDyDQAAAADQERguYVRkNsEKYxq+jh07JqkayaTaEi2nXtpAlu3UrLym2mnjnVTNd2Q0xgZPmMxJk3n8h8NtDLPVoJ9r1VaqJsx8DU9o/N73vldi3s6pnMbXiVQV95deeqnEnGHJ1/V2Tm/0NEipTnxMVd37mH/b123uf75nY+NpTgv1vmbbxscee0xSU+X2e877wGbJm2++ucTe9a53SWref6l4AwBAf4PyDQAAAADQEXz5BgAAAADoCAyX0BOcot+/f3+Jbdu2TZK0efPmErMxL/tCe1LfTTfdVGJpJvPUxiwXgP7CvbGlWnKRpRfezse9/vrrkpp9w122lKVKLsfIyZo2fea97hKTNF66hCP71KdJ02Uu2Z/ePeuzTMTccccdZfuWW2456fd+L08++WSJPfzww5Ka94HNqFlK4xITm5Kl9r74U6ZMkdQ0Mrf1cgcAgP4E5RsAAAAAoCMwXEJPsAqXapxbsWV2YtOmTZKkrVu3ltihQ4cktU81lKo6aMUvf386bd6g96RB09tpchyOVLStQGcbS2dTrJRLNdOSrQtt/szryNdjvkY+x8p4Tn50VsaZm9yvnBa5YMGCk17vmWeekSTt3LmzxGwuTjXcWZyZM2eWmDM/2eKQNpwAAOMPvrkAAAAAAHQEX74BAAAAADoCwyWcMj7mIx1nm+zShOne35mCt8EtDXo5ie+KK66QJM2aNavEZs+eLaka0qRmqQoMJu79nYZLb2ffbRsb85pxaUmWlfj3LkmR2nvWZ59sv963vvWtEnv22WclSQsXLiwxT5rM0icbKbPMpa0cxtd0lpW0XdPZVxwAAMYHKN8AAAAAAB2B8g2dYlXyyJEjJWZz2n333Vdi2ZbNimEq30uXLpXUbPdm5ZDzP7j4fh5pWbKanK362tpdWrFOA6czLfn8VKXd2jCvQRsuUyF3y8JUvt268MorryyxlStXSpKWLVtWYm4dmEbPzPYAAMD4BeUbAAAAAKAj+PINAAAAANARuHmgJ4zWhHnhhRdKak7k83Nz0qEfJ9Wph1liYONmTsp86qmnJDX7S7uPc8aydAD6C18/I11HLvXIUg33F0+Tog2VkydPLrHnn3++bHviqo2SUu077/KT3PYUTalee57Qmts5UdMGytyHiy666KT9932QhlGXseR17nsnDcZMfwUAGBxQvgEAAAAAOoIv3wAAAAAAHUG3EzgrZBr9jTfeaPyUmn2ePeZ7w4YNJebuFe4LLdWSgBkzZpTYvHnzJDX7MztGqn78464oWeaU5Uu7du2SJD300EMltnbtWknSunXrSsxlKdlxZ9WqVZKk5cuXl5i78GSJia9rl5BItTQm98uP++53v1tifk7eGy5Vca/w3GbtAwDof1C+AQAAAAA6AsMlnBWyN7IV6FSi00zWZsg02dPZiuHx48dL7Omnn278jXyczZj52tnv2Qa+3K803MHZJydXtinM3k5FOFVk9wY/ceJEib3jHe+Q1Jw06WzKzJkzS2zJkiWSpEWLFpWYMyxp+rSB073CpdrnPk2dft1Uza1y58RM7/+xY8dKzNd59g23Gp73UirtAABwdkD5BgAAAADoCL58AwAAAAB0BIZL6Htef/11Sc3+zC4tcQ9wqabyPVJcqka5NsOaey1L0pQpUyRJV111VYlNnz5dUh0jLtV+4Vk2A2ePLEVyGUaWIrnUw/28paaZ1+UcacJ0b/Bp06aVmLezp7evhYy5P32WsdgwvGnTphJ74IEHJEk7duwosfnz50uSPvShD5WYr8e89v2e8rm+zq+//voSe9/73iepWT7jUirKTwAAzh58gwAAAAAA6AgMl9D32AR59dVXl5i3U2G0sS2nBr722muN30lVIU3DmlsWprHN7RDT1Gez5qRJk0rMJsy2LEwq5N7OWNtEx/GYufGxyWPk49sWy1aUPh4Zs+KdivDhw4clSXv37i0xq+DOikjVZClVM2227fN0ypUrV5bYggULJDWNlMOR7QJ9beU+bNmyRZL0+OOPl5jV6Dwezs6kifTAgQOSmsr3o48+Kqlp4LQhNO8bv1+UbwCAswfKNwAAAABAR/DlGwAAAACgIyg7gYEme3C7P/LixYtLzKa4NNm5DOCVV14pMZcx2NwpSU8++aSk2kNZqoY1m/Iy5j7NUu2tnOUpF198saRqysu/478xXrGh0WVAUi3xyfPgc5OTS72d5kpvZ8wlSFm24evDU02l5vF3Wccll1xSYjbfXnPNNSU22nITk6VFLkvKa8bXR553X6tZAuOJmlk64pKRe+65p8R8fWcvcZuR8xj5dbM0CwAAugXlGwAAAACgI1C+YdxgZXHu3LklNnv2bEnNVnJWX1Ml3Llzp6Rmm0KbNFM1d8vCNKxZvbSyLbWrmFZUcwqhp2y2qeGDOk3TynOb6TANgT6uOZHUJthsDehYtpV0hiJVbqu62S7SinG227OaLFXFO5Vtn9szMb7mc62CZ5bG14DNnVJtZ+jrRKrXQF4Lfk5eR237aqNwXvtpWgUAgLMDyjcAAAAAQEfw5RsAAAAAoCMoO4FxjVP+mbZvK+dwOt6lC1ItGcm+0DYJZn9xl6JkCYQfl/3FXWaRxkxvu5d5bqcpzqUQbX3DpVp2kOUwfv5I0zj93Nx/lypkyUL2Ozdtfbn9nDSvugQlYz6GeSz9+3wtmyLz3LhMJEs5/LicOOlzmIZFG3Olset3nRNVXTaT14L7dmepkt9fHkufkyzN2b17t6Tmvi9cuFBSc8Kl33OaSQe1lAkAYDyB8g0AAAAA0BEo3zBhSZOjjZnTp08vMSuQOV3QbfHShOkpiznB0EplGgxtIkyl1wpvqs5tkzCtYqfamb93fCQFvc2Y1zZB0vuYrQGt5ubjvJ1Kr5XvVK/9/tLY6P1ra8GX6rW3M2Y112q3VI2vbebJPAYjZQJ6QZ7jffv2SZJ27dpVYm7/17b/2XrRKvfGjRtLzC0w81zedtttkqTly5eX2Pz58yU1jZkAAHD2QfkGAAAAAOgIvnwDAAAAAHQEZScwYWnr1T0SLn1IE6ZNc1k+4XKCNMq513X2v3Z5Qlsv5raezFlqkKUqbSUyjuX7HG3Zifcny0n8+3xdPzfLOlz2keUdbQZJm02z/McTQd0nXap9r7P/tR/XrwbCPG4uNzpw4MBJj8s+8D4eWXbi8qbt27eX2N69eyU1jaPXXXedpGq8lJrHEAAA+geUbwAAAACAjkD5BjgN2treWY2VqnEzlWhvpxHRanIq31ZN21rwZSyVav/NfL22tn1WqtsU9Iy1KdXDKdptRs9Upa2MpxnS2xnzc/J1/ffyNVJp70fyfHoyp425UlWtU833NeUMiVQzLKma++/lpM558+ZJarZUzOMKAAD9A8o3AAAAAEBH8OUbAAAAAKAjyEsCnAaZ0ne5QJainAkuA8lpkO4LnWbNLG3wdvbltnEvS1FGW3ZiA2q+J5eCpIHTZSJpNvV2v5ohuyDPnUtHsuf7tddeK0m65pprSszmyyy58Tlp612epk6fa09Wzd9TfgIA0F+gfAMAAAAAdASSCECfYbUz2x9a7XQ7OqnZ8s+mylRDbc5Mw+VbXyP/TsZsaEz12gpqPs771fa4iUy2C7TynWr4pZdeKqnZGtAGyjyWflxmNDzh8umnny4xb69atarEfvInf1KSNHXq1DN4JwAA0GtQvgEAAAAAOoIv3wAAAAAAHUF+GGAAcCnCqZgYsyzlVGmbhAntZL91Gx49mTJjiadPzp07t8Rmzpx50uMuueQSSU3TrP/emjVrSmzDhg2Smn3g3/Oe90ii7AQAoN9A+QYAAAAA6AiUb4BxCup1N6Qqffz4cUl1CqVUlfFsx2gjpRXwt8OZjjTSegJmquttrSZTkQcAgP4B5RsAAAAAoCP48g0AAAAA0BGUnQAAnAFZ6nH48GFJ0tGjR0963KRJk8r2hRdeKKk5zXK4v33gwIES279/v6TmhFP3hHc5izSxJ4wCAPQzKN8AAAAAAB2B8g0AcBpYeT5y5EiJbd++XZK0c+fOEnv55ZcltU8VTdX83HPPldSchOnJlbt37y6xQ4cOSWqq3NOmTZPUnJiZ01ABAKB/QPkGAAAAAOgIvnwDAAAAAHQEZScAACPgMpE333yzxNzLe8+ePSW2du1aSdLGjRtLzGUiNllKtVe3fydJr7zyiqRqqJSkzZs3n/T3bOpcsGBBid1yyy2SpKVLl5ZYGjwBAKB/QPkGAAAAAOgIlG8AgFFy4sSJsv3qq69Kqop1xnK65CWXXCJJeuc731libgNoM2Y+N9VwT7H8wR/8wRK74oorJEnLli0rsdtuu01SNV5Ktf0gAAD0FyjfAAAAAAAdwZdvAAAAAICOoOwEAGCUvPHGG2X7e9/7nqRaViJJN9xwgyRp+vTpJeYSlAsuuKDE/PssT3FJS069nDlzpiRp6tSpJeZykjlz5pSYf3/++eeXWPYVBwCA/gHlGwAAAACgI/7RP7iH1oDStvsoPgDQS7zO2AApScePH5ckfec73ykxT6f09EtJ+oEf+IHGz9zOtcptDLOdodXyVL492TJNmAAAMDigfAMAAAAAdARfvgEAAAAAOoKyEwCAEfA689prr5WY+3JniYnJNaitPMTGzTRwpvnS2EA5efLk1r8NAACDB8o3AAAAAEBHDLzyDQDQFalOe3ukJbRNqfZzRnqujZmpnqN8AwAMNijfAAAAAAAdwZdvAAAAAICOoOwEAAAAAKAjUL4BAAAAADqCL98AAAAAAB3Bl28AAAAAgI7gyzcAAAAAQEfw5RsAAAAAoCP48g0AAAAA0BF8+QYAAAAA6Ai+fAMAAAAAdARfvgEAAAAAOoIv3wAAAAAAHcGXbwAAAACAjuDLNwAAAABAR/DlGwAAAACgI/5//tueFH4La/YAAAAASUVORK5CYII=",
"path": "images_version_6/image_23.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, PA and PB are tangent to circle O at A and B respectively. then the degree of angle P is ()
Choices:
A:65°
B:130°
C:50°
D:100°
|
||
116
|
24
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJgAAABpCAAAAADjZ7VBAAAHcElEQVR4nNVbfWxW5RX/nacOiVkGf2DA8LIiJRuKg4bAMAPG4iDWyYQRm1aiGSYuxthMB002naMjsKibZJLOsQWWtWbJiBbFhTnUacpMCBuLigmtS2pF+oJ8JNtYywJt7/ntj3vf7/vR+7z39nW/pn3vx/Oc+3vPc855znOeWyE+nTC1JhCE/yNip0Se9g4J1GykK4i99uXhjwYBgIAAMvmUXEiJSojxL+1vzJ/VjBXKNSby5urGPNVa8qoYysF5Lh/iXA3YFKHCxgYxdssIICdvHYKCtQtzLMXoF3H9MEnymZVXlFTWCBKsktZpewy0VoEu5Lndx/fWMAAHaUwNcGrV/hU1ixlBGjEKzO2+N1uzmOFPjO6N2x5tvlqrSSnE+AHgvql7J4lIOUKNW3Xf3389WUzKEKExnFnas2JymJQhQGN5urP3t2Yni0sJAogVfHF1e/PVcBHpeEf4UKoBcD9+G9witTAXHtkNAPzqxHOAqn+L1MJclPEDQHZZiQNMzlwwkbkwc+DuvAOQpUpiWgE4ipgCwFeeWH/VNXKKeNfySEl/ocQInDX9UDy8+CGXgQDQYiqClJLJUGKCI3NIGGBP/89zZGnKdCTp6CwikRxd1E9Smc30ks4kZrQRNuYueVUw+zetWRiUW356mFCGKgA67vnmFc8FC+s7VuOV4R3DiWme2Mnsz5Z+RyCOFscxa+tiZOdwrzQCxz3s3Fz3i4HdQJ0pFShW5BQBE0kB14TdFAB1AICRA8dx7Ysrbvm6BYtKUARR5h1+l7m/H8+YC2R+d//H/i1iQgQSZd0Rt7NT3r/5MIDsTABY9fiGkhTILQjFJ6eMNs9wYpIh2STAJzcCAB9c/m2gMCdJycfEaRkhy2e2eMTyOD8LqhDZfWaX20lhHcaMAGON8uf6/4a1Kkl7OqKaCS91rZ/rHqptrPixIDun76ZNN+wKaxWhsVxNUQE3xZnefPDfAKrJygRsP3QTGm4MbxZzCnO4t3G42knzL1tItvSHtplo0aQw4g8sf8D93vZ4Yw3RfWlBaJuJEnN5KAzwyzNPi6Xle51E0b35zqi28XGu/rBjNYT0LKAX6NyGztCGE1mMVOBYc2+DRbc81LDKABuAWzvWj9j0KzxUJMoWrDQGtJ1/Qaoog04g1ljK3n3up9WVQRm1HWSpMVxcsu92u54FhOrNlhiO3/X2fFd4OoVta6HLnlo/ghT3wWw1RkHb2Zc+hRoTYPc/fwJIWlsB1jaGvAOkU/2xIkZxyby39ti8mhRVgpBbszU+u+5yWsWyKoaSAnzv1MtIx/qrkClQPPOvjpSsv1xjGvM5F5c9F5VY2aFiKGONixq8t/ZYVSlQEKobBgNt7LyjqhQoCH4aU3dX0LiZdG50C4OsuZWlAdTo4ydfMUjcBfykGe9HjVFATfEHADUuD2MU41CzY3y7BkhKmJj7dATvOhRUdw0M6p7v/kOypAKJeaqBMdGlIgLXH9z6QdK8yomVqyhAZUWXBUDjk3cl7gBlxq8eU9eSfYxfTcll10+Mbnvn1XSJ5QnGNGVn3dIdCbApgj+B2K5f9/z+l3PLi4qvald19OkVd1oCAJy4442FNgSC4BvHIpzRF4s7N1wCktuUqCaDLcNjJwIcwCrFTSpeK/AkHktIGJAQMe/Flt/3HFDkdiwKsKuJJkLMe/K0g239pcvMIyJbbYXaFrp80TP/QvHp0BYORZTBApEsMf6wabzo7HWl09VkJynhZGUnnihy87VCmWcpKemFxIsHXig+FRm80zK0JTKCOThk/8x3vROlQ45utKy7J2xjDvmS6wBe+Xj75aj2AUh6KBXfat3kIJdEdi+7LrS5BO5dJ52pG2DH1NwMIEdGmnDkTyHbbBK4RZzgXJnH8JKdZ5csng50bwaQ+UeY0ihBc2n52CbxYsXAjE2rp01rz0aJdDi6CH3+93yM355avueh+gs83T7j3oFgYer+DjUF2H/CXunB2bZmnLzy7Oweavj37AqasdKpU5rtU9uBa7/72g/aInKLwSkyx3ent8z4g/d4Y2Js78pFAEZ7Prcu0MG2U8aWrtnVsfwbPjdLNZaUixKf2fT6eQBTmk+/UylV8p9H1+xig79OE7cv9azqcOYCSQ7MqtzJLZjdtj7lPSf9xJQQU+ttSB84O1ePk+QFn3seMx3dSB3yz4sS15jDFgDIXCY3PBoVeno7ObbIP5AlSsyj0dJH/igzwv8s6Irq0YLMsP+dFGxs9G6SbNlCDsz620TitW+LhOMYoXL08wD5hT5FQ9fGi+GzsbrO6YOEiQkM3rqNgDTAALe3bXRCt04Mgt4KTT7yjx36mkDw4c0k8P1Zj+SuM/Ct6PTjmJLUoUdIMotX6ZDO8MJIB/BH6Bt3cSEA8OZ8ULC1qQkGMJ99ZeWC5VbCktMXSSpHF/aRp1GImofrP3EP4kXvpIn1ul/3j+4ZHSqfWjUekxRp+aZKoPa9N4AMpbgm2Tp9T/y6SqJe6f0DpMnFLrpxat9f91nImoz/h/rwq0fr4/ZJjRgFhfXP+Zmx+/8PFO7AX0/d52sAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_24.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, the line a parallel b and they intersect the line c at a and b respectively, angle 1 = 50.0, then the degree of angle 2 is ()
Choices:
A:150°
B:130°
C:100°
D:50°
|
Như hình vẽ, đường thẳng a song song với đường thẳng b và chúng cắt đường thẳng c tại a và b tương ứng, góc 1 = 50°, thì số đo của góc 2 là ()
Các lựa chọn:
A: 150°
B: 130°
C: 100°
D: 50°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the line a parallel b and they intersect the line c at a and b respectively, angle 1 = 50.0, then the degree of angle 2 is ()
Choices:
A:150°
B:130°
C:100°
D:50°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the line a parallel b and they intersect the line c at a and b respectively, angle 1 = 50.0, then the degree of angle 2 is ()
Choices:
A:150°
B:130°
C:100°
D:50°
|
As shown in the figure, the line a parallel b and they intersect the line c at a and b respectively, angle 1 = 50.0, then the degree of angle 2 is ()
Choices:
A:150°
B:130°
C:100°
D:50°
|
117
|
24
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJgAAABpCAAAAADjZ7VBAAAHcElEQVR4nNVbfWxW5RX/nacOiVkGf2DA8LIiJRuKg4bAMAPG4iDWyYQRm1aiGSYuxthMB002naMjsKibZJLOsQWWtWbJiBbFhTnUacpMCBuLigmtS2pF+oJ8JNtYywJt7/ntj3vf7/vR+7z39nW/pn3vx/Oc+3vPc855znOeWyE+nTC1JhCE/yNip0Se9g4J1GykK4i99uXhjwYBgIAAMvmUXEiJSojxL+1vzJ/VjBXKNSby5urGPNVa8qoYysF5Lh/iXA3YFKHCxgYxdssIICdvHYKCtQtzLMXoF3H9MEnymZVXlFTWCBKsktZpewy0VoEu5Lndx/fWMAAHaUwNcGrV/hU1ixlBGjEKzO2+N1uzmOFPjO6N2x5tvlqrSSnE+AHgvql7J4lIOUKNW3Xf3389WUzKEKExnFnas2JymJQhQGN5urP3t2Yni0sJAogVfHF1e/PVcBHpeEf4UKoBcD9+G9witTAXHtkNAPzqxHOAqn+L1MJclPEDQHZZiQNMzlwwkbkwc+DuvAOQpUpiWgE4ipgCwFeeWH/VNXKKeNfySEl/ocQInDX9UDy8+CGXgQDQYiqClJLJUGKCI3NIGGBP/89zZGnKdCTp6CwikRxd1E9Smc30ks4kZrQRNuYueVUw+zetWRiUW356mFCGKgA67vnmFc8FC+s7VuOV4R3DiWme2Mnsz5Z+RyCOFscxa+tiZOdwrzQCxz3s3Fz3i4HdQJ0pFShW5BQBE0kB14TdFAB1AICRA8dx7Ysrbvm6BYtKUARR5h1+l7m/H8+YC2R+d//H/i1iQgQSZd0Rt7NT3r/5MIDsTABY9fiGkhTILQjFJ6eMNs9wYpIh2STAJzcCAB9c/m2gMCdJycfEaRkhy2e2eMTyOD8LqhDZfWaX20lhHcaMAGON8uf6/4a1Kkl7OqKaCS91rZ/rHqptrPixIDun76ZNN+wKaxWhsVxNUQE3xZnefPDfAKrJygRsP3QTGm4MbxZzCnO4t3G42knzL1tItvSHtplo0aQw4g8sf8D93vZ4Yw3RfWlBaJuJEnN5KAzwyzNPi6Xle51E0b35zqi28XGu/rBjNYT0LKAX6NyGztCGE1mMVOBYc2+DRbc81LDKABuAWzvWj9j0KzxUJMoWrDQGtJ1/Qaoog04g1ljK3n3up9WVQRm1HWSpMVxcsu92u54FhOrNlhiO3/X2fFd4OoVta6HLnlo/ghT3wWw1RkHb2Zc+hRoTYPc/fwJIWlsB1jaGvAOkU/2xIkZxyby39ti8mhRVgpBbszU+u+5yWsWyKoaSAnzv1MtIx/qrkClQPPOvjpSsv1xjGvM5F5c9F5VY2aFiKGONixq8t/ZYVSlQEKobBgNt7LyjqhQoCH4aU3dX0LiZdG50C4OsuZWlAdTo4ydfMUjcBfykGe9HjVFATfEHADUuD2MU41CzY3y7BkhKmJj7dATvOhRUdw0M6p7v/kOypAKJeaqBMdGlIgLXH9z6QdK8yomVqyhAZUWXBUDjk3cl7gBlxq8eU9eSfYxfTcll10+Mbnvn1XSJ5QnGNGVn3dIdCbApgj+B2K5f9/z+l3PLi4qvald19OkVd1oCAJy4442FNgSC4BvHIpzRF4s7N1wCktuUqCaDLcNjJwIcwCrFTSpeK/AkHktIGJAQMe/Flt/3HFDkdiwKsKuJJkLMe/K0g239pcvMIyJbbYXaFrp80TP/QvHp0BYORZTBApEsMf6wabzo7HWl09VkJynhZGUnnihy87VCmWcpKemFxIsHXig+FRm80zK0JTKCOThk/8x3vROlQ45utKy7J2xjDvmS6wBe+Xj75aj2AUh6KBXfat3kIJdEdi+7LrS5BO5dJ52pG2DH1NwMIEdGmnDkTyHbbBK4RZzgXJnH8JKdZ5csng50bwaQ+UeY0ihBc2n52CbxYsXAjE2rp01rz0aJdDi6CH3+93yM355avueh+gs83T7j3oFgYer+DjUF2H/CXunB2bZmnLzy7Oweavj37AqasdKpU5rtU9uBa7/72g/aInKLwSkyx3ent8z4g/d4Y2Js78pFAEZ7Prcu0MG2U8aWrtnVsfwbPjdLNZaUixKf2fT6eQBTmk+/UylV8p9H1+xig79OE7cv9azqcOYCSQ7MqtzJLZjdtj7lPSf9xJQQU+ttSB84O1ePk+QFn3seMx3dSB3yz4sS15jDFgDIXCY3PBoVeno7ObbIP5AlSsyj0dJH/igzwv8s6Irq0YLMsP+dFGxs9G6SbNlCDsz620TitW+LhOMYoXL08wD5hT5FQ9fGi+GzsbrO6YOEiQkM3rqNgDTAALe3bXRCt04Mgt4KTT7yjx36mkDw4c0k8P1Zj+SuM/Ct6PTjmJLUoUdIMotX6ZDO8MJIB/BH6Bt3cSEA8OZ8ULC1qQkGMJ99ZeWC5VbCktMXSSpHF/aRp1GImofrP3EP4kXvpIn1ul/3j+4ZHSqfWjUekxRp+aZKoPa9N4AMpbgm2Tp9T/y6SqJe6f0DpMnFLrpxat9f91nImoz/h/rwq0fr4/ZJjRgFhfXP+Zmx+/8PFO7AX0/d52sAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_24.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, the line a parallel b, angle 1 = 50.0, then the degree of angle 2 is ()
Choices:
A:150°
B:130°
C:100°
D:50°
|
Như hình vẽ, đường thẳng a song song với đường thẳng b, góc 1 = 50°, thì số đo của góc 2 là ()
Lựa chọn:
A: 150°
B: 130°
C: 100°
D: 50°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the line a parallel b, angle 1 = 50.0, then the degree of angle 2 is ()
Choices:
A:150°
B:130°
C:100°
D:50°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the line a parallel b, angle 1 = 50.0, then the degree of angle 2 is ()
Choices:
A:150°
B:130°
C:100°
D:50°
|
As shown in the figure, the line a parallel b, angle 1 = 50.0, then the degree of angle 2 is ()
Choices:
A:150°
B:130°
C:100°
D:50°
|
118
|
24
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJgAAABpCAAAAADjZ7VBAAAHcElEQVR4nNVbfWxW5RX/nacOiVkGf2DA8LIiJRuKg4bAMAPG4iDWyYQRm1aiGSYuxthMB002naMjsKibZJLOsQWWtWbJiBbFhTnUacpMCBuLigmtS2pF+oJ8JNtYywJt7/ntj3vf7/vR+7z39nW/pn3vx/Oc+3vPc855znOeWyE+nTC1JhCE/yNip0Se9g4J1GykK4i99uXhjwYBgIAAMvmUXEiJSojxL+1vzJ/VjBXKNSby5urGPNVa8qoYysF5Lh/iXA3YFKHCxgYxdssIICdvHYKCtQtzLMXoF3H9MEnymZVXlFTWCBKsktZpewy0VoEu5Lndx/fWMAAHaUwNcGrV/hU1ixlBGjEKzO2+N1uzmOFPjO6N2x5tvlqrSSnE+AHgvql7J4lIOUKNW3Xf3389WUzKEKExnFnas2JymJQhQGN5urP3t2Yni0sJAogVfHF1e/PVcBHpeEf4UKoBcD9+G9witTAXHtkNAPzqxHOAqn+L1MJclPEDQHZZiQNMzlwwkbkwc+DuvAOQpUpiWgE4ipgCwFeeWH/VNXKKeNfySEl/ocQInDX9UDy8+CGXgQDQYiqClJLJUGKCI3NIGGBP/89zZGnKdCTp6CwikRxd1E9Smc30ks4kZrQRNuYueVUw+zetWRiUW356mFCGKgA67vnmFc8FC+s7VuOV4R3DiWme2Mnsz5Z+RyCOFscxa+tiZOdwrzQCxz3s3Fz3i4HdQJ0pFShW5BQBE0kB14TdFAB1AICRA8dx7Ysrbvm6BYtKUARR5h1+l7m/H8+YC2R+d//H/i1iQgQSZd0Rt7NT3r/5MIDsTABY9fiGkhTILQjFJ6eMNs9wYpIh2STAJzcCAB9c/m2gMCdJycfEaRkhy2e2eMTyOD8LqhDZfWaX20lhHcaMAGON8uf6/4a1Kkl7OqKaCS91rZ/rHqptrPixIDun76ZNN+wKaxWhsVxNUQE3xZnefPDfAKrJygRsP3QTGm4MbxZzCnO4t3G42knzL1tItvSHtplo0aQw4g8sf8D93vZ4Yw3RfWlBaJuJEnN5KAzwyzNPi6Xle51E0b35zqi28XGu/rBjNYT0LKAX6NyGztCGE1mMVOBYc2+DRbc81LDKABuAWzvWj9j0KzxUJMoWrDQGtJ1/Qaoog04g1ljK3n3up9WVQRm1HWSpMVxcsu92u54FhOrNlhiO3/X2fFd4OoVta6HLnlo/ghT3wWw1RkHb2Zc+hRoTYPc/fwJIWlsB1jaGvAOkU/2xIkZxyby39ti8mhRVgpBbszU+u+5yWsWyKoaSAnzv1MtIx/qrkClQPPOvjpSsv1xjGvM5F5c9F5VY2aFiKGONixq8t/ZYVSlQEKobBgNt7LyjqhQoCH4aU3dX0LiZdG50C4OsuZWlAdTo4ydfMUjcBfykGe9HjVFATfEHADUuD2MU41CzY3y7BkhKmJj7dATvOhRUdw0M6p7v/kOypAKJeaqBMdGlIgLXH9z6QdK8yomVqyhAZUWXBUDjk3cl7gBlxq8eU9eSfYxfTcll10+Mbnvn1XSJ5QnGNGVn3dIdCbApgj+B2K5f9/z+l3PLi4qvald19OkVd1oCAJy4442FNgSC4BvHIpzRF4s7N1wCktuUqCaDLcNjJwIcwCrFTSpeK/AkHktIGJAQMe/Flt/3HFDkdiwKsKuJJkLMe/K0g239pcvMIyJbbYXaFrp80TP/QvHp0BYORZTBApEsMf6wabzo7HWl09VkJynhZGUnnihy87VCmWcpKemFxIsHXig+FRm80zK0JTKCOThk/8x3vROlQ45utKy7J2xjDvmS6wBe+Xj75aj2AUh6KBXfat3kIJdEdi+7LrS5BO5dJ52pG2DH1NwMIEdGmnDkTyHbbBK4RZzgXJnH8JKdZ5csng50bwaQ+UeY0ihBc2n52CbxYsXAjE2rp01rz0aJdDi6CH3+93yM355avueh+gs83T7j3oFgYer+DjUF2H/CXunB2bZmnLzy7Oweavj37AqasdKpU5rtU9uBa7/72g/aInKLwSkyx3ent8z4g/d4Y2Js78pFAEZ7Prcu0MG2U8aWrtnVsfwbPjdLNZaUixKf2fT6eQBTmk+/UylV8p9H1+xig79OE7cv9azqcOYCSQ7MqtzJLZjdtj7lPSf9xJQQU+ttSB84O1ePk+QFn3seMx3dSB3yz4sS15jDFgDIXCY3PBoVeno7ObbIP5AlSsyj0dJH/igzwv8s6Irq0YLMsP+dFGxs9G6SbNlCDsz620TitW+LhOMYoXL08wD5hT5FQ9fGi+GzsbrO6YOEiQkM3rqNgDTAALe3bXRCt04Mgt4KTT7yjx36mkDw4c0k8P1Zj+SuM/Ct6PTjmJLUoUdIMotX6ZDO8MJIB/BH6Bt3cSEA8OZ8ULC1qQkGMJ99ZeWC5VbCktMXSSpHF/aRp1GImofrP3EP4kXvpIn1ul/3j+4ZHSqfWjUekxRp+aZKoPa9N4AMpbgm2Tp9T/y6SqJe6f0DpMnFLrpxat9f91nImoz/h/rwq0fr4/ZJjRgFhfXP+Zmx+/8PFO7AX0/d52sAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_24.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, angle 1 = 50.0, then the degree of angle 2 is ()
Choices:
A:150°
B:130°
C:100°
D:50°
|
Như hình vẽ, góc 1 = 50°, thì số đo của góc 2 là ()
Lựa chọn:
A: 150°
B: 130°
C: 100°
D: 50°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, angle 1 = 50.0, then the degree of angle 2 is ()
Choices:
A:150°
B:130°
C:100°
D:50°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, angle 1 = 50.0, then the degree of angle 2 is ()
Choices:
A:150°
B:130°
C:100°
D:50°
|
As shown in the figure, angle 1 = 50.0, then the degree of angle 2 is ()
Choices:
A:150°
B:130°
C:100°
D:50°
|
119
|
24
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAATIAAADRCAYAAABPYT5dAAAs20lEQVR4nO3deVzTV77/8VdIgBAWZVVBkSWAirRacauouNCK1bbWulCn02nrr9OZ2/VO1+m+TKft7XSsvTPObatOO1ZrO6NVK1o31Loy7guDioKIAgqCrIEQ8vujTRogYJCwJHyej4ePWnK+35zE5M0553u+5yiMRqMRIYRwYC6dXQEhhGgrCTIhhMOTIBNCODwJMiGEw5MgE0I4PAkyIYTDkyATQjg8CTIhhMOTIBNCODwJMiGEw5MgE0I4PAkyIYTDkyATQjg8CTIhhMOTIBNCODwJMiGEw1N1dgW6g/LyctatW0deXh7e3t7ExsYSFRVFnz59OrtqQjgFhawQ275qa2tJT0/noYce4syZM6hUKmbPns19993H1KlTUSgUNp3HaDQ2KGv6Z7P1eCGcmbTI2kldXR35+fksXbqUtLQ0nnjiCXr37k1hYSGHDh3i1KlTTJ061eqxjUMLmgaWBJgQP5MgaydlZWWsX7+ef//733h6enLPPfcQHBxMVVUVPj4+eHh4dHYVhXAa0rW0E8u3UaFQkJGRwa9+9Svi4+N56qmnCAsLw83NDYD6+noUCoVNrSrpQgpxfdIisxPLoLl69SrZ2dkEBQUxePBgoqOjG5R1cbH9YrEEmBDXJ9Mv2kFeXh4XL14kKiqKiIiIzq6OEE5PgqwdlJWVUVZWhp+fH56enjYdY+pCGo1GysrKqK6ubs8qCuFUJMjaQW1tLRUVFZSVlTXoRh44cICXXnqJ48ePNzlGoVCg0+k4evQob775JmvWrGnwuOUYnNFoRIY2hfiZBFk78PPzo2fPnuTl5XHw4EHOnTtHbm4uO3fu5IcffuDq1atWj6uvr6ewsJBNmzaxceNGTpw4QW1tLWA9vCTMhPiRXLVsJwcPHuSxxx7j2LFjqFQqVCoVKSkpPPPMM4SEhODq6mr1uIKCAr744gv27t2Lh4cHb7/9NhERETIhVogWyFXLdqLVannwwQc5deoUVVVVuLi4cNtttxEWFtbicYGBgcyYMYPS0lK2bdtGamoqycnJREZGdkzFhXBA0iJrB9Zm5rfW1q1b+fzzzyktLSUpKYlHHnkEd3f3Bs9hNBpbNZVDCGcl34J2YI/u3rhx43jiiSeorq5my5YtpKWlUV5e3uA5JMSE+JF8E7qIxg1jV1dXhgwZwrRp03B3d2fZsmUcO3ask2onRNcmY2RdhLXBe6VSyaOPPgrAhx9+yKBBg+jVqxcRERHm1pgM+gshQdZluLi4mMe9TKGkUChwd3fntttuQ6fTsXnzZgoKCnjnnXfw8vIylxGiu5OupQOIjo5mxowZBAYGkpmZydq1ayksLOzsagnRZUiQdaLG42LNrYihVCqJjIzk/vvvJyIigoULF7J79+4WzyVEd2K3rqWupIDSmhYKKD3xD/TG+jRQ0JdfobjScN1yPz0bJQWl1NhUtutqTbdQqVSSmJhIVVUVmZmZbNq0CbVa3ezijEJ0J3Zrke19sw99+rTwZ8ZKcq0cp8veyO8Tg/D2CfqxXJAP3kGJ/H5jNjpr5TO+ZJ42iJiERBKHhuCtncfK03p7vYwuydTa0mg0jB49milTpnDx4kVWrVrFuXPnABkrE92bnYJMT10tcPdXFPw0YN3kz675NJ6brj/9GVMHJrOs1ztszy2j1mjEWH2R7e/0YlnyQKZ+dpoGEVWWxotTFjP0mxwuZ2WSmVdM7qIgnp38DunOnWXU19djNBoJCQnh8ccfJywsjKNHj5KamkpWVlZnV0+ITmWnIMvl/FEgLIheNh9zka+f+n+kxS9iy7L5jOr3UxdRHcyo+cvYsiietMeeZ9VFi0MOrmXB9Bd5cqjfTz9wJSjpMV4N3cwxa809J9F47MzT05OUlBQmT57MihUrSE1NpaqqqhNrKETn6rzB/ox/8d4Gdx5+6T6imwxyuRJ930s8zLd8vOHszz/2DyEm+zKXLYvqyygqckOpbP8qd6bGYXbrrbcyY8YMamtr2bdvX5OZ/0J0J3YKskpKi2BMbKjNR+Ts/5bjzObuMT7WC/jcQlIy7F5/APNEg5tS+IP304z/7XKO5hRQkLmdhb+4i78mv8JdYW19DZ2jLWuLxcTE8NZbb1FTU8Nbb73F2bNnr3+QEE7ITkFWzMVTFv+rK6GgoICCghKrA/YAuf/ZAzE3EdpMjkEvwocEwoaD/HzqEGYuO8FXY07wxpxEEh9YSMXc7zny5wn4NXeaLs7WTUis6dGjBwkJCdx66614enqyfPnyJtMyHJFMJRGtZdeZ/Z5Zm3kicTSf7LiCeSaGdyy/+vAf/Gn+UIuwKaOsoAYCetLSQtD+IdFQU0mNHsxzLFyDiJ/3DqvmvWPPqjssLy8v8xSMlStXolKpiIuLw8en2d8QDsEeK4iI7sM+LbLCy+QAm957il0jvuDI1WqMRiO1Zbns/TCWrf/vFoY8ncbP66JeoeCcrSc/ynknHshvjea6oQMHDmT69OkMHjyYkydP8pe//IXLly9bOUPXY+01taWVKron+wRZtRGPmBhmfnqIPe9PYYCvGgBX734/XYEcw4UFT7Iswy7PJqyIjIxk9uzZBAUFsXHjRvbu3UtFRUWDMpbTYYRwJvYJsrC5LM/M5J/zB6Fu8qAr0fe9wP0c56+pN7IMTSDeXm2vojNoqaWiVCqZMmUK48aNo7q6ms2bN7N7926rm5Z0pSCT1pewh45Z/cInmltHwD8uFv/0g0gihwP/bvkwQ50eCCPI9slp3d7tt9+OWq3mgw8+4OrVqwwYMIDQ0FDzQoxtHXuSsSvRFXXQMj5KVI3mivmHxMCCk+RCkxn/P9Jz/ng6jHiQkFY80+OPP86+ffvQarVotVpiYmIICwtDq9XSu3fvG34FjiIoKIjJkyeTlpZGdnY2X3zxBXPmzDHvdi4hJJyRnYJMT3mJDrVvczdwX+T0AQhM+vka5cBhybizgYPH/syEm6wd8x+ObgX3OwcR3YqanDhxggMHDnDgwIEmj3l5eZkDTqvV0r9/f7RaLQMGDKBv376teJa2ycrK4ttvv+XRRx81rytmTz4+Pjz33HMsWbKERYsW0adPH/r374+bm1urgsyyC2q5Rpo9WS4MKYtEihtll81H0t8IYuQf7yT18mckW7nqr9/7MiG3fsC8beX8ecJPUVe2gflBU0l//yTHnhjUzDGf8Miei7w9unXrW5SWlpKVlWX+c/78eTIzM8nKyqKgoMDqMWq1Gq1Wa269RUZGmgMvLCwMlcp+jddnn32WDz74gMGDB7N69Wq0Wm2rz2FLF2/79u0sXbqU8vJyxo0bx1NPPWXzeVoKFXsGjoSXsAf77KKUsZCbYp+El/ey/a1RDSenXj3Mu3fewutuSzi57UGLbqSe03+bQMxTbnx67HvmW96npMvg48mxPNvkmLarqKggKyuLnJwcsrKyOHv2rDnwcnJymj3OsiUXGRlpDjytVota3fQSx/Xq8OCDD/LPf/4TLy8vVqxYwbRp01r9WkpLSzl69Kh5+WtXV9cGgXDt2jX27NnDwoULUalUvPbaa8TFxZl3Y7peWDUXLvbcwUmCTNiDnbaD03N66XTiH9qOevxcXnrkPgYGQNF/lvPxK59zOOhZ1u35A0lBjVpW+tOs/MVk5q5xY9p/v8DDiaGQu53F737IZp5gQ/r7TOjAKft1dXUNWnJnz541B15WVhZ1dXVWj+vbty8DBgwgLCysQUtOq9W22HX84IMPePHFF6mrq+Pll1/mtddea7blZy1YNmzYwH333cfcuXN5/fXXCQgIQKlUUl9fbw4ZvV7PwoUL2blzJwEBATz88MPceuutN/gO/bgKB7Tv1UZrXVohWmLXfS112dtZtvzvfPOPfZwHegyaxH33/5aUabE0zjCLo8jevoxPF37Kqoxr0H8U98/6Fff9IpHw1jV02l1zLbmsrCx0Ous3Y/Xu3dvceouJiWnQfQ0ICGDLli2kpKRQVFRkXs0iICCg2TrU1NSQnZ3NihUrWLFiBWfOnOGhhx7i7bffJigoCKVS2aSVk5OTw9q1a1m2bBnJycmkpKQwYMAAm1+3tY+IBIzoSmSDXjspKCggKyuLzMzMJi250tJSq8f07NnT3DXdtWsXAGFhYXzzzTfEx8dbPaaqqoqMjAwWLFjAqlWrqK6u5r//+7959tlnCQwMRNnMMiAZGRn84Q9/oLq6mpEjR/LQQw8RGBho02uTFpLo6iTIOkBRUVGDcbhTp06Z/7+oqKhJebVazccff8z8+fObPGY0Gqmrq8NoNLJ9+3aef/55kpOTefzxx80tssblFQoFer2enJwcXnnlFU6dOsV7773H6NGj8fb2NpczlTWFlYxfCUch28F1gICAAAICAhg1alSDn9fV1fHVV1/xyiuvmC80qNVq5s6dy5AhQ6yeS6FQ4Or6Yz89IiICDw+PBlMXTKxt+BsVFcU999zDxo0bWbx4MRUVFdxzzz3m81r+t/Hf7UUm1Ir2IEHWCfLy8vjss89YvHgxeXl5wI9XRX/9618zf/58evbs2eLxpjAoKyszt86aK9M4NOLj47l48SIffvghvr6+3HTTTebpJRIwwlHJdnAd7PXXXyc8PJw33niDgoICpk2bxoYNGzhz5gzPPPPMdUPMVs2F0saNG0lNTSUhIYGzZ8/y6quvmvfIbHxfZktudETC1Ho0Hd/c30X7cNb3WIKsgxUWFhIQEMALL7xAdnY269atY8qUKTYd25oPobXWWE1NDUePHqWwsJB7772Xm2++mZycHNatW0dOTk6TsbHmbjK3xxdBWn+dw1nfd+ladrBFixaxaNGiGzq2LYPvOp2OM2fOUFRUhL+/P7fffjvBwcGUlpaybt06jEYjjz76aIMANO3cZDl+Zo8LAM76ZepKWvp3csb3X1pkDsIUKC4uLg0+iKawuZ7CwkJSU1PRaDQkJCTg4uLC6NGjefDBB9HpdKSlpfH99983WMPM8vksw8yeX4T2PHd3ZDQazZOWgQZ/d2YSZA6kLV/y/Px8tmzZgq+vL4mJieaZ/7fccgvJyckYjUaWL1/OiRMnGjyfhIvjsxwqcFYSZA6iuTBp3EJrTmFhIceOHSMwMJBRo0aZ77dUq9U89thjDB8+nJ07d7Jjxw7Z8NdBWXYnG/8S6oqLatqTjJE5kMZzsHx9fVGpVGg0Gnr06GGeDNu4nE6no7y8HA8PD4KCgvD0/Hk5JYVCgVqtZsqUKdTW1vL9999TVFTEm2++iYeHR4e8JlM9RNs0Nx7WOOCckbTIHIjpQ1lTU8OxY8f46quvyMvLY9++faxevZqzZ89SU1PT4MNqNBopKSmhoqKCnj17Nru7UmxsLDNnzqRnz54cP36c7777zupdB6Lraqm15cwhBhJkDqmkpIQ333yT3//+91y4cIH169fzu9/9jq1bt3LlypUm5a9du0ZVVRU+Pj64ublZPadSqSQyMpKHH36Yvn378u6775Kenm7XerdmxyRn7ga1F9NAv7X32NlJ19LBKBQKfHx8mD9/PuPGjcPb2xudTodGo2H48OFWJ9SWlZVRU1NDYGBgg25lY25ubowbN47S0lLOnj3Ld999h0KhIDk5GWjaZW1tt7A1X6ju8OWzh+Zu6O9ut4JJkDkgjUbDlClTbJpIq1AoqKiooKamBn9//xaDDMDb25vx48eTn5/P9u3bWbNmDYMHD6Zfv35Nvhjd6YvSVTWe52epuLiYnJwcqqurCQgIoF+/fuTm5qJQKIiKimp2pRRHJF3LbqCiogKdToePj49NA/h9+/blN7/5DVFRUZw+fZrVq1dz7pzNOyqLDtR4np+lzZs384tf/IKxY8fy4osvcuTIEZ577jleffXVJnueOjppkbVRQUEBR48ebbAqa1ehVCoxGAzk5uaiUqlQqVScPHmSa9euNbjZvPGKF25ubhiNRjQaDUqlkhUrVlBYWEhCQgJKpRKFQtHsREvLm9VljKv96PV6QkJCGDJkSJMQy8vL4+OPP6akpIRZs2YBoFKp2LRpE5WVlYSFhZlXUHEWEmRtdPnyZbZs2YJer++yHw43NzdzNyIzM7PBpNfGLL8Urq6uBAUFceTIEUpLS8nMzCQ0NBS1Wt3sst+W56ivr5fuZzupqqoiPj6em266qUEXsaysjP3797NkyRKmTZvG888/j6enJ4cOHeK9994jLCyMESNGtHqfia5OgsyOOupLa62101ILSK/XNwiexvVsbtDeaDQSGBjI+PHjOXjwIHv37iUgIACNRmPe7LclXa2F6kyau+tiw4YNbNq0iWeeeYbExETzmKiLiwvh4eG4uLjg6enpdK1lCbI26tWrF7fddhsGg6HLDp5e7+pic4+b/l+v1xMaGsqBAwfIzs4mNDSU8ePHU1tbaw7ItlzNFK2n1+sJDg5u0PotLS3lwoULGI1GkpKSiIuLa1C+qqrKvGG1s/3bSJC1Ua9evUhKSursarS7yMhIvvvuO5YvX059fT3Dhw833+YkOl9lZSUnTpzAYDAQExNDZGRkg6GOK1eukJ+fz4QJE9BqtU4XZNL2FzaJjo7m9ttvJy4ujsOHD7NgwQLKyso6u1riJ2VlZRw6dAh3d3eGDBnSIMROnjzJoUOHKCsrw9/fHx8fHwky4bhsGRdpacXWqKgoZs2aRY8ePfj+++/ZtWsX5eXl7VZfYTu9Xk9RURGurq4EBwej0WgAOHr0KJ988gnp6ekMGDCAkJCQTq5p+5Ag60Zs+S3ceKa45TFubm5MnTqV8ePHo9frWb9+vXkbu8bncLbB5M5i63upVCrx9PSktraWK1euUFlZSVZWFlu3buXLL78kMzOTmJiYZm9Rc3QyRiYasOXm4uTkZNzd3fnoo4+orq4mKiqK/v37m7szztZt6Uy2XkTx8fHh5ptv5u9//zvvvvsuvr6+jB49mtjYWKZPn86hQ4d4++23OX/+PLNmzeKWW25xqqvKzvNKhF3YEkKmCxw33XQThYWFrFy50rydnegcGo2G2NhYYmNj6devHxqNBl9fX+Li4khJSWHmzJkMHDgQb29vp2wtywa94obU1dWRk5PDp59+ysqVK3n77beZOXNmh6xhJppqvMS1te0ALX/mbK1m6VqKG6JSqdBqtUyaNIn8/HxWrVpFSUkJjz/+eGdXrVtSKBRddh5jR5CupWiTESNGMGfOHEpLS9m8eTMHDx6kpqams6slrHDmzpcEmWiTnj17MmHCBJKTk3FxcWHBggUcOXKkSTlbd3sSbdPSVU5n605akiATbabRaLj33nsZO3YsGRkZbNmyhTNnzjQo48xfoq6suWBztl8qEmTCLsLDw0lKSkKr1XLo0CHWrl1LSUmJ+XFnHGB2JM4WXI1JkAm7GTRoEG+99Rb19fWsWLGCAwcOyG1MHazxLwxnvUrZmASZsBuVSkV0dDTTp08nMjKSxYsXs2PHjlafR+4MEK0l0y+E3c2ZMwdPT09efPFFgoKCGDhwYIOZ/5aszVbvbhtndAZne39lQqxoF+fPn+frr79mx44d9OjRgz/96U/07t3bpmNlPTPRWtK1FHZlCqG+ffty9913Ex4eztmzZ1m3bh25ubmdXDvhrCTIhN0ZjUaUSiVRUVFMnTqV2NhYvv76azZs2GC1bONOgXQSRGtJkAm7anyFbMKECdx///3U1dWxfft2UlNTqaqqarY8/LzFmRC2kiAT7UqtVjN8+HCmTp1KbW0ty5cvJzMzs7OrJZyMBJlod56enjz55JMMGTKEnTt3smPHjhY3/JXpF6K1ZPqFuGGW0ySud6XRzc2NO++8E4DVq1dz5coVXnvtNfMGJpbnkm6laC1pkYk2aU3L6eabb2bOnDl4eHhw8OBBUlNTKS4ubsfaie5CgkzcMMuBeltvgwkNDeXpp5+mb9++vPHGGxw8eNB8vBA3SrqWot1ZdhvVajVjx46lsLDQPL8M4LbbbmtQVibFitaQIBPtylrX09PTk7Fjx3L58mU2bdqEXq9n8ODBDXbONh0rQSZsIV1L0a4su5yW68pHRETw0EMPER4eTkZGBl9++SVZWVkNjnOmXX5E+5JPSjswTR+w/CN+ZNlt9Pf3Z86cOQwZMoTVq1ezY8cOKisrO7mGwhFJkLUTCbKmrK2NNWnSJKZPn05VVRV79uzhhx9+oLq6uhNrKRyRrH7RTkwB1h0WtWut+vr6Bu9LSUkJe/fuZcGCBdTU1LB48WK0Wm0n11I4EmmRtRMJr+Y1fm98fX0ZP348t956KyqViqVLl3Lo0KFOqp1wRHLVUnQ4yyCrr6/HxcUFT09P5s2bh7e3N3/7299Qq9XExsaaZ/4L0RLpWrajxl0oa+NlpitzlrtEQ9OrfZbzqppr7TU+f0tlW3q+67H1eWx5jsbv0eHDh/n444+5du0aw4YN47HHHsPHx6fZujQ+XnRP0rXsRI03ibhe2cb3NVpqHCzWfm75M2v3NdryO81aoDa3plhLz2E5FcPy+AEDBjB79my8vLzYtm0b+/bto6Kiotn6SIAJkCDrUI3nRlnb7QYarsdl+rK3FByWFxZMx5qepy1lrWkcZNaC5HrPYWK5aa/pvx4eHkyZMoWEhAQUCgXffvstP/zwQ7P1kdaYABkj6zJMX2Rrk0AbB1FX0pqWnakVZgofpVLZ7K1IU6dOxd3dnYULF2IwGNBqtURERKBUKtvplQhHJi2yTmD6Ilu2RmxpCXXV+w8b18fW+jW+6dykvr6ekJAQJk+ezKBBg7h48SKrVq0iLy/PfpUWTkWCrBM07iLaMj7m4uJi/uOo3SnLrmZj1oI8MDCQ1157jQEDBrBkyRL+/e9/y2RZYZV0Le2sI2507kots+b2pWzL8Saurq5ERkaSlJREaWkpX331FcXFxfz6179uY62Fs5EWmR3d6G1JLZVt/AVv6dz2eM4bCcfmpmO0ZTzPcurGqFGjuPfeeyksLGTz5s2cOHECvV5/w+cWzkfmkdlR4y+0Las3mI5pqayt88haMzfMlrLN1c2W+lgL3OtN2TA9blk303Nfu3aNJUuWsGfPHlxcXHjhhRcYOnSo1dcmuh/pWtrRjbZm7HXe1jx/W85py7G2jPs19zNrj/Xo0YO7774bvV7PN998w6ZNm/Dy8iIqKuq6dRHOT7qWdtbS/KqWytvjvJZl7FG2pXPY4zmae6y58uHh4UycOJGYmBjS09NZs2YNZWVlzT6/6D4kyDqJ5cz2rjBo7yji4uJ4/vnn0ev1rF27lv3793Pt2rUm5a43TtlRIyqyjFPHkCDrYPLBbht3d3cGDx7MtGnTCA4OZunSpezZs8dq2a7wC6Ir1KE7kDGyDiQhZh8KhYJ58+ah0Wh4+eWXCQ4OJioqirCwMFQqlbnM9c7RUSTM2p9ctRQOKzs7m3/9619s27YNf39//vznPxMQENBsednMxHlJ11I4rNDQUGbMmEFoaChnz57lu+++4+LFi51dLdEJpGspHJZSqSQyMpI777wTgC+++AKj0ciDDz5otXxntMa60l0YzkxaZMKhmK72Wo6ITJw4kVmzZgGQlpbG+vXr0el0nVVF0QkkyITDU6vVjBgxgilTplBRUcHKlSs5deqU1bIddcFFLux0LAky0aVZu4/T2goa3t7ePP3008TFxbFv3z7S0tI4ffq01fM1vj2rvUi3suPIGJno0loTAq6urubxstWrV3Pt2jWeffZZNBrNDZ+zOUajkaKiIlatWsU333yDwWBg0KBBJCUlMXHiRHx8fKRF1oEkyIRTGTZsGGq1ml27dnHgwAG2bNlCQkICfn5+gP1aR+Xl5Rw9epTDhw9z5swZamtruXTpEnl5eXh5eZGYmNjs2mvC/qRrKZxOeHg4zz77LP7+/rz66qscPnzY/Jg9FqWsra3lwoULbNu2jYSEBE6ePMnx48e57777WLt2LcuWLWPv3r3SIutAEmTC6Wg0GsaMGUNCQgK+vr6sXbuWzZs32+38BQUFFBUVMW7cOMaOHYuXlxcBAQGMHz+eO++8k+LiYg4cONBhY3FCupbCSXl7e5OYmMi1a9dYv349BoOBIUOGEBgY2OZz63Q63N3dGTt2bIO12gYOHMgDDzzAl19+yblz56RF1oGkRSacllar5f777yciIoLMzEw+//xzsrOz23ze8PBwhgwZ0mSLO3d3d/z9/XFzc5MQ62ASZMKpBQUFMXfuXAYNGsTatWv54YcfKC8vb9M5XV1dUavVQMP7N/V6PdXV1fTu3Zt+/frJQH8Hkq6lcHqTJ0/GYDDwww8/sHPnTgICApg4caI5jNrCMqxKS0vJzs4mIiKCAQMGNGixSai1L2mRCafU+Dam4cOH89Zbb3H+/Hk++ugjzp8/3+rNWiz3IbU2kH/x4kW2bdtGVFQUEydONG8mLCHW/iTIhFOy3OQEwM/PjwkTJjBixAjq6upYtmwZR44cafEcLW2K3Pj/T58+zeXLlxk1ahQDBw50uB3RHf2WKulaCqdk2o7OMog8PT154IEH8PHx4dNPP8XT05OYmBg8PDxa3DS48aYojctWVFTw/fff06NHD5588knz4o6OxpG7wNIiE07PsqURHR3NxIkTGTNmDOnp6Xz00UfN7l5u2tm9pfNdvHiRHTt2oNFo6N+/v8OGGDS/ybIjtNQkyIRTa9zFBBg0aBCzZ8/Gzc2Nbdu2sX//fqqqqlp9Tr1ez4ULF8jPzyc2NpYhQ4YAYDAYKC4uJj8/n8rKSvu9mHbkqC0xEwky4bRMtyM1vufR09OTO+64g3HjxgHw9ddfs3v37ladu6amhuPHj5OVlYXRaCQsLIwePXoAcOrUKQ4cOMDhw4cpLi623wtqZ4235LP2967KcdvBQrTRXXfdhVqt5q9//SsajYa+ffuSn5+Pm5sb/fr1IyQkxGpXMS8vj7S0ND777DOysrJwd3fnH//4B56enuj1esrKyhg2bBhPPPEEvXv37oRX1nrXGx/r6ksSSZCJbiskJIQpU6awbds2cnNzWbFiBfX19Wg0GgIDA/Hz88Pb2xu1Wo2fnx9BQUEEBQVhMBioq6tDoVDg5eWFRqOhuLiYwsJClEolrq6u9OjRg7CwMNzc3Dr7ZdpEoVCg0+k4ffo0JSUluLq6EhkZSUBAAEql0nzxpKuSXZTaUVf/LSagrq6OS5cu8dFHH/H5558zZswYvLy8yMvLIzs7m6tXr+Lu7s6YMWOYNm0ad9xxB8HBwSgUCqqqqjAYDFbPq1KpUKvV5gDoip8B01Vd0wWNCxcu8NRTT5GamoqXlxcfffQRd911F56enp1c0+uTFlk7anwVqCt+mJ1Ra95rlUpFaGgokydP5tKlS5w8eZK4uDj+67/+i7KyMoqLiykvL6e0tJTdu3eTlpZGREQEo0ePJikpqcmijW2pS3tpqQ6WP+/RowezZ8+mqqqKjIwM/Pz8HCLEQIKsQ3WFD7Wzu9EOxpgxY1AqlbzxxhuoVCpGjhxJ//79AaiurmbHjh1s2LCBHTt2kJ2dTVFRERUVFQwdOpT+/fs3e7tTV/n3tuWz5+3tTXJyMhUVFezYsYPIyMgOql3bSddSiJ8UFxezePFi9u/fj4eHBy+99BIDBw7EaDSi0+nQ6XRUVlZy+PBhtm3bxoYNGxg5ciS/+c1viI+PR6VSNdlfwJFUVVWxa9cu/vOf/+Di4sL9999Pz549O7taNpEWmZ1Ia8vx+fv7k5KSgkKhYM2aNWzcuBF3d3ciIiLw8PDAw8MDX19f/P396dGjBz4+Ppw7d47PPvuMU6dOMXbsWCIiIjr7Zdwwg8HApUuXUCgUeHh48P7776PT6ejduzczZswgKiqqs6vYLAkyO1EoFBgMBqqrq7v01R3RPBcXF/r168fNN9/Mrl272Lp1K3q9nocffhgvLy/0ej1GoxFXV1fi4+PRarV89tln/P3vf+fcuXNcu3aNlJQUPD09m9y03lWY6u/h4dHksbq6OvLz86mtrcVgMLBmzRoyMjIICQkhMjKySweZdC3t6NKlS6xbt46qqiqHuewuGlKpVFRUVJCbm8vWrVtxcXFh0qRJ9OvXD41Gg8FgMLe86+vruXr1Kjk5ORw5cgSj0UhMTAw333wzgYGB1NTUdPKraUqn0xEVFcW0adNwcXFp0JPIz8/nt7/9LUVFReartEVFRWzcuJH4+HjGjBlDTEyM1du2Opu0yOyoqqqKrKwsysvLcXd37+zqiBtgNBpRq9Wo1WqCgoI4d+4c//rXv8wtMFOrzDRtwcPDg8DAQEJCQsjIyCA1NZXS0lKio6PNK2B01MoStsz1qqysRKPRNJkaZDAYKCgoACAsLIyxY8eSkJDA1atXyc/Px8XFhZKSki7ZygQJMrtydXUlMDAQjUYjLTIHY/nFNgXCxIkTCQwMZNOmTRQVFREaGoq/vz8qlarJemTjxo2jZ8+ebN++nStXruDv7090dDRubm4dtgmJLUFWXV1tdQD/woUL5OTkMHDgQEaNGsUdd9wBQElJCWq1Gg8PD9zc3LrsOLAEmR316tWLlJSUBt0P0fXYemXRzc2NCxcuEB8fz6pVqzh58iT/8z//Q3BwMDqdrkH4qVQqpk6dyh133MH777/PmTNneOCBB4iMjMTd3b3LjJnV19fj6enZpHuYm5tLTk4OI0eOJC4uzvzz4uJiDh06xKhRowgICOjo6tpMgsxOTF2Sfv36dXZVhB316dOHoKAgzpw5Q1ZWFllZWYSFhREUFNSkbHBwMGFhYZw8eZLq6moGDx5McHBwJ9TaNpbjY5cuXeL8+fPcdttthIaGmsuUlJSQlZVFYmIivXv37rK/oCXI7MA0BmJ5u4fo2mxpHZm+tGFhYcyYMYPvvvuOBQsWUFVVxS9/+Uurx3h6evK73/0OwLwaRkdqzW1xlmWuXr1KSUkJPXv2RKlUUl9fT1VVFVeuXEGhUBAYGGiXPQ7aiwSZHXTV31LiZ5a/aC5evMiXX37JsWPHuHLlCnV1dRgMBvNa/K6uroSHh/Piiy+i1WoBSExMBODEiRNs376dgIAAkpKScHV1bTKHsDMnkbb2s6jT6Th37hxKpZKhQ4eaW5AuLi788Y9/JD8/n1/+8pfExMS0R3XtRoLMTiTMHIfRaKS6upojR45w8uRJ+vbti7e3N66urgCUlZWRm5vLoEGDuOuuu9BqtXh4eDBy5Ehuv/120tPT+eabb+jfvz+xsbEO/29fX1+Pu7s7V69eZc2aNQQEBFBeXk5eXh5hYWEkJSXh7+/f2dVsmVEIJ1JfX2+sr6+3qezChQuN8+bNM27evNlYUFBg1Ol0RqPRaNy/f7/x6aefNkZFRRlTUlKMFRUV5mOqqqqMzz33nHHgwIHGP/3pT8bMzMx2eR0dbeXKlcbExESjRqMxAsZBgwYZt27dajQajTa/n51JWmTCqVyvdWS06Aa6u7vj4eHBgAED6NWrl7lMfHw8Li4u5ObmUlRUxJo1a0hMTCQ4OBgPDw9mzpyJq6sr3377LTqdjieffLLBKhFGB1y+acSIEbi7u5Obm4tOpyMoKMi8dLflcuFd9TVJkIluxfRF1Ol0VFRUoFKpGtyuY/xpHC0+Pp6EhAS2b9/Opk2bCAsLM48fjRgxAg8PD3bu3El6ejpbtmxh3Lhx+Pr6dsprsoewsDDCwsKafdzYBaaOtEQusQmnZvoCGi021a2qqiIzM5Pa2loCAgKstjLq6urw8/PDy8uLy5cvN9lEJDw8nJdffhkvLy9effVVMjIyzI9ZTqp1FNerq+k1dVUSZKJbsPwiVlZWkpGRgUqlIioqyuq6/AqFgqCgIPz9/dHpdNTV1TV43MvLizFjxpCQkICfnx///Oc/2bZtm/lxRwoxk+bqbHSAzXulaymcmrXdgMrKyjh69CghISEMHjzY6u1kpqVsTGvyWws7T09PJk+eTE1NDV9//TV1dXUMHToUX1/fLt16scaW+nblMTJpkYlup6SkhD179qBQKBg8eHCDG/wtdxO/evUqOp2OkJAQvLy8rJ5Lq9Uyc+ZMBg4cSFZWFv/3f//HhQsXWl0nU9fX9KcrtYBMrdmuGmIgQSa6Ib1ej5eXF35+fs3eCK3T6UhLS+P48eNER0eb51FZ62b17duXWbNmERERwfr169m9ezcVFRWtrpcjBEZXJV1L4VRamvpgNBopLy+ntraWwYMH06dPH6vnqK+v59y5c6SlpVFdXU1cXJx5ekbj7pXp+W6//Xaqq6vZu3cvO3bsoGfPnkycONHmVVAkvNpGWmTCqbTUolEoFJw/f54LFy6Yr0iaWLayzp07x+LFizEYDIwaNYr4+HjzfZONdy23fL6EhAReffVVMjMzWbRoETk5OR22hE93J0EmupUjR45w/PhxBg0aRHh4uPnnpg1qN2zYwMcff8yhQ4eYNGkS8+bNw8/Pz6ZzBwQEMHnyZIYNG0ZlZSXLly/n5MmTNtfNEa4OdlUSZMKpWQZDTU0N27dvJz09nT59+pj3pDQajRgMBk6cOMETTzzBX/7yF3x9fXnkkUdITk5u1fN5eXnx6KOPMmnSJJYuXcqWLVsarF3WmvoK28ma/cKpGQwGCgsL2bhxI5988gnp6ekYjUZiY2Px8vIyL7tUVVWFSqUiNjaWESNGMGrUKOLi4pod4zKNlZlaUY2Xb9q3bx+LFi2isrKSkSNH8vTTT5u3izMd27gL7Ii3NnUV0iITTs0UNnq9HoPBwMiRI5kwYQJeXl7U1dVRU1NDbW0ter0eHx8fZs+ezcMPP8ywYcNwc3Nr1bpl8HMYxcbGMnfuXAC2bt3Kvn37qK6uRqFQNLtmnVyxvHHSIhNOxVqrxjRHy2AwNClrak2ZjlOpVA12F2prsPzv//4vqamp9O7dm5SUFJKSktp0PmGdTL8QTsVa8CgUCpRKpXlXI1tc7/e7ZdeyuecFmD59OiqViiVLlrBp0yb69euHVqu1eqeAuHHStRTdyvWuDFo+3lw4NT6+pfP179+fKVOmEB0dzZkzZ1i1ahWFhYU3UHPREgky0a1cr7toerylvRcsz3G9sgAhISG8/vrr+Pn58fnnn3Pq1KkmN6GLtpH2rRA3yNabqF1dXdFqtdx7773ExMQQGhoqm9TYmQz2C9EMW7uYtl4Q0Ov16PV68/w1YT8SZEIIhyftWyGEw5MgE0I4PAkyIYTDkyATQjg8CTIhhMOTIBNCODwJMiGEw5MgE0I4PAkyIYTDkyATQjg8CTIhhMOTIBNCODwJMiGEw5MgE0I4PAkyIYTDkyATQjg8CTIhhMOTIBNCODwJMiGEw5MgE0I4PAkyIYTDkyATQjg8CTIhhMOTIBNCODwJMiGEw5MgE0I4PAkyIYTDkyATQjg8CTIhhMOTIBNCODwJMiGEw5MgE0I4vP8P6F85PiOFadoAAAAASUVORK5CYII=",
"path": "images_version_5/image_24.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, the line a parallel b, then the degree of angle 2 is ()
Choices:
A:150°
B:130°
C:100°
D:50°
|
Như hình vẽ, đường thẳng a song song với đường thẳng b, thì số đo góc 2 là ()
Lựa chọn:
A: 150°
B: 130°
C: 100°
D: 50°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the line a parallel b, then the degree of angle 2 is ()
Choices:
A:150°
B:130°
C:100°
D:50°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the line a parallel b, then the degree of angle 2 is ()
Choices:
A:150°
B:130°
C:100°
D:50°
|
As shown in the figure, the line a parallel b, then the degree of angle 2 is ()
Choices:
A:150°
B:130°
C:100°
D:50°
|
120
|
24
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAu8AAAInCAYAAAAoOLeIAACdVUlEQVR4nOzddXgUx/8H8HfcQ4QESEhIQnB3d7cWaZHiVqDQFkrLt0ILbSkt9UJLhWLFihWKawluCe7uLgFCiM/vj/x2ssn55SIL79fz5OGY2Z2du729m/vsiJ0QQoCIiIiIiPI9+7yuABERERERmYeNdyIiIiIijWDjnYiIiIhII9h4JyIiIiLSCDbeiYiIiIg0go13IiIiIiKNYOOdiIiIiEgj2HgnIiIiItIINt6JiIiIiDSCjXciIiIiIo1g452IiIiISCPYeCciIiIi0gg23omIiIiINIKNdyIiIiIijWDjnYiIiIhII9h4JyIiIiLSCDbeiYiIiIg0go13IiIiIiKNYOOdiIiIiEgj2HjXo1+/frCzs0NYWFheV+W50LhxY9jZ2aFx48Z5XRWzabHOqamp+Omnn1CzZk14e3vDzs4OdnZ26NixIwAgKipKpkVFReVpXQm4dOmSPB+zZs3K6+qYNGvWLFnfS5cu6eTzc5MsYerzaPz48TI/p2T3Pau1a1gtLCwMdnZ26NevX15XJV/K720AmzTed+zYId/AdnZ22LZtmy2KJSIL9OjRAyNHjsT+/fvx5MmTvK4OERER5QCbNN7/+usvo/8nyg9yI5KTV3bt2oXFixcDANq1a4eNGzfiyJEjOHr0KCZPnpzHtXuxMKJFRHmBd7+Me57aAI7ZLSAxMVE2Gjw9PREXF4fFixdjypQpcHNzy3YFSfvYRSPnbdq0CQDg4OCA+fPnw9vbW2ebxo0bQwiR21WjF8SsWbM013WAiEiLsh15//fffxEbGwsA+OmnnwAAjx8/xr///pvdoonITNevXwcAFCpUSG/DnYiIiJ4P2W68z549GwBQtmxZDBgwAGXLlgXArjNEuSkxMREA4OTklMc1ISIiopyUrcb7nTt3sGHDBgBAr169AAA9e/YEAGzYsAG3b982WcaNGzfw/vvvo2rVqihQoACcnZ1RuHBhVKhQAT169MCsWbPw+PFjq+qXmpqKWbNmoVWrVihcuDCcnZ3h4+ODEiVKoFmzZpg4cSJOnDhhspzY2Fh88sknKFeuHDw8PODj44OGDRti3rx5ZtXj6NGjeP3111GiRAm4u7vDy8sL5cqVw6hRo/TO2gAAixcvln2zTp8+rXebyMhIuc3SpUv1btOxY0fY2dmhRo0amdKzzhyRlpaGP/74A3Xr1oWvry88PDxQsWJFfPHFF4iPjzfreRpibNS2vtH6GzduRIcOHVC4cGG4uLggPDwcw4YNw7Vr16w6vvJcP/30U5mmHmBtbAYNxfXr1/HOO+8gMjISbm5u8Pf3R6tWrbB27Vqz6vDw4UNMmDABderUQcGCBeHi4oKgoCC8/PLL+Oeff6x6XurnofyIvnz5ss7zUpg728zly5cxdOhQhIWFwdXVFUFBQejYsSO2bNkCwHi/QUtmXzDWNzzr+zMxMRE//vgjateujYIFC8LOzg7jx4/X2S8lJQXTp09H27ZtERQUBBcXFxQsWBANGzbEjz/+iISEBKN1yg7lfX758mUA6YGNrOfC1MwF2X3v79u3D4MHD0bJkiXh6ekJDw8PlC5dGsOHD8fZs2ez+xSNMtXfVnkNlPO2f/9+9OjRA0WLFoWLiwuCg4PRu3dvnDx50qzjnT59Gm+99RbKlSuHAgUKwM3NDREREejfvz8OHDiQ7edz4cIFfPfdd+jQoQPCwsLg5uYGNzc3FCtWDN26dcO6deuyfYys11JsbCzGjRuHcuXKwdPTE35+fmjcuLHJ75qkpCSsXLkSI0aMQI0aNeDr6wsnJyf4+/ujVq1aGD9+PO7du2e0jKzXY0xMDPr164fw8HC4uLjoXO+58fqYIy+veX0WL16M5s2bIzAwEG5ubihdujTef/99PHz4MMeOqbyPjH0PmOrnferUKQwePBhhYWFwcXFBoUKF0KlTJ+zZs8esOly7dg0ffPABqlatCl9fX7i6uiI0NBTdunWT3x36sA1gZRtAZMP3338vAAg7Oztx+fJlIYQQly5dEnZ2dgKA+O6774zuv23bNuHt7S0AGP1buXKlxXV78uSJaNCggcmyu3TporNv3759BQBRrFgxcfLkSREWFmZw/+HDhxutx8SJE4W9vb3B/V1cXMTs2bN19rtz547c5tdff9XJv3btmsl6pKWlCT8/PwFAjB49OlPezJkz5b7Hjh0TTZs2NVjHmjVriri4OFMvuUGNGjUSAESjRo108i5evCiPM3PmTPG///3PYD0CAgLEiRMnLD6++rka+7t48aLeOm/fvl34+/sb3O+bb74xevzVq1cLHx8fo8du166dePLkicXPzZznpdiyZYtM27Jli97yNmzYIDw8PPSWY2dnJ7744gsxbtw4nbIVWc+nMcWKFRMARN++fXXy1Ods//79onLlyjr1GTduXKZ9zp07J8qWLWv0tShRooQ4c+aMqZfVKsp7xtif+hqw5Xs/OTlZDBs2zOixnZycxB9//GH181OfE/W1olB/buqjPm9TpkwRjo6Oeuvp7u4utm7darQun332mcH9lffqJ598YvVzvXDhglnXVq9evURycrLVx1FfSxcuXBDFixc3eKxXXnnF4LGU197Yn7+/v9ixY4fBuqivx19//VXv62vL18fU55GxzxlFdq95U+9ZU7JewwMGDDBYjyJFiojjx49bdRxT1K+VsT819fleunSpcHd317uPg4OD+Pvvv40e/88//xRubm5Gjz1w4EC97wW2AdL/LG0DZKvxXqlSJQFANGzYMFO60miuVKmSwX0TEhJEUFCQACC8vLzEmDFjxNq1a0VMTIzYs2ePWLhwoRg5cqQICQmxqvE+evRo+aK0b99eLFiwQOzcuVPExMSIdevWiUmTJokGDRqIV155RWdf5YIOCAgQJUqUEF5eXmLs2LEiKipKREdHi2nTpomiRYvK8tetW6e3Dr/88kumN923334rdu/eLXbs2CHGjx8vG0l2dnZi9erVOvuXKVNGABDdunXTyZszZ06mE1+uXDmdbQ4ePCjzs76G6jdz3bp1hb29vejbt69YvXq1iImJEcuWLRN16tSR27z//vvmvvQ6zG28161bV243f/58ER0dLTZt2iT69Okjt6ldu7bFx3/48KE4evRopsbN0aNHdf6SkpJ06lyyZElRsGBBERgYKL766iuxY8cOsW/fPvH999/Li9HR0VEcO3ZM77E3bNggHBwcBAARFhYmJk2aJKKiosSBAwfEypUrRa9evWSdOnfubPFzU+r+8ssvCwAiKChI53kpTH1Znj17Vn6AOzg4iOHDh4vNmzeL/fv3i5kzZ8ovyZo1axr8Us2JxnvFihWFnZ2d6NOnT6b355o1a+T2N27cEIUKFZKfJ6NHjxZr164VBw4cEFu2bBEffPCBfG4REREiNjbW7NfYXBcuXBBHjx6Vn2svv/yyzrm4cOGC3N6W7331dm3atBFz584V+/btE/v37xfTpk0T5cqVk/krVqyw6vnZqvFeu3ZtYWdnJypVqiRmzJgh9u/fL7Zt2yZGjRolAx2hoaEiMTFRbzkff/xxptftzz//FLt37xbR0dFi3rx5mT63Jk+ebNVzPXv2rHB2dhYdOnQQkydPFps2bRIHDhwQmzZtElOnTs30embnR4K60VWjRg1hb28vhg4dKjZt2iT2798vpk+fLkqWLCm3efPNN/WW07NnTxERESFGjx4tFi5cKHbv3i32798vlixZIoYOHSqcnZ3l99Dt27f1lqFcj2XLlhUODg4iLCxM/Pzzz/I768svv7Tp65PdxrstrnlbNt5r1KghPx8XLFggoqOjxZo1a0S3bt3kNkWLFhWPHj2y6ljG3L592+T3gPq7QIiM812lShXh6uoqwsPDxc8//yz27Nkjdu/eLcaPHy9cXV0FAOHt7S3u3Lmj99jTp0+Xz698+fJiypQpYseOHeLAgQNi6dKlom3btjL/nXfeMfoasg1gfhvA6sb7kSNH5AGzRnN+//13mXfkyBG9+2/evNlgw1ItOTnZqjd7SEiIAKC3ca52//59nTR1FMPHx0fvSTl79qx8Y7/00ks6+Xfu3JEfHEFBQeLKlSs62xw4cEA24IODgzO9cYQQ8o1WuHBhnX0HDhwoj638AMh6cf3www8CgLC3txcPHz7MlJf1l+icOXN0jpGQkCDKly8vgPSojbURJnMb7wDE4MGDRVpams52gwYNktscOHDAqnqYE8nJWmflg/3atWs622zfvl3eZXrrrbd08uPi4uSXS8uWLcXTp0/1HuuPP/6Qx9q0aZPlT0yY9yVk6stSeS8BEIsXL9bJf/r0aaaGe2413gGI6dOnGy2rffv2AoAICQkR58+f17uN+nobO3as0fKyw9jzUrPVe3/JkiUyf9q0aXqP9ezZM3l3LSwszKpr2VaNdwCibdu2ehvnEyZMkNv8888/Ovn79u2TDXxD5zA1NVV+IXp5eel89pkjLi5O3Lhxw2B+Wlqa6NevnwAgPDw8rP4xmDViOn/+fJ1tHj9+LANl9vb2er9Tz507p/e9ozhy5Ijw9PQ0+rop71sAokKFCkZfN1u8PtltvNvimrdl4115X+u7tj777DO5zbvvvmvVscxhyfNRn+9q1arpPUdz586V23z//fc6+VeuXJHtnL59+xr8XPnwww/l+/f06dOZ8tgGsK4NYHXjXYlsu7i46FzkDx8+FC4uLgLQ7a6hmDdvnqxsTvwSdXJyEgDETz/9ZPG+6sa7schN9+7dBQDh6+urkzdp0iRZxoIFCwyWof6yWrRoUaa8v//+W+adPHkyU15kZKRsZEVEROhtcHXs2FEAEFWrVtU5rvqL2Nivvd9++01ud/jwYYPbGWNu471IkSIiISFBbxmnTp2S21lzToWw/sI1FqmsXbu2ANKjF1lNmTJFABCurq4Go10KpVHcs2dP009Ej+w23q9duyYbRZ06dTJYxqFDh3K98d60aVOj5Rw9elRu+++//xrddsyYMQJI/0GdU6xpvGfnvV+tWjWT500IIU6cOCHL2bhxo9nPR2Grxrux6+Hx48cySjxq1Cid/C5dusjGhrHGqvo7yNAPmuy6f/++jKgtWbLEqjLUn0nt27c3uN3evXvldm+88YZVxxo5cqQA0qOj+qgbc9u2bbPqGGqmXp/sNN5tdc3bsvHu4uIirl+/rne71NRUGQjz9fU1eK1nl7WNd0Pf7WlpafJOor7PF6UdGBQUJJ49e2bwWMnJySI4OFgAEB999FGmPLYB0lnaBrBqwGpqairmz58PIH1BGB8fn0z5Pj4+aNu2LQBg/vz5SE1N1SmjSJEi8vHMmTOtqYZRSvkLFy60esClnZ0dXnvtNYP51apVA5A+EEGZLlOhzLvt4+ODLl26GCxj0KBBOvso1IPb1AMMr1+/jnPnzsHOzg6NGjWS26m3EULIlW4bNWpk8PhAxiBjfZTnCKQPUMpJr7zyClxcXPTmlSpVCp6enrlSDzUfHx+0a9fOYL7y+uirkzJdaqNGjRAYGGj0OA0bNgQA7N6929qqZktUVBTS0tIAAH379jW4XaVKlVCpUqXcqhYA4+9PION1dnd3N3qugIzX+caNG7h69aptKmgD1r73r1+/jpiYGABA165djR6jTJkyKFiwIIC8e58BQIsWLQxeD15eXihRogQA3eeanJwsB4e98sorRgfg+fj4oEKFCgBs81yTk5Nx7do1nDx5EseOHcOxY8dw48YN+Pv7AwAOHz6c7WP079/fYF7NmjVRrlw5ALrfE/o8fPgQ58+fx/Hjx2V9le/pEydOIDk52eC+ISEhaNCggUV1z43XRy0/XvMtW7ZEUFCQ3jx7e3v5ufrw4UObDKi2lQoVKqBixYp68+zs7FClShUAxr/jOnToAFdXV4PHcHR0RJ06dQAYvx7ZBjD/88qqxvuGDRtw8+ZNABmzzGSlpN+8eVPvh039+vUREREBABg5ciRq1qyJL7/8Ert27UJSUpI11cpEuVB27dqF8PBwjBgxAsuWLcPdu3fNLqNgwYLyw0cfPz8/+TjrcvTHjh0DAFSpUsXo9H2FChWSszMo+6jzSpUqBSBzw1x5XLZsWQQEBOhtvB85cgQPHjwAkPlHgD6lS5c2mGfsOdqasXoAgK+vb67UQ61EiRKwtzd8mSivj746RUdHAwDWr1+vd2S7+u/bb78FANy6dSsHnoVp6vee+gebPtWrV8/p6mRi6ItFobzO8fHxcHR0NPo6t2/fXu6XV6+1Pta+95XnDgA9evQw+T5TZhzJy+du6rkauqZOnDghAzEffPCByeeqvDbWPtfk5GT88ssvqF27Njw9PRESEoKyZcuiQoUK8u/OnTsAYHImF3NknREsq5o1awIAzp49q/c78ujRoxgwYACKFCkCPz8/REZGonz58rKuyiw/aWlpRmc+MXW9KXL79VHLj9e8uecP0P2uz0vWXo+PHj3CuXPnAAC///67yetxyZIlAIyfA7YBzH+PWtV4V+ZwN/aLRB2R1zfnu5OTE1auXIkyZcoASJ827MMPP0S9evXg4+ODNm3aGIzam+Pjjz/GgAEDYGdnhzt37uCXX35B586dUahQIVSoUAHjxo0zOZWlu7u70Xz1Cc1aT6XhXKhQIZN1LVy4cKZ91JSG99atW2Wa0khX8po0aQIg/ctN+XGibGNvb28yimLseRp7jrZm7uud0/VQM7dOStRakZycrHM3xhzZnZbTWuovc1MRgoCAgJyuTibKB7YhSgPBUnn1Wutj7Xtfi89dC8/1wYMHqFOnDkaMGIG9e/eaDCg9e/bMqrqpmbrulO8SIYRO43v69OmoWrUqZs6cadaXv7H6mrregLx5fdTy4/ve3PMH6P+uzyv56XpkG8D896ijpQWrV0+NjY01eItDbfny5Xjy5Am8vLwypZctWxZHjx7FypUrsXLlSmzduhXnz5/Hs2fPsG7dOqxbtw7ff/891qxZY/LCyMrJyQnTp0/H6NGjsWDBAvz333+Ijo5GUlKSvK33/fffY+7cuXj55ZctKtsSpuZWBWB0yfpGjRrh999/x61bt3Dq1CmULl1aNuSVxnvRokURERGBCxcuYOvWrXjllVfkNhUrVjTrw5hsS/3h0rVrV3z88cd5WBttc3BwMJqvvNbh4eFYsWKF2eWGh4dnq175gfp9Nm/ePLOjplr8TFA/12+++QatW7c2az8PDw+Lj/X222/L7kgdO3bEgAEDULFiRQQGBsLV1VV+roeGhuLq1atGP8PNZeq7wtAxTp06haFDhyIlJQWBgYF477330LRpU4SFhcHLy0ve+Z0xYwYGDhxotCzA9PUG5M3ro5Yfr3lrz59Wqa/HkSNHyveWKc7OzjlVpXwlp9sAFjfeFy1aZPGv6Pj4eCxZskRvnz4HBwd07NgRHTt2BJDezWbt2rWYOnUqYmJiEBMTgyFDhmDZsmWWVhVA+g+Ezz//HJ9//jmePXuGnTt3Yv78+fjrr78QFxeHHj164Pz585n64NuCn58fbt68aVYURLkDoO6iosja793b2xtnz56V/d3V2124cAFRUVHo0qWL2f3dKWe4urrC3d0d8fHxiI2NRfny5fO6SkapG3N37txB0aJFDW5rrOuZ+k5N1khEVk+fPrWghoYpXdtu376N0qVLw9HR4o81zVJ367Ozs8v377PsUD/X5OTkHHuujx8/xsKFCwEAr732mtEFkmy58M7t27cREhJiMF+JdNrZ2WW6XmfNmoWUlBQ4ODggKipK3s3Oqbrm1eujlh+veVN38tWRan3f9Vqjvh7j4+Of688ea+R0G8DibjNKF5giRYpgwYIFJv9CQ0Mz7WdKkSJFMGDAAOzevRtVq1YFAKxatcomt93c3NzQvHlzzJgxA9988w2A9Nt5q1atynbZWSkn6uDBg0YHB925c0euyKjv5BYpUkQO4IqKitLp765Q93s/evQo7t+/nymdzLsLYkvKQJ+dO3fmqy4a+iiD4YDM/aj1MZavvrtm7Iv7/v37NusHq7zO8fHx2Llzp03KzI7cfJ8pzx2AXO36eVWuXDkZtcvJ53r27Fn5md29e3eD250+fRpxcXE2O+7+/fvNyi9RokSm6OXx48cBpA8mN9RwB0xf1+bKq9dHLb9d84D55w/Q/11vC7n52RMQEIDg4GAA6YOotXBn4XlqA1jUeL948SJ27NgBAOjSpQu6d+9u8u/VV18FkN5n+8qVK2Yfy8nJSUaNU1JSrOo7ZEyzZs3kY1sPpgGA5s2bA0jvWrR06VKD202fPl2+6ZV9slL3e8/a312h7ve+ePFiAOlvVEtnDXieqUfDJyYm5vjxXnrpJQDpEeZffvklx4+XHU2aNJFRc2M/tA8fPmx05ghfX1851sVYY2HBggXWVVQPdbe3r7/+2mblWkt5n+XGeywyMhJly5YFAPz9998WfcZqjbu7u/zcjoqKwr59+3LkOCkpKfKxsS/c3377zabHVZa21yc6OloOcsz6PaHU11hdb926Jbu7ZldevT5q+e2aBzJP5JFVWlqaPL++vr4yMGlrufnZA2R8x124cEEOSM3Pnqc2gEWN9zlz5siG5iuvvGLWPsp2QgjMmTNHpm/fvl2OVNYnKSlJ9tv29PS0aJDcgwcPsGLFCqO/BNWRm5zoB9e/f3850GH06NF6p6g6fPgwJk6cCAAIDg6WXYeyUn7E3Lp1C4sWLQKg23hX+r0LITBlyhQA6VNAGZst50Wj7hp1/vz5HD/e0KFD5dR8H3/8sZzmzpCdO3fK7k65LTg4WA4+X7Zsmd4P4mfPnuH11183WZYy5dW///6r93U+efIkPvnkk2zWOEONGjXQsmVLAMCaNWswbtw4o9tfunTJ4I8HZeS/MgOUNZT3WW68xwBg7NixAICEhAR07tzZaLemxMRETJ06FQkJCblSN1v76KOPZPSse/fuRl9jZUrja9euWXSMyMhIeQxDP2RXrVolP2dtZcWKFfLzXS0uLk5ed/b29hgyZEimfOXO7JkzZ7Bnzx6d/ePj4/Haa6/ZbNBoXr0+ara85m0lMTERQ4YM0TuY8quvvsLRo0cBAAMGDNA7VrBx48by8+fSpUtW1UH57Llz506uzMjy3nvvyecydOhQk3d31qxZgyNHjuR4vQx5ntoAFjfegfRR1eZGdGvVqiX7z6ob75s3b0apUqXQuHFjfPPNN1i/fj0OHDiAnTt3YubMmWjQoIGcC3XQoEEW9Wl7/PgxXn75ZURERGD06NFYtGgR9u7di5iYGKxatQpDhgzB//73PwDpjd4OHTqYXba5AgICZNecGzduoHr16vjhhx+wd+9e7Nq1C5999hnq16+PuLg42NnZ4Y8//jA4paS6of7o0SOd/u5Zt3v06BEA9nfPqm7duvLxqFGjsG3bNpw9exbnzp3DuXPnMkWUbMHb2xsLFiyAo6MjEhMT0b59e3Tt2hULFy5EdHQ0oqOjsXLlSowfPx6VKlVC/fr18/SD7fvvv5c/OLt3744333wTW7ZsQUxMDGbPno3q1atj3759JqdEe+ONNwCkN/YbN26M6dOn48CBA9i2bRs++eQT1K5dG/7+/jadtWbmzJnyg/mzzz5D7dq18ccff2D37t04ePAgNm3ahO+//x4tW7ZEZGSk0bth2aW8z/bv34+vvvoKhw8flu+x69ev2/x4PXr0kFPjxsTEoGzZshg7diw2btyIQ4cOYefOnfjrr78wePBgBAUFYfjw4TZ/r+eWevXqyR9+Fy9eROXKlTFy5EisWbMGBw8exJ49e/D333/j7bffRmhoKHr27GnxXVt/f3+5TsmaNWvQunVrLFu2DDExMVi7di0GDRqEjh07IiIiwqbv4erVq+O1117D8OHD5XU3c+ZMVK9eHQcPHgQADB8+XGdQcu/evQGkR3fbtm2Lr776Ctu2bcO+ffvw66+/onLlytiyZQvq1atnk3rm1euTVX665oH087dy5UrUq1cPCxcuxIEDB7Bu3Tr06NEDH330EYD09kZOTl6gfPakpaVh6NCh2LNnT6bvOFsLDw+Xd1gePHiAevXqYdCgQVi+fDkOHDiAffv24Z9//sH777+PyMhItGvXLk/vDj5XbQCzlnISQuzYsUOuNjVkyBBzdxNCCPHWW2/Jfffs2SOE0F0W2tBf586dja7cpU/W5XYN/QUHB+tdZtfcVcpMrTgohBBffPGFXLlS35+Li4uYPXu2yedUvHhxuU+5cuX0bvPXX39lKnvp0qXZqrsQlq2YaYi5K6xmZ0VOc3Xt2tXguVC/DsbqrGbOim2bN28WhQsXNus9ac57QZ/srrCq2LBhg1xOXN/fuHHjxMcffyxXjTNEfc1n/QsJCRHHjx83e4VVY+9PtUuXLokaNWqY9Tr3799fZ//4+HiZr29VYnNdu3ZN+Pn56T2u+v1ky/d+SkqKGDNmjFzR0tifh4eHiI+Pt/h52WqF1XHjxhk9jjnX3g8//CBXUDX25+zsLM6ePWv+k/x/V65cEaGhoQbLDQ0NNfkeNof68+PChQsiPDzc4DG7dOlicPn5Tz/91OjrMHr0aJPnz5LnYovXJzsrrCqye83bcoXVmTNnin79+hk8fpEiRcTx48cNlqWssOnk5CTu379vVX1SU1Plip/6/tTMPd/mvEZ///238Pb2NnkO7O3txX///ZdpX7YBrGsDmB15V98eM7ZiqD7q7ZVyxowZgzVr1mDUqFGoXbs2QkND4erqCldXV4SFhaFbt25YvXo1li5danTlLn2KFSuGQ4cO4ZtvvkGbNm1QqlQp+Pj4wNHREQULFkSjRo3w7bff4uTJk5kGfOWEDz/8EAcPHsTgwYNRvHhxuLm5wcPDA2XKlMHbb7+NU6dOoU+fPibLUUffDQ1CVfq9A+m3/5XuC5Rh7ty5+Prrr1GzZk0UKFDA6OILttK0aVOcP38eP//8M1q3bo0iRYrA2dkZrq6uCAkJQcuWLfHFF1+Y/V7ISS1atMCxY8cwZMgQFCtWDM7OzihUqBDatWuHdevWYfz48Xj8+DEAoECBAgbL+emnnzB//nw0bNgQ3t7ecHNzQ6lSpfD+++/j4MGDsp+2LRUrVgx79+7FsmXL0L17d4SHh8Pd3R1OTk4ICAhA3bp1MXr0aGzduhXTp0/X2V+9st2oUaOsrkdwcDD27duHgQMHIjIy0uLPL2s4ODhg0qRJOHHiBEaPHo0qVarA19cXDg4O8PLyQrly5dCzZ0/Mnj0bN2/ehJubW47XKSeNHDkS58+fx8cff4zatWujYMGCcHR0hIeHB0qWLIkuXbrgt99+w/Xr1xEZGWlx+SEhIThw4ADee+89lCxZEi4uLihQoAAqVaqEcePG4dChQzZ/D4eHhyMmJgYffvghypQpA3d3dxQoUAANGzbE3LlzsWTJEoN3oD/55BOsXr0aLVu2hK+vL5ydnVG0aFF07twZGzZskAvA2EpevD76ZPeat7WZM2di/vz5aNy4Mfz9/eHi4oKSJUtizJgxOH78uMHXJCEhAYcOHQIA9OnTx+rZaOzt7bFhwwaMHTsWlSpVgqenZ64M0uzWrRsuXbqEr776Co0bN0ZgYCCcnJzg7u6OiIgIdOjQAd9//z0uXbqUqZ2SF56XNoCdEBoYIkxE+Ubz5s2xefNm1K9fH9u3b8/r6tjM+PHj8emnn6JEiRI4efKkWfNdE2WH8p4DoInZOihnREVFoUmTJnB0dMTp06fl6vNEhuT8Tw4iem7cuHFDDqipXbt2HtfGtpQB8h9++CEb7kSUa5TPnp49e7LhTmZh452IJGODmp49e4Z+/frJOZ7zuouPLSUlJWHv3r0IDw9Hr1698ro6RPQC2bZtGxwcHOTAViJT8n5ZMiLKNwYNGoSnT5+ia9euqFatGvz8/PDkyRNER0dj6tSpsnE/cOBAVKhQIY9razvOzs75fiEtIno+bd68Oa+rQBrDxjsRZaJMYWVIp06dcnQOZyIiIjKMjXcikr7//nssW7YM//33H65du4a7d+9CCIHAwEDUrl0bffr0kYs5ERERUe7jbDNERERERBrBAatERERERBrBxjsRERERkUaw8U5EREREpBFsvBMRERERaUSONd5nzZoFOzs72NnZ4dKlSzl1GMolx44dQ69evRASEgJnZ2d5bg8dOpTXVcsz/fr1g52dHcLCwvK6KrkiP13TTZs2hZ2dHSZNmqST98Ybb8DOzg59+/bNg5oRERHlLEbeyaSYmBjUrFkT8+bNw7Vr1+QKm5Q/PH78GH///TcGDx6MqlWrwsfHB87OzggICEDjxo3x7bffIjY2Nq+raTP//PMPtmzZAn9/fwwfPlwn/4MPPoCzszPmzJmD/fv350ENiYiIcg4b72TSBx98gGfPnsHb2xtTp07Fvn37cPToURw9ehSlS5fO6+q90NauXYvAwED06NEDf/75Jw4ePIhHjx4hOTkZ9+7dw9atW/Hee++hdOnS2LJlS15XN9vS0tIwduxYAMC7774LT09PnW1CQkLQt29fCCHktkRERM8LNt7JqOTkZGzduhUA8Prrr2PYsGGoUaMGypcvj/Lly8PV1TWPa/hiu3//PhITE2Fvb49WrVrhhx9+wH///YcDBw5gxYoV6NatGwDg9u3baN++fba6OfXr1w9CCAgh8qyr0NKlS3Hy5Em4ubnhjTfeMLjd6NGjAQAbNmxg9J2IiJ4rbLyTUffu3UNSUhIAoGTJknlcG8rKyckJQ4YMwcWLF7Fu3TqMHDkSTZo0QZUqVdChQwf8/fffmDx5MgAgPj5eNmq16scffwQAdOjQAd7e3ga3K1WqFKpWrQoA+Omnn3KjakRERLmCjXcyKjExUT52cnLKw5qQPt26dcNvv/2G0NBQg9u8+eabqF69OgAgKioK9+/fz63q2dSpU6ewa9cuAECvXr1Mbt+zZ08A6dH6R48e5WjdiIiIcovVjfeHDx/i/fffR+nSpeHm5obAwEA0b94cixcvtqiclJQUTJ8+HW3btkVQUBBcXFxQsGBBNGzYED/++CMSEhJMlnHkyBH07t0bwcHBcHV1RWhoKHr16oUDBw4AMD4ryKVLl+QMGrNmzQKQPiBOqY+joyMaN26s97gbN25Er169EB4eDjc3N3h7e6NSpUoYM2YMbt68adbz37dvHwYPHoySJUvC09MTHh4eKF26NIYPH46zZ8+aVYYpSUlJmDp1Kpo0aYKAgAA4OzujcOHCaNu2LebOnYu0tDSdfcaPHw87OzuEh4fLtP79+8vXys7ODuPHj7eoHk+fPsXChQsxaNAgVK5cGQUKFICTkxMCAgLQqFEjfPvtt4iLizNaRtZj79+/Hz169EDRokXh4uKC4OBg9O7dGydPnjSrPp999hkqVKgADw8P+Pv7o379+pgxYwaEEIiKipLHi4qKsui5qsXHx+PHH39EkyZNUKhQITg7OyMwMBAtW7bEzJkzkZqaanXZ5lLew2lpabh48aJVZZgz20xMTAwGDhyIkiVLwsPDA66urggJCUG1atUwfPhwrFixAkIIq46/aNEiAICHhwdat25tcvsuXboAABISEvDvv/9adUwiIqJ8R1jh+PHjokiRIgKA3r8BAwaImTNnyv9fvHhRbznnzp0TZcuWNVgOAFGiRAlx5swZg3WZNWuWcHJy0ruvk5OTmDVrlujbt68AIIoVK6az/8WLF+X2M2bMEL1799Ypp1GjRpn2iYuLE506dTJab09PT7Fy5UqD9U5OThbDhg0zWoaTk5P4448/zDklBl26dEmUKVPG6HHq168v7t+/n2m/cePGGd0HgBg3bpxFdWnUqJHJMsPDw8XJkycNlqE+9pQpU4Sjo6Pectzd3cXWrVsNlnPlyhURGRlpsB7t27cXGzZskP/fsmWLThnG3leKffv2ieDgYKPPuWbNmuLWrVuWvJQWe/PNN+XxYmJirCrD1DX9/fffC3t7e5Pn+MmTJ1Ydv3HjxgKAaNCggdn7KJ9T/fv3t+qYRERE+Y3FjffY2FhRtGhR+UXcrVs3sWbNGhEdHS3mz58vqlevLgCIGjVqGP2iv3HjhihUqJAAILy8vMTo0aPF2rVrxYEDB8SWLVvEBx98INzd3QUAERERIWJjY3XK2L59u2wsuLm5iQ8//FBs27ZN7N27V/zyyy+iaNGiwtnZWVSpUsWsxnvFihVl42D+/PkiOjpabNq0Sfz5559y+5SUFNGkSRMBQNjZ2YkePXqIxYsXi+joaLF7927x008/idDQUAFAODs7i+joaL2vY58+feRx27RpI+bOnSv27dsn9u/fL6ZNmybKlSsn81esWGHpaRJCCPHkyRMREREhy+nYsaNYsWKFiI6OFosXL87UmK5Tp45ISUmR+96+fVscPXpUrF+/Xm4zYcIEcfToUfl3+/Zti+pTr149UaFCBfHRRx+JZcuWib1794o9e/aIhQsXiu7du8tzWapUKfHs2TO9ZSh1qV27trCzsxOVKlUSM2bMEPv37xfbtm0To0aNkuWEhoaKxMREnTISExNF+fLlM73+y5YtE9HR0WL58uWibdu2AoCoVatWthrvR44cER4eHgKACAwMFOPGjRObNm0SBw8eFOvXrxfDhw+XPz5q1aolkpKSLHo9LaG8tx0dHcWjR4+sKsNY4/3w4cPydQ8PDxffffed2Lx5szh48KDYvn27/GHs6elpVeM9KSlJuLm5CQDinXfeMXu/l156SQAQkZGRFh+TiIgoP7K48f7OO+/IL/CJEyfq5CclJYmWLVtmirTpa7y3b99eABAhISHi/Pnzeo914MAB2fgZO3asTn6lSpVkI3nnzp06+bdv387UeDXVeAcg+vTpI9LS0gw+/2+//VZGxdesWaN3mwcPHsjGd/369XXylyxZIo83bdo0vWU8e/ZMNG3aVAAQYWFhIjk52WCdDHn33XflcfS9fmlpaaJnz55ym6lTp+pso359Zs6caXEd1IzdQRFCiI0bN8oGoPoHk5r6XLVt21Zv43zChAlym3/++Ucn//vvv5f5I0aM0HucESNGZDqWpY33tLQ02WCuVKmSuHv3rt7jrF271uRzzq5Vq1bJ59GuXTuryzHWeP/4448FAOHh4WH0LkJsbKxITU21+Nh79+6Vx54zZ47Z+3366adyP0t/bBIREeVHFjXeExIShK+vr4xSG/oSvnr1aqauLFm/6I8ePSrz/v33X6PHHDNmjAAggoKCMqXv3r1bljFq1CiD+//7779mN959fHzE48ePDZaVlJQkb8MbO6YQQqxZs0aWe/bs2Ux51apVEwBEp06djJZx4sQJWcbGjRuNbptVQkKC8PHxEQBE2bJlM0XV1R49eiT8/f3ldlnZsvFujo4dOwogvduKPkpdXF1dDTbGHj9+LJydnQ2ep1KlSsn3lKEI/7Nnz0RQUJDVjfeVK1fKfQ8fPmz4CQshunbtKgCIevXqGd3OGvfv3xfFihUTAISDg4M4cOCA1WUZa7wPHjxYABBVqlTJZo31W7p0qTz2+vXrzd7v119/lftl57kTERHlFxYNWI2JicHDhw8BAH379oW9vf7dixYtipYtWxosRxk85u7ujnbt2hk9ZsOGDQEAN27cwNWrV2X65s2b5WNjy6C3a9cO/v7+Ro+h6NChA7y8vAzm79u3Tw5E7dq1q1n1BoDdu3fLx9evX0dMTIxZZZQpUwYFCxbUKcMcMTExclXNfv36wcHBQe923t7esh4nTpwwe6CtLdy9exdnz57FsWPH5F9AQAAA4PDhw0b3bdGiBQIDA/XmeXl5oUSJEgCACxcuZMq7fv06Tp8+DSD99Tc0T72rqyteffVVi56PmvIeL1WqFCpWrGh0W+W9sn//fpsOXk1NTUXPnj1x+fJlAMDYsWNRpUoVm5WvVqRIEQDp76F9+/bZvPy7d+/Kx76+vmbv5+fnp7cMIiIirbKo8X706FH5uEaNGka3rVmzpsG86OhoAOmzcDg6OmaawSTrX/v27eV+t27dko+PHTsGAHBxcUH58uUNHsvBwQGVK1c2WleFqUaWUm8AqFOnjtF6q1d+VNdbXUaPHj2MlmFnZ4d79+7plGEO5fUBgFq1ahndVp2v3i8n7Ny5E926dYO/vz8CAwNRsmRJVKhQQf5NmzYNAOTzNsTUyq5Ko+3JkyeZ0tXPr1q1akbLUKZXtIZynk+fPm3yHI8YMQJA+qxADx48sPqYWb3xxhtYt24dgPQfsR9//LHNys6qR48ecHJyQmJiIurVq4cOHTrgt99+w/Hjx62eXUZN/bpY0nhXb6vVKTKJiIjULGq8K1F3AAajnopChQoZzLtz544lh5Xi4+N16uLn52cwqqxQormmmGoU2KLetijDHOrGjrFzAQCFCxfWu5+tjR8/HvXr18eiRYtMHufZs2dG893d3Y3mK3eFskayLXkPm/u+0Se3zrMhH3zwAf744w8AQP369bF48WKT10l2lC5dGgsWLICvry9SUlKwatUqDBs2DOXLl0dgYCB69+6N7du3W12++g6JqfeGmnpbNzc3q49PRESUXzhasrE6gmZnZ2f2tlkpDarw8HCsWLHC7OOr5xzPCaYaN+qGYFRUlNndcdSNRHUZ8+bNMxntV1gSbcwqO+fKVjZv3oxPP/0UABAREYF3330X9evXR2hoKDw9PeVr/8knn+Dzzz/P8frkNOU816tXD7/99pvZ+wUFBWX72JMmTcJXX30FAKhatSpWrVqVKw3XLl26oHnz5li4cCHWr1+P7du34+7du7h37x7mzp2LuXPnom/fvpgxY4bBLneGqH9IWfIDU71tdn6MERER5RcWNd7V/Udv376NkiVLGtzWWORRafTevn0bpUuXhqOjRdUAkNGYffDgAVJTU402vG3V11XdWHd2djbaXcecMuzs7Kwqwxzqc3Xr1i2j5+r27dt697MlpTuMj48Pdu/ebTDqrY6M5wT1jyBT0fHsvG/8/f1x+/Zt3L17N8fOsT5Tp07F+++/DyB9zMT69etRoECBXDt+gQIF8Prrr+P1118HkN4HfsWKFZgyZQpu3LiB2bNno0qVKnj77bctKlfd8LbkPaLelo13IiJ6HlgU/qpQoYJ8vH//fqPbGstXBs3Fx8dj586dllRBKleuHAAgMTExU1/8rFJTU3Ho0CGrjpGVerDfhg0b8qwMc6gbjHv37jW6rXqAYU41NI8fPw4AaNq0qdHuKuoxATlBed+Yc6zs1EU5z2fOnJEDRnPanDlzZP/5iIgIbNq0SQ54zitly5bF+++/jz179sDDwwNAxkqpllB/9pw5c8bs/ZRtPTw8EBERYfFxiYiI8huLGu/VqlWTkcs5c+YY7G5x/fp1ow3Tl19+WT7++uuvLamC1KxZM/n4r7/+Mrjd6tWrbTZQrX79+jIy/dtvv+Hx48cWlxEZGYmyZcsCAP7++29cuXLFJnXLqlq1avDx8QEAzJ492+AsJk+ePJGNqbJly8pZQ2wtJSUFgPE+3YcOHcKePXty5PiKokWLyrsQixcvRkJCgt7tEhISsHjxYquP89JLL8nH1r7HLfHPP/+gf//+EEKgaNGi2Lx5s0264NhKSEiIfN1NDUbWJygoSDa+TQUO1JRta9eubdUdPiIiovzGosa7i4sL+vfvDyC9ofXNN9/obJOSkoLBgwcjKSnJYDk1atSQU0muWbMG48aNM3rcS5cuYcGCBZnS6tSpI/uL//LLL9i1a5fOfnfv3sWoUaOMPykLuLq64t133wWQ3hWle/fuePr0qcHtnzx5gp9//lknfezYsQDSG4idO3c22j0jMTERU6dONdjINMTFxQWDBg0CkB71VvqbqwkhMGLECNmYUqK2OUGZunHHjh060zcC6eeqV69eOXZ8tSFDhgBIn370vffe07vNe++9hxs3blh9jC5duqBMmTIAgF9//RXTp083uv2xY8ewcuVKq461YcMG9OjRA6mpqQgMDMSmTZsQFhZmVVnWWr58uZyaVJ+rV6/i1KlTAKwfu9KgQQMAMHsqysTERBw5ciTTvkRERJpn6cTwsbGxomjRonLhkx49eoi1a9eKmJgYsWDBAlGjRg0BQP4LAyusXr9+XS54hP9fHv73338Xu3btEgcOHBAbN24U3333nWjRooVwcHAQXbp00Slj+/btcnVKNzc38dFHH4nt27eLffv2ialTp4qQkBDh5OQkKleuLFcqzcrSRYhSUlJEs2bN5D6hoaFi4sSJYsuWLeLgwYNi27ZtYtq0aaJnz57Cw8ND+Pv76y1HWeAHgChYsKD46KOPxIYNG8TBgwfFjh07xOzZs8WgQYOEn5+fAGDVkvKPHz/OtMJsp06dxMqVK0VMTIxYsmSJaNy4scyrU6eO3oWcbLVI0+LFi2U5RYsWFVOmTBG7du0SO3fuFN98840oUqSIsLOzE3Xq1JHb6aPkjRs3zujxGjVqJACIRo0a6eQlJiaK8uXLZ1qp9d9//xUxMTHi33//Fe3atRMARM2aNeU2UVFROuUYW6RJCCGOHDkiPD09ZRmtWrUSs2fPFnv27BExMTFi7dq1YuLEiaJu3boCgBg9erSpl1HH7t27hbu7u8D/r/o7b948cfToUaN/Dx8+tPg4QhhfpKlRo0bC3d1dvPrqq+LXX38VUVFR4uDBg+K///4TX3/9tQgJCZH7Ll++3KrjL1q0yODCZ/ps2LBBbr9//36rjklERJTfWNx4F0KIY8eOicKFC2daPl79179/f6Nf9IpLly5lauQb++vfv7/eMmbNmpVpNVf1n6Ojo5g2bZro3bu3ACBKly6ts781jdP4+HjRp08fs+odHh6ut4yUlBQxZswY4eDgYLIMDw8PER8fb1bd9D2/0qVLGy2/Xr164v79+wb3t0XjXQgh+vfvb7AODg4O4scffxTjxo3L8ca7EEJcvnxZFC9e3GB9WrZsKdauXSv/v2fPHp0yTDXehRDi8OHDokSJEma9Vz799FOjz0kf9etl7p+159FU493UcR0cHMTEiROtOrYQ6aveKqsGm/Na9evXTwAQpUqVsvqYRERE+Y1l87X9v3LlyuH48eMYM2YMSpQoARcXFxQsWBBNmjTB/PnzMWPGDLPKKVasGPbu3Ytly5ahe/fuCA8Ph7u7O5ycnBAQEIC6deti9OjR2Lp1q8FuB3379kV0dDR69uyJoKAgODs7Izg4GF27dsWOHTswaNAg2TfdVrNuuLm5Yfbs2YiOjsawYcNQrlw5FChQAI6OjvDx8UHlypUxcOBALFmyBCdPntRbhoODAyZNmoQTJ05g9OjRqFKlCnx9feHg4AAvLy+UK1cOPXv2xOzZs3Hz5k2rp/oLCwvD4cOH8fPPP6NRo0bw9/eHk5MTChUqhNatW2POnDnYtm1bjs0yozZjxgzMmTMHDRo0gJeXF1xcXFCsWDH07t0bu3btsngGkuwIDQ3F4cOH8emnn6J8+fJwc3ODj48PateujalTp2Lt2rWZuipZ+96pWLEiTpw4gdmzZ6Njx44ICQmBq6srnJ2dUaRIETRu3Bhjx45FTEwMPvnkE1s9vVy3aNEizJs3D/369UPlypVRuHBhODo6wtPTE+XLl8cbb7yBgwcP4oMPPrD6GK6urhgwYACA9GlWjUlISMCyZcsApC9WRURE9LywEyIXJvnOY5GRkTh//jx69eqFOXPm5HV1SCMmTJiAjz/+GI6Ojnjy5EmmhYIob1y5cgUlSpRAUlIStm/fjvr16+vdbu7cuejduzf8/Pxw6dIleHl55XJNiYiIcoZVkXct2b9/P86fPw8gfcYJInMIIbBw4UIAQOXKldlwzydCQ0MxcOBAADC4mFdaWhomTpwIAHj33XfZcCcioueK5hvv586dM5h3//59DB48GED67CvdunXLrWpRPnfp0iU5faU+n3zyCY4dOwYgvWsW5R/jxo2Dt7c3NmzYoHdq0cWLF+PkyZMICQnByJEjc7+CREREOUjzEx+3aNEC4eHh6NSpEypWrIgCBQrg4cOH2LlzJ6ZOnYqbN28CSJ+eMa8XrKH8Y9asWZg5cyZee+011KtXD0FBQUhOTsbJkycxe/ZsREVFAUif+175AUj5Q6FChTBv3jxER0frnTM+NTUV48aNQ9OmTa0eK0JERJRfab7Pe1hYmMkVLN944w1MmTIF9vaav9FANjJ+/Hi9c9+rlS5dGmvXrs31OdOJiIiIDNF8433r1q1YuXIltm7dips3b+LevXtwdHRE4cKFUb9+fbz++uuoW7duXleT8pmrV69iyZIlWL9+Pc6dO4e7d+/i2bNn8PPzQ6VKldCpUycMGDAAzs7OeV1VIiIiIknzjXciIiIiohcF+5EQEREREWkEG+9ERERERBrBxjsRERERkUbkaeP90qVLsLOzg52dHWbNmpWXVcH48eNlXYiIiIiI8qNsN96Tk5Px999/o2/fvihTpgz8/f3h5OSEggULolq1ahg2bBg2bdqEtLQ0W9SX8pkJEybIHz1eXl6Ij4+3afmxsbHYuHEjvvjiC3Ts2BFBQUHyeI0bNzarjKioKLmPqb/x48ebLC8lJQW///47GjZsiICAALi5uSEyMhJDhw7FiRMnzKrT6dOn0aVLF/j4+MDLywvt2rXDgQMHzNo3p/Xr18/g6+Po6Ag/Pz/UqVMHn3zyCW7cuGGTY9riPF++fBnTpk3D4MGDUbNmTRQrVgzu7u5wc3NDSEgIXnrpJcyZMwfJyclm1+vvv/9Gq1atUKRIEbi6uiIsLAy9e/fWuziUPjdu3EC/fv0QEBAAd3d3NGrUCJs3bzb7+Lnp/v37+Pnnn/HSSy+hePHi8Pb2houLCwoXLozGjRvjo48+kguXWSslJQUHDx7E77//jkGDBqFixYpwdHSU5/rSpUsW13ncuHGoVKkSChQoAG9vb1SqVAnjxo3D/fv3zS7n+PHjGDp0KCIjI+Hm5oaAgAA0bNgQv//+u9HF3BRCCPz4448oXbo0XFxcEBkZiQkTJlj0Xssp6iCZ+s/BwQE+Pj4oVqwYateujeHDh2POnDmIi4vL8WPr++vXr59ZZb5I1ySRQSIbli9fLiIiIgQAk38lS5YUq1atyrT/xYsXZf7MmTOzU5VsGzdunKwLma9kyZKZzvOcOXNsWn5YWJjB91SjRo3MKmPLli1mvUcBiHHjxhkt6969e6JWrVoG93dxcRHTp083WsaRI0dEgQIFdPZ1dXUVmzdvNvOVyTl9+/Y1+/Xy8vIS//77b7aPaYvz/NFHH5lV5woVKogLFy4YLevZs2eiffv2Bsuwt7cXn332mdEyrl+/LooWLap3X1tfJ9mRmpoqJk6cKLy9vc16/Vq0aCGOHz9u1bHGjx9vtOyLFy+aXda+fftEkSJFDJYVFBQk9u/fb7KcP//8U7i4uBgsp3bt2uLevXtGyxgwYIDefdu0aSNSUlLMfk45Qf09a+41PWrUKBEXF5erx+7bt6/Rsl6ka5LIFKtbqhMnThR2dnbyzd+8eXMxZcoUsXnzZhETEyM2btwofv75Z9GqVSthb28vAIhKlSplKiM/Nd7Jcrt375bnz9PTU36x21KxYsXkMQoVKpTpw9uaxvuMGTPE0aNHDf7dvn3bYDkpKSmiYcOGsqzOnTuLtWvXir1794rJkyeLwMBAAUA4ODiIdevWGSynZs2aAoBo166d2LBhg4iKihJ9+vQRAERISIhISkqy9GWyKXXjff369ZlenwMHDogVK1aIPn36yOvf2dlZnDx5MlvHtMV5/vjjj0WlSpXE8OHDxbRp08SqVavE/v37xX///SemTZsm6tatK8ssXry4ePr0qcGyXnvtNbltkyZNxPLly8W+ffvE9OnTRfHixWXetGnTDJbRtWtXAUDUqVNHrFy5UuzYsUOMGjVK2NnZCQ8PD5MNwtzw7Nkz0bFjR/l8nJ2dRa9evcRff/0ltm3bJqKjo8Xq1avFp59+KipXriy3e/vtt606njpI4urqKmrXrp3p9TS38X7t2jVRqFAhAUA4OjqKMWPGiG3btolt27aJMWPGCEdHR/leunbtmsFy1q1bJ7+fChUqJCZPniz27t0r1q5dKzp37izr1bBhQ5Gamqq3jDVr1ggAwtfXV0yePFns2bNHzJgxQwQFBQkA4tdff7XmpbIZ9ffsyy+/nOl63rt3r1i/fr344YcfRMeOHeXrBqQH3M6cOWOzY0+YMMHoZ6+x8yTEi3NNEpnDqsb7X3/9JS+UgIAA8d9//xnd/siRI6Jp06ZsvD9nhg0bJgCIggULikmTJskIhqkPYUt88803YsmSJeLy5csyLTuN9y1btlhdl5kzZ8py3njjDZ38s2fPyuhliRIlRHJyss42ly5dEgBE9erVdSJyL7/8sgAgtm7danUdbUHdeDfWmPrkk0/kdkOHDs3WMW1xnvW93lm9/fbbstzJkyfr3SYqKkpu06FDB53zdPfuXREaGiobbA8fPtQpIyEhQbi4uIiQkBCdCKZSh9mzZ5v1vHJS//795XOtUaOGyTsSK1asEBEREVY33tetWyd+++03ERMTI8+Xue83NfU+ixYt0slftGiRzO/fv7/eMpKTk0VkZKQAILy9vcW5c+d0tnnjjTdkOYbOV79+/QQAnTtQBw8elA3NvKT+njUV3b58+bJo0aJFpga8vve3NcfOznf8i3RNEpnD4sb79evXhYeHhwAg3N3dzb59mpqaqnNbio137UpMTBR+fn6yIXvz5k3h4OAgAIhJkybl6LHzqvFetmxZ+eVgKGr75ZdfymMtWbJEJ3/nzp0CgBg9erRO3uTJkwUAMX/+fKvraAvmNqaePHkio+9VqlSxeT0sPc/muHXrliz3lVde0btN27Zt5R2Uq1ev6t1mwYIFspxvv/1WJ//69esCgOjSpYtO3ooVKwQAMXHixOw9mWxavny5fA7ly5cXT548MWu/Bw8e2KSrlMLSxvutW7fkZ02rVq0MbteqVSt5Hm/duqWTr27gf/nll3rLePr0qfD19ZWvkT5KY1ff6+fn5ydKlixp8jnlJEsa70Kk32Fs165dtu+yZD12dr7jX5RrkshcFg9Y/eGHH/D06VMAwKeffoqyZcuatZ+9vT169eplcruNGzeiQ4cOKFy4MFxcXBAeHo5hw4bh2rVrJvdNSkrC1KlT0aRJEwQEBMDZ2RmFCxdG27ZtMXfuXKODZs2dbSYpKQl//PEH2rVrh+DgYLi4uCAwMBDVqlXDiBEjsH37dggji9Zu3LgRvXr1Qnh4ONzc3OQAqzFjxuDmzZtGj33jxg28//77qFq1KgoUKCCfX4UKFdCjRw/MmjULjx8/Nv4i2cjKlSvx4MEDAECvXr1QuHBhNG3aFADw119/5UodctPZs2flYNRu3brB3d1d73bqQVf//POPTn5gYCAAYMeOHTrvx61btwIAChcubIsq5zhPT0/4+/sDABISEvK4Nubx8PCQj/XVOS4uTg5ea9GiBYoWLaq3nM6dO8Pb2xuA/vPs6+sLR0dHREdH6wzijoqKApD35/mLL76Qj2fOnAlPT0+z9vP19cVLL72UU9UyacWKFUhNTQUA9O/f3+B2yrWYmpqKFStW6OQvX75cZ9us3N3d0bVrVwDAsWPHcPbsWZ1tlGtauX4VR48exYMHD/L8PFvKwcEBs2bNkp9x06ZNw7179/KsPi/SNUlkNkta+mlpaSIgIEAAEB4eHuLRo0fZ+uWQ9Vf5//73P/n/rH8BAQHixIkTBsu6dOmSKFOmjMH9AYj69euL+/fv693fnAGrBw8eFOHh4UaPAQPRo7i4ONGpUyej+3l6eoqVK1fqPfa2bdvMGlCmb3915NmcyIs5XnrpJQGk9x1WzJ49Wx4nJibGZBnKtsWKFbPo2Mp+uRl5nz59uixjwYIFRrdVBvGGhobqzS9XrpwAIF566SWxceNGsXXrVtl9ISgoSCQkJFhVR1uxJvJuLAKaW+fZHH/88Ycs991339XJ37x5s8lorKJly5YCSO9zrW+cghK9rFevnli1apXYuXOneO+994S9vb1wd3fXGw3OLUePHs30uWgL6veNJdeZpZH33r17y+1v3rxpcLsbN27I7fr06aOTHxISIgCIUqVKGT3e/PnzZTkzZszQyV+8eLEAIPz8/MTPP/8s9u7dK2bNmiUHRk6ZMsXkc8pJlkbeFa+//rrcb968eTr55nyv2CLy/qJck0SWsCjyfuLECdy9excA0KBBA/kr1xamTZuGSZMmoVGjRpg/fz6io6OxadMm9OnTBwBw9+5dDBgwQO++cXFxaNq0KU6ePAkA6NixI1asWIHo6GgsXrwYjRo1ApAe7Wzfvr2M2ljixIkTaNCgAS5evAgA6NSpExYuXIj9+/djz549mD17Nnr16pUpsqdITU1Fhw4dsGzZMtjZ2aFHjx5YvHgxoqOjsXv3bvz0008IDQ1FXFwcunTpgpiYmEz7JyYmonv37nj8+DG8vLwwZswYrF27FjExMdizZw8WLlyIkSNHIiQkxOLnZY179+5h7dq1AICePXvK9M6dO8toTX6Nvn/44YcoWrQonJ2d4evriypVqmDUqFE4c+aM0f2U9xYAlC5d2ui2Sv7Vq1flXSq1P/74A25ublixYgVatGiBRo0aYebMmXB2dsb06dPh4uJixTPLfd999528y5SXkVhTHj58iIMHD+Kdd97B8OHDAQDOzs4YOnSozrbWnOeUlBS9Edkff/wR/v7+2LlzJ9q3b4969erhm2++gRACkydPRqFChbLztLJFHSVu3759ntXDGso5KlCggNFIaZEiReR3lPq8AunfGcrdXHPPs75yAKBLly7o2LEjHjx4gBEjRqBWrVro168frl27hmbNmul9n2lB8+bN5ePt27dnu7wpU6YgPDwcLi4uKFCgAMqVK4ehQ4eanCL3RbkmiSxiSUt/3rx58hfwhx9+mO1fDlmnkRo8eLBIS0vT2W7QoEFymwMHDujkv/vuuzJ/7NixOvlpaWmiZ8+ecpupU6fqbGMq8l6lShUBpA/INBZ5vXfvnoiPj8+U9u233woAwsnJSaxZs0bvfg8ePJAR2ayRMHXkwVBkXoj0AVj67obYOvL+008/yfKyzkbQo0cPAUAEBgaaHEColJGbkXdDf/b29mLcuHF6339CCNGtWze57d27d40eb/jw4XLbU6dO6d3mwIEDom3btsLT01O4u7uL5s2bi927d5v1fHKasdlmDh48KFauXCkGDBggZ+moV6+e0bsFuXWeDT2HrH9ubm56BzkKITLd/TM1zeA333wjtzU0u9D58+dF165dhY+Pj3B1dRV16tQRq1evtvj52NrgwYNl3Tds2GCTMnMr8q7MMlOuXDmT2yqfqYULF86UfvLkSXnM4cOHGy3j7t27ctvu3bvr3SY5OVlMmDBBRERECCcnJ1GsWDExduzYPL+LJoT1kfdz587J/Zo2baqTb2nk3djfkCFDDL5WL8o1SWQJRwva+Zn6vdn6F2qRIkUwZcoUvX3O3333Xfz5558A0iMAVapUkXmJiYkyr2zZsnoX2bGzs8PUqVOxbt06uRDJsGHDzK7b+vXrcfDgQQDAm2++ie7duxvcVukDrEhOTsZ3330HABgxYgTatGmjdz9fX1988803aNu2LXbs2IFz584hMjISAHDr1i25XcOGDQ0e29HR0aZ3QwxRouo1a9ZEiRIlMuX16tULCxYswJ07d7Bu3bp8E9UrUqQIOnfujPr16yMiIgKOjo64cuUKVq5cKRfu+fTTT5GUlISJEyfq7P/kyRP52FTfYPXdF0MLnlSpUgWrV6+28tnknlatWhnMCwoKwnvvvYehQ4dq5m5Bt27dMGnSJBQrVkxvvq3Pc0REBBYuXGhFTXNWTn6W5zTlHJnTR185R1nPj63Ps6OjIz766CN89NFHJuukFervsocPH1pdjo+PDzp16oTGjRujRIkScHV1xc2bN7FhwwZMnz4dcXFx+P333/HkyRPMmzdPZ/8X5ZoksoRFjXf1RaSve0h2vPLKKwYbAKVKlYKnpyfi4uJw4cKFTHkxMTGIjY0FkD7oyMHBQW8Z3t7e6Nq1K3799VecOHECN2/eRJEiRcyqm7qRNWrUKLP2Uezbt08ORFUGPhmibpjv3r1bNt7V9Zw5cybefvtti+rQuHFjo4NoLXHixAnZrUffAOSWLVsiMDAQd+7cwZw5c4w23m1VJ1Nq1KiBy5cvw8nJKVN61apV0bFjRwwZMgQtW7bEo0eP8NVXX6Fr166oXLlypm3VgxudnZ2NHk/9Pn727Fn2n0A+dePGDcycORNhYWHo2LGjwe1y6zyrffHFF3j33XcBAI8fP8aRI0cwbdo0LFy4ENevX8eMGTN0fngCL855zonP8lmzZmHWrFk2KcsY5RyZOj9AxjnKen5elPOcHeqGsvr9ojDneyUoKAjXr1/XGeBfpUoVtG3bFsOHD0fz5s1x5coVzJ8/H926ddPpgsdzRaTLoj7vXl5e8rG+vrzZYaovm6+vLwDdDxH1ct21atUyWoY635JlvpWoe2hoqMGInSHR0dHycZ06dYwuD63+sFRH25VoMQCMHDkSNWvWxJdffoldu3YhKSnJovpk1+zZswGkR5r03YFwdHREt27dAKTPCvHo0aNcrZ8+Hh4eOg13tZo1a+KXX34BkN7QVB6rubq6ysemXvPExET52M3NzdLq5isXL16ESJ9SFkIIpKWl4f79+1i7di0aNWqEI0eOoHPnzvj555/zuqqZBAcHo3z58ihfvjzq1q2LoUOHYt++fRgyZAh27NiBWrVq4fDhwzr7vSjnOSc/y3Oaco7M+exTzlHW8/OinOfsUH/XWntH19nZ2eDMXABQokSJTNH2KVOm6GzDc0Wky6LGe8GCBeXj27dv27Qixi5wIH2qSQA6g02V6QoB07d/1YOb1PuZotxiNjdSr3bnzh2L9wGQaSorJycnrFy5EmXKlAEA7N+/Hx9++CHq1asHHx8ftGnTBvPnz7dqIK4l0tLS5Adty5YtERAQoHc7JSKfkJCARYsW5WidbKVbt24oUKAAAN0p34DMjR1Dt2MV6saQudPvaYWdnR38/PzQunVrbN68GQ0aNIAQAqNGjcLp06fzunpGOTg4YPLkyQgJCcHDhw/1dp17Uc5zTn6W5zTlHJk6P0DGOcp6fl6U85wd6q5Vfn5+OXac+vXro1y5cgD0T6HLc0Wky6LGe6VKleRjUyPE84KpOdqze/veVPn6qBvUUVFROHr0qFl/WRsWZcuWxdGjR7Fs2TIMGDAAxYsXB5B+a3DdunXo2bMnatWqZfWPBXNs3rwZ169fBwCsWbPG4B0E9R2O/DrrTFaOjo4oWbIkAMjnqKaeW9jUmgNXr14FkP5+MTQn8fPAwcEB77zzDoD02R20cK6dnZ3RunVrAOld027cuJEp35rzDCDXZnqylfz+WW6Mco7MWftDOUdZz8+Lcp6zQ7njDKR3Xc1JynoxCQkJuH//fqY8nisiXRY13suWLSsjNtu3b8+1BYGMUUcE1F1N9FFHmCyJJCjPOesXvTnUg36cnZ3lrXxTf8rCH2oODg7o2LEjpk+fjnPnzuHGjRuYPn06qlWrBiC9//+QIUMsrqO5lC4zlti5c6fOOIX8ytiPO/ViZKdOnTJajpIfEhJi87Eh+Y26u9vRo0fzsCbmU98xunz5cqY8a86zo6OjHJ+iFcr0uQA0MXBaTTlHjx49MvqZf/PmTfkdpdy1VHh6esrGnbnnWV85z7ONGzfKx/Xr18/RY9n6s1eL1ySRJSxqvNvZ2cmV6J4+fSpneclL5cuXl4/37t1rdNt9+/bp3c+UqlWrAgCuXLmi82VvinpmnA0bNli0rylFihTBgAEDsHv3blnHVatW5chAnbi4OCxbtgwA0KxZMyxYsMDon/LeEEJgzpw5Nq+PraWkpMi53oOCgnTy1V9e+rrVKG7duiXLqVevno1rmf+kpKTIx8nJyXlYE/Op76xkvbVeo0YNOSjO2HlOSkrCnj17dPbRivLly6N69eoA0gMxWdeWyM/MvRbVefquRaWc06dPG/0RYKqc59Hdu3cxf/58AOljhlq2bJmjx1NWr3ZxcdGZse1FuSaJLGLp3JLXrl0T7u7uAkhfZfXkyZNm7ZeamirmzJmTKc2S1deKFSumdz7ZhIQE4ePjI+f9TUlJ0bv/48ePRcGCBQUAUbZsWZ18Y/O8b9y4Uea9/fbbRuuZ1bNnz4Sfn5+cazi7q9IaMmrUKFnHGzdu2Lz8mTNnyvKXLFli1j7VqlUTQOZVWG1BqYctV96cM2eOLHfgwIF6t1FW8PXz8xNPnz7Vu82XX34pyzE0l3h+Z8m82zNmzMi0ToMt5cR5jouLE4GBgXK+d33nsU2bNgJIX6Xx6tWrestZsGCBrN/XX39ts/rlpn/++Uc+h4oVK4q4uDiz9nv48KFYsWKFzeph6TzvN2/elGsMGFvZt1WrVnINB30rsS5cuFAe19DKnU+fPhW+vr4Gvze0wNJ53lNTU0Xbtm3lPqNGjcrR+m3fvl0eq1mzZnq3eVGuSSJzWdx4FyLzF3ZgYKCIiooyuv3x48dF8+bNRaVKlTKl26LxLkTmRZo+/vhjnfy0tDTRp08fuY01izQpDVFTizTdv39fZ5GmiRMnyrLbtGlj9Evy8ePHOstpb9u2TZw9e9bgPomJiaJq1aoCgPD09NRZHMkWizQ1adJEABDu7u4GG65ZqRuyO3bs0MlX8nJy8Z4HDx6YXDBm79698gegnZ2dwYVApk+fbnRhl3Pnzglvb2/5g8XUIlX5lbmNqQcPHogSJUrIbZctW6Z3u9w4z3fv3jX5o/LZs2eia9eustxevXrp3U69KNpLL72kExC4e/euCA0NFQCEj4+PePDggdnPKb9Rn+tatWqJS5cuGd1+9erVonjx4nqDGLm1SJMQQvTu3Vvus3jxYp38RYsWmfzMS0pKEsWLFxcAhLe3tzh37pzONm+88YbZ31H5lSWN98uXL4sWLVrI7UuXLi1iY2P1bmvO98qyZcsMLnwnhBBnz56V1xIAsXTpUr3bvUjXJJE5LJrnXdG/f39cu3YNn3zyCe7cuYPGjRujZcuWePnll1GmTBn4+PjgwYMHOHPmDFavXo1169YhNTU10yApW/rkk0/wzz//4MKFC/j8889x7NgxDBgwAEFBQbh48SJ+/vlnREVFAUifrvH111+3+Bhz5sxBzZo1ERcXhx49emDx4sXo3r07IiIikJqainPnzmHjxo1YsmQJjh49irCwMLnvmDFjsHnzZmzevBlr165F2bJlMXToUNSpUwc+Pj548uQJTp8+jaioKCxfvhyurq4YMWKE3H/z5s34/PPP0aBBA7Rr1w4VK1ZEQEAAnj17hjNnzuC3336Tg84GDRoER0erTqtBV65cka9fmzZtTM4MpOjSpQs++OADAOkDV6255Xzo0CEcOnRIb96tW7d05pV+5ZVXMnWFePToEZo0aYKKFSuiY8eOqFatGooUKQIHBwedRZqA9AXBlO4EWfXt2xczZszAzp078csvv+DWrVsYPHgwfH19sW/fPnz++ed4/Pgx7O3tMWXKFJufh7xw5syZTDM8CCEQGxuLvXv3YsqUKbhy5QqA9C4IL7/8stXHye55jouLwyuvvILIyEh06dIFNWvWRHBwMFxcXHDv3j3s27cP06dPl+MvgoODMWnSJL3Ha9q0Kbp3746///4bK1asQIsWLTBy5EgEBQXh6NGj+OKLL+Tz/uqrr+Q0tlo0depUPHjwACtXrsTevXtRqlQpdO3aFa1atUJYWBjc3Nxw+/ZtHDhwAMuWLct295q4uDgsWbIkU9q5c+fk4yVLlmSaCady5co6ay4A6fP4r1u3Dnfv3kWPHj0QHR0t15RYtWqVXBgvICAAEyZM0FsXJycnTJ48GR06dMDjx49Rr149jB07FjVr1sTDhw8xbdo0LF26FED6+7t3797Zeu75QWxsbKZpkp89e4bY2FicOHECUVFRWLVqlewKV6pUKaxatUrOwmWNTp06ITIyEp07d0bNmjVRtGhRuLi44MaNG9iwYQP+/PNPOUNM165d0blzZ73lvEjXJJFZstPyX7p0qQgLC5O/iI39lStXTqxfvz7T/raKvCtllS5d2mgd6tWrJ+7fv693f1ORdyGEiI6OFiEhISafq77oUXx8fKbov7G/8PBwg3Uz9te5c2fx7NkznWNnN/I+YcIEub+xuw76VKxYUUZDsi5/rZRpLCJr7nM39Nqbuzy3g4ODGD9+vNEokRDpEZ4aNWoYLMfZ2Vn88ccfFr1G+Y06EmrOX5MmTQxeV0Lkr/MMQNSpU0ecP3/e6GsQHx+fqetA1j97e3sxbtw4C17V/Cs1NVV89tlnwsvLy6zXr127duL06dM65ZgTebfkPAEw+hrv2bNHFC5c2OC+hQsXFnv27DH5/P/44w/h7OxssJyaNWuKu3fvmvty5juWvube3t7inXfeMXmH1ZzvFXOPOWzYMJ3vh6xepGuSyJRshQY7d+6M9u3bY8mSJVi7di3279+PO3fu4MmTJ/D29kZYWBhq166NLl26oEmTJlZNtWiusLAwHD58GNOmTcPixYtx7NgxPH78GH5+fqhSpQp69uyJ1157Tc4Xb41q1arh9OnT+PPPP7F8+XIcO3YMDx8+hL+/P4KDg1G/fn107949U9Rd4ebmhtmzZ+Ott97C9OnTsW3bNly7dg1Pnz6Fp6cnwsLCUK1aNbRp00ZnVdIxY8agVq1a2Lhxo5zeTpkSsnDhwqhVqxb69OmDtm3bWv3cjFEGnLq4uKBdu3YW7dulSxccOXIEsbGxWLFiBV599dWcqKJBQUFBWLx4MXbv3o19+/bh+vXruHfvHhISElCgQAGUKlUKjRs3xqBBg/Set6wKFiyIXbt2Ydq0aZg/fz5OnjyJp0+fIigoCM2aNcPbb78t5yx+Xnl6eqJIkSKoUaMGevTogXbt2uXotW2O0NBQ7N27F1u2bMHWrVtx8eJF3L59G0+ePIGnpydCQ0NRvXp1vPrqq2jVqpXJ+rq5uWH16tWYP38+Zs2ahcOHDyM2NhaFChVCgwYNMGLECNSpUyeXnl3Osre3x8cff4xhw4ZhwYIF2LBhA44dO4Z79+4hKSkJvr6+KF26NOrXr4+ePXvmmxlXatWqhaNHj+Knn37C8uXLcenSJQBAeHg4Xn75ZYwcOVJn8KM+gwcPRp06dTB58mRs3rwZN27cgIeHB8qUKYOePXvmyN3M/MDOzg5eXl7w9vZGcHAwqlatirp166JTp042myVrxYoV2L17N/bu3YvLly/j3r17ePr0Kby9vREREYEGDRpgwIABZk0g8SJdk0Sm2AmRB2uXExERERGRxawPQxMRERERUa5i452IiIiISCPYeCciIiIi0gg23omIiIiINIKNdyIiIiIijWDjnYiIiIhII9h4JyIiIiLSCDbeiYiIiIg0go13IiIiIiKNYOOdiIiIiEgj2HgnIiIiItIINt6JiIiIiDSCjXciIiIiIo1g452IiIiISCPYeCciIiIi0gg23omIiIiINIKNdyIiIiIijWDjnYiIiIhII9h4JyIiIiLSCDbeiYiIiIg0go13IiIiIiKNYOOdiIiIiEgj2HgnIiIiItIINt6JiIiIiDSCjXciIiIiIo1g452IiIiISCPYeCciIiIi0gg23omIiIiINIKNdyIiIiIijWDjnYiIiIhII9h4JyIiIiLSCDbeiYiIiIg0go13IiIiIiKNYOOdiIiIiEgj2HgnIiIiItIINt6JiIiIiDSCjXciIiIiIo1g452IiIiISCPYeCciIiIi0gg23omIiIiINIKNdyIiIiIijWDjnYiIiIhII9h4JyIiIiLSCDbeiYiIiIg0go13IiIiIiKNYOOdiIiIiEgjHPO6AkQvuidPngAAVq5cCQC4du2azPPy8gIAlCtXTqaVKFECAFCkSJHcqiIRERHlE4y8ExERERFphJ0QQuR1JYheNElJSfLxvn37AAADBgwAAJw9e1bmOTqm3xzr2rWrTHvttdcAAG3btpVpdnZ2OVdZAMrHhLHj6Psoyel6ERERvWgYeSciIiIi0gg23omIiIiINIIDVolyWEpKinx88+ZNAMDMmTNl2pYtWwAAb731FgCgcOHCMu/27dsAgAMHDsi006dPA8jcbcZS5nSDUTNnO3aRISIiynmMvBMRERERaQQj70Q57PHjx/Lx6tWrAQD79++XaR4eHgCAzp07AwCCgoJkXnx8PADA29tbprm5ueVcZYmIiChfY+SdiIiIiEgj2HgnIiIiItIIzvNOlA3GLh9lAOeJEydkWr9+/QAA1atXl2kjR44EAISFhQEAnJ2ddcpKS0vTKTenBohyvnYiIqL8i5F3IiIiIiKN4IBVomwwFpF+8OABAODixYsyLTAwEABQvnx5mVayZEmTx7G3z73f2YyyExER5V+MvBMRERERaQQj70Q55Nq1awCA69evy7QSJUoAACIiIvKkTkRERKRtjLwTEREREWkEG+9ERERERBrBbjNEOURZWVW9wqqfnx+AjFVVc4p6ukdlAKo67cmTJwAAJycnAFy1lYiISCsYeSciIiIi0ghG3olySFJSEgAgLi5Opj19+hSA8akfo6Oj5eNly5YBALp37y7TKlSoYPLY6ukeExISAACnTp2SaXPnzgWQsViUunx9lKi9vmkkuagTERFR7mHknYiIiIhII9h4JyIiIiLSCHabIcohyuBUHx8fmXb69GkAQExMjEwrUqQIAMDRMf1y3LZtm8zbvn07AKBly5ZW1yMtLQ0AcPv2bZm2YcMGAMC9e/cA6F/x1dnZWaZl7RpjqluMsW42REREZD1G3omIiIiINMJO6BttRkQ2o46yjxgxAgBw5MgRmaZE3JV/e/ToIfPeffddAEBwcLBMU6Z3tNStW7fk47/++gsAsHv3bgCZp4qcMGECgMyrwJoTSefAVSIiopzHyDsRERERkUaw8U5EREREpBEcsEqUwyIjI+Xj/v37A8gYuAoA8fHxADLmflcPTg0LC7NZPQICAuTjTp06AQBiY2MBAP/995/MW7NmDQCgTZs2Mq148eI2qwcRERFZj5F3IiIiIiKN4IBVohyihekSN2/eDACYPXu2TFOi8S1atJBpr7/+OgDAxcXFYFnqjxLlsbGVZImIiMhy/GYlIiIiItIIRt6JXmDJyckAgMOHD8u0Dz74AADg7u4u04YNGwYAqFevHgDAy8srt6pIREREKoy8ExERERFpBBvvREREREQawW4zRM8h9WVtzoDZlJQU+fiXX34BAOzcuVOmOTs7A9DtPkNERES5i5F3IiIiIiKN4CJNRM8hfTfUjEXgHRwc5OOhQ4fq5H///fcAgLJlywIAChUqJPMiIiIA6J8W0tJ6EBERkXGMvBMRERERaQQb70REREREGsFuM0TPIXUXFqXrirFBrOr/K6uotmzZUqYlJCQAADZu3AgAuHXrlsybOHEiAMDT01OnHuwiQ0REZFuMvBMRERERaQSniiR6zlk7aDQ1NVU+Pn/+PABg3LhxAID79+/LvH79+gEAmjVrJtPUA1qJiIjIdhh5JyIiIiLSCEbeiTTK0oWYskOJwq9fvx4AsGLFCpl36NAhAMCYMWNkWufOnQ2WpdSb/eGJiIgsx8g7EREREZFGsPFORERERKQRz+VUkQkPM6axi020QYEOHgAA/wAvmeRkZVHJT+4CAO4/zRgMaMvyM0uf3u/hrVgAQOL/H0d9LNsch/JCbnY7UVZgbdy4MQAgPj5e5p06dQoAsGHDBpnm6uoKAGjbtm0u1ZCIiOjFwMg7EREREZFGPJeR992fFZGPm/5ogwLrTQMAnNsxSCYVN2O3hIvr5OPP+vcBAHy/NT3yru+GgEtAI/n4nb9mAgA+aR0OAHA1s6oJJ+bJxwNfGgYA2IggAIBfwg2Zd8m1AwBg9ppZMq1bScbhKYO+AbHu7u4AgDp16si8c+fOAQB27twp0/755x8AQOnSpWVaREREprKIiIjIcoy8ExERERFpBBvvREREREQa8Zx1m0kGAKQkqZI6/g0AuLWsm0zK6bUfk8/8CQBoW3GwTDv3cnrXm6gr6fWoFqIanPr/3Vn2zB0l07q2KZOeNu0IAGD9oJIZ2+s76OMtAIAPWk+XSVX+vQQAmFfFT6mZzLuzMX1O7urNJ8q08PPpq2fWZO8ZyiItLQ1ARpeX4OBgmffmm28CAK5fvy7T9uzZAwBYs2aNTGvdujUAIDIyMmcrS0RE9Bxj5J2IiIiISCOes8j7FQDA5cOqpBqBAHI+2g5kRB0XjUyPuG+p/qtMOz03fbCr3jGhrukDSmsPmiuTNqU0AQCUGvE/AMA/bZbJvG7B0BWTvuLljx0+kElJMuKuyDh4YIsRAIBPQvvKtCNX/j/ybs5oXHrumTuw1MMjfQrSHj16yDRPT08AwIIFC2SaEr0fNCj9WlAGvxIREZH5GHknIiIiItKI5yzynodOLJUPJ611AQAMXPOaTDNvFsaMjUq+9lF6GSPTF7mZsva8zOs2SE9o3D89HF/q4h2ZpDzSF6hH8mMAwL17zjKpkIM5daQXkTlR+Lp168rHjo7pHy2bNm2SaUo/+OLF09+/DRs2lHleXhljQIiIiMgwRt6JiIiIiDSCjXciIiIiIo14zrrNPAUAxN7LSKlXLjRXjnxp73L5+Ci6AgAm1vO2vkDvqgCAFm3S/zt9dbTMuv3/3WYyDcKtmD5Y8AuvKjKp0RvpXR2Wjmmavn3CKZm3aFz6iq9T28yWaYfCrK8u5S31aqhA3q9iWqpUKQDA559/LtOmTZuWKe23336TeZUrV869yhEREWkYI+9ERERERBrxnEXe7wMArp82sVnCQwDArdjE/09wkVk+hX0BAK4WHvnKyV0Z/yk1AQAQmo3AuxJXD68ckP7fL2Nkzml0U22hSB+W2mXuMZlSbNGPAIBPu30GADiBsjKvz/vrAQCHOpWRaVknliTtyOtIe1YFChQAANSvX1+mHT9+HEDGwk3z58+XeU+fpt81q1evXm5VkXKBckcov70/iYi0jJF3IiIiIiKNYOOdiIiIiEgjnrNuM7o8zm0EALzVuI5M+2PrXQBAor4dvMoBAPp9P0cmfTcofRCo/m4l6fOlP76lKq2gT/qxralwFv7BJdMfJD6VaYnJ//9A39zxToHyYfWeEwEA//z/v0S5TVlpFQDatm2bKW/hwoXysTIvfIUKFWSat3e2+p1RPqIeUM0uNERE2cPIOxERERGRRjxfkffb6WuKXlIlbZg0EgBw973lMu3QssYAgNK+6cNSk59clXkxC98FAHQdXFWmVT7+X/p+PzSRaRlR+PQo/q0L2aq5GQ7LR5ev/P8DPQutEuWkrFNSAuZHUsuUSR8c7eCQvpSvMoBV/fiXX36RaQMHDgQABAZm3E2ivGXp+WeUnYjI9hh5JyIiIiLSCDbeiYiIiIg04vnqNvMs/Zau2/+v7ggAXd79BwAwd1DGHOdZ53B38gqRj2sPmgsA2JRyXaaVGvZ2ehmDj8i0tzKKIyILFC+e3t+ra9euMm3p0qUAgHXr1sm0smXTL7JmzZoByDz4VR99XToU7L5BRETPC0beiYiIiIg04vmKvId1BwDMP9U9G4Wkz79Y8rX3ZUrvYR0AAFPXqCPvFbNxDGsEyEdexgOQRDnGFhFsZcBq69atZdrdu+kDvw8fzhiYvXFj+jSvrq7p98patmxptB6MvOc8vo5ERHmPkXciIiIiIo14viLvtuRdUj6sWzP93znX7+vZML3/bvEaqqT9tqtGaoqyIlOYTAssZLvyifKDVq1aAciIsgPAt99+CwB48OABAKB06dIyLzQ0FEDmSLC9fXosQonA58cocX6uGxERaQMj70REREREGsHGOxERERGRRrDbjEEO8pGjk+mt/YMzpqfEj+mrRV5R5Vu+GGp6d5nLR/el/7dmf5kTbHFZ1nnzzTfl4z179gAAIiMjZZryuNT/T80ZFhamk1e4cOGcriY9B5RVVJs3by7TtmzZAgC4ePEiAOCvv/6Sed26dQMAlCyZ0b1NwS4pRET0PGPknYiIiIhII56zyHt6tPrJwwSZ4urrBUCZANISGYs0nYlO/zeghYfBrctUayMfu2AtACDmyA8yrYnFM0ueBAAc3vz/Zb6UsSqUbqwxZxw7dkw+jo6OzvSvudQL6yjReH3R+2LFiunkKQMUixYtatExn0fnzp2Tj5cvXw4AGDp0qEwztYCRVnh7e8vHY8aMAQDMmDEDAPDrr7/KvCJFigDIeN8AgLOzM4DcjbxbOj2l1u8K6Hu+ynMylkdERLbDyDsRERERkUaw8U5EREREpBF2wth9X43Z92n6oLdaX74k09bc+RMA0MZb7y4GJe8eKx8H102fb7rnf09k2g9NsnTEebxWPhwU2Da9Pl8fl2lH3ioLSyjHD677BwDg9V0Z3Xgm1LG8E1B2xcbGAsjcfUN5rPx7+fJlmXfq1Cmd7W/dumXVsdVzfyvdapTBsepuNsWLF9dJy7q9o6M2e4q999578rEy/3n58uVl2rJlywBkfu65Tf1RYsvuElFRUQCAmTNnyrQnT9KvxYYNG8q0kSNHWlSutXOu26J7iFa7mGi13kREzxNG3omIiIiINOK5irzjxGQAQMVyb2ekjd0NAIj6vLZM8jNWxoODAICvXqoqk8Y7pw+YO/5fxnSNulM/JstHZ35rAgAoNdJZpk07sh4AMKikkah5wgn5cErzcgCA98w6tjbExcUByByNv3TpUqa08+fPy7yskX319tbSF5XXF73XN+2l8q/6TkBuUV47AOjfP/29sGTJEpmmDFhdsGABAKB9+/a5WDtdyp2aw4cPy7RChdKXBo6IiAAAODllXAvGorePHj0CAOzatUumTZ6cfq2r76SMGzcOAFChQgUAgIuLi05Zto6aWxt1VspQl6WsEJufMfJORJT38v+3BRERERERAXjeIu//H/0+M7ODTKk+IAoA4Nqou0z76PXXAABlCqb//97J+TJvysezAQAHAzP6GK/c9QUAoEWgmX3Nk88AABb2ylhwpvu/6VH49u+8DwAY2Dg0Y/sr6XWc/tX3Mmkj3gIArN33NQCgidHbBS+OlJQUAPqj8vqi91kj++rtlbIspZ66UpnOUh2pz9r3Xl+03xZTOyp93wHggw8+AJDxnMaOzRizoUSks9Pf39L+4WvXpo8Bee2112Ra9+7p1+D48eMBAAULFpR5Dg7pi6KlpaXJtKyR6OTkjLtbSuR927ZtMk0pb+DAgQCAunXrmlXX3KR+fkDm1/N5jGBbOpUmERGZxsg7EREREZFGsPFORERERKQRz1m3GV0JF6MAAHPnz5Jpi+fsAQAoExsWKNtM5r3W+w0AQI/25WSaub1l9BxdProYNRcAMG3yNADAPyceZWxWLH0wbe9X+2XUo1djAEB47o+NfGEoXWjUg2DNGTir7nqTkJBxji1RuHBh+TjrtJelSpWSeVmnulSnqbudbNq0CQDQo0cPAMC9e/dkXvPm6d23lMGsWfe1RmJionx88eJFnfKVx2fPnpVpAwYMAABMmDABABAYGCjzlG4z5g6IVM7ZihUrZNrcuenXWJs26asdK68FkNG9KadZ+nHKriNERGQpRt6JiIiIiDTiuY+8E+UkZeEpdTReWaBKid7ri+yrt1emVbSUj4+PfJx1GssdO3bobK+O3i9evBgAUL16dauOHR8fLx+fOJE+xemPP/4o0/755x8AwLNnz2TaO++8AyBjwamAgACZp0TeLaUcGwC++OKLTMesVauWzFOi/upj5gRTH6eMtBMRUXYx8k5EREREpBFsvBMRERERaQS7zRDlMWVwqbEVZU+fPi3T9G2nHqBqDqV7zZQpUwAAgwYNsmh/9ceGMre8Oi0qKgoA8L///U+mKQNJ33zzTQD6B6yae0yl+4l67nfltfr4448BZH7NJk2aBACoU6eOTPPy8jJ4DH3z2uvr8pL145PdYoiIKKcx8k5EREREpBHWL7lIRDahTNuo/Fu7dm2z9lOvEPv3338DyIg6qwfJKpRoO5Cx2mnlypUtri+QOcLs5KQ7l2pERAQAwM3NTWcfc2/2mbOd+tglSpQAAHTu3BkAsG7dOpk3ffp0AEBcXJxMU7ZTyxo5NxVJf14i7fruahARUf7EyDsRERERkUYw8k6kAdeuXZOP//zzTwAZ0eSs+UDG1JEAMGTIEACZ+7Wrp5nMLn39wx8/fgwg890BS4fXZC3X3IiwMv3l9evXZdr3338PAPD19ZVpFStWBJB5Ck1HR0eLjkVERJTbGHknIiIiItIINt6JiIiIiDSC3WaI8rHx48cDyFg9FMjoiqJ08QCA9u3bAwCGDx8OAGjdunUu1TDnWNt1RRmoumbNGplWv359ABmr3gLAJ598AgD45ptvZFpwcDAA/V2BFLYc3JlfBoqqj21s+kt9XZ+MDURm9yOi7OO1RVkx8k5EREREpBGMvBPlY7dv3waQMY0kAPTr1w9ARpQdAIoWLZor9cnNNd0sjSwlJiYCAA4fPgwg47UDgKFDhwIAdu/eLdN27doFAFi5cqVMU+5YqAexKvQ9d2Ovh7H6a2FtPEb2iPIHS6fZpecfI+9ERERERBrBxjsRERERkUaw2wxRPvbrr79m+jev5beBUwkJCfLx2bNnAQD37t0DAPj7+8u8Vq1aAQCCgoJkWmxsLIDM3WaU56d0s1E/N33PMy0tLdN++rYxdzBofpEf60Skdbb47OS1SQpG3omIiIiINIKRdyIyydrVTpXItLoMW1IPSlWmhnR3dwcAlC1bVubZ26fHKerUqaNTN2XKSADYsmULACA8PBxAxhSTAODp6alzfGOvh7lpWmKs/lp/bkS2ov6sM3ZXTv35qHxGEZmD7xYiIiIiIo1g452IiIiISCPYbYaIzJbfukbcvHlTPt60aRMAoEyZMgCAxo0byzx9t6SrVq0KAGjTpo1M27t3LwBg/vz5AAAfHx+ZV7t2bZ0y8tvrQUTalLV7TX5ZfZnyJ0beiYiIiIg0gpF3IjLJ2siPOuKdE9Ej9YDVI0eOAAAaNmwIIHOk3MXFRWdfV1dXAMCIESNkmjKAbOrUqQCAcuXKyTxlldvIyEib1J2Ini/GpoM09/NPKSO/TctL+Qsj70REREREGsHIOxGZzdi0Z2q+vr4AAEfHjI8YZQrHAgUKAAAcHBwMlm/qGMriTE+ePJFpbm5uAIDAwEAAgIeHh9E6KuUrEXgAaN26NQAgKSkJALB+/XqZpyz+9Nlnn+kc80XBaCCRYdlZdMnYAm68xigrRt6JiIiIiDSCjXciIiIiIo1gtxkiMpu+acyULianT5+WaatXrwYAXLt2Tabt2bMHALBs2TIAmVc7LVq0KAD9A0sV6mM+fPgQABAXFyfTlGkdvb29zX06OpQBqk5OTgCAAwcOyLyjR48CAFatWiXTmjRpAiBjMCsRvbjM7VZoDLvIkDkYeSciIiIi0ghG3okoW5QouHog59KlS3W2u3r1KgBg//79AIDPP/9c5rVt2xZARgTelEePHgEA4uPjZZoScXd2dja77lkpg2iLFy8OABg4cKDMU+4YfPXVVzJNGRSr1F9rLB2Aam1UkANd6UWgb5pHc6eK5PVAlmDknYiIiIhII9h4JyIiIiLSCHabISKLqW/xKt1VBg0aJNOUVU69vLxkmjI3uzLfe40aNWSeMtjUXI8fPwYAJCYmyrSAgAAApud3N4fS9UZ5HgAQGxsLADh//rxMUwavKq9HmzZtdMoyd+76vOhaklu36tklgJ4X+q5ThbnXN68Hyi5G3omIiIiINIKRdyLKFiWSrqxOmvWxraijVcoUkerIu7+/PwDbRN4V6jsHjRo1AgDcvHlTpkVFRQEA/v33XwBA+fLlZV5ISIhOvY1hNI4o/zM2HaS51/D9+/cBAJcuXZJpz549A5Ax7azy+QEAV65c0Sm/RIkSAPSvVE3PP0beiYiIiIg0gpF3ItIcJfKu9KMHMvreu7m55cgxlWkshw0bJtOuX78OADh8+DCAjOkkAaB9+/YAgIiIiBypDxHlPnv77Mc8N27cCAD49NNPZdqpU6cAAB07dgQAvPvuuzJPmZ5W/dk2bdo0AECBAgWyXR/SHkbeiYiIiIg0go13IiIiIiKNYLcZIjPdunULQEYXCQBIS0sDYJtbqaSfMiArNTVVpikDuBwdMz7ClMfHjx8HkLEKKwCkpKQAyN6Kosr0keoylMG6Sh0XLFgg827fvg0AqF+/vs5zUcpV3j/W0DdwTnlsbDo7IjJPcnIyACA4OFimVa5cGYD5g1OvXbsGAJgyZYpMU1alfvXVV3W2Vz7HNmzYINOePn0KAAgLC5NpTk5OZh2fnk9scRARERERaQQj70RmunPnDgBg06ZNMk2JzDAKkruUKLi+adKUgV/Hjh3L9nFMRdeU8x4YGAgAOHTokMxTFnVS6gMAoaGhAABXV1cAGXcEbF1HdUSfU1ASWSc+Ph4AUL16dZlWsWJFAManaFQWkQOAvXv3AgBmzJgh05TB7P/73/9kmjLF7YEDBwAAkyZNknlKxL1mzZoyTfkMoRcTI+9ERERERBrBxjsRERERkUaw2wyRDbzIXRMsHSRpi0GVSnclY91OzD0nlg5i1bdvQEAAgIxVWAEgJiYGALB7926ZpqyeqAx0VQ90tuUgUw6gJso+5XNA36BwY9auXSsfKwNP1fO2N27cGID+1aCVazc8PFwnTb09B6W/2PgJT0RERESkEYy8E5mpUKFCAICWLVvKNGX6QmODl8j2shMtt2VZWbdT7ggAGYNTo6OjZdrFixcz5akj9UlJSQD0300wVh9bvhZElEG5noOCgmSasQHiyiD1q1evyjzl+mzRooVMq1ChgsljKoNlAaBUqVIAMk8VyWv8xcbIOxERERGRRjDyTmQmJfKujqAQGVK8eHEAwKpVq2Ta/PnzAWRE6mrUqCHzXFxccrF2RGQryiJKyvS06gXllKi58nkAGJ9a+O7duwCAmzdvyrQmTZoAACIjI2UaI+8vNkbeiYiIiIg0go13IiIiIiKNYLcZIqIcULJkSQBAq1atZNrRo0cBAAcPHgQA/PjjjzJv2LBhAABvb+9cqiER2YKyoqqyOqq6C1yZMmUAmF6F+/jx45nKUK/S6u/vD4CfDZSBkXciIiIiIo1g5J2IngvKlGy2HMhlahrGrPn6jl2iRAn5+NVXXwUALF68GACwfv16madMH9egQQOZ5uXlZU21iSgXKdM73rt3DwBQpEgRmadMM6kszKZ2+PBh+XjGjBkAMqaTLV26tMwLDg62cY1J6xh5JyIiIiLSCDbeiYiIiIg0gt1miOi5kBPzHqu7xegr35xjOjs7y8dt27YFANy5cwcAMH36dJm3evVqnTLbtGljUR0tqRfRi8Kc7m3Zoayw7eHhASBjtWQgY952ZS54IGMO982bN8u0efPmAQD8/PwAAK1bt5Z56s8QIoCRdyIiIiIizWDknYjIAHWEzpbROiWirp5S7qeffgIAPHv2TKYpg12LFSsm07JOOccoO5Fxxq4RW9y5UqZwrFSpEgBg1qxZMu+rr74CAPj6+sq0OnXqAADKlSsn0zp06AAgY6rICRMmyLzLly8DyBjwDgBVq1YFANjbMwb7IuJZJyIiIiLSCDbeiYiIiIg0gt1miIgMyKkuKYUKFQIAtGjRQqZt2bIFAHD9+nWZtnDhQgBA165dZZp63ngiynvKHO5KNxh1d5gLFy4AANLS0mSa0oVGWdsBACpWrAgACA8PBwBs3bpV5inrPejr4kMvJkbeiYiIiIg0wk7wpxwRUZ5ISUmRjy9dugQAmDZtmkxTIu/qwWtdunQBALi5ueVCDYnIFKUZpY6uG9oGyLijZ+5AWn3bc6D6i42RdyIiIiIijWCfdyKiPOLomPERHBkZCQBo1qyZTFMWc/nnn39k2sOHDwEAb775Zm5UkYhMUKLgymJNRDmNkXciIiIiIo1g452IiIiISCPYbYaIKB+pWbOmfJycnAwA+O6772Taxo0bAQB169YFAJQvX17mqVdsJSLt0jdglUjByDsRERERkUZwqkgionwqPj4eAPDLL7/ItJ07dwLIWLhlxIgRMq9WrVomy1RPZ2fOlHVEZBl9zSpeY2RLjLwTEREREWkEG+9ERERERBrBAatERPmUu7s7AOCVV16Rafb26TGX+fPnAwA2bdok8/z8/AAAJUqUMFgmb98T5Q/Z6V6j7Mvr+cXEyDsRERERkUYw8k5ElM+Fh4fLxy1atAAA7Nu3DwBw4MABmefq6goAGDBggEzz9fXNVBYjdUT5FyPqZA5G3omIiIiINIJTRRIRaUhKSgoA4MKFCwCA//3vfzLv6tWrAIAvv/xSpinTR3p7e+dWFYkohzFC/2Jj5J2IiIiISCPYeCciIiIi0gh2myEi0rAZM2bIx+vXrweQ+VZ6z549AQAdOnTI3YqBK00S5RR2m3mxMfJORERERKQRnCqSiEjDunXrJh97eHgAAD744AOZFhgYCAAoU6YMAKBYsWIyz8nJyaJjWRpJZ3SQKGfwmnqxMfJORERERKQRbLwTEREREWkEB6wSET0nLl++DABYtGiRTNu6dSsAoECBAgCA7777TuYVLlw4R+vDAatERLbHyDsRERERkUZwwCoRkQbpGwxatGhRAEDHjh1l2pUrVwAA+/fvBwCsXLlS5rVq1QoAEBoamqN1JSIi22HknYiIiIhIIxh5JyLSMHW/cgcHBwBAiRIlZFrbtm0BAPHx8QAy94dPS0sDAAwZMsTiYyk4VSQRUe5i5J2IiIiISCPYeCciIiIi0gh2myEi0iBzu6I0adIEAODm5gYA+PTTT2VeVFQUACAkJESmNW7cGADg7u5u9TEV9vaMDxER2Ro/WYmIiIiINIKLNBERvQCePn0KAJg6dapM27NnD4CMqDwAvPPOOwCAqlWr5mLtiIjIXIy8ExERERFpBBvvREREREQawQGrREQvAA8PDwDA22+/LdMSEhIAANOmTZNp1apVAwD4+PgAACIiIqw+pqXzwhMRkWmMvBMRERERaQQj70RE+YCx1UhtGcF2dnaWj1966SWd/GXLlgEA7t69CwAYN26czHNxcTFYN331YZSdiMj2GHknIiIiItIIRt6JiPIRdZQ9pyPXlSpVApB5qsgdO3YAAGJiYgAAa9askXkNGzYEAPj7++dovYiIyDBG3omIiIiINIKNdyIiIiIijeAKq0RELzhlykgAiIqKAgAsXrwYQEb3GQD4+uuvAQAtW7bMvcoREVEmjLwTEREREWkEB6wSEb0AjE3p6OrqKh83aNAAAHD79m0AwPnz52XeypUrdfbVF4XPeiwu1kREZDuMvBMRERERaQQb70REREREGsFuM0REzzFL5yTw8PAAkNF95s6dOzJvw4YNAIDk5GSZVr58eQBAUFCQTDPWJcZY9x0iIjKNkXciIiIiIo3gVJFERC8o5eNf/TVgb585pnP//n35+IMPPgAAnDp1SqZ16NABANCpUyeZFhkZafvKEhERAEbeiYiIiIg0g413IiIiIiKN4IBVohxiaY80DuCjvKJ+72UdUOrv7y/zunXrBgD4999/ZdqyZcsAAH5+fjKtSJEiADIGvxIRke0w8k5EREREpBGMvBPlMHMj8Iy8U26z9D3XrFkzAEBaWppM27ZtGwBg165dMi04OBgA0KhRIwCAm5tbtupJREQZGHknIiIiItIIThVJlMPUl5i+BWoYcaf8RImqK+9Lfe/Phw8fyse7d+8GAPz4448yLTExEQAwffp0AJw6kojIlhh5JyIiIiLSCDbeiYiIiIg0gt1miHJR1i4JWR8T5bWsXwmm3p9Pnz4FAHzzzTcybfv27QCA2rVrAwC6dOki86pWrWqTehIRvagYeSciIiIi0ghOFUlERJKxSLty58jePiPuoyzE1LNnT5nm5eUFAPjtt98AAK6urjKvXLlyAAAXFxcb1ZiI6MXCyDsRERERkUaw8U5EREREpBEcsEqUi8wZsKpvXnhT1N0Y1Mcxxdhc3sbqYYsBt+Y+T2N1NJctXg9bUp6vqfNrbX1y6vmaO+D64MGDAIApU6YAAB49eiTzqlWrBgAYMWKETPP29jbr+Kbqpa4PB4IT0fOKkXciIiIiIo1g5J0oF9ky8m7LMkxF3s1hbqRTX7n6Vp7Vl2bJsYwdR12GvjRLjmMJc15TfduYe6fDnNfW2PPVt501dweePXsGANi6dSsAYMGCBTLv+vXrAIAxY8bItLp16wIAPD09jR7LEFOvGRHR84SRdyIiIiIijeBUkUT5jL4oq74+zMYii6Yi6Vn7yKvZ4u6AseMr/6rrYG0E2JzjqI9lKopv6bEslTUKbqpMSyP15ry2pp5v1u1N9SfXd4fEzc0NANC6dWsAwNWrV2XeokWLAADLly+XaampqQCANm3a6HuKJjHKTkQvEkbeiYiIiIg0go13IiIiIiKNYLcZoueQvu4WxrrKmFuGOXmUPZYO0M3OuVD2NdY1xsHBweixzOmy0rZtW/lYWVl18uTJMk3pNhMZGQkAiIiIkHnq4xMRESPvRERERESawakiiXKRuYvcZGXudH3GBiBauhCPucyNFBsbsGqMpc/J2IBVS49li8Wo1LKef1sOglU/Nvf5KvVRn3Ml0m2L11YpV73NjRs3AADvv/++THvw4AEAoEGDBgCA7t27y7xixYqZ81SIiF4YjLwTEREREWkEG+9ERERERBrBAatEGmDpXOS26A1n6y4jlP8o59XUnPvGGFsJV5+AgAAAwLhx42Tar7/+CgCYMWMGAKB48eIyLzAwEEDG3PFERC86Rt6JiIiIiDSCkXciG7M0Eql1ObUa6YvK0tczN+ccsMW5dnJyApA5ut6iRQsAQGxsLADg77//lnn3798HAAwZMsSi4xARPa8YeSciIiIi0ghG3olsQN90fXldD2tZOnWltXca9E39mFOsrWNe30EwJ9JtbEpHQ/m5TT0Vpb6pJWvXrg0go95ffPGFzNu4cSMAoF69ejKtVKlSADKi+ERELxJG3omIiIiINIKNdyIiIiIijeAKq0Q2YG63GXNXvrT2+JausGlOmVkfA7aZRtLclVxtsRppTh3LlqvGZq2DJfUwp1x9LF2p1pyy1I+Nve76XqtHjx4ByJgyEgB27dqls72yOmuVKlXMqhsR0fOEkXciIiIiIo3ggFUiG8jrQYE5cQMtp59Tbr5m+e255FR9bFmuLZ6TpWUUKFAAANCxY0eZlpycDABYvHixTNuwYQMAwNPTEwBQokQJi45DRKRljLwTEREREWkEG+9ERERERBrBbjNENpYXXWjyW7eQvCozt4+V3XLza71sVZa1+4aHh8vHTZs2BQAcOXJEpu3btw8A4ODgAAB4/fXXZZ63t7dVxyQi0gpG3omIiIiINIJTRRJpjL4p/GwxnSJRfpSYmAgAOHPmjEz76KOPAACxsbEAgI8//ljm1axZE0DG4FdTzFnF1lz5bWXb3GTL15GIjGPknYiIiIhII9h4JyIiIiLSCHabIcrHjF2e7DZDLxL1+33atGkAgP/++w9A5tVXe/fuDQBo06aNReXa4tp5kbvNKPgaEOU8Rt6JiIiIiDSCU0US5TPqyBVvjBGlU0dxe/bsCQBwd3cHAIwdO1bmBQUFAci86mpYWBgAwNFR9ysvv0yr+bzga0CU8xh5JyIiIiLSCPZ5JyIiTbp48SIAYOnSpTJN6Qfv7+8v03744QcAQMGCBbN9TFv2kScisgYj70REREREGsHGOxERERGRRnDAKhERaVJoaCgAoFOnTjLt3LlzAIAjR47ItFWrVgEAWrRoIdOCg4Nzo4pERDbHyDsRERERkUYw8k5ERJrk4OAAAChevLhMe+mll3S2++uvvwBknnq1f//+Vh2TA1X10zf3BV8ropzByDsRERERkUaw8U5EREREpBHsNkNERPmW0h1D3S1D6Y6hr1tG06ZNAQAuLi4y7YsvvgAAbNmyRaYFBgYCAJo1awYAcHV1tWW1iYhyDCPvREREREQawcg7ERE9N5QIes2aNWVa69atAQB79uyRaQsXLgQAFC1aFABQqVIli47zIg/Q5MLsRHmLkXciIiIiIo2wE/wJTUREuSw3I9fJyckAgAkTJsi0BQsWAADeeOMNAEDbtm1lXsmSJU2WmZaWJh8rz0WZuvJ5pz53ymNj4xCIyLYYeSciIiIi0gg23omIiIiINIIDVomIKNflZvcKJycnAPpXX122bBkA4NGjRzLtvffeAwC4u7ubVb4Wuooo3Vvu3bsn0/755x8AwOLFiwEAqampMq9s2bIAgBYtWsg0ZRpOb29vnXKJKPcw8k5EREREpBGMvBMR0QuhWrVq8rEypeSOHTsAANHR0TJv06ZNAID69evLND8/v0xlaSHarvbkyRMAwOHDh2XawYMHAQBnz54FACQlJcm8GzduAACuXbsm0zw9PQEAjRs3lmn29ukxQK29HkRaxsg7EREREZFGsPFORERERKQRnOediIheOPHx8QCAbdu2AQD+/vtvmXfo0CEAwHfffSfTmjVrlnuVsxF1Nxila8y8efNkmjIotWPHjgCAhIQEmffLL78AAMaPHy/T+vbtCwAYOHCgTKtbty6AF2eOe6L8gJF3IiIiIiKN4IBVIiJ64SjTQNarVw9A5oGZly9fBgCsWLFCpikrqqqnTszvbt26JR8rU0Q2bNhQppUpUwZAxkBU5V8AaNSoEYDM02vev38fQObBvbVr1wbAyDtRbmLknYiIiIhIIxh5JyKiF5aXlxeAzNMfKgs2rV69WqYpCxhVrlwZABAQEJA7FcwGdR92FxcXAECDBg1kmjLNoz5KVF7p5w5k9Je/cOGCTOOwOaLcx8g7EREREZFGsPFORERERKQR7DZDREQvvMjISPm4d+/eAICTJ0/KtFOnTgEAZs+eDQDo0qWLzAsPD8+NKlpMXa/Q0FAA+rvKKF1f1KukKt1s/P39ZZqzs3Om7YkobzDyTkRERESkEYy8ExERqQQGBgIAunfvLtOUaSOVf5VtAKBgwYIAMga/5hdOTk56Hyv0RdwVycnJAIBnz57JtMKFC2f619C+RJSzGHknIiIiItIINt6JiIiIiDSC3WaIiIj0aN68uXyszPO+fft2AMC2bdtkntJtpmnTpjLN1dU1N6qYLca6vMTGxgIALl68KNMiIiIAAKVLl5ZpWQfAqgezsksNUc5g5J2IiIiISCPsBOd8IiKiF1RaWhqAzFFifRHjBw8eAAB27doFAPjpp59knhJ9njx5skwrWbKkwbJsSd9XuHJMdZ7y2NiqqmpRUVEAgF9++UWmDRw4EADQokULmebg4GBZhYko2xh5JyIiIiLSCDbeiYiIiIg0ggNWiYjohaWvW4u++c/9/PwAAE2aNAEA7N69W+bt2bMHADB37lyZ1rlzZwBAlSpVsl1HY11j1HU01gvWnO47Z86ckY/v3LkDAKhdu7ZMK1OmDAB2ldEKY+8b0jZG3omIiIiINIKRdyIiemEZG9ypbzsPDw8AQN++fWWet7c3AGDatGkyTdmuVKlSAAA3NzedssxlbgQ1a5q5x4mLiwMArF+/XqYVKFAAAPD222/LNEdHNhm0ythquqQ9jLwTEREREWkEp4okIqIXnqnIu7EpFvfv3w8A+Pnnn2XakydPAAA1atQAkDmC7e7unr3KmsnUgknXr18HABw6dAgAcOvWLZkXGRkJAGjUqFEO1pBykrl3bIxF5bnoVv7EyDsRERERkUaw8U5EREREpBEcfUJERKRibBCrvq4DZcuWBQB07dpVps2ZMwcA8N9//wHIPOVirVq1AOR89xl9dU1OTpaPr169CgC4efMmAKB8+fIyT5kWUi01NRUAEBsbK9OSkpIAZAzaVQbqUt4zdxpR0h5G3omIiIiINIKRdyIieuGZM/WiIUq0uV27djLt8uXLAIBly5YBABYtWiTzUlJSAAAtWrSwrrJWSExMBAAcP35cpp07dw5ARlQ2LCxM5ilTRaqdPn0aQEbEHsiIxitRe0be8ydj72Vr8yjvMPJORERERKQRbLwTEREREWkEu80QERHZ2MsvvwwAcHV1BQBMnTpV5ikDVYsWLSrTlEGjzs7OMi0kJAQAEBwcDMDyFU6vXbsmH2/ZsgUA8Oeff8o0pduMi4sLgIxBtkBG9xf1ANfHjx8DAKpVqybT3nrrLQBA4cKFLaob5Txbz9GeddAru9TkHUbeiYiIiIg0gpF3IiIiG1Oi5a1btwaQMWUkAFy5cgUAsGDBApmWlpYGIPP0kQEBAQAAPz8/AICXl5fMUyL6Sh4ABAYGZvpXGUwKZAySVUdLPT09Mx3z/v37Mu/27dsAAAcHB5nm5OQEIPNgVmWQq/qOAeUP6nOdkJAAADhz5gwA4OHDhzJPOa/FixeXaQULFgSQ+fzrm0KV8gYj70REREREGmEn+BOKKNfou9zYb5Do+aVEvG/cuCHTfvrpJwDA7NmzZVq9evUAZETDgYw+6xcvXgQAPHjwQOYp/dSV/QCgffv2ADKmrAwKCpJ5yudMfHy8TFNH5i2h7nuv3AHQF5XlZ1vOU15v9etub68bl1Wm9xw5ciQAYM2aNTJPec8p70sgY8wGp/7Mnxh5JyIiIiLSCDbeiYiIiIg0ggNWiXKRsdvIym1P3momynm5db0pXUxCQ0NlWvPmzQFk7kqjrHxaoUIFmTZ8+HAAGVM0qgeUPnnyBAAQGxsr03bu3AkgY1rIiIgImVenTh0AmVd1VQ+OzS5+fmVPdl8/U/spg4y7du0KIHP3qRMnTgDIPPiZ3WXyN0beiYiIiIg0gpF3onyGA76IckZ+mZ9BGWSqnobv008/BZB5MGitWrUAAMWKFdMp49mzZwCArVu3yrS1a9dmSlMGugLAvXv3AABxcXEyrUqVKpnKVwafWoOfVbaRU3cwlGlG27RpAyDz+0B5v6iniqT8jZF3IiIiIiKNYOOdiIiIiEgjOM87ERFRHlAPQJ0+fToAYO/evTLNzc0NAPDRRx8BAMqUKSPzlK9uZeVM9eOnT58CAA4ePCjzlBVela41QEa3nGHDhgEAqlevLvOU7jummgjsLqMNygDVHTt2AABOnjwp85R54Xv37i3TfHx8cq9yZDFG3omIiIiINIIDVomygdOjEZG1/P395eMePXoAyPxZ8u+//wIA1q1bByBjVVUgYxpIJTqvfuzr66tTvjJVoLe3t0y7cOECAODPP/8EAJw+fVrmNWjQINNxSNuU1XSV6UnV7zPlffP111/LNOUuTuHChWVap06dAAAlSpTI2cqSSYy8ExERERFpBCPvRNmgRC+UqAaQMYUbh5MQkTFKX2MACAkJAQBUqlRJpin9kzdv3gwASE5OlnkDBw4EAHh6eso0JV/57HFycpJ5Sn/2yMhImaZE3GfNmgUgIxIPAI8ePQKQcUcAyFi4Jy0tTabxcy7n6Tuf6jsu5khJSQEA3Lx5EwCQlJQk85TvL+VOD5CxcFNwcLBMU6aSZOQ97zHyTkRERESkEWy8E/1fe3cXYlXZBXD8/76m6VBoaY7mR06MWelAkqjVMIQfCWpEWFIE2UVEdFFEV4FIVwV1UxRNH9RFUIRWVJaEFFn06UWMZREl5mTat4ajxehU78XLevZz9DiemTmjbuf/u3G3npl99sycaTZrr7UeSZKkknBUpFQH0QQEsH79eqAYzTVixIgTck2SyiNGM+Y7X37//fdAUTaTl9ksXLgQKMptABoaGoCiDKJaI31e8rJnzx4AduzYAUBHR0dai1uDGTNmpFiU9Jxzzjkp1t3dfewvTgMSzaN5ucry5cuB4j1xrJ25o1zmjjvuAIodd6HY8TfOma9HszQUpVfx8fl7I39vavD53ZYkSZJKwoZVqQ4iyw6wbds2ALq6uoDK8W6SVE1kTkeOHJlicTx+/HigsqH05ZdfBio3Vopm1MMbV/PjPEMaTY+RSc+bE6NhccOGDSn2xx9/AHDBBRek2LBhw6p+HYcfDwWR8a731x2bbsWTlWqvUS3bng9S+OmnnyrWpk2blo5jLGhra2uKxVOZyNhD8d7Zu3dv1WvQ8WPmXZIkSSoJb94lSZKkkrBsRqqDfP5uPIKOR5w2rErKVSs3iLKHvPwhPm7BggVAZaPoxo0bgcrGw6lTpwLFzqrRBAuVjapH09bWlo7HjBkDwKZNm1Ls119/rTg/FCU08f+5Wl7nVDVYZTOxd0j8TGq1c+fOdBxNyRdddBEA8+fPT2vLli074nOjNCYv44oyq/hZu7P4iWPmXZIkSSoJM+9SHTQ2Nqbj2JGwt3Ftkk4dvWVa6/H7H5nOPJMajaqvvPJKin355ZcAPPTQQwCce+65aS3GDfaW9c8z9UuXLgUqs7IPPvggAN9++22KrVq1Cih238wb9CMLb2PjwMT3MXa4hdpGM8aoUSgy7/PmzQOgpaWl18/9/fffAfjss89SLLL148aNq+GqNZjMvEuSJEkl4c27JEmSVBKWzUgDUG02c77joSTVy8SJE9NxzH7PS1hij4n4N5/lHR9fqyi5yc8RZTnRQAkwa9asio/X8RV/g6qVZ+U7f3d2dgJw1VVXAUVz89FEw2q8lwCuvPJKACZMmHDU19TxYeZdkiRJKgkz71IfVdtBMI/V0kgk6dQzWI2Z1TKckRG/9tprU+yNN94A4OGHHwYqd36++eab+/XaeZPkPffcc8T66NGj+3XeU1lvTcH11tt5Y5dUKDLpMW4y3xk3GmLz90uMBc3PH6NK8yfNOjG8y5AkSZJKwsy71EfW+UlDz+FP2fInbLt27QLg+eefT7HPP/8cKDKYPT09aS3GyOYZ2sh+5hu+NTU1AXDvvfcC0NzcfMR1RR1ybuvWrUDlBksx3m/x4sUpFq/VW910rq+bBA1VJ+JvRIwCBdi+fTtQmV2fPXs2UL03Id7LDzzwQIr9+OOPQOUTmxkzZtTxijUQZt4lSZKkkvDmXZIkSSoJy2akAbCERlKUneQjFDs6OoBivOLkyZPT2plnnglUlsiEffv2pePYIfPiiy8G4JprrklrUUIzatSoFIvdM5csWQLA5s2b09q6desAOO+881Js5syZgP8fO9VECVa+2200r7722mtA5S6pXV1dAPzwww8pFg3ReZnV2LFjB+eC1Wdm3iVJkqSS+M+/gzXbSpKkk8jxHOH36KOPAvDpp58CcMstt6S1lpYWoLIBNLKkebb8xRdfBIoRkHPmzElrTz/9NFA5yjHEE4D77rsvxdavXw/ArbfemmLLli0DbEQ8Va1duzYdt7e3A8X7Kx8LGU924j0LsGDBAqDyd8YnNCcPM++SJElSSXjzLkmSJJWEDauSpCGhno/9j1VOEGUw0VB64YUXprXGxsajnjcvjYn529G4+ttvv6W1aDzM57zHDO94zRUrVqS1aI599dVXUyxmg991111A9RKc3PEsO9LAzZ07Nx3H+zHeS/lc+PHjxwNwySWXHHGOaj/fWvcF0OAx8y5JkiSVhJl3SZL6qFrWMc9m7t+/H4DTTvv/n9l8pGM11XZujSx8a2srULlj6saNG4FipB8cuXtmnnmN13///fdTLJoX3377bQDa2trS2llnndXr9erkl7838uP+cr7JycPMuyRJklQSZt4lScpUq+mNWLUMeYzd++abb1Ls4MGDQLEZTn/qg3t6egA4++yzATjjjDPS2i+//ALAgQMHajpXU1MTAKtXr06x5557DoA1a9YA8Pjjj6e1K6644ohzWP9cLvUe8+jP+ORh5l2SJEkqCW/eJUmSpJKwbEaSpGPorWQgSle++uqrFItG1enTp1f8d39eM0b5jR07Nq3t3r0bKEprjiVKbvJymO3btwOwa9cuAF566aW01t3dDRQ7beZsXCyf/pY3OR705GTmXZIkSSoJM++SJGV6yyxWW9u3bx8AW7ZsSbFJkyYBMGvWLABGjBjR7+uIMY95w2pDQwPQ94x+vhHTokWLgCLLvnbt2rQWGf3Zs2enWIyPNPNaDoP1c7JJ+cQz8y5JkiSVhDfvkiRJUklYNiNJ0gDs3bsXgI8++ijFVq5cCRRlM8OHD+/1HNVKECK2Z88eoHIH1yjLyUtp+qq5uRmAFStWAPDFF1+ktW3btgHw5JNPpthNN90EwJQpU/r9mv11+Jz9o4nvmSUd9eH38eRk5l2SJEkqCTPvkiQNwKFDh4DKLHjsitqfRtUQmfZ3330XgK+//jqtLVmyBKgcHxn6Ot5v8uTJAFx//fUp9vrrrwPw5ptvpti0adMAWL58eYoNJPPfH2aCJTPvkiRJUmmYeZckDQn12HAmztHV1ZViBw8eBIr6doCJEyf25xL5559/0nFsohSZ97/++iuttbS0ANDY2HjUazzW13b49yOy+flrffzxxyn23nvvATBmzJgUi02cBvKEoRZm3KWCmXdJkiSpJLx5lyRJkkrCshlJ0pBQj9KLOEdnZ2eK7dy5EyiaVKH3Rs7eylqiVAbgmWeeAeDvv/8GYP78+Wltzpw5AIwePfqIc/z3v7Xl5Xr7frS2tgKwZs2aFHvkkUcA2L17d4qdf/75QDF2stbXltR//pZJkiRJJWHmXZKkPuro6EjHW7duBeDyyy9PsaampqN+bmS8802Xoin1rbfeSrEtW7YAsHDhQgCWLl2a1vIs/2AYN24cAIsWLUqxDz74AKj82l944QWg2OgpGmkHSz2ajqWyM/MuSZIklYQ375IkSVJJWDYjSVKmt4bS7u5uADZt2pRi0WQapSMADQ0NVc8JxSz3KLcBuPPOOwH47rvvUuzqq68G4LbbbgMGvySlmrzx9vbbbwdg3bp1KfbEE08ARePs9OnT09rpp58ODF5ZS63z7KVTjZl3SZIkqST+82+17g9JkoaoGM34888/p1g0kj711FMAbN68Oa3Fn9GZM2emWGSsq41O/PPPPwE47bTi4Xd87ty5c1MsRkNGxn0gu5hWy1JHLP6tdczjJ598ko7b29sBOHDgAADz5s1La3fffTdQ+XUe/pr59dSSQbdhVTLzLkmSJJWGN++SJElSSdiwKklSJsow8hKNQ4cOAUVJTV4eMmrUKKAohwHo6empOEde2hHnyme1r1y5EihmugOMHDmy4rry66lnqUhv56r2mnl50A033AAUu8G+8847ae2yyy4D4NJLL02x+F5V+x4P9FqlocLMuyRJklQSNqxKkoaEvjY7VhvvGJn3Wl+rWjNoteuIps5qHxfXeDJnnR977DEANmzYkGITJkwA4MYbb0yxxYsXH98Lk05BZt4lSZKkkrDmXZI0JPQ1c51//LBhwyr+PR7q+WC8t1GRYSCZ/dhQKh8L+eyzzwKwcePGFJsyZQoAzc3NR3y8pNqYeZckSZJKwpt3SZIkqSRsWJUkqY/qvdNntfP1defTWs5Zjx1We7Njx450vHr1agD279+fYrGD7KpVqwCYNGnSgF9TGmrMvEuSJEklYeZdkiTVRWxABdDZ2QnA/fffn2IffvghAO3t7QC0tbWlNZtXpdqYeZckSZJKwpt3SZIkqSR8RiVJ0hCRV8oOxo6tw4cPT8cxy/26665LsRkzZgAwdepUoD5NstJQ42+NJEmSVBI2rEqSdBKr51jKeo+4rEXexBrHDQ0Ng/qa0qnMzLskSZJUEmbeJUmSpJIw8y5JkiSVhDfvkiRJUkl48y5JkiSVhDfvkiRJUkl48y5JkiSVhDfvkiRJUkl48y5JkiSVhDfvkiRJUkl48y5JkiSVhDfvkiRJUkl48y5JkiSVhDfvkiRJUkl48y5JkiSVxP8AdhCZbB513G4AAAAASUVORK5CYII=",
"path": "images_version_6/image_24.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, the line a parallel b, then the degree of angle 2 is ()
Choices:
A:150°
B:130°
C:100°
D:50°
|
||
121
|
25
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAK0AAABuCAAAAABwuMyFAAAI2klEQVR4nO1cbYxU1Rl+zuGjVWg2bdayMZMMyqSFjdlsMLYGSVcLhCVoKok40A+tVgs1NDWbNUKLK2oT0JIIXVPXCsn4UbtES00Ky9ZiOliwW20DsWXQsDYrA0agH0sWy8LOPU9/3HtnZ2bv3Jlzzr21JDzZ3Tn3fLznue95z3veO/ecFcRFBPlJE9DCJbbxoZItQfcDGgZNUAF44wgA5aaN4HVevesytgoUEPq9CAgJjH0fVJAQxuMllAAIinHi5ZDlF1whhRBiCaHPemMyaU4UAEBZ7De493LxSvbenlPMNks9UwDAF1pO2HpDb2Cr85UVV2Njcwrb5zVD6CiXAE6cua5pmjHPcVGhlls5dG/ehJeunPIdf+LUBwHgp2vUbDOCJSCEIAiIKnRZjgyAnJtU1EAGQIdOg+pIu8R2BRRV6nZPjl9P6islP0Jmr7JexQko9qaPKF6Ye1NAeQXb42dmo+0yACA1+j7+3TXAEA2cXzkEIMXY+dni51MWXB5UoWJAu0nyAc2xewjIMQ3cbzTylXijmx9UMapytiqdY4HpbjqR9KsLh8pxp0B3cIUytllP34dJas4yUhUbaDYsRYHkyhwzfcHFk0utos1zdmHLSYjNiWLKGBLI/3MOZn4+uHhyQJ6AekyhyLoOCBB/lzMFqzrKuvAIBJC9BWirUqHCJ7h9Kak0FzOKkZ2vuZGbUVxUgt0LQjuKBGPznr4u4yYtzNadOjkqJ1iM1ciVYPVw759uHZoSc3Afkfgdr2/Dl+dvlgBgHIzXAZthI0nlkBxsOkLFwYaPbKXVgGX4DEACZ9u3zIbArLseBhCnciOx2/RnewAAZ1J/sI8awxCF3T7z4VY30bD2gQjEhcHemA4k8n7yXCprLy8E9mxPJ/Z4KYfsbbVztzVgZAlltn7H6sVeSgJp+Zx1kBsC61n20J/3lF4eWDE4NT6+trOsP/P8+AUVbrh2S5zKtTOkfOKPFSv6YKO7RMRivnaWcP6Ge1eV5yi5Blsn6USbOrBiq+4b7p2Qebo5viXCym5f3r9tYuYVnetsZIbDwooONx0Nyh5NxrZEmLNVI6lfBpe8ONdYaA1YWMI9N68IGivgG+qluMIw4/vcOr9QmeV/C5FNjpJxODFjtvub8mQFo+LFrZvMGYXBlO3pZH9I6ZHGU4Zyw2Hob532hQ8GmZXwPlZf9iSFivyZ0pDtDw/1VSlxCZ+8ZuCqOJ5/jUakP1lrpH98q5HgGjBgqziUOFhjvjujif1mhEKhyVaR5GhrT+1amWsNGYVB07gEAPzgmlXh3l8AuNPZEcPrea17UyT5Yuu58Yvq2JsaNVNgCPR9wqFFA7PqqnhLW6e27mpB9/bOzuqts+bfGoejXn21dbs8tRGoz97vnf6kif5CoMv2id9kJ9XzFKMkcPKLf5nlJSNCnWz9Hg/c9naifuEbDr9sQCkMWnZzOnlAp/q5pgEt8TVR9ygpAM6y782DxlaAT2+630B/IaibrQSwfvqDgM7bk2+N/kqfUhg8HTtOyOtHr6g/NaI7dP2pUSdCL+brVoZpWZIABr/5ynTNDSFYnOqxettXiQr9BcIh6dSMZQJx8Iphg1bVUPRgSkIBUgESChKAgv8hBIDVzjNKSj9bSQVZ25NS3P25zdGptky33m/xh45TzO9p/c94Nh3H8QtD4fCjhkGSpAofPn3dQkn3A4AsyVCQOLRoIDm5vJ5XuxYefq+32EGkuuW4KksU7dBRI6ldldm+omthpGkgMq/g3XBldD1+TUhArLxtaVC1OqCmb+iMzCv4w+OOkztvpFISkEoVJDBJKSUfH36U49lKQkHB+6nVgbrn369GRLYyTgge2v1J81eiityVmvAdlCEqdwZOuBkAx1f8YoapLiCApTO7DZtXojRiVMFhg3PjzUHfy2jg0KLBBjsJHuqIb9e9+2vbXu5q/ImtCBe1TMV5RT+WmYD8Z4asZZB1PJe9f/3vWu1V0jX0grUQoKZuR1szUShluOmtKMTU0u3dU3siUcrPduyLQkz4zfS0jkaxaioWvrAzAjnhbA8mBiPogyS5c04EeyNDA6N/LN9W35dIdWDZjKfthYTa7ZLWjfY9+Di05F1viTB/Bxym28fPPab7HBaCloWbvJRFRFbFQhS5N3mKihmgnVRptJNkGomPTY1uqCFfu1I4qs+y/Iz9JC+sJUl2PaUyHWSmz8/Qg+tX1t5RcmGEQLaKZGH+ZpLM5kgynzjLC3M/NmbrYrjxIKlsPGJVS+hMk1R0LSDbTjLdZ2oJjiJJh1vaDFn6qDbLnn11OwChevklcQRDzd5s62U+cK98OKQAqATWnNhtOLt8QUGZCrtXbZ/mFT+S2QbX05n7BwJCCkx6otOxersufWm+WAKQZ9d/bdzTfjWHmTklIM09j99yWeM2y22enp2WTFXF9KrC9c/6l/kOHkuc5TFz3zWOt5usgmWPrfsNo0+4p3WU2dSYd9WVo+rq9g5u2OL29TatXbaeZt24Q72VOEaqtp0k8wD6SHJlRGeGjlrtKK44S0LSOZXoJ8kdy90MKwc5EZ3ftmjss03D1yLbXf9/cnpB0WHRPiI6DDPccNC8MXwiK/uYRY7kpnaP2dwBsmydjEbJWxaat50MABIYe68Ns0DwtbX3bXAPz3FTC+AdrUREe7YBnP/9bxfXrhUMd88/8eaNl6Ojoxk42tVIAZAQhTKWEZAlAHzqR8MAgOeEWDK2TunJ9XScgXfC0F3TY92hTEcxjw4yj6f0evL9bTrHjH8g8n+ACy0dJNlV5WRWNXgL4Ydn5mBly16gODKx/qcC9v7rUQC4eqZeO+/E1utLoU69kwIkhfvgFOcOZRQ2r50GAHdq6sTT7Z4FdJYm2gCIuHb6unDpnXznajcloDWKEgD2iR3NcuqVH3iha1S+agKU/4dlvdTf3WQA+EpF/bh0K5V0N+DNaHkfEDj+1yWavcUx42sjg11ktt19iVa/D/uE2HIfQk+CV7mB2Gw0Flzc//fj/xuX2MaHS2zjw8XF9r8uhPPsfAfduwAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_25.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, EF parallel BC, AC bisects angle BAF, angle B = 50.0, then the degree of angle C is ()
Choices:
A:50°
B:55°
C:60°
D:65°
|
Như hình vẽ, EF song song với BC, AC chia góc BAF thành hai phần bằng nhau, góc B bằng 50°, tìm số đo góc C.
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, EF parallel BC, AC bisects angle BAF, angle B = 50.0, then the degree of angle C is ()
Choices:
A:50°
B:55°
C:60°
D:65°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, EF parallel BC, AC bisects angle BAF, angle B = 50.0, then the degree of angle C is ()
Choices:
A:50°
B:55°
C:60°
D:65°
|
As shown in the figure, EF parallel BC, AC bisects angle BAF, angle B = 50.0, then the degree of angle C is ()
Choices:
A:50°
B:55°
C:60°
D:65°
|
122
|
25
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAK0AAABuCAAAAABwuMyFAAAI2klEQVR4nO1cbYxU1Rl+zuGjVWg2bdayMZMMyqSFjdlsMLYGSVcLhCVoKok40A+tVgs1NDWbNUKLK2oT0JIIXVPXCsn4UbtES00Ky9ZiOliwW20DsWXQsDYrA0agH0sWy8LOPU9/3HtnZ2bv3Jlzzr21JDzZ3Tn3fLznue95z3veO/ecFcRFBPlJE9DCJbbxoZItQfcDGgZNUAF44wgA5aaN4HVevesytgoUEPq9CAgJjH0fVJAQxuMllAAIinHi5ZDlF1whhRBiCaHPemMyaU4UAEBZ7De493LxSvbenlPMNks9UwDAF1pO2HpDb2Cr85UVV2Njcwrb5zVD6CiXAE6cua5pmjHPcVGhlls5dG/ehJeunPIdf+LUBwHgp2vUbDOCJSCEIAiIKnRZjgyAnJtU1EAGQIdOg+pIu8R2BRRV6nZPjl9P6islP0Jmr7JexQko9qaPKF6Ye1NAeQXb42dmo+0yACA1+j7+3TXAEA2cXzkEIMXY+dni51MWXB5UoWJAu0nyAc2xewjIMQ3cbzTylXijmx9UMapytiqdY4HpbjqR9KsLh8pxp0B3cIUytllP34dJas4yUhUbaDYsRYHkyhwzfcHFk0utos1zdmHLSYjNiWLKGBLI/3MOZn4+uHhyQJ6AekyhyLoOCBB/lzMFqzrKuvAIBJC9BWirUqHCJ7h9Kak0FzOKkZ2vuZGbUVxUgt0LQjuKBGPznr4u4yYtzNadOjkqJ1iM1ciVYPVw759uHZoSc3Afkfgdr2/Dl+dvlgBgHIzXAZthI0nlkBxsOkLFwYaPbKXVgGX4DEACZ9u3zIbArLseBhCnciOx2/RnewAAZ1J/sI8awxCF3T7z4VY30bD2gQjEhcHemA4k8n7yXCprLy8E9mxPJ/Z4KYfsbbVztzVgZAlltn7H6sVeSgJp+Zx1kBsC61n20J/3lF4eWDE4NT6+trOsP/P8+AUVbrh2S5zKtTOkfOKPFSv6YKO7RMRivnaWcP6Ge1eV5yi5Blsn6USbOrBiq+4b7p2Qebo5viXCym5f3r9tYuYVnetsZIbDwooONx0Nyh5NxrZEmLNVI6lfBpe8ONdYaA1YWMI9N68IGivgG+qluMIw4/vcOr9QmeV/C5FNjpJxODFjtvub8mQFo+LFrZvMGYXBlO3pZH9I6ZHGU4Zyw2Hob532hQ8GmZXwPlZf9iSFivyZ0pDtDw/1VSlxCZ+8ZuCqOJ5/jUakP1lrpH98q5HgGjBgqziUOFhjvjujif1mhEKhyVaR5GhrT+1amWsNGYVB07gEAPzgmlXh3l8AuNPZEcPrea17UyT5Yuu58Yvq2JsaNVNgCPR9wqFFA7PqqnhLW6e27mpB9/bOzuqts+bfGoejXn21dbs8tRGoz97vnf6kif5CoMv2id9kJ9XzFKMkcPKLf5nlJSNCnWz9Hg/c9naifuEbDr9sQCkMWnZzOnlAp/q5pgEt8TVR9ygpAM6y782DxlaAT2+630B/IaibrQSwfvqDgM7bk2+N/kqfUhg8HTtOyOtHr6g/NaI7dP2pUSdCL+brVoZpWZIABr/5ynTNDSFYnOqxettXiQr9BcIh6dSMZQJx8Iphg1bVUPRgSkIBUgESChKAgv8hBIDVzjNKSj9bSQVZ25NS3P25zdGptky33m/xh45TzO9p/c94Nh3H8QtD4fCjhkGSpAofPn3dQkn3A4AsyVCQOLRoIDm5vJ5XuxYefq+32EGkuuW4KksU7dBRI6ldldm+omthpGkgMq/g3XBldD1+TUhArLxtaVC1OqCmb+iMzCv4w+OOkztvpFISkEoVJDBJKSUfH36U49lKQkHB+6nVgbrn369GRLYyTgge2v1J81eiityVmvAdlCEqdwZOuBkAx1f8YoapLiCApTO7DZtXojRiVMFhg3PjzUHfy2jg0KLBBjsJHuqIb9e9+2vbXu5q/ImtCBe1TMV5RT+WmYD8Z4asZZB1PJe9f/3vWu1V0jX0grUQoKZuR1szUShluOmtKMTU0u3dU3siUcrPduyLQkz4zfS0jkaxaioWvrAzAjnhbA8mBiPogyS5c04EeyNDA6N/LN9W35dIdWDZjKfthYTa7ZLWjfY9+Di05F1viTB/Bxym28fPPab7HBaCloWbvJRFRFbFQhS5N3mKihmgnVRptJNkGomPTY1uqCFfu1I4qs+y/Iz9JC+sJUl2PaUyHWSmz8/Qg+tX1t5RcmGEQLaKZGH+ZpLM5kgynzjLC3M/NmbrYrjxIKlsPGJVS+hMk1R0LSDbTjLdZ2oJjiJJh1vaDFn6qDbLnn11OwChevklcQRDzd5s62U+cK98OKQAqATWnNhtOLt8QUGZCrtXbZ/mFT+S2QbX05n7BwJCCkx6otOxersufWm+WAKQZ9d/bdzTfjWHmTklIM09j99yWeM2y22enp2WTFXF9KrC9c/6l/kOHkuc5TFz3zWOt5usgmWPrfsNo0+4p3WU2dSYd9WVo+rq9g5u2OL29TatXbaeZt24Q72VOEaqtp0k8wD6SHJlRGeGjlrtKK44S0LSOZXoJ8kdy90MKwc5EZ3ftmjss03D1yLbXf9/cnpB0WHRPiI6DDPccNC8MXwiK/uYRY7kpnaP2dwBsmydjEbJWxaat50MABIYe68Ns0DwtbX3bXAPz3FTC+AdrUREe7YBnP/9bxfXrhUMd88/8eaNl6Ojoxk42tVIAZAQhTKWEZAlAHzqR8MAgOeEWDK2TunJ9XScgXfC0F3TY92hTEcxjw4yj6f0evL9bTrHjH8g8n+ACy0dJNlV5WRWNXgL4Ydn5mBly16gODKx/qcC9v7rUQC4eqZeO+/E1utLoU69kwIkhfvgFOcOZRQ2r50GAHdq6sTT7Z4FdJYm2gCIuHb6unDpnXznajcloDWKEgD2iR3NcuqVH3iha1S+agKU/4dlvdTf3WQA+EpF/bh0K5V0N+DNaHkfEDj+1yWavcUx42sjg11ktt19iVa/D/uE2HIfQk+CV7mB2Gw0Flzc//fj/xuX2MaHS2zjw8XF9r8uhPPsfAfduwAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_25.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, EF parallel BC, AC bisects angle BAF, angle B = 50.0, then the degree of angle C is ()
Choices:
A:50°
B:55°
C:60°
D:65°
|
Như hình vẽ, EF song song với BC, AC chia góc BAF thành hai phần bằng nhau, góc B bằng 50°, tìm số đo góc C.
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, EF parallel BC, AC bisects angle BAF, angle B = 50.0, then the degree of angle C is ()
Choices:
A:50°
B:55°
C:60°
D:65°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, EF parallel BC, AC bisects angle BAF, angle B = 50.0, then the degree of angle C is ()
Choices:
A:50°
B:55°
C:60°
D:65°
|
As shown in the figure, EF parallel BC, AC bisects angle BAF, angle B = 50.0, then the degree of angle C is ()
Choices:
A:50°
B:55°
C:60°
D:65°
|
123
|
25
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAK0AAABuCAAAAABwuMyFAAAI2klEQVR4nO1cbYxU1Rl+zuGjVWg2bdayMZMMyqSFjdlsMLYGSVcLhCVoKok40A+tVgs1NDWbNUKLK2oT0JIIXVPXCsn4UbtES00Ky9ZiOliwW20DsWXQsDYrA0agH0sWy8LOPU9/3HtnZ2bv3Jlzzr21JDzZ3Tn3fLznue95z3veO/ecFcRFBPlJE9DCJbbxoZItQfcDGgZNUAF44wgA5aaN4HVevesytgoUEPq9CAgJjH0fVJAQxuMllAAIinHi5ZDlF1whhRBiCaHPemMyaU4UAEBZ7De493LxSvbenlPMNks9UwDAF1pO2HpDb2Cr85UVV2Njcwrb5zVD6CiXAE6cua5pmjHPcVGhlls5dG/ehJeunPIdf+LUBwHgp2vUbDOCJSCEIAiIKnRZjgyAnJtU1EAGQIdOg+pIu8R2BRRV6nZPjl9P6islP0Jmr7JexQko9qaPKF6Ye1NAeQXb42dmo+0yACA1+j7+3TXAEA2cXzkEIMXY+dni51MWXB5UoWJAu0nyAc2xewjIMQ3cbzTylXijmx9UMapytiqdY4HpbjqR9KsLh8pxp0B3cIUytllP34dJas4yUhUbaDYsRYHkyhwzfcHFk0utos1zdmHLSYjNiWLKGBLI/3MOZn4+uHhyQJ6AekyhyLoOCBB/lzMFqzrKuvAIBJC9BWirUqHCJ7h9Kak0FzOKkZ2vuZGbUVxUgt0LQjuKBGPznr4u4yYtzNadOjkqJ1iM1ciVYPVw759uHZoSc3Afkfgdr2/Dl+dvlgBgHIzXAZthI0nlkBxsOkLFwYaPbKXVgGX4DEACZ9u3zIbArLseBhCnciOx2/RnewAAZ1J/sI8awxCF3T7z4VY30bD2gQjEhcHemA4k8n7yXCprLy8E9mxPJ/Z4KYfsbbVztzVgZAlltn7H6sVeSgJp+Zx1kBsC61n20J/3lF4eWDE4NT6+trOsP/P8+AUVbrh2S5zKtTOkfOKPFSv6YKO7RMRivnaWcP6Ge1eV5yi5Blsn6USbOrBiq+4b7p2Qebo5viXCym5f3r9tYuYVnetsZIbDwooONx0Nyh5NxrZEmLNVI6lfBpe8ONdYaA1YWMI9N68IGivgG+qluMIw4/vcOr9QmeV/C5FNjpJxODFjtvub8mQFo+LFrZvMGYXBlO3pZH9I6ZHGU4Zyw2Hob532hQ8GmZXwPlZf9iSFivyZ0pDtDw/1VSlxCZ+8ZuCqOJ5/jUakP1lrpH98q5HgGjBgqziUOFhjvjujif1mhEKhyVaR5GhrT+1amWsNGYVB07gEAPzgmlXh3l8AuNPZEcPrea17UyT5Yuu58Yvq2JsaNVNgCPR9wqFFA7PqqnhLW6e27mpB9/bOzuqts+bfGoejXn21dbs8tRGoz97vnf6kif5CoMv2id9kJ9XzFKMkcPKLf5nlJSNCnWz9Hg/c9naifuEbDr9sQCkMWnZzOnlAp/q5pgEt8TVR9ygpAM6y782DxlaAT2+630B/IaibrQSwfvqDgM7bk2+N/kqfUhg8HTtOyOtHr6g/NaI7dP2pUSdCL+brVoZpWZIABr/5ynTNDSFYnOqxettXiQr9BcIh6dSMZQJx8Iphg1bVUPRgSkIBUgESChKAgv8hBIDVzjNKSj9bSQVZ25NS3P25zdGptky33m/xh45TzO9p/c94Nh3H8QtD4fCjhkGSpAofPn3dQkn3A4AsyVCQOLRoIDm5vJ5XuxYefq+32EGkuuW4KksU7dBRI6ldldm+omthpGkgMq/g3XBldD1+TUhArLxtaVC1OqCmb+iMzCv4w+OOkztvpFISkEoVJDBJKSUfH36U49lKQkHB+6nVgbrn369GRLYyTgge2v1J81eiityVmvAdlCEqdwZOuBkAx1f8YoapLiCApTO7DZtXojRiVMFhg3PjzUHfy2jg0KLBBjsJHuqIb9e9+2vbXu5q/ImtCBe1TMV5RT+WmYD8Z4asZZB1PJe9f/3vWu1V0jX0grUQoKZuR1szUShluOmtKMTU0u3dU3siUcrPduyLQkz4zfS0jkaxaioWvrAzAjnhbA8mBiPogyS5c04EeyNDA6N/LN9W35dIdWDZjKfthYTa7ZLWjfY9+Di05F1viTB/Bxym28fPPab7HBaCloWbvJRFRFbFQhS5N3mKihmgnVRptJNkGomPTY1uqCFfu1I4qs+y/Iz9JC+sJUl2PaUyHWSmz8/Qg+tX1t5RcmGEQLaKZGH+ZpLM5kgynzjLC3M/NmbrYrjxIKlsPGJVS+hMk1R0LSDbTjLdZ2oJjiJJh1vaDFn6qDbLnn11OwChevklcQRDzd5s62U+cK98OKQAqATWnNhtOLt8QUGZCrtXbZ/mFT+S2QbX05n7BwJCCkx6otOxersufWm+WAKQZ9d/bdzTfjWHmTklIM09j99yWeM2y22enp2WTFXF9KrC9c/6l/kOHkuc5TFz3zWOt5usgmWPrfsNo0+4p3WU2dSYd9WVo+rq9g5u2OL29TatXbaeZt24Q72VOEaqtp0k8wD6SHJlRGeGjlrtKK44S0LSOZXoJ8kdy90MKwc5EZ3ftmjss03D1yLbXf9/cnpB0WHRPiI6DDPccNC8MXwiK/uYRY7kpnaP2dwBsmydjEbJWxaat50MABIYe68Ns0DwtbX3bXAPz3FTC+AdrUREe7YBnP/9bxfXrhUMd88/8eaNl6Ojoxk42tVIAZAQhTKWEZAlAHzqR8MAgOeEWDK2TunJ9XScgXfC0F3TY92hTEcxjw4yj6f0evL9bTrHjH8g8n+ACy0dJNlV5WRWNXgL4Ydn5mBly16gODKx/qcC9v7rUQC4eqZeO+/E1utLoU69kwIkhfvgFOcOZRQ2r50GAHdq6sTT7Z4FdJYm2gCIuHb6unDpnXznajcloDWKEgD2iR3NcuqVH3iha1S+agKU/4dlvdTf3WQA+EpF/bh0K5V0N+DNaHkfEDj+1yWavcUx42sjg11ktt19iVa/D/uE2HIfQk+CV7mB2Gw0Flzc//fj/xuX2MaHS2zjw8XF9r8uhPPsfAfduwAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_25.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, angle B = 50.0, then the degree of angle C is ()
Choices:
A:50°
B:55°
C:60°
D:65°
|
Như hình vẽ, góc B bằng 50°, thì số đo của góc C là ()
Lựa chọn:
A: 50°
B: 55°
C: 60°
D: 65°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, angle B = 50.0, then the degree of angle C is ()
Choices:
A:50°
B:55°
C:60°
D:65°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, angle B = 50.0, then the degree of angle C is ()
Choices:
A:50°
B:55°
C:60°
D:65°
|
As shown in the figure, angle B = 50.0, then the degree of angle C is ()
Choices:
A:50°
B:55°
C:60°
D:65°
|
124
|
25
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAK0AAABuCAAAAABwuMyFAAAI2klEQVR4nO1cbYxU1Rl+zuGjVWg2bdayMZMMyqSFjdlsMLYGSVcLhCVoKok40A+tVgs1NDWbNUKLK2oT0JIIXVPXCsn4UbtES00Ky9ZiOliwW20DsWXQsDYrA0agH0sWy8LOPU9/3HtnZ2bv3Jlzzr21JDzZ3Tn3fLznue95z3veO/ecFcRFBPlJE9DCJbbxoZItQfcDGgZNUAF44wgA5aaN4HVevesytgoUEPq9CAgJjH0fVJAQxuMllAAIinHi5ZDlF1whhRBiCaHPemMyaU4UAEBZ7De493LxSvbenlPMNks9UwDAF1pO2HpDb2Cr85UVV2Njcwrb5zVD6CiXAE6cua5pmjHPcVGhlls5dG/ehJeunPIdf+LUBwHgp2vUbDOCJSCEIAiIKnRZjgyAnJtU1EAGQIdOg+pIu8R2BRRV6nZPjl9P6islP0Jmr7JexQko9qaPKF6Ye1NAeQXb42dmo+0yACA1+j7+3TXAEA2cXzkEIMXY+dni51MWXB5UoWJAu0nyAc2xewjIMQ3cbzTylXijmx9UMapytiqdY4HpbjqR9KsLh8pxp0B3cIUytllP34dJas4yUhUbaDYsRYHkyhwzfcHFk0utos1zdmHLSYjNiWLKGBLI/3MOZn4+uHhyQJ6AekyhyLoOCBB/lzMFqzrKuvAIBJC9BWirUqHCJ7h9Kak0FzOKkZ2vuZGbUVxUgt0LQjuKBGPznr4u4yYtzNadOjkqJ1iM1ciVYPVw759uHZoSc3Afkfgdr2/Dl+dvlgBgHIzXAZthI0nlkBxsOkLFwYaPbKXVgGX4DEACZ9u3zIbArLseBhCnciOx2/RnewAAZ1J/sI8awxCF3T7z4VY30bD2gQjEhcHemA4k8n7yXCprLy8E9mxPJ/Z4KYfsbbVztzVgZAlltn7H6sVeSgJp+Zx1kBsC61n20J/3lF4eWDE4NT6+trOsP/P8+AUVbrh2S5zKtTOkfOKPFSv6YKO7RMRivnaWcP6Ge1eV5yi5Blsn6USbOrBiq+4b7p2Qebo5viXCym5f3r9tYuYVnetsZIbDwooONx0Nyh5NxrZEmLNVI6lfBpe8ONdYaA1YWMI9N68IGivgG+qluMIw4/vcOr9QmeV/C5FNjpJxODFjtvub8mQFo+LFrZvMGYXBlO3pZH9I6ZHGU4Zyw2Hob532hQ8GmZXwPlZf9iSFivyZ0pDtDw/1VSlxCZ+8ZuCqOJ5/jUakP1lrpH98q5HgGjBgqziUOFhjvjujif1mhEKhyVaR5GhrT+1amWsNGYVB07gEAPzgmlXh3l8AuNPZEcPrea17UyT5Yuu58Yvq2JsaNVNgCPR9wqFFA7PqqnhLW6e27mpB9/bOzuqts+bfGoejXn21dbs8tRGoz97vnf6kif5CoMv2id9kJ9XzFKMkcPKLf5nlJSNCnWz9Hg/c9naifuEbDr9sQCkMWnZzOnlAp/q5pgEt8TVR9ygpAM6y782DxlaAT2+630B/IaibrQSwfvqDgM7bk2+N/kqfUhg8HTtOyOtHr6g/NaI7dP2pUSdCL+brVoZpWZIABr/5ynTNDSFYnOqxettXiQr9BcIh6dSMZQJx8Iphg1bVUPRgSkIBUgESChKAgv8hBIDVzjNKSj9bSQVZ25NS3P25zdGptky33m/xh45TzO9p/c94Nh3H8QtD4fCjhkGSpAofPn3dQkn3A4AsyVCQOLRoIDm5vJ5XuxYefq+32EGkuuW4KksU7dBRI6ldldm+omthpGkgMq/g3XBldD1+TUhArLxtaVC1OqCmb+iMzCv4w+OOkztvpFISkEoVJDBJKSUfH36U49lKQkHB+6nVgbrn369GRLYyTgge2v1J81eiityVmvAdlCEqdwZOuBkAx1f8YoapLiCApTO7DZtXojRiVMFhg3PjzUHfy2jg0KLBBjsJHuqIb9e9+2vbXu5q/ImtCBe1TMV5RT+WmYD8Z4asZZB1PJe9f/3vWu1V0jX0grUQoKZuR1szUShluOmtKMTU0u3dU3siUcrPduyLQkz4zfS0jkaxaioWvrAzAjnhbA8mBiPogyS5c04EeyNDA6N/LN9W35dIdWDZjKfthYTa7ZLWjfY9+Di05F1viTB/Bxym28fPPab7HBaCloWbvJRFRFbFQhS5N3mKihmgnVRptJNkGomPTY1uqCFfu1I4qs+y/Iz9JC+sJUl2PaUyHWSmz8/Qg+tX1t5RcmGEQLaKZGH+ZpLM5kgynzjLC3M/NmbrYrjxIKlsPGJVS+hMk1R0LSDbTjLdZ2oJjiJJh1vaDFn6qDbLnn11OwChevklcQRDzd5s62U+cK98OKQAqATWnNhtOLt8QUGZCrtXbZ/mFT+S2QbX05n7BwJCCkx6otOxersufWm+WAKQZ9d/bdzTfjWHmTklIM09j99yWeM2y22enp2WTFXF9KrC9c/6l/kOHkuc5TFz3zWOt5usgmWPrfsNo0+4p3WU2dSYd9WVo+rq9g5u2OL29TatXbaeZt24Q72VOEaqtp0k8wD6SHJlRGeGjlrtKK44S0LSOZXoJ8kdy90MKwc5EZ3ftmjss03D1yLbXf9/cnpB0WHRPiI6DDPccNC8MXwiK/uYRY7kpnaP2dwBsmydjEbJWxaat50MABIYe68Ns0DwtbX3bXAPz3FTC+AdrUREe7YBnP/9bxfXrhUMd88/8eaNl6Ojoxk42tVIAZAQhTKWEZAlAHzqR8MAgOeEWDK2TunJ9XScgXfC0F3TY92hTEcxjw4yj6f0evL9bTrHjH8g8n+ACy0dJNlV5WRWNXgL4Ydn5mBly16gODKx/qcC9v7rUQC4eqZeO+/E1utLoU69kwIkhfvgFOcOZRQ2r50GAHdq6sTT7Z4FdJYm2gCIuHb6unDpnXznajcloDWKEgD2iR3NcuqVH3iha1S+agKU/4dlvdTf3WQA+EpF/bh0K5V0N+DNaHkfEDj+1yWavcUx42sjg11ktt19iVa/D/uE2HIfQk+CV7mB2Gw0Flzc//fj/xuX2MaHS2zjw8XF9r8uhPPsfAfduwAAAABJRU5ErkJggg==",
"path": "images_version_5/image_25.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, EF parallel BC, AC bisects angle BAF, then the degree of angle C is ()
Choices:
A:50°
B:55°
C:60°
D:65°
|
Như hình vẽ, EF song song với BC, AC chia góc BAF thành hai phần bằng nhau, thì số đo của góc C là ()
Các lựa chọn:
A: 50°
B: 55°
C: 60°
D: 65°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, EF parallel BC, AC bisects angle BAF, then the degree of angle C is ()
Choices:
A:50°
B:55°
C:60°
D:65°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, EF parallel BC, AC bisects angle BAF, then the degree of angle C is ()
Choices:
A:50°
B:55°
C:60°
D:65°
|
As shown in the figure, EF parallel BC, AC bisects angle BAF, then the degree of angle C is ()
Choices:
A:50°
B:55°
C:60°
D:65°
|
125
|
25
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAACRkAAAYlCAYAAACvzEkKAAEAAElEQVR4nOzdZ1gU1/s38C+9F+lYQCyI2CtWir2LvdeYRI3dn9GoETWa2BI1xpZExd4rih1REFBRxIoVRJGO9A7neZFH/yozy5bZBvfnuvYFM7v33Dvszp45c885GowxBkIIIYQQQgghhBBCCCGEEEIIIYQQQgjhoansBAghhBBCCCGEEEIIIYQQQgghhBBCCCGqjYqMCCGEEEIIIYQQQgghhBBCCCGEEEIIISJRkREhhBBCCCGEEEIIIYQQQgghhBBCCCFEJCoyIoQQQgghhBBCCCGEEEIIIYQQQgghhIhERUaEEEIIIYQQQgghhBBCCCGEEEIIIYQQkajIiBBCCCGEEEIIIYQQQgghhBBCCCGEECISFRkRQgghhBBCCCGEEEIIIYQQQgghhBBCRKIiI0IIIYQQQgghhBBCCCGEEEIIIYQQQohIVGRECCGEEEIIIYQQQgghhBBCCCGEEEIIEYmKjAghhBBCCCGEEEIIIYQQQgghhBBCCCEiUZERIYQQQgghhBBCCCGEEEIIIYQQQgghRCQqMiKEEEIIIYQQQgghhBBCCCGEEEIIIYSIREVGhBBCCCGEEEIIIYQQQgghhBBCCCGEEJGoyIgQQgghhBBCCCGEEEIIIYQQQgghhBAiEhUZEUIIIYQQQgghhBBCCCGEEEIIIYQQQkSiIiNCCCGEEEIIIYQQQgghhBBCCCGEEEKISFRkRAghhBBCCCGEEEIIIYQQQgghhBBCCBGJiowIIYQQQgghhBBCCCGEEEIIIYQQQgghIlGRESGEEEIIIYQQQgghhBBCCCGEEEIIIUQkKjIicuXp6QkNDY0yj8DAQGWnRohKqFmzJud3JCYmRtmpka8EBgZy/q88PT2VnRopB2MMAQEB8PHxQa9eveDs7AwbGxvo6elx/k9nzZpVJsbSpUs5n7t06VKFvx9CCCFEnXD9fmpoaEgcpzL9FsfExHC+15o1ayo7NUJIBeTr68t5zBk/fryyUyuD+lAIIUQ2QrXNCSHkI2qfEXVSmfqW5E1b2QkQQgghhMjLjh07sHr1arx48ULZqRBCCCGEEDWXnZ2NrKws5OTkoLi4GHp6ejA2NoaVlRVdoKukCgoKkJ6ejtzcXOTn50NXVxeGhoawsrKCjo6OstMjhBBCCCGEEEIEp/Aio+joaNSuXRuMMc71ffr0gZ+fn4KzIoQQQkhFkpOTgzFjxuDkyZPKToUQ8pX09HS8e/dOKdt2dHSEiYmJWM8NDAyEl5eXnDP6P/3798epU6cUtj1CCJFWTk4OoqOjZYqhqakJY2NjmJqawtTUFJqaqjfQdlRUFK5fv47Q0FA8fPgQ0dHR+PDhA+dztbW1UbVqVbi6uqJJkybo2LEjOnbsCFNTUwVnrT7Gjx+P3bt3864PDw9HixYtFJhR+RITE3Ht2jWEhITg7t27iI6ORkJCAmcfp4aGBqytrVGvXj00atQI7du3h4eHB6pVq6aEzAkhhBAihMrSDi6vP2TatGnYtGmT3PNQZBG/mZkZ0tPTFbY9QghRdwovMtq9ezdvgREAXLhwAYmJibC1tVVgVoQQQgipSCZMmEAFRoSoqFOnTmHChAlK2fbJkyfh7e2tlG0TQkhFcefOHUGLMDU0NGBnZ4emTZuiadOmcHd3R9euXaGlpSXYNsSVmJiI7du34/Dhw3jy5InYrysuLkZsbCxiY2Nx4cIFrF69Gjo6OujcuTOGDx+OoUOHwsDAQI6Zq5fs7GwcO3ZM5HN8fX1VosgoPz8f+/btw759+xAUFITS0lKxXscYQ1JSEpKSkhAUFIQtW7YAAFq2bIkhQ4Zg3Lhx1PdJCCGEqJmK3A7+nK+vr8j1Bw8exO+//w5dXV3FJEQIIUTlKLTIiDGGPXv2iHxOcXEx9u3bh7lz5yooK0IIIeosJiaG88SnZs2aGD9+vMLzIcrn6+uLo0ePKjsNQgghhBAiBsYY4uPjER8fj/Pnz+O3336Dra0tRo0ahblz56Jq1apyzyExMRE+Pj7YvXs38vPzBYlZVFSECxcu4MKFC5gzZw4mT56MuXPnwsLCQpD46uzYsWPIyckR+RxlX7wqKCjAhg0b8McffyApKUmwuOHh4QgPD8fixYsxdOhQLF68GC4uLoLFJ6QyoH4gQkhFoQrt4K+JUwyempoKPz8/DBo0SEFZEWls2LCBc3SmWbNmwdzcXOH5ECJKYGAgAgMDyyz39PSEp6enwvMh5VNokdH169fFGkpw9+7dVGRECCFELDExMVi2bFmZ5R4eHtS5VAkxxrBmzRre9T169ED//v3h4uICMzMz6OjolHmOlZWVPFMkhBBCCCHlSExMxB9//IF//vkHy5cvx/Tp0+V2R/fmzZuxaNEiZGRkyCU+AKSlpeHXX3/Fpk2bsHjxYsyePZuzHVpZlHd3PKDci1cBAQGYPHkyXrx4IbdtFBUVYf/+/Th48CAmTJiAVatW0XkIIWKifiBCSEWmyHYwF3GKwYH/2nNUZKTaNmzYgDdv3pRZPn78eCoyIionMDCQs30HgIqMVJRCi4zE6UQAgIcPH+LevXto3ry5fBMihBBCSIUSFhaGp0+fllmuoaGBAwcOYPjw4UrIihBCCCGESCMrKwuzZ8+Gv78/jh8/DhMTE8FiZ2RkYPz48Th16pRgMcuTlZWF+fPn49GjR+WO9F1RRUdH48aNG2I9d/fu3Qq9eFVaWooVK1Zg2bJlYk+LJsQ2d+zYgUuXLiE2NlYh2ySEEEKI6pNnO1gUca/jXrhwAUlJSbCxsZFvQoQQQlSSwoqMxBli73O+vr5UZEQIIYQQiQQHB3Mu9/b2pgIjQohgVqxYgf79+wsa09TUVNB4hBBSkVy+fBne3t64ePEitLVl78pKSEhA586d8eTJk3Kf6+TkhK5du6Jdu3aoV68eHB0dYWJiAgMDA+Tl5SErKwtv3rzB8+fPERISgoCAgHJHwMnMzJT5Pair3bt3gzEm1nPPnz+vsItXxcXFGDVqFI4cOVLuc6tUqYLu3bujffv2aNCgAZycnGBhYQEjIyMUFRUhOzsbcXFxePHiBcLDwxEYGIg7d+6ILFyqzJ8JQgghhPATuh0siiTF4MXFxdi3bx/mzJkj15y49O/fHytWrBA0piJHiyKEkIpAYUVG4g6x99HHudcr8/DRhJCKLyYmRtkpEFKh3Llzh3P5wIEDZYq7dOlSLF26VKYYhJDyXbt2TS2GwK1WrRoaNmyo7DQIIUTl7Nq1S6ypaoqKipCZmYmUlBQ8evQIoaGhOHz4MN69e8f7moCAACxfvhzLly+XKcf4+Hh4enri+fPnvM/R1NTE4MGDMXv2bLRp04b3ecbGxjA2Noa9vT3atGmDsWPHAgDu37+PPXv24N9//0VWVpZM+VYkjDGJRnBS1MWr4uJiDBkypNxRrdzc3PDjjz+iT58+0NXV5XyOlpYW9PX1YWVlhSZNmmDw4MEAgLi4OBw4cACbN2/mnLaCiIf6UAghhKgqdWgHl0eSYvCPz1dGkZG5uTn1yRBCiJJpKmpDfEPsubm5cS5PSUmBn5+fHDMihBBCSEWTkJDAubx+/foKzoQQQgghhPDR0dGBpaUl6tWrh0GDBmHdunV48+YN/v77b1SpUoX3dWvWrMHbt2+l3m5eXh769esnssCoRYsWuHv3Lg4fPiyywEiUpk2b4o8//sCbN2+wePFi6OvrS5tyhXL9+nVER0dzruPb17t375ZnSgCAmTNniiwwsrOzw9GjRxEWFoaBAwfyFhiJUq1aNcybNw8vX77Ezp07YW9vL0PGhBBCCFFXymoHl0dUMThfO+3Bgwe4d++e3HIihBCiuhRSZCRqiL3FixejXbt2nOsU0ZFACCGEkIrjw4cPnMvNzc0VmwghhBBCCJGIpqYmvv32WwQGBsLCwoLzOQUFBfj777+l3sb333+P8PBw3vWTJ09GWFgYmjZtKvU2PlelShX88ssvePToETp16iRITHXGdwNiixYteO/Mf/DgASIiIuSW086dO7Flyxbe9e3atcP9+/c/jUgkK21tbUyYMAFRUVGYNm2aIDEJIYQQot4U0Q4uj6hi8O3bt6N69eqc6+g6LiGEVE4KKTLiG2LPysoKPXr0wJgxYzhfd/78eSQnJ8s7PUIIIYRUENnZ2ZzLaV5tQgghhBD10LhxY6xfv553/enTp6WKe/LkSezdu5d3/cKFC7F161Zoa2tLFV+U2rVr4/Lly/jll18qbbs0Ozsbx44d41w3evRodO7cGVWrVuVcz1ecJKvY2FjMmjWLd32nTp1w9epV2NraCr5tU1NTbNq0CWfOnOG9mEgIIYSQykVe7WBx8LW3mjRpgsaNG2PUqFGc6w8cOICioiK55UUIIUQ1yb3ISNQQe8OHD4e2tjaGDRvGOdRwUVER9u3bJ+8UCSGEEFJBSDJvOCGEEEIIUU1jxoyBo6Mj57pHjx4hJydHonjZ2dmYOnUq7/px48Zh5cqVEsWUlKamJhYvXowTJ07A0NBQrttSRceOHeP8v2lpaWHEiBHQ1NRU+MWrqVOnIisri3Odq6srTp8+Lfep7vr27YvQ0FDUqlVLrtshhBBCiHoQuh0sDlHF4B8HiRg7dizn+pSUFJw9e1bwnAghhKg2uRcZiRpib/To0QD+Gz66T58+nM+hofYIIYQQ8rW4uDg8evSozIPv4sPz5885n//1Q5VkZGQgOjoaz549Q1xcHAoKCpSdEiGEcPrw4cMXx6uSkhJlp0QIUXMaGhro3r075zrGGG8/E58NGzYgISGBc52Li4vI6bKE1q9fP2zevFlh21MVfHfHd+3a9dNIQXwjncvj4lVwcDDOnTvHuU5fXx9Hjx6FsbGxoNvk4+zsjKtXrypkW4QQQpQrOTkZL1++xIsXL5CYmEjnTqQModvB4uArBtfU1MTIkSMB/FeA3bx5c87Xy2vUSUIIIapL+DGgv8JXJFS3bl24ubl9+nvMmDE4ceJEmedFRkbi/v37aNq0qbxSBPDfj3NQUBDCwsIQERGBJ0+e4MOHD8jMzER2djZ0dXVhaGgIIyMjVK1aFY6OjnByckLz5s3Rtm1b3vlIVUVRURECAgJw584d3Lt3D8+ePUNGRgYyMzORm5sLfX19GBgYwNjYGNWrV4ejoyNq1aqFli1bok2bNrCxsVFIngUFBbh8+TL8/f1x//59vHr1ChkZGdDS0oKNjQ2sra3RrFkz9OrVC507d1ZYh09+fj4uXbqE69ev4/79+3j9+jVSU1ORm5sLXV1dGBsbw8HBAfXq1UOHDh3Qo0cPODk5KSS3yujhw4c4deoUQkND8eTJE6SmpqKgoAAWFhawsbGBk5MTunXrhl69etH/gUdJSQmuX7+Os2fP4u7du3jx4gXS09PBGIO1tTVsbGzg6uqKXr16oXv37qhSpYqyU/4kLi4OHz58+PQ334lVTk6OxEUj9erVg46Ojkz5fe7Vq1c4efIkgoOD8ejRIyQnJyM3NxdVqlSBtbU1atSogS5duqBXr15wdXUVbLviePToEa5evYrQ0FC8ePECb9++RXZ2NgoLC2FoaAgrKyvUrl0bLVu2RKdOndCpUyeVmtph0aJFEhUi852cf02ZIyHl5eXh6NGjOHPmDG7evFnmQpimpiZq166N9u3bY8CAAejduzfn/yQwMJAzvqenpxyyVj9paWm4ePEiAgIC8OTJE0RHRyMzMxMFBQUwNzdH7dq1sWTJEvTq1Uvi2K9evcLly5cREhKCZ8+eITY2FllZWcjLy4OBgQEsLCxQq1YtNGvWDF5eXujWrZvc744nRB4SEhJw6NAhnDt3DhEREUhNTf1iva6uLho0aIBu3bph7Nixcv+NKywsxO3btxEeHo6nT5/i6dOniIuLQ2ZmJjIzM8EYg4GBAaytreHg4IDGjRujbdu26N69O8zNzeWamzju3LmDCxcuIDw8HM+ePUNSUhKys7Oho6MDOzs7tGrVCocOHRI7XklJCSIiInD79m08efIET58+RWxsLDIzM5GRkYGSkpJPx6QaNWqgYcOGcHNzQ8+ePeUyJZC6un37Nq5du4bbt2/j5cuXiIuLQ05ODoqKimBkZARbW1vUqVMHbm5u6NKlC9q1awcNDQ1lp12h1K5dm3ddRkaG2HGysrLw+++/867fvHmzwkcWUqXzK0WIiYnBjRs3ONd9XljUqFEjNGnSBJGRkWWet3v3bgwYMECwnHx8fHjXzZs3T+HnZ+r0mSguLkZgYOCndsDH/oTCwsJP/WONGzdGt27d4O3tDRMTE2WnLJa8vDxcunQJ4eHhiIiI+NQnmZmZifz8fBgYGMDQ0BAmJiaoUaMGHB0dUbt2bbRu3Rpubm5ybVO8f/8ely5dQnBwMKKiohATE4OMjAzk5eVBT08P5ubmcHJyQuPGjeHh4YFevXopfL8nJibiypUrCA0NxePHj/HmzZtPfadaWlowNTWFubk56tatC1dXVzRr1gxdu3aFtbV1ubFVrR8oPDwcwcHBiIiIwMOHD5GWloaMjAxkZWVBR0cHhoaGMDQ0hJ2dHRwdHVGzZk00bdoUbdu2FfnbpioyMjIQFBSEBw8e4OnTp4iKikJSUhIyMzORlZUFbW1tGBoawt7eHjVr1kTz5s3h7u4ODw8PztkqFEkV+zsTExOxd+9e+Pv74+7du8jMzPxivb6+PlxcXNClSxcMGTIErVu3LhMjPT0d9+/fL7Pc3Nxc7tfNZPGx/yU4OBiPHz9GdHQ0Pnz48OmaiqmpKRwdHdGgQQO4u7ujT58+sLKyUnbaKkGodrC4+PpYO3fuDHt7+09/jxkzBvfu3SvzvPPnzyM5OVmsYzqRj5ycnDK/j6Juxs3OzhY7to2NjaDXiLOzs+Hv748LFy7gwYMHiImJQVZWFvT09GBtbQ1bW1u0bt0avXr1goeHB/T09ATbdnnU7bilyvuyPM+fP0dhYeGnv5OSkjifl5SUJFH7TldXF87OzjLn97mwsDCcOXMGd+7cQVRUFNLS0lBcXAwrKyvY2Nigbt266NmzJ3r27Ak7OztBty1KSUkJgoODcf36dYSHh+PVq1dISEhATk4OSktLYWRkBHt7e9StWxdt27ZFjx49hG03MDnKzs5mxsbGDECZx/Lly794bkFBAbOwsOB87syZM+WWY1paGlu8eDFzcHDg3La4DwcHBzZr1iwWFhYmt1yl8fbtWzZz5kxmbW0t0/urV68eW7RoEXv48KFE2/fw8OCMd+3atS+eV1hYyNauXcvs7OzEzsnU1JStXr2a5efnC7jHvvTmzRs2depUZmpqKtH+0tDQYB06dGB+fn5Sb7u4uJiZmZmVia2trc0yMzOliunv78+bsyxxz5w5wxnT29u73Nfu2rWL87Xjxo0r89zAwEDm7u4u0f9i4MCB7NWrV1K9L0VwdHTkzDs6OlqiOOPGjeOMs2vXri+eV1paynbs2MFq164t9j7U09Nj8+fPZxkZGcK9cRnwvVchHqL2+7Vr1zhf4+HhUea59+/fZ3379mUaGhpib9vT05NFRETIbb8xxlheXh7766+/mKurq8T7xsbGhi1btoylp6fLNUdxyetzwMfHx4fz+T4+PjK/l8LCQvb777/ztoP4HrVr12YHDx4sE0/S98ZFkmOztIQ6/okbJyYmhk2cOJHp6+uXu2/Xr18v9vaLi4vZ3r17WatWrST+vJmZmbHZs2ez+Ph4id6zuuP7fAFl24jKxHfcB8r+vqo7cb/z6enpbOrUqUxPT0+iz3rv3r3Zs2fPBM353bt37I8//mBdu3ZlhoaGUh3ztbW12eDBg9mtW7cEy0vcfVlaWsp8fX1ZgwYNxDpWlCclJYVt376d9evXj/McQpyHhoYG6969O7t48aJg+4MxYX6XGJPvb/FH6enpbOXKlaxmzZoS7z9HR0e2YcMGlpeXJ3Me0dHRvNtQBYo6Pv7999+827l9+7bYcbZt28Ybp3v37oLlS/gtXbqUc/8bGxuznJycL567bt06zufq6OiwpKQkQfKJiori/UxYWlqy7OxsQbajLsT97SopKWFbtmzhbX9zPUxMTNi8efME608Q6hzic0+fPmXffPONxH1/X/+GNm3alP3666+C9kH5+fkxLy8vpqmpKVE+BgYGbOLEiezly5eC5cKlpKSEHT9+XKocP+63Fi1asHXr1rGUlBTe7SirH+hzubm5bM2aNczFxUWm7dnY2LBvv/2WXb16lRUXFwv0n5Dd/fv32cKFC1mrVq2YlpaWVO/NzMyMzZw5k719+1awvNS5vzM5OZlNmTKF6ejoSLQfO3bsyMLDw7+IJUmfZHn4tiukGzdusL59+0r83rW1tdmgQYPk3j8qC3VrB4sjOjqatw97z549Xzw3ISGB9xghSV+auPj2gZD9kxWFqM+mrI/yzrnFbZ9lZWWxRYsWSdRnYWtry/755x9WUlIiv53HVOe4VRH2pbgkOaeQ5FFev4kkfUsnT55kTZo0EXvbmpqabNKkSSwhIUE+O+3/i4+PZz/++COztbWVeP+4uroyX19fQdqhci0y8vX15X0Tr1+/LvP8KVOmcD7X2tqaFRYWCp7fvn37mI2NjeAf4Pv37wueq6RKSkrY+vXreYu8ZHlIcoFZnCKjx48fs0aNGkmdT926dTk/T7IoLCxky5cvZ7q6ujLvLw8PD/b8+XOp8ujbty9nzLNnz0oVb+7cuSJzlTburFmzOOP9+eef5b5WnM6sgoICNnnyZIkKNj5/6Orqsn///Veq9yZviiwyevfuncRFWp8/bG1ty5zkKoMqFxmVlpYyHx8fpq2tLdX2NTU12bJly+Sy344ePcqqVq0q8z6ytbVlx44dk0uOkqgoRUavX7+Wqjjl88fgwYNZbm7up5iSvjcuFa3IaNOmTRIVIYjbMXLt2jVWr149mT93JiYmbOvWrRK9b3VGRUaqR5zv/O3bt1m1atWk/pzr6+uzv//+W+Zcb968yTw8PKS6kCXqMWbMGEEuMIizL2NjY1n79u3Fzk1UkdHTp09Zr169JO4IK+/Ro0cP9v79e5n3B2PqUWRUWlrKtm7dyszNzWXed7Vr12aBgYEy5UNFRv9Zs2YN73YkOccW1da6cuWKYPkSbqWlpaxWrVqc+3/s2LFlnv/+/Xu5X7yaN28e72di8eLFgmxDnYjz2/Xu3TvWrl07qY+N9vb2LCAgQOZchSwyys/PZ4sWLRKk7+/zh7m5uczvMyIigrVu3VrmXHR1ddmyZcvkUsxy/fp1mfpzv37o6emxI0eOcG5L2UVGFy5cYE5OToJv+9SpUwL/VyS3c+dOVr9+fUHfl4GBAfvtt98EuYiprv2dV65ckehm6q8f2tra7LfffvsUT12KjF6/fs169Ogh82dIU1OTTZs2rUwhsipQt3awOPiKwQ0NDVlWVlaZ5/fs2ZPz+U2aNBE0L8aoyEgSql5kFBQUJFNRiZubm8iCZGmp2nFLnfelpFS5yCg9PZ0NHDhQ6hxMTEyYv7+/4PusoKCA/fLLL8zAwEDm/dS8eXMWGRkpUz6akCO+eTjbt2/POYUR39zrycnJvPOkS2vJkiUYPXo07/BbsmBKnGoFAEpLSzFx4kTMnj1boiHvxCXk+wsICEC7du3w8OFDqWO8ePEC7u7ueP78uSA5paSkoEuXLliyZMkXQ7VJ6/r162jRogXOnj0r8Ws7derEuTwgIECqXMp7ndBx+fKXRHp6Orp06YJt27ZJ/dkrLCzEt99+i7/++kvmfNTVgwcP4ObmxjtEvTgSExPRuXNnhISECJhZxVFYWIghQ4Zg2bJlKC4ulipGaWkpfHx88OOPPwqWV35+PsaPH48hQ4bg/fv3MsdLTEzE4MGDMX/+fKX/3qm7hw8fol27drhz545McY4dO4YuXbpwzp1OgB9++AHTp09Hbm6uYDFLS0uxcOFCeHl54dmzZzLHy8rKwpQpUzB69GhB2h6ECO3GjRvo1KkT4uLipI6Rn5+P7777DosXL5Ypl5CQEFy/fh2lpaUyxfna3r170aJFC8TExAga92sPHjxA69atcfPmTUHiPXr0CP7+/rzDoEvrwoULaNq0KSIiIgSNq4o+fPiAXr16YcqUKUhPT5c53qtXr9C5c2f8+eefsidXyb169YpzuY6ODhwcHMSK8fbtW962lqOjIzp37ix1fkQ8N27cwOvXrznXcfUD2tvb8/5f+PoZJXX8+HHedRMnThRkGxXJixcv0K5dO5n6AuLj49G1a1eJpryWp7y8PPTr1w8rV64UvP0t63nypk2b0KpVK9y+fVvmXAoLC+Hj44OePXsKNr1OcXEx5s+fD09PT5n6c79WUFAgU1tTXv7991/07NmTd4o2WahCn8rx48fx9OlTQWPm5eXhp59+gre3N/Lz8wWN/TVV7O88ePAgevTogYSEBKljFBcX46effsLMmTMFyUkRjh07hsaNG+PChQsyxyotLcVff/2FDh064N27dwJkp36EaAeLgzGGPXv2cK4bMGAAjI2Nyyznu44bGRnJOa0fIQcPHkTnzp3x5s0bqWPcunULnp6eSExMFCwvdTxuqeq+rEjevn2Ldu3a4cSJE1LHyMrKgre3N06ePCloXu3bt8fPP/+MvLw8mePdu3cPbdu2xbFjx6SOIbcio5iYGFy/fp1zHd+PUNu2bVGnTh3OdUKehK5duxa//PKLYPFUzfTp01XmpF2UW7duoV+/foKc5L579w79+/eXuWMgNTUVnp6eMp2YcPl4QDl69KhEr+Mr0rl69arEOaSlpSEyMlLkc6SJm5KSwtmpYGtriwYNGkgc73MfO32CgoJkigP812CeMWOG4P9bdfDq1St069ZNkM6ajIwMeHt7IzU1VYDMKo7S0lKMGTNGZGe1JNauXct7gieJ7OxsdOvWTS6/CWvWrMG0adMEj1tZvHnzBt26dZOp0+lzISEhGD16tEp0UqqSxYsXY8uWLYLGLC4uxvDhw/Hbb78JGhcA9u/fj6FDh0pdqEiIPLx8+RIDBgwQ7OaFlStXYvXq1YLEEtrLly/h4eEhlxtRACA2NlbmCw6KlJSUhE6dOiEqKkrZqchNQkIC2rdvL0in4udKSkowc+ZMrF27VtC4lQljDBcvXuRc16hRI+jp6YkVx9/fn3fdkCFDpMqNSIavMKhatWq8fR6iLl6V169RnmfPnvEWPbVs2ZLzpsjKLC0tDb1790ZsbKzMsUpKSjBhwgQcOnRIgMxkM2TIEFy6dEnZaZQxZ84czJgxQ/DzgcuXL6N79+7IysqSKU5+fj4GDBiANWvWVIpzzyNHjuC7776rFO9VHvz8/DBo0CDBbw74SBX7O/39/TFmzBjBvsN//vknNmzYIEgsedq4cSOGDBki+A3vERER8PLyEuSmSXUiVDtYHJIWgwOAt7c3TExMONepw3VJolinT5/GmDFjBCnqfvToEUaOHClAVup53FLVfVmRpKSkoFu3bnjy5InMsQoLCzFy5Ei8ePFC5lhRUVFwc3NDeHi4zLE+l5ubi+HDh0t9fqYtaDaf2b17N2cDXFdXF0OHDuV93ejRo7F06dIyy8+dO4eUlBRYWVnJlNerV6+wZMkS3vU6Ojro0KEDPDw84OzsjKpVq8LIyAhaWlrIzMxERkYG3r17h8jISDx48AB3794V/K5RWdy8eRNbt27lXW9gYAAvLy906NABdevWha2tLYyMjAD815jOyMhATEwMHjx48KnyWB4nAklJSZg5c2aZUResra3Rs2dPeHl5wd7eHtbW1sjOzkZcXByuXLmCkydP4sOHD5wxo6Ki8Ouvv3J+fsRRVFSEvn374vHjx7zP0dTURMeOHTFw4EA4OTnB3t4eWVlZiIuLQ3BwMI4cOcKbX0lJCUaNGgV7e3t06NBBrJwaNWoEa2trJCcnf7H8wYMHSE1NhaWlpdjvLzAwsNz/pTRxr127xvld9/LyEjsGn6lTp5YpMNLR0UHHjh3Rs2dP1K1bFzY2NtDW1kZiYiLCw8Nx4sQJ3jupGGP47rvvEBkZKWhjXJV9LNT6uirZzMwMXbt2RdeuXVG9enXY2NggPz8fCQkJCAwMxIkTJxAfH88ZMzk5GXPnzhXsLtKK4JdffsGRI0e+WKapqYnWrVujd+/ecHV1hY2NDfT19ZGUlISHDx/i9OnTCA0N5Y05d+5c9OrVS+rfvaKiIvTp00dkkZ62tjbat28PT09PNG7cGJaWljA1NUVqairi4uJw9epV+Pv783aybNmyBXXq1MHs2bOlylEWvr6+nJ/BmjVrclbyR0dHo2bNmvJPTAxFRUUYOHCgyIvM1atXx9ChQ9GvXz84Ojp++r15//497ty5g8OHD+Pq1atfHNdPnTqF7du3K+ItqIVLly5h5cqVZZbb2dmhd+/ecHd3h52dHaytrVFYWIi3b9/i9u3b5RYEjxs3TuRzNDQ00Lp1a3h6eqJFixawsrKCubk50tPTER8fjxs3buDs2bO8HaGnT5/G3LlzsXHjRsneMCFyUFpairFjxyItLe2L5cbGxhg0aBCGDh0KZ2dnVKtWDbm5uXj37h1u3bqFvXv3Ijg4mDfuTz/9hKZNm6J79+6C5WphYYEWLVqgZcuWcHV1hYWFBczNzWFgYICMjAykpKQgIiICwcHBCAoK4r1YFBsbi+HDh+Pq1avQ0NAQLL/S0lKMGjWqTPtKS0sLbdu2RZ8+feDs7AxbW1sYGBjgw4cPePr0KS5evCjVXdUmJiZo1qwZWrZsiUaNGsHS0hJVqlSBsbExMjMzkZaWhgcPHiAkJAQBAQG857Tp6ekYMGAAIiIioK+vL9V7V1UZGRno1KmTyLv3DQwM4O7uDi8vL9SrVw9WVlYwNDRESkoK3rx5g0uXLuHixYu8F21//PFH1K5dGwMHDpTX26iwDhw4wDuymCT789q1a7zrunbtKmlaREI5OTm8d0aOGDECmprc9z5+vHOeq9Pf19cX69evlzon+kxI5rvvvuPsGG/ZsiWGDh2KunXrfmoHxMXF4datWzh06BBvwS5jDOPHj4ezszOaN28u7/Q57d+/X+SI+WZmZujSpQvatGmDOnXqwMrKCkZGRigpKfnUd/ry5Us8ePAA9+/fF9mPKImFCxeW+9lu3LgxvLy84ObmBmtra1hYWCA7OxuJiYkICQnB2bNn8fLlS87X3rp1C2PGjMHJkyelauOUlJRg8ODB5c42YGxsjM6dO6Nz586oVq0abGxsYGhoiLS0NKSlpeHx48e4ffs2bt26xduHqgrS09Mxffp03jajpqYmWrVqhc6dO6NevXpwcHCAkZERdHR0kJmZiczMTMTHx+PBgwd48OABwsPDBR1dV95q1KiBVq1aoVWrVnByckKVKlVQpUoVaGho4MOHD0hISMCtW7cQGBgo8jvg7++P5cuXS91fz0cV+zujo6MxYsQIlJSU8D6nadOmGD58ODp37oyqVavCysoKKSkpn659HD58uEwx7Y8//ojff/9dqpwU4e+//8asWbNEPqdu3bro1KkT2rVrBzs7O1haWiI/P/9Tf/65c+fw4MEDzte+fPkS3t7eCAoKqjT9+UK1g8XB93m3s7NDly5dONcZGBhg0KBBnK89cOAA1q5dC21tuV16Jmrk6dOnGDlyZJnjYo0aNdCrVy907NgRtra2sLS0RHp6OmJjY3HhwgWcOXOG9zczICAAvr6+GD9+vNR5qeNxS1X3ZUVSWlqK4cOHl7nRztDQEF5eXujevTucnJxga2uL4uJiJCUl4ebNmzh+/DhvsebHUd1FnYOWJzY2Fl5eXiKvJZmamsLLywuenp6oXbs2LC0toaenh6SkJLx69QoXLlzA1atXOUeYLCkpwbhx4+Dk5AQ3NzfJkpNpsjUeouZbHzBggMjXvnr1ind+uA0bNsic26hRo3jjT548mcXFxUkULyMjgx06dIgNHz780xzeERERMucprfbt23O+Ny0tLbZo0SKWlpYmUbykpCS2a9cu1qdPH6apqckAsA8fPoj9eg8PD858qlat+sXflpaWbMOGDaywsFBkvNTUVDZ+/Hje/6Guri5LTk6W6D1+NGfOHJHzE3p5ebGXL1+KjFFQUMB+++03kfO5V61alaWmpoqd15AhQzjjHD16VKL398MPP4g1D6OkcSdPnswZ5++//xbr9bt27RLrM6KhocFGjhzJ3rx5IzJeaWkp2717NzMxMeF9j3/++adE71GexJljVRx8c5R/vR8NDQ3ZkiVLWHZ2tsh4OTk5bP78+SI/K7LO1ykUIecll2Y7tra2TEtL64tlPXv2ZI8ePSo35tmzZ5m9vT3vPp4zZ47U+U6ZMoU3rra2Nps2bRqLiYkpN05OTg5bunQp7zyv2tra7N69e1LnKTShvlNfE2euXnEtXrxY5P9m0aJFLD8/v9w4t27dYg0aNPji9aampryxJcF3bBZyznOh/ld8cb7eF5aWlmzbtm2spKREZLyioiLe9uDq1atFHhdHjRrFHj9+XG7ORUVF7M8//2QWFha8sc6cOSPRflAnfJ8vAOzatWvKTu8TUfPZ79q1S9npCYrvf8J1TOnbty9LSEgoN+bFixdZtWrVePdh1apVJTqv+Gjt2rVf/Ab/8MMP7MaNG6y0tFTsGC9evGATJ04U+X3euXOnxLkxJvm+LO/8gjEmsv179OjRT/HMzc3Z+PHj2fnz51lRUZHYOcfFxbF58+aVac98/liyZInY8b4mxO8SY8L+FpeWlrJevXrx5mZkZMQWLVrEkpKSyo2VmprKZs6cybv/TE1N2bt37yTKLzo6mjOWo6OjxO9VHuR9fHz06BGzsrLijG9gYCBRv02dOnU442hpabGsrCyZcyWi+fr68n5WyjufHDt2LOfrbGxsJDrGfW3SpEm8OZ0/f17quOqM77erevXqZZY1bNiQ3blzR2S8oqIitnHjRt5zSACsfv36LC8vT+JcZT2HKC0tZTVq1OA9vvzxxx8sJydHopzevn3LNm/ezDw9PRkAZmZmJvH7OnTokMh2Sa9evVhoaKhY72/fvn2c/7uPj02bNkmcH2OMzZ07V2SO1tbWbMuWLaygoECseIWFhczPz4+NHDmS6enpMQBs/fr1Yr1WEf1AixYt4n2vgwYNYs+fP5coXm5uLjtz5gz75ptvmLGxMQPATp48KVi+0urdu/en9+Xq6sqWLVvGnj17JlGMwMBA1rFjR979paOjw6KioqTKT536O0XtAysrK7Zv3z6x4uzZs6dMXwFfX480n3m+HKURFBTEdHR0eGO2bdtW7N9Wf39/Vr9+fd5Yc+fOlSpHoalTO7g82dnZn45HXz9mz54t8rUBAQG8++HUqVOC5ci3DSH7JysyefWTi7udr4/VNWrUYLt37y63/yY2Nlbk+bqtra3U5wOqftxSp30pNCH7fKTZztf7+OM1tPJqDoqKitjvv//OtLW1efeztP38eXl5rFmzZiLbF2vWrGGZmZnlxnr79i0bM2YMbyxHR8dy21Ffk0uRUWBgIG+SJ06cKPf1fIUyTZs2lSmvgoIC3gaZtCdYn4uPj2eLFy+W+CRDKHFxcUxDQ6PMe9PQ0GCnT5+WOf6rV6/YjBkzJOqI4ysy+vzh4uJSbuHI12bMmMEbT5pitLt3734qouJ6/PzzzxJduIiIiGCWlpa88SZNmiR2rK1bt3LGmDx5skTvkevH7uNJvCxxnZ2dOfMT54IJY6IvNH586OjoiH0i9lFwcDAzNDSUy7FESPIuMvr8YW9vz+7fvy9R3D/++IM33qxZsySKJS/KLjL6+rFq1SqJ4kZFRTEbGxvOWNJ2oPv7+/PmV61aNRYcHCxxzLCwMN6T3FatWkkcT15UvcgoOjqa89j78Vjn7+8vUby8vDzm5eUl1mdTEhWhyOjzR4MGDVh8fLxM+UZGRvKehJqZmUnVQfz8+XPm5OTEGbNGjRpSXXhRB1RkpHrEaY8BYD/++KNEcZOTk5mLiwtvPGk6XNauXcucnJzYP//8U+4NCuXx8/NjRkZGnLk5OTlJ9Rss7r4Uquj96NGjzNbWlq1du1bii6JfCw0NZba2tpz5mpiYSHzDykdC/C4xJmyH05YtW3jzql+/vlgFo187c+YM7wX1wYMHSxSrshYZlZaWsl27dok8l169erXY8TIzMzn7SACwunXrSp0nEd/HoouvH40bNy73tZcvX+b9HMhy8aply5a8cYW8cKdOxP3tGjJkiFg3Q3z05MkT3t8VAOzXX3+VOFdZzyFCQ0M5X6+vr89u374tcT5fi4yMZDNmzJDoNe/fv2fm5uaceenp6bGtW7dKnEdCQgJr0aIF72+6pOdGAQEBvMdTAGzgwIEsIyND4jw/evfuHZs2bRrbtm2bWM9XRD9QvXr1OLchRKHDhw8f2Jo1a6TqmxFa7969WYcOHdjly5dlilNSUsKWLVvG+xkZPXq0VHHVpb/z4MGDvPGqV68u1k1+n3v9+nWZi51Cfeb5YkkqJyeHtz9DU1OTLVmypNybvL6WlZXFevTowRlTS0tLJW54VZd2sDhEFYOXd0OpqKJdb29vwXLky4+KjMSj7CKjzx/t27eXqE+hqKiIDRw4kDeeNOcD6nDcUpd9KQ/KLjL6/GFiYsKuXLkiUdxjx47x1hlIe1z88ccfRX4OJL2hjTHGtm/fznuT3P/+9z+JYsmlyIhvpJkqVaqIdTfDtm3beHeaLA0JvgaAp6en1DFVCV+nwPjx45WWU3lFRk5OTiwlJUXiuEVFRczV1ZUzpjQFJF26dOHNcdq0aRLHY+y/jgu+IhcNDQ325MkTseI8e/aMM4azs7PYucTHx3PGmD59ukxx3717xxnXwcFB7BjidGYdP35c7HifW7lypVyOJUJSVJGRubk5e/XqlVQ5du3alTOmtbW1SlQ5q1KR0R9//CFV7P379/PGlLSRV1BQwNtYtrW1lekk4t69e7wFMkIUswpB1YuMvv/+e97/9f79+6XKLTMzkzVu3Ljcz6ckKlKRUZ06dcQaiaI8fEXwhoaG5d7NLUpsbCxvJ9LGjRtlzlsVVYQioxUrVrCHDx8K8pC1AE4I4rTHRo4cKVHR/UcxMTHMzs6OM6aenp7E7//t27eCtj/OnTvHe7eRNL9t4uxLadsLXBISEmQuLvrc3bt3ee9mlfaYJMTvEmPC/RanpKTw3nzk4uIidTEVY/+NUsl3448kF78qQ5FRUVERS0tLY8+fP2cnTpxg8+bNK/c3fdSoURJ1+t6/f583Vt++faV890Rc0dHRvEUJa9asKff1JSUlvCPilTdKuih8xRympqZSx1R34vx2eXp6ij1CzefCw8N5f1dMTU1Zenq6RPFkPYfg+y1ZunSpxO9NKCNHjuTMSUtLi/n5+UkdNyMjg3c0t/JGqPhccXGxyKLxiRMnsuLiYqnzlIa8+4H4fofr1KmjEv1gQnr9+rWg8RYuXMi573R0dKS6BqAO/Z2lpaW83xFTU1OxrwF87dGjRyJH6pf2M88XS1J8/2sAbMuWLRLH+6ioqIi1a9dO8N9/oahLO1gcfMXgrq6uYr1+wYIFvN93aWcb+Rrf/ujfv79gfTLi3iyvjlSlyMjNzY3l5uZKHPfDhw+8N2dLU7ShDsctddmX8qAqRUY6OjosLCxMqtjffvutYMfFJ0+e8PZXduzYUaKbP762efNmzrgGBgZijV7/keBFRqKG2Pv+++/FipGWlsY73ZQkJ0Ff46vMFfcuCVW3dOlSzvd34cIFpeUkqshIS0uLhYSESB37xIkTvLEl6RgODw/njdOkSROZTpQ3bdrEG1uSC7V8wxyLW6XIVcBgY2PDXrx4IVPcPXv2cL5eksK28jqzpkyZInasrxUUFPCOvCLkxR1ZKKrI6PDhw1LneO/ePd64qjBNlqoUGfXq1Uum+HxFIpLeBck3+pmWlpbUjaPPbdiwgTO+l5eXzLGFoMpFRh8+fOAd4aBfv34y5RcWFibyzlKg8hYZCVG0cv78ed74kk4zyuXUqVOcsWvVqiVVUYeqE/dueaEfko42Je4IdrI+Zs6cKZf9LIny/ic2NjYy3Z1+4MAB3tiyTMMlFL4pRocPHy5xrPL2par8XorCNzVkmzZtpIonxO8SY8J1OPFNkWFqair1RarPzZo1izP+hAkTxI6hzkVG8nhoa2uzn3/+WeJz83PnzvHGnDp1qpz2DvmIr49KU1NT7D6HefPmccbQ1dWV6mJ1Tk4O72dC3AtqFVF5v13GxsYyFUX/+eefvLHXrl0rUSxZzyH4boyVdionWT1+/Jj3jmdJ9w2X8PBwzjuVjY2NxZ4OQdRIFx06dBD8orc45N0PxDdLw4IFCwSJX5GVlJSwhg0bcu4/aa7BqEN/58WLF3njyNr/vGbNGpHvX1lFRsnJybzXAH/44QeJc/ramzdvOG8K0NDQELw4QlLq0g4uj6hi8N9++02sGI8fP+bNW6ib5hSxj5s0aSJIrqpIFYqMTExMZCrk4ht5zszMTKI+U3U5bqnDvpQXVSkykmXUuMTERN7CIHFm+vrcsGHDOOM4ODhIdS78NW9vb874y5YtEzuGJgR27NgxZGdnc64bM2aMWDGqVKmCPn36cK7bv38/iouLpcotMTGRc3nNmjWliqdq1O39jRkzBm3btpX69b1794a5uTnnuoiICLHj7Nixg3fdpk2boKWlJWlqn0yZMgUNGzbkXHf06FFkZWWJFcfLy4tz+dWrV8V6fUBAQJllnTp1Qp06deDg4CBo3I+xhWBiYoLVq1dL/XpdXV0MGTKEc50knxF15+npiaFDh0r9+mbNmqF+/fqc6yrTfhRFU1MTmzZtkinGqFGjOJdLuo83btzIufybb76Bm5ubxHl9berUqahevXqZ5YGBgXjz5o3M8SuykydPIi8vr8xybW1trF+/XqbYbm5uGD16tEwxKqLhw4fD09NT5jgbNmzgXN6tWzcMHjxY5vj9+/fn/H6+fv0awcHBMscnRFa//PILTE1NpX79iBEj0KZNG851e/bskTquUJYsWcLZ5r969SoYY4JtR0NDA1u2bBEsnrzMmDEDVlZWZZbfuXMHGRkZSshIOPn5+di+fTvnugULFqBWrVoyb2Px4sUwNDQss/zo0aPIzc2VOX5lYm1tjalTp+Lhw4dYvny5xOfm8fHxvOvs7OxkTY+IwBjjPb536tQJ1apVEysOXz9iYWEh9u/fL3Fe9JmQzk8//STT/pkyZQpcXFw41+3atUvquNJQtb7TP//8E6WlpWWW169fH7Nnz5Y5fosWLTjPV7Kzs3HixAmxc+RiZGQEX19faGoKfnlB6VTtc6JONDU14ePjw7nu8uXLgm5LVfo7+X6PnJ2dMX36dKly+2jWrFmoXbu2TDHk4d9//+W8BmhlZYVff/1V5vgODg6YMmVKmeWMMezdu1fm+OpA1nZweXbv3s15rquhocHbR/01V1dXNG/enHOdr6+vLOmRCmTu3LkyHceGDx/O2dbIyMhAdHS02HEqwnFLVfZlRVarVi3873//k/r1NjY26Nq1K+c6SdoWcXFxOHbsGOe6VatWwdLSUqr8Pvfrr79CQ0OjzPLdu3eLHUPwswC+Hw8nJye0b99e7Dh8HQlJSUnw9/eXJjXOnQVA7EIPVadu72/mzJkyvV5XV5f3wqG4X1bGGO8X1cvLCx07dpQ2PQCAlpYWlixZwrkuNzcXZ86cESsOX9EOX5GPOM/7GJMrtrhxr127xrlcqCKjiRMnwsTERKYY3bt351xemYpjZP2uAbQfy9O3b1+ZL0rx7ePIyEixL3CGhoYiKiqqzHItLS0sXbpUlvQ+0dHRwQ8//FBmOWMM58+fF2QbFdXp06c5l3fp0kWQi5qTJ0+WOUZF8/3338sc4927d7ydoStWrJA5/kezZs3iXH7u3DnBtkGINKpUqYLx48fLHIfvMx4TE4Pw8HCZ48vCzs6Os9AvOTkZr169Emw77u7uvBdZVYm+vj66detWZnlJSQnu3LmjhIyEc/LkSaSnp5dZbmlpyfsZlZSlpSVnf0Z2djZu3LghyDYqA09PT+zatQu///671N8bvhvgAPDesESEcePGDbx+/ZpznSSF8Y0aNUKTJk0410lz8Yo+E5IzNDSUuU9BW1sb8+bN41z35MkTPH78WKb4klClvtP8/HwcPHiQc92yZcsEu6Asy3nGw4cPce/ePc51U6ZMUcniByGo0udEHfXs2RO6urplloeFhQm6HVXo7ywtLcXZs2c5102cOBHa2tpS5wb81wc3ceJEmWLIA1+B6I8//ijTzSmfmzFjBud3sTL0kQjRDhZFVDG4h4cHatSoIXYsvuu4ERERePjwoVT5kYpDV1dX5v5qe3t7NG7cmHOdJNem1P24pUr7siKbPn26zAX0QlxL3bNnD0pKSsosb9CgAYYPHy51bp+rX78+Z9/f69evOa8xchG0yOjNmze4fv065zpJ767v1asXbyWWJFVUn+OLV1EaJur0/urVq4emTZvKHKdRo0acy2NiYsR6fUREBJKTkznXCTUiRN++fWFmZsa57sqVK2LFkKXI6M2bN5xVqJ07d+aNLU7cV69ecY5a4uzsLPZdieUR4mAp62dE3RkZGfGODCeJyr4fyyPEZ7V+/fqcnQ+ZmZlIS0sTKwZfEYunpyfs7e1lyu9zfNXYfIWH5L+OJ74Li+LeIVSedu3awcnJSZBYFYGjoyM8PDxkjnP27FnOu4vr1KmDVq1ayRz/oy5dunCeiNL3iijbgAEDOC8SSKpv374wMjLiXCdugbs88d0Q8+jRI8G2MXbsWMFiyZsi9ocy8LWVvL29YWBgINh2qK0ku8DAQPTp0wcODg747bffpLqwyzWC5Ed6enqypEfKwddvZ2hoiEGDBkkUS8iLV/SZkJyo329JDBw4kLc9IW7fmBBUqe80MDAQmZmZZZYbGxujb9++gm2ndevWnP2S4vwm+fn5cS7X0NAQ5IYOVaVKnxN1ZGRkxFkgGhcXx1nsLe02VKG/MzIykrPPTkNDAyNGjJAltU9GjhzJW/imDFFRUXj+/HmZ5RoaGoJd+ASAqlWrokGDBmWWh4eHiywargiEaAeLEhQUxFsMLu5sNB+NGDGCt5iORjMiXl5esLW1lTmOrMfqinDcUpV9WdENGzZM5hhC7GO+vqvhw4cL2iaQte9K0CIjviH2AMkLNnR1dXn/mWfPnkVqaqrE+fFNW7Vnzx5cvHhR4niqhu/9rVu3Dvfv31dsMuWQZFQrUerUqcO5nOsknQvfFCRaWloSd3zx0dfXh7e3t0Tb/5qDgwPn3UFv377FixcvRL6Wa+ozR0fHT6NmcBUZiRNX3lOl6evr8w63KQknJyfOu79ycnI4LxpXNG5ubjLfNQPI/l2r6IQ4punq6vLeKSLufr506RLn8gEDBkidF5emTZtydjRTxTu/ly9f4sOHD5zruCrGpSVkLHXXvn17QRrdfN8rvt92aVlZWaFevXpllj948IDzzgVCFEWo3xBDQ0Peu3lu3rwpyDZkwddZI2RHi6yjpCqSIvaHojHGeEemE7qt1KFDB87l1FaSXHJyMhYuXIjGjRsjNDRUotcWFhbyrtPR0ZE1NcIjNzeXd8Rob29vGBsbSxRv1KhRvCO6SHrxij4TkhNiamDgv5Gi+DqxFTk9MF/f6cKFCxU+/TffeUaPHj2gr68v2HY0NTXRtm3bMsuTkpLw/v17ka/l6lME/hudka+fqCLg+5wEBgbi33//VXA26knebUlV6e/kG+XTxcUFDg4OUuf1uZo1a8LZ2VmQWELgO3a1aNFCohFwxMHVpi4pKcGDBw8E3Y6qkqUdLApf+0lfX1/i331bW1vevsj9+/ejuLhY0vRIBaIq14ErwnFLVfZlRVarVi1BbtSXdR+np6fzti9Ure9K9pbY/ydqiL3WrVtL1RAaM2YMtmzZUmZ5YWEhDhw4IPGcti1atIC5uXmZivnS0lL07dsXc+bMwdy5c2FtbS1xrqrAy8sLmpqaZQonsrOz0bFjRyxevBhTpkwRbOg3WTRr1kyQOHzvRdwvK99db/Xq1eMdfUgabdq04byT7/Xr18jNzYWhoWG5MTp16sQ5XUNAQADq1q3L+zquDoGPoxgBQLVq1VCvXj08e/ZMorjyLjJq0KCBIHfNa2howNjYGBkZGV8sZ4whKytL0P+zKlKV71pFZmlpKVhjVJb9XFBQwDu6AN8UA9LS0tKCnZ1dmWPSq1evUFxcLEhHT0XDNwWAnZ0dbGxsBNuO0P9rdSZEoSoA3mmc5LGvq1WrVmY40vz8fLx580aQKfXUwc6dOwUdIepzjo6OgsXatWuXIFOIqQOhvkvAf+2SEydOlFmuyGlS+FhYWHAuT0hIECS+qampWl2Mk/f+UIbo6Gje0SGFPqbb2tpCW1u7TKe6uENOq7MVK1agf//+Yj03Ly8PGRkZSExMREREBEJDQxESEsL53JiYGLi7u2Pfvn1i310oamQaUcUmRDbHjh3jveNemhGj7ezs0KVLF86bA/fv34/Vq1eLff5BnwnJtWzZUrBYLVq04BwJRpHTqXTp0oVz+fv379GqVSusWLECY8eOFbTIh4+izzO4REVFoWrVqryv47vAwHdBoqKwsbFBo0aNOD+b3333HW7duoXFixcLen5R0ci7Lakq/Z185zFCf4+bNGlSpu9eWVTl2NWuXTvBtycrVWoH8xFVDN6vXz+prh2OGTMG/v7+ZZYnJibi/Pnzgo7O99G4ceNopCQ1oCrH6opw3FKVfVmRqco+vnfvHucAGXp6eoJPoSnq8yoOwa4CBgUFcRZAAJIPsfdRmzZtUKdOHbx8+bLMOl9fX4mLjLS0tPD9999j9erVZdYVFRVh9erVWL9+Pfr06YMBAwage/fualVwZG1tjSFDhuDw4cNl1mVnZ2PBggVYsWIFBgwYAG9vb3Tu3FlpBRZWVlaCxDExMeFcLu6XlWuIPEC4g8lHfFPDlZaW4sWLF2L9mHXq1An//PNPmeUBAQEihyjmGtbs60KgTp06cRYZSRpXQ0MDXl5evK+RhFCfEeC/z8nXRUbAf5+Til5kpCrftYpM6M8qF3H2c1RUFIqKijjXyWP+bktLyzK/+6WlpYiPjxf8DoCKgO+uWL55kKVFRUb/x9XVVeYY6enpePv2Lec6eX2vuMTFxVWaIiMnJyfeO4eJ4llZWYm88CQpvmNedHS0zEWqOTk5CAoKwsOHD/Hw4UNERUXhw4cPyMrKQlZWFnJzc6WKK9TQ9C4uLgqd5qCwsBA3b95EZGQkHj58iCdPniAtLQ1ZWVnIzMxETk6OVHGFHqpfkfguYhsbG6N69eqCb8/CwgJJSUlfLIuPjwdjTKWmvBBatWrVpDqOf5w+9vnz5/j11185b9IpLi7GmDFjYGZmhh49epQbU9QUeAUFBRLnSMTDd8FH1J3u5RkzZgxnkZGkF6/oMyEZMzMz1KxZU7B4fO2Aly9foqSkhHfEKiE1b94cbdq0QVhYWJl1ycnJ+P7777Fw4UIMHjwY/fv3h4eHh1g3BkqD73dJ0ecZfN6/f887Gm/r1q0FyUuVTZ06FVOmTCmznDGGf//9Fzt37kTXrl0xcOBA9OrVSy5tCWWKj49HSEgIHj58iAcPHuD169fIzMz81JaUtjBTqLakqvR3KrKv58iRI4LGlJaqH7uUSZXawXxEFYNLex23f//+MDEx4Yzr6+srlyIjoh5U5VhdEY5bqrIvKzJV2cd8n9c6deoIfr4k6+dVsCIjvk4EbW1tmeY0HDNmDHx8fMosv3fvHh49eiTxj/b//vc/7NmzB/Hx8ZzrCwsLceLECZw4cQIaGhpwdXVFx44d0a5dO3To0AFOTk5SvQ9FWb58Oc6dO8c7v2N2djb27t2LvXv3QlNTE02bNoW7u/un9yfEUGDiqFKliiBx+L5Q4k4rwjcscP369aXOiQvXPJyf5yBukRGXa9eu8XZUP336lPOzzlVktHXrVrHjPn78GImJiWWWN2rUSLADsVCfEUD2z4k6U5XvWkWmKp9VUUO7K7JgNjU1lYqMOHAdM4H/7swWkhBzM1cU5ubmMseIjY3lXSev0Xa4SDNNMCFCEHrkHb5RMktLS5GYmMh7B40o586dw759+3DmzBmpC4lEyc/PFySOEMckcQQFBWH37t04fvx4mRF8hSDU/lAGvrZSdna2wop+iouLkZGRobDPgzpydnaGr68v+vXrh+HDh5cpoi8qKsK4cePw9OlT3lESPuLr3APAO6oVkc2bN28QGBjIuW748OFSd4oOGDAAxsbGnH1du3fvFvviFX0mJCP09Dx8F3JKSkqQlJSksD7J1atXo1OnTrzn2ampqdi+fTu2b98OHR0dtGrV6ou+4fKOPeLIzMzk/Z0eMmSIzPHFJeo8g+9mC+C//r+KbuLEidi8eTPviNGlpaW4ePHipwLI2rVrf9HHLo8Ll/KWl5eH/fv34+DBgwgMDOS8i15WQrUlVaW/szL29fC1qefNm4d58+YpJIeK2kciZDuYD991XCsrK6mLlwwMDDB48GDs2rWrzLqzZ88iLS1NkN9Oon5U5VhdEY5bqrIvKzJ572Nx21V8n9fHjx8rrO9K3M+rphAbEzXEXo8ePWQqOhA1lLI0w+FZWVnhxIkTMDIyKve5jDE8fvwY27Ztw9ixY1GrVi3UqlULkyZNwvHjx1XyLidnZ2fs2bNHrLuAS0tLce/ePWzYsAFDhw5F1apV4erqiunTp+PChQtyPaiIGqJakZKTkzmXC93pa2Jiwntg4cvhazY2NpzFSsnJybyVjVxTmtWvX79Mx42Xl1eZg5OouFyjGAHCTZUGqM5nRN3RfpQ/VdnHfEWTipaXl6fsFFQSX6W60FOYVvTR2SQhxL6l7xWp7IQ+RomKl5KSIlGsBw8ewN3dHX369MGhQ4fkUmAECNfRIu8pq2NiYuDt7Q13d3fs2LFDLgVGgHp3PNExXb0MHDgQW7Zs4VyXlJSEn376qdwYokZiU+ep/1TZ7t27wRjjXCft3fEAYGhoiIEDB3Ku8/PzE7tAiD4TkhG6b0zUuYq4fWNCcHd3x/r168V6blFREUJCQrB69Wr0798f1tbWaN68OebNm4egoCDez3t51OE3ia94AuCfCqsi0dXVxalTp8Se3vzVq1fYtWsXvv32W9SvXx9Vq1bF6NGjsXfvXrUYCfLUqVNwdXXFt99+i4CAALkUGAHCtSVVpS+usvX15Ofn845wpkgVvT0tRDuYS3nF4LKMLMzXzissLMSBAwekjkvUmyocqyvKcUsV9mVFpyr7WBXOE8T9vApSZCSPIfY+qlWrFtq3b8+5bv/+/SguLpY4Zps2bRAaGirVnbnR0dHYsWMHBg8eDDs7O3z33Xe8U24py4ABA3DlyhWpKtyfPn2Kv/76Cz179kS1atUwd+5clR1+Ugh8XxR5XATgu2NOkh8XviKeq1evci7nKjLq3LlzmWWWlpacoylJEldUfoQQ+VOVTitph8yu6PgKkxV5Ab+yEaegvDz0vSKVnagRH6Qh6hglSZt4/fr1aN68OYKCgoRISyGEOCbxOXLkCFxdXXH69Gm5baMioGO6+pk0aRJatmzJuW7Pnj3l3l0nauoaUaOAEukwxrBnzx7OdfXr10eLFi1kii/ExSs9PT3eGyHfvn0rdcFIRaXIdoC8ioX5TJ8+HUeOHJH4PZaWliIiIgLr1q2Du7s7atWqhaVLl0p88UodfpP4/ieampqV5ryzdu3aCA8Pl2oU2/j4eOzfvx9jx46Fra0tRo4cifDwcDlkKZuCggKMGjUKAwYMQExMjLLTUTuVra9HHY5dFYWs7WAu8ioGBwBPT0/eke2lGSyCEKHQcYuoG1X4zIr7eRWkyIjvR0JPTw+1atXCo0ePZHp07NiRM35CQgIuXLggVc6NGjXCo0ePsG7dOqlHWkpPT8c///wDV1dXfPPNNypRDfmRh4cHnj9/jkWLFsHY2FiqGImJifjjjz9Qp04dzJs3T62Hxufz9ZCTH8ljvnW+CwuS/LjwFfFwFf0wxjgr0/licC3niltaWorr16+XWa6lpQUPDw/O2IQQ+VOV0fWoY14yQt8dqM4jTKgi+l6Rys7AwEDQeKLa2Hzt8q+tXbsWc+bMoePd/3f48GEMHz68wt/NKwQ6pqun2bNncy7Pz8/Hvn37RL62Vq1avCMKP3nyRObcyJeCgoLw6tUrznUeHh4y9w3a2NjwjqwjycUrvinAcnNz6QL7V4TuGxNVcKuMCy9DhgzBixcvMGXKFKnvXI6JicGyZcvg5OSEVatWiX1+pw6/SXz/E0NDQ4VN1aAKatSogbCwMOzYsQMODg5SxcjLy8PBgwfRqlUrDBw4UORUdIpUUlKCoUOH0igjclBR+3rU4dhVkcjSDv6aqGJwe3t7GBoaytROe/z4MTw9PTnj3717l3fqSULkjY5bRN2oymdWHNKPf/f/iRpir6CgQKpKf0n4+vqiT58+Ur1WT08Pc+fOxfTp03HmzBns378fAQEBvMNc8ikpKcHOnTtx9epVnDhxAs2bN5cqH6GZmppixYoV+Omnn3D06FEcPHgQQUFBEndA5+fnY926dbh8+TJOnDiBWrVqySljxdPR0eE8aZbHHVQ5OTmcy3V1dcWO4eHhAU1NzTInKjdu3EBJSckXHaj3798vM2S4pqYmb2OvU6dO+OOPP6SKCwDNmzdXmbsqCKmMNDUFqRsmcqKvr8+5XNI2R3mEjlfZ0feKVHZ87VdpZWdn864Tp01848YNLFiwQORzdHR00KJFCzRr1gy1a9dG1apVYWVlBRMTE+jp6UFbW5vzwtjp06exePHi8t+ECnn+/DkmTpwosrNKU1MTTZo0QfPmzVG3bl1Ur1790/4wMDDg3R937tzBxIkT5Zm+wtExXT2JGi03MDAQM2fO5F1vYGAAFxcXPH78uMy6t2/fIi0trVJM+aMoogp9tm3bhm3btslt2x8vXjVs2LDc5zZr1gwhISGc6+7fvw8nJyeh01NbQveNiWpXSNI3JiRbW1ts2bIFK1aswIEDB3DkyBGEhYWJXfz8UUZGBn766SdcunQJR44cKfeGVnX4TeIrvMrNzQVjrFIVGmlqamLixIkYP348Ll26hL179+LSpUsST/cLACdPnsSNGzdw4MABdOvWTQ7Ziu+3337DmTNnRD7H1NQUbm5uaNy4MZycnGBnZwcLCwsYGxtDR0eHd3qlxYsXV4pRNitbX486HLsqElnawV8TVQweHx+PRo0aSZyfJHx9fbFu3Tq5boMQLnTcIupGnT6zMhcZiRpiTxE+zr0uS8eQrq4uBg8ejMGDB6OkpAR37tzBtWvXEBQUhJCQEGRkZIgV582bN+jevTtu3bqlUoU4RkZGGD9+PMaPH4+CggKEhITg+vXrCAoKQlhYmNidBpGRkejevTvCwsJgaWkp56wVw8DAgLPISB4Nd74hziS5Q7xKlSpo2rQp7t2798XyzMxM3LlzB23atPm0jGsUombNmqFKlSqcsd3d3aGtrf3FFITixgVoqjRClE3UXaZ3795VWKctdcpz47vruqJ2PFUUor5Xfn5+qFmzpkLyEDXdCyHyJPQQvaKOUeWNlsAYw/Tp03nvCq5Tpw4WLlyIwYMHSzW9y+3btyV+jbLNnTuX91zO3t4eCxYswMiRI6UauTcpKUnW9FQO32fMysoK165dU1ge1apVU9i2KgI7OztUrVoV79+/L7MuLCys3Ne3aNGCs8iIMYbr169jwIABguRZ2eXm5uLYsWNKzWH37t1Yu3Ztuc8TNW1bYGAgfSY+o0rtAHmzsLDAtGnTMG3aNOTk5ODGjRuf+k7Dw8PFHmnp2rVr6NevH65duyZydCRR73fbtm1o3769xO9BGjY2Nrzr+HIsLS1FZmYmzMzM5JWWytLU1ESPHj3Qo0cPMMYQGRn56RpCcHAwkpOTxYqTmpqK/v37IzAwEG5ubnLOmltcXBxWrlzJu75Tp0748ccf0blzZ95CIlEqy42ola2vR9Sxa8mSJRgyZIhC8uC7vlHRyNoO/pyypyzbv38/Vq9ezTvKKCHyQsctom74PrONGzfG/v37FZyNaDIVGYkaYk9RCgsLcfDgQfzwww+CxNPS0kKbNm3Qpk0b/PTTTygtLcX9+/dx48YNnD17Fjdu3BB5N0tKSgpGjRqF0NBQQfIRmp6eHry8vODl5QXgv2kJ7ty5g+vXr+Ps2bMICwsTOZzny5cv8cMPP+DQoUOKSlmurK2tOYvI0tPTBd1OVlYW77Cm1tbWEsXq1KlTmSIj4L/in/KKgUQVApmYmKBly5ZlGqjixC0vNiFE/kQVf1atWhV2dnYKzIZ8jW//Cz1MuqoMuy4OdRj6U9T3ysrKSqy75QlRZ0K3iUXFE3WRCwAuX76MBw8ecK4bMGAA9uzZI/U00QBUauprcTx79gxnz57lXNehQwccP3683H0qirrtD3HwHdOzs7PpeK7iLC0tOS+uJCYmlhl592tdu3bl7be6cOECFZQI5NixY4IXpEhq3759WLVqVbkXr7p27cq77uLFi0KnpdaEbgeIuolT0r4xeTIyMkLPnj3Rs2dPAP9NdRUWFoZr167Bz88P9+/fF/n60NBQ+Pj4YNWqVbzPEXWeYWZmphK/S6LaER8+fKiURUaf09DQQNOmTdG0adNPUxo9efIEN27cgL+/P65cuSJyNoH8/HwMHToUL168UMpIXps3b0Z+fj7nul9//RULFiyQabSqitiW5FLZ+npMTU2ho6PDeX3MwMBAJY5dFY0s7eCPVKEYPCEhARcuXEDv3r2VmgepfOi4RdQN33lCQUGByn1eZRpzSdQQe4okzypcTU1NNG/eHLNmzcKVK1eQlJSEjRs3ihypKCwsDOfOnZNbTkLS0dFBu3bt8NNPP+HmzZuIi4vDihUrYGtry/uaI0eO4OHDhwrMUn6qVq3Kufzp06eCbufJkycS58CHr5jn8+Kf4uJiBAUFlXlO586dRcbmWi9OXF1dXXTo0EFkbEKIfDk4OPCu45rikCgWX7uB74K5tCIjIwWJw9dJwVcwKw11+FzS94pUds+ePRN01NqoqCjO5dra2uVeXDxy5AjncldXV+zfv1+mAiNA/b7TR48e5Vxua2uLEydOyFRgBKjf/hAH3zE9Pz9fLtNlE+HwjYbAGCv3Imb37t15hxs/ceLEFyP5Eukp++544P8uXpWnevXqvJ2zz549E6w9XRE8f/5c0Hh87QAtLS2Zf7fkycDAAF5eXli+fDkiIiLw6tUr/PjjjyJHatm0aZPIUQGrVq3KOzqMqvwGizoXqij9wkJzdXXF5MmTcebMGaSkpGDnzp1o0qQJ7/NjY2Pxzz//KDDD/8PXtp4wYQJ++uknmafDU5XPsbzx9fUI/VuiKr9NmpqavKNyVpb/uaLJ0g7+SBWKwQHVaC+SyoeOW0Td8LXBVfHzKlORkar8KISHh3MOfy0P5ubmmDFjBp48eYKpU6fyPk9dR/qxs7PDokWL8OzZM947+hhjvCci6sbZ2ZlzeXl3JUmKL56mpibq1q0rUayOHTtCR0enzPKbN29+GhXizp07ZRqOOjo66Nixo8jYXAVMn8e9ffs2srOzyzzHzc1N6UNbE1LZ1a9fn3fdixcvFJgJ4dKgQQPO5R8+fMCbN28E245Qv198F+u5fgOkkZ2dLfaUA8pUo0YN3n1B3ytSGWRlZSE6OlqweHyd43Xr1i13znGuQncAWLBggUTTD/N5/fq1zDEUiW9//PDDD4KMBqFu+0Mc1FZSX6JGPylvZERra+tPIzl/LSUlBSdOnJApNwK8efMGgYGByk4DgPj9lMOGDeNdt337doGyUX8ZGRmCnqvw3WBRp04dtZo+pVatWli9ejWioqJ4pzXLzc2Fn58fbwwtLS3e/kBV+U2yt7eHhYUF57pbt24pOBv1Y2hoiAkTJuDevXtYsWIF7/OUcQ0hPj6e88ZxDQ0NLF26VJBtVMS2JBe+vh5FXVtQBr42taocuyoaWdrBH6nKdVw/Pz+VvEhOKj46bhF1wvd5TUlJUbmRIqUuMhI1xF7fvn3BGBP8kZyczHuXx+7du6V9K1LR09PD5s2b0b17d871fFNKqQszMzMcPnyY9+4udX9/HzVu3Jhz+bNnzwSd65jv5LtWrVoSF+cYGxujVatWZZbn5+cjJCQEAPf/p02bNuVuq127dtDX15coLkBTpRGiCmxsbODo6Mi57vr16wrOhnzN0dGRdxhtUZ3PkiguLsb58+cFicU39L1Qv41c036qIk1NTbRo0YJzHX2vSGVx584dwWKFh4dzLm/UqJHI1xUXF/NeqOjXr5/MeQFAcHCwIHEU5dmzZ5zLhdoffEVM6qxJkya805HQMV21paSk8K4TZxSzSZMm8a5bs2aNVDmR/7Nnzx7eUe/u3r0rl/7BWbNmcW7Pz89PrI7XCRMm8Ba1+Pr6ihyBprIRsh1w9+5dzuWqNuy/uOzt7XH27Fne0eDL6ztt3bo153JV+k1q3rw553J1azcpk6amJhYtWoTvv/+ec31YWJjCR1Tka0c2adJE5AhW4nr58iUSEhJkjqMO2rRpw7k8JiYGjx49EmQbkZGRiI2NFSSWEPiOXUFBQYKOgkv+I2s7WFQx+PTp0+XSTuMriisoKFDbwRmIeqPjFlEnfJ9XxpjK9dVJXWR0/Phx3iH2Ro0aJXVColhZWfEW9ezbt0/QKTzE9b///Y9z+fv37znneFQnOjo6mDlzJuc6Ie9kUia+Kb6Ki4sFu6OxoKAAJ0+elGj75SlvyjSujgxxCoH09fXRtm1bieKKG5sQeeHrHFaHUVKExjcl4pUrVxScCeHCd6zcv3+/IPEvXbqE5ORkQWLxDcf88uVLQeLfvHlTkDiKwPe9unHjhtq39QgRB9+NJZJKS0vjbUuWN9pmWloa55RGZmZmvEWRknj+/DnevXsncxxF4rsAzldwLImsrCzegjB1pqenx3v+RW0l1fX27VveC5UmJiZiHQMGDBjAO0T+3bt3sW/fPplyrOz4bvpzcXHhLVCQFV+/Y0FBAQ4ePFju66tVq8Y7endeXh4WLlwoU34ViVDtgPT0dFy+fJlznbR9Y6rA3Nyct5CxvL5TvvOMyMhIkReVFalLly6cy2/cuCHYuaE01LEfiO8aQnFxMd6/f6/QXOTZjgQqzs3J4qhXrx6qVq3KuU6ovh6h4giF79iVmpqKiIgIBWdTsQnRDhZVDC6v67hNmjThHeVLVUZVqizU8fdSHui4pR7o8/qfmjVr8k7Hqmp9V1IXGfH9GBgbGwt29ySXkSNHci6Pj4/HxYsX5bZdPi1btuRdl5qaqsBM5IPv/anKya6smjZtyjudgFAN+HPnziE9PZ1zXdeuXaWKyXeh+urVq1+MPPQ5vh9ScWJ/jBsaGlpmnaGhIe9dG4Qowtejb32Ul5en4EyUj6+j/OHDh7h27ZqCsyFf4/v/hIWFCTLc/IYNG2SO8VHNmjU5l8fGxvL+pkni8OHDMsdQFL7/W2pqKl2UJJXCuXPneG8ukcTx48d5C/P4LmB9xNehIMQ0aQCwefNmQeIokjz3yb///iv20Pvqhu+Y7u/vr9SLpYSfqE40V1dXsWLo6elh8eLFvOv/97//ITExUeLcZPH8+XOFbk9egoKCOKfcAfj774TQsmVLODs7c64T9+LV0qVLeafq3LVrl8IvkqvqZ8LPzw85OTkyxzlx4gTvb1d57QBVJ23fae/evaGjo1NmeWlpKTZt2iRIbrLq27cv53LGmFKnFlTHfqA6derwFgQoup9d3m3rLVu2CBJHXfC1L3ft2iXzeVRGRobKFWW0a9eO93rKxo0bFZxNxSZEO5ivGLx27dpwc3OTKi9x8LUD79y5gydPnshtu+RL6vh7KQ903FIP9Hn9P3xti927dwtybUYoUhUZxcbG8l6sHDBggGANUi79+/eHkZER5zplNLj4hlsHwJunOuF7fxXhvQH/zTU9ZMgQznVXr17lLKqRRGlpKX755RfOdYaGhlIX5HFNawb810i7dOkS8vPzy2xL3EIgrmIkvrgA0L59e5HfA0LkzcLCgnN5XFycgjNRvh49evDepc13LCKK06dPH97P64wZM2QanvXUqVO8dwZLw8rKCtWrV+dcJ2tRd2BgICIjI2WKoUgNGzbkHaZ01apVnKOrEFKR5OXlyVzEWFRUhHXr1nGua9SoEVxcXES+nu/YmZKSIvOIYikpKdi5c6dMMZSBb5/Ieid8QUEB/vzzT5liqLKRI0dy9leUlJTg119/VUJGRBTGGNavX8+73sPDQ+xY33zzDe+xJjExEcOHD1fYHZJr1qzBggULFLIteRPVDyfPIiNR8cW9eNWgQQOMHz+ec11paSlGjhypsFHurly5IvVNaPKWm5sr88WX4uJi3nZA/fr11Xa6tI+k7Tu1sLDgvYCwadMmZGRkyJybrFxdXXnPhbZu3co7na28qWs/kKr0s8urHQn811+gTuf7Qhg7dizn8sTERCxfvlym2D4+PoKNWC0ULS0tTJgwgXPdgQMHlHZcqGiEaAcrqxj8Y3wNDQ3OdapWOFeRqevvpdDouKUe6PP6f7755hvO5ZmZmSrVZydVkdHu3bt5L4TJ+8fJyMgI/fv351x35swZseZeFxLfnUbGxsYwMTFRaC7ywPf++IYBVUcTJ07kXM4Yk/mi7z///MM7B+2QIUPEmjeXi56eHtq1a1dmeXFxMZYtW1ZmeceOHTnvjuLSqlWrMp9dvrgATZVGlK9atWqcJy3JyckVZtQ1cWlra2P69Omc665du8bbsUsUQ19fH5MnT+Zcd/v2bakLwWJjYzFt2jRZUuPEN72FLCP9FRYWYvbs2VK/XlnmzJnDufz58+eYNWuWYpMhRAlWr14t00WHzZs3855X8LXFP2doaAhDQ8Myy4uLi3H9+nWp8wKASZMmITs7W6YYysB3F97Vq1dlivvjjz8iJiZGphiqzMLCAuPGjeNct2vXLsGmBSLC+Ouvv/Dw4UPe9Xw3DHHR0dHBjh07eEeuCQwMxMiRI+VaPJyZmYkRI0Zg/vz5KC0tldt2FCU3NxdHjx7lXOfm5obatWvLdfui+h/57tr/2rp162Bvb8+5LjExEV26dJHrKFeMMaxevRo9e/ZUiYISPr/99hvvdC3i2Lp1K54+fcq5jq/QS53I0nfKd2704cMHjB07VqY+SaHMmDGDc3lOTg7Gjx+vlOOZOvYDffjwgTc3Rfez87Ujb926JVO7OD09Hd99953Ur1dXrVu35uynB/4bIUPaqU0uXryosiOu/vDDD5xFc8XFxRg2bBjnjcpEMkK0g5VZDF6zZk20bduWc92+fftQUlIi1+2T//DdQMrXLqvI6Lil+ujz+n/q16+PHj16cK5buXIl52xGyiB1kREXGxsbhQxxK2ru9UOHDvG+bvfu3YLfhcR316sy7sLZtm2b4FO0qdL7k5cWLVrwfm7Dw8Mxb948qeKGh4fzzretoaGB+fPnSxX3I77innv37on9XC7a2tro2LGjWHEljU2IPOjr6/NO7XT27FnFJqMCZsyYwdsgW7BgAU6ePCn4NgsKCnD69GnB41ZEc+bMQZUqVTjX+fj4SHyXcHx8PLp16yaXin6+aTb9/Pxw8+ZNqWL+73//4y2+VWVDhw7lnQZh8+bNcrmDoKSkRKqL3b6+vtDQ0OB8LF26VPA8SeWQk5ODESNGSDWF1p07d3inKTIzMxOryAgAmjVrxrl8zZo1Euf00erVq9X294tvf6xfv17qIolDhw6pzPQs8uTj48M7YsD48eNlHs2WS1ZWFs6fPy943Irs4MGDIguT27VrJ3L6er7XiDoPP378OLp16yZ4vwoAXLp0Cc2aNRPZZyUK328733mQIhw/fpx3Ghi+fjsh1a1bF61ateJcJ+7FqypVqmDnzp28xWfPnj1D69at5dJ+ff78Obp06YIFCxao/MiY2dnZGDFihFSjfd29excLFy7kXGdiYqLwgoQNGzYIMv3bRyUlJbz95OL0nbZp0wYDBw7kXHfmzBnMmzdPLoVGFy9eFLuwbcSIEbzT8gQFBeG7775T+MViefcDHTt2DM+ePZM5zud27drF+b+0s7ODpaWloNsqj6urK+eFVllGtCwsLMS4ceMQGxsra3pqie+msaKiIgwYMEDiPpSgoCAMHDhQZX8fHBwceG92Cw8Px/jx42UecZZLaGhopfiMCdEOFlUM3rx583JHExYCX3swPj4ely5dkvv25W3p0qW8bXRVGa2pfv36nMv9/PwUnIny0XFL9fF9Xh89eoTo6GgFZ6N8q1at4jxPLSwsxKBBg+Qy3XZycjLvTGZcJC4yEjXE3tChQ6GtrS1pSIl169YNVlZWnOtEHbx37dqFWrVqYfz48SKrgMV16tQp3mryoUOHyhxfUqtWrYKDgwNmzpwpyBdu06ZNvD82ynh/8rR69WreTqXff/8dK1eulCjew4cP0atXL967P7755hveA6a4JCnu4btQLGtsMzMztGjRQqLYhMgD3x1DPj4+la4RZ2BggK1bt3KuKykpwaBBg/Dzzz8Lcrdheno6Vq1ahZo1a2Lu3Lkyx6sMLC0tRf6mzJo1CwMGDCi3aIgxhj179qBhw4ZfdH7WqFFDsFxHjhzJO5z7hAkTJLqbubS0FNOmTVPbi9caGhr4+++/effHzJkzMWnSJEHuesnLy8PWrVvh7OyM4cOHyxyPEKHcuHEDo0ePlqjQ6MmTJ+jTpw/vxbyFCxfC1NRUrFjdu3fnXH758mWsWrVK7JyA/46hCxcuVOvpivj2x5MnT3hHNRRly5YtGDVqlEqMmCBvdnZ2WL16Nee6nJwceHp6CnbXeHx8PH766SfUqFEDv//+uyAxK7qoqCiMGTMGI0eO5L1orampKXWB4YoVK9C3b1/e9deuXUODBg1w8OBBQb4PkZGRGDhwILp3717hhuHn63/T0tLCsGHDFJID313479+/F/viVY8ePXiPCcB/o4a6ublh6dKlyMvLkyrPzyUkJGDevHlo1KgRAgICZI6nKIGBgRgzZoxE7YCnT5+id+/evH1j8+fPh7m5uUAZimf27NlwcHDAkiVLBBmlav78+bxFaOL2nW7cuJH3RpTff/8d/fr1E2Tk/uLiYhw4cABNmzZFjx49eIsEv6apqYmtW7fyTnuzY8cODBs2TOx4XN6/f49Zs2Zh+/btYr9Gnv1AZ8+eRf369TFgwABB7hS/desWfv75Z851yuhjNzIyQocOHTjX/fLLLwgMDJQoXnZ2Nvr06YMzZ84IkJ166tSpE+//Mjs7G56enli4cGG5vyN5eXlYsGABvLy8kJub+2m5kH09Qlm6dClq1arFue7w4cNwd3fH27dvZd4OYwxnz56Fu7s72rVrV6H7eYVsB4sqBpf3KEYfibperCpFOBUd32/l9evXK+X/gI5bqs3BwQHVqlXjXPfDDz8Ici6mTpo0acI7u0JCQgJatWqF48ePC7KtV69eYerUqXB0dJRsFgsmoYkTJzIAnI/Q0FBJw0lt6tSpvHk8efKE8zUeHh5fPK9x48ZsxYoV7Pnz5xJtOyUlhc2bN49pampybt/IyIjFx8cL8TYl4ujo+CkHDQ0N1qZNG7Z+/Xr29u1bieK8ffuWTZgwgXf/VqtWjeXn54sV6+t9/vFx7do1Kd5hWdeuXeOM7+HhIXGs2bNn875nAKxbt24sOjpaZIzCwkK2Zs0apqenxxvH3t6epaSkSPeGP1NUVMRMTExE5gyAValShZWUlEgU+969e+XGBcD69u0r8/vYtWsXZ+xx48bJHPujz78bnz/K+38qglC5jRs3jjPOrl27BMkzOjqaM76jo6Mg8WV1+PBh3s+piYkJ++abb5ivry+7ceMGu3fvHnv48CHno7CwkHcbQh5v+Ah5zJw5c6bI72/9+vXZrl27RL5nLmlpaWzXrl2sT58+XxzrateuLXGO8iCv77uPjw9nXB8fH6ni9erVS+T/R1tbm/Xo0YNt3ryZnTt3joWHh7Pr16+zgwcPstmzZ7Pq1atzvs7Pz483pjQGDx7MG8/Z2ZmFhISUGyM4OJi1adPmi9caGxszU1NTQf5XijzGr1+/XuT/zcHBgW3YsIFlZ2dLFDc7O5sdOXKEDR06lBkbG3+Kp6WlJXGOfL+rsnxehSYqx507d/Ieo4V48J0ncOE77gv5+6oq+P4nXMeaBg0asDt37oiMV1RUxDZs2MAMDAx496Grq6vY5xSMMfb8+XOmpaXFG++7775j6enp5cYJCQlhbm5uZV5fo0YNzriStkkV0bZljLEPHz4wMzMz3v3h7e3N3r9/X26cx48fsx49eoi9P6Rp9wj1uyT0b7G3t7fIY7qbmxs7ceKExOdS79+/Z5s3b2ZeXl5ffGY7d+4sdgxVb3uLOj6uWLFC7GPynTt32JUrV9j+/fvZ3Llzy7QX+B4LFiyQKf/s7Gzm7u5e7nYaNmzI/vnnH5aWliZx/P3797Nu3brxxu7fv79EMfniKOsz8ebNG6ahocGZU/fu3RWWR3x8PO9vw9ChQyWKNXfu3HI/EzY2Nmz58uXs9evXEsUuLi5mV65cYePGjWP6+vqcsc3MzCSKKSRJ2gENGzYUqx2wceNGke0AZ2dnlpubK3Gusrb9P3+NlpYW69y5M9u+fTtLTk6WKI+nT5+yvn378r6/Fi1aSBTv+PHjvN8pAMzKyootW7aMpaamShS3oKCAnT17lk2YMIFZWFh8EVPS/uJ58+aV+/3YunUrKygoECteUVERO3/+PBszZsyn78X69evFzkee/UBf97HVrl2b/fTTTywiIkLs/Bj77/fgt99+4/3ea2pqsvv370sUUyg7d+7k3X8GBgZs48aNrKioSGSM0tJStnfvXs5jBV9bUtLzKHXq70xNTeXtq/n4MDU1ZWPGjGG+vr7s8uXL7O7du+zSpUts165dbPTo0Zx9/aampmzfvn2c8ZTZNmeMsdDQUJHXQYyNjdmcOXMkPt4UFxezgIAA9sMPPzB7e/svYgYFBUmVq1DUpR3cqVMn3uNOXFycnPfS/+Hr/9TT02MfPnwo9/V8+0Ho82tp8J2fCnmMklVBQQEzNzfnzdPT05P98ccf7OLFi+z27du8n9fExESR25F336yQ/SyqftxSp30pD1OmTOH939SoUYPNnz+fHT16lIWEhLDIyEjOz+uzZ89EbkPoviUuQv3WFhQUsNatW4v8XejWrRu7evWqxLFfvXrF1qxZw9zc3L44D/nmm2/EjiHRsEOihtirXbs22rRpI0k4mYwaNQpbtmzhXLd7926x7mZ98OABHjx4gMWLF8POzg6tWrVCy5YtUbt2bVhYWMDCwgL6+vrIyclBcnIyoqKiEBQUhKtXr4q8U3316tWws7OT+r0JgTGGsLAwhIWFYfbs2XB0dETLli3RsmVLODo6fnp/Ojo6yM7ORkJCAp4+fYpr164hKChI5FCc27dvh56engLfjWKsWrUKoaGhCAsL41x/6dIl1K5dG56enhgwYABq1qwJe3t7ZGVlIS4uDjdv3sSRI0dEDq2uo6ODw4cPCzIM7sdpzfz9/UU+z9PTk3eUJj5NmzaFpaVlucPE01RpRFV4e3ujatWqeP/+fZl1WVlZ2LFjB3bs2FFunOjoaKVOOSCk33//HW/evMGpU6c41z99+hQTJkzA7Nmz0aFDB7i7u6NWrVqwsLBAlSpVkJ+fj/T0dKSnp+Pt27eIiIhAREQEnj9/LsgoSJXdgQMH0L59ezx+/JhzfXFxMS5cuIALFy6IHXPu3Lno06cP5zpJfwc+WrFiBfz8/DjvWH7+/Dnat2+PLl26oG/fvnBxcYGVlRWys7ORlJSEe/fuwd/fn/PO3k2bNmHp0qXIzMyUKi9lmTVrFl6/fs07IlNsbCxmzZqFRYsWoW3btnB3d4eLi8undldRUdGn79X79+9x//59RERE4MmTJyo7DLqiiTt1lrTMzMyQnp4u121UJJ07d0ZWVhZOnDjxadnjx4/RqlUrtGrVCkOHDkXdunVRtWpV5OXlIS4uDmFhYTh06BCSkpJ44+rr62P//v0SnVPUrVsX48aN453O+e+//8b+/fsxePBgeHh4oHbt2jA1NUVmZiYSExMREREBPz8/PHr0qMxrXVxcMGPGDEydOlXsfJTN3Nwcc+fOxZIlSzjXnzp1Cv7+/ujfvz86deoEFxcXmJmZIScnB0lJSXj8+DHOnj2LO3fulBmtxdraGuvWrVPYSCTKsn//fnTu3Jn3/O/WrVsYOHAgbGxs4O7ujo4dO6JGjRqwsLCAmZkZcnNzPx3To6OjP7WVKtpoNZJavHgx7xSJQhg9ejR+/fVXmWIYGRnh/PnzGDBggMjRbh49eoRvv/0WP/zwA1q1aoV27dqhXr16cHBwgKmpKQwMDJCfn4+srCzExMTg2bNnCA0Nxe3bt6WaVkqd7N69m3ekJ0VMlfaRnZ0dOnXqhMuXL5dZd+bMGaSnp4s9Us66detgYGCAFStW8D4nKSkJS5YswZIlS9CwYUO0b98eDRs2hJOTEywsLGBoaIji4mJkZ2cjLi4OL168QHh4OIKCgsSemkqVcLUDHj16JHM7QFdXF/v27YOBgYEi3gavkpISXL16FVevXsXkyZNRt25dtGzZEi1atED16tVRpUoVWFhYQENDAzk5OXj37h2ePHmCy5cv4/bt27zfAW1tbfz7778S5TJw4ECsW7eOd4TglJQU+Pj4YOXKlWjdujU8PDzQqFGjT+cZjLFPv0mJiYmIjIxEREQEHj58KNV0t1x+++03PH78mLcfMikpCVOmTMG8efPQtWtXdOrUCdWqVYONjQ0MDQ3x4cMHpKWl4cmTJ7hz5w5CQ0Nlmp5Skf1Ar169wm+//YbffvsNlpaWaNGiBVq2bPnpXK9KlSowMjJCbm4u0tLSPv0eXLx4UeQIT3PmzEGTJk3KzVEexo4di1WrVnFOtZGXl4eZM2dizZo1GDZsGNq0aYNq1arBwMAAqampiI+PR3BwMM6ePcu5/8eOHQsNDQ3eqQQrKgsLC5w5cwbu7u68I7hlZmZi79692Lt3r1gxNTU1sWfPHpiZmXGu19LSkjpfIbRp0wZ79+7F8OHDOfsKs7Oz8ccff2Djxo1o1qwZPDw80KxZM1haWsLCwgLa2tqfjl3Jycl4+PAhIiIiEBkZKejUloqiKu3g2NhY3uluPD09UbVqVaFT4zVq1CjO342CggIcOnQIkydPVlgulZGuri4mTZqEdevWca4PDAwUa/Q6Hx8fLF26VNjklISOW6ptypQp2LZtG2c7++3btyJHoP3I0dERMTExcshO8XR1deHn54f27dvj5cuXnM+5dOkSLl26hBo1asDd3R3t27dHtWrVYGFhARMTE2RlZX36zL548QL37t1DREREuTNpiEWSqqY9e/bwVkotXrxYklCCqFmzJmcuVatWZcXFxWWezzdChJCPwYMHs9LSUoXvC8b4KxyFfMyZM0einNRpJCPGGEtOTmYNGjSQy77T0tJihw8fFuR9f7Ru3bpyt7tp0yapYg8aNKjc2JGRkTK/BxrJiEYyEsqhQ4dk/p6K2u/qNpIRY/+NrjZ8+HC5/zYANJKRNOLj41mjRo0E2f9jxoxhJSUlrLi4mHO9gYGB1HmuXLlS0M/KzJkzGWPC/a8UfYwvLS1l//vf/xTyvaqMIxnJ+yHJKAE0ktF/7bGUlBRWu3Ztwf4HGhoaUreJExISeO+KlvZhYWHBnjx5IlibVJF3heXk5LCmTZsKuj/09PTY9evXBW338G1LUvL4Lc7MzGReXl4KOf5UlpGM5PXQ1tZmP//8s6D9LcXFxWz+/PkiRw+Rx0NDQ4MtXbpUolz5YinrM8H3u2BgYMCysrIUmouodsXWrVsljnfo0KEvRpZU1KNTp05y2DviUXQ7YO/evVLnKuRIRvJ6bNy4Uer3t3HjRoUdkyS9Q58xxvLy8jhHQBTqIclIRozJrx+Ir49NyEf79u2lGs1LSIGBgUxHR0fQ99WqVSuWnZ0tWD+lOvZ3BgcHixw5RNyHpqYm27ZtG2OMsStXrnA+p2fPnhLnx7c9WRw7dkzkyCBCPlR5JCN5PSRtBy9fvpw31r///ivnPfSl7OxsZmRkxJmLm5tbua/nex+qMOqKOoxkxNh/sxJUrVpVps9geefc6jj6jqoet9RxXwpN1GhG4jzK+w1Xp5GMPoqLixPsOlJ5D0lGMpLotnZRczQq8k6lj0TNvc51F5O8TZgwAYcOHeKdo1rdLVmyBL///ruy05ArKysrBAYGwt3dXdC4JiYmOHnypODzbIszklDnzp3lEtva2hqNGjWSKjYh8jBs2DCsXLlS2WmoFB0dHRw4cACrVq2Cjo6OstMhX7Gzs0NwcDBGjBghdQxtbW34+Phg9+7d0NTU5L1DWpa7hOfPn4/Ro0dL/frPfffdd1i/fr0gsZRFQ0MDa9euha+vL4yNjZWdThlFRUW864yMjBSYCakoLC0t4e/vj+rVq8scS0tLC76+vlK3iW1tbeHn5wcTExOZcwH+a/v7+/ujfv36gsRTNENDQ/j5+fHOWS9NvKNHjwp+LqTKTExMcOHCBcyePbvCnsdXBM2bN8edO3ewfPlyQf9PWlpaWLVqFS5fvox69eoJFleU1q1bIygoCD4+PmK/RtV+24OCgvDq1SvOdf369VN4+2jgwIHQ19fnXCeqH5PPsGHDEBERge7du8uYmXiqV6+OXbt24cqVKwrZnqSEbAdoamrin3/+EezcQtV8fH8zZsyQOsaMGTNw7tw5WFtbC5iZcPT19XHmzBlMnz5d2akAUN9+oB49euDSpUtKH83Lw8MD27ZtE+y3tUWLFjh37lylP+9s3749bt26hWbNmkkdw9LSEsePH8f3338PAHLp6xHSoEGDcOPGDdSqVUvZqVQ40rSD+UYR09PTw6BBg4RMr1xGRkbo378/57pbt24hKipKofkISdXa6HyqVKmCc+fOwdbWVtmpqBQ6bqmuDRs2oG/fvspOQ6VUrVoVwcHBvHUxyiJ2kZGoIfaaNWsGFxcXwZISl6idydWR0KhRI7lcZLW3t8e+ffuwc+dOpQ5R2bRpU6mnQxHF2dkZFy5cwLJlywSPrYqsrKxw5coVLF26FLq6ujLHc3d3x927d+VyUGzatCksLCx419vb20t90aS8IiNPT0/qiCcqZ+HChQgICFDo9J2qTkNDA/Pnz0d4eDi8vLwEj6+np4fBgwfzTmFKRDM1NcWBAwfg7++PFi1aSPTaXr164fbt21i6dOmn4zHfNFCydFJraWlh9+7d+OGHH6SOoaenh99//x3bt2+vML8d48aNw4MHDzBw4EDBY2tpaaFHjx44cOCAxK+9desW53JjY2NMmDBB1tRIJeXs7IybN2+idevWUsewt7fHlStXMHbsWJlyadKkCW7duiVzYZCbmxtu3boFNzc3meIoW/Xq1XHr1i20b99epjguLi4ICgqqlB05urq6+OOPPxAYGCjTxSA+xsbGGD9+vFpeBFUmPT09DBs2DJcuXUJ4eDiaNm0qt2117twZDx48wIYNG+Dg4CCXbXh4eMDPz0+q7yvfbzsApVzoF1W4o4xOT1NTU94pg6W9eFWnTh1cuHABp0+fltvvhLOzM/766y+8fPkS48ePV+k2shDtAFtbW1y8eBHffPONgJlJTh7HeQBo2bIlQkNDMWnSJJlj9ezZE48fP8a3334rl37eDh064N9//4WdnZ1Ur9fR0cGff/4Jf39/QS/MmZiYSBVPHv1ALi4uMDQ0FCzeR2ZmZti4cSPOnj0rl/jSmDhxIk6ePMk7HZe4xo0bhxs3bqhsgZyiOTs74/bt29i0aZNENwTo6+tj8uTJePz4Mby9vT8tl0dfj9Bat26NyMhIzJ8/X6JpscXVtGlTbNiwQa5tQlUhSztYVDF4r169xJ5GVkiSXsdVF3xtdAcHB97CKmVp2rQpHjx4gO+++04u3091Rcct1aSrq4tTp05h+/btcHR0VHY6KsPU1BT79+/HyZMnUbt2bcHjW1paYtq0aZgzZ47Yr9EW94kpKSlYsmQJ5zpZOzSl1aBBA6xbt45zbmOuKu5NmzZh5cqVuHjxIs6dO4fr16/LNC9fo0aNMHbsWHz//feC3U0ri1OnTiElJQX+/v44d+4cgoODOedFFlebNm0wfvx4TJgwQZBiG3Wio6MDHx8fjB8/HqtXr8a+fftEzqHNpX379vjxxx/Rr18/OWX5X/GAp6cnTpw4wbleloICFxcX3rnNAfFGUSJEGby8vBAaGoqoqChcuHABt2/fxvPnz/H+/Xukp6ejoKCAc77diq5x48YICAhAUFAQNm/eDD8/P+Tm5koVy9zcHF5eXujRowcGDx4ssthR0Xr16oWkpKQyy1XpDhIuPXv2RM+ePREeHo4zZ87g5s2bePbsGVJTU1FUVARjY2PY2NjA1dUVHTp0gLe3N+rUqVMmTnx8PGd8aTuQP9LU1MRff/2FYcOGYc6cOQgPDxf7dd7e3li5cqVSCtLlzcnJCcePH0dkZCQ2bdqEY8eO8d5hWB4jIyO4u7ujW7duGDp0KKpWrSpVnICAAM7lM2bMgJWVlVQxK6uaNWvyjjRRGTsIHBwcEBISgi1btmDNmjV49+6dWK8zMTHB5MmTsXjxYpiamgqSS/369XHnzh388ccf+PPPP5GSkiL2a11cXDB37lxMnDhRLhfulKFatWoIDAzEli1b8PvvvyM2Nlbs19aoUQMzZszAjBkzKt0539c+3hzi7++PLVu24PLlyyLvThXF1tYWnTt3Rs+ePTFgwACVb4coi46ODkxNTWFmZgYzMzM4OTmhZcuWaNGiBdzc3GS+4CkJXV1dzJw5Ez/88ANOnz6NQ4cOwd/fX+r2MvDf8WbQoEEYOXIkXF1dpY7D99tes2ZNpRRsNGjQgPP3UUNDAz169FB4PgCwYMECNGjQgHMd34VZcfTr1w/9+vVDSEgI9u3bhxMnTiAxMVHqeDY2Nujfvz+GDx8OLy8vlS4s+pq07QBjY2N8//33WLx4sVIubH7t3r17ePfuHc6ePYvz58/j5s2bSE1NlSqWpqYmOnXqhAkTJmD48OGCtiusra3x999/Y/78+fjrr79w4MABzvNccejp6aFt27bo1q0bhgwZwnkeKY2ePXsiKioK+/fvx19//YW7d+9KHENLSwtubm4YPXo0xowZI/VIaEL3Ay1YsACzZs3C1atXcfbsWVy7dg3Pnz/Hf7NfSK5WrVoYPXo0fvjhB9jY2EgVQ5769++PyMhIrFixAnv27EFhYaHYr+3UqRMWL14sl5va1J22tjamTZuGKVOm4OLFizh//jzCw8Px8uXLT/0GpqamqF69Oho2bIguXbqgb9++sLS0LBNLXn09QjM2NsaqVaswc+ZMbNu2Dbt378abN2+kiqWlpYVWrVqha9euGDRoEJo0aSJwtsolr3ZwUVERbz9G7969ZUlZat27d8eyZcs4j8PlfYZVtU+moKAAISEhnOsWL16skufWNjY22L59O9asWYPz588jODgYjx8/xps3b5Camorc3FwUFxcrO02Fo+OWatLU1MR3332HSZMmISQkBFeuXEFERARevXqFxMREZGVlobCwUOq2mTrz9vZGnz59cOzYMWzbtg1BQUFSX+90cHBA165d0bt3b/Tu3VviY5cGq4z/gc8kJCQgJCQEDx48wMuXL/Hq1SvEx8cjKysLWVlZ0NDQgKmpKUxNTWFjY4PGjRujWbNmaN++vVpMFRUTE4PQ0FA8evQIr169+uILmJOTA01NTZiZmcHU1BT29vZo0qQJmjVrBg8PD7lUwqmrvLw8XLx4ETdu3MD9+/fx+vVrpKSkIC8vDzo6OjAxMYGDgwNcXFzQrl079OzZk4bZI4SotNzcXAQEBCA0NBSRkZGIiYlBfHw8cnJyUFxcDCMjI5iYmMDU1BQODg6oX78+XFxc0KxZM7Ro0UKpI/cRfuvXr+esNp80aRL++ecfwbYTEREBf39/BAQEIC4uDsnJycjIyICRkRFsbW3RoEEDeHh4wNvbGzVr1hRsu6quqKgI169fR0hICCIiIhAdHY24uDhkZ2ejsLAQhoaGn75X1apV+/S9atKkCdzc3GTuhHjz5g3n/jYzM0N0dDSqVKkiU3xScfn6+nKOdDVu3DjOOwuLiooQEBAAf39/RERE4MWLF8jIyEBhYSGMjY1Ro0YNNGnSBN26dcOAAQPkekNGbm4u/P39ce3aNdy6dQuJiYlIS0tDUVERjIyMYG1tjXr16qFly5bo0aMHWrduzXlRt6SkhLOgREtLS62mHC0qKsKlS5cQEBCAkJAQxMfHIzU1FXl5eTAyMoKlpSWcnZ3RrFkzdOvWDR07doS2dtl7j0pLSzkvMGlqaqpkh6k8pKen48qVKwgLC8PDhw/x5s0bJCYmIjc3FyUlJTA2Nv7UV+Dk5PTpmN6yZUs0atRIrYoHCLf8/HzcuXMHoaGhePjwIaKjo/H27VtkZmZ+6oTX09ODsbEx7O3tUaNGDbi6uqJp06Zwd3cXZHop4L+L54GBgWWW79y5k0YpVLDS0lI8fPgQoaGhuHfvHl6/fo03b94gLS0Nubm5KCgogK6uLgwNDWFjY4Pq1aujXr16aNy4Mdq3b48GDRpUiGODOO2Axo0bf2oHCFVkLC9RUVEICwvD06dP8fLlS7x+/RrJycnIzs5GdnY2dHV1P10Irl69Opo2bYpmzZqhU6dOUt8YIKnS0lKEhoYiODgYd+/exatXr/Du3TtkZ2cjPz8f+vr6MDU1hYmJCezt7eHi4gIXFxc0atQI7dq1U8ioOS9fvsSlS5cQFhaGZ8+eITY2FpmZmcjPz4eBgQFMTExQpUoVODs7o379+mjevDm6dOmiNucoaWlpCAkJQWRkJF6+fImXL18iLi4OmZmZyM7ORklJyad2gZWVFRo2bIhmzZqhTZs2Mo0Cpmjx8fE4e/YsAgMDERkZidTUVKSlpUFDQwPGxsafzmPbtWuHXr168RatFRUVoaSkpMxyHR0d6k+SQv/+/XHmzJkyy/ft24dRo0YpISPx3bt3D9evX/9UYPWxLZWfnw9dXV2YmJjAxMQENjY2n45dDRo0QIcOHRRacE6IJK5fvw5PT88yy2vXro2oqCjOc2yiPui4RdRJYmIirly5glu3bn0qHExJSUFubi4YY58+r+bm5qhduzbq16+P+vXro3Xr1nB2dpZp25W+yIgQQgghpKIYNmwYjhw5Umb5H3/8gdmzZyshI6JIu3btwsSJE8ssX7ZsGe+IpIQAkhcZEUIIUYz8/HyYm5ujoKDgi+V169bF06dP6UItIYQQUgnY2dlxjqR37949uU0DSQjh5+Pjg+XLl5dZvnv3bpmniCeEEHVRMcaHJ4QQQgip5DIyMnDu3DnOdcqa2pYoFtd0KpaWllRgRgghhKipmzdvlikwAoClS5dSgREhhBBSCVy5coWzwMjExASNGzdWQkaEEK7+NxcXF5UfWYwQQoRERUaEEEIIIRXAzp07kZOTU2a5mZkZmjdvroSMiKJdu3atzLJ58+bJdaoqQgghhMgP1wWMBg0aYPjw4UrIhhBCCCGKtmnTJs7lHTt2pIJjQpQgNzcXt27dKrOcbgIghFQ2VGRECCGEEKLm4uLi8Ouvv3Ku8/b2prnAK4Hnz58jLi7ui2W2traYPn26kjIihBBCiKy4CoiXLVsGTU3qziOEEEIqugsXLsDPz49z3ZAhQxScDSEEAIKDg1FUVPTFskaNGmHo0KFKyogQQpSDeiUIIYQQQtRYQUEBRo4ciZSUFM71EydOVHBGRBm4RjpYsGABDA0NlZANIYQQQmSVnZ2NO3fufLGsWbNmGDhwoJIyIoQQQoiixMbGYuzYsWCMlVlnZmaGQYMGKSErQghX/9vy5cuhoaGhhGwIIUR5qMiIEEIIIUTBbt68iWnTpiEmJkamOAkJCfD09MSNGzc417dt2xbu7u4ybYOoh687OapVq4bJkycrKRtCCCGEyOrGjRsoLi7+YhldwCCEEEJU1+bNm7FmzRpkZmbKFCcsLAxubm5ITk7mXD916lSaFp0QJfm6/61ly5bw9vZWTjKEEKJEVGRECCGEEKJgeXl52Lx5M+rWrYshQ4bg2LFjyMvLE/v1GRkZ+PXXX9GoUSOEhYVxPkdTUxPr168XKmWiwhhjCAwM/GLZokWLoK+vr5yECCGEECKzr6dKa926Nfr06aOkbAghhBBSnvj4eMyfPx8ODg6YNm0abty4gdLSUrFf//r1a0yePBkeHh5ISEjgfI69vT0WLFggVMqEEAlkZmbi3r17Xyxbvny5krIhhBDl0lZ2AoQQQgghlVVxcTGOHTuGY8eOwcjICG3atEGzZs3QpEkTWFtbw9zcHLq6uvjw4QPS0tLw9OlT3LhxAyEhIcjNzRUZe968eXBzc1PQOyHKpKGhgaSkJGWnQQghhBABrV27FmvXrlV2GoQQQgiRUEZGBjZv3ozNmzfD1tYWbdq0QfPmzVG/fn1YWFjA3NwcpaWlSEtLQ2pqKu7du4cbN27g3r17KCkp4Y2rqamJf//9F6ampgp8N4SQj0xNTcuMNEoIIZUVFRkRQgghhKiAnJwcXL16FVevXpU5Vv/+/bFy5UoBsiKEEEIIIYQQQggh0khMTMTp06dx+vRpmWOtWbMGvXr1EiArQgghhBDZ0HRphBBCCCEVyJgxY3D06FFoaWkpOxVCCCGEEEIIIYQQIgNtbW1s2rQJc+fOVXYqhBBCCCEAqMiIEEIIIaRCsLa2hq+vL/bs2QMdHR1lp0MIIYQQQgghhBBCZNC4cWMEBQVh2rRpyk6FEEIIIeQTKjIihBBCCFEwLy8vXL16FZMnT4adnZ1MsWrVqoXVq1fjxYsXGDdunEAZEkIIIYQQQgghhBBx/fTTTzh06BAGDRoEIyMjmWK1a9cOBw4cwL1799CmTRuBMiSEEEIIEYYGY4wpOwlCCCGEkMrs5cuXCAkJwf379xEdHY2YmBgkJSUhJycHubm5KC0thb6+PszMzFC9enXUrVsXLVq0QKdOndCkSRNlp08IUXO+vr6YMGFCmeXjxo2Dr6+v4hMihBBCCCGEEDVWXFyMBw8eIDQ0FI8ePUJMTAzevHmDtLQ05ObmIi8vDwBgYGAAS0tLODg4wNXVFS1btkT37t1RvXp1Jb8DQgghhBB+VGRECCGEEEIIIYQQQgghhBBCCCGEEEIIEYmmSyOEEEIIIYQQQgghhBBCCCGEEEIIIYSIREVGhBBCCCGEEEIIIYQQQgghhBBCCCGEEJGoyIgQQgghhBBCCCGEEEIIIYQQQgghhBAiEhUZEUIIIYQQQgghhBBCCCGEEEIIIYQQQkSiIiNCCCGEEEIIIYQQQgghhBBCCCGEEEKISFRkRAghhBBCCCGEEEIIIYQQQgghhBBCCBGJiowIIYQQQgghhBBCCCGEEEIIIYQQQgghIlGRESGEEEIIIYQQQgghhBBCCCGEEEIIIUQkKjIihBBCCCGEEEIIIYQQQgghhBBCCCGEiERFRoQQQgghhBBCCCGEEEIIIYQQQgghhBCRVL7IyNPTExoaGmUegYGByk6NEKKGGGMICAiAj48PevXqBWdnZ9jY2EBPT4/zWDNr1ixlp0wqqMDAQM7PnKenp7JTI2ooJiaG8/NUs2ZNZaemdoqLi9GoUaMy+3LHjh1ix1i3bl2Z17u5uYExJsfMCSGEEEIIIYQQQgghhBBC5Etb2QkQQoii7NixA6tXr8aLFy+UnQohRIUUFBQgPT0dubm5yM/Ph66uLgwNDWFlZQUdHR1lp0cUbMuWLXj06NEXy+rXr4/x48eLHWPatGnYuHEj3r1792nZ7du3sWfPHowbN06oVAkhhBBCCCGEEEIIIYQQQhSKiowIIRVeTk4OxowZg5MnTyo7FUKIkiUmJuLatWsICQnB3bt3ER0djYSEBM4RZjQ0NGBtbY169eqhUaNGaN++PTw8PFCtWjUlZE4UITk5GT4+PmWW//rrr9DS0hI7jr6+Pnx8fPDtt99+sXzBggUYOHAgTExMZM6VEEIIIYQQQgghhBBCCCFE0ajIiBBS4U2YMIEKjAipxPLz87Fv3z7s27cPQUFBKC0tFet1jDEkJSUhKSkJQUFB2LJlCwCgZcuWGDJkCMaNGwdbW1t5pk4U7KeffkJ6evoXy9q2bQtvb2+JY02YMAHr1q3Ds2fPPi1LSEjAL7/8gjVr1siYKSGEEEIIIYQQQgghhBBCiOJpKjsBQgiRJ19fXxw9elTZaRBClKCgoACrV6+Go6Mjvv32W1y/fl3sAiNRwsPDMX/+fNSoUQOjR49GVFSUANkSZXvy5Al27dpVZvnPP/8sVTwtLS0sWLCgzPI///zzi2nUCCGEEEIIIYQQQgghhBBC1AWNZEQIqbAYYyJHi+jRowf69+8PFxcXmJmZQUdHp8xzrKys5JkiIUROAgICMHnyZLx48UJu2ygqKsL+/ftx8OBBTJgwAatWraJjhhpbsmRJmSK0xo0bo2fPnlLHHDVqFH7++ecviooKCgqwYsUKbNu2Teq4hBBCCCGEEEIIIYQQQgghykBFRoSQCissLAxPnz4ts1xDQwMHDhzA8OHDlZAVIUSeSktLsWLFCixbtkyQUYvE3eaOHTtw6dIlxMbGKmSbRFgRERE4ceJEmeU//vijTHF1dHQwe/ZszJ0794vlO3fuxIIFC1CzZk2Z4hNCCCGEEEIIIYQQQgghhCgSTZdGCKmwgoODOZd7e3tTgREhFVBxcTFGjBgBHx+fcguMqlSpguHDh2PTpk0ICAhAdHQ0MjIyUFxcjLy8PCQnJ+P+/fs4evQo5s+fDzc3N2hqim42ZWZmCvl2iAItWbIEjLEvltWoUQPDhg2TOfZ3330HMzOzL5YVFRXhl19+kTk2IYQQQgghhBBCCCGEEEKIItFIRoSQCuvOnTucywcOHKjgTAgh8lZcXIwhQ4bg1KlTIp/n5uaGH3/8EX369IGuri7nc7S0tKCvrw8rKys0adIEgwcPBgDExcXhwIED2Lx5M968eSP0W5BJzZo1yxTJEPE8ffoU586dK7N80qRJ0NaWvalsbGyMkSNHYuvWrV8s37dvH1auXAk7OzuZt0EIIYQQQgghhBBCCCGEEKIINJIRIaTCSkhI4Fxev359BWdCCJG3mTNniiwwsrOzw9GjRxEWFoaBAwfyFhiJUq1aNcybNw8vX77Ezp07YW9vL0PGRFVs2LChTIGWlpYWJk6cKNg2Jk2aVGZZYWEhtmzZItg2CCGEEEIIIYQQQgghhBBC5I2KjAghFdaHDx84l5ubmys2EUKIXO3cuVNksUa7du1w//79TyMSyUpbWxsTJkxAVFQUpk2bJkhMohypqanYu3dvmeU9evRA9erVBdtO8+bN0axZszLLt2/fjoKCAsG2QwghhBBCCCGEEEIIIYQQIk9UZEQIqbCys7M5l2tpaSk4E0KIvMTGxmLWrFm86zt16oSrV6/C1tZW8G2bmppi06ZNOHPmDCwsLASPT+Tv33//RV5eXpnlEyZMEHxbXDGTkpJw6NAhwbdFCCGEEEIIIYQQQgghhBAiD1RkRAipsL6e/oYQUvFMnToVWVlZnOtcXV1x+vRp6OvryzWHvn37IjQ0FLVq1ZLrdojwfH19yywzNDREz549Bd/WwIEDoaGhUWb57t27Bd8WIYQQQgghhBBCCCGEEEKIPGgrOwEiuaKiIiQmJiI7Oxv6+vowNzen6Z9IpRYXF8c5NVpRURHn858/f847ytHnGjZsKHNuRHWVlJQgMTERWVlZ0NHRgZmZGSwtLZWdFpFAcHAwzp07x7lOX18fR48ehbGxsUJycXZ2xtWrVxWyLSKM8PBwREVFlVnevXt3GBoaCr69atWqoXXr1rh169YXywMDA/Hu3TtBp2cjhBBCCCGEEEIIIYQQQgiRB7kWGSUlJeHkyZO4cuUKHj16hPfv3yMnJweGhoaoUqUK6tWrh5YtW6Jv375o06YN593dipSWloaLFy8iODgYjx8/RnR0ND58+IDc3Fzo6urC1NQUjo6OaNCgAdzd3dGnTx9YWVkpJLfQ0FAcOnQIV65cwfPnz1FcXPzFemtrazRr1gx9+vTBsGHDYGNjUyZGVFQUEhISyix3cXGBnZ2d3HIvKChAYGAgLl26hAcPHuDFixf48OEDcnJyYGRkBAcHB4wePRrz58+XOLYq/88+ev/+PS5duoTg4GBERUUhJiYGGRkZyMvLg56eHszNzeHk5ITGjRvDw8MDvXr1gomJiUJzFFpycjL8/f0RFBSEJ0+eICYmBpmZmcjLy4OBgcGn99ywYUN07NgRvXr1kqlQbtGiRRKNBNG9e3exnqcKIyG9e/cOQUFBePz4MZ4+fYrnz5/jw4cPyMzM/PQ5NzExQbVq1VCnTh20bNkSXbp0QbNmzZR+TM3Ozoa/vz8uXLiABw8eICYmBllZWdDT04O1tTVsbW3RunVr9OrVCx4eHtDT05N7To8ePcK+fftw+fJlPH78GAUFBV+sNzc3R+PGjdGrVy8MHz4cjo6OZWLExMQgJiamzPKaNWuiZs2acspcdq9evcLly5cREhKCZ8+eITY2FllZWZ++lxYWFqhVqxaaNWsGLy8vdOvWTe4jAMnKx8eHd928efPg6uqqwGyAKlWqKHR7ipSYmIiLFy8iIiICERERiIuLQ2ZmJjIyMlBSUgJDQ8NP7TtHR0c4OjqiXr16aNOmDZo3b66Q77ek9u3bx7l84MCBctvmoEGDyhQZMcawf/9+qdpBhBBCCCGEEEIIIYQQQgghCsXk4P379+ybb75henp6DIBYj4YNG7KjR4+WieXh4cH5/GvXrgmW740bN1jfvn2Zjo6O2PkCYNra2mzQoEEsIiJCsFy+FhwczFq3bi1RXgYGBmzGjBksMzPzi1jjxo3jfP6uXbskykncONnZ2czHx4fZ2NiUm3P//v0lykGV/2cf+fn5MS8vL6apqSnx/2/ixIns5cuXcs9RaCEhIaxv375MW1tbovesp6fHhg0bxiIjI6XaLt9nUtaHMhQXF7NLly6x77//ntWtW1fq3J2cnNjatWtZTk6OYLk5Ojpybis6OvqL52VlZbFFixYxMzMzsfO1tbVl//zzDyspKREs3889fPiQde/eXeLjxZgxY1hCQsIXsXx8fDif7+PjI1FO165d44zj4eEh2PsuLi5me/fuZa1atZL4M2RmZsZmz57N4uPjBctHSFFRUby5W1pasuzsbGWnqFDR0dGc+8LR0VGmuBcuXGC9e/eW+Lj++UNXV5d17dqV/fvvvywtLU2YNyyj0tJSZm9vXyZXDQ0NlpKSIrftPn78mHMfNW3aVG7bJIQQQgghhBBCCCGEEEIIEYomBHbo0CHUq1cPO3bsKDNChCiPHj3CkCFDMGDAAGRmZgqdFqfo6Gj07NkT7u7u8PPz451aiU9xcTGOHz+OFi1aYPr06cjNzRUst5KSEsyfPx8dO3bE7du3JXptXl4e/vzzTzRs2BB3794VLCdJXL9+Ha6urli2bBmSkpIEi6vK/7OP7t+/Dzc3N/Tt2xfXrl1DaWmpRK/Py8vDzp074erqiuXLl6OkpETwHIWWnJyMESNGoF27dvDz8ysz0lZ5CgoKcPjwYTRt2hSTJ09W2DFA1cyZMwdVq1ZFt27dsH37drx48ULqWNHR0Zg3bx6cnZ1x9uxZAbMULTg4GA0bNsTKlSuRkZEh9usSExPx7bffol27dkhNTRU0pw0bNqBFixa4ePGiRK8rLi7G3r170aBBA1y4cEHQnBQhMDAQDRo0wJgxY3Dnzh2JX5+RkYH169fD2dkZ27Ztk0OGstmxYwfvuilTpsDIyEiB2VQ88fHxGDx4MHr06IFz585JfFz/XGFhIS5fvoxJkyZh4sSJAmYpvcjISMTHx5dZ3rBhQ7lOm+jq6gpra2ux8yGEEEIIIYQQQgghhBBCCFElghYZLV++HCNGjEBWVpbUMU6dOgUPDw8kJycLmFlZx44dQ+PGjQW5cFxaWoq//voLHTp0wLt372SOV1hYiCFDhmDNmjUyTdcUGxsLT09PBAUFyZyTJPbv34+uXbsiNjZW0Liq/D/7aNOmTWjVqpXEhWFcCgsL4ePjg549e0pUrKFo9+7dQ/PmzXHo0CGZYzHGsH37drRu3RrPnz8XIDv18vfffwtalAcAcXFx6NevH1asWCFoXC4HDx5E586d8ebNG6lj3Lp1C56enkhMTJQ5H8YYpk+fjtmzZ6OwsFDqOKmpqejbty+OHDkic06KUFpaioULF8LLywvPnj2TOV5WVhamTJmC0aNHy7QfhXb8+HHedapSyKKuoqOj0bZtW5H7WFqytGuExNeW8PDwkPu2ubbBGFPLYkZCCCGEEEIIIYQQQgghhFQughUZrVq1Cj4+PoLEun//PgYMGCC3i5kbN27EkCFDkJ2dLWjciIgIeHl54f3791LHYIxhwoQJOHnypCA5ZWdnw9vbG69evRIkXnkuXLiA8ePHSzzCUHlU+X/20Zw5czBjxgyZRnvgcvnyZXTv3l2m4j15uX37Njw9PQUt1AKAZ8+eoWPHjoiKihI0bmXFGMPPP/+MVatWyW0bp0+fxpgxYwQ5bj969AgjR46UOc7ChQvx119/yRwH+G9Uo7FjxyIsLEyQePJSXFyM4cOH47fffhM89v79+zF06FDBj3HSePbsGV6/fs25rmXLlnByclJwRhVHWloaPDw8ZCoWVAfKLDLy8vLiXE5FRoQQQgghhBBCCCGEEEIIUXXaQgTx8/PDwoULRT6nXr16GDFiBBo0aIBq1aqBMYa4uDg8fPjw/7F331FRXd/bwJ8BpEqRqogCKiKK2HuLimLvXSMaWzQaNcYSTWxRo8ZvLDHNEjX22HtviGJEwRaxg2JDBUF6ve8fefUncu/AzNwZZvD5rDVr6Tlz99kzwy1w95yDzZs34969e7mef+7cOXz77bdypJfLihUrMG7cOKXP8fLyQosWLdCwYUOULFkSDg4OSEtLQ0xMDC5duoQDBw7g2rVrotveu3cPXbp0wdmzZ2FmZqZyfj/99BM2bdok2W9mZoZ27dqhV69e8PPzg6urK0xNTfH06VPcv38fO3fuxI4dO3ItNxQXF4eBAweifPnyKuejiufPn2PChAl5bkBbWVnB398fAQEBKFOmDFxcXKBQKPDixQtcvXoVu3fvVhpX3z8z4L9ihsWLFyt9jp+fH5o3b4569erByckJ9vb2SEpKQkxMDM6fP4/9+/fn2Q/e+ueff/Dpp59i165dUCgUauUot4cPH6Jdu3ZKi58sLCzQsWNHtG7dGm5ubnB0dMTLly8RHR2NAwcO4NChQ5JFKS9evEDr1q0RFhYGR0dHpbmsXbsWa9euzdPu4eEheqM8MjISHh4eSmPqCyMjI1SqVAl16tRBrVq14OrqihIlSqBEiRJIT0/H69evERUVhZCQEBw7dgzPnz+XjDVt2jTUrVsXLVq0kDXHiIgI9OvXL8/SfmXKlEG7du3QpEkTuLi4wMHBAfHx8Xj06BEOHz6MvXv3Si5ZePLkSaxduxaDBg1SK6cdO3YoLaoyNjaGv78/evfujdq1a8PV1RVWVlZ49uwZoqKisHfvXmzbtg1Pnjx5t016ejr69++P7t27q5WTLgQGBmLbtm2S/QqFAnXr1sUnn3yCWrVqwdHREXZ2doiPj8ezZ88QFBSE/fv353rd79uzZw8mTJiApUuXauslFMipU6ck+1q1aqXDTIqeyZMnIzo6WrK/TJkyCAgIQPXq1VG+fHnY2trC0tISqampSEhIwOvXrxEREYGrV6/i8uXLshehyiEzM1OyYLBWrVpaH19qjNOnT2t9bCIiIiIiIiIiIiIiIo0IGoqJiRGcnJwEAKIPNzc34dChQ/nG2bt3r1CqVKlc2xobG+dpe/s4deqUyrmePXtWKFasmGSuDRo0KFCugiAIBw8eFHx8fCRjTZgwQeX8/v33X8HU1FQyZtOmTYU7d+7kGyc+Pl4YMmRInu1tbGxE465Zs0alPAMDA0XjfBi/WLFiwldffSUkJCTkG/Phw4ei7fr+mQmCIGzZskUyJgChXbt2QkhISL5xcnJyhA0bNghubm6SsX7++We1cpRbVlaWUKdOHck8FQqFMGrUqHw/+5cvXwr9+/dX+v61adNG7Tzd3d1FY0ZGRqodU5usrKwEAIKRkZHQrFkz4bfffhNevnxZ4O0zMjKEjRs3CmXLlpV8P8uXLy9kZGSolZ/U++nq6prr/2XKlBHWrVsn5OTkKI336NEjoV27dpK5uri4CJmZmSrn+eLFC8He3l4ybtWqVYXQ0NB846SmpgpTpkwRTExMCnQsnTFjhkp5njp1SjROs2bNVH7NgiAICxYsULov9e/fX/j333/zjZOZmSksW7ZM6Xu4d+9etXKUy9ChQyVzK+g5oaiJjIwUfT/c3d0LHOPOnTuCQqEQjePh4SHs3Lkz3/36Q+Hh4cLs2bMFb29vAYDQuXNn1V6YFly+fFn0NRYvXlzl16eOpKQkyff50aNHWh+fiIiIiIiIiIiIiIhIXRoXGSm70de4cWMhPj6+wLFiY2OFunXrKr1J+vahapFRcnKy4OnpKRrLyMhImD59upCdna1SzMTERKFNmzaiMY2NjYWrV6+qFC8gIEDy9Q4cOFDlG1+///57gd5LuYqMPrwJHxwcrFLcDxnCZ/b06VPBzs5ONJ6ZmZnw22+/qRRPEATh+fPnQq1atURjWltbC8+ePVM5ptwWL14s+dmbmpoKBw4cUCne2rVrBSMjI8mYGzZsUCtPQysysrW1FQYMGCDcunVLozjx8fFCp06dJN/PVatWqRVX6v18/9GoUSMhLi6uwDEzMzOFbt26ScbbvXu3ynmOGDFCMl7Lli2FtLQ0leLt378/T6GR2KMwi4yuXr0qWZBpa2sr7Nq1S+WYd+7ckTwGlylTRkhNTVU5plxq164t+Tk8efKk0PIqTHIUGf3www+iMSpWrCi8evVKo/xycnKE/fv3Cz/++KNGceSwYsUK0ddZv359neVQvnx50Rx27typsxyIiIiIiIiIiIiIiIhUZQQN3L17F2vWrBHtq1y5Mvbu3QtbW9sCx7O3t8f+/fvh5eWlSVqi5s6di8jISNG+5cuXY9asWTAyUu3tKF68OPbt24eGDRvm6cvOzsbMmTMLHOvChQs4cuSIaF/btm2xevVqlZfJGjFiBGbNmqXSNnIwNTXFkSNH0KhRI43i6PtnBgBff/014uPj87QbGxtj+/bt+Pzzz1WKBwAuLi44efIkKlSokKcvMTERCxcuVDmmnBITEzF79mzRPiMjI2zYsAHt2rVTKWZgYKDS5ea++eYbZGZmqhTTEIWHh2P9+vXw9vbWKI6trS22bduGTz75RLT/l19+0Si+lHr16uHYsWMoUaJEgbcxMTHB6tWr4ezsLNovtgyeMtHR0Vi9erVoX40aNbB7926Vl0Vs3769ZEx9MWrUKNF9xNLSEsePH0eXLl1Ujunl5YUzZ87AwcEhT190dDRWrFihTqqykFpa0sbGBq6urjrOpug4fPiwaPuKFStEfw5UoVAo0L59e3z99dcaxZFDWFiYaHuVKlV0lkPVqlVF2y9fvqyzHIiIiIiIiIiIiIiIiFSlUZHRkiVLkJ2dnTeokRE2bdqk0o3mt5ycnLBhwwaVC2qUefXqFZYtWyba98UXX2DkyJFqxzYxMcHmzZthY2OTp2/37t2IiooqUByp/KysrLBixQqYmJiold+0adPg5+en1rbqmjp1KurXr69RDEP4zG7evIktW7aI9s2fPx8dOnRQO0cbGxts2bIFxsbGefpWrlyJ5ORktWNrasWKFXj9+rVo36hRo9CzZ0+14n755Zfo3r27aF90dDQ2btyoVlxD4unpKVssU1NTrFu3TrSgJjw8HLdv35ZtLACwtrbGxo0bYWFhofK2dnZ2mDJlimjfqVOnIAhCgWP99ttvyMrKytNuZGSElStXonjx4irnBwADBw5UuXhOVw4fPoxz586J9q1btw61a9dWO3aZMmUkC6yWLl2q0mcjl5SUFNHiTgBwc3PTbTJFzMOHD/O0lSpVCs2aNSuEbLTnzp07ou1ly5bVWQ5SY0nlRkREREREREREREREpA/ULjLKyMiQvOk/ZMgQVKtWTe2k6tati08//VTt7T+0atUqJCUl5Wl3dHTEvHnzNI5ftmxZ0aIXQRCwfv36fLdPTk7Gnj17RPsmTZqk0U1TY2NjpTPEyM3d3R3ffPONxnH0/TMD/isMy8nJydPu4+OD8ePHa5xjrVq10KNHjzztSUlJ2Llzp8bx1fXnn3+Ktjs6OkrOcFRQixYtgrm5uWifvs8ko4/Kli2LoUOHivYdO3ZM1rEmTJiA8uXLq719nz59RGcmS0hIkJzRTMymTZtE2wMDA1GrVi218wP+K6wVK/wrbEuWLBFtb926tegxRFWdO3dGvXr18rQ/ePAAwcHBGsdX1bNnzyT7SpYsqcNMip6YmJg8be7u7oWQiXaJFVMBQOnSpXWWg9RYUrkRERERERERERERERHpA7WLjI4ePYqEhATRPjmKTKZNm6ZxjLeklnSbNGmS6Gw26vjyyy9FZ186cOBAvtseO3YMKSkpedqNjIwwbNgwjXNr0aKFVpagEzNo0CCYmppqHEffP7O0tDRs3rxZtG/WrFmyFSKMGzdOtL0gOWrDjRs3cPPmTdG+MWPGqDV72fs8PDzw2WefifadO3cOjx8/1ij+x6hz586i7RcuXJBtDFNTU7WWBnxfqVKlJGddCw8PL1CMK1euSN6gHzFihNq5veXl5YUWLVpoHEdOjx8/liwYmzNnjmzj6NOxSKwA9S07OzvdJVIEiZ0TExMTCyET7REEAdHR0aJ9+lBkVNDZFImIiIiIiIiIiIiIiAqD2kVGUjc169WrJ8uSPxUrVtR41gkAuHXrlujSEwqFAn369NE4/luurq6oUqVKnvZLly4pvSEK/LcckJjmzZujVKlSsuTXv39/WeLkZ+DAgRrHMITP7PTp03jz5k2e9uLFi6Njx46y5Vi3bl3Y2trmaZf6mdG2o0ePSvbJ9TM2YMAA0XZBEHDixAlZxviYNGrUSLT9xo0bso3RvHlzuLi4aBynatWqou0FvekutV+UL19edCYedejqWFpQ+/fvF51RrUKFCqhTp45s4/j7+4sWoBTGsSg1NVWyT2x5QCo4BweHPG03b95UaTYxfffixQtkZGSI9slxHCsoqVm3lOVHRERERERERERERERU2NQuMpJaIkWOpVne6tWrl8YxpIoiatWqhTJlymgc/32NGzfO05adnY1r164p3S40NFS0vXXr1rLkBQABAQGyxZLi6uqKcuXKaRzHED4zqRzbtGkjudyXOoyMjNCgQYM87S9evMDTp09lG6egpPb72rVra7RU1vsaNGgADw8PlcYnaZaWlihevHiedjlny5AqZFJVhQoVRNvFCvrEFJVjqSqkjkVdunSRdRxHR0d4e3vnab927Rqys7NlHSs/ygowihUrpsNMih5fX988bYIgYNiwYUhLSyuEjOSn7HhiaWmpszyUjVXUZo8iIiIiIiIiIiIiIqKiQ60io5ycHMklk2rXrq1RQnLHunTpkmh7tWrVNI79IamlL27duqV0O6n3Us4cq1atCiMjtWvKCqRmzZqyxDGEz8wQctSG69evi7bXrVtX1nGkZp2RGp+Us7e3z9OWkJAgW9FAjRo1ZIkjtRRiQYuM/v33X9F2OffLkiVLwtnZWbZ4mirsY1FaWprkEnXaomy2Is4Aoxl/f3/R9hMnTqBevXo4evQoBEHQcVbyElue9i0LCwud5aFsLGU5EhERERERERERERERFSa1qk4ePnwoeXNazhubcsSSKkqoVKmSxrE/JLbMCAA8efJEcpv4+HgkJCSI9vn5+cmSFwBYWVnJNtOMlMqVK8sSR98/M8AwcpRbVlYWHjx4INonV5HJW9WrVxdtv337tqzjGIqbN29i3bp1+PrrrxEQEABfX1+4u7ujRIkSMDExgUKhUPp49OiRaFy5ZstwdHSUJY61tbVoe0GLjKSKXeQ8lgLaKeBRR3x8PKKjo0X7ivKxSFlxRnp6ug4zKXoCAwNhZWUl2nft2jUEBATA29sb3377LS5evKjzWazkYAhFRsnJyTrLg4iIiIiIiIiIiIiISBUm6mwktUyTk5MTSpQooVFC73NwcICjoyNevXqldgypm84TJ07ExIkT1Y6ritjYWMm+mJgY0XaFQgEXFxdZ83BxccHdu3dljfk+Ozs7WeLo+2f25s0bxMfHi/b17NlTSxnlpSxHbYiJiUFOTo5on4+Pj6xjValSRbQ9Pj4eqampOr0RXFiePXuGNWvWYNOmTZIz9GhKrpmM5DruGxsbi7YXpJAhLS1NsmCzZMmSGuX1IbmPzeqSKh4DgDp16ugsD10fi6SK0QAgLi5Oh5kUPQ4ODpg6dSqmTZsm+Zy7d+9i7ty5mDt3LmxsbNC4cWM0atQIjRo1Qr169WRdMlQbsrKyJPukjkHaYGIifQmuLEciIiIiIiIiIiIiIqLCpFaRkVTRj1xFJu+ztbVVu8goLS0Nr1+/ljkj1aWmpkr2Sc3QYWVlJfvyZra2trLG+5DUUkeqMITPTKrITteU5agNL1++lOyTe99XFu/ly5coW7asrOPpk8zMTCxevBjff/89kpKStDqWXLOQKFu+SleUzcokx7Hpfdo+lhbUx3oscnV1lex7/vy5DjMpmr755huEh4dj+/bt+T73zZs3OHjwIA4ePAgAMDc3R8OGDdGyZUv06NEDFStW1Ha6KrO0tJTsk6vwsiCU7TfKciQiIiIiIiIiIiIiIipMalWxSC01oWx2AXVpcnNYrqWANJWRkSHZJ7W0i9w3xbUV831SS6yowhA+M0PIURuU3RCV+2dLWTxdFzTo0uPHj1GnTh1MnjxZ6wVGRY2yZbJ0+fOpSx/rscjMzExyib7o6GgIgqDTfIoahUKBrVu3YsqUKSoXO6elpeHkyZOYNm0avL29Ua9ePaxevVqvZuZRVsCjy/OLsrHkuJ4iIiIiIiIiIiIiIiLSBrWKjDIzM0XbtfHNa01utCi76axL6tzwlFqWShNyzVqiTYbwmRlCjtogtd8D8u/7yvZ7XRc06EpMTAyaNWuGq1evFnYqRY7cx1N9OZZ+rMciAJIz5KSkpCAqKkq3yRRBRkZG+OGHH3D58mW0adNG7TgXL17E0KFDUalSJezZs0fGDNWn7PyiL0VGnMmIiIiIiIiIiIiIiIj0lVrLpRUrVky0XWqGI00kJyerva3cy41pg7m5uWi71DJqmtBGTLkZwmdmCDlqg9R+D/y37zs4OMg2lrL93tTUVLZx9IUgCPj000/x4MEDpc8rXbo06tatiypVqsDd3R0uLi6wsbFB8eLFYWJiAmNjY9HtAgIC9GZpLW2ROpYC/x37nJycZBtLX46lH+uxCABq1KiB8+fPi/ZduXIFnp6eOs6oaKpevToOHTqEe/fuYe3atdi9ezf+/fdflePcv38fXbp0wdixY/HTTz8V6s+u1CxYAHS6XKvUWBYWFlqZGZSIiIiIiIiIiIiIiEgOahUZWVhYiLZrY+kWTW7mKvsm+PTp09GzZ0+1Y6uiRIkSkn12dnai7SkpKcjOzpYsGlCHvtwYV8YQPjNlOf7+++9o1KiRNlLKw9nZWSfjvCW13wPy/2wpi6csD0O1c+dOHDt2TLTPyMgIQ4YMwahRo1C9enW14st5HNFXNjY2UCgUorPqFNUiI2XHon379sHDw0Mnebi5uelknPfVqlVLsu/06dPo2rWrDrMp+ipUqIA5c+Zgzpw5eP78OU6dOoWgoCCcPXsWN2/eLPBsVkuXLoWRkRF++uknLWcszdLSEk5OTnj58mWevidPnugsD6mxypYtq7MciIiIiIiIiIiIiIiIVKVWkZHUzdr4+HhNchGVkJCg9rY2NjYoVqyY6DJPFhYW8PX11SQ1WZQsWVKyLzo6WtabxNHR0bLF0hZD+MyUzdhja2urFzlqg7IiDbn3fWXx5CwW0Rf/+9//RNutra2xbds2BAQEaBRfl7NzFBZTU1PY29sjNjY2T190dDTKly8v21j6cixVdixydHQsssciAGjVqpVk35EjR3SYycenZMmS6Nu3L/r27QsAiI2NRVBQEE6cOIG9e/fmu38sXrwYrVu31mgZNk25u7vrbZGRu7u7znIgIiIiIiIiIiIiIiJSlVrrVbi6uoq2v3z5Utab2bGxsXj16pXa2xsZGaF06dKifXFxcWrHlVPx4sUliyauXr0q2zivX7/WmxvjyhjCZ+bq6goTE/H6PH3JURtcXFwkl7iJiIiQdaybN2+KttvZ2RW5mYyio6MREhIi2rd8+XKNC4wyMzORlJSkUQxDUa5cOdF2OY+lAHDt2jVZ46lL2YwnRflYBPw3e5JUEdXt27dl/8xJmoODA7p27Yrly5fj0aNHOH/+PPr37690SbTvvvtOhxnmJbWcnj4UGelqBjIiIiIiIiIiIiIiIiJ1qFVkVLZsWZibm4v2yXnzVY6bhD4+PqLtd+/e1Ti2XKpUqSLafuXKFdnGkDOWtun7Z2ZsbAwvLy/RPn3JURtMTEwkizjk/vmSiuft7S3rOPogODhYtL18+fIYOHCgxvEfPHigcQxDoYtjaWRkpEYz7MmpTJkyKF68uGhfUT4WvdW7d2/Jvj/++EOHmdD7GjRogA0bNuDChQtwcXERfc6lS5dw//59HWf2f/z8/ETb79y5o7Mcbt++LdperVo1neVARERERERERERERESkKrWKjIyNjVG5cmXRvtDQUI0Set+lS5c0jlG3bl3R9rNnz0IQBI3jy6F+/fqi7fv27ZNtjL1798oWS9sM4TOTyvHMmTM6zkS3pG7MXrx4UdZx/vnnH9H2qlWryjqOPpC60dyxY0dZ4p89e1aWOIZA6lh66NAhZGdnyzKGPh1LjYyMUKtWLdG+on4sAoDBgwfD2NhYtG/t2rV48eKFjjOi99WpUwc7d+6EQqEQ7T958qSOM/o/UvvN9evXdTK+IAi4ceOGaF/t2rV1kgMREREREREREREREZE61CoyAoDGjRuLtm/fvl3tZD70999/axyjZcuWou2xsbEIDw/XOL4cWrRoIdp++fJlyQIEVWRnZ2PLli0ax9EVQ/jMpHK8evWqRkv86Tup/T40NBSRkZGyjHHx4kXJWFLjGzKpQgh3d3dZ4hfmjXxdkzqWxsTE4Pjx47KMsXHjRlniyEXqWBQUFITMzEwdZ6NbpUuXRteuXUX7UlNTMXXqVB1nRB9q2LAhGjZsKNr38OFDHWfzf6SKjB49eqSTmcqioqJEl7EsVqwYZzIiIiIiIiIiIiIiIiK9pnaRkb+/v2j7P//8I0uxwd27d3H58mWN4zRs2BBOTk6ifUuXLtU4vhw++eQTlChRQrRPjhy3bt2K58+faxxHVwzhM2vfvj2KFSuWpz0nJwc///xzIWSkG61atZLs27RpkyxjbNiwQbRdoVBIHncMWUZGhmi7hYWFxrFjYmKwc+dOjeMYCi8vL8kl0+Q4dpw/f17W2frkIFVkExsbK7kvFSUzZ86EkZH4pcyaNWt0XmSny+W2DIXUzDyFWZDr7OwMDw8P0T5dzGYktbRwtWrVYGZmpvXxiYiIiIiIiIiIiIiI1KV2kVHr1q1hY2Mj2vfDDz+ondBbc+bM0TgG8N/SboMHDxbt27RpEx48eCDLOJooVqwY+vTpI9q3YsUKyZtRBZGcnIxJkyapvX1hMITPzN7eXvLm/s8//6yTmRAKg6+vr+RSicuWLdP4dT9+/BirV68W7WvcuDFKly6tUXx9ZG9vL9r+9OlTjWMvWbIE6enpGscxJAMHDhRtP3ToEA4cOKB23JycHIwZM0bt7bXF19dXcvnG+fPnIysrS8cZ6VaVKlUwaNAg0b6cnBz069cPjx8/1kkux48fV1qI+bEyNTUVbbeystJxJrlJfVbnzp3T+thSy1i2bt1a62MTERERERERERERERFpQu0iIzMzM/Tr10+0b/Xq1RoVxoSGhmL9+vVqb/+hL774QvQmV1ZWFnr37o20tDTZxlLX2LFjoVAo8rRnZ2cjMDAQb968UTmmIAgYNWoUnjx5IkeKOmUIn9n48eNF21+/fo2BAwdCEAQdZ6Qbn332mWj7ixcvMHv2bI1iT5w4ESkpKSqNa+ikZu06ceKERnEvXryIRYsWaRTDEA0bNkyyeGHkyJFqF5zMmDEDYWFhmqSmNV999ZVo+507dzBu3DjdJlMIFi1ahFKlSon2xcTEwN/fHzExMVobXxAELFiwAG3bti2yBaaakJrdydXVVceZ5NamTRvR9tOnT2t97DNnzoi2S+VERERERERERERERESkL9QuMgKAcePGiS5TkpOTg759++L169cqx3z58iX69+8va4FG2bJlMXr0aNG+S5cuYdCgQcjMzJRtvLdCQkLw6NGjAj3X29sbAwYMEO27cuUKOnbsiMTExAKPnZOTg/Hjx+Ovv/4q8Db6xBA+s/r166Nbt26ifXv37sXEiRO1Umh05MiRQr2RPXz4cKXL++3Zs0etuH/88Qe2bNki2lemTBn0799frbj6rkaNGqLt586dU3tGjadPn6Jfv35FfhYbMSVKlJAsuomOjkbr1q1VXj7yp59+km12PW3o1auX5JJUv/zyC5YtWyb7mNnZ2di+fbvscdVRokQJ/Pnnn5LLpt2+fRt169bFlStXZB/7zp078Pf3x5QpUwx+f7t9+zZ27tyJnJwc2WI+ffoUhw8fFu3z9fWVbRx1+Pv7w8TEJE/7uXPnkJ2drbVx37x5g/Dw8Dzttra2aNCggdbGJSIiIiIiIiIiIiIikoNGRUbe3t6Sy5TcvHkTnTp1UqkYIi4uDh06dMDdu3c1SUvUzJkzUa5cOdG+rVu3omnTpoiOjtZ4HEEQsH//fjRt2hQNGzYscMEK8N/SNnZ2dqJ9QUFB8PX1xaFDh/KNExERgaZNm2Lp0qW52suUKVPgXPSBIXxmS5culSy4+d///odOnTqpVWz3oaysLGzatAnVq1dHmzZtVCo4k5u1tTVmzJgh2pednY0+ffrg+PHjKsXctGkTRo0aJdn/ww8/oFixYirFNBRNmjSBpaWlaN/AgQNVXjbt9u3baNiwIe7fvy9HegZp8uTJ8PT0FO2LiIiAr68v1q9fn28R4OPHj9GpUydMmDAhV7u+HUsVCgVWrFghuSzV2LFjMXToUFlmgEtNTcVvv/2GihUrSi7zWRjatGmDBQsWSPY/evQI9erVw8yZM5GamqrxeM+fP8fEiRNRtWpVnDx5UuN4+uDZs2fo3r07fHx8sHLlSo3fp6SkJPTt21d0yUYHBwe0bNlSo/iasrGxQfPmzfO0JyYmIjQ0VGvjnjlzRrSIqV27dqJFT0RERERERERERERERPpEoyIjAJg3bx4cHR1F+4KDg+Hr6yv5Lfb37du3D76+vrh48eK7NmNjY8klUFRlbW2NjRs3wszMTLT/woULqFy5MiZMmKDycjrZ2dk4deoURo8ejdKlS6Njx444e/asyjm6urrijz/+kOx/9OgR2rVrh0qVKmH69OnYvn07zp07h9DQUOzduxc//fQTGjdujCpVquSZAaV79+5o0aKFyjkVJkP4zNzc3LBq1SrRpe4AYP/+/ahYsSJmz56NuLg4lWJnZGTgwIED+Oyzz+Di4oL+/fvj6tWrKueoDaNHj0adOnVE+9LS0hAQEIDx48cjKSlJaZy4uDgMGjQI/fv3l5w9IyAgoMjOYgT8t/Rkjx49RPsePHiA+vXr4+jRo/nGSU5OxowZM1CzZk08fPjwXbuNjQ1sbW1ly9cQWFlZYcOGDZI37GNjYzFw4EC4u7vj66+/xtatWxEUFITLly/jwIED+OWXXxAQEABPT0/s27cv17Z169aVLK4tTDVq1FBaZLN69Wp4e3tj6dKlSE5OVil2cnIytm3bht69e8PZ2RmjRo3CgwcPNE1Zdl9//XWegrD3ZWRkYNasWfDw8MD333+PyMhIleJnZ2fjxIkTGDRoEDw9PbFo0SJkZGRomrbeuXPnDoYPHw5nZ2f069cPu3fvVrlA7ejRo6hfvz6CgoJE+wcNGqQXBTVS55Zdu3ZpbUyp2EX5PEdEREREREREREREREWHQpBhPafdu3ejW7duSmeFqFSpEvr06QNfX1+ULl0agiDgyZMnuH79OjZv3iw6e9GECRNw6dIlnDlzJk/fqVOn8Mknn6ic67Zt29CnTx+ly4EYGxujRo0aaNasGWrUqAEHBwfY29vDxMQE8fHxiI+Px8uXL3H9+nWEh4fj6tWrkjdtz549i8aNG6uU47fffou5c+eqtI0yXl5euHDhAr766iusW7cuT/9ff/2FTz/9tMDxBg0aJBpnzZo1Wrn5bgif2U8//aT05jYAmJqaom7dumjWrBmqVq0Ke3t72NvbQxCEdznGxMTg6tWrCA8Px/Xr10VngAD+W/bJzc1NpRzlFhUVhdq1ayM2NlbyOVZWVujUqRNatWoFNzc3ODg44NWrV4iOjsbBgwdx4MABydcI/FfEFRYWBicnJ7Vy9PDwyFVw81ZkZCQ8PDzUiqkNDx48QKVKlZQuAVijRg106dIFtWrVgpOTE4yMjPDixQtER0fj6NGjOHbsmOgMV3/++SdmzZoly/ug7fdz7dq1GDx4cJ72wMBArF27VuV4K1euxPDhwzXO6y1HR0dcvHgR69atw6xZs/L0z549G999912B450+fVp0JpVmzZrh9OnTauX45Zdf4ueff1b6HCsrKzRo0ABNmzZFpUqV3h2LMjMz3x2Lnj59iitXriA8PBw3b94UXQrM2NhYL5cI++677wq8vJ2vry8aNWoEX19feHp6wt7eHpaWlsjKykJSUhKePHmCu3fv4tKlSzh79my+szPa2toiPj5ehlehuqioKNEZvNzd3REVFZXv9lI/jwBQrFgx+Pn5oXbt2qhevTqcnZ1hb28POzs7ZGZmIjExEZGRkbh27RoOHjyIe/fuSY7j4eGB69evo3jx4gV+bdqSmJgIFxeXPLM2VahQQSuzamZnZ8PFxSXPedPJyQlPnz7Vi8IrIiIiIiIiIiIiIiIiZWS5m9GlS5d8b67eunULM2fOLHDMBg0aYO7cuQgICJAhw//Ts2dPGBkZoX///pLFDdnZ2bh06RIuXbok69gFNWfOHGRkZODHH3/UOJa7uzsOHjwIe3t70eU5AEjOFKQvDOEz++qrr2BiYoJx48ZJFttlZGQgODgYwcHBOs5OOzw8PHDw4EH4+/tLLt+WnJyMzZs3Y/PmzSrHd3JywtGjR9UuMDIk5cqVw8yZMzFt2jTJ54SHhyM8PFyluCNHjsTgwYNFC2I+BsOGDUN6ejq+/PLLfJdGy4+9vT32798PT09PvT6WLl26FGZmZli0aJHkc5KTk3H8+HGVlzU0FN9//z18fX0xdOjQfGdTu3HjBm7cuCHb2LVq1ZItlj7JzMzE5cuXcfnyZY3ivJ2hUB8KjID/8unSpUuec9S9e/dw7do1+Pn5yTremTNnRAtz+/TpwwIjIiIiIiIiIiIiIiIyCBovl/bWt99+q9IMDspUrVoVu3fv1toN2+7duyMoKAjlypXTSnw5LFy4EGvWrIGVlZXaMZo0aYLz58+jQoUKACA5A4OFhYXaY+iKIXxmX375JQ4cOPBRFMW8VbduXZw+fVr2WZUqVqyI4OBg+Pj4yBpXn02dOhWBgYGyxRs0aBCWL18uWzxDNXr0aOzfv1+j/dLX1xfBwcGoV68eAP0+lioUCvz4449Yu3at3hRyFIbevXsjPDxc9kJlKW5ublizZk2RLdySg4ODA06ePImGDRsWdiq5jBgxQrR9y5Ytso8lFVPOGdeIiIiIiIiIiIiIiIi0SbYiI+C/pWI2bNig0Y3NDh06ICgoCM7OzjJmllfdunVx9epVTJ48WSvFTNWrV8eSJUtQvXp1tWMMGjQIt27dwqBBg2Bqalrg7Tw9PbFixQqcOXMGrq6u79qllnAxlKIYQ/jM2rZti3///RfDhg2DkZGsuxcAoHHjxli1ahVKliwpe2x11axZE2FhYejdu7fGsRQKBYYNG4bQ0FBUrFhRhuwMy59//okZM2Zo9LNjbm6ORYsWYc2aNVr5GTRE7dq1w61btzB+/HiVCjddXFywYMECXL58OVfBmyEcSwMDA3Ht2jV069ZN9tjGxsZo06YNNm3aJHtsOVWoUAGHDx/Gnj173hWIya1ixYpYvnw57t27h0GDBkGhUGhlHF1wdHRE2bJltRK7T58+uHr1KmrXrq2V+Jp4u8zqh9auXSvrcoDJycmiRUYtW7aEr6+vbOMQERERERERERERERFpk+x3oPv374/bt29j8ODBKhXG+Pj4YNOmTdi3bx/s7OzkTktU8eLFMX/+fERGRmL69Olwd3dXO5axsTHq16+P7777DleuXEF4eDjGjh2r8UwSb2dHiI6Oxm+//YaePXuiUqVKsLGxgbGxMSwtLeHq6opmzZph/PjxOH78OO7evYthw4bludn57Nkz0TH0qWAlP4bwmTk5OWHFihW4c+cOxo0bp1HBnJmZGT755BPMmzcPd+/exdmzZzFkyBC9W1bFyckJW7Zswblz59CxY0eV8zM1NUWvXr0QHh6OFStWwMbGRpa82rVrh+7du+d5aDJDmDYZGRlh5syZCAoKQqtWrVTa1tTUFAMHDsSNGzcwYcIELWVouOzt7fHTTz/h6dOnWLt2LQYMGAA/Pz/Y2trC2NgY5ubmcHFxQcOGDTFy5Ejs27cPDx8+xKRJk/KcywzlWOrp6YkdO3bgypUrGDJkCGxtbdWOZWVlhbZt22Lx4sV49OgRDh06hF69esmYrfZ06tQJFy5cwLlz5zBy5Ei4uLhoFM/Z2RnDhg3DiRMncOvWLXzxxRd6sVSepnx9ffHw4UNcuXIFc+bMQdOmTTWancvKygr9+/dHcHAwNm/ejNKlS8uYrbzGjRuXp+3Zs2c4cOCAbGNs3bpVdGlRsbGJiIiIiIiIiIiIiIj0lUIQBEFbwWNiYrBjxw6cOHECN27cwLNnz5CSkgJzc3OUKFEC3t7eqF27Njp06IBGjRrpxQwAYWFhOHPmDC5duoR79+4hOjoab968QVpaGkxNTWFtbQ1ra2s4OzujUqVKqFSpEqpUqYLGjRtrdANX2+Li4uDo6IgPP24zMzMkJyfD2Ni4kDLTnL5/Zjk5OQgJCUFwcDAuX76M+/fv4/Hjx0hKSkJaWhrMzc1hY2MDa2trlCpV6l2OVatWRcOGDWFpaan1HOX24sULHDx4EMHBwfj3338RFRWFhIQEpKenw9zcHHZ2dvD09ISvry+aNGmCdu3aoUSJEoWdtt65ceMGDh06hDNnzuDu3buIjY1FfHw8zMzMYG1tDU9PT1SuXBnNmzdHmzZt4OjoKBonPT09z74P/Lf/68Nx15AIggB7e3vR2YweP36s14UUmZmZOHPmDM6fP4/w8HBERkbiyZMnSEpKQkZGBiwtLWFtbQ0bGxuULl0aPj4+qFSpEqpVq4Z69eqpVDisz3JycnD9+nWEhIQgLCwMDx48wMOHDxEXF4eUlBSkp6fD1NQUlpaWcHZ2hpubG7y9veHn54dGjRqhSpUqH81+k5mZifDwcFy8eBF37tzBvXv3EBkZifj4eCQlJSElJQWWlpawtbWFra0tKlSogOrVq6NmzZpo2bKlwSzZl5GRAQ8PjzwFhO3bt8f+/ftlGaNhw4YICQnJ1ebl5YVbt25x1jkiIiIiIiIiIiIiIjIYWi0yIv1x6NAhtGvXLk+7n58frl69WggZEREZnoiICFSuXDlPu62treQyakSk/5YsWYLx48fnajMyMsKtW7fg5eWlUezQ0FDUrVs3T/vatWsRGBioUWwiIiIiIiIiIiIiIiJd4lenPxIbN24UbW/UqJGOMyEiMlxSx9KGDRvqOBMiktPnn3+eZyaynJwc/PjjjxrHXrBgQZ42b29vDBgwQOPYREREREREREREREREusQio49ATEwMtm3bJtrXvHlzHWdDRGSY0tPTsWLFCtE+HkuJDJu5uTmmTZuWp/2vv/7C8+fP1Y579+5d7Nq1K0/7zJkzDXqpWiIiIiIiIiIiIiIi+jixyOgjMG7cOGRkZORpt7S0FF1CjYiI8po5cyZevnwp2tezZ08dZ0NEchs6dCjKlSuXqy09PR1LlixRO+aiRYuQk5OTq61q1aro1auX2jGJiIiIiIiIiIiIiIgKC4uMirjff/8dW7ZsEe3r3bs3rKysdJwREZHhOXjwoOiSR8B/sxh5eHjoNiEikl2xYsWwaNGiPO3Lly9HTEyMyvHu37+PNWvW5GlfsmQJjIx4CU5ERERERERERERERIaHdzj0UL9+/XDo0CGNYgiCgFmzZmHUqFGi/UZGRpg4caJGYxAR6bPRo0djy5YtyM7O1ijOypUr0aVLFwiCINo/ZcoUjeITkf7o2rUrWrVqlastOTkZs2fPVjnWt99+i8zMzFxt3bt3R4sWLTTKkYiIiIiIiIiIiIiIqLAoBKm7plRo3Nzc8OTJE1StWhUDBw5Ez5494e7uXqBtBUHAgQMHMHfuXFy4cEHyeaNGjcIvv/wiV8pERHqncePGOHfuHMqVK4fAwED07NkTPj4+Bd7+7NmzmDdvHg4fPiz5nPbt22P//v1ypEtEeuLWrVvw8/PLVSBUrFgxREREoHz58gWKceXKFdSsWTNXcaKFhQUiIiIKfE1HRERERERERERERESkb1hkpIfeFhm9z8/PD7Vr10aNGjXg7u4OOzs7WFtbIykpCa9fv8aTJ08QHByMoKAgREdHK41fsWJFhIaGwsbGRpsvg4ioUL0tMnqft7c36tSpgxo1aqB8+fKws7ODra0tUlNTERcXh+fPnyMkJARBQUG4e/eu0vhOTk64fPkyypQpo82XQUSFYPPmzbh9+3autqZNmxZ4FqIDBw4gNDQ0V5ufnx+6desmW45ERERERERERERERES6xiIjPSRWZCQXJycnnDlzRqXZPIiIDJFYkZFcLC0tcejQITRt2lQr8YmIiIiIiIiIiIiIiIiI9I1RYSdAulOuXDmcPn2aBUZERBpwcnLC4cOHWWBERERERERERERERERERB8VFhl9BIyMjDBkyBCEhYWhcuXKhZ0OEZHB6tKlC65cuYImTZoUdipERERERERERERERERERDrF5dL00IMHD7Bt2zZs374dly9fhrofkZWVFXr27Inx48fDz89P5iyJiPTbs2fPsGPHDmzbtg3nz59HVlaWWnFMTU3RsWNHjBs3Do0bN5Y5SyIiIiIiIiIiIiIiIiIiw8AiIz0XHx+PCxcu4OLFi7h79y6ioqLw+PFjJCYmIiUlBenp6ShWrBisrKxQqlQpeHh4oHr16mjYsCFatGgBc3Pzwn4JRESFLjk5GRcvXsSFCxdw584dREVFITo6GgkJCUhJSUFaWhpMTExgaWmJkiVLomzZsvDz80P9+vXRunVrWFtbF/ZLICIiIiIiIiIiIiIiIiIqVCwyIiIiIiIiIiIiIiIiIiIiIiIipYwKOwEiIiIiIiIiIiIiIiIiIiIiItJvLDIiIiIiIiIiIiIiIiIiIiIiIiKlWGRERERERERERERERERERERERERKsciIiIiIiIiIiIiIiIiIiIiIiIiUYpEREREREREREREREREREREREREpxSIjIiIiIiIiIiIiIiIiIiIiIiJSikVGRERERERERERERERERERERESkFIuMiIiIiIiIiIiIiIiIiIiIiIhIKRYZERERERERERERERERERERERGRUh9tkdHMmTOhUCjyPGbOnFnYqRmctWvXir6XgwYNKuzUiIiIiIiIiIiIiIiIiIiIiEgGJoWdwFvp6emIj49HSkoK0tLSYGpqCktLSzg6OqJYsWKFnR4RERmoV69e4c2bN8jKyoK1tTUcHBxgampa2GkREZGeSE1NRUJCAlJSUpCeng4zMzNYWVnB0dERxsbGhZ0e/X+vX79GQkIC0tPTUbx4cTg4OMDc3Lyw0yIiIiIiIiIiIiL6qBRKkVFMTAxOnTqF8+fP4/Lly4iMjMTz588hCEKe5yoUCjg5OcHb2xtVq1ZFo0aN0KxZM5QuXboQMieij9nMmTMxa9Ysyf7t27eje/fuOsxIPsnJyYiMjNT6OM7OznB2dtbqGFeuXMGOHTtw/Phx/Pvvv0hMTMzVb2xsjPLly6Nhw4bo2LEjOnTooLOio7S0NOzYsQP79u1DWFgYnj9/jpycHJQqVQrVq1dH586d0bVrV1hZWekkn6IsPj4ejx8/1iiGsbExrK2tYWNjA2traygUCpmyKxxPnjzB69evtT5OxYoVNdqnMjMzcfv2bRkzEmdnZwc3NzfZ4z5//hxbt27FwYMHcfv2bcTExMDCwgKurq5o3LgxunbtitatWxv8z5OhevjwIU6fPo3z58/jypUriIyMxMuXL0Wfa2xsDBcXF/j4+MDPz+/d7yGOjo46zlp7oqKicOzYMZw/fx63b99GVFQUEhMTkZqaCgsLC1hZWaFkyZIoX748KlasiHr16qF+/fooWbKk1nO7e/cutm/fjiNHjuDatWt5jl8KhQIeHh6oW7cuOnTooNPzZ3Z2Nvbu3Yu9e/fin3/+wbNnz5CWloZSpUqhcuXK6NSpE3r06AF7e3ud5FOUqXuNamxsDDMzM5iZmcHc3BwlSpSAkdFHO5FzHoW57xvK9YiUY8eOYffu3Th79iyePn2KpKQkuLi4wMvLCx06dECvXr3g6uoq+7hERERERERERHpD0JHU1FRh5cqVQrNmzQQjIyMBgEaP2rVrCwsWLBCeP3+uVj4zZswQjTtjxgx5X/hHYM2aNaLvZWBgYGGnRiSbnJwcwdPTU+lxqUOHDoWdptpOnTql8XG5II9p06Zp7TUEBQUJTZo0UTmnUqVKCYsWLRIyMzO1lpsgCMLGjRuFMmXKFCifVatWaTWXj4HUuUndh0KhENzd3YXOnTsLM2bMEIKCgoScnJzCfpkqCQwM1Ml+fvfuXY3yjIyM1Eme/fv3l+md/U96erowffp0wcrKKt+xa9asKZw5c0bW8UlaQkKC8NNPPwl16tTR+OfGyMhIaNq0qbB8+XIhPj6+sF+aWjIzM4W1a9cK9evXV/t98PHxESZNmiRcunRJ9vyuXbsmtG/fXlAoFCrlZGdnJ0ybNk1ISkqSPaf3HTlyRPDx8ck3H1tbW2HBggVav74o6uS6RjUyMhKcnZ2FqlWrCl26dBG++eYb4a+//hLu3LlT2C9RZ/Rl3zeU65EPXbx4sUDvnbm5uTBlyhStH4uIiIiIiIiIiAqL1r/Kl56ejgULFsDd3R3Dhg3DmTNnkJOTo3HcS5cuYfLkyShTpgwGDBiAW7duyZAtEZG4M2fO5Pst6sOHDyMmJkZHGdFb6enpGDFiBJo1a4azZ8+qvP2zZ8/w9ddfo0aNGoiIiJA9v+zsbIwZMwb9+/dHdHR0gfIZOnQoAgMDkZmZKXs+pB5BEPDw4UPs2bMHs2bNQtOmTVG+fHnMnDkTCQkJhZ0eFbLY2Fj4+/tj9uzZSE5Ozvf5YWFhaNGiBX799VcdZPfxevPmDb755huUKVMGX331FUJDQzWOmZOTg6CgIIwePRqurq744osvNJ41TZf27t2LKlWqYNCgQbhw4YLacSIiIrBw4UJMmzZNttxycnIwffp01KxZEwcOHBCd5VaZ+Ph4zJ07F5UrV8a5c+dky+t9CxYsQJs2bQp0vZCQkIDJkyejffv2eWZVJN3LycnBixcvcP36dezevRs//PADBg4ciIoVK6JUqVLo168fdu3ahbS0tMJOVSv0ed83BOvXr0fjxo0L9N6lpaVh/vz5aNq0KZ49e6aD7IiIiIiIiIiIdEurRUYnT55E1apVMWXKFLx48UIrY2RmZmLjxo2oUqUKhg4dilevXmllHCL6uK1duzbf52RlZWHDhg3aT4beef36NZo1a4YVK1aofDPyQzdu3ED9+vVx/PhxmbL7z8iRI7F8+XKVt/vrr7/Qt29fjV8XaU9kZCRmzZoFb29v7vsfsZSUFLRs2VLlIsfs7Gx88cUX+Pnnn7WU2cft77//RqVKlTB//ny8efNGK2OkpKTg119/RYUKFTB58uQCFZgVlpSUFAwbNgydO3fGnTt3CjudPNLT09GlSxd8//33yMrK0ijWo0eP0KJFC9mPy3PnzsWUKVNUPi8fPXoUAQEBSE9PlzUfks/z58+xefNmdOvWDc7Ozhg7diyioqIKOy1Z6Pu+bwg2btyIgQMHIiMjQ6XtwsLC0LRpU8TFxWkpMyIiIiIiIiKiwqGVIqOcnBzMnj0brVq1wt27d7UxhOiYq1evRs2aNXUyHhF9PJKSkrB9+/YCPXfdunVazobeSkpKQps2bfDPP//IFvPNmzfo3LmzbDMg/PHHH1i5cmWutmLFiuGLL75ASEgIEhISkJSUhLCwMEycOBHm5ua5nrtjxw7MmTNHllxIe2JiYvDpp59i4MCBGt8cJ8MzZMgQXL16NVebg4MDfvjhB9y8eRMpKSmIi4vD8ePH0atXrzzbf/XVVzh9+rSOsi360tPTMXLkSPTu3VtnM0ikp6dj4cKFaNu2rU7GU1VsbCyaN2+OVatWFXYqorKystCrVy/s27dPtpgZGRkYNGhQga/f8nPo0CFMnz49V5tCoUD//v1x8uRJxMXFISUlBf/++y/mzJkDOzu7XM8NCQnBqFGjZMmFtCsxMRHLli1DhQoVMGLECIMuENH3fd8QXLlyBcOGDcvT3q5dO+zfvx8vX75EWloa7t27h6VLl6JUqVK5nnfv3j307t2bXxogIiIiIiIioiLFRO6AWVlZ6N+/P/7+++98n1uiRAkEBASgUaNGqFKlCjw9PWFvbw8rKytkZmYiKSkJT548wd27d3Hp0iWcPn0aoaGhSpdb09Y3lYno47V9+/YCz05w/fp1hIWFseBRB4YPH46LFy9K9leqVAmff/45WrRoAU9PT5iamiImJgahoaHYsGEDdu/eLfoH/5SUFHTr1g1Xr15FyZIl1c4vISEB33zzTa42Z2dn7N+/H3Xq1MnVXqNGDdSoUQODBw9GmzZt8OjRo3d9c+fORWBgIMqWLat2LqQb69evB/DfLFT0cQgKCsKWLVtytdWtWxf79u2Ds7PzuzYLCwu0bNkSLVu2RK9evTBgwIB3S/JkZWVh9OjRuHbtGoyMtL6ScZGWlJSE9u3bIygoKN/nlixZ8t3vIZUqVYKnpydsbW1haWmJ9PR0JCUl4dGjR7h79y7++ecfnDp1CteuXVMaUx9/D4mLi0PTpk1x8+ZNyecUK1YMzZo1wyeffIJKlSrB1dUVlpaWSEpKwuvXrxEdHY3Lly8jNDQU169fl/1m+XfffYe9e/dK9pcpUwaff/45AgIC4OXlBQsLC8TGxiIsLAxbt27Fpk2bRAs8s7OzMXDgQPj4+KBKlSpq55eVlYWxY8fm+h3UysoKW7duRfv27XM9t3LlyqhcuTIGDx6Mdu3a5SpA/PPPPzF8+HDUq1dP7VxId7Kzs7FixQrs3LkTv//+O7p3717YKanEEPZ9Q/DVV18hNTX13f9NTEzw+++/Y8iQIbmeV758eXz55ZcYNGgQunXrhhMnTrzrO378OP7++2/07t1bZ3kTEREREREREWmVIKPMzEyhS5cuAgClj3r16gk7duwQ0tPTVR7j8ePHwsKFCwV3d3fR2La2tgWKM2PGDNHtZ8yYoXJORFS0NWvWLN/j2vuPMWPGFHbKKjt16pToa2nWrFlhpybqr7/+knz/jY2NhR9++EHIyspSGiMkJETyXAJACAgI0CjHOXPm5IpXrFgxISQkJN/tbt68KRQvXjzXtiNHjtQol4/RmjVrJD/bU6dOFShGWlqa8OLFC+HGjRvCpk2bhJEjRwqOjo75HgNWr16t3RenpsDAQNF816xZU9ip5RIZGSmap7u7e2Gnloe/v3+uHD08PITY2Nh8t1u/fn2e17d161YdZFx0vXnzRmjQoEG++2fr1q2Fo0ePCtnZ2SqPcefOHWH69OmCk5OTaOxq1arJ/8I0kJaWJjRp0kTyvbCyshK+++47ISYmpsAxo6OjhWXLlgn16tWT5Vx55swZQaFQSOY4duxYISUlRWmMiIgIwc/PTzKGr6+vkJGRoXaOGzZsyBNzx44d+W73/PlzwdXVNdd2bdu2VTuPj5XUNWpBzl/Z2dlCcnKyEBsbK9y6dUs4ffq0sGrVKmHs2LFC/fr1BWNj4wJf30+aNEnIycnRzYvWkL7v+4ZyPRIcHJwnx//973/5bpecnCxUrVo113Y+Pj46yJiIiIiIiIiISDdk/br02LFjsXv3bsn+kiVLYtu2bbhw4QK6desGU1NTlccoXbo0Jk6ciHv37uHPP//MMx01EZGcIiMjJWdEqF+/vmj75s2bkZmZqc20PmqJiYmYNGmSaJ+RkRH++usvTJkyBcbGxkrj1K9fH+fPn0e5cuVE+48cOYJdu3apneeH2w4fPlzyZ+Z9Pj4+mDJlSq42qVmXSLvMzMzg5OSEKlWqoG/fvvj111/x5MkTzJs3L8/Sdu+bMmUKkpKSdJgpFYb4+Pg8y5z9+OOPsLe3z3fbAQMGwN/fP1fbzp075Uzvo5KTk4P+/fsjJCRE8jleXl44efIkjhw5glatWqk1a5SXlxdmzZqFqKgo/O9//4Otra0maWvdxIkTcfbsWdG+Bg0a4MaNG5g9e3auWbfy4+bmhjFjxuDChQu4cOFCnpl8VJGdnY3Ro0dLnt9++OEHLFmyBBYWFkrjVKpUCcHBwXlmCXzrxo0bWL58udp5fng+b9++Pbp165bvdi4uLli4cGGutuPHjyMxMVHtXEg1RkZGsLS0hL29Pby9vdGsWTMMGTIES5YsQUhICOLi4rBu3To0a9Ys31gLFy7EyJEjdZC15vR93zcUH+77VatWxfjx4/PdztLSEr/99luutoiICNy6dUvW/IiIiIiIiIiICotsRUZ//vknfv31V8n+hg0b4sqVK+jRo4cs45mYmGDw4MG4desWRo8eLUtMIqIPrVu3TvTml4uLC1avXi26zatXr7B//35tp/bRWrx4MZ4/fy7aN2nSJPTr16/AsVxdXbFr1y6YmZmJ9n/zzTdqFfckJCQgLCwsV9uwYcMKvP3w4cOhUCje/f/Zs2eIiIhQOQ+Sn6mpKb755hvs27dPstDo5cuX2Lp1q44zI107e/ZsriWa7O3tC1R48NaHN6tPnjwpW24fm5kzZ2Lfvn2S/V26dEFYWBiaN28uy3iWlpb46quvcPv2bfTq1UuWmHI7cuSIZGFN+/btcfLkSXh4eGg0Rr169TBmzBi1t9+4cSOuX78u2tenT588BbfKWFtbY/fu3XBwcBDt//7779Uu/jx16lSu/6tyPu/Tpw/s7Oze/T8zM1Oy+IN0z8bGBgMHDsTp06dx/vx5NGnSROnz//jjjzxL4eobQ9j3DcWH+/6QIUNyXZ8r06hRI1StWjVXG8/zRERERERERFRUyFJk9OjRI4wbN06yv0WLFjhx4gRcXFzkGC4XGxsb/Pzzz9i7d2+BvjlORFRQgiDgr7/+Eu3r06cPKleujHr16on2r127VouZfbxSU1Mlb5yUK1cOs2bNUjmmn58fJkyYINp3+/Zt7NmzR+WYT58+zVWcZGFhAT8/vwJv7+TkBC8vr1xt0dHRKudB2uPv76/0RqM6PzdkWB4/fpzr/3Xr1lVpdpwGDRrk+v/Lly+Rnp4uS24fk0uXLmHevHmS/f3798eOHTtQvHhx2cd2cXHB1q1bsWLFinxn29GljIwMyRmCatWqhW3btimdjU1XfvzxR9F2Ozs7/PzzzyrHc3V1xQ8//CDa9/r1a6xatUrlmKmpqYiLi8vVVpBZCd8yNjZG3bp1c7XxfK6fGjRogDNnzmDx4sUwMTGRfN6CBQtw8OBBHWZWcIay7xuKD8/zquz7QN7zPPd9IiIiIiIiIioqZCkyGjVqlOS075UrV8aePXu0/sesjh07IiQkRHLZGyIiVZ05cwaRkZGifZ9++ikAYODAgaL9hw4dwsuXL7WW28dqx44dku/r9OnT1VqGEwAmT54Ma2tr0b4PlzsoiNevX+f6f4kSJQr8zee3PpyN4cObnFT4JkyYIHl9c+HCBR1nQ7r24X6uarG72Iwr3M9Vk5OTgyFDhiA7O1u0v0WLFli7dq1aS6OpYtiwYThx4gScnJy0Ok5B/fLLL7h3716edgsLC2zatEkvCqKCg4Nx48YN0b5x48bB0dFRrbhDhgyBp6enaN/vv/+ucrwP93NA832d+7n+UigUGDduHPbv3y+5nwiCgMGDB+PNmzc6zi5/hrDvGxK5z/Pc94mIiIiIiIioqND4L+7BwcE4cOCAaJ+5uTm2bdumlW8Oi6lYsSJOnDihk7GIqOiTmo3Ix8cHtWrVAgD07t0bxYoVy/OczMxMbNiwQZvpfZQ2btwo2u7o6Ii+ffuqHfftchliTpw4gZiYGJXjvS8hIUHlnOLj43P939bWVuUYpF1WVlZo2rSpaN/Lly/VXpqHDIOm+/mH+zjA/VxVmzZtwrVr10T7nJycsGnTJqUzksipQYMG+Pvvv3UyljKZmZlYtGiRaN/48eNRsWJFHWckTup8bmJikmcpQVUYGRlh1KhRon23b9/G5cuXVYr34X4OaL6vcz/XfwEBAdi4caNkgeKLFy8wd+5cHWelnKHs+4ZE7vM8930iIiIiIiIiKio0LjKaMWOGZN/EiRNRuXJlTYdQSYkSJbQW+8KFC5g6dSpatWqFMmXKwMrKCmZmZihdujRq1KiBXr16Yc2aNXj+/LnWcviQIAgIDg7G7Nmz0aFDB/j4+KBEiRIwNTWFmZkZ7O3t4evriy5duuCHH35AaGioznLTlocPH+LPP//EsGHD0KRJE5QtWxY2NjYwMTGBpaUlSpYsCR8fH3Tp0gXTpk3Dzp071brBX1Dp6ek4fPgwpk6dijZt2sDb2zvXZ+Dg4IBq1aqhZ8+eWLJkCe7cuaO1XN5KTU3Fnj178N133737uXB1dUXx4sVhYmICa2truLi4oEKFCmjevDkGDRqE77//HkeOHBG96fkxSk5Oxo4dO0T7BgwY8O7fDg4OaNeunejz1q1bp5XcPlZv3rzB8ePHRft69Oih9ixGb/Xv31+0PTs7W+Wlrz5cHjQ5ORk3b94s8PYJCQm4e/durjZXV1eVciDdKF++vGSfNs89VPg+3M8vXbokukSNlIsXL+b6v62tLSwtLWXJ7WOQk5OjdInM+fPna2WpZmW0+XtIQW3duhVPnz7N025hYYGvv/66EDLKSxAE7Nq1S7TP398fzs7OGsXv27ev5OyBUtd2UooXLw4rK6tcbR/uu8oIgoBLly7lauP53DB07doVY8eOlexfunSpXs1aagj7vqH58Byiyr4v9nzu+0RERERERERUZAgauHXrlgBA9OHg4CAkJSVpEl6rZsyYIZr3jBkz8jx3165dQrVq1SRf64cPIyMjYejQocLz58+1ln9iYqIwf/58oUyZMgXO6+2jQoUKws8//yykpqbKksuaNWtExwkMDJQlviAIQnp6urBmzRqhTp06Kr9eAIKJiYnQuHFj4Y8//hASExNlyen+/fvC559/LtjZ2amcT/369YXdu3fLksf7IiIihCFDhgg2NjZqvU8ABIVCIVSvXl2YN2+ecP/+fdlzNBRr166VfH+ioqJyPXf79u2S72d4eHjhvAAVnTp1SjT/Zs2aFXZq7+zZs0fyfT5w4IDG8XNycgRHR0fR+D169FA5npeXV64YX3/9dYG3Xbp0aa5tS5QoIWRlZamcw8dM6twEQDh16pRs40ydOlVynBcvXsg2jhwCAwNF81yzZk1hp5ZLZGSkaJ7u7u6FnVouT548yZPj/v37C7x9165dc23bqVMnLWZb9Bw+fFhy3/Px8RFycnIKO8VC0bJlS61fl2vq6tWrkp/dL7/8IssYtWrVEo1fu3ZtlWO1atVK7WuCD69djIyMhJcvX6qcw8dM6hpVF+evlJQUwc3NTXL8efPmaXV8VRjCvv+WoVyPDBs2LFd+derUKfC2V65cERQKRa7tw8LCtJgtEREREREREZHuaDST0erVqyX7Ro4cmedbn4YmISEB3bt3R9euXXH16tUCb5eTk4NVq1bBy8sLhw4dkj2v7du3o0KFCpgyZQqio6NV3v7evXsYM2YMfHx8cOzYMdnzk9uuXbvg7e2NwYMHqz0TU1ZWFoKDgzFixAi4urri/PnzaueTlJSEcePGoWLFivj999/VmvnnwoUL6NKlC1q1aoWHDx+qnctb6enp+Pbbb1GtWjWsXr0ab968UTuWIAi4cuUKpk6d+m5JsI+R1FJpTZo0gbu7e662Dh06wM7OTqU4pLrTp0+LthsbG0suWaUKhUKB5s2bqzS2Mh06dMj1/+XLlxfoXPLo0SPMnj07TyxjY2OVcyDtU3YOkDouUNHg6uqKGjVq5GqbMGECEhMT8932wIED2L17d662zp07y5lekafs95AJEyZIzmRTlMXExEier3r27KnbZJRQdk6VOg+rqkWLFqLtYWFhKl8nf3g+37FjBw4fPpzvdgkJCZgwYUKutkaNGsHR0VGl8anwWFhYYOrUqZL9K1eu1GE20gxl3zc0H+77oaGhWLFiRb7bZWZmYtSoUblmNyxbtiyqV68ud4pERERERERERIVCoyIjZdPNf/bZZ5qELnTR0dFo2LAhdu7cqXaMxMREdOnSRXI5AFVlZ2dj7Nix6NmzJ2JiYjSOFxUVhYCAAMyaNUul5T10JSUlBYGBgejWrRuioqJki5uYmIgXL16ote2NGzdQo0YNLF26FNnZ2Rrncvz4cdSuXRtBQUFqx0hNTUWnTp0wd+5cZGRkaJzT+9T5uYiKioJCoRB9fPLJJ7Lmpy1RUVE4c+aMaN+nn36ap83MzAy9evUSff6mTZuQmZkpa26G/v6q6/Lly6LtPj4+KF68uCxj1KlTR7T91atXePTokUqxxo4dm2sJt7S0NLRv315poVFUVBTatGmD2NjYd23Gxsb45ptvVBqbdOf+/fui7WXKlEGxYsXUijlz5kzJ/ZyFi/pl4sSJuf5/+/ZtdOjQAXFxcZLbHDt2DH379s11jvXw8Mi1FCcpl56ejgMHDoj2WVpaok+fPjrOSD0eHh6S+7o6Dh06JHp9ampqKll0UxikzufW1taoVKmSLGNInc9zcnJw5coVlWINHjwYDg4O7/4vCAL69OmDkydPSm4TGxuL9u3b4969e7nav/vuO5XGpsI3aNAg2NjYiPZFRkbi+vXrKsf8WPd9Q/N22fH3jRkzBps2bZLcJjU1FX369MnzpaZvv/32oyx+JSIiIiIiIqKiSe0io9u3b+PBgweifbVr14anp6faSRW2V69eoXXr1rh586bGsTIyMtCvXz/cvXtXozg5OTkYOHAgli1bpnFO7xMEATNnzsS4ceNkjaup169fo3nz5vjrr78KO5V3goOD0bBhwzw3CzT16tUrtG3bVrKoJT89e/bE0aNHZc3pY7du3TrRAitzc3PJbwOLFR8BwMuXL3Hw4EFZ8/tYSRXnyPmt4A9nJXlfeHi4SrHc3d0xduzYXG1PnjxBvXr1MG7cOISGhiIpKQmpqam4fv06pk+fDj8/P0REROTa5u3Mc6R/UlJSJItEpW5wU9HSu3dv1K9fP1dbUFAQKleujEWLFuHOnTtIT09HQkICzpw5g0GDBqFNmza5ZjtSKBRYvHhxrqJEUu706dNISUkR7WvXrp3Bz6aqrlOnTom2V6tWDRYWFjrORppUkU+1atVkuwkv5/nc2to6zwyDCQkJaNWqFQYPHoygoCAkJCQgPT0dd+7cwY8//ggfHx+cO3cu1zZvZzElw2JhYaF0NiCpgkddMpR939AYGRnhxx9/zHVcysjIQP/+/dGlSxccPnwYcXFxyMjIQFRUFH7//XdUrlw5zxfVateujcGDB+s6fSIiIiIiIiIirTFRd0OpP2QBMOg/nubk5KBPnz64detWrnZLS0s0b94cAQEB8PT0hIuLC7KysvDixQucO3cOO3bskCy6SktLw/Dhw5W+Z/mZNGmS0m/MAf/N5tGnTx9UrlwZpUuXhiAIePz4Ma5fv45NmzZJ5gcAy5Ytg6urKyZPnqx2jnJJSUlBq1atJL/l/Ja9vT1at26NZs2aoVSpUnB2doapqSliY2MRGxuLq1ev4uLFi7h48SKSk5M1yiksLAxt27ZFUlKS5HOcnJzQokULNGvWDGXLloWDgwOMjY0RExODW7du4eDBgwgKChL9lmlKSgq6du2KS5cuoVy5cgXOa+PGjUr/sG1rawt/f3/Ur18fFSpUgKOjI6ysrJCdnY2EhAQkJCTg3r17uHbtGq5cuYJ///23wGMXVYIgSBa3dejQAba2tqJ9jRo1gqenJyIjI/P0rV27tsgsg5OVlYXY2Fi8fv0apqamKF68OJycnLT+zdxnz54hISFBtM/Ly0u2cSpUqCDZd/v2bZXjzZs3D5cuXcp1/E9PT8fSpUuxdOnSfLdv0aIFfvzxR5XHJd1YvHgxUlNTRfu6deum42zkk5KSglevXiE1NRUWFhaws7OTnMWhMOXk5CAuLg6xsbEwMTGBpaUlnJ2ddbq0oJGREbZv347atWvj+fPn79pjYmIwceLEPDMdifnuu+/QpUsXLWZZ9BTV30M0FRwcLNpekOVv37x5g7i4OKSlpcHS0hJOTk5aKU4QBAF37twR7ZPzfO7h4QETExNkZWXl6VPnfD5q1ChcuHAB69evf9eWk5ODtWvXFmiGuSpVqujVlydINe3atZNcovHDYrLCYAj7vjr04Xqkffv2+Pbbb/H999/nat+zZw/27NmT7/alSpXC7t27YWKi9p/eiIiIiIiIiIj0jtp/6VBWANK0aVN1wxa61atX4+nTp+/+b2Jigs8//xwzZsyAo6Oj6DadO3fGvHnzsGzZMkyePFn0j9mnT5/Gvn370LFjR5Vz2rt3L/73v/9J9nt6emLlypVo2bKlaH+vXr3w/fffY8+ePRgxYoTkUmvTpk1Do0aN0LhxY5VzlNPAgQOV/nx5eHhg/vz56NGjh9IbiX379gXw3x8n9+3bh02bNmH//v3IyclRKZ9Xr16hS5cukgVGZcuWxbRp0xAYGAgzMzPR53To0AFff/01IiIiMGHCBBw6dCjPc16/fo2+ffsiJCQERkb5TzImCILkEkoWFhaYO3cuRowYAUtLy3xjvfX48WPs3bsX27Ztw+nTpwu8XVESFBQkWZAnNVsR8N9MFJ9++mmeb7oD/33D+dWrV5LHEH0WFxeHxYsXIzg4GCEhIXj+/HmeWZ5MTU3h7u6OmjVronHjxmjfvr3ss9kpWzKxfPnyso1TpkwZyZuS6izbaGJigt27d6NPnz6i+70ynTp1wsaNG3lTQk+dPn0ac+fOFe1zcXFB9+7ddZyR+i5evIjbt28jODgY4eHhooW5tra2qFSpEmrXrg1/f3/4+/vLtkxhQaWlpeG3335DcHAwzp07h+jo6DzndGNjY5QpUwY1atRAgwYN0L59e1SuXFmreZUuXRqnTp1Cx44dVZrtUKFQYObMmZg+fboWsyuaiurvIZpITk4WLXQGxAtoMzIysGPHDuzatQvnzp3L9fvPWyVLlkTt2rXxySefoHv37vDw8NA4z+fPnyMtLU20T87zuYmJCcqUKSP6nqi7DPOqVatgYmKCNWvWqLRdgwYNsGvXLlhbW6s1LhW+5s2bQ6FQiM50GhYWVggZ/R9D2fcLQl+vR2bNmoWcnBzJ6z4p3t7e2LdvH0qXLq2lzIiIiIiIiIiIComgptq1awsARB9PnjxRN6zOzJgxQzL/tw9ra2vh+PHjKsXdvn27YGRkJBqvS5cuKueZmJgouLm5SebYpk0bITExscDxXr58KdStW1cyXuXKlYWMjAyVclyzZo1orMDAQBVfrXSst48vvvhCSEtLUznuW7du3RIGDBgg7Nu3r8Db9OrVSzKfzp07C69fv1Y5j2+//VYy5vLlywsUIyQkRHR7c3Nz4eLFiyrn9KGrV68KX375pcrbRUZGSr62Zs2aaZyXtg0aNEg0dwcHh3z3jTt37ki+9iVLlsiSn7be31OnTuV7TFTl0bRpU2HHjh2yvGZBEIQtW7ZIjnXixAnZxhEEQXB1dRUdp23btmrHzMrKEubPny/Y2trm+97Z29sLP/30k5CdnS3jq/r4KDufnDp1Su24GRkZwo8//ihYWlpKxt+6datGuSu7RlmzZo3acQMDA2Xbx62srIRhw4YJd+7c0ei1ilF2nFPnUaNGDeHPP/8UMjMzZc/1fbGxscKQIUMEY2PjfHOqVKmScPDgQa3mU5Q5OjqKvq/m5uYGdex0d3eX/BlRVWhoqGSs7du3v3tedna28MsvvwglS5ZUaT9SKBRCx44dhcuXL2v0mi9cuCA5xurVqzWK/aGGDRuKjuPj46NR3JUrVwqlSpXK9z2ztLQUpk2bptHvLqT8GlWTc6KqlO2vL1++lC2Wqgxl33+foVyPfGj37t1ChQoV8s2pWLFiwsiRI9X6OwERERERERERkSHIf7oUCVLf1LaxsYGrq6u6YfVGsWLFcOzYMcnZgaR0794dQ4YMEe17O5uJKpYuXYrHjx+L9tWrVw87duxQ6Zt7jo6OOHDgACpWrCjaf/PmTcmp4LXtzZs3+PrrryX7Z8yYgeXLl0vOFlQQ3t7eWL9+PTp06FCg5x87dgx///23aF/v3r2xa9cu2NnZqZzH999/L7mEyrx585Cenp5vjMOHD4u2T5kyBXXq1FE5pw/5+fkVaDmnoiQ5ORnbt28X7evduzeKFSumdHsvLy/Ur19ftG/dunUa52dIgoKC0L17d9StWxdXr17VON7Lly8l+1xcXDSO/76SJUuqnEN+jI2NMXnyZERGRuKXX35Bhw4d4OHhAUtLS1haWsLT0xOdOnXCH3/8gQcPHmD8+PEFmtGMtCsjIwOxsbG4efMmtm7ditGjR8PNzQ0TJ05ESkqK6DZTpkxBr169dJyp7iUnJ2PlypWoXLkyvvzyS42XJdWm8PBwfPbZZ6hSpYpWZ+mzt7fHqlWrEBERge+//x6NGzdG6dKlYWpqCjs7O1SqVAmDBg3Czp07cePGDbRt21ZruRRlCQkJktfTXl5eH+2xU9myyG9nUnzy5AkaN26ML774ItfyfgUhCAL27duHOnXq4KuvvkJGRoZaeRr6+RwAhg4dinv37mHNmjXo0aMHKlSoAGtra5ibm6Ns2bJo1aoVFi9ejPv372POnDka/e5C+sPX11ey79GjRzrMJDdD2fe1RZfXI507d0ZERAT+/vtvDBw4EN7e3rC1tYWpqSnc3NzQtGlTzJs3D7du3cKvv/6q1t8JiIiIiIiIiIgMgVprsKSkpCA+Pl60z83NTZN89MacOXNQr149tbdds2ZNnuV2MjMzcfbsWXTt2rVAcdLS0rBkyRLRPktLS2zbtk2lpbDecnR0xN9//42aNWuKLh22cOFCDB8+XOc3aRYvXozY2FjRvr59+2LmzJk6zQcAvvvuO9H2WrVqYd26dVAoFGrHnjdvHk6fPo3Q0NBc7U+fPsXWrVsxcOBApds/fPhQtL1Pnz5q5/Sx2759u+SyeMqWSvvweRcuXMjTHh4ejuvXr6Nq1aoa5WhoQkNDUbduXfz000/44osv1I4jdWwA/ls2QU5S8eLi4jSOXaJECYwaNQqjRo3SOBapr3nz5rLHtLS0xIIFCzB69GjZY+uzrKws/Pzzzzh06BD27Nmj9aXJNHHnzh20aNEC33zzDebMmaPROVwZLy8vfPvtt/j222+1Ev9j9+TJE8m+MmXK6DAT/aKscMDe3h537txB8+bNRZdGUkVOTg4WL16MixcvYv/+/SrfRNeH87nU77GqsLS0xKBBgzBo0CCNY5FhUHZ8efz4MWrWrKnDbP6Poez72qar6xETExP07NkTPXv21Ep8IiIiIiIiIiJDoFYVybNnzyT7pL4xakjKlSundEad/Dg7O6NVq1aifeHh4QWOs3fvXslvak+ZMkWjGynVqlXD8OHDRfsiIyNx6tQptWOrIzMzE7///rtoX6lSpbB8+XKd5gMAFy5cwD///CPat2zZMo2/lWxiYoLZs2eL9hVk1puYmBjRdg8PD03S+qitXbtWtL1ChQqSMxR9SNmMR2vWrFE3NYOWkZGB0aNHY9KkSWrHSEhIkOyztrZWO64q8eS4KUlFj5ubGyZPnoxbt259dAVG77t37x4aNGiAkJCQwk5FKUEQMG/ePPTr1w/Z2dmFnQ6poaj/HqIuZYUG8fHxaNmypcZFBu87d+4c/P39VZ41RB/O51lZWUhMTJR1LCr6SpUqJdkn9XuZLhjKvq8rhnI9QkRERERERERkyNSayUhqpg8AeveNNnWMGTNG41l8AgICcOjQoTztqhQZSS3TVbx4cUyYMEHt3N6aMWMGVq5cKXqTbcuWLSovFaeJw4cPS/6BdNq0abC3t9dZLm9JFYS0a9cODRs2lGWMNm3awNvbG7dv387VHhQUhMTERKU3W6RmYEhMTCzUZRk8PDwgCEKhja+uqKgonDlzRrRvwIABBY7j4OCAdu3aYc+ePXn6Nm7ciIULF8LERK1DLwDdvb9GRkaoU6cOmjZtiqpVq8LX1xfOzs6wtbWFmZkZXr9+jdjYWERERCAoKAiHDx/O83P8oR9//BF2dnaYOnWqyvkoW0LQ3Nxc5XjKSMUryDKG9HHp0qULvvzySzRp0kSj/fpDM2fO1MnsfTY2NvD390ft2rVRtWpVVKxYEXZ2drC1tUV2djZiY2Px4sULXLx4EWfPnsX+/fuV3ph/8+YN2rVrh+DgYFSpUkXWXKtWrYoWLVqgatWqqFq1KkqVKgVbW1tYWloiPj4esbGxuH//PoKCgnDs2DGEhYUpjbdlyxZYW1tjxYoVsuZJ2leUfg+JioqSLZayG/4jRowQXX7Zw8MDffv2Rbt27eDh4QFnZ2e8efMGz58/x5kzZ7Bz506cPHlSMu7ly5cxaNAgbNu2rcB56sP5/G0echc1UdGmbKYtqSVUpXyM+74yhnQ9QkREREREREREahYZpaamSvYVZnGDXHr37q1xDKklkQr6B8WcnBycOHFCtK9r165qLZP2oZIlS6Jly5Y4evRonr7jx49rHF8V+/btE223srIq8DJVchIEAXv37hXt69u3r6xjtWrVKk9xRlZWFoKDg9G2bVvJ7RwcHETbDxw4gMDAQFlz/Bj89ddfksU7qhQZAf8tmSZWZPTixQscOnQIHTt2VCtHXahfvz6GDx+ODh06wMnJSfJ5zs7OcHZ2ho+PD7p16wZBELB//37Mnj0bly5dktzuu+++Q926deHv769SXhkZGZJ9chZ3AJCciUpZDvRx2r17N3bv3g13d3dMmjQJQ4YM0fvrIAsLC/Tu3RuffvopmjRpIvnzDvy3HFCZMmVQq1YtjBw5EvHx8fjtt9+wcOFCyZm94uPj0aNHD1y+fFnjaxVfX1+MGDECXbp0Ubocr6OjIxwdHeHt7Y127dph/vz5CAoKwvfff6/0emblypWoX78+PvvsM43yJN0q6r+HqCstLU2yLyIiItf/ixUrhlmzZuGrr77K85693Z98fX3xxRdf4NixYxg5ciTu378vGnv79u3YuHEj+vfvX6A89eF8nl8eRGKUFa0p2/+0zVD2/Q8Z0vUIERERERERERHlptZ0Pcr+KKvsj0OGoFy5ckqnQi+oChUqiLa/efOmQNvfuHFD8g9mchRBvSVVMBMVFYUnT57INk5+pAqqevToARsbG53l8db169dFZ1YyNjZGp06dZB2rcePGou35zXrl6+sr2j516lQ8fPhQ47w+JoIg4K+//hLta9iwIcqXL69SvA4dOqBEiRKifVJLshW2ChUqIDw8HCEhIRg8eLDSAiMxCoUCHTt2REhICCZOnCg501ZOTg5GjBih8s0YZcsaGRsbqxQrP1LxsrKyZB2Hio6HDx/iiy++QL169XDr1q3CTkfSsGHD8OTJE6xZswYtWrRQ+ZrNzs4O33zzDcLCwlC7dm3J5926dQtz5sxRO88SJUrgzJkzuH79OkaPHq20wEhK06ZNcezYMfz0009KX+eECRPw4sULtXMl3SvKv4doIjMzs0DPs7CwwJ49e/DNN98UqCirVatWOH/+PPz8/CSfM2XKlAKf1/XhfA7wnE6q09eiNUPZ999nKNcjREREREREREQkTq0iI2V/lDL0b4XWqFFDljhShTEFLTK6fv26ZF/dunXVyklM/fr11cpBTvHx8Xjw4IFon1QBjrZJzcTi4eEhe9FT6dKlRdvzu1EtNRPM06dPUadOHaxYsaJQv1VrSM6ePSv5LV1VZzEC/jtG9urVS7Rv//79iI2NVTmmtrm5uaF69eoaxzExMcHChQuxbNkyyec8ePAAv/32m8pxpch9o1Aq3sd887qo+fPPP3H9+vUCPS5cuIAjR45gzZo1GDNmjNL95OrVq6hVqxaCgoJ092JU0KhRI8kCSFV4enoiODgYjRo1knzOTz/9JLkMan5sbW3RtGlTddPLZfz48di2bZvkMrjx8fGYO3euLGORbhTl30M0UdACnT/++EPpTJlinJ2dceTIEcnlix8/fixZrP0hfTifAzynk+p0udSfKgxl33+foVyPEBERERERERGROLWKjCwsLCT7lP3xzRA4OjrKEsfa2lq0vaBFRnfu3BFtL126tMozjChTsWJFyenDP1zCS1tu3rwp2SdnQZUqpAqsKlWqJPtYUsue5TeTVM2aNSWLxF6+fIkRI0bAzc0Nn3/+OQ4dOoSUlBSNcy2qpGYXMjU1VXvmMKll/jIyMrBp0ya1YhqS0aNHY/To0ZL9S5YsQU5OToHjKbsZqKubkqamprKOQ4XH09MTvr6+BXrUq1cPrVu3xqBBg7Bs2TKEh4fj8uXL6NChg2jslJQUdOjQId/Z6AydmZkZdu/eDQ8PD9H+9PR0LF++XLdJSejcuTMWLlwo2b969WokJCToMCPSRFH+PUQTBTlHdezYUe1liEuWLImlS5dK9q9cubJAcfThfA7wnE6qU/blDWXHJW0zlH1fWwzpeoSIiIiIiIiIqKhQq8hIqoAGAOLi4tRORh/I8Y06QPobhQW9qf706VPRdh8fH7VzEmNkZCRZOCOVg9yio6NF242MjFClShWd5PAhqeXGDhw4AIVCIeujcuXKomMVZLabBQsWKP32amxsLP744w+0a9cOdnZ2aNSoEaZMmYK9e/ca/L4ql5SUFGzfvl20r23btpLf3M1Po0aNUK5cOdG+devWqRXT0MyfPx/OpUrWegAAgWRJREFUzs6ifY8ePUJwcHCBYyn7hnhqaqrKuSkjVZBXmN9SJ/1Ss2ZN7Nu3T3LGrsTERAwYMKDIz6ri6OiIH3/8UbJfnwoqx48fj6pVq4r2JScnY8+ePTrOiNRVlH8P0URBzlHTpk3TaIx+/frB09NTtO/SpUsF+t1BH87n+eVBJEbZ72ZWVlY6zCQ3Q9n3tcmQrkeIiIiIiIiIiIoCtYqMXF1dJfsMfSpqZUsw6NLLly9F2+3s7GQfSyqmVA5yi4mJEW23sbEp8PTvcivsP5QCBbvR0rRpUyxevLhA8TIzM3H+/HksWLAAnTt3hpOTE2rWrImJEyfi7NmzEARB05QN0vbt25GYmCjap+43ft+SWmrt8uXLuHHjhkaxDYGVlRW++eYbyf4DBw4UOJayAlCpz09dUvHkKkKlomPMmDGSN+5u3ryJ//3vfzrOSPe6d+8uuYRcZGQkIiIidJuQBCMjI8yePVuyX5XjERWuovx7iCby+x3Bz88P9erV02gMIyMjDBs2TLL/9OnT+cbQh/N5sWLFCrUohAzTs2fPJPuUHZe0zVD2fW0zlOsRIiIiIiIiIqKiQK0iIzMzM8llxaKjoz/aYgU5SRWY2NjYyD6WVEy5v00sRepbxtooqCoouW9yqKOgM2CMGTMGf//9t9Jv9ovJyclBeHg4Fi1ahKZNm6JcuXKYOXMmXr9+rU66BktqqTQ7OzvJ5ZAKSqrISNm4RU3Pnj0l+0JCQgocR9mMUvHx8aqklC+peOrOakVF23fffYfSpUuL9v3888/IzMzUcUa6pVAoZNvPta1du3aShQX6lCcp5+bmJtknNRPlxyC/JZ9btmwpyzgtWrSQ7Lt8+XK+2/N8ToYqKipKsk/ZcUnbDGXf1zZDuh4hIiIiIiIiIjJ0ahUZAUDFihVF21NSUpT+AY4KRuqmpKWlpexjSd1w09UyL1LjFC9eXCfji0lPTy+0sd9SpVivZ8+euHv3LkaOHKn2bFxRUVGYNWsWPD09MX/+/AIv7WfIHj58KPnN2yZNmuDu3bu4ceOG2o/09HTJ5Qg3btyIrKwsLb46/VC6dGn4+vqK9t26davAcaSWXQPkn7lCKp6yHOjjZWZmhlGjRon2PXv2DAcPHtRxRroXEBAg2afKfq5tpqamaN68uWhfdHS00qWVSH9YWVlJzhpy7969Il/YJyW/c5SmM5m8Vb16dZiamor23b9/P9/teT4nQ3X9+nXRdoVCAXd3dx1n838MZd/XBUO5HiEiIiIiIiIiMnRqFxnVqFFDsu/KlSvqhqX/r1ixYqLt2rgBlpycLNou9UdEuUkVxSQlJelkfDFGRmrvGoXGxcUFv/76K54+fYqff/4ZTZo0kfw5UiYhIQHffPMN/P398erVKy1kqj/WrVsnWcy1b98+VK1aVeOH1B+0nz9/jsOHD2vz5emNypUri7a/fPmywDOmeXh4SPbJubxhZmam5FKRynKgj5uyb/frwxIi2ia1jwPAo0ePdJhJ/gwpV5Im9XtIVlbWR7EcqZj8zlFyncPMzMxQqlQp0b4nT57ku72uzufK4vF8TqqKjo6WvD708vIq1C/HGMq+rws8xxMRERERERER6YaJuhvWqlVLsu/06dPo2rWruqEJgIWFhWj7mzdvZB9LKqZUDnKTmp1J7iUTVCGVU9u2bbFw4UKd5KBukZe9vT1Gjx6N0aNHIzk5GUFBQThz5gzOnj2LS5cuFXiGqlOnTqFTp044deqU2rMj6TNBEPDXX38Vag7r1q3TeEk2Q+Dk5CTZl5iYWKBjjaenp2SfnN+ejoqKkpzFS1kO9HGrWbOmZN+FCxd0mEnhsLCwgJWVlWjRsjauWzSh7Hikb7mStFq1auHAgQOifadPn1b6ZYiiKr9zVIkSJWQby87OTnRpuoJ8QcDR0RHFixcXfa6c5/P09HTJwgeez0lVx48fl+xTdg2gC4ay7+uCIV2PEBEREREREREZMrWLjFq1aiXZd+TIEXXD0v8ndRNMG4U3UjGV3YiTk9QU72/evEF2djaMjY11ksf7HBwcRNtzcnIkl37SR1ZWVmjbti3atm0LAEhNTcWFCxdw6tQp7Nu3L99Zx0JCQjBjxgzMnz9fB9nq1tmzZwt9av99+/YhLi4O9vb2hZqHttna2kr2FbTozcHBAU5OTqLfIr99+7bauX3ozp07kn0+Pj6yjUNFi6mpKaytrZGYmJinT1++3a9ttra2ojf1dLX0akHJcTyiwteqVSvMnj1btO/w4cMYP368jjMqfPb29nBxcUFMTIxov9TyyOqQmrWloPuQj48PQkND87TLeT6/d++eZNEwz+ekqr1790r2ffLJJ7pLRIQh7fu6YCjXI0REREREREREhkztNaHc3Nwkiy1u376Nq1evqp0UAa6urqLtERERso6Tk5Mj+Qd9qRzkVrZsWdH2nJwc3Lx5Uyc5fEgqp7i4OB1nIi8LCws0b94cs2fPRnh4OO7fv49JkybBxsZGcpuff/4ZL1680GGWurF27drCTgHp6enYvHlzYaehdcr2G3Nz8wLHkZqZIjw8XOWcpISFhak8PhEAyeOooZ83Ckrqdaqyj+uCXMcjKlwNGjSAnZ2daN/JkyeL/HKvUpTNNCvnLB5SsQq6D0mdT2/cuIHs7Gy183ofz+ckl1evXknOnAZAL2YlNZR9XxcM5XqEiIiIiIiIiMiQqV1kBAC9e/eW7Pvjjz80Cf3Rq1ixomj7kydPZL1xcvfuXdFv+gGAt7e3bOMoU7lyZSgUCtG+f/75Ryc5fEjqG87379+HIAg6zkZ7ypUrhwULFuDWrVto1KiR6HNSUlKwb98+HWemXSkpKdi+fXthpwFAP4qdtE1s9iEAUCgUSgvcPlS7dm3R9vv378t2XJQ65ri5ucHFxUWWMahoSkhIEG1PT0/XcSa6l5SUhLS0NNE+ZTMHFQap4xGgf7mSNGNjY3Tv3l20LysrC3/++aeOM9IP9erVk+yTczbU169fi7ZLFX59SOp8npqaKtsXVaTO56ampvDz85NlDPo4LFu2DJmZmaJ9devWRenSpXWcUV6Gsu9rmyFdjxARERERERERGTKNiowGDx4suZTV2rVri+TsJ7qi7I/fFy9elG0cZUU8VatWlW0cZWxtbVG+fHnRvuDgYJ3k8KG6deuKtsfFxeH69es6zkb7SpUqhf3790sWUZw8eVLHGWnXjh07RJc1etsnCILsjyVLloiOd+nSpUKbsUtXpGYTKFWqFExNTQscp0WLFqLtgiDg1KlTauX2vqysLAQFBYn2tWzZUuP4VHSlpaUhKSlJtE9qaZGi5PLly5J9Hh4eukukAKRyVSgUkrMYkn4aOnSoZN/SpUslbzQXZcrOVXItRZaYmIinT5+K9hV0H5I6nwPAiRMn1MqroHEaNGgACwsLWcagou/FixdYtmyZZP/IkSN1mI00Q9n3tc2QrkeIiIiIiIiIiAyZRkVGpUuXRteuXUX7UlNTMXXqVE3Cf9SqVKmCEiVKiPb9/fffso2zZcsW0XYPDw+dfivT399ftH379u2yTvFeUPXr14eVlZVo3/Hjx3WcjW7Y2dlJ3rB7+PChjrPRLqnZg2xtbdG+fXutjNmnTx+lRZlF1d27dxEZGSnaV7lyZZViNWrUSPLG4O7du1VNLY8TJ05IFp+1atVK4/hUdIWGhkr2ubm56TCTwnH06FHJPlX3c21KTk7G+fPnRfvKly8PMzMzHWdEmqhfv77kjDhPnz7FokWLdJxR4atXr57kjCIXLlyQZYxLly4hJydHtK+g+3v58uXh6ekp2ifH+fz27du4deuWaB/P56SKUaNGSc5U6OTkhD59+ug4I3GGsu9rm6FcjxARERERERERGTqNiowAYObMmTAyEg+zZs0anc+AcufOHZ2Opy1GRkaS3/LduXMnUlNTNR7jxYsXOHbsmGifrv8A37FjR9H25ORkrF+/Xqe5AIC5uTnatGkj2vfLL78gOztbxxnphtTNOjmX6Ctsjx49kpz1pnv37lq7yezi4iK5T2/YsKHI/kytW7dOsq9hw4YqxTI3N5c8Vuzdu1eyQKigNmzYoPK4RIDy4tMqVaroMBPdy8zMxObNmyX7Vd3PtWnz5s3IyMgQ7dOnPKngvv/+e8m+H374QeczBRb27yEmJibo1q2baN+RI0ckCwRUcfDgQcm++vXrFzhOz549RdtDQkLw4MEDlfN6n9T5HAB69eqlUWz6eCxcuBA7duyQ7J85cybMzc11mJE0Q9r3tcWQrkeIiIiIiIiIiAydxkVGVapUwaBBg0T7cnJy0K9fPzx+/FjTYQrk+PHjRerbqb179xZtT0xMxNKlSzWOP2fOHGRlZYn26fpbmQEBAXB1dRXtmzdvHl6/fq3TfABgyJAhou0PHjzAxo0bdZyNbkgtXSU1q5MhWrduHQRBEO3r37+/VseWiv/s2TMcOXJEq2MXhhcvXkguEwcAHTp0UDmm1HuYlJSElStXqhzvrWfPnknOEtexY0fY2NioHZuKtpSUFPz++++S/c2aNdNhNrq3YsUKpbOVSc1WomtpaWmYNWuWZL86xyMqfG3atJEs4E1JSUHPnj0lZyGR28aNGzFgwACdjKVMYGCgaHtUVBQOHTqkUey0tDSsWbNGtK948eJo2rRpgWNJnc+VLTFbEKmpqVixYoVoX506deDl5aV2bPp4LFu2DFOmTJHs9/X1xfDhw3WYUf4MZd/XFkO5HiEiIiIiIiIiKgo0LjICgEWLFqFUqVKifTExMfD390dMTIwcQ4kSBAELFixA27ZtdXYjQRc6duwIR0dH0b65c+fi2bNnasf+999/8dtvv4n2lStXDp988onasdVhbGyMUaNGifY9ffoUo0eP1mk+wH83rqSmVR83bhzu3bun44y0T+ob+FIFYIZIamYdV1dXrf/cd+vWTfIbz8pm/DFEOTk5GDp0KJKTk0X7vb29UadOHZXjtm/fHh4eHqJ9P/zwg9rngOnTp0vOcFIYxx8yHN999x1evHgh2mdsbCw5s0BRcPv2bXz33XeS/Z9++qkOs1FuwoQJkkXvJUqU0NpSmaR9K1euhKWlpWjfzZs30b59eyQlJWlt/IyMDIwfPx4DBgyQPI/oUtOmTVG9enXRvhkzZkh+waAgFi9ejNjYWNG+bt26qTQbpJ+fH5o0aSLat2LFCrVnM/rpp58kj8k8n1N+EhMTMWzYMIwdO1bySwmWlpbYsmULTExMdJydcoay72uDIV2PEBEREREREREVBbIUGZUoUQJ//vmn5LJpt2/fRt26dXHlyhU5hsvlzp078Pf3x5QpUzT6w5k+Mjc3x7hx40T7kpKS0Lt3b6SlpakcNy4uDr169ZJ8vyZNmiT5WWrTl19+CScnJ9G+TZs2KZ2BQBsUCgXmz58v2vf69Wt06tQJz58/l33chw8f4p9//sn3eUuWLJEs4FBHdna2ZKGLr69vgeNERUVBoVCIPnRdvPahs2fP4v79+6J9ffr00frPvbW1teSyW3v27EF8fHy+MeR+fx89eiR7EaggCBg7diz27dsn+ZyJEyeqFdvY2BgTJkwQ7Xv16hW++OILlWMePXoUq1evFu2rX7++Xnw7m/TTjz/+iJ9++kmyv3fv3nBxcVE57syZMyX387Vr16ocLywsTPYlGZ8/f4727dtLzjRobW2Nzz//XKWYsbGxGi+TJObHH3/Er7/+Ktn/xRdfSBapkP4rV64cFi9eLNl/7tw5NGrUCFFRUbKPHRoaivr166s9846Hh4fkvq6JadOmibZfvnwZc+bMUSvm1atXMXPmTMn+L7/8UuWYkyZNEm1PT0/H4MGDVT5uXb9+XfL1lSlTBn379lU5R/o4ZGVlYfXq1ahSpQpWrVol+TyFQoE//vhD46VQP9Z931CuR4iIiIiIiIiISDnZ7qi3adMGCxYskOx/9OgR6tWrh5kzZyI1NVXj8Z4/f46JEyeiatWqOHnypMbx9NXYsWPh5uYm2nf27Fn07t0bKSkpBY73+vVrdOzYETdv3hTtr1y5Mj777DO1ctWUtbW10pu1M2fOxJgxY5Cenq72GHfv3sWgQYOwf//+Aj2/Y8eO6NGjh2hfREQEatasiaCgILXzed+VK1fQv39/VKhQAceOHcv3+ePHj0fZsmUxffp0WYpEJk+eLFkI2KtXL43j6wNlN+f79eunkxykxklPT8fmzZt1ksP7wsLC4OnpibFjx+LJkycax4uLi0PHjh2xfPlyyedUq1ZNcpnNghgxYgQqVqwo2rdx40aVChKvXLmCPn36SH5b/X//+59aOVLRFhoairZt20reIAf+m+lg9uzZOsxK2uzZs+Ht7Y3Vq1cjMzNT43inT59GzZo1JYs2gf9mB7Ozs1MpbnR0NLy9vREYGIjbt29rmOV/yyYNHTpU6efk6uqqdtEj6Y/hw4crLTK9du0a/Pz8sHz5clm+lHD//n0MHToU9evXR3h4uMbx5NajRw/JWYJmzZql9HpbzNWrV9G6dWvJmZp69OiBWrVqqZxnhw4d0Lx5c9G+oKAgDB8+HDk5OQWK9ejRI3Ts2FHyCxjz589HsWLFVM6Riq6cnBxcvHgRkydPhru7O4YOHYro6Gil2/z66696sSyiFH3f9w3leoSIiIiIiIiIiPIhyGzChAkCAKUPZ2dnYfbs2cKDBw9Uip2VlSUcP35cCAwMFMzNzUVj29raFijWjBkzRLefMWOG6i9agtTrV9Xu3buVvp9eXl7CmTNn8o2zb98+wdXVVTKOsbGxcPbsWZXzW7NmjWi8wMBAlWMJgiD07NlT6ev19PQUtm7dKmRlZRUoXmpqqrB9+3aha9eugrGxsQBA2LVrV4HziY2NFTw9PSXzMTIyEnr27CmEhoaq/FqvX78uzJw5U/D19c0V8/vvv8932w8/u5YtWwp//PGH8PLlS5VyiIiIEDp27Cj5+mrVqqVSvMjISMlYzZo1UymWnJKTkwVra2vRvLy9vXWWR3p6ulCiRAnRPOrWrZvv9nK/v7t27Xq3vYmJidC6dWth1apVwqtXr1SKEx8fL/zwww+Ci4uL0v3X3NxcCAsLUznPDx07dkxQKBSS43z66adKX0NOTo7w559/CsWLF5eMMXjwYI3zpMIjdW4CIPz555/C9evXC/T4559/hKNHjwpr164VxowZI/j5+eV7nQNA+P3339XOXeoaBYCwZs0aleN17tz53faOjo7C8OHDhePHjxf4PPrWlStXhH79+r07l0o9GjVqJGRmZqqcZ3h4+LsYCoVCaNy4sbB06VLh8ePHKsVJSUkRfv31V6Xn7rdj7N+/X+U8ST9lZmYKvXr1ynff9PDwEBYvXiw8e/ZMpfjp6enC7t27he7du0vuA9WqVVMppru7u2Semvr3338FCwsLyfh9+/bNd9/KyMgQ/ve//0lePwEQSpQoIURHR6ud540bNwQzMzPJ+AEBAcLDhw+Vxti7d6/g7OwsGaNFixZq50eF79SpU5Kf7Zw5c5Sew69duyaEhoYKZ8+eFXbu3Cn8+uuvwldffSW0atVK8npc7GFlZSVs3rxZttf0se77hnI9QkREREREREREyplAZosWLYKFhYXS6bhfvHiB6dOnY/r06fD19UWjRo3g6+sLT09P2Nvbw9LSEllZWUhKSsKTJ09w9+5dXLp0CWfPnkVCQoLcKeu9zp0746uvvpL85uHdu3fRrFkz+Pr6onfv3vDx8UHp0qUhCAKePHmC69evY/Pmzbh7967ScebMmYPGjRtr4yWoZO3atbh//z7CwsJE+yMjI9G7d284ODggICAAzZo1Q8mSJeHs7IxixYrh9evXiI2NxfXr1xEaGoqQkBAkJiaqnY+9vT0OHz6MRo0a4dWrV3n6c3JysG3bNmzbtg1eXl5o2rQpGjRoABcXl3c/z2/evEF8fDxev36NiIgIhIeHIzw8HC9fvlQ7r/dlZ2fjxIkTOHHiBD7//HN4eXmhdu3aqFWrFtzc3FCiRAnY29tDoVAgOTkZjx8/xs2bN3Hs2DFcvHhRchYXExMTpUsGGJIdO3ZI/hz0799fZ3mYmpqiR48eWLlyZZ6+ixcv4tatW6hUqZLO8nlfVlYWjh49iqNHj2LEiBHw9vZG9erVUaNGDZQtWxa2trawtbWFubk5Xr9+jbi4OERERODMmTM4f/58vrOqKRQKrFq1CjVq1NA4V39/f0ycOBELFy4U7V+/fj327NmDPn36oEWLFvD09ESxYsXw4sULXLx4EZs3b0ZERIRk/IoVK2LZsmUa50n6Sdsz9k2dOhUjRozQ6hjqevXqFVasWIEVK1bA2toa1apVQ/Xq1eHn5wdHR0fY2dnB1tYW2dnZiI2NfbfPBAUF4fr16/nGd3d3x7Zt22BiotklpiAICA4ORnBwMMaNG4fy5cu/Ox6VK1fu3fHI0tISCQkJiIuLw7179xAUFFTg68W5c+eiffv2GuVJ+sPExASbNm2ChYWF5PKvwH/Ljo4fPx4TJkxAzZo10bBhQ/j4+MDT0/Pdz1R6ejqSkpIQHR2NO3fu4J9//inQeU6fVK5cGcuXL8eQIUNE+zdv3oxdu3ahdevWaNu2LTw9PeHk5ITExEQ8e/YMQUFB2LNnD54+fSo5hpGREdauXSs562pBVKlSBYsXL8aoUaNE+48cOQJvb290794dAQEB8PLygrm5OWJjYxEeHo6///4boaGhkvEdHR2xfv16tfMj/fbtt9/i22+/1eoYtWrVwtq1a1VaProwGcq+byjXI0REREREREREJEJb1UtbtmxROkOEth4F/aaqIc1kJAiCkJ2dLfTt21dr79uYMWPUfp1yz2QkCP/NHlSzZk2tvV5VZjJ66+bNm4Kbm5tOfo5VnclIW4+lS5eq/D7p60xGLVq0kMzr3r17Os1F2TeyJ0+erHRbbc5kpM2HiYmJWjOwKJOVlSV069ZN9lxLliwp3LlzR9ZcSfeUzWSkrYelpaXwyy+/aJy7Nmcy0uajQoUKQmRkpNqv+/2ZjLT9KMh5lgzX4sWLhWLFiun8GPDZZ5+plKc2ZzN569tvv9XKa1UoFBrN2PahsWPHyp5j8eLFhZCQENlypMKh7LpZm49SpUoJv/32m5CdnS37a/pY931DuR4hIiIiIiIiIiLljKAlvXv3Rnh4OAICArQ1RC5ubm5Ys2YNjh8/rpPxdM3IyAjr16/H6NGjZY2rUCgwY8YMLF26VNa4mrK3t8eZM2fQs2fPwk7lHR8fH4SGhsLf37+wU9E6IyMjrFy5El9++WVhpyKLR48e4dSpU6J99erVQ/ny5XWaT9OmTSW/+bt+/XpkZ2frNB9tK126NE6cOIFBgwbJGtfY2BibN29G3759ZYvp4eGBEydOwMvLS7aY9HFo2bIlbty4ITkbR1HXsWNHXLx4ER4eHoWdilJ2dnbYtm2b1me+oMI1btw4XLhwAXXq1NHJeJUqVcLevXuxevVqnYyniu+//x5z586FkZF8v/ZZWlpi06ZNss7YtnjxYkyYMEG2eA4ODjh48CDq168vW0z6ONSqVQurV69GVFQUPv/8c1n3HV0ylH1fboZyPUJEREREREREZMi0+hezChUq4PDhw9izZw/q1aunlTEqVqyI5cuX4969exg0aBAUCoVWxtEHxsbG+Pnnn7Ft2za4uLhoHM/d3R2HDx/GzJkz9fJ9K168OP7++2/89ddfcHZ2li2uk5MTSpcurda2JUuWxNGjR7Fq1SpZPoMPlS5dGlOmTMHAgQPzfa4cS06JqV27NkJCQjB06FCtxC8M69atk1wSrl+/fjrO5r8irj59+oj2PX36FMeOHdNxRtphbm6OcePG4ebNm2jatKlWxjA1NcWmTZuwePFiWFlZaRSrS5cuCA0NReXKlWXKjoq64sWLY8iQIQgJCcHx48fh6elZ2CnpXLly5bBlyxbs3bsXJUqUKOx0JBkbGyMwMBC3bt1Cjx49Cjsd0oGaNWviwoULWLt2rdaO6zVr1sSGDRvw77//omPHjloZQw5Tp07FwYMH4e7urnGsBg0aIDQ0VPI6Rl0KhQKLFi3Cxo0b4eDgoFGsJk2a4NKlS2jSpIlM2VFRZmVlBX9/f/zwww+4d+8eLl26hM8++wympqaFnZrGDGHfl4uhXI8QERERERERERUFOlmgvlOnTujUqRPOnz+PDRs2YOfOnYiJiVE7nrOzMzp37ow+ffqgefPmelkgo009evRAQEAAfvnlF/z666+Ijo5WafsKFSpgzJgxGD58OMzNzbWUpXw+/fRTdOvWDatWrcLvv/+OW7duqRzD1NQUTZs2RWBgIHr27AkzMzO181EoFBgyZAj69euH9evXY8WKFbh8+bLa8by9veHv749OnTrB39+/wN82DQsLw+PHj7F//34cOnQI586dQ2xsrFo5GBkZoUWLFhg8eDD69OljsN/YlVK6dGnMmDFDtE/OWXBU8fnnn2tcFCOHtm3b4sSJEzh58iROnjyJy5cvIyMjQ6OYXl5eGDBgAIYPH46SJUvKlKly48aNQ7du3TB37lysX78eqampBd62SZMmmDp1Ktq0aaPFDMlQmZqawtbW9t3Dy8sLtWvXRu3atVGnTh1YWloWdor5+v3339GzZ0+cPHkSp0+fxoMHDzSKZ2Ji8u6c0aNHD5iYyHM5WbVqVZw7d+7d8eiff/5BSkqKRjHd3NzQt29fjBgxQuez1lHhMzIyQmBgIAYOHIijR49i06ZN2Lt3L+Lj49WOWbZsWXTr1g19+/ZF3bp15UtWywICAhAREYHly5fj559/Vvn3hwYNGuCrr75C9+7dtfq7V79+/RAQEIAFCxZg5cqVKn1W1apVw6RJkwqlgJz0j0KhgJmZGUxNTWFhYQEHBwe4uLigZMmSKFeuHCpVqoTKlSvDz89PtvOYPtKnfd9QrkeIiIiIiIiIiEg5hSA1vYcW5eTk4Pr16wgJCUFYWBgePHiAhw8fIi4uDikpKUhPT4epqSksLS3h7OwMNzc3eHt7w8/PD40aNUKVKlU+usIiKYIgIDg4GCdPnkRoaCju3buH58+fIzk5GcB/38x0dXWFl5cX6tWrB39/f4O6ISLm6tWr724+3r17F9HR0UhMTERGRgasrKxgbW0NBwcHeHt7w8fHB3Xr1kXz5s21WtDx8OFDHD9+HKGhoYiIiMCjR48QGxuL1NRUGBkZwdraGtbW1ihRogS8vLzg4+MDHx8fNGzYEGXKlJEtj1u3buHChQuIiIjAvXv38ODBA7x8+RJJSUlISkqCqakpbGxsYGtrCzc3N1SvXh01atRAixYt4OrqKlseZLgyMzPx77//4sqVK/j333/x6NEjPHr0CM+ePUNiYmKuY7SFhQWcnZ1RunRpVKpUCTVq1EDz5s1RoUKFQn0N8fHxOHToEE6cOIHr168jKioKb968QVZWFooXLw4XFxf4+PigUaNG6NChAypVqlSo+RLp2uvXrxEeHo6rV6/izp07iI6OfnfeSk5ORkpKCnJycmBmZgZra2uULFkSHh4e8PX1RZ06ddC8eXPY2NhoPc/s7Gzcvn0bV65cwY0bNxAVFYXo6Gg8efLk3fEoLS0NJiYmsLCwgKOjI1xdXeHt7Y1q1aqhWbNmqFq1qtbzJMOSmZmJ8PBwhISE4MqVK4iMjMSjR48QHx+PlJQUZGZmwtTUFFZWVnBxcUGZMmXg4+MDPz8/NGnSpNDPcXLIzs5GcHAwjh49irCwMNy+ffvd/m9iYgJra2uUKVMGlSpVQoMGDdC+fXuUK1dO53mmpKTg6NGjOHr0KK5du4YHDx4gISEB6enpKF68OBwdHVGpUiXUq1cP7du3R82aNXWeI5Eh0bd931CuR4iIiIiIiIiIKLdCKTIiIiIiIiIiIiIiIiIiIiIiIiLDUbTWRCIiIiIiIiIiIiIiIiIiIiIiItmxyIiIiIiIiIiIiIiIiIiIiIiIiJRikRERERERERERERERERERERERESnFIiMiIiIiIiIiIiIiIiIiIiIiIlKKRUZERERERERERERERERERERERKQUi4yIiIiIiIiIiIiIiIiIiIiIiEgpFhkREREREREREREREREREREREZFSLDIiIiIiIiIiIiIiIiIiIiIiIiKlWGRERERERERERERERERERERERERKsciIiIiIiIiIiIiIiIiIiIiIiIiUYpEREREREREREREREREREREREREpxSIjIiIiIiIiIiIiIiIiIiIiIiJSikVGRERERERERERERERERERERESkFIuMiIiIiIiIiIiIiIiIiIiIiIhIKRYZERERERERERERERERERERERGRUiwyIiIiIiIiIiIiIiIiIiIiIiIipVhkRERERERERERERERERERERERESrHIiIiIiIiIiIiIiIiIiIiIiIiIlGKRERERERERERERERERERERERERKcUiIyIiIiIiIiIiIiIiIiIiIiIiUopFRkREREREREREREREREREREREpBSLjIiIiIiIiIiIiIiIiIiIiIiISCkWGRERERERERERERERERERERERkVIsMiIiIiIiIiIiIiIiIiIiIiIiIqVYZEREREREREREREREREREREREREqxyIiIiIiIiIiIiIiIiIiIiIiIiJRikRERERERERERERERERERERERESnFIiMiIiIiIiIiIiIiIiIiIiIiIlKKRUZERERERERERERERERERERERKQUi4yIiIiIiIiIiIiIiIiIiIiIiEgpFhkREREREREREREREREREREREZFSLDIiIiIiIiIiIiIiIiIiIiIiIiKlWGRERERERERERERERERERERERERKsciIiIiIiIiIiIiIiIiIiIiIiIiUYpEREREREREREREREREREREREREpxSIjIiIiIiIiIiIiIiIiIiIiIiJSikVGRERERERERERERERERERERESkFIuMiIiIiIiIiIiIiIiIiIiIiIhIKRYZERERERERERERERERERERERGRUiwyIiIiIiIiIiIiIiIiIiIiIiIipVhkRERERERERERERERERERERERESrHIiIiIiIiIiIiIiIiIiIiIiIiIlGKRERERERERERERERERERERERERKcUiIyIiIiIiIiIiIiIiIiIiIiIiUsqksBMgMiSCIKi8jUKh0Ntx9Jm+vgf6mhcRERGROlS9ttHVta062xgZ6e93aIKCglTexsnJSeVtfHx8VN5GV3JycjTaXp3Plz97RERERERFB+/P6Be+T0REHy/+JYyIiIiIiIiIiIiIiIiIiIiIiJRikRERERERERERERERERERERERESnFIiMiIiIiIiIiIiIiIiIiIiIiIlKKRUZERERERERERERERERERERERKQUi4yIiIiIiIiIiIiIiIiIiIiIiEgpFhkREREREREREREREREREREREZFSLDIiIiIiIiIiIiIiIiIiIiIiIiKlWGRERERERERERERERERERERERERKsciIiIiIiIiIiIiIiIiIiIiIiIiUYpEREREREREREREREREREREREREpxSIjIiIiIiIiIiIiIiIiIiIiIiJSikVGRERERERERERERERERERERESklEIQBKGwkyB6X05OjsrbGBmpXi+nzo++QqFQeRtSj75+PvqaFxERERHpRmZmpsrb1K5dW+VttmzZovI2lSpVUnkbda5v1fn9i4iIiIiISNd0db9Jm3RxT6Ko3ffQ9Na3Oq+tqL2HRETK6NeZkoiIiIiIiIiIiIiIiIiIiIiI9A6LjIiIiIiIiIiIiIiIiIiIiIiISCkWGRERERERERERERERERERERERkVIsMiIiIiIiIiIiIiIiIiIiIiIiIqVYZEREREREREREREREREREREREREqxyIiIiIiIiIiIiIiIiIiIiIiIiJRikRERERERERERERERERERERERESnFIiMiIiIiIiIiIiIiIiIiIiIiIlKKRUZERERERERERERERERERERERKQUi4yIiIiIiIiIiIiIiIiIiIiIiEgpFhkREREREREREdH/Y+d+QyWt6/+Pe82umSVJgVkhWGi4G5YtBq5p7JpZlgpGmitRSqEuZWFRbf81LCzJLL3jVgRbFrsJ/VMzIctF1A01F7JNaRVLuyEZaCkl287ne+PHl9b6+fr6vubMnzPn8bg9L6/PmTOenTPzPAMAAAAAkcgIAAAAAAAAAACIlk/7APCfBoPJtG+ttfLmzDPPLG9+8IMflDd9zjbLTjzxxPLm+uuvL2+6ritvZvEaAADMrksuuaS8Ofjggyey6fNc1fNbAABgMejzvkmf95v6XGecv1f5na3OfQYwXj7JCAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQLZ/2AWAhDIfD8mYwqDd2mzdvLm/6uPDCC8ubFStWlDdd15U3W7duLW9++tOfljd9vj+ttfKmz31Q1edc/2kS5wQAWMz6POe6+uqry5vXvOY15c1PfvKT8mYhnkMCAADMi0m9Rr4UX4tfil/zQnMfAkuJTzICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAETLp30AWAiDwWR6uV27dk1ks3Llyolc5zvf+U558573vKe82blzZ3nTR9d1E7lO1ayeCwCgtVa6/Sw/r/nzn/9c3jz++OPlzRvf+Mby5iUveUl58/znP7+8AQAAYPKqv1tXzPLv4ZPQ575d6vcZwLj5JCMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQLR82geAxeS2224rb4477rgxnOS/ff/73y9vXvayl5U3e++9d3nzvve9r7zpo7VW3nRdN/Zr9Nn8p8FAEwoALLzqc6FZdsUVV5Q3l156aXnz0EMPlTcrVqwobwAAABjNJN4z6Lt5tmb1fY9JvZ7Q5zqjviczT6+VAIyDd60BAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAFHXWmvTPgQsFps2bSpvzj777IU/yALZsWNHebNy5coxnGS+LcSP2a7rFuAkAACLw7w97/7IRz5S3lx22WVjOAkAAADzbt26daXbb9myZUwnWTquu+668uakk04aw0kAxs8nGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAouXTPgAsJjfccEN5s2PHjvJm5cqV5c273vWu8ubggw8ubwAAoOKhhx4qb/7+97+XN6218qaPrVu3lje//e1vy5s+X0/XdeUNAADAvJrl36uGw+Gzul2f82zevLm8qbrooovKm8MOO6y86fP179q1q7zZ0+rVq8ub4447bqRrAiwmPskIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgWj7tA8C0PPzww+XN448/Xt6sWLGivOljzZo15c2+++47hpMsLq21RXGNrusW4CQAAKPp8xz63HPPLW9uuOGG8mZSHnzwwfKmz/NBz/8AAABGM8u/Vw0G4/sciF27dpVu/9RTT5WvMan3vr7xjW+UN31eh9jT8ccfX94873nPG+maAIuJTzICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAETLp30AmJabbrqpvDnppJPKm67ryps+zj333Ilc5+Mf/3h5c+mll47hJAtjEt+fST0GAACqPve5z5Vuf/HFF4/pJE/3+9//vrxZuXJlebNu3bryZsuWLeVNHw888EB5c/nll4/hJAAAACwm27ZtK93++OOPH9NJnu5Pf/pTeXPfffeN4STZLL+nBTALfJIRAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACDqWmtt2oeAUfV5GJ955pnlzYUXXljerFy5srzZvXt3ebNs2bLyZt26deXNscceW96cf/755c1wOCxvBgPdJAAAAAAAzJtJvWfQ5/2mPptxvp+xadOm0u3PPvvs8RxkAVx55ZXlTZ/3pAB49rwjDwAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIlk/7APCftm7dWt6sXbt24Q/y/7Fly5aJXGeWfe5zn5vIdQaD+WkgW2sj/ze6rluAkwAAsKc+z9P6PC+b1HUYne8VAADMpkm9ZzAcDsubZcuWjeEk/d14442l2+/YsaN8jZUrV5Y3mzZtKm9e/OIXlzcAjNf8vIsPAAAAAAAAAACMhcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAACi5dM+APynNWvWlDettTGcZP71ud+6rhvDSeab+wwAYDZN6nma54OLh+8VAAAsbYPBbH0+w0MPPVTe/PWvfy3dfuXKleVr9PHyl7+8vHnxi1+88AcBYCSz9S8lAAAAAAAAAAAwc0RGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQLZ/2AYDp6bpuItcZDoflzcUXXzyR6ywWrbXyZlLfXwBg6ZjU84s+z336eOCBB8qbwaD+tzovf/nLy5s+9/Wk7rdZPhsAADCfPv/5z0/kOrP2uvrNN99c3pxyyikLf5AFsGbNmmkfAYAF4JOMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAADR8mkfAKaltVbedF03hpMsLsPhsLwZDOo9Y5/r9FH9nvZ53CwEjz0AYBZM6rlQn+c+f/vb38qbH/7wh+XNC17wgvLm3HPPLW+m9bzz2ZjG2fo8Jib1O98sf68AAIDF7frrry9vLrzwwjGcBAD+H59kBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIutZam/YhAAAA4H/961//Km/WrFlT3rz73e8ub7797W+XNx/4wAfKm7POOqu84en6vNzRdd0YTgIAAMyzrVu3ljdr165d+IP0tGPHjvJm5cqV5U2f39H6bAaDyX/Ght8/gaXEJxkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAAKKutdamfQgAAAD4X+vXry9vHnvssfJm8+bN5c2vf/3r8ubUU08tbx588MHyZu+99y5vBgN/ewQAAAAAPDteTQQAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARF1rrU37EAAAAMynLVu2lDef+cxnypu77767vNlvv/3Kmz5OP/308ua1r31tefPpT3+6vJlnw+GwvBkM/C0WAAAAADwTr54BAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAAKKutdamfQgAAIDFoM+vT302g8Fs/j3I/fffX94ce+yx5c2vfvWr8mbFihXlTZ/vTdd15U2f++3II48sb+67777y5sADDyxvAAAAAIClaTZfuQYAAAAAAAAAAGaGyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEDUtdbatA8BAAAsbX1+Lem6bgwnyRbLOZ+tJ554onT7VatWla/xhS98obw544wzypt58+EPf7i8+cc//lHeXHXVVeXNPBsOh+XNYODvtwAAAABYGrwSBgAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIutZam/YhAAAAmLwzzjijdPsXvvCF5WtcddVV5Q177fX444+XN4ceemh5c8stt5Q3K1asKG8AAAAAgMXPJxkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAAKKutdamfQgAAABGs3HjxvLm6quvLt3+F7/4Rfka++yzT3lDP5dddll5c/PNN5c31157bXkDAAAAACx+PskIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABB1rbU27UMAAADwb7fddlt5c8YZZ5Q3t99+e+n2Bx10UPkaTM4///nP8ubVr351efOtb32rvFmzZk15AwAAAADMFp9kBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIutZam/YhAAAA5tWjjz5a3qxataq8+eY3v1nenHjiieUNdcPhsLwZDCbzN0Fbtmwpb770pS+VN3fffXd5s6c+L110XTfSNQEAAACAp/NJRgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACAqGuttWkfAgAAKvo8he26bgwngf/b2972tvLmmGOOKW8+9alPlTf+v6CPI488srz50Ic+NNI1zzrrrJH2AAAAAMDofJIRAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACDqWmtt2ocAAABYDD772c+WN3feeWd5c8MNN5Q3MCm33nprebNu3bqRrrlz587y5jnPeU5503VdeQMAAAAAS4VPMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIi61lqb9iEAAAAm7ec//3l5c84555Q3v/nNb8qbAw44oLxhvvT5Vb3PZjCYzN8enXrqqSPtjz766PJmw4YNI10TAAAAAHg6n2QEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIi61lqb9iEAAACqHn744ZH2Rx99dHlzzTXXlDerV68ub/ro86td13VjOAn8t/vvv3+kfZ//j+65557y5sADDyxv5o2fJQAAAAA8E59kBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIutZam/YhAACApe2pp54qb4455piRrnnOOeeUN+edd95I14R5MBwOy5vBYLS/cTr//PNH2j9bX//618ubZcuWjeEkC6PPSz5d143hJAAAAADMA59kBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIutZam/YhAACA+TEcDsub97///eXNY489Vt7safPmzSPtgcn5y1/+Ut686lWvKm9uueWW8mbFihXlDQAAAAAsRj7JCAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQda21Nu1DAAAA82PLli3lzcUXX1zebNu2rbzZ03777TfSHphtX/7yl8ubPj9XfvSjH5U3AAAAALAY+SQjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEDUtdbatA8BAADMph07dpQ3xx9/fHlzyy23lDeHHnpoeQMsHU899VR5c9hhh5U3mzZtKm/WrFlT3gAAAADAtPkkIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABA1LXW2rQPAQAA1PR5Gv/kk0+WN6tWrSpvLr744vJm3bp15Q3AQvve975X3nz1q18tb+66667yBgAAAACmzScZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAACirrXWpn0IAACgps/T+DPPPLO8eelLX1reXH755eUNMN9Gfemh67oFOsnCW7VqVXnzsY99rLxZt25deTMY+NsyAAAAABaOV5sAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAFHXWmvTPgQAAFBzxRVXlDfXXHNNeXPzzTeXN8uWLStvgKcbDoflzWDg74imYevWreXNWWedVd7cd9995c0+++xT3syqPi9fdV03hpMAAAAALF1egQQAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARF1rrU37EAAAsJTdeuut5c1pp51W3txxxx3lzUEHHVTeLBZ9fhXqum4MJ4H/5vE5397+9reXN6tXry5vNmzYUN4AAAAAwDPxSUYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgKhrrbVpHwIAAObFo48+Wt687nWvK282btxY3rzlLW8pbwBYePfee29584Y3vKG82bFjR3lzwAEHlDcAAAAALA0+yQgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEHWttTbtQwAAwCzavXt3eXPiiSeWN29605vKmw0bNpQ3wHzr8+t913VjOMnSMqn7ff369eXNvvvuW95cfvnl5U31Pujz9Q+Hw/JmMPC3dQAAAAALyastAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAICoa621aR8CAABm0ac+9anyZvv27eXNz372s/IGYDEZ9aWHrusW6CSL1yOPPFLeHH744eXNtm3byptXvOIVpdsPBv7mDQAAAGAx8qoOAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACDqWmtt2ocAAIBxu/HGG8ub8847r7y54447ypsDDjigvAGA/8sXv/jF8ubOO+8sb370ox+VNwAAAAAsPj7JCAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAoq611qZ9CAAA5kOfp5Zd15U3f/zjH8ubY489try59tpry5sjjjiivOlzHwCwtAyHw/Jm165d5c2hhx5a3mzevLl0+2OOOaZ8DQAAAACmzycZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAACirrXWpn0IAIClrM/Tsa7rxnCS6XjqqafKm9WrV5c369evL2/OO++88gaApWXe/h3ftGlTeXPllVeWbn/nnXeWrwEAAADA9PkkIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABA1LXW2rQPAQDA0rV+/fry5sknnyxvvvvd75Y3w+GwvBkMdPwALC2rVq0q3f4Tn/hE+RrvfOc7y5uu68obAAAAAJ6Zd0AAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAFHXWmvTPgQAwLzo89Sq67oxnGQ6vve975U3X/nKV8qb22+/vbx57nOfW97Mm6X++ARgPG666abS7devX1++xj333FPe7LPPPuUNAAAAAM/MJxkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEXWutTfsQAADMnu3bt5c3J5xwQnmzbdu28uaQQw4pbwCA2XDKKaeUN2vWrClvPvrRj5Y3AAAAADwzn2QEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIi61lqb9iEAABi/J598snT7I444onyNL37xi+XNGWecUd4AAIvX7373u/Jm7dq15c3OnTvLm/3337+86aPPy3Fd143hJAAAAADPnk8yAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEXWutTfsQAACM3+mnn166/aGHHlq+xiWXXFLeTEqfp719NoOBjh8AFto555xT3uy3337lzeWXX17eAAAAACwV3gEBAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAERda61N+xAAANRceuml5c21115buv3NN99cvsayZcvKmz5PR7uuK28AYKkZDoflzWAwm3+P9sgjj5Q3hx12WHlz1113lTeHHHJIeTPL+jxu9jSrjyEAAABgdH7rBwAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEXWutTfsQAMDCGw6H5c1goD+ehltvvbW8Oe2008qbO+64o3T7gw46qHwNAIBZcdFFF5U3v/vd78qba665prwBAAAAWIy8kwgAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiLrWWpv2IQAA5sWjjz5a3rzuda8rb77//e+XN69//evLGwCAxeqf//xnefOKV7yivPnxj39c3hx11FHlDQAAAMC0+SQjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEDUtdbatA8BACxew+GwvBkMZrdz3r1790j7tWvXljcnn3xyebNhw4byZlb1eTradd0YTgIALHWbNm0qb6666qry5vbbby9vAAAAAKZtdt/hAwAAAAAAAAAAZoLICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAoq611qZ9CACAWfHJT35ypP327dvLmxtuuGGkawIAsDCGw2F5c+SRR5Y3n/nMZ8qbd7zjHeUNAAAAwELySUYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgKhrrbVpH2KpGw6H0z7CszIYaNIAFkKfn/t+Bvdz4403ljfnn3/+SNe8++67y5v99ttvpGsCADA9k3rOec8995Q3e++9d3kz6u8efV5q7LpupGsCAAAAk+EdSwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABA1LXW2rQPQd1wOBxpPxjoywAWk0n9c9113USu08fOnTvLm6OPPrq8+cUvflHe7OmII44Yaf9s9XlMzPL3FwBgKXnrW99a3px44onlzQc/+MHyxmtGAAAAwDPxqgEAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIOpaa23ah6BuOByOtB8M9GUA09LnZ/gs/9zu8/Xs2rWrvFm9enV5s379+vLmvPPOK28AAKBi+/bt5c2b3/zm8uYPf/hDebP//vuXNwAAAMDSMLvvWAIAAAAAAAAAADNBZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAFHXWmvTPgR1w+FwpP1gMJm+bNRzjlOf+2Devp4+JnUfTOrrmYRZftzsaZ7u8732mu37veu6iWxm2fr168ub3bt3lzcbN24sb6bxb+ys/v83y/8fzep9ttde/e63WX5eMqmzzfL3FACSPi+t9Xl+/973vre8edGLXlTefOUrXylvAAAAgKXBK/kAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgKhrrbVpH4K64XA40n4wmN2+rM/X5uvpx9nqZvVcC2HUnyvPVp/7Y97u93n7ejZu3FjeXHXVVeXNbbfdVt7su+++5c2oZvn7Wz3bLD/uJnU/T+pnYx+z/PX4WQ/AUjKpf8MeeeSR8uawww4rb+66667yZk+HHHLISPt50Ofl1q7rxnCS/+Y5FwAAAKPwGyIAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIOpaa23ah6BuOByOtB8MZrcv6/O1TerrmeWz9THq42jWTOK+nrfHwJ5m+Wubt7P1MamvZ/v27eXNCSecUN5s27atvDn44IPLm+XLl5c386z6eJ3ln1/z9nPB2Wb7bACwWF144YXlzX333TfSNTdv3jzSfqnyXAgAAIDFwG+iAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAICoa621aR+CuuFwONJ+MJivvqzP/dHnPpjUdSZl3r6eSZjn+2yWv7Z5+3+8z3W6ritvnnzyyfJm1apV5c3Xvva18uakk04qb2b5MbpYVO/DWb7/Zvnx4Gz9zPLZAGCxeuKJJ8qbV77ylSNd88c//nF5c9RRR5U3fV7S7PN7FQAAAPBvXpUHAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAERda61N+xDzZDgcljeDQb316nOdUa85y2b5fp/l+3qWv55ZPdusnmshzPLXtnv37vJm2bJlYzjJwpjUfX3KKaeUN4cffnh5c8kll5Q3fczyY3RPs3zO6tlm+efXPN3Pe+3lbHvtNdtnA4BZMKl/Kzdu3Fje7Onqq68ub2655ZaRrgkAAABMhlflAQAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAAAikREAAAAAAAAAABCJjAAAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAg6lprbdqHmCfD4XAi1xkM9GGj6vO9cr97jPcxqfts1OsuX758TCeZjmnd789Gn8f3l7/85fLmuuuuK29++ctfljd9Hjtd15U3fUzjceDn12RM6n6et/tglv8d9/8rACy8Pv++jvpS4RFHHFHefOELXyhvTj311PIGAAAAGI1X1QEAAAAAAAAAgEhkBAAAAAAAAAAARCIjAAAAAAAAAAAgEhkBAAAAAAAAAACRyAgAAAAAAAAAAIhERgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAUddaa9M+BEzDcDgsbwYDXR4wultvvbW8ede73lXe/PrXvy5vDjzwwPIGAAAYvz4v4XVdN4aTZNdff315c8EFF5Q39957b3mzbNmy8gYAAAD4N8UEAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACASGQEAAAAAAAAAABEIiMAAAAAAAAAACASGQEAAAAAAAAAAJHICAAAAAAAAAAAiERGAAAAAAAAAABAJDICAAAAAAAAAACirrXWpn0IGNVwOCxvBgONHUxDn392uq4bw0kWxsMPP1zeHH300eXN5s2by5tjjjmmvAEAAGrm7XecaTjhhBPKm5NOOqm8ueCCC8obAAAA4N9UFgAAAAAAAAAAQCQyAgAAAAAAAAAAIpERAAAAAAAAAAAQiYwAAAAAAAAAAIBIZAQAAAAAAAAAAEQiIwAAAAAAAAAAIBIZAQAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAAAAEImMAAAAAAAAAACAqGuttWkfgvk1HA6nfYRnNBho7ICn2717d3mzdu3a8ubkk08ubzZs2FDeAAAALAbbt28vb0444YTyZufOneXN/vvvX94AAADAvFJZAAAAAAAAAAAAkcgIAAAAAAAAAACIREYAAAAAAAAAAEAkMgIAAAAAAAAAACKREQAAAAAAAPA/7dxxqN11/cfxfU+3CZvgP5l/dEW7s+hewkYZGoab/bN7u0gsgrZFbaYgqJDcEq4omxVxZ3WNYtmkUdz6o90oFpK7lEq7BkMwcMyxNmpgdBESC4dSyNz38/srnFrvX+/vved7zj0+Hn+f1/1+7tm5d56vzx0AgJDICAAAAAAAAAAACImMAAAAAAAAAACAkMgIAAAAAAAAAAAIiYwAAAAAAAAAAICQyAgAAAAAAAAAAAiJjAAAAAAAAAAAgFBVSim9PgQA9IN77rknvTl16lR6c+jQofQGAACA1918883pzbve9a705lvf+lZ6AwAAAIPKJxkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQqkoppdeHAIBIXdfpzaFDh9Kb6enp9OaZZ55Jby6++OL0BgAAgNctLS2lN2NjY+nNs88+m95cccUV6Q0AAACsBj7JCAAAAAAAAAAACImMAAAAAAAAAACAkMgIAAAAAAAAAAAIiYwAAAAAAAAAAICQyAgAAAAAAAAAAAiJjAAAAAAAAAAAgJDICAAAAAAAAAAACImMAAAAAAAAAACAkMgIAAAAAAAAAAAIiYwAAAAAAAAAAICQyAgAAAAAAAAAAAiJjAAAAAAAAAAAgFBVSim9PgQARM6cOZPeXHfddenNY489lt5s3LgxvQEAAGB5mtzS3L17d3rz3HPPpTc//elP0xsAAABYDXySEQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAAKGqlFJ6fQgA3j5effXV9Oa6665Lb+666670ZufOnekNAAAAq8PZs2fTmw984APpzSOPPJLefPSjH01vAAAAoG0+yQgAAAAAAAAAAAiJjAAAAAAAAAAAgJDICAAAAAAAAAAACImMAAAAAAAAAACAkMgIAAAAAAAAAAAIiYwAAAAAAAAAAICQyAgAAAAAAAAAAAiJjAAAAAAAAAAAgJDICAAAAAAAAAAACImMAAAAAAAAAACAkMgIAAAAAAAAAAAIiYwAAAAAAAAAAIBQVUopvT4EAG8fX/ziF9ObtWvXpjf79+9PbwAAAOBCDz30UHozPz+f3iwuLqY3AAAA0DafZAQAAAAAAAAAAIRERgAAAAAAAAAAQEhkBAAAAAAAAAAAhERGAAAAAAAAAABASGQEAAAAAAAAAACEREYAAAAAAAAAAEBIZAQAAAAAAAAAAIRERgAAAAAAAAAAQEhkBAAAAAAAAAAAhERGAAAAAAAAAABASGQEAAAAAAAAAACEREYAAAAAAAAAAECoKqWUXh8CgNXp4YcfTm/279+f3jz11FPpzdq1a9ObqqrSGwAAANrX5JZmk/d858+fT2/GxsbSm71796Y3W7duTW8AAABgOXySEQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAAKGqlFJ6fQgAeu/YsWPpzU033ZTeHDlyJL3ZsGFDegMAAAC9cOjQofTm3nvvTW9OnDiR3nQ6/s0pAAAAzXlXCQAAAAAAAAAAhERGAAAAAAAAAABASGQEAAAAAAAAAACEREYAAAAAAAAAAEBIZAQAAAAAAAAAAIRERgAAAAAAAAAAQEhkBAAAAAAAAAAAhERGAAAAAAAAAABASGQEAAAAAAAAAACEREYAAAAAAAAAAEBIZAQAAAAAAAAAAIRERgAAAAAAAAAAQKgqpZReHwKAlffiiy+mHv+xj30sfY19+/alN1u2bElvAAAAYJDdeOON6c1nPvOZ9OaOO+5IbwAAAODffJIRAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAoaqUUnp9CABW3sTEROrxGzduTF9jZmYmvQEAAADe6NixY+lN9n3/mjVr1pw6dSq9ueSSS9Ib8prcpq+qqgsnAQAA+O98khEAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAChqpRSen0IAGIPPPBAerOwsJB6/OOPP56+xtDQUHrT5K+dqqrSGwAAAFgt6rpOb3bu3JneDA8PpzczMzPpDQAAAIPJJxkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQqkoppdeHAFgJTX6dVVXVhZO80RNPPLHsr3HLLbekN08//XTq8Zdeemn6Gm0953Nzc+nNrl270psmxsfH05uFhYUunOStmvz5bN++Pb2Zn59Pb/r5eeuFbdu2pTdNnvfh4eHU40+fPp2+xrp169IbAAAg7y9/+Ut686EPfSi9OXHiRHqTfe8BAADA6uCTjAAAAAAAAAAAgJDICAAAAAAAAAAACImMAAAAAAAAAACAkMgIAAAAAAAAAAAIiYwAAAAAAAAAAICQyAgAAAAAAAAAAAiJjAAAAAAAAAAAgJDICAAAAAAAAAAACImMAAAAAAAAAACAkMgIAAAAAAAAAAAIiYwAAAAAAAAAAICQyAgAAAAAAAAAAAhVpZTS60MArBZLS0vpzTXXXLPs6/7yl79Mb66//vplX7cbzp07l97s3r07vZmZmUlvBs2ePXvSm3e/+93pze23357e/OQnP0lvjh8/nt7Mzs6mN8s1NzeX3jR53icmJtKb7M+fnz0AAPpVk1uaVVV14SSryz333JPePP/88+lNk/dFg8TrEwAAGFQ+yQgAAAAAAAAAAAiJjAAAAAAAAAAAgJDICAAAAAAAAAAACImMAAAAAAAAAACAkMgIAAAAAAAAAAAIiYwAAAAAAAAAAICQyAgAAAAAAAAAAAiJjAAAAAAAAAAAgJDICAAAAAAAAAAACImMAAAAAAAAAACAkMgIAAAAAAAAAAAIiYwAAAAAAAAAAIDQUK8PAKwupZT0pqqqLpxkZZw/fz71+O3bt6evcffdd6c3b3b99dcv+2v0i6NHj6Y3X/jCF7pwktVlaWkpvfnRj36U3pw6dSq9afIzvmPHjvTme9/7Xnrzz3/+M71Zt25degMAALSrn+819LPp6en05qqrrkpvjh07lnr8xo0b09doosl9rSa8PgEAgEHlk4wAAAAAAAAAAICQyAgAAAAAAAAAAAiJjAAAAAAAAAAAgJDICAAAAAAAAAAACImMAAAAAAAAAACAkMgIAAAAAAAAAAAIiYwAAAAAAAAAAICQyAgAAAAAAAAAAAiJjAAAAAAAAAAAgJDICAAAAAAAAAAACImMAAAAAAAAAACAkMgIAAAAAAAAAAAIDfX6AMDqUlVVr4/wX5VS0pvp6enU49/znvekr/HlL385vemFJs9fk9fDD37wg/Rmfn4+vRkfH09vFhYW0pu2nDlzJr354Ac/mN6sX78+vWnine98Z3rzvve9L71ZXFxMbyYmJtKbC+3cuTO92bZtW3rzyU9+Mr0ZHh5OPf706dPpawAAQFZd1+lNk/ej/XxPo4kmz9sll1yS3tx3333pzV133ZV6/JEjR9LXaGLQXgMAAABt80lGAAAAAAAAAABASGQEAAAAAAAAAACEREYAAAAAAAAAAEBIZAQAAAAAAAAAAIRERgAAAAAAAAAAQEhkBAAAAAAAAAAAhERGAAAAAAAAAABASGQEAAAAAAAAAACEREYAAAAAAAAAAEBIZAQAAAAAAAAAAIRERgAAAAAAAAAAQEhkBAAAAAAAAAAAhIZ6fQCAlfLDH/4wvfnVr36VevyxY8fS11gtqqpKb+q6Tm8OHjzYymbPnj3pTZPn4OTJk+nN6OhoevPcc8+lN2NjY+lNKSW9afK88UZt/VwAAEA/6nQG699BNnlf1c/vxe688870Zt++fanHP/roo+lrTE5OpjcAAAAsz2C9gwcAAAAAAAAAAFacyAgAAAAAAAAAAAiJjAAAAAAAAAAAgJDICAAAAAAAAAAACImMAAAAAAAAAACAkMgIAAAAAAAAAAAIiYwAAAAAAAAAAICQyAgAAAAAAAAAAAiJjAAAAAAAAAAAgJDICAAAAAAAAAAACImMAAAAAAAAAACAkMgIAAAAAAAAAAAIDfX6AMDqUtd1etPp5HvGRx99NL257bbb0pvFxcXU49evX5++xiBr8mfblq9+9avpzcjISHpz4MCB9GZ2dja9aUtVVelNKaWV6zTR5GwAAED/6+f3IU2u09bZmnjHO96R3nzzm99MPf4rX/lK+hrj4+PpTZPnuZ/vfQAAALTNOyQAAAAAAAAAACAkMgIAAAAAAAAAAEIiIwAAAAAAAAAAICQyAgAAAAAAAAAAQiIjAAAAAAAAAAAgJDICAAAAAAAAAABCIiMAAAAAAAAAACAkMgIAAAAAAAAAAEIiIwAAAAAAAAAAICQyAgAAAAAAAAAAQiIjAAAAAAAAAAAgJDICAAAAAAAAAABCIiMAAAAAAAAAACAkMgIAAAAAAAAAAEIiIwAAAAAAAAAAIDTU6wP0s1JKelNVVRdOQje09ec7aK+jTiffJr7yyivpzX333ZfefOpTn0pvZmZmUo+/4YYb0tdg9fjEJz6R3hw8eLALJ3mrK6+8Mr1pcra6rtObJr8XmmhynX7+fQoAADTnv/X729atW1OPf/DBB9PXOHDgQHpz2223pTcAAAC8zicZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBrq9QH6WVVVrVynlJLeLPdsvbhmv2nr++nn562t18Gtt96a3lx77bXpzfe///305uMf/3jq8QcOHEhfo8n3T280eX2PjY114SRvNTIykt6cOHEivfnXv/6V3qxfvz69+etf/5re/P73v09vmvzMAgAA0K7vfOc76c1NN92U3nzuc59Lby6++OL0BgAAYFD5JCMAAAAAAAAAACAkMgIAAAAAAAAAAEIiIwAAAAAAAAAAICQyAgAAAAAAAAAAQiIjAAAAAAAAAAAgJDICAAAAAAAAAABCIiMAAAAAAAAAACAkMgIAAAAAAAAAAEIiIwAAAAAAAAAAICQyAgAAAAAAAAAAQiIjAAAAAAAAAAAgJDICAAAAAAAAAABCVSml9PoQg6Su61au0+kMbh/W5CVZVVUXTsJ/8vDDD6c3+/fvT2+eeuqp9Oaiiy5KbxYXF1OPv/XWW9PX+OMf/5jevNnQ0NCyvwb/vz179qQ327ZtS29GR0fTmya/G++///705tJLL01v7rzzzvRmbm4uvXn55ZfTmyZnAwAAoP999rOfTW/e//73pzdf//rX0xsAAIBBNbilCgAAAAAAAAAAsCJERgAAAAAAAAAAQEhkBAAAAAAAAAAAhERGAAAAAAAAAABASGQEAAAAAAAAAACEREYAAAAAAAAAAEBIZAQAAAAAAAAAAIRERgAAAAAAAAAAQEhkBAAAAAAAAAAAhERGAAAAAAAAAABASGQEAAAAAAAAAACEREYAAAAAAAAAAECoKqWUXh+iXzV5aqqq6tvrrBZ1Xac3nY5ersnr6A9/+EN68+lPfzq9OXr0aHpz+eWXpzdNZJ+3G2+8MX2NL33pS+nNm23dunXZX6MblpaW0pu2/mybOHz4cHozMTHRhZP0zo4dO9Kbn/3sZ+nN1NRUejM7O5veAAAAMJj+/Oc/pzfXXHNNenP69On05rLLLktvAAAAVgNlBgAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAAKGqlFJ6fQhYriYv46qqunCSlVHXdXrz97//Pb358Ic/nN4cOHAgvdmyZUt6069+/vOfpze/+MUvenLdNvTzz15bf7318+8SAAAA4HV33313evPiiy+mNz/+8Y/TGwAAgNXAJxkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAoaqUUnp9iLe7bdu2pTfz8/NdOEl/OHz4cHozMTHRhZOsLk2eg40bN6Y3MzMz6c0geeGFF9KbDRs2LPu6L730UnrT6eQ60qqq0teo6zq9yZ6rTU3+SmzyvDF4rx0AAAD639mzZ9ObK664Ir05cuRIetPkPh0AAEDb/N86AAAAAAAAAAAgJDICAAAAAAAAAABCIiMAAAAAAAAAACAkMgIAAAAAAAAAAEIiIwAAAAAAAAAAICQyAgAAAAAAAAAAQiIjAAAAAAAAAAAgJDICAAAAAAAAAABCIiMAAAAAAAAAACAkMgIAAAAAAAAAAEIiIwAAAAAAAAAAICQyAgAAAAAAAAAAQlUppfT6EG2p6zr1+E6nfxusHTt2LGv/+c9/Pr2ZmJhIbxYXF9ObzZs3pzcnT55Mb0ZHR9ObtjzwwAPpzZEjR9KbhYWF9KaJ7M/emjX9/fOX9ZGPfGTZX+Ohhx5Kb6699tplX7dfNPmrqqqqLpyE1cZrBwAAgOX47ne/m978+te/Tm8ee+yx9AYAAKBtg/N/8QEAAAAAAAAAgK4QGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAChoV4foE2dTn82VefOnUtvTp8+vaxrbtq0aVn7/9WGDRtauU4ppW+v89vf/ja9mZ6eTm9uv/329Ob+++9Pb9p6rpuoqiq9aeP7WYlr7N27N725+uqrl33d1azJ897k74l+/pnoZ/368woAAAAXevXVV9Ob3/3ud+nNb37zm/Rmy5Yt6Q0AAMBy9Gd1AwAAAAAAAAAA9A2REQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABAa6vUB2lTXderxVVWlr9Fkc/To0fRm8+bN6c2F1q1bt6z9/2pqaqqVzdjYWHrTlj/96U/pze7du7twkrcqpaQ3TV7jTa7TRJPrZDdt/V54s9dee23ZX+Ptpp9fq3iuAQAAVou27h/1q4suuii9uffee9Obl156Kb3hjebm5tKbXbt2rfxB/oPx8fH05pFHHklvmtxX/sY3vpHedDr5f7/exn1YAAC6zycZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEKpKKaXXh3i7m5ubS2927dq18gfpgpMnT6Y3o6OjXThJ79R1nd5UVdXKZtA0+XXmeQMAAABgNWpy3/FCbd2DXFpaSm8uv/zy9GZqaiq9mZ2dTW+aaOs52LdvX3pzxx13pDdNZO/dum8LANCffJIRAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAoaFeH2DQ1HWd3iwsLKQ3J0+eTG8uNDo6mt7Mzc2lN2NjY+lNk++tyffTlk5Hy9eWqqp6fQQAAAAAaEUv7jueO3cuvZmcnExvpqam0pvZ2dn0pi3Dw8Ppze7du9ObkZGR9KYt7t0CAAwG9QMAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAAhkREAAAAAAAAAABASGQEAAAAAAAAAACGREQAAAAAAAAAAEBIZAQAAAAAAAAAAIZERAAAAAAAAAAAQEhkBAAAAAAAAAAChoV4fYNA8//zz6c3Zs2fTm9HR0fRmubZv357ePPjgg+nN448/nt609XzUdZ3edDr5lq+Ukt5UVZXekH+uPc8AAAAADIIm9yAPHjyY3vzjH/9Ib772ta+lN4NmZGQkvbnyyitX/iAAAHABn2QEAAAAAAAAAACEREYAAAAAAAAAAEBIZAQAAAAAAAAAAIRERgAAAAAAAAAAQEhkBAAAAAAAAAAAhERGAAAAAAAAAABASGQEAAAAAAAAAACEREYAAAAAAAAAAEBIZAQAAAAAAAAAAIRERgAAAAAAAAAAQEhkBAAAAAAAAAAAhERGAAAAAAAAAABAaKjXBxg0TzzxRHozOTnZhZPE6rpOb1544YX05vjx4+nNVVddld60pdPJd3mllPSmqqr0pi2D9v3089kAAAAAoFtee+219Obb3/52ejM9PZ3erF+/Pr0ZNDt37kxvmty7BQCADJ9kBAAAAAAAAAAAhERGAAAAAAAAAABASGQEAAAAAAAAAACEREYAAAAAAAAAAEBIZAQAAAAAAAAAAIRERgAAAAAAAAAAQEhkBAAAAAAAAAAAhERGAAAAAAAAAABASGQEAAAAAAAAAACEREYAAAAAAAAAAEBIZAQAAAAAAAAAAIRERgAAAAAAAAAAQGio1wcYNAsLC+nNnj170ptSSnpzofPnz6c3k5OT6c3w8HB6s2nTpvSmn1VV1esj/FdNXkf9/P0AAAAA8Pbgvtby/e1vf0tvjh8/nt6MjIykN014TQzW9+PPEwCgP/kkIwAAAAAAAAAAICQyAgAAAAAAAAAAQiIjAAAAAAAAAAAgJDICAAAAAAAAAABCIiMAAAAAAAAAACAkMgIAAAAAAAAAAEIiIwAAAAAAAAAAICQyAgAAAAAAAAAAQiIjAAAAAAAAAAAgJDICAAAAAAAAAABCIiMAAAAAAAAAACAkMgIAAAAAAAAAAEJDvT5AmxYXF1OP37x5c3cO8ibz8/OtXGe5xsfH05tnnnkmvel0tG9tqaoqvSmltHIdAAAAAHqvruv0ZpDu7w3y99/kPl8/c68Tf54AAN23Ot7tAAAAAAAAAAAAPSMyAgAAAAAAAAAAQiIjAAAAAAAAAAAgJDICAAAAAAAAAABCIiMAAAAAAAAAACAkMgIAAAAAAAAAAEIiIwAAAAAAAAAAICQyAgAAAAAAAAAAQiIjAAAAAAAAAAAgJDICAAAAAAAAAABCIiMAAAAAAAAAACAkMgIAAAAAAAAAAEJDvT5Am2644YbU40spXToJrF5VVfX6CAAAAAC0pNPJ/zvVuq67fo0m96iy51qzptnZVovLLrssvbn66qvTmzNnzqQ3bWnrXufS0lJ68+yzz6Y3ExMT6U2/ch8aAKA/De47JAAAAAAAAAAAYEWIjAAAAAAAAAAAgJDICAAAAAAAAAAACImMAAAAAAAAAACAkMgIAAAAAAAAAAAIiYwAAAAAAAAAAICQyAgAAAAAAAAAAAiJjAAAAAAAAAAAgJDICAAAAAAAAAAACImMAAAAAAAAAACAkMgIAAAAAAAAAAAIiYwAAAAAAAAAAIDQUK8P0Kaqqnp9BAAAAACAgdbp9Oe/be3Xc/XK2rVr05upqan0ZteuXenNe9/73vRmcnIyvWlicXExvdm7d296c/jw4fSmLXVdpzdt/PyVUtIb/98IACDHuyoAAAAAAAAAACAkMgIAAAAAAAAAAEIiIwAAAAAAAAAAICQyAgAAAAAAAAAAQiIjAAAAAAAAAAAgJDICAAAAAAAAAABCIiMAAAAAAAAAACAkMgIAAAAAAAAAAEIiIwAAAAAAAAAAICQyAgAAAAAAAAAAQiIjAAAAAAAAAAAgJDICAAAAAAAAAABCVSml9PoQAAAAAADA4HnyySfTm02bNnXhJCtjamoqvZmdne3CSQAGX5P/jV1VVRdOAsC/+SQjAAAAAAAAAAAgJDICAAAAAAAAAABCIiMAAAAAAAAAACAkMgIAAAAAAAAAAEIiIwAAAAAAAAAAICQyAgAAAAAAAAAAQiIjAAAAAAAAAAAgJDICAAAAAAAAAABCIiMAAAAAAAAAACAkMgIAAAAAAAAAAEIiIwAAAAAAAAAAICQyAgAAAAAAAAAAQiIjAAAAAAAAAAAgJDICAAAAAAAAAABCIiMAAAAAAAAAACBUlVJKrw8BAAAAAAAAAAD0L59kBAAAAAAAAAAAhERGAAAAAAAAAABASGQEAAAAAAAAAACEREYAAAAAAAAAAEBIZAQAAAAAAAAAAIRERgAAAAAAAAAAQEhkBAAAAAAAAAAAhERGAAAAAAAAAABASGQEAAAAAAAAAACEREYAAAAAAAAAAEBIZAQAAAAAAAAAAIRERgAAAAAAAAAAQEhkBAAAAAAAAAAAhP4P7B4R2ghQ/cYAAAAASUVORK5CYII=",
"path": "images_version_6/image_25.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, EF parallel BC, AC bisects angle BAF, then the degree of angle C is ()
Choices:
A:50°
B:55°
C:60°
D:65°
|
||
126
|
26
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKcAAABgCAAAAABdkD08AAAGwklEQVR4nO2bb2wTZRzHv89wjIixU4ewBNLNzbQGEwcjEsQ/xUAYOhGCJLwxY0amOMxGxp/4ir5zRBSW0EVCfDFeGFg2Ie7FWgIBYoxAF1vjFmKy0TQBZNmCmy26buN+vrje9f702ufG3RUTvsnW5+6e+93nnt+f5+56ZQRrdWP4Pfxc/oLFVsGs5sTt0uI7FVYbtYHTHhUVGoBTjzmt1WNOa/UIcPobDTdlilHh69KZz8dybJXwCshJDAAao54zxgwyXgH9zgAAX0U8PJ0LyEmnPwRQRoxxdC4cZ1fFt7sAgHGF3hM20xgrduotsZEDM7OpMJxxN+Dn6JeJCCf9Lo1OV8VR0/vaP57E1I0H3uruV4knd5Syn1MmYiLcvAtupUM55aTf2VRHLwC3uGRugrGZk0BA+i/VURlcktlibkht9jsDSyMxTPzSX6PcYgrVgbpEDEjRAiw+DRWbqRG1Pz6JIdVREQSIoEogU463k1MAADBcqbjcv4V3gjSQnX6XxuAVKS5NVyO9LZuU/GYSKK3J04sZSu5iK2fycOX1qVwdxLJ1iIwl9bQ137+L/ORVQOndzrhDwVbOlhYFnOkpXSWb/D7pL08BUKZONkz+AmAPZ4c7frVEXuK4Tcsre/zu/c0NyK7O4XDuWLByPAkAxnsBbHSbo8gvKzkZMLq3+pKFFjOy2O91qweXWmsxLYs4paITscacXhb5nWF07w6YvUg3IYs4U60edICszBy1LPJ7Sfkfiy3Nb63mzimFJN1OVQEHLeIxklm/656c3trtvWghj5FMcpL2vmHkpQXDTVYCGcik33V3iVWxMitxDGU63zOYtz4NAXAG0zynhBlvfHnJGothcmjO+f6XO+6yEiSP5sQZdwM1NXLqP9yVOp/y+J0yhYikohRvXDUCKB/E2UKmVm5OTRliANC1yhurspUpm3L7nWkGixgwtMvuuSeb8vpdqejuWeDJ+br1DigPp3I0o1vXV95XLJOTtCbyPeQ7PV/iFp9oOpFAaXFyTro0l0RO1CKlOOYjQnSrT+tj5nCIGnJmoo/t2OS7qvexswOq9TtlIpBJK/Z2laDQ0oynNuyunWHA6sJjajmZqjRee+eDWcXGQr76oMt3xYimmnf1zVNscjjFVdJxSndnDCgZcJrGWAb5fmWd31GMvMpa5+MNcX+DvKT9wrcgUnLKHEsaGxSrbb3OJAauAVD6nQFAKA6UpDEdSHAm/8stTXyeW9V6V8YrpJ+1UnP2frH/xmr59LI9PSf5n7NS59G2bYBq7tSJ109WSx7PcyuiKhYj2TCWJt5futIKfw2XURvGksekGIP++L9eEFjmYWGRYLC39S8OXvb583dKj6cb0r2ERJMNkxFAl2mdBXAK+z4/T2EhIqJD4le2wgAJApFg9OVtmEiQ+tL1HB35FCblwXNLWZcG3vwkpRxU9fkAEzs3DElxMfDG7tRDxupkw4YhwOh4GqU5GTDauKlhoMRwJwaUDtav3TNOAEY/2tQw8LBXz66h+rV7xjkjPs1JDw57yoY/ztmVgJYRqh4AR18+tQyjupO4ElM8mUPDwbK6Z7hsj3//z/xyzr65j0sMwFgwWVfpz99fHE8TgUYAgYGB6zVYA7HMoXknjnTKzR55et9E/rQbb3Ydo9kjpTx980kgGmt2HePLd8ituw3PndQVGs2KY67mcSIS7u4sOzkHLEG1RHTU1TzGWZegaIdfXzkltqY9DJGMWbEhTCxfP5jpWzuVnUYgCgJNRNQvfojr9bV2Yvn6IQ5CJad0ruH0wuZ2Ou4TdAcIK7nDZKRYE8VYO8WaKIZ2kk9T1y9sYqJAlnXCtCdKN5cm5GWT885ZIgr4pA/DaUvQNXJIOR+R9FFc34r+PU/NeJ9P7luWDBb1mklMYAuAqiK8D6AKmPEuTu5blgyxHm3SS4+wzL4/L+5FjNGXf7LEQRQP1p6qXXjhbOeIyhxpdlBKLto3N4IBGKlD8e+1p1YuvPBDYETb2cwD1CJdmxFY8bv4OglcrEqsudd3Iii9EyuZ17fkNelVMz8eAICZvoNEl15MvHa/70TIkIHLUbqQEYiEth5q8xG1vU0BRKc9EePYMtB+MbgPJIiENh91ImJohS/4s3LeXJSgaU9k2hOhtnYK+bgsKQ5Nnd0CkUCBbiJKeX41bUW2Jp+E+n6TEcCApc8GcOle9e3ymplgM87X8fhFsgAQzv+9nYV6WCixHaGeO+UrZoKfmbMiW1O8JZxNMQARCrRTsImEzeg2N6DHAWBRIpD+aKdgE5E5KzoV/vdcfHoEfh/Hpcec1ur/wvkfCiAMIUMsj90AAAAASUVORK5CYII=",
"path": "images_version_1-4/image_26.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, in order to measure the height of the school flagpole, Xiaodong uses a bamboo pole with a length of 3.2 as a measuring tool, and moves the bamboo pole so that the top of the bamboo pole and the shadow of the top of the flag pole fall on the same point on the ground. At this time, the distance between the bamboo pole and this point is 8.0 , 22.0 from the flagpole, the height of the flagpole is ().
Choices:
A:8.8
B:10
C:12
D:14
|
Như hình vẽ, để đo chiều cao cột cờ trường, Tiểu Đông sử dụng一根 cây tre dài 3,2 làm công cụ đo và di chuyển cây tre sao cho đầu trên của cây tre và bóng của đỉnh cột cờ rơi vào cùng một điểm trên mặt đất. Khi đó, khoảng cách giữa cây tre và điểm đó là 8,0, khoảng cách từ cột cờ đến điểm đó là 22,0. Chiều cao của cột cờ là ().
Các lựa chọn:
A: 8,8
B: 10
C: 12
D: 14
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, in order to measure the height of the school flagpole, Xiaodong uses a bamboo pole with a length of 3.2 as a measuring tool, and moves the bamboo pole so that the top of the bamboo pole and the shadow of the top of the flag pole fall on the same point on the ground. At this time, the distance between the bamboo pole and this point is 8.0 , 22.0 from the flagpole, the height of the flagpole is ().
Choices:
A:8.8
B:10
C:12
D:14
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, in order to measure the height of the school flagpole, Xiaodong uses a bamboo pole with a length of 3.2 as a measuring tool, and moves the bamboo pole so that the top of the bamboo pole and the shadow of the top of the flag pole fall on the same point on the ground. At this time, the distance between the bamboo pole and this point is 8.0 , 22.0 from the flagpole, the height of the flagpole is ().
Choices:
A:8.8
B:10
C:12
D:14
|
As shown in the figure, in order to measure the height of the school flagpole, Xiaodong uses a bamboo pole with a length of 3.2 as a measuring tool, and moves the bamboo pole so that the top of the bamboo pole and the shadow of the top of the flag pole fall on the same point on the ground. At this time, the distance between the bamboo pole and this point is 8.0 , 22.0 from the flagpole, the height of the flagpole is ().
Choices:
A:8.8
B:10
C:12
D:14
|
127
|
26
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKcAAABgCAAAAABdkD08AAAGwklEQVR4nO2bb2wTZRzHv89wjIixU4ewBNLNzbQGEwcjEsQ/xUAYOhGCJLwxY0amOMxGxp/4ir5zRBSW0EVCfDFeGFg2Ie7FWgIBYoxAF1vjFmKy0TQBZNmCmy26buN+vrje9f702ufG3RUTvsnW5+6e+93nnt+f5+56ZQRrdWP4Pfxc/oLFVsGs5sTt0uI7FVYbtYHTHhUVGoBTjzmt1WNOa/UIcPobDTdlilHh69KZz8dybJXwCshJDAAao54zxgwyXgH9zgAAX0U8PJ0LyEmnPwRQRoxxdC4cZ1fFt7sAgHGF3hM20xgrduotsZEDM7OpMJxxN+Dn6JeJCCf9Lo1OV8VR0/vaP57E1I0H3uruV4knd5Syn1MmYiLcvAtupUM55aTf2VRHLwC3uGRugrGZk0BA+i/VURlcktlibkht9jsDSyMxTPzSX6PcYgrVgbpEDEjRAiw+DRWbqRG1Pz6JIdVREQSIoEogU463k1MAADBcqbjcv4V3gjSQnX6XxuAVKS5NVyO9LZuU/GYSKK3J04sZSu5iK2fycOX1qVwdxLJ1iIwl9bQ137+L/ORVQOndzrhDwVbOlhYFnOkpXSWb/D7pL08BUKZONkz+AmAPZ4c7frVEXuK4Tcsre/zu/c0NyK7O4XDuWLByPAkAxnsBbHSbo8gvKzkZMLq3+pKFFjOy2O91qweXWmsxLYs4paITscacXhb5nWF07w6YvUg3IYs4U60edICszBy1LPJ7Sfkfiy3Nb63mzimFJN1OVQEHLeIxklm/656c3trtvWghj5FMcpL2vmHkpQXDTVYCGcik33V3iVWxMitxDGU63zOYtz4NAXAG0zynhBlvfHnJGothcmjO+f6XO+6yEiSP5sQZdwM1NXLqP9yVOp/y+J0yhYikohRvXDUCKB/E2UKmVm5OTRliANC1yhurspUpm3L7nWkGixgwtMvuuSeb8vpdqejuWeDJ+br1DigPp3I0o1vXV95XLJOTtCbyPeQ7PV/iFp9oOpFAaXFyTro0l0RO1CKlOOYjQnSrT+tj5nCIGnJmoo/t2OS7qvexswOq9TtlIpBJK/Z2laDQ0oynNuyunWHA6sJjajmZqjRee+eDWcXGQr76oMt3xYimmnf1zVNscjjFVdJxSndnDCgZcJrGWAb5fmWd31GMvMpa5+MNcX+DvKT9wrcgUnLKHEsaGxSrbb3OJAauAVD6nQFAKA6UpDEdSHAm/8stTXyeW9V6V8YrpJ+1UnP2frH/xmr59LI9PSf5n7NS59G2bYBq7tSJ109WSx7PcyuiKhYj2TCWJt5futIKfw2XURvGksekGIP++L9eEFjmYWGRYLC39S8OXvb583dKj6cb0r2ERJMNkxFAl2mdBXAK+z4/T2EhIqJD4le2wgAJApFg9OVtmEiQ+tL1HB35FCblwXNLWZcG3vwkpRxU9fkAEzs3DElxMfDG7tRDxupkw4YhwOh4GqU5GTDauKlhoMRwJwaUDtav3TNOAEY/2tQw8LBXz66h+rV7xjkjPs1JDw57yoY/ztmVgJYRqh4AR18+tQyjupO4ElM8mUPDwbK6Z7hsj3//z/xyzr65j0sMwFgwWVfpz99fHE8TgUYAgYGB6zVYA7HMoXknjnTKzR55et9E/rQbb3Ydo9kjpTx980kgGmt2HePLd8ituw3PndQVGs2KY67mcSIS7u4sOzkHLEG1RHTU1TzGWZegaIdfXzkltqY9DJGMWbEhTCxfP5jpWzuVnUYgCgJNRNQvfojr9bV2Yvn6IQ5CJad0ruH0wuZ2Ou4TdAcIK7nDZKRYE8VYO8WaKIZ2kk9T1y9sYqJAlnXCtCdKN5cm5GWT885ZIgr4pA/DaUvQNXJIOR+R9FFc34r+PU/NeJ9P7luWDBb1mklMYAuAqiK8D6AKmPEuTu5blgyxHm3SS4+wzL4/L+5FjNGXf7LEQRQP1p6qXXjhbOeIyhxpdlBKLto3N4IBGKlD8e+1p1YuvPBDYETb2cwD1CJdmxFY8bv4OglcrEqsudd3Iii9EyuZ17fkNelVMz8eAICZvoNEl15MvHa/70TIkIHLUbqQEYiEth5q8xG1vU0BRKc9EePYMtB+MbgPJIiENh91ImJohS/4s3LeXJSgaU9k2hOhtnYK+bgsKQ5Nnd0CkUCBbiJKeX41bUW2Jp+E+n6TEcCApc8GcOle9e3ymplgM87X8fhFsgAQzv+9nYV6WCixHaGeO+UrZoKfmbMiW1O8JZxNMQARCrRTsImEzeg2N6DHAWBRIpD+aKdgE5E5KzoV/vdcfHoEfh/Hpcec1ur/wvkfCiAMIUMsj90AAAAASUVORK5CYII=",
"path": "images_version_1-4/image_26.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, Xiaodong uses a bamboo pole with a length of 3.2 as a measuring tool, the height of the flagpole is ().
Choices:
A:8.8
B:10
C:12
D:14
|
Như hình vẽ, Xiao Dong sử dụng一根 cây tre dài 3,2 đơn vị làm thước đo, chiều cao cột cờ là ().
Các lựa chọn:
A: 8,8
B: 10
C: 12
D: 14
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, Xiaodong uses a bamboo pole with a length of 3.2 as a measuring tool, the height of the flagpole is ().
Choices:
A:8.8
B:10
C:12
D:14
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, Xiaodong uses a bamboo pole with a length of 3.2 as a measuring tool, the height of the flagpole is ().
Choices:
A:8.8
B:10
C:12
D:14
|
As shown in the figure, Xiaodong uses a bamboo pole with a length of 3.2 as a measuring tool, the height of the flagpole is ().
Choices:
A:8.8
B:10
C:12
D:14
|
128
|
26
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKcAAABgCAAAAABdkD08AAAGwklEQVR4nO2bb2wTZRzHv89wjIixU4ewBNLNzbQGEwcjEsQ/xUAYOhGCJLwxY0amOMxGxp/4ir5zRBSW0EVCfDFeGFg2Ie7FWgIBYoxAF1vjFmKy0TQBZNmCmy26buN+vrje9f702ufG3RUTvsnW5+6e+93nnt+f5+56ZQRrdWP4Pfxc/oLFVsGs5sTt0uI7FVYbtYHTHhUVGoBTjzmt1WNOa/UIcPobDTdlilHh69KZz8dybJXwCshJDAAao54zxgwyXgH9zgAAX0U8PJ0LyEmnPwRQRoxxdC4cZ1fFt7sAgHGF3hM20xgrduotsZEDM7OpMJxxN+Dn6JeJCCf9Lo1OV8VR0/vaP57E1I0H3uruV4knd5Syn1MmYiLcvAtupUM55aTf2VRHLwC3uGRugrGZk0BA+i/VURlcktlibkht9jsDSyMxTPzSX6PcYgrVgbpEDEjRAiw+DRWbqRG1Pz6JIdVREQSIoEogU463k1MAADBcqbjcv4V3gjSQnX6XxuAVKS5NVyO9LZuU/GYSKK3J04sZSu5iK2fycOX1qVwdxLJ1iIwl9bQ137+L/ORVQOndzrhDwVbOlhYFnOkpXSWb/D7pL08BUKZONkz+AmAPZ4c7frVEXuK4Tcsre/zu/c0NyK7O4XDuWLByPAkAxnsBbHSbo8gvKzkZMLq3+pKFFjOy2O91qweXWmsxLYs4paITscacXhb5nWF07w6YvUg3IYs4U60edICszBy1LPJ7Sfkfiy3Nb63mzimFJN1OVQEHLeIxklm/656c3trtvWghj5FMcpL2vmHkpQXDTVYCGcik33V3iVWxMitxDGU63zOYtz4NAXAG0zynhBlvfHnJGothcmjO+f6XO+6yEiSP5sQZdwM1NXLqP9yVOp/y+J0yhYikohRvXDUCKB/E2UKmVm5OTRliANC1yhurspUpm3L7nWkGixgwtMvuuSeb8vpdqejuWeDJ+br1DigPp3I0o1vXV95XLJOTtCbyPeQ7PV/iFp9oOpFAaXFyTro0l0RO1CKlOOYjQnSrT+tj5nCIGnJmoo/t2OS7qvexswOq9TtlIpBJK/Z2laDQ0oynNuyunWHA6sJjajmZqjRee+eDWcXGQr76oMt3xYimmnf1zVNscjjFVdJxSndnDCgZcJrGWAb5fmWd31GMvMpa5+MNcX+DvKT9wrcgUnLKHEsaGxSrbb3OJAauAVD6nQFAKA6UpDEdSHAm/8stTXyeW9V6V8YrpJ+1UnP2frH/xmr59LI9PSf5n7NS59G2bYBq7tSJ109WSx7PcyuiKhYj2TCWJt5futIKfw2XURvGksekGIP++L9eEFjmYWGRYLC39S8OXvb583dKj6cb0r2ERJMNkxFAl2mdBXAK+z4/T2EhIqJD4le2wgAJApFg9OVtmEiQ+tL1HB35FCblwXNLWZcG3vwkpRxU9fkAEzs3DElxMfDG7tRDxupkw4YhwOh4GqU5GTDauKlhoMRwJwaUDtav3TNOAEY/2tQw8LBXz66h+rV7xjkjPs1JDw57yoY/ztmVgJYRqh4AR18+tQyjupO4ElM8mUPDwbK6Z7hsj3//z/xyzr65j0sMwFgwWVfpz99fHE8TgUYAgYGB6zVYA7HMoXknjnTKzR55et9E/rQbb3Ydo9kjpTx980kgGmt2HePLd8ituw3PndQVGs2KY67mcSIS7u4sOzkHLEG1RHTU1TzGWZegaIdfXzkltqY9DJGMWbEhTCxfP5jpWzuVnUYgCgJNRNQvfojr9bV2Yvn6IQ5CJad0ruH0wuZ2Ou4TdAcIK7nDZKRYE8VYO8WaKIZ2kk9T1y9sYqJAlnXCtCdKN5cm5GWT885ZIgr4pA/DaUvQNXJIOR+R9FFc34r+PU/NeJ9P7luWDBb1mklMYAuAqiK8D6AKmPEuTu5blgyxHm3SS4+wzL4/L+5FjNGXf7LEQRQP1p6qXXjhbOeIyhxpdlBKLto3N4IBGKlD8e+1p1YuvPBDYETb2cwD1CJdmxFY8bv4OglcrEqsudd3Iii9EyuZ17fkNelVMz8eAICZvoNEl15MvHa/70TIkIHLUbqQEYiEth5q8xG1vU0BRKc9EePYMtB+MbgPJIiENh91ImJohS/4s3LeXJSgaU9k2hOhtnYK+bgsKQ5Nnd0CkUCBbiJKeX41bUW2Jp+E+n6TEcCApc8GcOle9e3ymplgM87X8fhFsgAQzv+9nYV6WCixHaGeO+UrZoKfmbMiW1O8JZxNMQARCrRTsImEzeg2N6DHAWBRIpD+aKdgE5E5KzoV/vdcfHoEfh/Hpcec1ur/wvkfCiAMIUMsj90AAAAASUVORK5CYII=",
"path": "images_version_1-4/image_26.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, Xiaodong uses a bamboo pole with a length of 3.2 as a measuring tool, the height of the flagpole is ().
Choices:
A:8.8
B:10
C:12
D:14
|
Như hình vẽ, Xiao Dong sử dụng一根 cây tre dài 3,2 đơn vị làm thước đo, chiều cao cột cờ là ().
Các lựa chọn:
A: 8,8
B: 10
C: 12
D: 14
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, Xiaodong uses a bamboo pole with a length of 3.2 as a measuring tool, the height of the flagpole is ().
Choices:
A:8.8
B:10
C:12
D:14
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, Xiaodong uses a bamboo pole with a length of 3.2 as a measuring tool, the height of the flagpole is ().
Choices:
A:8.8
B:10
C:12
D:14
|
As shown in the figure, Xiaodong uses a bamboo pole with a length of 3.2 as a measuring tool, the height of the flagpole is ().
Choices:
A:8.8
B:10
C:12
D:14
|
129
|
26
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAOAAAACnCAYAAAAIcFA1AAAXNklEQVR4nO3deVhTV94H8G9CglBKBMoimzsOCoNRkLcOVsc4UAO8SqvFed3A9q1VO/qgdLRja2esSh99O2o7ztRK60xxq9qKHa1LRxa1Kgh1waWPKCDKJnslhuzn/YMmBQwQlHBJ8vv8I971QPK959xz7z2XxxhjIIRwgs91AQixZRRAQjhEASSEQxRAQjhEASSEQxRAQjhEASSEQxRAQjhEASSEQxRAQjhEASSEQxRAQjhEASSEQxRAQjhEASSEQxRAQjhEASSEQxRAQjhEASSEQxRAQjhEASSEQxRAQjhEASSEQxRAQjhEASSEQxRAQjhEASSEQxRAQjhEASSEQxRAQjhEASSEQxRAQjhEASSEQxRAQjhEASSEQxRAQjhEAbRSpaWlOH78OFQqFRhjuHDhAsrKyrguFmmHxxhjXBeCmEd1dTWcnJwgEAhQW1sLX19frotE2qEAEsIhaoISwiEKICEcogASwiEKICEcogCSPqegoADHjh2DSqXiuihmR72gpE958OABlixZgry8PIwfPx5CodAs+2GMgTGGBQsWIDIy0iz7MIWAsz0Tm8YYA4/HazPt2LFj+Oc//4mqqiqUl5cjPDwczs7OMEcd4ejoiLS0NJw5c4YCSGxP+/ABgK+vL5YuXYqcnBzk5+cjISEB7u7uZitDYWEhlEql2bZvCgog4UR9fT3279+PQYMGITo6GgAwevRoAMDt27eNBtQaUScM6VUymQwffvghpkyZguvXryMgIMDocrbSNUE1IOlVjY2NePToEbZt24axY8fCwcGB6yJxigJIzIYxBp1Oh4qKCvj7+wMAfHx88Kc//QlCodBmmpmdoSYoeSodNRUVCgX27t2L0NBQpKamGqbz+XzY29tT+H5GNSAxythlgu4sEx8fDzs7O+zcuRNjx441aXu2iAJIjDIlLPplFAoFFAoFnn32WQgELV+pf/3rX3BxcQGfzzd5e7aIAkiemEqlwr1793D8+HEolUrMmTMH3t7eAAA3N7cO16Pa8Bd0DkgM9Odz7c/rOjrPy83NRVJSErKysjBixAi4urqatA8K3y+oBiQG+mC0DkhngeHxeFi4cCFiYmJgZ2fXrX10tW1bQQEkHdIHhDGGy5cv4/z584iNjcXgwYMBABMmTDC6fHe2besogDZO37xsHwZ9QIqLi7Fz507cvXsX7u7uj9VgrdftTqAofC0ogMQofUBUKhWUSiXmzp0LiUQCe3v7x5YhT44CaOPah+jixYvw9/c39GYGBARg/fr16NevX6+WSygUIj4+3mz7FQgEyMvLw5IlS8yyfZPLweneSZ9x8+ZNbNmyBXfv3sX69esNAbSzszO5g+VJtD7P1B8M1Go14uLiEBMTg379+pnlxmz9w7hjxozp8W13BwWQ4Pr16/j73/8OPz8/vPHGGxg1apRJ6/VER0pHPa9Dhw5FXFwcHB0dn2r7fR0FkGDYsGF499134eLiAicnJ5PWMXcvpkajMdu2+xK6EG9jKioqsHjxYrz22muGaY6OjvD19TU5fEDPdcDox2axVRRAG6FSqbBhwwZERETAy8sLKSkpJq1n7nDYek8qNUGtmFarNXSg8Hg8jB8/HgsWLICPj0+b5bq628XcbDmEVANagfbNuObmZhQWFmL//v2GQYeEQiEkEslj4QNsOwBcowBaAR6PZwhRcXExPvjgA7z00kvIy8uz6fMrS0BNUCuzZ88e/PTTTzhx4oRhGAjSd1EALVhTUxNu3boFLy8vQ9jWrFnDcalId1AALdCjR49w7tw5ZGVloaqqCgkJCYYA0lMGloXOAS1QZWUldu7cCZVKheTkZPz2t781zKPwWRaqAfsAU2otmUyGZ599FgDg6emJ1atXIyQkpDeKR8yIakAz6k4PZEfLHj58GHPmzEFGRoZhmkgkovBZCaoBzaQ752LGlmtqasLixYuhVqsxbtw4k2+QJpaFAmgmTzv2iYODA+Li4jBixAj8+te/pnM7K0UBNDNTw/ftt9+irq4O06ZNg4uLC4RCIWbOnNkLJSRconNAM+ssfFqtFpmZmYiKisLmzZvh6+sLkUjUi6UjXKMakEMKhQIVFRWIj49HXFwcXF1dDSNJE9tAAexFarUalZWVGDhwIADgmWeewaxZs8Dn87sc9oEusFsnOtx2oqORoo0t19myGo0GBQUFSEhIwKxZs9DQ0ACgpXkqFApNGnOFwmedKIAd6O5lhM7Gxty1axfi4uIwZswYHDx40KQh3IltoAB2oHWQulv71NbWQqVSGf5fXFyMV199FStXroS/v78hsP7+/njhhRewYMECbN++HXfu3Omx8hPLQOeAnehOLajT6VBTU4O8vDwcOXIESUlJGDlyJICWcz2dToeSkhIoFApUVVWBMYby8nKUlZWhtLQUGzduxOLFi7Fu3Tq8++675vy1SB9CAexEd2q+0tJSbN++Hbm5uYiNjW3zei79eaH+nQqBgYFtwq3/efny5cjIyKAA2hAKYA+Ry+UIDw9HcnIyPD09u1zeWBO3f//+Zisf6ZsogE+gpqYGx48fR//+/TF9+nQAQFBQEIKCgrq1HXNcWlA33calI8eQXlAJeIfgpWkv47+GOHS+kqICV08fw9GsO2hyHo7JcdMgCfKEsEdLRoyhTpifmTI+pVKpxI4dO7BixQqcPn0aOp3OsO6TaN0E7Qnqws/woq8U66874XmJBM875SBptCem7i7qeKX6LCwfMRQztlVjiEQCyZBqbJYOxIufFULdI6UinbGJGtCUmqaz+fr1dTod6urqMGHCBERHRxueQu+p4dmfTjkOJP0BfnsrkBarP/+MQkz4QISGb0PWrC2Y/FiVpsaFzbOwZ34WyteP/7nGi0LUpEGI9luFQ/+djllePVA00iGrD+DTNPPq6upQVFSEsWPHQiAQwMHBAUuXLjU8GNvXBCVlIPz5tu9mF4aEYoryMIruAZOHPb6O30u78d2A8W2bm77P4+WIuci5CQqgmVl9E9TYCyW78vDhQ3z88ceYMWMGvv/++zYvouwsfD3RlCwrK0N2djYUCkU31/SFOCoCAe3v5VZroIIHnI0WWwj/0CiIfdtPf4TGWg+4mD5SPXlCVl8D6nWnJtywYQPq6+uxevVqiMViCASm/Zmetim5aNEi5ObmIjIyEg4ODhg+fDj8/Pzg5+cHL6/Oq6KkpCS4uLi0m6rAzc8/wMmkNVjXjZpMXfAd0uoX4lNu39xlE2wmgN0Jx7Jly9CvXz+4ubn16tMJ7u7uiImJgUwmw/fff48rV67gypUr8PPzg0AggIuLi5GQtVi0aJHh5xtfvY1d+U0o/O4C1DM3ImvTZLgZXcuI+iysjP0YU/ZfwXjqBjU7mwmgMXK5HGlpaThz5gyWLVuG559/HgDg6/tYm6xXbNu2DWvXrkViYiLeeecdBAYGGi7ed4fLcAkkIiDE+xH+9n/v4ZNxgVgb6d/1ZYX6y/hw5nRcfS8fJyebHFnyFGw2gKdPn8by5cvh4+OD9957D+Hh4V2u01Uz9mmv6zU2NkIsFmPLli1PvA0A8BVHwRcAoqIwe95/8GZgDD7JLsCyzoaVqc/CyvDpyH8rB8f+dwRdA+wlVtkJY6wzRKfTtZk+dOhQpKSk4OjRoyaFD+i6GdsnHxlyi8TMOddw4HwX1wLFUuS/nY+Ti0ahi8v2ZmHsM7OF91pYZQBbB0Gj0aC2thYHDx7E3bt3DdP9/f0xdepUo+tb5Af/4Ay2bTiGx2OmhkYF2Hf0zKG6EJ/NnI6r7xXgJIc1n7GDV588oPUwqwygnkKhwJ49e/DKK6/g888/R1NTE4DOA2axT567CVH1USI2/6e+zWR14Rf44PMIzJ44uGXCja/w9rYzePDz/KLdi7ACHyGVmp2csOpzwOvXr+PEiRNYuXIlpk6d2ulDs3o8Hq/HQmhsO2YLuHA8VnyThJgXB8Nv/MuYO2YAUJWDnYfKEPnFMSToL8JXn8PGL4Pw+h8mwgsXsXtVFgaMFyP17bcf26Rf9HL8YSJdiTcnqwmgWq3GzZs34ejoiGHDhsHOzg5hYWHYt2/fY8t2FYKeCkhvN6vcxq/GherFuHvrGgofKACH/8GbfxsFf+dWdduIBJzc6AQPAIAvpu8+ifEdbM/J29FsZSUtLD6AWq0WRUVFyMzMRGZmJmbMmIGAgIBO1+krTUyZTIaysjLcuXMHGRkZ+Oqrr9q8aOWJOLhi8OiJGNzRfF8xogxXWXwhjuLmkktn7OzsTLo53hpYdABlMhnOnTuHr7/+GhcvXkRMTAx8fHzwww8/tHlSwZRLB+ZqGuqHn+DxeG1eDy2TyQznpM7OzggODsbLL7+MV155BRcvXuzxclgKe3t73Lp1CxqNhuui9Aoes+DDzJ07d7B582ZoNBo4OTnB0dERcrkcOp0OPB4PdnZ20Gq1nW6jpwNoZ2f32CWP+vp6MMZQXV1tmCYUCiESiSASiQxDVli71n9j/UGp/e/N4/FQXV2NxMRESCQSk28DtFQW/dvx+Xw888wzCA4OhlgsNgyEpL9pury8HE5OTobbydoPAWGO8jQ2NhpuYVMqlbCzs8OOHTug0+mwYcOGNsF0cHBAc3MzZDIZRCKR4cBhrfR/dx6PZ7jZ3M3NDXK53PB3EQgEyM7ObjOolTWz6AACLeeA7u7uEIvFhmk6nQ5ffPEFTp06ha1bt8LDw6PXyrN582aUlJTgj3/8o2EA3szMTDDGMG7cuDbLXrp0CTt27EBkZCSmTJnSa2XsC86cOYPt27fjjTfewKRJk9rMy83NRXZ2tk3UgFZ3HTAjIwMxMTHIyMhAfHw8nJ2de3X/UqkUnp6e+P3vf4/333/fcKRvfU5TXV2NpUuXIjk5GSEhIfjNb37Tq2XsCwIDAzF58mSkpKQgMTERRUW/3ELA4/Fgb29v1a0BPas4vNjb26OiogLvvPMOHjx4gHnz5iEyMrJXaz69kSNHYuXKlZBKpdi7dy+mTJkCPz8/hIWFQa1W49NPP8WePXsglUrxySefICAgwKSRsa2Np6cnXnvtNUgkEqSnpyMxMRFSqRRvvfWWTf09LLoTpqSkBFu3bkVJSQlKS0vh5eWF4OBgDBo0CPb29tBqtZx0ZfP5fPD5fNTU1KCwsBDZ2dlgjMHLywv29vYICgrC8OHD4erqCq1WaxMdMMAvNzkALeeDfD4fAoEATU1NuH37Nm7cuAGlUonAwEAMHDgQa9asgaOjdV+LtOgaUN9EefDgAYqLizF48GA4Ozujvr6+y97P3iibQCCAh4cHFAoF6uvrUVtbi5EjR8LLywtKpRJlZWWGZS34ONil1r3MrUcX0P8sFArh4eEBjUaDH3/8sc3lGmtn0QFkjEEgEGDNmjXw9fXFsmXLcPbsWaSkpGDMmDHdfkV0T4WAx+NBJpPho48+woEDB7BixQosW7YMcrkcmzZtwr59+7Bq1SrMmzcP9vb2vRa+jn7Pnv79TaGvAdVqNQ4fPoz3338f4eHhOHz4MNLT0w0HJ6vHLJhOp2Nardbwf5VKxVJTU9mvfvUrlpSUxMrLyztdX6PRsIcPH7KGhgbW3NzcY2U6dOgQCwoKYvPnz2d3795lOp3OMF+r1bLLly8zqVTKXnjhBXb27Nke2W9XNBoNa2xsZA8fPmRqtbrNPLlczhoaGphcLm9TVnO7dOkSk0qlbMKECSw7O9vwWaamprI///nPTC6X91pZuGLRAexIdXU1W7p0KQsNDWWlpaUdLnf06FE2YMAAJhAIWEJCAmtsbDRp+519SZOTk9mECRNYZmZmm4NDe0qlku3Zs4eFhoaybdu2mbRfU+nLp/9Xo9GwtLQ01r9/fzZgwAD2l7/8xbDs/fv32ezZs5lQKGRhYWEsPz+/y233REjT09NZSEgI+8c//sEUCsVTb89SWXwAW3/Z2n8xioqKmFKpNLr81atXmVQqZbm5uayyspLNnj2b7dy5s8v9dOX+/fusqanJ5O3U1dWxqqoqk7b9pAoKCti6desYY4ydPXuWeXt7swMHDjCdTsfS0tLYyZMnGWOMxcfHs+joaFZRUWHW8jDGWGNjY6/sp6+z+OuA7W9tam3o0KGwt7c3urxCoYBWq4Wbmxs8PDzg6ekJuVwOACgsLMSFCxegVCpRXl6OK1euAGgZMiInJwcymazD8vj5+XU6dGH7Mrq5uXU54tnTamhoMLzwRSwWY+HChbhw4QKampoQGhqKqKgoAMDKlSuh1WpRU1MDALh8+TLy8/Oh0+lQXFyMGzduAADKy8tx6dIlKJXKJy6TSCSCt7d3h/OZFXdKtWbxATSmsw9PPy8gIACjRo3CmjVrcPToUYwaNQqxsbEAgCNHjiAmJgZnzpzBrl27IJVKUVRUhM8++wyJiYnIzs7u1j65NnHiRMPPfD4fzz33HJydnSESiTBq1C8DxTg6OsLT0xNCYcvjS6mpqYiNjcWNGzfw17/+FbNmzcL9+/exadMmvPnmm7h27doTl6n9JQlj822BRfeCdhdrdQ+oq6srZs+ejZiYGGRnZ2PHjh0YNGgQACA5ORkNDQ04deoUoqOjsW/fPhw8eBD9+/fH/PnzjfbQdfWFYSbcf2rKMl1hrbr5jWloaMD9+/cxd+7cx+adP38eERER8PPzAwBs3boVarUaR48ehVQqxdmzZ5Geno4RI0bA1dUVlZWVT1VWUx6QtnZWWQN29IG2Puo2NzejtrYWS5YsgVgsxqFDh3Dv3j0ALfdulpSUQCwWw8nJCaWlpbCzs8OcOXNw4sQJDBkypM12Tan9TPmS9cQX0VhTXE+lUiEvLw8hISEICQlpM6+4uBhyuRy/+93vDLfvff3115DJZAgLCwOfz8e9e/fg4+ODiIgI5OTkGIJqDn25RdGTrDKAeu0/xNY1TE5ODnbv3o1Vq1Zh//79EAqF+PLLLwG03E8qEokQExODvLw8jB49Gq+++ipKSkrA4/Eee2j2SYJjzi+YsW1rtVqcP38eZWVlj9V++tetTZw4EcOG/fICiX//+98ICAjApEmTcO7cOUgkEkybNg23bt2Ch4cHxox5+qGzjX1GQO/Uin0h5FYdwPZ3mLT+UB89eoSbN2+isbERIpEIDg4OqK9vGdCopKQE8fHxEIlEyMrKwvr16+Hi4oJTp04hKioK/fr165GymYux92GUlpbi9u3beP3116FWq/Hjjz+iuLjYEMyQkBCIxWLU1tbihx9+wE8//YTy8nIsXrwYOp0OBQUF2LhxI2QyGa5fvw6JRNLjZTX2f3PqC01fqz8H7OiPHBERgUmTJiEiIgLe3t7w8vJCSkoKrl69iueeew6DBg1CcXExFAoFxGIxGGP47rvvUF9fj7i4uG6/jLO36Wt7Ho+Hb775BqtXr4ZSqcS3336LhoYGBAUFYfny5Vi9ejXS0tIwZMgQuLu7o7KyEmvXrkVVVRVCQkLg4uKCS5cuQSgUIiAgACUlJThy5AgGDx6MF1980aZuGzMHi74Z+2lVV1cbXrQZHByMoKAg1NTUoKmpCf7+/mhqakJNTQ2GDx8OPp+PvLw81NXVISwsjJMnLZ5UUVERrl27Bh6PB7W65bWbw4YNQ3BwMPLz81FZWQkejwetVguBQACJRAKZTAa1Wg1/f3/U1NTg4cOHCAgIQHNzMy5evAidTofQ0FCIRO1fx0S6w6YDSAjXrPockJC+jgJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRwiAJICIcogIRw6P8Baknk2HWm8mMAAAAASUVORK5CYII=",
"path": "images_version_5/image_26.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, the height of the flagpole is ().
Choices:
A:8.8
B:10
C:12
D:14
|
Chiều cao của cột cờ là ().
Lựa chọn:
A: 8.8
B: 10
C: 12
D: 14
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the height of the flagpole is ().
Choices:
A:8.8
B:10
C:12
D:14
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the height of the flagpole is ().
Choices:
A:8.8
B:10
C:12
D:14
|
As shown in the figure, the height of the flagpole is ().
Choices:
A:8.8
B:10
C:12
D:14
|
130
|
26
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHOCAYAAAB5IxZ5AABpw0lEQVR4nO3deVxU1f8/8Ncgm4gIiIqgifu+YriLW5q5kZpaWWppalafzDI/fl0/LmWaZZmZS26pmZq5L0jiigu4QVjuGqLihooiIJzfH/zu4eLsw7B5X8/Hw0fvztzlzMxl5j3nnHuOTgghQERERKRhDvldASIiIqL8xoSIiIiINI8JEREREWkeEyIiIiLSPCZEREREpHlMiIiIiEjzmBARERGR5jEhIiIiIs1jQkRERESax4SIiIiINI8JEREREWkeEyIiIiLSPCZEREREpHlMiIiIiEjzmBARERGR5jEhIiIiIs1jQkRERESax4SIiIiINI8JEREREWkeEyIDBg4cCJ1Oh4CAgPyuynOhTZs20Ol0aNOmTX5XxWKFsc7p6emYM2cOgoKC4OHhAZ1OB51Oh5CQEABAeHi4LAsPD8/XuhJw+fJl+X4sXbo0v6tj1qRJk2R981tefEYvXbpUPt/Lly/n2nnyi7nPC3srDN+rjvY4yIEDB9CqVSv5/3v37kXr1q3tcWgistDrr7+OtWvX5nc1iKgQ4OeFPru0EC1fvtzk/xMVBAXpF669HTp0SH64denSBaGhoTh9+jSio6Px3Xff5XPttCUgIAA6nQ4DBw7M76pQAVAQW0bs9XnxvLWi5biFKCUlRb6w7u7uSEpKwtq1a/H999+jaNGiOa4gFX7snsl9u3fvBgAUKVIEq1atgoeHh942bdq0gRAir6tGZHdLly4tFN2MBZUlnxdalOMWoo0bNyIxMREAMGfOHADAgwcPsHHjxpwemogsdO3aNQBAmTJl+OFGRCbx88KwHCdEy5YtAwDUqlUL77zzDmrVqgWA3WZEeSklJQUA4OTklM81IaKCjp8XhuUoIUpISMCuXbsAAP379wcAvPnmmwCAXbt24ebNm2aPER8fjzFjxqBRo0YoUaIEnJ2d4evri7p16+L111/H0qVL8eDBA5vql56ejqVLl6JTp07w9fWFs7MzPD09UbVqVbRv3x7Tp09HbGys2eMkJiZiwoQJqF27NooVKwZPT0+0bt0aK1eutKge0dHReO+991C1alW4ubmhePHiqF27NkaOHGm033Xt2rWyb/aff/4xuE2VKlXkNuvXrze4TUhICHQ6HV588cVs5c/2/WZkZGDBggVo3rw5vLy8UKxYMdSrVw/Tpk3D48ePLXqexpi6Y8vQnTahoaHo1q0bfH194eLigooVK2L48OGIi4uz6fzKc508ebIsU86p/meqD/zatWv45JNPUKVKFRQtWhQlS5ZEp06dsH37dovqcO/ePUydOhXNmjWDj48PXFxc4Ofnhx49euD333+36Xmpn4fyw+TKlSt6z0th6V1mV65cwbBhwxAQEABXV1f4+fkhJCQEe/bsAWB6LJY1d06ZGmvz7PWZkpKCb7/9Fk2bNoWPjw90Oh0mTZqkt9/Tp0+xePFivPLKK/Dz84OLiwt8fHzQunVrfPvtt3jy5InJOuWEcp1fuXIFQOaPxWffC3N3Leb02j969CiGDBmCatWqwd3dHcWKFUONGjUwYsQInDt3LqdPMZsnT55g5syZaNSoEYoXL47ixYsjKCgIc+fOxdOnT83un5P3ytJxOZs2bUKnTp3g4+MDNzc3VKtWDZ999hlu3LgBwLrxXtZ+Rip/J6b+NnMyntGW7xVrPi9MUT5LBg0aJMsqVqyodyxTnzM5/V59/Pgxvv32W7Rt2xZlypSBs7MzSpcujY4dO2LJkiVIT0+36DjZiByYPXu2ACB0Op24cuWKEEKIy5cvC51OJwCIr7/+2uT++/btEx4eHgKAyX+bN2+2um4PHz4UrVq1MnvsXr166e07YMAAAUBUqFBBnDlzRgQEBBjdf8SIESbrMX36dOHg4GB0fxcXF7Fs2TK9/RISEuQ2P/74o97jcXFxZuuRkZEhvL29BQAxatSobI8tWbJE7hsTEyPatWtntI5BQUEiKSnJ3EtuVHBwsAAggoOD9R67dOmSPM+SJUvE559/brQepUqVErGxsVafX/1cTf27dOmSwTrv379flCxZ0uh+M2fONHn+rVu3Ck9PT5Pn7tKli3j48KHVz82S56XYs2ePLNuzZ4/B4+3atUsUK1bM4HF0Op2YNm2amDhxot6xFc++n6ZUqFBBABADBgzQe0z9nh07dkw0aNBArz4TJ07Mts/58+dFrVq1TL4WVatWFWfPnjX3stpEuWZM/VP/Ddjz2k9LSxPDhw83eW4nJyexYMECm5+f+n2/ceOGqF+/vtFzdevWTaSnpxs9Vk7fK/VntCEZGRli6NChRo/t6+srjh8/bvE1aMtnpPr1suTv0xq2fq/Yqz7qzxJT/9SfM/b8Xj169Kjw9/c3ee6goCBx48YNq17XHCVEyh9E69ats5UriUj9+vWN7vvkyRPh5+cnAIjixYuL0aNHi+3bt4uoqChx+PBhsWbNGvHxxx+L8uXL25QQjRo1Sr4wXbt2FatXrxYHDx4UUVFRYseOHWLGjBmiVatWonfv3nr7Km9cqVKlRNWqVUXx4sXFuHHjRHh4uIiMjBQLFy4U5cqVk8ffsWOHwTr88MMP2T7QZs2aJSIiIsSBAwfEpEmT5BePTqcTW7du1du/Zs2aAoDo27ev3mMrVqzI9ubXrl1bb5sTJ07Ix599DdV/7M2bNxcODg5iwIABYuvWrSIqKkps2LBBNGvWTG4zZswYS196PZYmRM2bN5fbrVq1SkRGRordu3eLt99+W27TtGlTq89/7949ER0dne0LIzo6Wu9famqqXp2rVasmfHx8ROnSpcWXX34pDhw4II4ePSpmz54tkxxHR0cRExNj8Ny7du0SRYoUEQBEQECAmDFjhggPDxfHjx8XmzdvFv3795d16tmzp9XPTal7jx49BADh5+en97wU5hKic+fOCTc3NwFAFClSRIwYMUKEhYWJY8eOiSVLlsgvsKCgIKMfnrmRENWrV0/odDrx9ttvZ7s+t23bJrePj48XZcqUkZ8no0aNEtu3bxfHjx8Xe/bsEf/973/lc6tUqZJITEy0+DW21MWLF0V0dLT8XOvRo4fee3Hx4kW5vT2vffV2nTt3Fr/88os4evSoOHbsmFi4cKGoXbu2fHzTpk02PT/1F3zz5s2Fs7Oz+Oijj0RoaKiIiooSq1atkp9ZAMT8+fMNHsce75W5hGj69OmyHuXKlRNz584VR44cEfv27RP/93//J4oWLSoqVaokSpUqZdE1aMtn5M2bN83+bar/Pi2Vk+8Vaz4vTElKShLR0dFi6tSpsi47d+7UO5Y6SbTX9+rp06flcyxdurSYOHGi2L17tzhx4oTYuXOnGDFihHB0dBQARJMmTbJ9rptjc0J0+vRpWfFnf3X89NNP8rHTp08b3D8sLMzol7VaWlqauH//vtX1K1++vABgMOFRu3Pnjl6Z8sYBEJ6enga/7M6dOydcXV0FANG9e3e9xxMSEuQftZ+fn7h69areNsePH5dvrL+/v94bp3yB+/r66u377rvvynMrF39CQkK2bb755hsBQDg4OIh79+5le+zZVpMVK1bonePJkyeiTp06AoAoWbKkSEtL09vGEpYmRADEkCFDREZGht52gwcPltscP37cpnqYatkwVmflQzcuLk5vm/3798vW0I8++kjv8aSkJPnB37FjR/Ho0SOD51qwYIE81+7du61/YsL8F4QQ5hMi5VoCINauXav3+KNHj7IlQ3mVEAEQixcvNnmsrl27CgCifPny4sKFCwa3Uf+9jRs3zuTxcsLU81Kz17W/bt06+fjChQsNnis5OVm2cAQEBNj0t6z++3FycjJ4Dd25c0de8/Xq1TN4HHu8V6au9/j4ePnZXKlSJXHz5k29bQ4ePCicnZ3l87HkGrT1M9KSv01L2eN7xZ51Ur9G6hZ2Q+zxvZqRkSHq1asngMwGl1u3bhk81/bt22UL2qJFiyx+PjYnREoLjIuLi96X7b1794SLi4sA9LtqFCtXrpQvji0JjzlOTk4CgJgzZ47V+6rfuO+++87odv369RMAhJeXl95jM2bMkMdYvXq10WOoM+zffvst22O//vqrfOzMmTPZHqtSpYr84qpUqZLBL7GQkBABQDRq1EjvvOoL2VTLxPz58+V2p06dMrqdKZYmRGXLlhVPnjwxeIy///5bbmfLeyqE7QmRqV/UTZs2FQBEw4YN9R77/vvvBQDh6upq8ENZTUk03nzzTfNPxICcJkRxcXHyA+TVV181eoyTJ0/meULUrl07k8eJjo6W227cuNHktqNHj5ZfJrnFloQoJ9d+YGCg2fdNCCFiY2PlcUJDQy1+Pgr1388nn3xidLsxY8bI7Z5t3bHXe2Xqev/iiy8sOsfIkSMtTohy8hlpz4TIHt8r9qyTrQmRrd+rmzdvtvj7qE+fPgKAaNGihUXPRQghbBpUnZ6ejlWrVgHInNTJ09Mz2+Oenp545ZVXAACrVq0yOLipbNmyMl6yZIkt1TBJOf6aNWtsHhSs0+nwxhtvGH08MDAQQOaAWWXqAYUyz4Onpyd69epl9BiDBw/W20ehHoCpHpx27do1nD9/HjqdDsHBwXI79TZCCOzbtw8AEBwcbPT8QNZAeEOU5wgAFy9eNHmcnOrduzdcXFwMPla9enW4u7vnST3UPD090aVLF6OPK6+PoTopU08EBwejdOnSJs+jzOweERFha1VzJDw8HBkZGQCAAQMGGN2ufv36qF+/fl5VC4Dp6xPIep3d3NxMvldA1uscHx+Pf//91z4VtANbr/1r164hKioKANCnTx+T56hZsyZ8fHwA5Pw6s/Qz49KlS9key4v3KiwsDABQsmRJk+d4++23LT5mQfmMtMf3Sn7Lyfeqcv1Ur14d9erVM3ke5fo5duyYxQOsbUqIdu3ahevXrwPIurvsWUr59evXDb4hLVu2RKVKlQAAH3/8MYKCgvDFF1/g0KFDSE1NtaVa2Sgf6ocOHULFihXxwQcfYMOGDbh165bFx/Dx8UHJkiWNPu7t7S3jhw8fZnssJiYGANCwYUOTtzaWKVNG3imh7KN+rHr16gCyJztKXKtWLZQqVcpgQnT69GncvXsXAMze2VKjRg2jj5l6jvZmqh4A4OXllSf1UKtatSocHIz/mSivj6E6RUZGAgB27txp8O4S9b9Zs2YBgLz7Ja+prz31B7whjRs3zu3qZGPug095nR8/fgxHR0eTr3PXrl3lfvn1Whti67WvPHcgcykGc9fZ7du3AeT8udv6mZEX75VyLTdo0ABFihQxul3dunWNJqHPKiifkfb4XslvOfleVa6ff/75x+y1/sEHHwAAUlNT5XehOTYlRMocQ6Z+PatbjgzNSeTk5ITNmzejZs2aADKzuLFjx6JFixbw9PRE586djbYuWWL8+PF45513oNPpkJCQgB9++AE9e/ZEmTJlULduXUycONHstABubm4mH1d/UT5bT+UNKFOmjNm6+vr6ZttHTUlm9u7dK8uUxEd5rG3btgCA2NhYmfAp2zg4OGRbZ84QU8/T1HO0N0tf79yuh5qldVJaVxRpaWl6v24skdMpDmx17949GZtrzSpVqlRuVycbJRkwJiEhwabj5tdrbYit135+PXdbPzPyor7KtWzuOi5SpIjZa0tRUD4j7fW9kp9y8r2a29eP1Ut3qGehTkxMtCjD/uOPP/Dw4UMUL148W3mtWrUQHR2NzZs3Y/Pmzdi7dy8uXLiA5ORk7NixAzt27MDs2bOxbds2sxf3s5ycnLB48WKMGjUKq1evxp9//onIyEikpqYiJiYGMTExmD17Nn755Rf06NHDqmNbw5J5HYSJ5RSCg4Px008/4caNG/j7779Ro0YNmRwpCVG5cuVQqVIlXLx4EXv37kXv3r3lNvXq1bP4j57sR/2H3KdPH4wfPz4fa1O4mfqVD2S91hUrVsSmTZssPm7FihVzVK+CQH2drVy50mxrmiK/PhO0/F7ZU06/Vwor5fpp0aIF5s+fb/F+fn5+Fm1ndUL022+/ITk52ap9Hj9+jHXr1mWbxElRpEgRhISEICQkBEBmF9v27dsxb948REVFISoqCkOHDsWGDRusrSqAzKRrypQpmDJlCpKTk3Hw4EGsWrUKy5cvR1JSEl5//XVcuHAh25gme/D29sb169ctaupVWqrUTYWKZ8cReXh44Ny5c3L8kHq7ixcvIjw8HL169bJ4/BDlDldXV7i5ueHx48dITExEnTp18rtKJqm/IBMSElCuXDmj25rqdlb/unu21exZjx49sqKGxinN7zdv3kSNGjXg6JjjJRoLDXXXg06nK/DXWV68V15eXrhx44bZ1oT09PRsLaOFgb2+VwqrkiVL4ubNm7h161auXOtWd5kp3V9ly5bF6tWrzf574YUXsu1nTtmyZfHOO+8gIiICjRo1AgBs2bLF6iTMkKJFi6JDhw74+eefMXPmTABAcnIytmzZkuNjP0t5s06cOIG0tDSj2yUkJMiZbQ29wWXLlkXVqlUBZCZEz44fUqjHEUVHR+POnTvZysmyX1X21LBhQwDAwYMHC1T3jCG1a9eWsXpciiGmHle3Apv6srlz544cz5JTyuv8+PFjHDx40C7HzIm8vM6U5w5ArhpQkOXFe6VcyydPnjTZhRUdHS2XsMhN9rwe7PW9Yi/59Zl69uxZ+fzsyaqE6NKlSzhw4AAAoFevXujXr5/Zf6+99hqAzDEwV69etfhcTk5OsnXj6dOnNo3HMKV9+/YyttcHs1qHDh0AZHYrGltWAwAWL14smzaVfZ6lHkf07PghhXoc0dq1awFkXqzmxg9piaurq4zz4oOwe/fuADJbQn744YdcP19OtG3bVrbumPrxcurUKZw6dcro415eXnLsoKnEafXq1bZV1AB1l/dXX31lt+PaSrnO8uIaq1Klilw/8tdff7XqMzY/5MV7pXy237lzB1u3bjW6XV6tt2nP68Ge3yv2kF+fqUDuXD9WJUQrVqyQL3Lv3r0t2kfZTgiBFStWyPL9+/fj/PnzRvdLTU2V42Dc3d2tGsh59+5dbNq0yWQfqvrXVG70Tw8aNEgOHhs1apTB20ZPnTqF6dOnAwD8/f1lt+GzlMTwxo0b+O233wDoJ0TKOCIhBL7//nsAmXdRmBrNrzXqbtELFy7k+vmGDRsmb3MeP3682XXPDh48KLs685q/v7+8QWLDhg1Yt26d3jbJycl47733zB5Lud1148aNBl/nM2fOYMKECTmscZYXX3wRHTt2BABs27YNEydONLn95cuXjSZkyh0q5tbIMkW5zvLiGgOAcePGAchcW6xnz54muzRTUlIwb968XF3TzRR7vlfGDBgwQI5tHTlypMHXIyIiIs9+pCjXQ0JCQo7vQrPn94o95PVnaq9eveSNWD/++CMWL15scvuYmBhs3rzZ4uNbnRABmaP3LW15aNKkiRyPoE6IwsLCUL16dbRp0wYzZ87Ezp07cfz4cRw8eBBLlixBq1atcPz4cQCZcypY09f84MED9OjRA5UqVcKoUaPw22+/4ciRI4iKisKWLVswdOhQfP755wAyE4lu3bpZfGxLlSpVSnbLxcfHo3Hjxvjmm29w5MgRHDp0CP/73//QsmVLJCUlQafTYcGCBUZvo1QnP/fv39cbP/Tsdvfv3wfA8UPPat68uYxHjhyJffv24dy5czh//jzOnz9v0YKU1vDw8MDq1avh6OiIlJQUdO3aFX369MGaNWsQGRmJyMhIbN68GZMmTUL9+vXRsmVLnD592q51sMbs2bPlh22/fv3w4YcfYs+ePYiKisKyZcvQuHFjHD16VG+h4Ge9//77ADITqDZt2mDx4sU4fvw49u3bhwkTJqBp06YoWbKkXe9WW7Jkifxw/t///oemTZtiwYIFiIiIwIkTJ7B7927Mnj0bHTt2RJUqVUz+us4p5To7duwYvvzyS5w6dUpeY9euXbP7+V5//XU5zUhUVBRq1aqFcePGITQ0FCdPnsTBgwexfPlyDBkyBH5+fhgxYoTdr3Vr5PZ75efnJxOtixcvIjAwEPPmzcOxY8dw4MABjB8/Hu3bt4efn5+8BnOz60e5HjIyMjBs2DAcPnw42+eONez5vWIPDRs2lK1E48ePx65du3D27Fn53Owx1EWtSJEiWLNmDdzd3SGEwODBg/Hyyy9j+fLlOHLkCI4fP44dO3bgiy++QIsWLVC3bt1sd2ibZekMjgcOHJAzRA4dOtTimR+FEOKjjz6S+x4+fFgIYfnCdz179hTJyclWne/ZKfGN/fP39zc4Fb6ls3haMkvntGnTbFqE71mVK1eW+xhat0wIIZYvX57t2OvXr89R3YWwbuZhY6xZ3NUUS2cANkWZvdTQP2OLu5piyezXYWFhwtfX16Jr0pJrwRB7LN0hhOnFXYHMBVXHjx8vgMwZuI1R/80/+698+fLir7/+snimanMz4CouX74sXnzxRYte50GDBunt//jxY/m4odndLRUXFycXVX72n6nFXU0xd+0/ffpUjB49Wq6bZ+pfsWLFxOPHj61+XpbO9G7JdZbT9yqni7v6+PiIY8eOySWehg0bpncMe31GpqenyxntDf2zRU6/V+w5e7Yyo7ihf8YWdzXFktf91KlTomrVqhZdP5MnT7b4uVjcQqTubzU1Q6Yh6u2V44wePRrbtm3DyJEj0bRpU7zwwgtwdXWFq6srAgIC0LdvX2zduhXr16/P1k9piQoVKuDkyZOYOXMmOnfujOrVq8PT0xOOjo7w8fFBcHAwZs2ahTNnzmQblJgbxo4dixMnTmDIkCGoXLkyihYtimLFiqFmzZr4z3/+g7///tuiGVPVrUTGBkor44iAzF88StcFZfnll1/w1VdfISgoCCVKlDA56aK9tGvXDhcuXMDcuXPx8ssvo2zZsnB2doarqyvKly+Pjh07Ytq0aRZfC7nppZdeQkxMDIYOHYoKFSrA2dkZZcqUQZcuXbBjxw5MmjQJDx48AACUKFHC6HHmzJmDVatWoXXr1vDw8EDRokVRvXp1jBkzBidOnJDjXuypQoUKOHLkCDZs2IB+/fqhYsWKcHNzg5OTE0qVKoXmzZtj1KhR2Lt3r8GmdvXszSNHjrS5Hv7+/jh69CjeffddVKlSxerPL1sUKVIEM2bMQGxsLEaNGoWGDRvCy8sLRYoUQfHixVG7dm28+eabWLZsGa5fv46iRYvmep1Myel7ZY5Op8P8+fOxceNGdOzYEd7e3nB1dUWVKlXw0Ucf4cSJE2jcuLFF13JOOTg4YNeuXRg3bhzq168Pd3f3HLdI2et7xR6+/PJLLFy4EK1atYK3t7fZaTLsoV69eoiNjcWyZcsQEhKC8uXLw9XVFc7OzihbtizatGmDcePGISoqyqrueZ0Qz+FkBUSUazp06ICwsDC0bNkS+/fvz+/q2M2kSZMwefJkVK1aFWfOnMmTD3bKP3FxcShfvjwAYNGiRXj33XfzuUaU33L/5zERPTfi4+PlwO+mTZvmc23sSxlrMHbsWCZDGqAerP28XctkG7YQEZF0/vx5VKlSxeBjycnJ6NGjB0JDQwFkrpdXt27dvKxerklNTYWnpyd8fX1x9uxZTU3u+Dx69OgRHjx4YHTC3RMnTiA4OBgPHz5EYGCg2bm3SBv4V09E0uDBg/Ho0SP06dMHgYGB8Pb2xsOHDxEZGYl58+bJu2Lefffd5yYZAgBnZ+cCP3kmWe7WrVuoWbMmQkJC8PLLL6N69epwcXFBfHw8duzYgcWLFyM5ORk6nQ6zZ8/O7+pSAcEWIiKS2rRpY/Y21VdffRUrV67M94G5RMZcvnzZ7Pxyzs7OWLhwYb7fyEAFBxMiIpKOHz+ODRs24M8//0RcXBxu3boFIQRKly6Npk2b4u2335YTOBIVVGlpadiwYQO2b9+OyMhIJCQk4N69e3Bzc0NAQAA6dOiADz/8EBUqVMjvqlIBwoSIiIiINI93mREREZHmMSEiIiIizWNCRERERJrHhIiIiIg0z+aE6OrVqxg6dCgqV64MV1dX6HQ66HQ6/PHHHwCAgQMHQqfTISAgwE5Vff61adMGOp3O6FpleUV5LydNmpSv9Vi2bBl0Oh1q166NjIyMbI8dPXoUOp0O3t7euHPnTj7VkIiInhc2JURXr15FYGAgFixYgIsXLyIlJcXe9SKNe/ToEf773/8CAMaPH6+3CGtQUBA6deqEe/fu5XviRkREhZ9NCdHUqVNx+/ZtODo6YsaMGYiIiEB0dDSio6PRvn17e9eRNOi7777D9evXUbNmTfTp08fgNsoqxgsWLMCVK1fysnpERPScsWnpjt27dwMAQkJCMHr0aLtWiPJffk9NlZycjK+//hoAMHLkSL3WIUXz5s3RtGlTHD58GF999RV++OGHvKwmERE9R2xqIbp27RoAoFq1anatDBEA/PLLL7hz5w5cXFzw2muvmdz2jTfeAJA53igxMTEPakdERM8jmxKi1NRUAICTk5NdK0MEAIsXLwYAdOnSBZ6enia37du3LxwdHfHo0SOsWbMmD2pHRETPI4sToqVLl8q7jxSTJ0+WZTqdDgMHDrT4xMoX2ODBg9GgQQOUKFECTk5OKFWqFIKDgzFr1iwkJSVZdKxNmzahU6dO8PHxgZubG6pVq4bPPvsMN27cAAAEBAQYrZ/6eV2+fBkpKSmYNWsWGjVqhBIlSsDDwwNNmjTBDz/8gPT0dLN1uXXrFsaNG4eGDRvC09MTrq6uCAgIwFtvvYUDBw5Y/PqYcu/ePUydOhXNmjWDj48PXFxc4Ofnhx49euD333/P8fHN3WWWmJiIadOmoVmzZvDy8pLvW61atfDqq6/ixx9/REJCgk3nvnLlCo4cOQIA6NWrl9ntS5cujZYtWwIAEyIiIrKdsNCSJUsEAJP/BgwYILcfMGCAACAqVKhg8HjBwcFmj1exYkVx5swZo3XKyMgQQ4cONbq/r6+vOH78uKhQoYJe/Qw9r+PHj4vAwECjx2vZsqV48OCB0frs3LlTeHh4mHxOI0aMEOnp6SZfk+DgYKPn2Lp1q/D09DR5ji5duoiHDx8aPYY5ynEmTpyo91hsbKzw8/Mz+959//33Np176dKl8hgXLlywaJ8xY8YIAMLV1VWkpKTYdF4iItI2iwdVh4SEoHHjxgCAunXrAgCGDx+O999/X27j5eVl6eHw9OlT1K1bF927d0fjxo3h5+cHIQSuXLmCDRs24LfffsOlS5cQEhKCkydPwtXVVe8YX375JX766ScAQLly5TBmzBi8+OKLSElJwc6dOzF79mz07t0bjx8/tqhOQ4cORVRUFPr27YsBAwagdOnSOHv2LL755hscO3YMBw4cwJtvvolNmzbp7Xvy5El069YNqampcHJywogRI9CjRw8UK1YMJ06cwJdffolLly7hhx9+QLFixTBjxgyLXytFaGgounfvjvT0dAQEBGD48OFo0qQJPDw8cO3aNaxZswa//PILtm7digEDBmD9+vVWn8Oct956C/Hx8XBycsKQIUPQuXNn+Pr6IiMjA/Hx8Th69GiOzrt//34AgLe3NypVqmTRPkFBQQCAJ0+e4NixY2jRooXN5yciIo2yJYuCiRYEhbkWorNnz5o8R2hoqHBwcBAAxKJFi/Qej4+PF66urgKAqFSpkrh586beNgcPHhTOzs4GW7AUz7Z8TZ8+XW+btLQ00alTJ7nNli1b9LZ58cUXBQBRpEgRsXPnTr3H7969K2rVqiUACAcHBxETE6O3jakWoqSkJFGmTBkBQHTs2FE8evRIbxshhFiwYIGs5+7duw1uY46x9/fChQsWtQBlZGSIu3fv2nTumjVrCgCiffv2Fu9z5coVWa+vvvrKpvMSEZG25dvSHVWrVjX5eIcOHdC9e3cAkLNfqy1btgxPnjwBAHzzzTcoXbq03jbNmzfHiBEjLK5TvXr18Pnnn+uVOzo6YtGiRXIQ+bx587I9fvToURw7dgwAMHjwYHTs2FHvGF5eXliwYAEAICMjQ+8Y5ixZsgQ3b96Eq6srVqxYATc3N4PbDRkyRLaYLFmyxKpzmKOMyQKA1q1bG91Op9NZ1VqoFhcXBwAG309jypQpo7c/ERGRNQrMWma3bt3CuXPnEBMTI/+VKlUKAHDq1Cm97cPCwgAAJUuWRJcuXYwe9+2337a4DgMGDDA65025cuVkohMeHp5tgLUyLxMAvPvuu0aP36JFC9SsWVNvH0ts3LgRABAcHGw2WVCSlYiICKvOYU7ZsmVlvHTpUrseGwBSUlLw8OFDANZ1v7q4uKBo0aIAMq8jIiIia9k0MaO9HDx4EN999x12796Nu3fvGt3u9u3bemUxMTEAgAYNGqBIkSJG961bty5cXFwsWl7kxRdfNPl4UFAQtm7disePH+PixYuylUupi7OzMxo2bGjyGE2aNMGZM2dw7tw5pKamwtnZ2Wy9ACAyMhIAsHPnzmx3+pmibtGxh4oVK6JVq1bYv38/vvnmG+zcuRO9evVCmzZt0LRpU6OtVpZSXwPWtjB5eXkhOTmZ65oREZFN8q2FaNKkSWjZsiV+++03k8kQkDlz8bPu3bsHwHzXSpEiRSz+cjV3LHXXjLrOSuzt7Q1HR9M5pq+vL4DM2aCV52BOWlqaTZMOWjqY3BqrV69Gs2bNAACxsbGYMmUK2rdvD09PTwQHB2P+/PmyK9Na6oHzht5zU5TtlZYiIiIia+RLC1FYWBgmT54MAKhUqRI+/fRTtGzZEi+88ALc3d1li8+ECRMwZcqUPKuXuZYXYWZJC0tabswdwxB191yfPn0wfvx4q49hL/7+/jh06BDCwsLw+++/Y+/evYiNjUVaWhr27duHffv2YdasWdi2bZvVM5l7enrC0dERT58+NZskq2VkZOD+/fsAILtZiYiIrJEvCdHChQsBZH4BRkREGG2ZMdWC4uXlhRs3bpidADA9Pd3ilpibN2+a/BJXn8vb21svvnPnDp4+fWqylejmzZsArBt47OrqCjc3Nzx+/BiJiYmoU6eORfvlpvbt28uFfO/cuYPdu3djwYIF+PPPP3HhwgX07dsXJ06csOqYOp0OPj4+uHHjhsXvGQDcv38fGRkZAJgQERGRbfKly+yvv/4CALRr185kN5UybsaQ2rVrA8ic/8fUDNLR0dEWjR8CIO8UM/e4m5tbtjlylAQlNTXVbBJw9OhRAJl32Vk6fgiAHJt08ODBXOkKy4mSJUuib9++CAsLk3cGnjx5EufOnbP6WMocV2fPnrV4H/W2yv5ERETWyJeE6OnTpwBMj3E5efIkDh8+bPRxdevE1q1bjW63fPlyi+u1YsUKo11a165dw65duwAAbdq0yTaQu0OHDjJW1uEyJCIiArGxsXr7WEJJNB49elSgV3VX3hfA8GB4c1q1agUA+Oeff+QdZ+aoE1llfyIiImvkS0Kk3J114MABXLx4Ue/xW7duoX///iaPMWDAALi4uAAARo4cafB264iICKuSh5MnT2LmzJl65U+fPsWQIUPkorbDhw/P9nhQUJC8Q23RokUIDQ3VO8b9+/cxdOhQAICDg4PeMcwZNmwYfHx8AADjx4/H9u3bTW5/8OBB7Nu3z6pzmHPy5EmcPHnS6ONCCDmdgE6nQ0BAgNXnUBKajIwMky2EakqrW0BAAMqVK2dwG2U9O0vv0CMiIm3Jl4RImRsoKSkJwcHBmDt3LiIiInDo0CHMmjUL9evXR2xsrLybyRA/Pz9MnDgRAHDx4kUEBgZi3rx5comN8ePHo3379vDz85PjSsx9GTZu3Biff/453njjDezYsQPHjx/HmjVr0KJFC5mAdOvWDV27dtXbd8GCBXB2dkZ6ejq6dOmCUaNGITw8HJGRkVi4cCEaNWqE6OhoAMCnn35q9TggDw8PrF69Go6OjkhJSUHXrl3Rp08frFmzBpGRkYiMjMTmzZsxadIk1K9fHy1btsTp06etOoc5J0+eRMOGDREUFIQpU6Zg69atiIqKwuHDh7F69Wp06tQJmzdvBgD06NEj27xFlmrevLkcW6XMNWWKEAJ79uwBAJPzUREREZlky/TWsMPSHYMGDTK6MGiRIkXEt99+KyZOnCjLDDG3uKuPj484duyYKF++vAAghg0bpneMZxd3bdiwodHjtWjRIt8Xdw0LCxO+vr5mF1cFIJYtW2b0OKYYe38tWeAX/38R3Dt37th0biGEfE8rVapkdtvw8HB53oiICKPbKQv82njJExHRcy7f5iH6+eefsWLFCrRq1QrFixeHi4sLKlSogLfeeguHDh3Cf/7zH7PH0Ol0mD9/PjZu3IiOHTvC29sbrq6uqFKlCj766COcOHECjRs3xoMHDwAAJUqUMHk8Ly8vHDp0CF988QUaNGiA4sWLw93dHS+++CK+//577N27F8WLFze6f8eOHXH+/HmMHTsWDRo0gIeHB1xcXPDCCy/gzTffxP79+zF37lyjs2Fbol27drhw4QLmzp2Ll19+GWXLloWzszNcXV1Rvnx5dOzYEdOmTcPff/9t1SzdlnjjjTewZ88ejB07Fq1atULFihXh5uYGZ2dnlCtXDt27d8eqVauwd+/ebHfhWUtZbuXixYtmZ9tetWoVgMxB502bNrX5nEREpG06IWyYGKcQiYuLQ/ny5QFkju95dmmNpUuXYtCgQQCAS5cu2TTuhezv5Zdfxs6dO/Huu+9i0aJFBrd5+PAhXnjhBSQmJmLlypV444038riWRET0vCgwa5nlltWrV8uYLQiFhzJx5/Lly3HlyhWD28ydOxeJiYmoWbMm+vXrl5fVIyKi50yhTogePXqE69evG338xIkTcqbrwMBAOXcRFXxNmjRBnz59kJaWhi+++ELv8UePHmH27NkAgK+++ipH3ZBERET5urhrTt26dQs1a9ZESEgIXn75ZVSvXh0uLi6Ij4/Hjh07sHjxYiQnJ0On08kvTyo8vv76a9SsWRMuLi7IyMjIlvRcuXIFI0aMgLe3t8G7/oiIiKxRqMcQXb58GRUrVjS5jbOzMxYuXGh0gDHHEBEREVGhbiHy9/fHmjVrsH37dkRGRiIhIQH37t2Dm5sbAgIC0KFDB3z44YeoUKFCfleViIiICrBC3UJEREREZA8ciUpERESax4SIiIiINI8JEREREWleviZEly9fliuQL126ND+rgkmTJnE1dCIiIo3KcUKUlpaGX3/9FQMGDEDNmjVRsmRJODk5wcfHB4GBgRg+fDh2796NjIwMe9SXCpipU6fKRLJ48eJ4/Pix3c8hhMDatWsREhKC8uXLw9XVFW5ubqhUqRL69euHnTt32u1cV65cwZgxYxAYGAhPT084OTnB29sbzZs3x5QpU3Dr1i27nSsnli5dKl/3Z/85ODjAw8MDderUwbBhw3D8+HG7nDMlJQWHDx/G999/j7feegvVq1eHg4ODzT8krl69ik8//RQ1a9ZEsWLF4O3tjaCgIMyaNStXriN7iYqKwtixY9G0aVP4+/vDxcUFHh4eqFy5Mnr37o2ffvoJiYmJOTpHYmIiQkNDMW3aNISEhMDPz0++zm3atLHoGE+fPkVoaCg+++wztGrVCqVKlYKTkxM8PT3RqFEjfPrpp7hw4UKO6mlP4eHhBq9nR0dHeHt7o2LFimjdujVGjhyJ9evXIzU11a7nP3/+PFavXo2RI0eiRYsWcHNzs9sP9tOnT8PJyUkeb+DAgXapM9lZTlaG/eOPP0SlSpUsWgG9WrVqYsuWLdn2v3Tpknx8yZIlOalKjk2cOJGrodugWrVq2d7nFStW2PX4iYmJok2bNmavr759+4qUlJQcnWvlypXCzc3N5HlKliwpwsLC7PTsbLdkyRKL/u4ACAcHBzF+/Pgcn3PgwIEmz2ONLVu2iBIlShg9VvXq1cWFCxdyXGd7unr1qujRo4dFr3nRokXF2LFjxePHj206V0BAgNFjBwcHm90/ISFBlCxZ0mw9nZ2dxbfffmtTHe1tz549Fl/TAESpUqXElClTRFpaWo7PHR4ebvJcOfl+Sk9PF02aNMl2vAEDBuS4zmR/Nn/7T58+Xeh0OvkGd+jQQXz//fciLCxMREVFidDQUDF37lzRqVMn4eDgIACI+vXrZztGQUqIyHoRERHy/XN3dxcAxEsvvWTXc3Tu3Fmeo2LFimLevHli//794s8//xQzZ84UPj4+8vH333/f5vMcOnRIFClSRCYQgwYNEn/88Yc4evSoWLdunejWrZs8T7FixcSlS5fs9yRtoE6Ipk6dKqKjo+W/U6dOid27d4tx48bJ9wWA+Pnnn3N0zgEDBshjFS9eXAQHBwtfX1+rE6KTJ0/KxNPd3V1MmzZNHDp0SISFhYkhQ4bI49WoUUM8fPgwR3W2l+PHj4uyZcvKulWoUEGMGTNGbN68WRw9elQcOHBA/Prrr2Lw4MHZEpETJ07YdL4KFSrIY5QpU0Z07drVqoTo33//lds3aNBATJw4UWzbtk1ERUWJP//8U3z22WfC1dVVbvPTTz/ZVE97UidEw4cPz3ZNR0REiG3btokvv/xSvPTSS9m+e4KCgkRCQoLdzu3g4CBq164tgoKC7PL9NGfOHAFAlC5dmglRAWdTQrR8+fJsWfqff/5pcvvTp0+Ldu3aMSF6zgwfPlwAED4+PmLGjBnywyQuLs4ux4+MjJTXR6VKlcSDBw/0trly5Yrw9PSU57b1g1H9hfPDDz8Y3OaTTz6R23z44Yc2ncde1AmRqb+d3bt3yy+PGjVq5Oicv/76q1iyZImIiYkR6enpQgghgoODrU6IlBY/R0dHcejQIb3Hv/rqK3nMyZMn56jO9nDz5s1sydDYsWPFkydPjG7/4MEDMWHCBOHo6GhzQjRz5kyxbt06ceXKFVlmTUIUFxcnXnrpJREREWF0m8OHD4uiRYsKAKJEiRIG/77ykjopmThxosltY2JiRMOGDeX2LVu2zFEL8dmzZ8XMmTNFeHi4TMIt/Rsz5d9//xXFixcXOp1OLFu2jAlRAWd1QnTt2jVRrFgxAUC4ubmJv/76y6L90tPT9bpTmBAVXikpKcLb21u2zFy/fl22sMyYMcMu51B+WQEQ3333ndHtRo4cKbfbvHmzTefy8vISQGaXmDGJiYnyPIGBgTadx16s+bBu3Lix3Pb+/ft2rYe1CdHRo0fl9kOHDjW4TXp6uqhZs6YAILy8vERqaqo9q2y1kJAQWedJkyZZvN/evXvFxYsX7VYPaxIiS40aNUoe9/fff7fbcW1hTUIkhBCPHz/OlhR98803dq2PPRKi7t27CwBi0KBB2b7vmBAVTFYPqv7mm2/w6NEjAMDkyZNRq1Yti/ZzcHBA//79zW4XGhqKbt26wdfXFy4uLqhYsSKGDx+OuLg4s/umpqZi3rx5aNu2LUqVKgVnZ2f4+vrilVdewS+//GJyYLeld5mlpqZiwYIF6NKlixxQWbp0aQQGBuKDDz7A/v37IUxM/h0aGor+/fujYsWKKFq0KDw8PFC/fn2MHj0a169fN3nu+Ph4jBkzBo0aNUKJEiXk86tbty5ef/11LF26FA8ePDD9ItnJ5s2bcffuXQBA//794evri3bt2gEAli9fbpdzqAdNVqpUyeh2lStXlnFKSkqOzmVqbbwSJUrAx8cnR+fJD+r1+Z48eZJ/FQHwxx9/yFhZQ/BZDg4Ocu3Be/fuITw8PA9qZthff/2FjRs3AgDq16+PcePGWbxv69atza61mN/atm0r44I0wNoSRYsWxYoVK+Rn9qxZs5CWlpbPtcqybt06bNq0CSVLlsRXX32V39UhS1iTPWVkZIhSpUrJcRQ5/bX5bAvR559/nm3gmfpfqVKlRGxsrNFjXb58Wf6qNPavZcuW4s6dOwb3t2RQ9YkTJ0TFihVNngOAwfElSUlJ4tVXXzW5n7u7u9EWjn379gkPDw+z5za0v/qXl71+mSi/fCpXrizL1E3CUVFRZo+hbFuhQgWDj2/cuNHqFqLTp09b/VyEEPKXpqkWovv378vz9OzZ06bz2IstLUSurq4iIyPD4Dbqlh5rxkdZ20LUqlUr+flhajDsoUOH5HEnTJhgcX3sTd2CsmjRIrsc09x1b24/e7YQrV+/Xh7366+/tttxbWFtC5GiY8eOcr+DBw/qPa7+W7HmuDlpIUpMTJTdrIsXLxZCCLYQFQJWtRDFxsbK245btWoFDw8Pa3Y3aeHChZgxYwaCg4OxatUqREZGYvfu3fKX4q1bt/DOO+8Y3DcpKQnt2rXDmTNnAAAhISHYtGkTIiMjsXbtWgQHBwMADhw4gK5duyI9Pd3q+sXGxqJVq1a4dOkSAODVV1/FmjVrcOzYMRw+fBjLli1D//79UaxYMb1909PT0a1bN2zYsAE6nQ6vv/461q5di8jISERERGDOnDl44YUXkJSUhF69eiEqKirb/ikpKejXrx8ePHiA4sWLY/To0di+fTuioqJw+PBhrFmzBh9//DHKly9v9fOyxe3bt7F9+3YAwJtvvinLe/bsCTc3NwD2aSXq1KmTbN2YM2eObJlUi4uLk7fENmvWDHXr1rXpXEOHDgUA3LlzB/Pnzze4zZQpU/S2L+j27Nkjb7vv1q1bvs+zpfyNVqlSBY6OxteWrlGjht4++WHv3r0y7tq1a77VI7eon5/6NS9MOnToIOP9+/fnY02yfP7557h+/TpatmxptCWUCiBrsqeVK1fKDHfs2LE5zsbUGTMAMWTIEIO/YAcPHiy3OX78uN7jn376qXx83Lhxeo9nZGSIN998U24zb948vW3MtRApLQgODg5i9erVRp/T7du39W61nTVrlgAgnJycxLZt2wzud/fuXVG7dm3ZkqUWFhZmsgVIkZaWZrDVzt4tROqxPWfPns322Ouvvy6AzDsqzN0OqxzD1C/lgwcPyrFKlStXFvPnzxcHDhwQe/bsEbNmzZJ3bgQEBIi///7b5uf09OlTeY04ODiIwYMHi02bNoljx46J9evXZ2vd+/zzz20+j72Yu8ssLCxMTJgwQbYqli1bVvzzzz9Gj5cXLUTJycly2y5dupjdXhmr2LRpU4vrY29OTk4CgPDz87PbMS257k3tZ68Wovj4eFG8eHEBZN4YYesUAfZiawvR7t275X7vvPOO3uN53UJ04MABodPphJOTk4iJiZHlbCEq+KxKiNRfhHPmzMnxydUXSNmyZY3eufH3338bPe+TJ0/kXUa1atUST58+NXiM+/fvy9tha9Wqpfe4qYRox44d8rH//Oc/Vj3H1NRU2XQ6cuRIk9tu27ZNnufcuXOyXJ2I2tJNae+EKDAwUACZt7s+a+vWrRYlb0JY/sVw5coVMWrUKPnlpP7n7u4uJk+eLG7dupWTpyStWbMm20BN9b+2bduKnTt32uU8OWXpPEQuLi5i9OjR4t9//zV5vLxIiBISEuS2ffv2Nbu9kuzWqVPH4vrYk7qLtGHDhnY7bkFIiDIyMmS3t70+z3PK1oToxIkTcr9XX31V7/G8TIhSUlJErVq1DP5wYkJU8FnVZfbw4UMZG+oayonevXvDxcXF4GPVq1eHu7s7AODixYvZHouKipKzwg4cOBBFihQxeAwPDw/06dMHQGb3l7kBzGpbt26V8ciRIy3eDwCOHj0qz6Wc35jWrVvLOCIiQsZly5aV8ZIlS6w6PwC0adMGIjP5zfGMq7GxsbJLz9Ag+Y4dO6J06dIAgBUrVpg8llKny5cvm9xm3bp1WLduncEBk0lJSfj111+zvUe2+vvvv7Fq1SpER0cbfDwiIgLLly+36trJbykpKVixYgVWrFhhcrB/eHi4fD/Ug7DtST2g29nZ2ez2yudBcnJyrtTHnNz6vLPkus9t06dPx6ZNmwBkDqz+4IMP8q0uOaV8NwDZ3zPFwIED5Ws+adKkXK3Ll19+idjYWFSoUAETJkzI1XOR/VmVEBUvXlzGhsZz5IS5/msvLy8A+hd8TEyMjJs0aWLyGOrH1fuZc+LECQDACy+8gAoVKli8HwBERkbKuFmzZkaXW9DpdNn+sG/cuCHjli1byrusPv74YwQFBeGLL77AoUOH7D59vTnLli0DADg6OqJfv356jzs6OqJv374AgE2bNuH+/fs2nysjIwN9+/bFqFGjcOXKFbz77rs4fvw4kpOTkZSUhAMHDqB79+44c+YMBg4ciFGjRtl8rv3796NZs2bYuHEj/P39sWLFCty4cQOpqan4999/8cMPP6Bo0aJYuXIlgoKC8nVcy7OWLFkiP/CVfw8fPsTRo0cxePBgXL9+HWPHjsXrr79uMinKba6urjK25LpV7uQrWrRortXJlNz8vMtPK1euxPjx4wFk3oG4atUqODgU3nW+1d8J9hzXaq1//vkH06dPBwDMnTtXjqekwsOqvwLllmMAuHnzpl0rYu7iUf5gnx0Qrdz6DQBlypQxeQxfX1+D+5lz+/ZtANlbaiyVkJBg9T4Asq3l5OTkhM2bN6NmzZoAgGPHjmHs2LFo0aIFPD090blzZ6xatcqmweLWyMjIwMqVKwFktgSVKlXK4HZKy9GTJ0/w22+/2Xy+efPmYe3atQAyp0VYtGgRGjZsCFdXVxQrVgwtWrTAxo0b8dZbbwEAZs+ebVNLUUpKCl5//XUkJibC19cXhw8fRv/+/VGmTBk4OTmhXLlyeP/997F//364uroiLi5ODvYvqNzd3fHiiy9i4cKFGDt2LABgzZo1NrUw2os6wUhKSjK7vZKEqH8o5CUPDw84OTkBsP/nXX7ZunUrBg0aBCEEypQpg9DQ0Gyfi4WR8vkMAN7e3vlSByEEhg4dipSUFLz66qvP5QB8LTB+m4cB9evXl7G9Foy0J3N30OT017Etd+iok5Tw8HCULFnSov2UbidFrVq1EB0djc2bN2Pz5s3Yu3cvLly4gOTkZOzYsQM7duzA7NmzsW3bNr197SUsLAzXrl0DAGzbts2i12P58uUYMmSITedbvHgxgMwv0jFjxhjdbvr06bJ7btGiRejSpYtV59mxY4d8Xh9++KHRL4jatWujf//+WLRoESIjI3Hq1KlsfxMF1ahRo/Dll18iIyMDixcvNnq3Zm5zdXWFj48Pbt++bXZesXv37smEKK/unjSkfv36iIyMRHx8PG7evGn2R1dBFh4ejt69eyMtLQ1eXl7YtWsXqlSpkt/VyjGlBR/IHF6RHw4fPizv2GvevDl+/fVXvW3UC0NfunRJblOnTh3UqVMnbypKJlmVENWqVUt+oO3fvx8PHjzI1yZKIPsvghs3bqBatWpGt1X/yrPml4TSMhYfH291/dQJkLOzc44u/CJFiiAkJAQhISEAgOvXr2P79u2YN28eoqKiEBUVhaFDh2LDhg02n8MUpbvMGgcPHsTFixdNTqxojNItVatWLaPjywCgXLlyKFOmDG7evIm///7b5vMAQKNGjUxuGxgYiEWLFgHIHHNUGBIib29vlCpVCjdv3jQ6Piqv1KxZE/v378f58+fx9OlTo7feq99HpWU0PwQHB8tu761bt+ZbMplTR48eRbdu3fDkyRO4u7tj+/btqFevXn5Xyy5CQ0Nl3LJly3ypg3qi1s8++8zs9vv27cO+ffsAABMnTmRCVEBY1WWm0+kwcOBAAJnN2coXQ35SX0hHjhwxue3Ro0cN7meO8iV59epVXLlyxar6NWzYUMa7du2yal9zypYti3feeQcRERGyjlu2bMmVQahJSUky0Wrfvj1Wr15t8p9ybQghzA6uNkb5snz69KnZbZUB16bmtjF3HkvOpR7Ybcu58ovyvPJ7Jl/lC+vRo0d6822pqefHadGiRa7Xyxjl8w4Avv/++1zvls4Np0+fxssvv4ykpCS4urpi8+bNZsdbFhYxMTEICwsDkNmS2Lhx43yuERVq1t6WFhcXJ1eqLlasmDhz5oxF++V0LTNl9ednb1dU33Zfu3Zto7fdP3jwQK6Mbu1t96GhoTbfdp+cnCzn0fH19bX7WlIK9WzN8fHxdj+++hbUdevWWbSPcnu+ejZra9SpU0feOn7v3j2j20VHR8u6devWzerzrFu3Tu4/evRok9v26tVLbmvJbNy5xZpbgi9evCi3rVq1ql3rYe1M1UeOHJHbW7KWmaenZ76vZaa+PX3KlCkW77dv3758X8vsn3/+EWXKlBFA5jxoW7dutVt97C2na5nZe+oAe6xlpsbb7gs+q28t8Pf3x9y5cwFk/soLDg7O9mvOkNjYWHTq1AmzZs2y9nRmubi4YPDgwQAy1x2aPHmy3jZCCHzwwQdy8J21t5h26NABgYGBADJ/JRrqH1bcvXs3WwuNq6srPv30UwCZXXr9+vUzecfKw4cP5eurULoYjElNTZXvgbu7u95g5/DwcHknm/oXrzWUmafd3NzQuXNni/bp3bs3gMw1kg4ePKj3uFInY7d5d+vWDUBmc/Qnn3xicAzYkydP8NFHH8n/NzSY0dzzb9++vRzU/+OPPxrtVtq+fbtsJfP390eDBg0MbleQZGRkZBt/9corrxjcrk2bNvI1ys3bwYOCgtCqVSsAmWPE1NNLKL7++mvZjfmf//xHDmzOLz/99JMcOzR+/HhMmDDB5F1yjx49wuTJk9G+fXuDd1mau+7t5erVq+jQoQNu3ryJIkWKYNWqVUbf/8ImNjYWLVu2lOOHgoODMXz4cIPbLl26VL7muX3bPRVuNrX5Dxo0CHFxcZgwYQISEhLQpk0bdOzYET169EDNmjXh6emJu3fv4uzZs9i6dSt27NiB9PT0XBtvMWHCBPz++++4ePEipkyZgpiYGLzzzjvw8/PDpUuXMHfuXLlAZLNmzfDee+9ZfY4VK1YgKCgISUlJcumNfv36oVKlSkhPT8f58+cRGhqKdevWITo6OtuH3ejRoxEWFoawsDBs374dtWrVwrBhw9CsWTN4enri4cOH+OeffxAeHo4//vgDrq6u2ZK2sLAwTJkyBa1atUKXLl1Qr149lCpVCsnJyTh79izmz58vB7kPHjzY7l05V69ela9f586dLb6dtFevXvjvf/8LIDOhsrbr45NPPsHixYuRkJCAJUuW4Ny5cxg2bBhq1KiB9PR0nDhxAt999x1iY2MBZI41sSXh8/T0xJgxYzBhwgQ8fPgQzZs3x4cffoiXXnoJXl5euHnzJjZu3IiFCxfKBYK//PLLAnOr8rVr1/SmkXj06BFiY2OxcOFCmXSULFnS5OB0c27cuIEdO3bolSmeneOqZcuWBgftzpkzBy1atEBycjI6duyIsWPHom3btkhOTsavv/6KBQsWAACqVauWo6kU7MXX1xdbtmxB165dcfPmTUyZMgUrVqzAG2+8gRYtWqB06dJITU3FtWvX8Oeff2L9+vXZBtDa4uTJkzh58qTBx27cuKH3Wvfu3Tvb3Xh37txBhw4d8O+//wLIHFhfo0YNk9ONeHl5wd/fP0f1tpeEhIRsdX306BHu3buH06dPIywsDKGhofIHUtOmTbFu3bocJ87r1q3LdvfjgQMHDMZA5jXx8ssv5+h8VADlpHlp/fr1IiAgwKIZc2vXrq03y689uszUx6pRo4bJOrRo0SJHi7tGRkaK8uXLm32uhmb6ffz4sXj77bcteq0qVqxotG6m/vXs2VMkJyfrnTunM1VPnTpV7m9q2RJD6tWrJ7s+np2JXDmmqRl7LV1Qt0GDBuLy5csGj2HJ88/IyBAff/yx0Ol0Js/j5OQkZs6cadVrkBssnalafU2Z6uKzZKZq9etoyT9Tf9ObNm0yuVhxtWrVss3WXhBcvnxZdOnSxaLnXqxYMTFp0iSDs+9bct1b+jdv7D2z9r2y9bPBnqytc6lSpcS0adPMLhFk6UzVyneMJf9smS2cXWYFX46aEnr27ImuXbti3bp12L59O44dO4aEhAQ8fPgQHh4eCAgIQNOmTdGrVy+0bds2VxeWDAgIwKlTp7Bw4UKsXbsWMTExePDgAby9vdGwYUO8+eabeOONN3L0qz4wMBD//PMPFi1ahD/++AMxMTG4d+8eSpYsCX9/f7Rs2RL9+vUz2BRetGhRLFu2DB999BEWL16Mffv2IS4uDo8ePYK7uzsCAgIQGBiIzp0763X7jB49Gk2aNEFoaCgiIiIQHx8v5zfy9fVFkyZN8Pbbb+dac7gyKNrFxcXqW9p79eqF06dPIzExEZs2bcJrr71m1f4NGjRAdHQ0li1bho0bN+L06dO4e/cudDodSpcujYYNG+K1115D3759c/QLUafT4ZtvvpG31R84cABXrlzB48eP4e7ujipVqiA4OBhDhw41eSdjQaHc4l6/fn10794d/fv3L1ATxXXr1g2nT5/GnDlzsHXrVsTFxcHZ2RlVqlTBa6+9hg8++KBA1RcAKlSogC1btuDYsWNYv3499uzZg3///Rd37tyBs7MzSpcujUaNGqFjx47o27dvvt+B+7xwcHBA8eLFUaJECVSoUAGBgYFo1aoVunbtatGM50SW0gmRj1PXEhERERUABWMQBBEREVE+YkJEREREmseEiIiIiDSPCRERERFpHhMiIiIi0jwmRERERKR5TIiIiIhI85gQERERkeYxISIiIiLNY0JEREREmseEiIiIiDSPCRERERFpHhMiIiIi0jwmRERERKR5TIiIiIhI85gQERERkeYxISIiIiLNY0JEREREmseEiIiIiDSPCRERERFpHhMiIiIi0jwmRERERKR5TIiIiIhI85gQERERkeYxISIiIiLNY0JEREREmseEiIiIiDSPCRERERFpHhMiIiIi0jwmRERERKR5TIiIiIhI85gQERERkeYxISIiIiLNY0JEREREmseEiIiIiDSPCRERERFpHhMiIiIi0jwmRERERKR5TIiIiIhI85gQERERkeYxISIiIiLNY0JEREREmseEiIiIiDSPCRERERFpHhMiIiIi0jwmRERERKR5TIiIiIhI85gQERERkeYxISIiIiLNY0JEREREmseEiIiIiDSPCRERERFpHhMiIiIi0jwmRERERKR5TIiIiIhI85gQERERkeYxISIiIiLNY0JEREREmseEiIiIiDSPCRERERFpHhMiIiIi0jwmRERERKR5TIiIiIhI85gQERERkeYxISIiIiLNY0JEREREmseEiIiIiDSPCRERERFpHhMiIiIi0jwmRERERKR5TIiIiIhI85gQERERkeYxISIiIiLNY0JEREREmseEiIiIiDSPCRERERFpHhMiIiIi0jwmRERERKR5TIiIiIhI85gQERERkeYxISIiIiLNY0JEREREmseEiIiIiDSPCRERERFpHhMiIiIi0jwmRERERKR5TIiIiIhI85gQERERkeYxISIiIiLNY0JEREREmseEiIiIiDSPCRERERFpHhMiIiIi0jwmRERERKR5TIiIiIhI85gQERERkeYxISIiIiLNY0JEREREmseEiIiIiDSPCRERERFpHhMiIiIi0jwmRERERKR5TIiIiIhI85gQERERkeYxISIiIiLNc8zvChARFSZXrlyRcWxsLACgffv2sszJyUnGhw8fBgCUL19elpUrVy63q0hENmALEREREWkeEyIiIiLSPJ0QQuR3JYiICqOEhAQAQLFixWSZo2PWSITbt28DAPz9/fO2YkRkNbYQERERkeaxhYiIiIg0jy1EREREpHlMiIiIiEjzmBARERGR5jEhIiIiIs1jQkRERESax4SIiIiINI8JEREREWkeEyIiIiLSPCZEREREpHlMiIiIiEjzmBARERGR5jEhIiIiIs1jQkRERESa55jfFSAiIiosTp8+LeO4uDgZd+jQAQDg7Oyc53Ui+2ALEREREWkeEyIiIiLSPJ0QQuR3JYiIiAqqmzdvyvj999+X8bFjx2TcrFkzAICTk1PeVawAUKcQ6njQoEEAgJdeeinP62QrthARERGR5jEhIiIiIs3jXWZERPRcU3fl6HQ6i/fbtm0bAGDJkiWy7MaNGzK+du2ajIOCggAAxYsXN3je51XRokVlvHz5chnv27cPALvMiIiIiAoVthAREdFzzZpWITV/f38AwIcffijLDh8+LOPIyEgZDxgwAADg4+Nj07meB2fPnpVxSkpKPtbENmwhIiIiIs1jQkRERESaxy4zIiJ6rt29e1fGa9asAQBUqFBBlr3yyisG96tfv75e2blz52Rsa1ccFUxsISIiIiLNY0JEREREmscuMyIiem4kJSUBAObPny/LVq5cKePmzZsDyFqdPie0MM+QlrCFiIiIiDSPCRERERFpHrvMiIjouZGYmAgAePTokSybO3eujBs1agQAcHV1zdN6UcHHFiIiIiLSPLYQERFRgaMesJyRkQEAiI+Pl2Xly5c3uJ+fnx8A4L///a8sc3JykjHnDiJj2EJEREREmseEiIiIiDSPXWZERGQX6m4uW7qmnjx5IuP169fLeObMmQCA7t27y7L//e9/Bo/h4JD5O9/Z2dnq85O2sYWIiIiINI8JEREREWkeu8yIiJ5TOe3Cyutz9OnTR8ZFihSR8c8//wwgaw4he5+XCGALERERERFbiIiInld50XJi7BzKAGn1QGl3d3cZOzrqf/0sXbpUxp6enjJWBkpbcl4iW7GFiIiIiDSPCRERERFpHrvMiIjIZqmpqTK+evWqjLdv3w4ASElJkWVvvvmmjMuWLat3LG9vb7vVi4OuyVpsISIiIiLNY0JEREREmscuMyKiQspYt5BSbklXkTXbGnLkyBEZz5gxQ8bK0hkDBw6UZV5eXjadwxo5fT6kXWwhIiIiIs1jQkRERESaxy4zIqJCyli3kLnuInvegaXe/7333pNxly5dAGRfgiMvWPrc2aVGz2ILEREREWkeW4iIiDTA3ADsEydOyLJDhw7JuGvXrjIOCAjQO27Lli1zXIfcxjmJyBJsISIiIiLNY0JEREREmscuMyKiAkrd1aNmabePsa6iixcvyvjnn38GAFy+fFmW+fj4WHwua+qYX91V7CYjS7CFiIiIiDSPCRERERFpHrvMiIieU8a6itQr1Cur0ffv31+WtWvXTsbKEhzWnoOosGELEREREWkeEyIiIiLSPHaZEREVUNZ0Rx09elTG5cuXBwCULVvW4LZVq1aV8dSpUwEALi4utlRR05ycnGTcp08fANp7HR0ds9KIY8eOyfj999/Pj+rkCFuIiIiISPPYQkREVMjExsYCAL755htZpp5HSGn1MdZCpF5wNa8XXy0ozC1l8my5Ii0tTcYhISEyVhazVbcQGZuj6Xmifo6DBg2SccOGDfOjOjnCFiIiIiLSPCZEREREpHnsMiMiKgRiYmJk/MMPPwAAypUrJ8uGDh0q41q1auVZvQrrSvLG6mrNUiWVKlWSsdJ9VrRo0ZxXjvIFW4iIiIhI85gQERERkeaxy4yIqBCoXLmyjMeNGwcA8PT0lGXFihXLs7oU1m4ye3v69Gl+V4HsiC1EREREpHlsISIiykPx8fEynjJlioyVBVcXL15scD/1YF1/f/9cqp1lnodWIWNzBD0Pz41swxYiIiIi0jwmRERERKR57DIjIsolSjfYzJkzZdmiRYtkPGDAABkPHz48z+rFQdHGl+sg7WILEREREWkeEyIiIiLSPHaZERHZKD09HYDxFeOVbplmzZrJMvWK4H5+fhafy57dXFrtJjOGrwcBbCEiIiIiYkJERERExC4zItIkaybmS05OlvG///4r48jISABAr169ZJmLi4uMnZycAADt2rXLWWWN1IuI7IctRERERKR5bCEiIk0y1+Jy8eJFGS9dulTG69evl3HHjh0BAD179rRv5Ygoz7GFiIiIiDSPCRERERFpHrvMiIgMWLlypYzv378v4x07dsi4fPnyeVonIso9bCEiIiIizWNCRERERJrHLjMieu49fPgQAPDPP//IsjJlysjYUNfX+PHjc79iRFRgsIWIiIiINI8JEREREWkeu8yI6Lnx6NEjGR88eFDGe/bsAQDcuHFDlg0YMEDGhrrM7Lm6PBEVfGwhIiIiIs1jCxERPTeuX78u459//lnG/v7+AIBRo0bJsjp16pg8FluFiLSFLURERESkeUyIiIiISPPYZUZEdqMMRM6t7qakpCQZu7u76z1eunRpGY8dO1bG9erVy5X6ENHzgy1EREREpHlMiIiIiEjz2GVG9BzLr7l07HHeP/74AwCwdu1aWdanTx8Z9+jRQ28fDw8PGbObjIiswRYiIiIi0jwmRERERKR57DIjeg7l9t1exthyPmUlegAYPny4jNPS0gAAL774oiyrVatWDmpHRGQcW4iIiIhI89hCRPQcMtdSk18tSIa4urrKOCQkRMbVqlUDANStW1eWFYT6EtHziS1EREREpHlMiIiIiEjz2GVGpBF5OSfR1q1bZXznzh0Zd+/eHQDg6ekpy5ycnGTcu3fvXK0XEZExbCEiIiIizWNCRERERJrHLjMijbBnN1l6erqM9+7dK+Mvv/xS73H1qvPqpTWIiAoSthARERGR5rGFiIis9uTJExnHx8fLWFl8VT2fkJeXl4wdHPgbjIgKJn46ERERkeYxISIiIiLNY5cZEQHIWkwVAK5fvy7jF154QW9bNzc3Gfft21fGSpdYkSJFcqOKeTqXEhFpC1uIiIiISPOYEBEREZHmscuMyEqGVorPra4c9XENHd/W8z59+hQAEBsbK8uUOYQA4NKlSzLetm0bgOx3i6nPpV56I7exm4yIcgtbiIiIiEjzmBARERGR5rHLjMgC+XV3k7lz2VqXFStWAACmTJkiy4YPHy7jr776SsbqrjIioucVW4iIiIhI89hCRGSB3Gqpsafbt2/LWFlE1dnZ2eC2Fy9eBAC88847smz06NEGY0PKlSsn44CAABlXqVIFANCkSRNZ1qFDB73HiYgKGrYQERERkeYxISIiIiLNY5cZkZUMzUOUFzIyMgAAt27dkmXHjh2T8ebNm2X88ccfAwBq1qxp8FjK0hvKMYHscw+pV7O/ceMGgOwDy69duybjuLg4GV+5cgUAMGPGDFmmHqytDOIeN26cwXoREeUXthARERGR5jEhIiIiIs1jlxmRlfLrjjKlO2r+/Pmy7MiRIzLu2rWrjL29vU0ey9CSIOq7xdRq1Kiht4+x18BQd+LIkSNlHBYWBoBdZkRU8LCFiIiIiDSPCRERERFpHrvMiAqJx48fAwCCgoJk2ahRo2RcunTpXD2/JV2FhrYpUaJEblSHiMiu2EJEREREmscWIqI8pp5HaPv27QCyt6L06NHD4H61a9fO9t/8lF+L3ealtIfnZHx88zYZbzh9PWujsvUAAK927ymLmlR0zZ0KPYmX4am9mfXZsue8LHtYPGtZlLYh3QEA7WpntRo65U6tiJ4bbCEiIiIizWNCRERERJrHLjPSLENz8di7+yclJQUAsGzZMlm2f/9+GSur0avnEFIrqF1T1sxDVNiknV0EAOjU+EtZVuyDMTJ+t127rI2vbgEAfFx/mCwqMe+EjHf0r5yzytzdI8ORDTrLeHP9CQCA/32YVRef25Ey/rrzCwCAGRNOy7Kdg6vJmN1nRPrYQkRERESax4SIiIiINI9dZlQg5UVXkT2Pa6y+ymryd+7ckWUtW7aU8SuvvAIAKF++fK7XMS8UtvpmuSaj3z7+AABQblXWXV3LuxpbCqUjAKBL0AuyJDBoroz39P0GANDWqj6qNBlFzO4r45VvZ3WfXZvaDMCzXV8ds6LgCgCAV8p9Lst+77ZBxn3LWFMfIm1gCxERERFpHluIqEApDINyldaeCxcuyLJGjRrJ2NEx68/K1TVzTpoPP/xQlrm7u+d2FSkHan+cuQBtUFPTC+SqOdULlHH7lD9kfOFq5n/b2ji2utyrv8h4l2+zrPOZ29G/KQCgZ4v+suhwbNbDbCEi0scWIiIiItI8JkRERESkeewyowLFXFdZXs7L8+DBAxkvXbpUxr///jsAoHv37rKsYcOGBo+h1NGe3WQFdW4iS8TFxQEAwsPDZVnTpk1lrHQx5j1/GTXo6G9iOyPSnsowFaVkXNymtz2rQ6x8YNZAacPD7o15BABIvJ1VF89ittSFSDvYQkRERESax4SIiIiINI9dZlTg5VcX0bRp02R89+5dGY8dOxYA0KBBA1mmvrMstxW2brJhw7KWtThy5AgA4KWXXpJl6m6yKlWyVmwvV65ctv8CQJkyuXN71McffyxjT09PK/Z8AgCIXfyFLNn58XgZT8mnu7nSTu8CACy/+54s+8lwry4R/X9sISIiIiLNY0JEREREmscuMyrw8quL6KOPPpKxi4uLjL29Myfsc3Dg7wlL+Pj4yLhLly4AgKSkJFl24MABGZ88eVIvVneZqbsm1V1b1nVz6VN36xny17qs1e5XRD6U8dldEQCAtN4zZNmer9rK2PKpHe3gbtbSHqO7fgcAaL/mpCxrxiXuiUziJzoRERFpHluI6Ln1+PFjGS9fvhwAsG/fPlmmbgFSz4Wj8Pe3YT4a0jN3btZip5MnTwYADBw4UJb93//9n4xr1Kgh44CAgFyvm6U8q7STcTuPrPJ6ZTPn+/l+5gRZ9uOLWc9h8kuZswflWuPM3RMynNW7h4xPTYgEAOxsm6dtVESFGluIiIiISPOYEBEREZHmscuMnit79+6V8ciRI2Xs5+cHAJgwIatrIygoKNfro8yhZM+B4YVt6Y7ExEQZK3M3ffPNN/lTGRv5N8haQiNbR2rHzPI33gqVRSNqdJHxj+GnAQAf1bJzhf7/AOrRQVndZJGfHpbxtsHVAORiVx3Rc4gtRERERKR5TIiIiIhI89hlRnnKli6kjIwMGav3M3SMSpUqyXj69Okyfvnll62qp73kRpdWYegm0xzvrKVIer8ZLePxhy4AAD6qVTnn51DNMzSyQWcAwKkJp2XZzv/fTQawqywnbO2SVu9HhRNbiIiIiEjzmBARERGR5rHLjPKUuSbop0+fAsh+Z1JYWJiM1XeGVaxYUW//8uXLG4xtUdju5qIcuJk1YefcRZnLinT+v1dkmfkOrzQZPU3NKnUuUiRn9Uo7K8NF2SZezOwqYzeZ/dn6t87PiMKPLURERESkeWwhonz35MkTGa9ZswYAsHTpUlnm5JT127dmzZp6+9uzJYetQhrlnXWN3ZgzEAAwO+hvWfbDS6aXwEg7u0zGXyxuIeM3PgnQ3/ivdTIcs6e0jEd+0BoAUEa16YVfshad/QRzZHyC8wwR2R1biIiIiEjzmBARERGR5rHLjPJdTEyMjHfs2AEAGD16tCxTzyFkqBvLnl1b6mM9D91n9phTpbA+d6s4NZPhJxs/BgB06RQgy8o16ynj/g19s/a7kblcxs+/x8mil5Ztk/EAQ6OxEw7KcMavtWU8RHaZHZVlv3yeNfeQb7MGMl44ZoyRJ2JcuVeylrL5oHUZE1sSaRNbiIiIiEjzmBARERGR5rHLjOwmLS1rLpbY2FgZFy1aVMaVK2f2IRRRzc/SuHFjGa9evdrq8+ZW987z0FXEOVWs591sLAAgImG4LLv8T9ZyHGdvZt0VCdfXAQAjvs9azr58cTP3flUbIMOdM4rJuJSM/GXU45edMs7q1LNNsbJFzW9EpGFsISIiIiLNY0JEREREmscuM7JJenq6jC9cyFzR+88//5Rl6rhXr14yrlq1qt3rouXunfySlJQk47i4rDuszp8/DyD7civr1mVNRNimTZvcr5y9uHrJMKB+66w4p8f1byDDjv4GN5BRA8MbUD5Sd/eru+u52n3hxxYiIiIi0jy2EJHF1K0CBw9mzaWyfv16AMDRo1nzp3Tp0kXGfn5+Mo6KigIAZGRkGDyH8ivL3q0+ho6rtbl21M9RidVl6vfJEPX7//DhQ4PbFC9eHABQp04dWdazZ9YcPq+99hqA7NcKUUHn7Ows43/++UfGymLU9HxgCxERERFpHhMiIiIi0jyd4EgwspAyYBYAZs+eLWOl2bhYsaw5VdRzDz1+/FjGSleZuqtGPUhRPVjbnp7XLjP1a6fuhjT3Z3337l297RISEkzu4+SUNb+Oh4eHwdjNzU2vLkS5zdzfsqHuYmuuUfX+6r+TgQMHyrhdu3YAAEdHjkQprNhCRERERJrHhIiIiIg0j217ZDEHh6z8WekaAbLuKGrQoIEsS01NNXgMpenZ3d1dll27dk3GSreb+lyG9ld7Hrq+rKF+bRITE2Xs7e2tt01KSoosU3evLViwAED2boNp06bJ2FyXm6urq4yTk5NlrNyJpu5GU59DC+8P5T1DnwHqa+3Jkyd6+6j/XtTd+oaufXU3WHh4uIyNfc5R4cQWIiIiItI8thCRTdSDn318fABkbyEyRmktWLZsmSzbvXu3jL/99lsAQKlSpUDmqQe3X7p0ScafffYZAOCFF14wuJ8yk7j61/CLL75o8XmPHz8uY6W1CQBeeuklAED79u0tPhZRbtu3b5+M58+fDwAYOnSoLAsODrb4WEeOHJGxurWIg6oLP7YQERERkeYxISIiIiLNY9se5Tr1Qp+zZs0CAJQsWVKW9enTR8bK0g9kmc6dO8tYvYhqv379AAAvv/yyLBs9erTe/pYsPaDMuzJlyhRZFhMTI+OQkBAZN2/e3IJaE+WtGjVqyLht27YAgOnTp8uyJUuWyHj8+PEyrly5st6x1IO11Ut68IaBwo8tRERERKR5TIiIiIhI89hlRjmmNBvHx8fLsv/7v/+T8c2bN2X81ltvAci6GwngHWU5UbNmTRmru8SUrrRVq1bJMvWdX+XKlQMANG7cWJalpaXJ+KeffpLxypUrsx0TAH788UcZV61aVcbquY6ICorSpUvL+N133wWQdVcYAGzYsEHG6uU4lGv+008/lWW8xp9fbCEiIiIizWNCRERERJrH1e7JYuqJ/5QJFNXlV65ckWVlypSRsbK0BwBUqFABQPa7M9STPPJytJ16SQ8lvnXrliw7e/asjJUJ5dSvt/o9U78/tWvXBgBUqVJFlnl5eclY/f5xlXvKD+o7vAx9hqjLlL8N9QSKDx8+lPG5c+dk/NdffwHIvgSO+o419cSnyt1pRYsWtf4JUIHAFiIiIiLSPA6qJosZm2dDGTR98eJFWRYQECBj9dxCd+/eBZC9VYHsT3mv1L+C1YPXlcUulfcDAG7fvi1j9WBtpeVI/Ss5Li7O5HnZ0ke5wVhLkLkWInOPOzk5yVj9d6LM03XmzBlZ5ufnZ221qZBgCxERERFpHhMiIiIi0jx2mZHF1E3N6q4YZTChv7+/LPvoo49kvH//fhkr0+U3bNhQluXllPfGzvU8dPGon1tSUhIAYM6cObLst99+k/Enn3wCIPv79PjxYxl/9dVXMl69ejUA4PPPP5dlynxSQPYB2M/D65gb7HHdGToGX2/LGBpUrZ53648//pDx//73PxkHBQXpPa6es8hY1zEVTmwhIiIiIs1jQkRERESax3mIyGLqS8VQE7Saujl62bJlMlZWu1cvA/HZZ5/J2J53cKjvZFO6g9Rlrq6uBuPCRP0+qJv1lW7MwMBAWabuClDmTzHWlaOeT+j06dMAgLFjx8oypUsOyL5qeMuWLa2q//NOud7Ur5f670U9Z426G9qQ5ORkGSt3/Lm4uMgy9TXMldeNO3HiBIDsywup5yGaOnWqjFu1agUg+3u2aNEiGau7zJQuZc5DVHixhYiIiIg0jwkRERERaR67zChPKUtJTJkyRZYdOnRIxr///juA7FPi22rr1q0yHjx4MIDskw+++eabMlbuxipRokSOz2uOsQnlbKFehfvIkSMyVrrHgoODZZmhrk1rpKamynjdunUynj17towHDRoEABgxYkSOzlXQmJsEUF2m7pZdtWoVAODDDz+UZeoulWHDhsl44sSJeuc11CUDAGvXrgUA1K9fX5bNnz9fxuqu0pwyN9FhYaDuTlZeZ/Vr/84778hY3Q1J2sIWIiIiItI8thCRTQz9YjZ2KZn7Nale8qNcuXIAss9tY64O6uMrA4ABYMyYMTKeNGkSgOwtT6NGjZJxhw4dAGS1cOSEPVuAzFG3IHh6esrY3d09R8e15jmol/9QBtOrF4rVmujoaBlv3LgRADBu3DhZduDAARn36dNHxkorZe/evWXZL7/8ImP1a9qxY0cAQN++fWWZeuC2MvC3bNmyNj6L58v9+/dlrNxgwdeGnsUWIiIiItI8JkRERESkeVy6g2xiqBvF1u6hSpUq2a0OyiruQPbBrd7e3gCyr2RdunRpGauXrVCcPXtWxnfu3JFxo0aNAGQfoK0MFgeyD3RNTEwEAPz999+yrE6dOjLOadeW0sVob9a8l8prS5nu3bsnY3VXmaJBgwYyfu+992QcEREBAOjUqZMsUw+OrlWrlt6xRo8eLWP1vDrK9ajuFlLm3wGy/20o1/Ply5dlmXrOo9q1a8v42rVrAICbN28afLygDkj28PCQsT1vnMjL7nHKfWwhIiIiIs1jQkRERESaxy4zylOG7gyz57GqVq0qY3UXg7KURb9+/Qw+rty1o7Z582YZT5s2TcZr1qwBAERFRcky9ary+/fvl7Ey/4l6un9l+RIA6Nq1q/4TM8Kerx3lntatW5t8XD0fVMmSJWWsvL/q7h1D3WRq6jmN1F3ATk5OetsuXLhQxsp8XwAQGhoKIPs8Rnv37pXx9u3bZaxcu0ePHpVl33//vYwbN25ssr75xdzcUbZ2ffFv8fnCFiIiIiLSPLYQUaFi7pecl5eXjN944w0Zd+nSBQAQHh4uyxYsWCDjChUq6B1LPU+ReqDs7t27AQCvvPKKLFu9erWMlVmEgawBnG+//bYsU88dZI3c+DWaF4NCC+vAU1vn1TJHfS39+++/Mu7fv7/Vx1LP8t6iRQsZGxps/+2338pYvfjyli1bAGRfcFndyrlhwwYZV6tWDUD2v7Pr169bXe/8ZM8bQuj5whYiIiIi0jwmRERERKR57DKjPJXTpmlzgyPV86eo5wl6//33AWRfAFU9sFSZO0i9tMeff/4p40uXLslYGQhdrFgxWXblyhUZFylSRMbKArLdunWTZer5YszJ7e6mvOgqKKzdEfast3ph3GPHjsm4Xr16BmNzlOVu1PNnKd3CAFC8eHG9fdavXy9j9TIfykBodTfa1atXZezn5yfjKlWqAMi+LE6PHj0srvfzprB2B5NhbCEiIiIizWNCRERERJrHLjPKd9Y0O5vb9vDhwzJWrxSuzAOk7hb49NNPZfzrr78CyL4UQlhYmIzVc8MoXRMrV66UZerlOt555x0ZK11t6rq2adNG/4kZUZCa4bXcPWDrc1eWyFDfDaa+y/CDDz6w+Fjq5WGUuYHUcx5VrlzZ5P6bNm2SsXq+ruDgYADA5MmTZVm7du1k3L17dxkrd5ypl8Bp2LChZU+ggLHH547W/g7MKeyfEWwhIiIiIs1jQkRERESaxy4zynfm7hwztq0hjx49knFsbKyMlVXn1at/u7q6yvju3bt6x1LfWTZkyBAZK91ne/bskWVTp06Vsaenp4yXLl0KIPvSIAV1RXBzCmMTuL3Y2qWi3H147tw5Waa+ltRduOfPnweQ/fpQTxiq7nZT7khr0KCBLFPfVamcV7krDMhaqR4AZs+eLeOMjAwAwOnTpw0+rr4jLSYmBkD2LrXCikt02F9hf53YQkRERESaxxYiKlBy+gtDvXyBMlhUXa5uISpTpoyMp0+fDgA4deqULFMvvKn+pa7MAfPkyRNZpv6lrm4t2LVrF4DsLVAhISEyrl27trmnRAWModYg9XW7ceNGGY8dOxYAkJKSIsu2bt0qY/UyHsq1MHLkSL39AWD58uUyrlixIgDAx8dHlqmX0FAGSN+4cUOWqec5UrdiHj9+HED2BWHVg67VLaXKgscBAQGyrFOnTjJWz1lEVNiwhYiIiIg0jwkRERERaZ5OGFvSmaiQS0hIkPHevXsBZA0gBYA6derIWOmuUM/18vDhQxmXL19er1y9rXrwqoND1u8MZZmGO3fuyDJlqQQg+3wu9Hy4cOGCjKOjowFk71JTD6RWU+YRUl+XkZGRMlZ3iSnHU+Y5AgBHx6wREMqgZ/WAaPV51dezch0/ePBAlqm7zNTL4Rw9ehRA9r+jwMBAGavn6yIqbNhCRERERJrHhIiIiIg0j11mREREpHlsISIiIiLNY0JEREREmseEiIiIiDSPCRERERFpHhMiIiIi0jwmRERERKR5TIiIiIhI85gQERERkeYxISIiIiLNY0JEREREmseEiIiIiDSPCRERERFpHhMiIiIi0rz/B0rIhL0LakgeAAAAAElFTkSuQmCC",
"path": "images_version_6/image_26.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
C
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, the height of the flagpole is ().
Choices:
A:8.8
B:10
C:12
D:14
|
||
131
|
27
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAL0AAABaCAAAAADI/QjWAAAHs0lEQVR4nO1abWhTZxR+XObozNgEJ+sQ24z8iXSTSvGHhK5x0lU3m7ZufnRS2zr8mvgROukCspjCVhwtbWGyD1acY8wpilo2bIehiVj0h3cWVAxbo1Es26RxnWtcqKZ3P25ucu97z3sT283cQA+Iuc99npcnh3Pve87bzBCRO7HMxwBPZMXG5CJyWWCQXHLvt/kZJJfcn3orwCAzcqjuC4K2W2okh3IfssxyMI9tDrn3O1DGlE4OuQ+UweFXQzlU9wU3TCi4YVJCuZP7kMUENvm54753OcAWvoHdL1Nf9lUgh3LP9gWDJQCs4bgSM657pi8QigGwyTeue6Yv8JcBYAvfuO79mwaVlwEHgJzJPdsXDLqdAwg5XUElybDu2b7gfF6+Hdbi0UsqlmjQqDsjDpUqrje1iaIoit+ufqgADet+/kPpnxRjlT8kPp0rH0mRjOH+NQ0yVCqKYt0Z+ar8SvLO7dLUZ0PUvXZgVfcFPtfhouSdef3uH+XPT/7/3tKH3+YvYaA+DwBHIwBgoKa4EUDeUWBNDECs9rRdYhmiQ95Q4uthoIJbAOSGWAAG9+e32gHBG2wuBpLf9X+u6IxifnQ+g1ysFEUxVfhDdaXyI3CutG4oSTNC3RMDq6oviGxurD8rd5z2s/WNGyKJCyPUvd+BsoC6Hw54AEiFH3d9bVs7OAhgtyneCQBVp15q6DABxqj7DfXLQo1nVVCBLa/ZHnLhwh2ETiawQFlTe6AscVFtBQyS+4OwhuOqgfX8tnw7rMX+S4C1SYGXNamUBqh7amD1ln0JoGWLK05K5DCAe+3AGnVWSTlev2tFhNQkwgDuNQNrqKb1zcRH+8GaqzpSjfuPuznMZRycJyD5FMgOrNy+QBuap7YX75LEyGWB3c11BSSfApMDa+Kb8fsCtezIJ1r38d+gfvrlIHoRXQHJp8DkxpRwb++X+gIAzUxfoPDuRSu0leNfssRPmSQOz/UFJJ8CAw4AysIvmd116LOzdgAlPQcPdc3Wmg85vZ6eIkDT5+w4dmxHhr2IvoDkU+D88spz4lBl5dzE9cimZE8jiqJ4prQuMY60tYltbaIoDtWVXkzcZCuntxVuKpUhyyyHj3rmOAKST4KKjQn6fQEAYNgdbrHPTFwwlXPVYjZbqHcUcXiuKyD5JKjemMKFnrUAgEAnOiVulacwLJNHd9Zs/PbZe/Ilk/veCqCitwiaCNTLs0JmApJPgNHaLdK7fb1lxeE5un3B7Fjk9K+fvj8yosDURVh+RRSvlFNlrBqS0wtIvhbkDaypKk/FmHtxzy+CIAhCci5XV040XAQUhaOaVFK9iJ6A5GvBR9iYoh8uefnIvL/VoNp973IAWN6r0VKH53oCkq8BB2pGG51O5xoAa5xOZ02sdoDjPd6+xHbK9icLq933VQBARZ9GTR2e6wlIvga093d4qoKjuwA0I1jlae2ndlUg3r7oGcI7694vpVLrkjo81xOQfC2YfmMCgAOLnjmxmPDOuBdsJgAw2djjFfLwXEdA8rUgf2BVRPfCiROL/6K8M29MqQ6Aij4mCWwvkk5A8lkw7cYEAN1d9cfGON6Z3J+slv6vPsmwAg4ARO55ApLPgmk2JgA4vnD02NIxyrcUytzHg9tQsR0H+hBk2sZBtzQkB9ViroDks6DewCoJAhuP3tfxrs696VJerAFoQOwS0/PSh+d8AcnnLMKL4Kt3Vjvv63OU7qPu4p/MgLmnahuz/XCGZK6A5Gc4aUvh++r6gZIZ6ViKyhFcrYnX7XbH0lbF88b2IukEJJ+3CBmC+5Wj0Qdvj6dznzqN+vjCYXMSjjdaWuTPoW0dye18uPazonQCks9bBADa0dQORd0L3vz3JvRMF8rfXq6c6OvP9aS8wPRNoXNY+sjpRbgCkv8IDU3I+cW+rbrmU5HIfXRBng0A0GFFyAUACMaumQEMrCieDeWQfOG0XU9A8jmLJEKZ+5D3wZ60ppO5T9S9+XQM6Ps8v9kKWOu7wg1VQJ4Z4A7JXAHJz2jSBjDsfrB7JnmHjlTdH99v2SUnROgKNr8l3wh5wx75tMJt8VjTCUg+bxEglfuI93ZzRt6TuZcr5/NDjuZ5CsLwfn/9VjOAiDvoUbx/fF5Lxxw9AcnnLKJyH/Fe/2BWJt5Z93HX93nrXgAAVFvlI+c/vo+t64Dra5u0ncu9CE4NNnSAJ9i3j+C/g++oRZIbXDua2sfiP2fqnXWfPCLHzXAPnJZC+bIa8h314Tl4ggXXCP7vyKcWSVZPd6xh3a3O5zL1zj61qY5D8AKoVzxSnF6EK3iD5uuCDR+tbXr6qYx8M5H9vz7EO/t3r5ykNuvu2/t3Lp20OMvuu09MwXuW//rQvTK/5fmpLJBF98dX5be8OLUlsub++ErT3il6z5p73ypTS8HUl8mKe1/t3b3/gfesuBdq7+6xpqdlEo/9jRne7EjfwGcaKvcChu4LuD9E8EbGhZFxzS+YwBWQ/JFxX49l1+TNakL5K4urbmDiCUyQ1cS78Uj43OXW8Uk1NOpg+3sAUB1UPNQ9BdKJf3QOAibu8e89SrCTIYDIzf9m6ccZBvidwhRi2n32Irfd8945ho7kPG+EX9VNPnK7cqbdZy+m3Wcvpt1nL6bdZy/+Bbu3j9WK+iNaAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_27.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, when planting trees on flat ground, the plant spacing (the horizontal distance between two adjacent trees) is required to be 4.0. If trees are planted on a hillside with a slope of 0.75, and the plant spacing is also required to be 4.0, then the slope distance between two adjacent trees is ()
Choices:
A:5m
B:6m
C:7m
D:8m
|
Như hình vẽ cho thấy, khi trồng cây trên mặt đất phẳng, khoảng cách giữa hai cây kế tiếp nhau (khoảng cách ngang giữa hai cây liên tiếp) phải bằng 4,0. Nếu trồng cây trên đồi với độ dốc 0,75 và yêu cầu khoảng cách giữa hai cây kế tiếp vẫn là 4,0 thì khoảng cách dọc theo độ dốc giữa hai cây liền kề là ()
Lựa chọn:
A: 5m
B: 6m
C: 7m
D: 8m
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, when planting trees on flat ground, the plant spacing (the horizontal distance between two adjacent trees) is required to be 4.0. If trees are planted on a hillside with a slope of 0.75, and the plant spacing is also required to be 4.0, then the slope distance between two adjacent trees is ()
Choices:
A:5m
B:6m
C:7m
D:8m
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, when planting trees on flat ground, the plant spacing (the horizontal distance between two adjacent trees) is required to be 4.0. If trees are planted on a hillside with a slope of 0.75, and the plant spacing is also required to be 4.0, then the slope distance between two adjacent trees is ()
Choices:
A:5m
B:6m
C:7m
D:8m
|
As shown in the figure, when planting trees on flat ground, the plant spacing (the horizontal distance between two adjacent trees) is required to be 4.0. If trees are planted on a hillside with a slope of 0.75, and the plant spacing is also required to be 4.0, then the slope distance between two adjacent trees is ()
Choices:
A:5m
B:6m
C:7m
D:8m
|
132
|
27
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAL0AAABaCAAAAADI/QjWAAAHs0lEQVR4nO1abWhTZxR+XObozNgEJ+sQ24z8iXSTSvGHhK5x0lU3m7ZufnRS2zr8mvgROukCspjCVhwtbWGyD1acY8wpilo2bIehiVj0h3cWVAxbo1Es26RxnWtcqKZ3P25ucu97z3sT283cQA+Iuc99npcnh3Pve87bzBCRO7HMxwBPZMXG5CJyWWCQXHLvt/kZJJfcn3orwCAzcqjuC4K2W2okh3IfssxyMI9tDrn3O1DGlE4OuQ+UweFXQzlU9wU3TCi4YVJCuZP7kMUENvm54753OcAWvoHdL1Nf9lUgh3LP9gWDJQCs4bgSM657pi8QigGwyTeue6Yv8JcBYAvfuO79mwaVlwEHgJzJPdsXDLqdAwg5XUElybDu2b7gfF6+Hdbi0UsqlmjQqDsjDpUqrje1iaIoit+ufqgADet+/kPpnxRjlT8kPp0rH0mRjOH+NQ0yVCqKYt0Z+ar8SvLO7dLUZ0PUvXZgVfcFPtfhouSdef3uH+XPT/7/3tKH3+YvYaA+DwBHIwBgoKa4EUDeUWBNDECs9rRdYhmiQ95Q4uthoIJbAOSGWAAG9+e32gHBG2wuBpLf9X+u6IxifnQ+g1ysFEUxVfhDdaXyI3CutG4oSTNC3RMDq6oviGxurD8rd5z2s/WNGyKJCyPUvd+BsoC6Hw54AEiFH3d9bVs7OAhgtyneCQBVp15q6DABxqj7DfXLQo1nVVCBLa/ZHnLhwh2ETiawQFlTe6AscVFtBQyS+4OwhuOqgfX8tnw7rMX+S4C1SYGXNamUBqh7amD1ln0JoGWLK05K5DCAe+3AGnVWSTlev2tFhNQkwgDuNQNrqKb1zcRH+8GaqzpSjfuPuznMZRycJyD5FMgOrNy+QBuap7YX75LEyGWB3c11BSSfApMDa+Kb8fsCtezIJ1r38d+gfvrlIHoRXQHJp8DkxpRwb++X+gIAzUxfoPDuRSu0leNfssRPmSQOz/UFJJ8CAw4AysIvmd116LOzdgAlPQcPdc3Wmg85vZ6eIkDT5+w4dmxHhr2IvoDkU+D88spz4lBl5dzE9cimZE8jiqJ4prQuMY60tYltbaIoDtWVXkzcZCuntxVuKpUhyyyHj3rmOAKST4KKjQn6fQEAYNgdbrHPTFwwlXPVYjZbqHcUcXiuKyD5JKjemMKFnrUAgEAnOiVulacwLJNHd9Zs/PbZe/Ilk/veCqCitwiaCNTLs0JmApJPgNHaLdK7fb1lxeE5un3B7Fjk9K+fvj8yosDURVh+RRSvlFNlrBqS0wtIvhbkDaypKk/FmHtxzy+CIAhCci5XV040XAQUhaOaVFK9iJ6A5GvBR9iYoh8uefnIvL/VoNp973IAWN6r0VKH53oCkq8BB2pGG51O5xoAa5xOZ02sdoDjPd6+xHbK9icLq933VQBARZ9GTR2e6wlIvga093d4qoKjuwA0I1jlae2ndlUg3r7oGcI7694vpVLrkjo81xOQfC2YfmMCgAOLnjmxmPDOuBdsJgAw2djjFfLwXEdA8rUgf2BVRPfCiROL/6K8M29MqQ6Aij4mCWwvkk5A8lkw7cYEAN1d9cfGON6Z3J+slv6vPsmwAg4ARO55ApLPgmk2JgA4vnD02NIxyrcUytzHg9tQsR0H+hBk2sZBtzQkB9ViroDks6DewCoJAhuP3tfxrs696VJerAFoQOwS0/PSh+d8AcnnLMKL4Kt3Vjvv63OU7qPu4p/MgLmnahuz/XCGZK6A5Gc4aUvh++r6gZIZ6ViKyhFcrYnX7XbH0lbF88b2IukEJJ+3CBmC+5Wj0Qdvj6dznzqN+vjCYXMSjjdaWuTPoW0dye18uPazonQCks9bBADa0dQORd0L3vz3JvRMF8rfXq6c6OvP9aS8wPRNoXNY+sjpRbgCkv8IDU3I+cW+rbrmU5HIfXRBng0A0GFFyAUACMaumQEMrCieDeWQfOG0XU9A8jmLJEKZ+5D3wZ60ppO5T9S9+XQM6Ps8v9kKWOu7wg1VQJ4Z4A7JXAHJz2jSBjDsfrB7JnmHjlTdH99v2SUnROgKNr8l3wh5wx75tMJt8VjTCUg+bxEglfuI93ZzRt6TuZcr5/NDjuZ5CsLwfn/9VjOAiDvoUbx/fF5Lxxw9AcnnLKJyH/Fe/2BWJt5Z93HX93nrXgAAVFvlI+c/vo+t64Dra5u0ncu9CE4NNnSAJ9i3j+C/g++oRZIbXDua2sfiP2fqnXWfPCLHzXAPnJZC+bIa8h314Tl4ggXXCP7vyKcWSVZPd6xh3a3O5zL1zj61qY5D8AKoVzxSnF6EK3iD5uuCDR+tbXr6qYx8M5H9vz7EO/t3r5ykNuvu2/t3Lp20OMvuu09MwXuW//rQvTK/5fmpLJBF98dX5be8OLUlsub++ErT3il6z5p73ypTS8HUl8mKe1/t3b3/gfesuBdq7+6xpqdlEo/9jRne7EjfwGcaKvcChu4LuD9E8EbGhZFxzS+YwBWQ/JFxX49l1+TNakL5K4urbmDiCUyQ1cS78Uj43OXW8Uk1NOpg+3sAUB1UPNQ9BdKJf3QOAibu8e89SrCTIYDIzf9m6ccZBvidwhRi2n32Irfd8945ho7kPG+EX9VNPnK7cqbdZy+m3Wcvpt1nL6bdZy/+Bbu3j9WK+iNaAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_27.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, the plant spacing (the horizontal distance between two adjacent trees) is required to be 4.0. If trees are planted on a hillside with a slope of 0.75, and the plant spacing is also required to be 4.0, then the slope distance between two adjacent trees is ()
Choices:
A:5m
B:6m
C:7m
D:8m
|
Như hình vẽ, khoảng cách giữa hai cây trồng (khoảng cách ngang giữa hai cây kế tiếp) phải bằng 4,0. Nếu cây được trồng trên một dốc với độ dốc 0,75 và khoảng cách giữa hai cây cũng cần bằng 4,0 thì khoảng cách dọc theo đồi giữa hai cây kế tiếp là ()
Lựa chọn:
A: 5m
B: 6m
C: 7m
D: 8m
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the plant spacing (the horizontal distance between two adjacent trees) is required to be 4.0. If trees are planted on a hillside with a slope of 0.75, and the plant spacing is also required to be 4.0, then the slope distance between two adjacent trees is ()
Choices:
A:5m
B:6m
C:7m
D:8m
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the plant spacing (the horizontal distance between two adjacent trees) is required to be 4.0. If trees are planted on a hillside with a slope of 0.75, and the plant spacing is also required to be 4.0, then the slope distance between two adjacent trees is ()
Choices:
A:5m
B:6m
C:7m
D:8m
|
As shown in the figure, the plant spacing (the horizontal distance between two adjacent trees) is required to be 4.0. If trees are planted on a hillside with a slope of 0.75, and the plant spacing is also required to be 4.0, then the slope distance between two adjacent trees is ()
Choices:
A:5m
B:6m
C:7m
D:8m
|
133
|
27
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAL0AAABaCAAAAADI/QjWAAAHs0lEQVR4nO1abWhTZxR+XObozNgEJ+sQ24z8iXSTSvGHhK5x0lU3m7ZufnRS2zr8mvgROukCspjCVhwtbWGyD1acY8wpilo2bIehiVj0h3cWVAxbo1Es26RxnWtcqKZ3P25ucu97z3sT283cQA+Iuc99npcnh3Pve87bzBCRO7HMxwBPZMXG5CJyWWCQXHLvt/kZJJfcn3orwCAzcqjuC4K2W2okh3IfssxyMI9tDrn3O1DGlE4OuQ+UweFXQzlU9wU3TCi4YVJCuZP7kMUENvm54753OcAWvoHdL1Nf9lUgh3LP9gWDJQCs4bgSM657pi8QigGwyTeue6Yv8JcBYAvfuO79mwaVlwEHgJzJPdsXDLqdAwg5XUElybDu2b7gfF6+Hdbi0UsqlmjQqDsjDpUqrje1iaIoit+ufqgADet+/kPpnxRjlT8kPp0rH0mRjOH+NQ0yVCqKYt0Z+ar8SvLO7dLUZ0PUvXZgVfcFPtfhouSdef3uH+XPT/7/3tKH3+YvYaA+DwBHIwBgoKa4EUDeUWBNDECs9rRdYhmiQ95Q4uthoIJbAOSGWAAG9+e32gHBG2wuBpLf9X+u6IxifnQ+g1ysFEUxVfhDdaXyI3CutG4oSTNC3RMDq6oviGxurD8rd5z2s/WNGyKJCyPUvd+BsoC6Hw54AEiFH3d9bVs7OAhgtyneCQBVp15q6DABxqj7DfXLQo1nVVCBLa/ZHnLhwh2ETiawQFlTe6AscVFtBQyS+4OwhuOqgfX8tnw7rMX+S4C1SYGXNamUBqh7amD1ln0JoGWLK05K5DCAe+3AGnVWSTlev2tFhNQkwgDuNQNrqKb1zcRH+8GaqzpSjfuPuznMZRycJyD5FMgOrNy+QBuap7YX75LEyGWB3c11BSSfApMDa+Kb8fsCtezIJ1r38d+gfvrlIHoRXQHJp8DkxpRwb++X+gIAzUxfoPDuRSu0leNfssRPmSQOz/UFJJ8CAw4AysIvmd116LOzdgAlPQcPdc3Wmg85vZ6eIkDT5+w4dmxHhr2IvoDkU+D88spz4lBl5dzE9cimZE8jiqJ4prQuMY60tYltbaIoDtWVXkzcZCuntxVuKpUhyyyHj3rmOAKST4KKjQn6fQEAYNgdbrHPTFwwlXPVYjZbqHcUcXiuKyD5JKjemMKFnrUAgEAnOiVulacwLJNHd9Zs/PbZe/Ilk/veCqCitwiaCNTLs0JmApJPgNHaLdK7fb1lxeE5un3B7Fjk9K+fvj8yosDURVh+RRSvlFNlrBqS0wtIvhbkDaypKk/FmHtxzy+CIAhCci5XV040XAQUhaOaVFK9iJ6A5GvBR9iYoh8uefnIvL/VoNp973IAWN6r0VKH53oCkq8BB2pGG51O5xoAa5xOZ02sdoDjPd6+xHbK9icLq933VQBARZ9GTR2e6wlIvga093d4qoKjuwA0I1jlae2ndlUg3r7oGcI7694vpVLrkjo81xOQfC2YfmMCgAOLnjmxmPDOuBdsJgAw2djjFfLwXEdA8rUgf2BVRPfCiROL/6K8M29MqQ6Aij4mCWwvkk5A8lkw7cYEAN1d9cfGON6Z3J+slv6vPsmwAg4ARO55ApLPgmk2JgA4vnD02NIxyrcUytzHg9tQsR0H+hBk2sZBtzQkB9ViroDks6DewCoJAhuP3tfxrs696VJerAFoQOwS0/PSh+d8AcnnLMKL4Kt3Vjvv63OU7qPu4p/MgLmnahuz/XCGZK6A5Gc4aUvh++r6gZIZ6ViKyhFcrYnX7XbH0lbF88b2IukEJJ+3CBmC+5Wj0Qdvj6dznzqN+vjCYXMSjjdaWuTPoW0dye18uPazonQCks9bBADa0dQORd0L3vz3JvRMF8rfXq6c6OvP9aS8wPRNoXNY+sjpRbgCkv8IDU3I+cW+rbrmU5HIfXRBng0A0GFFyAUACMaumQEMrCieDeWQfOG0XU9A8jmLJEKZ+5D3wZ60ppO5T9S9+XQM6Ps8v9kKWOu7wg1VQJ4Z4A7JXAHJz2jSBjDsfrB7JnmHjlTdH99v2SUnROgKNr8l3wh5wx75tMJt8VjTCUg+bxEglfuI93ZzRt6TuZcr5/NDjuZ5CsLwfn/9VjOAiDvoUbx/fF5Lxxw9AcnnLKJyH/Fe/2BWJt5Z93HX93nrXgAAVFvlI+c/vo+t64Dra5u0ncu9CE4NNnSAJ9i3j+C/g++oRZIbXDua2sfiP2fqnXWfPCLHzXAPnJZC+bIa8h314Tl4ggXXCP7vyKcWSVZPd6xh3a3O5zL1zj61qY5D8AKoVzxSnF6EK3iD5uuCDR+tbXr6qYx8M5H9vz7EO/t3r5ykNuvu2/t3Lp20OMvuu09MwXuW//rQvTK/5fmpLJBF98dX5be8OLUlsub++ErT3il6z5p73ypTS8HUl8mKe1/t3b3/gfesuBdq7+6xpqdlEo/9jRne7EjfwGcaKvcChu4LuD9E8EbGhZFxzS+YwBWQ/JFxX49l1+TNakL5K4urbmDiCUyQ1cS78Uj43OXW8Uk1NOpg+3sAUB1UPNQ9BdKJf3QOAibu8e89SrCTIYDIzf9m6ccZBvidwhRi2n32Irfd8945ho7kPG+EX9VNPnK7cqbdZy+m3Wcvpt1nL6bdZy/+Bbu3j9WK+iNaAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_27.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, the plant spacing (the horizontal distance between two adjacent trees) is required to be 4.0. If trees are planted on a hillside with a slope of 0.75, and the plant spacing is also required to be 4.0, then the slope distance between two adjacent trees is ()
Choices:
A:5m
B:6m
C:7m
D:8m
|
Như hình vẽ, khoảng cách giữa hai cây trồng (khoảng cách ngang giữa hai cây kế tiếp) phải bằng 4,0. Nếu cây được trồng trên một dốc với độ dốc 0,75 và khoảng cách giữa hai cây cũng cần bằng 4,0 thì khoảng cách dọc theo đồi giữa hai cây kế tiếp là ()
Lựa chọn:
A: 5m
B: 6m
C: 7m
D: 8m
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the plant spacing (the horizontal distance between two adjacent trees) is required to be 4.0. If trees are planted on a hillside with a slope of 0.75, and the plant spacing is also required to be 4.0, then the slope distance between two adjacent trees is ()
Choices:
A:5m
B:6m
C:7m
D:8m
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the plant spacing (the horizontal distance between two adjacent trees) is required to be 4.0. If trees are planted on a hillside with a slope of 0.75, and the plant spacing is also required to be 4.0, then the slope distance between two adjacent trees is ()
Choices:
A:5m
B:6m
C:7m
D:8m
|
As shown in the figure, the plant spacing (the horizontal distance between two adjacent trees) is required to be 4.0. If trees are planted on a hillside with a slope of 0.75, and the plant spacing is also required to be 4.0, then the slope distance between two adjacent trees is ()
Choices:
A:5m
B:6m
C:7m
D:8m
|
134
|
27
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAUcAAADWCAYAAABCBEA5AABZT0lEQVR4nO29d3xc53nn+52OwaBjgEHvHSQKAZJgFymKpCTSapZcorUdN3ndEjvO3Ti7ubs33lxnU7xOnFw7sR3JWsu2FEsWRRWqsHdSJEGi914GdTCD6e3+QZ8TgBh2DEBS7/fz4ccW5mDOMwdnfud536cpgsFgEIFAIBDMQ7ncBggEAsHdiBBHgUAgCIEQR4FAIAiBEEeBQCAIgRBHgUAgCIEQR4FAIAiBEEeBQCAIgRBHgUAgCIEQR4FAIAiBEEeBQCAIgRBHgUAgCIEQR4FAIAiBEEeBQCAIgRBHgUAgCIEQR4FAIAiBEEeBQCAIgRBHgUAgCIEQR4FAIAiBEEeBQCAIgRBHgUAgCIEQR4FAIAiBEEeBQBAWDh06xI4dO9i7d+9ym3JbCHEUCARhYXZ2ltHRUUZHRwkEAsttzi0jxFEgECw6wWCQiYkJzGYzXV1d9Pb24vP5ltusW0KIo0AgWFT8fj/d3d1MTEyQlJSExWKho6MDj8ez3KbdEkIcBQLBouLz+WhubmZiYoLS0lJcLhdtbW14vd7lNu2WEOIoEAgWFb/fz+XLl5menmbNmjUEg0Ha2tqE5ygQCD7aBAIBGhoasNvtbN++HY1GQ1tbG8FgcLlNuyWEOAoEgkXF5XJhNptRKBRUVFQQHx/P7OwsVqt1uU27JYQ4CgSCRSMQCDAxMUFMTAwJCQkolUry8vLIycmhs7OT8fHx5TbxphHiKBAIFo2JiQn6+vowGo1kZGSgUCjIysoiMzOT7u5uBgcHl9vEm0aIo0AgWDRGRkZob28nJSWFvLw8gsEgGRkZZGZm0tvby9DQ0HKbeNMIcRQIBIuG2Wyms7MTk8lEdnY2AJmZmWRlZdHV1SU8R4FA8NFkdHSUtrY2UlJSyM3NRaFQYDQaSU5OZmhoiLGxseU28aYR4igQCBYNqVzQZDJhNBrln8fGxmK1WrHZbMto3a0hxFEgECwKfr8fj8eDXq9Hr9fPe02v18ue5ODg4D1RZy3EUSAQ3DEej4e+vj6CwSB5eXlERETMe12n07FixQq0Wi2NjY33hAcpxFEguM+5ujIlHJUqDoeDS5cu4ff7qaysJDo6et7rERERFBcXo1araW1tZXZ2dtFtWGyEOAoE9zkKhYLp6WnefvttWlpaUCgUi34OSRx9Pl9IcdTr9ZSWlqJSqWhubhbiKBAI7g76+/v5+7//e95///2wvL/T6aS5uRm/3095eXlIz7GoqAi1Wk17e7sQR4FAcHdgtVrp6emhs7OTiYmJRe/M7fV66ejowO/3U1hYiE6nm/e6UqkkMTERhULB0NDQPdG+TIijQHCf43Q6GRsbQ6FQMDk5SWdnJy6Xa1HPYbVaCQQC6PV6lMpry0p0dDR6vZ6ZmZlFPX84EOIoENznSDXNGRkZ+P1+WlpacDgci/b+ExMTjI6Okp2djclkuu6xqamplJeXMzo6Smdn513dxkyIo0BwHxMMBmltbaWvr4/y8nK0Wu2ii2N/fz9DQ0Pk5OSQmpp63WNNJhOFhYWYzWa6u7uFOAoEguVBoVDQ2trK0NAQa9euJSYmhtbWVpxO56Kdo7e3l8HBQQoKCsjKyrrusWlpaRQXFzM+Pi7EUSAQLC8dHR2Mj4+zZcsWjEYjnZ2duN3uRXv/vr4+hoeHKSsro6Cg4LrH5ubmUlFRwfj4OF1dXXe1OKqX2wCBQBA+Zmdncbvd6HQ6UlJSSEtLIyYmhvHxcfx+PyqV6o7PMTAwwIULFygtLWVqaoqYmBh5iR0bG4vP52N0dJTm5macTicTExPU19dTVlYmxFEgECw9breboaEhoqKiiIyMlHsrlpaW0t/fT0dHByUlJXd8HqVSycTEBPv27UOlUpGQkMBTTz3Fpk2bZHHs7u7mF7/4BaOjo6hUKsxmM1VVVXf+IcOIEEeB4D5lamqK1tZWYmJiMBqNKJVKTCYTeXl5jIyM0NfXtyji+OUvf5mSkhL27t3L2NgYOp2OvLw8ef8xIiKCtLQ00tLS5Prr7373u+zYsQO1+u6VoLvXMoFAcEdI4hgbG0thYaEsjgUFBRw/fpyEhIRFOU9CQgKpqamYTCbS0tJYvXr1gr3H1NRUtmzZQjAYZGhoCJPJRExMTFhKGRcLIY4CwX3K1NQUbW1tVFRUkJ+fP89zfOWVV4iJiVmU87z11lscOXKE9PR0tm3bxgMPPLBA9AwGA7t37yY3N5cjR47w5ptv0tvby3/5L//luknjy4kQR4EgTASDwQUiEepn4WJycpJLly6xadMmSktLUSqVqFQqTCYTExMTmM3mO3r/3t5e9u7dy/T0NKtWraK2tpbS0lL580mfde5nLiwsRK1WExERQV9fH9///vfZvXs3lZWVd/x5FxshjgJBmJAEYWJigmAwiNFoXNJl5MzMDGNjY0RFRc3rrxgdHY1Go8Hj8WC32zEYDLf0vl6vF4vFwqlTpzhx4gTr169n+/btC/Yvpc869zNrtVqKi4uJj4/nvffe49VXXyU2NpbY2FhSUlIW9IFcTu5Of1YguE/w+/38+Mc/5kc/+tGSdb8OBoO4XC48Hg8mk2lBV26VSkVpaSlxcXE0NTVhtVpv6f0HBgb43ve+x9GjR/nSl77E008/fcP8xqtJSkri0Ucf5S/+4i/o7Ozkz//8z2lqasLv99/S+4QT4TkKBGHE5XJx4cIFbDYbo6OjZGZmhv2cPp+Pjo4OZmdnKS4uJi4ubt7rarWaoqIiRkdHaW1tlYMjN8Jms9HU1MTly5dJSkqipKSETZs2XdPbC7WsllAoFMTHxxMfH8/ExATnzp3jxIkTWCwWqqqqSEhIWPZgjRBHgSCMTE9PMzs7y9TUFB0dHcTGxi5aIORaeDweGhoasFqtVFVVzRt0Bf8hjg6Hg9bWVioqKuQxqtfCarVy8eJF9u7dS3d3N3/yJ3/CunXrCAQCeDyeecncCoUCtVotB1okgfR6vQuSvhUKBTt27CA/P5+/+Iu/oKGhAafTSV1d3QK7lxohjgJBmJienqa9vZ2IiAj0ej3t7e1kZ2eHXRy9Xi9NTU24XC7q6upITEyc97paraa4uJiuri7OnDnD5OTkdd9vamqKw4cP84Mf/IDh4WGSk5P55S9/ybvvvksgEECj0aBSqQgEAjgcDmJjY3n22WfnCe74+Di/+MUvMJvNGAwGVCoVfr8fr9eLRqPBarViNpvp7+/nwoUL/PEf/zG7du1a8n3auQhxFAjChNlspqGhgcTERCIiImhvb5fTasKJ3++nvb2d+Ph4SkpKiI+Pn/e6Wq0mOzsbg8FAd3f3DYddSd6eWq0mKyuLoqIiVCoVY2NjzM7OMjQ0xPT0NGq1moSEBCoqKhbsr/r9fmZmZmhubmZqagqn00l0dDQZGRlERUWh1WopKytDq9UyMzMje5vLiRBHgSBMDA8Pc/HiRbKysvD5fDQ1Nd1x+szN4Pf7GRoaQq/Xk5WVFdLzUqlU6HQ6pqenb9i+LDExke3bt5Oeno7L5UKn06HRaJidnaWrq4vXXnuNrq4uEhISqK6u5qmnnlrQ1zEhIYFPfvKTxMXF8fbbbzMyMoLRaGTr1q0UFRURExODz+fD7Xaj0WhCivpSI8RRIAgTIyMjXL58mZ07d6JSqXjjjTeYmJgI6zkDgQBms5moqCh5LMG1iIuLIycnB5vNxtTUFHFxcddMyI6JiWHt2rV4PB5GR0c5evQoly5dYnR0lPT0dLkqprS0lPz8/AURcq1WS15eHrt376agoID29nYGBgY4fvw4bW1trFixgi1btpCRkbFgxMJyIcRRIAgTFouFyclJsrKyMBgM+Hy+sI8HGB0dpbe3l7S0tBtGxhMTE1m5ciU2m43W1lZqa2vRarUhjw0EAnJgqbu7m5aWFnp6egDYunUrO3fuJD09/ZrnUigUREZGUlJSQklJCdPT0xw8eJB///d/p6enB5VKJf9+QkICMTExi9Ix6E4Q4igQLDLBYBCHw4HP58NkMqHT6YiNjaWiogKv10trayu5ublh8ZCGh4fp7u4mLS3thhHo+Ph4iouL5Uh6VVXVNcVxdHSU3/zmN5w/fx632822bdt47LHHyM7OJj4+/pq/d71zP/bYY2zZsoW+vj7q6+t54YUX8Hg8rFy5kmefffaWcycXGyGOAsEi4/V66e7uxu12U1BQQGRkJAaDgdLSUrxeLy0tLaSmpoZFHIeGhuju7qayspLy8vLrHpuRkUFNTQ179+6lra1twUTAqakpGhsb6ezspLW1lcuXL+N2u0lLS0OpVOL1epmdnWVmZga3243f7ycQCBAREUFBQcE8wfT7/XR2dmK321EqlSiVSnnv0uv1olAo0Ol0mM1mjh8/zszMDGVlZeTn57NixQqSk5MX/VrdCCGOAsEi43a7aWlpweVyUV5eLpfvlZaW0tTURFtbGxs2bAjLuUdHR+nq6mLDhg1ERUXJAQ5A3k8MBAIEAgGCwSBJSUlMTk5it9sXVKf09fXxyiuv8O677zIyMkJeXh5r165l5cqVOJ1OTp48uSCi7HK5iI6ORqfTzYvKj46O8v777zM5OblgPxKuRMJramqIjY3l3LlzPP/888TGxrJjxw4+97nPCXEUCO4HPB4PbW1tuFwuampqMBgMGAwGysrKqK+vp7m5edFHo0qMjY1x9uxZDAYD586dIyIigtWrV1NZWUlmZiZ+v5/u7m7eeecdRkZGUCgUHD58mOTkZDn9JhAIYLPZmJ6eJioqivXr1+Pz+YiOjiYhIQGHw4Hf78fv988TR6VSyfDwMFarFYVCwQMPPEBVVRXNzc0cOXKEM2fOoNPp5D6P0u8qFAqUSiVqtZqYmBhWrVpFXl4eCoWC2NhYZmZmbhgwCgdCHAWCRcbj8dDS0oLJZKKsrIzo6GhUKhW5ubl4vV56enrweDxhOXdRURG1tbUMDw/T09NDdHQ0ubm5sveoUqnw+Xy0tbVRX1+PSqUiLS2NdevWzVvm+/1+EhISWLt2LUqlEo1GQyAQwOfzhawRlzr+KBQKmpqa6O3tZWBggKqqKkZGRujq6sLn85GTk8PKlSvlc1yNSqVCrVbLdvp8PpKTk2VPdykR4igQLDKS5xgbG0tpaan88+joaILBINPT0wv29xaLxx9/nJKSEv75n/+Zjo4OsrKyKC8vJy0tTT4mKyuLiooKzGYzY2NjfPnLX+aJJ54gKioKuCJ08fHxxMbGsmLFips6r7SPmJycLO9HStFmpVIpd97ZsGED27ZtIxgM3nSTCcmzXOpKGSGOAsEiY7Va0Wg0REZGLngtJSWF1NRUhoeHyc7ODnnMndDT08Px48fR6XRs27aNzZs3L2glZjAY2LFjB3FxcXz44Yd0dHRw4MABHn/8cfkYhUJxW6k0ERERaDQafD5fyHprqUmF9N93M3e3dQLBPcb09DSjo6Py2ICrycrKoqCggL6+PlJSUm4YUb5ZAoEAU1NTnDp1ikuXLlFUVMSWLVtYvXo1ML9DjlKpJD8/H6PRSHx8PO+88w6HDh0iPz+fwsLCO+qp6PV65b3IuZ6e5CmGy2MOB0IcBYJFpKenh46ODvLz88nLy1vwenp6OtnZ2QwMDJCWlrZo4tjV1cXf//3fExUVxa5du6itrZ2XlB2q8WxsbCybNm0iOTmZU6dO8Zd/+Zfs3r2bz372s4ti072OEMerCPXEW+6+cnc7d+s1Ww47ent76ezspLCwMKQ4ZmRkkJuby3vvvUdKSsodn8/lcnHmzBkuXrxITEwMlZWVrF69+qb7RhoMBsrLywkGg0xOTtLZ2ckvfvELHnjggRsmkd/vLIs4BgIB/H4/CoXitvc2woVCocDv9+Pz+eSo2d2ElGgrbVLfDcOJ7qZrJvUM1Gg0yyLQ/f39dHd389BDD5GTk7PgdalyZWhoiMHBwTs6l8PhoKenh5dffhmbzca3vvUtysrKbnlZrNPpqKmpoaSkhJ/85Cf8n//zf4iIiCAiIgKj0XjXfQeWimURx76+Ps6fP49GoyE7O5sVK1bcVZuzDQ0NvPLKKzz++OOsWbNmuc2R8fv9nDhxgpGRERITEyktLb1uPetScv78eV5//XWeeeaZZR3W/vLLLzM4OMjXvvY1oqOjl/z8IyMj9Pf3k5aWFnL0qU6nIzExkYmJiRv2Ubwe4+PjHD9+nJMnT1JXV8fatWspLi6+5vHX68otYTAY+PKXv0xdXR379++nv7+fRx55hPz8/LtqtotEuFcGy6JIIyMjfPDBBwSDQdasWUNJScldJY49PT289tpr5Ofn31XiGAgEqK+v58KFC5hMJqKiou4acezs7OTVV1+lvLx8WcXx1KlT1NfX8+STTy65OHq9XlwuF2q1mtjY2GseZzAYiI6OJhAIMDMzc91jr0ZqR7Z//34OHTpEf38/+fn5+Hw+6uvr503+k1Znubm5cvsvhUIhj1Gw2WzzPOxAIEBMTAxarZbOzk7MZjMWi4VHH32UmpoatFrtsm6XeDwexsfHsdlsch/IcLIsijS36WVERASf+MQnlsOMazIzM8P09DR9fX0MDw9jMpnuiqVFIBBgcHCQ8+fPExsby9q1a5fbJBnpmvX29jI6OkpSUtKSXzObzcbMzAzj4+N0dnaSmpq6ZALpcrno6elBq9VSUFBw3c+u0WhYuXIlWq2WxsZGVqxYcdMCabFYOH/+PP/4j//I0NAQZWVl7Nu3j/fffx9AzgcMBoN4PB4MBgPf/OY3qaurk9/Dbrfzy1/+kvr6eiIjI+XjA4EAcOU+c7lcDA8P86Mf/Uied52dnb1sTkwwGGRwcJBjx47R0dHBf/pP/+m6nvJisCyf1OVyMTIygtlsZnx8fDlMCInf72dkZITJyUliY2OZmJigs7OThISEu0IclUol09PTDAwMYLVab9ikdCnw+XwMDw8zPT1NbGwsY2NjcuPTpbxmDoeDzs5O/H4/er2e7u5uCgoKlkwcpbZfWq2WoqKi6zaV0Gg0FBUVYTabaWlpITMz86bFMSoqiuLiYp555hlmZmbIyMhAr9fj9XrlQVVNTU3yKIRQM2S0Wi1VVVVMTU1x8eJFRkdHiY+PZ8uWLWRmZsq5l+Pj40xNTbF+/XqMRuOy7G9L6Un19fVMT08THR3NihUrFgwNCwfLIo5Op1MuSYIrN1a4XeSbwefz0dzczOTkJIWFhTgcDtra2qiurr4r9lxsNht+vx+NRoNGo8Htdi+3SfK8kpmZGYqKirDZbLS3t1NdXX3LbazuhOnpaS5fvoxeryczM5Oenh4GBwcpKipakvNbrVaam5vR6XSUlpZeN7lbr9dTVlbG7Owsra2tt7QC0Ol0lJWV8dxzz2G32/H5fNjtdsbGxtBqtRiNRpKTk0lMTGTDhg08+uijC7ZedDodDzzwADqdjkAggFarJSIiApPJRF5eHqmpqcTExMhdc5KTk5f0/vf5fNhsNsbGxujt7eX48eM0NTWh0+nYunUrmzdvXjAXJxwsqTh6vV76+vqwWq2UlJQwOztLQkIC7e3t6HS6kBvYS4nP5+Py5ctMT0+zevVqOjs7Q7ZyWg4sFgstLS3ExsZSWVmJXq/HbrfT1tZGbm7ukgrRXLxeL/X19dhsNlavXk17ezvt7e1LNqNZYmJigvPnz5OQkEBSUhJdXV0MDQ0t2fltNhstLS2sWrWK6urq6z7sdTod1dXVtLa2cvToUSwWyy2fT0owHxoa4r333uPIkSOMjY1RUVHBd7/7XcrLy+WZ1VffG0qlkoSEBLZv387q1avp6enh7NmzcjJ4ZWUlzzzzzIK2Y0vF6Ogozz//POfOnUOtVlNXV8d3vvMdMjMzSUxMJDIycklWJUsqjh6Ph8uXLzMzM0NVVRV+vx+dTkdjYyMJCQnLLo6BQICGhgaCwSAPPPAA3d3dtLe3L/ugH7gSxJKGNdXV1aFUKnE4HFy6dImUlJRlE0fpgWIwGNi6dSutra10dHQsuR3SEvGJJ54gJyeHI0eOLKk4zs7O0tjYSDAYxGg00tDQQGpqKllZWSQlJckT9jo7O+nr60OhUHDhwgWam5uZnZ29pXMFAgGam5vlB8DMzAzl5eWsXr2aVatWsXbt2gXbCVdHq1UqFZGRkURGRpKamorRaCQiIgKz2YxCoZDHF2RmZrJy5cqwfzclz7+3t1ce3FVaWkpycjJ1dXVUV1cveqnljVhScXS73dTX1+Pz+eQuIAMDA5w7d25et47lwuPx0NfXR2ZmJuvWrePf//3faW9vx+l0LqtdcKXDc319PdXV1eTm5uLxeDh79iwXLlxg8+bNtxTxXEzcbje9vb2sXLmSuro6XnjhBbq6unC5XGEfQToXi8VCX18f6enpVFdX43A4mJqaWrLzS7meFy5cwGw24/f7WbduHY8//jhxcXGyOH7wwQe8++676HQ6+vv75W42N2Ju+V13dzcvvfQSZ8+exev18thjj/HEE09QXFwsjzyVapslIby6QmZuvixc6eZTVFTE6Ogop0+f5pe//CUDAwPk5OTw6U9/mq1bt8rL7DvZe7y6WMDr9WK1WmlsbOTVV1+loaEBnU7H5z//eR588MFlnV29pOLo8/m4cOECmZmZ1NTUEB8fz8GDB6mvr1/W9A+J6elp9Ho9sbGx6HQ6cnJy5HZLMTExS/plv5rh4WHOnz/P9u3b2bhxIzabjYMHD9LQ0BC29lc3g8ViwWAwyNcsPz8fu91OR0cHer0+7AGRYDBIMBjE6XQSFxeHwWAgJiaGkpISlEolnZ2dZGVlhd2zLi8v54c//CH79u3j3LlzaDQakpKSKCkpkT0ek8lEeno6sbGx9Pb2smbNGj75yU/K9c/XY2xsjLfeekv26NxuNyaTiaqqKlQqFRcvXqSzsxO48j2TGtrqdDrWrVs3r1lsMBiU82Ul4ZRahTmdTqampigvLyciIoLe3l7+6q/+in/7t39j7dq17Ny5k5qamtu6RgqFYt7foaWlhb1799Le3o5KpaKqqooHH3xQ3vtcin3F67Gk4mi1WpmeniY7O1tuoRQXF4fdbr+tfZfFZGpqioGBAYxGo2xbTk4OQ0NDdHZ2YjQaF60O9nawWCzMzs4SGxsrL4dUKhUWiwWr1bosNk1MTDA4OEhycrJcCpebm8vk5CQdHR0Yjcawp1sEAgEGBgaYnZ0lNzeX6OhotFot5eXleL1eGhsbiY+PD/sXzWAwYDKZMJlM5OTkUFRUxJo1a+Y9UDUaDZWVlVgsFk6cOEFqaiqJiYkhO2NfzdjYGM3NzTQ0NDAyMkJGRoY8RMvn89HT0zOv4YNCoWB2dhav14tGo6Guro6EhARcLhcdHR0cO3aMsbGxectlqSmFRqMhMTERv9+P1WqltbWVqakpIiMjKS0tldOQroW0DSX979xej6OjozQ3NzM6OkpbWxsjIyO43W6SkpIoKipi1apVy+otzmXJxNFut8uzauc+xSIjI8nIyJCTW00m07LkUo2MjNDe3k5qaiq5ubkEg0EyMjJIT0+nt7dX7ou31Pj9fsbGxvB4PGRkZGAwGOTXkpKSSEpKwmw2k52dveRJz9KDIyMjQ67DzcrKYmhoiK6uLnJzc8MujtIA++npacrKyoiPj5dTZdra2mhtbaW6ujrs4tjb28tPf/pTvF4vmzZt4oknngjZlWfFihVkZGSQmZnJ0aNH+cEPfsC3v/3ta3pjUv/H2dlZ0tLS2L17N2q1Wi4flVYNV4uVWq1menqarq4uOedxz549dHR0sG/fPurr69Hr9aSnp6NUKuUcRwlp3MG6detYu3btvCW42WzGZDLdkjcuLaE//PBDDhw4IM/z/sxnPiPnT0ojYtVqNVFRUcteGLJkZx8YGKCrq4vMzMx5Be3R0dGUlZXJQ89jYmKWpexLmr2RkpIi25ednU1fXx979+6dNw9jKXG5XLS0tOB0OikrK5u3t5iVlUVOTg49PT2YTKabbky6WEjdpueOAc3NzaWvr48333yTsrKysNsgDW6anp6mpKSEuLg4tFotZWVldHV10dTUhM1mC6sNe/fu5dKlS5hMJkpKSqiurg4pjBJxcXGsW7cOvV7PhQsX+N3vfkdraytPP/30AsFRKBTo9XpycnKIioqS68al/gRXi5r0OxqNhubmZgKBAEqlErvdTjAYxOVy4XK5SEpKorCwkK1bt6JWqxdkF0hepEqlQqlUyuImNa291j6p1KdRoVDI6T/9/f0cP36cyclJioqKqKmpIS8vD6PRiNFolKt05lbq3A0smTj29vbS3t5Obm7uvJGL0dHRVFVV0dHRwaVLl6ioqFg2cezs7KSqqors7GwUCgWpqamkpKQwMDDA6OjoktsEVwIely5dwuVyUVVVNS/5NTc3Vxb15OTkZRHHrq4uVq9eLc8FSUtLIzk5mb6+PsbGxsJuQyAQoKOjA4fDQXFxMfHx8SiVSvLy8lCr1XR1dYUtWd5ut9PT08Phw4dxOBx84hOfkIdE3YikpCQ2b95MUlISP//5zzl8+DB5eXmywM8NXOj1evR6Pampqbdkn06nY3BwkJmZGVnMJLFNT08PS6lnfHw8mZmZcoFHfX09/f39OBwOXC4X8fHx1NbWkpubi0KhYHx8fN6W2lyRXG6WTBz7+vpob2/n05/+9DwvLDo6msrKSlpaWrh8+fKyRYaHh4dpbW0lLS1NTpqVBvxMTEws276ey+WioaGBhIQEKisr54ljTk4O4+PjnDp16rqeSrgYHBykvb2djIwM+YurVCqJjo5mYmIi7B4bXBHH1tZWoqKi5HktcOW+kva4whGwcrlc/O53v+P1119n27ZtbNq0idzc3FsqZtDpdJSUlPCnf/qnHDlyhL/6q79i165dPPvss4tSATK38azEXO8sHLmoBQUFxMfH89prr/H222/z85//nNraWr7xjW8QHx9PZGQkGo1GziSQPFspsHY3sWTiaDabGRoaIjU1dd4TMDIykvz8fILBIN3d3csmjtJ5r765pY12v9/P1NQU8fHxS/pkc7vd8qCkgoKCeXuOJpOJjIwMRkZGGBkZWTKbAHmJplAoFnj6UVFRmEwmvF4vFouF2NjYsF0zm80mBx2uziaIj4/HaDQyNTUlH3On+Hw+hoaGOHv2LMPDw9TV1bFt27YFowhuloiICLKysnjwwQeZnp7GZrOxb98+6urqyMrKuqPZ1tcTnMUWI5/PR2Njo7xisNlsZGVlkZCQQGlpKYWFhcTFxeH1euW/GXDXeImhWJJiSY/Hg81mw+fzhUwmNRgM6HQ6HA7Hknto0s0OV/YYr97ziYiIoLKyEo1GQ0NDw5J4Q3Ox2Ww4HA60Wm3IVKKEhAT8fj82m23JHixer5fBwUFUKhVZWVkLNs4jIyOprKxEoVDQ0NCA3W4Pix1Op5ORkRESEhJISUlZsFeVmppKeXk5o6OjtLe3L8peVnd3NwcOHODFF1/E6/XyxS9+kYKCArxeL263e96/UJ6Zz+dbcJzb7SY1NZVvfvObREdH8+tf/5r9+/fT1tZ213lTcwkGg/h8PjweD11dXbz//vv8y7/8C//yL/+Cy+Xi4Ycf5tvf/jZr167F5/MxOTmJ1WqdF1G/mwm752i322ltbUWtVrNixYprpi1kZWVRWFhIf38/GRkZZGRkhNs02T6pKmblypULPMeIiAiKi4sZGxujtbWVwsLCJct3lPb0cnNzQzZOleyTrmtDQwOlpaVh37OdnZ2loaEBpVLJypUr53mzcEUci4uLmZycpK2tjeLi4rDUzs/dCiksLFzwZUtOTqagoICxsTF6enpu27uD/+i685Of/IQ333wTvV6PUqnEZrPJQQvpIeH3+3E4HGzevJmPfexj897nvffe4+DBg0RERKBWq+WIsxQA6ejowGw284Mf/IDGxka+8Y1vUFBQcFfU9l+N1WrlwIEDHDp0iOnpaaqqqnjmmWeIiooiPj6eiIgIHA4HPp/vrhfCUIRdHK1WK/X19Wg0Gqqqqq4pjtnZ2ZSWltLT00NSUtKSiuOlS5fw+/1UVVUtEBa9Xk9paSmTk5O0tLSwbdu2JbELrngpXV1dFBUVhWy5D1dSOCorKxkdHaW+vp6UlJSwi6PNZqO+vh6lUkllZWVIcSwrK+Po0aO0tLSwffv2sNgxODhIU1MT6enpIVOGUlJSKCws5NixY3R1dS3KORUKBTExMZSWlhIXF4fFYsHtdjM5Ocng4CA+n0/usxkqEOR2uxkeHmZ4eJiZmRngylwZo9GITqcjKSmJyMhILl26JAdR7ibv0eFwMDw8zOTkJAMDA3R0dDA5OYlarSYtLY2KigqMRiMWiwWHwyGvGoQ4hsBms8k1wdfzHDMzMyksLOTUqVMYjUa2bt0abtOAK3/shoYGcnNzWbFixQIPR6/XU1JSwqlTp2hpabnlOtg7obe3l+7ublavXn1Nz1Gn01FeXo7FYqGhoUHeqwonkudYWlrKihUrFtS8GgwGSkpKOHr0KK2trWFb7kue45NPPnlNz7GwsJBXX31V3vS/XSIiIigpKeHrX/86TzzxhNwZKRgMMjo6ysmTJ+XKlczMTJ588kk2bNiw4H3Wr1+PRqPhlVde4fz583g8HoqLi9m0aROpqamoVCo8Hg9er5fU1FQKCgruilEYEp2dnezbt4933nmHqKgo9uzZw9e//nWSkpKw2Wy43W5GRkbka30viqJE2MVxdnaW+vp6du3axapVq65ZPJ6bm8vs7Cy/+tWvlrRMz+Px0N7eTlZWFkVFRQuWL9ITEa7kai5lqZ40ye7ZZ5+9Zp6lTqejqqqK+vp6Ll68uCR7ti6Xi7a2NkpLSykqKgqZgJyenk4gEKC/vz9sXY0mJibo6uoiKSkp5EApKf1lenoauPMvqkKhoKCggNzcXHnFcfLkSTo7O3G73ezZs4fs7GyKioooKyubV+wgkZiYyOrVq4mJiWHz5s10d3czPDzMvn37KCgoYN26dVRVVRETE3PXiKLU/6C+vp5AIEBsbCyPPvoocXFx5OTkEBMTg1qtlvMl5yaM38ssybJ6fHycyMhIuVV7KDQajbwUmZiYkIc1hRu73c7s7Kzc0+5a6PV6gsHgknqOk5OTcmXEtaoRlEolsbGxREdHL8gZCxd2ux273U5ERMQ17ZKSgIPBYNiCWDabDZfLdd28wujoaDQajdzg4Hr34M3gcrmYmZnBbDbT1tZGW1sb4+PjFBUV8cwzz1BdXX3dqLharZbLDDdt2kRzczMvvfQSDQ0N+P1+4uPjiYuLw2QyERcXd1OlheHA6XTidDrlbbFTp05x6tQpioqKqKyslLfIpqam8Hg8uN3ukONf72XCpj7BYJCZmRkmJiZITU29qbwtlUpFeno6Wq2W7u5usrOz7yiV4UbMzMwwNjZGZmbmDes5U1NTKSkpYXR0lMHBQdLT08N2E3g8HjkanJGRcVMPiejoaDIyMrBYLExNTREXFxcWz8NisTAxMSGnaVyP9PR0ioqKGBoaYnh4WPbA7xSfz8fo6CiBQIC8vLzrPtQUCgXFxcXMzs7S0tJCeXn5HXUwOnToEO+++y49PT3k5+fz1FNPUVxcTEpKCgaD4ZbuCYVCQXl5Of/1v/5XzGYz7e3tHDx4kLfeeovU1FR27tzJU089ddu23gmXLl3i7bff5tixY5SWllJTU8PDDz+MXq9HoVBgt9txOp34/X75s9xvhFUcu7q6MJvNFBQUhFxiLDBGrZY7cLe2thIbGxvW5Ob+/n6Gh4fJycm54QxhaXPfbDbT3d0d1sFWVquVlpYWueX+zdSwGo1GioqKmJiYoKOjg5qamkUXx2AwSF9fH2azmby8vBv+bdLS0igoKJhXZrgYOJ1O2tvb8fv9FBUVXbfPn1KppLCwkL6+Ptra2jCZTLckjlKSeVtbG52dndTX1zM4OEhUVJTcSdvlcjE2NobT6ZSXlYBcYTWXsbExhoeH55XnRUZGykKj1WoJBoO0trbK/R8LCgooLi6mtLR0UZu8Xi1oPT09tLe3yxUtgUCA4uJiCgoKyMrKknsOSGl50gCv+5WwimNrayvDw8OsXLnypsREq9VSUVFBc3Mz9fX1FBQUhFUce3t7GRoaIj8//4b2mUwmCgoK6Orqoqenh40bN4btxrBYLHJjgJKSkptK40hNTaWiooLBwUGam5uprq4Oi23d3d2MjIxQUFBww3K2tLQ08vLy6O7upq+vL2SA4nZwOp20tLQQCATmVcWEQqVSUVBQgNVqpa2tjbKysluqk3e5XBw9epRXX32VM2fOyDNM6urqiI+Pp7W1lZaWlnljQiXBXL16NTt27JCX2X6/n4sXL3L69Gm0Wu28aLSU92cymdiwYQNnz57l7NmzvPXWW9TW1vLUU0+RlZW1aPvxCoVCrs9WqVSMjIxw+vRp3njjDVpbW9m2bRubN29m5cqVeL1e7Ha7vHcr/f79TljFsaGhAbPZzCc+8YmQjWyvnjsbGRnJ1q1bmZyc5I033mDz5s1hbV4gTcp74oknKC0tve6xxcXFOBwOTp8+TWdnZ1jTKyYnJzl79izbt2/nwQcfXPCFCDWvt6SkhGAwyA9/+ENmZ2f55Cc/ueh2SVVM4+PjbNq06YYdd0pKSrDb7Zw8eZLu7u5Fs8PpdNLc3IzJZGLt2rXXFWmNRkNtbS1jY2OcOnXqlga6ud1uRkdH8fv95OXlkZycjFarlSt+JA8qEAjMayzrcDjo7u7GarXi9XrZunUrSqWSw4cPc/ToUfr7++VSw7ltxpRKpfx+eXl5JCQk4HQ6MRgMBAIBzGYzOp3ujraapMYQOp0Ol8vF2bNn2b9/P11dXRQXF7NlyxYee+wxYmJiiI+Px+12yx7i3ZRStBSETRwDgQDd3d309PQwNDQk3wB6vZ6EhAQSExNRKBS43W7MZjOzs7PywKju7m55lks4GRgYoLm5mTVr1tDQ0EBsbCxGo5H4+Hj0ej1+v5+ZmRmGhoZwuVwMDQ3R2toa9q4hVqtVTi/q7e2lv78fnU4nlzJKnuT09DSTk5M4HA6CwSATExM0NTURGxsbthku/f39tLS0MDQ0RH19PXFxcRiNRjl44Pf7sVgsDA0N4Xa7GRwcpKWlZVFb3EvRcpvNxsDAAC6XS76nYmJi5OFj4+Pjsrj19vbS0tJyS/dUIBBApVLJe4pSUE7qyB1KLLRaLdPT04yNjTE1NUVbWxtr165FrVbT3t7OxMQEBoOB4uJiEhMTQ2Y/SAImJZc7nU45sCTt8d0Mc+2Tmtn6/X65UmV6elruyenxeIiLi6OiooLs7Gw52CXlan4UPMWrCZs4+v1+nE4nTU1N/OQnP0Gj0ciT2R544AE2btwIXFlCHjx4kPPnzzM0NIRWq6WpqYnJycmwD2manZ2lubmZX/3qV0RERBAXF8fu3btZv349WVlZeDweGhsbef755+VC+ebmZjIzM8P6FPX5fExNTfHOO+/IjRNSU1Oprq7m4YcflrcA2tvbOXToEE1NTTidTgKBAJcuXWL16tVhEfBgMCgL90svvYRGo8FoNLJnzx7WrVtHenq63EXohRdeYGZmhkAgQFtb26L2wvT7/YyPj9Pd3c309DSBQIDy8nL27Nkjl3rOzMywf/9+9u3bh1arpb+/n9HR0VtKK5ImGaanp4f01kOhVquZnJzE4/HIDzUJrVYr9wh95JFHMJlMN3WPz/Us73QfeWZmhra2NrnF2o4dO3jmmWfIzMzE4XCgUCgYGxu7L/IU75SwiaNWq+UrX/kKJSUltLS00NPTg9Fo5GMf+9iCrjxVVVW0tLTQ3d2NSqWipKSEL3zhC7fdjv1m+fSnP01SUhKnTp1idHQUnU4np1kAspcrDR5SKpU899xz7Ny5M6zTz8rLy/ne977H+fPn6e7uZmpqirS0tAUty3JycigpKeH48eP09PSQmJjIH/7hH/Lggw+GJQVEqVTy2c9+lvT0dM6cOYPZbCYqKoqUlBSSkpIA5JQtnU7H6OgoGo2Gb3zjG+zcuXPR7EhNTeXP/uzPOHz4MI2Njfj9fpRKJVlZWXISf1xcnBx46erqIi0tjT/4gz9g06ZNt/yZb1WQIiMj0el0IbMMVCoVOp1O9qTDma4WERGBTqfDYrHIYxT6+vqw2+1kZ2dTUlLCihUrSE5ORqfTybNn7pc8xTslbH8ZlUrFmjVrCAaDTE5OAleG+Kxbt25BV56qqiq6u7sZHBxkcnKS4uJitm/fvmjRzWtRXV2N3++nr6+PhIQEqqurKSkpmfe0z8jIYP369bhcLiwWC5s3b2b16tVhvXlMJhM7d+7E7XZjtVpJTk5mzZo11NbWLjhu3bp1XLx4EbjyQFq/fj1r165dlA40V6NQKKitrcXn89Hf34/RaKSmpobi4uJ5EfWsrCw2bNiA2+3GbrfzwAMPsGrVqkWzIy4ujm3btmGz2RgfH8doNLJq1ap5TZS1Wi2lpaVs3LiRY8eOkZuby44dO65ZabSYeDyeeVHruUjNGpZi3O/U1BRms5mRkRGsVqs89zwyMpK8vDxWrVol15tbLJb7Lk/xTgnrnuNvfvMbTp8+jclk4oknnmDjxo3XjLY9+uijVFRU8MEHH3Du3Dm+973v8a1vfYu6urpwmSjP6U1OTmbDhg088MADC+yLjY3lySefJDc3lxMnTvDqq6/S19fHV7/61bDZ1dXVxT/90z/hcDhYs2YNe/bsuWaENSkpiW9/+9tcuHCBw4cP88orr9Dc3Mx/+2//LSxDpd544w2OHz9OamoqmzdvZtOmTQuixQkJCXz84x8nJyeHU6dO8atf/Yq+vj6++MUvLooNVquVn/3sZwwODrJq1Sp2794dMnBXVlaG0WgkOzub8+fP83d/93d84QtfYN26dYtix93MwMAAhw8f5vXXX8fv91NTU8PnPvc5hoeHuXDhAoFAQG4KMXc6oeA/WHRx9Hg8tLS0cPbsWUZHRyktLZVn6V6vOkGn01FQUEAgECAyMpKGhgY++OADhoaGWL16NRkZGfLy5mb3f67F2NgYJ06coLW1lZSUFGpra+d1cL56xq/BYKC6ulrOQRseHuall15i48aN87yVO2VycpIzZ87Q1NREdHQ0FRUV1NbWXne/TqqQWbNmDRqNRq5a+OlPf0p1dfUdJz1LjIyMyKVy6enp1NbWUltbKz9Mrr5mUVFR1NbWyrmA/f39/PrXv2bTpk131FTk8uXLnDt3DofDIc9qXrFihbw8nWuHUqkkJSWFjRs3otPpOH36NEePHsVqtbJ58+Zlqz4JF3a7nZaWFtra2uQk7c2bNwNXVm25ubnExsbKQZ6kpCSCweBdM5bgbmNRxdHhcNDf389bb73F+++/zzPPPMOjjz56S40QpA40nZ2d/M3f/A3Hjh3D7/dTV1dHZmbmHfWBk1IuTp8+zfPPP8+6det4+OGHWbly5bw9xFDLC4PBwJo1azCZTLz99ttyP7+Pf/zj6PX6O9qDlCLNjY2NvPjiiyiVSr761a9SWVl50x12DAYDGzdupKKignfffZd/+Id/oLOzU67CuN38OCk6e+LECV588UU2bdrEzp07Wbly5bzrE+qaRUVFUVdXR0pKCm+88QYvvPACAB/72MeIiIi45Ws2PT3N7373OxobG3n66adZv379AqENZUdaWho7duwgMzOT559/ngsXLshjJcKx/bCUSMJms9no7e3ljTfe4MSJE2RnZ7N+/XqefvppfD4fTqcTl8tFVFQUNTU185b1QhxDowguUti1vb2dAwcOcOHCBVJTU9m6dStFRUW3PU3Q5XLR29vLxYsXOXnypOyJ7Nmz57aXi0NDQ/zsZz/DYrGwevVqqqqqyM3NvSUPQmqO29DQwIEDBwB47rnn7qhX4P79+zlx4gTDw8Ns2LCBmpoacnJybtvjm5iYoL29nWPHjtHX10dBQQFbt269rcTw/v5+fvrTn+JwOORrlpOTc0v9BaXmuJcvX+bgwYNysO5mk7GDwSBHjx7l5ZdfJi0tjZqaGiorKzGZTLcksHa7nc7OTj788EOOHTvGmjVr+IM/+INF8aznMjMzI2+/xMfH84lPfAK1Ws1vfvMbJiYmyMjI4Kmnnrph+eXN0NfXx9tvv01zc7PcaCMlJQWdTkdCQoLsHc4NtMwdS3C35C5KtkjpdNHR0ff+9EG32017ezsXL15kaGiI6Oho1qxZc8ctx6QWUZmZmXLvuLa2NuLj4yktLb2lYUOS0Eq5k3l5eTzyyCO3NadDrVaTnZ1NdnY2Y2NjnD9/ntOnT+NyuSgsLFzQ2/B6SLOIm5qacDgcZGVlsXPnzjsuTZSmuikUCvbv38/4+DgXLlxArVbf9JwTp9NJd3c3DQ0NWK1WSkpKeOSRR27LA9VoNOTm5pKdnc3o6CgNDQ2cPHkSu91OQUHBNXMgg8EgFouF1tZWLl26hFKpZM2aNTz00EO3tXowGAxUVlZiNBrp7OxkaGiIo0ePUlFRQVpa2j3jRTocDrmAYWxsjN7eXmZnZ4mIiCA7O5uqqio8Ho/cEGIu0kpAcGPu2HM8f/483//+94mPj2fbtm3s3LlzUZ6IV1NfX8+RI0c4efIklZWVfPnLX76p4d/SaNO9e/fS0dHB1772Nerq6hat7rizs5P/+T//J0ajkccff5yqqqqbEh+pmuXAgQPU1dWxffv2sASfbDYbhw4d4siRIwwNDfH5z3+erVu3XlcIpAqU1157jf7+fv7oj/6ImpqaRdu0b25u5vvf/z7p6ek89thjVFZWhhRISdR//etfk5GRwTe+8Y1FLSd9+eWXeeWVV3jooYd44IEH7sj7n0s4PUdphPFPfvIT+vr6yMrKYtu2bRQVFeHxeOR67bvFI7xZ7ivP0W6389JLL7F3714aGxvJysoiMjKS8fFx9Ho9Xq9XbgMfDAax2+0YDAY2b95Mdna2vCyTqlDOnTtHU1MTer1e/uL6fD6CwSBqtVruWtLQ0EBzczPd3d186UtfYu3atde00Wq1cvr0af71X/+V9vZ2oqKiePvtt+X2UJJ9gUAAp9NJVFQUjz766LxmAZOTk+zbtw+LxSK3xpcmt+n1esbHxxkYGODChQu0trby3HPPsWnTpusOlbp8+TLPP/88hw8fxmq1YjAY8Pl8sl3SbGLpGkhjR6WglrSUlCpQjhw5wszMDAaDYZ59arUaj8dDX18fly9fpquri7GxMS5fvswXv/jFBZ6zlOR9/Phxfvazn9HZ2UlsbCz79u3j/PnzIa9ZbGwsu3fvnvegMpvNvPXWW1itVnk/Vsqh0+v1cmejS5cu0dLSwle+8hU2bNgge6U+nw+z2cyrr77Kb3/7W6anp7FYLPz617+W26BJXxwp6lpSUsLOnTvnPfQuXrzI0aNHUavVaDQalEqlvNem0+mor69nYGCAf/3Xf6W5uZnnnnuO/Pz8u3IkQU9PD0ePHsVsNuPz+cjPz6e0tJSoqChSU1PR6/VyBYzwDBeH2xZHr9fLmTNnaGhoIC0tjYSEBKamphgbG8Pj8eByuZidncXj8cipAvn5+ZSXl88L0ASDQTweD21tbezfvx+XyyVXDURGRhIZGSn3DfT7/aSkpMhF8rt3776ujU6nk9HRUZqbm1EoFKSlpdHZ2Ul7ezsejwer1YrL5UKpVModcLZs2TLvPRwOBxcuXKC5uRmv14vX60Wn0xETE4NWq0WtVpOamipXHoyMjMiicS1GR0c5ePAgLpeLrKwsFAoFXV1dNDc34/F4cDgczM7OyiIgRXyrqqrmeQTBYJCpqSlOnTolD2OSRDEqKgq9Xi8nI0dGRmIymejq6uLixYvXbNrrcDgYGRmhqamJiIgIUlNTaWtro6WlRc67dLvd8jUrKytj69at88TRbrfz4YcfytfZ5/MtuGZpaWlYLBba29sxm804nU5ZHKWBYd3d3XR2dlJcXCxHm6XggtVqxefzodVq5TZaO3bsWHCdjx07xvT0NG63m2AwSFRUFAaDQRbM7Oxszp07R0dHB9PT03i93rtGHJ1OJxaLBYvFQnNzM6dPn2ZiYoKUlBQ+/vGPy1UtPp8vbEPMPsrctjhGRUXxla98hd27d8tfFKkofnR0lAsXLrB//365cmPDhg08/PDDFBUVzQuASM0/169fj8Ph4IMPPqC7uxufz8e6devYtGkTlZWV6HQ6OeImfdluNJA8OTmZhx56SB4JGRUVJQ/96enpYe/evTQ3NxMfH8/WrVt54okn5EoPiYSEBJ555hn279/PgQMH6O/vp7CwkO3bt5OXl0dUVJQ8XVGpVFJbW0tKSsp1l6CVlZX89V//NS6XSxY/vV6Pz+ejra2N48eP09TUhMfjobCwkC1btrBp0yZSUlLmBSAiIiIoKChg165dqNVqTp48ydDQECaTSU6fysnJwe1243K55DnGKSkpIfdbFQoFKSkp7Nq1i6SkJHkeSkREBHa7na6uLl5//XW6u7tJSEjgoYce4mMf+9iC5WFSUhKf/OQnefvttzl06BCDg4OUlpayY8cOcnNzMRgMuN1uZmdnUavV1NbWzmtpJ6V1ff7zn2f9+vXo9XoiIyNRqVRMTU1x8eJFXn31Vaanp8nNzWXPnj1s27ZtwVZJRUUFn/rUp3j99df58MMPsdvtbN++nW3btpGSkoJarcblcvH0009jMpmorq6+pT3jcBIMBjl16hSvvfYaFouF9PR0Hn74YblnpMFgwGazyRkYgsXntsVRrVZTXV0tC5TU57ChoYHBwUFmZmYoLy+XKxcqKytZuXJlyFxHqf28QqEgKSlJnsCmUqnkovjCwkKKiorIzs4mMjKSQCBwww10hUJBamoqu3btkocgNTY20tbWxsDAACkpKWRlZZGTkyNHYq/+cuj1elauXIlSqSQ5OZn29nY56ikFYVauXElSUtJ1O2PPJTk5mQcffFDON+vv76e9vZ2Ojg7GxsbQ6/Vs27YNo9FIYWEhNTU1FBYWhozMxsbGsnr1agwGA/n5+fT09GC32+W6cIvFQmlpKeXl5bJoS40NrnXNMjIySE5OxuVyMTk5yeXLl2lvb2dwcJCMjAzy8/PJzc1lzZo1IfcLDQYDFRUVsth2dHTgcDjo6OjA6XRSXFzMihUrSExMXHDNpDxFtVpNRUUFBQUFuN1u+vv7uXz5Mt3d3UxMTFBbW0t8fDzFxcWsX7+evLy8kDNk6urqUKlU8mRLhUJBY2Mjs7OzlJWVUV1dLXvZSzmW4FqC1t3dTVtbG1NTU4yPj5OYmEh0dDTp6emkp6cTHR0tr2Du1al+9wp3tOMp3UyBQACLxUJTUxOvv/46VquVoqIiHn74YTZs2HBTeY5xcXHU1NRQU1OD2+2mra2Nd955h5MnT3L8+HHWrFlDZGQkqampxMTE3NK+ilqtxul0MjExwYkTJ7hw4QI+n4/du3fzyCOPXLf1lpRkvX79etavX8/AwADvvvsuL7/8Ms3NzZjNZlJSUkhISLiltBKVSoVKpcLn8zE8PMzRo0c5efKkLHa7d+8OOSo2lH1ZWVlkZWWxa9cuxsfH5T6Ax48fR6PR8Nhjj5GQkEBqaipqtfqmPA2VSkUgEGBsbIzjx49z6dIlAoEAjz/+OLt27aKgoOC6NsXFxbFp0yY2bdokp5v89re/pbm5WV4azt0/lbj6y65SqXC73XR1dXHgwAG6u7tJTU3l2Wefpa6uboGnPxdp9IbkdbW0tPDLX/6S48eP09HRgc/nIz09naioqCUXGel8UhK2z+fDZrNx6tQpDhw4wPj4OKtWreKxxx5Dp9PJzWXnjukQwhhebjpaHaoqpbGxkZMnT3L+/HmUSqU8IlMaNZmamnpHY0LNZjNms5mxsTE6Ojro6elhfHyc9PR0NmzYwLp160IGFebaOTk5yZtvvsmlS5ew2+2UlZVRUFBAeno6GRkZISPeV1d7XI3FYqG/v5+hoSG6urpoampCrVZTVlbG448/Pi/NKFR3E+lLcOLECfr7+0lMTCQ3N5fCwkKSkpJITk6+7fxQ+I9h9+Pj43KbtcHBQbxeL9XV1axfv/66WxJjY2O8+eabNDQ04HQ6KS8vlxsCZ2Zmhoyy3uiaTU9P09fXN++a6XQ6VqxYEXI7A6606v/ggw/o6OiQ03AyMzPlzja32gZNqm7q7++XW6n19/eTlJTE+vXr2b179zzbb7cS60bR6qysLD796U/Lgcv9+/dz7tw5pqenycrKIjs7G6/XS0JCAmlpaXIA7H4OtNzT0WqFQiEn846PjzM8PMyHH37I5cuXGRgYIC0tjdTUVHmZqlarsdvtWCwWAoEAgUAArVYrd7mZe9NJPQClQUxS01CdTkdaWhoxMTHy8KiWlhba29sZGRmht7eXkpISjEYj6enpJCQkoFAomJ2dZWBggNHRUZqamjh06BBmsxmj0UhtbS2ZmZlkZmbi9/sZHBzE7/fL9s0VJYVCgd/vx2w2y0EIpVJJREQEmZmZqFQqxsbG5OvR09ODy+WSE5QzMzPlIIPFYpEba7S3t3Pu3Dk5yLFy5Up5CSkdbzabZbvgyh5vXFzcvBsmGAzK2wVSGoc0XD42NpaoqCjUarUsjgMDA7I4dHV1kZGRIc8Id7vd8jVraGjg8OHDjI+PYzKZiIqKIisri/T0dHw+37xrJnUykjxAhUIhR5vn2iTl4KlUKjk/z2w209vbi8vloqKiguTkZDQaDXa7nYGBAU6dOsWHH36Iy+WivLxcfojEx8fL84mk6xMdHU1iYuK8e9ZutzMxMTFvqR4ZGUlubi5+v5+WlhZ6e3tpbW2Ve4rm5OSQmpp607N7rsdcv0NKvpY84ba2NnQ6Hf39/XIwaHZ2lri4OMrKyuTIs9RsVrD03FKe4+TkJC+88AL79++nsbERn89HdnY269atk5uBKpXKeSV+0tv7fD5iYmKoq6sjJydH9ii9Xi8TExNcvHiR1tbWBb8vvYcU1bbZbDQ3N/Phhx8yOzsrt5X/9Kc/LSeeX758mV/84he8++67DA0NkZGRQW1trbx3CP+xJSDZ5/V6iY2NZc+ePQtSefbu3cvk5KS8Nza3Hb70++3t7Vy4cIGuri6MRiM7duzgM5/5jNxJ58SJE7z00kscO3aM4eFhIiMjWbVqFStWrCAmJgadTnfNz+33++W9x6SkJNkOu91OX18fp0+fZmpqSt6DnXvtpWWb0+lkfHycU6dOya3hysrKeOihh/jMZz6D2WzmxRdf5L333mN0dJTMzExWr15NeXm5/H5XXzOPx0NiYiJ79uyZ5/mZzWY5/elqmyQxk2azXLx4UZ4vs2XLFgwGAwMDAxw6dIhAIEBhYSHr168nPT1dbk129b3l8XgoKyvjkUcemXf9Ll68yOHDh2Xbr74u0qCo8+fP09TUxNjYGBUVFXzsYx/js5/97AKxvVlCeY4ajYaXX36ZyclJWSj7+/sxm808+uijVFZWEggE5FSpjxr3tOfo8XjkIULx8fFyPbLUBVqhUMiR5FBPOrvdTn9/P319fWzcuJFdu3YBV5Zwv/3tb+nr68Pv9xMVFSUPS5eY2xlZp9PJXxS73Y5Op0OpVDIzM8P09DRqtZqpqSn8fr/sBUgVI1ID3rntpCRBkprKarVaNmzYQEFBAT09PfJISqVSKS+XJdskL02r1RIfH09JSQlxcXFyEu709DRWq1XekwXkYV6RkZFkZmYSERFBIBDAbrcv6C4teWE2m42hoSE6Ojp46qmn5LZbZ86c4dChQ1itVjl952qUSqWc4xcTE0NJSQmJiYn4fD7i4+NxOBy0t7fLTWPz8vJIT08nKSlJPu7qFlySyIyOjtLe3i63SsvLy6Orq4sTJ05w6tQp2RO/1jVLSEigtLRU3q+dmZlhdnYWv99PeXk5Op2O5ORkIiMjcblcshc19728Xi8DAwOMj4+jVqtZs2YNUVFRXLx4kSNHjnDp0iVSUlKIjo6eV0OsUqnQarUolUq5qcnU1JR8TcbGxoiOjr7tUtW5nzMyMpLZ2Vkamlro7J/CoLKzZcsWVq1ahdPpJDs7Ww4ESvmgguXnpsXR5XIRDAblwUpSLpi0mXytOk1JfKamphgYGODEiRNER0fL4jg1NcXBgwfRaDSsWLGClJQUIiIirrmUUCgUZGZmsmbNGnnZ6/V6iYuLw263o1Qq0ev18mxdjUYj79eEek9p2edwOOjs7OTixYskJSVRUFBAd3c358+fZ2pqiuzsbHJycq7ZxcRoNFJaWirPAfH7/XK6RTAYJCYmhpqaGrllvuQRzv2yX420BDObzTQ1NdHa2sqmTZtkcWxsbOTYsWOsWLFC3guUBidd6+9QUFAgL4G9Xi8qlQqv14tGo6G6upra2lo5GHO9aybNUOnt7eXChQuYTCby8vLo6Ojg4sWLWCwWOaotbauEumbl5eXyFszU1JScKG40GuWAlXR/XY1Go8HhcDA0NCQPns/Pz0er1XLhwgV52yI5OZnU1NRr5nampqbKPTpdLhcGg4FgMIjL5botcZQ6frvdbjweD11dXVitVsYoI5idTnDweblRMVxZVV1d5idYfm5aHKOiosjPzycjI0MuYJc24K+3MpeOGx8fp76+nv7+/oVGqNUUFxfzyCOPyKk619tnmdt5RTq/RqNBq9WiUCjkFI+bsVHaBzp58qTc5Hbu0iw6OpqysjLq6urYsmXLdWtTrz6fVquVl5UJCQlyJ5u5w4qud+1UKhUul0u+ZufPn19wTGxsLBs3bqSmpkbOFbzR30Ni7lAo6XPdzDWTkvpNJhMnT55csAyMiYmhvLycjRs3smHDhnl7p6HskQRdelBIf5Mb2aHVarHZbKjVarq6umQhm9uurLi4mEcffZT8/HxcLtd1r4lkh1KpRKfT3XattV6vZ/v27cTExLBv3z5+8IMfEB8fz571m3nlkpFNe75GWlq0LNYiT/Hu5KbFUbphbnfymVKpJCEhIeSTWOr/J0Vp7xS1Wn3LvfqkfY6rv0DSexmNxpuqmb4WGo3mtoZMSTZFRUWF3IvSaDQkJCRgMpkWbWznzSJds6u9HrVaTUREBEajMexJ1dJYhsjIyAUt1KRJgcnJyURERCxJ5YuU7ytVtqSmpspbGGWFWWz0qmkaUfHQ77dTBHcvS7bj6Xa7rzmxDZAjc263+45GT94u0r7a1fZJHtW1lmThxuv1XjdiKQWqlmNZ5na75f2xq735pVoqSvdVqOuzVHZI55aaQhw4cIDLly9TUlIiD2xTKpX4/X7W5AU43Oinf9xHRuJHL/ByL7G84SCB4B4jVO7jhx9+yJkzZ+jr6yM9PZ2qqipKSkqIj4+Xm4FIJEYrSEtQ0mkOCHG8yxHiKBDcApIwjo+PMz09zdTUFB0dHYyPjzM1NUVeXh45OTlERUXJeaiSd21xBHnvkpfhqQAbi8VX725H/IUEglvE5XJx+vRpDh06RE9PDzt27GDnzp2o1Wo5T9HpdMrHOz1BjrX6OdLkJTlOyee3ailOC99oX8HiIMRRILgJvF6vnB40PT1NQkICxcXFZGZmkp2dLefnzk3PCgThbIePDxqueI5PrtVSnatCKUqi7wmEOAoE18Dv98v9EgcGBmhqauL06dM4nU52797NihUriIyMlDvkzA38tAz5eeuCl1kXbChWsXWFBrXYYrynEOIoEFwDi8XCiRMnOHToEAAbNmzgySeflKuRFAqF3ERXYngqwL7zXnrHA6wpVLN9pZroCOEq3osIcRQI5iBV/fT29uJ0OuWa+8jISBISEjAajWg0Gjwez7zkdinYcr7bT3mGiu/siSAxWojivYwQR8FHnrnNUbq7uzlx4gTvv/8+2dnZ7Nixg927d8s9FaV/EnODLSnxSp57SEdeslg/3w8IcRR85BkZGeHcuXOcOXOGlJQU0tLSeOqpp4iJiSE+Pj5kg+C5wRatBp5ep6UqR0Sg7yeEOAo+kthsNiYnJ5mYmMBqtTI8PMzk5CQmk4nk5GQSExNRKpW43e4FjTMGJwP85qSHWRdsW6FmfbFaBFvuQ4Q4Cj5y+Hw+Ojo65DK/2tpaSkpKqK6ulptNhCo5NM8EaRv20zTgxxit5Gs7Nei1Yl/xfkWIo+C+RqVSyQ1DRkdHOXfuHAMDAxiNRnkAV0ZGhtw5XarHnruMtrmCvHPRy8UeP3qtArs7SFWOSgjjfc6yiOPVtalzmxYs59CguXbM/d/l5upuM6H+/3Jwo/Mvx9Aq6Z9SqSQYDOJ0OhkcHMTtdtPT08P58+cZGhpi06ZNFBYWEhcXJzeYvbq5iNsb5GiLj8NNPlLilXxpu46kGAU/fs9NY78fW01QpOncxyyZOEpNZWH+l2buz6SbejmYO57harFeTrtUKtW8Fv9z7Zhr23LYF+r6zL2OS2HT3OsjnVOtVstNjgcGBvjZz36G0WgkPz+f1atXs3nzZvR6PVqtFo/Hs6Bn5Nxgi1oNH6+7Utki8exGLf/8rpvT7T4eqri9no+Cu5+wiqOUJ6ZQKOQW+F6vF4fDwezsLFFRUVitVjweDy6XC5vNxvT0NJGRkUvWKl4akWqz2XC73bIdMzMz2O123G43CoUCq9WKw+FY0ilw0tB5q9WKy+XC6/VitVqBK9fW4XDg8Xiw2+3MzMyg0Wiu2Ql8MZEEaXZ2Vm4ZZrVasVqt8jXz+XxYrVacTuc1O4rfKTqdDpvNhsPhkP9OZrMZp9NJQ0MD/f398jjfhIQEDAYDycnJREVFyW3Orr5WTYN+3rl4pbLlgXI1G0sWBlvSEpRsW6HmWKufjSVqsby+TwmbOPr9fnp7e5mYmECtVmOz2RgeHsbtdjM1NUVjYyPR0dF0d3fjdruxWCz09PQwOzuLTqdbMgGSuk739/djsVhwuVxyqdjQ0BAzMzMEAgH6+vpobGy8bifwxUalUuHxeJiYmGBqagqPx0Nvby+NjY3yHG6Px8PIyAgdHR2YzeYlE0eFQsHAwAAzMzPy5MKmpiaGh4eZmZkBoLe3l9jY2Ot2Ar8TpDEJY2Nj8sOrp6cHlUpFe3s7s7OzpJXtwptcy4MPpuFwOOSl9tUMTgZ468KVypa6oiuVLQbdtUVvS7mG8z1+Djf5eLhaeI/3I7c0ffBmcbvd9PX18dvf/paGhgb0er1cp2o2mzEYDKSlpaFSqeQ0CoPBIHcKl/aL5hkapv0r6X3tdjs2mw2fz4fBYCAuLo7Z2VlmZ2cJBAJER0fLnbaXqq29JHRer5epqSlsNhtpaWnExsYSCAQYGRnBZrORnJyMwWCYN1rgTs55s8dI18fn8xEVFUVsbCw2mw273U4gECAmJoaYmJgbjtK4XaQGshaLRZ5uuWrVKnJycmQhdARiePVyIs/tMJCbtNCOSVuQ9xuuBFvKM1Q8ukpz05UtTYN+fnXMw7d3i2qYO+VunD4YFnGUvK93332X9vZ2eU61SqVCrVYTCATkvR5pCpw0qCuUhyENtQqnRyTZNnfwlTTxcO7PlgNpH03yJH0+HwqFAo1GIw+hut6grltBGjc7d3zp1Ujnufr6zB0tevU1C8fDbe4MHI1Gg16vlwehpaSkyAPKfnvaRduwn289okOnuWKH0xPkYKOPk21Xgi2PrtLcVmXLj99zE2dQ8KkNtzelUHCFj4Q4zv1ihRK7UJ7Ntbwd6efSCAUpmrjcUdrl5lqitRjv6/V65S4z4TrPYiPZ7XQ65aDMXLvd3iA/2u8mJ0nJ42u0nG6/EmyJ0MLOCs28YMut0j0W4F/ed/O1nTqyjCIT/Ha5r8VRujmtVit+v19+mkuexbWYmPERG6VCo7r2l1AS2nB6Iddi0uonxqC8rn33E3P7Ed7srSH9Pa6euX31zxabuQ9VaUSv5MFefd5xa5B/ed+N7/fP6msFW26HF4940Grgk+tvxXv0YJ204UVDdGIMH3W/874WR6fTicViwWw243a7bzqN489/4+GL29Q3XNIslwfz3V+7+dKDt7fkule5F7zFUNzI7unZIN1jAUrSldcNttwqNlcQvVZx00JrbfsN/+OPf8Fo+RYKrR9wwvNpfvCPn6diaYdH3lXcjeK4qGefm3N3KzluN3v8cn1plyuPULC4xEcpqIla/OYQt5QIPvYe/8+3evn4S/tYn6AGvoP50F/yh3/6Oj/+58fJFjVrdw2L9o0PlTh9M/+iIxRYHTf3e0vN9OwVpzpWf296UoK7j6n6d+n51FO/F0YANaat3+G7pr/nHw+OLattgvksuzsUHalgxrk0qTG3is11xa6o8M+CF9wH+Ka6ONUweN1jHI5p4qL1V/00hnUf/xSXfn6Q7vCZJ7hFll0cU+MUjFrCm7R8uwxPBYiPUsjpHwLBtfFR//yzfP1bb9N0naPiEzNo6VvoIaorHuKz3lc40RE+CwW3xqLtcEgbqreaj1ieoeDFoz4u9iysWrhV1ErYVaXmWIuPmTt/OwAeKFOHveJEcD/QwvmzD/Jw6Sscb/gipeWhj9InF5B6pJG2b1RROO+VfNY8Dv+roZ8/yM8Iv7l3IZJ+LFWRxY0I2/bvze4RlmWo+aOHVTi9d35BLvb4efOCj5wkJZ/YcOcfTa1E5K4Jbo7BTs5U7+a/Fw/zhZPNfHnFNdSxaBU7rT+geeg/UXSVBuYVreHSW704nsjEEH6L7yokQVzuzlxzWTRx1Gq1xMbGolar8fv9t/QBMxbpQZmQ4OBc1zBVhXFsXpWwOG8qENwE4+fPk7b9b1hf6aLw0QbG/3In1SGPzOCJL3ybbzc6+Hpd0fyXfHWs+UUAXUYGH0XfMRgMotPpiIyMvCuyQxZNHFUqFZGRkURGRi7WW946GjcwTGFWIiZT8vLZIfiIYeXccStP/vcVmPL1fKnkURrNf8uuitBH7/rD/5v/64F36f6/NrFubs+K2Rg0GjCaTJiWxG7B9Vh+eV5E4mOu3GnG2I96vYFgaWnlfP1DVOQD5LP1c0Z+9t7lax9e9jn+6XMv8tw/XMY758dDp1+j/5FV5IfZWsHNcV+lnGp/X6Kg+oiU+gnuEi4f5dUHN/Pnv//P/PXPoH3yPS5/PRPtiIOS3PSrfiGGzX/1Ad/cWcvasZ/w19uNTHz4I/7fX63gF0dXLbX1gmtwX3mOAsFy0HX2daoerEEDeG0DXBoYJ6btT9lY8En++vAQVulAr41p2+99RU0RX3y3k//zoINzB8/hqPlrDl78G7aKrfK7hvvKcxQIlh4rLUcH0Zc9z+d+9Ld8MLSGz/zxc3znv63kz2L/lhf+8D82Hi//w2rWtP5vxn72MDEAmmTKd36R8p3LZrzgOghxFAjuCCd+4yoSjZV85jedvBD/+3Kqyw382bOHaf5OBWW/P7LiU7/jTCCDq+tjBHcnQhwFgjvCxGM/eI3Hrv5xxSP8SdGLjE5AmfH3P0svpXKJrRPcPkIcBYKwUMaXfvvXy22E4A4Iy5iE5eRS1wz5aQai9EL3BQLB7XPfiaNAIBAsBiKVRyAQCEJw74qj9zJ/V6FA8a1DNzjQRfNr3+SB5CsTECOSH+DP3x+YV5kgEAgEV3OPiqOX9p9/lb8ZTbrhkUMvf4pVf+zgj85YCAaDWM78EWNfqOGP359aAjsFAsG9yr0pjkOv8V/+7iF+9JdFNzjwMr/+7y38j70/5oncK/lnEblP8OOXv8y//8kvaQ6/pQKB4B7lHhTHKd787n+l8N++Re2NAtLtJ/n3qU+xrVoz78eadTv4XPvrnOkNm5ECgeAe554Tx6n3/4Kv8kP+bPNNzLEcauPshhKyF7yQTlHtIS73hMFAgUBwX3BviaP3LD/6z8P87fd3czP1+b29lyAnOURvvCyyRamCQCC4DveQOHq5/A9f5P3v/C+evLoD1DXw+z3XeEWDWgtW5+yiWScQCO4v7p0ykq5f8NUXP8P/d74IzY2PBkClulbTWy8+D8TooxbLOoFAcJ9xj3iOQ7z8nb9m/T99mYqbVUYgJ6cSLvXSu+CVfvou6dCoFs9CgUBwf3FviGPXO/zo9S7+dkusPJ1MoVBQ8KUT8MNtKBQKQuaCZ5WzobGfBVOCvf00ffgwNcVLYLtAILgnuTfEMf+LHP/9XOy5/zp/ugH++CDBYJD/vTXU763nmZR/5o1T8+thrB+8xI+3fZyNYoqRQCC4BveGON40Xfxs41wvsoxn//5p/vUT/5nf9bgAL7aO3/Ht597jm3+2h5uM6wgEgo8g95k4LiThoR9y/ufJ/MPaOBQKLelbf0Lyz0/wVzeTJykQCD6yiJZlAoFAEIL73nMUCASC20GIo0AgEIRAiKNAIBCEQIijQCAQhECIo0AgEIRAiKNAIBCEQIijQCAQhECIo0AgEIRAiKNAIBCEQIijQCAQhECIo0AgEIRAiKNAIBCEQIijQCAQhECIo0AgEIRAiKNAIBCEQIijQCAQhECIo0AgEIRAiKNAIBCEQIijQCAQhECIo0AgEIRAiKNAIBCEQIijQCAQhECIo0AgEIRAiKNAIBCEQIijQCAQhECIo0AgEIRAiKNAIBCEQIijQCAQhECIo0AgEIRAiKNAIBCEQIijQCAQhECIo0AgEIRAiKNAIBCEQIijQCAQhECIo0AgEIRAiKNAIBCEQIijQCAQhECIo0AgEIRAiKNAIBCEQIijQCAQhOD/B4/ek0/nU0vNAAAAAElFTkSuQmCC",
"path": "images_version_5/image_27.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, then the slope distance between two adjacent trees is ()
Choices:
A:5m
B:6m
C:7m
D:8m
|
Như hình vẽ, khoảng cách độ dốc giữa hai cây gần nhau là ()
Lựa chọn:
A: 5m
B: 6m
C: 7m
D: 8m
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, then the slope distance between two adjacent trees is ()
Choices:
A:5m
B:6m
C:7m
D:8m
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, then the slope distance between two adjacent trees is ()
Choices:
A:5m
B:6m
C:7m
D:8m
|
As shown in the figure, then the slope distance between two adjacent trees is ()
Choices:
A:5m
B:6m
C:7m
D:8m
|
135
|
27
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAA14AAAIWCAYAAABHpFxHAADMeUlEQVR4nOzdd3hURfs38G+AVEIIJKGXhE7oIL0EEOlSFVFQihXxseFjV8D6/CwoVlSqIigISO8QaiChh15D770HyLx/5L1nZ5Pdze5mN5Dw/VxXLpYzp+2pe849c4+PUkqBiIiIiIiIvCbX3V4BIiIiIiKinI4PXkRERERERF7GBy8iIiIiIiIv44MXERERERGRl/HBi4iIiIiIyMv44EVERERERORlfPAiIiIiIiLyMj54EREREREReRkfvIiIiIiIiLyMD15ERERERERexgcvIiIiIiIiL+ODFxERERERkZfxwYuIiIiIiMjL+OBFRERERETkZXzwIiIiIiIi8jI+eBEREREREXkZH7yIiIiIiIi8jA9eREREREREXsYHLyIiIiIiIi/jg5cNffv2hY+PDyIjI+/2quQIzZs3h4+PD5o3b363V8Vp2XGd79y5g+HDh6NevXoICQmBj48PfHx80KVLFwBAbGysHhYbG3tX15WApKQkvT/Gjh17t1fnniTbZ8iQIXd7VbwqO15v7gVDhgzRx4gtkZGR8PHxQd++fbN2xcht98s5T/cvjzx4rVy5Up8sPj4+WL58uSdmS0QuePzxx/Hqq68iISEBly9fvturQ0REREQGjzx4/f777w7/T3QvyOjtaHa2evVqTJ48GQDQoUMHLFy4EFu2bEFiYiK+++67u7x29xe+ZXeM0R3K7lgrJudjjYS7J6ffI/JkdgY3b97UP/iCg4Nx5coVTJ48Gd9//z0CAwMzvYKU/bFam/ctWrQIAJA7d25MmDABISEh6cZp3rw5lFJZvWpERHdFUlLS3V4FIiIrmY54TZ8+HRcuXAAADB8+HABw6dIlTJ8+PbOzJiInHT16FABQuHBhmw9dRERERHR3ZfrBa9y4cQCA6Oho9O/fH9HR0QBY3ZAoK928eRMA4Ovre5fXhIiIiIhsydSD16lTp7BgwQIAQO/evQEAvXr1AgAsWLAAJ0+ezHAex44dw9tvv43atWsjf/788PPzQ5EiRVCtWjU8/vjjGDt2LC5duuTW+t25cwdjx45FmzZtUKRIEfj5+SE0NBTly5fHgw8+iM8++wzbt2/PcD4XLlzAhx9+iCpVqiBv3rwIDQ1Fs2bN8Oeffzq1HomJiXjuuedQvnx5BAUFIV++fKhSpQpee+01u1UhJk+erOsX79q1y+Y45cqV0+NMmTLF5jhdunSBj48P6tatazV87NixetqkpCSkpKTg119/RaNGjVCgQAHkzZsX1atXx6effopr16459T3tcVRf11Y96oULF+Lhhx9GkSJF4O/vj6ioKAwYMABHjhxxa/nyXYcOHaqHmclgzO1gz9GjR/H666+jXLlyCAwMRFhYGNq0aYO5c+c6tQ7nz5/HJ598goYNGyI8PBz+/v4oVqwYOnfujKlTp7r1vczvIS9ADh48mO57CWezGh48eBAvvPACIiMjERAQgGLFiqFLly5YunQpAMdt5VypF++oLVTa4/PmzZv49ttv0aBBA4SHh9vNenX79m2MGjUK7du3R7FixeDv74/w8HA0a9YM3377LW7cuOFwnTJDjvODBw8CSH0plXZfZFRnPbPHfnx8PJ599llUqFABwcHByJs3LypVqoSBAwdiz549dqfLiuuBtItZtmwZAGDZsmXptk9GbWYSEhLw+OOPo0SJEvD390fx4sXx5JNPYseOHU6tw65du/Dyyy+jSpUqyJ8/PwIDA1GmTBn069cPGzZscOt7mS5cuIBPP/0UDRs2RIECBeDr64uIiAhER0eja9eu+Pnnn3Hq1Cm3579y5Uo8+eST+twMDQ1FrVq18P777+P06dN2p0t77qekpOC3335Do0aNULBgQeTNmxc1atTAZ599huvXrzu1LgsXLkTv3r0RFRWFwMBAhISEoEaNGnjzzTdx/Phxt7+j6ciRIxg4cCDKlCmjr0WdOnXSVaszklF7yxs3buC7775D8+bNER4eDl9fXxQsWBCVKlVC+/bt8c0331jdF+Ta5+h6m/a6mJycjJkzZ+Kll15C3bp19XERFhaG+vXrY8iQIThz5oxL32Pnzp149tlnERkZCX9/fxQuXBhdu3bFmjVrnNouSUlJeOutt1CnTh2EhYUhICAAUVFRaNGiBb7++mscOnTI7rTXrl3Dt99+ixYtWqBw4cLw8/NDoUKF0Lp1a4wZMwZ37txxah2ctWjRInTq1AlFixZFQEAAypQpg5deesnpa6I757yPjw+ioqL0//v165duH8v9Z+DAgfDx8UHRokVtzuvIkSN6mly5ctk8T5VSKFiwIHx8fPDf//7X7nfxxDmXU+4RCQkJetj8+fNtzq9Vq1Z6nK+//trmOK+++ip8fHxQqFAhu00xZs6ciUceeUTfd8LCwtCwYUP873//w5UrV1z/oioThg0bpgAoHx8fdfDgQaWUUklJScrHx0cBUF9//bXD6ZcvX65CQkIUAId/M2fOdHndLl++rJo2bZrhvLt3755u2j59+igAqnTp0mrHjh0qMjLS7vQDBw50uB6fffaZypUrl93p/f391bhx49JNd+rUKT3Ozz//nK78yJEjGa5HSkqKKliwoAKgBg0aZFU2ZswYPe3WrVtVy5Yt7a5jvXr11JUrVzLa5HbFxMQoAComJiZd2YEDB/RyxowZo9566y276xEREaG2b9/u8vLN7+ro78CBAzbXecWKFSosLMzudF9++aXD5c+ePVuFhoY6XHaHDh3U5cuXXf5uznwvsXTpUj1s6dKlNue3YMEClTdvXpvz8fHxUZ9++qkaPHhwunmLtPvTkdKlSysAqk+fPunKzH2WkJCgatasmW59Bg8ebDXN3r17VXR0tMNtUb58ebV79+6MNqtb5Jhx9GeeA5489m/duqUGDBjgcNm+vr7q119/tTl9VlwP5Lrq6K906dJW05j7+vvvv1d58uSxOV1QUJBatmyZw+V/9NFHdqeX4/vDDz90+XuJ7du3q2LFimX4Hb///vt00zq6Riql1J07d9TAgQMdzjd//vxqwYIFNqc3z/358+ertm3b2p1P5cqV1bFjx+x+zytXrqiuXbs6XJfg4GC37tum2NhYh78Phg4d6vBapJTja8yxY8cyvF4A1vdOc3mO/kzOHPdhYWFq5cqVdreF+T2mTJmigoKCbM4nd+7c6q+//nK4Xb/88kvl6+vr9HXKFB8fr4oXL+5w2nr16qkTJ044XAdHzHN+yJAhdpcTEhLitXPemX0s959JkybpYTt27Eg3rz/++MNqusmTJ6cbZ+PGjbrc1nnjiXMup90jbt++ra8Pb731Vrp53bx50+o86dChg81l1qhRQwG2nwWuX7+e4XYvVqyY2rhxo0vfM1MPXrLCzZo1sxouDzw1atSwO+2NGzf0TSpfvnzqzTffVHPnzlXr169Xa9asUX///bd69dVXVcmSJd26gA8aNEhvmI4dO6qJEyeqVatWqfXr16t58+ap//u//1NNmzZVjzzySLppZedHRESo8uXLq3z58qn3339fxcbGqnXr1qnffvtNlShRQs9/3rx5Ntfhxx9/1ONERESor776SsXFxamVK1eqIUOG6B+4Pj4+avbs2emmr1y5sgKgHnvssXRlaU/mKlWqpBvH0clsnkSNGjVSuXLlUn369FGzZ89W69evV9OmTVMNGzbU47z99tvObvp0nH3watSokR5vwoQJat26dWrRokXqqaee0uM0aNDA5eWfP39eJSYmWl10EhMT0/0lJyenW+cKFSqo8PBwVahQIfW///1PrVy5UsXHx6thw4bph6k8efKorVu32lz2ggULVO7cuRUAFRkZqf7v//5PxcbGqg0bNqiZM2eq3r1763Xq1q2by99N1r1z5876IpD2e4mMHrz27NmjL1S5c+dWAwcOVIsXL1YJCQlqzJgx+kdKvXr19HzS8saDV/Xq1ZWPj4966qmnrI7POXPm6PGPHTumChcurK8ngwYNUnPnzlUbNmxQS5cuVe+8847+bmXKlFEXLlxwehs7a//+/SoxMVFf1zp37pxuX+zfv1+P78lj3xyvXbt2avz48So+Pl4lJCSo3377TVWpUkWXz5gxI930WXE9OHLkiEpMTFQPPPCAAqAeeOCBdNtn165dVtOY393Hx0fVqFFDjR49WiUkJKjly5er1157Tb/YKlWqlLp586bNZX/wwQdW32/kyJEqLi5OrVu3Tv35559W3+27775z+bsppVSdOnX0j5cXX3xRzZw5UyUkJKi1a9eqadOmqXfeeUdVqFDBrQev//73v3r9oqKi1IgRI1R8fLxaunSpeu211/QPaT8/P7Vp06Z005vnft26dRUA1bp1azVt2jS1bt06NW3aNPXQQw/pcWrVqqVu3bqVbj63b99WLVq00Petxx9/XE2ePFmtW7dOxcXFqeHDh6tSpUrpdVm3bp1b2/LAgQMqX758CoDKlSuXeuGFF9SiRYtUQkKCGjVqlCpfvrw+huxdi5RyfI3p3r27nrZ3795q6tSpas2aNSohIUHNmjVLDR06VNWqVcvqwevkyZMZXm/Na65SSvXq1UuVKVNGDRo0SP39998qLi5OJSQkqH/++Ue98MILys/PT/9GOHnypMPvUatWLRUQEKCioqLUDz/8oNasWaPi4uLUkCFDVEBAgAJSH0hOnTplcz4fffSR/s6hoaHq3XffVQsXLlQbNmxQS5YsUV999ZVq3Lixat68ebppt2zZon+zFCpUSA0ePFgtWrRIbdy4Uc2fP18NHDhQP+TUr1/f6n7qClk/2bcVK1ZUo0aNUgkJCWrRokXq+eef1+d8vnz5VFJSks35ZOacT0xMVPPnz9fln3zySbp9LPvq5MmTejxbL8mffvppq99qtl6Sf/PNN/pYT3tv8tQ5lxPvEe3atdPHW1orVqyw2u758+dXt2/fthrn3Llz+liydV3u0aOHnr5GjRrq999/VwkJCWr+/PmqX79+OshUsGBBdeTIEae/p9sPXlu2bNErlPYJ+ZdfftFlW7ZssTn94sWL7T4UmG7duqUuXrzo8vqVLFlSAbD5YGU6e/ZsumHmU3doaKjNH9V79uzRF7pOnTqlKz916pT+oVesWDF16NChdONs2LBBX8iKFy+e7kIlDwpFihRJN62czJ06ddInZNqLrXkynz9/3qosbRTojz/+SLeMGzduqKpVqyog9Y2crRuxM5x98AKgnn32WZWSkpJuvGeeeUaPs2HDBrfWI6O3o7bWGUh9w2LrpFqxYoU+8V5++eV05VeuXNEPA61bt1ZXr161uaxff/1VL2vRokWufzFlHaW1J6MHLzmWANtv5a5evWr10GVrO3rjwQuAGjVqlMN5dezYUQFQJUuWVPv27bM5jnm+vf/++w7nlxmOvpfJU8f+P//8o8t/++03m8u6fv26fkMZGRmZ7ly+V64HaZnr1L59e5sPVp988okeZ+rUqenK4+Pj9c3V3n6/c+eOfgmSL1++dNfLjOzbt0+vg60buEhJSVHnzp1LN9zRNtmyZYte/6pVq9pct7lz5+px6tWrl67cPPcBqOeee87m+pk/En/44Yd05V999ZUCUh8uzRcfpnPnzukfcU2aNLE5Tka6deum12PChAnpyi9duqRf/Dq6pts7F69fv64fVtPWBknL0W8ER9dbsXfvXpvntdiyZYsKDg52eHzK9wCg6tSpY/PF0fjx4/U4w4YNS1e+fv16fYxUqFBBHT582O46pS1LSUlR1atX1z9AT58+bXM68zgcOXKk3fk7Yu7T2rVr26wJ8vvvv+txbP3G88Q578q9zNFL8rJly1r9VrP1klwe5GvXrp2uzBPnXE69R/zf//2fAlJffqc9Tj7++GMFQD300EMqMDBQAam1Z0zTpk2z+6wya9YsXfbggw/avPeYv9169Ojh9Pdz+8FLIkr+/v7pDtjz588rf39/hxe1P//8U6+wOw9WGZGL6vDhw12e1nzwcvT2s2fPngqAKlCgQLoyOSAAqIkTJ9qdh/mjYdKkSVZlf/31ly5LG8IuV66c/oFcpkwZmz+Wu3TpYvdkNk8iR5GWESNG6PE2b95sdzxHnH3wKlq0qLpx44bNeezcuVOP584+Vcr9By9bb39EgwYNFJD6JjKt77//XgFQAQEBdt9kCnmg6dWrV8ZfxIbMPngdOXJE36i6du1qdx6bNm1y+GPHGw9eLVu2dDifxMREPe706dMdjvvmm28qIPVliLe48+CVmWNfIi2O9ptSqVXhZD4LFy60KrtXrgdpybIcnUOXLl3SUYPXXnstXblENurUqePwB7B537L348SeVatWZWq7ONomZqQ+Li7O7jzMB/T4+HirMvPcL1y4sN2XQJcvX1YREREKgIqOjrYqS05OVkWLFrW7nU1z5szRy9uzZ4/DcdM6duyYriXQsWNHu+OtXbvW7Qevo0ePOn3NsMWVBy9nvPrqqwpIfbC2xXzwsnd8paSk6Gi7rWuB/F7x8fFx+eXlzJkznT6+JUrQuHFjl5YhzH3qKGIq0Y48efKkqxrriXPelXvZCy+8oID0L8mlSYiPj49av369/my+JDebhLz++utW03vqnMup94g1a9boZc2dO9eqrFWrVgpIbQoiD5Rpm4XIeRcWFpbuOJHjy9fX12bgJO1ybB2H9riVXOPOnTuYMGECgNTOWkNDQ63KQ0ND0b59ewDAhAkTbDa2NBsijhkzxp3VcEjm//fff7vd0M/HxwdPPPGE3fI6deoASE2cICn1hTT+DQ0NRffu3e3O45lnnkk3jTAb4pvJEI4ePYq9e/fCx8cHMTExejxzHKUUli9fDgCIiYmxu3zAkhDFFvmOALB//36H88msRx55BP7+/jbLKlasiODg4CxZD1NoaCg6dOhgt1y2j611ki4VYmJiUKhQIYfLadasGQAgLi7O3VXNFGlwDwB9+vSxO16NGjVQo0aNrFotAI6PT8CynYOCghzuK8CynY8dO4bDhw97ZgU9wN1j/+jRo1i/fj0AoEePHg6XUblyZYSHhwNwfJzdK9cD00MPPWT3HMqXLx/Kly9vc51u3bqlE+A88sgjDjtPDw0NRbVq1QC4fh6a9zNPd7Yq94Xo6Gg0aNDA7njPPvtsumls6dGjB4KCgmyWBQcH6+No+/btVg324+Pj9f8zOtbkPANc35ZLly7Vvxn69etnd7x69eqhSpUqLs1bhIWFwc/PDwDwxx9/4Pbt227Nxx3nz5/Hvn37sG3bNmzduhVbt27Vv6G2b9+OW7du2Z22WrVqqF69us0yHx8f1KpVC0D68yAlJQXz5s0DkHo/kvGcJdfYihUr2l2+kH2fkJCQqUQb1apVs7repNW/f38AqQmVzN8+WXXOm+Q32IkTJ7Bz5049XNYrOjoatWvXRpkyZaCU0skjAGDLli04d+4cgPS/1TxxzuXke0SdOnX0vTHtMbB69WoAqfvG1m9k8//NmjWzOk5u376t99FDDz2EkiVL2l0Hue6mPQ4dcevBa8GCBfpgkGyGacnw48eP27wJNGnSBGXKlAGQmlWkXr16+Pzzz7F69WokJye7s1pW5Mfj6tWrERUVhZdeegnTpk1zmPkprfDwcISFhdktL1iwoP58+fJlq7KtW7cCAGrVquUwxXfhwoV1lhaZxiyrWLEiAOsDxjyZIyIibB5U5smcUSa1SpUq2S1z9B09zdF6AECBAgWyZD1M5cuXR65c9k8T2T621mndunUAgPnz59vMfGX+ffXVVwBSL9x3g3nsObrZAcADDzzg7dWxktGNXrbztWvXkCdPHofbuWPHjnq6u7WtbXH32JfvDgCPP/54hseZZE9z9N3vleuBKaPtY+883L59u37x9s4772S4fWR7unpsREVFoWnTpgCAb775BlWqVMGHH36IJUuWZCor7M2bN3Wmsfr16zsc17zXpL2XmNJmuE2rXr16+rM5H/NYa9iwocPtKD+GANe3ZWJiolvr6gp/f3889thjAIB//vkH5cqVw5tvvok5c+bg4sWLbs3TkcTERPTv3x9FixZFwYIFUa5cOVStWhXVqlVDtWrVdIa8lJQUnD9/3u583D0PDhw4oF8Omz/QnSX7fteuXRmeQy+99BKA1GyO8hvEHe4ep1l1zpvMByZbv9XkN5it32ryOVeuXPoaIjxxzuXke0SePHnQuHFjANbbND4+HteuXUNISAhq1aqlt/uKFSv0y4ALFy5gy5YtANL/Rt6/f78+hjK67prljq67JrcevKSPLkfRADMSZqtPL19fX8ycOROVK1cGkPp25N1330Xjxo0RGhqKdu3a2Y2WOeODDz5A//794ePjg1OnTuHHH39Et27dULhwYVSrVg2DBw/OMN29vbeCwvxBnnY95YJTuHDhDNe1SJEiVtOY5IAw35CkPZlbtGgBIPWCIw+Wjk7mtBx9T0ff0dOc3d7eXg+Ts+sk0SJx69atdFFQZ2Q2db+7zJt9RtG5iIgIb6+OFXnosMfd9Nx3a1vb4u6x743vfq9cD0z30vaxZ+LEiWjYsCGA1Gvxxx9/jAcffBChoaGIiYnBiBEjXO7OwDwvM7qXSIpywPa9RGR0fpvLMeeTVdvSlWuRM/dXe3744Qc8/PDDAFLTwn/55Zfo0KEDwsLCUK9ePXz11Vdud2VjGjVqFGrXro0xY8Y49ePeUTp/d88DM129vbTnjtyNa+y9fpyaihQp4vAluTMPXtWrV093r/PEd8np9wjZpuvXr9ep3WWbNm3aFLlz50b9+vURGBiIS5cuYePGjQBSf1PL77a0kUbzeMroGiO/39NO50gep8YyXLp0SYedL1y4YLd6jOnff//F5cuXkS9fPqvh0dHRSExMxMyZMzFz5kwsW7YM+/btw/Xr1zFv3jzMmzcPw4YNw5w5czI8CdPy9fXFqFGjMGjQIEycOBFLlizBunXrkJycrMP7w4YNw/jx49G5c2eX5u0KR2Fuoez0HQCkHhC//PKLDmFXqlRJP4TJAVeiRAmUKVMG+/fvx7Jly/DII4/ocWydzOR95gWnR48e+OCDD+7i2mRvuXPndlgu2zoqKgozZsxwer5mPy3ZlXmc/fnnnxlGB8X9ck0wt8+XX36Jtm3bOjVd3rx5XV5W8eLFsXr1aixevBhTp07FsmXLdNWx5cuXY/ny5fjqq68wZ84cVKhQweX5Z/Ze4ux87M3D3JaxsbEOa4OYXL13m8t3d12dERISghkzZiA+Ph6TJk3C0qVLsXnzZty5cwcJCQlISEjAl19+iX///Vc/ULtq586deOGFF3D79m0UKlQI//3vf9GyZUtERkYiX758OkI5evRoPP3005n+Ts5w5jhKS/Z948aNMWLECKenK1asmMvLEu6sJ5C157wpJiYGu3bt0r+9jh07ZtUkBEj/kjw8PBwrVqwAYLtmkifOuZx+j5Bte/v2baxcuRJt27ZN9xvZz88PDRs2xJIlSxAbG4sHHnhAj1OgQAGH28Td49ARlx+8Jk2a5HQHi+LatWv4559/bNbXzp07N7p06YIuXboASK2aOHfuXPz0009Yv3491q9fj+effx7Tpk1zdVUBpD7cffzxx/j4449x/fp1rFq1ChMmTMDvv/+OK1eu4PHHH8e+ffvcegvkSMGCBXH8+HGn3nBJ5M0M0Yq07bxCQkKwZ88eq5NZxtu/fz9iY2PRvXt3p9t3kXcEBAQgKCgI165dw4ULF1C1atW7vUoOmRfZU6dOoUSJEnbHdVRd13zblTYKmNbVq1ddWEP75GZ08uRJVKpUCXnyuHxZy7bMG7GPj889f5xlNXP73Lp1K0u2z4MPPogHH3wQAHD27FksWrQIv/76K5YsWYJ9+/bhscce029dM2KelxndS27fvq3fuNq6l4iManqYb8jN+Zjb0s/Pz2vb0lzmyZMnHbavyExn1KJevXq62trly5cRGxuLMWPGYNq0aTh16hS6d++Offv2ITAw0OV5jx07Frdv30bu3LkRGxura/ik5ah6oSdIux0g9YHAVWFhYTh58iROnz6dZdeYjI5Ts9zecZpV5zyQ+hvs119/1S/JpXNmaRICpH9JXqFCBZw9exaA7d9qnjjncvo9om7dusibNy+uXr2K2NhYPPjgg1btu0Tz5s31g9cbb7xht30XYH08ZXTdNcsdXXdNLlc1lGqDRYsWxcSJEzP8K1WqlNV0GSlatCj69++PuLg41K5dGwAwa9Yslx/2bAkMDESrVq0wevRofPnllwBSw/qzZs3K9LzTkoN748aNDhvLnjp1CgcPHrSaxlS0aFHdcDw2NjZd+y5hhrATExP1yZxR+677iTfeXDgiDZhXrVp1T1Vrs8VspG7WCbfFUbkZ1Xb0Y+Ls2bNW1V8yQ7bztWvXsGrVKo/MMzOy8jgzG8kvWLAgy5abGVm5fapUqaKTKNyN7RMWFobHHnsMixcvRqdOnQAAmzZt0u22MuLv76+v/2vXrnU4rnmvcfTjKiEhweF8zHJzPll1rEmyg7TrYktG5a7Kly8fHn74YUydOhUvv/wygNSXwStXrrQaz9ljeNu2bQBSkxLZe+gCMr7mZlZUVJR+iJeXsq6Qfb979279e8Xb3D1OPXXOu3qdStvOK201Q2H+VpNxfHx8bLa988Q5l9PvEXny5EGjRo0ApG7ThIQEXL16VbfvEmY7r7Nnz2Lz5s1Ww01lypTR1Skzuu7Gx8frz84+1Lr04HXgwAF9AerevTt69uyZ4d+jjz4KILU+5aFDh5xelq+vr1UI0Z32Mo7IG0kAHvsBaGrVqhWA1OqYU6ZMsTveqFGjdNUCmSYts52XvZPZDGFPnjwZQOrBm1H7rvtJQECA/nzz5k2vL09+aF29ehU//vij15eXGS1atNDRKkcvSTZv3qwvWLYUKFBAt+109GNi4sSJ7q2oDWZV4S+++MJj83WXHGdZcYyVK1cO0dHRAIC//vrLpWvs3ZKV2ycoKEhf62NjY61uklnN3XuO3Be2b9+ONWvW2B1v5MiR6aaxZfLkyXZfZF69ehWTJk0CkPpyz6wJ0qRJE/1Gd8SIER5p/2RLixYtdPXicePG2R1v3bp1Tjdmd4ej/eXsMSzZEh29eDtx4oRuvuEtuXLl0pmmly1b5nTEVci9DMi6a2xiYqLD9Rw9ejSA1FpT5u8hT53zrv5eKFasmM2X5M48eFWrVs1mtMQT59z9cI8w23lJIEXadwmzndfw4cPttu8CUh/mZPjChQsdZkCW627a49ARlx68/vjjD/2Q8Mgjjzg1jYynlMIff/yhh69YsQJ79+61O11ycrKugxkcHOxSg/5z585hxowZDutKm0/+3mjr0a9fP/3EPGjQIJs7bvPmzfjss88ApLYPkOqWackBcOLECX1TTLuDJYStlML3338PIPVkdrZO8P3A/BGxb98+ry/vhRde0FU8PvjgA53i1p5Vq1a59TbSE4oXL64T5UybNg3//PNPunGuX7+O5557LsN5yZu76dOn29zOO3bswIcffpjJNbaoW7cuWrduDQCYM2cOBg8e7HD8pKQkuw9+ktlJMo26Q46zrDjGAOD9998HANy4cQPdunVzWBX05s2b+Omnn1xO8uBJsn3279/v9fYsAPDee+/pN6g9e/Z0uF+kq5QjR464tIxNmzZh06ZNdsuVUjq7r6vH14ABA/RLkeeee85m1r0FCxZg1KhRAFKrzjnKCHfixAkMGjTIZtnrr7+uq+8NGDDAqiwgIABvvPGGnkfPnj0dVhe+fPkyfvjhBwffzLaiRYvqlykzZszQ9zzTlStXnLoW2SNVvRxx9BtBjuFTp045zNwmP8R3795t86H52rVreOKJJzxSoycjb7zxBnLlygWlFHr27OnwGE9b1r17dx2x+/nnn/WxZs/WrVsxc+bMTK/zc889Z/MYmzBhAubMmQMA6NKlS7qmIp44580uB5y9lstvtblz59psEgJYvySXa4K9H+yeOudy+j3CDNL89NNPANJvU2nnBQDfffcdgNQEgfa6xxk4cCCA1Oqq/fv3t5ltffTo0fo60b17d+ebLDnV29f/J532FipUSN25c8epaVJSUlSJEiUUAFWxYkU9fPDgwSpXrlwqJiZGffHFF2revHlq/fr1auXKlWr06NG6Q1kA6tVXX3VlNXXHd5GRker1119Xf//9t1qzZo1at26dmjlzpnruued0Z7ElSpRQV65csZre2c4RzQ7lDhw4kK78xx9/1OWFChVSw4YNU2vWrFGrVq1SQ4cO1b3V+/j4qNmzZ9tdjnTCJ39pO+AT/fv3txrvP//5j9vrLlzpRNAeZztQzkyHu87Ys2ePXlbr1q3VsmXL1O7du9WePXvUnj17rHpZd7YDv4w6ZV64cKHKkyePAqBy5cqlHn30UfXXX3+phIQElZCQoGbMmKEGDx6sqlevrgCo77//3q3vltkOlJVK3T5BQUEKgMqdO7d66aWX1JIlS9S6devU2LFjVXR0tAKg6tat6/A7z5s3T5eXKFFCjRw5Uq1fv14tW7ZMffDBByokJESVK1dOd9SaUQfKjo5PcfToUd3RJABVv3599csvv6jVq1erDRs2qIULF6qvv/5aPfTQQyp37tyqe/fuNucj02emY9T33ntPz+fzzz9XmzZt0sfYkSNH9HiePPbNTt/Dw8PVe++9pxYsWKA2btyoVq5cqcaNG6eeeeYZ3VHn5cuXrabPyuvBb7/9ZnVtX7dund4+SUlJVuPKeIMHD3Y4z4zOV/M8DQ4OVq+88oqaPXu22rBhg4qLi1MTJ05UL7/8su6ANjEx0aXvJNuvbt266qOPPlKzZs1S69atU3FxcWrChAnqoYce0svv0qWLy+v/3//+V09fpkwZ9csvv6j4+HgVGxurBg0apHx9fRUA5efnpzZu3JhuevPcf+CBBxQA1bZtW/Xvv/+q9evXq3///Ve1adNGj1OrVi2r66G4ffu2evDBB/V4pUqVUp999plaunSp2rhxo1q+fLn67bffVK9evVTevHlVWFiYS9tRHDhwQOXLl09fi1588UV9LRo9erSqUKGC1Xexdy2yd97I9oiOjlbvvfeemjZtmoqPj1fx8fFqypQpuhNg2RZpO1dduHChLn/iiSdUXFyc1b1ExMfH6/EKFCigPv/8c7Vs2TK1du1a9dNPP6ny5csrILWzYUfnn7P3vozuAx9//LFeTmhoqHrvvffUokWL1MaNG9XSpUvVN998o5o2baqaN2+ebtotW7bo3ywAVJs2bdS4cePUmjVr1Pr169XcuXPVZ599pho1aqQAqEGDBjlcV3vSHqeVKlVSY8aMUevWrVOLFy9WAwYM0L/f8uXLZ/d65YlzXvZLWFiYmjBhgtq+fbvex2fPnk03/vjx461+g1WpUsXmupUpU8ZqvClTptjdHp4653LqPUKp1I6m5beL/CUkJKQb76OPPrIa5+GHH3a4Ho8++qget2bNmuqPP/5Q69atUwsXLlRPP/208vHxUQBUwYIFre7tGXH6wWvlypV6BZ5//nmnF6CUUi+//LKeds2aNUop65PC0V+3bt3U9evXXVqeueMd/RUvXtxmD+6eevBSSqlPP/1UXyRs/fn7+6tx48Zl+J3Kli2b4cn8+++/O30y348PXkopqxtq2j9zO3jqwUsppRYvXqyKFCni1DHpzLFgiycevJRSasGCBSpv3rx212/w4MHqgw8+UABUQECA3WWZ53zav5IlS6pt27Y53J+uPngppVRSUpLVQ6Gjv379+qWb/tq1a7q8du3aTi3TliNHjuibV9o/83jy5LF/+/Zt9eabb6rcuXNn+N3z5s2rrl27ZjV9Vl4PLl++nO6Hh/ylPX7N484RZ87Xb775Rvn7+2e4ffz8/Kx+PDvD3H6O/po0aWLzB1tG63/nzh314osvOpx3/vz51fz5821Ob5778+fPV61bt7Y7n0qVKqmjR4/a/a7Xrl1TTz31lFPfNyoqyqXtmHad5eHL3rUoo+tvRg9eGf1VrlzZ5vlw584d1aBBA7vTmYYOHepwGYMGDcrw/PPUg5dSSn322Wf6ZaC9P3vH4ebNm/XDYkZ/Q4cOdbiu9tjbv2n/QkJCVGxsrMN5ZfacnzVrlv5xbev4SyvtS/KBAwfaXC/zJbmPj486ffq0w+/hiXMup94jhPlwmj9/fnX79u104yxfvtxqXl9//bXD9bh+/brq2rWrw21VrFgxmy+7HHG6qqHZ7qN79+7OTpZufJmPdFb42muvoUGDBihVqhQCAgIQEBCAyMhIPPbYY5g9ezamTJliVdfWGaVLl8amTZvw5Zdfol27dqhYsSJCQ0ORJ08ehIeHIyYmBl999RV27Njhcg/urnr33XexceNGPPvssyhbtiwCAwORN29eVK5cGa+88gp27tyJp556KsP5pM3OYouEsAH7jTXvd+PHj8cXX3yBevXqIX/+/A47R/aUli1bYt++ffjhhx/Qtm1bFC1aFH5+fggICEDJkiXRunVrfPrpp04fC9700EMPYevWrXj++edRunRp+Pn5oXDhwujQoQPmzZuHIUOG6Hrm+fPntzuf4cOHY8KECWjWrBlCQkIQGBiIihUr4u2338bGjRt1nXNPKl26NNauXYtp06ahZ8+eiIqKQlBQEHx9fREREYFGjRph0KBBWLZsmc2qMnFxcfrza6+95vZ6FC9eHPHx8Xj66adRrlw5l69f7sidOzf+7//+D9u3b8egQYNQq1YtFChQALlz50a+fPlQpUoV9OrVC+PGjcPx48fdytDmKcHBwVi9ejVeeeUVVK5cOcO+iTzl1Vdfxb59+/DBBx+gQYMGCA8PR548eZA3b15UqFAB3bt3x4gRI3D06FGUK1fOpXk/8cQTWLp0Kd599100bdpUH3t+fn4oUaIEOnXqhAkTJmDZsmVOZ74y5cqVCz/++COWL1+OXr16oVSpUvD390dISAhq1qyJd999F3v27NFVbh3x8/PTmYMbNGiA0NBQBAUFoVq1avjkk0+wYcMGh2nAAwMDMW7cOKxbtw4DBgxAlSpVkD9/fuTJkwehoaGoWbMmnn76afzzzz/YsWOHy99VNG/eHNu2bcOAAQPsXovc1bRpU8TFxeGjjz5Cy5YtUa5cOZ3evXDhwmjdujV++eUXbNq0yWa10Fy5cmHBggV4//33UaNGDQQHB9tNCPDhhx9i9uzZaN26NQoUKKCPiW7dumHBggX46quv3P4e7njnnXewfft2vPrqq6hatSpCQkIQEBCAMmXK4MEHH8S3336Lv/76y+a01atXx/bt2zFu3Dh06dIFJUuWREBAAPz8/FC0aFE0b94c77//PtavX++R6uRDhgzBvHnz0KFDBxQuXBh+fn6IjIzEiy++iG3btmWYtTmz53yHDh2wePFidO7cGcWKFdPp/+0pXrw4ypYtq//vzG+1KlWqWGWdtMUT51xOv0eY27pJkyY2u6GpX7++1bwyOn4CAgIwdepUzJgxA926dUOxYsXg5+eHAgUKoH79+vj888+xa9cu1KxZ0+nvBgA+SmVBJXsiyjFatWqFxYsXo0mTJroPkpxgyJAhGDp0KMqXL48dO3Zk2H8YUXYRGxurf+wtXbqU2W6JiO4S77/uJ6Ic49ixYzoBSIMGDe7y2niWNLZ/9913+dBFREREHscHLyLSHGUavX79Ovr27av7Crrb1SI9KTk5GWvXrkVUVBR69+59t1eHiIiIcqA8d3sFiOje8cwzz+Dq1avo0aMH6tSpg4IFC+Ly5ctYt24dfvrpJ/1g9vTTT1t1dJrd+fn53fOdXBMREVH2xgcvIrKybt06h50fd+3aVfcVR0RERETO4YMXEWnDhg3DtGnTsGTJEhw5cgSnT5+GUgqFChVCgwYN8NRTT+mOlomIiIjIecxqSERERERE5GVMrkFERERERORlfPAiIiIiIiLyMj54EREREREReRkfvIiIiIiIiLzsnn7wGjt2LHx8fODj44OkpKR05c2bN4ePjw+aN2+e5etG5K7Y2Fh9XMfGxt7VdenXrx98fHwwYMCAdGVffPEFzy8iIiIiD7mnH7yIyHvWrVuHcePGwc/PD++880668oEDByI8PBzLli3DlClT7sIaEhEREeUcfPC6T0iEZciQIZme170UsSH3vffee1BKoV+/fihVqlS68rx58+K1114DAHzwwQdISUnJ6lUkIiIiyjGy9YNXbGwslFL88U/ZSvPmzaGUglLqrlXjS0hIwIIFCwAAgwYNsjvewIEDERAQgB07djDqRURERJQJ2frBi4jc8+233wIA6tWrh/Lly9sdL3/+/Gjfvj0AYPjw4VmxakREREQ5Eh+8iO4zFy9e1NGr3r17Zzh+r169AACrVq3Crl27vLpuRERERDmVWw9eW7duxSeffII2bdqgRIkS8Pf3R3BwMMqXL48+ffpgzZo1Ts3n/PnzePvtt1GpUiUEBgaiUKFCaNWqFSZPnuzU9BllNTx//jzGjBmD3r17Izo6GsHBwfDz80ORIkXQpk0b/Prrr0hOTnZqWadPn8ZHH32Exo0bo1ChQvD390fJkiXRuHFjfPTRRw5/kN6+fRujRo1C+/btUaxYMfj7+yM8PBzNmjXDt99+ixs3bjj9HY8ePYrXX38d5cqVQ2BgIMLCwtCmTRvMnTvX5vSRkZHw8fHR/x86dKhunyV/ffv2dWobJCUlwcfHBy1atNDDWrRokW5+Y8eO1eVDhgzRw4HUH/0ff/wxatWqhdDQ0HTji2vXruHbb79FixYtULhwYfj5+aFQoUJo3bo1xowZgzt37mS4vpnZ7gCwfv16PP3006hQoQLy5s2LgIAAlCxZEnXq1MHAgQMxY8YMKKWc2nYmZ9rI7d69G//5z39QtWpVfdwWK1YMNWvWRP/+/fH333/j5s2bLi8bAKZPn66n7d69e4bjd+jQAQEBAQCAv//+261lEhEREd33lIuWLl2qAGT49/bbbzucz7Zt21TRokXtTt+/f381ZswY/f8DBw6km0dMTIwCoGJiYmwuo3Tp0hmuZ61atdTx48cdruv48eNV3rx5Hc6ndOnSNqfdu3evio6Odjht+fLl1e7du21Ob37HFStWqLCwMLvz+fLLL93aBn369HH4/cWBAwec2vdjxozR0wwePFgP3717t4qMjHQ4vlJKxcfHq+LFiztcRr169dSJEyfsrmtmt/uwYcNUrly5Mvyuly9fdmrbmcxzaOnSpenKJ02apPz8/DJcdmJiosvLVkqpvn37KgCqZMmSTk/ToEEDBUC1aNHCrWUSERER3e/y2H8ks+327dvImzcvOnTogJYtW6JSpUoICQnBqVOnsG3bNnz33Xc4ePAg/ve//6FChQro169funlcvHgRbdq0wfHjxwEAjz32GPr06YNChQph9+7dGDZsGEaPHo3ExERXV8/KnTt3UL9+fXTs2BG1atVC4cKFkZycjAMHDmD8+PGYN28eNm7ciJ49e9qNPPz+++/o06cPACAgIADPPvss2rVrhyJFiuDKlSvYsmULZs6ciT179qSb9vjx42jcuDFOnjyJfPny4bnnnkOrVq1QuHBhXLx4EQsWLMDw4cOxZ88etG3bFhs2bED+/Pltrsfx48fRtWtX5M6dG//73//QpEkT+Pn5YeXKlfjoo49w4cIFvPPOO2jXrh2qVKmip1uwYAGSk5NRrVo1AMCAAQPw4osvWs27QIECTm3P4sWLIzExEQkJCejfvz8AYPTo0ahbt67VeCVKlLA5/SOPPIKjR4/iP//5Dzp16oQCBQpgz549KF26tB4nMTERLVq0wNWrV1GoUCEMGDAATZs2RVhYGE6dOoUZM2bgl19+QXx8PDp37owVK1bA19fXo9t9y5YteOONN5CSkoKoqCi89NJLqFmzJgoWLIgrV65gz549WLp0KaZNm+bUdnPFyZMn0a9fPyQnJ6NQoUJ46aWX0KBBA4SHh+PGjRvYv38/li9fjqlTp7q9jBUrVgBAuv3mSL169bBmzRqsWbMGt27dSrfNiYiIiCgDrj6pnT59Wp0/f95u+c2bN9VDDz2ko0C3b99ON87rr7+u39p/9tln6cqTk5NV69atrd7uuxPxshfNEKNHj9bzX7RoUbryo0ePqqCgIAVAFSpUyGGE4fDhw+mGdezYUUcW9u3bZ3O6DRs26Gja+++/n65cvqNszyNHjqQbZ8WKFcrHx0cBUC+//LLN5cg8Bg8ebPc7OCujiI3JjHjlypVLLViwwO64KSkpqnr16gqAqlGjhjp9+rTN8ebOnaujUSNHjkxXntnt/sEHHygAKm/evA6jahcuXFB37tyxW26Po+03atQopyJa169fV9euXXN52SdPntTz//jjj52ebty4cXq6+Ph4l5dLREREdL9zuY1XeHg4QkND7Zb7+fnhyy+/BAAcPHgQmzZtsiq/efMmxowZAwCoXr063nrrrXTz8PX1xahRozL9Vt1RtjYA6NevH2rVqgUA+Pfff9OVf//997h27RoA4JdffkHVqlXtzittlGfr1q2YNWsWAOCHH35AmTJlbE5Xq1YtDBw4EEBq9MiR77//HsWLF083vEmTJqhfvz4ASzTjXtS3b1889NBDdstnz56NLVu2AEiNNIaHh9scr23btnjkkUcAQB9LwhPb/cSJEwCAChUqoHDhwnbXN3/+/MiVy7P5aWTZBQoUcHi8BQQEIDAw0OX5HzlyRH8uVKiQ09OZ45rzICIiIiLnZPpX482bN3Ho0CFs374dW7duxdatW60SDmzevNlq/PXr1+P8+fMAgD59+tj94VqiRAm0bt06s6unKaVw4sQJ7N69W6/n1q1bUaxYMZvrCaQ+CABAVFQUOnfu7NLypk+fDgAICgpChw4dHI7brFkzAMCxY8dw+PBhm+OEhoY6nE+dOnUAAPv373dpPbOSZMezR7ZZxYoVUb16dYfjyjZLSEiwSrThie1etGhRAMD27dsRHx/vcB6eJss+f/68/i6edPr0af3Z2SqmAFCwYEGb8yAiIiIi57jcxgsArl69iu+++w5//fUXtm3b5jDD3JkzZ6z+b7bbyqiNSb169fTDj7tmz56Nn3/+GcuXL8fly5edXs9bt25h69atAICmTZtaZQZ0xrp16wCkZufLk8f5zXzixAmULFky3fDy5cs7jK7ID2NH3/Fuy+hhSrbZrl27nN7eycnJOHfuHCIiIqzmkZnt/vjjj+Pzzz/HzZs30bhxY7Rt2xYdOnRA06ZNER0d7fKx4IpOnTohNDQUFy5cQNeuXdG8eXM8/PDDaNasGWrWrIncuXNnav7nzp3Tn1158DLHPXv2bKbWgYiIiOh+5PKDV1JSElq2bIkDBw44Nf7169et/i/RLiDjqk6OqnllRCmFZ599FqNGjXJq/LTree7cOR25kyiEK06dOuXyNAB01ca0goKCHE4nD2UpKSluLTcrZPRD3xPbzBPzqFSpEiZOnIhnn30W58+fx6xZs3T1xfDwcLRt2xbPPfccmjZt6tayHAkLC8OMGTPw+OOP4+jRo1i6dCmWLl0KAAgJCUGrVq3Qr18/dOzY0a35S1p4IP0x74g5rjtVHImIiIjudy4/eD355JM4cOAAfHx80K9fP/Ts2ROVK1dGREQE/P39AaT++Jc38ypNP0fm/zOKHKSd1hWjR4/WD101a9bEq6++ivr166N48eIICgrS6/fUU0/hjz/+cLgsdyIcEgWMiorCjBkznJ4uKirK5WVlFxlFa2SbNW7cGCNGjHB6vlJd1JxHZrd79+7d0apVK/z999+YP38+VqxYgdOnT+PMmTMYP348xo8fjz59+mD06NEeb+fVtGlT7N27F1OmTMGcOXOwfPlyHDlyBJcuXcLUqVMxdepUtGnTBlOnTs3wgTwtiQwC1tGvjJjjmvMgIiIiIue49OC1c+dOrFy5EgDwzjvv4NNPP7U5nhnVSstsK3Ly5ElUqFDB7rjuRi8A4LfffgMAlC1bFqtXr7b7lt7euhYsWBC5cuVCSkoKjh075vLyw8LCAKR+x0qVKrlU7e1+FRYWhpMnT+L06dMOE0tkNA/AM9s9f/78eO655/Dcc88BSG3zNWPGDHz//fc4duwYxo0bh1q1auGVV15xexn2BAQEoFevXrpd3P79+zF79mz88MMP2L17N+bPn4/33nsP33zzjUvzNR+aHJ2naZnj8sGLiIiIyHUuvarftm2b/tyzZ0+740k7G1ukPykgNTGCIxmVOyLr2rlzZ7sPXUopbNiwwWaZr6+v/vG/YsUKl6Nvki3x2rVrWLVqlUvT3uu81cZJttnu3btx8ODBTM3DG9s9Ojoab7/9NtasWYO8efMCACZNmuTRZdhTpkwZ/Oc//0FCQoLOoOnOssuWLaujZLt373Z6OnNc8xwmIiIiIue49OB1+/Zt/dleWyQADquJ1alTR7f1cVTF7+jRo1iwYIErq2dF1tXRes6YMcNhNOvhhx8GABw4cMDlDHNmFsQvvvjCpWm9Qdr23Lx502Pz8tT8RKdOnfRnd7dZVmz3kiVL6kht2qQs3hYSEqKT0riz7Dx58qBBgwYAXHuxIeOWLVvWrTaPRERERPc7lx68zH6xxo0bZ3Ocn3/+2WafWMLf3x/9+vUDAGzatEn3+WW6ffs2nn32WSQnJ7uyejbXdebMmTarVO3btw8vvviiw3m89NJLOrLx/PPP6yyHtqTt26hu3bo6Hf6cOXMwePBgh8tKSkrCxIkTHY6TGfJjed++fR6bl6fmJ7p3747KlSsDSD2OMkqMsnXrVsycOdNqmCe2+7///osLFy7Ynebw4cPYuXMnAM+3yZs/fz6OHz9ut/zixYs6xb27y5akIFu2bHH6wVmW6Y2EIkRERET3A5cevGrVqqWr3/3888944oknMHv2bGzYsAHTp0/Ho48+ihdffBGNGzd2OJ8PP/xQV5d666238MQTT2DevHnYsGED/vrrLzRq1Ahz587NMN28I0899RSA1MhZo0aNMGbMGMTHx2P58uUYMmQI6tSpg3PnzqF27dp251GkSBH8/PPPAFLbm9WrVw+vvPIK5s2bh02bNmHlypUYMWIE2rdvj5iYmHTTjxkzRj+kfPTRR2jQoAF+/fVXxMXFYePGjVi0aBGGDRuG1q1bo1y5cpgyZYrb3zcjjRo1ApAa5fvll1+wdetW7N27F3v37nW5LV2pUqX0/vvqq68wffp07Ny5U8/P3ZT2uXPnxt9//43g4GAopfDMM8+gbdu2+P3337F27Vps2LAB8+bNw+eff47GjRujWrVqWLZsWbr5ZHa7f/vttyhevDh69OiBESNGYNmyZdi0aROWLl2KL7/8Eo0bN9ZZ/gYMGODWd7Vn4sSJKF26NDp06IDhw4dj8eLF2LhxI5YvX46ffvoJDRs2xNGjRzO1bOnfLDk52akOt/fs2aP7OcuobzQiIiIiskO5aOPGjapAgQIKgM2/atWqqWPHjun/Dx482OZ8tm7dqooUKWJ3Pv369VNjxozR/z9w4EC6ecTExCgAKiYmJl1ZcnKyat26td35BwYGqkmTJqk+ffooAKp06dJ2v/PYsWNVYGCg3Xk5mj4pKUnVrVvX4bTmd3blO5oGDx6s52PLxo0blb+/v83l9unTx+G8bfnpp5/sfo8xY8Y4vV62bN68WZUvX96pbTZ06FCb88jMdpdt7ugvd+7c6rPPPnN5uyml1NKlS/V8li5dalUmx2NGfwMHDlR37txxa/lKKVWpUiW7x1xaQ4YMUQBU/vz51fXr191eJhEREdH9zOU82DVr1sSmTZvwwgsvoHTp0vD19UXBggVRr149fPXVV4iPj3eqDUiVKlWwbds2vPnmmyhfvjz8/f0RHh6OFi1aYMKECRg9erSrq2bF19cXs2fPxnfffYcHHngAQUFBCAwMRLly5fDCCy9gw4YNePTRR52aV58+fbBv3z689957qFOnDkJDQ+Hn54dSpUqhSZMm+PTTT3VfS2mVLl0aa9euxbRp09CzZ09ERUUhKCgIvr6+iIiIQKNGjTBo0CAsW7bM6T7H3FGzZk3ExcXh8ccfR6lSpXTqf3cNGDAAU6ZMQevWrVGoUCGPZm2sXr06tm/fjnHjxqFLly4oWbIkAgIC4Ofnh6JFi6J58+Z4//33sX79enz44Yc255GZ7T5p0iT8+eef6Nu3L2rWrIkiRYogT548CA4ORtWqVfHiiy9i48aNeOeddzz2ncW3336LKVOm4IUXXsADDzyA4sWLw8/PD4GBgahQoQL69u2LlStX4ocffshUGnupZjtlyhTcuHHD4bhSFbN///5W7fuIiIiIyHk+SmWis6y7rFmzZlixYgUefPBBLFq06G6vDlG2ceXKFURGRuLs2bP4448/0Lt3b5vjrVy5Ek2bNoWvry92796NyMjIrF1RIiIiohzCsz2/ZrFLly4BSO1viYicFxwcjDfffBMA8OmnnyIlJcXmeB9//DEAoF+/fnzoIiIiIsqEbPvgde3aNd23kKNOmInItpdffhmlS5fGzp07bfYJFh8fjwULFiA4OBhDhgzJ+hUkIiIiykE81zAni+zatQuHDh3C8OHDdWa5du3a3eW1Isp+AgICMH78eCxatMiqjz5x5swZDB48GLVr12bfXURERESZlO3aeEVGRuLgwYP6/w8//DBmzJhxF9eIiIiIiIjIsWwX8QJSO2GOiopCz5498fbbb9/t1SEiIiIiInIo20W8iIiIiIiIsptsm1yDiIiIiIgou+CDFxERERERkZfxwYuIiIiIiMjL7uqDV1JSEnx8fODj44OxY8fezVXBkCFD9LoQERERERF5UqYfvG7duoW//voLffr0QeXKlREWFgZfX1+Eh4ejTp06GDBgABYtWoSUlBRPrC/dYz755BP9wJovXz5cu3bNo/OPjIzU83f0FxkZ6dHlZgfNmze3uz18fX0RERGBmJgYfPHFFzh//rzHl3/mzBl88cUXaNy4MYoUKQJ/f38UK1YM9evXx3//+1/ExcV5fJnZyc6dO/HRRx8hJiYGpUqVQmBgIIKDg1G6dGk8/PDDGDZsGE6cOOH2/M2XRc7+3U8dYfft29fmNggICEDhwoVRsWJFdO3aFZ9++ik2bNjglXVYs2YNnn76aVSsWBHBwcHw9/dH0aJF0bZtW4wcORLJycleWS4REd2jVCb8+++/qkyZMgpAhn8VKlRQs2bNspr+wIEDunzMmDGZWZVMGzx4sF4Xcl6FChWs9vMff/zh0fmXLl3aqeOrdOnSHl1udhATE+PUtgGgChcurOLi4jy27EmTJqmwsDCHy+zcubPHlpednD9/XvXt21flzp07w/2SJ08e9cILL6izZ8+6vBzzmuXs34QJE7zwje9Nffr0cWnb1K1bVy1ZssQjy05JSVGvvvpqhsusVq2aOnz4sEeWSURE9z6308l//vnneO+99yCTt2rVCp07d0Z0dDRCQ0Nx7tw57Nq1CzNnzsTChQuRkpKCGjVqYNOmTXoeSUlJiIqKAgCMGTMGffv2dWdV6C5Zs2YNGjZsCAAIDg7GlStX8NBDD2HBggUeW4Z0mN25c2d88skndsfz8/NDhQoVPLbc7KB58+ZYtmwZACAxMdGqLDk5Gfv378cff/yhOxgvWLAgdu3ahfDw8Ewt9/fff0e/fv2QkpKCQoUKYcCAAWjSpAkKFiyIEydOYN++fZg5cyby58+PyZMnZ2pZ2U1SUhLatWuHnTt3AgAiIiLwxBNPICYmBkWLFoWPjw+OHTuG2NhYTJkyBUePHgUATJs2DV26dHFpWadOncKpU6ccjnPnzh00a9YMly5dQkhICE6cOIHAwEC3vlt207dvX4wbNw4AMH/+fBQrVgwAkJKSggsXLuDEiRNYu3Yt/v33X+zfvx8AkCtXLrz//vsYOnRoppb9xRdf4K233gIA5MuXD6+//joaN26M4OBg7Nq1C19//TW2bt0KAKhevTrWr1+PPHmyZbeaRETkCnee1n7//Xf9xi4iIiLDt4RbtmxRLVu2VDVq1LAafi9FvMh1AwYMUABUeHi4+r//+z8FQOXKlUsdOXLEY8uQiFefPn08Ns+cwox4OfLUU0/p8f73v/9lapnbt29X/v7+CoBq2rSpunDhgt1xb968mallZTfXrl1TVatW1du6X79+6tKlS3bHv3nzpvr2229V3rx51bRp07yyTnPmzNHr8/TTT3tlGfcqM+J14MABu+PduXNHjR49WgUFBenxf/zxR7eXm5ycrAoUKKAAKD8/P7Vx48Z049y6dUvVr19fL2/KlCluL4+IiLIPl9t4HTt2DAMGDAAABAUFITY2Fi1atHA4TbVq1bBw4UK88cYbri6O7lHJycn4+++/AQA9evTAU089hdy5cyMlJQV//vnnXV47Mr355pv689q1azM1r//85z+4efMmwsPDMXXqVOTPn9/uuH5+fplaVnbz7rvv6ihG3759MXr0aOTLl8/u+H5+fnjllVewdu1alCxZ0ivr9Pvvv+vPTz31lFeWkd3lypUL/fr1w/z583XUadCgQW63v9uxY4duU9mxY0fUrFkz3Th58uTBu+++q/+/evVqt5ZFRETZi8sPXt988w2uXr0KABg6dCiio6OdW1CuXOjdu3eG4y1cuBAPP/ywbqwfFRWFAQMG4MiRIxlOm5ycjJ9++gktWrRAREQE/Pz8UKRIEbRv3x7jx493mODD2ayGycnJ+PXXX9GhQwcUL14c/v7+KFSoEOrUqYOXXnoJK1as0NUv7X2/3r17IyoqCoGBgQgJCUGNGjXw5ptv4vjx4w6XfezYMbz99tuoXbs28ufPr79ftWrV8Pjjj2Ps2LG4dOmS443kITNnzsS5c+cAAL1790aRIkXQsmVLANY/9u4FkoSiefPmAIC9e/fihRdeQJkyZRAYGIjIyEg8/fTTOHjwoNV0W7duRb9+/VCmTBkEBASgZMmSGDBgQIbVu+41ZuKRGzduuD2fnTt3YvHixQCAl156ye0qizlxf5w5cwa//vorAKBIkSL47rvvnJ62SpUqqFOnjsfX6dKlS5g+fToAICoqCk2bNrU5niShkOPkxIkTeOONN1ChQgUEBQWhePHi6NGjB7Zt22Y1XVJSEl5++WVUqFABgYGBKFy4MHr16oV9+/Z5/LtkhSZNmuC1114DkHqefPPNN27Nx0yYUaZMGbvjlS1bVn++efNmuvK096RLly5hyJAhqFatGoKDg1G4cGG0b98+3UPbqVOn8P7776NKlSrImzcvwsLC0LlzZ2zcuNGt70NERB7kSngsJSVFRUREKAAqb9686uLFi5kKt6WtavjWW2/ZbYQcERGhtm/fbndeSUlJqnLlyg4bMjdp0sRuI3Znkmts3LhRRUVFZdhg2la1litXrqiuXbs6nC44OFjNnDnT5rKXL1+uQkJCMly2remXLl2qyz1VZa9Tp04KgCpbtqweNm7cOL2c9evXZzgPGddRYgxPVDWUKnkxMTFq4cKFKl++fDa3XaFChdSOHTuUUkpNmDBBV6lL+1e6dGl19OhRt9fHU5ytarh161Y93vPPP29zHPNcjImJsTnORx99pMfZtm2bHn7u3Dm1e/dudebMGZfWOyftj++//16vz/vvv++ReZqJZdwxcuRIPf2HH35odzypkle6dGm1adMmVaRIEZvbOSgoSK1YsUIppdTixYtV/vz5bY5XoEABtXXrVrfW2ZOcrWpoOnz4sMqVK5cCoMqXL29zHPO8szXfCxcuKB8fHwVAdevWze6ypk+frufz3XffpSs370mHDh1Kl8hI/nLnzq0mTZqklFJq8+bNqnjx4jbH8/f3V4sXL3ZqOxARkXe4dEc3f8C1bds20ws3f+w1atRI/xibMGGCWrdunVq0aJFV+5QGDRrYnM/ly5etsit26dJFzZgxQ61bt05NnjzZ6kbZsGFDdfv27XTzyOjBa9u2bSo4OFiP07VrV/X333+rhIQEtWbNGjVu3DjVu3dvlTdv3nQ349u3b6sWLVooAMrHx0c9/vjjavLkyWrdunUqLi5ODR8+XJUqVUoBqW0C1q1bZzX9jRs3VLFixRQAlS9fPvXmm2+quXPnqvXr16s1a9aov//+W7366quqZMmSWfLgdfr0aeXr65vuB93ly5d1O4lXXnklw/m48uAVFRWlqlWrpoKCglRgYKCKjIxUPXr0UNOmTVMpKSkOlyP7v3z58qpAgQKqZMmS6vvvv1dr165VK1asUK+++qr+odS4cWMVHx+v8uTJoypXrqxGjhyp4uPj1dKlS9WTTz6p1/mxxx5zdnN5jbMPXn379tXjzZ492+Y4zjx4tW/fXgFQ+fPnVykpKWr8+PGqevXqVj/uoqKi1JAhQ9Tly5czXO+ctD8eeeQRvS5r1qzxyDwz++DVrFkzPf3evXvtjicPKBERESoqKkoVLFhQffbZZ2rVqlVqzZo1asiQIcrPz08BUJGRkWrPnj0qJCRElShRQg0fPlytWbNGrVy5Ur322mt6v9WvX9/dr+0x7jx4KaVUdHS0nu748ePpyjN68FJKqZ49e+rr+ebNm9OV37p1SzVo0EABUCEhIer06dPpxjHvSfXr11dBQUHqnXfeUcuWLVMJCQnqm2++0S/j8uXLp/bv369KliypChYsqD799FO1cuVKtXbtWjV06FC9/0qVKnXftb0kIrqXuHRH//PPP/WN4N133830ws0fewDUs88+a/NH9DPPPKPH2bBhQ7ryN954w+Hb5pSUFNWrVy89zk8//ZRunIwevGrVqqWA1OQREydOtPudzpw5o65du2Y17KuvvlIAlK+vr5ozZ47N6c6dO6eqVKmigNTInGnx4sV63exFxJRKvZnbikJ6+sFr+PDhen67d++2Knv88ccVkBqtuHXrlsP5uPLg5eivcePGDhN6mD+Uypcvr06dOpVunP/+9796nIiICNW4cWN19erVdOM9+uijCkhNA25rPlnJ/F6JiYlWf+vXr1dTpkyxirI+8sgjduflzINXZGSkAqBq1KihBg4c6HCfVK1a1W4UKifuj/Lly+vrw40bNzwyz8w8eCUlJVk9vDpiPqCEh4fbfEj78ccfrfaHM/vN1rU6K7n74NW7d2893fLly9OVO/Pgdfz4cVWzZk39YDV06FC1cOFCFRcXp8aOHatq1KihAKjAwEA1depUm/Mw70n+/v42H+hnz55ttV+c2X/2lkdERN7n0h3d/ME9fPjwTC/c/LFXtGhRuz9Ydu7caXe5N27cUKGhoQqAio6OthnNUkqpixcv6n6HoqOj05U7evCaN2+eLnMmkmNKTk5WRYsWVQDUa6+95nBcMwPZnj179HDzgded6p2efvCqU6eOAqDq1auXrsz8IeDoIVEp5x68ypcvrzp16qR++OEHFRsbqzZu3KiWLl2qPvvsM1WyZEk9j8qVK9vNsGf+UJo7d67Nccxj0cfHx2611iVLlujxpk+f7vD7eZuz/XhVqFBBjRw5Ut25c8fuvJx58JK361LlLzQ0VI0YMUKdOnVK3bhxQyUkJKh27drp+TRq1MjmMnPi/pAsdgUKFPDYPDPz4GVWC/31118djms+oPz88882x7l27ZoKCAjQ482bN8/mePv37/foPSIz3H3weuWVVxweU848eCmVWr182LBhqnDhwunOSR8fH/X0009bVdlNy7wnvfXWW3bHM4+TESNG2BzH3H8Z3YeIiMh7XEqucfnyZf05b968rkyaoUceeQT+/v42yypWrIjg4GAA0P2tiPXr1+PChQsAUhuJ586d2+Y8QkJC0KNHDwDA9u3bM0xkYZo9e7b+LI2vnRUfH6+XJcu3p1mzZvpzXFyc/ly0aFH9ecyYMS4tH0hNZqBSH7IxduxYl6c3bd++HevXrwcAm8lSWrdujUKFCgEA/vjjD4fzknVKSkqyO058fDymT5+OgQMHIiYmBjVr1kTz5s3xzjvvYNu2bWjdujWA1ExiGfW9ExoaijZt2tgsi4yMREhICIDUfnUqV65sc7waNWroz2mPxXvV7t27MXr0aIeZ0yIjI/X+iI2NtTmOJNW5efMmcufOjblz5+L5559HREQE/P398cADD2DWrFlo164dgNRMbVOnTrW7zJy0P+Ta6MnrYlJSkt4nrho/fjwAICAgIMPrjvDx8bE7bmBgIMqXLw8AKFCggD7v0oqKitKZHLPL+ZGW3GsA63ueiI2N1fvFTFxja7y//voLJ0+eTFemlMLMmTMxfvx4q2Qc9vTs2dNuWfXq1QE4v/+y634hIsoJXHrwMlMjy48wT6lUqZLD8gIFCgBIfyOU9M0AUL9+fYfzMMvN6TIi2aBKlSqF0qVLOz0dAKxbt05/btiwoc5SZevPvOGbqYybNGmis2O9+uqrqFevHj7//HOsXr3aqZu2J0mHpHny5LH5YyBPnjx47LHHAAAzZszAxYsXM7W80NBQu2X58uXDpEmTEBYWBgD49ddfHW6P8uXLO8xaKanRHXXEbK6PrR9ld4v8EJS/O3fu4OTJk5gyZQpq1KiB1atXo1WrVpg2bZrbywgICNCfH330UTRo0CDdOLly5cKXX36p/z9x4kS788tJ+0OujZ6+LrpjzZo12L17NwCgc+fODlP+m8LDw1GwYEG75bKty5Ur53C/yXj30vnhCnO95eHfVcOHD0enTp0QHx+PZs2aYeHChbh48SJu3ryJ7du344033sDZs2fx+eef46GHHsrwuHHmHAgPD9f3SUfjZdf9QkSUE7j04GWmj7b1Fi8zgoKCHJbnypW6qnfu3LEaLinNAaBw4cIO51GkSBGb02XkzJkzAKwjT85yN9X1tWvX9GdfX1/MnDlTv/VPSEjAu+++i8aNGyM0NBTt2rXDhAkT0m0bTzP76GrdujUiIiJsjieRsBs3bmDSpEleXaf8+fPrB8CrV69aPeim5ewx5mg8GQdIfyzeS3LlyoVChQqhW7duWLlyJSpUqICbN2+ib9++uo8hV5kvXiSqZUuVKlVQvHhxAKnHqj05aX/ItVF+XN9N7vbd5Yn9YY53L58fjsj1HoDDB1F7Nm/ejNdffx0pKSlo1aoVlixZglatWiEkJAR+fn6oXLkyvvzyS939wPLlyzFkyBCH83TmHMjp+4WIKCdw6cHLrNazYcMGj69MZmXUB5c7VXZcmb8t5k0uNjYWiYmJTv1JJ9UiOjoaiYmJmDZtGvr376/7gLl+/TrmzZuHXr16oX79+l7t02jx4sU4evQoAGDOnDl2I3dmZDEr+vQy+5KT9SOL4OBgfTxdunQJ//zzj1vzMTv5LVGihFPj3gt9bGUFuTampKRg06ZNd209zI7NCxcubLcqJ9ln9nflKNJkz9ixY3WfkUOHDrVb/b1///66+t/o0aMzfX8iIqJ7n0sPXtHR0frN7ooVK7Kss15HzDeSZvU8W8wonStvMuU7Hzt2zMW1g64GBwB+fn6oWrWqU3/STsqUO3dudOnSBaNGjcLevXtx7NgxjBo1Sne+un79ejz//PMur6OzpJqhK1atWuX1NgX8wZIxsypvYmKiW/OoUqWK/pzRW3Mpz5Mnj1vLym5iYmL0Z7NNaFabNWuWjub36tXL7o9+su3w4cPYtWsXgNS2xfai+o7s2LFDf65du7bDcaX83Llz981LCiKi+5lLD14+Pj7o27cvgNRqXSNHjvTGOrmkatWq+vPatWsdjhsfH29zuozIzfHQoUM4ePCgS+tXq1Yt/XnBggUuTZuRokWLon///oiLi9PrOGvWLFy/ft2jywGAK1eu6PZBDz74ICZOnOjwT44NpVSGSTYya/v27fpzsWLFvLqs7Or27dv6861bt9yah5n8Zd++fQ7HlYdtqXKY0/Xs2ROBgYEAgJEjR961tl7uVjOkVN99952OVnXt2tWteZgvG8zzzhbzXLxfXlIQEd3PXHrwAlKTO0hd8g8//BA7d+50arqUlBSdacuT6tSpoxsNjxs3zu6b+MuXL+v2RtHR0S6113r44Yf152+++cal9WvSpImOro0YMcIrUUJfX1/9xv327ds6y6Mn/fPPP7rd2YABA9CzZ0+Hf08//bSOxHnzwevixYu6alVQUBAeeOABry0rOzPbWplVBl3RqVMn+Pr6AoDDbIXLli3D2bNnAQBNmzZ1a1nZTXh4OJ599lkAwPHjx/Hqq686Pe22bdt0ptDMOHv2LObMmQMgteqjWTWcMrZy5Up8++23AFITybiyD01RUVH684oVK+yOd+vWLZ29Nn/+/G61JyMiouzF5Qev4sWL44cffgCQGvWKiYnBsmXLHE6zfft2tGnTBl999ZV7a+mAv78/nnnmGQCpP2BspRRXSuGll17SjaZfeukll5bRqlUr/RDx/fff46+//rI77rlz56wiTgEBAXjjjTcApFaF7Nmzp8O34ZcvX9bbV6xYsQJ79+61O01ycrLeB8HBwemqx8TGxur2VxKxdJW8SQ8KCnKYWMH0yCOPAEiNjqxatSpduayTvZTM8+bNcxi9u3z5Mnr06KF/5D/99NN2uyS4nx08eBA//fST/n/79u3TjZOUlKT3R/PmzW3OJywsTJ9rCxcutHkeXL582eoHqzervt5rPv/8c93ecOTIkXj22Wdx5coVu+PfunUL33//PRo0aIDDhw+nK4+MjNT7xBkTJ07UERRGu5yXkpKCsWPHok2bNjpCNXz4cLvJmpo3b673i62uMMwXdW+//bbdl22DBw/WXY20b9/erTbERESUvbhVt6Ffv344cuQIPvzwQ5w6dQrNmzdH69at0blzZ1SuXBmhoaE4d+4cdu/ejdmzZ2PevHm4c+eO197Afvjhh5g6dSr279+Pjz/+GFu3bkX//v1RrFgxHDhwAD/88IPum6hhw4Z47rnnXF7GH3/8gXr16uHKlSt4/PHHMXnyZPTs2RNlypTBnTt3sHfvXixcuBD//PMPEhMTrR4m3nzzTSxevBiLFy/G3LlzER0djRdeeAENGzZEaGgoLl++jF27diE2Nhb//vsvAgICrB4OFy9ejI8//hhNmzZFhw4dUL16dUREROD69evYvXs3RowYoZOdPPPMMx6vsnLo0CG9/dq1a5dh9izRvXt3vPPOOwBSH9waN27s0nL/97//oVevXujWrRuaNGmCsmXLIjg4GBcuXEBcXBx+/vln/YO1YsWKGWYGy8nSdo+QkpKCs2fPYsWKFfjuu+/0w2mvXr1Qs2ZNt5czdOhQzJ49G4cOHcKTTz6JVatWoVu3bggJCUFiYiL+7//+T0fBBwwYgLp167q9rOwmKCgIM2fORLt27bB7926MHDkSM2bMQK9evRATE4OiRYtCKYXjx49j+fLlmDJlCg4dOuSx5cvLkdy5c6NXr14em29OsHv3bv0QnJKSgosXL+LEiRNYu3Ytpk2bpqvG5sqVC4MHD3brHiFat26Nli1bYsmSJdiyZQtq1qyJV155BfXq1UNAQAD27t2L0aNHY968eQBS+34bPHhw5r8kERHd+zLT+/KUKVNUZGSkApDhX5UqVdT8+fOtpj9w4IAuHzNmjMNllS5dWgFQffr0sVl+4MABValSJYfr0LhxY3X27Fmb0w8ePFiPZ8+6detUyZIlM/yuBw4cSDfttWvX1FNPPeXUtoqKirK7bo7+unXrpq5fv55u2UuXLtXj2Nt+jnzyySd6+okTJ7o0bfXq1RUAFRoaqm7cuGFVJvMsXbq0zWljYmKc+t7NmjVTR44csbsOMp+YmBiH65rRMZZ2vQcPHuxwPG9zdvvI32OPPZZuHwjzXMxoO23fvl2VK1fO4bL69++vkpOTHa53Ttsf4uzZs+rJJ59UuXLlynCf+Pr6qpdffllduHAh3Xzk+ztzmd65c6cet3379i6tb58+fRyeh8LT+83b5Hs5+1evXj0VGxub4XzN887WtV4ppc6dO6datGiR4TIjIiLUwoULbc7DmXuS+T09tf+IiMh7MhUa6datGzp27Ih//vkHc+fORUJCAk6dOoXLly8jJCQEkZGRaNCgAbp3744WLVp4tSpFZGQkNm/ejN9++w2TJ0/G1q1bcenSJRQsWBC1atVCr1698MQTT1j1++OqOnXqYNeuXRg5ciT+/fdfbN26FefPn0dYWBiKFy+OJk2aoGfPnjarzgUGBmLcuHF4+eWXMWrUKCxfvhxHjhzB1atXERwcjMjISNSpUwft2rVDx44draZ98803Ub9+fSxcuBBxcXE4duyYzoBVpEgR1K9fH0899ZTNKmSeIG20/P390aFDB5em7d69O7Zs2YILFy5gxowZePTRR52e9quvvsLixYsRFxeHXbt24cyZM7hw4QKCgoJQrFgx1K9fH48//jhat27NajppSIfcJUuWRMOGDfHUU09ZJcfIjMqVK2PTpk34+eef8c8//2DPnj24cuUKChUqhMaNG+P5559HixYtPLKs7KhgwYL4/fff8c477+Dvv//G4sWLceDAAZw5cwa5c+dGeHg4atSogZYtW+KJJ56wmcHUVUyq4Tw/Pz/kz58foaGhiI6ORt26ddGhQ4dMRYLTKlCgABYvXowZM2ZgwoQJSEhIwIkTJ3D79m2EhoaiSpUqaNeuHZ555hm27SIiuo/4KMVc3ERERERERN7kfviHiIiIiIiInMIHLyIiIiIiIi/jgxcREREREZGX8cGLiIiIiIjIy/jgRURERERE5GV88CIiIiIiIvIyPngRERERERF5GR+8iIiIiIiIvIwPXkRERERERF7GBy8iIiIiIiIv44MXERERERGRl/HBi4iIiIiIyMv44EVERERERORlfPAiIiIiIiLyMj54EREREREReRkfvIiIiIiIiLyMD15ERERERERexgcvIiIiIiIiL+ODFxERERERkZfxwYuIiIiIiMjL+OBFRERERETkZXzwIiIiIiIi8jI+eBEREREREXkZH7yIiIiIiIi8jA9eREREREREXsYHLyIiIiIiIi/jgxcREREREZGX8cGLiIiIiIjIy/jgRURERERE5GV88CIiIiIiIvIyPngRERERERF5GR+8iIiIiIiIvIwPXkRERERERF7GBy8iIiIiIiIv44MXERERERGRl/HBi4iIiIiIyMv44EVERERERORlfPAiIiIiIiLyMj54EREREREReRkfvIiIiIiIiLyMD15ERERERERexgcvIiIiIiIiL+ODFxERERERkZfxwYuIiIiIiMjL+OBFRERERETkZXzwIiIiIiIi8jI+eBEREREREXkZH7yIiIiIiIi8jA9eREREREREXsYHLyIiIiIiIi/jgxcREREREZGX8cGLiIiIiIjIy/jgRURERERE5GV88CIiIiIiIvIyPngRERERERF5GR+8iIiIiIiIvCzP3V4BIiIiIsrZli5dCgD4/PPP9bCBAwcCADp37nxX1okoqzHiRURERERE5GWMeBERERGRV125cgUAcOLECT1MPqekpAAAcuViPIByNh7hREREREREXsYHLyIiIiIiIi9jVUMiIiIi8jillP585swZAMDJkyf1sH379gEAkpKSAAClSpXSZXny8Ccq5TyMeBEREREREXkZXycQERERkcfcuXMHgCWSBVgiXhEREXrYhQsXAAB79uwBABQpUkSXMeJFOREjXkRERERERF7G1wlERERE5DG3b98GAGzfvl0Pk4hX5cqV9bAbN24AAHbt2gUAaNCgQVatItFdwYgXERERERGRl/HBi4iIiIiIyMtY1ZCIiIiIPEaSa2zZskUPO3/+PACgXr16epiUS1XD5OTkrFpForuCES8iIiIiIiIvY8SLiIiIiDwmJSUFAJCYmKiH5c6dGwDQqlUrPWzHjh0ALBEvs8NlopyIES8iIiIiIiIvY8SLiIiIiDxG0sSfPHlSDytevDgAoHr16npYgQIFAFjSzl+6dEmXFSpUyOvrSZTVGPEiIiIiIiLyMj54EREREREReRmrGhIRERFRpklSjTNnzgAAQkJCdFnBggUBALlyWd75lylTBgBw9OhRAMDevXt1Wf78+QEAERERXlxjoqzFiBcREREREZGXMeJFRERERJkmka6DBw8CAMLDw3VZiRIlAAA+Pj56WKlSpQAAJUuWBADs379flxUuXBgAI16UszDiRURERERE5GV88CIiIiIiIvIyVjUkIiIiokw7fvw4AGD37t0AgCJFiugySaShlNLDpPqhVDVMSkrSZVINsVatWt5bYaIsxogXERERERGRlzHiRURERESZdvLkSQCWtPBly5bVZaVLl043vkS6JLq1bNkyXSYRMqKchBEvIiIiIiIiL2PEi4iIiIgy7cSJEwCAXbt2AQAaN26sy6KiogBYp5OXdPOFChUCYOlIGQBOnTrl3ZUlugsY8SIiIiIiIvIyPngRERERERF5GasaEhEREVGmSXKNffv2AQAKFy6sy6RaoS358+cHAFy6dEkPu3z5sjdWkeiuYsSLiIiIiIjIyxjxIiIiIiK33LlzR39OTk4GAAQGBlr9mxEZTxJwAJYkHEeOHAFg3Rlznjz8+UrZEyNeREREREREXsZXBkRERETkEoluSUQKAJRSACydHwcEBDg1L39/fwBA1apV9TBfX18AwNatWwEAefPm1WUFChRwd7WJ7ipGvIiIiIiIiLyMD15ERERERERexqqGRERERB4gVe0kMURmx7uXXbt2DQCwefNmPUwSbdSoUQMAkC9fPqfmJVUSK1asqIcdOnQIALBz504AQJUqVXQZqxpSdsWIFxERERERkZcx4kVERETkARLBOn/+vB4WFxcHwDpVeuXKlbN2xbzAUcSrVq1aAJyPeEk6eXO7HD16FACwfft2AECbNm0yucZEdx8jXkRERERERF7GiBcRERGRB0n7JAD4+uuvAQCdO3fWw3JCxOv69esALBEpAChXrhwAS3ssV9t4VahQQQ+LjY0FAOzevRsAcOXKlcytMNE9gBEvIiIiIiIiL+ODFxERERERkZexqiERERGRB126dEl/PnDgAABg7969etiZM2cAAAULFgQA5MqV/d6D37p1CwCwZ88ePUwSiJQvXx6A899LxgsLC9PDJFGJJNmQ5RFlZ9nvTCciIiIiIspmGPEiIiIi8gBJOHHq1Ck9TCI3Z8+e1cMk+lW9enUAQFBQUFatosdIVC8lJUUPk7TwnojgSWIOmefFixczPU+iu40RLyIiIiIiIi9jxIuIiIjIA/bv3w8AOHLkiB5WokQJAJbOhQFgx44dACzp17NTxEvap504cQIAULp0aV1WuHBhjy2naNGiACyp6WV5gCViWLZsWQCWqCLRvY4RLyIiIiIiIi/jgxcREREREZGXsaohERERUSYopQAAO3fuBAAcPHhQl0lVuStXruhhUtXwwQcfzKpV9JhDhw4BsKR5j4yM1GVSPdATpNqipKY/efKkLpMqnWXKlAHAqoaUfTDiRURERERE5GWMeBERERFlgkRcJOIl0SAAaN++PQAgISFBD5PxJP18dpKUlATAkkBEEoQAQKlSpTy2nGLFigEAKlasCADYsGGDLpOIl0QaibILRryIiIiIiIi8jA9eREREREREXsaqhkREREQesGfPHgDA6dOn9bCYmBgAwIEDB/SwJUuWAABu3ryZhWvnGZI45NixYwCAFi1a6DKz2mFmRUVFAbAkJZk/f74uy5UrNW7AqoaU3TDiRURERERE5GWMeBERERFlgkRlJILl7++vy4oUKQLAkiwCAEJCQgBYImN37tzRZblz5/buymbS4cOHAViSXVSuXFmXnTt3DoDl+9lKNZ8/f3497Pbt2wCAEydOAAC2b9+uyyTxyJkzZwAAmzZt0mXR0dEAGPGi7IcRLyIiIiIiIi9jxIuIiIjIRWb7LEkfHxwcDAAICgrSZRKVKVGihB4mUSLpjFjahgFApUqVvLTGniHtqyQSNXPmTF0m0bqCBQsCALp3767LmjZtCsB2xEvSw48bN06XSRRM5ml2oFyzZk0PfBOirMeIFxERERERkZfxwYuIiIiIiMjLWNWQiIiIyEWSSAIAdu7cCcCSVCI8PFyXSdW8woUL62FlypQBABw/fhyAJUU7cO9XNXzuuecAWNZz+vTpuuzUqVMALMlF5HsCQKlSpdLNKyAgAIAl8YiZgES2iVTVfOedd3RZ69atAQB58vBnLGUvjHgRERERERF5GV8VEBEREbnIVsRLEkeUL19el9mKeElHwytXrgRgSUaRHci6Snp483tJxKpu3boAnO9QWeYlnU0DlkiXJC4xlyORRR8fH9e/ANFdxIgXERERERGRlzHiRUREROQiM+K1a9cuAED16tUBAGXLltVljtp4TZo0CYAlgpMdzJ49GwCwbNkyAEDx4sV1WcuWLQEAzZs3B+B8RCpv3rwAgI4dO+phUVFRVsuZNWuWLktKSgIAvPXWWwAs25joXscjlYiIiIiIyMv44EVERERERORlrGpIREREACwJDZytIubq+DnJ2bNn9efNmzcDAJo2bQoAqFy5si6TanC5c+fWw6Ta4ZkzZwAAJ0+e9O7Kukmq9Jkp48+fPw8AqF27NgDggQce0GXyvW0dD7aOFUfHjyQokZTxknoesKSa//zzzwFYV1GsUaNGxl+M6C5hxIuIiIiIiMjLGPEiIiIiALYjDxKVkeiE2Tnw/RjpEhcvXtSfpePg4OBgANbRGVvy5csHAPD19QUAJCcn67KrV68CsCScyCq3bt3Sny9cuAAAiIuLAwCsWrVKlzVq1AgA0KpVKwDOd/hs61hxdPz4+fkBACpWrAgAKFCggC5bsGABAGDKlCkALGn8zc9FihQBkPG+IMpKjHgRERERERF5GSNeREREZOXOnTv6888//wzAEhH54IMPdJlEbO4HEvG7efMmAOsolbTZCgwMdGpe0t7LVpuobdu2AbBEkrIq1fzhw4f152+//RaAZZ8/++yzuiw6OhqAdXr8rBAREaE/d+jQwWpdfv/9d1327rvvAgAGDRoEAKhZs6YuM9vZEd0NjHgRERERERF5GR+8iIiIiIiIvIxVDYmIiMjKjRs39OcNGzYAAC5fvgwAOHHihC4rWbJk1q7YXXT79m0AwJ49ewAAV65c0WWSACI0NNSpeUmK9AoVKgCw3qY7d+4EYKnK562qhrI/pWrjli1bdJlU65PqjpImH3A/WYWr6eTTMseRRBvyrySAAYCEhAQAloQgkigEsFQ7LFiwoM35EnkbI15ERERERERexogXERERWZFOcgFLZOfcuXMALBEfwJK6O6sSQNxNkkwjMTERAHDp0iVdJpEUM9W+I2kjXteuXdNlEvGqXr06AKB06dKZWGtr5jpv3LgRgKVz5P379+sySUzRsGFDAEBKSoouk+0g0SpbJIok3xOwdCRtazyZl5nS3tH8007funVrPaxs2bIALElgZH8BwPXr1wEADRo00MOc3WdEnsCIFxERERERkZfxwYuIiIiIiMjLWNWQiIiIAFiqGO7evVsPk2QK0keVWSbV4O6HqoZSDU6SUZgJSKTqWlhYmFPzkip4kpRj3759umzt2rUAgLNnz2ZyjS2kmmhsbKweNmzYMADAsWPHAACFChXSZePHjwcAzJ8/H4B1VUPpu036xDLLpMqkVEHt3bu3LnNUZfL06dMAgHHjxulhJ0+eBADkzZvXanmApZ852Sdmf3JSnVKmP3TokC6TRDGvvvqqHta2bVsAliqHTLZB3sSIFxERERERkZcx4kVEREQALFECMyGBRHEk8mVGvCQBhCQ0yMkkyiLfX1KZA5a06+YwRyTiJVEgieoAliQXku7dE2wlqpB1KFWqFABLog/AEl06deoUAOvU+UePHgVgiY6aCTQkTbscF5KCPyOybS9evKiHbd++HYAlWieJMQAgX758AIASJUoAAIKDg3WZn58fACA6Otrq/+b8baW0J8oKjHgRERERERF5GSNeREREBMDS3kdSjQOWiIhEL6SNE2CJkN0PJCojER9p8wZYtpGr7YMksuTv76+HSSTJTDGfWRK1bNWqlR5WvHhxAJa2auY6SJspiXSZbdCmTp1qNczsjLhWrVoAgO7duwOwdAKdEZlHz5499TDpjHrOnDkAgOPHj+syaY/VokULANbROmlvKMfrzZs3030viVACzkcpiTyBES8iIiIiIiIv44MXERERERGRl7GqIREREQGwVOfasmWLHtamTRsAlmpxM2bM0GVnzpzJwrXLemaqdKlWKYkczNTxmU1BLtXqACAyMhKAJbmGJJcwx8uVy7335mba//r16wMAkpOTAQAnTpzQZcuXLwcAbN68OV2ZVFGsW7cuAKBcuXK6rHLlygAsyVbM6piOSAKMMmXK6GEdO3a0mr+Z1OXw4cMAgJUrVwIAdu3apcuqVq0KAIiJiQFgScABWFenJLobGPEiIiIiIiLyMka8iIiICABw4cIFANad90riCEl5bqYIN9N/50RmpCcpKQkAUKxYMQBAyZIlPbYcM3pWrVo1AJaI186dO3XZAw88AMA6RborzAieJM6QiJqksQeAHTt2AAAOHDiQbh6S0EIioRIBywyJGAYFBelhkgBD/pWkIwCwZMkSAMDkyZPTradEZm2tlyTxMCN/ZsfMRN7GiBcREREREZGXMeJFRER0HzI7jpXU5RLNMtOAS7uY/PnzA7B0jgsAt27dAmCJykRFRaWbLjuT9PqAJSIkES/p/NgTzJTmFStWBGCJRO3Zs0eX1axZE4D7ES8zgvfXX38BANavXw/AOu16y5YtAQCdO3cGYP1dZV3dXQd3mdtI1kvacR08eFCXbdq0CQAwduxYAJY2bIAlmti7d289zGyjRuRtjHgRERERERF5GR+8iIiIiIiIvIxVDYmIiO5DUk0QsFSjk+pmZvUrSXggyTUkZbg5D0nGULRoUV2WE6oaHj16VH+WbVSjRg0AQJUqVTy2HDPleZ06dQAA06dPB2CdKt3cZ/ZIFcWtW7fqYXv37gVgnahDugyQfS5VKAFLunpZniTiACwJVWS6O3fu6DJJ3hEQEADA+jhyVDVR5iHrCQBXr161Whczhb4cW76+vlbrCVgSdcg40g0AYEk/byaFiY6OBmBJgS/p6AGgUKFCdteZyB2MeBEREREREXkZI15ERET3ITOZgkSsbty4AcA6miMdBksUw4x4bdu2DYAlKtO4cWMvrnHWM5NR7Nu3D4DlO8p2ASzbUiIwJludHUtkSP41E51EREQAsKT0l8gPYB1dskcSTUyaNEkPmz9/PgBLB9mApbNi6UhZEk8AwPXr1wEAq1evTrd+jsjxky9fPgDWUU+JKNki23nhwoV6mHx/ZzthFnnypP60lcihJIUBgISEBADAmDFj9DApb926NQCgb9++uowRL/I0RryIiIiIiIi8jBEvIiKi+5CZZlsiVhKxkGgBYGnbJf9KmxjAkrp7+/btVtPnFKdOndKf4+PjAVi2g0RPAEs0sG7dugAs7cAAS0fLZrRK2ovNnTsXgHUkStooxcbGArCOupidVwPWHSJLh8vS0bAZkWvUqFG66SUqJZ0KS5cC5rrKv44iXmZET9LvX7p0yeq7AEDz5s0BWFLiA5bjZtmyZQCAtWvX6jKJlkkH3qa062MuR9ZHIl9mZ8m1a9cGYIn2mdNK5Mts/yXt5UJDQ9N9VyJ38AgiIiIiIiLyMj54EREREREReRmrGhIREd2HzKqGklyjcOHCAKyrE0qVtNy5cwMAoqKidJmk8T5w4EC6eeYEFSpU0J8feOABAJbqdPKdAcs2km1jK8mGbD/AUuVPqnhKlU1zPEnv3rBhQ13mKEW/VAuUqoOSNAOwVJEz10uqKcq6pK3GmBGZp/m9pNqeJF1JSkrSZYcPHwZgXdVQqlhK4hJzHSIjIwFYJ/0QziQZEeb6SfVDW/tC/jWrdtpKfkKUGYx4EREREREReRkjXkRERPchW8k1JMGAmTI+LYnuAJZIgCR0cKaD3+ykS5cu+nOlSpUAAD/++CMAYM+ePbpMEkBIGn6zM2JbZPzq1asDsO7kVxJ6PPfccwCArl276jIzYQZgneyhQIECACz70OwI2BtsdWws0aK0HTAD1lGmtPOQdTZTv0va/pYtWwKwjjq5EvFyla1EHeYwosxgxIuIiIiIiMjLGPEiIiK6D0nKb8DS9icoKMileRQpUgQAULRoUQCW9k8AULp0abfmeS8x23GtXLkSgKWdlURiAKBZs2YALFGxjEhKeum0V9KVA8C6desAWCJqixcv1mVmBC4ticrYiixlFUmrL8eT2WbLUTspWXdpg2XOK+04accjyk4Y8SIiIiIiIvIyPngRERERERF5GWO1RERE9xFJhHHixAk9TKoKSjp5Z0mSiHLlygEADh48qMukGqIknMgOJH34uXPnAABxcXG6bPPmzQAsKeZjYmJ0Wd26da3mY1arkypy5jBJ2lC2bFkAQHh4uC6TJBlz584FACxdulSXyfjly5cHkL463t0myTQk+YWt7WCLjGcmzchpiVqIAEa8iIiIiIiIvI4RLyIiovuIJIww06FLJKVMmTIuzat48eIALIk0pJNcwJJSPTtFvKQj36+//hqAdfr2tm3bArB0pCzf3RZb0R1HER8zjXrTpk0BWFKzm1G3jz76CADQsWNHAECfPn3szpOI7j2MeBEREREREXkZH7yIiIiIiIi8jFUNKVtwtYEue5mn7MCZ49XZY59s4/ZLLykpCQCwd+9ePUySNbha1bBEiRIAgKioKADAggULdJkk17hX3bhxAwCwdu1aPWzjxo0AgJCQEABAjRo1dJkk0ChZsqRX10v6+JIqmuYxfPbsWQCWfTdu3Dhd1rx5cwCWap9EdO9hxIuIiIiIiMjLGPFyk6ScBSzpT+VtqvlW9W72IJ+TmNtUtvft27cBWPdgz+3tebK95Zg394WkRJZ/yTWyLc0UymmPax7TGTPTTkt0wNfXFwCjXLYcOnQIALB//3497KGHHgIAREZGujQvSaAhUZajR4/qsiNHjmRmNb3m2rVrACxJRv7++29ddvnyZQDAa6+9BgCIjo7WZVmdut3f3x8AUKdOHT2sUqVKAIARI0YAAP744w9dJusn/5op6nkdIbo38NcSERERERGRlzHi5Sazk8j169cDsLxhNetXV61aFYB1VIYyJzExEQAwadIkAECXLl10Wb169e7GKuU4ZgRm1apVAIDjx48DAMLCwnRZ5cqVAThOq0wZk2sIAPz7778AgB49egAAataseRfWKHsxIxYSZRk4cCAAIF++fHdlne5lci5L5AuwRK4KFizo0rwkKiPXhTNnzugyaY90Lzh9+rT+vHLlSgDA6tWrAQANGjTQZfXr1wcAVKxYMVPLy6gDZXcjsdL+67nnngNgve7z5s0DYNmv7du312XSXcC91uFyTsL2pOQMRryIiIiIiIi8jA9eREREREREXsb6b26SqhoAsGjRIgCWMLNZ3U0awrKqoedIg+ipU6cCsFShAFjV0FPM5DGbNm0CAGzYsAEAULhwYV0WHBwMgFUNM8tM6z1lyhQAllTSrGqYsbi4OP1Zjtdu3boBYFVDYSYgkTTq5n0pf/78mZq/VIEzt7dcRy5evOix5TjDrCotyT6kGh4ALF26FIClSp55D5HkNnIc2aoyJvd6czkynqTVL1CgQLrpzHnJcvbs2QPAktQDcJwYRrappLv38/PTZXIdOXnyJADgwoULuqxDhw4ArBN1yLSsFpex5ORkANZVVmWfSZcKcj8kcoQRLyIiIiIiIi9jGMZN5hu87du3AwDOnTsHwLrx6mOPPZa1K3YfkG1//vx5ANaJTo4dOwbAEpVhCl33mBEvSVYgCSDMN9bSEJ0yx7yeyHEtndyeOHFCl0VERADgcS3kjbO5/eSNtLz9L1q0qC67H6NfEt2SmgKAJdJRrlw5PSyzx5REaapVq5ZuOVu3btXDJOGUNyNfZqRHrlvfffedHiZRMEkVP3PmTF22cOFCq3mZXWWkTZIhURDAEvF7+eWXAVgnvbDl6tWrAIDx48cDsETYACAoKMjm8gDra3Pa/8u+lvvg999/n+57mDUWJBEYa+TYJ9te7oMrVqzQZRKtfPLJJwFkPiEL3R8Y8SIiIiIiIvIyvuZwk7xZAiztvaRetVkHmDJH6tCbbeokRbG8MTXTF8tbbkmJzMiAe8y3vBKBOXz4MADg0qVLukw6IiXXSPsOeTMt2xiwHNenTp0CAOzbt0+X8bhOJcednO9mW5vAwEAAls6BzajO/Rjxkqjgzp079TCJRFWoUEEPk7Tw7pKIlzlPuSfu2LFDDytZsiQA70a8zLY2EoWQ7hkAS4RU2ubIMQNY2sLJfSUhIUGXbdu2DYAlQmRGOKQtptlpsSOyD2Q6qTEDABs3bgRgiXab7cViYmIAWLajRMdM8hvEnGejRo3SrR87vrcm28tWm1G5RpvXEInehoaGZs0KUo7As46IiIiIiMjL+OBFRERERETkZaxq6Kbr16/rzxKul6oWJqnmwTSj7pEqWZLABLBUNSxfvjwA6+puu3btAgDUqlULgHWiE3KemdpYqnHJ8W0e5zdv3szaFcshpDqTVF0yk0NIVS3ZB7t379ZlclybKaTvR1LtZ8uWLQCsq4pJFSxJJiGN4gHranD3C6kabF5DpVph5cqV9TBbVdZcIftAElYAwJUrVwBYV3PMioQ8ZrVJWZ/nn39eD5PEFnJ/kf8Dliq+co6ZVfMKFSoEAAgLCwMANG7cWJdJunZnu9aQdWzevHm6dZaEGbIO5n1MkmOUKVMGgHXyGEkxL/Myr9Wy7vf7PVH2uXmPk30uCY1Wrlypy+QaLdu0RYsWuqxZs2YALMcDkTMY8SIiIiIiIvIyRrycJG+oJXW5mWBAOkmWt3vSAB6wvK0232aZ5eSYvJ2SN9uA5W133bp1AVh3PisRL7OzUHKepGE2G8NLI/gaNWoAsI4uyJti2e7SeSjAqIwjcnxKw23z7asc13LtMCNecj7c7yTxgaQKN6+pknJfkpJI6vD7lRxb5jldu3ZtAJYIKpD5WhlyjzPnKZGu5cuX62FmqvesZKZRF3JsLFiwQA9btmwZAEsUpHr16rrsnXfeAWDp3Nycp1wXnb3uSU0ZOXZbtWqly+QaIFHb+Ph4XTZ37lwAlk6g5boMWBKISEIZXoPTk4QlY8aM0cMkgYokTTG7AnjjjTcAWCLpZnRLosT3e7Ijcg0jXkRERERERF7GiJeTpKNEibyYbTIkHay0hTGjW9JxpPlGlhEv50ld98TERD1MOjSUuvGSNhqwRAfMDifJeZK239ze8oZP3gKaKYilfd3mzZsBAEWKFNFlfNtqX9pIrnS+CljaEEi0QDrpJAtJ+yxpt7t27arLIiMjAVgiF/d7xEtqYpidGMv10Wy/JOe8tBkqVaqULpMoorQZMmt8SI0DqQ0inf4CwIYNGwBYty+T9ckqcg8x1yFtNNS8n0s0S6JOEh0ELO3TnOmWwLwH2eoIWYZJtMRsYyefZV+Y+0naaEmqfnN7S9skqYEgURrA0rH1/fD7I20bUGm7BVgimeZxKG0dpR2cGfGSCG5m20ASCUa8iIiIiIiIvIwPXkRERERERF7GqoZOkrTZ0hjebOTesGFDAJYqhocPH9Zl0mhTqr8AlpA/ZUyqeEo1FsBSfUK2++TJk3WZVDU00/2T844dOwbAcpwDlqoWkjhD9glgafQtVYokvS5gScpB6cn1RKrAmNcEqeYyduxYAJZqUQBw48YNAJa00fcrSdAg1wUzhbccr1INVqol3q+kKppUhQcs56tUVzPL5brapUsXXRYaGgrAdlXDRYsWAQDmz58PwLqq/aFDhwBYV0/2RiICqcIn38FMriRV0f/88089TK5bMl7nzp11mVRbrVixYrr1lfnL/d9R1UGzCmDacUwyT6kSaWs8sxsE+SxJItasWaPLxo8fD8DyG8T83fHEE08AsE6HnjbtvLmf7gW2tpeQbS/70DwmpVrtlClTAFhXnZfv3L9/fz3swQcfBGBdpZPIW+6ts4yIiIiIiCgHYsTLSfKGS94Umo1W69SpAwAoUKAAAGDJkiW6TCIHkoCDXCONZM0U5hJJkTdX5ls9SQ4hUQIzMnC/RwmcIREvSdMNWNIcN2nSBIB16nM51uWNohkNI/skYiNJNczooBzXZcuWBWDduask2pDzwZlG/tmdvNk2owsS0ZZIjJmcRM5z6ebDfIsviSDMxBE5PQmMJIv49ttv9bCZM2cCsNTIACxRD0mkIdsPSJ9YwEyjLtFGOYbNRAb16tUDAPTs2VMPk6QVniQJE2bPng3AugNcSTRhdvYu6y/3ZTOqJQlbzG5KhPwOkOiUGaWS81YihpKowR45nletWgXAcu8y1ydtFA2wpDyXc8CM6Mq+lgQc5r749NNPAQCjR4/WwyRZSJs2bQBYfsvcTWaUy9G5Kd0jTJ8+HYB1txuyvWT/SkQLSN8BNcAOkClrMeJFRERERETkZXzwIiIiIiIi8jJWNXSSNNyUqm+lS5fWZcWKFbMaV6q/AJZqQlK1iJwj1SekkbDZ6DXt9jarGkq/LFJNxJxOqmGQfXKcmn2cSBUiqW5kVjuSKh0yndnAmaydOXNGfz5y5AgAS3Uks/8zIclMzp49q4dJVUM5riUBQE4m1bnMpEVyfMo2MqtcSvUkOd/NRAvS6F6qhQM5v5qRVMM0qwfKZ/PaKUkbpHqgo6rZUi0RAGrUqAHAcg2QqnOApR8qcxub1cY9RaoaSl9dZjIFqcJXokQJPUzuIdJkwEyWdeDAAQCWpBe2EmjIv+Z1Uo4z2TZmX1DSd5YkxwEs5/KKFSusvoM5vi2yPlKF1twXsp1l3c3rsfQLaFZNlGu59GNlJvnJbBVcW31p2hom38NWUhJJICL7Vf4PWKqQyv41q5JKdVk5ps2+2JhAg+42RryIiIiIiIi8jBEvB8xG7fJWRd6WOGo4a0YE5C2bmcpXojLy1lEay5KFbG9pMCtvTgHLW255e2a+yZSG3tKo2GxEz4iXNfOYlLetkhzD3KZm4oK05M2i/Gump5ao8P2QAMIZct4DloisbGczgi7k2DWnk6Qxcg7cDxEvOU7NxvNS8yA6OhqAdQRLIgDytlvejAOWt/6Sch7I+REvuRb+9ttvephEZ5o2baqHSRp1MzLmjKpVqwKwHMtm4qnly5cDAIYNG6aHvf766wDcT+Qg1305BgBL5EkiWR07dtRlcn81IykSZbGVDMiZSI/M01wHOTdl/cx5P/zwwwAsUS7AkuBEEnCZkUC5j8l6mkk8HJGImlxzJdEHYEmk4ShtvXn9luMgq5LPpE0PDwDr1q0DACxevBiAJfEJYLk+PvXUUwCsr6GyfyQRlBnlk7Lg4OB0w4iyAiNeREREREREXsbHfAfMNgXyNkve5tl6Qy3MN/zyRtasQ75t2zYAljr0jAikJ3W5ZbubbWDSbnvz/9KhqqSYlZTclJ7Z3kBS80qKYjluAccdIctbR2krIu0jAMsbU3kjfr+TVP2AZTulbWtikqiW2Xn4rFmzAFjvn5xOIl5mem+JNEjKc7Ndrbyhl21kdkAt116zS4ScSq6BmzdvBmAdyZLtZkb+XI10pSX7wIyySBRHumEBgGnTpgGwRB8fffRRXeZMdEWiNGaESK4/EsUw2xJJBNSM9NjqtNgZsmyZp7Q9MuclUSqzxoysj3nNlc9SW6B8+fK6TDo5lkiM+fvBkbTtv8w09DLM3DYSXZJrvHmtd7eja9lGtiKNkubeJJ1sSxcAZptWiVpLdNRMAS+1j+Rfs61b2rZ4Jlf3OZGnMeJFRERERETkZXzwIiIiIiIi8jJWNXTA7PVdGnZL9Z9y5crZnc6sOig9p5uNaqXqR/Xq1dONT6mkqqFUL5LtCFiqFko1AjPxhlRJlGqiZvpZsmam35VjUqq/mNvbrMaVlpwPaauGApYENKxqmMqsaijbqW7dugCsk8AIqYZoJvKRaodm6umcTqoGmdfQa9euAbAkFzGTa0iVKqmWZDacl+0u0+cUUq3NrOobGxsLwPJdH3vsMV0mVbccVSN2l1SdA4BmzZqlGzZq1Cir9TOrj6WtOmqrqpgwqxrKZ/NekBX8/f31Z+ki4uLFiwBsV9Uzv4+ssyTSMJM/mdff7EbORak+bSbsOH36NABLQhHAUtVQjlOzOqbM64EHHgBgud8Alm0p83TUZY+53R0dU0RZgREvIiIiIiIiL2PEywGzUbtEvJ544gkAjpM2mBEs6VxSkhcAwJYtWwBYEhlQehIdkAbYZqfJ8oZQmG+w5A2udFbLDn3tM98sSoej0nGnHLeA44iXNGqXt45xcXG6LLON9XMaeSMOWK4nkoLb1pt6idyY1xM5ru+H5BBCIl5yLQAsSRQkgYatWgMyzFaHrLbSiGdHcg5Lwop///1Xl7Vs2RKAJWW8GS0wU2l7k0SEJJIFAP/9738BAMuWLQMAfPrpp7qsbdu2AIDevXsDcHztuReYqc9tdbiclqNkD84m0LjXSW0giVZNnTpVl82ZMweAJeoJWKJZ//nPf6ymAyxd80jiDDMtvEib1ASw7ANH+4LobmHEi4iIiIiIyMsY8XLArJssnZjKm2lHdcnNDpQlMma+edm/fz8ARrwcSbttnH1DK539SrTF7CRY3paZb9Tu5/reZhsvaRsiUQKzDaOjDpRlO0vkRjq+Tvv5fmYrlbQcd8607zSPfdne8qbdbNcg0d6cdkxLdM+MLsgbcOmSwxHzfJfU0+abc5mvmY76XiQREbND7fj4eACWGgINGjTQZRLxMqNNd4uZRlzaMz744IMArDshln0tnQub30emM9tV3W3mfd3d6Ep2js7IMbl161Y9LG07VDM6L/tQalYAQOXKlQFY0umbUU45N21dA0ROu95RzseIFxERERERkZfxwYuIiIiIiMjLWNXQBml4bYbIJaRuhsidIdW0zOoRkjaViR9SybY1q3YKSR3v5+fn1LykSoskhzCrD0kCiVq1aulhzlRVyqnM41uOSdnOrm4XOS/Mqp0yf7PaqJkCOiczq8RIQgczvbRUuTFTndtjVl2W41qq18gxDViO66xKnOBtctxIlVXz2ivdRkjDelupu4VZLVxSdpvdTEiiE6nyZDbSv5dIFfWVK1fqYZJUQ6rkDRw4UJfJcSDHomyrjMi2dObYBCzXb/Pcd4bsl5dfflkP++GHHwAAEydOBGBdlTYmJgYAUK1aNQCsYpZVpAqkuX/lWJIq6gsXLtRlS5cuBWCpatitWzdd1q5dOwCWVPOA5Ty/cuUKAODs2bN214X7nHKCe/MOQ0RERERElIMw4mWQTiglbbH5xk86gXX3jb3ZQao0IpWOAyUxQdrP9wvZ7ubbe3nLJm83nX2LLxEv6VjV7GhW9qtsf+D+jHhJQ3yzs2NJNS3p4V0l293sLFnOFXO/SlQhp3caLm9vAcv3NyMpclw7SlwizIiXHNfyVnjXrl3pynJKxMtRlxJyDjvzBtzsgFqSxpjXBXlrfy8koRBmIhZZvxEjRgAAZs2apcvkHJNjy4xiS+RKymxFsMwohkS9pdPjTp06ObWuCxYsAAAsWbIEgHUiDVmmeexLjRK5xptl0km21H4YNmyYLpMEDpJ23EwAZC6TPEtq5ixevFgPk6iWJEYxO3zu0aMHAMt1yExuI/vJ7MBcIqaMZtH9ghEvIiIiIiIiL2PEyyBvdjZt2gTAun2QvNFxN+IlbZUAy1t/eZMZERGhy+7niNfmzZv1MHkTK9vd2QiJ7B/ZxmZ9cenEWtIs36+krYgZ8apQoQIAoEyZMm7NU9qGmR0vSzsaOZ8AS9ucnB7xMiMP8v3NN/uynVyNeEmHwcuXLwdg3TF7q1at3F/he5B0OL1t2zYA1h2nS3TPGXLMAZZI2YoVK/Qw8zy4l0lEwIzSy3VOUnCbbaKkuwi5BpodeEuUwYyOyvY1oxHOkOVIhFL+BYCLFy+mG1+WI6n9zfbPci+UY968J6Rtx5cd06/fq2Sfm/tOjpvDhw8DsEQjzTKJaJrR6OrVqwOw7F/zmJTlyD3fxIgX3S8Y8SIiIiIiIvIyPngRERERERF5GasaGqR6kDSGDwsL02WZTa5hpk+V6i5xcXEALCF5AGjRooVb88/OpPqBmYRBkj3Idnc2YYDsH2koL9sYsFTLMhMf3I+SkpIAWKocAkDdunUBuJ9cQ6oLSbpuwFLFxNyvkvbaTDaTE9lKriHVwgDLcW1WI7THrI4ox7VUNZTEE4B12v6cIG1yDTMttbvJNWS6KVOm6GFSBfReqrpmJouQff7SSy8BALp27arLpDq8/Gt+B6nqu3r1agDWiVikeqB5X5Lt27hxY5fWtVGjRlbrMGnSJF22fv16AJaEGoClmmjTpk0BWKf7l+qEMr7ZLYOMJ0k17tW0/9nR3r17AQAzZ87Uw+bOnQvAcu99+OGHdZkci1I11KxaLceWdANh67xitUK6n/HKRURERERE5GWMeBnkLbU0hm/btq0uq127NgDn3lDbIhEcczkTJkwAcH+mNDfJ203pyBSwREQk6YOz6YJtNfYV0kjYfPt6P5KkLmZj6d69ewMAypYt69Y8JeJlphWW82jjxo162P3SabiZDlwiDWbES45rZzoGN9OAS2IC6cBUuqQArKMDOcGZM2cAWJJfmEmIzEhNRsxaChI1kTTYpnv1Lbysl0R6zHtJ2sREEt0CLFEMiUCYEQtJ9iTHIWBJ3GJGCJ0hNUMkam7ezyQ1vRldl0imRFfMtPANGzYEYLmOmPNihCtz5P6XkJCgh8k1Wq4n+fPn12UdOnQAYEncYtaGkP0i1ybzGiWJW2Se9+p5RXS38EpGRERERETkZYx4GeRt/OnTpwFYR7fMTgDdYaamT5u2V97sApa3RbY6u8yp5K2t2S5GIgGZ7RjTfNstdc3v9zZekgrY3A4SIXQmAmOLvI0235hKyng5nwDr1MI5mZkuWT6bx7K721neHsu8zPYTZjuLnEC+j0QPzWPLXXJMmtdjiRTK9T+z13pvke1gpmiXjoYlqmq245LzTqJa0rEtANSqVQuA9XZwl9yrChcubPUvYGnHtX37dj3szz//BGBp+2h24izbXqIs5rxkmLvtrO8H0s5T/jVrGEh0y2z3LJ/lGDG7A0nbhc65c+d0mdQakWiqragWI11EtjHiRURERERE5GV88CIiIiIiIvKy+6c+WxpSRcestiFV/qQBtlRt8DRJmStVDs1qR9IIWRo/S9KCnEi2/alTpwBYN5g3U+xnhpmqWNIyS5plADhy5AgAy77IadUjpEqIfE/AcvyVKFFCD/NG1Vap1mUuR6oaSrUV8xzLCY3n5fuZ1YclUUzBggU9thw5Xs3kCEePHgVgSV5gK8HMvUqqWJvnpjTOL1OmDIDMVzsGLOe3pDQHLFVupbsJs0sET1Rv9JSlS5cCAObPn6+HSaIcSYrTvXt3XSbfsUiRIgCsuyXIquucLMfcpu+99x4ASzVJM6nSkiVLAACzZ88GYH39btOmDQDr70jWJMnKnDlzAAArVqzQZZLcp06dOnpYu3btAFiqE5rHhVSRlmqLZpVQkdPul0RZIfv/0iEiIiIiIrrH3fcRL0lVDFjewEl6W1fT6jpLogvSmack2QAsnYXKm1azcXFOI6mw5Q29ma5W3tJmljkf2d6ynwFLhFEiCDmNNK6Wt/mAJcJqRkvcTfbgiEQtzeVIJEhS2ZtvX7NzxEuuJwcPHgRgfYxJxMaT57JEs8xU3HIeSRQkO0W85K26Gf2QN+xy/LjblYdJjjG5FgCWfSaJKcz9lFURL4nuyfXfTJIhaeElOYIZvZbObaVmhMwHsCTjkBoFZgfbaVN+myTK5Ow1WOYvx5+Z8EW2t0TZAct+tBVJkeuQzMPsIFyuZbI9zGNfonsS1TGXl104Gz2S81vOFbNLCfktIfvVjOzK9jI7r5euCWR7mwl65BiR/cPoFpFnZN9fOkRERERERNkEH7yIiIiIiIi87L6vamhWZZCqEtWqVQPgvepnUp2ievXqAKz7OJHqJFItICdXNUxKSgJgSQogDcQBz217c/vJNjWrl0q1jSZNmgDIedUpJNmDHFeApSG1JBsBPJO4IC2psiTHOWCpJiXHvPQnlFNI1dXjx4/rYXLcmYkCMkuqEUo1RnPZUnWucePGHluet0m1M7NKrFSXio6OBmBJ1pIZUgXNrKYmVdikep8sD7C+JnmTVAtcvnw5AGDKlCm6bO3atQAs379q1aq6rEGDBgAs/V+Z9zPZlnKvs3Vts1U1sW7dugCA1q1b67K0/X2Z1QM3btwIAFizZg0A62rLtqr8pV0fc73kei3Hbnx8vC6Tz5J444EHHtBlknBDqtGFhISkW+69Sr6/uS9k+8r2M68nsp1nzJgBwHqft2zZEgDQrFkzAJbfMoClvzqzj8Hz589nuF5E5FmMeBEREREREXnZfR/xSkxM1MOkQfxjjz0GwPptkSvzzOhNkTQubtGiBQDg7NmzukzeYskbK/Pta04jES9JId21a1ddJo2kM8tsXCwNj+WNIWBpqG02CM9J5Ngy3xy3atUKAPDggw/qYc68IXb2+BYSUTO37bfffgvAksK7Z8+eTs3rXiffUaJOp0+f1mVNmzYFYH0sZpZsW/Pt9erVq63WITuRiJcZ/ZfoR/369QF4JmIokRszWiLJIeLi4gBY7ztvunnzpv4s10CJdJiRTEnyJJEkM+GHnIuSFEESIgCWCIqt81YiKWZiJzluJAIoERLAcq+SZBmxsbG6TKJ0kuRBEjYAluQfZoQs7fqYSXXSJv0wt4N0xyDHipkeX8aXe7jZDcu91CWLuQ8kyZasn0QcAcv1et68eQCsa2nIdSQmJgYA0LlzZ10m13GJgJrHmK0kGTn1vkd0L2PEi4iIiIiIyMvu24iXvCEz3w5Lex9pc2S+DZK3RNI+xuwMNSwszGoc8y2TvIGTN/xpy9Ouw5YtWwA4rnudUxw+fBiA5S13vXr1dJlEIuXtrtmhsrzNk31hvk2VTpllH5pvEWWYWSfeVjrlnETeXpuRXXkjLRFHwPK2Wt6+mm+TJfJgqx2YHKcSWTPfoMv5Y3YmvG3bNgCW/Wq+oc8JZDuabZXkuDPb2UnH0XJcmx1Jpz2upZ2eOS+5hpipxWWZnki7ntXkPDXTqEsUR64T5rks11+59poRW4lqyTYyI1hpI0uA5TyQ7ZdV117z2iMRqLSdHgOW40HOJ3PdJSrlauRComfmd5XIn3Rubu4LiTpKlMZM+y/nt1wzzMiu7B/pyN1Zci81O3aXbSQRMjM9vrR/k31vq7Nfb3C03c32bfI9zPWSa6Zco819IdtUzm9z+8m1QtrOli5dWpfJOSPnink9Fmy7RXR3MeJFRERERETkZXzwIiIiIiIi8rL7tqqhhPzN6gpSDWrEiBEArFPoShUsSfrQvHlzXSapyIVZNWjJkiUAgPXr1+thUl1IqnvIcgFL9YOcVgXLFql+KVUNJ0yYoMukWptUq+jYsaMua9SoEQBL6mCzGsbWrVsBAGPGjAFgqTZjMhvwlyxZEkDObWQsx5G5HebOnQvAUu0KsGxDSWBgpnlv164dANsp/qXK0dKlSwFYH8tybplVqjZv3gzAkrI6p1T1lOPHVtXOP//8E4D19USqGD788MMAgIYNG+oy2c5SVU62GQCMHTsWgKVKrbn9pGpYlSpVMvt1spxcj81qgVIFW6pgmd9VvqNsvxo1augy2c6yjSRBAQDMnDkTgHXKc6keKueDmVTCm6QKIWC5Dsm+t1XN3ZOk6puZ2EmuAWmrHdtibr8SJUoAsKx7+/btdZlUU/bG/czWNpJqiGbCjnuJHJOA5XyV89vs+kRS+ffo0QOA5fgALNUH5TtLFVEg/X2M1QqJ7j335tWJiIiIiIgoB7lvI17yxu6FF17QwyRFszSylmQbgOUNdadOnQA47ljT7OizZs2aVvMELG9ypfGt2ZHt008/DQCoU6eOK18nW3riiScAABEREQAs6ZwBy9tneetqvg1M26m0+eZYGt1LxEySmwCWt6DPP/+8HtamTRsAtjv6zAkkMvDxxx/rYRJ9NZO6SERMOuaV4xawTvyQVmRkJADLMbxy5UpdJuePNLAHgH79+gGwpLI39112JsdWnz59AFhHB6UDXPNYlDTbkkRBzgGTJMmQZDKA5XyQ88OMov3nP/8BYDmmsxOJtL799tt6mKQslyi2mZhAtrdEvWV7muS4NdOvCzM9txzzvXr1AmBJ/5+V7lakxkzEIseWmdDCGXLtlOltJXdxdZ7ZhZlwSL6/1HiRjqUBS7cl0rk5YOkKQpJjmL8DpJNs6UrAjD7KeZA29T7ACBdRdsCIFxERERERkZflzNdQTpC3dGYKc6kfbdZ7FxUqVABgaYvhqDNP842fRA7M6IKkiJXlmOl3pXNbeQubk0k7InmDZ74NlMiVjGO+DXTU9kDaG0g7MDMFtbyJlM6pAUtbo5z6plCig2YURNoOSXskwPJmVc4Hs4NZZ+Yv54X5lleY7UFkv0h6ajNik53J8SPbzWzTIm1mzC4RJKIt5765jdKSqA4ANG7cGIBlH5odKEu709q1a7v3Je4iiU61bNlSD5PU2NLuy9x+8h3NVNppyTY1O2OX9rgrVqzQw6R7BWlXI1Hc+4HZPtZWBMUZct+U6bOqjdy9wGw7KxHt48ePA7C+vsqxbEZt5XeCdBJtnrfm/Q6wbjee9l6VU+9dRDkVI15ERERERERexgcvIiIiIiIiL7tvqxpKdYq//vpLD1uzZg0AS/Wprl276jKpohISEuLW8jp06KA/S4/zixYtAgAkJCToMkmC8NprrwEAGjRo4NbysgNJay6pyKW6G2CpUiXVp5zd7tKQvlu3bgAs1YgAYNWqVQCAKVOm6GFSvfHFF190ef2zA0ki8MMPP+hhko7YrGYrabkdJY1xRJJDvP7663rYhg0bAFiSJADApEmTAFhS+r///vu6zFF1u+xixowZAKyTjEi1ZLOKqyRwMBPx2CPVbgHgkUceAWCpDmcmpJHuGOSYfuaZZ1xe/7tFqmWNHDlSD5Mq2VIFy+xSIjo62ul5m+NKdUWziqIkm/nqq68AWBIcAdZp/onE4cOHAVhf2/79918AluqEZoKsvn37AgCOHTumh8n1UX6LyHUZsFTblCYRrE5IlHMw4kVERERERORl90XEy2xALGnd4+PjAVh3IiuNsOUNqyQAAKxTOrvDTAhRrlw5AJY3XWYyDul4VaJh0tkyYEkEIQkkbKUelobO99obMunkUaJOALBz504AlpTaZkIHeVtoKxV02u9oqyPNvHnzArDuCFgiKub48gZSOrk1O8N21HD/XmQmhZEU5tKhsRlZkYirub0z2+muHIvm/pKImplAQ9LHS6P03377TZfJvpJ1sbXv7yXSiB4AVq9eDcCSNtpMJy/b2dzeaSO4to5hW+eypE2XeZnXFbmeSDKPiRMn6jKJsMm1416xZcsWAJaov/nWX44Due5Jim0gfXpyR9vPvE7KtcY8z2UbSo2H5cuX6zKJxEm0Mqd0f0AZk8Q1Zlcw0umxlEkn8YB1RBuwJOQCLDUvzGuaHJcyD7NLCTl2c0oH80RkwYgXERERERGRl+XoiJe8PZU3wAAwe/ZsAMDChQsBAD169NBl0g7LTN/sTfJGTNLJApY35l988QUA67THUndc2n2VLFlSl8lb3nsh0iVv6cy30PI2ecyYMXqYtJ9o164dAKBatWq6zFGHxq6k05XIF2CJwJgdMM+ZMwcA8PvvvwOwToUs7WnkLfe91smybN8zZ84AsHQ0C1i+j7xVNduw1ahRA4Bz7YsyQ7a9GV2QaNv8+fMB/L/27jzuquq+9/jXICAqoIBoECOiCAEl4oDzgArOc4wxsZmqMc3QpLkmN8ntvWma9NbbtDaJ7W2aV3odGlvNtYm5Jtc4ocRoRMSBISrI4ACIKCAaUAnSPzbftX7nsDk5z7AfzvM8n/c/z2HvM+yz9jr7cNbvt35L+u53v5v2ue/7fMYoXHvnVnYmt7c/hzF66/Z2ZCmW73e/btRPy/Y1ur8jX3EOqKM5nmd2/fXXb/U4LwAv5cVfu7pfr1mzJt3+6U9/Kin33Ysvvjjt89IDzUTp2tp+cbkOl5H39TReozwPx/NPY9StpyyF0JuVRZRc+n3p0qWS8udJyp95Z0O4j0q573p+VoyGeVmTuNC3szoald8n4gX0PES8AAAAAKBi/PACAAAAgIrtsDnmg/UACxYsSLfvvfdeSTldRMqlnadMmSKpdgKsU9DqJ253JackOM3h8ccfT/s8gb9+gr2Uy4G3QkluFwSJpaHXrl0rKU+Ul6RDDjlEUp543FUT150KIuVjdVET95noyiuvlCSNGzeuC46ueb/85S8l5fSXWKrY5fidzuLy41JrFK1wemT8vDqt1uXQXYRGyp/XWCylqzll2QVBYiEI92v36djeTumrmlOWXIbdhSskafr06ZJqrw+f+tSnJLV/CYFmxK8XF6245ZZb0jan/LmfOg1WytfjrkqFdMEEp7xK0qOPPiop9824BMOHP/xhSa3xeWqv1157Ld32Mhv+/MWCUpdccomk/N0Yl2HxZ9kpoRdddFHaF5dCaEV+r045l/JSF/4+8v8ZpJzO64Is8f25OIb7fPyeccpgTH91GrjvHz8rPey/ZV2uvk3jZ9RLSsRU++35fz70PkS8AAAAAKBi3f5n/ltvvSUpj5zHCJGjGXFkwyOWHkFvNR4dd3QlFtBwuXAv3ujStlIenXRJ/DhKVyVH6KQcpfNIe5xE7wIiZ555Ztq22267VX+AJeLolidJ+6/L3kt5YVUXBonvdcyYMZJqi3dUycfl0Vgpl4p35CUWhXFxh1jWvJV41NF/pTwa7EjeqlWr0j5HrX3u4sLYccJ6Z/HE+MWLF6dtjoq6xHiMgLpfb88iIC724LaJyyF42Qy/BylH0B3piRHGuMRFW3iE2RFuLxkhSU8++aSk2vLuvh5PnTpV0vYtDuTPcoy6uX86ChaX93AEzwVjYsEOCm+0Dl8f/f0k5c+Dr6tx3xtvvCEpfxfHz5Ej2l6iJi5V4/+LNBIjWS7SA6B3IeIFAAAAABXr9nO8HJX467/+a0m1eeknn3yypNrSzq2ec96MJ554QpI0Y8aMtM2j1x6t/eQnP5n2xahCZ3H0Jy4u+bOf/UyStHDhQknSZz7zmbTPZa/LFn1uVR7l/ta3viWpth3PP/98SXkEtIqoi5RHSL/zne9Iqp2D5jY99dRTa/7d3bmc83333Ze2ua874vCJT3wi7XP0ujOiDI50ObL4k5/8JO3zHK/Pf/7zkvK8JKk1lnFoRoyY+prpqOh5552X9vk60tbIl6OUjlDGRZw9B+hzn/tc2haXdugO4vy0H//4x5JytO6kk05K+1ptPui29NQ5XnF+lTMDvv/976dtfo/OEvD/FaQ879vRrPid5fmG3fy/TT0ec7zQyrrP/4IBAAAAoJvihxcAAAAAVKxbxVc9Cfymm25K25zeNm/ePEm1BQacJhMn6btErEsvxxBzfXlXv56UJ16fcMIJkmon3NaXi46TZp3KMWvWrLTNqQ8+lrIUKadKxJQGH+vKlSsl1Zbi9qR5pxLFogBXXHGFJOnII4/c6nXayoUFXHDiBz/4Qdrn43HaXSzR6+OLbeP343Z3yV0pp3z5uc4666y0zyV9y7gAye233y4pT/KXcnvH1BG/pts7lrR3v3Exk7gsgYsGuNT88ccfn/Y5raG96WexDPh1110nSbr//vsl5faXcp/0scfCCW5n959GfUzKE9DHjh0rqbavOOWorKy3J5S7hHlMf3XfjwVI6s91PAb3B6f4OB1Iym2yaNEiSbVFULzv8ssvl9R80Ra3TWzTX//615LyUgixtLjPq/uW05yl3N71fTq+V/fp+Fxnn322pMbpwP68S9IvfvGLmmOO/dXnx8cS29b3c1EBKZ8zF72IacMuNe9lCcqKhvj54/E5Xe3WW2+VVFtgx5/FmH7oa6fPRVnKj9svlu93Kp/TyBulMMeCSy6IEV/Hnw0/h78bIpcPd5q3lK8LvgbGNE5fF1yqv6uWFOitlixZIimf39gn3U/jsgkuQuXvl1iMyp8V95H4nUVBDAAdRcQLAAAAACrWrSJeHomcOXNm2uZRfpfyjZN5V69eLal2dNyj6S4O4dKxcZ9HjmPEwqNlEyZMkFQbWasXo1R+zlj63eWyfQxxZNocrYuT2z1q6kVQ4+ibo0ArVqyQlCNSUh5V7wwetffIeRzldXv5XMRogaNhsfyuR+3dDnHU2u/RE51PPPHEpo7Po+KOTsXjc/+JI9oeyfaIflxg1iOeHg2NE9F9Pt3eZdGM9opRCS986zaK/c7t7ShQfK9uZ7dH7Odl0QW3g6MLLhoS71/G+/xZ+81vfpP2uY3i493X/dqxKIlHmn0s8fj8OXAxBr9nKUc0Yt9qixhJ8fl0VDpGKtwP/L5ihMiRP/fpWFra/Tr2rfHjx0vKhUEaRbxi5N0L+pZ9nty29X06vnZsU39OHYmKEXRHDNyvyyJevv64GIqUI+3+7DuCGo8rXpt8zH6dGH30Ph97jO6570+bNm2r46oXP09eCDlG4nyu3E9jn3S01u0WI8fOenA2g4sKxef3tYaIV8e5j7i/xmwGX/vct1zwQ8rfje9///vTNi/T4s9+/A6OnzcA6GxEvAAAAACgYvzwAgAAAICKdatUQ6eAeOK3lNPoytJ5nNriv1JOO3EqmtP+pDxBd+jQoZLyxHJJOuOMMyTl1LeY9lIvpvM4NeqYY45J25zecM8990iqLYThlIejjz5aUm3RBq+t4/cT09vq0xbje45pYx01fPhwSXntmljIwGk1Pk8xvcbv2W0s5cIoThOJ68Y4BeuCCy6QJO2xxx5NHZ9TTT/wgQ9Iqj2/XgPL6zFJ0pgxYyTltbBGjx6d9vl9OJ0rplS5vx1++OGSagt+dHRNJ59nSbr66qsl5fNblh7ovhjTZZwO52IRTp2L78fvXcqpnO5v8f2UFdUwn+MDDjhAknT66aenfT5WrzEn5XW4/Lk49NBD0z4X9Bg1apSk2nQ9v3/3sbI022aLapjPU3yvPn73t9im9f06piQ59fG2226TVPuZdp/0Z0aSzj333Jp9jcS+/8EPflBSLlwT1zpzsQwXDohpePvtt5+k2kInbl+noca+5X7tz3sZ9z+feymvr+brXbxOOl009ienqDpd1MU5pJyu52M/55xz0j6vu9TMuoATJ05Mty+99FJJ+TxJOX3T59PXgvg67iOxjdwnL774Ykm1a5JNmjRJUm17o+1imrLTmL22Xkw19Fp0/p6O7e7Pedzma7lTq1mXC0BXIeIFAAAAABXrVhEvjzZ6NFHaOpoTy8h61DmW2faosAsluFiGlEffPWk6Rh4OPvhgSbVRmWZ4tC2OCnubR7LjpGwfv0eFfbzS1pEKR9/iMXtUOZZmLysl3l4+dhcaiBEOj6C7pLtL/Es5AuMSzFIeRXbBCEc6JOmII46QlM9vsyPHHmH3+Yoj4h69j0UEPMrtYgAexZZyO/u5YuShvtBJZ4pRhlNOOUVSfh8xyunInd9P7EcuKOP28Mi9lAs5xIjXYYcdVrOtUZSrjAuK+LxJ+ZzFMs6OeLrdY3EI9xePZDtyI+XPqftMjCr6dlkp8mbE5xo5cqSkfA5if3C/dvn62I/8OfXj43t2xGby5Mlpm68tsXjOtsS+7+hNWbTO59/R5dgf3G9isYuDDjpIUo7wxwh1o37t6EBZu/v4fL2LUUv317hcgq/RLobgSJuUr7U+5pg14Mh0M9Hl+Hk66qijJNX2b/d5H198TvdJRwVdFEXK30OOhMboXjORuJ6qI9Ej9wd/XzgiKuXlPdxfBw4cmPY54uW/cV9ZUSVHsjuanQAAbdV7vx0AAAAAoIt0q4iXlY0mOsIT8749ryXm87tcsaNFzgmX8pyuRqXi2yvOP3F0wX/jqLBH+u644w5JtfNjPF/HI+dxtNwRKJd97qqFHuNot0fVPXr94IMPpn2eUxfnzHh+3plnnimpdjS+vdw3HIGJo+S+HaNud955pyTplltukVRbkt3RR0cV4nyctkaE2suv47+x/ZYvXy4pLxoa+0p9BCouKeAIXiyb3VFu9/jZ8e0YFfWo9SOPPCIpLwgs5f7tCO15552X9rnt3c9jv6tifobbO0aOHUX0cXrh4Xi/888/X1Lte47R7vaI1ztfRzwXL84B9YLTnv/lRYyl3K/Lymw3WiC7TDNRAj9XvLZ5HpznWko5wuHzetlll6V9jk41O79zW2LEvz4yIuXvAC8P8KMf/Sjt87l29DB+/vwc/hwRPSmUtUP8jNYvnh7nznoel/uIrxdSzkjxdSHOY/Zz+XsvLp/R7DECQFcg4gUAAAAAFeOHFwAAAABUbIfNLVJHtX7CdiOxaIPTq2bPni2pNi3HqSAxhc3bXGDAKS5S7YTc7c1pbrFYiFOdnPYSS7M7JcPvL5bCd2n6ZsttN3MuXGjg5z//edrm1CsXTogT0Z1uFVN8XIjA56JZ9ccXu3BbU0icmuqJ9S53LuXUKKesxvQ2vzenlsV+tK3jjRodZ1nqjdM2Yyl8TzJ38YZYLMPpWS4sEEtdt7cIRWdyWuqKFSvSNvdhn4Onn3467XPxCk+QjwV2nELaGcsm+DPmfh0L8/iYXegjFtBwv95nn30kNVcmPirrw225JkYuw+7UQym3qfu0lPu1U7ZcbENq+zIO5muAl8qIBT5cJCQWLXJ7+VoQrw/NFB7pTG5vp/BK+fPm/ud0xLjPbRTTmp3a2+jcdeS61VlcZErKpfzdb2IhqUsuuURSvnbcfPPNaZ/TV51a/KEPfSjtc8GRWNjCS3zMmjVLUu6v8TlcLCo+zp+pESNGSKr9rnf6Ylel2KO1+bPlv069l/L/N+L/91rhOxG9BxEvAAAAAKhYy/zM94ifR7hiGXWPhHsk0gteSrk0sQsmeDRMylGIOOHfJcs9whEXQXX0w6NncWK9yyt71C2WXm40WukRuFj0I0Y06h/vSekehY7vx4Uz3B7xOT0S6xLXMZKwdOlSSdK4cePSNo/6eIQ5jtD7eDxBORaj8ALUHi2PC7g6OufnjqWhPbLtv1JuG5/rOFrptne7N4rYxPbzc/hY4uR+j5DGkVKfRx9XLDDg6Ed9/5NytNHlxuMovo/Vz+nzFsVz5/fvKGIsU+5RYZ/f+H5cJKO+hHfZa8bIqdso9m9zoYAYHW00GugRxfqlBKRcKj62t2/7OeNIpF/b+8oiXu6LZVEJR3McPZFyNCJu87H6udynpRzhuv/++yXVTu73efVxxuuKP0ee5B+vX2Xt7c+3n7OssIX7dSzo4PPYqG3dpx01iM8f36v7t5/T1wkp92v3rViS3cUqfO2M1wdHaH2NjuX4HSl0pFbK0VpHV2IExpGUsn7q0er4XNsSr/F+zrJok/tdjLT5+HwOY8TL7eV+Gj9jvnb6+yZGxN0XW3WUvVESjNsq9rv6QiouECXlfh4j9Y6COtIVC2H4uuOMgthGPgd+HaJbALojIl4AAAAAULGWmeNlHjG//vrr0zbnhHtuVxwB9qiu5zHFBUWdXx5H5zxi94dK3ta/jiMILnEcF/utnxsW89I9wvr444+nbR4h9XGVLQZbpj5vOS4+6yiay0bHqKBHFGPUyHPAnI8/ZcqUrV7P0cQbbrghbXP5dc8ZiZEER7jKFi+2sm1lXdBt6IjIOeeck/bFc1zP/ednP/tZzb+l8kVh69s7jq7XH1eMRLk8vqMscZ7atGnTJEkf+chHJNVG/iyW2r/pppskSQ888ICk2miOR99dSjnOw3Gf9Khye/uRlEePPU/MSx1IOWpU1n6OJnheyMMPP5z2efHTsgW8G33+/DeeC8+vcgTKkRUplyT3yHucWzh16lRJ+VxIOTJx4403SpLuuuuutM8RIUcr44LQjtiUHXt9vy7r0/Hz6kiN+3WjuVQxknL77bdLyhHTZtu2LGrkbb4exWuUI7qOuJ944olpn+dqOdIVo95+TvejOO/JUcEYqSi7Blp9G8b28zn2UhSN+nt8X45kRs0cQ9l8O/d9zy92FoCUo4mOGJ577rlp30c/+lFJzUXrqtbWOV7ub15+Q8rX2LJomCNdsQ+fddZZknKWQOybjnD15gWo0XHM8UIr4+oGAAAAABXjhxcAAAAAVKxl4qtOI3GKhlOLpJzy4BS2OBHdYWNPyo2pIJ7YHVMG2zIhN07KdsqE0zCOO+64tO/000+veZzfgyTdeuutNY+Lx+BJ+jFdqJmJzQ6Lx3ZwullZOo/fh+8j5VQOp5rEkr5+fqeKxeeqnyweU+x82/eP59DnoCzlqSz90ylf7hcxzc1pki4mEcvqOwXNf2PKSlnJ9/r2jvd3O/i1Y+qNC5W438Vz4ed0m65bty7t8/uPxTXMbRtTKZ1q6NS3WNTFz+XzG1Ncm+lH8XPhVFWnkMYy4BdddFHN8UUzZ86UlNPN4nt1+7mfN8vnIH4uvM3plbFQjFO2/H7ieVq/fr2k2jRRnxe33+jRo9M+f36c+hfTwfz87pOx/er7dVnaWixs4eNx34opeT4ep7HGtFT367KiM1Z27uuLmsTncGGd9773vWmft7lfx5Q0py77c+4UTClfY1yMIxaq8PU4FojxczQ6ZvfrWMTDKad+P5MnT0773N+cYjhjxoy0z+Xu42fMKUdl1yZzO8TrkI/P6dbx2uFrp/ui+6GUvx9iqlNZGm9Xq+8j8Zh8Hn3u587PRUaefb54r7v0Ka5DMS3VKdLxu8DTA5yyGrk/xM8WAPQkRLwAAAAAoGItE/HyaKhHPmNpbEcq4mi/eZTSI2Rx5LStdUPqIy8etZTyaKtHn+NoZX3EKz5u+vTpkmpH710gwaOu8X21t0Suj9mRkTgC7H3xuT2K7IhNjO555NPFSWKpdC9S6/cTR4n9/G19D2Vl3j1C/Oyzz0qqnSDvaIT7iIsrSHmiu89BLKntiE3sF41GuevF6J6jAz7msqiqR3Tj8gF+7Vju3YUsjjzySEm1UQnfv6xt21sXp778s5Qnv7tAQCzlfvzxx0sqj3i54I0Lg8TiH2WLCbsvtqXd4+P8N14f6kuxx8if98Vt7rtehDkWP/H9yxZkbUu/LivoE/uBS5G7SEuMXDni5ahj7PuOlHrxZpc7j8fc1rZ1v46Rq/rlNuI1zX3d14f4uXD7+T7xc9HW/urz5GtBXNzc12MvtxAXs3akxm0bS8C7z8fy+P5+icU72sKPj4VYfM79vRajO26HWGp/e0W84us6cuc2iu3h6Ksj2i8rF7DZvG8RJd784nWSaq8TMTJt7hPx+gMAvQURLwAAAACoWMtEvJyX75HLWKbcI7hlc4HKSmO3V/3zx8VTn3jiCUm1C0E2wyPHY8eOTdtcAtnRmDgPoqOLQpbNLfG2smigR5XjyKfv7/kJ8djr26gjEUZzdCBGLh566CFJtfPS6o+hjCORLjft8v9SnntQVka9rZppB7dpWcnvGAXy3MVG/Xtb/24Pt3Mcca/v144cNsvleuPcR0fyYnTBOvo+mimXH+9XNgfP576sDH9Hryvx9fycMarl/t1M2ewYHXVUyu3s+Y5S44Wxm1HWDmWRP7dJ2ee2s9pPyp8fRwpjJNgRmLJIUf3xxflcvpa5pLmUv3Pi56EtGl1z3X7xPPuaVnZd6GqOWkrSqaeeKin3Ny9dIEnXXHONpPydcM4xJ6R9P36yiHgef85nJEkjRuRskLIoYoutYAMAXYqIFwAAAABUjB9eAAAAAFCxlkk1dCqG0zDKUsy6WkwPcWpYWydBO+UkltR26lVZKehW4tSemI7SVepXl282Daj+mOPE/7aWNa9STDOKqaZdKRaIcfu6jZpJgYv8fmIKpft3TJXrzWJfdNs3U2Agpti5EI+fq6wkd0/jz0dcJsDbGqWcel+8ZjslNqa/uk3Lijf1VC6mEwsTuXCL/8blN+qXahg/5j1p33Ebi/45f0WRcjq1ZMkLAECBiBcAAAAAVKxlIl6tKI5Guxx1eycGx8npfl7/bYXoXqupX6S22XavL5zQ3hLRvUEsse6+2N5iI2732N6Ui64V26N+gdhmi+L0xlLcfq+xv7aln/bW9qtvo9jnvGzEvffem7bNmTNHUi4Bf/bZZ6d9XuDbkfD43JNHF1Gt++cV255flV9n5FDGdgEg4qoIAAAAABXjhxcAAAAAVIxUQwAAWpxTJhsVFIkeffRRSdLMmTMlSc8991zat/fee0uSDjnkkLTNKYYuoBELtzQqtjN0YHE8I4YU93l2ZS6oQaohANTiqggAAAAAFSPiBQBAiyuLdK1atUqStGbNGknS6tWr076FCxfW3CfuGz16tCRp1KhRaZuXknBkrVExmLXrc8GSu54sip4sX11Euo4by38rAGBbiHgBAAAAQMUYmgIAoJuIi8k//PDDkqT77rtPkrRkyZK0b9q0aZKk0047TVLtQty+HedubdiwYZuvueHtIsL1wNNFyfgZ83Np/+G7Fc/xiSnFQtVjR/Rp0/sBgN6EiBcAAAAAVIwfXgAAAABQMVINAQBoIRs35lS+xx57TJL01FNPScqFNCRpyJAhkqSxY8dKkvbZZ5+0b99995WUi2b07ds37du0aVPNXykX1XhnS92MRxbmghr3zK0trnHhkf3S7Un7FamF72quyj0A9GpEvAAAAACgYkS8AADoYjHatH79ekm5bPsLL7yQ9s2fP19SLqQRi2CcffbZkqSDDjpIkrTzzjunfY6a+TljefgyTy0rjucXjxWPeyPX8NCxY4uo1pSDiqjZjgzZAkC7cPkEAAAAgIoR8QIAoIutXbs23X7wwQcl5bLw0bHHHitJuvDCCyXVloX3/C0vrhyjWp6zVcaLHd8+O88lW7qq2DZ5TPH8px6cX2fgTkzgAoDOQMQLAAAAACrGDy8AAAAAqBiphgAAVOD111+XJC1dujRt8+1YJMOFMAYPHiyptkiGS8YPGzZMUm1Z+LfffltSLtTxzjvvbHUMa9cXKYd3PZnTCmcvLu4/YWSftO2qc3aSJA0dSFohAFSFiBcAAAAAVIyIFwAA7VRWxMIl3BcvXiwpF8+QpLvvvltSXuBYkqZNmyYpl4fv37//Vs9V/7fMhrfzsTzwdBHVmjG/iHTttXseZ71yavH8o4cz9goAXYmrLgAAAABUjIgXAADttGLFCknSrFmz0raZM2dKkvbaay9J0ogRI9K+iy66SJI0aNCgtG333XeXlEvFNyoFH72z5W6PLCyiYPfMzdGwflumgl18dD9J0iGj+ggAsH0R8QIAAACAivHDCwAAAAAqRqohAAANuCz8q6++mra98sorkqR169ZJkpYvX572+X577rmnJGn48OFp39ChQyVJ73pXHvd86623JOVy8GVl4e3FV/O+mx8qysm/8Wbx75MPyl/px4wtbu/I8CoAtAwuyQAAAABQMSJeAACUcOn2hQsXSpLuvffetG/OnDmSpMMPP1ySNG7cuLRv0qRJkmoXOzZHt5q18rWigsYzy4vy8PNf2JT2DRtYjJ1+5rTidQb0Y/FjAGhlRLwAAAAAoGJEvAAAvUKfPkVJ9V133XWrfS+99JKk2rLwL7zwgiRp2LBhkmrnah111FGSpJEjR0qSBg8enPb5+V0WPi563KhU/OtvFvvueHxj2vb4kiLC5WjW797Kj3eJeCJdANA9EPECAAAAgIrxwwsAAAAAKkaqYTvtsENzqR1l9/O2Zp+jN2vUfo3ug7Zp1Ibt3YdandlWtHuh7Frq2y7XHlP7NmzYIEl68cUX0zYXu1iyZIkkafbs2WnfsmXLJEnHH3+8JGnMmDFp32677SZJ2rSpSAWM6YRvv/32Hzz2tzbm4/rVU8Vj759f/N1r9zwmesWp/SVJewwq3tc/3ZWLc8x7vnjt1w8rnmvgTvQLAGhlRLwAAAAAoGJEvBqIC1zG21LjEef6+9bfv35EFltz2zQa0S77d/39aeNtc6EBaev2jhq1YaP2pu1rtbWflp2T3tiv3U/je27UfjvuWHytuZR7XIzYxTJ++MMfpm0unLH//vtLko444oi074QTTpAkDRgwQJLUr1+/tM9RLUfUGhXNeCfsemRhEdW6Z26OkG05ZL3/qOL5J+2XP5v1LjsuH8M/3llEvx5eUDzX1Ilbl68HALSO3vPtDQAAAADbCT+8AAAAAKBivT7V0JOtJWnjxmLtFKevvPbaa2nfG2+8UXOf9evXb7XPa7esW7cu7XM6yptvvpm2vf7665KkNWvWSJJ23nnntC9O0O4tnEoUU9/cRp74XtZ+Pj+/+93v0j7f3+cwngufs5h65InxvYlTsWKbup28zf087rP4mXGbup/Hc+Hz45QvKZ+XeA56orI0Tl8npNxP3c6xjX3bben7Svn64PvEc+G+3FP6dP/+RVEJf97jNbf+c75y5cq0z20yd+5cSdLzzz+f9vla++53vzttGzJkiCRpl112kVS7Vpev6T5PsW2b6cPzXyzuH9flemPLx+6kCfnr97hxxe0dmxgKHTEk3+nkg4rHPfD0pprnkVjbCwBaEREvAAAAAKhYr414eeRy6dKladsrr7wiKUcEPNIqScuXL5eUR1pXr16d9s2bN0+SNHDgQEnS4sWL0z7ff+3atWmbyxZ7BNwju/G4ehNHBGKUwKPUbrcYnfEE+fnz50vKJZ+lHGXxaPRzzz2X9vk8xUnwvbG93c6x5LX7vvt13OfPiNsvRln8ON9/xYoVad/ChQsl1UYjemPEy+/Z/VbK/dTXh7jP/drXnBh5N5+TwYMHp23uyz2lbR0pdaTr5ZdfTvsc8fM+X1Ol3PYLFiyQVBtpHDH+dEnSxuGHp22nnDKi5rnKys8348VXc7v/4rEiwrV0VbHtqAPzV+2pBxe3d+nf8YjUiROKNpq9pDj3LkcvSWdMotAGALQaIl4AAAAAULEdNjeqgdsDeYTZkZBbb7017fOcAJcOjtEQj4Z69N7zASRpxIhixNQjrXG+hket4/09p8CliWMp5GZOR09bPLXs/Xh+i6OOce6b29ILmMYRbd/2qL+jkJI0aNCgrV6nl3V/SeVRJ89hccQrRnvdvx1diY9zhMv3j/NjfJ7Koj+t1O5VfJ7KnrOsn7pfey6RlNvZbRrnzbnt3Zdjn26mrHl34uuir8Mxa8Dt5vd/6KGHpn2jRo2SVB7BWv9Ocf//mDM0bbtyWtFP99ujbe336uvF/e6eW3x2Hl+Svy8mjCz6/FmHFlGnoQOrvWZ7Ltm/PZAj1V88e6cueW2g1dRfC2NmgJePiP83cJYT0BWIeAEAAABAxfjhBQAAAAAV63Wphi7S4Mnsd955Z9rnydg77VSkaMR0IadLOSQd061cWMBNGVOrnE4Y7+80mbZOgvfz+3E9ZRJ9mfr2LiuI4b8xTcCP8/1jumhvLKTRLKd1uS1jH3b/dr+NnwsXQPD9Y0qo27vVLzHxc1SfohKPvS0piWXvudl+6uPx/ctSkRuVju8pqch+r34/sU+63zktfN999037nGq41157bfU4p5rf+nAu1vPM8qIN/+zMoshR/75bt9+Gt4tjmT4v9++Hnilu77V7cX6cVihJo4dvnzHNf7orLz2w2y7F+7j02H7b5ViA7YVUQ7QyIl4AAAAAULFeEfGKb7F+JCSO0DcTQWprcYD2FhMoe5xHtz1qG0t+1z8O6Gz1EYjuzu8nLhbt274utDfihc4Xz4XPk8u9x3PjCGGj8/XWxvxc1/6yuJ6O2qN43PmTc4To4QVFP7hnbvF3pxA8Om1iEeGatF+OqG1vi1/O32H/fHfxvj5zWhHJe88wxlnROxDxQivjSgwAAAAAFetxEa84eu3R0Fje3VEj5/17rkDc1tEmeeW1HEUbvOuW1+nT8dHy+ihdT57f0V6vrivaZNAuxZhCZ7Q7erayeYBdVZq97PPa6DXr79/DLt81GmUL+Dz5el82R67Ztlm1rrifI0S/L0l8OGlCMSJ+3Lg8Mr5jiw9b3jijyIjot+Ur7oPHdNVcr5yJse7VYkmEjcrfswOHFiX9mXmGqhDxQitr8a8OAAAAAOj++OEFAAAAABXrcamGTi+UpLVr10qSVq5cmba5MEUs0dzZvnZzTrW4/OQihN2Z5YV7ezphI1/99+L8XnFKkdqyvco6o3vis9W9dOb5WvNG8VUYC1SM27u4fuzSv/v1i9ffLN7PgH7FsVedGrnumZslSX/xhRvStpcmnChJGrPunrTtwbc/JEm65nufkCRNHFTtcaH3IdUQrYz/lQIAAABAxXr0z3yPhsbolm9XGfGKqnw9Rue3ravPM4Dubfddi+vpYbu2Tnn4jhi4Uxd9P7x8lyTpG3+2VJL0/ptuT7uOGeL/YlyVtq287y8lSR//0m2SpH/6x/PTvn179P9IAICIFwAAAABUrseNL5VFgeI2364yWhRHGtet3/ZxoXN4bkY0eADtDQBVW/3EnZKkJZd+SlKMckV5255TiujXV+87S5L0venHpH1/N214RUcJAK2BiBcAAAAAVIwfXgAAAABQsR6XatgKBu6c09xe29CjqvW3JJdNjnbdaTscCAC0qN+vXpRuz1rWX5J09MEjO/y869evkSTtNnBAk48o6scf/f5LJUnf+Kvpac/iaR+UJI3u8FEBQGsi4gUAAAAAFSPiVYF375YjXi+tfafBPdEZlq/ObeyS0P37UlwDAKTfS5KeuO6ytOWzd3xcknTjPZ9M2ya089l3H1pEzZ567OUtW5qLou04caok6aMb/2va9uDCLRGvMe08GABocUS8AAAAAKBi/PACAAAAgIr1uFTDzZs3b3X7nXdyKlq8XZUJI3Oa242/KtI8Hl+yofLX7Ygdw0/w0w8pusUDTxXH/lprH3qNk8YXx94V5xkAWt9TkqTZj5yStpzx3h9Lkn499/K07b3tzDUcMPwASdK7Z8yTJD3zuUPSvsYZg/tLkiafn7f8r7nPS5I+vH/Hi34AZf8HjP9HBLYHIl4AAAAAULEeF/Fq1g47VFd8YfzI3KyfP6OPJGnDxtYeZXl8yaZ0++ePFZGuUXsUv8svOba1u0mM1r1nGGMJAJC8+Kwkaeaks9Omr49dLkn644d+m7Z98qB2hrwOPFSSdNq6ayRJv132R3lXE4Gr0QdOTref/MVSSdL6C/aRJO3SviNCL1cf1Yr/36vy/35AM/hfKgAAAABUrLVDGe3Qr1+/dHvw4MGSpB13zG9z06YistNVox4ju0mq+pAh69PtWYuK0dBDxuwmSTrh0CHb45AAAB20avZsSdKIU/8mbTvmfW9KksacNTff7y9PkyRNavMrFF9yF/zxFyVJX5yXv0s+e9SBf/jhvz8q3Zx8QzEXp/+WL85u8vWJFuXIV//+/dO2nXfeWZL0rncRd8D2Qc8DAAAAgIrxwwsAAAAAKtbjUg379OmTbjuk7L9ooO9b4R9FquGY9wyVJO255/DtcEAAgPZbJ0ma9evi74VfPyjt2XP/AZKkK8adlbbNW/ltSdLpE9v3aqd//H9Ikr580p1p2+IvHy9JOrpvgwe+MSjd7LvlfsP23LM4zvYdCgC0LCJeAAAAAFCxHhfxQvvsPmjrIclhg/uV3BMA0PqeliTNfmKqJOmM/eO+4h9TPjYsbTnrrjmSpKsmtjPkNf5jkqR/+FiOrF353Q8Ux3BVfs76b5plD/8k3X7+zG+FowOAnoeIFwAAAABUjIgXJEn9dtz6N3ifPiw0CADd0pxfSZL+45QTJElfK7nL/sd8IN3ud+FdxcM+Wyxe3G9FLgs/br+9m3jBYq7WCX91T9ryp6cdLkk68uXvp21Xn1pE2V559FpJ0v/8txwhu+FXhzbxOgDQfRHxAgAAAICK8cMLAAAAACpGqiEAAD3MokdukyQdcsonJdUWtdj4+guSpN++sCptG/RMUdjiuAPuliRd+M1vpn3f25JqOCg/Qdq35s2dJEm7D9zyCn0PTPsuv/NZSdLR0/9f2nbb9FmSpD2nXC1Jmv6lCWnf8EZl5wGgByDiBQAAAAAVI+IFAECPsC7deupXL0qSBoy/TpL0sWu/nfbds2yyJOkjX7gybbvqzw+WJH1lcHG/6z++7bLyc757RLo9+em/lyS9/MMzJIWomCT1HS5JmnDa5WnThNOaeycA0BMR8QIAAACAihHxAgCgR9iQbm0aVpRmHzrsfZKkj9z8bNp3/e47bf3QOXMlSV+57H5J0m/Dosfj6+468dKfptsz3xkpSRrQ7mMGgN6DiBcAAAAAVIwfXgAAAABQMVINAQDoEfZMt8675ifF32YfOvFMSdJ/OfBGSdJLr+Rd44fV3Xfv96ab72vrIQJAL0bECwAAAAAqRsQLAIBeryihccWtV2/n4wCAnouIFwAAAABUbIfNmzdv3t4Hgdby5KLXJEn7j9hFkrTrAAKjAAAAQEcQ8QIAAACAivHDCwAAAAAqRqohAAAAAFSMiBcAAAAAVIwfXgAAAABQMX54AQAAAEDF+OEFAAAAABVjgaaeauOcdPNvD3ufJOlLp0xP2zb//ZQOvsCbkqTf/uTLacunP/UDSdKMVW9JkvrvcWLa98Wb/lWS9I2p+6RtfTt4BAAAAEB3QcQLAAAAACpGxKvH2ShJWvAvn05b/ualPTr9VZbdcqkk6dAvDU3b/n3mWknS/fvtJEl6c8lP077PnniYJOkL//J02vaPU4d0+nEBAAAArYiIFwAAAABUjAWUe5plt0iSLjgxR5Y+eNXdxd9nvpm2tX+OVzF37G/HfUCS9Pt/n5v2fGXStmdtbfzNn0uS9r5yeNp2/5w/lSSNb+eRAAAAAN0FES8AAAAAqBg/vAAAAACgYhTX6DFWS5J+/tX/Jkka838eS3sOX3B3573MgockSf93dVFc49oG6YVR36OnSZI+tuAv0raZS7ekGo7qvMMDAAAAWhERLwAAAACoGBGvHmL13f9dkvRpfUeS9MQJg9K+NQs68YWWPSNJeuTYoyRJ+zb9wL0lSQcefl/aMmfJlhujOuXIAAAAgJZFxAsAAAAAKkbEqzvb+Ei6ee2fLJckfXvG2ZKkuDTxmk58yaVLnyxujDpXkrRn0498jyRp3/flLfM77agAAACA1kbECwAAAAAqxg8vAAAAAKgYqYbd0kZJ0pzvXp623H3VrZKkr+1d7Stv2vR2Ox9ZlJ3fsV/esm7DG1tu7dqhYwIAAABaHREvAAAAAKgYEa/uaNENkqRP3/iRtOl/zz5QkuNK1enTp98fvlOpIkr3+xAwGzSASBcAAAB6ByJeAAAAAFAxIl7dyjJJ0i1XXS1JOuYfHkt7JlYd6tpi1Kgt9eD/dakkaWnc1/CRz0uSnnuyf9rS95LOOy4AAACglRHxAgAAAICK8cMLAAAAACpGqmF3sugOSdK1ty2SJD142+C069tNPcHJ6dYO3yn+fmH6ZknS309p8hjeM0GSdOy8InXw5bBrVKPHbSzuP//RM9Kmo8Y2+ZoAAABAN0fECwAAAAAqtsPmzZs3b++DQLUW/fA4SdIB87+Ztm1uOsRV77eSpO9NPEmS9PI/L0t7vnX0tit8rLujWOx5+LX5dRf9/w9Lkipe8xkAAADY7oh4AQAAAEDF+OEFAAAAABWjuAa2WJRu/fC4AyRJ879ZVnhjvCTpsr+7WJI07pI/SXsOm/EPkqQL9usjSXp94c/Tvi9eeZck6U9/dE3aRoohAAAAegsiXgAAAABQMSJeaJchU78jSZr9L19P2/7oyN0kSReuekuSNHDvaWnfZ697UJL0jRMGdc0BAgAAAC2EiBcAAAAAVIxy8gAAAABQMSJeAAAAAFAxfngBAAAAQMX44QUAAAAAFeOHFwAAAABUjB9eAAAAAFAxfngBAAAAQMX44QUAAAAAFeOHFwAAAABUjB9eAAAAAFAxfngBAAAAQMX44QUAAAAAFeOHFwAAAABUjB9eAAAAAFCx/wTNZ/xixxTtawAAAABJRU5ErkJggg==",
"path": "images_version_6/image_27.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
A
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, then the slope distance between two adjacent trees is ()
Choices:
A:5m
B:6m
C:7m
D:8m
|
||
136
|
28
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHkAAACJCAAAAAAtA8iMAAANwElEQVR4nL1beXCURRb/zZHJZHJMEhKOXBBCEjAghxxJQBIhGkBO5SgoFPDAo0oL110tUVv5KEu03F0t1nXLXUVEXEvwAAQMBBASCIQIuSAskIQjIeQkdzI5ZvaPb+ab7+jvmAn4/pn+ul+/X7/Xr6/XPToHaMSAUPNlmMFnZ9xJIslxk5EujFCZZUjUSI119R4geEv0lvB0ZgRtZ9TNrcZCgJpi/87WV/1p4N7pzLCSlM1KgKsfn+33//02tditsyc9y4lWpl4m6XWg5lYcrfCe9DNxtmlf+WMAFoynMgl9ux+GuwHsShRbLAB8fanmdOtMCKDTSWrDTpMtNDQDcH3vrs5AHxcp3z6htfUU47uzPPaEKHMD0FWrgEwTSXEfRY9i+Cmn/lOaTgE/FtIrGFVFKpJzlmXc3/yvcbPtR6uOvKSALJCl3AxGeW4Ula5pvTRq5mD6fGpkWGcQzl9w2oEh7hJG8KOFGIKW2HC5Ut0m4pk4LUScpjuXv2fSe5CRL7NWDRQYBLAfzl6QU1gdKaOW8W7r66LagiOWlzut4RWRIH+Yzgy5fL2odfCNzOitCyN3p8q47N1EdkHkbu0JSxtvSv2+Ijes7OydsHuP7MQt0y2JAoC4yuzOgpSE/Hl/CHJFwY1B6fFs2jo3+4UMU2jWvUJ292JbXm0FDEvinIOIYM6R6SakfFs3+N4gu6j63HlDfEZsIG/wDo7UA37DP3/LU2TtU0zfldzWO5NmjYwQZldazQA2vFwfTps+XchKO2PZdrHUXpRfl7A0Wg/xpH8txgdA4KrPqOPKSDTDEUaIyFLjqbLLT6SxacYpijAAYUi3BQAw+bzNl4Ys+HJW5KEBDJdBsdn5XT6GzNd43LyqzacWsWuPz+H5qsiEeq6R2Yd3384t75g/kyKUrXPFdwKbfvASbQI1SmVro9o9NZ0xq6NNfKMIKSfYxCYCjqVHSQ1G8W3R3oAqtexQ7ahFST5KLE29jztToyPvREnLJcga1M/PrXbEPzNShavw+nBXcvTecXRkzbYmAHDrm4rkB8cEAFAeFScf5ZIzCijlCmcM2snacXX7X0f+a+2UAEEurQG2W6lcOsacLWUwQnbTp3OJ5YpPlBVHjHx2tJSVMiByxoa4P6KOZlCRla3tKu05Vdo+Zl60MhMA9BtAgBxOZQaY29Y4iIashWrPn2yetipUBlNg7n4DgGx9Ji83qqPiU/GQVka2swet+sKTzdYU2jpLM5cJAH4L5mcNW7tdwqmA7NChzwSUlBZ3N6WujfbslFnDn9sIRupaxPYyykeBdICpv2l3XnjGFJmtlGSF49aU5oh4Iad150uiM4NUZ56n1+X/0v7ksyquwIgqEQAoaY/hn/EI0nd0m4X1hGIvtKZw6e5DFyv8Z9+XxAl2nXlE4S9CHVON7wkzYm8WTwWuVgZbo/3YBVCAbGempbBS6op2602TlkX5io+HoHiV5BhP2nw3bxeWBGdkTQX8P8pY+UPHc3ydWT2yCh4AAMe+wtuxS8YPUwRQpMNBw8XcCbn9Bph6EqKCvl0e4kTmtgM3r07sB1puFm1JWjTW2lluMpsCDFXLLWaL3gKgLRBXBvebcL7Fkdjib6uLMLYEOEqHBQeb2mxmX4NR79P+tNlsqWk1/O/g7KpA3/pIfX62rymkN8IaAAfaj8/CEf9xqGnuBwgjsHZ+4tB9nZbiN8tnT61taezo7/Gxh5ouRvf4hMMSZLPVWEstJoMpoC506LHOGp/oq8b2Zr/R12y6BlOEsfuOrs0xzNRnMPXWt+gvB1yxG+yB/RFz+zraexob9N29Db5BgKEhK77quSC+tQGgrXDGnaIuy1D8IyMQsHV1t3TpHL2ZoT22zu4eh32w0Z5p7kG3PSYYQJfODABdfgD6ev0AOFr70FYR3jXM3Hfb/KLO0aLv6E9wL0iVlUlAUVzaidp3jGLkvJS4Er0F8YubAgH4+mKoQk/6AWAI/ADAaASAzSD4lHWGnSMCgb8Lerr7q0f9UFu6+r7Y87tWipAvVa9D6ne9fpj/9sJw0dChrmaMeHVk4Nwa3VgIgDgrsT/HfRYDN2pmoeemja3HIV8+kwBcC6iYgITpGz/XsfO7BJFR2yQTANcnJzhbQlyN6cpaCKAYv0dc1CWxnLpNziq+MdZ5d15bGjMGyH5nUwa8DGEQAJ91/YkR5R0teM6K7osdoY5WaxIrmtPZdgUFiM4EwJDgTx7yNgrJEKCvXrzTdJyNsYqnOg6ZcLYlmJzw39VeoLoE+y4Ql+R2zIF4KuLvw5weAeDtti0DiM+1WwXtIUBJZAg/i/UwV9zL5Uzs71xycC5nB/GKQA1Wup2x7hp/50MAHG1Zy0jqSc4YbHLEmxunhTqjS3LK8xZnwme6HCKaCBp/XSJeAyC/J4lL/OIvvE/B8CIyA5yl3tOzRDl7hqZQ+OT228ZV5zqFYFqprU+0LS4reIqKAIDac2OHbX1dOxyPDo8fwhfHbNi5LFgemabSom0NctsvpUnGkfMu74sA2yIeojK6rC2VlRZxQF6+PN3qFO7pm0rWgGEoTXUhU7RevqdBO6BLtOPYKJ07lwAfzPCn19BTzm3OrAkTd8jDCJVw66S7lOJWgwAVPffLCDHqZAoALN9UO4T32ad3G4hxTy+CUAp6WoXHzP/MGyXjFLRR5WpMQtTfemRYnbtfhv8NALhiT+SLyvJ7mI6rckf3SuUvfFaO13WxINXGcXBiEO+z//hjssIVkYe+eIDqZESScJGuK53/ecEvSVY470aUL8b5kX510ye0tjGiX47q63lnGIL6EbLAajeiT90+TUGUn0hy/Li1gRDcKnmE1iUscdEK0bbLuf3XL/kmlQ8kF/tiw42wn57DV+WjB4bQmN3I7trS9q06VjhBkCG7BWQANHenclxA3uAV8sAwSpdsIWX8kigCU+A+q+N1c9tPy5RuhpQPxwzwyhu7nhRlyVPZRHexfX/0OKWHFioeBgQuOKTGwlFR30rex7knzfKsWmJDmXk/L9YCS4Ab9/tyOrbvXGpVNJCqzsATP9i0IAO43eZKMai3JStvZTTEw4aPOjZHU+S/pcS5iyGAffdUFW4NyMY33sMcLY9yTsa6r1AO6FartFUVmQHIqn/PtKi3ECVJ3JJ77RBRWH61IQNAYlPuI+pcLX0zAbZv7f9Ml93DeYSMpTseVlMBOBsb5LLv3iD51dFFGnwbwLyILKhtuivyuH1P9ZE16jI1xnrnHMgwKgET4EQ7518X06PVh4IWZAZ4M+9IpgrXhVGumGrRGfpNpJC0WRuGlbtVOG6WzmUTTNv+RGVWlrRG1mPHf7xBkeFKRBQAEOCYcZmWQIdGnYHMrArF8luuc1x/lrpfAxp0du1X4qd/87b8HMqQ7vudhac7R2m6QNaqM4O34r92yIwsQgg6G5xYV2PpDzm9QmbPFCvPnpRnqbo2mU0UVi9Xn3Q0IfOM9sx2ebbziUEACGn/aZrCazQ+qfu2e0M6IeTXOXJcOc6bnZOWWRpDeOrIvJ59fFe6me5lXQHpAICbez7UZmtP3lYwADl+WBJkYykvEABB3860ADqDN8h8DZe+n+FHZbqRyIAANy49oTlaqnkmAQCMnPqFnZbv6NMBQN+XCyI1R5E8Q8azVbt7xVoRAlvHFAKgq0V65SpLnr6h2bIhgTJBnakOA5iNXydaqZWo5JHODIAVxykFNZMBQn5tp4bc7gYyGAbJpy9I808EAkB2msWDcLyH/QzoFu/pEuc5gsYAKBiUDA9uAjxGxooxz4uXhBK/EUDnl8keyfHildaM/QceFc5kRycC2BE92qObD891Rvi7u6sEGXW3JgIHm9bLvEGQIU91ZgASNeKo4Ehd2BsOlIVJ3jDcXWQAwMoPF3EDlwBH55uRP/xxpRoU8sLaQEIXf1A32RPQ/YPHQrxCxpbD1e6PPWHR+GLMIk8v1jhkonmqBxAds5+rYK9MQ3HFMqN85ItOzn4mkB6Q3ddX3JtqrmzV6+ucT7SYNxCNHB9//r0ReDXlkXkjUxyHYzOpAiLX//kDM8v/e11weYmGExxh286JM7LCxa/RqOrztZr+lWt7cnmcZcck2rWQoK40rRdncEzK/W5Yf8J55qjybyhJlZMiIbdKcv9y4icZWrgz+dLmbQBgK311a/JYLaAi8v517eLfyuMA7I1vrvlIUwVRD8rfGqlRcPrnAPBzx1erg5T4uCsjIuxAmVsjQUOcZX13hDyLy38EGv0ujZnpUYtdpOm9JzsW7EFCtuAFO2aGZe+f9rSE3wEN2311D+PIJM5YU7JvXbnlxVBxvl0nB8xf1gf0fvuZTWknVqhFynhKCGaNASGPjttoXi/N1vMh+R5D8TDW/QRuRZv/JVlLCh8Zob2hQuJ7GN8uVGZJ7z9AJgMOu8GufbHlJmZt8TDZqXQVHDqdQWaVdyh6uJH6QMcJKGmCiPf2j4Eh1w3Pc+xEyKMTVRJWF+jMyCDKUVjX99+lfr1tnfBqR2IfNkd8KaX9Hz+U66UXLiwaivj310mAhL5Kh9A2qmRaV3/5VcDeLmbTpot3O0AnlQ4PAyqDtV6w3EXkzROHoH1Xso86J4W8n8MIGg8OB870rPSu9QPRedBIM2x7E2K8qz2QefunirbTFWNtIeqcdxvZ8thY3UPDvHu1NzDkTLULBkUakG8PiAb2zy4vDT1AZElAzsOm/B/pBlMsaB97LwAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_28.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, the right triangle ABC and the equilateral triangle ABD are respectively drawn with the line segment AB as the edge, where angle ACB = 90.0. Connect CD, when the length of CD is the largest, the size of angle CAB is ()
Choices:
A:75°
B:45°
C:30°
D:15°
|
Như hình vẽ, tam giác ABC vuông và tam giác ABD đều được vẽ với đoạn thẳng AB làm cạnh, trong đó góc ACB = 90°. Nối CD, khi độ dài CD đạt giá trị lớn nhất thì số đo góc CAB bằng ()
Lựa chọn:
A: 75°
B: 45°
C: 30°
D: 15°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the right triangle ABC and the equilateral triangle ABD are respectively drawn with the line segment AB as the edge, where angle ACB = 90.0. Connect CD, when the length of CD is the largest, the size of angle CAB is ()
Choices:
A:75°
B:45°
C:30°
D:15°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the right triangle ABC and the equilateral triangle ABD are respectively drawn with the line segment AB as the edge, where angle ACB = 90.0. Connect CD, when the length of CD is the largest, the size of angle CAB is ()
Choices:
A:75°
B:45°
C:30°
D:15°
|
As shown in the figure, the right triangle ABC and the equilateral triangle ABD are respectively drawn with the line segment AB as the edge, where angle ACB = 90.0. Connect CD, when the length of CD is the largest, the size of angle CAB is ()
Choices:
A:75°
B:45°
C:30°
D:15°
|
137
|
28
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHkAAACJCAAAAAAtA8iMAAANwElEQVR4nL1beXCURRb/zZHJZHJMEhKOXBBCEjAghxxJQBIhGkBO5SgoFPDAo0oL110tUVv5KEu03F0t1nXLXUVEXEvwAAQMBBASCIQIuSAskIQjIeQkdzI5ZvaPb+ab7+jvmAn4/pn+ul+/X7/Xr6/XPToHaMSAUPNlmMFnZ9xJIslxk5EujFCZZUjUSI119R4geEv0lvB0ZgRtZ9TNrcZCgJpi/87WV/1p4N7pzLCSlM1KgKsfn+33//02tditsyc9y4lWpl4m6XWg5lYcrfCe9DNxtmlf+WMAFoynMgl9ux+GuwHsShRbLAB8fanmdOtMCKDTSWrDTpMtNDQDcH3vrs5AHxcp3z6htfUU47uzPPaEKHMD0FWrgEwTSXEfRY9i+Cmn/lOaTgE/FtIrGFVFKpJzlmXc3/yvcbPtR6uOvKSALJCl3AxGeW4Ula5pvTRq5mD6fGpkWGcQzl9w2oEh7hJG8KOFGIKW2HC5Ut0m4pk4LUScpjuXv2fSe5CRL7NWDRQYBLAfzl6QU1gdKaOW8W7r66LagiOWlzut4RWRIH+Yzgy5fL2odfCNzOitCyN3p8q47N1EdkHkbu0JSxtvSv2+Ijes7OydsHuP7MQt0y2JAoC4yuzOgpSE/Hl/CHJFwY1B6fFs2jo3+4UMU2jWvUJ292JbXm0FDEvinIOIYM6R6SakfFs3+N4gu6j63HlDfEZsIG/wDo7UA37DP3/LU2TtU0zfldzWO5NmjYwQZldazQA2vFwfTps+XchKO2PZdrHUXpRfl7A0Wg/xpH8txgdA4KrPqOPKSDTDEUaIyFLjqbLLT6SxacYpijAAYUi3BQAw+bzNl4Ys+HJW5KEBDJdBsdn5XT6GzNd43LyqzacWsWuPz+H5qsiEeq6R2Yd3384t75g/kyKUrXPFdwKbfvASbQI1SmVro9o9NZ0xq6NNfKMIKSfYxCYCjqVHSQ1G8W3R3oAqtexQ7ahFST5KLE29jztToyPvREnLJcga1M/PrXbEPzNShavw+nBXcvTecXRkzbYmAHDrm4rkB8cEAFAeFScf5ZIzCijlCmcM2snacXX7X0f+a+2UAEEurQG2W6lcOsacLWUwQnbTp3OJ5YpPlBVHjHx2tJSVMiByxoa4P6KOZlCRla3tKu05Vdo+Zl60MhMA9BtAgBxOZQaY29Y4iIashWrPn2yetipUBlNg7n4DgGx9Ji83qqPiU/GQVka2swet+sKTzdYU2jpLM5cJAH4L5mcNW7tdwqmA7NChzwSUlBZ3N6WujfbslFnDn9sIRupaxPYyykeBdICpv2l3XnjGFJmtlGSF49aU5oh4Iad150uiM4NUZ56n1+X/0v7ksyquwIgqEQAoaY/hn/EI0nd0m4X1hGIvtKZw6e5DFyv8Z9+XxAl2nXlE4S9CHVON7wkzYm8WTwWuVgZbo/3YBVCAbGempbBS6op2602TlkX5io+HoHiV5BhP2nw3bxeWBGdkTQX8P8pY+UPHc3ydWT2yCh4AAMe+wtuxS8YPUwRQpMNBw8XcCbn9Bph6EqKCvl0e4kTmtgM3r07sB1puFm1JWjTW2lluMpsCDFXLLWaL3gKgLRBXBvebcL7Fkdjib6uLMLYEOEqHBQeb2mxmX4NR79P+tNlsqWk1/O/g7KpA3/pIfX62rymkN8IaAAfaj8/CEf9xqGnuBwgjsHZ+4tB9nZbiN8tnT61taezo7/Gxh5ouRvf4hMMSZLPVWEstJoMpoC506LHOGp/oq8b2Zr/R12y6BlOEsfuOrs0xzNRnMPXWt+gvB1yxG+yB/RFz+zraexob9N29Db5BgKEhK77quSC+tQGgrXDGnaIuy1D8IyMQsHV1t3TpHL2ZoT22zu4eh32w0Z5p7kG3PSYYQJfODABdfgD6ev0AOFr70FYR3jXM3Hfb/KLO0aLv6E9wL0iVlUlAUVzaidp3jGLkvJS4Er0F8YubAgH4+mKoQk/6AWAI/ADAaASAzSD4lHWGnSMCgb8Lerr7q0f9UFu6+r7Y87tWipAvVa9D6ne9fpj/9sJw0dChrmaMeHVk4Nwa3VgIgDgrsT/HfRYDN2pmoeemja3HIV8+kwBcC6iYgITpGz/XsfO7BJFR2yQTANcnJzhbQlyN6cpaCKAYv0dc1CWxnLpNziq+MdZ5d15bGjMGyH5nUwa8DGEQAJ91/YkR5R0teM6K7osdoY5WaxIrmtPZdgUFiM4EwJDgTx7yNgrJEKCvXrzTdJyNsYqnOg6ZcLYlmJzw39VeoLoE+y4Ql+R2zIF4KuLvw5weAeDtti0DiM+1WwXtIUBJZAg/i/UwV9zL5Uzs71xycC5nB/GKQA1Wup2x7hp/50MAHG1Zy0jqSc4YbHLEmxunhTqjS3LK8xZnwme6HCKaCBp/XSJeAyC/J4lL/OIvvE/B8CIyA5yl3tOzRDl7hqZQ+OT228ZV5zqFYFqprU+0LS4reIqKAIDac2OHbX1dOxyPDo8fwhfHbNi5LFgemabSom0NctsvpUnGkfMu74sA2yIeojK6rC2VlRZxQF6+PN3qFO7pm0rWgGEoTXUhU7RevqdBO6BLtOPYKJ07lwAfzPCn19BTzm3OrAkTd8jDCJVw66S7lOJWgwAVPffLCDHqZAoALN9UO4T32ad3G4hxTy+CUAp6WoXHzP/MGyXjFLRR5WpMQtTfemRYnbtfhv8NALhiT+SLyvJ7mI6rckf3SuUvfFaO13WxINXGcXBiEO+z//hjssIVkYe+eIDqZESScJGuK53/ecEvSVY470aUL8b5kX510ye0tjGiX47q63lnGIL6EbLAajeiT90+TUGUn0hy/Li1gRDcKnmE1iUscdEK0bbLuf3XL/kmlQ8kF/tiw42wn57DV+WjB4bQmN3I7trS9q06VjhBkCG7BWQANHenclxA3uAV8sAwSpdsIWX8kigCU+A+q+N1c9tPy5RuhpQPxwzwyhu7nhRlyVPZRHexfX/0OKWHFioeBgQuOKTGwlFR30rex7knzfKsWmJDmXk/L9YCS4Ab9/tyOrbvXGpVNJCqzsATP9i0IAO43eZKMai3JStvZTTEw4aPOjZHU+S/pcS5iyGAffdUFW4NyMY33sMcLY9yTsa6r1AO6FartFUVmQHIqn/PtKi3ECVJ3JJ77RBRWH61IQNAYlPuI+pcLX0zAbZv7f9Ml93DeYSMpTseVlMBOBsb5LLv3iD51dFFGnwbwLyILKhtuivyuH1P9ZE16jI1xnrnHMgwKgET4EQ7518X06PVh4IWZAZ4M+9IpgrXhVGumGrRGfpNpJC0WRuGlbtVOG6WzmUTTNv+RGVWlrRG1mPHf7xBkeFKRBQAEOCYcZmWQIdGnYHMrArF8luuc1x/lrpfAxp0du1X4qd/87b8HMqQ7vudhac7R2m6QNaqM4O34r92yIwsQgg6G5xYV2PpDzm9QmbPFCvPnpRnqbo2mU0UVi9Xn3Q0IfOM9sx2ebbziUEACGn/aZrCazQ+qfu2e0M6IeTXOXJcOc6bnZOWWRpDeOrIvJ59fFe6me5lXQHpAICbez7UZmtP3lYwADl+WBJkYykvEABB3860ADqDN8h8DZe+n+FHZbqRyIAANy49oTlaqnkmAQCMnPqFnZbv6NMBQN+XCyI1R5E8Q8azVbt7xVoRAlvHFAKgq0V65SpLnr6h2bIhgTJBnakOA5iNXydaqZWo5JHODIAVxykFNZMBQn5tp4bc7gYyGAbJpy9I808EAkB2msWDcLyH/QzoFu/pEuc5gsYAKBiUDA9uAjxGxooxz4uXhBK/EUDnl8keyfHildaM/QceFc5kRycC2BE92qObD891Rvi7u6sEGXW3JgIHm9bLvEGQIU91ZgASNeKo4Ehd2BsOlIVJ3jDcXWQAwMoPF3EDlwBH55uRP/xxpRoU8sLaQEIXf1A32RPQ/YPHQrxCxpbD1e6PPWHR+GLMIk8v1jhkonmqBxAds5+rYK9MQ3HFMqN85ItOzn4mkB6Q3ddX3JtqrmzV6+ucT7SYNxCNHB9//r0ReDXlkXkjUxyHYzOpAiLX//kDM8v/e11weYmGExxh286JM7LCxa/RqOrztZr+lWt7cnmcZcck2rWQoK40rRdncEzK/W5Yf8J55qjybyhJlZMiIbdKcv9y4icZWrgz+dLmbQBgK311a/JYLaAi8v517eLfyuMA7I1vrvlIUwVRD8rfGqlRcPrnAPBzx1erg5T4uCsjIuxAmVsjQUOcZX13hDyLy38EGv0ujZnpUYtdpOm9JzsW7EFCtuAFO2aGZe+f9rSE3wEN2311D+PIJM5YU7JvXbnlxVBxvl0nB8xf1gf0fvuZTWknVqhFynhKCGaNASGPjttoXi/N1vMh+R5D8TDW/QRuRZv/JVlLCh8Zob2hQuJ7GN8uVGZJ7z9AJgMOu8GufbHlJmZt8TDZqXQVHDqdQWaVdyh6uJH6QMcJKGmCiPf2j4Eh1w3Pc+xEyKMTVRJWF+jMyCDKUVjX99+lfr1tnfBqR2IfNkd8KaX9Hz+U66UXLiwaivj310mAhL5Kh9A2qmRaV3/5VcDeLmbTpot3O0AnlQ4PAyqDtV6w3EXkzROHoH1Xso86J4W8n8MIGg8OB870rPSu9QPRedBIM2x7E2K8qz2QefunirbTFWNtIeqcdxvZ8thY3UPDvHu1NzDkTLULBkUakG8PiAb2zy4vDT1AZElAzsOm/B/pBlMsaB97LwAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_28.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, the right triangle ABC and the equilateral triangle ABD are respectively drawn with the line segment AB as the edge, when the length of CD is the largest, the size of angle CAB is ()
Choices:
A:75°
B:45°
C:30°
D:15°
|
Như hình vẽ, tam giác vuông ABC và tam giác đều ABD được vẽ với đoạn thẳng AB làm cạnh. Khi độ dài CD đạt giá trị lớn nhất, số đo góc CAB bằng ()
Các lựa chọn:
A: 75°
B: 45°
C: 30°
D: 15°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the right triangle ABC and the equilateral triangle ABD are respectively drawn with the line segment AB as the edge, when the length of CD is the largest, the size of angle CAB is ()
Choices:
A:75°
B:45°
C:30°
D:15°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the right triangle ABC and the equilateral triangle ABD are respectively drawn with the line segment AB as the edge, when the length of CD is the largest, the size of angle CAB is ()
Choices:
A:75°
B:45°
C:30°
D:15°
|
As shown in the figure, the right triangle ABC and the equilateral triangle ABD are respectively drawn with the line segment AB as the edge, when the length of CD is the largest, the size of angle CAB is ()
Choices:
A:75°
B:45°
C:30°
D:15°
|
138
|
28
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHkAAACJCAAAAAAtA8iMAAANwElEQVR4nL1beXCURRb/zZHJZHJMEhKOXBBCEjAghxxJQBIhGkBO5SgoFPDAo0oL110tUVv5KEu03F0t1nXLXUVEXEvwAAQMBBASCIQIuSAskIQjIeQkdzI5ZvaPb+ab7+jvmAn4/pn+ul+/X7/Xr6/XPToHaMSAUPNlmMFnZ9xJIslxk5EujFCZZUjUSI119R4geEv0lvB0ZgRtZ9TNrcZCgJpi/87WV/1p4N7pzLCSlM1KgKsfn+33//02tditsyc9y4lWpl4m6XWg5lYcrfCe9DNxtmlf+WMAFoynMgl9ux+GuwHsShRbLAB8fanmdOtMCKDTSWrDTpMtNDQDcH3vrs5AHxcp3z6htfUU47uzPPaEKHMD0FWrgEwTSXEfRY9i+Cmn/lOaTgE/FtIrGFVFKpJzlmXc3/yvcbPtR6uOvKSALJCl3AxGeW4Ula5pvTRq5mD6fGpkWGcQzl9w2oEh7hJG8KOFGIKW2HC5Ut0m4pk4LUScpjuXv2fSe5CRL7NWDRQYBLAfzl6QU1gdKaOW8W7r66LagiOWlzut4RWRIH+Yzgy5fL2odfCNzOitCyN3p8q47N1EdkHkbu0JSxtvSv2+Ijes7OydsHuP7MQt0y2JAoC4yuzOgpSE/Hl/CHJFwY1B6fFs2jo3+4UMU2jWvUJ292JbXm0FDEvinIOIYM6R6SakfFs3+N4gu6j63HlDfEZsIG/wDo7UA37DP3/LU2TtU0zfldzWO5NmjYwQZldazQA2vFwfTps+XchKO2PZdrHUXpRfl7A0Wg/xpH8txgdA4KrPqOPKSDTDEUaIyFLjqbLLT6SxacYpijAAYUi3BQAw+bzNl4Ys+HJW5KEBDJdBsdn5XT6GzNd43LyqzacWsWuPz+H5qsiEeq6R2Yd3384t75g/kyKUrXPFdwKbfvASbQI1SmVro9o9NZ0xq6NNfKMIKSfYxCYCjqVHSQ1G8W3R3oAqtexQ7ahFST5KLE29jztToyPvREnLJcga1M/PrXbEPzNShavw+nBXcvTecXRkzbYmAHDrm4rkB8cEAFAeFScf5ZIzCijlCmcM2snacXX7X0f+a+2UAEEurQG2W6lcOsacLWUwQnbTp3OJ5YpPlBVHjHx2tJSVMiByxoa4P6KOZlCRla3tKu05Vdo+Zl60MhMA9BtAgBxOZQaY29Y4iIashWrPn2yetipUBlNg7n4DgGx9Ji83qqPiU/GQVka2swet+sKTzdYU2jpLM5cJAH4L5mcNW7tdwqmA7NChzwSUlBZ3N6WujfbslFnDn9sIRupaxPYyykeBdICpv2l3XnjGFJmtlGSF49aU5oh4Iad150uiM4NUZ56n1+X/0v7ksyquwIgqEQAoaY/hn/EI0nd0m4X1hGIvtKZw6e5DFyv8Z9+XxAl2nXlE4S9CHVON7wkzYm8WTwWuVgZbo/3YBVCAbGempbBS6op2602TlkX5io+HoHiV5BhP2nw3bxeWBGdkTQX8P8pY+UPHc3ydWT2yCh4AAMe+wtuxS8YPUwRQpMNBw8XcCbn9Bph6EqKCvl0e4kTmtgM3r07sB1puFm1JWjTW2lluMpsCDFXLLWaL3gKgLRBXBvebcL7Fkdjib6uLMLYEOEqHBQeb2mxmX4NR79P+tNlsqWk1/O/g7KpA3/pIfX62rymkN8IaAAfaj8/CEf9xqGnuBwgjsHZ+4tB9nZbiN8tnT61taezo7/Gxh5ouRvf4hMMSZLPVWEstJoMpoC506LHOGp/oq8b2Zr/R12y6BlOEsfuOrs0xzNRnMPXWt+gvB1yxG+yB/RFz+zraexob9N29Db5BgKEhK77quSC+tQGgrXDGnaIuy1D8IyMQsHV1t3TpHL2ZoT22zu4eh32w0Z5p7kG3PSYYQJfODABdfgD6ev0AOFr70FYR3jXM3Hfb/KLO0aLv6E9wL0iVlUlAUVzaidp3jGLkvJS4Er0F8YubAgH4+mKoQk/6AWAI/ADAaASAzSD4lHWGnSMCgb8Lerr7q0f9UFu6+r7Y87tWipAvVa9D6ne9fpj/9sJw0dChrmaMeHVk4Nwa3VgIgDgrsT/HfRYDN2pmoeemja3HIV8+kwBcC6iYgITpGz/XsfO7BJFR2yQTANcnJzhbQlyN6cpaCKAYv0dc1CWxnLpNziq+MdZ5d15bGjMGyH5nUwa8DGEQAJ91/YkR5R0teM6K7osdoY5WaxIrmtPZdgUFiM4EwJDgTx7yNgrJEKCvXrzTdJyNsYqnOg6ZcLYlmJzw39VeoLoE+y4Ql+R2zIF4KuLvw5weAeDtti0DiM+1WwXtIUBJZAg/i/UwV9zL5Uzs71xycC5nB/GKQA1Wup2x7hp/50MAHG1Zy0jqSc4YbHLEmxunhTqjS3LK8xZnwme6HCKaCBp/XSJeAyC/J4lL/OIvvE/B8CIyA5yl3tOzRDl7hqZQ+OT228ZV5zqFYFqprU+0LS4reIqKAIDac2OHbX1dOxyPDo8fwhfHbNi5LFgemabSom0NctsvpUnGkfMu74sA2yIeojK6rC2VlRZxQF6+PN3qFO7pm0rWgGEoTXUhU7RevqdBO6BLtOPYKJ07lwAfzPCn19BTzm3OrAkTd8jDCJVw66S7lOJWgwAVPffLCDHqZAoALN9UO4T32ad3G4hxTy+CUAp6WoXHzP/MGyXjFLRR5WpMQtTfemRYnbtfhv8NALhiT+SLyvJ7mI6rckf3SuUvfFaO13WxINXGcXBiEO+z//hjssIVkYe+eIDqZESScJGuK53/ecEvSVY470aUL8b5kX510ye0tjGiX47q63lnGIL6EbLAajeiT90+TUGUn0hy/Li1gRDcKnmE1iUscdEK0bbLuf3XL/kmlQ8kF/tiw42wn57DV+WjB4bQmN3I7trS9q06VjhBkCG7BWQANHenclxA3uAV8sAwSpdsIWX8kigCU+A+q+N1c9tPy5RuhpQPxwzwyhu7nhRlyVPZRHexfX/0OKWHFioeBgQuOKTGwlFR30rex7knzfKsWmJDmXk/L9YCS4Ab9/tyOrbvXGpVNJCqzsATP9i0IAO43eZKMai3JStvZTTEw4aPOjZHU+S/pcS5iyGAffdUFW4NyMY33sMcLY9yTsa6r1AO6FartFUVmQHIqn/PtKi3ECVJ3JJ77RBRWH61IQNAYlPuI+pcLX0zAbZv7f9Ml93DeYSMpTseVlMBOBsb5LLv3iD51dFFGnwbwLyILKhtuivyuH1P9ZE16jI1xnrnHMgwKgET4EQ7518X06PVh4IWZAZ4M+9IpgrXhVGumGrRGfpNpJC0WRuGlbtVOG6WzmUTTNv+RGVWlrRG1mPHf7xBkeFKRBQAEOCYcZmWQIdGnYHMrArF8luuc1x/lrpfAxp0du1X4qd/87b8HMqQ7vudhac7R2m6QNaqM4O34r92yIwsQgg6G5xYV2PpDzm9QmbPFCvPnpRnqbo2mU0UVi9Xn3Q0IfOM9sx2ebbziUEACGn/aZrCazQ+qfu2e0M6IeTXOXJcOc6bnZOWWRpDeOrIvJ59fFe6me5lXQHpAICbez7UZmtP3lYwADl+WBJkYykvEABB3860ADqDN8h8DZe+n+FHZbqRyIAANy49oTlaqnkmAQCMnPqFnZbv6NMBQN+XCyI1R5E8Q8azVbt7xVoRAlvHFAKgq0V65SpLnr6h2bIhgTJBnakOA5iNXydaqZWo5JHODIAVxykFNZMBQn5tp4bc7gYyGAbJpy9I808EAkB2msWDcLyH/QzoFu/pEuc5gsYAKBiUDA9uAjxGxooxz4uXhBK/EUDnl8keyfHildaM/QceFc5kRycC2BE92qObD891Rvi7u6sEGXW3JgIHm9bLvEGQIU91ZgASNeKo4Ehd2BsOlIVJ3jDcXWQAwMoPF3EDlwBH55uRP/xxpRoU8sLaQEIXf1A32RPQ/YPHQrxCxpbD1e6PPWHR+GLMIk8v1jhkonmqBxAds5+rYK9MQ3HFMqN85ItOzn4mkB6Q3ddX3JtqrmzV6+ucT7SYNxCNHB9//r0ReDXlkXkjUxyHYzOpAiLX//kDM8v/e11weYmGExxh286JM7LCxa/RqOrztZr+lWt7cnmcZcck2rWQoK40rRdncEzK/W5Yf8J55qjybyhJlZMiIbdKcv9y4icZWrgz+dLmbQBgK311a/JYLaAi8v517eLfyuMA7I1vrvlIUwVRD8rfGqlRcPrnAPBzx1erg5T4uCsjIuxAmVsjQUOcZX13hDyLy38EGv0ujZnpUYtdpOm9JzsW7EFCtuAFO2aGZe+f9rSE3wEN2311D+PIJM5YU7JvXbnlxVBxvl0nB8xf1gf0fvuZTWknVqhFynhKCGaNASGPjttoXi/N1vMh+R5D8TDW/QRuRZv/JVlLCh8Zob2hQuJ7GN8uVGZJ7z9AJgMOu8GufbHlJmZt8TDZqXQVHDqdQWaVdyh6uJH6QMcJKGmCiPf2j4Eh1w3Pc+xEyKMTVRJWF+jMyCDKUVjX99+lfr1tnfBqR2IfNkd8KaX9Hz+U66UXLiwaivj310mAhL5Kh9A2qmRaV3/5VcDeLmbTpot3O0AnlQ4PAyqDtV6w3EXkzROHoH1Xso86J4W8n8MIGg8OB870rPSu9QPRedBIM2x7E2K8qz2QefunirbTFWNtIeqcdxvZ8thY3UPDvHu1NzDkTLULBkUakG8PiAb2zy4vDT1AZElAzsOm/B/pBlMsaB97LwAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_28.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, when the length of CD is the largest, the size of angle CAB is ()
Choices:
A:75°
B:45°
C:30°
D:15°
|
Như hình vẽ, khi độ dài đoạn CD đạt giá trị lớn nhất thì số đo góc CAB là ()
Các lựa chọn:
A: 75°
B: 45°
C: 30°
D: 15°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, when the length of CD is the largest, the size of angle CAB is ()
Choices:
A:75°
B:45°
C:30°
D:15°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, when the length of CD is the largest, the size of angle CAB is ()
Choices:
A:75°
B:45°
C:30°
D:15°
|
As shown in the figure, when the length of CD is the largest, the size of angle CAB is ()
Choices:
A:75°
B:45°
C:30°
D:15°
|
139
|
28
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHkAAACJCAAAAAAtA8iMAAANwElEQVR4nL1beXCURRb/zZHJZHJMEhKOXBBCEjAghxxJQBIhGkBO5SgoFPDAo0oL110tUVv5KEu03F0t1nXLXUVEXEvwAAQMBBASCIQIuSAskIQjIeQkdzI5ZvaPb+ab7+jvmAn4/pn+ul+/X7/Xr6/XPToHaMSAUPNlmMFnZ9xJIslxk5EujFCZZUjUSI119R4geEv0lvB0ZgRtZ9TNrcZCgJpi/87WV/1p4N7pzLCSlM1KgKsfn+33//02tditsyc9y4lWpl4m6XWg5lYcrfCe9DNxtmlf+WMAFoynMgl9ux+GuwHsShRbLAB8fanmdOtMCKDTSWrDTpMtNDQDcH3vrs5AHxcp3z6htfUU47uzPPaEKHMD0FWrgEwTSXEfRY9i+Cmn/lOaTgE/FtIrGFVFKpJzlmXc3/yvcbPtR6uOvKSALJCl3AxGeW4Ula5pvTRq5mD6fGpkWGcQzl9w2oEh7hJG8KOFGIKW2HC5Ut0m4pk4LUScpjuXv2fSe5CRL7NWDRQYBLAfzl6QU1gdKaOW8W7r66LagiOWlzut4RWRIH+Yzgy5fL2odfCNzOitCyN3p8q47N1EdkHkbu0JSxtvSv2+Ijes7OydsHuP7MQt0y2JAoC4yuzOgpSE/Hl/CHJFwY1B6fFs2jo3+4UMU2jWvUJ292JbXm0FDEvinIOIYM6R6SakfFs3+N4gu6j63HlDfEZsIG/wDo7UA37DP3/LU2TtU0zfldzWO5NmjYwQZldazQA2vFwfTps+XchKO2PZdrHUXpRfl7A0Wg/xpH8txgdA4KrPqOPKSDTDEUaIyFLjqbLLT6SxacYpijAAYUi3BQAw+bzNl4Ys+HJW5KEBDJdBsdn5XT6GzNd43LyqzacWsWuPz+H5qsiEeq6R2Yd3384t75g/kyKUrXPFdwKbfvASbQI1SmVro9o9NZ0xq6NNfKMIKSfYxCYCjqVHSQ1G8W3R3oAqtexQ7ahFST5KLE29jztToyPvREnLJcga1M/PrXbEPzNShavw+nBXcvTecXRkzbYmAHDrm4rkB8cEAFAeFScf5ZIzCijlCmcM2snacXX7X0f+a+2UAEEurQG2W6lcOsacLWUwQnbTp3OJ5YpPlBVHjHx2tJSVMiByxoa4P6KOZlCRla3tKu05Vdo+Zl60MhMA9BtAgBxOZQaY29Y4iIashWrPn2yetipUBlNg7n4DgGx9Ji83qqPiU/GQVka2swet+sKTzdYU2jpLM5cJAH4L5mcNW7tdwqmA7NChzwSUlBZ3N6WujfbslFnDn9sIRupaxPYyykeBdICpv2l3XnjGFJmtlGSF49aU5oh4Iad150uiM4NUZ56n1+X/0v7ksyquwIgqEQAoaY/hn/EI0nd0m4X1hGIvtKZw6e5DFyv8Z9+XxAl2nXlE4S9CHVON7wkzYm8WTwWuVgZbo/3YBVCAbGempbBS6op2602TlkX5io+HoHiV5BhP2nw3bxeWBGdkTQX8P8pY+UPHc3ydWT2yCh4AAMe+wtuxS8YPUwRQpMNBw8XcCbn9Bph6EqKCvl0e4kTmtgM3r07sB1puFm1JWjTW2lluMpsCDFXLLWaL3gKgLRBXBvebcL7Fkdjib6uLMLYEOEqHBQeb2mxmX4NR79P+tNlsqWk1/O/g7KpA3/pIfX62rymkN8IaAAfaj8/CEf9xqGnuBwgjsHZ+4tB9nZbiN8tnT61taezo7/Gxh5ouRvf4hMMSZLPVWEstJoMpoC506LHOGp/oq8b2Zr/R12y6BlOEsfuOrs0xzNRnMPXWt+gvB1yxG+yB/RFz+zraexob9N29Db5BgKEhK77quSC+tQGgrXDGnaIuy1D8IyMQsHV1t3TpHL2ZoT22zu4eh32w0Z5p7kG3PSYYQJfODABdfgD6ev0AOFr70FYR3jXM3Hfb/KLO0aLv6E9wL0iVlUlAUVzaidp3jGLkvJS4Er0F8YubAgH4+mKoQk/6AWAI/ADAaASAzSD4lHWGnSMCgb8Lerr7q0f9UFu6+r7Y87tWipAvVa9D6ne9fpj/9sJw0dChrmaMeHVk4Nwa3VgIgDgrsT/HfRYDN2pmoeemja3HIV8+kwBcC6iYgITpGz/XsfO7BJFR2yQTANcnJzhbQlyN6cpaCKAYv0dc1CWxnLpNziq+MdZ5d15bGjMGyH5nUwa8DGEQAJ91/YkR5R0teM6K7osdoY5WaxIrmtPZdgUFiM4EwJDgTx7yNgrJEKCvXrzTdJyNsYqnOg6ZcLYlmJzw39VeoLoE+y4Ql+R2zIF4KuLvw5weAeDtti0DiM+1WwXtIUBJZAg/i/UwV9zL5Uzs71xycC5nB/GKQA1Wup2x7hp/50MAHG1Zy0jqSc4YbHLEmxunhTqjS3LK8xZnwme6HCKaCBp/XSJeAyC/J4lL/OIvvE/B8CIyA5yl3tOzRDl7hqZQ+OT228ZV5zqFYFqprU+0LS4reIqKAIDac2OHbX1dOxyPDo8fwhfHbNi5LFgemabSom0NctsvpUnGkfMu74sA2yIeojK6rC2VlRZxQF6+PN3qFO7pm0rWgGEoTXUhU7RevqdBO6BLtOPYKJ07lwAfzPCn19BTzm3OrAkTd8jDCJVw66S7lOJWgwAVPffLCDHqZAoALN9UO4T32ad3G4hxTy+CUAp6WoXHzP/MGyXjFLRR5WpMQtTfemRYnbtfhv8NALhiT+SLyvJ7mI6rckf3SuUvfFaO13WxINXGcXBiEO+z//hjssIVkYe+eIDqZESScJGuK53/ecEvSVY470aUL8b5kX510ye0tjGiX47q63lnGIL6EbLAajeiT90+TUGUn0hy/Li1gRDcKnmE1iUscdEK0bbLuf3XL/kmlQ8kF/tiw42wn57DV+WjB4bQmN3I7trS9q06VjhBkCG7BWQANHenclxA3uAV8sAwSpdsIWX8kigCU+A+q+N1c9tPy5RuhpQPxwzwyhu7nhRlyVPZRHexfX/0OKWHFioeBgQuOKTGwlFR30rex7knzfKsWmJDmXk/L9YCS4Ab9/tyOrbvXGpVNJCqzsATP9i0IAO43eZKMai3JStvZTTEw4aPOjZHU+S/pcS5iyGAffdUFW4NyMY33sMcLY9yTsa6r1AO6FartFUVmQHIqn/PtKi3ECVJ3JJ77RBRWH61IQNAYlPuI+pcLX0zAbZv7f9Ml93DeYSMpTseVlMBOBsb5LLv3iD51dFFGnwbwLyILKhtuivyuH1P9ZE16jI1xnrnHMgwKgET4EQ7518X06PVh4IWZAZ4M+9IpgrXhVGumGrRGfpNpJC0WRuGlbtVOG6WzmUTTNv+RGVWlrRG1mPHf7xBkeFKRBQAEOCYcZmWQIdGnYHMrArF8luuc1x/lrpfAxp0du1X4qd/87b8HMqQ7vudhac7R2m6QNaqM4O34r92yIwsQgg6G5xYV2PpDzm9QmbPFCvPnpRnqbo2mU0UVi9Xn3Q0IfOM9sx2ebbziUEACGn/aZrCazQ+qfu2e0M6IeTXOXJcOc6bnZOWWRpDeOrIvJ59fFe6me5lXQHpAICbez7UZmtP3lYwADl+WBJkYykvEABB3860ADqDN8h8DZe+n+FHZbqRyIAANy49oTlaqnkmAQCMnPqFnZbv6NMBQN+XCyI1R5E8Q8azVbt7xVoRAlvHFAKgq0V65SpLnr6h2bIhgTJBnakOA5iNXydaqZWo5JHODIAVxykFNZMBQn5tp4bc7gYyGAbJpy9I808EAkB2msWDcLyH/QzoFu/pEuc5gsYAKBiUDA9uAjxGxooxz4uXhBK/EUDnl8keyfHildaM/QceFc5kRycC2BE92qObD891Rvi7u6sEGXW3JgIHm9bLvEGQIU91ZgASNeKo4Ehd2BsOlIVJ3jDcXWQAwMoPF3EDlwBH55uRP/xxpRoU8sLaQEIXf1A32RPQ/YPHQrxCxpbD1e6PPWHR+GLMIk8v1jhkonmqBxAds5+rYK9MQ3HFMqN85ItOzn4mkB6Q3ddX3JtqrmzV6+ucT7SYNxCNHB9//r0ReDXlkXkjUxyHYzOpAiLX//kDM8v/e11weYmGExxh286JM7LCxa/RqOrztZr+lWt7cnmcZcck2rWQoK40rRdncEzK/W5Yf8J55qjybyhJlZMiIbdKcv9y4icZWrgz+dLmbQBgK311a/JYLaAi8v517eLfyuMA7I1vrvlIUwVRD8rfGqlRcPrnAPBzx1erg5T4uCsjIuxAmVsjQUOcZX13hDyLy38EGv0ujZnpUYtdpOm9JzsW7EFCtuAFO2aGZe+f9rSE3wEN2311D+PIJM5YU7JvXbnlxVBxvl0nB8xf1gf0fvuZTWknVqhFynhKCGaNASGPjttoXi/N1vMh+R5D8TDW/QRuRZv/JVlLCh8Zob2hQuJ7GN8uVGZJ7z9AJgMOu8GufbHlJmZt8TDZqXQVHDqdQWaVdyh6uJH6QMcJKGmCiPf2j4Eh1w3Pc+xEyKMTVRJWF+jMyCDKUVjX99+lfr1tnfBqR2IfNkd8KaX9Hz+U66UXLiwaivj310mAhL5Kh9A2qmRaV3/5VcDeLmbTpot3O0AnlQ4PAyqDtV6w3EXkzROHoH1Xso86J4W8n8MIGg8OB870rPSu9QPRedBIM2x7E2K8qz2QefunirbTFWNtIeqcdxvZ8thY3UPDvHu1NzDkTLULBkUakG8PiAb2zy4vDT1AZElAzsOm/B/pBlMsaB97LwAAAABJRU5ErkJggg==",
"path": "images_version_5/image_28.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, the right triangle ABC and the equilateral triangle ABD are respectively drawn with the line segment AB as the edge, when the length of CD is the largest, the size of angle CAB is ()
Choices:
A:75°
B:45°
C:30°
D:15°
|
Như hình vẽ, tam giác vuông ABC và tam giác đều ABD được vẽ với đoạn thẳng AB làm cạnh. Khi độ dài CD đạt giá trị lớn nhất, số đo góc CAB bằng ()
Các lựa chọn:
A: 75°
B: 45°
C: 30°
D: 15°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the right triangle ABC and the equilateral triangle ABD are respectively drawn with the line segment AB as the edge, when the length of CD is the largest, the size of angle CAB is ()
Choices:
A:75°
B:45°
C:30°
D:15°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the right triangle ABC and the equilateral triangle ABD are respectively drawn with the line segment AB as the edge, when the length of CD is the largest, the size of angle CAB is ()
Choices:
A:75°
B:45°
C:30°
D:15°
|
As shown in the figure, the right triangle ABC and the equilateral triangle ABD are respectively drawn with the line segment AB as the edge, when the length of CD is the largest, the size of angle CAB is ()
Choices:
A:75°
B:45°
C:30°
D:15°
|
140
|
28
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAB2AAAAk7CAYAAAA4ct9cAAEAAElEQVR4nOzdd1gUV/s38O/SO9KtoGDvCFaUYgfF3rvGWGKPiTHRWPJoHo2JNdFE80SxG7ELdkFQwApiQxQBFZWm9A7z/uGLP5U5y5bZBvfnuva6dGb3nnuX3TNnzjlzjojjOA6EEEIIIYQQQgghhBBCCCGEEELkpqXqBAghhBBCCCGEEEIIIYQQQgghpKqgDlhCCCGEEEIIIYQQQgghhBBCCBEIdcASQgghhBBCCCGEEEIIIYQQQohAqAOWEEIIIYQQQgghhBBCCCGEEEIEQh2whBBCCCGEEEIIIYQQQgghhBAiEOqAJYQQQgghhBBCCCGEEEIIIYQQgVAHLCGEEEIIIYQQQgghhBBCCCGECIQ6YAkhhBBCCCGEEEIIIYQQQgghRCDUAUsIIYQQQgghhBBCCCGEEEIIIQKhDlhCCCGEEEIIIYQQQgghhBBCCBEIdcASQgghhBBCCCGEEEIIIYQQQohAqAOWEEIIIYQQQgghhBBCCCGEEEIEQh2whBBCCCGEEEIIIYQQQgghhBAiEOqAJYQQQgghhBBCCCGEEEIIIYQQgVAHLCGEEEIIIYQQQgghhBBCCCGECIQ6YAkhhBBCCCGEEEIIIYQQQgghRCDUAUsIIYQQQgghhBBCCCGEEEIIIQKhDlhCCCGEEEIIIYQQQgghhBBCCBEIdcASQgghhBBCCCGEEEIIIYQQQohAqAOWKJSnpydEIlGFR3BwsKpTI0Qt1K9fn/c3kpCQoOrUyGeCg4N5/1aenp6qTo1UguM4XL58GcuXL4ePjw8aN24MW1tb6Ovr8/5N58+fXyHGihUreJ+7YsUKpb8fQohkqB5KPsb3XRCJRKpOS2HovEVktWvXLt7vzqRJk1SdGtEAdO4lhBDFmTRpEm8Zu2vXLlWnpjRUTyGaRkfVCRBCCCGEKMr//vc/rF27Fk+ePFF1KoQQQgghhBBCqpCsrCxkZ2cjLy8PpaWlMDAwgJmZGSwtLVWdGiGEEDWg9A7Y+Ph4ODk5geM43v39+/fHqVOnlJwVIYQQQqqS3NxcjB8/HseOHVN1KoQQQgghhBCiEJMmTYKfnx9z/61bt+Di4qLQHDIyMvDy5Uu5Ymhra8PU1BRmZmYwNTVVy1kqIiMjERoaivDwcDx8+BDx8fHIzs7mfa6enh7q1auHFi1aoG3btnB3d0eXLl1gaGio5KwJIYSoktI7YP38/JidrwBw9uxZJCcnw87OTolZEUIIIaQqmTx5MnW+EkIIIYQQQqqsnJwc+Pv7i33Orl27FN4Be/z4cUyePFmweCKRCPb29mjbti3atm2LHj16oGvXrirplI2Pj8e2bdtw+PBhqZaKKioqQlxcHOLi4nDy5EkAgJGREby9vTFmzBgMGDAAOjo0MSUhhFR1Si3pOY7D7t27xT6npKQEe/fuxcKFC5WUFSGEEE2WkJDAu95F/fr1aQ2IamrXrl04fPiwqtMghDDs2rWLtwFr0qRJqF+/vtLzIYSojqbX41hr6tJau4QQZfD390dubq7Y5xw4cAC//fYb9PT0lJSV/DiOQ2JiIhITE3HixAmsXLkSDRo0wIQJE7BgwQKYm5srPIe4uDgsXboUhw8fRmlpqSAx8/LycOTIERw5cgS1a9fGvHnzMHv2bBgZGQkSnxBVioqKwvHjxytsb9u2LQYNGqT0fAhRF0rtgL1y5Qri4+MrfZ6fnx91wBJCCJFIQkICVq5cWWG7h4eHRjTcEWFxHIdffvmFub9v374YOHAgmjZtCnNzc+jq6lZ4jrW1tSJTJKTa27VrF65cuVJhu6enJ3XAElLNaHo9ji93gDpgCSHKwTeA5XPp6ek4deoUhg4dqviEFCg+Ph4rV67En3/+iV9//RXjxo1TyHFKSkqwatUqrF27FgUFBQo5BgC8evUK3333HX777Tf8/PPPmDJlilpOu0yIpKKionjrRRMnTqQOWFKtKbUDVpKKAQDcu3cPd+7cQbt27RSbECGEEEKqlIiICDx69KjCdpFIhP3792PUqFEqyIoQQgghhBBChBMfH4+QkBCJnuvn56fxHbDlkpOTMX78eJw/fx7//POPoNP4vnr1CiNGjMC1a9cEi1mZlJQUTJ06FYmJifjpp5+UdlxCCCHKobQOWEnWJfjYrl27qAOWEEIIIVK5evUq7/ZBgwZR5yshhBBCCCGkSvDz8wPHcRI998yZM0hJSYGtra2Cs1KePXv2AEClS91JKiYmBj169MCrV68qfW6LFi3Qo0cPdOrUCY0aNYK9vT1MTEygr6+PvLw8ZGZmIj4+Ho8fP8bVq1dx+fJlvHjxQmzMrKwsQd4HIYQQ9aKlrANJsi7Bxw4cOIDi4mIFZkQIIaqXkJAAjuMqPGgKRkJkc/PmTd7tQ4YMkSvuihUreH+rNMUgIYRoBr4yXNKGa0Kqk0mTJvH+ViSd0YwQongcx0nV8VhSUoK9e/cqMCO2oKAg5jn440dBQQFSUlJw//597N+/HzNnzqx0aZg9e/bgn3/+kTvHhw8fwsPDQ2znq56eHr788kvcu3cP9+/fx6ZNmzB69Gi4urrC1tYWRkZG0NbWhqmpKerWrYtu3bph6tSp2LVrFxITE3H16lVMnToV+vr6cudLCCFEcyitA5ZVWe/YsSPv9rS0NJw6dUqBGRFCCCGkqnnz5g3v9mbNmik5E0IIIYQQQggR3pUrVxAfH8+7r1OnTrzb/fz8FJmS3PT19WFjY4MWLVpg9OjR2Lp1K5KSkvDzzz/DwMCA+brFixcjJydH5uOmpqaiX79+SElJYT6nV69eiImJwfbt29GyZUupjyESieDm5oYdO3bg2bNn+Oqrr6ClpbQmeUIIISqklNJe3LoES5cuRZcuXXj3qXvlgBBCCCHq5d27d7zba9SoodxECCGEEEIIIUQBWDe5uLi4MNcRjY6ORmRkpAKzEp6enh6+//57nDp1itkJm5qaikOHDskUv6ysDMOHD0dCQgLvfpFIhJ9++gnnz59HgwYNZDrG52rXro0//vgDt27dQtu2bQWJSQghRH0ppQOWtS6BtbU1+vbti/Hjx/O+7syZM0hNTVV0eoQQQgipIlijn7W1tZWcCSGEEEIIIYQIKycnB/7+/rz7xo0bhx49eqB27dq8+zV1KvGePXvi+++/Z+4/ceKETHE3bdqEK1euMPf/+eef+PHHH2WKXRlnZ2dERERg1qxZColPCCFEPSi8A1bcugSjRo2Cjo4ORo4cCT09vQr7i4uLVbZGASGEEEI0D63nRwghhBBCCKmq/P39kZubW2G7trY2Ro8eDS0tLYwdO5b3tfv370dxcbGiU1SIhQsXMu+CjYiIkDre8+fPsXTpUub+ZcuWYdq0aVLHlYa+vj5+//13bNu2DTo6Ogo9FiGEENVQeOkubl2CcePGAQAsLCzQv39/HD16tMJz/Pz8sGDBAoXmSAghhBDNkpSUxDvdMKtBITY2VqK1gWRZ00dRMjMz8fbtWxQVFcHExATW1tbQ19dXdVqEEEIkUFpaiuTkZGRnZ0NXVxfm5uawsrJSdVqEkCqO6o9VH+su1l69esHOzg4AMH78eKxbt67Cc9LS0nD69GkMHjxYkSkqhLGxMdzd3XH+/PkK+1JTU5GTkwMTExOJ4/3000/Iy8vj3efp6Ynly5fLnKu0ZsyYwVxKhxBCiGZTeAcsax3XRo0aoWPHjh/+P378eN4O2Lt37yIqKkrh8+JzHIfQ0FBEREQgMjISDx8+xLt375CVlYWcnBzo6enByMgIxsbGqF27NhwcHNCgQQO0a9cOnTt3Rt26dRWan7yKi4tx+fJl3Lx5E3fu3MHjx4+RmZmJrKws5OXlwcDAAIaGhjAxMUHdunXh4OAAR0dHuLq6olOnTrC1tVVKnoWFhbhw4QICAwMRFRWFuLg4ZGZmQltbG7a2trCxsYGzszN8fHzQo0cPqSpX8igoKMD58+dx5coVREVF4dmzZ0hPT0deXh709PRgYmICe3t7NGnSBF27dkXfvn0FWx+CVHTv3j0cP34c4eHhePjwIdLT01FYWAhLS0vY2tqiQYMG6N27N3x8fOjvwFBaWoorV67g9OnTuH37Np48eYKMjAxwHAcbGxvY2tqiefPm8PHxQZ8+fWBhYaHqlD/4vOONNcgnNzcX9+/flyp2kyZNoKurK1d+H4uLi8OxY8dw9epV3L9/H6mpqcjLy4OFhQVsbGxQr1499OzZEz4+PmjevLlgx5XE/fv3cenSJYSHh+PJkyd48eIFcnJyUFRUBCMjI1hbW8PJyQmurq7o3r07unfvrlbT+C5ZskSqteL79Okj0fNUeQdtfn4+Dh8+jJMnT+LatWt48+bNJ/u1tLTg5OQENzc3DB48GP369eP9mwQHB/PG9/T0VEDWmuft27c4d+4cLl++jIcPHyI+Ph5ZWVkoLCxEjRo14OTkhGXLlsHHx0fq2HFxcbhw4QLCwsLw+PFjPH/+HNnZ2cjPz4ehoSEsLS3h6OgIZ2dneHl5oXfv3syR/FVFcXExHj9+/Mk2vrs2gPflubW1tcSxLSwsUKdOHbny+5i61kOB99MNXrhwAaGhoYiOjkZ8fDzS09ORm5sLbW1tmJqawt7eHs2aNUPXrl3Rv39/tb8+kVZhYSGCg4Nx/vx5REdH48mTJ3j37h1yc3NhbGwMe3t7jBs3Dt99953Kcrx//z727t2LCxcu4MGDBygsLPxkf40aNdC6dWv4+Phg1KhRcHBwqBAjISGBdy26+vXro379+grK/L2IiAicPHkSN2/eRExMDN6+fYuSkhJYW1vD1tYWjRo1gre3N7y9vVGzZk2ZjqFJ9bjPZWRk4OXLlxI9V9rc69atK+h69a9fv8aZM2cQHByMmJgYJCYmIjs7GyUlJbCwsEDjxo2xYcMGuLq6CnZMSRUVFeHGjRu4desWHj16hEePHiEpKQlZWVnIysoCx3EwNDSEjY0N7O3t0bp1a3Tu3Bl9+vQR9DOSlbpdi1bn+mNhYSGCgoIQEhKCO3fuID4+HikpKcjNzYVIJPrQvtW4cWO4ubnBx8cHjRs3VnXacklISEBISAjvvo+Xd2vVqhXatGmDu3fvVnien5+fRnbAAoCTkxNzX2ZmpsR1s/j4eOa1pK6uLrZt2wYtLaWs2veBOrW5lHv69CmuXbuGhw8f4uHDh4iLi0NGRgaysrJQUFAAAwMDmJmZoU6dOmjatClcXV3Ru3dvNGvWTNWp4+3btzh58iQuXryI6OjoD+cZY2Nj2NraombNmnBzc0O/fv3QuXNnpbR1ZGVl4fjx4x/qsuVtMPr6+jA3N0fjxo3h7OyMfv36wcPDQ+3vio6Pj//kui4pKYn3eRkZGVLXi4QeGK9u5+6P3bhxA0FBQbhx4waePn2KpKQk5Obmori4GMbGxrCzs0PDhg3RsWNH9OzZE126dIFIJFJqjkROnALl5ORwJiYmHIAKj59++umT5xYWFnKWlpa8z503b57Ccnz79i23dOlSzt7envfYkj7s7e25+fPncxEREQrLVRYvXrzg5s2bx9nY2Mj1/po0acItWbKEu3fvnlTH9/Dw4I0XFBT0yfOKioq4devWcTVr1pQ4JzMzM27t2rVcQUGBgJ/YpxITE7mvvvqKMzMzk+rzEolEXNeuXblTp07JfOySkhLO3Ny8QmwdHR0uKytLppiBgYHMnOWJe/LkSd6YgwYNqvS1O3fu5H3txIkTKzw3ODiYc3d3l+pvMWTIEC4uLk6m96UMDg4OvHnHx8dLFWfixIm8cXbu3PnJ88rKyrj//e9/nJOTk8Sfob6+Pvfdd99xmZmZwr1xObDeqxAPcZ97UFAQ72s8PDwqPDcqKorz9fXlRCKRxMf29PTkIiMjFfa5cRzH5efnc7///jvXvHlzqT8bW1tbbuXKlVxGRoZCc5SUor4HLMuXL+d9/vLly+V+L0VFRdxvv/3GrAexHk5OTtyBAwcqxJP2vfGRpmyWlVDln6RxEhISuClTpnAGBgaVfrYbNmyQ+PglJSXcnj17uPbt20v9fTM3N+cWLFjAvX79Wqr3rEni4+MVVmZX9n3U9Hoox70/n4wdO5YzMjKS6rMRiURcr169uODgYIXmJw9J6y45OTnc8uXLOVtb20rf98CBA5nHE6JsZLl37x7Xp08fqf5GOjo63Pjx47k3b958Ekuo8400cY4dO8a1adNG4ty1tLS4qVOnVshdEqqqxwmBdW4U4vH59/5zkn5/o6OjuWHDhnHa2tqVHvPYsWNSvU956gAvX77k1q9fz/Xq1Uvq8uzj38ywYcO469evy5yHPO9V3a5F1bH+yHGSn3vlERcXx82YMYOrUaOG1N+jTp06ccePHxcsF2VbsWIF7/syMTHhcnNzP3nur7/+yvtcXV1dLiUlRdC8xJWPQv7tf/jhB+ZxpHlPixcvZsaZPn26YPlqmoKCAu7YsWPchAkTuHr16sl8TmvZsiW3fft2rri4WLDcJC2jUlJSuFmzZnGGhoYS5+vo6MgdOXJEsFw/l5GRwX3zzTfMPhK+R/369bm//vqLKy0t/SSWpPVnZWCV90I8xNHkc3e5jIwMbvXq1Vz9+vWl/mwcHBy4jRs3cvn5+QrNkQhHoR2wu3btYn5Znj17VuH5M2fO5H2ujY0NV1RUJHh+e/fulehCXtpHVFSU4LlKq7S0lNuwYYNUhbukD2ka3yWpfD948IBr1aqVzPk0atSI9/skj6KiIu6nn37i9PT05P68PDw8uNjYWJny8PX15Y15+vRpmeItXLhQbK6yxp0/fz5vvM2bN1f6WklOnIWFhdyMGTOk6sz6+KGnp8f9/fffMr03RVNmB+zLly+lrnh8/LCzs+Nu3bol7AcgA3XugC0rK+OWL1/O6ejoyHR8LS0tbuXKlQr53A4fPszVrl1b7s/Izs6O8/f3V0iO0qgqHbDPnj2TqePu48ewYcO4vLy8DzGlfW98qloH7JYtW6Rq8JW0AzYoKIhr0qSJ3N87U1NTbtu2bVK9b02h7h2w6lgP5TiOS05O5saNGyfI5zRy5EguLS1N8BzlJUndJTg4WKqBsqrogN2wYYNc1wxWVlbcmTNnPsRTZgdsRkYGN2TIELnKrsDAQKnyog5Y/oe8HbClpaXckiVLpKqDKqMD9tq1a5yHhwenpaUl6Oc1fvx4QQaHauq1qLrWHzlOsR2w2dnZ3Lx58yQaYFDZo2fPnlxCQoLcOSlTWVkZ5+joyPt+JkyYUOH5r169Yn5W0gw2lISyOmC/+uor5nEkbTcuKSnhatWqxRtDS0tL5vY7TZafn89NnjyZ9yYQeR5NmjThwsPDBclRkjLq6NGjnJWVlcz5+vr6flIuCuHSpUtSDfL8/NG1a1cuKSnpQzzqgNXcczfHvS/Ht23bJtMAos8fTk5Oaj3Ylvwfhc6nwFqXwM3Njfd27o+ny/hYamoqAgIChEwNy5Ytw7hx45CSkiJoXAAqnb4QAMrKyjBlyhQsWLBAovXupCXk+7t8+TK6dOmCe/fuyRzjyZMncHd3R2xsrCA5paWloWfPnli2bBmKiorkjnflyhW4uLjg9OnTUr+2e/fuvNsvX74sUy6VvU7ouKz8pZGRkYGePXvizz//lPm7V1RUhC+//BK///673PloqujoaHTs2JE5XZEkkpOT0aNHD4SFhQmYWdVRVFSE4cOHY+XKlSgpKZEpRllZGZYvX45FixYJlldBQQEmTZqE4cOH49WrV3LHS05OxrBhw/Ddd9+p/Hyn6e7du4cuXbrg5s2bcsXx9/dHz549mdO6VnezZs3CnDlzmGs8yaKsrAw//PADvLy8KkyvK4vs7GzMnDkT48aNE6TuQSSjjvVQAAgJCUGrVq2wd+9eQeIdOnQI7du3x4MHDwSJpyz79u1Dr1698Pz5c1WnwovjOMyZMwcLFiyQ63ebnp4OX19f/PvvvwJmV7kXL16gS5cuvMsASSo7OxuDBg3CsWPHBMyMSKu4uBhDhgzB6tWrZa6DKkpYWBiuXLmCsrIyQePu2bMHLi4uvNN1C0kdr0Wra/3x/v37cHZ2xqZNm1BaWip3vIsXL8LV1VWu62NlCwkJwbNnz3j38bWn1qpVCz169OB9Pqu9Vt3FxcXxbq9Xr57EU9CHhYXh9evXvPu6du2KRo0ayZyfpsrJycHOnTuRmZkpaNzHjx+jW7duSvm+/frrrxg6dCjS09NljnHq1Cn069dPsLb0nTt3onfv3hWmhpfG1atX0aVLFzx9+lSQnKoDdTx3A8C7d+/g4+ODmTNnIiMjQ+54cXFx6NGjBzZv3ix/ckShFNYBm5CQgCtXrvDuY3W0du7cGQ0bNuTdJ806b5VZt24d/vOf/wgWT93MmTNH0M9LUa5fv44BAwYIcoJ/+fIlBg4cKHejZXp6Ojw9PQWvhJc3Thw+fFiq17E6MC9duiR1Dm/fvuVd/0PeuGlpabwNl3Z2dmjRooXU8T6Wn5+PAQMGIDQ0VK44wPtGsrlz52rUBZZQ4uLi0Lt3b+Z6DNLIzMzEoEGD5KrUVkVlZWUYP348jhw5Iki8devWYffu3XLHycnJQe/evRVyTvjll18we/ZsweNWF4mJiXJfjH0sLCwM48aNo07xzyxduhRbt24VNGZJSQlGjRqF//73v4LGBd53OI0YMULtGtCrInWshwL/1yAu9CDR+Ph4eHl54eHDh4LGVZSzZ89i0qRJKC4uVnUqTD/88INgjTIlJSWYMGECIiIiBIlXmbS0NPTu3VuQ70NRURHGjBmDJ0+eCJAZkcWUKVNw4sQJVaehdE+fPoWHh4dCBtUD6nktWl3rj4rqgEhLS4O3tzez7VLdsDqx6tSpw2w7YrW/3r17t9L2IXWTl5fH/A21b99e4jiBgYHMfSNGjJA6LyJeSUkJpkyZggMHDijsGL///ju+/fZbQcqyoKAgzJ07V+44+/fvxxdffCHIgJHExET069cP7969kztWVaeO524AePPmDdzc3HD27Fm5Y32stLQU8+bNw7p16wSNS4SlsNWc/fz8eAs+PT09sSe0cePGYcWKFRW2BwQEIC0tDdbW1nLlFRcXh2XLljH36+rqomvXrvDw8EDjxo1Ru3ZtGBsbQ1tbG1lZWcjMzMTLly9x9+5dREdH4/bt22rVMHDt2jVs27aNud/Q0BBeXl4fRnXZ2dnB2NgYwPuOlczMTCQkJCA6Ohp3795FVFSU4KNVASAlJQXz5s2rMNrSxsYG3t7e8PLyQq1atWBjY4OcnBwkJSXh4sWLOHbsGPOEExMTg59//pn3+yOJ4uJi+Pr6ir07QEtLC926dcOQIUPQoEED1KpVC9nZ2UhKSsLVq1fx77//MvMrLS3F2LFjUatWLXTt2lWinFq1agUbGxukpqZ+sj06Ohrp6emwsrKS+P0FBwdX+reUJW5QUBDvb93Ly0viGCxfffVVhZOmrq4uunXrBm9vbzRq1Ai2trbQ0dFBcnIybt26haNHjzLvZOE4DtOmTcPdu3ehr68vd36aoLzykZyc/Ml2c3Nz9OrVC7169ULdunVha2uLgoICvHnzBsHBwTh69ChzVGhqaioWLlyosaNmFeE///lPhTtXtLS00KFDB/Tr1w/NmzeHra0tDAwMkJKSgnv37uHEiRMIDw9nxly4cCF8fHxkPu8VFxejf//+YiueOjo6cHNzg6enJ1q3bg0rKyuYmZkhPT0dSUlJuHTpEgIDA5kd7lu3bkXDhg2xYMECmXKUx65du3i/g/Xr10diYmKF7fHx8ahfv77iE5NA+Z0q4hrP6tatixEjRmDAgAFwcHD4cL559eoVbt68iUOHDuHSpUuflOvHjx/HX3/9pYy3oBHOnz+P1atXV9hes2ZN9OvXD+7u7qhZsyZsbGxQVFSEFy9e4MaNG5UOlpo4caLY54hEInTo0AGenp5wcXGBtbU1atSogYyMDLx+/RohISE4ffo0c1DMiRMnsHDhQmzatEm6N0wkpo71UOB9g+Do0aPFdsDXrVsXPXr0QLdu3VC7dm1YW1ujtLQUycnJuHfvHgICApideKmpqejfvz9u3boFS0tLmfNUtDdv3mDhwoUVPgdjY2P07NkTffr0Qb169WBnZweRSISUlBTcvXsXx48fV1qOR44cwZo1a5j7tbW10bNnT4wcORKurq4frilfv36NhIQEnDx5EocPH/6kHCgsLMTYsWMxdOhQheZeVlaGUaNGISYm5pPtRkZG8PLyQp8+fdCgQQPY2dmhpKQEKSkpuHbtGo4cOcK886qgoADTpk1DUFCQQnMnFe3YsYP3bnkHBwf4+vqic+fOsLOzg5WVFfLz8xEfH4+wsDD4+/urINv/Y2lpCRcXF7i6uqJ58+awtLREjRo1YGhoiMzMTKSlpSEyMhJXr15FaGgos1H9+fPnGDVqFC5dugSRSCRojup2LVpd64937tyBt7e32DvSbGxs0L17d3h4eMDe3h5WVlbQ1tZGcnIyYmJiEBgYiJCQEN6OkLy8PAwePBi3bt2Co6OjIt+KXHJzc5m/29GjR0NLi//+msGDB8PExIT389u1axc2bNggaJ6KtGHDBuTn5/PuGzJkiMRxxJ2revXqJXVeVZmuri5atmwJV1dXtGvXDnZ2drCwsIC5uTny8/Px7t07PHnyBOHh4Th//jzzrj6O4/DFF1+gbdu2aNasmaA5BgUFYd68eRW2N27cGD4+PujUqRNsbW1Ro0YNpKen49mzZwgMDERAQACzzr1z506MHz9e5nbN27dvY8qUKWI7hO3t7TFq1Ci0a9cOderUga6uLpKSkvD48WMcOnSowgCJ2NhYTJ8+HUZGRjLlVF2o27kbeN/f0r17dzx69Ij5HENDQ7i7u8PLywtNmjSBtbU1jIyMkJaWhsTERJw/fx7nzp1DdnY27+sXLVoEJycnqcpCokSKmNdY3LoEgwcPFvvauLg45tzWGzdulDu3sWPHMuPPmDHjk3nVJZGZmckdPHiQGzVq1Ie1fyIjI+XOU1Zubm68701bW5tbsmQJ9/btW6nipaSkcDt37uT69+//Yd2Wd+/eSfx61nzwn69DaGVlxW3cuLHSNRvS09O5SZMmiZ2jPTU1Var3WO7rr78WO7e6l5cX9/TpU7ExCgsLuf/+979i14GqXbs2l56eLnFew4cP541z+PBhqd7frFmzJJpDXtq4M2bM4I2zfft2iV7Pmrv/8++ISCTixowZwyUmJoqNV1ZWxvn5+XGmpqbM9yjJ2rTKoug1YD//HI2MjLhly5ZxOTk5YuPl5uZy3333ndjvyt27d+V458KRZG1WRR7Hzs6uwto63t7e3P379yuNefr0aeb6MwC4r7/+WuZ8WeuqA+B0dHS42bNnS7TuUW5uLrdixQrO0NCQGevOnTsy5yk0oX5TnxNyDdilS5eK/dssWbKEKygoqDTO9evXuRYtWnzyejMzM2ZsaVSFNWA//yysrKy4P//8kystLRUbr7i4mFkfXLt2rdhycezYsdyDBw8qzbm4uJjbvHkzZ2lpyYx18uRJqT4HTaLI9eEkOY461kNjY2PFrrvVokUL7uDBg5V+fzmO48LDw7lOnToxYw0dOlSmHIXGqrt8/tvV1dXlvv76a4nWexRXTxSibOS499dH4n67rVq14m7evFlpnPz8fG7x4sUV1uxkleNCrQH7+fe/vE5Q2Xe3uLiY++2338SuMSpLuaWsepyiCPW9kvU4n39f7O3tJbqey8vL41JSUnj3CVkHWLdu3YfX29nZcbNmzeJCQkK4srIyiWM8efKEmzJlitjz7z///CN1bhynWdeimlB/5Dhhz/GpqalcvXr1mLnZ29tzf/31l0Tv++HDh5y3tzczVocOHSQ6x6rKrl27mLlXdl0+YcIE3tfZ2tpyxcXFguSn6DVgg4KCmNejdnZ2XH5+vkRxSkpKxMaprlJTUz98Drq6upyPjw+3e/duqdbazs3N5bZu3Sq2juTu7i5zjqyYn5fXzZo1406dOlVpvAcPHnAdO3Zkxm3Xrp1Meebn53NNmzZlxrWwsOD27NlT6Xnw6tWrXOPGjSu8nlUmqmIN2M8pow1B3HHU8dxdVlbG+fj4MOMaGxtzS5YsYdbJPpaeni52HXQzMzPu5cuXMuVJFEshHbDBwcHML9bRo0crfT2rE7Ft27Zy5VVYWMisWG7ZskWu2BzHca9fv+aWLl2qsgXbk5KSeBeXFolE3IkTJ+SOHxcXx82dO5fLzs6W+DWSLMjdtGnTSgvDz82dO5cZT5aO+tu3b3/oYOZ7/Pjjj1JdJEZGRopd+H3q1KkSx9q2bRtvjBkzZkj1Hps1a1Yhhr6+vtxx+SoEACrtrC4nrqJe/tDV1eX27t0rVV5Xr17ljIyMFFKWCEnRHbAfP2rVqsVFRUVJFXf9+vXMePPnz5cqlqKougP288eaNWukihsTE8PZ2tryxpL1ojgwMJCZX506dbirV69KHTMiIoKztrbmjdm+fXup4ymKunfAxsfH85a95WVdYGCgVPHy8/M5Ly8vib6b0qgKHbAfP1q0aMG9fv1arnzv3r3L6erq8sY3Nzfnjh07JnXM2NhYrkGDBrwx69WrJ3FjkqZRdQfsxw91qIeWlpZynTt3ZsacNm2aRI3LHysuLhbbWRwQECB1nkKTpO5iZmYm0zmLjxBlI8dx3PTp05mxevToIfXf6vTp02I7NWU937DOWx8/TE1NuYsXL0oV19/fn3ndNGjQIKlicRx1wMp7nM8/M2mu1VmE7oBt0KABt2PHjkoHuVTm1KlTnLGxMW9uDRo0kKnOrCnXoppSf+Q4Yc/xI0aMYOY1cOBAqW4OKCeuI/v333+XOp6yeHp68ubcunXrSl974cIF5ns+fvy4IPkpqgO2qKiIW7duHfP3BIA7dOiQxPHu37/PjNOrVy+Z89R0qampnL6+Pjd79my5O3CSkpLE1mulrXeUk6S8GjJkiFT1sOzsbK5Lly7MeLLcdLBq1SpmvCZNmkh141deXh7n6+sr0XunDlj1O3dzHMdt3bqVmWOzZs0kGrz9uZMnTzIHkgwbNkymPIliKaQDlnWxb2FhwRUWFlb6+j///FPQwq8c6+LO09NT5pjqhFUATZo0SWU5Vdbw1aBBAy4tLU3quMXFxVzz5s0FKxR79uzJzHH27NlSx+O493cfsApukUjEPXz4UKI4jx8/5o3RuHFjiXN5/fo1b4w5c+bIFffly5e8ce3t7SWOIcmJ88iRIxLH+9jq1asVUpYISVkdsDVq1ODi4uJkyrFXr168MW1sbAQbMSsPdeqAXb9+vUyx9+3bx4wp7UVxYWEhs0PHzs5Oro7IO3fuMBt/hBjoIwR174AV13C/b98+mXLLysriWrduXen3UxpVqQO2YcOGEo0orQxrgKCRkZFEd7uxPH/+nDloa9OmTXLnrY7UpQNWXeqh27dvZ+a4aNEiqeN9jNV4LeuofiFVVnfR09PjwsPDBTueEGXj8+fPmZ2lzs7OMnd++fn5VVqGC90Bq6ury0VERMiU75dffsmMKe1d4NQBK99xyh+dO3fmcnNzBTmWkHWAFy9eCHq9EBAQwPwNylIX1ZRrUU2pP3KccOf48+fPM3MaOXKkVAPkP/ftt9/yxq1du7bUg2iUIT4+nvdmCwDcL7/8UunrS0tLuTp16vC+vrJZCiUlRAdsYWEhl5aWxj148IA7ePAgN2vWLOZA5fLH4sWLpcrz+PHjzFhz5syR4Z1XDYWFhVLPCCnO27dvmXVlWb9zlZVVgwcPluku9ri4OM7AwIA3prQ3Hbx79455F2WtWrVkapPIy8sT26Fd/qAOWPU7d6elpTFvBGzatKnUs5R+7PTp08yb8KS98YYoHv8iAXIQty7BiBEjoKenV2kMcc+TZ81BvjXhAGDUqFEyx1Qnmvb+tLW1sW/fPqnWGy2no6ODVatW8e6LioqSamHy27dv4+LFi7z72rRpg40bN0qdHwB06tQJa9eu5d3HcRxz3+caN26MunXrVtgeGxvLXD/uc5cvX66wzdbWlndheXnjAkD37t0ler0kZs6cKfMc9t988w1z/cxLly7Jk5bG+euvv2Re04b1XU1NTWWuk1Ad+fj4yLwW6pgxY9C6dWvefazfGcs///yD+Pj4Ctu1tbVx4sQJudZBdXZ2Zn4fZC0rq5OMjAzs3r2bd9+AAQMwZswYmeKamppi+/btgq99VlXs2LEDNjY2csU4e/Ysrl27xrvPz88Prq6uMseuV68e/ve///Hu27Rpk9i1g4js1KUeWlRUxIzl6+srdp1RSezYsQMODg4Vtt+5cwchISFyxVa0H374AZ06dVJ1Gp/Ytm0b73phWlpa2LFjB0xMTGSKO2HCBPj4+MibnlRWrVqFjh07yvxaHR2dCtuLi4vFrj1PFENfXx+7du1Sy3Xh6taty/tdkZWPjw++/PJL3n0HDhwQ7Djl1OFatLrWH3/88Ufe7S4uLvDz85Mr759//hnt27evsP3Vq1c4dOiQzHEVxc/Pj7c+qKWlJdHfX9zzAgICkJ6eLneO4nh5eUEkElX60NfXh7W1NVq0aIFRo0bhjz/+QEpKCm9MIyMjbNmyBf/973+lykVcW1e9evWkilWV6OnpoXbt2oLFs7CwwD///MO7LyAggLmOpazq1q2Lv//+m7kWsjiOjo6YNm0a7z5p22J27NjBfG/bt2+XqS3G0NAQBw8ehKGhodSvra7U4dwNAOvWrUNWVlaF7WZmZggICICFhYVMOQJAv379eNc+5jgOmzZtkjkuUQzBO2D9/f15F3cHgPHjx0sUw8LCAv379+fdt2/fPuYi2ZVJTk7m3S5PY7Q60bT3N378eHTu3Fnm1/fr1w81atTg3RcZGSlxHFajJwBs2bIF2tra0qb2wcyZM9GyZUvefYcPH5a40sFa+F3Swp+v0tC9e3c0bNgQ9vb2gsYtjy0EU1NTiTuq+ejp6WH48OG8+6T5jmg6T09PjBgxQubXOzs7o1mzZrz7qtPnKI6Wlha2bNkiV4yxY8fybpf2M2ZVtr744guZG1o/9tVXX/EOCgkODmYOBCLvHTt2DPn5+RW26+joYMOGDXLF7tixI8aNGydXjKpo1KhR8PT0lDsOa4BB7969MWzYMLnjDxw4kPf3+ezZM1y9elXu+KQidamHHj16FM+fP6+wXV9fH5s3b5a7YdzMzAyLFy/m3efn5ydXbEVycHDA999/r+o0Kti/fz/v9okTJ8LFxUWu2Bs3bpTrukMajo6O+Oabb2R+va2tLXr16sW7j+qGyrdgwQI0btxY1WkozbJly3h/K5cuXRJ00JK6XItWx/pjREQErl+/zrtv8+bN0NfXlyu+jo4OfvrpJ9596nZu5DiO2QHfvXt31KlTR6I4rPbYoqIi7Nu3T+b8lK1u3br47rvvEBMTg9mzZ0v9+tevXzP31axZU57UyGc6duyIfv36VdheVFSEK1euCHqsVatWwdLSUubXs9piHj58iMLCQonjsDqde/XqxeznkIS9vT2+/fZbmV9fnajLubugoAB//fUX777FixfLfIPMx5YuXco7+O7w4cPIy8uTOz4RjuAdsKw7VBs0aAA3NzeJ47AqBykpKQgMDJQlNWYDhtAjb1RF094f30gNaejp6TEbVSUtFDmOY96x7eXlhW7dusmaHoD3d1csW7aMd19eXh5OnjwpURxWh6ako7FYHbCs2JLGDQoK4t0uVAfslClTYGpqKleMPn368G6vTo1D8v7WAPocK+Pr6yt3BYr1Gd+9e1fixqTw8HDExMRU2K6trY0VK1bIk94Hurq6mDVrVoXtHMfhzJkzghyjqjpx4gTv9p49ewpSAZ8xY4bcMaqa6dOnyx3j5cuXuHDhAu8+1p2Lspg/fz7v9oCAAMGOQf6POtRDAWDnzp2827/44gvBBlFOnDiRt7NY1msqZZg0aZJEMycpU1RUFHOgkRBlTaNGjQSdRUacOXPmyHSXyMeobqgeRCIR886dqqpmzZq8g5ZSU1MRFxcn2HHU5Vq0OtYfWedGHx8fdOnSRZBj9O3bF02aNKmwPSQkRK3a0EJCQvDs2TPefdJ0nrdq1Qpt2rTh3SfPTIPKNGjQIOzevRurVq2S+W5V1g1DAJgD64jsBg4cyLs9IiJCsGPY2trKPfNjhw4deO9GLCkpwf379yWKcf/+fd62GOD9rC7yWrhwIQwMDOSOU9Wpy7n72LFjyMjIqLDdysqKed0vLSsrK97+s5ycHLWf6ai6EbQDNjExkTmKRdpRdT4+PswpwWQdkcaKV1UatjTp/TVp0gRt27aVO06rVq14tyckJEj0+sjISKSmpvLuE2okqK+vL8zNzXn3saY+/pw8HbCJiYm805H26NGDGVuSuHFxcbyNUI0bN5Z4FGZlhJg+W97viKYzNjaWa6Rduer+OVZGiO9qs2bNeKdoy8rKwtu3byWKwWqg8fT0RK1ateTK72Osu15YgzIIUFZWxqwEs0bcSqtLly5o0KCBILGqAgcHB3h4eMgd5/Tp0ygrK6uwvWHDhrzT18mqZ8+evIPp6HclPHWph2ZnZzP/vqNHj5Y1rQoMDQ3RtWvXCtvfvHmDR48eCXYcIU2YMEHVKVTA+ls5OTkJMsMEINz5oDIjR46UOwbVDdVD165dq+W5nzW4X9KGckmow7Vodaw/chzHHKgu5LkR4L+mKSkpUavZR1jtn0ZGRhg6dKhUsVg3ukRGRmrE0kLHjx//MJPb1q1bpbozsRzf3eTl5L2zmlSkjLJ68ODBgvztWLMXSlpeswbs1q5dG+7u7rKm9YGZmRnvHcXkU+pw7gbYbXODBg0SdDppapvTDIJ2wLLWJQCk78zS09NjXhiePn1apjUKWIXp7t27ce7cOanjqRvW+/v1118RFRWl3GQqIc3d0OI0bNiQdzvfHOt8WBVrbW1tqSuzLAYGBhg0aJBUx/+cvb09nJycKmx/8eIFnjx5Iva1fNMJOzg4fBgty9cBK0lcRU8/bGBggHbt2skdp0GDBrxTVOXm5vI2qFc1HTt2FGTdJXl/a1WdEGWanp4ecySvpJ/z+fPnebcPHjxY5rz4tG3bFsbGxhW2010vbE+fPmWuC9m7d2/BjiNkLE3n5uYmyLpmrN8V69wuK2tra947MaKjo1FaWirosao7damHBgUFobi4uMJ2W1tbwXIsx9cBC6hnuV27dm1B7uoS2s2bN3m3C1nuskbcC8nR0VGQQVlUN1QP8s7YpKns7Ox4tws1AEBdrkWrY/3x3r17ePPmTYXt2traGDBggKDHUvdzY15eHnPGtkGDBkm97vjYsWOZU91ryl2wwPubDGbNmoWOHTsy7zhkKSoqYu7T1dWVNzXyGUWX1YD61OtZ7buDBw+We9aRcvIsLVYdqMu5m+M4Zoe80G1z6n4eI+8J1gErbl2CDh06yLQmibg1Cljr74jj4uLCO6VEWVkZfH19sXjxYubdkJrAy8uLt1DPyclBt27dsHbtWrW5IHZ2dhYkjpmZGe92Sd8na5RfkyZNmHetyqJTp0682589eybxvOyy3gXL1wFbfvcrANSpU4e3wbeyuIrugG3RooUgU8+JRCLeCxOO49RqaiFFUZffWlVmZWUl8xRIn5Pncy4sLGSOJGVNNyUrbW1t3jVy4uLiZF6nvap78OAB7/aaNWvC1tZWsOMI/bfWZEJcfAHArVu3eLcr4rPmm0GioKCA1lcWmLqcG1nfrVatWgkyeOBjrNlJpG24VAahfrtCY5XjQpYFQp8T+KjL958IQ11/L4rGWuuPr+NOFupyLVod64+sc2P9+vWZ5Y6s1P3c6O/vz/yeyDJjW82aNdGzZ0/effv27VPYddw///yDe/fuSfSIiIjAuXPnsHPnTsyZM0fsjCV3796Fi4uLVFNtirtTUlznLJGNostqQH3qNaz2ZVdXV5lzUmSsqkhdzt3x8fHMWeyEPt/a2dnx3nSjLucx8p5gHbChoaHM9TZYHamV6dSpE3MEiiyjs7S1tZnr8xQXF2Pt2rWoW7cuhg4dir1792pcZ6yNjQ1zoeicnBwsXrwYderUwYQJE3D06FFkZmYqOcP/Y21tLUgc1rzukp4gY2NjebcLdQIvx6o0lpWVVXqnaTlZO2D5ph34PJYs0xDzxRWJRPDy8hL7OkkJ9R0B5P+eaDJ1+a1VZeryXY2JieG9kwoAmjZtKldefPimvS8rK8Pr168FP1ZVwOpAa926taDHUacGNFVr3ry53DEyMjLw4sUL3n3K+l0BQFJSkuDHqs7U5dzIaqip7t8tIX67ilBVynF1+f4TYajr76Uyubm5OHv2LNatW4cJEyagQ4cOaNSoEWrWrAljY2OIRCKxjylTpvDGFWqArbrU76tKuSMNOjf+H1a7p52dncx3LbPaZ5OTk3HmzBmZYlamQYMGaNmypUSPjh07onfv3pg0aRI2b96MyMhI3L59m7msUl5eHvr37y/x3V7ipv6UZUrj6uDOnTv4+++/MW/ePHTv3h3NmzdHvXr1UKNGDWhra4stq1l3fgp5M4Q61GtKSkqYazULWb42aNBA7vVNqzJ1OXezzmMmJiaoW7euXHnx4Rvo8Pr1a+YstUT55J+X8v9jVQx0dHTkmn97/PjxWL58eYXtd+7cwf3795nT7rJ888032L17N7OBuKioCEePHsXRo0chEonQvHlzdOvWDV26dNGI9VV++uknBAQEMBeWz8nJwZ49e7Bnzx5oaWmhbdu2cHd3//D+hFwjUBy+xc1lwZo+RdKp+l69esW7vVmzZjLnxKdFixZic5DkhMzqgA0KCgLHcbx3Sjx69Ij3u87XAbtt2zaJ4z548ADJyckVtrdq1UqwE55Q3xFA/u+JJlOX31pVpi7fVXF3yNnY2Mick7TS09MFuyO4KuErMwHw3kksD9Y0T9UR36wn0nr+/Dlzn5Drv1ZGlqU3CJu6nBtZ5fYff/yBP/74Q+a8pKGO3y0hfrtCKygoYA5e1bRyXNHf/+qwxIc6UcffizgBAQHYu3cvTp48KfFMUNIoKCgQJI661O+rY/2RdW4MCAgQfHYIFnU4NyYmJiI4OJh336hRo5jfq8oMHjwYJiYmvG2Gfn5+8PX1lSmuIrVr1w6nTp3Cli1bMHfu3Ar7s7OzMW7cOERGRlZ695u4zivWHWvV0dOnT7Fz504cOHAA8fHxgscXqqwG1KNen5yczHwe34yDshKJRGjSpAlzpoDqTl3O3azzWE5OjtLOYyUlJcjMzNS4emJVJcgdsOLWJejbt69cHTLiptWQ5S5Ya2trHD16lHftus9xHIcHDx7gzz//xIQJE+Do6AhHR0dMnToVR44cUcvRUY0bN8bu3bslWvOxrKwMd+7cwcaNGzFixAjUrl0bzZs3x5w5c3D27FmFdqyoy+L2rLuchS6gTE1NmYW3pHda29ra8nbkpqamMkfX8N3F2qxZswod7V5eXhVOAuLishbzFmr6YUB9viOajj5HxVOXz5g1oETZ8vPzVZ2CWmKNlBR6KjUhp8/XdEJ8tvS7qpqo3P4/6vjdErpcFIK4OzU0rRxXl+8/EYY6/l74REdHw93dHf3798fBgwcV0vkKCDc4VF1+J9Wx/kjnxvf8/PyYdy/JOssgABgZGWHIkCG8+06dOqXWnZBz5szBkiVLePc9fPgQv/32W6Uxateuzdwn5LS4mionJwffffcdmjdvjp9//lkhna+AsIO11KG8TktL492uq6sLIyMjQY+lTuW1ulGH7wKgHucxQD3OZeQ9QTpgxa1LIE/FAAAcHR2ZC2rLukZBp06dEB4ezpzeWJz4+Hj873//w7Bhw1CzZk1MmzaNOY2tqgwePBgXL16UaRTjo0eP8Pvvv8Pb2xt16tTBwoUL1Wb6FUVgFUaKuJBljbSTpkBkdXDyrfMK8HfAfrz+azkrKyveu3CliSsuP0KI4qnLmsa0dg4/1qAtoc83mtIQqwySDLarDP2uiCKpw/dLHb9bQvx2hSZu4C2V40SV1PH38rkNGzagXbt2CA0NVXUqGqc61h/p3Pj+ZpDdu3fz7mvWrBlcXFzkis9qpy0qKsL+/fvliq1oP/74I3Pt3i1btjCX5CknbvpPcTNKVQfls0z+8ssvlX6O5FOsQUWKmC5Yncprwk8dzmOA6s9l5P8I0gHLuhNVX18fjo6OuH//vlyPbt268cZ/8+YNzp49K1POrVq1wv379/Hrr7/KfIduRkYGduzYgebNm+OLL77Au3fvZIqjCB4eHoiNjcWSJUt4F46WRHJyMtavX4+GDRvi22+/FXSKCHXBqlQIPUIJYF8cS1MgSrMOLMdxvFPWsGJIug5sWVkZrly5UmG7trY2PDw8eGMTQhRPXWZloHUmpCP0VI00Lbiw6HdFFEkdvl/03ZIfleOEsK1btw5ff/01fa8FVpXLHTo3AqGhoYiLi+Pd5+HhIXcbq62tLXPWN1lmGlQmfX19fPXVV7z7Xr9+jcDAQLGvb9y4MXPfw4cP5cpNk8XExMDT07Pad0LLSh3alon6UIfzGKD6cxn5P3KvAStuXYLCwkKFr4+1a9cu5mLsldHX18fChQsxZ84cnDx5Evv27cPly5clWlD5Y6Wlpfjnn39w6dIlHD16FO3atZMpH6GZmZlh1apV+P7773H48GEcOHAAoaGhUt+CXlBQgF9//RUXLlzA0aNH4ejoqKCMlU9XV5e3A1QRUyLl5ubybq9sjYqPeXh4QEtLq8IFV0hICEpLSz+Z5jgqKqrC9DFaWlrw9PTkjd29e3esX79eprjA+3U5aCQWIaqjpSXImCqiIAYGBrzbpa1zVEboeNUd/a6IImlpaalVozdhY5XhwPtyV8i11qkcJ1VFSEgIFi9eLPY5urq6cHFxgbOzM5ycnFC7dm1YW1vD1NQU+vr60NHR4V0v7cSJE1i6dKmiUlcb1bH+SHUv8Z2gf/75J/7880+FHfv27dsf7oRUV+JmXgsODsbAgQOZ+xs2bAhTU1PeO9Sio6NRVlZW7b6DhYWFGDZsWKVrHzs6OqJDhw5o2rQp7O3tYWtrCzMzMxgbG0NbW5u57FqrVq0UkbZa0dXV5d2uzLZloj6qWxlCKid3B6y4dQmUoXyNAktLS5lj6OnpYdiwYRg2bBhKS0tx8+ZNBAUFITQ0FGFhYcjMzJQoTmJiIvr06YPr16+rVSelsbExJk2ahEmTJqGwsBBhYWG4cuUKQkNDERERIfEJ4e7du+jTpw8iIiJgZWWl4KyVw9DQkLcDVhEXIKwpCAwNDSWOYWFhgbZt2+LOnTufbM/KysLNmzfRqVOnD9v47l51dnZmLkru7u4OHR2dT6b1ljQuQNMPE6Jq4kZX3r59W6rBHvJo0KCBUo6jaVijzKtyA1pVIO53derUKdSvX18peYibLo1oLiMjI97rjC+++ALz589XSg40il4yZmZmEIlEvNe91AFLSEUcx2HOnDnMOzUbNmyIH374AcOGDZNpisYbN27Im6JGqI71R1bdy9vbG7/88otSclDWdROfvLw8+Pv7q+z4wPt23nXr1qk0B3HE3fQSEREh9rUikQjOzs4ICQmpsC8jIwN3796Fs7Oz3Dlqkt9//x0PHjzg3aevr4+5c+di6tSpYu8eZhH6bn11xWrXVcRUtOpUXhN+rPOYtbU1goKClJYHa7p2onxydcCKW5dAWYqKinDgwAHMmjVLkHja2tro1KkTOnXqhO+//x5lZWWIiopCSEgITp8+jZCQELFz4aelpWHs2LEIDw8XJB+h6evrw8vLC15eXgDeT5Nw8+ZNXLlyBadPn0ZERITYE+TTp08xa9YsHDx4UFkpK5SNjQ1vw1dGRoagx8nOzmbe4SBtg0337t0rdMAC7ztGK+soFddJampqCldX1woVVkniVhabEKJ44gbG1K5dGzVr1lRiNuRzrM//xYsXgh5H6HiKpC5T84gj7ndlbW2t1ncHEPVnZWXFWw/V0dGh75aa0dPTg6WlJe/dIS9evICTk5Ngx9KkcpwQlgsXLiA6Opp33+DBg7F7926Zl0oCoFbLPylSdaw/supeZWVl1eLc6O/vr/L1A/fu3Ys1a9Yw72hUNT09PeZdrElJSZW+vlevXrwdsABw9uzZatUBW1ZWho0bN/Luq1WrFk6ePAlXV1eZ41eXsprVrltcXIy8vDxBpyKW9CYxojqs81hOTk61OI+RiuS6J1rcugTKpMg1CrS0tNCuXTvMnz8fFy9eREpKCjZt2iT2DteIiAgEBAQoLCch6erqokuXLvj+++9x7do1JCUlYdWqVbCzs2O+5t9//8W9e/eUmKXi1K5dm3f7o0ePBD2OuLUkWDmwSLIObElJCUJDQys8p0ePHmJj8+2XJK6enh66du0qNjYhRLHs7e2Z+/imDSfKxao3sBonZXX37l1B4rAaXIScLlUTvpf0uyKKxPp+0XdLPbHKcaHK3XJCnxcIUYV///2Xd3vz5s2xb98+uTpfgepTTmpa/VEI1f3cqA5rsL558wZnz55VdRpisZa/kuR74u3tzdzHKruqqrCwMLx8+bLCdpFIhP3798vV+QpUn9+tnZ0d8/r58ePHgh2H4zhB4xHFYJ3HCgoKFDItNVF/cnXAqkPFAABu3brFnC5BaDVq1MDcuXPx8OFD5sLvADT2DtGaNWtiyZIlePz4MQYPHsz7HI7jqkylhDWFRlRUlKDHYcXT0tJCo0aNpIrVrVs33vUFrl279uFuops3b1YYDairq4tu3bqJjc3Xuftx3Bs3biAnJ6fCczp27KiQxeUJIZJr1qwZc9+TJ0+UmAnh06JFC97t7969Q2JiomDHEer8xWoY5TsHyCInJ4d3CQB1U69ePeZnQb8rIi9WuU3fLfXEKseFvG6Ij4+nOxtIlcA3aBcAFi9eLNUSPCzPnj2TO4Ym0LT6oxBY58a4uDiVLn+mDImJiQgODlZ1GgDUp72XhXWulGSGnXbt2qFhw4a8+6KioqrNFOcAu6z28vKCp6en3PGrS1mto6OjlAEz8fHxKr9DnlSO2ubI52TugBW3LoGvry84jhP8kZqaCh0d/lmT/fz8ZH0rMtHX18cff/yBPn368O5nTdOqKczNzXHo0CHmrfGa/v7KtW7dmnf748ePBZ1X//r167zbHR0dpe64NDExQfv27StsLygoQFhYGAD+v0+nTp0qPVaXLl1gYGAgVVyAph8mRB3Y2trCwcGBd9+VK1eUnA35nIODA3MauVOnTglyjJKSEpw5c0aQWObm5rzbhTo38k2lr460tLTg4uLCu49+V0ReHTp04N0eHR0t+HIYRH4fL8nxsTNnzgg2O8DJkycFiUOIKpWUlDAb3QcMGCDIMa5evSpIHHWnafVHIbDOjW/fvq0yM7Gx7N69m9nJfPv2bYW0s7LWnD916pTaTh9bUFDAHBQqyd31IpEIX3zxBXP/2rVrZc5N07DuphSqrGZ18FZFrVq14t1+8+ZNwY5x69YtwWIRxWnTpg1zLXFqQ6ieZO6APXLkCHPUxdixY2VOSBxra2tmh+fevXsFnRZPUt988w3v9levXoldK1YT6OrqYt68ebz7hBxtqUqsaXNLSkpw9OhRQY5RWFiIY8eOSXX8ylQ2DbG067+WMzAwQOfOnaWKK2lsQhSFNdWLJtxdJzTWNOMXL15UciaED6us3LdvnyDxz58/j9TUVEFisab1evr0qSDxr127JkgcZWD9rkJCQjS+rqcqVG6/xyoTysrKqsxgx6qE9fdKTk4W7Dwr1PlAk2h6eaClxd+koin5K8Lbt29RUlJSYbu5uTlzgJc0YmNjeafMrKo0qf4ohE6dOsHY2Jh3X1W/pmHdWNK0aVO0a9dOIcdktd8WFhbiwIEDCjmmvMR1aNWtW1eiGFOmTGHeoHD06NFqM8gjJSWFdztrYLe0qlN9ltW+e+zYMZSVlQlyDHWfjVLT63RC0dfXZ34fqvp5jPCTuQOWNR2FiYmJYCNl+IwZM4Z3++vXr3Hu3DmFHZdF3Hz46enpSsxEMVjvLy0tTcmZKEbbtm2Zi6ULdUETEBDAvIuhV69eMsVkXYRdunTpkztWP1bZ+q/iYpfHDQ8Pr7DPyMiIeUcAIcrw+V3b5fLz85Wcieqxpo6/d+8egoKClJwN+Rzr7xMREcGcKUEaGzdulDtGufr16/Nuf/78uSB35h06dEjuGMrC+rulp6dj7969Ss6maqBy+z17e3vmHdabNm1ScjakMo0aNWJOByrE3yssLEzQuyQ0haaXB5qevyKwGlqFmHoYAP744w9B4mgKTao/CsHAwAB9+/bl3ffHH3+o5MYLZQgNDUVcXBzvPlY7qBBcXV2ZS3Op6zTE4jowWOfpz9na2mLOnDnM/dOnT1f6Wo2xsbFKPR6g2PI6MjKStw2xqurZsyfv9levXiEkJETu+FlZWQgICJA7jiJRnej/sM7dgYGBgg1qJ5pDpg7Y58+fMxtyBw8eLFjFms/AgQOZo+FUUTlg3VIOgJmnJmG9v6rw3oD3U48MHz6cd9+lS5fkriyUlZXhP//5D+8+IyMjmQcr8E0VDLwfCXj+/HkUFBRUOJaknaR8HbWsuADg5uYm9ndAiKJZWlrybk9KSlJyJqrXt29f1KlTh3cfqywiytO/f3/m93Xu3LlyrWt1/PhxXLhwQebXf87a2po5glzeAW/BwcG4e/euXDGUqWXLlszp8NasWcN7lw8Rj8rt/8OaAi8kJESQxhoirAkTJvBuP3PmjFyNYmVlZWIbgqsyTS8PND1/RWB9JmlpaXLPHJGWloZ//vlHrhiaRpPqj0JhnRufPXtWZWcKENeeqcgOWHHxb968iYcPHyr02NLKy8vDn3/+ydzv4eEhcaxFixbB2tqad9/Dhw8xbdo0qfOTRXkdYOvWrUo53sdYZcurV6/kjv3LL7/IHUOTtGrVCk2aNOHd99///lfu+L/99htvm6w6oTrR/xkzZgxv/1hpaSl+/vlnFWREVEmmDlg/Pz9mJU/RFQNjY2MMHDiQd9/JkyeVvkYBa4SSiYkJTE1NlZqLIrDeX+3atZWcieJMmTKFdzvHcXJf0OzYsQNRUVG8+4YPHy7R+hR89PX10aVLlwrbS0pKsHLlygrbu3XrBl1dXYlit2/fvsJ3lxUXoOmHierVqVMHIpGowvbU1NQqc7e+pHR0dJgNuEFBQfj111+VnBH5mIGBAWbMmMG778aNGzJ3kj9//hyzZ8+WJzVerKnO5Gn4KioqwoIFC2R+vap8/fXXvNtjY2OZa2cRNlbn/qNHj5SciepNmDCB2fg3ceLEanceU3dffvklcyDqzJkzZZ4Wdfny5RqzNrbQNL0eR+VZRUZGRrxTe5aUlMi99tnUqVOZaz9WVZpWfxRC37590bx5c9598+fPr3J3D+Xl5eHw4cO8+zp27AgnJyeFHl9cOy5rWmRV+fHHH5nT5mpra2PIkCESx7K0tMSWLVuY+/ft26fwev6bN2/Qu3dv/P777wo9DgtrRsBLly7JFffYsWM4ePCgXDE00eTJk3m3nz9/HqdPn5Y57osXL7Bu3TqZX68srDpRbGxslZ29gMXS0hITJ07k3bdz5074+/srOSOiSjJ3wPKxtbVl3nIvJHFrFIgr4P38/ARfK4Q1+rJly5aCHkcSf/75p+DTHqvT+1MUFxcX5vf21q1b+Pbbb2WKe+vWLeYawSKRCN99951MccuxOj75Gm+k6STV0dFBt27dJIorbWxCFMHAwIA5Xao8lVxNNXfuXGbFd/Hixcw1qeVRWFiIEydOCB63Kvr6669hYWHBu2/58uVST2P5+vVr9O7dWyGjSllT1586dUrmNVy/+eYb5sAkdTZixAjmsgx//PEHNm/eLPgxS0tLZbow27VrF0QiEe9jxYoVgucpi2bNmvFuDwgIEGyNJE1hbGyMZcuW8e5LSEjA0KFDkZ2dLfhxHzx4gPv37wset6qzsLBgDsh48eIFevfujTdv3kgVc/369Vi1apUQ6WkkTa/HscqzU6dOKTkT9eLs7My7XZ47otauXVtt65uaVH8Ugkgkwpo1a3j3vXv3DgMGDJC6rJVEYmKiINM6S+vIkSPMcz2r/VNIjRo1Qvv27Xn37d27V206TtatW4f169cz948cORJ2dnZSxRw1ahRGjx7N3L9p0yaMHj1aIdMRHzhwAG3atJG7s1MerLLa398f8fHxMsV8+PAhpk6dKk9aGmvatGnMG22mTZuGxMREqWPm5+dj1KhRGjGNr6OjI/T19Stsz8zMRGhoqAoyUq3ly5czB25OmjRJIVN0Z2dn48yZM4LHJfKRugNW3LoEI0aMgI6OjtxJVaZ3797MkeLipu3YuXMnHB0dMWnSJNy7d0/uPI4fP85cf2TEiBFyx5fWmjVrYG9vj3nz5sl8ovzYli1bmBeOqnh/irR27VpoafH/HH777TesXr1aqnj37t2Dj48Pc3TuF198wbxYl5Q0HZ+Srv8qbWxzc3Pm2mWEKBPfHeHA+wrP8+fPlZyNahkaGmLbtm28+0pLSzF06FD8+OOPgnRyZGRkYM2aNahfvz4WLlwod7zqwMrKSuw5Zf78+Rg8eHClDWIcx2H37t1o2bIlHj9+/GF7vXr1BMt1zJgxzCnmJ0+eLFXDV1lZGWbPni12lLk6E4lE2L59O/PzmDdvHqZOnSrItFD5+fnYtm0bGjdujFGjRskdTx2xyuz4+PhqOV36V199xVwqIiQkBK6uroJ1loaGhsLX1xetWrXSyMEQ6uC7775DgwYNePc9evQILVu2xJ49eyqdRefly5cYMGBAhfOnkOW4ptDkehwr93379oldp7Cq69OnD+/2CxcuMDvWWDiOww8//IDFixcLkZpG0qT6o1B8fX0xbNgw3n2PHj1Cu3btBJuqPyoqCmPHjkXDhg1VMiUzqx1TW1sbI0eOVEoOrLtgX716hfPnzyslB5abN2/C29sbixYtYj7HyMgIP/30k0zx//e//zEHWgLAwYMH0bp1a8E+h5CQEHh5eWHMmDHMu3mVhVVWFxYWYuTIkVIPAgwPD0e3bt3w9u1bIdLTOBYWFszv6evXr9GnTx+ppnfOz8/HyJEjERYWJlSKCqWrq8v8LS1cuLDafS9q1qyJtWvX8u7Lzc2Fp6enYOvav379Gt9//z3q1auH3377TZCYRDhSd8CK6+BUxsgs4P0deqwOwBs3boid7qe4uBh+fn5o3bo12rRpg9WrV+PJkydSHT89PR2LFi3C0KFDeRuwjY2NxY6gUqS8vDxs3rwZTk5O6Ny5MzZu3Cj1Xb8vX77ElClTMHfuXN79derUgY+PjxDpqo127dph3rx5zP1Lly5Fnz59kJCQIDZOcXEx1q1bh/bt2yM1NZX3ObVq1ZL6opMP31TBfCwsLJij2lgk7YB1d3eHtra2VLEJUQTWesrPnz9Hy5YtMXXqVPj5+SE0NBSRkZG4f/8+70PedanURf/+/ZllGsdxWLVqFVq2bIldu3ZJ/Z7fvXuHXbt2wdfXFzVr1sT333+vkBHoVdnMmTPFnkePHz+O+vXrw9vbG1u3bkVgYCBu376NkJAQHDx4EF9//TXs7e0xceLEChcxQq4dZG1tzfxtPXnyBB4eHhKN2rx27Rrc3Nw+ubgwMTGBmZmZYLkqg7OzM/MCCnjfeNOkSRNs2rQJubm5UsXOzc3F4cOHMXLkSNja2uKrr77Cs2fP5E1ZbTVs2JA5EG3FihVo37491q5di8DAQNy4cQP37t3jLbPV9c4daWlra2Pfvn3MdZNiY2Ph4uKCqVOnftJgLgmO43Djxg0sWrQITk5OcHd3x+nTp+VaYqO6MzY2xt69e5kDj9PT0zFhwgQ4ODjgm2++waFDhxASEoLbt28jICAAf/zxB/r06YMGDRpUGOzaoUMHTJo0SQnvQr1ocj2uX79+vAN5S0pK0KdPHwwYMABbt27FpUuXcOvWLWbuGRkZSs9dkUaNGsW8Tvz+++8xffp0ZGZmVhonPDwcnTt3rrB+njp2GCqaptQfhfTXX38xB7y8fv0aXl5eGDFiBG7duiV17Pv372PlypVo1aoVnJ2dsX//fpSUlMibstSeP3+OoKAg3n09e/aEra2tUvIQ95sV1w4sifj4eGbZ9/njxo0buHDhAvz8/DB37ly0adMGHTp0wNmzZ8UeY/369TJP1WxoaIjTp08zp70GgLi4OPTp0wdubm44ePCg1HfEvnv3Dtu3b0fnzp3h4eGB4OBgmXIVWr169eDu7s677+bNm+jcubNEv6/09HTMmTMH7u7un5Qv1bGs/uabb9C4cWPefY8fP0bLli2xb9++Suvi165dQ9u2bSvUFdX9M2XV6e7cuYMmTZpg7ty52L9/P65du4a7d+8yy4KqYtasWRg0aBDvvqKiIsyePRudOnXCsWPHpL5J4vXr19i6dSu6d++OevXqYc2aNRLVrYjySXW7qrh1CZycnJgjtxVh7NixzEqin5+fRB1c0dHRiI6OxtKlS1GzZk20b98erq6ucHJygqWlJSwtLWFgYIDc3FykpqYiJiYGoaGhuHTpktg7HNauXYuaNWvK/N6EwHEcIiIiEBERgQULFsDBwQGurq5wdXWFg4PDh/enq6uLnJwcvHnzBo8ePUJQUBBCQ0PFVjz/+usv3ikFNN2aNWsQHh6OiIgI3v3nz5+Hk5MTPD09MXjwYNSvXx+1atVCdnY2kpKScO3aNfz7779ip4HW1dXFoUOHYGVlJXe+5VMFBwYGin2ep6cn8+5elrZt28LKyqrSKa1p+mGiLgYNGoTatWvzjibMzs7G//73P/zvf/+rNE58fDxzGjxN89tvvyExMRHHjx/n3f/o0SNMnjwZCxYsQNeuXeHu7g5HR0dYWlrCwsICBQUFyMjIQEZGBl68eIHIyEhERkYiNja22k0Rqgj79++Hm5sbHjx4wLu/pKQEZ8+erbSx4WMLFy5E//79efdJex4ot2rVKpw6dQqFhYUV9sXGxsLNzQ09e/aEr68vmjZtCmtra+Tk5CAlJQV37txBYGAg7112W7ZswYoVK5CVlSVTXqoyf/58PHv2jHkn7/PnzzF//nwsWbIEnTt3hru7O5o2bfqh3lVcXPzhd/Xq1StERUUhMjISDx8+VEmjnyrNmjWLufbcrVu3JGrsmThxotyNgurC0dERJ0+eRK9evXinGCsqKsL//vc//PPPP2jZsiXc3d3Rvn172NjYwNLSEvr6+sjMzERGRgbS09Px4MEDREZGIioqqsp17KiDLl26YOvWrZg2bRrzOS9evJBqBLq1tTUOHjzIXO6nKg961OR6XK1atTBkyBDeKePLyspw6tQpiaYj3rlzZ5XqfG/UqBEmTpzIXNJo+/bt2LdvH4YNGwYPDw84OTnBzMwMWVlZSE5ORmRkJE6dOsXbCNu0aVPMnTsXX331laLfhtrRlPqjUCwtLXH27Fm4ubnxrgldVlaGw4cP4/Dhw2jUqBHc3d3RuXNn2NnZwdLSEkZGRsjKykJGRgbevXuHR48efbimYQ2YVzY/Pz9mR4yybnIB3t+p1b17d947gE+ePImMjAzUqFFDpthTpkyRMzvxfvjhB0yfPl2uGHZ2dggODkafPn0QGRnJfF5YWBjCwsJgZGSEzp07o1OnTmjUqBHq1asHU1NT6OvrIy8vD1lZWXj27BkeP36Mq1evIjIyUm2mcv7cqlWrmJ2wDx48QPv27eHu7g4fHx84OzvD0tISZWVlSE5ORnx8PM6ePYvLly9XuF4UiUTYtWuX1DPyaTpDQ0Ps3bsXXbt2RVFRUYX97969w7hx4/DDDz9g9OjRaNeuHerUqQNdXV0kJSXh8ePHOHToEO819NChQ2FiYqJ2azN/bPLkyVixYgXv9UxaWhq2bNki0axYVWmw6L59+9CjRw9mf8P169cxZMgQ2Nrawt3dHd26dUO9evVgaWkJc3Nz5OXlfWhDiI+P/3Aeq8oDtqsaqTpgxa1LoOw7Prt06YL69evz3pG4Z88erF69WqqL1Ddv3kh8cSTOsGHD1PJCIDExEYmJiThy5Ihccb7++mv069dPoKzUi56eHk6dOgVPT0/mBU1ZWRkuX76My5cvSx1fW1sbe/fu5V1fVVbdu3evtANWlk5SkUgET0/PSr8v1AFL1IWenh7Wr19fZafrlIW2tjb+/fdfTJgwQez66BkZGTh9+rRGrLNWlZibm+PixYvo3bu3IMsijB8/Hr/88gvzwl7WgVNNmjTBsmXLsGTJEt79HMfhwoULUk3XNm/ePEyaNElt1iOV1qZNm6Cvr49ff/2V+Zzc3FxcvHixWk8/WZlp06Zh+/btiI6OVnUqasPNzQ3nz5+Hr68vs9OU4zjcu3dPkHKDyOfLL79EYWEh5s6dK3cjkaWlJU6fPo0GDRoIXo5rAk2vx61ZswZnz55lLj9TXf3888+4cOECXrx4wbs/NzcXfn5+UjUkW1pa4ujRoypZp1MdaEr9UUiNGzdGSEgIevfuLXZ2tydPnuDJkycSDdZQJ6zvv6GhIQYPHqzUXMaMGcNbpy8oKMDBgwcxY8YMpeZTGSMjI6xbt06wNlgbGxtcu3YNM2bMwO7du8U+Ny8vD5cuXRJs/VYdHR20bt1akFjS6tatG7788kvs2LGD+ZyQkBCpp/xes2ZNtW0zbN++Pf7++29MmDCB+Zznz5+LnV3pcw0bNsT27dvx9ddfC5GiwtjY2GDFihX47rvvVJ2K2jAyMsL58+cxcOBA5owHAJCSkgJ/f3/eQX1Es0k1nE0dph/+mLg1ClSxbsPkyZNx8OBBiEQipR9bGZYtW1bl5xG3trZGcHAwc/SXrExNTXHs2DHB186VpDIj62izymLb2NigVatWMsUmRBFGjhwp9XrNVZ2uri7279+PNWvWQFdXV9XpkM/UrFkTV69elWsQm46ODpYvXw4/Pz9oaWkxp5wxNDSU+Rjfffcdxo0bJ/PrPzZt2jRs2LBBkFiqIhKJsG7dOuzatQsmJiaqTqcCcVNwGhsbKzET8XR1dXHy5Ek0atRI1amola5du+LGjRto166dqlMhEpg9ezZOnz4NGxsbmWO0bNkSV69eRceOHQFAIeW4JtDkepyTkxOOHj2qlucEVbKzs8OpU6ckWjZHEtbW1ggMDGROYV9daEr9UUjNmjXDzZs30bNnT1WnIqjQ0FDExcXx7hswYIDSy5QhQ4bAwMCAd5+6zTjSo0cP3L9/X/AbYAwNDeHn54eDBw+idu3agsZm6d27NyIjIxV+p7A4f/zxh6B3qv74449i1+ytDsaPH4/t27cLMpNAvXr1EBAQwFyuRN18++23ajdgQ9VMTU1x9uxZLFiwoMr2GxE2iUsBcesSODs7o2nTpoIlJSlWByzAXzlo1aqVQhqga9Wqhb179+Kff/5R6dRQbdu2VcgUMY0bN8bZs2excuVKwWOrI2tra1y8eBErVqyAnp6e3PHc3d1x+/Zt+Pr6CpDdp9q2bSv2BFyrVi2ZL1Ar64D19PSkkwZROz/88AMuX76s1Cnx1Z1IJMJ3332HW7duwcvLS/D4+vr6GDZsmNquHaXuzMzMsH//fgQGBsLFxUWq1/r4+ODGjRtYsWLFh/KYddecPJ0D2tra8PPzw6xZs2SOoa+vj99++w1//fVXlTl3TJw4EdHR0RgyZIjgsbW1tdG3b1/s379f6tey7goyMTHB5MmT5U1NUA4ODrh9+zYWLVqkcWsCK1KjRo0QHh6OtWvXKuRzadSoEVatWoW+ffsKHrs68vHxQUxMDBYsWCDVIAc7OzusXbsWt2/f/qS+rohyXFNocj2uV69euHv3LkaMGFGlp4uWVps2bXD9+nW5O007duyI69evfxioUN1pQv1RaDVr1sT58+fx999/w87OTvD4derUweLFi8XesSY0cZ2a4to7FcXMzIw5HfX169cRExOj5Iw+ZWJigi+++ALh4eG4ePEic31gIYwcORIxMTFYuXKlQn4HWlpa8PX1RWhoKM6dO4eWLVsKfgxp6OrqIiAgQO6pnGvUqIG9e/fip59+Eigzzfbll1/i7Nmzcq3l3LlzZ4SFhTHXlVVHIpEI27Ztg7+/P1q0aKHqdNRG+YwvwcHBcHZ2Fjy+iYkJJk2apLEDGqsyiacgTktLw7Jly3j3ubm5CZaQNFq0aIFff/2Vd1pkvpF6W7ZswerVq3Hu3DkEBATgypUrvFMYS6pVq1aYMGECpk+fLtioTnkcP34caWlpCAwMREBAAK5evcq7jo6kOnXqhEmTJmHy5MmCdERqEl1dXSxfvhyTJk3C2rVrsXfvXub02yxubm5YtGgRcwFyIZRPFXz06FHe/fJ0tjRt2pS5FhNA0w8T9eXl5YXw8HDExMTg7NmzuHHjBmJjY/Hq1StkZGSgsLCwWq5h2rp1a1y+fBmhoaH4448/cOrUKeTl5ckUq0aNGvDy8kLfvn0xbNgwtRqJ6ePjg5SUlArb1enOPz7e3t7w9vbGrVu3cPLkSVy7dg2PHz9Geno6iouLYWJiAltbWzRv3hxdu3bFoEGD0LBhwwpxXr9+zRtf3rXptbS08Pvvv2PkyJH4+uuvJVqfs/x1gwYNwurVq1UyWE/RGjRogCNHjuDu3bvYsmUL/P39mXeRVMbY2Bju7u7o3bs3RowYIfOoe9YyCXPnzoW1tbVMMRXJ1NQUa9euxfLly3HhwgWEhIQgOjoaCQkJSEtLQ05OTrVbHxd4f4G+aNEiTJs2DX///Tf++ecfPHr0SKZYIpEIrVu3Rq9evTBo0CCVXbtVZZaWlli/fj1WrFiBY8eO4eLFi4iOjkZiYiJycnKgq6sLc3NzODk5oU2bNvDx8UGvXr14p/dUVDmuKTS5Hufo6IhDhw4hJSUFAQEBCAsLw6NHj/Dy5Uukp6cjPz9fbdcAVKTyuxfXr1+PzZs3867lydK0aVMsXLgQU6ZMUfl6pOpI3euPQhOJRPjiiy8wZswY7NmzB9u3b8ft27dljtekSRP07NkTAwYMQM+ePZX+HWvRogWWL19eYbtIJFLZIKnFixczO0yUsaa8np4ezM3NPzwaNWoEV1dXuLq6on379jAyMlJ4DuVMTU2xbNkyfPvtt/j3339x6NAhXLx4UexsM+KIRCK0bdsWw4YNw9ixY+Hg4CBwxvLR19fHn3/+CV9fX/znP/+Raqr38o6fpUuXKmSAhCbr1asXYmJisGrVKvz111/Izc2V6HX29vZYtGgRZs6cqbHnv6FDh2Lo0KG4c+cOzp8/j1u3buHJkyd48+YNsrKyUFRUpLZ1OkUqv1ErMDAQW7duxYULF2QuV+zs7NCjRw94e3tj8ODBat/uVV2JuKq0qrEM3rx5g7CwMERHR+Pp06eIi4vD69evkZ2djezsbIhEIpiZmcHMzAy2trZo3bo1nJ2d4ebmphHTryYkJCA8PBz3799HXFwc4uLikJycjOzsbOTm5kJLSwvm5uYwMzNDrVq10KZNGzg7O8PDwwNOTk6qTl9t5Ofn49y5cwgJCUFUVBSePXuGtLQ05OfnQ1dXF6amprC3t0fTpk3RpUsXeHt7w9HRUdVpE0IIU15eHi5fvozw8HDcvXsXCQkJeP36NXJzc1FSUgJjY2OYmprCzMwM9vb2aNasGZo2bQpnZ2e4uLjQ3R1qasOGDbzrwkydOlXsuj7SioyMRGBgIC5fvoykpCSkpqYiMzMTxsbGsLOzQ4sWLeDh4YFBgwahfv36gh1X3RUXF+PKlSsICwtDZGQk4uPjkZSUhJycHBQVFcHIyOjD76pOnToffldt2rRBx44d5R7wlpiYyPt5m5ubIz4+HhYWFnLFJ6oVExODy5cv4+bNm4iNjcXz58+RkZGB/Px86OjofPhuWVlZoUmTJmjatOmHRnd1uouJsHEcB0tLS95G7pcvX6JOnTrKT4oQAeXl5SEwMBBBQUG4fv06kpOT8fbtWxQXF8PY2Bg2NjZo0qQJXF1d0bdvX3To0IF35ozS0lLexkptbW1adkMGyqo/KkJiYiIuXryImzdv4tGjR3j+/PmHAQ9aWlowNTWFqakpLCws0KhRIzRr1gzNmjVDly5dUK9ePVWnTzRMdnY2rl+/jvDwcDx8+BDx8fF4+fIlcnJykJeXh7KyMujr639oY3VwcECLFi3g7OwMd3d3jaqPXb9+HefPn0dISAji4+Px9u1bZGVlwcDA4MOgspYtW6JHjx7o3bs388akgoIC3u2s6a6rsszMTBw7dgznz59HdHQ0Xrx4gdzcXOjr638YcODs7AwfHx90794dOjoS3zdHNFhGRgYuXryIiIgI3Lt3D4mJiUhOTkZeXh5KS0thYmLyoW+qQYMGH9oQXF1d0apVqyozw1hVVu07YAkhhBBCqoqRI0fi33//rbB9/fr1WLBggQoyIsq0c+dO3vWjVq5cyZzJhhCiPh49eoTmzZtX2G5ubq6UO48IIdUT1R8JIYQQQhRDM+9hJ4QQQgghn8jMzERAQADvPppytHrgm37YysqKGk8J0RD79u3j3d6lSxclZ0IIqS6o/kgIIYQQojjUAUsIIYQQUgX8888/vGvKmJubo127dirIiChbUFBQhW3ffvstc0owQoj6KCwsxPbt23n3eXl5KTkbQkh1QfVHQgghhBDFoQ5YQgghhBANl5SUhJ9//pl336BBg2j9mGogNjYWSUlJn2yzs7PDnDlzVJQRIUQaK1asQGpqKu++4cOHKzkbQkh1QPVHQgghhBDFog5YQgghhBANVlhYiDFjxiAtLY13P9+aoKTq4Zt+ePHixTAyMlJBNoQQaQQGBmLt2rW8+7y8vFC/fn3lJkQIqfKo/kgIIYQQonjUAUsIIYQQomTXrl3D7NmzkZCQIFecN2/ewNPTEyEhIbz7O3fuDHd3d7mOQTTD5x2wderUwYwZM1SUDSFV3+zZs3Hw4EGUlpbKFWfHjh0YNGgQOI7j3b948WK54hNCqg6qPxJCCCGEaBbqgCWEEEIIUbL8/Hz88ccfaNSoEYYPHw5/f3/k5+dL/PrMzEz8/PPPaNWqFSIiInifo6WlhQ0bNgiVMlFjHMchODj4k21LliyBgYGBahIipBqIiorC6NGj0bhxY/z000949OiRVK8PDQ2Ft7c3pk2bhuLiYt7n9OvXD7179xYiXUJIFUD1R0IIIYQQzSLiWENtCSGEEEKIQly8eBG9evX6ZJuxsTE6deoEZ2dntGnTBjY2NqhRowb09PTw7t07vH37Fo8ePUJISAjCwsKQl5cn9hjfffcd1qxZo8i3QQgh1VbXrl1x7dq1T7Y1adIE7du3h7OzM5ycnFCjRg2Ym5sjPz8fb9++xZs3bxAeHo6QkBA8efJEbHwbGxvcvn0b9erVU+TbIIRoEKo/EkIIIYRoFuqAJYQQQghRMr4GNCENHDgQR44cgba2tsKOQQgh1RlfB6xQjIyMcObMGZoClBDyCao/EkIIIYRoFpqCmBBCCCGkChk/fjwOHz5MjWeEEKKBbGxscPbsWep8JYQoFdUfCSGEEEKERx2whBBCCCFVgI2NDXbt2oXdu3dDV1dX1ekQQgiR0qBBgxAVFYVu3bqpOhVCSDVB9UdCCCGEEMWhKYgJIYQQQpSstLQUV65cweHDh3H8+HG8efNG5liOjo6YPn06pk+fDnNzcwGzJIQQwvL69WscOXIEhw8fRlhYGEpKSmSKo6enB19fX8yfPx9du3YVOEtCSFVC9UdCCCGEEM1CHbCEEEIIISr29OlThIWFISoqCvHx8UhISEBKSgpyc3ORl5eHsrIyGBgYwNzcHHXr1kWjRo3g4uKC7t27o02bNqpOnxBCqrXc3FzcuHEDERERiI2NRUJCAl68eIHMzEzk5eWhoKAAOjo6MDIyQs2aNWFvb4/WrVujU6dO6N27N0xNTVX9FgghGojqj4QQQggh6o06YAkhhBBCCCGEEEIIIYQQQgghRCC0BiwhhBBCCCGEEEIIIYQQQgghhAiEOmAJIYQQQgghhBBCCCGEEEIIIUQg1AFLCCGEEEIIIYQQQgghhBBCCCECoQ5YQgghhBBCCCGEEEIIIYQQQggRCHXAEkIIIYQQQgghhBBCCCGEEEKIQKgDlhBCCCGEEEIIIYQQQgghhBBCBEIdsIQQQgghhBBCCCGEEEIIIYQQIhDqgCWEEEIIIYQQQgghhBBCCCGEEIFQBywhhBBCCCGEEEIIIYQQQgghhAiEOmAJIYQQQgghhBBCCCGEEEIIIUQg1AFLpLZixQqIRKIKjxUrVkgdiy+OSCQSPmlC1NikSZN4fwe7du1SdWpVlpDlGKl+6tevz/v9SUhIUHVqhBBCCCEEVF9TFwkJCbx/h/r166s6tWqP/jaEEEDz2seo7FIOT09P3s85ODhY1alpHOqAJYQQQgghhBBCCCGEEEIIIYQQgeioOgFCCCGEEELE8fT0xJUrV3j36ejo4OXLl7Czs1NoDikpKUhJSZErho6ODszMzGBmZgYTExOBMhMvNjYWRUVFUr1GJBJBT08P+vr60NfXh7m5OQwMDBSUISGEEEIIIYQQQkjVQx2whBBCCCFEbcXHxyMkJIS5v6SkBHv37sXChQsVmsfWrVuxcuVKweJpa2vD0dERbdu2Rdu2bdG3b1+0a9dOsPjlevfujcTERLnjmJmZwc7ODnXr1kWzZs3QtGlTODs7o3379tDX1xcgU0IIIYQQQgghhJCqgzpgCVGSjRs3IiMjo8L2+fPno0aNGkrPhxBJZGRkYOPGjRW216hRA/Pnz1d6PoSQ6sfPzw8cx1X6HEV3wAqttLQUT548wZMnT3D48GEsWbIELVq0wOTJkzFr1iy1u+M0KysLWVlZePLkCYKCgj5sNzAwQIcOHTBw4EAMHz4c9erVU2GWhBBC1BldWxBCCCFVE53jlWPXrl2869lPmjSJ1sFVU9QBS4iSbNy4kfcOlEmTJlEHLFFbGRkZvHd8OTg4UAWKEKJwHMdh9+7dlT7v3r17uH37NlxcXJSQleI8ePAA33zzDbZt24YtW7bA29tb1SlVqqCgACEhIQgJCcE333yD7t2745tvvkHfvn1VnRohhBA1Q9cWhBBCSNVE53jl2LVrF+/yTJ6entQBq6a0VJ0AIYQQQgghfK5cuYL4+HiJnuvn56fgbJQnLi4OPj4++P7771WdilQ4jsOlS5fg7e2Ndu3aISwsTNUpEUIIIYQQQgghhKgEdcASQgghhBC1tGvXLomfe+DAARQXFysuGRVYs2YNli1bpuo0ZBIZGYmuXbtixowZKCgoUHU6hBBCCCGEEEIIIUpFHbBEaitWrADHcRUeK1asUHVqhBAiESrHCFF/OTk58Pf3l/j5aWlpOHXqlAIzYouPj+ctUz5/5OXlITk5GZGRkdi1axcmTJgAU1NTsbFXrVqFixcvCp6zh4dHpfkWFBQgIyMDz58/x/Xr1+Hv748VK1Zg4MCBsLCwqPQYHMfhr7/+QteuXfHixQvB3wMhhBDCkpCQwHtuo+n5CCGEkP9D7WOEKBZ1wBJCCCGEELXj7++P3NzcCtv19fXh7OzM+xpp7phVBUNDQ9ja2qJt27aYOHEi/Pz88OrVKyxcuBDa2tq8r+E4DvPnzwfHcUrO9v1nbW5ujnr16qFDhw4YOnQoli9fjuPHjyMtLQ1Xr17F1KlTYWJiIjbO7du34enpiaSkJCVlTgghhBBCCCGEEKJa1AFLCCGEEELUDqsztX///pg5cybvvjNnziAlJUWBWQnPxMQEv/76K3bu3AmRSMT7nAcPHuDy5ctKzkw8LS0tuLm5YceOHYiPj8fChQuho6PDfP6zZ8/Qo0cPZGVlKTFLQgghhBBCCCGEENWgDlhCCCGEEKJW4uPjERISwrtv3LhxGD58OAwMDCrsKykpwb59+xSdnkKMHz8ekyZNYu4/ceKE8pKRkrW1NX799Vdcv34dDRs2ZD7v8ePH+PLLL5WYGSGEEEIIIYQQQohqUAcsIYQQQghRK35+frxT7lpaWsLHxwc1atSAr68v87WaaunSpcx9ERERSsxENu3atUN4eDjat2/PfM6///6LgwcPKjErQgghhBBCCCGEEOWjDtiP5OXlITExETExMXjx4gXvumOEEEIIUa23b9/i2bNniI2NxevXr1FcXKzqlIiAOI7D7t27efeNGDECenp6AN7fMcrn7t27iIyMVFh+iuTo6IjGjRvz7nv27JmSs5GNtbU1AgMDxd4Ju3jxYhQUFCgxK0JIdVFQUICkpCQ8fvwYCQkJyMnJUXVKhBBCCCGEkGqKvVCTgOLi4nDhwgWEhYXh8ePHeP78ObKzs5Gfnw9DQ0NYWlrC0dERzs7O8PLyQu/evXmnlRMax3G4cOEC/v33XwQFBSE+Pv6Tuy1EIhHs7e3RsWNHDBgwAEOHDlVKXkQ4T58+xbVr1/Dw4UM8fPgQcXFxyMjIQFZWFgoKCmBgYAAzMzPUqVMHTZs2haurK3r37o1mzZrJddzc3FzEx8d/so3VQRAbGytVw4CtrS1sbW3lyu/Vq1c4f/48rl69ipiYGCQkJCAzMxP5+fnQ19dHjRo10KBBA7Ru3RoeHh7w8fGBqampXMeUx+vXr3HmzBkEBwcjJiYGiYmJyM7ORklJCSwsLNC4cWNs2LABrq6uEsd8+fIlQkND8eDBAzx69AixsbF49+4dsrKykJeXBz09PZiamqJOnTpo2LAhXF1d0bNnTzg7OzPX6KsKUlJSPlk/8dWrV7zPKy4uxv3796WK3aBBAxgbG8uV38fi4+MRGBiI0NBQPH78GC9fvkROTg7KyspgbW2Npk2bYufOnbC3txfsmJLKy8tDWFgYIiMj8ejRIzx69Ahv3rxBVlYWsrOzIRKJYGhoCDs7Ozg4OKBt27bo2rUrevToIehnJKuIiAicPHkSN2/eRExMDN6+fYuSkhJYW1vD1tYWjRo1gre3N7y9vVGzZk2F55OZmYn9+/fj9OnTuH79OtLT0z/Zr6uri8aNG8PDwwNDhw5F9+7dK8QoKCjgvYPQwMAAnTp1Ulju8srJycGFCxcQGhqK6OhoxMfHIz09Hbm5udDW1oapqSns7e3RrFkzdO3aFf3790fdunVVnbZcQkJCKpxDy33c6dq3b19YW1sjLS2twvP8/Pzg7OyssBwVycnJCbGxsRW2Z2ZmqiAb2VhbW+PgwYPo1KkTSkpKKuxPTEzEjh07MGfOHBVkV7mioiLcuHEDt27d+lCGJyUlISsrC1lZWeA4DoaGhrCxsYG9vT1at26Nzp07o0+fPqhRo4aq08fNmzdx9uxZ3Lp1C48fP0ZKSgpycnKgq6uLmjVron379jLdhVxYWIigoCCEhITgzp07iI+PR0pKCnJzcyESiWBiYoK6deuicePGcHNzg4+PD3NAgaYqLS3FtWvXcO7cOURGRiI2Nhbp6enIycmBgYEB6tSpg759+2Ljxo1Sx1bH8j4jIwPnzp3DnTt3EBkZicTERGRlZSEzMxPFxcUwNDSEkZERzM3NYW9vDwcHBzRq1AgdO3ZE+/btlVKnKSkpwalTp3D8+HFcu3YN8fHxKCsr++Q59erVg4eHB4YMGYIBAwZAW1tb4XmVe/v2Lc6dO4erV6/iwYMHiI+Px7t37z5cb5iZmcHBwQEtWrSAu7s7+vfvD2tra6XlB7w/v1y4cAHh4eGIjo5GQkICUlNTkZeXB5FIBDMzM5iZmcHR0REtWrRAmzZt0LNnT9SrV6/S2Jp0bVGV3bhxA0FBQbhx4waePn2KpKQk5Obmori4GMbGxrCzs0PDhg3RsWNH9OzZE126dKnS17xVxa1bt3DixIkPba3l12ympqaoWbMmWrRoAU9PTwwcOBB16tRRdbqfUMS1vKra/4h46ta2QISjSef4V69e4fjx4wgODsa9e/fw5s0b5OTkwMzMDLa2tqhVqxa8vLzg4+ODdu3aqc05sLi4GI8fP/5kG+uGwfj4eKnqkBYWFoKeGwoLC3HhwgUEBgYiKioKcXFxyMzMhLa2NmxtbWFjYwNnZ2f4+PigR48eMDExEezYlVH5dRanICUlJdyePXu49u3bcwCkepibm3MLFizgXr9+raj0uLNnz3LNmzeXKi87Oztu06ZNXGlp6SexHBwceJ8fHx8vcT5BQUG8MTw8PAR7zx4eHrzHCAoKkirO8uXLeeMsX75c6pxYn7WsCgoKuGPHjnETJkzg6tWrJ/V3r/zRsmVLbvv27VxxcbFMebD+nkI8ZPmcy506dYrz8vLitLS0pDqmoaEhN2XKFO7p06cyH/tjkv7do6OjuWHDhnHa2tqV5njs2DGxxywpKeHOnz/PTZ8+nWvUqJHMn3+DBg24devWcbm5uYJ8FhzHcRMnTuQ91s6dOwU7hqRYv28hHuLKmvj4eN7XODg4VHhuSEgI17t3b04kElV6zMjISKnepzy/r9jYWG7VqlVct27dOD09PZk+I0NDQ27y5Mnco0ePZM5Dnvd67Ngxrk2bNhLnq6WlxU2dOpV78+aNYPl+LCcnh1uyZAlnZGQk1efYpk0b7vz585/EkuY7VhkhzvuViYqK4saOHSv1exeJRFyvXr244OBgwXJRtkmTJvG+NycnpwrPnT17Nu9zbWxsuKKiIkHzElc+Cvm3HzNmDO8xjIyMZIrH+r4KWcdkWbhwIfMza9KkCVdWVqbwHCT18uVLbv369VyvXr2k/t2VP3R0dLhhw4Zx169fFyyvnTt38h5r4sSJnzyvrKyM27VrF9eiRYtK8zQ3N5cqh7i4OG7GjBlcjRo1pP5MOnXqxB0/flywz0Nokp4ji4qKuA0bNnD169eX6BwkDXUs7yMiIriRI0dyBgYGMv0WAHDa2tpcly5duE2bNnGvXr2S6vismJ/bvXu3RH+Tjx8ODg7c/v37hfqomEJCQjhfX19OV1dX6nJk6NChzDqskC5evMj5+vrKXG9t3rw5t3z5cu7FixfMY6jq2oLjZK+v/fLLL8zvjqLOW3379uU95udlvTQyMjK41atXS/0bKX+vGzdu5PLz8+V+b/LUwfv168f72vHjx8udF5+cnBzO1NSU95jKKDckdeHCBanaWrW1tblRo0ZxT548+SSOUNdHyr6WL6cu7X8cx3Gpqam878nOzk7mmFu3bmXmLE/czZs388acP39+pa/V5LYFWfj7+/PmOmLECJljjhgxgvkZyBN3yJAhvDElqYfL2j6mCe2Hz54948aNG8fp6OhIfOy2bdtK3VeiKKz3KsSjsjqGpP1IRUVF3Lp167iaNWtKfGwzMzNu7dq1XEFBgeI+PE59rrMU0gEbFBTENWnSRO4vgqmpKbdt2zZBcysoKOBmzJghV17dunXjUlNTP8SkDljJCmY+rM9YWvn5+dzkyZM5c3NzQQujJk2acOHh4VLno24dsJGRkVyHDh3kPraenh63cuVKrqSkROocPlbZ3720tJRbsmSJVCdIcR2wCxYs4GxtbQX9O9SpU4c7deqUXJ9DOeqAlawClZ+fz02dOlWii7XyhzI6YE+ePMm5uroK+lnp6OhwX3/9NVdYWCh1PrK814yMDGaFXZKHqakpFxgYKHeuH4uMjJRrsAQAbs6cOR/KK03pgE1OTubGjRsnyPdo5MiRXFpamtw5KVNOTg5nYmLC+36WLVtW4fnXr19nvv/KBuZIS1kdsD4+PrzHqF27tkzxVNkBm5KSwhkbGzM/N3UYKHDt2jXOw8ND6sFplT3Gjx/PZWZmyp2fJB2wz58/59zc3CTOTdIO2OzsbG7evHkSDYSr7NGzZ08uISFB7s9DaJKcI6OjoyXq2C5/SNoBq47lfUZGBjd9+nSp6lqSPNq2bStVHqw45XJzc7nBgwfLldOQIUO4jIwMuT+zzz179ozZmSbNQ0tLi5s9e7aggz7L3b17l+vWrZtgf19tbW1uw4YNvMfSxA7YV69eMcs9RTTIvn79mnm8S5cuSR2vrKyM27Ztm0yDZj5/ODk5yX2ulqcOfvLkSd7XGhoacu/evZMrLz5///037/GsrKwU3kgsidzcXOZARUkeRkZG3J9//vkhnjI7YIW8lle39r9yrVq14o17//59meINHTpUbL6yxh00aBBvvJMnT1b6Wk1tW5BVWloa73fW1tZWpgE5ZWVlnI2NDfO9yxPX0tKyQjxtbW2Jysqq2gG7bds2mQfWAuCmTZtW4SY8ZVP3DtgHDx4wyz5JHo0aNeKePXsm+OembtdZgq4BW1ZWhh9++AFeXl4Vbo+WRXZ2NmbOnIlx48ahqKhI7ni5ubno378//vzzT7nihIaGws3NDcnJyXLnRISRk5ODnTt3Cj493+PHj9GtWzfs2rVL0LjKtGXLFrRv3x43btyQO1ZRURGWL18Ob29vhU2FWFxcjCFDhmD16tW80xbKYvv27Z9MiyGEpKQkDBgwAKtWrRI0LuGXmZmJ7t274++///5kqnh1cO7cOdy6dUvQmCUlJVi/fj3c3d3x9u1bQWN/7sWLF+jSpQuOHj0qc4zs7GwMGjQIx44dEySnoKAgdOvWDU+ePJErzpYtWzBixAiUlpYKkpeihYSEoFWrVti7d68g8Q4dOoT27dvjwYMHgsRTBn9/f+a0/OPGjauwrUOHDswpTjX13B0XF8e73cnJScmZyM/GxgajR49m7j958qQSs+EXFhaGK1euVJiyVF579uyBi4sLEhISBI37uejoaHTo0AHXrl0TNO79+/fh7OyMTZs2CVKGXrx4Ea6urggJCREgO+W5dOkS3NzcBC9H1bG8T09Ph6enJ/766y/B61pCxsvNzUWPHj3krnMcPXoUnp6eSE1NFSiz9+ew1q1b4+zZs3LHKisrw++//46uXbvi5cuXAmT3XvmyLaGhoYLFLC0tVXhZp0y1atVCz549efex1qiXx759+3jLWXt7e3h5eUkV6927d/Dx8cHMmTORkZEhd25xcXHo0aMHNm/eLHcsWfj4+PBOdZ2fny9Y+fmxHTt28G6fMGEC9PX1BT+eNNLT0+Hh4SFX/TYvLw8zZszA0qVLhUtMAkJfy6tr+x/fMjgAcPnyZaljcRyH4OBgsc+RJW5ZWRmuXLlSYbu2tjY8PDykjvc5dWxbkIeVlRVat25dYXtKSorUU+oCwL1798TWO2SNGxUVxdtu5OzsrBbLoygbx3GYO3cuZs6ciby8PJnjbN++HePGjROsbbqquXz5Mrp06YJ79+7JHOPJkydwd3fnXYJJVup4nSVYB2xJSQlGjRqF//73v0KF/GDfvn0YMWKEXF/40tJSjBgxAhcvXhQkp9jYWAwaNAiFhYWCxCPqq6SkBFOmTMGBAwdUnYrUvv76a8ydO1fwk8WFCxfQp08fZGdnCxoXAKZMmYITJ04IHlcROI7Djz/+iDVr1qg6lSqtqKgIgwcPRnh4uKpTUbrr16+jV69eclUaxUlLS0Pv3r3x8OFDuWMVFRVhzJgxcnea3rlzB76+vlKtjS3O0aNHsXDhQkFiKZK/vz969uwp+GCR+Ph4eHl5CfI3VgZWg0enTp3QqFEj3n0frwv7scDAQN71YdVZQkICcxBj+/btlZyNMCZOnMjcFxAQoMRMlO/p06fw8PAQ/Hdd7vnz5+jbty/evHkjaNyrV6+iS5cuePr0qaBx09LS4O3tzdvwp44iIyMxaNAgweu76ljeFxUVoVevXoiKihI0J6FxHIexY8fyrukui6ioKHh7ewtSz9q0aROGDx8uWP2lXGRkJLy8vJjrqkmqrKwM06dPx9dff43i4mKBsqu6WOcuf39/5OfnC3osVqfuuHHjpFqD7s2bN3BzcxNkAMDHSktLMW/ePKxbt07QuJLQ1tbGl19+ybuP1Vkqq3v37uH69eu8+1g5KEtubi569+4t2KDf1atX448//hAkVmU07VpenvY/VgfspUuXpI519+5dpKeni32OLHEjIyPx7t27CttdXFxgZmYmdbyPqWPbghCE/LtK0mkuZFxW7lXdokWLsGXLFkFiHThwAD///LMgsaqS69evY8CAAYIMhHn58iUGDhwoyM2X6nidBQA6QiUyceJEHD58mLlfJBKhQ4cO8PT0hIuLC6ytrVGjRg1kZGTg9evXCAkJwenTp5GUlMT7+hMnTmDhwoXYtGmTTPn9+OOPCAwMZO43NjbG4MGDMXLkSDRp0gR16tRBQUEBkpKScOvWLezduxfBwcGfjI6PiIjAihUrZMqHKIeuri5atmwJV1dXtGvXDnZ2drCwsIC5uTny8/Px7t07PHnyBOHh4Th//jxzlCjHcfjiiy/Qtm1bNGvWTLlvQkY//PADNmzYIPY5rVu3hpeXFzp27AgbGxtYWloiJycHycnJCAsLw+nTp5mNb9evX8f48eNx7NgxwRYn37FjB+8IFQcHB/j6+qJz586ws7ODlZUV8vPzER8fj7CwMPj7+0t9LC0tLTRt2hTt27eHi4sLateuDQsLC1hYWKCwsBDv3r1DQkICwsPDceHCBbGNm0uWLEGHDh2qbeVG0VauXImgoKAK25s1awZfX98Pv+0aNWogJycHcXFxuHLlilyjLoVQs2ZNuLi4wNXVFU2aNPnw/dLV1UVGRgZSUlJw8+ZNhIaG4ubNm8w4d+7cwVdffSX43XxlZWUYNWoUYmJiPtluZGQELy8v9OnTBw0aNICdnR1KSkqQkpKCa9eu4ciRI3j27BlvzIKCAkybNo337yWJjIwMDBo0CLm5ucznNGrUCKNGjYK3tzfq1q0LW1vbT+oS//77b4U7wTZt2oSmTZvKlJMyBAYGYvTo0WIHy9StWxc9evRAt27dULt2bVhbW6O0tBTJycm4d+8eAgICmA3Sqamp6N+/P27dugVLS0tFvQ25JSQkMDtm+O5+/XjfsmXLKoyoLy4uxr59+zBv3jxB81Sk1atXM/cNGTJEiZkIp3Pnzh/q/J97/Pgx0tPTYWVlpfzEKmFpafmhDG/evDksLS1Ro0YNGBoaIjMzE2lpaYiMjMTVq1cRGhrKvKPj+fPnGDVqFC5duiRYfQl4X4aPHTsWr1+//mS7trY2OnfujP79+6Nx48aws7ODoaEh3r17h0ePHuHcuXMICwtjxr1z5w68vb3FdiLZ2Nige/fu8PDwgL29PaysrKCtrY3k5GTExMQgMDAQISEhvHd05eXlYfDgwbh16xYcHR1l/wAULC8vDyNGjKjwOejp6cHT0xPe3t4fzpG6urpIT0/H/fv3ERAQIHbmCnUt79etW4fIyEjmfhsbG/Tp0wcuLi5o2LAhLCwsYGxsjKKiImRmZiIjIwOPHz9GdHQ07ty5w7yTX15//vkn70DNrl27Yvz48ejYsSPq1q0LIyMjvHz5Ek+ePMGhQ4dw9OhR5nf69u3b+PLLL7Fv3z6Z89q+fTvmz58v9jmNGjVC9+7d0aVLF9SsWRNWVlYoKChAcnIybt26hYCAAERHR/O+9unTpxg0aBBCQ0Nlvgtv1qxZ2L59u9jn6Ovrw8PDA71794a9vT1sbW1hZmaGjIwMvHv3DjExMbhx4wYiIiKq/GxggwYNgpmZGbKysj7Znp2djWPHjmHMmDGCHCc6Opr5dxc3gOlz5XcYPnr0iPkcQ0NDuLu7w8vLC02aNIG1tTWMjIyQlpaGxMREnD9/HufOnWMOOlm0aBGcnJyUXh+ZOnUqfvrppwrlZnR0NG7cuIEOHToIchxWh27Xrl1V3gY0adIk3Llzh7lfR0cHvXr1woABA2Bvbw87Ozu8e/cOSUlJuHTpEo4dO1ahDJw/fz7q1q2r6NSVei2v6vY/Dw8PaGtrV6j/lM+0oqUl+T1QknTUCRlX3rYsdWxbEEr37t1521YvX75c6bmf7zWSPEeouNWxjdLPzw+//vprhe1t2rSBj48P2rVrB1tbW5iYmCA1NRWPHz/GqVOncOnSJeb13M8///yhv4i8v1N73rx5FdrtbGxs4O3tDS8vL9SqVQs2NjbIyclBUlISLl68iGPHjvEOAAGAmJgY/Pzzz3L1s6nrdRYACLIG7Nq1a8XOlTx27FjuwYMHlcYpLi7mNm/ezDtveflDkjnpP3ft2jWx6zr5+Phwr1+/liiOk5PTJ6/V0dFhzidOa8BWjvU3kVZqauqH1+rq6nI+Pj7c7t27pVp7Kzc3l9u6davY75+7u7vUuZVT5JqBnzt48KDY36SPj49Ea1uUlZVxe/fu5erWrcuMtWXLFqnzY8UyMzP75P/29vbc4cOHK42Xl5fHpaSkMPeXrz+npaXFeXh4cNu2bftkHefKFBUVcfv27ePs7e2ZuTs5OXFFRUUSx/yYOq0B+zkh182U5TiGhoYV1gJu2bIld/ny5Upjvnv3jlkGCFmOzZo168Pr69evzy1atIi7ffu2VDHu3LnDDRw4UOzvVpY1oDiO/V5r165d4Xw2e/bsSn8bxcXF3G+//SZ2jWZZztUcx4ldo8HY2JjbsGGDRGtwnDlzpsLv9fPyRZ7vspDleWxsrNj1i1q0aMEdPHhQovcdHh7OderUiRlr6NChUuenTCtWrODNW1dXt9Lvpbu7O+9rpV13UBxFrwG7f/9+Zn1V0jUl+ahyDdhy4sq38+fPKy0PPuvWrfuQi52dHTdr1iwuJCREqvWXnjx5wk2ZMkVsGf7PP//IlB9rDVi+Ms3X15d7+vRppTETExN5t6empnL16tVjvgd7e3vur7/+kmgdvIcPH3Le3t7MWB06dFD5mkocx/5df/75ikQibtKkSdybN28qjcn6fNW1vM/MzGRez1pZWXE7d+7kiouLJY7HcRz3+PFjbt26dZyLi4tMZRjrfX3+d6lTp45EZcibN2+4/v37i/2NHjp0SKocy4WGhnK6urrMuJ07d+bOnDkjUazAwECuWbNmzFgLFy6UKcctW7aIfe+mpqbcqlWruJycHInilZaWcpcvX+a+/PJLztTUlAPAzZs3T6LXKuvaguPkr6998cUXvK/v06ePYDkuXLiQ9xgdO3aUOEZZWRlz/XjgfR16yZIlYq+Xy6Wnp4td+9vMzIx7+fKlVO9RiL85az3JqVOnSpULS35+PmdhYcF7jN27dwtyDFmx6gEfn/uTkpLExsjNzeW+/vrrCvVM1jlfqDVgFXUtr87tf+3bt+eNdfPmTani9OvXT+zfXda4rDXKJa2Pa1LbglAyMzN5y0Rzc3OupKRE4jglJSUSrVssbdzi4uIP5+KPH7q6uhKvIy9U+5iq2w/NzMw4ExOTT7Z16tSJu3btWqUxw8LCuCZNmjD/LkOGDBH0PchDqP4dWY/z+e/dysqK27hxY6Vt4unp6WLXMdfT05Oqrf5j6nqdVU7uDti7d+8yLzjMzc25Y8eOSR0zNjaWa9CgAW/MevXqcfn5+RLHKisr+3Dhx/f49ttvpcotOzub69ixo0QnQuqArRzrs5NWamoqp6+vz82ePVvqC4LPJSUlcZ07d2bmdvHiRZniKqsD9tWrV1yNGjV4j6Wvr89t27ZN6phv3rxh/o5MTU0lGsDwMUl+Px4eHlx2drbUufIxNzfnxo0bx8XExMgVJyMjgxswYAAz57///lumuNQBK/nC8iNHjpS6EZCP0B2wrVu35g4fPixVgz2fHTt2MBs8unbtKlNMcZ1GH/+OpS3b/P39mZ1FgwYNkjrPsLAwZn5mZmZSd2qnp6dzLVq0qPS9q7IDtrS0VOz5Ztq0aRJ1dHysuLhYbKU2ICBAqnjKUlZWxjk6OvLmPGDAgEpfv2PHDuZ7vnv3riA5KqoDNicnh1u8eDHzt6+lpcWFhYXJHF8dOmDFfXbr1q1TWh581q1bxzVo0IDbsWOHzAOpyp06derDoK/PHw0aNJDp/FVZw2v5Y/PmzXLlznEcN2LECGb8gQMHcu/evZM65tKlS5kxf//9d7lzlpck50hdXV3uyJEjch1Hncv7AwcO8L7exsaGe/bsmSxv9xOhoaHckiVLpHqNJN/5Zs2acWlpaVLF/fbbb5nx6taty+Xl5UkVLzc3l9luoaWlxS1btkzqgQbZ2dnMBnJtbW2pz2mPHj3iDAwMmO/bzc1NooEFLOnp6dzSpUslrkNrUgdsSEgI8+/w6tUrufMrKSnhatWqxXuMrVu3Shxn69atYn8nktwM8bmTJ09yhoaGvDGHDRsmVSwh/ubnz5/njWFiYiJIm8GePXt441tYWEhdLggpIyODs7a2Zv59f/31V6niXbhwQWx5IOvvUdnX8urc/vfdd9/xxlmzZo3EMUpKSngH2unr68sVt6ioqELnFPC+00PS77mmtC0IjdUPEBERIXGM69ev89YV+DqfpYnLakeRpv2oqnTAfv6YPXu2VPWw169fc40bN+aNJcmgcGVRdQfsx4+mTZsyB5+yzJ07lxlv48aNUuepztdZ5eTugHVzc+NNxMjISOqROB97/vw5Z2VlxRt706ZNEsc5cuQI88MaM2aMTI3lqampXMOGDSv9ElIHbOVYn520CgsLKx31J423b99yzZs3581t8ODBMsVUVgfsmDFjeI+jra3NnTp1Sua4mZmZzO/9ggULpIpV2W+nc+fOEo/UkoQQjUflCgsLOU9PT968nZ2dZYpJHbCSVaAGDx4s1UhAcYQsx+Lj4+XueP3Y9u3bmZ9BdHS01PEqu0jS1dWVqoL/sS+//JIZU9rKaZ8+fXhj6ejocFeuXJEpv6SkJK5OnTpi378qO2DF/a0XLVokdV4fY3WktGvXTq64ihIcHMz8LP79999KX5+RkcFsUJL2HMUiRAdsfn4+l5qaykVFRXG7d+/mJk2aVOlIaFkGTn1MHTpgDx8+zHx/c+bMUVoefF68eCFIY2C5gIAA5ij+EydOSB1Pkg7Y9evXy503q3EbeN9gKs95jtXpVbt2bakvhoUmSUOivJ2vHKfe5T2rHrpr1y658pJHZX+TmjVrcgkJCVLHLSsr40aPHs2Mu2HDBqni/fDDD8xY0nSgfa64uJjr0qULb1xpr0V79uzJzNHb21vpnUua1AFbVlbG7GAXYvDQmTNneGPr6elxb9++lShGWloac5aXpk2bShyHz+nTpzmRSFQhrkgk4qKioiSOI8TfvKysjNkWsX37dhne3adYM6mouo7y448/Mn+/33//vUwxjxw5InaGQFl+j8q+llfn9r9z587xxundu7fEMcLDwyu8Xltbm/vqq6/kinv16lXe3KS501dT2haE9v333/Pm9vPPP0sc47///W+F17u4uPB2HEkTd9WqVby5LVu2TOIYVbEDdu7cuTLFvnr1Ku+5D5Ctc1AR1KUDtkGDBlIPhuS49/VcVpkrywxm6nydVU6uDlhWhRGARNOGVub48eO8sR0dHSVuBOjatStvDFtbW6mmp/gcq8P04wd1wFaO9dmpg4iICN7c9PT0uKysLKnjKaMD9sGDB8zKtBAXibdu3eK9Q8fExETiKas4Tnyjir6+Pvf48WO5c1WkxMRE3tGHAGS6y5Y6YCuvQFlbW8t0YmcRshxTBNa0jYsXL5Y6VmUXSWvXrpU5z+TkZGZHw9GjRyWOExMTw8xP1opzuX///Vfs+1dVB2xhYSFzWnNfX1+5O/UzMzOZecraoa1IrNGF5ubmEs98Mnz4cN4Ytra2Cr1zXlEPKysriTqfK6MOHbCsOhUg+8A2dTZz5kze9zpq1CipY1XWAevl5SVIzqyR/S4uLnJ3khYXFzOn5PPz8xMkf1lV9rueNGmS3MdQ9/Keb2ChlpaWoIMhpVVZ+XjgwAGZY2dkZHA2Nja8cevXry/xnRKpqam8dxIB4GbNmiVzfuUSExN5O9ZEIpHE9Q1xg5saNmyokr+xJnXAchy7jGjdurXc+bEGA0gztR3rbjszMzMuLi5O7hznz5/PG3/y5MkSxxDqb/7LL7/wxmnfvr2U7+pT4q5DZBn8KpS8vDzmTSnt27eX69zx8RI6QvxtlH0trwhCtf/l5uZyenp6FeIYGRlxhYWFEsVYvXo179/84sWLcsX96aefeN/jihUrJH5/mtC2oAgXLlzgzatnz54Sx+jVq1eF13/77be8s8VIE7d79+68uQUHB0sco6p1wLZt21bi3wUf1syHkszMpQzq0AGrra0t1yxdR48eZcaWZvCYul9nlZN8pW4eGzdu5N3eu3dvDBs2TJ7QAICBAweiY8eOFbY/e/YMV69erfT18fHxzOf95z//gZmZmcy5eXp6YsiQITK/nqi/jh07ol+/fhW2FxUV4cqVKyrIqHKbN29GWVlZhe3NmjXDggUL5I7v4uLC+9vOycnB0aNH5Y4PAAsWLEDjxo0FiaUo9vb2mDp1Ku++CxcuKDmb6mHVqlWwsrJSdRpK89NPP/FuF/r75ejoiG+++Ubm19va2qJXr168+yIjIyWOs3//ft7tFhYWWLlypUy5lRs+fDjc3d3liqEIR48exfPnzyts19fXx+bNmyESieSKb2ZmhsWLF/Pu8/Pzkyu20HJzc+Hv78+7b/jw4TAwMJAozvjx43m3p6SkIDAwUOb8lK1Ro0ZYvXo1Hj9+jOHDh6s6HUHUqlWLuS85OVmJmSjHsmXLoK2tXWH7pUuXwHGcYMcRiUTYunWr3HEiIiJw/fp13n2bN2+Gvr6+XPF1dHSY5zV1K48+ZmxsjN9++03uOOpe3vP9Bm1tbWFkZCRXXorSuXNnjBo1SubXm5ubM7+PCQkJCAkJkSjO33//jZycnArbra2t8fPPP8ucXzl7e3vMnDmzwnaO47Bnzx6JYmzevJl3u5aWFvz8/NT2b6xOJkyYwLs9OjoaUVFRMsfNzs7G8ePHpTrm5woKCvDXX3/x7lu8eDEcHR1lTe+DpUuX8n5PDh8+jLy8PLnjS2Py5Mm856ObN2/i7t27Msf9+++/ebd36tQJrVq1kjmuvE6ePIn09HTefRs3bpTr3LFy5UpYWFjI/HppacK1vFDtf0ZGRrzt2Hl5eYiIiJAoxuXLlyts69GjB9zc3Cr8BuSNCwDdu3eX6PWVUZe2BUXg++wB4Nq1aygsLKz09UVFRbh27VqF7T169OD9/CWNW1hYiLCwsArbDQ0N0blz50pfX1Vt3LgRenp6Mr9+7NixvNtV/T1UJ+PHj5frO9avXz/UqFGDd580n7O6X2eVk7kD9uXLl8yG4FWrVskatoL58+fzbg8ICKj0tazGPAsLC0yaNEmOrN5buHCh3DGIehs4cCDvdkkrOMpUUFCAAwcO8O5buXIlb0OgLOT5TVZGJBJh2rRpcsdRBk36bmg6Y2NjZgWoqnJ1dUWdOnUqbI+KipKoIi6pOXPmQEtLrrFY6NOnD+92aSpNJ06c4N0+cuRIZqVMGtOnT5c7htB27tzJu/2LL75A/fr1BTnGxIkTeT8/deuM9Pf3523EBoBx48ZJHKdv376wtrbm3bdr1y5ZUlMqbW1tTJkyBbt378b333+v9g1V0jA3N2fuU3YDrjLUrFmTt/EtNTUVcXFxgh3H3d0dTZs2lTsOqzzy8fFBly5d5I4PvP99NmnSpML2kJAQZGdnC3IMoQ0bNgyWlpZyx1H38p6vYSInJ0fQwQJCEmJQ6ZQpU5jlEqsN4XOsv+uiRYvkGuj9sblz5/L+fSS57nr79i1OnTrFu2/IkCGC/barOkdHR3Tt2pV33+7du2WO6+/vj/z8/ArbbWxs4O3tLVGMY8eOISMjo8J2Kysr5jW7tKysrHgHuOXk5Eg8WEEo1tbWGDp0KO++7du3yxSzqKiI2YD65ZdfyhRTKIcPH+bd7uHhIffv18rKineAhyJo0rW8UG08rA5NVgfox1gdat27d4eBgQFvh4ckcQsKChAeHl5hu5GRETp16lTp6yWhLm0LimBoaMj7OeXn5/N+rp+LiIiocM2jq6uLbt26oUuXLhUGHEsaNywsDAUFBRW2u7m5ydUBqcnatGkDDw8PuWKwvocvXrxgDoypbubNmyfX6/X09ODp6cm7T5rfu7pfZ5WTuWQ8ffo07512DRs2RPv27WUNW0HPnj15LzqCgoIqfe2lS5d4tw8ePFiQgqhz586C/TGJenJzc+Pdfv/+fSVnUrng4GBkZWVV2G5iYgJfX1/BjtOhQwfeBgtJfpOV6dq1Kxo0aCB3HGXQpO+GphsyZAhMTExUnYbS8V1Yl5aW4tGjR4IdY+TIkXLHYI0MT0hIkOj1b9++RXR0NO8+oS7WBw4cCGNjY0FiCSE7O5tZZo4ePVqw4xgaGvI2Gr5580bQ75G8WA1fDg4OUt29rKury7wrKiAgQO0vlkpLS/HPP/+gc+fOaNWqFfbv389b19ZE4u5i5ms0qAqUUU+Q9C4pcTiOw8mTJ3n3CVkeAeC9q6GkpESimY1UQYjPVxPKe77BHqroXJGEiYkJ+vfvL3ccPT095mxWkjRkx8TEIDY2tsJ2kUgk1925n6tduzZatGhRYfutW7eYA5fKnT17FsXFxbz7lNXxUlVMnDiRd/v+/ftRWloqU0xW5+3o0aOhq6srUQzWAMZBgwbB0NBQprz4sO5IE+L6X1ozZszg3b5v3z6ZBnSdOHECqampFbabmZkJcp0kq7KyMmZZJFQZI/Q5nkWTruWFqrvJ0wEbHh5eYXCGvr7+h3M8X2xJ4rLuqOzatavEZU5l1KFtQZHk+bvyPadTp04wMjKCvr4+b9uPrHEB4e5q1kRClJHm5uaoV68e7z51+C6qWpMmTdC2bVu548j7e9eE66xyMnfAnj9/nnf7oEGDZA3Jy9ramne0dHR0dKWVXdZokcGDBwuSm0gkEvz9EvViZ2fHu10dC1zWb7Jv374ST98oCS0tLd5RdykpKXj16pVcsbt16ybX65XJyMiI90JCHb8bmk6TvhdCUnT54+joKHZaUEk1bNiQdzvfgBA+t27d4r3LxtjYWLC7M4yNjZl3L6hCUFAQb6Oora0t88JfVqz3repRxOUSExMRHBzMu2/s2LFSTxnD6jApKipiTnWtjh48eICxY8eiZ8+ecp9b1YG4hp2ioiIlZqI8yqhDCnF+vHfvHt68eVNhu7a2NgYMGCB3/I+pe3n0MW1tbUGmbtOE8r5ly5a82+fMmYN3797JnZeQ+vTpI1jHEqtN4NGjR5W+b9Z1l4uLC7PBTlZ8f9fS0lLm4LVyrMHoDg4O1bphVhas5RCSk5OZ3wVxnj9/zpzSlNXZ+zmO45gz0gnV3lVOncrubt268Q5KyMzMZN4xKs6OHTt4t48ZM0algzcfPHjALIdYdwFLq2XLlmjWrJkgscTRpGt5oepu5R1rn+O7C/JzrI668nMfX/kta1xWPFmoS9uCIrE+K9b59mN8n//H8fhiyxqXFa+6EKp+rc7fRVVTl89YE66zysncAXvr1i3e7W3atJE1JBPfNIwFBQVITExkvub58+fMP1i7du0Ey03IWET9sKYd42uoUjVV/yaB96PB5aFpvye+70dmZmaVvZtHVTTteyEURZc/zs7OgsRhTbMnaaXpwYMHvNtbtWol9xRGH1NEWSgrVnndqlUrudeo+Jyiymuh+Pn5Mae5lGb64XLt27fnHbgHKHYa4nPnzuHevXuVPqKjoxEWFoYzZ85g+/btmD59uth1z4OCguDs7KxWdyzLQtzU6UIOElMnii7DzczMmBet0mCVR/Xr1xdsGtVy6l4efaxZs2aCdPRpQnnfs2dP3u337t1Du3bt8O+//8p8l5/QhKwTiqsHseom5TThuuvOnTu829VpQJqmMDc3Zw68l2Ua4j179vDWfVq0aCHxdzw+Ph5v377l3Sf099DOzg46OjoVtquq7GYtLcLqTGWJj4/HxYsXefepevrhe/fu8W53cHCAjY2NYMdxdXUVLBaLJl3LC1V309PT4238Ly4uRmhoqNjX8nW69ejR48O/O3ToUOFGAEniKrqjTl3aFhSpY8eOvAMzbt68KXZWCtY6vR//XT/+t6Rxc3JycPPmzQrbzczMlPLbVlfV4buoauryGWvCdVa5irUoCWRkZODFixe8+4RYh+hzrDWwkpKS4OjoyLuPb0og4P0dtbVr1xYsN3Vq0CX87ty5gzt37nxo/Hzz5g2ys7M/PGSZ3k8d16piVdKV/ZuUR/PmzeV6vbQePnyImzdvfvhuJCUlITs7G1lZWcjOzpa5sSk7O7vKNiirgrK/F0J5+/Ytrl69+uH7FRsbi6ysrA/fL1k76oUqf1hrZUrL1NSUd7uklSbWYKrWrVvLnBMfdTpfV4XyWggcxzEbLl1cXGQelT9+/HgsXbq0wvbyugBrqht5NP5/7J13XBTH//9fx9F7xwqKBVFQUVQUpdh7FHtv6cUSYzSaqEmMsZePmsQk9h47CnakqAgWBFRsSLGBSu/t5veHP/yq7BxX9u72YJ6Pxz54MHP73vfOzs7OzHvm/W7eXKGwFJUTfKGhoZg/fz6n95aXL1+iZ8+eiIyMhKOjo7KqagRp7R2fbhL5pKCgABEREW/b8Hv37iErK+tt/1HR2LV8teEtWrTgZWDJ2iNu+Op7aEP5Dho0CA0bNuQc3ycnJ2PUqFGoX78+Ro4ciY8++gidO3fWWFwxPvsGDRo0gLW1NacR68GDB1INlUJ/roQQ6sKdjh078qJXbWPixInYv39/lfTjx48jNzdXrgUru3bt4kyXdfcrQK+DpqamaNCggcxyZMXa2hovX758L+3FixcghPA+yVkdEydOxLx586p8hy9fvoyEhASZ+49btmzhNIS3b99e40bD+/fvc6bzPZ5p06YNtT7yhbrH8kKZ/+vevTvnLvWQkBBqfEmaQe1dI2ll3NBTp07JLDcvL4/TUGFhYcFbXRfK3IIq0dPTQ9euXXHmzJn30isN4LT43REREVV26X0Ye9fT0xNmZmbv1TVF5AKAj48PxGKxzPdVkzA0NOTN5bmQ66KmEcr7LvT++LsoZIBNTU2l5vEZ/7U6pMXyevHiBWc6HyvF36VZs2a8ymPww6NHj7Bt2zbs27cPSUlJvMsX2g7H3NxcZGdnc+aNGDFCbXooG1+PK6g137x48QLbtm3D3r17q13drihCqx/ajL6+vmAn57moqKjAoUOHsGfPHqmxt5SBr/plZWXFixxa517WwW16ejpnep06dRTWiQuaSylNQDM6b9q0CZs2bVKLDkKIhxoREYHExETOPEV2v7577k8//cQ5qbZjxw6sWrVKYdmqws/PDxEREZg/fz5WrFhRJf/58+f4+OOPFXJ1KASk1TchxWcG3sQL3r17NwIDAxU2skqDrzacrz4TrT0KCgpS26S6ENqjD1F1+QqpvdfT08OyZcukxl1/9uwZ1q5di7Vr18LIyAidO3dG165d0aVLF3h7e6stvh/fY++mTZsiOjq6SjptLqES2nOdM2cO5syZw4tu1SHtub58+ZLqeUAVi5BqA71790adOnWq7IQrKirCwYMHMW3aNJnkREdHcxrXxGKx1HfwQ2h1MD8/X21td3l5OXJyctQyhn8XCwsLjB49Glu3bq2S988//2DNmjXVyqioqMC2bds48zS9+xUANfwEzcuLoqhikvpd1DWWF+L8nyLuarkMaqamplUWznTv3r2KAVaa3PDwcJSXl1dJ9/X15c1QJ5S5BVXTvXv3KgZY4E350wylXLuPu3Xr9l6IFl1dXfj4+CAoKEgpuZU61lb4/B7R6qJQvMJoElW/77KWsTaMsypRyLefUGJRfRiY/F1ev37Nmc63Ky0jIyPeApYzlCc/Px9z585Fy5YtsXTpUpV0vgDhfPwr0YZ3Uhb4fj/fpaysDCtWrEDz5s2xYMEClRlfAfZB5hNV1gm+CQ8Ph4eHB0aPHo0TJ06oxPgK8Fe/DAwMeJGjLLTVbXw/ewsLC17lKYMQ2mxl22s+oLkEFovFGDNmjMJynZycqPGm9uzZwzkBIQTEYjGWL19ONT6fO3cO+/btU7NW/CDNmMGnZxpliIuLg4+PDwYOHIj9+/erxPgK8NeG89VGsvaIm9pWvmPHjsW3334rs7yQkBD88ssv6Nu3L6ysrODt7Y2ffvpJ5TEh+e4b0OTR5hKANxPxQoiNK+250ha3AXQXmwzpiMVi6vdZHjfEtN/27NlTru+hENoWQHPt9+eff86ZvnPnTqlhDyoJCgriLEMTExOMHTtWaf2UhdYG8W3sVvX4SNVjeSHP/7Vv356zfGNiYqjfEFkMdQC3gU2a3IsXL3Km82moE8rcgqqhlRnNGErL45LDlSZNrjqeq7ZRW+qhphFKOQuhLyRrP0ghA6xQ3K+WlpZS82grlGjbm5VBFTIZ8nP79m24ublhxYoVKjN8CBVteCdlQVW7YJ4+fYoOHTpg7ty5UmMoMISH0HZGcSGRSDBnzhz4+vpSXWAw6NAmSdQ1yaoJhNBmK9teK0thYSEOHTrEmde7d2+ldyxPmDCBMz0tLQ2nT59WSraqWb16NYyNjTnzZNnVIUSSk5OpeapwlSgva9euRbt27aqNnyUk+Po+svaIm9pYvqtXr8b69evldi9cXl6OK1euYMmSJWjXrh1atWqFNWvWqMQww/e4m9Y3kKa7EJ4pIP25SltAou7dijWJiRMncqZHRERI/c5VUlZWxunGWJpsGtpQD1VJhw4dOF2nZmRk4OjRo9WeT4sXO3r0aEHM79HeYXW1gXyhyrG80Of/xGIxfHx8qqRLJBKEhoZynsNlbOOKDdq2bdsqi2nklQvUbkOdorRr147zO3rr1i3OkAY5OTmci9O4nitXGk1udnY2p1xbW1veQzkxGEJFCH0hWftBChlgZVlRpg64XMtVQvsAq8L9BW2SjKE+7t27Bz8/P+r285qONryTmiI9PR2+vr6IjY3VtCqMGso333wjSJem2g7fngaEtDNdCG22ptvrQ4cOUTvMnTt3xu3bt5U6XF1dqS5taDtvhYK9vT3VDeH169e18nsmbXFK48aN1ahJVVauXIlvv/1WUG2EOmHtkWrRtvKdPn06EhISMGbMGIXdEt69exezZ8+Gs7MztmzZopAMGnyP5WnjeGmT+UJ4poD05yptMkhd7qJrIu7u7vDw8KiSTgiRKY5mUFAQp6s6c3NzDB06VC5dtKEeqhraLliacbWSZ8+eVXHfWsmnn36qtF58QGuD+J571IbFzlxoy/yfPLsls7KycOvWLZlk6OjowM/PTya5mZmZnGMHOzs7uLm5cerHoKOjowNfX98q6YQQzh2poaGhVcYYVlZWnN+S1q1bV4mtKU0u13yJn5+f2uNyMxiaQgh9IVn7QQrFgNXRUchuq1ZoK3cLCgp4vxbbUadZSkpKMHz48Gr9bjs7O6Njx45o0aIFHB0dYW9vD3Nzc5iYmEAsFlMnGbQhTo42vJOagBCCCRMm4PHjx1J/V79+fXTs2BGtWrWCk5MTHBwcYG5uDlNTU+jq6lLrRp8+fQTh8oChOXbv3o0//vhD6m+MjIzQsWNHtGnTBs7Ozqhbty5sbGxgamoKfX19qhv7P/74A3/++acq1BYUhoaGnOk018SKwrc8ZdDR0am1xp5KpBlBFy5ciIULF6rs2idOnEBmZqag3TB2796dOoEYGhqKNm3aqFkj5bhx4wY1j2sCQl2Eh4dj3rx5Un+jp6eH9u3bw8PDA02aNEG9evVga2sLMzMzGBgYQFdXl3Oi4/jx4/jxxx9VpTpvsD6katHG9t7Z2Rl79+7FqlWrsHPnThw+fBg3b96Ue2FUWlra29jV27dv58V4WlBQwOuOLdo4XtouYG14Z6S5hsvPz4eNjY0atalZTJw4kXPX0a5du/DTTz9JPZdmpB0+fLjc74c21ENVM3bsWHz33XdV+vgXL15EYmIimjRpwnne1q1bOdvl1q1bV4m1qSlo40O+wyOoYn5U1WjT/J+/vz9nOpehlMugZm1tjbZt23LK6N69O44cOaKQXIAZ6pTB398fx48fr5IeEhKCYcOGVUn7EF9fX842XCQSwc/Pr4qXKFnlVurGYNQWtGmcpZABVtqqqxMnTqBRo0aK6iMX0lyW0TqwqtieLIQtz7WZjRs3UuN5GhgYYPr06fj444/RvHlzuWULLdYrDWnv5F9//QVvb2+16GFvb6+W68jKkSNHcO7cOc48HR0dTJs2DV9++SW1U1sdiu4MYNQMCgsL8d1331Hz27Vrh/nz52PAgAFUI6M0Plz9WFOhucKryQZYY2Nj5OTkVEmfNm0aZs6cqRYdNLniPSUlheoiSx2UlpZi3759+OqrrzSmQ3W0b9+emnf16lXMmDFDjdooR3FxMa5cucKZJxaLNWZMJoTgm2++ofb1mjZtivnz52P48OEKufyLjo5WVkW1QOtD9uvXDytWrFCLDvK6vNUmtLm9r1evHubNm4d58+YhKysLoaGhCAsLQ0REBGJjY2We8Pjvv/9QUVGBgwcPKj3Zm5eXx6sBltY3kDa2kpa3cOFCjBgxQmm9ZMHKyoqaJ03H7OxsODk5qUKlWsHYsWMxZ86cKvHkHz58iMjISHTu3JnzvKysLJw8eZIzb9KkSXLrQXvGtra21LiAqqB+/fpqu9aHmJiYYPz48VUWwxJC8M8//2DZsmVVzpFIJNSd+Z988olK9FQEdc1nCml8JCvaNP9XuaPxw5i+d+/eRVpaGurUqfM2jcug5u/vT/1ucu2MlVUu7XyGbNDK7sKFC1XSZHUr/a7sDw2wssqVphuDURPRpnGWQgZYaSsmbW1tBeHGgGYIys7O5vU6eXl5WmNtF8LWbL6RSCRYt24dZ17dunURGBgIT09PheXTgtgLDWnvpIWFhSDeSU2wevVqznQzMzMcPHgQffr0UUq+ttQPhmrYvXs30tPTOfO+/PJLrFu3jrp6WRZqS/16d4D4Lk+ePOH1OnzLUwYbGxvOjqKurm6taK937NihcZej27dvF7QBVtp3/dmzZ2rURHnOnDmD4uJizrwOHTpoLJTHuXPnEBcXx5k3dOhQ7Ny5UylXndrShtPqmkQiqRXtkaqpKe29lZUVhg4d+tZNam5uLi5fvoyQkBAEBgbiwYMHUs8/fPgwNm/eTHUZKivZ2dm8GnxocwPSFpWam5tDT0+P00WokZGRIJ6rNP21pW0SKvb29ujXrx9OnDhRJW/nzp1UA+z+/fs5XUM3btwY3bp1k1sPWtudn58viDqoLj7//HNOb0Tbt2/Hr7/+WmUsdu7cOU63tUZGRhg/frzK9JQXOzs7znS+5zO5vk9CRtvm/2g7GoE3BrSxY8e+9/+HSDOmubq6om7dunjx4oXccquTzZCOm5sb7O3t8fLly/fS79+/j+fPn6NevXoAgJcvX3IuFpBW9lx5ssqtV68eWrRoIde9MBjajDaNsxTyW+Lo6EjN4woOrQkqG6YPuX//Pq+TfgkJCbzIoe2k49O4K5RnwydXrlzB06dPq6SLRCLs3btXqc4XoD1lVq9ePejqcq+n0JZ74JsnT54gMjKSM2/jxo1KG1/LysqY+/Fazn///ceZ3qNHD2zcuFEp4ytQe95dZ2dnznS+41wKKW4mrR9VG545IQQ7d+7UtBq4fv06dfW8EJC2w0vb6smOHTuoeQMHDlSjJu9Da8NbtmyJPXv2KB0nUVueU21uj9RBTS1fc3Nz9OvXDytXrsT9+/cRFxeHL7/8Uqrr2yVLlii9IJivsTfw5ntEMxzT5hKAN150aEZgoTxXe3t76rOQFpObIRsTJ07kTD9w4AA1/i6t7zNhwgSFdobT2pbi4mLe3dQKGXd3d3Tp0qVKenp6OqeRnBbeYcSIEVSvPJpA2nwmn9y7d49XeapGG+f/ZIkDm56ejrt371b5jbSdkjTZ78pNS0vj/G42aNBAoR3CjDdUGta5eLf8L168WMX+ULduXbRs2ZIq28XFhbOP8a5c5n6YwXiDNo2zFDLANmzYkDop8fDhQ6UU4gsXFxfO9Ly8PCQlJfF2HdrKeXmhlSefBp7qYiRoIxEREZzp/v7+1A+iPFQXO1QoiMViNGvWjDNPKO+kurl06RJnepMmTaiDZnnQlrrBUA0VFRVUl5qLFi3iJZ5KbaljrVq14ky/e/cudRJLEW7dusWbLGVxdXXlTK8N7XVERAQSExM1rQYA6XFoNY20HQna5NHk4cOHCAwMpOZX7qbTBLQ+5Lx583iJVaktbTitPUpMTNT4TvWaQG1p793d3bFp0ybEx8dTx+HPnj2j9s9lha+xN/CmjtPG2rR7qEToz1UkElEneKOiotSsTc1j0KBBnC6gs7KyOI1+Dx8+xNWrVzllKToupdXByuvVJmg76z80tr58+ZLaJ/n0009510sZaG0Qn20gIKwFqrKgjfN/srir5TKo1a9fv9pvEZfs6uQCzFDHB4o+V1nKXtHnynY1M2obQu+Pv4tCBlgdHR1qbKqwsDClFOKLOnXqUN12XLt2jbfr8BXfycLCgjOdr5gMqampNdIAS1sBOHjwYF7k0zp4QqRjx46c6UJ5J9UNrW4MGjSIF/naVDcY/PPkyRMUFRVVSbe2tkbXrl2Vll9UVIQbN24oLUcbaN++PecO/tLSUpw9e5aXa7x+/Zq6I14T0NrruLg43l2LCQ3abkixWIz09HQQQng/hgwZwnnNPXv2CDaMxIexot5F2Z2Z6mThwoXUMvb19ZW6AlyVlJeXUyfZ+OpDKmtoUhe09igzM5PtlOOB2tbeN2vWDKdOnYKhoSFnPm3SUFb4HMdfv36dM10sFlfbNtGea0REhGAWLtDma7SlbRIyBgYGGDVqFGce107XXbt2cf7W29sbTZo0UUiHNm3aUONn17bx/4gRIzhdMp89exapqalv/9+xYwen6/CWLVvC29tbpTrKi7u7O2d6cnIyXr16xdt1aO2gUNHG+T/ajsbk5OS3m4PkdT8s7TfVyZVVNkM6tDJ8Nwa3vPFfpcmuTq40nRiMmoo2jbMUMsAC9EYjPDycs1OjCWiT4Fz+9xWhvLwcR48e5UUWzdVcamoqLzuALl++rLQMIfKhz/1KnJyceJGv7CTBu9DcTPO1w4v2TsbGxkqdyK2paFPdEDKqrrfaCq1+NWzYkJfdrxEREYL5lqoaU1NTasdpz549vFzjv//+E1R50gZHEomkRrcthYWFOHjwIGder169pMasU4Zx48Zxpr948QJnzpxRyTWVRdoCvwYNGqhRE8U5efIk9u/fT83/5ptv1KjN+2RmZqK8vLxKuoWFBXVRpDw8ePCA00WeEPHy8oKJiQln3vnz59WsTc2jNrb3jRs3xrBhwzjzuGIvykNISAhvMfpo36O2bdtWu9CFNu7KyMhATEyM0rrxQc+ePTnTU1JSNFr3asrYYtKkSZzpp06dem/hOyEEu3fv5vytMl6ZDAwMqPNdta3tNjQ05HweEokEW7Zsefv/v//+y3n+J598ojLdFKVVq1ZUl8iHDx/m5Rp37tzh1a27OtDWOR7arsfK6ylqgG3UqBEaN24sl1xZZTOk06xZMzRs2LBKekpKChITE/HkyRM8evSoSr6ihvVKuampqZzepBo3boxGjRrJprwKqSnfeKHDyvkN2jTOUtgAS3MZlpGRQe1gqptevXpxpgcFBSEvL09p+efPn+fNsGVjYwMzM7Mq6eXl5bx0iqRNgGkztMaFD9dxMTExvO6Yoq0E59pFpwgDBgzgjDkpkUiwYcMGXq6hTaiybqSnp+PIkSNKy9EGVF1vtRVV1i8A2LRpEy9ytAVan+LYsWPvrVxXhPLycsGVp6OjI3Vnyvr169Wsjfo4fPgwtf81duxYlV134MCB1IVuQnVDLG3ylOa2W0jcu3dP6sRyp06dEBAQoEaN3oe14f+HoaEh+vbty5m3adMmwe4S1xZqa3tPi8On7Ni5tLSUlz54Xl4egoODOfNohst36dKlC9XbllCea58+fag7JP/88081a/N/1JSxhZeXF2cMxbKyMuzbt+/t/xEREZwhsAwNDTFy5EildKD1n4ODgzkn/msyn332Geci2K1bt6KiogJhYWGcMZ8NDAx4CU/ENzo6OtSJZb7m9vbu3cuLHHWiTfN/7yLNXW1KSgqnVxZZdkrSZFfK5Wp7mjRpQo2byJAPmmH9woUL77kMrsTZ2VkmI6mjoyOnd4QLFy4I3qheU77xQoeV8xu0aZylsAHWzc2NumNl2bJlnKvK1U1AQADnqoCioiKsW7dOafm//fab0jIqEYlEaNOmDWfe6dOnlZKdmJiIkydPKiVDqFhbW3OmP3/+XGnZK1asUFrGu9B0ffbsGW/yaYOwDRs2SI0nVxNRZd1Yt26dVsXgUwYrKyvOwWx2djYKCws1oJEwUGX9SkhIqLFtNo0xY8ZwuiEuLi7G7NmzlZK9ceNG3L17VykZqmDatGmc6eHh4QgPD1ezNuqBZuw0NjZWaSxQQ0NDqrEvMDCQt91UfPHs2TMcOHCAmu/r66tGbeTn7t276N27N7VcdXR0sHbtWl68BSgKrQ1//fq10rvlX79+ja1btyolQ93Q2qPHjx/z5omgNlMb23ua4Y+221oeVq5cqfRcw5o1a1BcXMyZJ4tRTCwWY8qUKZx5e/fuFUQMaEtLS6oL/iNHjmgsNENNGlvQDHfvuiHmckkMvHGZStvhKCtjx47lNDxVVFRg6dKlSsnWNpo3b85pDHn69ClOnz5dJR5sJcOGDaP2CTTNiBEjONPDwsJw5coVpWRnZmbir7/+UkqGJtCm+b93keaulstQ17RpU87dlVxwGWppcqXpwpAfWlmGhIQovKu5Eq7nSpMrr2xVUpO+8UJG1fYFbUJbxlkKG2AB4Ntvv+VMf/DgAWbOnKmMaF5wcHBA//79OfOWL1+u1Ef6wIEDvMdPadeuHWe6sivTpk+fDolEopQMoUJbeUzrbMjK0aNHed81THMZyKfbl1mzZnGmZ2VlYeLEiYKJSaQOVFU3oqOjsWrVKqVkaBO6urpwcHDgzNM2l0V8QqtfqampSq04Lysrw8SJE2tsm02jfv361AnPQ4cOUeOGVsetW7ewcOFCZVRTGRMnToStrS1n3qRJk2qc6/jU1NT3Yte8y6BBg1Qe15S2w7akpERQXkIIIZgxYwZ1kY+1tbXMK+I1wf79++Ht7Y0nT55Qf/Pjjz+ic+fOatSqKsbGxjA2Nq6SXl5ernTsvI8//hj5+flKyVA3ffv2pca8nDlzZq3bScU3ta29B8C50wwA6tWrp7Ts+/fvK7XL/Pnz59SJ9jZt2lDH5B/y1VdfcRqay8vLMWrUKKqBV51Mnz6dM10ikWDSpEkamQytSWOLCRMmcE40X7t2Dffu3UNxcTE1/BXNhbE8WFtbU+Vs27aNt9Bb2sLnn3/Omb5y5Uqq214huh+uZPDgwdRJ9pkzZyo1t7Nw4UJkZmYqfL6m0Kb5v3dxcnKCs7NzlfS0tDTO75k8fX0uwxtNLu33DMWQZljnGvcq+1xpcqXpom5q0jdeyKjDvqAtaMs4SykD7MiRI6nuhTZt2oT//e9/yojnpKKiQq6OJG3nTEFBAcaMGaPQLrYHDx7g66+/lvu86qA1xnFxcQqvPl+zZg3VvVJNwMPDgzP90KFDnO42ZOHu3bv4+OOPlVGLE1dXV870EydO8HYNLy8vqbt85syZoxIj7JkzZwS3w5ZWNy5fvqxwTOTnz59j7Nixgtjhr07UUXe1DTs7O9SvX58zT9HVs5WGl+vXryujmtaycOFCTjfqwBuDhrwuBxMSEtCnTx9eQg6oAhMTE6pxODk5GcOGDVOJ7nfu3MHt27d5l1sdO3bsoH5/aDFa+aR79+6oU6cOZ55Q3BCXl5dj5syZUmN7ff7559SdZZrkxo0b6N+/P8aMGYPs7Gzq7/r27SuYRRG0foIyOyCWL1+O48ePK3y+phCJRFi2bBlnXlZWFgYPHoy0tDTer5uSkoKoqCje5QoNIbf3r1+/xrZt23iNGVVQUEDdxe/m5sbLNRYsWKBQf6mkpARjxoyhGh5pC8y5cHR0pM4JXL9+HZMnT1ZJ/PnIyEiZwzN4e3tTXYw/fPgQw4cP14i7upoytnB0dISfnx9n3s6dO3H8+HHOMbKDgwP69OnDiw6LFi2i7iyfPHmySnY65+Xl4dSpU7zLVZYhQ4ZwTvyHhYVxLoho3rw59fkJAWNjY3zxxRecedeuXcOCBQsUknvkyBGNuiFXBm2a//sQmoHs5s2bMv+WCwcHB85FdFxy5ZXNkE7Dhg3RtGnTKukvX77E06dPq6TLU/b+/v5VFvjQ5Lq6ulLHuZqgpnzjhQytjIOCgmrdZg4hj7PeRSkDrEgkwt9//02dCJoxYwY+/vhjXlZ/FhUV4c8//0Tz5s0xevRomc/z9fWldm7Dw8Mxbtw4ufRLSUlB3759VWJB79+/P+zt7TnzZs2ahXv37sklb9myZUq7bhQ6tGdbUlKCUaNGyf2SRUZGolu3bipZDdilSxfO9LCwMF4nf9evXw8rKyvOvNWrV2Pw4MG8uFssLy/H3r170bZtW/Tt21dwRo5u3bpx7m4B3qyQkXcH/P3799GlSxfOgPc1HVrdXbt2LeLi4tSsjXCgtT9btmx5L/aTLJSVlWHSpElaOxjmAxcXF+ou/vLycgwbNgyffPKJVONO5W9Xr16N9u3b4+XLl2/TZXXjpE6+/PJLeHl5ceaFh4fD09OTN2NpREQEBg0aBHd3d9y6dYsXmfJA28VsbW1NnRzmE7FYjFGjRnHmRUdHa3S1KCEEFy9ehLe3t9TFi3Xq1MF3332nRs2k8+TJE2zevBne3t7w9PSsdjLW398fR44c4QwPoglobfi5c+eoxkgahBDMnz8f8+bN40M1jTBo0CAMHz6cMy8hIQHt2rXjzY3TrVu3MG7cODRt2hTnzp3jRabQEWp7n5+fj6lTp8LZ2RmrV69WekFleXk5pk2bxmmw19XV5S32c0FBAQYMGCBXiIHi4mKMGzeOWo/d3NzkXhC0ePFizl1NwBuPWT4+PlI9AsgKIQQnT56Ej48PunTpIrMBFgD+97//UeMjnjp1Cr1790Z6errCumVnZ2Px4sVYvHixzOfUpLEFbQfqnj17qH2fcePG8fYtrFOnDpYvX86ZV1BQAD8/P97ikr948QI//PADGjZsiNWrV/Mik0/09PQwdepUmX+vDqObsnz33XewsbHhzPv999+xZs0aueSdP38e48aN09oJem2a//sQWY1vIpGIGltUWdmtWrWizjkzFEPWsndzc5Or7O3t7dGqVStedVAXNekbL1RoZZyUlIRff/1VzdpoHqGOs96D8MDatWsJAOrh6OhI1q1bR/Lz8+WSm5+fT/777z8ycuRIYmpq+laeWCyWS869e/eIkZERVT9XV1dy9epVqTIqKirIli1biLm5+XvnmpmZEQsLC065SUlJculJCCHfffcdVc86deqQkydPVisjPj6e9OvX771zxWIxsbe355R78eJFuXRctGgRp5xFixbJfb+0e5UHHx8fqpxWrVqRa9euVSvj9evX5Ouvvya6urrvnd+wYUNedCSEkJKSEmJpaUmV5+fnR9asWUPOnDlDoqOjSXx8POeRnp5e7bUOHz5MRCIR9Vq2trbk559/JhkZGXLfw8mTJ8mUKVOItbX1ezKfPHkisxy+yrQ6Jk6cSL1Ww4YNyZkzZ6qVkZ+fTxYuXEiMjY3fO9/c3Jy3d3/SpEmccrZt26bYjfNMVFQUtRwNDAzI6NGjyd9//00uXrxIbty4Qa270r4BSUlJnPKdnJxUck98tGMhISHUchGLxeTHH38khYWF1coJCgoiLVq04KyjfLS1fLbZNPhsJ9u2bUuVB4AYGhqSYcOGkX/++YecPn2a3Lhxg1y4cIHs3r2bfPbZZ8TW1rbKObq6uuTo0aO81TEnJyde3n1CCElMTKzSnr576Ovrk2nTppF79+7JJVcikZCoqCgyZ84c4uzs/J7MXbt2ya2nMoSHh1Pv77PPPlObHtHR0VQ9vv/++2rPp71LAMiZM2eobd+HR2RkJDl9+jT5+++/yaeffkqaNm0qtc4DIDo6OiQ4OFih+6bVV09Pz2p1vXnzJrly5Qo5ffo02bZtG/nll1/IyJEjSfPmzavV+d1j/PjxMrWH6uTBgwdELBZTdf70009JdnZ2tXKuXLlCOnXqJHMbPmnSJLn03LZtGy9yZCEjI4M0btxYaj0cMWKETH3rD4mPjyeLFy8mbm5u78n89ddfeb8PeVDHN7ISIbb3H/a/DAwMyODBg8nu3btJTk6OXHpERUURb29v6v0NGzZMZlk0GQ0aNHjvfyMjI7J+/XpSVlYmVV50dDRp2bKl1LodFhYm1/1WEhkZSQwMDKiyTU1NybfffivXWIkQQsrLy0lISAj56quvSN26dd+TGRERIZesTZs2SW2jzczMyNKlS2Wer5FIJCQ8PJx88cUXb+dHZsyYIbM+6hhbEMJvf41GXl4eMTExkeubeOvWLd6uX8mQIUOkXrNTp07kyJEjpKKiQi65z58/J5s2bSL+/v7vfTN79Oghswx1jvOSkpKIjo5Otc9AT09PpnkVIfDvv/9KvZfBgweTZ8+eSZVRUFBAZs+eXaVsaH0VeZ+NOp+xtsz/fUhaWppM7UPr1q3lln3kyBGZZH/zzTdK34c2zS2og/3798tU9tOnT5db9vTp02WSffjwYaXvg8/nWlPmD4U+T+vq6kotZ09PT7Js2TISFBREoqKiSFxcHGcZP336VOo1fH19OeXLa0eicfHiRU75vr6+cssS4jjrXXTBAzNnzsTjx4+xYcMGzvzU1FTMnDkTCxYsQOfOneHj44MWLVrA2toa1tbWKCsrQ3Z2NrKzs/H8+XPcunULMTExuHv3Li+uPl1cXLBmzRqq+46EhAR4eXmhXbt2GDVqFJo3b4569eqhtLQUz549w/Xr17Fv3z7OYMZLly7FqlWreHO/OnfuXGzfvp1zh21aWhoGDhyIzp07Y8iQIWjdujXs7OxQXFyMly9f4s6dOwgODkZUVFSVFW0//vgjQkND39sNVFNYsmQJfHx8OPPu3LmDDh06wMfHB/3794eHhwesra0hkUiQnp6OpKQknD59GiEhIVXcUYtEImzfvp23WGv6+vr4+OOPqfFDQ0NDERoaWq2cRYsWVbvCOCAgAKtWraLugH79+jUWLVqE3377DR07doSvry/c3d3fvpOEkLfvZHp6OmJjYxETE4P4+HiF3HZrikWLFmHfvn2c7r+ePHmCPn36wMPDA0OGDEH79u1hZ2cHHR0dvHz5Ek+ePMHZs2dx7tw5zpWU69atw88//yw418uqoGPHjvD09OR09VYZP1GWmCkXL14UtJsnefH390f37t0REhJSJa+iogJLlizBH3/8gVGjRsHb2xtOTk4wNTVFVlYW0tLSEBUVhZMnT3Luqvbz84OPjw9++eUXddyKYNDX18fx48fh5eWFFy9ecP6muLgYhw8fluqm9UPWrl2Ltm3bcuZpejees7MzAgMD0atXL043gKWlpdiyZQu2bt0KNzc3+Pj4oEOHDrCzs4O1tTUMDAyQk5OD7OxsZGRk4M6dO4iJicGtW7eq3S2sLqR5eVCH++FKOnTogGbNmuHhw4dV8nbv3o2lS5cqXB/4ciXIhUgkwh9//IF+/frxKvf69etwd3fnVeaHWFhYYPny5fjss89Ueh1FaNasGSZNmoStW7dy5v/999/Ys2cPhg8fDl9fXzRp0gTm5ubIzc1Feno6YmJicOLECc7VtC1atMD06dPx5Zdfqvo2eMXa2hqnT5+Gt7c351hEIpHg4MGDOHjwIJo1awYfHx907twZDg4OsLa2hrGxMXJzc5GdnY2srCwkJCQgJiYGMTExePXqlQbuSFhoQ3tfUlKCwMBABAYGQiwWw9XVFZ6enmjXrh3q1q0La2trWFlZQSKRID8/HykpKbh9+zbOnDkjdVeDhYUF1q9fr7R+mzZtwkcfffT2/6KiIsyYMQO//fYbRo8eDS8vL9SvXx9GRkZ4/vw5Hjx4gP/++69ad8Vz5syhjierw8vLC7t27cLo0aM5d5Xl5+djzZo1WL9+PTw8PODr6wsPDw/Y2NjA2toaurq6b8ddr169Qnx8PGJiYhAbG4uCggKFdPqQL7/8EnFxcdi8eTNnfl5eHubPn49ffvkFfn5+6N27NxwdHWFvbw8zM7O37/SDBw9w7do1REZGyu1N6F1q0tjC1NQUAQEB2LVrl0y/b9OmDdq0acO7Hnv27EGPHj1w9epVzvyoqCgEBATA3t4ePj4+6NatGxo2bAhra2tYWFigsLDwbT1MSkp623Y/fvyYd11VSaNGjdCnT59qvXIMGTJEa3YCTps2DUFBQTh69ChnfmBgIIKDg9G7d28MGjQITk5OcHBwQFZWFp4+fYqQkBAcOXKkSnx6XV1d/O9//8PQoUPVcRu8oS3zfx9S6Sq4Os8Nilzfz88POjo61e5sFtpOyZpApatgUk2oN0Wea48ePaoN7aijo6Px7+CH1KRvvJD56quvpIbCkCVUx6RJkwQTjklZBD/Oks+eLN0iLG33Jp+HvDtgK/niiy941WPYsGFEIpHwvrJyz549vOoZEBBAKioqeFu5ILQdsIQQ8sknn/Bez5YvX86rjoQQkpmZSerVq6eUXvKU8/r166XuhOXzEOIOWEII+e2333i/1y+++IIQwt+qaqGvrCKEkMuXL0vdKSTLIa2t0cYdsIQQcvfuXepOaEWPxo0bkxcvXvCmozauUk1ISJC6AlmeY/78+YQQQh49esSZ7+rqKrd+qthRERERIdVLAp+HOnfAFhQUEDMzM049HB0diUQiUZsuhEjfxXrq1CmFz1XVYWNjQw4dOqTUPdPqqyoPXV1dMmXKFJKWlqaU7qomLS2Nt7am8rC2tiZ3797lbeeqOnfAVnL37t0qOw1VddSmHbCVCKm9p/W/+Dz09PTk3p1Bk0UIITNmzOBVv0GDBsm9K5CLQ4cOSd0Jy+ch7w5YQt549JoyZYrKdJJnBywhqh9bEKKeHbCEEHL+/HmZdV69ejWv136X3Nxc4u/vr5Y6KNQdsIQQcvz48Wr1P3v2rEqurSry8vKq9RIk77F+/Xreno26n7G2zP99yNdff12tHidOnFBIdvv27aXK1dHRIVlZWUrfgzbOLaiaD727fHiIxWKZvOp8SHZ2drXfSQ8PD17uge/nWhPmD4U+T1taWkpat26tVBlXN57Uph2wlQhpnPUuSsWAfReRSISVK1di+/btMDU15Ussr2zcuBGffvopL7L8/f2xc+fOKkGx+WDs2LH44YcfeJE1cOBA7N27Fzo6vD1qQbJp0yZeV6r99NNP+P7773mTV4mVlRWCgoLg4ODAu2wupk+fjqCgINjZ2anlekJk/vz51Ng8ijB58mRs3LiRN3naQpcuXbB161bo6elpWhVB4erqiv/++4+3cnF2dsbZs2dRp04dXuRpKy1atEB0dLRS7bqxsTH++usv/PbbbwBA3a1Oi4umbrp27Yro6Gi0a9dO06rwyuHDh6nxmMaMGaOSfpQ0pO24Fdrqz1GjRuHu3bsYNmyYplWRGXt7e3z77bd4/Pgxtm7dqrb+jqI4ODjgxIkTMDMz40Wera0tgoOD4erqyos8TeHq6opr166hZ8+emlalRlJT23sujIyMcOzYMd5ivwLA6tWrMXr0aF5kDRo0CP/99x8vY+Vhw4YhPDycGhNW0+jo6GDLli1KeXvgk5o0tvD390fDhg2r/Z2urq5KPX+YmZnh9OnTmDVrltr7V0JiwIABUp+Hs7Oz1n3fTE1Nce7cOd6+G99//z2mT5/OiyxNoC3zfx9S3Q5UXV1d+Pr6qkS2h4cHLC0tFZLNkE51Zd++fXtYWFjILdfCwqLad16ou5pr0jdeqOjp6SEwMBDNmjXTtCqCQqjjLN6tcpMmTUJcXByvg6xKxGIx+vbti7179yp0vo6ODjZv3oy1a9dCX19fYT2mTp2KU6dOwdjYWGEZ1bF06VKlBkc6OjqYM2cOjh07BgMDA561Ex56enoICgpS2sWdpaUldu/erVK3n23btkVcXBw+/fRTtTybfv364c6dO/jkk09UYojv2rUr/v33X0EbjLZu3YpFixYpdf+GhoZYtWoVtm3bVuMXNNCYOHEioqOjVepqUxvp3bs3Ll68iPr16yslp3///oiKikLTpk150ky7qVOnDs6dO4c9e/agefPmMp8nFosxZswYxMXFvfdNoLkNEdIClWbNmiEyMhLLly+Hubm5SuQvWbIEffv25V02DWlGzbFjx6pNj0qaNWsGT09Pzrzjx49r3G2zra0tZs6cifj4eOzfv1/w7vFEIhHc3Nzw9ddf49y5c3j+/DlWr14t00S0UGjTpg2ioqKUNpp26tQJUVFR6NSpE0+aaZY6derg7Nmz+Pfff1ViSK9fvz7mzZuHiRMn8i5bGxBKe29iYgIXFxferw8AvXr1QkxMDPr378+rXLFYjD179mDevHkK98l1dHQwf/58HD16FIaGhrzp1rFjR8TGxmLu3LkqGee1bdsW69ato4ZVqA6RSIQffvgBly9fhoeHB296GRgYoEWLFnKfV1PGFjo6Ohg/fny1v+vdu7fKFybp6+tjzZo1CA0N5fUZV2JqaorJkye/XeAoRMRiMT7++GNq/rRp07TSQG1ra4vw8HCZ6hoNQ0NDbNiwAcuXL+dRM/WjTfN/71LpKpiGp6enwosCqzPECdVQVxNQZdlr83OtKd94IePk5IQbN27g+++/V8l4QlsRyjjrXXiJAfshjRs3xuHDhxEbG4sNGzbg0KFDCsdJNDExgY+PD3r37o2RI0eiXr16Sus3c+ZMDBgwAD/88AOOHj1arZ/8Sjp27Ihff/0VvXv3VloHWfjhhx8wcOBAzJ49G+fOnZP5vB49euC3336rMRNAsmJgYIC//voLgwYNwq+//oqoqCiZz60cSPz4449q2a1hb2+PzZs3Y8WKFTh16hQuXbqEO3fuICUlBRkZGSgsLOQl/nEldnZ2+PvvvzF37lxs3LgRe/fuVTgesIGBATp37ozevXtjxIgRWmEs0tHRweLFi9GrVy/8/PPPcr1P+vr6GD16NBYuXIgmTZqoUEvtoG3btjh9+jRSUlLexpy+d+8enj59iqysLBQXF8vcptYkvL29cevWLSxbtgybN2+uEmNHGp6enpg3b55W7XJTFyKRCGPHjsWYMWMQFhaGoKAgREVF4eHDh8jKykJFRQXMzMxQt25duLm5wdfXFx999BGnMZwWU1Zoi0f09fXx/fff49NPP8W///6LrVu3IiEhQSFZIpEIrVu3Rq9evTBkyBB4e3vzrK10ysvL4evri27dulXJMzExQevWrdWqTyXLli1DREQEZ15aWprKV4cbGhrCwsIC5ubmsLKygqurK9q3bw9PT0+0b99eqUWCfKKnpwcDAwMYGBjAwsIC9vb2cHBwgKOjI1xcXODq6oq2bdvC2tpa06oqTeWOzzVr1uB///sfZ/xTGi1atMDs2bMxderUGrdASyQSYdq0aRg7dix27dqFv//+Gzdu3FBYnouLC3r27InBgwejZ8+eNa685EUI7b2dnR3u3buHhw8f4sSJEzhz5gwiIyOpnguqQ19fH/3798fHH3+MAQMGKCRDFnR0dPD777/jo48+wo8//ogLFy7IfG6vXr2wbNkyla2MNzU1xbJlyzBjxgz89ddf2LFjB1JSUhSSJRaL0aFDB/Tq1QvDhg3jLXZop06dcP36dRw7dgzr169HREREtfHrPkQkEqFNmzYYO3Yspk6dChsbG4V0qSlji0mTJuH333+X+ht1Ljjx8fHBjRs3EBwcjD/++APnzp1DWVmZQrIcHBzQo0cP9OvXD0OHDoWJiQnP2vIPbbGdrq4upk6dqmZt+MPExAS7du3ChAkTMH/+fJm/yTo6OggICMCSJUtUtuhG3WjT/F8lVlZWaNu2LW7evMmZr4wxrVu3btDT06O+50I21Gk7vr6+EIvFqKio4MxXpux79OhBXTChq6urcPx6dVFTvvFCxszMDMuXL8eiRYtw7tw5hIeHIy4uDsnJyXj9+jXy8/N5tS9oC0IYZ70ng8jb01aAsrIyhIWF4cqVK4iJiUFSUhKePXuG/Px8lJaWwtjYGGZmZjA3N0f9+vXh6uqKFi1aoE2bNujUqZNKJ6JSUlJw+PBhhIaG4s6dO0hPT0dxcTGMjY1hY2MDV1dXdOrUCYMGDaIO0ho1asQ5qEpKSkKjRo140fP+/fsICgrCuXPnkJqailevXiErKwuGhoaws7ODq6srvL29MXToUK13e8YXUVFROHv2LMLDw5GUlITMzEzk5ua+nfhs0qQJ3Nzc0KNHD/Tu3Zu60qy4uJgznc/V0upGIpEgMjISly5dwo0bN5CYmIinT58iPz8fxcXFMDQ0hLm5+VvDRosWLdCiRQu4u7ujS5cuKt39rQ5u376NU6dOISwsDA8fPkRGRgays7NhYGAAMzMzNG7cGC1btoS/vz/69u0LW1tbTjklJSWckxUGBgZauaqWwQ9ZWVk4efIkQkNDcePGDbx69QoZGRmQSCQwNTVF3bp14eLiAi8vL/Tt25dqhCovL+fsKOnq6kJXVyXrp2o0M2bMwP/+978q6UuWLMGCBQs0oJHs3Lt3DyEhIbh27RoePHiA1NRUZGdno6ioCLq6um/7UDY2NnBxcUGLFi3QsmVLdO3aVVA7fBkMbaCwsBDBwcG4ePEioqKikJ6ejszMTJSVlcHExAR2dnZwcXGBp6cn+vbti44dO3J+8ysqKjgnwcRisVa740pJScH58+dx7do1JCQkIDU1FRkZGSgqKoKOjg7MzMxgZmYGKysrNGvWDK6urnB1dUWXLl20ame0phBCey+RSBAfH/92kiwxMRGPHz9GZmYm8vLyUFhY+HasYGFhAScnJ3h4eMDDwwM9e/bkZVEGrR9Nm7q4d+8ejh8/jsuXL+Pu3bt49eoVCgoKYGBgAFtbW7i6usLHxwcBAQEK7dRUlps3byIsLAzXr1/Ho0eP8OTJE+Tm5qK4uBj6+vpv3xt7e/u3465WrVqha9euCrktlJdnz57hzJkzuHLlCu7du4fk5GRkZ2ejuLj47fjIwsICTZs2fbv4plevXoJ3M8/4P7Kzs3H+/HlcvXoV8fHxSElJQXp6OgoLC1FRUQFTU1OYm5vD3NwcjRs3fjsn5+npCXd3d60b244dOxb79u2rkj5kyBAcPXpUAxqphujoaBw/fhxXrlzBgwcPkJmZifLy8rdjzlatWsHHxwcfffQRHB0dNa2uSmHzfwwGg8GQhibHWWoxwNZ01GGAZTAYDAaDoTidOnVCdHR0lfQjR45g6NChGtCIwWAwGAwGF/IaYBkMBqOSrKws1KtXj9OQFhwcjH79+mlAKwaDwWAwGLWV2u33icFgMBgMRo3n4cOHuHbtGmdely5d1KwNg8FgMBgMBoPBUAU7d+7kNL46OjqyWIQMBoPBYDDUDjPAMhgMBoPBqNFs3LiRc9dMy5Ytmfs8BoPBYDAYDAajhrB582bO9GnTptX62OMMBoPBYDDUD+t9MBgMBoPBqLHExsbi77//5swbMWKEmrVhMBgMBoPBYDAYquDMmTNISEioki4WizFt2jQNaMRgMBgMBqO2wwywDAaDwWAwaiTZ2dkYNWoUpxsysViMSZMmaUArBoPBYDAYDAaDwTe//PILZ/rQoUNRv359NWvDYDAYDAaDwQywDAaDwWAwBMShQ4ewYMECvHz5Uik59+/fR6dOnXD//n3O/JEjR6Jx48ZKXYPBYDAYDAaDwWBonl27duHKlSucebNnz1azNgwGg8FgMBhvYAZYBoPBYDAYgiE7OxtLly5Fo0aNMGXKFJw6dQplZWUyn5+Wloa5c+fC09MTDx484PyNsbExfv/9d75UZjAYDAaDwWAwGBoiIiICX3zxBWdejx494OXlpWaNGAwGg8FgMN6gq2kFGAwGg8FgMD6kqKgI27dvx/bt22FlZQUvLy+0a9cObm5usLGxgaWlJXR0dJCVlYXMzEzExsYiPDwc0dHRKC0tlSp79erVcHJyUtOdMBgMBoPBYDAYDGV49uwZsrKy3v5fVFSEx48f48SJE9i/fz8qKiqqnCMSibB06VJ1qslgMBgMBoPxHswAy2AwGAwGQ9BkZWXh1KlTOHXqlNKyvv76a3z++ec8aMVgMBgMBoPBYDDUwYIFC7Bjxw65zpkyZQo6duyoIo0YDAaDwWAwqoe5IGYwGAwGg1ErmDdvHjZs2KBpNRgMBoPBYDAYDIYKadSoEdasWaNpNRgMBoPBYNRy2A5YBoPBYDAYNZrGjRtj48aN6N+/v6ZVYTAYDAaDwWAwGCrEzs4OJ0+ehIWFhaZVYTAYDAaDUcthO2AZDAaDwWAIhokTJ+LEiROYMGECrKyslJLl7u6OP//8E3fv3mXGVwaDwWAwGAwGo4bTr18/3Lx5E61atdK0KgwGg8FgMBhsByyDwWAwGAzhoK+vj4EDB2LgwIEghODu3bu4cuUK4uPjkZSUhJSUFLx69QqFhYUoLCwEIQRGRkawsrJCw4YN4eLiAk9PT/Tu3RtNmzbV9O0wGAwGg8FgMBgMFaCnpwdLS0s0adIEnTt3xvjx49GuXTtNq8VgMBgMBoPxFhEhhGhaCQaDwWAwGAwGg8FgMBgMBoPBYDAYDAaDwagJMBfEDAaDwWAwGAwGg8FgMBgMBoPBYDAYDAaDwRPMAMtgMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBg8wQywDAaDwWAwGAwGg8FgMBgMBoPBYDAYDAaDwRPMAMtgMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBg8wQywDAaDwWAwGAwGg8FgMBgMBoPBYDAYDAaDwRPMAMtgMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBg8wQywDAaDwWAwGAwGg8FgMBgMBoPBYDAYDAaDwRPMAMtgMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBg8wQywDAaDwWAwGAwGg8FgMBgMBoPBYDAYDAaDwRNKG2D9/PwgEomqHKGhoXLJCQ0N5ZTj5+enrIoMBoPBYDAYDMZ78NWHZTBUxeLFiznr6OLFizWtGoOhMSZPnsz5Xmzfvl3TqjEYVWDzXMKnUaNGnM8oOTlZ06oxGABYO6LNlJeX4+TJk/jhhx/Qs2dPNG3aFHZ2dtDX1+d8puvWrdO0ygwth81xCBNdTSvAYDAYDAaDwWAwGAwGg8FgMBgMBoOhzVRUVGDNmjVYv349nj17pml1VEZFRQWysrJQWFiIwsJCiMViGBkZwcbGBkZGRppWj8EQDMwAy2AwGAyGBsnPz0edOnVQUFDAme/m5ob4+HiV65GUlETVQVYMDAxgbm4OCwsLGBoa8qQZg8FgMBgMBoPBYDAYDIawSU9Px4gRIxAREaFpVXilsLAQoaGhiIyMRFRUFB49eoQnT56gvLyc8/cWFhZo0qQJ3Nzc0KlTJ/j6+qJVq1ZK66HIvJVIJIKenh4MDQ1hYGAAU1NTmJiYKK0LgyErzADLYDAYDIYGOXTokNQO5O3bt3Hjxg20b99epXpMmTIFYWFhvMkzMDBAy5Yt0bZtW7Rr1w5DhgxBgwYNeJPPYDAYDAaDwWAwGAwGgyEESktLERAQgCtXrmhaFd44deoUtm3bhqCgIBQWFsp8Xk5ODm7evImbN29i586dAAAnJycMGzYMU6ZMgZubm0L68DVvZWJiAgcHB9SvXx8uLi5wdXVFmzZt4OXlxYyzDN5hBlgGg8FgCA5afLuaGPdOlphl27dvV7kBlm9KSkoQExODmJgYbNu2DTNmzIC/vz8+//xzDB8+XNPqMQTM9u3bOeNuTZ48GY0aNVK7PgwGg8FgMGoWycnJnH3wRo0aYfLkyWrXh8FgaB+sHWF8yNKlS2uM8fXQoUP4+eefcfv2bd5kpqSkYM2aNVizZg18fHzw448/olevXrzJl4eCggI8fvwYjx8/fm+3sq6uLtq1a4eBAwdi1KhRaN68uUb0Y9QsmAGWwWAwGILj559/5kyvaQbYpKQkhIeHV/u7ffv2YfXq1dDX11eDVqpBIpHgwoULuHDhArp3745NmzahRYsWmlaLIUC2b9/OuarVz8+PGWAZDAaDwWAoTXJyMud4w9fXlxlOGAyGTLB2hPEuhYWF2LBhA2eeWCxGQEAA+vbti2bNmsHc3BxisbjK7+rWratqNavl8ePH+Pzzz3Hu3DmVXic8PBy9e/eGr68vNmzYAHd3d5VeT1bKy8sRHR2N6OhoLFy4EB06dMDs2bMxfPhwzmfGYMgCM8AyGAwGg6EhduzYAUJItb/LyMjAyZMnERAQoAatVE9ISAjatWuHPXv2YOjQoZpWh8FgMBgMBoPBYDAYDAZDIY4fP47MzMwq6QYGBjhz5gx8fX01oJV8BAYGYtKkScjOzlbbNcPCwtCuXTvcuXNHkLtNr127htGjR6NJkyZYt24dBg4cqGmVGFqIjqYVYDAYDAajNkIIeRsLQxZkcVWsTRQVFWHkyJE4c+aMplVhMBgMBoPBYDAYDAaDwVCIS5cucaZ/+eWXWmF8Xb9+PYYMGVKt8VVfXx99+vTBkiVLEBwcjISEBGRlZaGkpASlpaXIyMjA/fv3cfLkSfz+++/o06cPjI2NpcosLy+XK76sJkhMTMSgQYMQEBCArKwsTavD0DIEswPWz89Ppl1ADAaDwWDUBMLCwpCUlCTz70+dOoWXL1/C3t5ehVpVxcnJiTMe54cQQlBQUIC8vDwkJiYiLi4OJ06cwPnz51FeXs55Tnl5OcaPH4/bt2/DwcGBZ80ZDAaDwWAwGAwGg8FgMFTLtWvXONO1wYvZqlWrMGfOHKm/cXR0xHfffYfx48fDysqK+jtra2tYW1ujefPmGDBgAObNm4f8/HwcOXIEf/31FyIjI/lWH4Bs81alpaUoLi5Gfn4+Xrx4gWfPnuH27duIjY1FWFgY0tPTq73O0aNHERsbi2PHjgnGbfK7hIaGaloFBgdsByyDwWAwGBqAtqO1devWnCsEy8vLsXv3bhVrpTgikQimpqaoW7cuunbtii+//BKnTp3CgwcPMGDAAOp5r1+/psb8ZTAYDAaDwWAwGAwGg8EQMmlpaZzprq6uatZEPg4ePIjvv/+emm9gYIBffvkFDx8+xDfffCPV+ErD1NQUEydOxJUrVxASEgJPT09lVFYYfX19mJubo169emjfvj0GDx6M+fPn48CBA0hLS8PNmzcxc+ZM2NjYSJXz+PFj+Pv7Iz4+Xk2aM7QdZoBlMBgMBkPN5Ofn49ChQ5x5n3zyCYYMGcKZt2PHDhVqpRoaN26MEydO4JNPPqH+ZseOHcjNzVWjVgwGg8FgMBgMBoPBYDAYykNzS2tpaaleReTg9u3bmDx5MtUjad26dREeHo6ffvoJ+vr6vFzT398fUVFR+OOPP2BiYsKLTL7w8PDA2rVrkZycjN9++02q6+SMjAz07NkTT548UaOGDG2FGWAZDAaDwVAzhw4dQkFBQZV0XV1djB49GhMmTOA8Ly4uDjExMapWj3dEIhE2bdoEFxcXzvzCwkKcP39ezVoxGAwGg8FgMBgMBoPBYChHfn4+Z7pYLFazJrJRXl6OSZMmUWOv1q9fH5cvX0bHjh15v7aOjg6++OILXLt2TZBufE1NTTF//nzExcWhQ4cO1N+9fPkSY8aMoYbcYjAqYQZYBoPBYDDUDM39cN++fWFra4tevXqhTp06cp0rdPT09KS6trl69aoatWEwGAwGg8FgMBgMBoPBqH2sW7cON2/e5MwzNjbG6dOn0bhxY5Xq4OrqiitXrqBPnz4qvY6iNGnSBKGhoVJDal2+fBmrVq1So1YMbURX0wowGAx+yMnJQWZmJkpLS2FqagpbW1sYGBhoWi0Gg/EBSUlJCA8P58wbP348gDerJMeOHYs1a9ZU+c3evXuxatUq6OnpqVRPVdCvXz9q3uPHj9WoCYPBYDC4ePXqFXJyckAIgbm5OWxtbQW7cp/BYDAYDEbthRCC9PR05ObmQiwWv+23iEQiTavGqMEkJSVxejOjcfv27Wp/o6+vj+bNmyujllzk5ubi999/p+Zv3LgRbm5uatHF1NQUJ0+eRHFxsVquJy/GxsY4dOgQunfvjsjISM7fLF26FFOmTIGDg4OatWNoC8wACyAzMxOBgYE4f/484uLi8OzZM+Tm5sLExAT29vaoU6cOvL29MWDAAHTu3FmtkxDPnz/H2bNncenSJdy7dw/JycnIyclBUVERDAwMYGlpicaNG6N169bw9fVF//79YWZmpjb9+CI9PR1nzpxBTEwMYmJi3j6DnJwcVFRUwNjYGMbGxrCysoKTkxOcnJzg4uICLy8vtGvXTqWGxtu3b+PChQuIjIzEw4cP8eTJE+Tn56O0tBTGxsawtbVFkyZN4Onpie7du6N79+5qqSNFRUU4ePAgAgMDcfny5SoB33V0dNCkSRN4e3tj6NChGDBgAKdeoaGhnPL9/PxUoPX/kZqaiuPHjyMsLAx37txBeno68vLyYGRkBFtbW7Rt2xZ+fn4YN25ctQHQuYiJicGRI0dw/fp1JCQkIDMzE4WFhTAxMYGTkxPatWuHgQMHYvDgwbzFMpAFodYnGomJiTh69CguXbqE27dv49WrVygsLISVlRXs7OzQsGFD9OzZE/3790fLli0VukZ2djaePn0q029l6by+S4MGDQQXc2Pnzp2cMTbMzc0xePDgt/9PmDCB0wD7+vVrBAUFUePECpm6devC2NiY081NTk6OBjSSnVevXiE8PBy3b99GQkIC7t+/j4yMDOTm5iI/Px96enowNTVF3bp10aRJE7Rr1w7+/v5q6zdkZ2fjzJkzuHnzJmJiYpCSkvL2O1pWVgYjIyMYGxvDwsICjo6OcHJyQrNmzdCpUyd06NBBY/FXysrKcP/+/ffSaAPapKQk2NrayizbysoK9evXV0q/dykpKcG5c+cQHByMW7duITExETk5ORCLxbC3t4ednR08PDzQv39/9OjRA6amprxduzry8/Nx7tw5REREIC4uDklJScjIyEBBQQHEYjHMzMzg6OgIV1dXdO3aFQMHDkSDBg3Upp+qEPJ9FxcX4+TJkzh16hRu3bqF5ORk5ObmQk9PDxYWFnB2dkabNm3Qr18/9OrVC4aGhmrR60PS09Oxa9cuBAcH48aNG1XicRsaGqJFixbo2bMnRowYwemGLDs7G7du3aqSbmlpibZt2/Kuc3R0NC5evIjo6Gg8evQIz549Q0FBAcrKymBiYgIHBwc0bdoUnTp1Qs+ePdGlSxc2GVuLqaioQFhYGE6ePIkbN27g4cOHyM7OBiEEdnZ2sLe3R8uWLdG/f3/06dMHVlZWatOtpKQEFy9eRHh4OG7evImkpCS8fPkSBQUFEIlEMDU1RYMGDdC8eXN4e3ujf//+ap2g/RAhl2V1PHv27L34fElJSZy/KygokHu84eLiwuvCSHWMvxRF28ayQkPI/RYuhNj3TUpKwq5du3DmzBncunWryrjSxMQEbm5u6NOnD0aNGsX5jqSlpeHevXtV0uvUqYMWLVpQr83aEWGSmpqKU6dO4fLly7h37x5SUlKQl5f3tl2ysrJ62+/29fVFnz59pMb2rI4pU6YgLCxM5t/L4mLXyckJycnJCuskL+vXr0dmZiZnno+PD6ZMmaI2XYA3objUOXaWF0NDQxw4cABubm5VxkoAkJeXhxUrVmD16tUa0E59lJWVISQkBNeuXcPNmzdx//595OTkIDc3F4WFhTA0NISRkdHb/quTkxOcnZ3h6ekJLy8v2Nvba/oWNAdREl9fXwKgynHx4kW55Fy8eJFTjq+vr9w6ccnhutWXL1+Sr776ihgZGVHP+fBwdnYmhw8fllsneTlx4gTx9/cnOjo6MusGgBgZGZGpU6eSR48eqVxHPjh9+jQZMGAA0dXVles+3z309fVJr169yL///ksyMzN50auoqIhs3LiRtGzZUm597O3tyc8//0yys7N50eVDSktLyerVq4m1tbVcejVp0oTs27evijxZ35fqkFVOQkICGTZsmMx128DAgHz33XckPz9fJj0CAwNJmzZtZC6XevXqkZ07d8p9v/IglPokTzt769YtMmjQICISiWTW1c/Pj8TExMit17Zt2xR+/6s7tm3bpnS58YlEIiHOzs6cuk6dOrXK793c3Dh/+9FHH/GuG+177uTkxOt16tWrx3md/v3783odZZFIJOTy5ctk5syZxN3dXa534d3DwcGB/PjjjyQjI0Mlel69epWMGjWKGBoaKvyeiMVi0qVLF7J+/Xry/PlzlehJIykpSWXv/6RJk6ReW9Y+bGlpKVm5ciWpU6eOzNc2Nzcny5cvJ8XFxaorPPKmrR43bhwxNjaWq2xEIhHp1asXCQ0NVal+qkLI911UVER+++03YmtrK7Ne9vb25PfffyclJSXvyVq0aBHn7xctWqS0nq9evSJffPEF0dPTk6sMu3XrRq5fv/6eLD7HcTSys7PJb7/9Rho1aiR3W+Dk5ETWrVtHioqKeNNHiFy/fp3z/jt27KiwzO+//55arsrI/fbbbzllrlu3rtpzJ02axHnuh30+iURCtmzZQpo0aSJzXTEwMCBz584lOTk5Ct+bLCQmJpLPP/+cWFpayl2fvby8yLFjx3jRoyaUpazQ7pWPIykpiXpdoY6/5EEoY1lV4eTkJPdzlReh9Fu0ue+bnJxMRo8eLdccqUgkIoMGDSIPHz58TxZt/qG6sQNrR4TFqVOniJ+fn9zjdFNTU/LJJ5+QxMREha5Le4+UOfiec5FGeXk5adCgAVWXyMhItemiCOqat+Jiw4YN1HKztLQkBQUFKtehOviy073LkydPyIwZM4idnZ1S9dzFxYUsWLCAxMfH83fDWkKtNcAeOXKE2NjYKFxpBg0aRAoLC+XWrTpiYmJIx44dlW689fX1yc8//0zKy8t515EPnj9/ToYNG8b7R2vIkCFK63bw4EGqgUCew8HBgRw6dIiH0vo/Hj9+TDp06KCUXsOHD3+v7sryvsiCLHLWrFlDDAwMFNK7efPmUjtIWVlZStWpcePGkdLSUrnvuzqEVJ9kaWclEglZtGiRwosidHR0yM8//yyXXrXJABsaGkrVNSQkpMrvly9fzvlbPT098vLlS151U1dHljbxMHbsWF6vowzLli2jTsYoelhZWZEtW7bwpmN2djb57LPPFDYM0462bdvypqMsCN0Ae+fOHeLu7q6wDs2aNSOPHz/mvdzS09PJ+PHjeSmnUaNGkdevX/OuoyoQ+n3HxMSQZs2aKayTm5sbuXv37lt5qjLAnj9/Xq5J1Q8PXV1d8vvvv7+Vp0oDrEQiIX/++adChqoPjyZNmmjtogNZqKio4CwnsVissBGsffv21PJURm7btm05ZcbFxVV7rixGw6dPnxIfHx+F64qDg0OVhQZ8kJeXR2bMmEHEYrHS9blnz54kOTlZKX20uSzlRciGE02Mv2RFSGNZVaFKA6zQ+i3a2vfdt28fMTMzU1gnY2Njsn379rfyaqIBVsjtCN88fvyY9OzZU+ky19PTIz/++KPciwa03QAbFBRE1aNr165q00NRNGmALSkpIQ0bNqSW37vtjKbg0wBbUVFB1q5dS0xNTXmv80JemKUKaqUBduXKlbxMWPr7+5O8vDy59aPxv//9T6mdoFxHr169BFepHz9+zPvEduWhzK6woqIilXSovv/+eyKRSJQut7i4OKUmy949unTp8nZHaXXvi6xUJ+frr79WWu86deqQlJSUKtd+9uwZcXFxUVr+iBEjeHlWhAizPlXXzpaUlPC2MGLOnDky61WbDLCTJ0/m1LNhw4acz/Xp06fUVb5r167lVTd1dGRfvHhBfVY//fQTb9dRllatWqmsTn722WekoqJCKf1ev35NnbxW9mjTpg0/hSgjQjbAXrhwgVhYWCitR4MGDcj9+/d5K7OwsDBib2/Pa1k1btyY3L59mzcdVYHQ7/v06dNy72zhOqytrcnVq1cJIaoxwO7du5e38cb06dMJIaozwGZmZpK+ffvy+szFYjFZv369UnoJmY8++ojzvgMDA+WWlZWVVe1OI0XkZmRkcI7F7e3tZerjVmc0jI2NJfXr11e6rlhYWJDLly/LfX804uPjSdOmTXmtz7a2tiQsLExhnbS1LPm8Vz4OZQwnmhp/VYcQx7KqQlUGWCH2W7Sx77tixQreym/16tWEkJpngBVqO6IKzp49y8uivHcPLy8vkpaWJrMO2m6AnTp1KlWPrVu3qk0PRdGkAZYQQpYsWUItv4CAALXoIA2+7HQVFRUqbfOysrJUcv9CpdYZYKVtF1fkmDJlitz6cTFr1iyVVepOnTqR3NxcXvRUloyMDKmrRZQ9FDXA5uXlkW7duqlMry+//FKpcktOTubN+Fp5DBkyhEgkEqnvizxIk/PTTz/xpreHh8d7O1Vfv36t1G6TD4+NGzcq9awIEW59ktbOVlRUkJEjR/Kq544dO2TSq7YYYPPz86krx+bNm0c9r0ePHpzn8L1TUR0dWWnPWpFJXFWhSgMs8MYIqyglJSXEw8NDZboxA+ybPuzVq1eJiYkJb7q0aNGiintZRTh48KDcLmNlPezs7MidO3eU1lEVCP2+Q0NDib6+Pq86JSUl8W6ADQoK4mXn3bvH2rVrVWKAffHiBXF1dVXJMwdAVqxYobBuQmb9+vWc9ztjxgy5ZR09erTaclRE7qFDhzhljRw5UqbzpRkNHz16RBwcHHh9F/nYKR8REaHU7i1ph7GxscI7u7WxLBVFiIYTTY6/pCHUsayqUIUBVqj9Fm3r+27evJnXshOJROTw4cM1ygAr1HZEFQQGBqrsvWrevDl58eKFTHpouwGW5tVAT09PK4ximjbApqamUjf1mZmZqcSzojzwZaf78ssvVdbeAbXPAKuLWsTFixcxY8aMKunNmzdH//793wYEtrS0REZGBh4/fozg4GAEBQWhvLycU+a2bdswYcIE+Pv7K6zX/PnzsXbtWqm/ad26Nfz9/dGpUyfY2dnB2toa+fn5SE9Px5UrV3Dy5Ek8evSI89yoqChMmDABR48ehUgkUlhPPpg7dy6ePHlCzW/YsCH69OmDtm3bokmTJrCwsICxsTGKioqQk5ODrKwsJCQkIDY2Fjdu3MDTp0+V1qmsrAwDBw5EREQE9Te6urrw9vaGn58fWrduDRsbG5ibmyMjIwPPnj3DhQsXEBwcjIyMDM7z//jjDzRt2hSzZs1SSL+AgACkpaVRf9OgQQOMHDkSgwcPhpOTE+rWrYu8vDw8f/4c165dw4EDB3DhwgVIJJK35xw7dgybN2+WWx95CQ4Oxq+//vpemkgkQseOHTF48GC0bNkSderUgUgkQlpaGi5duoSDBw8iJSWFU15MTAzWr1+P7777DhKJBGPGjMHDhw/f+42ZmRl69+6N3r17w9HREXZ2dsjPz0dqaiqCg4Nx7NgxFBcXc8r/8ccfMXLkSNjZ2Sl0v0KvTzR+/fVX/Pfff++l6ejooGPHjhgwYABatmwJe3t7GBoa4uXLl4iPj8fx48cRGRlJlTl79mz0798ftra2vOmpzRw6dAj5+fmceePHj6eeN2HCBFy4cKFK+q1btxAXF4fWrVvzpqMqKS8vx4oVKzjzzM3N0aNHDzVrJB8ikQhNmjSBp6cnPD094ejoCCsrK1hZWaGiogJZWVl4+vQprl69igsXLiApKYkqa/PmzfDy8sLkyZPl1mPlypWIiYmh5tvZ2aFPnz5o3749mjZtCisrK5iYmKC0tBQ5OTnIzs7G/fv3ERcXh5s3byIxMVFuHWo6L1++xIwZM1BQUPBeup2dHfr16wd/f3/UrVv37bfl2bNnOH/+PI4ePYqsrCxOmffu3cPSpUuxePFihfUKDg7GmDFjqH1S4E1/oEePHujWrRvq1asHW1tbVFRUID09HfHx8QgKCsLVq1c5z3316hUGDhyI69evw9raWmE9+Ubo952amoqAgACUlpZSf2NnZ4eRI0eic+fOqF+/PkxNTfH8+XMkJibi0KFDuHLlShWdRo8ejd69e8utD42kpCSMGTMGFRUV1N+0bdsWo0ePRo8ePd6W4+vXr9/W8QMHDiA2Nva9c77//nusXr2aNz0BICcnB927d0dCQgL1N0ZGRvDx8YG/vz9cXFxga2sLY2NjvH79GikpKTh79izOnDmDvLw8zvO///57NGnSBAEBAbzqrmm6d+/OmR4SEiK3LFnO4VMuTXdZKSoqwuDBg5Genv5euoWFBXr16oVevXqhQYMGsLe3R3FxMdLS0hAaGoojR47gxYsXnDJfvXqF2bNnY/v27QrrdfPmTfTr14/aBwTetBHdu3eHr68vHB0dYWNjA7FYjPT0dNy7dw/BwcEIDw/nfH8LCwsxdOhQXL9+Hc7Ozgrr+S5CLcuahhDHX9o6lhUSQu+3cCHEvm9UVBS++uorqb/p2rUrRo4ciW7duqFu3bqwtLREeno6nj59iuDgYBw4cOC9eVJCCKZNm4a5c+cqpJMQEWI7ogquX7+OESNGoKysjPobCwsLBAQEwM/PD/Xr14elpSXS0tKQnJyMY8eOISQk5L050Xd58OAB+vXrh8jISBgaGkrVJTQ0lDOdNt9OCJEqT53cu3cPz58/58zz9PSEpaWlehXSQho2bAg3NzfEx8dXycvLy0NcXBzat2+vAc344/Lly/jzzz+p+UZGRvD390fXrl3RrFkzODg4wMTEBMCbcVxOTg6Sk5MRFxeH2NhY3Lp1i/ru1RqUteBq0w7YD1d5uLq6khMnTlQr786dO6RTp05Uue3atZNbx0r2798vdUVA//79ZQqALZFIyO7du6UG0t6wYYPCevLBgwcPqKtEGjVqRI4cOSK3O5qYmBjyyy+/vHU/q8gO2C+++IJaZrq6uuTrr7+WKb5OQUEBWbx4MTEyMqLKunnzptz6/fjjj1L1W7BggUwxC6Kioqrs6jI3N6fKlheanA937nbu3Jlcu3ZNqqzi4mKyYMECqszK4OYrV658L11PT4/MmjWr2pU0Dx8+JF5eXlT5iqzmr0TI9YnWzjo4OFTZEdOvXz+Z3BudPHmS1K1bl3rP3377rVw6VsJXvRQSfn5+nPfk4eEh9by8vDyqW8uZM2fypp+qVxJKW0GnzDunCt5tKz09PcmqVatIamqqzOdXVFSQEydOSI2fZGVlJfdOkJycHGpdsLGxIdu2bSNlZWVyybx//z5ZuXLl2zh/6t4BywWfcUsUuc6H/UUbGxuybt26alezZmRkUN2MAyD6+vrk1atXCun64MEDqS7hWrVqRfbv3y+Te+vIyEip38Bhw4YppKMqEPp9SyQSatsOgBgZGZG1a9dW+17evn2bdOzYscr5NK8xiuyAlbabydbWluzevVsmOTt37iTW1tbvnU/rTyoyjpNIJKR///5UXU1MTMiCBQtkioOekZEhNd6mubk5efr0qdw6Ch0ul5cikUju2PGyeINQRG6LFi04ZT148ECm82k7kD5su42NjcnChQvfhl2hUVBQQObOnSv1PmNjY+W6x0pevXol1fuTo6Mj2bx5s0xjubt375J+/fpRZXXs2FHuEAfaVJZ8o8rY1bJcR4jjL0KEPZZVFXzugBV6v0Vb+r7FxcVSXbY7OTmRM2fOVCunoqKCrF69usr4idZvqW4H7IewdkQ95ObmkkaNGlF11dPTI4sXL672W5qcnEx69+4t9RuljKcqmkwhsXv3bqqec+fO1bR6MqHpHbCEEDJjxgxqOf79999q04MLPuZSvL29OWWIxWKyYMECkpmZKZdOL1++JNu2bSMDBw58G96ktu2ArVUG2HePgIAAuQJt5+XlkS5dulDlKTKQeP78OdV3vYGBAfnzzz/llpmWlvZ2EvXDw8zMTGaXCqrg999/59SrefPmSrsjkkgk5OTJk2TlypVynRccHEx9pvXr1yeXLl2SW5erV68SW1tbTpkdOnSQS1ZSUhIxMDCgdjKCg4PlkldUVET8/f1lekfkRRaZn3zyiVwTA9J86//444/vucgxNTUl58+fl1l2Tk4ONYaira2t3EYMQoRfn2jt7IfHsmXL5JJ77949anwbe3t7hcqSr3opFJKSkqgLUNasWVPt+ePGjeO1fLlQVUc2JSWFGpMOAKlbt67gOl9ubm5k4MCB1S4WqY7i4mLy6aefSm3H5GHfvn2ccuzs7Mjjx4+V0pWQNy4SFyxYoLQcZdG0Afbdo0WLFpyxx6Uxffp0qrx169bJrWdFRQXp3LkzVeann34qV5+WEELKysqkTpgFBQXJrSffaMN9S5vEsLe3l8tFYHl5Ofnss89k+k7La4CltR3Amzhtskymv8vjx4+p7svePRQZx/3xxx9Uea6urgq5XQwMDKQaAYYPHy63PKEzatQoznvdv3+/zDLS09M5ZXCNS+SR+/z5c065DRs2lFmGLC4g69atS27duiWzTEIIWbNmDVWeogvepLmF/OijjxTq/0hbnCtvKBVtKku+0bTh5MNDCOMvoY9lVQVfBlht6LdoS9+XNncIgLi7u8s9+X/t2jWZ3MBrmwFWiO2IKpBm7LK0tJR7zP7rr79S5YlEIhIREaGQnjSZQuK7776j6rlnzx5NqycTQjDASgut9dVXX6lNDy6UnUt59uwZ59ylSCQix48fV1q/xMREMn36dJKXl6e0LG2iVhpghw4dKvfqUELeVBJDQ0NOmYoMJMaOHcspSywWy7Qzl0ZOTg51tdisWbMUlqsstLqiaMwaZSkpKSGNGzfm1MnBwUGpmB83b96kGk7labCkTcQp+nHMzc0lrVu3rvY9kZfq5MnbmSXkzSCmTZs21coWi8UkLCxMbvnR0dFUo5i876A21CdZOu6yGAO52LNnD1XmsWPH5JbHV70UCosXL6bWXVkWxpw+fZpaJnx0gghRviMrkUhIfn4+efHiBbl8+TL5448/SP/+/Ymuri5Vd3NzcxIdHc2L/nzChzGzEolEwpsBnTZRun37dt70FQJCMcA2btxYoQViZWVlpGXLlpwyFYnd/Pfff1N1/P777+WW9y4044Ay3l34Quj3XV5eTl2Nb2pqSq5fvy63XhUVFSQgIKDab7U8BliJRELdcWhubk7u3r0rt56EvNm1W91kprzjuNevX1N3pbRo0ULuCdd3OXnyJHUyQV7jktChxcz79NNPZZbBZbS3tbUlo0ePVkoubdHCxIkTZZZRndHQ0tKSJCYmyizvXXr16sUp087OTu6J6LNnz1J1HDVqlNyen95lzpw5nHLr1asnl4FHW8pSFQjJcCKE8Zc2jGVVBV8GWKH3WwjRjr5vQUFBFU8blYejo6PCm0pCQkKoHjEqD202wAqhHVEFSUlJ1PkEIyMjhY2ls2bNot63l5eXQjJp8oTEkCFDqHreuHFD0+rJhBAMsNeuXaOW46BBg9SmBxfKzqXQjMuTJ09WreI1nFpngG3QoAHJyMiQW2YltJVdrVu3lkvOnTt33m67/vCQdxcnF9evX+fsXJiamlbrOkhVcE1S1a1bVyO6EELIn3/+yVn+YrGYXL16VWn569at45Tv7+8v0/lZWVnU1fqDBw9WSrerV69SDY+KdhKkyWrcuLHCq1sOHDhQbWdz/vz5CskmhJC+fftyyvzmm2/kkiP0+kRI9R33/v37K6UjzbA/ffp0uWXxVS+FgEQiIc7Ozpz306dPH5lklJeXV3HnXXkMHTqUFz1lWRHN5+Hu7l7jaTdeqAABAABJREFUJr1p5ObmUlcXnz59WmY5XK5OdXR0SEFBgQq1Vz9CMMCKxWJy5coVhWUfOXKEKlseI1JJSQlxdHTklDNo0CClJvAJebNojzbxqMjCJr7Qhvv+77//qM9YmbAfubm51Pa+8pDHAHvmzBmqHEUn6ypZsWKFVD3lHcfRXJeam5srbAR6l5kzZ3LKnzJlitKyhcTDhw8577Np06Yyy/jkk0+qnD9ixAjy77//KiV36tSpnLrJs5CoOqPhgQMHZJb1ITdv3qTKldddKi2EUfv27eXeBfchZWVlpEOHDpzyd+zYIbMcbSlLVSAUw4lQxl/aMJZVFXwYYLWh30KIdvR9aYuIAJAjR44orB8h0kPiANprgBVKO6IKvv76a+p9r1q1SmG5EomE+h0FFBt30mQJCWn3LG9ICU0hBANsWloatRyrCzGmapSdS6FtHpFn3opRlVpngFV2l0hUVBSnXF1dXbkGUrSdja6urqS8vFwpHSuhuZ/auXMnL/LlhcuYqOjKIj6g7QaQZxW3NEpLSzlj8opEIplcvW3dupVa1/iYhJowYYLUd0VepMnat2+fwnrm5+dTDdHAm/gkRUVFCsv/559/OOV269ZNLjlCr0+ESO+46+joKF2vli9fzktZEqIdnVdZCQ0Npd6PrDH3CCHk22+/5ZShr6+vtBt3QtRjgBWLxaRz585k+/btpKSkRGmdtYkPY1ZXHrNnz5ZZhqura5Xz69Spo0KtNYMQDLDKrvAsKSmhhpm4cOGCzHJormMNDAyU2o3yLrRJ16lTp/IiXxG04b5pC7hatmyp9O4uWh+w8pDHADtx4kROGc2bN1daz9LSUtKkSROqnvKM44qKiqjvzNKlS5XSs5LXr19zxtE2NTWtcQtZaIYAWd1Kcj3Xv/76izx+/FgpubRd4/LEWZdmNPTz85NZDg2uby0AsmXLFpllREZGUnW8fPmy0joSQsipU6c45Xfv3l1mGdpQlqpCCIYTIY2/tGEsqyr4MMBqQ7+FEO3o+/r4+HDK4MNYn5GRQdUR0E4DrJDaEb4pLi4mVlZWnLq1aNGi2hjF1REZGUndmDJ+/Hi55dGekZDgaoeBN/PMyi4UURdCMMBWVFRQd2bXq1dPbXpwoexcCi0W/L1791SreA1HB7UIe3t7jB49WikZHTt2hJWVVZX08vJy3L59WyYZxcXF2LdvH2fezz//DLFYrJSOlcycOZMzPSgoiBf58iISiaqk5eXlaUATIDIyEvfu3auSLhaLsXjxYl6uoaenh6+++qpKOiEEp06dqvb848ePc6b37NkTzs7OSuv3+eefKy1DFurWrYthw4YpfL6JiQnat29Pzf/4449haGiosHw/Pz/O9Li4OBBCZJKhDfWpOgYNGqR0verTpw9nemxsrMxlWRPZvn07Z7qJiQmGDBkis5wJEyZwppeWlmLPnj0KaKZezM3NsXDhQuzcuROTJk2Cvr6+plVSKx999BFn+tWrV2WWwfUdzc/Pr9Xvl6qYMWOGUufr6+tTvy8xMTEyy9m2bRtn+rRp09CoUSMFNKvKpEmTYGlpWSU9ODiYF/mKIPT7zsrKwvnz5znz5syZA11dXaV1a9CggVIyAEAikeDkyZOceVOnTlVaTz09PUydOlUpGZUcPXoU2dnZVdJtbGyoYxp5sbGx4fyW5ufnIzw8nJdrCAV/f3/O9JCQkGrPTU1NRWJiYpX07t27o3HjxpzvoCxyk5KSkJycXCW9adOmaNiwYbXny4KybTdA78/y0Xb3798fXbp0UUivD+nbty9cXFyqpIeHh/MyxhZKWdZkhDL+qgljWU0j9H6LLAih75uZmYlLly5x5n322WeKqvYWa2trjBgxQmk5QkIo7YgqOHfuHLKysjjzfvjhB+jp6Skl38vLC/369ePMO3r0KEpLS5WSL0Ty8/M5083NzTnnGhjc6OjowNTUlDOvsLBQzdrwC60eaMp+U1OoVQbYoUOHwsDAQGk5bm5unOlcA0ouQkNDkZubWyXd1NQUgwYNUka19+jYsSMsLCyqpF+8eJG3a8iDjY1NlbS7d+8iKSlJ7brQjJt+fn6oW7cub9fp1asXZ3p1z0AikVAngsaNG6e0XgDQpUsXNG7cmBdZ0hg6dKjSHaMWLVpQ85TtQDdu3JizXcjJyUFmZqZMMoRen2RB2cUpAODq6so5mZubmytzWdY0CgoKcOjQIc68gIAAmJiYyCyrbdu21O/Pjh07FNJPneTm5mLRokVo1qwZ+vXrhytXrmhaJbXSrFkz2NnZVUm/c+eOzDK4vqM10XCgaVxcXNC2bVul5bi7u3Omy9pfzMvLo7bvY8aMUVStKhgZGaFr165V0tPS0pCQkMDbdWRFG+47NDQU5eXlVdINDAwwdOhQpXXT0dHBqFGjlJYTGxvL+f0ViUS8leXYsWN5mbCh9aWGDBkCIyMjpeVXosq+lJDo3r07Z7oshlKu3zRs2BDNmjWjylZULk2eIpiYmGDgwIFKy1G27SaEIDAwkDOPzzYM4K7P5eXlVAOGrAilLGs6Qhl/1YSxrCbRhn5LdQil7xsWFgaJRFIl3czMDIMHD1ZGtbfwNZ8mFITSjqiCs2fPcqYbGxsjICCAl2uMHz+eM72goACRkZG8XENIFBUVcabzYSupbdA2AhUXF6tZE37hmnMCNLeZr6ZQqwyw3t7evMhp2rQpZzqXUZUL2kekb9++Su3k+xAdHR107ty5SvrLly/x/Plz3q4jK1yGA0IIPvnkE7U3ULRnwMek2bu0bduW08BS3QrAR48eUVd69e7dmxfd+JZFg6sOygtt1aiRkRHatGmjlGyxWExddZ+TkyOTDKHXJ1ngo33U19enlqWs7WNN4/Dhw9RVhrQdrdKYOHEiZ/rNmzcRHx8vtzxNcfr0aXh7e2P69OkoKSnRtDpqw8HBoUpadnY2564vLmgG+G+++Yb6zWDIj1D6ixcvXkRZWVmVdHt7e950rIRrQg/QzC4lbbhvmnGjZ8+enIsfFWHkyJFKy7h27RpneosWLeDo6Ki0fOBNH6158+ZKySCE4Ny5c5x5fPelhFTXVQnfBth35QnVANupUyeld3UDyrfd8fHxSEtLq5IuFot5MyBUoqr6LJSyrOkIZfxVE8aymkQb+i3VIZS+L63f0rVrV94WY3Xr1g3Gxsa8yBICQmlHVAGtv92/f3/q7kN5kbbQT9nFTEKEtqtX2U0ztRFamWn7zmnanNOqVatw69Yt9SpTg6hVBlgPDw9e5Jibm3Omy/phun79Ome6soYkLurXr8+ZzuViRtX07NmTM/3ChQvo1KkTzp49qxb3FiUlJVR30Xw/A7FYjDp16lRJT0xM5Nw5UQltR1SdOnVgb2/Pm36qqHMfwsd7R+tctWrVipfJAZp8Wd5pbahP1WFjY8Ob6zdl28eaBs39cN26ddGjRw+55Y0dOxY6Otyfbtq1lKVevXqIj4+X6bh16xbCw8Nx4sQJrF69GmPHjoWtrS1V9oYNG+Dv7081Utc0rK2tOdO5Jmq5oH1H4+Pj0a5dO/z333+oqKhQWD/GG4TeX3R3d+fdRZSQ+ovacN+0BS+enp5K61RJmzZtlO7j0PqTfPdPlJWXlJRE3WHBt64ODg6c5aqJuq5KGjRo8HbH6rs8e/YM9+/fl3oul6H03T4Ll8FUFrlcO8REIhHVXbK8CL3tbtSoEVW2oqiq7RZKWdZkhDL+qgljWU2jDf2W6hDKO6+OfouOjg7VwKBtCKUdUQUVFRXUnd0dO3bk7TpGRkZo3bo1Z542LXCXFdpOV203GmoC2kYCPjfWaQJ/f3/OOcf8/Hx069YNy5cvZ/04BahVBlhpk8DyYGZmxpkuz6pYLqS5WVUU2tbxZ8+e8X6t6pg0aRLV3WZcXBz69OkDFxcX/Pjjj4iOjlbZJPK9e/c4VygC6nsGEokEL168oJ6TkpLCmU7rGCiKOgywfLx3NAMpX+80Tb4sPu61oT5VB1/lCCjfPtYkUlJSEBoaypknzZAqjfr161N3iuzZs0clkxd6enpwc3OT6WjTpg26deuGgQMH4ttvv8WePXvw9OlT7N69mzphEBkZicGDB1PfIyGRlJSEffv2Yf78+Rg0aBBat26NRo0awcbGBvr6+hCJRFIPmqtgWeNpDBo0iDrITk5OxqhRo+Dk5IRvv/0WYWFhbCClIKy/+H9oor+oDfdNMzTx2a8yMDBQ+p61pT9Je+ampqa8xML9EK7FMC9evKhx8bQV2QV7//59zvr/rqy6devC1dVVLrkJCQmcfdVWrVrxtriUtd3/h7Jtt1DKsiYjlPFXTRjLahr2zv8fyr7z2tJvEQpCaUdUQWpqKtVTIl8LBiqhud+ubmGZNkLb7VubvJLxBa1+8hk6RRPY2dlRQ/3l5+dj3rx5qF+/PiZOnIgjR47I7DmytlOrDLBWVla8yBGLxZzpshgMc3Nzqa4GR4wYUe3krbzHihUrOK+VkZEh8/3yhY2NDebPny/1Nw8fPsRvv/2GTp06wdraGgMGDMDSpUsRFhbGm5tiWqcOeNPQ8P0MoqOjOa8l7Rmkp6dzpnOtGFUGLneYfGNpaam0DNo7x4dsafJleae1oT5VB19tI6BcWdY0duzYQZ3MpcUakQWa6+L09HScPn1aYbmqwsDAAOPGjcPt27epu34vXrxI/V5pmuzsbKxfvx5eXl5wdnbG2LFj8fvvv+PkyZOIj49HSkoKMjMzlTIgy/p909PTw7Jly6T+5tmzZ1i7di38/PxgaWmJHj16YNGiRThz5kyt2WmsLELoLwL078umTZt4/7b079+f81qa6C8K/b4JIdRd6y4uLvLfsBSUnbzVlv4k7Znn5+fz/sxFIhFevnxZ5Vrl5eU1bgKBZoC9cOEC9RwuI6qLi0uVRVRcsuWVK01HRRB62x0UFMR7XW7ZsiXntZRtu4VSljUZoYy/asJYVtMIvd8iC0J557Wl3yIUhNKOqAJpYfO4FoEpQ6tWreTWQVuhGdpzcnLYt1kOysrKqIvoaRvPtIlffvlFqpvv/Px87Nq1C8OGDYO1tTXat2+PWbNm4eDBg1q9oEqV1CoDrBCCSgulAacF3lY1P/zwA4YPHy7Tb3NzcxEcHIwFCxbAz88PVlZW6NGjB5YuXYoHDx4orIM2PAPaKjO+3VbxFadMGqp879g7/X8o804LoRxrGoQQ7Ny5kzPPzc2NuspSFgICAqhxa1TlhpgPLC0tceTIEepk4a+//oqkpCQ1a0WHEIItW7agWbNmmDlzJqKiolR2LXkGO2PHjsW3334r02+LiooQEhKCX375BX379oWVlRW8vb3x008/aX28LVUilDZRCN8XTfQXhX7fubm51N3lfC0Mq0TZfpq29CeF8MwBzY2PVIW/vz9EoqruL0NDQ6kLxKqL/yotTZpcLvfDNDmKwtru/0PZuiyUsqzJCKWMhVBfAe1uf4VQhjXlndeWfotQEMpzUwWvXr2i5vHd36bJk6aDtlKvXj3OdIlEUiPvV1WkpaVR+7y0MtYmmjdvjp07d8oUDkcikeDmzZtYt24dRo4ciXr16qFly5b45ptvcPr0aWbY///UKgOsEJDVzaCq0ZRbQpFIhAMHDmDevHlyu98sLi5GSEgIFixYABcXF3Tq1AlbtmyR2+WmNjwDmvsHvjuefMurjWhDfWKon4iICCQmJnLm0XawyoqpqSmGDh3KmXfixAlqHD0hYG5ujuXLl3PmlZSU4I8//lCzRtxkZ2ejV69e+Pjjj/H69WtNq1OF1atXY/369dDX15frvPLycly5cgVLlixBu3bt0KpVK6xZs0arJ71qMkL4vmji2yL0+y4sLKTm0VaVK4qy/TRt6U8K4ZkDNa8vZWdnxxnnLiMjA7du3aqSTgjhDJ3A5b2CKz6UvHLFYjF8fX2p+msrQqjPNa0uM1SHEOoroN11VghlqM3l9y7a0m9hqB7a+FQsFvO+w5BWHwghNc41r7TQHtI8IjDeJzk5mZqnivApmmDo0KE4f/68Qh4DEhISsHHjRvTr1w/169fH7NmzNRLaSEgwA6yaEUrjrckYRzo6Ovj9999x48YN9O3bV2E50dHR+Pjjj9GiRQscP35c5vO0+RlIJBJedWArUZRHm+sTQ3VI24naunVr3L59W6mjU6dOnLJLS0uxd+9eFd0VPwwcOBDNmjXjzNu2bRvv7Zy8FBQUoE+fPlJdKQqB6dOnIyEhAWPGjKG6jKqOu3fvYvbs2XB2dsaWLVt41pChLEL4vmji2yL0+5bmbpzmnUBRVOXCSmj9SSE8c6Bm9qXkiQMbFxdXZdGRSCSCv79/ld9aWVlxevPgkhsbG8vpHtPDw4P3XSxCQAj1uSbWZYZqEEJ9BbS7zgqhDLW5/GRBaP0Whuqh9bdVEV9TWn+7pixuqKR58+bUvLt376pRE+2GFvsbABo3bqxGTVSLr68vHjx4gAULFkh1SSyN9PR0rFmzBk2bNsWcOXN4Cy+pbVS/l5jBK/Lu+qzJtG3bFqdOncKjR4+wfft2HDt2DHfu3JFbTmJiIoYMGYIZM2ZgzZo11ZaxNjwDQ0NDznSaSxZF4VtebUQb6hNDvRQWFuLQoUPU/H79+qn0+tu3b8fXX3+t0msoS/fu3fHw4cMq6RkZGYiPj0ebNm00oNUbZsyYQY1PVYmtrS06deoEd3d3NGrUCA4ODrC0tISpqSl0dXWprlqmTJmC69ev86ars7Mz9u7di1WrVmHnzp04fPgwbt68KfckRVpaGj7++GOcPXsW27dvV8nAliE/Ojo6tXKCSOj3raenR80rLCzkdRdsQUGBUudrS3+S9aVUh7+/P9avX18lPSQkBLNnz66S9iFt2rSBtbU1p+zu3bvj5s2bCsmt1K0mwuozQ5tg9VV5hN5v0SYMDQ05+z5C67cwVA+tv60Kz03S+tvyepwSOh4eHtQ8Li8mDG5u3LhBzZNWxtqIubk5lixZgh9++AEHDx7Evn37EBERIfe7WFxcjFWrVuHcuXM4cuQInJ2dVaSxMGEGWDUjbWX8X3/9BW9vb7XoYW9vr5bryELTpk2xZMkSLFmyBGlpabh48SLCw8MRERGBu3fvyryab/369dDR0cGaNWuk/k7aM7hx44baPrDSVsXQVoOzjqfw0Ib6xFAvhw4d0qgrqhs3buDOnTto1aqVxnSojvbt21Pzrl69qjED7PXr16XuBB0+fDhmzpyJLl26cMbVqw5VGTbr1auHefPmYd68ecjKykJoaCjCwsIQERGB2NhYmSeF/vvvP1RUVODgwYMK3R+DX4yNjZGTk1Mlfdq0aZg5c6ZadFDVDkxpCP2+pb3HeXl5vBpgle2naUt/ktaXsrW1pcYOVQX169dX27XUha+vL8RicZXvQHh4OMrLy99bMMRlKOVyP1xJ9+7dsWrVKoXkVp5fE6HV5379+mHFihVq0aGmTRgzVAcbyyqP0Pst2oSlpSUzwDIA0PvbFRUVKCgo4LXO0+qDSCSqcXF2pc3DcIWLYHAjzVtau3bt1KiJ+jAxMcHkyZMxefJklJSU4MqVK2/nnK5evSo1TM+7xMbGok+fPrh69SpsbGxUrLVwYAZYNSOtcllYWHDG6alN1KlTB2PGjMGYMWMAvNkNFR4ejgsXLiAwMBBPnjyRev7atWvRu3dvqa6NpT2DevXqoU6dOoopzyM0Haq7f3nhW15tRBvqE0O9SHM/rE4dVq5cqWk1qEh7bzQZG4K2gEdXVxdbtmzBxIkTlZKflZWl1PmyYGVlhaFDh76NE5ybm4vLly8jJCQEgYGBePDggdTzDx8+jM2bN+Pzzz9Xua4M6djY2HBO6Onq6tbo/qLQ79vCwgJ6enqcrtGys7NRr1493q7FVQ7yoC39Sdo3IT8/XxDPXJuxtLSEh4dHFe8L+fn5iI6ORpcuXQC8mdAMDw+vcr40I2m3bt2qvAtcciMiIqqcq6enh27duil0T0KHVp8lEgmrzwzBwcayyiP0fos2UadOHc6xoND6LQzVY2dnR83Lzs7m1QCbnZ0ttw7aSuPGjdGkSRMkJiZWyYuPj8fz5895HcvURGJjY6nxcuvVqyfVzXNNwcDAAP7+/m+92ZSVleHatWsICwvDyZMncfXqVale2R49eoSvvvoK+/fvV5fKGof5G1Ez9erVo7omzMzMVLM2wsfGxgZDhw7Fxo0bkZqaiitXrmDcuHFSXeX89NNPUmU6OjpS84TyDGhb8ePi4ni9TmxsLK/yaiPaUJ8Y6iMlJUUQKwd3794taFdY5ubm1DxNvTelpaXUeOI//fST0sZXQDP3Zm5ujn79+mHlypW4f/8+4uLi8OWXX0pdzbtkyRJBxLOq7dC+LzX92yL0+xaJRKhbty5n3v3793m91r1795Q6n9af5Lv/p6w82jMvLi6WeTU1g44scWCvX79eZQeInp4efHx8qHJNTU3RsWNHqXKvXbvGubOkY8eONWbH1ocIvQ1jMN6FjWWVh73z/KEt/RaG6pFmBExISOD1WrTYpzXVEEkLiUUIwcGDB9WsjfaxY8cOal7//v1rpScxPT09dOnSBT/88AMuX76MZ8+eYcmSJXBwcKCe899//0mNpVvTYAZYNSMWi9GsWTPOPK54eIz36dy5M3bv3o2rV69SX+Tr169zruapxNXVlZonlGdAcx2alZVFXWmjCMzHv/JoQ31iqI8dO3bI7DZdlaSlpeH06dOaVoOKtF1dmjL83bhxg3Oi39TUFHPmzFFafkFBAV6+fKm0HGVxd3fHpk2bEB8fDxcXF87fPHv2DJcuXVKzZowPoX1favq3RRvum/bu8LlQrqSkRGkDLK0/yXf/T1l5rC+lWmgG2Hfdp3G5Ce7QoQNMTU3lll2dXGk61QRo9TkxMVEQfUQG411Y+6s82tBv0RbU0W8pLS3l3YDH4B9HR0cYGhpy5qmrH0vr72s7o0aNoub9888/rK8ihaysLGzdupWaHxAQoEZthEudOnWwYMEC3L9//61ntg8hhOC///5Ts2aagxlgNQDXSmEACAsLU7Mm2kuHDh1w5MgR6soS2mAfeBP/1snJiTNPKM/AycmJ6u7nxIkTvFyjvLwcp06d4kVWbUYb6hNDfezcuZMz3d3dHYQQ3o+ysjKqaxxpK/M0zevXr6l51U32qgrazrWePXvyErs1MjIS5eXlSsvhi2bNmuHUqVPUga207yhDPdD6i3FxcVRXWTUBbbhvd3d3zvRr167xdo3Y2Fil2wwvLy/O9OTkZNy+fVsp2ZXExsYiNTVVKRlt2rShxhlkfSnlqXQV/CGRkZEoLi4GIH/810q4DKnVyaWdV1OgtWGZmZm1aqU/QztgY1nl0YZ+i7ZA67dcvnyZtx3Fp06d4gwjwRAWYrEYLVu25MyLjo7m7TrFxcXUBZS0/r6207VrV7Ro0YIz786dOzh58qSaNdIeVqxYQd1M0LhxY/Tp00fNGgkbCwsLHDhwgOqOvzbNOTEDrAagDWZjY2OlTkoz3qdLly5v4wt9SHW7RGnP4Pz580rrxRe0iYk9e/bwIv/s2bN49eoVL7JqO9pQn7QNmpvx0tJSNWsiOxEREdTd9+PGjVPJNXV1dTFy5EjOvMDAQLXEHFUEaYOmBg0aqFGT/4O2O5U2KSUvQuxcNm7cGMOGDePM49PbgryIxWLOdCG//6qA1g+QSCSCrE98oQ333bVrV8708+fPKx23tRI+VgS7uLhQ3afx1Z/kQ46BgYHUMmUoh7GxMTp16lQlvaSkBJcvX37790NkMZJ27ty5yiKld+VeuXKlyjlGRkbo3LmzHHegXXh5eVHdK7P6LBxYX+P/YGNZ5dCGfou20LVrV84FWWVlZby5RuWr/wOwdkTV0PqGwcHBKCgo4OUagYGB1HAXtOvXBL7++mtq3ty5c9kiBQ5iYmKwatUqav5XX30lNVxibUVPTw8zZszgzNPknJO6YTVDAwwYMIBzFbJEIsGGDRs0oJH24unpyZlenSGbtgU+Pj4eFy9eVFovPqDpePXqVURFRSktf926dUrLYLxBG+qTtkHblVdUVKRmTWRn+/btnOkikQhjxoxR2XXHjh3LmV5SUoJ9+/ap7LqKQgiROhlBcz2lamgDZT52v5aUlGDLli1Ky1EFin5HVYk2vv+qwNHREe3bt+fMW79+vZq1UR/acN9+fn7Q1dWtkl5SUoKjR48qLV8ikeDAgQNKywHofZRt27YhLy9PKdk5OTnUb5+80PQMDg7Go0ePeLlGbUaaG+LIyMgq7ausRlIDAwPOBbE0ucCbRbTS4pBrO4aGhujbty9n3qZNm1BRUaFmjRhcsL7G/8HGssqhDf0WbcHExAS9evXizOOj/UxKSkJgYKBSMt6FtSOqhVYXCgoKcOzYMV6usXv3bs50U1PTGr1Y7JNPPqHGr05ISMBvv/2mVn2ysrIEvSEtPT0dAQEBVO9Ejo6O+Oqrr9SslfYgxDkndcMMsBrA2tqa2sndsGEDbyvnawM0d2W0VceV9O3bF/Xr1+fM+/XXX5XWiw8GDhwIa2trzrzp06cr5Zf/2LFjOHfunMLnM95HG+qTtkGr+8+ePVOzJrJRWFhIXZXbtWtXaueWD7p06YLGjRtz5vE1Mc4nhw8fRnJyMmeerq4u1bOBqqHVuefPnyste/v27YKI/8qFot9RVaJt778qmTZtGmd6eHg4wsPD1ayN+hD6fVtZWVF3DK1cuVJp18E7duzA06dPlZJRycSJEznT09PT8csvvygle9GiRbx5Uxk7dizngpeKigosXbqUl2vUZmgG2JCQEM5FUd7e3jIbSbneBZpcabrUJGht2OPHj3ndfcVQHNbX+D/YWFZ5hN5v0SZo/Zb4+Hj89ddfSsmeNWsWSkpKlJLxLqwdUS29e/eGlZUVZ97vv/+udH/7+vXrCAoK4swbOnQodZxcE9DX18eSJUuo+b/++ivOnDmjFl1SUlLg7e3N29iHb549e4bevXtT57CAN66JaQsyGMKcc1I3zACrIWbNmsWZnpWVhYkTJ7Kg1zLy4MEDznSau7VKdHV18c0333DmXbx4UapbAXVhaGiIzz//nDMvOjpa4cFQamqqVHcTDPnRhvqkbdDc0CYkJKhZE9k4fPgwdScRbYcqn9B22F67dk1QZZaZmYkffviBmt+nTx+Ym5urUaP/gxZLNyQkRKlvcnJyMubOnavw+apG0e+oKtG291+VTJw4Eba2tpx5kyZNqrGrRrXhvqdMmcKZfvfuXaUmCPPz8zF//nyFz/+Qjh07Uhe2rF+/XmEXk2fOnMGmTZuUUe09rK2tMWnSJM68bdu24dChQ7xdqzbC5SoYeDP5ePz48SrpssR/rYTLoEqTS/t9TaNv377U2HUzZ85ku7oFQP369SESiaqkv3r1ShDfGHXCxrLKow39Fm0hICCAunh5wYIF1Hid1bFlyxbqd0lRWDuiWvT19amhnO7cuYM///xTYdmEEEyfPh0SiYQzf+rUqQrL1hYmTJhA9dghkUgwbNgwXLp0SaU6BAcHw9PTU7Dj/PPnz6NTp05S252JEydi1KhRatRK+xDinJO6YQZYDeHl5YWAgADOvMDAQMyZM0clRtgzZ85oZIft/fv3ceTIEerHTRGeP3+O06dPc+bRAjy/y/Tp06mTvPPmzePFhdyHlJSUyNXp+/bbb6krvhYtWiS3S5sXL16gd+/ebEWeCtCG+qRNuLq6cqafOHFCzZrIBm2nqZ6eHkaMGKHy60uLMSuUXbAZGRkYMmSI1ElHWmwIdeDh4cGZ/vTpU4VdOefm5mL06NG8fHdfv36Nbdu28RpTqKCggOrmVJbvqKqgvf9BQUG89iO0ARMTEyxcuJAzLzk5GcOGDVPajSwXd+7cwe3bt3mXKyvacN/Dhg2jxoj+4YcfcOPGDbmvL5FIMHnyZKSlpcl9rjRoi/bKysowdOhQzvif0oiIiJDqhktRFi1aRF0JPXnyZERGRvJ6PQDIy8vDqVOn5D5v8uTJEIlEnEdoaCjveiqLvr4+vL29q6RXVFRwTirJYyT19PSssniKJtfMzIzqhqwmIRKJsGzZMs68rKwsDB48mPf3HHizi4SPUDW1AUNDQzRq1Igz7+TJk+pVRgCwsaxyaEO/RVvQ1dXFokWLOPNycnLQp08f3L9/Xy6ZBw8exGeffcaHeu/B2hHVM3v2bM6wH8Cb/rai37wffviB2q/08vKCn5+fQnK1jX/++Qf29vaceQUFBejVqxf27t3L+3VzcnLw1VdfYeDAgYJcrPDgwQOMHz++2vlzDw8P/PHHH2rUTPX89ddfyMjI4FXm1q1bOdM1OeekbpgBVoOsX7+ealxbvXo1Bg8ejKysLKWvU15ejr1796Jt27bo27evSjp+1fHixQsMGzYMrq6u+Oeff5SOiZCfn48xY8Zwug+xsbGRadW2kZERdcVURUUFhg0bhp9++omXyd7s7GwsW7YMjRo1wuzZs2U+z8bGRqrv/ZkzZ2Lo0KHVGlQJIdi5cyfc3Nze66w2bNhQZl0Y0tGG+qRN0Hbr7NmzR+HdOqoiNTWVGh+pT58+sLGxUbkOLVu2RJs2bTjzdu/erdF4YyUlJdi1axfc3d0RERFB/V2fPn2ocV7UQdOmTeHs7MyZN336dNy5c0cueWlpafD19eVtIjQ/Px9Tp06Fs7MzVq9erbRRt7y8HNOmTeOcANbV1aUuElMHtPc/KSmpVrrC+/LLL+Hl5cWZFx4eDk9PT94m3yIiIjBo0CC4u7vj1q1bvMhUFKHft66uLrU+5ufnY8CAAbh7967MOlRUVODLL7/E4cOHZT5HVrp3746RI0dy5uXn58PPzw/z58+vtn9eVFSEefPmwd/fH4WFhW/T+epP1qlTB8uXL+fMKygogJ+fH2+7bl+8eIEffvgBDRs2xOrVq3mRKXRkNapaWFhQ4xlyIRaL4ePjI9NvfXx8qBOpNY1BgwZh+PDhnHkJCQlo164db65Jb926hXHjxqFp06YszIwc0PobixYtQmpqqpq10SxsLKs8Qu+3aBOTJ0+mlmVaWhratWuHtWvXVrsQLCsrC9OmTcPIkSPfGw/zOQ/G2hHV0qhRI6oHv4KCAgwYMACxsbFyyVyxYgW1vykSibBy5Uq59dRWGjRogCNHjlBdxBYXF2PcuHEYPXo0L6GZioqKsHHjRri4uOCPP/4QlPfPV69eYffu3ejTpw9cXV2xZ88eqfq5ubnh7NmzNc6N7rJly+Do6IgZM2YgKSlJaXkbNmygbqShjU9rJERJfH19CYAqx8WLF+WSc/HiRU45vr6+cuvEJYeHW33LokWLOOUvWrRIblmHDx8mIpGIqrOtrS35+eefSUZGhlxyS0pKyMmTJ8mUKVOItbX1ezKfPHkit57K8uHzNTU1JWPGjCFHjx4lRUVFcsk6c+YMadWqFbXMZs+eLZe8GTNmUGUBIK6urmTbtm2ktLRULrmZmZlk27ZtZODAgcTAwOCtvCZNmsglhxBC+vfvL1VHXV1d0rdvX7Jp0yYSFBRErl+/TsLCwsi+ffvIrFmzSIMGDTjPO3HiBG/viyrfu23btnHKnjRpEi/y+WrHCBF2feKznaXBV1k+f/6c6OjocMrS0dEhgwYNIps2bSLnz58n165dI/Hx8ZxHVlYWb/dG45dffqE+73379qn8+pWsWLGCqkdwcHC159OeXb169ajl++ERGxtLIiIiyMmTJ8nq1avJmDFjiI2NjdR3AgCxt7cnqampaigl6SxcuJCqo5WVFdm7dy+RSCRSZZSWlpJ169ZV+fbq6uqSunXrKvx+JCUlvXeOgYEBGTx4MNm9ezfJycmR6z6joqKIt7c39V6HDRsmlzxV4OrqStXP09OTLFu2jAQFBZGoqCgSFxfHWR+fPn0q9Rp8tv1c8NnmJiYmVqlT7x76+vpk2rRp5N69e3LJlUgkJCoqisyZM4c4Ozu/J3PXrl1y68k3Qr9viURCfHx8qPoZGRmRtWvXkrKyMqly7ty5Qzp27Fjl/IYNG3LKVWTMkZGRQe0PVh7m5uZkwoQJZPv27eTcuXPkxo0b5OzZs2Tbtm1k/PjxxMzMjPOc3bt389q/GDJkiFQ9O3XqRI4cOUIqKirkkvv8+XOyadMm4u/vT8Ri8Vt5PXr0kFvHSZMmUfXjqw3hm6tXr1b7PQZABg8eLLfsNWvWyCR79erVSt8Hrey3bdumtGxCqn5vKw8nJye5ZWVkZJDGjRtTy0NHR4eMGDGCXLt2TW7Z8fHxZPHixcTNze09mb/++qvMMrSpLFXBgQMHqM/GzMyMTJs2jWzfvp2Eh4eTmzdvUvu/0sZ12jT+IkTYY1lV4eTkxHmvSUlJcssSer9Fm/q+jx494ux3vHvY2dmRzz//nOzevZuEhISQGzdukFOnTpG///6bDB06lBgaGnK2Pxs3buSUp8j8EmtHVE9OTg71Pa18r5YuXUpKSkqkyklNTa12bvXTTz9VWE+aTG3g8OHDRE9PT2rZGBgYkM8++4xERUXJLT8+Pp7MnTuXODg4UOXHxMTIJEuZeauYmBgSGRlJzp49S3bu3EmWLl1Kxo8fT9zd3aXaZj48evfuTV6/fi13OagDZd/ld981kUhEvLy8yNq1a+W2JT158oRMmTKFWob169cnxcXFCtyhdlI7lp8KmICAAKxatYq68u/169dYtGgRfvvtN3Ts2BG+vr5wd3eHtbU1rK2tQQhBdnY2srOzkZ6ejtjYWMTExCA+Pp7X4PJ8k5+fj3379mHfvn3Q09ND69at4enpibZt28Le3h7W1tawtLREWVkZ8vLykJSUhLi4OAQHB0t1X9moUSMsXrxYLl1Wr16NlJQUHDt2jDM/ISEBU6ZMwaxZs9C1a1f4+PjA2dkZ1tbWsLKyQnFx8dtn8OTJE8TExCAmJgYPHjzgzVXi3r174e3tTd2BVV5ejtOnT1NdMnMxe/ZsDBw4kDNPR4dtjlcUbahP2kDdunUREBDAGfNNIpHgxIkTMrkj3rZtGyZPnqwCDf+PHTt2cKabmppi8ODBKr32u4wZMwZz587lXKW3Y8cO9OvXTyG5z58/h7u7u7LqUbG0tMSJEycEsSP/22+/xYYNGzi9T2RlZWHs2LFYvHgxhg8fjg4dOqBOnTrQ19fHq1ev8OzZM1y8eBHBwcHIzMyscv78+fMRFhaGFy9e8KJrSUkJAgMDERgYCLFYDFdXV3h6eqJdu3aoW7fu2zZFIpEgPz8fKSkpuH37Ns6cOSM1homFhYXc7u1VwVdffUVd7Xz9+nVcv369WhmTJk0SjAtuZXF2dkZgYCB69erFuUuxtLQUW7ZswdatW+Hm5gYfHx906NABdnZ2sLa2hoGBAXJycpCdnY2MjAzcuXMHMTExuHXrFrKzs9V/QzIi9PsWiUTYuXMnPDw8ONuNoqIizJo1C0uXLsWoUaPQuXNn1K9fHyYmJnjx4gUSExNx6NAhXLlypUrb3bFjR/Tp04e3Xd/W1tYIDAyEj48P8vPzOX+Tm5uLXbt2YdeuXTLJ1NHRwc6dO2FhYcGZLxaLFdJ1z5496NGjB65evcqZHxUVhYCAANjb28PHxwfdunVDw4YNYW1tDQsLCxQWFr7tSyUlJb3tSz1+/FghfWoKla6Cc3Nzpf5Onviv8p5TG+K/vou1tTVOnz4Nb29vThd7EokEBw8exMGDB9GsWTP4+Pigc+fOcHBwgLW1NYyNjZGbm4vs7GxkZWUhISHhbX1+9eqVBu6oZjFkyBDUq1ePc1dPXl4etmzZgi1btlQrJykpieqGVNtgY1nlEHq/RZto0qQJ/vvvPwwaNIi60/XVq1f466+/8Ndff8kk08jICAcPHqTOqynSb2HtiOoxNzfHwYMH0a1bN8557tLSUsyfPx8rV67EsGHD4OPjg/r168PCwgLp6elITk7G8ePHceHCBamewdq2bSuIcbAmCAgIwJEjRzBy5EiqR5ySkhJs3rwZmzdvRoMGDdCtWzd4eHjA2dkZDg4OMDExgUgkQn5+Pl69eoWHDx8iPj4eoaGhePr0qcrvQdXzVgBgYGCA+fPn48cff6wV8+aEEFy9ehVXr17FrFmz4OTkBE9PT3h6esLJyemtbUpPTw/5+flIS0tDQkICLl68iIiICKleCjZv3gwDAwM13o2GUdaCy3bA/t+hyGr0StavXy/XagtlDiHsgFXFYWZmRi5fvqyQfqWlpWT06NFqKX9FV3m+ePGCuLu786LDhAkTSEVFBSkvL+fMNzIykls/Vb532rQDlhDh1idtWzn56NEjYmpqqlT58LWCn0Z4eDj12uPHj1fptbmglb+hoWG1u4Fp56rycHd3J/Hx8eopHBnZs2cP7/c5aNAgUl5ertT7QdtFwuehp6dHDh8+rPpCloHS0lLSunVrpe6num+ENu0CqCQiIoJYWlqq5f0Uwg7YSoR+3xcuXKh21bg8h62tLUlMTFTJmOPSpUu8lKWOjg7566+/CCGEnD9/nvM3/fr1U1jP3Nxc4u/vr5ZnXlt2wBJCyMCBA6stD0W+yxKJhNjZ2UmVa2NjU60XCVnQxl2bd+/erXYHOl8H2wErH/v371e6zKXtlNS28Rchwh3Lqgo+d8BWItR+izb2fQ8fPvzermlFD0NDQxIYGEgIIeTff//l/M0XX3yhkI6sHVEPx48fJ7q6uip5j5o1a0ZevHihlH402drErVu3SNOmTdXSdr17NGzYsFrvVZVoYt5KJBKRIUOGkEePHqn4CSgPnztgVXV8++23qi0EAVLzzfVawvTp0xEUFAQ7OztNq6KV2NjYICQkhBp/oTr09PSwd+9eLFu2DHp6ejxrxw916tTBpUuXMGbMGIVl6OrqYtGiRdixYwd0dHSoMQSNjIwUvgZDO+qTNtCkSRMcOXIEpqammlaFirTddePGjVOfItVcs7i4GPv371ezNnT09fWxePFi3LhxA25ubppW5z3Gjh2LhQsX8iavT58+2L9/v8I7wdSFkZERjh07ptHYr++ip6eHwMBANGvWTNOqCIquXbsiOjoa7dq107QqakXo9929e3ccO3aMl/6TpaUlAgMDqTGplcXb2xtRUVHw8PBQWIaNjQ0OHz6Mzz77DABU0p80MzPD6dOnMWvWLIhEIoXlqIqysjJqnpBjQVW3A9XBwUGh77JIJIKfn5/U3/j5+QnyWaoDV1dXXLt2DT179tS0KowPGDVqFH777TdNqyEo2FhWeYTeb9EmAgICEBYWhsaNGyssw9HREefPn8egQYMA8N9vYe2Iehg8eDCCgoJgaWnJq1wvLy+Eh4ejTp06vMrVRtq0aYMbN27gm2++Ucv8hbGxMebPn4+EhATUr19f5deTFwsLC3z88ce4c+cOjh49iiZNmmhaJa1n4cKFWL16tabVUDvMACsg+vXrhzt37uCTTz5RyVb2rl274t9//9XIR8XW1haOjo4qkT169GjExsbC09NTKTkikQhz587F9evX4e/vz5N2/4eBgQGGDx+OP/74Q2EZ5ubm2Lt3L4KDg9G+fXu5zu3fvz+io6OxePHit5MfNDc2bCGA8mhDfdIGevXqhdjYWIwcOVJwBqzCwkIcPHiQM8/e3l4jk2zDhw+Hvr4+Z54QXLG6uLhg+fLlSE1NxaJFiwQ7qfPzzz/jr7/+Usolilgsxpw5cxAUFARjY2OldTIxMYGLi4vScrjo1asXYmJi0L9/f5XIVxQnJyfcuHED33//PczNzTWtjmBo1qwZIiMjsXz5cpWUS7NmzbBkyRL07duXd9nKIPT77t+/Py5duqTUwLxFixaIiIhA586dFZYhC82bN0d0dDQ2bNgg12SHoaEhPv/8c9y5cwdDhgx5m66q/qS+vj7WrFmD0NBQpQzGNExNTTF58mSFJk2joqI40zt16oQOHTooq5rKqM4Aq0yftTrZtc398IfUqVMHZ8+exb///gsHBwfe5devXx/z5s3DxIkTeZdd05k/fz5CQkLg5eWlaVUEAxvLKo/Q+y3aRKdOnXD79m388ssvsLa2lvk8c3NzzJs3D7dv34a3t/fbdFX0W1g7oh569+6NmzdvKhQu4UN0dXUxf/58hIaGMuPrO5ibm+N///sfbt68ieHDh6vEPmFjY4O5c+ciKSkJv/32m6AWLzZr1gwff/wxjh07hvT0dPzzzz9wdXXVtFpqo23btip55s2bN8fp06fx888/8y5bG2AxYAWGnZ0d/v77b8ydOxcbN27E3r178fLlS4VkGRgYoHPnzujduzdGjBiBpk2b8qyt7Li5uSElJQWxsbE4efIkzp49i2vXrlF9y1eHiYkJhgwZgi+++OK9jhQftG7dGiEhIYiIiMCmTZtw4sQJFBYWKiTL0tIS/v7+6Nu3L4YPHy5XZ1Ea/fr1Q79+/XD9+nUEBgbi8uXLuH//PjIyMlBWVgZTU1PY29ujZcuW6Nq1K4YMGcL5/GmxCFnngz+0oT4JHWdnZxw4cAAvX75EUFAQrly5goSEBDx9+hQZGRkoKiqSGstDVaSlpeHbb7/lzGvVqhV0ddX/ibWyssIff/yBJ0+eVMkTiUQoLi6GoaGhSnUwMTGBhYUFLCwsYGtrizZt2qB9+/bo0KEDWrVqpdJr88lnn30Gb29v/PLLLzh8+LDMcat0dHQwePBgLFy4kFeDgZ2dHe7du4eHDx/ixIkTOHPmDCIjI5GXl6eQPH19ffTv3x8ff/wxBgwYwJuefGNmZobly5dj0aJFOHfuHMLDwxEXF4fk5GS8fv0a+fn5UmOL1FT09fXx/fff49NPP8W///6LrVu3IiEhQSFZIpEIrVu3Rq9evTBkyBDe+1V8IvT7bteuHeLj47F69WqsW7cOGRkZMp1na2uLGTNmYM6cOWqLhaOrq4uvv/4aX3zxBc6cOYNTp07h+vXrePTo0dudIebm5mjQoAHc3NzQs2dPDBo0CDY2NlVkqbo/6ePjgxs3biA4OBh//PEHzp07J3UHqjQcHBzQo0cP9OvXD0OHDlVowic1NRWJiYmceXzF7FUVrVu3hq2tLWc8UkA5I2l1k6G13QALvGl3pk2bhrFjx2LXrl34+++/cePGDYXlubi4oGfPnhg8eDB69uxZK+KRqQp/f39ERkbi3r17OH36NKKjo/HgwQM8f/4c2dnZKCkpqRUxTD+EjWWVQ+j9Fm3C2NgYP/30E+bMmYMTJ07g7NmziImJQVJSEvLy8qCjowNzc3M4OTmhdevW6NOnD/r16wczM7MqslTVb2HtiHpo3Lgxzp8/j1OnTmHFihUICwsDIUTm801MTDBmzBj88MMPvHqcGTZsGG+yhEDr1q1x8OBBPH78GDt27MDBgwcVbr+AN+9w7969MXLkSAwdOlTl81IfoqurCwMDAxgYGMDMzAwODg6wt7dHgwYN4OLighYtWqBt27a1fj782LFjeP36NYKDgxEUFIRLly5xxriWFS8vL0yePBlTpkyhbhapDYiIPK0UQ+1IJBJERkbi0qVLuHHjBhITE/H06VPk5+e/nUg3NzeHmZkZ6tatixYtWqBFixZwd3dHly5deNl1oyrKysoQExPztlPy6NEjJCUlITs7G/n5+SgsLISxsfHbifymTZuibdu2aNeuHXr06KE2t6SFhYUICQlBZGQkYmNjkZycjBcvXqCgoADl5eUwMTGBmZkZzM3N4ejoCFdXV7Ro0QIeHh5o37694HbtvcvatWs5DUgff/wx/vnnHw1oVPOpyfWJwaipPH78GEFBQQgNDcXdu3eRkZGBrKws6OrqwszM7O276uPjg/79+1N3lJWWlnIOuvX19RWaNJVIJIiPj0dUVBTu3buHxMREPH78GJmZmcjLy0NhYeHbfoKFhQWcnJzg4eEBDw8P9OzZs1ZMfNUm7t27h5CQEFy7dg0PHjxAamoqsrOzUVRU9Laumpubw8bG5u0gs3KhljZ7vhDqfRcVFeHEiRM4ffo0YmJikJKSgry8POjq6sLc3BzOzs5o27Yt+vTpgz59+mh1+IePPvoIgYGBVdJ3796tEnf82dnZOH/+PK5evYr4+HikpKQgPT0dhYWFqKiogKmpKczNzWFubo7GjRu/7Ut5enrC3d1daTe4O3bswOTJk6uk+/j4ICwsTCnZjNpHSkoKzp8/j2vXriEhIQGpqalvFxjq6OjAzMwMZmZmsLKyQrNmzeDq6gpXV1d06dIFDRs21LT6jFoGG8sqj1D7LbWJNm3aIC4urkr6pUuXap1huyaQkpKCU6dO4fLly7h3797bPndpaSmMjIxgbW0NZ2dntGnTBr6+vujbt6+g58qFTHJyMq5cuYLo6Gg8evQIycnJePXqFQoKClBUVASxWAwjIyPY2Nigfv36aNKkCdzd3dGpUyd07NixVhvgtJnk5GRERkbi9u3bSExMRGJiItLT05GXl4eCggLo6OjAwsIC5ubmqFu3Ltq0aQMPDw/4+voyt83/H2aAZTBqMaNGjcJ///1XJX3NmjWYNWuWBjRiMBgMBoPBYGgTderUQXp6epX0mzdvqsR1sKaZNGkSdu7cWSU9LCwMPj4+GtCIwWAwGAyGLOTn58PS0pLTg1ZmZiasrKw0oBWDwWAwajLMRw2DUUvJyclBUFAQZx5b9cdgMBgMBoPBqI7z589zGl/NzMzQunVrDWikei5evFglrVevXsz4ymAwGAyGwNm/fz+n8dXV1ZUZXxkMBoOhEpgBlsGopWzduhUFBQVV0i0sLNCuXTsNaMRgMBgMBoPB0CY2bNjAmd6tW7ca6Wry4cOHnHHWhR77lcFgMBgMBr3f4u/vr2ZNGAwGg1FbYAZYBqMW8uzZMyxdupQzb8iQIdDV1VWzRgwGg8FgMBgMbeL06dM4ceIEZ96IESPUrI164Nr9OnDgQHTq1EkD2jAYDAaDwZCVzZs3c8Z+BWpuv4XBYDAYmocZYBmMWkZJSQnGjh2L169fc+ZPnTpVzRoxGAwGg8FgMLSJ1NRUTJw4EYSQKnkWFhYYNmyYBrRSPSEhIe/9LxKJ8Msvv2hIGwaDwWAwGLIQExODWbNmceY1adKEhRFgMBgMhspgBlgGQwu4fPkyvv76ayQnJyslJy0tDX5+fggPD+fM79y5M+t4MhgMBoPBYNRANm3ahBUrViA3N1cpOVevXkWnTp3w6tUrzvwvv/wSZmZmSl1DqHy4AzYgIAAeHh4a0obBYDAYjJrLokWLsHnzZpSUlCgl58SJE/D19UVRURFn/vfffw8dHTY9zmAwGAzVwL4wDIYWUFRUhE2bNqFZs2YYMWIEDh06RO08cpGTk4OlS5fC3d0dV69e5fyNjo4O1q5dy5fKDAaDwWAwGAwB8eLFC8ydOxeOjo74+uuvER4eDolEIvP5jx8/xueffw5fX1+kpaVx/qZu3bqYN28eXyoLijt37uDly5dv/9fR0cHPP/+sQY0YDAaDwai5JCYm4vPPP0ejRo0wd+5cXL9+Xa7zY2NjMXr0aAwZMgR5eXmcv2ndujWmTZvGh7oMBoPBYHAiIlx+oxgMhqA4f/48evXq9V6aiYkJvLy84OHhgTZt2sDOzg6WlpbQ19dHVlYWMjMzkZCQgPDwcFy5cgWFhYVSrzF37lwsW7ZMlbfBYDAYDAaDwdAQP/74I3777bf30hwcHODl5YV27drB1dUV1tbWsLS0hEQiQWZmJjIyMnDz5k2Eh4fj5s2bqKiooMrX0dHBiRMn0L9/f1XfCoPBYDAYjBrO+PHjsWfPnvfSHB0d0alTJ7Rr1w4uLi6wtLSEpaUlSktLkZmZiVevXiE6Ohrh4eGIj4+XKt/IyAiXL19mniwYDAaDoVJ0Na0Ag8FQjIKCAly4cAEXLlxQWtZHH31UZUKOwWAwGAwGg1GzSU9Px/Hjx3H8+HGlZa1YsYIZXxkMBoPBYKiM1NRUpKam4uDBg0rJEYvF2L59OzO+MhgMBkPlMBfEDEYtZ8KECTh48CDEYrGmVWEwGAwGg8FgaBm6urrYsGEDZs+erWlVGAwGg8FgMKRiYmKCAwcOYOTIkZpWhcFgMBi1AGaAZTBqKXZ2dti+fTt27twJPT09TavDYDAYDAaDwdAyWrdujYiI/8fefUdFdbx9AP8uTTrSVBAbYkPFAjawKypWbNhbYou9xMSSBGPUqDEx1tgFexQs2CsK2BBBsRcEVCx0pNf7/pFXfyJ3li13Gzyfczgnmdn7zLPr3r1l7swEY9q0aapOhRBCCCFErPbt2yMsLAwDBw5UdSqEEELKCVoDlhANUFhYiKtXr+Lw4cM4duwY3r9/L3Mse3t7TJo0CZMmTYKZmZmAWRJCCCGEEHWVmZmJkydP4vDhwzh79iwyMzNljuXq6opp06bBy8uLZlEhhBBCiOBSUlJw9OhRHD58GIGBgcjNzZUpjra2Nrp06YIZM2agV69eAmdJCCGEiEcdsIRooBcvXuD69eu4e/cuoqOjERMTg/j4eGRmZiIrKwtFRUXQ19eHmZkZ7OzsUKdOHTg7O6Nz585o0qSJqtMnhBBCCCEqVFBQgMjISNy4cQMPHjxATEwMYmNjkZycjKysLGRnZwMADAwMYGlpierVq8PR0REuLi7o3r077OzsVPwOCCGEEFJe5Obm4s6dO7h58yYeP36MmJgYvHr1CikpKZ/PW7S1tWFgYIBKlSqhevXqaNSoEVq2bInu3bvDyspK1W+BEEJIOUUdsIQQQgghhBBCCCGEEEIIIYQQIhBaA5YQQgghhBBCCCGEEEIIIYQQQgRCHbCEEEIIIYQQQgghhBBCCCGEECIQ6oAlhBBCCCGEEEIIIYQQQgghhBCBUAcsIYQQQgghhBBCCCGEEEIIIYQIhDpgCSGEEEIIIYQQQgghhBBCCCFEINQBSwghhBBCCCGEEEIIIYQQQgghAqEOWEIIIYQQQgghhBBCCCGEEEIIEQh1wBJCCCGEEEIIIYQQQgghhBBCiECoA5YQQgghhBBCCCGEEEIIIYQQQgSiMR2wNWvWhEgkKvEXExOj6tQIgMWLF/P++yxevFjVqRFCCAA6jhDJdezYkfe7cuXKFVWnRsqZ6OhorF+/HqNHj0aTJk1gZ2cHExMT3u9nxYoVVZ0uKcPoGEqIZqLrdOHcvHkTWlpaJY69ycnJEm1fVFQEJyenEv8WmzZtUnDmhBBCCCFEVXRUnQAhhBBCCCHkf+7fv49Fixbh1KlTKCoqUnU6hBA1wXEcUlJSkJmZiaysLIhEIujr68Pc3BwmJiaqTo+QMquoqAjTpk0Dx3HFyn/88UdYWFhIFENLSwvLly9Hnz59ipX//PPPGDp0qMRxCCGEEEKI5qAOWEIIIYQQQtTEzp07MXXqVOTk5Kg6FUKICuXl5SEkJATXr1/HzZs38fz5c8TGxiI3N5f39cbGxqhVqxYaNWoEFxcXdOjQAc2aNYOWlnInvbpy5Qo6derErJ82bRrWr1+v8DwePHgg1/YikQgGBgYwMzODqakpdHV1BcqMaKIdO3bgzp07xcpsbW0xc+ZMqeL07t0bbm5uuHbt2uey5ORk/Pzzz9i4caMguRJCCCGEEPVBHbCEEEIIIYSogRMnTmD8+PElRtgQQsqPa9euYdu2bTh+/DhSU1Ml3i4jIwP379/H/fv3ceDAAQBA5cqV0b9/f4wZMwatW7dWUMbF+fj4iK0/cOAA/vzzT+jp6Sk0j8aNGwsaz8zMDE5OTmjatClatWqFvn370qjjciI1NRULFy4sUe7t7Q1DQ0Op461YsQLt2rUrVrZlyxZMmjQJTk5OMudJCCGEEELUj9wdsH///TfvheGsWbNoLSpCCPlKTEwM742pmjVrYuzYsUrPRx3QcYQQQv67wTt69GjqfCWknLp8+TJ+/vlnXL9+XbCYHz58wObNm7F582Y0bdoUCxcuxKBBgyASiQRr40sZGRnw8/MT+5qkpCScOHECAwcOVEgOipKWlobg4GAEBwdj/fr1MDQ0hKenJ2bPng0XFxdVp0cUaMWKFUhMTCxWZmdnh3HjxskUr23btujQoQOuXr36uaywsBALFy7EyZMn5cqVEEIIIYSoF0E6YGNjY0uUjx07lm6cE0LIV2JiYvDrr7+WKO/QoUO57oCl4wghpLzbsmULc7Sbvb09Ro0aBRcXF1SqVIl3xI22traCMySEKEJCQgJmzJiBgwcPKrSdu3fvwsvLC05OTtiwYUOJEXhC8PPzQ2ZmZqmv8/Hx0bgO2K9lZWVh//79OHjwICZOnIjly5fD3Nxc1WkRgX348AEbNmwoUT579my5pqX+8ccfi3XAAsCpU6dw8+ZNpY1WJ4QQQgghikdTEBNCCCGEEKJiO3fu5C339PTEgQMHoK+vr+SMCCGKdv36dXh5eSEuLk5pbUZGRqJ9+/a4ePEiunTpImjs0qYf/uTs2bOIj49HpUqVBG1fFYqKirB582acPXsWZ86cQf369VWdEhHQ77//XuKhAnNzc0ycOFGuuB4eHnByckJkZGSx8p9//hkXLlyQKzYhhBBCCFEfWqpOgBBCCCGEkPIsISEBz549K1Gup6eHrVu3UucrIWWQn58fOnbsWGrnq5aWFtq3b4+ffvoJx48fx/3795GUlITs7Gzk5+cjJSUFUVFROHfuHP766y/069cPZmZmpbafnp4u1FsBAERHRyMoKEii1xYUFGDv3r2Ctq9qMTEx6NKlC16/fq3qVIhA4uLisGXLlhLlkydPhrGxsdzxv//++xJlFy9elHg/IoQQQggh6o86YAkhhBBCvnDlyhVwHFfir2PHjqpOjZRRt2/f5i1v164drK2tlZwNIUTRDh48iKFDhyI/P5/5GisrKyxduhRv3rzB1atX8dtvv6Fv375o1KgRLCwsoK+vDx0dHVSsWBH29vbo1q0bZs+ejWPHjuHDhw/w9/dHjx49lPaefH19pVrD2tfXV4HZsI0ZM4b3GP/1X2FhIVJSUhATE4MzZ85g2bJlaNasmdjYb9++xciRI9VqLe/Fixfzvr/FixerOjW1t27dOuTk5BQrE4lEco9+/WTw4MG801avXr1akPiEEEIIIUT1qAOWEEIIIYQQFXr//j1veYMGDZScCSFE0a5du4YxY8agsLCQt15LSwvTp09HdHQ0Fi1aBBsbG6nbqFChAgYMGIAzZ87gzp07cHd3lzdtsTiOw+7du3nrWOtZRkZGIjw8XJFpyUVLSwsVK1ZEjRo10KNHDyxcuBDh4eG4cuWK2N/moKAgHD58WImZEkXIzMzEtm3bSpS7u7ujZs2agrShr6+PkSNHlig/deoUXrx4IUgbhBBCCCFEtagDlhBCCCGEEBVKSUnhLa9YsaJyEyGEKNS7d+8wYMAA5OXl8dabmprixIkTWLdunSBTnAJA8+bNcf78eRw6dAhWVlaCxPza1atXER0dzVu3ZcsW2NnZ8dapahSsPDp06IAbN27A2dmZ+Zr169crMSOiCL6+vrzH5gkTJgjazvjx40uUFRUV0XeIEEIIIaSMoA5YQgghhBBCVCgjI4O3XFtbW8mZEEIUafLkyYiPj+etMzU1xaVLl9CzZ0+FtD148GDcu3cPHTp0EDy2j48Pb3mTJk3g5OSEESNG8Nbv379f7DTM6srMzAwHDx6Enp4eb/21a9eQmJio5KyIkPg6QC0sLNCvXz9B23FyckLz5s1LlO/atYt5bkAIIYQQQjQHdcASQgghhBCiQuq0XiAhRDH8/PwQEBDAW6elpQV/f3+4uLgoNAdbW1tcuHABY8aMESxmRkYG/Pz8eOtGjRoFABg9ejRvfWJiIk6ePClYLsrk4OCAIUOG8NZxHIfQ0FAlZ0SEcuvWLTx58qREeZ8+faCrqyt4ewMHDixRlp6ejiNHjgjeFiGEEEIIUS4dVSdACJFfWloakpOTkZeXB2NjY1hZWaFChQqqTosQQgghX8jMzOSdppM1Ii4+Ph4PHjwoNa6dnR1NV1zGJScnIzU1FQUFBTAxMYGVlZVCOgKIYhQWFuKnn35i1v/000/o2rWrUnLR1dWFj48PUlNTBYnn5+eHzMzMEuVaWloYPnw4AMDR0RHNmzfnXfPVx8cH/fv3FyQXZfPw8MCePXt4616+fKnkbIhQWP+mAwYMUEh7AwYMwKJFi3jzYD28QAghhBBCNINUHbB8N41YUwY9e/ZMqilTKlWqhEqVKkmTjlgZGRk4ffo0zp49i8jISMTExCA9PR0VKlSAtbU1KleujJYtW6Jnz57o0KGDUjurkpOTce7cOYSEhODhw4eIjo5GSkoKsrKyoKenB1NTU9SoUQMNGzZE+/bt0bt3b4Wt16MpsrKycP36dURERODx48d4/Pgx3r9/j48fPyI9PR0ikQgGBgaoXLkyatSogaZNm6Jt27bo0qULjIyMVJp7YWEhrl27hnPnziEiIgLPnj1DUlISMjIyoK+vj6pVq6JHjx74+++/JY6ZnZ2Nw4cPIyAgANeuXcP79++L1WtpaaF27dpwc3ND//790atXL95pDK9cucIbv2PHjlK8Q8lERUXhwoULuH79Op4+fYpXr14hPT0d2dnZMDAwgIWFBezt7dGsWTN06tQJ3bp1g76+vuB5fOnRo0e4cuUKIiIicO/ePSQmJiItLQ0fP36EtrY2DA0NYWhoCGtra9SoUQM1a9ZE48aN0aZNGzRo0AAikajUNuLi4oqtH8RaHyszM1Oim+xfqlevnsbdfKXjiDDKy3EkNTUV586dQ3h4OCIiIhAbG4uPHz8iLS0N+fn5MDAwgKGhIczMzFC9enXUqFEDderUQatWrdCiRQuV/f5HR0fz3oxWFHNzc1StWlXuOLm5uQgMDERQUBDCw8MRHR2N+Ph4ZGZmQiQSwdjYGHZ2dqhbty7c3NzQs2dP1K1bV4B3oDoFBQUIDAzElStXcOfOHURFRSEhIQGZmZnQ1tb+/J7r1KkDV1dXdOvWDQ0bNpS5vdu3b6NTp04Sv/6ff/7BP//8U+rrdu3ahbFjx8qclxA0+VwNAG7evImAgADcvn0bT548QXJyMgoKCmBlZYVKlSqhTp068PDwgIeHB6pUqaLwfNLS0rB//36cPHkSt27dQlJSUrF6XV1d1K1bFx06dMDAgQPRuXPnEjFycnJw8+bNEuX6+vpo3bq1wnKXV0ZGBi5cuIDg4GBERkYiOjoaSUlJn/dLExMTVK9eHQ0aNEDbtm3Ru3dv5hqj6mL//v14+vQpb52DgwMWLlyo5IyEW2OatY5rly5dYGNj8/n/R40axdsBe+bMGSQkJMDa2lqQfJSpdu3azLq0tDQlZqI6YWFhCAkJQUREBO7fv4/k5GSkpaUhPT0durq6n6+nqlSp8vl6qmnTpmjTpo3Yz09VCgoK8O+//5YoNzY2Rrdu3RTSZv369eHo6IhHjx4VK798+TLevXtXbD8ihBBCCCEahpNCYGAgB0Ahf97e3mLbrlGjBu920dHRxV6Xnp7OLVq0iDMzM5O47cqVK3Pbtm3jCgsLpfk4pBYUFMT16dOH09XVleqz0dHR4QYOHMhFREQoND95eHt7y/TvKs6zZ8+4pUuXcu3ateP09PRk+l4ZGBhw48aN4x4/fqz095qXl8etWbOGq1mzZql5NmnSRKK28/LyuD///JOzsLCQ6nOoXbs2d+DAgRLxWK8XSkFBAbdnzx6uRYsWUv/bmZmZcbNnz+bevXsnWD6fctq8eTPn4uIi129WxYoVuREjRnABAQFcbm4us70xY8Yo7Hfz698/TUDHEfmU5ePIl27evMkNGTKE09fXl/n7oK2tzbm6unJr167l3r59K1X7HTp04I0ZGBgo1/aK+hszZoz0H/IXoqKiuMmTJ3MVK1aUuu3WrVtzx44dk6t9VUhISOAWLFjAWVtbS/2emzRpwu3Zs4crKCiQul1F/Qbu2rVL+A9JApp+rsZxHHf06FGuSZMmEuerpaXFjR8/nnv//r1g+X4pIyODW7RoEWdoaCj19/L8+fPFYkVHR/O+tkaNGlLnJekxVB53797lRowYIfV7F4lEnLu7O3flyhXBchFa69atmfnznaNriujoaE4kEvG+r927dxd77fv37zltbW3e165Zs0bw3BR1zPzSs2fPmO2sWrVKsHbkoYjr9KysLG7VqlVc/fr15Tp2VapUiZswYQJ36dIlmY6pinD27FneXPv06aPQdufNm8fb7t9//63QdgkhhBBCiGKVqQ7Y4OBg5usk+WvVqhWXmJgoy+co1suXL7kePXrI/RlpaWlx06ZN4zIzMwXPUV5CXtgFBATI3Tn29Z+Ojg43Z84csR1lQr7XyMhIrmHDhhLnJ0kH7MuXL2XqyPzyb9CgQVxWVtbnmKzXCSEwMJCrV6+e3P92JiYm3D///CNITqGhoVzTpk0F/W4B4i+MqQO2ODqOyKY8HEc4juNSU1O5SZMmMW/myvrXtGlTqfIoLx2w6enp3MyZM5k3xKX569q1KxcTEyNTHspUVFTEbdq0iTMxMZH7PTs5OXG3b9+Wqv2y0gFbFs7VUlNTuQEDBsicr4mJCXf69Gm5c/1SREQEV6dOHbk+x+nTp3/uyNCUDtgPHz5wI0eOFOR7NGTIEIUch+Xx4MEDZr41a9ZUm44nWSxevJj3fRkaGnLp6eklXu/h4cH7ekkfRpUG6zMXsgM2NDSU2c7WrVsFa0ceQnfAnj17lqtVq5agv/8A1OZhrpkzZ/Lm9+effyq03ZMnT/K22717d4W2SwghhBBCFEsLZcSBAwfQpUsXxMbGyhzj1q1b6NixIz58+CBYXn5+fnBycsLZs2fljlVUVIQNGzagbdu2ePPmjQDZqadz584hLCxM0JgFBQX466+/0L59eyQnJwsa+2uXLl2Cm5sbHj58KFjM+/fvw9XVFbdv35Yrjp+fH7p27arQqTGLioqwcOFCdOrUiTnVmjTS09Px3XffYeTIkcjLy5M5zunTp9GuXTvcvXtX7py+xnGc4DGJ8tFxRLWSkpLQsWNHbNmyRfB9ivbRkh48eIBmzZph7dq1KCwslDvexYsX4eLigqCgIAGyU4ysrCx4eXlhypQpSE9PlzteZGQkXF1dsX37dgGy0yyafq72+vVruLq64siRIzLHSE9Ph6enJ44ePSpIToGBgWjXrh2eP38uV5z169fDy8tLkP1aGYKCgtC4cWPs3btXkHj//vsvWrRoIeh5uLzEfc9Gjx7Nu0yIJuA4Drt37+at69+/P4yNjUuUjxo1ivf19+7dU8g5uqJFRUUx69Rxel15bd++HR4eHswlVeShLudqrPPtDh06KLTddu3a8f4WXL16FdnZ2QptmxBCCCGEKE6Z6IA9fvw4Ro0aJVfnzCcPHjzA8OHDBcgKWLt2LQYPHizVGoaSiIiIQKdOnfD27VtB45YHt27dgru7O7KyshQSPyIiAp6enoLc2P0kNjYW3bp1K7HOq6yuX7+OkSNHKuQit6CgAEOHDsXvv/8ueOx9+/bBy8sLBQUFUm8bEhKC/v37Izc3V/C8SNlAxxHVysvLg7u7u0befNVEISEhcHV1xYsXLwSNm5iYCA8PD1y9elXQuELIzs5Gr1694OfnJ2jc/Px8TJgwAWvWrBE0bnmm6HO1xMREdOvWrcRae7LIy8vD8OHD5e40DQ8PR58+fQT7rT9y5Ajmzp0rSCxF+vRgYHx8vKBxo6Oj0alTJ0H+jYVw+vRpZp2Xl5cSMxFWUFAQXr58yVvH6mj19PSEiYkJbx1rLVl1xuqsE4lEcHZ2VnI2inXo0CFMnDhRbTpKFSEmJob3AWJTU1M0a9ZMoW2bmpqiefPmJcpzcnJw5coVhbZNCCGEEEIUR0fVCcjr8ePHGD58eImnvKtVq4aePXuiXbt2qFy5MiwtLZGamopXr17h7NmzCAgIYN7YuXz5Mnx8fDB27FiZ89q6dStmzZol9jV16tRB586d4erqiipVqsDS0hI5OTn48OEDwsLCcOrUKURGRvJu++LFC3h6eiI4OBgVKlSQOU9NUqVKFTg7O8PFxQX16tWDubk5zM3Noauri9TUVMTHx+P27dsIDg4WO1I0PDwcU6ZMgY+Pj6D5fRpZ8/XNMz09PXTs2BEeHh6oVasWKleuDF1dXSQlJeHBgwc4deoUc6RHfn4+BgwYILbz1c7ODl5eXujbty9q1KgBGxsbpKen4+3bt7h9+zb+/fdfXLp0CUVFRZ+3OXbsGLZs2SLMG//CmDFjcPjwYWa9SCRCy5Yt0bFjRzg7O8PKygoVK1ZEamoq3r17h6CgIJw8eRJxcXG82x8/fhxz587F2rVrJc4pPz8fkyZNEtux5uTkBHd3dzg6OqJGjRowMTFBhQoVkJ6ejrS0NCQkJOD+/fuIjIzE7du3kZaWJnH7RP3RcUT1x5E//vgDERERzHpra2t0794dzs7OcHBwgLm5OYyMjJCXl4e0tDSkpqbi6dOniIyMRHh4uNgRKeVdeHg4PDw8xHb0WFtbo3PnzujQoQOqV68OS0tLaGtr48OHD3jy5AlOnz6NoKAg3hF2WVlZ6N+/P8LCwmBvb6/ItyKV0aNHl3oD08XFBYMHD0adOnVQtWpV5OTkIC4uDmFhYThw4ADevXvH3HbOnDmwsbHB0KFDxbbRsWNH3pvXixcvxq+//lqi3NvbG4sXLxYbU52o+7laUVERhg4diidPnhQrNzQ0RKdOndC9e/fP52oFBQWIj4/HtWvX4O/vz+xoysnJwcSJExEYGChTTqmpqfD09BQ7O0mdOnUwdOhQeHh4wM7ODpUqVSp27nTo0CFcu3at2DZr165F/fr1ZcpJGU6fPo1hw4aJfbDOzs4OXbp0Qbt27WBrawsrKysUFhbiw4cPuH//Pk6dOoWbN2/ybpuQkIDevXsjLCwMFhYWinobpcrMzERoaChvnY2NDRo2bKjkjITD2j+rVKmCrl278tYZGBhg4MCBvNvu378ff/zxB3R0NOMWxcuXL3Hw4EHeui5dusDMzEzJGSlOamoqpk+fzux81dLSQosWLdClSxfUq1cP1atXh5GREXR1dfHx40d8/PgR7969Q2RkJCIjIxEWFqawh2zkwZrFo2nTptDSUvzYBWdnZ95j45UrV+Dh4aHw9gkhhBBCiALIO4exItcDkqQdW1vbYv9frVo1ztfXlysqKhIb79WrV1zPnj2Za5BUrlyZy8/PlynX4OBgTldXlxm7TZs23JkzZySKdfr0aa5BgwbMWHPnzpUpR6EJubbM1KlTi62L9MMPP3B37tyRKkZ4eDjXr18/sevMXLp0SercOI79Xk1NTYv9v0gk4saOHcu9f/++1JixsbG85T/99BMzfx0dHW7RokVcTk5OqfFv3bpVYk3ar/P98k8WK1euFPt5jxgxgnv48GGpcfLz87l169ZxFhYWzFgBAQES57Vt2zZmnI4dO0r93crLy+MuXrzIzZgxg7O0tOQAcGvWrJF4e9b6fx06dJAqj7KEjiMllafjSFpaGmdoaMibm6WlJbdr1y6pP8enT59yf/zxB+fs7MwB0q8tJ+8asIqwYMEC5r/hlClTJIqRkJDAVatWjRmnevXq3JYtWyQ6rjx69Ii5lh8ArmXLllxhYaG8b1sQ69atE3t8atKkSanHgsLCQm779u1i1441Njbmnj9/LlOOQq/Rp2iaeq729e+9jo4ON23aNC4hIUFsvPz8fO7PP//kdHR0BDk3+ZK4tU+NjIy4NWvWSLQvnTlzhqtevXqx7VnneqpeA/bZs2ecmZkZ8303bNiQO3jwoETv+8aNG1zr1q2ZsQYOHCh1fkIKCQlh5jZkyBCV5iaPjIwMztjYmPd9zZ49W+y2ly9fZn4mQq4DympDiDVg09LSuFatWjHbOHr0qNxtCEWI48uiRYvE7mPPnj2TKqesrCwuICCA+/bbbz9/j9ThM5s+fTrve5w6dapS2t+0aRNv+507d1ZK+4QQQgghRHga3wH75Z+bmxuXnJwsccz8/HxuwIABgl4AZmZmcrVq1eKNp6Wlxf3yyy9S35BMT0/nevTowRtTW1ubu3fvntR5Ck3oDlgnJyfu8OHDpXaAlGbbtm2ctrY2b25t27aVKSbrvX75p6ury/n7+8uVe3R0NFehQgVm/NOnT0sVLzs7m+vUqVOpuQPS/yzcu3eP2VlkZmYm0wX1s2fPmPtStWrVuOzsbInidO/enXnTq6CgQOq8vpSVlcVt3rxZqvdHHbAl0XGkuPJ2HDlw4ABvXtbW1tzLly/ljh8cHMwtWrRIqm3UrQN2+/btzO9YnTp1uKSkJInieHl5MeP069ePS0lJkTo3cQ8KbdiwQep4Qnv9+jWzkwAAN27cOC4vL0/ieNHR0Zy9vT0zXteuXWXKUxM7YDX9XM3ExIS7ePGiVHH9/Pw4LS0t3nienp5S53n9+nVmfqamplJ3aiclJZV44I7vT5UdsIWFhVybNm2YuU2cOFGih0C+lJ+fz40dO5YZ89SpU1LFE9KGDRuYeS1btkxlecnLx8eH+b7Cw8PFbltUVMR8GEiW/YiFlZ+8HbAhISFco0aNmPE9PDyEeQMCEeL4Uq9ePd4YQjzEl5KSwq1atYoLCQmRO5a8XF1ded/n5s2bldJ+cHAwb/sVK1aU+1hLCCGEEEJUo8x0wLZq1YrLysqSOm5KSgpXqVIlwS4AFy5cyMxx06ZNUsf7JD8/n3lB0L9/f5njCkXIG4fR0dGCXmBs3bqV+W8SGRkpdTxJburJ2/nKcRw3adIkZvx9+/bJFPPjx4+ck5NTqflLy83NjTeOoaEhd/v2bZly5bj/Rhh+GmX69d/atWtL3T43N5e3Y9jU1JRLS0uTOS95UAdsSXQcKa68HUfGjBnDm5OPj4/KclKnDtgLFy4wR91ZWlpKPOLy/PnzzO/VkCFD5Druzps3jzeura2t1B0pQhs/fjzzfffr10+mB3GeP3/O3OcBSDw6/Uua1gGr6edqurq63M2bN2XKdcKECcyYpY2k/RrrITEdHR3u6tWrMuUXFxfHVa1aVez7V2UHrLh/6x9++EHqvL7EesikefPmcsWVx6xZs5jvV4jrBVXp2LEj73tydHSUaPv58+cLth+xsD53STtgCwsLubS0NC42NpY7d+4c9/vvv3MuLi5i961GjRoJlr9Q5D2+REdH827v4OAg80wv6qiwsJA5I0twcLBSckhNTWV+t2SdYYMQQgghhKiW4heyUAITExPs27cPBgYGUm9bsWJFzJ8/n7cuMDCQuc4Jn8TERKxbt463burUqfjuu++kzu8THR0dHDhwAKampiXqjh07hpiYGJljq5uaNWtCJBIJFm/ChAnMNVP2798vWDufjB07FgMGDJArRmpqKnbv3s1b17dvXwwfPlymuCYmJti6daugn+/Zs2dLrDv2ia+vL1xcXGSOXa1aNezYsYO3bu3ataXun+/evUN+fn6J8p49e/LuS6T8ouOI6o4jsbGxJcq0tLQwePBgFWSjXh4+fIhBgwbxrpFYoUIFHDt2DA4ODhLF+vnnn3nLnZ2d4evrK9dxYfny5WjRokWJ8rdv3+Lff/+VOa683r59yzyW2tjYYM+ePdDW1pY6roODA/PYBAArVqyQOqam0fRztaVLl6JVq1Yyb8u3RmV+fj6Cg4MljvP06VOcO3eOt27KlClo3769TPnZ2tpizZo1Mm2raHl5eVi6dClvXZ8+feTed7Zt24YaNWqUKA8PD2eu7ahocXFxzLpq1aopMRPhxMTE4OrVq7x1o0aNkigG63X5+fkK2ee/9OmYV9qftrY2zMzMUKNGDXTv3h0LFixAWFgYM+6AAQMQGBgIKysrheavbHznaQAwaNAgjVmvVxJxcXHMdWmrV6+ulBzMzMyY16jPnj1TSg6EEEIIIURYZaIDdu7cuahdu7bM2w8dOhRaWiU/irS0NERHR0scZ/v27cjIyChRbmVlheXLl8uc3yfVq1fnvfnOcRz27Nkjd/yybMmSJbzlFy5cELQdIyMj/Pnnn3LHOXr0KLKzs0uU6+joyH1TrVWrVhg5cqRcMb70999/85Z369YNgwYNkjt+v379eG+Svnz5EiEhIWK3/fDhA295zZo15c6LlC10HFHdcYRvP61UqRIMDQ1VkI36eP/+PXr16oW0tDTe+p07d6Jt27YSxbp58yZu3brFW7du3TpUqFBB5jyB/45NrOOsr6+vXLHlsXfvXuTl5fHWrVy5EiYmJjLH7t27N3r06MFbd/XqVURFRckcu7xS1rmavb09vv/+e5m3r1SpEtzd3XnrIiIiJI7D6mQyNzfHr7/+KlNunwwePFjmDlxFOnLkCF69elWivEKFCli3bp3cnfqmpqbMB6JU9Vv07t07Zl2VKlWUmIlwfH19eR8uE4lEGDFihEQxHB0d0bx5c946Hx8fedJTKkNDQ/Tv3x8XL16Ev79/met8BcrP9RSro1kkEsHGxkZpeVStWpW3nJUfIYQQQghRbxrfAaunp4fJkyfLFcPGxgZOTk68ddLcSNm1axdv+Q8//CDYaLsZM2bw3pw4deqUIPHLKhcXF96Lmbt37yI3N1ewdgYNGgQLCwu54xw/fpy3vGvXrrC3t5c7vrz7zCdv3rxh3hhljXCQxaxZs3jLS/ves27kpaeny5sSKUPoOPIfVR1H+HLJyMiQauRwWZOVlYU+ffowb7YtWbJEqpkQWN+rnj17wtXVVaYcv9ajRw/Uq1evRHlQUJDKfnMPHTrEW25vby/Ig0isDkMAOHjwoNzxyxtlnatNnz6d94EZaXTv3p23XJrfe9a53pAhQ1CxYkVZ0ipm0qRJcscQGuu36NtvvxWsM2fMmDG8n9/p06cFiS8tvoeqPhHi31nZOI5jzizQoUMHqUb1skbBRkRE4P79+zLlp0y1a9fGunXrsHXrVnTp0kXV6ShMebmeYp1zVapUCbq6ukrLg9UBW5ZmPCOEEEIIKU80vgO2U6dOqFy5stxxGjduzFsu6YnukydPeKeFEYlEGDp0qDypFWNra4uGDRuWKA8LCxN7gU/Ae5O5sLAQjx8/FqyN0aNHyx2jqKiIOU2apE+Vl8bV1RW1atWSO87JkydRVFRUotzBwYF3OkpZde3alffiPzAwUOx2lpaWvOVnz55FYWGhILkRzUfHkf+o6jjCt59mZGSobLpIVSsqKsKIESOY0xyOGTOGOZ0wH47jEBAQwFs3bNgwmXJk4RsVWFBQUOpsBYqQlJSE8PBw3roRI0YIMn1uixYteDudAeDixYtyxy+PlHGuNmTIELljyPt7n5ycjMjISN46oc71+vXrByMjI0FiCSE9PZ153ibkb5GBgQHv7ADv378X9HskKb4ZbT6Rd/YBVQgODsbLly956ySdfviTYcOGMaew1YRRsFFRURg/fjzs7OwwefLkMttBxrqeKmsPgL9584a3XIhrBGmwRsa/fv1aqXkQQgghhBBhaHwHrJubmyBxWGuoffz4UaLtz58/z1vu7Ows+Po+fDcVCgsLmTdyyH9YF09CXSxra2ujTZs2csd58eIFUlJSeOu6desmd3whY7G+956ennLH/pKVlRXvTe7IyEixHanVq1fnnWIyKioK3t7eguZINBcdR/6jquNIo0aNeMunT5/O/C0sy+bOnYtjx47x1nXq1Anbtm2TKt79+/fx/v37EuXa2tro27evLCkysaZElmZUoFCuXbvGHEUtRAfcJ6yHI27evEkP+shA0edq9vb2gkwlKe/vfVhYGO/308jISLBR6UZGRhJPU64MgYGByM/PL1FeqVIlwY7Dn6jTbxFrGnQASh1VJxRWx6i+vr7US49UrlyZeT2yb98+3vXP1VFubi62bNmChg0bYvv27apOR3Cs87QrV66UqffL+v1W9pIYrPbK2ohjQgghhJDyQuM7YJs1ayZIHNbUjtLcSOHTpEkTmXNiYU1L8+TJE8HbKktYUwPz3ZiWRYMGDWBgYCB3nIcPH/KWV6lSBZUqVZI7/idCfDdV/b3PyckRux6Ojo4OOnbsyFu3bNkyDBgwAI8ePRIqRaKh6DjyP6o4jnTt2pW3/P79+2jevDkOHTpUbjqyNm7cyFxXu379+jhy5IjUN+xZ36uaNWsKNq31J+r0vWJNX2lsbAxHR0fB2mndujVveU5ODp4/fy5YO+WFos/V1OX3nnWu17hxY7mnR/6SIo4fsmL9FjVu3FiQEelfUqffInGjXMV1zqqjrKws+Pn58db17dtXpmMKa9Tshw8fcObMGanjSaJfv364f/++RH937tzB5cuX4e/vj8WLF6NXr17Mf9OsrCxMmDABM2bMUEjeqlKpUiXmqP+JEydiwoQJZWJ90qysLN5yIa7vpcFqj5UfIYQQQghRb/xz/mgQKysrQeLwjZIDJL+RwrrRV79+fZlzYmFNAxQXFyd4W+okOTkZISEhny+Inz17ho8fP+Ljx49IT09HTk6OTHGFeppUqBu6rAtY1vqSspL3plxqaipzKiRlf+/FrYs7ZcoUnDhxgrfu6NGjOHr0KNq2bYuBAweid+/ezFEtpOyi48j/qOI40qdPH1SrVo339yQmJgZDhgxB1apV4eXlhX79+qFNmzbQ09NTep6KdurUKcycOZO3ztraGqdPn5ZpvcDy+r3im84b+O/YJ2RnT9OmTZl1T58+VcjnrM7U/VxNXX7vNeVcT0jl9bdIXOdNbm6uRk1D7Ofnx9wXpZ1++JN+/frBxMSEN66Pjw/69OkjU1xxKlasyBzVKc6AAQMA/DfF/ebNm7F06VLe37T169fDzMwMv/32m9y5qospU6bgu+++K1HOcRy2b9+OnTt3wt3dHQMGDEDPnj1hZ2engizlo+4dsJmZmUrNgxBCCCGECEPjO2DNzc0FiaOtrc1bLumoG9aNlHnz5mHevHky5yWNpKQkpbSjTIWFhfDz88O+fftw9uxZ3qnL5CXrzcCvyXJjnM+HDx94y1nrwchK3vVsXr16xawTcv3X0pT2ve/Rowfc3d1x4cIF5mtCQkIQEhKC2bNno2rVqmjfvj3c3Nzg5uYGJycnQUejEPVDx5H/UcVxRFdXFytWrBC77mFcXBzWrFmDNWvWwMDAAG3atEHbtm3h6uoKNzc3GBsbKzFj4UVERGDo0KG83xV9fX0EBATIvG4363t16tQpwUedsajie/X27Vve8gYNGgjaTpUqVWBhYYHk5GSJcyhrNOlcTdG/90VFRRJtrynnekJi/RZt3LgRGzduVEoOqvgtYnXWA/89sCD0TASKxJp+2MrKCj169JAppoGBAQYNGoRdu3aVqDt58iSSk5OZI+NVxdLSEosWLcKAAQPQrVs33rVDly1bhm7duqFdu3YqyFB433zzDTZu3IgHDx7w1hcVFeHcuXM4d+4cAKB27dpo3749XF1d0bZtW414GIk15TXr915RWOsia8qU3IQQQgghpDiN71VQh6eGc3Jy1GKduuzsbFWnIKigoCA0a9YMQ4cOxYkTJxRyQw+QvHOkNELdQGGNnhD6Bo2ZmZlc26vLjWVJvvcHDhxA3bp1JYoXFxeHAwcOYNq0aWjWrBmsra0xaNAgbNmyBYmJifKmS9QQHUf+R1XHkeHDh2POnDkSvTY7OxuXL1/GkiVL0KNHD5ibm8PNzQ0///yzStb3k9ebN2/Qu3dvZGRklKgTiUTYvXs3c5pbSajDb7UqvlcJCQm85UI9LCVJTFYOZYmmnaupw+89oDnnekIqr79Ftra2zDqhptZWhtjYWFy5coW3bujQocxOI0mwRs/m5eVh//79MsdVtAYNGuDUqVO8a3ZyHIeJEydK/FCGutPT08OxY8ckXg4nKioKu3btwoQJE9CgQQPY2tpi5MiR2LNnj9quZcpae1WoB4AkxfqdUvZatIQQQgghRBga3wGrDtTlIkLT1hFiKSoqwrx589ChQwfmdGXqyMjISJA4ubm5vOVC35STN54mfe8tLS1x8+ZNeHh4SB0/OTkZ/v7+mDx5MmxtbdG3b19cvHhRllQJYdKk/UlR/vzzT6xdu1bq6YULCgpw/fp1LF26FM2bN0fDhg3x119/acRDSenp6ejVqxezY2L58uUYPHiw3G2omiq+V6x/f0WMNmPF1ITvoKw09VxNXWjKuZ6QyutvkbipWDVp3UxfX19wHMdbJ+v0w5907NgR1apV461jjbpVF05OTrxT8wL/rTmsqHVsVaF27doICwuTaaajd+/eYd++fRg9ejQqV66M4cOHM9eFVhVWB6eyj+Ws9oS610AIIYQQQpSLOmAFwLqJomysi2JNM336dKxevVrVaagdoZ+glnc0iaZ9783NzXH69GkcPXpU5vV68/PzceLECbi7u6NTp07MabgIkZam7U+KMmPGDDx+/BjDhg2Tecq3R48eYe7cubC3t8eOHTsEzlA4hYWF8PLyQmRkJG/9+PHjMX/+fLnbUYfvliq+V6yRmIoYQcK6KVpWHozjQ+dqiqFu53pCKq+/ReJmYHn06JESM5Edx3HYvXs3b52NjQ0MDQ3x4MEDmf8ePnyIjh078sa/c+eO2p9vz549m1m3fft2JWaieNWqVcPNmzexY8cOVK9eXaYY2dnZOHDgAFq0aIEBAwbg9evXAmcpG9axXF06YGkELCGEEEKIZtL4NWDVAa0PKZy9e/di06ZNYl9jYGCAli1bokmTJrC3t4eNjQ0sLS1hbGwMPT096Orq8m63adMm/PPPP4pIW1D6+vq85azp6mQlbzxN/d57enrC09MT165dg6+vL06fPo24uDip41y5cgWtWrXC5s2b5X7ynxBN3Z8Uwd7eHvv378fq1auxe/du+Pv7Izw8XOqOiffv32P8+PE4f/48fHx8YGBgoKCMZTNt2jScPXuWt65r166CHa/K63eLdS6QlZUleFuZmZm85dKO5tYUdK4mP0051xOSlpaWWnUIK0uzZs2YdXfv3lVeInIIDg5GVFQUb927d+/QuHFjhbbv4+Oj1g98VK1aFfXq1cPTp09L1AUFBYHjOKWtua4MWlpa+OabbzB27FicP38ee/bswfnz52VaquXo0aMICgrC/v370a1bNwVkKzlra2vecmUvEcJqT9LpnwkhhBBCiHqhDlgBiHsa8ZdffpF7+kBJmZubK6UdRcnKysL333/PrG/evDkWLlyIXr16MW9ciWNlZSVPekrDWktO3W7KifvenzhxAjVr1pQrvqTETe0mjpubG9zc3AD8N0VYYGAggoKCEBISgjdv3kgUIysrC2PHjoWJiQk8PT1lyoMQgI4jfGxtbTF//nzMnz8fKSkpuHLlCq5evYrg4GDcu3dP4hv5hw4dQmFhIQ4fPqw2N0BXr16NzZs389Y1bNgQfn5+cq2n9yXWd8vDwwOrVq0SpI3SqKIjktXhrogOKVZMdev0FwKdqwlDU871hGRoaIi0tLQS5d9++y1mzZqllBxUMYVn48aNoaenxzsiPjg4GEVFRWr/oIyqpwHet28fVq5cKfPMGMrg7OzM2wGbnJyMZ8+eoV69eirISrG0tLTQo0cP9OjRAxzH4d69ewgMDERwcDBCQkIkXgc9KSkJ/fr1+/xwq6rUqFGDt1zZ61ezHgxm5UcIIYQQQtQbdcAKwNTUFLq6urzT3RkYGKBRo0YqyErz7N27Fx8+fOCtmzJlCv7++2/miAlJKPvpVVlVqVKFt1zo6ZnkjWdpacmss7Ky0qjvff369VG/fv3Pazi9fPkSQUFBOHv2LM6cOSP2BmZRURFGjx6NqKgo5pPThJSGjiPimZubo3///ujfvz+A/zoVrl27hsuXLyMgIADPnj0Tu72/vz+2bNmCyZMnKyPdUnP54YcfeOsqV66MU6dOwczMTLD2WL/VRUVFZfp7xfo9Tk1NFbwtVsyyeEygczVhaMq5npAsLS15O2B1dHTK9G9RhQoV0K5dO1y6dKlEXUpKCm7duoU2bdqoIDPJZGVlwc/PT6U5vH//HmfPnkWvXr1Umoc44q6L4uLiymQH7JdEIhGaNm2Kpk2bfp6S+dGjRwgKCsLp06dx8eJFsVP55uTkwMvLC8+fP1fZ7BGsDs6cnBwkJSWJ/TcWEnXAEkIIIYSULer9uK2G0NLSQtWqVXnrkpOTlZyN5jp06BBveZcuXbBhwwa5bugBmvNvYW9vz1vOWidQVvfu3ZNre3Hr/mjKZ81ib2+PsWPH4uDBg0hMTMThw4fRrl075uvT09OVNpKMlE10HJGOqakpPDw88Mcff+Dp06eIjIzElClTUKFCBeY2S5cuVfkahLdu3cKoUaN41yE0MDBAQECA4DfYWL/VZf17ZWtry1v++PFjQduJj49nfpasHDQZnasJg3WuJ++5maLjyaO8/hYB/804wMLap9SFn58f0tPTVZ2GykfhlsbU1JRZVx6+43wcHR0xefJkBAQEIDExETt37kSTJk2Yr3/16hW2bdumxAyLEzd7kyzL1ciisLCQ+ZCTsmaXIoQQQgghwqIOWIE0aNCAt/z58+dKzkQzFRYW4vr167x13t7egkwb+fLlS7ljKEPDhg15y1NSUhAbGytYO/KuO1WtWjUYGxvz1pWl772uri4GDRqEoKAg7Ny5kzkt6MGDB5WcGSlr6Dgiu8aNG2Pjxo24f/8+c5RJXFwcQkJClJzZ/0RHR6Nv3768I0BEIhH27t2Lli1bCt4u63sVFRXF2xFcVtStW5e3PDIyUtD3HRERwawrayOe6FxNOKxzvUePHvFOVSsrdVpjtDwf4wYNGsScZnjv3r0KWZtaKOrS8XnixAm17sjkG939iaof/lIHhoaGGDduHMLDw7F06VLm61R5PWVkZITatWvz1pU204pQXrx4wbvEhpaWlsLXWiaEEEIIIYpBHbACYd00DQ4OLtM3OIXy+vVr3pvSFhYWaNu2rdzxs7OzcefOHbnjKEONGjWYU9OdOHFCkDYKCgpw5swZuWJoaWnB2dmZt+7q1atyxVZX48aNw2+//cZb9+bNm3JxE5EoDh1H5FenTh2cOXOGufbk5cuXlZzRf1JTU9GrVy/Ex8fz1q9atQoDBgxQSNus71VycjLu37+vkDbVgZOTE295enq6oKNgb926xVuur6+POnXqCNaOOqBzNeE4OzvzPtCVl5eH8+fPC9JGYmIibty4IUgsIbB+iyIjIxUyNbg6qVGjBtzd3XnrEhMTsWPHDiVnJJnY2FhcuXKFt2769OngOE7wP9ZDA7m5uWr9sGNiYiKzjvXAanmkpaWFRYsWYdKkSbz1N2/eVOkDCaxrW2WdL7HaqVevHn2PCCGEEEI0lNwdsNra2rzlQj69rQm6dOnCW56UlCR2dAT5D+umdLVq1QQZUREcHMy7tqK66ty5M2/5vn37BIl//vx5JCQkyB2H9b0PCgrSqM9bGtOnT2dOcyrJCGX6zSyJPpP/0HFEGLVq1cLAgQN564ScRUBS+fn5GDBgALPTb/Lkyfj+++8V1n7r1q1hZGTEW3fx4kWFtatqrq6uzPMHIaf8ZHUItG7dmvnbpqnoXE04xsbGzA5Joc71Dh06pFafJ+vctqioSGUPxyjT9OnTmXVLlixRy07o3bt3Mx8AGzFihELabNKkCXOEuLqMxuUTGhrKrLOzs1NiJpqBdd5TUFCAt2/fKjmb/1HXDlgXFxeltE8IIYQQQoQndwcsa5QJ3xPyZZmrqyusra1569auXavkbDQPq6PFwMBAkPgbN24UJI6y9O/fn7f85s2bzNE20vj777/ljgGw80xKSsLevXsFaUPdGBkZoX79+rx14p5+/4R+M0uiz+Q/dBwRDutGlST7qNAmTpyIwMBA3rru3btj/fr1Cm1fX18fPXr04K3buHEj71R3ZYGlpSWaN2/OWydUB1d4eDizY5012k2T0bmasFjnUMeOHcOrV6/kil1QUKB2n2f16tWZnRvl4RjXq1cvtGrVircuMTERs2bNUmo+OTk5pX7PfH19ectr167NfC9CGD58OG/57du38ejRI4W1K6vo6Gjm9Ona2tplbjp6ITg4OMDMzIy3ThXnap+wvteRkZFKaZ/VjiL3N0IIIYQQolhyd8BaWFjwlsfFxckbWqNoa2tj3LhxvHX79+8vN2tayYr1PRLiCdjHjx/j5MmTcsdRpt69ezM/kxkzZsg1HemxY8dw4cIFmbf/UqNGjZgjOFasWIGCggJB2lE3enp6vOWsUWZfot/Mkugz+Q8dR4Qjzz4qpN9++405Yqdx48Y4fPgwc11pIX377be85S9fvhSsM1IdDRkyhLf8xYsXgkxluXjxYqnb1mR0riasYcOG8e7/OTk5mDt3rlyxN2zYoJYdVazfoqCgIAQFBSk5G+VbtWoVc7S4r68vtm3bppQ8kpOT0bVrV4SHhzNfExwcjKioKN46VgepUIYPH878nNRxFOyff/7JrHN2dqapYxnU5VztS23atOH994qKisKHDx8U2jbHcbh27RpvXbdu3RTaNiGEEEIIURy5O2BZU+oIub6Wppg6dSrvhURBQQGGDBmCnJwcFWSlGVijvl69eoUXL17IHDc/Px+jR49GUVGRzDFUQV9fH5MnT+atCw0NZa5DWppXr15h2rRp8qRWwpw5c3jLnz17pvSn+ZWhsLCQ2RFma2tb6vZVq1blvamUkJCg0ie+VYmOI/9DxxFhPHv2jLdckn1UKPv378cvv/zCW2djY4NTp07BxMREKbn06NEDjo6OvHWzZs2S6zirzkaOHMm8wfvDDz/Itc7cuXPnmOuyd+jQAbVr15Y5trqiczVhVa1aFV5eXrx1fn5+zNGHpbl79y7zt0fVRo8eDSsrK966MWPGlPnzoPbt22PixInM+u+++w5+fn4KzSE0NBQuLi7Mjp5PxHV0KroDtmbNmmjTpg1v3d69e9Vq5obbt29j+/btzPrBgwcrMRvNkZKSwtzflXmu9jU9PT106tSJt461HrJQHj16xLtEkL29fZlbU54QQgghpDyRuwO2QYMGvOWsm1JlWfXq1ZmdW2FhYRg7dqxC1mK6ceOG3FOVqZq1tTWqVq3KW7dq1SqZYnIch5kzZyIsLEye1FRmzpw5MDc3563z9vaWerq2d+/eoVu3boKPKvTy8mJO97lx40asW7dO0PaA/zpBJblBde7cOcH//Y8fP46kpKQS5Xp6ehJdHOvr66NmzZq8dYoY/bN48WKIRCLeP3UZRUDHkf8pb8eRxMRE7Nq1S9D1fjMzM/Hvv//y1jVq1EiwdsQJDg7GN998w1tnZGSEEydOoFq1akrJBQBEIhFWrFjBW5eSkoK+ffvi/fv3grcbGxsryLT5srKxscHo0aN5616/fo1x48bJ1OkXExPDHK0OAAsWLJA6piagczXh/fLLL9DV1eWtGz9+PI4cOSJVvMePH6N79+5IT08XIj3BGRkZMTuHY2JiMHDgQIXk/vDhQzx48EDwuLL4448/mFPSFhYWYsiQIVi9erXg7ebk5GDx4sVo27YtoqOjxb42KysLhw8f5q1r3rw5cykOIbHWmH337h3Onz+v8PYlERkZib59+yI3N5e33sTEROyxQlP4+fnh6dOngsbctWsX74xOVapUgaWlpaBtSYu1bMPVq1cV2i6rg5eVDyGEEEII0Qxyd8C6urryll+9elVtbu4r0+LFi2Fvb89b9++//6J9+/Z4/fq13O1wHIeTJ0+iffv2cHV11fgOWOC/tfD47NixAwcOHJAqVn5+PsaMGYN//vlHiNRUwtLSEsuWLWPWz5o1C/379y+1Q5XjOOzevRuNGjUqdvEs1M1/kUiErVu3MkcZzZw5E+PHjxdk5F52djb++ecf1K1bF0OHDi319Tdu3ECLFi3QpUsXnDt3Tq6pmwHg+fPnmDJlCm9djx49YGpqKlEc1u+mt7d3mdiXpUXHkeLK03EkIyMD33zzDezt7fHnn38iLS1NrngFBQX49ttveTsTdXR0MGDAALniS+L58+fw9PTkvSGrpaWF/fv3M9dBVKQ+ffpg0KBBvHWPHz9G8+bNBZsC9O7duxgxYgQcHBwEm/JeVosXL2ZO/3jo0CFMnTpVqunyX79+jW7duuHdu3e89e7u7szzmbKAztWEVa9ePcyePZu3rqCgAAMHDsSECROQmpoqNk5BQQH+/PNPODs7Iz4+/nO5Mh/0kNSUKVPQunVr3rqgoCC4uLgI1lkaHByMPn36oHHjxrh7964gMeVlYmKCEydOMB+yLCoqwrx589C1a1fmbA7SKCgowN69e9GoUSP8+uuvEj3E5e/vz+wIV/To10+8vLyYU/Sr+twwISEBS5YsQYsWLcQ+vLRgwQKVdyYK4eTJk2jQoAH69++P69evyx3v1q1b+Pnnn3nrWLMCKFPfvn15Zyu6fPmyQttlxe/Xr59C2yWEEEIIIYol98Jj7du3R8WKFXlvDIwbNw6+vr7o27cvGjZsCHNzcxgYGPDGqVSpEipVqiRvOipnYmKCffv2oWPHjrw3X2/evAlHR0dMnDgRs2fPZk69yaewsBBBQUHw9/fHkSNHmDf/NNXIkSOxc+fOEuVFRUUYNWoUHj16hIULFzK/Q5+cPn0ac+fOxZMnT4qVV6tWTZBOC2X67rvvcPLkSZw+fZq3/tixYzh58iS6du2KPn36oGbNmqhcuTIyMzPx9u1bhIaG4vDhw3jz5k2JbTdt2oQ+ffoIkmezZs2wcuVK5k3EHTt24MKFC5gzZw7Gjx8v1do+mZmZOH36NPz8/HD69GlkZGQA+G+9TEldvnwZly9fhq2tLQYNGgQvLy+0adMGWlqSPYOSn5+PnTt3YsGCBUhJSeF9zYQJEyTOp2/fvrzrLr569QqNGjWCl5cX2rVrB3t7exgbGzNHx9SrV49Zp0noOFJceTyOxMXF4fvvv8eiRYvQvXt3eHl5oU+fPhI/1AD8N63inDlzmNMq9uvXjzmFqpBWrFiB5ORk3roJEybA3t5e8JFY5ubmzJGJX9qyZQvu3LnDO/rp3bt36NSpEwYOHIgffviBObMBy4MHD+Dv7w8/Pz+1GWkG/DfN67JlyzBz5kze+s2bNyMsLAw7duyAk5MTM05RURF2796NWbNmMR8UMDIywsaNGwXJW13RuZrwfvvtN5w/f57ZQbh9+3bs3bsXvXr1Qo8ePVCtWjVYW1sjNTUV7969Q3BwMPz9/UtM56mjo4N169ahf//+SngXktPW1sa+ffvQokUL3t/KZ8+ewdnZGaNGjcK8efOYo0X5cByH27dvw8/PD/7+/mq7dnqdOnVw4sQJeHh4MDs6L126BEdHRwwePBgTJ05Ehw4dJD5vBf63xvfOnTsRExMjVX6sDk4tLS0MGzZMqliysrKyQrdu3XivgY4fP47U1FRUrFhRptipqakSH6fy8/Px8eNHJCcnIzIyEqGhobh48WKpM3e0bdsW8+bNkyk/dcRxHI4dO4Zjx46hdu3a8PLygpeXF5o2bSpxjMzMTKxfvx6//vor74O5WlpazNlDlMnOzg4dOnQoMSL16dOnePz4MXPmHnlkZ2fj3LlzJcqrVKmCLl26CN4eIYQQQghRHrk7YPX09DB+/HjmVElXrlyRaL0Mb29vLF68WN501ELr1q2xZ88eDB06lHdqu4yMDPz1119Yu3YtmjVrhg4dOqBZs2awtLSEhYUFdHR0kJqaitTUVCQkJOD+/fuIiIjAvXv3kJmZqYJ3pBydOnVC586deZ/+LCwsxNKlS7Fp0yYMGTIEbm5uqFGjBoyNjZGSkoL379/j1q1bOHnyJKKiokps37FjR7Rv3x5LlixRxlsR1P79++Hm5oaHDx/y1hcUFODs2bM4e/asxDHnzp2L3r1789ZJc3PnS7NmzcLLly+xfv163vpXr15h1qxZWLRoEdq0aYP27dujfv36sLCwgIWFBfLz8z9/79++fYu7d+8iIiICjx49kmp0kjhv377FunXrsG7dOpiYmMDZ2RkuLi5o2LAhLC0tYW5uDhMTE+Tk5CA1NRXPnj3D7du3cebMGbHrkg0aNIj5efLx9PSEra0t3r59W6IuPT0dO3bswI4dO0qNEx0dzZzOWJPQcaSk8nocyc3NRUBAAAICAqCtrY0GDRrAxcUFzZs3h42NDSwsLGBubo6ioiJkZGQgNjYWDx48wLlz5xAZGcmMa2ZmJvW07bIStzbdli1bsGXLFsHbHDNmjEQjgiwsLHD27Fm4ubnx/qYVFRXh8OHDOHz4MOrUqYP27dujTZs2qFy5MiwsLGBoaIiPHz8iNTUVKSkpePz4MSIiIhAREcG7bpm6mDFjxucHD/iEhYWhSZMmaNWqFQYNGoQ6derA1tYWubm5iIuLQ1hYGA4cOFDqjBPbt28v8+u00bma8PT09HD8+HG0bt2a+VBMTk4O/P39md9hPmvWrGF2jkjzEJsi2NvbIyAgAO7u7sjOzi5Rn5eXhx07dmDnzp1o1KgR2rdvjxYtWsDa2hoWFhaoUKEC0tLSkJqaiqSkJDx8+BARERG4e/duqaOF1YWbmxsuXrwIDw8P5kM7hYWFOHjwIA4ePAhra2u0bdsWLVq0gL29PWxtbWFoaAgdHR1kZGQgOTkZL168wMOHD3H16lWZ12V+9eoVAgMDees6duyo1PU5R4wYwdsBm5ubi4MHD2Ly5MkyxT1+/DiOHz8ub3pMjRs3xrFjx5gjeDVdVFQUfv/9d/z++++wtLT8fD316brO3NwcRkZGyMrKQnJyMp4+fYobN27g3LlzYqcYnzNnDpo0aaLEd8I2cuRI3msPf39//PTTT4K3d+7cOd7z82HDhqn895oQQgghhMhHkKuChQsXYv/+/bydCeXV4MGDoaWlhREjRjDXhSksLERYWFi5XfeKz4YNG9CmTRvm6JLk5GT8888/Uk1XV6tWLRw4cACbN28WKk2lMjMzw8WLF9GtWzfcv39f7nijRo3CqlWrmJ0EFSpUkDn22rVrUaFCBbFrV2VmZuLixYu4ePGizO0IIT09XeKOPXHq16+PTZs2SbWNnp4e/vrrL4mmUS4v6DhSUnk/jhQWFuLBgwd48OCBXNMN6urqYufOnRKNEC0P6tati6CgIHTr1o13doRPnj9/jufPn0v0MIgm2LNnDxITE8Wu4Xbr1i2Z16xdvXp1uflNp3M14VWvXh2XL19Gt27dBBkBvHDhQkybNo23oxuQ71xPKG5ubjh//jz69OnD7DTlOA73798X5PxXHbVs2RLh4eEYNGhQqcfxhIQEHD16FEePHhWkbQsLC96H+Hx9fZlLdihr+uFP+vXrByMjI96OKR8fH5k7YBXJ09MTu3btknl0rqZJSkrC+fPn5V6X183NTa0evhk0aBCmTZtWYqTukSNHFNIBy1rve+TIkYK3RQghhBBClEvuNWCB/6a+O3XqFCpXrixEuDJj4MCBCAoKYq7lR0pq0KABDh06JNi0qvb29jh//jyqVKkiSDxVqVKlCkJCQuSa9ktHRwfe3t7w9fWFlpYW88ZpadMGiiMSifDHH3/Ax8eHueZeWeLs7Izg4GCZpjUdMmSI2DV+hSJurS9ppoJWNDqO8KPjiHwMDAxw7Ngxpaz9qkkaNGiA27dvo2vXrqpORWkMDAxw+vRp5jq4stLV1cXWrVsxd+5cQeOqMzpXU4z69esjNDRUrukmDQ0NsXnz5s/nF4o41xNS27ZtERoaiubNm6s6FZWpUaMGrl27hsWLF0NfX1/h7enq6mLy5Ml49uwZ7whpX19f3u0qVKiAgQMHKji74oyMjJjrX966davEFOaqVLlyZRw6dAhHjx4tN52vQunRowfOnz+vNr9LwH8PQPM9VBUREYGnT58K2lZ2djYCAgJKlDs7O5fr30ZCCCGEkLJCkA5YAGjatCkiIyMxceJEtXiqWl20bNkS9+7dw48//qiQz6Vp06b4+++/pVp/Rd1169YNgYGBco9W6tmzJ27dugUHBweBMlMtU1NT7N+/H6dPn4azs7NU2/bs2ROhoaFYvHgxRCIRADBHGwixRuKYMWMQGRmpkE4PbW1t9OjRA/v37y/1tbVr14aZmZngOejr6+OXX35BcHAwrKysZI6zcOFCXL58Ga1btxYwu+JYo7mqV6/OvKmlKnQc4VeWjyNGRkZSre8nDXd3d0RERKBnz54Kia/pqlSpgvPnz2P79u0KefChatWqmD9/PkaPHi14bFkZGhri0KFD2LhxI0xMTOSO17hxY1y/fl2qNcDLCjpXU4wqVargwoUL2LdvH+rWrSvxdtra2hg2bBgiIyMxadKkz+WKPNcTSp06dXDjxg2sXLlSqnW/pYm/dOlS9OjRQ/DYQtHT04O3tzcePXqEb7/9ViHHemNjY3z33Xd4+vQp/vnnH1haWpZ4TXBwMHPUdM+ePVXSsShu1K08s2MIpX379vD19UV0dDQGDx6s6nQUon79+jA0NBQ87qflIU6ePKmQ+PKaNWsWb/n27dsFbefw4cO8D8uw2ieEEEIIIZpF0IVJKlWqhC1btmDVqlU4c+YMQkJC8PDhQ8TGxiIpKQlZWVmCreWoSYyNjbFixQrMnDkTmzdvhq+vL2JjY2WKpa2tjRYtWsDd3R0DBw5Um3VShObm5oa7d+9ixYoV2LJlCzIyMiTe1sXFBfPnz1f6U9rK4uHhAQ8PD4SFhSEgIADXrl3D06dPkZSUhPz8fBgbG6NSpUpwdHRE27Zt4enpyXtjk7XOmFAjUGrVqgV/f3/cu3cP69evh5+fH3MkRmmMjIzQvn17dOvWDV5eXhKvPzVq1CgMGzYMQUFBOHnyJC5duoQHDx7wrqkpCRsbGwwfPhxTp05FrVq1ZIrxtU6dOuHGjRt48uQJzp49i9DQUDx79gxv375FamoqcnNzZc43NzcX169f56376aefoKenJ0/qCkHHEX5l9ThibW2NJ0+e4Pnz5zhx4gTOnTuHGzduiF0jTBw9PT307NkT48ePR69evQTOtuwRiUT49ttvMXz4cOzZswdbt27FnTt3ZI5Xr149dO3aFX379kXXrl1lXlNckUQiEaZMmYLBgwfjr7/+wvbt28Wu8c2nSZMmmDNnDkaMGCHY2myOjo685y2Ojo6CxFcEOldTDJFIhOHDh2PYsGG4evUqTp06hVu3buH58+dISUlBYWEhTExMYGNjg0aNGqFDhw7o168fb2e4os/1hKKnp4cffvgBEydOxPbt27Fz5048fvxYplgikQhOTk5wd3eHp6cn3NzcBM5WcWrVqoXt27dj6dKl2L17Nw4fPizXEgN6enro2LEjBg8eDC8vr1I7uPPz8+Ht7c1bp6pjavfu3fHrr7/yngsr43uspaUFExMTmJmZwczMDLa2tmjevDmcnZ3RqlUr2NnZKTwHVZs/fz5mzZqFS5cu4eTJkwgMDMSzZ8+YU1WXxt7eHiNHjsTUqVNRqVIlgbMVTpMmTdCpU6cSayLv3r0by5cvF2wWCL4OXRsbGwwZMkSQ+IQQQgghRLVEnKxnzkQu4eHhuHr1KsLCwvDixQu8fv0aHz9+RE5ODvT09GBiYgITExNUqlQJ9evXR/369dGwYUO0bdtWISP61FlKSgpOnjyJK1eu4M6dO0hISEBSUhKKiopgbGwMGxsb1KtXD61bt0aPHj3g5OTEG6egoIC340ZHRwc6OoI+i6AR1qxZgzlz5pQoHz9+PLZt2yZ4e/n5+bh69SquX7+OiIgIREdHIy4uDhkZGcjLy4OhoSFMTExgamqKqlWrokGDBqhfvz6aNGmCVq1aCdZZmJ6ejps3byIiIgLPnz8vtv99yuXTjRZzc3M4OjqiWbNmaNGiBdq2bSvYzXZluHr1Kjp27FiivHbt2njy5Em5/N6XJWX1OFJUVIT79+9/nl4wKioKL1++RHJyMtLT05GVlQV9fX2YmprCzMwMNWrUQLNmzdCsWTN07doVFhYWqn4LGi02NhYXL17E7du38fjxY7x69QpJSUnIzs7+fCPaxMQE5ubmqFOnDho0aIAGDRrA1dUV1apVU3X6UisoKMClS5dw5coVhIeH48WLF0hISEBWVha0tbVhbGwMOzs71K1bF23atEG3bt3QqFEjVaetduhcTT3NnDkT69atK1G+dOlSLFq0SAUZSe7Jkye4fPkybt++jWfPnuHVq1dITU1FdnY2dHR0Pp8zWlpaol69eqhfv/7nhw/VaYSvvN69e4fr169/7oSPjo7G+/fvkZmZiezsbIhEIhgYGKBixYqwtbWFg4MDGjZsiBYtWsDV1VUtRxYSzZecnIzr16/j3r17ePHiBV68eIG4uLjP11OFhYUwNTWFqakprKys0KhRIzRr1gytW7dGy5YtVZ2+xE6cOIG+ffuWKD98+LAgSxo8e/aMdyaY3377TSFrzRJCCCGEEOWjDlhCyqkhQ4bg0KFDJcr/+usvzJ49WwUZEaF5e3tjyZIlJcp9fX3ValpQQgghhAivVatWCA0NLVF+5MgR9O/fXwUZEUKI5uA4Ds7OzoiIiChW3rZtWwQHB8sdf+rUqdi0aVOxsooVKyI6OprWEiaEEEIIKSPUb244QojCpaWl4dSpU7x1mjRVGxHv8uXLJcrq16+PESNGqCAbQgghhCjL8+fPcfv2bd46V1dXJWdDCCGaRyQS8T7MGhISghs3bsgVOyEhAbt27SpRPnfuXOp8JYQQQggpQ6gDlpByaOfOncjMzCxRbmZmhubNm6sgIyK0rKws3Lp1q0T54sWLNWoaZUIIIYRIb8OGDbxrNDo6OqJy5coqyIgQQjRP79690apVqxLlK1eulCvu+vXrkZ2dXazMysoKs2bNkisuIYQQQghRL9QBS0g5ExcXh+XLl/PWeXp60hprZURISAjy8/OLlTVu3BheXl4qyogQQgghynDv3j1s3bqVt27w4MFKzoYQQjTbsmXLSpQFBATg0aNHMsXLyMjAxo0bS5T/+OOPMDY2likmIYQQQghRT9QBS0g5kpubi+HDhyMxMZG3/ptvvlFyRkRR+KYfXrJkCUQikQqyIYQQQogypKamYsiQIcjJySlRp62tjTFjxqggK0II0VxdunRB3759i5VxHIdffvlFpnh//fUXkpOTi5U5ODhgxowZMudICCGEEELUE3XAEqLmrl27hmnTpiEmJkauOO/fv0fHjh0RFBTEW9+mTRu0b99erjaI+vi6A9bFxQWenp6qSYYQQgghTH5+fli0aBHi4+PlivP06VO0atUKT58+5a338vJCrVq15GqDEELKozVr1qBChQrFyvz9/REaGipVnMTERKxevZo3vp6enlw5EkIIIYQQ9UMdsISouezsbGzcuBF16tTB4MGD4efnV2K9GHHS0tKwfPlyNG7cGDdv3uR9jZaWFtasWSNUykTFPn78iPDw8GJlS5YsUVE2hBBCCBEnNTUVy5cvR82aNTFu3DicOXOmxDIC4rx//x4//vgjXFxc8OzZM97XGBoa4vfffxcqZUIIKVfs7e0xb968EuXz58+XKs6yZcuQnp5erMzDwwO9e/eWKz9CCCGEEKKeaLFHQjREQUEB/Pz84OfnByMjI7Ru3RrNmjVDkyZNYG1tjYoVK0JPTw8pKSlITk7G48ePERQUhOvXryMrK0ts7Hnz5qFVq1ZKeidE0UxNTVFQUKDqNAghhBAihezsbPj4+MDHxwfm5uZo3bo1mjdvjkaNGsHS0hIVK1aElpbW53O9e/fuISgoCKGhocjLyxMb+88//0SNGjWU9E4IIaTsWbBgAXR1dVFUVFSsPDk5GRYWFqVuX1RUhMqVK8Pb27tY+ejRowXNkxBCCCGEqA8Rx3GcqpMghLBdvHgR7u7uCovfr18/+Pv7Q1tbW2FtEEIIIYQQftu3b8eECRMUFn/atGlYv369wuITQgghhBBCCCGkJJqCmJBybNSoUTh8+DB1vhJCCCGElEHz58+nzldCCCGEEEIIIUQFqAOWkHLI2toaPj4+2L17N3R1dVWdDiGEEEIIEVCtWrVw6tQpWveVEEIIIYQQQghREZqCmBA1V1hYiKtXr+Lw4cM4duwY3r9/L3Mse3t7TJo0CZMmTYKZmZmAWRJCCCGEEFnk5eXh/PnzOHToEE6ePImUlBSZYzVu3BhTpkzB2LFjoa+vL2CWhBBCCCGEEEIIkQZ1wBKiYV68eIHr16/j7t27iI6ORkxMDOLj45GZmYmsrCwUFRVBX18fZmZmsLOzQ506deDs7IzOnTujSZMmqk6fEEIIIYQwcByHR48e4fr167h//z6io6MRGxuLhIQEZGVlISsrCxzHwcDAAObm5qhWrRrq1asHFxcXdOvWDQ4ODqp+C4QQQgghhBBCCAF1wBJCCCGEEEIIIYQQQgghhBBCiGBoDVhCCCGEEEIIIYQQQgghhBBCCBEIdcASQgghhBBCCCGEEEIIIYQQQohAqAOWEEIIIYQQQgghhBBCCCGEEEIEQh2whBBCCCGEEEIIIYQQQgghhBAiEOqAJYQQQgghhBBCCCGEEEIIIYQQgVAHLCGEEEIIIYQQQgghhBBCCCGECIQ6YAkhhBBCCCGEEEIIIYQQQgghRCDUAUsIIYQQQgghhBBCCCGEEEIIIQKhDlhCCCGEEEIIIYQQQgghhBBCCBEIdcASQgghhBBCCCGEEEIIIYQQQohAym0H7OLFiyESiUr8LV68WNWpaRwfHx/ez3Ls2LGqTo0QQgghhBBCCCGEEEIIIYQQpdJRdQKf5ObmIjU1FVlZWcjJyYGenh4MDQ1hZWUFXV1dVadHCCGEEEIIKYPoOkQzfPz4ESkpKcjOzoaRkREsLCxgZGSk6rQIIYQQQgghhBBeKumA/fDhAwIDA3H9+nXcuXMH0dHReP/+PTiOK/FakUgEa2tr1KtXD40bN4abmxs6dOiAqlWrqiBzQkh5tnjxYvz666/Mej8/PwwcOFCJGQnjwYMHKmu7Vq1aUt88jY6ORmZmpoIy+p9GjRoJHrOwsBABAQEICAjArVu38O7dO+Tk5MDGxgaOjo7o27cvBg0aBAsLC8HbLm8yMzMRHR0tVwwtLS0YGxvD1NQUpqam0NIqtxOHAAB+/PFHrFq1Suxr+M7lZKGM3yUjIyPUqlVL8Lipqak4fPgwTp48iQcPHuD9+/fQ0dGBra0tWrRoAU9PT/Tp04c69lSkvF2HFBYW4vnz54iMjMTDhw8RGxuL2NhYvHnzBh8/fkRmZiZycnJgZGSEihUrwszMDNWrV0eLFi3g4uICV1dXmJubqyT3N2/ewM/PD2fOnMHdu3cRHx9f4jV2dnZwdnZGz549lX78vHDhAo4dO4bg4GC8ffsWGRkZqFy5MurUqYPevXvDy8sLtra2SsunrMrPz8fTp0+l3k5LSwsVKlT4/Gdubg4dHbV5/lxlsrOzERERgbCwMCQnJ/O+xtPTE02bNlVYDvHx8bz7s9Bkuc6QxI0bN3DkyBFcvnwZb968QWpqKqytrVGrVi14eHjAy8sLDg4OgrdLCCGEEEI0EKck2dnZ3LZt27gOHTpwWlpaHAC5/lxcXLiVK1dy79+/lykfb29v3rje3t7CvvFyYNeuXbyf5ZgxY1SdGiGCKSoq4mrVqiX2d6l3796qTlMm8v4ey/MXGBgodb4dOnRQSm75+fmCfs7nzp3jGjRoUGq7ZmZm3MqVKwVvv7wJDAwU9PsgEok4GxsbzsPDg1uwYAF35swZrqCgQNVvU2kiIiI4HR2dUj8noShjH3dzcxMsX4777zixdu1aztLSstS2HRwcuKNHjwraPmFTt+sQRUpOTuYCAgK4H374gXN1deX09fXleq8VKlTghgwZwl24cIErKipSynuIiYnhhg8fLtFvzpd/hoaG3JQpU7jExESF5hcaGsq1bt261Hz09fW5+fPncxkZGQrNp6yLjo4W7DhuZWXFOTo6cr169eK+//57bseOHVxkZKTSvtvKlpeXx4WHh3Nbtmzhxo8fzzVp0kSi/WrXrl0KzYt1L0bovwsXLgia99OnTzkPD49S29XW1uYmTpzIxcfHC9o+IYQQQgjRPArvgM3JyeFWrFjBVapUSSEn1bq6utyIESO4x48fS5UXdcAKhzpgSXkgSWeOjo6OWt6MLY0yboCw/spLB+yKFSs4kUgkVfvdunXjPn78KFgO5Y3QHbB8f5UrV+bmzJnDxcXFqfrtKlRhYSHXokULiT4ToShjHxeyAzYrK4sbOHCg1DksWLCgzN74Vwfqeh2iSJMmTVLYPtO+fXvuyZMnCs1/48aNnKGhoVx5WlpaKuwBh927d3N6enpS5dO8eXPu7du3CsmnPBCqA1bcn7m5OdevXz9uz549Gn3u9fz5c2737t3c9OnTudatW8v8AAZ1wJZ0/vx5zszMTKr2a9WqpVbHB0IIIYQQonwKnUvv8uXLaNy4MebPn6+wKWby8/Oxb98+NGzYEOPHj0diYqJC2iGElG8+Pj6lvqagoAB79+5VfDJlSMWKFVWdgsItW7YM8+fPl3pq1vPnz6N79+7Izc1VUGZEXh8+fMBff/2F+vXr4++//0ZhYaGqU1KIdevW4fbt26pOQ20VFRWhf//+8Pf3l3rb33//Hd9//70CsiJ0HSK8oKAgNGnSBH/99ZfgsTmOw+TJkzF16lRkZWXJFSspKQkDBgzAihUrBMruP/v27cPo0aORl5cn1Xbh4eFo3749c7pXonopKSk4fvw4Ro0ahUqVKmHs2LEqXaJDVoMGDcLo0aOxfv163Lx5Ezk5OapOqUy4evUqevbsibS0NKm2i46ORrt27eReEoMQQgghhGguhXTAFhUVYcmSJXB3d8fz588V0QRvmzt27EDz5s2V0h4hpPzIyMiAn5+fRK/19fVVcDZlR7169RS6vpQ6OHPmDH755ZdiZSKRCCNGjMDly5eRnJyMrKwsPHz4EEuXLi3RIX3jxg1MmTJFiRkTWaSnp2P27Nnw8PBAenq6qtMR1KtXr/Dzzz+rOg21tmjRIpw7d65YmaGhIRYsWICIiAhkZGQgLS0N165dw8SJE6GtrV3stX/99Rf27NmjzJTLNLoOUazc3FzMnTsX8+bNEzTutGnTsGXLFsHicRyHBQsWYM2aNYLEu3v3LiZMmFCivGfPnjh58iQSEhKQk5ODFy9eYO3atbCxsSn2uhcvXmDIkCGCrZNNFCcnJwe+vr5wcnLC4MGD8fr1a1WnRFTozZs3GDRoEAoKCoqVt2nTBocOHcK7d++Qm5uLV69eYceOHahbt26x1yUmJqJv377Izs5WZtqEEEIIIURN6AgdsKCgACNGjMChQ4dKfa25uTm6d+8ONzc3NGzYELVq1YKFhQWMjIyQn5+PjIwMxMXF4fnz5wgLC8OVK1dw+/ZtFBUVMWN+/PhRyLdDCCHw8/NDZmamRK+9f/8+wsPDy8VNWHmNGzdO1SkoVEFBAWbOnFnsmGVkZIR///0XvXr1KvZaR0dHODo6Yty4cejZsyfu3bv3uW7nzp2YOHEiWrVqpbTciWwuXLgAT09PnDt3Djo6gp9iqcTUqVORkZGh6jTUVlRUFFavXl2szMHBAWfOnIGDg0OxcldXV7i6umLkyJHo168fUlJSPtfNnTsX/fv3h7GxsVLyLqvoOoTNzMwMLi4uqFevHurVq4caNWrA1NQUpqamAIC0tDTEx8fj3r17uHHjBoKCgsR2Fq5evRo1a9bE1KlT5c5ty5Yt2LRpE7Pe0tISEyZMQJ8+feDo6AhjY2OkpqYiMjISR44cwa5du5ijZr///ns4OTmhS5cucuU4Z86cYh0oOjo62Lx5M7799ttir6tduzZmzJiBsWPHYsCAAbh06dLnuosXL+LQoUMYMmSIXLkQ5eA4Dn5+fjhz5gxWrVpFD8SVU7/88kuJ2Q1+/fXXEg9YVqtWDd988w1GjhyJb775Bvv27ftc9+DBA6xbtw4//vijUnImhBBCCCFqRMj5jPPz8zlPT89S18Jo1aoV5+/vz+Xm5krdxps3b7hVq1ZxNWrU4I1tZmYmURxaA5YQIilp1xydPn26qlNWG/Xr1+f9jLS1tWVeN5P17yHLerKKtHfv3hI5+vv7l7rd+/fvOVtb22LbeXh4KCHjskXcGrCSrm2Wl5fHJSYmck+ePOH8/Py4uXPncnZ2dqX+Bvz888+KfXNK8u+//5Z4bzo6OmLXOhWKouMLZfz48cXyq1ixIhcVFVXqdoGBgZy2tnaxbVeuXKmEjMsuTboOUaRPa8Dq6+tzffr04davX8/dvXuXKywslCpObGwsN23aNE5LS4v5Werr63PPnz+XK9+nT5+KXadyyJAhXEpKitgYcXFxXKdOnZgxKleuXGoMcUJCQkrE/PPPP0vdLjMzk2vcuHGx7Ro0aCBzHuWVuDVgS7t2Lyoq4rKysriUlBTuxYsXXHBwMLd7927u+++/5zp27MhVqFBB4vP7UaNGcTk5Ocp50zJq0qSJRO/FxMSEc3Fxkfs8SVaaci8mNja2xLFakuu8wsJCrlu3bsW2s7Cw4LKzs5WQNSGEEEIIUSeCTkE8c+ZMHDt2jFlfpUoVHD58GDdv3sSAAQOgp6cndRtVq1bFvHnz8OLFC+zcubPE9E6EECKk6OhoBAUF8da1bt2at/zAgQPIz89XZFoa4caNG3jy5AlvXffu3WFra6vkjJTr6NGjxf6/V69eGDBgQKnbVa5cGatWrSpWdvHixTI3ta0m0NXVhaWlJerVq4eBAwdi9erViI2NxdatW2Fubs7cbtWqVRo/ZWFqaipmzpxZonzOnDlo1KiRCjJSPxzHISAgoFjZokWLYG9vX+q2HTt2LDELwJEjRwTNr7yh65D/dOrUCX5+fkhMTERAQACmTZuGJk2aQEtLusu+6tWrY/369bh69SrMzMx4X5OTk1NiFJi0Zs+ezVyncvLkyTh48GCp68Xb2tri3Llz6NOnD2/9hw8f4O3tLXOOXx/PGzdujNmzZ5e6naGhIf75559iZY8fP2aeGxHhiUQiGBgYoGLFiqhduzbatm2LUaNG4Y8//kBgYCBSUlLg7++P3r17l7qP7NmzB4MGDdK4c3x9fX20bt0a06ZNg6+vLx49eoTU1FQcPnxY1ampvYCAABQWFn7+/0qVKkm0trSWlhY2b94MXV3dz2XJycm4cuWKItIkhBBCCCFqTLAO2J07d4qdOsrV1RV3797FoEGDBGlPR0cH48aNw5MnTzBt2jRBYhJCyNd8fX15p+CrXLkyduzYwbtNYmIiTp48qejU1N6uXbuYdWV9+mEACAwMLPb/fGvHsQwdOrTYDef8/HwEBwcLlRqRg5aWFiZMmIArV67AwsKC9zW5ubnYunWrkjMT1rx58/D+/ftiZTVq1JCrE6OsefDgAeLj4z//v5aWFr755huJt//uu++K/f/t27fpQQsZ0XXI/wwZMgQDBw6EkZGRIPHatm2LU6dOMTun/P39kZSUJFPsoKAgnD59mtnuhg0bJI6lq6uL/fv3o06dOrz1mzZtwqtXr2TK8+vj+bfffguRSCTRtm5ubmjcuHGxssuXL8uUBxGegYEBBgwYgBMnTiAyMhJ9+/YV+/qTJ09izJgxSspOerq6umjatCkmTJiArVu3Ijw8HOnp6bhx4wbWr1+P0aNHo0GDBlI/kFFefb3vDx8+HIaGhhJtW6tWLfTo0aNYGe37hBBCCCHljyBn3q9evcKsWbOY9Z07d8alS5dQuXJlIZorxtTUFOvXr0dAQADzRighhMiC4zjs3r2bt27o0KFwdHRkrsvp4+OjwMzUX3Z2NnMNPktLy1JvcGm67OxsJCcnFytjjZjmo62tjZYtWxYr0/QRlWWNk5MT1qxZw6w/fvy4ErMRVlBQEO8DJuvXr5f4xmN58ObNm2L/X7duXanORZs1awZ9ff3P/19UVIS3b98Kll95Qdchiufm5oaJEyfy1uXl5eH8+fMyxf16todPdHR0sG3bNmhra0sVz9jYGBs3buStKygowF9//SV1jkDJfV2a4zkAtGnTptj/0/FcPTVs2BDHjx/Hvn37xD7AcODAgRIjm9XFzZs3ERERga1bt2LChAlo1qxZmVmTXhVo3yeEEEIIIfISpAN2ypQpzCf2HR0dcfz48WI3mBShT58+uHHjhkTTvhFCiCSuXr2K6Oho3rpRo0YBAEaPHs1bf+bMGSQkJCgsN3V35MgRpKWl8dYNHz5cpqkfNUlKSkqJMmlvzltaWhb7/687dInqjRo1CjVq1OCte/DgATIzM5Wckfxyc3MxadKkEiP/PT09mdN7lldf7+fS7uMikajEVNa0n0uPrkOUg9UBC/w3eltar169Yo5+HTlyJOrXry91TABwd3dHhw4deOt27drFnO5YHHn3dTqea5bhw4fj6tWrsLKyYr5mzpw5iImJUV5SEpL2oQUiHu37hBBCCCFEXnJ3wIaEhODUqVO8dfr6+jh8+DCMjY3lbUYidevWxaVLl5TSFiGk7GONYm3QoAGcnZ0B/DfV35fr+3ySn5+PvXv3KjI9tVbepx82NTUtUcbqkGZJTU0t9v+sNfiI6ohEInTv3p23juM45gMc6mz58uUl1ic0NjbGunXrVJSR+vp6P5d2H+fbhvZz6dB1iPI0a9asRGfCJ7J0RB04cIB3iQcAmDFjhtTxvsSaFvrjx4/M74s48u7rdDzXPM7Ozjhx4gQMDAx463NycvDjjz8qOSuibLTvE0IIIYQQeck9H424tcDmzZsHR0dHeZuQytcjCYR08+ZNBAQE4Pbt23jy5AmSk5NRUFAAKysrVKpUCXXq1IGHhwc8PDxQpUoVheXxJY7jcO3aNVy+fBmhoaGIiorC+/fvkZmZCZFIBCMjI9ja2sLBwQGtWrVC165d0aJFC6XkpiixsbG4dOkSbty4gSdPniA2NhapqanIysqCnp4eTE1NYW5ujnr16qFhw4ZwdnZGly5dFHbBk5ubi8DAQAQFBSE8PBzR0dGIj4///G9gbGwMOzs71K1bF25ubujZsyfq1q2rkFw+yc7Oxvnz5xEWFoaIiAhERUUhLS0NHz9+RE5ODgwMDGBoaAgTExNUq1YNNWrUQO3atdGyZUu0atWq2NqT5VVmZib8/f1560aOHPn5vy0tLdGzZ0/e6UZ9fX0xe/ZsheWorl69elVizaRPmjRpgmbNmik5I+UzNjaGkZFRsRGQoaGh6Nmzp0TbcxyHsLCwYmW2traC5kiEUbt2bWadLB1yqvT48WOsWLGiRPnixYtRrVo1FWSk3r6e0vbp06f4+PEj7wMYfB48eICsrKxiZbSfS6c8XYeog6pVq/Ku9yrL2sVHjhzhLa9fv77c5wm9e/eGqakpPn78WKLO398fAwcOlCpe5cqVi73v0NBQuLi4SLx9aGhosf+n/VwztG7dGitWrMDMmTN56w8dOoRFixbByclJyZkRZfn6OB8aGirVWuK07xNCCCGEEHByePLkCQeA98/S0pLLyMiQJ7xCeXt78+bt7e1d4rVHjx7lmjRpwnyvX/9paWlx48eP596/f6+w/NPT07kVK1Zw1apVkzivT38ODg7c+vXruezsbEFy2bVrF287Y8aMESQ+x3Fcbm4ut2vXLq5FixZSv18AnI6ODte2bVtuy5YtXHp6uiA5RUVFcZMnT+YqVqwodT6tW7fmjh07JkgeX3r8+DH37bffcqampjJ9TgA4kUjENW3alFu+fDkXFRUleI6awsfHh/n5xMTEFHutn58f8/OMiIhQzRtQoSVLljA/j7///lvu+B06dOCNHRgYKH/yAnJ3dy+W36BBgyTe9vjx4yWOKwkJCQrMtuwJDAxkfg937dolWDtbt25lthMaGipYO4pWVFTEtW3btsR7cHJy4vLz84u9lnUOJedpZTGKji+E3NxcztjYuFh+GzZskHj72bNnl/isieQ0+TpEU7Vq1Yr38+7bt69UcVJSUjgtLS3eWPPmzRMk14EDB/LGr1SpEldUVCRVrAkTJhSL0aJFC4m3vXv3LicSiYptHx4eLu3bKdeio6OZ+zrftbuQioqKxF5/Tpw4UaHtK5K4z1XI8yQ+0tyLUaVly5YVy69q1apcTk6ORNu+e/eOMzQ0LLb9kSNHFJwxIYQQQghRN3JNQbxjxw5m3XfffQcjIyN5wqtcWloaBg4ciP79++PevXsSb1dUVITt27ejTp06OHPmjOB5+fn5wcHBAfPnz8fr16+l3v7FixeYPn06GjRogAsXLgien9COHj2KevXqYdy4cTKtMQUABQUFCAkJwaRJk2Bra4vr16/LnE9GRgZmzZqFunXrYvPmzSWmFpLEzZs34enpCXd3d8TGxsqcyye5ubn46aef0KRJE+zYsYP3iX9JcRyHu3fvYuHChZ+n2S2PWNMPt2vXrsSaj71792aOGmbFKas4joOvry9vna6uLkaMGKHkjFSnd+/exf7f398fZ8+eLXW7tLQ0zJ07t1iZm5ub2LXIiOqIOwZo0mwCW7ZsQUhISLEykUiEzZs3Q0dH7glTyiQ9PT24u7sXK/v111/x5s2bUrcNDw/Hpk2bipX169dP0PzKurJ+HaKO4uPjecutra2lihMUFISioiLeuk6dOkmdF5/OnTvzlsfHx+Phw4dSxfr6eH779m1s3bq11O3y8/MxZcqUYlMtV69eHU2bNpWqfaI6IpEIv/76K7N+3759JWYyIGXH1/t+XFyc2O/Dl2bMmFHsu2FoaIiuXbsKmh8hhBBCCFF/cnXAsqbnBIBvvvlGntAq9/r1a7i6ujKnx5JEeno6PD09cfToUUFyKiwsxMyZMzF48GB8+PBB7ngxMTHo3r07fv31V+YaTKqUlZWFMWPGYMCAATKtLcWSnp7OvIFUmgcPHqBZs2ZYu3YtCgsL5c7l4sWLcHFxQVBQkMwxsrOz0bdvXyxbtgx5eXly5/QlWb4XMTExEIlEvH8dO3YUND9FiYmJwdWrV3nrRo0aVaKsQoUK8PLy4n39/v37kZ+fL2hu6vz5BgcHIyoqireuT58+5aoTcdy4ccXWy+M4DkOHDsXly5eZ2yQlJaFXr1548eJFsfKff/5ZYXkS+bC+77q6uqhevbpMMX18fJj7+eLFi+XIlt+7d+8wf/78EuUTJkxAmzZtBG+vLJk3b16x/09ISECPHj3w6tUr5jYRERHo3bs3cnNzP5eZmprKve5leVMWrkM6duzI3NeFPPcVQkJCAvOhQWkf2Ltz5w6zrmXLllLFYhG35Ep4eLhUsXr37o0GDRoUK5s+fTr279/P3CY7OxtDhw4t8dDnTz/9BJFIJFX7RLU8PDxQp04d3rrMzEyZ1n7WpH2/PHNyckK3bt2Kla1YsQKrV69mblNYWIhp06bh8OHDxcpnzZoFExMTheRJCCGEEELUl8wdsE+fPsXLly9561xcXFCrVi2Zk1K1xMREdOvWDY8ePZI7Vl5eHoYPH47nz5/LFaeoqAijR4/GunXr5M7pSxzHYfHixZg1a5agceWVkpKCTp06Yffu3apO5bOQkBC4urqW6BiRV2JiIjw8PJgdfqUZPHgwzp8/L2hO5Z2vry9v57O+vj4GDx7Muw1fxyzw3w3L06dPC5qfOtu1axezbty4cUrMRPVMTEywZMmSYmVpaWlwd3fHuHHjEBQUhLS0NOTm5uLZs2f4448/0KBBA1y7dq3YNp9GyxP1w3Eczp07x1vXuHFjVKhQQckZyWb69Okl1qutVKkS73qwpLg2bdqUOC48fPgQjRs3hre3N+7fv4/s7GxkZGQgNDQUM2fOROvWrfHu3bti2yxZsqRcPaAir7J8HaKu/Pz8mKNWWaNNWe7evctbbmdnV+zBJXk4OTlBS4v/UjciIkKqWFpaWvjjjz+KdZzm5eVhxIgR8PT0xNmzZ5GcnIy8vDzExMRg8+bNcHR0LPEgr4uLS7k7FyorRo8ezaw7deqUEjMhyrZixQro6el9/n+O4zBv3jx06NABR44cQXx8PPLz8xEXF4c9e/agefPm2LhxY7EYNWvWxA8//KDs1AkhhBBCiBqQeU65wMBAZp0m3yguKirC0KFD8eTJk2LlhoaG6NSpE7p3745atWqhcuXKKCgoQHx8PK5duwZ/f3/mjaCcnBxMnDhR7GdWmh9++EHsU9YA0KBBAwwdOhSOjo6oWrUqOI7DmzdvcP/+fezfv5+ZHwCsW7cOtra2+PHHH2XOUShZWVlwd3cX+3Q8AFhYWKBbt27o0KEDbGxsUKlSJejp6SEpKQlJSUm4d+8eQkNDERoaiszMTLlyCg8Ph4eHBzIyMpivsba2RufOndGhQwdUr14dlpaW0NbWxocPH/DkyROcPn0aQUFBvCNns7Ky0L9/f4SFhcHe3l7ivPbt2yf2ot/MzAxdu3ZF69at4eDgACsrKxgZGaGwsBBpaWlIS0vDixcvEBkZibt370o9JVtZxHEcs+O/d+/eMDMz461zc3NDrVq1EB0dXaLOx8enXEwtmZmZCT8/P966KlWqoEePHkrNJyMjAwkJCcjPz4eBgQEsLS1haGio1BymTJmCmzdvYs+ePZ/LioqK4OPjI9H01A0bNlSrB1FIcfv372eOVBkwYIByk5HRiRMneEcSrl69Gubm5irISHIcxyE1NRWJiYkQiUQwNDSEtbU1dHV1lZrHjh078PDhw2IP7n38+BFLliwp8RAGn9GjR2PmzJmKTLHMKavXIeoqNTWVOfq+c+fOqFevnlTxvr7O+oQ1ylAWFSpUQLVq1XhH7T59+lTqeL169cJPP/2E3377rVj58ePHcfz48VK3t7GxwbFjx2hKdw3Vs2dP5mwkXz84R4STm5uLhIQEZGRkQF9fH2ZmZko/N2nWrBn++ecffPvtt8XKg4KCJJrFysjICMePH2deQxJCCCGEkLJN5itAcZ1j7du3lzWsyu3YsQNv3779/P86OjqYPHkyvL29mSMT+vXrh+XLl2PdunX48ccfUVBQUOI1V65cwYkTJ9CnTx+pcwoICMCff/7JrK9Vqxa2bduGLl268NZ7eXnht99+w/HjxzFp0iTm9MWLFi2Cm5sb2rZtK3WOQho9erTY71fNmjWxYsUKDBo0CNra2szXDRs2DMB/nZsnTpzA/v37cfLkSebT+yyJiYnw9PRkdr5Wr14dixYtwpgxY5ijnXr37o3vv/8ejx8/xty5c3nXBk5JScGwYcNw48YN5hP7X+I4DgsWLOCtMzAwwLJlyzBp0iSpOpzevHmDgIAAHD58GFeuXJF4u7IkKCiI+bACa5Qr8N8aUaNGjeK92X7q1CkkJiaW+dFNhw8fZu4no0aNUvhNx0uXLuH48eMICQnBgwcPkJOTU+I1FhYWaNSoEVxcXNC9e3d06NBB4aMUt2/fDh0dHbGjg/m0adMGR48epenK1NTDhw+Zs0cYGBhoxCinjIwMTJ06tUR5p06dxP7eqdLOnTsREhKCa9eu4eXLlyXOubS0tGBjY4MmTZqgdevW8PDwgLOzs0Kn/DQxMcHFixfRr18/qdeqnzRpEjZs2KCgzMqusnodoo7S09PRq1cv3uU7tLS0SnRIlobjOOYU3bVr15YpRxZ7e3veDlhZp3j99ddfUVRUhGXLlkm1Xb169XDixAlUrVpVpnaJ6jVt2hTm5uZISUkpUffkyRPk5ORAX19fBZmVLY8fP8bixYsREhKCsLCwErNzAP91aNatWxfOzs7o3LkzevToofBO2W+++QZ5eXmYPn06770elk8PXjg5OSkwO0IIIYQQotY4Gbm4uHAAeP/i4uJkDas03t7ezPw//ZmYmHAXL16UKq6fnx+npaXFG8/T01PqPNPT0zk7Oztmjj169ODS09MljpeQkMC1bNmSGc/R0ZHLy8uTKsddu3bxxhozZoyU75Yd69Pf1KlTuZycHKnjfvLkyRNu5MiR3IkTJyTexsvLi5lPv379uJSUFKnz+Omnn5gxN2zYIFGMGzdu8G6vr6/PhYaGSp3T1+7du8fNmDFD6u2io6OZ761Dhw5y56VoY8eO5c3d0tKy1H3j2bNnzPf+999/C5KfOn++7du3Z+b26NEjwdrp0KFDqb/fkv5ZWFhwc+fOVcpxa9u2bZyNjU2pORkaGnKLFi2S67eOcFxgYCDzM961a5fMcYuKirhdu3ZxlpaWzPgrV66UK3dxx0Jvb2+5Yn9p+vTpJeLr6elxT548EbuduHMooQi1jwPg6tSpw61Zs4bLysoSLD8+WVlZ3Lx58zh9ff1Sc7Kzs+N2796t0HzKMk2/DvlE3PEsOjpa1elxp0+f5mrXrs3MccGCBVLHfP/+PTPezz//LGj+w4cP523HwMBArrjHjh3jHBwcSt3PdXV1ue+++06mawXyP+LOfYU8JpZG3P56+/ZtwWIpa98X97nKc54kCUnuxUj6p6enxw0dOpQLCwtTaM4cx3FBQUFc8+bNS81JJBJxQ4cO5d68eaPwnAghhBBCiHqTeQ1Y1jqYpqamsLW1lTWs2tDV1cWFCxeYo0pZBg4cWGJ6mk8+jYKTxtq1a/HmzRveulatWsHf3x/GxsYSx7OyssKpU6dQt25d3vpHjx5hx44dUuUolI8fP+L7779n1nt7e2PDhg1yjVarV68e9uzZg969e0v0+gsXLuDQoUO8dUOGDMHRo0dRsWJFqfP47bffMG/ePN665cuXIzc3t9QYZ8+e5S2fP38+WrRoIXVOX3NycsLatWvljqNJxE2hO2TIkFKntaxTpw5at27NW+fr6yt3furs5cuXCA4O5q1r1aoVGjRooOSMJJOcnIw///wTDg4OWLJkiVRPtUtr/PjxePHiBXbt2oVBgwbBwcEBJiYm0NfXR/Xq1eHu7o41a9YgKioKS5cu1Zj1Q8uygoICpKSk4Pnz5zh69Ch++OEH1KpVC+PGjUNSUhLvNiNGjBB7LFMXoaGhJdYoA/5b8kDa6UTV3fPnzzF79mzUqVMHhw8fVlg7BgYGWLVqFV68eIHVq1eja9euqFatGvT19WFiYgIHBwcMGTIEe/bswfPnz9V2lLEmKOvXIcpWWFiIlJQUvHz5EidOnMAvv/yCevXqoWfPnoiKiuLdZuLEiVKPBAWAhIQEZl3lypWljidOlSpVeMuzs7PlWp6kX79+ePz4MQ4dOoTRo0ejXr16MDMzg56eHuzs7NC+fXssX74cT548waZNm2S6ViDqp1GjRsw61qhuonh5eXk4ePAgWrRogeHDh0t9v0Ua7dq1Q1hYGE6fPo1JkyahYcOGsLCwgK6uLmxsbNC6dWv8/PPPuHfvHg4cOECj3gkhhBBCiGxTEGdlZSE1NZW3zs7OTp581MbSpUvRqlUrmbfdtWtXiRv5+fn5CA4ORv/+/SWKk5OTg7///pu3ztDQEIcPH5ZpPUMrKyscOnQIzZs3552Od9WqVZg4caJE0+AKac2aNcwb2sOGDWOuPaVIrLV+nJ2d4evrK9eUhsuXL8eVK1dKTFf49u1b/Pvvvxg9erTY7fmmVAOAoUOHypxTeefn5yd2Cl1JjBo1Cjdv3ixRHhERgfv376Nx48Zy5aiufHx8wHEcb50mTMWanZ0Nb29vnDx5EkePHlXYDRNDQ0OMHTsWY8eOVUh8Iplx48YJ/r3U0dHBggUL4O3trfTjp7QKCgowfvz4EucAtWvXxqJFi1SUleLFxcXBy8sLY8eOxZYtW6Cnp6eQdqpWrYq5c+di7ty5Colf3pWH6xBFGTp0KP7991+5Ynx60GDatGkybc861wcg+BqJ4uIlJyfDyMhI5tg6OjoYPHgwBg8eLHMMolmqVavGrGM9ME2Uh+M4HDhwAJcuXYKfnx/atWunkHZEIhE8PDzg4eGhkPiEEEIIIaRskekO4bt375h1rCeNNYm9vb1co1cqVaoEd3d33rqIiAiJ4wQEBDCf4Jw/f77Yi8DSNGnSBBMnTuSti46ORmBgoMyxZZGfn4/Nmzfz1tnY2KhkfbSbN2/i1q1bvHXr1q2Te3Sajo4O73qhgGSjJVlr+dasWVOetMo1Hx8f3nIHBwfmyNaviRspK+0aoJqC4zjmd9bAwECjHgq4ffs2WrZsiefPn6s6FaIhrK2tMWXKFNy/fx9LliwRuza5uvjjjz9w//79EuUbN24sF2vY+fj4oFu3bsjKylJ1KkQGZf06RF0ZGBjgu+++w5MnT2TufAXAu6bjJ0KveS4uHqsTnxAWGxsbZh3ruowoX3x8PLp27YqjR4+qOhVCCCGEEEJkGwHLGiEGoExMsTR9+nS5R690794dZ86cKVEuTQcsa+pbY2NjQUZVeHt7Y9u2bSgsLCxRd/DgQamnX5bH2bNn8f79e966RYsWwcLCQmm5fMLqLOvZsydcXV0FaaNHjx6oV68enj59Wqw8KCgI6enpYm8csUbfpqenq3Tq0po1azJHQqqzmJgYXL16lbdu5MiREsextLREz549cfz48RJ1+/btw6pVq6CjI9NPLwD1/HwvX77MnHqtf//+go9o+ZqVlRW6deuGZs2aoXHjxnBwcICZmRnMzMyQk5OD5ORkvH//HtevX0dQUBDOnDkjdprvt2/fokuXLggNDaWb+USsjh074vvvv0eXLl0E7bhU5CjpqKgo/PbbbyXKvby80L17d4W0KQQHBwe4u7vDyckJjRs3hp2dHczMzGBsbIz09HQkJSUhNjYWwcHBuHz5MnNK9E+uXr2KgQMH4tSpU2o/YpkUV5auQ65cuaLqFEolEokwbtw4rFq1CpaWlnLHE3f8FfoBEHHxJFnug5AviTuflfaBHk3Y95XJwMAAHTt2RKtWrdC4cWM0aNAA5ubmMDMzg0gkQlJSEhITExEeHo6goCCcOnVK7HTmeXl5GDp0KM6ePYtOnTop8Z0QQgghhBBSnEx3nLKzs5l1ZWHNuiFDhsgdgzXNaExMjETbFxUV4dKlS7x1/fv3l2nq4a9VqVKF2cl68eJFueNL48SJE7zlRkZGKlkjjeM4BAQE8NYNGzZM0Lb4RksXFBQgJCRE7Hasm2CnTp0SJK/yZvfu3cyOTWk6YAH2dMXx8fG8D2ZoOnEjexU1/bCZmRlmzJiBGzdu4MOHD9i3bx++//57dO/eHbVr14aVlRV0dXVhYmKCGjVqoFWrVpg9ezaOHj2KmJgY/Pjjj2KPV69fv8bQoUN5p2kn5JMrV66gd+/eqF69On7//Xekp6erOqVSTZo0qcR5nKmpKXPJA1WqVasWfv/9dzx79gzPnz/Hpk2bMHnyZLi5uaFGjRqoWLEidHR0YG5uDgcHB3Tp0gWLFy9GUFAQ7t69Cy8vL7Hxz549q5LlDYh8yvp1iLrhOA47d+5E9erVMW7cODx+/FiueHl5ecw6eR5Q48OakaS0PAjhI65DPycnR4mZlA06OjoYOHAgTp48iaSkJJw+fRre3t4YMGAAGjRogCpVqsDAwAD6+vqoWrUqmjRpgnHjxmHXrl2IjY3Fxo0bxa75/akTlvWQNyGEEEIIIcogUwesuAtWcRe6msDe3l7s9EKScnBw4C3/+PGjRNs/ePCAOTWWEB3En7A6E2NiYhAXFydYO6VhdTYPGjQIpqamSsvjk/v37/NerGlra6Nv376CttW2bVve8tJGSzdq1Ii3fOHChcz1YQk/juOwe/du3jpXV1fUrl1bqni9e/eGubk5bx1rmmNN9fHjRxw5coS3rnr16ujcubPgbf7yyy+Ii4vD2rVr0bp1a6lHr1WpUgUrVqzAjRs3mL/VwH8j5LZv3y5vuqQcSEhIwMKFC+Hk5IQbN26oOh0mX19f3uPt0qVLBTn3EdLJkyfx4sULzJ8/H3Xq1JF6+yZNmuDff//F/v37YWxszHzd77//jocPH8qTKlGysnwdos6ysrLg4+ODhg0bYurUqWI7wsXhm3nnE6GncBcXr6CgQNC2SNlHHfrC6du3L2JjY+Hn54devXrBwMBAqu0NDAwwZcoU3Lt3T+zsHfHx8ZgzZ4686RJCCCGEECIzmTpgxT1drukXH82aNRMkDqvTUNIOWL612T5p2bKlTDnxEbeupbgchJSamoqXL1/y1rE6JxUtLCyMt7xmzZqCdwhXrVqVt/zJkydit+vatStv+du3b9GiRQts3bqVnsaWUHBwMKKionjrpB39Cvz3G8kaefXpKe+y4t9//2XehB0zZoxCpvbs3LkzjIyM5I7TrFkz3Lp1C3Xr1mW+5ueff6b9qAxaunQp7t+/L9FfaGgoLly4gL1792Lu3Llip6CPiYlB+/bt8e+//yrx3UgmMTGRd/kCZ2dnTJ06VQUZiderVy9Bfj+GDRuGS5cuMW/uFhQUYOHChXK3Q5SnLF+HKNrq1at5f+du376N8+fP48CBA5g3bx7atWvH3P84jsOmTZvg4uKCt2/fSp2DuFGuQneKiotHnfVEWsqcPrusa968udjRq5KysrLCmTNnMHjwYOZrDhw4gPDwcLnbIoQQQgghRBYy3dkS94Sipq+nY2VlJUgc1tqdknbAPnv2jLe8atWqsLa2ljmvr9WtW5c5nfHX65IqyqNHj5h1QnY2S4PV+Vy/fn3B22JNJVzaCOTmzZszO9ATEhIwadIk2NnZYfLkyThz5ozUaxOVJ6xRqXp6ejKPOGdNQ5yXl4f9+/fLFFMdsaYfFolEClvDUkgWFhY4deoUc8RyfHw89u7dq+SsiKJVrVoVjRo1kuivRYsW6Nq1K0aMGIHVq1fj2rVrePr0KcaMGcMbu6CgAKNGjcLZs2eV/K7Emz17domHP7S0tLB58+YyvwZqy5YtsWfPHmb9iRMn8Pz5cyVmRORRlq9DFM3Ozo73d87FxQXu7u4YOnQoVq1ahaCgIERFRWHevHnQ09PjjfXo0SN07twZ8fHxUuUgruNTmR2wrPdFCIu4B/KkHcFJhCMSieDr64sWLVowX/PXX38pMSNCCCGEEEL+R6Y7bqzORQBITk6WORl1wLoJLy3WlFeSrifIeqK8QYMGMufER0tLi9mpKMtT7bJ4/fo1b7mWlhYaNmyolBy+xprC99SpUxCJRIL+OTo68rYlySjJlStXip1eLSkpCVu2bEHPnj1RsWJFuLm5Yf78+QgICND4fVUoWVlZ8PPz463z8PCAhYWFTHHd3Nxgb2/PW+fr6ytTTHXz7Nkz5nSr7du3Z75/dePg4CB2BFxZ6jAnwqhbty58fHzg7+/P25mQn5+PMWPGqM3v7Pnz53kfJJgyZQpcXFxUkJHyDRw4EL169eKt4zgOBw4cUHJGRFZl+TpEndSsWROrVq1CWFgYc9mLp0+f4ptvvpEqrriRgrJOa8wi7uFDGrFIpCXu2kyImVmI7AwMDLBx40Zm/bFjxwT/fSGEEEIIIUQSMnXAipsuhm/dTE0iblozZUpISOAtr1ixouBtsWKychDahw8feMtNTU0FXwtKUsrqfBZHkovE9u3bY82aNRLFy8/Px/Xr17Fy5Ur069cP1tbWaN68OebNm4fg4GBwHCdvyhrJz88P6enpvHWsUaySYk1ffOfOHTx48ECu2OqANfoVAMaNG6fETOQ3bdo0VKlShbcuKCgIGRkZSs6IaIIBAwZg06ZNvHXx8fFYsGCBkjMqKSsrC999912JchsbGyxbtkwFGanO0qVLmXWnTp1SYiZEHmX5OkQdNW7cGIGBgcwHNk+dOiXVg0riHnZlnY/JSlw8oR66JeXHu3fvmHVCTKdL5NOiRQv069ePty4zMxNXrlxRbkKEEEIIIYRAjjVgWVP1vn79utx25AiJ1fkm9Pqj4mIq6ylR1tPpiuhslpTQN4BkIek6ZtOnT8ehQ4fEjgjhU1RUhIiICKxevfrzaMXFixcjJSVFlnQ1Fmv64YoVK6J3795yxRa3fiyrXU1RWFiI3bt389YZGxtj0KBBSs5IPvr6+ujTpw9vXWFhIUJDQ5WcEdEU48ePZ44i3b17t8rXfF68eDHvOutr1qxRyDmFOmvatCnq1KnDWxcREUHrPWsIug5RPisrK5w4cYI5be/KlSsljiVuZpHU1FRpUxNLXDxZZzgh5VdMTAyzzs7OTnmJECYvLy9mHWvWHkIIIYQQQhRJ5kW/6taty1uelZUl9uKESCY/P5+3nLVeqzxYUyZJ2gEoL1Y7xsbGSmmfjzqsISbNDcTBgwfj+fPn+O6772QexR0TE4Nff/0VtWrVwooVKySeLluTxcbGMp+GbteuHZ4/f44HDx7I/Jebm8scMbJv3z7B1zpTpgsXLjBHint5eWnkVGzdu3dn1j158kSJmRBNM3v2bN7ynJwcla4hfO/ePd5ZErp37y7z+taajrWf5+fn83ZUE/VE1yHK5+DggBkzZvDWRUZG4ubNmxLFqVSpErNO6BHMrHgmJiY0BTGR2v3795l1tWrVUmImhMXd3R0ikYi3js7lCSGEEEKIKujIumGzZs1w/fp13rq7d+/SRYic+NaUA8SvZSSrzMxM3nLWU+5CY3UYqnLKTy0tmZ9NUJnKlStj06ZNWLp0Kfbv349Dhw7h5s2bzM58lrS0NCxYsADnz5/HoUOHmKNMygJfX19mR/eJEydw4sQJhbX9/v17nD17Vu5RtqpSlqYf/oS1HjMAvHr1SomZEE3TuXNnZt2VK1cwc+ZMJWbzP4GBgSUe9BCJRPjuu+/kmgY9Pj6eWScuLmsdSWUqbT8XV0/UB12HqMa4ceOwevVq3rrAwEC0bt261BhWVlYwMjLivf4QegkQVryaNWsK2g4p+3Jzc5nHN0NDQ9SrV0/JGRE+1tbWsLa25j1PoXN5QgghhBCiCjJ3wDo7OzPrrly5gv79+8samgAwMDDgLf/48aPgbbFisnIQGmtUr9DTkEmDlZOHhwdWrVqllBxk7QC3sLDAtGnTMG3aNGRmZiIoKAhXr15FcHAwwsLCJB7ZHBgYiL59+yIwMFBt1kYWEsdxzCl0lcXX11cjO2BTUlJw/Phx3ro6deqgbdu2Ss5IGNbW1sw6Rfz2krKjSpUqsLW15b3ZL+moMGXhOA6enp4Ki9+4cWOxbasa7edlA12HqIajoyNq1KiB2NjYEnXSTNVfq1Yt3s6sqKgoufKTNB510BNpXb9+nbk8j5OTE7S1tZWcEWFhdcDSMZ4QQgghhKiCzB2w7u7uzLpz587JGpb8P9YNQkV0SrJiirtJKSTWVGQfP35EYWGhSi5oLS0tecuLiorUYgSPpIyMjODh4QEPDw8A/63re/PmTQQGBuLEiRO4e/eu2O1v3LgBb29vrFixQgnZKldwcLDgN/qkdeLECSQnJ2vcOmQHDhxgTtM9duxY5SYjIDMzM2adsqZkJ5rL0tKStwP2w4cPKjuWkZJoPy8b6DpEdezt7Xk7YKWZPrhBgwa8HbBPnz6VK7cvZWRk4N27d8z2CZFGQEAAs65jx47KS4SUinWcp2M8IYQQQghRBZnnWbWzs2N2RD19+hT37t2TOSkC2Nra8pY/fvxY0HaKioqYNztYOQitevXqvOVFRUV49OiRUnL4Giun5ORkJWciLAMDA3Tq1AlLlixBREQEoqKi8MMPP8DU1JS5zfr168VON6mpfHx8VJ0CcnNzceDAAVWnITXW9MNaWloYPXq0krMRjrj9m9aKI6Vh/Y5yHIeUlBQlZ0NYaD8vG+g6RHVYD05Kc47crFkz3vKEhATExcXJlNfXIiIimKPuWe0TwqegoAD79+9n1mvibDZlGeu3iI7xhBBCCCFEFeRa6HLIkCHMui1btsgTutyrW7cub3lcXBwSExMFa+f58+fMNWCVtZaNo6MjRCIRb92tW7eUksPXWE/GR0VFqcUUikKxt7fHypUr8eTJE7i5ufG+JisrS6FroapCVlYW/Pz8VJ0GAPXoCJbGgwcPEBYWxlvn7u4OOzs7JWcknISEBGaduFFzhAD/rZ/NwhoxTpSP9vOyg65DVCMnJ4e3XEtL8stKFxcXZp1Q5/7i4ohrn5Cv7d69m/kwqo2NDdq0aaPkjIg4rOM8HeMJIYQQQogqyNUBO27cOOaUej4+PmVy1JyyODk5MeukWWOpNOJuTohbx01IZmZmqF27Nm9dSEiIUnL4WsuWLXnLk5OTcf/+fSVno3g2NjY4efIkKleuzFt/+fJlJWekWP7+/khPT2fWcRwn+N/ff//N215YWJjKRnrLQlyH8bhx45SXiALcuXOHWVezZk3lJUI0kriHo4yNjZWYCRGH9vOyg65DVOPDhw+85eJmU/mam5sbKlSowFt36dIlmfKSNE6NGjWY1x2EfC07OxtLly5l1k+cOFGqhw+IYsXGxiIpKYm3jo7xhBBCCCFEFeS6WqhatSr69+/PW5ednY2FCxfKE75ca9iwIczNzXnrDh06JFg7Bw8e5C2vWbMmqlatKlg7penatStvuZ+fHz5+/Ki0PD5p3bo1jIyMeOsuXryo5GyUo2LFihg/fjxvHd9aX5qM1YloZmaGXr16KaTNoUOHir1RrAkKCgqwd+9e3jpzc3N4enoqNyGBnT9/nlnn6OioxEyIpnn9+jVz/UMTExOVjbqYNWuWQh4o8fb2ZrYpbjt1cOHCBd5yAwMD1KpVS8nZEHnQdYjyFRQU4MmTJ7x10nRuGBoawtXVlbcuICBA7t+Ljx8/IjAwkLdO3PrBhHztp59+QnR0NG9dhQoVMHHiRCVnRMShc3lCCCGEEKJu5H5cc/HixcynPnft2qX0kXPPnj1TanuKoqWlhc6dO/PWHTlyBNnZ2XK3ER8fz7wRqeybE3369OEtz8zMxJ49e5SaC/DfGjE9evTgrdu4cSMKCwuVnJFysKZkE3Laa1V79eoV86bcwIEDmSMy5FW5cmXmPr13716N+E6dOXOGOfJl2LBhCvvslCEpKQknT57krdPT06PpColY4h7MoRt+6uPixYvM9SVbtGgBHR0dJWdE5EXXIcoVEhKC1NRU3jppZ84ZPHgwb/mbN29w5coVKTMr7vDhw8yp3728vOSKTcqPf//9F2vWrGHWz5gxA7a2tkrMiJTG19eXWcd66IMQQgghhBBFkrsDtmHDhhg7dixvXVFREYYPH443b97I24xELl68WKaeamatbZWeno61a9fKHX/p0qUoKCjgrRs6dKjc8aXRvXt35gXs8uXLkZKSotR8AODbb7/lLX/58iX27dun5GyUQ09Pj7ecNRpYE/n6+jJHVowYMUKhbbPiv3v3DufOnVNo20LYtWsXs07Tpx9esWIFc7R9165dNbpzmSgWx3Fib9B26NBBidkQccSNiOzdu7cSMyFCoesQ5dq0aROzrmPHjlLF8vLygq6uLm+duN/U0nAch3Xr1vHWValShfkwHCFf8vPzw5gxY5jXDFWqVMGiRYuUnBUR59SpU7h27RpvXcWKFeHm5qbkjAghhBBCCBGgAxYAVq9eDRsbG966Dx8+oGvXrsxRU0LgOA4rV66Eh4cH0tLSFNaOsvXp0wdWVla8dcuWLcO7d+9kjv3w4UP8888/vHX29vZS30SRl7a2NqZMmcJb9/btW0ybNk2p+QBAjx49mCOXZs2ahRcvXig5I8VjjdwoS093s56MtrW1Vfj3fsCAAdDX1+etE/fEtjpITExkjhBt1KiRRo8QDQkJYd6sBYBRo0YpMRuiaTZs2CB2bXDWKC+iXKtWrcLt27d563R0dJT+4BkRDl2HKEdgYCAOHz7MW1e1alWpR5dZWloy97sTJ04wO1JKs3//fkRGRvLWfffdd8zlIAgBgLy8PPz000/w8vJijqLW0tLC3r17Vba8ACkpPj5e7P2CIUOGMB80JoQQQgghRJEE6YA1NzfHzp07mVOAPX36FC1btsTdu3eFaK6YZ8+eoWvXrpg/fz5zNKem0tfXx6xZs3jrMjIyMGTIEOTk5EgdNzk5GV5eXszP64cffmD+WyrSjBkzYG1tzVu3f/9+/Prrr0rNRyQSYcWKFbx1KSkp6Nu3L3PNP3nExsbi1q1bpb7u77//RmZmpmDtFhYWMjsBGzVqJHGcmJgYiEQi3j9ld+x/LTg4GFFRUbx1Q4cOVfj33sTEhDnd9vHjx5nT+n1JVZ/vvn37kJ+fz1unrNGvYWFhgsd88uQJPD09kZeXx1tfs2ZNDBo0SPB2Sdlw4MABzJ49m1nv6uoq08MJPj4+zP188eLFcmSs3nJzc5kdJ/I4dOgQ5s+fz6wfOnQoqlWrJni7RDk0+TqkY8eOzH09JiZGqlg5OTnMpUXkFRkZKfZhksmTJ8t0DjVv3jyIRCLeum+//Vbq89x3794xr52MjIwwdepUaVMk5QTHcfD390ezZs2wbNkysesQ//bbb+jSpYtc7Qm572uS+/fvy3T/QpyMjAz07duX+blpaWlhzv+xd+fBlqRlgf+fsy93P3eturV2d/VCN9BNE+KC7YYyAYqGAs0ojo5DoEboOKLjOI4/cCEMNyQmxHEYccTBZZRxQlAHAhREYHCA3uyGXqqrq6vqVtXd93v25fcHMQzv8zxVJ+tU3v37+e956zmZeTLffPPNzDr3ectbYl0nAAAAEFVsbxv+2T/7Z/Jrv/Zr1/z3ixcvyste9jL5hV/4hVjql87Ozsq//bf/Vl74whfueH2nnfQTP/ETcuzYMfffPvnJT8qDDz4o5XI58vJWVlbkO77jO+SLX/yi++8veMEL5Id+6Id62tabNTAwIL/1W791zX//hV/4BfnxH//xa/5v5CjOnj0rP/iDP3jNX/Jp3/Ed33HNly9PPvmkvOQlL5F/+Id/6Hl7vtKjjz4q3/d93ye33XZbpAdoP/mTPyknTpyQt771rbH8suPf/bt/d82HkwelXtZ73/vea/7b937v9+7INlxrPbVaTf70T/90R7ahF9f688PpdFre+MY37sg2vOlNb5L77rtP/uIv/uK6D8aiev/73y8ve9nLZGlp6Zo5v/Ebv0FdSBhPPfWUfP/3f7987/d+7zXrNyeTSfn1X//1Hd6y/a1Sqci9994r3/Vd3xXLf7hotVry8z//8/KGN7zhmmNGsViUt7/97Te9Luwu7kO+9AL2277t2+SBBx6QT3ziE7Et9/3vf798y7d8yzWvlZOTk/ITP/ETPS37hS98ofzAD/yA+29PP/20vPa1r408719ZWZFXv/rVsri46P77z/3cz8no6GhP24mD6/HHH5df/uVfljNnzshrX/vaa94j/18/+7M/e90/Z4/r+/3f/305ffq0/NZv/dYNPcO4lscff1xe+tKXXvc/L//oj/6o3H777Te9LgAAAKAXsT5V/umf/mmZnZ2Vd7zjHe6/1+t1+cVf/EX53d/9XfmxH/sxeeMb3yinT5+OvPxWqyV///d/L+973/vkz/7sz2L/35N7UX9/v7zrXe+S7/qu73L//YMf/KDce++98p73vEceeOCB6y7rr//6r+WHf/iH5cqVK+6/p1Ipefe7333Nekw74Y1vfKN88IMfvOafOHvXu94lf/M3fyO/+qu/Kt/zPd8T6c+IVatV+Zu/+Rv54z/+Y/ngBz8orVbrmvvT8+53v1seeughOX/+vPm3q1evyjd90zfJ93zP98jP/MzP3PAvnZ544gn5i7/4C/kf/+N/yBNPPHFDnxX50q+Zf/mXf1l+5Vd+Rb7xG79RXv/618t3f/d3X/NPV3ueeuop+Zmf+Rn5q7/6K/ff77//frnvvvtueNv2mnK5fM1+dccdd8j999+/I9vxqle9SkZGRty6xu9973vlR3/0R3dkO27EI488Io899pj7b69+9atlYmJix7bl0Ucflde+9rVy/Phxee1rXyuve93r5Ku/+quv+Qsazyc/+Un59V//9a7/EeP1r389v349oC5fvhx5zK1Wq7K2tiZzc3Py8MMPy6c//Wn5x3/8x66f+5mf+RnqjfWg0+nIBz7wAfnABz4g9913n7zuda+T17/+9XLrrbdGXkaz2ZQ///M/l1/7tV/r+ova3/zN35STJ0/e7GZjD+A+5Es++clPyjd+4zfKmTNn5MEHH5QHH3zwhv6SiciXzqEPfehD8tu//dtd/1Pgu9/9bhkYGOh5e3/1V39V/vqv/9p9cfrhD39YXv7yl8sf/uEfXrMsiIjIpz/9afnBH/zBa5YHufPOO+Wnfuqnet5G7F3z8/PXvZ53Oh2p1+tSrVZleXlZrl69KufPn5fHH39cPv/5z0f+T6zpdFp+/dd//bp/9WKveOaZZ675l12+0rWeCYjc2DzpjjvuuKHnB7Ozs/JTP/VT8ou/+Ivymte8Rl73utfJK1/5SsnlcpGXce7cOXnHO94hf/AHf3Ddsfi2226TX/mVX4m8XAAAACBusf+s5zd/8zelUChc99cE8/Pz8ta3vlXe+ta3yj333CNf93VfJ/fcc4+cPn1aSqWSFItFaTabsrm5KZcvX5azZ8/K5z//efnkJz95oGsrXct3fud3ylve8pZr/jr07Nmz8g3f8A1yzz33yIMPPih33XWXTE9PS6fTkcuXL8vjjz8uf/qnfypnz5697nre/va3y8tf/vLt+Ao35L3vfa+cO3dOHn74Yfffz58/Lw8++KCMjo7KK1/5SvmGb/gGmZqakomJCclkMrKysiJLS0vy+OOPy+c+9zn5zGc+IxsbGz1vT6lUkg9/+MPydV/3de7DoXa7Le9///vl/e9/v5w5c0YeeOAB+Zqv+RqZnJz8cn9eX1+X1dVVWVlZkSeffFIeeeQReeSRR2RhYaHn7fpKrVZL/u7v/k7+7u/+Tn7kR35Ezpw5Iy996Uvl/vvvl2PHjsnIyIiUSiVJJBKytbUlMzMz8sUvflE++tGPymc/+9lr/jIonU7Le97znli2cbf9xV/8xTX7wfd93/ft2HZks1l57WtfK7/3e79n/u2zn/2sPPXUU3LnnXfu2PZEcb1fDu/Unx/WLl26JO985zvlne98p5RKJbn33nvl3nvvlbvvvltGR0dlaGhIhoaGpFarffmB22c+8xn5xCc+Eal+80te8hL5r//1v+7AN8Fu+Pmf/3n5+Z//+W1b/hvf+EYe+MXg/14rf+7nfk5OnDgh9957r9x3331y5swZGR4elqGhIRkYGJCNjQ1ZWlqSCxcuyCc/+Un5xCc+Een6+uY3v3lP/qcX9I77kP/n7Nmz8va3v13e/va3y/j4uNx3333ykpe8RO68804ZHh7+8jlUr9dlbW1NVldX5Ytf/KI8+uij8qlPfeqavyT9Sm9729vkO7/zO29qOycnJ+W9732vfMd3fIc7H/385z8vL3rRi+Tbv/3b5du//dvlrrvukv7+flldXZV/+qd/kr/8y7+87q+Q8/m8/Nmf/dkNvdzB/vG7v/u78ru/+7vbuo4zZ87I7//+78vXf/3Xb+t64vJt3/ZtcuHChZtaxo3Mk86fPy+nTp264XWsr6/LH/3RH8kf/dEfSaFQkBe+8IVy7733yotf/GKZnJz88hiVSCRkaWlJlpaW5KGHHpJ/+Id/kIceekja7fZ1lz8yMiJ/+Zd/KYODgze8bQAAAEBctuXvKv7yL/+y3HPPPfKmN71JNjc3r5v7xBNP9PTLv2vZqV+x7bTf+I3fkKtXr173T5TezL788R//8evWR9tJxWJRPvrRj8q3fuu3XvMlrIjI0tKS/Mmf/In8yZ/8ybZv0+233y7/8A//IN/2bd8mMzMz18w7e/asnD17Vn7/939/27fpWjqdjjzzzDPyzDPP3PS+ecc73iH33ntvPBu2y/bCnx/+yvV5L2BFvrSd16o9vBvq9br88R//sftvExMT8upXv3qHt8haXl6Wj33sY7H9Gciv+qqvkg996EPS19cXy/JweKTTafn3//7fyy/+4i/e0K+y0d3Fixfl4sWL8sEPfjCW5b35zW/e9of22B3ch1gLCwvykY98RD7ykY/Etsz/7//7/2KrSf3qV79a3vGOd1yzTmOr1fryL+NvRDqdlj/90z+VF73oRXFsJg6Z4eFh+emf/mn56Z/+aV7gb7NKpSKf/exn5bOf/Wwsy5uYmJAPfehDcvfdd8eyPAAAAKBXsdWA1R588EF55JFH5JWvfOV2rSJw7Ngx+YM/+AP527/92x1Z305LJpPyvve9T37sx34s1uUmEgl529veJv/xP/7HWJd7s0qlknziE5+Q173udbu9KV921113yec+9zl5xStesdubsu2SyaT83u/9nvzrf/2vd3tTYnHx4kX5+Mc/7v7by172shv605ZxeOCBB65Z2/l973vfNWtK7oa/+qu/umbdtze+8Y0Hrj7qm970JvnEJz4hpVJptzcF+8xLXvIS+dznPie/9Eu/xMvXPSyfz8tv//Zvy7vf/W5JJrdtGoxdxn3I9hkZGZH3v//98ku/9EuxLvcnf/In5Z3vfGek8iJRFItF+e///b/fUNkRQORLf7L6t37rt+TSpUvyH/7Df+Dl6z7zNV/zNfL5z39eXvKSl+z2pgAAAADb9wJW5Es1Nz784Q/LBz7wAXnZy162Leu4/fbb5V3vepc8++yz8oM/+IMH+qFnKpWS3/7t35b3v//9Mjk5edPLO3nypHz4wx+WX/iFX9iT+62/v1/+/M//XP7bf/tvsdaYHB8fl+np6Z4+OzU1JR/5yEfkPe95TyzHQJuenpaf/dmflX/xL/5F19ztqsv60pe+VD7zmc/Im970pm1Z/m74wz/8w2v+meWd/vWryJdecL/hDW9w/+3KlStd663tpL3454e3w4tf/GL56Ec/Kr/3e78n+Xx+tzcH+0Qul5MHH3xQPvKRj8jnP//5A/MXAw6q17zmNfL444/H/p/ZsDcdtvuQdDq9LXPT/yubzcqP/MiPyFNPPbVt9dH/zb/5N/KhD31ITpw4cVPLeeELXyif/vSn5Xu+53ti2jIcZLlcTl7+8pfLW9/6VnnsscfkySeflJ/8yZ+U/v7+3d403IDJyUn5nd/5HfnUpz4lx48f3+3NAQAAAERkm/4Esfaa17xGXvOa18j//t//W/7oj/5I/uf//J8yNzfX8/ImJibkO7/zO+UNb3iDfNM3fdOefHm4nV772tfKK1/5Svmd3/kd+U//6T/JpUuXbujzt912m/z4j/+4vPnNb94XLxq+//u/X777u79b3vOe98h//s//WZ566qkbXkY2m5UHHnhAfuAHfkBe97rX3dT/ZE4kEvKv/tW/ku/93u+V973vffJf/st/kYceeqjn5d1xxx3yile8Ql7zmtfIK17xisi/yHn44YdlZmZG/vqv/1o+9KEPyac//elr/lKxm2QyKd/8zd8s//Jf/kt5wxvecOB+FTQ9PS1ve9vb3H/75//8n+/w1nzJj/zIj+z5P3E7OzsrH/7wh91/u//+++Wee+7Z0e35wAc+IH/7t38rH/vYx+QTn/iEXL58+aaWl8/n5VWvepX80A/9kLzqVa86dNcSRJPJZGRwcPDLdYVPnz795RrbL3vZy2RoaGi3N3HHfeM3fuO2LHd4eFgeeugh+djHPiYf//jH5VOf+pSsr6/f1DJHR0fl9a9/vfzwD/+wvPjFL45pS7GfHJb7kP7+frl69ap8/vOfl//1v/6XfPSjH5WHHnpIqtXqTS337rvvlgcffFDe9KY3yZEjR2La2mv71m/9VnnyySflne98p7zrXe+S2dnZyJ+99dZb5S1veYu8+c1vPnB/oQM3LpFISDablVwuJ7lcTkqlkkxOTsrk5KScPn1a7rzzTrnrrrvk3nvv3Rf3xAfB2972Nvn6r/96+fjHPy4f//jH5cknn7zmf5KNIpFIyNd+7dfKD/zAD8gb3/hGKRQKMW4tAAAAcPMSnZuZ8fao3W7L448/Lp/5zGfk4Ycflueee04uXLggy8vLUi6XpVarSTablWKxKBMTE3Ls2DG544475EUvepF83dd9ndx999175mHHbut0OvKpT31KPvaxj8nnPvc5efbZZ2V2dla2trZERKSvr0+OHj0qZ86ckZe97GXyile8Qr7qq75ql7f65jz22GPysY99TP7P//k/cvbsWbl06ZJsbGxIvV6Xvr4+GRgYkNHRUbnjjjvkrrvukq/6qq+Sb/qmb9rWl10XLlyQv/3bv5XPfe5z8uSTT8rFixdlaWlJKpWKJJNJGRgYkIGBARkZGZEzZ87IXXfdJXfddZd87dd+baz/Q/epp56Sf/zHf5Qnn3xSnn32WXnuuedkYWFBNjc3ZXNzU7LZ7JdfJBw7dkzuvfdeue++++Sbv/mb5ejRo7FtB7AT5ubm5JFHHpHHHntMzp07JxcvXpRLly7J0tKSlMtlqVQq0ul0JJ/Py9DQkBw5ckROnTolL3zhC+Wrv/qr5YEHHuBBDbCHdTodOXfunDz66KPy+OOPy/nz5+XSpUsyMzMja2trXz7PU6mU5PN5KZVKMj09Lbfddpu8+MUvlpe//OXy0pe+9MD9pyLcnMN0H9JoNOSf/umf5HOf+5w8/fTTcv78eTl//rwsLS3J5uambG1tSafTkVwuJwMDAzI5OSnHjx//8kupBx54YFd/SVav1+Xv//7v5cMf/rA88sgjcvbsWVldXZVqtSrFYlFKpZLccccdcv/998urXvUq+dqv/VrOd2Af2djYkMcee0weffRRefrpp788l5+fn5etrS0pl8vSbDYll8tJX1+fTE1NyYkTJ+Tuu++W+++/X77lW75FxsbGdvtrAAAAANe0Ky9gAQAAAAAAAAAAAOAg4r8IAwAAAAAAAAAAAEBMeAELAAAAAAAAAAAAADHhBSwAAAAAAAAAAAAAxIQXsAAAAAAAAAAAAAAQE17AAgAAAAAAAAAAAEBMeAELAAAAAAAAAAAAADHhBSwAAAAAAAAAAAAAxIQXsAAAAAAAAAAAAAAQE17AAgAAAAAAAAAAAEBMeAELAAAAAAAAAAAAADHhBSwAAAAAAAAAAAAAxIQXsAAAAAAAAAAAAAAQk3TUxPvvv7+nFbzlLW8J4pe85CUmZ3h42LTVarXrxgCw0xqNRhBfvHjR5DzxxBNB/Mgjj5icpaUl0zY0NBTEJ06cMDl33XVXEN92220mZ3Jy0rQlk/xfGwAAgLhtbm6atueee860PfbYY9eNRUTa7XYQj4yMmJxUKnWjm+ja2toybevr66bt2LFjQew9E9Dz06NHj5qcRCJxo5sIyNramml79tlng9i713r66adNW39/fxCPjY2ZnGw223WbOp1O1xzsPn2cKpWKyanX66ZNj1933nmnybnllluCuFQq9bKJiEg/C56ZmTE5zzzzzHVjEf949/X1BXE6HfkROYBDwnuequfjeg4vIrK6uhrEDz30kMnx2nAw8VQeAAAAAAAAAAAAAGLCC1gAAAAAAAAAAAAAiAkvYAEAAAAAAAAAAAAgJryABQAAAAAAAAAAAICYbHuFcV2g/q677truVQLAtmg0GkFcKBRMjld8XZudnTVt9Xo9iIeHh03O5ORkEJ8+fdrkHD9+3LR5ReMBAABwczY2NkxbOm1vsfUcMpfLmZxOpxPEfX19JieuOV2tVjNtlUrFtI2OjgbxnXfeaXLuuP2OID46fdTkJBKJG91EQNbW1kybPr+azabJ8c4dnZfNZk2OPgc99OX9QR9Lb1z2xsFSqRTEx44dMzm33nprEE9MTPSyiYioWq0GcSqVMjmrq6tB7D1v0csRERkYGAjiTCbTwxYCgBVlToHDg6fyAAAAAAAAAAAAABATXsACAAAAAAAAAAAAQEx4AQsAAAAAAAAAAAAAMdn2GrBerQUA2I90zZ/BwUGTc+rUqSD26gtdvnzZtM3MzHRdf6vVCuIo9WYBAACwPbx6cSMjI6ZN1wzUtVVFbK0ob9lx1Z/Uc0oRv5ZmPp8P4snJSZNTKBZi2SZA886BsbGxIPbqEg8NDZm2paWlIF5eXjY5uuasV79tO89LAJau+erVgDXnoFN6kXqMAHZSMslvHvH/0BsAAAAAAAAAAAAAICa8gAUAAAAAAAAAAACAmPACFgAAAAAAAAAAAABiwgtYAAAAAAAAAAAAAIhJertXUKlUtnsVALAjUqlUEA8NDZucYrEYxKVSyeT09/ebtnq9HsRzc3Mmp9FoBHGn07nmtgIAAGB7ZTIZ0zY6Omra+vr6gljP6UTsvC6Z3L7/K+3NIb22ZDKc++bzOZOTz+eDOJFI3OTWAV+Sy9n+Njk5GcRDQ0Mmx7v/unDhQhDXajWTs7CwEMTeOZFO20do9HkcelEeS/R4muhzTj+TEbHXy46zQTw7AbCTms3mbm8C9hB+AQsAAAAAAAAAAAAAMeEFLAAAAAAAAAAAAADEhBewAAAAAAAAAAAAABCTba8B2263g7jVapkc72/4A8Beo+v7ZLO27pdu0zW/RPza2LoukVcDVo+f1DEBAADYPd59rDf389oAXJ93fuk2r06sV5t5a2sriC9evGhydL02/SxLhPsvwLWNZZD1uVutVE2Orqvu1WXezrrqAKAxX8BX4goEAAAAAAAAAAAAADHhBSwAAAAAAAAAAAAAxIQXsAAAAAAAAAAAAAAQE17AAgAAAAAAAAAAAEBM0ru9AQCwF3kF0xOJRCzLTqft0JtMdv//MHr9qVSqp+UAAADg+rZzLnjY6H3JfsRO32vp+yZvXXqbvG1EfKIc73a7bdpardZ1Y69ta2vL5FSrVdNWq9W6Lpt+0Rt9LMvlssnZWN8wbfML80F86dIlk7OyshLE9Xrd5DSbTdOm+4B3vPXzlajPcnT/pt8AwOHFk3oAAAAAAAAAAAAAiAkvYAEAAAAAAAAAAAAgJryABQAAAAAAAAAAAICY8AIWAAAAAAAAAAAAAGJiq4cDMfIKzeti9DttL24T9p64+oTX35rNpmlrtVpdl5VKpYI4nd6+IZzzBACAG+ddPz27fU3V27nb27MXsU/iw76Etp19otGw91r6/ivKvQ79dvd5x6nRaARxtVrtmrO6umpyKpVK1zbvvj3qdR6hdrsdxIuLiybn2WefNW3nzp3r+rnNzc0grtVqJifKsfSer2Sz2SD2xoVk0v62KSEJ3dB1/QCAg4lfwAIAAAAAAAAAAABATHgBCwAAAAAAAAAAAAAx4QUsAAAAAAAAAAAAAMSEGrDYVr3WTem1FkKU9VHLBTtJ1zq5VlsUUerdeLVkde3YKDhPAAC4cTs99+11/VznARxU7ba9H9JjLDVgd1+U655XW7NYLAZxX19f12X39/ebnHq9btpKpVIQ53K5SNu0XfZijdBezwtdX3dlZcXkXLp0ybTpurDe847BwcEgPnLkSC+b6IpyDLycdqe3Zz4AgIOHX8ACAAAAAAAAAAAAQEx4AQsAAAAAAAAAAAAAMeEFLAAAAAAAAAAAAADEhBewAAAAAAAAAAAAABCT9G5vACAiUq/Vg3hjc8PkVCqVIE4m7f8f6O/vN219fX1BnEqletlEIDaJRMK0pVPdh+O1tbUgvnLlisnJZDKmbWhoKIjz+bzJyeVyXbcRAADEo9lsBvHm5qbJ2dra6rocPc8dGBgwOcx9AQC7qd1um7ZardY1Z3Bw0LRNTEwE8ejoqMkpFotB3Gg0TI7Xptc3OTlpcrx76W46nY5p0/MAr83bRu9zmncvr9u8bdJtXo5HzzO8z+l5TqvVMjmlUsm03XPPPUHsPe/QcyEvx3t+qPeJt7/X19eDeGlpyeSsrKyYtno9fMaZTtvnPd42AQAOHkZ7AAAAAAAAAAAAAIgJL2ABAAAAAAAAAAAAICa8gAUAAAAAAAAAAACAmFADFntCpRrWd/VqW169ejWIs9msyTlx4oRp07UtqYOF3ebV+khnwuHYq5syOzsbxF5tF12jRETk2LFjQXzkyBGTMzY2FsScJwBwuOjrzn6tBe5dP/fid9G1webn503OxYsXg9j7HidPngxiXQdNJL5r+n7ZtwCAnRPlOuDV+9T3rdVq1eR4NWB1XdZbb73V5IyMjASxd/3y6n3qOp39/f0mp1i019luvO+v5wEiIuVyOYi9WvCVSvjszFt2lHqj3j7Ry/Lq8kZpi1I71nued9ttt5k2/V28OY3O8Z63eJ/TbXrfiojMzc0FsffdvBqwusaxd55QAxYADgdGewAAAAAAAAAAAACICS9gAQAAAAAAAAAAACAmvIAFAAAAAAAAAAAAgJjwAhYAAAAAAAAAAAAAYmIrswO7QBeon52dNTmPPfZYEA8MDJgcr21ycjKIc7lcL5sIxCaRSJi2dLr7cKzPi7m5ua45IiLNZjOIvfOkVCoFcSqV6ro9AICDw7s27Uf75Xvoa/Pi4qLJ+eIXvxjErVbL5GSz2SAeGxszOcPDwz1sobVf9i0AYOd0Op2uOcmk/e1HJpMJYu9+2LumTU1NBfH09LTJiXLd8zc7bOz1ulev14NYP+8SEdna2jJt6+vrQby6uto1p91umxw9NxCx+9s7bnqeoecqIiKNRsO0lcvlrp8bGhoK4iNHjpic8fFx0zY4OBjEXj/Rx8nrb1GOpbfdej/Nz8/bDzp9SfcBvf+v1QYAOHj4BSwAAAAAAAAAAAAAxIQXsAAAAAAAAAAAAAAQE17AAgAAAAAAAAAAAEBMeAELAAAAAAAAAAAAADGx1cuBPaBarZo2Xey+0WiYnFqtZto6nU58GwZsk0Qi0TWnvFUO4vWN9UjLvuWWW4LYO3cAAPhK7XbbtOn5WaVSMTn1et20tVqtIPauealUKojz+bzJKRQKpi2Xy5m2/UDvX28Ou7S0FMTLy8smZ3R0NIiHBodMTrPZNG3FYjGIs9msyUmnuVUEAPw/3rMVfY0Xsdd5fc0Rsdev4eFhk3Py5EnTNjU1FcT9/f3utnbj3353vyfXvLnQ5uZmEG9sbJic1dVV07aystI1Ry9bz59E/H2ij0EyaX+Po+cm3vzB+756fqK3UcTOD73j7fUvPRfZzrmJt2w9z/RyOtL9vOC5JAAcXvwCFgAAAAAAAAAAAABiwgtYAAAAAAAAAAAAAIgJL2ABAAAAAAAAAAAAICYU9kFkumZBlJqVUem6U17dr76+viD2an559S/i3E5gN6Uz4ZCtz4lrtenzy6v3AgDAV/Jquq2trQXx1atXTc7i4qJp0/VNvbmZvn5NTk6aHF33TWT/1oDVvDmsrjOma8KKiDzxxBNB7NV5P7V4yrQdP348iL19Ozg46G4rAOBw8upYejXM9TVtYGDA5Jw6dSqIjx07ZnLGx8dN2+BAeG1KJu31My7e99XX2XK5bHJ0LdfZ2VmTc+XKFdOmr/NbW1smR9dl9eq9enMK/UzAq/3ufU7zniXofbK+vm5y9JxGzylF/NqxhULhurGISCaT8Tc2Bno+rOvkXoue6/JcEgAOL57CAwAAAAAAAAAAAEBMeAELAAAAAAAAAAAAADHhBSwAAAAAAAAAAAAAxIQXsAAAAAAAAAAAAAAQk3T3FOBLtrNovC5s760rn88HcS6XMzmpVCreDQN2SKfT6ZqTTodDttffC4WCactkMkGcTPJ/bwAA19dut03b+vp6ED///PMm54tf/KJpW15eDmLv+nX06NEgfuELX2hyhoaGTJu+fm7nfDVOyUR4LdbzXBGR0dHRIB4cHDQ5V69eDeJKpWJyvDY9jy6VStfeWAAAxJ8bNOoN09bJhNfmvr4+k3PkyJEgPnnypMnxrvvbSX+/Wq1uciqVchCvrq6anLm5uSA+f/68yTl37pxp08vS9/8iIv39/UE8MDBgcrx5ln4m4M079Oe8462f3Xmfq9ftftvY2LhuLGLnmSIixWIxiKPM8/R3jcr7bnofRHluI7J/5qMAgO3HU3gAAAAAAAAAAAAAiAkvYAEAAAAAAAAAAAAgJryABQAAAAAAAAAAAICYUAMWsdI1E5rNpskpl20dKl0jY2VlxeToZXn1MKizgMOOcwAAEAevxpWu6eXVPfPqnD333HNBrOuPeus7ffq0yfHmlftVKh3WSxseHjY5t956axB79dp0DTXvuHn1XfWyqA8P4LDT42fU+pdRa0J2493H6bF5L97rtdpOTdBOeI3zapIWCoUg1rVNd4M+lrreq4jI4uJiEOta7CIily5dCuKLFy+anPn5edOm651OT0+bnMmJySAeKY2YHK9mvN6/3lxMHyevb3vP4dbW1oJYfw9PtVo1beWy3d+6LZvNmhyvbWftvfMSALB3cKcNAAAAAAAAAAAAADHhBSwAAAAAAAAAAAAAxIQXsAAAAAAAAAAAAAAQE17AAgAAAAAAAAAAAEBMbPV04CaUy+UgXlpaMjlzc3Om7fLly0E8MzNjcmq1WhBnMhmTk0qlTFsikfA3FgAAAJElk+H/3Uyn7a1EoVAwbcPDw0HszeHy+XwQH/Q5nd4Ho6OjJkfv3+npaZPTaDSCuNPpmBy9b0XsMfGOGwAcVN71RI+f+vlD1M+12+2un9PXUxGRbDZr2nK5XBB7190o10bv2hCXXtffarWuG4v4c4GdtLW1ZdquXLkSxGfPnjU5+nmW91xMH1sRkdOnTwfx7bffbnL0XGBgYMDkeP1E70tv3+q5ideXvX66ubkZxKurqyZHPytsNe3x1jki9hh485VisWjaAADYK/gFLAAAAAAAAAAAAADEhBewAAAAAAAAAAAAABATXsACAAAAAAAAAAAAQEyoAYtYVSqVIJ6ZuWxyvvjFL5i2CxcuBPH6+rrJ0XUdvLoWXi0VAAAA3JiE2Jpuep7l1QHzapGVSqUg9uZwep7n1Yk9yDVgh4aGTI7el14ttii8/aZrvzGHBoCQNy561y/Nr7eqa8B2H5dFervubWe9V4+3jbotSg3YZrNpcrx5xnbSddW951L62dXDDz9scubn54PYmxvdcsstpu3EiRNdc44dOxbEXk1Ub76g26LMDTyJhD0vNjY2gtjbbysrK0GczthzSe9/EVuL2cvptHe2zwMAcCO40wYAAAAAAAAAAACAmPACFgAAAAAAAAAAAABiwgtYAAAAAAAAAAAAAIgJL2ABAAAAAAAAAAAAICa26jlwExqNRhCvr6+ZnAsXLpi2p59+OohTqZTJOX78eJiTtDmJRCLSdgIAAOA6YpxS6fnZQZ6vdTqdSHl6H6TTe/+2zPtuB/lYAjg42u12EOvnFiL2GcTk5KTJmZqaMm3FYjGIk0n7Owc9fjabTZNTqVRM2+bmZhCXy2WTo5flrX8/jNURL58Rl9W5biwi0mq1TNvq6moQLywsmJznn38+iB9++GGT09fXF8SnTp0yOceOHTNtus+NjIyYnEKhYNo0rw94bb3o6yuaNr2dR48edT4X7hOvT+ZyOdOWzWaD2JsvJZLx9O/ez5MYOy8A4MDhF7AAAAAAAAAAAAAAEBNewAIAAAAAAAAAAABATHgBCwAAAAAAAAAAAAAx4QUsAAAAAAAAAAAAAMTEVi8HboIuWp9M2nf8mUzGtOVyuRteV4dC9wAAANhDEpLwGg8EPc8HgL2o07HPCWq1WhCvra2bnGazGcRTU1Mm56677jJto6OjQZxO28dsepsqlYrJWVhYMG2XLl0K4q2tLZOjv1s2mzU53jYdZO12O4jL5bLJ2dzcNG2zs7NBfPXqVZMzPz9/3XWJiJw6dSqIb7nlFpNz4sQJ01YqlYLYO5a7LZVKmbaBgYEg9vbJ0NBQELdaLZPjPT8sFApBXCwWTU4vzxM93vr1uePleLxxCABwOPELWAAAAAAAAAAAAACICS9gAQAAAAAAAAAAACAmvIAFAAAAAAAAAAAAgJgcrkIQ2Ha6NpRX79Wr2aBrRtTr9a7L9lBnAQAAALuGMqkAsOfompTNZsPk6FqTXg3YkydPmjad59Xt1Ovf2rS1XL3Pra+HtWp1TVgRWwPWq9F52GrA6vqiXu1cXctVxO5fb3/rWr36WZaIyPT0dBAfO3bM5ExO2v41ODgYxG4oZekAAQAASURBVN6x1M+8dro+u7c+/YzP62+6xrJXA9Z7nqf3QT6fNzlR67ICALAbuEoBAAAAAAAAAAAAQEx4AQsAAAAAAAAAAAAAMeEFLAAAAAAAAAAAAADEhBewAAAAAAAAAAAAABATWxkdiFMnYlonTGy32yZHt3k5+4H+rteSSCS2eUuwl/RyDkRZDgAAvYhyPfFyvGtVq9UKYm+Oo5fF9QwA0Itk0v7OoL+/P4hPnDhhcvT1a3p62uSMjo6atmw2e8PbNDA4YHIGBmybXra+noqI1Ov1IM7n8123J069X6/DuUCcjz/0NlUqFZOzuLho2mZmZoL44sWLXXMKhYLJ0f1tcHDQ5Aw6faBYLAZxOr33Htl651culwti75yI8jzP699RPre5uRk2OF0ylU7ZtlTY5vWT9fX1IK5WqybHm9fqY8fzPQA4vPgFLAAAAAAAAAAAAADEhBewAAAAAAAAAAAAABATXsACAAAAAAAAAAAAQEz2XkEB7Gu61kaj2TA5W1tbpm1paSmIvdoLuoZCrVYzOV7NiO2sIdZrfbRoyw7jKCUjqCuxP3h1S3TtHlPHREQ2NjaCWNdauRb6BQAgDnqeVa/VTY6ulSUisrCwEMRebbCxsbEgbjTsHLLTpi4sgH1AD1VMxXdUJpMxbePj40F8zz33mBx9364/IxKt3muvotR39e4RdZuuI3ot+h6x9+cW9nO6zasbmlY1Ob3j1qu2mi94cwrvudTKykoQLy8vm5y1tbUg7uvrMzm6tqj3/b02fUz26328t916n+hYxK95q2uu6mciIiKrq6tB7J0n3jbpPqfPNxFbK1iv61r0sxrv+wIADgd+AQsAAAAAAAAAAAAAMeEFLAAAAAAAAAAAAADEhBewAAAAAAAAAAAAABATXsACAAAAAAAAAAAAQExshXPgJnQ6nevGIiKtVsu06WL3tVrN5DSbzSBut9td17/TvPX3vk36cwmTkUjYNux9Xp/Q/Vn3d68tk8nGu2EAANyAdsfOxbzrl57XRZkfunMqMzcC9h6v7+61Oftub+Nur3+76bEq4dzHYftkMhnTNjo6GsSDg4M9LSeVSvW+YV/BeyYS5f7Py9H3kb0+f/DOwe18vqLXF+8YEG63t7+9Z06bm5tBvLGxYXIajUYQe/0kmez+W5co+3a3n2/1zNvsCIc3Sh9YX183bc8991wQX7hwweR4faBQKHRdX7VaDeKtra2unxERyeVyQRylTwAADiauAAAAAAAAAAAAAAAQE17AAgAAAAAAAAAAAEBMeAELAAAAAAAAAAAAADHhBSwAAAAAAAAAAAAAxCS92xuAgyWTyQTx4OCgyTl16pRpy+fzQdxoNEzOwMBAEE9OTpqcYrFo2nay2H2n04klR0QkkUjc7OZgj8rlcqZtbGwsiM+cOWNy+vr6gnhra8vkeP2m3W4HcdQ+CAA4vLzriZ6vjY+Pm5wXvOAFpm16ejqIvbmZntcNDw+bnEwm624rsJdEmcN7c7FmsxnErVYr0udSqVQQp9P2Fl+fc7t9nxF1/XoO6+0T3aY/E5U3Lul9qfe1iP9ddnv/HnbesdTXLx3vBd494ujoaBDffvvtJmdpaSmIo/Y/fe5E6ctejnde6GPgPd/Z3NwM4tXVVZOjv/+1tqEbb1yo1WqmTd9f62301u89g4rS37zjbcacpN23+0KMQ6De39Vq1eRcvXo1iB955BGT4z07GRkZCWLvOOljop95ejleG89gAODw4hewAAAAAAAAAAAAABATXsACAAAAAAAAAAAAQEx4AQsAAAAAAAAAAAAAMaEGLGJVKBSC+MiRIybHq5lw2223BbFXo0N/zqsN5rV5NUm2i1ePRNd6oCbQ4eIdb13PWMTWRtbnkoitj/f888+bHK+2ia65Q/2Rg6PXY5nQhXkYlgAo3vxpcHAwiE+fPm1yvLlYo65qvzljjr7u6droIiJ9fbbOGvMq7Ee63quIrX+4vLxscrwaqPq8LJVKJserUbgf6BqNXo3ItbW1IPbqA3r3lnqM8/aRHs+GhoZMTjZLbWrcuKj3iPo66/XTubm5IJ6fnzc5CwsLpk2fK1HqWHrb7dUy1TVgvXvUy5cvB3Gnbe9rvBqs42Nh/fm+/r6u6/fqAnv0vZU3F+rv7w9i77jpnL4+u41eW5TaxId93uPd/+o271rpXXd1nve5qH2nmyjPCgEABxO/gAUAAAAAAAAAAACAmPACFgAAAAAAAAAAAABiwgtYAAAAAAAAAAAAAIgJL2ABAAAAAAAAAAAAICbp3d4AHCz5fD6IJycnTc7IyIhp84rda7pofSaTMTnZbNa0pdP7s5vr74v9yTuOAwMDpq1YLAaxd57onEqlYnKef/5509ZsNoO43W6724q9rdPpxJeX0CHjzX4V5Xjv9vXE20QucXtfKpUybUNDQ0Gs530iIkemjpi2dqf7dUevz5vn5XK5rssB9gPv3mdpaSmIn376aZPjzf1Onz4dxHq+eK22/aBarQbx3NycyXnuueeCeGFhweQ0Gg3Tpsevo0ePmpxbb701iL396N1/At30eo84PDzc9XPe3HBxcdG06fOrUCiYHP0sxdtu7xzQeRsbGybn2WefDeLZ2VmTc+rUKdMmd4ZhLm/nBslk+FsT75mQzvHyvHnO4OBgELtjbqHYNcfb37s9Z9+LdH/25qd6fuidJ1GOpTf31Mck6jGKeu8OADj4+AUsAAAAAAAAAAAAAMSEF7AAAAAAAAAAAAAAEBNewAIAAAAAAAAAAABATPZncUzsWbpmgldDoa+vb6c2Z8e5dRRjKuNBPZD9yTtuXt0S3VYqlUxOuVwOYq9OkEfXgKUeCXBwRLk26HO+1bL1ONvt7rXYvVpZeuzytofL1/7kHUtdY4uarEBvvBqw6+vrQXzu3DmTs7KyYtr0fPDkyZM3uXV7h67d6n3/Z555Joi/8IUvmJzNzU3TNjY2FsT33XefyRkfHw9i77gBvej1HnF0dNTk1Ov1IL569Wqk9enzK0o9Y285Xn1VzatfPTMzE8T6nlXEP+empqauG4vY51DevvW2W89rvGdXeh94tUXTmXDZ3rq8bdpznMcGHa+xB1Gfb0XJi1LzN8ox2BfHBACw7/ALWAAAAAAAAAAAAACICS9gAQAAAAAAAAAAACAmvIAFAAAAAAAAAAAAgJjwAhYAAAAAAAAAAAAAYmKrkAPX0Ol0gjiRSOzSltykjtMW11dxlpOIbeHOsvfrMTjAtvM80ctqtVomp1KpmLZarR7E7XY7tm3CzvH6ku5v18rD4Vavh2PAysqKyVldXTVtun8NDw+bnFKpFMS5XO7GNxB7wkGZ5zEuYr/S87NGo2FyarWaafPmgwdFKpXqmqP308bGhslZW1szbYVC4brLEWHOfOh5zw08u3yJyWQyQRzlvBHZ2f7trUufc9VqtWuOtyzvuq8lk/a3J+m0fRyq57F9fX1dl+3tb71N3jjttUU9djvG6dudtt3frVZ4TNpt+930XCybzfa2SczpAAD7DL+ABQAAAAAAAAAAAICY8AIWAAAAAAAAAAAAAGLCC1gAAAAAAAAAAAAAiAkvYAEAAAAAAAAAAAAgJrbq/CHU6dgi8tpuF3r3tnGnt2m390FsYvwaveyTKP2t12Vj923ncavX60FcrVZNTrlcNm3NZiOI2+12vBuGXeP1Nz3EMJRAjx1XrlwxOU899ZRp09erO++80+T09fUFcS6X62UTsQcclHnHQfkeOHxSqVQQFwoFkzMwMGDaMplMEO/0OaCvFXGuX3837xqjr0NjY2Mmp1gsmrZSqRTE3v7WxwTx2QvPN7So9+laIs4HDD3Q273TzxuirM87l/Q5l8/nu+aIiKTT4WPMKN/Dy9Hji7c+b/3NZrPrsnWOnouLiNRqNdOmx6rdPk+89XvPEvTzhmajaXISyXC70yn7ODqZ6v4bod0eJwAAuFH8AhYAAAAAAAAAAAAAYsILWAAAAAAAAAAAAACICS9gAQAAAAAAAAAAACAm1ICV3msI6NoHvdba8NYfJQf7E8cSvdK1cwb6bR2w6elp0zY8PBzE2Ww21u3C3sIQA63VagWxVyt6bm7OtOl5zYkTJ0wONaUB4MZ59wPJRPh/o3Wdw2u1JZPh53a6HuV23tvo65VXR1F/f69mo3efrufDXo1Ks2+ZZMUmyr70jltc9U71sY26TVH0ut1Rag7r2qIi0c4Tj17fTvfvKOv3xrwo9LK8eq9ebeihoaEg3tjYMDl6Xu3NhavVahBvbm6aHK8tynanUroGrkmJxK/l2rxuLCLSaDRMm+5zDacGbDqdUrE9tvmUrQNsno3ucs1lAABuFL+ABQAAAAAAAAAAAICY8AIWAAAAAAAAAAAAAGLCC1gAAAAAAAAAAAAAiAkvYAEAAAAAAAAAAAAgJr1VtD+EvELza2trQby+vm5yvML2g4ODQTw0NGRycrncjW4igAOuWCwG8YmTJ2xOX9G06TFnYGDA5CST/H8c4KDKZDJBXCqVTM4dd9xh2jqdTtfPpdNMJQEgDh0Jx1w9BouIJBIJ06bncMnU3pvTNZvNIC6XyyZH31uLiMzOzgbx0tKSyWk0wmVns1knx97LJ8TuS+wt3rMU3U82NjYiLSvKM5i47ocqlYpp08+KvHPAo+dwXl+en58PYu9c8sYTfa6kUqlI27STvO1WQ2WksVLvRxH/nljPdb3+FeVYrqysBPHy8rLJ6e/vN226D3o5cc29vfNLfxfv+3v9u6nGYX09ExHJ5/NB7D3z1Dki9lgmknbs9q6NAADsFXvv7gwAAAAAAAAAAAAA9ilewAIAAAAAAAAAAABATHgBCwAAAAAAAAAAAAAxoXBXRPV63bRdvXo1iM+ePWtydL0bEZHbbrstiL3aB9SABaDpGjAnTtgasJOTk6ZN14np6+szOdSABQ4uXePr6NGjJserhabpOtQizFeAgyJqvdH9QH+Xg/I9rkXP4fZibe5arRbEV65cMTnPP/+8adN5Xj3CRiO8T/euS17dzP1QAvYgnZe9aLVapk3XOz1//rzJ8e5rbr311iD26n/GdT+0ublp2i5evBjEMzMzJsd7dqRrYnp9Qq9P1x8V8et96mXvl/vBXuple7WhvT4wPDwcxF7tVl0rd3V11eQsLCwEsa4tK+LPq/V2ejVR4+L1CT3G6meeXo63LK/mrr7X8PZ/lGN5mMZAAMDBsD9mWAAAAAAAAAAAAACwD/ACFgAAAAAAAAAAAABiwgtYAAAAAAAAAAAAAIgJL2ABAAAAAAAAAAAAICbp3d6A/aLVapm2zc3NIL548aLJaTQapm18fDxcdtMuGwC0fD5/3RgAPJlMJoiHh4dNjtcG4PBIJBKxLavT6cSynF63Kc7vspP0dieT9v9Ke/tW32/WarXYtkmvr9d9u7a2FsSXLl0yOY899phpm5mZCeJisWhydJu+5omIpNP787FHXH05rnPyZvTyXfTzFhGR2dnZIH788cdNjne8+/v6g1g/kxERGRoautFNFBF7zq2srJic559/PogfffRRk7OxsWHaBgcHgzibzXbdnqj72jtX9gPdn6P071wuZ9r0vhURGR0dDWI9dnmfW1paMjn6WC4vL0daf39//3VjETvmedeKKMrlsmnT38Ubq73+rfuS99103202myan3W77G/sV9us1HgBwePELWAAAAAAAAAAAAACICS9gAQAAAAAAAAAAACAmvIAFAAAAAAAAAAAAgJjwAhYAAAAAAAAAAAAAYpLe7Q3YL1KplGnTheVPnz5tcrzC8sPDw0GcznAYgMOu0+kEcSKR2KUt+RK9PSK7v00ALO9c1Xb73GU8AQ6GarVq2jY3N01bpVIJ4lar1XXZ3r1WoVAwbcVisWvOfh1fkonw/0an0/YesdFomLaVlZUgnp2dNTn6GHj727tv1eN3Mmn//7beznq9bnL0Ns3NzZmcpaUl06b7l7dPdB/wtnG/9gmPPiblctnk6P2mz0kRkXa7bdp0v0gmbT+Jsiu9674+Lt6x1J9bWFgwObrveP3GW/bcfPi5kcsjJkePcd5yvP22sbERxFevXjU5+rssLy93XY6IPZ9yuZzJ0W1eTjabNW1Rzoso88ydpo9BlG309snAwIBpq9VqQby+vm5yxsbGgliPwSK273jjq3de6j6wtrZmcvS55B1bb5/o77a4uGhyLl26FMTPP/+8ydna2jJtpVIpiPv6+kyO3m6v/0Xpk945qPev/q4i/rVpL/ZvAMDBwy9gAQAAAAAAAAAAACAmvIAFAAAAAAAAAAAAgJjwAhYAAAAAAAAAAAAAYkLx0Yi8ugpTU0eC2Ktz4NUU6O/vD+J8Pn+TW4fDirqhB8de2097bXsA+PbDuRrXNnKNAXaXV2vy8uXLXdu8z+lzV9d2FRGZmpoybdPT00Hs3Uft13EhmQr/b3QmkzE5Xg27K1euBLFXt1LXYPXqpHp19UwN2IT9nN5ur9ahrqO4urpqcrwajbrWYpQ6lt614iBdP/Rx8mpEXrhwIYhnZmZMjldPWD/P8I5JlP3t0Z/z+qBelldjWtd89bbRW7auwerl6O/v1Ur2zhNdb9Kr76rrfQ4PD3ddv4g9n71t0m1eThT7pR6m3s4o2+2d7/q5nIgdv7zjNDIyct3YW583dnl9SV8vvb6k+5v33bxxWC97Yd7WWD777NkgfvbZZ02Od20aGhoKYu/76nPVW473XfTx9erKV6vhPvHGRW9/Dw4OBnGv1xgAAK6HX8ACAAAAAAAAAAAAQEx4AQsAAAAAAAAAAAAAMeEFLAAAAAAAAAAAAADEhBewAAAAAAAAAAAAABCT9G5vwH7hFYgvlUaCeGRkONKydBF3r9A8EMVe6zt7bXsAAAcH1xhgZ7VarSBeW1szORcuXDBtjz32WBDPzs6aHH0+T01NmZwXv/jFpm14eDiIR0dHTc5+lUyG/zc6nba36o1Gw7RduXIliDc3N02Ovpf1xtNOpxNpOzW9LG85uq3dtjne/bbX1k273b7hz+wnel9Wq1WTMz8/H8Rf+MIXTM7q6qppGxwcDOJ8Pm9yohzvKKJc071jqdfnnSeehYWFIF5aWuppmzx6m7x9or9LsVjsaV1x6vXY7bYo+zsKPeaKiPT39wfxyMiIyZmcnAziSqVicvT1U59bIv751Ww2g3hjY8PklLfKQdxo2uuCNy5sbW4F8eLSosnR1xPvuq+/v4hIoVAI4r6+vq453rkb5RxMpVJdl10qlUxOrVYzbVHGj/16ngAA9g5+AQsAAAAAAAAAAAAAMeEFLAAAAAAAAAAAAADEhBewAAAAAAAAAAAAABATasBKtL/p79UioJYr9gNd/6NcLpucer1u2nQ9jL6ireORL4R1SzgHAAC7Tdd42traMjn6upfNZk3OwMBAEHu1CL36dPo66113dY2vKPNMIE56nufVVNPnjlfLdW5uzrTpPK9OrK5l6t2P3XbbbaZNnzsHqTZblHtLb8zRNV+9OrFRaiZ69RC7Lcdr85ajx9hcLtc150vL0v2y+/oPOt0vvH2payOfOnXK5Fy9etW06b7knd/6GuuNHV6b5vVl/d28666u9ej1G4++Fns1MvW5E2UbRex4msvaY5LLh22ZtFPf2LnsH6b+HfW76jEmytgVle5PXu3Wo0ePBrF3DuprldeXve3WfU7XkhURqTfCOazXl2tVW++0VlfnrhlfRcbHx4NY110XERkbGzNtep94tXN1XdioNb71ftLzcxGRW245HcSplN23y8vLpq2XObs3vsXZBwEABw9XCQAAAAAAAAAAAACICS9gAQAAAAAAAAAAACAmvIAFAAAAAAAAAAAAgJjwAhYAAAAAAAAAAAAAYpLe7Q24GZ1OJ4gTiURPy+n1cweZ3rci7Kf9wDtuW1tbQXzp0iWTs7y8bNoGBwaD+NjxYyYnm8sGcSqVirSdvaBP9i6usXK30Qd6w37bWezv3VepVIL44sWLJkdf98bGxkzOLbfcEsSZTMbkeMdbL9tb//r6ehB7109vfUBcdJ/zxql6rR7ES8tLJmdzc9O09ff3B/H09LTJKZfLQdzX12dy0ml7q3qQx1NvPNG876/Hinw+b3KSyd7+37VeX5Rt9Oj+Fv3Yhuvrdf0HiT6Ww8PDJufMmTNBXCqVTM6VK1dM24ULF4L4ueeeMznNZjOIc7mcyclms6atF16/jTJ2ef1E9znvPNHbHXVOp9u8a7r+Lh1xli0Hd3zz9DrmRRlP4lIoFEzb1NRUEA8NDZmcVqsVxN73aDVbpq1SDeew+lopYp/vtNttk+OtL50J99PAwIDJmToSfjdvLup9To9D3j7R13nvPPH6RJQx79Zbb+2aE2XM29jYMDm1Wi2I47zGAgAOB64SAAAAAAAAAAAAABATXsACAAAAAAAAAAAAQEx4AQsAAAAAAAAAAAAAMeEFLAAAAAAAAAAAAADEZPuq1e8Ar7A84sG+PTi2traC+OLFiybn7Nmzpm16ejqIB4cGTc7Y2NhNbl109MneHZR9d1C+x05jv+0s9vfuW19fD+Lz58+bnHPnzgXxmTNnTM7ExEQQ9/f3m5xarWba5ufng/iJJ54wOZcuXQriXC5ncgqFgmmjfyEuUfpSp9MJ4larZXKazaZp6+vrC+Jk0v6fX93ni8WiyclkMqZNL+sgnxN6/19LOh3e0ufz+a45+0XUfXCY6D6vzzevbWRkxOQU8vYaU61Wg3h2dtbkbG5uBnHU69dO8sYFfQ7sxXPi8PX38Dh5w7m3T9rtdhB716a4eH1Zj7F6e7xt8rbRm0Nmt7JB7PVlvT7vGuttk16Wd43V3837/lH2iXcd0mNFKhXtHNTfz5sv6LaBgQGT4+3L5eXlIPb6W71eD+JsNmtyAAC4Hn4BCwAAAAAAAAAAAAAx4QUsAAAAAAAAAAAAAMSEF7AAAAAAAAAAAAAAEJNtL3yxtrYWxEtLSybHqxuiawZ4f2d/P9T88Wov6FoPXu2HRqMRxFHrgaRSqSCOsm/3Yv0T9MY7J3RtLn1Oivh1YXUdDd0nr7W+neSdF7VqeD5Va1WT430XbTu/m7fdui1KvTSvtopXy+UwqVbs8a5UK0HsjcveWKnPAe+Y6POrUqmYHG+M97ZB0+vzroNeH6Auzd7n1UyMMjfwPqfHqt0el+Ok5yd6jiPin3O6Zt3Vq1dNjq7B6tV3nZubu+72iIhsbGx0Xf/MzIzJ0XVpvXPZ26aDdHyxu/S8w5ub6HPOu7541089F/HO3V778kEZ87ztNt9N9ud3O0gOSn/zzt2+fls7Np8Lr0Xe99W1LA9y3VJvvh7lPm6nJRLhPUMy2X18EYl2HYhyzxKFX5O0++e8ed7i4mIQe/U+x8cngjift9cqb16nr1dRxmrvHlEv26sB6+1v/ZzCmx/qz3k53nZHeVYY5XmD97koc3ads53jaZQ6sSJ2vuIdk8M05gEAtge/gAUAAAAAAAAAAACAmPACFgAAAAAAAAAAAABiwgtYAAAAAAAAAAAAAIgJL2ABAAAAAAAAAAAAICa26nzMnn/++SAeHh42OWNjY6ZtYmIiiEdHR03OdhZtj0uz2TJta2trQTw3N2dyVlZWgrher5ucZNK+P+/r6wviqakpkzM5Gbal09veDbCLMplMEGezWZOTz+dNm87TyxERSaVSN7l18VtbD8+vq1evmhx9fnU6HZPjfd+4xpxWy44LzWYziHO5nMmZnJwMYu/89rb7MNHHX0RkZmYmiKvVmsk5euSIaTt+4ngQe2OuPm7eeD47O2vayuWyadP0eTk+Pm5yjjjb7Z3j2Ft0vxERWVxcDGKv32xubpo2PQ4fpGu6/m7eOejNj+bn54PYO9/0+bW1tWVy9Bx2Y2PD5FQqla7r97Zbz2u947ad1yHAm/tour95/dTr31HW1W63u37Om2fqbYiy/r3IO7/TqfC7JZL2fPf2ZZRjedh12s4+Ul3H60u6Dx6kebZ77kS4xOzX/hbl+qnv0RqNhsmp1ex9hJ7Xefuo17FSt3nL0XN/7z7SG7/1OOx9Nz3P8u5jvX2r27zvptfnLUfPqTz63l5E5Pjx8D7u6NGjJkc/cxQRKRQKXdfXC2+/eW36+BaLRZPjHd9uyxGJds+g27wc79qs1+etXx/f7ZzTev3N29+9zIUAALhR+/OOFQAAAAAAAAAAAAD2IF7AAgAAAAAAAAAAAEBMeAELAAAAAAAAAAAAADHZ9kJhTzzxRBB79X7uuOMO06ZrL5RKpXg3bIe0WrbO2+rqahCfO3fO5Jw9ezaI19fXTY5Xj0HXtvD29+DgYBAXi9tT5wJ7g65Z4dUu0rWDRWwtmb1Y+8Kr/be8vBzE+lwSEXn22WeD2DtPvH0SV50xb7t1jcKRkRGTc/fddwdxf3+/yRkYGLjJrdtfdM0lffxFRJ5++ukg9uoEidj6LxOTYV0gb8zVx+3y5csm57HHHjNtup6RV39G14h8wQteYHK8furVWsfe4tUN1TVf9fxJROTKlSumTY/V21W7ajdEqRXljd+6ZptX00zX1PJy9PzswoULkdavl+Vdd/X5nfAK7+29yy4OGdMve+yTvdaMPMj1Tr2apO1O97q4e3E+vi/0WNtUt0WpXbxfePVNvRqJ2n6tuxyFPr+87+rdD0Spd9rruRulBqyuyRl1XTqv17rbvX43b19q3n1zlPnZ2tpa13V590xxzaP1+eXN/avVqmnTY4y3v3UNWG+eGaXNPZZqsOw498hRav5GsZ3XM/2MQMQf36KM6TtZuxYAcDAd3NkzAAAAAAAAAAAAAOwwXsACAAAAAAAAAAAAQEx4AQsAAAAAAAAAAAAAMeEFLAAAAAAAAAAAAADEpHvV+5v0zDPPBLEuGC8iMj4+btrq9XoQdzq2+Pt+4G13tVoN4oWFBZPz5JNPBvHVq1dNTl9fn2mr18L9Njo6anJKpVIQp9O2G2SzWdOmC9l7ReyxfVKplGnTx65Wq5mc1dXVINb971r0Obi2tmZyFhcXg9jrk14/0X0pkUiYnEwm03Ubl5eXTdvc3FwQX7p0yeQ8/fTTXbdxaGjItHnnSi/K5bJp29jYCOKpqSmTo89d7/z2xthCoRDEUY7JTtN9wNvXyaT9P0O6X+rjLyJy8eLFINb9VkRkcnLStE1PTwdxo9EwOXr8vnLlisk5d+6cabtw4UIQt9ttk3Ps2LEg9vrk2NiYadPHu7+/3+To9XnfDd1FGZdF7P71rvv6Ov/888+bHK8vRTne3hi7H+g5lDen8sYFPQ5646I+Tt61UV8/9XVRxO8DUdbvfU7br3NfQPPO0yjzvEqlYtr0eenNPYvFYhBv57zHG1+964DO8+bV6+vrQezN66Psy/065sel12PizYX0MVlaWjI5IyMjPS07rjE+ylzEu8atrKyYNn2P4m2j7m9Rrmc7zdtufc57OfoZiHev5c2z9HXe64N67h11TqOX5Y1n+rjpfisiUinb8TSbC7+v91xOj7HeueR9l7j6t/d9Nzc3g9gbK/Ux8e61vM9FeU6hz2dvOVtbW0Gs7/VFoj2X8a6V+Xw+iAcGBkyON/eMct09KBIS7Tp42K+XAICdwS9gAQAAAAAAAAAAACAmvIAFAAAAAAAAAAAAgJjwAhYAAAAAAAAAAAAAYsILWAAAAAAAAAAAAACISXq7V5DNZoPYK/yeTB6u98C60HsqlTI5uVwuiIeGhkzOwMCAXXYyXPby8rLJuXDhQhBvbGyYHO84tVqtIG632yYH28c7T3Rbo9EwOUtLS0G8trYWaX1bW1tBfPnyZZOj16f7rYhIp9Mxbbov6XNCxD8vNK/vzs7OBnGtVjM5+tzx+rL3XeIaq4rFomnT3zedtsPz6upqEF+6dMnkVCoV06a/i97/InvvfPa+v9dPdD/Vx1/E9lOvb3lj5XPPPRfE/f39JmdlZSWI9TES8cfT8fHxIPbOk3w+H8Ref5+ZmTFt9Xo9iAuFgsnRx9vrE+jOGxO8/tVsNoNY9xsRO1Z7fWJ4eNi06XPF62/eubMfePtAi3L9iPL9oywn6hz2sM1rgW6i3Ot456B3TdVzn3K53HXZ7Zad47Ta23fd876v/n7eds/PzwexnuOIRBuH9uuYHxfv++tnEh7vmOh5pXdd6uvr67oN3jwryjUuiihzET03FPHnIrrN20Z9fkW5Z4tTlP7t7e/Nzc0g9u6ZJicng1jP10VETp48adpGRkaC2Dsmei7o7dtej6Xup0899ZTJ0eOLiMhkX/h9T5w4YXKmp6eDOMp9hUh89xbeftLr83L0WOmdp95263tCb3/rsVn3LRGR9fX1IPaewXh9UPPGLv1s8MiRIybHOy/1veVBls7YZwne84Uoc/Yo/Q0AgOvhCREAAAAAAAAAAAAAxIQXsAAAAAAAAAAAAAAQE17AAgAAAAAAAAAAAEBMtr0GrK5P4NXQ8+oa7HQtkZ2k6wx4tSYHBweD2NtHXg1YXdfBq52ka2J6y/ZqIey1GpGHTZR6N149Cn28vfpGHl3L5Pz58ybn6tWrQRy17l2vdf00XUtHRKRarQax129LpVJP64+rppb3/XWbty/1MTl37pzJ8WqC6vE0yvp3W9R9resLebV09LK8GrzeWPnkk08GsVc3RtcF8s4vb6z2tkHTfcD7bs8//7xp03WgvOupPt577fjvZ17f1fvXqyelxy7v2uzVItOoP2pFGU/irZUVrs9bPeccDhNvXIpSA9arUamvhbomrIhIKqnmPbKz855e57B6zl6tVE2ONxfppe71QeZ9f692rubNs3T/WlhYMDneMdF2ur8l1HWo3bH3Q7q/iUS7j4py7u42b3/ruZf3/fV3m5iYMDleDVid580pGo1GEHv7Nsr5rY+R97krV66YHI+ui3r06FGTc+utt173MyJ+vVdvjOuF17+ijHl6/d5+8+psr6+p2q3rtnarvm9cWloyOXqsWFxcNDleXVjNe1ao6/J6+9977jo8PBzE3DMAALAzuOICAAAAAAAAAAAAQEx4AQsAAAAAAAAAAAAAMeEFLAAAAAAAAAAAAADEhBewAAAAAAAAAAAAABCT9HavIJFIXDe+VlsvOXtRlO/r5SST4bvxdNoeqkwmY9o6nU4Qb2xsmJzFxcUgbjabJqfdbpu2KNuN7aOPrdem+42I7Se5XM7keP2rVqsFsdeX6vV6ELdaLZMT5Rzwvpt0dGhzvO3OZrPXja/1ObN6b5ti4h2nKOvf3NwM4uXlZZPTaDRMmz6fex2Hd1KU/i4ikkqlgtjr37oPePvf698LCwtB7PVv3Ze89XtjtdcvNX3cKpWKyVlbWzNtug9EOS/32vHfL6L2U71/o/QJL2e3x67DhvMCiEeUex1v7Nra2jJtKysrQaznoiK7P++Jcm2Icm+3F+ew+5WeL3q8vqTn3l6ON8/SxyCRsHPPuLpgXPeIItHmIlH25Xb2QW9/a965Mzk5GcT5fN7knD59OoiPHj1qckZHR02bN//Xopy7UfT395u2sbGxID5+/LjJ8Z75HDlyJIjHx8dNztDQUNdt8r5blH2ynXQf1M82RPx76bm5uSBeX183OeVyuetyrly5EsTnzp0zOV/84hdNm77/LJVKJuflL395EHvH7dixY6ZNj1/eORCF96xQ968ozyR65fU3PS7psVvEP5bVajWIvbmBHgejPMsBAOArceUAAAAAAAAAAAAAgJjwAhYAAAAAAAAAAAAAYsILWAAAAAAAAAAAAACIybbXgI3yd/69v6Gv/65/lFoje1GU+gTe99c1K+Kso9JLDdooy8HOS8iN11iOetx6qc0ctR5GlG0ytZMkWv2u/dAvo9SI9PRaU/ugnM9Rvluc3yOuGubbKco2HZTjvzd5+7/7+c3+BoDe9Dr37Lac7bYf5hSwej1uu33dPyj9zbtn8mpLal7dUl0DdmpqyuToNq+25m7XNvX09fUF8alTp0zO8PCwadP1ZKPUe90LdL/w6oXruqyzs7Mm5/Lly6ZN12D1rjHFYjGIR0ZGTI6ut7q6umpyBgYGTNszzzwTxLruuYjIHXfcEcQbGxsmR9epFRGpVCpB3GsNWK+esN5Ory6ursvq1XOO8lzIezasj5Ou7Soisri4aNr0cfGOt95P1IAFANworhwAAAAAAAAAAAAAEBNewAIAAAAAAAAAAABATHgBCwAAAAAAAAAAAAAx4QUsAAAAAAAAAAAAAMQkvdsbIOIXWvfa9iOvQHsv300Xnr9Wm152Om0PsVe0HgeX7hMJidb/dN/N5/MmJ5fL9b5h28R8X+d8886d3RZlm/S5WygUTI53nA6TXq8nvY+Vur9F+IiItNvtaIldtsdr24vnJbrbr2MXAPSil3mP13aQrnlcB7ZPlP3m3bdns9kgzmQysW3Tbuv1ectO9kFvXfV6PYi97+HdIx07diyIb7nlFpMzNjYWxPr4X2t9u03f/x05csTkTExMmDY9nnrfd7d5fWB1dTWIFxYWTM6VK1eCeGZmxuR4bRsbG0Hs7cvx8XBf5nJ2v+l9u7m5aXJWVlZMW6PRCOKzZ8+anGazGcTVatXkVCqVrm3FYtHkRLmm6m0UEVlaWgriZ555xuRcunQpiPX3EBFJp+w9ebsT3jdHud/37rW97dbjiTfv0NeGqM/TAAD4v/gFLAAAAAAAAAAAAADEhBewAAAAAAAAAAAAABATXsACAAAAAAAAAAAAQEy2vQasrqvn/b3+Wq1m2nSNBK9mgq5Z0Gq1TI7X1kvdEm+70+mMyrGfW1tbM23lcjmIvVoEus5Ar3VbD3J9Xews+tLui7K/OSa92Q/9O+r27LXtBgCgF8x7sNui1OXF9vGe2+i6kd4x8WqZDg0NBbGu9ypia6nuF/qZm45vhj4GXm1N7zhF+Zx+5uXlbG7Y54ALi2HNV13v1Wvz6sR6dVJ1DdT+/n6TMzAQtnn9Rj/j9Jbj1SrW6x8cHDQ5UWrAbm1tmTb9TNWrAavrXHu1sb1nrOvr60H83HPPmZwnnngiiL194tUqjlKXVvc3r096/ctr64rLAADgBvELWAAAAAAAAAAAAACICS9gAQAAAAAAAAAAACAmvIAFAAAAAAAAAAAAgJjwAhYAAAAAAAAAAAAAYpLe7hXogvSJhK1YvrGxYdquXr0axF5xdL1sL8crEN8Lb7tTqVTXHF3oXkRkdnY2iLe2tkxOOt390CSTvD8HAAAAAAAHX6fT6ZrjPZfRz1cymUxs23SQNZvh87RarWpy6vW6aavVateNv7TsZtflrK+vm7bl5eUgXlhYMDn6GVuhUDA5IyMjpq2/vz+IR0dHI31Oy+VyQayfHYr4fVk/vywWiyZH92W9H0VEqlV7nCqVShB7x0Sv33vm6G23Xtbq6qrJ0dt57Ngxk3PHHXeYtuHh4SD29qV+Fux9/5WVFdM2Pz8fxEtLSyan0WgEsTd28GwWAHA9XCUAAAAAAAAAAAAAICa8gAUAAAAAAAAAAACAmPACFgAAAAAAAAAAAABiwgtYAAAAAAAAAAAAAIhJunvKzdHF5xOJhMnxCrTr4u9zc3MmRxef94rBe21xSSbU+2v71aRer5u2ra2tIN7c3DQ5+rt5hea9fQkAAAAAAIAvabfb141F/Gcuh4m3TxqN8HlWuVw2ORsbG6ZtfX09iFdWVrp+LspyvLxarWZy+vv7g3h6etrkHDlyxLSNjIwEcT6fNzn6WV21Wu2a4z7Pcx4gZrPZIJ6cnDQ5g4OD4XKc54LePtHHrlq1Ofo5bCaTMTne+vRzV+85rP4ut912m8m55557TNv4+HgQ630rYvuu94x1ZmbGtDUajSBeWFgwOfr4JpP2d0xeGwAA/xdXCQAAAAAAAAAAAACICS9gAQAAAAAAAAAAACAmvIAFAAAAAAAAAAAAgJhsew1Y7+/za97f59d1YZvNpsmJUt91O+ukRlm/VwsgSj0I/bkodRYAAAAAAAAOIv3sxHtOous6itj6l15t0dHR0ZvcumuLUiMzyvOdXp+BefVd6/WGim1N0EqlEsRra2smx2tbXl4O4rm5OZNz9erV68Yi9rmgiK1TOjAwYHLOnDkTxENDQyZnamrKtOkasB69T/T2eG26tquIyPjEuGnL5sI8rwat/i663q2IXwNWHydvvw0NhfVlvfV7zy/7in1BPH3U1txNpsJnnMePHzc53jHp6+szbd0Ui0XTtrW11TXPr4Mcnic8hwUA3Ch+AQsAAAAAAAAAAAAAMeEFLAAAAAAAAAAAAADEhBewAAAAAAAAAAAAABATXsACAAAAAAAAAAAAQEzS272CRCLRNSdKofN6vW5ydGF7b11R1t8rXXzdK8aeTttdrPOSSfsefDu3GwAAAACAw6DXZxLNZjOI9fOHa7X1sn5Y3jHRz4W8fbu6umraLl261HV9m5ubQTwyMmJy+vv7TZv3PEeL8nxL9zcR27+8HL1sr09666tWq0Fcq9VMTqVSCWK9j7wcEZH19fUgXlhYMDlXrlwJ4nPnzpmccrls2vRxKZVKJkcfp6GhIZMzNDTc9XPe+re2toJ4eXnZ5OjP5fN5k3Pq5CnTlkiG/blYLJocvSzvHNB9QkRkaWmp67L1vhwYGDA52WzWtE1MTgTxPS+8x+To82RyctLkePupF945mUqlTFuUsTnKc18AAK6HX8ACAAAAAAAAAAAAQEx4AQsAAAAAAAAAAAAAMeEFLAAAAAAAAAAAAADEZNtrwEb5+/je3+LXf/s/l8v1tOzd5tUU0PUIvJz98N0AAAAAANjvotSA1TUzvRwPNWB74z0TibK/da1LEVvfdG5uzuScPn06iO+4/Q6TUygUTFuUGrC6BuvGxobJ8fqX/pxXb1XXZfXqlnrr07VMvRqwepu8/e99f33svO2OUoPWqzeq67l6NWB1jle7t6/P1kDV69O1bEVszVddy1bEfhfveebAtK2vquuyejVYM5lMEHt1eS9fvmzaotSAPXLkSBB7x9v7LhMTYQ1Yb9mady7FNVZ62+21eeN+t21iPAcA3Ch+AQsAAAAAAAAAAAAAMeEFLAAAAAAAAAAAAADEhBewAAAAAAAAAAAAABATXsACAAAAAAAAAAAAQEzSu70BIn4R81QqtQtbAgAAAAAADopOp9M1J522j0ay2WwQDw0NmRzvWUZc23TY9LovtVarZdpWV1eDeHFx0eS02+0gHhkZMTml0ZJpGx4eDuJqtWpy1tbWgnhlZcXklMtl01ar1YJ4c3Oz67LX19e75oiIVMqVIG617X7Tcrmcaevv7zdt+Xw+iL1jq/dTo9Houn4Rex7qdYmIZDKZIPbOb69Nb6fe/yIiS0tLQTwzM2PXnw7XPzk1aXIGBwdN28DAQBB7+zaZDH9HU6/XTY7XB69evRrE3n7T/cs7Jl4fKBQK1413Wqdtx1d9fotEG4fjGpcAAIcXv4AFAAAAAAAAAAAAgJjwAhYAAAAAAAAAAAAAYsILWAAAAAAAAAAAAACICS9gAQAAAAAAAAAAACAmtuo8AAAAAADAPtPpdExbs9ns+rmhoSHTNj4+HsSlUsnkFIvFrstut9umzdvOgyyRSFw3jpqTSqW6rqtSqZi2xcXF68YiIplMJojX19dNztWrV02bzvPWv7q6GsRra2smp1qtmrZGoxHE9Xq96+e8/ub108HBwSDO5/Mmp1AoXDe+Vpvel953m5iYCOKpqSmTs7m5adr0PvHOpXK53HX9tVrNtOll6eWI2GM5Pz9vcgYGBoJ4dGzM5Hj0WOWtXx/flZUVk+P177m5uSAec7ZJ7ye9rwEAwI3jF7AAAAAAAAAAAAAAEBNewAIAAAAAAAAAAABATHgBCwAAAAAAAAAAAAAxoQYsAAAAAADY97x6kF7dTF1f1KuROT09HcQnTpwwOcPDw123yatBe9hrwCaT9rcAus2rAZtOd3+E5dVgXVpaCuKFhQWTo+uyess5f/68aWu1WkHs1RuNUpPUq92q94H3/bPZbBB79Yy9/q3zdE1YEVvL1KsTq+u9itjtjlIX16tJ6tUy1TVX9XJE7LH06vl69WX1vvRy9LK89eu+XK/berNRav56Y4f+nFeD9uLFi6ZN93mvBm6U9Xv91DufAQDAl3CVBAAAAAAAAAAAAICY8AIWAAAAAAAAAAAAAGLCC1gAAAAAAAAAAAAAiAkvYAEAAAAAAAAAAAAgJund3gAAAAAAAICb1el0TFuj0TBtiUQiiHO5nMkplUpBfOTIEZMzMDBwo5uIbVYsFk2bPt7tdtvktFqtIF5dWTU5S0tLpm19fT2Im81m121MpVKmLZ22j+eymWwQe/1U98H+/n6TMzQ0ZNpGRkaCeHh4uOuy8/m8yYmiXq+btr6+viAuFAomJ5PJmLZarRbE3jHRbcvLyyZndXXVtGWz4f5eW1vr+jlv/Xq7y+WyyfG+rx6/KpWKydnY2Aji+fl5kzM3N2fa9HfR+1FEpFqtdl2/9zn9fZNJ+1sfrw0AgMOAKyAAAAAAAAAAAAAAxIQXsAAAAAAAAAAAAAAQE17AAgAAAAAAAAAAAEBMqAELAAAAAAAOJK/ep65H6NUn1DU5dX1IxEvX6vVq94oq8dtqt0zK1taWadP1Lzc3N02OqW2ZMClu3U7dL7xarrp2q9eXvM/pWrFeDVi9Td426nqrIra+q5fTa81Xzfu+ulatd55GqZ3q1dzVdXkXFxZNzujoaNft9GrH6r7k5eiaqAsLCybHq1et+4CuSyxi95Oubyzi9xP93by6vLq+rFcD1+sTuu/E1W8AADgI+AUsAAAAAAAAAAAAAMSEF7AAAAAAAAAAAAAAEBNewAIAAAAAAAAAAABATHgBCwAAAAAAAAAAAAAxSXdPAQAAAAAA2H8SiUTXtk6nY3La7XYQt1qteDfsENvc3DRta2trQbyxsWFyqtVqENdqtUjLXl9fD+Ktra2u29jX12faRkdHTVt/f38QF4tFk5PL5YI4m82anFQq1XWbkkn7Gwr9uXTaPubz2vQ2ZDKZruvvlXd+6e3W+0hEpFAomDa9nY1Gw+QsLCwE8fzCvMkpjZZMm96GlZUVk6P7pddPm83mdZcr4vfB4eHhIB4YGDA5+Xw+iAcHB01OqWS/mx6/vPFMfxfv+3vHRB/LXvs3AAAHEb+ABQAAAAAAAAAAAICY8AIWAAAAAAAAAAAAAGLCC1gAAAAAAAAAAAAAiAkvYAEAAAAAAAAAAAAgJund3gAAAAAAAIDtkEgkuuZ0Oh3T1m63g7jVasW2TYdNpVIJ4tXVVZMzPz8fxIuLiyZnY2MjiLe2tkxOuVw2bfV6PYi9PjE8PBzEAwMDJmdiYsK0jY6OBnFfX5/JyeVyQZzNZk2Ot026X3r9NMpydpu33el0+Dgyn8+bnEKhYNp0XiadMTm6n+i+JWKPt4g9TsvLyyan2WwGcalUMjmpVCqIvbFDL0fE7hOvD+r+5e0j3d9FRDKZcD/pdYnY/eadg976dFt/f7/JAQDgsOIXsAAAAAAAAAAAAAAQE17AAgAAAAAAAAAAAEBMeAELAAAAAAAAAAAAADGhBiwAAAAAYE+JUpNTx4BXa9Grh5hMhv8X3ftclHqbu809T1rhedFs2VqTXv1JvQ+8faLPOa/eqLfszc3NIF5aWjI5um19fd3k6GPpfX+vBquu9+nVGx0ZGQnisbExk+PV+4yy7F7rsurP7cX6rlF4263bvLq4Xr1RXV90pDRicvQx8eoCz83NmTZdA7ZarZocXZf17rvvNjmDg4PX3R4R299EbP8aGhrquo1eHWRd71XE7starWZydK3mhYUFk+OdX/q77IexEwCAncIvYAEAAAAAAAAAAAAgJryABQAAAAAAAAAAAICY8AIWAAAAAAAAAAAAAGLCC1gAAAAAAAAAAAAAiEl6tzcAAAAAAHAwJRKJrjmdTse0NZtN01av14O4VquZnHa73XX9UbYJe4/XT7R2q23aVlZWTFsqlQpi3be89SWTe+//r3t9udkKz51yuWxyKpWKadN53ueq1WoQNxoNk+Pty62trevG3rK9/V0oFIK4v7/f5HhtxWIxiPv6+rp+zsvR6xcRyeVypg2hKGOud7wzmYxp08eyVCqZnMnJySD2+vLa2lrX9WWzWZOj1xdl/RMTEyZnZGTEtOk+l8/nTY62sbFh2vT4JmL37+LiYtdlLS8vmxxvu/U5H2WsBgDgsNh7dxAAAAAAAAAAAAAAsE/xAhYAAAAAAAAAAAAAYsILWAAAAAAAAAAAAACICTVgAQAAAADbwqsFF6UeoFfDTtfn82oGRqk9Rw3Yg6vVapm2/oatCar7TjptH43ofrIX6xp69VZ1vUuvRuTq6qpp0zUxvdq56+vr112XiK3lKmKPi3cO6lqqXq3JoaGhIB4dHTU53ucGBgaCuK9o67vqepuJJOPEbvNqsOo6qWNjYybnyJEjQXz16lWT49WA1ePC1NSUydHrO378uMk5evRoEEetAav7oHcd1OeSV5fYG6t0fXRvrIxSA9areavPeb0uAAAOM34BCwAAAAAAAAAAAAAx4QUsAAAAAAAAAAAAAMSEF7AAAAAAAAAAAAAAEBNewAIAAAAAAAAAAABATNK7vQEAAAAAgIOp3e44bc0gTqftbenAwIBpGxwcDOK+vj6To5fV6Xjrb/sbix2RSCS27XPesa1Wq6ZN94vx8XGTk81mg7hWq3XN8ZbdaDS6bqfXTz16WZVKxeSUy+UgXl9fNzkrKytd21ZXV02OXp+33alUyrTpc7VQKJgcfc6XSiWTMzw8fN1YRGRoaMi09ff3d91Gzftuet+K2H7h9cFe+/x20t/P+756uzOZjMnJ5XKmTZ8XyWRvv/2Icm2YnJw0Obqfeufg0tKSaWs2w2uT10/1+o4ePWpyJiYmgnhkZMTkeNevKHTf1X1bxH4PEdsv6/W6yZmfnw/izc1NkxNlXPD2NwAAhxW/gAUAAAAAAAAAAACAmPACFgAAAAAAAAAAAABiwgtYAAAAAAAAAAAAAIgJL2ABAAAAAAAAAAAAICa2oj0AAAAAADFot1umrVarBXEqlTI5pVLJtJ08eTKIJyYmTE4+nw/iVsuuv91u+xv7FTqdjmlLJBLb9rn9wPtuWkKc76qavP0RpS1KjreNzWbTtOl+kUza/5uey+WCuFwum5xKpdJ12fV63eTotkajYXK8tmq1et1YxJ5f3nZvbGyYtvX19esuR0SkWCwG8fDwsMkZGRkxbUNDQ2o5fSanv79Pxf1d16/PdxGRQqFg2no5B9fW1kzblStXTNvi4mIQe2NOOh0+evP6207T46B3nuix2Tu2k5OTpk2P371+X+9zug+MjY2ZHN13dd8WEbl48aJp29raCuKBgQGTo9c3OjpqcvTnMpmMyYmLt4/6+uz5pful/q4idru98dQbc/R45vUlAAAOq92f9QEAAAAAAAAAAADAAcELWAAAAAAAAAAAAACICS9gAQAAAAAAAAAAACAm1IAFAAAAAGwLrx6irs/n1WwcHBw0bUePHg3i48ePmxxdH9BbP/XpdpapCxuxHKeu2xmljqRX39dr033Aq+Wqa6d6dVO9Ooq6HqJXA1avz1uO16a3yevLum6j9/29bdLnZTabNTn6vJyamjI5kxO2JuhIKawd6tWo1OOArsEr4teLjkurGY4VurariMjZs2dN29NPPx3EXu1e/X2383tEpfuOVytY19g9c+ZM1xwRW/NX18CNyjvndT/x6tLq/r2wsGByvD6oj52Xo7+bjr1t3M7j7e2jfN5eUzWvfrOuAesdN68GrB7PvPFUjy+ZtFMX17k27IV6yQAA3AyuZAAAAAAAAAAAAAAQE17AAgAAAAAAAAAAAEBMeAELAAAAAAAAAAAAADHhBSwAAAAAAAAAAAAAxMRWVAcAHHqdTqennCifSyQSPW1TFL2v37bptO3cbgAADirv2txqtbp+LpfLmba+vr7rxp502t7yem3Yn9rtdhB7fUvniIg0m80grlarJmd9fT2Il5eXTc7q6qppazQaXbepXq8HcaVSMTneNuntTqVSJkefO5lMxuQkk93/L34+nzdt4+Pj141FREZHR03b0NBQEHvnbpRt0scyyj4Ssee8N6/Xx3Jubs7kXLp0ybQ988wzXbdJf3/vmOy0Wq0WxEtLSyZHb3epVOq6HJFo92RReH1C92/vHNDbNDg4aHKKxaJpK5fL112XiEihUAhi7zzJZrOmbbt4fdm7bdXf1/v++rz0vr83VumxcWFhweTo4zQwMGByvH0ZZVzQOhKt/+l+6l0rdFtcfRsAcHjwC1gAAAAAAAAAAAAAiAkvYAEAAAAAAAAAAAAgJryABQAAAAAAAAAAAICYUPwGAA6ZKLVMo9Sq0vWtrvU5vb6drgGr27w6QV4dJt3m1YvT34WaMAAAxKPXWvPYn7w5pK7j6NXWrFTCtnJ5q+tyvvS5sI6hrvfqtW1sbHRdjojtp94cUs9HvVqLXo1Gnefl6BqVOhaJVhfWy9E1Ir31e226tmOUuo5en9B1Sr1ak95x0sfAux/Y2gr7ztWrV02OrhEqYr+vV/8zSt3SnaZrW3p9UPcB77ht572dX980bPP2t+7zUeqditi+E6WfRrkueTnbud+i8PqgPk+8sWtlZcW0zczMBLG3v3V/m5qaMjnbWTs3yjXGuw7ocSHKuCzCcwIAwP/DL2ABAAAAAAAAAAAAICa8gAUAAAAAAAAAAACAmPACFgAAAAAAAAAAAABiwgtYAAAAAAAAAAAAAIiJragOAECMOp3OnlrXTm4PAACHXSKRiNSmtdtt09ZsNoO41WqZnFQqdQNbh91Qr9dNW7lcNm0bGxtBvL6+bnLW1taCeHl52eR4n9Ntm5ubXbfT65PptH2kksvlgrhYLJoc3dbX12dyvLaBgYEg7u/v77psb/3ZbNa06XPHO5d0WzJp/0+/19bLebm1tWXaZmdng/ipp54yOTMzM13XXygUTI4eT6rVqsnRY5CIyMjIiGnT9JgXZQzcbl4f0HTf0X1bxD/eu/39MplMEHvfNZ/Pm7ZcLmzzvoe+l/TGBdvmXQdN047yjps+vnq8ERGZn583bZcuXQriKPvEOwe9c8nrc3HZyWcHCacPdITnEgBwGPALWAAAAAAAAAAAAACICS9gAQAAAAAAAAAAACAmvIAFAAAAAAAAAAAAgJjwAhYAAAAAAAAAAAAAYpLe7Q3A9trJovLwJRKJWHKAXulzvN1umxzdBwuFgskplUpBnMvlTE463f2y4q0/Lt65pNtarZbJqdVqpq1cLnfN0d8lyvoBADuL+fDu8q77us3L4ZhE026H+6nT6W1/93oM9DzHW46eQ1WrVZOztbll2tY31sN4fd3krK2tBfHKykrXHBGRzc3NIK7X6yZHz2vz+bzJ6e/v79rm5QwODnbN6evr67psL0dvp7fd2WzWtO01zWbTtOk+cPHiRZPz6KOPmrZkMvztwfDwsMnR+ySTyXTNEYl2/7MXxzO9T7x7Fp2zX0S53/SOWz4f3t96fSCVSgWxt4/2w/2f15f1/f6tt94aaVlXrlwJ4vPnz5scPQ4dOXLE5Hj3294Y1423/4vFommbmpoK4he84AUmx7umaN7zBd3GcwIAOLz252wKAAAAAAAAAAAAAPYgXsACAAAAAAAAAAAAQEx4AQsAAAAAAAAAAAAAMaEG7D4RtTaArnXh1U1pNBpdc7waJdQn6M7bb7omiFdHJEptEW//78VaMth7dD+p15waV5nwcjAwMGByjh07FsQTExMmx6sdq9fv1UiJIsq4lEqmbE4yzPHqji0uLpq2mZmZIL569arJ0fXCvFo6+lwGAPQmylyo17lvlPro6E2lUjFtq6urQexdP72anPo4MRe2NV+9/abnPt5cKEqbd+5oXo5eTrlcNjlem64H6C07yjZ589Mo9T7156LUZPXyvM/pNm8bc7mcadN1FL06lnrueZDnolHrKuq2KOM714Dd543xUa77ejzxxjfvuq/HgSjn10GqATs+Ph7E3j7yakrr7/vkk0+aHH2/vbVl637r+VqvvGMyNDRk2nSNW+8ZyNzcXBDPzs52zRGx1y/vGhOlfjQAYP/jF7AAAAAAAAAAAAAAEBNewAIAAAAAAAAAAABATHgBCwAAAAAAAAAAAAAx4QUsAAAAAAAAAAAAAMSEit8HXKfTMW2tViuIm82myWm326YtkUhcNz6M9P719ncqlQriZDJlctJp+zkgLvp8rtVrJieRDM/ngYEBkzM9PR3EJ06cMDne5/R54Y053rnTi3TaXtb0Obi5uWly8vm8aVtfXw/iy5cvm5xaLdyXUdYPAOiu13mmdz3R10HvOqTnx942MPftTaPRMG31er1rjncs45ovHCR631UqFZOj5zSrq6smx2tbWVkJ4mq1anL0+eUdy3K5HMRbW1smR8+pRESy2WwQ9/f3mxzd1tfXZ3K8+amesxWLRZOjl+Ut29smvaxCoWBy9Nwzk86YnFTaziGjjENRzhMvZ6+Ncd726OPm7duRkRHTpufjXp9IJsPfJ3jr99oYl7aP91xKXz+8cWljYyOIvXHRu+5nMpnrxiK2L+3Xez09voqIjI6OBrF3j+zd766trQXx+fPnTY4e971j4l0H9DXFOyaad0yGhoZMmx6/h4eHTY4ez3X/ExGZm5szbfq76PFFxN+XAICDh1/AAgAAAAAAAAAAAEBMeAELAAAAAAAAAAAAADHhBSwAAAAAAAAAAAAAxGTb/+B8lBqZu22v1TrxeLUvotQb9Wqb6LoOXg0Fv7aJaXG29HCJ0nf0sfNqRkSpdUFdXvRKjxVebS5dAyaXy5mcwcHBINZjicj+qIHjfbeN9Q3TpmveeGOuriPonafAduplXsW1Ipq9OGc9TKLOfXVNLa+Oo64H6M19vdpcUdaP7ry5r6795t2zeHUc9TV8t8ezqHVqdX+O8jnvHPDuGXR9VV37UMTWd11aWjI5i4uLpm15ebnr+qPM/fR8yZuLesdSz8W8fqJr9nl1Wr1zXs99+4r2c4ViWF/UG1+8Nl2X1Ku1GIVXr1r3C2/s0sdkt8+TXkWpwRrl+3t53ue28zqwF49BlK+y29e9KDVgNzc3TY5u8+qNesdbn7vefaOu2xml3+xFXv1R3eZ9f2/8npycDOKpqSmTo69V3nHTdcdF7HXAG+P1GBv1Gaf+vqVSyeTo7fbGfO880fvJq6cLADgc9udMAQAAAAAAAAAAAAD2IF7AAgAAAAAAAAAAAEBMeAELAAAAAAAAAAAAADHhBSwAAAAAAAAAAAAAxMRWXY9ZrVYLYl3APE5e4XOv0HoqmQridKZ78flksvu7am/9cWm1Wqat2Wyatv7+/iAeHx83OVNTU0E8PDxscvT397ZhO7/vfpFKhX3J62/VajWIl5aWTM6VK1dM2/z8fBA3Gg2Tk8lkrrs9QFT6fPb6sm7zcvYDd7u9pgjfj3EQcdH9zetb7XbbtOlrgzc30PS1Q8S/7ke5puyHc8A7l/V2u/OsRrgvmy27b71jsl/Hxr3G68v1et20FQqFID5+/LjJ0W3e/DiXy5k23S+8443uvPNLt3nj0ujoqGnT9zpR7tG2k/fdvH6q2/T9gZej76NFRDY3N7u2bWxsmJy1tbWuOd6y9TUmn8+bnMHBwSDWx0hEJJvNBrF3fdE5Ivb89tavc7zlRLnGeZ/TbV4/9bbJW1Y3lUrFtC0sLJg23Xe8/a3PHW982w/Sqe7HLco13hPlc979t3dt0p/z+neU+/Zev0uvy2mpec3W1paTE45x3j7x1uedc73wtluPld4zRv1dvOPmnc/6XPHOHX3sdvs6tJ287+aNeaVSKYhPnDhhchYXF4PY628zMzOmTfdBbw6nxzzv2PbqoDwDAQDsnoM7UwAAAAAAAAAAAACAHcYLWAAAAAAAAAAAAACICS9gAQAAAAAAAAAAACAmvIAFAAAAAAAAAAAAgJikt3sF9Xo9iKvVqsnptYh5p9O5bnytZafT4ddOJG1OKpXqaZu2S7PZNG21Ws20DQ4OBvHY2JjJOX36dBBPTk6anGw223UbWq2Wv7EHlNeXdD9JJu3/adja2grimZmZrjkiIrOzs0HsHW+9/r3Wb7E3eX1Zt7XbbZOjz3lvXPLGjr3G225vPPP2gZZMhOd8r9czQPP6ktcnG41GEHvXikSEfqrnRvtZL+ehu2+b3fet9zm9fsaF3lQqFdO2sbFh2vRcV8+FRUROnDgRxMePHzc5xWLRtEW57qE3+r7NO0+8OUUul+v6uZ2kx2CRaH13bXXN5Kyth23r6+smZ2VlxX5uLfzc5uZmpG3SvOuAPp8mxidMzth4eA6Ojo6anP7+/iDO5/Mmxzveus2719J9IEpOr5/zcuK6fi4tLZm2p556yrQtLy8H8alTp0yOHs/0ebNfJFN2f+u5d5z0uOTdH0SZC3h9eXvv23sbB/V2e99N8/aJd35550ovvGd8etz1njHqNu/6ncnY41QoFII4yrE8bLzvr68V09PTJkf3Ce8Z2HPPPWfadJ7Xt7y5Xy+8/tbrc9Ddnp8AAPYOfgELAAAAAAAAAAAAADHhBSwAAAAAAAAAAAAAxIQXsAAAAAAAAAAAAAAQk20v+DUxEdaJ8WoBxPW38b3leH/DX9e68Gr36L/zH6UW4Hb+jX+vzoCuryti6yHoejsiIqVS6box4tXX1xfEXl2mfL5g2qL0U69/A3Hw+pZuizIu7kVRvtu12kyOdK9FDmi99jevDpW+zkepS+VdT7y23Z779ErvS2/f6u326hEODAwEsbdvvTpUjAPx8GrRlctl0zY0NBTER44cMTmTk5NBrO9PsH/1fP12cvT9VpS62968PkrtVq/e5+rqahDr2q7XatPnirfduk6prnMoYu9ZRGw9V+/c0XWYvXtLPZ5GrQF7kOm+Mzc3Z3LOnj1r2i5fvhzE3nVIH6f+PvtMIJ2xj4JarbDvtNtOrcMeL3GJZHjd9Wrn6vPSqxGpa3t6z0mi1B+Ncp7o64uIX+NYr8+rN6rHDm+7o9SV9+l7tO7zHhFbK1jXSxex80yv1qb3XfSx855L9Uqvz6sBq+tee9uYcc4BPTZRA9by9onuF95cTPfv559/3uTMzMyYNn0sveuQdx/TC+8cjDav33v3QwCAvYNfwAIAAAAAAAAAAABATHgBCwAAAAAAAAAAAAAx4QUsAAAAAAAAAAAAAMSEF7AAAAAAAAAAAAAAEBNbdT5mt9xySxC/4AUvMDnJZG/vgROJsNC5txyvYPrm5mYQLy4umpzZ2dkgXl9f77r+dNruTp3Tq2iF3+36vPWnUqlYtgnR6H6ZzWZNTirV/Rxot9umLWq/2E1eH9Tb7X23VqsVxM1m0+R4n4vrnDtI6vV6EG9sbJgcfUwajYbJ8fb3fuSdN9530/ugXC6bHL0vvfFV9+Wo26T7srfsKG1Rr41RRDm/9L70zl1vn+jPRdkn+5XX3/R56s0ppqamTNuJEyeCeGxszOTo/a3nOCIiFy5cMG1ra2tdt6lQKHTN8Wzn9SvK9SOXywVxqVQyOZOTk0E8PDxscrxruj6+B2Xs3GneOOFdm/Sx9M6TgYGB+DYMe0qU8VTHIiK1Ws20VavVIPb6m87x7hGXl5dN29LSUtfP6bHKu+Z541CxWAzi/v5+k9PX1xfEuWzO5KQzdvzWy/bOJb0+vS4RkXw+H8Te2LlfeX1wa2sriL3jPTc3F8Tnzp0zOVeuXDFtCwsLQXz58mWTMzo6GsRef89kMqat1QzH3Va7+xw2qijPTtrtcG6wurpicq5cDfeJnquI+Oe8Pp+9uYHeb0eOHDE53jVG9+fV1VWTo4/l/Py8yfG2SR8nb14fZd7jnXP6+05MTJgcPT/yxpfylr1Heu6554J4aGio67K98cX7vrot6r1dlGXr+6iDcu8RJ68v6X7hnYP6+uldK717W33uRrm3BgBgL+EXsAAAAAAAAAAAAAAQE17AAgAAAAAAAAAAAEBMeAELAAAAAAAAAAAAADHZ9hqwx44dC+K77rrL5PRaAzaZCD/n1a3xaj/oWgNe/RFdt0PXWhGx251OObszppIRXu2JXmtrejVBsHO2s/bifqG/i7dPdK0Pr3ZRs+H0ZbWbDtJ+65Xed14dKu0g14D1RBkrdT0vEbsv3XpaTp0a3ee9c0BfY7xl65pqItHqfEc5B3ull+Vdc7zzWfe5KPtkv/LOL92XdG1VEZHTp0+bNl0DVsci9hh4+3FmZsa0rayEtde8bdL1N/cCfc7pmlMitn7VyMiIyTl58mQQHz161OR452CUOsjozhsDoowLXp/0+i4OBu8aW6lUgljXaxfxazTqWpJe7Xc9F/Bq2Hm1Hb17SU3X8PZqTXptum6jV9Na11b05gpRzi/vvlnPT7wcvb6DVOfdq3Wo+4BX3/Xs2bNB7NVn9/qu3r+Li4sm5wtf+EIQX7p0yeR4fUBfv3qeH3ofU4c3ypzOOwf1ueudg949ot6Xm5ubJifKOXj77bebNn2N8Y6l/i5ejjc/1sfJ22/6uHnL8c5LXQP2jjvuMDmTk5Ndl63rvYqIXPjChSD26lffc889Qexdq73t1s/dojwr83K8fRllHIrzvmk/8vabng979Xz1tdmbe3v9RF9jotzrAgCwlxyMJ5kAAAAAAAAAAAAAsAfwAhYAAAAAAAAAAAAAYsILWAAAAAAAAAAAAACICS9gAQAAAAAAAAAAACAmtqJ9zHQR9YmJCZOz00XU0+nwa6+srJgcXei90WiYHL3dHemYnIQketnE2HQ6dpva7fYubMnhValUgrhcLpscr38lEmHf8c4TnbMXef1Nb7c+J0VEstlsEA8NDXVdDny6f+lxWUSkUCgE8eDgoMnR4+J+3f/eduvvJiIy0D8QxMeOHTM5ul/29/ebHN2Xe+WdS1HaopyDUelrinOJMWOVt0+8/rVf+1MvvDFf75N8Pm9ypqamurYdOXLE5DSbzSDe3Nw0OUePHjVta2trQez1JT1+e/OOnaa309vfWl9fn2kbGxsLYm//H6Z+C3jiOuc7bbucRtOeu3o8q1SqJmdtbTWIl5eXTc7CwoJpW1paCuKtrS2To+fx6+vrJsdbn15WqVQyOXp+Nj4+bnK8MX5ycjKIR0dHTY6e5yE+3rVR3//Nz8+bnEuXLgWx7tsifh/Qc1bv3NH9Ul/PRfxzdyevaVHW721PMhn+hsA7l7w2PfdptVomR1/nveu+N1/K5XJB7M07isViEHv9xvtclGc3Oqder3ddv4ido3v9Te8Dbw554cIF0zY3NxfE3jOQ06dPB7F3TLw+oPO876vbvP7mPV/JZsL7Nu85he6DvWq1vGN749fUqM8c9fPKXs93r0/qfenNq/V9s3c/6H1Oj43eWFmr1YLYO5e8+32t9+e3u3//AwDYu/gFLAAAAAAAAAAAAADEhBewAAAAAAAAAAAAABATXsACAAAAAAAAAAAAQEx4AQsAAAAAAAAAAAAAMbEV5Q8BXXxdF4wXEUkmw3fTnY4tqu614eBqtVqmrVKpBPHW1pbJWVxcDOKZmRmTs7S0ZNpqtVoQN5vNrjntdtvk6L7s9XevLZFImDZNnwPePqpWq10/NzIyYnKOHDkSxGNjYyanUCh03UZvmw4b3S/q9brJSafDy8H4+LjJGRwcDGLdt/YLr2/39/ebthMnTwRxLp8zOY1GI4j19UUk2vnl7Ut93DY2NkyOHl+8tnK53HWbvG30xhN9Pnvn19DQUBBPTk6aHK9/9fX1BbF3nA7K+ex9j3o97EvptD0melwUsfvb22+6X3rj6Z133mna9HnhXavW19evG4v48yU95kS55kQV5drUbXtERLLZbBDHuY3Ye7x+yjEPedcFfR0UsfNTHYvYuYg3X/TmK3o+7C1bj0Pe2LW8vGzavOulpseKiYkJk3P06FHTpscTPXaLiAwPDwexNz8ulUqmTc/P8vm8ycH28eZQek5z7Ngxk6Ovzd5cUC9HxPZB7xqnz0vvPnK3xzx3/aLmxym7T/T3967f3r7U44k3nunzyzu/czl7PxBl/b3cW0el+4B+RiHijwv6c1G20euT3lz/BS94QRB7x8m7/9K868BWOXzmsra2ZnJ0W9T7P32/p8duEf+7aA01r19dWzU53rMje0xsX0om4zlPe33G6Z0DUa5DxWLxurGIfy+tr83e8dbXee8Y6WusiPNdnF2r+07UZ176+EZ5duLlRLlv9/o3z6sBYO/Yn0/PAQAAAAAAAAAAAGAP4gUsAAAAAAAAAAAAAMSEF7AAAAAAAAAAAAAAEJNDWQNW10Tx/oZ/px3+vXzvb+pTF+pw8Wrn6FqL58+fNznPPfdcEC8sLJgcr7ajrt3i1djStWu8Whe6roVXs6PXGrCat4+8Gh06z6sHqWsd3nLLLSbHq5+lefvtsNH1P6LUCvb6ia7T4vWb/cCrraLr1ohEq/Om92XUmk86zzt3dd/16r1661tdXQ1irz6ermfkHUvv2qjHKq/GVJQasLfddptp03W3vO+m98l+rW3jbbfuS16/8epeR6mFrXk1kM6cOdM179KlSybn2WefDWKv1qLXl6LUJ48L8zVEQT/pzhu7alV7jdG17rx6q7rNGzu8+nhRajzrenFebWqvXpseT6PUYB0dHTU53vxUzzO82oO69l2U2tQiIrls95qU2D7ecdK11r1r9alTp4LYG4Oi3KNFqeO4J+dL3iZFGIb194/6nEbPs7x9os8vb77k0cv25t5R6tFHuWfw6Htrr56110/1PN6b1+v95G3j9PS0afNqxWoDAwNdl+1t0/pa9zrfus0bc72xOsqzEz1We31pYzO8Z5qZmTE5Xpv+vl5N1Cg1aKOIUtfd63/ePfHp06eD2KsBq8+vqM+l9PnkHe8o9YS9/qXH6ii8Z16bm5umTc9zvP2t29xrvNpPUZ83RLlWAAB2Br+ABQAAAAAAAAAAAICY8AIWAAAAAAAAAAAAAGLCC1gAAAAAAAAAAAAAiAkvYAEAAAAAAAAAAAAgJvFUb99ndKFzrxh6R8IC5VGKmuNg8/rJ5uZmEF+5csXkPPPMM0Fcq9VMzuDgoGmbmJi40U2Mlfd9u0mlUqatUCiYtkwmE8STk5Mm58iRI0F89OhRk9PX13ejmwhIMmn/71GxWIzUtpu882tpaalrXr1eNzn6+pXNZiOtL5/PB3EulzM5euyampoyOd75PDQ0ZNqwPbzjXSqVTJs+vtVq1eRcvnw5iJvNpsnx2nRfipPu3945rzUaDdOmv2+r1TI53nkCHBR6Lri1tWVyVtdWTdvCwkIQe/NjPXZcunTJ5Hjri3Id6nTC+zjv/E6n7W3wwMBAEHvjop6zenPYsbEx0zY8PBzE3jiM/cm7Dui+pGMcLHqe4405vdxbR/2cHgejjEEidjz11qXnPt7Y2d/f37XNfeamxmrvniXKdce7H1pdDXO85wbecwq93V6O3gf6e4jY7dbXPBGRhx9+2LTp7+Lt27jm0N78fH19PYj1cxsRkRe96EWmTfc571mWvu5538O7/9b7Wz+DExGZm5sL4qj3+/r+07s2Z9LhPvCWMz4+btr0NvT32WOZy9s5TC+8PggA2Dv4BSwAAAAAAAAAAAAAxIQXsAAAAAAAAAAAAAAQE17AAgAAAAAAAAAAAEBMDmUN2J3k/S3+KDVodZtXd81r03UzvHpl6E2UOhJeHai77747iL3awV5NEl1/wlu/XpZXx2NjYyOIl5eXTc7Kyopp0/3L68t6G71atrqWq4jI6OhoEJ84ccLk6Doae60eJ3xeP9ntetl6m3Z7e3rl1aTx6jDp79dq2utAPRFeK7wael69Mn1ejoyMmJzjx48HsTcuUr95f9D9wuuD+toUZd6z3XQ9vii1FvW1UkRkdnY2iL3rcJSaal79rCh1aXGw6XMlyv2AN8/TtQabDSenaesR6vV7526tVgti7zxZWVk1bUtLiyq29fn0srzrmXf90Ncdb+6pzznvu3nnoF6Wd37rNu866NU032s1X/fifG0/YL/BFVP5Re/ZjX6+440luv7m6dOnTY5Xo1LP2b16o3H1b2/M1dcv7/mWV+9Tt5XL5a7r9+49vPFbj/HeMwg9z/Su3/p6XalUTM7i4qJp07VivVrkcT0X8WoV623y7hFvveVW06a/rzdW6muzV1/XOya6nq6em4jY86S8ZfuE9zm93d73LfaF+/vo0aMm57777uu6vnzOqd2rTi+vv+tjsrCwYHK8c0fvb+9+hOsXAOwMnv4AAAAAAAAAAAAAQEx4AQsAAAAAAAAAAAAAMeEFLAAAAAAAAAAAAADEhBewAAAAAAAAAAAAABCT9G5vwH6mC5Z7Bcy94vO62H2UIvJra2smxyvQPjo6GsS6qLyISLvdNm3oLp22p4ve315h+5MnT3ZddiqVMm3JZLJrjm7z+tLCwkIQP/fccybH61/lcjmIvX6jt3F4eNjknDp12rQdOzYdxGNjYyanr68viL3zC3vPXjxOe3GbetHreN4Rex3SY0WhUDA5/f39pu2WW24J4mPHjpmciYmJrsvRYwf2Jt3nWq2WydHzHO982+lzUPevfD5vcvQ2LS4umhw9X1teXjY509PTpu3IkSNBrOcK3jYC3niu+6Cem4nY+4GNjQ2T47VVq9Xrrstb3/r6usnx5pCVSiWIvf6ey+WCeHx83OREafPmnnrZ3tjlyWazQeyNHfp66eV4c3YcDAdlTomYxdQtvLm+nrMPDAyYHD33PnXqlMnRcxMRO3569wNx9XnvGqevQ941zmvT+8R75lYsFoPYu1aMjIyYNp2nl+Px1q/3m/csybtH0tvkHW/vOPXC62/6eqmviyIi2Zxt09/X2ydaPmevn94x0c9Gveeg5rs43dbrg1HupfUxOH78uMnx+pfeB96+1Pt7bm6ua87MzIzJ0c/8RESGhoauG4tEux+JciwBANfH0x8AAAAAAAAAAAAAiAkvYAEAAAAAAAAAAAAgJryABQAAAAAAAAAAAICYUAP2Jui/hR+l9oOI/dv/Xj0IXdchSo6IyEB/WJ/Aq0lK3bHeePWcBgcHg9ir0dFrzQTdd6IcN6/Glf6cV+fO66e6fpe3bF2nVcciIkeOTJm2EydOBHGU2irAYRe1bk2Ua5Ou9efVAPLOy8nJySDW57KIHRexf+lxP0oNWM9O18zT1+so18+lpSXTdunSpSD2+rauSyVir4WlUqnr+nFweOeEd+7ovuPVYNX18bwarCsrK0HszfO82mC6Lqxel4jI1tbWdeNrfU7XRdX1CUXseeHVJzx65Khpi1IDNp3pfosbpe7bXqhpvV0OyvcADhLvWqHHWO/c1bUdjx61Y6dXt9J7xrRdvGucft4QtYa5rgvrXXf1XMx7TuPN63Rd1rienXnPkrwa4nq7vWd+3ud64d3/6fV7fSRKv4nybNSrJRtlru1dv/X8yJufe21ev9T0sRsdHTU5Xu3aXuqrevt2bXUtiC8NXzI53vxQb7c3dlDfFQB2Bm/iAAAAAAAAAAAAACAmvIAFAAAAAAAAAAAAgJjwAhYAAAAAAAAAAAAAYsILWAAAAAAAAAAAAACISffq6RARvzi5LlofpYi9iMjw8HAQDw0NmZxCoRDEXnF4r4j8wMBAEI+PT5icXC5n2hDyjrdXtF63eTk7KZVKmbZ8Ph/EmUwm0rJarVYQe32w3W53XXaxWIzU1gvvOGm7fUyAuHj9XZ+DIvZaVKvVTE65XA5ifc25lmw2G8RxncsinM+IT5Rrs+5v1WrV5MzNzQXxxsaGyTl58qRp09fLKH0b20sfA2/s9OY5ui1Kjp4/XatNj83eWK375fr6uslZWVkJ4uXlZZOztrbWdZuSSfv/cgcHB4PYu2fxPtff3x/Eo6OjJqdUKgXx2NiYyfE+N6C2KZ3p7XbW227Nu9eqVCpdc6Kc814f1G3ectJp+331XN+7Nked/wPYPd64EIU+v715vTd27CTvOqjHU309ExFZXFw0bfqa5j2H0/vEewbmtXnPU3rB3K+7KNczkWjPL7e2toLYm1N5cyh9T6znPdfaTi3KnMKj71G8edb0sekgrtXtd9NzKhGRzc3NIPbudXSbd88U1zkBAIcZv4AFAAAAAAAAAAAAgJjwAhYAAAAAAAAAAAAAYsILWAAAAAAAAAAAAACICS9gAQAAAAAAAAAAACAm3auJ45p0YfdsNmtyRkdHTdvRo0eD+Pjx4yZneHi46/objYZp0wXi+/v7TU6xWOy67MPOKz6/X7VarSDudDqRPtfLPkiI/cxB2pfAbvLO3Wazadq2traCeGFhweRsbGwEcSqVMjmVSsW01ev1ruvX16GoGCsQF32uROlb3jlQKBSCuK+vz+RkMhnTlkzy/xv3Gt0H9NxIxI6dIiJrq2tBvLK6YnI2NzeD2Jufe2OlHmOr1arJ0W3euKzb9P2JiN9P9b3GyMiIyRkaGgriQr5gcrI5e/+jzx0di4jk8/muOV5bOm3P1bjofTc/P29yZmdng3htbc3kePS1sd1umxx9LPU1V0RkYGDAtE1PT183FvH7AIC9xZuvRJnD6PHEu8btNu8+Rl/jVlbsNda7j1ldXQ1ib6zU+437jL0nan/X/dubLy0vLwex19+8Z7N6DufNs4rFcP6fSm3fPD+Xy5m2I0eOBLE3NxodHTNtMzOXgvjChQsmR89hvPsh776G8wkAbgxPiAAAAAAAAAAAAAAgJryABQAAAAAAAAAAAICY8AIWAAAAAAAAAAAAAGJCDdiIvBoCusaTV3vCqws7Nhb+ff5jx46ZnPHx8SD2/sa+V09Kb6f/9/p5735Qef1U14Dxak55dJ/z6kGYmmptW2/GOy+azTCv13pe1J7AYeL1d++81LVjBgcHTY6uBefVC/eWrccY7zoE7DVRap9HqQFbLBZNjjfPowbs7ooyZy+XyyZH15QTsfU+L1++bHJ0fTp/3tO9BqxXu1V/Lsp1wKsf5tV3nZiYCOLJyUmTo+9ZvDrIupartw1ebXB9nkStMbadcz99TObm5kzOE088EcTPP/+8yfHGE73vvH66vr5+3e0RETlx4oRp0/tb30cC2L96qQHrXXO8ZwA7OV/x6tLqMc6rAbu4uGja9DXcm4vpOZxXB5v52u7y9r93/dRtXl/StUy966eupSpia8B680O9fq8vxVVn3ZsvDQ8PB/HQ0JDJ8eZi9Xo4r7xy5YqTE85ZvfV780oAwI1hxgEAAAAAAAAAAAAAMeEFLAAAAAAAAAAAAADEhBewAAAAAAAAAAAAABATXsACAAAAAAAAAAAAQExshW1Epou/e8XgvSLyuoh5X1+fyUkkEl3X7xVIj0un0zFtUbYJe1+73TZtXt/Vbd7x18va3Nw0OYuLi6atWCwG8cjIiMnJZrNB7J1LyST/hwSHhz4nRERGR0dN25133hnE4+PjJqfZbAZxoVAwOUePHjVtAwMDQeydlwCg6XlllHmHl+PNYRqNRhDXajWTU6/Xg3hra8vkLC0tmbbZ2dnrxiIiqyurpk1Lpe1Ymc2EY7o3DmcymSDO5/MmR99XeDnePEtfP0qlkskZHh4OYj1/E/GvTfv12qD7XLlcNjlzc3NB/OSTT5ocb86sj0F/X7/JyWTD4633v4h/3dfHhfkxgL1GX6tFRCqVahB7zxK8a7p+fjY2NmZyJicng7i/34652/k87bDR8zzveaLmzR+8Z6P62HlzET3vqFQqJsdrq1bDPuj1Nz2v2u05jjfH8Pp3lO3W8x5v/sCzYQC4edydAQAAAAAAAAAAAEBMeAELAAAAAAAAAAAAADHhBSwAAAAAAAAAAAAAxISiBzHy/g6+9/fydZtXz2q38Tf9Dw7dv7z6KxsbG6ZtZWUliHWNMRFbr+zKlSsmR9eaFLF11qanp03O1NRUEHs1r7xtAg4qr66fPk9EbF0cXdtGxF6HvJowXg2eoaGhIKZ2EoBeNBt2brBVDuuyenVavTZdM25r0+ZUa+E46NX29OZCus0bTwvFcC4UpX6ZiK2p7eXoZXl1YvX47Y3n3vVDL8vL0W26Jq3Iwao3qu9/vO+ma9Z5teh0zWFv2cMjwybn5MmTQXzs2DGT4133df1er58AwE7SzyC8ZwKtVtjmPRfzxjP9XCDKswR9zRXZ/VqeB0kvNWC9/e/NhXRdVq8++uDgYBB7c7ooz2u9Pmjaun+1HadruYrY7Y5Sy5XnwACwPQ7OHTMAAAAAAAAAAAAA7DJewAIAAAAAAAAAAABATHgBCwAAAAAAAAAAAAAx4QUsAAAAAAAAAAAAAMQkvdsbsJ+ZguXiFXW3n9MF0pvNZqzbBXwl008Ttp+m03YoyOfzQdzf329ycrlcEK+trZucxcVF03bx4sUgvvvuu01ONpsN4uHhYZMDHCb6nBQRyWQypm1kZCSIO96FKIJk0v4frVQqdd0YADyNRiOIy5WyyVldXQ3ipaUlk+PNKebn58PlrKyanEq1ct3tuRY9xhYKBZOj5ydDQ0Ndc0RESqVS18/puZe3fj1We/M8ry3K55IJdR2wKQeK3gfeNU5fiwcHB03O1taWadNzZn2tFhE5efJkEJ85c8bkjI+PmzZvHg8A26Hdbps2716jXq8Hca1W65rjLdu77o2NjQXx/8/ef3TpkVxpuvYOrbUOBIAUzGSyWL2qZjXoSU/7b/fqaXefYleRTMFMICFDa62+QZ1vnbJnP8Br6fTQ9zUzW/t1acrdgdiLi4spRsdK9y6DsbMZd7+1runzp74DiogYGxsrym7e1TWUrikj/DpH38W69aG+v726zu30rrl3ynrc7p7UvCt0dQCA34b/AQsAAAAAAAAAAAAALeEDLAAAAAAAAAAAAAC0hA+wAAAAAAAAAAAAANASPsACAAAAAAAAAAAAQEvIOv8JV1dlYnVNYO7qLi5z4vNrk6C9aUJ6oIn+/v6iPDs7m2L+8Ic/pLrl5eWiPDAwkGL6+vqK8vn5eYrZ3d1NddoHdDsREd3d/PsQPB1uXujq6irKrk+4OtefgJvSZL3kfqfl21Zz3C6mZk2nfblNTY/bXe+ae6Ln4s7NrQUODw+L8v7eforZ2t4qyuvr6ylmdXU11Wnc0dFRitGx0q1pxsfHU93E+ERZnpxIMVNTU0V5ZGQkxYyNjeVtT0x0jNFtsTa6WTXtu4btX5dlXW9vfgzX+61t5FO/a6Jm3QEAyo1vZ2dnqU7n4v39PO/v7e0V5YODgxRTM1bqPOzq3Lzf09OT6tDMTb7j1PdZQ0NDKUbXcG4tdnGR39dqG9zZ2cn77yv379oSAACfw1M8AAAAAAAAAAAAALSED7AAAAAAAAAAAAAA0BI+wAIAAAAAAAAAAABAS55kDljNT+ByARwfHxflra2tFKN1LveFbsftj5ywaIvL3aT5L549e5ZiRkdHU522Z5cjRXORuTxzrl9o7hiXd216eroot5XzCriPyLuG+0jXJ26MPz09Lcoud5LLCaruOnfxyclJqtN1nluv1cxxN+nyIt+Tw6My36rLierWp3oNXExNntiz03xN9Jg0J2xEzsOl5QifQ07bl8ubqbngavLFReT1iVsv6TrLtWVXpznMXE4xcr7eLl1rurWvztduXLDPdl2dY7TuJscS1h0AmqhZC0bk+Xp3dzfF6Dprc3MzxdTkwnY5QbXOzcO8h3uY3Nys93twcDDFuLX+2tpaUXbrLs1BOzqW14IAAHwOT/UAAAAAAAAAAAAA0BI+wAIAAAAAAAAAAABAS/gACwAAAAAAAAAAAAAt4QMsAAAAAAAAAAAAALSkt3PI03R9fV2Wr65TzNXV1Wd/86k64DYNDw8X5b6+vhQzOzub6rR9d3V1Ndp/TR/o6elJdb295fDU15uPGwBwe2rWOS5G55Pa392mpud218d9cnqS6vb29oryxsZGitnZ2elYt729nWKOj4+L8sX5RdUxnZyUdaenpymmZt3h1gsTExNFeXFxMcVo3dzcXIqZmppKdSMjI0VZ11QREf39/amuRnd392fLEbl9NV2L4Xa5+6R1buy4vLwsyhcXuX8BwF3ScSoirw0i8lpka2srxWxubnaM0Xk4Iq8FBgYGUox756GYUx8GnS/dWlDXZ67duHXtx48fi7Jr3+Pj40V5fn7+0wcLAIDB/4AFAAAAAAAAAAAAgJbwARYAAAAAAAAAAAAAWsIHWAAAAAAAAAAAAABoyZPMAas5A0ZHR1PMixcvirLLy6T5rFzuiefPn6e6sbGxzx4PUKsmN5i2L9obAKCGrn1cPqXl5eWi/M///M8pxuVTGhoaKsp3PTe5XIu6ztNjjvC5RDUnqMuBW8PlST04OCjKLp/V+vp6UV5bW0sxLs+abqsmB2xNft+IfH9dbraxsTLH1shIzrfqcrBq7laXm2tmZuaz5Yic4ysi33PNT/9QuHuibd71Add3a9x1Xj3dv2tvru3u7u4W5aOjoxSj18S1iYfaTgCgEzcvHB4epjrN7+ry0evv3Ps0fXcWkedm9zs8HjqnDw4OppjJycmiPDs7m2JcruKaHLArKytlzEWztREA4Onif8ACAAAAAAAAAAAAQEv4AAsAAAAAAAAAAAAALeEDLAAAAAAAAAAAAAC0hA+wAAAAAAAAAAAAANCS3rs+gLvQ399flOfm5lJMd3f5bfr58+cpRhO09/T0pJiRkZFUpwnh9XgAAADuWm9vuUycmppKMb/73e+K8vz8fIq5vr7uuO2urq4mh2jVbKurS/8NYj5GPW63zhsbG0t1ExMTn91ORMTh4WFRPjg4SDE7OzupbnNz87PliIiNjY2OMaenp6lO17V9fX0pZnBwsCgPDAykmOHh4VQ3OjpalN36WGOGhoZSjFsza5xux+3PHaM7F22nD9XV1VWq29/fL8pbW1sdY7SNRPh+oc9Rt03HAHeMrl/u7u4W5bW1tRSjfce1Sdd3Oh2jO87H0v4APB5uHjg6Okp129vbRVnH14g8Dro1pL47i8jzfptrSNw/en/dem1ycrIoHx8fpxi31l5fXy/KNevjrm7aGwDgt+F/wAIAAAAAAAAAAABAS/gACwAAAAAAAAAAAAAt4QMsAAAAAAAAAAAAALSED7AAAAAAAAAAAAAA0JLeuz6Au9Df31+UZ2ZmUszY2FhRvrq6SjHX19cd99Xbky9xX39fWe7rSzFAja6urrs+BADAI9XbW65hJicnU8zw8HBRvry8rNr2Tc5fNdvu7i7/DaL7jdbVHrPGXVxcpJidnZ2i/PHjxxTz5s2bVPf27duivLGx0XHbZ2dnKWZ0dDTV6f2dmprq+LuRkZGO24mImJiY6Lh/rRsYGEgxPT09qU7bqZYj8v1229GYiLzWf6jrLtcvd3d3i/Ivv/ySYl6/el2UT89OU8zg4GCqc/fgLtXc24iI09Py/I6OjjrG6HNlRN2zXc2Y4467Le78H2r7BnB73Hux4+PjVLe9vV2U9/f3U4zO827dMTs7m+qGhoaKMmPX46ZzoVt3jI+PF2WdqyNym4zIbenk5CTFuDYPAMBvwf+ABQAAAAAAAAAAAICW8AEWAAAAAAAAAAAAAFrCB1gAAAAAAAAAAAAAaMn9StBzSzTvk8sD5fIKAAAAPBWac8nl5HR1j1VNzsiInAvN5T1bW1sryi7fq8vJ+eHDh6J8fn6eYjT/pMvJ6vKsaV3THLCah8vVuRywmk+4Jo8m6rj8ZZrfVNtWRMT/+X/+T1F2bdm1E5cX9S65vuvU5BPWduli3LioeXhdbmi9J3t7e1Xbds+ynZAzEUATNWNXRMTm5mZRPjg4SDHPnj0ryouLiylmfn4+1enao8kYiIdD5ys3D+o607XTiYmJVKc5YF071bywLudxzXocAPB08T9gAQAAAAAAAAAAAKAlfIAFAAAAAAAAAAAAgJbwARYAAAAAAAAAAAAAWsIHWAAAAAAAAAAAAABoSe9dH0Cbrq+vq+I0iTsAoAEz5F6bSsZc4H5hvRRxfn5elM/OzjrGHB8fp5j9/X1Td1CUd3d3Uszm5mZR3tjYSDGnp6epbm5urihPT0+nmNnZ2aI8PjaeYgYGB1Jdf39/UR4aGsq/Gyh/p7/51O8GBwc/u52IiL6+vlSHm6PjwNXVVYpp0k8iIrq779e/8a0d81RPT0/HbblzdW1Zt+X698ePHzvu//DwMNXpODA2NpZiensf1WM/gDvixlM3nh3IWuji4iLF6Fila5wIv84ZHh4uyvdtzkG79HnEzbHaBkZHR1OMq9M1q1sL7e3tFeWtra2qbY+Pl+tvd9w6Nz/mZy8AeMpYqQAAAAAAAAAAAABAS/gACwAAAAAAAAAAAAAt4QMsAAAAAAAAAAAAALTk0SeD4W/oA0A7muZQ098xLmfu2j7Y66Sn8kBP4zF7sG2rIZe79eCgzE2m+Z1c3c7OTorRXK4ubnd3N8W4fGlKc5xFRCwvLxflFy9epJilpaWirDmoIny+NM175WK0zsW4vJUaV5Nb86m105vkrqXeA5eXd3Jysii7/GWufbncwLep6XpFr5O7bjW5BmvyrZ6cnKS6V69eFeW1tbUU8/z581T3zTffFGV3L+86Byz9G7g9XTe4+HY5Ml1+15PTcoxzY6fmzZyamkoxExMTqU7zdvZ05zUFHo+a+ULnuMHBwRSj7cbVuX3pOn51dTXFuHn38vKyKLv1kssdCwB4fPgfsAAAAAAAAAAAAADQEj7AAgAAAAAAAAAAAEBL+AALAAAAAAAAAAAAAC3hAywAAAAAAAAAAAAAtKS3c8jDUZOcPSLi+vq6KF9dXaUYV6e6u7s/W/4txwQAeLpq5gqduyLq5i/3u5r9uzqd52p/h8fBtSWtq4nx28512pRc27q4uEh1x8fHRfnw8DDF7O3tFeWtra0Uo3UbGxspxtXt7OwU5ZOTkxQzMjJSlKenp1PMwsJCqltZWfls2f2ur68vxQDan9xzTG9v72fLn6rr6en5O4/uYXPXRJ2dnaW69fX1onx0eJRi9vf3U93w8HBRnpiYSDGDg4NF2d3vy8vLVKdriprnXZ6JgfbUrLOSFrubjlW6xorw6xwdT8bGxlLM+Ph4UXZjl/udjrGML1ADAwOpTufBiDx/ujWzPjO8f/8+xbh1j7ZLd0wjI6PymxQCAHgE+B+wAAAAAAAAAAAAANASPsACAAAAAAAAAAAAQEv4AAsAAAAAAAAAAAAALeEDLAAAAAAAAAAAAAC0pLdzyONzdnpWlLd3tlPM7u5uUdYE6hERk5OTny1HRPT39//2AwSAe6grynHwOq7rfmfGT/x2JycnqU7nKld3enqaYq6vy3vX09OTYoaHh1OdznNjY2Mppq+vL9XhcTg/P091J8dluzw5ze304uIi1V1eXnbctsZoOSLi7Ows1WlfcX3n6OioKO/v76eYg4ODonx4eJhiXN+Zmpoqym4tqDEzMzMpZnZ2NtXNz88X5YnxiRRDHwTuP52H/6OuLF9e5THPjVVra2tFeXx8PMW4cbAmRtdwbt7XtcHoyGjeOEtBPCGuf+s6R9chEX5dr+uM4+PjFOPWR6rmecw9M+gxuWN0Y8fg4GBRnpiYTDEjIyOf/U0E79Num2u7yrUlbae9vXf7qtnt37UlbXMuRtf/a2vrVdvWuXhubi7F8JoEAJ4G/gcsAAAAAAAAAAAAALSED7AAAAAAAAAAAAAA0BI+wAIAAAAAAAAAAABAS55kDljNT/b27dsU88MPPxRll+Pru+++K8ouXx45KwA8Gl1aJGnJbXK5otz89dNPPxVlzQ0XkXNyuvnr+fPnqe53v/tdUR4aGkox5J98vFxusJ3dnbK8s5NiXNvVbWm+1Yicc8nlYHW50Fw+2Ta4tu1yt2pOM5czcXp6uihrDsWIiImJnN9Vt806E7h/anLodXfnfwc9Olr276GhunyIW1tbRfnHH39MMbpecOP53t5eqtN5/quvvkoxX3/9dVHWcSqCNSMeN+3zV1dXKUbXJm7ds7Gxkeo0l+Xi4mKK0RywNfle3XG6HNN6TDreRPjxRMeBycm8ptHx5a7zhiK3ZTefuflL69z707vmjmlgYKAouzlWn222tjZTzODgQKpbXlouyvr8DQB4OvgfsAAAAAAAAAAAAADQEj7AAgAAAAAAAAAAAEBL+AALAAAAAAAAAAAAAC3hAywAAAAAAAAAAAAAtORJZrm/vLwsygcHBynm/fv3Rbm3N1+q58+fF+Wrq6sWjg4AgOzi4iLV7e/vpzqdv/72t7+lmNPT06I8NTWVYoaGhlLdyspKUWbeu3vX19e/+TddXV1VccfHx0V5b28vxWxsbBTltdW1FLO3n3+n297d3U0xOzs7HWOOjo5SXV9ff1EeHR1JMWNjY0V5ZCTHaB/Q30RETE5OprqJiYnPlt3vxsbGU8zIyHCq6+7m304Cj4Ebh/v7+01kZ2kcXsvjsM4Vug6IyONyRMTS0lJRnpubSzFufQI8Jdqf+/r6UoyuIXRNHRExMDCQ6nTe1z4Zkdcwbv/O2dlZUXbrrI8fV4vy+vp6x+1ERIyOjhZltxYaHBwsyrXHjZuj7c2tO/V9akRuA24+ceto5Z5rtK5mLezmODdX6bzr2qm+L97e3k4xW1tb+XeH5e/Oz89TjD5L9/T0pJi75u5J7bMkAOA/8BYHAAAAAAAAAAAAAFrCB1gAAAAAAAAAAAAAaAkfYAEAAAAAAAAAAACgJU8yB6zmlpienk4x3377bVF2f4tf83fdx7/XDwB4HFxuuJmZmVT3zTffFOXZ2dkUo7l7XM6pxcXFVKe5e5j3bpfLuas5l1zOI8055HL5uHxOmvNoc3MzxWiuQRfj8kDp/tz+h4fLHKguL7HLF6a50DQPmaur2bbmKnP7isjHXRMzNJS3Tb5XPGaaP8yNS27Mqxk7dFsPJVdZzXG6a6Lj/snJSYrR8cvlfn/58mWqW15eLspubeDGRuCmuLGiTtm/2hwWdL52644XL14UZddvXN9VbtuaT9bFuPFFc2Lqui8iYmOjzPnq1nkut6Wuq3TdE5HXWQ9lrFbueUjbRO25NW/fv51bZ+rzpjs3t67XXOSufdfkgHV5WvWauGPS6+vyErscx3oN3HOzHlNt3nONc/1E65o+W9f8zu3/8PCwKLvnKrdtrauJcX3A1d1mHwCA28KbHQAAAAAAAAAAAABoCR9gAQAAAAAAAAAAAKAlfIAFAAAAAAAAAAAAgJbwARYAAAAAAAAAAAAAWtJ71wdwFwYGBoryyspKipmamirKLjn4yMhIUdaE9QAAtGV4eDjV1cxf5+fnKeb6+rood3fnf481ODiY6nTe6+19ksuIO3N5eZnqjo6OivLe3l6K0bqTk5MU4+r0dzs7Oylmd3f3s8cTUde+JicnU8zo6GhR1vYXETE+Pt7xd67vDA0NFWXXlnXt587D/U7ramLctoHHwj1H1XBj3unp6WfL7ndu/02P6Sbp3Oy4seLi4qLj73Rt8M0336SYL7/8MtUtLy8XZTfm6nh+H68tHq+afhMRkZtle+1U++X4+ESK0Xl/YWEhxbgxT/X19aW6sbGxoqzroE/RscOt4ba3tz9bjvDPDPpuzL0re8xrn6brvNr23AY3Vut9cjEHBwep7s2bN0V5f38/xWg7ced6dXXlD7bD75Q7btd39D7NzMx03J9bd1yc53lYj8HN1fqc7vpSjZ6eno4x7llvc3OzKLt+2mXGyv6BMk7fsbs63hsAeMoe74oHAAAAAAAAAAAAAG4ZH2ABAAAAAAAAAAAAoCV8gAUAAAAAAAAAAACAlvABFgAAAAAAAAAAAABa8iSzYGti8enp6RTj6gAAuCsDAwNVdcxfj8Pl5WWqOzw8THU7OztFeX19PcVo3f7+foo5ODjoWHd6etrxOHWNFRExNDSU6sbHx4vy1NRUitG6iYmJFOPqRkdHO+7f9R0AN+P6+rrR7/r6+jrWaX/3++tKMV25qmI7EV0VP2z6u7jWYt11Ozo6KsrHx8cpZnBwsCjPzs6mmBcvXqS6paWlqmMAboLrS1rXdHzpMuOCq6rR3V3+v4aRkeEU4+rumo4Ve3t7KWZra6so63gT4ddik5OTRVnXfRF5XKoaJ+8ht2Y/OzvrGONoW7pJ7nq7eVe5NqB1b968cXusOKrO/fn8/DzV6fWdGM9t0s1xy8+Wi7JrpzrG7O7uphjXd66uroqytomIiJOTk6Lsnk/cs5W6uLhIdXp/x8bGUszz58+Lsrv/bp3VpJ02HasB4DHgf8ACAAAAAAAAAAAAQEv4AAsAAAAAAAAAAAAALeEDLAAAAAAAAAAAAAC05FHlgG2cb+eW6WHew0MEANyihzJ/PSXunmh+IZdv5/Ii53g6vyhzFdXkLnL5Vl3OoY2NjaLscsBubm4WZZe7yR1Tzmk2kmI0L5DLneRyBw0Pl7nQan7n9u/qNOdrb++jWu4Cd0bzmUX4sUPHT5f7TsdPl+NsZmYm1WnuUpd7UHOYufHcnctd0zHXrQPc3LC6ulqU3759m2L0Grj8bTV55prS/bPGQVNNc8Bqm3M5lm1e2A77d9u+a258Ozg4SHWa33VnZyfF6JpR87ZGRMzPz6e6Z8+edYzRnJRuveaut+audefmxkpVk8eyp6enY53m8YzI63F3jI6Ow27/N6mmLbvnH73e7vq73zXZf81zjOsDK89XUp22Z/dcoffX3ZOa/K7ummhbrsl77dZdh4eHqU6P85vffZNiVlbKa1LT3iPyublnVH3+3N/fTzHufHUcuG/jKwA0wf+ABQAAAAAAAAAAAICW8AEWAAAAAAAAAAAAAFrCB1gAAAAAAAAAAAAAaAkfYAEAAAAAAAAAAACgJTnL/QP2UJJzP5DDBADckocyfz11F+cXRfno+CjFHB8fp7qDg4OivL+/n2KOjo46xmxtbaW6zc3NjjEnJydFuaenJ8WMjIykuqmpqaK8sLCQYubm5ory5ORkihkeGk51/QP9RXlgYCDH9Jcxvb152drX15fqurv594XAb+Xmoevr66J8dnZW9TulY1BEHvN0vImIePHiRap7+fJlUV55tpJihoaHivLl5WWKcXVKzz+i7nyb/k7HZjeWHR4epjodv/XaRkScnp4W5bPTfC/Pz887HmNTrHNwU1x/q4lr2ibvY1vW/q3rzoiI7e3tVLe+vl6Ud3d3U4xet+np6RSzuLiY6paXlzv+bmioHKvdtdVzi8hr37dv33aMce1E15nuGNw4rHVubtRr6a6/O9/BwcGO+79N7rq5Y9Jr6Z41rq6uOu6vZi3itq3zl3uu0fYWETE4WNa55xHdn1s/uOc2na9dO9H1keu72k/ds5477tnZ2aL8u29+1/F3tfdtb2+vKL979y7FaN91x+22rcdwH8dcAPiteEMFAAAAAAAAAAAAAC3hAywAAAAAAAAAAAAAtIQPsAAAAAAAAAAAAADQkkeVAxYAAKCJi4syn8/ZWc45pXn1NP/Np+o079PGxkaK0bw4Lk+Oq9Njuri4SDHDw8OfLUdETExMpLr5+fmirPm8XIzL4zg4MJjqenrL/D4uv6vm/KnN80auIOC3q8lb6vLlufFE+3NNnr2xsbEUo/nLIvI49PzF8xTj9qdqcsDeJDdO1eT6c/ldNff469evO/7u7DznorvrawLU0LGqdm3wmOkY4NaLHz586Fjn8pSq8fHxVOfyu87MzBRll3+zhstNref3008/pZjvv/++KLvxbXR0NNWl/JNh1pRS5dqg5rasyX8aEdHX11fu6pbXtDX9yR2TzvtuXd/eMXXev+bS/VTd0NBgxxitczHufLXtaj+NyLljXQ7YH3/8sSi7fKsvX75MdSsrK0V5aWkpxbhcuTX0edflatbczO4Z1fVLd30B4KHjf8ACAAAAAAAAAAAAQEv4AAsAAAAAAAAAAAAALeEDLAAAAAAAAAAAAAC0hA+wAAAAAAAAAAAAANCS9jKjAwAAVLi6ukp1l5eXHWMuLi4++5va7Zyfn6e609PTz5YjIo6Ojory3t5eitnd3U11Ozs7RXl7ezvF6LaOj49TzODgYKqbmZkpyuPj4ylmbGysKA8NDaWY0dHRjtvWckTE5ORkx+309raz3Ozq6mplOwDy2OjG0+7u8t/qLiwspJhnz56lOh2H3Dh8cnJSlN349uLFi1Q3NTVVlPv7+1NMjZ6enka/u2vDw8OpbnCgvHZuzL2+vv5s+VN1wH2ja4GntjZw/fTs7Kwou7Xox48fO9a53+k84MbcgYGBqrom3Pyha3S3rv7ll1+Ksj5DRPh1rY6fNWOlm0/0Ork5rq+vL9V1d+u2GKvV5WW+l9om3JrG3SdtpyPDIylGn3WWl5dTjHu21LHp8PAwxei91L4ckY97aWkpxbi6iYmJojwyks+tKX2WHOjP/V2P+/oqt1vXv596+wbwOPE/YAEAAAAAAAAAAACgJXyABQAAAAAAAAAAAICW8AEWAAAAAAAAAAAAAFrCB1gAAAAAAAAAAAAAaElv5xAAAB6u6+vrG9t2V3RpBRo6Pz8vyicnJynm+Pi4KB8eHqaYo6Ojjts5PDC/Oy5/d3p62nHbNft3x3B1dZViurrKxjMzM5Ni5ubmUt3i4qL8bjbFjI6OFOWenp4U092d/03e4OBgUR4aGuoY47YD4P7RcUjH4IiI3t7yUXFpaSnFfPvtt6luYX6hKHf35HFB96djYETE2NhYqhseHk51T8nl5WWuuyrr3LonrVeAB0rXGW7scDSu9ncPgY4Lbn26tbWV6jY3N4uyW8OOjo4WZXfd3Jijx9R0fej2191drmP7+/tTjB63GzvdfKLzXs1zpDtGXWvXn3+5v5t8jr1rtX1Q1yvu2W57e7soT05Omu3ka6n3e2g4P+tMXU8V5ZWVlRTjnq12dnaK8sHBQYrZ3d0tytpuIyJevHhRlN0zoqtz16At2p90HRJh2u7jGXIB4DfjLRkAAAAAAAAAAAAAtIQPsAAAAAAAAAAAAADQEj7AAgAAAAAAAAAAAEBLyAELAHg0bJ6cay3W5dKpyUuj2yLHWuZyLrn8qpqvan9/P8Xs7e0VZZfPSus0/05Eznnl9u/yIWqdy+Xq2uDAwEBRHh8fTzFaNzubc7m6nEPPnj0ryi5P7MhImQO2JldXRF2+tMecUw14zHQcqMkBOz09nWJ0DIrIY5VuJ8LkD7vM42l3t8v997T//fDFxUWq02vp5qaUsp6xGg9ATTulLedxweVyrVkzu+eYvr6+ouzGc8eOQw34/KrlPOBywGoOcbfOHRkeSXU9vTmX5216zDlf2+LyreqzlpYjIvr7+1Kdtm/3O93fwtVCjunu3G42NjY61n3xxRcpRp/tvvzyyxSj7f2m6ZhT80xc8xz5qToAeOie9hMsAAAAAAAAAAAAALSID7AAAAAAAAAAAAAA0BI+wAIAAAAAAAAAAABAS/gACwAAAAAAAAAAAAAt6b3rAwAA4CZdXV+1sp2urq6quptyfX2d6q6u8rldXl5+tux+57bj6vQYXMz5+flnyxERp6enqe7g4KAo7+7uppjt7e2ivLm5mWK0bmdnJ8Xs7++nOr2XQ0NDKWZsbKxjzMDAQKobGRkpyhMTE41iFhYWUt3MzExRHh0dTTHKtdvubv5NHvCU6Ph9cXHRMaa/vz/F6NgVEdHb2/kRs6en57Plv4fOVbc5V9+0mrVIzfm6NQWAh0nX+sfHxylma2sr1el6WNeUERHj4+NFeXh4OMW4Mf82x92afdmYxzM1PEhu3eHo2mN5eTnF6DPZs2fPUsz8/HyqGxwc7Lh/bd/aJyL8M/H+Qdm/XBvU5133jNzX11eUXR+8azXvKdz9rq3Db1e7zqtZQzZZZwIo8bYNAAAAAAAAAAAAAFrCB1gAAAAAAAAAAAAAaAkfYAEAAAAAAAAAAACgJU8yB+xjzgsEALelaV6Jdg9CiuaYtM7FPIRcF27/Lr+q5n1yeaDOzs6Ksss3c3Jy0srv9DefqmuSA9bF6Lbd/Xa5czTv1ezsbIqZnp4uyi7fqssLq3Uu35Dm96nJJfupOAD4z9w4qDkD3Ziv+QHdmH8fc3Xd9Xxdu85oQueKiJyfzuX0JufrHXOXn1cQaKBmLHHjshvjdVxw69qaHLBuXAKUtjf3HOtyqWobXFlZSTGa83VhYSHFTE9Np7qaHLBKc9JG+Gc0rXPPiDp/u/PX/uz6d09Pjz/YmyJz2uXFZQrRMUef4yN8G1AuxzQ6q1336fV17VvH+Jp7wroTKPE/YAEAAAAAAAAAAACgJXyABQAAAAAAAAAAAICW8AEWAAAAAAAAAAAAAFrCB1gAAAAAAAAAAAAAaAnZrAEAVa6vr1v5XVdXVxuH8x/bjnLb7hi1zsW0eUw35eLiItUdHx+nut3d3c+WIyIODw+L8sHBQd7OTv7d/v5+Ud7b30sxuq3z8/MUc3l5mepOTk4+u6+IiL29vD81Pj5elCcnJ1PM4uJiqnv27FlRXlhYSDGzs7Of3VdExODgYKobGBgoyn19fSlG26Brk93d+d/NuToA6ETHmJrx5erqKsVcXuTx/Km7yTVFzToH99D9X2Y+Lq5LPOJ7oGOAW2e754j+/v6iPDY2lmJ0HT0yMpJienvza8WH8GyFu+XaZE07dc9oX375ZccY107b4p7/tG5oaCjF6DNizTOyPsdH+HOreUZs3E/1Z2Yzun93jG790tPT89ky6tSuDfU+uTbBeA78/XhrBwAAAAAAAAAAAAAt4QMsAAAAAAAAAAAAALSED7AAAAAAAAAAAAAA0JIbzwF7dHRUlF3+Nve36WtyBurfkHc51WryrAEAHqaavJk1Y35buS5qc7NdXZZ59K6uc169s7Ozouxyou7s7KS6ra2tz5Yjcp7W2m1rzhmd4yNy7h7N2xOR891E5Hyqo6OjKUbz+bh8O5q/yuWzmpmZSXVzc3NFeXp6OsVMTU11PEZ3vuSuAXCX3LOW5vF7+fJlipmYmCjK8/PzKaZ/II95aEZz7Lr8uts727luu6xzc7O2ATcvkVP8dun68Pz8PMW4Ol1nuXVmzfq4qfSexiT/u7ZJWD+/Hce1U11nufc9j7ktuxyRWufydbs2oOtYzffq6lwOWLf2bavN3eQzGm5XTa5iV6fjgGuD2k5vMt+rUzNWuedfPc7T09MUo8/k7tne0Zyzbv9N+6mOse6ZeGVlpSjbdyJmrNLn+8c8nrep6byv6wy3hjw8LOtOT09SjN5fd9/4FoOnjJEMAAAAAAAAAAAAAFrCB1gAAAAAAAAAAAAAaAkfYAEAAAAAAAAAAACgJXyABQAAAAAAAAAAAICW3Hhm8vfv3xflH3/8sep3mnzdJTWfmJgoyrOzsylGk7F/alsA7o4mbI8gQft9pPfE3bea392k7u7874pc3U1x53pxcZHqDg8Pi/L+/n6K2dnZKcqbm5spxtVtbGwU5a2trRRzfHxclM/OzlLM1VW+v3195bJhfHw8xWidztWf+t3I8EhR7u3LSxSdv/v7+80x9n22HBExNDSU6oaHhzvGaJ3bNmsMAPdNT3cel6amporyt99+m2LOTsu5YXwij91DQ8OpDs3s7e0VZZ3PIyI+fPiQ6l6/fl2Ut7e3U0xvbzmnDgwMpBg3p7VGlxQs8+Pq6qoou7WgawO7u7tFWd+bROS1yG2uhT9Fj/P09DTF6LOFW0MuLCwU5ZmZmRTj1oePxeVFvt/altzziK5zXZ1dn4+U6/PBwcEUc5NrXx27XJ07X21Ltc+tuD3untS8F3Lj2X18/tLjdseoMW4e+PjxY1F2c7V736Dvx93vms4N2genp6dTzDfffFOUl5aWUoy733qdeC/YjBs7nYODg6K8urqaYn799deifHh4kGJ0HnLzMPcST9ndr8QBAAAAAAAAAAAA4JHgAywAAAAAAAAAAAAAtIQPsAAAAAAAAAAAAADQEj7AAgAAAAAAAAAAAEBL6rIy/x1++eWXoqyJmSMiLi8vU93JyUlRHhgYSDFfffVVUXZJxcfGxlLdfUzQDtwWk+c+yIWOJrpoOImb405PT1Pd7u5uUf7w4UOKefPmTVF+9+5dillfX+9Yp/tyhoeHU93MzGyqGx8fL8qzszlmfn5etjOTYiYmJjpu2837vb3lssXN+91d5b8tM0NedHfnttvd3f3ZckRET3e5fugy27k2gyx9BcBd6u7J49nk5GRRHhkZSTE6p+kYHOHH4RulQ+wDHV7d8+/29nZR/uGHH1KMq/v48WNR1ufoiIhnz54VZXcvb3KuupYb1/VQb1yLtA3s7e2lmFevXqW6v/3tb0XZ3e+hoaGi7O53W1y7cWuhs7OzolyzPv36669TnY45bk3Z39/fcdv3kbtu6uz8LNVdXFx0/J22iYj8rmx0dDTF6NwwODiYYm5yPGEN/Xi5e1sznrjn7Zo+cNdcP9GxStcBEfmdgI6lEf6aaF/VZ+2/h56LG4d17HDrHoc+34xet9pxeWdnp2PMxsZGUT4/P08x2gdv/fkAuOf4H7AAAAAAAAAAAAAA0BI+wAIAAAAAAAAAAABAS/gACwAAAAAAAAAAAAAtufEcsG/fvi3Kx8fHKcb9DXv92/fu79Xr35R//vx5iqnJowE8JbUpFTRHg/s7/xrjcia63ANaR54H1HDjueY7cTFa5/KPuLwpWudyy2idizk8PEx1mkdD87dFRKyurhZlzc/hjjEi5/XTckTOyeFywE5PT3esczGaF7Ym32tEzjvlcsAyVgDAb+fGTp0HbjRXk3scazqcV/xO5/ma+Tui2XNjzbV1cW5O17XAL7/8kmL+/Oc/p7r9/f2i7OZYXS+4Z3J3TLo+cHkkVW1ev6dO25u7J7oWjIj4v//3/xZll0t1amqqKLu8nU3V5GN091uf/9x6XNeM7tnysbQlN97UjFXuueLo6Kgou/dr7lrq+zTNCRuRxxOXL9yt2d3+OnHn73Ji6pjn3lP09PQU5cfSbh4yvQd6jz5F28XBwUGK0Xbi5uGa3NBtthM9P9d39FnazQN6bqenpynGbXtxcbEo1+ZgraH9213bh5qL+6nRd0UuF7j2p4vzPFafX5TjsFsbNJkXajHG477jf8ACAAAAAAAAAAAAQEv4AAsAAAAAAAAAAAAALeEDLAAAAAAAAAAAAAC0hA+wAAAAAAAAAAAAANCS3rs+AAD30/HxcVHe2NhIMXt7e0W5v78/xczOzqY6TfTe28tQhM6ur69T3fn5eVE+PT1NMVp3dHScYo6Pj1LdycmJ/C7H6Lb1eD51TLott+2+vr6i/OLFyxQzNjaa6kZGRoqy65fd3eW/v+rp6Ukxg4ODqW5oaOiz5YiI4eHhjjFu23qcXV1dKeYx0/b91M4fANqi8/fm5maKcXU6F+tcGZHnSxfj5l393eHhYYr5+PFjxxi3Zh4YGCjKbr20u7tblF+/fp1iLi8uU93Ozk5Rnp+fTzFTU1NFeXQ0r02Y0+6WaxNNXV6W7cStc10f0LaztLSUYrRueXk5xczMzBTlx/QceXFxkep0XDrYP0gx+/v7ZcxBjnHPKDp2jI+Pp5iJiYmOMTVqxiX3vkHHRVdX8xzl9s+4dLf0HkX4Z9Kzs7Oi7NqE3kvXB6anp1Odtmf33NqUnt/Y2FiKmZ8rx8W6dxm5veu7u4g8nrQ5D+Dx0jk+IrfB3b3dFKP91K2PXZ+vaZfav92877atcW7Mp1/gtvA/YAEAAAAAAAAAAACgJXyABQAAAAAAAAAAAICW8AEWAAAAAAAAAAAAAFpy4wkz9G/ou7977/JR6N/m1px2ETlnhcsXAKAZzS3x5s2bFPPq1auirDliIiJ6unO/bJo7Bk+by4uked40B1JEzlVcmwtua2urKLu8RLo/l7fF5b/QPqB5kSNy/uTFxcUUMzc7l+omp8ptDQ2aXDaS/sLlvnDHnXLHmv7d3VPG1OTQiyAPE9pz1/l073r/jwX52h6RW75tujb48OFDivnzn/+c6jTOzVX6bFuTkzUi56ZyObZ07X11dZViXA47zb3unq01P9zf/va3FPP27dtUt7KyUpT/4R/+IcXoNXA5YNGZWy+5tqTPW66d6jrT5WRtStuXG5ddHkXN5/rdd9+lmJcvXxZltz7WvuSu20Pg5jjXd3VccLn3NFezPvtE5Px8EbnvDg4OphgdX5py57a2tlaUv//++xTzyy+/pLqasZIcsPePXu/afJD6fO1ymK+urhZllz/6d7/7XarTY2gzB6z2L/cufGa2zGl9dJzzu2quZPfewvUvXWe4fgJo23FtSevcfKJ1bjuO9vma91Ju7G6aD163RU5Y3JSHuVoFAAAAAAAAAAAAgHuID7AAAAAAAAAAAAAA0BI+wAIAAAAAAAAAAABAS/gACwAAAAAAAAAAAAAtaZal+DfQZMlajojo6enpWOdi3LaA21STMLwmpoZLNF6TjLwpTaK+traWYv793/+9KC8vL6eY5yvPU93V1dXfeXS4ae4eadutiYmoS2x/cXFRlLX9RUScnJykuv39/aK8s7OTYra3t4vy6upqinF1Hz9+LMofPnxIMbu7u0XZXZO5ublUNzo6WpTHxsZSzPz8fFFeWlqq2vbk5GRRbnNcuE2Xl5epTttJmOG0u6ccFx/K+qHmPrm+o9fJXbem885tqpnjau/lXbf5mv3rWOHGDncvNe6uz9W1LXdPmtzLuz43PFzaT87Pz1PM0dFRqtM5fWBgIMVom3f99PT0tGOd6/PaL/r6+lKMO6bx8fGi3N/f33HbNecfEXFwcFCU3VrMXQN0pmOcG/NcXZP3JG2ue/SYXFt2xz08PFyUZ2ZmUoyufe/jeu0mubFKn3U2NjZSjNa5vuzGJd2ff/4qf+fGF0fHha2trRSjz1Y//PBDivnrX/+a6nQcnJ6eTjFu/FRN18cPYV39ENT2b22X+mwfEbG3t1eUtd9ERExNTaU69/6qLdoG9fk/IrddnXMjIgYHB4tyzTuRiIjDw8OifHx8nGKGhoaKcu09ues1epP3sJ+qaxLT1vnXbqfpeqHJtrVNROS5+Y9//GOK0TFf5/wIv17pdDwRdet6N39pnFuv1lxboA1Pa0ULAAAAAAAAAAAAADeID7AAAAAAAAAAAAAA0BI+wAIAAAAAAAAAAABAS/gACwAAAAAAAAAAAAAt6b3rAwAeCpeM/eLioii7ZOA1ib9dXXd3+e8j+vv7U8zAwEDHmKY00fnp6WmK2d7eLsoTExMp5uLyItXVJLbH3XJt8vj4+LPliIiTk5OO23Lb1t+57RwdHaW6/f39ory7u5titG5nZyfFHBwcpDrtA7OzsylmcXGxKA8ODqaYmZmZVLeyslKUl5aWUszCwkLH/Y+NjaW6rq6uVPcQuXuysbFRlM/OzlKMjkPu+uvY+VC4vqPtWcfliNyfXBvROedTcU2449Z5wM1f4+PjRdnNMcPDw3/n0d0Nbbvuvrk6HXfdPerp6fk7j+7T9F66+dz1r8nJyaI8NTWVYkZGRv6+gwP+X9oG5+fnU8w//uM/provvviiKPf35XGpp7fsX7oOiYh49+5dqvv555+L8ocPH1KMcnO8rjsi8vpgeXk5xeh4enmRx+XDo8NU19tbvi7QtUnEwx2H0Q43D7g6XWdo23IxT417l6DrYV0LR0Ssra0V5a2trRRzeJj79+rqalF++/ZtitE1xejoaIpxaxE9F3dMHz9+LMpu7e/aRJN1Tu2aVp//3BpW3wFpue1jeqxqz1+vr3uW17Y8NzeXYtxzo97vNmk7de8JdO3r5lPdjnsn4p4Z9B2IW6/oMbnnsb6+vlR3m223rfew7nc1z6hNn5trrpHbjpsb9R60eU90zezenXzzzTdF2b2X0uvmzqPmudVdk5rnZp1PXJ0bA/Ra3uRzNJ62p73CBQAAAAAAAAAAAIAW8QEWAAAAAAAAAAAAAFrCB1gAAAAAAAAAAAAAaAk5YIFKLveA/g15lxNT61wuVZefQP/2vcsDVZMntqmuKP8+v/tb+Lq/2r/z/9TznTwErk1q3hCXg8jl96nJ76rbdnmKXF4g/Z3LiaJ9zrU/l29F81+4/JPaL10OQ5frUPNmuBjNmei2/ZhzVLjcHj/88ENRdrlsvvzyy6LsclU91BywLseU9sMff/wpxaytlXmRXG4Vl5eoyVhdM1dG5HNxfUDvpbtvDzX3oI6DLm/N999/n+rev39flN0YoPeyzTlXx1N3b13erW+//bYou3tJDli0ZWhoqCi7nKjT09OpTnPBuRywsjy26x43nmouNpdrUec9179cPltdr+jY6X7nxg63Px3TXd+9yTEHj4e2pZvMvfhQuXVeTQ5YzX/pcmS656hff/21KLuxS7el4+unaG5F955kb2+vKLtxyeUa1HWs+51bjzbhckTqWFkzdjZ9J1JzHrVjbpNtuZ/U7M7tq+ncUJOXV+cm917MtZObnK90f+6YtM+5Pqjv2Fxfcs/N2nfduKD7c+8c3XW7zXzdri3puyr3DqjmvZDru9q+XBtx7z21ruYa1TzHReTnXbftpvdEj8Gtj/WY3Lpa71Pt8eh1c9dEn5v1eTjCv2fXudHF1MwnQBv4H7AAAAAAAAAAAAAA0BI+wAIAAAAAAAAAAABAS/gACwAAAAAAAAAAAAAt4QMsAAAAAAAAAAAAALQkZ44GYF1eXqW64+Pjory1tZVidnd3P/ubiJxEPiJiYGCg4zFpMvY29faVw8PExESK+erLr4ryzOxMinFJ5F0i+8dCk8+3GXOTv9M2uLOzk2LW1taK8rt371KMJrqPiDg8PCzKR0dHKWZvb68ou35yenqa6i4vL4tyd3f+d0X9/f1FeXJyMsXMzOS2OzU1VZSnp6dTzPj4eFF2fVJjInJ/cjGu79S4uLgoyjX3v03av3t765Ya+/v7RXl9fT3F/Pjjj2XMWo7p6+srygsLCylmZGQk1fX09BTlq6s85mt7a8q1U92/u286n0REfPz4sSh///1fU8z3339flPUaRUSMjY1VHWcn7rgPDg5SnY4DX3/9dcdjWlxc/M3Hc19p+zo5OUkx29vbqe79+/dFWdtNRMTo6GhRbnIfI/y91PvmjtvN8c+fPy/KbfUlwNExzo152k+a0jVGRF73RERsbGwUZbfO0XnQrQNWVlZSnc5z8/PzKUbXNEBTOsa7ecjNO/qs4Z4HtO+49ZrSdW9E87WvnltXVz6P7u48xzV5tnXrTPdOQK+JWxvoM5J7rpmbm0t1etwfPnxIMTp2uXtb8/zp2onWuZiadyI13PV29Jq4NqjPce64a9z2M9pj4dry2dlZUX727FmKcfN+7XNqE9ouXN8ZGhoqyu5dgrZBF+PWFJubm0VZ+3JExMBAuc5w16OtPtgm7c9uHnDXZG+3fOe0t7+XYvR3bnzX6xYRMTRU1rn1oa5HXUwNN57ptty45Oa0np6yzq2Z3bvg26TvBNzzZ816QceJiOb3APit+B+wAAAAAAAAAAAAANASPsACAAAAAAAAAAAAQEv4AAsAAAAAAAAAAAAALSEHLFCtcy40l/9S87W5XAQuH4TmqXQ5K24yh5rmo3A5pzQfhMtH4fJtNs1H9xC5fBQuv4/WuXynWudyGLjf6TG4PBYa43JNak5OzT0Z4fMgu+NUmqPC5VvVNhmR25yL0Rxqri+5uuHhEYnJeSV02y5Hisvhpsddk+/V9Xd3n7TOtQntgzfZJ10uGbc/zX3n2pee2+FR5zx7b9++TTGuX+pxupja/FGduPPX/bv77XL36ByjuZojct91uV1cLpW2csC6cUHzTLs+r223ret/H+g9cPnavv3221Snea/cPdJtN867blKTnV+Uc5XrJy6ntR73fcwnhYdBx5jG7bslbv6u6c8uRtdLbv50ebg0P7Zbj9+1+3bf0JzOO248d3OT5jJ16xV9HnBtWduSm4ecmudmPRfNO/epuiY55Nyaxh2jPiO6ddbs7GxR1jEhwl9LfZfh1pn6fsPluHb9Wccvd410/HQxNTk6a3LQuudvd711jNUc2xH5+rpxWduy29djWtfepppnNJcP0t3Lm1yP5pzSLpdouX/3LqOmTepzVUR+tnZjro4L7n2HW9ffNZ1jfL7TfL1Pz8pnSzfm6XOzG1/cuyO9ThMTkylmYqKMce3Pte+Dg4OirPc2om5d5eZmbQNujqvJr3qbau+3Iu827tLT+QoCAAAAAAAAAAAAADeMD7AAAAAAAAAAAAAA0BI+wAIAAAAAAAAAAABAS/gACwAAAAAAAAAAAAAt6ZzRHjfOJYKuSSD91NUm0G7rWrr9HR4eFuW3b9+mmD//+c9F+ezsLMVMTk6mOj3uk5OTFHN5eWmPtQ1DQ2Uy9mfPnqWYubm5ouySoQ8NDaU6F/dYXF+V7cTd76Ojo451u7u7KWZ7a7sob21vpZitrVx3fHxclF2f0Patbdsd0/7+fsftROQ2MDY2lmKmp6c/W46ImJqaSnUTExNFeXh4OMUMDg5+9ngiIvr7+1Ndb2/vZ8uurrsr/7sm1977+vtSXScHBwep7v3796nu1atXRdm1JT0md/5t6e7O18S1wdPT06K8vb2dYvR3o6OjKUbb5d/+9rcUs7q62vE4r66uUkztvNOJO3+9J27/rs/puZyfn6cYnWPc/vv6cptsMn+6a+S2PTAwUJRdP9F78pjWRjouLS4uphgd3yL8/VWuz7VF76+73zVrATdWAzUewjjg+q7Os25drf3Jnatbi2j/cjF37SHcN9TROUbncxcTkdejul6NiNjc3CzKbn2q/aR2vabPZC5mZmamKL98+TLFuGNqso52x11zLu56z87OFuWvv/46xbhxSdeVbuzY2dkpynt7eynGrfO0zo0BuqZx7za6zLNVROf1uF439xylzx4RESMjI0VZ20RExFdffVWU3RpOr6Vbv7n7jc5c39U615Z17R0RMTSY3wvcJj1O17/Hx8eL8vz8fIpxfUffL62trXXcto4lEfn91n3Q3d35XYar0z6n41tExE8//VSU3fs8fQ8aEbGwsFCUXRucmCivtxs7HR2r3fsdHc8uLi5SjJub9b3b0tJSitHjvMl3RzXcudWMp7XvpYCbwP+ABQAAAAAAAAAAAICW8AEWAAAAAAAAAAAAAFrCB1gAAAAAAAAAAAAAaAkfYAEAAAAAAAAAAACgJTkrNG5dTdJnl2g+bNX9S5DehLsmWnfbybJPTk5SnSZt/+WXX1LM//gf/6Pjtv/hH/4h1Y2NjRVll/y9JtF4UwMD/Z8t31e2r3SIqWlvERGXl5dF2d2T09PTonx0eJRi9vb3Ut3+/n5R3tzcTDEfPnwoyu/evUsxv/76a97fXrm/wcHBFKN1LkG96uvrS3Xj4+OpTtvy5ORkipmfny/Ks7OzKWZqairV6baGh4dTzMDAQFHu789tuaenJ9Xd9hjTyfHxcapbW1tLdX/+85+LshuX9H6Pjo6mmLbOv6ZPuv25Nqgxvb15GaN9aXd3t+qYasaFttReE+XaqdbNzc2lGO1fN8mdmzsmHSuXl5dTjPZnd/4PlY6fteMpgPvFzVUjIyNVdcBDVLMWcw4ODoqyPp9E5DVEzXrJrdfcM7LuT5/rIiK+++67ouzm4YWFhY7H5Oj+jo7yM6Jb65+fnxdl9xwzMzNTlJeWljrGROQ1s+7LHacby9wxad1tP1dp2zk8PEwx7ll+cXGxKLv7rdfXPbcCNbRf6HuLiPwuxbU31763traKsr5LisjvUp4/f55ibvKdYw03dvT0lGsvNw+5Oj0XfZ8bEfGnP/2pKLt3Cf/lv/yXVKf3zj1/6zG5+31xcZHq9Ll5fX09xej7Qx3fI/ycurKy0vGYtJ24Mf8m6X2reZcD3Df8D1gAAAAAAAAAAAAAaAkfYAEAAAAAAAAAAACgJXyABQAAAAAAAAAAAICW3NscsDX5P/RvwdfkRnuoXD4Q9zfdNc79vX7NVeT+pr673k3+7nrN/iMihoaGirLmOYjI+Uaa3lt33JqTRf/GfkTExsZGqtO/ve/yKmgOWJcLz+Va0Bws7lo+9b9z785f753L3av5XlwOIHe99XeunWidy8dRU+fyImmdy9PjcnlOTEwU5Zo8rS6/j+aDcLlka3Kwan93+3fn4er0OF3OCpdb8SGqae8REdvb20X59evXKaYmL2/TXE0184CjY7prJzW5irWfuvnTjQtNc0M34cYcPSbXbt1coXlbXK4q7Zc18+Cn4ppwuWy0Xbh5X/NwuTEHAIBHwUy5Nc8jbk3j1sONDqlhDlb3O10L1DxHubWJ7s+tBd1102d5l/9Tc3u69UvNWtCdvz7HaX7GCJ+PsGZ9qM9Dbk3l1vq61nbHrWsvt65290DX9TXXrXadXdMuNcbdb9e+9Dq5fLru+gJtcHlLtZ/qu50I3yY1J6gbX/Sdshvzrt3kdMd0zKnNAau/c+f78ePHouxywP7jP/5jqtOx2T236r10787cO77+vs45tXWucHliNRd7RB6rnz171nHb7n3ibXJzvLuXetwnJ3nd4d45qdp1DvA5/A9YAAAAAAAAAAAAAGgJH2ABAAAAAAAAAAAAoCV8gAUAAAAAAAAAAACAlvABFgAAAAAAAAAAAABakrNS3wGXvLgmobEmQtbk0RE+8fZDdHh4mOp+/fXXVPf+/fuibBN495cJvDUReUTE5eVlqtNtuSTXWnd2dtZx/xERKysrRfnLL79MMZrE3N3vGi5ht17f7e3tFKPXNiJidXW1KLsE7Xp95+fnU4wmbP+P35Xn5xJ/u7qnThOtb25uphi9vyfHJynm9CwnaD86Ovps2e3/+Pg4xbh+qe3SjYF6v2dmZlLM8vJyqpuYmPhs2dWNjo6mGO2DAwMDKca35e7PliPyWO2248ZzjXPbfizcublxUK/J0NBQitF75663G19q5maNqZ3jdX9ujnH9Sen85eYzdy31mG5yfHXnr+fm9j81NZXqvvjii6Ls5s/x8fGi7OZBNy4l5vZfRzvXzbVBbbuuLQMA8BDpfKnzaYRfC+nzx8HBQYrROdWthZqs6VxdzXZqf6frWrf21+vm1h1unVPzLkGvm9t/zful09P8HKnPn2traynGPbfqs6VbL+m51cRERAwPD3f8na49XVuKcO8ptNzeu4wmbdC1Cfc7vQbumbi/L7/PAtrgxiV9bh8ZGUkxrk7HKjcu6fta10+6uu7f+5WabwFuPNM6FzM5OfnZcoR/D6dxY2NjKUbvk47BEf6ZfGS0/J3bds1zsntfrXOT+/agbccdo17Lmvc9Tbl26r496Pro4GA/xYzKta097rSGq1wL4em6fyMpAAAAAAAAAAAAADxQfIAFAAAAAAAAAAAAgJbwARYAAAAAAAAAAAAAWnIvEqS6v6et+dlqcnu4v0Nem4P0vtHjdjlJX716ler+9V//tSi7nDCaC8793Xun5m+a6z3Y29tLMS4/gR7D4uJio/3XcO1kf7/8W/AuJ8u7d+9S3YcPH4qy+5v6c3NzRdnlEXH5CGvypjx1mhMnImJnZ6co6z2KyPdSfxPhcx/o/a3Jj+DyE7jcqdovtJ9G1OVpdfldp6enO25b65rmgH3MOVjvIzd+axt49uxZitF76fKPMObcHDcPaS4Xl8fFzY1LS0tF2eWBvsncqbeZOxcAgMeiZv507y10nedy3+ma4iG8/2iTe2+g18DlMtXrVvueRLlnxPX19aLs3i1sbW2lOn3etTlJ5dxcm6jJp+ueI7XuJvP6NdX0PVGXyV3rqoDb4tqy9l2Xz9k969XkgD0+Pi7K7v35+Xmui8jvDm6TXif3zs2N8VeXZVzNu7qa92sROV+2e+em71zcvXTv0/SY3Jyu4767l6urq6lOj1PzzEfU5YCt+YbT1lzh5jjXBzRXb839dsdIfle0gTflAAAAAAAAAAAAANASPsACAAAAAAAAAAAAQEv4AAsAAAAAAAAAAAAALeEDLAAAAAAAAAAAAAC0pLdzyM1zSY77+vqKsktErcmhNzY2UowmVI6IGBkZKcq1Cbs7cYmZ3blpMnR3bgcHB0X5w4cPKWZtbS3Vra+vF+WdnZ0Us7u7W5RdcnBNVh0RMTc31/F3er6a1D0in39ExPz8fFF2CbTddaqh9+Xk5CTF6PXe3t5OMa59aZzbtl4nl2i9rWTkbapJNK59x/Ultx2Nq+lvFxcXqc617/fv3xfl169fp5iff/65KG9tbaUYl3ze1Skdc8bGxlLMxMREqpucnCzKU1NTHX83OjqaYtz+tG54eDjFaLvUMTgiJ7u/7XZb0yb9D6VsDvs+9kFt8+78dT6LiFhZWSnKrk3o/XXjkhtz9Tq566Z1Ndv5VF0nbe7/Nrmx8uzsrCi7uXJxcTHVTU9PF2V3L29SW9fSte/Gfb7BdmrOo/ZcNc7tX+c9N8edn593/F3NuTW9tq7v6Dzg2mnNdWqyzv7UMdXsT8+3Zm3i6lxMzZij1839rstOTmWx5l66Y3SajOe1faBmnadt3sW4/en1dddb62rnnCa/6+4yzyc16wzTBa+uy+tW23dr2nc+xM7tLaJZG2hzPH2ov6t5btUx3o2n+vwdEfHHP/7xs9uJyGuB2rG6Zjyr6YNu2zXzXs240PT5U9dZrg/Ozs0WZbemcsd0eHhYlN0zqr6n0WfWCP/upL+//7PliDzHuPN319s973Vy12to57aPSduSewekMe76u7ak967pM1PNGN903nd1NfNQk/HF1bV53E3XOTVqzlfbgGtLOsa5NaXry1rn2qC+B3Vjl3s3WjMu1cwVNWrGczd2unPZ2S3rdOyOyNfXzcOuTt+hu/fl+p67Zi3quLHj9PS0KO/v76eYX3/9NdUtLCx8djsRue3UzLs3OS67d2DPnz/v+LvV1dVUp31AyxH+mmg7adq+8XTQQgAAAAAAAAAAAACgJXyABQAAAAAAAAAAAICW8AEWAAAAAAAAAAAAAFrCB1gAAAAAAAAAAAAAaEnvXR9AhE9WPDAwUJRdovHd3d2i7BJK7+3tddy2S+rtkkq3pSYZuSZf39rcSjEu0fjk5GRR7u3Nt1jPbXR0NMW8ePEi1X399ddFWZN1R+Tk62dn5ykmzPUeHhkuyhMTEynGtQHl7psmzD46OkoxmnzdJWN3dXqfHD2XwcHBFOPO7SaTltfQ23R9na+tJn/X5OwuJiLi7OysKLuk5hrj7tvGxkaqe/PmTVH+6aefUsyPP/5YlN044fqlJnufnp5OMbOzs58tR0RMTU2lurGxsaI8Pj6eYkZHyr46MDiQYlz70n7p2pveJ9e2z8/L/uy2466btmXXtpvE/Eddt5RTSPpdzTHeNjd2aR9wXDv54osvOm6nr6/vs+WIuvvrrqXW1bYTV9dJm/vXNuDWBlrXtN003bauXyIihoaGOm77rtu3o2O6ji8R+d7pWOZinJo1Xe2Y01aMzpdujjs4OEh1Oja7c9O6mpiI3HbcGlLb2/DwcIqpWXu6+60xrp+6+611Nf3Lnb87Jh0/XYwep2unru/qcde0JXdu2pbcusv9TvffdMx39BjcM4u2b7fucPvT6+uurbbBmnZT+7sU023W8HZu6jzH6HVz99LV1fT5mjmmZk61MboW625znSe/C7fQ++3bcWquiYtp2i91fOnvz215cXEx1bnnZKXruqZrMRejfcCN+TXznnv+03HArWFr+knTdZY+R7k5zs0DJ8flcW9vb6eYzc3Nz5Y/ReddN+bpfbLH6MbYlvpuU9om3HG7/ek80OQZopZ7v6Hz187OTorRd5X7+/spxr1f0vZcMw81HU+bzoNu2zrv1Kw73PNnTV3NeNbbk8el7p7O60rtExGR5phaOl+5/qXXzfXTmncC7prUXDdty+vr6ynm48ePqU6vt5uXdPx06+Mari3putKNpx8+fOhYt7WV37Prcbr3ea5uZmamKLv3NO5dnapZU7j5U8cTN+boe9CIiH/6p38qyjVryJo51sU0pWOOvjuNiHj58mWq03bp7tvr16+L8s8//5xi3PXWdtK0fePp4H/AAgAAAAAAAAAAAEBL+AALAAAAAAAAAAAAAC3hAywAAAAAAAAAAAAAtOTe5oDVv1fv8gzo3zR3ORTuY66/GjW5qlyd5qh056/XSfOKRPi/jb6yslKUnz9/nmJcDhjl8rTU5GhULh+Hy4+g+QFcTjW9Ji73gtufnq/L7al/59/9bXjXJvU61fwt/jZpztemuVxdnea6q8mJonlUInw+ilevXhXlv/zlLynmT3/6U1F27e3Zs2epTnMsu7wOmhe2aQ5Yl5tZ25LrbzV5Wmr7Tie1+WZq8kml/CuVOUJrcujV5AR111Jzx/T0ds41WUtzHLn8eNpPXF9yx12TG6wmf5era3Iva9tpWzlga/bfNAfsTapZm7hxWPuzm7902y6/Us383ZQb4zX3dk1uFZeLrSbfStN8iE3GF1fn9q/92+UPcznk9Fq68Vz3V5tHUq+JyzOn44ubB909qckzrudSk8/qU3FKr0ntPKj3ycXo/l07dWttvU41c2pNvnB3jG480zmur7/zta3NjabX140B2r5djOtf+qzjrre23do5Tu9JTS46P8e4Oa7zHFOTD9G13fTMcGnGvCj31zTHcuM8sRW5VJ2a3zXNL9tpX67OxTS9l3rf3BG65wF9Zqi5l7V5kJusmV0/qckB69a+WlczV9TkRXbHVLMWdDEuZ7s+t25sbKSY1dXVouyeY9391ufGqmt7lK+tG2O1Xbqxq0fyZrrcmu4Zqeb5U++3Wwu689VxvzYffQ3tz+4do76XcHkz19bWOsa4Or0nbi2mfa72nWdNDlbdX9P+7fqg3hO3NnI5MrWuZi1Ym1+2Zqxs6xmxJneu6yc184k7pibjmculqmNXRN06qybfaQ13bjpWuGempjlg9Tq58aVmre/aWw13f/V83TxU8+5oaWkp1elx1+Z9vk26/5pxIiI/p7pz03cSrp+4a1nz/An8Z/wPWAAAAAAAAAAAAABoCR9gAQAAAAAAAAAAAKAlfIAFAAAAAAAAAAAAgJbwARYAAAAAAAAAAAAAWtIsM/0tcImP1dnZWVF2iZFdnSYxdwmlbzLJtCYRd0nFNYm5Jjn/VJ3+zp1HTdJ4lzBck3O7ROs12kpWfXl5meqOj49T3e7u7mfL7nfuuo2Ojqa6hYWFojw2NtZx2+4Yr66uOv7OtWW9Bm47NX3J0W27/R8eHhbl/f39FOPq9B5sbW2lGE2Gvr29nWI+fPiQ6l69elWU//SnP6WYH3/8sSh/8803KcYlcdc+4PqJcu30/Pw81en1df1Exy53b13b1Xah23HH6Y67Zuxw9Djdcev5uvOv+Z07/+6u8nc9vXnbbjzT++tidP/uGF2/PDk5KcqunxwdHRVld9/c/tq63jX3wG1br5O7bjXXskbNudXuS9tO03VA036i+3Pb0XVPRG4n2rbctvr7+1OMq6uZP7R9u2N07VvHePc7PaaRkZGOMTXHGJGvSU1fajouXV/le3l4VM6fbh7c3NxMdXot3bhQs850dXoubh7U++Tam7snepzudzo36tgd4cfvJu3UzXGuDerc7K633u/h4eEUo+uHiDzH1MzpNcftzsP9rslYWfvMpPtza18dA1yMuyZ6T3QMjMht0PVdd776O7fO07racUG5cUnbV816LaKuz+t9qhm7XF3NWNnmc3TN3Nz0WafTvty2a/el987dN2XXor25Dfb2lXFtrQUj8jWo6Tu169OL887zgPZv9/ypc4V7rnLXW+eUru7Oz0yOi9HxzD2jfvz48bPliIiZmZlUNzk5+dl9ReSxyx3j0XEeK3Web/rM4Npuzfyl475rE+6YdJ6tWR/WPmfoHHpwcJBi9L2EW8Ppes3NzW7MqTlOHeNrn9tr5hitq71uNWOethN3v93aU9971jxb1jzbR0T09sh42tN5jK9dV9eouZfan9246Nqp9q+aeci1Cdd2ddxt891RjavL8pq4ecCtK7XOnZteA3e93dpT74Fry8q1UzfGa52+h43I18CNi//8z/+c6paWljr+rsna9ya/qdSqeUbTc6t5nxpxs+0bjxP/AxYAAAAAAAAAAAAAWsIHWAAAAAAAAAAAAABoCR9gAQAAAAAAAAAAAKAl9zYHrKrJVeX+pn9tPj51mzlgnaZ5x9rijrEmZ8Btcsd4cpzzSGi+Ufc39fXv/LtcXXNzc6lufHy8KNfk51tfX08xq6urqU7zhrgcBro/m++mpRywbv87OztF2Z3bxsZGqtPzdXlyanL3utw5b968Kcqa7zUi59dZWVlJMbOzs6lOcwa4sUTvm83BY3JGaJtzOZ5rckS6/em9bJoDVtXkGHOa5lpsOg7W5LOqyfPmYmryItXkeHbtW/OIuO3UHHdNXsHaHERNrqXLB2lz8NTkFZcm5/J36XZqc1U1yXNXmwNI65rmGKvJQePGat1/bV55VZMj0+VzcsekcW7M0XZSk0fTabLucnW145K2L9e/9Jq4POcup5jeb3duNeOSu27aV10+Ja1zOads7r+KfEpN80k1zXnbRE1+PJfzuCZfmW2DkrPw0owL5+edc8C6e1lzTWryhtbWNWHX+jJ2uLbUNG9oW3lxa9ZiNXneatttzXHXzI1N1ws1fbAmD3PTZ/SatWftmrnTtmvbUpOcuzX3zf2uZuxw66Waa+m2XZNr0f1O73nTNYX+rmY+iWg2V9S+E9K52T3b6jOxPkdH+Dapc7O7bvocMTY2lmJq8vrVtO+mz2g161p3bm7buh5smme95p2Xa181eSR1f9PT0ynG5fytUfNccXmZ666uLqXceQysHTtrnhGVmwdcn9f+3OaavWZOr7neNTkia8Yc956mJgese47QOrdtzVPqngdrnuVrcwW3pUvut5uH3Lno+bpz03ea7l3tu3fvUp0eg3v+1Zze7hhdfle9l+75S9uSvqv+VN3CwkJRdvNHTR7mm/w+0ZamuYrvQz5bPHz3v4cAAAAAAAAAAAAAwAPBB1gAAAAAAAAAAAAAaAkfYAEAAAAAAAAAAACgJXyABQAAAAAAAAAAAICW5MzJ90RNImRN8uwSaD917jrWJJB2SeQ1YXXTbbfFJdA+Oj5KdZqw3CWo1yTiLhm6q9NjOD8/TzGaIN0lY3dJ3Hd3d4vy0VE+N92fuyZ9fX2proa2gdPT0xSzv79flDVhfUTEL7/8kur++te/FuV//dd/TTFbW1tF2bU3105HRkaK8n/9r/81xSwtLRXlxcXFFDMzM9Nx26696z1w183dp5OTk6LskthfXFwU5bOzsxTj6mraida5a1uj5j7VjB09PT0pxl0T/Z3btta57bj5Q/u860s6drjjdsd0eHhYlLW9R0Ts7e0VZXfc2iYjIoaGhjr+Tu/J5WW+3244T/epO59vX395nQYHB1OMG09rxiq9lq4P6j3Qe/SpOt2/Ox53LVXT/qXn5rZzepLHE5333Byjau+Jjjk6n0XkOdXNVa4P6H1yfadJTETdWkRj3L3VOrcv15Z0PHHb1nHZXVsdJyJyu3D713vp7rcb8/T83HHrnObaW80aUttWRL4mbv7UudLFuf3r/XbXzV2n4eHhouz6iXLnVnNMNW3Z9SXdn1uL1qwN3O/0vtWMuRH5Oo2NjaWY8fHxouyuv6Pn4s6t5pmlZp3j5riu7vIauPvtjknbqftdzbjk5iad92v6fNOxs+Za1vTvmjYZEXF9JfN+dz5GPW53b90xaV3N3Oy4e9JkHG669nVqjrvJXBlRNze7465Z59Q8R2mdjTHrpfOLsn3VjNVurnDnq+15Y2Mjxei63p2/6xe6PnDHpL/b2dlJMW7+0vtUMy66NlGzhnJq1sduO3ouNWsat+2a/dWs/XStEJHnPTcP6tjt9l+zpnJtqWbMczE16zW3v5rn/Zr7XTMO1/zOHWNN262Z42rO39XVbNvNgxfn5T04Oc1rYR1fIvLY4Y5R5ybXll2d/s6NSzVjQFPd3Z3X0DXvANz8rXOKe8f54cOHjtt247k+27m1gXvW0TlF38NG5PY9OzubYkZHR1Pd8vJyUZ6YmEgxAwOd7/dtfgtoqmY8q/3O8RDOF/cL/wMWAAAAAAAAAAAAAFrCB1gAAAAAAAAAAAAAaAkfYAEAAAAAAAAAAACgJXyABQAAAAAAAAAAAICW5MzJQK2cmzriFvNQuwT1mtQ8ImJzc7Mob21tpZjx8fGi7JKh1yRxd4m4XWJ3dXR0lOr0/I6Pj1OMJnZ3ScVvkiYo14T1Ef56/5//83+K8v/6X/+r477+5V/+JdW9fPky1S0uLhZll3x+enq6KOv9j4gYGRlJdf39/UXZJWjX+3Z1dZViXDvp7i7/PUzNtvX+R/h7oL/TRPOuzh23HpOLcdvWdunaqW7Lnb+7bhrnfqfbrtnOp45T6fnqfXT7j8j3xB3T0NBQUdb2F+Hbrv7OHVOTe1Krp6enKLtzq7kmNffS0f2589djjMhjtRvz9XfuGGv6l+Ouk7q4zPdJj6FmO+46ujZQ0050/+7aurar7dRd7077+lSdXgN3TWquU42ascNdEz3fiYmJFOPqtJ26azvQP1CWBwdSjPud1tWMZzXtJqJurL68KPvJ6Vmez2rWQq59d3eV59LTm+/J0OBQrhsu69z6UK9T7dzYaTufquu0bbcvt2au6d+6LXffHG2nY2NjKUbnLx0TPkXvt1sL1axpatY5VeOyuW7umLSuaZtwzxXaLl07renfNWquZc1asKZNRuR74o5b71NtH9C6mj7gzt+N8XoPBgY6j8O190SvSdNzcw/uPT3lMdTMA27/jm6rZm6s6QOuvZ8PmWty8dvvd+1aQY/TjWf6bOm2vbCwkOqWl5eL8tTUVIqped/gNHmOqp0HauOaqFnn1axX3Fih/dK1L53T3HpN57jR0dEU49qJtiV3jDVjbk1dzTWx+78082dUrPMqxtOa873JtuXo/puuKWq2XTOeu7Wwe47a29srygcHBx1/596B1bwrc3NcW89ajrYTt+5y10nr3PXW8dT1U1enY4dry3pP9vf3U4x7N7y2tlaUd3Z2UoyOVfpeNCJiaWkp1ekc496fDsqzZNM1JPCU0WsAAAAAAAAAAAAAoCV8gAUAAAAAAAAAAACAlvABFgAAAAAAAAAAAABaQg5YPFguZ4X7O//69/E1J2xERE93mYPG5ehwOQwuJf+Fyz1wcnLS8Rh3d3dTnf4Nf7ftJnkca/9ev8a5vBKa66E2d26N//7f/3tR/sd//McU8/z581Q3NzdXlDXfa0TO0+JyOLhcOlpXkyenNges1tXkTXH3uyanVk1OGBejx1ST48sdU9NjbJoTVNXmg9Q+UJPHpDZHZc311v253CrDQ8OpTvM9+rGrc1uqyW9Te741muTXaZpvx6nJTdakn7q4mjypbuysyXHVNK9gTW7k2px9qmY8dcdUk3e6SV5gp+l4XrMtd256v11OVjen6jhQk8vVXf+afKM1baK2DzbJg1WbW1PjavZVk3swotm1rL0men1r8k47aTw/N3l5Tf7oJuN5bZ65mvmrJs+50yS/603mLKzNYddkneWOpyaHubuW2r5qc7PVXJMmY3Wb/aSmD9q8emdl3dl5Hl/0d7XrU71PNcdd+4ymx6DPmhE5h9zpac6p7dTkYNXzrVkHuG3X5MWtGQNrnw+a5s2s2bZeb5f3Wrl3Al988UWq+/rrr4uyPutG5DGgzbm5ZlyqqWs6LtSMsTW/q33W0Tbo8l/quwR3v3UN199nxuW+zmv9mntZ2wea3JOm99tJx31ljvu6vWe7tjTtA6rps5bWuRyhHz9+THU6N2xsbHTc//BwfrdQk+PYPbPUjN81at5l1L5j3d7eLsqakzUiz1UuJ6rLpao5V938qffOHaPL77q6ulqUXe7YycnJovzs2bMUo/NJRMT8/HxRrslvC+C343/AAgAAAAAAAAAAAEBL+AALAAAAAAAAAAAAAC3hAywAAAAAAAAAAAAAtIQPsAAAAAAAAAAAAADQkpz1HbinLi4uivLZ2VmK0UTzEREHBwefLUfkxPKa1D0i4urqyhzTeVE+PT1NMZoQ3u1/c3Oz4zHp+bvjdMeodS4ZvKNxAwMDKWZkZKQoj42OpZjR0dFUp4ns/+Vf/iXFfPPNN0XZJYx/8eJFqtMk8tPT0ylmfHy8KLuk8j09PVV16vr6umOM09XV1XE7ei9dO62paxqj+7+6zO3tXPpERMT5+flny66u9txqrrde21pN7onrg+53um13jL295RTt2ung4GCq6+8r47q687abtImIuvOtGZfaaoNNj7GtdlMz5jo199KNudom2tT0mmidm2NqxlP3u5r77Y5b65reyyZt0tW5/ev9HR4eTjGubmhoqCi7tqTtxF1/d0x6Kd1lazrH1dBtu+tdsxZqOubWtFMXo223pk2637k+ULNmqxnzasYlp+k90d+569bX19cxxrfTzm3wJttpzb6arhdqYmrarpsrNKbptW1Kt127r5p+oufirlvN2tPFNJ0HasYcVduW9DgPDw9TjPYv94zsjknXIq4t6fm66+auic5XOp+5/ff1uWe0sg3UrvP1Wtp5/6K8vxeXeXxzY97+/n7Hbet9cu8NVlZWUt2XX35ZlJeWllKMXtvadlqj6rpVrOtr1uOuvdfMOzX7d/etpp3qe4OI/J7Grddq3hs0fUZta6y+zTH/UTGndm0qa56RasZTfe+p402Ev94fPnwoym7M1fau7/cifB/Qd3y3/Yyq/dnNg1ubW6lO37u6uVH798LCQopx4/Di4mJRrhmX3P1274t3dnaK8tHRUYrRezA1NZVi3Lnou1nnUfdn4JbwP2ABAAAAAAAAAAAAoCV8gAUAAAAAAAAAAACAlvABFgAAAAAAAAAAAABaQg5Y3As1OTpqcqlqTET+e/UuZ6LmQ3D5ETSXTkTdcWteAff3+tfX11Od5oerydtSk5+vluYtGRzI101zP4xP5PwQk5OTqU5zD7jrPTZW5pN1uVVcflnd38zMTIpxeSwes5S7x+RuvbzSHFcuT0/n3GSuD1ycl3UuT2xNLp+bzOXp1OQlqsnXVnNMLk+Q5vFwY5Cr09+586/J56ttIqJZHqimuYpr7rfNoSfnYs/jyuRZcwl9Ouzf5msz2w65Be6+6ZjvcsDW5J+sUZtnriaHne6/Nn+2/q6qnTbMbdmlNyDy/a7Zdps5YGty4dXkx6vJMfbY1fTL1AbMtNB0rmhLbd5KpeOJG19uW5M8zMhqc249pevrronmx6vJ9xrh16wq5yTN/asmL62j+3e56Nxzo+YOdc+/ui13/jXPVi4foJ6bXv8IP1/qtXPP5Pq82dvXLJ+xrZOB/+o6j7l6Lu76u3cQ2i5dm9A53V3/6enpjnUuRtf+jddLFbmhXTt1+Rf1Wrq+q9fEtQl3TNq+atpg7TXRdur6wG3mv8TT4tb1OlfUtmVtly7Xp9bpO7gIP1bd5lrTzV86Drm8uJtbm6lOx3T3rnJ5ebkou3yvNdfSzYM6Dtp3Z6Zue3u7KLu5Sa+T207Ns2zTNc1DULNeqJkHgSb4H7AAAAAAAAAAAAAA0BI+wAIAAAAAAAAAAABAS/gACwAAAAAAAAAAAAAt4QMsAAAAAAAAAAAAALSEbPHwKnJMu5Cmqbk18bdLKr6zs/PZckTE2dlZqtOk8YODgylmamqqKI+OjqYYl4xc9+cSneu5HBwcpJh3796lupcvXxbl3t7cXbXOxbjjrtHT01OUBwYHUszodXmdJiYmUoxe24iI+fn5olyT6L02Qb1y1+Sp0WvZ09uTYnoi1zVRc59qYlyi+5o6Pdc21ezfxTh6nO64tV9on/xUnf7Obfv6qjzOq+urHNPwfHU813LttmuuidvO5eXlZ8ufqqu9d53UbMfdNx2rau5tRF2b75LZ+drM4DXH3d1l9t/929vyp+I6HVPtuNBEzbabtmVH73dfX1+KcXU93e2M1Y9JzXj6EGxvb6e6tbW1ouza1tzc3GfLd+Gh3oP7huuY2/zm5maKWV9fL8r7+/sp5vz8vOO+xsbGUp32J32ujIjo7+/vuG1H176Hh4cpZmtrK9V9/PixKO/u7qaY4+PjouyOcWDAPNuNlM92s3OzKUbnJndt3Vpf1zU1z7Zu/dB07e3WVZ3s7e2lOvcOQsdqF6NriJGRkRTj3lPo9a45j9p1V5Mxxt1bPf+IiA8fPhRl1wZfvHhRlCcnJ1PM0NBQx2M4PTnNMZfNni31+rrjbtKWgBqnp7kt67zn3h2+f/8+1el7SPeubna2HOPdHNfa+7SGL5DdNdE5zr1jdXU6Nur5R0QsLy93jHHXcnx8/LP7ishjvHvv7OYGfXfhronOV7pWiPDHrdt2x6TjsHtGfQiavi+/yXcQeDr4H7AAAAAAAAAAAAAA0BI+wAIAAAAAAAAAAABAS/gACwAAAAAAAAAAAAAt4QMsAAAAAAAAAAAAALSkpWzaeJoaZlE3Li4uirJLmK7J57e3t1PM1dVVqpucnCzKLmH4zMxMUdYE6p/atia2d4m4z87OivLJyUmK0cTn7jj7evNxaxJxl1S8q6vZPdHf9fT0pBhNEO+u2/T0dKpbWFgoyu78df/Hx8cpxtVpWyI5+u1ybVDbjuuDqX+Z2+bvZFnb5cagZl0g7+mW25L2gdq+3KTPt3luuq3abetxd3fnfyOmde5ctS258cWN5zXHqftret3ccTe93/dNm+30rsfvpvvX39Wcq2vv7nfXNWPeE9NWO7ntPqfrw/fv36eYf/u3fyvKbjz74x//WJRHR0dTzNDQUJNDBO7c4eFhUX779m2K+etf/9oxxj1/ab/48ssvU4yuWaempj59sL+RjvvuuebDhw+p7i9/+UtR3tjYSDG6zpmfn08xc3Nzqa6vvzzfsbGxFKMGBwc7xtwkt6Zz3DzbKeb09DTFrK+vp7o3b94UZXcv+/v7i7IblzXGHdNd07krIuLjx4+p7k9/+lNRnpiYSDH6nubZs2dVx6DPm93D+Rq5+bLGY1mP42HQNez+/n6K0fWhznkREWtra6lOxw595xkRMTs7W5SHh4dTjHsP2IQ+w0REXF3m8Vvf57n5W9/DuvfHrk7nKzcPLi4uFmV33dzcqO9G+/sHUoyu0d123Ps0bRfv3r1LMVtbW0X5559/TjGOXt/l5eUUo2sI9z7v4WKMx+24X6s5AAAAAAAAAAAAAHjA+AALAAAAAAAAAAAAAC3hAywAAAAAAAAAAAAAtIQcsPAq/gx603wYLk+L5knZ2dlJMZrfRnMCRUQMDOS/s6+5evRv80fknCQu98H5+Xmq07+X7/Ju6f7ctl2e1MSltrzjHCW6P3duU1P53FZWVsrtmJM7Ou6c12Fvby/V6T1pmv/lJmleC1fnjrtJXsHaOL0HLkdHDZcjRPNYuJi2covg8XBzhY7DLvdjTc5hAI/HQ8jP5uZ9Xde6HLA//PBDUXZrA13nunxWLv+j5gZz69xbzcNsc7+7/Xd9ptQut/+0ZnUH0Pmwb9+1FivOrUXdPWV7cznOavqJy4n6448/FmXNkRrhc3JqXje3XtC+MzOdc8G53+laxPUlfY5xz78ur5/mG3UxekzuGdk9S2tePS1H5Nyl7r7VPH9dXbmOUtbVPDO4ttSUbtudm7tPmgPVXW/Nd6rlCP+eQu9l0zmvrbnS3RN3vvpewO1fn9vd877rXzp/uTy59y137n1U86zl+rK7l9oPXb98COu1Nun1dfNAzXvQ1dXVovzrr7+mGJeb+eXLl58tR+S8y+Pj4ymmrTHWnb8bY3VccHOVjhXuurnx5MWLF0XZ5Z3Wd5VuXe3e+7pxUOm1dNfbHbeOp24c3t7e/uy+PnWMum2X67421/p/5nKou/tdQ9enuqaM8Oer/cLlWD45Kfuga6du28wx+K1oMQAAAAAAAAAAAADQEj7AAgAAAAAAAAAAAEBL+AALAAAAAAAAAAAAAC3hAywAAAAAAAAAAAAAtKSdbNp4dLq6ulKdJvp2MUnOXx1HR0epTpNh7+7uppi9vb2O+3dJzOfn54vy2NhYihkaGirKLsm2SyJ+fn5elI+Pj1OM1m1sbKSYL7/8MtVpovMmic9vm7tu4+P5ei8uLhZll4z9zZs3RXlzczPF6H2LiHjx4kVR1nt0266ucidwyd/1/La3t1OMnov2yU/VaYL4nm4TYxLZq8vLy6Ls+uDo6Giqm5qaKsoTExMpxh03npbr67KvuHlA+4nr3zoPzMzMppjBwYEmhwgAic6Ne7t7KWZzK69h3r97X5bfv08xZ2dnRdmtBXVd+erVqxSja+iIPIe7tZiOy07V84BRs+2npum11Oeta/cAdsfSWtSs+7QvRURsbW0V5fX19RSj/WR4eDjF9PX1pbr+/v6i7J5RV1dXO25na3sr1ekzkeu7h4eHRfnDhw8pxvVdvZbu2Vb37/qbeybV8ePg4CDF6HVz51ZT58Yc7QPu3GZmZoqyPmdE+GfSGrp/1yZdO9HrNDg4mGJ0feqeh1zbvW/PSO7cnj9/nuoGBsq1tntPom3g9evXKWZnZyfVaRuYnJx0h4oOXB/UccG9k3Btcm5urijrPXqK9Dn15OQkxejzrs55EfkeuO24PvDs2bOirO/JIvK70pGRkRTT1hjk5iHXBnVOd+er86ebK3U7EbldLi8vpxi9bq4tu7H6Jun86d5N6ztGdy/d79w9ULrucHQeXFtbSzHuPum5ufamc7M7Hvc77YOuf2mdW7/ofPap/QGfw/+ABQAAAAAAAAAAAICW8AEWAAAAAAAAAAAAAFrCB1gAAAAAAAAAAAAAaAk5YJ+gpvmcav7uuzo+ybk+XP5LzX3g/ja85ltxOWFcDljNR+FiavLkuFwy+vfyXZ4BPe7Z2ZyP0NVpnhT3t/nvW55Y10Zc7gG9Jy6vg+Zccjmf3N/d17bktq3X0t1b1waa5Oa6vs73xPWBX375pSh///33KUb7hcvBo3mZIvL5ufxVWufOX6+lu98rKyup7ne/+11Rdrl7XR2eFs3R4fr8X//616Ls+pLm1HY5O8gBC6AtOnatrq2mGDenN8m16NTkxnbrBXXXa0g8brqGdmvqmrWn6ye6hl1cXMzbvsrb7u4p17GuD7x7964ou/z0rp/qGtmdm/ZVl1vU1Y2OjhZlt4auybnrcsDquqrpuTmaT9Wdmz6zfPXVVynmD3/4Q1HW6+G2U0vPxeWAdTn09F66tae+g3DvJNy9vG955tx84p7/9Hnf5d7TefAvf/lLinHXRNuAy8dYM38+de7d1cePH4uyW7/UjDkuN/N9a8s3TccFN3/o8657/tVx2Y1v7n2izoVLS0spRu9Tk3e+1cxUUTPGuvzROn+4tYGbmzT3to5TEflaurHavU9roiYHbkSza+LO3/VBrXPtS2Pceknbt77f/FSd9hM3x+j+3RrS1elxunfD2nZcm3RzepN3w3ja+B+wAAAAAAAAAAAAANASPsACAAAAAAAAAAAAQEv4AAsAAAAAAAAAAAAALeEDLAAAAAAAAAAAAAC0JGdXxqPSFTkxdE1idZdUWxOEX1zk5NTX1+XvNGF8RMTW1laq29nZKcqHh4cdj8klwh4ZGUl1Y2NjRbkmYbpLqO3219/f/9my+53bjks0rknUNTl5RMTZaZmg3SVs12Ny97+mTdRwCdtHR0c7/s4lkZ+amirK7hhdW9rY2PhsOSJfE9du3L1059eE619671zf0X7irq07bm07p6enHffvYnT/ri1fX1+nusWFxaLszr8tl5d5XNI6d4yuffX09HSMQXv0Prk+8MsvvxTljx8/phjtzy9fvmzh6HAXtE24/l3Tn7Uvu5jbpsddM3a53zluDYPOXJvQed/NX9vb20X5/fv3Keb7779PdT/++GNRHh4eTjG6FnL3Vve/traWYlxbUrQb3KaasSwi90G3Ftc6tz6t4Z6jtD+5/l0zVrv+pWNOzblF5DnNxdRcX322j8hjnHseaEr3d3BwkGL0Od09I+p2attSjYtzfd+Rr5Hbn7a5iYmJFKPj+eTkZIpx80Bfb+d3F7fJralcnd5Ld910Xa/lCD/v6vud6enpFDM3N1eU3Xuxs/Pc51XN+br+rcftxgl3bk3WeW794t55aXvW9UNExLt374ryn//85xSj1z8iYmZmpijPzs6mGL1P7lzdO68mfbxmzI1o73nfHePJyUlRdtdb55TV1dUUo+Ogewfk+oDWuTHHte+bch119/vosHwPure3l2J2d3eLsr6n+tS2db50/UTrXJuoeZ/l2oT+zs1x7l24vhvWstt27XtnjatZd7jz1+PWsSQi4n//7//d8Xc6V0bkd5y1Y4KOAzVzVe1aTJuza9/Af8bbZAAAAAAAAAAAAABoCR9gAQAAAAAAAAAAAKAlfIAFAAAAAAAAAAAAgJaQA/axM+mcavIauHwnmgPm+Dj/3fmavBIub6f+XX/3N90114HLPeH+zv1N5jXQ43TXTXM/aDnC/+1/zYvj/s7/wWEZ4/IFaN6Yvv7OeQ4imuUCc9fa5RnQbbu/8695Q5aWllLM5uZmqvvwocwJ6fK7aj6IxcXFFOPyljTJAeuuozumlZWVouzuieamctfW9R3tc7/++muK0Zw7Loec5uScn5+v2n9NPsa2uLyh2k5cPpDx8fFUp7lsmuYUQx3tX26u0vxJbsxVt5nbBu3Sec+N+SfHeU4dHSvXC9qXIyKGhob+zqP7+2hbdrmLXJ2uF9wcQ5tvpmkOWJ1j3fzp1mc1OdxqXF11XovW5DF0bYm8sGiLtje3Xqxpb037idt2TQ4x7fNuDdm0f9XkkawZz11uST0mt4atyZvp1sf6jOLGxZrcli7nrt5f9zymeQybPJ9F+GM8PTvtGOPWDwsLC0W55rjdtXXPiE3P775xz7aa18/1b7f207yZLufu/l75THh1ne+la4PaV9x7Cu07ru/qWLG5md+B7e7upDrtu+6aaF3N+iUijxUbGxspRutcHmg3Lunax+Up1XeDbuxy90T7Yc2Y496TuByoen9dHuYabj7Rc9G8pRE556t7V6r317V3d27alpvOn22puUYREfsHZd91Y4C20/X19Y4xEfkda01+Wdfems7NOi64XOjuOULPz52vXl83n7h+qW1ex+WIPMa5a6Jjl3vH7Y5bn/fdeqVmfeiOqabN672sXp9qFSlg0QH/AxYAAAAAAAAAAAAAWsIHWAAAAAAAAAAAAABoCR9gAQAAAAAAAAAAAKAlfIAFAAAAAAAAAAAAgJbkzOx4VFzS6ZqE4S4ZuibRdgnD9Xfb29spxiVR19+5Y9Qk4mNjYymmtzc3aU3GXXP+jkvqrcd9eHiYYjSxu0v07n6n11uTk0dE7O/vf7YckZOYd3XnBOJ9fX2prgnX3mrqXDL46enpory0tJRiXGL3d+/eFuXDw9xO9Xq7NjExMZHqBgcHU10nLmG7a7tffPFFUXbnq9ty9+3i4iLVffjwodNhxtraWlF2yeeHh4eL8uTkZIoZGhpKdX395XG6ftqWnZ2dVPfDDz8U5YP93Ca+/OrLVKf3SfsS2qX90LVvbYOuL+l9usn2hpulc9rf/va3FLOxsZHqVlaeF+XhoeEU48aq26RjtVsb/fTTT6ludXW1KLs5Ns37Zh5C5q6TXl83N+paxK3z3Dg0Nzf32X25Y3LH2NdXbru3dyTFuOMGHoKaPqB1rr3X9AG37f7+/qLs1iZN+1eTc3Pc2l/HJfcMo2NQRMS3335blBcXF1OMbsvt//Ly0h/sf+KerfV89fpH5Pm79p7oMZ2enqYYvW7uGPWdhDuGmZmZFDM+Pt5xO495zeruiV439/zt1kfv37/vuD9tJ+79lqvTe/fdd9+lGH0GdvO3bvv9+3cpxq3z9D2Fe/7UdlKzfonI98C9X9rd3S3Krp26dye6PnX9S4/bjR3udxp3cnLSMWZ+fj7F6PgWkcczfdas5dr3+fl5UXbrQ71u7p7Mzs4WZTe+1LwbdeOyayc3xV0j1wf1+c+NAVq3tbWVYt69y31O4/QdWERu8669uX6p11Lvf0S+v+7dlRvf9H2etpuIPH7qnONiIvK7WDfv6rm5ubHTbyL887e2U3fcek/cmHd15dZiZV3NWOlieI5CG/gfsAAAAAAAAAAAAADQEj7AAgAAAAAAAAAAAEBL+AALAAAAAAAAAAAAAC3hAywAAAAAAAAAAAAAtKS3cwgeMpdAuqenpyi7hNIu0fju7m5Rdkm1T09Pi7JLmO4SjetxuiTymujcJQfXc2uTS1qv10kTxkfk83XXdnZ2NtXNz88X5cHBwRSjid3dtvWeuO3cNm07w8PDKUYTxLtrtL6+nup++OGHovxv//ZvKebg4KAoz8zMpJjFxcVU59plJ64Puntwm/dlb28v1WlfdePC0dFRUR4aGkoxNf3k8PAwxej9rqV9bm1tLcX8+OOPRdm1m77+vlS3sLBQlEdGRlKMtuWrq6sU4+qekt7euqWGtgsduxw35l9cXBTl4+PjFOPuCffy5tS0AXefNjY2ivLf/va3FPPq1atUp/dpYWE+xYyNl+N5X18eA3QcdONbzTrL0TXVx48fU8z333+f6v76178WZXfcOle59RrquLlQ6fV199/V6bxfs6+a/QNoxo3nru6+cXPT2dlZx9+Njo6mOn3e0rXwQ6HPyBF5naHPgxF5bnZrE9cm9FnWPTNoTO36uGYtUjN/tNWWm6573POf3ie3Hbf21jWTe7bVa+Lut3vW+Prrr4vy5ORkipmbmyvK7h2BvgN6+/ZtivnX/+dfU936Rvmc6radnsHN7b92laJmvdL0nrx79y7FaNtx23brWv2dvpOIyO8b3NroxYsXqa6tZzs3Vmibc+9Bt7a2irIbF8bHx4uytr8I3071/eldz2dunHLXX8cFfbaPyO3km2++STEvX75Mdbr2dmOA3jfXlty7O23Pbh7Wd1d6/12Mo+NURJ6vV1ZWUoxrO/oeTttNRF3b0d+597fuPunc4K6t3gPXlnp7eR7C/UYLBQAAAAAAAAAAAICW8AEWAAAAAAAAAAAAAFrCB1gAAAAAAAAAAAAAaAk5YB859/fqa/KNuBwdmovN/b18/fv8bjv+77V3Pqaa/AzufNvKC+tyD2iuh+3t7RSjuTXdebj8BJrrQXPCRuQ8uDU5C5vmGLtJLp+v5jZxeYpc7ljNi/M//+f/TDG6rT/+8Y8pRtu725/bf00uuNum5/vs2bMUo+3C5cX98OFDUdY8SRE+B4/mhHH3W7dVm29G9+fyKOq2a8a3iJyrx+WT0vwjbpy4vHwIeUPduNAsT4ymCHH30o3Vmm/F5erVeceNZ3q/379/n2LcvdR5yN3Lq6ua8bPmWtZsp/b6t7mtJsr91+YG0zrXL3XMcbmTXB4onXddHirl8t1oG3B9ubs7n6+2JTd26TG6/NVuPNV8Qi4XnF7bu8759JDVrJl0HnBtqSZPq7tP93HNBuB+qcmr58YX9/zt1ugPkZt3dZ2h83BEXnu6GLfu0Gctt+6ped/h1qf6jOKev3Qt4PbljqlmfaDtq/Z9i/7OreH0+rqcie5cNE7zf0bkNZzL0enW+pp/0a3Pfv3116Ls3lNoW3LPmodHee1bc24178Vq1g+uv2v+RXe/3bb1+rrrrbkm3fstV6fX1/UTvW76Li3C5790+SaVnq8bA1z71r7qfqd90B339PT0Z8uf+p3e37t+Hqh9RtR7ou0mIuc3dTGunWpeUpdjWY/Jbcc9f2m/dO3UjTnKvWPU83VtWd/fuXfMi4uLqW5yYrIou+cY5cYFbYMuT23KXx15rHR5cfU9e817uU8dJ3BXaI0AAAAAAAAAAAAA0BI+wAIAAAAAAAAAAABAS/gACwAAAAAAAAAAAAAt4QMsAAAAAAAAAAAAALQkZ7THo+ISnff2lrfdJRU/ODhIdRq3t7eXYmoSlmsy+E/VKU20XZPAPKK9xNtuf0dHR0V5c3MzxaytrRVlvf4REc+ePUt1miB+eno6xWiCdpfEPiK3gfvGHbcmUR8cHEwxLkH9yMhIUR4bG0sxek+0HBGxurqa6jRp/NTUVMf9+3tyu/RaLiwspJjR0dGiPDk5mWL0/H/44YcUs7W1lep+/vnnory/v99x267fXl1dpbrT09OO+9dxUM/1U8f0008/FWXXJvQ43TG6cfApcffSzU16L3d2dlLM8fFxUXbX1o3D6sOHD6mOe3lzatrA+dl5itne2S7Kl5eXKcaN8dpOXr16lWJ0rHBjtbYBd/9dW9bzdb87PDwsytvb2ynGHdPi4mLH/evvXAzq6L3rMmuqru6yrnbMYzwBcFOajvuPZVxy6wV9bl9fX08x7969K8pubj47O0t1+qxVu15Qu7u7qU6fo/T5JCKvod2zztDgUKrT+avp/XfrFd2Wrs0i8vm6GPcOYGBgoCjXzLHumri1vr6Xcu8JtH3p8UTk92nuWXN8fDzV6TOxe3dU836rpg3WrGGbrl/cNZmfny/K33zzTYr54osvUp2+c3H713eFrk3qe5qI/D7JbVvbpeun7vlTn2Xd2KHHNDMzk2L0PeDExESKce1b2/JdPw+4/evYGZGvib4Xjcjjgru2jm7b9UFtE+4Ym15LbZfa3yMi+nrz/vSeu/at7+/m5uZSjLuW2nZq3s27MUiP0Y3dU5P5/enbd2+Lspvj9Lld57xPHVNb3wKANtAaAQAAAAAAAAAAAKAlfIAFAAAAAAAAAAAAgJbwARYAAAAAAAAAAAAAWkIO2Eeu6d8819xkrs7lo9C/l1+TZyEi51rQHA4ROfeC5nFxMRH578O7fBS6/5OTkxTjct5qXoeNjY2Ov3v58mWKef78earTPG/uumk+Anduvb1lfoD7+Hfwa/6Gv8vPoNcoIuKrr74qyv/tv/23FKM5WVze0Ldv36a6mjwaGuNyH9y2mlwTNTlYtS2/fv06xbx58ybVac4bl0u1aR6NJrls3NhV078fS16s+6rmXtbE6H1z/Zt7+TDU5KFyeXl0faD50yLuvg00Gbsi/FoAAPB0Nc1F7nLm6fzpcqm63HP3jTtffb5368P3798XZZfr0c3Nmo/e5RatOcbzs/wORNe1Lq+9voNw72Bq8vrdpJp1vbu2bp13m1yuYM0LW5Nv1Z2buyd3fZ+aqmnzNbk9l5eXU532r5vkzkPfMbrc0K6d6Bjjxlxd12sez4icW7Mmb2lEHqvbzA2u16kmxr3zC/M4pu1EcwdH5LzANe0vIo8nrr9pjOu7NedbM+a597fud3ov3e+0n7hcwa4vuXdjndS8B3XX1rXTs/OyX3z48CHF6LV1fcldE+A+uX9fYgAAAAAAAAAAAADggeIDLAAAAAAAAAAAAAC0hA+wAAAAAAAAAAAAANASPsACAAAAAAAAAAAAQEt+e7ZlPHiaMNslED8/P091mjS9JkG9S47t6jTRudt2TRJ5jYnI5+KSgV9eXhZlPY+IiK2trVT37t27ory+vp5iNKn53Nxcinm2/CzVLS0vFeWapOIugfrg4GBRdteoLdpGIiIODg461rnf6XFOTk6mmO7u/G9I9BoMDQ2lmNXV1aLs2pJL/q5tZ2RkJMVMT0+nupvi+q47lyZcP9Fr665/zdih/S0i9/nac9Njcv1E+0DtcZ+cnBRlN3bpcbZ1/R8Tdy8d7fN631ydu94X5xdF+fgkj+fcy9tV0wbc3KT92bUJ97uaOV3bgFt3NG0DNeerY6wbu9w4XDOH1/Y5AMD/x42dOp+4ucLV1WhrjnFrWD0mXdNG+OfWX3/9tShfXFykmKmpqaI8PDycYgYH8nzd1X1766qae+nWgkdHR0V5b28vxbh5uOYdyOVFuX93/4eG83Pr0lL5TuAPf/hDitHn1p2dnRSzvb2d6vS43buEttYd+r4nIq993Fqorf3X9jftO+5ean9yz7Z6vm4N69Z5Ncd51+s8t/+aY9JncHdvXTu5Te766xjr3m9tbGykOu1zri1pm7fjqbQd15aaXjcd43UMjPDne3xc9oGLi87zkGPfX8r84a6JtjfXB52aNujeFXXaf0Q+X3f+NWuKmnec7n7re0/3HtRd79tU0+d51sVjxf+ABQAAAAAAAAAAAICW8AEWAAAAAAAAAAAAAFrCB1gAAAAAAAAAAAAAaAkfYAEAAAAAAAAAAACgJXebgRk3ziWR17qaBOIROUG7SyKvCepPT09TzP7+fqrTRONu/5qM2yWDd9teXV0tyr09udmfnZfncnx0nGJ293ZT3Zs3b4ry2tpaipmbm/tsOSJibj7XLSwsFOX+/v4Uo/fE3W9NtO4Sr7vfNXF8nK/b69evU92rV6+Ksks0/9VXXxXlpaWlFDMxMZHqapLPT01NFeX379+nGHcv9TjdMV1eXqa6m9LWfXO0L0fkc7u+ymOHa1963UZGRjru341LNeOZjhOf+p1yx61tZ2BgoON20Fy6l93N7mVPb/k7NwZwL+8fd2917HBzhaNxg4ODKcbNqbep5tzcNXFjIwDg82rWD24Nr+vhk5OTFKPPY03335Q7bj0m94z8yy+/pLqtra2ivLi4mGL0Ge3li5cpZn5hPtX1RF7X3SadZ90zg8a4e3t0dJTqDg8Pi7J7B3J+kZ+t1OTkZKr73e9+V5T1OTYiP8v+/PPPKebHH39Mddp23Pq4rTWz6wN6D25y3dP02bKvry/FaDtx265pbzXu47qv5ro5+u6g5p3jbatpg+6d1+5ufleo4647X30v4tqb1jVtS46+093Y2Egxb9++TXX6jlXHwIh8vu7d3fPnz1PdyspKUXbjot4n125q+k7t81eTbde+Z69R89yo7aLNdtKWmj5fc41uck0F3BT+BywAAAAAAAAAAAAAtIQPsAAAAAAAAAAAAADQEj7AAgAAAAAAAAAAAEBLyAH7yLm/O1/z9+pdbjSta5qPoubvtdfkedvb20t1B/s5L2zan9m9nkvtddP8LjMzMynm5csyL47mdv3U78bHx/OB3nMuL7DLI/HDDz8U5bGxsRSj183FuLx+mqfG5T7QPBonxzmfk+apjcj5bDUnT4TPCfIQXV3m3Auaj+E6Oue7icjX240vd53HwR13bb5J3C9N84bi8aANAAD+s5rnVvfMoM8a7tnjPuZorOGe2/T5x+U1HB4eLspzc3Mp5iFck5ocer29+XWZy7mrzzHu/N3vaug7AfdMrMft3pO8efMm1dXkO20rB+x91HRcuMncig+h7zSl7w5crsem/aQtbv/6zu/gIL9z3NnZSXWaM9z1Xc1vOjqaY7QPunGpKc1zvrm5mWK+//77VPeXv/ylKLsxR+eKb7/9NsW4PON6vrqdB027t3sF5oaAR5Ly1PWv9I6xYgy863eHQBO8kQIAAAAAAAAAAACAlvABFgAAAAAAAAAAAABawgdYAAAAAAAAAAAAAGgJH2ABAAAAAAAAAAAAoCXtZe/GvVST2L6/vz/FTE1NdawbHR1NMZoQvibJttPT09Pxd/v7+ynm/fv3qe7Nmzcd97e8vFyUXTL4sbGxjsfkEoZPT08X5aWlpRQzMjLS8RgfgoGBgVTn2tIXX3xRlIeHh1OMXu/+vtxOHf2da4Nat7GxkWKGhoZSncatra2lmLXVss5tx7Wlvr6+otzdfbf/PuY6clvW63Z+fp5iTk9PU11XV1e5bdNPNAYAAAD4rdw60z0PKPdsq89xExMTKcat9ZV7/nXH2UTNGtrty63ZDw4OirI+n0TkZzv3/HfX6/quaLZ/PV/3HKvvOyIi5ufni7J7tm3r2c5d28HBwaLs7ptT8y4Dj5e739om3Nh1cXGR6tx40ul3Ne8Fm3LnVjM3uHeMOzs7RXl3dzfFHB0dpTodG3WciMjvIWdmplOMzjFtvifSe3BycpJiNjc3U9329nZRnpycTDH6zk/LEXmOjcjj2aNSMzU94tdiru1qXdM1DXDf8T9gAQAAAAAAAAAAAKAlfIAFAAAAAAAAAAAAgJbwARYAAAAAAAAAAAAAWkIO2EfO5Wc4Oz0ryi4H7MzMTKr78ssvi7LLYaB5Dmryb0bkv/PucqtofgKXt9P9LXjNC+v+7vzLly+L8nfffZdi3DVR7nrr9XX5hdw9eIhcblNtNxE5n467JxrT1V2XDEHbkjsmzW3hck+4+72+vl6UP378mGJevX5VHo85bpcHWPd3123C9SVt34eHhynG5UTRe+Lyvbi8zzXHBAAAAPz/ufXi2dlZqtP1qcvbubKy8tlyhM8Lq9wzYlxrMR+3y2WqUTXpVmtyPUbk43TPaCMjI0V5fHw8xdx1DtiaHHruGPVdhstF6M53YWGhjBnLMbV5WZvQ+1aT8zjiHtwn3Jiae1vzrvD0LOd2dflet7a2Ou7/+Pi4KLt22tbzvtuOy2+quVv1PCLye0f3vsONpzpWLC4uphh9L+TeQek4dNv91r2n0dy17v3p73//+6Ls3oG58fSu34M9db4LlpVN26BrS/ruvybHMe8F8RDxP2ABAAAAAAAAAAAAoCV8gAUAAAAAAAAAAACAlvABFgAAAAAAAAAAAABawgdYAAAAAAAAAAAAAGhJb+cQPGQuGfzp2WlRHu/Kic9dMnRNGr+yspJi+vr6Oh7T5eVlqtMk3jWJt4eHh1Pd9vZ2qnv75m1R7unNib/1XL788ssUMz093fGY3PXWBOEuYXnTJOb3jbtvMzMzqW5qaqrjtvSaNL1GmtQ9Irdvd4yufe/v7xflk5OTFPPmzZui7I7bXafBwcGi3N/fn2JukztuvZauD7qxY2BgoCi789d+AgAAAPxWbk15dnaW6nQ9qmvxiPyM4J4PJicnOx5TzTPifVDz3Krcuv4hPNu666/vMtyzztzcXKqbnZ0tyiOjIynGPZM24Y5b36/Utq22nrdx//gmUFb29OT3Yv0D5TuI3r7cbvXZ/j/213ns0DHW7b+tNuj6gHt3o+8PV1dXU8z6+npR3tvbSzHuuGveOenY4d6ltDV2ODXX290nfZ/34sWLFPP1118XZXf+uH98k2inX7q10MXFRceYdDTMVXiA+B+wAAAAAAAAAAAAANASPsACAAAAAAAAAAAAQEv4AAsAAAAAAAAAAAAALeEDLAAAAAAAAAAAAAC05Oayef+/Li8vi7ImWI54uAmUXWJ35c6tu7v7s2XHJaKuSU59fn5eVaf6+/tT3fDwcFHu6+vruB3HJXFvwiWoX1paSnV//Mc/FmV3vRcXF4vy2NhYo2OquZdNufZ2k31H28nh4WGKOT05Lcq9fXlIcdfSta/bNDg4WJRnZ2dTzO9///tUNzQ0VJS3trZSzOlpeU1WV1dTzMDAQKrT/qRjZ0TE6MjoZ38TEdHT207/ctvW6/SHP/whxbh+eXBwUJRPTk5SzPHxcVGube9Nx+G2tqN1bgyoOW43nmtMzTF+an+dtl27HT2/mmvS9L7VzHtt3X/grjXt3zVjDn0AQFuarlfaWi+5besxufcNbu1Z89ymzyz6LFDrJp8RHwq9d11h5qYbnK5q1t6q5p2Iq3O/ow3gpri27N756Rg7OjqaYqanp4uye7Z37wl0jHXHND8/X5QnJiZSTG/vzb2iPjs7S3V7e3tFeWNjI8XoO5+jo6MU4457ZGSkKLv3Ylqn76luWs0zgruXer5ubnTtC4+Xrr3OTnN/297ZTnXr6+tF2b137u4q50/mWDxEtFAAAAAAAAAAAAAAaAkfYAEAAAAAAAAAAACgJXyABQAAAAAAAAAAAICW3HgOWP37+Pv7+ze9y1tTk6/L5TvVv+tf8/fLXS4bzZkYkfNGujwHmg+iJs/fp+ruksuzoHklInK+TXe+k5OTRbmtPLU3LeXSaTHPm+YyffPmTYp5//59UdY8FxERX375ZapbXl4uyredn07b8tTUVIpxbUDbyYcPH1KMXqednZ0U8/bt21Sn13t3dzfFaK5i197byrXh8o9ojmV3v10+XW0nr1+/TjHb22U+CDd2uTHI5cpVbeVEdfvX8dtdN9eWNJeKy02m16AmV1VEe+frxlgdT2vmr9r+rffS5S7SflKT05z8l3gIanPAar90OcW1X9au32qPAcDDVzs36rjgnklr5uaafHEur6DuX/fl6lyM5vCLyOsz92yt5+LO343DyG5zPWb3JVOcW1fXPFfUvCepzXEMdFKTG9s9N7t3EErzvUZErKysFOXnz5+nGPe+QcdGN1bqc3Jtftkm3PO3W+fqM7h7X31wcFCU3Rzn3gFonZv3muYVb4teb3fdasZThzHvadF8yh8/fkwx7969S3Vra2tFWd8LRkR0dZdtya277tv3CkDRQgEAAAAAAAAAAACgJXyABQAAAAAAAAAAAICW8AEWAAAAAAAAAAAAAFrCB1gAAAAAAAAAAAAAaEnvTe9Ak3r39/enmIeanNslcVcuEbQmNq85f7cddy2vrq46bkuP253H5cVlqnPJ5u+SuyZTU1OpbmJiouO2mtyT22aPqXMTbOzo6Kgou4Tp//qv/1qUZ2dnU4y7/hrnkqjfJL2WIyMjKcbVjY+PF2Ud3yIijo+Pi/Lu7m6Kef/+farTJPWrq6sp5uzsrCgPDQ2lmNHR0VTXhLsnWjc5OZli3DFdXFwUZT3XiDy+uLHMHVNvb+dprGl/1rHRbUf3X7svjas5DzdWt3Vujo6Lrq5m/zX7ctvq7s771z7njrHmvgH3TW0/0Tbv+gBtHkAnTdcU7vlL52b7/Ctzuotx9JjcmKfPxO483Lpej6FmTXF5mZ+Rcf/Y9xtX5b1z7zb0mcVtp+b9Tm37Bm6Ke5bWsdK9O1teXi7KL1++TDH6TiQi4vqq7CvnF7l/5We93E/a6jvu/F2f13deBwcHKUbfwbh3Eu4dzODgYFF2c8xd0+tUuza4ui5/p2NnRL5u7v01Hia3Ftre3i7KP/30U4r593//91S3v79flF3/0nHhMX1XwtPByhAAAAAAAAAAAAAAWsIHWAAAAAAAAAAAAABoCR9gAQAAAAAAAAAAAKAlN54DVnMGfPXVVynmIfytbneMWudi9O/eR0Ts7e0VZZcjUv+Gvsu16HI2aA4e/XvqERGrH8vcku7v/O/u5WNaX18vyu5vs4+NjRVll+fA5XVo0gZq8jHeOL10t92UK/anbcn9vX7NfRERsbm5WZRdW9b8H66d9vfdba6HNvNmav6oycncB+fm5oqy5kKIyGNARM6xu7GxkWKGh4eL8vT0dIoZHcn5R0bHOueF7dLGVHGJ3HXUMSAijxUuJ4uOCy6f8OLiYqrTnLM2R0lFbpOaccnlNjk8PCzKOzs7KUbzAkfk43bnprlkanKTReTzdddEz9dt5/T0NNXpnOLasp5vzf2OyHlyZmYmU8z4eNm+9DcR+Xzd/mvzbQI3pSYPlmunOhe7XFXaT09OTqqOSfMuP4Dl+b2g98ndN8ac21XzjPYQnj9rNWmDbm50dfpsOTExkWJ0/e+eEc9Oy7Fra3srxbjnVs3z5daHNc+fbhzUa6K5D2u3jfvH5XrUda1bn2uMGydc7jmtc+8kyAuLGjV5p7UtuZys7j2Bvj9072b1XYbbttPVXfaVNvN91qyhNMY9o7r3rlp3cHCYYvRc3DsvNzfpuxs3D+m7Ip1zI3IbcHN1zbtRdx31nZ+bh2tyn7vf6fus2vdyNbm429Lmu8Im+3P7qjnfmmNsem59vbkNav92/evjx49F+c2bNynml19+SXXannUMisjvzvxzc6qK/MIeuDusAgEAAAAAAAAAAACgJXyABQAAAAAAAAAAAICW8AEWAAAAAAAAAAAAAFrCB1gAAAAAAAAAAAAAaElv55C/z5dfflmU/+mf/inFuATK901NUnPHJSN/9epVUd7a2koxh4dl8veXL1+mmO+++y7VjY2NFWVNqh4R0dNTHvfHjx9SzPv371Od3qeDg4MUs7CwUJRnZmZSzMTERKq7yUTnN+q+HbbJMa4J0j98yPd7fX091Z2dnRXl8fHxFLO0tFSUJycnU8z09HSq6+npyQd6Q26ybQ0M9Kc6Pd9nz56lmKOjo1S3urpalN19evfuXVFeXFxMMcPDw6nu4vKiKGsS+4iIwYHBVNfExcVFqjs+Pi7Ku7u7Keb6umy8y8vLKcaNeVNTU0XZ3W89Jt1XhG+TWndycpJi9J7o2B0Rsba2lup0HPziiy9SjF6DwcF8jy4vLzvW1cxf7prs7Oykul9//bUo6/gSkc/XtXd3LisrK0V5bm42xeh1qhlfXJu8urpKdcBt0n7p1pSuX2qfc+u1169fF2W3FnUGBnQ9ft8WObevZg2hY66unz5VVzNWP9j1cUtcH9A6d436+vqKcn9/Xq9pTETdM6k7prbU3G83f52fnxdl19405vT0NMW4Ol1nPX/+PMV8++23n/1NRF77/fu//3uKcWtffZZ062p9TrZrYbMW0Dr3O322ce0GN8f1N+0nbi3s2rI+j7h3GRpT+8zQ11eOMW5Of+rjOerUrCn0OWp6Or9zW1nJY6W+u5mbm0sx7l3dXdN+WNO/3TvWjY2NVLe9vV2Uz87ytvV5U59ZI/x7Tx0H3LtZPaaaNUbNuBiRxyr3O31GcO8F3fyp3PuOvt6+jjHuuLUP3OS6C/keuDlOY9z7nY8fP3aMGRkZ6Xg8vT1NP1PRTnC/3f8vnwAAAAAAAAAAAADwQPABFgAAAAAAAAAAAABawgdYAAAAAAAAAAAAAGgJH2ABAAAAAAAAAAAAoCVNsxtXW1xcLMpfffVVinFJnh+Cvr4yqbhLIL6zs5PqNEH8zz//nGJOTk6K8uzsbIr54osvUt3ExERRdkmuNSH9+/fvUszr169TnSZNX1paSjHfffddUdZrFBExNjaW6rq7+bcAbbg2iccPDg6K8t/+9rcU8/3336e6hYWFovxP//RPKebLL78syu7eun5xff0wE6RfXV0VZde+Jycni/LZ2VmK0XsSEfH+/fuirEnsI3IffPcu993BwcFUp9fbjSf9/f1FuburWZ+8uLhIdXoNzs/PU4y2naWl5RTjxry5ubmi7Nqb7s+1v97ePB3q3HR0dJRi1Nu3b1Pdhw8fUt34+HhRfvbsWYrR/jU8PJxi3PW+vLwsyu6aaNt112RjfSPVnZ6eFmV3vnq9XXt3x6Rtd35+PsW8fPmyY4zeN3eNtC8Dt037gJtPXDvVNZxr36urq0XZzUOOzgOun6Izd92arnOf+j1wc5PWuWukdU/tOta0QTe+6BwfkefUmZmZFPPixYui7ObmjY1yTeHWRu6dgK593POnrpd0jRWR10YRERfn5fjZ1Z2vmx6TWy/i5rgxQO+lm+P0fUtEXse79an2gZo1dEREf39Z19uT28lTG4fQjI7NblzW9drk5ESK0XHZ1dW+u7lrOg4cHeX+vblZzjG6Fv5U3e7ublF25z81NVWU3TykMRF5jHnz5k2K+fXXX4vy4eFhitExp3YeqrmX+hxxfHzSMcZx7670XXjtcT/Ud4WPRU27cWuqs9PO7/z0e0XT/dNG8BDx1QsAAAAAAAAAAAAAWsIHWAAAAAAAAAAAAABoCR9gAQAAAAAAAAAAAKAlN57ERPMTDA0NpZiHmgO2hssFoLk1v/766xSj+QJcfkCXg0ev9+joaIrRe+D+fvr6+nqq07wp+/v7HY9J8/Xh9nVF5zxY2m4ictudU2soAAEAAElEQVTR3KYRPsdS1THJMbg2eB/zj+gx1Vw3lx/B5fbQ/Ngun5Hm33C5Ntx4qnm/XJ5YzRftzq2G27/menC5wDUnyPJyzq0yPT3d8Xe1x9SEG081n64b89z+V1ZWPrudT+1PNb1PNaamO89fNffS5eEaGBhIdTrPaQ75iNwGas7/Ma8x8Li5tqvzrssNrWO+y8HjuPmqLY1ycpr0Pi7XfVt5gNx2NBdbTf5qtz53zz8pj6A5javrp52vuia/q7tvmjPP5XB3ddpX2sznW0P7oDs3l39S8/i5cUHnXTcuuPla13DLy8spRtu8a+86f7tn2z/84Q8dt+3yy7pnFOXum7uWbanJVYzOXK5ifUZyfdnld9Xnr5OTnOtQuXWma99Dg2VdX39uWzc5duDx0LHD5d/UGPdc5fK7Nn13kw/A1N3gEKfz1cFBfg+5trZWlN+9e5diNjc3U931VXkyLkelPqe7dZ67tjm/ap5jf/7556Lsjlvf07g53qmZh/S53bWlmudtzfcakddiNW05ouEzA1rj7onWuWdUbSeuLdW8uyO/Kx4rVoEAAAAAAAAAAAAA0BI+wAIAAAAAAAAAAABAS/gACwAAAAAAAAAAAAAt4QMsAAAAAAAAAAAAALSkcwZk/F26u/M37unp6aL83XffpRhNNL+4uJhiapKhu0TnV1dXHX/njlsTbbvE2+53uD1dkRPUj46NFuWvv/46xczOzqa68bHxsjw+nmKeOtcHNNn86Ohoipmbm0t1Z2dnRdn179XV1aK8vb2dYn59/WuqGxke6bj/y8vLVNeEO+6FhYWi3Nubpx4dO9wxut/dtbGxsaL85Zdfphh3Lvo7107umrveMzMzRfn3v/99illeXi7Kbh5yfWdkpGynblzq6+vzBws8EdfX10XZ9a+Tk5Oi7OYKp6urXEO4ftrpeCL8WlDnBjdX6O8ur/K8pHNlRF4zu3Wunpvjfnd8fFyU3bj48uXLoryyspJidFyMyOO+u5bu/j4l7r5pu3T3bXt7pyi/f/8uxbx58ybVHR4efnZfEXkeqmlbVr7d6X67tZnOlRERS0tLRdm1t8nJyY6H5PqXnq+bm2ueSTXm2bNnKWZwcDDVDQ0NFeWa87gP3DMZfrvrq9xRdMw/OjpKMUeHuU7Hcze+6nNcTZuMiBgcKuPcetWN8cCDdMvDm/Z5nasjIjY2NoqyvjeJ8HPc8MhwUXZz3NTUVFF287AbF3Q8ceOCriubvodtSvfXdE3jfqfbrj3uxusqtKJmrnLttOpbgNs0txtPBF/LAAAAAAAAAAAAAKAlfIAFAAAAAAAAAAAAgJbwARYAAAAAAAAAAAAAWnL/Euo9Mu7vp2suTZcvQH/n8o84mgfp9PQ0xWi+E/c39jVfQUTO3aM5DF1Mm/kJUMH8/Xy9T+7eXl7kHFPdPeW/z6jJ79TUQ8nzoMdZk+vC9W/NI+J+5+6T5gjZ2tpKMb+8+iXVTUxOFOWXX7xMMTpWuOOu4dqJ5kCtyd/lcqTcx3ai18nlNHM53HRsvMn+1VR3V/43WhMTZVsaHh5OMU3zCWsfcG2APON46jQPlsthp33Q5ch0NM6NuU1z2Om2a7bjYty56PnWbNudm17biJxnzK3HNReY5uOMiPjqq69Snc6F7rj1mJ5aDkE35uvc4PrA2tpaUT4/z3nfPn78mOp0LeTmobZykV+bRFh6v12bdPvXnHWalzgiYn5+vii7ZzS3Pz3M3r78+sDlRla6Pz2eiLr18X1cL1n3b8n6IF1d5zFf+6nLB3lweJDqND+6mwd0XW/zvZp5oGZcuI/PMbj/XLvROvfs5cZznS9rxu421axh3Llo393f308xmgN2fX09xYyOjqY6fbbV9xYuxo0LNesFN3boMbn3JPq83fQ9jVMzLtXE1Jz/U1vDPmZN241b+9q8sMAjxJtMAAAAAAAAAAAAAGgJH2ABAAAAAAAAAAAAoCV8gAUAAAAAAAAAAACAlvABFgAAAAAAAAAAAABacrtZ1x85l1TcJZ7u7+//bPnvcXV1VZRdEnuNcWqSand35+/3Nb9De7TNuevf29v72TJuVl9fX6obGxvrGNfT05NiDg8Pi/Lg4GCKWVtbS3Xv378vyutr6ylmZmamKLv+PTAwUJTdudX8TssP2WPuX13dtzt/NeHm3YuLi8+WI/w8qH3OtW/XL4HbpGPsyMhIinn27FlRdmtBZ2ho6LP7iojoii6tSFz/Ojk5KcrHx8cpRvvq8PBwitG5KiKPQ+643VjRaf8REUdHR0XZjQsvXrwoygsLCynGHXfNePKY5sub4uahyYnJouzakrv+2gZue8zXvurapDsmHQcmJydTjLsG6ibbm/ZLt4Z1dXjaXB/Q+WNnZyfFuLqzs7Oi7J7HdKweHR1NMXe99sXT0ub7tZq10E3S9eH5+XmKcetD7c9bW1spZmNjoyjr+i0iYm5uLtXNzs4WZbeGm5qaKsq6Xo7wa0+dr2ven7r7rXVuO3etpp3yrhjAU3b/Rm4AAAAAAAAAAAAAeKD4AAsAAAAAAAAAAAAALeEDLAAAAAAAAAAAAAC0hA+wAAAAAAAAAAAAANCS3rs+AACPyLWp67r1o7j3envz0Ds0NFSUz8/PU8zY2FhRnpiY6LidiIitra2i/Pbd2xQzMjpSlC8vL1PMzMxMUR4fH08x3d2P6N/1aHu+67ZM/0qurq5S3c7OTlFeX19PMUdHR6lO+9P8/HzHGOC29fX1FWUdlyMifv/t74vy8vJy1bZ7enqKcldXHmA0xo35JycnqW5tba0o//rrrylG+67rby9evEh1s7OzRVmvUUSe09zYcX2dB1mdi935Tk9PF2V33HrdcMOe+NzY9dQvAOulR8M9j+gaTueOiIjd3d2O29axOyLPJ8PDwymG8RxoRtdZ7nlM31tERHz8+LEo65oyImJ/f78ou7Xg1NRUqpubmyvKOgZE5Hcete87dK3p1pkAgKfhEb0pBwAAAAAAAAAAAIC7xQdYAAAAAAAAAAAAAGgJH2ABAAAAAAAAAAAAoCXkgG2Ry5V119wx3cfjRDP37l7es8O5r9x907ywg4ODKWZkZLQouzwmLm+l5kRxufdq8hkNDAwUZc1J++jct/Z8347nHqjJAfuXv/wlxayurqa6r776qii7vF/kgMVd05xWLofd6Gg5V1xcXFRtW+emmhywbu5wOb36+/uL8sbGRorRvjs+XpcDdmVlpSjrXBURcXlR5hG8vMp5BV1uLq2rmb/1XD+17Xu3hntEtM27PJL38Z7U9EF33Hp+5xfnKeZJoWs9Gm7+0jnG5Yx0OWB1bHbPUZpXfWhoKMXc9TgBPFQ6fx0eHqYY94z29u3bouxywJ6fl/Oee2bT/u3q3Ljg1nU1dG4mBywAPF38D1gAAAAAAAAAAAAAaAkfYAEAAAAAAAAAAACgJXyABQAAAAAAAAAAAICW8AEWAAAAAAAAAAAAAFrSe9cHgHZ1dXXd9SEAaMHg4GCqGx0dLcpzc3Mp5uXLl6nu9evXRfnjx48p5vz8vCgPDQ2lmLnZcn+X85cppq+vL9UBt+nysmyXR0dHKWZvby/VnZycfHY7wH3Q09Pz2XKEnz9u0/DwcKrb3t4uygMDAx23MzSUz2NqaqqqDk/b9fV1K9t5qM9VbZ0/cNuur8q2q88nEXldt7u7m2IODw9TnT5HTU9Np5jp6bJuZGQkxbh59zY91HEJzbQ5nt912zk5Lp+1dnZ2Usz79+9T3du3b4uye7bTvvvs2bMUMz8/n+omJiaKcn9/f4ppSu8dczMAPF38D1gAAAAAAAAAAAAAaAkfYAEAAAAAAAAAAACgJXyABQAAAAAAAAAAAICWkAP2kanJDdbd1fm7+9XVVaq765wRwFPS3Z37qebDm5mZSTEuB6zmsnz16lWKWV9fL8ouJ8vZ+VlRJo8J7prrJ+Nj40X5d7/7XYpZWFhIdbOzs0XZ5bEEbpMbYh/qUkz7as2a0sU8qrXotRbzDX9U5wsAHVxdl+8g3DsJzQt7enqaYtwziuZHHxsfSzFjY2Xd0NBQimkzR2RbenvL13pufeyQo/L+c/dE69z9du8Be3vaef1b005c/ub9g/2ivLW1lWI+fPiQ6jTOvQN58eJFUV5ZWUkxc3NzqW5gYCDVAQDQNv4HLAAAAAAAAAAAAAC0hA+wAAAAAAAAAAAAANASPsACAAAAAAAAAAAAQEv4AAsAAAAAAAAAAAAALWknCzsiwiej7+rquoMj+f/09PSkuq7uZsfkzg/AzXD9rb+vvyhPTk6mmOXl5VR3enpalLe3t1PMu3fvivLJyUmKubi46HiMwG3q7s7/jmxqeqooDw4NphhtyxER/f1l/xoaGvo7jw74+9zxErKxy8vLVKd97urqquN2XMzFRd72g9WlxQd6wwGggj43uPckOn+4+UTnBvc80tubX3MNDpbrweHh4RSjdYMDeQ3p3q/cNV0P176D4lnucXD327bTlpYZbn12fn5elI+Pj1PM3t5eUd7a2koxa2trqU63NTU1lWJevHhRlJ89W0kxExPjqc6NFQAAtI3/AQsAAAAAAAAAAAAALeEDLAAAAAAAAAAAAAC0hA+wAAAAAAAAAAAAANASPsACAAAAAAAAAAAAQEvION6irq66rPaatP76+jrFaF1tcviTk5OirAnrIyLOz887bqe7O3+b12Nyxw2gHW486R/oL8pTU1MpxvVLHRfevXuXYl6/fl2Ud3d3U8ze3l5R3t/fz8fY35/qenp6Up2qHT+B/8y1m6Ghoc+WAdysmnVt8+1cdYxjPgGA+0ffgVxcXKQYfXfh3mWcnZ0VZfecMTIykuomJiaK8vj4eIrRNWNXd55PdP+fOgZVMw+67eic5t7l6HWqed/j9sf8ef+493I1beLo6CjVaTtp+ozk+u7h4WFR3tnZSTEbGxtFeXt7O8W4Pj88PFyUZ2ZmUsz8/HxRnpubTTEDAwOpDgCA28D/gAUAAAAAAAAAAACAlvABFgAAAAAAAAAAAABawgdYAAAAAAAAAAAAAGgJOWBvmMuPoHkTNa9iRM7Z4HI/9PX1pTrN9fjx48cUo7kXXJ4Fd9ynp6e/+Xea6wVAc9rnR0dHU4zLL6RjjMsdqzlRtra2Usz79++Lssud5HLQaJzLy1STOwm4b7keXX+762MC7pobz8kzBwBPm74nODg4SDG7u7tF2eWI1HcSLq+je0bSHLBjY2MpRp+19N1KRH6X446pZn3o5sGa+fP0NOegXV9fK8p6HT91THrteB6ro/fOXdvLy8vPlj9Vp8/S7r2ctkt9vxcR8erVq47bnpubSzH63D44OJhi3HFrv/jw4UOK0XcJbgxw7xdmZ8t8rtPT0ylG3y+4cYG1JwDgrvA/YAEAAAAAAAAAAACgJXyABQAAAAAAAAAAAICW8AEWAAAAAAAAAAAAAFrCB1gAAAAAAAAAAAAAaEnvXR/AY3dxcZHqtra2ivJPP/2UYt68eVOUr66uUszw8HCqu7y8LMp7e3spZmNjoygfHR2lGHfcBwcHRfnw8DDFnJ+fF+Xr6+sUA6CZ3t7ez5Y/ZXx8vChPTk6mmNHR0aKs41REHqu6urpSzNnZWap7/vx5UR4cHEwxPT09qQ5Qrs3dpft2PMDfQ9dsTdu3+52O8d3dnf8NKGtIAHg89D3B/v5+illbWyvKm5ubKebk5KQoDw0NpRj3rDMxMVGU3bsUnavcMf7yyy+pbnV1tSjrO5mIiL6+vqLs5sGaupr3NDs7OynGvU8aGBgoyjyPZW5N0xVl3dV1vraXF2Ub+P+x92fdcSRJgqCr2PcdBLgGMzJzqvpM9fTc+f//oWemqyo718iI4I6V2HfgPtS9p0tVJOiWCANBkN/3JnLE3c3N1EzV3AjK6dlpqMnum9vjm42lk5OTKv75559DTXYv3/7G+Pvf/z7UtLm1tbVQc3UVv297rrx+/TrUvH37toqzMZl93pMnT6s4O7/Hx8er2D0aAF8SfwELAAAAAAAA0BMPYAEAAAAAAAB64gEsAAAAAAAAQE/0gL1jWV+DtmfD5uZmqPnLX/5SxVl/iLm5uZBre0JmvQ/a/iOPHz8ONcvLyyHX9hZp+6iUUsrMzEy9PSOGGHxObS+fUmJ/16WlpVDT9lvZ29sLNT/88EMVtz2YSsl79rXXquz60vZtAeDz6qtfVrZmbeeLrIfdXW0PAPevve5n9xrv3r2r4qyXaft7R/abxMrKSsjNz89XcdY7tu23eXx8HGqyfpv/9//9f1fx2dnZwM9vf5P5Ndr5Mu1b2uF3IaLs3vam1Lls305M1vfkk1OToabrcRq0Tdmaand3N+SOjo6qODsHVldXq7j9fa+UfJ3X9pxt+82WEns6P216u5ZSypMnT0Lu2bO6LvstI/sNBAC+FP4CFgAAAAAAAKAnHsACAAAAAAAA9MQDWAAAAAAAAICeeAALAAAAAAAA0JPR+96Ar93IyEjItY3snz17FmqGhoaq+PLyMtSMj4+H3NjY2Cfj7HWjo3EYXF1dhdzZ2dnA915fX6/imdmZUNN+N+Butef8/Px8qHny5EkVHxwchJp3795V8du3b0PN48ePQ+7o6KiKL84v4kbGSwUA9+j6+jrk2rXgyclJqNnd3Q25dv7Y29sLNcPD9b8Lzdan1pAAD1P7+8Lh4WGo2djYqOLj4+NQ095rLC0thZrl5eWQa3+DaeecbBuz30SyeW9ra6uKs+1uf8/JfsvJ3NzcVHG23e17TUxMDKwppduc2n7+tyYbA21ucnIy1KysrHwyLqWUubm5kGvXPtlarM1lvxW267XsddlvAu177ezshJr23r6UeO7u7++Hmvb3w5XVuE+ePn0acu05v7i4GGqyY3Df2t+CnW8A3y5/AQsAAAAAAADQEw9gAQAAAAAAAHriASwAAAAAAABAT/SAvWNZ/6q2/0PWo+Ply5dVnPV+yPp/dOmf1fZeyN4n+7zz8/MqzvoTtL0XZmdnB24jcLfac67tgVRKKY8eParirAds2/Mo6+F3enoacm0PmouL2AO2vZ5kPVKya45+gAB3I+t71vZ3zXqBv379OuTevHlTxZubm6GmXUPqAQvw9Wh/X8juGT5+/FjFWW/L9reTrB/kwsLCwNd12cZM1ku13YasH2Xbb7P9TeaXdLlHau/12t6Tv/zeIdPpdd+SbAy2v4t1ubf+/vvvQ83a2lrIteMr+/wu4zQbJ+3rsj6x7f1+29u1lNjzuJRSPnz4MHAb299B231USr5PVldXq3hqairUfIna8zA7L9vjlP3eoS8swMPnSRgAAAAAAABATzyABQAAAAAAAOiJB7AAAAAAAAAAPfEAFgAAAAAAAKAno/e9AV+7rNH6/Px8Fc/NzX2uzSmlxEbvXd2m+fttPwvoz+hofanPrjmPHz+u4rOzs1BzcHDwybiUUo6Pj0Pu6Oiojo+PQs3MyUwVj4+Ph5rh4fhvhlxjAO7G9fV1yO3v71fxDz/8EGr+x//4HyG3sbFRxcPDcX383Xcvqridu0pxzQd4qC4vL6s4u2fY2dmp4ux+YGJioorb31ZKye912tdluvzekc1Nk5OTVZzNVW1N9j6f3z/++8635urqKuTa++TsHrUdl+29dimlPH36NOS6rHPacXrbtdHu7m7I/fTTT1X89u3bUJPlDg8Pqzg7L588eVLFa2troWZ5eTnkpqamQu4huLi4qOL2GlhKPJZ+7wD4OvkLWAAAAAAAAICeeAALAAAAAAAA0BMPYAEAAAAAAAB64gEsAAAAAAAAQE9G73sDviZtA/VSujVMv8um6ldXVyF3dHRUxefn56FmYmIi5GZnZ6u4z+1u951G89CfsbGxKl5YWAg17Tl4cXERanZ2dqr47du3oebg4GDg67a2tgZu49zcXKiZmpoOueFh/44I4C5k69p2btjf3w817969C7nt7e0qXlpaGvj52VrQ+hDgy5f9BnF2dlbFx8fHoaadU7K5Ynx8vIqnp+P9wdTUVKftbLXzXjYP8nVrj/nl5WWoOT09reLsvrm9R23HbSm3X9P0tRbK3qc9Lz98+BBq2nv7UuK5+vTJ01Dz/MXzKn706FGomZmZyTf2P8muL3t7e1V8cnISarLzuT1O2T5pa0ZH48/o7fWtlFI2NjaqOPudpN2mbJyMjIyEHAAPi1+uAQAAAAAAAHriASwAAAAAAABATzyABQAAAAAAAOiJHrA9+hL7UmW9Fv/+979XcdbDIevH8P3331fx6urqr9y6/+VL3HfwtYj9VedDTdvLJOtj0p7zbV/oUvJ+Tpubm1W8uLg4cBuzXidZb2rTGMDn0/bByq7LWQ/vtl9al35Weu8B7XXAPeP963Jtzu4j2tz5+XmoaftttnNOKfGepb2H+KXX9cbU9CB1vXa04zvr79r28jw8PAw1XfrE3rfsPG2/y+7ubqi5vr4OubW1tSr+/rffh5rHjx9XcdbjOVsftsdke3s71Lx69aqK298fSsl7x7bXj+za0eaymqxXcNuXNvtttt2X2bo66zkLwMPiL2ABAAAAAAAAeuIBLAAAAAAAAEBPPIAFAAAAAAAA6IkHsAAAAAAAAAA90c37K9M2lm8bv5dSyt/+9rcq/vvf/x5q/umf/inkVldXq3hleSXUDA0PddpO4PMZGRlp4lgzNjZfxScnJ6FmZaU+59trQimlvH79OuS2traqeGpqKvn8sYE1c3NzITcxMRFyAPx6QyWu6YaH63+72V67S8mv321udPR2tyA3Nze3eh3wMA0Nubf80rS/N1xcXISa4+PjgbnTk9NQ017jx8fHQ00779x2Pukim3NuinnoIcqOZZfrS7bOmZ+v75unp6dDTXv/fZfrl+vr60517f39/v5+qGl/Pzw8PAw1s7OzIdf+LvDkyZNQ8+jRoyrOzu/M+fl5Fe/u7IaaH374oYr/8Ic/hJqzs7OQa79Ll+tJNm6y49sel/bamdVk+8Q8CPDw+QtYAAAAAAAAgJ54AAsAAAAAAADQEw9gAQAAAAAAAHqiB+xXLushsLi4WMVZf4aFhYWQC/0vtCKAr1bWy2Z5ebmKX7x4EWouLy9D7ujoqIrfvHkTatperm2/2VJi35hSSpmZmQk5AH69oeHBPWC79qVqe2N16YWWvXf7+f/INsDXqj0HsvOkL20vvlJKOTmu+wqeX8Satq9e1iu6XQuW4vz+ErU9X9t1fiml7O7GHo1t7ug4vq7tmzk5ORlq2t8k2tf8Gl3mqqzf5uVFff+T9XrUw/zzavd3do+aHaf2OrS2thZqfvvb31Zx9nvak8d1bmIijuW+XJzHPsyHR7F368ePH6v4/fv3oabtC5v1RF1aWgq59vfDubm5UNO152urPedOz2L/6Pa7/fjjj6Em62fb/uaQbWN76t7cxGtANu+2Yymb49rPGx7Ormf/+BoagC+Lv4AFAAAAAAAA6IkHsAAAAAAAAAA98QAWAAAAAAAAoCcewAIAAAAAAAD0JHZU50EbGhqq4sXFxVDzX/7Lf6nily9fhpqZmZmQm5+f/3UbBzwYw8Px3+fMzc1V8ZMnT0LN2dlZyP30009VvLm5GWraa85vfvObUHN+fh5yNzc3VdxeAwG4nbGxsZAbHa1vHbK5InN9ff3J+D/U1+/svdvP71M7n5RiTuHzasdg1zHZnit3eZ6cnp6G3Os3r6t4e3s71LRryGfPnoWa1dXVkHMOfnkuLi6q+ODgINRsbW0NzB0dHYWa8fHxKp6amgo1IyMjnbazD1dXVyF3cnISch/3PlZxdu7Ozs5WcTbHZuM9e69vXZfrQrvOyMbb4eFhyLXXoey3st/+9rdV/PTp01CztLRUxdPT07+8sb/S2Xm8/97Y2Ai5n3/+uYrfv38favb396s4+z0xu1a33+8uz9NsfdieT9n+zsZNW5edl62uc3M7F3fbJ/G9XQMAHj5/AQsAAAAAAADQEw9gAQAAAAAAAHriASwAAAAAAABATzyABQAAAAAAAOjJ6OASHpK2If3c3FyomZmZqeLr6+uB71NKbBqfNZoHvg7ZNWB2draK19fXQ83Z2VnIbW9vV/EPP/wQaj58+FDFe3t7oeb4+Hjg542Pj4eaVvbdAKhl68M2d3Nz0+m92jVjvoas3yt772yb+mJdy3277Rhsz5W7PE8ODg5C7u9//7GK//a3v4aaZ8+eVXF2j7q8vBxy1mxfnouLiyre398PNRsbGyG3ublZxaenp6Gm/Z2ijUspZXS0/gnrLq/d2Xu3n19KKZOTk1V8eXkZaozl+9V1TTE9PV3Fjx8/DjW/+c1vqvjp06ehJhsndyU7l969exdy//7v/17F7TlZSrw2r6/H77+6uhpyU1NTVXyX4z177/Y3gGyOyY5Je40ZGxv7lVv363RdVwPwsFgFAgAAAAAAAPTEA1gAAAAAAACAnngACwAAAAAAANATPWAfsKw/QNunpO3b+ku5u9om/bTgYcp6pLQ9YEvSoiTrAfv+/fsqnpiYCDUfP36s4q2trVCT9alp3yvr99L2ZdKDCfiWdOnlWkrs67e7uxtq2mvz0dFRqMnWp21vrmyOaV93dBjfu+0pXkqcB8JclXyeeeDr1o6lbExeXV2FXNu3Mbtnal/X571O+15ZL7qst+Th4WEV7+zshJr2u7Tn5C85Pj6u4nZNV0opP/30YxX/+c9/DjXtWuz8/LzT5/PlacdgO/5Kydfx7Vo/O78WFhaqeGlxKdRMTNRjqc9zcGS43qbsvuLly5ch186pe3t7oabdb9k9U3Zdaucrv6/E/dRl3dGll2sppbx48aKKnz9/HmpWVlaq+HP2ey0lfv9sLZatl3744Ycqbq/vpZSytFSfc8vL8Rxsa0qJvXP73CfDQ/2cA84dAO6LXx8AAAAAAAAAeuIBLAAAAAAAAEBPPIAFAAAAAAAA6IkHsAAAAAAAAAA9+bzd4n/JTZLTH32gL7GJ/Je4TXwdbm6yC0VkDPZjZGQk5Kanp6t4eDj+G57lk+WQW11d/WRcSikbGxufjEsp5dWrVyHXbsPjx49DzehoPdWNjY2FGoCv1eXlZchtb2+H3IcPH6r47du3oebdu3efjEsp5fj4OOTaa/XExESoaef5re2tUFP+ElMHBwdV/OTJk1DTzjuzs7Pxje6b+6HetGPp4uIi1GTjdGdnp4qnpqYGvne27uyyZs3WUEPNAW/XL6Xk5/Pm5ubA927P+a5rodPT0yp+/fp1qGlz2b61Pv96tOP7/Pw81BwdHYXcxXl9Hk7PTIea9lq9sLgQaiYn6/mjz7E1Mlrf/ywvx/ua7LxcWlqq4mxufPPmzSfjUvJ92c6X2T3a1yy7nrbX9Ovr61AzPz9fxc+ePQs1T58+Dbn2XnJlZSXUZGuYvmTfpdVel09OTkJNlmv32/j4eKhp10ftfsxqSillcnKyivu83x4dq8+57Bxs571s3HTZtwBwF/wFLAAAAAAAAEBPPIAFAAAAAAAA6IkHsAAAAAAAAAA9ufMesO3/vZ/9X/w3SdOjtgcO8G3p2vN10Ov0nLqdrH9Ya2ZmJuSyPjFt/6SsP1/bK2prK/b+69JLJuvJ025T1tMN4GuV9Yxse12WUsof//jHKv7DH/4Qavb396s468OVXavb3mBZ37F2/n7//n2oyfrStrl/+Zd/CTXt3PBF9oC1XLkz2Vowy7Vrn7RPa/O6264zs/fu0rM+6xHZnivZ+d2+V5fvVkq8fnz8+DHUtLmFhdi3c25uroqzawcPQ5cesFkf4KvrqyrO7iMWFxerOLuvaOePXnvANv1V2+0pJR/f7XZm47vtV/7q1atQc3Z2FnLtufut9YDNtL1Mr66uQk07TtrerqWU8rvf/S7k1tbWqrjPXqZdtN8l62F+eHhYxWnP5eR1XdZCXc7B6enYv/lz7qfb/k7kdyEA7ou/gAUAAAAAAADoiQewAAAAAAAAAD3xABYAAAAAAACgJx7AAgAAAAAAAPRk9L43AICvx/T0dMgtLy9X8fPnz0PN6elpFW9uboaaV69ehdzoaD2NPXr0KNSsr69X8fz8fKiBB+umDW/yuv9kqAxlSb5xw8P1v8vMrudzc3NVvLCwMPB9Sinl7Oysio+OjkJNm9vf3w81Ozs7A3PZNX5paamKp6amQk32fS8vLz8ZlxLnobGxsYE1pZQyNOSkuyvtMVhcXAw1v/vd70KuHd/ZcZucnBz4+dk50MrG0snJySfjUko5Pj4Oufbcyd774uJiYM319XXItfsyO0+ePn1axY8fPx5Yk72Pc+JhuLq6quLz8/NQk13j2zGYXStnZmaqODvf2tf1OW66vFdW015jdnd3Q83ExEQV39zE9Vp2XmZ135Ls+7djMNtvIyMjVdyOrVLyNUw2Lj+n9nza29sLNVtbW1W8vb0datp1Vynx+66trYWa9r65vY8vJV9Dtccg2+72mHRdG7XrwYODg1DTft/h4ZFQYy0GwH3xF7AAAAAAAAAAPfEAFgAAAAAAAKAnHsACAAAAAAAA9MQDWAAAAAAAAICexC7kPWubmmdNzjU+B/g6jIyMhNzc3FwVP3nyJNScn59X8eXlZah59epVyO3s7FTx0dFRqLm4uKji6+vrUDM87N8j8TDdlJs6vrn5hcpffk0ppQyVwWuxtMYS7os3OhqX+8vLyyH3z//8z1WcXavHxsaqeGpqKtS01/NSSvnw4UMV//DDD6Hm3bt3Vby3txdqsjmm/X7Z616/fj1wGycmJkLu7Ows5FoLCwtV/OjRo1CztLQ08H1uqz3nnaelTE5OVvH6+nqoacdyKaX89re/reJsbdCOwew+NhunreOj45D7sFGfJ+24LaWU/f39kGvXOdl2t7lsbGfnTju+X7x4EWp+97vfDaxpj8H8/Hyo8ZvAw9Bec7J1dbaOv7q6Gvje7Rh4KOvzdp9ka7Eu6zPnwN257TH53Nrr+fb2dqj5+eefq3hjYyPUZOuc1dXVKs7WeWtra1W8uLgYarJ15cHBQRXv7u6GmtPT04Hvk82fx8f1fJl938PDw+a9s3l4PGQeyjUGgIfNbAMAAAAAAADQEw9gAQAAAAAAAHriASwAAAAAAABAT+68BywA346sd9H09HQVt71lSon9brI+ZG/evAm5tt9M1gP25OSkirO+Z22/uIy+TNy3Lv2rutR0Hctt3W17x3K/sh5bKysrIdf2ZMz69bXvlb1324crq9vc3Aw1bc/ArK9g1ru27TPe9gorpZS///3vVdz2m/0l7Xtlvcna/pfj47HHWNZD7a7mlC/xPM2uS3c5p7b9fNu+d6XkxyQbc612u7PvkZ0XbV22zhkeqf9tdNvnvpT8vGz3b9abedBrSsnXR+359fTp01Dz+9//vopfvnwZamZnZ6vYmuphyMZJe55k502W67IW6XJ+dan53Nr5K+uBe5vrC7kuY6Adb9m1MztO9629Dmfrpb/97W9VnM0nWZ/ttkf948ePQ027PmzngFLy/rLtNvz5z38ONW/fvq3irP9qdk/enjvtvX0pcb3Wtb+scw6Az8FfwAIAAAAAAAD0xANYAAAAAAAAgJ54AAsAAAAAAADQEw9gAQAAAAAAAHoSO5MDwC2NjIyE3MzMTBUPDQ2FmouLiyre2NgINRMTEyG3t7dXxVtbW6Fmc7POTU5Ohpr5+fmQa+vGx8dDDdy3m5ubT8ZdXtNVdu7y5Rsejv/eMrue9XWNW15eDrmTk5Mq/u6770LN4eFhFe/s7ISabI65vr6u4v39/VDTvtfl5WWoOTs7C7l2jpmamgo1o6P17dTS0lKomZ2dDbl2P2XHqYvbnpftPsj2Sbtvs/3ffv+s7nNfO9rPz7b7vmXjZHt7u4qzc/Lq6irk2jVUVtOuobLPz3Lr6+tVnJ27jx8/ruJsTcXDlF0X21xW047JUkoZH6vH89RkvJ5OT09XcbZmb685Q+X+1ya3WYtx/+77OHVZd3z48CHU/Pzzz1U8NjYWarJr9bNnz6q4vXaXUsri4mIVZ/NQdn6367xXr16Fmv/+3/97FWdrg/bzs23Ivm+by9YmmfseAwB8G/wFLAAAAAAAAEBPPIAFAAAAAAAA6IkHsAAAAAAAAAA90QMW+CK1PUG69ufQo/B+ZT3s2v5NWU3bL2xubi7UZL333rx5U8VZv5nYiyyOpSdPnoTc6upqFesBy5eoyzWvvX66Tn49usyNX8Lxbq/D33//fahpr/FZ37PNzc2Qa+uynmrtfmp7m/6S9rqf9RJt+7W1vdmyzy8lzjtZ/812LuzzWLY9d7N9e3p6WsVZb8+VlZWQy3re9qbdlfc/vG+lz2PZ9uPLzoG2t+ba2lqoyXJtj8CsZ+BdHu/21PkCLmdfjaxXcJs7Pj4ONW0uqzk/Pw+5mZmZOp6dCTXtNaZ9TSnxujw0bFBwv7I5vr0uZ+dEu34oJc7FbQ/7UuI1vr1nLSW/Vj99+nTg69q5IpN933ZdldW015dsHszWZzfXeiwD8LD5C1gAAAAAAACAnngACwAAAAAAANATD2ABAAAAAAAAeuIBLAAAAAAAAEBPRu97AwC6GBoauu9NoIPh4cH/rmdycjLkZqZnqnhubi7ULCwshNz19XUV//DDDwM//+LiIuRGRkZCbnZ29pMxfImGSnKt7HD5dI3lLk1PT1fx8+fPQ017jc+uuVdXVyH34cOHKr68vAw17bwzPj4eam5ubgZuU3aetHNKNg9tbW2F3N7eXhX/0z/9U6hp99voaH+3bu3n/+Uvfwk1Ozs7Vfzy5ctQMzU1FXJ3Ol9+JZeqbC3Sju92jVNKPgbb152enoaadp2zvr4ean7/+9+H3JMnT6p4ZmYm1GRrqL6Ymu5Odq08Oz2r4sPDw1BzcHBQxUdHR53eu70OZ9eJdv2fjbf2+m39wpeovQ7v7u6Gmo2NjZD78L5e0+zv74ea9lxaXV0NNWtrazH3qM4tLMZ76y6ytVh7Hmb3+ysrK598TSmlzM/Ph1yXOaZ9r2xNBwD3xV/AAgAAAAAAAPTEA1gAAAAAAACAnngACwAAAAAAANATD2ABAAAAAAAAejJ63xsAAFPTU1W8tLQUal68eBFyOzs7Vfz69etQ88c//rGKr66uQs38/HzILS8vV/Hs7GyomZycrOKbm5tQMzQ0FHJwG13G0k1JxmAxBr9WncZEcl3KroPX19cDXzc8XP/bzZGRkYE1WV32upWVlSo+PT0NNTMzMyHX7oPLy8tQM2h7fkn73tk+abdze3sn1LT7tpR4DLJ5qM21+6ir/f39kPvw4UMV//nPfx5YMz09HWq+//77W23Tty4bS1mui3bMZ+dgm8vWNKurqyG3uLh4q23iy5KNrYuLi5A7ODyo4nadXUopH3c/VvHJyUmoGR8fD7m5ubkqzsZge42fmpoKNe1Yvu15A33JxmB7XmxtbYWaN2/ehNzG5kYVZ+uHR48eVfH6+nqoye6l5+bnQu42usxf2Tw0Olr//JytYbuuKwHgITGTAQAAAAAAAPTEA1gAAAAAAACAnngACwAAAAAAANATPWABuHdtT5is59hvf/vbkGv7zbQ9WUsp5Q9/+EMV//zzz6Hm+fPnIbe2tjbwvRcWFqp4YmIi1GR9sOCu6DlMK+uJuru7G3Jtr7+sT2x7zWt7ZZeS9wm9jazn12173valy+ePjMTtvrqKx6Dty/r+/ftQ084pe3t7oaadP7PjdnBwEHLtXJj1UG972GVjKetPx5evS5/YPrXnpbnq/p2fn4dce43Z2NgINVvbdS/Lrv26257WWX/Xds3cZUwaS3yJ2h7L2fydnV9HR0dVnPWHb9deWf/uLv2TAYDPwwwMAAAAAAAA0BMPYAEAAAAAAAB64gEsAAAAAAAAQE88gAUAAAAAAADoyeh9bwAADA/X/x5obm4u1Dx//nzg666urkLN5uZmFb969SrUvH37NuRWV1ereGxsLNRcX19X8fLycqgZHx8POejL0NBQnbjJisrgmvTNb7FBfHEuLi5CbmNjI+T+/d//vYpPTk5CzT/90z9V8fT0dKjJcrdxeXkZcu01N9POC7/Gzc3gk2VkpL6dWlhYuNX7vHv3LuSOj4+reGJiIvn8kYGflR3L169fV/HHjx9DzeLi4sDP73N/czvtPBDmhUS2Xrq4iOdcX7psE3cnuy6cnZ2FXHsdeP/+fahp19XZtTpbx8/OzlZxdj0ZHfXzFHejyzzcp3btdXBwEGp2dnZCrp1Ts3vLp0+fDqzJ7j/bNZT5GwA+DzMuAAAAAAAAQE88gAUAAAAAAADoiQewAAAAAAAAAD3RZAOAe9f2oGn7RJXSrZdq1l+n7R2b9dvZ2toKuZ9//rmKsx6wbW5qairUzMzMhJxeaNyZLkPL8PumZH3PTk9PQ257e7uKs+vps2fPqjjrI3lbbW+yrN/rbXu43eU1d3i4fu+ufb/b/nBZr8W2P/lt90nbJzb7/KyH3HfffVfFS0tLoSabG/nyZePm5mZwj2W+Hll/8P39/Sr+8OFDqNn7uFfF0zOx7/ejR49Crr3GTE/F1+kBy125y3XA+fl5yLW91/f29kLN7u5uyLXnTjY3P15/XMXZ3Jz1WAYA7oe/gAUAAAAAAADoiQewAAAAAAAAAD3xABYAAAAAAACgJx7AAgAAAAAAAPRk9L43AACGhoaqeHQ0Tk/Dw/HfDM3NzVXx6upqqHn58mUVHx8fh5rDw8OQ29zcquLJyclQs7i4OPDzr66uQi77fgB3YWRkJOQWFhZC7ve//30VX1xchJrHjx9X8dTU1K/cuv+lvcZn2z08NPjfjt7c3HTK3ZV2Pvsl7dyQ7e+zs7N/uOb6+jrUZHPT8+fPq/jJkyeh5tmzZ1X89OnTUDM7OxtyDJaO7+YcyMbSfY9vHqauY+nivL7GnJ6ehpqR0XrsrqyshJrserK8vFzFk1NxXZ2t9fl6dZkvs3F6fn5exe08mOWyubHrfN26vLys4uw+ss1l95/ZNs1Mz1Rxe69ZSilLy0tV3N4Pl1LK2NhYyN32+wIAv44VLgAAAAAAAEBPPIAFAAAAAAAA6IkHsAAAAAAAAAA98QAWAAAAAAAAoCej970BPBw3NzdVPDQ0dE9b8h/a7Snl/reJr8eXOL6+tHOwT12+y/Bw/DdDExMTVTw/Px9qnj59WsVnZ2eh5vXr1yG3ublZxe/fvw81z549q+LT09NQc3V1FXKjo6Zf4PMYGxsLufX19ZCbmZkZ+F6zs7OfjPs0MjISckPDg+eKbP7+nLp+fjunjY+Ph5p2rri+vg41R0dHVXx5eRlqlpeXQ+53v/tdFf/+978PNU+ePKnibIxkczODZeuAdsx3Xefd95jny5eNpfTcbcqy6/Dk5GQVr66uhppHjx6F3MLCQhW3a3jIZNe38/PzKj44OAg17T1Zdj92288/PDys4r29vVDTblN2/5mdA7Nzc1Wc3dvOzdY109PToQYA+HK4YwYAAAAAAADoiQewAAAAAAAAAD3xABYAAAAAAACgJ5rQ0dlt+k322ZOo/fyvqf8lX55O4ysZ3jdZsqfPM+ajtmde21+qlNjDLuuhl/XM293dreLt7e1Q0+Y+fvwYahYXF0Nurunv02cvOID/LOvhl/UUy3KDdF3ndbl+tf3Zsn5p2bW6lfU1/BKvn+02ZcepzXXphZdpezaWEuehrE9sW9PVt9STdKhtmvkfyYGynvHtsczWK517ecJ/kp2TWU/MNpeNwXbtnc0d2dq37Rk+Phb7Xn+J12ruTpe5ossaJutH385pU1NTnd67la1F2h6w2f1f2wM2W79kc/PsbN1rPeu9PjUdvwsA8OVytwYAAAAAAADQEw9gAQAAAAAAAHriASwAAAAAAABATzyABQAAAAAAAOjJ6H1vAF+X09PTKj44OBhYU0opo6P1UJydnQ01MzMzVTw87N8P8HldX19X8fHxcahpx/zl5WWomZycDLl2zE9NTd1mE7857bWjvU6UUsqjR48Gvs/Z2VnI7e7uVvHr169Dzfb29sCakeGRuE1r9TYtLi6Gmrm5uXRbAf7/bm5uBtYMDQ319nkXFxdVvLe3F2qOjo4GbsPY2FioOT8/r+KNjY1Qk60r230wMTERar7mNePISD3HZGMiW4u0x2lnZyfUtMctG0vZ/NmOk69Ztk/atcn/r7KKDg72Q8XW1lYVn5ycdHrvdsz3ec7zdcjOySzXns/Z+d3es7TXoFLya3ybGx75eq/LX7P2frhr7urqKtS0c1N27Zqfnw+57777ropXVlZCzbNnz6p4bW0t1GTrhUHbWEo8L7Lft9o1Tfbdst8EJsbrbcrOr/te03TZpuz7tuuToWKuAuDbYNULAAAAAAAA0BMPYAEAAAAAAAB64gEsAAAAAAAAQE/0gKVXbU/MrB/i+/fvQ67tJfPy5ctQ0/bIuO/eF3x72l42Hz9+DDU//vhjFWf96rIeNO2Y1wP2drJeOnkvtlrWz7ftxZYdy7Zn3p/+9KdQk/VD/P3F76t4fHw81OgBy0MQ+jl9Ab0Hv8Rt+lrs79d9K3/88adQ8/btm5Bre79l1+r2uLWfVUrsu529LuvplvUre4iysdzOH9mc1/aiK6WUN2/q45T1emz7qmefn/XHy3r9fa2yfZLdo7R1Wc/Atvd8tu7o0gM2OyZ827J+r9l1oUtvy/a9sv6fWS/qNtelhzmfV5f1Una8s/mjzWXj7fDwsIqza+fi4mLIPX/+vIp/97vfhZr19fUqXlhYCDVdesBm81mby2ra8d3lfrSUbr2R73udm32Xdp3VpQfszZBrAADfBk+wAAAAAAAAAHriASwAAAAAAABATzyABQAAAAAAAOiJB7AAAAAAAAAAPenWCR46Ojk5qeI3b96Emn/9138NufX19SpeXFwcWAOf2/X1dRXv7++Hmr/+9a9V/Pbt21DzL//yLyG3trb2K7fu2zQ0NPTJuJRSxsfHq3hpcSnUHB8fh9zz58+r+OjoKNT8/PPPVfynP/4p1Hz48CHkxsbGqnh1dTXUrKysVPHoqCmbL092zt23L3Gb7spdftfz8/OQ29raquIffvhbqMnWee01dm5uLtS018Wbm5tQk+Va7TX/a9dlbsiOZbs+effuXaj5ls6lL0E7vrPxPjIyEnLtmL+6uup3w/iitOMiO96Xl5dVnK1zs3VtW5ddO1rDw/Hf9GfjtK3LXsf96jLHZsd2amoq5CYnJ6s4G6ftvF9KnHPa+6FSSnn27FkVv3jxItRkvyd10W7n2dlZqDk9Pf1kXErcl9PT06EmW6+0ddn+bt/7c8/V2XWhvea0v5uU0u2+HQC+Rla9AAAAAAAAAD3xABYAAAAAAACgJx7AAgAAAAAAAPTEA1gAAAAAAACAnoze9wbwdbm5qeOTk5NQs7GxEXITExNVfHFxkbz3TcjBfcrG6f7+fhVn4/37778POeP78xkbHwu5xcXFkPvuu+/+4ffOjvef//znkHv+/HkVZ2NiZWWliufn50PN8PDgf0c1NDQ0sAbu0vHxccgdHR1V8eXlZaiZmpyq4pnZmVAzNhbPZ2rX19chl81fZ2dnVby1tRVq3rx5U8UfPnwINe/fvw+59ngfHh6GmsnJySoeHx8PNe16MasbHorXxZtSz7Ff05zb5RqfjYHT09Mqbo9/KaWcn59XcbbfusxD35psP7W57NrVju9svI+MjITcbeb57DWO5cOUXc/ba+7u7m6o+fjxY8gdHtTX5mxubsduNk7b63lW19dY5vba61J2vNvjlN2PLC0thVxbl13z2nkom6vW19dDbm1trYrn5uZCzW218162hm3v9w8ODga+b5d9VEopy8vLVZydS+15ks052TqrvS5k+7vLujq7nrS5dj9m7+18B+Bb4S4LAAAAAAAAoCcewAIAAAAAAAD0xANYAAAAAAAAgJ58VT1gs94HX2RfgXYzP/Mmtvupz3003vRWzHpWzMzEHm6hf9dX3IPowYxTBsrGaTuWs/GenRf6GN6v6enpkHv8+HEVZ8fo6uqqit+9exdq3r59G3I7OztVvL29HWpWV1erOLtOZGOpHYOuL9y3tldWKaX8+OOPVZz12GrPwZcvX4aah3rtvMu1WCvrD5hdc9rerW2/11Jin+vsuGU9tWdnZ6s4O25tn7msP2CWa7X9Xkv5unq+tm47lkZH69vA7HXtfGIN202X8ZatIdvx3XXftp+XHqfmhjP7/HZMcHt3eY1v3/v8LPZabHtSZtf8LLe3v1fFWY/Itpfr1NRUqMly7euyffI1X6u/RO3xzXqBt8ct61uarc+ePn1axdm9Vttztr2vKiW/11lYWKji2/52lI3vLj1g2/7Je3t7oab9vlkP2PZer5TYAzbbb+250/Z2LSWu6UqJ96TZ69p5P1t3Za9rrydtf9/svbNrgDUFAF+jr/cpFwAAAAAAAMBn5gEsAAAAAAAAQE88gAUAAAAAAADoiQewAAAAAAAAAD0Zve8N6NODadh+z5t5l/vp+vp64GdNTk6G3MTERBUPD8d/G/Bgju8AX8v3IB+n4+PjVZyN9+x17bnD59UetyyX1RweHlbx48ePQ83MzEzIffz4sYo3NzdDzdLSUhVn42ZxcTHkxsbGQg4+l4uLi5Db3t4OuT/96U9VvLW1FWr+j//j/6ji1dXVUJOdXw/B51wLXF1dhdzOzk7I/fnPf67i//k//2eoOTs7q+Jsjpubmwu5m5ubKr7L799+1rcm+/7Z/h4dHf1kzMOVHe+bUo+LbN15dRmvFdzO57zGn52fhVy7ztzY2Ag12bx7cnJSxdk1vp13p6amQk17b19Kt33iPvnzaq8D5+fnoaadG7J11/raesi9ePFi4Otal5eXIZeNifaeKKtpv1v23tn3PTg4qOK9vb1Qs7u7W8Xt/WApcS20sLAQarJ1bXtvl52Drfa8LaWU9+/fh9y//uu/VvHbt29DTft52fmdzh/NWjNbe3a5R3UNAOBr5C9gAQAAAAAAAHriASwAAAAAAABATzyABQAAAAAAAOjJN9nsp+3/kPVMaHtcdellmvVnGBkZuc0m3rusR0abOzo6CjUfPnyo4qxnRtYzou0tku23vvpB3FzH3lgnp/UYyMZE1lOrS4+MhzoGiNp+M1lPznYsZ+N9f38/5No+TFnvpLYHaXaeZv1WHqKuPfza8yvbb+15ets+d9n5PTs7W8XLy8uhZn099kU6P6/7ZGZ9eqanp6s42+6u/RdvIxtLp6enVdzOlaXk47Klv8/D0B6nbAy218Hs+tauDUqJfaey/nRtb6ysx3I2x7Y9prpcK7NrTpe+9llv6C7rw/s+B7K+Z22v3h9//DHUtMf7yZMnoSa7Vrbf91vv0wp9aq+DWZ+99nqW9Szc2o49QYdH6nN+fCxe8y6v6mtsl7Votj7Orovtui67vrTX4ez6kt3bnRw3ueSyPDHR3uvd//1++/2ytVh7D57NsXsf4316uy+zNWWXHpXfek/p287xXXprdllnd3VxUd+PtOv8UuKxzO5/Jybj/df09OCer4M+69do92X221XbK7mUUjY3N6s4W8O251d23NrzIjuXslx7/9dFexxLyb9ve7/5xz/+MdS0vXqz3rXZ2re9Vmf35F2uldaHAHyN/AUsAAAAAAAAQE88gAUAAAAAAADoiQewAAAAAAAAAD3xABYAAAAAAACgJ/11uX9Azs7OqnhjYyPUfPjwoYqHh+Oz6sePH38yLqVbo/n7ljW6Pzo8CrnNrc0qbvdRKaW8fv26it+8eRNqLi8vQ25iYqKKx8bGQk2Wu42bEr/vzs5OFWfbfXV1FXJPnjyp4mfPnoWahzAG6GZ0tL5kjo+Ph5p2LGfjJjt3fvjhhyre398f+PnZe2fn80PQbnd2nci+29zcXBWvra2FmkePHlVxux9/jfb8brenlFLW19dDbnNz85NxKfGaNz8/H2qy75vNV7dxfn4ectvb21WczZ97e3tVPDQ0FGqyY5DV8WXJ5rP2uB0fH4ead+/ehVx7/ZqcmAw17XXwxx9/HFhTSrdr5fX1dRVfXFyEmpOTkyrOzq32+lJKXAtkNX1ehwbJ1k/Z/DU5WR+DqampUNNeh7PzNrtWO7/h7nS5nrTXwWzdkV3j2nk/+6z2vbNrQJdrbvbe7TrnxYsXoaa9nmXXm/Zer5RSXr16FXKt9l7vS7zfz9bMh4eHVby7uxtqzs7PQq7LunphYaGKs/nENT/qsk+y86JdV3WZd7OaLHd6elrF2XnSnt/ta0rJt/vqqh6Xn3PdU0r8vu05UUp+Dfjpp5+qeGtrK9S068P2nCglrqna3wh+KXcb2bHNrkvt52X3rdPT05+Mf+m92+PrGgAA/4u/gAUAAAAAAADoiQewAAAAAAAAAD3xABYAAAAAAACgJ99kD9i2r13Wj/F//I//UcVZz4q298HKykqoaXs/PBSHR4N7ZPz7v//7wJqjo9hLNutj2KVnRNs76Lb9drK+hm0fpOy7Za9rtzMbA1lfHB6mLv1V27HcjttSSnn//n3Itb1zsn4r7Xh7qP1eM+13yfpIZn0c215g2bWj7cszMzNzm01Mj2V7vLMeQFlv6LZfV9ZLtb3mZH24fvOb3wzcztteK7N+Tm1vqD/96U+h5u9//3sVZ8ckG9999a7l7nTp55SdJ9n82Zqajv1GDw4Oqvgvf/lLqLltP+H2mpP1NNv7WPcznpyKa7r/+l//a8i114HV1dWB23OXuvZkbdcrs7Ozoaa9dnW9vnxN8xV8adrzMDsvu/SA/fjxY8h1uUfrcn63a4rsHjFbG/zLv9TX2KWlpVDT9jHM1i/Z9/3Xf/3XKs7WIe33/xLu97v00233b3Zss2O5uLhYxevr66GmSw9Yoi7TYJcxmJ3fXXrA5ttUvy7r/d72De3yO00p8ZrzuXvAtuuV/f39UPPjjz+G3L/9279VcXZ+teu6rJdqu4bKrhNjY2Mh15dsnLTHt0vv2uy++bb9Xa0FAfhW+bUTAAAAAAAAoCcewAIAAAAAAAD0xANYAAAAAAAAgJ54AAsAAAAAAADQk9H73oD7cH19XcWHh4eh5tWrV1U8Pj4eav63/+1/q+KH2lR+aGgo5C4vL0Pu48ePVfzjjz+Gmr///e9VPDMzE2rm5+dD7vz8vIr39vZCzdbWVhXPzcX3GRmJ/6ag/S7b29uh5v3791X8888/h5rT09OQW1tb+2RcSty/IyMjoebi4iLk2nFKf9pjMjoaL4XDw3EstdeKbJyenZ0N/PxsLLVjMNNeY7Jz96Fqv9vu7m6oaa8TpcRj95vf/CbUXF1d/bqN+4Spqakqfvz4cafPb8fXwcFBqGnHxObmZqjZ398PuePj4yqem5sLNV1k16D2vd++fRtq/p//5/+p4uxcWllZCbns2ngb7XmRfX6X12Ue6jzfly7fPzuOk5OTITcxMVHF2XE6OTmp4q7Xhfacy7a7vXa025PVZOuXbJ2TzSl9ab9Ldp62+yRb97RrulLi/NXle3xN8xA8VF3muS73v9katr2eZNfTLteBLvd62XplaWmpip8+fRJq2vv0bJ2drVd++OGHKp6dnQ01//RP/1TFX8L9WTvHZfNge3yzdebq6mrIPXr0qIqzde3y8nIVZ3P8tz43ZOfJ9XV93LLzNjsm7THIzpP2vbLPz3LtWMrOnfb8evr0aaiZnp4OufseA+05kK0hs/vvNvfkSbzmtLkXL16EmtWV+li294yl9LePsvfpmrurbQIA/hd/AQsAAAAAAADQEw9gAQAAAAAAAHriASwAAAAAAABATzyABQAAAAAAAOjJ6H1vwH0YGxv7ZFxKKePj45+Ms9eNjn49uzPbJ13229TkVBXPzMyEmmw/7e/vV/Hr169DzenpaRVPT0+HmuHh+G8Krq6uPvlZpZSysbFRxdfX153ee3t7u4p/+OGHULOzs/MPb2Mppdzc3ITcbWqGhoY+2/t0dZvPy17T1zYND48kufje7Rhsj38pcXyNjMT3npqaCrku37fN9XlM7lv73SYmJkJNdu6015Ospi/Z/m6vQ+vr66Emmz9uruvv216DSinl/fv3Vby3txdqslw7BsfG4udPTsb928q+b3ucLi4uBn5+dkyyc6A9ll3Ogez8avd3Nudk89dtzsFvTZfvnx3v256X7THpus46Pz//ZFxKHCfPnz8PNS9evKjip0+fhpq1tbWQW1xcrOI+r0vtMdjd3Q017fXk7du3A2tKKeXw8LCKx0bjedKec1/TPATfki5rqsxt1+PttSP7/Gy91F6XXr16FWpOTk6q+OzsLNS8efMm5No1THZv2e6ToXL/17zLy8tPxqXk67PW7OxsyK2srFTx6upqqFlYWKji7Lh963ND9ltCe0yyNWx2H/HP//zPVbz2KK47RsfqcZr9tpBtU3s+Z69rz9W5ublQ0657Ssm/32102ZftPXopcX2U/QZ0fhbXh+13efnyZaj53e9+V8XtejF7n+w86Ut2X9Nl/7vXAYDPw1/AAgAAAAAAAPTEA1gAAAAAAACAnngACwAAAAAAANCTr6dp6T+gS0+xtgdMl74KX1Ovk+y7tPsg6xuzsFj3hMl6wGb9KNo+hlnvnraHWfY+t+1ZeHpS9w3Jjnc2TtreIln/kfa9umzjL+W4G9kxyXJtX5xsnLa5rMdVdl58TdeP22jHezb+sx5XbS/R7Dzta99m7zM5OfnJ+Jdybb+yrOdTO06Ojo5CTdb/se07nV/Plps47rds7LbvlfVybb9Ltt+69Iq6bb/RdhvHkx64I6OD5w/X4LvV5bxsx2XXfmLZtbnVnl/Pnj0LNW3ftazHV7YWukvtGmZrayvU/M//+T+r+K9//WuoydYr7f5te8qVEs+Lu+y7DXTTZb7qcv/bV8/GTJd1XjYvtOulv/3tb6Hm9evXVZytFzc3N0OuS2/L8fGJehuH+1uvdzluXfpfZve2bS67VmfzV7s+y9Zr7eu+9XuYTJfjlh2TtgdvKXHtkfWsb/uLZudA1t+11eW87No/uq/1wfVV3JfHx8dV/HH3Y6hp10dZD9jsfG7vY7L93eaePHkSaiYmJkIOAPg2+dUEAAAAAAAAoCcewAIAAAAAAAD0xANYAAAAAAAAgJ54AAsAAAAAAADQk9G7/oCTk5MqPjw8DDXDw7d7Dty+bnQ0fp3r6+uQ+/jxYxUfHx+Hmpubm4Hvc3R0VMW7u7uhZmhoaGDu4uJi4Off1sjISMi1++n09DTU7O3thVxW15qYmKji8fHxUJPtk/a9s89v99Pl5eXA7ck+LxsnXbY7s7+/X8Wbm5uhJju+rWyf8Pl0Pd/aa042TtpcNt6ya15f5/zXosu189e81+c0OTkZcouLi1W8srISalZXV6v46uoq1GTzzocPH6q4yzVvfn4+1GSvm5ubq+KXL1+GmnbeyfZ/tk/a86LLccv2STufZHN8Np+175Wdp/c9lr51t93/2Thp32tqairULCwsVHE7/n+NLtf88/PzkGvXGW/evAk1P/zwQxX/6U9/CjXtNaCUeM3pshYyd8HX4y7nuPa9s8/KriftbwntfXwp8V4ru2/P5v32up/dNw8P390+ab9vdm97dnYWcgcHB5+MS4lrn2zfZmuxmZmZKp6dnQ012X6ilu3vdlxm68zp6emQa9fo2Xql9TUdo4vL+FvKwX495j9sfAg17969q1+TnCdd7tEePXo0sKbLMemqHSddrovb29uhJvvdtX3vsbGxUHPb32YBgF9mdgUAAAAAAADoiQewAAAAAAAAAD3xABYAAAAAAACgJ3feA7btvfCXv/wl1Ny2z0CX3p5ZD5i2v+jW1laoafuFZb0X2j5cWT+t7L0HfdYvfd5t5L1s6v2d9SjN+ki0vQazbWz3wW37j2Rjos1l751tUztO+uzr1+W92+3sso3cv+w4delR6VjeUrO7s/3f5dzp0vf6S9D2Vsx6S7b9GLN+r1kvtLYHbJfelm3Pr2wbs23653/+51Dz7NmzKs7Oiew4dbmetrmsp1s777569SrUvHv7LuTafpvZ9/+aemp9zdprRZc1Vddx2pd27Zedy9ka8u3bt1Wc9YBtz4vsGpCNb/MX8KXp0ju2y28JX+KavZ2bsn6vWR/Hdr7I5o+232X2e0PW/7GdG77ENfSXqN2X2X5rx2nXe51vvdd61hv54LAe3+/fvw817e+Q2fu090OlxJ6v2T3aXZ4X7Tmf/S63sbFRxe29X1ZTStwHWQ/cdu1739dJAPga+AtYAAAAAAAAgJ54AAsAAAAAAADQEw9gAQAAAAAAAHriASwAAAAAAABAT+6ue/z/z9///vcqvr6+DjXDw/08B+7aIP78/LyK20b3pcQG9dl7v337tor39vZCzdjY2MDtubm5GVhzW9l2t7mrq6tQc3Z2FnLHx8dVfHMdt3t8fLyKux7bkZGRga9r37tP7T7pOpZGR0c/GZdyt8eX+9Xl/MoYE9FNud0+6XLudj2fP6f2Gjc9PR1qVldXq7idl0op5ejoKOTev39fxTMzMwPfe2lpKdRMTU2FXFuX1WTzfBftccqup+1+y77/xMREFe/v74eaN2/ehFw772Wf385VfJluM6dna5psfdSXdi364cOHUPPHP/4x5H788ccqPjk5GfhZKysrIZftk/b8MlcBd6Xr9aWdd7N1R/te2Tok+7z2Ovi5r3nt57XzQin5GmZ7e7uKd3d3Q027Pupyzf+lOgbr634kW3dk6/9vSXZeHBwcVHG2hmrvh5aXl0PN4uJiyLX3SNPT8T6qr98vM+1vkz/9+FOo+fc//HsVt9+1lHwb2+tpe88EANwNfwELAAAAAAAA0BMPYAEAAAAAAAB64gEsAAAAAAAAQE88gAUAAAAAAADoyehdf8CrV6+q+Pj4ONQMDQ3d6r1vbm5u9brR0fprj4+PD6zJbG9vV/G7d+9CzdXV1cD3GSrJ97/dLgmyfdTmhofjc/js+7f7Kavpst+6HLdsTNx2nNylLtv0JW43fGna82RkZCTUZNeO9hqbzTH7+/tVPDExEWqyz7u4uBj4+e31M7ueXl5ehtzZ2VkVz8zMhJrnz59XcXYtef36dch9+PChiqenp0PN6upqFc/NzYWa7Lu0+252djbUfE7Zsdzb2xtYkx3L9nhfX1//yq3jvrTnSpe1yenZacgdHBxU8eHhYajJzt3289uxVUopOzs7VZytIf/85z+H3F//+tcqzs7v5eXlKh4bGws1mduuqwE+ly73iNm17CHcj7Vrw1LimqaU+BtEVtN+32yuyPbTyclJFWfr6snJySrO1rldfgPpcpyyaanLobzt61rZ+iFbH7frg2y9cH5+3mzPw/i9oy/ZmGjX2l3PgXYNtbm5GWqOjo6q+OnTp6FmZWUl5OI9UrzX6bquuo32vLi8iudXO5bauJT8N87sfrf1NY9BALgv/gIWAAAAAAAAoCcewAIAAAAAAAD0xANYAAAAAAAAgJ7ceQ/Ytq9D1lOtrx6wXfu9tNtw255X7euy75bl2tfdZf+PLj1g+3wdQB+y3jpZ35q2V9DW1laoaXuAZr2ERobje7c9d/q8BrbX+Oz7PnnypIq79JwqJfZBev/+fahpex5NTU398sb+JwsLC1Wc9b+8b+2+1cvo29NeK9p+dZnsuvDmzZsqznpsZe/dnqtdesC2vZtLKeX0NPalba8VXfrbAnA7d3n/265Psh6ZbU/WUuJ8lfXNbNd12Toz6+/69u3bKs7mr3ZdnW13lx6wD0F275Gtx9t92a4fSonHLXufbE7/Wtax2e9ibZ/Wjx8/hpqNjY2Qa9dQ2XnSrs/ae5hSSllcXAy5ti7rn9yll+pttfdW3333Xahp+7tm93rtPspy7f4vJX4360wA+PX8BSwAAAAAAABATzyABQAAAAAAAOiJB7AAAAAAAAAAPfEAFgAAAAAAAKAnd95RvW1aPzc3F2qGhobuejM++XnZ53fZpvHx8SoeGxsLNTc3N//g1n0ZbrtPHur3Be5Xe33pej09Pz+v4rdv34aa/f39Kp6YmBj4+dnnZZ9/dXVVxZeXl6Em+7ynT59W8YsXL0LN4uJiFQ8Px38ztbGxEXJ//etfB9a0c/HoaFwOZN+3zWXHqZ0b71K2v9vc9fV1p/fqsjbgYRgZGaniLuf8zs5OqOlyfcnOnfa9szF4enpaxQcHB53ee3V1tYqz60KbszYD6Eef19PbzBWllHJ0dDTwdfPz81WczScnJych9/e//72Ks3mvyxzztcw72Rybadee29vboaZdZywsLISadE1Rvo71aHvPVEpc+3z48CHUZGOw3Zftuq+UuH+XlpYG1pRSyuzsbBVna8iu4+I22nu09vfUUkp59OjRJ+NS4v1gKfGeOLu+tPdx2b51jwQA/xh/AQsAAAAAAADQEw9gAQAAAAAAAHriASwAAAAAAABAT+68B2zbH+Fr6iGgXxzA3cjmiszFxUUVb25uhpp3795VcdYrK+tV1eWa3vbPOjw8DDVra2sh1/bz+e1vfxtqFhcWB37+yspKyLX9jLLeSa9fv67i7Ptnx6Dti5T1U/qcPWC79B3r2ofMHP71aI9llx7HbV+sUmKPsazncLfxFcfWyEi9Ps62Mctlvchut00AX4cu17zbrvPu8n7/7OysirOerNm6sq2bnJwMNe3aM5s72l6ypZSytbVVxVkv03a7s/Vi13X8l+62a8h2H5US71myNXS63x7o8rTdd8fHx6GmXWe9efMm1LT3caXEfbm6uhpq1tfXqzjrk9r2Wy2llKmpqSq+y36vmXYMZGOivdfK+utubGwMfO/z8/OBNQDAr+cvYAEAAAAAAAB64gEsAAAAAAAAQE88gAUAAAAAAADoiQewAAAAAAAAAD0Zve8NAIDburm5qeLr6+tQc3Fx8cn4lwwNDQ2sOT09reLDw8NQs7CwMPB9RkZGQm5sfKyKp6amOr33+vp6FR8fH4ea/f39Kn779m2oWV1ZDbnz8/Mq7rKP4HO7zbjMrh2Xl5dV3I7/Ukq5urq61faMjdXn9/Bw/DeR7fUN4GuRXReza157bW6vy1kuW+cd7B+E3PBIfd09Ozsb+Pm3lc0f7VqsjUvJ15XtvPPo0aNQ8+LFiyqenZ0NNdvb2yF3cFDvp52dnVCzt7dXxfPz86Fmeno65LJ5rvWlzXtdt6f9btk47Wss3bfse2S59h6pHTellLK1tVXF7969CzXZ61ZWVqr4yZMnoebx48dVvLoa72uye6su4/RLMz4+HnKjo/Gn3va6m43vL+0cBICvwcNbXQAAAAAAAAB8oTyABQAAAAAAAOiJB7AAAAAAAAAAPfEAFgAAAAAAAKAnsTM7ANyzm5ubTnXDw/W/IxobGws1o6P1VJe9d5YbGhoa+Pnt542MjISaubm5kBsfH6/i9ntkn99+j1JKmZ2dDbn19fUqPjo6CjVtbmtrK9Ts7e+F3OXlZRVn2w33rev14z/Lzq92fE9MTNzqs7JrSZvLarLz6zbfDeAhyK6D19fXVXxxcRFqzs7OPhmXUsr+wX7Itdf97L3ba26XtWEpcb20vx8/f3d3t4o/fvwYarI1XLvWXFpaCjVPnz6t4vn5+VDTrkVLKWVjY2NgTfv5U1NToSb7vC5rxocwx3W5Zzg5OQk1p6enHd779tv1uVxdXYVcds4dHBxUcTveSyllc3OzitvxV0o+btox/+LFi1DT3g9l90zZfeND1F4nfyn3EM4vAPga+eUUAAAAAAAAoCcewAIAAAAAAAD0xANYAAAAAAAAgJ7oAQvAV+Nz9yRtewd16UFbStzOLv0fs/6Ti4uLIffs2bMqPj8/DzVtH6a2B1MpeS+yw8PDKs56XGXbCV+67BzMejoD8Otl/Qmz63DbgzTrN9qul7I+hysrKwM/b3l5OdRMTk5Wcdd5oe332aUH7P7+QajJ+tK2+yBbC7Y9MrOaTNs79vvvvw81MzMzVZz1ic3Ww7ftp/sQjQzHcdLt+375PTqzMdn2ey2llK2trSrO7jV2dnaqOOslm5277bm69mgt1KyurlZxn/1e2+tXdj3rosv9X5fe2Fmv6POzeP/XnoPZ9exz30sDwLfA7AoAAAAAAADQEw9gAQAAAAAAAHriASwAAAAAAABATzyABQAAAAAAAOjJ6H1vAAB8625ubkJuqAxV8djYWKhZWloKucvLy0/GpZSys7NTxe/fvw81h4eH8XXb9es2NzdDzcjISBVPTEyEmtHRuPwYHvZvwgDga3R9fV3F2dqkXT+UUsri4mIVP3r0KNS0a6Hx8fFQc35+PnCblpeXQ02by9Yv7fuUUsrZ2VkVHx8fh5o2d3UV98nU1NTA3MzMTKhp14zZGnJ+fj7kvvvuuyoeGhoKNe2a8ePHj6Fmd3c35I6PT6p4ZCSu+7L9+xDdlLiuz9b6rWwtnJ0Xn1O73e3YLiU/3u/evavi9+8/hJr2vMzOwSdPnoRce85Pz0yHmuw60EX7fbP7ob29vSo+Ojoa+D5d731GhuvjPTIaj//FxUUVb29vh5rdj/GYXF1dVXHXezQA4NfxaycAAAAAAABATzyABQAAAAAAAOiJB7AAAAAAAAAAPfEf/APAZ9b2C2t78pRSyvVNXTM8FP/N1OzsbMi1/braPkGllPLhQ92HaXV1NdScn8V+aR826tctvlkMNW3Po6yfU9Z37La9mgCAL1u77sn6SE5OToZcu154+fJlqHn27FkVZz1Rs56z7dorW4e066ysl2q2zmp7W56eng6syfpBZuuldpuyPo5dTE/HvpnPnz+v4rm5uVDT9t/8+9//HmoODg5C7uys3gfZ/v6a+0926QGb9Xu9y33SblPW87c9T7KxvLOzE3KvXr2q4qxPaXvOP336NNRkufa8yM7L22q/b9bf9m9/+1sV//zzzwPfJ7tny87d9jqQHZP2enp4GHvQfkx6wLbXwdt+PgDwj/EXsAAAAAAAAAA98QAWAAAAAAAAoCcewAIAAAAAAAD0xANYAAAAAAAAgJ6M3vcGAMC37vr6urf3mpmZqeKVlZVQ8/jx4yp+8eJFqHn37l3I7ezsVPGPP/4YatrvMjwc/63X1NRUyI2Pj4ccAPDwtWuD8/PzUDM2FtcB09PTVZytaZ48eVLFn3s9ka3h2u93cnISatpc9j4TExMh1+6TPr9vuz7L1mut3d3dkMvWfu0+GRkZCTU3NzdVPDQ0NPDzv0TZdrf7pP2upZRycXERcqenp/1t2ABdtun4+DjUbG9vh1x7j3B2dhZqfv/731dxe3/yS7mFhYUqHhsbCzW31Z6H2f5vv+9f/vKXULO/v1/Fs7OzoeYur1XZGGxzfe43AOCX+QtYAAAAAAAAgJ54AAsAAAAAAADQEw9gAQAAAAAAAHriASwAAAAAAABAT0bvewMA4Ftzc3Pz2T5ramoq5FZWVqr4N7/5TagZGRkJuf39/Sp++/btwNctLi6GmrW1tWxTe9Hu26urq1BzdnYWcsfHx1U8NjY28L27fH4ppQwNDVXx8HD8929tLtv/7ft03SYA+JJcX18n2TiftXNhNjePj4/3tVm3k0zD7drj/Pw81JycnHzyNaXk8/71Vb3vsnXAXa4N2v3ddb3SHvMvcf3SblM2TrPj1L7u4uJiYM3p6Wmo2dzcDLmff/65ii8vLkPNwuJCFU9PT4ea7Dxpj1P23S4v68/LxvLh4WHI7e7uVvHExESoWViot3t9fT3UrK6uhtzs7GwVj47297Nmu09mZmZCzdOnT6s4O5YfPnyo4r29vVCzs7MTcu09yshwPL9Gx+rvmx3bbH+3ddn9SOtLPE8B4KHxF7AAAAAAAAAAPfEAFgAAAAAAAKAnHsACAAAAAAAA9EQPWAD4zIZK7I11Z5+V9OGan5+v4mfPnnd6r7/97W9V/Pr161DT9hf6/vvvQ03WY+o2sr5Ebb+urFdV28u2lNiHKdtvk5OTt9qm9r269GrK+jJl29Tm9GoC4EuXzWeZdk7v0qOyz36QnSRfpUs/+vOzen1ydh7702eva9ci2Ton77Hbj3Z/Z5+VrUXadU3XMdCXLp/Xfpesl+vZaTxO5xf1MWj3UfbeHz9+DDV//etfQ25ra6uKnz17FmratfZ3330XalZWVkKuyxqy/S7ZPsly7didmpoKNYuLi1W8vLw8sKaUvBd0X9qexktLS6GmXbM/evQo1Lx586aKf/jhh1CTHe92nGT3Hl36MHe6j0huGW6yJADwq/gLWAAAAAAAAICeeAALAAAAAAAA0BMPYAEAAAAAAAB64gEsAAAAAAAAQE9G73sDAOCbM/T5PmpkZCTk5ubmqvjm5ibUXF5ehNyHDx+qeH9/f+DnHRwchJqzs7N8Y/9BQ0NxR7afPzk5GWqWlpZCbni4/jdp8/PzoWZiYmLgNmX7MtvOQZ+fvSZ7bwB4aLI5rsu8d3V1FWra3Ojo5/2JI5ub223K1j0nJydVfJGsu7Lvct9rgfa7XV9f39OW/GO67Ld2LTYxHtd9Y2Njt3rvVjbej46OQm5zc7OKs7X39PR0Fa+trf3D21NKKefn5yF3fHxcxe24/aXXtWO3vfcoJa61s7X3+Ph4vrF3pB0D7b7NcgsLC6GmvR/Z29sLNa9evRr4uuz7Z/c2t3FT3FcAwOfgL2ABAAAAAAAAeuIBLAAAAAAAAEBPPIAFAAAAAAAA6IkesADwFct6wLa9i7r2oWr7N7V9kkqJPY52d3dDTZZrt2l2djbUtJ+X9UZr+0e9ePEi1GTft+3PlvVcavdl9j7ZPmn7o2X7dnt7u4p3dnZCzenpaci1+yDrTdalBy0A8I+7vLwMuXa+Pjg4CDUHh3Uu6+uYrYXafpNZj8rP3Qf3IciOU6vdl4uLi6Emy01NTVVxl7Vg1js36696dFivGSen4jhptykbS9lasN0n2Thte9BubW3FbUzWte02ZP1d25rP3e+1L9naux0TXb9b22P5vns+AwC/nr+ABQAAAAAAAOiJB7AAAAAAAAAAPfEAFgAAAAAAAKAnHsACAAAAAAAA9GT0vjcAALg7w8Px31qNDI9U8c3kTaiZmpoKuenp6SqenZ0NNbu7u5+MSyllc3Mz5CYnJ0OuNT8/X8VDQ0OhZmlpaeD7rKyshNzV1VUVj4yMhJr287J9Ozoal1aXl5dVvLGxEWpubupj8O7du1CztbUVcnNzc1W8sLAQarLtHPT5AMBg7RxfSimnp6dVvLe3F2raXLamytY0q6urVdyuA0rJ1yLfkmxNc3FxUcXX19ehpt3fT58+DTUvXrwY+Lps3dWuM7PPz8ZSm8uO7eLi4ifjX3J2dlbFOzs7oebNmzdV/Pr161BzeHgYcu19xMzMTKhp19rZPvnmWI4DwFfHX8ACAAAAAAAA9MQDWAAAAAAAAICeeAALAAAAAAAA0BMPYAEAAAAAAAB6MnrfGwAA3J2hoaGBNePj4yE3NTUVcouLi1X89OnTgZ93fHwcaj58+DBwG0ZGRkLN2NjYwG1s32dtbS3UrKyshNzNzU0Vd9lvw8Px37Fluevr609uYyml7O3tVfHPP/8canZ2dkKuy3a22u8KAN+6LnPj1dVVyJ2dnYVcu/Zp5/hSSjk5OaniiYmJUNOuu0opZXlpuYpnZ2dDTbte+tZkx/Li4qKK27VZKXF9lq0Xnz9/HnKPHj0auE3t52Wfn+myPh0dvd3PekdHR1W8tbUVal69elXF2Ro+26ZHq/U+WV5eDjXZmP9aXJzX4+3y8rLT64aG6315m3U+APBl8RewAAAAAAAAAD3xABYAAAAAAACgJx7AAgAAAAAAAPRED1gAuGfDQ/HfQ913z5+ZmZmQW19fr+L//X//30NN2+Mp64328ePHkGt7p2b7pK3JenO1fWH77JV1W+12Zz3d2p5ip6enoSZ7XdtnLtvfbS7bJ1nPXQD4VmQ9Odu+oW3f1lLy/q4HBwdVnM3Nbb/RrJfr/Px8yM3O1XXtuqeU+19Dfona45v1823Xa1mP0unp6Vt9fljnDt/d30JkPXAPDw9Dbnt7u4o3NzdDTdsXNjtPnj17FnLtujarade1Xdfn5+fnVdyuhbOaTHaetLlsfdzmsuvC9k69b7NtzLTXhbscJwDA52E2BwAAAAAAAOiJB7AAAAAAAAAAPfEAFgAAAAAAAKAnHsACAAAAAAAA9KRbl3sAILi5uani6+vrTq8bGRmp49GRUDM0NHT7DevB9PR0yD1+/LiKx8fHQ83S0lIVv3nzJtS8ffs25F69elXF7b4tpZTS7JJsfy8sLFTx7OxsqGn3/+eW7bcnT55U8cTERKhZXV0NudevX1dxux9LKeXg4KCKh4fjv7/Lcvc9BgHgc7m6ugq54+PjKv748WOo2d7eDrl23s3m0/n5+SrO1itTU1MhNzk5WcWjo37S6aI9Bl3WONk6Mxsn9+3y8rKK2/FXSj5O379/X8Wbm5uh5uTkpIqXl5dDzYsXL0Lu+++/r+JHjx6FmnbMj42NhZqLi4uQa79L+z1Kiedqdl+RnTvtuMjuGdo18/n5eajZ2dmp4t3d3YGfVUpc/9/3PQsA8Ov5C1gAAAAAAACAnngACwAAAAAAANATD2ABAAAAAAAAeqJhCAD0pGvPzLYPUdrv9J5l32VxcbGKZ2ZmQk3bmyzr3fTu3buQ29jYqOJsn7TblPXmanNZ76Ssz9rnlPW4anvntr3hSilleir25W3374cPH0JN25sq63mV9ZwFgG9FtqZoe8C2fR1LKWVrayvk2h6c2bzbpQdsu6YqJe8jz2BdesC2a8+s3+uX2AP26OioirNerm/fvg25dj2+t7cXato1a9bL9cmTJyH39OnTKs7WtV1k/VXbHrB//vOfQ80PP/xQxdn5PT0d19Vdeq52uR9p1+fZ/VDGehwAvj7+AhYAAAAAAACgJx7AAgAAAAAAAPTEA1gAAAAAAACAnngACwAAAAAAANCT0fveAAB4qIaH63/HNDY21ul1x8fHVby7uxtqpqenq3hycjLUXF1dDc7dxM+/yZKN7LvMzMwMrFleXq7i1dXVUPPo0aOQOzg4qOJ2H5VSyrt376p4aGgo1ExMTFTx3NxcqJmdnQ25vtzcxH2bbecgIyMjITc3H7/L1NRUFbdjspRSLi8vB25PX9sNAA/R9fV1yJ2cnFTxzs5OqNna2gq5dg0zPj4eatr1Sbvu+6XXfS2y/Z3lbiNb07RroWwN3X5+9j5Z7nO6uLgIuXYNvbGxEWpev34dcu39RzbeVlZWqvj58+cDa0rJ19+3kR2n9vzKvu8f/vCHKm6PfynxnqWUeG/TZQxka+92X7b3J9lnpe91y/s4AODL4S9gAQAAAAAAAHriASwAAAAAAABATzyABQAAAAAAAOiJB7AAAAAAAAAAPRm97w0AgIdqZGSkiicmJjq9bnd3t4p//vnnUHN0dFTF4+Pjoeb66jrkrq6vqvjm5ibUXF5eVvHwcPz3WAsLCyH35MmTKl5eXg41Y2NjA9/n2bNnIddu59bWVqhp90lW8+jRoypuv+tdGxoaurP3vr6Oxzs7vq12m+5yGwHga3FxcVHF7TqklFL29/dD7vz8vIonJydDTZsbHY0/zTyE+TrbxizXrsey9Uu7zsnWPV0+K3vdx48fP7k9pZRyfHxcxVdXV6Gmy7rrtrL3bnOnp6eh5vDwsIo3NzdDzdu3b0Ou3XfZ+vzp06dV3N4LlFLK7OzswPe+rex92vuW9n6slHhPltVk91bteXibdXb2PsNDt/vbl5tyd+MNAPg8/AUsAAAAAAAAQE88gAUAAAAAAADoiQewAAAAAAAAAD3RAxYAbqntJ5T1Us3s7OxUcdtzqpTYFzbrXdSlV1TWv+rk5GTge3///fch1/Z3nZmZCTVtz6W5ublQk/WPavsndenflfW4avtXnZ2dhZpsn2T74EuT9Strv0s2Jh5CDzkAuE/Z/NmlB2yWa9eDU1NToaZdQ2X9KM3fUZe+9rfdb59zf2fjLVvndRmDe3t7VZytjz98+BBy7Xr80aNHoebFixdVvLy8HGqy8d2u47veI7WyY9Ku2bMeywsLC1Wcrf2ze5S7uh/oOrbusscwAHA//AUsAAAAAAAAQE88gAUAAAAAAADoiQewAAAAAAAAAD3xABYAAAAAAACgJ6P3vQEA8FANDw/+d0w3Nzchd3h4WMU7Ozuh5uLiooqvr69DzdDQ0MDPv7y8DLn288bGxkLN5ORkyL18+bKKr66uBn7+7OxsyGXfpc112ScfP34MNdvb21W8t7cXahYWFkJuenq6irNjOzIyEnKfUzaWAOBb0WXdc1vZeun8/LyKj46OQs3Z2VnILS8vV/Hq6mqoaXPZeilbn31puqzpSonfb2VlJdQsLS1V8eho/LmqXQtla6Msd3JyUtdcx5onT59U8dzcXKjJtqkv2Vja39+v4s3NrVCz8WGjirM1dLZmb49Ju/9LiWM5W0Pf5XnZRfb5bS5b13d5HQDAr+UvYAEAAAAAAAB64gEsAAAAAAAAQE88gAUAAAAAAADoiR6wAHBLbYuprm2D2v5CWb+hLv1lu7x39j5tLutt2qUHUpeepNnnZ33O2t5cMzMzA7dpd3c31Gxt1b2xsj5Yc3PzIdd+l6mpqVBz3z1gAYBaXz0bsx6Zbe/5Ni4lX+e0fTIfPXoUatpc1ltzcnIy39h7NDpS/4SUrQWzHrCLi4tV/Lvf/S7UPH/+vIqztVj7edlxy7aprctq2rVn2/+0lFLGx8dD7jaycXt6ehpyGxt1f9effvop1Lx9+7aKu/QlznLZ2ntiYqKKb3t/AgDwrbJ6AgAAAAAAAOiJB7AAAAAAAAAAPfEAFgAAAAAAAKAnHsACAAAAAAAA9GT0vjcAAB6umzq6+YWyxsjISBVPTU3Fd+76ZgNcXV3FZPPWo2NxOTAxMRFyw8P9/Lut0dH4edPT01Wc7ZN2m05PT0PN9vZ2FW9sbISamZmZkBsZGW7ikVCT7RMA4OFp10cXFxehps1la6rx8fGQm59fqOKVlZVQs7y8XMWzs7OhJluL3LuhOsz2yfX1dcgtLNT75NmzZ6Hm97/7fRXPzsV90q6PLy8vB9b8Uq7V7u9svTo2NjbwfW7r+Pg45N6+fVfFf/rTn0LN3t5eFWdr6LW1tZBrx2X2umwfAADQnb+ABQAAAAAAAOiJB7AAAAAAAAAAPfEAFgAAAAAAAKAnGjoAwGc2NDTUS00XWc+r4abfadbbNfv88F79tKktpZQyOTlZxVmf1qWlpSpeXFwMNUdHR1X87t27UJP1cm17uLU9ab92WWu0Lv3S+hqnADBINucMtU1JE9l81vbbbNcPpZRydnY28L2z9cLCwnwVZ+uV2Zm6v2m2Fst63XeZm7vI+su2/T7Pz89Dzf7+fhUfHh6GmqwvbLufsn2yvFL3xc32yZeoPSZd1kbZftvd3Q25d+/eVvGPP/4YatrerS9evAg1L1++DLnHjx9XcdaHWA9YAIBf52GsaAEAAAAAAAAeAA9gAQAAAAAAAHriASwAAAAAAABATzyABQAAAAAAAOjJ6H1vAADwMN30+F5DQ0NVPDk5GWpWVlaq+OmTp6Fm/2C/it+/fx9qxsbGQm5xcbGK19fXf3Fb70u7j7rWXF9fV/Hp6Wmn1w0P1/9Ob3Q0LhvbfTkyMjJwG0sp5eamz9EDwEOXzQvt3JTNMcMjg/9NeTbv7e/X64W9vb1Qc3JyUn/WcPysqampkJuZmRlY02738fFxqNne3g65g4ODKm7n+Gw7u8zxpcT9e3l5GWo2NzereGtrK9RkrwvrheF4LLuscx6CbLy1uezYbmxshFy7f7N9u7q6WsUvX74MNVmuXVe347aUfJwAANCd1RQAAAAAAABATzyABQAAAAAAAOiJB7AAAAAAAAAAPfEAFgAAAAAAAKAno/e9AQDAwzA0NNTEd/dZExMTIbe8vFzFT58+DTUXP19U8cbGRqi5ubkJuefPn1fx5eVlp+28f4MPwvX1dRVn3+3s7CzkhocH/zu90VFLSQD+QXEaTrXrjmxeamsyJycnIffx48dPxqWUcnpyWsVjY2OhZmZmJuSmp6ereHx8fOA2HhwchNyPP/4Ycj/99FMVZ/P35ORkFY+MjISabL+1uXb9kG3nu3fvQ83V1VXItdtwfRPf++KiXsN12W9fomy8bW1tVfHbt29Dzbt370Lu8PCwiufm5kJNux5+9uxZqHny5EnIte/V5VwCAOAf4y9gAQAAAAAAAHriASwAAAAAAABATzyABQAAAAAAAOiJxl0AwL1r+061/dNKKWV9fb2K215hpZRyelb3a8t6bL1+/Trktre3q7jtuZV9XtYL7i5lvWtvmh5qWb+2tofa0tJSqFlcXAy5ttdetr/Pz8+rOOv7ltFnDOABuGnDOA/d6nre8SXtvJfNMV16tmf9VduenO06oJRSzi/qOS7r95rNn21dl16mp6enIZf1BP3v//2/V/H+/v7Abeqzl2p7DLJ+pwsLCyGX9aFtZeuch6BdH2XjrT2WP//8c6jZ3NwMudHR+ie758+fh5q2v+vKykqoyY7Jt+Shji0A4OHzF7AAAAAAAAAAPfEAFgAAAAAAAKAnHsACAAAAAAAA9MQDWAAAAAAAAICejN73BgAADA/X/yZsZmYm1Kyvr1fx0NBQqDk+Pq7iN2/ehJpXr16F3O7ubhVvb2+HmoWFhSqen58PNWNjY51yt3FzcxNyZ2dnVXx4eBhqRkfr5d5vfvObUPPy5cuQGxkZqeJsn7x+/XpgTbbd7T7JjiUA/7jsetpehy8vL0PN1dXVwFx2Pe/y+efn51V8dHTU6XUnJydVfHp6OrDm+vo61Ozt7YXc1lY9X+3v74eadv6cm5sLNdlaYHJysorb+bSUuC+z7c6OU/t9s305MTHxyc/qmmvXZllNNm66jJMvUbvdXc6lUuIx2d+LY+nDhw9V/O7du/je1/G9Hz9+XMVPHj8JNe36eHp6OtQ8VNm50+a6HicAgPvgL2ABAAAAAAAAeuIBLAAAAAAAAEBPPIAFAAAAAAAA6IkesADAvWv7jGX9q9qeZllvsoODgyp+8iT2ytrZ2Qm5tvdb26urlFKmpqaq+Ooy9j2bX4i94Noecrftd5r1h2v76mU9YNv99uLFi1DzX/7Lfwm5tsfWzz//HGo+fvxYxe/fvw81WX+49r2zHl8ADNZlTunSt7PtKV5KnGOyeaj9/C49YNt+7aWUMjwc54G2Lut32uayvqntXFVKKTs7dQ/Yto9nKaUsLy9XcdYDNsu18262T9p9mdW071NKKYuLi1WczZ9tz/rx8fFQk+nSA/Xi4qKKu4yJ7L2/RF368rbfv5Q4dvb2Y8/hzc3NKt7a2go1bS/XUkp5+vRpFWdruJWVlSoeGxsLNQ9VNr7b9f9troG/lAMA6Ju/gAUAAAAAAADoiQewAAAAAAAAAD3xABYAAAAAAACgJx7AAgAAAAAAAPRk9L43AABgaGhoYM3oaL1sWVpaCjUrKytVvL6+Hmrev38fcmdnZwNr2s8fHo7/jm18YjzkZmZmqrjLd82MjIyE3MTERBWvrq6GmtnZ2Sp+9uxZqHny5MnAzz84OBj4+VdXV6Hm4uIi5G5ubgZ+HgCDtdfT7PrazjvT09Ohpp0rSonzXDZ/dbmet3NDO+eWUsr4+OD5M5tjjo6OBr737u5uyG1vb1dx9j3W1taqONtHc3PzIdfOjfl+a+PBx62UUsbGxqo422/teqWNf412O7O10EPVfreL87h+OTk9Cbl2fbS/vx9qPn78WMXZOM3G16NHj6o4W9fOz9djMBsTXWRj8Pr6uqmJr+uyrM3Gcpexc3IS93e777LrQvveXc8vAIC+fT2rZQAAAAAAAIB75gEsAAAAAAAAQE88gAUAAAAAAADoiQewAAAAAAAAAD0Zve8NAADuzs3NzcBcUlKGhoZCbni4/ndbIyMjv27jfqXs82dmZqp4ZWUl1Dx+/DjkPn78WMU7O7uhZnS0XjbNz8+HmtXV1XRb+zA+Ph5y6+vrVfzf/tt/CzWTk5NV/OjRo1DT5VhmY6LNdRlvAPTn8vKyiq+vr0PN1NRUFWfzQDZ/tfNcNle0n5d9flx3xHkhm2Pa+av9HqWUcnZ2VsUHBwehZn9/P+TauvazSillbGxs4OdPJ7lsvo7MjV+adgxeXF6EmqOjo5A7PDys4tPT01DTrqEXFxdDzdLSUsgtLCxU8dzcXKiZnp6u4uxcynQ5d9rvdnER90n73X4p12rX1Zns3N3a2qrik5OTge+dXbu67icAgF/DX8ACAAAAAAAA9MQDWAAAAAAAAICeeAALAAAAAAAA0BM9YAHgGxN7r8U+ZFnvprZ/0n33gM20fdfa3lml5L3v2p5We3t7oWZrq+4V9eTJk1DT9uIrpb8eUxMTEyHXbkPWP6w9TlnfsUzbG+z8/DzUtL3+uvSJBaA/7byTXatnZ2erOJsHf/vb34bc2tpaFbc9UbPPz3rAtrI1RtYXtv0uF+dJT87juidn1qPz+Pg45Np5f3pqOtS03zebh8cnYr/X26yP9Eu/f+16JVvTZWOpHXPZ62ZmZqo46+Warc/a12Vj8LbrrPa7vHv3LtS8evWqirM+sdl4b8+dbBu79InN+um2a/TsmGTXqpb1KQDwOfgLWAAAAAAAAICeeAALAAAAAAAA0BMPYAEAAAAAAAB64gEsAAAAAAAAQE9G73sDAIC7MzQ0FHLDw8MDa66urkLu/Py8is/OzkLN2NjYP7qJpZRSbm5uBm5T6/LyMuTa183Pz4eaJ0+ehFz73fb29kLN9vb2wJqTk5OB7z0xMRFquhgfH++U60u7f7P93R63TJdjCcDttPN1O+eUUsrIyEgVZ3Pj+tp6yD1+8vhXbt2vc3R0VMXbW9uhZmd3p4r39/cHvk8pcf4aG4/rl8nJyU/GpeRz+ujo4J9Z2s/vMp9yty4uLqr4+Pg41GRrvzZ3fX0dalZWVqp4dnY21Dx69CjkZmZmqvi26+zM2Wm9jt/Y2Ag1//Zv/1bFP//8c6iZmpoKuXa7b6vLGjKr6XIOAgB8Dv4CFgAAAAAAAKAnHsACAAAAAAAA9MQDWAAAAAAAAICeaIwAAF+xrC9S2z+q7Q1XSimnp6ch1/ZAnZ6eDjVZX7lWl16iXXo+Zf3S2lzWgyrrAdv2/drc3Aw1b968qeKPHz+Gmt3d3ZBbXFys4oWFhVDT9qrKeld97l6q+tEBfPm69BJt549sjsl6oN63djsvr+L64fDwsIqzHrDZmqZd+2R9LLv0gL3LXuxf4jx8221qx+DwcPxbgGw9ehtd1odt7+RSSjk4OKjibE2XrQ/b9WA2TtbW1qq47Qn7S7lsXPbl6rreB2dnZ6Gm7W/79u3bUDM3Nxdy7f1AtobtMpaya1Xbd7mvPswAAHfBX8ACAAAAAAAA9MQDWAAAAAAAAICeeAALAAAAAAAA0BMPYAEAAAAAAAB6MrgzPQDwYA0NDYXcxMTEwJqjo6OQe/369cCaqampgdt0dXU1sOby8jLkrq+vB37W+vp6Fa+trYWa6enpkDs/P6/i9ruWUsqHDx+q+ODgINRsbW6F3OzMbBXf3NzEmtm6ZmZmJtRkx+kufe7PA+Af116rs2t3O+9k83A27963dptOT09DzeHhYRVna5Psu42Pj1dxtjaYnJz85GtKKWV0tJ+fVLK1wUPQrs1Kyb/L8HD9b/+z/dbXvsy2qV3nZWPp48ePVby5uRlq3r9/H3Ltey0sLISax+uPq3htPa5Ps7Xf2NhYyPWlPSbZZ7XnxfLy8sCaUuK69ray69nIyEgVt9+jlId7PgEAXx9/AQsAAAAAAADQEw9gAQAAAAAAAHriASwAAAAAAABATzyABQAAAAAAAOjJ6H1vAABwd4aGhkJubGxs4OuOj49D7tWrV1X85s2b22/YLT7/7Oysip8/fx5qpqamBtbMz80PfO+1tbVQ8+7duyq+vLwMNZubmyE3Nj54f4+MjFTx9PT0wNcAwG3c3NyE3PX19T1syae1c/PR0VGo2dvbq+LDw8NQMzwc/9354sJiHS8uhpp2Lh4fH/+lTf1mZfs2W3u24+vi4iLUtLku69VMNpZPT06r+OPex1CztbVVxRsbG6Emy7XbOTk5GWqWlpeqeGVlJdR8bu1xateipZQyMTFRxdn6tF17Z6/LxgQAwLfAX8ACAAAAAAAA9MQDWAAAAAAAAICeeAALAAAAAAAA0BM9YAHgG9OlD1PW37TtxdbGv/S6Lp/f9qP7+PFjqGl7v01Oxp5T5+fnVZz1Jhsdi8ufubm5Kl5fXw81v/nNb6p4Z2cn1Ozt74Xc9U3diyzrIbe4tBhyAPCtyNYPJycnVXxwcBBqdnd3q/j09DTULCwshFw7z2e932dnZ6t4dLS/n0+yPrx96bLOy/qk3lzX29SuX0qJxyn7HldXVyHX9up9//59qGl7qWZ9UtsepNkxyT7/6LheQ7b9XrNt2t7eDjXZ+Gp7oGY9YLM+qfetHSf6tAIA9M9fwAIAAAAAAAD0xANYAAAAAAAAgJ54AAsAAAAAAADQEw9gAQAAAAAAAHoyet8bAADcr5ubm5AbHor/RmtsbKyuGY4119fXHT5xKNuKge/Tfv7U1GSoabep2/aUMjExUcWrq6uh5vT0tIpHRkZCzU8//RRye3t7VbywsBBqvv/N9wPfGwAeonYuztYd7RxbSilHR0dVvL+/H2p2d3er+PLyMtRk8+7jx4+r+NGjR6FmZmamirN1z20NpWuhW7zPUHyfLNe6uroKubOzsyo+Pz8PNRcXF1Wc7e9s7fXmzZsqzo73hw8fqvi7774LNW1uZWWl0+efnJxU8ebmZqh5//59Fbfrt1LyMdCOk3ZNWcqXua4bGx28rm9l526WAwDgP/gLWAAAAAAAAICeeAALAAAAAAAA0BMPYAEAAAAAAAB6ogcsAHxjuvRqGhqO/cPGhuteUW1P1j63KevfNTpaL1uyHltt37OuPWDHx8ereHl5OdS0/dLaXmmllPLzzz+H3Lt376q47TtXSiknp3Vvsqw325fYPwwABmnntLaPaCmlHB8fh9zh4WEVZz0521zbj7OUvAds2/M1m/enp6eruM8esD21gE11Wedl36VdC7XrrlK6rauyHrRtz9cffvgh1LTrpWyd1R7f7Hhn37/tJ5z1gN3Y2Ai51uLiYsgtL9d9aLP1adf16Od0dV2fl53uDzr0FwYA4H/xF7AAAAAAAAAAPfEAFgAAAAAAAKAnHsACAAAAAAAA9MQDWAAAAAAAAICejN73BgAA3MbQ0NDAmpubm07vNTxc/5u0ubm5UHN1dVXFe3t7oSZ73fX1dRXv7u6Gms3NzSpeXl4ONUtLSyE3Olov5drvUUq3/QQAd6WdP09PT0PN4cFhyB0cHNQ1h7Hm4uKiiicnJ0NNNjcvLi5W8fz8fKgZGxur4i9xPm33bSlxn7Tfo5T4/UuJ+2BmZibUjIyMVHG2zmrXPdk2HR8fh5r2u0xPTw+syd6n/axS4tpre3s71LTj8smTJ6Hm5cuXIbe+vl7FExMToaYdy9k2Zmu4dl9m+7t9Xbs2/I/Puwy5ra2tT25j9vnZWGrHBAAA/4u/gAUAAAAAAADoiQewAAAAAAAAAD3xABYAAAAAAACgJx7AAgAAAAAAAPRk9L43AADgVm6S1M3NJ+OuRkfjEml6erqK5+bmQs3KysrA3MnJSah59epVFY+MjISaJ0+ehNzy8nIVLywshJqhoaGQA4DP5erqqopPT09DzdHxUcgdHx9X8cXFRagZGxur4pmZmVDTzt+llDI1NVXFExMToSbMn7dbUtypy8vLkDs7O6vibJ+srq6G3HfffVfFjx49CjXtfmqP7S/l2vVYl5rh4fj3Au3nt2OklFL29/dDbmdnp4qPjuJ4Gx8fr+KnT5+Gmt/+9rch16692v1fSinv37+v4my7r6+vQ67dB9mars1la8hsf+/t7VXx5uZmqGnHV3aeZGtma08AgP/gL2ABAAAAAAAAeuIBLAAAAAAAAEBPPIAFAAAAAAAA6IkesADAg3STNGPrqwdsZnJysopnZ2dDTdYD9vHjx1W8vb0dan788ccqPjw8DDVZ79i2N1i2TVkPNQD4XNr+k1mPzGzea/tkZn0s2/6u2TzY9nstJfay7NSz8gtsa5n1gG177GbfLesZ/+zZs0/GpcS1UNoD9jLm2n2X9Slt12xd+ru2vV1LyXuZ7u7uVnHWb3VxcbGK2/VbKfk+acfXu3fvQk3bA/aPf/xjqMl6I7fv3aXfana8s/Vw21P5/Pw81LTHt+2T+0ufBwDAf/CLHAAAAAAAAEBPPIAFAAAAAAAA6IkHsAAAAAAAAAA98QAWAAAAAAAAoCej970BAPCtubm5+WT8S7mHYGho6JPxL+UeguHh+t+tTU1NhZqVlZWQe/r0aRVfXFyEmrdv31bx5ubmwM8vpZTl5frzss8fGxsLub5cX19X8dXVVajJcl1ed1tf8xgEuCt3eV1sr/mnp6eh5vDwMOSOj48Hvvfs7Own41JKmZycDLm7nBu76GuuavdtKaVcXl627xRqJiYmQm5mZqaKs3VOa3Q0/qSU5W4j+/zt7e1PxqWU8uHDh5Brx9zS0lKoefz4cRVna6r5+fmQa9dn2XH7+PFjFf/hD38INVtbWyH36NGjKs72SZf7imybxsfHqzgbE+15MjIy0um9AQD4D/4CFgAAAAAAAKAnHsACAAAAAAAA9MQDWAAAAAAAAICe6AELALfUpedR1oep7Xd5fn4eato+oVmPr8/dc6lLX9q271fWY63tOVVKt/5ZX5rsu2W9wdbX16v46Ogo1GxsbFTx69evQ83a2lrIHRzsV/HJyUmoaXu6Zf27usjG4NnZWRW3Pc5Kycd3q0u/uGz8ZX1x2+OSjbf28257LgPcty79H1vZPNBX385Mu+7JeqFnfWHbumwb22v89PR0qLnL73Zb7TZl25jNcbc53qXEmux1X9o8l/WHb/sCb25uhprd3d2Qa/ubLi8vh5onT55U8dzcXKjJjkkr9uCNYznreZxtdzueuxy3rj1g2/VZu6YrJZ5f2ZoqWw+3uS777UsbfwAAffAXsAAAAAAAAAA98QAWAAAAAAAAoCcewAIAAAAAAAD0xANYAAAAAAAAgJ6M3vcGAAA8RKOjcRk1Ozsbcqurq1V8cHAw8HXHx8ehZnd3N+T29vYGvvf09HQVz83NhZrM0NDQJ2MA6OLm5qaKLy4uQs35+XnIXV5eVvHY2FiomZqa+mRcSikjIyMDt+mhyubmLvP19fV1yLX7O9tHn3MtcHZ2FnL7+/tVvLGxEWo+fvwYci9fvqzix48fh5r19fUqnpmZ6bKZYb9dX8V9264Zl5aWQs1Qifu2rZuYmOi0TX1pj/fXct4AAHwu/gIWAAAAAAAAoCcewAIAAAAAAAD0xANYAAAAAAAAgJ54AAsAAAAAAADQk9H73gAAeKiur6+r+ObmJtQMD8d/6zQ7O1vFU1NToWZycnLg+2Sfl+X6km1D6+LioopPT09DzcnJScidnZ1V8dXVVai5y+92G2NjYyE3NzcXcu127+/vh5qlpaUqHhkZCTXb29sht7GxUcWPHj0auJ3ZcZyZmQm50dF6mdiO21JKefb0WRX/X/+f/yvUXF3HY9mO+WybhoaGPhmXEs/BUuKYOz4+DjXtGMzep92mLuMf4La6zHFZTXttzK5V7Zx6eHgYanZ3d0OuXYtk88BtXF5ehly7DiglXpuz9dLCwkIVZ9s4Pj4ectmc0pf2OGVzzMePH6t4b28v1GRrqPb4tnN1KXf73W6r3SfZNrbjoss4bddBpcS1aCmlTE9PV/Hy8kqoWVmpc+1ruhqfiONtbW2tiv/P//P/DDXZ8W7Pwex431aXdVZ73M7Pz0NNtq5vc9k537LOAgC+RlY4AAAAAAAAAD3xABYAAAAAAACgJx7AAgAAAAAAAPRED1gAuKW2p1rWcyrrV9b2mHr27NnAmqx/WdZTLOudehtZH6isL2nr6Oioij98+BBqXr9+HXJtn6+sF9xt3GXf2KwHbJZrt2F+fj7UtD3sspqsP1y7L7Neru1xa/uJlZL3OWvHXNZf9vKf6p5ea+troSYbp20Psy7jLRt/2Thp+8H9+OOPoWZra6uKs75roVfzZDyXh4YH99n70noXA3erS//N7LrYriGyNUXWR7HtyZjVtPPHzz//3Om9236bT548CTVtb8uJiYlQ02X9kK1f2tdlc1XoATsTe8Bmc/Nd9kk9ODio4qyHe7s+ev/+fajJ5v22T2Y2p19cDO63+bm1xzfrJdr2bN/Z2Qk1be/crE9sthZqx87cXBwn7euycZNpj8nc3Fyo+c1vflPFi4uLoSY7B7qsl26r3e7sPG23KRuT7969C7l2fdreH2Sf97nPUwCAz8FfwAIAAAAAAAD0xANYAAAAAAAAgJ54AAsAAAAAAADQEw9gAQAAAAAAAHoyet8bAAAP1dXVVRWfnZ2FmqmpqZBbXFys4hcvXoSaZ8+eVfHk5OTAz/+l3G0MDQ2F3Ojo4GXDx48fq3h4OP5br52dnZC7uLio4mxfjo2NDfz8L9H09HQVz87OhpqlpaUqXl9fDzXHx8ch9+bNmyrOjlE7dtrPKqWU5eXlkGv398LCwsCa9jiWUsrNzU3IteMrG28jIyNVnH23k5OTkJuYmKji3d3dUHN5eVnFh4eHA98nOweHStxugEGy6+L19XUVZ/N5e+3KtNfOUuKc+ve//z3UvHr1KuSeP39exf/tv/23UNPOce21s5R8LdDK9kn7XbI11czMTF0zHWuy9UM279zGzXXc7nbe+ctf/hJq2tz+/n587w77JNvf7Vj6ErRj9+joKNS068Otza1Q0+7b8/PzUJOtadpx2sal5Puyi3Yszc3NDXzvbJ1X4uEu7TKjr3FbSjwvs3VWex3a2NgMNdl1aWNjo4qz49R+3kNd5wMAfIq/gAUAAAAAAADoiQewAAAAAAAAAD3xABYAAAAAAACgJ3rAAsAttT22sv6XmbaHWdZbs+0T+1C0/aS2t7dDTdbjqe0fle3LtldU1gerzXXpO5fJ+lm125R9j6x/VrsN8/Pzoebp06dV/C//8l9DTdvnrpTYL63twVtK7MOVHZOsL+zq6moVZ/s766H2OWX92k5PT6s467Hc9tr78OFDqGmPWzaWsh6NXfrbAl+vrP9m28szmyvaa3x2fcte115juvSXzfpvHhwchFzbZzvr43ibfqPZNmbX0/a9s+tw2xM164Gbve421+Zsu3d2Y1/79+/fV/EPP/wQav7t3/6tirP92M7DpcRx0WVMfAlu1QN2O/aA3dvbq+LsmGQ929v9dtt+r5l2f2frw6+lv+nSUlyfz87Ohlx7Hmbr+i9xnAIA9M1fwAIAAAAAAAD0xANYAAAAAAAAgJ54AAsAAAAAAADQEw9gAQAAAAAAAHoyet8bAABfi5ubm051Q0NDn4wfsva7XF9fh5qzs7OQOzg4qOLDw8NQMzY29snPymomJiZ+eWP/k8vLyyp+9+5dqNnf36/iubm5UPP48eOQGx8fr+KFhYVQ8+LFiyoeHY1LtJWV5ZB7/fp1FW9sbISak5OTgTXT09Mhd3V1VcXZdk9NTYXcfWuPy8uXL0NNe0zev38fajY3Nz8ZlxL3bSnx2GXHEvg6ZPP+xcXFwLrZ2dlQ8/Tp0ypeW1sLNdm8Mzxc/5vq9tpdSpyLz8/PQ002N7dzaruNpZQyMzMTcq32+2drgyzX7svsmtvmsu+RHacu65Wjo6Mq3tnZCTUfPnwIuVevXlXx3t7ewM9v93VWk8lqHsK6MjtP2v2drQXb49uO/1LyfZnV8Y9Lx1v58scbAMB9sQoFAAAAAAAA6IkHsAAAAAAAAAA98QAWAAAAAAAAoCcewAIAAAAAAAD0ZPS+NwAAHqqhoaEqHh7u9u+arq6uqvjy8jLU3NzcfPKzvlQXFxdVfH5+Hmqy3NnZ2cCadr9lRkfrpc3Y2NjA15RSyvHxcRX/+OOPoebnn3+u4mfPnoWaqampkHv06FEVZ+NkfX29iqenp0PN3NzcwM8bGYlLu8PDgyre3NwMNdfX1yF3enpaxdn3bbe76/6+S+0+efr0aaiZn5+v4mzftufc9vZ2qGn3USmlTE5OVnE7JoGvWzZ/tXP6xMREqGmvp7/97W9DzcrKSsi1c0o7D2efn13z25rsvbM5LpuvWu38fX0dPyvbpnZftnN1KaUcHh5WcXt9/6X3Hh5q9ttl3G9bW1tV/Oc//znUZOuF/f39Ks7WedmxbI2MjAys6XosvzTZPjk9PWviOMe2362dc0spZXx8POTasZztNwbLjtvVdVyfd7mPeSj3NgAAv4a/gAUAAAAAAADoiQewAAAAAAAAAD3xABYAAAAAAACgJ5pSAcA9y3p1PdQesK2sN1fbE7WUUn7/+99XcdZvs5X1hG37hWX94rKenO3n/fTTT6Hm3/7t36q47VtbSv7dZmfr/qJTU3GftLKepNl2tz3Msn3y7t27Kt7b2ws12fdt92X2+W3vv+Xl5VDzubV93rJecO12Zj0TP3z48Mn3/aXXfQl9cIHPI5u/s+twm8uuE23v0tXV1VCTzQ1fmqz9aOzzHufPrHdu1m+y1fZJzfqmZrmh4XpdlX1WO1/+8MMPoeb//X//34Gfl82N7RjI1nld1oepL7AFbLumODo6CjVtz/psndX2IV5cXAw12VqsfV02pzPYbcfkQ72PAQD4taw6AQAAAAAAAHriASwAAAAAAABATzyABQAAAAAAAOiJB7AAAAAAAAAAPRm97w0AgIfq5ubmk/EvGR6u//3T6Gicjtuah6L9LisrK6Hmn//5n0Nufn6+it++fRtqPnz4UMXn5+ehZmNj45PvW0opMzMzIff+/fsq3tnZCTWnp6cDa3766aeQa4/l2tpaqFlcXKzikZGRUDM1NRVy2Xu1xsfHq/iHH34INT/++GPInZ2dVfHCwkKoaXNjY2OhZmJiIuTa75d9388p+/yhoaGBr+t6zgPfji7Xhez60s4VD3Ud0M4dpZRycnJSxYeHh6Hm4OAg5NprczZ/Ly0tVXE2709OTOYb+59kx+3y8rKKs3VH+91KifNelzHRflbX3PHxcahp9+Xc/Fyn9+5Ldnz39/ereG9vL9S0uaurq1CzvLxcxaurq6HmyZMnITc3V++D+153AADwbXiYd3UAAAAAAAAAXyAPYAEAAAAAAAB64gEsAAAAAAAAQE/0gAWAnnTtB9n2frvLPlTZNnXpbXlbbQ/QrAfs7OxsyLU93LI+b9fX11X86tWrUNP2Ms160U1Oxl5wbb+ytt9rKaXMz80PrPnLX/4Scm3fs++//z7UvHz5sorX19ZDzdBwPG5derC24yvru/bXv/415N69e1fFWZ+19rhln5/1jp2env7kNn5uFxcXIZf1nmtlPRrv8vwCvnzZNaDNZXNze825yx6dt9XOw6XE7T49jT1Rj4/qPqXtvFhKPje1/T6z/q7t3NTOS6WUMjk1uAdspp2bsl7s2RzXzg2jo/Fnl3YMZMc7W2e0fWiz3rkfP36s4myfXF/FY9mO0y7zWdYDNzuWu7u7VbyzsxNq2nGRzbHtmHj27FmoWVtbC7m2B2x2TAAAoG/+AhYAAAAAAACgJx7AAgAAAAAAAPTEA1gAAAAAAACAnngACwAAAAAAANCT0fveAAB4qIaGhqp4ZGSk0+suLi6q+OTkZGDN2NjYP7h1/6Hdxrs2PFz/267x8fFQk+UmJiaqONsnb9++reLz8/NQ89NPP1Xx9vZ2qBkdjcufdruzYzk6Vr/u+Ph44DaWUsqbN2+qODsmi4uLVby8vBxqsv3Wmp6eDrmVlZWB7z03NxdyOzs7Vby5uRlq2u+b7bfs+7bjuct3u0vX19chd3Nzcw9bAnwLsutLm8uuS/etXZuUUsrZ2VkVHxwchJr9g/0qPjw8HPg+pcS5IZur5ufnq3h2djbUdFkLdbnmZ3Nctj5rj112LNu1SDZ/Z9+lXa+cnp6GmnZ9srq6GmpmZmcGblO2T66urqp4f38/1GxtbQ3M7e3thZrLy8sqXlpaCjXtd1lbWws17bqnlFImJyeruOuanZ5YUgEA3yh/AQsAAAAAAADQEw9gAQAAAAAAAHriASwAAAAAAABATzyABQAAAAAAAOjJ6H1vAAA8VCMjI1U8Pj7e6XV7e3tV/Ob1m1BzfX1dxcvLy6FmZmYm5CYmJjptw23c3Nw0maFQMxRTnYyNjVXx6GhcogwP1/9uLG5PKaenpwM/qz1upcRjNzU1FWrabbq6ugo1h4eHIdcey7Ozs1CTvVdf2jGxuLgYar777ruQa7f78vIy1Lx9+7aK22NUSr4vl5aW0m0F4MvRzrPZPHB8fFzF+/v7oaadG8/Pz0PN5ORkyLXrnKymneOyeaiLbE1xW+1+uri4CDXt3Pjo0aNQs7q6GnKzs7NVnG13u87I1oZPnz4Nuenp6YHvfXJyUsU7Ozuh5v379yG3sbHxyffJPj9bKywsLFTx3NxcqMnWx+06k9vJ1tBdzrmb0t/5BQDwkPgLWAAAAAAAAICeeAALAAAAAAAA0BMPYAEAAAAAAAB6ogcsANxS2wcp602W2dzcrOK2f1oppWxtb1Xxb37zm1Dz8uXLkOurB2yXXmi37feaafujZX3m2p6kQ8kGtMeg7ZVWSrf+slmPq1ZWk/Uda/uTZceoy+f1JdsnL168CLl2/7598zbUfPjwYeDnra+vh1x7LAH48mVz89HRURV36QGbyXp5tvNVNn9mc3pfbtsXtu1xm/V+b3uSZnPl999/H3JtX9is/2a7psrWS1l/9rYHazZXt8c76wH75s2bkNvd3a3i7Li1/V2zHrDtmMjW3vq93p2uPWDbMZedS332XQYA+FL5C1gAAAAAAACAnngACwAAAAAAANATD2ABAAAAAAAAeuIBLAAAAAAAAEBPRu97AwDgoRoeHv5k/Eu2t7er+Mcffww1r169quLrq+tQMzs7G3Jzc3NVPDY21mmbWkNDQ7d63W1dX19/Mi6llJubm4HvMzpaL22y73/bfdLKjvf4+HjITUxMVPHoSFx+te/V5/5v37sdI6WU8uTJk5Br9/f+/n6o+evf/lrFZ2dnoea3v/1tyJ2enlbxwsJCqAHgy3JxcRFyBwcHVdyucUrJ54/W/Pz8wFw7n5ZSysjIyMD3vkvZ2uTy8rKKz8/PQ027XsnmwfX19ZB79OjRP7qJqWy729zJyUmoaY/l5uZmqHn79m3Itfvg2bNnoab9btl3bcfE5ORkqLmt9vtna7Fsv33uNXOry3b3JRvL7XjPtilbM9/3fgMA+Bz8BSwAAAAAAABATzyABQAAAAAAAOiJB7AAAAAAAAAAPdEDFgBuqe1dNFRiL6Prm9jLtO2VlPXYamvevov9tBYWB/fNXFlZCbmpqakqznqqde1ny5ev7Y83MzMTarLj3fb6e//+/cD33tnZCTVZP8C2bnp6OtS04zTbxr7GadbTre1DnPU9y87ddpv67E/YXnOy977LfsLAt61LD9itra1Qs7e3V8XZtTvra9/ODVkP9y9xvdKlr317bW57wpaS95XvSzY3tP3Z2+NWSpy/szk+e13bfz5bn7b96NfW1kJN2wO26z46Pj6u4nbclpL3sW9l++2hzrNd1ivt2M2O9+7ubsi114rs3M3GPADA1+bLu1sBAAAAAAAAeKA8gAUAAAAAAADoiQewAAAAAAAAAD3xABYAAAAAAACgJ7reA8At3dzc1Imhbq+bmJio4pWVlVAzNFS/2f7+fqj593//95Db2Nio4pcvX4aa7777rorX19dDzfj4eMjxMA0P1//ebnJiMtSMjsYl4cnJSRUvLi6GmqXFpSo+OjoKNTs7OyH3/v37Ks7GW/t5szOzoWZiciLkbiOcy6WUi4uLKj48PAw129vbIXd5eVnF19fXt/r8zNjYWBW315Is1x7/X7sNwLdjqFnYtNe3UuJ1f2tra2BNNp9MTsa5qb2ejYyM/OK2fknaNVwbZ7K5ItvffTk7Owu5dq2Zzd9tbm9vL9Rk2z03N1fFjx49CjXtejRbH2fjpHV+fh5y7bh8/fp1qNnequf0mxLnxXYeLqXb8f0StdudnV/tuMzWQtk4aY9Btl5p1ycPdT8CAHyKv4AFAAAAAAAA6IkHsAAAAAAAAAA98QAWAAAAAAAAoCd6wAJAT7r2UGz7bWb9N1unp6cht7m5GXJtb82sn9LSUt23M+vDxdejS0+tbAy2/dqynn2P1uqxs/txN9Rk/YvfvHlTxVnfsfZ8yvqu9dUDNuuT2valnZ+fDzVra2shNzMzU8XT09O/cuv+l/ZYZtvd1ujtCtxW2wPz8vIq1LT9XbN+kO11aGpqKtQsLCyE3Oxs3fs7mwe+RF16wLb7JOsB26WH+G0dHx+H3O5uPYdvbGyEmvb4tv3SS8nXC21/19XV1VCzvLxcxV36vWayHrDtdv/lL38JNX/605+qONv/7Zgs5eH0Ju5DtqboMnbbNRUAwLfCX8ACAAAAAAAA9MQDWAAAAAAAAICeeAALAAAAAAAA0BMPYAEAAAAAAAB6MnrfGwAA35qbm5sqvr6+DjXDw/W/kZqeng41c3NzIbewsFDFjx49CjVTU1NVPDQ09Msbyz+kPbZpLtnd7TFoj/99mJycrOL5+flQ8/jx4yo+PDwMNRcXFyG3sbFRxaOjcUnajvnFxcVf3NZfa3JiMuTW1taq+L/+1/8aal6+fBlyY2Njn4wzXY/36elpFe/t7YWajx8/VvHR0VGn9x4ZGali1wWgXZ9cX1+FmvPz8yo+OzsLNV3WJu18Ukopy8vLVdyuX0q522tVO39fXQ3+/qWUcnpSX6uza/zl5eUnP6tP2TZm83U7N7958ybUHBwcVHE2N7fHu5RSXrx4UcVLS0uhpl133Fa2rm7HZTtXllLKjz/+WMXZ8V5ZWQm5bA3zIDRD7vom7rf2/BofHw81ExMTA3Nd1jl3eQ4AANyX+/91DwAAAAAAAOAr4QEsAAAAAAAAQE88gAUAAAAAAADoiQewAPx/2fvP5jqWJEHQDmitCICavKq6urqnd2d3bX/9/og1m52Z7lK3rqAEQRBaq/fD2mvbEe6XJwuVIASf55uH+TmpIiMiTxJ0AAAAAACgJ6M3vQMA8LU5Pz+v4uPj45AzOTlZxSsrKyHnxYsXoe3JkycDPzc3N1fFo6OWA1dxeXnZqa01PBz//Vt7DUZGRq6+Yz0ZGxur4tnZ2ZDz8OHDKt7f3w856+vroW1nZ6eKx8fHQ87jx4+ruL1v+jQ1PR3anj59WsXz8/Mh5/T0NLS11ze73kNDQ1U8OhLvwcsS+9L29nYVv379OuS048nW1lbIybT72e4jQJc5bmJiIrQtLS1VcTt3lFLKo0ePQtvi4mIVj42OhZxsjL2K7NjOzs6q+PDwMOR8+vQptL17966KFxYWQk67hmu31aejo6PQtru7G9rW1taq+NWrVyFnupkvv//++5Dz/Pnz0La6ulrF7Vq0X3H+atdVWT9t5/ls3TEzMzPwu++zLmvYzgYPJwAAd56/gAUAAAAAAADoiRewAAAAAAAAAD3xAhYAAAAAAACgJ4q+AcAXdnFxUcVZDdi2JmZbB62UUr755puBbW2tLq5Xl7qZWZ25ts5Y20dK6a/OXVftPmX10toaw1lfPjk5CW2bm5tV/PHjx5DT1qfLathl9dmuUottamoytE1M1PfggwcP/u7v/S2hBmzH+mkbGxtVnJ2TN2/eVHF2/jPZ9QW+bm2d62zMbee0bCxpa6Bm42nWdtPjUjufZPXKs1qm7VyY1VBvjy2rBX7VWtzt3LC3txdy2nm4lFLev39fxW0t21JK+d3vflfF7TqglLwGbLuOvc66qdlp63It2/qu2VosW1d/TTVgr6pL/WgAgPvIX8ACAAAAAAAA9MQLWAAAAAAAAICeeAELAAAAAAAA0BMvYAEAAAAAAAB6MnrTOwAAX5vLy8sqPjs7G/iZ8fHx0DYzMxPapqenr75jN2hoaOizcVftub1Ow8Px37GNjY0NzDs8PAw5m5ubVZxd26zt4uKiirv0pa7n9vz8/LPbKqWUhYWFKs7O/8HBQWh79+5dFe/u7oac9pxsbW2FnLm5udDWnqeRkZGQMzpaL4Gzc9J+LvueL609tsnJyZDT7md23TJf8t4Bvqz2/m7H91Ly+aMdm/f29kLO8fFxFWdj5dTU1GfjUkqZmJgIbV9SOy+UUsr8/HwVf/fddyEnG4ePjo4Gfvfq6moVP1h+EHK6nJP2/JcS588PHz6EnPX19dC2vb1dxdk6p513FxcWQ87iYmzL1rHXJdvvq64rAQDgH+EvYAEAAAAAAAB64gUsAAAAAAAAQE+8gAUAAAAAAADoiRqwAHALtfXastpVWY2ru6qtnZrVS+tyvDddAzar19bmtTXWSinl1atXVby/vx9ysjpzbX3PrN5nl9p/mbae8PLySshZXKxrwGY1cHd2dkJbWzs2y2nPU1avLjsn7fFltXOz/nUXXOV6q3sHtFNjVjc0m3c+ffpUxW1t0VJine9szGnnhttQU7uVzQsPHtR1WbP9fvbsWWhrx+bsnLTz19LSUsjJauW2353V5W1rvr5+/XpgTilx/nj48GHIWV5eruKZ2TjHfsl6r5nsWrbXLl1TNveJ2ugAAPyj7s8vtwAAAAAAAAA3zAtYAAAAAAAAgJ54AQsAAAAAAADQEy9gAQAAAAAAAHriBSwAAAAAAABAT7yABQAAAAAAAOiJF7AAAAAAAAAAPfECFgAAAAAAAKAnXsACAAAAAAAA9GT0pncAAL52Q0NDA9vOz89Dzunp6bXt05d2cXFRxZeXlyEna2tl5/K6DA/Hf8c2Pj4+MG9rayvkHB4eVvGrV686ba+VnaP23Lbb+q3PffPNN1U8NTUVch49eljFMzMzIWd5eTm0raysVPGnT59Czv7+fhWvra2FnNHRuJRt+8DY2FjImZ6eDm13wdnZWRVn40KX+wT42tTjwsnJScjY3t4ObR8/fqzibKw+Pj6u4mzMHR4eqffmFo5T2X4vLi5W8dzcXMjpsl7pss7Lz1uc99u13+7ubsh5//59Ff/0008hZ2dnJ7RNTExUcTtXl1LK0tJSFWf7fdO6XJO0DzaX6UuuKQEAuJ/8BSwAAAAAAABAT7yABQAAAAAAAOiJF7AAAAAAAAAAPVEDFgC+sLamV1Y/q607dXR0FHK61GvLanK2NUHbupJ9ymp0ZjXN2lpk2bG1deay72m3d531u7LvzvaprTPW5Vpm9fmyep/tPmT71H5uY2Nj4D6WUsrk5OTAfWrPd1s/rpRYQ6+UUh4/flzFe3t7IaetAbu+vh5ysv1u92F+fn7g59R5A+6zdszLxvOslmhb87Udl0uJa5h27iillHaI7bKt7LuyebBtGxkZCTlZffZ2v7usKbI1zZfWriGyWq5tDdhffvkl5IyPx/n6u+++reJ2ri4lriuzvpRdy4lmexeXFyGnXZ9mutSc3dzcDG3teWpr6ZYS+07WJwAA4O9hRQkAAAAAAADQEy9gAQAAAAAAAHriBSwAAAAAAABAT7yABQAAAAAAAOjJ6E3vAAB8bYaH63//NDExMTBne3s75Lx69Sq0HR4eVvHk5GTIubi4+GxcSimXl5ehrYuhoaEqHhkZGZhTSikHBwdVvL6+HnL29vaqeHR08DKmPY+3QXb87XnKji07luy7Bn0u62/Z9R4eHhmYk/Wd1tTUVGh7+PBhFR8fH4ect2/fVvH79+9DTva55eXlKj47Ows5Xc4bwH11fn4e2rLxtF1TZGP+3NxcFY+NjQ3c3traWshp5/hS4tx4enoacloLCwuhrZ0XSillaWmpisfHxwd+95fW5Tq166dS4ppxc3Mz5Dx//jy0raysfDYuJa4psmuZrU+7rA/btmzd0+Zka5OsL3348KGKs/OW9d3WbVxXAgBwe1k9AgAAAAAAAPTEC1gAAAAAAACAnngBCwAAAAAAANATNWAB4AvrUpOzrZW1tbUVcrJ6bW/evKnirMZWWy/rqvVeu+haK6ut09mlFl12bO32vnStzy7nsst+Z33iqtqafdk+Zm2Tk4P3IatPF75nItYhbuvKZXVa2/psv/76a8j59OlTaHv58mUVHx0dhZx2v7NrAnBfZbVcT05OQls7F2dz6uzsbBVntVTb2q3tWqWUOMdn+5SN523dzu+++y7kZGP8/Px8aPuS2nk3q2+bXZN2btzf3w85bQ3U7HtmZmZC28pyPTc/ePAg5LTX6fXr1yHnp59+GrhPWX34ti1bQ3ZZ12Xnsu07XfpSRg15AAD+Hv4CFgAAAAAAAKAnXsACAAAAAAAA9MQLWAAAAAAAAICeeAELAAAAAAAA0JPRm94BAPjaDA0NVfHwcPz3UJeXl1V8cHAQcra2tkLb6elpFZ+fnw/cfhv3qT2O39Keg/Hx8ZDTto2ODl7GdN3+TbvOa3CV/pZ9Lsu5vBh8ficmJ0Lb4uJiFZ+dnYWczc3NKp6anAo5a2troe3Tp0+f/Z5s+3NzcyGn7V8jIyMh56ZdZ7+Br12X+ePi4uJKbel4+gXnq2wf2/VDKaWcnJxUcTbmjI2NVXE2fx8fH1dxO06XUsqrV69CW5u3vb0dctrxfGoqzhUvX74Mbdk5+JLa7R8eHoacnZ2d0La+vl7F2RzXnu/5+fmQs7y8HNoWlxbruDm3pcTrPTMzE3Ky+XJ/f7+KszVse06yPtnK1jTZ9tt+mfXTLvP8XVlXAgBwO/gLWAAAAAAAAICeeAELAAAAAAAA0BMvYAEAAAAAAAB64gUsAAAAAAAAQE9Gb3oHAICrGRoaGth21Zwv7Tbu09fu8vLys3EppVyW2NbF1NRUFc/NzYWc+fn5Kl56sBRyPqx/CG072ztV/ObNm5AzOlovgR8+fBhyFhcXq3hmZibkfGljY2NVPDIyEnKGh+t/X5ldN/iadJ1Pzs/Pq/j09DTktG1ZztbWVmi7uLio4qOjo4Hbvw33bpd5oD229jhKiefp8PAw5Ozu7g5sy85bq+v1vul1Rnue9vf3Q87a2lpoe/36dRWvr6+HnPbYnjx5EnKWl5dD2/T0dBW3c3UppYyPj1fxd999N/B7Sinl2bNnVfzu3buQ0x7b3t5eyGnnvXZ/Sum29gUAgC/BX8ACAAAAAAAA9MQLWAAAAAAAAICeeAELAAAAAAAA0BM1YAHghnWp85bVeszaJiYmetmnm5bX6qrbbkN9vK/dVa9BW6c0qzPX1oBdXV0NORsbG6Ht6LiuEfjLz7+EnJOTkyrOaha2deVuQw1YtZLh+rTj2cX5Rcg5Ozur4qwGbDu+lNKtTmqb06cuY3WXupnZPrbHkuW028/WL1nd0Pa7s3F4YWGhiicnJ0NOtr2b1h5bVu/07du3oe3HH3+s4qx2bHsOsjrnDx48GPi5rL5qW4t8dnY25GTzdduWXaeDg4Mqzo6t3X7Wb7r05SzHuhIAgL75C1gAAAAAAACAnngBCwAAAAAAANATL2ABAAAAAAAAeuIFLAAAAAAAAEBPRm96BwCAwYaGhnrNg7/X5eVlp7armJiYCG0LCwtV/Pz585BzdnYW2t6/f1/Fm1ubIefg8KCKx8bGQs7s7GwVT09Ph5yZmZnQ1pfz8/PQtr29XcX7+/sh5/T0tIqHh6/27y37urYZ4xRfUnYvZX2wHYfm5uZCzvj4eBVn99fBwUFou7i4qOKnT5+GnHbMGRkZCTlX1d7P7f6Ukp+nti3bp/acZGNl+7nsvLXHX0oc8z59+hRy2u+6zrGrT+25zcbzdj4rpZSff/65irPz9uTJkyp+9uxZyFlZWQltU1NTVZzNja2u17Kdr9fW1kJOu72sn7bXN9u+OQYAgNvCX8ACAAAAAAAA9MQLWAAAAAAAAICeeAELAAAAAAAA0BM1YAEAuFFZDbe2/uKLFy9CTlY7dnJysor/+Mc/hpy2rl5b966UUubn56s4q4X34MGD0NbWvss+d3JyUsU7OzshZ2NjI7S9e/euit+8eRNy2hqJ7bZ+S1u3sksNvazWYnYtR0dHPxuXEmtEZtu/K7UduVlt3ci2LnIpeT9dWlqq4qxOa1s3Mxs7strUbVtWI7P97ra2ap+yeynb7/ZctuNrKbEWdnseS4n3fFujtJRSjo+PQ1s7nv3tb38LOW0t0a41f7Nx6CZl+314eDiw7eHDhyGnbcvO9+LiYmjL5tS+tNdAnVYAAL4G/gIWAAAAAAAAoCdewAIAAAAAAAD0xAtYAAAAAAAAgJ54AQsAAAAAAADQk9Gb3gEAAO6moTJ0bd89PT1dxZOTkwNzSinl4uKiitfW1kLOTz/9VMWvXr0KObOzs1U8NBSP9fz8PLSNjo5+Ni6llJOTkyp+9+5dyPn3f//30Pbjjz9W8d7e3sDvbs/Hbzk+Pq7i7HgvLy8/G5dSysjIyMDPDQ/HfwOafa7VZZ+g7RNt3y6llLGxsdDW3vPPnj0LOS9fvqzi+fn5kJPdc2dnZ1Wc9ffx8fHPxv+I9pxkY1e7j1ledt5mZmaq+MGDBwNzsmPLztv6+noVHx4ehpzNzc0qPjuLx5bpMuZcpy7jaXZO2muwtLQUclZXV6t4ZWUl5GR9N7u+fWn7V9YH23OQjflZGwAA3Fb+AhYAAAAAAACgJ17AAgAAAAAAAPTEC1gAAAAAAACAnngBCwAAAAAAANCT0ZveAQAAbr+hoaGk8fq2Nzw8/Nm4lFIePHgQ2vb396v4xYsXIWdjY6OKd3Z2Qs6HDx8Gbj9rm56eruKxsbGQc3x8XMV7e3sD9zHbz/Hx8ZCztLRUxSMjIyGnL1mfuLi4CG3n5+dVfHp6OjAn+560D0Lj8vKyirP+lt27ExMTVbywsBByVldXqzi7B69Te2yZ7N45PDz8bFxKKQcHB6GtPXejo/Hng3bMm5+fDzntuew8LjWHu7i4GFLaMfboKB5bNsbu7u4O/O4usmvSXoOsD7b71M5dpZRycnIS2iYnJ6s466ftPJDltNfturXnqUtfBgCAu85fwAIAAAAAAAD0xAtYAAAAAAAAgJ54AQsAAAAAAADQEzVgAQC+IlndtaytrbeZ1Uy8zvqiV9XWuvvhhx9CTlu38d27dyGnrQH7/t37kNPWjCwl1hHsUiNybm4utP3+978Pbc+fP6/irL5su09dr1GXenxd6vK29W1LKWVzc7OK19bWQs76+noVZzUTs/qTt7EPcrOuWlvyLox52bG1dUKze3Bra6uK23syyymllIP9WBe21Y5xbY3SUq5+3oaG62uS1YE+Ozur4mx8+dvf/hba2uv7+PHjkNPWUp2dnf3tnf1P2hq72blt97Odc7LvKSWe36yWa5uTzVVqagMAwPXzF7AAAAAAAAAAPfECFgAAAAAAAKAnXsACAAAAAAAA9MQLWAAAAAAAAICejN70DgAA8OVcXl52ahsaGqrikZGRkDM6evuWktPT01X88uXLkLO4uFjFCwsLIef09LSK//jHP4ac0Tfx+FdWVj67P6WUMjc3V8XLy8shZ/lBbBsarq9Je42uW3u9h4fjv+U8ODgIbW/fvq3i4+PjkPPhw4eBOdn2sn7J1629L7L7JGtrx8Hz8/OQ044LX7r/ZWN1e69sb2+HnI8fP1bx+vr6wJxSStnf3x+4/fYcjI2NhZyras93l2vy66+/hpz2OEqJY87vf//7kPMvf/iXKp6amgo52TzYjoNv3rwJOb/88ksVv379OuQcHh6Gtnb+mJycHLhP2dgJAABcPytxAAAAAAAAgJ54AQsAAAAAAADQEy9gAQAAAAAAAHpy+wp3AQBwbbJacFldv4uLiyrOanK2de6yWnRfWlv7LqvP19ZlPTs7Czltzb7svG1uboa2tq5gW68v26cHDx6EnPn5+dB2F+r4ZfV0276T1cVt++DJyUnImZiY+Af3Dn5b2we71sv+krrUgN3Z2Qk5bX3XTxufQk5WJ7WVjadtzdc+a4O3tXqzsePRo0dVvLe3F3Ky2tTtGJ+N1U+fPq3ilcOVkJMd79bWVhVn9V1/+umngfuYjadPnjyp4qWlpZDTjpV3Ye4AAID7yEocAAAAAAAAoCdewAIAAAAAAAD0xAtYAAAAAAAAgJ54AQsAAAAAAADQk9Gb3gEAAK7P0NBQFY+NjXX63PHxcRV/+PAh5ExMTHz2M6WUMjc3F9qmpqaqeGRkpNM+XZd2f0opZWlpqYqfPn0acvb390PbwcFBFW9sbISc6enpKp6fnw85w8N3899JZvs9Ojo6MKd1eXnZ2z7BfZHdF+fn51V8dHQUcg4PD6v49Ow05GTj4OTkZBW3Y1cp8f5u55x/xPj4eBWvrq6GnP/yX/5LFT958iTknJychLZ2P7uMw7u7uyGnPf+lxPlyfX095LRzxcLCQsh59uxZaGvnoocPH4ac9rrdBsZ0AAC+Rnfzlx0AAAAAAACAW8gLWAAAAAAAAICeeAELAAAAAAAA0BMvYAEAAAAAAAB6MnrTOwAAwJczPj7eKe/g4KCKf/7555CzublZxc+fPw853377bWh79uxZFY+MjHTap+syNDQU2hYWFqr45cuXIefTp0+h7ezsbGDO7OxsFS8vL4ecy8vLTvt521xcXIS29pxkOa27cKxwG7T3U3u/lVLK+fl5FY+NjYWcxcXF0DYzM1PF09PTISeM33HoKuWKt/Pk5GQVP3z4MOTMzc1V8enpadx8h/GkPUellHJ2Vrdtb2+HnKzt3bt3VbyzsxNy2rn48eMnIee7774LbU+e1Hnt8ZdSysTERGgDAAC+PH8BCwAAAAAAANATL2ABAAAAAAAAeuIFLAAAAAAAAEBP1IAFALjH2tp3o6Pdln/Hx8dV/PHjx5BzdlrXGsxq4WU1Z+fn56v4puvVZfUQl5aWqjirq5idy7dv31Zxdt6mpqaq+NGjRyGnPf+lxHqIt1FW37Vty+rbttSAhW7aseno6CjkHB4eVnF2n2b1Xdta2NNTg2vAXiZFYIeuWAS2nT+y+SSrXXsV7TkqpZS1tbUqfv9+I+S8efNm4Oey8bw9tw8froacx48fh7a2Dm42f3YZY780YzoAAF8jfwELAAAAAAAA0BMvYAEAAAAAAAB64gUsAAAAAAAAQE+8gAUAAAAAAADoyehN7wAAAF/O0NBQp7zz8/MqPjk5CTm7u7tVvL6+HnLev18LbfPz81V8dnY2cD9PT08H5pRSyvT0dBXPzs6GnLGxsSqenJwMOUtLSwO3le3T2lp9vB8/fgw54+PjVfz8+fOQs7e3N/Bzw8PJv6W8bOJulxu4Ay4v2xs8jkPtuFxKKZ8+faribMxtx+VS4pgzOhZ/Pug6p9x27bxQSjy32Xj+9u3b0HZwcFDFU1NTIWd5ebmKFxYWQs7MzExom5iYCG2tLtfk8PAwtLXzzvHxcchpj6WdK0vJ56bR0brvjIyMhJz70pcAAOD/z1/AAgAAAAAAAPTEC1gAAAAAAACAnngBCwAAAAAAANATNWABAL4iSQnBkpVda2u4dalFl9V0+/gx1oUdHq432NZNLaWUi4uLKs5q0Ga1W58+ffrZuJRYsy6r/dfWQ8xq2mV1Wtvv2tzcDDntd7X1GUspZWdnJ7S15zurBdjW2Rse8u8t4b7oUgM2GzvaMTYbq7M6pa2sRud9qdvZ1j0vJdZJzcbzjY2N0NalTmpbAzabY7PrdBVZv8nmr19++aWKs2NbXV2t4mweymqvt/N1W1+4lNiXsv3O2gAA4LbyiwwAAAAAAABAT7yABQAAAAAAAOiJF7AAAAAAAAAAPfECFgAAAAAAAKAnoze9AwAAfEmXsSU2laGhoSqemppKPld/sP1MKaV8/PgxtH369KmKh4fivwk8PDqs4oODg5Dz6NGj0NZaXFwMbUtLSwM/1x7L3NxcyMna2vN0dnYWctpzsrGxEXLac1RKKePj41U8Pz8fcqanp6t4eNi/t4T77PT0tIp3d3dDzvr6ehVnY1c2frdjztjYWKfP3UUnJyehbX9/v4qzsXp7ezu0LSwsVPHKykrIWV1dreLsmmTnuy/tsZVSyq+//lrFf/7zn0PODz/8UMUPHz4MObOzs6Ht/Py8ii8uLkJOlzXFfelvAAB8HfwiAwAAAAAAANATL2ABAAAAAAAAeuIFLAAAAAAAAEBPvIAFAAAAAAAA6MnoTe8AAAC339DQ0MC28/PzkHN0dBTajo+Pq/jk5CTk7OzsfDYupZRyGZv2f7dfxWdnZ4M/Fw+tk8mJydA2OztbxcvLyyFne3u7ij99+hRy3r9/H9pGR+ul+8jISMiZmJj47GeuXXJNgOtzeVnfdNmYd3p6WsXj4+Mhpx27srbJyTjmffExZoD2fJSSz1/tedrb2ws5u7u7A3Oy715aWqrihw8fhpzV1dUqnp+fDzljY2OhrS/ZfH1wcFDF7969Czlt3/nmm29CTtYnDg8Pq7idB0uJ1yQ7/tvW3wAA4HP8BSwAAAAAAABAT7yABQAAAAAAAOiJF7AAAAAAAAAAPVFAAwCAXmS18LrUa8vqvLV1/LLvnpqeGri97HNXrfkavmY4ftH09HQVP3r0KOS0x5bVt339+nVoa89TVrOxrT0I3B/Dw/HfT7dt2Zjbjktzc3MhJ6tB2uZlNWCzWtQ36eLiIrS1NXBLifVOt7a2Qk5b8zWrm5qdt7b298rKSsh58OBBFWfnNrvefcmuW9tPsjlmZ7uer/72t7+FnKxWbnsN1tbWQk5bD76taV5KPCfpHA8AALeEv4AFAAAAAAAA6IkXsAAAAAAAAAA98QIWAAAAAAAAoCdewAIAAAAAAAD0ZPSmdwAAgNvv8vJyYM7Q0FBoGx2Ny82sbZDh4fjvBqempgZ+d/a5voyMjIS2+fn5Kn727NnA79ne3g5ta2troa093pWVlZDTtk1OTg7cPnA3XFxcDMzJxrzp6ekqbsep32qbm5ur4i5jbjYPfElnZ2ehbX9/P7Rtbm5W8cbGRsjZ3d2t4mzMb89RKaUsLS1V8eLiYsiZnZ0NbV/S8HA8lna+aPtNKfE8/fnPfw45b968CW3tGuL09DTktNdufHw85AAAwF3iL2ABAAAAAAAAeuIFLAAAAAAAAEBPvIAFAAAAAAAA6IkasAAAcAVZfbrl5eUqzuoRtnX23r59G3KyeoQ7OztVnNWJbb/75OQk5MzMzIS2iYmJKr5Knd5SSrksg2sFZ/WE2/PUpT5gKXlNxqvI6la2tTRvurYl90d2D4T+ldxKh4eHoe3o6KiKs/tkbGysirP6o33VgL1p2dixtbUV2t69e/fZuJRYAzY7/qwWd3sus1qqX1I+vsW2kaYubPa5tp5u2/9Kif2tlDhWZ/XJ23moSw33LvXpAQDgpvgLWAAAAAAAAICeeAELAAAAAAAA0BMvYAEAAAAAAAB64gUsAAAAAAAAQE9Gb3oHAADgLhofHw9tDx48GJgzOTk5MGd0NC7T9/f3q/jXX38NOTs7O1X89OnTkPPy5cvQ9uTJk4Hbv6rz8/MqPj4+Djntfm9sbISci4uL0DY1NTVw+5eXl1U8NDQUcrLjnZiYqOKxsbGQMzw8+N+zttuHrE+cnp5W8cnJSchp75NSStnd3a3io6OjkNP20+y+mZmZGdjWjl230dnZWWjLztvr16+r+M2bNyGnHbuyc7S0tBTa2rxs7Lhp2Zg3PDJ4PGvHz+zY2rGzlNgHR0ZGBm4LAADuOn8BCwAAAAAAANATL2ABAAAAAAAAeuIFLAAAAAAAAEBP1IAFAIAryGq3tm3T09Mhp0s9wKyO4atXr6o4qwH7P/7H/6jiH374odP229q1WQ2/q2prBmZ1U9t6hNk+Zm3t565abzWrR5jVioU+ZPWM29rIbW3XUkrZ2toKbW1906zGcnvvZDVgu7TdhXsiO/7Nzc3Q9ssvv1Tx27dvQ87Dhw+reGFhIeQsLi6Gtnb8vI11oLN9yvplqx1zu/alVpe+dBvPGwAA/D38BSwAAAAAAABAT7yABQAAAAAAAOiJF7AAAAAAAAAAPfECFgAAAAAAAKAnoze9AwAAcF+NjIyEtvn5+So+Pj4OOUdHR6Ftb2+vin/++eeQ83//3//3Zz9TSikvXrwIbU+fPq3i6enpkDM6OvjRYXg4/vvO9rseP34ccv7X//V/reKDg4OQMzk5OXCfhoaGQk7bdnl5GXKya7C/v//ZuJRSTk9PB24/Oyd83bI+eHh4WMWbm5shZ319PbTt7OxUcdbfFhYWqnhmZibkTExMhLasP39J5+fnVXx2dhZy2rHi48ePIefDhw+hbW1t7bPfU0o8T8vLyyFnbm4utF1cXFTx9vZ2yJmamqri7Fy331NK7DvZHNOOi9l8srW1FdraPpj10/Hx8SrO+ttN9xsAALgt/BoAAAAAAAAA0BMvYAEAAAAAAAB64gUsAAAAAAAAQE+8gAUAAAAAAADoyehN7wAAAHxNhofrfwM5PT0dch48eBDadnZ2qnhlZSXkTE1NVfH6+nrIWVtbG9g2MTERchYWFj67rVJKGRkZCW2Li4tV/O033w7MOTs76/Td7bkcGhoa+Lnz8/OQs7W1FdrevHlTxb/++mvI2dvbq+LR0fh4NTY2Ftqy/eT2u7zs63viFx0dHVXx5uZmyPn48WNo29/fr+Lx8fGQ0+Xebe+l26C9V7e3t0PO+od6jPv1VbxPszHv+Pi4iufm5kJOOw6341Qp+fk+ODio4uxaXlxcVHHWJ7qME9l1a8e8k5OTkPPp06eBbdk+tXNDNuYBAAD/r9v3lAUAAAAAAABwR3kBCwAAAAAAANATL2ABAAAAAAAAeqJgBwAA3KAu9VZLKWV1dbWKnzx5EnJ++OGHKs5qwG5sbIS216/reqdZXb+2ZmFWn3BycjK0zc7OVnFWE3Vlta5n27UeYtuW1UNsjyWrL9ulRuS7d+9CTltbMdvv7Hi5q/opAnvVGrDZ/Xx6elrFWX3Xu1oDtr2/srHrp59/quJffvkl5GSfa8/Bw4cPQ05bZzsbl7MasO32svrRbT3frDZ1NnZ0qXvdtrVjdylxfCullMPDw4Gfa+cr9awBAOC33b6nLAAAAAAAAIA7ygtYAAAAAAAAgJ54AQsAAAAAAADQEy9gAQAAAAAAAHoyetM7AAAAfRkaGrrpXRhoZGSkiicnJ0NOdhxLS0tV/OzZs5DzX/7Lf6niN2/ehJyzs7PQ9vZtnTcyEv+d5uho/egwMTERcrJjaWWfy9quy9jYWGhbWFgIbdPT01U8PBzPyenpaRW315b7pa/xpe03pZRycHBQxZ8+fQo5GxsboW12draKs768vLxcxTMzMyGnvb+/tOycbG9vV/GHDx9CzuvXr6t4fX095GT3/MuXL6v4yZMnIefx48dV3I7BpZRycXER2s7Pz6s42+///t//exWfnJyEnLm5udDW5TpdXl5WcdZvs3MyPj4+MKfLGNduHwAAvlb+AhYAAAAAAACgJ17AAgAAAAAAAPTEC1gAAAAAAACAnqgBCwDArde1plxbp/Om6xpm2np8WX2+thZfKbHWY1azsK1H+ODBg5CT1Ujc3Nys4qzeaVuPMKuHmNUszI7lvrgLNYe5fbJ6n0dHR1Xc1oQtpZTTk1gnta2fnNWAXVxcrOIvXQO2Pd7j4+OQs7u7G9ra2qkfP34c+LmsnvTDhw9DWzt+Pnr0KOS0bfPz8yEnO5Z2zMvqprZzWlZLNtOOOV3mxmycMnYBAMD18xewAAAAAAAAAD3xAhYAAAAAAACgJ17AAgAAAAAAAPTEC1gAAAAAAACAnoze9A4AAMAgl5eXnfKGhoY+G98VIyMjoW1qaqqKV1dXQ87ExEQVT09Ph5zsXK5/WK/ig4ODkLOyslLFT548CTnz8/Ohrb0G2bEND9/svws9OzsLbefn51Wcnbf70t+Ismt51et7cnJSxUdHRyGnbTs+Pg45lyX2wXZcyO7Bubm5z36mlPy+7Et7/JubmyHnw4cPoe39+/dV/PHjx5DT3rvZ8T99+jS0vXz5sorb8S37rsnJyZCTacfhmZmZkLOwsFDF2fXOjmV09Pp+wunSv7vOxQAAgL+ABQAAAAAAAOiNF7AAAAAAAAAAPfECFgAAAAAAAKAnXsACAAAAAAAA9GT0pncAAABaQ0NDVTw6Gpetl5eXoe3o6KiK9/b2Qs7CwkIVT0xMhJyzs7MqPj8//+2d/cw+tcdRSinDw/W/gRwbGws52ecmJycHfm5qamrgPn78+DG0nV/Ux/fhw4eQ8+zZsyr+9OlTyJmZmRm4/fY4SsmvwZeU9aWsjZvV5Zq0OVe9ttk92EU2Vuzv71fx3m4cl9qxKhu7su9u753Z2dmQMzc3V8XZODEyMhLa+nJyclLF29vbIef9+/eh7e3bt1W8sbERctqxenp6OuQsLS2FtpWVlSp+8OBByMnG2C457XyVnduhoXoeaOeFv6cNAAC4nazeAQAAAAAAAHriBSwAAAAAAABAT7yABQAAAAAAAOiJGrAAANw6bQ29rEZoVsdxa2urit+8eRNyjo+Pqzir4dfWWry4uOi0/fZzWb2+tkZjVp+wrdmYfVdWF7etNZjVZM3a2pqQbV3FUuK5zWrJZt/d7meXuorcb2191S73UimxX2b9tL2/s3qjWQ3Utk5pds930X5PKbEG7PZO3Kd2P3d3d0NOdk66jJVtW9e6031pr29bq7uUOL6UEutMZ+ekPZas3mp2TrrU1L5eakwDAMB95y9gAQAAAAAAAHriBSwAAAAAAABAT7yABQAAAAAAAOiJF7AAAAAAAAAAPRm96R0AAIDWyMhIFU9MTISci4uL0La+vl7Fx8fHIefNmzf1toZHQs7FZf3dl5eXIef8/Dy0tdsbHY3L7efPn1fx999/H3KmpqZC2/j4eGhrDQ0NVXF23qanp0PbwsLCwJyDg4Mq/vjxY8iZmZkJbe2xzM7Mhhzur7ZPdpXd36enp1Wc3d9HR0dVvLe3F7883s7l7Oxs4D51OZZsn3Z3d6t4e3s75LRt7f1WSn4/t2PM2NhYyGnb2vH1S2uvYyn58e7v7w/8XHtOsjE3a+vrHGT9tG3L5o+r3hcAAMDd4S9gAQAAAAAAAHriBSwAAAAAAABAT7yABQAAAAAAAOiJGrAAANw6w8P1vxPM6vVldfW2traqeGNjI+S0tVuz72ll9fqyeoSbm5tVnNVSbbf38OHDgft4VVnNyLm5udD26NGjKs5qVJ6cnFTxhw8fQk5Wp7bd3oMHD/Kd5V7K7q+2Lbu/JicnQ9vsbF0/OKvt2dbffPz4ccjJ6qS2/TLbfjsuZffp4eFhaGvHhax+clurNju2tlZzKbHucnbPt/flddYfzWqitnVxj45indx2fCklnoOVlZWQs7y8XMWrq6shJ6tNnfWBq+jSvwEAgK+Tv4AFAAAAAAAA6IkXsAAAAAAAAAA98QIWAAAAAAAAoCdewAIAAAAAAAD0ZPSmdwAAAFpDQ0NX+tz5+XkVHx8fh5zT09Mqvri4GLj9bH9OTk5C297eXhVfXl5eafvZ565iZGQktM3Ozoa2p0+fVnF2bGtra1XcHmsppayvr4e2J0+eDPzu9hwMD/t3ovdFe0+WUsrZ2VkVj4+Ph5ylpaXQ9ujRoypeXFwMOWNjY1WcjQGZlZWVv/u7s768v78f2j5tfKrijx8/hpx2XFheXg45jx8/Dm3z8/NVPDE+EXL6up+ysaq9loeHhyGnHStOTuI1yfpAe7ztNSol9onV1dWQs7CwENqysREAAKBPftkAAAAAAAAA6IkXsAAAAAAAAAA98QIWAAAAAAAAoCdewAIAAAAAAAD0ZPSmdwAAAFqXl5dX+tzoaL28HRkZCTkXFxdX+u7W6enpwJzJycmBbdk+Dg0NXX3HBnzP9PR0aHv48GEVn52dhZy2bWtrK+R8+vQptO3t7lXxyclJyDk/P6/i4WH/TvS+OD+P99vx8XEVj42NhZylpaXQ9s0331Tx06dPQ057f2V9ORsDJiYmqnh+fj7ktLLv3t/fD20bnzbqeGMj5LRj1+rqash59OhRaGv3c2w8nsu+xpPs3m2Pd2dnJ+Rsb29XcXbeZmZmQlt7bM+fPw85jx8//uxnSillfHw8tGXjLgAAQJ/8sgEAAAAAAADQEy9gAQAAAAAAAHriBSwAAAAAAABAT9SABQDg3uhSO/Q6a/+1tQaz2oPtPvZVnzHTtQbsyspKFWc1Mts6jlmd3vX19dD2abOuC7u7uxtyDg4OqjirB5ldW7Vib7+Li/PQltUSbWV9oO2nTx4/CTlDw9d3P7WyOtBZDdi2NvLm5mbIefKkPpbl5eWQk9WFnZubq+Ksnu5Vtff40dFRyGmP5ePHjyGnrRd9eHgYcrKxcnFxsYqz42/rV9+G2q7XOaYDAAB3h18sAAAAAAAAAHriBSwAAAAAAABAT7yABQAAAAAAAOiJF7AAAAAAAAAAPRm96R0AAACux/Bw/PeWk5OToW1kZKSKT05OQs7s7OzA7a2trYW2Dx8+VPHGxkbIWVhYGPjdU1NToW18fHzg57h9Li4uBuZkfXd0tH58HRoe6m2fruLs9Cy0ZffO4eFhFZ+fn4ectn/Pz8+HnLm5uYGfGx25vkf87Ng2Nzer+O3btyFne3u7irPjn5mZCW3tuJTd720OAADAbeEvYAEAAAAAAAB64gUsAAAAAAAAQE+8gAUAAAAAAADoiRqwAABwTw0NxRqZbR3NrC2rx9jWmsxqdGY1YN+/f1/FbU3YUmK9yy77WIoasHdV1ndaWZ3Ys7O65url5WXIyfp8X9rtnZ3HGrBd6ttm/ba9v6anpwfmlFLK2NhYFV9nXdysBuzW1lYVv379emDOxMREyMlquba1YrPrDQAAcFv5C1gAAAAAAACAnngBCwAAAAAAANATL2ABAAAAAAAAeuIFLAAAAAAAAEBPRm96BwAAgOsxNDR0pc9NTU2FtrnZuSpeXV0NOU+ePAlth4eHVby2thZyZmdnq3hiYiLkTE5OhraZmZnQxu1y1T54eXkZ2i4uLj4bl1LKyMjIlbbX5buPj4+r+ODgIOQcHR2FtvZYsvurvQfauJS8v7f3ylWPP9Mey97eXsj59OlTFb979y7ktOft8ePHISe7v0dH658rzs7OQs7p6WkVj42NhRwAAICb4C9gAQAAAAAAAHriBSwAAAAAAABAT7yABQAAAAAAAOiJF7AAAAAAAAAAPRm96R3gdrq4uBjYluVcXl4O/O6hoaGBbcPD8d8GtG3Z9wAA8I8bGxsLbQuLC1X8u9/9LuScn5+Htr29vSre39sPOe/evavimZmZkDM/Px/a5mbnqnh8YjzkXFW71j09PQ05R0dHVZythUdH4yPXyMhIFVv73ryzs7MqPjg4CDk7OztV/PHjx5CztbUV2k5OTqp4cnIy5MzOzn42LiW/L6ampqo460uD9qeUUg4PD0Pbp0+fqvjDhw8hpz3e7BlxeXm5ir/55puQ8+zZs9DWnoP9/Th2vH379rOfKaWU6enp0DY1WZ+3csXbq72XS4n3anbvdnluBgAA7jZ/AQsAAAAAAADQEy9gAQAAAAAAAHriBSwAAAAAAABAT9SAvee61IrK6s+0NZBKKeX4+LiKs9pBWd2vVlaXqK0zNjExEXLatq51sNTXAQD4+2TrrLYG63fffRdyJidibcs3b99UcVuzsZRS1tbWqnhpaSnkPHr0KLQdHdc1WK9aAzZbLrbr2qwm6MbGRhVntT2zmpjj4/V+dln7dqntad17de3zz+7ubshp++mbN29Czvr6emhrn5vm5uZCTlunNK1b2tR7LaVbv2hlffn9+/ehrb1Xs3u3PU/Zsb18+bKKv//++5Dz+PHj0NbeO+35L6WUzc3NKs5qRWc1Z6eexnN5FVmN57btqs/k7mcAALjb/AUsAAAAAAAAQE+8gAUAAAAAAADoiRewAAAAAAAAAD3xAhYAAAAAAACgJ6M3vQNcr8vLyyt9bnQ0do3h4fp9/eTkZG/ba7+7jUspZagM9bItAAA+b2hoKLTNzs5W8dOnT0POxMREaLu4vKjitbUPIef9+3dV/ODBg5CTbW9xYbGKx8fHQ062Zm2NjMS159jYWBXPzMyEnOXl5YHbas9bKR3XvkPWvl/S2dlZFe/s7ISct2/fVvGrV69CzubmZmgbGR6p4rm5uZDT9q+pqan4PSMjoa2Li4v6Htzd3Q05b968CW1/+ctfqnhrayvktH334cOHIef58+dV/OzZs5CzsrIS2ra3t6s4uyb//b//9ypeXFwMOdPT06GtHWO6jBOZ09PT0Nb2pfb8Z7IxN2sDAADuDn8BCwAAAAAAANATL2ABAAAAAAAAeuIFLAAAAAAAAEBP1IC9I7K6MVlbWxsqyzk/P6/irFZWVjtnaWmpirPaRW2trEy7/VJK2d/fr+KsvtDmp7qe0uHhYcjJate2bWrpwGBZnbl2PMly1Kfrpq2Xlo1LWT1ABgv99CLpy5eDa7HdJ23/yvpWl/7WZS3ytY0BWe2/k5OTKs7O7V04b9m41NZ3zdZ92bF8+vSpiqenY23Lo6Ojz36mlFI+fvwY2tr6qsNJLdf2GmRr36x2bVuT8l/+5V9CzuPHT5rvjuckO0/Hx8dVnNW2bNfDB/sHIeey1Oc7qxF602vfq/bvLnPj0FB/c2X7jNI+n5RSysbGRhVn/TQ73gfLdb3RrN7p3Gz9bJX106vq8qz1/v370NbWvM36clvPta33WkopT57U90n2rJkdb/scl425797V9aM/bcRr0m6/lFLm5+eruH3WLSX2t7a2aymxTm0pcazK+lKXurDZ9m7jfAGDdBvP1UEGAO4fv+4CAAAAAAAA9MQLWAAAAAAAAICeeAELAAAAAAAA0BMvYAEAAAAAAAB6MnrTO/A1GhoaGphzcXFRxaenpyHn+Pg4tLV5R0dHIadtW15eDjkvXrwIbd9//30VP378OORMT0+HttbJyUlo+/jxYxX/+OOPIWdtbe2znymllNnZ2dA2Pz9fxaOjg7v95eXlwBy4q7qMQWdnZ6GtvXezezn7XLu9Ltu/K9qxIhs7hofjv3UaHx//bJy1dT1v92X8uspcWUopZ6d1Hzw+iXNl1nfb85Zt/zb23fYcZPvYznuTk5MhJ+uDrWwt0q4psjGg631xF2V9aWNjo4pnZmZCTnvezs/P45ff8K3c5R7IrmPWv6ampqo4Wy+2fXBvby/kfPjwYeB3j42NhZyJiYmBOdk+tWvddlulxD6QfXd2Lnd2dqr4zZs3A797a2sr5LSya3Ibx64uc1V2LO14Njzc37G142k2nnW5d+fm5kLb6upqFT948CDkTE3X/euq4+TBwUFo297e/mxcSuyTpcRxf2VlJeQ8f/68il++fBly2uPP7qVMOjYO8GE9jhM///xzaBsZGani7Dmy7RPZmL+7uxva1tfXq/jdu/ch5/DwsIqzY83WOfdl/uT+yPppO+9kv8G0c3O2Fu3S3+/Lsw8AcD9ZvQMAAAAAAAD0xAtYAAAAAAAAgJ54AQsAAAAAAADQEy9gAQAAAAAAAHoyetM78FW6bOKhwR8ZGRkJbePj46FtdLS+pJeX7cZKOT09reLJycmQs7KyEtqePXtWxS9evAg5ExMToa11cXER2qampqp4d3c35Pz6669V/OHDh5CTHe/QUIcTDF+59t4ZHo7/PqcdX7J7a2xsbOC27vM92XUMasf0bIy/6vbui6uO58Mjdd/N5srsfLfbuyv9tEsf6Ku/ZZ9r5/12nPgtd+X8DpKdk9nZ2Spu1zilxLEyG3O7rA9vo+yea8/B4uJiyHnw4EEVHx4ehpxs7df2uWxdOz8//9m4lPxaLi8vD/xcq8s8WEopGxsbVXx8fBxy3rx5U8XtGr6UOAZk5/+uysa37DniurZ3dnYWctrrlO1jOwaUEvvS0tJSyJmemq7irmP10eFRFe/s7IScT58+fTYupZTt7e3Qdn5+XsXZPfDw4cMqfvToUchZWFio4q5zQHt+uzy37u3thZzXr1+HtoODgyoeHYnz1/lFffxZn8juyzYv+1zWT1r3Za7kfrvKWrSUeM/p7wDAfeQvYAEAAAAAAAB64gUsAAAAAAAAQE+8gAUAAAAAAADoybXXgG3rxrRxKf3VeuhaC6/dXrb9tBZXT9paMpcXcb/HJ+r6TVmdoLm5udDW1sXJ6s0cHdV1grL6M8+fPw9tbW2uLvVeM9m5bWuBtfVmS4l1erL93t/fD20nJydV3B5/KbEPZPuoJsnd0GUc6DIGdG27C7rUNGv7/MzMTMhpx5wsp0vtu+us3/aldRk7snmvHc+yumttLeysxlhWb/Oq9T1vm6yftG1ZrcN2PsnmyqwmZ3sts7HkNtbc7bJeaWsWZv0tqxnYytYibT3ArD5f5r6MA9n93Z7v7D5t11nZeHqda9HrlM0D7Zrt8ePHIaet2/ju3buQs70d+2l7DbL6sk+fPq3iq97LXeu7dtFe8+zeacelrE5seyzZ+HbTsvPd9u/sXmrnwVJiHeAu80DXcak939k41c7F2bFl16AdK9PnuKl6P7OxI9ve0XH9bJON8R8/fqzi9fX1kJPVhW2PNzvfbV/OntGuOp6121tdXQ05//qv//rZ/Skl1lwuJY4x2blt+1Jau3d6OrS1Y0W2NuuyXruN6w5odbm/s99g2nk/G/Ozz7Xuy7MPXFWX59arPtte529gV93+VX/Pu8o5uep7hkw7Vt7V3xeBv9/d/GUHAAAAAAAA4BbyAhYAAAAAAACgJ17AAgAAAAAAAPTEC1gAAAAAAACAnoxe9wYODw+reHd399q21bU49tjYWBWPj48PzBkZGbnS9rO209PTKj4/Pw85M7MzVfz48eOQ8/z589C2tLRUxVlR75OTkyoeHY3dYGFhIbRNTU2Ftr601yA73janPdZSSvn1119D21//+tcq/vDhQ8hpz9P09PTAHG6nLuNAez9nY0DWlt0rV9n+l3ZxcVHF7RhQShzz5ufnQ84333xTxdl9mt077TnJxrxupy1L+pL3Zdx+25eyuSI73+041I5TpZTy/v37Ks7mz+w6zczU88fw8OB/a3Ub++3Z2dnAtvZYSynl0aNHVfzixYuQ8+DBg9DW3t/Z9i8uupynLv20y/fEvp1NQ+1+Z9dye3u7in/55ZeQ067Xsu/K7vlvv/22irP1QzZ/np/V48DFtfbB6xs7Li8vQls75mbHPzs7W8WLi4shp8va865o15APHz4MOe09l/XljY2N0PbmzZsqfvnyZchpr8ltOLftXNg+H5QS78vNzc2Q056nbMy/6ePN5v12bszmuGxdf3x8XMUfP34MOe24nz0zZWPV2Gi9FsrWfe35bddPpZQyOTkZ2tp7IMtp157ZtezybJmdy/beye6lnZ2d0NYeXzaetfvZZd3RVXuenjx5MjAnm+N//PHHgW3Zsf3www9V3M55pXQbv9sx6Le218XNL9muugNd1kJXycn09bnsMzf9PJLpst9dPjdY1m+zsbIdq9q1aClx/v75559DTjYutfuQjTl+u+G+6NKXu6yzst8kss9dZftX1eU3iOz+npiYqOLst7ts7dseb7umLCWep2z+7rKf2fqw3c8s567+dgN8nr+ABQAAAAAAAOiJF7AAAAAAAAAAPfECFgAAAAAAAKAn114Dtv3/y69eg2hw/Y3s/0HvUqcmy7nO/+e+rXHVpR7j8vJyyMnq2rW177J6HG2doMukpt3wSHw336X+5VW1353Vd21rHWY1abOafe/evRuY0/bL7P/d77OeEV9ONi50ud73SVu3Iqt10Z6DrLZmW/8xq4OV1SRtt5/dg110HeOvS7b9duzKxsmjo6PQ1tb/yOr6tfPAVeu23BXt+c3qIbbnIFtTtPNll7mylHi+8xqwg2vAdOmnXeq2dF2bdKkB29b629/fDzlZrcX2u7K1SFtvc2VlJeRk+92l3mdfrnPsuOp+d1kf33TdzqvKzklbozHrS62sn2Z1HF+/fl3Fe3t7IacdO7Kx80uf7/YeyPap7adZrajWbexL2fbbsStbi2V1StfW1qr41atXIadd57Q1l0vJ1zlDw/X57jJOZPN+VousS72yLs9a2f3VHm9WM7Gtlfvp06eQk60z2vOU9cH2PPW5NmvPWxuXEuv5Tk9Ph5yszvmHDx+qODv/bf3g3//+9yHnwYM4nrWn4Ow0rikur/hbxk276rzXZS10lZxMX5/LPnMbr1OX/e7yuS6ysTobF9o1c1avux1z2t9tspxsH7Lx9KavCVyXrvdtew90WQvehvumPb4uNZ677neX+tFX/a1QbWrgc+73WwcAAAAAAACAL8gLWAAAAAAAAICeeAELAAAAAAAA0BMvYAEAAAAAAAB6MnrdG3j58mUVf/vttyEnK0R9leLUWZHrrED58fFxFe/v74ec/b267fjkOOQMD9XbGx7p9j77/Py8is/OzuJ3N8cyNTUVcubn50Pb+Pj4wO1PTEwMzLmqLgXhr1p4vC2Gvry8HHKePHkS2n744YcqnpycDDnt+U5zhvr59wqXZfA5KqWUoTL4PHX5ri/5PV1dZXvZZ7qMHVnO6elpFR8cHIScvb290HZ4eJjv7H/S9tOr9vfr1I5BpZRycXFRxdlYMjMzU8ULCwshJzve9v4aHb32qedWycbvlZWVKn7x4kXIafvl0tJSyGn7cinxWmY57XXK5s+blvXTk5OTgZ9r57jZ2dmBOZku8+ldMTc3V8XZHNdFl7VI1/u7HSvppl1n3cY5Jtun9n7Krn97bA8fPgw5T58+DW07OztVnI0Tm5ubVbz+YT3kLCzGOa3tz9l+X3X8bL+rvU9Lic9RXe6b7P5O10s9ruta7Zqty3otfWY7is9fO7v19e5yTrI+ka3p2nk3y2mfIzPZHNOOn1lOl750dHQU2to166dPn0LOhw8fqjhb+2bPlo8fPx6Y097fX3pN0d6n2T5OT0+HtnY/s77Ufi777tHRwX3QnMfXpr2/utyX2Royex7o8psTg3U5j871l5Wd7/bZPltTdfm9IZsHx8bGBm6/S1u2przKWjBry34vb3/D393dDTnZ2q89B48ePQo57bns+mzbjlXZerHd72wtdld/uwE+z10LAAAAAAAA0BMvYAEAAAAAAAB64gUsAAAAAAAAQE+8gAUAAAAAAADoSbdq0v+A7777ror/63/9ryHnqgWk20LUWXHstmB5KaVsbW1V8a+//hpy/rrz1yre2NgIOZOTk1U8NzcXckZGRkJbVmh8UE52jroWA7+vsuNfXl4ObX/4wx+q+Pnz5yGnPd9XvW7cvLZfZNdtb2+vit++fRty/vrXv4a2zc3Ngd89Pz9fxePj4yEn+9zl5WVo+5Lafcr2p23Lxtfs3iGanp6u4hcvXoScdo55+PBhyHn//n1oa/tz299LifdJ1k/70nXsbPvTyclJyNnZ2ani/f39kNN+LuunX5su5zbrJ+3aIxsX3PO0snu+7SdZv5meqsfFxcXFkPPNN9+EtvPz84Hbf/36dRVn98CjR49C2+rqahUvLS2FnKs+x4yNjVVxtoZtj+XZs2cDv/eurGG7rDvaa1tKKWdnZwM/NzU1VcXZHJfNH+06r41LifNQO5+XkveJ9npnzzHtsWT99ODgILTt7u5Wcbbf7fNvto/ZOuPJkydV3K5zS4nHdtO6rGGv+l03vV6Hu6rLfen+6k+X3xuyZ6TT09MqzuahLs9Wt3HdcRdk657Dw8MqztY0CwsLoa39feHp06chZ2Zmpoqze7Bdd/UpW7O265P2+EuJ6/o//vGPISd7tn3w4EEV//DDDyGnfR6YmJgIOZn2XmnXXaWU8ubNmyrO3kXc9G83wPXwF7AAAAAAAAAAPfECFgAAAAAAAKAnXsACAAAAAAAA9OTai4i2dWN+97vfhZyr1k5qP5fVnzk/j/UJ1tc/VPHR0VHIefXqVRVn/+98W9dgdnb2t3f2M5+7an2G6/y/+K/qS9Z6yLaV1T5o6xpkdRW6fDe3T3ad2voI2fjS1mPIal1ktTXbug7Z57qOAzepS//uUostG4PUg+ymrduR1R5s66xldeayueHDh3qOOz4+Hrg/2fx5F8bB7Pjbfnp6evvmyi+tvVezebBLPacu9Ri71snhau7CfXlV4xP1uJjVmszqV7XzVTZ///zzz1X8yy+/hJysDlS7hsjm+KyWZxftuJvVl52bm6vir20Nmx1L25aNXe16rWvd64/rH+v448eQ09Zbbeu1l5KvhbqsT9vrm83f7fZLiXVps7pjbe3YrOZwthZ5/PhxFWfPWm1fztaQX7JftjUMS8nvnS71J+OaIn53W3MYiLrcl13Hjvs0z31JQ+Xv/w0guybZvNulrrvrNlj2+0pW+72VrU/bNfP3338fcto5vevvzn3Va85+g2jXR9l6rd3PrJZqto/t8T5//iLkfPPNyyrOfoPJtO8V1tbWBua8ffs25Nzn327ga+YvYAEAAAAAAAB64gUsAAAAAAAAQE+8gAUAAAAAAADoiRewAAAAAAAAAD0Zve4NTE5OVvHMzEzIGRkZubbtJ7Wpy8rKShW3xclLKWVra6uKs4LWbQHttlh4KaWcnp6GtrZgeHb8bc7+/n7I2dzcDG0TExOfjTO3sVh3VjC93c/sfI+Pj3dq4+u2vLxcxft78f769ttvQ9vx8XEV7+zshJy2X56fn4ec9v4uJfbvLvdldp9k2u1ln2vbrprz1ctOSXIpu1zf6enpKl5aWgo52Zza9sGzs7OQM5ZNjtckuwcyo6P1kmR1dTXkPHnypIqfPXsWctrzNDZ27UudW6/tEwsLCyHnd7/7XWhr1zBZv23Hwaxvdelvt3EtwpfVjgGzs7Mh59GjR6Gt7TsnJych5+eff67iP//5zyEnW7O3zwzZONzud7auz/p3e19aw/an7QMfP34MOdkabuPTxsCcVvusW0opU1NToa19Jsv6yeHhYRVnz3rr6+uh7eN6fXx7e3shp+1L2RybPRM/fvy4irN7oMvz5k2zrgXuq2zs6vJ7QzZ/tWN8Nr63655sH4ynV5M9tx8cHFRxdk1evnwZ2h4+fFjF7W9gpXR7/rrpOT5bd7TH9s0334ScrH8/f/68ildXV0JO9vzRRfvbzeLi4sCcbC2Y9YHsngPuFn8BCwAAAAAAANATL2ABAAAAAAAAeuIFLAAAAAAAAEBPvsr/SLytgdOlnlT2/7e/ffO2il+9fhVysto9bT289v+BLyXWofrw4UPIyf6/+LZWbPb//M/Pzw/cPtxnbd21pQexrsQ//dM/hba2HsTa2lrIaduyezerM9eOS1k9jrYeRPY9Wc2Itl51W+M6+1xb77aUvJYMtNqaP1mfzPpSOxe1dedKifN1Nn+3de2yWnxfm3Z8aWvplpLXaW3XFFk9p9evX1dxtu7Jave06yrXiVZWcyqrX9z2y6xuZzt/7+7uhpx3796FtnZOz9bV7Zoiq82d1aFS9/j6tHNMtqbJ6qR2GfPm5uaqOOuT2bNV25+z69+u17J6r+2YW0opH9brtWa2Pnzw4EEVZ/Nnlzm1Pf5S4vxx0307u25d6upl82D7OXUNgdsmG5faWuilxDqS7e+CpSQ1MldivfCp6bhmb/eh/c3zt/aTWpf5q113lhLn+FLi+uSm5+Y+tceW/XaX1bVvnz+v87fwrG5r9ht+y30C95O/gAUAAAAAAADoiRewAAAAAAAAAD3xAhYAAAAAAACgJ17AAgAAAAAAAPQkVoX+CrRFy7OC5bOzs5+Ns+9Z/7gecvb390NbW3h7bGws5Jyenlbx69evQ86HtQ+h7fGTx1X8u9/9LuR8++23VXydhcev6j4ViOf2m5ubC21TU1OhbWF+oYqze+f4+LiK379/PzCnlFJGR+vhuB1fSinl8vKyis/Pz0NOO3aUUsrJyUkVHx0dhZyJiYkqvri4GLh9Etc4dJ2dnYW2rA+01+mmx9OsT2bH0vbBJ0+ehJwffvihih89ejTwe7J76WszPj5exQ8fPgw5S0tLoW1ra6uKf/3115Dz448/VnE2TmRrkcnJySrOxly+bu28+FttrWxdv7y8XMWLi4shZ3d3N7Stra1VcXafdJm/23GJ69Vl3XNwcBDa2vVZdi3n5+c/G5eSj2ftOJzNze0+ZWvIn376KbS1Y3X7rFlKKSsrK1WczQPtfVJKvFfuQl/O5qFsXduuT7Jrkn0O4DbJxqns94Z2jMt+A3n27FkVv3z5MuRkn2v3IXvWKx1+SrhMkoY6PGC3n8s+c9Xv/pKyfezybJ+tj9t1x30yMzNTxS9evAg52X3RnqfrPEfZ7zQXF4Nvgpv+7Qa4Hn6VBAAAAAAAAOiJF7AAAAAAAAAAPfECFgAAAAAAAKAnX2UN2Pb/VM/+j/W2NllWZ66t7/rp06eQk9VeaNu61IBdX4/1Zdt6P6WUsrVdty0sLIScp0+fhjb4mmU1vrJ6ECurdf2s3b1YL64dO7rWZGm3l9XvamvOZjXssvGk3YesNnVb0yurA9Yem/oUX1ZW06yvurxdv+cq1zyrf5LVBWprsmR19doadm39F3LtGJeNeVntoDYvq0fftmVrk2wt8s0336T7Cn+vdhzI+tvq6moVZ7WiNjc3Q1u7tn/z5k3IaefvrEZmVjNe3ePr0847WQ3Yvb290Nauj7K5sb1u2XXM1mLt/JnNje323759G3LautulxPE7e9Zra75mtZKzefcu1HxtZfNZVrOwnYeyz83OzlaxuvLAbZPNVe3viaV0W6+080D2m0D2OwV8SW1fvg31btt7bmdnJ+QcHh5UcfZbYXZ/WXvA3ecuBgAAAAAAAOiJF7AAAAAAAAAAPfECFgAAAAAAAKAnXsACAAAAAAAA9GT0pnegV7H2fClD/Xx1VtR7dXW1iv/lX/4l5LRF7EspZX39YxVvbHxMctar+ODgIOQcHx+Htrbw9+VlPClZG9xbPY4LQ0P1B7Nb6ezsrIr39vZCzseP8Z4/Ojqq4uXl5ZDTtj1//nxgTimljI2NVXE2drTHtrS0FHLa8WxkZCTkcH2ysbvtb6WUcnh4WMXb29sh5+TkZOB3j47GJULbluW0us5DbR/M+lfbl++sHsel9lwOZV/U05iXOT8/r+KsT15cXIQ2axGuy8TERGhr58bvv/8+5Lx//z60tf27XZ+XUsrs7GwVLy4uhpyFhYXQ1j5bDA8P/nexXe5J4viSjUvtuitryz7XXrfsmmTjWzsOtn0r2342f29sbIS2J0+eVHG2hnvw4EEVt/22lG5z+l2QPbc/fvw4tLX3XHYPts/792YdAnz1svmrbbPuuOe6PI594S4Qnm1vuA9mv8Vnv/Ftbm5V8dpafK5onyOydWb2HNOuz9LnfeBW8xewAAAAAAAAAD3xAhYAAAAAAACgJ17AAgAAAAAAAPTEC1gAAAAAAACAnowOTrlDvnAd6sXFxSqempoKOQsLC6Htl19+qeLj46OQ8/59LNjdmpubG9g2NjYWcoaHvXfnK9LjuHB6etrEJyHn5KRuOzw8DDkbGxuhbX9/v4pnZ2dDzvz8fBW/fPky5Lx48SK0TU5OVnF7HKWUcnFxUcXZ2DExMVHFxpIv6/LyMrSdn5+HtuPj4yre3d0NOe31Hh2Ny4Hx8fGB+zQyMhLa2n4xNNTtJmyPr93H32q7iy5LvJZDVxysup7fqzg7O6virA+240u2Nsn6kvGD65KNZ0tLS1X8zTffhJxsPFtbW6vira2tkPPx48cqfvjwYch58OBBaGvn1Ow+affpOu/3+yTMJ+dx7mjXa6XE+bPLnNN1bm7XXu34mm3/4OAg5GT7PTMzU8Vtfy8lPre2Y3cp96d/ZfdSdl+2z+nZ8bf3abY+Brhtuozn2RzXzl/ZXNXlGZE74hZO+7dtLdL+TldKKa9evQptP/30UxVnv+m3vw1mv8u1645Skufm23WKgA78+gUAAAAAAADQEy9gAQAAAAAAAHriBSwAAAAAAABAT+5XDdhrlP0/9G2NqazmVFYnpq3Hl9Xg6VJ7Ifu/4dtaUWqswfXJ7vn5+bqe1HfffZfkzIe2dox5/PhxyHny5EkVP3r0KOSsrq7mO8udl9UnbOu+lRL7SVJutExM1vNHNg9lde3auSibm7Lad63sWNo6REdHsT763t5eFU9PT4ec9l7K9qevWrLZHJutF65aF/emdTlP7bXMru1dOV7uh2x93NZgzfp2Nua149DOzk7Iaeu6f/jwIeRkY3V7X2T1k9sxzrq+m/b6Hp8ch5yspld7vbPr1rZltfCyOq1t38lytre3B+5jl/69srIyMGd2djbkZOvauyg7jux4szaAr1mood7TMxPcVcfHcQ25trYW2v7H//gfVfzmzZuQ09aez9b+2TuE7BkFuFs8xQMAAAAAAAD0xAtYAAAAAAAAgJ54AQsAAAAAAADQEy9gAQAAAAAAAHoyetM7cBt0KWg9NDR0pe8eGRkZ2JZ9d7tPim7DzWvv1bm5uZDz7bffVPHMzHTIOTo6GritmZmZ0PbkyZOB279p2Vh11fGT2uTkZGh7/PjxwM99//33oW18fLyKs7lqf38/tH38+LGKP3z4EHI2NzcH7tPY2FhoOzk5qeJPnz6FnNevX1fxwcFByBkerv9t2dnZWcjJ+unFxcVn41JKGR2tl03ZfZrdl22eewKuTzu+lVLK/Px8FWf3YDZW7O7uVnE2vrXj0Js3bzrtZ7u9Z8+ehZxs3Gewdvw+Pj4OOTs7O6GtXZ89evQo5KyurlZxNg8cHh6Gtnfv3lVxNn91yVlaWgptKysrVby8vBxyFhcXq3h6Oq5P2znuNror68x2P2/jPgIAn5fN3xfn8XeCdu23t7cXcrK111X2wfsBuHv8BSwAAAAAAABAT7yABQAAAAAAAOiJF7AAAAAAAAAAPbn9hV6+gOusyXJ6ehra2ppPXWrZtDXtgC+vrZPZ1pQrJda2zOqHnZ+f/93bKiXWgruNteHUuLo+2fXO+tfCwkIVZ/0tq8Ha2traCm1tbcWshl4772VzXFajsa0B29bCKyXWw8vqqLR9MKvlmu1TOze3+5Nt7/nz5yHn5cuXAz/nPoHrk9WxbNuyOTarE9rW1mzrYJcSa76++vVVyMlqx7ZjZVZLNKvlyWChBuxRvLbZHNf2gdnZ2ZDTXpOJiYmQk9VQb7eX1Tlv+1L2HJnN+w8ePKjidh1QSqxPns3Dd8FdmT/vyn4CcD+pRd6P7HeTicm49mvXWdlvhV3WXuq7wv3krR4AAAAAAABAT7yABQAAAAAAAOiJF7AAAAAAAAAAPfECFgAAAAAAAKAnoze9A/fdxcVFaGuLaiuyDXfD0NBQFU9NTYWcrA36MD4+3qltfn6+l+1NjE+Etq2trYHbPzs7q+L2vimllNHRuPw4PT2t4rW1tZDz7t27Ku4yf2bbzxweHlbx7u5uyFldXa3ikZGRgTmlmOfhS+pyz2dz9eLiYmhr7+ft7e2Qs7e3V8V/+tOfQs6f/hzbhofrfwf7/PnzkHNyclLF1hhRO3eUEsfz/YP9kLO/fxDaRkbqazI9PR1yZmdnB+7T/n7c3t/+9rcqfv/+fchpjyWbT7799tvQ9vDhwyrO1gHZfA0A3E9dn4H/s+yZ9T49x7Zr70z7G/7x8fHAnFLi7xuTk5Mhp/3t4CrXCLib/AUsAAAAAAAAQE+8gAUAAAAAAADoiRewAAAAAAAAAD3xAhYAAAAAAACgJ6ODU7ituhRDz4qMt4W/gSi7v4aGhm5gT/5x7bHc1eO4z25jfxsdi0uE0dG6LZtjuvS3rO3i4qKKT05OQs7x8XEVn56eXmn7mYODgyr+9OlTyBkfH//s/pQSjwO4GyYnJ0PbgwcPqvj58+chpx0HPn78GHL+9re/hbY2b3d3N+QcHh5W8fz8fMi56bniOmVjfDs3ZOdtY2OjitvxvZRSxsfHQtv09HQVj43FnPZ8n5+fh5z9/f3Q9v79+yrO5pgXL15U8ffffx9yvv3229C2urpaxVlfBoD/LFs/tM92fju839p1Vram2tvbC21HR0dV3KUv9an97q6/N7T9Oevf7Trzw4cPIWd7ezu0tb8BtL8b/Nb2gK+Dv4AFAAAAAAAA6IkXsAAAAAAAAAA98QIWAAAAAAAAoCdqwN4RWX3ALjUDs/93v63h1ye1Jrkv7lPfvU/Hcl/dxmt0dnYW2tpad1etd9pl/spq77V1U/qst9puL7smc3NzVZzVdrnOejfA9cnqMrX3/OPHj0NOWytqfX095Pzyyy+hrR2/2npapcTapW1N2FLiOJSNQXd1XMrqbG9ublbx+nqsubu2tlbFWQ3Y2dnZ0NZe76xPnJ/V8+DJaaxXnl2ntq5a9jz29OnTKv7hhx9CTlsntpRSFhYWBn43AF+PLr8fdqmReZ/mky7Pn1+bdp2V1Tv929/+FtradVZ2HicmJgbmZNek1eU37ayfZm1dase2v4FkNXA3NjZCW7uub4+/FDVg4Wt2N5/GAQAAAAAAAG4hL2ABAAAAAAAAeuIFLAAAAAAAAEBPvIAFAAAAAAAA6Mn9qah+z2XFwbNi5G0R87aAeCmlnJyc9Ldjja+9iD3AfXFxcdGprXXVeaD93MjISMjJ2vrSzp9TU1MhZ3x8fOD+mAfhbsru59nZ2SoeHY2PTkdHR1X86NGjkJO1tWPO3t5eyNna2qribFxq93FycjLkZM8Md8Hx8XFo+/TpUxW/evVryHn37l0VZ+d2YmJiYNv5+XnI2T/Yr+Lsuerw8DC0tXPD0tJSyHn8+HEVP336NOQ8fPgwtGXHAsDXK3seaduy57rT09Mqzua4uzrneEaL2nXO7u5uyHn9+nVo++Mf/1jF2bmdm5ur4utci37pa9uu4TPt7wbA1+1uPo0DAAAAAAAA3EJewAIAAAAAAAD0xAtYAAAAAAAAgJ6oAXtr1f+H/djYWMjIai+0dRw2NzdDTvt/+Gf1jebn5wdu767WfgBgsKy2STvHtHWCSok1+7KaiV3qptxGX1vtoPZ4v7bj5+vSpTZVlxqsi4uLIWd1dTW0tbVMszX727dvB+5jO57ep5pTZ2dnoW17e7uK37x5E3Latmzsys5T+0zU1uDN9il7jspq5q2srFTxkydPQs7y8nIVt/XTSsn7IABfr65zXFvr/uDgIORsbGxUcVZXvl33lBLXItn83eZkz4NZW/tbaDYPTk9Pf/Yz5No+kV3brB59ux7N+mD7e3G2hs3a2u/K1lRbW/Va8OPH9ZDT9uVS4m8X7fGXEn+7yO6l7L5o+9zIcPzuyzL4HgDuJ38BCwAAAAAAANATL2ABAAAAAAAAeuIFLAAAAAAAAEBPvIAFAAAAAAAA6Mno4BRuQlvDPCsinxWfb4vdv379OuRsbm5W8du3b0POy5cvQ9vz58+reGVlJeRkxdfhLrq8vAxtN92/23266f3h69POMYeHhyFne3u7iqenp0PO3NxcaBsdHbwkye5Lro8xBmrDw/HfrrZr9JmZmZDz4MGD0La/v1/FGxsbnbbXap8Hsm3dVefn56Ht4OCgitfX10POu3fvqnhhfiHkjCyMDPzubI4bGak/lz2jZWPn48ePq/jZs2chZ2Gh3s/x8fGQAwD/WbZWmJiYCG3t/LWzsxNyfv311yre3dmN3z0Zv7t9Rru4uBiYc3p6OjCnlDg3PnnyJOS0c2w2NxO164yHDx+GnOx359/97ncDv7vtb5ns+b/tz+3arJS4zvvrX/8acrI1XPtdk5OTIac9J9n9lR1bu/a7LLEv+y0Dvl7+AhYAAAAAAACgJ17AAgAAAAAAAPTEC1gAAAAAAACAnngBCwAAAAAAANCTWPGaWykr8p0Vlm+L3a+vr4ecn3/+eWBO9t3Ly8uDdhPujaGhoZveheA27hNfl9HRetkwNTUVchYWFj77mVLyOe3y8vIf3Dv65prAYONj41U8NzcXch49ehTa9vf3q/jDhw8hZ2tra+D2V1ZWqvjx48chZ3JycuD33Ebn5+eh7fDgsIqz8/brr79W8TfffBNyJqfiOTk6Oqri7e3tuP3DevvZtX3+/Hloe/r06WfjUuL8mT2PAcB/Njwc/64mmz/a3xJ2d3dDzsHBQRX/OvxryLnqbxIXF/Vzxf7+XsjJ5v3vvvuuirNje/DgwZX26WvXrmGXlpZCzuLi4rVtP/tNoNWuzUqJff7Tp08hZ2JiIrQdHx9XcbY+Hh8fD21X4Tka+M/8BSwAAAAAAABAT7yABQAAAAAAAOiJF7AAAAAAAAAAPVED9ga0/xd8Vufg5OSkirP/9z6rfTA9Pf3ZuJRYXyirXdTm/Nb24GvS3rvZfdnWTcnu76yuRFtLM6tZAV9Sl/o6//zP/xxy2r6c1dBr75NSYj3ErG5KWycmq3nU1iXqknOfdKk30/X4T09PPxtnbdmYpwYO99nYeD1WZrWyspqgZ2dnVdzWFi2llL/85S/1tpJxuf3u1dXVkJOtO9p1RjYufMmx8uLiIrRlY87Jaf2MlM0nHz9+rOKsNtzMzMzAfdj8tBlyDo/q65TV3M2219Z8zT6nBiwAfcief1rZHLu3V9dlbWtmlhLXL6XE9UK2fghz7GacY9vfQUspZW5uroqz32CyNcTXrn3+Std0TdPw0O37G62sTmvbNjoaX21kz59tP/GMCnwpt290BQAAAAAAALijvIAFAAAAAAAA6IkXsAAAAAAAAAA98QIWAAAAAAAAoCexUjXX7vz8vIqzwvZbW1tV/HH9Y8iZm58Lbc+fP/9sXEop3377bRU/e/Ys5CwvL4e22dnZ0AZfk/bebe/TUkp58+ZNFe/v74ec7P5q78OJiYkr7CH0Z3x8PLQ9evioiqempkLO0tJSFf/yyy8h589//nNoW19fr+Kzs7OQMz09PXAf27bsXhodjcufoaGhz8a31eXl5WfjrG14OP77u3Z8K6WUo6OjKj44OAg5u7u7n/1MKfm1vLiI+wl3UTuezM/Ph5yLi4vQ1t4X2Zri559/ruIPHz6EnHbdka0xsnt+cXGximdmZkJONsZel2ycyMal9liyeah9Zsmetdqxq5Q4Vp6cnoScycnJKm7nvFJKWV1dDW0PHz6s4gcPHgz87uy6AcBVdHkeGBsbG5iTrWla2XNU+7nT09OQk60F2me5kZGRTtv72t2Xc5I927brwywnO/77ck6Au8dTHQAAAAAAAEBPvIAFAAAAAAAA6IkXsAAAAAAAAAA9UQP2BrT/73xWi66tZzQ+EWswZf9/fVsf78mTJyHnn/7pn6o4qwHb1n4ASrlsahZub2+HnL/85S9VvLa2FnJ+//vfh7a2hlhWUwy+pGweGFuo2+YXYq3Ddh7KavhldQzbuTCr5dLWx8v2sf2eq9bQy7Z/07rsU5bT1lzqUo+ylFibKftcW4cpq7mb12oKTXAntf27rT9aSr7Wb++vbL3Q1pP96aefQs6vv/5axXNzc7+9s/9JO1Zk42lfNWCzsaPdflY/+uQk1mBt55RsH9tx6PDwMORka7j2c+18VkopKysrVdzWds1ySok1X7N+AgB96PLMkD0jXWft96s+j6gB+3XL+kS7FuxSl7iU2E/0G+BL8RewAAAAAAAAAD3xAhYAAAAAAACgJ17AAgAAAAAAAPTEC1gAAAAAAACAnoze9A7cd1lh+9nZ2Sp+8eJFyGmLge/v73f67tXV1Sp+9uxZyHnw4EEVj42NhZyrury8rGJFzblPLkvdv4+OjkLO2tpaFf/4448hZ2VlJbSdnJz8g3sH3TVDdSklNFx5/F5cXKzihw8fhpzvv/8+tLVzUTuflFLK1NRUFV9cxJyDg3q+3N3dDTnZnHp6ejpw+7dRu5/Zfl8lp5RSxkbra7K0tBRy/vmf/7mKLy4uQk425o2Pj4c2uItGRkY+G5dSyuhofOSan5+v4uz+au+dN2/ehJz3799XcTtO/tY+tXnt/pQSn1m6aseTdnwtJa6htra2Qs7m5mZoa8f0g4ODgTnZem15eTm0vXz5soqfPn06MOebb74JOe2zVimlTE9PhzYA+Fpc9dlyqPhNkVq7zsyeP8/OzkJbux7NcrI1c9yBpK3ppll/b9v8Xg5fD38BCwAAAAAAANATL2ABAAAAAAAAeuIFLAAAAAAAAEBPvIAFAAAAAAAA6MnoTe/AfTc6Gk/x0tJSFf/www8h59GjR1WcFQfPCnZPTk5+dlullDIxMZHvbA8UEec+u7y8/GxcSrxXj46OQs75+Xm/OwZ/pzhU9zd2Dw/X/7ZrcXEx5Pzud78LbY8fP/7s95RSytjYWBVn99eHDx+q+Jdffgk5u7u7oe34+LiK78p92mVcatuyuTo739Mz01X85MmTkDM7OztwHxcWFkLbda5F4LbJ7rnx8fEqnp6eDjkPHjz4bFxKKdvb21X86tWrkDMzMxPa2jG3y3plZGQk5HRxcnIS2nZ2dqp4fX095KytrYW2Ni/73H/7b/9t4PazeegPf/hDFX/zzTcDP/f8+fOQMz8/H9qyMRa4e7J1Vl/8lgJQy8bci4uLKu6yziyllE+fPg387vY39a771I7f7e8WpcS1f5bTZb14nfMQcD08CQIAAAAAAAD0xAtYAAAAAAAAgJ54AQsAAAAAAADQEzVgr1lWK6mtC5TVZWr/T/uu/8d7+//FZ/9/fFaXFhisreuQ3d9TU1NVnNW/zGofDg/59zDcD+18ldUIbe+TUuK8l81V7T23t7cXckZH6s+1tV6ybZWS1z+8C7rUgG3HrqGk5m+X8Swbu5aXlz+7rd/67qvWkoT7oh3jZmfiWPnw4cMqfvbsWchp61dndVPn5uZC23fffV/FBwcHA787q1PbxenpaWhra9dm+/369evQ9vbt2yp+8+ZNyMlqgbXOzs5C29LSUhU/ffo05Lx48aKKHz16FHKyOU5tR2CQLms4gK9JNgaGZ9uOz5/t2vuqz6hdxurst3jjOXy9/OIPAAAAAAAA0BMvYAEAAAAAAAB64gUsAAAAAAAAQE+8gAUAAAAAAADoyejgFLrqUoi7lFj4u41vg67HAl+T9h6Ynp4OOS9evKzimZmZkPPo0aPQNj4x8Q/uHdwO7X2SzXF9zXvz8/OhbWa2vucmOt5bZ2dnVTwyMnL1HfuC2vPdZa7OcrK2mz4H7VLEMoT7ZHx8vIoXlxZDzjfffFPFFxcXIadds29vb4ectbW10La+/qGKNzY2Qs7s7GwVZ+PE1NRUaGudn5+Htv39/WZ/1kPO27dvQ9ubN2+q+Jdffhm4/QcPHoS2//P//D9D29OnT6t4dXU15CwvL1dxNg8ND8d/45w9WwG3zGUbum+5v7rMS33OXe0a5uI8rmnStsu6Ldsnc+z9la2p2rXn40ePQ87/8r/8L6Ht6OioiicnJ0NOl98psn1q+/fx8XHIOTg4+GxcSimnp6ehrV1/Z9sHbjd3LQAAAAAAAEBPvIAFAAAAAAAA6IkXsAAAAAAAAAA9uX3FR7kV1HuFqK21sLi4GHJ+//t/quKjoxchZ25uLrTNzMR6ssDfr60BdN9rAl2lJkzXGrA37RbuEvSmrTG1tLQ0MCerS9XWispqqb579y60GO8kiQAAPGlJREFUtXnv378POW2NrWz7WZ3tdhzKxpe2Luzh4WHI2dvbC21bW1tV/OHDh5Dz3XffVfF//a//NeT84Q9/CG2PH9c1xLL6ru3xdq3DdRvHWPia3IX1oHGCvmR9qb0Hsrry7Zoiq0eZ1XXvsv12e9tbsWb9yelJaGvXB2dnZyHnLtzfXM3IyEhoa9fM333/XchZXFoMbW3fGR2J69qh4cHP1tk+tffF5uZmyHnz5k0Vv3r1KuTs7+3H7Y3W2xsfHw85wO3mL2ABAAAAAAAAeuIFLAAAAAAAAEBPvIAFAAAAAAAA6IkXsAAAAAAAAAA9iRWnubKs0DxwfwwP1/9mZWFhIeRMT09X8cXFRcgZGRkJbWNjY//g3sHX5/T0LLSdn59XcXYPZtr7+zbqss646lrEGga+rHYtMDs7G3LaNUW2ftjb26viV69ehZytra3Q9unTpyp+8+ZNyJmYmGj2ZybkZGuh9nPZ+NKO1cfHxyHn8PAwtO3u7oa21g8//FDF//RP/xRyvvvuu9D28OHDKp6Zicc7OurxGe6Dy8vLK33OOou7qksfbO+L7Dmqy7NVtq32u88vzkPOVbfH12Vubq6Kx8fHQ87Kykpoa/tg1k/btuw3gmwteHZW/y6xtrYWctq17rt370LOUbIenij18WW/HZpj4Ha7/b82AgAAAAAAANwRXsACAAAAAAAA9MQLWAAAAAAAAICeeAELAAAAAAAA0JNYORqAVFvYfmxsLORkbb25bHfo+jYFd0N7U5RyeRnb7rN2XALuhi737vBw/W9ll5aWQs7Dhw+r+Ntvvw05+/v7A9vev38fcto1Tbb91dWV0DYyMlLFJycnA7e/tbUVcj59+hTa9vb2qvhf//VfQ84PP/zw2biUUr777rvQ9uTJkyqen58POde6zgNuv2yZaSl2Je2aPVvDd2m7uLgIOV/T+jh99kmahobrczI5ORly2nl+YmIi5LRzfCa7Ju1+Hh0dhZzz8/PQ9vTp0yqem5sLOaOjftq+7bJ+enp6GtrOzs4Gfm58fLyKs36atV2ndp8WFhZCzvT0dBWPDMd76ewsnpPR0cH3HHC7+QtYAAAAAAAAgJ54AQsAAAAAAADQEy9gAQAAAAAAAHriP8oHyKjvAwDcIm1N2FJKmZ2dreJnz56FnOPj49D25s2bKt7Y2Ag5bV3Yly9fhpyDg4PQ1tbBOjw8DDltLdes3uva2lpo29zcrOI//OEPIefx48dV/Pz585CTnaeVlbqe7dTUVMjpUvsOuL8uk4fEIQ+JA2V1HNt6n1lN0Kw+eJdx+L6M1dl5a+vbZvVus8+1NV9XV1dDTjs3tvNiKfnc2G4vq+V6lZxSSpmZmani5eXlkNOuO7h9suudrf0+fPhQxVmd2LYPtOu+UvIax7eOqQO+Gv4CFgAAAAAAAKAnXsACAAAAAAAA9MQLWAAAAAAAAICeeAELAAAAAAAA0JPRm94BgFtp6KZ3IHEb9wkA+CIuLi5C29TUVBU/evQo5Jyfn4e209PTKl5fXw85Hz58qOLNzc2Qs7e3F9rGxsaqeH9/P+Rsb28P3P779+9D2/T0dBVnx/vw4cPPxqWUsrq6GtqWlpZCGwDXo53Tzs7OQs7x8XFoGx6u/46knRdKifPe0NCXfZC+vLy80vbbz7Vx9l3Zd7dzfClxbp6bmws5z549q+IXL16EnOxz7X6encZreVkGH1tmZGSkitvjKKWU8fHxTt/Fzcnu742NjdD2P//n/6zira2tkPPP//zPVZyNAZOTk3/nHvYrO952XOpyf/9WG3C3+AtYAAAAAAAAgJ54AQsAAAAAAADQEy9gAQAAAAAAAHqiBiwAAMAt19a9KyXWvVpZWQk5We3YtqZWVivrl19+qeK1tbWQk9VubWvPtbVks899/Pgx5GTH8t1331Xxv/7rv4ac58+fV/Hy8nLImZ+fD20Ag6jFdzXZ/DUzM1PFT548CTn/9m//NvC72lrov7W9u2CoDLUNQVs38vDwMORktTVbWS3Vdm7M5uG2JuudkZWcdTvfqLYmaimlHBwcVPHe3l7IOTk5qeJsnXvTutY4bplj4H66m6sSAAAAAAAAgFvIC1gAAAAAAACAnngBCwAAAAAAANATL2ABAAAAAAAAejJ60zsAAADA5w0NxX87OzExUcUjIyMh5+TkJLQtLS1V8cLCQsi5uLio4vfv34ecX375JbR9+vSpitfX10PO69evq/j46Djk/O53vwtt//Iv/1LFv//970PO06dPq3hmZibkZOcJ+HoMDQ3dye++q8bHx0Pb8vJyFf/hD38IOc+ePRv43aOj8WfNu3oN2nl+ZCTO++fn51XczrmllPLjjz+Gto2Njc9+TymlXF5eNvtzN89j5rJchrahcn+O77YbHo59eXFxMbS148Dh4WHIefToURVPTk7+YzsHcM38BSwAAAAAAABAT7yABQAAAAAAAOiJF7AAAAAAAAAAPfECFgAAAAAAAKAnsVo9V9YWrC/l7hatv+ljybZfSr39W3Fq2928DfvEndT2eWMH8EUNnna/uPsyLkJfhoeze2CkjkZGQsbMzExom5ubq+KlpaWQMz09XcUfPnwIOX/84x9D2+TkZBVvbGyEnB9//LGKh0fivwt+8eJFaPv++++r+Jtvvgk5Kysrn92fUkq5uLgIbcPD/m0y3Fdd1hDWHddnfHw8tLVjdTsvlVLK2dnZwO++T9epnYdGR+NPtqen9Tl5//5dyNnf3w9tOzs7VXx8fBxyTk5OqvjsNJ7/8Yl4Le+C+9RP7qKsL7djQClxzZqt19rxZGpq6h/cO4Dr5SkTAAAAAAAAoCdewAIAAAAAAAD0xAtYAAAAAAAAgJ6oAdujrjUF2v/DPvs/7fMaqH//PmT71NaVyHJuuj7CVWq0lHL1c9luL6sBle6TMhL05Cp9vmt/v8p40mXs6HyfALdfcuu2Y0fXeTd89R1di8B9kdXGmp+fr+LV1dWQ8/jx4yr+9ddfQ85//Md/hLa29tzm5mbI2draquJ//dd/DTlPnjwJbc+ePRuY8+DBgyqemJgIOQAt647rk9Unb+uMtzHdnJ2dhrZ2ji8lXoOsvm74rfJy8Dofush+O8ru+a99HLjquwDgdvMXsAAAAAAAAAA98QIWAAAAAAAAoCdewAIAAAAAAAD0xAtYAAAAAAAAgJ6M3vQO3HdZYfvd3d0q3t7eDjkHBwcDv2doaCi0TUxMVPHc3FzIWVhYqOK7WuT85OQktG1tbYW29vxm5609J4uLiyFnfHz879tB6Fnb57Oxox1fSinl9PS0ii8vL0PO6Gg9HUxNTYWc+fn5Kp6ZmQk5IyMjoQ24m9q1RzbmtPPu+fl5yGnHjlJKWVpaquLJyckr7CHQRTY3t/P8yspKyHnx4kUVHx4ehpw//vGPoe3/+r/+r4H79L/9b/9bFT98+DDkLC8vh7Z2jZ6NL+2zzfBw/DfH2fMAAH+/7NnSGPvlZHN8Nu+1susGfWn7120YE77kPmX3V/tsfXR0FHKytXZ7j2ff3d7z7m+4XfwFLAAAAAAAAEBPvIAFAAAAAAAA6IkXsAAAAAAAAAA9UQP2mmW1Wzc2Nqr4r3/9a8h59epVFe/v74ecrNZDW7/phx9+CDltrce7WgP2+Pg4tL1+/Tq0/eUvf6nirB7GP//zP1dxdk7UgP263MZaNm2NiHfv3oWcn3/+ObS1NRqzY2v7/NOnT0POy5cvqzir2agGLNwfbf3otbW1kNPWf8zm5mwt0o4fasDC9cnm/XZd29ZWLSWuBbI682/evLnSPj158qSKV1dXQ06X+q7Z2NE+6wBwfW76Gflrl/3meH5+PvBzrhvX6Tb2ry+5T11qwGb1Xvd290LbxMTEwO9uZceqLizcHH8BCwAAAAAAANATL2ABAAAAAAAAeuIFLAAAAAAAAEBPvIAFAAAAAAAA6MnoTe/AfXdxcRHajo6Oqvjjx48h569//WsVb2xshJzx8fHQ9u2331bx6upqyDk9PU339a45PzsPbXt7sWD569evq3h0NHb7Z8+e1d99Hr+br0tWtL7VpYh9ljM8PPjfvmRjx/b2dhW/efMm5Pw//8//E9p+/vnnKs7GgIcPH1bx//6//+8h58GDBwP3Ebg/2nt8f38/5Lx7925gTrYWOTs7+wf3DugqW9NMTk5WcTvHl1LK8fFxFXdZZ5dSyh/+8IcqXllZCTnff/99FT958iTkLC0thbaZmZkqbo8DAL4m2TN5l98pgOszMjIS2qampqo4Wx8fHByEtva3/+y73fNwu/kLWAAAAAAAAICeeAELAAAAAAAA0BMvYAEAAAAAAAB6ogbsNcv+b/a2dlFbf7SUWCPy8PCw03cvLi5W8fLycsiZmJhI9/WuGR2L3TerFfVP//RPVZzV32zPW1YnFtr6Ktl92dZHy3KyWmxtXYeTk5OQ09Za/PDhQ8jZ2toa2JbVcGv7fFuruhS1kbkb2vonWa3RrH+398XQUJwr2s9l332faiO364yFhYWQ09ZxbGtGllLKynKsbzM2NvYP7h3QVZcasJl2jNvZ2Qk5L168CG3/x//xf1Tx/Px8yGnHjqdPn4acbMxp9ztb139J11lzK7tuXVx1n666PQAA/j+TE3Gd/eTJkyrOfjdYXV0Nbe3vedl6fH9/v4qzNd3ISPyd29IPvgx/AQsAAAAAAADQEy9gAQAAAAAAAHriBSwAAAAAAABAT7yABQAAAAAAAOhJrMBMr0ZH4yleXl6u4snJWJz7m2++qeKsOPdQidWyx8bHqnh6ejrkzMzM5Dt7x0xMTIS2Z8+ehbbFxcWB3zU7O1vF4+PjV94v7q/2PtzZ3gk5r16/quL379+HnPPz89DW9ufLy8uQs729/dm4lPyef/78eRXv7u6GnIWFhc/uTymlDA/7Nzv3Rda/WkNDcY65bbLjaO+vk5OTkLOzE+/dtbW1Kh4ZGQk5Kyv1/H16etppn+6qsbF6TfHo0aOQ04452XolW3dMTU39g3sHdJWN5+1aN3tmae/n1dXVkPP06dPQdnBwUMXZGNCu2VdWVkJOuz7P9jMbc69z/uoyxl91Hrjqfl9ln+7CHA8AcBdNTcdn3XbNPD8/H3IePHgQ2n755Zcq/vHHH0POp0+fqjj7LSNrK8l7BaB/fk0HAAAAAAAA6IkXsAAAAAAAAAA98QIWAAAAAAAAoCdewAIAAAAAAAD0ZPSmd+C+y4pct4W25+bmrm37Q0P3t6D2+Ph4aFteXg5tWRHz1n0+T/Tn4uKiinf3dkPOq1evqvi//bf/FnJ2d+Pn2nEg69+Xl5efjUspZWxsLLS1Y05mcnKyirOxa3jYv9m5L+7LmJcdx+hovbSZmpoKOSsrK6Ht9PS0irP+3s4n7X3zW5+7q9pzubi4GHIWFhYGfs996W9wV3W5B7N5v12bZGvqZ8+eDdxeNlY+fvy4irNxeXZ2NrRl65xrE5dZV8sp+ZptkKuOnZ22laRcJo3GbwCAv0+2Xm3buq5z9/b2qvjXX38NOScnJwO/J1sfWufBl3F/fiUEAAAAAAAAuGFewAIAAAAAAAD0xAtYAAAAAAAAgJ6oAdujq/5/6rfx/1y/6f8bPq9dVG+/6+5c5363u3kLLyXX6PzsPLTt7+9X8fv370POx48fQ1tbV216ejrktHVhs5pq42Oxdmx7D1x1XGrbsnpx3B9tzeNSSjk4OPhsXEqsP5J9T9a/2v6d1USZmZmp4qzealuz8OWLlyEn67vZsbTafXr69GnIye7d2zbPd61FeNNrmHY/b9t5hPuuSx3oFy9ehLZ2HO5Sn779TCl5De92rrjWcSH56qGmMaubmjV9yfE0+54w7nc4NgDupmyt32Vd3T5bZc9a8LW7zt/LJyYmQluXtW/7m0v2Gwxwc8ymAAAAAAAAAD3xAhYAAAAAAACgJ17AAgAAAAAAAPTEC1gAAAAAAACAnoze9A78I7oUkf+Sbnr7fbrpY7np7Xd1R3azcp0F46/qNu5TF0PD8d+wjI2NVfHc7FzIOT8/D23z8/NVPDExEXJGRkY+G/+/OxWb2vN7cXExMGc4ObbR0dHPxtwvWT/Z3Nys4tevX4ecjY2NKj49PQ05Wd9ZXFys4mfPnoWcJ4+fVPHU9FTIWVpaquJsLFlZXQltZ2dnoa3V3t/T09MhZ3Z2NrTdhfEMYJC5ubimydYLy8vLdc5Qsl4ar8fTdnz9rba7MJ5+6X1st3fldfUX3O27uva/TrfhnNy231duwznh9sv6SRdfe1/q8ryfzcNX1l6mr/v030p3Zcy96bnqOrd3fhZ/K8x+P2y1+3Qbrxt8zfwFLAAAAAAAAEBPvIAFAAAAAAAA6IkXsAAAAAAAAAA9udMF/Pyf5vD3u433zW3cpy6Gh+N+t3VSshqVZ+ex1mRbS3J8fPwf3Lvflp3vti2r/9nWnshqZvZaJ4YbdXR0FNo+fvxYxX/6059CTtu2t7cXcrLaqd9//30VZ32prROb3V9t/eSHDx+GnC51kDNdaqt0bbtJt21/fstd2U/4WmT3ZFb3+mtyG8ep27hPrbuwj1/abTgnt2Ef/rPbtj/cDlet+Uotex5qn+97fd53O996d2XMvSv7eRXZb4XtvXpXavUC/x9/AQsAAAAAAADQEy9gAQAAAAAAAHriBSwAAAAAAABAT7yABQAAAAAAAOjJ6HVvYHNzs4rX19dDzuTk5MC2iYmJkKPINFyf09PTKj44OAg5JycnVTwyMhJypqamOrXdBcPD9b9ZueoYdHl52cfudNbu59jYWMhpj+3o6CjkfPr0qYpnZmZCzuzsbGhrj/fs7GxgDv1pr20ppYyO1tN/dv43NjZC2/v376v43bt3IefXX3+t4mzez/rO/Px8FR8eHoac8/Pz0DZIdp9mY9WXlJ3v27imac93Ni601yk7tmwN184D2bgE1LL7q227uLgIOdnY2a7z2jj7ri7zSSndxtgu+521tWuIq8wLpeTH0o5D2TNqNp5xfdrrm60N2rkpW2dmc2yXebfL+jS7B9p+kvWl7HN3Qfv81+UZsZR4vPfpGZEva6jU9+5l8RzZyubhdt7L7t2PHz9Wcfas9+DBg9A2Pj5exdn4ls273E3t3JjNzW3/yubTbG6cnp6u4pt+bv/SsvvkNv5OAPx9zIAAAAAAAAAAPfECFgAAAAAAAKAnXsACAAAAAAAA9MQLWAAAAAAAAICexMroPfvpp5+qeHFxMeSsrKyEtsePHlfx+Mp4yFGIGq7P6clpFb979y7kfPjwoYqnp6dDzsuXL0Pb1NTUP7h3N2N0dPSzcSmlDA/X/67l8vIy5HRt60u7TxMTEyGnPZadnZ2Q8+rVqyo+ODgIOZOTk6GtPbaLi4uBOfQnmytHRkaqODv/e3t7oW1tba2Kz8/PQ87y8nIVd7lPSon9st3HUu7PvH9XjuPs7KyKNzY2Qs7bt28/+5lSSnn48GFoe/r0aRWPjY1dZRfhq5KN1e04fHp6GnIODw9DWzvPZ/N++7lsXO6ypugy5mVrg5OTk9B2fHw8MCf7rtb4eHy2fPDgQRVnY1d2vH3psha6K/NHX64yD+3u7oacbN3RZd5p76fsGs3Pz4e2R48eVXHWl7L10V3Qrv/fvHkTcrLrNDs7W8UvXrwIOX09I2bX6Wu7d+619lJ2eIy8z9c/O7ZsfGnn8M3NzZDz17/+tYrbObeUUp48eRLa2jGunU9Lud75s4u7Oi60+30b9znrS69fv67ibH2a9aXnz59Xcbb2vM+63LtZH2jXvn5fg9vFX8ACAAAAAAAA9MQLWAAAAAAAAICeeAELAAAAAAAA0JNrLzzyP//n/6zirCbPH/7wh9A2MzNTxVkNAa+P4frsH+xXcVvDoZRS/v3f/72K29qPpcR6P1neXanr0I5fXWqZZvUZurb1pa17ldU9a2X1s46Ojqo46xNZja1OOpSouEyShkIRoOtz09u/sivuYlbfNavd0lpaWqrirMZaVif0a6oBe1d0qb3XzgNZrcl/+7d/C23LD+p5IJsrgMHatUg2Tmc129v7ua2jWUopHz9+HLj96enp0NaO51k9qy71N7Pac2198uzY2nOQzTlZrclvv/22irN6dW29zz7reJrjonZOaWvRlxJ/b8jWp1l/61JvtO1f2dr/m2++CW3tGmZxcTHkZPfOXdBek1evXoWcP/3pT6GtrRHZ/t5TSnxGvOpzhXvp6/K1X++r1oD99OlTyGlreb5//z7kZL/ftttbWFjId/YG3dV+chv3u12fra+vh5x2bs6eETMrKytVfNO1g7+0bJ2RtbXafnIb+w18zbzCBAAAAAAAAOiJF7AAAAAAAAAAPfECFgAAAAAAAKAnXsACAAAAAAAA9CRWZu/Zn//85yqenJwMOY8fPw5tJycndYP60fTk8vIytLVF5Nu4lFLOzs4GfvdtLHQ+MjJSxaOj8bY/PT0NbWtra1X89u3bkPPzzz9X8eHhYch5/vx5aFtYWKji+fn5kNMWms/Of3Ytu2ivU3ZOhofjv0/Z29ur4q2trZBzdHT02W2VUsrY2NjAfbpO2bG1sntgd3d3YE52ndpju433ydemy72T9dPx8fEqnpiYCDntmNPGpZRyfn4e2vSL2y8b49+/f1/F29vbIefbb78NbecXsQ8An5eNk+2cno25mXbtl927r169quJsDMie7aanp6t4aWkp5Dx48OCznyklX59NjNfzTrbuaJ8j2/VLKfkabrz57mx9Go5tMR7b6Fjc777WQtn83R7vyfFJyDk9q6939j3XOQ93eR7JruWHDx+quJ1zSon99C9/+UvIydYrc3NzVZydk0+fPg3cx+y7v/vuuyo+P78IOXdVew7a56NSSvn1119D2/7+fhU/evQo5LTXpB0nSonr065jHtxXXdYGWd7BwUHI2djYqOJsrlxeXg5t7TzUZT5pf+8pJZ+v27z2ebSUuBb52saFi2SOOT4Z/Btne267/k61+WmzitvfDkuJc3M7B5RSysOHDwe2Zdtvr2/2e2bWv76k7B5s1z7ZPrb3YCnxvsjWIl3mRr+3wM3xF7AAAAAAAAAAPfECFgAAAAAAAKAnXsACAAAAAAAA9OTaa8C2NVHa2jql5P/PvNoefEk7OztVnNUXyupftLJ6Rjf9/+x3qQ2W1RBoaw/sbO+EnPY+zWovvHv3LrS15ySr+9XWYepSg/eqsnMyPBT/fcrRcV3f9ePHjyGnraGW1X7IakV1qct6ndrz3aXWRlZ/JbsHWjd9T3xtrlorObsv2rb0Wjabu+r276ovXVfvOrX3c5f1Wja+dfkcMFiXuvLp+mXqKLS19dK6rE2yOrHZOm92dnbgdz99+rSKV1dXQ062zmjXg1lNs3bN/vbt25Czvr4e2nZ26uPLjq09J1ld3IWFhdDWnpOrjoFZDfX2OSY7ts3Nul5b9j3perin9WmX55Fsn9prmR1bO+9mNYez9Wnbv7L5e2pqauA+ZteyPd47ugxItceW3d/Zs13bT//2t78N3NazZ89CW1sfMLveV3XVNetdXedxP3QZg0rpVou8HZuz+7tLDdbsc63s97VffvkltLW/MWX1o588eVLFX9vvx+cXcW5qa5hndVrbGt5ZX8rmz/Zz2Xe39U2z72n3sZRSfvrppyrO+knbv7PfCm/6N4gu91fXOsgf1j5Ucbb2be/Lm/59Eai5IwEAAAAAAAB64gUsAAAAAAAAQE+8gAUAAAAAAADoiRewAAAAAAAAAD2JVbB7Nj8/X8WzszMhJyvirmA01+X09DS0tcXf//KXv4Scv/3tb6GtLZo+PT0dctpC6zctKwafFag/OTmp4qOjo5CTHW/rzZs3oe3jx49V3OUcZfvYl+ycZNrrfXx8HHLatmwsy8a8rvvQhy7nMrsmbVt2HNxvXfpp27+u897ly8rGhampqSo+Pz8POaOjcbn5Jcc8+JqMjMb7dHJyMrS1926W0967h4eHISdbHy8tLVXxDz/8EHJmZ2ereGVlZWBOKXHsaNerpcR1fbt+KyU/lv39/Sp+9erVwJyDg4OQ8+LFi9DWnt+xsbGQ00V2LDs7O1X8008/hZz22abruj4bv/vQ9XmkfW7L1t7tucz6Ura9ti07t+0+ZXNcl3vnPs157bNNO5aUUsrc3Fxoa58J//jHP4ac9t7d29sLOe25zbZ11X47VOrrdFmsYbn9srGzS1u2rm/n3ez+ysa8dhzu8ntu+5tQKaX8+7//e2hr5+t/+7d/CzkPHjyo4q/td4psbvzw4UMVZ+f29evXVZytTbIxvp0LszVFOw5n/W1rayu0/elPfxq4T6278ntDl7VA9nt1e32ztW/b57use4Avx1tOAAAAAAAAgJ54AQsAAAAAAADQEy9gAQAAAAAAAHriBSwAAAAAAABAT0YHp/xj2kLQWTH2rGD3zvZOFW9uboac6enpKm4LgZdSytnZWaf95O7JCoh3KdD+6dOn0La2tlbFv/76a8jJita3fW5hYSHktMXnv7S2IH1WoD47l+29OzExEXLa853dbx8/fgxtbRH57N5t9+k6C8Zn5yRrGxkZqeL2HGVt2fXPxsFse7fddV4TyPrXXehzXfYxG/NOT08/G5dSysXFxZW237aNjSZzZbLbW1tbVby3txdy2mPJxrKDg4PQ1q7rsvm7HXOzOabLOYH7Ils/tOuz7F7KxoX2Xs3GnPbebZ/PSolr6FJKmZubq+JsvTQzM1PF8/PzA7+nlHgOuoyVi4uLIWd2dja0bW9vV/GbN29CzocPH6o4G8+z54GHDx+GtqvIxtj2WXp9fT3k/Md//EcVt+N7KaUsLy+Htmz9fxVXfR5p+/NV195d9qnL/H3VtcldWL901R5LNi5lbWE82YnjSdsvJycnQ87S0lIVt78JlZL35S6/E4Tnz2xx1EE2LrVt2Zqm633B/dWufbPxrO1L2Xierb3buTEbT1tdtl9KKbu7u1Wc/ebWbv/9+/ch56effgpt+/v7VZzd3+0c257H32prj+WmnyuysbMdu7J1Rzbvt+c3O7d/+tOfqji73tn6rN2nbK3QZf3Q9ptS4u+HWX/rMn/f9NjZ5TfGbB+za9Cey+zezfp3l30Cvgx/AQsAAAAAAADQEy9gAQAAAAAAAHriBSwAAAAAAABAT669OGVbtyP7P86z+h+v37yu4uOT45DTfnf2//Vn/z8+90PWl7r8v/dZnYG2PsLh4WHIyerLtP+HflZbJqvj8CVd9f/5b/f7qjUUsuNvr9NN107qeo7aY8mO7aZrTcBt07XGcnvvZOP5TdfU7ktW92tjY6OKs/rZWT2ndhzqco66nse25mtW6/Hk5KSKs7VYe2yllPLzzz9XcVa/qj22bE2nlg13Vdt1Ly6y/l3H09NTIaethZbVO83GnLYtG1/aMeDsPH7Ps2fPQtvz588H7lNbAzar9dilZmOmrZXVbquUvKZZW7MuG/Pa54js2LLniOutKze4Jmc7p3apu/1bbVdx088jfelao7NLHce7qj2Wrn2kPU/Zs/XUVD3GtbUfSynl119/reLs3nry5EloW11ZreKFxVirua/+lY2nbY3Gzc3NkJON1e35vunfFrhe7fXN7q+2n2R9KXuOaD/X3m+lxNqS2VyR3ZdtzfQu9dnfvXsX9/F0cG3kLs8V2W/M2b3TnpObfq7oUhM0G/OyPtCOOdn4Mjs7W8XZOcrmr7ZfdhmXutZp7XIPdHEb1wtdZMd708cC/OOs3gAAAAAAAAB64gUsAAAAAAAAQE+8gAUAAAAAAADoiRewAAAAAAAAAD2J1bR7NjExUcVZ8eitra3QdnJyUsVv374NOW1x6qzI9U0XUefL6lL8/fT0NLQdHBxUcdZvlpeXe9n+XdHeq10Kv2fHPz4+HtrGxsauvmM3qMs56JJjXIKr6XJ/3QXHx8ehbW1trYr/4z/+Y2BOKXGMbdddpcTz1nWuaufLdq4sJa7XLi4uQs76+npoa78rmyva/bbO4z5p+242LrRWV1dD2z/90z9V8ehofLzLxs52e3t7eyFnZ2enittnr1JKefHixcC2paWlkDM1NVXF2RjQRbZP7TmYnJwMObOzs6Ftenq6is/Pz0PO69evq/jJkychJ7uW2djYl5GRekzP5oGFhYXmM/G8zc/Ph7abXrNfZe3d57xw1e+6ynPUXXHVY2nv8ewebNvOzs5Czt/+9rcqztZGv/vd7+IO/KEOZ2ZnBu7jVe3u7oa2n3/+uYr/8pe/hJyjo6PQ1o6V2RjP/dFl7Li8aNYPJ3HOydbs7f2UzY3tmJc9M2T9u70v3717N/C7s30cGY1z0/RIPTdvbm6GnD/96U9V3OW5Itunm36uyPaxyxzXPo+VEs9vNnY8fPhw4D5lfaCv38WyfWrbbvqafGlXPbdf23mCu+b+vC0CAAAAAAAAuGFewAIAAAAAAAD0xAtYAAAAAAAAgJ5cewGJLjUq9vf3Q1tbFzar29mlls59qrfCYF3+3/us5lFbIyKrd9SlBpL/dz/qUscCuL+yMTcbK9tae1ldoO3t7SrO6vu028vqh/VViy+riZPNFe0aZmNjI+S0tZKy2mA//vhjaGtrg/3/2ruT5raOawHAjRngIIqUVZTsqJKyF6lKNvkF+f+LpLJIUkm8iZTYlCzRFGeCIIa3fNWDiBu6IYjk9+3OqYPbfQdcXKgJnVJPtbv2x0uPZel4p7nS/T09byHkfWFLz3kpnx08JOl9qNSDNa1J+72GEMKzZ8+ieG9vL6sp3ZfSXoNpv9cQ8vduer8JodwD9le/+tXSOa2yr2G6rdL+l/qkpq8r9WP805/+FMXfffddVlPqxbbu7whNeoG3W4Vcw57hD1X6OVj6HCo9Z1xexM8wpc/B9LosHevSZ2Ota6k0XvoeKI2f3iuurq6ymtJzVrq/pf6T6fil91L6DFWqKZ2np0+fRnGp5/GzZ19Fca+X35dK+5Yek/QZJ4QQ/vvf/0bx3//+96ymdJ2k867Vp5b7ofR+T6/v0udn6TpJ65r0jC+NX/psTN8DTZ7rS3MsfTa3Qjyn0vNK+p4r3ZdL7sN3iyb3/CbXwJf4b5y1eskCfOke9zcqAAAAAAAAgIoswAIAAAAAAABUYgEWAAAAAAAAoBILsAAAAAAAAACV5J26v1Clxt+rbAbO/dTkmnAtAXw+vV4vy3U6nSw3mUyi+PDwMKvp9/tRfHJyktW02/Hfls1ms6xmPp+XJ/s/SscKIYRuN3+0mk6nUfzzzz9nNR8+fIjim5ubrGYwGCwd766fg7+k7i7Sbfsc5rG5yzU/n+evSe8vpXtHaazxeBzFZ2dnWc3FxUUUP3v2LKt5+fLl0tzOzk5Wk97PV6nVajXKpUrH7fj4OIpLnzFN58CXpXSO0meY0jWRPr+EEML7D+/j7fTzZ6Hjj8fx+O18/M/9DJM+n6X3lxBCODo6iuLSM01p3ukzTOlZMNXknJSk964QQnj37l0Ul+5BHz9+jOLSM13p+KfjHRwcZDXpM2tp34bDYZZL6zwvPS739d+3ao6/CP/7tta9/zU9pH0BeKz8AhYAAAAAAACgEguwAAAAAAAAAJVYgAUAAAAAAACoxAIsAAAAAAAAQCXdVQ/QpGF4p9PJcu12vDY8GAzutG1ItVqtpblSjesNYLn0/tnr9bKa0v30+vo6ig8ODrKa05PTKB4M82eDdPz5fP7pya5A+vxSmsN4PM5qzs7Oorj03PPixYssl+5vafy7avLZWMqlut38cTN99vMZy2OTXvP9fn9pzWg0zGrS9+B0Os1qSvfB9D50cXGxtObJkydZzVdffbU0t729ndWU7gu1pMettP+lXPq60v3t+fPnUVzajyb3Rb48pfOWvi9Ln1Wlz/T0Gebk5CSrST/nS+Ov+xmmyb3j/Pw8q5nNZlmuyf6mSv9OtLOzE8Wlc1La9rt376K4NO9+P55ju93s3wRubm6i+PLyMqtJn3N3d3ezmtLxTs+J+wupps/naa50Ld/132/T93fpmcb3itXxb5wAXza/gAUAAAAAAACoxAIsAAAAAAAAQCUWYAEAAAAAAAAqWXkP2Cbu+n//AwBftlKfoJK0b+Hh4WFWk/bvKvUYa9LDb5Wa9CIrHZO0V26T/kpNx183z3mQS9+rpZ5mTd7Pk8kkiq+urhqNn/Z8LfVDTN+npV6upT6GaY/GjY2NrGbdPWDTno0h5MeyVNOkp1qTOXE/NHmGKV0nHz58iOJSX/v0umzay3SVmjxDpcckfX4p1YSQv+ebvCdK45fGS5XOyfv376O4dE5Kz5VNpH1aS/e3NNe0f7R7B/dB+h5YJd8rALhv/AIWAAAAAAAAoBILsAAAAAAAAACVWIAFAAAAAAAAqMQCLAAAAAAAAEAl3XVPAABgsYjj+Xye1dzc3ETxdDotbCfeUKvVajR+KzSri8YKizyX7khhDr1eL6vpdDq3xsDD1m7nfxeb3k9K98Xr6+sovri4aDTe5eVlFKf31xBCGI1Gt8YhhDAcDrPcYDCI4tI9r7S/taTHrfRZkR63EEK4urqK4vF4nNVMJpOl45fO02w2W/q6u0o/Y5p+7lFH6XM/Pd+lazDNNXl+KLnL80sIzZ5hSuOn7+fS80qTZ5jStkvHoJb0fVm65931nKT726QGAIDHwS9gAQAAAAAAACqxAAsAAAAAAABQiQVYAAAAAAAAgEr0gAUAVqZpP692e3mf1G43fmxZZa+wVSr1Bmu12ktr7uv+AsuV7wtxrtRHNO1Ten5+ntWU7h1pv9NSzdbWVhSnvV1DyO/LIeS9Dkv9XlfZpzTdl1Kvx3T/Q8j755b66abbbtK7N4RyX9i70N/182ryuVu6Bvr9fhSXnmnu62d6eg02fX/X2t8m2ymN/znPyV3veff1mgAA4NP8AhYAAAAAAACgEguwAAAAAAAAAJVYgAUAAAAAAACoxAIsAAAAAAAAQCXddU8AACDVbvsbMeDxaHLPm81mWe7s7CyKF4tFVlPKnZycLB1vd3c3ire3t7Oa0WiU5QaDQRT3er2sZpX3+Ol0GsVXV1dZTWn/j46Oovj8/Dyr2d/fj+LhcJjVlPatdA54uDzDrFer1WqUAwCAVfPNAAAAAAAAAKASC7AAAAAAAAAAlViABQAAAAAAAKjEAiwAAAAAAABAJd11TwAAAGBVWq1WFC8Wi6xmPp9nudlsFsfTWVYzX+SvWzZ+U+nrSnO8ubmJ4uPj46ymtL9HR0e3jhVCCLu7u1H85MmTrGZzczPLjUajKO71elnNXY9JE+kxuby8zGoODw+z3MHBwdKa9Bik+xpCCN1u/hW73fZ3zwAAAI+Nb4IAAAAAAAAAlViABQAAAAAAAKjEAiwAAAAAAABAJXrAAgAAj0ap/2ipv+r19fWtcQh5n9iSUv/PdA6lmjRXmuN4PL41/pR0W6W+pU+fPo3i7e3trKbUA3UwGETxKvuflvviTqP44uIiq3n//n2W++c//xnF//rXv7KaP/7xj1G8sbGR1ZR63nY6nSx3F6V+vgAAAHyZ/AIWAAAAAAAAoBILsAAAAAAAAACVWIAFAAAAAAAAqMQCLAAAAAAAAEAl3XVPAAAAYFUWi8XSml6vl+X6/X4Ut1qtrKaUazJ++rpOp7N0OxcXF1nu5OQkiv/xj39kNZeXl1nu1atXUfyb3/wmq3ny5EkUb25uZjXD4TDLdbt1vmI2OW7X19dZzeVlfJyOj4+zmh9//DHL/e1vf4vi3/3ud1nNt99+G8VfffVVVjMajbJck/N7Vw0ubwAAANbAL2ABAAAAAAAAKrEACwAAAAAAAFCJBVgAAAAAAACASvSABQAAHoT5fJ7lptNpFJd6lO7u7ma5tL/nzs5OVjMYDKK41Le0NKc0V+olO5vNovjo6Gjpdr7//vus5q9//WuW+/rrr6N4a2srq0lz6b6GsNrepul5CyGEm5ubKD47O8tq0r64pR6wpWO5v78fxX/4wx+ymt/+9rdR/PLly6ymdCxXeZxCiK+5Jj2PAQAAWD2/gAUAAAAAAACoxAIsAAAAAAAAQCUWYAEAAAAAAAAqsQALAAAAAAAAUEl33RMAAACoYT6fZ7nr6+sobrfzv0Hd2dnJcr/+9a+j+Ouvv85qNjc3o3ixWGQ10+k0y81ms6Wvm0wmUfzhw4esJt23V69eZTXffPNNlhuNRlGc7kcIIQyHwyjudvOvjq1WK8vVUjpuFxcXUfzx48es5ujoKIqPj4+zmvS4hRDC73//+yj+7rvvspr0mtjf389qtra2slyn08lyAAAAPGx+AQsAAAAAAABQiQVYAAAAAAAAgEoswAIAAAAAAABUYgEWAAAAAAAAoJLuuicAAABQw3w+z3KTySSKB4NBVrO5uZnlnj9/HsXffPNNVlPaVhOz2SyKS/O+ubmJ4m43/+p2eHgYxc+ePctqdnZ2stxoOIrijY2NrCbdt06nk9W0QivL1ZLufwghnJ2dRXG6/yGE8NNPP0Xxzz//3Gjbr169iuKXL19mNS9evIji0vEuHcvSsQMAAOBh8wtYAAAAAAAAgEoswAIAAAAAAABUYgEWAAAAAAAAoBI9YAEAgAcr7a+6WCyymlKPzn6/H8V37fdako5XGr/X60VxqZfr9vb2rXEIITx58iTLDYbxvqT7Whq/1IO23Vnd3/OmvXtDCOHk5CSK3759m9X8+OOPUZz2hA2hfA3s7u7eGocQwtOnT6N4a2srqyldJ+22v3sGAAB4bHwTBAAAAAAAAKjEAiwAAAAAAABAJRZgAQAAAAAAACqxAAsAAAAAAABQSXfdEwAAAFiVVqu1tGaxWGS52Wx2axxCCJ1O5+4T+x8Nh8MsNxqNonhjYyOr2dnZyXL9fj+KS/vRbrdvjT+Vq2U6nWa5s7OzKH779m1W8+bNm6U1pf3d2tqK4vTYhpCfg/Q4hhBCt5t/xW5yDQIAAPCw+AUsAAAAAAAAQCUWYAEAAAAAAAAqsQALAAAAAAAAUIkesAAAwIOV9t8s9eOcz+dLc+vuAVuS7ktpPqXesb1eL4pLvVzTbZf65JZyd1Hq9zoej7Pc6elpFL9//z6r+eGHH259TQgh7O/vZ7nt7e0oLvXTTY/lYDDIakrnQA9YAACAx8cvYAEAAAAAAAAqsQALAAAAAAAAUIkFWAAAAAAAAIBKLMACAAAAAAAAVNJd9wQAAAAek8VisbRmOp1G8cnxSVZzenoaxVdXV1nNbDa703zS8a+vr7Oai4uLLNfpdG6NS9subefo6CjLpfs7mUyymsFgEMV7e3tZTSn35MmTKN7a2spqNjY2ong4HGY1rVYry9XSbud/P53m7jr+Iiy/JgEAAGjOL2ABAAAAAAAAKrEACwAAAAAAAFCJBVgAAAAAAACASvSABQAA+Iya9EA9OYl7vh4cHGQ1P/zwQxS/e/cuqzk+Ps5yL168iOJSf9e0n+zZ2VlW0+v1sly6rfl8ntWMx+MoTnu7hhDC4eFhljs/P4/itN9rCCHs7+9Hcb/fz2rSXq4h5P1cSzWbm5tRvMp+ryXdbv71Pe2xW+oTm2rSgxgAAIBfxi9gAQAAAAAAACqxAAsAAAAAAABQiQVYAAAAAAAAgEoswAIAAAAAAABU0l33BAAAAB6T6XQaxaenp1nNwcFBFP/73//Oat68eRPF79+/z2omk8nS+SwWi6VzvLy8zGo6nU6WS+tK46f7W9r/0njpPJ8/f57VbG5uRvHe3l5W0+3mX4O3t7ejuN/vZzWl/f2c5vN5llvM42NSOpcAAAB8fn4BCwAAAAAAAFCJBVgAAAAAAACASizAAgAAAAAAAFRiARYAAAAAAACgku66JwAAAPCYzOfzKJ5cT7Kas7OzKD4+Ps5qLi4uorjbzb/e7e/vZ7nd3d0o3t7ezmqGw2EUt9v53+7e3NxkudlsFsWTSb5v6etK297eyue0t7cXxaX9XSwWUXx9fZ3VlKTHpOTk5CSKR6PR0vFDCGE2jY/JIuQ16b6Ujsn5+XmWOz45juLxeJzVpNvq9XpLawAAAPhlfMsCAAAAAAAAqMQCLAAAAAAAAEAlFmABAAAAAAAAKtEDFgAAYJ1ahVQrTpZ6dPb7/Sgu9XJNtxNC3u90Z2cnq0m3lY71qW2n8yz1SR0MBku3Uxov7Uubbqc0fknagzeEEKbTaRSXete+fv06itN+tyGUe8CW9i/V6XSWvqbU3/Xw8DCKT09Pl277rscNAACA5nzLAgAAAAAAAKjEAiwAAAAAAABAJRZgAQAAAAAAACqxAAsAAAAAAABQSXfdEwAAAHhMWq1WFHc6naxmMBhE8fb2dlazt7cXJxb5WJ1uvu3nz59H8e7ublazs7OzdI6z2SzLpfvW6/WymjSX7msIIYyGoyw3HA2Xvq7bjb/iNp330dFRFL958yar+f7776P43bt3WU26/yGEMBzG8263Cn8HnbystJ3SvCeTSRSPx+Ospt2Ox+v3+/nwhfEAAAC4O7+ABQAAAAAAAKjEAiwAAAAAAABAJRZgAQAAAAAAACrRAxYAAOAz6rTjvqSlXqZpD9bpdJrVbG5uRvHVN1f5WIUeqM+ePYvitCdsCCFsbW1FcalHaGlOqVK/0TRX7AE7ynvApnVpb9OmSq/b2NiI4tK+vX37Nor//Oc/ZzWlnrdpj93SOVksFrfGn3pdeixLx7s0p2XjAwAA8Mv4BSwAAAAAAABAJRZgAQAAAAAAACqxAAsAAAAAAABQiQVYAAAAAAAAgEq6654AAADAY9LpdqJ4a2tr6WtKNdfX11E8m82ymlarleVGo1EUb2xsZDWD/iDZUD6nJuN1Op2sJs31er2sppRrt1f398OLxSKKS8ctHb/bzb9ON9nfUk06fhp/6nXpnErzbrJvAAAA1OUXsAAAAAAAAACVWIAFAAAAAAAAqMQCLAAAAAAAAEAlFmABAAAAAAAAKumuewIAAACPSafTieKNjY2sZjAYRPFsNstqFovFrfGntNvx3+Gm8ynVlDQZr9VqLc01qSmNV6q5q/T4lrY9HA6jeG9vL6vpdvOv2FtbW1Hc5Ng21eRYpppeJwAAANydX8ACAAAAAAAAVGIBFgAAAAAAAKASC7AAAAAAAAAAlegBCwAA8BmlfTpLfUNLOdYrPW9Ne+emuZo9YAEAAPgy+eYHAAAAAAAAUIkFWAAAAAAAAIBKLMACAAAAAAAAVGIBFgAAAAAAAKCS7ronAAAAAOvU7cZfjTudTlbTarWieLFYZDWlHAAAAI+PX8ACAAAAAAAAVGIBFgAAAAAAAKASC7AAAAAAAAAAlegBCwAAwKPWbsd/m5z2ey3l9HsFAADgU/wCFgAAAAAAAKASC7AAAAAAAAAAlViABQAAAAAAAKjEAiwAAAAAAABAJd11TwAAAIDPZzabRfF8Ps9qSrn7oN2O/8a41+tlNen+hxDC+fl5FI/H46Wv63Q6S8dntRaLxbqnsFatVmvdUwAAAD7Bt0MAAAAAAACASizAAgAAAAAAAFRiARYAAAAAAACgEguwAAAAAAAAAJV01z0BAACAVVksFrfGIYTQbud/l9rpdKK42304X50uLy+j+Pj4OKs5Pz+P4tlsltWkxyiEEFqt1i+b3C+UnsvSHEvXQHoMDg8Ps5rr6+so7vf7S8cPYf3H5EtTOh6lczKfz6N4Op1mNWkufc2nxrsPmtyrStd3eq9q+j4tjQcAANydX8ACAAAAAAAAVGIBFgAAAAAAAKASC7AAAAAAAAAAlTycRkYAAACJJn0NS/0Q016Lpd6e91Xa3/X169dZzX/+858onkwmWc1gMMhyX1qv3NJ5K10T4/E4ik9PT7OaJj1gS9fSfe1B+jmVjlHaz/Xm5iarSc9JqVdx0/HWqXRNlnJpP9fSe7BJn9iS9JjoCQsAAL/Mw/lXBAAAAAAAAIA1swALAAAAAAAAUIkFWAAAAAAAAIBKLMACAAAAAAAAVNJd9wQAAABWpdPpRHGr1cpqptNplhuPx1F8eXmZ1WxsbCwdfzabZbnFYrH0dalWyOfd6XYKlbGLi4ssd3h4GMWvX7/Oav7yl79E8fn5eVazs7OT5fr9/tI5rdJdjm0IIbTb8d8mp9dNqabX61Ub/zGZz+dZrvS+TK+l0WiU1TR5f99XpX1Jj13pWKb3s1JN03MAAADcnV/AAgAAAAAAAFRiARYAAAAAAACgEguwAAAAAAAAAJWsvAds2kdEXxEAAGAV0h6dIYQwGAyW1pydnWW5t2/fRnGpt2faA7bUV7HUA7aWbjf+Olfat1Lv1oODgyg+OjrKaq6urqJ4MplkNaW+uDc3N+XJrknTXpdpP9dSL9sm/W1L237sfWHTc1C6RtJrOYQQdnd3o3h/fz+r2dvbi+LhcLh0/E/l1qn03i3l0vfhx48fs5qffvopij98+LB0OyHk56DUBxkAgNt12p6h+H9+AQsAAAAAAABQiQVYAAAAAAAAgEoswAIAAAAAAABUYgEWAAAAAAAAoJLWYrFYrHsSAAAAAAAAAA+BX8ACAAAAAAAAVGIBFgAAAAAAAKASC7AAAAAAAAAAlViABQAAAAAAAKjEAiwAAAAAAABAJRZgAQAAAAAAACqxAAsAAAAAAABQiQVYAAAAAAAAgEoswAIAAAAAAABUYgEWAAAAAAAAoBILsAAAAAAAAACVWIAFAAAAAAAAqMQCLAAAAAAAAEAl/wdcNcKY+JoXIwAAAABJRU5ErkJggg==",
"path": "images_version_6/image_28.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, the right triangle ABC and the equilateral triangle ABD are respectively drawn with the line segment AB as the edge, when the length of CD is the largest, the size of angle CAB is ()
Choices:
A:75°
B:45°
C:30°
D:15°
|
||
141
|
29
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJwAAAB/CAAAAAA/A/S9AAAI3ElEQVR4nO1cXWxT1x3/nWp3GITq5CE0SBUGNEp4Wdw+OUxqkm0CQrfI9GFJKg0cJi3wMpxRTWxSHZjU9XMJ3YsTHuYxUeK+xCkaIU840LWJqqlmSFsyhZLAusXpJExGh5Nc5P8e7ofvPffD144/7kN/kXLv+Z9zz/35/3nPuU4Ywb14qtYE7OA+ctnfqqcuIic5mNj9X1XiInIMACF25TlV4iJyAMDm73fmWy4jl/3ZqS92qS2XkTt7ceV/31Kzm7vIXXj7mT0imNJ0Fbk7XxLd3LZFbX+jhlx43Dk+AcxqJeQeoOHP653A7mVFwFxYW0lxOlf5nAwmFwtXkoMSr+4kJ8NN5O79kBO4KJXM/CTDSdyjuaH+33+TE7mFXLb7/vQ2XugKcoS57wWHjHJX+BxLvB31Ayv10GRg1JqczGTg9rU6AA+9ADTcamxWBgCZDiTqTLtrb9a/hn7TIZ0ZynzNycXfG1OeyxnfV2Nya2eWkh7Izre4i+utmc8RAKQP7oh7AEVpvOpqoDkpRBmAmRPRFo3I4HQ1IMcULkMfTjYC0Oc2LWrhcxKXbO/2SY+mDaxu4gbWwucYACx8NzjkAQBSXW3pGW5graI18euYXzqzMClQC3LEAAzcvl5feGjVzUoMeHjEqmDpUXVyDLjVcfSciTVpeTsnqYHPfXA+1mQmZ2t8tFafXDid9Fh08dqstlnTLb64U27V1tzMyWjAstPwyFRNzRGGz0xYc8PCTo5gNTW3FqqbtDIpIBHTmbaKmltoDw7bcaulz031KwXLMapGLnKzYMFaqeMEVTJr5gibKlhMM15OUB1yc4ePnivhsqqYNf7WaBOsH3gtUQ1y/UvTmwCAFcuu8mZNt+2Ie8xXV/xI/qmk4lv90/6k06EGLuU3q7LMkw7D8WuNmmZxKD85pjmshiEXrFK4VdbnFtv89gVLB8PKsELRKhlRLVjObJpu5CWVIccA0FuT1+slYiXZFBU0a+bllal6FEPM+Bau/OSke8wdPvpGvlXi278KRWv8fGxfvuVMfYaHkgr5XP/SNQcLeg4P63hJJXwu074jXjw3wGD+Cmhu5uRQW4mXcuYvMzliGBlVd6A3ijKTY/mCVTQWd4HL1zqfE0WxdF7SDQ75oyVykxxOZ1id5gRRKHFiefob/TYL+uJRVrOev+JkS9AKxmRoICcCgggIECHIzfxBPZN/C6JG25njO5OlUzN7KjHkOUH+EQVBBERBewAgCgKUtghRgCh3YO7wj01emWrxKmOMsVesug371eZJWBQAWAaHkD8R8q1Eb+xle25493TgET3+R8tXgFm5dVL4FU0IQjHR8as/TphuV2ohzh/Yis0ffP6O+XOA0ee05HhVWajORJxpezpRMBTo3mcHAfha5pkpFSN0ASH5tuTigghBiQ3lIAo6sexzEP8WOt8m3d/uluz6s9+2o7LstyOnN6OgleUbGrHcFIYvJuSCZasO8eqBrQCefPED8/41Q/Y2yXNFZuLVMCx3oHW499kvAOAv/zxoPUavekNAOK9gBACUPuR0hZV+thlANvz9/dYT6lVvzHOOg5QBhBvtb55wNlx858BW4MKWly7bTqjDxjYbBlsfOBmWI5JvG3ikEenRluSlG6qt2d7tU44WpdKXpw0iTk0G6UYe0+f2B4dK2wRxiA2QS/SOdiuf1dHa71P+K2iFULpZB25P5ItCYfUtjF94vOdPdnG9UsdbwbnmSHeeaYNtwSLtGaWHn2+/n7h3umfV5pKM1+CaziNTG0kp51uC9CDa2tiXIiKiiSNZeR5jsJLvLi8pPpXkiCgWMExkGCMhGwt6+5KqYCKYtbyoHOSIsn291rfQssuOdnmPjemksVBlyS21Rs2sYsBYqLF71PAprNltWuUlxZLL0bT/Ewfjkn3eYMy0eliyA/GuWLTmBgNLhYbkUn2NrVHLuhYLGVhYUCmSXLYrXGjI7Clfc/TfcsPU/Ba62yi52cCo/YCFSFPToH0kk46dJq43GcY5IZdTphgLpOzG3R30+yKzDiY0ZXfXVwo59fJI8IFVmOZoKdrqC6ecRDER0WCYm1six13uoHzJBe9hBxL1FkU0c7Hj+VtnF4f8Th9Rwk8PaOfmblV0+Ur5Jyx6sqNBb2hC+6Gd6O+1CCcozaxERDQauGty1xzRWJe3a8zsChvkKEcUGdALU/4SyWXDXVmFjRYTIW9QVwSc6EwZw7FLthpGFvY5AtKH5C+l6pxi6sT23724kOj2AMoKwdE6XhlzjgYK3rswpv3TBlkq7GuNFqwVBRDR+l3yRSJO9bbkckQ5osFWnsTsgK+5cKotil2uaLMygK1235/Mv84jYOHNfUcoeau/HFvm55aH1VtJ+9W67kJriIVXTnVrVljL4yOZnkTBzS5nIIbh3s3HtCLOZ+31PuZP5VQ3UJ63nZaBQsgREYVicksuadrJ7TWn+VJqZvzKVNfZNpOPVzIYAMR6cYwBqkW1k9uRyxxvTkhnq+PjNw4dTei7y7ScjvUiBACGb2zCzqypgJz5x0LerlElCWvUXi7zSpaN8PXMzqzx92JNAKbi8fZO9a0M06q9XOaNhSTdGWBJrn8p6cGt4Q/3dr2xgRcfzvCH7s1dZnJtnnuVMcZavgII6ZYd8cX+nb3+1NTJepT8Htwxu/g1M7FWc+8+N3V59Ts/vQw2c/LM3/dRX1JNtBXcSgIAz2gPvmyWzjVxptvqv/oSPO0AXg+JA0jMlaUIOGV34XMPAHzEnmLvf/S+LNYEx/zeNI00fEy+qnHS4TWi9c7dy0SnGz6WCGnJjQCIaDJEuVKFU+TWOwOPiOhxQP6Tbw259c5LNN/AZZsqMZVmH5FUtv46GcjN712m3M93L5NZoq3Gcb2zR68ETUBcf2EbntzZtgVmibYaxyeLe6xqq3j1R8Avr1zaWsBvK4d/LfESVYcAACVOVGXnqnh8/EIPEeVoUHlXYVH4qx2oEm4iQrTWeUlpu+vfM9zZ/x80jKvvxtxFjoMr/uDbCl+TKxVfkysVrib3f45SikVT4/nkAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_29.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, In the triangle ABC, D is the intersection point of the angular bisector BD and CD of triangle ABC. If angle A = 50.0, then angle D = ()
Choices:
A:120°
B:130°
C:115°
D:110°
|
Như hình vẽ, trong tam giác ABC, điểm D là giao điểm của hai tia phân giác BD và CD của tam giác ABC. Nếu góc A bằng 50°, thì góc D bằng ()
Các lựa chọn:
A: 120°
B: 130°
C: 115°
D: 110°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, In the triangle ABC, D is the intersection point of the angular bisector BD and CD of triangle ABC. If angle A = 50.0, then angle D = ()
Choices:
A:120°
B:130°
C:115°
D:110°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, In the triangle ABC, D is the intersection point of the angular bisector BD and CD of triangle ABC. If angle A = 50.0, then angle D = ()
Choices:
A:120°
B:130°
C:115°
D:110°
|
As shown in the figure, In the triangle ABC, D is the intersection point of the angular bisector BD and CD of triangle ABC. If angle A = 50.0, then angle D = ()
Choices:
A:120°
B:130°
C:115°
D:110°
|
142
|
29
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJwAAAB/CAAAAAA/A/S9AAAI3ElEQVR4nO1cXWxT1x3/nWp3GITq5CE0SBUGNEp4Wdw+OUxqkm0CQrfI9GFJKg0cJi3wMpxRTWxSHZjU9XMJ3YsTHuYxUeK+xCkaIU840LWJqqlmSFsyhZLAusXpJExGh5Nc5P8e7ofvPffD144/7kN/kXLv+Z9zz/35/3nPuU4Ywb14qtYE7OA+ctnfqqcuIic5mNj9X1XiInIMACF25TlV4iJyAMDm73fmWy4jl/3ZqS92qS2XkTt7ceV/31Kzm7vIXXj7mT0imNJ0Fbk7XxLd3LZFbX+jhlx43Dk+AcxqJeQeoOHP653A7mVFwFxYW0lxOlf5nAwmFwtXkoMSr+4kJ8NN5O79kBO4KJXM/CTDSdyjuaH+33+TE7mFXLb7/vQ2XugKcoS57wWHjHJX+BxLvB31Ayv10GRg1JqczGTg9rU6AA+9ADTcamxWBgCZDiTqTLtrb9a/hn7TIZ0ZynzNycXfG1OeyxnfV2Nya2eWkh7Izre4i+utmc8RAKQP7oh7AEVpvOpqoDkpRBmAmRPRFo3I4HQ1IMcULkMfTjYC0Oc2LWrhcxKXbO/2SY+mDaxu4gbWwucYACx8NzjkAQBSXW3pGW5graI18euYXzqzMClQC3LEAAzcvl5feGjVzUoMeHjEqmDpUXVyDLjVcfSciTVpeTsnqYHPfXA+1mQmZ2t8tFafXDid9Fh08dqstlnTLb64U27V1tzMyWjAstPwyFRNzRGGz0xYc8PCTo5gNTW3FqqbtDIpIBHTmbaKmltoDw7bcaulz031KwXLMapGLnKzYMFaqeMEVTJr5gibKlhMM15OUB1yc4ePnivhsqqYNf7WaBOsH3gtUQ1y/UvTmwCAFcuu8mZNt+2Ie8xXV/xI/qmk4lv90/6k06EGLuU3q7LMkw7D8WuNmmZxKD85pjmshiEXrFK4VdbnFtv89gVLB8PKsELRKhlRLVjObJpu5CWVIccA0FuT1+slYiXZFBU0a+bllal6FEPM+Bau/OSke8wdPvpGvlXi278KRWv8fGxfvuVMfYaHkgr5XP/SNQcLeg4P63hJJXwu074jXjw3wGD+Cmhu5uRQW4mXcuYvMzliGBlVd6A3ijKTY/mCVTQWd4HL1zqfE0WxdF7SDQ75oyVykxxOZ1id5gRRKHFiefob/TYL+uJRVrOev+JkS9AKxmRoICcCgggIECHIzfxBPZN/C6JG25njO5OlUzN7KjHkOUH+EQVBBERBewAgCgKUtghRgCh3YO7wj01emWrxKmOMsVesug371eZJWBQAWAaHkD8R8q1Eb+xle25493TgET3+R8tXgFm5dVL4FU0IQjHR8as/TphuV2ohzh/Yis0ffP6O+XOA0ee05HhVWajORJxpezpRMBTo3mcHAfha5pkpFSN0ASH5tuTigghBiQ3lIAo6sexzEP8WOt8m3d/uluz6s9+2o7LstyOnN6OgleUbGrHcFIYvJuSCZasO8eqBrQCefPED8/41Q/Y2yXNFZuLVMCx3oHW499kvAOAv/zxoPUavekNAOK9gBACUPuR0hZV+thlANvz9/dYT6lVvzHOOg5QBhBvtb55wNlx858BW4MKWly7bTqjDxjYbBlsfOBmWI5JvG3ikEenRluSlG6qt2d7tU44WpdKXpw0iTk0G6UYe0+f2B4dK2wRxiA2QS/SOdiuf1dHa71P+K2iFULpZB25P5ItCYfUtjF94vOdPdnG9UsdbwbnmSHeeaYNtwSLtGaWHn2+/n7h3umfV5pKM1+CaziNTG0kp51uC9CDa2tiXIiKiiSNZeR5jsJLvLi8pPpXkiCgWMExkGCMhGwt6+5KqYCKYtbyoHOSIsn291rfQssuOdnmPjemksVBlyS21Rs2sYsBYqLF71PAprNltWuUlxZLL0bT/Ewfjkn3eYMy0eliyA/GuWLTmBgNLhYbkUn2NrVHLuhYLGVhYUCmSXLYrXGjI7Clfc/TfcsPU/Ba62yi52cCo/YCFSFPToH0kk46dJq43GcY5IZdTphgLpOzG3R30+yKzDiY0ZXfXVwo59fJI8IFVmOZoKdrqC6ecRDER0WCYm1six13uoHzJBe9hBxL1FkU0c7Hj+VtnF4f8Th9Rwk8PaOfmblV0+Ur5Jyx6sqNBb2hC+6Gd6O+1CCcozaxERDQauGty1xzRWJe3a8zsChvkKEcUGdALU/4SyWXDXVmFjRYTIW9QVwSc6EwZw7FLthpGFvY5AtKH5C+l6pxi6sT23724kOj2AMoKwdE6XhlzjgYK3rswpv3TBlkq7GuNFqwVBRDR+l3yRSJO9bbkckQ5osFWnsTsgK+5cKotil2uaLMygK1235/Mv84jYOHNfUcoeau/HFvm55aH1VtJ+9W67kJriIVXTnVrVljL4yOZnkTBzS5nIIbh3s3HtCLOZ+31PuZP5VQ3UJ63nZaBQsgREYVicksuadrJ7TWn+VJqZvzKVNfZNpOPVzIYAMR6cYwBqkW1k9uRyxxvTkhnq+PjNw4dTei7y7ScjvUiBACGb2zCzqypgJz5x0LerlElCWvUXi7zSpaN8PXMzqzx92JNAKbi8fZO9a0M06q9XOaNhSTdGWBJrn8p6cGt4Q/3dr2xgRcfzvCH7s1dZnJtnnuVMcZavgII6ZYd8cX+nb3+1NTJepT8Htwxu/g1M7FWc+8+N3V59Ts/vQw2c/LM3/dRX1JNtBXcSgIAz2gPvmyWzjVxptvqv/oSPO0AXg+JA0jMlaUIOGV34XMPAHzEnmLvf/S+LNYEx/zeNI00fEy+qnHS4TWi9c7dy0SnGz6WCGnJjQCIaDJEuVKFU+TWOwOPiOhxQP6Tbw259c5LNN/AZZsqMZVmH5FUtv46GcjN712m3M93L5NZoq3Gcb2zR68ETUBcf2EbntzZtgVmibYaxyeLe6xqq3j1R8Avr1zaWsBvK4d/LfESVYcAACVOVGXnqnh8/EIPEeVoUHlXYVH4qx2oEm4iQrTWeUlpu+vfM9zZ/x80jKvvxtxFjoMr/uDbCl+TKxVfkysVrib3f45SikVT4/nkAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_29.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, D is the intersection point of the angular bisector BD and CD of triangle ABC. If angle A = 50.0, then angle D = ()
Choices:
A:120°
B:130°
C:115°
D:110°
|
Như hình vẽ, D là điểm cắt nhau của tia phân giác góc BD và CD của tam giác ABC. Nếu góc A = 50°, thì góc D = ()
Các lựa chọn:
A: 120°
B: 130°
C: 115°
D: 110°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, D is the intersection point of the angular bisector BD and CD of triangle ABC. If angle A = 50.0, then angle D = ()
Choices:
A:120°
B:130°
C:115°
D:110°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, D is the intersection point of the angular bisector BD and CD of triangle ABC. If angle A = 50.0, then angle D = ()
Choices:
A:120°
B:130°
C:115°
D:110°
|
As shown in the figure, D is the intersection point of the angular bisector BD and CD of triangle ABC. If angle A = 50.0, then angle D = ()
Choices:
A:120°
B:130°
C:115°
D:110°
|
143
|
29
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJwAAAB/CAAAAAA/A/S9AAAI3ElEQVR4nO1cXWxT1x3/nWp3GITq5CE0SBUGNEp4Wdw+OUxqkm0CQrfI9GFJKg0cJi3wMpxRTWxSHZjU9XMJ3YsTHuYxUeK+xCkaIU840LWJqqlmSFsyhZLAusXpJExGh5Nc5P8e7ofvPffD144/7kN/kXLv+Z9zz/35/3nPuU4Ywb14qtYE7OA+ctnfqqcuIic5mNj9X1XiInIMACF25TlV4iJyAMDm73fmWy4jl/3ZqS92qS2XkTt7ceV/31Kzm7vIXXj7mT0imNJ0Fbk7XxLd3LZFbX+jhlx43Dk+AcxqJeQeoOHP653A7mVFwFxYW0lxOlf5nAwmFwtXkoMSr+4kJ8NN5O79kBO4KJXM/CTDSdyjuaH+33+TE7mFXLb7/vQ2XugKcoS57wWHjHJX+BxLvB31Ayv10GRg1JqczGTg9rU6AA+9ADTcamxWBgCZDiTqTLtrb9a/hn7TIZ0ZynzNycXfG1OeyxnfV2Nya2eWkh7Izre4i+utmc8RAKQP7oh7AEVpvOpqoDkpRBmAmRPRFo3I4HQ1IMcULkMfTjYC0Oc2LWrhcxKXbO/2SY+mDaxu4gbWwucYACx8NzjkAQBSXW3pGW5graI18euYXzqzMClQC3LEAAzcvl5feGjVzUoMeHjEqmDpUXVyDLjVcfSciTVpeTsnqYHPfXA+1mQmZ2t8tFafXDid9Fh08dqstlnTLb64U27V1tzMyWjAstPwyFRNzRGGz0xYc8PCTo5gNTW3FqqbtDIpIBHTmbaKmltoDw7bcaulz031KwXLMapGLnKzYMFaqeMEVTJr5gibKlhMM15OUB1yc4ePnivhsqqYNf7WaBOsH3gtUQ1y/UvTmwCAFcuu8mZNt+2Ie8xXV/xI/qmk4lv90/6k06EGLuU3q7LMkw7D8WuNmmZxKD85pjmshiEXrFK4VdbnFtv89gVLB8PKsELRKhlRLVjObJpu5CWVIccA0FuT1+slYiXZFBU0a+bllal6FEPM+Bau/OSke8wdPvpGvlXi278KRWv8fGxfvuVMfYaHkgr5XP/SNQcLeg4P63hJJXwu074jXjw3wGD+Cmhu5uRQW4mXcuYvMzliGBlVd6A3ijKTY/mCVTQWd4HL1zqfE0WxdF7SDQ75oyVykxxOZ1id5gRRKHFiefob/TYL+uJRVrOev+JkS9AKxmRoICcCgggIECHIzfxBPZN/C6JG25njO5OlUzN7KjHkOUH+EQVBBERBewAgCgKUtghRgCh3YO7wj01emWrxKmOMsVesug371eZJWBQAWAaHkD8R8q1Eb+xle25493TgET3+R8tXgFm5dVL4FU0IQjHR8as/TphuV2ohzh/Yis0ffP6O+XOA0ee05HhVWajORJxpezpRMBTo3mcHAfha5pkpFSN0ASH5tuTigghBiQ3lIAo6sexzEP8WOt8m3d/uluz6s9+2o7LstyOnN6OgleUbGrHcFIYvJuSCZasO8eqBrQCefPED8/41Q/Y2yXNFZuLVMCx3oHW499kvAOAv/zxoPUavekNAOK9gBACUPuR0hZV+thlANvz9/dYT6lVvzHOOg5QBhBvtb55wNlx858BW4MKWly7bTqjDxjYbBlsfOBmWI5JvG3ikEenRluSlG6qt2d7tU44WpdKXpw0iTk0G6UYe0+f2B4dK2wRxiA2QS/SOdiuf1dHa71P+K2iFULpZB25P5ItCYfUtjF94vOdPdnG9UsdbwbnmSHeeaYNtwSLtGaWHn2+/n7h3umfV5pKM1+CaziNTG0kp51uC9CDa2tiXIiKiiSNZeR5jsJLvLi8pPpXkiCgWMExkGCMhGwt6+5KqYCKYtbyoHOSIsn291rfQssuOdnmPjemksVBlyS21Rs2sYsBYqLF71PAprNltWuUlxZLL0bT/Ewfjkn3eYMy0eliyA/GuWLTmBgNLhYbkUn2NrVHLuhYLGVhYUCmSXLYrXGjI7Clfc/TfcsPU/Ba62yi52cCo/YCFSFPToH0kk46dJq43GcY5IZdTphgLpOzG3R30+yKzDiY0ZXfXVwo59fJI8IFVmOZoKdrqC6ecRDER0WCYm1six13uoHzJBe9hBxL1FkU0c7Hj+VtnF4f8Th9Rwk8PaOfmblV0+Ur5Jyx6sqNBb2hC+6Gd6O+1CCcozaxERDQauGty1xzRWJe3a8zsChvkKEcUGdALU/4SyWXDXVmFjRYTIW9QVwSc6EwZw7FLthpGFvY5AtKH5C+l6pxi6sT23724kOj2AMoKwdE6XhlzjgYK3rswpv3TBlkq7GuNFqwVBRDR+l3yRSJO9bbkckQ5osFWnsTsgK+5cKotil2uaLMygK1235/Mv84jYOHNfUcoeau/HFvm55aH1VtJ+9W67kJriIVXTnVrVljL4yOZnkTBzS5nIIbh3s3HtCLOZ+31PuZP5VQ3UJ63nZaBQsgREYVicksuadrJ7TWn+VJqZvzKVNfZNpOPVzIYAMR6cYwBqkW1k9uRyxxvTkhnq+PjNw4dTei7y7ScjvUiBACGb2zCzqypgJz5x0LerlElCWvUXi7zSpaN8PXMzqzx92JNAKbi8fZO9a0M06q9XOaNhSTdGWBJrn8p6cGt4Q/3dr2xgRcfzvCH7s1dZnJtnnuVMcZavgII6ZYd8cX+nb3+1NTJepT8Htwxu/g1M7FWc+8+N3V59Ts/vQw2c/LM3/dRX1JNtBXcSgIAz2gPvmyWzjVxptvqv/oSPO0AXg+JA0jMlaUIOGV34XMPAHzEnmLvf/S+LNYEx/zeNI00fEy+qnHS4TWi9c7dy0SnGz6WCGnJjQCIaDJEuVKFU+TWOwOPiOhxQP6Tbw259c5LNN/AZZsqMZVmH5FUtv46GcjN712m3M93L5NZoq3Gcb2zR68ETUBcf2EbntzZtgVmibYaxyeLe6xqq3j1R8Avr1zaWsBvK4d/LfESVYcAACVOVGXnqnh8/EIPEeVoUHlXYVH4qx2oEm4iQrTWeUlpu+vfM9zZ/x80jKvvxtxFjoMr/uDbCl+TKxVfkysVrib3f45SikVT4/nkAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_29.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, If angle A = 50.0, then angle D = ()
Choices:
A:120°
B:130°
C:115°
D:110°
|
Như hình vẽ, nếu góc A = 50,0 thì góc D = ()
Các lựa chọn:
A: 120°
B: 130°
C: 115°
D: 110°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, If angle A = 50.0, then angle D = ()
Choices:
A:120°
B:130°
C:115°
D:110°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, If angle A = 50.0, then angle D = ()
Choices:
A:120°
B:130°
C:115°
D:110°
|
As shown in the figure, If angle A = 50.0, then angle D = ()
Choices:
A:120°
B:130°
C:115°
D:110°
|
144
|
29
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAASoAAADkCAYAAAAvr2lfAAA370lEQVR4nO3deVzd9YH/+9dhJ6wJ+07YE7YAgQQIkD3GaDRq1IkabW4XrZ3RttrpTMdOncf8Or1OJ4+aOzO9t9ax7lWrJppozJ4ACVtYwhZ2kgAh7HA4Bzjr/cM5pwfCDslZ+DwfDx9t4Ps953M43/M+n+9nlWi1Wi2CIAgmzMrYBRAEQZiJCCpBEEyeCCpBEEyeCCpBEEyeCCpBEEyeCCpBEEyeCCpBEEyeCCpBEEyeCCpBEEyeCCpBEEyeCCpBEEyeCCpBEEyeCCpBEEyeCCpBEEyeCCpBEEyeCCpBEEyeCCpBWOKUSiUqlcrYxZiWCCpBWOLOnTvHhQsXMOXFfm2MXQBBEIyjp6eHqqoqioqKCAwMRKvVIpFIjF2sSYkalSBYEK1WO+uaUW5uLgcPHqS1tRUHB4c7XLKFEUElCBZEIpFMWSvSBZhKpaKqqorjx4+Tm5uLtbU1Pj4+d7OYcyaCShCWmKGhIUpLS2lsbEStVuPq6oqrq6vJ3vaBCCpBWDIkEgljY2PcvHmTzs5OPD09yc7Oxs3NjbGxMWMXb1qiMV0QlpBz585RUlJCfHw8IyMjXLp0CScnJ5ydnY1dtGmJGpUgLBFDQ0OUl5fT2NhISkoKwcHBdHV14eTkhKenp7GLNy1RoxKEJaCrq4vDhw8TGxvLvn378PLyYmhoCIVCgYeHBx4eHsYu4rREUAmChZNKpeTm5vL2228THR3NjRs3kEql+kGejo6O2NnZiQGfgiAYh0ajoby8nLNnz1JWVsbFixd56623ALCxsWHVqlVYWX3bAmTKvX4iqATBgkmlUhoaGvD29uadd97Bzs6O4eFhOjs7yc/Pp6OjAzs7O2MXc0YiqATBQt24cYOysjJUKhXp6els27ZN/7uWlhb6+/vp6+vD0dHRiKWcHdHrJwgWRqvVIpPJOH36NP/1X/9FQEDAuJBSKBTU1NTQ0dFhxFLOjahRCYKFGRoa4le/+hWffvopUqmUGzduIJfLcXR0pKCggKNHj3LhwgWqqqpQKBS8+uqrPPLIIzz88MO4u7sbu/iTEjUqQbAwCoWC8vJyenp6iIqKwsrKioGBAQCuX79OWVkZ7e3tODg44OPjQ319PeXl5YyOjhq34NOQaE25T1IQhDlTq9W0t7czMjKCg4MDbm5uODs7Y2Njw9DQEIODgygUinHLujg5OeHh4YGtra2RSz85EVSCYEFMeU2phRC3foJgQRYrpOayrtXdIBrTBUG4janVykSNShCWAFOqHc2HCCpBWAJMrYY0VyKoBMFCXb58mUOHDlFfX2/soiyYCCpBsDBSqZTLly/z6aef8sEHH9DW1mbsIi2YaEwXBAsyMjJCeXk5Bw8eJDc3F2dnZ5PfXHQ2RFAJgoWorKwkPz+fyspKwsLCGB4epra2FrVabeyiLZgIKkEwc2q1mpaWFs6cOUNeXh4KhYKXXnqJ4OBgmpqa0Gg0xi7igomgEgQz98knn3Dy5EkkEgn33XcfGzduxNnZmeLiYpMbuDlfIqgEwUxMnB5z7do1CgoKKC0txcHBgcTERDZu3EhISAhjY2NoNBqLCCkQQSUIZketVtPb28vp06d58803SU9P5/HHHyc9PR0bGxs0Go1+nz5zHz+lI4JKEEycriYlkUiQy+WUl5fz8ccfMzg4yJNPPklqaioxMTHY2Njojx8ZGUGj0eDk5KT/+WSPaS5EUAmCidMFyq1bt6ioqKCkpITu7m6io6PZvXs3AQEB447XarXI5XLUajVOTk5TLt1iTmElgkoQjEjXhjRTYMhkMg4fPkxubi5jY2P88Ic/JDMzc8raklwuR6VSsWzZMqytrW87xlwCSkcElSAY0WwCIy8vj7Nnz9Ld3c2qVatITk4mOTl52t1jDAPQ3EJpMiKoBMFEDQ8Pc/36dU6cOEFpaSkpKSns2LGDtWvXzniuLpxEr58gCHfMyMgIZ86c4fXXXycqKoof/OAHJCcn4+vrO6vzLSWgdERQCYIJUavVNDc3c+7cOWpqali9ejXZ2dmkp6fj6ek568fR7X5sKWOpRFAJgonQarU0Nzdz4cIFjhw5gqenJ7/85S8JCwub82Pp5vfZ2NiINipBEBaHRqPhL3/5C/n5+fT19fHII4+QmZlJUFDQpMdP11uo0Wjo6upibGwMX19fs9gJeSYiqATByFpbW7l8+TIlJSUolUri4+PZsmXLlCE1E8MBn8uWLZt0CIO5Mf9XIAgmbKZxUsPDw3z++ed8/vnnpKWl8fDDD7Nly5YZH3em2zkrKyskEomYlCwIS91sRnYb/t7weJVKRWlpKe+88w4ajYa9e/fqp8IsxvMaHmsJRFAJwl2iq+H09PRw9epVCgoKaGxsZNOmTTzyyCP4+fnN+BizDR5Lqk2BCCpBmLepakvT6e7u5osvvuCrr77C1taWf/7nfyYuLg5nZ+cZz53tdBtLJIJKEBZotrWW8+fPU1RURHt7O3FxcSQkJJCYmMiyZctm/RyzDSm1Wo1Wq8Xa2toigk0ElSAswGwCRKFQ0NraytGjR2lubiYmJoa9e/cSHx+/aM8x8fjR0VE0Gg329vaTTko2NyKoBGEBZgoPtVrNX/7yF/785z8TExPDk08+SVpaGj4+PtOet5BJxRqNhv7+fhQKBcuXL5928rK5EEElCHeAQqGgubmZixcvUllZiZ+fH+mr3Lh69iyFhYW3n7D2KX7zSOz4n422UPj5l3x+5Sb4JbBn90OsW+kw4UQlXdVH+fDdQoYjNvHQQzsItv/2+TUaDXZ2dvrpNObM/F+BIJigpqYmTp48yR/+8AfUajUvv/wy9yXa8Pb/08yKzZvZPPG/CPdx56sa/sROnzW8WODE+s2bWe9UwIuJ3tzzVj1Kg+P6zv6MB/6ll3XPvsjDEXX8atfPyJf+dRyVJexAA6JGJQhzNl0Pn1wu56uvviIvL4+hoSGeffZZUlNTCQkJwTavk7rMB3l4+3bCp32GGn7/yHMoDl7hwnej+HZ9zu3syl7NpugX+Xj7VzwRAHCLk4d6+cXb32W9KxD6dxx6cQ8/zpOStbgv2ehEjUoQ5mGynr6Ojg7OnDlDUVERcrmcVatWsXv3bmJjY6dcDnhSRZ/wr/XP8crTupD6lm3UPn7xf53h//605n9/4oiTSw+D0r8eMywdZIWTw7j1qCxhLJUIKkGYJd2HfrIGbqlUyptvvskbb7yBVqtl//79vPzyy6xYsUJ/TGtrBdhZM1MfXNOVk3Q/uoWU27LNleRtO6k8W8mt//33jn96iHd3PMGhwyc4fOgJ9n75FN9Ln0Momglx6ycIs6Qb7W1IqVRy6dIlvvrqK+RyORs2bCA9PZ3ExMTbzlerFZAYim9HBZ9/8iGFN8EvYQ/33p9MpMtfw+V6dT72vq64TlIGH+9QyL/KNcAHsI36Ll9eyqH0UgtjOf/Oxb/zRymVckIqRaVS4ebmZhG9fqJGJQhzYHhL1dfXR3FxMWfOnKG0tJSIiAj27NnDhg0bcHFxmfwBPv0eGfvepDdkM5s3JyD78AnivXbwx3rluMPWRgVMfr5HANHdA8gMfmTrEsm67dvJTvTHgW+HJwwPD6NWq3F1dZ3bbaeJEjUqQZglw0b0W7ducf78ed599118fX155ZVXiImJwcPDY8rzHdb+km8+iSR73Up0gwy2b9/LI//vJqIf+T0ZV/6O1TMVwskdT9qnPUQikaBSqdBqtdjY2FjE8AQRVIIwS7pbv8LCQoqLi2lpaSE+Pp7U1FRSUlJmnAoTsGY7t9eTbIna93Oeeu4lvrryd6xOmKEQve3Uz6KsljYvUASVIMyCrjZVX1/P4cOHaWhowN/fnxdeeIGQkJCFPbirEx7U0d777T+tbe3Jr74Okw1ikA3QHR3A1PU2yySCShBmQaPR8Pvf/54LFy4QFBTEo48+SlpaGoGBgYv0DPbY/m93YHTKTvj/WmkFQiccVV93EdJeue3nE1nKfn465n/zKgh3kEajoampiY8++oiqqiqcnJxIS0sjJyeHlStXzmHCbzsFf3ydr5om+VVNJafZSUr0t//0WbuLzLOfkH9bU1Q7xV8U8eCu1El7BA1Z2r5+IqgEYQoajYa2tjaOHj3Kv//7vxMUFMQvfvELHn744Vnvr/dXLvQX/D0Pvfo5XYYdfMp6/vijnzHw8o/ZqZunHP4QP3/qDP/w27P0/fVAuo7/mh9XvcyPd04/oRnGj/myBOLWTxD+l+EHe3BwkEuXLnH8+HFGR0d5/vnnSU9PJzQ0dJ6bJbiy87Wz/HLXDoIDXufxA+vxldZz4pNTDG17m1P/J9uglrSC+353liu7dhAat5Wn7otCVvA//Lk0md+XfEn2DNUptVpNd3c3KpUKLy8vHBzGT2Q2xwCTaC2lbigIi0Cj0dDZ2UlpaSlFRUXU19eTlJTE3/7t385qgbuZjdLfWkdl/S1GcSM4aTXhXi5MPtJplP6rFRRfHwS3laQnR+IyiyFRfX19PP/889jY2PDss88SHx+Pq+u36WauvYGiRiUIBnp7e3n99depq6sjICCAF154geTk5EUc3e3A8tBEskNneWzMOrbPvN/DbXRBNHH1BHMLKB0RVILAtx/oM2fOkJuby9jYGOvXryc5OZmEhATs7e2NXbw5M+z1s4SbJhFUwpI3NDRES0sLR48epaqqin379rF161aCg4ONXbQFs4SQAhFUwhJk2Jjc39/PiRMn+OMf/0hCQgK/+MUviI2NxdPT08ilXBhLG0clgkpYciQSCSMjI1RVVVFcXExjYyNRUVFs3LiRjIwMs7zVm0ihUGBvb4+dnZ3Y3EEQzFVtbS2fffYZhYWFREdH8+qrr+Lt7W3sYi0KrVaLXC7HxsYGJyeneQ6nMC3m/woEYQ7kcjl/+tOfqKqqwsHBge9+97usXbsWLy8vYxdt0Wg0GmQyGcuWLRNBJQjmRKvV0tLSwuXLlykvL8fa2prk5GR27dqFm5ubsYu36JRKJRqNBltbW7HMiyCYA61WS1dXF++//z7ffPMNDz74IFu2bCEhIcEi2m8mo2tMt5Q100VQCRZnYq9eUVERR48eRavV8vjjj5OVlUVUVNSkIWWO00uWAhFUgsXR1SR6enooKSkhLy+Pmpoa7r//fp5++ukplwm2hJrHRJbymkRQCRapra2NP/3pT1RWVuLj48PBgweJiIjA0dFxynMmjuQ255qVJY1KBxFUgoVRKpWcO3eOy5cv09PTQ0JCAikpKZPuCjMdcw4prVaLTCZDrVbj4uJiEe1wIqgEiyGXy2loaOC9996jp6eHe++9l/vvv3/OU2HMOaTg2+EJQ0NDqFQq3N3djV2cRSGCSrAIvb29fPzxxxw9epTk5GQee+wx1qxZM48F7iyDUqlEq9VaRG0KRFAJZk4ul9PU1ERhYSG1tbX4+fmRnZ1NRkYGTk5OwNLsybOUYQk6IqiEu2IuDdRzObampobjx49z+vRpNm3axI9+9COWL18+7tyJj2MJjeVLjQgq4a6YSyjM5tj+/n6OHDlCZWUlKpWKAwcOkJaWxooVKxa1LIJpEEElmBW1Wk17ezvFxcUUFhai1WpJSkri4YcfXqSlgs2f7lbXkgJZBJVgVrq6unjttdeora1l69atbNu2jaSkJItpNF4MSqUSa2tri5iMrGM5r0QwW7Np7JbJZOTn53PixAkkEgm7du0iOzub1atXzxhSS60xXSqV4ujoqO9MsAQiqASTptVq6evro6qqilOnTlFYWMizzz7LAw88gLOz86zOX0qUSiVyuRxHR0eLuhUWQSUY3XS1nYaGBo4dO8bp06cJDw/n9ddfJzw8/LaQmqonbynVpMDyVk3QEUElmCSZTEZRURFlZWVcv36d1atXk5WVRXJy8pTnLLVQWkpEUAkmRavVotFoqK6u5o9//CNjY2OkpaVx4MCBaTdcECH1LUurSemIoBLuitkOshwaGuKtt96iuLiYyMhIkpKSSEpKmjKkZvu4S6VBXdz6CcIdJJfLaW1tpaysjJqaGpYtW0Z2djapqan69aOWStgshFqtRqVSieEJgjAfMwVMdXU1X3zxBSdPnuTxxx/nkUcewcfHB1tb22kfY7bBtVQCTqFQMDIygoODAw4ODsYuzqIRQSUYVUdHB6dOnaKsrAyNRsOBAwfIysoiMDDQ2EUzS2NjY8jlchwcHKZdJNDciKASjEKj0dDb20teXh55eXmMjY2RmZnJd77znXG1KGFulEolCoUCGxsbi/o7iqASjKK9vZ1XX32VwcFB0tLS2LFjBzExMRb14TIGw8Z0Q+bevieCSrirpFIpeXl5FBYWYmtry/r168nJySE2NlbM11tkotdPEOaht7eXmpoaPvnkE5qbm3nxxRfJzs6e1dIswsKYc20KRFAJd8BkY5tqamo4efIk586dIy4ujqeffpq4uDgRUotMIpFgZWUlxlEJwkwMA2p4eJjq6moKCgpobm4mODiYnJwccnJyjFhCyzU6OopMJhOTkgVhLkpLS3nvvfcYGhoiJSWF73//+7i5uRm7WBZLKpXS19eHm5sby5cvv+335roMs9kFlW4umK4XQ/e/oiHWtHR3d/P222/T2NiIl5cXO3bsIDk5WYTUHab7fEy1wqe5BZSO2QUV/HXipbl+O1gyhUJBS0sLly9fprS0FFdXVzIyMsjJyZnV+lHC4hBtVEYmkUiwsbFBrVaj0WiwtrbGysrK2MUSAJVKRWNjI2+++SYXL17kwIEDbNy4kZCQEOzs7IxdvCXDEr+4zS6odHRvhiW+Keaoo6ODwsJCLly4gFar5cknn2Tjxo2Eh4eLL5K7aKoBn+bObINqKhPfIF2QTfXziedNF3wzPcZCj5/PubM5buKo5ImvdSGjljUaDf39/Vy6dIkLFy7Q2NjIY489xv79++f1eMLCmfso9MlYVFDpbgcna2RXqVTjPpiGt4wajQa1Wg2AlZXVlA3zarV6XDDMdKxGo9H/W3fLOpfXMtNzGZZb9xzW1ta3XaRqtRorKyusrKzG/Y10xxr+fq4qKir4wx/+wODgIFFRUfzmN78hIiJizo9jjkwxEAyXebGkDiaLCqqJ1V7Df1tZWemDw7BHRNeDaPghndhromuYnKwnZapjgds++NP1xuhM9ly6Mk58rInl1v3cyspK/7p1x00MzYm9Q7p/zzaspFIpubm5lJSUoFariYuLIyMjg/j4+Fmdb4paWlqora3l+vXr+om9Y2Nj+i85lUqFs7Mz4eHhJCUl4evra+wi32ZkZITh4WEcHBzEOCpTpfuAqlSqcTUQXe1B92HX1Wy0Wq2+NqE7VldLMayZaDQaNBoNNjY2t91CTXyuuRw7mcnOn2yC6cRy66hUKtRqNTY2NvrHMjxH99p1x1lZWek7J9Rq9aw2rpRKpVRXV/PWW2+hVCp55pln2LBhw7RLBZuDhoYGPvjgA44cOcLw8LD+54Y1bxcXF9atW8cPfvADHnnkEWMVdUojIyNiuyxzZVhbmOxDaFhjMcVu3flW4Q1v7Qxv9XSvbz49po2NjRw9epT8/HySk5NZv349cXFxZh9SAOvWrcPe3h4HBwf90jMHDhwgJSUFlUqFra0t9fX1vPPOOxw6dIiamhq+973v4efnN+VjGuP20NSu38VgkUGl+/AZDgrVDWWYbDslwzdWN1dqLheX4bF34qJcyGPq2qUm3p7qHne2jz08PExdXR2FhYXU1dXh7u7O5s2bWbdu3bzLZmrc3NxIS0ujqKiI7u5u7O3tefTRR4mOjtYfk5qaSktLC8ePH+ejjz4iLi6OLVu2TDuQ9W6Hlej1MwO6moOuUXGmBmxdO48lNTwaWqwLtqCggCNHjtDU1MTWrVs5cOAArq6ui/LYpqS3t5eGhgasrKxISEi4bTlfd3d3XnrpJdRqNR9++CFHjx7FycmJHTt2GKnEtzO1Bv7FYFZBpbtFm0uozPXbZabbxKnOmez/LxZdz958wnShF21bWxsffPABbW1tuLi4sH//ftauXYu7u/uCHtdUdXd3U1dXh4eHB4mJibeFsY2NDYGBgURHRxMYGEhXVxc3b96c8vHudmhM7EixFGYVVBN7pqa7CKbqAZzsON1jGz6H4fEzrZo48dZvtsca/nyyMul+P90xM42jMmxMn2o81WTnKxQKbt26xYULFzh//jxBQUGsW7eO+++/32IHcA4ODnLjxg26u7sJDg4mOjp6ygZpT09P/P39USqVyGSyu1zSqalUKpRKpViK2NgMe8+mu63TfbNMbEg2pBvbpNFoUKlU435meKzhY01sz5r4uHM51rCHUffh1/VOGp4/sdHbcBqRrtw6hscajuXSPaZhGXTPMfHvqFKpuHbtGr/5zW/o6OjgiSeeIDU1ldDQ0BlDypznX7a1tdHQ0ICTkxPBwcEEBgZOOfXHsEfVlF6rXC5naGiIwMBA/TZjlsCsgmrih3UmE2tU0x1nWEubqualW5DM8GcLOXaqhnvdsbqfTxUOk/18Yu1upnN1x+sGCOomFF++fBl7e3u2b9/Ohg0bCA0N1Z87U+OwKX1w56KlpYW6ujoCAgIICwubdhySbrySt7e3SU221m3uYGdnh729vbGLs2jMKqgMR5rPxlS3W/N93Lnc8szm2Omedzblmanc05VhsvN6enooLCzk5MmTtLS08MILL7Br167balyWGFJarZbGxkaam5tZs2YN4eHh0x7b19fHwMAA8fHx+Pj43MWSTk9X05vvTANTZVZBNReW+obdKQUFBXz55Zd0dHQQGRnJD3/4QyIjIy1qt92paLVaent7aWxs5ObNm+zdu3dcDdKQWq2ms7OT1tZW+vr6iIiIICws7O4WeJ5MccrPbFnUVWg4WNNwcT1halKplMLCQoqKiujr6yMqKoqcnBxSUlKMXbS7RqVSIZVKkclkWFtbExYWNmUtSS6Xc+zYMerq6vDy8iI2Npbg4OC7XOKpWer1blFBZdjAudTNFNK6xvWKigoOHjzI8uXL2bVrFzt37px0CVtLplAo6Onp0Q89CAoKmnKX4aamJv785z/T19fHhg0bWL16tUm2BU02w8KcQ8yigmqqhumlaKZhENevX+fdd9+lqqqKzMxMUlJSSExMXDIhZfj3GBkZ4euvv0aj0ZCVlTVp+9TFixd5//33KS0txdPTk/vuu4977rln2ukzxmDYkWNJm5BaVFDNZUrIUqP7uwwPD9PU1ERxcTGVlZXY2dmxc+dOEhMT9Q3s5nxBz5auR7ixsZHjx4/zxRdf4OjoiJubGydOnMDDw4OxsTFsbW3p7OykpKREv1LEli1beOCBB1i5ciVgWn8vhULB6Ogo9vb2k9b0TKmsc2FRQSXMLD8/n6+++oqKigqefvppHnroIZycnMb1AprjhTyTyYapqNVq/uEf/oFPP/1U/7O8vDz+8z//U18rUavVODk5ERkZyYsvvsju3buxtbUdFwIz3WLPdMxiGhoaoqenBzc3N4vaM1EE1RLR3NzMqVOnqK+vx97env379884mdbSTAwLKysrHnzwQVauXIm7u7t+iSClUqmfnaBWq3F0dCQgIICcnJw5z2+826E/3cJ55vwFJILKwikUCgYGBjh37hwnTpzA09OT7du389BDD+mPMefR5LM1WZudlZUVTz75JE8++aSRSrX4dM0fky22aM5EUFm46upq/u3f/g2JRML27dvJyMgYt1SwubZZLNRSfM3mTASVhers7KSoqIiSkhJcXFyIi4sjOzubmJgY/TGW9I27GNRqNXK53OznyE01Yd2ciaCyQF1dXRQWFvLxxx/T39/PP/7jP5KamnpbL9BclrGxxBqI4VIoarWapqYment7CQoKwtPT02yX8p3t1DFzIoLKwhQWFnL69Gmqq6uJjY1l48aNxMXFLWhQoiVd8Ibkcjk1NTUUFRVx8eJF2tra0Gg0BAYG8vjjj/PAAw8Yu4hzZjg8YeKif+ZMBJWF6O/vp6qqiry8PNra2ggMDGTz5s2sX7/e2EUzGcPDw/T09NDZ2UlXVxfd3d10dXVx48YNBgcHcXFxwc7ODplMxpUrV/D39yc+Pt6sPvBjY2PI5XIRVML8LWbv2sTbsXPnznHo0CH8/PzYvn07e/fuNctbl4XcZk7395VKpdTU1HDx4kW+/vprGhoaAEhISCArK4sDBw4QHR2NRCKhtLSUb775hoMHD/Kzn/2MpKSk+b+gu2xsbIyRkRHs7OymDSpz6+kVQXUX6UZDL0abj+78a9eu8e6779LW1sbGjRtJSkpizZo1ZhlSsLAPjuG5w8PDXLlyhaqqKhoaGujo6MDa2hp3d3fWr1/PPffcw/Lly/Hz8yMoKIiVK1fq159KTk5mZGQEa2trPvvsM27cuMHu3btve77ZzKc0RhDMpo3KXAJKRwTVXTbZMsXzIZfLaW1tpbi4mEuXLhEWFsbevXtZtWqV2V2Ei2F4eBi5XM7w8DADAwPcuHGD2tpaampqaG1tRSqVEhoaSnx8PFu3biUuLm7KpXqdnZ1JT0/H0dGRDz74gNzcXCIjIwkLC9O39c30Hhq7x80Ut31bCBFURjCXIJnsW1mhUJCfn89f/vIXmpqa+P73v09mZibe3t5mGVILrXkoFAqKioooKiqivLyc4uJibG1tycjIYO3atTz99NNERETg7OyMjY0Njo6OM64n7urqSkpKChqNhry8PH7961/z3e9+l5ycHGDm99Ac3wdTJoLKzFy9epWioiKqqqpwdnZmz549ZGZmEhAQYOyiLchcwqqnp4dr165x7do1WlpauHXrln7nZ29vb+677z68vb2Jjo4mKiqKlStXzmlslK4sTk5OpKSkIJfLuXHjBnl5eUgkErKzs+f7Mu+46VZPMGciqEyc4UYMfX19nDx5kosXL+Lo6MjevXvZuXOnkUu4cNO13ek23tDNwZNKpVRVVVFeXk5lZSWlpaXIZDIyMjJITU0lJSWF9PT0Ba8RpSuLi4sLaWlpjIyMcPbsWb788kvCw8NN9otBt2GIpa1sK4LKTBQXF/Pf//3fODo6kpWVRXZ2ttksgTtbU/XWlZSUUFFRQVlZGfX19Xh4eBASEkJCQgJ79uwhKCgId3d3XF1dcXZ2XnBITSyHp6cnW7Zs0fcIHjp0iPvvv58NGzYApjUgViaTjRtqYSlEUJmYiRd9X1+ffqlgiURCfHw8OTk5xMbGTnq8udK9hoGBAW7dusXNmze5efMmXV1d9PT0MDAwoB+MGR4ezqpVq4iJiSE+Pv6O7gKj+/u6u7vrt68/deoUBQUFODs7Ex8fb1K7bBsO+LQkIqhMWH9/P2VlZRw6dAhHR0d++tOfkpCQMK69xRJCSqe/v58rV65QVFREfn4+ubm5eHh46G/pHn30URISEnB1db1rr9vweQICAti8eTMajYb8/HzeeOMNXn755Sk3gjCGiZv0TvyduV4vIqhMjO5CKigo4MSJE1RXV5OTk0N6ejrx8fFmP2HWkFwup6KigsLCQq5cuUJfXx8ODg54enqSnJzMjh078PX1xc/PD09PT7y8vIy+fpa7uzs5OTlYWVlRUlLCO++8Q1ZWFps2bQLGh4ExgmG6RnRzDSkQQWVyBgcHqa2t5cKFCzQ1NeHs7My9995LQkKCsYu2YLopLIODg/pbvObmZurq6mhsbEQikRAeHk5UVBRpaWmsXbvWpLbr0gWPl5cX6enpAJw4cYKLFy8SFBREaGiovrzG6nEz5zCajulcBQIAX375JUeOHMHJyYmdO3fy4IMPWsScLZlMRmVlJcePHycvL4/m5mYcHBxITEwkJyeHH/zgBwQHB+Pi4oKtre2kK1ROdLdrLIbP5efnx9atW9FqtRQXF3Pw4EGef/55fduhpQaGsYigMhFXr17lyy+/pL29nejoaFJSUkhLSzPbkJLJZFRVVVFbW0tTUxN9fX2o1WocHBxISkoiMzMTDw8PVq5cSVRUFCEhIVNuUWWqXF1dyczMRCKRkJ+fz7Fjx+jt7dWPs5prkC5G8Gq1WpNq3F8sIqiMTC6X09bWxvnz5/n6669JTU1l9+7dpKamms23skaj0fc2jY6OMjg4yI0bN7h8+TKlpaXU19ejVCqJiIhgx44drF+/npiYmAUHkyn8fXx9fdmwYQNarZZTp04xODhIWFgYgYGB8yrfYoSVg4ODRY2hAhFUi2LiTPTpLjbD38lkMoqKinj77beRyWQ899xzJCcnExQUZBIfwtnSTQAuKCggNzeXa9euYW1tTWJiIhkZGRw4cAA/Pz+WL1+Ok5MTy5YtM9ua4mS8vb3ZunWrfpzVwYMHefTRR/VL7Mw2fBYyaV2r1TIwMADAihUrTKptbzFY1qsxA7oLsLGxkZKSEsrLy3FxcSE1NZWsrCx8fX2NXMKZ6WpM169fp62tjc7OTuRyOSMjI3h6euLp6YmHhwcJCQnExcURFRWlX5nAUrm5ubF+/XrUajUnTpzg0qVLODk5ERcXN6fQme+kda1Wi1KpRKvVYmtra1ZfdLMhgmqBJvv2m+ki6evr45tvvuHSpUsolUqef/75cfPHTGm8i25vO90HYXBwkPr6eoqLiykoKKCurg65XE5cXBxZWVls3LiRmJiYOzoI01T5+/uTnZ3NwMAAVVVVfPLJJ3h6es64m/LEGvl833vdebrllad6fHMkgmqB5vrmf/PNNxw+fBitVktaWho5OTlERkYu6DHvJJlMRllZGWVlZVy5coWmpiYcHBxYuXIlycnJPPDAAwQEBLBixQqWL19u1muNLwZvb2/92lUVFRV88sknbNq0ifj4eGB+X2wLZUrX03yJoLpLenp6KC8vJzc3l8HBQVJSUsjJySExMdHYRRtncHCQ3t5euru76ezs5NatW3R1ddHe3k5/fz8ODg4EBgYSFxdHcnIyq1evnvOmnJZKF0I+Pj6kp6ejUqmoq6vD3t4eFxcXgoOD72gjtyXuPqMjguouGBgYIC8vj9dee43Vq1fz/e9/n+TkZJP7gMvlcsrLy7l06RKFhYUUFxcjkUjYsGEDqamp/M3f/A2JiYm4urrqdxJeyLe1JdySGDJ8HXFxcfj4+PDOO+9QXV3NwMAA+/btIygo6K6Ww1KIoLqD1Go11dXVfPnllzQ1NXH//fezbt061qxZMy6kjPWBHRgYoKamhurqaqqrq+no6MDJyUm/D2BWVhZeXl74+/vr/9NNYVmMsTqW9IGabOqMl5cXDzzwAOfPn+fKlSscO3aM9PR0fS16MdsiNRoNIyMjSCQSli1bJoYnCLMjlUqpr6/n4sWLVFZWsnz5cvbt20dISIhRyqPVahkeHkYmkzEyMoJUKqWpqYmrV69SV1dHXV0dUqmUNWvWEBYWRlpaGmlpaRbXzX236EIoIiICtVqNVCqlrq5Ov7ifr6/voga1RqNBJpPpF/yztEGf4iq8A1QqFZ999hnnz59HKpXy2GOPsX379ikbme/GJFapVEpxcbF+ZYKKigp8fHyIi4tjzZo1PPPMM4SHh+Po6Ii9vT12dnbzDilLu6WbzHQ9dRNfd3R0NJ6ennz44Yc0NDTw3nvv8eCDD97WibIQarUamUyGVqsVNSphvMmCpbKykjNnznDt2jV8fHzYuHEjGRkZd709qqenh9bWVpqbm7l27Rp9fX2Mjo6i0WgIDQ0lJCSEoKAgIiMjiYiIICIiYtIgnU/oLNYGFqZstq9Rd414eHiwefNmHB0dqays5Ny5cygUCv3cwMWgG5ZgZWVlcV8SIqjmaeJFOjY2Rk9PD6dOneKLL74gLS2NnTt3zml97YXsZ6dUKlEoFGi1Wnp7e6mtraW8vJzS0lLKyspwcHAgLi6O9evXs379epKSkmZcXG0hYWNpH5TJzHa0uc7q1atxcnKir6+P6upqpFIpXl5eeHt7L2p5LG29dBBBtSC6C0OhUFBSUsKhQ4dwdnbmhz/8IQkJCQQHB9+VcuimsOTn51NYWMitW7dwdnYmNDSU9evXs2/fPvz8/FixYgWurq64uLjMagXIpRA2d1twcDBPPfUUR44coba2lvfff59t27YRFxcH3PnBvuZ6Wy6Cap50Vf+Wlhb9YEhHR0dSU1PZtGkTnp6ed+y5h4aG6OjooK2tjZs3b9LX10dvby+9vb1YW1sTGBhISEgIq1atIj4+ntWrV5vdygSWSBdCvr6+ZGZmAuh3b3ZwcCAsLGxBbUtTjUyfeIw51rZEUE1hsm+eiT/r6Ojg+PHjnDhxAmtra1555RUSExMX/dtKd4FrtVp6enr0vYlnzpyhsrISR0dH4uLi2Lx5M/v37ycqKorly5cvahmEhZs4zsrLy4uhoSGqq6vp7+9n//79M063mWjisAiYeeiIudWmQATVlCZ7Mw1/9sUXX5Cbm4tMJiMnJ4e0tDSio6MX/SLQ3dZdvnyZsrIy+vr6sLGxwdfXl4yMDB566CE8PT3x8fHB19cXb2/vJTnPzhx5e3vz6KOPcuTIEcrKyjh9+jQbNmzQr8E+m9tA3e+VSiVdXV36x51sg1VTmkM6VyKo5qivr4+amhry8/O5desWsbGx3HPPPaxatWpRHl+3JXlvby89PT3cunWLa9eu0djYSGtrK1qtloCAAKKiosjIyCAxMXHGXX8F06MLjZCQENLT0xkYGKCyslK/l6CHh8ecQkU3Vkt3vhhHtYSNjo5y7Ngx3njjDdatW8f+/ftZt26dfsOFhTZUymQyqqurycvL4/jx4zQ1NWFjY0NKSgqZmZn65Xrd3NyQSCTY2NhY3AW5FEys2aSmphIcHMxvf/tb8vPzsbOzY+PGjXh5ec3pcXXtW1O1UZlrbQpEUE3J8GIaHR2lpqaGo0ePcvPmTTZv3kxWVhZJSUm37Qozl4thaGiImpoa6urqaG5u5ubNm0gkEhwcHEhOTiYrK4sVK1YQEhJCeHg4oaGhFr+u01Ll4+PD3r17uXjxIrm5uQCkp6cTGBg468e428se300iqKagexPlcrm+lnP+/HkSEhI4cOCAfhVOw1rUdG+8RqNhdHQUhULByMgIg4ODtLS0UFFRQXl5Oc3NzQwNDREZGUl2djbbtm0jNjZW3NYtAbrQSEtLw97entbWVsrKygDYunXrrDtG5jp+ypzCSgTVNORyOR999BF5eXmMjIzw4x//mNTU1HHtB7N9o6VSKUVFRZSVlekHYi5btoy1a9eSnp7OM888Q2hoqH6Mk243FsHyTLceVUJCAj/72c944403OHXqFACZmZn4+/vP+vFnE1bmElA6IqimUFVVRVFREdXV1Xh6erJq1SoyMzNn/e3W09NDe3s77e3tXLt2ja6uLv1yvS4uLmRmZuLr60tcXByrVq0iIiJC9NYtcboajr+/P1u2bNEvt6PRaMjKypoxrHRtU5bYbimCagK1Wk1PTw+fffYZRUVFxMfH8+CDD7Ju3bopz9Et16vRaNBoNAwNDVFWVkZpaan+1k6lUrFu3TqSk5NJSUkhIyMDOzu7O/Y6zHUE8lJm+F5t2LABX19ffve731FcXIyVldW0t4EajYaxsTEA7OzsxKRkSzY2Nsa5c+d47733cHd3Z8+ePaSnpxMWFjbteQMDA5SVlVFdXU1xcTGNjY14e3sTEBBAQkICu3fvxt/fnxUrVuDu7o67u/ukITXZ4L2FrJ893x1NBNOwcuVKXnjhBY4cOaK/DTRsYDd8b1UqFf39/Wi1Wtzd3S1ueR7LejXzpNFo6OjooKSkhOLiYlQqFYmJiWzbtm3S+XqDg4P09PTQ3d1Nd3c3HR0d3Lx5k66uLoaGhnByciI4OJj4+HhiY2NJTEyc1zriCw0Yc50uIfx1I9HIyEjS09P1a9drtVr9FC3D60O3cB58u6+fpX05iaAC2tvbOXv2LO+//z4+Pj78/Oc/JzIyctKhAAMDA1RUVOj3sLt06RI+Pj6kpKSwZs0annrqKdasWYOdnd2cG9ynW9Noviztgl0qDN+3zMxMVq5cyWuvvcaFCxcA2Lx587j5pBKJZMZxVOZsyQfV8ePHuXTpEp2dndx7773jloqFbwdhXrlyhdLSUmpraxkYGMDGxgZXV1fWrFlDTk4O/v7+BAQE4OPjQ2BgoJgALCw6f39/nnnmGU6fPs3JkyextbUlIyMDHx8fwDI3dDBkVkE1NDREb28vUqkUlUqFlZWVvgFbIpFgb2+Pu7s7/v7+MzYmDg0NUVtbS25uLh0dHQQEBLBnzx6Cg4O5deuWfipLR0cHNTU1VFZWcvXqVaysrIiKimLlypWkp6eTmppqkb0sgunQtUWtWbMGuVxOS0sLly9fxsrKis2bN+unzFhy7dmsgqqoqIgPP/yQkydP0tfXh4ODAwqFAqVSqV/e5N577+Wf/umfWLFihf68iQ3TCoWCP/zhDxw/fpzU1FS+853vkJmZydjYGAUFBRw/fpy8vDyuX7+Oo6MjCQkJZGZm8uyzzxIYGKgf62RraztlSIleN2GxGF5D6enp+Pn58R//8R8cPXoUd3d3fQ+y2C7LRISEhJCRkUFfXx9XrlxhdHSUrVu3EhwcjEwm068H/tFHH7Ft2zYiIiKAv77RarWaq1evcubMGW7evMmqVatwcnKioqKCyspKOjo6GB4eRiKREBMTQ0JCAl5eXkRGRrJ69WrCwsJwcHCYVVlFQAl3gkQiYeXKlezevZvi4mKOHj2KVqvFy8uL4eFhrK2tcXFxEcMTjCkyMpLg4GDc3d25ePEio6Oj/P3f/72+Z+5f/uVf+Pjjj/n888/x8PDQBxWgrzIfP36c//mf/yErK4ucnBza2tr0O8WoVCpiYmLYuXMn69evJzo6etbBJAh30/bt2/Hw8NCPs/L19aWrqwsnJ6cZhyeMjY0hlUpRKpX6nmF7e3uWLVuGjY2NflygjY2NyQxzMI1SzMHQ0BCFhYXIZDJSUlLGNVzHxMQQHx9Pf38/SqVS//O+vj6OHTvGuXPnqK2tRSKRcPnyZTo7O4mNjeXee+/l+eefx8fHhxUrVuDm5mYyb5AgTCUlJYXf/va3fPbZZ3z99dcMDw8TERGBg4PDuBqV4XgrtVpNfn4+r7zyCvX19Tg5OSGXy1m/fj3PPfccYWFhKJVKWltbiYiIICYmxlgvbxyz+zT29PRQW1tLSEgImZmZ+qUwWltbuXLlCgMDA6xevZrw8HC0Wi3nz5/n1KlT5ObmcuXKFQYHB3F1dUUul1NbW0tnZyc9PT309PTg5eWFjY0NY2NjqFQq1Gq1RS6UL1gG3Xipb775hosXL+ob1OPi4lCr1frjJBIJo6OjlJWVUVlZSXV1tX6T2WXLlqFUKnFzc6OsrIyioiKsra0JCgoiPDzciK9uPLMKqpGREf3gytDQUP2yre3t7Zw6dYoTJ04wNjbGj370I1JTUxkYGODgwYN8/fXX+jfOysqK4eFh/ePp9rrTESO5BXOhu1YlEol+7FRXVxdSqfS2sVS1tbX87ne/o6CggODgYA4dOkRSUpL+9w0NDbz55pt8+umnODo68utf/1o/9MEUmFVQdXV1cfXqVVpbW7l69SqlpaUABAQEkJKSwksvvURoaCjh4eFYW1uzbNkyfvKTn/DEE09gZWWl/09Hq9Xqhzfo/tP9XISVYC5sbW2xsrJCq9Xi4eFBUFDQuHXSjh07pt/1ZteuXezdu/e2FWnDw8N57LHHuHr1Kp2dnfj4+Ny21poxmVVQtba2Ul9fj7+/P1KplMHBQYaHh5FKpTg6OrJu3TrS0tL0x9vb27Nx40bjFVgQjEij0dDe3s6RI0fIy8sjMjKShx56iE2bNt12rJWVFUlJSSQnJ9PQ0DDluuvGYlZBdfXqVW7cuMG+ffvIyckhLi6O4eFhPvroI1577TUGBgbo7OzkgQceEKPDhSWvo6ODkydPUlxcjKOjIwcOHGDNmjVTHq9WqwkNDcXJyWncOERTYDZBJZPJaGlp4datWyQmJpKcnKxfYG7t2rUkJibS2trKyZMnyczMJCgoaNz5i3E7N59BnPM9504vK3s3zhHlurPlmunaunnzJiUlJVhbWxMbG0tKSsq0+01aWVmRkZHB2NiYyS15bRZBpVAoaG9vp6enB4lEQmBg4Lidfn18fPRB1djYiFQqNWJpbzefi2+u7tYOu/M5T5RrbufNZRL7dM/T3d1NQ0MDnp6eJCQk4Ovre1v5Jk6ENxx7aErMYviqVCqluroagIiIiNsWDxsdHaW9vV2/Fs9kt32LcVHOtC76VOfcjecQ5brz59yN51jMco2MjNDX14ezszOenp7jegLn81zGZLJBZfhNoVQqqaiowMnJiYyMjHG7yba1tfHNN9+Qn5+Pu7s7qampuLq6GqPIgmAyVCqVfnwgYPYzLEw2qAzTvr6+ntLSUpRKJd7e3vo/fm9vL4cPH+bw4cO0t7cTHx/P1q1bTapbVRDuNo1Gg0wmQyqVIpfL9QOYp6PValEqleMGipoSk26jUqvV/PSnP+Xtt99mYGAAR0dHjh49iqurK7a2tqhUKjo7OwkLC+Nf//Vf2bJlC6tWrVrUbtX5LA888ZzZHG/4uLM9R5RLlGuy57CyssLNzY0VK1awbNkypFIpQ0ND+uWvdecYntvX18fp06eJjY0lJibG5JYuMumggm8Xqg8JCSEtLQ2tVotCodBPb7G2tsbHx4fs7Gwef/zx23r6BGEpi4yMZMOGDVRWVnLhwgU2bNhAfHz8bSvP1tfXU1FRQUtLCytXrjS5kAKQaE18Iptuvt10dMuwzrZxUIw8F5aCwcFBiouL+clPfkJrayvPPfccTzzxBAkJCfpjhoeH+dWvfkV7ezv33HMPmzZtmnSfAGMz2aASYSIIC6e7pdN1OLm6uuLn56e/I3F2diYkJISEhARSU1Px9/c3yYZ3k731EyElCAu3YsUK9u7di5+fH9euXaOxsZGOjg795ysoKIg9e/awfft2k+6EMtkalSAIi2dsbIyhoSFUKtW4uxXdiqCmvsWWCCpBEEyeyY6jEgRB0BFBJQiCyRNBJQiCyRNBJQiCyRNBJQiCyRNBJQiCyRNBJQiCyRNBJQiCyRNBJQiCyRNBJQiCyRNBJQiCyRNBJQiCyRNBJQiCyRNBJQiCyRNBJQiCyRNBJQiCyRNBJQiCyRNBJQiCyRNBJQiCyRNBJQiCyRNBJQiCyfv/Aaw13sljmxZwAAAAAElFTkSuQmCC",
"path": "images_version_5/image_29.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, D is the intersection point of the angular bisector BD and CD of triangle ABC. then angle D = ()
Choices:
A:120°
B:130°
C:115°
D:110°
|
Như hình vẽ, D là điểm cắt nhau của tia phân giác góc BD và CD của tam giác ABC. Khi đó góc D = ()
Lựa chọn:
A: 120°
B: 130°
C: 115°
D: 110°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, D is the intersection point of the angular bisector BD and CD of triangle ABC. then angle D = ()
Choices:
A:120°
B:130°
C:115°
D:110°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, D is the intersection point of the angular bisector BD and CD of triangle ABC. then angle D = ()
Choices:
A:120°
B:130°
C:115°
D:110°
|
As shown in the figure, D is the intersection point of the angular bisector BD and CD of triangle ABC. then angle D = ()
Choices:
A:120°
B:130°
C:115°
D:110°
|
145
|
29
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAvUAAAKUCAYAAACE6sdyAADO8ElEQVR4nOzdd3zN1/8H8NfNTiQRiQiCxN6b2GLU3qOqdlWL6uBLtVWzRbVUFdWixCq1VWxClAiRxEhQe5QQQZBEyDq/P/K7pzfJ3fdmXF7PxyMPH59xPuez3/d8zjkfhRBCgIiIiIiILJZVfmeAiIiIiIhMw6CeiIiIiMjCMagnIiIiIrJwDOqJiIiIiCwcg3oiIiIiIgvHoJ6IiIiIyMIxqCciIiIisnAM6omIiIiILByDeiIiIiIiC8egnoiIiIjIwjGoJyIiIiKycAzqiYiIiIgsHIN6IiIiIiILx6CeiIiIiMjCMagnIiIiIrJwDOqJiIiIiCwcg3oiIiIiIgvHoJ6IiIiIyMIxqCciIiIisnAM6tUYNmwYFAoFfH198zsrr4VWrVpBoVCgVatW+Z0VvVlintPT0/Hzzz/Dz88Prq6uUCgUUCgU6NmzJwAgODhYjgsODs7XvJL5Wcp9y9KuLeU1M3369PzOCuWiVatWyWN969at/M7Oa8PSrndz2717Nzp06ICiRYvC2toaCoUCbm5uubY+G3Mkcvz4cbRo0UL+/+jRo2jZsqU5kiYiPb377rvYvHlzfmfjjdeqVSscPXo0x3hHR0cULlwY7u7uqFGjBho0aIAePXqgUqVK+ZBLIiLKTUuWLMGYMWPydJ1mKalfs2aN1v8TFQTTp0+XJTGvmxMnTsiAvkuXLjh48CDOnz+PqKgoLFy4MJ9zRwCQnJyMBw8e4OLFi9i0aRMmTpyIKlWqoG3btjh37lx+Z88kr/O1lRcs5S2LpeHbyTdDQXzLkpycjEmTJgEAqlSpgi1btuDMmTOIiopCaGhorq3X5JL6V69eyWDC2dkZiYmJ2Lx5MxYtWgRHR0eTM0iWjzfT3Hfo0CEAgLW1NdavXw9XV9cc87Rq1QpCiLzO2hstKipKDqelpeHp06e4e/cuTp48ia1bt+LBgwc4fPgw/Pz8sGjRInz44YdGr2vVqlVYtWqVGXJNqnjNvBmGDRuGYcOG5Xc2Xjtv6vP/9OnTePbsGQBg3rx56NKlS56s1+SS+r/++gtPnz4FAPz8888AgOfPn+Ovv/4yNWki0tO9e/cAAF5eXmoDesofNWrUkH916tRBq1atMGjQICxevBi3bt3C999/DxsbG6SkpGD06NHYtWtXfmeZiIhMpHwmA8jTKpYmB/WrV68GAFSrVg3Dhw9HtWrVALAKDlFeevXqFQDA1tY2n3NC+rK3t8fEiROxbt06AEBGRgY++OADvHz5Mp9zRkREplA+k4E8fi4LE8TGxgobGxsBQMyePVsIIcSsWbMEAGFtbS0ePHigM4179+6JL774QtStW1e4uroKW1tb4eXlJWrUqCH69+8vAgICxLNnz4zKX1pamggICBDt27cXXl5ewtbWVhQuXFhUqFBBtGnTRsyaNUtcuHAhx3JDhw4VAISPj48QQoj4+HgxZcoUUa1aNeHk5CQKFy4sWrRoIdatW6dXPs6fPy8++OADUaFCBeHo6CicnZ1FtWrVxNixY8XNmzfVLrNp0yYBQAAQ//zzj9p5ypcvL+fZsmWL2nl69OghAIgGDRpkGR8QECCXvXnzpkhPTxdLly4VTZo0EW5ubsLJyUnUrFlTzJw5UyQlJem1nZr4+/sLAMLf3z/HtJs3b8p8BAQECCGEOHDggOjatavw8vISdnZ2wtfXV4waNUr8+++/Rq1fdVu1/akei+x5vnv3rhg3bpwoX768cHBwEO7u7qJ9+/Ziz549euXhyZMn4ttvvxWNGzcWHh4ews7OTpQoUUJ0795dbN261ajtEkLotV1KR44ckeOOHDmiMc1bt26JkSNHCh8fH2Fvby9KlCghevToIQ4fPiyEEGLatGk50lZSdzw18fHxEQDE0KFDc0zLfn6+fPlS/PTTT6JRo0bCw8NDABDTpk3LsVxqaqr4/fffRadOnUSJEiWEnZ2d8PDwEC1atBA//fSTSE5O1ponc1CeO4bcXt9++225zJIlS4xab/b7ljrbtm0TPXr0EN7e3sLOzk44OzuLsmXLiubNm4vJkyeLU6dOGbTO1/naUlJug7rzzdT7qOq1pM81rMqUcz37Mbhy5YoYM2aMfEZlP2bJycni559/Fv7+/sLDw0PY2NiIIkWKiMqVK4tOnTqJ+fPna3yWCSFERkaG2Lx5s+jdu7coVaqUsLe3F25ubqJhw4bim2++EfHx8RqXVbV7924xcOBAUbZsWeHk5CRcXV1FtWrVxDvvvCO2bNkiXrx4IYTIeh/S9qd6j8p+LDV5+PCh+Prrr0WdOnVE4cKFhb29vfDx8RGDBg0Sx44d05r/7Pe8S5cuiREjRggfHx9hZ2cnihUrJnr27ClCQ0P12h+aqLt/zp07V8ZZLi4uws/PTyxevFikpaXpTM+Ubc7N57/qM03bn7bnnbm3W/X+b+786MOkoH7+/PkCgFAoFOL27dtCiMyAQKFQCADixx9/1Lr833//LVxdXXXugMDAQIPzlpCQIFq0aKEz7T59+uRYVvXheOnSJeHr66tx+TFjxmjNx+zZs4WVlZXG5e3t7cXq1atzLPfw4UM5z6+//ppj+t27d3XmIyMjQ7i7uwsAYvz48VmmqV700dHRok2bNhrz6OfnJxITE3Xtco0Muai/+OILjfnw9PQUFy9eNHj9pgYex44dk4Gkur+5c+dqXf/u3buFm5ub1nV36dJFJCQkGLxthgQE+gT1Bw4cEIUKFVKbjkKhELNmzcrzoP706dOiTp06OfKTPci6du2aqFatmtZ9UbFiRXHlyhVdu9UkxgT1J06ckMu0a9fOqPVqC+rT0tKy/HDQ9Fe/fn2D1vk6X1tKms637NtvzH3U2KDe1HNd9Rjs2LFD7TWvPGYxMTE61wXkfMYoPXz4UDRr1kzrsl5eXuLkyZMaj8GjR49E27ZtdeZBec/JraB+//79OmOWMWPGiPT0dLXLq97ztm7dKpycnNSmYW1tLf7880+N+0MX1W2JjIwU9evX15jf5s2bi+fPn2tMy9Rtzs3nf24G9cZut0UH9bVr1xYARMuWLbOMVwbTtWvX1rjsy5cvRcmSJQUA4eLiIiZOnCj27t0rIiIixMmTJ8XGjRvF2LFjRenSpY0K6sePHy93YNeuXcWGDRtESEiIiIiIEPv27RPff/+9aNGihejbt2+OZZUPR09PT1GxYkXh4uIiJk+eLIKDg0V4eLhYvny5KFWqlEx/3759avPwyy+/ZDkh582bJ0JDQ8Xx48fF9OnT5Y1UoVCI3bt351i+atWqAoB45513ckxbu3ZtlpOkevXqOeY5c+aMnJ59H6pe9E2bNhVWVlZi6NChYvfu3SIiIkJs375dNGnSRM7z5Zdf6rvrc9D3om7atKmcb/369SI8PFwcOnRIDBkyRM7TuHFjg9cfHx8voqKixOjRo2U6UVFROf5SUlJy5LlSpUqiaNGiolixYmLOnDni+PHjIiwsTMyfP18GEzY2NiI6Olrtug8cOCCsra0FAOHr6yu+//57ERwcLCIjI0VgYKAYNGiQzFPv3r0N3jZl3pVvZEqWLJlju5R0BfVXr16VDxlra2sxZswYERQUJE6fPi0CAgLkg93Pz0+mk11uBPW1atUSCoVCDBkyJMv5qVqSGxMTI7y8vOT9ZPz48WLv3r0iMjJSHDlyRHz11Vdy28qVKyeePn2q9z42lDFBfXp6unBxcREAhLOzs0hNTTV4vdqC+kWLFmV5iK9atUocO3ZMnDlzRgQFBYmff/5ZdOzYUfj5+Rm0ztf52lJSpqErqDfmPhobG6vz+lW9hoUwz7muPAZly5YVzs7OwtPTU8yZM0eEhISIkydPikWLFom4uDghhBB9+vSR+R80aJDYtm2bOHnypDh9+rTYtWuXmDFjhqhbt67aoD4xMVE+x+zs7MTIkSPFX3/9JSIjI8WxY8fErFmz5I+6IkWKiFu3buVIIykpSdSsWVPmoX79+mLp0qUiJCREhIeHi+3bt4tx48aJkiVLyntOSkqKiIqKEitXrpTLrVy5Msd+VX1DoCuoP3PmjLCzsxMAhK2trRg7dqw4cuSICAsLE0uXLhVly5aVy0+cODHH8kL8d8+rW7eucHBwEGXLlhWLFy8WJ0+eFKGhoWL69OnCwcFBABCurq7i4cOHatPRRXVbGjZsKOOIPXv2iPDwcLF+/Xo5HoDo1q2b2nTMsc25+fxPTEwUUVFRYubMmXKe/fv35zjOhhZKmrLdN27c0JknUwpJdTE6qD9//rzM8LJly7JMW7p0qZx2/vx5tcsHBQVpDDhVpaamGlX9pnTp0gKA2qBd1ePHj3OMUz4cAQg3Nze1D5WrV6/Ki6979+45pj98+FDeWEuWLCnu3LmTY57IyEgZ2Ht7e2d58Akh5IOyePHiOZZ9//335bqVPwyy3wB++uknAUBYWVnleL2ZvYRt7dq1Odbx8uVLUaNGDQFAeHh4GBVoCKH/RQ1AfPDBByIjIyPHfCNGjJDzREZGGpUPbSXMmvKsDJLu3r2bY55jx47Jt1KffvppjumJiYny4du+fXuN1ZiWLVsm13Xo0CHDN0zoV/VCV1CvPJcAiM2bN+eYnpSUlCWgz6ugHoBYsWKF1rS6du0qAIjSpUuL69evq51H9XqbPHmy1vRMYUxQL4QQzZs3l8upu1/oou0cUBa0NGrUSOt1rO5+qI/X+drSN6g35T6qz/WrZI5zXfUYlCxZUr5pzy45OVnY2toKQHNJvJK6c+fjjz8WAEThwoXF6dOn1S5369YtUaJECfmjIbuxY8fKvI4ZM0bt80EIIV69epWjyq++VQ6F0B3UK4Nga2trsX///hzTnzx5Igs+rKys1MYNynue8seJuh9c69atk/PMnz9fa5712Rbgv+rRqlJTU0WHDh3kPLt27cqVbc6L57++Vaf0ZY7tNnee9GV0UK8sCbe3t88RMMbHxwt7e3utN4I//vhDbrCxdea1Ud6Ifv75Z4OXVQ3qFy5cqHG+/v37CyCzhCG777//XqaxYcMGjWmo/prbtGlTlml//vmnnHbp0qUs0ypUqCCDr3LlyqkNxHr27CkAiHr16uVYr+oJp60U67fffpPznTt3TuN82uh7UZcoUUK8fPlSbRr//POPnM+YYyqE8YHHzp07Nc7XuHFjAWSWvGSnLB11cHAQsbGxWtenDJYHDhyoe0PUMDWov3v3rqwm1qtXL41pnD17Ns+D+jZt2mhNJyoqSs77119/aZ134sSJMpDJLcYG9crSWmOvNW3nQMWKFQUAMW7cOIPT1cfrfG3pG9Sbch/VN6g317muegzWrFmjMY179+7pvb7s4uLiZMGXrnv2kiVLBJBZKqr6A+3JkyeycKxevXp61f9WZa6g/tSpU3LayJEjNaZx/PhxOd9HH32UY7pqUK/pGs/IyJC1GLTdi/Xdllq1ammsGvPvv//KWKlz585Zpplrm/Pi+W/OANpc251fQb1Rvd+kp6dj/fr1ADI/dJP9k7dubm7o3LkzAGD9+vVIT0/PkUaJEiXkcEBAgDHZ0EqZ/saNG/HixQuj0lAoFBgwYIDG6fXr1wcAxMfHy249lZT9hru5uaFPnz4a0xgxYkSOZZRUP6us2tfrvXv3cO3aNSgUCvj7+8v5VOcRQuDvv/8GAPj7+2tcPwAMHDhQ4zTlNgLAjRs3tKZjqr59+8Le3l7ttMqVK8PZ2TlP8qHKzc1Na/+yyv2jLk/Kbl39/f1RrFgxretRfoE5Nz9KoU1wcDAyMjIAAEOHDtU4X+3atVG7du28yhYA7ecn8N9+dnJy0tkXsHI/x8TE4N9//zVPBs1EeX4DQEJCglnTVt4PAwMD8ejRI7OmbazX7drKi/uouc91Ozs7vP322xrT8PDwgJ2dHQBg7dq1SEtL0zuv+/fvlz059evXT6+8pqamIiIiQo4/cuSIfH5/+umnsLa21nv95qT6bH7//fc1ztesWTNUrVo1xzLZ1axZE7Vq1VI7TaFQoG7dugDM86wbOnQorKzUh3qlSpVC+/btAWQ+A1RjNXNvsy4F5fmf19ttbkYF9QcOHMD9+/cBAIMGDVI7j3L8/fv31W5w8+bNUa5cOQDA2LFj4efnh++++w4nTpxASkqKMdnKQhmYnDhxAmXLlsXHH3+M7du3Iy4uTu80ihYtCg8PD43T3d3d5XD2h3B0dDQAoG7dulq7M/Ly8pJfEVQuozqtcuXKALIG7MrhatWqwdPTU21Qf/78eTx58gRA1h8H6lSpUkXjNG3baG7a8gEARYoUyZN8qKpYsaLGGyLw3/5Rl6fw8HAAmQ835dfuNP3NmzcPAPDgwYNc2ArdVM891QBEnQYNGuR2drLQ9PBTUu7nFy9ewMbGRut+7tq1q1wuv/a1JqrnkLm/NaC8H167dg0VKlTA8OHDsWHDBty9e9es6zHE63Zt5cV91NznesWKFeHg4KBxffb29njnnXcAAFu2bEGFChUwceJE7NmzR35YR1degcwfldryWqNGDbV5PXPmjBxWBv75QXl/tLOzkwG3Jo0aNQIAXL16VWMso+tZp+3cN1TDhg21Tvfz8wOQeU6pBszm3mZdCsrzP6+329yMCuqVfdBrK2lRLcFX12e9ra0tAgMD5S+d06dPY9KkSWjWrBnc3NzQqVMnjaX8+pgyZQqGDx8OhUKBhw8f4pdffkHv3r3h5eWFmjVrYtq0aYiNjdWahpOTk9bpqg+k7PlUBtReXl4681q8ePEsy6hSBuRHjx6V45TBu3Ja69atAQAXL16UP1qU81hZWaFFixZa169tO7Vto7npu79zOx+q9M2TspRbKTU1NcfbG30Y+1bJVPHx8XJYV8mnp6dnbmcnC+XNXJOHDx8alW5+7WtNVEvQVYNAcxg+fDgmTZoEGxsbPHv2DAEBARgwYABKly6NChUqYMKECXn6Bgx4/a6tvLiPmvtc13VtAcDixYvRrVs3AMDt27cxd+5cdOnSBR4eHvDz88O8efPw/PnzXMmr6jWh+nY/rymfze7u7rCxsdE6r/J5LoTIcl9VlZfPOl33c9UYRTUGMfc261JQnv95vd3mpj3Haqh+Lfbp06caX5eo2rFjBxISEuDi4pJlfLVq1RAVFYXAwEAEBgbi6NGjuH79OpKTk7Fv3z7s27cP8+fPx549e3SemNnZ2tpixYoVGD9+PDZs2IDDhw8jPDwcKSkpiI6ORnR0NObPn49169ahR48eBqVtCIVCoXMeIYTGaf7+/li6dCkePHiAf/75B1WqVJEBvjKoL1WqFMqVK4cbN27g6NGj6Nu3r5ynVq1aet24ybxUbzz9+vXDlClT8jE3lk3XK3flvi5btix27typd7ply5Y1KV/mlJGRgfPnzwPILKVXPizMadasWfjwww/xxx9/ICgoCCdPnsSLFy9w/fp1/Pjjj1i4cCEWLlyIUaNGmX3d5vQmX1vmPtf1qc7i6uqKnTt3IiwsDJs2bcKRI0dw7tw5pKen4/Tp0zh9+jTmzp2LHTt2oEmTJjnyamdnl6VKjS6lSpXSe968ZurzPD/oyrOu/FriNpuDpW63wUH9pk2bkJycbNAyL168wJYtW/Dee+/lmGZtbY2ePXuiZ8+eADKr6+zduxdLlixBREQEIiIiMHLkSGzfvt3QrALI/OHw7bff4ttvv0VycjJCQkKwfv16rFmzBomJiXj33Xdx/fp1s5cCuLu74/79+3q98lW+MVBXOpe9Xr2rqyuuXr0q69Orznfjxg0EBwejT58+etenp9zh4OAAJycnvHjxAk+fPs3yerkgUv3h9/DhQ60PVm1V2FRLJLOXsGaXlJRkQA41U1aRi42NRZUqVXSWrhREoaGhSExMBAA0adIk1+oO+/j4YNKkSZg0aRJSU1MRFhaGzZs3Y+nSpXj58iU++ugjNGrUSOdr5/xkadeWOeXnue7n5yeraiQkJCA4OBgBAQHYvn07Hj58iD59+uD69etwdHTMkteUlBR4eHgY9YwtWrSoHL5//36+/RBXPpsfP36MtLQ0rftd+TxXKBQFokAtNjYWlSpV0jhd9Y2KagxiydtsCkvfboOr3yir0pQoUQIbNmzQ+VemTJksy+lSokQJDB8+HKGhoahXrx4AYNeuXQb/kFDH0dERb731FlauXIm5c+cCAJKTk7Fr1y6T085O+aA5c+YMUlNTNc738OFD3L59O8syqkqUKIGKFSsCyAzqs9enV1KtVx8VFYXHjx9nGU/6/fI2J2VgFBISUuCqemRXvXp1OaxaF1YdbdNV38Zpex35+PFjszXYVO7nFy9eICQkxCxp5rUFCxbI4V69euXJOm1tbdGsWTMsWLBAdnwghMCWLVsMTovXlmn03X8F5Vx3cXFBt27dsG3bNnz66acAMoPu48ePy3lUfxgeOHDAqPUoYwAAsqDKEOY6L5XP5pSUlCz1/NUJCwsDkNleQdnIOD+dPn1ar+lOTk6ynSNgWdtszvuPJW23OgYF9Tdv3pQXbZ8+fdC/f3+df8qW9UePHsWdO3f0Xpetra0sZU5LSzOqDqU2bdu2lcO50RvEW2+9BSCzitLWrVs1zrdixQr5Cke5THaq9eqz16dXUq1Xv3nzZgCZJ7qu+vRvEtUGYa9evcr19XXv3h1AZon0L7/8kuvrM0Xr1q1lKbu2H+Dnzp3DuXPnNE4vUqSIbEujLfjfsGGDcRlVQ7X63A8//GC2dPPKn3/+KQPpEiVKYNiwYXmeB1Pvh7y2TKPcf7r2XUE81zWdO506dZKdRPz0008G9Zyj1Lp1axQqVAgAsGjRIoPrU5vrvFR9Nq9YsULjfKGhobh48WKOZfLT2rVrNVYTuXfvnvzB1apVqyxvCC1pm815/7Gk7VbHoKBe9eTo27evXsso5xNCYO3atXL8sWPHcO3aNY3LpaSkyHrhzs7OBjXOe/LkCXbu3Km1vpNqyUFuvNJ77733ZMOP8ePHq+1S7Ny5c5g9ezYAwNvbW1ZByk754+bBgwfYtGkTgJxBvbJevRACixYtApDZbZa23nveNKqvf69fv57r6xs1apR8fTxlyhTs3btX6/whISFGlUaZg7e3t2z0vn37drWltcnJyfjwww91pqXspeKvv/5Su58vXbqEqVOnmpjj/zRs2FB2y7Znzx5MmzZN6/y3bt3S+KNC2RuHskeq3PTq1SvMnTsXgwcPBpBZdWnFihV6tVMy1Lp167QGVabeD3ltmUa5/x4+fKi1dw9znuv6ULbT0kbTuePt7S2r3J47dw4jR47Ueg4+fPgQv//+e5Zxbm5uGDlyJAAgIiICY8eO1fhcT01NzdE411znpZ+fn+xF5vfff8fBgwdzzPPs2TOZVysrK4wePdro9ZnT2bNnZc0EVWlpafjggw9kry3Z82tJ22zO+48lbbc6BlXIUwblxYoV07sEuFGjRihVqhTu3r2LtWvX4uuvvwYABAUF4dtvv0WLFi3QpUsX1KpVC56enkhOTsaVK1fw22+/ITIyEkBmX+6G1B18/vw5evToAV9fX/Tu3RuNGjWCj48PbGxscP/+fQQGBsqbR6lSpWTLfnPy9PTE3LlzMWbMGMTExKBBgwb48ssv0bRpU6Snp+PQoUOYO3cuEhMToVAosGzZMo1dX6oG8M+ePctRn151vhs3bsiuxlifPqumTZvK4XHjxuHrr7+WXa0BgK+vr1nrqLq6umLDhg3o1KkTXr16ha5du6JPnz7o06cPypcvDyDzlXVERAS2b9+O8+fPY9GiRfnWddv8+fMRFBSEFy9eoH///hg9ejR69+4NV1dXREdH44cffsDFixfRsGFDra90P/roI+zcuRPJyclo1aoVpk+fjrp16yIxMRGHDh3Czz//jGLFisHGxsagLma1CQgIQIMGDXD//n1888032L9/P4YPH46aNWvCwcEBjx8/xvnz57Fv3z4cPnwYPXv2xLvvvmuWdWuj2lVoeno6nj59irt37+LkyZPYsmWLbHNjb2+PX375BZ06dcqVfAwePBgTJkxA79690bRpU5QvXx4ODg6IjY3FwYMH8euvvwLILEDR1E2xNry2TKPcfxkZGRg1ahQ++eQTeHh4yP1XoUIFOW9enut37txB69atUa1aNfTq1QsNGjSAt7c3AODff//Fxo0bZUFT3bp1ZRd/Sj/++CNOnDiB6OhorFy5EidPnsSHH36I+vXrw9nZGU+fPsWFCxdw6NAh7NmzBzVr1szy7RYA+Pbbb3Hw4EFERUVh8eLFCA0NxciRI1GzZk3Y2dnh7t27OH78ONavX4+ZM2dmedNVpkwZGX/MmzcP3t7eqFy5sjwXvby8cnTgocmyZcvQqFEjpKSkoEuXLvjkk0/QrVs3ODs748yZM5gzZ47sQWrChAkFpq1HgwYN8MUXX+Ds2bMYMmQIihUrhqtXr2L+/Pmy+ki3bt2ydIGqZCnbXLduXTg4OODly5eYMmUKbGxs4OvrK98+e3t7y7Ye+rCU7VZL369UqX49S9tXttT59NNP5bInT54UQmT9AqG2v969e4vk5GSD1pf908Oa/ry9vdV+cljfr/vp88WwWbNmyS91qvuzt7cXq1ev1rlN5cuXl8tUr15d7Txr1qzJkvbWrVtNyrsQhn0hVBN9vyhnyhdI9dWvXz+Nx0J1P2jLsyp9vqQZFBQkihcvrtc5qc+5oI6pX5RVOnDggPy8vLq/adOmiSlTpggg82uemqhe89n/SpcuLS5cuKD3F2X1/RrfrVu35Oe9df299957OZZ/8eKFnK7uK8z6Uv1ap64/hUIh2rZta/TXmlVpOwf0yYubm5vaT6Lr63W9tlTP/ezMdR9NT0+XX9BV95edqee6vsdA9Z6h7a9q1aoat//x48eiY8eOeqXTunVrtWnExcWJli1b6lxe3b5Vfq1W1/z6HMv9+/cLV1dXrXkYM2aMxi+46vsM0zcG0UR1WyIjI0XdunU15rdZs2bi+fPnGtMydZvz6vmv/IKyuj9dXxNWx9Ttzq8vyupddKJaz1bbF1LV6dOnDxYuXCjTadSoESZOnIhGjRrh4MGDCA0NRUxMjHx1Vrx4cTRq1AhDhgyRX6Y1hI+PD86ePYuDBw/i8OHDuHHjBmJjY5GYmAg3NzdUr14d3bp1w4cffqj3r3RjTZo0CV27dsXixYtx+PBhxMTEwMrKCmXKlEH79u0xduxYvV71t2rVSr5W0tT4VVmvHsisRlBQS6Xy07p169CgQQNs2bIFly9fRkJCgs5eWkzVpk0bXL9+HQEBAdi1axfOnTuHx48fw8rKCp6enqhatSr8/f3Rp08f+bGx/NKuXTtER0djzpw52LdvH+7fv48iRYqgQYMG+OSTT9ChQweMHTsWAFC4cGGN6fz8889o3LgxfvvtN5w9exapqakoU6YMevXqhQkTJuRKtTAfHx+cOnUKf/31FzZu3IhTp04hNjYWqampcHNzQ8WKFdGkSRN0795d7ZtG1S+Ojhs3zuz5c3BwQOHCheHu7o6aNWuiYcOG6NGjh2wIn5v++ecfHDx4EEFBQbhy5QpiY2Px7NkzuLi4oHLlyujYsSNGjx5tcNfBqnhtGc/KygoHDhzADz/8gMDAQFy/fh1JSUkaq5qYeq7rq0WLFggNDcXBgwcRHByMO3fuIDY2Fi9fvoS7uztq166NPn36YNiwYRobCrq7u2Pv3r04fPgw1q1bh+PHj+P+/ft4+fIlXF1dUb58efj5+aFLly6yalF2RYsWxdGjR7F9+3asX78eJ0+eRFxcHJycnODt7Y3atWujX79+6NixY45lR48eDS8vLyxduhRnz57FkydPjKrfDwDt27fHtWvXsGDBAuzZswc3btzAq1ev4OXlhRYtWmDUqFFo3ry5UWnnliJFiuDEiRNYsGABNm7ciOvXr0MIgapVq2LIkCEYPXq01t62LGWb58yZg4oVK2LNmjW4cOECnj17ZlKf9pay3dkphKa7BhGRGm+99RaCgoLQvHlzHDt2LL+zYzbTp0/HjBkzULFiRVy6dCnfPklPRGSKVatWyfYMN2/ezJM2QlQwGPVFWSJ6M8XExMgGh40bN87n3JiXskHgpEmTGNATEZHFYVBPRJK2HqmSk5MxbNgw+d2FIUOG5FW2cl1KSgpOnTqFsmXLGtVQlIiIKL9Z3qcXiSjXjBgxAklJSejXrx/q168Pd3d3JCQkIDw8HEuWLJFB//vvv4+aNWvmc27Nx87O7rX4iBEREb25GNQTURbh4eFaPxzVq1cv+S0EIiIiKhgY1BORNH/+fGzfvh2HDx/G3bt3ERcXByEEihUrhsaNG2PIkCHyI1VERERUcLD3GyIiIiIiC8eGskREREREFo5BPRERERGRhWNQT0RERERk4XI1qB82bBgUCgW/ZmbhFAoFFAoFpk+fnt9Z0Zs58hwcHCzTCQ4ONlveiCzV9OnT5TVB5hEdHY1BgwahdOnSsLOzk/v37Nmz+Z21N+54v2nb+6Zp1aoVFAoFWrVqld9ZyTUsqScii7Nq1Sr58M3+Z2VlBVdXV9SoUQOjRo1CZGSk1rRUf7yp/tnY2MDd3R1ly5ZFy5YtMW7cOGzduhUpKSl5tJVvhoiICEyaNAmNGzeGt7c37O3t4erqivLly6Nv375YunQpnj59qnZZ1SBM9c/e3h7FihVDxYoV0blzZ0ydOlV+CbkgiYiIgJ+fH/744w/cvXtXftiNKLsRI0bI87t8+fJ6L6csXNV2j2vSpAmmTp2KmJgYg/L0+PFjLF68GN27d0f58uXh6uoKe3t7FC9eHK1atcLXX3+N6OhoQzeVTCEMFBAQIAAIAOLmzZta5x06dKgAIHx8fAxdDRUgyuM9bdq0/M6K3syR5yNHjsh0jhw5Yra8FQSWfm2q3od0/VlZWYkpU6ZoTEv1OOvz5+npKb799luRmpqah1tcMEybNk3uB1PduXNH9OjRQ6997ujoKCZNmiRevHihMT/6/FWtWlVs2rTJ5LybS7t27QQA4erqKpYsWSLCwsJEVFSUiIqKEsnJyXqn4+PjIwCIoUOHmjV/5jzelqCgbm9ycrIoXLhwlnP52LFjei2rvNfr8+fi4iL++usvnWmmp6eL2bNnC1dXV73Sbdeunbhw4YKpu0EtQ46Zv7+/ACD8/f1zJS8FAfupJ9KgVatWEOzxtcCbOXMmevToIf+fkZGBuLg4BAcHY8GCBUhMTMS3336LsmXL4r333tOa1ujRo/HRRx/J/ycmJiI+Ph7nz59HUFAQDh06hLi4OEyZMgWBgYHYtWsXPD09c23bXldnzpxBly5dcP/+fQCAj48P3n33XTRr1gxeXl5ISUnB3bt3cejQIWzfvh2PHz/G7Nmz8fbbb6NOnTpq01y5ciUaNmwIABBC4NmzZ4iLi8Pp06exa9cuREVF4dKlS+jXrx+GDx+O5cuXw8oq/15Wp6am4ujRowCADz/8EKNHj863vGgyffp0i6p2+brasWMHnj17BgAoVKgQkpKSsGbNGjRv3tygdPbv34+SJUvK/6empuLu3bvYsmUL1q5di4SEBLz99ts4d+4cqlSpojaNly9f4t1338WOHTsAZH6Nu1+/fmjfvj18fX3h5OSE2NhYhIeHY/v27Th79iwOHjyIZcuWYcGCBUZtP+mPQT0RWTRvb2/UqFEjx/i2bduiVatWaNeuHYQQ+OGHH3QG9cWKFVObVqdOnfDFF1/gwoULGDx4MM6cOYOwsDD07t0bQUFBsLOzM9v2vO4ePnyYJaCfNGkSpk6dCnt7+xzzvvPOO5g/fz7mzZuH2bNna023bNmyao9dr169MHv2bAQGBmL48OF49OgRVq5cCQ8PD/zwww/m2SgjPHr0SFblqlSpUr7lgwq+NWvWAABq164Nf39/LFy4EJs2bcLChQvh4OCgdzqVKlXK0caxbt266NatG3x9ffHNN98gJSUFP//8M3799Ve1aXz00UcyoG/YsCE2btyIsmXL5phPWe0tMDAQY8eO1TuPZBrWqSei11bbtm1Rv359AMA///yD58+fm5Re9erVERISgrp16wIAjh8/jiVLlpiczzfJyJEjZUA/ffp0zJo1S21Ar+Ti4oIZM2YgKCgIhQsXNnq93bp1w4kTJ+Dq6goAmDt3Ls6cOWN0eqZ69eqVHLa1tc23fFDB9uDBAxw4cAAAMHDgQAwcOBAA8OzZM+zcudNs6/n8889lA+FTp06pneevv/5CQEAAAKBGjRo4fPiw2oBeVbdu3RAeHo42bdqYLa+kmd5BvbIxmWpJV9myZXM0vNDWS8jTp08xdepUVK9eHYUKFYKbmxtatmyJP/74Q688vHjxAgsWLEDr1q3h5eUFOzs7FCtWDO3bt0dAQADS09P13Ry1kpKSsHHjRowYMQJ16tRB4cKFYWtrC09PT/j7+2PevHlITEzUmkb2XldOnz6Nd999F6VKlYK9vT28vb0xePBgXLp0Sa/8fPPNN6hZsyYKFSoEDw8PNG/eHCtXroQQQmfvLL6+vlAoFBg2bJjW9ZjaS9GNGzfw448/yl/7jo6OcHR0hI+PD9555x3s27dP6/KqjR5v3bqFV69eYcGCBWjcuDGKFi1qlp53Dh06hO7du6NEiRJwcHBAuXLl8PHHH+Pu3bsal9Gn95srV67gk08+QY0aNeDs7Aw7OzuULFkSderUwfDhw7Fx48YsD+/s4uPjMXPmTDRp0gRFixaFvb09SpYsiR49emDbtm16bVtCQgJ+/PFHtGnTBsWLF5dpNGrUCF988UWWhqLKhoWrV68GANy+fVttAyp1bt26hXHjxqF69epwcXGBk5MTKlasiJEjRyIqKkprHrNfF4cPH8bbb7+N0qVLw9bWNld7yFJN++XLlyan5+joiLVr18r9NG/ePKMbON6/fx9LlixB3759UbFiRRQqVEjeJ3r06IGNGzciIyND4/LqztFNmzahbdu28PT0hKOjIypXroyJEyfiyZMnOvNz9+5djBkzBuXKlYODgwNKliyJ7t2749ChQ0ZtX3YXLlzAX3/9BSCz1HHy5Ml6L9uyZUudAYQuFStWxHfffSf/P2fOHJPSS0lJwZIlS9C6dWt4enrCzs4OxYsXR+fOnbFu3Tq1x055Dapuy3vvvZfl+tP3fqfszeP27dsAgNWrV+e4llV7+rh165Ycv2rVKgDAtm3b0LlzZ5QsWRI2NjZZ5tfVG0xKSgoCAwPx8ccfo2HDhihSpAhsbW3h4eGBRo0aYfr06Xj06JHWbcj+nPrnn3/wwQcfwNfXF/b29vDy8kKvXr1w8uRJnfsjNTUVP//8Mxo2bAgXFxe4ubmhQYMG+Omnn5CSkqJ2+42RlpaGFStWyP1mb2+PokWLomXLlliwYIFZ7jNKf/zxB9LT02FlZYUBAwbAz89PvtlRluCbg7OzMzw8PABovk/OmjVLDgcEBMDZ2VmvtIsUKYLu3bubnkkVyrhhxowZcpy6Z9mtW7c0pnHv3j3873//Q4UKFeDo6AgPDw906NABe/fu1SsPpjy/zRkrZqFv5Xt9G5OpNihUbYx36dIl4evrq3G5MWPGaF1/WFiY8Pb21rpuPz8/8eDBA6MaFwjxXyMKbX9ly5YVly5d0piGcr5p06aJRYsWCRsbG7XpODk5iaNHj2pM586dO6JChQoa89G1a1dx4MABrQ059W08pavRpOo2ZXfjxg29zotBgwZpbFio2ujx9OnTok6dOjmWN7TBq+py06dP15gvV1dXjcdBV0PZTZs2CTs7O53bHhUVpTb93bt3Czc3N63LdunSRSQkJGjczoMHD4qiRYvqzIOSvg0Ls1u9erWwt7fXOL+1tbWYPXu2Xsdj0qRJOZY3tMGu6jkTEBCgdd4GDRoIAMLBwUFkZGTkmK56nA05z9q3by+XCwkJMSj/QgiRlpYmrKysdB6Ldu3aaTwHVPN+6NAhMWDAAI3pVKhQQdy/f19jfoKDg7U2fJsxY4bJDQnHjx8vl//999+NSkOVan70bcyelJQkrzsnJyeRkpJi1Lpv3bolqlatqvXYNW/eXDx+/FhjnjX96Xse6vPMUm0UePPmTTl+5cqVYvDgwVrn13W89WmE6eHhIY4fP65xG1SfU1u3bhVOTk4a7zF//vmnxnTi4+OFn5+fxnz4+fmJM2fOaL1v6HN+X7t2TVSrVk3rNlesWFFcuXJFYxqGqFWrlgAg2rRpI8fNmDFDABA2NjYiNjZW6/Kqx0hb5yYJCQlCoVAIAKJDhw45pkdFRWU5r/Obvp0lqG6zakPZY8eOCQ8PD43LzZ07V+v6TX1+q17rpsSKOdLVd8bExEQRFRUlZs6cKVe2f/9+2VJf+ZeYmCiXUZ5Mnp6eomLFisLFxUVMnjxZBAcHi/DwcLF8+XJRqlQpmd6+ffvUrvv8+fOiUKFCAoAoVqyYmDZtmjh06JA4c+aM2L9/vxgzZozcIY0aNTL6Jt2sWTNRs2ZN8fXXX4vt27eLU6dOiZMnT4qNGzeK/v37ywdw5cqVNfZMoNyWxo0bC4VCIWrXri1WrlwpTp8+Lf7++28xbtw4mU6ZMmXEq1evcqTx6tUrUaNGDZlWp06dxPbt20V4eLjYsWOH6Ny5s9xWbQ+0vAjqr169Kuzs7ES3bt3EwoULxaFDh0RkZKQ4dOiQWLJkiahevbpcfurUqWrTV704a9WqJRQKhRgyZIjYvXu3iIiIENu3bxd79uzRug2a8qwM6CpXrixWrFghTp8+LQ4dOiRGjhwpj4OLi4u4detWjjS0BfUPHjzIck5+88034sCBAyIyMlKcOHFCrFu3Tnz44YeiaNGiaoP6AwcOCGtrawFA+Pr6iu+//14EBweLyMhIERgYKAYNGiTX3bt3b7XbePjwYXneW1tbi2HDhont27eLiIgIERISIpYvXy569+4tbG1t5TKxsbEiKipK9jpSsmTJHNdw9vzu2rVL3uydnZ3FtGnTxLFjx0RoaKj48ccfs/yoWLJkidbjoXxA1axZU6xcuVKEhYWJo0ePip9//lnXIc1C36D+8OHD8ji//fbbaucxNqj/4Ycf5HJz5swxKP9CCJGamiqsrKxEmzZtxNy5c8W+fftERESECA4OFitXrhRNmjSR6Q8ZMkRn3ps2bSoAiJ49e4pt27aJiIgIsWfPHtGlSxc5T//+/dWmc/PmTeHi4iKAzN6CRo0aJQ4dOiROnz4tVqxYISpWrJjletIW9GijurwpBTBKxgT1Qgh5DwUgTp48afB6ExISRLly5WQaPXv2FDt37hTh4eFi8+bNWYLtJk2aiLS0NLms8hrcv3+/nGfmzJlZrj9dgZrSjRs3RFRUlChZsqQAIHr06JHjWr5x44acXzWoV16LLVq0EOvXrxfh4eHi0KFDWX5s6QpyBw4cKMqVKyfGjx8vNm7cKEJDQ8Xp06fFli1bxKhRo2Shh6enp8ZtUj6n6tatKxwcHETZsmXF4sWLxcmTJ0VoaKiYPn26cHBwEEBmIczDhw/VptOhQ4cs+3zDhg0iPDxc7N27VwwcODDHM9OYoD4mJkZ4eXnJ58b48ePF3r17RWRkpDhy5Ij46quv5I+ScuXKiadPn2o6dHo5e/aszM/KlSvl+OvXr8vxP/30k9Y09A3qVQu/fvnllxzTFy9ebNL9ztzi4+NFVFSUGD16tMyXumeZajyovC4rVaokihYtKooVKybmzJkjjh8/LsLCwsT8+fNloG5jYyOio6PVrtscz29zxIpq0zV0RxrTpSUA4ebmpnYHXb16VV6w3bt3zzE9IyND3nxq164t4uLi1K5r7969cgcYWwKk65f1wYMHda5D9RdW586d1R4I1R9G27ZtyzF9/vz5cvrHH3+sdj0ff/xxlnXlV1CfmJgoYmJiNKadkZEhhg0bJgCIQoUKqb3JZf/FvWLFCq351YdqevXq1VP7a3nNmjVynr59++aYri2oX7FiRZYbiSbJyck5uuFLTEyUD4b27duLpKQktcsuW7ZMruPQoUNZpr148UKUKFFCAJm/5LUFNHfu3MkxTt8uLVNSUuQbMmdnZ3HmzJkc89y6dStLXtRdo6rHo23btuLly5da16uL6jmTPSA6d+6cCAoKElOnTpUlzyVKlBCXL19Wm5axQf2hQ4fkcsOHDzd4GzIyMsTVq1e1zjN16lQBQCgUCrX3p+xvUGfOnKl2Pcq3CjY2NmqDot69e8s01q9fn2P68+fPRe3atbOsyxi2trYCyPwxaQ7GBvWTJ0+Wy61Zs8bg9U6YMEEuP3ny5BzTMzIyZCAJqP+xqxpg63rbpIu+93rVdQKZPxbVvb1S0hXkXrt2Tevy58+fF87Ozhr3k2reAYj69eurfUasW7dOzjN//vwc07dt2yan9+jRI8uPKKV58+Zl2XZjgvquXbsKAKJ06dLi+vXraueJjIyUBT6atllf48aNE0DmW8Znz55lmab80V+3bl2taajGYdkLYs+cOSMCAwPF8OHDZWzTrFkztffnDz74QKZz4MABk7bLnIzp0lL57Lt7926OeY4dOyYLsT799NMc083x/BbCPLGiOnkW1C9cuFDjfP379xcARJEiRXJMCwwMlGmcO3dO6/r69esnT8rc0rNnTwFkVn9RR5lXBwcHjSUTz58/lyUY48aNyzG9cuXK8sGn6Y1AcnKyLJ3Jz6BeH48fP5a/ards2ZJjuuo5pfqK0RSqF0x4eLjG+Tp16iSDnew/TrQF9bNmzdJ4zuqyaNEineeIkvJ18sCBA7OM/+2332TedJXUqKNvUL9x40a5nu+++07jfKoP3R9++CHHdOU0KysrnfcNfej76tXe3l5MnDhR/PvvvxrTMjaoV32V36tXL5O3SZ20tDT5JmTevHk5pqvmvX79+hoDrH379sn5svdDHRMTI69PTfc1IYQ4deqUSUH9s2fP5LK6AhF9GRvU//TTT3I5Q98SvXz5UpbmVatWTW0AKUTm9ipf71erVi3H9PwO6t3c3MTz58+1zm+OftvHjh0rAIgaNWqona4a1Gt6xmdkZMjnnbprTVlK7+DgoPENUEZGhqhXr57RQb1q9RNdfblPnDhRPsONlZaWJooXLy4AiH79+uWY/ssvv8j8aCtY0ref+pIlS4qffvpJY8zRq1cvvWOxvGRsUL9z506N8zVu3Fjjfcocz28hzBMrqpMnvd8oFAoMGDBA43Rl7xTx8fE5vhyobFRVuXJl1KpVS+t6WrZsCSCzwYGpjWYBIC4uDlevXkV0dLT8U/ZJfe7cOa3LtmvXDsWKFVM7zcXFBRUrVgSQ2chU1b1793D58mUAQL9+/TR2V+Xg4IC3337boO3JC8p+by9duiT3WUxMjGyAo2u/KVv2m0vNmjXl+aXO8OHDAWQ2fNLWyDu7EiVKAMg8Z5XnqL6U8/v7+2s8R5SU53RoaGiW8bt37wYAODk54cMPPzRo/YZQNpBUKBRyX6nz9ttvy55JtDWqbNasWa42is3u1atXWLt2LdauXWv2bw6oNhJLSEgwOb2MjAzExMTg8uXL8tq5dOkSSpUqBUD3tTNgwACNDRpVr4Hs95wjR47I+6W2Lj/9/PxQvXp1vbZFHdV9VKhQIaPTMQdTjl1ERIR8Tg0bNgzW1tZq53N1dUW/fv0AABcvXpQ9/hQU3bp1g4uLi1nTjI+Px/Xr13HhwgV5Dru5uQHI3AfaGpTXrFlT4zNeoVDIHqeyn79paWnya8EdO3aEl5eXxjQGDx5s6CZJyvu2k5MTunTponVe5X07JiYG//77r1Hr279/Px48eAAAGDRoUI7p77zzjuw1ae3atUatQ1VMTAwCAgI0dmxRkK5fU7m5uWk9hsr7ZfZzDTDP81uVsbGiJnnST33RokVlUKeOu7u7HE5ISJA3AQAIDw8HAFy+fFnjAyu7lJQUPHnyxKiPwoSEhGDhwoU4dOiQ1t4idLXo1/ThBiXlNmd/oKh+UllbMAoADRo00Do9r6SmpmLZsmVYu3Ytzpw5I/teVkfXftP1w81Qyo/RaOLn5yeHDfmcdffu3eHm5oanT5+iV69eaNWqFbp164aWLVuiTp06Gh/0wH/n9P79+/U+p5U3dyVlV3wNGjSAk5OT3vk2lHKf+Pr6ar2B2dnZoW7duggODta6H819fIHMXhiy9/CUmJiIS5cuYdmyZfj9998xadIknDt3Dhs2bNB7n+uieu0qu0k0lBACf/zxB1asWIFTp04hOTlZ47ym3HOy32NVqfZcpM/1cuHCBa3zaKIaQCYlJRmVhrmYcuxUz+9GjRppnbdRo0ayv+/o6GhZGFAQmOtajIqKwk8//YS9e/fmuE+pysjIQHx8vMb7iLHPzOvXr8vrJjefmcr79osXL2Bjo3/o9ODBA5QuXdrg9Sl7KPPw8EDHjh1zTFeODwwMxB9//IHvvvtO58fUbt68maVQRQiB+Ph4hIWFYc6cOTh69Ch69+6NhQsX4uOPP86ybEG6fk1VsWJFrftK07kGmOf5rcrY816TPCmp1xV0qO7c7CXsDx8+NGqdL168MHiZ6dOno3nz5ti0aZPO7t+0PXwB/bc5+/bGx8fLYV2/AgvClyyfPHmCJk2a4OOPP8apU6e0BvSA7v1WpEgRc2ZP5z5ULdXRp8s/JQ8PD+zcuRPe3t4QQuDIkSP43//+hwYNGsDd3R19+vTBrl27ciyXmpqa422UPrKfz8oAL7eDBOU+0VT6pap48eJZllHH3MdXE2dnZzRs2BDLly/HpEmTAAAbN26UfSybg2qQrRo06+vly5fo0qULBg8ejODgYJ3Xhin3HG33WEPuOfqcB5q4urrKksXY2Fij0zEHU46d6vmta38or4nsyxUE5rgWV6xYgXr16iEgIEBr4KKk7Rwu6M/MvIxFVPugVy2Rz05Zgn/v3j0EBQUZvB6FQgF3d3d07NgRQUFBaNGiBYQQGDdunKwxoFS0aFE5nN/Xr6n0Pdeyd0lrrue3MXnRt/ZJgf+irHJDmjVrht9++03v5VQ/hayPoKAg2d9puXLlMGHCBDRv3hxlypSBs7OzLHmdOnUqvv32W4PSfp199tlniIiIAAD07NkTw4cPR61atVCsWDE4ODjIX7JlypTBv//+q7MKhLYSbmOYq1RWnRYtWuDatWvYunUr9uzZg7///ht3797F8+fPsW3bNmzbtg0dOnTAtm3b5IWremH269cPU6ZMMSkPubl9hq5Hn+ot5j6++hg/fjzmzJmDjIwMrFixQms1IkOofriocuXKBi8/a9Ys2R+yv78/xowZg3r16qF48eJwdHSUN/OWLVvi2LFjZq8+pKSarq7jbGoeateujfDwcMTExCA2NtakHwmmMPXYKeX2/spNpl6L//zzD0aNGoW0tDQUK1YMn3/+Odq0aQNfX1+4uLjIQHTlypV4//33ARTs/aGL8t5dtmxZgz76ZMy3FTZt2iT7il+yZIleH7hbs2YN2rVrZ/C6lKytrfG///0Px44dQ1paGtasWZOlX/ratWvL4cjISJPWZanM/fzODQU+qPfw8EBsbCzi4uLUfgLcXJYvXw4gs65VaGioxl/8qqUCuUG19ERXyUBcXJzW6Zp+bWZn7Ku058+fY+PGjQAy6/Nq+4hYbu83TXSVKKhON6a01cHBIctX/m7cuIHdu3dj8eLFuHLlCvbv34+vv/4aP/30k5zfyckJL168wNOnT40+p4sWLYq7d+8iJibGqOX1pdwn+pTCKfelMfsxN7m7u8PT0xOxsbE6P5JliIMHD8rh5s2bG7SsEAK///67XPbw4cMaXwfn9rWjerxiY2O1VhUwtrRSyd/fX76+3r17t9l+YBnixYsXOHHiBIDMusF16tQxaHnV/fXgwQP5ISB1TL2/FGSrVq1CWloarK2tERwcjKpVq6qdz5KemdooqxDHxsaiSpUqBlXBMZSy6o0htm/fjsTERL0/CKWOalWQ7PdKf39/Obx792588cUXRq/HUpnr+Z2bDK5+k1clg0rKxjFXrlyRX83LDcp6om3atNH6Ck/5QMotqg3RdK1L13RlHThdN9Xsr9n0dfXqVdnwqX///lrT1/Ul3txy+vRpvaeb4wItV64cPvnkE5w+fVo2cNy0aVOWeZTndEhIiFGvZgGgXr16ADLPAWPS0Pc6Vu6TW7duaX1gpqamytLPgnijS0tLAwCjv/yaXXR0tHzdXbp0aYPr6j558kT+UOrXr5/GgD4xMdHo61NfNWvWlMOGXC/GUG37sGjRIrN0aGCogIAAPHv2DEBmY1FDgzPV8/vUqVNa5w0LC1O7nLnl9XMZ+O+ZWbt2bY0BPZD7z8zy5cvLDiVMfWZqo7xvv3jxAiEhIUano8uNGzdk+v3798eGDRu0/im/kJyUlIStW7eatG7lfRLIea+sUaOGvM8dO3ZMvqHPb/kVk5ry/M5NBgf1qr2xvHr1yqyZUUf108I//PBDrq1HeTJrO0hnz57V61PVpihVqpQs+dm8ebPGzzW/fPkSmzdv1pqW8rVfZGSkxtee0dHRRpdeqt4AtO03Q6pNmVtUVFSWV+3ZrVy5EkDmq0fVz6ObytXVVTY6zN7AUXlOJyUl4ZdffjEq/W7dugHI3O/Lli0zeHnldazrGn7rrbcAZJYsK/eVOlu2bJGBknKZguLmzZt4/PgxABjVYC275ORkDBkyRF5TEyZMMDgw1PfaWbFihdl+iGjSunVrWRVDWwlheHi4QY3J1alRo4Y8/8+ePSsDEn0cO3YMN2/eNGn9V69exVdffSX//+WXXxqcRv369WVnDqtXr9b4wyQhIUH+oK9WrVqutn/R93o2J32emQ8ePDC4dzBD2djYyF5G9u/fr/HtrBDCpF5ievToIYdzMxZZs2aNHJ4wYQL69++v9W/ixImyGpvqssZQ/dGu7l6pbJ8EZPYcp+9b/qdPnyIwMNCkvGmSXzGpKc/v3GRwUK96Y7p+/bpZM6NOnz59ZCnAr7/+ihUrVmidPzo62qiTR9lt0PHjx9V2HRQXF6e2W6ncMHLkSACZXUx9/vnnauf5/PPPdVa9UL4ui4mJwYYNG3JMT0hIMOn1d4UKFeSvZE03k127dmHRokVGr8McPvzwQ7U3n/Xr12PPnj0AMtsDGPLQ3b9/v9Yu6p49eyZL6bLXqRw1apRsdDRlyhRZr1qTkJAQ2WWb0qBBg+Dt7Q0A+Prrr3H06FGNy9+9ezfHOOW2Pnz4UGur+l69esn2KbNnz1bbreK///6LCRMmAMhs9KOtW8S8lpGRkSVw69y5s0npXbx4Ec2bN5c/FP39/TF69GiD0/H09JSB4Z9//qm2gfnp06cxefJkk/KrjxIlSsiAZefOnTneLAGZbwzM1XXq0qVLZRAyZcoUTJ06VWsD+6SkJMyYMQNt27aVPxyNsWvXLjRt2lSe71999VWWesL6sre3x4gRIwBkllYr22KpEkLg448/lj/os/ckYm7K6zkvnslKymfmlStX1BZ2vXjxAgMGDNDZwNsclM/Mly9fYuTIkWp/aM2fPx+RkZFGr6Nhw4Zo3749AGDPnj2YNm2a1vlv3bql9rmri/KHh6+vr87efIDMarY9e/YEAAQHBxvdhWZ8fHyWH9nq7pW9evXC0KFDAQDnz59H27Ztddag2LNnDxo0aKC2Ia+vry8UCoVJpe15HZOa4/mdmwyuFFa3bl04ODjg5cuXmDJlCmxsbODr6ytfH3t7e8PR0dFsGbS2tsbGjRvRtGlTJCYmYsSIEdi8eTMGDBiAypUrw9bWFg8fPsSZM2ewa9cunDhxAuPHj5clmfoaMmQIAgMDkZiYCH9/f3zxxReoX78+hBA4ceIE5s+fjwcPHqBJkyZa+xw1h48//hgBAQGIjo7G4sWLcePGDYwcORKlSpXC3bt3sWzZMuzevRt+fn4ycFR3UQwaNAjTp0/H8+fP8f777+PatWvo0KEDFAoFwsPDMX/+fNy7dw9169bVWpqtiYeHBzp37ozdu3djz5496NixI0aOHIkyZcrg4cOH2Lp1K1atWoVy5crh6dOnJtVnNFaDBg0QHh6OBg0a4IsvvkDNmjXx7NkzbNmyBUuXLgWQWU1p3rx5BqW7YcMGdOvWDe3atUP79u1Ro0YNuLu7IyEhQR63e/fuAUCOoM/V1RUbNmxAp06d8OrVK3Tt2hV9+vRBnz59UL58eQDA/fv3ERERge3bt+P8+fNYtGiRLI0CMksn1q5di/bt2+PFixdo27YtBg8ejF69eqFUqVJ49eoVLl++jD179uCvv/7KUYLRtGlTAJlB76hRo/DJJ5/Aw8NDnkcVKlQAANja2mLZsmXo1q0bEhIS0Lx5c3z++edo27YtbGxscOLECcyZM0dWzZk3b16WXhLywr1793KUICclJeHixYtYvny5vF49PDx0lsw+fPgwS1pJSUmIj4/H+fPnERQUhIMHD8oS+saNG2PLli0ae6bQxsrKCgMHDsQvv/yCs2fPokWLFhg3bhwqVKiAZ8+eYc+ePViyZAmcnZ1RsmRJXLlyxeB1GOLHH3/EwYMHkZCQgAEDBuDo0aPo27cvXF1dcf78ecyZMwdXrlyR15Mpihcvjl27dqFr166IjY3Ft99+i7Vr12LAgAFo1qwZihUrhpSUFNy7dw+HDx/G1q1b9bp33Lx5U557Qgg8f/4ccXFxOH36NAIDA7O8kfzggw+yNAI01NSpU7Ft2zbcuHED3377LaKjozF8+HCULFkSN2/exOLFi+V3L5o0aZKr35IAMq/nI0eO4PTp05gzZw46deok+xJ3dHSUBQDmNHjwYCxatAgZGRno3LkzJk6ciKZNm8LBwQERERH46aefcPXqVTRr1ixXq6sAQO/evdG+fXscOHAAf/31F1q0aIGxY8eiQoUKiIuLw7p167Bu3Tqdz0xdAgIC0KBBA9y/fx/ffPMN9u/fj+HDh6NmzZpwcHDA48ePcf78eezbtw+HDx9Gz5498e677+qd/rFjx2ShYp8+ffRerk+fPli6dCkyMjKwbt26LG+jVF25ciVLVVghBJ4+fYpTp05h0aJFuHPnDoDMdj6qbyZULVmyBE+ePEFgYCBOnTqFypUro1+/fujQoQN8fX3h6OiI2NhYREZGYvv27bleTUf5LAOAcePG4euvv0aJEiXk8fX19TVr+wdzPL9zlV6fqMpG+bU0dX+qX/XT96uV+nyl9ty5c6JixYp6fRltxowZxmyWeO+99zSmaW1tLRYsWKDz62XKabq+TKn8spm/v7/a6bdv3xbly5fXmJ/27duLvXv3yv+fPHlSbTqbNm2SX4vM/ufg4CA2bdpk0hdl79y5I8qUKaMxn2XKlBEXLlzQ+sVDQ75SrC/VPKses+x/rq6uIjg4WG0a2r4oq+9X+saMGSPS09PVph8UFCS/GKjrb/Xq1WrT2LdvnyhSpIjO5bNLT0+XX83TZ/5Vq1YJe3t7rdfH7Nmz9Toe5qDvF2WVf2XLlhURERFq01I9zvr8eXp6ilmzZonU1FSTtuHp06eiTp06Gtfj7u4ujh49qvVeoe0czU7XMThy5IhwcXHRmJ/s15Kpbt26Jbp06aLXPi9UqJCYPn16js/Xa7u21f1Vq1ZNbN261eS8C5H5ddYqVapoXV+zZs3E48ePNS6vnM/UL8revXtXuLu7q82D6nlj6Dp1He8ZM2Zo3f7x48frvL+b68vn8fHx8gue6v7q1q0rwsPD5f///PNPg7dXiMzztmHDhnqdb++9957WbcpuxIgRctnQ0FC9l0tNTZXHv2rVqlmm6fusUv61bt1a4zmrlJ6eLr755hut9wvVvy5duojLly/nSEf1a8Km6Nevn8Z1q55zuuIuJX3OA1Of37rux4bmWcmofurnzJmD5cuXo0WLFnB3d8+Tbupq1aqFixcvYvXq1ejZsydKly4NBwcH2NnZoUSJEmjVqhUmT56MiIgITJ061ah1rFy5EmvXrkWLFi3g4uICe3t7+Pj4YPDgwThx4gQ+++wzM2+VZmXKlMG5c+cwY8YM1KhRA46OjnBzc0Pjxo2xZMkS7N27N0t9e+XXPLN7++23ceLECfTq1Quenp6ws7ND6dKlMXToUISHh5v8VdrSpUsjMjISn3/+OSpVqgR7e3sULlwYtWvXxrRp03D27FlUq1bNpHWYavr06di3bx+6dOkCLy8v2NnZwdfXFx999BEuXLiQpVW/vhYsWICtW7di1KhRaNCgAby9vWFnZwdHR0dUqlQJw4YNw/Hjx7F48WKNjSDbtGmD69evY/HixejYsSNKlCgBOzs7ODg4oHTp0mjfvj1mzZqFf/75B0OGDFGbRocOHXDjxg3Mnj0bTZs2hYeHB2xtbeHt7Y1GjRph0qRJattMWFlZ4cCBA5g8eTJq164NZ2dnrSVXQ4cOxT///IPPPvsMVatWRaFCheDo6Ijy5cvjgw8+wJkzZzSWDuUHBwcHlCpVCl26dMHSpUsRHR0tGxfry8rKCoULF0aZMmVkyd/WrVtx9+5dTJo0yeTSn8KFCyMkJATffvutLOlzdnZG1apVMWHCBJw7dy7vSncAtGrVChcuXMDo0aPh4+MDOzs7eHl5oUuXLti3bx+mT59u1vX5+Phg165dCAsLwxdffAE/Pz95DTg7O6NcuXLo27cvli1bhpiYGEybNg329vZ6pW1rawsPDw+UK1cOnTp1wpQpU3Ds2DFcuHABvXv3Nkv+fX19ce7cOSxevBj+/v7y2vPy8kLHjh2xdu1a/P3333nS6423tzfCwsLw/vvvo0KFChq/RG5uU6dOxe7du9G+fXsUKVIEdnZ2KFWqFHr37o0DBw4Y/AbUFG5ubjh+/DgWLFiA+vXrw9nZGS4uLqhTpw6+++47nDhxIkusoumZqYuPjw9OnTqF7du3o3///ihbtiycnJxga2sLT09PNG3aFOPHj8fRo0d1VhdWpdpOTnn/1peNjY0sWb906ZJBDdqdnZ1RsWJFDBgwAIGBgQgKCtJ5zlpZWWHKlCm4ceMGFi5ciK5du8LX1xfOzs7yvuHv74+vv/4aFy9exK5du7T2EmWqdevW4YcffoCfnx8KFy6s8yNc5mCO53duUPz/LwayQDNnzpRVoBISEvLsRk5ERGRp1q1bh8GDBwMArl27JqtLEL0u8uSLsmR+QgjZR3ydOnUY0BMREWmhbLjq6emJcuXK5XNuiMyPQX0BdevWrSzd3mU3depU2aBP2RqdiIjoTXTv3j2tPe2sWLFC9nY2ZMiQfOnbnyi3sfpNATV9+nQEBATIHiFKliyJ1NRUXLp0CatXr5Y9K1SrVg2RkZF61zUlIiJ63axatQoTJ05E//790apVK/j4+CAjIwPXr1/Hxo0bsWPHDgCAl5cXoqOj87yXLqK8kHvfOSaT3blzB3PmzNE4vUqVKti9ezcDeiIieuPFxcVh0aJFGr+NUqJECezevZsBPb22WFJfQP3777/YsmUL9u/fj2vXriEuLg7Jyclwd3dH7dq10atXLwwfPhx2dnb5nVUiIqJ89ejRI2zZsgX79u3DpUuXEBcXh4SEBLi5uaFq1aro1q0bRo0aBRcXl/zOKlGuYVBPRERERGTh2FCWiIiIiMjCMagnIiIiIrJwDOqJiIiIiCzcGx/U37p1CwqFAgqFAqtWrcrv7LzxVq9eDYVCgerVqyMjIyPLtLCwMCgUCri7u+Px48f5lEMiIiKigueND+oLiuDgYPnjQvXPxsYG7u7uKFu2LFq2bIlx48Zh69atSElJye8sm11SUhK++uorAMCUKVNgZZX19PTz80OHDh0QHx+P6dOn50MOiYiIiAomBvUFXHp6OuLj43Hr1i0cO3YMCxYsQN++fVGqVCnMnDlT61dnLc3ChQtx//59VK1aFf369VM7z9SpUwEAy5Ytw+3bt/Mye0REREQFFoP6Amj06NGIioqSf6GhodizZw/mzJmDdu3aQaFQIC4uDlOmTEGzZs0QFxeX31k2WXJyMn788UcAwLhx43KU0is1bdoUjRs3RkpKCn744Ye8zCIRERFRgcWgvgAqVqwYatSoIf8aN26MTp064YsvvsCBAwcQFRWFunXrAsisZ967d2+Lr46zbt06PH78GPb29nj77be1zjtgwAAAmfXvnz59mge5IyIiIirYGNRboOrVqyMkJEQG9sePH8eSJUvyOVemWbFiBQCgS5cucHNz0zrvO++8AxsbGyQlJWHjxo15kDsiIiKigs2ooD46OhozZ85Ehw4dUKpUKdjb28PZ2RkVK1bE0KFDcfLkSa3LT58+XTYEBYCXL19i7ty5qFevHlxcXODi4gI/Pz8sXrxYrzrjx44dQ+/eveHl5QUHBweUK1cOo0aNwrVr1wAArVq1gkKhQKtWrYzZXCksLAwffPABKlWqBGdnZxQqVAhVqlTBmDFjcPXqVZPSNpSjoyPWrl0r9+G8efOQmpqap3kwl9u3b+PUqVMAgD59+uicv1ixYmjevDkAMKgnIiIiAgBhoCNHjggAOv++/PJLjWlMmzZNzvfgwQNRu3Ztjel069ZNpKena0xr5syZQqFQqF3WxcVF7N+/X/j7+wsAwt/fP8fyN2/elPMHBASoXUdqaqoYPXq01u21tbUVy5YtM3R3Sqr7ddq0aXov1759e7lcSEiI0evPT6tWrZLbcP36db2W+fLLLwUA4eDgIF69epXLOSQiIiIq2AwuqU9LS0OhQoXQr18//PbbbwgODkZkZCT27duHH3/8ET4+PgCAOXPmICAgQGd6vXv3xqVLl/Dpp5/i4MGDiIiIwPr161G1alUAQGBgIJYvX6522Q0bNmDy5MkQQqBIkSKYM2cOTpw4gRMnTuD777+HjY0N+vfvj/v37xu6mVm8//77+PXXXwEAnTp1wrp16xAWFobTp09j+fLlqF69OlJTU/Hhhx8iMDDQpHUZ6q233pLDx44dy9N1m4sy3+7u7ihXrpxey/j5+QHIfMtz+vTpXMsbERERkUUw9FdAXFyciI+P1zj91atXol27dgKA8PHxEWlpaTnmUS2pt7W1FUeOHMkxz+PHj4WXl5cAIGrVqpVj+suXL0WxYsUEAOHu7i4uX76cY57Lly8Ld3d3uS5jSuq3bNkipy9fvlztNicnJ4s2bdoIAMLX11ekpqaqnU8bY0vqDx06JJcbPny4wesVQsg3Gab8DR061Kh1CyFE1apVBQDRtm1bvZe5ffu2XPcPP/xg9LqJiIiIXgcGl9QXLVpUa0NGOzs7zJ07F0BmXemzZ89qTe+TTz5RW9fd3d0d7733HgDg/PnzePbsWZbp27dvx8OHDwEA06ZNQ6VKlXKkUalSJUybNk3r+nX57rvvAAC9evXCiBEj1M7j4OCAxYsXA8j8Qm1wcLBJ6zSEh4eHHI6Pj8+z9ZrT3bt3AWTWldeXl5dXjuWJiIiI3lQ2pibw6tUrxMbGIjExERkZGQAAIYScfu7cOdSvX1/j8gMHDtQ4TXW5mzdvok6dOvL/QUFBAAArKysMHjxYYxqDBg3C2LFjs+RJX/fu3UNERAQAaPwYklLVqlVRtGhRPHr0CKGhoVmqxeQmZ2dnOZyQkGBUGgEBAUhKSjIpH0WKFDFquVevXsl8G5KGvb09HB0dkZyc/Fr0009ERERkCqOC+qSkJCxcuBB//vknLly4gPT0dI3zPnr0SGtaVapU0TjN3d1dDmcPWKOjowEAZcuW1RoMKutpX79+XWs+1AkPD5fD7777Lt599129lnvw4IHB6zKW6n5xdXU1Ko2yZcuaKzsGe/LkiRw29IdBkSJFkJycjMePH5s7W0REREQWxeCg/tatW2jTpg1u3ryp1/zJyclapzs5OWmcpvpV0ew/HJRVTfSpsuHp6WlUUK+s3mOoFy9eGLWcMVR/NKn+CLIUDg4OcljXuZKdcn5HR0ez5omIiIjI0hgc1A8ePBg3b96EQqHAe++9h/79+6Nq1arw9PSEvb09ACAjIwPW1tYAYFS1l4JC9YfEH3/8gVq1aum1nLFVUYxx5swZOVy5cmWj0rh586ZZqt94e3sbvJybmxtsbGyQlpaWpdRel4yMDNnOwtPT0+D1EhEREb1ODArq//nnHxw/fhwA8NVXX2HWrFlq58uLBpvKwFmf0nRj61yrNkJVKBSoUaOGUenkpoMHD8ph5QeZDPXee+/h6NGjJuVj6NChWLVqlcHLKRQKFC1aFA8ePDDovHn27Jlsw8GgnoiIiN50BvV+c+HCBTncv39/jfOp1kXPLdWrVweQWcqsrYT3yZMnuHHjhlHrqFu3rhw+cOCAUWnkpujoaNlguHTp0mjQoEE+58g4NWvWBABcuXJF72VU51UuT0RERPSmMiioT0tLk8Pa6o3/9ttvxudIT23btgWQWQ1j3bp1Gudbt26d0VWAKlSogGrVqgEA/vzzT9y5c8eodHJDcnIyhgwZIrdtwoQJsLExrjOj4OBgCCFM+jOmlF6pRYsWAIDLly/r3YOP6genlMsTERERvakMCuorVqwoh1evXq12nl9//RU7duwwKVP66NWrl2wkO2PGDFy9ejXHPFevXsWMGTNMWs/kyZMBZH65tHfv3lqr8rx69QpLlizBy5cvTVqnLhcvXkTz5s1lfXp/f3+MHj06V9eZm5RBeUZGht5vecLCwgAAvr6+KFWqVK7ljYiIiMgSGFS0W7duXdSoUQPR0dH49ddf8fTpUwwcOBAlSpTAv//+i3Xr1mHLli1o1qwZQkJCcivPADJ7TVmwYAEGDBiAJ0+eoFGjRvjyyy/RsmVLAMDff/+N77//HhkZGahYsSKuXr0KhUJh8Hreffdd7N+/H6tXr0ZERASqVauGkSNHwt/fH56enkhKSsL169dx7NgxbNu2DU+ePMGQIUNM2raHDx/KLjuBzC5E4+Pjcf78eQQFBeHgwYOyhL5x48bYsmULbG1tTVpnfmratCmKFCmC+Ph4BAUFoXXr1lrnF0LgyJEjAIAuXbrkRRaJiIiICjZDP0F75swZUaRIEQFA7V/NmjVFTEyM/P+0adNypDFt2jQ5XZsjR47I+Y4cOaJ2npkzZwqFQqE2L05OTmL37t2iRYsWAoDo2LFjjuVv3rwp5w8ICFC7jrS0NDFx4kRhbW2tcbuVf4UKFRIvXrzQtRu1bqs+f56enmLWrFkiNTXV4HUVRCNHjhQARLly5XTOGxwcLPdDaGhoHuSOiIiIqGAzqPoNANSpUwdnz57FqFGj4OPjA1tbW7i7u8PPzw/z5s1DWFgYSpQoYWiyRvv6669x9OhR9OzZE8WKFYO9vT18fHwwfPhwhIeHo3Pnznj+/DkAoHDhwkatw9raGt9//z0uXryI8ePHo27duihSpAisra3h4uKC6tWrY+DAgVi9ejXu379v1n7TraysULhwYZQpUwYtWrTA2LFjsXXrVty9exeTJk0yuh59QTNmzBgAwI0bNxAaGqp13vXr1wPIfHPUuHHjXM8bERERUUGnEMKCO5LXQ2pqKgoXLozk5GRMnjwZ3377bX5niTTo2LEj9u/fj/fffx+///672nkSEhJQpkwZPH36FH/88QcGDBiQx7kkIiIiKngMLqm3NDt27JBfHmWpbsGmbNS8Zs0a3L59W+08ixcvxtOnT1G1alWt3aoSERERvUksPqi/du2axmm3bt3C//73PwCAl5cXOnTokFfZIiM0atQI/fr1Q2pqKr777rsc05OSkjB//nwAwA8//AArK4s/fYmIiIjMwuIrZFepUgWdO3dG165dUb16dRQqVAgPHz7EkSNH8Ntvv+Hp06cAgHnz5r029c9fZz/++COqVq0Ke3t7ZGRkZAncb9++jTFjxsDd3R1du3bNx1wSERERFSwWX6deVzeVVlZWmDlzJr766qs8yhERERERUd6y+KLrwMBA7N27FydOnEBsbCweP34Me3t7eHt7o1WrVhgzZgxq1KiR39kkIiIiIso1Fl9ST0RERET0pmNLQyIiIiIiC8egnoiIiIjIwjGoJyIiIiKycAzqiYiIiIgsXL4G9bdu3YJCoYBCocCqVavyMyuYPn26zAsRERERkSUxOahPTU3Fn3/+iaFDh6Jq1arw8PCAra0tihYtivr162P06NE4dOgQMjIyzJFfKmBmzpwpfwy5uLjgxYsXZk3/6dOnOHjwIGbNmoWePXuiZMmScn2tWrXSK420tDQcPHgQn3/+OVq0aAFPT0/Y2trCzc0N9erVw4QJE3D9+nW985SWloalS5eiZcuW8PT0hKOjIypUqIBRo0bh4sWLeqVx+fJl9OnTB25ubnBxcUGXLl0QGRmpdx5y07Bhw+Q+zv5nY2MDd3d3NGnSBFOnTkVMTIxZ1mmO43z79m0sX74cH3zwAfz8/ODj4wMnJyc4OjqidOnS6N69O9auXYvU1FS98/Xnn3+iQ4cOKFGiBBwcHODr64vBgwfj5MmTei0fExODYcOGwdPTE05OTvD390dQUJDe689Ljx8/xuLFi9G9e3eUL18erq6usLe3R/HixdGqVSt8/fXXiI6ONmkdaWlpOHPmDJYuXYoRI0agVq1asLGxkcf61q1beqVjjvMlODhY43me/W/69Ola03r27Bk+++wzlCxZEg4ODmjQoAE2bdqkVz5y26pVq9Ruk/I5Xb58ebz11lv48ssvsXfvXrM+qzMyMnDx4kWsWrUKH330ERo2bAh7e3uZh+DgYL3SSUxMxN9//4158+ahX79+KFu2rEzD19fX4HxduHABo0aNQoUKFeDo6AhPT0+0bNkSS5cuRVpams7lhRBYsGABqlSpAnt7e1SoUAEzZ8406N5ClCuECXbs2CHKlSsnAOj8q1Spkti1a1eW5W/evCmnBwQEmJIVk02bNk3mhfRXqVKlLMd57dq1Zk3f19dX4znl7++vc/mHDx8KDw8PneennZ2dWLBggc70Hj16JBo1aqQxHXt7e7FixQqtaZw/f14ULlw4x7IODg4iKChI312Ta4YOHarXNQ1AuLi4iL/++svkdZp6nIUQ4uuvv9YrzzVr1hQ3btzQmlZycrLo2rWrxjSsrKzEN998ozWNe/fuiVKlSqld1tzXiSnS09PF7Nmzhaurq177r127duLChQtGrWv69Ola075586Ze6ZjjfDly5Ije5/m0adM0ppOQkCBq1aqldrlZs2bplZfcFBAQoPd2AhBlypQRS5YsMcu6V61apXVdR44c0SudVq1aaUzDx8fHoDz9/vvvwt7eXmN6jRs3Fo8ePdKaxvDhw9Uu26lTJ5GWlmZQfojMyegIdvbs2UKhUMiT+a233hKLFi0SQUFBIiIiQhw8eFAsXrxYdOjQQVhZWQkAonbt2lnSKEhBPRkuNDRUHj9nZ2f5wDcnHx8fuQ4vL68sgZY+D+9///1Xzl+nTh0xbdo0sWfPHhERESEOHz4sPv/8c+Hg4CDnWbp0qca00tLSRMuWLeW8vXv3Fnv37hWnTp0SCxcuFMWKFRMAhLW1tdi3b5/GdPz8/AQA0aVLF3HgwAERHBwshgwZIgCI0qVLi5SUFGN2ldmoBvX79+8XUVFR8i8yMlLs3LlTDBkyRF7/dnZ24tKlSyat09TjLIQQU6ZMEbVr1xZjxowRy5cvF7t27RKnT58Whw8fFsuXLxdNmzaVaZYvX14kJSVpTGvAgAFy3tatW4sdO3aIsLAwsWLFClG+fHk5bfny5RrT6NevnwAgmjRpIgIDA8Xx48fFuHHjhEKhEIUKFdIZOOSF5ORk0bNnT7k9dnZ2YtCgQWLNmjXi77//FuHh4WL37t1ixowZok6dOnK+zz77zKj1qRaeODg4iMaNG2fZn/oG9eY4X1SD+pUrV2Y5z7P/xcbGakxn4sSJAoCoWrWq2LRpkwgNDRXffPONsLe3F1ZWVkb/ADIX1aB+5syZWbYrJCRE7Ny5U8yYMSPL9QFAdO7cWbx48cJs67a1tRV169YVNWvWNDio9/f3l8sUKVJEtGvXTj5zDAnq9+3bJ+MRLy8vsXDhQnHq1Cmxd+9e0bt3b7mOli1bivT0dLVp7NmzR+Zj4cKF4uTJk2LlypWiZMmSAoD49ddf9c4PkbkZFdSvWbNGnvyenp7i8OHDWuc/f/68aNOmDYP618zo0aMFAFG0aFHx/fffCyCzFPLu3btmW8fcuXPFli1bxO3bt+U4Qx7ed+/eFe3atROhoaEa5zl58qRwdHQUAEThwoXF8+fP1c6n+oD66KOPcky/evWqLO2sWLGiSE1NzTHPrVu3BADRoEGDHCU6PXr0EADE0aNHdW5XblIN6rUFWVOnTpXzjRo1yqR1mnqchRBq93d2n332mUx34cKFaucJDg6W83Tr1i3HcYqLixNlypSRD/b4+Pgcabx8+VLY29uL0qVLi8TERLV5WL16tV7blZvee+89ua0NGzbU+QZj586doly5ckYH9fv27RO//fabiIiIkMdL3/NNlTnOF9WgXt/gUh1fX19RqFAhERMTk2X8Tz/9JACIGTNmGJ22Oajet3Q9Z0NCQkTZsmXl/P369TNp3adOnRI///yzCA0NFcnJyUKIrD/s9N3vS5cuFX/88Ye4evWqHKf8YadvUJ+amioqVKggAAhXV1dx7dq1HPN89NFHMm+ars9hw4YJADneUJ45c0YWAhDlF4OD+nv37olChQoJAMLJyUnvUoj09PQcr5wZ1FuuV69eCXd3dxng3r9/X1hbWwsA4vvvv8/VdRv68NbH+PHjZbrbtm1TO0+1atVkIKeplPe7776T6WzZsiXH9JCQEAFAjB8/Pse0hQsXCgBi/fr1pm2MifQNshISEmRpfd26dc2ej9w4zg8ePJDp9u3bV+08nTt3lm9c/v33X7XzbNiwQaYzb968HNPv3bsnAIg+ffrkmLZz504BQMyePdu0jTHRjh075DbUqFFDJCQk6LXckydPzFLlSsmYoF6d/ArqbW1tRf369XOMP3/+vAAgPvzwQ6PTNgdDgnohMn+0li5dWi6zfft2s+bHmKBeHUOD+k2bNsn1fvfdd2rnSUpKEkWKFJHXhDrt2rUTANReL+7u7qJSpUp6bwORuRncUPann35CUlISAGDGjBmoVq2aXstZWVlh0KBBOuc7ePAgunXrhuLFi8Pe3h5ly5bF6NGjcffuXZ3LpqSkYMmSJWjdujU8PT1hZ2eH4sWLo3Pnzli3bp3WBkD69n6TkpKCZcuWoUuXLvD29oa9vT2KFSuG+vXr4+OPP8axY8cghNC6fYMGDULZsmXh6OgIV1dX1K5dGxMnTsT9+/e1rjsmJgZffvkl6tWrh8KFC8vtq1mzJt59912sWrUKz58/176TzCQwMBBPnjwBAAwaNAjFixdHmzZtAABr1qzJkzyYU+vWreWwukazV69elY1g33nnHTg5OalNZ9iwYXJ427ZtOaYXK1YMAHD8+PEc5+PRo0cBAMWLFzcs8/nE2dkZHh4eAICXL1/mc270U6hQITmsLs+JiYmyIWu7du1QqlQpten07t0brq6uANQf5yJFisDGxgbh4eE5Go8rGwfm93GeNWuWHA4ICICzs7NeyxUpUgTdu3fPrWxZnGLFiuHy5cuIjY3NMr6gHGdDFS1aFL/99pv8/3fffZePuTGfHTt2yGHV+7QqJycn9OvXDwAQHR2Nq1ev5phHeQ9X3q+VoqKi8OTJE4s73vSaMeQXQEZGhvD09BQARKFChcSzZ89M+kWRvaT+iy++yFKnT/XP09NTXLx4UWNat27dElWrVtW4PADRvHlz8fjxY7XL69NQ9syZM1leTWr6U1falJiYKHr16qV1OWdnZxEYGKh23X///bdeDdnULa9aIjV06FCN22eI7t27CyCzbrLS6tWr5XoiIiJ0pqGc19CGTsrlzFmCu3XrVpnujz/+mGP6ihUr5PQNGzZoTUvZeLhMmTJqp1evXl0AEN27dxcHDx4UR48eldUgSpYsKV6+fGmWbTKWMSX1HTp00DhfQTrOy5Ytk+lOmDAhx/SgoCCdpXlK7du3FwCEjY2N2nYQXbp0EQBEs2bNxK5du0RISIj4/PPPhZWVlXBychIPHjww23YZKioqKst90RxUzxtDSmAtvaR+zJgxAoCoXr262Lx5swgNDRWzZs0SDg4OQqFQiHPnzhmdtjkYWlIvROazvnLlynK5e/fu5ZhH9ZlpyJv2/CqpV759qFy5stb51q9fL/O3cuXKHNM3b94sAAh3d3exePFicerUKbFq1SrZKH7RokXGbA6RWdjoEfdLFy9eRFxcHACgRYsWsqTKHJYvX44TJ07A398fI0eORKVKlfD06VOsWbMGa9asQVxcHIYPH47Q0NAcyyYmJqJNmza4ceMGAKBnz54YPnw4SpYsiZs3b2Lx4sU4evQojh8/jq5du+LYsWOwtrY2KH8XL15EixYtkJiYCADo1asX+vfvj3LlyiE9PR2XL1/GwYMHsX379hzLpqeno1u3bjhy5AgUCgX69++P3r17o2zZskhNTUVYWBh+/PFH3LlzB3369MGJEydQv359ufyrV6/Qv39/PH/+HC4uLhg9ejRat26NYsWKITU1Fbdv30ZoaCi2bt1q0DYZ69GjR9i7dy8AYODAgXJ87969MXr0aLx48QJr1qxBvXr18iQ/5qBa6lKlSpUc0y9duqR1uqoqVargypUr+Pfff5GUlJSldBgAli1bhrfeegs7d+7Ezp075Xg7OzusWLEC9vb2xm5Gnvrxxx/lW6mCXHIbHx+PW7duYe3atVi8eDGAzH09atSoHPMaepwPHDiAtLQ0XL16NcdbywULFuDkyZMICQlB165d5XiFQoGFCxfCy8vLlM0yier5rpq3N9WkSZNw584dPHz4EIUKFYKvry9atWqF0aNHo1KlSlqXnTFjBvbt24cLFy7g7bffzjJt6tSpqFWrVm5mPVcoFAq0bdsWly9fBgAcO3YM77zzTj7nyniJiYnybb8+17WS6v1AqU+fPujZsyd27NiBjz/+OMu0tm3bqr2vEOUZQ34B/PHHH/IX7KRJk0z+RaFaUg9AfPDBByIjIyPHfCNGjJDzREZG5pg+YcIEOX3y5Mk5pmdkZIiBAwfKedR116WrpL5u3boCyGwIqq2k9tGjRzl6DJg3b54AMlv/79mzR+1yT548kSW42UvOVEsPNZXkC5HZEEjd2xNzl9T//PPPMr0rV65kmfbuu+8KAKJYsWI6Gy4q08jvEtyYmBjh4uIigMxGv+p6fHjnnXfkeuPi4rSmpyy5AyD++ecftfNERkaKzp07C2dnZ+Hk5CTeeustrY1585K23m/OnDkjAgMDxfDhw2UvEs2aNdP6diE/jrO2bjkdHR3Fpk2b1C6n+rbw9OnTWtcxd+5cOa+m3o6uX78u+vXrJ9zc3ISDg4No0qSJ2L17t8HbY24ffPCBzPuBAwfMkqYll9Rr+rOyshLTpk1T+1xSFRsbK0aMGCGKFSsm7OzsRO3atQtEQ2ghjCupFyKz60flcuq6b7WkkvpLly7JdY4ZM0brvHFxcXLe/v37q50nNTVVzJw5U5QrV07Y2toKHx8fMXny5Hx/y0pkUEn9o0eP5LC5S5lKlCiBRYsWqa3TPmHCBPz+++8AMksM6tatK6e9evVKTqtWrZraj4QoFAosWbIE+/btkx9YGT16tN55279/P86cOQMA+OSTT9C/f3+N8yrrGCulpqbixx9/BAB8/PHH6NSpk9rlihQpgrlz56Jz5844fvw4rl27hgoVKgAAHjx4IOdr2bKlxnXb2NiY9e2JJso6835+fqhYsWKWaYMGDcKGDRvw8OFD7Nu3r8CXAgohMGrUKCQkJAAApkyZAkdHxxzzKacD0Fn3WLVkXvlmJ7u6deti9+7dxmQ5T3Xo0EHjtJIlS+Lzzz/HqFGjLObtwjvvvIPvv/8ePj4+aqeb+ziXK1cOGzduNCKnuSs37+WWpESJEujduzeaN2+OcuXKwcbGBnfu3EFgYKD8UNmMGTOQkpKC2bNna0ynWLFiWL58OZYvX56Huc9dqs+y+Pj4fMyJ6cx9XdvY2ODrr7/G119/bZ4MEpmJQQ1lVS+M7FUKTNW3b1+NgUHlypXlhaisYqMUERGBp0+fAshs/KKpWo2rq6tsAHPx4kWdjVJVqQZf48aN03s5AAgLC5PrUq5fE9WAXbWaUYkSJeRwQECAQesHgFatWkFk9nSEVatWGby8qosXLyIiIgIA1DZ8bt++vWxItHbtWq1pKfOk71ckc8Ps2bNlFZjWrVvneJ2qpNqo0s7OTmuaqudxcnKyGXJZMMXExCAgIAD79u3TOl9+HOdZs2YhKioKUVFRCAkJwa+//op69eph48aNGDRokNoGcMCbc5xz416+atUqeaz1/aprfmrYsCFu376NxYsXo3///vDz80O9evXQs2dPrFixAsePH0fhwoUBAHPmzMHZs2fzN8N5TDX4VT1flKZPny6Pt6aGpwXFm3JdExkU1Lu4uMhhZQ845qKrnluRIkUA5Ly5qH62vFGjRlrTUJ1uyOfOlaX0ZcqU0VjCp0l4eLgcbtKkidZPkaveRFVL55WlSAAwduxY+Pn54bvvvsOJEyeQkpJiUH5MtXr1agCZJRXq3ljY2NjIupc7d+7Es2fP8jR/hvjjjz8wZcoUAICvry/Wr18PKyv1l4SDg4Mc1rXPX716JYfVlfpbkps3b8oHtxACGRkZePz4Mfbu3Qt/f3+cP38evXv3lnXVCwpvb2/UqFEDNWrUQNOmTTFq1CiEhYVh5MiROH78OBo1aoRz587lWO5NOc65eS+3FIUKFYKtra3G6X5+fvjll18AZP4wVQ6/KVSftXnxBjg3vSnXNZFBQX3RokXlcPbuu0ylqYtAJWWwlZ6enmW8sltFQPdrZNWuplSX00X5qlq1xFxfDx8+NHgZAFm6wbO1tUVgYCCqVq0KADh9+jQmTZqEZs2awc3NDZ06dcL69etz7Btzy8jIwB9//AEgs0Te09NT7XzKEvyXL19i06ZNuZonY+3evRvvvfcehBDw8vLCwYMHtXZFphoEaXolq6QaJOnbTaClUCgUcHd3R8eOHREUFIQWLVpACIFx48bJRnUFlbW1NRYuXIjSpUsjPj5ebRW8N+U45+a9/HXyzjvvyNL67F0Yvu5Uq2i5u7vnY05M96Zc10QGBfW1a9eWw5GRkWbPjKl09TEvtPQfb4701VENtIODg2WVAF1/2QOOatWqISoqCtu3b8fw4cNRvnx5AJmvB/ft24eBAweiUaNGRv+I0EdQUBDu3bsHANizZ4/GNw6qb0QKYp/1wcHB6Nu3L1JTU1GkSBEcOHBAtl/QRLW/cl3fTPj3338BZJ4vmvo5fx1YW1vjf//7HwAgLS2tQB7r7Ozs7NCxY0cAmVXcYmJiskw35jgDQOnSpc2Yy9xX0O/lBYWNjY3s/UZ573tTKN9QA5lVYC3Zm3JdExkU1FerVk2W8Bw7dizPPnSkjWoJgmqVFXVUS6QMKXlQbnP2AEAfqo2N7OzsZJUAXX/KeumqrK2tZX3Pa9euISYmBitWrJDdX0ZERGDkyJEG51Ffyqo3hggJCcnRDiI/hYWFoVu3bnj58iWcnZ2xd+9evbqcU+2u8J9//tE6r3J66dKlzd72pKBRrTYXFRWVjznRn+obptu3b2eZZsxxtrGx0fmjsKDx9/eXw5bQYDs/mVoYZImEEDh06JD8f/PmzfMxN6ZzdnaWAbq+1zUA+XacyFIYFNQrFArZICYpKUn2OpOfatSoIYdPnTqldd6wsDC1y+mi7G/9zp07OYIAXVR76jlw4IBBy+pSokQJ2Xe/Mo+7du3KlcY9iYmJsg/+tm3bYsOGDVr/lOeGEEJng9m8cv78eXTs2BGJiYlwcHBAYGCgznYYSqoPNW2v4R88eIArV64AAJo1a2Zahi1AWlqaHE5NTc3HnOhPtcQ1++v1hg0byoZ02o5zSkoKTp48mWMZS1GjRg00aNAAQGYBjbLxO2WVlpYmr+eSJUvmc27yzp49e2Rj8saNG78WX0lV3sMvX76stQBQ9bp/E+7h9HoxKKgHMhtqKuu/T506VeevXqWMjAysW7fO0NXpVL9+fbi5uQHILEnWVK88ISFB1u+uVq2aQfXju3XrJod/+ukng/LXvHlz+Vbgt99+y5W3G7a2trLkLS0tTfYGZE5btmyR9fxHjx6N/v37a/17//335RuEghDUX7lyBe3bt0d8fDxsbW2xdetWg3roqFSpkiy12bRpU5Y2D6pUexfq1auXKVm2CKdPn5bDlvCqOikpSX44zdHRUVZjU3JxcUHbtm0BAIcOHdL4qn7btm3yWrbU4zxp0iQ5PHz4cL0bzD59+hSBgYG5la0C5c8//5THWfXtxuvs0aNHWT6g9NVXX+VjbsynZ8+eclhTL3AvXrzIEifo+vAYUUFjcFDv7e0te7pISkqCv7+/zgZEFy9eRIcOHTBv3jzjcqmFvb09RowYAQC4cOECZsyYkWMeIQQ+/vhj2fBHU7eFmrz11lsyQF20aBH+/PNPjfM+efIkS0m5g4MDJkyYACCzFLd///5aH54JCQk5ehI5duwYrl27pnGZlJQUeQycnZ1zNGANDg6W9d2N7XpMWV/ayclJY1/72fXt2xcAcP36dYSEhOSYrsyTr6+vUXnS1507d/DWW28hNjYW1tbWWL9+PTp37mxwOsrj+OTJE0ycODHH9OvXr+O7774DAJQvX95igz19xcfHy+0FoHGf5sVxfvTokc4vKr98+RLDhw+X7U769OmjtoG+8jinpaVhzJgxOQoKHj16hC+++AIA4ObmJu8/lqZXr14YOnQogMy3WG3bttX5JnLPnj1o0KABgoKCckwbNmyYPNbBwcG5kWWziY+P15nHsLAwfPLJJwAyz+E34UuhJ06cgJ+fn/wx++6772r8WvT06dPl8Ta1q+S80KtXL/kj/rvvvsP169dzzPP555/LPvk///zzPM0fkTkY9PEppffeew93797F1KlT8fDhQ7Rq1Qrt27dHjx49ULVqVbi5ueHJkye4cuUKdu/ejX379iE9PT1L4yxzmjp1KrZt24YbN27g22+/RXR0NIYPH46SJUvi5s2bWLx4sbyBN2nSBB9++KHB61i7di38/PyQmJiId999F5s3b0b//v1Rrlw5pKen49q1azh48CC2bNmCqKioLAHMxIkTERQUhKCgIOzduxfVqlXDqFGj0KRJE7i5uSEhIQGXL19GcHAwduzYAQcHhyw/PIKCgvDtt9+iRYsW6NKlC2rVqgVPT08kJyfjypUr+O2332RjtxEjRsDGxqjDqtGdO3fk/uvUqZPOnoqU+vTpI0t51qxZY9SrzLNnz2rsH/rBgwc5HiZ9+/bNUqXi8ePHeOutt2Tjp/Hjx6NKlSpauzQtUqQIvL29c4wfOnQoVq5ciZCQEPzyyy948OABPvjgAxQpUgRhYWH49ttv8fz5c1hZWWHRokVmPw754cqVK1l6ixBC4OnTpzh16hQWLVqEO3fuAMh8I9WjRw+j12PqcU5MTETfvn1RoUIF9OnTB35+fvD29oa9vT0ePXqEsLAwrFixQrbv8Pb2xvfff692fW3atEH//v3x559/YufOnWjXrh3Gjh2LkiVLIioqCrNmzZLbPWfOHNndriVasmQJnjx5gsDAQJw6dQqVK1dGv3790KFDB/j6+sLR0RGxsbGIjIzE9u3bTa6mk5iYiC1btmQZp1pgsWXLliw989SpUwd16tTJkY6p58uzZ8/QunVr1KpVCz179kT9+vVRokQJWFtb5/j4FJD5Q09ZXcmS3bt3L8u9LyEhAY8fP8aZM2ewb98+nDhxQk7r2rUrVq5cafI6sx8L1eO2b9++LN+vqFChgtr6+9euXcPx48ezjFPelxITE3Oso2PHjjmqDNna2mLhwoXo1q0bnj9/jmbNmmHy5Mnw8/NDfHw8li9fLgsGmjdvjsGDBxu4pUQFgCmfo926davw9fXV+altAKJ69epi//79WZa/efOm3p+ZVn4SeujQoWqn37x5U1SpUkVrHpo1ayYeP36sdnnVT1drEh4eLkqXLq1zW9V96vzFixdiyJAheu2rsmXLasybtr/evXuL5OTkHOtW/Ry6pv2nzcyZM+XyGzZsMGjZWrVqCQDCzc0txye0lWlq+8y3vtuuad/r8yn47H/a9lFcXJxo2LChxmXt7OzEsmXLDNpHBc3QoUMN2l+tW7fWeF0JkTfHWfVeouuvSZMm4vr161r3wYsXL0Tnzp01pmFlZSWmTZtmwF4tuNLT08U333wjXFxc9Np/Xbp0EZcvX86Rjup5c+TIEbXrMuQ4AdC4j/PqfLG2thbTp08XGRkZJu7l/BMQEGDQvvLx8RG//fabznRVj4G257c57r2GboOm808IIZYtWybs7Ow0Luvn5yfi4uJ0bj9RQWRSUWLv3r3RtWtXbNmyBXv37sXp06fx8OFDJCQkwNXVFb6+vmjcuDH69OmD1q1bG9UlpL58fX1x7tw5LF++HJs3b0Z0dDSeP38Od3d31K1bFwMHDsSAAQM0flxIH/Xr18fly5fx+++/Y8eOHYiOjkZ8fDw8PDzg7e2N5s2bo3///mqrGTg6OmL16tX49NNPsWLFCvz999+4e/cukpKS4OzsDF9fX9SvXx+dOnVC165dsyw7ceJENGrUCAcPHpTd8CmrEBQvXhyNGjXCkCFDjKpSog9lnXh7e3t06dLFoGX79OmD8+fP4+nTp9i5cyfefvvt3MhinilatChOnDiB5cuXY/369bh06RKSkpJQsmRJtG3bFp999hmqV6+e39nMVc7OzihRogQaNmyId999F126dMnVa1sfZcqUwalTp3DkyBEcPXoUN2/eRGxsLBISEuDs7IwyZcqgQYMGePvtt9GhQwed+XV0dMTu3buxfv16rFq1CufOncPTp0/h5eWFFi1a4OOPP0aTJk3yaOtyl5WVFaZMmYLRo0djw4YNOHDgAKKjo/Ho0SOkpKSgSJEiqFKlCpo3b46BAwe+Fj2ClCxZEps3b0ZoaCjCwsJw7949PHr0CC9fvkThwoVRuXJltGrVCiNGjMj16oH5xcbGBi4uLihcuDDKlSuHhg0byrfupjwnC7oPPvgATZo0wcKFCxEUFISYmBgUKlQIVatWxcCBA3PlbTdRXlEI8Qb210VERERE9Bp5fX+OExERERG9IRjUExERERFZOAb1REREREQWjkE9EREREZGFY1BPRERERGThGNQTEREREVk4BvVERERERBaOQT0RERERkYVjUE9EREREZOEY1BMRERERWTgG9UREREREFo5BPRERERGRhWNQT0RERERk4RjUExERERFZOAb1REREREQWjkE9EREREZGFY1BPRERERGThGNQTEREREVk4BvVERERERBaOQT0RERERkYVjUE9EREREZOEY1BMRERERWTgG9UREREREFo5BPRERERGRhWNQT0RERERk4RjUExERERFZOAb1REREREQWjkE9EREREZGFY1BPRERERGThGNQTEREREVk4BvVERERERBaOQT0RERERkYVjUE9EREREZOEY1BMRERERWTgG9UREREREFo5BPRERERGRhWNQT0RERERk4RjUExERERFZOAb1REREREQWjkE9EREREZGFY1BPRERERGThGNQTEREREVk4BvVERERERBaOQT0RERERkYVjUE9EREREZOFs8jsDRERERJS7UlNT5bBCoQAA2NgwDHydsKSeiIiIiMjCMagnIiIiIrJwfO9CRERE9JoLDg6Ww9bW1gCA1q1bA/ivOg5ZNpbUExERERFZOJbUExEREb1GHj16JIejo6MBAGFhYXJcqVKlAABCCAAsqX9dsKSeiIiIiMjCMagnIiIiIrJwrH5DRERElMuUVV1U5Va1l2PHjsnhgIAAAICXl5ccV6FChVxZL+UvltQTEREREVk4ltQTERER5TJzlMqrlvYr00tLS5Pj/vnnHwDAvn375Dhlqf0777wjx6mW2tPrgyX1REREREQWjkE9EREREZGFY/UbIiIiIgv1/PlzORwZGQkAuHbtmhyXnp4OAHB1dZXjlMPsn/71wpJ6IiIiIiILx5J6IiIiIgugWrL+6tUrAMD9+/fluAcPHgAAihYtKse1bNkSAFC4cOEcy9LrhSX1REREREQWjkE9EREREZGFY/UbIiIiIgsTHBwMAAgPD5fjatasCQBITk6W40JDQwEAhQoVkuOcnZ3zIIeU11hST0RERERk4VhST0RERGQBVLuvPHv2LICs3VcOGzYMAPD48WM57q+//gKQtaRetSEtvT5YUk9EREREZOFYUk9ERERUgD18+BAAsGPHDjmuevXqAIABAwbIcZ6engCyluinpKQAADw8POQ41WF6fbCknoiIiIjIwjGoJyIiIiKycKx+Q0RERFQAJSQkAACOHTsGAFi9erWcVrlyZQDAv//+m2P+v//+W44TQgAAHB0d5Tg7O7ss0+j1wJJ6IiIiIiILx5J6IiIiogIiIyNDDiu7rTxy5AgA4MyZM3LaiRMnAAABAQE50rCx+S+8q1q1KgDAyipnOa5CoTA9w1RgsKSeiIiIiMjCMagnIiIiIrJwrH5DREREVEAoG7sCwNWrVwEAxYoVAwCsWbNGTlM2dk1MTJTjHjx4AAAICQmR42JiYrLMT68vltQTEREREVk4ltQTERER5TNl15SqjWHT0tIAAE2aNAEAtGvXTmsaN2/eBADEx8fLcU+ePAGQtUtLej2xpJ6IiIiIyMIxqCciIiIisnCsfkNERESUh5Rfcn3x4oUcFxQUBADYsGGDHPfpp58C0F7tJiUlRQ5fvHgRwH+NY+nNwpJ6IiIiIiILx5J6IiIiojz0/PlzAMD06dPluK1btwLI2qWlsvGsskRftbHryZMnAQC7du2S4/7++28AQHR0tBynLMmfMWOGHNe3b18AQJ8+fQAAbm5uJmwNFRQsqSciIiIisnAsqSciIiLKQ8rS87Nnz8pxjx49AgDUrFlTjrOyyix7ffr0KYCsJfV37twBkLULzHv37gEAHBwc5LgiRYoAAK5cuSLHKdfbpUsXk7aDChaW1BMRERERWTgG9UREREREFk4hlP0qEREREVGuS09PB/BfdRkASE5OBpC16kzhwoUBAM7OzgAAG5v/ak0rG9s+e/ZMjlNW61EN7RQKRY71FypUCADg4eEBALC1tTV2U6gAYUk9EREREZGFY0k9ERERUS7TVXpOZCqW1BMRERERWTgG9UREREREFo791BMRERHlMkurcqOudralbcObhiX1REREREQWjiX1RERERJQFS+UtD0vqiYiIiIgsHIN6IiIiIiILx6CeiIiIqAATQqhtuEqkikE9EREREZGFY0NZIiIiogKMjVZJHyypJyIiIiKycAzqiYiIiIgsHKvfEBEREeWziIgIAEBISIgc17FjRwBApUqV8iVPZFlYUk9EREREZOFYUk9ERESUhxISEgAAV65ckeO2bt0KADh8+LAcV6NGDQAsqSf9sKSeiIiIiMjCsaSeiIiIKJclJyfL4bNnzwIA5s+fL8cdO3YMAODs7CzHpaWl5U3m6LXAknoiIiIiIgvHoJ6IiIiIyMKx+g0RERFRLomKigKQtatK5bhy5crJcYmJiQCAS5cuyXHp6el5kUV6TbCknoiIiIjIwrGknoiIiMgMVEvWb968CeC/LiqPHz8up6WkpAAAJkyYIMeVKVMGAHD9+nU5LiMjI/cyS68dltQTEREREVk4BvVERERERBaO1W+IiIiIzGDz5s1y+ODBgwAAhUIBAOjatauc1qpVKwBZ+6Q/ffo0AEAIIcepDhPpwpJ6IiIiIiILx5J6IiIiIhXKEnJlKbs6t2/flsMnT54EAERGRspxDg4OAIDatWsD+K90HgB8fHwAAK9evZLjlI1iWTpPxmJJPRERERGRhWNQT0RERERk4Vj9hoiIiEgL1f7nHz9+DAAICgqS41asWAEAaNKkiRzXv3//LONsbP4LuZRVbVSr3yhpq/JDpA1L6omIiIiILBxL6omIiOiNpa5RrHL4xYsXAICzZ8/KaZs2bQIAPHv2TI4bNGgQAKBhw4ZyXJUqVQBkLaHPvs7k5GQ5Tll6X6hQITlO3bKGbgu9OVhST0RERERk4VhST0RERG8sdaXasbGxAIBz584BAMLDw+W0uLg4AEDlypXluO7duwMAvL299VqnskRd+SYA+K/evmpJva2trV7paUofYKn9m4Ql9UREREREFo5BPRERERGRhWP1GyIiIirw1H1p1ZxVS5KSkuTwjh07AADHjh0DkLXryY8++ggA0KxZMznO2AatqtVv0tLSAABOTk5ynLW1tUHpsqrNm40l9UREREREFo4l9URERFTg5VYp9PHjxwEAR44ckeOUjWGrVq0KAKhXr56cphy2s7Mzed263j6w5J0MwZJ6IiIiIiILx6CeiIiIiMjCsfoNERERvRESExMBAHfu3JHjDhw4AACIjIyU4+rXrw8A6NChAwCgQYMGuZIfddVr1FXJIdIHS+qJiIiIiCwcS+qJiIjotZWcnCyHDx8+DAD4+eef5bhKlSoBAEaOHCnHKRvDFi9ePFfzxlJ5MieW1BMRERERWTgG9UREREREFo7Vb4iIiOi1kJ6eLodv3LgBAAgODpbjLl68CACoVq2aHNeyZUsAQJMmTeS4okWL5mY2JSurnGWrGRkZcpjVc8gQLKknIiIiIrJwLKknIiIii6Ys0VaWzgPA33//DQD466+/5DhlCfzUqVPluHLlyuVFFtVSfbOgZGPzX2jGL8qSIVhST0RERERk4RjUExERERFZOFa/ISIiIoukbFS6ZcsWAEBISIic9uTJEwBA37595bhmzZoBAEqXLm30OtU1XjW0mowy3w8fPpTjXr16BSBr3/iOjo7GZJHeUCypJyIiIiKycCypJyIiIotx69YtORwREQEACA8PBwCkpqbKaTVr1gQAtG3bVo4zpYTenJSl/apfu1WW3js5Oclxqo1miXRhST0RERERkYXjT0AiIiIyO3PUPVeVmJgIANi+fbscpxz28/MDAPTp00dOUy2hNydzdjOp+vEpZbqq+40fnyJDsKSeiIiIiMjCMagnIiIiIrJwrH5DRET0BlOt4mHOqiW60lKuV918aWlpAIDIyEg5bs2aNQD+a1AKAG+//TYAoGHDhgCAKlWqmJBj3XkFcv8rr6xyQ8ZiST0RERERkYVjST0RERHluewNQx89eiSn/fPPPwCAkydPynHXrl0DALRu3VqOU35YqkSJErmSx9wuNVct9VeuiyX1ZCyW1BMRERERWTgG9UREREREFo7Vb4iIiN5gpjRoNYe4uDgAwM6dO+W4PXv2AABsbW3luGnTpgEAatSoIcc5OzvnSp6yV4HJ7caxRObAknoiIiIiIgvHknoiIiLKIi8aax49ehQAEBYWBgC4d++enKYsja9Vq5YcV7t2bQCAk5NTruTH3F/A1Ud6enqO9VtbW+fZ+un1wpJ6IiIiIiILx6CeiIiIiMjCsfoNERERAci9KigpKSkAgFu3bslxu3btAgDcuHEDQNavwSq/FFuzZk2T161LflS7Ua7z5cuXcpzyS7n29vZynGpVHCJdWFJPRERERGThWFJPREREAMxbQq3aCHTLli0AgD///FOOU5bMDxo0CADg5+cnp3l5eZktH7pK4vOjMaqyVD4+Pl6OU77NKFKkiBxnZ2eXtxkji8aSeiIiIiIiC8egnoiIiIjIwrH6DREREZlEWXUE+K/h64kTJ+S4qKgoAECJEiXkuCZVCwMA/jlyBABw6tQpw1fcYDAAYE7f6vrN//Jm5rq2B8pR28/fzxwo8V+f+L269wYANCrroGdGUgEADy/skmM2rM3cnsQKrQEAvXt3kNPK/H9bWNX9pqySo1rlxsqKZa+kP54tREREREQWjiX1REREZJLr16/L4UOHDgEA/vjjDzlO2Qj2888/l+N8nm8FAHw1PLNkf/j+T+W0OvquuJibzlnSrq6Sw90afAYAeDZsvhz3Rdc2mQN3/itlH1t7FACg8M/hAIDA9yrJabZq1vHkyEQAQI/f/ntj8NP3YwEAbrc2AQCmdQmS097fPg1A1pJ4ZYNdZYk9kaFYUk9EREREZOFYUk9ERPSGUO3e0diuHF+8eCGH9+zZAwA4fvy4HPf8+XMAwKhRo+S4hg0bAgB8fHzkONvjDwAAl5v1BAD0ad9eTitvVM6yuwgA+LXvaDkmZf55AMDfI9SVvP+3/i4tqwEAWlceCwDY1H6PnDbQWzkUK8cdXPgYAPD16hFyXGPX/x/wzXwDsXBsLzlt3PEEAEALvbeFSDeW1BMRERERWTgG9UREREREFo7Vb4iIiN5Ayqo4+lbDiYmJAQBERkbKcWFhYQCyVsmpWrUqAKB79+5ynLu7u2mZNUbYZgDAzCv/Vb/ZODSz2o26xq6qbCsNAAB8/f5YAMAXWy/KaQM/rfb/Q45yXCGXRwCAZwkqibgii8SEZ3LY3Tuzq0zFo5z7XrWKlLqv4RJpwpJ6IiIiIiILx5J6IiKi11T2kl5jGscmJGQWP69YsQIAEB4eLqdVqpRZ8j1kyBA5rnnz5nqle+vWucwBu8yPPlkbnDPtrp8/CACI6/elHFdfVxG9lFnMXq9dJwBA1J9Rckrs/5fUe6kUxXeYnPmxqm4dBspxj2cOBQCUubMaAPBN0GA5LWB1ZkZCb+ubHyLdWFJPRERERGThGNQTEREREVk4Vr8hIiJ6TSmr2+jb4DI1NRUAEBoaKscp+6JXNoZVrV7TpEkTAEDt2rUNzlt6ekrmQG1fAEDxmHNy2vbNGwAAp+7/N3+JWpn9vHfuVk+Oq+iiuT7NnQshAAD74v9Vk3HVNLMGXsUy84aQf+Q4ZY0ZL5X5bCtl9k8fGOovx0WG3gQAvPKfCwA48WlJOS31/6s0HUj4r2VtWloaAKBw4cJynJ2dnYE5pjcZS+qJiIiIiCwcS+qJiIhec+oayCpL7+Pj4+W4f/7JLJE+fPiwHKfswrJr164AgM6dO8tpFSpUMD1zWz8AADQ981+6H43NXFebqo/kuPBFmY1Qaw4vI8ctPr8fADCikuYS+waVvDVO08kjc9nKcffkqCQts9u6VJTDjdpX1Djfq4wMAEBiYqIcl56eDgBwdf3vfYKtrd4te4lYUk9EREREZOkY1BMRERERWThWvyEiInpNaftqbGxsLADg6NGjctzatWsBAMWLF5fjpkyZAgCoUqUKAMDDw8MseXNoMBUAsH9zZjWVlo3K/jdNzfzt278NAOj7W2s5rnLfXwEATc9/CgColnMx0xRyAwAUxT3t8xlIeTyUjWOB/46Vjc1/oZmVFcteSX88W4iIiIiILBxL6omIiF5T2bu0PHXqlJx2+vRpAMDNmzfluJo1awIAGjZsKMfVr18fAODk5GTWvHnXaZ/5r95LZDYarTTgvy/EDh49AQCwR1lSX8tcuft/jzNL6K+YOVkldV2NGvPVXyKAJfVERERERBaPJfVERESvEdXSX2Wp75UrmWXNO3bskNOuXr0KAChZ8r+PIn322WcAAB8fn9zOpvFcC8lBD1wGANx7nHM2a1t7AEDIhTsqY8sbtq6kpwCAuMr/vU8wT4sCIvNjST0RERERkYVjUE9EREREZOFY/YaIiOg1kvH/XysFgF9/zezy8e+//wYAlC5dWk7r168fAMDPz0+OK1WqVF5k0Ywyq9jYWuecUrl+p8yBpbfkOOWQr56pX7l8InPAb4ocp++y+lBtFMsGsmQqltQTEREREVk4ltQTERFZKNVSeWXXlKrdVkZHRwMAChXKbFyqWirv7+8PIOuHpnLffx9xOvn7FgDAk9aZjXM769uG9WKUHAxCZmn815VzzubVoAsAoFn/zXJcyL33AAC+OvvRzMzn6Z1hAICeQ//r4tNVz2zqQ13pvLpuLon0wZJ6IiIiIiILx6CeiIiIiMjCsfoNERGRhVFWu7l7964ct2vXLgDAqlWr5Li+ffsCAN555x0AgK+vr5xmY5MfIYCLHIo/+QUAoPffZQAAd1b0ktOK2apZNDWzr/3fP54oRz39/AAAoJOXmvnL9wYAfDn4Yznqo3lHMuf/qbUc5/7fCuTQw32zAQDjoj8HAGxRuwLTqVa1UQ6zwSwZiyX1REREREQWjiX1REREBYS20tpnz57J4dDQUADAvn375LiXL18CAMaMGSPHNWnSBMB/JfT5Uzqv6r9mpp1+yCw1n9qlAwCgjPfPclr/4Y0BAMUTrshxBzYfAgA8b7dajjs0q2W2VFVllsF3XXBEjjn//+vyrfGWHDe4ayUAQNLJlXLcn5H1AAC/hgcCAFqas3UsgPT0/2vvzoOsKs/Ej39HZGt2ZJVFZRUREBBEZFXcYlySictkUUNlsk8lk2Qya6omU1OZlJWxMtbU/JFlsmkyJhMnRhwVMUFZZFdEQBEEFAHZ9x1+vz+c9z3ndh+6b3ff7r6n+/v5h+Nzuu859/bt28fnPM/zngVg9+7dMXbmzBkAevbsGWPt2rWr8bGyVhBWy2SmXpIkSco5L+olSZKknPuT/+dAVEmSykp6/vzOnTsBWLVqVYwtW/bB/PQNG5LylLFjxwLwF3/xFzFWUVHRoOdZGh+UDe3f8maMrNnw/v/t6RJjA8deAcDgnkmzbVY/bVHHemN1jCx/5//KmrpcFmPXjhsKQKfaH6Ao+/btAwpLpUJp1Oc///kYGzVqFACdO1et/8m6fLP8pmUzUy9JkiTlXFN3zEiSpEr27t0bt//t3z5oIH3zzSST3a/fB0uifuUrX4mxceM+aO5s06ZNY5xiCX3QDNrt0jExMu3SBj7W5dfEyE2XN9SxapaVWU/fpant96plM1MvSZIk5ZwX9ZIkSVLOWX4jSVITCyUXf/jDHwBYsGBB3Hfy5EkAJk2aFGOh1Gb06NEx1rZt2wY/T5VWuoQmq5zGWSaqDTP1kiRJUs6ZqZckqQkcOnQobm/evBmAOXPmAPD666/HfR//+McBmDUrWQV14MCBjXGKagJm51VXZuolSZKknDNTL0lSCaUzrVl10vv37wdg7ty5MfajH/0ISGrk//7v/z7uGzlyJAA9evQo/cmqSdVUUy/Vhpl6SZIkKee8qJckSZJyzvIbSZJKKF1Gcfz4caCw8XX58uUAbNy4McaGDRsGwIwZMwCYPHly3Oeoyubr1KlTcTv8nNMrArdq1arRz0n5ZaZekiRJyjkz9ZIkNZD169cD8MQTT8TY0qVLARg+fHiMffvb3wagV69ejXh2aiqhmfrYsWMxduGFH1ySdejQoUpMKoaZekmSJCnnvKiXJEmScs77OpIklUAopfjpT38aY6FBtl27djH2mc98BoCrr746xnr27NkIZ6hyce7cOQCOHj0aYxUVFYDlN6o7M/WSJElSzvm/gJIk1VJ61djNmzcDsHLlSgBeffXVuC+MJBw3blyM3XbbbQB06dKloU9TZe706dNxO2TvW7duHWMXXGDuVcXz3SJJkiTlnBf1kiRJUs5ZfiNJUpFC2c2uXbti7LHHHgPgueeeA+Cuu+6K+2644QYARo8eHWOuEqogvfpw2E6XdqW3pZqYqZckSZJyzky9JKnFCxnRdOY02L9/f9xetmwZAHPmzKnyvffddx8AU6dOjfuGDRsG1D47n87QZp2TJFVmpl6SJEnKOTP1kqQWL6ueec+ePQCsWLEixhYuXAjAunXrYuz2228H4IEHHgCgU6dOdT4Pa6jle0B1ZaZekiRJyjkv6iVJkqScs/xGkqT/s23btrj905/+FIA1a9bEWO/evQF4+OGHY2zIkCEAtG/fvt7Hz2qKzSrHsHm2eSj25y0Vw0y9JEmSlHNm6iVJLdbp06cBmD9/PgArV66M+0KjbHrhqPHjxwMwZsyYRjrDhNn55iNk448ePRpjZ8+eBQobrV2oTLVhpl6SJEnKOS/qJUmSpJyz/EaS1KIcO3Ysbr/11lsAPProo0BScgPwoQ99CEjm0AMMHDiwMU6xgGU3zc+5c+cAOHToUIydOXMGgK5duzbFKakZMFMvSZIk5ZyZeklSi7B3714Afv3rX8fYnDlzABg3bhwA9957b9x31VVXAdCnT59GOkO1NKFRG5LmWZtjVVdm6iVJkqSc86JekiRJyjnLbyRJzU5oht20aVOMLV26FID169fHWN++fQGYNm0aAJMnT477OnToUOVxQ4mEzasqhfTqsa4kq/oyUy9JkiTlnJl6SWrBsrKDDZWFbsxjrVu3DoBnn302xl544QUAZs6cGWNf/vKXAejWrVtR51PM+Tbm85SkwEy9JEmSlHNe1EuSJEk5Z/mNJLVgjVkW0lDH2r9/PwBPPvlkjK1ZswZIVukEmD17NgATJ06Mse7du5f8fCy1kdQUzNRLkiRJOWemXpKUG2fPngXgvffei7Hly5cDychKSJpVx44dG2N/+qd/CkBFRUWDn6dUnazRqN7hUX2ZqZckSZJyzky9JCk3du3aBcBDDz0UY2ExqVmzZsXYjTfeCBRm6lu1atUYpyjV6PTp00Dhe/LCC70kU/2YqZckSZJyzot6SZIkKee81yNJqpf0CqqlbPY7evRo3F60aBEAc+fOrXKc2267DYBp06bF2BVXXAGUvuQmq8FRqq3Dhw8D0L59+xjr0KFDU52Omgkz9ZIkSVLOmamXJDW5dLZ/3759ALz++usxNm/ePCAZW/n5z38+7rvzzjsB6NixY4Ofm1RXoTkW4NixY0Bhpt5Rq6ovM/WSJElSznlRL0mSJOWc5TeSpHopRdPoW2+9FbeffvppAF544YUYGzx4MAD/9m//VvDfUHzZTVYZTTHnblOsSiFr9dj0e9IyL9WXmXpJkiQp58zUS5IaVXpU5bJlywB45ZVXYuydd94BkrGUAFOnTgVg3Lhx9T6+mXdJzZGZekmSJCnnvKiXJEmScs7yG0lSgwoNgOfOnQNg7dq1cd+PfvQjAE6ePBljEydOBGD27Nkx1qNHj3qfh2U3ako2xaqhmamXJEmScs5MvSS1YHUd81gbhw4dAuAnP/kJAMuXL4/7hg4dCsDYsWNjLGzXJzvf0M8r/fjeAVAxHGmphmamXpIkSco5M/WSpJI5duwYAFu2bImxMK5y3bp1AFRUVMR906ZNA2DChAkx1qlTpyqPG7KYZsWVV2fPno3bZ86cAaBVq1YxduGFXpKpfszUS5IkSTnnRb0kSZKUc97rkaQWrNTlLGFc5e9///sYe/755wG47777APjYxz4W9/Xu3RuA1q1bl/Q8G7pMxzIg1dapU6fi9vHjxwFo165djKW3pbowUy9JkiTlnJl6SVKdbN++HYB58+bFWGiKDQtNQbKI1NSpUwHo379/Y52iVDbSC6yFhvJ0dr59+/aNfk5qXszUS5IkSTnnRb0kSZKUc5bfSJJqFMpp9u7dG2MLFy4s+BeSEoPrrrsuxj796U8DNTfDSs3Z6dOn43Zomk3Ppvf3Q/Vlpl6SJEnKOTP1kqQavffeewB8+9vfjrGDBw8CMHHixBi7+eabAbj88stjzAykVDgGNWyHlZJr4orKKoaZekmSJCnnvKiXJEmScs7yG0lSgcOHDwOFDbBLly4FCktpJk2aBMD06dNjbOTIkQC0atWqwc9Tak6KLcWRzsdMvSRJkpRzZuolSUAyrnLdunUA/OY3v4n73n77bQC++tWvxti0adMA6N69eyOdodQy2SCrYpiplyRJknLOi3pJkiQp5yy/kaRmJKvZrrpb96HUBuD5558HYP78+QBceeWVcd8DDzxQJWbZjVS89O/hBRd8kFNN/77aKKv6MlMvSZIk5ZyZeklqRqrLyh85ciRur127FoAlS5bEWGiGHThwIFA4qjK9Lan2Tpw4EbePHj0KQPv27WOsoqKi0c9JzYuZekmSJCnnzNRLUguxatWquP3oo48CcOjQoRgbP348AJ/97GcB6NKlSyOendS8hUXdAPbt2wcU/o5169atVo9X2/4ZNX9m6iVJkqSc86JekiRJyjnLb5qh9C25c+fOFcTSt+ayYq1atWqMU5TUwHbv3h23f/aznwGwcePGGOvZsycAN998c4yNGzcOsOxGaghZf5vTf39rWzpjqY0qM1MvSZIk5ZyZ+mYuZAYq/5vm/+1L+Xfq1CkANm/eDMDKlSvjvtAg27lz5xibPHkyUDiqsmPHjg1+npISLj6lUjJTL0mSJOWcF/WSJElSzll+0wyly2kuvPCDH/HZs2eBpDkHkqbYCy7w/+2kPDpz5kzcDk2wP/7xjwFYvHhx3Dd79mwAZsyYEWOXXHIJAG3atGno05RUiWWvaghezUmSJEk5Z6a+hcjKCpgpkPJp+/btACxdujTGXnrpJSBptvvkJz8Z94UM/eDBg2PMO3RS48oaX2lzrErJT3VJkiQp57yolyRJknLO8hvVqJjbg1mlPMXeViy2DKihZuzX9fk19DEb4rjn0xjn01DHyFoZuZjj1/SeLZfytNDcvn///hh7+eWXgaTkBpJG2XvvvReA+++/v7FOUVItFfu5JdWGmXpJkiQp58zUK1MYgQlJpjCdUaicZQjjMdPS4/aqy4pWN1ozPYIzfU5B+J6s4xcrPG51meT0uZXiWOnnVVnWSNKGln5tS/k61PTzC9LPOTxusRms8Ljpcwvb1b2P0+cfYumvD4/R1A2lq1evBuAHP/hBjB08eBCAYcOGxdh3v/tdAIYMGdKIZ6fmoBzvUDVH6c+X8Pcx/TlUn78tEpiplyRJknLPi3pJkiQp5yy/UaZi5+mGfVmlOemyhaxyk6zvrfz16WNWVwaRfvzqHjc8Xtbt5mJvO2eVIxV7rKDYko5ij1Vblc+tpsfP+nlUp7Y/v6zvDV+f9d5K/7yzYlkqv49res9kfV1Dl+IcPnwYgAULFsTYihUrgMJb91deeSUAkydPjrFRo0Y16LmpcWzevBmA9evXx9g777wDwKlTp2IslOadPHkyxkJJR/p9HGIdO3YECtcqGDt2LAB9+vQp3RPQeR0/fjxuHzlyBIB27drFWEVFRaOfk5oXM/WSJElSzpmpV6Z0RjJkfdKNr9U1qGY1ImZleCs3gaa/Jqv5MetYIYuazmJW12gZvj6dfQ3nUV0GPH1u4XUo9twa41i1Vfnc0j+L+ownDV9X7M8vS3jO4THS55b1mmadY9b3nu/x0+eZ/vqwP/11tb2rU6yQoV+7di0AP/nJT+K+06dPA/Dggw/G2JQpUwDo0aNHSc9DTe+tt94C4Je//GWMPfnkk0CS3T2f6oYNdOrUCYBrrrkm7vvc5z4HwMc+9rF6nLGKlc7Uh9/59u3bx1iHDh0a/ZzUvJiplyRJknLOTL1Krrpa5NpmOLNqp7OOVWwmWXVTLqPWsu7ChEx6TWMxK79H0s+pKcZWhsWiAObMmQPAokWLABg3blzcN2nSJCCpowcz9M1ZyKS3bds2xkLd9cKFC2Ms1NLPnj07xsaPHw8U3lVt3bo1ABs2bADg5z//edz3yCOPALBu3boY+/M//3MA+vbtW9+n4qjMavg3Sw3BTL0kSZKUc17US5IkSTln+Y2KllWikDUSMav8prarhFY3RjPr67IaextaTcdpTreby+25pH/eWeU3xTT7lnpMaHXSDY5vvvkmAEuXLq0S69q1KwDXX3993JdubFTz16VLFwAmTpwYY8uWLQNg9+7dMRbKc+65554YGz58+Hkfd8KECUAyMhPg2WefBeDxxx+PsVDmdcMNN1Q5p/rI+lvRkhX7N06qDTP1kiRJUs6ZqVeNskZUhuxoaMjKGh1YH1kLWJVLs6aaXt6yW0uWLInbYTzhpk2bYmzWrFlA0vTYuXPnRjw7laO9e/fG7TDmMv15OHr0aKBw8aLqhLtA3/jGN2IsfI7/6le/irHQtJ0er3jzzTfX5tRVBO9YqCGYqZckSZJyzot6SZIkKecsv2lGQmNqujShsUpWqpsH3pBKORO/rseu6/48Sa+qGjRlOVQ537retm1b3A6rgqZjYWXP+++/P8auvvpqICmRkNJNsaGR+qKLLoqxMWPGAMWXaoUSyf79+8dYaKxNx3bt2gXAjh076nLaBcr597QpZA10SP+dyFopW6oNM/WSJElSzpmpb0aqy1oHpcqchMepbixXfUYGFjOSMB1LP+fK55b1uLW9s5C1MmKxIy0b41iVv7e2o0NrOo9SPG6xdy6KOUZWRqu251uXOymVH+/UqVNx+/333wfgpZdeirEXX3wRgAEDBsRYGFF5++23x1hTrGir8nTw4EEA3n333RgLWfuBAwfGWMiypxtaayusTHzxxRfH2OnTpwE4evRonR9X2dIr/YbXOT1kIqz+K9WVf0kkSZKknPOiXpIkSco5y2+aoXRZQbjdF27vl2qefOVm1HQjZdZc+2JKKtJfE84zXWaRvnVZ+XvSz6u6Y2U10YZzr64cI/31xa6O21jHSr9G4fHTr31WaUfYH84j/fPLOrfw9TWViVT+eaQfN+vnl6W6Y4XHq6n8Jut1qPwaZj3nYn8/wnPZunVrjH33u98FYPv27TH2iU98AkhW8wS49NJLgdKX3FS3Yq7yIzRVh9n0kJTYpMtvQnNrmzZt6nys8HuU9fvk+6f0jh07FrcPHToEFDYphyZ6qa7M1EuSJEk5Z6a+Gaku89dQWZdiG2Xr+/iQ/fxq20ha3eMWmz0vt2NlPX5tG1prOmZds8p1+b7qzj3sq0+Wu7r3UVrI8qez/Zs3bwZg5cqVBf8CtG3bFoCbbropxqZMmQIk2fnzqW0jcnXMsOZbeI+FMZYA/fr1A2DQoEExVlFRUe9jHT9+HIAjR47EWK9evQDo2LFjvR9fhUJzLCRN9uk7LeEzRKorM/WSJElSzpmpb0ayatkbWlaGsZSZwqz68lJrzHGCDXGsUrxGDfXalvrnV4rXr7bnsWfPnri9dOlSAJ5//nkgyaoCfOUrXwHgtttui7Fia/TN0Ct8lm7cuBGAt99+O+676qqrABg8eHDJjgOwb98+AA4cOBBjo0aNAqB37971PpYKpXsXwnb6M83Rtqov30GSJElSznlRL0mSJOWc5Teqk8qj0LyFqOZmyZIlADz11FMxFsZVDh06FIAvfvGLcV+IlWpsrJq/dCnM3r17gaT8ZseOHXHf3XffDdTccF2dMMJ1586dMbZlyxYgKcMBGDJkCFDYlKvykbXiuBR49SVJkiTlnCklZUpnA7LGL4YMfSlH8UlN5fDhw0DSCAuwbNkyoDCLOWzYMACmT58OwPjx4xvrFNUMpRdkC+/Bo0ePAoUN3SFrXp/m1bDw0dNPPx1jYWxmz549Y2zkyJFA4UJXKg3/TqqhmamXJEmScs6LekmSJCnnLL9Rpqx5ulJTKHVjWHi80DgIsHr1agAefvjhGOvWrRtQOHf+1ltvLdgn1UdYVRSS9RBCo3X//v3jvgEDBgDQvn37Oh9r06ZNAPzXf/1XjIXSsrDyMcAVV1wBuLppY6mp1LUyS3hUHTP1kiRJUs6ZqVem9FjKYjIDZg/UUIp9bxWb0X/nnXcA+MUvfhFjr7/+OgDXXXddjIUm2DFjxsSYGXrVVnXDBI4fPx63n3nmGSC5Mzp16tS4r7YryS5evDhuP/bYYwCsWrUKgB49esR9H/7whwG45ZZbYqxv3761OpaKl34PhL+xtc3UO9JS1TFTL0mSJOWcF/WSJElSzll+o0zp23re4lMeZL1Pjxw5ErdDo+Dy5csBWLNmTdzXpk0bIGmEhaTsJj0vPHB9BhUrvEfSZRNh1dhnn302xn7/+98DSTNsly5d4r65c+cCcNFFF8XYyZMnAWjdunWMhdViV6xYEWNhOzSG33DDDXHfnXfeCcBll11W5bwt8yi9dGP0iRMngMKG5No2J/s5pMrM1EuSJEk5Z6ZeUrO1aNGiuP2///u/QDK+8oEHHoj7PvrRjwLQoUOHGMvK0AdmxpTV1Fjd+yI9QvVv//ZvAfjtb3973q9fuHBh3P73f/93oHCAQdZo1vD+HTp0aIx99atfBeCOO+4ACjP71WWGSzk+ttSPm1eHDh2K22GEafqOTPfu3Rv9nNS8mKmXJEmScs6LekmSJCnnLL+R1Cy8/fbbcXvevHkAbNiwIcZCqcH9998PFDYMpm+BS7VVTElJunTmrrvuAgobVLt27VrwWGfOnIn7Tp8+DRSu7h2+Ll1+E5ps+/XrF2PTp08HoHPnzjU/kRJryaU2WdI/q/DzTZf5VVfyF/iaqjpm6iVJkqScM1MvKXfSo+EOHDgAwPz582MsjABMr5550003AUlTbBYb+1Ss2q50nM7Uf/KTnyz4Vy1D1qjo9N2XYlaUlapjpl6SJEnKOTP1knJn7dq1cftf/uVfgMIsWMjKT548OcaGDBly3sdzERc1FN9TkhqLmXpJkiQp57yolyRJknLO8htJZW3nzp1xe9myZQCsWLEixjp16gTAlVdeGWPTpk0D4PLLLz/v49qUpnIUxh4eO3YsxsJ7XM1HVlmWn0mqLzP1kiRJUs6ZqZdUlnbt2gXA0qVLY+zXv/41APv374+xv/u7vwNgwoQJMRYWmqpOYzQw2oCrIJ2FTY8xDEKGftOmTQDs3bs37hswYABQOKK1Q4cODXKeahxZnw1+Tqi+zNRLkiRJOedFvSRJkpRzlt9IKiuh3OaFF14ACmfSjxw5EoAZM2bEWGiQLabkprF5O11BuvF13bp1QNL4DbB48WIAtm3bBhSW6PTv3x+A++67L8buvPPOhjtZNYj0StgnTpwACj+32rVr1+jnpObFTL0kSZKUc2bqJTWZ0PD6+uuvx9jChQuBJGMZspQA119/PQCTJk1qrFOUanTkyBEA9uzZAxSOYQ0N37t3764Se/fdd2Ps4MGDQDK+sk2bNnHf0aNHAXjttddi7OKLLwZg1KhRMWamt7ydPHkyboc7N2bqVUpm6iVJkqSc86JekiRJyjnLb6QylrXCYB6aL4udzz5//nwAHnnkkRjr27cvADfddBMAd999d9znbO58Krd5/aX4vTp8+HDcDo2vodn1mWeeifveeuutKt87evRoAKZOnRpjs2fPBmD48OFVzmfVqlUAPPfcczH28MMPA/DNb34zxsaOHVur56DGlS6/OX78OFBYZlWK8pu8/s1QaZiplyRJknLOTL1UxkKGJZ19KbesZ5asc9u6dSsAv/jFL2IsNMOmR1SGbONVV10FmJ1vDsrtvVrd+YSmV0gaU9ON3CHzvn379hhr1aoVAF27dgUKG7lvueUWALp16xZj4W5UWCkW4LLLLgOgoqKiyjmNGzcOSLK76WM+8cQTMRYab++4447zPr8s6c+XUvys8vAZ1dQaakVZX/OWzUy9JEmSlHNm6qUcSGdfsmomy00Y17Zly5YYW758OQAvv/xyjA0aNAgorJsfMWIEYMZJpRey8OmFoELswIEDQOGYyfXr1wNJzTwk7+l0Tf2ll14KJOMlZ82aFfeFxdFat25d5/Pu2LEjANdee22MtW/fHoBf/vKXMbZgwQIAhg4dGmPhdyxrcbZSfpbk4XOpHGXdhZXqyky9JEmSlHNe1EuSJEk5Z/mNlDONVZZSl+a5U6dOAbBo0SIA/vu//zvu27RpEwCf/exnY+y6664DoFevXrU+lspHqRstSym8JwGWLVtW8C/Aq6++CiTlYekymcmTJwNw9dVXx9gDDzwAwJAhQ2IslMdceOEHf1JDaUzlx6uvzp07x+3x48cDcO7cuRgLqzF/5zvfibHPfOYzAEyfPr3K45XyZ1VuP3epJTJTL0mSJOWcmXpJ9fLGG2/E7ZABDSMAQwYT4CMf+QiQZOcB+vXr1xinqEbUWOMM9+zZE7fDuNTwL8DmzZsBeP/992PszJkzAJw9ezbGwl2iD3/4wwX/DclCUMOGDYuxMHqyU6dOJXgWxcl6TcOo15Cxh6QBON3sG7L34XunTZvWsCer80r//C644IOcqo2yKiUz9ZIkSVLOeVEvSZIk5ZzlN5IyZZVPpMsW9u3bB8Dzzz8fY4sXLwaSRsH0/Plbb721Qc5TTS9rHYXaNs+mGz5DmUz4F+D06dNAMh8+vcpraHZds2ZNjK1atQqAo0ePxlhofJ0wYUKMhfKVMAM+a557uch6TdNlQBMnTgQKV5794x//CMBTTz0FwODBg+M+y98aV/o9Hj5LQxlO5W2pLnwHSZIkSTlnpl5S0cLYP4D/+I//AArH902dOhVImvHCapZqeWrbKJteoXXFihUArF69OsZeeeUVADZs2ADARRddFPddcsklAIwePTrGQmP2gAEDYqxr165A4WjI0Mxdzhn6Yl/LHj16AHDDDTdU+d5w5+KRRx6J+26//XYApkyZUuWxynlMaV6l7xodPHgQKLzT0qZNm0Y/JzUvZuolSZKknPOiXpIkSco5y2+kFqiYWeKhERZg6dKlQOFKnOF7R40aFWNh1cqRI0fW6ZjKv6yf74EDB4BkZvyOHTvivrC9a9euGAsz6MP3QdJk2L9/f6Cw4XPEiBEAXH755TEW3pfptRKao6wymVBmBHDNNdcUfP28efPi9pIlS4DC1yi8bq1atSr5ubZ06dWNT5w4AZR32Zfyx0y9JEmSlHNm6iUV2L9/P5A0JkLSXJduiv36178OFDYnVrfKphn6liW8jwBee+01ILnTs2jRorhvwYIFQGHjaxg5mV4t9Z577gGS91u62bUlv7dqeu5hbOX1118PFI5VDD+HH/7whzH2V3/1VwBceumlpTxNUXhXJfwcajvG0gZmVcdMvSRJkpRzXtRLkiRJOWf5jdQCVb5tGxrmAObOnQvA2rVrYyw0wIZVNyFpqKuu5EbNz7Fjx+J2mCMfGqkhKbVJN1q3a9cOSOaojxs3Lu67+eabAejTp0+M9e3bt+DrAXr27AlAly5dSvAsWp7QPBt+lyEp/QjrAgD8/Oc/B5I1JwBmzpxZ8Fg1lYDYFJ8t/bqlt2vD11TVMVMvSZIk5ZyZeqkFCqsZrl+/HoCXXnop7tu0aRNQOObuQx/6EFDYFKvm58iRI0AyUjK8T6DqWEqAt99+G4A333wzxjZu3AgUZhTD+Mlhw4YBMHHixLjv6quvBuDCC/1z1BAqZ83DHQ8ovPMWhDt1ixcvjrGwKm9ons36WdU189ySmGVXQzNTL0mSJOWcqRGpBXrqqacAePLJJwHo0KFD3HfrrbcCcNddd8VYqIlW83P06NG4vWbNGgCeffZZABYuXBj3hax8+r0wZswYoLBO+3Of+xwAAwcOjLHQd9G6dWugcGGjUi5y5Li/qqp7HULvwqxZs2IsvIbLly+PsYcffhiAL33pS0D24nK+3lLTM1MvSZIk5ZwX9ZIkSVLOWX4jNXNvvPEGkJTcALz33nsADB8+HChcuTM0MVpyk2/psprXX38dSBqjIWmITo+ePHv2LJD87MeOHRv3XXfddUDhyq+XXXYZkDTAAlxyySVA4erDKm/p1XnDzzldThNWnn366acB2Lt3b9w3bdq0Ko/XFCMt8zBGM10eVsqyMykwUy9JkiTlnJl6qRkJCwNt27Ytxl588UUAnnnmmRibMGECAHfccUfBf0N5Z7pasnPnzsXtU6dOAXDixIkYC9thDOW7774b961cuRKAVatWxdiGDRsAOH36dIwNGTIESBaEmjRpUtx3+eWXA+Wdgfe9W39hEbApU6bEWMgwz5s3DygcdTpo0CAA+vfvH2NN+XPIS7N0uBsWFgCTSsF3kyRJkpRzXtRLkiRJOWf5jVRHWSsoZt3uLcXt4OoeI90QuWzZMgB+9rOfVdn/hS98IcbGjRsHJCtFlvNtan0grPYK8NprrwGwZMmSGFuwYAEAW7duBQob8cI8+cmTJ8fY7NmzgWRWOUC3bt2AZN2CioqKuM/G6ZalV69ecTvMsQ+fE+kyrjDD/p577omxdNlW0NCNrOFx05+VTd08G44fVmNO6969O+BKyiotM/WSJElSzvm/iFIOZGWaNm7cCMCKFSti7NVXXwWSFTwhaYKdOnVqjIVmOJWHys2t77zzTtwXmp537twZY6Eh+vjx4zHWo0ePgn/ToydHjx4NwJVXXhljYQxlOhsvZenSpQuQZODD6FOAuXPnAvDyyy/HWLjTk36/NVa2PH2crLupjSkcPzSjp88nrK7sXVKVkpl6SZIkKee8qJckSZJyzvIbqZZq23xV6turYQXQ5557Dii87R1u837pS1+KsawVH4OmbiRrjtK32EOZQjoWfkbpWd9hZvzy5cuBwgbYN998E0hKbiApa0iXVM2YMQNI5sl37Nixns9EKnTxxRcDhZ8poQk0rFoM8Jvf/AZISsGgsCG7voodUlAun2tZ55Fed6I6lZ9ruTwnlScz9ZIkSVLOmamXaqkpMiUhKw/wu9/9DkgyOBMnToz7pk+fDsDQoUOLelyzPqWXHjH6yiuvFPwLyTjKTZs2xVgYF3nZZZcBychRgDvvvBOAfv36xVgYhxdGUEKSFQ1NilJDSY+7DKtSp61evRpIMvYAM2fOBGDUqFFVvr6p736Ws5b0XFV/ZuolSZKknDNTL5WZPXv2xO0wojIsLARJLfb48eOBJDsPySJDahjhtd+7dy8Au3fvjvvCyMn3338/xnbt2gXAe++9F2P79+8HChdz6t+/P5DUyqcz9VdccQUAnTt3LtGzkOomK6Peu3dvAK699toYO3PmDJD0gwC0bdsWKBy3O3DgQAAuuKB55xdrWpRQKpXm/ZskSZIktQBe1EuSJEk5Z/mNVCbCaLiFCxfG2EMPPQQkJRgAn/3sZ4GkRMOyjIaVHiUZyqHCGNGlS5fGfWEcZfpW+5QpU4BkVV+AP/uzPwMKS6XCzzCMuUs/Rrk1yhU7TlDNT3U/5/TqsaEk5+c//3mMrV27Fkg+5wA+/vGPAzBgwIBSnmYu+DujhmCmXpIkSco5M/VSEwiLEoXsFcBTTz0FFI46vP322wG45pprYuyqq64Cqs/Qm02tWTpjuG7dOqDw5xG2t2/fHmNhXGRo9ktnJ8NCUD179oyxsFhP+De93aVLlyrn1KpVqzo8k8bl+6jlqW7kZNa+8DsQxrECvPjii0Ay0hXg6aefBpIm26xG//RnWd7ee+HO2/Hjx4HC86+oqACaf5OwGpfvJkmSJCnnvKiXJEmScs7yG6kRHT58GIANGzYAsHjx4rhvzZo1QOEqoaGR7JJLLmmsU8yt9G36I0eOAIWru4Zb4OFnkC5zeuONN4DCudphO3w9JKVPgwYNAgpX8w3bF17ox6panqwymSFDhsRYKDlM/z6F37GwL71SbZ8+fQoeK49C+U34HEo/l1DKl4eSO+WHmXpJkiQp50wpSQ0srK4I8MQTTwBJ01g6a3XvvfcCcNNNN8VYyObUVk0rGOY5+3U+6dcyjJdctmxZjC1atAiA1atXA8nYPUgaXkMmHuDBBx8EYPDgwTHWvn17IFkds02bNnFfuWTobZJWsYp9r1T3/in2vTV8+HAAevToEWO/+tWvAHjrrbcAePTRR+O+u+66C4ChQ4cW9fjlKNyBCJn69Otto6wagu8mSZIkKee8qJckSZJyrjzuF0tlri6lK6Hx9Q9/+EOMbd26FUhKP2bMmBH3TZ48GXCF2Mr27NkTt7ds2QLA22+/HWPhNd23b1+MnThxAkga1QAuvfRSIGk6Tq9iGW7xpxv7wnZtS6CauvwlHCvrPKS0hn6vZH1uXnTRRTF2/fXXA0lZW/jMBJg/fz4Ap06dirGRI0c2yHk2tPTnUBDKbiyNUymZqZckSZJyzky9VI1iM1gnT54ECrPK8+bNA+D3v/99jIWxh7feeisA06ZNK8l5FqNcMkLp1/T06dNAYTYu7N+7dy8A69evj/teffVVAFatWhVjr7zyCgDt2rWLsdD4OmnSpBgL22PHjgWSZtdSKbfMeLn8vFX+Guq9UtPjXnHFFUByNyx9ty2s6JxugA8r1aZHX+ZBdYMLyu1zQ/lmpl6SJEnKOS/qJUmSpJyz/EYqQtbt03TJyIoVKwB45JFHYqxjx44AfPGLX4yx0aNHAzBw4MAGOc88CKu9Arz22mtAMkMeYOnSpQC8//77QPI6QtLsmi6rCavu9u3bN8a6d+8OFDYdd+rUCSh92U1guYtUN+Hz8FOf+lSMPfnkk0Bh+d1jjz0GwI033hhjodQuaO7rcaQ1dVO+yo+ZekmSJCnnzNRL1cga+bZ582YgadCEJOMcRrMBTJgwAYCZM2fGWHo1xebo0KFDAGzfvh2Abdu2xX07duwACpvhQjNs+BegVatWAPTv3x9IRlACjBgxAoBRo0bFWGi2S7/2kspf+FwNn7N9+vSJ+6677roqX79u3ToAFi9eHGOhQX7QoEFAea7QmpU9zxpzWdfHtdlWQfm9+yVJkiTVipl6NTuVsxY11RgWU5cYMs8Azz77LABz586NsZBd/ta3vhVjY8aMKer4eVA5o5aOpcd4btiwAUgyaemFt8LCMumMeqiHDYvQANx///0ADBs2DIBu3bqV6FlIKifVfTaGz4YwxhKSO4Fh3CXA/v37geRzI91b05iyPiMr70sLfzNKoTn8jVFpmKmXJEmScs6LekmSJCnnLL9Rs1PbW5HVfX1YDXbBggUxdvToUQCmT58eY2Gl2OHDh9f5PMpN1ujJlStXxlhoFE43vl544QcfKaHhbfLkyXHfRz/6UaCwWbh3794FXw/JapHpUZaSWqb06rH33HMPkIy7hORz6IUXXgBgypQpcV8YgZtWXZlMfWQ9Xlgxe9euXVX2hefVunXrWh2nJY3sVO2ZqZckSZJyzky99H/SGecwOi0sihQWQgIYOXIkALfcckuMhVGLeRGy8AcOHAAKR0qGxtf0c966dSsAGzdujLEtW7YAhZmjfv36AUmTazpTHxqHa5uZktTyZGXUw3jba6+9NsbCZ1hoxE9/fVhw7qKLLoqxxsxunz17FoDDhw+f99xK2TArmamXJEmScs6LekmSJCnnLL9Ri3fixAkAnn766Rj74Q9/CMA111wDJDOQ07Fw+zStmJn3TSU0+EIy53nhwoVAMnsfYNOmTUDS9Aowfvx4oHCVx8997nMADBw4MMa6dOkCJM85/RjeZpZUnWKbQMNq3ZB8/nzve98DkpJJgDZt2gAwY8aMGEvPvW8sWavc1nVF2XL5e6LyZKZekiRJyjkz9Wp2qhtZFrLyoREWYM6cOQDs2LEjxsIKp1OnTgVg7NixcV9Whj5LY2VUwiqLkDyvN998M8befvttoPD5hXNr164dAOPGjYv7wnPu3r17jIUGtcGDB8dYGBdXUVFR/ychSXUQxuLefffdQLKaNRSOIg5Ck23//v0b4ew+0JjZ9YYa2al8MFMvSZIk5ZwX9ZIkSVLOWX6jZqfybcdjx47F7coNogAvvvgiAKNHj46x2bNnAzBgwIAqj1ldM2wpbnmmG6hCudCpU6di7Pjx4wAcPHgQgM2bN8d9q1evBuDVV1+NsVB+ky7TGTp0KADTpk0D4MYbb4z7whx+58lLKkdZDbVhVe+2bdvGfWEtjbDqbNqsWbPidrdu3RriNKNwvll/Oxr6mGApTktipl6SJEnKOTP1arZChv7xxx+PsZChD9lugL/8y78ECsekhRUIszIcDZ31CKsPAixbtgwozDSFLPyqVauAwkbVq6++GihccfHBBx8EksZWSJp9Q1Yr3fxrhl5SUyj2s7W6r0vfcf3mN78JJCOKAebNm1fle8Ko3osvvrio45dCQ2Xtzcq3bGbqJUmSpJzzol6SJEnKOctv1Oy8/vrrQFK6EppjAXr06AHAiBEjYizcem3oZimAPXv2APDee+8V/AuwdetWAHbt2hVjoYQoXS4USmXCeffp0yfuu/LKK4HC5zdkyBAAOnbsWKJnIUnlJWs+eyinueGGG2Ls5ZdfBmDp0qUxFoYThDU60t9bClmrx7rCthqCmXpJkiQp58zUK9fOnj0LJBlwgCeeeAJIMvWjRo2K++666y4ArrnmmnofO93oFM4jnZEJ2+lRkqHhNTS5hhGUkDTAnjlzJsbCeaZXfB0/fjwAkydPBqBNmzb1fCblrboRopIE1X8mTJkyJW6HO5vf//73Y2z58uUAXHBBkucMIy/rcwc3/A04efJklX3hczt9TKm+fDdJkiRJOWemXrmTznrMnz8fgEcffTTGunbtCsBHPvIRoHC846BBg0p2HgcOHIjbIQOfrt8P2Z+NGzfGWK9evQDo168fUDh+7Y477gAKazm7d+8OJM8pvV3bDH11i5GUczY8a+EvF1aRVBeXXXYZAF/5yldi7MknnwSyx12Gvx/9+/evsq+mz6Fw13X//v1Vvj58jl94oZdhKh0z9ZIkSVLOeVEvSZIk5Zz3fVTW0o2n27dvB2DFihUxFkpc0s2lY8aMAeDGG28EYODAgbU+7sGDB4GkAXf37t1xX9gO5wOwY8cOoHAcZWiQ7dChQ4yFcwnNuyNHjqxy3umvbwrlXM4Szq2hVmOU1PykPy/CKMmhQ4fGWCixOXr0aIyFksrwvTNnzoz7wmjkmj4rw9+v9EjioF27dkU9hlQbZuolSZKknDNTr7KWXpzpj3/8IwCPPfZYjPXu3RuAv/mbv4mxkIGpqKio1bHSja9h1OSSJUsAWLBgQdwXFi8Jx4ZkzORVV10VY5/61KeqxEJza1Z2pqEzNtU9ft6yRXk7X0lNp6bPi7CQX2iiBXjooYcAeOmll6p8/fXXXw8kGfuajps1tjJrQSqpvszUS5IkSTnnRb0kSZKUc5bfqCw9++yzQFLqArBz504APvShD8VYaHAKTaZZ0s1Pr732GpCs6Aqwfv16oLD8JswO7ty5M1BYQjN9+nSgcJ58mDufLskJc43bt29/3nOTJJWH9Gf6gw8+CMALL7wAwPPPPx/3tW7dGkhW9YbCz/7Ahn41NjP1kiRJUs6ZqW9GwgjFvXv3xtjhw4eBZORjumEnNOqkG3ZCY0/btm1jLKx8l85iZDX+1Pe8Q8YcksbU9NjIkA0PK8VCMiLy/fffj7EjR44ASeY9/Rjr1q0DYM2aNTH2xhtvAIXPadiwYUDSOJVelXbChAlAMhpNkpRfIaOebqgNd2ePHTsGwObNm+O+lStXAoV/M0LzbKdOnWIs/I2wsV+NxUy9JEmSlHNe1EuSJEk5Z/lNM7Js2TIAfvWrX8VYaO7Zt28fkKxiB3Dq1CkATp8+HWPhdmFo8oSkMfUf/uEfYqx79+7nPY+s5qCs24/h+D/4wQ+ApDkWkhKXT3/60zEWZgmfPHkyxsIc+fT3Lly4EIB33nkHKGxUHT16dMFjAXz+858HCp9zuIUaypBCYxTUr+ym8mvjbVlJalrVfQ6H0su+ffvG2L/+678CMGfOnBgLZarp5tnq1iWxiVYNwUy9JEmSlHNm6puRSy65BCjMFIQMfRjleOLEibhv1qxZQNJsCsn4x5D1B1i0aBEAjz/+eIzdeOONAAwZMqTKeWRlJc6ePQskTakAf/jDHwDYsWMHACNGjIj7OnToACQru0LS3JpufA1NseljXn755UCSle/Zs2fcF1abveKKK2Js0KBBQOFdjIZiZl6S8iN8ZqdXm73jjjsAWL58eYyFrH06Ax/+9oS/U+m7vOFucCmHTki+myRJkqScM1PfjIQsdDrzHur8Fi9eDBRm6v/6r/+6ytcH//RP/xS3f/3rXwPwP//zPzF20UUXAdmZ+iCMAoNkHFi69v0///M/AZg6dSqQLOoEsG3btoLzhiRTH8ZzQpKVv/XWW2Ns0qRJAAwfPhxonAy8JKlluOmmm4Dk7yDA97//faAwe9+nTx8Adu3aBSR3oCH52xwWOqyPdJ9ZGGOd7pULdxvSdxFCv1hFRUWV8whfF+6wp/eX4nzVcMzUS5IkSTnnRb0kSZKUc95HaYbCCq0AS5cuBZIG2PHjx8d96VGPlYWyFoBRo0YBsH///hhL39qrLDTnPv300zE2f/58oHDV2HBLMKzOt3Pnzrhv5MiRQDJOE+BLX/oSAL17946xMFqzS5cuMebtQUlSQ0v/Pf3e974HwBNPPBFjzzzzDJA0yqbLVUNZaE2Nslmr3QahPCYMswD41re+BcCGDRtiLJT9pEtiQ5nqF77wBSAZGAHJ3/ctW7bEWDj39LWByo+ZekmSJCnnTGk2Q3v27InbITMexl2mF11Kj3oMwv+ZhxGYAAcOHAAKx0AOHjwYSLIIL774Ytw3b948ABYsWBBj4fEOHjwYY507dwaS7EE6ix+y9unnErbT5x2y8ulGodBIG7IY6eYgF/yQJJVCeghDyKQ/99xzMRYGPYRRluls+5VXXgkUNqNmCd8Thly88sorcV8YHrF27doYC6Myw+ND0gybvsMe7m6Hx0uPsQ7nO2DAgBgLf/NV3szUS5IkSTnnRb0kSZKUc5bfNCPHjx8HCldcDau1XnrppQD07du3yve99957cTuUzsydOzfGQmnLl7/85RibMGECkJTmPPzww3FfaA7Kuq2YbgoKzUOVzx+SWb/pW4JZqmsikiSpoaTLOcPfoPTfonPnzhV8fZhXD8k8+cpfcz6hPDXMwwdYsmQJULjWzCOPPALA2LFjq328t956C4Af//jHAPz2t7+N+8IQje985zsxlh5QofJlpl6SJEnKOTP1zUjIArzxxhsxFhpfQ2zVqlVVvq9fv35xO4zo+sY3vhFjIcufbpQJjTShAedrX/ta3PeJT3wCKMzKh+3qxnelsx4he5HOYmTFsr7XrL0kqSm0bt06boe/d+HvU3oF2tCEGhpbzyeMhn7yySeBwoESt912GwB33313jI0YMaKo8wx/z++9916g8LohDKpIZ+drOk+VBzP1kiRJUs55US9JkiTlnOU3zUgotUmvJHfxxRcDSVNOek58aFQN+yBpkLnmmmtibOLEiec9Ztu2bQGYMWNGPc5ckqSWLZSWpodXhLKbhQsXAjB06NC476Mf/SgAM2fOrPWxQmlQaKgdN25c3BeaaHv16hVj6bIilS8z9ZIkSVLOmalvRkKjy7vvvhtjH//4xwGYPn06ULjKXMjUP/744zH20EMPAcmoSkiaZu68884YCxl9SZJUf2Ec9fPPPx9jYbxz+Js7e/bsuO+qq66q9zHD6OkwEAOgQ4cOAHTv3r3ej6/GZaZekiRJyjkv6iVJkqScs/wm544ePRq3N2/eDMD7778fY2PGjAGSJpjQ2ArJ3Nmrr766yteHpltIbgVed911MRZm7FYnL7Pj0+cZNNb5NuWx08dvimM29nErH7+p3pNN+Zq3pOdc+diNefxyeY839fGb+3u81J/fYQX4FStWxFhYE2bkyJFAspYMQI8ePep8rCA0zE6ePDnGwiryYR0a5YeZekmSJCnnzNTn1KlTp4DC0Vd79uwBCjMF/fv3Bwoz9JWlV43LytRv3LgRKBx9qdJr6gxTU2jqDHJjKbfXG3zNG4vv8cbVmO/x9OOX4vnv3r0bSEZKQpKNHz16NAB9+vSp9jFqe/cg7BsyZEjtTlZlyUy9JEmSlHNm6nMqZM3Xrl1bZV/6/7i7detW42OdOHEibofMf/r/9rt27QrUfoxlXjJTTXmeTXXslvicm/L4LfE5N/XxfY83/2M2t+MfP34cgH379sXYZZddBiQZ+7BAVUOeh/LLTL0kSZKUc17US5IkSTln+U0Zq67B6vTp0wCsXr06xsIqcGH0FUDfvn3P+/jbtm0D4LnnnouxRYsWAdCrV68YmzBhAgCdO3eu3ROQJEnndebMmbgdhl2EfyEpv2nXrl3jnphyyUy9JEmSlHNm6stYdQ0vGzZsAGDVqlUxFsZXprPs4f/4w9jKvXv3xn2/+93vCv6FpFH2hhtuiLFZs2YByWJVkiSp7kLDa3oByTAA49ixYzEWFoJKZ/RLIVQChMcNi1BBsuCV8sdMvSRJkpRzXtRLkiRJOWf5TQ6cPXsWgK9//esx9rOf/QyAAwcOxFiYIz9nzpwYC82trVu3Bgpv4e3cuROAQYMGxdg///M/A4XlNyNGjCh4jLypaYXB2q7AV8rjN9Tqh8U+p4Za7bK6x23o17vY4zfUMdNaymte7O9YU77HG/L41f1eN8Sx08doqudc3eP7Hq9ZKHfp0qVLjHXv3h2AioqKGAslOYcOHQKgTZs2RZ1bTecbZuG/8MILQOGAjcsvvxywDCePzNRLkiRJOWemPkfS/4d+ySWXADBx4sQYC/9nfurUqRgLmfmQ7U//n3donp02bVqM3XfffQAMGDCgpOcuSZLOb+jQoQBMmTIlxtasWQPASy+9VGXfqFGjgOxMfFYsDNiAZBz25s2bgWR0JpihzzMz9ZIkSVLOeVEvSZIk5dyf/L+s7hKVpVBCA9lNQXWVvk0XmndK3eCUpaGaqSRJypuDBw8CsHz58hj72te+BsCWLVsA+MIXvhD3feITnwBg9OjR1T7ukSNHAPjHf/zHGAtr0txyyy0AzJw5M+4bOHBgXU5fZcBMvSRJkpRzZurLmJlsSZJaljBuEpKRk8899xwAixYtivvCyOq+ffvGWNZQjI4dOwLJgA1IsvsTJkwA4OKLL4772rVrV4JnoaZgpl6SJEnKOUdaljEz9JIktSxhESqAu+++G0iy8Vu3bo37Nm7cCMD27dtjLOu6IYyo/shHPhJjN910EwCdOnUq1WmrDJiplyRJknLOi3pJkiQp52yUlSRJKmMnT54E4NChQzEWVoxPX8Zlld+Eptl0qU1ohrXMt3kxUy9JkiTlnJl6SZIkKefM1EuSJEk550W9JEmSlHNe1EuSJEk550W9JEmSlHNe1EuSJEk550W9JEmSlHNe1EuSJEk550W9JEmSlHNe1EuSJEk550W9JEmSlHNe1EuSJEk550W9JEmSlHNe1EuSJEk59/8B3edma0KzHt4AAAAASUVORK5CYII=",
"path": "images_version_6/image_29.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, D is the intersection point of the angular bisector BD and CD of triangle ABC. then angle D = ()
Choices:
A:120°
B:130°
C:115°
D:110°
|
||
146
|
30
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ0AAABoCAAAAADOEq2gAAAMAUlEQVR4nM2beVyU1RrHnxlgWM1RQJBhcUYBhQQzXK5LynVLjSK1j0sUJWnuoZaF91aAWZmK16RQLBXM1MwsxS01U9wFRYEQlM2FRUT2ffndP9iGmfed97wD3O7vr/d9zu+c9zvnzMw55zkzEhCbErY7DT75MErGaO8cSRjpth6IVhC9br+ua3E0BSZdt7wPAFt6NrL5O0lSttfw9kIHIiJJlaQre0pLbHRnk5cSEVHc4Iuzogu7kkdDTD282AMAUGMa9SaRle+Z+q4cTjWx9d0jcyIiCrd44bd3aZZkot3ym13ZY21ieg3BgwEgzfTkFht8YFeVuc5dMiAsvUu7DQDARpdrFwvE9ouETQjwwkAA8SuspOOji7qUjZUO5xZEbltxCacpFyi0nAMAtad9zS1m/dmVcKx0QG4hgCkjAOAGfdkUK4oYJbX/ILlLwACIoAOAQoNfAAA/0+8todRQV3L/5kEnU7VIFF2YaU3TRZDkflv0ytIe0kn7azqTqkWi6PrOb7ka51yrFq889rKp9duxnQbVKjF0t6j1LVbZa0r7soKw5w1Vq+91ElWLxND5D2q7zqRPNIuTVveVDorM7wSoVomgKzWOVLs7Rr9qW/6Y393Y51CtdoGeEkH3g0GJ+u0aSuMwlR0YY2Sz6EoHqVokgm7onPb3vg7FnL7c9R6GLp9kdQCqVex0aXS+faDKdRyf99YKJ8NhOwv1pmoRO12QQnNd/FD2Ab/9xEwTszdO1ulH1SJmugarL7RiZ2m/jhpP9wyX2i+P04eqRcx0R4nju2IT6X549uf9JR5rH4qmahEznbc3V3TOM0UC9eIX2MnG/lAqhqlNrHSPKYYrXD/YS7Bqw+EZRhZvndVnN8dK92WPBs54ntkChtp5O4ZKnYISmKlaxErnsIyn4BJFMDVwN0QpGRKWw/i4ZrHutimVr2gbXWB81vW3exhNiqlidAPMdLOH8JctkTH3SOU+HyP5/Eusdka6coM9OkqHe4rY3z745nmpMpRxtc9Gt9u4REdpiXwu28OalfwvhWTEVu5Jur3Y6Dz9dRYn0FdMzbTp4uvdLXyOCy61mOiSBaYE9W0Qq8p3TTTqtShet4mJbmkfIUeQYTYblLqyN3pS3690rfZZ6Op6hgl6JrrolflJ+MiWXthRzlfMQneIHgt6SnpPF0PVproTvt26zzzFPROx0P1zIoMpmYJFUampZNtomd17iRwlDHQ5bG/5GDoskkpNd9e60YD/3NcMM9CF2nJ3u6ZCqEM5syuBVoZTf6xoFxOmq7ddxdj+K5a8b28mVce8aNqzJaWQcj4OecInApdGZijZEpV1/fr+0cFcZ9nRb2M9v5hMp84qFdl7RhsKVggbwQhHRrGqVV91jK6buYxuSWjj7zsURPFugiP7VBrNPjZnaJ++wwoAhaGOFn4UhP3WlQBwIUuQbrtxhZBFTeuF5jwduhvQ3fqz8teGNdY6bAEA1At/KtznCznayU/+RD+22AmyZ3fVYj2l40S3lg4RoksgkYlXj3/ogVZ9yMPwxVMArtNe4N+t07oQXYCzyAc9Nlsqli1vnQ1NTQSACpsAAB86tpQI0FVbhIt91iWKEuW/t0JmP13WlHPx7V0P4EgPAEDRUyG6/cSyhG2vrXSR3Rw7k9y31lZY5gBAFN0CgIZxSxqA9OgCIbrhL4mGA5aZsiZA946isTEAio33Akij5oEqWxy4M+qXIqGRfUh6nZaM9GBxla7rZ+h3o+k6nGaEfe0wtbWsMLMQEKJbrdAHDk/k/oKerCU9ewY9ar09MFFBNlrZFt10ViHi0QAgjjbpNlx7WeYY0X7ffYhOa9l00p0jrRUXo6I4HtWmo17SYb9pxAoMV2sbddL5cGbFmLRKync6VRbZx2TaNa3wiOEcXl10+XRQH7Amebtw7lYzQ3orlmdox4PpkXZQJ91mczEZGQ1VWHF8GV3xN3OY2bxOSG36Vmzq4mt0gKsRXXQuouckdaWQ5kfq4DgaFfGuv/XKRgB7l+4MqkV+6IaFj4GSngGcbeigi6PbHaHT2AZVhQ8wePUaYtJxnJKAO6pS+K3Hx4exdx0ww6laLN28AR2CA0Lobstlziork2XN6YI6t2wgcDSwT4HgMzj3MSIphbsFfroKk0jeMkb5ODWlrlLmyGzXt677juwB4B4I/GWQkbE4eFFGGn3H0wA/XbRRx3ZYACqdxwM4O9bIc29rHqNsk/HCOsDyCyCFLqPiz0o4TuVrgJ9ukJ6pB3UV9A4+5Go0VX2yrrq8krYDVmuBVLoCAPOtykTTZTCng3XRzSbZijuaUa/pwOCPgCuyRwB+Jv5Dcd7f8nzrOLJjmz+ihAV2t/0NP3LVjA/rRzQ+jiihjy1R3uzgUfxN8FA3yEM72G8nJ5PHvnrMlKuvX2v3Z+Dm5Gwgd3AufPYBGKIjX847sqc4ZxZmNe7wpEmxAFA3aKhavMzr2ZWhaQBw9P3QCABrJLqew0c3iSUrxqfitSqjgFvNN7kmi9XLnuQ2X5Q+BBBLmmsVFrpcOq43W/o8ufUnuW33F2knn/Wphe7JkodurVzfX79cnCRz/6595XDiOz+Z7Kz7eJmHTrVSDzCg9oCHwQTtXp9rmsdpD2+b6rjFTXdJqBqnCjbaGQfc5CoZ+hxXzjuRtgm0yE03h2lT1V6pgSY9Q3iOsYufeUc7WNt3mlCbnHRlJiKyYk2KnUb9wvkn5hu0USv2llxwcctJt91MTFYMwE9jaJTunPYuOqMROcSQMuCkG+THzAWgfIOL4SyBIyXgQ1n7bdBDyefCTXPRpdFVVjLg/jLLHu+z/DpwfH/11H2j5xiGOlx0y1yYuAAg/lUj582VTNZimxlqd0Ey7i+Z9uKgq+rGeJ7ZGDOcXmDfVCbSmtbrM3SCpQoH3RGu38VoqzRCKZ3DfogO4Dc62nxVYryIqQYHnTfvQlpN2SHdLd4T+1PFYGreZ09h3FBp091vfYX8uj7XwGljkQiuZk1xrAaATZTJ5tem+9JS6KT18ATyOsh2dqahWvvxAJJ592Ca0qJrVATprFAT4W7gc1kPMgBAlnQVqh1ms9q16M6RrjP0/KBe3RZyJGmYdc3g13k2tXiUEBd7Sbj7teh8dazzE/2NlZ+LT3O3qfbe5TFEccDjke4x4a8IHoVo0pUa8Z50/T6OBopeHTSr/vGF3cE+/a3JrP+EAwDg/Skwe5hQNc0zxh+kvpxbt+pDa1Im/+EtfttYnvFX1u20B08bbOSq6QNUzj0MiIhKb28iKhc84NQ0fD3LmMOVF72h4s2f3URhVeWlJmfeyC0qsVDYjnZxcleoP+o8rB8ceXBAJF3KnX3anqSI7+Ur/W1ZsRrz09Ky4++UFRvYWLvPclKqLLQ9x+yPnj+ZaCPUlMbZ9rsXkjUdZzYf7b96ugkLV3H27cy024UFdbY29kOedehryetUrp1D/vV7hBps33eVu9e3L27csylx9JmxQq2UPkm5m5yUXVFqbqsa+5yjs4PA385SiryJRi0RSRdTPUv9tjAyvMz3x/46qtfl3E/MSEouqa13tHXz6+ugMhV6IBERHVP1Jjo/WtDXSgcJEYVPUxuM1M27zBYG8owOnuQnJWTdLighuVLxjruzwooJq6luRfikvIKfLp8QdLa877Z6jCDKUrZ9Z1z9LGZAoD/HB/jp43tJyRlp1TWGyn5Krz5KO9F/Hqy5cLKPrNDqtWdY6eLGJyuIPt2aY0BERPVHPrvpvfyl9tbqJxkJaVlJ+ZIGhZOD10A7e3OxWKLVNLLFm2Q9iBC50ICIqGj3hly/bV6tnsa8/OT4rPTs+hr5AAd/r369+D+LXUHXEON6x4TodN4CIkqP+E4SOM+OiIie5NxPuHfnXoVEonKb5OHaW8H4l9FOpds30MBASrR1tC1d3XJcGf0yISM95daD1EcSE7m75xuDFNZdP4pckoDoVvzc+TVRVGh30DjsnG2AKvNqZnoj5M7OquecHLr/LVhtdOUrXMyihm6hzYFO2UTdzWt6ubk5e9gwz1xdKEOi71eqGne7EsUrzP1UCjelJdOs9T+RIf2idCUqtif62pBjuv57Jf0moIqebkndn0Py/zs4+i8rvd5lz2R94AAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_30.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, it is known that OA = OB = OC and angle ACB = 30.0, then the size of angle AOB is ()
Choices:
A:40°
B:50°
C:60°
D:70°
|
Như hình vẽ cho thấy, biết rằng OA = OB = OC và góc ACB = 30°, thì số đo của góc AOB là ()
Các lựa chọn:
A: 40°
B: 50°
C: 60°
D: 70°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, it is known that OA = OB = OC and angle ACB = 30.0, then the size of angle AOB is ()
Choices:
A:40°
B:50°
C:60°
D:70°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, it is known that OA = OB = OC and angle ACB = 30.0, then the size of angle AOB is ()
Choices:
A:40°
B:50°
C:60°
D:70°
|
As shown in the figure, it is known that OA = OB = OC and angle ACB = 30.0, then the size of angle AOB is ()
Choices:
A:40°
B:50°
C:60°
D:70°
|
147
|
30
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ0AAABoCAAAAADOEq2gAAAMAUlEQVR4nM2beVyU1RrHnxlgWM1RQJBhcUYBhQQzXK5LynVLjSK1j0sUJWnuoZaF91aAWZmK16RQLBXM1MwsxS01U9wFRYEQlM2FRUT2ffndP9iGmfed97wD3O7vr/d9zu+c9zvnzMw55zkzEhCbErY7DT75MErGaO8cSRjpth6IVhC9br+ua3E0BSZdt7wPAFt6NrL5O0lSttfw9kIHIiJJlaQre0pLbHRnk5cSEVHc4Iuzogu7kkdDTD282AMAUGMa9SaRle+Z+q4cTjWx9d0jcyIiCrd44bd3aZZkot3ym13ZY21ieg3BgwEgzfTkFht8YFeVuc5dMiAsvUu7DQDARpdrFwvE9ouETQjwwkAA8SuspOOji7qUjZUO5xZEbltxCacpFyi0nAMAtad9zS1m/dmVcKx0QG4hgCkjAOAGfdkUK4oYJbX/ILlLwACIoAOAQoNfAAA/0+8todRQV3L/5kEnU7VIFF2YaU3TRZDkflv0ytIe0kn7azqTqkWi6PrOb7ka51yrFq889rKp9duxnQbVKjF0t6j1LVbZa0r7soKw5w1Vq+91ElWLxND5D2q7zqRPNIuTVveVDorM7wSoVomgKzWOVLs7Rr9qW/6Y393Y51CtdoGeEkH3g0GJ+u0aSuMwlR0YY2Sz6EoHqVokgm7onPb3vg7FnL7c9R6GLp9kdQCqVex0aXS+faDKdRyf99YKJ8NhOwv1pmoRO12QQnNd/FD2Ab/9xEwTszdO1ulH1SJmugarL7RiZ2m/jhpP9wyX2i+P04eqRcx0R4nju2IT6X549uf9JR5rH4qmahEznbc3V3TOM0UC9eIX2MnG/lAqhqlNrHSPKYYrXD/YS7Bqw+EZRhZvndVnN8dK92WPBs54ntkChtp5O4ZKnYISmKlaxErnsIyn4BJFMDVwN0QpGRKWw/i4ZrHutimVr2gbXWB81vW3exhNiqlidAPMdLOH8JctkTH3SOU+HyP5/Eusdka6coM9OkqHe4rY3z745nmpMpRxtc9Gt9u4REdpiXwu28OalfwvhWTEVu5Jur3Y6Dz9dRYn0FdMzbTp4uvdLXyOCy61mOiSBaYE9W0Qq8p3TTTqtShet4mJbmkfIUeQYTYblLqyN3pS3690rfZZ6Op6hgl6JrrolflJ+MiWXthRzlfMQneIHgt6SnpPF0PVproTvt26zzzFPROx0P1zIoMpmYJFUampZNtomd17iRwlDHQ5bG/5GDoskkpNd9e60YD/3NcMM9CF2nJ3u6ZCqEM5syuBVoZTf6xoFxOmq7ddxdj+K5a8b28mVce8aNqzJaWQcj4OecInApdGZijZEpV1/fr+0cFcZ9nRb2M9v5hMp84qFdl7RhsKVggbwQhHRrGqVV91jK6buYxuSWjj7zsURPFugiP7VBrNPjZnaJ++wwoAhaGOFn4UhP3WlQBwIUuQbrtxhZBFTeuF5jwduhvQ3fqz8teGNdY6bAEA1At/KtznCznayU/+RD+22AmyZ3fVYj2l40S3lg4RoksgkYlXj3/ogVZ9yMPwxVMArtNe4N+t07oQXYCzyAc9Nlsqli1vnQ1NTQSACpsAAB86tpQI0FVbhIt91iWKEuW/t0JmP13WlHPx7V0P4EgPAEDRUyG6/cSyhG2vrXSR3Rw7k9y31lZY5gBAFN0CgIZxSxqA9OgCIbrhL4mGA5aZsiZA946isTEAio33Akij5oEqWxy4M+qXIqGRfUh6nZaM9GBxla7rZ+h3o+k6nGaEfe0wtbWsMLMQEKJbrdAHDk/k/oKerCU9ewY9ar09MFFBNlrZFt10ViHi0QAgjjbpNlx7WeYY0X7ffYhOa9l00p0jrRUXo6I4HtWmo17SYb9pxAoMV2sbddL5cGbFmLRKync6VRbZx2TaNa3wiOEcXl10+XRQH7Amebtw7lYzQ3orlmdox4PpkXZQJ91mczEZGQ1VWHF8GV3xN3OY2bxOSG36Vmzq4mt0gKsRXXQuouckdaWQ5kfq4DgaFfGuv/XKRgB7l+4MqkV+6IaFj4GSngGcbeigi6PbHaHT2AZVhQ8wePUaYtJxnJKAO6pS+K3Hx4exdx0ww6laLN28AR2CA0Lobstlziork2XN6YI6t2wgcDSwT4HgMzj3MSIphbsFfroKk0jeMkb5ODWlrlLmyGzXt677juwB4B4I/GWQkbE4eFFGGn3H0wA/XbRRx3ZYACqdxwM4O9bIc29rHqNsk/HCOsDyCyCFLqPiz0o4TuVrgJ9ukJ6pB3UV9A4+5Go0VX2yrrq8krYDVmuBVLoCAPOtykTTZTCng3XRzSbZijuaUa/pwOCPgCuyRwB+Jv5Dcd7f8nzrOLJjmz+ihAV2t/0NP3LVjA/rRzQ+jiihjy1R3uzgUfxN8FA3yEM72G8nJ5PHvnrMlKuvX2v3Z+Dm5Gwgd3AufPYBGKIjX847sqc4ZxZmNe7wpEmxAFA3aKhavMzr2ZWhaQBw9P3QCABrJLqew0c3iSUrxqfitSqjgFvNN7kmi9XLnuQ2X5Q+BBBLmmsVFrpcOq43W/o8ufUnuW33F2knn/Wphe7JkodurVzfX79cnCRz/6595XDiOz+Z7Kz7eJmHTrVSDzCg9oCHwQTtXp9rmsdpD2+b6rjFTXdJqBqnCjbaGQfc5CoZ+hxXzjuRtgm0yE03h2lT1V6pgSY9Q3iOsYufeUc7WNt3mlCbnHRlJiKyYk2KnUb9wvkn5hu0USv2llxwcctJt91MTFYMwE9jaJTunPYuOqMROcSQMuCkG+THzAWgfIOL4SyBIyXgQ1n7bdBDyefCTXPRpdFVVjLg/jLLHu+z/DpwfH/11H2j5xiGOlx0y1yYuAAg/lUj582VTNZimxlqd0Ey7i+Z9uKgq+rGeJ7ZGDOcXmDfVCbSmtbrM3SCpQoH3RGu38VoqzRCKZ3DfogO4Dc62nxVYryIqQYHnTfvQlpN2SHdLd4T+1PFYGreZ09h3FBp091vfYX8uj7XwGljkQiuZk1xrAaATZTJ5tem+9JS6KT18ATyOsh2dqahWvvxAJJ592Ca0qJrVATprFAT4W7gc1kPMgBAlnQVqh1ms9q16M6RrjP0/KBe3RZyJGmYdc3g13k2tXiUEBd7Sbj7teh8dazzE/2NlZ+LT3O3qfbe5TFEccDjke4x4a8IHoVo0pUa8Z50/T6OBopeHTSr/vGF3cE+/a3JrP+EAwDg/Skwe5hQNc0zxh+kvpxbt+pDa1Im/+EtfttYnvFX1u20B08bbOSq6QNUzj0MiIhKb28iKhc84NQ0fD3LmMOVF72h4s2f3URhVeWlJmfeyC0qsVDYjnZxcleoP+o8rB8ceXBAJF3KnX3anqSI7+Ur/W1ZsRrz09Ky4++UFRvYWLvPclKqLLQ9x+yPnj+ZaCPUlMbZ9rsXkjUdZzYf7b96ugkLV3H27cy024UFdbY29kOedehryetUrp1D/vV7hBps33eVu9e3L27csylx9JmxQq2UPkm5m5yUXVFqbqsa+5yjs4PA385SiryJRi0RSRdTPUv9tjAyvMz3x/46qtfl3E/MSEouqa13tHXz6+ugMhV6IBERHVP1Jjo/WtDXSgcJEYVPUxuM1M27zBYG8owOnuQnJWTdLighuVLxjruzwooJq6luRfikvIKfLp8QdLa877Z6jCDKUrZ9Z1z9LGZAoD/HB/jp43tJyRlp1TWGyn5Krz5KO9F/Hqy5cLKPrNDqtWdY6eLGJyuIPt2aY0BERPVHPrvpvfyl9tbqJxkJaVlJ+ZIGhZOD10A7e3OxWKLVNLLFm2Q9iBC50ICIqGj3hly/bV6tnsa8/OT4rPTs+hr5AAd/r369+D+LXUHXEON6x4TodN4CIkqP+E4SOM+OiIie5NxPuHfnXoVEonKb5OHaW8H4l9FOpds30MBASrR1tC1d3XJcGf0yISM95daD1EcSE7m75xuDFNZdP4pckoDoVvzc+TVRVGh30DjsnG2AKvNqZnoj5M7OquecHLr/LVhtdOUrXMyihm6hzYFO2UTdzWt6ubk5e9gwz1xdKEOi71eqGne7EsUrzP1UCjelJdOs9T+RIf2idCUqtif62pBjuv57Jf0moIqebkndn0Py/zs4+i8rvd5lz2R94AAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_30.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, it is known that OA = OB = OC, then the size of angle AOB is ()
Choices:
A:40°
B:50°
C:60°
D:70°
|
Như hình vẽ cho thấy, biết rằng OA = OB = OC, thì số đo góc AOB là ()
Các lựa chọn:
A: 40°
B: 50°
C: 60°
D: 70°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, it is known that OA = OB = OC, then the size of angle AOB is ()
Choices:
A:40°
B:50°
C:60°
D:70°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, it is known that OA = OB = OC, then the size of angle AOB is ()
Choices:
A:40°
B:50°
C:60°
D:70°
|
As shown in the figure, it is known that OA = OB = OC, then the size of angle AOB is ()
Choices:
A:40°
B:50°
C:60°
D:70°
|
148
|
30
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ0AAABoCAAAAADOEq2gAAAMAUlEQVR4nM2beVyU1RrHnxlgWM1RQJBhcUYBhQQzXK5LynVLjSK1j0sUJWnuoZaF91aAWZmK16RQLBXM1MwsxS01U9wFRYEQlM2FRUT2ffndP9iGmfed97wD3O7vr/d9zu+c9zvnzMw55zkzEhCbErY7DT75MErGaO8cSRjpth6IVhC9br+ua3E0BSZdt7wPAFt6NrL5O0lSttfw9kIHIiJJlaQre0pLbHRnk5cSEVHc4Iuzogu7kkdDTD282AMAUGMa9SaRle+Z+q4cTjWx9d0jcyIiCrd44bd3aZZkot3ym13ZY21ieg3BgwEgzfTkFht8YFeVuc5dMiAsvUu7DQDARpdrFwvE9ouETQjwwkAA8SuspOOji7qUjZUO5xZEbltxCacpFyi0nAMAtad9zS1m/dmVcKx0QG4hgCkjAOAGfdkUK4oYJbX/ILlLwACIoAOAQoNfAAA/0+8todRQV3L/5kEnU7VIFF2YaU3TRZDkflv0ytIe0kn7azqTqkWi6PrOb7ka51yrFq889rKp9duxnQbVKjF0t6j1LVbZa0r7soKw5w1Vq+91ElWLxND5D2q7zqRPNIuTVveVDorM7wSoVomgKzWOVLs7Rr9qW/6Y393Y51CtdoGeEkH3g0GJ+u0aSuMwlR0YY2Sz6EoHqVokgm7onPb3vg7FnL7c9R6GLp9kdQCqVex0aXS+faDKdRyf99YKJ8NhOwv1pmoRO12QQnNd/FD2Ab/9xEwTszdO1ulH1SJmugarL7RiZ2m/jhpP9wyX2i+P04eqRcx0R4nju2IT6X549uf9JR5rH4qmahEznbc3V3TOM0UC9eIX2MnG/lAqhqlNrHSPKYYrXD/YS7Bqw+EZRhZvndVnN8dK92WPBs54ntkChtp5O4ZKnYISmKlaxErnsIyn4BJFMDVwN0QpGRKWw/i4ZrHutimVr2gbXWB81vW3exhNiqlidAPMdLOH8JctkTH3SOU+HyP5/Eusdka6coM9OkqHe4rY3z745nmpMpRxtc9Gt9u4REdpiXwu28OalfwvhWTEVu5Jur3Y6Dz9dRYn0FdMzbTp4uvdLXyOCy61mOiSBaYE9W0Qq8p3TTTqtShet4mJbmkfIUeQYTYblLqyN3pS3690rfZZ6Op6hgl6JrrolflJ+MiWXthRzlfMQneIHgt6SnpPF0PVproTvt26zzzFPROx0P1zIoMpmYJFUampZNtomd17iRwlDHQ5bG/5GDoskkpNd9e60YD/3NcMM9CF2nJ3u6ZCqEM5syuBVoZTf6xoFxOmq7ddxdj+K5a8b28mVce8aNqzJaWQcj4OecInApdGZijZEpV1/fr+0cFcZ9nRb2M9v5hMp84qFdl7RhsKVggbwQhHRrGqVV91jK6buYxuSWjj7zsURPFugiP7VBrNPjZnaJ++wwoAhaGOFn4UhP3WlQBwIUuQbrtxhZBFTeuF5jwduhvQ3fqz8teGNdY6bAEA1At/KtznCznayU/+RD+22AmyZ3fVYj2l40S3lg4RoksgkYlXj3/ogVZ9yMPwxVMArtNe4N+t07oQXYCzyAc9Nlsqli1vnQ1NTQSACpsAAB86tpQI0FVbhIt91iWKEuW/t0JmP13WlHPx7V0P4EgPAEDRUyG6/cSyhG2vrXSR3Rw7k9y31lZY5gBAFN0CgIZxSxqA9OgCIbrhL4mGA5aZsiZA946isTEAio33Akij5oEqWxy4M+qXIqGRfUh6nZaM9GBxla7rZ+h3o+k6nGaEfe0wtbWsMLMQEKJbrdAHDk/k/oKerCU9ewY9ar09MFFBNlrZFt10ViHi0QAgjjbpNlx7WeYY0X7ffYhOa9l00p0jrRUXo6I4HtWmo17SYb9pxAoMV2sbddL5cGbFmLRKync6VRbZx2TaNa3wiOEcXl10+XRQH7Amebtw7lYzQ3orlmdox4PpkXZQJ91mczEZGQ1VWHF8GV3xN3OY2bxOSG36Vmzq4mt0gKsRXXQuouckdaWQ5kfq4DgaFfGuv/XKRgB7l+4MqkV+6IaFj4GSngGcbeigi6PbHaHT2AZVhQ8wePUaYtJxnJKAO6pS+K3Hx4exdx0ww6laLN28AR2CA0Lobstlziork2XN6YI6t2wgcDSwT4HgMzj3MSIphbsFfroKk0jeMkb5ODWlrlLmyGzXt677juwB4B4I/GWQkbE4eFFGGn3H0wA/XbRRx3ZYACqdxwM4O9bIc29rHqNsk/HCOsDyCyCFLqPiz0o4TuVrgJ9ukJ6pB3UV9A4+5Go0VX2yrrq8krYDVmuBVLoCAPOtykTTZTCng3XRzSbZijuaUa/pwOCPgCuyRwB+Jv5Dcd7f8nzrOLJjmz+ihAV2t/0NP3LVjA/rRzQ+jiihjy1R3uzgUfxN8FA3yEM72G8nJ5PHvnrMlKuvX2v3Z+Dm5Gwgd3AufPYBGKIjX847sqc4ZxZmNe7wpEmxAFA3aKhavMzr2ZWhaQBw9P3QCABrJLqew0c3iSUrxqfitSqjgFvNN7kmi9XLnuQ2X5Q+BBBLmmsVFrpcOq43W/o8ufUnuW33F2knn/Wphe7JkodurVzfX79cnCRz/6595XDiOz+Z7Kz7eJmHTrVSDzCg9oCHwQTtXp9rmsdpD2+b6rjFTXdJqBqnCjbaGQfc5CoZ+hxXzjuRtgm0yE03h2lT1V6pgSY9Q3iOsYufeUc7WNt3mlCbnHRlJiKyYk2KnUb9wvkn5hu0USv2llxwcctJt91MTFYMwE9jaJTunPYuOqMROcSQMuCkG+THzAWgfIOL4SyBIyXgQ1n7bdBDyefCTXPRpdFVVjLg/jLLHu+z/DpwfH/11H2j5xiGOlx0y1yYuAAg/lUj582VTNZimxlqd0Ey7i+Z9uKgq+rGeJ7ZGDOcXmDfVCbSmtbrM3SCpQoH3RGu38VoqzRCKZ3DfogO4Dc62nxVYryIqQYHnTfvQlpN2SHdLd4T+1PFYGreZ09h3FBp091vfYX8uj7XwGljkQiuZk1xrAaATZTJ5tem+9JS6KT18ATyOsh2dqahWvvxAJJ592Ca0qJrVATprFAT4W7gc1kPMgBAlnQVqh1ms9q16M6RrjP0/KBe3RZyJGmYdc3g13k2tXiUEBd7Sbj7teh8dazzE/2NlZ+LT3O3qfbe5TFEccDjke4x4a8IHoVo0pUa8Z50/T6OBopeHTSr/vGF3cE+/a3JrP+EAwDg/Skwe5hQNc0zxh+kvpxbt+pDa1Im/+EtfttYnvFX1u20B08bbOSq6QNUzj0MiIhKb28iKhc84NQ0fD3LmMOVF72h4s2f3URhVeWlJmfeyC0qsVDYjnZxcleoP+o8rB8ceXBAJF3KnX3anqSI7+Ur/W1ZsRrz09Ky4++UFRvYWLvPclKqLLQ9x+yPnj+ZaCPUlMbZ9rsXkjUdZzYf7b96ugkLV3H27cy024UFdbY29kOedehryetUrp1D/vV7hBps33eVu9e3L27csylx9JmxQq2UPkm5m5yUXVFqbqsa+5yjs4PA385SiryJRi0RSRdTPUv9tjAyvMz3x/46qtfl3E/MSEouqa13tHXz6+ugMhV6IBERHVP1Jjo/WtDXSgcJEYVPUxuM1M27zBYG8owOnuQnJWTdLighuVLxjruzwooJq6luRfikvIKfLp8QdLa877Z6jCDKUrZ9Z1z9LGZAoD/HB/jp43tJyRlp1TWGyn5Krz5KO9F/Hqy5cLKPrNDqtWdY6eLGJyuIPt2aY0BERPVHPrvpvfyl9tbqJxkJaVlJ+ZIGhZOD10A7e3OxWKLVNLLFm2Q9iBC50ICIqGj3hly/bV6tnsa8/OT4rPTs+hr5AAd/r369+D+LXUHXEON6x4TodN4CIkqP+E4SOM+OiIie5NxPuHfnXoVEonKb5OHaW8H4l9FOpds30MBASrR1tC1d3XJcGf0yISM95daD1EcSE7m75xuDFNZdP4pckoDoVvzc+TVRVGh30DjsnG2AKvNqZnoj5M7OquecHLr/LVhtdOUrXMyihm6hzYFO2UTdzWt6ubk5e9gwz1xdKEOi71eqGne7EsUrzP1UCjelJdOs9T+RIf2idCUqtif62pBjuv57Jf0moIqebkndn0Py/zs4+i8rvd5lz2R94AAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_30.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, then the size of angle AOB is ()
Choices:
A:40°
B:50°
C:60°
D:70°
|
Như hình vẽ, số đo góc AOB là ()
Các lựa chọn:
A: 40°
B: 50°
C: 60°
D: 70°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, then the size of angle AOB is ()
Choices:
A:40°
B:50°
C:60°
D:70°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, then the size of angle AOB is ()
Choices:
A:40°
B:50°
C:60°
D:70°
|
As shown in the figure, then the size of angle AOB is ()
Choices:
A:40°
B:50°
C:60°
D:70°
|
149
|
30
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ0AAABoCAAAAADOEq2gAAAMAUlEQVR4nM2beVyU1RrHnxlgWM1RQJBhcUYBhQQzXK5LynVLjSK1j0sUJWnuoZaF91aAWZmK16RQLBXM1MwsxS01U9wFRYEQlM2FRUT2ffndP9iGmfed97wD3O7vr/d9zu+c9zvnzMw55zkzEhCbErY7DT75MErGaO8cSRjpth6IVhC9br+ua3E0BSZdt7wPAFt6NrL5O0lSttfw9kIHIiJJlaQre0pLbHRnk5cSEVHc4Iuzogu7kkdDTD282AMAUGMa9SaRle+Z+q4cTjWx9d0jcyIiCrd44bd3aZZkot3ym13ZY21ieg3BgwEgzfTkFht8YFeVuc5dMiAsvUu7DQDARpdrFwvE9ouETQjwwkAA8SuspOOji7qUjZUO5xZEbltxCacpFyi0nAMAtad9zS1m/dmVcKx0QG4hgCkjAOAGfdkUK4oYJbX/ILlLwACIoAOAQoNfAAA/0+8todRQV3L/5kEnU7VIFF2YaU3TRZDkflv0ytIe0kn7azqTqkWi6PrOb7ka51yrFq889rKp9duxnQbVKjF0t6j1LVbZa0r7soKw5w1Vq+91ElWLxND5D2q7zqRPNIuTVveVDorM7wSoVomgKzWOVLs7Rr9qW/6Y393Y51CtdoGeEkH3g0GJ+u0aSuMwlR0YY2Sz6EoHqVokgm7onPb3vg7FnL7c9R6GLp9kdQCqVex0aXS+faDKdRyf99YKJ8NhOwv1pmoRO12QQnNd/FD2Ab/9xEwTszdO1ulH1SJmugarL7RiZ2m/jhpP9wyX2i+P04eqRcx0R4nju2IT6X549uf9JR5rH4qmahEznbc3V3TOM0UC9eIX2MnG/lAqhqlNrHSPKYYrXD/YS7Bqw+EZRhZvndVnN8dK92WPBs54ntkChtp5O4ZKnYISmKlaxErnsIyn4BJFMDVwN0QpGRKWw/i4ZrHutimVr2gbXWB81vW3exhNiqlidAPMdLOH8JctkTH3SOU+HyP5/Eusdka6coM9OkqHe4rY3z745nmpMpRxtc9Gt9u4REdpiXwu28OalfwvhWTEVu5Jur3Y6Dz9dRYn0FdMzbTp4uvdLXyOCy61mOiSBaYE9W0Qq8p3TTTqtShet4mJbmkfIUeQYTYblLqyN3pS3690rfZZ6Op6hgl6JrrolflJ+MiWXthRzlfMQneIHgt6SnpPF0PVproTvt26zzzFPROx0P1zIoMpmYJFUampZNtomd17iRwlDHQ5bG/5GDoskkpNd9e60YD/3NcMM9CF2nJ3u6ZCqEM5syuBVoZTf6xoFxOmq7ddxdj+K5a8b28mVce8aNqzJaWQcj4OecInApdGZijZEpV1/fr+0cFcZ9nRb2M9v5hMp84qFdl7RhsKVggbwQhHRrGqVV91jK6buYxuSWjj7zsURPFugiP7VBrNPjZnaJ++wwoAhaGOFn4UhP3WlQBwIUuQbrtxhZBFTeuF5jwduhvQ3fqz8teGNdY6bAEA1At/KtznCznayU/+RD+22AmyZ3fVYj2l40S3lg4RoksgkYlXj3/ogVZ9yMPwxVMArtNe4N+t07oQXYCzyAc9Nlsqli1vnQ1NTQSACpsAAB86tpQI0FVbhIt91iWKEuW/t0JmP13WlHPx7V0P4EgPAEDRUyG6/cSyhG2vrXSR3Rw7k9y31lZY5gBAFN0CgIZxSxqA9OgCIbrhL4mGA5aZsiZA946isTEAio33Akij5oEqWxy4M+qXIqGRfUh6nZaM9GBxla7rZ+h3o+k6nGaEfe0wtbWsMLMQEKJbrdAHDk/k/oKerCU9ewY9ar09MFFBNlrZFt10ViHi0QAgjjbpNlx7WeYY0X7ffYhOa9l00p0jrRUXo6I4HtWmo17SYb9pxAoMV2sbddL5cGbFmLRKync6VRbZx2TaNa3wiOEcXl10+XRQH7Amebtw7lYzQ3orlmdox4PpkXZQJ91mczEZGQ1VWHF8GV3xN3OY2bxOSG36Vmzq4mt0gKsRXXQuouckdaWQ5kfq4DgaFfGuv/XKRgB7l+4MqkV+6IaFj4GSngGcbeigi6PbHaHT2AZVhQ8wePUaYtJxnJKAO6pS+K3Hx4exdx0ww6laLN28AR2CA0Lobstlziork2XN6YI6t2wgcDSwT4HgMzj3MSIphbsFfroKk0jeMkb5ODWlrlLmyGzXt677juwB4B4I/GWQkbE4eFFGGn3H0wA/XbRRx3ZYACqdxwM4O9bIc29rHqNsk/HCOsDyCyCFLqPiz0o4TuVrgJ9ukJ6pB3UV9A4+5Go0VX2yrrq8krYDVmuBVLoCAPOtykTTZTCng3XRzSbZijuaUa/pwOCPgCuyRwB+Jv5Dcd7f8nzrOLJjmz+ihAV2t/0NP3LVjA/rRzQ+jiihjy1R3uzgUfxN8FA3yEM72G8nJ5PHvnrMlKuvX2v3Z+Dm5Gwgd3AufPYBGKIjX847sqc4ZxZmNe7wpEmxAFA3aKhavMzr2ZWhaQBw9P3QCABrJLqew0c3iSUrxqfitSqjgFvNN7kmi9XLnuQ2X5Q+BBBLmmsVFrpcOq43W/o8ufUnuW33F2knn/Wphe7JkodurVzfX79cnCRz/6595XDiOz+Z7Kz7eJmHTrVSDzCg9oCHwQTtXp9rmsdpD2+b6rjFTXdJqBqnCjbaGQfc5CoZ+hxXzjuRtgm0yE03h2lT1V6pgSY9Q3iOsYufeUc7WNt3mlCbnHRlJiKyYk2KnUb9wvkn5hu0USv2llxwcctJt91MTFYMwE9jaJTunPYuOqMROcSQMuCkG+THzAWgfIOL4SyBIyXgQ1n7bdBDyefCTXPRpdFVVjLg/jLLHu+z/DpwfH/11H2j5xiGOlx0y1yYuAAg/lUj582VTNZimxlqd0Ey7i+Z9uKgq+rGeJ7ZGDOcXmDfVCbSmtbrM3SCpQoH3RGu38VoqzRCKZ3DfogO4Dc62nxVYryIqQYHnTfvQlpN2SHdLd4T+1PFYGreZ09h3FBp091vfYX8uj7XwGljkQiuZk1xrAaATZTJ5tem+9JS6KT18ATyOsh2dqahWvvxAJJ592Ca0qJrVATprFAT4W7gc1kPMgBAlnQVqh1ms9q16M6RrjP0/KBe3RZyJGmYdc3g13k2tXiUEBd7Sbj7teh8dazzE/2NlZ+LT3O3qfbe5TFEccDjke4x4a8IHoVo0pUa8Z50/T6OBopeHTSr/vGF3cE+/a3JrP+EAwDg/Skwe5hQNc0zxh+kvpxbt+pDa1Im/+EtfttYnvFX1u20B08bbOSq6QNUzj0MiIhKb28iKhc84NQ0fD3LmMOVF72h4s2f3URhVeWlJmfeyC0qsVDYjnZxcleoP+o8rB8ceXBAJF3KnX3anqSI7+Ur/W1ZsRrz09Ky4++UFRvYWLvPclKqLLQ9x+yPnj+ZaCPUlMbZ9rsXkjUdZzYf7b96ugkLV3H27cy024UFdbY29kOedehryetUrp1D/vV7hBps33eVu9e3L27csylx9JmxQq2UPkm5m5yUXVFqbqsa+5yjs4PA385SiryJRi0RSRdTPUv9tjAyvMz3x/46qtfl3E/MSEouqa13tHXz6+ugMhV6IBERHVP1Jjo/WtDXSgcJEYVPUxuM1M27zBYG8owOnuQnJWTdLighuVLxjruzwooJq6luRfikvIKfLp8QdLa877Z6jCDKUrZ9Z1z9LGZAoD/HB/jp43tJyRlp1TWGyn5Krz5KO9F/Hqy5cLKPrNDqtWdY6eLGJyuIPt2aY0BERPVHPrvpvfyl9tbqJxkJaVlJ+ZIGhZOD10A7e3OxWKLVNLLFm2Q9iBC50ICIqGj3hly/bV6tnsa8/OT4rPTs+hr5AAd/r369+D+LXUHXEON6x4TodN4CIkqP+E4SOM+OiIie5NxPuHfnXoVEonKb5OHaW8H4l9FOpds30MBASrR1tC1d3XJcGf0yISM95daD1EcSE7m75xuDFNZdP4pckoDoVvzc+TVRVGh30DjsnG2AKvNqZnoj5M7OquecHLr/LVhtdOUrXMyihm6hzYFO2UTdzWt6ubk5e9gwz1xdKEOi71eqGne7EsUrzP1UCjelJdOs9T+RIf2idCUqtif62pBjuv57Jf0moIqebkndn0Py/zs4+i8rvd5lz2R94AAAAABJRU5ErkJggg==",
"path": "images_version_5/image_30.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, it is known that OA = OB = OC, then the size of angle AOB is ()
Choices:
A:40°
B:50°
C:60°
D:70°
|
Như hình vẽ cho thấy, biết rằng OA = OB = OC, thì số đo góc AOB là ()
Các lựa chọn:
A: 40°
B: 50°
C: 60°
D: 70°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, it is known that OA = OB = OC, then the size of angle AOB is ()
Choices:
A:40°
B:50°
C:60°
D:70°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, it is known that OA = OB = OC, then the size of angle AOB is ()
Choices:
A:40°
B:50°
C:60°
D:70°
|
As shown in the figure, it is known that OA = OB = OC, then the size of angle AOB is ()
Choices:
A:40°
B:50°
C:60°
D:70°
|
150
|
30
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAACPsAAAZ6CAYAAACgjfGkAAEAAElEQVR4nOzdd1gU1/c/8De9CoJUG4odK9hFpVjBht3Ye+w9xnw0lkSNvUYTk6hgFGPvio2qgA0QFSsCKmKX3mF+f/jTr7pzly2z1fN6nn0S5+6eObvM7M7cOXOvDsdxHAghhBBCCCGEEEIIIYQQQgghhBBCCCFqT1fVCRBCCCGEEEIIIYQQQgghhBBCCCGEEEIkQ8U+hBBCCCGEEEIIIYQQQgghhBBCCCGEaAgq9iGEEEIIIYQQQgghhBBCCCGEEEIIIURDULEPIYQQQgghhBBCCCGEEEIIIYQQQgghGoKKfQghhBBCCCGEEEIIIYQQQgghhBBCCNEQVOxDCCGEEEIIIYQQQgghhBBCCCGEEEKIhqBiH0IIIYQQQgghhBBCCCGEEEIIIYQQQjQEFfsQQgghhBBCCCGEEEIIIYQQQgghhBCiIajYhxBCCCGEEEIIIYQQQgghhBBCCCGEEA1BxT6EEEIIIYQQQgghhBBCCCGEEEIIIYRoCCr2IYQQQgghhBBCCCGEEEIIIYQQQgghRENQsQ8hhBBCCCGEEEIIIYQQQgghhBBCCCEagop9CCGEEEIIIYQQQgghhBBCCCGEEEII0RBU7EMIIYQQQgghhBBCCCGEEEIIIYQQQoiGoGIfQgghhBBCCCGEEEIIIYQQQgghhBBCNAQV+xBCCCGEEEIIIYQQQgghhBBCCCGEEKIhqNiHEEIIIYQQQgghhBBCCCGEEEIIIYQQDUHFPoQQQgghhBBCCCGEEEIIIYQQQgghhGgIKvYhhBBCCCGEEEIIIYQQQgghhBBCCCFEQ1CxD1EoT09P6OjoiDxCQ0NVnRohaqFatWq8+0hycrKqUyNfCQ0N5f1beXp6qjo1UgaO4xAcHIxFixbB19cXtWvXhp2dHYyMjHj/pjNmzBCJsXjxYt7nLl68WOnvhxBNN3LkSN79yd/fX9WpKRUdA0iGzicIIeLQMRohhBBCCNEk1MdMNA31XxFJUR+eauirOgFCCCGEEEXZvn07Vq5ciYcPH6o6FUIIIYQQQogay8jIQFZWFnJycqCnpwdzc3NYWlrCxMRE1akRolTv3r1DTk4OcnJyYGhoCDMzM5QvXx5GRkaqTo0QpdPG/SEvLw8ZGRnIzc1FQUEBjIyMYGZmBhsbG+jp6ak6PUIIIYRIQenFPklJSahRowY4juNt7969O06cOKHkrAghhBCiTXJycjBs2DAcOXJE1akQQgghhBBC1ExqaiouXLiA8PBwxMbGIjExEZmZmbzPdXR0RK1atdCqVSt4eHjAy8tLrQqAQkND4eXlxWyfMmUKNm/erMSMiCZJTEzEhQsXEBERgfj4eCQmJiI3N1fkebq6uqhcuTJq166NNm3awMPDA+3bt4e+vmIvL6SmpuL9+/dyxTAwMICFhQUsLS1hamoqUGZEG6n7/iCLlJQUhIaGIjIyEnFxcUhKSsLr1695n6unpwd7e3vUq1cPjRo1gru7Ozw8PGBjY6PkrAkhhBAiKaUffQQEBDALfQAgKCgIL1++hL29vRKzIoQQQog2GTVqFBX6EEIIIYQQQj4pKSnBvn37sH37doSGhqK0tFSi16WlpSEtLQ3h4eFYtWoVLCws0LdvX0yZMgVubm4KzrpsZU2FunfvXqxduxaGhobKSYiovYKCAvj7+2PHjh24evWqRK8pLS3FkydP8OTJE1y4cAEAYGtri0GDBmHatGmoWbOmQnKdP38+AgICBItnYGCA2rVro0mTJnB1dUWPHj1Qu3ZtweITzaNJ+4OkMjMzsX37duzduxfXrl2T+HUlJSV4/vw5nj9/josXL2L9+vXQ1dVF27ZtMWDAAAwdOhSWlpYKzJwQQggh0lJqsQ/Hcdi1a5fY5xQXF2P37t2YPXu2krIihBCiyZKTk3k7N6tVq4aRI0cqPR+iev7+/jhw4ICq0yCEKBh9/xNCiPoKDQ1FaGioyHJPT094enoqPR9SNm3/mx04cADz588XZHrfzMxM7Ny5Ezt37kTPnj2xatUq1KlTR4AspZednY2DBw+Kfc7bt29x4sQJ9O3bV0lZEXVVWlqKv/76C7/++iueP38ud7zXr19j8+bN2Lp1K4YMGYLffvsNFStWFCBTxSkqKsKdO3dw584d7NmzB3PmzEHLli0xduxYjBo1iqYw+oZo4/6QmZmJ3377DVu3bmWOViet0tJShIeHIzw8HHPnzsXIkSPx008/oXLlyoLEVyfUx0A0zYYNG5Ceni6yfMaMGShfvrzS8yGEqIZSi33CwsKQlJRU5vMCAgKo2IcQQohEkpOTsWTJEpHlHh4edCL2DeI4DqtWrWK2d+3aFb169ULdunVhaWkJAwMDkefQ8MSEaAb6/ieEEPUVGhrK+x0NQCsKR7SRtv7N0tLS8P333+PEiRMKiX/8+HGcO3cOixYtwty5c6Grq6uQ9bAcPHgQOTk5ZT7P39+fin2+cQ8ePMCoUaMQGRkpeOySkhLs2rULx44dw7p16zB69GjB16FIV65cwZUrV7B161b88ccfaNmypapTIgqmjfvD/v37MWPGDKSlpSlsHbm5udi6dSu2b9+O6dOnY+HChTAzM1PY+pSN+hiIptmwYQNSUlJElo8cOZKKfQj5hii12KesYWU/unXrFmJiYtRiKFxCCCGEaI7o6GjcvXtXZLmOjg4CAwMxaNAgFWRFCCGEEEIIUbZr167Bz89PkBEbxMnPz8dPP/2EyMhI7NmzB+XKlVPo+j4naV9rUFAQXr16BTs7O8UmRNTS6dOn8d133wk20gdLRkYGxowZg+joaGzZsoX35hp1FhsbC3d3d2zatAmTJk1SdTpEQbRtfygoKMCMGTPw559/KiQ+a52rVq1CVFQUwsPDlbZeQgghhIhSWrGPJMPKfs7f35+KfQghhBAilUuXLvEu9/Pzo0IfQgghhBBCvhHnzp1Dr169kJ+fL/Z59vb26NGjB7y9vVG/fn1UqVIF5cqVQ3FxMTIyMvDo0SPExcXh3LlzCAoKQmFhITPWiRMn0L59e1y8eBHW1tZCvyURSUlJEl9kLS4uxu7duzFr1iwFZ0XUjb+/P8aMGYPS0lKxz3NyckLPnj3h6ekJFxcXODg4wNzcHIWFhUhPT8eDBw9w48YNBAUFITg4WGy8v//+GykpKTh27BiMjY2FfksKVVJSgsmTJ8PIyAhjxoxRdTpEYNq2P2RnZ6Nbt24S/RY4ODigS5cucHd3R926dVG9enVYWlrC1NQUBQUFyM7OxpMnT/Dw4UNcuXIFISEhiI+PFxtT0QVThBBCCCmb0op9JB1W9qO9e/di7dq1GncHACGESCM5OVnVKRCiVa5du8a7vE+fPnLFXbx4MRYvXixXDELIB/7+/hLfha7N6BiAEEIIUYyQkBD4+fmJLfSpUaMGfvnlF/Tv35+371FfXx/Gxsawt7eHu7s7Jk+ejFevXuH333/H2rVrkZubyxs3Li4OnTt3xsWLF2FpaSnYe+ITEBAAjuOkej4V+3xbAgMDyyxsaNKkCZYuXQofHx/eaej09fVhamqKihUrwtPTE7Nnz0ZKSgrWrFmDP//8E8XFxbxxz507hz59+uDYsWMK69+XdPvPyclBVlYWUlJScOvWLQQFBeHUqVNivyOmTJmC1q1bw8XFRah0iYpp2/6QlZWFLl26ICoqSuzzOnfujDlz5qBDhw7MqSZNTU1hamoKOzs7NGvWDN999x0A4OHDh9i9ezf++OMPvH79WpC8CSGEaK/Q0FBVp/BNUtpE0qwOfdYcuG/evFHYfNqEEEII0U4vXrzgXV6vXj0lZ0IIIYQQQghRtsePH6Nv377Iy8vjbdfR0cGcOXOQkJCAwYMHS3XR1c7ODr/88gsSEhLg7u7OfN6NGzcwbNgwqQpxpMVxHHbt2sXb1qpVK97l8fHxiImJUVhORL1ER0dj1KhRzMIGAwMDrFmzBjdu3EC3bt2YRQB8nJycsHnzZsTExIgthjlz5gxmzpwpde5CMzMzg4ODA1q2bImxY8fi4MGDePLkCUaMGMF8TX5+PubMmaPELIkiadv+UFpaiiFDhogt9KlVqxaCg4Nx9uxZdOrUSar39HmMJUuWIDk5GWvXrlV4ESshhBBCpKeUYh9xw8ouWLAAbdq04W0LCAhQZFqEEEII0TLv37/nXV6+fHnlJkIIIYQQQghRqoKCAvTu3Zt5TmBgYIC9e/di9erVMDQ0lHk9Tk5OCA0NxbBhw5jPOXHiBH777TeZ11GWsLAwJCUl8bZt27YNlStX5m2jvtZvw5s3b9CvXz/mtHMWFhY4f/48Zs+eLVMBwEcNGzbE1atX0bFjR+ZztmzZgj179si8DkWxtbWFv78/li5dynzOmTNn8OjRIyVmRRRBG/eHxYsXi71R3s/PDzExMfDy8pJ7XcCHkX9mzZqF+/fvY8CAAYLEJIQQQogwlFLswxpW1sbGBl27dmWeHJ85c4aGBySEEEKIxLKzs3mX6+npKTkTQgghhBBCiDItXboU8fHxvG06OjrYu3cvBg4cKMi69PX1ERAQ8GmqEz5LlixBQkKCIOv7GmsE9caNG6NRo0YYMmQIb3tgYCCKiooUkhNRHzNnzkRqaipvm7GxMYKCguDh4SHIuszMzHDy5Em0b9+e+Zxp06bh1atXgqxPaPPnzxdbEHH8+HElZkMUQdv2h+vXr2P58uXM9iFDhuDQoUMwNzeXeR0s9vb22LdvH/766y+YmJgIHp8QQggh0lN4sY+4YWUHDRoEfX19DBw4kPeOmqKiIuzevVvRKRJCCCFESyhyqHxCCCGEEEKIerp//z5WrVrFbF+2bBn69u0r6Dp1dHSwc+dONG/enLe9sLAQEyZMEHSdwIcbHA4ePMjb9vGGyuHDh/O2v3nzBidPnhQ8J6I+goODxfanb9++Ha1btxZ0nUZGRjhy5AiqVavG2/7u3TvMnj1b0HUKacGCBcy26OhoJWZChKZt+0NpaSnGjBmDkpIS3nZvb2/4+/vLNUKRJMaNG4eLFy/C1tZWoeshhBBCSNkUXuwjbljZoUOHAgCsrKzQvXt33ufQ8LKEEEII+Vpqaipu374t8mDdpfrgwQPe53/9UCcZGRlISkrC/fv3kZqaioKCAlWnRAghhBBCiFpavHgxc4qWdu3a4ccff1TIeo2MjPDvv/8yRziIiIjA2bNnBV3nwYMHkZOTI7JcV1cXgwcPBgC4uLjAzc2N9/WsUYGIdhBXuDJkyJBP24jQrK2tsXPnTujo6PC2BwYG4u7duwpZt7zatWvHHAXl8ePHSs6GCEnb9ofAwEDmCHa2trYIDAyEvr6+1HFl0bp1a+zfv18p6yKEEEIIm8J/+VnFOrVq1ULLli0//XvYsGE4fPiwyPNu3ryJuLg4NGnSRFEpAvgwEkBERASio6MRGxuLhIQEvH//HpmZmcjOzoahoSFMTU1hZmaGihUrwsnJCdWrV4ebmxtat27NnAtbXRQVFSE4OBjXrl1DTEwM7t+/j4yMDGRmZiI3NxfGxsYwMTGBubk5KleuDCcnJzg7O6NZs2Zo1aoV7OzslJJnQUEBzp8/j9OnTyMuLg6JiYnIyMiAnp4e7OzsYGtrC1dXV/j6+qJDhw4KGY6ST35+Ps6dO4ewsDDExcXh8ePHePv2LXJzc2FoaAhzc3NUrVoVderUQdu2bdG1a1dUr15dKbl9i27duoWjR48iKioKCQkJePv2LQoKCmBtbQ07OztUr14dnTt3hq+vL/0dGEpKShAWFoaTJ0/ixo0bePjwIdLT08FxHGxtbWFnZwcXFxf4+vqiS5cusLKyUnXKn6SmpuL9+/ef/s0qKM3JyZG6eKNOnTowMDCQK7/PJSYm4siRI7h06RJu376N169fIzc3F1ZWVrC1tUWVKlXQsWNH+Pr6wsXFRbD1SuL27du4ePEioqKi8PDhQzx9+hTZ2dkoLCyEqakpbGxsUKNGDTRr1gze3t7w9vZWq6mw5s+fL1VBcJcuXSR6nipHBsrLy8OBAwdw/PhxXL58GS9evPiiXVdXFzVq1IC7uzt69+6Nbt268f5NQkNDeeN7enoqIGvN8+7dO5w9exbBwcFISEhAUlISMjMzUVBQgPLly6NGjRpYuHAhfH19pY6dmJiI8+fPIzIyEvfv38eTJ0+QlZWFvLw8mJiYwNraGs7OznB1dYWXlxc6d+4MY2NjBbxL7aRJ3/+qlpeXh3PnzuH69euIjY39dEydmZmJ/Px8mJiYwNTUFOXKlUOVKlXg5OSEGjVqoEWLFmjZsiXKly+v6regldT1uODevXs4d+4cIiMj8eDBg0/HBEVFRTAzM/t0TODm5gZPT0906NBBq/YXdZKdnY3Tp08jKCgI8fHxSE5ORlZWFoyMjGBrawt7e3u0aNECvr6+8PDwgJGRkapT/uTBgwdfFFqwpqd49eqVVN/RhoaGqF27ttz5fS46OhrHjx/HtWvXcO/ePbx79w7FxcWwsbGBnZ0datWqBR8fH/j4+MDBwUHQdX8tIyMDERERiI+Px927d3Hv3j28evUKmZmZyMrKgr6+PkxNTeHo6Ihq1arBzc0N7du3h4eHB+8I2dLQpL9ZWe7fv8+84Kinp4c//vhDoaMc1KlTB7NmzcKyZct423/99VeJz0ckwToP6tChAxwdHT/9e9iwYYiJiRF53pkzZ/D69WsakUELnT9/HlFRUbxt5cqVw/r16xW6fk9PTwwePBh79uwRaSstLcWyZcvUchR/AwMDVKlShbf4IiMjQwUZESFo2/5QWlqKJUuWMNtXrFgBe3t7mXKVlTr1F8tCk/oY1PVcEtC8PmZ1/izFycnJEdlGxd30mp2dLXFsOzs7Qa8Bq/N57cd+4UuXLuHOnTtISkrC+/fvP13rtbCwgJOTE+rXr4/27duje/fusLGxUVp+QklPT8fZs2cRExOD2NhYpKSkIDMzExkZGSgqKvrUL2hpaYmqVavCycnpU91G8+bNYWZmppK8k5KSeG9qUBQrKytUqlRJ7jgFBQUICQlBeHg4YmJikJSUhFevXiEnJwc6Ojqfai9q164Nd3d3+Pr6CnvOzClQdnY2Z25uzgEQefzyyy9fPLegoICztrbmfe706dMVluO7d++4BQsWcFWrVuVdt6SPqlWrcjNmzOCio6MVlqssnj59yk2fPp2ztbWV6/3VqVOHmz9/Pnfr1i2p1u/h4cEbLyQk5IvnFRYWcqtXr+YcHBwkzsnCwoJbuXIll5+fL+An9qWUlBRu0qRJnIWFhVSfl46ODte2bVvuxIkTMq+7uLiYs7S0FImtr6/PZWZmyhTz9OnTzJzliXv8+HHemH5+fmW+dufOnbyvHTFihMhzQ0NDufbt20v1t+jTpw+XmJgo0/tSBicnJ968k5KSpIozYsQI3jg7d+784nmlpaXc9u3buRo1akj8GRoZGXE//vgjl5GRIdwblwPrvQrxEPe5h4SE8L7Gw8ND5LlxcXFcjx49OB0dHYnX7enpycXGxirsc+M4jsvLy+N+//13zsXFRerPxs7OjluyZAmXnp6u0BwlpajtgGXRokW8z1+0aJHc76WwsJBbu3Yt8ziI9ahRowa3d+9ekXjSvjc+0nw3y0qo7z9J4yQnJ3OjR4/mjI2Ny/xs169fL/H6i4uLuX///Zdr3ry51NubpaUlN3PmTC4tLU2q96zpJP3NkvR1Qjyk3e6EINQ+8Lm7d+9yY8aMkfrY9fOHjo4O16RJE2758uVqcQwl6fmELFavXs38rba0tBS7Dk0/LigpKeH27t3LNWvWTOptpEKFCtycOXO4Fy9eyLz+NWvW8MaeO3euzDFbtGjBzFmeuG5ubrwx4+LiynytpPt5VlYWN3/+fN7zP9bD3t6e+/vvv7mSkhKZ35uQWO9V3oeTk5PY9UpzjHbkyBGucePGEq9bV1eXGzt2rFzbOp+4uDjuf//7H9e8eXNOT09Pps/F0tKSmz59Ovf06VOZ81DV30wRZs6cycxn5MiRSskhMzOTs7KyYuYhbX8aS1JSEvP3ZNeuXV8898WLF8xtTJrjXaI5evfuzdwGFy9erJQckpKSOH19fd4cDA0NuTdv3kgVT9w5gJDatGnDuw4XFxdB10OUR9v2h6CgIOb7qVevHldaWqrAd6KdqI9ZdurSx6wNn6WkWO9ViEdZ/dvacF4bHh7O9ejRgzMwMJDqs9HX1+f69u2rNttBWaKjo7mBAwdK1P/Neujp6XFt2rThNm7cyD1//lyq9cvbh8d6vaIe8l7rSExM5CZMmMCVL19e6nW3atWKO3r0qFzr/0ihxT7+/v7MN/H48WOR50+cOJH3uba2tlxhYaHg+e3evZuzs7MTfOOQpNNP0UpKSrj169czi63keUjzIyzJjn3nzh2uYcOGMudTq1Yt3u1JHoWFhdwvv/zCGRoayv15eXh4cA8ePJApjx49evDGPHnypEzxZs+eLTZXWePOmDGDN96mTZvKfK0kF5QLCgq4CRMmSHUg9vnD0NCQ++eff2R6b4qmzGKfZ8+eSV0s9fnD3t6eu379urAfgAzU+USstLSUW7RoEfNEvqyHrq4ut2TJEoV8bgcOHOAqVqwo92dkb2/PHTx4UCE5SkNbin0eP34sU5HI549+/fpxubm5n2JK+974aFuxz+bNmzlTU1OJP1NJL36EhIRwderUkXu7K1euHPfHH39I9b41GRX7fCBksU9+fj43f/58QY5dP3+UL19e+DcuJUUU+5SWlnLTp09nvu+KFStyN2/eFBtDk48L4uLiuKZNm8q9fZiZmXEbNmyQqVPuxo0bvDGbNWsm03tKT08XWzQha9x3795xurq6IvFsbGwkuqAiyX4eEREhV9FFy5Ytpb5wqgjqXOyTnp7O9enTR+YcypUrx50+fVruz2jHjh1cvXr1BP18TExMuN9++02m/VBbin0KCwvF3uAWHx+vtFzmzJnDzGPGjBmCrGPx4sW88U1NTbmsrCyR5/v4+PA+v3HjxoLkQ9TH69evmRewjIyMuFevXiktl379+jH3hQ0bNkgVS1nFPqwL1m3atBF0PUQ5tHF/6N+/PzOOuvZ7qzvqY5aNOvUxa/pnKQ11L/ZR1/Pax48fc127dpX7M9LV1eWmTJnC5eTkCJ6jENLT07nvv/9e5muorEeTJk2kyuNbKfbJysripk+fLvPNO58/OnbsyCUnJ8uUx0eKG8MW7Dmg3d3deafWGTZsGO/zX79+jVOnTgmZGhYuXIihQ4cyhymWB6fCKUCAD0M6jh49GjNnzpRqqDZJCfn+goOD0aZNG9y6dUvmGA8fPkT79u3x4MEDQXJ68+YNOnbsiIULFzLne5dGWFgYmjZtipMnT0r9Wm9vb97lwcHBMuVS1uuEjsvKXxrp6eno2LEj/vzzT5m3vcLCQowbNw6///673Ploqvj4eLRs2RLh4eEyx3j58iU6dOiAyMhIATPTHoWFhejfvz+WLFmC4uJimWKUlpZi0aJFmDt3rmB55efnY+TIkejfvz+eP38ud7yXL1+iX79++PHHH1X+e6fpbt26hTZt2uDatWtyxTl48CA6duyo1CEuNcnkyZMxdepU5ObmChaztLQU//vf/+Dl5YX79+/LHS8rKwsTJ07E0KFDBTn2IN+WvLw89OzZE8uWLRN8+9HG7/mCggIMGjQIGzdu5G2vW7cuoqKi0KhRI7nWo67HBf/++y9atmyJGzduyB0rJycHM2bMgJ+fn9TnnU2aNIG1tbXI8tjYWKSnp0udS1hYGEpKSpjtssYNDQ1FaWmpyHJPT0/o6OhIHe9re/fuRYcOHZCSkiJzjCtXrsDT0xMvX76UOx9t9PTpU7Rp04Z32nhJZWVlwc/PD0eOHJErl0OHDvFOESOPvLw8/PTTT/Dz80N+fr6gsTXFpUuX8Pr1a962li1bomHDhkrLZezYscw2ebbBjziOw65du3jbevfuzTvVPauv9ebNm4iLi5M7J6I+Tpw4wZzOw8/PT6nTtil6XxBacXExnjx5wttWo0YNJWdDhKBt+0NBQQHz+pipqSkGDRokU25EPanruaQm9jGr62epbdT1vPbgwYNo1KgRgoKC5I5VWlqK33//HW3btsWzZ88EyE44b9++haenJ7Zt2yb4vqSN/YLyun37NlxdXbFx40ax/VCSunDhApo1aybXtVuFFfskJycjLCyMt411otm6dWvUrFmTt401H7UsVq9ejV9//VWweOpm6tSpgn5einLlyhX07NlTkLmPnz17hl69esl9gePjl6I8OxWfj52DBw4ckOp1rGKZixcvSp3Du3fvcPPmTbHPkSXumzdveIu17O3tUb9+fanjfe7jxauIiAi54gAffpSmTZsm+N9WEyQmJqJz585ITU2VO1ZGRgb8/Pzw9u1bATLTHqWlpRg2bBgOHTokSLzVq1czO3GlkZ2djc6dOyvkN2HVqlWYMmWK4HG/FSkpKejcuTNevHghSLzIyEgMHTqUDsC/smDBAmzdulXQmMXFxRg0aBB+++03QeMCwJ49ezBgwACZOyDIt6l///44d+6cqtPQCBkZGejatSv279/P296mTRtcvnwZVatWlWs96npc8Mcff2D48OEoKCgQIKv/c+LECXTp0kWqgh9dXV14eHiILC8pKUFoaKjUOZR104LQcYW4qeHYsWMYNmyYIEV6t2/fxuDBg+WOo23evHmDzp07IyEhQe5YhYWFGDx4MB4+fChAZsI7ceIE+vbty1ucpu3Edd7369dPiZkAderUQYMGDXjbnjx5gnv37skVPzw8HI8fP+ZtY/W1+vn5oVy5crxtmtB3SCSnTvuCt7c3rKyseNuioqKQlZWl1HzKcunSJeZxTPPmzZWcDRGCtu0PoaGhzBuYfH19YWZmJleORH2o67mkJvYxq+tnqW3U9bx248aN6N+/v+ADYsTGxsLLy0uQgjchFBYWolOnTlTErySXLl1CmzZt8OjRI0HjvnnzBj4+Psy6mrLoC5rNZwICAngvOBkaGmLAgAHM1w0dOhSLFy8WWX7q1Cm8efMGNjY2cuWVmJiIhQsXMtsNDAzQtm1beHh4oHbt2qhYsSLMzMygp6eHzMxMZGRk4NmzZ7h58ybi4+Nx48YNZpW4Kly+fBl//PEHs93ExAReXl5o27YtatWqBXt7+08HgxkZGcjIyEBycjLi4+M/3eWjiM6iV69eYfr06SKjENja2sLHxwdeXl5wdHSEra0tsrOzkZqaigsXLuDIkSN4//49b8x79+5h+fLlvNuPJIqKitCjRw/cuXOH+RxdXV20a9cOffr0QfXq1eHo6IisrCykpqbi0qVL2L9/PzO/kpISDBkyBI6Ojmjbtq1EOTVs2BC2trYid6nFx8fj7du3qFChgsTvj3VXqrxxQ0JCePd1Ly8viWOwTJo0SaTQx8DAAO3atYOPjw9q1aoFOzs76Ovr4+XLl7h+/ToOHz7MHCmK4ziMHz8eN2/ehJGRkdz5aYKPBVNfV0RbWlqiU6dO6NSpEypXrgw7Ozvk5+fjxYsXCA0NxeHDh5GWlsYb8/Xr15g9ezZz9LZv0a+//ipy4VBXVxctWrRAt27d4OLiAjs7OxgbG+PVq1e4desWjh07hqioKGbM2bNnw9fXV+bfvaKiInTv3l1ssZy+vj7c3d3h6emJRo0aoUKFCrCwsMDbt2+RmpqKixcv4vTp08zirq1bt6JmzZqYOXOmTDnKw9/fn3cbrFatGu9dBElJSahWrZriE5NAUVER+vTpI7bQp3LlyhgwYAB69uwJJyenT783z58/x7Vr17Bv3z5cvHjxi+/1o0ePYtu2bcp4Cxrh3LlzWLZsmchyBwcHdOvWDe3bt4eDgwNsbW1RWFiIp0+f4urVq2UW5o4YMULsc3R0dNCiRQt4enqiadOmsLGxQfny5ZGeno60tDSEh4fj5MmTzALMY8eOYfbs2cxRRwj53J49e8SOgGppaYmOHTuiVatWqFmzJmxsbGBmZoaSkpJPx/6PHj1CfHw84uLixB4Ha7rU1FT4+PgwjxN79uyJ//77DyYmJnKvSx2PC44fP47JkyeLfY6dnR0GDhyIli1bolKlSjA3N0dqaioSExNx4MABREdHM18bGRmJgQMH4uTJkxKPeOPt7c07UkpwcDD8/PwkivH5ayR5jlBx5S32uXv3LgYPHixyF1iVKlXg6+uLdu3awd7eHhUqVEB6ejqePHmCoKAgHD9+nHmhJzg4GP7+/hg5cqRcuWmL0tJSDBo0SKS4wtTUFF5eXujSpQuqV68Oe3t7FBcX49WrV7h8+TIOHTrELKbIz8/H+PHjERISImiuVapUQfPmzdG8eXNUr14dVlZWsLKygo6ODt6/f48XL17gypUrCA0NFfs9ffr0afzyyy8y94loKnF/j65duyoxkw+6dOmC27dv87aFhISgbt26MsdmnYM7ODigY8eOvG0mJibo27cv72sDAwOxevVq6OsrrHuYKBFrX9DV1UWnTp2UmouBgQG8vb15L7AWFRXh0qVL8PHxUWpO4ixfvpx3ua6uLnr16qXkbIgQtG1/EPdbp+z3QxRLHc8lNbWPWR0/S22jrue1f/31F2bMmCH2ObVq1YK3tzfatGkDBwcHVKhQAfn5+Z+uM546dQrx8fG8r3306BH8/PwQERGh8uuMq1evRmxsLLPd1tYWXbp0QdOmTVGzZk1YWVnBzMwMhYWFyMjIQHp6Ou7fv4/4+HjExMQgMTFRidlrlpiYGPj4+IgtILO1tYW3tzc8PDxQtWpVVKhQAXp6enj58iXu3buH06dPIzw8nHdEoNzcXPTu3RvXr1+Hs7OzdMnJNQkYQ2lpKefs7Mw791jv3r3FvjYxMZE5b5m0c/ryGTJkCDP+hAkTuNTUVKniZWRkcP/99x83aNAgztDQkAPAxcbGyp2nrNzd3Xnfm56eHjd//nzu3bt3UsV79eoVt3PnTq579+6crq4uB4B7//69xK9nza/39ZyeFSpU4DZs2MAVFhaKjff27Vtu5MiRzL+hoaEh9/r1a6ne40ezZs0SO2+el5cX9+jRI7ExCgoKuN9+++3TtsB672/fvpU4L9Z8vAcOHJDq/U2ePFmi+QGljTthwgTeOH/99ZdEr9+5c6dE24iOjg43ePBgLiUlRWy80tJSLiAggCtXrhzzPW7atEmq96hIksx3KgnWHMNff46mpqbcwoULuezsbLHxcnJyuB9//FHstnLz5k053rlwJJmbV5Hrsbe3F5mb08fHh7t9+3aZMU+ePMk5OjoyP+NZs2bJnO/EiROZcfX19bkpU6ZINBdoTk4Ot3jxYs7ExIQZKyYmRuY8hSbUPvW1RYsW8cYta05jPgsWLBD7t5k/fz6Xn59fZpwrV65w9evX/+L1FhYWzNjSYH03yzqPLR+h/lasOF9/FhUqVOD+/PNPrqSkRGy8oqIi5vHgypUrxX4vDhkyhLtz506ZORcVFXGbNm3irK2tmbGOHz8u1eegSVi/WTt37pQqjrK+/xVF3n2gtLSUq1KlCm8MExMTbt26dVLPJf706VNuy5YtnKenJweAs7S0lP6NCUze+b45juPu3LnD/KwAcOPHj+eKi4ulykuTjgtSUlK48uXLM+OamZlxW7duLfMzuHXrFtesWTOx34O//fabxHnduXOHN0b9+vWlen+vXr2SaF56aeO+ePGCN06lSpUkjsHaz78+Rq9SpQoXEBDAlZaWio335MkTztfXl/ke7e3tuaKiIqnep6IIeewky3q+/ow/Hv+W1V9QVFTErV27ltPX1xf8N7pbt26fYri4uHBLlizh7t+/L1WM0NBQrl27dszcDAwMuHv37smUn7L+ZkIqKirijI2NefO2trYuc59ShKNHjzL/PmPHjpU5bnZ2Nmdubs4bd+bMmWJfGxwczMzp6NGjMudE1MfTp0+Zf+MmTZqoJKcNGzYwc1q6dKnEcVjnDoAwlzXEneP16tVLkHUQ5dLG/aFjx47M19+9e1cJ7+DbQH3M/NS5j1nTPkuhKaofXNL1qON5bUREBGdgYMCM3bp1a+7MmTMSxTp9+jRXr149ZqzZs2fLlKNQMjIyOFNTU97cKlSowO3cuVPqz/H+/fvc6tWruaZNm3IAuMaNG0v1eiH68IT2008/Mf+GkyZNkijG69evxfYrVq1aldu2bZtE13QSEhI4Hx8fZqwWLVqUef3iawop9gkNDWUmefjw4TJfzypYkfdgrKCggHkRbPPmzXLF5jiOS0tL4xYsWMA9ePBA7liySE1N5e3k1NHR4Y4dOyZ3/MTERG7atGlcVlaWxK9h7difP+rWrVtmAcfXpk2bxownS1HYjRs3PhUz8T1+/vlnqTqJYmNjuQoVKjDjSdPB88cff/DGmDBhglTvke9HycjISO64tWvX5s2vrMKoj1gXlD9/GBgYcLt375Yqr0uXLjF/6FR1YsdH0cU+nz8cHR25uLg4qeKuW7eOGW/GjBlSxVIUVZ+Iff1YsWKFVHHv3bvH2dnZ8cays7OT6cD29OnTzPwqVarEXbp0SeqY0dHRnI2NDW/M5s2bSx1PUdS92CcpKYn3u/fjd93p06elipeXl8d5eXlJtG1KQxuKfT5/1K9fn0tLS5Mr35s3bzJPFi0tLbkjR45IHfPBgwdc9erVeWNWqVKFy8vLkytndUXFPh/Iuw9ERUXxvt7Y2Ji7evWq3PndvHmTmzZtmtxx5CVvR0FERARnZWXF/H5YvHixTHlp0nFBr169mPk5OTlJfNzOcR8urH///ffMeMbGxlLFc3Bw4I3z4sULiWPs27dP5PWs31pp4gYGBvLGGDp0qMQxJPmNcnd3l+qmnKKiIq5Pnz7MeOpy4V7VxT6fP8qVK8dduHBBqrgHDx5k9hH4+fnJlGu3bt24tm3bcufPn5fp9R+VlJRwS5YsYb5fabbRz2lisc/t27eZn4O3t7dKckpJSWHm1KxZM5nj+vv7M+OWdWFMXIGwrNuzskjSZ6QOD2mPY4V28uRJZm6jR49WSU5hYWHMnPr16ydxHEUV+7x584YbM2YMM7apqSn3+PFjudYhNNofJKON+wOrP87Y2FjqC4KEjfqYRal7H7MmfZaKoOpin88f6nBem5OTw+xn1dXV5RYuXCj1d2ZWVhbXtWtX3ph6enoqvSF+7969vHnZ2toKcgwTERHBzZ8/X6rXqFuxzz///MPcxmrVqiXxwBwDBgxgxunVq5dUg6R8JO6G8N9//12qWAop9mGNvGJlZcUVFBSU+fo///yT+Qbl2XFYX/yenp4yx1QnrAP+kSNHqiynsop9qlevzr1580bquEVFRZyLiwtvTFkKOcRVx0+ZMkXqeBz34QIMq9hER0eHS0hIkCjO/fv3eWPUrl1b4lzS0tJ4Y0ydOlWuuM+ePeONW7VqVYljSHKieujQIYnjfW7ZsmUK+S4RkrKKfcqXL88lJibKlGOnTp2YBw3qcGCrTidi69atkyn2nj17mDGlPbAtKChgHtTa29vLdbAfExPDvHgmRFGpENS92EfcBdI9e/bIlFtmZibXqFGjMrdPaWhTsU/NmjW5V69eyZ0vqxjd1NSUu3btmsxxnzx5wiwQ3rhxo9x5qyMq9vlA3n2A9b0ka/GKupKno+DQoUPMER/09PQkHomSj6YcF1y6dIkZy8bGRqYRQEpKSrh+/fox4w4cOFDiWN999x1vjMDAQIlj8P229u3bV+QuQ2njjh07lje3HTt2SByjrN+oli1bcrm5uRLH++j9+/fMzmd1uXCvLsU+BgYGXHR0tEyxx40bx4wpy4jCQl80/t///sfMT5Z+Fk0s9hE3io6kd2kKrbS0lDMzM+PNycrKSua4H0fd+/rh4uIi0evnzZsn6PasLFTcIBlxo4asWrVKJTm9evWKmZOrq6vEcYQo9snNzeVevnzJXb16lfvnn3+4/v37M0eW+LhfnDhxQpa3rVC0P0hG2/aH9PR05msbNmyopHfwbaA+5i9pQh+zpnyWiqIuxT7qcl7LOj8CwG3dulXqeB8VFRVxbdq04Y1b1mxGisQ6RvL391dZTupU7HP+/HnmiL0VKlTgHj58KFGcc+fOMbergQMHyjWa7A8//MAbt2LFihKNEvSRLgSWk5ODgwcP8rYNGDAAhoaGZcYQ9zzW/NSSSElJ4V0+aNAgmWOqE017f3p6etizZw8qVKgg9Wv19fWxdOlS3ra4uDi8f/9e4lg3btzAhQsXeNsaN26MDRs2SJ0fALRq1QorV67kbeM4jtn2tdq1a6Ny5coiyx88eIDU1FSJYgQHB4sss7Ozw7Rp0wSPCwDe3t4SvV4SEydORJ8+fWR67Zw5c5jzp168eFGetDTOtm3bpJ/n8f9jbauvX7/GrVu35ElLq/j6+so8r/DgwYPRqFEj3jbWfsayY8cOJCUliSzX09PDsWPHUK1aNVlSBAC4uroytwdZvyu/Jenp6di1axdvW8+ePTF48GCZ4pYrVw5//fUXdHR05ElPa/3999+wtbWVK0ZQUBAuX77M2xYQEIBmzZrJHLtKlSrYvn07b9vGjRvBcZzMsYl207Rjf2XbsmUL+vfvj/z8fJE2ExMTHDlyBOPGjVPY+tXluGDFihXMtj///BN16tSRKh4A6OrqIiAgAFWqVOFtP3jwoMTzvLPOG6R5n3zP9fb25o0tb9yPsYVQrlw57NmzByYmJlK/tnz58pg3bx5vW0hICP12fGbp0qVo2bKlzK/V19cXWV5UVISIiAip41WvXl2mPFh+/fVXNGjQQGR5UVERs19O24jru5DnvEceOjo6qFq1Km/b+/fvkZeXJ3XM5ORkhIWF8bYNGzZMohis5xUVFSEwMFDqnIh6Ucd9wdbWlvkbJ2m/Y1l0dHQkepiamsLe3h4tWrTA2LFjceDAAea+6OTkhLNnz6J79+6C5EiUT9v2B3HtrONxotnU5VxSG/qY1eWz1Gbqcl775s0bbNq0ibdt8uTJmDhxotT5faSvr4+9e/fCwsJCpO3o0aNITk6WObY8+PoFdXV10b9/fxVko17u3LmDfv36obi4WKTNyMgIR48eRc2aNSWK9fPPP/Mub9q0KQICAuS6JrN8+XI0b95cZPnz58+xb98+ieMIXuxz8OBBZGdn87ZJegJqZWXFPKDes2cP7x9HEi9fvuRdrqqDPKFp2vsbNmwYWrduLfPru3XrhvLly/O2xcbGShyHdYENADZv3gw9PT1pU/tk4sSJvJ1vAHDgwAFkZWVJFMfLy4t3uaQFK6wO8Jo1a/J2QskT92NsIZQrV07ioig+hoaGzB82abYRTefp6YkBAwbI/HpXV1fUq1ePt+1b+hzF0dXVxebNm+WKMWTIEN7l0n7GGzdu5F0+ZswYmS90fG7SpEm8BYihoaHMC8/kgyNHjvB2KOrr62P9+vVyxW7ZsiWGDh0qVwxtNGjQIHh6esodh9XR0LlzZ/Tr10/u+L169eLdPx8/foxLly7JHZ9oJ0079lem+fPnY8qUKSgtLRVps7a2xsWLF9GjRw+FrV9djgvS0tJw5swZ3rYOHTqgb9++MuUGAKampli9ejVvW0lJicQ36bDOGyQ9H3n27BkePnwosrxDhw68sSWNm5KSgsePH4ssd3Z2hpOTk0QxyjJ79mzUqFFD5tcPGjQIurqiXToZGRm8nfLfImdnZ8yZM0fm19vZ2aFTp068bepwHqSrq4tFixbxtp0/f17J2ajG8+fPmW329vZKzORLdnZ2zLa0tDSp4wUEBPBe7NDR0WH+XnzNxcUFbm5uvG3y3FhJ1IOm7QuvX7+WuX9fEXR0dNC4cWNs2rQJt2/fZvbDEs2gbfuDuN8NBwcHufMi6kVdziUBze9jVqfPUpupy3ntP//8w1ubYGNjg+XLl8uc30dVq1blLRjiOA7//vuv3PFlwdcvaGdnB1NTUxVkoz5evHiBbt26ISMjg7d9x44daNu2rUSxoqOjceXKFd62TZs2wcjISOY8gQ/XhX755RfetoCAAInjCF7swzpBrF69Otzd3SWOwyoMevXqFU6fPi1LaszqKkkLLtSdpr2/6dOny/V6Q0ND5gU8SX9sOY5j3vHm5eWFdu3ayZoegA9VzgsXLuRty83NxfHjxyWKI+8dr6xiH1ZsSeOGhITwLheq2Gf06NEoV66cXDG6dOnCu/xbOiCTd18D6HMsS48ePWQeOekj1md88+ZNiavYo6KicO/ePZHlenp6WLx4sTzpfWJgYIDJkyeLLOc4jnlBkXxw7Ngx3uUdO3aUe/sBgAkTJsgdQ9t8//33csd49uwZ84IZa5RBWcyYMYN3+alTpwRbB9EumnbsrwzFxcUYOXIksyPHyckJly9fluuGA0moy3HBoUOHUFJSwtvGOkeRxsCBA+Hi4sLb9t9//0kUg1U8k5SUJFEHL995S6VKlVCnTh3ecxJ54gLCnecYGhrK/bvt6OjIvNOUjtE/mDp1Km/HsTTU/TzIx8eHd2Ts6OhoFWSjfKybDYEPNxKqirW1NbNNXM58OI5jjg7q4eEh1agOrL7W2NhYGrVXw2navsBxHHJzc5WcDT9jY2PMnDkTu3btwtSpU2Fubq7qlIictG1/EPd+WDdCE82lLueS2tDHrC6fpTZTp/PanTt38i6fO3cu74g8spg2bRpvX5yq+m75csnOzv6mt83c3Fz06NGD2e/zyy+/SDW7Amu78vX1RZs2bWTK8Wtdu3blHXU7PDxc4j5e0fGI5ZCSksIcVlbau819fX1RoUIFvH37VqQtICAAPXv2lDo/1nRRp06dEuSubFUT9/7kmV5CEerUqYMmTZrIHadhw4Y4evSoyHJJh02LjY3F69eveduEGiGhR48esLS05K0ivHDhgkR3YclT7JOSksJbAduhQ4dPsb8u0pMkbmJiIu8XZu3atVGpUqUyXy8JIaahaNiwIe9yVQ2tp2xmZmaCDD38rX+OZRFiW61Xrx709fVF7ubJzMzEu3fvJJrykFVM4unpCUdHR7lz/KhTp0746aefRJaHhIRQwQlDaWkpwsPDedskvRu3LG3atEH16tXpbv7/z8nJCR4eHnLHOXnyJO/oIDVr1uQdZlNWHTt2hI6OjsgJGauwlhBxx/4jRoxQcjaql52djf79+yMoKIi3vVGjRjhz5gwqVqyo8FzU5bjg3LlzvMurVq0q900NHw0dOhT/+9//RJY/evQIKSkpEo2C4+3tzduBcvHiRYwePVrsa8Xd1ODk5ARnZ2eREXpkjft5bHl5eXkJcmd5w4YNERcXJ7KcjtE/GDhwoNwx1P08yMzMDI0bN8a1a9e+WJ6amor09HStvwjIN1XjR/LeZSkPceuWdhqviIgI3pHGAMlHUP/ou+++ww8//MA7goS/vz/Wrl0rVTxl8PPzU7s+TT58IxMok6buC0JdfJNHfn4+1q1bh3Xr1qF169ZYsGABfH19VZ0WL9ofJKNt+4O43w1Vvh+iGOpyLqkNfczq8llqM3U5r7137x4ePHggslxHR0fQqe4rVqyI+vXr4/bt218sv379OrKzs5VeMMy3/WVnZyM8PFyQPnFNU1paiiFDhuD69eu87SNGjGBOycWH4zjmgB3fffedTDmydOrUCffv3/9iWXFxMS5dugQfH58yXy9osQ9rWFlA+sIJQ0NDDBw4EFu3bhVpO3nyJN6+fSv1FylrOqVdu3Zh0KBBzCpNTcF6f2vWrEGvXr0EKa4RijSjPInDmlMvMzNTotezpsbQ09OTa1j7zxkbG8PPz493yC1Jp+aoWrUqatSogcTExC+WP336FA8fPkStWrWYr+Ubqv5jxzfA32EtSVxFd4AbGxszh5iWRvXq1aGnpydyV3NOTg5KS0vlvtNT3bVs2RL6+vJ/1cu7r2k7Ib7TDA0NUaVKFd5CjczMTLku6vXu3Vvu/D7XpEkTmJmZIScn54vl6nKHszp69OgR3r9/z9vWuXNnwdbTuXNnbNu2TbB4mszd3V2uOXM/Yu1Xfn5+csf+nI2NDerUqSNy51R8fDxKSkrkmlaUaCfWsf///vc/eHp6CjbVkCZ49eoVfH19cePGDd52T09PHD16FJaWlkrJR12OCy5fvsy7fMCAAYJ8PwIfOjj4in2AD+c6qiz2+fj/shT7KHoEU3U5H9Zmzs7OglyI0ITPmNXBnpycrFb9QIpQWFjIbDMwMFBiJpKvW1zOfFgjqBsbG0t946K9vT06d+7MO2L6nj17sHLlSkH6D4RUvnx5rS9aE8K3sC8oQ1RUFLp164YBAwbgr7/+Utqxo6Rof5CMtu0P6vp+iGKoy7mkNvQxq8tnqc3U5byWtb02bdpUqlEwJdG2bVuRYp+SkhLEx8cLNtKLpBo0aICIiAiR5VOnTkVYWJhKR7NThdmzZ/MODgJ8KEz7+++/pYp369YtvHjxQmS5np6eTAPSiNO2bVv8/vvvIstjY2MlKvYR7Cq3uGFlW7Rogdq1a0sdk3WHSmFhIQIDA6WO17RpU94D4tLSUvTo0QPz5s1jjvKiCby8vHgLF7Kzs9GuXTusXLlSbTqkXF1dBYnDqniX9H2yhimuU6eOoCd0rVq14l3++PFjiYetlXV0H75in4+j+gD/N8y9tHEVXexTv3593uHIpaWjo8NbUctx3DcxzYW67GvarEKFCoIdNMrzORcUFIgcaH7UuHFjufL6mp6eHu+84ImJiWLnGf+W3blzh3e5g4MDc952WQj9t9ZkQhSMAmDeDaCIz5pvZLz8/HxB5ion2qdjx468y58/f47mzZvjr7/+EntXq7Z49OgR2rRpwyz0GTBgAIKCgpR2sUZdjgtSU1Px7t073rYWLVrIldfnqlWrxiw0kHRKGNb5Q1kjmz18+BBPnz4VWf75uc7n/y9p3Pv37yM1NVVkuYuLiyB3LQJ0jK4M39JnzJoWhK9jUtuIG9GgqKhIiZl8SdyFWWlGYcjNzWVOPd+zZ0+ZRkVh9bW+fPmSpmXWYNq+L7DcunVLosfNmzdx6dIlnDp1Cps3b8bIkSPFjj6zf/9+NG/e/Jv4HtVG2rY/iGtTx6I5Ijt1OZfUhj5mdfkstZ26nHOpuu8WAO+0d4rG6he8desW3NzcsH//fubU7tpmy5Yt2LBhA29b3bp1cfjwYakLZFnbVbVq1QQfnVLe7UqwYp+IiAiRUUc+knZY2Y9atWrFrOhj3dkijp6eHr7//nvetqKiIqxcuRKVK1dG3759sXv3bo0r/LG1tUX//v1527KzszFv3jxUqlQJw4cPx+HDh3mnlVIWGxsbQeKUK1eOd7mkPwJ8Q7sBwv1IfcS6m660tBQPHz6UKIasxT58ndlfx+KLLUtcHR0deHl5iX2dpITaRgD5txNNpi77mjZTl2313r17zE6LunXrypUXH747F0pLS5GWlib4urQBq1iDNSexrKjY5/+4uLjIHSM9PZ33QjKgvP0KAO9FZ0Lc3NyYBeWvX7/G999/j8qVK2PChAk4c+aMxAXmmuTatWto06YN8zx0+vTp+O+//5Q6vL26HBewznMA5Z3rfD0EMUvFihV5bz5IS0vD3bt3ma/jO1+pWbPmF526fOc5ssRlxZIVHaMrniZ9xmlpaTh06BAWL16MPn36oEmTJnB2doatrS2MjIygo6Mj9sG68e5buLnF2NiY2abKgldx6zYxMZE4zsGDB5l/R1n7Wnv16sXcrmXpayXqQdv3BZYGDRpI9GjUqBHc3d3h6+uLKVOmYOfOnUhOTsaJEydQr1493tgPHz5Ep06dVNp/TmSjbfuDuLaCggK5ciLqRV3OJbWhj1ldPkttpy7nXKwbjbS977ZHjx7Morbk5GQMHDgQTk5OmDVrFsLCwrS2QPTUqVOYPn06b5utrS1Onz4t08iImrRdCVbswzoh1NfXl2tOPNbJa0xMDLO6VJw5c+aIHcq5sLAQhw8fxrBhw2Bvb48GDRpg4sSJ+Pfff3mHalM3v/zyi9h5AbOzs/Hvv/+ib9++sLa2RtOmTTFz5kwcOHBAqRdohRo+jDWlhaTVis+fP+ddzjrRk1X9+vWlzuFr4u54ZU2fd/fuXd6/qyTFPuLi3rlzBy9fvhRZ3rBhQ8F+4IUcYk7e7USTqcu+ps3UZVsVN/KHra1tmRcJpH1cvXqVd11v376V7M1+Y/i+MwHw3r0iD6FGHNAGQgxv/uTJE2Zb8+bNBd+v9u/fz7su2q8Iy8qVK8VO8fb27Vts27YNvr6+KF++PNzd3TFv3jwcP36cOeqLpjhz5gy8vLx4b9DQ0dHBypUrsWHDBsGmq5KUuhwXsM4xDA0NUaNGDbny+hrrXEfS8xyAfa7DN0rpR3xFOV+P5GNnZ8ebn7RxxeUoCzpGVzxFf8alpaVyxc3Ly8M///yDDh06oHLlyujXrx+WLFmCI0eO4ObNm0hKSsKbN2/k6pD9FkZ3E3dHpSqPn8Stm3Uxgw+rr9XGxgZdu3aVNi0AHy4as6b/OnnypMYfH3yrNG1f0NPTg6mpqZKzEc2he/fuiImJwZAhQ3ifc/v2bcyZM0fJmRF5adv+IO53g76ztYu6nEtqQx+zunyW2k5dzmtZ2+wPP/wg+PY6adIk3nWp4vfFwMAAK1asEPuc1NRUrF+/Hp6enihfvjw6dOiARYsW4ezZs8jOzlZSpooTGxuLQYMG8W4rxsbGOH78OKpXry5TbNZ2derUKcG3K9ZNy5JuV4IU+4gbVrZr165yXfwfOnQos02WO05sbGxw+PBhmJmZlflcjuNw584d/Pnnnxg+fDicnZ3h7OyMsWPH4tChQ2pZOV27dm3s2rVLojm2S0tLERMTgw0bNmDAgAGoWLEiXFxcMHXqVAQFBSn0x0qZd9eKwxq9Sej5j8uVK8f8wZJ0BClWR/Xr16+ZFYZ8HdX16tUTKXjz8vISuRAiLi5r6HshO8DVZRvRdPQ5Kp66fMbSXFBTpLy8PFWnoJZYdyIIPeSjsqap0QRCfLa0XxF11759e6xfv16i5xYVFSEyMhIrV65Er169YGtrCzc3N/zwww+IiIhgFnmrq1WrViEnJ0dkuYGBAXbt2oW5c+eqICv1OS5gnWNYWFgIXgDFOneSZqRcaUcx5TgOoaGhEsWRZhRTVlxdXV14enryvkYW6rKdaDN1/oyPHj0KFxcXjBs3DsHBwXIXDrF8CxcgKlasyGxT5fQ7rEJ/HR0dsTl/LiUlhff7CAAGDRokUb8fC+vGysLCQgQGBsocl6iOuu4Lr1694l1ub28vtmBdmYyNjbFz507m7/w///yDyMhI5SZF5KJt+4O6vh8iPHU5ftWGvjB1+Sy1nTp8zvn5+Xj//r2q01BZ3+3gwYMxa9YsiZ6bl5eH4OBg/PLLL+jatSusrKzg7u6On3/+GbGxsQrOVHjPnj1D9+7deYuWPo6AyxoRXRLq8F0o6XYlSLGPIoaV/cjZ2Rnu7u68bXv27JFp3sZWrVohKiqKOUWYOElJSdi+fTv69esHBwcHjB8/XuwQ6arQu3dvXLhwQaa7++/evYvff/8dPj4+qFSpEmbPnq3VU0ewdhShL74C7Cp8aX4EpL3jVZK7XYEPQ4TxTf0iTVxx+RFCFE9dhunX1uEg5cUqEBb690YRv1+aSpLC7rLQfkU0wdSpU7F//36pRgoAPhT+x8bGYs2aNWjfvj2cnZ2xePFitegkkYe3tzcGDx6s6jRUTpnnOayY0pzn8N18AAChoaG8hRC3b98WuWDCmlKY7/yHFffWrVt48+aNyPImTZoIenco+TYVFBRgyJAh6N27N5KTk1WdjlaoXLkys+3x48dKzOT/lJSUMEeHtLGxgaGhoURxAgICmIW48va1enp6Mof8p6m8NJM67gupqanM85hKlSopORvxDAwMsGnTJmZBtKTF9UQ9aNv+IO79iBuBhRBZUV8Y0SS0vQJr167Fxo0bJT7P+Ki4uBiRkZFYunQp3NzcUL9+faxbt04jbjrNyspCt27dmAU5y5cvR//+/eVeh6pJul0JUuzDOhE0MjKCs7Mzbt++LdejXbt2vPFfvHiBoKAgmXJu2LAhbt++jTVr1sg88lB6ejr+/vtvuLi4YMyYMWrVMe7h4YEHDx5g/vz5Yqf1Eufly5dYt24datasiR9++EErh4BmzT2qiKFkWRcdpfkRkOaOV2nudmUt54tbWlqKsLAwkeV6enrw8PDgjU0IUTx1GW1O00aGUDWh7+T+Fu7gVibar4im6N+/Px4+fIiJEyfKfGdVcnIylixZgurVq2PFihUKG2lC0c6ePYuRI0d+89+HmnaeU6FCBTRq1Ehk+fv373nvMOM7T2nYsCFsbW1Flnt4eIjcLS1NXIBuaiDyKykpwYABA2jUFIHVqlWL2Xbv3j0lZvJ/kpKSmMeQtWvXligGx3HYtWsXb5ujoyNMTU3l6me9c+cOcxSTGzdu4Pbt2xLlSdSHOu4Ld+/eZbZJui8oU8OGDdGxY0fetqNHj/IWAxP1pG37g5mZGXN0n0ePHjGP+wmRFfWFEU1C2+sH06ZNw927d/Hdd9/JPHpiQkICZs+eDWdnZ2zfvl3gDIXz8dw6Pj6et33s2LGYN2+e3OtRh21L0u1K9jFf/z9xw8oWFBSgefPm8q5CLH9/f3Tv3l2m1xoZGWH27NmYOnUqjh8/jj179iA4OJg51QZLSUkJduzYgYsXL+Lw4cNwc3OTKR+hWVhYYOnSpfjpp59w4MAB7N27FxEREVJX5eXn52PNmjU4f/48Dh8+DGdnZwVlrHwGBga8ndC5ubmCr4tvmgEAUlVbenh4QFdXV+TiS3h4OEpKSr74Eo+LixOZt1fc8PPe3t5Yt26dTHEBwM3NjUaUIESFdHUFqd8lCmJsbMy7XNpjjrIIHe9bR/sV0ST29vbYunUrli5disDAQOzfvx/R0dFSd/5mZGTgp59+wrlz57B//365pmRWpN9++w0rVqxARkaGSNu///6LoqIi/Pvvv3JNc6LJDAwMeJer63kO8GF0n5s3b4osDw4ORtOmTUWWfY1VkFO+fHm4urri+vXrMsX9mBsh8vjtt99w/Phxsc+xsLBAy5Yt0ahRI1SvXh0ODg6wtraGubk5DAwMmN9nCxYswLFjxxSRttqrWbMmzM3NeYduj4uLQ3FxsdJ/B77+rvlckyZNJIoRERGBxMRE3ra0tDQ0bNhQltQk5u/vjzVr1ih0HZJKT0/Hs2fPVJ1GmSpXrsyc1lIZxG1b165dU14inxFiX1A2b29vnD9/XmR5cXExLl++jF69eqkgq/9D+4NktHF/cHV15R29oLi4GLdv34arq6s86RHyBeoLI5qEttf/4+zsjMDAQKxZswa7du3CoUOHEBMTI/XNfC9evMDYsWNx7tw5+Pv7w8TEREEZy2bKlCnMgWA6duyIP/74Q5D1aNK2JfcZr7hhZZXhxIkTePfuHaytrWWOYWhoiH79+qFfv34oKSnBtWvXEBISgoiICERGRvJ2IPNJSUlBly5dcOXKFbUqiDEzM8PIkSMxcuRIFBQUIDIyEmFhYYiIiEB0dLTEHb43b95Ely5dEB0djQoVKig4a+UwMTHhLfZRxMVS1pBf0nxRWllZoUmTJoiJiflieWZmJq5du/bF/IN8HdWurq7M4efbt28PfX39L6bGkzQuQHe7EqJq4u7Uv3HjhtQX3GRVvXp1paxH07A6uqjYR72J269OnDiBatWqKSUPccN2E/I1a2trTJkyBVOmTEFOTg7Cw8M/Hftfv35d4tFWQkJC0LNnT4SEhKjFPOxfa9WqFS5cuIDOnTvzjrD633//oaioCHv37mUWvmgz1jmGIn4nWDGl7RDy9vbGhg0bRJZfvHgRP/zww6d/l5SUIDw8XOR5fNN1fR7764ssksbV19dH+/btJXkLhPBKTU3FsmXLmO3e3t6YO3cuOnToIFNhyrd8042uri6aNGmCS5cuibRlZ2cjJiYGLVq0UGpOERERzLavCwxZVD2V1p49e7By5UqZ7woW0tGjRzFq1ChVp1GmnTt3YuTIkSpbv52dHSpXrsxbCHL//n28fPkS9vb2Ss1JiH1B2cTlFR0drfJiH9ofJKON+0PTpk1x6tQp3rbQ0FAq9iGCoj5moknEba8LFy6UeyonSanTtN8VK1bEvHnzMG/ePLx//x6hoaGf+gVv3rwp8UjY+/fvR0lJCQ4cOMCc6lTZ1qxZgz///JO3rX79+jh48KBgN3uwti0fHx+sWrVKkHWURdLvW7nesbhhZZWlsLAQe/fuxeTJkwWJp6enh1atWqFVq1b46aefUFpairi4OISHh+PkyZMIDw8Xe3fsmzdvMGTIEERFRQmSj9CMjIzg5eX16c7EoqIiXLt2DWFhYTh58iSio6PFVvk9evQIkydPxn///aeslBXK1taWt5grPT1d0PVkZWUxv0D5hpoXx9vbW6TYB/hQhFNWUY64gpxy5cqhWbNmiI6OljpuWbEJIYonrgizYsWKcHBwUGI25Gusz//p06eCrkfoeIqkDkNhlkXcfmVjY4MGDRooMRtCpGdmZgYfHx/4+PgAAPLy8hAdHY2QkBCcOHECcXFxYl8fFRWFRYsWYcWKFUrIVnrNmjVDcHAwOnXqxDu1wqFDh9C/f3/s379faR2S6oJ1jpGZmQmO4wTtqGGdO0l7nvNxuq2vz5suXbqEoqKiT0VbMTExIuvU09MTW5Dj7e0t0hnzddwbN27wnhs2b95c5qmxCQGALVu2MKdFX758OebNmyfXPqlOU8qrQseOHXmLfQDg5MmTSi/2YV2MBcCcIuhzubm5OHjwoJApSe3FixcICgpCt27dVJoHkU7Hjh2ZhWKnTp3C6NGjlZZLTk4OcyYAU1NTtGnTRmm5SEPc+V9qaqoSMyHy0rb9oVOnTvjll19424KCgjBz5kx5UiTkC9THTDSJhYUFDAwMeK/bm5iYfPN9t1ZWVujduzd69+4N4EOf0OXLlxEcHIzjx4/jwYMHYl9/6NAhbNu2DRMmTFBGumXmMnfuXN42e3t7nDp1CpaWloKtj/VdWFpaqnbblVxjEIkbVlaZFHnHi66uLtzc3DBjxgxcuHABr169wsaNG8WO3BMdHS325F6dGBgYoE2bNvjpp59w+fJlpKamYunSpWKr2/fv349bt24pMUvFYc13K24eXVkkJCRInQMLq6jm8yKc4uJi3jsGxN3tymqXJK6hoSHatm0rNjYhRLGqVq3KbOObeo8oF+u4gTW3rKz4pj+RBesuXkkr/yWhCdsl7VdE25iYmMDLywu//PILYmNjkZiYiLlz54odFWLz5s149eqVErOUTpMmTRASEgI7Ozve9mPHjqFPnz4aUWAoJNY5RmFhoeDn8KxzHWnPcywsLHjvbM7JycGVK1c+/Zvv5oPmzZuL3Y7btWsnUvAlSVyAbmog8tu/fz/v8lGjRuGnn36Su/juWz8m6dq1K7NN2UUz165dQ0pKCm9bvXr1UKVKlTJjHDx4kDkytDKpenQhIj1x+8KBAweUmAlw+vRp5kjyHh4eajlqJCB+pLRv/btW02jb/tC6dWvmiNHBwcG8Nz4QIivqCyOaRFdXF5UqVeJto+1VlIWFBXx8fLB69Wrcv38f8fHxmDRpktjfoqVLl6q8T+3KlSsYNmwY70xTJiYmOH78OJycnARdJ+u7UB23K7mKfdTlxO/69eu4c+eOUtZVvnx5TJs2DQkJCZg0aRLzeZo68o2DgwPmz5+P+/fvf6r0+xrHcczOKk1Tu3Zt3uVl3eUsLVY8XV1d1KpVS6pY7dq1452K4PLly5++cK9duybSOWRgYIB27dqJjc3Xkf153KtXryI7O1vkOS1bthQ7XB4hRPHq1avHbHv48KESMyF86tevz7v8/fv3zAsCshDq94s1ggHfb4AssrOzJZ5KSJWqVKnC/CxovyLawNnZGStXrsS9e/fg7u7O+5zc3FycOHFCyZlJp0GDBggNDYWjoyNv+6lTp9CzZ0/k5eUpOTPVYZ3nAMo716lTp47UsViFNRcvXvz0/9KOYAp8uGu6ZcuWUseVJDYh4qSlpfEW2Ono6GDx4sWCrOPx48eCxNFULVq0YE6tevfuXYSFhSktF9aQ8gAwcOBAiWKoS1/riRMn1LIjm7B169YNZmZmvG3nzp1DUlKS0nIRYl9QBb4R/j5S9UUuIh1t2x/09PTQt29f3rbi4mLs2LFDptwI4UN9zETTsLZZ2l7L1rBhQ2zZsgW3bt1i9uGkpqYyR1JVhqSkJGafno6ODnbv3q2Q0VxZ21ViYiJv0ZEqyVzsI25Y2R49eoDjOMEfr1+/Zs61FhAQIOtbkYmRkRG2bNmCLl268LazOgo1haWlJfbt28ccikrT399HjRo14l1+//59ZGZmCraez+8Y/Zyzs7PURTLm5uZo3ry5yPL8/HxERkYC4P/7tGrVqsx1tWnTBsbGxlLFBagDnBB1YGdnx6xeVmYHN+Hn5OTEHOZWqIvoxcXFOHPmjCCxWENeCvXbyDcdpTrS1dXlHWUCoP2KaBdHR0ecPHmSObqnJhz716tXD6Ghocw7us6dO4fu3bsz76rVNpUqVYK1tTVv29WrVwVbz5MnT/DixQvetoYNG0odr6xRTIuKing7mcoawZQV+2PcwsJCXL58WaTd2NhYbacaIZrh/v37vMsbN24s9q5pST169Ii5D34rdHR0MGLECGb76tWrlZLH8+fPERgYyNumq6uLkSNHlhkjJSWFOdXL1KlTFdLXyirYLCgo0NgbGb9V5ubm6NevH29baWkp1q5dq5Q8YmJimMeO5cqVQ//+/ZWShyzEjY5CU3pqFm3cH8aOHcts27hxI3PKUEKkRX3MRNOwCj0iIiLUrihDXdWqVQtnzpwRuT78kar6BdPT09GtWzfmiOOrVq1Cnz59FLJu1nb17t07tZv9SOZin0OHDjGHlR0yZIjMCYljY2PDLK7ZvXu3oFNLSGrOnDm8y58/f847R6AmMTAwwPTp03nbhByFQJVYU08VFxfj8OHDgqyjoKAAR44ckWr9ZSmrE1yWu12BD53ZrVu3liqupLEJURTWdEOaMGqI0FgXui5cuKDkTAgf1nflnj17BIl/7tw5vH79WpBYrOHLHz16JEh8vguq6oq1X4WHh2v8sZ6mo+9/YZUvX57Zgawpx/61a9dGeHg48wJ6cHAwfHx8BBulTN2xzjUOHDggWIeXuAvBspzrtG3bVmS6LeDDVNm5ubmf/vs5SQty+H6HxcUFPkyZwOrsIuLRd/QHrE5JoYYYF7LTVZP/ZuPGjWMOPX/q1CmlXJhatGgR80Jr9+7dJfqb79q1i/n9rKi+1saNGzNHIVWHUYZGjhypkCInoR+SFHMpw5QpU5htf/31l1LucP/xxx+ZbaNGjVLrkcHFFURXrlxZiZnwo/1BOtq2P7Rq1QrNmjXjbXv+/DnWrFkjdX7kS5p8LCQ06mPWDLTNfsDaXt++fYvY2FglZ6O5qlevzhxFThX9gkVFRejTpw/u3r3L2z5hwgRmjYYQWrVqxRwlUN2+C2Uu9mGd8Jmbm6Nnz56yhi3T4MGDeZenpaXh7NmzClsvC+sAC/jwRaLpWO9PW+aBbdKkCWxtbXnbhLr4eurUKaSnp/O2derUSaaY4oa3/3wkns9JcrcrK/bHuFFRUSJtpqamaNWqlUSxCVEE1gWYb2mqjo9Y0y/eunULISEhSs6GfI3194mOjmaOACeNDRs2yB3jI9ZUCE+ePGH+pklj3759csdQFtbf7e3bt9i9e7eSsyGfo+9/4WnDsb+zszPCw8Ph7OzM2x4eHo4uXboIOoqnumKdayQnJ/OeL8iC9T1Yq1YtmYoZTExMeM8tCgsLcenSpS+m3fqIb3RSPnwjnX6MSzc1CI++oz9gdbSbmJgIEn/r1q2CxAE0+29WqVIljBkzhtk+YcIEhb6P8PBwsVOoLFy4UKI4rFHLa9SowTsVoVBYfa3Xrl1DQkKCwtZLhNesWTP4+vrythUVFWH8+PEKvcN99+7dzIsfRkZGYgsf1IG4CzesojiivrRxf/j111+Zbb/99pvSv7MfPHig1PUpmiYfCwmN+pg1A22zH7Rp04Z5nXfjxo1KzkazqVO/4Pjx45nfN126dMHmzZsVun5jY2N07dqVt23Lli0qGYCGRaZinydPnjA/4N69ewvWacGnV69ezEoqVdxxwnfX4UesPDUJ6/1pw3sDPgz3zBou8+LFi7zFLdIoLS1lHoSbmprKXBjH6tC+du0azp07J3I3mTQFOXxFQay4AODu7i52PyBE0VhTVKSmpio5E9Xr2rUrc/oScR0CRDm6d+/O3F6nTZsmVyfT0aNHcf78eZlf/zUbGxvmnYvyFleHhobi5s2bcsVQpgYNGjCH7VyxYgWKi4uVnBH5iL7/hactx/5OTk4ICwtDrVq1eNsjIyPRqVMnQYoX1Vm/fv2Yd/oJcVxw+PBh5tDFgwYNkjmuuFFMZR3BFPiwffONNsSKK01sIoq+oz9gfQ7Pnz+XO/bZs2cFPabS9L/Z/PnzmaNT3rt3D1OnTlXIet+8eYMRI0agtLSUt71///7MaWE/FxERgcTERN42VjGOUAYPHgwdHR3eNnUY3YdIZ/ny5czf/9DQUCxbtkwh63306JHY/WzatGmoWLGiQtYthOvXryM8PJzZ7uHhocRsiFC0bX/o2rUr8/g0NzcX/fv3R0ZGhtRxZbFnzx4MHTpUKetSFk0/FhIS9TFrBtpmP9DT08OoUaN42wIDA/H48WMlZ6S51KVf8Ndff2WehzRs2BAHDhyAvr6+wvNg3VDy+PFjwQYMEYJMxT4BAQHMC1KKPgE1MzNDr169eNuOHz+O9+/fK3T9X2NVL5ubm6NcuXJKzUURWO9PnU/OpDV69Gje5RzHyX3x9e+//2bOf96/f3+Z53s2MjLiHaq+uLgYS5YsEVnerl07GBgYSBS7efPmItsuKy5AHeBE9SpVqsTbMfn69WuNGolACPr6+szOhJCQEBrSV8WMjY0xYcIE3rarV6/KfLL85MkTscNTy8rNzY13uTwHsoWFhZg5c6bMr1eVWbNm8S5/8OABZsyYodxkyCf0/S88bTr2r1y5MsLCwlC3bl3e9qtXr6Jjx4549+6dkjNTHgcHB/j4+PC2nT17FidOnJA5dn5+PmbPns3bpqurixEjRsgcm3V+cerUKd6R8CQdwZQVmxXX3NycWexJysYqGmYNwa2tWHeYXrlyRa4pBdPT0zF+/HiZX89H0/9mFStWxPLly5nt27dvx8qVKwVdZ25uLvz8/JCcnMzbbmlpKfHdxOKKahTd11qtWjXeKd2BDyNTqNNdq6RsjRs3FnvOtXDhQrHTcMri9evX6NatG7OQunr16li8eLGg6xRSQUEBpk2bxmyvX78+6tWrp8SMiFC0cX/4+++/mdN/JSQkoFu3bgqdtvhjv87QoUO1bqog6mP4P9THrBk0/fhdSJMnT+YtVCkuLsbAgQOZ0+2SL6lDv2BgYCBzZFRHR0ecOnVKafUXXbt2hYuLC2/bjBkz8OjRI6XkURaZi3342NnZoWPHjnIlJAnWPNUFBQViD84CAgLw7NkzQXNhDdPboEEDQdcjiT///FPwqcPU6f0pStOmTZnb7fXr1/HDDz/IFPf69evM+QJ1dHTkHrqW1QkeExMj8XP56Ovro127dhLFlTY2IYpgbGzMnHLo5MmTyk1GDUybNo15oD9v3jwcOXJE8HUWFBTg2LFjgsfVRrNmzYKVlRVv26JFi6QeWjQtLQ2dO3dWyB0brIunJ06cwOXLl2WKOWfOHGYRrDobMGAAcxjTLVu2YNOmTYKvs6SkBAcPHpT6df7+/tDR0eF9qHMHuyy+9e//DRs2ICcnR7B4JSUlzPM8TT32d3R0RGhoKHPahRs3bsDb21urO27nzZvHbBs3bhxzFAlxOI7DmDFjmBe3BwwYgBo1akgd9yO+6bYA4Pbt2yIXFMqVKyd2au2v8Z278MUFPtwwoYw7xbQV66Lo7du3kZSUpORsVMfFxYW307mgoEDm44fCwkKMGDECT548kTe9L2jD32zixIlip0ufN28eFi9eLMi0Le/fv0eXLl3EHhdv2bIFjo6OZcbKzc3FgQMHeNvc3NyYhatCYvW1pqWl4dy5cwpfPxHWkiVLmMdvHMdh6NCh+OeffwRZ15MnT9C+fXvmxSF9fX3s3LmTWZygarm5uRg6dKjY0d2nT5+uxIyI0LRtf3B2dsb69euZ7ZcvX4a7uzvzWF0e165dQ6tWrWSeRr5atWrM/gp18K33MXyN+pjVH+v4XZ4bezRV1apVmTfDXr9+HSNHjkRRUZHg642KihL8vEwSb968wc6dOwUtuszJycG+fft425TVLxgREcEcoMPMzAwnTpxAlSpVlJIL8OFa/ooVK3jb3r9/j549e+LFixeCrzclJYX3pjQWqYt9xA0rO2DAAKV0hnXu3Bk2Nja8beLuhNm5cyecnZ0xcuRI5nDj0jh69Ci2bNnC2zZgwAC540trxYoVqFq1KqZPny5IR8zmzZuZPwqqeH+KtHLlSujq8u8Oa9eulXpIz1u3bsHX15dZRT9mzBi57wiRpshGmrtdpYltaWkp0XDUhCga30hXwIfiCVUcbKmSiYkJ/vjjD962kpIS9O3bFz///DNzmHlppKenY8WKFahWrRrz7n7ypQoVKoj9TZkxYwZ69+5dZvEOx3HYtWsXGjRogPv3739aLuTB7uDBg5lDd44aNUqqA9nS0lJMmTJF4XPpKoqOjg7++usv5ucxffp0jB07VpC7RPLy8vDHH3+gdu3ack2D8634lr//Z86ciapVq2LhwoV4+fKl3PF+/PFHZjGeJh/729vbIzQ0FI0bN+Ztv3nzJry8vPDq1SslZ6Yc7u7u8PPz4217+fIlunTpgpSUFInjlZSUYNq0aQgMDORtNzY2xtKlS2VJ9RMDAwPe6bb4eHh4SNUH4ebmBktLS4meSzc1yKdq1arMof8nT56MvLw8JWekGmZmZszt+ddff0VoaKhU8bKzs9G9e3ccP35cgOy+pA1/M11dXezdu5d5oQ74cNG3R48eSEtLk3k9YWFhaNKkCS5dusR8ztSpU5kFNF87dOgQsrKyeNsUParPR+L6dGkqL81jamqKo0ePonz58rztJSUlGDduHMaMGSPXlD+HDh2Cq6sr7t27x3zOypUr1XIKrJKSEhw7dgyurq5ib7Jo0KABRo4cqbzEiOC0cX8YP348Jk+ezGyPj49Ho0aN8Pvvvwsy9XhiYiLGjh2LVq1aITY2Vu546uxb7mP4GvUxqz/W9hoWFvZNHr8tXrwYzs7OvG379u1D+/bt8fTpU7nXw3EcTp48ifbt26NNmzYq+W7Izs7G6NGj4ezsjLVr18o9hWNxcTHGjBnD29+vr6+PPn36yBVfEg8fPoSfnx8KCgpE2nR1dREYGKiS69E9evRAv379eNvu3r0LNzc3sVPBSiMuLg5DhgxBzZo1cf78eYlfJ3Wxj7gvCElPYuWlr6/P7HC+evWq2CHKioqKEBAQgEaNGqFx48ZYtmwZHj58KNX63759i7lz56Jv3768P2RmZmb47rvvpIoplNzcXGzatAk1atRA69atsWHDBqlHM3r27BlGjx7NHL60UqVK8PX1FSJdteHm5ib2Lo0FCxagS5cuZVbEFxUVYfXq1WjevDlev37N+xxHR0dmJaA0+Kbb4mNlZQVXV1epYkvasd2+fXvmvMeEKFPPnj15lz958gQNGjTA2LFjERAQgIiICMTGxuL27du8D0VUd6tC9+7dmd9pHMdh6dKlaNCgAfz9/aV+z+/fv4e/vz969OgBBwcH/PTTTwqpXtZmEydOFPs7evToUVSrVg0+Pj7YunUrTp8+jRs3biA8PBz//fcfZs2ahapVq2LEiBEi089s3bpVsDxtbGyY+9bDhw/h4eEh9u7Hjz7eVfZ5gbS5uTksLCwEy1UZXF1dxU79sH37dtSpUwcbN26UerSVnJwcHDhwAAMHDoSdnR0mTZpE80lL6Fv//n/37h1+/fVXVKpUCR07dsRff/0l9Sg19+7dQ8+ePbF27Vre9qZNm0p9LKlubGxsEBwczOwUuH37Njw9PeW68KvONm7cyCxwSUxMRKNGjfDPP/+U2UmbkJAAd3d3/P7778znLFy4UK5RfT6S9HxE2oIcPT09iS+wULGP/Fjf0WfOnEGdOnUwb948HDx4EFFRUYiPj+f9fmbdGa9Jhg4dyrs8Pz8fvr6+2LRpU5kX4jiOw+7du1GvXj2RTj8hi7214W9WoUIFnD59GnZ2dsznnDp1CrVq1cL8+fOl6jOLjIxE37594enpKbZTv3fv3li3bp3EcVl9rbq6ukrrX7SxsUHnzp15244dO8acjoaorxo1auD48eNiRxDZsWMHatSogVWrVkk8WjzHcTh79iy8vb3Rr18/sVOiTp06lTklshBYx/ZfP27duoXIyEgEBQVhy5YtGDVqFJycnODn5yf2O8vU1BS7du2CgYGBwt4DUQ5t3B82bNgg9qaMrKwsTJ06FbVq1cKGDRuk7rsrLCzEsWPH0K9fP9SpUwfbt28XpKhD3X3rfQxfoz5m9da+fXtmIeOoUaPg5eWF9evX49y5c7h27Rpze9WWm5/KlSuHPXv2wMjIiLc9OjoaLi4umD17ttTXzUtKShASEoIpU6agUqVK6NGjByIiIoRIWy6pqamYM2cO7O3t0atXL+zZsweZmZlSxbh69So8PT2Zo/r06tWLOT21kFasWMH8HR03bhycnZ0lPvaT9CHpbAnbtm1D9erVedvS0tLg5eWFAQMG4Pr161K/79u3b2PJkiVo2LAhXF1dERgYKHWhrlTD8IgbVrZGjRpo1aqVVCuXx5AhQ5gXtAICAiQqpoiPj0d8fDwWLFgABwcHNG/eHM2aNUONGjVgbW0Na2trGBsbIycnB69fv8a9e/cQERGBixcvir1ze+XKlXBwcJD5vQmB4zhER0cjOjoaM2fOhJOTE5o1a4ZmzZrBycnp0/szMDBAdnY2Xrx4gbt37yIkJAQRERFiN6Rt27Yxvyw12YoVKxAVFYXo6Gje9nPnzqFGjRrw9PRE7969Ua1aNTg6OiIrKwupqam4fPky9u/fL/ZkwMDAAPv27UOFChXkzvfjdFunT58W+zxPT0/mqEUsTZo0QYUKFco8saEOcKIu/Pz8ULFiRTx//lykLSsrC9u3b8f27dvLjJOUlCT2LlBNsnbtWqSkpODo0aO87Xfv3sWoUaMwc+ZMtG3bFu3bt4ezszOsra1hZWWF/Px8pKenIz09HU+fPkVsbCxiY2Px4MGDb+LkXtECAwPh7u6OO3fu8LYXFxcjKCgIQUFBEsecPXs2unfvztsm7e/AR0uXLsWJEyd4K+ofPHgAd3d3dOzYET169EDdunVhY2OD7OxsvHr1CjExMTh9+jTvSCGbN2/G4sWLpT75ULUZM2bg8ePHzBGKnjx5ghkzZmD+/Plo3bo12rdvj7p163467ioqKvq0Xz1//hxxcXGIjY1FQkKCIHfbfYvo+/+DkpISXLx4ERcvXsSECRNQq1YtNGvWDE2bNkXlypVhZWUFa2tr6OjoICcnB8+ePUNCQgLOnz+Pq1evMqcz0dfXF2xIe1WztrbGxYsX0aVLF96hcO/evQtPT08EBwczR7bQVFWrVsWuXbvg5+fH+7fOzMzEuHHj8PPPP2PgwIFo2bIlKlasCDMzM6SlpSExMREHDx5EZGSk2KlvfHx8xE4bJg1JzzOkHcH042vKGhXF2toaTZo0kTo2+dLEiRPx559/8m43T58+FVtE+5GTk5NCpqFQpuHDh2PFihW8F5Tz8vIwffp0rFq1CgMHDkSrVq1QqVIlmJiY4O3bt0hLS8OlS5dw8uRJ3t+64cOHQ0dHhzkNo7S05W9Wr149XLx4ER07dmSOfpeTk4Ply5dj5cqVaNmyJby9vVG/fn1UrlwZ5ubmKCkpQWZmJh49eoS4uDicPXtWoqkPe/XqhX379kk86tiTJ08QEhLC2+bp6YmKFStKFEcIQ4YM4e1jKigowH///YcJEyYoLRcijHbt2uHkyZPo2bMnc/Txt2/f4scff8TPP/+Mdu3awcPDAy4uLnB0dISZmRkKCwuRnp6Ohw8f4vr16zh37pxEF0YmTZqkkOmOP9ewYUOFxTYyMsJ///2n8UXv5P9o2/6gr6+PwMBAmJiYiD0OSE5OxsyZMzF79my4ubmhTZs2qFevHqpXrw5LS0uYmpqioKAA2dnZePr0KR48eIArV64gMjISubm5guasCaiPQRT1MasvQ0NDjB07FmvWrOFtDw0NlWgk0UWLFmHx4sXCJqcirVq1wr///otBgwbxbl/Z2dlYt24dNm7cCFdXV3h4eMDV1RUVKlSAtbU19PX1P22vr1+/xq1btxAbG4ubN29KfXOnMhUUFOD48eM4fvw49PT0UK9ePTRr1gxubm5wdHT8tD+WlpYiOzsbKSkpuH37Ns6ePYv4+HhmXEtLS2zcuFEp76GkpITZtm3bNmzbtk3wdY4YMUKiUbCsra0RFBQEd3d33pssS0tLceDAARw4cAC1atVC+/bt0bp1a9jb28Pa2hqmpqbIzMxEeno63r9/j7t37376LmQNHCIVTgq7du3iAPA+FixYIE0oQVSrVo03l4oVK3LFxcUiz/fw8GDmL9SjX79+XGlpqdI/C47jOCcnJ4W/v1mzZkmVE+szDwkJEeQ9h4SE8Mb38PCQKd7r16+5+vXrK+Sz09PT4/bt2yfI+/5ozZo1Za538+bNMsXu27dvmbFv3rwp93vYuXMnb+wRI0bIHfsj1r6RlJQk2DpUnduIESN44+zcuVOQPJOSknjjOzk5CRJfCP/995/c+6m4z13o7xs+Qn9nFhYWcoMGDVL4bwMArkaNGoJ9DvJQ1P6+aNEi3riLFi2SOWZaWhrXsGFDQT7/YcOGcSUlJVxxcTFvu4mJicx5Llu2TNBtZfr06RzHCfe3UvZ3fGlpKTdnzhyl7Fd6enpS58f6XZV3exWS0L9Ziv7+VxR5t11lbIMbN25U7IcgAaF/GzMzMzl3d3fme65RowaXkpJSZhxNPC7YunWrwraV1q1bc1lZWYK99+LiYs7S0lLsOm1tbWU6975161aZ76d3796CvA9F/0Yp41xKXhMnTpRr2yrrfEMRx2hfY+UmjdDQUM7AwEDQ/a558+Zcdna24L+riv6bKdOTJ084Nzc3hX33ff2YM2cOV1JSIlWOv/zyCzPeP//8o6BPhl92djZnZmbGm0vLli2VmgsR1q1bt7jq1asrZT/Q09Pj1q1bJ1jurO84RT6qVq3KhYWFCfYeiHrR5P2BZf369YIfZ0jyGD16tFR5irt+pU6oj1mUuvYxa+JnKbR3795xFStWlOszL+vcSRPPaw8ePMgZGRkpZZuNiIgQ5HOQBut6nZAPAwMD7tChQ1LlJc/+oopjPmm3sYSEBK5y5cpKye3XX3+VOC+pbvNWhym8Pseat/r58+dSzWUmlFGjRuG///6Djo6O0tetDAsXLmQO768tbGxsEBoaivbt2wsat1y5cjhy5IjYoTVlIckdr7Lc7SpJbFtbW4XeQUOItAYOHIhly5apOg21YmBggMDAQKxYsYKGnVZDDg4OuHTpklxD8+vr62PRokUICAiArq4uc35eExMTmdfx448/MqefkNb48eOxfv16QWKpio6ODlavXg1/f3+Ym5urOh0R4oZNNjMzU2ImykPf/8LT1dXF33//zZzWV5OVK1cOQUFBzKmcEhMT4eHhgaSkJCVnpngTJ07Erl27BB+ltUePHjh79qyg34mSTLfl5eUl07l3gwYNxE7vA9AIpkLasGEDevTooeo0VM7DwwN//vmnYP1FTZs2xalTpxTy265Nf7MqVarg8uXLmDNnjkKnIK9YsSKOHTuG1atXSz2iJms0BiMjI/Tt21eI9CRmZmaGXr168bZduXIF9+7dU2o+RDgNGjTAjRs3MHLkSIWup27duggLC8PMmTMVuh5F0dXVxeTJk3Hnzh3B+4aJ+tDG/WHGjBmIjo5G8+bNFb4u4MN7O378uEQj3HyO1V8hbno1VaA+BlHUx6y+rKyscOrUKdjb26s6FbXSt29fhIeHw9nZWdWpaCQTExMcPXoUffr0UXUqaqVevXq4du0aOnbsqOpUviDxGai4YWVdXV1Rt25dwZKSFKvYB+AvTGrYsKFCfogcHR2xe/du7NixQ6GdB2Vp0qSJzNN0iFO7dm0EBQVhyZIlgsdWRzY2Nrhw4QIWL14MQ0NDueO1b98eN27cUEhnWZMmTWBtbc1sd3R0RL169WSKXVYHt6enp9YWthHN9b///Q/BwcFKnVZS3eno6ODHH3/E9evX4eXlJXh8IyMj9OvXjzm1JhHPwsICgYGBOH36NJo2bSrVa319fXH16lUsXrz40/dxeno673PlmVdXT08PAQEBmDx5sswxjIyMsHbtWmzbtk1rfjtGjBiB+Ph4hZz06OnpoWvXrggMDJT6tXzTEwGAubk5Ro0aJW9qautb/P5X1JQCzZo1Q1RUFMaOHauQ+OrA3Nwcp0+fZhbFJycnw8PDA48ePVJyZoo3bNgwXLlyBW5ubnLHMjMzw/r163H06FGUK1dOgOy+VNb5iDwFOWUdE1Gxj3AMDQ1x9OhRbNu2DU5OTqpOR6VGjx6NI0eOwNLSUq44I0aMQHh4uFzHd+Jo29/M2NgYq1evxrVr19CtWzdBY5ubm2PevHlISEhAz549pX59REQEc2owX19flC9fXs4MpSdtXyvRHFZWVti5cydCQkLQtm1bQWPb2tpi5cqViIuLg7u7u6CxlaFy5cpYsGABHj16hN9//10tb+ogwtLG/cHNzQ3R0dHw9/eHi4uLwtaxe/du3LlzR+prHc+ePeOdGgsApk6dKkR6gvoW+xjKQn3M6qtJkyaIj4/H+PHjBb+5R5O1aNECN2/exI8//qiQz6VJkybYsGGDSqYANzMzQ506dRQSu1OnToiNjYWvr69C4ms6BwcHnDt3Dv/8849CiuwqVaqEefPmYfjw4RK/RrIJpAG8efMGCxcu5G1T1UF8/fr1sWbNGmRlZYm08d3BvnnzZixbtgxnz57FqVOnEBYWJtc84g0bNsTw4cPx/fffK6RzU1pHjx7FmzdvcPr0aZw6dQqXLl1iHkBJolWrVhg5ciRGjRolSNGLJjEwMMCiRYswcuRIrFy5Ert37+bdzsRxd3fH3LlzZerwkZSOjg48PT1x+PBh3nZ5Drrq1q3LnJ8WoA5wor68vLwQFRWFe/fuISgoCFevXsWDBw/w/PlzpKeno6Cg4JucD7hRo0YIDg5GREQEtmzZghMnTsg893b58uXh5eWFrl27ol+/fmKLDpXN19cXr169Elmu7iOa+Pj4wMfHB9evX8fx48dx+fJl3L9/H2/fvkVRURHMzc1hZ2cHFxcXtG3bFn5+fqhZs6ZInLS0NN74Dg4OcuWnq6uL33//HQMHDsSsWbNw/fp1iV/n5+eHZcuWqaQwXNGqV6+OQ4cO4ebNm9i8eTMOHjzIHF2pLGZmZmjfvj06d+6MAQMGoGLFijLFCQ4O5l0+bdo02NjYyBRTU3xr3/8xMTF49uwZTp48iTNnzuDy5ct4+/atTLF0dXXh7e2NUaNGYdCgQQq5gUDdmJqa4uTJk+jduzeCgoJE2p8+fQoPDw8EBwcrrANFVRo3boxr165h3759WLt2LW7cuCHV662trTFq1CjMmTNH7t8XcRRZ7NOhQwfs27ePt83BwUFhF0i+Vbq6uhg/fjzGjh2LyMhIXLhwAbGxsUhMTMTLly+RlZWFwsJCcByn6lQVrlevXrh58yaWLl2KXbt2obCwUOLXent7Y8GCBQq5uPI1bfybubq64uTJk4iLi8P27dvx33//4c2bNzLFaty4MYYNG4ZRo0bJdS5UVFSERYsW8bYJXZgkqS5dumDJkiW8x0yK/M4nyuPp6YmIiAhERERgx44dOHz4MDIzM2WK1aZNGwwfPhxDhw5V+3NuU1NTWFhYwNLSEtbW1mjQoAGaNWuGZs2aKewGWqL+tG1/0NXVxYgRIzB8+HCcO3cOgYGBOH78OPPGMElUrVoVffr0wXfffYcWLVrIHIfVV2FhYYEffvhB5riK9K31MUjqW+lj1jR2dnbYtm0bVq1ahTNnzuDSpUu4c+cOUlJS8PbtW+Tm5qK4uFjVaSqdubk5VqxYgenTp+PPP/9EQEAAUlJSZIqlp6eH5s2bo1OnTujbty8aN24scLaSs7W1xb179/Dw4UOcOHECZ8+eRVRUlNTXsT8yNDSEr68vxo4dq7LzEE2io6ODMWPGYPDgwfj333/x119/Sd239rk6deqgY8eO6NmzJzp27Cj1cakOp0ln5grw4sULREZGIj4+Ho8ePUJiYiLS0tKQlZWFrKws6OjowMLCAhYWFrCzs0OjRo3g6uoKd3d3jZjCKDk5GVFRUbh9+zYSExO/6JjJycmBrq4uLC0tYWFhAUdHRzRu3Biurq7w8PBAjRo1VJ2+2sjLy8PZs2cRHh6OuLg4PH78GG/evEFeXh4MDAxQrlw5VK1aFXXr1kWbNm3g4+NDw8MRQtRabm4ugoODERUVhZs3byI5ORlpaWnIyclBcXExzMzMUK5cOVhYWKBq1aqoV68e6tatC1dXVzRt2lSlI9kRtvXr12PWrFkiy8eOHYu///5bsPXExsbi9OnTCA4ORmpqKl6/fo2MjAyYmZnB3t4e9evXh4eHB/z8/FCtWjXB1qvuioqKEBYWhsjISMTGxiIpKQmpqanIzs5GYWEhTE1NP+1XlSpV+rRfNW7cGC1btpS7uDolJYX387a0tERSUhKsrKzkik/U37179xAdHY27d+/i0aNHePz4MV6/fo3s7GxkZ2fD0NDw00WOypUro0mTJnB1dYW3t7fMBWZE833svI6KisL9+/fx9OlTZGdno6SkBCYmJrC1tUWNGjXg5uYGT09PdOjQ4Zu7GYQQRUhLS8PJkycRGhqKmzdv4u3bt3j37h10dHRgbm7+6VihTZs28PX15S30Bj4cf5SUlIgsNzAwoGN2MUpKShATE4OIiAjExsbi0aNHePLkCbKyspCbmws9PT2YmZnBysoK1atXR+3atdGyZUt4eHh8U8e3RPsVFBTg6tWriIiIQHx8PBITE/Hs2TNkZ2cjNzcXBgYGMDMzQ4UKFVCjRg3Url0bbdq0Qfv27eHo6Kjq9AkRlDbuD0VFRYiNjUVUVBTi4uKQlJSEJ0+eID09Hbm5uSgqKoKhoeGn/pwqVaqgXr16aNSoEdq1a8c8/pDWqFGjeEeIW7hw4Tczo4S2oj5momliYmIQFhaG69ev49GjR3j69CkyMzORn58PQ0NDlCtXDuXKlYOdnR3q1q2LunXron79+mjbtq3co7QqUmlpKW7duvVp+t3ExEQ8fvwY7969+3SOY2xs/Klf0MnJCa6urnB1dUXHjh2p2E5OKSkpuHDhAq5du4a7d+/iyZMnePv2LfLy8qCrq/tpu7KyskKtWrVQr169T+f7VapUkWvd33yxDyGEEEKIthg4cCD2798vsnzdunVKmSeeqNbOnTsxevRokeVLlixhjtBJCCGEEEIIIYQQokjVqlUTGU3DysoKSUlJan3xnBBCCFF3ND4lIYQQQogWyMjIwKlTp3jbVDXlKlEuvmGxK1SoQIVehBBCCCGEEEIIUYnExETeaXPmzJlDhT6EEEKInKjYhxBCCCFEC+zYsQM5OTkiyy0tLeHm5qaCjIiyhYSEiCz74YcfUK5cORVkQwghhBBCCCGEkG8d341Jtra2mDZtmgqyIYQQQrQLFfsQQgghhGi41NRULF++nLfNz88P+vr6Ss6IKNuDBw+Qmpr6xTJ7e3tMnTpVRRkRQgghhBBCCCHkW8d3Y9KPP/4Ic3NzFWRDCCGEaBcq9iGEEEII0WAFBQUYPHgw3rx5w9s+evRoJWdEVIHvTrl58+bB1NRUBdkQQgghhBBCCCGEiBb7ODo6YtKkSSrKhhBCCNEuVOxDCCGEEKJkly9fxpQpU5CcnCxXnBcvXsDT0xPh4eG87a1bt0b79u3lWgfRDF8X+1SqVAkTJkxQUTaEEEIIIYQQQgj51iUkJODFixdfLPvf//4HExMTFWVECCGEaBcq9iGEEEIIUbK8vDxs2bIFtWrVQv/+/XHw4EHk5eVJ/PqMjAwsX74cDRs2RHR0NO9zdHV1sX79eqFSJmqM4ziEhoZ+sWz+/PkwNjZWTUKEEEIIIYQQQgj55n09qk+VKlUwbtw4FWVDCCGEaB8djuM4VSdBCCGEEPItuXDhAjp16vTFMjMzM7Rq1Qqurq5o3LgxbG1tUb58eRgaGuL9+/d49+4d7t69i/DwcERGRiI3N1fsOn788UesWLFCkW+DEEIIIYQQQgghhBBCCCGEqAAV+xBCCCGEKBlfsY+QevXqhUOHDkFPT09h6yCEEEIIIYQQQgghhBBCCCGqQdN4EUIIIYRokWHDhuHAgQNU6EMIIYQQQgghhBBCCCGEEKKlqNiHEEIIIUQL2Nrawt/fH7t27YKBgYGq0yGEEEIIIYQQQgghhBBCCCEKQtN4EUIIIYQoWUlJCcLCwnDgwAEcPXoUL168kDmWs7Mzvv/+e3z//fewtLQUMEtCCCGEEEIIIYQQQgghhBCijqjYhxBCCCFExR49eoTIyEjExcUhKSkJycnJePXqFXJycpCbm4vS0lIYGxvD0tISlStXRq1atdC0aVN4e3ujcePGqk6fEEIIIYQQQgghhBBCCCGEKBEV+xBCCCGEEEIIIYQQQgghhBBCCCGEEKIhdFWdACGEEEIIIYQQQgghhBBCCCGEEEIIIUQyVOxDCCGEEEIIIYQQQgghhBBCCCGEEEKIhqBiH0IIIYQQQgghhBBCCCGEEEIIIYQQQjQEFfsQQgghhBBCCCGEEEIIIYQQQgghhBCiIajYhxBCCCGEEEIIIYQQQgghhBBCCCGEEA1BxT6EEEIIIYQQQgghhBBCCCGEEEIIIYRoCCr2IYQQQgghhBBCCCGEEEIIIYQQQgghRENQsQ8hhBBCCCGEEEIIIYQQQgghhBBCCCEagop9CCGEEEIIIYQQQgghhBBCCCGEEEII0RDfdLFPcXExTp48iZ9++gkdO3ZEzZo1YWtrC0NDQ+jo6Ig8NmzYoOqUiZby9/fn3eZGjhyp6tQIIVIKDQ3l3Z89PT1VnZrGyczMhIODg8hnefHiRYljTJkyReT1AwYMUGDWhBBCCCGEEEIIIYQQQgghhCiWvqoTUIWSkhKsW7cOGzduRGpqqqrTIYQQmZSWluLdu3fIyclBXl4ejIyMYGZmBmtra+jrf5Nf70TLLF68GC9fvvxiWefOndGhQweJY/z888/w9/dHTk7Op2UHDhxAWFgYPDw8BMuVEEIIIYQQQgghhBBCCCGEEGX55q4Gv3z5Ev3790dERISqUyGEqFBoaCi8vLyY7VOmTMHmzZuVmFHZbt++jeDgYISHhyMhIQGPHz9GQUGByPP09fVRtWpV1K1bF23btoWnpydatWoFHR0dheaXlJT0RUGFLIyMjGBhYQFLS0sYGxsLlBnRRAkJCSL7oI6ODlasWCFVHHt7e8yYMQPLli37Yvm0adMQExMDPT09uXMlhBBCCCGEEEIIIYQQQgghRJm+qWKfwsJC9OnTB5GRkapOhRCiYv7+/mLb9+7di7Vr18LQ0FA5CTFkZmZi27ZtCAgIwJ07dyR6TXFxMR4/fozHjx/j9OnTAICqVatiyJAhmDp1KhwdHRWS66hRoxAWFiZYPCMjI7i4uKBJkyZwc3ODn58fKleuLFh8ot6mTZuG4uLiL5YNGjQIrq6uUsf64Ycf8Mcff+Ddu3eflsXHx2Pbtm2YNGmS3LkSQgghhBBCCCGEEEIIIYQQoky6qk5AmZYvX06FPoQQZGdn4+DBg2Kf8/btW5w4cUJJGYkqLCzE8uXLUa1aNcydO1fiQh+WJ0+e4LfffoOzszNmzJiBjIwMgTJVnIKCAsTGxmLnzp2YOnUqnJyc0LFjxzL/dkTzBQUF4eLFi18s09HRwfz582WKZ2lpialTp4osX7JkidyjURFCCCGEEEIIIYQQQgghhBCibN9MsU9ubi5zSh49PT30798f27dvR3h4OOLi4nDr1i2Rx7Bhw5ScNSFEEQ4ePCjRBf6yRv9RlKtXr8LV1RXz58/H+/fvBY2dn5+PjRs3wsXFRaXFTLIoLS3FxYsX0b9/f3To0AH37t1TdUpEQX7++WeRZd27d0f9+vVljjllyhSYmpp+sezVq1dqN10fIYQQQgghhBBCCCGEEEIIIWX5ZqbxOnbs2BfTd3xkZGSEs2fPwsPDQwVZEUJUQdIinqCgILx69Qp2dnaKTegzO3bswMSJE1FYWKjQ9Tx//hy9evXCwoULsWjRIujo6Ch0fUILDg6Gm5sb9uzZg969e6s6HSKgo0eP4vr16yLLf/zxR7ni2tjYYMyYMSLFPatXr8akSZNgYWEhV3xCCCGEEEIIIYQQQgghhBBClOWbGdnn0qVLvMsnTZpEhT6EfEOSkpIQHh4u0XOLi4uxe/duBWf0f3799VeMGTOmzEKfevXq4YcffsCJEyfw8OFDZGRkoLi4GFlZWUhJScH58+fx66+/onXr1mLjcByHJUuWYPTo0SgtLRXyrShFXl4eBgwYgLNnz6o6FSIQjuOwaNEikeWtW7eGu7u73PFnz54NXd0vD33evXuHjRs3yh2bEEIIIYQQQgghhBBCCCGEEGX5Zop9rl27xru8T58+Ss6EEKJKAQEB4DhOqucrw4oVK7Bw4UKxz/H09ER4eDgSEhKwatUqdO/eHTVr1oSFhQX09PRgbm6OqlWromPHjliwYAEiIyNx584dDB48WOzIPf7+/vj++++FfkufODk5geO4Mh+lpaXIysrC8+fPERERgS1btqBr167Q12cPQldcXIyhQ4fi5cuXCstfWp6enrzvLzQ0VNWpqb2goCDEx8eLLJ8wYYIg8Z2cnNClSxeR5Zs3b0ZBQYEg6yCEEEIIIYQQQgghhBBCCCFE0b6ZYp8XL17wLq9Xr56SMyGEqArHcdi1axdvW6tWrXiXx8fHIyYmRpFp4fDhw/jpp5+Y7eXKlcO///6LkJAQtGvXTqrYLi4u2LNnD0JCQlCpUiXm8/755x+sWbNGqthC09HRgbm5ORwdHdG2bVtMmjQJZ86cwYMHD9CtWzfm6968eYMlS5YoMVOiKBs2bBBZVr58efTv31+wdYwdO1Zk2evXr7Fnzx7B1kEIIYQQQgghhBBCCCGEEEKIIn0zxT7v37/nXV6+fHnlJkIIUZmwsDAkJSXxtm3btg2VK1fmbVPk6D4PHjzAyJEjme0VK1ZEVFQUhg4dKtd6PDw8EBMTg8aNGzOfM2/ePImnOFOm6tWr48SJExg3bhzzOQEBAcjMzFRiVkRoCQkJOHfunMjyIUOGwMTERLD19OjRA/b29iLLN23aJNg6CCGEEEIIIYQQQgghhBBCCFGkb6bYJzs7m3e5np6ekjMhhKiKv78/7/LGjRujUaNGGDJkCG97YGAgioqKBM+H4ziMGzcOWVlZvO02NjYIDQ1F/fr1BVmfnZ0dQkJCmCOalZSUYMyYMcjPzxdkfULS0dHBli1bUKdOHd723NxcXLhwQclZESFt3ryZd/moUaMEXY+BgQHvvn7z5k2EhYUJui5CCCGEEEIIIYQQQgghhBBCFOGbKfYhhHzbsrOzcfDgQd62YcOGAQCGDx/O2/7mzRucPHlS8Jz8/f2ZI+no6enh8OHDqFWrlqDrtLKywsmTJ2Fpacnb/ujRIyxbtkzQdQrFwMAAc+fOZbZHR0crMRsipIKCAvz3338iy6tVq4amTZsKvr6+ffvyLlfkKF6EEEIIIYQQQgghhBBCCCGECEVf1QkILSkpCTk5ORI///bt22U+x9DQELVr15YnLaLmioqK8PLlS2RnZ8PY2Bjly5enKd60zMGDB3m/G3R1dTF48GAAgIuLC9zc3BATEyPyPH9/f/Tu3VuwfIqKirB48WJm+7x589CuXTvB1vc5Z2dnbNq0CSNGjOBt37BhA2bMmIEKFSooZP3y8PHxYbY9fvxYiZkQIZ04cQLp6ekiy4Xc5z7XunVrODo6Ii0t7Yvlhw4dwpYtWwSdNowQQgghhBBCCCGEEEIIIYQQoSm82OfJkyc4c+YMLl++jHv37iElJQVZWVkoLCyEqakprKys4OzsjMaNG8PDwwNdunSBqampzOsbNWqUVNNwNGzYsMznODk5ITk5WeachPLo0SNcvnwZCQkJSEhIQGJiItLT05GZmYn8/HwYGxvDwsIClSpVQt26ddGsWTN07tyZOWWPMr179w7Hjx/HhQsXEB8fj9TUVGRmZsLMzAx2dnZwcHCAu7s7unXrhtatWytlerWoqCj8999/uHDhAh48eIDi4uIv2m1tbeHq6oru3btj4MCBsLOzE4lx7949vHjxQmR53bp14eDgoLDc5XX79m1cvHgRUVFRePjwIZ4+fYrs7OxP+6WNjQ1q1KiBZs2awdvbG97e3ho/5R1rxI4OHTrA0dHx07+HDRvGW+xz5swZvH79Gra2toLk4+/vjydPnvC2OTk54eeffxZkPSzDhw/HX3/9hcuXL4u0ZWdnY/369Vi6dKlCc5CFo6MjTE1NkZubK9KWkZGhgoyULzk5GRcuXEBsbCzi4uLw4sULZGZmIiMjAzo6OjA1NYWJiQkqVKiAatWqwcnJCS4uLmjdujUaNmwIfX31q/PdvXs37/I+ffooZH06Ojro3bs3tm7d+sXyzMxMHD9+HAMHDlTIegkhhBBCCCGEEEIIIYQQQggRgg7HcZwiAgcFBWHlypUICwuDNKswNzfHd999h3nz5sHZ2Vnq9Xp6ekpV7CMJVRX7FBQU4MyZMzhy5AhCQkLw9OlTmeI0aNAA06ZNw6hRowS7yKujo8O7/Ou/9evXr7FkyRLs2LEDeXl5EsV2dnbG6tWrFXaR9/Lly5g1axauXr0q8WtMTEwwbtw4LF26FOXKlfu0fOTIkbxFJDt37sTIkSMlju/v749Ro0aJLB8xYgT8/f0ljiNOfn4+tm/fjq1btyIhIUGq19rZ2WHy5MmYPn06c/ondZacnAxnZ2fe76Jdu3Z9msYLAF6+fIlKlSqhpKRE5Lnr16/HjBkzBMnJzc0NsbGxvG3+/v7MUXeEdOnSJeboQfb29nj27JlU3xms71+hv0MrVaqE58+fiyz39fXFqVOnBFuPrEJDQ+Hl5SWy3MPDA6GhoTLH3bdvH/7880+pf1c/Z2pqis6dO2PgwIHo0aMHzMzMZM5HKFlZWbCxsUFhYeEXy8uXL4+3b99CV1cxM46ePn0a3bp1E1nu5+eHI0eOKGSdhBBCCCGEEEIIIYQQQgghhAhB8CtoSUlJ6NSpE3x8fBAaGir1Bcns7Gz8/fffqFu3Ln7++WcUFBQInaLay8/Px+jRo2Fvb4/evXtj165dMhf6AB9GcRk/fjwaNGiA6OhoATMV78iRI6hXrx62bNkicaEP8GEqnr59+6Jnz55Sva4sJSUl+PHHH9GuXTupCn0AIC8vD5s2bUKDBg1w48YNwXJSloMHD6JGjRqYMmWK1IU+APDq1SssWrQIderUwaFDhxSQoWIFBATwfheZmpqKTBNkb2+Pzp0788YRqvDq5s2bzEIfBwcHfPfdd4Kspyxt27ZFs2bNeNtevnypFoUzfPimewKgtVPvPXjwAF5eXhg0aJBMv6ufy83NxdGjR/Hdd99hwYIFAmYpu4sXL4oU+gBAu3btFFboA3zY/vlGLLt48SKKiooUtl5CCCGEEEIIIYQQQgghhBBC5CXoVbTz58/Dzc0NFy5ckDtWUVERli5dCk9PT7x8+VKA7DRHdnY2du7cKfiUNPfv30e7du0EK1gQZ82aNejbty/evn0rc4wTJ06gW7duyM7OljufwsJC9O/fH6tWrZLrQvmTJ0/g6emJiIgIuXNShvz8fIwcORL9+/fnHQlFWi9fvkS/fv3w448/yvU5KhPHcdi1axdvW+/evWFubi6y/PORfj538+ZNxMXFyZ3T4cOHmW0jRoyAoaGh3OuQ1NixY5lt4vJUlRcvXvBO4QUANWrUUHI2inf9+nW0atVKrhGBWNRlHw4KCuJd7uHhodD1WlhYwNXVVWR5VlYWLl26pNB1E0IIIYQQQgghhBBCCCGEECIPwYp9PhZmsEZckFV0dDTat2+PFy9eCBr3W1VcXIzRo0dj7969ClvH77//jh9++EGQC8khISGYNm2aXDE4jsOoUaMEm5YlOzsbfn5+SExMFCSeomRnZ6Nz586804zJa9WqVZgyZYrgcRUhPDwcjx8/5m1jFfX4+fl9MV3b54T4PFnFDQDQr18/ueNLo3fv3ryjmwDAuXPnlJqLJMR9ds2bN1diJor38OFDdOrUCe/fv1d1Kgp19uxZ3uWKLvYBwDvdGiB+OyOEEEIIIYQQQgghhBBCCCFE1fSFCHL9+nX0799f7LQXlpaW6NOnDzw9PVGpUiWUL18eL168QHJyMo4ePYrg4GCUlpbyvvbBgwfw8fFBVFQUjI2NxebCGv1AR0eHd7m6jGwgCQMDAzRo0ADNmjWDm5sb7O3tYWVlBUtLS+Tl5eH9+/d4+PAhoqKicO7cOWbhFcdxGDNmDJo0aYJ69eoJmmNISAimT58usrx27drw9fVFq1atYGdnh/Lly+Pt27d4/PgxTp8+jVOnTqG4uJg35s6dOzFs2DDmRdmyrFu3DoGBgcx2IyMj+Pr6YsCAAWjUqBEqVqwIQ0NDPH/+HImJiTh8+DAOHTr0xShF7969w/Dhw9V2JJGioiJ0795d7AhE+vr6cHd3h6enJxo1aoQKFSrAwsICb9++RWpqKi5evIjTp08zR2faunUratasiZkzZyrqbQiCNZKVg4MDOnbsyNtmYmKCvn378r42MDAQq1evhr6+bF+fWVlZuH79Om+bjY0NmjZtKlNcWdnZ2aFJkya809O9ePECd+/eFfx7QlbFxcVYtWoVb5uFhQU6dOig5IwUa/LkyWILaGvVqoUuXbqgQYMGqF69OiwsLGBiYoKcnBxkZGTg7du3uHPnDm7evInr16/j9evXykteQk+ePEFycrLIcgMDAzRq1Ejh62ftb4oYSYkQQgghhBBCCCGEEEIIIYQQochd7JOVlYX+/fujoKCAt93AwADz58/HvHnzYGRkxPucyZMnIyUlBePHj2eOJBEXF4cZM2bgzz//lDdljWJgYIBOnTph0KBB6NWrFywsLMp8zYwZM5Cbm4uAgAAsWLAA7969E3lOXl4eJkyYgLCwMEHzHTp06BdFW/Xq1cOqVavQvXt35mvGjx+PhIQEjB49GleuXOF9zpw5c3iLEcqSkJCA//3vf8z29u3b459//kGtWrVE2mrWrImaNWuiS5cuWLVqFWbPno3t27d/ao+MjMTt27elzkkZpk+fzvzb6uvrY8KECZgzZw6cnJyYMUaMGIHc3FysXr0aK1euRF5enshz5s6dC09PT96pcNRBTk4ODh48yNv23XffMUe0AYDhw4fzFvu8evUKp06dQq9evWTK6ebNm8zCxrZt2zILExWpXbt2zP0rJiZGbYp9pk+fjrt37/K2jRo1CqampkrOSHEuXLiA8+fP87Y1btwY69evl6oAsrS0FNHR0Thx4gR2796NZ8+eCZWqXFiFb7Vr11bKdHasgqL4+HgUFRXBwMBA4TkQQgghhBBCCCGEEEIIIYQQIi25p/H6+eefee/KB4Dy5csjMjISixYtYhb6fOTk5ISzZ8/i119/ZT7nr7/+wqVLl+RJV2MYGRlhypQpSEpKwqlTpzBs2DCJCn0+MjU1xcSJE3Hr1i20bt2a9znh4eG4ePGiUCkDAJ4/f/7p//v06YPY2FixhT4fubi44MKFC2jTpg1ve0xMDOLj46XOZ9asWSgsLORtGz58OEJDQ3kLfb5maWmJf/75R6TYLDMzU+qcFO3MmTP4448/eNsqVaqE0NBQbN68WWyhz0empqZYtGgRQkJCYGNjI9JeXFyM77//Xu6cFeXgwYPIzs7mbWNN4fWRp6cnqlSpwtvGGi1IEjdv3mS2ubm5yRxXHuKKteLi4pSXCMOTJ0/g5+eHrVu38rY7Ojpi8eLFyk1KwVhFau3atUNkZKTUI53p6uqiTZs2+O2335CUlITAwEA0bNhQiFTlwioyU1ZutWvX5j0+yc/PV9tiTkIIIYQQQgghhBBCCCGEEELkKvZJTk7Gli1beNtMTExw4sQJNGvWTKqYCxYsYE4LxHEcfvjhB6nz1DQWFhZ4/PgxNm/ejEqVKskVq2LFijh16hRcXFx421l/P3n17t0bBw4cKLPI63Pm5ub4999/mVO17dy5U6ocoqOjcfbsWd42Hx8fbN++XepRVL7//nssWbJEqtcoU2FhISZPnszbZm9vj0uXLsHd3V3quC1btsS5c+d4/57Xrl3D8ePHpY6pDKyiHBcXlzJHI9LR0cGQIUN4206dOoU3b97IlNOjR4+YbXXr1pUpprzEjdyTmJiotDw4jkNOTg5evHiByMhI/PHHH+jWrRtq1KiBY8eO8b7GwsICx44dQ/ny5ZWWpzIEBQWJLNPV1YW/v7/cIxjp6+vju+++w5gxY+SKI4SYmBje5fXr11fK+vX09JjbvyyjyRFCCCGEEEIIIYQQQgghhBCiDHIV+6xduxbFxcW8bb/++ivatm0rc9zmzZvztkVHRyM0NFSmuJrC0NAQFStWFCyelZUVduzYwdt26tQpZGVlCbYuAKhcuTL++ecf6OpKv3k5Oztj/PjxvG3BwcFSxdq0aRPvcjMzM/z111/Q15dtFrv58+czp35RtR07diApKUlkuZ6eHo4dO4Zq1arJHNvV1RUrV67kbduwYYPMcRUlOTmZOZVZWaP6lPW8oqIiBAYGypRXamoqs02ev488xI3yJC5fSaWkpEBHR6fMh66uLszNzeHo6Ah3d3dMmjQJp0+fZv7ONGzYEOHh4czfC01VWlrKO81WixYt4OzsrIKMFOfBgwe8y6tWraq0HFjrYuVGCCGEEEIIIYQQQgghhBBCiKrJXOxTUFCAPXv28LbVrVsX06ZNkzkpHR0dbNq0iTnqyvbt22WO/a1q2bIlunXrJrK8sLCQWRAhq6VLl8La2lrm17NGU0lISEBBQYFEMXJycpgjgcydOxeVK1eWOT89PT2sX79e5tcr0saNG3mXjxkzBi1btpQ7/qRJk3g/u9DQUKSkpMgdX0gBAQHgOE5kubgRe77m4uLCnFpL1qm8Pp/q7mv29vYyxZSXjY0NszgvLS1NydmIp6enh9atW8Pf3x/Xr19H48aNVZ2S4N68eYOSkhKR5aoqBlOU0tJSPH36lLdN3lHtpMFal7p9pxFCCCGEEEIIIYQQQgghhBDykczFPufPn8f79+9523766ScYGBjInBQAtGrVCj4+PrxtR44cQWFhoVzxv0W9evXiXR4dHS3YOuzs7DBo0CC5YrRo0QJWVlYiy4uLi3H79m2JYpw/fx65ubkiy3V1dTFu3Di58gMAb29v1KpVS+44QoqKisK9e/dEluvp6WHx4sWCrMPAwIB3mjCO43DmzBlB1iEEjuOwa9cu3jYPDw9UqVJF4lis0X1iY2Nx69YtqXPLzs5mtvFt98qgq6sLS0tL3jZx+SqbhYUFFi5ciF27dmHEiBEwNDRUdUoKwSp0FXoUNlVLS0tDUVERb5s6FPskJycrLQdCCCGEEEIIIYQQQgghhBBCpCFzsc+5c+d4l5uamqJPnz4yJ/S5oUOH8i7PyclBVFSUIOv4lri7u/Mul7SARhK9e/eGkZGR3HEaNGjAu1zSi68hISG8y728vODo6ChrWl+QdHQYZWGNZOTp6SnYewaATp068S5nfeaqEBERgcePH/O2STqF10ffffcdc8o3WUb3yc/PZ7YJse/IirXuvLw8JWfClpmZiUWLFqFWrVrw8fFBZGSkqlNSCGtra96Cn/DwcK0q+OGbquwjZY5y5eDgwLucNeoQIYQQQgghhBBCCCGEEEIIIaomc7HPpUuXeJf7+vrC3Nxc5oQ+5+fnBxMTE6nWT9hYF0+FHL2AVVAkrZo1a/Iuz8zMlOj1165d413euXNnmXP6WpcuXQSLJQRWAV7v3r0FXU+TJk1gZmYmsjw2NlbQ9ciDVYRjbGyMfv36SRXL3t6eud3s2bMHxcXFUsUTNyqZvCOiyYO1bnUdRS0oKAju7u6YNm2axNP7aQo9PT3UrVtXZHlWVhYmT56M0tJSFWQlPHHf56ampkrLg7UubSqsIoQQQgghhBBCCCGEEEIIIdqFf7iKMpSUlODu3bu8bS1atJAroc+ZmJigUaNGuHLlikibLNPnfOusra15l7948UKwdbi6ugoSx8LCgne5pMU+CQkJvMsbN24sc05fa9iwIXR1ddXiwntBQQFzhCYh3zPwoRDBwcEBiYmJXyxPTExEcXExcxQcZcnNzcXBgwd523r27MnctsQZNmwY/h979x0dVbX2cfyX3iFA6L33oiAgCNIUlCYg1YZXRUVR7/UqlqugWJBrr1gBFa4KqICCIB2U3nvvPRDSe877hy/jTHLOkJlMJhn4ftbKWnvOc2bvZyZz5iRz9uxn7ty5ebafOXNG8+bNU+/evfPdl7PVezIzM4usNJXVpB5PrDZUqVIlzZ8/P1/7ZmdnKyEhQfHx8dq7d682bNigBQsWKDY21nT/Dz74QOvXr9eCBQs8NtG0OOjWrZvpefabb77RkSNHNGHCBLVp06YIMvMcs1KL0l9lzLy5ypXVpGKr/AAAAAAAAAAAAICi5tZV+aNHj1qWovHUZI9LWrRoYTrZZ8+ePR4dx1ds3LhRGzdu1LZt27Rt2zadPn1aiYmJth93Jp54cvWCmJgYj/QTFRVluj0/k30uXryo+Ph401izZs0KlJe9iIgI1a5dW/v27fNYn+7avXu3MjMzTWNmK4QUVJkyZfJM9snJydGpU6dUtWpVj4/nihkzZli+pl0t4XVJ3759FRUVZdrv5MmTXZrsExoaahlLS0srssk+Vu/pVhMhXBEUFGRZmi8/0tPTNWPGDI0ePVonTpzIE1+1apX69Omj+fPnF+nqSJ700EMP6cMPP5RhGHliy5cvV9u2bdWiRQsNHDhQvXv3VpMmTUxLfxVnVpNpPPGac4XVeDk5OUpLS3N6zAIAAAAAAAAAAABFwa0yXidPnrSMNWzY0O1kzDRu3NjlHK40+/fv1/PPP69atWqpZcuWeuCBB/T+++9ryZIl2rVrl44fP674+Hi3V5ixusjvjlKlSnmkn4CAANPt2dnZl73vmTNnTLf7+flZljJzl6f7c9eRI0csY2XLlpWfn59Hf9auXWs61vnz5wvrIeabVQmvmJgY9ejRw60+w8LCLMt//fLLL7pw4UK++3K2slBRPX9ZWVmWE+msJt55U0hIiO644w5t375dXbt2Nd1nyZIlmjBhgpczKzyNGjXS/fff73SfzZs36/nnn1ezZs1Urlw59e/fX2+//bZWr17tcnm5omCVo9X7f2FxthqZLzyPAAAAAAAAAAAAuPq4Ndnn3LlzlrHo6Gh3c3GpP2c5XCmSkpI0evRoNWrUSK+99poOHTpUKON4sgyVN0uvWLGatBARESF/f7de8pZKlizp0f7cVVwmv6Wmphbp+EeOHNHSpUtNY0OGDClQiTGrVYEyMjI0bdq0fPdTqVIly5gnS+q54uzZs6YryEhS5cqVvZyNtejoaP34449q1KiRaXzcuHGF9j5ZFD744AO1a9cuX/vGxsbqp59+0pNPPqnrr79epUuXVs+ePfXOO+/o+PHjhZype8LDw023e3ICan44e9+yyhEAAAAAAAAAAAAoSm7NfLC6MBYQEKCIiIgCJZSb1SoYhmEoPT3do2MVJ9u3b1eTJk00YcIEy/JMMGf1unC2ooq7CqNPd3iyFFtBZGRkFOn4U6ZMsZy04m4Jr0s6depkWaLMajUhM1WqVLGMHTx40NW0PMLZBJniNNlH+uuYe+ONN0xj6enp+vjjj72cUeEJCQnRokWLdM8997h838TERM2dO1f/+te/VL16dXXt2lUzZ860PD6KgtVEmszMzHyt4uYpVn/ThIaGenyCKAAAAAAAAAAAAOAJbi1zYTX5JCwsrEDJmHE2eSgjI6NYrCTjabt371anTp2KRUmkK4knVzC6xJsXpJ0pLhPfinIigWEY+vrrr01jFStWVHh4uLZv316gMTp16qRvvvkmz/YNGzbYJuhdTt26dS1ju3fvLlB+7tq1a5dlrF69el7MJH969eqlunXrat++fXlikyZN0htvvHHFTNIIDQ3V5MmTde+99+rZZ5/VqlWrXO4jJydHixcv1uLFi9WiRQt98MEHuuGGGwohW9c4O7+npqYqMjLSK3lYTfZhVR8AAAAAAAAAAAAUV25N9gkKCjLdXhglfJKTky1jwcHBHh+vqKWnp+v222+/7ESfWrVqqXXr1mrQoIGqVaumcuXKqUSJEoqIiFBAQIACAgJM79e0adPCSLtYCQ0NNd1uVd6rIAqjT3dcKRMbCmLFihU6cOCAaezUqVOF/tqfPHmy3nzzzcvu16JFC8vYunXrPJhR/q1fv94y5izfotSlSxfTyT7nz5/Xtm3b1Lx58yLIqvDceOON+vPPP7VlyxZNnjxZc+bMsXy9O7N582Z16tRJr732mp5++ulCyDT/ypYtaxmLi4vz2mSfuLg40+3lypXzyvgAAAAAAAAAAACAq9ya7GO1gk92draSk5M9WsrLajKFn5/fFbmqz4cffqgdO3aYxkJCQvTYY4/p/vvvd2u1jcJY2aY4io6ONt2ekpKi7Oxsy4lQ7iguk32crUCxYcMGr02Mq1mzplfGMeNKKa3CMHXqVL3xxhuXfX01bdpUQUFBpiuk/fnnnx5/jebHihUrLGMtW7b0Yib55yyv1atXX3GTfS5p3ry53nnnHb3zzjs6cuSIFi9erOXLlzud7JZbdna2Ro8erdDQUD322GOFnLG16tWrW8ZOnDhhWTbP006cOGG63Vl+AAAAAAAAAAAAQFFya7KPs2/jX7x40aOTfS5evOhyDr4qJydH7777rmmsYsWKmj17tlq1auV2/1arF1xpKlSoYBk7duyYatSo4bGxjh075rG+CqJMmTKWsUqVKjl9Tq4EKSkpmjFjRpHmcPr0af3222/q2bOn0/3CwsLUvn17LV26NE8sMTFRy5YtU5cuXQopy7wOHTqknTt3msZq1apVpBO4nHH2mreavHGlqV69uu69917de++9kqSTJ09q2bJl+v333/XLL7/o3LlzTu//r3/9S127dlXjxo29kW4e4eHhiomJUWxsbJ6YN3+HTPYBAAAAAAAAAACAr3Gr9k+lSpUsY7t27XI7GTNWF6Gd5eCr/vzzTx0/fjzPdj8/P02bNq1AE30k6cKFCwW6v6+IjIy0nAy2ZcsWj40TFxdXbCb7VKtWzTJ2NfzeZ8yYocTExKJOI9+rC/Xo0cMyNn36dA9lkz/OJkl1797di5m4pkSJEpaxq+E1b6ZSpUoaOnSovvrqK50+fVrz589Xr169LPfPzs7W2LFjvZegCavJZMVhso8nJ4YCAAAAAAAAAAAAnuTWZJ9q1aopNDTUNLZ58+aC5JPv/urXr+/RcYoDq1I6nTt3VqdOnQrc/8GDBwvch6+wWqnCk69PT7/WC6Jhw4aWsX379nkxk6JR1CW8LpkzZ06+JpoMHDhQfn5+prFp06Z5beKSYRj67LPPLOODBw/2Sh7uiI+Pt4ylp6d7MZPiyd/fXzfffLPmzJmjuXPnKjIy0nS/OXPmKCUlxcvZ/a1Zs2am2/fu3eu1HPbs2WO6/UotBQcAAAAAAAAAAADf59Zkn4CAADVq1Mg0tnbt2gIlZC8tLU1bt241jTVt2tRj4xQXVhcc+/Tp45H+rSYTXYnatm1run3OnDkeG2P27Nke66ugypUrZ1lyZtmyZV7OxruOHDliWhJLkkaNGiXDMDz+YzXRKz09Xd99991lc65Vq5Y6duxoGktISNCnn36a34dfID///LP2799vGqtdu7ZljsWBWemnS6wmtlytbrnlFn3++eemsfT0dP3xxx9ezuhvLVu2NN2+bds2r4wfGxur06dPm8YKupoeAAAAAAAAAAAAUFjcmuwjSTfccIPp9rlz5yo5OdnthOzNnj3bcsUBq/F92dmzZ023W03icNXixYs90o8v6NKli+n2DRs2WE6qckV2dna+JnV4U9euXU23L1y40MuZeNfXX38twzBMY3fccUehjNm8eXPL1aPyu8rQo48+ahl77bXXFBcX505q+ZaVlaXnnnvOMv7II49Yrj5UHDibWFqlShUvZuIbhgwZYvm8HDlyxMvZ/K2oJ/tYjVO1alWVK1fOKzkAAAAAAAAAAAAArnJ7ss9NN91kuj05OVk///yzu906+Pbbb023R0ZG6vrrr/fIGMVJRkaG6fawsLAC971p0yatWrWqwP34ik6dOqlUqVKmsffee6/A/X///feWq0EUlX79+plu37Ztm5YsWeLlbLxnypQppttr166tNm3aFNq4w4YNM92+bt067dy587L3HzBggJo0aWIai4uL0xNPPFGQ9C5r/Pjx2r17t2msfPnyeuihhwp1/IIwDMPp5EWriVhXO6uJNc5WSSpszZs3Ny0LGhcXp+PHjxf6+FarBxbmewcAAAAAAAAAAABQUG5P9rn55pstJ1O8/vrrysrKcjspSVq/fr1+/fVX01i/fv0UHBxcoP6Lo9KlS5tuP3nyZIH7njBhQoH78CVBQUEaMmSIaeyzzz6zvMCbH8nJyXr66afdvn9h6dGjhypXrmwaGzdunJez8Y4VK1bowIEDpjGryTieMmzYMMuVb/Kzuo+fn5/Gjx9vGf/6668tJzwW1J9//qmXX37ZMv7iiy96ZJJhYZk5c6YOHz5sGgsMDFS7du28m5CPsDpvRkREeDmTv4WEhKhDhw6mMW+UF7Mqb3nzzTcX+tgAAAAAAAAAAACAu9ye7BMcHGxZImfHjh365JNP3E7KMAw99thjysnJMY3/4x//cLvv4qxs2bKm2xctWlSgfn/66adiV3LKGx5//HHTyRjZ2dm65557lJCQ4HKfhmFo5MiROnHihCdS9KjAwECNGjXKNLZkyRK9+eabXs6o8DmbVFPYk31q1KhhucLYt99+q+zs7Mv20bNnT91+++2W8fvvv1/Lli1zO0cz+/fv12233abMzEzTeNu2bYv1qj4XLlzQs88+axnv3r27SpQo4cWMfMfevXtNt1eqVMnLmTjq0aOH6falS5cW+tjLly833W6VEwAAAAAAAAAAAFAcuD3ZR5KefPJJBQYGmsaeffZZrVmzxq1+n332WcuSU23btlWnTp3c6re4u+aaa0y3z5gxQ4cOHXKrz507d+r+++8vSFo+q379+rrzzjtNY5s3b1bv3r2VmJiY7/5ycnL0z3/+U19//bWnUvS4xx57TFWqVDGNPfPMM/rpp588PmZ6erpmzZrl8X4vJyUlRdOnTzeNXXvttWrQoEGh52A14fHUqVNasGBBvvr48MMPLSdbpKen69Zbb7Vc5cxVW7duVYcOHXTu3DnTeGRkpCZNmiR//wKdGgrN+fPnddttt2n//v2W+zz++ONezKhwrF69usCTPHPbsGGDtmzZYhqzKifnLVYTazw90S23HTt2mB4LjRo1UtWqVQt1bAAAAAAAAAAAAKAgCnRFt0aNGnr00UdNY8nJyerZs6flxUUrEyZM0BtvvGEa8/Pz03//+1+X8/QV3bt3N92enp6uwYMHuzQxRZJWrVqlDh066MKFC55IzyeNHz9e0dHRprHly5erSZMmmjdv3mX72bVrlzp27Kj33nvPYXtxuyAcFhZmuapWdna2BgwYoBdeeMFy1SxXXLx4UePHj1eNGjX05JNPFrg/V82cOdPymCjsVX0uGTRokOWEx/yU8pKk8uXLa8aMGZYlllJSUtSnTx8999xzSktLcyvPnJwcTZw4UW3bttXp06ct95syZYpXJkm5Kj09Xd98842aNm1qWXZJ+us99KabbvJiZoVj9+7d6tatm1q1aqUffvihwGUxz549q7vuuss01qxZM9WvX79A/RdUo0aNVLdu3Tzbd+3apVOnThXauIsXLzbd3rdv30IbEwAAAAAAAAAAAPCEAi/f8NJLL6l69eqmsfPnz6t169Z6/fXXlZGR4bSfY8eOqWfPnho9erTlPg888IBuuOGGAuVbnFWtWlUdO3Y0ja1bt07XX3+91q9ff9l+zp8/r1GjRqljx44OE32K28QUb6hUqZI+/fRTy/jRo0d16623qkGDBnrxxRc1Y8YM/fHHH1q3bp1mz56tt99+WzfccIMaN26sP/74w+G+AwYMUJcuXQr7IbisV69elqubGIahV155RU2aNNHkyZMtSzlZiYuL0+TJk9W7d29VqFBBzz77rNPJI4XJajKNv7+/hg4d6pUcYmJidPPNN5vGZs2apYsXL+arn+uvv17ffPONAgICTOM5OTl6/fXXVb9+fU2cOFFJSUn56jczM1MzZsxQq1at9PDDDys1NdVy3zfffFP9+/fPV7+uyszM1Pbt2/P1s3XrVq1cuVK//vqr3n77bQ0bNkyVK1fW3Xff7XTiR7ly5fT5558XSv5FZcOGDRo8eLDKly+vBx54QL///rtLE38Mw9APP/ygVq1aadeuXab7PPDAA55Kt0CsVsn6+eefC21Mq5XOrHIBAAAAAAAAAAAAigvzJSlcUKJECU2fPl0dOnRQenp6nnhGRoaee+45/fe//9WAAQPUsWNHVa5cWSVLltSZM2d0+PBhzZo1S4sWLVJ2drblOC1atMizqsqV6JVXXrGc8LNjxw5dd9116tixo2699VZdc801Kl26tHJycnTmzBkdOnRIv/32mxYvXpznd+Hn56fJkyera9eu3ngYxcqgQYO0detWvfrqq5b77NmzR+PGjct3n3Xr1tVnn32mf/3rX6Zxq0kb3vLWW2/pyJEjlhfKd+3apXvvvVf//Oc/dcMNN6hjx46qVauWSpcurVKlSiktLU0XL17UxYsXdezYMW3atEmbNm3S3r17PbIqUEEdPXpUS5YsMY116tTJsixWYbjjjjs0d+7cPNvT09P13Xff6aGHHspXP4MGDVJWVpaGDx9uOQnr6NGjevjhh/Xvf/9bnTp1UocOHdSwYUOVLVtWERERSktL04ULF7Rnzx6tWbNGCxYs0Pnz5y879vjx4wt1daaTJ0+qadOmhdZ/dHS05syZc8VOaLxw4YK++OILffHFFwoLC1OLFi3UqlUrNWvWTDExMSpdurRKliyp9PR0JSQkaP/+/dq0aZN+/fVXnThxwrLfNm3a6OGHH/biI7F25513auzYsXm2z5w5s1ByPH/+vJYvX55n+zXXXKPGjRt7fDwAAAAAAAAAAADAkwo82UeSrrvuOv3www8aMGCA5aoDcXFxtouVrqpbt67mzZun0NDQgqZa7HXo0EEPPPCA0xUqli9fbnqR0pnx48cXy1VovOWVV15RRkaGR8rAVa9eXXPnzlXp0qUtJ6iFhIQUeJyCCAgI0A8//KC7775b3333neV+Fy9e1C+//KJffvnFi9kV3JQpU2QYhmnMWyW8Lunbt68iIiKUnJycJzZ58uR8T/aR/sq9UqVKGjhwoGJjYy33S05O1q+//qpff/3VrZwvCQsL06RJkzR48OAC9VOUmjZtqmnTpqlJkyZFnYpXpKamatWqVVq1alWB+qlYsaK+/vrrIp+YeEnt2rV1/fXX53lcy5Yt04ULF1S6dGmPjjdr1izT9+8777zTo+MAAAAAAAAAAAAAhaHAZbwu6dOnj3799VdFR0d7qktJUtu2bbV8+XJVqFDBo/0WZx999JFHV+B54YUX9PTTT3usP181YcIETZo0SREREW730aFDB/3555+qU6eOJCk+Pt50v7CwMLfH8JSgoCBNmzZN48ePV1BQUFGn41FTpkwx3R4SEqIBAwZ4NZeIiAj17dvXNLZmzRrt3r3bpf46deqkzZs3q1evXp5Iz1Lbtm21bt06n53oExwcrLFjx2rDhg1XzUQfT6lZs6ZWrlypevXqFXUqDh588ME827KysjRjxgyPj2U2CTI0NFR33323x8cCAAAAAAAAAAAAPM1jk30k6eabb9bGjRs9MlElMDBQzz33nJYuXXpVTfSR/pqk8euvv5pe+HRFdHS0vv32W7388sseysz3DR8+XLt379bw4cMVHByc7/vVrFlTn332mZYtW+ZQIurixYum+5ctW7agqXqEn5+fRo8erfXr16tz584e7z8kJES33367Pv74Y4/3bWXFihU6cOCAaezWW2/1+ITD/HC2mtDkyZNd7q9y5cqaM2eOZs6c6fHyV9WrV9enn36qP/74wyfLFdWvX19vvPGGjh49qjFjxlxxE9kkqUqVKipXrpzH+w0ICNAjjzyijRs3qlatWh7vv6CGDh2q8uXL59nubKU7dxw5ckSLFi3Ks/2OO+5QTEyMR8cCAAAAAAAAAAAACoNHynjZq1mzphYuXKh58+ZpwoQJWrZsmWW5HTMREREaOnSonn32WY9ejPT2ah8FFRISookTJ6p3794aN26c1qxZk+/7RkZGavjw4frPf/5jeuH0alelShVNmjRJb7zxhn788UctXrxY27Zt08mTJ5WcnKyQkBBFR0erbt26uvbaa9WzZ0916tTJtNzNqVOnTMcobhPUmjVrpsWLF2vFihX66KOPNGfOHKWkpLjVV3R0tDp37qwePXro9ttv93h5ncvJzMzUmDFjTGM9e/b0ai6XdO/eXS+99JJycnLyxAryWujfv7/69eunuXPnasqUKZozZ47S0tJc7icgIEBdu3bV3XffrUGDBhX7CTIREREqWbKkSpYsqZiYGDVv3lwtW7bUdddd55MTlFzVrVs3nTp1SmvXrtWcOXO0aNEibdy4UZmZmW71V6pUKQ0aNEgjR45Us2bNPJyt5wQHB2vkyJF5ju/169dry5Ytat68uUfG+fLLL02P1ccff9wj/QMAAAAAAAAAAACFzc9wZSaOG44cOaJ58+bpjz/+0O7du3XkyBElJiYqIyNDYWFhKl26tGrVqqXmzZvrxhtvVI8ePRQeHl6YKfmkNWvWaMGCBVq+fLkOHTqkCxcuKCEhQaGhoSpZsqRq166tJk2aqGvXrrr55psVFRVl2o/VRIHQ0NDCTP+KdOHCBcXExOSZzBYSEqLk5GTTyUHFRUpKihYvXqxVq1Zpy5YtOnz4sE6dOqXk5GRlZWUpIiJCUVFRKlGihKpVq6aGDRuqQYMGuuaaa9SyZcti/diuZMnJyfrzzz+1cuVK7dixQ/v377f93lJTUxUSEqKIiAiVLVtWtWvXVsOGDdWuXTt17NjR65Oy4FlpaWlat26d1q9fr7179+rAgQM6fPiw4uPjlZSUpPT0dNskqejoaNWvX18tWrRQy5Yt1aVLF5dWMitK586dU7Vq1fKcqx555BF9+OGHBe4/JydH1atX1/Hjxx22d+3aVQsXLixw/wAAAAAAAAAAAIA3FPpkH+BKNW/ePN166615tjdr1kxbtmwpgowAwPc98cQTeu+99xy2RUVF6ejRowUu0zd9+nQNGjQoz/alS5fqxhtvLFDfAAAAAAAAAAAAgLf4F3UCgK+aOnWq6fb27dt7ORMAuHI8++yzeVb4S0xM1Mcff1zgvidMmJBnW9euXZnoAwAAAAAAAAAAAJ/CZB/ADWfOnNH06dNNY507d/ZyNgBw5ShfvrweffTRPNvff/99y1KU+bF48WKtX78+z/ZXXnnF7T4BAAAAAAAAAACAosBkH8ANTzzxhDIyMvJsDw8PNy3tBQDIv6efflolS5Z02HbmzBlNnjzZ7T7feOONPNt69uyptm3but0nAAAAAAAAAAAAUBSY7AO4aOLEifruu+9MY4MHD1ZERISXMwKAK0uZMmU0ZsyYPNtfffVVt1b3Wb58uRYsWOCwLSgoSG+99ZbbOQIAAAAAAAAAAABFhck+uCoMGzZM8+bNK1AfhmHopZde0siRI03j/v7+euqppwo0BgDgL6NGjVKjRo0cth0/flwffPCBy30988wzebY99thjql+/vtv5AQAAAAAAAAAAAEXFzzAMo6iTAApblSpVdOLECTVt2lR33323Bg4cqOrVq+frvoZh6Ndff9Wrr76q1atXW+43cuRIffTRR55KGQCueosWLVK3bt0ctpUqVUoHDx5UdHR0vvqYNWuWbrvtNodtFSpU0J49e1SiRAkPZQoAAAAAAAAAAAB4D5N9cFW4NNnHXrNmzdSqVStdc801ql69uqKjoxUVFaWkpCTFxcXpxIkTWrlypZYvX65jx4457b9evXpat24dF44BwMM++eQTnTlzxmFbnz59dO211+br/lOnTtW+ffsctnXs2FFdunTxWI4AAAAAAAAAAACANzHZB1cFs8k+nlK2bFktW7ZMDRs2LJT+AQAAAAAAAAAAAAAALvEv6gQAX1arVi0tXbqUiT4AAAAAAAAAAAAAAMArmOwDuMHf31/33XefNm7cqEaNGhV1OgAAAAAAAAAAAAAA4CrBZB9cFZYvX67x48erVatW8vPzc7ufiIgIDR8+XJs2bdIXX3yhkiVLejBLAAAAAAAAAAAAAAAA5/wMwzCKOgnAmy5evKjVq1dr7dq12rdvnw4fPqzjx48rMTFRKSkpSk9PV1BQkCIiIlSxYkXVqFFDLVq0ULt27dSlSxeFhoYW9UMAAAAAAAAAAAAAAABXKSb7AAAAAAAAAAAAAAAAAD6CMl4AAAAAAAAAAAAAAACAj2CyDwAAAAAAAAAAAAAAAOAjmOwDAAAAAAAAAAAAAAAA+Agm+wAAAAAAAAAAAAAAAAA+gsk+AAAAAAAAAAAAAAAAgI9gsg8AAAAAAAAAAAAAAADgI5jsAwAAAAAAAAAAAAAAAPgIJvsAAAAAAAAAAAAAAAAAPoLJPgAAAAAAAAAAAAAAAICPYLIPAAAAAAAAAAAAAAAA4COu2sk+Y8eOlZ+fX56fsWPHFnVqPmfy5Mmmz+Xw4cOLOjUAAAAAAAAAAAAAAIArSmBRJ3BJenq6Ll68qJSUFKWlpSk4OFjh4eGKiYlRUFBQUacHAPBRsbGxSkhIUFZWlqKiolSmTBkFBwcXdVoAPCQjI0Pnz59XYmKiAgMDVaJECcXExBR1WvAhSUlJSkxMVHJysrKyshQSEqLIyEjFxMTIz8+vqNPD/+N8Dlyd4uLiFB8fr/T0dEVGRqpMmTIKDQ0t6rQAAAAAAACKXJFM9jlz5oyWLFmiP//8Uxs2bNChQ4d0+vRpGYaRZ18/Pz+VLVtW9evXV9OmTdW+fXvdeOONqly5chFkDuBqNnbsWL300kuW8RkzZmjAgAFezKj4mDdvnm699Van+yxZskSdOnUq9Fw2b96smTNnauHChdqxY4cSExMd4gEBAapdu7batWun3r17q1evXl67WJiWlqaZM2dqzpw52rhxo06fPq2cnBxVrFhRLVq0UN++fdWvXz9FRER4JZ8r2cWLF3X8+PEC9REQEKCoqCiVKFFCUVFRPn/R/8SJE4qLiyv0cerVq1eox1RGRoZ++eUXzZkzR3/++acOHDig7Oxsh32ioqLUuHFj3XTTTerfv79atGhRaPnkdvDgQf3www+aN2+eDh48qHPnzikqKkpVqlRR586dNWDAALVv395r+cDR7t27tWzZMq1atUrbtm3ToUOHLI+LwMBAVapUSY0aNVLz5s3VoUMHdejQQSVKlPBy1oVn165d+v3337V27Vrt2bNHx44dU2JiotLT0xUeHq7IyEhVrlxZtWvXVv369dW2bVu1adNGpUuXLvTcOJ9Dcv98HhgYqJCQEIWEhCgsLEzR0dE+fx63snfvXmVkZBTJ2FWqVFF0dLRH+9y3b59mzJih+fPna+vWrXneo/38/FSjRg21bt1avXr18uqxlp2drdmzZ2v27Nlas2aNTp06pbS0NFWsWFGNGjVSnz59dPvtt3vlPRIAAAAAAECGl6Smphqff/65ceONNxr+/v6GpAL9tGrVynjjjTeM06dPu5XPmDFjTPsdM2aMZx/4VWDSpEmmz+U999xT1KkBHpOTk2PUrFnT6ftSr169ijrNIpGUlGRUr179su/bS5YsKdQ8li9fbnTo0MHl80nFihWNN99808jMzCzU/KZOnWpUrVo1X/l88cUXhZrL1cDq3OTuj5+fn1G9enWjb9++xpgxY4zly5cbOTk5Rf0wXXLPPfd49Dmx+tm3b1+h5J+RkWH897//NSpUqOByTh06dDBWrFhRKHldEh8fb4waNcoICgq6bD5du3Y1tmzZUqj54G+nT582XnrpJaNRo0YFfn0HBQUZPXr0MCZPnmykpKQU9UNzS3JysvH+++8bjRs3dvv9sGXLlsbYsWON3bt3ezw/zuew56nzeWBgoFGxYkXjmmuuMQYOHGi8+OKLxnfffWccPXq0qB9igeXn7/DC+pk0aZLHHsfWrVuNnj17Gn5+fi7lEB0dbTz//PNGUlKSx3IxM3/+fKNhw4aXzadkyZLGG2+8UejvRQAAAAAAAIU+2SctLc0YP368Ua5cuUL5cCkoKMi44447jF27drmUF5N9PIfJPrgaLFmyJF8XEdydgOjL/vnPf+br/bqwJvukpaUZI0aMcPnCQO6fJk2aGDt37vR4fllZWcajjz7qcj533323kZGR4fF8rhaenuxj9lOzZk1jzJgxxsWLF4v64eaLL0/22b59u9sTEy79+Pn5GQ899JCRnp7u8fwOHTrk8kSSsLAw46effvJ4Lvjb6dOnjQcffNAIDQ0tlNd66dKljeeee844f/58UT/UfPvqq6+MSpUqeew5ePDBBz2WG+dzmPHG+bx69erGP/7xD+O3337zyQkavj7ZJzs723jhhReMwMDAAuVSrVo1Y+XKlQV/Qk2MHz/e5femm2++2UhISCiUfAAAAAAAAAzDMPxViBYvXqymTZvqmWee0dmzZwtljMzMTE2dOlWNGzfW/fffr9jY2EIZB8DVbfLkyZfdJysrS99++23hJ1OMbNiwQe+//36RjR8XF6cbb7xRn332mWkpSFds375dbdu21cKFCz2U3V8efvhhffjhhy7f7+uvv9bQoUML/LhQeA4dOqSXXnpJ9evXv+qOfW+aP3++rr/+eu3YsaNA/RiGoYkTJ6pTp066ePGiZ5LTX+VpO3TooJ07d7p0v9TUVA0YMEA///yzx3LB3z766CPVr19fn376qdLS0gpljAsXLui1115TjRo1NGHCBGVmZhbKOJ4QGxurPn366B//+IdOnjxZ1OnkwfkcRenIkSP66quv1KNHD1WsWFEvvPBCoX1+caUpaAmv9PR03XbbbRo3bpyysrIK1NfRo0fVpUsXj/9N9uqrr+qZZ55x+RhesGCBunfvrvT0dI/mAwAAAAAAcEmhTPbJycnRyy+/rJtuukn79u0rjCFMx/zyyy917bXXemU8AFePpKQkzZgxI1/7TpkypZCzKT6ys7P1wAMPKDs7u0jGT0pKUo8ePbRmzRqP9ZmQkKC+ffvqjz/+8Eh/n376qT7//HOHbUFBQXrkkUe0atUqxcfHKykpSRs3btRTTz2l0NBQh31nzpypV155xSO5oPCcOXNGd911l+6+++4CX6iCo+XLl6tfv35KTEz0WJ+rVq3SrbfequTk5AL3lZOTowEDBuj48eMO26tWraoPP/xQBw4cUFpams6dO6fZs2frpptuynP/u+66S7t27SpwLvhLfHy8+vXrp0cffVTx8fFeGTMxMVGjR4/Wfffd55XxXHXo0CFdf/31mjNnTlGnYorzOYqT2NhYvfLKK6pevbqee+45paSkFHVKxVZ0dLR69Ojh9v2zsrI0aNAgj743ZWRkaPjw4fn+3+1y5s2bpxdffNFhm5+fn+644w4tXrxYFy5cUEpKinbs2KFXXnklz+SnVatWaeTIkR7JBQAAAAAAIDePT/bJysrS0KFDNWbMGOXk5Djdt1SpUhoyZIg++OADLV68WIcOHVJ8fLyysrKUmpqqc+fOafPmzZo+fbpGjx6tNm3ayN/fecoJCQmefDgAoBkzZuT7ovC2bdu0cePGQs6oeHjnnXe0adOmIht/xIgRWrt2rWW8QYMGevfdd7V161YlJiYqPT1dR48e1cyZM9WvXz/5+fmZ3i8lJUX9+/fX6dOnC5RffHy8nn32WYdt5cqV0x9//KEPP/xQbdu2VYkSJRQREaFrrrlGEyZM0MaNG1WtWjWH+7z66qs6evRogXKBd3zzzTf6xz/+UdRpXDFOnDihAQMGKDU11TTu5+en/v3768cff9SxY8eUkZGhxMREbd26Ve+8847q169v2benLr59++23eSYT9OzZU7t27dIjjzyiWrVqKSQkRDExMerdu7cWLFig999/3+Hv2aSkJP3rX/8qcC6QTp8+rXbt2uVrtaSaNWtqxIgRmjx5slatWqWTJ08qMTFRWVlZSkxM1MmTJ7Vq1SpNmTJFDz74oOrWrXvZPovj/yGHDh1S+/bttX//fst9wsLC1Lt3b02YMEGzZs3SqlWrtHnzZi1fvlyzZs3SO++8ozvvvFP16tUrlBw5n6M4SktL0+uvv65GjRpp+fLlRZ1OsTRkyJA8E9tc8cILL2j27NmW8apVq+rVV1/V+vXrFR8fr4yMDJ06dUq//vqr7r77bgUGBpreLzs7W3fffXeBVwTMysrS448/7vC5VkREhObMmaNvv/1WnTt3VqlSpRQWFqZGjRrp+eef144dO9S8eXOHfr766iuPTmYEAAAAAACw8WRNsMzMTOO22267bO3yNm3aGDNnzjTS09NdHuP48ePGhAkTLOvSlyxZMl/9jBkzxvT+Y8aMcTknAFe2G2+88bLva/Y/o0aNKuqUC93BgweN8PDwPI99yJAhls/LkiVLPDb+119/bTlOQECA8frrrxtZWVlO+1i1apXluUSS0b179wLl+Morrzj0FxQUZKxateqy99u5c6cRGRnpcN+HH364QLlcjSZNmlTg12JaWppx9uxZY/v27ca0adOMhx9+2IiJibnse8CXX35ZuA/OTffcc49pvpMmTSrq1Ex17drV8jmuXr36ZY+nrKws4/XXXzcCAgIs+5k2bVqBcqxbt65Df61atTLS0tIue79x48blyWXNmjUFyuVqd/LkSaNevXpOj01/f39j0KBB+XovNrNp0ybjn//8pxEVFWXaf9++fT37oAro/PnzRv369S2fjzJlyhhvvfWWcfHixXz3uXfvXmP8+PFG48aNDUnGgw8+WKAcOZ/jcgpyPs/OzjaSkpKMc+fOGTt27DAWLlxofPzxx8bDDz9sNG/e3PDz88vX3/aBgYHGe++9550HXMx0797d8nkpyHlr2bJlTp//xx9/3EhJSXHax65du4xmzZpZ9tGkSRMjIyPD7Ry//fbbPH3OnDnzsvc7ffq0UalSJYf73XLLLW7nAQAAAAAAYMWjk31Gjhzp9EOyChUqGNOnT/fIWJmZmcZXX31lVKxY0WEMJvsA8KSDBw9afhDdtm1b0+0xMTEF+mDZF5h98N+2bVtj8eLFbl+Qya+EhASjQoUKlhdyp06dmu++Tpw4YdSqVcsy5x9//NHtPFu2bOnQ1yOPPJLv++a+sFixYkUjJyfH7VyuRp6Y7GMmPT3deO2114zQ0FDL/suWLWskJiZ67sF4iC9N9vn+++8tn99atWoZJ06cyHdf06ZNM/z9/U37qlSpktu/q23btuXpb926dfm6b1ZWVp5JGKNHj3YrDxhGSkqK0apVK6f/h7Rs2dLYtGmTR8a7cOGC8Z///CfP+0Bxm+zTp08fy+ejd+/exrlz5wrU//z5840pU6a4fX/O58iPwjqfG4ZhnD171vjoo4+Ma6+91un7x6Wf1157zTMPykccO3bM8vzZqFEjt/vNysoymjZtavk8v/766/nuKyEhwbjuuuss+3r77bfdznPAgAEOffXs2TPf9809USgoKMhISEhwOxcAAAAAAAAzHivj9dVXX+njjz+2jLdr106bN2/W7bff7pHxAgMDde+992r37t169NFHPdInAOQ2ZcoUGYaRZ3v58uX15Zdfmt4nNjZWv/zyS2GnVmSmTp2q+fPnO2wLDAzUxIkTLUtpeNI777xjWZLj6aef1rBhw/LdV6VKlfTTTz8pJCTENP7ss8+a/v4vJz4+Pk85twceeCDf9x8xYoTDc3nq1Cnt2rXL5TzgecHBwXr22Wc1Z84cy9IV586d0/fff+/lzK4cOTk5ev75501jISEh+umnn1SpUqV89zd06FA9/fTTprGTJ0/q/fffdyvPJUuWONxu0aKFWrVqla/7BgQEaMSIEQ7bFi9e7FYekB588EGtX7/eMv7QQw9p9erVatGihUfGK1WqlMaNG6ft27erS5cuHunT0z777DPL8jgPPPCAfv75Z8XExBRojJtvvll333232/fnfI6iVrZsWY0cOVIbNmzQ3Llz1bRpU6f7P/fcc/r000+9lF3R+/rrry1Ls997771u9zt16lRt27bNNDZkyBA988wz+e4rKipKP//8s8qUKWMaHzdunJKSktzKM/d53pVjf8iQIYqOjrbdzszM1IoVK9zKAwAAAAAAwIpHJvscPXpUTzzxhGW8S5cuWrRokcqXL++J4RyUKFFCH3zwgWbPnq3SpUt7vH8AVy/DMPT111+bxoYMGaJGjRqpTZs2pvHJkycXYmZF58KFC/rnP/+ZZ/tjjz2m5s2bF/r4qamp+vDDD01jtWrV0ksvveRyn82aNdOTTz5pGtuzZ49mzZrlcp8nT550uKgYFhamZs2a5fv+ZcuWVd26dR22HTt2zOU8UHi6deumZ5991jLuzusGf/nxxx+1f/9+09i///1vl46lS8aOHatatWqZxt5//32lp6e73Ofx48cdbrdt29al+19//fUOtznG3fPTTz/pm2++sYw/99xz+uSTTxQYGOjxsWvXrq3ff/9d48aNU0BAgMf7d9f58+ctL5b36tVLEydOlL+/x77z4RbO5yhubrnlFq1fv16jR492ut/jjz+uzZs3eyepIjZlyhTT7YGBgbrrrrvc7ve///2v6fbo6Gh98MEHLvdXqVIlvf7666axuLg4ffHFFy73mZqaqgsXLjhsc+U8HxAQoNatWzts49gHAAAAAACe5pFPeUeOHKnExETTWKNGjTRr1izLb797Su/evbVq1SrLCzkA4Kply5bp0KFDprFLH3BbfaN93rx5OnfuXKHlVlSefPLJPI+ratWqbl2Uc8fMmTMtn9cXX3xRwcHBbvU7evRoRUVFmcY++eQTl/uLi4tzuF2qVCmXVz3K/Q3l3BccUPSefPJJy79vVq9e7eVsrhwTJ0403V6iRAnLFXouJyQkRC+88IJp7MyZM/rxxx9d7jP3ce7qpHOO8YJLSkrSyJEjLeP33HOPXn311ULNwd/fX//5z3/0448/Kjw8vFDHyq+XX345z+tT+mtVwsmTJxf5RB+J8zmKp+DgYI0fP16TJk2yPE7S09N15513Kjs728vZedcff/yhvXv3msZuueUWt7/ItXLlSm3fvt009sQTT7i94th9992nmjVrmsas/q5wxuw9lPM8AAAAAAAobgr8Se/KlSv166+/msZCQ0M1ffp0RUZGFnSYfKlXr54WLVrklbEAXPmsVudp2LChWrZsKUkaPHiwgoKC8uyTmZmpb7/9tjDT87olS5aYPifvvfee197np06daro9JiZGQ4cOdbvfEiVKWE7cWrRokc6cOeNyf/bi4+NdzunixYsOt0uWLOlyHyhcERER6tixo2ns3LlzbpeNuJqdPHkyT9mMS4YPH57n2HLF0KFDLct8TJs2zeX+Cnqcc4wX3LvvvmtZBqpBgwZOSwx7Wp8+ffTRRx95bTwrsbGx+vzzz01j48aNszwGvI3zOYqz4cOH6+2337aM79ixQ5999pkXM/K+SZMmWcYKWsLLTGBgoB5++GG3+/X397ec/Llnzx5t2LDBpf7M/t7gPA8AAAAAAIqbAk/2GTNmjGXsqaeeUqNGjQo6hEtKlSpVaH2vXr1azz33nG666SZVrVpVERERCgkJUeXKlXXNNddo0KBBmjRpkuVFh8JgGIZWrlypl19+Wb169VLDhg1VqlQpBQcHKyQkRKVLl1aTJk1022236fXXX9e6deu8llthOXLkiL766is98MAD6tChg6pVq6YSJUooMDBQ4eHhqlChgho2bKjbbrtNzz//vH788Ue3PpjPr/T0dP3222967rnn1KNHD9WvX9/hd1CmTBk1b95cAwcO1Lvvvmv5DUlPSk1N1axZs/TCCy/YXheVKlVSZGSkAgMDFRUVpfLly6tOnTrq3Lmzhg8frnHjxmn+/Pl5PpS8WiUnJ2vmzJmmsTvvvNPWLlOmjG699VbT/ayWvvdFaWlpevDBB/Ns79Wrl/r16+eVHBISErRw4ULT2O233+72KgCX3HHHHabbs7OzXS79kfvbzsnJydq5c2e+7x8fH699+/Y5bKtUqZJLOcA7ateubRkrzHPPlWrWrFnKyckxjQ0bNqxAfYeEhGjAgAGmsfnz57s8OSv3cb527VqX7p97f45x1yQmJuqtt96yjH/00UdeX2mnMP8Pya+JEycqNTU1z/YqVaoU6AK9J3E+51j3BY8//rjTv3FffvllZWZmejEj70lJSdH06dNNYzExMerVq5db/RqGoZ9++sk01q1bN5UrV86tfi8ZOnSo5cpbVv/XWYmMjFRERITDNlfO84ZhaP369Q7bOPYBAAAAAIDHGQWwe/duQ5LpT5kyZYykpKSCdF+oxowZY5r3mDFj8uz7008/Gc2bN7d8rLl//P39jfvvv984ffp0oeWfmJhojB8/3qhatWq+87r0U6dOHeODDz4wUlNTPZLLpEmTTMe55557PNK/YRhGenq6MWnSJOO6665z+fFKMgIDA40bbrjB+PTTT43ExESP5HTgwAHjoYceMqKjo13Op23btsbPP//skTzs7dq1y7jvvvuMEiVKuPU8STL8/PyMFi1aGK+99ppx4MABj+foKyZPnmz5/Bw+fNhh3xkzZlg+n5s2bSqaB+Bhzz33XJ7HFh4enue5WLJkieVzsWTJkgLlMGvWLMu+f/311wL1bRiGkZOTY8TExJj2f/vtt7vcX926dR36+Pe//53v+7733nsO9y1VqpSRlZXlcg5XM6tzkydei/bMjo1LP2fPnvXYOJ5wzz33mOY5adKkok7Npl+/fqY5litXzsjJySlw/3PmzLH8ff3yyy8u9fXHH3/kOT9s3bo13/dv2bKlw/0fe+wxVx/OVW3ixImWv8vu3bsXdXpFpnbt2qbPidn/OEWF8znnc1d463xu5vTp00ZERITl+NOmTSvU8YvK119/bfmYn3jiCbf73bJli2W/H330kUdyz31uvfTTqlUrl/u66aab3H7/yP0+5+/vb5w7d87lHAAAAAAAAJwp0Mo+X375pWXs4YcfzvNNKF8THx+vAQMGqF+/ftqyZUu+75eTk6MvvvhCdevW1bx58zye14wZM1SnTh0988wzOnbsmMv3379/v0aNGqWGDRvq999/93h+nvbTTz+pfv36uvfee91emSgrK0srV67Ugw8+qEqVKunPP/90O5+kpCQ98cQTqlevniZOnOjWSjirV6/WbbfdpptuuklHjhxxO5dL0tPT9Z///EfNmzfXl19+qYSEBLf7MgxDmzdv1nPPPWcrVXU1sirh1aFDB1WvXt1hW69evRQdHe1SP75k27Zt+u9//5tn+4svvpjnuShMS5cuNd0eEBBgWUrJFX5+furcubNLYzuT+1vPH374Yb7OJUePHtXLL7+cp6+AgACXc0Dhc3YOsHpfgLVly5aZbu/UqZPlt/VdceONN1oeS1blw6y0adNGMTExttuGYeiRRx5RVlbWZe/78ccf5ykp0rdvX5fGv9o5+z/kqaee8mImxcf69et14MAB09jAgQO9nI01zuecz31F+fLl9cgjj1jGr9RSXoVVwsvZ8Wd1zLqqS5cupts3btzo8v/IuY/9mTNn6rfffrvs/eLj4/Xkk086bGvfvr3D3wwAAAAAAACeUKDJPs6WQv7HP/5RkK6L3LFjx9SuXTv9+OOPbveRmJio2267zXKpaldlZ2fr8ccf18CBA3XmzJkC93f48GF1795dL730kgzD8ECGnpWSkqJ77rlH/fv31+HDhz3Wb2Jios6ePevWfbdv365rrrlG7733nrKzswucy8KFC9WqVSstX77c7T5SU1PVp08fvfrqq8rIyChwTvbceV0cPnxYfn5+pj+dOnXyaH6F5fDhw5YXnO+6664820JCQjRo0CDT/adNm+bRJf69/fzm5ORoxIgReR5DkyZN9K9//cvj4zmT+8L4JQ0bNlRkZKRHxrjuuutMt8fGxuro0aMu9fX44487lCJJS0tTz549nV4gPHz4sHr06KHz58/btgUEBOjZZ591aWx4j9WF9apVqyooKMitPseOHWt5nF8JEwitHDp0SBcuXDCNtW7d2iNjREVFqX79+qaxjRs3utRXQEBAnvfBFStWaNiwYUpLS7O837fffqsnnnjCYVu7du0sL1Air2PHjllOAK9evbq6du3q5YzcY3Wc16hRw63+fvnlF9PtVapUUePGjQuQqWdxPocvefTRR+Xvb/6xycqVKxUXF+dyn54+9j3p8OHDlpNyrr32WjVr1sztvq2O/aioKDVo0MDtfu1ZHfs5OTnavHmzS33de++9KlOmjO22YRgaMmSIFi9ebHmf8+fPq2fPntq/f7/D9hdeeMGlsQEAAAAAAPLD7ck+e/bs0cGDB01jrVq1Us2aNd1OqqjFxsbq5ptv1s6dOwvcV0ZGhoYNG6Z9+/YVqJ+cnBzdfffdev/99wuckz3DMDR27Ng8F52KWlxcnDp37qyvv/66qFOxWblypdq1a5fng7uCio2N1S233GI5ueRyBg4cqAULFng0p6vdlClTTCc6hYaGWn4z3mwSkCSdO3dOc+fO9Wh+3vTxxx9r9erVDtv8/Pz0ySefuD2RwV1WF9VatGjhsTGuueYay9imTZtc6qt69ep6/PHHHbadOHFCbdq00RNPPKF169YpKSlJqamp2rZtm1588UU1a9ZMu3btcrjPpZXYUPykpKRYTta0utgEa84uwnnjOHf1IqAkPfbYY3n+5p0+fboaN26siRMn6vDhw8rIyNCFCxf022+/qW/fvrrrrrscJlAGBwfr3XffdXnsq5mz82pxWsHG26xWp7r++uu9nIlznM/hS6pWrWq56kxWVpbmz5/v5YwKl9X/QVLBVvWRrM+zzZs398jqfZJnj/2oqKg8q3PFx8frpptu0r333qvly5crPj5e6enp2rt3r/773/+qYcOG+uOPPxzuc2lFXwAAAAAAAE8LdPeOzkod+PIHGTk5ORoyZIh2797tsD08PFydO3dW9+7dVbNmTZUvX15ZWVk6e/as/vjjD82cOdNy8lNaWppGjBjhcnkIe08//bSmTZvmdJ+GDRtqyJAhatSokSpXrizDMHT8+HFt27ZN06ZNs8xPkt5//31VqlRJo0ePdjtHT0lJSdFNN91k+c2/S0qXLq2bb75ZN954oypWrKhy5copODhY58+f1/nz57VlyxatXbtWa9euVXJycoFy2rhxo2655RYlJSVZ7lO2bFl16dJFN954o6pVq6YyZcooICBAZ86c0e7duzV37lwtX77cdEWglJQU9evXT+vXr1etWrXyndfUqVP166+/WsZLliypbt26qW3btqpTp45iYmIUERGh7OxsxcfHKz4+Xvv379fWrVu1efNm7dixI99jX6kMw7CcZNarVy+VLFnSNNa+fXvVrFlThw4dyhObPHmyT5ZnOXHihJ577rk82++9917dcMMNXs3l1KlTio+PN43VrVvXY+PUqVPHMrZnzx6X+3vttde0fv16h/f/9PR0vffee3rvvfcue/8uXbqYllBD8fDOO+8oNTXVNNa/f38vZ+M5KSkpio2NVWpqqsLCwhQdHa0SJUoU+ri5//ay543jPC4uTmfPnlW5cuXy3VdERIR+/vlntWvXzuFvjYMHD+rhhx/OVx+ffPIJk8NcdKX+H1IQmZmZWrNmjWksP2VZ4+LiFBcXp8zMTIWHh6t8+fIOq9l4Cudz+KJbb71VixYtMo398ccfGjJkiJczKhyGYWjKlCmmsZCQEA0bNqxAfe/du9c05sljv0aNGgoMDDQtqenOsT9y5EitXr1a33zzjW1bTk6OJk+enK/VFhs3blysvsAEAAAAAACuLG5P9nE2EaNjx47udlvkvvzyS508edJ2OzAwUA899JDGjBljWWO9b9++eu211/T+++9r9OjRph8sLV26VHPmzFHv3r1dzmn27Nl66623LOM1a9bU559/blmyYNCgQRo3bpxmzZqlBx980LIE2PPPP6/27dt7/SJ+bnfffbfT11eNGjU0fvx43X777QoICLDcb+jQoZL+umg5Z84cTZs2Tb/88otycnJcyic2Nla33Xab5USfatWq6fnnn9c999yjkJAQ03169eqlf//739q1a5eefPJJzZs3L88+cXFxGjp0qFatWmW5VLw9wzAsSwGEhYXp1Vdf1YMPPqjw8PDL9nXJ8ePHNXv2bE2fPt1y+fYr3fLlyy0nxlmt3iP9tdrNXXfdlefbn5L066+/KjY21vI9pLh69NFHlZiY6LAtJiZGEyZM8Houzkr51a5d22PjVK1a1fICgTvlBAMDA/Xzzz9ryJAhpse9M3369NHUqVMVGOj2qRqFaOnSpXr11VdNY+XLl9eAAQO8nJH71q5dqz179mjlypXatGmT6QTZkiVLqkGDBmrVqpW6deumbt26eazcziVWx1hwcLCqVKnisXGcTao9fPiwS5N9JKlZs2ZasGCB+vXr51KZ0KCgIH3yySc+X/q2KFj9nRgQEKB27dp5OZviYd++fUpPTzeNmU18SUpK0nfffadZs2ZpzZo1OnfunEPcz89PVapUUevWrdWtWzf169dP5cuXL3CenM/hi5yVWXS1BGRxtmzZMtMvLkh/vY5Lly7tdt+nT5+2LHHpyWM/MDBQVatWNX0c7pYG/+KLLxQYGKhJkya5dL/rr79eP/30k6KiotwaFwAAAAAA4HLcLuPlrNRBQeq4FzX7iT5RUVH67bff9MEHH1z2In1gYKD+9a9/6bvvvrOcqPHVV1+5nE9SUpIeeeQRy3iPHj20detWy4k+9vr27avt27erdevWpvHs7Gw9+OCDDqUlvG3y5MmaOXOmZfyRRx7R7t27NXjwYKcTfeyFh4dr8ODBmjVrlnbu3Kk777zTpQ/bH3nkER07dsw01rdvX23ZskUjRoywnOhjr2HDhpo7d67+85//mMbXrl2rTz75JF95rVmzxjSv0NBQLVu2TP/85z9dmugjSVWqVNHIkSO1ZMkSbdmyRffcc49L978SWH1Ds0yZMrrllluc3vfOO+803Z6ZmampU6cWNDWv+vHHH/Xzzz/n2T5hwgSVKVPG6/kcPXrUMlaxYkWPjRMQEGB5od/dCwQlSpTQnDlzNH78eMuVoeyVLl1ab7/9tn766SePT6ZAwWVmZurNN99Uz549LVf1ef/99xUaGurlzNz3ySefaPz48Vq5cqXlSnjx8fFas2aNPvroI/Xr108VKlTQiBEjClym1J7VcV6+fPl8TYLNL2fvGe4e5+3atdO6devyvaJTmzZttHz5ct13331ujXc1S0xM1IEDB0xjtWrVumrfN52VH65Ro4atnZ6ernHjxqlq1ap64IEH9Msvv+SZ6CP9Nan82LFjmjlzph5++GFVrVpVd911l+Vzn1+cz+GLGjdubFm+duvWrV7OpvA4m8xS0BJe3jr2nfXn7rEfHBysr776Sp9//nm+cg0PD9fzzz+vJUuWeGSSJAAAAAAAgBW3r5zs37/fdHuJEiVUqVIltxMqLoKCgvT777/naxKNvQEDBlheuLm0uocr3nvvPR0/ftw01qZNG82cOdOlD49jYmL066+/ql69eqbxnTt36ssvv3QpR09JSEjQv//9b8v4mDFj9OGHH+ZrUo2V+vXr65tvvlGvXr3ytf/vv/+uH374wTQ2ePBg/fTTT4qOjnY5j3Hjxumpp54yjb322muW38y299tvv5luf+aZZzxSDqRZs2b5KktwJUlOTtaMGTNMY4MHD7b8kP+SunXrqm3btqYxqyXxi6OEhASNGjUqz/YOHTpo+PDh3k9IMr0QeYmnP0SvUKGCyzlcTkBAgEaPHq1Dhw7po48+Uq9evVSjRg2Fh4crPDxcNWvWVJ8+ffTpp5/q4MGD+uc//+nRyQ1wT0ZGhs6fP6+dO3fq+++/16OPPqoqVaroqaeeUkpKiul9nnnmGQ0aNMjLmXpfcnKyPv/8czVq1EiPPfZYgctlStbHmLeOcWc55Ee1atU0c+ZMbdq0Sc8995xat26tChUqKCgoSGXKlFGTJk00cuRIzZ8/X6tXr7Y8X8C5gwcPyjAM01iDBg28nE3x4axc76UvLezatUstWrTQiy++qIsXL7rUf2Zmpr799ls1btxY48ePt/wdXA7nc/iioKAgy/+fk5KSdOHCBS9n5HlJSUmWX7qpVKmSbr755gL17+vHviTdf//92r9/vyZNmqTbb79dderUUVRUlEJDQ1WtWjXddNNNeuedd3TgwAG98sorBfrcAgAAAAAAID/cWks8JSXF8gNiT5ZZKEqvvPKK2rRp4/Z9J02alGfZ+MzMTK1YsUL9+vXLVz9paWl69913TWPh4eGaPn26yyu3SH994P/DDz/o2muvNS1pNWHCBI0YMcLrH0y/8847On/+vGls6NChGjt2rFfzkaQXXnjBdHvLli01ZcoU+fn5ud33a6+9pqVLl2rdunUO20+ePKnvv/9ed999t9P7HzlyxHT7kCFD3M7pajdjxgzLcm3OSnjl3m/16tV5tm/atEnbtm1T06ZNC5SjN4wePdphlTPpr4scEydOLNBrviCs3hsk5evb9a6w6s8TF3JKlSqlkSNHauTIkQXuC+7r3Lmzx/sMDw/XG2+8oUcffdTjfRdnWVlZ+uCDDzRv3jzNmjVLjRo1crsvq+PcW8e45JnjvEWLFmrRooVlmTcUzIkTJyxjVatW9WImxcvp06ctY6VLl9aff/6pHj165CnP6ar09HQ9++yzWrt2rf73v/+5fDGb8zl8VdWqVbVjxw7T2PHjxwtU4qo4+OGHHywn7t599935XlXXSnE49l2d5GgmPDxcw4cPL7IvQAAAAAAAANhzazbHqVOnLGPOvi3tK2rVquV0hZnLKVeunG666SbT2KZNm/Ldz+zZsy1XAnrmmWcKdEGjefPmGjFihGns0KFDWrJkidt9uyMzM1MTJ040jVWsWFEffvihV/ORpNWrV2vNmjWmsffff7/A39QLDAzUyy+/bBrLzyowZ86cMd1uX6oBrrEq4VWnTp18r8DgbAUgZ0vjFxd//vmnPv300zzbn3zyyQJdxC+o+Ph4y1hUVJRHx7LqzxMXCHDlqVKlikaPHq3du3dfdRN97O3fv1/XX3+9Vq1a5XYfVse5t45xiePcF1zp/4e4y9lkn4MHD+qWW24p8EQfez/99JP69++v7Oxsl+7H+Ry+yln5Jqv/y3yJs/9TPDGxpTgc+1lZWR59HwQAAAAAAChqbk32sVr5QpJbJY2Km1GjRhV4VZvu3bubbndlso9V+ajIyEg9+eSTbuVlb8yYMZbf0Pvuu+8K3L8rfvvtN8uLFM8//3yRfFPS6gPPW2+9Ve3atfPIGD169FD9+vXzbF++fPllP4i0WmGlqD/ArFGjhgzDMP1ZunRpkebmzOHDh7Vs2TLT2J133pnvfsqUKaNbb73VNDZ16tQ8K365qjCf38zMTI0YMSJPaY4aNWroxRdfLFDfBeWstF1oaKhHx7LqLz/l9XB1ue222/T111/rlVde8eiKImPHjrU8zj35TfISJUqof//+eu211zRnzhzt2bNHZ86cUVpampKTk3X06FGtX79eH3/8sYYOHXrZi3EJCQm69dZbLVc+uByrY8xbx7izHFB8XEn/h1gd54cPH3a5L2el9IYOHaqEhIQ82xs3bqxx48Zp7dq1OnnypNLT03X69Glt3LhREyZMuGxZ2Llz5+qZZ55xKU/O5/BVzlafsSrtacWTx74n7N+/XytXrjSNtWvXzvT/VVcVh2P/cnkAAAAAAAD4GrdmtKSmplrGroS65IMHDy5wH1alevL7AV5OTo4WLVpkGuvXr59b5btyq1Chgrp27WoaW7hwYYH7d8WcOXNMt0dEROS7fJInGYah2bNnm8aGDh3q0bHMVoHKysqy/MD1kjJlyphu//XXXz2S19Xm66+/zjPJ5RJXJvtI1iW/zp49q3nz5rmcm7eMHz/e9CL9hx9+qLCwsCLI6G8ZGRmWscBAtypSWrJamclZDrg6/fzzz+rSpYvq1Kmjjz/+2CcuIIWFhWn48OFatGiRYmNjNXPmTD377LPq1auX6tWrp3LlyikkJETh4eGqWrWqWrZsqYcffljTpk3T0aNH9dprrzmdUHHx4kXdfvvtLl/4lKyPMW8d485yQPFxpf8f4q60tDTL2K5duxxulyhRQp9++qm2bt2q//znP7ruuutUsWJFBQcHq3z58rrmmmv01FNP2Up1lStXzrLvt956SytWrMh3npzP4aucTSBxdvz5AqvVTSXp3nvv9cgYxeHYv1weAAAAAAAAvsatyT7OPiBx9sGKL6hVq5bTJbrzq06dOqbbzb5Va2b79u2WS8x7YjLSJVYTVw4fPqwTJ054bJzLsZrYdPvtt6tEiRJey+OSbdu2ma40FBAQoD59+nh0rBtuuMF0++VWgWrSpInp9ueee05HjhwpcF5XE8Mw9PXXX5vG2rVrp9q1a7vUX69evVSqVCnTmLMP04vS3r179eqrr+bZ3r9/f/Xs2bMIMnLkrEyI1Qpl7rLqr6CrMuHKdeTIET3yyCNq06aNdu/eXdTpWHrggQd04sQJTZo0SV26dHH5b7bo6Gg9++yz2rhxo1q1amW53+7du/XKK6+4nJ/Vce6tY1ziOPcFV/L/IQWRmZmZr/3KlCmjxYsXa8SIEflayXTIkCFauXKl5eplhmHoX//6V77z5HwOX3WlTiDJycmx/D8oPDxcgwYN8sg4xeHYlzj+AQAAAADAlcWtyT7OvjXryx90SdI111zjkX6sJqjkd7LPtm3bLGOtW7d2Kyczbdu2dSsHT7p48aIOHjxoGrOaCFPY1q9fb7q9Ro0aHp98VLlyZdPtl7tg3K1bN9PtJ0+e1HXXXafPPvvM579l6i0rVqzQgQMHTGOuruoj/fUeafXB+C+//KLz58+73Gdhe/DBB/OsShIZGan33nuviDJy5Owbv57+0N6qv6v5IvKV5quvvtK2bdvy9bN69WrNnz9fkyZN0qhRo9SiRQvLfrds2aKWLVtq+fLl3nswLmjfvr3lRERX1KxZUytXrlT79u0t93n77bcty3NasTrOvXWMSxznvuBK/j+kIPJzsdzPz08zZ85Uy5YtXeq7bt26mjt3roKDg03j69ev14IFC/LVF+dz+CpvlqHypkWLFunYsWOmsQEDBnjsf9/icOxLHP8AAAAAAODK4tZkH2flXHyhhIUzMTExHuknKirKdHt+J/vs3bvXdHvlypVVtmxZt/PKrV69epYlwfbs2eOxcZzZuXOnZcyTE5tcYTXRqUGDBh4fy6oc1+VWVrr22mstJ2udO3dODz74oKpUqaKHHnpI8+bNc6ukytXCarWd4OBgt1fSsirllZGRoWnTprnVZ2H58ssvtXTp0jzbX375ZVWpUsX7CZlw9sG8ty4QWF3khO+pWbOmmjRpkq+fNm3a6Oabb9bw4cP1/vvva9OmTdqwYYN69epl2ndKSop69ep12dXZfF1ISIh+/vln1ahRwzSenp6uDz/80KU+rY5zb14E5Dgv/q7k/0MKIj+v3UcffVQ33nijW/03adJEL7zwgmX8888/z1c/nM/hq5x9iaKoy90WxKRJkyxjnirhJRWPY1/i+AcAAAAAAFcWtyb7WE1kkaQLFy64nUxx4IlvvEvW367NycnJ1/1Pnjxpur1hw4Zu52TG39/fcgKLVQ6eZvVNQn9/fzVu3NgrOeRmVQbr119/lZ+fn0d/GjVqZDpWflZ/eeONN5x+k/v8+fP69NNPdeuttyo6Olrt27fXM888o9mzZ/v8seopKSkpmjFjhmnslltuUenSpd3qt3379qpVq5ZpbMqUKW71WRjOnDmjp556Ks/2Fi1a6LHHHiuCjMw5+8Z0amqqR8eymhjny9/ahmdde+21mjNnjt5//33TeGJiou68884rfpWRmJgY/fe//7WMuzqx0eoY89Yx7iwHFB9X8v8hBXG5125AQIBGjx5doDEef/xxRUZGmsZ+++23fL3ncT6Hr3L2v1lERIQXM/Gc+Ph4/fzzz6axGjVqqFOnTh4bqzgc+5fLAwAAAAAAwNe4NdmnUqVKljFXSzYUN85KA3jTuXPnTLdHR0d7fCyrPq1y8LQzZ86Ybi9RokS+ShIUBm9NdHImPx96duzYUe+8806++svMzNSff/6pN954Q3379lXZsmV17bXX6qmnntKKFStkGEZBU/ZJM2bMUGJiomnManWe/LIqAbZhwwZt3769QH17yuOPP664uDiHbf7+/po4cWKRHX9mnE3EtPr9ucuqP09NBsWVY9SoUXr++edNYzt37tRbb73l5Yy8b8CAAZalzQ4dOqRdu3bluy+rY8xbx7izHFB8XMn/hxTE5f5H6Nmzp2Xp2PyKiorSsGHDTGNJSUmWZXDtcT6Hrzp16pRlzNn7UnH23XffWf7POXz4cPn5+XlsrOJw7AcFBfnsxCwAAAAAAAAzbk32CQkJsSx3dezYsat20oAnWX3oVqJECY+PZdWnp79hZ8Xqm3eFMbEpvzz9gaM78rsixKhRo/TDDz84/aa7mZycHG3atElvvvmmOnbsqFq1amns2LF5Jn5c6axKeEVHR1uW6ckvq8k+zsb1pnnz5un777/Ps33EiBFq06ZNEWRkzdkKSxcvXvToWFb9ubvKE65sL7zwguUF9A8++ECZmZlezsi7/Pz8NHDgQMv4qlWr8t2X1THmrWPcWQ4oPpyVl7RamfFqcLlSxF27dvXIOF26dLGMbdiw4bL353wOX3X48GHLWHEpe+sqqxJefn5+uueeezw6Fsc+AAAAAACA57k12UeS6tWrZ7o9JSXF6QdhyB+ri4Ph4eEeH8vq223eKj9iNY5VmQBvSE9PL7KxL3Fl0tzAgQO1b98+Pfzww26vTnX48GG99NJLqlmzpsaPH5/vknO+7MiRI1q6dKlprEOHDtq3b5+2b9/u9k96erplmbypU6cqKyurEB+dcykpKXr44YfzbC9fvrxef/31IsjIuXLlylnGPL2Sg1V/znLA1SskJEQjR440jZ06dUpz5871ckbe1717d8vY7t27892P1THmrWPcWQ4oPmrVqmW58tzOnTu9nE3xcbnXrqcm8Trr58CBA5e9P+dz+KLk5GQdOnTINFa2bFmfXC1m9+7dWrNmjWmsc+fOqlGjhkfH49gHAAAAAADwvEB373jNNdfozz//NI1t3rxZNWvWdDsp/LXEtBln9efdlZycbLo9ODjY42OZsZqckpSU5JXxzfj7uz0PrsiUL19eH3/8sV555RVNmzZNP/zwg1avXu3yqhLx8fF69tlntWDBAv3www+X/aa4L5syZYrlpKo5c+Zozpw5hTb26dOn9dtvvxV49SB37d2713QFhBEjRuj48eM6fvy4W/1aXQi5FLN6PdWsWdPphRJnFxw8WXYvMzPTsoShpy964MrhbKWLpUuXqm/fvl7MxvsaNWpkGTt69Gi++7E6xs6ePausrCwFBrr9Z6sDZ+8ZHOfFX1hYmBo0aKAdO3bkiR07dkwXLly4KldvuNxr11Ov7WrVqsnPz8/076cTJ05c9v6cz+GLNm7caPk/wzXXXOPlbDzDalUfSbr33ns9Pp63jn1n/XHsAwAAAACAK43bV01atmxpGVu6dKn69evnbtfQXxcyzCQkJHh8LKs+rXLwNKvVijy9nLcrrHK65ZZbNGHCBK/k4O5kq9KlS+vRRx/Vo48+quTkZC1fvlzLli3TihUrtH79+nyv2LRkyRL16dNHS5YscXu1oOLMMAx9/fXXRZrDlClTimyyj5Vx48Zp3LhxhdL3P/7xD8vYkiVL1KlTJ8u4swmk+VlJIL8OHz5suaoVk1hh5dprr7WMrV692ouZFI2wsDBFRESYTh525e8Wq2MsOztbR44cUe3atd3O0Z6z9wyOc9/QsmVL08k+hmFo2bJlV+X/IZd77ZYqVcoj4/j7+6tEiRKKj4/PE8vPRH3O5/BFCxcutIw5+xuguMrOztY333xjGitRooT69+/v8TFjYmIUGRlp+j7hyWM/PT3dcuIhxz4AAAAAALjSuD3Z56abbrKMzZ8/391u8f/Kli1rur0wJsBY9WmVg6dZLaedkJCg7Oxsy1INhalMmTKm23NyctSkSRMvZ+O+iIgI3XLLLbrlllskSampqVq9erWWLFmiOXPmaPPmzU7vv2rVKo0ZM0bjx4/3QrbetWLFCo9+sOyOOXPmXLUrELiqTJkyKlu2rOm39Pfs2eOxcfbu3WsZa9iwocfGwZUlODhYUVFRSkxMzBPLz0oXV4KSJUuaTvZxpSSos2Nsz549HpvsY3Wcly9f3mMTIlC4brrpJssJu7/99ttVOdmnfv368vf3N53gEhgY6NEVOyMjI00n++TneOd8Dl80e/Zsy5izyerF1fz583Xq1CnT2ODBgwuldLj017G3bt26PNs9eezv37/fcqIfxz4AAAAAALjSuF2rqEqVKpaTHvbs2aMtW7a4nRSkSpUqmW7ftWuXR8fJycmx/HDNKgdPq1atmun2nJwc7dy50ys55GaV04ULF7yciWeFhYWpc+fOevnll7Vp0yYdOHBATz/9tEqUKGF5nw8++EBnz571YpbeMXny5KJOQenp6frf//5X1Gn4DKsyCZs2bfLYGBs3bnR5fECS5fuor5838svqcYaGhua7D2fHmDeOc45x39G9e3fLkqs//vijsrKyvJxR0YuIiFCDBg1MY1lZWUpNTfXYWFYrduX3eOd8Dl+ydetWyy9IREZG+uRkH2+X8LrE6tjbvn27srOzPTIGxz4AAAAAALiauD3ZR/rrW19WPv3004J0fdWrV6+e6fYTJ04oNjbWY+Ps27fP9Jv40l/fEPaGRo0ayc/PzzS2Zs0ar+SQm9W3/g4cOCDDMLycTeGpVauW3njjDe3evVvt27c33SclJUVz5szxcmaFKyUlRTNmzCjqNCQVj0lHvqJVq1am2w8cOOCx90Wr95wqVaqofPnyHhkDVyazVS6kvyb1XemSkpKUlpZmGitZsmS++6lYsaLlRGNP/T1w7tw5HTp0yDRm9R6D4qds2bLq3LmzaSw2NlY//vijlzMqHtq0aWMZ89TqoFlZWaarmElSdHR0vvrgfA5f8uabb1rGbr31Vp8rd3zhwgXLlYrq16+v66+/vtDGtjr2U1NTPfZlMatjPzg4WM2aNfPIGAAAAAAAAMVFgSb73HvvvZYlliZPnnxFrgbiLc4+iFq7dq3HxnF28axp06YeG8eZkiVLWpbmWLlypVdyyK1169am2y9cuKBt27Z5OZvCV7FiRf3yyy+WFz8WL17s5YwK18yZMy0vVM2cOVOGYXj859133zUdb/369UW2gpWv6dKli+l2wzC0ZMmSAveflZWl5cuXm8a6du1a4P5x5UpLS1NSUpJpLDIy0svZeN+GDRssYzVq1HCpL6vjfNmyZR5ZrWXx4sWWk3Y5zn3L/fffbxmbMGGCFzMpPpy9hj1VJsdZeSyrlTFz43wOX7Fjxw5NmzbNMv7www97MRvPmDZtmmXJvcJc1UeyPvYladGiRR4Zw6qf66+/XmFhYR4ZAwAAAAAAoLgo0GSfypUrq1+/fqax1NRUPffccwXp/qrWuHFjlSpVyjT2ww8/eGyc7777znR7jRo1VLlyZY+NczndunUz3T5jxgzLUgGFqW3btoqIiDCNLVy40MvZeEd0dLTlhbMjR454OZvCZbWaTsmSJdWzZ89CGXPIkCFOJ0d6W4sWLQplUpOzi3RLliyxvF9+SiC0b9/e8kP6n3/+2c1n4m+LFi2ynAR20003Fbh/XLnWrVtnGatSpYoXMykaCxYssIw1atTIpb6sjrWEhASPTAKweq+IiIhQu3btCtw/vKdfv36Wf6tu2LBB3377rZczKno33XSTZXmz1atXe2QMZ18UyO/xzvkcviA7O1v/+Mc/LMtLNW3a9Ioq4RUQEKC77rqrUMeuXbu2atasaRrzxLG/Z88e7d692zTGsQ8AAAAAAK5EBZrsI0ljx461/FB50qRJXl8RxNm3TX2Jv7+/5TfffvzxR6WmphZ4jLNnz+r33383jXn7w7DevXubbk9OTtY333zj1VwkKTQ0VD169DCNffTRR5Yf+vo6q6XVPVk6rqgdPXrU8oLxgAEDCm0p/vLly1se099+++0V+5rypNDQUMv3itmzZ1te2MsvqwvDzsYFJOeTQBs3buzFTLwvMzNT//vf/yzjrk6g6dOnj+X7cEEnbyQkJFiWpezbt6+Cg4ML1D+8KyQkRP/5z38s4//+97915swZL2ZU9P+HlCtXznLywdy5cz0yhrN+2rZtm68+OJ/DF4waNcrpirrjx4/3YjaesW3bNm3cuNE01r17d8tSmp40cOBA0+2rVq3SwYMHC9S3s78TBg0aVKC+AQAAAAAAiqMCT/Zp3Lixhg8fbhrLycnRsGHDdPz48YIOky8LFy68or6xNXjwYNPtiYmJeu+99wrc/yuvvGJZEmPIkCEF7t8Vzj5cfO211xQXF+fVfCTpvvvuM91+8OBBTZ061cvZeIfVhU6rVY580ZQpUyxLuNxxxx2FOrZV/6dOndL8+fMLdewrhdVzmJSUpM8//9ztfk+dOmW5alrv3r1VokQJt/vGlS0lJUUTJ060jN94441ezMb7PvvsMx06dMg01qhRI8tv8FuJjo7Wrbfeahr7/vvvderUKZdzvOTzzz9XcnKyaayw3/9ROO677z41aNDANHbmzBkNGTLEslyNp02YMEHPPPOMV8Zy5p577jHdvmLFCu3YsaNAfZ86dcpy9Y06deqobt26+e6L8zmKK8Mw9NRTT+mTTz6x3KdHjx6W56rizGpVH6nwS3hdYnXsOyt7nB+pqan67LPPTGPXXXedS+9PAAAAAAAAvqLAk30k6c0331TFihVNY2fOnFG3bt0K9Zu1hmHojTfe0C233KL4+PhCG8fbevfurZiYGNPYq6++WqALXjt27LD8ALNWrVpeX5I8ICBAI0eONI2dPHlSjz76qFfzkf76ENeqHMETTzyh/fv3ezmjwmf1jXRvfMvTW6ZMmWK6vVKlSoX+uu/fv79CQ0NNY1Z5wVHPnj1Vo0YN09jrr7/u9jngxRdftLwgXBTvP/AdL7zwgs6ePWsaCwgIUP/+/b2ckffs2bNHL7zwgmXc3XIgVsdcenq6XnzxRbf6vHjxouUqDHXq1LFczQ/FW1BQkL788kvLVUaXLl2qYcOGWU5u94SEhAQNHTpUo0ePVk5OTqGNk1+DBg1ShQoVTGPPP/98gfoeO3as5XM5bNgwl/rifI7i6MyZM7rtttv05ptvWu5Trlw5p5NmiqusrCzLL6yUKVNGffr08UoezZo1U4cOHUxjn332mdur+7z99tuWf49x7AMAAAAAgCuVRyb7lCpVSl999ZXlB+179uxR69attXnzZk8M52Dv3r3q1q2bnnnmmUL9IL8ohIaG6oknnjCNJSUlafDgwUpLS3O53wsXLmjQoEGWz9fTTz9t+bssTI899pjKli1rGps2bZpeeuklr+bj5+dneWEwLi5Offr00enTpz0+7pEjR7RmzZrL7vfuu+9arlDgjuzsbMsJJ02aNMl3P4cPH5afn5/pj7cnkeW2YsUKHThwwDQ2ZMiQQn/dR0VFWZaPmDVrli5evHjZPorz8+sNAQEBevLJJ01jsbGxeuSRR1zuc8GCBfryyy9NY23btlXHjh1d7hNXh//+9796++23LeODBw9W+fLlXe537Nixlsf55MmTXe5v48aNHi8VePr0afXs2dNy5b2oqCg99NBDbvXdpUsXy7KSX375pRYsWOByn48++qhlScp///vfRfJ3DzyjXbt2Gj16tGV85syZuvnmm3X+/HmPj71gwQJdc801+u6779y6v9VxbjUJJj9CQ0Mtz5OzZs1y6z1EkubNm2e5akZISIjLxzvncxQnKSkpeuutt9S4cWPNnj3bcr+QkBB99913lhPq8qswjv3L+fXXXy0nwwwbNsyrpSyffvpp0+3p6em69957Xf6bZdu2bXrllVdMY1WrVtXQoUNdzhEAAAAAAMAXeOzKRo8ePfTGG29Yxo8ePao2bdpo7NixSk1NLfB4p0+f1lNPPaWmTZtq8eLFBe6vuHr88cdVpUoV09iKFSs0ePBgpaSk5Lu/uLg49e7dWzt37jSNN2rUSP/4xz/cyrWgoqKinF40HTt2rEaNGqX09HS3x9i3b5+GDx+uX375JV/79+7dW7fffrtpbNeuXbr22mu1fPlyt/Oxt3nzZt1xxx2qU6eOfv/998vu/89//lPVqlXTiy++6JGVs0aPHm05IW/QoEEF7r84cHaBy9VvpLvLapz09HT973//80oOvu7BBx9UvXr1TGNTp051aWLg5s2bNWTIEMvSbm+99ZZbOeLKtm7dOt1yyy2WF6skKTw8XC+//LIXs7L28ssvq379+vryyy+VmZlZ4P6WLl2qa6+91nLypPTX6hrR0dFuj2G1qoJhGBoyZIhLE8hfeukly9UMGjVqZFm2E77jlVdesZxMK0lLlixR48aN9b///c/y/d4VW7ZsUf/+/dW9e3e3V6EoTKNGjVKdOnVMYyNGjLAsc2Vl4cKFGjhwoNPxrFZ5dYbzOYpSZmamli1bpkceeURVq1bVv//9b6eTAoOCgjR9+nR17tzZi1l6TnEo4XVJr169LJ/H5cuXa8SIEfleKe3o0aPq3bu35Zegxo8fr6CgILdzBQAAAAAAKNYMD3vyyScNSU5/ypUrZ7z88svGwYMHXeo7KyvLWLhwoXHPPfcYoaGhpn2XLFkyX32NGTPG9P5jxoxx/UFbsHr8rvr555+dPp9169Y1li1bdtl+5syZY1SqVMmyn4CAAGPFihUu5zdp0iTT/u655x6XjDmONgABAABJREFU+zIMwxg4cKDTx1uzZk3j+++/N7KysvLVX2pqqjFjxgyjX79+RkBAgCHJ+Omnn/Kdz/nz542aNWta5uPv728MHDjQWLduncuPddu2bcbYsWONJk2aOPQ5bty4y9439++ua9euxqeffmqcO3fOpRx27dpl9O7d2/LxtWzZ0qX+Dh06ZNnXjTfe6FJfnpScnGxERUWZ5lW/fn2v5ZGenm6UKlXKNI/WrVtf9v7F9fm9ZMmSJZb5LVmyxGPj/P7774afn5/lWHfddZcRGxtref+cnBzjq6++MiIjIy37uPfeez2WL7zP6twkyfjqq6+Mbdu25etnzZo1xoIFC4zJkycbo0aNMpo1a3bZv3MkGRMnTnQ7d6u/USQZkyZNcrm/vn372u4fExNjjBgxwli4cGG+z6OXbN682Rg2bJjtXGr10759eyMzM9PlPHO78847LceIjIw0Jk2aZOTk5Fje/9y5c0778Pf39+j7EopWUlKS0bFjx8sem02aNDE+//xz48KFCy73P3XqVOPmm2+27Ltv374u9WnVT/Xq1V3qx8zChQstz5P+/v7Go48+etnnICkpyXj++eeN4OBgy1xr1aplJCQkuJ0n53NcTkHO51u2bDHWrl1rLFu2zJg+fbrx/vvvG6NGjTI6depkRERE5Ot8LskoW7assWjRIo89psI89s2cPXvWCAoKMh2zefPmhTLm5Wzfvt0ICQmxfC66d+9uHDlyxGkfs2fPNsqVK2fZR5cuXbz0aAAAAAAAAIpGoDzszTffVFhYmOUyypJ09uxZvfjii3rxxRfVpEkTtW/fXk2aNFHNmjVVunRphYeHKysrS0lJSTpx4oT27dun9evXa8WKFYqPj/d0ysVe37599a9//cty1Zt9+/bpxhtvVJMmTTR48GA1bNhQlStXlmEYOnHihLZt26b//e9/2rdvn9NxXnnlFd1www2F8RBcMnnyZB04cEAbN240jR86dEiDBw9WmTJl1L17d914442qUKGCypUrp6CgIMXFxen8+fPatm2b1q1bp1WrVikxMdHtfEqXLq3ffvtN7du3Ny0BkpOTo+nTp2v69OmqW7euOnbsqOuvv17ly5e3vZ4TEhJ08eJFxcXFadeuXdq0aZM2bdqkc+fOuZ2XvezsbC1atEiLFi3SQw89pLp166pVq1Zq2bKlqlSpolKlSql06dLy8/NTcnKyjh8/rp07d+r333/X2rVrLb8FHRgYqC+++MIjORa1mTNnWr4O7rjjDq/lERwcrNtvv12ff/55ntjatWu1e/duNWjQwGv5+Kpu3brpqaee0oQJE0zj33zzjWbNmqUhQ4aoS5cuqlmzpoKCgnT27FmtXbtW//vf/7Rr1y7L/uvVq6f333+/sNJHESvsFeyee+45Pfjgg4U6hrtiY2P12Wef6bPPPlNUVJSaN2+uFi1aqFmzZoqJiVF0dLRKliyp7OxsnT9/3nbMLF++XNu2bbts/9WrV9f06dMVGFjwPzE/+ugjrV69Wvv3788TS0pK0r333qsJEyZo2LBhat26tcqWLauMjAwdOnRIixcv1vfff6+EhATL/p955pmrovzh1SIiIkLz5s1Tv379nJZ62759ux544AE98sgjuu6669SuXTvVr19f1apVU4kSJRQWFqa0tDQlJibq8OHD2rNnj1atWqW1a9cqIyPDi4+oYLp27ar//Oc/GjduXJ5YTk6OPvzwQ3399de65ZZb1L17d1WtWlVlypRRXFycTpw4oUWLFumXX35xutJJWFiYvvvuO0VFRbmdJ+dzFIQ3VqTt1q2bvvrqK1WtWrXQxyos3377reXKft5e1eeSxo0b65133tHIkSNN4/Pnz1f9+vU1YMAAde/eXXXr1lVoaKjOnz+vTZs26YcfftC6dess+4+JidE333xTWOkDAAAAAAAUD4U1i+i7775z+g3LwvrJ77e3fGllH8MwjOzsbGPo0KGF9ryNGjXK7cfp6ZV9DOOv1XSuvfbaQnu8rqzsc8nOnTuNKlWqeOV17OrKPoX1895777n8PBXXlWe6dOlimdf+/fu9mouz1W9Gjx7t9L7F9fm9xFsr+xjGX6u99e/f3+Ov+woVKhh79+71aK7wPmcrARTWT3h4uPHRRx8VOPfCXNmnMH/q1KljHDp0qMCP397u3budfmvf3Z9Bgwa5vLIRfENWVpYxevRop6vFFMaPn5+fMXbsWJdyterLU6t7ZGdnG3fffXehPN6QkBBjzpw5HsmT8zmcKYrz+aVz2vfff18oj6mwj/3cmjZtajpeUFCQy6vCetrjjz/u8d9dZGSksWrVqiJ9XAAAAAAAAN7gr0IyePBgbdq0Sd27dy+sIRxUqVJFkyZN0sKFC70ynrf5+/vrm2++0aOPPurRfv38/DRmzBi99957Hu23oEqXLq1ly5Zp4MCBRZ2KTcOGDbVu3Tp169atqFMpdP7+/vr888/12GOPFXUqHnH06FEtWbLENNamTRvVrl3bq/l07NhRVapUMY198803ys7O9mo+viogIED/+9//NHToUI/1WaNGDS1atEh169b1WJ+4OnTt2lXbt2+3/Ib6la53795au3atatSo4dF+69evr0WLFql69eoe6/OOO+7Qt99+q4CAAI/1ieIjICBA48eP1++//6769et7ZczWrVtrxYoVGjNmjFfGyy9/f39NmjTJ4+9LZcqU0bx589SrVy+P9Mf5HMWFn5+fOnbsqOnTp2vPnj0aNGhQUadUYBs2bLBcma93796KiYnxckaO3nnnHT355JMe669MmTKaO3eu2rZt67E+AQAAAAAAiqtCm+wjSXXq1NFvv/2mWbNmqU2bNoUyRr169fThhx9q//79Gj58uPz8/AplnOIgICBAH3zwgaZPn67y5csXuL/q1avrt99+09ixY4vl8xYZGakffvhBX3/9tcqVK+exfsuWLavKlSu7dd8KFSpowYIF+uKLLzzyO8itcuXKeuaZZ3T33Xdfdt9rrrnG4+NLUqtWrbRq1Srdf//9hdJ/UZgyZYplqbJhw4Z5OZu/Lr4NGTLENHby5En9/vvvXs7IdwUHB2vatGl65513FBERUaC+brvtNq1bt06NGjXyUHa40kVGRuq+++7TqlWrtHDhQtWsWbOoU/K6WrVq6bvvvtPs2bNVqlSpQhmjSZMmWrdunfr06VOgfiIiIvTee+/p22+/VVBQkIeyQ3HVtWtXbd26Ve+++66qVatWKGPceOONmjNnjtasWaP27dsXyhgF5e/vr48++kjffPONRy7q9+zZU5s3b1bnzp09kN3fOJ+jqERHR6tXr1567733dPz4cS1btky33367/P0L9aMSr5k8ebJlrKhKeNnz8/PTm2++qalTp6pMmTIF6qtDhw5av369OnTo4KHsAAAAAAAAirdAbwzSp08f9enTR3/++ae+/fZb/fjjjzpz5ozb/ZUrV059+/bVkCFD1Llz52I5UaUw3X777erevbs++ugjffzxxzp27JhL969Tp45GjRqlESNGKDQ0tJCy9Jy77rpL/fv31xdffKGJEydq9+7dLvcRHBysjh076p577tHAgQMVEhLidj5+fn667777NGzYMH3zzTf67LPPtGHDBrf7q1+/vrp166Y+ffqoW7du+f5geePGjTp+/Lh++eUXzZs3T3/88YfOnz/vVg7+/v7q0qWL7r33Xg0ZMuSK+XD7ksqVK1t+296T3yJ3xUMPPVTgi1nFUY0aNSyfa0+v+GHviSeeUP/+/fXqq6/qm2++UWpqar7v26FDBz333HPq0aNHoeUH3xUcHKySJUvafurWratWrVqpVatWuu666xQeHl7UKV7WxIkTNXDgQC1evFhLly7VwYMHC9RfYGCg7Zxx++23KzCw8P+cLFu2rGbNmqW5c+fqtdde0x9//JHv+4aFhenuu+/W888/r6pVqxZilihugoOD9fjjj+uRRx7RrFmz9N1332nu3LlKSUlxu88GDRpowIABGjZsmE9NJrnzzjvVs2dPvfXWW/r0008VGxub7/v6+/urW7dueuqppwp9hUvO5/AUf39/BQcHKyQkRGFhYSpbtqzKly+vChUqqE6dOmrQoIEaN26sRo0aXXH/+1ySkZGhadOmmcYqVKhQrI6VYcOGqXv37nrjjTf0+eef6+LFi/m+b/PmzfX0008XyZc4AAAAAAAAipKfYbXcRSHKycnRtm3btGrVKm3cuFEHDx7UkSNHdOHCBaWkpCg9PV3BwcEKDw9XuXLlVKVKFdWvX1/NmjVT+/bt1bhx46tugo8VwzC0cuVKLV68WOvWrdP+/ft1+vRpJScnS/rrW+yVKlVS3bp11aZNG3Xr1k2tW7cu4qwLZsuWLVq8eLHWrFmjffv26dixY0pMTFRGRoYiIiIUFRWlMmXKqH79+mrYsKFat26tzp07F+rEiiNHjmjhwoVat26ddu3apaNHj+r8+fNKTU2Vv7+/oqKiFBUVpVKlSqlu3bpq2LChGjZsqHbt2nn0wuPu3bu1evVq7dq1S/v379fBgwd17tw5JSUlKSkpScHBwSpRooRKliypKlWqqEWLFrrmmmvUpUsXVapUyWN5AEXp4sWLmjdvnhYtWqRt27bp8OHDSkhIUFZWliIjI1W+fHk1bNhQ7du3V69evdSgQYOiThnwqri4OG3atElbtmzR3r17dezYMdt5Kzk5WSkpKcrJyVFISIiioqJUoUIF1ahRQ02aNNF1112nzp07q0SJEkX6GHbt2qVffvlFf/75p3bt2qUzZ84oKSlJgYGBKlGihGrUqKGmTZuqa9euuuWWWxQdHV2k+aL4SEtL07p167Rq1Spt27ZNhw4d0rFjx5SQkKCUlBRlZWUpJCREkZGRqlixoqpWrapGjRqpRYsWTstw+pL09HQtWbJEv//+u7Zs2aJ9+/YpLi5OycnJtgmO1apVU+PGjdWuXTv16tVLFStW9HqenM+Bq1NKSooWLFigBQsWaOvWrTp48KDi4+OVnp6uyMhIxcTEqEGDBmrTpo169uypa6+9tqhTBgAAAAAAKBJFMtkHAAAAAAAAAAAAAAAAgOuuzPWqAQAAAAAAAAAAAAAAgCsQk30AAAAAAAAAAAAAAAAAH8FkHwAAAAAAAAAAAAAAAMBHMNkHAAAAAAAAAAAAAAAA8BFM9gEAAAAAAAAAAAAAAAB8BJN9AAAAAAAAAAAAAAAAAB/BZB8AAAAAAAAAAAAAAADARzDZBwAAAAAAAAAAAAAAAPARTPYBAAAAAAAAAAAAAAAAfASTfQAAAAAAAAAAAAAAAAAfwWQfAAAAAAAAAAAAAAAAwEcw2QcAAAAAAAAAAAAAAADwEYH53bFly5aWsVdffdXWbtOmjUOsVKlSbqQFAACuFoZhONxOTU21tZOTkx1iiYmJtvb58+cdYmfPnrW1T5w4YWsfP37cYb8zZ87Yje2YS4kSUXbtEg6xkiVL2tq5/76Jjo62tcPDw23tnJwch/0SEhJs7XPnzjnETp8+bWvHxsZaxk6dOmWZV+vWrW3t3H+7NWjQwNauXLmyQywiIkIAAAAAAAAAAADwDazsAwAAAAAAAAAAAAAAAPgIJvsAAAAAAAAAAAAAAAAAPiLfZbyciYyMtLXtS0kAAICrl30Jq+zsbIdYVlaWrW1ftktyLN1lX7ZLciyDdfHiRcv7BQb+/SdOuXLlHPazL8Flv58khYWF2dr25bhy385d9sr+dnBwsK2du0SZs/7tS4FduHDBMufc97N/juyfg7i4OIf97MuehYaGOsTsfz/2+UuOz1FAQIBDzM/PTwAAAAAAAAAAAPAuVvYBAAAAAAAAAAAAAAAAfASTfQAAAAAAAAAAAAAAAAAfwWQfAAAAAAAAAAAAAAAAwEcEeqKTrKws07YkBQcHe2IIAADgY7Kzs23tlJQUh1hSUpKtHR8f7xCLi4uztS+cv+AQO3/hvGkfkuTv//cc5vDwcFu7fPnyDvvZx0JDQx1iISEhpu3ct3P/fRMUFGRrBwb+/eeVYRgO+9k/J5mZmQ6x1NRUW9v+OZCkqKgoyz4PHDhga58///fzc+LECYf97B+rfR65xy5ZsqTl2PbPHQAAAAAAAAAAAIoGK/sAAAAAAAAAAAAAAAAAPoLJPgAAAAAAAAAAAAAAAICP8EgZr4yMDFvbvgyERBkvAACuVvZlqhITEx1iZ8+etbVPnTrlEDt58qStffz4cctYTk6OQ6x69eq2dp06dWzt3GW8YmJibO3cZans/26xL82V+3ZAQIBDzM/PT/lhv5992THJ8fm6cMGxfJn9eLmfS/vnz/75yV1a1b6U2sWLFx1i9s9d1apVHWL2jzssLMwhlt/HDQAAAAAAAAAAAM9hZR8AAAAAAAAAAAAAAADARzDZBwAAAAAAAAAAAAAAAPARTPYBAAAAAAAAAAAAAAAAfESgJzrJycmxtbOzsz3RJQAA8EGGYdjaqamptnZcXJzDfidOnLC1Dxw44BA7dOiQrX3w4EGH2MmTJ23tqlWrOsTq1Klja5coUcLWjomJcdivXLlytnZERIRDLDAw0LQtSX5+fipMYWFhlmMnJ6fY2mXKlHGI2T/WPXv22NqHDx922O/48eO2dr169Rxi9n+/hYeHO8RKlSpla9v/fgEAAAAAAAAAAFA0WNkHAAAAAAAAAAAAAAAA8BFM9gEAAAAAAAAAAAAAAAB8hEfKeAEAgCtX7tJN9uWscsdSUv4uN5WYkGhrnz9/3mE/+zJe9mW7JOn06dO2dnBwsEOsadOmtna1atUcYva37Ut32Ze5khxLd9mXzipOcj/usLBQWzt36bGSJUuatrds2eKwn32Jr4yMDIdYxYoVbW3736EkZWVl5TdtAAAAAAAAAAAAeAEr+wAAAAAAAAAAAAAAAAA+gsk+AAAAAAAAAAAAAAAAgI9gsg8AAAAAAAAAAAAAAADgIwKLOgEAAFC85eTkWN7OyspyiCUnJ9va8QnxtnZsbKzDfidOnLC1jx8/7hALDPz7z5PatWs7xKpVq2ZrV65c2SFWoUIFW7ts2bK2dnh4uMN+QUFBKu5yP+d+fn62dkhIiEOsZMmStnb58uVt7Tp16jjst2XLFlv79OnTDrHU1FRbO/fv1D4XwzAumzsAAAAAAAAAAAAKFyv7AAAAAAAAAAAAAAAAAD6CyT4AAAAAAAAAAAAAAACAj6CMFwAAcCo7O9vhdkZGhq2dlpbmEEtISLC14+LibO2zZ8867Hf06FHTtiQ1adLE1rYv2yVJ9erVs7UrVqzoEIuOjra1IyIibO2wsDCH/fz9i/9c59zPub3cZcjsH2vp0qVt7XLlyln2kfv3Yf87zT02pbsAAAAAAAAAAACKl+J/tQsAAAAAAAAAAAAAAACAJCb7AAAAAAAAAAAAAAAAAD6DyT4AAAAAAAAAAAAAAACAjwgs6gQAAEDxlp2d7XA7NTXV1r548aJD7Ny5c7b26dOnbe0TJ0447Ldv3z7LWNu2bW3tsmXLOsQqVKhg2pakyIhIWzsw6O8/cQICAhz28/f3vbnO9jkHBQU5xMJCw/5uh/3dDg0NtewvKSnJ4bb97zQrK8shZhiGa8kCAAAAAAAAAACgUPne1S4AAAAAAAAAAAAAAADgKsVkHwAAAAAAAAAAAAAAAMBHUMYLAAA4lbuMV3Jysq0dGxvrELMvyXX06FFb+9ixY5b7lS9f3iEWHR1ta0dFRTnE7G9HRkY6xOxLWF1p/Pz8bO3cZcgCAv8uUxYYGGi5nzO5S3dZjW3fBgAAAAAAAAAAQNFgZR8AAAAAAAAAAAAAAADARzDZBwAAAAAAAAAAAAAAAPARlPECAABO5eTkONy2L+N19uxZh9iBAwds7X379tnaBw8edNjPMAxbu0qVKg4x+zJe4eHhDrGQkBBbOygo6HKpX3XcLbkVEPB3KbDc5b/sb9vvBwAAAAAAAAAAgKLByj4AAAAAAAAAAAAAAACAj2CyDwAAAAAAAAAAAAAAAOAjmOwDAAAAAAAAAAAAAAAA+IjAok4AAAAUb1lZWQ63k5KSbO2TJ086xLZt22Zrr1mzxtaOjY112K9hw0a2dtWqVR1ipUuXtrUjIiIcYsHBwbZ2YODV82eMYRim7dy3c3JyLPdzxt//7/nffn5+DrHctwEAAAAAAAAAAFC0WNkHAAAAAAAAAAAAAAAA8BFM9gEAAAAAAAAAAAAAAAB8xNVT/wIAAOSbfTmolJQUh9jFuIu29tGjRx1i06ZNM+2vTp06DrcbNmxga9euXdshVq5cOVs7KirKIRYSEuIk6yuXfUmu7Oxsh1hmZqatnZGRYbrdFfntX3Isq+asD/vbfspVFsxJlTD7EmLOyos5KzVGGTIAAAAAAAAAAHClYWUfAAAAAAAAAAAAAAAAwEcw2QcAAAAAAAAAAAAAAADwEUz2AQAAAAAAAAAAAAAAAHxEYFEnAAAAvCMnJ8fhtp+fn2UsKSnJ1k5ISHCIxV2Ms7XPnj2br7FbtWrlcLthw4a2ds2aNR1i5cqVs7UjIyMdYoGBV8efLoZhONy2//1kZmY6xFJTU23t5ORkWzsxMTHf42VlZdnaGRkZDrG0tDTT/iUpOzvb1k5PT7fcL3ef9gICAmzt3L9f+9tBQcEOseDgILtYkOl9JMfXOQAAAAAAAAAAwJWAlX0AAAAAAAAAAAAAAAAAH8FkHwAAAAAAAAAAAAAAAMBHXB21MAAAQJ5SXfbloOxLMElSfHy8rR0XF+cQu3jxoq2du8SXvXbt2tna9evXd4jZl+6qUqWKQywmJsbWDg8Pd4jZl3y6mtiXy8pdEsu+ZJb97+rMmTP57t++T/uyXbn7z10azD5m/1qIjY112M++LFzuslohISG2du7fd0REhK2du6Sbfcz+flfrawQAAAAAAAAAAFw9WNkHAAAAAAAAAAAAAAAA8BFM9gEAAAAAAAAAAAAAAAB8BJN9AAAAAAAAAAAAAAAAAB8RWNQJAAAA78jOzna4nZqaamsnJiY6xM6fP29rx8bGWsbi4+Mtx6tdu7atXblyZYdYpUqVbO3y5cs7xEqUKGFrh4aGOsT8/a+OecqGYTjctv/dpaenO8Tsf3fnzp2ztffu3WvZf+7n0X68tLQ0h1hSUpKtHRcX5xDLysqytc+ePWtrHz582GE/+1juse1/36VLl3aIlSlTxtaOiYmxHNvPz8/WDgx0/PPWfjz7/QAAAAAAAAAAAHzV1XHFDAAAAAAAAAAAAAAAALgCMNkHAAAAAAAAAAAAAAAA8BGU8QIA4CphX/ZIcizjdfHiRYeYfdmlU6dOOcTsbx85csQhFhYWZmuXKlXK1s5dnsn+tv1+khQeHm5rXy1lu3LLXcbL/neXu8yWfSm13L8rezVr1rS1a9So4RCLiIiwtTMyMiz7z8nJcYjZv4aOHTtma2/bts1hv+3bt9vaAQEBDrFq1aqZtiXHcm+5y5fZ52n//GRmZjrsZ18KLneJL/tcnJX/csa+NFju+9jHKCEGAAAAAAAAAAA85eq8ggYAAAAAAAAAAAAAAAD4ICb7AAAAAAAAAAAAAAAAAD6CyT4AAAAAAAAAAAAAAACAjwgs6gQAAIB35OTkONxOT0+3tRMSEhxisbGxtvaZM2ccYqdOnbK19+7d6xCrUKGCrR0WFmbalqTQ0FDTtiQFBvLnSW72v7uMjAyHWGJioq19+PBhW7tq1aoO+zVs2NDWrlixokOsZMmStnZ2drZDLD4+3tZOTU11iCUlJdnaJ06cMM1DklauXCkrrVu3trVzv0btc8nKynKI2edi/xzYPxbJ8fWV+7Vlfzs4ONghFhQUbNcOzBULMr1f3j7+3o/XNQAAAAAAAAAA8BRW9gEAAAAAAAAAAAAAAAB8BJN9AAAAAAAAAAAAAAAAAB9BPQEAAK4Szsp42ZdBkqTz58/b2rnLeB0/ftxyjKioKFs7JCTE1rYvZyQ5ljQKCAhwlvZVyc/PzzKWmZnpcNv+d2dfjq1u3boO+1WuXNnWLl++vEPMvsyaYRgOMfsyXrlfQ/bjnTt3zjSny7G/X8kSjiW47J+HlJQUy/vZv+4iIyMd9rMv45X7tWb/uoyIiHCIOfQZ4dhnZFSk+X65xg7wtxuPv7oBAAAAAAAAAICHsLIPAAAAAAAAAAAAAAAA4COY7AMAAAAAAAAAAAAAAAD4CAoKAABwlchdgikjI8PWTkpKcojZl0g6duyYQ2zt2rWWY9iXg7IvkWRftiv3bcp45ZWdne1w2750V1pamkPMvpSWvbJlyzrcti/dlbuMl7//3/O/7cu7SY5lvOzbkhQXF2drx8bG2tq5S245c+rUKVs7d7m3uIt/92//2pKk4OBg03Z4eLjlfrlfa/YlvsqVK+cQq1Chgq2d+7m0v527rJo9+/ECgxyPAfvnHAAAAAAAAAAAwBVcZQAAAAAAAAAAAAAAAAB8BJN9AAAAAAAAAAAAAAAAAB/BZB8AAAAAAAAAAAAAAADARwQWdQIAAMA7cnJyHG5nZmba2klJSQ6xs2fP2tpbtmzJ9xjBwcG2dlBQkK0dGOj4J0dAQEC++/RlhmFYxvz8/Bxup6en29oJCQkOsfj4eNO2JJ07d860/woVKljeLleunEPM/rURGxvrEEtOTra1jxw54hA7duyYac4ZGRkO+5UsWdIy/7S0NFt77969KirXX3+9w+0mTZrY2tWqVXOIpaam2tr2x1FWVpbDfvbPQ3q643MSHh5ma+c+HvL7urFqS5K/v79lzNn9ct8GAAAAAAAAAADFDyv7AAAAAAAAAAAAAAAAAD6CyT4AAAAAAAAAAAAAAACAj6CMFwAAV6ns7GxbO3fZJfuyXvalmi7HvhxRfssIXclyl2NyLOuU7hCzf87PnDnjEDt9+rStferUKYfYpk2bbO2IiAhbu2zZsg772d/OXcbLvhRV7rzsf1fnz593iK1du1ZmYmJiHG7bl3QrrlatWmUZsy81JkkpKSm2tn2Zs9wlyqKjo21t+1JmkhQR/vfvKiDQsYyX/XNufxxJjqXyrMrm5Y6FhIQ4xOzL6vnC7wYAAAAAAAAAADhiZR8AAAAAAAAAAAAAAADARzDZBwAAAAAAAAAAAAAAAPARTPYBAAAAAAAAAAAAAAAAfERgUScAAAC8wzAMy9s5OTkOsczMTLfGCAgIcHnsq0laWpqtffHiRYfYuXPnbO1jx445xA4fPmxr79u3z7L/qlWr2tqlSpVyiNnfLl26tEPM/vedlJTkEAsJCbG109PTLce25+fn53A7MjLS1rZ/DszGy6+WLVva2uXLl7e1g4ODHfZLSUmxtY8ePeoQ2717t2X/q1atsrUTEhIcYmfPnLW1T548aWuXKVPGYb/o6Ghbu2TJkg4x++fE/jmWpMDAQMtYVGTU3+0Sf7ft+5OkqKi/Y7mPt7CwMFs7KChIAAAAAAAAAADAt7CyDwAAAAAAAAAAAAAAAOAjmOwDAAAAAAAAAAAAAAAA+AjKeAEAAI+xL9+Uu5STvauljFd2drbD7dTUVFs7NjbWIWZfYmr//v0OsT179tjaGzdutByvevXqtrazslEREREOMfvyXLnLYNn/Hu3zd6Zp06aWY+cu43X69Glbe+vWrZZ91qtXz+F2xYoVbe1y5crZ2qGhoQ772Zcosy+rJUmVK1e2tXP/PuLi4mzt3OW/duzYYWvbl8sqW7asw372v4PcZdXsS6nZ9yFJ4eHhpn1I1o87JibGYT/7x537eLP/neYuvUdZLwAAAAAAAAAAij9W9gEAAAAAAAAAAAAAAAB8BJN9AAAAAAAAAAAAAAAAAB/BZB8AAAAAAAAAAAAAAADARwQWdQIAAMA7/Pz8LG/7+zvO/w0KCvLIGAXdz9elp6c73E5MTLS1z5075xA7dOiQrb1nzx6H2JEjR2zt0qVKO8Rq1qxpa9euXdvWjoyMdNgvICDA1s7JyXGIZWVl2dqZmZkOsdTUVFv77NmzstKnTx9bu1GjRg6xkiVL2tppaWkOsTNnztja5cqVc4gdOHDA1g4ODnaIZWdnm+af+7UVFRVla5cqVcohVqtWLVs7J9vxOUlN+/txJyQkOMQuXLhga9v/Hu1/T5J08OBBucP++WrevLlDrEGDBrZ29eo1bO2UlBSH/exfexkZGQ4x+99B7tdJeHi4rR0SEpIrs7+fW8PIkRX79xN/P8f3Fj9/6/cd+9+ds/crAAAAAAAAAACudqzsAwAAAAAAAAAAAAAAAPgIJvsAAAAAAAAAAAAAAAAAPoIyXgAAXKXsy+LYl3iS3C/jZRjGZccyu30lsS8vlbtkVVJSkq19/vx5h9jx48dtbfvyVZJjaa1GjR1LZFWsWNHWrlKliq2du+yVfVmn3GWpkpOTbW37ElWSY5mqkydPOsRatmxpazdr1szWbty4scN+9uWzUlJSHWLHjh21te2fO0mKjY21te3LnEnWpccqV67ssF/p0qUtY2XKlLG1Q0NDHWL2fdqXX5Okixcv2tr2v8fcpdlOnDhha+/evdshtnfvXlmJj4+3tZcvX+4Qs8/F/veWO0f733FcXJxDzL5MWO4yXhEREbZ27uckMPDvfx3sj+GgQMf3i+CQv197uV+HIcEhpvtJju87ud+TAAAAAAAAAADA31jZBwAAAAAAAAAAAAAAAPARTPYBAAAAAAAAAAAAAAAAfASTfQAAAAAAAAAAAAAAAAAfEVjUCQAAgKLh7//3nN+AgACHWGhoqK1du3Zth9iBAwcs+8zJybnsWGa3Pc0wDFvbz8+vUMfKPV5GRoatnZqa6rBfUlKSrR0XF+cQO3HihK2d+zlu0qSJrV2rVi2HWKVKlWzt6OhoWzsw0PHPPPuxU1JSHGLx8fGmeUjSkSNHZMU+F/t23bp1HfYrXbq0rZ2cnOwQCwj4+7Vw/vx5h1iJEiVMc8x9e/fu3bZ2z549HfarX7++rV25cmWHWPXq1U3Hkhxfy/bPnSRdvHjR1r5w4YKtfe7cOYf97H83FSpUcIhVrFjR1l6xYoXl2Llt2rTJ1t67d6+t3bp1a4f97B9r2bJlHWJRUVG2dkREhEMsMjLStC1JYWFhtnZISIhlH/bPpf1YufuMMBzv5+w9CQAAAAAAAAAA/I2VfQAAAAAAAAAAAAAAAAAfwWQfAAAAAAAAAAAAAAAAwEdQxgsAgKtE7tJZ9mWewsPDHWJlypSxtevVq+cQc1bGKzs7+7JtyXmZIk8o7NJdmZmZlrfty1QlJiY67Gdfeip3ySr78lkJCQkOMfsSUFWrVnWI2Zdrsi+/lvs5dlbGKzY21tbOXbZrzZo1slKxwt+lqOxztC9RJUkxMTG2du4yXhnpf5c9O3v2rEOsTp06tnbu8mJWr8Pcfdi/FnKXlLJ/ndu3c8tdjq1kyZK2dnTJaFs7dykwZ+Wy7Eti5S6zderUKVt7+/btDjH715D9c7lkyRLLHMuVK2c5tn05Lsmx5Fru0mP2MfuScfa/39z3y/282pe5c/Y+YF8aL3ee3ijNBwAAAAAAAABAccbKPgAAAAAAAAAAAAAAAICPYLIPAAAAAAAAAAAAAAAA4CMo4wUAwFUiICDA4bZ96a7cpXaqV69ua+cuWWVfemf+/PkOsbS0NFvbvlRU7rJR9mWRcvcfFBRk/gC8wL50UO4SQ+np6bZ27rJO9o/PvsxS7pJSZ86csbUvXLjgEMvKyrK1W7Vq5RCrWbOmrV2tWjWHmH3JLPtSbfZ55L59+vRph5h9iaxDhw45xOxLRdWoUcMhVrrM32Wd7EtWRUZGOuwXHBxsa+f+/ZYr/3eJKfvHKTk+57lLza1fv97WXr16ta2d+7HZly/LXULM/vWa+3Von3PuUlf2JazsYyGhjvvZl1WzL50lOT5fVapUcYjZ59m2bVuHWFxcnK1tXyYu9zFmXwrO/nUnSVu3bpU7mjZtamvXqlXL1s79mszvsW///OeO5X6+7J9L++fcvhzh5fj7/X18+Ac4fufB/tjJXfLQ/jYlxAAAAAAAAAAAxQEr+wAAAAAAAAAAAAAAAAA+gsk+AAAAAAAAAAAAAAAAgI9gsg8AAAAAAAAAAAAAAADgIwKLOgEAAOAdAQEBDrcjIiL+j707fbLrvO/E/vS+7xt2gAR3ipKsZbzbmrE9lSmXK04qNVVJzR+QqlT+m7xI8mImNclUnIxd42Uc2aLkoSSSIrWQ4gaSAEECxI5uNHrfl7xw+enf87Bvs0mRBC/w+bz6Hv5O33v6Luec27w435wnJiaK2dbWVs47OzvFbHl5OeezZ88Ws9dffz3n3/md38l5bm6uWG9+fj7n/v7+YhaX29vLU5WWlpb0Wap/t/h7r6+vF7PFxcWc4/anlNLs7GzOMzMzOd+8ebNY7+rVqznfvXu3mI2Pj+f80EMPFbPTp0/nfPz48WI2NTWV8/b2ds7xd6ln09PTxeyDDz7I+Z133kmNnDx5slju6enJubV17zvku7u7DW+jfg6Hh4dzjr9nSuVrNr5eU0qpo6Mj5/j6qrc/Ltev8/j6Wl1dbbhd9Wu0q6vrY3O93Ndbbv/o6GjO9WstPncbGxvFLL7/lpaW9s0pla/R27dvF7Onnnoq54Mer9obb7yR87lz53L+zd/8zWK9+F6pX+eTk5M5j42NFbOhoaGce3t7i1l3d3fOPd17r7uu7vIxj6+Zev/R1Rmeq+rn4u3Xz2NnZ2cCAAAAAIAvE1f2AQAAAAAAAACAJuHLPgAAAAAAAAAA0CTUeAHAA6KutIm1QjtjZZ1VrFra3NwsZnfu3Mk5VkillNLFixdzvn79es6x2iqlsvaqrmeK9x1rolL6aL3Or6qu8Yp1SnUtUtzmg+q5Ll26tO9/T6msVoq1WimldPTo0ZzPnDlTzI4f26vuqh/zWIUUK5/qqrH4u9bPx6uvvprztWvXill8fmIFU0pl9VGs7qpfMweJFVnxMUipfL5jbVdKKa2treV8+fLlnOsaqr/4i7/IuX5Ob926lfPjjz9ezGJFXV0vFh+HQ9d4Va/z0bW9Gq/6dRjfA/XrJP7esdIrVmelVFab1TVeR44cybl+TuPr64c//GFqJG7X888/X8zefPPNnL/61a8Ws2PHjuUcq+tSKqvT6vd+XI6vmYGBgWK9WP9V38bg4OC+91XPYiVdSuVr77OuEgQAAAAAgE/DlX0AAAAAAAAAAKBJ+LIPAAAAAAAAAAA0CV/2AQAAAAAAAACAJtF+rzcAAPhitLW1Fcs9vT17s/Zy1tq6933gtbW1Ynb06NGcH3rooWL24osv5jw/P5/z7Oxssd6dO3dy7u3tbXjfu7u7DWcdHR3pV7W+vl4sLy8v5zw3N1fMpqenc7527VoxO3/+fM6//OUvc75w4UKxXnzsHnnkkWJ25syZnE+ePFnMJiYnch4aGipmfX19OcfHp36+NzY2Gm5/vRz9s3/2z3I+depUMYvbEp+PnZ2dYr34PLa0tDS8r/i7pJRSZ2dnztvb28Usvr4ef/zxnONjUG/L3//93xezuPxv/s2/afhz/f39xWx4eDjnrq6u1EhPT0/D9eLt14/JQe+B+JqNr9elpaVivfj6rR/X+PvUs7g8MjJSzK5fv57zjRs3cr5y5UrD+/7Rj36UGqlf52NjYznXj1fcromJvfdDfE+llNLo6Oi+t5dSSpOTkznH90NKh38+4nbV7zEAAAAAAPiiuLIPAAAAAAAAAAA0CV/2AQAAAAAAAACAJqHGCwAeEG2tZeVMrKBpb298SlBX+Rw5ciTnWJ+UUkr/7X/73+57+6urq8V6MzMzOdd1XLFOZ3Njs5htbu4t1/VD8XeINTx1/VOsQVpcXCxmsRoqbmNKKd2+fbvhLNYWbW1t5fzwww8X6509e7bhLFYaHT9+vJgNDg7mXD9XseYpVhPV9Wvxd/3ggw9SI1/72teK5a985Ss519VjU1NTOcfn47OqN4qvjZHh8nUY65uefPLJnP+n/+l/Ktb73ve+l/O7777b8L7+r//r/yqW43MQf8+UGteXdXd3N7z9ul6sXm6krpSK1WDxvuv3UXyd1M9H3M66oiy+348dO1bMYlVYfH0dVCG2sLBQzA56j8UKvMOKr8+UUnr00UdzPnHiRDGLtWd1jVfcL9TvndWVvf1Xd8/eY1c/rvE5rd+ncd36uY/PcX2bjX7usK8fAAAAAADuT/5KDAAAAAAAAAAATcKXfQAAAAAAAAAAoEn4sg8AAAAAAAAAADSJ9nu9AQDAF6OlpaX6D3uxra2tGHV2dubc19dXzEZHR3M+c+ZMMdve3s55fn4+552dnWK927dv57yxsVHMlpeXc15aXCpmwyPDDbervX3vtCb+rnGbUkppfX0958XFxWI2Ozub8507dxrOlpbK7erv78/5mWeeyXloaKhY7/jx4zkfO3asmE1MTDT8uZ6enpy3traKWfwd5ubmcr57926xXpxdu3YtNfK1r32tWH7kkUdyPnXqVDGbnJzMeWBgIOeOjo6Gt/9pdXZ1FsvxdXj27NmcW1vL77IPDg7m/MMf/rCYPf/88w3v7/XXX895amqqmMXfL75+x8bGGt53fE99VuL7tqurq5jt7u7mXL/3u7u7c65fa/F1uLq6Wsw2Nzdzjq/D+J5KqXxNLiwsFLP4Opyeni5mTzzxRM7nz58vZm+++WbaT/3f4/Lv/u7vFrO4LfV2zc7uvV/Gx8vnMT5G8b0Y9zn1cv18xMe8nsXl7u6eYtbT0/jnAAAAAAB4cLmyDwAAAAAAAAAANAlf9gEAAAAAAAAAgCahxgsAHhQtH7/KP4n1QLF+JqWUhoeHcz52tKyiinVdsaorVnqlVFZk1XVZcTlW/qRU1iQdVOMVbW+XFWIbG3uVQ3WVz0HbFeua6jqd8fHxnOPjEyuRUiprr+LPpFRWBdWVT7GSaW1trZitrKzkHB/zW7duFevNzMw0vI1/9s/+Wc6nT58uZidOnMi5rh6Lv0OsMqtrvFo+yYuvgbpqLj5esabqoIqk+DimlNLVq1dzvnTpUjH77ne/m3P83VIq663ia+jhhx8u1ou1bfG5/6zE36d+fOL7tp719vbmXNfcxaquera7s3d/O+G+NzcbV/F9tC5rrw6vrvGK7++R4ZFiFmvifvKTn6TD+PGPf1wsX7x4MedYGZZSSkeOHNl3O1JKaWRkb1viY1fvc+JrLVa4pVTuF+rqtLhu/XvHBrZ4f/VzCgAAAADAg8WVfQAAAAAAAAAAoEn4sg8AAAAAAAAAADQJX/YBAAAAAAAAAIAm0X6vNwAA+PJpb987Rejq6ipmg4ODOW9tbZU/2LIXOzo6cm5raytW29jYyPnu3bsNZ7XNzc2ce3t7i1lxH7t7cXtnu+FtLC0tFbPZ2dmcFxcXi1l3d3fO/f39xWxqairnycnJnCcmJor1xsfHcx4ZGSlmfX19e5u/u1vM4nYuLCwUs+np6ZyvX7+e89WrV4v14qx27Nixfbc/pfJ3iNufUkrDw8M5x9dJ/XzH18WnVd9mfA7ifXd2dhbr7ezs5Fw/39/5zndy/j/+j/+j4X3/x//4H4vlDz/8cN/bqB30mqlfv59Ga8ve9/Zb2ssH+aD3cP36aqRer6Vl/yey3g8sLy/nXL9e4/4jvuZTKh+v+vHp7dtbHhgYyPn1118v1rt58+a+25hS+R446P1QvzePHDmSc9z++nEdGhrK+eTJk8UsLsf9RUrle257u9xf7YadWXz86/fDR95zAAAAAADc11zZBwAAAAAAAAAAmoQv+wAAAAAAAAAAQJNQ4wUAHKiuRTqobqq1de97xLHGq6enp1gv1vDMzc0Vs3ib9c/F5VhTlFJZcRNz62753eZYdxO3t97murIq1gqNjo4Ws7GxsX1ndR1QXI51QB8nVlHV9WK3b9/O+cqVKzlfvny5WO/dd99tePtxW+rtisvxeUupfC3Ex/WwNVGfxEE1RfVrIVpZWck51pWllNJTTz2V85/+6Z8Ws7/8y79seJsvv/xyzvE1Wb9m4muhrqyK9Wh1HVSjuqyPzIp4+K60g27/06j3EfG5Oqhuqp7F919dexYf21iJ9a1vfatYL9YAxsq+lMp6sVjZl1JZ/3Xu3Lli9vbbb6dP6rHHHiuW43bW7+HV1dWc621eX1/fd734u6RU7p/q/Vrcf9Tiuod9rur14m3U9w0AAAAAwOfDX2MBAAAAAAAAAKBJ+LIPAAAAAAAAAAA0CTVeAMCB6sqWWDl0UI1XXG9oaKhY78iRIznHapqUUtra2tpbqNugDmgfalTjVVcWHVRhFH+fer34+8TKnHo55rq6qbu7u+F9R3XtztraWs4LCwvFLNZ4ffjhhzmfP3++WO/ChQsN7y/WJ9WVTHH5oLqm6LOuifok6kqv+HzEurWUUnrooYdyruuT4nP37LPPFrP4mD/33HM5x1qwlMrqqfqxi6/z+v0Rt7musmsG8XVR/96xnquufIrvsboCL+4nYjVbfG+kVD6uxb6k+rm6xuvWrVs5P/roo8UsVuC99NJL6TDq91+s3aprvOJ7en5+vphNT0/nfFANYHy9HlRrV8/iPqneP8XXXsz1evVzDAAAAADA58+VfQAAAAAAAAAAoEn4sg8AAAAAAAAAADQJX/YBAAAAAAAAAIAm0X6vNwAA+HJraWkpltvb904fenp6illHR0fOvb29OY+MjBTrbW9v57y1tVXMNjc3c97Y2Chmcd14G7XW1tZ9c0optbW17Zvr5fh71sttbfVs/9uMj8d+y43ExyCllFZXVnOen58vZjdu3Mj5vffey/m555471H2llFJnR2fDbYy/d/2YfBnVr9fOzr3fbXh4uJgdP348593d3WLW3tb4d/0P/+E/7PvfL1y4UCwPDQ01vI342j527Fgxm5iYyLm7u7uY1b/fl1F8LOvXTPx96lncZ9Tv70b7jHr/Ederb2NlZSXn2dnZYjY5OZlzvb/q7+/POb6G3n333WK9Dz74IDVy7dq1fXNKKX3961/P+cSJE8VsbGws58HBwX1zvVy/ZuJ7ut5nx991dHS0mMXfNb6W69fgQftUAAAAAAA+H67sAwAAAAAAAAAATcKXfQAAAAAAAAAAoEl8+bsYAIB7qq7Bist15VOs7zls3dDOzk6xHCus1tfXi1lcrquuGm3jQVVdB9Vs1bPD1tN8msegVv9uK6t79UN3794tZleuXMn5r//6rw91+3VN0dDwXkVPXQEUa7Caocarfp7i71NXH0X1cxWfx9W11WL2L//lv8z5e9/7Xs51dVp8DR1USVe/x+I2x2qrevZlFR/Lg+rw6uq0RrdRiz9X7z/i8vZWVeMV3kd9fX3FLD6u8TWfUvk8xkqvWAOXUkrT09M5v//++8UsVuytra0Vs9dffz3nX/7yl+kw6sqthx56KOdY/ZVS+bqPFXEppXT69Omc698nbmd8vdbP28723mPe01vWhMXHtRkq6AAAAAAAmoUr+wAAAAAAAAAAQJPwZR8AAAAAAAAAAGgSvuwDAAAAAAAAAABNov1ebwAAcP9oaWn5xD/T2lp+97irqyvntra2YhaXt7a2DrUdB91GR0dHw9mn9Wkeg1r9u62vr+e8tLRUzG7cuPGJb//3fu/3iuWJiYmc+/r6ill8jOrn6suofvw7Ozsbrht/n93d3WIWH/PFxcVi9sQTT+w7O3fuXLFeXK5vP27XwMBAMRscHMy5t7e3mB30+m02n/a98qnf3+1h3fLpKBy0TxofH895ZWWlWG95eTnnb33rW8Usvk5WV9eK2crK3s/Nzs4Ws/j+fvnllxuuVy838swzzxTLcX+yurpazNbW1vbN9Xrx9dvTU75ee3q6c46PY0r181++Flpb93+O29vLj69xVr8W4vPYDPsuAAAAAIBPwl89AQAAAAAAAACgSfiyDwAAAAAAAAAANAk1XgDAl1ZdvRJredpay8qW3dDLE+th6ttohmqXnZ2dYnl7ezvnzc3NYlZXCTXy+7//+zk//PDDxWx0dDTn7u7uYvZZVJvdS/E5riu94uskPsYplVVFk5NTxezUqVM5x+qmuqbo8uXL++aUyuq0o0eOFrP4fNS1avH56OnpybmurKrrjigfu/p1HqvT6td8fA6OHDmSc123F9+bsfYqpfJ9WtdgxdfQ3bt3i9nt27dzfvTRR3O+cOFCsV6s+DrIG2+8USzPz8/nXNfVzc3N5TwzM5Pz2NhYsV5/f3/Ode1cXI6v15TK12z9+o3vpfhz9W3E57F+Tg+q8AMAAAAAaHZfzv/DBQAAAAAAAAAAfIQv+wAAAAAAAAAAQJPwZR8AAAAAAAAAAGgS7fd6AwAAGmlpaSmW29racm5tPdx3luvbqJe/LHZ2dnLe2toqZnG5nm1vb+97e08//XSx/Nhjj+V8/PjxYjYyMpJzT09PMYuP8+7ubjH7sj6WUdz++jUTX0872zvFbHBwMOfx8bFitrR0LOe1tbWc68dnc3Mz5wsXLhSz69ev53zzxM1iNhbur6+vr/E2h9dMb29vw/Wa4Xn6onV0dhTL/a39OXd3dxezoaGhnONjXouz+NynVL5OVldXi9nS0lLOd+/eLWYTExM5j4+P5xzfsymlNDw8nPObb75ZzK5du9Zwmz/88MN9c0opfe1rX8v5xIkTOY+Nle+H+Nrr6S73H/0De49rfBxTSmlgYCDn+nUe1x0dHc05/p4ple/Tg97fMQMAAAAA3A9c2QcAAAAAAAAAAJqEL/sAAAAAAAAAAECTUOMFAHxpHVTj1Qx2d8pap53dvZqfuvJpfW095+Xl5WIWl2PlT0opLS4u7nvfTzzxRLF8+vTpnOsar1gPVNfpdHSUdUf3k/j66ukt64cGNvYqhuraoljRFGvU6oqnWNd09erVYhZrvY4ePVrMYoVR/fjHbY6vofq9En/ufn4OP4mDKt0+68foI+/v9b33d6z0Sql8f/f39xezWJFV1GVVdXvxfVu/v2M12O3bt4vZ+++/n/ONGzeK2WuvvbZv/iTie+frX/96MYvbOTU1Vczie+LYsf1r81Jq/F5MKaXtrb3lru6uYnbQ+0PtHQAAAADQDFzZBwAAAAAAAAAAmoQv+wAAAAAAAAAAQJPwZR8AAAAAAAAAAGgS7fd6AwAA7lc7uzvF8sbGRs7r6+vFbGlpKefZ2dlidufOnX1zSinduHEj50ceeSTnEydOFOvF5WPHjhWz8fHxnPv7+4tZR0dHzi0tLel+1dpafge+p6cn5+Hh4WK2u7u7b97ZKZ/vlZWVnOPzlFJKzz//fM6XLl0qZvE5aGtra7idcdbZ2Vms193dnXN8Dvli1O+V+Hy0t5cfweLzWP9cnHV1deVcv09HR0dzXl5eLmZxX7O6ulrMFhYWcl5cXCxmcXlubi7n+rX8i1/8Yt/7SqncX/3gBz8oZnE/9JWvfKXhdsVtXlleKdaLv2vch6aU0sDAQM7x8U8ppc6OvfdLZ1f53onPT3y/1fuI+NzUz2l8z9Wz+nYAAAAAAD4Nf2kEAAAAAAAAAIAm4cs+AAAAAAAAAADQJNR4AQB8Tupap1hxE2tqUirrbm7evFnMYm3O9evXi1lc/t3f/d2cJycni/Xi8sTERDEbGRnJube3t5g9qBVQ8feuK5Ma1S5tbm4W683Pz+d8/PjxYjY4OJhzrEGqb79+DcVKoL6+vn1vr16ub0ON0L1VP/6xgi0+pymVr4VYLTc0NFSsF9/fW1tbxSw+//UsVs3VNV5xH3X37t2cb926Vax39uGzOV98/2Ixe/HFF1Mjcd9V79e+8Y1v7Hvf09PTxXpxXxarzFIq3wN1jVesRIuPa71uV+feenXdV9xX9veV+4jevr1ZXcUHAAAAAPBZ8Jd+AAAAAAAAAABoEr7sAwAAAAAAAAAATUKNFwDA52R3d7dYXltby3lubq6YxequDz/8sJhdvnw553fffbfh/cUam1jNVc/quptYCRRrolIqa6pSakkPivg41I9JrF1qCY9JfH5TSml2djbnusbriSeeyLmuOnruuedyjlVgKZX1Q/E5HhsbK9YbHh7Oubu7rCnq7Gxczabi64tXVHV95Lnav+Jre3u7WK9ejuJ7uK50i6/ZxcWlYrawsPfai6/lev9R7HdGy/1OfI3+7Gc/K2a3b99uuM2vvPLKvvnJJ58s1jtx4kTO4+PjxeygGq+4PDRYVqINjwznPDAwsO/tpVS+5+r3X0vr3mMe37MpqfUCAAAAAD4b/poPAAAAAAAAAABNwpd9AAAAAAAAAACgSfiyDwAAAAAAAAAANIn2e70BAAD3q52dnWJ5fX0957t37xaza9eu5Xzx4sVidu7cuZxff/31hvc3MjKS89DQUDEbHBzMeWBgoJh1dXU1vE0+qr197xR6cGjvcR1bGyvWO3bsWM7z8/PFbHV1NefW1vL7988//3zOr776ajGLz+PU1NTefY+V993X15dzW1tbMevp6cm5o6OjmMXlerv4bNSPa7H8BX86i/uogYGlYjYw0J9zb29vzt3d3cV68bVW71vifmhycrKYzc7O5rywsFDMZmZmco77w7fffrtYr14+rLivfPLJJ4vZ2bNncz5y5EjO8f2WUkoryys5b29vN7yvlpaWYjm+h+v3X7S7u9vwNurlT+OzuA0AAAAA4N7xF3wAAAAAAAAAAGgSvuwDAAAAAAAAAABNQo0XAMAXZHNzM+elpbIy5/bt2znXNV7f//73D3X7sU6nrtrp7OzcNz9IQitOSimlz6LFJlZ69ff3F7NY+7O1tdXw52JF0j9u196G/fjHPy5mP/zhD3M+ffp0znVtW7z9umJodHQ051gplNLBtULcf2KFWNx/HPZnUipr4erX4cTERM7x9ZpSWWUXKw5TSmllZa8iK1bg1XV4c3NzOd+6dauYxf3o9evXi1msUXzxxReL2TvvvJPzt771rZzPnDlTrLe2tpbzxuZGw1n8XVIq33P1vrhRtVZdxRff3wfN6vdznMWckto+AAAAAGg2/qIHAAAAAAAAAABNwpd9AAAAAAAAAACgSfiyDwAAAAAAAAAANIn2e70BAAD3q5aWlmJ5d3c3542NjWI2NzeX88WLFz/V/XV2dubc1tZ24LY8iD7vh6C7u7tYHh8fz7mjo6PhuvVsZWUl5x//+McN7+8//If/kHN7e3laH19f9WvtoG0eGBhouC73t9bW8t+BxP1Jf39/zvW+pa+vL+fR0dFitra2tm9OKaXt7e2ct7a2itn6+nrOi4uLOc/Pzxfr3b17N+fbt28XszNnzuR88eL7xezFF19IjczOzub8ve99L+evf/3rDe875npbxsbGitnQ0FDOXV1dxSw+B/Fxrt+nvb29Off09DScxeemntXPIwAAAADQXFzZBwAAAAAAAAAAmoQv+wAAAAAAAAAAQJNQ4wUA8AWJtTWxpialsp7mjTfeOPRtfuUrX8n5oIqWWOMV68T47MTao3q5rtOJ9T3xdZFSWSP0ne98p5g999xz+/7cv/23/7ZY77/+r//rnOuKpPg6GR4eLmYjIyM517VO3N/q/UKshouvhfp1vrOzs2+ul+vXeZzV9x2r55aWlnKua7zie6WuEBscHNw3/+PyXl3d3/3d36XD+OUvf9lwua74OnLkSM51jVd8j8X3YkrlYx6ru+LP1LdZz0ZGRsN65WMejwN1faBaLwAAAABoLv6CDwAAAAAAAAAATcKXfQAAAAAAAAAAoEn4sg8AAAAAAAAAADSJ9nu9AQAA96vNzc1ieX19PeelpaVidvv27UPd5sTERLH89a9/PefJycmc+/r6ivXa2/dO+1paWg51X3wyBz2unZ2dxfL4+HjOKysrxezMmTM5/8Zv/EYxu3XrVs5vv/12w/v7q7/6q5y7u7sb3vfY2FgxGxgYyHl4eLjh7XP/aW1tPXD5i7S9vZ3z8vJyzvV+rbe3N+f6dd7V1ZVzf39/MRsZGcl5amqqmN24cWPf+6735/Pz8zlfvHixmP3yl79MhxH3yymldOTIkZxPnDiR86OPPlqsF/cRR48eLWZxf7K9vVXM4uO6s7NTzOJ7v6e7J+eW1nK/Fn9uZ2e3mB10aIn7x4P2lS2pJS4AAAAAAA24sg8AAAAAAAAAADQJX/YBAAAAAAAAAIAmocYLAOAQdnf36koOqiCJNSmrK6vFLNarxHqYlFKanZ091Hb84R/+YbH8xBNP5BzrXAYHB4v1Yo2UGq9PJj73tU/7WHZ0dOQ8NDRUzE6ePJnz+tp6MYtVRb/4xS9y/pu/+ZuG9/X//D//T7H80EMP5VxXdbW1te3d93p537FCKVYkxd8FPgvxdRiruur3Ynz/xZ9JqXyvjI6OFrO4r4zvh5TKisWNjY2c6xqvuN7MzEwxi1Vg77zzTjG7cOFCzltbZc3W1atX982XLl0q1vvN3/zNfbcjpfI4s7a21nCbYw1ZSmWNV3zM68f1oGNhrCWr9wtx+aBZrI9rbfFvkwAAAACgEX89AwAAAAAAAACAJuHLPgAAAAAAAAAA0CR82QcAAAAAAAAAAJpE+73eAACAZrO9vV0s7+zs5Ly+vp7z8spysd7y8vK+OaWUVldXG97fv/pX/yrnxx57rJidPn0656mpqZwHBgaK9To6OnJuSS0N74uPamn5fB+vnp6eYjk+j21tbcWsr78v5/o5jv7mb/6m4eyFF17IubOzs5gVr9/qNXrkyJGcJyYmco6vrV/F7u5uzp/3Y07zaG3d+/cpXV1dDddrby8/2vb29uY8Pj5ezDY2NnJeW1srZvE9EPf1mxubxXpLy0s537lzp5jduHEj52PHjhWz+D768Y9/nA7j5s2bxfJ/+k//Keff+73fK2ZxW6anp4vZ2NhYzoODQ8VscHBvf9LXt7efqd/fcZ9Uz/r7+/fNHzeL7/eDnmMAAAAAYI8r+wAAAAAAAAAAQJPwZR8AAAAAAAAAAGgSarwAAA4hVgxtbW0Vs1gJE6uPFhYWivUWFxdzXlpaKmaxSubUqVPF7MyZMzmfOHGimMWKmFhVU9ekFHUrGpLuufh6qmtrYtVOrCJKKaXu7u59b29ubq5YfvbZZ3Oua4pidVBdP/TP//k/z3llZaWYxaqdWPMTM3ye6qqugyq+Ys1dfL/Vy3Ut4+bmXl3XzvZeRePmVlnjtby0t6+/M1u+j4aG9iqy6vdH3M64XkopXbp0Kec333wzHcaPfvSjYvn8+fM518eSkZGRnOsawLg8PDycc70Pits/ODhYzCYnJ/fNKX20Si2Kz2PMdc0gAAAAALDHlX0AAAAAAAAAAKBJ+LIPAAAAAAAAAAA0CTVeAACHEGtfYm1XSmUlV6xTmpmZKdabnp4+1Oyhhx4qZgdVo0xO7C2Pjo7mXFevxDqUWMfEvRGfg7qaKC7X1UTx51ZXV3N+5JFHivX+h//hf8j53/7bf9twO86dO9dw+X/+n//nYhYre2LNT11TVL/2Dsvrkv00qnj6IhxU37jSv1dz19lV1k3F93BbW1sxi5WKcZ+dUkqPPvpozt/+9rdzjseHlFK6e/duznVNX1y+cuVKMfvpT3+aPqm4TSmldOTIkZxPnjxZzOJ+KO6fUirr0erqtPjYxv1Jvf+Ly/V+M+4/6tq2g8Sfa5QP+hkAAAAAuFdc2QcAAAAAAAAAAJqEL/sAAAAAAAAAAECT8GUfAAAAAAAAAABoEu0fvwoAALu7uzlvbGwUs8WFxZynp6dzvnHjRrHe9evXc75y5Uoxu3nzZs5f/epXi9ng4GDOQ0ND5Wxob9bf359zZ2dnsV5rq+943w96enpyHh4ezvnkyZPFet/85jdzbm8vT/l/9KMf5fzOO+80vK/XXnutWD59+nTOIyMjOXd0dBTrjY6O5dzd3VXM4rptbW0N7xu+DFpaWnKuX+fxvbi9tV3MdnZ2cq5f5319fTkfO3asmK2vr++bl5eXi/WWlpZyXl1dbTibnZ0tZvE4c/78+WJWL/+TCxcuNFyemppquP31cXJtbS3n+veZn5/Pube3N+fu7u5iva6urn1zSuXjXB/v4qw+NsbntVGubwMAAAAAvgz8Xx8AAAAAAAAAAGgSvuwDAAAAAAAAAABNQo0XAMAhHFTjtbC4kPOtW7dy/vDDD4v1Ll68mPOPf/zjhvdVV5fEWpOY6+VYK1NXjsTtb0ktieYUa4Xic1/X6cQaobruZmBgYN/bSCmlV155JedY95VSSk888UTOsTIuvrZSKut6xsbGilmsoVOLQzNra917/Xb3lPvs4ZbhnOv3X3wPbG5uFrP4Xtre3qsGi++plMrqrpWVlWK2uLhXK3nnzp1idvv27ZyPHz9ezGIV4A9+8IN0GPF4l1JKf/EXf5HzH/zBHxSzmZmZnI8cOVLMYi1g3CfVj108xsU6tHrdg46hcf+XUrkvi+vVVWB1HSIAAAAA3Guu7AMAAAAAAAAAAE3Cl30AAAAAAAAAAKBJ+LIPAAAAAAAAAAA0CcXzAACHsLu7m/PG+kYxm5+fz/n69es5v/vuu8V6L7zwQs7Ly8sN72tgYKBY7u3tzbmnp6eYxeW2traGt9nS0tJwRvOIz2N3d3fOY2NjxXrt7e375trS0lKx/MorrzRc92c/+1nO8bW2trZWrLexUb4/oq6urpzj9sOXXTwGpJRSS+vee7Gzs7OYxfdc3H+nlNLOzk7j22ywn67fU/E9t7KyUswWFxdzHh0dLWbDw8M5Dw4OFrP+/v6c+/r6cr548WKx3ltvvbXvNtZ+8IMfFMvHjh3L+dSpU8VsZGQk57iP6OjoKNaL2zw+Pl7M4u8Wc0rl/nFycrKYxccoPh/18TQuH7RPBQAAAIAviiv7AAAAAAAAAABAk/BlHwAAAAAAAAAAaBKuPw0AcAjb29s5r2+sF7NY43X16tWcf/KTnxTrffDBB4e6r4mJiWI51nrVNV51fQz3t9bWve/qxxqsuu6meF2UTUFpdXU15zt37hSzP/7jP875b//2b4vZq6++mnN8P9Q1XrHupn69xnqgehbre+DLpq7Yisvxffl5qKvAtra2co7v53rd+vgQ32MHvTeHhoZyfuSRR4r1fud3fifnWBmWUkozMzM5x+NiSiktLCzkXFeDTU9Pp0/q8ccfb7h84sSJYnb8+PGc6/3V+vre8Xxzc3PfXP/cQbVtdcVXfG18kjrNRj930OsQAAAAgAeLK/sAAAAAAAAAAECT8GUfAAAAAAAAAABoEr7sAwAAAAAAAAAATaL941cBAGB3dzfnra2tYra2tpbz3bt3cz5//vyhb/873/lOziMjI8Wsu7s75/b28vSttdV3tx8k8fluaWnJuX5dtKS92cDgQDEbHR3N+dixY8Xsqaeeynlzc7OYvfHGGzm//vrrOff39xfrTUxM5Dw+Pl7MhoaGco6v65RSGhwczLmjo6OYxd/ba54HXXy/1++jKB636p/r6ekpZvG9OTU1lfP6+nqxXjz+bWxsFLPFxcWcFxYWitnc3FzO09PTxezatWs5v/POOzl/+OGHqZF333234fJv//ZvN9yueLxOKaWlpaV9t7k+Dsf9XGdnZzGL+6uDZvV+uq2treHPxeWurq59by+l8jgAAAAAwIPFX8oBAAAAAAAAAKBJ+LIPAAAAAAAAAAA0CTVeAACHsLOzk/P29nYxi7UmdeVJI2fPni2WT506lXOsU0mprPCoKzvqmhYeHAfVt7R37J3mx9dPSikNDOzVesXKrZRSOnPmTM51XV28nTfffDPnK1euFOvduHEj57ombHh4OOe6tia+x+pqsFhVpMYL9tTvh/i+qt9HsQKqr6+vmMV6v1jPFd+XtfpYuLKykvP8fFnjdffubM51jVfcTxw/fjzny5cvF+v9wz/8Q8NtiV544YViOe6jbt++Xczi/U1OTuZc13jF/eZBlVu9vb3FLD4HdeVaXDfefkplrWHc19c1XgAAAAA8uPylHAAAAAAAAAAAmoQv+wAAAAAAAAAAQJNQ4wUAcAibm5v75pTKypO1tbVD3d4zzzxTLJ88eTLnWKeSUko9PT05t7W1FTM1Xuwnvk7qGq9YKzM+Pl7MYg1dXdET63yWlpZy/slPflKsd/Xq1ZyPHDnS8L7b2w//UST+PmpseNDF/X5d5xffV/XxIu4L6mNHfH/HWWtL+e+DWlpb9l0vpZRWV1dzXqhqvGZDjVddVRn3C3FWHwvj8jvvvFPMYrVg7cMPP9w3p1RWaz366KM51xWHsVar3qfGY3Rd/3VQNVj8fer7i/vfWNVW7//qajAAAAAAHhyu7AMAAAAAAAAAAE3Cl30AAAAAAAAAAKBJ+LIPAAAAAAAAAAA0ifZ7vQEAAF+k3d3dnHd2dhrONjY2itnS0lLOi4uLxWxhYSHn2dnZhvf9O7/zOzk/8sgjxez06dM5HzlypJgNDg7m3NnZWcxaWloa3h+klFJXV1ex3N/fn/P29nYxi++BmFNKaWtrK+f5+fmcL1++XKx36dKlnMfHxxtuS/3ajcttbW3FrKNj73Uf3wPt7T7O8OCJ75Uv0zGgu7s75/pY1d6x916t37cdHR05x/3T6Ohosd7ExETO8ZiZUkq/9Vu/lfPq6moxi8fomZmZYhaP2R9++GHOb7zxRvo0jh8/Xix/61vfyvnUqVPF7OjRozmvra0Vs7i/jfvp+N9TSmlwYO/8oKOzIzVS78/j66a1tbXh7KDXWvy5g/bnAAAAAHw+XNkHAAAAAAAAAACahC/7AAAAAAAAAABAk3DdewDggRKrLDY3N4tZrO5aXl4uZnfv3s25ruq6c+dOzrdv32543w899FDOdZ3HiRMncp6cnCxmarz4VdSVWD09PQ3Xja+nuuIrVuPE1/yZM2eK9WL9Taz0Sql8/dbVMbHiq7e3t5j19fWF2d7217+b9wN8ORxUH1hXSsVar3i8i7VdKZUVWfUxen19Pef62B73XbGCMKXy2B4rvq5du1asd/78+Zzff//91Ej9c3E5Vo2lVNZ5rqysFLP4+8UasrraLD5e9WN+UAVXrE6rzysazer14nL8mf3uDwAAAIDPniv7AAAAAAAAAABAk/BlHwAAAAAAAAAAaBK+7AMAAAAAAAAAAE2i/V5vAADAF2l3dzfnzc3NYra0tJTz3bt3i9n09PS+OaWUbt++nfN7772X82OPPVasd/To0ZyPHDlSzOLy+Ph4Mevr68u5s7OzmLW0tCT4JDo6OnJua2srZnF5a2urmC0vL+c8NTWV8/Hjx4v1rl69mvObb75ZzDY2NnKO78WUUhoYGMh5ZGSkmA0PD+fc39+fc0d7R7FeW/ve9tfvDe8V+OLU77eurq6G68ZZ3O/U+6B4zI77kpRS2t7e3jenlNL6+nrOCwsLxSwe6+Ox/dixY8V6k5OTOdfH7xdffDEdRr3elStXcn7qqaeK2Y0bN3KemJjIeXR0tFhvaGgo5+7u7mLW3r73556430+pPK+I+96Uyn1szPV68TmO9wUAAADAF8OVfQAAAAAAAAAAoEn4sg8AAAAAAAAAADQJ11oGAB4osTqorgFZXFzMeWZmppjFSo1r164Vs1hbtLa2lnNd9TE2NpZzXdUVZ7GyKKWyuqu1tfyutmoiPk79GolVXXWNV6xiqSt0Ys1dfG2fOXOmWG9+fj7n+J5KKaXXXntt39tLqaynibU1KZW1XrF+pt7+WAdU18qomYEvTn2sijVS9Xuxt7c357reL4qzuqorznZ2dopZPNbXNV5zc3M5x0qsuJ9JKaWenp6c6zqreMz+7ne/23C7arHGK+aUynOEWCFW13jF5cHBwWIWa73qbY63GWsZ6/uO5yb14xqPLfXzHZ9TAAAAAD4fruwDAAAAAAAAAABNwpd9AAAAAAAAAACgSfiyDwAAAAAAAAAANIn2e70BAAD3yubmZrG8uLiY8+3bt4vZlStXcr506VIxe/vtt/e9/dHR0WJ5aGgo54GBgWI20L+33NfXd8BWw+enpaUl5/p1GF/PJ06cyHljY6NYr7V1798TdHZ2FrM///M/z/nixYvF7J133sl5cnKymPX39+fc3r73EWZ7e6dYb2Bgb72+3nL729raco6/J/DZq99j8f33RdvZ2dtP1Pukjo6OnOO+Jf73lFLq6enJuT62Hzt2LOdHH320mM3OzuZc7yvjOcjS0lIxm5mZyfmtt97K+dy5c+nTePzxx4vlZ555JuezZ88Ws3gutLq6mnO9/evr6zmvra0Vs7jPjo9dSuVrY3d3t5jF5bhePK6klFJba9ift5avtbhu/Tq07wcAAADuJ67sAwAAAAAAAAAATcKXfQAAAAAAAAAAoEmo8QIAHjB7FQ7b29vFJNZVxOqNlFK6du1azu+9914xu3z58r73VFdXdHZ2hVxWibR3OC3jy6WusYnVc0ePHs25rufp6upqOFtYWMj5e9/7XjH7/ve/n/P4+HjDbYmVPFtbW8V6u7tTDbe/u6c7AQ+eWOsU908plXVTseKp3n/E9aampopZPHdYXl4uZisrKznX1aGxFquu8bpz507OX/3qV3Ouzz+ef/75dBjvvvtusRxrFP/oj/6omMX9dKOcUllnNjg4WMzi49Xb21vMDqpUbPRcdXeX+++4XD+n8fyqvc25FQAAAHD/cmUfAAAAAAAAAABoEr7sAwAAAAAAAAAATcKXfQAAAAAAAAAAoEkoMAcAHigtLXt5e3u7mK2treV89+7dYnb58uWcX3zxxUPdV1dXV7Hc0bF36tXaWn7nul6Ge60lvllSSn19fTl3dHTk3N3dXawXZ5ubm8Xs9u3bOX/ve99reN9/9md/Viyvrq7um3d3d4v14ntuYGCgmMV1698NeDDUx9q4z4iz+vg9NDSUc33uEJc3NjaKWVze2tpqOFtaWipmMzMzOR89ejTn8fHxYr2RkZGcX3311WJ29erV1Ejclu9+97vF7KvPfDXnhx5+KOepqamG913vb+Nyf39/MYuPbXt7+SepeDyJj3m8r3o2ODhYzNra2hrePgAAAMD9xP9VAgAAAAAAAACAJuHLPgAAAAAAAAAA0CRc0xgAeKDEKp+6UmNlZSXnO3fuFLOf//znh7r906dP51zXTsR6irpaQo0XXzZ11VWs54q5p6en4W3U1TQPP/xwzn/0R39UzJ599tmGt/NXf/VXOc/OzuZ8UNVO/f6LVTIHbXParZY1fkFTi8f9WPGUUnns7ezszLm3t7fhbRxUA1hXfMXzjE9S4xWrqWKF4kfrQTv2/ZmUUrp582bOsYo0pZTee++9/X+BlNLrb7y+bz558mSxXqzqqvepcVvq6rFGv1tKKY2OjuZ84viJnI8eO1qsFx/L+vmIz2ld9RifY+ddAAAAQLPz1w0AAAAAAAAAAGgSvuwDAAAAAAAAAABNQo0XAPBAWV9fz3ltba2YxRqN6enpYhbrMGqxQuLXf/3Xcz56tKydiJUXdRWHOgnuharhJB3QTtNQ/dqNVVpTU1PF7JFHHsn5937v94pZrM2JtV21H//4xzkfP368mE1MTOQc328pldV5cRtTKqtdYi1OSh+t/QGay0G1WwfNPo26orM+1kexiqpeL+534j62vv1Yn1Xvb+M5zfLycjG7e/duzouLi8VsdXV135+r603Pnz+f88LCQvo04jEhpZSeeOKJfe97Y3OjWC8+dpubm8UsntvV9WLxcY77/ZTKx/agc7L4mqnXi8sHzlqq21cXCQAAAHwK/q8SAAAAAAAAAAA0CV/2AQAAAAAAAACAJuHLPgAAAAAAAAAA0CTaP34VAIDmtbOzUyyvr6/nvLa2VsxWV1dzXlpaOvR9/PEf/3HOZ8+ezXlqaqpYb2BgIOeOjo5i1tLScuj7g8/ObrX8q78O42t7eHi4mJ05fSbntra2YjY4OJjz6OhoMft3/+7f7Xtf//E//sdi+ciRIzl3dnQWs62trX3Xq+9vaGiomNXbCfBZaG/f+3NMV1dXMevv79/3Zzo7y/1a3G/Gc5iUyn3e5uZmMVtZWcl5eXm54WxxcTHnmZmZYr0nn3wy5/fff7+YvfDCC/tuf+29995ruHzQ+Vo8R5ubmytmIyMjOff09BSz+Ph1d3cXs/gcxONYfJ7qWX378Tbq57RY9s/uAAAAgM+APzEAAAAAAAAAAECT8GUfAAAAAAAAAABoEmq8AICmtLtb1g/Fuq4429jYKNaLNRd15UWsiah/LvrWt75VLD/00EM5Hz9+POexsbFivb6+vpzVePFl8Hm87uJt1lU0rcf2/q1BT29ZfxLrUOrtmp6ezvk//+f/nPP29nax3l//9V/nXNe+LK/sVdXUlTaxpiXW7X1W4j7Jex1Iqdwv1HWBcX8Y90+9vb3FerGCsN4fxtuvz5liRVas7UqprPVaWFjI+c6dO8V6sap0fHy8mMUqre9+97vFrN7ORp599tmcb926VcweffTRfbejvu+6qivWeNWPZdz3x/O1g9aL95VSWatWa2/fO+9TDwkAAAB8FlzZBwAAAAAAAAAAmoQv+wAAAAAAAAAAQJPwZR8AAAAAAAAAAGgS7R+/CgDAl9/29nbOGxsbOa+urhbrLS4u5rywsNBwtry8XMxaWlpyfuihh4rZiRMncj569GjO4+PjxXoDAwM5d3R0NLx9aGatrXv/nqC3t7eY9fT0NJzF98DKykox++pXv5rzd7/73Zzj+z6llN5///2c/9f/9X8tZv/9f//f59zeXn4MGhwczHlkZKSYdXV1pV+V9zdwkLa2tmI57kfjPmh3d7dYLy7X+5lyuZxtbjY+T4r733ieFM9hUir34X19fcUs7uvr2dWrV3Oenp4uZufPn0/7ef311xsuHz9+vJgNDw/nXO/r47nX6OhoMYvncpOTkzmPjY0V601NTeW8trZWzLa2tvbd/pTK5zSlnmIWt7NcDwAAAKAxf0UAAAAAAAAAAIAm4cs+AAAAAAAAAADQJNR4AQBNqa6y2NzczDlWUMzPzxfrzczM7JtTKuskbt68WcxOnjyZc6xwqJdjPqjGq64GUvPD/eKg13Kc1TVesT4r1uGllNLjjz+e8//4P/6POT/77LPFeo0qYFJK6f/+v//vnI8dO1bMYmXL0NBQMYv1KrGO5rC/J8B+7uU+JJ6DdHZ2FrO4HGuv6qqxOIu1XSmV5zsTExPFbGlpKedYu5pSWYsVz9/m5uaK9eJyfb5WV359Gr//+7+fc13dGitf19fXi1lcriu+Yl1affxr9DjXNWRx+aDatroKLN7mQZVxjl0AAADQXFzZBwAAAAAAAAAAmoQv+wAAAAAAAAAAQJPwZR8AAAAAAAAAAGgS7R+/CgDAl9/m5mbOS0tLOc/Ozhbr3bp1K+cbN24Us2vXruV87ty5YvbUU0/lPDw8XMxGR0f3zfV6PT09Obe3l6dhLS0tCR5kXV1dOY+MjBSzM2fO5Ly7u5vz4OBgsd7PfvaznL///e83vK/6/X3s2LGc4/s0pZS2t7dzju/vvr6+Yr3e3t6cvZ+BZlHvrzo7OnPe6dnJOe57U0qpo70j53p/GPeVx48fL2ZbW1t7t7+z03AWz+Xm5+eL9e7cuZNzPK9LKaVHH3005wsXLhSz119/PR3GD3/4w5xnZmaK2cLCwr7bmFJKc3NzOY+PjxezeFyrH6/Ozr3HvKNj73GNx8V6Of5MvVz/XDyudXd3N/w5AAAAoLm4sg8AAAAAAAAAADQJX/YBAAAAAAAAAIAmocYLAGhKdZ1ErPFaXlrOua5fiFVdly9fLmZvvfVWw/uLlQsDAwPFLFYJDQ0NNVyvoyNWJZTbDw+6tra2nOv3TqyBie+juqok3kasU0kppZ///Oc5f/e73y1mExMTOdf7lrW1tZxPnjyZ89GjR4v14ra0tvo3FUBzamndq/WKFU913Vfc5w0Mlvvsrc29Oq6t7a3USH2bsdZreXnvXK6u8YrndnWNV6wQGxsbK2ZTU1M5P/vssw23K6rPDePyt7/97WIWj1V1jVfcrrqCMj6WxeNaHQvjOWZ/f38xi8txvZTKWtn6+BRrw1RQAgAAQHPxV2gAAAAAAAAAAGgSvuwDAAAAAAAAAABNwpd9AAAAAAAAAACgSbTf6w0AAPgsbG5u5ry4tJjzrVu3ivU++OCDnN96661iVi9H4+PjOQ8ODhazgYGBnPv7+3Pu7Ow8YItbDpjBg6e9fe+jSXwfpZRSR0dHzvF91VK9jVZXV3P+tV/7tWL285//vOF9/8Vf/EXOKysrDW9zd3c35+7u7mK9uM1xewGaSVtrW86trXv/Pqzer8X94SfREnbcLfVOPIj73vn5+WLW19eXc09PTzGLx4i4XkopDQ8P5zw2NlbMLly4kPP169dzvnv3brHe2tpazj/72c+KWb0cnT59OufJycliFrcznmNOTU0V6x0/fjzniYmJYhbPU9fX14vZzs5Ow+2Kz3H9eAEAAABfbq7sAwAAAAAAAAAATcKXfQAAAAAAAAAAoEmo8QIA7gvb29s5xxqemZmZYr2LF9/P+Yc//OGhbz9WKdQVQ7HO5+DqLqCRtra2fXNKZX1MrByJdSoppXT06NGcH3nkkWL2p3/6pzn/9V//dTFbXl7O+S//8i8bblesV4l1MCmV+4VYSZZSSj3doWambq2JTTja/YB7rSXGxjulgyq4Pgt1PddhtyPuf+va1VifdeLEiWL25JNP5hwrxDY2Nor14jlmXfF1586dnG/cuFHMYlXs5cuX02HE2q6UUvrWt76V86lTp4rZsWPHco7bn1JZ61UfN+PxL9bSfpI6ynhcro/fB83i8kHrfd6vNQAAAGhWruwDAAAAAAAAAABNwpd9AAAAAAAAAACgSajxAgCa0kGX9N/a2sp5aWmpmF29euVQt//QQw8Vy0NDQzl3dXUVs1g9AHw6B72nY6VHrMrr6+0r1hsdHc355MmTxSxWldTv4ddffz3nt99+u5i9//5e9d+ZM2dynpycKtaLNV51BUmsRqnvO/4+B1XmADyo6kqp3t7enHd3d4tZ3KfWdYuxzqquuorLm5ubOcdzynq9+fn5YjY7O5vz9PR0MXv66adzjseVlFL6+c9/nvZz7dq1hsu/9Vu/1fC+5+bmGs7GxsaKWTy/PehYdVDNVlw3VtvWywfN4m3Utw8AAADsz/+ZAgAAAAAAAACAJuHLPgAAAAAAAAAA0CR82QcAAAAAAAAAAJpE+73eAACAT6OlpaVY3t3dzXlrayvn1dXVYr2LFy8e6vYfffTRYnloaCjnzs7OYtbauvf96bgdwGevra0t567urmI2ODiY89TUVDHbWN/Iud5/RCsrK8Xy5cuXc7527VrOk5OTxXq9vT05x31CSiltb2/nHPclKaXU3r73kSz+bgD8o3qf3dW1t++v95s9PXv74p2dnWIW98Uxp5TS5ubmvrN4TplSSmtrazkvLCwUs9nZ2Zynp6eL2djYWM7Dw8PFbHR0NOd/+Id/aHjf0Ysvvlgsnzt3Luenn366mB05cmTf+0qpPCbFHB/HlMpz3+7u7oa3Uf9ucRaP0fUsHjc7OjqK9RwbAQAAYH+u7AMAAAAAAAAAAE3Cl30AAAAAAAAAAKBJqPECAJpSrFtIKaWNjb2KnoMqFurl6Dd/8zdzfuyxx4pZrEAYGBgoZnXdAPD5ibVXB1WJ1BUtsWJvZ7esdon7jLp6JVaqxEqvkZGRYr24HzioJqyuI4nVKHVtCgAf3W8WdY5dZZ1j3NcftC+uxWNGrP+qjyXxeLG4uFjM+vv7c+7r6ytm8XhV7+vjsWt8fDznd999t1jvF7/4RcPtn5uby/mFF15ouF4tPn5nz57Nua6qjOe+sZIspZSOHz++l48dL2YTkxN7eWKimMXHOT5vdSVub29vzvEcAAAAAB50ruwDAAAAAAAAAABNwpd9AAAAAAAAAACgSfiyDwAAAAAAAAAANAll1wDAl8ru7m7OLS0txWxrayvnxcXFYrawsJDz/Px8zrOzsw3v69SpU8XyM888k/MjjzxSzE4cP5HzyMhIMevq6sq5tdV3qeGL0tnZWSz39fUd6ufiviSllJaXl3OemZkpZk8++WTO09PTOX/44YfFeh0dHTnX+4H29r2PXXF/US/H26h/DuB+E075UkopVad9n0p97nhYbW1t++Z6v3zQvj4u1/vveLzq7+8vZlNTUzk/9NBDOT/99NPFen/4h3+Y8/r6ejHb2NjIuT5Hjseuy5cvF7O3334753Pnzu2ba2NjY8Xyb/zGb+S8tLRUzJaW95ZXV1eL2draWs7xODwwMFCsF4/tPT09xSw+5rv1CyrtvRba29uKSXyO43NVP29xvfq19WlfawAAAPBZ8X+jAAAAAAAAAACgSfiyDwAAAAAAAAAANAnXhQcA7qn6kvuxXmdzc7OYxcv93717t5jFuq44q9eLvva1rxXLDz/8cM6nT58uZkeOHsl5eHi4mHV3d+esxgu+OLFeI6WD34txXxP3JSmltDC/VwN47NixYnbmzJmcL126lPPVq1eL9eL91bUvsbKlrifp7e3Nua4li79P/F3r302VCNCMmnHXFfe/B1VJ1vvpuD8fGhoqZrGCK9Zz1ceqWIMVf6Zet67xivWUN27cKGZnz57N+eWXX845Vn/V7ty5Uyz/7d/+bc6//du/Xczi+Xn9c3G74rl1fZyMx9B4zEzp8BWa9c/19e49V719e7O6Jsw5PgAAAF9mPqkCAAAAAAAAAECT8GUfAAAAAAAAAABoEr7sAwAAAAAAAAAATaL941cBAPjibG5u5ry8vFzMFhYWcp6ZmSlm09PT++Z6vbGxsZxPnDhRzI4ePZrzkSNHitnExETOg4ODxay7uzvn1lbfpYYvSktLS7Hc2dmZc0dHR8N119bWitnY+N5+oX7vnzp1KueVldWcr1z5sFhvaWkp57a2tmI2PDyc89DQUDHr7+/PuaurKzUSZwf9bgB8Mdrbyz+p9fT05Fzvp/v6+nLe3t4uZjs7Oznv7u7mvLW1Vay3vr6e88bGRjlb25stLC4Us3guHM+DUyqPSXEb33nnnWK91157LR3GCy+8UCy/8cYbOT/zzDPFbGpqKud4nIzHxXq5PgePj3l9DI0/V//e4+PjOY9uj+Zcn8d3tO89j/WxHQAAAO41/zcKAAAAAAAAAACahC/7AAAAAAAAAABAk1DjBQB8qcQar1iLk1JKd+7cyfnGjRvF7Pr16zlfu3Yt57feeqtY78knn8w5XsK/Xq4v9z8yMpJzrAxIqbzkvzod+OIc9H6rZ7GepK7SijV99X5nZWUl51ivsrlZVqi8+OKLOa+urhaz0dG9ipCDKkjqipBY7TIwMJBzXTOiPhDgixGPLXWNV1w+qJbx04q1Xh+p8QoVX4OLjY8zsXo2pXI7Y67Pg+P5c12Re+nSpZzfe++9YhYreF966aVi1qi+rBbPwR977LFiNjk5ue96KZU1YadPny5m8fGKtWr1dsRt7N4sH7tY1VbXtjkuAwAA8EXw6RMAAAAAAAAAAJqEL/sAAAAAAAAAAECT8GUfAAAAAAAAAABoEu0fvwoAwBdna2sr5+Xl5WI2MzOT87Vr14rZ5cuXc37vvff2vb2UUurr68u5v7+/4SzmlFLq7e3NuaOjo+H27+7uNpwBXw7x/ZxSSqOjozlvbm42/Ln43t/dKd/rH3744b45pZTOnTuX8+DgYMPbbGlpKWZxf9LW1pZzZ2dnw9sA4P7U3t6+b07p4GNJFI8lKaXU1dWV88DAQM4nTpwo1ltbW9s3p5TSwsJCzktLS8UsnsvXs+np6ZzjcfOtt94q1rt7927OL7/8cmokbn9KKf36r/96zuvr68UsHus3NjZyrn+3xcXFnHt6eopZfMwPOi63tpb/zjI+P/H5qJ/Tg57vuHzQ8w0AAMD9zZV9AAAAAAAAAACgSfiyDwAAAAAAAAAANAk1XgDAPdWSykvPb29v57y6ulrMZmdnc65rvC5cuJDzQZf4j5fLr6tv4vJBs4O4lD58+dXv51itVddtxGqOuP+oqz6efPLJnK9evVrMnn/++Yb3Hfd5dQ1grOmI1YJ1VQkAD7Z47IrVXCmVx4y6DirWWsZKy1htlVJ5rIo5pfJ8va7gjcvz8/PFLNZ4PfTQQzmfOnWqWO+73/1uOoxYuZVSSt///vcbbldcN9aETU5OFusNDQ3lfFCNV3dXdzHr6d1bt674isvxNg+qEK7rR+vnEQAAgAeTK/sAAAAAAAAAAECT8GUfAAAAAAAAAABoEq77CgDcW1Xr1WFrvD744INi9nd/93eHurt4ufy6TideEt/l8eH+Feu4Ukqpv78/57qmI9ahxP1TXUdy9uzZnJ999tmG9/1f/st/KZZnZmZyrmu84nbFepWYAXjw1MeLWCNbn9/Giq+6UioeZw6qlYy3X89i5Vddl7W0tJRzfdwcHx/PeWRkJOdYrZlSeVyuj6GxgusgP/nJT4rl8+fP5/z000/nPDU1Vaw3PDycc3d3WdUVH8u6guug3yfWqsX1xsbGivXisb4+b2lUMQoAAMCDxZV9AAAAAAAAAACgSfiyDwAAAAAAAAAANAlf9gEAAAAAAAAAgCbRfq83AAB4sG1vbxfLm5ubOa+srBSz6enpnF9++eVPdX8nTpzIeWBgoJh1dXXl3N7uNAnuVy0tLQ1n9Xt/ZGQk5/X19Zzn5+eL9Z544omc/7v/7r8rZn/+53/e8P7eeOONnHt6eorZ5ORkzhMTEzkPDQ0V63V0dOTc3d1dzOLv2tra2nAGQPOo998H7evjcS2e634eVldXi+WlpaWc+/v7i1k8XjXKKZXHxuHh4WI2MzOTc/25Id737du3i1n8TPGjH/0o/aoeffTRYvmpp57K+fjx48Vsamoq56NHj+a8sbFRrBc/I+3s7BSz3d3dnOtzh7a2tpzr10l8bXwW5wAtqaX+DwAAAHyBXNkHAAAAAAAAAACahC/7AAAAAAAAAABAk9BPAQDcUwfVeK2trRWzWJtz6dKlQ93+H/zBHxTLscZrcHCwmMVqg3gJfKD5xIqLlD59XUX8uVhBEms4UkrpySefzLnef8QKrmeffbaYvffeezn/9Kc/LWaxGmxsbCznzs7OYr24H60rvvr6+nKuqz4A4LN00HHmoOqxWEfZ29tbrBfrNON5fErlZ4X6M0WsxVpcXCxmc3NzOccqsBs3bhTrnT9/PuerV6+mRi5cuNBw+Vvf+lYxe+SRR3JeXl7ed3tTKivR4noppbSwsJBz/XjF2raDKt1irs9b4nJHe0cxa+/Y/zb2WwYAAODz5co+AAAAAAAAAADQJHzZBwAAAAAAAAAAmoQv+wAAAAAAAAAAQJNQpgwA3FPb29sNl7e2torZ5ubmoW7z29/+ds6PPfZYMTty5EjOAwMDxayjoyPnlpaWQ90X8OXUkj7793BnZ2fO4+Pjxay9be+jVW9vbzGL+5q2trZi9r/8L/9Lw/v7P//P/zPnnp6enOt94erqas6nTp4qZm1H9+6v3q5PY3d3t+HMfhOAqL1979gYj2MplceMeHytz88nJiZyXl9fL2b154hGs6WlpWJ29+7dnGdmZnK+ceNGsd6JEydyvnTpUjH70Y9+1PC+o5///OfF8s2bN3N+6qmncp6bmyvWu337ds5jY2PFbGRkJOe+vr5iFj/PxMc/pZS6u7tzjucE9XMTl+tzh3h/9c/V9wcAAMDny5V9AAAAAAAAAACgSfiyDwAAAAAAAAAANAnXVwUAPhex6qWudomzuo5mY2Nj37zfulGs1HniiSdyPnWqrLSZnJzMua4JiBUCQJP7HBqlYjXG8PBwMSvqMHrLWotY3bW8vFzM/qv/6r/K+e/+7u+KWdxX/m//2/+W83/z3/w3xXorKyv73ldKKfUP9Dfc5tZW//YDgM9OXfUYjzP1eXY8XsU6qLqaa2dnZ99cq49p8XbicTKlssZreno656GhoWK9/v7Gx9D42eONN94oZhcuXGi4nVevXt03159ZYoVYXR06Ojqa8+DgYDHr6urKOdZ2pVT+DrEaLNaC1evF+6rV5xzxvgEAAPj8+esuAAAAAAAAAAA0CV/2AQAAAAAAAACAJuHLPgAAAAAAAAAA0CTa7/UGAAD3p+3t7Zx3dnaK2cbGRs6Li4vFLC4vLCwUs3o5+upXv5rzmTNncj516lSx3pEjR3IeHh4uZt3d3Tm3tvpONFA6aL/Q09OTc0dHRzGL+7y7d+8Ws29+85s5v/fee8WsXv4n/+k//adiOe5j6/3a2NhYzkNDQ8WsXj6MlpaWT/wzADwY6mNEW1vbvjmljx4rP08DAwPFcjzn7+zsbLhNcTY4OFjMJiYmcj569Ggxe+aZZ3Ken58vZmtra/vObty4Uaz34osvpk9jamqq4XY99NBDOT/88MMN14u3Ec9hUio/48WcUnk+0tfXV8zi87+7u7uXd3aL9dIBpxkHnYO0xB+sVnPuAgAA3K/8XywAAAAAAAAAAGgSvuwDAAAAAAAAAABNQo0XAPC52Nrayjlerj6llJaWlnK+c+dOMZuens55ZnqmmN26davh/R07dizneCn6+rL0k5OTOdcVNmq84AG1e8DsUzQ/tLeXH7NifUisEkwppaeffjrnf/2v/3Ux++lPf5rz97///Yb391d/9Vc5P/7448Us1ozEfVxK5X66t7e3mMUqk/r3AYBmUtdzxYqpuoqq0c+NjIwUs/jZI9ZjpVRWD9efg9bX13NeXl7Oua75jJ+R6oqv8+fPN5zFz0v1Z6df/vKXOf+Lf/Ev9t3elMrPaqurq8UsbnP9c/GzVX9/fzHraA/PwQHnVrHuqz7/OOjcpD3cfkdHOYu3qdILAAC4n/i/WAAAAAAAAAAA0CR82QcAAAAAAAAAAJqEL/sAAAAAAAAAAECTaP/4VQAAPrmtra2cl5aWitmdO3dyvnHjZjG7du1azlevXS1m586dy7mvr6+YjY+Pf2xOKaXR0dGGt9Hevndq1NbWloAHRMvne/OdnZ05j42NFbOzZ8/uu15KKfX39+fc3d2d83/+z/+54X299tprxfLQ0FDOOzs7xWxlZSXnycnJYhb3lXE7Pq3d3d1iuaXlc37QAaCBeM7f29ubc31s6unpyXljY6OYxc869Wxtba3hLC7H4/Dc3Fyx3uzsbM63b98uZmfOnMn5gw8+KGbPP/98zvVxP/qHf/iHnG/eLD+PPfbYYzlPT08Xs3i+MDIyUswGBwdzHhgYKGZdXV05x8c/5pTKx7z+rBafq5jrdVtauouZz3UAAMD9ypV9AAAAAAAAAACgSfiyDwAAAAAAAAAANAk1XgDA52JzczPnusYrXg7+ypUPi1m8FP27775bzGZmZnKO1TcppTQ8PJxzvKR8fXn5uF5HR0ejzf9I5QzAYdX7j7ivifuglMr6irrGq7V1799mrK6u5nzx4sVivbfffjvnv//7vy9msZKk3hfH+pDt7e1iFus2ymoM9VsANLd4fI01mfVng1hjWR/b43JdlxU/B8W6r3oWj8Pz8/PFerHGK1ZrpnRwXVb87BPPD1JK6fz582k/sSq5Xn788ceL2dTU1L7bUS/X5ztxO2NVV10VGn/Xuo45/m717cfnoz5XiTVeB33+AwAAaDau7AMAAAAAAAAAAE3Cl30AAAAAAAAAAKBJqPECAD4X8ZL1dXXM7du3c461XSml9NZbb+X83HPPNbz9o0ePFstDQ0M5x8vE15eGP+yl21XVAJ+VWM9V74NiXVasmUgppY2NjZzn5uZy/q3f+q1ivbqmI/q7v/u7nOO+N6WyuitWaqRU7kf7evdqvPoHyn3qYdmnAvBlEY+3n3fF00EVX2traznXx+G4XM9i9Vj9WWdiYiLn06dPF7Ovfe1rOd+6dWvf7ai3cWFhoZg9//zzOde/20FOnjyZ84kTJ3I+duxYsd6ZM2f2XS+lskKs3ub42TNuf0rl+VRvb2/O8RwspZRaWvb+Tezubvm7HVQTFpc/er4TZ/v/94/OAAAADseVfQAAAAAAAAAAoEn4sg8AAAAAAAAAADQJX/YBAAAAAAAAAIAm0X6vNwAAuD/t7u7mvLGxUczm5uZyvnLlSjF74YUXDnX7Q0NDxXJXV1fOHR0dObe1tR3q9gA+Ky0tLQcuR3Ef1dvbW8yGh4dzPnLkSM5PPPFEsd6/+Tf/JueXX365mF24cCHnV155pZidOnUq56NHjxazkZGRnLu7u3Pe3tku1ouz9vby46X9LwAPutbW8t9Zxs8s8fwgfnaqf64+vsZjbzxXSCmlEydO5Ly6ulrMFhcXc15aWsp5bW2tWC/+3MLCQjGbvj2d84dXPixmP/7xj1Mj8TNf/fkv+oM/+IN9tzGlcvtjrpfrx6S/vz/neK7V09NTrBfPW+pzt/h8xM+aKaXU2dl5qFl8HltbG58bAgAAHJYr+wAAAAAAAAAAQJPwZR8AAAAAAAAAAGgSarwAgM/d9nZZ+xIvDX/r1q1iNj8/f6jbrOtu6svb/5P6kvgAX1Z19UPcz42NjeV85syZYr2dnZ2cY7VHSmV1xauvvlrMLl26lPPDDz9czGKNV9y/bm1tNVwv3ldKH63HAAD2xNqoWO+VUlkj1dnRWcz6+vpyjucHKZWfu+pj9vr6es6xuquu8VpZWcm5/mw2MzOT88lTJ4vZ8ePHc3799deL2blz59Jh/OAHP8j52rVrxeyxxx7L+dixY8VscnIy57ruOZ6fxMeuPm85qI4rPj8DAwPFLC4P9Jez+DyqNwUAAD5rruwDAAAAAAAAAABNwpd9AAAAAAAAAACgSfiyDwAAAAAAAAAANIn2e70BAMD9aWdnJ+fNzc1itry8nPOVK1cOfZtHjx7NeXR0tJh1dXXl3Nq6933m3d3dQ98+wL3U1tZWLPf09OQ8MjKS89bWVrHeQfu59fX1nG/cuFHMXn/99ZzPnDlTzHp7e/e9/e3t7Yb33d5efryM2w8AlMfNlpaWnDs7O4v14jG1u7u7mPXv9O97ex8nHsPj+cHa2lqx3srKSs7z8/PFLJ6PDA4OltvVv7dd9TnAxMREzhcuXMj5+vXrDbf3nXfeabj80EMPFbNjx4413K6+vr6cBwYGcq4/T8ZZ/JmUUhoeHs55cnKymMXl+Bk4pZRaWvee43ieF5/7lMrPrwAAAIflkwQAAAAAAAAAADQJX/YBAAAAAAAAAIAmocYLAPjMxGqZeGn4eCn4lMrLwdeXZ486OjqK5d///d/P+fTp08UsXlK+UaUXwJdZvc+LFRixPuKg/Vpd8bW4uJjzM888U8yeffbZnN99991iFutDYu1HXTsRt7mu7Ii1Iyq9AKA8jtbH1Kiu9vysxcqq+LktpZRWV1dzro/fsW4sfuZKqTzuxzrQlMo65q9+9as5LywsFOvNzMzkPDc313C76s+X8Twm3sZB6hqvp556KucjR44Us+PHj+dcV59ubGzkXNdXx/OyOKsfu3g+VdeixuWDXjO1uG48d6xv45PcJgAA8OXi/34BAAAAAAAAAECT8GUfAAAAAAAAAABoEr7sAwAAAAAAAAAATaL941cBAB5ku7u7xXJLS0vOOzs7xWxlZSXnpaXlkJeK9RYWFg5133/yJ39SLD/xxBM5nzp1qpiNjo7m3NPTk3Nba9uh7gvgXov715RS6ujoyLmvr6/heltbWzmvrq4Ws7m5uZwfeuihYvbNb34z59u3bxezS5cu5dzevvexsb+/v1hvcHBw35xSuS9ubS3/nUn83erfp14GAD4/XZ1dDWf1Z8EoHstTSqm3tzfn+NkspfJz4sbGxr45pZSWlxt/hoyz+vPk9PR0zlevXi1mL7zwQs7r6+s5z87OFus9//zzqZHvfOc7+95GSimtra3tu431dg4NDeXc3d1drBcfy87OzmLW1bX3/MRzsnq5fj7i89rR2dFwvfo2AQCA5uHKPgAAAAAAAAAA0CR82QcAAAAAAAAAAJqE63QCAAfa3t5uuLy5uVnMFhcXc15airnxJdhr3/72t3M+e/ZsMTt9+nTOx44dK2YjIyM5F9Uxbb7bDDSnWKsQa7DqSqxY41XvX8fHx3Ou95uxvqKuZYy1XnE7xsbGivUmJiZyjvvhlMo6j7a2slIx7qfVSQDAvbObyqqueMyu66Zi1Wasl0qprPOsq67iuUq0s12ef6ytN67EWlrc+0w5Nz9XzOJ5y9GjR4tZPFd56aWXcr58+fK+27Sf5557LueZmZliFivEjh8/Xsziedhha7ziOVJKKQ0MDOQca11TKs+14nr1cqxhrc/JAACA5uX/fgEAAAAAAAAAQJPwZR8AAAAAAAAAAGgSvuwDAAAAAAAAAABNov1ebwAA8OW2vb1dLK+vr+e8vLxczObn53O+e/duznNzc8V6CwsLDe/vzJkzOR8/fryYHT16NOfJycliNjw8nHN3d3fOra2+2ww0p5aWlpzb2tr2zSmlNDAwkHPcF6aU0sTERM71PjXuw7e2torZ0tJSzq+99tq+t5dSSlNTUw3vu6enp+E27+7u5tzb21vM2tt9TAWAeyV+furs7Cxm8RhdH793dnZyjsf5g26/Xm9jYyPnlZWVYra4uJhz/NyZUkqDg4M59/f3F7O4nR0dHTnH85SUUnrnnXcabnP05ptvNlw+e/ZsMTty5EjO8Typq6urWC9uV30+FT8D1+dh4+Pj++aUPnpu90/qz8fxOfXZGQAAmoszeAAAAAAAAAAAaBK+7AMAAAAAAAAAAE3C9dEBgAPVNV7xcup1Pdft27dzvnXr1r45pZRu3ryZc3258YMuRR6XR0dGi1n/wN7l2js69i43X1fHANxvYg1FrLFIqaw83NjYLGaxOqOubYg1GhcuXMi5rriIt9/X11fMDqrjivcd68pSKqssVHoBwOerPg7Xy9Hn/dkq1jHXNVtxVtdgxfOFunos3k6s+IpVpCml9Lu/+7s5x+rqlFJaW1vLOdZVp5TS7OxszvHzcEopvfDCC+lX9Qd/8Ac5P/bYY8XsxIkTOa+urhazWOMVz+tiTqn8XeNjnNLBtV7xdVKvF2efZr2Pu28AAOAfOWsGAAAAAAAAAIAm4cs+AAAAAAAAAADQJFwTHQA40PZW4xqveMnylFK6eWOvnuvq1as5X758uVjvF7/4Rc715dPjpdVjrpf7+su6mHh5dpf8Bh4kcZ/X29tbzEZH9yoP63qEtrbWhrO4r3/qqadyPnfuXLFe3IfXlRpRffuxbqP+ufg7qPECgAdTrPVMqfy8F+tAP+7nBgYGco610KdPny7Wi/VWdZV1nC0uLhaz+Jl4enq6mF2/fj3n8+fP5/z222833P7aD37wg5yXl5eLWVyO524ppbS0tJRzrB4bGRkp1osVsHWNV6xtqz9jH3QuF5+DmOv1YuVaXb8GAAB8PP8nDAAAAAAAAAAAmoQv+wAAAAAAAAAAQJPwZR8AAAAAAAAAAGgS7R+/CgDwINve2S6WV1dXc56dnS1mV69dzfnixYs5v/LKKw1vv6WlpVju7u7eN6eUUk9PT8NZe3uD05rdhncNcN/p7OwsloeHhxvO2tract7a2ipmd+/ezfnMmTM5nzt3rljv+eefzzkeH1JKaX19Ped6H93X15fz0NBQMdvc3My5q6sr5/p4AQA8OOJ5S/1ZMJ4jxM+MKZXnQhsbG/vmlFLa3t773Lu7W36IjOdJi4uLxSx+Jp6eni5mR44cyXlsbCznY8eOFev97Gc/y3lhYSE18tJLLxXL8f7Onj1bzOJ9xPuOj0dKKQ0ODuYcz89SSqmjoyPng87lBgYGill/f/++Od5XPYvP737LAADAR7myDwAAAAAAAAAANAlf9gEAAAAAAAAAgCahxgsAOFBd7bKyspJzfZnyWN318ssv7/vfa/UlzOPlwOtLsMfLtdd1NA1pfQEeIHXFQlyuKy9aW/f+7cfa2loxi5UUjz36WM6Xn75crPfWW2/l/Itf/KKYXbt2Led6fz46OrpvTqmsgoj7+vp3i5Ud8XcBAJpfXaUVj/X1Z8FYN1X/XFyOeWdn58D7i+Jn4qWlpWI2MjKSc11T1aiGuq4wnZyczPn9998vZvFzdS1+zq4/c8fP1VNTU/tub0rleVhd8dXTvbf9ff1lxdf4+HjOR48ebTgbH9vL9d8WovpcLp73Oc8DAID9OVMGAAAAAAAAAIAm4cs+AAAAAAAAAADQJHzZBwAAAAAAAAAAmkT7x68CADzItra2iuWVlZWc79y5U8zeeeednM+dO3eo23/00UeL5ZGRkZx7e3uLWWdn56FuE4CPNzAwkPPY2FgxO3XqVM6rq6s5t7aV/15kfHw85x/+8IfF7ObNmzm/8sorxWxqairnoaGhYtbV1ZXzzs5uzn19vQ3Xq48PLS0tCQBoXvWx/MtybI/nHyml1N6+9+f1tra2YhaXu7u6c67Pu06ePJnz2bNni9k3vvGNnJeXl4vZ2tpazouLi8Vseno658uXL+f8/vvvp0+jr6+vWP6N3/iNnJ944oliduLEiZzj3w/WN9aL9TY3N3OOv0u9XP9dID6uu7u7xSwux9dMa2t5DnvQrLVlb7mltfHr8MvymgQA4MHlyj4AAAAAAAAAANAkfNkHAAAAAAAAAACahBovAOBAOzs7xXKs9YrVLimldO3atUPdZrzk9/Hjx4tZrJWpa1nqy2sD8OnFCoS4700ppWPHjuUc9711jUJ/f3/O29vbxez555/P+cUXXyxmsd6hp6enmMX6hY2NjZwnJiaK9UZHR3OuKzUAAD4PHR0dxXI8N9rZLj87NzqHmlqbKtZbX9+rt4q1VymV1V111VX8uaWlpWI2Ozub88zMTM7Xr18v1rtw4ULOsZa7VleI/eAHP2g4i5ViMS8sLBTr3b17N+fh4eFiFs9N6wqx+HeCukorPuZxvfpvCwfPYlVs+XzH2jYAALjX/B8zAAAAAAAAAABoEr7sAwAAAAAAAAAATcKXfQAAAAAAAAAAoEkomQUAPmJ3d3ffnFJKOzs7OW9tbRWztbW1fW/vkUceKZYfe+yxnKempopZf39/zh0dHYfcYgB+FT09PcXy5ORkzr29vQ3Xa2lpyfnu3bvF7Pnnn294f//v//v/5ryxsVHMVlZWct7a3DvOtLeXH18HBgYa3v6nFg95LQ3XAgBIKZWfWfv6+8pZ595scHAw5+3t7WK9+Bl7c3OzmK2vr+dcnzPF2fLycjGL52UzMzM5Hz9+vFjvyJEjDWevvfbavrdRe+mll4rlS5cu5fyVr3wl52PHjhXrjY2N5Vyf18Xl+NilVJ6PdnZ2FrPu7u6c498W6tuIs5j/cXnvhLCtrfy30vX5KAAA3Euu7AMAAAAAAAAAAE3Cl30AAAAAAAAAAKBJuO4kAPAR8dLhB10qvK7tmp2d3ff2nn766WL59OnTOdc1XoODQznXl+RubfU9ZYDPQ12bWFRS9O1VUrS1tRXrxePA7du3i9l3vvOdnJ977rmG9/2Xf/mXxfKtW7f2vb/BobJ+IVY/DA0NFbNYL/aJqO4CAA5Qn2PEc6a64inWTcV67I+ep7SE9XaKyUGfzeNyXeM1PDycczxPquuyYl1rXWc1MTGR85UrV4rZCy+8kBq5efPmvnlkZKRYLy7H+q16O2O9bEoHnwPG24x/a6hvY3R0NOe6Oq2uMm+kq6vrUOsBAMDnxf8xAwAAAAAAAACAJuHLPgAAAAAAAAAA0CR82QcAAAAAAAAAAJpE+8evAgDcD3Z2dhoub29vF7OlpaWcFxYWitn8/N7y3bt3i9ny8nLOTzzxRM6nT58u1jt58mTOx44dK2ajoyM59/T0FLPWVt9TBvgkdnd3c25pafmVb29oaKhYnpyczPnhhx8uZv/8n//znNvby4+e3//+9xvex09+8pOc4/HiyJEjxXqjo6M5d3V1NdzOtra2YhYfh8/iMQEAHhz1ucNnfy5Rnrd0dHTk3NvbW8w2NjZy7urqbvhznZ2dYb3ynCl+5h4eHi5m8TzsySefLGbf/va3c67/LrC6urpvnpubK9a7evVqzufOnUufRr1dZ8+ezTmemy4uLhbrxb95xG1MKaW1tbWcV1ZWillfX1/O9d8r4mMb/3YRz8dr9Xlq/LmDZv42AgBASq7sAwAAAAAAAAAATcOXfQAAAAAAAAAAoEmo8QKAB0Rd1bW+vp5zfdnqeHntO3fuFLM7d2YazqJY3XX06NFiFqtYJiYmilm8dHh9Wez6MtYAfLHqOq6BgYGcY9VDSmVdZH9/fzGLFY7//t//+4b39//9f/9fzg899FAxi7dZV1XGerHBwcFiFusXYsUFAEAziecxdVXU7u7eeVKsfIqVXimV51Px/Cml8m8GsTIspfJvCLHOO6WUVlfCbGVvVtd93b59O+dY6ZVSSq+//nrOly9fTo28/fbbDZd/+7d/O+f5+flivbgt9XaNjY3lfNB5ZF2rFv9+Ec+Z679jxFlPd/k3j+6evTq2w9aEAQDw4HJWCAAAAAAAAAAATcKXfQAAAAAAAAAAoEmo8QKAB8TW1laxHC+7HWu7Ukppeno651u3bhWzuHz9+vWG9xfrucbHx4tZXB4dHS1msRImXqY6JTVeAJ9US0vLZ3p7dUVErC+IFY0plfvwuuYgVkjU1Q9/8Rd/kfPS0lLOL7zwQrFe/N3qOsq4fOLEiYb3/VnUeNWPSfRZP/4AAPupPyt3dXXvO+vu7i7WGxoayrn+m0E8x6krUzc3N3Ouz8NWVlZyjud5B9V4TU1NFbP4N4Nz584Vs5dffjkdRjx3fOWVV4rZt7/97ZxjvWxK5d8y4t8nUirPaeua2rhuXK9+zGMV2MjISDGLy/V5pPpZAABqruwDAAAAAAAAAABNwpd9AAAAAAAAAACgSfiyDwAAAAAAAAAANIn2e70BAMAXY3t7u1heWVnJeXZ2tpjduHEj56tXrxazK1eu5Pz6668Xs9gpPzo6mnPdQz88PJzz0NBQMYv99a2tvpcM8GXW3d2dc1dXVzHr6enJua2trZitr6/nPD09Xcx+/vOf53z58uWcn3/++WK9O3fu5Dw3N1fM4jGv3q6BgYGce3t7068qHvsAAO6F+lyrrXVvebercy/v7h76NuM5Tn2+s7W1lXM8r0up/FvD8vJyzvVn//7+/n1zSuU5Wn2+NjU1lfPNmzeL2fvvv5/zzMxMzqurq8V6P/rRj1IjZ86cyTn+fSKl8ty3/n2OHTuW89jYWM7130PGx8dzPn78eDGL57D1Yx6f43rW0dGRAAB48Pg/aAAAAAAAAAAA0CR82QcAAAAAAAAAAJqEGi8AeEDUNV7xMtZ1jde1a9dyvnTpUjG7cOHCvreRUkqPPPJIzoODgzn395WX5I6Xwq4vyd3e7vQE4Mvqk9QrxrqsjY2NYhbrFx5++OFi9q/+1b/K+bvf/W7OsdIrpZTefvvthrcfaxXq6oS4XXXlQZzF37WuvFDdBQDcaweej7TE+Nmft8RzqPp8qrOzc99cf9aPy3XtavybQawBT6ms2VpZKf8msbq6VyE2Pz+f88LCQrHe0tJSw9nt27dzfuutt9Kn8ZWvfCXn+lz39KnTOdfnsLEebXNzs5jFurR4zppS+RzEc9j63D0+5vUsvp7qWawQqyvjDro/AAA+X86+AAAAAAAAAACgSfiyDwAAAAAAAAAANAlf9gEAAAAAAAAAgCbR/vGrAAD3o9gNX3fU37x5M+eLFy8Ws5deeqnhbfb39+fc1dWVc0dnR7Fe7Imv+94BuP90dnYWy4ODgzkfO3asmD3zzDM5d3TsHT9ee+21Yr0f/ehHOdfHqrh85MiRYtbX19dwO8fGxnLu7d1br7u7q1gvHscAANgTz5O6u7tz3t3dLdZrbW3dd72UynPFycnJYra+vp7z9vZ2Mdva2sp5ZWUl56WlpWK9+DeQubm5Ynbr1q2cH3300WL2xhtv5Fyff0ZvvvnmvjmllH7nd34n59W11WIWt7PernieOjAwUMziOXP8G0v87ymVf6eJOaXyfL1+Pnp6ehrO6tsBAOCL48o+AAAAAAAAAADQJHzZBwAAAAAAAAAAmoRrjwPAA6K+ZPbm5mbO9SWtb9y4kfNzzz136PuIl9ru6ty7lHNd1RUv1x0zAPen+jgQq7TqaoZYxxB/rq7OinWUdcXkuXPnGt5+rDOIVQ/1bcaf6+gYLdZT4wUA8PHiuVxPd08xi+dTvb29xWx4eDjn+nxtZ2cn55aWlmIW/+6xtraW80E1XrOzs8UsngOOjpbngENDQznHGvOUPlo528jzzz+f85UrV4rZE088kXNddRtrvOLfXlIqz2/j4xrrt1IqH9f6NuJyXK9erh/zRhViAAB8/vzfNQAAAAAAAAAAaBK+7AMAAAAAAAAAAE3Cl30AAAAAAAAAAKBJtH/8KgDA/aDuuY/99XNzc8Xs/fffz3l9ff3Q93Hy5MmcBwYHcu7q6irWix3yANz/6v1+b29vzmNjY8WstXX/f5OyublZLMdj1y9/+ctidu7cuZxHRkaK2c7OTs4bGxvFbHd3N+eOjo6ce3p6ivXq4xoAAP8onsu1tLTkXJ8PdqW986l4DvZx4m3GXIvnjktLy8VsYWE+54GBgWIWz/u6u7sPPRseHs758uXLOc/Pzxfr3b17d9/19luOTpw4kfPo6Ggxi49tZ2dnzlNTU8V6Z86cyfnYsWPFbHJysuHPbW9v51w/V/E56O/v33ebAAD4fLiyDwAAAAAAAAAANAlf9gEAAAAAAAAAgCbhWooAcB+L1V2xtiullJaX9y5jXV9Wuq5DaeRP//RPi+VHHnkk5/Hx8ZxjXUtKLucM8KCp9/uxAqGu7YrL8Ti2srJSrBcrEP7wD/+wmP3sZz/L+fz58w1vvxaPV7GGoK+vr1gv1njVFV8AAPyjg2q2Ps16n0SsZB0cLKu62tpaQ24rZvFcsa5ujZVf8W8eKZUVWfHvLQdVqtd/i7lz507ON27cKGY///nPc7569Wr6NL75zW/m/PTTTxezxcXFfbcxpbL6dnV1tZjFc/TBwcGc68fuoOc4PuYHPR/1LC7HfNDnCwCA+4mzHAAAAAAAAAAAaBK+7AMAAAAAAAAAAE3Cl30AAAAAAAAAAKBJtN/rDQAAPrnd3d1DzWLPet2rHpdjx3pKKS0sLDS8/T/6oz/K+fHHHy9mJ0+ezHlsbCznnp6eYr26Zx2A+1tLS0ux3N7e3nAWxePY+Ph4MTt27FjO9fEounTpUrF8/fr1nAcGBorZ1NTUvvc3ODhYrNfV2ZXzzs5OMevo6Mg5/p4ppdTa6t/bAAB80eq/QXR2dubc19dXzOK5af23jOHh4ZyPHj1azJaXl3Pe2trKeXt7u1hvc3Mz5/pvL3fu3Mn55s2bxeyRRx7J+Z133ilmr776ajqMX/ziFzkvLi4Ws7gt9XbNzc3lPD5WnpMPjwznHM+Zu7u7i/Xic1CfE8fno37M4+3UtxnXjbN4ewAA9zN/aQQAAAAAAAAAgCbhyz4AAAAAAAAAANAk1HgBQBOKlSH1JaHj5aJjPVe8pHS9XFd8xUshnzhxopjFS0efOnWqmMXLWMfLW9eXYVZjAvBgqau64mX8D6p27O/vzzkeV1IqK7fqY1w8FtbVl++++27OH354pZjFY97k5GTOdd1XrAbYTeXtxyqI3t7eYub4BwDwxavPB2PVav33iljJWld8xb+/xPPNejn+zaa+71jjVVdpzczM5DwxMVHM4rnwQVW08Vz3gw8+SI2cP3++4fKv/dqvFbNYnxsr2+vtijVefX39xXqdnR0hlzVb8fc56PbrzwNDQ0M5x/PsukpXlTwAcL/yl0YAAAAAAAAAAGgSvuwDAAAAAAAAAABNQo0XADSheEno9fWNYra6ulfdNTc3l/Pdu3eL9eIs5pTKy0qfOXOmmMXLN8farpTKypORkZGc68tiu4QyAI3Ey/rH6oT6sv3r6+s51zUK8TgZj2kppTQ7O5vzT37yk2J2/Pj+FQV1HVddDdBIvd5hfw4AgM9OXSkbz8k+cn4WW7fKHztQPP8sbq6q8YrnrXWNVzzn7O7uLmaxXqyuwRodHc051tLeuHGjWC/Wet25c6eYxXPr1157rZi9+uqr6TDifdd/Lzqonvf48eM5nz59upjF21lbWytmsVYtPs71cxE/U9SPHQBAM3NlHwAAAAAAAAAAaBK+7AMAAAAAAAAAAE3Cl30AAAAAAAAAAKBJtH/8KgDAl03sJV9bWy1m8/PzOc/MzOR8+/btYr1bt27lXPe4xw75sbGxYhaXx8fHG84GBwdzrrvm29raEgB8nK6urpwHBgaK2c7OTsOf293dzXljY6OYzc7O5nzhwoVidunSpZzjMS1uR0optbS05NzaWv4bmvb2vY/Z9c/FZcdCAIAvoZaPX2U/9TlhIwedA8Zz2INuv7e3t5gdPXo055WVlZwXFxeL9eLfi1ZXy78lra2tNfy5O3fu5Hz9+vVi9rOf/Sznq1ev7ps/zje+8Y2c4/bX2xm3sV5eXl7OOf49KqWU+vr6cu7tKR+7tvbGz8dB5/zxeYw5fhaoZ/VtHPY1AwDQiLMJAAAAAAAAAABoEr7sAwAAAAAAAAAATUKNFwA0oVhdUl/GeG5uLudY1XXt2rVivQ8//DDnl156qeF9xcsdp1ReDrm+NHJcjj9XX8Y4XgoZABqJl7bv6ekpZy2t+66XUnmcrKsAYq3l6dOni9kvfvGLhvfXSF1VGY9/dfVYnKnxAgB4sNV/K4nnn3WlV0dHR86Dg0PFbHNzI+TNnOs624MqsdbX13NeWloqZrN39mpwb0+XFfGPP/Z4zucvnM/5pz/9aTqsV155JedYx5VSSgsLCznfvXu3mMV6sZGRkZwPOgev/8Z1UM1ufMzrc/5YpRZn3d3lZ4ju7r3b7+zsTAAAnyVX9gEAAAAAAAAAgCbhyz4AAAAAAAAAANAkfNkHAAAAAAAAAACaRPvHrwIAfNlsb2/nHDvXUyo7zK9fu57z+++/X6z3xhtvNLyNqO4zj8v9/f0NZ7H3HAA+jZaWlpy7u7qLWWdnZ87tHeVH262trZwXFxeL2dGjR3M+c+ZMMXvrrbdy/uUvf5nz9PR0sd7Ozk7Og4ODxWx0dDTnkZHRYjYwsJFzW1tbMWtt3fu3OPH3jhkAgPtHfZ4Xz2/juWFKKXV3750LDw8PF7Pd3d19c/zbUUopbWzsnYuur68Xs7i8tLRUzGZnZ3OemJ4oZvHcd3Bo77x4ZGSkWO/dd9/N+dKlS6mRuF69/M1vfrOYxfP6+Jgc9HesoaGhYjYwMJBzb29vw5+rf5/4e8fbHBwsH/PW1r3nuD7/r5cBAD4pV/YBAAAAAAAAAIAm4cs+AAAAAAAAAADQJNR4AUATOqjGa/bO3uWVL12+lHOsI0kppV/84hcNb39iYu+yzMNDw8UsVnfVlziOl5UGgF/VQRVWrS17/3alvlR/vMz+5ORkMTt16lTO8/PzxSzWf/31X/91zteuXSvW+8u//Mucx8fHi1lcrmsCurv3Ki5jFVhKZf1le3v7vhkAgPtHXdUVa7xi/qzEvyVtbm4Ws1jjtby8XMziuXb9d6Cenp59c111e/LkyZzv3LlTzK5evZpzXfG1sLCQ87lz54rZQX/XauTRRx8tlh9++OGcp6amillcPn78eDGLFWLx73L14xof8/hZI6Xyb2jxs0BKh/8MEFrb0oHlv5qBAeC+5Mo+AAAAAAAAAADQJHzZBwAAAAAAAAAAmoQv+wAAAAAAAAAAQJM4XPEnAPClshtKues+8MWlxZyvX7+e8wsvvHDo23/mmWdyHhwqe9Zjp3hHR8ehbxMA9hOPaSml1NLS8ivfZm9vb86jo6PF7PTp0w1/rqenZ9/8Z3/2Z8V6a2trOb/11lvFbGJiYt/bqMX1UkppaGgo5/7+/oY/BwAAn0ZbW9u+OaWU2tv3/ldRa2s5a0l75+f1z3V1deXc19eXc32uu7KykvPq6moxW1paynlhYaGYLS8v75tTSml2djbn+Pevl156KTVy4cKFhsvHjx8vZk899dS+25hS+fsctI3x5+pz/Pj3tZhTKh/Xtur5CE9Ham3d+/f88TlMqfybXT0rn2/XBACAZuUoDgAAAAAAAAAATcKXfQAAAAAAAAAAoEmo8QKAJhQrTur6k42NjZzn5+c/1e0fOXIk51iFktJHL/0LAL+Kz6K2qxaPVbEeK6XyMvX15fLr5X9y8+bNYvm5557L+b/8l/9SzAb6B3Le2dkpZvEYvb293XCbYwUCAAB83uI5cmdnWdne27f3d6HWtvLfj8fz58HBvRr49fX1Yr147ru1VZ4Hr6/vVeTWNVhxeXFxsZjFGq/bt2/nfPbs2WK99957L+eXX345NXLt2rWGyzMzM8Xszp07Ocf6r7q+LFYKH1TjVdf/xr/FdXV2FbP2jr3PDfE26s8Q8f7qmb/tAcD9wZV9AAAAAAAAAACgSfiyDwAAAAAAAAAANAlf9gEAAAAAAAAAgCahmBMAmtDu7m7OO9s7xWxzczPnuuu8ke985zvF8pEjR3KuO8X1egPwZdfauvfvWvr6+opZT09Pzr29vQ1/bmVlJecnn3yyWO+5555reN9//Td/nfPNWzeLWbzNjo6OYjY0NJTz2NhYw9v/1HZDbvnsbx4AgPtDW1tbsdzd3Z1zZ2dnMYvn2tvb2znv7JR/qzpI/DvW6upqMYt/11pcXCxmd+7cyXl8fDzn+lx6ZGQk5+Hh4WL25ptv5nzt2rWG2/jqq682XP7KV76S84kTJ4r14rbUn0vi41rPRob3tnlgcKCYxXXjZ4iJiYlivfh8xM85KZXPYz0DAJqHozgAAAAAAAAAADQJX/YBAAAAAAAAAIAmoYcDAJrAzs5usby+tp7zyupKMVtaWsr51q1bDW/z137t13Ku60lOnTqV8+joaDGL9Sf1pZ0B4MugpaVl35xSeZn6+jL+sUJgfn4+5yeeeKJY70/+5E9y/pu/+ZuG2/HTn/60WI41XvXxNV52P1YNxMv719v/iajuAgCggXiOWZ9vfpF17hsbG8VyPH+ua7zi36diriux4vLg4GAxi7Vbd+/eLWZx+cqVK8Xs0qVLOccqsJg/ibp67Gtf+9q+25hSSpOTkzkfOXIk57W1tWK97e3GVWrxM1L9eB30fDf6nFV/5vq0FcIfuR0A4ECu7AMAAAAAAAAAAE3Cl30AAAAAAAAAAKBJqPECgHtoZ2fvkrq7u2VV10643G5d1TU3P5dzrBlJKaW5ub3Zhx9+2PC+n3rqqZwffvjhYnby5MmcY61ISuXlfb/ISzkDQBSPm5/V5d7jMS4e/x599NFiva2trZxj5VZKKf37f//vG95+vKz/22+/XcziJfjjdtTnBwMDAzl3dXUVs46OjpxdAh8AgGbT2dlZLB9UFRWX49+nent7i/VidVf9N66lpaWc19fXi1msxaorxOLf4mK+c+dOsd7Vq1dz/vnPf54aqX/uH/7hH3KuP2984xvfyDn+PS9WEtfLa2urxSz+3v39/cUsPpb1Y97W1rbvevG/H7ReSuVnlpg/7r4BgI9yZR8AAAAAAAAAAGgSvuwDAAAAAAAAAABNwpd9AAAAAAAAAACgSbR//CoAwOdlZ2cn54O6wRcWFopZ7PKue73j8vLycs7f/va3i/VOnTqV84kTJ4rZ0aNHcx4bGytmfX19Ode92wDwRWlpafnMbzMe14aHh3M+c+ZMsV5nZ2fO/f39xay7uzvn//1//98b3tf3vve9Yrk+3v6TlZWVYjkeo8fHx4tZ3ObP5PHZrZY/+4ccAAAaam3d+/fq8Rw8pfI8PJ7Hx79bpZTSyMhIzvFvbSmltLm5mXP8G11KKW1tbeVcn5PHv9PdvXs355mZmWK969ev51z/7e2NN97I+eLFi6mRePsppfSDH/wg5+np6ZwXFxcb/tzU1FQxi5896s8zHR0dOcfHP6XyOejt7c25p6enWC8ux/Xq+6tn/s4IAJ+MK/sAAAAAAAAAAECT8GUfAAAAAAAAAABoEq6JBwD30Pb2ds71pYTn5+dzri8DfOvWrZxv3rzZcBYdO3asWI6X8K0v5zsxMZFzrARJqawncXldAO4n8TL1AwMDOcdL2ad08LEw1nL+8R//cTH727/925zr4/ef/dmf5Tw3N5dzXeUZqwbqKoO4zfUl9z+N3arHq0WPFwAAX6BYTVufk7e1teXc1dWVc13HFZfj3+FSSml3d+98t67BjT+3urpazBrVeMVarZRSGhwczDmeq9ezmFNK6dVXX02H8frrr++bU0rpG9/4Rs6xCjillEZHR3MeGhoqZvEzRv2YxwquWCkcq9JSKv+WGO8rpfJxrT+zxPur7xsA+ChX9gEAAAAAAAAAgCbhyz4AAAAAAAAAANAkfNkHAAAAAAAAAACaRPu93gAAeJAd1P8dO79v3LhRzK5cubJvTimlixcv7ntfY2NjxXLszK67teNy3SkeO9HrPnMAaGbtbXsfkdvb93JPT0+xXmdnZ85bW1vFbH5+Puevfe1rxeydd97JuT5ex2P9v/t3/y7nf/2v/3WxXldXV86Dg4PFLB6z6+P+p+E4DwDAvdTa2rpv/qJtb28Xy319fTnHzwrxXD2l8nND/ZkinsvX5+5nz57NOf59MKWUNjc3c15bW8t5dna2WO/tt9/O+ZVXXkmfRvzbYUopPfnkkzk/8cQTOZ84caJY7+jRo/tuY0rl30Jjrpf7+/uLWXwsG/1M7aDPM59s1hJmDX8MAL5wruwDAAAAAAAAAABNwpd9AAAAAAAAAACgSajxAoB7aHd3N+eNjY1itrCwkPOtW7eKWazuqmtAzp8/v+991ZcLjsv1rLu7O+dGl8kFgPvOIS/JHo+Tdd3l1NRUzo899lgx+5M/+ZOcf/aznxWzF154Yd/7+vM///Ni+cyZMzlPTEwUs97e3pzjOUZKZdVAR0dHMVPRCQAAjcXz5ZTK8+6DaqTaQk1wPB9PKaXx8b1z+ZMnTxazxx9/POf19fViFivF4izWCaeU0szMTM7Xr18vZufOncv50qVLDbe/rgaLn1nu3LmT8zPPPFOst7y8nPPq6moxi8uLi4vFbHh4OOfBgbKyuKhIO+AjS3yuYjVzSuXnoPozUVyufy7WPevxAuDLxJV9AAAAAAAAAACgSfiyDwAAAAAAAAAANAlf9gEAAAAAAAAAgCbR/vGrAACfl93d3Zw3NzeL2dLSUs7T09PFLPZpf//73z/UfX2kbzosHzQDAEotLS05d3V1FbPh4eGcT506Vcx2dnZy7unpKWb9/f05//3f//2+P5NSSufPn895bGysmMXjd31eMT4+nvPQ0FAxGxgYSAAAwOG0tbXl3N3d3XC9zs7OnIeGBovZxsbGvjmllNbX13Pe2toqZvHzQfy5hYWFYr3p6Zmcb9y4XsyOHj2a87vvvlvMnn/++XQY77zzTs5Xr14tZr/+67+e88zMTDG7fft2zqOjo8UsfpaqP6PEz0/x8W9tbW24XvyMVS/395Wzvv6+fW8jJX8nBeDLy5V9AAAAAAAAAACgSfiyDwAAAAAAAAAANAnXngOAeyjWeNWX7F1cXMz55s2bxeyVV1451O3HS9nWl6CNlxKuL0cbL4cLADTW0dFRLA8O7l2ev67gisfl+nLz8fL8sb6zPua/9NJLOdeXpY+3ES/9X8/q435vb2/DGQAAUIq1vgf9fS3+LS7+DTCl8rNCPYvn7vVnikZ/S6xrvGJF1uBgWYkVz//rvxfGquDLly8Xs1/+8pdpP0tLS8XyD37wg5xPnDhRzI4dO5ZzrO36x+3c+yxVVw/HWXzM6+2Pv/fU1FQxmxif2FtvrKwQ2017j2t8flMqP7vF+waAe82VfQAAAAAAAAAAoEn4sg8AAAAAAAAAADQJX/YBAAAAAAAAAIAm0f7xqwAAn5fNzc2c19bWitn8/HzOH374YTH74IMPDnX7//Jf/sucY+d2SmU/d903XXeMAwB7Wlv3/t1MfQwdGBjIuT6exp/b2toqZsvLyzl/7Wtfy/nixYvFejdv3sz5xz/+cTFbXV3NeXt7u5h1dHTkHM8B6uWhoaEEAAA0Fs/rY/6ixc8UPT09xSye/9efS+JyV1dXMZucnMz5kUceKWZf//rXc759+3bOS0tLxXobGxsNZ/HzzZ07d9KncfLkyX1zSuU2P/roo8VsZWUl5/WN9WIWPz/Fv9emlNL6+t668bNT/di1tbXlvLu7W8zq5ailpWXf/HGzRusB8OBwZR8AAAAAAAAAAGgSvuwDAAAAAAAAAABNQkcHANxD8XK78RK3KZWXlp2ZmTn0bf7Wb/1Wzo8//njO4+PjxXrxsrNquwDg06mPofHy6fUl/eOl4WPlVkopHT16NOezZ8/mHCs5U0rp3LlzOb/99tvFrLu7O+fBwcFiFs8DRkZGillfX1/O8dLz8fZS+vLUFQAAAOVnkbqqN372qCuk4s/FGuKUys8pa2trDWeLi4t7661W663tv15K5d84b9y4Uczi55tLly6lRq5cubJvTiml69ev51zXccXfJ/7dNaWyVnl4eLiYxc9L8XE+qDqtrtWKn5/ievXyYWfxcxsADy5/nQMAAAAAAAAAgCbhyz4AAAAAAAAAANAkdHYAwGegvhxufanWfxJru1IqLydbX1o2LtcVX9HTTz/dcPnkyZM5j46OFuvFS82q4gCAT6c+5sdL4tfH13jJ94Nqtk6e2Dt+15fOj7ff9f+zd1/Pkp3Xef/XyTnnPDkgDUAiEQQhiSIpyZLsKkl2uVzWha/tP8eusqtcLl9IsvUTqaJFMUkCIYAAARAYABOAyeGcOTnnHH4XKr79rIXTPWcGZ2ZOz3w/V2tj7enevXv37r3f03ifsjLX06nuh4aGXK+3t3fX5zILMV6Fmenga2r9lP4a6xWfO9u1DwAAAIAHL8Y66bhfvFbX6/oY8avxX1qb+bFKvU/JFfc1Pz/velNTU6keHx93ve7u7lRfvXrV9d5++23bC70nGhsbc7033ngj1Xp/ZGbW2tqa6hjjpfdxWut9lJnf56Wlpa6n90/V1dWup1Fq8TF1We8vifECAJgxsw8AAAAAAAAAAAAAAACQN/ixDwAAAAAAAAAAAAAAAJAn+LEPAAAAAAAAAAAAAAAAkCeKH/UGAADwONre3k71zs5OqtfW1tx6ufKtdXl9fT3rc50+fdot9/X1pbqzszPVjY2Nbj3NkS4q8pcEus0x1xsAAGTk+p4sKipyy+Xl5amurq52vYaGhlSvdso1wIa/BtDv6Hh9MDk5meo7d+64Xm9v767PFbersCDz/wRt72y79fS1lpSUuF58rQAAAAAesMytgRUW+v+3v6ysLNXx2r2qqirVOoYZxXudra2tVOu9SBzTXFlZSfXCwoLr6fhkfX2969XU1Oy6jWZmdXV1qR4YGEj1Z599lm3z3XaYmf385z9Ptd4fmZl1dHSkura21vV0X1ZWVqY6jrXqcnwM3f6WlhbX0+X4mHr/p+9xfG9KS0sNAPDkYWYfAAAAAAAAAAAAAAAAIE/wYx8AAAAAAAAAAAAAAAAgTxDjBQDAPohT3m5sbKRap7VdXFx0683Ozu5am5nNzMykempqyvWefvrpVHd3d7teV1dXqjXGq7m52a2n8SElJVwSAADwoOnU6nFaep2uXadq1zouLy8vu97o6GiqP/nkE9fT6wOdHt/MrLg4cx2g08EXFBZkXS9OE6/xoAAAAAAeArlc1zhesy/Hej1IOg5q5uOzNPbKzN9HaDyWmY8Xjv+uqakp1SdPnkz1q6++6tbTMdTp6WnX03HZpaUl17t582aqJyYm7H48//zzqe7r63M9Hb+NEWIag7a2tuZ6Oq6s+znXfo33ahrjFuO/4v2m0nVzRYi5e8gcMdcAgP3HzD4AAAAAAAAAAAAAAABAnuDHPgAAAAAAAAAAAAAAAECe4Mc+AAAAAAAAAAAAAAAAQJ4oftQbAADA42B7e9sta77ywsJCqmdmZtx64+PjqR4bG3M9XR4aGnK9EydOpLq1tdX12traUt3S0pLq+vp6t55mOxcX+0sC8pUBAHiwSktL3XJ1dfWu6+3s7LjljY2NVM/Pz7teb29vqvv7+11vYGAg1VVVVa5XWJj5/4D0mqCsrMytp9cO8TF0XX08AAAAAI+3kpKS+/t3xf7f6f1GHMfs6upK9fr6eqr1/sjMbHl5OdU6JhuX5+bmXG9ycjLVw8PDrnfp0qVU631V9Nlnn+1am5l985vfTPXS0pLr6XK8x9PtbGhoSLXuKzN/Pxbv43Q5jgFnuxc08/es+hjxXjYuAwAeHkbgAAAAAAAAAAAAAAAAgDzBj30AAAAAAAAAAAAAAACAPEGMFwAA+yDGeK2urqZ6dnY21aOjo249jee6c+eO612/fj3r8+m0rY0NjVl7WtfV1bn1dGpW4jYAAHi4ioqK3HKueE2lUaExHrS9vT3VOs29mdnZs2dTHae639zcTLVOzx6vHRobG7P2KioqUl1aEqZxl3RQokIBAACAx5uOM+aKeIrxX1XVmahgvfcw8/cwGnUcY4/1finGZWmMl47XmplNTEykuru72/V0+ebNm6l+6623bK/ee++9VMcx4NOnT2d97paWllTrPskVq6z3ZmY+Mrq8vNz1dDlGg9XW1u5ax3s6YrwA4NHhL3sAAAAAAAAAAAAAAABAnuDHPgAAAAAAAAAAAAAAAECe4Mc+AAAAAAAAAAAAAAAAQJ4oftQbAADA42B7e9str66upnpmZibVQ0NDbj3Neb58+bLrnT17Nuvz1dfXp7q2rtb16urqMj3JU455zQAA4NEpLCzMulxcnP1WfWVlJdWtra2u193dnerjx4+73sLCQqq/+OIL17t161aqKysrU93S0uLWa25uTrVeb5iZlZeXp3pnZ8f19PUUFRW5XkFBgQEAAADIX/H6X6/xS0pKXE/vDfQeIj5OfExdjvdSanNzM9VLS0uup/dEs7OzrpdtPDX2cq2n47wXLlzIuo0DAwNZl6uqqlzv2LFjqdb7s+rqaree7suamhrX03/X0NDgevp6GhsbXU/vN3XsO+5/fY/LysoMAPDwMLMPAAAAAAAAAAAAAAAAkCf4sQ8AAAAAAAAAAAAAAACQJ4jxAgBgH+SK8dJpYQcHB916ly5dSvWPf/zjPT+fxnjFaVs1foPoLgAA8pt+r5v5a4D29nbX04ivra0t19Pp1OOU+Ho98qtf/SrVnZ2dbj2d1j1eYxRYZqr+GDGq68ap+nNFlgEAAAA4+GI076OM6tX7nnjvocsxbipXFJWOvWrsVVNTk1tPo5Rff/1111tcXEz19PS06+lyjBe7c+dOqs+dO2f346WXXkr14cOHXa+joyPV8f5vbW0t1RqPprWZ2cbGRqpjDFmu+z09TnLFPWerzXykWK7jkPjou8sWo5crUi/XY+yH+32/c7nfiEDgoOKoBQAAAAAAAAAAAAAAAPIEP/YBAAAAAAAAAAAAAAAA8gQ/9gEAAAAAAAAAAAAAAADyRPawRAAAcN+2NrdSvby8nOrJyUm33qVLl/b0eEePHnXLlZWVqdZMaTOfcUzOLAAAj5eKiopUNzc3Z10vXh+Ul5enenNz0/X0emRoaCjV58+fd+tVV1dnfT59zLbNNtfT7SwrK8v6GAAAAACwX3SM1MzfE21vb2f9d6WlpW65trY21Xpv09nZ6dZbXV1N9cbGhuutr6+nenFx0fXm5uZSPTMz43o6lqz3alevXnXr3bp1y7L56KOPUv3xxx+73htvvLHrdpiZrays7LrNcb2GhoZUx3vG4uLMn6HjOLX24j4vLcksl5SWZF1P7y9jL94TY++2tjJ/24jHst77x8+RLu/s7LieLhcUFGR9bj1O4nuo73F8v/cqbpe+Vv6WgnzEUQsAAAAAAAAAAAAAAADkCX7sAwAAAAAAAAAAAAAAAOQJYrwAAHgAtncyU1bqNK3z8/NuvcuXL+/p8drb292yTlEap6R12yFTZzINJQAA+U+nqtbp0s389UGMy9JpshcWFlzvpZdeSrVO8f7WW2+59fSaZmlpKWsvXnNUVVWlWqfABwAAAICHRe9Tct0vadyXmY8x2tzIRBitb6y79TTeKEYFaW95edn1dLw4xniNj4+nWseHW1pa3Hq6/Otf/9qyidv19ttvpzpGgT311FOp7urqyvrcjY2Nqa6pqXE9vX/V2C4zH1Ed7xM1Dkzr+Pj67+J96EGJ8Qq73Mz2Fmf1KOnxqvF0ZmZra2upvpeIr3jsKd0PJcWZ9628ojzrevcb4xW3S2O8DsoxA9wL/uoHAAAAAAAAAAAAAAAA5Al+7AMAAAAAAAAAAAAAAADkCWK8AADYB3H6R53CUqe6jFOx5lJXV5fqvr4+19MpSuP0kjqdZa7pMQEAQP7Rqc9zTYMerw/02iRejzz//POp1hiv6L333kv1+++/73r/+T//51TrNOtmPm6svr7e9e536m0AAAAAyCWOixYVFaU6xifp/VOu8VTt5Yopio+vUUExFkljvKanp12vtiYzBlxZWblrbebvwTRG2ezL8czZDAwMZF3W5+vt7XXrNTc3p1ojvcz8PWrcZr1P7OzsdD2NCtPH1zqK+1zvlx9lPNOXk7oOZnRXtr9nxNg5XdZIr/gYGulllvtzpRFs+l5Vb/qxBf0Mx/c019iCPrdGkMflGOEH5ANm9gEAAAAAAAAAAAAAAADyBD/2AQAAAAAAAAAAAAAAAPIEP/YBAAAAAAAAAAAAAAAA8kTx3VcBAOAJEqNjc0Toai7zysqK62l2reYuj46O7nlTvve976X6xIkTrtfW1pbqmpoa19M84phVDAAAngy1tbVuuampKdW9vb2u98ILL6T6P/2n/5Tqv/u7v3PrTU1NpVqvg8zM3nzzzVS3t7dnfe7KykrX29nJXHyVl5enurDQ/79JRUVFqeb6BgAAAMDd5Lpv0PuLh62iosItl5SUpFrHdb/UK8n04n1VY2Njqjs6Olzv9OnTqV5aWnK9ra2tVK+vr7uejmlPT0+nemhoyK13+fJlux8vvvhiqp9++mnX03tWHWeP27i5uZnqtbU119Pl6upq1ystLU11PE70HlV78R5Vl2NvP+5ZdTvi/bcux1627Y/rbmxsuJ7+fWN5KbPPl5b9MbPX90OPrfjcuo1xO4uLM8f8xrrfRn0MfS4zs4qKzGeisNC/bj0WVldXXU9fQ319vQH5hpl9AAAAAAAAAAAAAAAAgDzBj30AAAAAAAAAAAAAAACAPEGMFwAAYnsnTHu5nX26TJ3ycXFx0fUWFhZ2rWdnZ7M+9+/93u+55ZMnT6b68OHDrpcrxkunIQUAAHliZ9fS9iuxSqctj9O66zWOTgff3Nzs1vvpT3+a6osXL7reF198kerz58+7XowUU3o9pVPPx38Tp6kHAAAAgHwUI5/KyspSHeOmNN5II73i/ZJGKceoLo1kWt/wsUsatRRjnXS8W8e0Nd7ZzGxiYiLV42Pjrjc+Mb7remZmk5OTqR4cHHQ93Ue6jTGqS1/rzMyM6+mYeRw/1yg13a9mPkpNx9k1djr24nh8fMz7oVFXMS4rVyyVvo/xPdXlXLFn2WozH621te2jurJtf1yOEV+6rMf80lL4m8ti5u8scYxAP0cxvkwjv+I+0ec+cuSIAfmGmX0AAAAAAAAAAAAAAACAPMGPfQAAAAAAAAAAAAAAAIA8wY99AAAAAAAAAAAAAAAAgDxRfPdVAAB4csQsWc1wjdm4mls8Pz/verq8sJDJkl1eXnbrdXV1pTpmwvb29u66nplZS0tLqmOWs2YCx3xaAABwQBXsWu4bza/X6wgzs/Ly8lRXVVXt+m/MzFZXV1N98eLFrM/113/9125Zr0eWlpZcT6+N9FooPndlZWXW59ureJ2nuGYCAAAA8CgUFRWlWu/NcvXq6+vdepubm7vWZn58e2try/W2t7d3Xc/Mj33Pzc2lenp62q03MTGR6vHx8ay9qakp19PlOGY+Ojqa6vW1zJi8boeZ2djYWKrjPaMu19TUuJ7uvzi2rsu1tbWprqurc+vpY+r7ZObH5++X3r/Gv0vo3xviPtGevodm/n487vN43PxGvFcuLMzMI5LrdcdermNNX5/W8Xh121Hg5zMpKMxsZ65tjj1dfv3117M+H3BQMbMPAAAAAAAAAAAAAAAAkCf4sQ8AAAAAAAAAAAAAAACQJ4jxAgBAxHgHnTYyxk7Mzs6mOk5DqtOZzszM7PpvzMyee+65VLe3t7ueLre2trpeY2NjquMUpcXFfL0DAPDEC4lVpaWlu9ZmPrpLe3Eab72++e53v+t6//iP/5h1U/7v//2/qR4cHHQ9nb5bp6WPU6Trsk7BfS+I6gIAAADwqMXxZ407ivc6en+212jj+Pgan6R1XI7RSjoWrmPaMRKroqIi1TG+SsepY6zT2tpaqgcGBlxP47n08eO9rD5mfG26LR0dHa53+PDhVHd1drleW3tbqnV8/kvvTUlmW2L82n7QGO0Yx6V/b9CoNDP/dwpdLy7HGC/dl3qs6f6Py/F16z6P+0vvx3PFc+lxqJFkZv44jHFyMc5M6XiCRrOZffn1AfmGmX0AAAAAAAAAAAAAAACAPMGPfQAAAAAAAAAAAAAAAIA8wY99AAAAAAAAAAAAAAAAgDxRfPdVAAB4csRM4/X19VTPz8+73uTkZKpHR0ddb2RkJNXDw8NZH6OxsTHVDQ0NrqfL9fX1rqfZyDGrOObhAgCAJ1DB3lctKipKtV5ztLS0uPX6+vpS/dprr7ne0tJSqn/1q19lfa53333XLTc1NaW6tbU11XqNZGZWWVmZ6njNpNsPAAAAAAdZQUH2m7VcvYctjjn/xubmplteWVlJdRz7rqioyPp4Og5/5coV19va2rq3jb1Hr7zySqpffPFF1ysqztxfVldXpzqOz29tf/VtjPtyeXk51bOzs6nWv0OYmY2Pj+9am5nNzc3t+nhm/m8d8T5a3yt93VqbmVVWVsm/KXe9srKyVBcXZ/8JQnzdul26HfHzoK9tdMT/PeaH/++HWZ/v1VdfTfXx48ddL449APmGvwYCAAAAAAAAAAAAAAAAeYIf+wAAAAAAAAAAAAAAAAB5ghgvAADEvcR46RSZg4ODrtff35/qCxcuZH0+nZZS4ynicuzpv4tTbuprOEhTvwIAgINPryuqqqpcr729PdVPP/206+kU3Z2dna73/e9/P+vz/exnP0v1yZMnUx2jujSmdHV11fU03lSvkcyyTz0PAAAAAMiuvLx811qjmuJyvP8qKSlJdRzD1nHrBx3bFWkslsaQmfm/B2jcVPy7gd6j5oqsinLFns3MzKR6YmIi1WNjY269kZGRXf+Nmd+vMYJLY7S/HM+1+98i4j22Hgv6/pr5/aD7J4r7cnt7O9Vra2uprq2tzfoYMdqsrq4u1Rr3FbdFt9/sy68PyDfM7AMAAAAAAAAAAAAAAADkCX7sAwAAAAAAAAAAAAAAAOQJfuwDAAAAAAAAAAAAAAAA5Im9hwgCAPAEiHmxmtG7sLDgeqOjo6m+deuW650/fz7Vw8PDWZ9vr3nHsRczjpXm8gIAANwLvRaKWfbNzc1Z/11paWmq43XL9vZ2qv/2b//W9dbW1lJ97ty5rM+t12Srq6uu19HRkerW1tas23W/dJ8UWLjO4rILAAAAwGOosDAzX4SORcdxaV1P63vp1dfXu97s7Ow9b++9aG9vT3WucXcdZ4/bX1yc+RN7SUlJ1ufa2tpyy/Pz86keGRlxPf07wtDQUKoHBgbcenfu3En15uam6x06dCjV3d3drqfLTU1NrldZWZlq3Sfxnlpfa2GhPxb0zxK5/kYR96Wuu7Gxkeqqqiq3no4tTE9Pu95rr72W6uvXr7teV1dXquO4RkNDQ9btBPIBM/sAAAAAAAAAAAAAAAAAeYIf+wAAAAAAAAAAAAAAAAB5ghgvAACETgVp5qMl5ubmXG9wcDDVn3zyiet9+umne3q+2traVOtUmWa5p8sEAAB40OJ05jq9dZymXKc6zzVN+Y0bN1xPo7t+/vOfp1qn7jYzW1xczNrT547XUzrt9/1GnRKRCgAAAOBJo/FQ2Wozf/8Xx9Y1EjnS+7gYpbS8vJxqjXheWVlx68V7w73SKCcdnzfz95D63BrbZeajqHK9zrjNMzMzqda/L5iZXbt2LdW3bt1KdbyP1riv3t5e16uoqEh1Y2Oj67W1taW6paXF9fR162uNr1uX471yrv2gYoxXNjEybmlpKdUaxWZm1tfXl+o4lqHR3zG+LEbIAfmGmX0AAAAAAAAAAAAAAACAPMGPfQAAAAAAAAAAAAAAAIA8QYwXAAAixk6sr6+nemFhwfVGRkZS/dFHH+3p8b/5zW+6ZZ0yVKfKNPPRXXG6TAAAgAdBp9OOMaK5pvLWayidWtvMT6f9yiuvuJ5Oz65Tlv/iF79w6+n07DotuZlZXV1dquMU7LpuTU2N6+116nAAAAAAeBQ0FkkjsuIYtkZrxV6M1lJ6TxTX03u12dnZVE9NTbn1pqenUz03N+d6em8YI7f0njLGeOm2aAxWvNfcqxh1pWPyMc5Kl3W74n2oWl1ddcv6vun+MTMbHR1N9e3bt13v6tWru64X77+fffbZVOv9dlxubW11PY2s+tK9c3nm9RUW3d+98n5HYMeY7urq6lTHY6arqyvV8e8s+p7G9zvuByDfMLIFAAAAAAAAAAAAAAAA5Al+7AMAAAAAAAAAAAAAAADkCX7sAwAAAAAAAAAAAAAAAOSJ4ruvAgDAkyNX3vH6+rrrLS4u7ukx29vbU3348GHX05zcsrIy1ysqKtrT4wMAAOyXgoKCXWszs8LC7P+/UGVlZarr6upcT6+FTpw44Xp67dXc3Jzq999/36332WefpfrIkSOu19XVlWq9tjIzKy3NXF/F67yKigpZrzTVXIMBAAAAOAj0nmx7ezvVKysrbr2lpaVd67huvCfa2dlJtY6Dm/mx79nZ2VRPTU259cbHx1M9OTmZdbvi2LredzU2Nrqevm59zLj9e9XU1OSW9fna2tpcr6OjM9WtrS2prqqqcuvpvot/J9B9Pj427nqDg4OpvnXrdtZeTU1NquM9cG9vb6o7Oztdr7W1NdXxdVdXV6e6pKTE9QqLDt78IHFMQrdZX4uZfx9135mZNTQ0pDrXPgHy0cH75AIAAAAAAAAAAAAAAADYFT/2AQAAAAAAAAAAAAAAAPIEMV4AAIhcMV5xKtO4nM3Xvva1VMdpNTXmIsZ4aVSGTgsKAADwqMWoK43BitNg6zTZPT09rqfXXnrto1PUm5l9+OGHqR4eHna9oaGhVNfW1rqeTvO9s+MfUyO/dJpvYrwAAAAAHDQbGxupjlFdGq01MTHhehqDFf+dRmutrq66nkZ3TU9Pp1pju8zMxsbGUr2wsOB6ep/15cjlzD1kvI/T+8T5+Xn7qlpaWtyyxnhp7JWZWVtbZlmjpmOklEZ1zc3NuZ7uL43mMjO7detWqq9eveJ6+t5pdFeMwz527FiqNTbbzN+Px7835Ft8dRwXKC7O/Kwhxqrpexwj4/Q4jLHjGkkO5CNm9gEAAAAAAAAAAAAAAADyBD/2AQAAAAAAAAAAAAAAAPIEP/YBAAAAAAAAAAAAAAAA8kTx3VcBACA/7ezs7Om/a96xZu3G5eXlZddbXFzM+twvvfRSqjVft7u7262nub8xZ7a4iK9pAABwMBUUFLjlsrKyVFdXV7teU1NTqre3t11Pr8u2trZSvbCw4Na7detWqm/evOl6bW1tqa6oqMi5ndl6JSUlqdbXcrfHAAAAAICvQu+J4v2SjlvrWPTMzIxbb3R0NNW3b992Pb2XGhsbc73Z2dlUT01NZf13AwMD2TbfaW1tdcvHjh3Lum5xcWbsO95zaU/vE6Ourq5U19fXu15HR0eqT5065XqdnZ2pbmlpcT29f62trU31+vq6W29+fj7V8f24c+dOquP966VLl1L9s5/9zPVOnz6d6sbGxlTrazHzf2PQ+2GzL9/PKj3W8uE+N26j3rfX1NS4nh4n21v+c1RRmRkniOMVufYXkA+Y2QcAAAAAAAAAAAAAAADIE/zYBwAAAAAAAAAAAAAAAMgT5IMAAB5bOi3l5uZmqnX6UzMfzzU3N+d6OpVpnI5zYmIi63PrFKWHDh1KdW9vr1tPpzbVaUHNzEpKSwwAACAf6DTrMUpLp1OP03DrNPVra2up1mswMz/t+uXLl12vv78/1XEK7sLCzP/jpNtolj26Kz5GfD0AAAAAnhzZYrZivJQux97mZmZ5Y8PHQeX6dxodpePWMY5LY7auXr3qeufPn0/1+++/73oxPjkbjZfS2sysubk51fFeSvddHJNfXV3dtY7bFWOwlI67x8iwvr6+XdeLy7r9ZmbVVZmYJ71/1ddiZrayspLqyclJ1+vvz7wfN27ccD19f/RvFmY+kkvvo2tq/N8NNMLqXmKo8iG6S+n9vJl/rTHGq6ioKNXxvdJ/V15e7nqlpaVfeTuBR4mZfQAAAAAAAAAAAAAAAIA8wY99AAAAAAAAAAAAAAAAgDzBj30AAAAAAAAAAAAAAACAPFF891UAAMhPms2q+cZLS0tuPc07npiYcD1djr3r16+n+vjx467X2dm5a93e3u7Wa2luSXXMmdW82HzL0wUAAE+WwsLM/0sUM+/1OkbXMzPb3NxMtV6jTU1NufW6u7tTHa/JRkZGUl1SUuJ6RUVFqa6srHS96urqXeuKioqs2x8fP9drAwAAAJD/9Jp/e3s71Wtra2695eXlXWszf6+zuLjoevo4en8UezqGPTo66tbr7+9P9cWLF13vzTfftPvxO7/zO6l+6aWXUh3HwZuamlIdx7BnZmZSPTw87Hq6zfrazMw++OCDPW1jXV1dqo8cOeJ6J0+eTHVvb6/rdXR0pLqhocH1ikt2/9P5xsaGW15eyrzH8f51cPBOqm/duuV6uq5uo5m/79W/FZSV+Xtsvc99nMV7bB1rqKqqcr14r66Ki4uzrqc9IB8xEgUAAAAAAAAAAAAAAADkCX7sAwAAAAAAAAAAAAAAAOQJ5qYCADy2ssV4LSwsuPUmJydTPTY25noaCzE4OOh6Kysrqf5SPFdLy11rM7OGxsw0oWVlZa6n03ES4wUAAPJFrmmx4xTZOk29Tmff2trq1uvq6kq1XruZmV27di3VX3zxhettbW2lura21vXq6+t37cUYL506PPb0tRLjBQAAADx+NLprcyNz/6Jjw2ZmszOzqZ6c8vcs4+PjqY7jz/Pz86nWMWwzH+M1PT2dah2zNjO7fPlyqi9duvTlF7EHb7zxhlt+8cUXU33mzJlUxxiv5ubmVMcYMo0biz0da9f9cy80gksjsMzMDh8+nOqenp6s/668vHxPz7W6uuqWFxYzf2OI96ga3XX16lXX0wjpuC/1vldjvJ7UqKn4NxG9/469GCeu9O8sMQKN+3jkO45gAAAAAAAAAAAAAAAAIE/wYx8AAAAAAAAAAAAAAAAgT/BjHwAAAAAAAAAAAAAAACBPPJkhfwCAJ8LO9k6qNd94bm7Orac5yQMDd1zv9u3bqc6Vd6zZxGY+91fr+vp6t55m75IPCwAAHkcFBQWpLi0tdT29FmpsbEx1e3u7W29+fj7Vel0X/cM//INbHh0dTXW8DtNrtOrq6lSXlZVl3f6dnR3Xq6ysTHVxMUMsAAAAQL5bX193y3r/sbK8kuqZ2Rm33th4Zox5cHDQ9W7evJnqOMY8MDCQ6qWlJddbXl7e9TE2Njayv4DgxIkTqe7q6nI9HdPu7u52vaNHj+7ai/dqel8V952+nniftb29nerZ2dms2686Ojrd8qFDh6TX4Xq6na2tra5XVFS0p+fT/RzfG93mkZER1/vnf/7nVOu9rJnZd7/73VQfO3bM9Xp7e1Ot98cVFRVuvSfl7wjxdeo9d3wP4/Gl9J5e692WgXzzZJwNAAAAAAAAAAAAAAAAgMcAP/YBAAAAAAAAAAAAAAAA8gRzTAMAHls7lolZ0Ck3FxcX3Xrj4+OpHhjod71r166lWqdKjerq6txyVVVVqnWazfLycrfekzLlJgAAeAxogtU+zXSt10Z6PRWnhtcp3mNclkaDra6uut4777yT6o8//tj1mpqadt2OeH0Wo7uUTh0eI8r2OjU8AAAAgL3b2tratTYz29zczNrTe4rY0/ipeE+hyxqrNTPjY7w0yunWrVuud+HChVT/zd/8jd0PvUc6efKk62mEVUtLi+tpVJfGF5v5WOLa2lrX0/slvVeL9zk67r6ysuJ6ur8WFhZcT+Ot4j1Yd1cmNuzEyUwM2dNPP+3W0xisGNWlr+de7s30/k//jhDjuPT9Hxsbcz1dN74fx48fT3WM8err69v13+nfGsye3Ahp/pYCfBmfCgAAAAAAAAAAAAAAACBP8GMfAAAAAAAAAAAAAAAAIE88mfN8AQCeCAUFmXwJnaY1TsU6M52ZcnNgYMD1NPohl7KyMresU2nqNKFMNQkAAPLWPkV3Kb020ink4xTsJSUlu9Zmfpr12dlZ19NruaGhIdf74IMPUq3XjXFKf+3FqC6dTj1X3BcAAACA/aHjvGtra66nsVFLS0uut7oicVwry66ncU1f+ncylqwxVTHGa3h4ONXXrl1zvR/84Ad2P1599dVUnzp1KtUa92TmY7w0tsvMrL6+PtV6z2Xm72/ifZYu6/h2jOrSeK7p6WnX6+/v37U2M7t582bW537xxRdTrZFlR44ccevpfmhoaHC9eO+WjR5PZv716P1lfL91OfbUSy+95JYPHz6c6vg+dnZ2prqxsTHV8X0jMhrAb/AXRwAAAAAAAAAAAAAAACBP8GMfAAAAAAAAAAAAAAAAIE/wYx8AAAAAAAAAAAAAAAAgTxQ/6g0AAOBBKSgoSLVm72rOspnZ9EwmS/jy5ct7fnzNQo65uZozrNsBAACA3ZWXl6e6rLTM9SoqKlJdVFTkemtra6keHx93va9//eupPnv2rOt98cUXqb5x40aq//RP/9StV1aW2Za6ujrXa2hoSPXm5qbrFRcz5AIAAADst42NjVQvLy+73uzsbKqnpqZcb3o6MwY8OTnpemNjY6memZlxPR1L1jquNzg4mOpf/epXWbc/l+985ztu+fjx46k+evRoqnt7e916nZ2dqW5ubna92traVOs9l5m/Z4lj2HqftbCwkGrdj2ZmExMTqR4aGnK9a9eupfqTTz5xvV//+tepfvnll13v8OHDqT5x4kSq+/r63Hrt7e2p1tdplvt+bGtrK9VLS0uul+0YynU8zc3NuZ7ev+Z6r/TvC2Zmba1tqa6qrkq1/q3BzKywkLk8APwLzgYAAAAAAAAAAAAAAABAnuDHPgAAAAAAAAAAAAAAAECeYE5pAMBjS6d01WlHFxcX3Xoa93DlypU9P/4rL7+S6tbWVterqtp9mk2m2AQAAMjQqeLdtPHhkqm6ujrVGs9q5qddP3LkiOu99tprqdap583Mrl69mmq9Vvyrv/ort159fX2q45T4GuMVY1319cTosVw9AAAA4HGxs7PjlmNU1F7pNb9e12vkkpkf5x0ZGXE9jdm6efOm6507dy7V7733Xtbt0LHdeF+Si44Vv/jii6536NChVGssVVzWOKju7m63XltbJv6pqanJ9fRe6l7ofcr8/HyqY2TV7du3U33p0iXX+/zzz1P95ptvZn0u3QdmZj09Panu6upKtUZgmZk1NjamurrKv84YfaXW19dTnSvGSyPKNOotLvf397ue3jfqPWNc1u03M6tvqE91aWlpts0HgIS/OAIAAAAAAAAAAAAAAAB5gh/7AAAAAAAAAAAAAAAAAHmCH/sAAAAAAAAAAAAAAAAAeaL4UW8AAAAPyurKaqqXl5dTvbi46NabnJzc0+P98R//sVt++pmnUx1zkuvq6lJdVlaW6sICfmcLAACeLDs7O6kuKCj4yo9XWVnplpuamlJ9+PBh19ve3k51bW2t6509ezbVP/vZz7I+n67X0dHhetXV1amOr219fX3X9czMKioqUl1UVJT1uQEAAICDSK+zt7a2XG9zczPVGxsbWXt6nxCX19bWXE/Hc+fn51M9MzPj1hsfH0/14OCg6924cSPVH330keudO3fO9kLHgE+cOOF6ra2tqa6vr3c9Xdb7FzM/jlxVVeV6eg/T3Ny8ax0fP9573C99r3RsfXp62q13586dVF+9etX1Ll26lOp43/Pqq6+m+tChQ66n+1L3l+4rM/9adQz+bvSYXV1ddb2FhYVU62udmJhw642NjaV6YGDA9Y4ePZrq8vJy19Pl2CstLb3rtgOA4i+OAAAAAAAAAAAAAAAAQJ7gxz4AAAAAAAAAAAAAAABAniDGCwBw4OkUrjpFbOxpVIKZ2dLyUqZe2r0289OQRq+//nqqT5065XoaE9He3u56OsWqm37zqydXAAAAPNEKC/3073rd1dvT63oalxVjvDQOTGMB3n33Xbfehx9+mGqdTt7MR3fFqAFd7uzsdL04XftXFSMQ9iMuDQAAANiLGNWlY61xHFaXY3ySLsd/Nzc3l2qN8ZqdnXXradSSxkuZmV28eDHVe43tMjN75ZVXUn369OlU9/T0uPV0fLixsdH1NGYr3pfovUFxkf+zbUlpSar1/iVGde3H/UV8P7Lt56mpKbfe6OhoqmOcVWFhZs6J1157zfU0Bi3eLzU0NKRao830/s7s/mOvNMYr/k1Bj99ckXEx1kuVlGTetxhfpvuE+zYAXxUz+wAAAAAAAAAAAAAAAAB5gh/7AAAAAAAAAAAAAAAAAHmCH/sAAAAAAAAAAAAAAAAAeaL47qsAAPBo7ezspFrzdM18pu7KyorrLSws7FovLi669fTfxczko0ePprq3t9f1NEu4paXF9WpqalKtGb3k8AIAgCfNfl//xIerqqpKdUVFhetV11SnuqyszPU2NzdTPTo6mup3330363P/6Ec/cstTU1Opnp+fdz29hq2srHS9+vr6rNsFAAAAHHQ6Rru6uup6el2s18tmZpOTk6memZlxPV2emJhwvfHx8V0fP47z6r+7fv161sfI5dvf/rZbPn36dKr7+vpS3d3d7dZrb29PdVNTk+vV1dWlurq62vWKi/f2p9qioqJU63izmVlpaWnWf6f3JRsbG663traW6rgv9b3SemxszK03NDSU6pGREdc7fvx4qnWc3czs0KFDqW5ra3M93V96LxVf5/3ea25vb6c67hP9W4Eea/F4ja9V5fp7AH8fALCfmNkHAAAAAAAAAAAAAAAAyBP82AcAAAAAAAAAAAAAAADIE8R4AQDyysa6n1ZzeXk51XNzc66n08TqVKNx+lhd1qlYzfwUonE6UV2OU7NWV2WmY9XpRZmmEwAA4KvJNQ16YaH/f5p0+nedvt7Mx7yeOnUq1X/4h3/o1vvxj3+cdVt+9atfpTpOZ6/T8zc2NrpeQ0NDqjWGzOz+rhe5xgQAAHiyxWvdva57L/9OY3D1Wnp2dtatp2OtGpdrZjY4OLhrbWZ28+bNVH/wwQeuNzAwsKdt1LjceA2uPa3NzA4fPpzqI0eOuF5nZ2eqNapLazOz1tbWrM9dW1ub6lyRWw+CRq5pRJWZfx9jTJW+d8PDw6mO79uVK1dSHe9LdKxd97GZj/HSfWzm91+uGK/7tdcYL/17Q4yWu3HjRtbH1/tSjV8z8/uI+zgAXxUz+wAAAAAAAAAAAAAAAAB5gh/7AAAAAAAAAAAAAAAAAHmCH/sAAAAAAAAAAAAAAAAAeaL4UW8AAAB3o9nR6xvrrqe5wpoHbeZzhUdGRlI9NDjk1rt27VqqX3vtNderq6vbtY7LNTU1rldeXp5qzeUlhxcAAODu9PrPbH+uoSorK91yU1NTqo8cOZLq3/7t33br1dbWpvr//J//k/Xxb9y44ZYvXbqU6q6urqyPWVhYmLVXWlqaar2m3O3fAQAA4Mmyvb2d6s3NTdfT5Y2NDdfT5fV1P9aqj6l1XFfHZGdnZ916Okar47NmZv39/anWMVkzs//3//6f3atvf/vbbrmnpyfVer1v5u8HqqqqXK+xsXHX2sxfn+t4cENDg1uvvr5eHr/a9fS6/mHT93F1ddX1ZmdmU63j52ZmAwMDqb5161aq432P9l588UXX6+3tTfWhQ4ey9trb211P97OOs+/X2Lreb8bjXD8fur/m5+f3/Pi6nXGbc/UA4F4xMgQAAAAAAAAAAAAAAADkCX7sAwAAAAAAAAAAAAAAAOQJYrwAAAeeTqsZp51dXFxM9cTEhOsNDg6m+vbt26k+f+F81ueKU6rmmt5Vl2MsRElJya7bDwAAgLt7ENOZx9grjWHV6f7jenrNp1P4m5n9j//xP7I+37vvvpvqGONVWpK55ozRCTqFvUYIxOcmxgsAAAC/EcdMl5aWUq3jp2Y+giv21tbWsj7mysrKro+htZnZ3NxcqjXSy8xsaGgo1VeuXLH78W//7b9N9cmTJ11Pr7tjHFd1dSZaK47l5hrn1fHisrKyVGu8lJlZRUVFqouLfQTvQaHvr5nZ9Mx0qjW2y8zHEl+8cDHVb775ZtbH7+jocMudnZ271nHdGLmm+1LH2R+EOHa/vZ1Z3traSnW8b3sQzw0A94qRIQAAAAAAAAAAAAAAACBP8GMfAAAAAAAAAAAAAAAAIE8Q4wUAyCtxukydJnZ0dNT1bt68merz5zPRXdeuXcv6+DGqS6cM1Tou55pO9EHEUAAAAOCr0es+vV6Lsa56nbe9ve16f/Znf5bq73//+653586dVL/zzjuup9e0i0uLWXsa1RWvRYuLGdIBAAB4km1ubqZ6dWXV9XJFaY2NjaV6fHw867/TKLDY01rjvcz89Wzs6bZcvnzZ9upP//RPU/3ss8+m+siRI249jYrKFeN1L+O82cZ2i4qKsi4fpMhdPU6Wl5ddb2JiItVXr/ox83/+539O9aeffrqn59J4ZDOztra2VLe2trpeS3NLqmvrHm5kcYFl3tP4/hYWFkid2Y57uf/SeK4Y1UV0F4D9dHC+bQAAAAAAAAAAAAAAAADkxI99AAAAAAAAAAAAAAAAgDzBj30AAAAAAAAAAAAAAACAPEHAOwDgwNve3k71xsaG683Pz6d6ZGTE9c6fP5/q999/f0/P1dLS4pZrampSHbOcy8rK9vSYAAAAePQKC/3/76TXdnpdF6/x9Fp0cXHR9U6fPp3q559/3vU+++yzVP/61792vfHx8VQvLy+7XnFxZqimqqoq1dXV1W698vLyVBcUFBgAAAAevp0dt7Tnnl6/7fgVbXNzc9c6Lq+urqZ6dnbWrTcxMZHqOGba39+f6ps3b7re0NBQqgcHB13v7Nmztp+am5vdckdHR6r1OtvM7Jlnnkn10aNHU93d3e3Wa2trS3VDQ4PrVVVmrq3LK8pdr6ioaK+b/cjE4ySbOH4+NzeX6snJSdfT9/js2Y9d79NPP9318Zuamtzyv/pX/yrVp06dcr2urq6s/662rjbV8V7tgZPbp/jcJSUlqdZ7xvr6+j0/vN5D7vV9w794EPuL+2U8zpjZBwAAAAAAAAAAAAAAAMgT/NgHAAAAAAAAAAAAAAAAyBPEeAEA8srW1pZbXltbS/XMzIzrvfPOO3t6TJ36NU4fq1N16hSeZvkxvSsAAAD+Ra6p4bUXo1trazPTy8drxcOHD6f6W9/6lutpBNd7773nerdv3061xn2ZmbW3t6daI2Y1XtYse9xX7MXXzRTmAAAA+ykTORPHLTVOKUYraRzX+vq662k8V+zp46ysrKQ6jouOjY2lWqO5zMxu3LiR6vPnz7vehx9+aA/SiRMnUn3mzBnX6+vrS3VPT4/r6XJra2uqYzSURi3lisF96LFR+6BAsqdW11ZdT4+FhYUF1xsdHU11/+1+17t27Vqqf/GLX2R9bn3ffv/3f9/1nnrqqVTrOLuZv7eJ78ejfA/0ufXeycwfJ3ovGI+1zs7OVA8PD7tePBdke+58PA4fBI3u0gi0XOvlivuK97y6zP0xHjecRQAAAAAAAAAAAAAAAIA8wY99AAAAAAAAAAAAAAAAgDzBj30AAAAAAAAAAAAAAACAPFF891UAADi4NP92bW3N9XLltqqTJ0+muq6uzvXKyspSHfNc9/r4AAAAyB9FRUVuubS0NNXxWrGjoyPVq6urrldSUpLq6upq1/v5z3+e6s8++8z1nn322V0fv6qqyq1XUFCQ6sbGRtfT56uoqMj67wAAALB/dJzSzF8fLi4uup4uz8/Pu97c3Fyql5eXXU/HP5eWllI9PT3t1hsbG0v14OCg6128eHHX+mHQcdinnnrK9Y4dO5bqrq4u12tubk61XutWVla69XRZr8fNHoPrYNn8tVU/Dj45OZnq4eFh17t161aqv/jiC9d7++239/TU3/72t1P9ta99zfWOHz+ear1/MTOrra1NtY6zP2p6LMTjRO+fampqUt3Q0ODW02M07vONjY3Mc5k/7vR+s7jYP/eTSv/OovX29rZbT5fj32Z0Of4dR/d5PA/k/XkBTzxm9gEAAAAAAAAAAAAAAADyBD/2AQAAAAAAAAAAAAAAAPIEMV4AgANPp2eM0+Fubm6mOsZ4ZfPKK6+45b6+vlTHCITy8vJUE+MFAADw+IvTeGuMl07jbmbW1taW6jjFuIrXsBrN8MEHH7hef39/qltaWlKda9r7+Ny5pqXX1wMAAICvJtfYpEZ1TU1Nud7ExESqR0dHXU8jgWZmZlxPo7s0/ktju8zMRkZGUn3+/PnsL+AeaJRWroiyXFpbW1Pd3d3tejpGG3sap6vXt8XF/s+cuhzjefOdjkUvLS+5nh5DMarrk08+SfU//MM/uN7AwEDW5/vGN76R6hMnTqT66NGjbr1Dhw6luqmpyfXivchBoeP8cRs1Prm+vj7V8bXFyDKl54WtbX8v6P+m8GT+fSHev+r9crY6/rtc99+5Pvvxfj/+zQfINxzBAAAAAAAAAAAAAAAAQJ7gxz4AAAAAAAAAAAAAAABAnuDHPgAAAAAAAAAAAAAAAECeKL77KgAAPFwxb3V5eTnVmktt5jOh5+bmsj5mb29vqp955hnX05zhmLWredClpaWuF/NdAQAAkP/iNZ5eA1ZXV/uVd7L/O72mXVlZcb3JyclU37x50/Vu376d6oaGhlQXFRX5p97JPHl87pKSklSXlZW5XrymBQAAyHs7Wu74llwzaX0vNjY23PLa2tqudRy3nJmZSfXY2JjrDQ4OpjpeD166dCnVt27dcr07d+7s+vi5nD592i23tLSkWsc+zcxqampSXVVV5XrFxZk/Ker17ZUrV9x677//ftZtyXVt3VCfufbV6+C4XfG6+Emhx1d87/V4OnfunOv9z//5P+/r+V588cVU69h6W1ubW6+5uTnV+XKvocdQRUWF6+lnorW1NdX6Nwozv0+OHTvmeltbW1n/nf49Y2FhwfX0M5fvx3k83+o+iefU9fX1XXvx70Qq3gMXFmaf3yTf9yWQCzP7AAAAAAAAAAAAAAAAAHmCH/sAAAAAAAAAAAAAAAAAeYIYLwDAQ6NTN25ubrqeTuO4urrqerOzs6mOU5Tq8tTUVNbnPnPmTKqPHDnien19famOMV719fWpLi8vdz1ivAAAAB5/GlcQp3gvKMj8P1QxMkIjHRbm/fTsOuX7c88953oazTA8PJzqOCW+bldlZaXr6fTvcZv138Xr22xTn3PdCwAADjS5VNnc8GOOGgmjUTGxp2OTsRfHKjXCSnsxxmt6ejrVIyMjrtff35/qL774wvV+8pOf2L165ZVX3PKJEydS3d3V7XpNzU2pjlFaen2o141mPlJnfn4+1TEKbG5uLtXxtcX9rAqLMteiMXbncY7h0X0SY4v0nkLHvsfHx916et9w+fLlPT+3jpP/zu/8juudOnUq1RpnFY+ZBxLdpbdWD+BWJNe9lL4H+vcMfS/MzCYmJlLd09Pjem+99Vaqh4aGXE8j12pra11Pn0+j6+J9m8Y254qvetBiVJfuu/hZ1/0XY6416kzXi4+vrzsedxpfHc9duey4aO49/zPgwGBmHwAAAAAAAAAAAAAAACBP8GMfAAAAAAAAAAAAAAAAIE/wYx8AAAAAAAAAAAAAAAAgT+w9tA4AgK9K8k8199rM57Rq5rOZ2eTkZKo1Czcuj42NuV5DQ0Oqu7sz2dRdXV1uvc7OzlRr/rCZz83V3FezR5uHCwAAgIdDr/lKS0tdr6ioSJZ2XG91dTXVTc1Nrtfe3p7qvr4+11tfX0/19PR0qm/duuXW022pr693vbq6ulRXVVVl/Xc7OztZeyUlJQYAAJCLXksUFBQ8wi3J2Nracst6TbawsOB6i4uLqV5aWsrai2OV2tMxzfgYU1NTqR4eHna9q1evpvrdd9+1vWpubk7117/+9VSfPn3arXf06NFUx7FQfYzq6mrX02vA+J7qeK6+trjeyMhIqi9fvux6ur/0utfMbHNzM9Xxfdze3k714zYmq/s1HkN67I2OjqY6Hk+6z2/fvp31uZ5//nm3/Prrr6f65MmTrnfo0KFU6zh7vE94IO/NAz6dFBdn/jxeWVnpevr69PXosWvmP0e6f6K3337bLeu9W7wfW15eTnVHR8euz3W353uU9HO7trbmenpsx3Pq3OxcqheXMufXeDzp+Ur/bmP2Ve5f9T04GN9jwL14vL4RAQAAAAAAAAAAAAAAgMcYP/YBAAAAAAAAAAAAAAAA8gQxXgCAh2ZHpkSMMV46ja5OA2vmpyGNU5Tq8qVLl1zvzJkzqdZ4rpaWFreeLjc2NrpeeXl5qn1Mw8GZnhgAAAAPjl7zxes/nVY8xmXptOLxGlNjvObm5lxP4wy01qiHKD6+Tg2fK8YrF31tOs09AABAxsEYG9PoGI3tMss95jg5OZm1NzY2lmodm4zrauyOxnuZmY2Pj6c6jlvGGJtsXnjhBbd8+PDhXetjx45lXS9XjFe8Vozjn0pjeSoqKlIdX4te62pt5vdRfK/W13a/Do7Lem1aUODnNCgqOvhzHMToJt2v8d5Ao7sGBwdTPTAw4Na7c+dOqvv7+12vqSkTKazRb2Y+uuvIkSOu19nZmWqNCY5xSfH15AM9zuMxr/dLek8UI9b0cxQ/YyrGMb/55pup1vOHmf986N9P4j7Xz61+Fh+2GLenn9PVFf/51v03Ozvrenou1nN2rvvQ+LpzxUoWFhz88wJwvzi6AQAAAAAAAAAAAAAAgDzBj30AAAAAAAAAAAAAAACAPME8zACAh0anUoxTser0jDrFrZnZ4J3MFKVxGtJr165lfT6NM9CpRrWOyzU1Na6Xa+rafJyiFAAAAA9GnFq9uro61Tp1vpnZ6mpmqv7NzU3X0ynHt7e3U61T+JuZffDBB6nWyFozHyFWVla2p8eP9DqYGC8AALCbbAn3ccxMl+P1h/biv9MInWh9PRNxs7SUib6JMUgzMzOp1mguMx/PpRFJZmY3b95M9dmzZ10vRnJlo9vf29vrehq7Fa/lND4pXkdqXGtLS0uqe3p6sj5GW1ub6+mYaa6xz0hjczR6Sq89zfz4anl5uevpGHCMRVpeyUQaxXij0tLMNW1ZWeY4idfg+TDHQRwX1/0Q4+SGhoZSfePGjV1rsy+PmSuN7urr63O97u7uVOsxY+aPL42NynV/8bjRYz7+TUEj6k6dOuV6f/7nf57qzz77zPX0Pf34449dT8+B+tzxbxaVlZWpjp9h/UzE822M3VL6Puq5K56XNV5MzwNmPpovV0RZ7Onj6P1xvA/Nto1muaPZCgqzR3MXHJA4SuB+HfxvPQAAAAAAAAAAAAAAAABmxo99AAAAAAAAAAAAAAAAgLzBj30AAAAAAAAAAAAAAACAPEHoOgDgodE81JgPqzmtMZt4cCiTmR3ziH/9619nfb7yskwmtGYJx1zh0tLSVN9LTvXjnEcMAACAr0avMWtra11ve3s71UVF/v/DKizMLOs1c7xGvn37dqo///xz16upqZHHz359q88Vt7miomLXGgAA4F6tr6+nem1tzfVWV1d3Xc/MXzNpbWa2srKS6oWFhVTPzc259WZmZlI9OjrqekNDQ6m+efOm6/3qV79K9cjIiO3FN77xDbfc19eX6vb2dtdrampKdWNjo+vV19enurKi0vVKyzLXa1VVValuaGhw6+ljVlb6x7iX8U/lx0L3Ni6q742Z2eTkZKrje6XL8d/peK5eP5eUlOxpOx61nZ2dVMfPwOLiYqr1eDXzx15/f3+q9V4g/rvnn3/e9Xp7e1Pd2trqenqc6HFn5u8p/P73x8+TMkYe74mam5tTfeLECdfT47Knp8f1bt26ler4Pup7rI+v74WZv49bWlpyPb2n+9J7kzkMraDQ93RdrfXYNTPb3NxMdTxn67Gt5/bYi+fzbPee8dzlzo2hp6+7uNj//EH315f2yZNx+OIxxsw+AAAAAAAAAAAAAAAAQJ7gxz4AAAAAAAAAAAAAAABAniDGCwDw0OgUiXGqxtXVzDSOs7Ozrnfnzp1Uv/POO3t+vqLizJSiOr1ojCsoLOC3rwAAANhfRUWZIZfq6mrX02ndc0UPaDxFjJ2oq6tLdYy61fivGBOg07CXl5e7nsaN6RTp8do9Xk8DAACoGJOiUS/z8/Oup/FDMbpJr4ViJIw+jsY/xWgoHWccGxtzPY3Meeutt2yv9Drpm9/8ZqqPHDni1tP4pI6ODtdraWlJdYzg0sieGEej+1bHO+N1ncZ/abzNV6Hv4/r6mtQbbr2NjczyxMSE6+n7861vfcv19FiI+0SjfTRSKkb5HFS6T+KxrDFMMcZL7wE0ai7GP+k+ibFRbW1tqc51rGksnJnf5/E4fBLF+zaNQIvRZnr/l2ufx/sqjfjSe7z43HrMxBhAfd/iZ1/fx1znFo372t7x94J6b6iRXmb+ONd7UjO/j+J26b2tbn88JvXzHj/7+hnI9dqelNg5PDkYnQEAAAAAAAAAAAAAAADyBD/2AQAAAAAAAAAAAAAAAPIEP/YBAAAAAAAAAAAAAAAA8gQhiwCAh2ZnJxP2GvNcV1czGdxTU1Oud/ny5VTH7O5cNOvVZbYWhczWQnJaAQAAsL+KigqlLnM9vTYtLS11va2trVTrte+hQ4fcet/85jdT/ZOf/MT1bt++vWtt5q/J6+vrXa+5uTnVjY2Nqa6srMy6/QUF2a+lc/UAAMDja3193S0vLS2lenp62vWGh4dTPTY25nozMzNZ/93o6Giqx8fHUz0/P+/W0+WRkRHXi8vZ9Pb2uuVXXnkl1YcPH051T0+PW6+7uzvVHR0drtfS0pLqeE1WVVWV6sJC///sb29vp1qv6+J6ulxUVGTZ6GPcrafjuVpvb29ZNnG79NiIY8ATExOp1nFdM7OKiopd63idmuu1Pmi6v+JnYGUlM/a9uLjoenNzc6mO++TOnTup/uCDD1Idr7P1mIz3DZ2dnaluamxyvdra2lTHfVlSUmLIiPtD950ek2Z+X8b7PT1OlpeXXU/v//RYuH79ultPz2vxs1JTU5Pq6urqrNul93Rm/pjKdp7JtV5cN34Wc22Xvgbdr3ouNPP7srjY/41Hlx/leQB42JjZBwAAAAAAAAAAAAAAAMgT/NgHAAAAAAAAAAAAAAAAyBPEeAEAHhqd3jXXdL6Tk5Oud/bs2T09/quvvuqWdYpdF+lV7qeojLFeAAAAwMNSXl7ulhsaGlKtcQ9xun+9no7Tm//N3/xN1uf7wQ9+kOquri7X0xivXPER1dWZKdjLyvy09Dq9PdOnAwBwcGjcSoxeydXLFcuicS4bGxup1lgiMx+zpbFdZmb9/f271mZmg4ODqb5x44brvf/++7YXen0TY7ZOnjyZ6nhNpmOJGoNk5q/R9PE1msvMrK2tLWtPI1M1tuYgiVFRuqzXhzGmSF+PRs+amZ0/fz7VuY6TeH2b7RozbqNGouWKT9Lo3Cg+ZrwW/g0d6zYzW1tbS/Xq6qrr6bV8HPvWSDo95s3Mvvjii1RrxNPLL7/s1jt9+nSqT5w44Xoa69Xa2up6Gq0UPwPw4vlPl+OxpsdrPKe642TFHyd67Gl0Ya5jMh5rul1xm/Xfxe3SXq54P33M+NnQXowJ06iz6iof46XHoda5YvpynZ+AJwkz+wAAAAAAAAAAAAAAAAB5gh/7AAAAAAAAAAAAAAAAAHmCH/sAAAAAAAAAAAAAAAAAeaL4UW8AAODJodnd6+vrrqfZsktLS3t+zOeffz7VZ86ccT3N09as6JihW1BInisAAAD2YCf7YsE+XVKWl5enurm5OdVbW1tuPb2mrampydr7y7/8y6zP9cknn7jl+vr6VBcVFaV6c3PTrdfa2prqxsbGrM8NAAAODr2W0HE4M7OVlZVdazM/hrezEy6GxNraWqpnZmZcb2JiItVDQ0Oud/v27VRfv37d9S5cuLDrerl84xvfcMvHjh1LdXt7u+s1NDSkurq62vV0ua6uzvX02quysjLrY+h4ZLxe02u+g6Qgx0WtXh/qNV9FRYVbT68pe3t7XW9+fj7VCwsLrjcyMpLqwkI/V4Eev3pMLi8vZ33uuI/jYyp93XG9bP9Ox7rN/Gcnjm/r6x4fH3c9PbavXr3qevF6/TdOnjzplo8fP55qPebNzLq6ulIdr931+M21f3BvSkpKUh3PC3ovFc+pdfWZc83i4mKq4/3Y9vZ21sfQz6luh5n/3BYX+58I6Puf6/OgjxkfQ5fjfaHuh7hPqiqrUl1WVpZqfS27bQsAZvYBAAAAAAAAAAAAAAAA8gY/9gEAAAAAAAAAAAAAAADyBDFeAICvTKeKjFO96pSSOrVpnOY0V0/FqUafe/a5VB8+fNj12traUq1T5X4pxmu/MhcAAADweCvIubgvdFp0jSGI17A65X7sabTBjRs3XO+DDz5I9bvvvut6el2skQgxzkOv/2NsQ4y5uB+5IkK4dgcA4P5oDEyMGJqenk711NSU683NzaVarzHM/BiePqY+npnZ5ORkqoeHh13v5s2bqX7vvfeyv4Acvvvd76b6qaeecj2Nkero6HA9jfGKMVtVVVW71mbZo3CKivyf3MrKSqUuc72DEkdzL9dWep2aK8ZLrwd1fNbMR7rpsWVmdufOnaw9jYbTYzQ+vr6ner0ctznGD+lr22t0UBzD1tiluP36mRgdHXU9vV7/wQ9+sOtzmfkYuhiPpsuxp/sovlf6urnOfjDiZ1//vhGj5lpaWlKt0YgxxkuX7yXiS9/j+H7rca91rs9KjAnLFeOly7l6+twck8DdHYyrCQAAAAAAAAAAAAAAAAB3xY99AAAAAAAAAAAAAAAAgDzBj30AAAAAAAAAAAAAAACAPFF891UAAMgtVw6sZnkvL69IvezWW1lZ2bWOvva1r7nl3r5MBnFXV5frtba2prq2tjbVMROW7FcAAAAcFEVFRamuqKjYtY7Lej1uZjY3N5fq559/3vU++OCDrM/9y1/+ctf6v/yX/+LWq6ysTHVjQ6PrNTZmlsvKyrI+Vy56fR7vLwAAwN5sbW25ZR1vm52ddb3R0dFUDwwMuN7Q0FDWf7ewsJDqqampXR/PzGxsbCzV165du8uW7833vve9VD/77LOpPnLkiFtPxwvb2tpcT69baqprXK+yKnO9U17ur8OKinb//+jjdYte08Txx8LC/Pt/8fU16PhqVVWVW0/3axyvXVpaSvXg4KDr6XFy6dIl19PnOHzocKo7Ojvcek1NTamur693verq6qzbXF5enuqSkhLX0+tzfY913NvMX4OPj4+7nr7W/v5+13v77bdtL1577bVU9/T0uF5HR2Y/5DrO8fDFv0Xo8aXHpJk/b29sbKR6c3PTrac9reNy/B6Iy0qP8+Li4l1rM/964mdFl+O/0+Vcf4/hbzXAvcm/qwkAAAAAAAAAAAAAAADgCcWPfQAAAAAAAAAAAAAAAIA8QYwXAOCexSlpdRrJtbU119O4rpmZ6VRPT0+79XSqX63N/NSQcerXzs7OXWszH+NVV1eX6hgnkI/T5gIAACB/5Iqiut9pyjVKS+MKzPw1s8ZamJn9h//wH1L9V3/1V3t6rp/+9KduWa+79ZrbzKy6pjprL07zvhdM4w4AyGfxGkCXYwynLufqxTgXfcyd7Uy9urbq1puZmUl1jNnSWKEYs6VxSjdu3HC9Cxcu2L2KEaMaPxRjlzRaKcYuaVRRrqiulpaWVDc3N7uejhfGx7/fONInRa4oIr0GjFFX+u/i+11bW5vq1VV//F68eDHVN2/ezLpdx44dS3Vvb6/r6bEWo630NcTYJY03UnEcfHJyMtVXr151vbfeeivrNqv29na3/I1vfCPVL730Uqr7+vrcenps19T4SDo8fLki/FQ8tvTzoee/+J2QK8ZLvyPi90VcVvo3klwxXrr8pRivYlnmNg54KPjrJgAAAAAAAAAAAAAAAJAn+LEPAAAAAAAAAAAAAAAAkCeI8QIAfGU6VeTi4qLrZZsieGRkxK03PDyc6jglsE5DGiMKcvV0OladijdOL0k0AAAAAPJZRUWFW9a4ihMnTrieTs8e4wt+/OMfp/rWrVupjtfnGuehz2Xmp3WP0QYa1aAxZGZ+mnoAAB5XW1tbqY7fkxpbFCOMlpeXs/Y0lkWjXuJ609PTqY7jcvq9//nnn7ve3//939u9OnXqlFt+4YUXUh2jlTTySWO1zHycUrxW0Ngl/XcxwkiXY9yUPub9xI0+FDEN9oAMYxYXZa75YgSavqcxAkivWzW2y8y/P/H90Fi1s2fPZt2u69ev71qbmZ08eTLVhw4dcj29To3Hmm6LjiPHiDId395rbJeZj+d6+eWXs27z0aNHU63RdWb+OI/7/H5pCiHD54+W3sOZZT8mzXw0WDwW9Dsixkzqc2gdo8Z0uagoHGscJ8BDx8w+AAAAAAAAAAAAAAAAQJ7gxz4AAAAAAAAAAAAAAABAnuDHPgAAAAAAAAAAAAAAAECe2J/gRgDAE21jYyPVCwsLrjc+Pp7qO3fupPr27dtuvWvXrqV6cHDQ9TSbOGZ3a56y1mY+91lznWOOLQAAAPAgPejrz+JiP7wTr4uVXheXl5e73s7OTqr/23/7b1kf40c/+lGqq6qqXG9tbS3Vi4uLrtfT05Pqjo4O14vb8lXpazHjHgAAcDBsbW2lemVlxfVmZ2dTPTMz43qTk5NZe/o4m5ubqV5eXnbrTU1NpXp4eNj1dFzuvffey7r9ubzwwgupfumll1zv+PHjqdbrATOzlpaWVOtYnplZaWnprrWZv6bRuqSkxK2ny/Exiov9ugfSAb2EKSzKzCVQWVnperrP4zWeLldUVGT9d4UFfq4Cvd7V4+SDDz5w68XPlbpy5Uqq4+ejra0t1fH6VrdZt0M/b2ZfHu/eqzNnzqT6ueeecz397HR2dqa6oaHBraf7cr+ug7l8zg9FhUVuWd/voiLf297ezvo4+u+0LiwszLHevW0rgP3HzD4AAAAAAAAAAAAAAABAnuDHPgAAAAAAAAAAAAAAAECeIMYLAHDP4lSguWK8RkdHU33z5s1Uf/755269f/zHf8z6fM3NzamO0/nW1NTsWpt9eSpYAAAA4HGh1+QxxitbnK2Zj6+I1/V6Lf/Hf/zHqdbYLjMfM/Lf//t/d70//dM/TfXS0pLr6ZTvMe5Br+Vj/Mb9ILYLAPCoaFSXjpmZ+eig+fl515uYmEj10NCQ62k8UIwKmp6eTrVGGMXH1+gujTO6FxopZOYjuY4dO5bqU6dOufUOHTqU6q6uLtfTGK/q6mrX0+uWL8VzSQSXRkrlEq8PuF64fxoPFKOC9PozV1RX/HcqXqfqe6zHSWNjo1vviy++SPWlS5eyPv7c3Jxb1s9Ortej190xEmmvMV4a22XmPx99fX2u19vbm+rW1tZUx3g0jVoqOKjZb9g3LkqryL/fhTnm+YifK/eYetxwCAF5g5l9AAAAAAAAAAAAAAAAgDzBj30AAAAAAAAAAAAAAACAPMGPfQAAAAAAAAAAAAAAAIA8UXz3VQAA8GKe9ebmZqqXlpZcb3x8PNVXr15N9Q9/+MM9P197e3uqa2pqXK+ysjLVMasYAAAAeFzpNXlxsR/e0eXS0tKsj7G8vOyWe3p6Un3mzJlUT09Pu/Xee++9rI/5gx/8INUlJSWuV19fv2ttZlZVVZXqxsbGVMfXBgDAvdrZ2fHL25nl7e1t19va3sra08eJvfX19V3rtbU1t55+905OTrre8PBwqm/evOl6Fy9eTPVbb73leiMjI3avTp8+7Zb1GqCtrc319Hu5oqLC9fT7u6mpKdVdXV1uPR3ba21tdb2GhoZdH8+M64DHQVFRkVvWsd2trS3Xi8tKx331GOrr63PrnTx5MtVvvPGG6+m4dbwO1uvdsbEx17t06VLW7bofX//6192yfl6am5tdTz8fcVwcT67495kH/e8AHFzM7AMAAAAAAAAAAAAAAADkCX7sAwAAAAAAAAAAAAAAAOQJ5kAEANyzXNM9aqSXmZ8edXBw8L6eT6f4Lysrc73CwszvVpmGEgAAAPDiNbLGelVXV7tea0smEuHYsWOp3tjYcOvp9fmPf/zjrM/9+eefu+WjR4+mWqM+4nbpPUXcRo1wyBVRBgDAb3wpjn478z0TY7ZWV1d3reO6KysrrqeRQPrv7iXGS8fNrl696no/+clPUj07O2t7od+7ZmbPP/98qg8fPux6HR0dqY4xQhodFCM6NWarsrIy1XV1dW49XY5RRDrWFyOf8IjthOV9GHotKsocMzEWTq8xdczXzB83+rmKnzEdi56fn3e9hYWFVM/NzbnexMREqjVSz8ystrY21R9++KHtxTPPPOOWn3766VTrdbaZ/8zFKDuudwEAuTCzDwAAAAAAAAAAAAAAAJAn+LEPAAAAAAAAAAAAAAAAkCf4sQ8AAAAAAAAAAAAAAACQJ4rvvgoAALlp9vn29rbrra5mcpNHR0f39HiaIW7mc5FjNniu5wYAAADgFRZm/r+v8vJy12tobEh1T09Pqnd2dtx6ek2uj2dm9qMf/SjVFy5ccL1nn3021XV1da6n1/Wbm5upbm1tdes1NjamurS01AAAuFf6PbO6uup6s7NzqZ6bnXW9mdmZVE9NTbmeLi8tLaV6fX3drbe8vJzqiYkJ1+vv70/1P/zDP2Td/ly+9rWvpfqZZ55xvRMnTqT60KFDrtfR0ZHq5uZm16uqqkp1UVGR6+n3d3Fx5s9N8Ttal+PYXnxMHCAFd1/l3mWuK+OxUF1dnep4DNXX1+/6aHE8WD9zCwsLrjc3l/l8T09PZ338eI28sbGR6uvXr6c6ngdOnTqV6jNnzrje8ePHU63X2WZmDQ2Za/D43PoZAwAgYmYfAAAAAAAAAAAAAAAAIE/wYx8AAAAAAAAAAAAAAAAgTxDjBQD4ynT64zg98dLSYqpv3LiR9TF0iuDTp0+7XltbW6p16mAzP0UwAAAAgNw0KiPGBGi0lkZ3xfgA7a2srLjeSy+9lOqPPvrI9T7//PNUx2gGvafY2trK+tz67yoqKlyPewMAwG5iVJfGbGmsj5nZ5GQmWivG0Q8NDaX69u3brnf16tVUj4+Pp1rjf8zM1tYycffDw8OuF2OFsjl27JhbPnnyZKq7u7tT3dfX59Y7fPhwqnt7e12vvb091U1NTa5XWVmZ6i9FCmnSp7RizO4dtEoAAQAASURBVKfKFUtEZNHjT9/jGOOl13LxOk//Xa7jS68pY4yXXvvGY00/m/G8UFNTk2r9rMQYL/1s6ufNzEfndXV1uZ7GeMXXTcwdACAXZvYBAAAAAAAAAAAAAAAA8gQ/9gEAAAAAAAAAAAAAAADyBPMbAwDu2fLSslvW6Y/j9Kizs7N7esxvfetbqdbph838FMQ6ramZn3411xSuAAAAAHwUQFlZ2Z7W09guMx9zMD8/73qnTp1K9eTkpOtdv34963Nvb2+nWiMcNDrEzMf6xpiD2traVHNvAAAHm363aHxjXI49/b6ItKffVTpuZebHruK41djYWKoHBwddT7/Hfv3rX7tejK7ci+eee84tf+1rX0t1HP9qbm5OdUtLi+vp95/GDcU4Lo0fam1tdb3GxsZdH8+MaC08OPHY2o9jTa8j4/WmXt/Gc4meM2L03/r6+q6P+fWvf92tp/F4PT09rqfj221tba6XK8aLmFoAQC6MfAAAAAAAAAAAAAAAAAB5gh/7AAAAAAAAAAAAAAAAAHmCH/sAAAAAAAAAAAAAAAAAeYKwRwBAojnoMbd4Y2Mz1fML8643NzeX6c37Xlz+jRdffNEtHzt2LNV9fX2u19nZmeqYWV5eXp7qwkJ+wwoAAADsVXGxHxYqKCjYtd7Y2HDrLS0tpbq1tdX1ent7U/3MM8+43o0bN1I9Njbmenpdr9f8zc3Nbr26urpUV1RUuJ7eD5SVlbmevtaioiIDABwc8XtmZWUl1cvLy663urqa6vX1dddbW1tL9eLi4q51XJ6dnXU9/X4aGBhwvXPnzqX6o48+sr2IY1zPP/98qg8dOuR67e3tqY7ff/rdWFtb63plpZnvvOKSzPdd/J7Uf1dTU+MfQ7439RoAyGfxHKGf/cnJSdcbHBxMdX9/v+vpuUDPGTqebWbW0tKya23mP9ONjY2uV11dneqSkhLXY7wbAJAL3xIAAAAAAAAAAAAAAABAnuDHPgAAAAAAAAAAAAAAAECeIMYLAJBsbmZivNbX11xPp02emZlxPV2O0x9rxJc6cuSIW+7q6kp1R0eH6+m0pzptvxkxXgAAAMD9itfPuqz15uamW0+vyWPMiEbwxkhfjQ2+fv2662lcQltbW6o10sTMx5jEeBKN59I4BDOzysrKXdcDADwaOzs7qY5ROwsLC6menp52PR2DimNOOialET1xrErHuPS5zHyM15UrV1zv2rVrthdPP/10qjW2y8yPh8WILx0PixFA+v1XVVXletnGw+J/13ig0tJS14vRnkC+0uvWGOE3NTWV6hjTd/78+VR/+OGHrqfXrfo5jdfBTU1NqY5RXfoZzjW+DQDAveCvogAAAAAAAAAAAAAAAECe4Mc+AAAAAAAAAAAAAAAAQJ7gxz4AAAAAAAAAAAAAAABAniCIFQCQbG5upFrzy818JvrExITrjY+P71rHddvb21Pd2trq1tPlmEuuecfVVdWuV1KayRvPllEOAAAA4N4UFRWlurKy0vXq6upS3dzc7Hp6H7G2tuZ6Ozs7qV5dXXW9t956K9V6/R/vG2pqalJdUlLieno/oM8Ve8XF/t8VFXEfAQAPm35fzM/Pu97U1FSqR0ZGXG94eHjX2sysv78/1RcvXkz1+fPn3Xrb29uprqiocL24LXv17W9/O9UnTpxIdU9Pj1uvq6sr1d3d3a6n42bx+7W+vj7VZWVle9omfZ1mZgUFBXv6d8BBFI/n39ja2nLLCwsLqdbxbDOzsbGxVN+4ccP1/vIv/3JP2/H1r3891UePHnW9zo7OVDc2NrqeXj/H8w4AAPeL0QwAAAAAAAAAAAAAAAAgT/BjHwAAAAAAAAAAAAAAACBPEOMFAEh02tOlpSXXm56eTnWcQnloaCjVg4ODrvfZZ5+l+vTp06nWqUvNzGpra3etzcyqqzPRXXGa08KCzO9WmY4YAAAA2H+lpaVuuaqqKtUauWX25SgFpVFaMeJLYxWuXbuW6o6ODreeRopp1Fh8/Bjxq5FfMf6kqKg86zYDwONMIw9jRM7m5uautZk/1+eKitLHj+f9ubm5VOuYk5n/TojjTBrVpd8XZmY//OEP7V4988wzblljtuLYlX7/xbErjZ3U70aN3zLz0T65Yuzjc+81uksRd4/HiZ53NA5WIwHNfAygjlmbmQ0MDKT6ypUre37uf/fv/l2qn3vuuVQfP37craexfQ0NDa6379FdO2GZYXEAeCJxtQcAAAAAAAAAAAAAAADkCX7sAwAAAAAAAAAAAAAAAOQJfuwDAAAAAAAAAAAAAAAA5IniR70BAICDQ7OPl5dXXE/z04eHh13v9u3bqb58+XLWxy8pKUl1eXm56+lyrl5xcfavLs2CBwAAAPBglJWVpbqurs71Cgsz/19ZUWGR621vb6d6YWHR9YaGhlL9+eefp/rChQtuvaKizGPG63+9V6gor3C96urqXWsz/3oKCgoMAJ4Ues7b3Nx0vZWVzLjQ0tKS6+ny6uqq6+njaB0fY3Z2NtUzMzOuNz4+nurBwUHXu3nzZqp/+tOf2v34oz/6o1QfPXrU9To7O1PdUN/getU1me+Pmpoa19PlyorKVJfKd4yZWUVFZowrfh9VVmb+Xa7xL+BJpNeRi4uZ68ixsTG33p07d1J948YN19Pryp/97GdZn+vb3/62W37++edT/fTTT6e6t7fXrdfc3Jzq2tpa19Nr2H3BJSsAwJjZBwAAAAAAAAAAAAAAAMgb/NgHAAAAAAAAAAAAAAAAyBPMBQkASDTGa2Vl2fWmpqZS3d/f73oXL15M9blz57I+fkVFZir9sjCNcWlp6a61mY//yoUp9wEAAIAHr7g4c31eU+OHlvQ6XyO9zMzWN9ZTrfEtZmY9PT2p1kiVGL8wMDCQ6u985ztZn7u+vt71GpsaM9uxvu56GjOTKzaF+w0Aj7ONjQ23rDE5Gu1uZjY5OZm1p/9O6xjVpeNM8TtBezHG67PPPttt83P6sz/7M7d86tSpVMcYno6OjlQ3Nja6nkZ17TWCK3536Hdj/M7R8S++c5DPNGp1v47lrc3MuPXc3Fyq4zj1+fPnU/3JJ5+43g9/+MM9PZeeI8z8temRI0dSrbF/ZmbVVZnzQlGxj+2K18UAAOwHvl0AAAAAAAAAAAAAAACAPMGPfQAAAAAAAAAAAAAAAIA8wY99AAAAAAAAAAAAAAAAgDyRPYgcAPDE0Xz2paUl1xsfH0/1F1984Xq/+tWv9vT4XV1dqdacczOz8vKKVJeWlu7p8QAAAAA8fIWFBbJU4Hrl5eWpbmxsdL3V1dVU672Bmdnx48dTvbi4mOqtrS233u3bt1P9T//0T65XW1ub6tbWVtdrampKdXV1tesVFRWluqysLNXFxX7YTJcLCvzrBoCDZGdnZ9f/vr297ZbX1tZSPT8/73rT09OpHhkZcb3BwcFU37lzx/VGR0dTPTw8nOqLFy+69W7durXrNkb6vWJm1tLSkur4OvW75Zlnnkn1yZMn3Xq9vb2p7uzsdL22trZUNzQ0uJ6OZVVVVbleSUnJ7i8AeAI9iOukxaXM9eHExESqr1275tb7x3/8x1T/8pe/3PPj/9Zv/Vaqjx075np6bmlvb091vNYFAOBhY2YfAAAAAAAAAAAAAAAAIE/wYx8AAAAAAAAAAAAAAAAgTxDjBQBPsM3NTbesMV4rKyuuNzs7m+qPP/54z8/x3HPPpVqnSa6rq3PrlZdnpsvXafQBAAAA5KcYvaL3ADE2Re9FNAolRm5pNMPNmzdd78c//nGqY0yYRnzFeC69L6qvr091jGiJ/w4A9oNGa8WYLY0yjGM4uXp6Ts31+Dr2MzMz43oa565xXGY+guvGjRuud+nSpVRfuHDB9kLHi8x8BJdG5pj587lGL5qZVVVlvjNaWppTnSvaMcbwaHSXPpeZWWVlZar5TgDuj8bvxSg+Pa9prKuZ2djYWKqHhoZSHWO89hrd9Qd/8Adu+eWXX071kSNHXK+5OXM+ideH+0H3A1GxAIB7wcw+AAAAAAAAAAAAAAAAQJ7gxz4AAAAAAAAAAAAAAABAnmCuSQB4gunUqGZ+2med8tnMbHV1NdVxamfV1tbmlp9++uldezU1NW49naqf6UoBAACAx4/Gn8RIFb0fqKioSHVpaalbb3l5OdUxxmttbS3V7777btbHj/c66+vrqdYYhfjc3KcAeNBiHJeOxej5z8xHcC0tLbmerqvnuHj+0/XiWM/ExESqR0ZGXO/27dupvnr1quvtNbrr9ddfT/Wzzz7rehrrFb8vNForxkXqssZAxtgd/Z7R76a4HL8HiJ0Hvjodj47ntYWFhVRPTk663sDAQKo1SvDy5ct7fu5//+//fapfeOEF1zt27Fiqu7u7XU/HsR/EeYBrTADA/WJmHwAAAAAAAAAAAAAAACBP8GMfAAAAAAAAAAAAAAAAIE/wYx8AAAAAAAAAAAAAAAAgTxQ/6g0AAOy/nZ0dt6y5v9qLWe2a4671butm8/Wvf90t9/X1pbq1JZOzrtnpZj4HnZxiAAAA4PFTVlaW6pKSEterqqpKtd4bbG1tufWmpqZSffToUde7ceNGqj/99FPXu3PnTqr/9b/+166nz1FeXp7q+vr6L78IANhneg6KYzGLi4upnp2ddb3p6elUT05OZu0tLS2lemVlxa03Pz+faj2/xuXx8XHXGxoaSvXNmzdtL373d3/XLZ85cybV8Xze3d2d6tbWVterqalJtZ6zzfz3jPaKi/2fQYqKilJdWOj/f2hdV9cz82NqjF0B92dzczPVeg4yMxsZGUn1wMCA612/fj3Vn3/+earfeeedrM/1e7/3e25ZzzunT592vd7e3lQ3NTW5XmVlZar57AMADhJm9gEAAAAAAAAAAAAAAADyBD/2AQAAAAAAAAAAAAAAAPIEMV4A8Bja3t7OuqxxXDqVs5mfHlprM7OFhYWsz/fMM8+k+vDhw67X09OT6vaO9lTHKfF1quU4hTIAAACA/KfX+bliU9ra2lIdI2eOHDmS6u985zuupzFekUbc/K//9b9cT+9FGhsbUx0jHDSKWGPHADze9iO6ScdiYkz66upqquM4jcZxTUxMuJ7G3WhUoZlZf39/qsfGxlId47guX76c6pmZmewvINDI9ldffdX1NGZLz6P6b8z8+VzHjszM2tsz40fNzc1ZH1/P32Y+BjJGcD1O5JD8zX+ROvsxSvoQDgI958Xzjp7LNKrLzOzChQupzhXdpddrp06dcj09D2lcoJk/7+h5xsxfpzJuDQA4SPhWAgAAAAAAAAAAAAAAAPIEP/YBAAAAAAAAAAAAAAAA8gQ/9gEAAAAAAAAAAAAAAADyRPHdVwEA5JutrS23vLa2lurl5eVUa/Z7XJ6amnK9ycnJrM/X29ub6q6uLtfr7OxMdVtbW6rr6+vdehUVFakm+xgAAADIDzs7O1l7BQUF9/WYem/Q0NDgen19fal++eWXXa+8vDzV7777ruudPXs26/O9//77qdZ7m3jPUlRUlOrm5uasz11SUuJ6xcUMvwEHnZ7LNjc3XU/HWHL14liMrru6uppqHaOJvcXFRdfTsZnx8XHXGx4eTvWtW7dc79KlS6nWc9y9OHbsWKpPnTrlejr209LS4no1NTW71vG8qf+usbHR9fTcX1tb63qVlZWpjufbfLeznTkOt7b98bS9vb1rfbee0vG2+N2ky0/quNzWVtyvW1nWNCssyOyjwqJMfb/XPvlIz5u5Xnc85+l5bmZmxvVGRkZSff36ddf76KOPUq3nQ70+MzP7zne+k+ru7m7X0/NQvM7T85Vei5r515fr2hcAgIftybxqAwAAAAAAAAAAAAAAAPIQP/YBAAAAAAAAAAAAAAAA8gTzCAPAYyhOK63RXbOzs6memJhw642Nje1am5nduXMn6/Pp1Mtx+ubW1tZUNzU1pTpOw6zT3sfpVwEAAAAcTA8irkIfs6qqyvU0JjjeN1RXV6e6rq7O9TSe5MMPP3S9zz77LNUaW1NaWurWW19fT/XS0pLr6X1PjKPZlxgvTYx4chJCgEcixnGtrKykOn72tad1XHdhYSHrerlivDTiJsat65iORnqZ+bGfvfrud7/rlo8fP57qnp4e12tvb0+1jvWY+SgcPS9rbebP72VlZa6n59/Ye5wjpnbkZB+PQ/0O2tjYcD1djmOCSmPPKisqXY/ISbOdHR/jpfsyRje52LOix/eYzEX3SYxA29rK7Lt43tTz4dzcnOtNT0+nOp7X+vv7U61RgmfOnHHr6bVcrphBHYs285+PXNe3T1JUGwDg4Hsyr0IAAAAAAAAAAAAAAACAPMSPfQAAAAAAAAAAAAAAAIA8wY99AAAAAAAAAAAAAAAAgDxBECsAPIZirvfy8nKqNft4dHTUrTc4OJjqgYEB1zt37lzW52tsbNy1NjNraGhIdX19fao1m93MZ66TfQwAAAA8uba3d1JdXl7uei0tLamuqKhwvbiumpubS/WHH36Ydb3vf//7qV5cXHS9mZmZVOs9lpm/h6msrNzzdu3VjmX2SYFxvwTsNx1HWVtbcz09F+iYipk/L8Te5ORkqicmJlK9sLDg1ltZWcna03NXPCctLS3t+hhmZkVFRak+fPhwquN4y5EjR1J9+vRp19N/19XV5Xrt7e2pjuNAtbW1qdaxn3jOLi7e258m4jbr8s7OTs5188329naq19fXXU/f49XVVdfTY1bruH/0PYj7qqy8LNU6Rvck2dzcdMu59qW+V/p50/pxp/tkY8Mfr3qMzs/Pu97s7OyutZk/j46Pj7uejis//fTTqT527Jhbr6enJ9XNzc2uV11dnerS0lLXe5LeOwDA4+PJvGoDAAAAAAAAAAAAAAAA8hA/9gEAAAAAAAAAAAAAAADyBDFeAPAYitPO6tTOOo30nTt33Ho3b95M9cWLF7M+/smTJ92yTqNaV1fnejp9c01NTaqZGhUAAADAbgoLM9EiMWJBl2MkTGFB5v9pi5E2eh/0x3/8x673ox/9aNft+NnPfuaWb926leoYf6L3Onp/ZOZjbEpKSnZ9rrvJ92ga4KuKETrZerkin1SM6tJxkxg5o1FdMVZG49GHh4Zd7+atzBjL1atXUz00NOTW03iusbGxXbf3bjTi0Mysqakp1XqujOdNHcPR85iZP3fFeEJ9nFy9XM+N3FFdekzG5RglqZFJ8dhW2oufDY1Vi8fCXiPXHrZcn/1sNLLPzO+TXPtVY7vM/PWIPmY8zvV7P9c25mMknY4/x32n59GpqSnX0/PcyMiI6+n58fPPP3e9Z599NtUaM6hxhGZmfX19qW5ra3M9HacuKytzvSc1vg4AkN/49gIAAAAAAAAAAAAAAADyBD/2AQAAAAAAAAAAAAAAAPIEP/YBAAAAAAAAAAAAAAAA8sTBDFsFAHwlMUda86dnZ2dTHXPir127luqYi6xaW1vdclVlJsc95h2XlWaWi4qKcmw1AAAAAOxdYaH/f9gqqypT3dDQ4Ho9PT2pfuWVV1yvoKAg1X/3d3+X9fmuXLmS6i+++ML1urq6Ul1fX+96xcWZ4beGer9dJaUlqdb7pfjagCdNHNdYX19P9cbGRtZe/Hc7Ozup3tzcTPXKyopbb3FxMdVzc3OuNz09neqxsTHX03GVW7duud7Zs2dTfenSJctGz0FHjhxxPT0X6Os0M1tdXU11SUmJ6+nrzkX3yfLysuvNz8+nuqKiwvXi8yndTh2PqqqqcuuVl5dnfbx8HD/Sfb61tZVq3cdmfv/Efa7H4cLCguvpcvx32T4D8btE3w/dRjP/uYqPX1mZ+X6N43763uU6LvZqr8eumX8Nuv3xHKHLa6trrreymjkX6GfKzO+veG7R73bdJ3pcx+W470pLS3et4+PrOWK35UdFj+2lpSXXm5qaSnUcf+7v70/17du3Xe/69eupjvu8t7f3rrWZvyZrbm52vZqamlTHfQ4AQD5i5AAAAAAAAAAAAAAAAADIE/zYBwAAAAAAAAAAAAAAAMgTxHgBwGMoTueq09rqVLzj4+NuvXfeeWdPj69Tnppln3rezKyg8GBMLQsAAADg8ab3ItVV1a7X3t6e6hiFo1EZtbW1qf6Lv/iLrM914cIFt6zRO9XV/rk1kiRGhGjkF9ESQEaM8tE4nVzxRjGeS/+dfv40oioux97MzEyqR0dHXW9gYCDVn376qesNDg7abjRW0MzshRdeSHVTU5Pr6fhOrpgcrc38ftBzXtyvk5OTqdZzoZkfP4qPr+NJcZv1XKbn1Biv2NjYmOq6ujrX038XtysfaGxUfN/0eI2RcbOzs6nW4y724nGux4lGacXYKP0M5Dqe4veYvldam/nvsf2I8colHr/ZYujiZ1j3c+zpvozxX/r4MVJKaVxa/P7WfdnY4PddQ2PmM6HHvFl+RHtmG2828+eImzdvup7GGn722WeuF8+jqq2tLdV6Xad1XC+eW/QzkY9xgQAARAfzKgEAAAAAAAAAAAAAAADAl/BjHwAAAAAAAAAAAAAAACBP5N8cmACAu4rT2mabPnhkZCTnv8smTtFcXl6eaqZABQAAAPAoaIxJRWWF6zU3N++6npm/h9Hen/zJn7j1/vZv/zbVV69edb2LFy/K4/nhNo0RihFiSqMliPHCky7G6ehYxvT0tOtpXEzsaXyPxiLFWHONSIoxYfrvhoeHXe/zzz/fdfsjjbZ66aWXXE9jAGPUlZ6TYvyQxgNVVla6nq4b92U2MaJMX2uMEdLt1POrmY8j0sinGF92+PDhVPf29rqeng/zJcZLx9T0vB/ft4mJiVTH41Bj1WJ0mh6H8bukqqoq1RpbFKOn9N/pNsZlHeczM+vu7k51HDvUdeNxeD9yjU1qbJSZfz2Li4up1n1s5o/lsbEx19P4qVzXB7n2pUaBxe1vaWlJdV9fn+vtWGbd+L2vy3G74vLd/vt+2utxrmPO8Tz5wx/+MNXxOFdnzpxxyx0dHalubW1Nte5jMz9uvR/HJAAABxkz+wAAAAAAAAAAAAAAAAB5gh/7AAAAAAAAAAAAAAAAAHmCH/sAAAAAAAAAAAAAAAAAeSI/Am8BAHeVLTPZzOdPaw79uXPn9vz4v//7v5/qmKWuWe0x11vzrQEAAADgQSkuzgxzVVRUuF5hYeGu65llv5fSeyczs1deeSXVH374oev99Kc/TfXGxobrra2t7rodZv7+qbKyKuv2c1+Fg0A/K1rfrVdQUJDqXMfy6mrmsxI/f1NTU6keGRlxvTt37qR6eHjY9XT51q1bqX7nnXeyPnek54z29nbXe+qpp1JdXV3jek1Njbv+u46ODrdec3NzqquqqiybeF7Q80d9fb3rra+vpzrX/t/a2kr14uKi601MTKR6YGDA9a5cuZLqeF7T5zt06FCqX3zxRbeebkt1dbXr1dXVpTrXPjlIdJ/rvtRj18xsaGho19rMH/c6lhcfP36P6bGg+6uystKtt7m5meqlpSXXGxwc3HU9M//dGMf99Pn8d5p/7r3a3t52y7otcbxzYWEh1dPT06keHx936w0NZc4Dw2Gfb25lHr+mxn+Gcx17+v6MjIymenZ2xq03M5NZju+b7qNc3/uxp4+j6+ln717EfZ7rfK6vW19b3Od6vv3Rj37kevEzoZ5//vlUv/7666535MiRVLe1taVax6XN7v/YAwAgHzGzDwAAAAAAAAAAAAAAAJAn+LEPAAAAAAAAAAAAAAAAkCeI8QKAAyzX1NfRyspKquNUvLo8Pz+f6lzTpr7xxhtuWaem7unpcb3GxszU1Ew3DwAAAOBR0CiZ0tJS18sVc6GxIK2tramO8cUvvPDCrs9lZnbp0qVUX7hwwfXKyspSrfdOcbm2tlb+jd9+jbiJMSD6eu43wgPYC43T0UghM/85ij2NilIxOiZbPIyZj5SK0Uf9/f2p1ugYM//ZPH/+/K7bEZ05c8Yta3RMjPHS+BiNnjLLHm90L59hHRfKFQHU1trmeoVFu58P47lRxRivycnJVMfzoUY+aYyamdknn3yS6rGxsVTH/aOP2dnZ6XoazxQjeXTcKdf+ut/z4V4fIx7XGgWn26/Hrpnfd6Ojo66nzxej2fR7IMae6feHRlHFY0Y/YzESS+n7ZuaP3xiZpNui37Xx/db3LR6H+rpznRfm5uZdb2YmE92lx+vc3Jxbb30981pLw/drXUVmO1taWnxPXkM8FvQ5/DWGW80dT3pcmPnosRiPpv9O318zf26J47D3I44/67Ecx5j13KzH8u3bt916eu6NEV8qjj9/87VvpvrkqZOup+dijT/cj30AAEC+YmYfAAAAAAAAAAAAAAAAIE/wYx8AAAAAAAAAAAAAAAAgT/BjHwAAAAAAAAAAAAAAACBPFN99FQDAoxJzqnV5c3PT9TRbPeas67JmXUfd3d2pPnnC5yJrlnpHR4fraY54zJjW3GoAAAAAeFAKrCDVhYX+/2/T5XifVV1dnWq9t2lvb3frLSwsZH2MioqKVF++fNn1BgYGUt3X1+d6bW1tqa6trU11SUmJW0+fr6Ki0vXKy8tSzf0XHqStra1ULy0tud7c3FyqZ2dnXU/HIXQsY3193a03Pz+f6pmZGdebmJhI9fDwsOvdunUr1Z988knWf5fLG2+8keqnnnrK9XQ8JJ4XmpqaUl1XV+d6lZWZz2pBQeb8lGvfLS763vZ2Zp/r45mZlZaWprqsrMz19Jyk/07/e9yuOF40NTWV6tbWVtdraWlJdXNzc9bnfu+991Id31M9TvS9N/Pn26qqKsumuNj/eUPPgftxPtRj3sxsZ2cn1fH41f2nryceg3fu3Nl1PTOznp6eXWszf+zFY033URyXU3qsbWxsuN7Y2Fiq42dsfHw81YODg66nz6f7a21tza2nnxX9vjPz33m5xjvHxkb9do1ltmt2bjbVq6urbj39fMQxzcbGxlTrd7KZvyaIx5PuS72O0Dpuvx4/Zv4zoZ9FM78f4nGo1zT62vbrGkCPZT0uzPz7f/369VSfO3fOrfe3f/u3WR+/oaEh1a+++qrrnXn+TKoPHz7setmumeJ5AACAJwkz+wAAAAAAAAAAAAAAAAB5gh/7AAAAAAAAAAAAAAAAAHmC+e0A4ACLU8PrFLgrKyuup9PHzs3OZe3pVMjRqVOnUt3V3eV6Os1tnL5Zpw+OU0LH6fMBAAAA4IEo0LIg62q54m5qazP3NhpTY+ZjQWKkhi7Hey6NuRgaGnI9vbfS6I9ckRQxBqS4eH9ja4Bs9DOg4wxmZqOjmXidGAE0OTmZav18LMz7z8rEZCbuKEYfaaRUfPwbN27cdduj119/3S2fOZOJjjl69KjraeR5jPnRCKv6unrXK6/YPd5oenrarafxPRsbPsJoayuzHMdbNMampqbG9TTWSXsxCkzHbOI4k471xCgt3RaNEzPz8UMaUxQjq/QYij1djrFIep6LkVW6L+/3fKjn2Hiu19cW95fGNenrHhkZcevp8RrP9SdPnkx1jIzTGEiNQTLz74c+5taWH1fU7z/dXjMfsxWPE/0M375927LRccu47/Q4iY+vMV5xLFS3U88zZmb9/f2p1vcjHhf6WYn7Tj/TMeJL143Hkz6m9mIcl57LYlSeHiexpzFx8bn18xj31/2I75Wep+N1y8WLF1N99uzZVP/1X//1np/vd3/3d1N9/Phx1zty5EiqNULRzJ+T9Dhn7BkA8CTjWxAAAAAAAAAAAAAAAADIE/zYBwAAAAAAAAAAAAAAAMgT/NgHAAAAAAAAAAAAAAAAyBPZA8ABAI9czEzW/GnNNjfz+fXjE+Oup/nQ4+OZXsyRbm1tzdQtrVl7mklv5jOTYy72/WakAwAAAMCDEO+DKioqUl1XV5vqra1Nt97Ozs6utZnZxsZGqmdnZ13v+vXrqb5165brNTY2prqsrCzrNupyYaH/f/dKS0ozdWmp68XHQf6Jx1quXq5jdHt7e9dePEa0p2MQZn7cYWxszPXu3LmT6hs3brje7du3Uz00NJTqa9euufVu3rxpe9HT0+OWX3755VTr59nMfyb083b48GG3Xm9vb6o7Oztdr62tLdUtLS2up49ZW1vrensdD1lbW0t1HAfa3Mych6qqqlxPn6+mpsb1qqurd631PBPFxy8uzvzpoLDQvxY9buI26zlQt+vDDz90633ta19L9dLSkuutrq6mWvePmT/flpSU2H7Tz4A+l5n/TMzPz7ueG5cby4y99ff3u/X+6Z/+KdWvvPKK6+nxGo8nPdYaGhqyvwARd4++H/Hxcx1Pg4ODqY6f0+Xl5VTr/onfR01NTamO44pKz1Vm/liYnJx0PT3v6L/TMUwzv+9yfY50fNPMrL6+Put26nexvu6FhQW3nu4frc38MaSfdTN/HMb3W4/LXN8RexW3WY/lgYEB1/v4449T/f/9f//fnh7/zJkzbvmZZ55JdTyf6/lWjxkzf04CAAD/gpl9AAAAAAAAAAAAAAAAgDzBj30AAAAAAAAAAAAAAACAPMG8dwBwgMWpkHXq2hjjpfFcIyMjrqfTZF+9ejXVcapXnbq2ts5P56tT2capfnUK3DiFcpxiHgAAAAAOEo2F0AigGJuRK7ZmZSVzr6bxF2ZmR48eTXWMw9B4I72X+lJUl8ShxOjkysrKTK/C93JF9iA/xJgtjXpZX193PV2O0Udrq5nljc3sETB6bMfIGT22h4eHXU+P5cuXL7vehQsXUn3x4kXbi/j5e/3111Pd19vnes0tmUigGNGjnx39rGisj5mP64nRPToeEmN+Kioyj7nX2K4YNRYfU2k0Ufw862vV12bmzxMxTimbuP0a//XlqKDMcjzWdHwq12vT6K54TlW54ggLbP+jCvW1xs+Yxh3FSKnR0dFUj4xmxuU0aio+Rtzn+l7F920/zuf6fRcfX9/vGLOlcUo6xmjmP/v6erq6utx6OqYZo7pUfL913Xis5dqXKtfr1v26189K/Hf6mY7nIP1sxsfX83mM0tLHiceh2uu4a4wJ0+fTz6yZH1eOx+9HH320p+f73ve+l+oXXnjB9Y4dO5bqeKzp/iK2CwCAu+MvsAAAAAAAAAAAAAAAAECe4Mc+AAAAAAAAAAAAAAAAQJ7gxz4AAAAAAAAAAAAAAABAniD0EgAOsJhhrfnWs7OzrqfZ4AMDA6537dq1VA8ODmZ9Ps10jxnTmt0de5pNHbO1v5zrDgAAAAAHh97DlJWVpbqoqMitV1iY+X/mNjc3XW9xcTHV7e3trtfV1ZXqeK928eLFXR8z3lfp/Vh9fb3r6XK8VysqKpY6+//zF58PB9f2VmacYGVlxfXm5+dTHccMdFmP142NDbeeLut6ZmZTU1OpHh4edr1bt26l+uOPP3a9uG42fX19qf6t3/ot1ztx4kSqu7u7Xa+5uTnV1VXVrldaVppq/XxXVla69XQ8pLS01PX03+l6ZmbFxf48sRfFxX5IvqamJutz65hKPCfpuiUlJeE5/PL90Net5z8zf85YXl52vaamplTX1dVlffytra2sj6/7KO4vXS4o3P9zl+7z9fV119PP2Pj4uOsNDQ2lWsfeco3D1dbWumV9T3Pt8/uV63jS7w99D83891o8L/T396d6YmIi1UtLS249fb9zyfW64z7QdfX1xGNGPx/xs6L/7l72sT63PmY8R+iYqX6m4nPH64q4nO254/uY7TFmZmZcb3JyMtV67Jr5Y/bOnTuup+d69W/+zb9xyy88/0Kqjx476nq9vb2pjueI+P4AAIDcmNkHAAAAAAAAAAAAAAAAyBP82AcAAAAAAAAAAAAAAADIE8R4AcABFqe41Sm6p6enXU+nWL1y5Yrrvf3227s+fpweWqeGj1Na67SzWpvlnuaW6eABAAAAHGR6z7LX6JgYfdTS0pLqjo4O1zt06FCqY4zGO++8k2qNP4mP39jYmGqNLDIza2hoSPWXY7wy8R65oktyxYDg0YpRLqtrmXjvGKez11gWjQGPUTs67hCP17GxsVRrdI+Z2e3bt3fd/lw0msvM7JVXXkn1U0895XpHjhxJdVdnl+s1NWcih+JnQGNz9DMQx0M0FieOY+hyjBiKy3sRzy26zXG8Jdt2xOVc8Ub7IZ4/NHosRlHpcuypXNFpuhx7uv/iuWu/o65yxXjp58jMxxtdu3Yt1efOncv6XLofzfxrfRDn5e3tTAxgPA51HFC/c8z8d5yeZ8zMvvjii1TreSeeW/R7Tbcjiu+h7ocYg6WfHV0v1+c70m3Za9RYrnXjc+U67+jria8t13Huoscs+zGvEXsaw2jm47ni+fvmzZu71pGes0+fPu16x44fS7VeB5mZtba2pjqeI/R162fRjDFmAAB2w8w+AAAAAAAAAAAAAAAAQJ7gxz4AAAAAAAAAAAAAAABAniDGCwAOsDhdd64YL50u+Mc//vGeHv/VV191y/X19amOU1/r9Mr7PR00AAAAABx0Gi0RYyeamjIxQj09Pa63upqJXcoV7/Hmm2+m+oMPPnDrdXd3p1rjVMx8DEyMZdGYkXiPp3FBxHjlFqNEcvVyxdPourpejG3TsYAYI6TROBr9ZuYjdGL0yqVLl1J98eLFVMcY8NnZ2azbn8vTTz+d6q4uH7OlYw163Ol/N/Ofnb6+PtfTx2xra3M9jbKLkeQlJZnYnMLCgxEBsx9RYI+axunE84dGFel789u//dtuvfb29lTHOCt9H3PFeMV9t98xXvGzubCwkOqRkRHX0zirn//851kfXyOy4nk5V4zXfhwn+hgxmq26ujrV+r6Z+e+4+P2nY5Ua7/ed73zHraeRUvG8pufDeA7V9zseJxoHpf8uvjb9LtTvZDN/To3RiLniLvV162PEx9fzeXwP4/uv9D3QMVkzf5xvbWde2+aWH0fW4zV+X+h7pbFzZmZXr17N2tPjRKMY47VPZ2dnquM5Wz8D8bXpe0dsFwAAd5d/dxIAAAAAAAAAAAAAAADAE4of+wAAAAAAAAAAAAAAAAB5gh/7AAAAAAAAAAAAAAAAAHmi+O6rAAAeFc0JN/M5z5p1bWY2NjZ2z4/f29vrljX7Omaix2xqAAAAAHhSxful+rr6VG92bbqe3kuVl5e7XnFxZmhueno61Z9++qlb7+233051U1OT65WUlKR6e3vb9fQesrm5Oetzl5WVGbIrKChwy1tbW6ne2NhwvfX19VSvra25ni6vrq7uWsfH1MczM1tcXEz1+Pi46w0ODqb6ypUrrvfee++l+vLly3Y/vvWtb6X66NGjrtfZ2ZnqeKxVV1enWj878fNQX1+f6nicNzQ0pLq2ttb1Kioqdn18sy+/d9g7PZ/oucTMH4dxfErHsvR9e+6559x6PT09qW5sbHS9qqqqVOv7a+bf46JCP1a13++3ftbN/Gd4fn7e9W7evLmnx9TXXVlZ6Xp6Pi8s9P+f9n68Nn0MfS4zv591fNDMrK6uLtX6OTUza29vT7Wek5aWltx6KysrmXp5xfX0HBj3uX4/xfOCHpf6fDvbfjx1YWEh1bnO2bnOt3FcVF/PzMxMqqemprI+Rnx8PTfG/arL8f3QbdF9EF+bvu64XUNDQ6m+deuW6+l3STxGn3rqqVR3d3enOp73c52z9THjccg5GwCAe8PMPgAAAAAAAAAAAAAAAECe4Mc+AAAAAAAAAAAAAAAAQJ4gxgsADrAY45VrqnCdmjWX3/7t3051W1ub6+k0yTqlOwAAAAAgI8arVFXLvVSJv5eqKM9Eo8S4Cr2vGxkZSXWM8ZqYmEj1T37yE9fTWJkYG6X3lDHeSONDcG803ijGsmi0T4z5mZ2dTbXGts3Nzrn1VtcykTb3EuN1+/btVH/44Yeud+fOHduL1tbWVH/jG99wvVOnTqU6xoJ3dHSkurHRR+1UVWUiW3SsIVeMUIz40uUYO0fs+IOh0UpxzGluLnPM6nFt5s9rGv8U44D0mInxTHp+iseCHjcx8ieOo31Vucbl4vl2eHh4T4+pcUfxtemx/OXXtqeHz0kfs7jYf/50W3R80MzHSOl7avblscXfiOcujb1aWvYRX9Urmfc7vu5cMV76XZwrSmtycjLVMTZRX1tLS4vraRRVPM9ofJ0+vp7bzfwxFOO4NL5Onysux32u26Kftxipp59b3T9m/ppDvzvM/HdXV1eX6x06dCjV+n0RtzFXFJ++p8R2AQDw1TCzDwAAAAAAAAAAAAAAAJAn+LEPAAAAAAAAAAAAAAAAkCf4sQ8AAAAAAAAAAAAAAACQJ4rvvgoA4GHa3t5O9cbGputpDnPMmNa89OjMmTOpPnbsWKo1H93M5yuXlpa6HhnKAAAAAPAvCgv9/z9XXl6+a21mVlFRkeod23G9xcXFVOu92okTJ9x6V69eTfWdO3dc73//7/+d6j/7sz9zPb2vq62tc736+vpU19TUpLq4mOHCaHPT35vr/fjS0pLrzczMpHpsbMz1hoaGUn379u1Ux/dUj4v19XXXm5+f3/XxzMwuX7686/bn8tJLL7nlI0eOpPro0aOup8s9PT2u19bWlurGxkbX08+AHl9FRUVuPdcr9L2CwsyYRByfYLxif8RjbWFhIdWTk5Oup8uzs7Out7Kykmo9H9bW1rr19DjRc5CZP2buZXxqv4+FnR1/zt7a2kp13F/6uVXx+0LH3uL3hX4Gvvxaduyr0m0pLvafsbKyslTr/jczq6ysTHVVVZXr6evRbV5bW3Pr6bkynjeXl5d33Q4zs9KSzPuv31tmZiUlJakuLMi8Nn08M3/Ojudb3SdTU1Oup88Xvxv1NUxMTKRaz9FmZg0NDamOnwHdd62trVmfO74fSj9v8bn1+0i30cysv78/1WfPnnU9HUfu6+tzPV1ub29Ptb5OM3+cxPeUczYAAPuHmX0AAAAAAAAAAAAAAACAPMGPfQAAAAAAAAAAAAAAAIA8wby8APCQaDxXrv+uU80uLi64nk7HGqdJzjVd91NPPZVqnRq+t7fXrdfc3JzqOC1vnF4bAAAAAHB3GkET4400AkOju/7oj/7IrffOO++k+uOPP876XN///vfdssaC6P2emVltbSY2R6NQqqur3Xrai/eFMZ7mYdJ4nXhfnauXjcbzmPkImhijnSs2RaO7YlzMtWvXUq3v45tvvrmnbYxiBNDp06dTHSNhNGZLezFWRqNj9N+YmXV1dWXt6fGl0TRxO4lveTBi3JQuu30ekqDWNzJRVDEeXqO6RkZGXG98fDzVGvdl5j9Les7QKCgzf27UqCYzf9552MeM7rtcMV56Hsgljr3pOTZXjFc8vxbY/u6HXDF6ZaU+dkljmGIkky7rY8YoLV2OMV66L+N2ue+nEv/9pMeQvlera/6crcdofN90W+K5XmOwNCbMzH929LnjObWlpSXV8byc6ztaPy/xe0y3U+PjYtyeRj1qbJeZ2YcffmjZaJzj8ePHXU/Hlbu7u1Mdr290XDlG8QEAgP3DzD4AAAAAAAAAAAAAAABAnuDHPgAAAAAAAAAAAAAAAECe4Mc+AAAAAAAAAAAAAAAAQJ4ovvsqAID9oPnK6+uZXOe1tTW33vz8fKqnpqZcT5djDrPmQ7/88suud/jw4VT39fWluqury62n+dCarWzms7sBAAAA4HGn91hmZgUFBV/5McvKytxyU1NTqo8ePZrqoqIit159fX2q29vbXe/v//7vsz7f+++/n2q93zMzKykpSfXm5maqW1pa3Hp1dXWprq6udr3Cwkf3/xHq+7OxseF6ep8d77n1flz/XVxvaWkp1SsrK66ny3oPb2Y2NjaW6v7+ftc7f/58qt988027H2+88Uaqjxw54np6bMT3sbGxMdU1NTWpLi0tdevpsq5n5o9DPS7M/BhCWak/zvfjs4Mvn5PU1taWW9Zje2NdjvN1f5wvLi6menp62vXGx8dTPTw8nLW3vLzsevp+V1ZWpjqOK+l5Z3tn2/UOyjET97mO7en25xI/KxUVFanW87CZP/d/aR/swy4pyPEg7vniU0svbpd+D2hPz7VmZqurq7vWZv78q/vHzJ+T4v7SY0rfK32f4jbqeczMn8PjuV4/R/FY0PdKz3lV1X48Vb/nOzo6XE/P2fE40W3Wz2nc5pGRkVQPDg669a5cuZLqc+fOud7s7GyqdazYzI8jx++ZQ4cOpbqtrS3r9sfrHQAA8GAwsw8AAAAAAAAAAAAAAACQJ/ixDwAAAAAAAAAAAAAAAJAnyGQBgIdEp1ReXclMVzs3P+fW06gunf7bzGx0dHTXOuru7nbLOk2sThGr062a+alsy8vLXY8YLwAAAABPkgcRIxNjr2pra3d9vhhjostxu4aGhlL96aefup4u63OZ+YgVjS6J0StFhZmokhj3/ChppErcZo08mZvz99waf6K1RprEZY30MvMRNAsLC66n9/HXrl1zvV/+8pe2Fxr78tprr7ne8ePHU61xKmZmnZ2dqY4xXg0NDanW4ykek3p8xcgcjWWJES0uDuxgJDA9FnJFd2kvxnjpMZrrONeIeI3mMvPHchyD0nVjJJPGG2m0T4wnbG1tTXWMxMr1uvNNjD90sVTF/jOWLRJrv+zYji74nuzzXPFluSIudfvje6qRWPGcrb14LKt4DOlYpfbiGKZ+d8Vzo34+4veFnt/jdul5VL9fY5yVLut52MyPw8Zzqu6T+LnVyL2bN2+m+uLFi269Dz/8MNUfffSRZROjurq6ulIdx5j1e0a/q+L2x/cKAAA8GMzsAwAAAAAAAAAAAAAAAOQJfuwDAAAAAAAAAAAAAAAA5Al+7AMAAAAAAAAAAAAAAADkieK7rwIA2A+a7by8spzqmZkZt97IyEiqBwcHXe/OnTupvnr1atbnam5udsuaoaw9/e9mPkdcc7YBAAAAAF9dvM+qqqpKdUVFRaorKyrdegUFBaleXl52vVdffTXVn376adbnfvvtt93ytWvXUv0nf/InqS4qKnLr1dTUpLq+od71SkpKsj7fg7a6uprqpaUl19P77PHxcdcbHR2TOnP/PTAw4Na7fft2qmdnZ11vc3Mz1fH9GB4eTvXY2JjtxQsvvOCWT58+nere3l7X6+vry9rr6OhIdUtLi+vV19enuqysLOu2bG9vp1qPu7gcj2XtxX+3s6PrZX1qfAX6vpmZra2tpXp+fj7V8ZjU417HnMz8sax1XHdlZcX19FzW1dWV6spKf17r7u5OtX6ezczW19dTrefJfBQ/b3reLCr251v9XMXP0X7bsR2/LB9UrXdbzka3Wc+TZv491drMbGNjI9XxWFbx+6m0tDTVup/Ly8vdejreqedCM//5iMeanvs3N7dcr7o6s25jY2PWx9fnjp+B+HqU7vP4GZuYmEj1xYsXU/1f/+t/zfp4uZw8edIt6+e2ra3N9fS7Jd8/mwAAPA74Sy4AAAAAAAAAAAAAAACQJ/ixDwAAAAAAAAAAAAAAAJAniPECgIdEp6HV6Venp6fdekNDQ6m+deuW6+k06/39/a6nU7/W1dW5nk67rnWcbrW4mK8FAAAAAHhQcsUla6+u3t/TaSRPT0+P6z377LOp/o//8T+63l/8xV9kfT6N5fnZz36W6tbWVreeLsd4Eo2j0TgVM38PHONcskXCxNgajcOOMSYavRJjtjTiJMYPaWzR9evXU/3P//zPbr0YaZRNe3u7W9b35+mnn3Y9vR/XKBSN3zLzkTBa3+3faS/+O41WQn7KFa0Ue/rZ0YikGJe1uLiY6hgzr5+j+Hm4cOHCnrZZI/bi8aqf27m5OdfT5Xhu0WM5V9TVg4jB0t2812irONam43e54vAOklwxfdl68byvy3pMmvnjNVeMV9xf2b5TY8SkLsdYNX0/4mvT90630cyPqer5tra21q2XKzZRxdetn4HJyUnX08/j+++/v6fHj5Fhf/7nf55qvY4w8zFeDQ0Nrkd0FwAABwsz+wAAAAAAAAAAAAAAAAB5gh/7AAAAAAAAAAAAAAAAAHmCvBYAeEh0el+drnZhYcGtNzY2luoY4/XWW29lfXydRjXXdLU6BS2xXQAAAABw8MQokYrKTGyNRjWZmZ08eTLV8V6wo6Mz1WfPfux6v/jFL1KtcVYxrqe3tzfV1dXVrqexLOXl5a6n8Sox7iZbxNf6+rpbTyOH4r1zrhgvjTzRqGwzf5/9wQcfpHqvsV1mZt/85jdTfezYMdfTqKIYf6KR2xqJFmNfdF/G/arvQYzw1nGBGH2Ex1s8Z+jnT88L8XjSaLkY06cRXzFma69u3ryZ6hhrp5/T8fFx18sV1aWflxiRpMf9gxnzyh6dlm9yxXHlihfba4xXjKXKFTu3195+iMeFHkPxOy7X95geo/o5yhXbFaPAlpeXUx0/Y6Ojo6mO48PXrl1L9dmzZ7M+34kTJ1L9h3/4h66nn8cjR464XltbW6qJgAQA4GBjZh8AAAAAAAAAAAAAAAAgT/BjHwAAAAAAAAAAAAAAACBP8GMfAAAAAAAAAAAAAAAAIE88iOBaAMBdbGxspHppacn1NKf83Llze35MzYeO+dMxaxsAAAAAkD9KSkpS3dDQ4Hp6v1dZWel6tbW10qvI+vi/+MUvUj0wMOB63d3du26Hmdni4mKqq6urXa+srCzV8R51a2sr1XpPPDs769abnp5O9eTkpOvpuvPz8643MzOT6uHhYdf79NNPsz5mNn/wB3/glk+ePJnq3t5e1+vo6Eh1U1OT69XX16da35uKCv/eFBUVpbqgoMD1Sooz70FpWanr6T6P/w6Pt/h+62euvLw81XrcmZm1tLSken19Pevjb29vu+WXX3451b/+9a/3tI0TExNueWxsLNU6pmXmz2t6vjDzY2r1dfXh32U+O/G886jEfbezs7Nr/TDkOi9oL663196Dth/7Kz6GHifxXBy/85Seb/UzlkscA9bPwODgoOvdunUr1V988YXrvfvuu3t6vu9973upfuGFr7ne8ePHUt3e3u56ep7Q1wkAAA4e/voLAAAAAAAAAAAAAAAA5Al+7AMAAAAAAAAAAAAAAADkiYMxlyUA/P/s3deznfd13/912j6994JT0UGAYJFYJZOWJbdYjp2J44tkJpnJRfLvZHKRmXgmmXg8iTWOimVJkWxTFEWKYgcJEu3gAKf33vv5XeintddaPM/GBnhAYAPv19V6uL7neXZ9Gje+n8eAnXbYTo28srLixtlpW+2UrXdy4sQJrcvLy13PTjtrp0JmWm8AAAAAePjZa7oYd2PjQ2KUiL3mi/EhMTLkt9555x23bGPDdnd3XW9ubk5rG1El4mNA4uOy18c2qmt0xD+mG/03tL527Zrr2bixra0t17PX3DHiK0l1dbVb/sY3vqH1yZMnXe/YsWNat7e3u56NQ4kxXnYb9n1MpXwcl3Ww7yNnDiS9fDdRO8h92UYwiSRHE8UYL/tdjHFTNk4uxhnZ5fjduXXrltYDAwNaDw4OunENDQ1ax/h5u6+Jj8s+1/i4Sl1c4dHHD93Ldyw+frscI6W+7Fivo5D0mO3nR8S/x5l6mV7X+/H62O9KfFyZthfHJrGf5aWlJdcbGxvT+rPPPnO9Dz/8UOvXX3/d9ZLuF//+7/++W7b3int6ul3PHsfq6vyxKpVKf6/i+2FfE44zAAA8eMzsAwAAAAAAAAAAAAAAAOQIfuwDAAAAAAAAAAAAAAAA5Ah+7AMAAAAAAAAAAAAAAADkiMI7DwEAHIXt7W2tNzY2tI55zTbbPJPz58+75bNnz2rd2NjoemVlZVrbLGoAAAAAwMPPXsfFa7pUKqX1wcGB61VVVWldXV3tena5uLhY68XFRTfugw8+0HpnZ8f17LVnQ0OD69XX12tdXl7uent7e1rPzMxoff36dTfub/7mb+RevPDCC1o3NTW5nn0spaWlWtfW1rpxra2tieuwzy0+b7tcU1PjepWVlVpnfW3OP9VEFvLz/QelqKhI65KSEq339/ezXoe9lxS/H/Zz3tLS4nrNzc1a28/8pUuX3LiPP/5Y662tLdez+5r4XamoqEh8XJme31GLr1cSu78T8Y8xPl67D4/786OQaf32sWR6zLFnl21tj01xOVPPfnZFRAoKCrTOy8uTLyrTOo5i/dHq6qrW8/Pzrjc2Nqb1lStXXO9//I//kdX6z507p/WFCxdcr6OjQ+t4rLLfndLSEgEAALmJy0UAAAAAAAAAAAAAAAAgR/BjHwAAAAAAAAAAAAAAACBHkOUCAHfJTnObaXpXG9sl4qcktvXm5qYbF6dMt7q6urR+9tlnXa+7u1trO6W4iEhZKTFeAAAAAPAostel8XrPxqHYqC4RH2d16tQprT/55BM3rr+/X+u6ujrXW19f13ptbc311lbTy+UVPsbLXlfPzs5qbSNN7uS5557T+syZM67X3t6udYwusRFANqYoRo3ZCLTYs8uxZ9dv45NEuB7H3bPf7xi7ZHvx/pT9rNnvfqZx8fNqY35izFZLczq6K96DsvF49p5XjPEaGRnRenl52fVsrFP8Dtt9TYwWvN8xXvcS87S7u+uWbdRVfE/vR3RXkruJ8bLPIT6fpF6M6rKfr/hZs5/R+x3jdVTs62c/h/a4KCIyNzuntY2tFBGZmprSenh4OOttv/TSS1pfvHhR697eXjfOfjft8U6E4xEAAI8KZvYBAAAAAAAAAAAAAAAAcgQ/9gEAAAAAAAAAAAAAAAByBD/2AQAAAAAAAAAAAAAAAHIEwZwAcJdsJnOmfOuYZ761uXVoL47Lz0/+HeYzzzyjdU9Pj+u1tbVpbXPVRURKy9J56TbrGgAAAADw6IjXqFa81iwpKdG6qakp8e8KC9O3D1dWVlxve3tb67W1NddbWlrSury8PPGxrK6uar25uenGPfHEE1rHa+ATJ05o3dXV5Xqtra1a19fXu15FRYXWZWVlWpeWlrpx9vUpKipyvYL89HV1YZG/vWrH2tdOxL8/eXl5AtyN+Jmxn6f4/bafPduLn8lUKqV1/J4mbUvEf9/tPScRkZ2dHa0nJycT12/XYfcXIiJjY2Na9/X1uZ69j7a7u5vxcX5Rmb6n2X6H42Pc29vT2t5HFDn6xx/Z9cdt28dlaxH/HOLzse+3/bvi4mI3zi7b/Wtctp9JkeTP8oNmP4f2OLa4uOjGTU1NaW2/D7E3MzOTuK2vfe1rbvnixYta22NhR0eHG1ddXa11fF0BAMCj4eE5OwIAAAAAAAAAAAAAAACQET/2AQAAAAAAAAAAAAAAAHIEMV4AcJfslLdx6lo7hbmdwlVEZGU1Pd25nfo8TnVup7+9cOGC63V2dmrd3t7uenaa8rq6OtezU5MT4wUAAAAAuSvGvNjr0hiDZa9RYyyLjUOx8TotLS1u3MbGhtYxnsTGjthr2Sheo9oY6srKSq3ttauIj+fq7e1N7MXrYxtLlinGy0Z3xciZTJEn2UbtxJgfortwlOznKdNnzd4HipF0maLlMn1e7fc2xkHNz89rbb/79nsvItLf35+4/kuXLmn99NNPu57dr8VtH4VMz9vuN7ONRbKPV8TvK+N+0z6f+x3pFV87eyyxEVVxOfbicee3MkV1lZQkxybGfbH9/D7IfWh8vZKOjTaaS0RkZGTk0FpEZHR0VGsbXSfij3k2qiv27LEwHr9tjFd8XR+mSDQAAHDvOKIDAAAAAAAAAAAAAAAAOYIf+wAAAAAAAAAAAAAAAAA5gh/7AAAAAAAAAAAAAAAAADmi8EE/AADINTajOeZSr62tab2wsOB6MzMzd6xFRCYmJrS+cOGC6zU3N2sdc5ibmpq0rq2tdb2ysjKtCwvZ9QMAAADAUbLXibaOy3t7e1n93e7urhtnl+P6d3Z2tF5dXXW92dlZreM1qh27vb2t9cHBgRtnr3u3trYSt53J/Px84vKrr76qdV9fnxvX2dl5aC3ir4nr6+tdr66uTuuamhrXs9fHxcXFd3roh8rLy7unvwO+LNl+Ru/1s1xQUKB1eXm569nliooKre19KxGR/v7+rLYV9zt2Pxr3h3H/9UXl5/t/K23vqdl9iYjf79h9XNwv23uH8bll2tcfhUzHGftYNjY2XG99fV1r+/hFRFZWVg7dVty/lpSUaF1aWpLYS6VSrmc/a/H9+DLF4519jezx1d7XFREZGhrS+vbt2643ODio9dzcnOu99NJLWre3t7teW1ub1vZY2NDQ4MZVVVZpbV9jkQf7WgIAgKPDER0AAAAAAAAAAAAAAADIEfzYBwAAAAAAAAAAAAAAAMgRZLkAwF2y0wXHGK/FxUWtp6amXG98fFzrsbExreMUrlZ1dbVbtvFcMarLLldVVbleUVGR1nb6WwAAAADA0coUjRKvIe2yrW1kSuzFKBG7HONUbGz0yMiI6928eVPrjz76SOt4LXs/2PgQG9117tw5N667u1vrGGVtr5djjJCN14nRJfb6GMAXF+8z2agr+/1rbGy8p/U/yLihGHNmn2vclyTFeMW4shMnTmgd47Ls8eOoI8niOjMdq+IxyB5blpaWXC/GVv1W/FzYeK4Y1WUjv+Lrat//+/GaZCvGcNrj8vLystaTk5NunL3ve+PGDde7cuWK1vEecHNzs9YxnstGV2aKrbTfP/u9FCGOEgCARwUz+wAAAAAAAAAAAAAAAAA5gh/7AAAAAAAAAAAAAAAAADmCGC8AuEv7+/tax+l2FxYWtLaxXSIig4ODWtspfN95553EbVVWVrplG88Vp3e1vTiFuZ2a9UFOeQsAAAAAjyJ7nRhjttbW1rSO8Sc2CtrWc3NzieMyRYHF9U9PT2s9PDzseq+//rp8UTYyxD7GO3nyySe1bm9v17qzs9ONszFeTU1NrldaWqp1jCfJFLVDdAlwtOz+T8R/x+z3L97HsrF9V69edb0nnnhCa/tdF/Hf7xjxddTf70wxXjEi0EYr2ZjEyMYr3k2M11E8t0wxXvZYsrq66no2xivu62M01W/F/bL9LMQYL9vLFNv2Ze+/7esVj+1Jx94Ya2Y/22+88Ubitr7yla+4ZXvMs1FdIv7YmynS0r6u9+PzBAAAHjxm9gEAAAAAAAAAAAAAAAByBD/2AQAAAAAAAAAAAAAAAHIEP/YBAAAAAAAAAAAAAAAAckThnYcAACybRW7zmUVE5ubmtB4eHna9K1euaP29730vq23FPPPKykqtKyoqXM/mMmfKXSaTGQAAAAC+mN2dXbe8vrGu9crKiustLi5qPTMz43pTU1Naj4+Paz00NOTGjYyMaL2wsOB6y8vLh65DRGRiYuLQxx+1t7dr3dLS4nqNjY1ax+vQgoICraenp13v5z//eeL27LVtaWlp4vrtsr3mFREpKSnROj/f/3tGuxx7AI7W7q7fH+7t7Wlt70HZ76yI3+80Nze7Xn19vdZ2HyTi9wWFhUWudxT3vOw6Cgv9/z4pKyvTuqGhwfVOnjyp9fp6+phw+fJlN87uK1dXV11va2tLa/s6ivj7kffq4OBA652dHdezj9keV0T8cWdpaSlx/fY9tvv52EulUq5XVOTfx/vJvgYi/nWNr/H29rbW2R7bb9++7ca98cYbiY/lySef1Pr8+fOu193drXVzk/9+1NTUaG2Pk5leR+4HAwDwaOJqFwAAAAAAAAAAAAAAAMgR/NgHAAAAAAAAAAAAAAAAyBHEeAHAXbJTutrpXEX8NLejo6Ou9/bbb2e1/jNnzmgdY7zs9OZxylumJgcAAACA34jxJ3Z5b9f3dvfSETQ23iNGfdioGht3IiKytramdYz6mJ+f19rGdomIjI2NaX3r1i2tL1265Ma9//77ko14nfjiiy9q3dnZ6Xo2GsdGgsS4LHsdGiNt7GsSY7xshMvf//3fu15SNEqMjrHL9nFExcXFbtnGiwEPA7cPCvsn+z3KFNUUY3js5zx+5pOi7I4qysfGTW1sbLieXbZ1jPuqqqrS2u6DRHycYNx31dXVaV1a6qPBjuK7b1+juG+xj/PYsWOuZ/drNk4pPiYb8xSPF5ubm4euT8S/fvFx3Yv4ftjjmD1uiYjMzc0d+hhFRC5cuKC1fU1i/JqNQItxU1/mPjt+B2ycWTy22/cnHuPsfd/BwUGtP/jgg8Rtnzp1yi2/9NJLWtv7wSIivb29Wre0+nhN+905is8CAADIXfyfYQAAAAAAAAAAAAAAACBH8GMfAAAAAAAAAAAAAAAAIEfwYx8AAAAAAAAAAAAAAAAgRxTeeQgAwLJZ5zFL3eZpLy4uup7Ncs6kra1N69LSUtezGdZHlbMOAAAAAI+ag4MDt7y1taX1+vq669llO87WIiIbGxtar6ysuN7q6uqhtYjI/Py81hMTE643NDSk9UcffaT19evXJVvPPvus1idPnnS97u5urdvb212vsbFR66qqKq3LysrcuKKiIq3jdah9TeJzs9fLk5OTrvfrX/9a69bWVq2Li4vdOHuNvba25npNTU1a19fXu151dbXWhYXc/sSDt7e3p7X93ogk74OiVCrllktKSrSO3x071t5Lulc7Oztu2X4fl5eXXc/eD5uZmdF6enrajbOP336fRUS6urq07ujocD2774r7q6N4rnY/F1/X2tparXd3dxPXYfd/c3Nzrnfp0iWt471D+9mw+787bS9bme5p2s/h7Oys69n3Ln4WOjs7tbbHnLq6OjfO3uM8ivfpqNjXdWlpyfXGx8e1tsdrEX+c/uCDD7S+ceNG4rbs8VpE5Ny5c1qfOnXK9ewx237uRPzn3r6nAADg8cOZAAAAAAAAAAAAAAAAAJAj+LEPAAAAAAAAAAAAAAAAkCOYxxYAvoA4Nbyd+jVOMZ6kvLzcLTc3N2udKcYrbhsAAAAA8Bsx7sTGkywsLLiejdmyER4xzsOOm5v1sSwrq+lYr0wxXjHe+a233jr8CWTwu7/7u275+PHjWvf09LiejcKxcVkiPgrHxl7ZaB0RH4MVr0PtdW+Mu7FRZ/Fxvfvuu1p/73vf0/rWrVtunI08OX/+vOudOXNG6xhjYp8DMV54UOz3xe6TYpSg3SfFiEArRlbZ+L0YyWSjqOx34G4i4TNFj9nHGfeVNrbKRviNjY25cadPn9a6oaHB9WzEfdx32XioLzvGq6amRutM8Un29RoZGXG9yspKreNrZz8bMcbLLsf3O9soJ/vc7Psr4vfnNn5NxL+PFRUVrmffq0zRU3a//DDFeNnX1R6vRUQGBga0tlGbIiK/+tWvtLbHtMje9+3r63O93t5erW0EmoiPtovHZfd+28Ny9l9vAADwiGBmHwAAAAAAAAAAAAAAACBH8GMfAAAAAAAAAAAAAAAAIEfwYx8AAAAAAAAAAAAAAAAgRxBaDQB3yWY5b21tuZ7N1rYZ5Zm8+uqrbtlmNNscchGR0tJSrWMet82Cv5sMdgAAAAB4FNhrtZWVFddbWFjQenp62vUmJia0npyc1Hp8fNyNu3XrltbXr193PbvO3d1d11taWkrsJTl9+rRbvnDhgtbHjh1zvba2Nq07Ojpczy43Nze7Xn19vdZVVVVax2vNTCoqKrTO9LzPnj3rei+99JLWb731ltYff/yxG2eXv/3tb7teQUGB1uXl5a5XVlamdWGhv/2ZSqUkG1xX44syt2nc98PeOxLx949mZmZcb39/X2v7PRXx+7z4/dvb2zPrSD+Q0tISN85+j3Z2dlzPPs7l5WXXW1xc1Np+10VEVldXD31ccR/U3t6udUtLi+vZsQ0NDa5n9zvFxcWudzf7ryT2u1+c8uu3r1fct9j7cvYYFPfLzz77rNZxf2Tf0/g5WVtb07qkxL+Pdh+Y6TWw69/c3Excf3y/7Trje2XvY9rjU2NjY+JjjK/dl8l+N0T8e2XPAURErly5ovV//a//1fWyPZ7/yZ/8idb2tRIRaW1t1bqpyX8/KisrBAAA4E6Y2QcAAAAAAAAAAAAAAADIEfzYBwAAAAAAAAAAAAAAAMgRxHgBeGzZ6XUjO2VvnNbWTkccp4a3UxfHqV+tV155Res4nXlPT4/WcYpjO1VxUVFR4voBAAAA4GFjIy9iXIxdzjYaI46zESQ2YkbEx+TEa7XR0VGth4aGtL527Zob9/rrr2f1uDo7O93y+fPntY6xJjaWp7KyUusY6Wwjt6qrq13PLttxIj7+pqamxvUqK9Lbu9foG3tdGh+XjRd74oknXC8/Px2FY697v/vd7yZu6+///u/dso3Gqa2tdT0bjRMjW+zrbKNwYhwQ8EUdHKQjuDLFeM3Pz2s9PDzsevaeVPwO231evD9lv4/2XpKNuBPx3+G4X84U62T3sbFn76nZ/YCN7RLxkUY2zkjEf6ft4xfxEfc2Vitu+17ZdRQU+vXb5bjtne3061dXm96H29dAxO8P4/tm91cxHs1GvMX3ykZkxYgvy75v8Thp3+/43Lq6urTu6+tzPXsf077H8Xhn9733456mjbyL93zt9y8+b3tOYM8HREQ+/fTTQ9eRyV/+5V+65a985StaxxhO+zkvKyuVo2ZfB6IpAQB4NDGzDwAAAAAAAAAAAAAAAJAj+LEPAAAAAAAAAAAAAAAAkCP4sQ8AAAAAAAAAAAAAAACQIwof9AMAgAfFZjnbTGwRn31tM6tFMudb2zzt2dlZ17PZ6idPntTaZpSL+PzmmG9tc8qLCo8+3xoAAAAA7hd73bW+vu56y8vLWq+urmq9vb3txu3u7mq9tbWVuI54rTY/P6/11NSU6w0PD2t9/fp1rd97773PP4kETz/9tNbnzj3hep2d6Wu8pqYm17PXiVVVVYfWIiLl5eVap1Ip17PLZWVliX9XUlLievkFR/tvAOP67XPNz/fbso+zqqpS68JCf6vyO9/5TuL2Xn/9da3ttbKI/6xtbm66Xmtrm9aNjQ2Jjx84zMHBgVvOy8vLaqy9zxT3f3Nzc1rfvHnT9cbGxrSur693vY72Dq0bzGdZRKS6ulpruz+J3xW7/4j3xuzjXFlZcb2NjQ2t7XMT8d+lrq6uxG03NzenH3+Df/x231VcXOx6dj+R6fW/V9muM+6vUsXp17K8Iv344709ex9wZmbG9ex7EHv2+GdfHxG/T7Wvf9z32nucExMTrmff47h++xw6Oztdr6Mj/TlsaWnR2n4GRURKS0u1jq/dUbCvT7yXa88PpqenXW9wcFDrW7duud4777yTuL2iovR92f/wH/6D1ufPn3fj+vr6tLavj4h/3+7HZxkAADz6mNkHAAAAAAAAAAAAAAAAyBH82AcAAAAAAAAAAAAAAADIEcR4AXhs2emU4/TvdrpXG80l4qdXtnVcjn/30ksvad3W1nZoLeKnMa6rq3O98vL0lMeFRXEXznSvAAAAAB5eNpLLRmqI+FgNG7MVr6uyvVZbWFhwPTs2RqMMDAxoPTIykvwEDBvbJSLyzDPPaG0jO0R8xIm93hMRqa2t1dpGnmSK2olRH3a5oKDA9WxUSoxNsdfERxEfEuPF7HMrK/XxYja6xD7mGL1y5coVrT/99NPEXowY+oM/+AOtbdyQiI+1qTBROzFy5l7FmCeLmJbHS1J8/PaWjye0+8P+/n7X+9nPfpa4/q9+9atax2glG/ll7y3Fz3mM/rPsvbL4PbLf2xg7aLdh9wO2vpvHFfddMZrqQYnfZxvrZB9/vLfX3t6uddxn29c50z3H+BrY6C5b28ck4qOuYtyljTyM75V9zJnuY9q4r/jZis/1qNlzjPjcxsfHtbaxXSL+O/fZZ5+53uzsbOL2/vW//tdaX7hwQetTp065cfa1i6+rjajLdOy4VxxzAAB49D0cZ8YAAAAAAAAAAAAAAAAA7ogf+wAAAAAAAAAAAAAAAAA5ghgvAI8tO52ynapWxE+hbKeTFxGZnJw8tD5s2Uqa1rahocGNs1MtV1fXuF4qlZ5+N05/y8ysAAAAAL6IbCMkso2FiNdZNkorRmOMjoxqfXvwttY2ekPEX3PFKI633347q8cV2eszez0WI0hOnjyp9blz51yvu7tbaxvZISLS2tp66LZEfKRHZWVl4rZzQbxGtcs2qkTEx1Lb6JUYv/b1r39d6xjjZcX4tf/+3/+71vbaX8RHDmWKESotLU3cXibEpuBO8vKT45/sfuBO3n33Xa1XV1ddL+m+U4wRstuLUXzxu2PZ71H8rtjvVVNTk9Z2/xq3Hddh9xkxxuthZd/H8vJ0RGB83jbSLe435+fntY5RVPYYGiMPbayXjfGK+177GOMx3+4D4/7QxlHa91TEv9/2c/Fl7AvtZ9S+JvEc4/bt9HlFjOqyx5Yf/ehHidv6yle+4pbtOUFXV5fW8RzA3g+On3P72ebYAQAA7gUz+wAAAAAAAAAAAAAAAAA5gh/7AAAAAAAAAAAAAAAAADmCH/sAAAAAAAAAAAAAAAAAOSI3Am8B4D6wuc5bW9uuZ3Owp6enXW90dFTr4eFh17tx40bi9mwWeUVFxaF1XC4r81nONss7ZmsDAAAAwJ3Y66CdnR3Xs8vb29uJ46y8vLzE9a+srLje7Oys1mNjY653+/Ztre11VX9/vxv3i1/8IvGxZPLss89q3dXV5XqNjY1al5eXa11WVubG1dTUaN3U1OR6dXV1WtfW1ib27DpE/HVi3N4DcxAX0/8hvt/3qqw0/Vxrqmu0bm9vd+MuXryo9X/+z//Z9V577TWtr1+/nrit119/3S339PRo3dDQoHVxcbEbZz8XsWevzW0NWPb7UlRUpHVVVZUb19nZqfXLL7/set3d3Vpvbm66Xn5++t/xxu+m/VymUimtS0pK3Di7HHt2Hfbxi/h9l/0eiYjU19drbfd/8XnbfV5cf2Fh7v1vC/t62dcyPm97Py8+T3sMin9n71Wurq663t7entb2cxHXn+n9Li1N34Osrq52Pbs/tO+piH8fj+IYEe932nUe7Pve2tqa1svLy1rb8w0Rfy83Hi8+/vjjxMdy7tw5re3xSESkra1Na/uZj6+dvc9rv4sR93kBAMC9YGYfAAAAAAAAAAAAAAAAIEfwYx8AAAAAAAAAAAAAAAAgR+TefJgAcB/s7PgYLzvd/NTUlOsNDQ1pfe3aNdcbHBxM3IadqjWpjsuZpgM/qunTAQAAADw+bEzE1taW69nrIBsXEuO4bMSXje0S8ZFfNlJDRGRmZkbr8fFx17MxXp999pnWH3744SHP4s7++I//2C2fOHFC6xgVZSNobDSNjVMRyRzHbONPYuST7cWorocyqiYvLt6Ha0+zypLSdJRMjEfb3d3VOl4724ib1/75Ndd77/33tB4YGHC9K1euaG3jVmKEysbGhtY2okVEpLoq/XelIX4bj7a7uRdj45RsZFKMvbL7gfhZO3PmjNZ23yvio5tsLeL3zfYx28cUtx33XTZaK9N+Le4r7X7OjrN13HZ8XLl4zyspti2+Pva5xtfV7tfW19ddz+6TYqSbPfYmvfcimSPd7PsWH7M9Nsbj31Efx+J5hf1sx+/A8nL6/GRxcVHr+fl5N256elrrkZER17Ov6/PPP+969tzBRkCK+Ggz+5rE9zTb1ycXP/MAAODBY2YfAAAAAAAAAAAAAAAAIEfwYx8AAAAAAAAAAAAAAAAgR/BjHwAAAAAAAAAAAAAAACBHPITB4ADw5Tg4OND685nPy1pPTEy43tWrV7V+++23s96ezSa3+c02x1vk6LOuAQAAAOC3dnd2tV5fX3e9ubk5rScnJ7WO10RLS0tab25sut7a+prW8/PzrjczM6P1+Pi463366adaLywsJD+BDP7sz/5M6zNnzrheV1eX1q2tra7X2NiodWVlpdbl5eVuXFlZmdb2mk5EpKCgQOu8vDzXy8/PP3RcXLbXqHEdj5r9/X2tU6mU1nV1dW6cvT6240T8a7exseF6773/XuK2//f//t+HrmNtbc2Ns9+Pvb0917PX8aVlpQIcxn73S0pKtI73fSoqKrRubm52va2tLa13dnZczy7Hnv3M2n1LpscY70/Z/Vzc59nl+Hzs9yrT/s/2HrV9nn1N7PMU8a+zPa6I+PuTmd7veB/T9nZ308f5+N7bx2U/kyL+vmXs2fe7oCD5/T4KcX+7uZk+z4j76cXF9PmCPYeZnZ1146anp7WO5zRtbW1a9/X1uZ5dbm9vdz17vLLvYzxWxfcfAADgKHGmAQAAAAAAAAAAAAAAAOQIfuwDAAAAAAAAAAAAAAAA5AiyYgA8tuy0tnZKWBE/Lf3w8LDrvfbaa1mt/7nnnnPL9fX1Wmea/j1OmwwAAADg0ZIpUiVbNgbJ1nH99rpHRGR1dVVrG3kh4qMtbt++rXV/f78bZ6+RbDSXiMjY2JjWN2/eTH4CQXV1tdZPPvmk1jZWSyRz3E1vb6/WnZ2drmeju5qamlzPXqvZ7cV4lXjthntnI3syxVzbXoxCsTE2Mfrtz//8z7X+7ne/63r2+/HXf/3XWv/xH/+xG2ejZOJ7bz+Htj5sLB5f9nNuP9vxc27jkzK5mxgvu+/PdLxIeowimWO8jjq66VFgX0v7+sTXKtN9P/v+7O36OKvdvfR7urPjj+27u4d/FuL7bWO84ntqP4cP8t7k9rb/LNvzlrivT4octeciIv68JfYuXLigdXd3t+vZCNCOjg7Xa2ho0NoeB2KMFwAAwP3EzD4AAAAAAAAAAAAAAABAjuDHPgAAAAAAAAAAAAAAAECO4Mc+AAAAAAAAAAAAAAAAQI4ovPMQAHg02Qzr7e1t17N50FNTU1mv88SJE1o/8cQTrtfU1KR1eXm51jEH22Z8AwAAAMh9BwcHbnl/f1/r3d1d17PXKUm1iL+Gib1M619ZWdF6enra9YaHh7Xu7+/X+tKlS27ca6+9Jvfi1KlTWp89e9b12tratK6vr9e6rKzMjSsuLta6oqLC9RoaGrSuq6tzvZqamkNrEZGqqiqtS0vT2ysuTn3uOeBo2OvegoKCQ+u4HK/b7Xvc3t7ueufPn0/8u3/4h3849DH96Ec/csv2Gr65udn1amtrtS4pKUnspVL+M2Sfd34+/wYTdyfePyosLEzs7e3taW2PCbYWSf4uivjPL5/X37DH8/tx/86+zvkp/5oXHqTf78JCf2zf3U337PsW32/7Hsf9U/wMfZns49ze3nK9TOctIyOjWg8ODmp9+/ZtN+7atWtax+OFXY69jo4OrVtaWlzP7uvtuYr9XgIAANxvnKUDAAAAAAAAAAAAAAAAOYIf+wAAAAAAAAAAAAAAAAA5gjkFAeS+g7CcYRbdpOns47T3dnlry08fa9k4LhGRp59+Wuuuri7Xs1OM2+ld4zTJAAAAAB4tMerDxoBkihS20RXLy8tunF1eX193PRvfEtdv/y7GYQwNDWn92Wefaf3mm2/Kvfj617/ulm3UcU9Pj+vZeAx77VRaWurG2ZiRGJ9kr7Pi39mx8e9sNFhBAf8u7mFiI21i5IyNcWtsbHS9vr4+rWOMnr2Of/vtt7W2MXYiIiMjI1qPjY25no1vyRSfVFlZ6Xr2MxqfD3C3MsXC2Z69Fxa/D9muA7/xsLwm8b2y0VG2F9/v/Lz8Q8c9aPZxxnu09lxocnLS9QYGbmp99epVrd955x03bmZmRutnn33W9WxMY4xstMs2KlTEH4PsceBhel0BAMCjjzMPAAAAAAAAAAAAAAAAIEfwYx8AAAAAAAAAAAAAAAAgR/BjHwAAAAAAAAAAAAAAACBHFN55CAA83A7kIP6HRNvb24fWW1tbbpxdjlnR1osvvuiWe3p6tG5ra3O9uro6rUtLS7UuKChw42xO9cOSBQ4AAADg3u3v77tle42xsbHheouLi1pPT09rPT4+7saNjY1pPT8/73r2eiZe6ywsLGg9OTnpep9++umh286krKzMLT///PNanz9/3vVOnjip9bHOY67X0tKidW1trdYlJSVuXFFR0aF1XI7XWfbaKj/f/9s3O9b27LVZXAe+fIWF/jam/ezV19e7nv2OxffRst+P4eFh1xsaGtK6q6vL9SoqKrSOnyf7fY/bts8hlUolPi4gG5nuH9nlbPdd7ONyR3yv7H4o7pOyXYe7n/olfxR2d3e13tzcdD17XjQ6Oup6ly5d0vof/uEfstqWvXcr4s8/GhsbXc8eW2pral2vKOXPQQAAAB4EZvYBAAAAAAAAAAAAAAAAcgQ/9gEAAAAAAAAAAAAAAAByBDFeAHJenBbbTv1qaxGR9fV1rZeXlw+tRUSWlpa0ttPci/gpXTs7O12vo6ND6xjj1dDQoLWd8jtORQ4AAADg/nPXEa48SByXKeJkb2/PLSdFCIv46C577SEiMjU1pfXIyIjW/f39btwnn3xyaC0icvv27cTHma0TJ05oHa97bKxFVVWV69nrnhh9ZNfT2trqevY6q7q6WusY42Wvn4icebzE2DYb4xWj8jJ9NmzEl70X8Oyzz7px77//vtbx+t5GcGWKCYvX+/bviouLtY7PDcjGvUR1IXfl2vsdz4vsvtLuh0VEVlZWtJ6bm3M9Gzkaz4Wyje76sz/7M60vXLjgeseOpWNF7TmMiD/HIbYLAAA8jJjZBwAAAAAAAAAAAAAAAMgR/NgHAAAAAAAAAAAAAAAAyBFkxwDIeXG67q2tLa1tbJeInyJ/ZmZG6+npaTfOLt+4ccP1zp8/r3VzU7Pr2WU7Db2ISF1tndbl5eVax+m6c2EqXgAAACDX2esIG/8boyVsBFeMCbbL9jpERGRzczOxZ2O8FhcXXc/GVQwODmp9+fJlN+4HP/iB3Asbz3X69GnXs7HETU1NWtfV1blxNj4pU7RS/Dsb/xV7lZWVWpeWlmpN7DF+q6CgwC3bGKzIXlfH7639/tnY7r6+PjfO3j+w8Xoi/nMeH5f9/Npr//h3NqLORn0ftk6LewYAckG8X7u2tqa1je0SEZmdndV6aGjI9QYGBrT+4IMPstr2v/23/9YtX7x4Uevjx4+7no0Yrampcb1MxxkAAICHATP7AAAAAAAAAAAAAAAAADmCH/sAAAAAAAAAAAAAAAAAOYIf+wAAAAAAAAAAAAAAAAA5guBzADnv4ODALW9tbWm9tLTketPT01qPj49rPTY25sYNDw9rvbu763p1dXVa19bV+l593aHjRESqqqu0tpnPhYXsigEAAIAvm72O2N7e1np1ddWNW1lZ0XptbS2xt7y8nNiz1ygiIpubm1ovLi663uTkpNb9/f1a//jHP/78k8jCSy+95JbPnj2rdW9vr+u1t7dr3dTUpHVNdY0blypOaZ2f7/8dWUFBgdalpaWuZ5djz14jxXUCh7HX0vEzY5d3dnZcz37HGxsbtbaffxGRubk5rUdHR11vZGREa/uZFxGprq7WuqamxvWqqtL3Bex3ID7+TPcM4vYA4GG0t7fnlu15kb0nKyIyODio9fXr113v3Xff1frDDz9M3N43v/lNrZ988knXe+KJJ7Q+duyY69n7txUVFa7H+QgAAHjYcbYCAAAAAAAAAAAAAAAA5Ah+7AMAAAAAAAAAAAAAAADkCLJjAOS8/f19t2ynyI9T4k9MTGhtp4gdGBhw437+858nbs9Ow22n547LsWengrXTcMcYsry8vMRtAwAAADgaNrrLxnPFKOCZmRmtp6dnXG9qKh25FaOBp6amtN7c2HS97Z30tuP2bFzQlStXkp+AEeOHLly4oHWM6urr7dO6u6c7cT023ihe2xQVFWkdr2esGDdklz8fu3R4NBHXS0hiP0OZ4uRijJe9ps8U42Wj+eI6bty4ofX6+rrr1dam477r6+tdz36XSkpKEh+/vX8QI++I8QJwP9jj7VEca+N+096jtfdkRUQ++OADrd98803Xe/vtt7Pano8p7XO9rq5urdvaWl2vvKxc67x8/7w55wAAAA87ZvYBAAAAAAAAAAAAAAAAcgQ/9gEAAAAAAAAAAAAAAAByBD/2AQAAAAAAAAAAAAAAAHJE4YN+AADwRdlMaRGRra0trZcWl1xvbHRM6xs3bmj9/vvvu3G7u7uJ26urq9O6qqrK9SoqKrS2mc8iIoWFh+9yyX8GAADA48qeyyfVn+/5deTnp8+n47n13t6e1uvr6663srKi9eLiotazs7Nu3Pj4uNbDwyOu19+fvqZ4++23Xe/q1atyL1pbW7U+efKk1vX19W5cR0eH1i0tLa5nr1kaGxtdr62tTev29g7Xa2lp1rqhoUHrsrKyrB478LCw+4Lycn9tXlNTo3Vzc/ozv7m56cbt7+9rXZBf4HobGxtav/vuu65nv6v2uyjiv0sFBX6dlt3n5ef7f6tZVFSU2AOAe3UU9yftedfSkr8nOz09rfXNmzdd76c//anWn3zySdbb+/a3v631iRMntG5ra3XjGhvT5zTxXi4AAEAu44oQAAAAAAAAAAAAAAAAyBH82AcAAAAAAAAAAAAAAADIEcR4AXjkuKn6N/xU/bNz6Sn5BwYGtL527VrW67dTgBcXF7uenU67oDB5Sm4AAAAAno3S3d7edj0b1Rt7e3vpqJ39/T3Xs2NXV1ddLzHGa8bHeI2OjWp969Yt1/v1r3+t9d1cU5w+fVprG9Ul4mO2bByQjR4S8fFANk5YRKSkpETrGMFl1xMjhiorKw9dB5DLYqS2vaa3MXcxwsb+XYzLWl1L709ijNd7772ndfyOpVKpQ7cXt20jvuJ9B/vdtOsDgPvFxhra+64iIjs7O1ovLy9rPTU15cbZWNTbt2+7XrbRXX/5l3/plp988kmtu7q6tK6trXXjOKcBAACPKmb2AQAAAAAAAAAAAAAAAHIEP/YBAAAAAAAAAAAAAAAAcgQ/9gEAAAAAAAAAAAAAAAByROGdhwDAwy0/P/l3izY3WkRkZWVF62vXrmW1/tOnT7vl0tJSrQsKClwvT/KyWicAAAAAkby89Pnz7s6u1mtra27c8vLyoXUcu7Gx4Xqrq6taLy4uup69NrDrnJubc+NGR0e1vnz5suv19/dLNl5++WW3bK8xurq6XK+1tVXrxsZGrWtra924qqoqrUtKSlzPXiPFa5bi4mKt7bXNYesBHkX2c15XV6d1KpVy4+x3J95bsPuJs2fPut6VK1e0/ulPf+p6u7u7h9aFhf4WbXl5udb2uy4isre3JwDwZbL7nUznaDMzM1oPDw+7cXZ5aGgocVtlZWVu+S//8i+1Pv/Eedfr6e3Ruq2tTeuKigo3LtO9YwAAgFzGWQ4AAAAAAAAAAAAAAACQI/ixDwAAAAAAAAAAAAAAAJAjiPECkPMODg7csp1adnt72/WSppbNpK+vzy1XVlZqHaf5zssnxgsAAADIlo3GWd9Y13ppacmNm56e1npqasr1ZmdnD61FRCYnJ7UeHx93PXttsL6evO0bN24c+njv5A/+4A+0PnHihOt1dnZqfezYMdfLNsbLXpfECCB7jRSvl2x0Woy1sLFFdhyQy+Jn2V7H2zrG2tm/ixGB9n7C+fM+VsbGeEX//M//rLWNEoyxNfb7bqPGRHysV7wnkSmqhu80gHtlYwftvkvEn2uNjIxofevWLTfu5s2bWmfaT37rW99yyzb6tO+4v0drz6Hq6+u1jvtUYrwAAMCjirMcAAAAAAAAAAAAAAAAIEfwYx8AAAAAAAAAAAAAAAAgR/BjHwAAAAAAAAAAAAAAACBHFN55CAA83DY3N93y+vq61jFHemZmJqt1fuMb39DaZkOLiLS0tGhdWVnpeqlUSuu8vLystgUAAAA8SAcHB3es4/L+/r7rxWXLnhfv7u663urqqtYL8wtaT89Mu3Hj4+NaDw8Pu55dvnnzpuv99Kc/TXxcSY4fP+6Wn332Wa1LS0tdr6KiQmt7nSAi0tHRoXVTU5PrNTY2at3c3JzYq6+v17q6utqNKyzklg5wlAoKCtxyTU2N1vE73N3drfUzzzzjevn56X9b+cMf/tD17D7v3Xff1bqtrc2Ns9uzj0NEpLi4WOu47y0pKdG6qKjI9eIyACSJ54AbGxtaLy4uut7ExITWAwMDWl+7ds2N++yzz7S253UiIidPntTa7l9FRNrb27VubW11PbuvtPdo7f1ZEc6ZAADAo4uZfQAAAAAAAAAAAAAAAIAcwY99AAAAAAAAAAAAAAAAgBzB/IUAHhqfjwlIHruzs621nQY7LscYrzjV7G/ZqflFRJ544gmt+/r6XM9Oz19VVeV6dlpsYrwAAACQa/b29rTe2tpyve3t9Dl4jNK1Y+06RHzMjF2HiMjy8rLW8/PzWk9P+xivsbExrQcHB12vv79f61/+8peSLRsLYWN4jh075sbZKK0Y42tjvOK1gY3eKS8vdz27HOO57HrKysq0JoICSBbvH+QlLmTPXt/H72lnZ6fWNrZLxO8n6urqXO/v/u7vtJ6amtL6+9//vhtno2pifKDdp25t+X1qvdleVXXy/QoAjyd77zXet7S9eA64tram9dLSkuvNzMxobaNVbaRX7MXowjNnzmjd0uxjUWtra7WO51r2PMzuK+N+mXu0AADgUcXMPgAAAAAAAAAAAAAAAECO4Mc+AAAAAAAAAAAAAAAAQI5gDmgAD40Y47W7u6v1zs6O621sbGhtp/4X8dPJxhgvO+2sderUKbfc1dWldUdHh+s1NTVpHafxT6VSWjNFLAAAAHKBPW+15+Dr6+tunD3vjvG49hw8/p2Ngog9u565uTmtbSSEiMj4+LjWt27dcr3Lly9LNp5++mm3fPHiRa17enq0bmv10RL1DekYrxgfYeO4YlSXjZOIEVx2uThV7HrFJenlwgJu2wDZuB+X33bfGL/fNmbLxu3FsfG7b/d5f/M3f5O47f/zf/6P1vF+iN2Pxl5BQfrfdcbHfCTsbRtueQA5x957jbGrdtnedxXx91PjfVh7/mbP127fvu3G2f3hiRMnXM/ee62r9/GH9t5rjDUsLjbnTMSdAgCAxxAz+wAAAAAAAAAAAAAAAAA5gh/7AAAAAAAAAAAAAAAAADmCH/sAAAAAAAAAAAAAAAAAOYIgUwAPDZsbLeKz520mvYjI0tKS1vPz865nl2PP5ko/+eSTWre1tblxra2tWjc3N7tefX291hUVFa5XVFQkAAAAQC7Z3t7WemNjQ2t77iwiMj09rfXk5KTrjY+Paz07O+t69tx9bm4u8e+mpqYS1x/Xma2XXnpJ6wsXLrheX1+f1u3t7Vq3tLS4cQ0NDVpXVla6Xnl5udZlZWWuV1iYvuWSl5fnevbaJ/bscn5+/qF/c9jfATha9jtWUlLienY57hfsfYGtrS3Xs/u5zs5OrYeHh924hYUFrf/qr/7K9f78z/9c64KCAtezj6Wurs71Kir9/Yt7wm4HyGn7+/ta2/uuIiKbm5tar6ysuJ49l1uYX3A9e35469YtrUdGRty4F154QWt7DiYicuzYMa0bGxtdz+7XSktLXY/7sAAA4HHHzD4AAAAAAAAAAAAAAABAjuDHPgAAAAAAAAAAAAAAAECOIMYLwEMjTktvp7teWfbTx87Npqf/j1P82+WJiQnXs9PJvvrqq1rbaK64HKe+rq6u1jpO5Z1pqn4AAAAgiT0XtrWNW8g0Li7v7u66nl3e29tzPXvebWMaYnSWjdwaGhpyvZs3B0xvMPRuaj0wMCDZaGpqcssvvvii1jFm10Zp2VrER3B1dHS4no3rspER8dqgtrZW6xjja6O7OP8HcpDdjd7jV9jeBxDx9xBsRLiIyIkTJ7S2cVw//OEP3bhM+8rvfve7Wsd9pV22+y4RkeLiYq0rK9KxOHn52ccMAsht9hxwfX3d9Wx8a6bY1dGxUdcbHBzU+uOPP9baRhWKiJw8efLQWkSkt7dX67jfrKmp0TrGeNm4UwAAgMcRZ0MAAAAAAAAAAAAAAABAjuDHPgAAAAAAAAAAAAAAAECO4Mc+AAAAAAAAAAAAAAAAQI4ovPMQAPhy2Fx4EZGdnR2tV1ZXXG9mdkZrmxstIjIyMqJ1f39/4vZKSkq0Lisrc73y8nKtKyoqXM+OLSoqSlw/AAAAkDVzKry3t6f19va2G7a1tZXY29zc1HpjY8P17Fh7nh3/bmlpSevp6Wk3bmxsTOtbt2653meffab1u+++K9mqqqrS+qWXXtK6p6fHjWtpadG6trbW9ez5uT3HF/Hn8tXV1YnbtuMqKysT119cXOx6eXl5AiB3Hdid74H/Pt/r1zuVSmldU1Pjet3d3Vrbfb3dH4mIvPfee1r/5Cc/SdzW+++/75aPHTumtb2vIeLvuTQ0NCSOKy0t1bqgoCBx2wByj90PxHPFubk5re29VRGRgYEBra9fv+56b7311qHbOn78uFvu7e3Vuq+vz/W6urq0bmxsdD27f+Q+LAAAgMfMPgAAAAAAAAAAAAAAAECO4Mc+AAAAAAAAAAAAAAAAQI4gxgvAQ8vGC6yurrrezEw6xitOLWunk/3kk08S12+nfo3T/dvlOFV/XAYAAAC+KBsls7u7q3WMWFheXj60FhFZXFzUen5+3vXW1ta0tlFgIiLr6+uH/l2M8RoeHtb60qVLrmcjvjJ54okn3PLFixe1tnEPNopGRKSpqUnrGONlz91tfE7sxXN+O9ZeG8SICDuO2C7g0XK/v9MxIqutrU1ru28pL/Pj7H0Hu/8WEXnjjTe0zhTjFZ+bjWy0kTmtra1unN0HHlWMl40OYj8KPDiZYrzseV9/f7/r2fO+73//+64X1/NbHR0dicvxPM/uG2Psqt0nFRbyv7MAAAAsZvYBAAAAAAAAAAAAAAAAcgQ/9gEAAAAAAAAAAAAAAAByBD/2AQAAAAAAAAAAAAAAAHIEIacAHho2N1pEZHt7W+uVlRXXm5yc1PratWuu90//9E9Zba+qqkrr0tJS1yspKdG6uLg4q/UBAAAA2drf33fLW1tbWq+vr2u9vLTsxs3OzWo9NTXleuPj41qPjIy43szMjNbx3Hp5Ob2NiYkJra9cueLGbW5uSjaOHz/uljs7O7Xu6upyvRMnTmjd3d2tdVtbmxvX2NiodXV1tevZc/eioiLXs8uFhf4WSF5e3qGPP/53u5z0NwDwW3Y/UVZa5nqpVEprex+ioKDAjdvaTh8TpqenXe+NN95I3Pb3vvc9reO+3i7v7e0d+phERCoqKrQ+qvsh7DuBh4M931xaWnK9sbExrT/88EPX+9u//dus1n/69Gmte3p6XM+e2zU3NbteQ0OD1nGfBAAAgGTM7AMAAAAAAAAAAAAAAADkCH7sAwAAAAAAAAAAAAAAAOQIYrwAPDTsNNIiIjs7O1qvrqy6no3x+ulPf5r1Ntrb27VuaWnR2k5TLeKnqo5RAAAAAHg02VhZW8fILbsce0nrE/HntzESyy6vra1pPT8/78bZ6K7R0VHXGxgY0PqTTz5xvbfffltrG+GQSTwPfvrpp7WOMVv23DrGbNlz7fr6etdrbW09dB02tktEpLa2VuvKykrXs+fu+fn8myYAD5bdD8V9UmFR+las3cfaGHMRv4+1cYciIn/xF3+h9Xe+853ExxEjzu027H457rPtPjbG6cQIdAAPRjzHTDqHtdGwIj7W1d5bFfHnkdnGdomIfO1rX9P6+eef1/rUqVNunDtXrPH7HaK7AAAA7g13wQAAAAAAAAAAAAAAAIAcwY99AAAAAAAAAAAAAAAAgBzBj30AAAAAAAAAAAAAAACAHFF45yEA8OWIedN7e3tab+/4/PqVlZV0L2TbZ/LMM89oXV9fr3VZWZkbV1iY3j3m5eVlvX4AAADkLnvet7u7q3U839zc3NR6a2vL9ezY+Hfr6+uH1nGda2trWs/Nzblxk5OTWg8ODrre5cuXtf7Vr34l9+LrX/+61idOnHC99vZ2rZuamlyvtrZW69LSUtdLpVKJverqaq2rqqq0rqysdOPs+bpdn4hIfj7/jglA7ikoKNA67htramq0PnbsmOs9/fTTWpeUlLje+++/r/WVK1dc74033tD65MmTWsf9eXl5eeJjto8rbru4uFhr9svA/RXvodrzyrXV9Hnk/MK8GzcyMqL1zZs3XS/uM5J8+9vfdsvPPfec1nbf0tnZ6cbZ+7B2f3Fk7EvCrVwAAPCY4MoLAAAAAAAAAAAAAAAAyBH82AcAAAAAAAAAAAAAAADIEcR4AXhoxClo9/f3tbYxCiLZR3e9/PLLbtlOIWujBuL003bK6fi4AAAAcHTiudbDEqFqI2U3NjZcb3l5WeulpaXEnq1FRObn5xN7G+vpbaytJ8d4jY+Pa21ju0Q+H8eQJEa2PPvss1qfOXNG656eHjeuo6ND68bGRtezcVwxZstG1di43Di2OJWOdChKFblxRUXp5YflMwIAR8XuJ0VEKioqtG5paXE9e38k0z7V3lMREbl27ZrWAwMDWsf9ud3fZroXYyN54mMhxgu4v+L320bAjk+kzxWHhobcOHuueOnSJdf74Q9/mLi9ixcvam3PG0VELly4oHV3d7fWDQ0NbpyNCIz7riPB6SEAAHgMceUFAAAAAAAAAAAAAAAA5Ah+7AMAAAAAAAAAAAAAAADkCGK8ADw0YjTX9lZ6eWtry/XW19cT19PX16f1yZMnXc/GeNmpqu1UsiL3aTpZAAAAfM7DFMm0s7OjtT3fjJFbs7OzWk9PT7ve1NSU1jZyS0RkcHBQ64mJCdez8Qs2NiyuP8YxZMvG29o4LhGRY8eOaW3Ppbu6uty4trY2rWPsS2VlpdY2AiaK77eNerG9TJ+Lh+kzAwBHIe437T2KGIWTye5OOnZrYWHB9WyM15tvvqm13X+L+Hgge1wU8dGb8b6JjUfPdBwA8MXFe6iLi4taj4yMaP3JJ5+4ce+8847WP/7xj7Pe3tNPP611b2+v69nzRXuOGfctNq4wxvgCAADg3jCzDwAAAAAAAAAAAAAAAJAj+LEPAAAAAAAAAAAAAAAAkCP4sQ8AAAAAAAAAAAAAAACQIwrvPAQA7p7NXt7b23M9m/++tbWl9dLSkhu3uLSodcyan5ubS9z22bNnte7p6XG9zs5OrVtaWrSurq5244qLi7XOy8tL3BYAAADuH3tOac8hRfw5ZqbzzXguZ9e5s7Pjemura1ovLafPTeO56NTUlNbj4+OuNzw8rPW1a9dc74c//KHcre7ubrf84osval1bW+t69fX1Wjc2NrpeTU2N1pWVlYk9e45saxGRhoaGxG2XlJQc8ugBANkoLPS3aMvKyrTOz/f/VtMu7+3649/aWvo41jPn74c899xzWr/zzjtaf/zxx26cPabaY6aI39eXl5cnPmZ7T0VEpKioSAB8Mfa7uby87Hr2PunIyIjWH330kRv34x//OKttvfrqq275xIkTWsfzw7q6Oq2rqqq0jvsui3utAAAAR4OZfQAAAAAAAAAAAAAAAIAcwY99AAAAAAAAAAAAAAAAgBxBjBeA+yJTPMLGxobWq6urWs/OzrpxMzMzh9YiIpOTk1rbOAERkY6ODq3b29tdr62tTWsbbVBVWeXGpVIprZlaFgAA4MGw52GZzinX19ddb3NzU+vd3V3Xs8t2HSI+EsHWmWK8RkdHXa+/v1/rn/3sZ5KtgoICrV99JR2d0N3T7cbZ89l4HmyjtWw0l4iPXolxKjZuxUZ8VVf5qFsb2UIkCwAcnYL8Ards70nEKBx7v2Wj1h/H7HGhtbXV9U6ePKn19va21jZ+UkTk1q1bWsfYR3sfxUb3xLH28Yv444eNLLPHPhHuv+DxE6Py7HlqPIe1MX02tkvE3ze190zteemd/OEf/qHWTz75pOsdO3ZM6+pqf35ozyMzRXcBAADg6HH2BQAAAAAAAAAAAAAAAOQIfuwDAAAAAAAAAAAAAAAA5Ah+7AMAAAAAAAAAAAAAAADkiMI7DwGAu2czp7e2tlxvZWVF69nZWa0nJibcuPHx8UNrEZEbN25o/dRTT7leU1PTobVIcr58aWmpG2cz5MmMBwAAePB2dnbcsj2nnJubc72FhQWt19bWXM8uLy0tud78/LzWy8vLWi8uLrpx09PTWt++fdv1Pvroo0Mff9TQ0OCWX375Za17e3u17u7uduPa2tq0jue69vy2srLS9ez5bWTPd4uKirROpVJunF3mHBkAjk7cp9p9dkFBgevZ+y1xX19bW6t1c3Oz63V2dmq9ubl56PpERIaGhrS2xxURkY6ODq2bGv0xqKqqSut4/LDbKCsr07q4uNiNi88VeNTF75+9hxrPYe357fTUtOvZ5ZmZGa2npqYSt/0v/sW/cMsXLlzQuq+vz/VaW1u1rqiocD37vbXPh3NFAACA+4+ZfQAAAAAAAAAAAAAAAIAcwY99AAAAAAAAAAAAAAAAgBxBjBeA+8JO27q9ve16NhLBTic7PDzsxg0ODmptY7uiGIFgp5m2U1jH5eqqaq0Li/zuME6jCwAAgC+fjTKwsV0iProrRr7aZRtlIOIjuEZHR13Pno/a6K719XU3zsbP7u/vJz7+yMYjPPnkk65n41Xa29u1PnbsmBtnYxRsRK2IP9eNEQs2SiGe6yY9hxi/QBwDANwnGXavcd9rY8jjvj5TjJc9lu3u7mm9t7fnxtlIy2vXrrmePSbV19f7x1WWflyFBdndY4mxXcR44XGzu7vrljc2NrS2sV0iIpOTk1qPjvlzWLtsz4NnZ2fduK9+9atanzhxwvV6enq0juef9pzzbqJiAQAAcH8xsw8AAAAAAAAAAAAAAACQI/ixDwAAAAAAAAAAAAAAAJAj+LEPAAAAAAAAAAAAAAAAkCMIVAVw3+3s7LjllZUVraenp7UeGhpy427cuKH1+++/n7j+6upqt1xeXn5oLSJSVlamdWFR8i4wLy8vsQcAAPC42t/fd8u7u7ta7+3tZd3Lz0//u5N43mX/bnl5WeuZmRk3bmJiQuvh4WHXGxwcTOxdvXpV68uXL0s2Tp8+7ZbPnDmjdW1treuVlpZqXVlZ6XqNjY2H1nE9dbV1Wjc0NrhxDQ0Nh/7NYdtLEl/zgoKCrP4OAPBwscccEX9/JN6LOTg40Noehw8O/LHd3rP5x3/8R9ezx9eamhrXKyoqOnT9IiJiDjv2mJNKpdwwu8x9GTwOtre33fLq6qrWc3Nzrjc2Nqa1/S6K+Huq9hy5vb3djevp6UnstbW1ad3S0uJ69fX1Wsd7rXxvAQAAHhxm9gEAAAAAAAAAAAAAAAByBD/2AQAAAAAAAAAAAAAAAHIEMV4A7gs7bWuMe9jc3NR6YWFB69HRUTfu3XffzWpbxcXFbtlOHR0jCYgoAAAAuHeZzuvW1tZcz8YQbGxsuN7eXno9MT5ka2tL66WlJa1nZ2fduEwxXjdv3tQ6xsHG9ST5vd/7Pa2PHz/ueq2trVrbWAMRkYqKikNrER+zFSMQSkpKtLaxLHEddjnGnwAAHi+Fhf7Wrj1GZIpstL0YIzQ/P691d3e369n4yxghZsVt2+OVjVePxzgXvV7IbWs8mmykXozbW19f19p+F0V8jNetW7dcb2BgQOupqSmt7TmriEhzc7PWNhpWRKSuLh0jmykqNp5/8l0FAAB4cJjZBwAAAAAAAAAAAAAAAMgR/NgHAAAAAAAAAAAAAAAAyBH82AcAAAAAAAAAAAAAAADIEQSqArjv9vf33bLNg19eXtZ6aGjIjYvZ1ElKSkrcclIOPQAAAL6Yvb09t7y+vq713Nyc601PTyf27N9tbW253urqqtb2fDCuY3JyUuvBwUHXu3Tp0mEP/47+6I/+SOuzZ89q3dXV5ca1tbVpXV9f73qVlZVaV1RUuF5ZWZnWqVTK9fLz8w+tCwv9ZXtRUZHW9rwXAPD4sccLEZHS0lKt43HGHj/sfZq1tTU3zh6/e3t7Xc8eb3/+85+7nr2/c3Bw4Hr22FhbW3toLSKys7Oj9d0c47j3g4dB/Nz/Vvx82s95PA+238d47js8PKz1J5984noffvih1va8tb293Y1ramrSuq6uzvVqamq0tt9ZEZHy8nKt434n6XkDAADg/mNmHwAAAAAAAAAAAAAAACBH8GMfAAAAAAAAAAAAAAAAIEcQ4wXgvrBTQtvpaUWS4x5+9atfZb3+ixcvah2jE2w8Qow9YGpnAACAu7O7u6u1jdgSEVlYWNDaxmqJ+KiPGLM1MzNz6Drievr7+xPXn4mNKonngzaC69y5c65no7t6enq0jhEIzc3NWscIBBt7YCMPRHy8SqbzUuIQAADZiMcSG30VY7BsZJY/tvsYr66u9HH5iSeecD0bOfTWW2+53gcffHDo+kVEGhoaDq2rq6vdOBvTHo+F9ngenxuxlngY2M+sjb6NMbgbGxta2/g7ER9hOzEx4XqfffaZ1ja2K7LntydPnnS9jo4Ore13UUSkqqpK63gOG6O7LO61AgAAPDjM7AMAAAAAAAAAAAAAAADkCH7sAwAAAAAAAAAAAAAAAOQIYrwA3Bd2aufNzU3XW1tLTxFtp6fN5PTp0275mWee0dpOQSvip50tLi52vUzTzgIAADysbCxAjLWw0QAxNsP2YrSqHWsjWKPt7W2tFxcXXc9Gaw0PD7uejeCysQMiIpcvX078uyQx6sOeD7a2trqejSqJ54M2SitGcLW0tGhtow1ibKz9u/i4bOxBKpWSe0EcAgBAxWTHezxE2GNLRUWF1k1NjW7c5mY6xjKec9jYdFuLiPzjP/6j1h9//LHrnThxQmt7fLXH5P//UWpVV1frOjYmM24beCiYr4u9L2rvg4r48+nx8XHXGxkZ0XpgYMD1Xn/99cRNf+tb39L6qaee0jrGeHV3d2vd2Oi/+3a/EGNwAQAA8HDi/3oDAAAAAAAAAAAAAAAAOYIf+wAAAAAAAAAAAAAAAAA5gh/7AAAAAAAAAAAAAAAAADmC8FUAWYtZ7TbvfW9vz/VsNvXm5qbr2eWNjY3E7RUXF2v9zDPPuF5fX5/WLS0trldVVaV1KpVKfMwAAAC5ItvzrvX1dddbW1vTenV1NbG3s7PjenYbdv2Li4tu3OTkpNaDg4Oud+XKFa1/9rOfyb24ePGi1k899ZTrdXd3ax3PB6urq7UuKSlxPXt+WF5e7noVFRWH9srKytw4u2zPWUVECgoKBACAI3MfbmMUFRVpXVNTk7jBeAwtLS1NXOfQ0JDWN27ccL2/+7u/09oea+N9pu3tba339jpdr7AgfRs7HpeBh0Fefvq7Y8+f5+bm3LjR0VGtb9265Xr2/PnNN99M3Jb9DouInDt3TuszZ85obe+fiog0Nzdrbc+XRT5/TgsAAICHHzP7AAAAAAAAAAAAAAAAADmCH/sAAAAAAAAAAAAAAAAAOYIYLwAZ2SmV9/f3Xc8u26mWRXyERIzqsst2Wtvoa1/7mtY2pkFEpL29XevGxkbXq6ys1DpOa0uMFwAAyHUxxstGpMaYrZmZGa2npqZcb3p6Wmsb6SXiY73suVuMIZiYmNC6v7/f9S5fvnzo47+Tp59+WuuvfvWrWp86dcqN6+xMx3vYSAIRH0sQIwlsjFeMfLXLhYXpy+X8fB/NVVhYcOg4Ec43AQAPPxs5aaPQRXxUV1mZj+3Kz0//u9EYHWrj12OMl/U//+f/1PpP//RPXc+ec8Tjq73XU1tXm7j+e2Xvf3Esf/TFCDnrKN5/e35uz7lFRK5fv671+++/73o/+MEPtF5aWkpc/yuvvOKWe3p6tLb3UO35sohIbW36uxPPg/ncAwAA5B5m9gEAAAAAAAAAAAAAAAByBD/2AQAAAAAAAAAAAAAAAHIEP/YBAAAAAAAAAAAAAAAAckThnYcAwG/s7u665a2tLa1jVrvNlY4Z03Z5eXlZa5sbLSLS0dGhdVtbm+u1trZq3dDQ4Ho2x724uNj1yJ8GAAAPq4ODA7e8s7NzaL2xseHGLSwsaD09Pe16IyMjWg8MDLje9evXtZ6YmHC91dVVrefn57Xu7+9PfgIZnDlzxi3b8766ujrX6+zs1PrkyZNad3d3u3Ht7e1aNzY2ul5VVZXW8XywqKhI68JCf0nMuSIA4HGQn5/87z8LCgq0TqVSrmfPR+K9nrNnz2r91FNPud5HH3106LZ+8IMfuOXt7W2ta2pqXM8e6+O5Q3yc94JzgMfL/Xi/7Tn64uKi1qOjo27cBx98oPX/+l//6562df78ebd87NgxrVtaWrSO90yP4rsCAACAhwcz+wAAAAAAAAAAAAAAAAA5gh/7AAAAAAAAAAAAAAAAADmCGC8AGdk4CTtds4jI2tqa1jY+QkRkZmZG66mpKdezy2NjY1o3NTW5cXaq2RjNYHtx+uby8nKt4/S0maaqBgAAyNbe3l7icuzZKNTP99LL29tbrmejLGwdY7xszFaM47p165bWly9fdr3vfOc78kW99NJLWtv4LRGR5uZmrWMUR0lJidYxZqu6uvrQdWQ6V7R/I+LPB21sFwAAj7IYCWrdS2xRvIdiYzLtMVpE5PTp01r/yZ/8ievZWKGf/OQniduzPRvlGbdXVlbmevv7+1rbcwARH9lpI8qI7UI27GdLxJ/Lb235c/fZ2Vmtx8fHtR4aGnLjXn/99ay2/eSTT7rlr3/961o/8cQTrtfa2qq1/Z4eVWzXUe9bAAAAcDT4v94AAAAAAAAAAAAAAABAjuDHPgAAAAAAAAAAAAAAAECO4Mc+AAAAAAAAAAAAAAAAQI4ovPMQAPiNnZ0dt7y6uqq1zaUWERkbG9N6ZGTE9QYHB7W+deuW1k899ZQbZzOmq6urXc8uV1ZWul5JSYnWMV+eHGkAAHAUDg4O3PLOdvo8aX1j3fXW1tbSvfXk3srKiuttbGyk12/OwzbWN9y4ufk5rcfHx12vv79f6+9+97tyL44fP671s88+m9jr6OhwvcbGRq3teZ2ISFFRkdYFBQWul0oVa11RUW7qCjeuvDzdKy4udr24TgAAHgf3+55HUVFK67q6Otfr6+vTOmXGifj7Nvb4/Xd/93eJ23rvvffcctyeZc+vmpqaXK+2tlbreD4C3Mnm5qZbtvdCFxYWXM+eh9v7nfZ8XERkaGgocXsvvPCC1q+88orrnTlzRuvu7m7Xa2ho0DqeFx+1POHeKgAAwMOCmX0AAAAAAAAAAAAAAACAHMGPfQAAAAAAAAAAAAAAAIAcQYwXgKzFGC8bNTE1NeV6dkraGzduuN7PfvazQ9cf47jscoxtSJoCWuTz0V0AAABHbXd31y1vbKajtZaWllxvfn5e6xh9as+h4vmUXc/29rbWMU5gbi4d4xXjU3/1q18d/gTu4JlnntH67NmzWp8+fdqN6+3t1TpTjFc8z8sUs2V7hYWFh9Z36gEAgKNXWJg+Rse4dRvRGWOECovSx2l7ThPjjGx0VzyHsfd6lpeXXc8unzp1KvFx2XtLR3XvyEa7Eh3/6NnY8OfdMzMzWg8PD7vewMCA1levXtX617/+deL64znxc889p/W5c+dcz0blNTc3u56NqLOf+Rg9fK+fUT7bAAAADyf+jzgAAAAAAAAAAAAAAACQI/ixDwAAAAAAAAAAAAAAAJAj+LEPAAAAAAAAAAAAAAAAkCMK7zwEwOPMZjvbXHURn4k+MTHheteuXdP6n//5n11vZ2fn0G01Nja65crKSq3Ly8tdr6ysTOujylkHAACPDnsOE+Xl5WW9nv39fa3X19e1Xltbc+PsedHs7Kzr2fOkkZER1+vv79f60qVLrvfRRx8duu2CggI3bm9vL/HxW62trW75zJkzWre0tLhefX291m1tbVp3d3e7cZ2dnYeOExFpaGjQOp7L3c17AAAAHg6FhelbyUVFRa5XWlqa2Nvd3dXanjN95StfcePee++9xG2/+eabh9YiIv/pP/0nrVOplOvZe0tJ9RfBOc2jZ2trS+uVlWXXm5yc1PrGjRuuZ8/l33nnHa2vX7+euK1vf/vbbrm3t1frY8eOuZ49166rq3O94uJirblPCgAA8PjgzA8AAAAAAAAAAAAAAADIEfzYBwAAAAAAAAAAAAAAAMgRxHgByMhGYNhpl0VENjY2tJ6bm3M9O0Xt9PR0VtuyUQ8iPqqrOFXsenbqaAAA8HiKUV32XCXGhtpePKexUV22FhHZ3ExP47++no7uWl1ddeNsJEU89xkbG9N6YGDA9ewU/x9++KFkI54HPf/881q3t7e7no1JtdFcIn76f3veJSJSUlKidVVV1aHri8vV1dWuZ9dJxAUAALkv0/HcxozG+M6amhqtbXTo2bNn3bh//+//vdb/9E//5Hqjo6OJ23777be1judC9vzHRo3F80jbizFIMUIVuSe+3/azHK8NVlZWtF5YWHS9qakprQcHB13PRvBevXo18bG88sorWp8+fdr1bOxubW2t69nouXjuTnQXAADA44mzQAAAAAAAAAAAAAAAACBH8GMfAAAAAAAAAAAAAAAAIEeQgwMga5miMmykl8jnp7JN8tRTT2ltIyJERFKplNZ5+X6q6PhYAADA4ydGSdhzk/X1ddezsVtra2uut7m5qXU8p7HT+Ns6rsP2ZmZmXM/GTnz66aeul210l53i//z5867X09OjdYyuaGpq0jrGeNkoAHveJeKjAIqKirSOkQEVFRVaFxf72FXiBAAAeDzFcwAbkWXPR7q7u904G6cao8B+9atfaW3jkkREPv74Y63tfaa4PRuFGiNfbbypPUcS+fz5D3LP3t6eW7bvv70WEBFZXFzUemFh3vXm5ua0tpFeIiJDQ0Na2ziuixcvunEnT57UurOz0/Uyxeza83XOswEAACDCzD4AAAAAAAAAAAAAAABAzuDHPgAAAAAAAAAAAAAAAECO4Mc+AAAAAAAAAAAAAAAAQI4ovPMQAI8zm5duaxGR3d1drbe2tlxvZmYmcZ1FRUVa9/b2al1TU+PGFRcXax2zqA8ODjI8agAA8DjY29tzy5ubm1ovLy+73uzs7KG1iMjCwoLWc3Nzrjc1NaX1/Py81mtra27c+vp6eh2zfh03B25qPTo6Ktl64YUXtD516pTWXV1dblx3d7fW7e3trtfc3Kx1XV2d61VUVGgdz7Xied9vFRb6S8iCgoLEnj1fy8vLO3R9AADg0ROP+6lUSuvq6mqt43mLPR+x5xgi/h7U+Pi469nztU8//dT17PmOPXfc3t5OXH/cdklJyaGP8Z7FW1qcJt0X9lx0Z2fH9ey5e7xusNcD8brBLsd7n/Zzf/bsWa1Pnjzpxtl7oW1tba5n742Wlpa6XvxcAgAAAMzsAwAAAAAAAAAAAAAAAOQIfuwDAAAAAAAAAAAAAAAA5AhivABkZOMwNjY2XM/GVywtLWW9zt/7vd/T+vjx41q3tra6cVVVVVqnilKul8ccxwAAPJQyRW1mG8OZKR7BRiysrKy4no3jmpn20+qPT6TjHmKUll2+deuW6/3yl7/U2kZEZFJeXu6WbVxFT0+P6zU2Nmrd19fneh0dHVo3NTVpbaO5RHwERjyfsuuvra11PaIAAADA/RDP5WxMuz0viuci9u9iXKu9B/Xiiy+63ve+9z2t33///cR12vtacf02jrSsrMz17HLs3RNuaX0pbCzt1taW69norhjHZWPi4nXDyMiI1rdv33Y9+9k+duyY1p2dnW6cXY7n7vZ8PX7WioqKBAAAALCY2QcAAAAAAAAAAAAAAADIEfzYBwAAAAAAAAAAAAAAAMgR/NgHAAAAAAAAAAAAAAAAyBGFdx4C4FFks8ltvbOz48atLK9ovbS05Hp2eX5+PnFbTz31lFs+ffq01r29vVq3tbW5cTanurik2PXy8gk4BwDgYZTpvGJ7ezuxt7u7q/XBwYHr2eWtrS2tl5eX3Th7PjI9Pe16Y2NjWg8NDblef3+/1j/5yU/kXrz88staHzt2zPXq6+u1rqqqcj27bMfFXkVFhdaVlZVuXF1dndY1NTWuV15ernVBQUHi4wcAADgqeXn+nk1RUdGhvfx8/+9Q9/f3td7Y2HA9ew/q1KlTrvetb31L688++8z1rly5orU9F7LnViL+HlQ8nyorK0t8zKlUSuv4vOMyvlz282SvIUT852lyctL1hoeHtb59+7br3bx5U+uBgQHXe+6557RuaWnROt7vbG1t1bqxsdH17Pl/cbG/Fxo/ewAAAABniAAAAAAAAAAAAAAAAECO4Mc+AAAAAAAAAAAAAAAAQI4gxgt4TMQ4DBuVYaeyXVtbc+MWFhfS9cKC7y0k96zjx4+7ZRtt0dHRobWd4lbET5tcUlLiekxdCwDAw8nGeMX4hZWVdDxojOCy5yBbW9uut7Ozfei4xcVFN87GeM3OzrqejfEaHBx0vV/84heSja6uLq2/+tWvul53d7fW7e3trmfjuaqrq13PTtUf47ns1P2FhelLNxsXISJSWlqqtY2ZiH8HAADwINh7ODbSK97bsfGj8ZzJxh11dna6nj3njOdJN27c0HpkZERrez9KxJ+/xWhVe34Vo7kqytNxYKliv+34WPDg2DhhEX8tMjEx4Xr2M3Pp0iXX+9WvfpW4DRutaz9DDQ0NbpxdtvFxIv7+Z2GBP48nFg4AAAAR/7ccAAAAAAAAAAAAAAAAyBH82AcAAAAAAAAAAAAAAADIEfzYBwAAAAAAAAAAAAAAAMgRhXceAuBRtLu7q/X6+rrWi4uLbtzs7KzWMzMzib3p6WnXa2lp0bq1tdX1mpubD61jJnplZaXWMec85roDAIAH4+DgwC1vbW1pvbKy4nr2XGJqaiqxt7S05HrLy8taz83NHfo3IiILCwuHjhMRGRsbO7S+kyeeeELrZ555Ruve3l43rqOjQ+t47tPQ0KB1dXW169nznbKyMtcrLExfrtmXOS/PP0Z7XlRQUJDYAwAAeBDyzMmLreN5Smlpqdb2HEnE3zPa2Nhwve3tba0/f26a7n344Qdaj46OunH2XK6urs71SkpKEh+z3V5lnn/MRUVFWufFEzjcdzs7O1rHz4y9bhgaGnK9t99+W+uPPvoo6+21t7dr3djYqHX8PNXU1GgdP+ecuwMAAOBucPYIAAAAAAAAAAAAAAAA5Ah+7AMAAAAAAAAAAAAAAADkCGK8gMeUncp2dXVV6xh5MTExofX4+Ljr2SmPb9y44XpPPfWU1nG6WrtcW1urtZ3GVsRPkxynO2ZaWwAA0kJagYgcmN7nmhnWkx67t7eX2Nvf39faxnaJ+AiuGLNlzyXidPl2OcYqDA4Oav3OO+8kPv5Mjh8/rvULL7zgejY+K56P2EiHzs5OrW1kqYhIU1PTobWIP/epqqpyvYryCq3zCzi/AQAAjy97H6iiosL1bIxXPE+156a2FvHR9ePj6SjXgYEBN87GsMZoJRuTmimOK8ap2kj6GE+PuxAuZ/YP0u9xvNax9zvtdUmm+51Xr151vUzRXc3NzVp/61vfcr2zZ89q3dbWpnW8L2o/X9zfBAAAwBfB2SQAAAAAAAAAAAAAAACQI/ixDwAAAAAAAAAAAAAAAJAj+LEPAAAAAAAAAAAAAAAAkCMKH/QDAPBg2Hxzm18+Pz/vxtkM6+HhYde7efNm4vrLy8u1Lisrcz27XFpaqrXNZhcRKSxM3kXFTG4AAB5v/rhoj/M7Ozuut7uzq/X2zrbrbW/vmHorcZ27u+l1bG5uunELCwtaT09Pu97o6KjWt2/fdr3r169r/etf/9r1lpeXJRtPPfWU1qdOnXK91tZWrWtqal2vrCx9PmLPYX4ztkbr2tr031VVVblx1dXVh9YiIpWVlVrbcx8RkfwC/v0FAACAiEheXp7W8R5RPPdKYs9TRURWVla0tve4pqam3Dh7zyueD+bnp8/X4r2qVCqldTzPKytN3/8qKirS2j5PZCG8XDvmmsXe0xTx1w32PR4aGnLj7D3N73//+4mb7uzsdMvf/va3tT537pzr9fb2at3e3q61vRYQ8Z+FI2MvB/l4AQAAPDa4swwAAAAAAAAAAAAAAADkCH7sAwAAAAAAAAAAAAAAAOQIYryAx0ScIthGcdj4DRu9IeLjNm7cuOF6H3/8ceL27DTGthbx09XaOlNsV8SUxwAAJPPHeR/Htba2qvXq6qrr2WnvbeTBb9aTPl/Y2kqvc211zY2bm5/TOlOMVzyveOedd+Ru/f7v/75bPnv2rNZxyv2WlhatY8yWjVz4XPxCQvxoPL+xyzF2wvZsDAQAAAAOF+8R2WitgoIC17NR7/Y8VcTf57LRSk1NTW6cjZSN0fH23DqeA9qIpniOaaPHineLtc50/+uRu991H+KlbExxpvuYNjb46tWrbtybb76Z1bZeffVVt3zx4kWtT58+7XptbW1a289CvL64L+/xI/axAQAAQHa40wwAAAAAAAAAAAAAAADkCH7sAwAAAAAAAAAAAAAAAOQIYryAx5SdgnhjY0Prubk5N+7WrVtav/7661mv301VXFzseja6K069DAAA7t7u7q5bdjFbaz6qa35+XuvZ2VnXm5yc1Hpqasr1FhcXtbbxX3Z9IiITExNaj4+Pu97ly5cPffx3Ys8rXn75Za3Pnz/vxvX19WltYxpERJqbm7XOFOMVz1vsso1cyDT9fozqssuPXDQDAADAfRDvF9nlGKVl2ehZER/l2tHRofXx48fdOHtO+8EHH7jezMyM1jbiVUSkoaFB6/r6etez55z2nDLGhNnnFs8jc/7c8T48fPse2/dGRKS/v1/r999/X+t//Md/dOMGBgYS19/b06v1qVOnfK833evu7na9xsZGrTN9RgEAAICjwsw+AAAAAAAAAAAAAAAAQI7gxz4AAAAAAAAAAAAAAABAjuDHPgAAAAAAAAAAAAAAAECOKHzQDwDAl2N3d9ctb29va722tqZ1zLp+4403slq/zT0XEWlvb9e6qqrK9UqKS7QuKirKav0AADzsDg4Osu5lGptp3M7Ojtb2WG5rEX9sX1hYcL3p6Wmtx8fGXW9waFDrgYEB1xsZGUmPG0yPGx4eTnr4n9PU1KR1b29vYq+8vNz1KisrtW5tbdW6q6vLjbPnH83Nza7XUN+QXl9VpeuVlKTPTVKpVPITAAAAwAOXl5fnlu25Ym1treu1tLRobc+R430ye3/qe9/7nuvZ892PPvoocf1x26WlpYc+5oqKCjfOnosWFxe7Xnyuj6ONjQ23bK9vxsf99cxnn32m9X/7b//tnrb3zW99U+uenh7Xs+93Q0OD63EdAQAAgC8bM/sAAAAAAAAAAAAAAAAAOYIf+wAAAAAAAAAAAAAAAAA5ghgv4DFhYz9ERLa2trS20+GurKy4cTH6I8lzzz3nltva2rSOMV6p4vS0tvn5/OYQAPBostEAmeI04zHajo3xXJubm4fW9rgu4iMK5ubmXG9qakrrGMHV39+v9Ycffuh6Nrork3Pnzml95swZ17Oxnza2S8SfL8T4Artsx9XV1blxNjqhurra9Soq03EJNipBhCn3AQAAcpm9txTjYGO062/FWHl7vhnPz//+7/9e6w8++MD1bKxs3LaN4Nrb29O6sbHRjbPnsPE8+FFmX5N4vWSvb+K9yYmJCa1HR0dd7/r161lt++LFi1q/+OKLrnf+/Hmt7f1NEX8tUlT0xa8hMsU7E+EGAACAO+H/sgMAAAAAAAAAAAAAAAA5gh/7AAAAAAAAAAAAAAAAADmCH/sAAAAAAAAAAAAAAAAAOaLwQT8AAF+MzXaOWc77+/tab29vu55dTqrv5Jvf/KbWPd09rmfzxysqKlzP5qKTPw0AeFTEY9re3p7Wm5ubrre6unpoHZdXVlZcb2lpSeu1tbWs1j87O+t6ExMTWg8MDLjeL37xC7lbr7zyils+d+6c1j09/vygra1Na3uuICJSWVmptT1XEBEpKCjQuri4WOvS0lI3rqSk5NBxIiKpVOrQ9QEAAODRUVJc4pbr6uq0tueD8VzRnssvLy+73k9+8hOtd3Z2XO+73/2u1vY+nIg/R9/d3dU6nouWl5cf+jgedfa1jNc9i4uLWk9OTrre4OCg1kNDQ653/fr1Q7f11a9+1S1//etf1/rMmTOu193drXVTU5Pr2esNe0/2N+7+vXuc3m8AAAAcPWb2AQAAAAAAAAAAAAAAAHIEP/YBAAAAAAAAAAAAAAAAcgQxXkCOs1MEx+lj7XS4GxsbrmeXbb21tZW4rbNnz7rl3t5erds72l3PTnNrYzlE/LTJTFcLAHhU2Kn5Rfy0/TGqa25u7tBaxMduxSnrx8fHtbZT29tILxEf9xXX8f777x/6+O8kKZ7Lng+IiJw4cULrrq4u12ttbdW6oaHB9WzsZ2Ghv0zJz0//GwUbexAjEOy4eI6RqZcpFhUAAAC5oyhVlLhs47JibKyNtY8xuH/0R3+k9Q9+8IPEbX//+993yzY+14r3yWzUWG1trevFx/kosfcg7bWNiMjY2JjWNrZLROTmzZtaX7t2zfViTPFvXbx40S2fOnVK676+Ptez1yw1NTWuZ+PfDg58bBv/rhoAAABfNs5AAQAAAAAAAAAAAAAAgBzBj30AAAAAAAAAAAAAAACAHMGPfQAAAAAAAAAAAAAAAIAcUfigHwCAL2Zvb09rmy8uIrKxsaH10tKS69ksbFvPz88nbqunp8ctd3R0HFqLiDQ3N2sd861LSkq0zs/nN4cAgPvn4OAgXe8fuN7+wf6h46K8vLzEdW5tbWm9trbmxq2urmptj7UiItPT01pPTEy43ujoqNYDAwOu9/HHHx9a34329natm5qaXK+lpUXr1tZW17PH8+rq6sR1HDt2LHEddmxtba3rlZWVaR1fcwAAAOCLsveg4rmoPZfv7u52veeee07rnZ0d1/vxj3+cuL133nlH64aGBq3tPTMRkfr6eq3tOXF8nIWF/lZ+nqTPmfPyH/7z593dXbe8vr6udbwfOTIyovW1a9dc7+rVq1q/9957idt75ZVXtLbXKCL+OiW+H/a9iu9HQUGB1tzTBAAAwIPGGSkAAAAAAAAAAAAAAACQI/ixDwAAAAAAAAAAAAAAAJAjiPECcpydAtdOfyvio7tmZ2ddb2ZmRmsbJTI+Pp64rRjTYae5jVPeNjY2al1VVeV6xcXFWjPlLQDgy7K94+MubQSXrUX89Pw2MjP2bGSmje0SEVlZWdE6xnhNTU1pPTY25nq3bt3S+u2333Y9O519Js8//7zWMYbARnXZKepFROrq6rS2UV0iPoYzlUppXV5e7sbZqIEYj1BRUaG1PR8QIboLAAAAyWyUro2v+v//w12zcUwiIpWVlVrHqPr9/XT8rz2fFRFpa2vT+q/+6q8St/ejH/1I697eXteL982szc3NxHE2YiqeW3+ZYiSyPa+3PftcRHx0WqbrpcHBQde7fv261vaepojI6dOntbavs71PKeIjiu17L/LwvK4AAADAnfB/2QEAAAAAAAAAAAAAAIAcwY99AAAAAAAAAAAAAAAAgBzBj30AAAAAAAAAAAAAAACAHFH4oB8AgC9md3dX6/X1dddbWFjQ2mZdi4iMj49rPTo6qvWHH37oxpWUlGhdW1vrevX19YfWcazNuhYRKSxI73ry8/nNIQDg/jk4ONB6e3vb9VZWVrReXFx0vdXVVa3j8XVtbU3rpaUlrZeXlxPXb8eJ+OPy4OCg67322muSjbq6Oq2ff/551+vt7dW6q6vL9dra2rRubGx0PXv8rqiocL2CggKt8/LytC4s9JcU9tzB1iIixcXFWnMOAAAAgGzZ88/7obS0VOuWlhbXs+e08RzZ9ra2tlzvr//6rw/d1j/8wz+4Zfvc7LVGXD527Jjr2cdpz7O/bPaaS0Rkf39f652dHa03NjbcOPvc4rXU3Nyc1va+pYjIzZs3tT5x4oTrnTx5UuvW1lata2pq3Dh7rzK+dkVFRVrf788dAAAA8EVwhx0AAAAAAAAAAAAAAADIEfzYBwAAAAAAAAAAAAAAAMgRxHgBOc7FeK35mBE75e3Y2JjrDQ0NaX3t2rXE9dspguOUt3Y59qqqqrSO8R4AAHxZbHRXnBJ/fn5e6xh3OT09rfXc3LzrzcykezYWc3Z21o2zUWBxWnp7XJ6YmEh+AoGN5PrKV76idXd3txvX2dl5aC3ip7OPMV72eB5jOO0U9nZq/sjGc8WoLrsOpsQHAADAgxKjpzJF0drorhj5tLe7p7W9vhAROXPmjNZXr17V+vbt227cf/kv/0Xrf/Nv/o3r2WgwGy8l4u+9VVZWyoOyt7fnlm101+bmptY25ljERx3H185en9nXTsRfpxw/ftz1+vr6tG5vb9faRiCLiJSXl2sd31MbXwwAAAA8zJjZBwAAAAAAAAAAAAAAAMgR/NgHAAAAAAAAAAAAAAAAyBFk6wA5zk6Vu7bu40lsnMjw8LDr2eiuDz74IHH9HR0dWtvpgUX8lLcx6oPoLgDAYWL8k13O1BM/y77kFxz+m3U7zb2Inxo+xmxNTaanhh8ZHXG90dHRdG/E965fv671W2+9dejjiGJcVltbm9Z2qnkRkdLSUq3jdPP2uNzU1KR1Q0ND4vZaWlpcz/5dXP+DnP4fAAAA+LLcTaSsjXmqr693PRtN1dvb63rf/Oa3tLbRvYuLi4nb+tu//Vu3bO+9xW3X1tZqba8hRD5/D+9+srFdIj4+2V6PzczMuHE2EtnGHIuIDA4Oah0jvl544QWtT5486XonTpzQ2kYd22sgEf/6xBgvAAAAIFcwsw8AAAAAAAAAAAAAAACQI/ixDwAAAAAAAAAAAAAAAJAj+LEPAAAAAAAAAAAAAAAAkCMKH/QDAPDFHBwcaB0zspeXl7W2OdgiIr/+9a+zWr/N/y4pKXG9wsL0LiQ/n98OAgDubH9/3y1vbm5qvbGx4Xp2eWfbH+P2D9LrsetcX1934xYXF7Wem5tzvcnJSa1HRkZc7/bt21p/+umnrnf16lXJxvPPP691X1+f67W2tmptj7UiIhUVFVpXVVW5Xk1Njdbl5eVal5aWJq6jurra9SorK7UuLi5OfPwAAAAAvKKiIrdsz9fb29td76mnLmqdSqX/7p133nHjfvnLXyZu77333tO6u7vb9ex5frwv19DQoLW9bojn//be3r3a3d11yysrK1pPTU1pPTw87MYNDAxoff36ddf7+c9/nri9np4erXt7exN7HR0dWtfV1blx9jU5itcAAAAAeBD4v/MAAAAAAAAAAAAAAABAjuDHPgAAAAAAAAAAAAAAAECOYI5K4BESp8218Sc2qkREZHV1Nat12umIU6mU69kpgm2cGAAASWKMl43dmp+fdz27bKMpRXz819bWVuK4hYUFrWOM1/T0tNZDQ0OuZ6fLz/aY+eqrr7rlc+fOad3V1eV6NsYrTilvj702ckvETzdvIwTitP12Kvo4Vb9dLsgvEAAAAAD3prQkHafb2Njkevbax95TKykpSRz31ltvud7ly5e1PnPmjOvZ9ezs+Nhje0+wublZ63jtcT9ivOw12djYmNZXrlxx4z7++GOtf/jDHyauP8YS27i0GJ1mo7taWlq0tjHHIpmvpQAAAIBcwZksAAAAAAAAAAAAAAAAkCP4sQ8AAAAAAAAAAAAAAACQI/ixDwAAAAAAAAAAAAAAAJAjvngoL4AHam9vT+vt7W3XW1lZ0XpgYCCr9b3yyituubkpnetdVlbmekeR6w0AeLxsbGy45aWlJa2npqZcb3RkVOuJyQnXW1hYOLSemPDjJicntZ6fn3e96elprRcXF+/00A/1u7/7u1pfuHDB9Xp7e7Xu6OhwvZaWFq3r6upcr6qqSuuKigrXKykp0To/P/27/YODAzfOLufl5bmeXbbrAAAAAHB3SkrT5+f19f68vqgofd+soKBAa3svT8RfE7311luJ2/rOd77jlvf397VeX193vZ2dnUO3XVpa6sbFe33ZstuO13j2uuvWrVta/+IXv3DjfvnLX2a1rd/5nd9xy8eOHdPaXleJiDQ2NmpdX1+vdbwmAgAAAB4F3N0HAAAAAAAAAAAAAAAAcgQ/9gEAAAAAAAAAAAAAAAByBBk8QI7Z3Nx0y3aa3tXVVdezsSZDQ0OJ63zxxRe1jhEkXd1dWtvpb0V8lIidEhgA8HCzU67H5Uy9ON287dlp0WOk1NbWltYxSsvGbI2MjLjezZs3tY5xlLdv39Y601T3mTz99NNax+nfy8vLtU6lUq5XWVmpdVtb26G1iEhzczoK004nLyLS0NCgdU1NjevZ6K7i4uLExw8AAADgyxXvf9nz9Rh3b5czxV7ZGK9/9+/+nev9/Oc/13p0dNT1fvSjH2m9vb3tevaeXXV19aG1iI/xsn8T2VgwEZGVlRWtZ2dnXW98fFzra9euaZ1tbJeIyF/8xV9oba/bRET6+vq0bmpqcr3qqvTzyza6K16/xuveTGOPWrbrz3bc3UQ622VizwAAAHIDM/sAAAAAAAAAAAAAAAAAOYIf+wAAAAAAAAAAAAAAAAA5gh/7AAAAAAAAAAAAAAAAADmi8M5DAHwZbB50pqxom4ktIrK8vHxoLeIzv6PW1latn3jiCa2PHz/uxh07dkzr+vp617O53jGzHADw8IrHme3tba03NjZczy6vr6+73tbWltb7+/uH1iIim5ubWs/Nzbne5OSk1kNDQ653/fp1rT/88EPXGxgYkGx0dXVp/dxzz7led3e31k1NTa5XWVmpdXFxseuVlpZqXVVVdWgtIlJRUXHo+mLPrk9EpKioSAAAAAA8fPLy8tyyvR8W743ZsfZ6oLGx0Y2z1yW7u7uuZ68xbt686Xr2eileS/X09Gjd2dmZuG17rZNKpVzPPpZ4nbi4uKj16Oio692+fVvrDz74QLLxH//jf3TLTz31lNZ9fX2u19HRoXVNTY3rFaXu/lrKXg+L+Ocdr22teF2dbS/TOLu9TL1st5ef7/+tt73WjO+3/SzEzzkAAAAeTszsAwAAAAAAAAAAAAAAAOQIfuwDAAAAAAAAAAAAAAAA5AhivICHhI3q2tnZcT07VW6M5rLT5tpa5POxXtbFixe17u7q1trGdomItLS0aF1bW+t6NnYkTgsLAHh4xSm+bRxXPM7Y2K3Z2VnXs8cdu454HFtbW0tch43xstO9i4i89tprhz7+TOwU+CIir776qtanTp1yPXvMyxTjVVJS4np2enPbi3FfhYXpU+0YzWWX7TgAAAAAjwZ7zm/vocXoKXv9FOOT7PVGjP+1YwcHB11vZmZGa3tNNzc378bZ+3nx3l6m+5F2ncPDw653+fJlrT/99FNJ8qd/+qda29guEZEnnnhCaxvbJeLvT8bXJNv7k/b61cZOi/j3I0Zn2Wvpu4nZSlpH/Bt7f9jWcTluOynGK0bLlZWWaV1RWeF6MdYLAAAADz/+7zwAAAAAAAAAAAAAAACQI/ixDwAAAAAAAAAAAAAAAJAj+LEPAAAAAAAAAAAAAAAAkCMKH/QDAPAbNnfZZmKL+Fzs2dlZ17MZ3LFn87NtxreISGtrq9bNLc3purnZjWtsbNS6qqrK9YqLi7WOGdAAgAfr4ODALWc6ziwvL2sdjyUjIyNaDw4Out7w8LDWi4uLWq+trblx9ng0Ojrqejdv3jzs4d+RPa6dOXNG6wsXLrhxp0+f1rq3t9f12tvbtbbHOxGRyspKre3xTkQklUodWufn+9/Rx/fAysvLS9eSF5qJfwYAAAAgB9nrhvLyctez12qZruPW19ddb3JyUusrV664nr3umpqa0rquri6sf/fQbYn4azy7DhGRiYkJrYeGhlzv//7f/yvZOHv2rNbd3d2u19nZqbW9hyny+euzJPa13NnZcb3t7e3E3tbWVmJvdzf59cr0PiY9rv39/cR17O2G9e+nl+Pf2XXaurDQ/++fncr088nL9xeedmz8jAIAAODhxMw+AAAAAAAAAAAAAAAAQI7gxz4AAAAAAAAAAAAAAABAjiDGC3hIZJqWd35+Xms7Ra+IyPj4uNZjY2Ou19/fr3VNTY3r2eWkWkSkurpa67KyMtez0V02jgQAcLikqbVF/DTccTpw24t/Z6cRt1OMx3Xs7qTHrW/444yN7orHklu3bmn92Wefud7777+f2MvW8ePHtY4xWzZaMlOUpD0+xThKG9UVp3+30V21tbWuZ6ctt1Pui3DMAwAAAHB37HWcvZ8m4q9tYnySjReuqKhwvfKy9NgY1Xzp0iWt7XVWvK6y9yBttJWIyPT0tNa3b992PRvxbO9NivjrVxu//K/+1b9y43p6erRuampyPXt/MtvYrkzidbSP0kq+xo6vq329Ym9zc9Os08dsWTbG+UCyi36+Exf/Zer4WbPvsb1HEHvxudn3Ma7TPk7bizHXLso6PDeusQEAAO4NM/sAAAAAAAAAAAAAAAAAOYIf+wAAAAAAAAAAAAAAAAA5ghgv4CFhp1iNU6UuLCxoPTnhY7yGh4e1trFdIj7yq6GhwfXsFLh2KlZbx+UYY2LF6XABAJ9np6aOMVt2ymw7/beIyOZGenlj0x8j7DEj0xTsdirytbU118sU43Xjxg2t33zzLdcbGLgpd+sP//AP3fLJkye17ujocD177IpT1hcWpk9ji4qKEsfZOMo4Zb2dEr+0tNT17DqZUhwAAADAndxr5LIVo4/sdU+8L1dWno4zbmlpcb3Lly9rbe8P2usjEZGVlRWt4/1Ie234ySefuJ6Nce7r63O9b3zjG1p3d3drferUKTeura1Na3ttJuKvx46Cjc4S8a9zfr7v2fdxa2vL9RYXF7Wem5tzvaWlJa3t+x3Zbdv3VyTzPVr7/sdrVLs9ey8gxomtrq4e+nhFRMrm0p+nGCdnr7Njz15L27o45ePXCgqzi/gCAABA9pjZBwAAAAAAAAAAAAAAAMgR/NgHAAAAAAAAAAAAAAAAyBH82AcAAAAAAAAAAAAAAADIEYV3HgLgy2DzumNG9sLCgtajY6Oud/36da1/+ctfJq6/oKDALduc56RaJPuMbLKVAeDu2P2+iMjm5qbWS0tLrre4uKi1PSaIiMzOzmo9Pz+vdTyWbG9va722tuZ6MzMzWg8PD7uePbasrKxINurq6tzy1772Na3Pnz/ven19fVq3t7e7XkNDg9blZeWuV1CYPq7l56d/vx6PY+4YVxSOcan0Ma6wkNNiAAAAAHdnf39f652dHdez12D2ei+O293d1TpeJx4cHGgd7+0VF5doba+doomJCa1LSkpcr7S0VOt4nWjvOdo66uzsdMtnzpzRure3V+uuri43rqmp6dDHIXL09xnz8v367GuZ6VrQvoci/tp8ZGTE9ey19Orqanrb4bkUFxdrXVlZ6Xr2fYzvaWVFemx+gf833PYzZe8F2M+dSPaftfh+2MfS1NTseo2N6V5tba3W8XkXSfL1t72mBwAAQPY4iwIAAAAAAAAAAAAAAAByBD/2AQAAAAAAAAAAAAAAAHIEeQXAQyJTjNfc3JzWN2/edL0f//jHWa2/p6fHLVdUVGhtp/CN8SdximAAwL2z+/e4r19eXtba7vdFRKamprQeHfVxjrdv39b61q1bWttILxE/fbfdVlyHnW78Tuz07K2trVq3tLS4cfYYdPz4cdfr7u4+dB0iIvX19VqXlZW5np3mO6kW8VOHEzkJAAAA4IuIEVxbW1uH1iLJcUoxPslGgcXYJRsjFf8u30RTxdgle1308ccfax2vNe19v6GhIbkXHR0dbtnGddk6jsv2eu8oxGvBTDFetmdjr0T8tbS9jhYR+dnPfqZ1f39/4mOx18dPPvlk4rarq6tdz0Z3FRUVuZ6N4LLPx/53ER/VZuO8RUQmJye1tp/J+JhPnjzpevv76c9lpmtu+x7HccRqAwAA3Btm9gEAAAAAAAAAAAAAAAByBD/2AQAAAAAAAAAAAAAAAHIEP/YBAAAAAAAAAAAAAAAAcgRhqMBDwmZAx3zuxcVFra9fv35P6z9x4oRbrqmp0drmesfMZwB4lMUceru8t7fnenY/HXPv7bL9u62tLTdufX390FpEZGlpSevp6WnXGxsd03rg1oDrffjhh1r/4he/kHvR29ur9XPPPed6LS0tWjc0NLhebW2t1vZYUlpa5sbV19dp3dbW5nrNzc1a19XVuV51dbXWhYWctgIAAACZxOuUpJ697ol/k6lnl4+il2mchKdyIFn+XQbZvj6Rvcbb2dlxvc3NLVNvuN7GRnrZXhvG61C77e3tbddbWFjQ2l4zioisra2Zbft7iXEbvzU6Onrof79bv/M7v6N1Z2en69lrvtbWVq0bGxvduKqqKq1LS0pd76iv//Lz8xOX43tvtx3/zr7/MzMzrtff35/VY7l9+7bWJ0+edD17X7aiosL17PWxvf4W8fcr7N+Vl5cnrn95edn17P3njz76KLGXl5fnekmvZabPeUFBgesVFxcLAAAA7h4z+wAAAAAAAAAAAAAAAAA5gh/7AAAAAAAAAAAAAAAAADmCPATgAUqaujhGx2xtpafwjdEumXzjG9/Qur293fXsVLl2Ctf8PH4DCODxZadMt1Oux+U4Rbr9u82NdG91bdWNs9OsxxgvO4X21NSU642MjGj96aefut4bb7whd+t3f/d33fKpU6e0PnbsmOvZGK/6+nrXs1OCFxaYqc4L/LHETjFujz9xOU5FHqf2BgAAAJDMxutkiueykT+2jssxssr2YkSPvZe1u7sXeof/XVyHXX+8N5YpctkuZxshliliKNNrF2O2bDxXvE48ihgvG90VrxNv3bql9WuvvSb30wsvvOCWz549q3W852jjumz0c7wWLCsz15OF/tovxmfdC/t9iNFTViqVcss2UirGS9mx9n7q3bDrtDFnIv61i7FnNgK7rMxHZ1v2exvvO9gosPiarK6m71/EiDL72bMxZCL+uj3Td9GOi9f+AAAAuDf8X30AAAAAAAAAAAAAAAAgR/BjHwAAAAAAAAAAAAAAACBH8GMfAAAAAAAAAAAAAAAAIEcUPugHADzOknLKP589npyJbj311FNu+fjx41rbXGcRkYqKCq1dNnVyhDUAPHLiPnVra0vrlZUV15ufn9d6cXHR9ZaWlrReWFjQenZ21o2z69zY2EjsTU1Nud6NGze0vnr1qmSjra3NLT/zzDNanzhxwvXs8aKzs9P1WlpatK6rq3O9srKyQ7d9cHDglvPz078vLyoqcj17DIo9AAAAAPcmnpPbe03b29ta22uguLy5uZnY29nZcT27HNdpt7e7u3vo38S/y7QOW2dav0jy/bZM4zK9dnfzmO3rZ+tM247rsNeXw8PDrnfr1i05SpWVlW75ueee07qnp8f1uru7tY73HO11o11nvH4sKSnWOi/P35CM78H9FLddXFx8aC0iUlJSonV8vbL16quvat3R0eF6TU1NWjc0NLheY2Oj1va+rohIQUGB1vbzGr/D5eXlWsf7IfaexMzMjOtduXJF63hPYnV1Vev19fVDH1N8zPHeAgAAAO4NM/sAAAAAAAAAAAAAAAAAOYIf+wAAAAAAAAAAAAAAAAA5ghgv4IjFaWbjVLBW0tTIMdrFToE6NzeXuL7Tp0+75a6uLq1bW1tdr7a2Vms7Ba2NWgGAR5HdT6+trbne8vKy1jGCa3JyUuuJiQnXGx8f13poaEjrOL312NiY1jGy0U49H7edLTsduD0GiPhYr2PHjrmenYI9TiNup2S3xw4RkcLC7E4l7fTgmY6L0d2MBQAAAB4H9nomXlPYeKgYFWXvQdn7ThsbPuZnYyN9DypeL9n7U5niv+J9LbucKSbMxgHFbdvlGLlsr+PsYxRJjv+Kj9G+XvF1zRTjlSleLOk1yRTjFWW6JrLXYzHWyd7rs69dvO936tQprWPcs72XaOOdRUTa29u1jjFeNTU1Wtuoq9LS0s8/iQQP8lrQvq7xmtdGU8WYKvua2Gv/r3/9626cjUSLr2t9fb3W9nUUEamurtY6xoslidFp9nWN3yN7vR8jyuw9Cnv/Q0Tk0qVLWn/lK185dH0i/vWJ3yMAAADcG/6vPgAAAAAAAAAAAAAAAJAj+LEPAAAAAAAAAAAAAAAAkCOI8QKOWKapfuN0vna61Pn5ea0XFhbcONuL05w+//zzWtsYFhGRzs5OrW18i4hIXV2d1nZK1zgFLQB82ex+M05vnqmXFBUVp0TfWE9Pn760vOR6dn87PT3tenYa7uHhYde7efOm1t/73vfkXpw7d07rZ555xvXs9N126m4RPzV2Q0OD1lVVVW6cnYbbHgNE/LTrsWfXk21sV0REJAAAACwbRWXP12M0uu3F8/pMf3ewb9Z/4P/OjnV/51fh/y703DpCM3H9GXxunHtYya9JvCbKNsbLRl3FOCsb+WRjtWIvxnjZ9WSK4LLjYuTW0lL6+sxem4n467PLly/Lw8JGE9kIJhF/LWVjtmKclY3csrWIv2cXezbKKZVKuV5hYZFZSv4c2nXGa037+OP1pb1utNehIiJVlemx8THngkzf4UyRbvY+xMWLF7Xu7e1142ysdlNTk+vZ9yBGcBWnsovuysS+HzEKrKgo/ZmJMWoxuivJe++9p/XXvvY117P7jEzRdQAAAMge/+cFAAAAAAAAAAAAAAAAyBH82AcAAAAAAAAAAAAAAADIEfzYBwAAAAAAAAAAAAAAAMgRhQ/6AQCPGpvdLOLzx2PWuc0fn55KZ49PTU25cZOTk4nba2tr07qlpcX1WltbtW5ubna9mpoarW1WeGEhuwUAD5bdj25ubrqe3aeura25nh27s7Ojtc2FFxFZWVnRemlpyfUWFha0npmZcb2xsTGtb9265Xr/7//9P7lb3/rWt9xyX1+f1nbfLiJSX1+vtd1/i4hUV1drXVlZqXUqlXLjioqKtLb7/fh35eXlrsdxAQAAAPfT/v6+1ru7u65nl+05fly+m7+z1xt227aO64j3euxy7GVa58HBwV2Ps3Ucm+l5x569LtrY2Di0FvHXWfE+ll2O12p2PfaaKy7b9S8vL7txIyMjWttrs/uhrKzMLXd3d2sdr7nssr3+EvHXTyUlJYm9iooKreP1mF3O1Mt0jWdrEZGCggLJhr3eKy4udj27vfjc7OOyz01EpKQ0PTbbx/EwyfQds/uT+N2xY+19WHt/VsTfv7XX+iL+MxPfU8m70yO/M/t+5Of7fweel5feQNwn3Yu47437MgAAAHxxzOwDAAAAAAAAAAAAAAAA5Ah+7AMAAAAAAAAAAAAAAADkCHIZgCO2u5sc42Vju0REJiYmtB4ZTU9VbKctFhG5fv164vYaGhoOreNyXV2d69kpdu2UvXbKVgB4EOxUzzGqy+5H5+bmXM9O826ng49RXbOzs4euL46NvdHRUa0//vjj5CeQwb/8l/9S6xMnTrheZ2en1u3t7a5n9+e1tbWuV1VVpbWdSj1OyW3FXqbp3zkuAAAA4KglxeRsb2+7cVubJnpq00fm2BipGN1re5sbPm5qeye9jUxxX3ad8XHZ5bht24sRQDbyK1PkVqaIr6R13Gmd9nFlG+OVKY4rRnwtLi5qHePpv0wxhvjUqVNaNzU1aR3vodnrqhhtbO+h2XEi/hosRl3ZqDC7jhghZpdjjJddZ7xWs881Pu+CfBOfleGSzl4bxutEuxzjuOxypseVi9eT2e4X7D1fEf/dtPdhGxsb3Ti7HCPj7GchvuY2ButeX9dM+xa7HOMJ70X8TObiZwEAAOBhx8w+AAAAAAAAAAAAAAAAQI7gxz4AAAAAAAAAAAAAAABAjuDHPgAAAAAAAAAAAAAAAECOKLzzEAB3Y2/PZ6Kvr6Xzm2dnZ11veHhY61u3bml97do1N25wcFDrmOtdW1urdcx5rq6uPrQW+XyeNgB8mWzW/ObmpustLy9rPT8/73pTU1Naj46Out74+Pihtd2Hioi88847Ws/MzGT9mIuLi7UuLS11vfz89O+nT5w4ofX58+fduJ6eHq07Ojpcr7W1VeuWlhbXq6+v19ru90VEKioqtC4s5NQOAAAAD8b+/r5b3tvbO7QWEdne3tbaXg/Ea4ONjQ2tV1dXXW99ff3QWkRkbW0t8e/sNnZ2dhK3bf/O3tsREVlbT69/ZWXF9eyyffxxG7ZnH6+IyNbW1qGPMfbiY97dTd+Tiq+57dk6vm+Z2OuNVCrlena5qakp8e/y8vIO/e8i/p5XSUlJ4vrj9VhVVZXWlZWVrmevl2wdx5WXlyeu3z4uOy6OtdeM8TnYbWdaf3zedjm+Xna5oKDA9eJyEvt+PGrsfYfPSz/v3V3/Hcu0T7L7mvjdt++H/UzGa3i7bMeJ+Pc7vof2u5rt+xtlem6Z9jvZunDhgtZ1dXWuZ78f9h4KAAAA7h1nVQAAAAAAAAAAAAAAAECO4Mc+AAAAAAAAAAAAAAAAQI4g6wE4YnH6482t9JSoCwsLrjc2NqZ1f3+/1q+99lri+tvb291ypmmG7dSvxHYByCROb233ZXaKdxE/HXzs2ame93bT4/YPkqf0j1Pb233lzIyPP5yYSMdz2ShEEZHbt29rffXqVa3ff/99yVZXV5fWZ8+edb3m5mat45Tvdv9rp+FubGx04+w01pmm8o7TXdsoRjv9uwjRXQAAAF+UPRdOqkX8OXK89rdjYy/T39nlbLed7eO/m16m/54p5ifTc8sU45UURZU5MsfHca2trZrax2DZCC4bEyzirz/s44hRYEtLS1ovLi66no1pv3nzpuvFaJ8HxUYBi/jrGXu9kSnO6nORVSXp655UsY/xsvedYsSXjRyyn6f42coUS2Vjf2LPbi9GadnHZXsxLsv24j20TH9nt53t32Xadnz8dv33Gt30sLL7mvsdJ5bpvkbc79jvcPw+231L7CXFxMVr+Ez3cu37HV8T+5gz7aftvjg+NxuVHmPT7XLc51kxpu+pp57S+ty5c1p3dna6cfY14T41AADA0WBmHwAAAAAAAAAAAAAAACBH8GMfAAAAAAAAAAAAAAAAIEfwYx8AAAAAAAAAAAAAAAAgRxTeeQiAL8JmQscM+enpaa0//fTTrNZXVlbmlm2euc0vF7n/edcAHh1xf2Ez3re2tlxvfX1d67hfs/n1dtzOzo4bt729fejfiPic+NnZWdebmJjQemhoyPWuX7+u9ZUrVyQbL7/8sls+e/as1jFf3ubSV1VVuZ7dN9vaZtKLiJSWlmpdXFyc2Iv7ejs2P79AAAAAcHTsubA9D97b23Pj7PW9rUX8+W6mXjwvtst2e3Gc7dnHeKfHbJdjL+nvDg4O3Di37Fuyt5/8uDJt215j2Hpzc9ONs9cU8brBLsfrkpWVFa0XFxddz47d2Ng49G9EREZGRrReWFiQL5O9Fqmrq3O92tparTNdb5SUlLieHWuvZyoqKty48vLyQ2sRkbLS9HVKqjjleqlU6tBaxN+vst+3eB2an2fG5ftepr8rKEhfI8V7Y7Zna3s/LdO4OPZe/66oqChdFxb5cUXJ64/P51Fyv+9b2n1X3C/bfU3ctywtLR1ax+W4z7DfF/tdtHVcjvcF4vtvZTpG2Hssdp8aH+Pk5KTWo6Ojrjc4OKj1pUuXXM/eo4j3Uc6dO6d1b2+v1vGeSk1Njdb2+wAAAIB79+heLQAAAAAAAAAAAAAAAACPGH7sAwAAAAAAAAAA8P+19+dPcl3nffh/Zt9ngMFGECABgqQkWrQl27ETb2W54lQqf0Aq/2kqjqtsp7wplpXYFqWIAgES4BD7AIPZ9/n+8P34zHMeTF8OxtiafL1+eg6e07dv3+m+fbrZvG8AAOgTYrzgJYuXiY2Xny6ljfG6cePGsbYXL9dcSnvZ02/ypX2Blytfcj9eEjqfu+Il7HPM1sOHD2v9ePEwjmt1rfcl9xcXF5te3Gbe/p07d2r9L//yL+Uk/uN//I+1/o3f+I2m995779X60qVLTe+4MV5dl86Pl+R+5pL14RzedWn4Z7ITishGAIB/i15xVl0xKTluqlcsVSltVFSsu27Xtf28X/F7h7iPeXzcXo67iVE4XVFd+XZxbu71ipzpOnY5aifG0+SonRhV86ojuLp8+OGHtX7rrbdqnaO6YrRWjtKKvRzBFSOBcjxQ3M6JY7zC5568/RjdlSN6crzVv+qKcXqeiKeuiK9evePOy+P83dtJbte1ja7v9nLE3suOwfomyeegeG5ZXl5uevGcEWPGS2ljAXNE4OXLl2sdXx851i6+Pnq9Nkp59u8dH0N+j4jxhPF8mL9v+eqrr2r92WefNb1PPvmk1jni64c//GGt33///ab3wQcf1Prq1au1vnDhQjNvbm6u1vmYAABwMn4ZAAAAAAAAAAAAfcKPfQAAAAAAAAAAoE/4sQ8AAAAAAAAAAPSJ4de9A/BNs7Oz04xjhnLOgL558+axthlz3HMu8qlTp2qd89K7cr6BPnOQh4f/MDAw0PtmIeM9Z9THcT53xbz3nFH/4MGDWt+5c6fp3bp1q9a3b9+u9f3795t5MSf+Jz/5Sc/97xKz4Esp5dy5c7Wenp4+8t9LKeXatWs9t3Hp0qVa53z5s2fP1npmZqbpTU5O1np8fLzWzsMAwOsQ14BvqryPcU0be11r3Wx/f7/n9mNvb2+v6W1vb9c6rou7Pt+vr683vY2NjSPrUkpZXV09si6lXXfHbXbN29raanpxnPdrZWWl5zafPn1a6ydPnhx5m1La45A/U8T7i8cnz30Rz8mRkZFmHL8DGR0d7dm7cuVK04tzh4eHj/z3PB4aGmp6cRzX/6W0nxWmpqaaXhzHzyx53sTERM/tx88ecV7e5/x44u267jvOi3W+v/wdVLy//LfyuYjXIZ53ur7ziOe/Ukp5+PDhkXUppSwuLtb63r17TS9+19D1nI/vR/mcGve5670qn8/jY4j7fPfu3WZe/C5mYWGh6cX3kh/84AdN79//+39f6w8++KDpvfvuu7W+ePFirU+fPt3Mi+eyeO4FAODkfNICAAAAAAAAAIA+4cc+AAAAAAAAAADQJ1wvEV6AeCnYzY32stXxktb5Utg///nPj9ze/Px8M/7TP/3TWudLpcZ4mnx5ZZdEhf6SL20fL9mcL98cL/WcL/sc58bLPMe6lPbclaMA1lYPL2n9aPFR04uXqo5RXaWUcv369Vr/8pe/rPVPf/rTclzxXBYvFV1KKe+8806tz58/3/Ti5fLj5aHzZeljHFesS2kvM50vOT03N3fkPub7AwB4UeL6sCuWKtZf14trxa5txl7eRtd+HXefn+d2vZz0mOS1dVwXd62fjxvjFeNhSmnjVnK8d6+Irxixlcf5vuM4RsyUUsqnn35a6/y54WWLMTZvv/120ztz5kyt4zo+r7N7RU+V0h11Fcc5bip+VxLjuLqiunIkT4yXy7eLEVY5ziqOu2LIurbRdbv42PJ3QvF2XXFc8djl49p136K6eNN0xZrHc/bS0lLTizFYMca8lPYc2xWVHr9jye8J8fvhrve7/D1N3Of8XvLo0eH3NvE7mxzjFW+XX9+/8zu/U+t4ji6ljerK0YgxAv3UqVO1zufzeC5zvgAAeDGsqgAAAAAAAAAAoE/4sQ8AAAAAAAAAAPQJGT/QQ77kd5QvsRov5b2xudH04iVWY11Ke6nw6Ec/+lEz/s53vlPreNnUUtrLqubLo+ZLSQNvtoEy0IzjeeiZmK1wGeiuy/jHy0PHWIC8zXgey7eLl4Mupb0M9M2bN5ve//2//7fWX375ZTmO//Af/kMz/uijj2qdLw998eLFWp8900ZwTU0fxnXFS8qPj7WXpp6cOjxX5oiveBnreGn73BOTCAC8CjEqqCuOK3+2jOPci9FUuRe3GeNIuuZ17VdXFO1xe88TIdZ1uzjO0Su9jleO8Yrr5641eO7F2JQczxXX3bF3//79Zl6My33VYtT41atXm16Mxc0xW11r6zg3fpeRY2Xi7bpivLrW7seN8cqxMsf9TiW+Tr9um3HcFSHWa97z3C7fd3zcMU4nf7bpihCLc/PjhjdZfs+J34HE83AppTx+/LjW+fuQHJUYPXny5MhtxFiwUtrvK/K5K74HdcV/5feSeB/xO5s8L8aVx5j0Ukq5dOlSrd96662md+7cuVrHiPNS2ijG+Hjy+SOek5w/AABeDFf2AQAAAAAAAACAPuHHPgAAAAAAAAAA0Cf82AcAAAAAAAAAAPrE8NdPgW+ng4ODZry7u1vrmJ9cSpuhvLq62rO3vr7e9GKO8Xe/+91aX716tZkXM5QvXrzY9Obn54/cXinHz5cH3gx7+22G/Pb2dq1zVvvS0lKtYxZ8KW2m/IMHD2qdc+Lj+Sqfn+L279271/Ru3rxZ6+vXr5fjyFnw3/ve92r9ne98p+m9//77tb58+XLTi7nx8fxXSilTU1O1jtnwOSd+dHS01sPD7VIoZsjHupT2nDow0Pbie4bseQDgRTnYP1xjxM+kpZSytbVV683NzWP3NjY2jnW7rm3EdWrer/h5OW6ja/v5PmIvb39vb69nL47jvFJK2d/fP9Y+96rzfuX1cxzn7wXiev2LL74ob6L4nUReg585c6bWp06danpzc3O1npycbHpjY2O1Hh8fb3px7R5vF29TSvs9R7xNvl3+PiSO8zbjZ4Cu9X8eH1fX54HY61V/3fa6bte1nfh44rz8OLt6Jz0m8Lrl94R4Pl9ZWWl68TuV+/fvN738/UsU38fidyr5u5j4OsrfScT36Hxfi4uLPXsLCwu1/sUvflHr2dnZZt4f//Ef1/rcuXNNL34ffenSpaYXz/35nBq/cxkePqzz99K+KwEAePF8QgMAAAAAAAAAgD7hxz4AAAAAAAAAANAnxHhBD/t7+82463LdT548qXW+jGocx3l5m/Ey2TmqK8bWnD9/vunFy6jmS2aL8YIX4CCWB72npei/XpdWz/PieSBerrmUNrrr6dOnTS/Gc+WYrXj55hs3btQ6R27F28XLQZfy7KWqj+s3f/M3a/3uu+/WOl76v5T2ctE5JqDrfBhvlyME4jkwXgo7XxYbAHjx8hrndW0jL9e61m8vXbzrjuSKHC3SK0K6K/Yqf0aN68rc64pyjbfbWD+sV9dWe86LkV55P3OcVYxKWV5ebnrx83KMUIlRKPl2ufcq5ViqrtioODfGZZXSrlW7omh7RU/l8Un3a2ZmptY59iXGZ01PT/fs5Sit+Bi64rnifnTtY/7OI47z447jGONbSvexBL454roiv9f2itwqpZSvvvqq1rdu3Wp68Zzx8ccfN734/UU8V+bzTNyXru+IcoRmfM/O3xF9/vnntb5z586RdSml/O7v/m6t8/fG8byZYxPjOJ9T4+PzXTQAwKvlEy0AAAAAAAAAAPQJP/YBAAAAAAAAAIA+4cc+AAAAAAAAAADQJ4a/fgp8O+3tHz/L+eHDh7W+d+9e07t7926tFxYWmt7+/n6tT506VevTp0838+I4ziullJmZmVrnzGQ5yfBvt39w+Drd2dlpenGcezGDPb7W87yYuR7rUkpZW1urdT7v3L9/v9YxT76UUm7cuFHrf/zHf6z1J598Uo7rvffeq/X777/f9GIO/blz55remTNnaj03N1friYmJZl7Me8/ntbiNfD6M28wZ8mNjYwUAeDUODg6acVzvxDrP3d9re/FzV6/1U75d/qwWt5/3q7nvjv067jZyr9e8r5sbxcddSu815vb2djNvY2Oj1nkdGXtxTVlKKSsrKz17cTuxt7K80sxbWz/sbW1t9dzGkydPml78vHz9+vXyuuT17fz8fK3junV8fLyZNzk5Weu8Fo29fLs4zr2RkZFaDw8PH1mX0n6+HxgYKL3k7wHidnIvjuNaOq+r43cNuRfH8bHk+869uM1Y53lxnI9dvO/8fUgc+24Evp3iuTK/J8f31Pi+WEopd+7cqfXt27eb3scff1zrd999t+m9/fbbtX7nnXeO/PdS2u858rk+vu+fP3+h6V2+vFzrxcXFpnf27NlaT09P1/qf//mfm3nxsebvmeJ7dvy+uZT2PJrf/+K52fkWAODVcmUfAAAAAAAAAADoE37sAwAAAAAAAAAAfUKMF/SQL/EeL4OeL0UeL+9669atpnfz5s1a/+3f/m3P+4uXQM2XQ42XX411Ke2lwgcH0+/3jnfVeKBDvNRzjk5YWw3RBqvtZZ831g/PGRubh/Xq6mozb3n58DLMOUbhuDFeX3zxRdP73//7f9c6np+6/OEf/mEz/uCDD2p95cqVptcV4xUvRx3PT12X9O+KR8jxXy4PDQBvhhwjFNdMOZZqd3e31jnSNK6vYn3cefn+8n3HcdyPrtt1bSN/TuyMHkvjqOt4HTfGK0ZNd8V45V5cf+a1aRzHqI/Hjx838+LaNG6vlGejRV6m8+fPN+Nr167VOkZzldLGweZ4kjjuirOKa9P8uT328ho2jrsisrpivJ75vN9Dfm3Gce7Fbca6K0KsKwos93ptv+t2XdsfGW4/UwwNH/ZOeryAb66u80B8743vmaWU8ujRo1rn82aMy8rxXDHWK9Z5Xnx/yt+HRHndEvczvy/H98P4ncrs7GwzL75/5++S4vc2ec0R1xL5vTdGsefvfgAAeLl88gUAAAAAAAAAgD7hxz4AAAAAAAAAANAn/NgHAAAAAAAAAAD6xPDXT4Fvp5jdXEqbi7y4uNj0bt++XetPP/206f3N3/zNse5vamrqyLqUNmt5YmKi6eU8+8ZA7xZwPDs7O7WOGeWltFnnDx89bHoxPz3WDx+28+7fv1/r5eXlphfvL95XKaUsLCzU+l/+5V967X6n//yf/3Otr1271vSuXr1a65g1X0opFy9erPW5c+ea3qlTp2ods+cHB3v/vjifx4aGhkPd3i5uJ2/z4OCg1gMDToAA8DLlz0txzbS9vd304nhzc7Ppxc9Zce0T//3renH7u7u7TW9ra+vIOt8u7n+eF8f5scXbxTqP9/f3m15ct+R9jreLvbz9eCzzMYnj1dXVpvfkyZNa37lzp+nlx/66TE9P1/rDDz9semfPnq31mTNnml4cz87ONr34OTtuP4/HxsZqPTo62syLn8fz5/bYy5/b4zhuP9/H8PDwkXUp3evb+HzKjrsujvPybU7a69qPXrd7UfftswEQ5fNkfH/N76G3bt2q9VtvvdX04nvQhQsXml78rqRXXUr7XpXfS7q+543v0fF7plLa95K4Pojv+aWU8otf/KLW//RP/9T04vfd+burjz76qNb5nBq/t47vp869AAAvnyv7AAAAAAAAAABAn/BjHwAAAAAAAAAA6BNivKCHfFn6eNn4HON18+bNWv/lX/5l0/vqq6963sf3v//9Wp8+fbrWXZcDz5cRh2+bfOnlOO7qdcU/xViFfPnmGK2VL3/84MGDWt+9e7fpxUiEL7/8stY56i+eM54nNmFubq7WOUor9mIEV47qipejPn/+fM/e22+/3fTiparn5+d73ndnzCAAvEgHedg70qZzM72icJ5j+11xOv/m/XhBumIV4ueg/JkoRl7k6KkYGdEVg5XXWjFiKtZra2vNvJWVlVrn6NOu++6Ks+oVIRbvq5Q2TvXp06dNL342zJFYr1Jed83MzNS66/NljsiKnzdHRkaO/PdS2oipvLaOvbiN3Mv7HOOtYgxIV8x17h33ccdt5F58rKMj7eMeGz/cx7yNGGE7Md7GeI1PHPZyjNfI8OExGhq2fgZ4UboiRuPaIb/vxzVOjvGK34fkXhzHuK/4nW8pbfz583xvEt9T8+3iuil+v5O/6/nss89q/bd/+7c97+uP/uiPmnF8j8vbjDFlIhQBAF4tV/YBAAAAAAAAAIA+4cc+AAAAAAAAAADQJ/zYBwAAAAAAAAAA+sTw10+Bb6f9/f1mHHOeV1dXm97du3drvbCwcOz7eP/992s9Oztb67GxsWbe8LCXKvyrvb29Zhxz17e2tnr24u1ihngpbR57zDkvpZSnT5/W+smTJ03vwYMHtc6v/Vu3btX6F7/4Ra3/7u/+rhzX9773vVrH80UpbRZ8zHsvpZS5ubkjezknfmpq6sg6b2N+fr5nL9/uefLmAeBFOSjte/vB/uF4/6Bd18d1QF7zx3FcO+T1R695z7P93Ot1u7xu6er12l4eDwwM9Ozt7cXHttvMi2um+PmolHYdltdkcby+vt704merlZXV8O8rzby4Jot13ubGxkbTi2u7vJZbWlqq9cOHD2sd13ivwrlz53qOJycnj6xLaT9DTk9PN72JiYmet4vj8fHxphc/i8Z6ZGSkmTc4ePj/juXnUxzHeV93u7iOjPc3OjrazOvqxceTe3Gce/Gxxs/fw0PtZ/GR0ZEjb/N12+/qAfBybG5u1jqvD+LaIX/PG8XvXkop5fz587XO79/xu5OZmZla5/faF/G9SX5fjvcR1wRnzpxp5r399tvH2v5f//VfN+Pf+Z3fqXVe5+U1LQAAr44r+wAAAAAAAAAAQJ/wYx8AAAAAAAAAAOgTsoGgh67L5edL1ufYn15+7aNfa8bxUrDxUupiu6C3fHngeOnlHOkQx3FejPcqpb2cc9c2cvRDjHvIMV4xuivWXeJlkUsp5eOPP671lStXmt7FixdrnWO2YnRXjHfIEQ7xss/5MtIxlmBifKLpjU8cXh5abBcAb4IcB7Rfesdlda3r4ziuF3a2U2TV9taRtymljbqKdZ6bbxfjwLrisk4aL7a/Hz/f9P6s07X9rsd23BivHKOxsnIY1xVjNJaXl5t5jx8/rvWjR4969nIEV4zweNWuXbtW6xybEddvOZI1xm/ENVmOAemKZI3rvhjplefm3klivLKuyLg4Pm78V76vuP7MvfhZOq9ThwYPx0PDqddjm133nSO+4jafuW9rZoATe55I07huit8D5RjRuB7Ja5MYt3j27NmmF9+/83cx8fuX+P76Mt4D8vo2vofG9UJeY8Tvkn7v936v6f393/99z/uL676uKFoAAF4tV/YBAAAAAAAAAIA+4cc+AAAAAAAAAADQJ2QFQQ97u70vWZ8jgLpivOLlzr/30feaXozxipd6jZeLLeXZy5vDt1mOhYgRDzm24e7du7VeXFysdY7qitEP9+/f79nLt4vb/PnPf970cuxFLzG667d+67eaXox+uHz5ctN7++JhFMSZs2ea3tzcXK1nZmZqHaMYSmnPLfmyy71iFEppIxC6IhwA4FXpisvqiqLqivaM8U853iFGQeReXKt0bX9jo42X2g7RYF333bX9+Ljzmik+7nxM9vb2w7ydI2+Tb5d7cV/yfh03xiuuu+I67nWLER5nzrTrrhiPkXtnzxzebu7UXNOLn//ieq2UNmYrfjbMa7muGK8YH/I8MV4x+qMrxqvrM+pJ4zx6bXOgDOR/6Hmbrpiwrvs6ye1OGlHWte4G4Ot1rUfiOiPGg8Y6j3PE16VLl2qdY7DiOH73Ukr7fh7fT/P3JjEG66TfqXR95xTfs3Oce9z/8+fPH/v+RHUBALyZ/Bc6AAAAAAAAAADoE37sAwAAAAAAAAAAfcKPfQAAAAAAAAAAoE8Mv+4dgFehK1c49jY3N2u9tr7WzItZzsvLy03v7t27Pbf/ox/9qNYffvhh03v33XdrfebMmVrnPOWhoaGe24dXpX0ZHaTewZF1KW0WeewNDAw082JOed5GzE9//Phx03vw4EGtFxYWmt7nn39e6y+//PLIupRSfvazn9X65s2b5bjia/gHP/hB0xsdHT2yPn+uzUS/9v61Wl++fLnpXbx4sdYXLlxoejFb/fTp001vdna21jEnHoDXo2stGt9SD8rx1qzPtf0XvI28i137fFx5TRD3ZW9v78i6lFJ2d/dCvdP0tre3e95uZ+dw7tbWVtOLa45Yr621nw1WVlZqHT8nlNJ+ptjY2Gh6cW7cRr6POO/JkyfNvKWlpVrnzyUPHz6s9b1798rrEtd1pZQyPT1d66mpqZ69s2fP1jqvi3qtrUppPy/l+x4ZGTmyzuPh4cOvR8bGxpp5cT2V7zvOzZ/juh53nJtvNzExceQ+5vuO82Kd93l8vO1NTk4cOS+P8/ECgDfB7u5urfNaK66N4hqqaz0V61JKOXXqVK3j9yt5nHvxfT++n+a1SV77nkReu8dtxjrfdxw/z370+m4PAIDXy5V9AAAAAAAAAACgT/ixDwAAAAAAAAAA9AkxXnwrxEuNxku9ltJe4r/rcvldl369detWrWPsTimlXLt2GNFz5cqVpnfp0qVax0vW50u8x0vKw+sSr+67t7ff9OLrKMdhxHGsc6RGlHsx1mJxcbHpxYiK27dvN73r16/X+tNPP6313/7t3/a87y7/5b/8l2Z85d3D1/TZc2ebXoxjiJdvnpmZaebFCK5Tc6ea3szs4dy5ubmmF8f5nCG6C+DNEi+RH9elpbTveV29eLn8rnn5PfS428+9XhGdXfOOu40s944f43W4ro/RXHmc1//HjfGK648c4xUjInIcV4yT6LpdV5xEXN/k+NGXLcZBvfPOO02vK7oirnHyWiRGXeW4qV5xVs8TL9UV49XVi+NY5xjlOM69+Fkt71dX9Fgc59iwXvFi+b67tnHS+/bZE4A3XVwTHjfGK0fCx3GMQS2l/S63K2qzK0LzZUdh5jVNXD/v7hwv5uzRo0fHvj8xXgAAbyZX9gEAAAAAAAAAgD7hxz4AAAAAAAAAANAn/NgHAAAAAAAAAAD6hDB2vhVirvDm5mbTW1tbq3XMcs65xXHclWn84YcfNuNLb1+q9cWLF5vehQsXaj0/P1/rqampZt7wsJcqb5b4miqlfV3F/O9SSllaWjqyXl9fb+bt7OzUent7u+nFbS4uLja9e/fu1fr27dtN7xe/+MWR9fP4b//tv9X6u9/9btN75513an327NmmNz09XeuY457z3uN4dHS06cVx7nVlwcf89IGBgQLAmyOeo0spZW9vr9bxvTCPd3d3j6xLad8383vocXt5m3G/uvZxb/ewt7vXext5+/E45HVFHHc97pMcu9zb2tpqenF9EuvV1dVm3tOnT2ud1z5xbpxXSik3btzouc8v2+XLl2v99ttvN724jjl9+nSt43qmlHbdktc08TNMXKeU0q5jci/eLm4zrp/y7fK6aHBw8Mg6j/O6qNc6Kf/7cbcxNDTU83a5F8ddt+t6bF3b6OrFz5fWigD0m7gGzN/zrqys1Prx48e17vqe9+7du03vo48+qnVet4yNjR1Zl/LsdzMvU35vj2vrza3DY5LXovGx/s3f/M2x7y9/hjluDwCAl8uVfQAAAAAAAAAAoE/4sQ8AAAAAAAAAAPQJ2UB8K3Rd3jVezvThw4e1jtFApbSXOb1z507P+4rRXKWUcvbc4SXxz5071/TOnDlT67m5uVrny9KL8eJNECM1cuRFjKvIl0aOr52Fha/CvIfNvLiNHIcRX5sPHjzouf3r16/3fgDH9F//639txt///vdrfe3ataZ36dJhTN9xY7y6Yi1yNEP0PHESALxZYoxUjm6K76l5ndorgivHcbXRUxtNb2Pj6FiqPM7v7b3iNTc22u3H2+VtdD22uP2uCK5YxzV9Hr+MGK+4NskxojkS4XWJ0VyltJ838ueSGBscP3uUUsrs7OyRdY4XjuuYHLMV5+ZYi1ca4zXQrqcGBg/XSS9jzdS1zeP2XsY2Trp9cbAAvGlyTFRc2+W1aYyPj98l3b9/v5nX9d1uXIPkNUeM6nqd39fmGNy4vo3r2byGvXXr1onuL67R8uPu+i4LAICXy0oMAAAAAAAAAAD6hB/7AAAAAAAAAABAn/BjHwAAAAAAAAAA6BOvL1gWXqGYY7y5udn0njx5Uuu7d+/W+ssvv2zmxUzjf/7nf+55X6dPn27Gp06dqvXc3FzTi+OpqalaDw0NNfNyNjXfXvG5kJ8XJ+nljO+Ye763t9ezt7q62vRiDnrOPf/iiy9q/atf/arWN27caOZ9/vnntf7000/LccWs8H/37/5d0zt//nytuzLX4+v06tWrTe/dd9+t9dtvv91z+/Pz800vvqbHx8drnV/fAK9T1xrjuOuPrvecrrknve+T7tdJnWSf43tmKaVsb2/Xemtrq+nF8cbGRtOL69a4jbyeje/La2trPXsrKytNb3l5udbr6+s99yv24m3y+OnTp00vrg/y+/7rFN+zZ2Zmml58/56dna312bNnm3ljY2NH1qWUMjIycmSdx3ENU0opg4OH/y9OXC/kdUu8v7z92IuPpZRSJienQj2RepNH3i6uYfK+jI+1vfGJ8SPn5fHYaHu8JsK+xPvL9x3H+dgBAN9c+burnZ2dWufvpxYXF2v91Vdf1Tp+r1tKKZ988knP+5uenq51XtPENdrAwEDXbvcUH09+bF3bj9/T5TX50tJSrR8/flzrR48eNfPi+jy7cOFCrf/oj/6o6V2+dLnW8fiUYl0GAPA6ubIPAAAAAAAAAAD0CT/2AQAAAAAAAACAPuEai3zrxEu9ltLGGTx48KDWt2/fbuZdv379yNtkMSqolPZy8/kS//FSsF3RPie9LCzfbF2XMc4RIb3iQ7Y2U5TI9uG4K4IkvwbiZYDjZZJLaWM7/umf/qnWf/d3f1dO4vd///eb8UcffVTry5cvN70Y0xFfm/kSw/F1mqP44jjGfZXSRvHF+ItS2mgL0V1Av+i6pHwcx8iqHPsYx8/Ti+87Xfcdb5fnHTfSMt+u17w897jbz+vNrvfok8R45XkxvmB1pY0yWFk9fM+Ol/cvpY2zzREI8T7i+/7CwkIzL0cDvEw51um9996rdY7Z6hWXW0q7JujqxbV7V5TW88R4xTXIcdf/eV4cx+ivvP2uCLH8eGKviQkbTvs/crj9vJ6K28y9Zr/SNkfHDm8Xt5H3UUQEAHw75XV3XFvndXGMsPryyy9r/f/+3/9r5sWY2vx9Thx3rde6PlNEXd+v5c8NXZ914mPNa/D4WGNk2WeffdbMi9/f/cEf/EHTi9+vffDBB03vytUrtc7fjcV1pO+wAQBeLVf2AQAAAAAAAACAPuHHPgAAAAAAAAAA0Cf82AcAAAAAAAAAAPqE0Ps3TMwglnH7cuSc5LW1tVrH3OLPP/+8mfeP//iPPbc5OHj4u7nR0dGmNzw8fGRdSnfuMxwlnhdijncppWxtbdV6eXm56cXx06dPa/3kyZNm3srKSq1jhnjeftxGKe1rJ+aEl1LKz372s1r//Oc/Lyfxn/7Tf6r1D3/4w6b3/vvv1/rtt99uevPz87UeHx+vdX4txvHExETTGxsbO7LO45hRXkopA4PO4cCbL68341o0v8/ENVTs5bVVfL/I7yVxvLW51fQ2tzZ73m5nZ+fIXvz3UkrZ398/su7a/zzu6nVtP47zMena53i8NjY22l44RlvbvefF9++8BlhaWqr1vXv3ml5e774u586da8ZXrlyp9fnz52s9NzfXzJuZman17Oxs04vjycnJphff63MvjuO6vmsNkHtxTZDXB3HNET9DPOMg1GlJEV+3+TUct5m339WLn0tifdJt5F7cz/wZqNd9+zwMAJTSva7P6+K49o1r3Rs3bvTc/uXLl5tx/P4or2nivuR1fR7/q/zZJu5z3v+N9cPx2vpa04vfxd29e7fpffbZZ7X+6U9/Wuu/+qu/aubFx/PBBx80vY8++qjW7733XtOLx+jUqVNNL6+FAQB4dVzZBwAAAAAAAAAA+oQf+wAAAAAAAAAAQJ8Q4/WGGcjXaOeFiJdYzZdOXV1drXWMNvjzP//zY2//Bz/4Qa2npqaaXrz8vxgv/q3i83dzc7PpxQiPx48fN70HDx7U+s6dO7XOkVvxNRBfG6W0lxZeXFxsegsLC7X+1a9+1fsBdIiXCP7ud7/b9D7++OOevatXr9b64sWLTS/GeMXLCnfFRwwPta/TGMeV4yTiuCuuQkQj8CaJ56SuS893RWnFS+fneevr67Xuuiz96lr7PhPfd+I28na6th/38dm4rBAhttW+hzbxYlttvFgcx23muK/jXtI/97ruO77XxzrG0JbybDzX65KjtGIE14ULF5pevPx/vl2M64rz8jo7jmOkVymlTE9P1zpHdcVohq6Ir7h2yFG9XTFeXev/OO5aE8TX6fPo2uZx1yBdMWHNvGfyxZ7/vrrurytm0HoKAPpPXt8c9/28a/3cFeP14x//+Fjbz+vUuB7M+xg/B+W1e/4Mc5x58bu8Utr9f/ToUdO7f/9+rfP3eb/85S9r/d//+38/cj9KKeUP//APa52jumKU7jvvvNP0YuxuXnfn2FoAAF4dV/YBAAAAAAAAAIA+4cc+AAAAAAAAAADQJ8R4vWl6XL00xgKU0sYG5F68JGrX5VGPG0eT53X13lRdl3ddXl6udb4Eai8xTqCUNmLo3NlzTS/GC+TLmorx6n/5NRZfj129rm3E13eO6orjfHngp0+f1jpe2reUNmbr5s2btf7Zz37WzPtf/+t/1TpHhBxXjtm6dOlSreOlkfPrKMZoxPiOvI1333236cXornhZ4bydHL8BvHm6YmuO23uebbyI251kH5/HcW/XFXcTLzWfxzmCqytSqleMV36viu8f+b0qRnXFNVgp7SXrV1faiK+V1ZUj58X3vlLadV7er3h/+X0yRly+anGtePbs2Z69GHUV47FKKeXXfu3Xap3f7+I4r0VjrzPiMkRPda1n8zbi3BiHUEobpZVjsOKaIB6DeJs8ztuP28i3i/f3zH6NHc4dGT3c/5GRHON1OM7HXJQBAMCzur7/ymIvf6bo+rzRK0ori5FVb731VtOL68i8z/EzRo7g6vV9fVeMV/48s7i4WOsc1Rs/s+Re/Kz2x3/8x7Xu+g77ww8/bHrxu7f8eSN+v5bX7vEzQL/8twIAgG8KV/YBAAAAAAAAAIA+4cc+AAAAAAAAAADQJ/zYBwAAAAAAAAAA+sTw694Bjmd3d7cZb2xs1DpnEW9vb/fczuDg4e+7hofbP//IyEitR0dHj6zzvJjJ+0rEmOSOCOCc+RyPSVdO8tKTpWPtxp/8yZ8046tXr9b6zNkzTS/mPOdjTv/L2d3xtZqfa3Ecn5P5NRtf3zGHvJQ2Gzy/9peWlmp9//79pnfr1q1a/+IXv6j1//gf/6OcxG/91m814+9973u1fuedd5rehQsXaj0/P1/riYmJZl6vc1ApbTZ43EYpbf54fL0dtR3gzTYw0L65x/fz/f39phfPv7GX1wBxnHv7e4e3291r11pdt+vVy/sYxwf77fvF/sH+kfOy/D7TNbfXvLyOjOOd7Z2mt7V99HtVKaXs7OwcWcf3plLa9678Pra6ulrr+L5VSilPnjyp9dOnT3v27t69W+tf/epX5U3xne98p9bnz59verOzs7XO739xPD093bM3Pj5+ZJ3njY2NNb04Hh1p3xeHRw7XpvFzQint6zHWeV4c59dw/KyQ18HDQ4fjoeH2M0WvNUH892fmpcc2OtZxu+HD8cho24v317X/cZvW+AAAR+v1ua2U3p8vSmk/Y+TPDfGzQvx8kbcT18H5O7orV67UemZmpunF9W2+3dOlp0fOy/cXPyfmz0vx+7y8//FzT37ccTsz0+0+nz17ttbxM0X+Du3ixYtH1qWUcu7cuSO3UUr72PLaNx8HAABeHSsxAAAAAAAAAADoE37sAwAAAAAAAAAAfcL1xvtEjl9YWVmp9eLiYtOLl//M0Q/xcvP58v8x/mZqaqrW+bKd8XL2rzrG6yDmeB2kXnis+RKr8TKnXdFKO7vtJWOjH/3oR7W+du1a07t06VKtT58+3fRirMIzx+uYsWS8ufJrLEae5OiSeJnh5eXlWnfFmMS6lDbiK9Z5+zHipJRSrl+/Xusf//jH5SRifN1H3/uo6b3/wfu17orxiq+PHDPSFRESIzXyuSuOc0xH/PvkaBHgzRdfw51RWruH9fZO7+iprliqfGn1rrjFXr08L67f8lou3vcz8WL7vSO+esWGdc3ruu98ufw4zmum2NvdOdzm5tbxY7zi+19ewy4sLNQ6v4+9Tu+9916t33333VrHS+WX0r7HxYjJUtq1dX7/i2vFOC/34vtdVxRYfp9sYrxSvGW8BP9x3ye75uVeryiwUrrjv2Ivrp+7IsRyr+szS3u7tjc0dPQ2u2LO8nrQmgMA+DY57loof2aJn59yVH387vvRo0dN7/Hjx7XOMVjxvn/913+91nk9GL+rymvwuO7L+7X4+PAzTP4cFGNq43fM+bNmHHdFIudeXOfHmOBS2giu+DnlzJkzzbz4mSV/5x+PQ/5MET83dK2LAQB4tVzZBwAAAAAAAAAA+oQf+wAAAAAAAAAAQJ/wYx8AAAAAAAAAAOgTw18/hTfB1tZWM3669LTWd+7caXo5xziKWbxzc3NNb3d3t9Yxx3hsbKyZlzN7X6WYAR33N49znnLMO451nhuzkN96661m3tWrV2t9+fLlphfnxuzjUkqZnJisdc6HPiiHj2egyDfuR13Z2ktLS03vwYMHtb5//36tv/rqq2beF198Uetbt241vZhZHrPNSylleXm51tevX296GxsbR+3+M374wx/W+tq1a03vnXfeqfV7773X9LpeHxfOH+agz506PO+Mjo4ea59KafO/u7LB5YRD/9nf3691fm+P57mdnZ2mF+fG3uZmu2ba3Dw8/+X1VDyHd60P8jk09uLt8vojbj+/X8S5+XweH09+3PExdM2L47z9eOy61lNd+xXn5ccW36sWFxfLqzQ5ebjuunDhQtOLa7S4Ji6lXe9OTEw0vVOnTtV6fn6+1rOzs828OM69uF/5/S+ureO8Utp15Nh4732M47xWj49tdKS97+Hh8HGw4y00rsGfx0nfl3vfbiDNO9l9n7R37HnxcFmaAADfZmFdFD/7ldL9mWJ1dfXIupT281n+jujMmTO1/vjjj2s9MjLSzItr/PwdeVxb5+9y4+ex/Fkqrpnbz6jtY4ufs/IxieP8uSHu1/nz55ve22+/Xev4OejM/Jlm3vTM4eegfEziY82PO48BAHgzuLIPAAAAAAAAAAD0CT/2AQAAAAAAAACAPiHG6w0WLwuaL1caIxEWFhaaXowEyhFcMW4qX+I/Xib0pJfqf9niPuZoiXgJ16dPnza9x48f1zrHScTYsxiJ9p3vfKeZd/HixVrniK/m8qhn2sujTk1P1bqJSuDFSU/X/YPD58ne3l7bC8+hfKncXvI24nMtvzbjcy8/1+7evVvr27dv1/pXv/pVM+8v/uIvav3ll18eax9LKWVmZqbW+fkbY0dife7cuWZeHOcIkniJ4xyNEl8f+VLC82cO7y/Hk0A/ad8aD1Lv6PfN/O9x/LJ7z/Nefty5XfO6Im3i+TafU7uiqOJ7/TNRVDshbmrnsJcvkR7P2V1xXPl8HqOocsRX7MXIxhinmOfltUmMdsxxjvF2r1q8hH18vyilvWx8XGPmy97HaMe8Fo2Xou/q5TVTHMfLzedLz8d5eRtx+123y734uOP72DORWx29JkorXY4/jvP6PI7jNrpidsdG297I6OHjEXcJAMArFZafeS3aFcseY6Py+jl+X5VjvGJve+vwc+LQcBtD1RWDG+8771fX94rxs26M+Mr7H+fl7cfHk6Oz4meMs2fPNr34XVzsxe/ySnk2DhgAgP7myj4AAAAAAAAAANAn/NgHAAAAAAAAAAD6hB/7AAAAAAAAAABAnxh+3TvwbXRwcHBkXUqb57u2tlbr5eXlZt7i48Va3717t+nduXOn1jm/98KFC7UeGRlpejGfOGYJ53zgnCX8KsUs5K2traYXj9GjR4+a3v3792udj9dXX31V66dPn9b69OnTzbz5+fla5+N65syZWs/NzTW9eFyHh9uX3EB5fcfyGyUdxt2dw9dRfp5sbGzUenNzs9Y7OzvNvJ1mG5tNb3V19ci6lPZ5uLi42PTia/Pzzz+v9Y9//ONm3pdfflmO47d/+7eb8Ycffljry5cvN71z587VOj6Xc3b39PR0rfM5YmxsrNYzMzNNLz7v4zZKeTabHPpVfPtLb9/N+3l8r9rb22vmxXFXL5+TYi+uFUopZW839PYOe3E/8rirl9cmvR7bUXN7/Xu8Xd7/+Fjz497e3j6y7rpdPLeXUsr6+nrPXlxrraysNL14Ps/n+qWlpVo/ePCg1vfu3WvmHfd8/rJ9/PHHzTi+J+T3gXh+7zqfxzq+P5RSysTERM9eHOdefN/Ja6a4Hu1Vl9KuUwcH2/+vIY7z7WIv3y7uV6+6lN7HJ8/N9x0fa95mr2PSdd/PrDdf49odAAD+Vdc6e3Jysuft8vo2fmbp+pwYP4fm+47bzNuPc7s+23b14mf4rs/fea3e9bkkrvnzZ7XZ2dlaT01NHXkbAAC+eVzZBwAAAAAAAAAA+oQf+wAAAAAAAAAAQJ8Q4/UadEVxxHiJGCcR4yJKKeXx48e1zpERMbIqR0rFS3fGS3rmcYxfyDEBb2qMV4zgiseglFIWFhZqffv27ab3z//8z0feV7z8aSntsczHtSvCKF4K9pljJ1XhpYivqxjfUkr7Wnry+Emtl1faqLwY2RKfW6WU8uTJ4e1WltvYl9W11SPnldLGeMXnXfz3r/Mnf/Intf7Od77T9K5cuVLrd955p+mdP3++1l2xczFSJT9f47grPiTHsogP4dsgXr57dzfGcbWXFI+XGO+KrIqRg6W073n5/S+Ou+IJ47mxK0orx4t1RXD1iiXLlymPt+var5cR4xWPZT6uMcYrn+tjFGOM/Czl2civ1yXGc8VorlLayNF43i+lPffnWMa4jslrxXh+j+8DXTFeMc40z+2K8cpRV3HcdWn7LvH9qOs9rqt30iiwrl7c/nG3OTjYex4AALxKXd/7DIQvP4fSGjZ+Hujq5e9au+Kxu2K2ouOuz7OubcZerzqPB/KXw2HYFfF13Ehh38kBAHyz+VYYAAAAAAAAAAD6hB/7AAAAAAAAAABAn/BjHwAAAAAAAAAA6BPDr3sHvo1ilvDGxkbTW11drfWTJ09q/ejRo2bevXv3an3z5s2md/fu3Vpfu3at6cU834mJiaY3OTlZ6/Hx8VoPD7dPk9eZ9RszjTc3N5ve0tJSre/cudP0bty4UetPPvmk6eW5/+rUqVPNeHZ2ttYzM7NNb2ZmptYxU5pXY2dnpxmvr6/XOj4vSinl/v37tY6vlfjvpbSvsdu3bze9+JrLr824L/n1ne+jl3PnztX6D//wD5ve1atXa3358uWmd+nS5VC/3fTOnz9f6zNnztQ6PndLaXO9c6Z4zkGP4nkhnyPkg9Ov8mtgd3f3yDqPt7e3a53fq7a2to6sS2nPGXE9UEopa2trtY7nuDw31vkcFPcr9+I4ziulPa/lfY6PL/byNuK8fEy6jmvcTj7X97pd3sd4TJaXl8urNDh4+Lv6eB4upV1n5DVZPBdPTU01vfn5+SO3kc/nc3NzR84rpZTp6eme25+eOuxNTk02vbhfcU2Z1z7x8eReHOde3ObQ0FDTi8cy1q/zPeZ57vu4c1/0PAAAeK3CsnVwqP3/jkcGD9f/+fvn8XL43XT+bJ7Hx+01u/WmrKe7dvc5drHX93JvzOMEAOClcGUfAAAAAAAAAADoE37sAwAAAAAAAAAAfUKM1yuwv7/fjGO8RI7pePz4ca1jjFCOmrp161at/+zP/qznff/Jn/xJM46XRI1RDKW0UQpdMQqv8/Kf8VjmiJCnT5/WOh+vX/7yl7X++7//+57bj487R17EmIuJifGmJ7rrWfFvleOfevXyvK5L78a5Md6mlDYC7+HDh00vRnfFeK74miqllE8//bTWf/VXf9VzP7r89m//ds9xjFuJcSqltDFbFy5caHoxvuX06dNNL8Z/xTrfLj638+s7yq/1fEll3hxdl7TuVZ90G1/Xi6/v42/jmb059n6eRK99zL18TuqKm4oRU10xXl1xVvFctrKy0vTiOPfi+1+MLsxrjBjVlbcRb9d13/lc+bLFc9Q777zT9OK5M54PYyzGMOpgAAAob0lEQVRpKb3XN6W057X8Xt4rsiqPY53PkzFuKvfiOJ+L4zjfLkZkxdjVHAUWxzmqK/by7eI2Y11K78edj0+8XV5vxnHuxeMFAAB8s4mbAgCAfxvfqAMAAAAAAAAAQJ/wYx8AAAAAAAAAAOgTMllegRzjFeM9csRGjBz66quvah3jhkop5caNGz3vL0Y/5PiFrkiKXnESb1KkQtyXHL0S49FijFMppXzyySfH2v7HH39c6xx5EY9XPiYuNfus+LyPf5tS2iiZWK+vrzfzYixOjtOJr6Pl5eWmd9wYrxhHc/369Wbej3/843IcH330UTP+jd/4jVpfvny56Z0/f77Wc3Nztc4xXrOzs7WOcV+l9I5vydvpul1XdBf9KZ+DDvYPz497e4evxf393pF6+b0qvuZyZFVXnFWv3u5ue997e7uhPv5+HTdCrNdt8rzO+95rt7eze3hOiuenUtrHetIYr3gOzOe1OI6xXaW0EaDxnBejuUppz433798vr0s8F5ZSypUrV2p99uzZphfjueK5sZTeUVRdsVQ5Eiu+t580xitus2t9kF+nAwOHcwcHc28g9NptxvuLddc+5risrgiurt7wUHisQ70jyrqizbqOFwAAAAAAcDy+YQcAAAAAAAAAgD7hxz4AAAAAAAAAANAn/NgHAAAAAAAAAAD6xPDr3oFvg729vWa8vb1d6+Xl5ab34MGDWn/xxRe1/vTTT5t5f/EXf9Hz/t5///1aT0xMNL3R0dFaDw+3f/6hoaFaDw4e/g5sYGCg5329anFfDg4Omt7Ozk6tV1ZWmt69e/eOtf2333671pOTk00vHq98TPb392sdj+O3WXzeb2xsNL2lpaVaP378uNaLi4vNvPh3XF9fb3pra2tHbiOPHz161PTu3r1b65s3b9Y6vt6+zu/93u/V+td//deb3tWrV2t96e1LTe/c+XO1PnXqVK2np6ebeXE8Pj7e9OLzKz8P43M0vtZzL7523qTXNy/O/sHhOWl39/DcGM+TpbSv0673qq2traYXx7m3ublZ6/jaz/O2tw63v7m12fTifub96trn3d3dWsfzcqzzvK7tx3l5v7p6sY7HI4/zMYnntadPnza9eF5bWFhoevnc+SpNTU3V+ty5o89xuXf+/Pmmd/r06VrPzc01vbidmZmZphfXOL3qUkoZGxur9cjISNOL4zivlPY82nW7rvPycXXdLvd6rdHiv+fxSXt5TRPv76T33bWW854EAAAAAADH48o+AAAAAAAAAADQJ/zYBwAAAAAAAAAA+oQYr3+DHD0QxciQ54npuH//fq1jxNCf//mfH3u/YsxFjqSIsRMjw20kRYz5yZELUdfjftlibEqMmCmljYvJsU5dYiTTe++9V+v5+flmXoxT6jo+3ybxeZ4jbbqe5w8fPqz1V199Vesvv/yymRfj13IcV+xdv3696X322Wdfu+9Zjpw5e/Zsra9du9b0vve979U6xnaVUsqlS4fRXRcuXGh6McYmRtXkGK8YIZejY6IcTRQNlIH8D4elmJRvhPj3z+fDXhFc+f0ovm5zxFecm2P04vk2vtZLKWV1dbXWMYrvuPPy/eX9iuMcERj3+aQxZF3HJG4zn/N6xYvlv02vmLOjxi9aV8xW19ohjmNsVx7H98kcpTU7O3us+85RXfF2+VzZ6/66YrxyhGk8x+b4wxcR49WsmdLy6SD/Q/Cyz9Mnjhtr3kxe334AAAAAAMC3nV8sAAAAAAAAAABAn/BjHwAAAAAAAAAA6BN+7AMAAAAAAAAAAH1i+HXvQD/b29ur9e7ubtPb2tqq9fLyctNbWlqq9dOnT5tenBt7q6urx96v0dHRWg8NtX/ioaGhw3p4qGevy8DAwLH3pZeDg4NjbTMf13gcVlZWml48Xvfv3+953x9//HEz/s3f/M1af/jhh7W+ePFiM292drbW8RiX8mKOyYuQj+v+/v6RdSnt8zf24r+XUsrOzk6t898j3m57e7vpxb/Po0ePmt7du3drfevWrVpfv369mXfjxo1a/8u//EvTe/z4cTmO+PctpZR333231ufOnav11NRUM29ycrLWc3NzTe/ChQtHbqOUUubn54+sSynl1KlTtZ6ZmTnyvp7H4GB//F4zPi+ber99vh6Uw/F+7h3shzr32nEUn6O99qNr3v+3Y0fu49fdd69e12265Nfw7s7h63F7p339xfegzc3NI/+9lO7Xd7zd2tpa04vj/P4Uz8Vd73ex9/Dhw6YXX9/5vuP93blzp7wuExMTzTi+Z8TX+vT0dDNvfHy81iMjI01vbGzsyHm5l9+D4jhuc3i49xog9+I4rwfiOO9zvO+4jTwvPp58zovjfFy7er2OST52Xceka5/juF/OtwAAAAAAwLeD/3IBAAAAAAAAAAB9wo99AAAAAAAAAACgT4jx+jeIkSobGxtNL8ZxLS4uNr0YaZSjqGK8S4wO+vVf//Vm3s9+9rOe+xUjKXLsRIziyL1XGVGRY2xifEys83GNsS+xzuMnT570vO8f/OAHzfiDDz6o9dWrV2sdo5pKaWO8ctTHmyLHiXXFbMVjG+v19fVm3tra4Xhzs/17xAigHA8UI3tyRE+M3rl582atP/nkk2Ze1/M8+u53v9uMf/jDH9Y6/k1LaaN2YsxWjpXpipyJEVxd8V9dvRwz823RFRkXxy+q1+vckiOrunpdcXjH7cVzXte8rOt28fWXX9/x9dirztuIdSnHj/HK72PxXBzf/3KcX4zwy+eIVym/Tq9cuVLrs2fPNr14zojvCXk7sc7njxg99TwxXnEc55XSO0orv6/H94iuNUB+L+m6Xa91RY4CO25cVldMWI4vi9vsVedx1/7nfRbdBQAAAAAAvKn8VwwAAAAAAAAAAOgTfuwDAAAAAAAAAAB9wo99AAAAAAAAAACgTwy/7h3oZ3t7e7VeX19veouLi7W+d+9e03v48GGtV1dXm97w8OGf5Ny5c7X+8MMPm3lxm3F7eRuDgwNNb2BgIPQGe/ZetoODg2a8vb1d63gsl5eXm3nxuMa6lFIeP358ZF1KKT/84Q9r/e677za9y5cv1/rtt9+udTz+pZQyPT1d65GRkab3Ko9dl3xc43N0Y2Oj6T19+rTWT548qXU+rvH5FW+Tt7m2ttb04t8gvwY+//zzWv/kJz8pJ/E7v/M7tf7BD37Q9OLr5Z133ml6Fy5cqPX86flaT0xONPNGR0drPTY21vTiOD8XhoaGevbi+E15zrwK8Xm5u7tb652dnWZeVy+eI2L9dbfb3Nw8st7a2jrWvHx/8TVVSim7O4f3vb3Te7/i7eK/d80rpfexK6V9rPmYxHF8rPlxx23k7W9uHB6H1bX2vWplZaXW8fxRSik3btzouV8v25kzZ2odz9lzc3PNvHh+n5+fb3qzs7M9bxfHcfullDI1NVXrycnJI+tSus8fY6OHvfGJ8aY3Pn447jonxTXA85xnjjs3z4vjXnUe5/VHHL+IXtf65rj7X0r7+vs2nbMBAAAAAIA3nyv7AAAAAAAAAABAn/BjHwAAAAAAAAAA6BNivJ5DjkiKcSg5wqhXRFIpbTRVjk2J0UExLiTHynzwwQe1zjFeMUYox050xVy8Svv7+804Hst4fB49etTMi3FQd+/e7dnLMV6/+7u/W+sczxXHZ8+erfXp06ebeTEmJR7j160ryifGbOUIrnhs47FcWFho5t28ebPWX331VdNbWlqqdT7mn376aa1j5E+X/LeJz/Pz5883vUuXLtX62rVrTe/KlSu1jtFseTunTp2qdYzIKaWN14mxOKW8WX//N0VXTFWvSKmu6KncO27MVo6piufmXnUp7XM0P1/j66gr/ivHOcbbxXk5Ui/uS1fMVtd952Mez7FdMWfx75bPy13nlhchxmDFc28p7WszxmPlcY7Siq/j+BrOr+94u5mZmWNvP87N+zUxMXFknWO84vt8jvGKvbiNUtr3oBzjFW/XFeOV1zGv0uuMwYr3nY+BeC4AAAAAAKAfubIPAAAAAAAAAAD0CT/2AQAAAAAAAACAPuHHPgAAAAAAAAAA0CeGX/cOvAn29/d7jnd3d2u9ubnZzHv69Gmt19bWmt7Ozk7P+xsZGan10NBQ0zs4OKj14ODhb7E2NjaaeadOneq5/YGBgZ69k8x7GeLjLKWUra3tWq+srNT6wYMHzbw7d+7UemFhoel99tlnPe9vdnb2yLqrNz093cyLf4/nER9rfD6VUsre3t6Rdddzcnt7u+nF5+XW1lbTW19fr/XS0lLTi8f2q6++qvWNGzeaeb/4xS9qff369aYXn5eTk5NN74MPPqj1+fPnm965s+dqPX9mvtanT59u5k1NTdV6fHy86c3MzBxu79y5phfv78yZM00v3kfcfnxdlnLy10evv2kex79p/nvHefm1kudGcW6+Xa95J5X3Iz638/kvPmfjczQ/X3vNK6V9ruVzcbxdPleurq7WOp5blpeXm3nx9bG4uNj04u3iaypvJ76OjtrOqxRff/Pzh6+xfF4bHR09si6llLGxsSPrUtrXS37txO3E3vBwu+SI47yN2Hue28VxPGfnefHx5HNL1+OO57nj3q7r2OXHFnv5dr2O6/N4ne/7bwrHAAAAAAAA+CZwZR8AAAAAAAAAAOgTfuwDAAAAAAAAAAB9QoxXeTaOJsa09IqAyb0cHRPjQ2LcUClt/EZXzE+M98gxYTF+KMeydEUAval2dw9jf+JxffToUTOvK27qk08+6bn9rmiUGMUS65PGdmXHjeCKz7scUxTH+bkQx/l28XmZY7wePnxY63hcb9682cy7d+9erc+ePdv03nrrrSPrUkq5+NbFWl9460LTi9uJsVr5tRJja/LfI/5Nc4RYfE3E10qem2P0eul6nebIqjjuirOKvRzv1tWL4/29FKW1F3rpvHawHyK+ykHveR1RYHGcj8mLiPHa2T683db28WO84nbyuTiet2P04pMnT5p59+/fr3U+l3RFp71sMYbuypUrTS++5nIE3tzcXK3j6yq/Hl52jFdXHFd8/eXXYhzn2KU4zreL54k4L58/4u26YsK6YraOGz120sfddTsAAAAAAAC+3VzZBwAAAAAAAAAA+oQf+wAAAAAAAAAAQJ8Q41WejaOJsUgx6ujx48fNvBgdk+M2RkdCNMqpNhqlK+YnxtPEyJyJiYlmXoybyjFeMXLmdcbPdMnxQPE4xOOfY7y++OKLWv/Zn/3Zse8vRtDkqJquWJYXIcYb5fih5eXlWsdYoRy5FZ97+ZjEuTEKLN9fvK9SSllcXKz1nTt3ar2wsNDMO3XqVK2vXr3a9N59991aX7p0qeldvny51jni69y5c7WO8UP5uRxja7oi6Z4nhqeXvP1e0VN5nHvxdl1xbF3biPM2N1JkVYi3yrFwcTu5F89z8byQY8LivK74sq7osePGeOV9jLfLvRjPlaO6umLu4uvl9u3b5U0QXzeltK+dHMc1Ozvbszc/P1/rGNtVShvd1RVr13VuPGmMV69eV+RW7uXorl66Ir6OO6+rl+O/4jj3et3u2e3HbRz/vgEAAAAAAOBf+S9JAAAAAAAAAADQJ/zYBwAAAAAAAAAA+oQf+wAAAAAAAAAAQJ8Yft078CbY3t5uxisrK7V+9OhRre/fv99zG/Pz8814dna21mNjY01vd3e31uvr601vf3+/1oODh7/FGhgYaObF3tTUVNMbHh4+cl6Wt/kqxcdZSvs3iMf/7t27zbyf/OQnx9p+PuanTp2q9ejoaNPrOkYnsbm52YxXV1drvby83PQWFxdrHZ9f+XEvLCzU+saNG03v888/r/XTp0+b3sbGxpH3ddTcXq5cuVLrs2fPNr34vM+vgTg+M3+mZ+/06dO1Hh8fP9Y+vSjxtZj/bnGcX6dra2s9b7e1tXWs28Ve/DuV0j5n4ushbyPWeW7uxdfYzs5Oz/2P+9XVi/uYe/mcGo9zPD75PBDPSV3nvCzOzfNGRkZqPTMzU+uDg4NmXjxnzM3ONb2p6cNz7OTkZNub6t2L55pYT0xMNPPifuXzedxmnFdKKXNzh/s5PT3d9KanDsdd+99rH/M4n1PjcY11Hsf3o6GhoWZe/Fu96PMwAAAAAAAAfJP5r2sAAAAAAAAAANAn/NgHAAAAAAAAAAD6xDcrxusgjTtSqmLMTFfUTozFybE1MXIox5/EuJUcm7K9dXjfe3t7TS9GK8Von/W1dh9jFE6+73h/MUKllDcnKiXG+pTS/j3i8X/48GEz7+bNmz23efXq1Vr//u//ftO7ePFirXNUVIwSynFKvebF459vl+OT4vMmR2fFmLh79+7VOsZ2lVLKZ599Vuu//uu/bno58quX/Dz58MMPax1j586caSO3Ll261LMXI4dyRE9zvLbb4xVfczHyJz8vYjxTfq3EcY6DihFNOa5pf+/o/eqKrFpby+eIw79pfs50xX/1itnKz5kY9/bkyZOmF59DuRefCznu7XWK8W8ffPBBrXMsVYy3yq/TeF7Lva64qdiLz7X8fI3nyhxLFed23S6fb3vdLs8bHwvvJWO9o7Se55jEcTyunXFcwymOa7R3VFfX485jAAAAAAAA4MV6M375AQAAAAAAAAAAfC0/9gEAAAAAAAAAgD7hxz4AAAAAAAAAANAnhl/3DrxI+wcH7Xhvr9a7u7tNb3Nzs9br6+tNb2Njo9bb29u1HhgYaOaNj4/XenZ2tumdPn261pOTk00v3t/K6krT29raqvWTJ09q/fDRw2be0tJSrYeH2z9jvL+RkZGmNzh4+Puu/Hhepb3wtyml/fvEY7C2ttZzG7/2a7/WjH/v936v1h988EHTu3jxYq3j362UUnZ2dmq9vLxc69XV1WZefM6srLR/t3i7WJfSPoa8zfg3fvDgQa3v3r3bzIvj1ZV2G/Hv+P3vf7/pxcc9Pz/f9OJzNj5npqammnlxnJ/LY2Njtc5/06dPn9Y6v/7i8Yt/j/xcjrqeM7m3v79f64N0Xohz43Mt/n1Lac8D+RwR/6ZxXt5Ovl2v51d+zjx+/LjWCwsLTS+PX5f33nuvGV++fLnWZ86caXqnTp2qdXze5edafD7l12l87uVevF2s8zieD4eGhpp58bmXe/E1ls+bcRzPr3ncNS/eX77vOM6vj/h48rk+zu2aNzR4uP3Bod77NTzU3necm/cZAAAAAAAAeLlc2QcAAAAAAAAAAPqEH/sAAAAAAAAAAECf+EbFeB0c7DfjGMGVI3q6opViLE+M/MlRJTFWZnp6uunNzMwcOa+UNmIox7nE2J8Y65Sje+7fv3+s/eqK8XoRckRSVzRYfNw51ilGaXX93aLvfOc7zTjGCsVIoVLaCKschRPvI+5X3I9S2ui0+Lcppf17xAimUtq/adfzMG4/b2NxcbHWb196u+m99dZbR9allHL27NlaxyilUno/R8fH2oik4ZHjRWvl4xVfR/l4RfF5keO49jqi+OI49+Lt4va79jlGepXS/q1yVFf8m3bFeOVzS/w73r59u7wu8e995cqVphefJxMTE00vxm7FqMJS2tdYjjWM417xcaV0x3F1xXjF8YuI8crnyZNGHh73dieOCRsIMWGD7e2OGyF23Pvu6uX3gV7zAAAAAAAAgBfDlX0AAAAAAAAAAKBP+LEPAAAAAAAAAAD0CT/2AQAAAAAAAACAPjH8unfgRdrd3WvGm5ubtV5ZWWl6T58+rfWTJ0+a3vLy8pHb2N/fb+YNDAzUenBwsGcvOzg4qPXO9k7TW11drfWDBw9q/cUXXzTz7t69W+srV640vbGxsVqPjIw0vbifXft4Unt7h3+DfLy2trZqvba21vTi4469/HeLpqameo4nJyeb3tDQUK13dtpjHp8Lu7u7tY7Pg1JKuXfvXq0///zzpvfzn/+81j/5yU+a3uLi4tEP4ISuXrnajOPfe2JiounF45CPSa/e+Nh4M29w6PA5k4/d9vZ2rfPfNP7tul5/S0tLtc7HKj4v4n2V0j6f8vbj3y5u46SGh9tT5ejoaK3jc6uU9jWWbxdfj5cuXTrW9vPfNPbi3z7PzX/vOHd8fPzI2+RxvK98u/z6m52drfX09HTTi3Nj76SPLe5Hnpv3udf5MP/d8hgAAAAAAADgTeXKPgAAAAAAAAAA0Cf82AcAAAAAAAAAAPrENyrGay9EMJVSyvr6eq0fP37c9B4+fNizFyOBNjY2ap1jXmIvxwjFaKIYBZZ7T5ae9O6FeLGueKO8XzGq5nnixU4iRpKV0kYtxZilUtp9zo8nPtYYwRT/hlk+rnFu/nvEeLEsRnfFbeZ4t4WFhVrH2K5SSvmf//N/9tz+i/bFrS+a8fkL52ud45NipFF+LsSYtRjPtTG60cyLz5kcpdUVuRaP36NHj5pejKH7h3/4hyP36VWYm5ur9dWrV5ve/Px8rWNEVSltLFWOjYqvv65IqdjLcXtx3BXFl/+m8VyQo8F69Z657+EQdTXcnlvi7XLMVozWyjFbvXp5G1371RXVddxj+TKiCwEAAAAAAABeNVf2AQAAAAAAAACAPuHHPgAAAAAAAAAA0Cf82AcAAAAAAAAAAPrE8OvegRdpd2+3Ga+vr9f60aNHTe/WrVu1fvDgQdPb3t6u9cDAQK3HxsaaeSMjIz17cRtxXimlLC8v1/qrr75qenE/NzY2aj06OtrMm56ePnIf87ir9yLs7+834/i44+MspZTHjx/X+t69e00v/g2ePn1a652dnZ73nf9u8Vju7e01vfj3OTg4aHq7u4fPm3jM437kfV5YWOi5X6/aP/zDP9T6yZMnTe+tt96q9alTp5re1NRUrScmJmqdn69R/PuWUsrq6mqt8997cXGx1vl5nv/+JxH/pteuXWt6s7OztY6PM/fm5+drPTc313NefL2VUsrk5GSt82szHr/cGx8fP7KX58Xx0NBQ0xsoA3HQ9jpe+4ODg0f24r/ncVcv79fw8PCRdR7H45PnnXT7ce4zx+sFn/MAAAAAAAAAXjdX9gEAAAAAAAAAgD7hxz4AAAAAAAAAANAn+j7GK0Yy5cintbW1WucYr88//7zWOWIoRujk6KMoxxb16uUYmZWVlVrfvXu36T18+LDWW1tbtY4xS1lXFM7LjrDJkVhxn/PxuX//fq1zDNadO3dqHaOockxY9LOf/awZx+OQI75iL+9zjPyKMVXx+VNKKUtLS7XOz6c3xfXr1zvHvcTnSYyaKqX9G8S/78tw8eLFZtwVQxZjt7oiyvLjiZFccRsxtquUUmZmZo68TSndMV7xudYV4xVjyLqiwHIsVZSfy9FxX/vPE/V33IjArl7X+ekk2/i628VjJNILAAAAAAAA+CZwZR8AAAAAAAAAAOgTfuwDAAAAAAAAAAB94o2N8YrRK73qUkrZ3NysdY5dWl1drXWMzsq9HP8V43titE/891La6J28X+vr6z23H+OtYjRU7sXHk7cfY4piXUobD9QV8fUi5P2KMVg5xuvevXu1/uKLL5rel19+WesYkZWPXZSP3V/+5V/WOscixe10RR+dVHxu5PvuihiKf59edR7nWKc4fp54oyhGdeXotLjNrvuO0VOltJFVOYYuPkdjLz+XY1xWjuPqul2vuKx8u66orrjNuB95nB93E+M10j4XxsaPju7Kz5mu6C4AAAAAAAAAvt1c2QcAAAAAAAAAAPqEH/sAAAAAAAAAAECf8GMfAAAAAAAAAADoE8Ovewd6OTg4qPXW1latNzY2mnkrKyu1fvz4cdNbW1ur9fBw+1AvXrxY6/Pnzze906dO13r+zHytJycnm3lxmwMDA01vf3//yP0vpZSRkZFar6+vN73R0dFa7+zsHFmXUsrMzEytZ2dnm97ExMSR91VKKYODh7/vyvt8EvHvVEopu7u7tY7Hv5RSFhcXa33r1q2m96tf/erIeZ9//vmJ9mt7e/tEtzuu+PwppZRz587Venp6uunF50l+Ho6NjdU6/t3Gx8d7zot1Ke1zJm+/676HhoZqHZ8L8TlSSilDg4fzBodSL2wj1vn+ci+O47z4WHIvP5fjON8u9vLjjnO7jnkc52Mex13Hteu+8+MBAAAAAAAAgONwZR8AAAAAAAAAAOgTfuwDAAAAAAAAAAB94oXEeMUopxzr9CLE6K5Hjx41vTh++vRp09vc3Kx1jlaK4xwBFCOyYh0jf0ppI3py9FE8DnE/8jZj7FUppdy/f//IbeYYrxgxlB/bq4zxyvb29mqd48uWlpZq/ctf/rLp/Z//839e+L68aDGq68KFC03v9OnD6Lf49y2lfX7l51qMhou3y5FxcTw1NdX04t+7K24q9+Jz40XEceXXQBznXnzudUWIdW2ja5+Pe7smJmy4fa0Mj/SOQBseCq/9oePvcx4DAAAAAAAAwPPyX54BAAAAAAAAAKBP+LEPAAAAAAAAAAD0CT/2AQAAAAAAAACAPjH8unegl729vVqvra3V+sGDB828hYWFWq+vrze9ycnJWp86darpzc7O1np6errpTU1N1XpiYqLWY2NjzbyRkZFaDw0NPfsg/j8bGxvNeHj48LAvLy83vbnZuVoPDh7+FmtnZ6eZNz4+3nP/4z7Hffy6/XwR9vf3a727u9v0tra2ah3/bm+Sy5cv1/rSpUtNb27u8G+Tj3kcT01ONb3RsdHDenS06cXn2szMzJH/nsddz9f4vMjj3IvP5/icjPX/fzwS6vb5MzAwUOv4fD1qfBxxe1/Xi+MXcbuuefmxvIj7Pjg4ONY2AAAAAAAAACByZR8AAAAAAAAAAOgTfuwDAAAAAAAAAAB94oXEeB030uZ5xEiuGHW1uLjYzLt//37PbcS4oxjbVUop586d69kbH4/RXb0jmI4bU5Tjv+Jjy3FNMfIpRmLFyJ9S2oiyvI0Y45X3OcZ4vYzooLj9/LhjDNYf/MEfNL27d+8eebscQ5ajwXrdd37cMcIqHp+uXp4X96tr+11xbzkiK95H/JvGOs979u99OHd8vL3vuC85xis+hu4Yr8Pxy46BAwAAAAAAAAC6ubIPAAAAAAAAAAD0CT/2AQAAAAAAAACAPuHHPgAAAAAAAAAA0CeGX+Wd7e/vN+Pd3d1ab25uNr2nT5/WemVlpee8gYGBWo+NjTW96enpWs/MzDS92dnZI+eVUsro6Gith4cPD1G8r+cRt5H3c2RkpOkNDh7+/mpvb+/I25RSytTUVK3z/sdevl3cl3hfJ5WPSby/+dPzTe/999+v9cTERNPb2to6ch+HhoZ63t/gQLv/g0OH43zM43aO28vzuvar63Zxbr5d/PvH513+u3X14jjO69p+1z6/iOcFAAAAAAAAAPBy+K/6AAAAAAAAAADQJ/zYBwAAAAAAAAAA+sQrjfHa2dlpxqurq7WOsV2llLK0tHQ4b2W19BLjuXJU16lTp2qdo65ijFSORYpRSyeN7uoSY5JyZNLBwUGtY8zZ+Ph4M29ycrLWMbarlO7H9qLjmvI24n2fPXu2nRtits6fP9/0YmRZ3GaOverqdcVldf1Ne0WDDQy28+J95210/U2b7ader8fTFRP2PL2THhMAAAAAAAAA4M3kyj4AAAAAAAAAANAn/NgHAAAAAAAAAAD6hB/7AAAAAAAAAABAnxh+lXe2ubnZjJeWlmr94MGDnr319fVaHxwcNPOmp6drPTc31/RmZmZqPTk52fTGx8drPTz8Sg9D8xj29/eb3t7eXq23t7drHR9nKaWMjo4eWedxfmyDgy/29115exMTE4eD+Xbu+MThMd/Z2TnWNvP24zg/tqGhoSPrfLuBgYGmF/8eAyX02mmNvI3j9rrm9qr/Lb2u/eo1N7/GnufxAAAAAAAAAAAvlyv7AAAAAAAAAABAn/BjHwAAAAAAAAAA6BMvPL8qRwCtrKzUOkZzlVLK/fv3a72wsND0lpeXj9xmjqyKUV0xmquUUsbGxo6sj9rOceTHFnVFHeXIqhhLtrGx0fS2traOrJt4rFLK7u7ukXW+v9yL4xgZdlL5ccfjmiO44t+nKyoq1p0xXkPt03dgUNwUAAAAAAAAAPDN5so+AAAAAAAAAADQJ/zYBwAAAAAAAAAA+sQLifGKsVQ5qmt/f7/Wjx49anoLXx5Gd926favd5trhNsfGDyO4Tp061cybnJzsuV8x8inHQZ1EV1xWfJx5bowyK6WUe/fu1Tofkzh3c3Oz5zbicX78+HHTm52drXWMOSullKmpqVrnaLAYwTUyMlKOI8d4DQ4OhW20veHh4z3dumK8AAAAAAAAAAC+zfySAgAAAAAAAAAA+oQf+wAAAAAAAAAAQJ/wYx8AAAAAAAAAAOgTwy9iI0tLS7W+d+9e09vY2Kj1o0ePmt6tW7eOrEspZXd3t9anT5+u9ejoaDNvdna21vv7+03v4ODgsN4/KCext7dX652dnaa3vr5+ZF1KKSsrK7V+/Phx0/vqq69qfefOnab35MmTWq+urtZ6cXGxmXflypVaT01NNb3x8fGevTienJxsemNjY+Uog4ODPccDAwNNrx22veNqtpn/bCfbJAAAAAAAAADAN4Ir+wAAAAAAAAAAQJ/wYx8AAAAAAAAAAOgTLyTGK0Z35Zitra2tWj98+LDp3bhxo9afffZZ04uRUjHWKcZ2ldLGfXXFeO0ftL04N8dU9ZrXFeMV47dKaR/r3bt3m96XX35Z64WFhaYXI7/iscs++eSTWg8Pt3/G6enpWs/Pzze9ON7c3Gx629vbR24zbz/+PXKMV695J3WQc7zC8EVsHwAAAAAAAACgn7iyDwAAAAAAAAAA9Ak/9gEAAAAAAAAAgD7hxz4AAAAAAAAAANAnhl/ERu7cuVPrra2tpjcwMFDr+/fvN72f//zntf7JT37S9C5cuFDr6enpWp8+fbqZt7q6WuuVlZWm9/Tp01qPjIw0vb29vVoPDvb+zdP29nat19bWmt7S0lKtHz582PTiMbl9+3bTW1hYqPW9e/ea3pMnT2o9PNz7zxMf6yeffNL0zp07V+vz5883vbm5uVqPjY01vYODg1pPTk723I84Hhoa6rmPAAAAAAAAAPAq5P/uPz4+XuvR0dGmF39nMDs7+3J3DF4CV/YBAAAAAAAAAIA+4cc+AAAAAAAAAADQJ/zYBwAAAAAAAAAA+oQf+wAAAAAAAAAAQJ/wYx8AAAAAAAAAAOgTfuwDAAAAAAAAAAB9YvhFbOThw4e1Xl9fb3oHBwe1fvz4cdP78ssvaz0zM9P04naWl5dr/eDBg2bewMBArTc2Npre4uJirWdnZ5ve5OTkkdvIdnZ2ar25udn0VldXa/3kyZOm9+jRo1rfu3ev6cXHsLS01PP+8jHpZXd3txnHfVlYWGh68e+x9KS979m5w2M0NjZW6+Hh9mkyNDRU68FBvxcDAAAAAAAA4PXK/92/6795x//2/6d/+qcvd8fgJfBLDQAAAAAAAAAA6BN+7AMAAAAAAAAAAH1i4CDmOnX47d/+7Ze9LwAAAAAAAAAAr8xPf/rT170L8Nxc2QcAAAAAAAAAAPqEH/sAAAAAAAAAAECf8GMfAAAAAAAAAADoE37sAwAAAAAAAAAAfcKPfQAAAAAAAAAAoE/4sQ8AAAAAAAAAAPSJgYODg4PXvRMAAAAAAAAAAMDXc2UfAAAAAAAAAADoE37sAwAAAAAAAAAAfcKPfQAAAAAAAAAAoE/4sQ8AAAAAAAAAAPQJP/YBAAAAAAAAAIA+4cc+AAAAAAAAAADQJ/zYBwAAAAAAAAAA+oQf+wAAAAAAAAAAQJ/wYx8AAAAAAAAAAOgTfuwDAAAAAAAAAAB9wo99AAAAAAAAAACgT/ixDwAAAAAAAAAA9Ak/9gEAAAAAAAAAgD7x/wM4cpEUOLOBSwAAAABJRU5ErkJggg==",
"path": "images_version_6/image_30.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, it is known that OA = OB = OC, then the size of angle AOB is ()
Choices:
A:40°
B:50°
C:60°
D:70°
|
||
151
|
31
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKsAAABeCAAAAAB53LtvAAAHc0lEQVR4nM1bb2wTZRj/vQ3UiRCCycYIyo0/g6EGbjOBhogdCeBQg92niSgUjCIf1I2RwBIpoEThS0c0OpgJJTCJiWHTxICisbOkgIHYfdvClm1CSMcS/kTMbu3IPX64a3tt73q92/XWX9reXd/nfe/3Pve+z/O8fw5URDgJuEbf1Ux2oGgwUNZNdPb5+ZoCxcNVaFh/DliybammRPFwPfvwOAAsX6gpwcguLjoQXnr9cOqKmIpI0ej1zm3lw1ejWjxcUyAAeKCSUDRc5z97EwAGzhMDMLJGTcZG85kbJ9BBFHI9IiIib0BFoni4UgjAFuk0wqsJFI0dSMOmD19V+bdo2qvcpwAAXSVqVIvHvsogBqA6wKulFZFeAUiGtbWWV08rMr0CGK+8Xq6aUIRcW2bvV08oPq4jrr4S9ZREew1fsY2MDg7v16Ca4Dr+kW1cdNBz7QOtJJnrASyxi4wODvk0kySu7YuddnHRQRer10xzAMDA6PrpM2yjkxOfHQSg9GEKOABM+BvBzbSTkSZOrOIBaMTaEIlOQgpwRBuDKnUIFdEcqQ6GgVGiUKVmZezE8TfVPZaEaRjYeQHotY1OLoyc6AMx9YEhADSjNBzfnIxypxSN/pzJxeRje3ZEoDHcBgA4ZPtA6mbCVhz2EXL1GoeUSGzqe9Yv4/VM0liIsbfUJKSmMPXmSiQ+Ip/2v039pb5sETkeYMCQfRpUAzu9kpdPB9qw5Mil/wBkOLAkay/fSVOjYJGISOCiyrv/KU8UKJEabwUCZypOT0mrZQDQVl+u7Fd9G1WcvpL4oLfcL6RX1y5EOUF5OVaXrdZM+zpyrGt745zCqlFFXwxN02a4Vj+NhHndt2dutljGmLvcfw3VTXdTpRSSYhKMeq7txZeLlh98IDWDb1fOVbt3UsPJR37fz+0aLODjVoOnk4jEXh8/SEQU8hGFOojE9GaYOfcm9clvOG+vLRxlBN3yScQlSDEqFt3NktKaJwxUea6Sbf1LdgOirGANaM0ReXu3NdV222TCuip4AAAD6n7NISfXJxsiBd18jlpaB4GLJlkEvGoSYzWl7cvuOuT6ZIOhtjtwpiJguRaz0FZfntbps2K+gaVf3fm5piz3PCHfFQxVtI5bT0+JkXYfwGSNDS0AGFga24nmo2umL6nUndNcGAjeWnbwQSEN7bH354AS5d+Sl+KUj/raU1sxMfgKHNAz+Atb/0J1y92Cse3r3g2wBLfhimyJn14DAiMr4IB2JJ5gV344MtvVNGw1SRktPuVc29ACFQoM7bs2zgSIqDZXUUzxWyCw9GPavdxEFAJ8zfAZWTMKVHkikzVPmZBGA3l6HEPrW528O5hR7mQdW6cnf1kQUSwW0xcUiUSS3IOFjleoMhAlgYgoD6pJRDxVAeviBH+jAWHDXIl6vVyboC+WD6J8lPKvOCMAcSfigDMOOBGHE0AcykPyTP69c/T393aWWmAbmhY0Acg5h6UEkaRX+Zv8KA7yhShfx2Ixur2POxCddEMYrBo3Iq70sXEngHhco1LTmWyanXCi7GgErj1Dkxzk7Pn8CSPiSa5OmaPTqbF0wJBmpud80rdgnXfIRENIVI96hrXXBtRzUkx6zrH0ZpDdBlTaSYCT3YOYfw9JybmuGmkBRCBKWFeZlURceYil/x2LxUj6kOQeDN0wRbXTY7DBK/yWMcuVRNC92tToQeB7TXM1SVUkuurhTxnP6G806lISXPPys5r427h7uF9l2OZNcm9O4nbi4C7Of99ITnltwAhf6/YRRRs5X67VqQxpTjDsSqzbQ1LeGoGraSRP6d2tJcywIzFauZwQ/OXevII8eQOWub5lBfqfCROd4hoi+qLuoIm40sJ9RJcrYwTsGPbs2NStI9o1p9bM9hXj6tPEWE1YOrngdud0D4IrYiZaL8j+rE3dh85Un9YKwghtLt7UpiAzCtTAWE1YUpdIRBEvd1rDPchzbYZhtV5Z4oc/FfxhUetDNZmWj3OtvGvDSq5psSzFPr334y3+YPYG4ZGu3eYidAu5UhoDtmX11VWtETyX5R5aDpUYjNBJeLHsCgpjB4iIvtgvHQU/l3IPImntw9VB/9pHlvqCm6VAR/IqGYKLQqCiIZIy/XUXjBctnvSRpX2rcpRoa/JqmJNPWMn2Ic+O+m75uXeVbDJeNOsX2eLRgu3X5tLjgk63+zwRkcj3mChsrGYLNXdYptfMrv1kLO2yvvvQ2ervgePrVpoo/Mayc1jKrNWrwnFmDxnFSAPXbs4N7A2L8c1h3bniQsCAyXITEY3V/Uv9ax9NAxAsGKksEMtr4ipD/saqWULD1zP11zYshdEtQJK8q4e9cMFl7x5oYzrNgq179h+/wRhj3xnKk7agaBNEIqL45g4KlYb1ZDXyOzK5FwoMAB6PbsA8Q/OYyvzaa8eFwPWFZRPNa1XfzcoNSZvWPmkdnATMtQAisvn92ImLYTriCacUZQx2cqV/7q3AO/MuAeaanY1cif1ROxN3otov6+rkt5Erm7hYB6Fh1gaz+W30W5dfBgDXb6bfDvgfnfcAWOzVtp4AAAAASUVORK5CYII=",
"path": "images_version_1-4/image_31.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, the straight line a parallel b, the point B is on the straight line b, and AB perpendicular BC, angle 2 = 65.0, then the degree of angle 1 is ()
Choices:
A:65°
B:25°
C:35°
D:45°
|
Như hình vẽ, đường thẳng a song song với đường thẳng b, điểm B nằm trên đường thẳng b, và AB vuông góc với BC, góc 2 bằng 65°, thì số đo của góc 1 là ()
Các lựa chọn:
A: 65°
B: 25°
C: 35°
D: 45°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the straight line a parallel b, the point B is on the straight line b, and AB perpendicular BC, angle 2 = 65.0, then the degree of angle 1 is ()
Choices:
A:65°
B:25°
C:35°
D:45°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the straight line a parallel b, the point B is on the straight line b, and AB perpendicular BC, angle 2 = 65.0, then the degree of angle 1 is ()
Choices:
A:65°
B:25°
C:35°
D:45°
|
As shown in the figure, the straight line a parallel b, the point B is on the straight line b, and AB perpendicular BC, angle 2 = 65.0, then the degree of angle 1 is ()
Choices:
A:65°
B:25°
C:35°
D:45°
|
152
|
31
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKsAAABeCAAAAAB53LtvAAAHc0lEQVR4nM1bb2wTZRj/vQ3UiRCCycYIyo0/g6EGbjOBhogdCeBQg92niSgUjCIf1I2RwBIpoEThS0c0OpgJJTCJiWHTxICisbOkgIHYfdvClm1CSMcS/kTMbu3IPX64a3tt73q92/XWX9reXd/nfe/3Pve+z/O8fw5URDgJuEbf1Ux2oGgwUNZNdPb5+ZoCxcNVaFh/DliybammRPFwPfvwOAAsX6gpwcguLjoQXnr9cOqKmIpI0ej1zm3lw1ejWjxcUyAAeKCSUDRc5z97EwAGzhMDMLJGTcZG85kbJ9BBFHI9IiIib0BFoni4UgjAFuk0wqsJFI0dSMOmD19V+bdo2qvcpwAAXSVqVIvHvsogBqA6wKulFZFeAUiGtbWWV08rMr0CGK+8Xq6aUIRcW2bvV08oPq4jrr4S9ZREew1fsY2MDg7v16Ca4Dr+kW1cdNBz7QOtJJnrASyxi4wODvk0kySu7YuddnHRQRer10xzAMDA6PrpM2yjkxOfHQSg9GEKOABM+BvBzbSTkSZOrOIBaMTaEIlOQgpwRBuDKnUIFdEcqQ6GgVGiUKVmZezE8TfVPZaEaRjYeQHotY1OLoyc6AMx9YEhADSjNBzfnIxypxSN/pzJxeRje3ZEoDHcBgA4ZPtA6mbCVhz2EXL1GoeUSGzqe9Yv4/VM0liIsbfUJKSmMPXmSiQ+Ip/2v039pb5sETkeYMCQfRpUAzu9kpdPB9qw5Mil/wBkOLAkay/fSVOjYJGISOCiyrv/KU8UKJEabwUCZypOT0mrZQDQVl+u7Fd9G1WcvpL4oLfcL6RX1y5EOUF5OVaXrdZM+zpyrGt745zCqlFFXwxN02a4Vj+NhHndt2dutljGmLvcfw3VTXdTpRSSYhKMeq7txZeLlh98IDWDb1fOVbt3UsPJR37fz+0aLODjVoOnk4jEXh8/SEQU8hGFOojE9GaYOfcm9clvOG+vLRxlBN3yScQlSDEqFt3NktKaJwxUea6Sbf1LdgOirGANaM0ReXu3NdV222TCuip4AAAD6n7NISfXJxsiBd18jlpaB4GLJlkEvGoSYzWl7cvuOuT6ZIOhtjtwpiJguRaz0FZfntbps2K+gaVf3fm5piz3PCHfFQxVtI5bT0+JkXYfwGSNDS0AGFga24nmo2umL6nUndNcGAjeWnbwQSEN7bH354AS5d+Sl+KUj/raU1sxMfgKHNAz+Atb/0J1y92Cse3r3g2wBLfhimyJn14DAiMr4IB2JJ5gV344MtvVNGw1SRktPuVc29ACFQoM7bs2zgSIqDZXUUzxWyCw9GPavdxEFAJ8zfAZWTMKVHkikzVPmZBGA3l6HEPrW528O5hR7mQdW6cnf1kQUSwW0xcUiUSS3IOFjleoMhAlgYgoD6pJRDxVAeviBH+jAWHDXIl6vVyboC+WD6J8lPKvOCMAcSfigDMOOBGHE0AcykPyTP69c/T393aWWmAbmhY0Acg5h6UEkaRX+Zv8KA7yhShfx2Ixur2POxCddEMYrBo3Iq70sXEngHhco1LTmWyanXCi7GgErj1Dkxzk7Pn8CSPiSa5OmaPTqbF0wJBmpud80rdgnXfIRENIVI96hrXXBtRzUkx6zrH0ZpDdBlTaSYCT3YOYfw9JybmuGmkBRCBKWFeZlURceYil/x2LxUj6kOQeDN0wRbXTY7DBK/yWMcuVRNC92tToQeB7TXM1SVUkuurhTxnP6G806lISXPPys5r427h7uF9l2OZNcm9O4nbi4C7Of99ITnltwAhf6/YRRRs5X67VqQxpTjDsSqzbQ1LeGoGraSRP6d2tJcywIzFauZwQ/OXevII8eQOWub5lBfqfCROd4hoi+qLuoIm40sJ9RJcrYwTsGPbs2NStI9o1p9bM9hXj6tPEWE1YOrngdud0D4IrYiZaL8j+rE3dh85Un9YKwghtLt7UpiAzCtTAWE1YUpdIRBEvd1rDPchzbYZhtV5Z4oc/FfxhUetDNZmWj3OtvGvDSq5psSzFPr334y3+YPYG4ZGu3eYidAu5UhoDtmX11VWtETyX5R5aDpUYjNBJeLHsCgpjB4iIvtgvHQU/l3IPImntw9VB/9pHlvqCm6VAR/IqGYKLQqCiIZIy/XUXjBctnvSRpX2rcpRoa/JqmJNPWMn2Ic+O+m75uXeVbDJeNOsX2eLRgu3X5tLjgk63+zwRkcj3mChsrGYLNXdYptfMrv1kLO2yvvvQ2ervgePrVpoo/Mayc1jKrNWrwnFmDxnFSAPXbs4N7A2L8c1h3bniQsCAyXITEY3V/Uv9ax9NAxAsGKksEMtr4ipD/saqWULD1zP11zYshdEtQJK8q4e9cMFl7x5oYzrNgq179h+/wRhj3xnKk7agaBNEIqL45g4KlYb1ZDXyOzK5FwoMAB6PbsA8Q/OYyvzaa8eFwPWFZRPNa1XfzcoNSZvWPmkdnATMtQAisvn92ImLYTriCacUZQx2cqV/7q3AO/MuAeaanY1cif1ROxN3otov6+rkt5Erm7hYB6Fh1gaz+W30W5dfBgDXb6bfDvgfnfcAWOzVtp4AAAAASUVORK5CYII=",
"path": "images_version_1-4/image_31.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, the straight line a parallel b, and AB perpendicular BC, angle 2 = 65.0, then the degree of angle 1 is ()
Choices:
A:65°
B:25°
C:35°
D:45°
|
Như hình vẽ, đường thẳng a song song với đường thẳng b, và AB vuông góc với BC, góc 2 bằng 65°, thì số đo của góc 1 là ()
Các lựa chọn:
A: 65°
B: 25°
C: 35°
D: 45°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the straight line a parallel b, and AB perpendicular BC, angle 2 = 65.0, then the degree of angle 1 is ()
Choices:
A:65°
B:25°
C:35°
D:45°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the straight line a parallel b, and AB perpendicular BC, angle 2 = 65.0, then the degree of angle 1 is ()
Choices:
A:65°
B:25°
C:35°
D:45°
|
As shown in the figure, the straight line a parallel b, and AB perpendicular BC, angle 2 = 65.0, then the degree of angle 1 is ()
Choices:
A:65°
B:25°
C:35°
D:45°
|
153
|
31
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKsAAABeCAAAAAB53LtvAAAHc0lEQVR4nM1bb2wTZRj/vQ3UiRCCycYIyo0/g6EGbjOBhogdCeBQg92niSgUjCIf1I2RwBIpoEThS0c0OpgJJTCJiWHTxICisbOkgIHYfdvClm1CSMcS/kTMbu3IPX64a3tt73q92/XWX9reXd/nfe/3Pve+z/O8fw5URDgJuEbf1Ux2oGgwUNZNdPb5+ZoCxcNVaFh/DliybammRPFwPfvwOAAsX6gpwcguLjoQXnr9cOqKmIpI0ej1zm3lw1ejWjxcUyAAeKCSUDRc5z97EwAGzhMDMLJGTcZG85kbJ9BBFHI9IiIib0BFoni4UgjAFuk0wqsJFI0dSMOmD19V+bdo2qvcpwAAXSVqVIvHvsogBqA6wKulFZFeAUiGtbWWV08rMr0CGK+8Xq6aUIRcW2bvV08oPq4jrr4S9ZREew1fsY2MDg7v16Ca4Dr+kW1cdNBz7QOtJJnrASyxi4wODvk0kySu7YuddnHRQRer10xzAMDA6PrpM2yjkxOfHQSg9GEKOABM+BvBzbSTkSZOrOIBaMTaEIlOQgpwRBuDKnUIFdEcqQ6GgVGiUKVmZezE8TfVPZaEaRjYeQHotY1OLoyc6AMx9YEhADSjNBzfnIxypxSN/pzJxeRje3ZEoDHcBgA4ZPtA6mbCVhz2EXL1GoeUSGzqe9Yv4/VM0liIsbfUJKSmMPXmSiQ+Ip/2v039pb5sETkeYMCQfRpUAzu9kpdPB9qw5Mil/wBkOLAkay/fSVOjYJGISOCiyrv/KU8UKJEabwUCZypOT0mrZQDQVl+u7Fd9G1WcvpL4oLfcL6RX1y5EOUF5OVaXrdZM+zpyrGt745zCqlFFXwxN02a4Vj+NhHndt2dutljGmLvcfw3VTXdTpRSSYhKMeq7txZeLlh98IDWDb1fOVbt3UsPJR37fz+0aLODjVoOnk4jEXh8/SEQU8hGFOojE9GaYOfcm9clvOG+vLRxlBN3yScQlSDEqFt3NktKaJwxUea6Sbf1LdgOirGANaM0ReXu3NdV222TCuip4AAAD6n7NISfXJxsiBd18jlpaB4GLJlkEvGoSYzWl7cvuOuT6ZIOhtjtwpiJguRaz0FZfntbps2K+gaVf3fm5piz3PCHfFQxVtI5bT0+JkXYfwGSNDS0AGFga24nmo2umL6nUndNcGAjeWnbwQSEN7bH354AS5d+Sl+KUj/raU1sxMfgKHNAz+Atb/0J1y92Cse3r3g2wBLfhimyJn14DAiMr4IB2JJ5gV344MtvVNGw1SRktPuVc29ACFQoM7bs2zgSIqDZXUUzxWyCw9GPavdxEFAJ8zfAZWTMKVHkikzVPmZBGA3l6HEPrW528O5hR7mQdW6cnf1kQUSwW0xcUiUSS3IOFjleoMhAlgYgoD6pJRDxVAeviBH+jAWHDXIl6vVyboC+WD6J8lPKvOCMAcSfigDMOOBGHE0AcykPyTP69c/T393aWWmAbmhY0Acg5h6UEkaRX+Zv8KA7yhShfx2Ixur2POxCddEMYrBo3Iq70sXEngHhco1LTmWyanXCi7GgErj1Dkxzk7Pn8CSPiSa5OmaPTqbF0wJBmpud80rdgnXfIRENIVI96hrXXBtRzUkx6zrH0ZpDdBlTaSYCT3YOYfw9JybmuGmkBRCBKWFeZlURceYil/x2LxUj6kOQeDN0wRbXTY7DBK/yWMcuVRNC92tToQeB7TXM1SVUkuurhTxnP6G806lISXPPys5r427h7uF9l2OZNcm9O4nbi4C7Of99ITnltwAhf6/YRRRs5X67VqQxpTjDsSqzbQ1LeGoGraSRP6d2tJcywIzFauZwQ/OXevII8eQOWub5lBfqfCROd4hoi+qLuoIm40sJ9RJcrYwTsGPbs2NStI9o1p9bM9hXj6tPEWE1YOrngdud0D4IrYiZaL8j+rE3dh85Un9YKwghtLt7UpiAzCtTAWE1YUpdIRBEvd1rDPchzbYZhtV5Z4oc/FfxhUetDNZmWj3OtvGvDSq5psSzFPr334y3+YPYG4ZGu3eYidAu5UhoDtmX11VWtETyX5R5aDpUYjNBJeLHsCgpjB4iIvtgvHQU/l3IPImntw9VB/9pHlvqCm6VAR/IqGYKLQqCiIZIy/XUXjBctnvSRpX2rcpRoa/JqmJNPWMn2Ic+O+m75uXeVbDJeNOsX2eLRgu3X5tLjgk63+zwRkcj3mChsrGYLNXdYptfMrv1kLO2yvvvQ2ervgePrVpoo/Mayc1jKrNWrwnFmDxnFSAPXbs4N7A2L8c1h3bniQsCAyXITEY3V/Uv9ax9NAxAsGKksEMtr4ipD/saqWULD1zP11zYshdEtQJK8q4e9cMFl7x5oYzrNgq179h+/wRhj3xnKk7agaBNEIqL45g4KlYb1ZDXyOzK5FwoMAB6PbsA8Q/OYyvzaa8eFwPWFZRPNa1XfzcoNSZvWPmkdnATMtQAisvn92ImLYTriCacUZQx2cqV/7q3AO/MuAeaanY1cif1ROxN3otov6+rkt5Erm7hYB6Fh1gaz+W30W5dfBgDXb6bfDvgfnfcAWOzVtp4AAAAASUVORK5CYII=",
"path": "images_version_1-4/image_31.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, angle 2 = 65.0, then the degree of angle 1 is ()
Choices:
A:65°
B:25°
C:35°
D:45°
|
Như hình vẽ, góc 2 = 65°, thì số đo của góc 1 là ()
Lựa chọn:
A: 65°
B: 25°
C: 35°
D: 45°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, angle 2 = 65.0, then the degree of angle 1 is ()
Choices:
A:65°
B:25°
C:35°
D:45°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, angle 2 = 65.0, then the degree of angle 1 is ()
Choices:
A:65°
B:25°
C:35°
D:45°
|
As shown in the figure, angle 2 = 65.0, then the degree of angle 1 is ()
Choices:
A:65°
B:25°
C:35°
D:45°
|
154
|
31
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAVwAAADFCAYAAAAYCEoTAAA3z0lEQVR4nO3dd3RU9534/feMRl2jXka9gQQqgBAdbEAYhBEKAZPYOG3tJN7EKcfeONk9z5Pi7HGe5Mlmf44TZ509cbAdHLOPG9jYRjSDMSCJKmEk1HvvbSSNZjT3+cOZWQkkkJA0ap/XORz7zP3Ovd+R7nz0vd/y+aoURVEQQggx5dTTXQEhhJgvJOAKIYSNSMAVQggbkYArhBA2IgFXCCFsRAKuEELYiARcIYSwEQm4QghhIxJwhRDCRiTgCiGEjUjAFUIIG5GAK4QQNiIBVwghbEQCrhBC2IgEXCGEsBEJuEIIYSMScIUQwkYk4AoxSzU1NfFf//VfREREoFKpUKlUaDQatm7dSlFRETk5OXzzm9/kxIkT011V8Q+a6a6AEGJ8WlpaOHPmDCUlJbS1tZGWlobJZALAyckJrVbLBx98QFdXF87Ozri4uExzjYWFBFwhZhG9Xk92djY//elP6e7uZvv27fzLv/wL8fHxAJjNZq5cucL3vvc9WltbefTRR3F3d5/mWgsLCbhCzCLvv/8+b7/9Nvb29nzhC1/g29/+NrGxsdbjarWa8PBwVqxYQUNDAzqdDicnp2mssRhKAq4Qs4CiKDQ0NHDq1CmuXr3Ktm3beOSRR1i+fLn1uEqlAkCr1bJ06VICAwMJCAjA0dFxOqsuhpCAK8Qs0NjYyNmzZyktLcXHx4dHH32UtWvXWo9bgq2Fp6cnAD4+PhJwZxAJuELMAtXV1Zw8eRKAFStWEBMTg4ODw4hl7e3tWbZsGQaDAW9vb7Ra7ajnHdoyFlNPAq4Qs0B1dTXZ2dlER0ezevVqXF1dRy2r0WiG9euKmUMCrhAzmKIo9PX10dzcTGtrK4mJieh0OjSayfnqzrTWrbEpj4/fP8zpkm60CzbzxS+kEO9vP6xM49kXef6jmhHfv+Jrv2FvvPVsNOV9wMED2fQs2MyePaks9p7a+t+NLHwQYgZTFAWDwUBvby/9/f1oNBpcXFxmXKCcDG2Zv2R12IP8n6ZIUlJSiCx7lrVhq3nhunFYucaLL/L/3vAmJSXltn8LPIec7/RP2PXvraz+zlM8tKCQZ9N+wtku236mW0kLV4gZTq1WY2dnh52dHYqiMDg4iKIoY36/pexoQdpgMGA0GnF2dsbOzm5S6jxuXUf5yea/svFoDs9v/kczdNtmVoRtJvbf3mTvR18h+B9FW2sLWf/Fh9i2LfoOJ2zkxB9a+b9f+xZr3IGIH/KHp3bz47Nd3L9z+uYlS8AVYgZTq9VotVo8PT1xdXVlYGCA7u7uYV0Ktw58dXV1UVZWhrOzMzExMXdtDR85coTLly/zxBNPEBUVNWWf5U5qj/yRv6b8mprNQ5/57Yl59CBF293wGfcZnXHVttDZDfwjvvZ0d+Lj7zwp9b1X0qUgxAynVqsJDAwkKiqK9vZ2cnNzaWpqsh63BFSTyURpaSmXLl2irKyMjo6OO7aEjUYj5eXlnD17llOnTtHR0THVH2UUXVw7dpT1e9ZYW7FW7qEsjPDif5duVFCRCw53bYm7k/rTPRxI/Qp/OHycw3/4Cl868jW+u8H+Lu+bWtLCFWIWiIiIYMuWLezfv58bN24QFhZGeno6Pj7/2/arrKzklVdeIScnhx/96EcsX778jq3bhoYGDhw4AMCjjz6KTqeb8s8xsgoKLsLKx6Ixdhdz/v97k4ySbrQLtvPlh9ezUDs0SA4yOABLI3TU5R7irYPZ1BPIkt07SF++kKFF7WO+xZHMjVzNLMew8T+48MMgpnvNnQRcIWaBwMBAHnjgAZqbm8nKyuLNN9/k6tWrLFiwAJVKZe3XVRSFtWvXEhUVhb39nVtzVVVVnD17lpUrV7Jjx45hwdu2WqktXEWU4RX2bnyX+Ce/SUpKLzdf/RcSv+/Ji9eP8a2Y4Z/lnW+v49qOJ3lqZwqLWy7zx68k8njYi1w/9i2GFrXXLmT1toU2/jx3oAghZo2mpiblb3/7mxIUFKQA1n9eXl5Kenq68tFHH931HGazWWloaFBeeeUVJTk5WfnDH/5gg5rfycfKU/gpfklPKR+3Dn19QCl8ab1C4gtKnvW1GuXasWNKVlnf8FMMFCovrUdJfCFPmclUijKO4U4hxLSrq6sjOzubtrY27OzsMJvNODs7o9PpiI+Px9/f/67neOWVV7h48SLe3t6kpaWxbt06G9R8NKd5WpXChZcKyf5OzPBDXR/wdY9nWJJbwDNL7nyWrg++jsczS8gteIa7FJ020qUgxCwTFBTE7t27Rz2u3GW5bmtrKxcvXqShoYFHHnnEmtpx+thh7wjrYmNuP+Tuig+F1Lbe/Szurj5QWMsYik4bmaUgxBxzp2Db1NTEpUuX6O7uJjAwkISEBDw8PGxYu5HEkvwgXCotHeW4I/ZjnR7saM80zSQeEwm4Qswyd+sFvNPxoqIiDh06hL+/P5s2bbJmFZteAaxIW8/5d7OovfVQaSmXeJBkS2qI2ixefuEjRgrN+Z+dggeTmclZJCTgCjHL3KkFe7dgXFBQQHZ2NosXL2bLli0zZolw9J5/42sfP83/k9GEdSGvsYmM//N/UfTUD3kw4B+vadvJ+tc9/PLQkHKAsehlvv+TDn789IMEMHNJH64Qc8hoAbS3t5crV65QVVVFbGwsixYtmsZpYCPw3snvTz9FWmoYizd+k73xerL2/w9Xl/+WT97YjHUxrvuD/Pb0z0lLDSP4hUd4fI2O7qLjvHWyi62vneRX98/s7YRkloIQ80BDQwO/+93v6O7uZsWKFezYsYPg4NvWdU25np4ePvjgAx555JGRC/S3U5B7iapO8AhbydJFXiMvVuhvp6LwM4oa+8EjjKS4aPy007uKbCykhSvEPNDW1sbJkydZunQp6enpBATY/sHbZDLxta99jcOHD1NRUcG//du/3V7IyYtFq7ex6G4nc/IiYun9RExBPaeSBFwh5rji4mKysrIICwtjyZIl07aE97HHHuPw4cPodDr+6Z/+aVrqMN1k0EyIOe7TTz/l3Llz3H///dx3333TUoenn36a119/HZ1Ox+nTp6cxb8P0koArxBzW19fHxYsX+eyzz9iwYQMrV660eR1+97vf8fvf/x43NzfeeustFi26a4fBnDWlXQr9/f309fVZkxvfaTM7IcTk6ujo4PLly/T19REdHU1ERITNp4H9+c9/5sc//jEajYYjR46wYcMGm15/ppnSgFtTU0NNTQ0qlYqQkBAJuELYUGlpKe+++y46nY6VK1fecePJqfD222/zgx/8AI1Gw8GDB9m0aZNNrz8TTWmXwqeffsobb7xBc3PzpG16J4S4M0VRMJlMFBUVcfnyZUJCQti6dStubm42q8O5c+fYt28fJpOJP/7xj+zdu9dm157JpiTgms1mqqqquHDhAlevXkWtVtv0ly3EfDY4OEhubi7FxcVotVqioqLw8PBApVKNay+0e3X58mUefPBBTCYTv/71r/nOd74z5decLaak2VlVVcXf//53CgsL8fb2JigoaIas2RZi7jMYDBw6dIja2loeeeSRYYNUU92HW1BQQHp6Oj09PTz11FMjz7Wdxya1hasoCjU1NeTn59PX14dKpcLe3h4HB4fp2w1UiHnEaDRSUlJCcXEx9vb2bNy4kdDQUJtcu6GhgQcffJCGhga++tWv8vzzz9vkurPJpAbcvr4+srKyKC0tJSoqioCAAJs9xgghoKSkhKysLNRqNdHR0cTExODg4DDl1+3o6GDz5s1UVFTwxS9+kVdeeWXKrzkbTVrANZvNtLW1UVv7eYK1JUuWEBAQgKIod91bSQhx74Y2aC5evMj7779PcnIy27ZtG9d771VPTw/p6ekUFBSwYcMGDhw4IIPko5i0n0pNTQ03b97E39+foKAgwsLC8PHxobGxEWfn6d0LXoi5zNIv29nZSWlpKe3t7SxZsoTExMQpv7bJZOJLX/oS586dIyEhgaNHj8oA+R1MWgv32rVrnDp1iqVLl7Jx40ZMJhMODg74+vri4uIyWZcRQoygubmZjIwMurq6WL58OZGRkWNqZU50EG3fvn1kZGSwaNEiTpw4IcH2Lsbdwr11v6SBgQGKioo4evQohw4dorCwkICAADo7O+nt7WXhwoUjDpjdbd8lIcTYNTU18eabbxIcHMwXv/hFAgMDJ+3cL774Inl5ebz00kvDXn/66ad5++230el0HDlyZN7mRxiPCXcptLe3c+nSJerq6jAYDJw+fRqTyYSiKMTGxpKYmDhqYJWgK8TkqKio4MaNGyQmJrJ58+ZJnRX0wgsvUFJSMizgPvfcc9b8CKdPn2bBggWTdr25bNwBd2iANJlMNDQ0UFNTw549e/jVr36Foii0trZSUVFBaWkpWq0Wtfr2ngsJtEJMnKIoXLhwgevXr7NixQoSEhImNdi2tLRQUlLCsmXLrK+9+OKL/OxnP8PNzY2jR4/O62Q043XPLVyj0cinn35KWVkZ0dHRrF27lsjISOvxK1eu0NvbCyCDZkJMkf7+fk6ePElxcTGpqaksX758Us9/7tw5ANasWQN8nh/h6aeftuZHmO/JaMbrngLuwMAA5eXlHDhwgIGBAX77298O266jqqqKnJwc6uvr8fX1xWAwSGe6EFOgqamJ7OxsBgYGSE1Nte7kYJnuNfRJcqTX7ub8+fMArF69mjNnzljzIxw8eJCdO3dO1seYN8YdcA8cOEBeXh5nz57l2rVrJCQkUFlZSWBgIH19fbz33nscPXqUixcv0tLSQkBAANXV1XzhC19g48aNU/EZhJiXysrKOHXqFL6+voSHh+Ph4WE9NlJQvZduvKysLODz7sP09HRMJhPPP//86HuSiTsa97Swuro6KisrqampISQkhEWLFjEwMIDBYGBwcJDa2lrq6uowm804OztjZ2dHbW0tzc3NU1F/IeatvLw8Tp8+zeLFi9m+ffukL583mUxcvnwZgJ/97Gf09PTw05/+lO9///ucOXOGp59+mqSkJE6ePDmp153Lxt3CfeKJJxgYGLDmSnBycsLd3R0nJyccHR359re/zVe+8hWMRiOKomBnZ4e9vb10KQgxSQYHB2lvb+fGjRsUFBSwb98+1q9fP2LZicwEysnJob+/H/g8T8KiRYuoqKggMDCQlpYWa7mh/y/ubNwB18vLa9RjKpUKT0/PUTOD3UsfkhBiuN7eXo4fP059fb11kcNkGRqgLQNmFgUFBRQUFODk5MQDDzzAQw89xM6dOwkJCZm06891E5qHe7cAOtJxCbZCTExLS4t1Ce3DDz98x0UOI33fBgcHGRgYYHBwEJVKhVqttj6JDi1vGTAD8PX1Zfv27ezatYvt27fLE+s9mlDAvVPwlGArxOTr7OyksLCQxsZGwsPDWbNmzW1bV92pG8FoNFJUVMTvf/97zp49i5ubG4sXL2bTpk18+ctfxt3d3Vq2paWFZ555hl27drFmzRpJSDMJpvQnKAFWiMl15coVMjMzCQ0NJTExcVz7BJrNZkpLSzl//jyNjY0MDg7S2dlJZmYmzc3NhIeHc9999+Hk5ATA6dOnp+pjzFuyTboQM9zQFIqnTp3izJkzpKWljbop42jdCG1tbWRmZnLu3DmeeeYZ8vLy+PDDD0lJSeHKlSscPHiQM2fOSP7qKTRlAffWX7rRaKSvr2+qLifEnKVSqejv76egoIDm5ma0Wi2LFy+2LnIYi4GBASoqKnB3dyctLY0lS5bg6OhIbGwsmzdvZs2aNVRWVnLt2jXrzIS7kcA8fjbrlOno6KC2thYPDw+8vLxwcnLCwcFhxDwLQojhampqyMjIwN7enrVr1447M9fg4CC9vb3ExMQQHx8/7Hu3YsUKOjo6OHjwIFVVVRgMhrsux5dge29sFnBLSkp4/fXXKS8vJzg4mL1797J27dphnfQgU8fE/DOWe76oqIi//e1v7N69m0cffXRY3+1Y3u/s7MyyZcuwt7e/rZHj4eFBUFAQ9vb2mEymMdVZvp/3xmYB193dnYiICPR6PXq9nk8//ZTS0lKCg4OJjo4mLCwMd3d3+UWKeelOUyvb2tooKytjYGCA8PDwe5p3a2dnd1vjxsJoNDI4OIivry/+/v6yJdYUslnAjY+PZ/HixTQ2NnLx4kXeeust3nnnHcxmM3v37iU9PZ3Vq1dLwBXzzp3u+f7+fk6dOkV1dTUpKSksXLhwXO8fi6amJurq6oiKiiIuLk6y+00hlTINnTENDQ0UFBRQUVFhzbPQ2dmJoigkJSWxYcMGkpOTJ3QN6ZoQc0FDQwM/+tGP0Gg0PPXUU8THx0/6LrxvvPEGH374Ibt27WLdunWycmwKTctMZp1OZ+30r6+v57333uPkyZMUFBTQ09ODoij09fURHByMVqvFw8NDHnPEvKPX6yksLKS8vJzw8HBCQkJQq9X09/fj6Og44caE2WymqamJ5uZmXFxcWLJkiQTbKTYtLdyhBgcH0ev1dHZ20tTURGZmJllZWeTl5REUFERqaippaWlER0dPZzWFmHK3rhD79NNP+eijj2hqasLZ2Zno6GgiIyOJjo4mOjr6jpuzjuUJr66ujtdff52AgADWrl1LWFiYddGDmBrTvlbP0pnv7u5OaGgoDg4OODs74+3tjV6vp6ysjNdeew2dTseCBQtYvHgxoaGh011tIabUwMAAubm5XL9+nZ07d+Lo6Mj169eprq7m4sWLaDQa3Nzc8Pb2JiQkhKioKGJiYqzvV6lUd5y61dzcTF5eHj09PSxdunTYey1kz8HJN+0B91aJiYkkJibS39/PtWvXOHbsGEePHqWzs5N169axfft2HBwc8PDwwMHBAZVKNe6bQm4kMRNZ7sm+vj5KS0spKyvDYDCwcuVKtFot9fX1FBcXU15eTkFBASaTicDAQJYtW8bGjRtxdHS0Tu8aer5bmUwmLl68SGlpKbGxsYSHh1uPmc1m6/dDviOTz6ZdCuMNdN3d3dTV1VFVVWX9V1xcTFdXFwkJCWzYsIFNmzZJ5iIxp1RVVfHyyy/T3t5OdHQ0Dz/8MH5+fpSXl9Pd3U1PTw/d3d10d3fT0dFBXV0d9fX1dHV1sWfPHvbu3TssGfnQ753ZbKaqqopTp06hVqvZs2ePdaeI9vZ2ysvLaWlpYdGiRYSFhQ07h4UE4ns341q4Q2m1WmJjY4mNjaWrq4vMzEx6enpobGykrKwMtVpNZ2cnERERBAUFERAQcMd+LSFmg6qqKrKyslixYgWpqal4e3uj0WhGnBLW3NxMTk4OFy5cICsriytXrhAQEEBycrJ1cYRKpbImqsnNzeXChQvk5+fj7e1tHZju6OigsrLS2mqWlWRTY9oHzW41Wme/oigYjUZMJhMtLS1kZ2dz/PhxTp8+TVBQEBs3bmT37t3Ex8fj6Og4HVUXYkIURaG2tpbjx4+zf/9+Hn30UZ588sk7vsfSBdDZ2UlZWRlvvPEGxcXFPPfccyxdutRarru7mzNnznDgwAHeeust6+sODg4oioJarcbJyYmHHnqIn//854SFhUlLdgrMuBbuaJ39KpUKBwcHHBwcrDeDm5sbCxcupLW1la6uLv7617/i7e3NggULWL58OTExMSMGX+nDFTORSqXi6NGjXL58mS1btrBixYq7vseyTNfb2xt3d3eOHz9OdnY2JSUl1o0lLd+dqKgo0tPTiYyMRK1Wo1arravM7OzscHZ2JikpiYCAAPl+TJEZF3BhbH1EoaGhhIaG8uCDD1JSUsKxY8d49913aWtrIzIykq6uLvr6+oiIiMDd3R2NRmNNoCw3k5iJLK3Q5uZmnnjiCRISEu76nqFPhBqNhoiICIKDg63L5levXg2Ao6Mj8fHxxMfHT+lnEHc2IwPueIWFhbF3715SUlKorKzk5s2bZGVl8d577+Hj48OmTZvYvn37pO79JMRk6uzs5LPPPsNoNBIYGEh4ePiYusZubTyEh4cTHx9PdXU1hYWFrFq1alobGPI0OdycCLgODg4EBAQQEBDAwoUL8ff3R1EUbty4QW9vL3l5edaVa+Hh4YSHh6PT6eRGEDNGXl4ehw8fJjg4mOXLl1tnDoyXu7s7vr6+lJeX097ePsm1HD+VSoVeryc7O5vm5mYcHByIi4vDbDZTWVnJggULiIiImDfb90zap5wpuQvs7OxYtmwZy5cvp6uri5s3b/LBBx/w1ltv0d7eTkJCAo888ggbNmwYd05RIabKlStXePfdd3n22Wd5+OGHRw1A97Jx63QrLCzk17/+NZcuXcLT05N//ud/Rq/X8+677/KDH/yAb3zjGxJwx2um/IKHTth2d3cnLi4OBwcH4uPjqauro7GxkePHj/Phhx/i7+/Pxo0bWbVqFb6+vtNcczEfGQwG8vPzaWhoIDIykoiIiGHJacb7SG4ZDDObzdYZDCOdyxaBubOzk9dee43c3FxWrlzJ9u3bsbe3p6qqisLCQtzc3PD09JxXUznn/J8VrVZLUlISSUlJ6PV6MjMzOXToENevXycvLw+VSsXAwAAJCQm4u7vj6uqKq6vrdFdbzBPt7e1kZGTQ09PDjh07hi1bv5cZmyaTiYGBATQazW3bnlvOaYvGUUdHB9euXePIkSMMDAzwrW99i7Vr12I2m/npT3+KXq9n0aJFBAcHT3ldZpI5H3CHcnFxYd26dSQkJNDW1kZxcTGnT5/mhRdeoLu7m40bN7Jjxw42b94sW/8Im6ivr+ejjz4iMTGRL3/5ywQFBVmPjRQY7xYsu7q6aGlpwc3NDS8vr1HfO/T/p6K1e/nyZQ4cOEBcXByrV68mLi4O+DxHhL+/P+Hh4fj4+My7OfPzKuCqVCpcXFxwcXEZliLS3d2d8vJyenp6OHXqFLm5uYSHh7NgwQJiYmIkIbOYEqWlpVy7dg03Nzeio6MnJSmTZbmvh4cHnp6eY3rP3RLdjIeiKPT29lJRUUF9fT0bN25ky5Yt1kFAS+pVZ2dnYmJibvujMNfNq4B7K29vb3bt2sXOnTupra3lxIkTnDhxgoMHDxIeHk5qaioAMTEx2NvbW9enz5T+ajG7nT9/nosXL3LfffdZ58ta3Gvugp6eHjo6OggJCcHLy2vM752se9pgMFBUVERbWxs6nY7ExMRhuwv39PRQW1vL4OAg8fHx+Pv7T8p1Z4tJCbizfa6dnZ0dwcHBpKamsnjxYioqKqiqqqKmpoZnn30WLy8v1q9fz3333TdiGjshxqujo4OrV69SUlLCo48+yvLly4cdv9fvU3d3N+3t7dYBKVvr7e3l8uXLdHd3k5ycPGwwuq2tjezsbMrKyqxTNO91+ttsNSkBdzYHWws7OztCQkIICQlh3bp1FBYWcubMGZqammhsbCQ/Px+AxsZGAgMD8fHxwcPDQ/p6xbh1dnZy6dIl9Ho9ERERJCYmTtpIfW9vL+3t7Xh5eU3LEl2j0UhVVRUmk4nIyEhrl0FXVxenTp3i2LFj9Pf3ExwcjL+//5yIHeMxoYA721u2d2LJUvbVr36VoqIizp49y+HDh6mvr2f16tVs2bKFjRs34uPjM91VFbNMWVkZf//734mIiGDz5s2T2o+p1+tpa2vDw8PDZlMdh8YBlUqFnZ0dg4ODKIqCs7MziqJw5swZ/vKXv3D27Fl27drF8uXLJ31vttlgwtnCGhsb+fDDDykrK6O7u3tGJS4ebz/Y0MTLGo0GOzs71Go1TU1N5OXlkZOTQ19fHz4+PsTExLBw4UK8vLxwcXGxTtweHBy0ZjVTFGVO/1ESY6coCnZ2dnh4eHDz5k1OnDhBaGgoixYtws/PDwcHBwYHB+/5/HZ2dqhUKo4fP85nn31GamoqCxcutM7LnaxBMcvcXq1WS3R0NGlpacP6aLu6ujh+/Dhnzpzh5s2bBAcHExwcjJOTE9evXyc3Nxe1Ws2qVat45JFHWLVq1bzqx51wwC0oKODZZ5/l/PnzNDY2olKpZtVj9q0TwUeiVqutAdiSW9RsNmMymazB9dby9vb21p/DDMuAKaaBSqXCbDZjMBgAcHNzs7526wKFsZ4Pbr+3HBwc0Gg0DAwMWO/LsdzjY2Wpq7+/Pxs2bOCXv/wlsbGx1uNGo5Hq6mpefvllnn/+efr7+1mwYAH79u0jICCA2tpa3njjDRwcHNi3bx979+4lMTFxwvWaLSYccHt7eykrK6Ozs5OBgYHJqpfN3O1mtLR4LS0FS1m1Wo3BYOD69eucPXuWU6dOoSgK8fHxpKenk5ycjLe3t/VLZnnEEvOPoih4eHjQ0NDAL3/5S+zs7HjssccIDw/H1dXV+jQ0HqPdtxqNBrVabW0UjLS6bDLY29vj6elJVFTUsP5nRVEYGBiw7tRiNBpxdXVFp9Ph5OTEwMAA9fX1APj7++Pv7z+vdmyZcB+ui4vLmNLIzVVxcXHWnVQ7Ojpwd3fHw8MDo9FoTZc3HaPFYuZpbm4mLCwMLy8v9uzZM2eWk9/ah+vo6EhkZOSo2fmG7qF26/vnugkF3PnyQ7oTf39/0tPTSU9Pp7S0lPPnz/Pmm29SWlqKv78/aWlppKWlERsba93cb6rMpxt3tikvL+fChQsA1jmyc8VE77n5dM9OuEtBUZTbOvstI5Vz1WhLIU0mE1VVVeTn51s342tpacFgMODm5mbd+HLRokXTUW0xjV5//XXee+89Vq5cycaNG29b6CDmh0lb+DA0bs+mQbPJoigKGo2GqKgooqKiAMjPz+e9997jzJkztLW10djYCHw+OT00NBRnZ2dcXV3nTWq6+aq7u5vPPvuMkpISnnzySQm289ikbCJpaeWazWZrp734fJljT08Pra2t1NbWcvnyZTIzM6mvrycwMJDdu3ezZcuWYQlLQLoG5pLW1lbOnDnD2bNn6e/v55lnnhlx910xP0zaSrOhnebic46Ojjg6OuLj40NERARubm5oNBoKCwvp7e0lNzeX2tpagoKCiImJITo6Gj8/P/kZziF1dXUcPXoUDw8PHnzwwXk151TcbtKfZaV1NjIHBwdWrlzJypUr6ezsJDc3l0OHDvH222/T0dFBWloaO3bsYM2aNbi7uwPyx2s2UxQFk8lEeXk5ubm57N69m61bt46Ya3km7tIgpsakdCnA5yusBgcHh3UpWLoZht5IlsE0y7xUS2o4tVo9bKDNMjfRMgA30s1o6cq4tf94tAG7ofWxnHs8/adms3nYAOFodbNcZ2i5W6/T0dFBaWkplZWVVFdXU1VVRVNTE0ajkYSEBNavX8/KlSvn1RzFuURRFD7++GPOnz9PRUUFu3btYteuXXcsD7cHXWnAzC1TPlozdEDt1qTHiqLcFpCBYcHKUkatVt/2/pFW6Iy2nHZo2aH/tVz/bje1peyt17m1XqPV6dbreHp6kpycTHJyMs3NzRw7doxPPvmEiooK63VaW1uJiIhAp9Ph6+uLk5PTHesoZo7+/n7Onj1LaWkpqampd11NNVJOWlkoM/dMaQsXPr9pjEajdXnsUCaT6baBNkvLVqPRWIPTSK8ZjcZhLUxLkLW0Li15ECx1G/ra0Ja1yWS6a0vX0rId2nq2fF47O7thr43lOpb3Wo5Zlnf29vbS0NDAxYsXOXfuHBcvXsTPz48dO3ZYv7TS2pkdKisr+eEPf4jJZOKll14iLCxsuqskZoBpmY80tBU6NDAOPW4JcLe2LG8tN9Jg3d1avbeWHWtim6GGBtTRyo12HctSYUur19JydXFxwcvLC3t7ezw8PAgPD6e1tZXq6mr279+Pr68v8fHxJCQksGDBAnn8nKEKCws5efIk3t7eREdHD0vuIuY3mwTckQKDyWQa1jq8laXVZ3Hro/u9XH+kgDSRc47Wt3ynOsD/fhZLV4mF5TNbUkM+9NBDXL9+nSNHjnD06FHa29tZuXIl7e3tGI1GdDodWq3W+kdLgu3MkJOTw/vvv09qaipbt26d04uAxPhMecC1PEabzWZrfoGxBAZLuZncarNFvaKjo/nyl7/Mtm3bqK2tJS8vj4yMDF599VUWLVrEpk2b2LFjh+RrmET3OmvAbDbT19dHeXk5tbW1REVFzatMWOLuJpy8Bu5+Y1qOjyd7kaXlN5kb3I020+FeAufQboqxtJrH03Vh6RsGcHV1tU6UT0pKwtPTk4GBAYxGI11dXVy5csW6cs2ybYkE3+mh1+s5deoUjY2NJCUlER0dPd1VEjPMhAKuZUrWWJOyjCewDQ1QluuMtXU8lnNOlKVbZKQ6TeZ1LHl3NRoNGo2G++67j02bNtHT00NWVhYffvghv/3tb3F1dWXNmjU8/PDDJCcn3zXojjZzZKY+TdjKRH4GLS0t7N+/H51Ox/e+9z0iIiImt3Ji1ptwC9cSECxdB6PdrENzyVqy34+0BHhokm8LyyDTrfN5LUFvqJH6Vi3XubVf2HKeW2dVWAbshrayNRrNbde71+sMnc879I+JheXY0L4/y6wGy2tubm4sW7YMZ2dnFi1aRGNjI52dnRw8eJBDhw4RFhbG2rVrWbZsGVqtdlhdRgsq8znYTnTxgV6vp6ioiM7OThISEkhMTBxxkYOY3yacntEy+DNaAB1a1s7ODqPRCDBqq3hoOcuXYKT8DJZZArcmbx5pIM5yTss0tFtfH6mFeutsg6FTziZ6naFdK5ZrDe2eGDr32PL+kVrUvr6++Pr6sn79epqamvjkk0948803yc3NpaCggP7+fgwGA9HR0Xh7e+Po6IiTk9O8DqxT5dq1a1y9epWIiAji4uIk2IoRTWge7q1vHcsX2RJI77aB3GjTq+5WhzuVH2vZO636mYzr3On4SJ97LD+LwcFBenp66Orqoq6ujqKiIj755BNKSkpwcnJizZo1pKWlkZycLMmFpsAvfvELsrKyePzxx1m/fj0hISHTXSUxA9ksAfnQVtxYvvD3Mt1qqs85WXW60/F7fdS3bFDo4eFBaGgoOp0ORVFwd3entbWV+vp6PvzwQ3JycggPDycyMpLw8PB5uXPqZDIYDJSWllJXV4ejoyNLliyRYCtGNWkrze5mtJVoYnLd2jq3BIQTJ05w/PhxqqqqCAkJIT09nS1btgzbAFCMX1FRER988AHl5eUEBwfzxBNP4O3tDUhSGnG7KQ24Q5PFWPoth+5mKybfSANi/f391NbWUl5eTnl5OTU1NdZBNg8PDzZv3szatWtl+ek9yMjI4De/+Q0pKSns2bOHmJgYeWoQo7JJ8hoYnjNXTJ2RfsZOTk5ER0cTHR1tzcN78uRJqqqqqKysxMnJif7+fmJjYwkICMDb2xt3d3f5fd2B2WympaWFkpISenp6iIqKmtebqYqxmfIuhXsZWBPjM565o5ZkQn19fbS3t1NSUsKpU6fIzs6moaGBTZs2kZaWxn333WfNyytup9freeONN8jPz0er1bJ7926SkpJGLS/dCwJstLRXzBwqlQoHBwccHBzw8PDA29sbtVpNQEAAZWVlmM1mPv74YzIzM4mMjCQhIYHFixdL8L2FXq/n5MmTqNVq9u7de9dVZZO5YlLMXrJ74RwwkT9q7u7upKSkkJKSQkdHB0ePHuXo0aNkZWURFBRESkoKAwMDxMbGotVqcXR0nPd98EajkYqKCqqrq1m4cCGrVq3C3t7+rk8a0vgQNpulIGaH5uZm6uvraWhooLi4mIKCAgoLC3F1dWX9+vVs3bqVpUuXTnc1p9Xx48fJyMhArVazbt069uzZc1sZWSYtRiItXDGMn58ffn5+LFmyhJiYGNzd3dHr9dYBosHBQUpKSggODiYkJITAwMB5lX5QURSuXr3KxYsX+eEPf8j9999/x7ISdMVQEnDFqCIiIoiIiGDfvn0UFxdz4sQJDh8+zB//+EeSkpJIS0vjC1/4wm3bvM9VRqORmpoaamtrGRwcJCYmBl9f3xHLDl22LUFXWEiXghjV2bNnycrK4oEHHiA0NJSGhgYKCwspLi6ms7OTrq4uBgYGCAsLY8mSJaxatWpOB9+amhpeffVV6urqCA0N5fHHH7fu5iCzEMRYSAtXDKMoCl1dXZSWlrJ//37ef/99FEVh3759JCYmWhNqZ2ZmcvjwYTIyMigoKKChoQGTycTixYsJCAjA1dUVBweHOdXdUF5ezvHjx9mwYQNf+tKX8PLymu4qiVlGAq4Yprm5mePHj/Pcc89RWFiITqfD0dHxtnJLly4lMjKSr3/96xQWFnL16lX+/Oc/YzabiYmJIS0tjbVr1476yD2bKIpCZWUlBQUF2NvbExERwYIFC4aVuTXRkLR0xUgk4IphNBoNfn5+JCcnW/MCW3IBD00Z6eLigouLCzqdDp1Oh6urK4qiUFdXh8Fg4NNPP6W8vJywsDAiIiIIDQ3Fx8dnmj/dvTGbzXzyySd89tlnrFq1atiKssncJ0/MfdKHK0b1pz/9if379/P444+TlpZGWFjYXefg1tXVkZ2dzbvvvkt+fj7Ozs6sX7+e1NRUVq5ceVsy9Nmgo6ODH/3oR7S0tPCTn/yExMRE60IQGRQT4yEtXDEqR0fHcQeTwMBA1q5dS0BAABUVFVRVVVFXV8eBAwf4n//5H2JiYli/fj0rVqwY89ZMtjY0iDY2NnLlyhVMJhORkZEsXLjwtlV3EnTFWEnAFaMyGAzjXo6qUqms3Qzr1q2juLiY06dPc/78eYqKimhra0NRFLq7u4mOjsbT0xOtVjtjM2wVFBSQkZGBv78/K1euvK1bRJbsivGQgCvG5F43m4yIiOArX/kKO3fupLq6mmvXrnHhwgUOHjyIh4cHX/3qV0lJSSEyMnKqqj5uQz9bfn4+GRkZ/Ou//iupqakjdqlI61aMlQRcMaqhLbfxtOKGjtTb29tjb2+Pq6srfn5+aLVatFotERERtLW1kZ+fT1lZGd7e3tZEOTMhL6/BYCAvL4+amhqioqKIiYnBw8NjuqslZjkJuGJU97rV0GjH7e3tiYuLIy4ujv7+fi5evMh///d/k5WVhdFoZOvWrWzbtg2z2Yy/v791Hu90tCBbWlp488030ev1fOlLXyIqKsrmdRBzjwRcMS3Onz/PO++8Q15eHsuXL2fDhg00NjZy5MgR9u/fz+LFi9m8eTObN2+eltSQLS0tnD59mqSkJLZv345Op7N5HeYCGVAcTgKusKmenh5u3rxJVlYWnZ2dJCcn88ADD3D//fdz7do1604KtbW1ZGdn09HRQUREBDqdjuDgYNzc3Ka8jrW1tdy4cQMHBwfCw8MJDg4GJHjcC5VKRWdnJwUFBfT09ODk5ER4eDi+vr44OTlNd/VsTgKusKmcnBxefPFF/Pz82LlzJw888AB+fn6YzWYCAgJISUmhq6uLzMxMTpw4wXPPPYerqyvbtm1j9+7drFy5Eo1mam/b48ePc+HCBXbu3DksG5gE2/Gx/IEqLi7m5z//OVevXiUgIICnn36a7du3ExQUNO9+phJwxaicnZ3RaDS4urqi1WonlHjcaDRSXFxMTk4OAElJSWzcuBE/Pz8A1Gq1dVWbi4sLq1evxs3NjZiYGBobGzEYDPztb3/jnXfeITY2lhUrVrB06dJ7rtNordWOjg6uXbtGRUUFX//611m2bNm9fmTxDzqdjvT0dPR6PfX19Wi1Wjw9Pae7WtNCAq64zcDAAB0dHdTW1qLX66mqqqK8vBwHBwfc3NzuqVXS19fHyZMnKSkpIS4ujrVr194xs1hQUBBBQUFs3bqV2tpaMjIyOHToEOXl5ZSWltLd3c3g4CBBQUG4u7vj5OQ05pbvaDMuOjo6yM3NpbW1FU9PTxYtWoSzs/O4P6v4nOU+CQwMZO/evXR2dpKdnc2CBQtwdXWd5tpNDwm4Ypj+/n4uXLjAb37zG86dO0dfXx+/+MUvOHnyJN/97ne5//77rX2a4zEwMEBeXh4Gg4EtW7aMK69CQEAA6enpbNiwgdraWgoKCsjMzOTgwYNERUWxYcMGduzYcdu+YqMlkhntD0ZJSQmvvfaadbXcfA0Kk62zs5OrV69iMplYunTpjJj2N10k4IphVCoVrq6uRERE4OTkhKOjI52dnURGRuLp6XnP/acmk4mamhrc3NwIDw8f1+CXRqPB398ff39/YmNjrX2+llVeRUVF6PV6wsPDrf8CAgLG1eI1Go0UFRVRXFzMww8/zP333z9iljQxfn19fdYNSp2dnXnzzTet3VTLli2bV1PuJOCKYRwdHVm9ejWrVq267dhEBjjMZjOdnZ04Ojri4eExoWCWkJBAYmIiJpOJy5cvc+zYMd59913MZjNxcXHs2LGD1atXj3n12sDAAFeuXKGkpAQfHx9iYmKsfcti4oxGIy0tLQwMDKDX63nxxRepr68nLCyMn/3sZwQGBs6brhsJuGJEUzF6bDabgc8HyCZyfst7NRoNcXFxuLq6snTpUmuinOPHj3Py5EmCgoJITk5m+fLlhIaGDjvH0EGzwcFBDh06RGNjI+np6cTGxt5z3cTtenp6uHHjBm1tbYSHh/PMM8/Q3t7OpUuXaGtr4+rVq6xfv366q2kTEnCFzVhWjQ0ODk5awhd3d3frThStra1kZmaSkZFBSUkJNTU16PV69Ho98fHxBAQE4ObmdtvAX3V1NXl5efj6+rJlyxZCQkImpW7ic62trTQ3NwMQHR3N97//ffR6PX/6059Qq9WUlpZKwBXzhy12KbDkVVCr1ZhMJsxm86Rvv+Pp6cnmzZtZt24d9fX15Ofnc/78eV599VX0ej0rVqxg165dbNiwwZqdLC8vj08++QSdTsfSpUsJDg6eU9sCTSdFUWhoaKChoQFvb2+2bNnCY489hoODA01NTQQGBlqT3M8XEwq4svJmbrDF79DDwwNvb2+cnZ0xm81TkgvXzs4OV1dXXF1d8fb2JiwsDJ1OR2xsLJWVlZjNZjIzM8nPzycyMpLFixdz+vRpLly4wObNm0lJSZmxOXpnstHigKIoFBQUUF9fz4oVK1i1apV15kdHRweVlZUEBATMq73hJhRwVSoVZrMZo9GI2WyWvKBz1ERbwC4uLjQ3N2NnZ4fRaKS8vBytVoufnx8mk2kyqzqMRqNh7dq1JCUlUVNTw8cff8xHH33EtWvXCAkJYd++fZw6dYqSkhK+9rWvERQURG9vr+S4HQOVSoVarbY+tYzEbDZTUFBAU1MTqampwwYxm5qauHbtGps2bbqnaYaz1YS7FKqqqnjppZfIycmhra0NlUolrV4xjJ2dHX19fdy8eROVSsWlS5dwd3fHwcFhygKb5T7UaDSYzWb6+/tpbGykrq7OuvdaeXk5LS0tKIrCU089hY+PD4ODgyOeSwLw5xRFQVEUvL29WbZsGd/97neJiIgYsezg4CBVVVW0tLQQFBQ0bEPRzs5OGhsbcXZ2lmlh42E2mzEYDPT19VlbBxJwxVCKomBnZ0dSUhLwea5Zk8mE0Wi0yfUtrTGdTkdYWBh2dnbW+zY6Oho7Ozt6e3vp7u4e9f0ScD9n2UzUyckJg8FgnXlyK7PZTHNzM0ajETc3N3Q6nfWJ+MKFC9y8eZOYmBgiIyOnJRvcdJlwwA0PD+dXv/qVdSBEiNHcumvEdF17aB1u3d5c3J2iKNbuhNEyfrW2tlJaWoqPjw9eXl7WhS6dnZ386U9/ore3lyeffJLk5GRbVn3aTXjQzDJQIYSYn0YaNNNqteh0OkwmE6dPnyYnJwcXFxecnJxYsGABcXFxLF++HG9v72mq9fSY8KAZ2GZakRBiZhrpe+/k5ERUVBTe3t7U19eTkZGByWRi+fLl/Md//Adr1qyZhppOP5Uiz1JinpBpjLalKAqNjY00NzfT09ODoii4ubkRHR09b5+KJeCKecVoNJKfn091dTV6vR6TyYSiKAwODjI4OIi9vT2LFy9m4cKFsmnkBMgft5HJSjMxrxgMBo4cOcJbb71FQUEBAwMDt81CePzxx/nGN77BqlWr5uU2MOMx3hSY850EXDHn3Kl15ejoyM6dO1Gr1fz973/H0dGR+Ph44uPjUalUVFZWUlZWxl//+lccHBxYsmQJLi4uNv4Es8e9BNb5POYjAVfMSaMFXXt7e5YtW4a9vT05OTlERUWxe/duVq9eDUBBQQFPPfUUH3/8Mdu2bSMyMlICrpg0k5Y1wrICRYjpNpbFN5aVTu7u7ixcuND6ularRavV4ujoOK+SqtjSfF4cNWl31Hz9AYrZRVEUent7aWtrs+4+YZkL2tTUxLFjx6xbs4eHh8/bzQ7F1JjULgUJumKmUxSF6upqGhoa0Gq1w1Ix5ubm8v7776NSqVi9ejWLFi2SbXYmyXzutx1KpoWJeWVwcJCcnBzeeecd/vKXv+Do6Eh0dDTOzs7Exsaybt06QkNDCQwMtOZdEGKyyKCZmFfMZjNVVVU0NzcTEBBgzSLW1dWFWq1mxYoVhIWFya4PYkrIqICYV4xGo3XL7n//93/nxIkTnD59mv/8z//Ew8ODn//857z66qtUVlaOmqtXBojFvZKAK+aVrq4u6urqMBqNLFu2jMjISAIDA9m2bRtJSUkYDAZu3rzJjRs3MBgMI55jvvdDinsnAVfMG3q9nvr6egwGA87OzsOW7vr4+BAbG4ufnx9dXV3U1NTccTcKCbriXkjAFXPa0Ef/pqYmCgsL8fHxISYmBmdn52FlOzo6aG1txdnZmYCAABkws4H51j0jg2ZiThvaEm1tbSU/P5/Q0FCSk5OtK8jMZjPnzp3j7Nmz9PT0EBwczIIFC6w7+4qpM99205AWrpg3KisrycvLw8vLa9iGho2Njbz88st88MEHuLu7ExcXR0xMjOzgayPzqXtG5uGKOa2rq4sbN27w3nvvce7cOaqrq4mOjiY0NBRnZ2c0Gg1dXV189tlnhIaGsmfPHjZu3DivNjYUtiNdCmJO6+npITc3lxdeeME666C6uvq2ciEhITz00EM89thjtq6imEekhSuEEDYifbhCCGEjEnCFEMJGJOAKIYSNSMAVQggbkYArhBA2IgFXCCFsRAKuEELYiARcIYSwEQm4QghhIxJwhRDCRiTgCiGEjUjAFUIIG5GAK4QQNiIBVwghbEQCrhBC2IgEXCGEsBEJuEIIYSMScIUQwkYk4AohhI1IwBVCCBuRgCuEEDYiAVcIIWxEAq4QQtiIBFwhhLARCbhCCGEj/z/hJWsG0cJuFAAAAABJRU5ErkJggg==",
"path": "images_version_5/image_31.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, the straight line a parallel b, and AB perpendicular BC, then the degree of angle 1 is ()
Choices:
A:65°
B:25°
C:35°
D:45°
|
Như hình vẽ, đường thẳng a song song với đường thẳng b, và AB vuông góc với BC, thì số đo của góc 1 là ()
Lựa chọn:
A: 65°
B: 25°
C: 35°
D: 45°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the straight line a parallel b, and AB perpendicular BC, then the degree of angle 1 is ()
Choices:
A:65°
B:25°
C:35°
D:45°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the straight line a parallel b, and AB perpendicular BC, then the degree of angle 1 is ()
Choices:
A:65°
B:25°
C:35°
D:45°
|
As shown in the figure, the straight line a parallel b, and AB perpendicular BC, then the degree of angle 1 is ()
Choices:
A:65°
B:25°
C:35°
D:45°
|
155
|
31
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAA1EAAAIJCAYAAABEL7eEAADCDElEQVR4nOzdd3QVRcMG8Ce9kJBGKi0BQknovScU6R2kS1dAxBdFEREpAiqICoqISAfpSAm9JdRQkiBdesDQSWghlJT5/si3k3uT23NTgOd3Tg6XndnZ2b6zMztjIYQQICIiIiIiIoNY5nUGiIiIiIiIXicsRBERERERERmBhSgiIiIiIiIjsBBFRERERERkBBaiiIiIiIiIjMBCFBERERERkRFYiCIiIiIiIjICC1FERERERERGYCGKiIiIiIjICCxEERERERERGYGFKCIiIiIiIiOwEEVERERERGQEFqKIiIiIiIiMwEIUERERERGREViIIiIiIiIiMgILUUREREREREZgIYqIiIiIiMgILEQREREREREZgYUoIiIiIiIiI7AQpUG/fv1gYWEBf3//vM7KGyE0NBQWFhYIDQ3N66wY7HXMc2pqKmbOnImaNWuiYMGCsLCwgIWFBTp06AAAiIiIkNMiIiLyNK8ExMbGyv2xaNGivM7OW2vChAlyP+SU/Hru6bvOKXmeMGFCruaLXk/6np38/f1hYWGBfv365VgesnvM5sb14E22aNEiuf1iY2PzOjs5ziyFqIMHD8qNZmFhgf3795sjWSIyQo8ePTBixAgcP34cT58+zevsEBEREWVb06ZNZRmjcePGBs+nvCjS9GdjYwNPT0+EhIRg2rRpePjwodH5MkshasmSJTr/T5QfvMlvmA4fPow1a9YAAFq3bo1du3bh1KlTOH36NH755Zc8zt3bJTfetr5uuE3M402+hhERaRIXF4fw8HD5/4iICNy4cSPb6aakpODBgwfYv38/vvjiC5QrVw5HjhwxKg3r7Gbi5cuX8uHNyckJiYmJWLNmDX799Vc4ODhkN3l6A+Sn5itvqt27dwMArKyssHz5chQsWDBLnNDQUAghcjtrRPnahAkT2FxNC14viCivLVu2DGlpabC1tYUQAsnJyVi2bBnGjBljVDqnT59W+/+rV69w9epVLF26FJs2bcLdu3fRunVrXLhwAYUKFTIozWzXRG3cuBGPHj0CAMycORMA8OTJE2zcuDG7SRORgW7evAkA8Pb21liAIiIiInrdLF26FADQsmVLtGzZUm2aMcqXL6/2V7VqVXTp0gUbN25Enz59AAAJCQmYP3++wWlmuxC1ePFiAEBQUBAGDBiAoKAgAGzSR5SbXr58CQCwsbHJ45wQERERZd/x48dx7tw5AECvXr3Qq1cvAMC///6LY8eOmW05o0aNkr+PHj1q8HzZKkTdu3cPO3fuBAD07t0bAOQK7ty5E3fv3tWbxq1btzB69GhUrVoVLi4usLW1hY+PDypUqIAePXpg0aJFePLkiUn5S01NxaJFi9C8eXP4+PjA1tYWrq6uCAwMRJMmTfDtt9/KnaPLo0ePMG7cOAQHB6NAgQJwdXVFw4YN8ddffxmUj9OnT+ODDz5AYGAgHB0d4ezsjODgYHzyySdaey9Zs2aNbPt+4cIFjXFKlSol46xbt05jnA4dOsDCwgI1atRQm565B5W0tDTMnTsXdevWhZubGwoUKICKFStiypQpSEpKMmg9tdHVA5SmHsp27dqFtm3bwsfHB3Z2dggICMDQoUMRFxdn0vKVdZ04caKcpukjQ109ydy8eROffvopSpUqBQcHB3h4eKB58+bYtm2bQXl4+PAhJk+ejDp16qBQoUKws7ODn58f2rdvj7///tuk9VJdD+VlxvXr17Osl8LQHsKuX7+OIUOGwN/fH/b29vDz80OHDh1km2Rd32UY0+Ocru9kMh+fL1++xIwZM1C7dm0UKlRIa+9LKSkpmD9/Plq1agU/Pz/Y2dmhUKFCaNiwIWbMmIEXL17ozFN2KMf59evXAaS/YMq8L/T19pjdY//YsWN4//33Ubp0aTg5OaFAgQIoW7Yshg0bhkuXLmV3FY2+Xhu7TTQdP3///bfcn9bW1lm24ZEjRzB27FiEhobK63zBggURFBSEoUOH6r3GG/qd0YEDB9CpUyd4e3vD3t4eJUqUwJAhQ3D58mW1dTW0R8/Vq1ejSZMm8PT0hIODA8qUKYNRo0YhISEhS1xzXMNMoaunM3PfQ4QQWLt2LTp37oyiRYvC3t4ebm5uqFmzJiZNmiRbvJgqLS0Ne/fuxWeffYZ69eqhUKFCsLGxgaurKypXrozPPvvMLN9ZZL6uHT9+HD169JDrVLRoUfTr1w/nz5/Xmc7t27cxe/ZsdOnSBYGBgShQoADs7OxQuHBhtG/fHqtWrUJaWprW+TNf79PS0rBgwQI0atQI3t7esLS0VLv25tb2MURcXBy+/PJLVK1aFW5ubrC3t0exYsXQrVs3tW9jcsOjR48wfvx4BAcHw8nJCe7u7ggNDTX4+S+7Hj58iIULF6J3794ICgqCk5OTvO42b94cc+fOxatXr7TOb+5nrIcPH2L06NEoW7YsHBwc4OXlhaZNm8rPesxNqZBxcXFB27Zt0a5dO9naxpyVNao9Shr1nCCy4aeffhIAhIWFhbh+/boQQojY2FhhYWEhAIgff/xR5/z79+8XBQsWFAB0/oWFhRmdt6dPn4oGDRroTbtz585Z5u3bt68AIIoXLy7Onz8v/P39tc4/bNgwnfn49ttvhaWlpdb57ezsxOLFi7PMd+/ePRnn999/zxIeFxenNx9paWnC3d1dABAjR45UC1u4cKGc98yZM6Jx48Za81izZk2RmJiob5NrFRISIgCIkJCQLGHXrl2Ty1m4cKH44osvtObD09NTnDt3zujlq66rrr9r165pzPOBAweEh4eH1vl++OEHncvfsmWLcHV11bns1q1bi6dPnxq9boaslyI8PFxOCw8P15jezp07RYECBTSmY2FhIaZMmSLGjx+fJW1F5v2pS/HixQUA0bdv3yxhqvvs+PHjonLlylnyM378eLV5Ll++LIKCgnRui8DAQHHx4kV9m9UkyjGj60/1HDDnsZ+cnCyGDh2qc9k2NjZi7ty5Jq+fKdfr7GyTBQsWiPfee09nfEPObSsrK/Hbb79pXS9dx7Ni8uTJ8r6W+c/Z2Vns2LFD53VO9dzbvXu36Nmzp9b8lipVSty+fVttflOuYYbQlWchMq4vmc+1zHnK7j3k3r17ol69ejrXzdvbWxw5csSo9VOlup+1/Tk6Ooq///7b5GUIoX5dmz9/vrC2tta4LDs7O7Fy5UqNaaSkpOh8blD+3nnnHa33DdVjbtu2baJp06ZZ5le99ppj+6g+O+nbNtrMmzdPODg46MzHwIEDRXJyssb5dR2zhlDdDlevXhUlS5bUmo8uXbpozYe5KNtM11+VKlWyXDMU5rzPnD17Vvj6+mqdf8CAAWrXBWOvR5m9evVKFCpUSKat6N+/vwAgPDw8xKtXr3SmoXoP0uXMmTMy3uDBgw3OY7YKUZUqVRIARMOGDdWmK4WXSpUqaZ33xYsXws/PT96ERo0aJbZt2yaio6PFkSNHxKpVq8SIESNE0aJFTSpEjRw5Um6QNm3aiBUrVohDhw6J6OhosX37djF16lTRoEED0aVLlyzzKhcCT09PERgYKJydncXYsWNFRESEiIqKEn/++acoUqSITH/79u0a8/Dbb7+pHZzTp08XkZGR4uDBg2LChAnyYdXCwkJs2bIly/zlypUTAES3bt2yhC1dulTt4A0ODs4S58SJEzI88zZUPdDr1q0rLC0tRd++fcWWLVtEdHS0WL9+vahTp46MM3r0aEM3fRaGFqLq1q0r4y1fvlxERUWJ3bt3iz59+sg4tWvXNnr5Dx8+FKdPn1Z7yDx9+nSWP9WTUclz6dKlRaFChYSXl5f4/vvvxcGDB8WxY8fETz/9JAtG1tbW4syZMxqXvXPnTmFlZSUACH9/fzF16lQREREhYmJiRFhYmOjdu7fMU6dOnYxeNyXv7du3FwCEn59flvVS6CtEXbp0STg6Ogog/cFz2LBhYs+ePeL48eNi4cKFsoBSs2ZNrRelnChEVaxYUVhYWIg+ffqoHZ9bt26V8W/duiW8vb3l9WTkyJFi27ZtIiYmRoSHh4svv/xSrluJEiXEo0ePDN7Ghrp69ao4ffq0vK61b98+y764evWqjG/OY181XsuWLcWyZcvEsWPHxPHjx8Wff/4pgoODZfimTZuMXjdTr9fZ2SYVK1YUAESDBg3Utsm8efNk/D///FO4ubmJvn37igULFogDBw6ImJgYsXnzZvHNN9/IG7CFhYXYs2ePxnXTV4havny5DHdzcxPff/+9OHz4sDh8+LCYOnWqcHNzE25ubqJ06dJar3Oq556yrzt06CD+/vtvER0dLbZu3Spat24t43Tv3l1tflOuYYYwVyEqO/eQxMREea+ztbUVgwcPFhs3bhQxMTHiwIEDYsqUKfIllpubm4iNjTVqHRVfffWV8PX1FR9++KFYunSpfB7YsGGDGDVqlHBychIAhL29vUkv6xTKda1SpUrCxsZG+Pn5iV9//VUcPXpU7Nu3T3zxxRfCzs5O3juOHj2aJY3k5GRhaWkpGjduLH744Qexfft2ER0dLSIiIsSCBQvUtmufPn005kP1mFPOpXbt2qkdc6qFOHNsn+wWoubPny/zXL58efHrr7+KgwcPipiYGLFu3TrRqlUrGf7pp59qTEPXMWsI1etBjRo1hKWlpRgyZIjYvXu3OH78uJg/f7481wGI4cOHm7QcQxUpUkTUqlVLTJo0SWzevFkcP35cHDp0SCxbtky0aNFC5kPbOWyu+8yjR4/Unnu7desmtm7dKqKiosTy5ctF9erV5TYzVyFq/fr1Mq29e/fK6Xv27JHT169frzMNQwtR/fr1k/E0PY9rY3Ih6tSpU3KBmd9u/vHHHzLs1KlTGudX3Qi6CknJycni8ePHRuevaNGiAoDGQpKq+Pj4LNOUCwEA4erqqvEB+dKlS8Le3l5emDK7d++efGjz8/MTN27cyBInJiZGFqQKFy6c5Qao3DB9fHyyzDtw4EC5bOUh4d69e2pxfv75ZwFAWFpaiocPH6qFZX6zuXTp0izLePHihShfvrwA0kv8pr5xMbQQBUC8//77Ii0tLUu8QYMGyTgxMTEm5cOQN86Z86zcEOLi4rLEOXDggHw7/fHHH2cJT0xMlA/2zZo1E8+ePdO4rLlz58pl7d692/gVE/pvXkLoL0QpxxIAsWbNmizhz549UytA5VYhCoCYP3++zrTatGkjAIiiRYuKK1euaIyjer6NHTtWZ3rZYcjbViHMd+yvXbtWhv/5558al/X8+XNZU+Dv72/0uZzd67Wp26RPnz4at4kiLi5O63klRPqNX3mArF+/vsY4uq4LL168EF5eXgKAcHd3FxcuXMgS58KFC7LG35BCFAAxefLkLHHS0tJEs2bN5MN15uu5vryawlyFqOzcQz766CMBQLi4uIjjx49rzEdsbKx8A967d2+j1lFx7do1nYXM//77TxQuXDhbyxBCveagePHiGmsI9u7dK2uoqlevniU8LS1NXLp0Sedyxo0bJ+/9mmrXMx9zX3/9tc70zLF9slOIunHjhnxm6tu3r9Zr1JgxY+Rzjabz0ZyFKABi+fLlWeI8efJEViJYWlpqfc41B30tJxYsWKDz+cFc95lPP/1Uhn/77bdZwl+9eiWvX+YqRHXs2FEAEEWKFBGpqalyempqqizQdezYUWcaqs9ymV86RUdHi3Xr1snlGFJmyMzkK7FS02NnZ5flAf3hw4fyTUvmZmSKv/76S2balEKSPjY2NgKAmDlzptHzqhaifvnlF63xunfvLoD0t2OZTZ06VaaxYsUKrWlMnjxZxlu9erVa2MqVK2XY+fPn1cJKlSolH3ZLlCih8cG3Q4cOAoCoWrVqluWq3gB11YDMmTNHxjt58qTWeLoYWojy9fUVL1680JjGv//+K+OZsk+FML0QpevNfe3atQWQXp2e2a+//iqA9Dd3d+/e1bk8pXDSq1cv/SuiQXYLUXFxcbL5iK6L0j///JPrhajGjRvrTOf06dMy7saNG3XGHTVqlADSX2zkFFMKDNk59qtVq2bQzeTcuXMynV27dhm8PkJk/3ptyjZxdXUVT548MXpZmW3YsEGm+eDBgyzhuq4LK1asMOi6M3PmTIMLUdWqVdNaMNy+fbvOYzm/FqJMvYfcv39fvozUd12fPXu2ANKbpeoqOGfHjBkzBABRsGBBnYV3XVQLUWvXrtUaT7VW8dixY0YvJyUlRda0Tp8+PUu46jFXunRpkZKSYvQyMtO3fbJTiFKeKf38/MTz58+15iE5OVkW5r766qss4eYsRLVp00ZrvKNHj8p4H374oUnLMpcqVaoIAOKjjz7KEmaO+8yLFy+Em5ubANJrNVULNKr+++8/+eyd3UJUfHy8sLW1FQDEqFGjsoR//vnnAkivvdZUGaIwpEm5co7MmzdP67ppY1LHEqmpqVi+fDmA9IE9XV1d1cJdXV3RqlUrAMDy5cuRmpqaJQ1fX1/5e+HChaZkQycl/VWrVpncMYKFhQV69uypNbxatWoA0j+0y/zRqzJuj6urKzp37qw1jUGDBmWZR6H6gbJqRwA3b97E5cuXYWFhgZCQEBlPNY4QAvv37wcAhISEaF0+kNEZiCbKOgLA1atXdaaTXV26dIGdnZ3GsDJlysDJySlX8qHK1dUVrVu31hqubB9NeVK6+Q8JCYGXl5fO5TRs2BAAEBkZaWpWs0X58BgA+vbtqzVepUqVUKlSpdzKFgDdxyeQsZ0dHR117isgYzvfunUL//33n3kyaAamHvs3b95EdHQ0AKBr1646l1GuXDk59oWxx1lOX681adu2LZydnY2a59mzZ4iNjcXZs2dx5swZnDlzRq3HypMnTxqV3p49ewAAlpaWeO+997TG6927t8ED4Pbs2VNr3Ny83pqTqfeQHTt2yI+49R2/yrmbnJwsj/nsePLkCa5du6Z2rDg6OqqFZYebmxvat2+vNXzAgAHyd+Z7f2ZpaWm4desWLly4IPN6/vx5FClSBID+47pbt26wsrIyIvc5v30yU67jbdu2hb29vdZ41tbWqFOnDoCcv1/2799fa1jNmjURHBwMQP/+MxchBO7cuYOLFy/KfXLmzBn4+fkB0H8cmHqfiY6OxsOHDwGkPx9YWmouOhQpUgTNmjUzap20WblypewwQ+m4TpUy7dWrV1i1alW2l3fx4kUsWLAAhw8fNmo+kwpRO3fuxO3btwFoXjnV6bdv39Z4gNWvXx8lSpQAAIwYMQI1a9bEd999h8OHD+vsacRQyoPg4cOHERAQgI8++gjr16/H/fv3DU6jUKFC8PDw0Bru7u4ufz99+lQt7MyZMwCAKlWq6Ox22tvbW/YKosyjGlamTBkA6gUk5XdQUBA8PT01FqJOnTole3nS11tU2bJltYbpWkdz05UPIP2mlBv5UBUYGKj1ggFkbB9NeYqKigKQ/qCgqSct1b/p06cDAO7cuZMDa6Gf6rGn+tCjSfXq1XM6O2oqVqyoM1zZzklJSbC2tta5ndu0aSPny6ttrYmpx76y7gDQo0cPvcfZgwcPABi/7jl9vdZE335XPHjwAGPGjEGZMmXg7OyMgIAAlC9fHhUqVECFChXUCtbK+htKOS8CAgLkPtDE3d1dbh998sv11pxMXSfV49fX11fnsVu+fHkZ19Rz9/r16xg+fDj8/f3h4uKCEiVKqB0rH3zwgYxr7LGSWZUqVWBtba01vHLlyrC1tQWQ9d4PpD8wL1u2DI0aNYKTkxMKFy6MsmXLyrxWqFAB//zzj0F5NfRcys3to+rx48eyl8s//vhD73Vs7dq1AHL+Gp65V+PMatasCQC4dOlSjl0HAWDLli1o06YNXFxc4OvrizJlyqgdB1u2bAGgf5+Yep9RHaTW0G2SXUqPwxUrVkSFChWyhKtON7SXPpHe+k7+paam4u7du1i3bh0qVaqEw4cPo2nTpli/fr3B+TSpEKVkWNdbetUaKk0raGNjg7CwMJQrVw5AejegY8aMQb169eDq6oqWLVtqrcUyxNdff40BAwbAwsIC9+7dw2+//Sa7p61QoQLGjx+vtwt25a2LNqoP15nzqRRgvL299ebVx8dHbR5VSgFo3759cppSWFLCGjVqBAA4d+6cLCQqcSwtLdGgQQOdy9e1nrrW0dwM3d45nQ9VhuYpc1ezycnJJnXJm93u5E2lvGUCoLfWzNPTM6ezo0bXwyuQPtSCKfJqW2ti6rGfW+ue09drTfTtdyD9DWnZsmXx3Xff4eLFixBC6Iz//Plzo/KgnBf6zgnA8PMiv1xvzcnUdcrNc3fbtm0ICgrCrFmzZJf7uhh7rGSm75ixtraWBczM9/4XL16gdevWeO+99xAREaE3L/rCDTmXcnv7qMqv13B9+1B5vhNCqN1DzUUIgUGDBqFNmzbYsmWL3hcr+vaJqfcZY54PDHnm1efixYtyDChtFTWqYUeOHDFpCA9LS0t4eXmhU6dOOHjwIEqXLo2XL1+iX79+Bu9P7a9JtHjy5Imsdn306JHWqkFVGzZswNOnT7M0zQgKCsLp06cRFhaGsLAw7Nu3D1euXMHz58+xfft2bN++HT/99BO2bt1q0E1MlY2NDebPn4+RI0dixYoV2Lt3L6KiovDq1StZBfrTTz9h2bJlOqvcs8uQJh66bvwhISH4448/cOfOHfz7778oW7asLFAphagiRYqgRIkSuHr1Kvbt24cuXbrIOBUrVjToAkrmpXoR6tq1K77++us8zM3rTV8zFGVbBwQEYNOmTQanGxAQkK185Qeqx9lff/1l8BtnU64JOXm91kTffn/16hW6du2K+Ph42NjYYPjw4Wjfvj1Kly4NNzc3eW+6evUqSpYsCUD3tZZyn3L82traGtVET2nGZqj4+Hj07NkTSUlJcHJywmeffYbmzZujZMmScrwzANi7dy+aNGkCIPvHSnbu/VOmTJFjEIaEhGDYsGGoWrUqfHx84ODgIB92GzZsiAMHDujNq75zKS+2jyrV69iIESMwcOBAg+ZT8pVT9O3DnL6eLFiwAPPnzweQXnM5YsQI1KpVC4ULF4ajo6Pcr3369MHSpUtzLD+q6ebGNlFqoYD0QXBVB8LVZsmSJZg0aZLJy3RycsLQoUPxySef4MmTJ1i7di3ef/99vfMZXYhavXq10W8gkpKSsHbtWo3tS62srNChQwd06NABQHrzv23btmH27NmIjo5GdHQ0Bg8ebFT1mqqgoCBMmjQJkyZNwvPnz3Ho0CEsX74cS5YsQWJiInr06IErV66otfk3B3d3d9y+fdug6malRky12YMi83dRBQsWxKVLl+T3UKrxrl69ioiICHTu3Nng76EoZ9jb28PR0RFJSUl49OiRWlOU/Ej1ofrevXs6H1J0NYlVfeusayBIIP37FXNQmtzevXsXZcuW1dmE5k2j2tw4c5OnnJDT12tj7N27V7bd/+2337Te8LLzhlg5Lwx5U25MU3FKpxy/r169goeHh9nvw4o1a9bIlgF///033nnnHY3xzFmboK+lS0pKilye6r1fCIF58+YBSG9Gu3fvXq1Nys2V37zYPqpUr2NJSUn55n559+5dFC1aVGu4cl2wsLDIkZfVf/75JwCgZMmSOHz4MBwcHDTGy6n9olA9Pu/evYvSpUtrjWtqraJCacZqrGXLluGbb74x+NtUTVSbO6o2YdTF6OZ8StM8X19frFixQu9fsWLF1ObTx9fXFwMGDEBkZCSqVq0KANi8ebNZqo4dHBzQtGlTLFiwAD/88AOA9OrPzZs3ZzvtzJSLwIkTJ5CcnKw13r1792TVuaYLh6+vLwIDAwGkF6Iyfw+lUP0u6vTp04iPj1ebToa9GTSnKlWqAAAOHTqUr5qOaaJ8IAuof6egia5w1dpmXRf2+Ph4s7WpV7ZzUlISDh06ZJY0syM3jzNl3YH0b1Vzm6HX65zYJmfPnpW/u3fvrjWevuNZF+W8uHbtmsbm1oqEhIRc6Qgit69hOS23jl/lWHF3d9daQACyd6xk9s8//yAlJUVr+MmTJ+V3NKr3/oSEBPnytWvXrloLUImJibhw4YJZ8poX20eVp6cnChcuDCC9k4b8UmN8/Phxg8IDAwNzpFZM2S/t27fXWoASQiAmJsbsy1al+k2SodvEVOHh4bhx4wYAYPjw4XrLGJ9++ikAIDY2VlYemEr1fNX13K7KqELUtWvXcPDgQQBA586d0b17d71/7777LoD0b3qUDWMIGxsbWYuSkpJi0vcluihV0oB5P5BUNG3aFEB6k8d169ZpjTd//nx5wVDmyUz1u6jM30MpVL+LWrNmDYD0G66+76HeJqo9/rx8+TLHl9euXTsA6TUuv/32W44vLzsaNWokb9a6XnicPHlSZw9Abm5u8ltIXTfcFStWmJZRDVSb406bNs1s6ZpKOc5y4xgrVaoUgoKCAKT3ZmTMNdac9F2vc2KbqN7wtL2kSEtLw9y5c01ehnKfSEtL0/l2dNmyZbny4Jfb17Cc1rJlS9nx0s8//6yz0JEdSrovX77UWkOelJRk8MteQyQkJCAsLExr+IIFC+Rv1Xu/Icc1kP7sYOiDnj55sX0yU+6XV69elR1H5DXVZmWZRUVFyQ5BtD27ZZeyX3QdB5s2bcKtW7dyZPmKatWqyZo2Xc0Gb968me2XIcoxZmVlhbFjx+otY4wdO1ZeQ7J7fKoWAHXVQKoyqhCluvG6dOli0DxKPCEEli5dKqcfOHBA9saiyatXr+R3PU5OTkZ9zJ6QkIBNmzbpvKmp7uic+Daif//+8iO+kSNHauxO+eTJk/j2228BAIULF5ZNZDJTHk7u3LmD1atXA8haiFK+ixJC4NdffwWQ/vZAV++CbxvVpiJXrlzJ8eUNGTJEdin99ddfyzbu2hw6dCjbb1JMVbhwYdlJzPr16zXexJ4/f67WO5M2SlfEGzdu1Lidz58/j3HjxmUzxxlq1Kghu1XdunUrxo8frzN+bGys1kKc0vuT0mOmKZTjLDeOMQAYO3YsgPSP0Tt16qSzWdnLly8xe/Zs2a20obJ7vc6JbaLU0APaH3a+/PLLbL2l7dixo/y+a+LEiRo/Xr506RImTpxo8jKMkdvXsJxWuHBh2cz/5MmTGDx4sM6C1L1792RTN2Mox8qzZ880XttSU1MxaNAgsz+Mfvrppxqb9e3bt08W7qtVq6bW45mnp6d8EaXazbOq48ePy/PeHPJq+6j6/PPP5XeMQ4YM0VvrtXXrVpw6dSrH8gOkF1CUZy5ViYmJ8l5oaWmJwYMHZ4kTGxsr7yemtghS9ktYWJjGlh1XrlzBhx9+aFLaxrCzs5Pn6T///CNbcqlKSUnB+++/n61eCpOSkmSlQ4MGDQz6ttbNzQ2NGzcGAKxdu9bkVmvXr1/H7Nmz5f+VYZr0MboQBaT3zmFoDUetWrXk9xWqhag9e/agTJkyCA0NxQ8//IAdO3YgJiYGhw4dwsKFC9GgQQN58xs0aJBR3zk8efIE7du3R4kSJTBy5EisXr0aR48eRXR0NDZv3ozBgwfjiy++AJBe+Gjbtq3BaRvK09NTHmi3bt1C9erV8fPPP+Po0aM4fPgwvvnmG9SvXx+JiYmwsLDA3LlztXaFrnoCPn78OMv3UJnjPX78GAC/h8qsbt268vcnn3yC/fv349KlS7h8+TIuX75s9regBQsWxIoVK2BtbY2XL1+iTZs26Nq1K1atWoWoqChERUUhLCwMEyZMQKVKlVC/fv0cvyno8tNPP8mCf/fu3TF8+HCEh4cjOjoaixcvRvXq1XHs2DG9XZwqF/Xnz58jNDQU8+fPR0xMDPbv349x48ahdu3a8PDwMGsvfwsXLpQPmN988w1q166NuXPnIjIyEidOnMDu3bvx008/oVmzZihVqpTO2uHsUo6z48eP4/vvv8fJkyflMXbz5k2zL69Hjx5ySIfo6GgEBQVh7Nix2LVrF/755x8cOnQIS5Yswfvvvw8/Pz8MGzbM6GM9u9frnNgmzZs3lzfZr776CsOGDcOOHTsQHR2NVatWoWnTppg2bRrq1atnUvpAes3PjBkzAKS/nKtVqxamTZuGI0eO4MiRI5g2bRpq166NtLQ0+cCTk03ucvsalht+/PFH2ZxtwYIFqFSpEmbOnImDBw/in3/+QUREBH777Td07NgRRYsWxZw5c4xeRteuXeUDer9+/TBmzBjZ2dTixYtRq1YtrFixIlvHSmaVKlXCzZs3Ua1aNfz22284fvw4Dh48iDFjxqBFixZISUmBtbV1llYKlpaWctytf/75Bw0aNMDKlSsRFRWFPXv2YOTIkWjYsCHs7e11fptijLzYPpkFBATIfZuQkIB69eph0KBB2LBhA2JiYnDs2DH8/fffGD16NEqVKoXWrVvneM179erV0bNnTwwbNkzeCxcuXIjq1avjxIkTAIBhw4YZ3KGPsfr06QMgvYanbt26WLhwIY4dO4b9+/djwoQJqFatGhISEmRT6pw0btw4+Sz/xRdfoGfPnti+fTtiYmKwcuVK1K1bF9u2bdP7fKDLunXrkJiYCAA6x1fNTIn75MkTbNiwQWs81bG1zpw5g1OnTiE8PBzffPMNqlWrJlul9erVC5UrVzZs4YaOynvw4EE5su/gwYONGtH3448/lvMeOXJECKE+KrSuv06dOukcvVoT1RGadf0VLlxYxMTEZJlf36jbCtUR27WNzDxlyhRhaWmpNQ92dnZi8eLFetepZMmScp7g4GCNcZYsWaKW9rp167KVdyHUt+XChQv15lMTZcTokJCQbKWva7RzQ3Xt2lXrvlDdDrryrEr1ONZmz549wsfHx6Bj0pBjQRNDjlnVEezDw8M1xtm5c6coUKCA1vyNHz9efP311wKAsLe317os1XM+81/RokXF2bNnde5PQ49PVbGxsaJGjRoGbef+/ftnmT8pKUmGV61a1aBlahIXFyfc3d01Llf1eDLnsZ+SkiJGjRolrKys9K57gQIFRFJSklHrlN3rdU5sEyGE2L59u7C3t9ean9DQUHHmzBmdaRpyDk+ePFlYWFhoXIajo6PYsmWLaNCggQAgWrRokWV+Q849heq5pomh1zBD6LvO6cqLOe8h8fHxokWLFgYdY40aNTJqHRULFizQeS/u1q2b2L17t8H7SRvVc/XPP/8U1tbWGpdna2srVqxYoTGNR48eicqVK2vNq7u7u9i3b5/O/WfMMWeu7aPvPmTIPXzlypWiYMGCeo8DS0tLsXfv3izz6zt/9FG9Hly9elUEBARozUPnzp1FcnKyxnTOnTundl00xatXr0SzZs20Lt/BwUGsXr1a53Y3533mzJkzOp9l+vfvb9K9W9G0aVMBQFhYWIibN28aPN/9+/flvS/z9Vc5Rwz969atm3jx4oXByza4Jkq1raExJcTM8ZV0Ro0aha1bt+KTTz5B7dq1UaxYMdjb28Pe3h7+/v7o1q0btmzZgnXr1ukcvVqT4sWLyyrHli1bokyZMnB1dYW1tTUKFSqEkJAQTJ8+HefPn1f7sDUnjBkzBidOnMD777+PkiVLwsHBAQUKFEC5cuXwv//9D//++69826CLam2Utqph5bsoIP1tqNKsijIsW7YM06ZNQ82aNeHi4qJzIF1zady4Ma5cuYJZs2ahRYsW8PX1ha2tLezt7VG0aFE0a9YMU6ZMMfhYyEnvvPMOzpw5g8GDB6N48eKwtbWFt7c3Wrduje3bt2PChAl48uQJAMDFxUVrOjNnzsTy5cvRsGFDFCxYEA4ODihTpgxGjx6NEydOyO94zKl48eI4evQo1q9fj+7duyMgIACOjo6wsbGBp6cn6tati5EjR2Lfvn2y21hVkZGR8vcnn3xicj4KFy6MY8eOYeDAgShVqpTR1y9TWFlZYerUqTh37hxGjhyJKlWqwM3NDVZWVnB2dkZwcDB69eqFxYsX4/bt21o/UtYmu9frnNomzZs3R1RUFHr37g0/Pz+5r0NCQjB37lzs2bMHBQoUyPZyvvrqK+zbtw8dOnSAl5cX7OzsULx4cQwYMABRUVFo1aqVQeeFOeTFNSynubu7Y9u2bdizZw/69++PwMBAODk5ybGUatSogWHDhmHr1q3YtWuXScvo378/Dhw4gA4dOsDT0xM2Njbw9fVFixYtsGrVKqxcuVJvV+DGGjRoEA4cOICuXbvCz88Ptra2KFy4MPr06YMTJ05o7RDFxcUFhw4dwqRJk1ChQgXY29vDyckJ5cqVw2effYaTJ0+a/f6eF9tHk27duiE2Nhbff/89QkND4eXlBRsbGzg6OqJEiRJo27YtfvrpJ8TGxqo98+SEgIAAREdHY8yYMShXrhwcHR3h4uKChg0bYtmyZVi7dq3WVlLmuJ/Y2Nhgy5Yt+OWXX1C9enU4OjrCwcEBpUqVwpAhQxATEyP7HcgNwcHBOHv2LEaNGoXAwEDY2dmhUKFCaNSoEZYvX672nZ+xbt68ib179wIA6tSpAz8/P4PnLVSokDwfdu3aZfAgzBYWFnB2dkZQUBAGDhyIffv2YeXKlQYN3STTECKfdINCRK+Fpk2bYs+ePahfvz4OHDiQ19kxmwkTJmDixIkIDAzE+fPnc+WBgd4MycnJcHFxwfPnzzF27NhsjVdCrzd/f39cv34dffv2xaJFi/I6O5RH+vXrh8WLF6NRo0aycEBvntf/FRYR5Zpbt27Jzi9q166dx7kxL6VjhDFjxrAARUbZsGGD/KD5TTsviMh4yv3EnJ0oUf7DQhQRSbp6YHv+/Dn69esnu9XN66aH5vTq1SscPXoUAQEB6N27d15nh/IZXedFbGysHKvE29sbzZs3z61sEVE+FBcXh9jYWDRo0IBjdb7hDO/yjojeeIMGDcKzZ8/QtWtXVKtWDe7u7nj69CmioqIwe/Zs+TA5cOBAtQH4Xne2trb5fkBkyjtly5ZFq1at0KZNGwQHB6NAgQK4d+8ewsPDMWfOHDku1vTp043qSZaI3jxFihTJNwMGU87i1Z6I1Cjdr2vTsWNHORYZ0dsgNTUVYWFhWgdPtbS0xOTJk1mLSUT0FmEhioikn376CevXr8fevXsRFxeH+/fvQwgBLy8v1K5dG3369JGD8hK9LcLCwrBt2zYcPnwYd+/eRXx8POzs7FC4cGGEhoZi2LBhcqwjIiJ6O7B3PiIiIiIiIiOwYwkiIiIiIiIjsBBFRERERERkBBaiiIiIiIiIjMBC1FsgNDQUFhYWGscriI2NhYWFBSwsLPLt6OoTJkyQeaTXz6JFi+T+i42Nzevs5DsRERFy+0REROR1dsyG5+2b5dChQ+jYsSN8fHxgbW0t963SvfvbSNe99U2UX87p5ORklClTBhYWFli1alWW8FatWsHCwgLjx4/Pg9zR24SFKKIcoPpgrOnPyckJpUuXRt++fY1+cBZCICwsDEOGDEGFChXg5eUFGxsbuLu7o0KFChgwYAA2bNggB8UlIsqOsLAwhISEYMOGDbh79y5SU1PzOkuk4uXLlzhy5Ah+/fVXvPfeeyhTpgwsLS3zRYEnJ/z666+4ePEiypUrh3fffTdL+Lhx4wAAP/zwA/7777/czh69RViIIsoDz549w6VLl7BkyRI0atQIAwcONOjB5ODBg6hSpQratWuHP/74A2fOnMH9+/eRkpKChw8f4syZM1i4cCE6duwIf3//HKtdfB1qMPOasn0mTJiQ11khypaRI0ciNTUVfn5+WLJkCaKjo3H69GmcPn0aBQsWzOvsvfWGDBmCOnXq4OOPP8ayZctw8eLFN3aw18TERHz33XcA0gtLlpZZH2Nr166Nd955B8+fP8fkyZNzO4v0FmEh6i3n7+8PIQSEEOjXr19eZ+eNNHToUPnAcfr0aZw6dQoRERH47rvv4OXlBQBYsGABvvnmG53pLF26FI0bN8bJkycBALVq1cK0adOwc+dOREdHY+/evfjzzz/RsWNH2Nra4tatWxgxYkROrx4RvcFu3LiBS5cuAQDGjBmD9957D1WrVkX58uVRvnx5jQ+xlLtUC0zOzs4ICQmBj4+P2ZczYcIE+byQV37//Xc8ePAARYsWRdeuXbXGGzlyJABg4cKFuHnzZm5lj94yHGyXKId5eXlpHIgzJCQE7dq1Q/Xq1fH8+XPMmDEDY8eOhY2NTZa4ERER6N+/P1JTU+Ho6IiFCxdqvIE0atQIgwYNQmxsLL744gvs2LEjR9aJiN4Oqg+gpUuXzsOckDYtW7ZEaGgoatSogXLlysHS0hKhoaG4c+dOXmfNrFJTUzFr1iwAQI8ePXQW4Js2bQovLy/cu3cPv//+O2ukKEfwFRJRHgoKCkLr1q0BAE+ePMH58+ezxHn+/Dl69eqF1NRUWFpaIiwsTOcbOCC9hnHVqlWYOXNmjuSbiN4OL1++lL81veChvNetWzf069cPwcHBb3TN4K5du3Djxg0AQO/evXXGtbKyQrdu3QCkd26UlpaW4/mjt4/RZ1vm3lkePXqE8ePHIzg4GE5OTnB3d0doaCj++usvg9JLSUnB/Pnz0apVK/j5+cHOzg6FChVCw4YNMWPGDLx48ULrvJl7xrl06RI++ugjBAYGwtHRUa03sMw9YKWlpeHPP/9E3bp14e7ujgIFCqBSpUr49ttv8fz5c4PyvmvXLvTu3RsBAQFwcHBAwYIFUalSJYwaNQq3b982eBu+ePECP/zwA6pWrQpnZ2c4OzujZs2amDVrFlJSUvTmIzIyEl26dIGPjw/s7e0REBCADz74ABcuXNA7rzHfthw6dAiDBg1CmTJlULBgQTg5OaFs2bLo0KEDlixZgidPnqjFN7RXtux+X/Pq1SuEhYXho48+Qo0aNeDm5gYbGxt4eHigVq1amDBhAh48eKAzDX9/f1hYWMgmjdHR0ejXrx8CAgJgZ2eXox/n+vv7y9+ajvcFCxbg1q1bANKbBjZu3NjgtPv27Zvt/GVmYWGBgIAA+f/+/ftn6ThD13dAaWlpmDt3LurWrQs3NzcUKFAAFStWxJQpU5CUlKR3+UIIrF27Fp07d0bRokVhb28PNzc31KxZE5MmTdLZW1i/fv1gYWEht/mjR48wbtw4BAcHo0CBAnB1dUXDhg0Nvn5pohxLiokTJ2bZPvqazq5evRpNmjSBp6cnHBwcUKZMGYwaNQoJCQkG5cHUa5Mx4uLiMGzYMJQoUQL29vbw8/NDu3btsHv3bqPSSUpKwowZM9CoUSN4e3vD1tYWXl5eaNasGRYuXGjQt4IHDhxAp06d4O3tDXt7e5QoUQJDhgzB5cuXAejuRU3TvWHBggUyP5aWlhr3V3aOQ1W5sa8SExPx/fffo06dOnB3d4ednR2KFCmCLl26YPPmzRrnUc6VRo0ayWmNGjVSO46NvV4/fPgQCxcuRO/evREUFAQnJyfY2trCx8cHzZs3x9y5c/Hq1Sut82u6V+zatQtt27aFj48P7OzsEBAQgKFDhyIuLk5vfh48eIDPP/8cpUuXhoODA7y9vfHOO+9g/fr1AMzXs+jDhw8xefJk1KlTB4UKFYKdnR38/PzQvn17/P333yanm9sM6Z1v79696NGjhzyeHR0d4e/vj9q1a+Ozzz7D3r17TV7+6tWrAQCBgYGoUKGC3vidO3cGkF6bevDgQZOXS6SVMNL48eMFAAFAXL16VZQsWVL+P/Nfly5dRHJysta0Ll++LIKCgrTOD0AEBgaKixcvapw/JCREABAhISFiw4YNokCBAlnmv3btmhBCiPDwcDltx44dokWLFlqXWa5cOXHr1i2t+U5MTBQdO3bUmW8nJycRFhamdxveuXNHVKpUSWs6bdu2FampqVrzMn36dGFpaalx3gIFCoitW7eqbafMrl27JuMvXLhQ4zKSkpJEjx49dK4vADF+/Hi1+RYuXJhlP2iiLw+q20uTvn376s2bh4eHOHjwoNY8FC9eXAAQffv2Fb///ruwtrbOkoYxVI+3zNslsy5dusi4t2/fzhJerVo1AUBYWFiIS5cuGZWPnKBvW2deZ9Xj4MyZM6Jx48Za56tZs6ZITEzUuux79+6JevXq6Vy2t7e3OHLkiMb5lWOlePHi4vz588Lf319rOsOGDTNp+yjHkq6/vn37yviqx8ru3btFz549tc5XqlQpjceIIrvXJkNFRESIggULal3GxIkT9Z63Qghx7NgxUbhwYZ35rVmzprhz547WNCZPniwsLCw0zuvs7Cx27Nih8xqouv23bdsmmjZtqnN/CZH941CI3NtXMTExws/PT+dyOnXqJJ4/f642nyHXVW33DG0MOTeqVKmi9RjPfK/44osvtKbj6ekpzp07pzUv//zzj/D09NQ6/wcffKD3HqbruFJs2bJFuLq66lzn1q1bi6dPnxq1LfVR8qbr/DOWvnP6k08+0bt/PTw8TF6+cr1+7733DIr/7NkzYWVlJa9JROaWrUJUjRo1hKWlpRgyZIjYvXu3OH78uJg/f74oXbq0jDN8+HCN6dy6dUt4e3vLG93IkSPFtm3bRExMjAgPDxdffvmlcHR0FABEiRIlxKNHj7KkoVwkAgIChJOTk/D09BTff/+9OHTokDhy5Ij49ddfxf3794UQ6jfKGjVqCACiWbNmYv369SIqKkqsX79evPPOO2oXck0FwJSUFNGoUSMBpD/U9ujRQ6xZs0ZERUWJyMhIMXPmTFGsWDEBQNja2oqoqCid27Bu3brC1tZWfPzxx2LXrl0iOjpaLF++XJQrV07GmTNnjsZtuHbtWhnHxcVFfPvtt+Lw4cPi8OHDYvLkyaJgwYLC1dVVBAYGar3Q6yvApKamqm2XwMBA8fPPP4sDBw6I6OhosXnzZjFmzBhRqlSpPCtE9erVS5QoUUKMHDlSrFq1SkRGRorjx4+LtWvXiiFDhghbW1t5U717967GNJSbe1BQkLCyshL+/v5i1qxZIjIyUhw8eFB89913WvOviaGFqPPnzwsHBwd5XGb2+PFjeRMoW7asUXnIKadPnxY7duyQ6zd58mRx+vRptT/V7ax6HNStW1dYWlqKvn37ii1btojo6Gixfv16UadOHRln9OjRGpebmJgozwtbW1sxePBgsXHjRhETEyMOHDggpkyZIjw8PAQA4ebmJmJjY7OkoTwYenp6isDAQOHs7CzGjh0rIiIiRFRUlPjzzz9FkSJFZF62b99u9Pa5cOGCOH36tExj6NChWbZPXFycjK96rNStW1cAEB06dBB///23iI6OFlu3bhWtW7eWcbp3765xuea4Nhni2rVrwtnZWQDQeP1XrjfVq1fXed6eOnVKvvjy8vIS48ePF7t37xYnTpwQO3bsEMOGDZMvM2rVqiVevXqVJY3ly5fLZbi5uYnvv/9eXgOnTp0q3NzchJubm7wn6StEVaxYUQAQ7dq1U9v+K1eulPHNcRzm1r6Ki4sTbm5ucjn9+/cXO3bsEFFRUWLJkiVqL/C6du2aZd7Tp0+LBQsWyDgLFixQO44fPnxoVH6KFCkiatWqJSZNmiQ2b94sjh8/Lg4dOiSWLVum9mJTW6FE9V6hnCshISFi+fLlIioqSuzevVv06dNHxqldu7bGdBISEoSPj4+M16tXL7Ft2zYRFRUlVq5cKa9HtWrVylYhaufOnfL67e/vL6ZOnSoiIiJETEyMCAsLE71795bpd+rUyahtqU9uF6LCwsLUzqPff/9dREREiBMnToiIiAgxZ84c0blzZ+Hn52fSsv/77z+Z/i+//GLwfMo53bRpU5OWS6RLtgpRAMTy5cuzxHny5Im8OFtaWopTp05lidOmTRsBQBQtWlRcuXJF47JiYmLkTXbs2LFZwlUvEn5+fuL69eta8616owTS3zJpMnDgQBln1qxZWcKnT58uAAgbGxuxdetWjWkkJCSI4OBgAUDUr18/S7jqNrSxsRHh4eFZ4sTHx8tCZsWKFbOEv3z5Uvj6+soClKY3bqdPn1Z7W2xKIWrGjBkyvGPHjuLFixca1zk1NVXcvHlTbVpuFaIuX74s0tLStKZ/6tQp4eTkpPU4EkL9DWmFChWMfjjITPV4y/wQferUKbF//34xdepUeSMvWLCgOHToUJZ0Dh06JNPp2bNntvJkTobUYCpUjwMAYunSpVnivHjxQpQvX14A6W8qNb3A+Oijj+Txfvz4cY3Lio2NledF7969s4Srvl13dXUVZ86cyRLn0qVLwt7eXj5Mm8qQQrQQWa9NkydPzhInLS1NNGvWTAAQ1tbW4t69e1nimOPaZIhOnToZfP3Xdt6mpaXJh5tKlSrJl12Zbdu2Tda0z5s3Ty3sxYsXwsvLSwAQ7u7u4sKFC1nmv3DhgnB3d9d5Dcy8/b/++mud62+O4zC39pVqLXfm7SdE+jZUCnMANOZFdftoulcZQ1urEoVqgW337t1ZwlWvOwDE+++/r/HaP2jQIBknJiYmS/jHH38sw6dPn54lPCUlRbRv315tWcYWohITE+U9vFmzZuLZs2ca13nu3Lk619lUuV2Ieu+99wSQXsuvq1YtPj7epGWvWrVKLvvAgQMGz9e/f38BpLfM0fWcQGSKbBWi2rRpozXe0aNHZbwPP/xQLUz1Le3GjRt1Lm/UqFGykJSZ6kViyZIlOtNRvRF4e3trvaA9ffpUVvEHBQWphb169UreGD/55BOdy9u6datcXuYmWKrb8NNPP9WaxujRo2W8zDVxqhcUTTcBxdSpU00uRKWmpsqmNoULFza6uUFuFaIMMWLECAFAlC9fXmO4aiFq//79Ji9HkfnBTNufpaWlGDx4sDh//rzGdDZu3Cjj6jvmcpOphShdb1vnzJkj4508eVIt7P79+7JgM3PmTJ3Lmz17tnxAzXyeqxaidL3N7N69uwDSaxJMZUohqlq1alpv9Nu3b9d63TTXtUmfW7duyTfrhl7/NZ23qm+tM+/rzLp27SoAiHr16qlNX7FihUxD1zExc+ZMgwtRpUuXFikpKVrTMsdxmBf7qnnz5lrjXbt2Tdb4tWrVKku4OQtRhqhSpYoAID766CONeVXy4uvrq/Wl3r///qv12Hj+/LlwcXERAETVqlW1nm937tyR+9qUQtSvv/4qAAh7e3utLSAUNWvWFEB6jZi55HYhSmmx0rFjR7MtT9WPP/4ol63phYk2qk0+ExISciRv9PbKVjcu/fv31xpWs2ZNBAcHA0CWD403btwIAHB0dJQ9k2nTsGFDAMCtW7e0jjxta2urcdRqbbp27QpHR0eNYU5OTrLns3Pnzql92Hvs2DH5f329oyn5BtI7ftCmV69eWsOqVasmf1+7dk0tTNmmFhYWOjsPUD76N8U///wju7d9//334eTkZFI6ue3hw4e4cuUKzp49izNnzuDMmTNwdXUFkL5Pk5OTtc5btGhRNGjQIJdymt7JwurVqzFv3jyNH1Q/ffpU/i5QoECu5SunGHq8X716VS1sx44dstMNQ8+95ORkREdHa4xjYWGBnj176s3Lw4cPDe4gwBx69uyp9XzVtX1y4tqkSXh4uOzowdDrvybKPaBMmTKoWLGizmUq+T1+/LhaJxN79uwBAFhaWuK9997TOn/v3r0NvgZ269YNVlZWWsPNcRzmxb4aOHCg1nj+/v545513AKR3smFIRx7mIITAnTt3cPHiRXmdPnPmDPz8/ABAjoenTZcuXWBnZ6cxrEyZMvJ+lflciY6OxuPHjwEAffr00XpseHt7o3nz5katkyrlGA8JCZHjAWqj7Gdj93F+4uvrCwDYv38/rly5Yvb079+/L3+7ubkZPJ+7u7vGNIjMIVuFqBo1augMr1mzJoD0XvNUHxCjoqIApPfKZG1tnaXnKtW/Nm3ayPm0jXkQGBgIe3t7s+cbAM6cOZMl3wBQp04dnflWLXDoGquhbNmyWsNUT37Vh2kAOH36NAAgICAAhQoV0pqGp6enWu9vxjhx4oT8rXozz49Onz6NAQMGwNfXF+7u7ihVqhTKly+PChUqoEKFCrK3uLS0NDx8+FBrOvoe6Ewxfvx4OUCh8peUlIRTp07h888/x9OnT/Hjjz+iWbNmWXqGdHZ2lr+fPXtm9rzlNlOPd9Vzz9fXV+e5pzoml7Zzr1ChQvDw8DApLznJHNvHXNcmTZTrDmDcdTQzJb8XLlzQmVcLCwt89NFHANJ74VTtnVC5NgcEBOh8qHJ3d0eJEiX0rxz0n//mOA5za1+p3rtq1aqlM64SnpSUlKXQYW5btmxBmzZt4OLiAl9fX5QpU0ZepytUqIAtW7YAgN4eVXWdK0DGg3bmc0V1u6i+mNCkevXqOsN1Ufbzjh079B7j06dPB2D8Ps5P+vTpAwCIj49H+fLl0b17dyxcuFD2kJldque+MYUo1bjx8fFmyQuRIluFKH1vV7y9vQGkv3FSfXC9d++eScvT1v2xMScUYHi+AfUT19z5BqC1RgyA2ngPmd8OKttT37oA6utjDNWbmPKWKT+aP38+qlatioULFxp0E9LVhb2xx5KpHBwcUKFCBUybNg2zZ88GAOzbtw/fffedWjzVAvLdu3dzJW85ydTj3dznnq586MtLTsov20cb1eu4MdfRzMyRX2OugZ6engalr+/8N0e+c2tfqd679N0DfHx8NM5nTkIIDBo0CG3atMGWLVv0vpzQN9SIoeewtnsnoP/YMfS4ySw5OdmkGmxj93F+0qRJE8yaNQsODg548eIFVq1ahQEDBiAwMBBFihTBkCFD9NYu6qL6otzQYWgyx3VwcDB5+USaWGdnZn1NJIQQGqcrF7WAgABs2rTJ4OWpjk2jSlfzC02ym28gvdmDrjfZqgy5yRtLyaMhzVS0rY8xcnKcpOz4999/MWTIEKSkpMDLywuff/45GjduDH9/fzg7O8vBIRcsWCCbtOjaHsYeS+YwcOBAjB49GgkJCZg/fz6++eYbGVa+fHlYWVkhNTUVMTExuZ63/EI592xtbbU20dOkSJEiOZWlfCW3rk2q546p11EgI7/16tXDnDlzDF6+0tQrp+g7/81xHOan+4jCHPcIfRYsWID58+cDACpXrowRI0agVq1aKFy4MBwdHeW279OnD5YuXZorecopqvu4a9eu+Prrr/MwN7ln2LBhePfdd7F8+XLs2rULhw4dwuPHj3Hz5k388ccfmDt3LsaMGYPJkycbnbZqgTYhIUGtlYYuqi8FTC0UE2mTrULU3bt3UbRoUa3hyhs3CwsLtTd8yk3j7t27KFu2LKyts5UNo+l7o6/6plC1CY3qzc7W1latuUZuU/JlSO2EqW8+VWtBbt26hTJlyhg1v+qbc12jhWenmdqiRYuQkpICKysrREREoFy5chrj6WrCl9csLS0RGBiIo0eP4tatW0hISJD7t2DBgqhcuTKio6Nx4cIFXL58GaVKlcrjHOc+5dx79eoVPDw88nXNaF7IrWuT6vXQ0Ou/Jh4eHrh79y7u379vcl6Ve4oh1zdzfQthjuMwr/ZVsWLFtMZVvY+ozmdOf/75JwCgZMmSOHz4sNZagZy+Vqs+i9y7dw+lS5fWGtfU48be3h6Ojo5ISkrCo0eP8vRZIbd5eXlhxIgRGDFiBNLS0vDPP//g77//xm+//YZHjx5hypQpqFGjBtq3b29UuqoFoIcPH6J48eIGzad6POn69IHIFNlqznf8+HGDwgMDA2FrayunV6lSBUB61fWhQ4eykwWTGJpvAGoXPyXfALBz507zZ8wIymjd165d09nO9/79+yaPtF61alX5e//+/UbPr/qmSNeN8cKFC0anrTh79iwAoFKlSloLUID6dwj5UUpKivydueML5QN+IQR++eWXXM2XNrldM5mfzr38KLe2j3LdAYy7jmam5PfixYu4fv26SXlROq64du2aziZoCQkJZvvOxxzbObf2leq96+jRozrjHjt2DEB6EzltLT6yS7lWt2/fXmsBSgiR4zXuqh2e6LsvZOe+oeznQ4cOvdbN9LLD0tISVatWxeTJk2VHMACwevVqo9NSvfZcvHjR4PmUuKVLl9baEQmRqbJViFq8eLHWsKioKPkBZ9OmTdXCVN9ATJs2LTtZMMmaNWu0tql99uyZPMGDgoLU3jTWr19fvqWbM2cOnjx5kvOZ1ULZpkIILFmyRGu8RYsWmdwsolKlSvJN87x585CYmGjU/Ko3Y103o+XLl5uUPyCj8KHrJnXnzh3ZU1J+lJSUhHPnzgFIf4OZ+W1Z//795TcLv/32G/bt22dw2rqOjexQbZ/+8uXLHFmGqpYtW8qmmT///LNaoTO/UrZRbmyf3Lo2NWrUSDa7MvT6r0m7du3kb1PvAU2aNAGQXsu9bNkyrfGWLVtmtqZh5jgOc2tfhYaGyn2lNKPT5MaNG9i1a5ecJ6dahhhyrd60aRNu3bqVI8tXVK9eHS4uLgCgs9ng3bt3sWPHDpOXoxzjz549w2+//WZyOm+KqlWrylpAfZ2GaFK9enVZ+Nb3AkeV8uyRm73u0tsjW4WoTZs2aXyjkJiYiA8++CB9AZaWGDx4sFp4jRo10KxZMwDA1q1bMX78eJ3LiY2NxYoVK7KTVTV37tzByJEjNYZ9+umnsnnI0KFD1cLs7e3x2WefyTS6d++usyna06dPMWvWLDPlWl2HDh1kAW/SpEkaa3POnTuHKVOmmLwMS0tLfP755wCAuLg49OnTR2M33ED6g0zmm1/58uXlw8KsWbM0PkyuWLEC69atMzmPgYGBANLfNh05ciRLeFJSEnr27GnUh6i5bfz48TJ/zZs3z/JdhqOjI5YtWwZLS0ukpaWhdevWerfZjRs30L17d3z88cdZwiIiImSvUP369TMpzx4eHrJ2OSe6s82scOHCskbu5MmTGDx4sM4H2Hv37mHevHk5ni9dlPMzN7ZPbl2bfH195UswQ67/2nTu3FnWHP/+++86H/KB9B7VwsLC1KZ17NhRfic0ceJEXLp0Kct8ly5dwsSJE3WmbQxzHIe5ta/8/PzQsWNHAOk9xC1YsCBLnFevXmHAgAGy9lvpCTEnKNfqsLAwjS0Trly5gg8//DDHlq+wt7eXPcnFxMTgp59+yhInLS0NgwcPlt3Zm2LIkCHyhdjXX3+Nbdu26Yx/6NAhk1p85BerVq3SeZ+NioqS+92U2k5bW1vZ46dSc6rP1atXZYGNhSjKEcYOLKU62Fr16tWFlZWV+PDDD8XevXtFVFSUWLBggShTpoyMM3z4cI3p3Lx5Uw44CEDUqlVL/PHHH+Lw4cMiJiZG7Nq1S/z444/inXfeEVZWVqJz585Z0tA10F1mqgMGVq9eXQAQLVq0EBs2bBDR0dFiw4YNonnz5jJOlSpVRHJycpZ0UlJSRJMmTWS8YsWKiW+//VaEh4eLEydOiP3794s///xT9OrVSxQoUEB4eHjo3IaG5lnTIIdr166V4a6uruK7774TkZGR4vDhw+Lbb78VLi4uwsXFRQQGBmrdTvoGTU1NTZWD6OH/B6OcMWOGOHjwoIiJiRFbt24V48aNE4GBgRoHFVUdMLhu3bpiw4YNcr7+/fsLS0tLUadOHZ150LW9jh07JsPc3NzEd999J/bt2yeOHj0qZs+eLde9Xr16OgdNVAbb7du3b9YdYQLVfTd06FBx+vRptb/jx4+L5cuXixYtWsh49vb24tSpU1rTXLBggbCxsZHxa9euLaZPny52794tYmJiRHh4uJg/f7549913hZ2dnQAgXFxcdOYtO+urbFMPDw+xfPlyce7cOXHp0iVx6dIltVHpzTXo8tOnT0X58uVlnKCgIDFjxgxx4MABceLECREeHi5mzZolOnToIGxtbUW1atWypKEMtlu8eHGd62ZonnXp1auXACDs7OzEnDlzxOnTp+X2UR1805jBTJV4ms41c1ybDHHt2jXh7OwsAGi8/pcuXVrtOqvtOnfq1Cnh5OQk4zRv3lwsXrxYHDlyRERHR4tt27aJb7/9VtStW1cAECNHjsySxvLly9XO/6lTp4rIyEgRGRkppk6dKtzd3YWrq6u8DoSGhmZJw9jBZM1xHObWvvrvv/+Em5ubACAsLCzEgAEDxM6dO0VUVJRYtmyZqFy5ssxD165dNaZhrsF2f/jhB5lO2bJlxYIFC8TRo0fFvn37xPjx44WLi4uwt7cXVatW1XqOGjPIt65renx8vPDx8ZFp9erVS2zfvl1ER0eLVatWyWNOGQQXgIiNjc2Sjr5nkF27dsmBjC0tLcW7774rVq5cKY4fPy6OHz8uNm3aJMaPHy8qVqwoAIhff/3VgC2Z1e3bt8XChQvV/lSfwzKHGTtws0LXvbh48eLC1dVV9O3bV8yfP18cOHBAPsuNHz9euLu7y2tGVFSUScufNm2avFc+efJEb/y5c+fKZd6+fdukZRLpkq1C1NWrV0VAQID8f+a/zp07ayyIKGJjY0WNGjW0zq/6179//yzzm1qI2rFjh2jWrJnWZZUtW1bcvHlTa1pJSUmiT58+BuU7ICBA5zY0NM/abl4//PCDsLS01LhsR0dHsWXLFp3byZCb0rNnz0SXLl30rqumB7tnz56J2rVra50nJCREnD59Wmce9G2viRMn6szXyJEj9T4U52QhypA/T09PsWPHDr3pRkREqD3A6forVqyYWL58eZY0tm7dKuN8+umnJq/j5s2bhYWFhd5jwVyFKCHSH35UC566/ho1apRl/twsRJ04cUIWZjP/qR5n5ipECZH9a5OhwsPDZUFK2/435Dp38uRJWcDR9zdx4kSNaUyePFnrcahcAxs0aCCA9BdnmtbF0O2vyO5xKETu7auYmBjh5+enM/1OnTqJ58+fa5zfXIWoV69e6bzvOjg4iNWrV+s8R81ViBJCiH/++Ud4enpqzU+/fv3E/Pnz5f/v3LmTJQ1DnkH27NmjVmDT9bd48WKd66SNsfcbfdtOG32FKH3Ltbe3N3kdhRAiLi5OWFlZGbytQkNDBZD+goYoJ2SrOV9AQACio6MxZswYlCtXDo6OjnBxcUHDhg2xbNkyrF27Vmf76uLFi+Po0aNYv349unfvjoCAADg6OsLGxgaenp6oW7cuRo4ciX379ult7mEMW1tbbNu2DbNnz0bt2rXh6uoKR0dHVKhQAZMnT0ZMTIzOrnQdHBywePFiREVFYejQoQgODoaLiwusra3h6uqKypUrY+DAgVi7di3Onz9vtnxr8tlnn+HAgQPo1KkTvLy8YGdnh+LFi2PAgAGIiopCq1atsr0MR0dHrFmzBnv37sV7772HgIAAODg4wNnZGWXLlkWnTp2wfPly2fQv87x79+7FlClTUKFCBTg4OKBgwYKoUaMGZs2ahT179qgNKGmKcePGYcuWLWjWrBnc3Nxga2uLIkWKoFOnTti5c6ccyDA/sbW1hY+PD5o0aYIff/wRFy5ckE1cdQkJCcHJkyexceNGvP/++wgODkahQoXksVe+fHkMGDAAGzduxJUrV9CjR48saURGRgIArK2ts9V8p3Xr1tizZw/at28PPz8/+a1ITnJ3d8e2bduwZ88e9O/fH4GBgXBycoK1tTXc3d1Ro0YNDBs2DFu3bpXfeeSVypUrIzIyEj169ECxYsVy5aPm3Lo2hYaG4uzZsxg6dCiKFy8OW1tbeHt7o3Xr1ti+fbsc3FqfihUr4ty5c1i8eDE6dOiAokWLwt7eHra2tvD19UVoaCjGjh2L6OhojBs3TmMaX331Ffbt24cOHTpovQYq3x0p38JklzmOw9zaV1WqVMGFCxfw3XffoVatWnB1dYWtrS38/PzQqVMnbNq0CevWrTNqwHpT2NjYYMuWLfjll19QvXp1ODo6wsHBAaVKlcKQIUMQExODd999N0fzoKpSpUo4d+4cRo4cicDAQNjZ2aFQoUJo1KgRli9fjoULF6p9r2bqsdO4cWNcuXIFs2bNQosWLeDr6wtbW1vY29ujaNGiaNasGaZMmYJ///1XNjN8He3fvx/z5s1Dt27dUKFCBXh6esLa2hoFCxZE1apV8fnnn+PcuXPZWsfChQvL5sR//fWXzrg3b96UzSNzo5kovZ0shDDui9sJEybINuZGzpqnIiIi0KhRIwBAeHg4QkND8zZDRHkkNDQU+/btQ//+/TV+J0H0JklOToaLiwueP3+OsWPHYtKkSXmdJXpNDBo0CPPnz0eRIkXw33//5XV2CMCRI0dQp04dWFlZ4fLly/D399cYb/Lkyfj6669RpkwZnDt3Tm3IFSJz4VFF9BZ5+fIljh49CisrK4wZMyavs0OU4zZs2CA/eK9du3Ye54ZeF8+fP5e9uvK4yT9q166Nli1bIjU1Fd99953GOImJiZgxYwaA9I6bWICinMIji+gtcuzYMbx48QI9e/Z8KwftpTfP5cuXtYbFxsbi008/BQB4e3ujefPmuZUtyueuXLmitTVNamoqhg4dKnt269u3b25mjfSYOnUqrKyssHDhQty4cSNL+G+//Yb4+HjUqFED3bt3z4Mc0tsiZwaEIKJ8qUGDBq9VM1wifcqWLYtWrVqhTZs2CA4ORoECBXDv3j2Eh4djzpw5ePToEQBg+vTpOTYGEr1+Jk2ahGPHjqF79+6oVasWvLy88Pz5c5w6dQp//vmnHPS3SZMmaN26dR7nllRVqFABixYtwuXLl3Hjxg0UK1ZMLdzZ2Rnjx49Hp06dcn1geHq78I5CRESvrdTUVISFhWUZR0phaWmJyZMno3fv3rmcM8rvzp8/r3Ocynr16mHVqlV8EM+HdJ3P7EiCcgsLUURE9NoKCwvDtm3bcPjwYdy9exfx8fGws7ND4cKFERoaimHDhqF8+fJ5nU3KZ7788kuULl0au3btwvXr13H//n0kJyfDw8MD1atXR7du3dC9e3d+T0NEWhndOx8REREREdHbjK9YiIiIiIiIjMBCFBERERERkRFYiCIiIiIiIjICC1FERERERERGyNNCVGxsLCwsLGBhYYFFixblZVYwYcIEmRciIiIiIiJtsl2ISk5OxsqVK9G3b1+UK1cOHh4esLGxQaFChVCtWjUMHToUu3fvRlpamjnyS/nM5MmTZeHT2dkZSUlJObasZ8+e4bfffkOTJk1QuHBh2NnZwdvbG1WrVsXw4cOxc+dOjfOpFtb1/fXr109nHl6+fIlx48YhICAA9vb2KF++PGbPnp0vBrCNiIjQuW5OTk4oXbo0+vbti4iICLMs88mTJ1i5ciXef/99VK1aFa6urrC1tYWnpydCQ0Mxffp0OdipLv7+/gbtH39/f71pLVu2DJUrV4a9vT2KFi2Kzz//HE+fPs3+yuaAiIgIfPLJJ6hWrRp8fX1ha2sLV1dXlC1bFr169cKyZcuydU4p+2fkyJEICQlBqVKl4OLiAltbW3h5eSE0NBTTpk1DfHy83nwaeg5NmDBBZ1qPHz/G//73P/j5+cHe3h7Vq1fH6tWrTV5Hc1q0aJHGdVLuaSVLlkTTpk0xevRobNu2LVfua0lJSShRooTB50BoaKjB+0qf7du3o27dunB0dIS3tzc++OAD3Llzx0xrRkT0mhPZsGHDBlGiRAkBQO9f6dKlxebNm9Xmv3btmgxfuHBhdrKSbePHj5d5IcOVLl1abT8vXbo0R5azd+9eUbx4cZ3HWKVKlTTOq3qc6fvr27ev1jykpKSIZs2aaZzv/fffz5H1NkZ4eLjB6wlADBgwQKSkpJi8vK1btwo7Ozu9y/H29hZ79+7VmZa+fav8FS9eXGc6EydO1DhflSpVRGJiosnram6nT58WDRs2NGid3dzcxPTp00VqaqrRy9m1a5dByyhUqJDYvn271nSMObbGjx+vNZ2nT5+KihUrapxvypQpRq+fuS1cuNCoc6hYsWJi9uzZOZqnkSNHGnUOhISEGJx/XRYtWiQsLCw0rvOtW7fMuIZERK8nkwfb/e677/DVV1/JN/BNmzZF+/btERQUBFdXVyQkJODChQsICwvDrl27cPHiRXz11Vdo3bq1qYvMURMmTND7BpXUHTlyBBcvXgQAODk5ITExEUuWLNE5krgpdu/ejbZt2+LFixdwdnbGBx98gCZNmsDb2xv3799HbGwstm3bhrt37+pNa/LkyWjfvr3WcDc3N61hc+fOxc6dO1G4cGFMnjwZ5cqVw5EjRzB+/Hj8+eef6NSpE1q0aGHSOprb0KFD1UZtF0IgISEBkZGR+Pnnn3Hv3j0sWLAARYoUwcSJE01aRnx8PF6+fAlLS0u88847aNGiBSpVqgRXV1fExcXhr7/+wqpVq3D37l20adMGhw4dQuXKlXWm2b59e0yePFlruK2trdawc+fOYeLEibC3t8dXX32Fpk2b4saNGxg3bhxOnDiBSZMm4fvvvzdpXc1p586dePfdd/HkyRMAQHBwMLp27YqaNWvC09MTz549w/Xr17F9+3Zs2rQJDx8+xGeffYaBAwfC1dXV6OUVLVoUjRo1QrVq1VC0aFH4+voiLS0NcXFxWLt2Lf7++288ePAA7dq1w/Hjx1GxYkWd6S1YsAA1atTQGu7l5aU1bNKkSTh16hTKlSuHiRMnomjRoti1axemTJmCr7/+Gh06dEBQUJDR65gTMl8rnjx5gvj4eJw4cQI7duzA4cOHcePGDXz44YfYvHkz1q5dCwcHB7Pm4cSJE5gxYwbs7e1hY2NjVI1q9erVsXDhQpOW++DBAwwbNgwWFhb49NNP0bFjRyQkJGDKlCk4evQoPvnkE6xcudKktImI3himlLyWLFki30p5enrqfct86tQp0bhx4yw1BfmpJoqMN3ToUPkWe+rUqQKAsLS0FHFxcWZbxr1794SHh4cAIMqVKyf+++8/rXFfvnypcbq5jrPQ0FABQJw8eVJt+vr16wUA0b9/f5PTNgfV2gJdtQFnz54VDg4OAoAoWLCgePXqlUnLW7lypRg8eLC4fv261ji//PKLzFPjxo21xlNqonTVBOozYcIEAUDMnDlTbXpcXJxwdHQUAQEBJqdtLufOnRMFChQQAISVlZX45ZdfdNYw3bt3T3z44YcCgHj48KHRyzOkplE5fgGITp06aYyjemyFh4cbnQ+Fv7+/KFCgQJaajJ9//lkAEBMnTjQ5bXNQrYnSd604dOiQCAgIkPG7du1q1rykpKSIatWqCQDim2++keeIoTVRISEhJi970aJFAoD45JNP1KY/ffpUFClSRNjb22u93hIRvS2M/ibq1q1bGDp0KADA0dERERERaNSokc55KlSogF27duGzzz4zdnGUT7169QqrVq0CAHTt2hV9+vSBlZUV0tLS8Ndff5ltOV9++SXi4+NhZ2eH9evXo0iRIlrj6qqlMIebN2/Cw8Mjy5v6Jk2ayPDXQVBQkKwRfvLkCc6fP29SOt26dcOcOXNQrFgxrXGGDx+O6tWrA0j/rkbftzfZoWz/xo0bq00vXLgwypYtm+f7RwiBXr164dmzZwCA+fPnY/jw4bC01H4Z9vT0xG+//Ya1a9fCxsbG6GVaWVnpjdOhQweULVsWALB//36jl2GMmzdvomzZsvD19VWb/rqdQwBQt25dHDt2DEWLFgUArF69Ghs2bDBb+jNnzkR0dDTKlCmDL774wmzpGkLbueTk5ISaNWvixYsXOXouExG9DowuRP3888/yIWDixIkGN72wtLQ0qJnXrl270LZtW/j4+MDOzg4BAQEYOnQo4uLi9M776tUrzJ49G40aNYKnpydsbW3h4+ODVq1aYdmyZTo/Aja0d75Xr15h7ty5aN26tezcwMvLC9WqVcNHH32EAwcO6OxkYNeuXejduzcCAgLg4OCAggULolKlShg1ahRu376tc9m3bt3C6NGjUbVqVflxuI+PDypUqIAePXpg0aJFsolQTgsLC0NCQgIAoHfv3vDx8ZE33CVLlphlGY8ePcLy5csBAD169ECZMmXMkq6pvLy8EB8fj7Nnz6pNVzpp8PHxyYNcmUb14/QXL17k6LJCQ0MBAGlpabh27VqOLUdpRrZv3z616Xfu3MGFCxfyfP9s3boVJ06cAAC0bt0affv2NXjezp07o0CBAjmVNZl2Th8LXl5euHDhQpamt6/jOQQAhQoVwpw5c+T/v/vuO7Oke/36dYwbNw4A8Pvvv+f4C6LMtJ1Lz549Q1RUFGxtbeHu7p6reSIiyneMqbZKS0sTnp6eAoAoUKCAePz4cbaqwTI3s/riiy+0fgDr6ekpzp07pzWt2NhYUa5cOZ0f0davX1/Ex8drnN+QjiVOnDih1nxD29+1a9eyzJuYmCg6duyocz4nJycRFhamcdn79+8XBQsW1LtsTfOrNsXJTnMpVe3atRMARMmSJeW0xYsXy+VER0frTUOJq615imqz0S1btsjpT548ERcvXhR37941KK/mas73ww8/CACiaNGiYtGiReLo0aPi119/FW5ublq3fW4ytDmfEEJ06dJFxr19+7bGOH379jVLE67hw4frPS7M0Zzv+PHjAoBwcHAQ3377rYiMjBRr1qwRQUFBAoAYOXKkyWmbQ+fOneV22L17d7bTUz2us9N069y5c8LKykoAENWrV9cYx1zN+YYNGyYAiODgYLFmzRoRGRkppkyZIuzt7YWFhUWWprK5zZjmfIq0tDRRpkwZOd/NmzezxFG9vxiSbqtWrQQA8d5778lpudmcLy4uTtja2gpLS0sxatQocejQIbF582ZRt25dAUB07tzZ5LSJiN4URhWizpw5I28ELVq0yPbCVR8ClItzSEiIWL58uYiKihK7d+8Wffr0kXFq166tMZ2nT5+q9RLYoUMHsWnTJhEVFSXWrFmj1ltRnTp1NH4noK8QdfbsWeHk5CTjdOzYUaxatUocP35cHDlyRCxevFj07t1bFChQIEshKiUlRTRq1EgAEBYWFqJHjx5izZo1IioqSkRGRoqZM2eKYsWKCQDC1tZWREVFqc3/4sUL4efnJwAIZ2dnMWrUKLFt2zYRHR0tjhw5IlatWiVGjBghihYtmiuFqPv37wsbGxsBQIwbN05Of/r0qXB0dBQAxP/+9z+96egrRCnfggAQCQkJYtu2bfI4Uf58fX3FJ598Iu7fv691OarHWdWqVYW/v7+wtbUVBQsWFEFBQWLw4MEGFfqeP38uatWqpbHw2qdPH73z5zRDC1Hnz5+X30TVqFFDazxzFaKU3tisra21vnhRHhADAgJEhQoVhKOjo3BwcBD+/v6ia9euYv369SItLU3vsv73v/9p3D/ly5fP9kuf7PLy8hJA+guo7PSKqMhOIerZs2fi4sWL4scffxTe3t4yHW29a6oeW3Xq1BGFCxcWNjY2wtXVVVSuXFmMGDFCXLhwQe9yHzx4IEqWLKlxH6leS/KKKYUoIdSvVStXrswSbkwhasWKFQJI75VR9UWRsYUob29vUb16deHk5CTs7OxE4cKFRbt27cTixYsN+g5S+U4t85+fn5/Ob1OJiN4WRhWi/vrrL3khHTNmTLYXnrnr6ffff1/jg9KgQYNknJiYmCzhn332mQwfO3ZslvC0tDTRq1cvGUdTl7T6ClFVqlQRQHrHCStWrNC6Tg8ePBBJSUlq06ZPny4ACBsbG7F161aN8yUkJIjg4GABpNeYqdqzZ4/Mm67ajuTkZI0PiuYuRM2cOVOmd/HiRbWwHj16CADCy8tLJCcn60xHXyFK6cjBxcVFTJs2TeMNXfkrUqSIOHv2rMZ0DO3ifPDgweLFixc68/z06VMxcuRI+RBZunRp8dNPP5nU/bS5qe7noUOHitOnT8u/U6dOif3794upU6cKHx8fAaR3KnHo0CGt6ZmjELV582aZRuvWrbXGM6SL83r16hnUacns2bNFUFCQsLGxET4+PmL48OEmdcpgTjdv3pTrUbduXbOkaWwhSl/33Z999pnWgqohXZxbWlqK8ePH6y3s3r17VwwaNEh4eXkJW1tbUalSJbF48WJTNoHZmVqImjdvnpzvm2++yRJuaCEqISFBFmr/+OMPtTBjC1G6/oKCgnS27FCsWbNGVKtWTdjZ2QkPDw/Rp08fs3YcRET0OjOqEKX68Jy5ByxTqD4E+Pr6an2A/ffff7Uu98WLF8LV1VXeGLS94X38+LHs5S0oKChLuK5C1Pbt22WYITUsql69eiV8fX0FkLWno8y2bt0ql3Pp0iU5XbXwasrbdHMXopQeo2rWrJklbMuWLQYV+ITQX4hSajBsbW2FhYWFsLOzE99//72Ii4sTL1++FGfOnFGrqSxVqpR4+vRplnSuXbsmXF1dRf/+/cXixYvF4cOHRUxMjNiyZYv43//+p1bD2LNnT5O2SX5g6Fg+lpaWYvDgweL8+fM608tuISo+Pl4++FlZWWl8AaIIDAwU7dq1E7NmzRIRERHixIkTIjw8XHz77beiaNGiMh/lypUTjx49Mjovee3kyZNyHTp27GiWNM1ViKpcubI4cuSIznnDw8OFr6+vGDZsmFixYoU4evSoiI6OFuvXrxcDBgyQNdMAxJdffmmW9csLphaiVHs41HSdN7QQNXDgQAGk1/ZlLowaWohq1KiRaNKkifjxxx/F7t27xYkTJ8T+/fvFjBkz1Jq8e3t76+xZk4iIdDOqEDV58mR5AZ43b162F676EDB8+HCdcZUH3cyFmEOHDsk0pk2bpjMNpUtuAFm62NVViFL9piM2Ntawlft/Bw8elPNGRkbqjJuYmCjjLlmyRE7fu3evnD5jxgyjlm9uZ8+elXn55ZdfsoQnJyfLZkvZ7fI3c7Of1atXa4z3wQcfyDg//PBDlvCXL1+KZ8+eaV3OxYsXZXNKAGLjxo3ZyndeMWZAVDc3NzFy5Mgc66Y4JSVFtGjRQi5P3zdaumqKnjx5ojbIsb6XEfmR6nWgd+/eeZKHhw8fyprJY8eOiRUrVsjvNEuWLKnzpUdiYqLOJmBHjx4VLi4uAkhvsnzixIkcWIOcZ2ohSnVQ40GDBpm07H379gkLCwthbW2t8dswQwtRus6lV69eqb0cMVeBnojobWRU73zOzs7yt9JDn7koXexqowyCmnmwwTNnzsjftWrV0pmGarjqfPooPWoVK1YMxYsXN3g+AIiKipK/69SpI3sA1PTn5OQk4965c0f+rl+/PkqUKAEAGDFiBGrWrInvvvsOhw8fxqtXr4zKT3YtXrwYAGBtbY3u3btnCbe2tka3bt0AAJs2bcLjx49NXpa9vb38Xbt2bbz77rsa43377bews7MDAKxYsSJLuK2tLRwdHbUuJzAwUK1b9l9//dXULOcb48ePh0h/SSL/kpKScOrUKXz++ed4+vQpfvzxRzRr1gzPnz83+/I//PBDbN++HUB6T3Rff/21zvi6BpF1dnbG6tWr4eHhASB90OPcPu6zKyevnYZydXVF+fLlUb58edSoUQPdu3fH33//jSVLluDq1ato3749Fi1apHHeAgUK6OxivWbNmvjtt98AAEII+fttoXpfKliwoNHzv3z5Eh988AGEEPjf//6nd8BjXXSdSzY2Npg3b568365fv/616laeiCg/MaoQVahQIfk7cxe12aXrIReAHEslNTVVbbrSzTYAeHt760xDtftc1fn0efDgAQBkGdvEEPfu3TN6HgBISkqSv21sbBAWFoZy5coBAI4fP44xY8agXr16cHV1RcuWLbF8+fIs28bcVMeAatasGTw9PTXGU7qyf/HiBVavXm3y8lQfPFu2bKk1noeHhxyL6OTJk0hOTjZ6WfXr10dwcDAA4ODBgzq7w39dOTg4oEKFCpg2bRpmz54NIL0LY3N1y6z48ssvMXfuXADp23XNmjUGjVeki4uLiyy0K90sv05y8tqZXe+99x7effddpKWl4aOPPsLDhw9NSqdbt25wcXEBkLVr7Dedco8AYFLX31OmTMGFCxdQtGhRTJgwwYw5y8ra2hoDBw6U/3/b9hURkblYGxO5UqVK8ndMTIzZM5Nd+sZ4EjrGbzJH+pqoFmwiIiLk23R9lHE6FEFBQTh9+jTCwsIQFhaGffv24cqVK3j+/Dm2b9+O7du346effsLWrVuzzGsue/bskW8tt27datD2WLJkCd5//32Tlle0aFEcOXIEAHQOsqvEBdK3d3x8vEnjzQQFBeHs2bNyIElthcQ3wcCBAzF69GgkJCRg/vz5+Oabb8yS7tSpU/H9998DAKpWrYrNmzfDwcHBLGmrjkn3ur099/Pzg6enJ+7fv4+TJ08iNTU12wVLc2rfvj1Wr16NZ8+eYdu2bejZs6fRaVhbW6N06dI4fvz4a7d/sktprQDApPHspk6dCgBo2rQpNm/erDGOUoP57NkzrFy5EkD6fSLzgLiGeJ3PJSKi/MKoQlRQUBAKFSqEBw8e4MCBA3jy5IlJTRfMSfWt3507d1C6dGmtcVXfABvztlB5i3zr1i2j86daaLK1tUX58uWNTkNhZWWFDh06oEOHDgCA27dvY9u2bZg9ezaio6MRHR2NwYMHY/369SYvQxelKZ8xDh06hKtXr8rmiMYIDg7GmjVrAGStgcxMNdza2qjDWspuIft1YmlpicDAQBw9ehS3bt1CQkJCtgfPnD17NkaPHg0AKFeuHHbs2CFrJszhdd8/DRs2xLp16/Ds2TPs27fPpIffnKL6wuD69esmp/O67yNTCCGwe/du+f/69esbnYbSPHXhwoVYuHChzrgPHjxAjx49AAAhISEmHUdv434iIjI3o5rzWVhYoF+/fgDS34bNmzcvJ/JkFNVCydGjR3XGPXbsmMb59KlatSoA4MaNG0Y/YFSpUkX+3rlzp1Hz6uPr64sBAwYgMjJS5nHz5s058o1LYmKiLJw1adIEK1as0PmnHBtCCCxdutSkZTZs2FD+vnLlis64SriDg4PJhYFz584BAOzs7AyuMXydpaSkyN+mNIFUtXTpUnz00UcAgBIlSmD37t1qTdjMQdk/QHrNzuumf//+8veMGTPyLiMaqNZGqH6baYyUlBRcvHgRwOu5f0y1detWXLp0CUD6t5um1ILnttf9XCIiyheM7YkiLi5ODqhaoEABvd0kK1JTU7MM5KjaO5++npCUnokyd9Gt2sV5cHCw1i7Onzx5IgoVKiRgQhfnqj0vGdvF+fPnz4W7u7sAIHx8fHJswM9PPvlEa8+D5qDaa9XatWsNmkfpCr1kyZImLTMlJUV4enoKAKJMmTJax5+5evWqsLS0FABEkyZNTFrWgQMH5PqZmkZeM3SwXSHSB1tVBty1t7fP1uCv69atE1ZWVgJIH68r82DT5vDo0SM5RIGjo6Pe8bzyo7S0NFG5cmW5j7QNbKvJunXrRGJiYo7lrVWrVtnqzl4IIZYuXSrTGDhwoHkzmEuM7Z3v/v37okiRIrnSs6ehvfPpk5ycLMqWLSvzfOPGDfNkkIjoLWNUTRQAFC5cGLNmzQKQXhsVEhKi98PUc+fOoXnz5pg+fbqxi9PLzs4OgwYNAgCcPXsWEydOzBJHCIGPPvpIfvyrvDE3VNOmTVGtWjUA6T23Ke3RNUlISFCrCbK3t8dnn30GIL25Yffu3XX2zvX06VO5fRUHDhzA5cuXtc7z6tUruQ+cnJyyfMsTEREhewBUahKNtWTJEgDpHYDo6uRBVZcuXQCk1xIdOnQoS7iSJ39/f43zW1lZyW134cIF+d2AquTkZHz44YeyI4ghQ4ZkibNhwwadzVcuX76MXr16yf9/+OGH2lfqDTF+/Hh5nDZv3lzj9zn9+vWT+ygiIkJjOjt37kSPHj2QmpoKLy8v7N69W+v+1Gb79u06a0+fPn2Krl27Ij4+HkD691xKb4yvEwsLCyxbtkx2otO/f3/Mnj1bZycmDx48wPDhw9G5c+cstYWxsbFy/4SGhmqcf9GiRXjx4oXOfP3888/YunUrAMDf3z9Lc7SHDx9q3f+KY8eOYfjw4QDS11PTefimOXz4MGrWrIm4uDgAQI8ePdCuXTuNcSdMmCD3lbYeEM0hPDwcjx490hqenJyMQYMG4d9//wUAtG3bVn5PSkRExjHp45H+/fsjLi4O48aNw7179xAaGopmzZqhffv2KFeuHFxdXZGQkICLFy9iy5Yt2L59O1JTU9U6pjCncePG4e+//8bVq1cxadIknDlzBgMGDICfnx+uXbuGWbNmyYeAOnXq4IMPPjB6GUuXLkXNmjWRmJiIHj16YM2aNejevTtKlCiB1NRUXL58Gbt27cLatWtx+vRptQfJUaNGYc+ePdizZw+2bduGoKAgDBkyBHXq1IGrqyuePn2KCxcuICIiAhs2bIC9vb1aQW/Pnj2YNGkSGjRogNatW6NixYrw9PTE8+fPcfHiRcyZM0d29DFo0CCTvwnS5saNG3L7tWzZUm9PiorOnTvjyy+/BJBeCKtXr57Ry/7444+xatUqxMTE4Msvv8TZs2fRu3dveHp64vLly/jpp59kM85WrVqhc+fOWdLo2LEjSpUqhU6dOqFmzZooUqQI7OzscOvWLezcuRPz5s2TBduuXbuiU6dORuczv7l3716WbvxfvHiBS5cuYcmSJbL7cXt7e0yaNMmkZRw5cgQdO3bEq1evYGNjg59//hnJyck6hw8oUqRIli6Yv//+e/Tq1QudOnVC/fr1UbJkSTg5OeHRo0eIjIzE77//jv/++w9A+kf7Od17WU4KDg7G2rVr0bVrVyQmJmLYsGH4/fff0a1bN9SoUQOenp549uwZbty4gZ07d2LDhg148uSJycubMGECRo4cic6dO6tt26dPn+L06dP466+/5AsOW1tb/Pnnn1muH48fP0ajRo1QsWJFdOjQAdWqVYOvry+srKxw48YNhIWFYenSpbKQ99lnn8neMl9nN2/eVDuWnz59ivj4eJw4cQLbt2/H4cOHZVibNm2wYMGCvMimmsWLF6Ndu3Zo164dQkNDUaZMGRQsWBCJiYmIjo7GH3/8gfPnzwNI75Ri5syZeZxjIqLXWHaqsdatWyf8/f0NGtwzODhY7NixQ21+czTnU01LtYmCpr969eqJ+Ph4jfPras6niIqKEkWLFtW7rpqaMyUlJYk+ffoYtK0CAgK05k3XX6dOncTz58+zLFu1mZe27aeL6iDLK1asMGreihUrCgDC1dU1SxMsJU19zVNu3bolmwZq+2vVqpV48uSJxvkN2XYAxNChQ1/LZmIKYwbbBSA8PT2znJOqVAfl1NTEy9DjUvVP03keEhJi0LwNGzYUcXFxZtxieefkyZOiXr16Bq23h4eH+OWXX0RqaqpaGqrXz5CQEI3LUa6b+v6KFCkidu7cqTEN1eXo+rOyshITJkzQ2uz2daDanM+Qv+LFi4s5c+boTVf1XDFmEF9VhjTnUz1ndf1VqFBBnD171qR8EBFRumxVWXTq1Alt2rTB2rVrsW3bNhw/fhz37t3D06dPUbBgQfj7+6N27dro3LkzGjVqZFIX4Yby9/fHyZMn8eeff2LNmjU4c+YMnjx5And3d1SpUgW9evVCz5495XhTpqhWrRouXLiAefPmYcOGDThz5gwePnwIDw8PFC5cGPXr10f37t01NmdycHDA4sWL8fHHH2P+/PnYv38/4uLi8OzZMzg5OcHf3x/VqlVDy5Yt0aZNG7V5R40ahVq1amHXrl2IjIzErVu35PhTPj4+qFWrFvr06YNWrVqZvG66KB1D2NnZoXXr1kbN27lzZ5w6dQqPHj3Cpk2btA6Yq4uvry+OHDmC+fPnY8WKFTh37hwePXoEDw8P1KxZE/369UPHjh21zr9p0yZERkbi6NGjuH79Oh48eIBnz56hYMGCKFGiBBo0aIABAwZkq+fE14GtrS3c3d0RHByMVq1aoX///nIQ67w0ffp07NmzB5GRkbhw4QIePHiAR48ewdHREX5+fqhVqxZ69OiBZs2a5eg1JDdVrFgRBw8exN69e7Fx40bs379f9pLo6OgIX19fVK9eHa1bt0bHjh3VBp42xp49e7B7926Eh4fj/PnzuHv3LuLj42Fvbw9vb29UrlwZbdq0QdeuXbXWMPv5+WHNmjWIjIzEsWPHcPPmTTx48AAvXryAi4sLypQpg9DQUAwaNMjoppyvC2trazg7O8PFxQUlSpRAjRo1ZAuM7NxTzO2LL75A5cqVERkZiXPnzuH+/ftISEiAnZ0dvL29Ub16dXTp0gUdO3bMV13sExG9jiyEYF+nREREREREhso/r9CIiIiIiIheAyxEERERERERGYGFKCIiIiIiIiOwEEVERERERGQEFqKIiIiIiIiMwEIUERERERGREViIIiIiIiIiMgILUUREREREREZgIYqIiIiIiMgILEQREREREREZgYUoIiIiIiIiI7AQRUREREREZAQWooiIiIiIiIzAQhQREREREZERWIgiIiIiIiIyAgtRRERERERERmAhioiIiIiIyAgsRBERERERERmBhSgiIiIiIiIjsBBFRERERERkBBaiiIiIiIiIjMBCFBERERERkRFYiCIiIiIiIjICC1FERERERERGYCGKiIiIiIjICCxEERERERERGYGFKCIiIiIiIiOwEEVERERERGQEFqKIiIiIiIiMwEIUERERERGREViIIiIiIiIiMgILUUREREREREZgIYqIiIiIiMgILEQREREREREZgYUoIiIiIiIiI7AQRUREREREZAQWooiIiIiIiIzAQhQREREREZERWIgiIiIiIiIyAgtRRERERERERmAhioiIiIiIyAgsRBERERERERmBhSgiIiIiIiIjsBBFRERERERkBBaiiIiIiIiIjMBCFBERERERkRGs8zoDRERERKa4d++e/L127VoAwLRp0wAA169fzxLfysoKANCoUSM57bfffgMAJCUlAQB+/fVXGda9e3cAwDvvvGPObBPRG4A1UUREREREREZgTRQRERG9Fh48eAAAiIiIAABcvnxZhiUkJAAAWrduDQBISUnJMr+9vT0AwNnZWU7bvHkzAODJkycAAAcHBxnm6OhorqwT0RuGNVFERERERERGYE0UERER5WvPnj0DABw9ehQAMHbsWADA06dPZZwWLVoAAD799FMAQHBwcJZ00tLSAADR0dFy2rBhwwAA8fHxAICePXvKsIIFC5pnBYjojcOaKCIiIiIiIiOwJoqIiIjytU2bNgHI6IHPxsYGANCuXTsZ5/333wcAlClTRms6lpbp746LFy8up1WvXh0AcOfOHQCAj4+PDFO+oSIiyow1UUREREREREZgIYqIiIiIiMgIbM5HRERE+YYQAkBG8zoA2LNnDwAgJiYGANCsWTMAGYPhAkDVqlU1pgMAFhYWamGqXZxXqlQJAODr6wsA8Pb2lmF2dnYmrgURvelYE0VERERERGQE1kQRERFRvnH37l0AwP79++W0K1euAAA8PDwAZHRDXqdOHa3pZK590sbV1VXt/8oyANZEEZF2rIkiIiIiIiIyAmuiiIiIKN/477//AAC7d+/OEqZ0R166dGkAgK2trUnLULpIB4DKlSsDAF6+fAkAcHd3l2Gq306ZQvkuy9BaMSJ6fbAmioiIiIiIyAgsRBERERERERmBzfmIiIgo31Ca8x09elROK1myJACgVq1aAIACBQpkaxnW1hmPP2XKlMlWWkT0dmJNFBERERERkRFYE0VERER5QnVA3OfPnwMA7t+/DwCIj4+XYRUqVAAA+Pj4AFCvScrP2KGE+STfOwsA2LtpAwAg/PJTGeZcqhEAoEO7xgCAYC8bGOLu/lkAgJ+3xpmUp+rvfQ8A6BKsKTQZAHDv7GYAwIqlGTWrif+f306dmgMAyrmDXkOsiSIiIiIiIjLC6/Eqh4iIiN44qjVRShfjSUlJAIAXL17IMKXmydHREQBreN4WCZET5e+mjeYDADzHpdf+jGxcSIY9iBgPAKhT7EsAwKRjGbU+/6uovVbq7rH0mqipZwYAAHZ8XNmo/Hm5ag9LCB8FAGg/J72a6uepI2SYa+xqAMD41nsAAMN2TAMANCxo1OIpj7EmioiIiIiIyAgsRBERERERERmBzfmIiIgoz1lapr/XtbKyUvsXyGj2l5qaqvb/nJZ5OaY2I1SaKiYnJ8tpDg4OANTXk/7fk20AgFH/34QPAEK2/QMA+LmRhl4YmqV31FC9WPq/ZUavlkFdtvYCABTWsJj4mxcAAPU6dE5PplnJbGUbuCt/7folvWOUrxYPAgDUVm2q5/8xAOCXER0BAJ/vfwIAaNiG7fleJ6yJIiIiIiIiMgJrooiIiChPKLVPAODs7AwAcHV1BaA+oO6rV68AAE+fpndrrauLc6X2SFet0ZMnT+Tvq1evAsioGSpdurQMM1cHFmFhYQCAqKgoOe2DDz4AAJQoUcIsy3iT3Az7FQAwv/F3clqcphooKb3ziNI9VwAALrZwkiEe5s+eDg7yVwHnBwCAx0pP7BoqmRKfPgYAeHg5ZA2kfI81UUREREREREZgTRQRERHlOaVWytfXF4B6Dc3Dhw8BACdPngQAVKtWDQBQpEiRLOloqj1KSUkBAFy/fh0AEBsbK8MeP06vDShcOP2rGdXvoEypiVL97ikuLn0Q1/379wMAIiMjZVjXrl2NTvvNl15DeGJH+jdR9Tr9KkM0fdOURcGiAIBAnZ8WxWb8Sj+cYFvRXN+lZSy4+dhOAIC2zdO/yYqf3FeGFbuxGADwzZ73AAAr1xo2ODDlL6yJIiIiIiIiMgILUUREREREREZgcz4iIiLKN/z9/QEATZo0kdMWLFgAADhz5gwAoFixYgCAtm3byjgeHtq7EFCa8S1cuBAA8M8//8iwkSNHAgCqVq0KIPudSdy5c0f+Xrp0qVpYz5495W8fH59sLefNFAsA+PdY+v9q9M/ocjz56SUAwKFV6d2Xb7/8VIY5l2oBAOjarR4AINBZV/O41Ixf6f2VoJJ/+r64dXI9AGDNiqMyzm2kNy+t2LEVAKBt1cCM5epYjE3p9K7NwyJDAAAxkddk2MuQHwAAhz/2AwDY68gt5V+siSIiIiIiIjICa6KIiIgo31A6lmjatKmcdv/+fQDAkSNHAACrV6fXRsTExMg4pUqVApBRk6QMzAtkdBah/FunTh0ZpnRgYWNjno/7b9y4IX8rHUrUqFEDANCqVSsZpqvm7O2VPkDtzQs1AQAlXi6UIV1C/gYABH84EADQuHGSDDu/6FMAQIWPXAEAs07tkGGDSuvfr+verwsAONHqQwDAiDaNZVi5B+nd0v/aqwIAYECxWTLs1I702iZdi7BxTq+5qtUsUHskei2xJoqIiIiIiMgIFkK1L08iIiKifEapidq+fTsAYPTo0QCAW7duaZ3Hzc1N/q5fvz4AYOjQoQCAli1bmi1vymPUvXv3AADbtm2TYbNmpdda9O2b3r318OHDzbbcN1M4AOATi24AgL+q9JIhq3b/DADQPOZuerfyF+c0AgCUmZ3RffzZUx8DAILklJvy1z87zwIAXgY2BADUCtDxdVLyRQDAnEZl5KTZXdPnP/VxkMZZ6M3GmigiIiIiIiIjsBBFRERERERkBDbnIyIioteC0nzv6NH0LqgTEhJkmJWVFQAgLS0NAODg4CDDlO7Eg4ODAQBeXl5mz5vSffqxY8fkNHf39LZnrVu3BgDUrVvX7Mt9syjN+dI7djj8+wUZcnRIaf2zP9kMAOjj8pmcVPHkvwCAzyqaJ4dPNveRv13+P9GT/6Yvz0yLoNcEa6KIiIiIiIiMwC7OiYiI6LXg55c+OGnHjh2zlY5qI5zsDq4bH5/eLbdSA6U62G737t0BZNSAkT7ptYk2dun/q1vGgNonVQULAAA8kFGDdTPeLBlTWYRK1/QX0jupMPMi6DXBmigiIiIiIiIjsCaKiIiI3irZrX1SujMHMgb8ffr0KYCMwYIBoHz58gAAFxeXbC3v7ZHefXi1/++B/tcrVzKCGpU0Ih07+cvGygzZ0rqY9FF2c3IRlH+xJoqIiIiIiMgIrIkiIiKi14LyLVN2a5Ky+03UxYsX5e/169cDyOjxr3bt2jLM1dXVxBy+rbwBANVb1wMAHPr7iAy5OSi9Jqqwrtn/v+bqODIGUx5eJlOcmxlpzlub3rtjo/+1AgAYUtd17vSejP+0/AqAUn9GbxvWRBERERERERmBhSgiIiIiIiIjsDkfERERvRbM2YwvO/7991/5Wxn4d9iwYQCAJk2ayLDs5vdtVbLTaADAex8NkNO+3f4OAGBGi/RmkzaqMySnd/Sx/acxAICLI1bJoJbemRJ3fih/HvmiEwBgf7EbAID5HTWkrSzi4jwAwEejHslpn+9MbzaYeRH0dmBNFBERERERkRFYE0VERERvBVNrhpKSkgAA0dHRAIAbN27IsDJl0rsVKFu2LADAw8MDlE3ubQAAM8JHyEmtmxcDAJQLGQgA6BL8TIYdWbASABBTdRoAYN/yRjKsYOa0C2Z0OjEtfJxa2oVnpg+OPKC2j4zz9OJOAMCa3U8AAO8s3i3DpjTMkjq9RVgTRUREREREZAQLYa4GwkRERERvoDt37gAApk+fDiBjYF0AqF69OgCgVav0brILF9bZCfdbJTExUf7evHkzAKB79+6mJfYi/Vumf08eBwDceJwR5FKsBgCgUlk3AIC9iWnHXjgNALh494Vq4gCAKkHpHaB7Omv6YoreRqyJIiIiIiIiMgILUUREREREREZgxxJEREREOiQkJAAAdu9O71SgUqVKMqxt27YAAG9vdnStSElJAQC89957ctqGDRsAALGxsQCA0aNHG5eofXpTvbK1mqX/m70sakzbv1LD9H/NmTa9sVgTRUREREREZATWRBERERFpcOnSJQDAkSNHAADFiqV3MlCxYkUZx8fHJ+uMb7n+/fsDyKh9AjK2U79+/fIgR0Tmx5ooIiIiIiIiI7AmioiIiEiDAwcOAAAOHjwIAGjYMP2bmQYNGuRZnvKzTz75BACwbNkyAOq1dOHh4VmmEb3OWBNFRERERERkBBaiiIiIiIiIjMDmfERERET/7/nz5/L3sWPHAACnT58GAHzwwQcAgBo1auR+xvKp6dOny98zZswAADg5OQEA1qxZI8PKljVrp+REeY41UUREREREREZ4q2uiXrx4AUD9rVNycjIAwMHBAQDg7Oyc+xkjIiKiXPXo0SMAQFRUlJymPB+ULFkSAODv7w8AsLCwyNW85Udz5swBAHz++edymrV1+mNlWFgYAKB+/fq5nzGiXMKaKCIiIiIiIiO81TVRcXFxav8CGW+XihQpAoA1UURERG+DK1euAAD+/vtvOU3pjlv5BqpAgQK5n7F8Zu3atQCA4cOHA8iofQKAFStWAABCQ0NzPV9EuY01UUREREREREZgIYqIiIiIiMgIb3VzPmUk8sjISDmtWbNmADI+HiUiIqI3ixBC/k5NTQUAXLx4EYB6xxLvvfceAOCdd94BkNF199vm4MGD8nePHj0AACkpKQCA33//XYZ16dIldzNGlIdYE0VERERERGSEt6YmKi0tTf5WOpI4fPgwAODEiRMyrEWLFgDe3rdNREREbzql9gkATp48CQC4dOkSAPUOpUqUKAEAcHFxUZtftSbrTe7uXKmVa9mypZym1EB99913AIAhQ4bkfsaI8gHWRBERERERERnhramJunHjhvz9119/AQAuXLgAAHB3d5dhfn5+AABXV9fcyxwRERHlmpcvX8rf69evBwDcvHkTANC9e3cZVrZsWY3zv8m1TwDw77//AgDatm0LAEhMTJRhI0aMAACMHj061/NFlJ+wJoqIiIiIiMgIb2xNlNJeWXmzdO7cORn2/PlzABlvkmxsbGSYra0tAMDKyipX8klERES5Izk5GQBw+fJlOU35Fkr57ikkJESGFS1aNBdzl/fu3LkDIOMbKOX/vXv3lnF+/vnn3M8YUT7EmigiIiIiIiIjsBBFRERERERkhDe2OZ/SZO/IkSMAgNu3b8swpctSZWC9pKQkGababSkRERG9OZRmfMqzAQBYWqa/Ty5ZsiQAoHTp0rmfsTz06NEj+btRo0YAgNjYWABAhw4dAAALFy7M5VwR5X+siSIiIiIiIjLCG1cTpQyqm5CQACCjYwnlTRMAVKxYEUDGILtXr16VYaqdTBAREdHrRWlRoqkb8mPHjgEANm3aJKcptS9NmjTJ1bzkNaXbcqUbcyCja/P69esDAJYuXQoAsLZ+4x4XibKNNVFERERERERGeONeLcTFxQEAzp8/DwDw8vICkDGILgAUK1YMAODh4QEAuHv3rgxzcHDIlXwSERGR+Wmq9Xn8+DEA4MqVKwCAhw8fyjCldUqFChVyIXd5LyUlBQDw7rvvAgAOHjwow8qXLw8A2LZtGwDAyckpl3NH9PpgTRQREREREZERWIgiIiIiIiIywhvXnE/pLOLQoUMAgH79+gEAgoKCZJxbt24BAGxtbQEAhQoVkmGOjo65kU0iIiLKQffv35e/9+7dCwB48uQJAKBq1aoyLCAgAEDOdJ6QHzuU6NGjBwBg+/btAICyZcvKsF27dgFgMz4iQ7AmioiIiIiIyAj5tibKkG5BX716BSBj0Fwg42PI9evXAwAuXLgAAPD29pZxlA9MlUF2AwMDZZiVlZXRedSXTyIiIspd9+7dk79Xr14NAChcuDCAjEFkAcDX1zdX85Uds2bNkr/Pnj0LAPj999/1zvfJJ5/I32vXrgUA+Pj4AADCwsJkmDKNiPRjTRQREREREZER8m1NlCGULkqPHz8upynfO718+RIAEB4eDiCjS08gowapTJkyANS7NTW1Rik/D6hHRET0tomNjZW/z5w5AyDjfq8MsAsY1wIlr82cOVP+vnz5MgDdNVGTJ08GAMyYMUNOU753Up6PSpUqZe5sEr0VWBNFRERERERkBBaiiIiIiIiIjJBvm/PpahanNM27c+cOACAuLk6GderUCQAwZcoUABnN7OLj42UcpYpfGbnc2dlZhllaGl6uZNM9IiKi/EG53x8+fBgAcOrUKRlWvXp1AED58uUBvF5N+ADgwYMHADKa8AFA5cqVtcZXOqD4+uuvAah3Wa50wKXatTkRGY81UUREREREREbItzVRmSUnJ8vfBw4cAABcvXoVAFCyZEkZVqdOHQAZg+dpEh0dDSCji3NVDg4O2c8sERER5aoXL14AAHbv3g0AuHTpkgxr3rw5APVBdl8nBw8ezDKtdu3aav9Xui4HMro0VwYQXrFihQyrX79+TmSR6K3DmigiIiIiIiIj5PuaKGVA3WvXrslpS5cuVQubNm2aDFMG0svsxo0b8vc///wDALh9+zYAoFChQjJM6Rpdtf0wERER5W/K4LpHjx4FkPGMAGTURHl7e2eZT/mWSqHre+fMcfXFN5dDhw5lmVarVi0AQEREBACgR48eMkz5dlypgWrTpk0O55Do7cOaKCIiIiIiIiOwEEVERERERGSEfNucT2myd/bsWQDA/v37ZdiJEycAZHRVev36dRnm6+sLAHj+/DkAYOPGjQAyuvQEgGPHjgHI6DJUtXr/v//+AwC0a9cOABASEmKW9SEiIiLzUjqYAoA9e/YAyGiiX7x4cRnm4uKiNQ1jmuPl1dAmR44cyTJNabLXtm1btf8DwM8//wwA6N69ey7kjujtxJooIiIiIiIiI+Tbmqhbt24ByKhlUh1Qt0iRIgAyBopT/XhU6RgiNTUVAHDz5k219AAgLS0NQEZ35qqD7inx79+/b65VISIiohygtFYBgPDwcABAhQoVAAANGzaUYa/b4LoKpXYpKioqS5gykG5iYiIAYOzYsTLso48+ApDR6YTSKkd12g8//AAAaNq0qXkzTfSWYE0UERERERGREfJtTdQHH3wAIKOWSfnGCchok2xvbw8AKFiwoAxTptnZ2QEA3n//fQBAr169ZBxl4F6lq1LVN1Q2NjYA2MU5ERFRfqO0Mnn48CEA4MyZMzLs33//BZDR1Xe9evVMWoZqN+Z59Q2UQhmSRRlIWNWdO3cAZLTKiY2NlWHK9+HKt9+a6AojIv1YE0VERERERGQEFqKIiIiIiIiMkG+b87m5uWVrfqUK3tXVVe1fY+XV6ORERESkLikpCQCwc+dOAMDt27dlWNWqVQEAAQEBuZ+xbFCeMzQ9Wxw8eFDv/EozRuVfIOPTBqXTiM6dO8uwNm3aAMjopIuITMOaKCIiIiIiIiPk25ooXTLXDplaM2RsLRNroIiIiPKO0hnCtm3bAKh3AtWtWzcAGZ0qmMrYe73S2YXSEZbyf9W0LC3T31lr6shK1/IOHTqkNUwZVLhFixYAgPbt28swZRo7ySLKOayJIiIiIiIiMsJrWROV3RohY2qyWPtERESUtx4/fgwAuHDhAgDg7t27AIDixYvLOLVr1wYAODs7600vu92YK0OlAMDFixcBADNmzAAA7N+/X4YpNUHlypUDAISGhsqwrl27AlAfpiUzpebts88+A6Be26Ssr7X1a/koR/TaY00UERERERGREd7q1xesZSIiIsr/oqOjAQCRkZEAgKJFiwIAKlSoIOMYUgOVXWlpaQCAK1euyGnKd0tK7ZjqN1FKDZqS7/v378swpRatQYMGADJ61FMVHh5utrwTkXmxJoqIiIiIiMgILEQREREREREZ4a1uzkdERET5g65BZ/fs2QMgY/DZ//3vfwCAevXqmbQsU7sxf/jwIYCM5nmqeVI6f6hVq5YMi42NBQBMnz4dALB+/XoZtmLFCrW0mzdvbnL+iCj3sSaKiIiIiIjICG9lTZQhb3iU7ktTUlLkNAcHhxzLExER0dtMuTe/ePECQEYtDpDRIYPSeYTSZbi3t3eu5E0ZSFfJk2q35K1btwYAVKxYEQBgZ2cnw8qUKQMAaNSoEQDg9u3bMuz69esAgBMnTgAAQkJCZJi5nzey26U7EWXFmigiIiIiIiIjvJU1UYZ49OgRAODmzZtymouLCwDAzc0NgHp3pLa2tgAAS0uWS4mIiEwVFxcHANi+fbucZmNjAwCoU6cOAMDHxydX86R8t5SUlAQAKF26tAwLDg4GoPv+X716dQAZzxZAxjdRN27cAAC8fPlShpmrJkq1BoqIzItP/EREREREREZgIYqIiIiIiMgIbM6nxeXLlwEAy5Ytk9OuXbsGAChcuDAAoEuXLjJMaWKg+rGpNpqq1/mhJxERvW5y4n528eJFAMCSJUvktI4dOwIAevbsCSCjg4ncypPSvK5y5coAMpoXAoY141c+B/Dz85PTlDRUO7AyNz5bEOUc1kQREREREREZgTVRWig1Sv7+/nLas2fP1P49cOCADLty5QqAjFqqkiVLAgCKFSuWJU2+GSIiojeJqfc11VqjhIQEAMDVq1cBZHQrDgDFixcHAAQEBJiaxWyxsrICYFhrE02UYVOUDioAoFChQgAALy8vAOq1W0SU/7EmioiIiIiIyAisidJC6bJUGdAPAO7evQsAOHbsGABgzZo1MmzdunUAgLS0NAAZ30u1bdtWxqlVqxYA1kQREdGbIbv3M2VgXQDYs2cPAOC///4DADRu3FiGBQYG5lqecsK9e/cAALdu3ZLTSpQoAQAICgoCYP4BdokoZ7EmioiIiIiIyAgsRBERERERERnBQnA4a6PduXMHAPDvv//KabGxsQCAmzdvAgDu378PAHj8+LGMo2zqKlWqAADq168vw6pVq5ZzGTZR5kMjPzaRICKi15dyPwWAkSNHAgCsrdO/NBgxYoQMU5rY29ra5l7mzGj58uUAgC1btshp7du3BwDUrVsXAFCkSJHczxgRmYw1UUREREREREZgxxIm8PHxUftX1e3btwEAGzduBADs3r1bhik1V4mJiQDUa3qeP38OIKOLdNWBBJVB+tj9KRERvQmUoUIuXLggpykD2ivdmavWzCgD2iodUdjZ2QHIny0klA6mgIwOJZTWKY6OjjKsYsWKAFgDRfS6Yk0UERERERGREfhNlJkpA+kpb9lUv4lS3khFRkYCAI4cOSLDzp49CwDw8/MDADRv3lyGtW7dGkDGAL5ERET5lfJYoauWSBmsfuvWrXKaco9UuvpWvecpg+wq05R/VWt2sptfRXZrt1S7MV+2bBkAwNvbGwBQp04dGVasWDEAgL29fbaWR0R5gzVRRERERERERmAhioiIiIiIyAjsWMLMrKysAAAFCxZU+xcAihYtCiCji1bV0cnd3d0BZDQDvHr1qgxbvHgxgP9r706D5ajOg4//jdC+ogVJaN9XQEIgEJLNIrOYJRSLjXG8FCTllEniciqu5EtiO1Wk7Eo+vOWKKSdlTOEQQwpiVmMksRNA7EiAhAQSQruuNiS0r34/pJ7TPaO5l9tXd5s7/9+XafXTM909mpm+fZ5znpMVshg/fnyKTZkypeS1JUlqrw4fPgzA0qVLAXj33XdT7JprrgGyohH52Pr16wF4/fXXgawMeq9evdI2cR2NQg1jx45NsYkTJ9Z7TNF972RHN0TxiOieD1khqbPPPvtzj6OSxnSNlNQ2zERJkiRJUgFmotrAmWeeWfIIWdnWd955B4CFCxem2JNPPglkRSpiYj6AK6+8EsiyW1EOPT8hYbRgtXZLli1oklR7yn/zYwoPgNWrVwNZb4tDhw6l2HnnnQdkU3zElCEAH330EZCVQY8pQ44ePZq2GTp0KAAzZswA4KKLLkqxyG5F8aZKU4Y09VoVxxBZsjhHgEmTJgFZ2fZKoiR6PhPWVtdtSY1nJkqSJEmSCrDE+eeo1DLUkvbs2QOUlkhdt25dxUfIWuc+++wzAKZPnw7AvHnz0jYXX3wxUNp3XJKk1pC/Zt11110AfPrpp0BpGfObb74ZgEGDBgFZ1gmya2OMMYp/xyPArl27gOz6mc9kxTXyhhtuAOCmm25KsRjLXEl9PSryE+rG+T3zzDNANjFwfn/RSyQv3oM4z+3bt6fY5MmTgawMekPHVokZLKnlmYmSJEmSpAIcE9XORF/w6EedX46WtJisF7JWubq6OiDrZ55vCYuxVKNHjwayPuGQTQDYHBMWSpJULp+Jiknmzz33XKB0YvmorheV9yZMmFBoP1Edb8mSJQC88sorJ+z3rbfeArJrH8CsWbOA7PqbFxmdY8eOAdn1NKoL5vezfPnykvMAGDZsWMlrR7YMYO3atUA2pirGdMHJVwqU1PLMREmSJElSAd5ESZIkSVIBFpZoA5Xe8sYMAo3nHTlyJK2LbgAxIPW1114DYNGiRWmb5557Dsi68eXLvl5//fUATJs2DcjKwEqS1BRxrdq4cSNQej26++67AfjGN74BwO23395s+y0vFR5d7yDr6n7fffcBWVEmgDvuuAPIJsStJApYPP/88wDce++9Kfbggw/W+7yYbiSOKd/Vvlu3bgDceOONAPzoRz9KsSgoYYEIqf0yEyVJkiRJBVhYog1Ey1LRJGA8Lz+RbiyXt1rly5nH4NwdO3YAWYEKgF//+tdANhB2/PjxKXbOOecAMHHiRKB4lsrJdiWp9sRvfkwU/+abb6bY/PnzgaywRHPKZ3mgtMBDnz59gCwrFr02AFatWgVkE+Lmy5GXX3fHjh0LwLXXXpu2GTNmTMn+88cRPUeiMEW+nHr37t0BmDlzJlBa7MLrptT+mYmSJEmSpALMRLWhlmhpGjFiRMkjwFe+8hUga21buHBhij300EMA7Ny5E8ha1CDLWB04cADISqRD1qoXpWjjMc+WNEmqPeXjh6L0OMB3v/tdIJsYvjmV9+7IX4PiGhXXsSg9DrB69eqSdeeff/4Jrx09MWL8cDxKql1moiRJkiSpAG+iJEmSJKkAu/PVkCg+cdNNN6V1l156KZDNnP7BBx+kWMzw/uijjwIwYMCAFLv44osBuPLKK4HSboCSpNqSLyf+3nvvAVlRhaFDh6ZYFG9oiek0GtOFPPaf7463fv16AFauXAnA7NmzC71mrbJ4lGqdmShJkiRJKsBMVA2JEq35MqqxHGXQTz/99BSLVqb3338fgP3796fYsmXLgKzoRAzIjVa+/PKQIUMAW6skqaOKawLAI488AmTXhZguA0rLh7eFKIo0cODAtG7NmjUAfPrpp21yTNUqrun79u1L66J0fBQTyU/JMnXqVCCbFDl6wEA2vUoU/qhUrEpqb8xESZIkSVIBHe5Wv6ESp6pfTAA4Y8aMtC5aD6PUeX681O9//3sAHnzwQSBrwcuXrf36178OwLx584AsIyVJ6ljeeuuttBxTZ/zkJz8B4Oabb06xpmYYmuvaXmmSe/9OODkxlgzgpz/9KQBvvPEGAP369Uuxv/iLvwCyzFV8TgD++q//GoDvfOc7gJkoVQczUZIkSZJUgDdRkiRJklRAh8uXmpZvmnjfKr1/MRA3BoVCNlg0ysRu2rQJgLq6urTNokWLAHjiiSeA0qIVF110EZCVks0P8pUktW+HDh0CYPny5QBs2bIlxWLKiygSkC8uUC7fva41rt+nnHJKySNkhQ7isVKXv9BQWe9a6SoY5ex/85vfALB06dIUO++884Bs+pPOnTun2Lp164Cs+1+vXr1SLLr99ejRo4WOWmp+ZqIkSZIkqYAOl4lSy+ndu3danjlzZsljDBRdvHhx2ubhhx8G4N133wVKS+BG69zhw4eB0oIUkfnq2bNnyaMkqX2IYkILFiwAYO/evSl21VVXATBixIh6n99QtqclHT16FMiuPZAVMYisSWOyR62dQWtru3btSsvvvPMOAI8//jhQ+l7++Z//OQBz5swBsuwewD/8wz8A2d8LkydPTrEohy9VEzNRkiRJklSAmSg1i+jHfOGFF6Z1kV3auXMnAB999FGKPffccwD8/Oc/B2DPnj0pFuOlojXzkksuSbF8P3ZJUtvYvHkzAH/4wx8AOPPMM1Psa1/7GgBnnHFGvc8vmr1prmxPTNmxffv2tC7G5px22mkndRwNxap9vNSbb76Zlu+9914gGyd9/vnnp1h+7DSUZqliXPSoUaMAGDBgQIp17dq1mY9Yann+RSpJkiRJBXgTJUmSJEkF2J1PzSK6JeTLk8bykCFDSh7zoojEmjVr0roYoPzMM88ApeVToxvA+PHjAZg4cSIA3bt3b4azkCQ1ZPXq1UBWXCC6wo0bNy5t01BBibYWXcfzhRL69u0LZGW2W0JcI9uqoEZRcZz79+8H4JNPPkmx6MoZXe/nz5+fYvFelr8OwIEDB4Dseh3Xb2hcV0qpvTETJUmSJEkFmIlSq+nfv39avu666wC45pprANi4cWOKPfXUUyWP999/f4pFJuqKK64oee18i1aUqe3UqdMJx1BNA3klqb15+eWXAXj99dcB+OIXvwiUFhdoSEOZmNb4fY6eDvlM1PDhw4EsG9KSx1Et16CYTPnDDz8EsgJRkPUqiWIigwcPrvd18qXv4zp/7NgxAKZNm5ZiUXRCqiZmoiRJkiSpgA6Riaq1Se86ksgW5SfaiyzTlClTgNK+2OvWrQNgw4YNAPzkJz8BSvtTz507F8haSPNZKklSMfmszdtvvw3AqlWrAPjGN74BwDnnnNOo12rra3SMiYrJgiEb19WSY6KqTYyFitLm+WlIZs2aBcDAgQPrfX5krl577bW07uOPPway6330LIETx1JJ1cBMlCRJkiQV0CEyUW3dsqWTlx+/FP3T4zE/ge/KlSsBeP755wHYunUrAHV1dWmb5cuXl7x2PjZ06FAgm+Qv3/rlRL6SlNm9ezcAb7zxRlq3b98+AEaPHg1k42LylVnbs8iw5DNR0ZMhxvb4NwUcOXIEyHp/HD16NMXGjBkDVK6oF5MZR3XdhQsXptjBgweBLBOVHwfle65q5F+NkiRJklSAN1GSJEmSVEBVdueLQhKmf2vPpEmTSh6/+c1vAlkZVoAXX3wRgEceeQTIJgaErAxvTA4YkwVC1sVPkpQVAvjtb3+b1kU3vksuuQSovklSoztivmR3dOtuqFBCR9TQ31KxLrraR1ny/PNi0tx8ca/oav+rX/0KyK7HkE1tEkVIunTpcvInIbUhM1GSJEmSVMAX/tjQzHftXBQMeOKJJ9K6aDmLcpzRmmLWqulae3LE8tax/D5OPfX/kqfROhbFIKLABMCyZcsAWLJkCQAHDhxIscg2RdnzCRMmpFi0qMYA6dhXXrTGxaDb/GDbOG4zpZKqRfxe5Yv7RGbmgw8+ALKJzwFGjBgBwOTJkwEYNGgQUJpVyGct2lL+nOL3eNGiRQC89957KRbTasT1IF9kKJar4U+l48ePp+U43t69ewMwbty4FLv66quBhifJjQIR8X5Fhgmyz0UUiMhPUdKtWzcA3n33XQCWLl2aYvFezp49G4Cvf/3rKRbrnHRX1cRMlCRJkiQVUNWZqBUrVgDZhKsAL7/8MpBlqaL1yfLV7Ut5luZkP4b5/9/ybFV+X9FCGi12+UxSpezS5+2vc+fOFY8BqqPlUlJti9/HfBbj0KFDJdvEZLSVto/H1v69q5Tpb8wxRMYs39Pg8OHDQOXf/ua+VrWkSpmoyOzMmzcvxf7pn/4JyMYWVxLXw/Xr1wNw1113pdj/+3//D8hKlo8fPz7FbrnlFiDLcm3cuDHF7rvvPiD7P4htAW666SYgK5kvVQPvLCRJkiSpAG+iJEmSJKmAqu7OFzOPRzEJyGZYj/S82qfm6iJRqfhEdKur1IUz9hOxfLeVGAgbJVljxvX886ZNmwbAtddeC8CsWbPSNv379weyLhX5145uhFX8dZPUgcRvURSR2LJlS4pFd6/oEn3rrbem2KhRowDo2bMnkHWBq5bufNGNL399KO/mnX+daurOV0l0Oe/Xr19aN3bsWCArolRJnGf8LbVp06YUW7duHZB1+YvPAsCQIUOArMBE/m+x/HQjUFpEIpbzXUel9s5MlCRJkiQVUNWT7UYryvTp09vycNRBTJ06FYAxY8YApSVhd+3aBUCfPn2ArPU2WuIga+GMySjzLX+S1J5t27YtLY8cORLIpn244YYbUqzWJqTtyBoz2W7Xrl2B7LpYvlxEZDGbekxSe2MmSpIkSZIKqMpMlC0UagnRJzvGO8UjwOrVq4GshP4DDzxQsj7//JjIMB4hKyWbL4ne0TQ0jkBS+7RmzRoAXnnllRNiw4cPB7KMlDqW9vg73R6PSaqPmShJkiRJKsCbKEmSJEkqoKpLnMehR3nShuRTxFG2VbWn/OPe2K4DUcY3SrsuX74cyLrCAGzfvr3kMV/iPMq2RhGU/OzxkydPbvwJSFIz+q//+i8AHn300bTuvPPOA+Ciiy4C4Pzzz2/9A5Okds5MlCRJkiQVUJWFJcrlswv1JdYqTbwqNST/WYry5TFJYTzmRXYqWnSff/75FNu5cycAdXV1Jzxvz549AIwYMQKA7t27p1hMYhj7l6TmEL877733HgCrVq1Ksdtvvx0wAyVJDfHOQpIkSZIKqOoxUSF/CjE+6vjx40DWgm8mSi0txkDt3bsXgB07dqTYxo0bAXjzzTcBWLx4cYpt3rwZgKFDhwJw/fXXp9j8+fMBOOOMMz53/05SKKkh+d+kyJS/+OKLABw8eDDFfvjDHwIwYcKE1js4Saoy3llIkiRJUgHeREmSJElSAR1itHq++1J5Vya7Nqm1dO3ateRxwIABKTZ69GggK3WeLxSxcuVKAPbv3w/A0qVLUyy6AUZ3vokTJwIwbty4tM2gQYMAP+uSGrZp06a0/OSTTwLQt29fAL7yla+k2Omnn966ByZJVchMlCRJkiQV0CEyUQ1xsL3agy5dugDZJJbxCLB7924gy0A9/PDDKfY///M/AOzatQuAq6++GoCrrroqbXPBBRcA0KdPnxP26+deql1x/YvJwvOTg8fvTRSyueyyy1IsplYoso88f3ck1QIzUZIkSZJUQIcocZ4XJc7jsaES5+Xl0KHhFrROnTpVfD6cmPGKf+f3W/78vGgprJQ5i+cVad2rVPa9of/qOM6GjrEhDb2Xlc6pNSaPjWPJ/z+Va+r7XOl8G3rtxpxvZJtWr16d1q1duxaA9evXA7Bu3ToAtm7dmrY5cuQIANOnTwdg7ty5KRYZrxiLJal2xG/vs88+C8DLL7+cYp988gkA1113Xcnjye4rrzG/pfnnmcGSVE3MREmSJElSAd5ESZIkSVIBHb6wRGPkuxOUd0loqHtBpedF967GdEtoqCtY/rVju+hy15hjyr92Y3psxjZFu1bEfirto3xdpXOKfTRnN45K70F92+SPqTHvb0PnW98+8s9r6Hz79esHwKxZs9K6WN62bRsACxcuBOCFF15I20S3nErnu2PHDiArsT5kyJAUGzhwIADdunX73HORVH0OHjwIwIsvvgiUdhW+4oorADjzzDObZV/537Siv4+SVI3MREmSJElSATVdWCLk34IYpB/bN7YAQhSGiGxAQ/stLyKR375ShqJ8+/wxlW8fx99QwYRK2aZKhRLieY0pylFp2/qKbeTPKWInW2gif9xxbA0Vyyj/nOS3a2j7ljjf8mOp1KIb+43HmJgXYMuWLQC8/vrrALz00kspFutiQt58afTylmgHdUsdSxSm+f73vw9kv0MAv/zlLwEYOXJk6x+YJHUAZqIkSZIkqQDHRDVBQ+OHGsre1Pc6cGL2pNJ4mqYcY/7Y6vt3fc9rzOs3NJlxY/bTEtmPxpxDpfe5aDneck0931gXx1SpTHz5uKUePXqk5dNOOw2Azp07A9C3b98UGzVqFJCNjYpS6QB33303kI2NmjZtWopFufTx48d/7rmVn2Njt5fU/FauXJmWn376aQD69+8PwLhx41Js8ODBrXtgktTBmImSJEmSpALMRJUp0uKe71/e0Hiaxigf81JJY6rHtZbyYyiaWWrrcyjPHObXteT+Kin/f81/BurLaOa3ieVJkyaVPALceOONALz77rsAPP744yn25JNPAvDpp58C2cS8+XUxxi6q+vXu3TttU551bev/U0mwZMmStPzYY48B2fjHyy67LMWaeq2SJP0fM1GSJEmSVIA3UZIkSZJUgN35KO2GFKWno4tUdGfKx1qi21L5aztIv3XUynsbA8q/9rWvpXWXX345ABs3bgRg2bJlKbZgwQIA7rnnHgAmT54MwMUXX5y2iXLpMUmwVIuKTNDeEuJadeDAAQDWrFmTYvHdHjt2LNB8E+tKksxESZIkSVIhVZmJasmWv/LXyg/gb6h4wsnOWVxeQKDShKvtWdH/g5YscV5k/5Uyfo05pvZ0vvHaUSa/0oDxnj17AjBhwoQTYjNnzgRKM0qHDx8GskzsZ599BsBbb72VttmzZw8AI0aMAGDYsGEpFqXVzVJJLWvfvn0APPPMMwDU1dWlWHy386XNJUnNw0yUJEmSJBVQlZmoaHGPFviYZLQltFampKFMRfn5xvip+rZvC22dWSqqUpn6ImPequ18I6Na6Xzj8Ytf/GKKxdinvXv3AvDqq68C8MQTT6Rt/uVf/gXIslwXXHBBit18880AzJo1C2jejFSRTLRjC9US2tPnavv27UA2eXZMRwDwl3/5lwCMHj261Y9Lkjo6M1GSJEmSVIA3UZIkSZJUQFV254uuFJW6KEXXipMtR15e6CG/33jMD+CvtH194nn5Y4sue5XEdrGPhs4pXjvf3ST//nzePvLn1NB+ys83/i/yhTgaEvtp6H0rL5iQ376hQhzxf1+py159x1H+GuVa8nzjNSp9BhrqylnftpX229D2lf7vQ69evQCYMWMGAN27d0+xKHseA9l3796dYvfffz8ADz/8MAAjR45MsTlz5pS8Zu/eves9xtDU7lNt3dVKHUNblzGvJApKfPjhh0D2/Zs+fXraJkqaR5dbSVLzMRMlSZIkSQVUZSaqvBR1PhvQmAxHkX3kW+fzE+9C0wtaNPTalcqZR/ahMecU21TKRDVUKj2OpaHMRV75OcQ+GsrM5FtvK2Xj6pM/7vrOIf86sRyZlkrH1J7ON16jUrGK8uxnpW3KJ2jOH1NjSufHuTRUsGTgwIEljwBz584FYOvWrQC88MILKfbAAw8AsHTpUgBWrFiRYgcPHgTg0KFDQGn55f79+wPQtWtXALp161bxeKRa98477wDw9ttvA1nxiKlTp6ZtzEBJUssxEyVJkiRJBXzhj9Uwk2uZxhxyS7Rcl2eLunTp0myv3dA5ney5FPkvbuq+in6Miuyn0msXzWA1x3EUfe3G7udk/3+KfHZa4nMWGb8ohw7Z5LybNm0CsnEbkGWsVq1aBWTZJsjKpF999dVAViL9ZDPLUkfz4x//GMimH7jtttuALEMMMHz48NY/MEmqEf5lIkmSJEkFeBMlSZIkSQVUdWGJllQ+kD+/35boWtSS59Qa71d7PP72eEwt8VptXfI7imb07ds3rYvlESNGADBkyJAUi+9Unz59ANixY0eKbd68GYAnnngCgCVLlgAwatSotM2YMWNK1jVnt1qpPYoiLKtXr07roqtsFGE566yzALvwSVJrMRMlSZIkSQVUZWGJ1hCD5fMTmBYpNS7VssZMTlqpdf2pp54CYNGiRQCsW7cOKG1dv/baawGYP38+AJMmTWquw5bapSjM8vvf/z6tW7NmDQDDhg0D4Lvf/S6QTROQ19TiPJKk+nk3IEmSJEkF1HQmqtJkrOUT+Obfnphc10yU1LBKkwLXJybfBdi4cSOQtbLH44YNG9I2dXV1AOzevRsoHYt1ySWXADBnzhwARo4c2bQTkNqRBQsWAPCzn/0srbv00ksBuOGGGwCYOHEi4BhBSWot3g1IkiRJUgHeREmSJElSAVVZ4ry5NTTo1sG3UnFFvjfdunVLy+PGjSt53L9/PwBLly5N2zz99NNAVnRi7dq1J7xWdBHMF50YPHgwkA28jxLrRY9Xakn57uXbt28HYNWqVQDs3bs3xcaOHQvA9OnTW/HoJEnBTJQkSZIkFVDThSVCY98CW6ulTJHiESe7jyNHjqR1Bw4cAODTTz8FslZ6gGeeeQaA1157DYAtW7ak2MUXXwzA1VdfDcAXv/jFFMtnpaS2tG/fvrR83333AbB8+XIAevfunWLXX389ADNnzjyp/Vn+XJKaxkyUJEmSJBXgmChsdZPaq/hu5ss2x3KUNs9PLhrTD8T4p48//jjFYqzJs88+C8DixYtTbMyYMUA2vmTKlCmAGSq1vnwmKsb/xef6pptuSrEYN3iy4jtmpxRJKsZMlCRJkiQVYCZKUpO0lwxuPlsUE5DG465du1LsySefLHl89dVXU+yMM84oed7hw4eB0up+MR6la9eugJNuq3nFuL9PPvkkrVu/fj0AEyZMAGD27NkpFpO/N9fYxPbyfZakauFfAZIkSZJUgDdRkiRJklSAJc4l1YRt27YBsHnzZqC0/PlHH30EwIoVKwBYuXIlAD179kzbzJ07F4DLLrsMgLPPPruFj1i1ZNGiRQAsWLAgrYsuoxdeeCEAN9xwQ6HXbI1pCCSpVpmJkiRJkqQCLCwhqSYMGjSo5PGss85KsYkTJwJZkYooM719+/a0TUzqe+zYsZJ/AwwbNgyA4cOHAzB06NAU69SpUzOehTqayBa9/fbbALz++usp9v3vfx+AL33pS82yDzNSktR8zERJkiRJUgFmoiTVvNGjR5c83nLLLUA2VgrgqaeeAuCRRx4B4N/+7d9SbObMmQBcffXVAPzJn/xJikX5dClEOXOADRs2ALBx40Ygy3RCliEdOHBgk/ZTPpFufgi0WSlJOjlmoiRJkiSpAG+iJEmSJKkAS5xLqnkvvvgiAK+++ioAX/7ylwEYMWJE2iZKokf583xXv927dwPw2WefAXD48OEUGzlyJJAVspg9e3aK2dWvNkUXPoB77rkHgE2bNgGln7nbbrsNgMGDB5/wGuWXbrvnSVLrMhMlSZIkSQVYWEJSTYiW+8gWrV69OsXuvvtuAB577LGSbaPABMCZZ55Z8pi3ePFiICs6kZ8wNSbwjUzW0aNHU2zKlClAlmmIyX27dOmStrFEesezZs2atByT7M6bNw+Ar371qyl22mmnte6BSZIazUyUJEmSJBVgJkpSTdi2bRuQtfzfcccdKRbjnIYMGQJA165dC7322WefDcCYMWMA+Pa3v33Ca8dkqv/+7/+eYsePHweyUtZRIn3OnDlpm6aWt1b7EZnNtWvXAll2EqBz585AVl5//PjxjXrN8jFQlYY3O05KklqOmShJkiRJKsCbKEmSJEkqwO58kmrCqaf+38/doEGDAJg1a1aKHTt2DIBTTjmlZNt8F6noehfb5PXo0aPkMboF5pejaET+NaOs9aFDhwD43//9X6C08ECUSI/uXvkS2AMGDGjgjNVexGfnhRdeAOC9995LsSh5P3369HqfH5+ZxnTPswufJLUOM1GSJEmSVICT7UqqeXfeeSeQlTqPSU6j0ANkGaFKmaimikzUa6+9BsBDDz0EwPLly9M23bt3B2Du3LkAXHHFFSl23nnnAdC7d+9mOyY1v127dgHwt3/7twBs3749xf7u7/4OyErn9+nT54TnF8lESZJah5koSZIkSSrAMVGSal6UNG/tlv6hQ4cCWUnzmHT3k08+SdusW7cOyLJW9957b4r993//N5CVSI9sFcC5554LZCW01TLqyxLV1dWl5bfeegvIJlqOUvgAEyZMACpnoOrbV6X9SZJal5koSZIkSSrAmyhJkiRJKsDufJJqXpQYb+06O9ElK8qgx+OFF16Ytvnoo48AeO655wB4+eWXU+zDDz8EYOfOnUDp8e/ZsweAcePGAdCvXz+gtAhFly5dmulMVG7FihVpecGCBQCcfvrpQFYQBBpXpj4+J9aBkqT2w0yUJEmSJBVgJkqS6tHQ4P3WGuQfk+z+6Z/+KQDXXHNNiq1fvx6Ad955B4BXXnklxe6//34A+vbtC8A3v/lNAC699NK0Tb7AgZqmvv/7fJn6yET9/d//PVBapr5IyXyLSUhS+2EmSpIkSZIKMBMlqebVN9aktcaglO8nn3GIEuXx2LNnzxQbNGgQkI1zyo93igxWjJeKzMjHH3+ctunfvz8A06dPB2DKlCkpFpMLq3FiXN2yZcsA2LBhQ4qNHTsWyErRR3ZQklS9zERJkiRJUgFmoiTVvKaMNWnO8SlNfa3ITk2dOrXkEeDgwYMAvP766wD8x3/8BwCvvvpq2ubIkSMAXHbZZQBcfvnlKXb8+HEgqyiXr+TXqVOnkzrujmj79u0APPDAAwDs27cvxb761a8CWUZKklT9zERJkiRJUgHeREmSJElSAXbnk6QOKCbl/d3vfgdkBQ/OOeectM28efMAqKurA+Dxxx9PsbvvvhvIik1ccsklKRbLffr0aZFjr0bRnS8mRZ45c2aKXXnllUA2mbLUEURBHLv1qlaZiZIkSZKkAsxESVKV27t3LwAffPBBWhcFJHbv3g3ArFmzAPjyl7+ctvnSl74EZJP1RjEJyDIrGzduBOC1115LsV27dgFZGfV8hmXYsGEA9OrV62ROqWrE+/P+++8DWQGOUaNGpW3iPQmtNVGz1JLisxu/MQArVqwAst+kbt26pVh8JwYOHHhCTKpGZqIkSZIkqQAzUZJU5ZYsWQLAL37xi7QuJuK95pprgCwDFeshyzwNHjwYgEsvvTTFPvvsMwAWL14MwFNPPZVid9xxB5BN/JsvjX799dcDcN555wFw6qkd+zKzaNEiAF555RUge78jy1eJ2SdVs/KxUB999FGK/ehHPwLg7bffBrLfFoC/+Zu/AbIxgmeccUaK+Z1QNTITJUmSJEkFeBMlSZIkSQV07H4WktQI3bt3B7KuZ9FNrXfv3mmbU05pH21OR44cScvRjSa68+VFie2LLroIKO3GF+Kc4jHf9a5Hjx4AnH/++UBpoYiJEycCWWn0Q4cOpdh//ud/Allp9UmTJgFw7rnnpm3OPvvskv22laYWeIjCGpAV5fjkk08A+Pa3vw3AjBkzTvr4pGqQLyxz7bXXArBv3z4ANm/enGLxe9qvX7/WOzipBbWPvwokSZIkqUqYiZJUUw4fPgyUZhOiTHW0nq5btw6ANWvWpG2idHVkZNpqIPSBAwfS8tNPPw3AqlWrAJg6dWqKzZkzBygdvN0U8fz861x22WVA9r4tWLAgxR5++GEge+9Wr14NwJ49e9I2x44dK3nN/KS9Ufa4JQtS5DNQRcRnZunSpWndjh07gKx1ffLkyUCW3ZQ6mvLfvqFDh6blm266CcjKnuenRhg/fjyQZfqlamcmSpIkSZIKMBMlqSYcPHgQyEpR/+xnP0uxl156CciyPD/+8Y+BLNMD8L3vfQ/ISleXT6DaWiKTBrBs2TIgG5M0f/78FBswYECLH0uUL45xEADz5s0DsixVTL4ZpdIB7r//fgDGjh1b8hyAq666CoBx48Z97v4rZZQakyFsahYxMn6/+c1v0rpohY/Mn63sqjX5yXajtPnRo0eBbPwjwMiRI1v3wKQWZiZKkiRJkgrwJkqSJEmSCrA7n6SaEF24orvV6NGjUyyKGXTt2hXIuqeMGTMmbROFA1qy4EFjRDcZgA0bNgBZsYtRo0alWL4keUuJ9+L0009P62I5SptHafXjx4+nbeL/IrrjffjhhykWxT3iXPLnFMvRjbC1ik9EWfk4zigtD3DzzTcDWTfP+AxJtSJf7Objjz8Gsu97vsDKAw88AFSeQiKmBIguvlI1MBMlSZIkSQWYiZJUEyJDEJPHzp49u9Dz26qkebl8RicyZnFuffv2TbH2khGZPn06AGeeeWZaF9m0N998E4CFCxem2EMPPQRk55kv2x5FJ+L/MJ8pbG75Ah5vvfUWkBWWyBftiImHK01mLNWC/ATg27dvB7LvT2SWAX7xi18A2QS8+UIT//iP/whkhVqcIkDVwEyUJEmSJBVgJkpSTWovmaWTkc9KAZxyStYu1l7Or9JxxFimyDLly4JHSeSY8HjTpk0ptmjRIiArPZ+fAHjWrFkAnHPOOQCMGDHic48tP+6p/DhjQmDIJhCuq6sDSku6x9gvqVbt3bs3Lb///vsA7Ny5Eygd0/jDH/4QgE8//RSAN954I8Vi+yiRPnfu3BY8Yql5mImSJEmSpAK8iZIkSZKkAuzOJ0lVqlOnTkDWFS3fBS3fVa296tOnD1BadCKWd+zYAcDixYtTbMGCBUBW4CFKvEM2gD0ep02bBmTl0CEr+x6PDXV5XL9+fVpetmwZAAMHDgRg/vz5KTZ8+PAGz1Hq6OK7CrBt27aS2Lhx49LyX/3VXwHZd/TOO+9MseiKvHr1asDufKoOZqIkSZIkqQAzUZI6jPLsS3sprtCc8ufUuXNnIGvFzU/EG0UnIltVbWJy40suuSStu/DCC4GsRPLy5ctT7OWXXwbgnnvuAbLW7nPPPTdtc9111wEwb948ALp06XLCfiPr9MILL6R1Q4YMAbKiF8OGDUuxan1/paaK39ktW7aUPAL0798fyLK1t956a4rF923r1q1AVs4csix6vjiO1N75aZUkSZKkAqoyExWtIB2xlVlS09XCb0J+Qt1o9Y2JKfMlzyNLVa0iw5Mvfx7Lcd75yTojWxQlx9euXQuUvicxvioyWPnJeqdMmQLAc889B8Arr7ySYpENu/TSS4Hqf28laPrfUvG8FStWAFlmGLLMb0xmnv/+hl27dgHZdxSysYunnXZaoWOR2pKZKEmSJEkqwJsoSZIkSSqgKrvzReo5umkcOXIkxWJdNZT3ldQ+Vfr9aOuugj169ABKSwhHl7f4DVyzZk2K9e7dG4BBgwYBpUUnOopTT80uYXPmzAFg5syZQFb+/Nlnn03b/OEPfwDgnXfeAUrLk99yyy0APPPMM0BWRh3gW9/6FgBnnHEGAPv370+x+Fx4zVF7FJ/PfMGG8oI0RcXfWdGdLwpFAFxxxRVAaVfZcrF9fA8BLr74YqC0aIvU3pmJkiRJkqQCqjITFdatWwfAL3/5y7RuyZIlAOzcuRPIWmHauhVZkk5GZJ0OHDiQ1n3wwQdA9vv2xhtvpFhMZBtlhTtSpqTS73pkpaKV/ODBgwDU1dWlbTZt2gRk70X8G7Is3vbt20u2AfjBD34AwIABA4DSSY2LHG9H+j9Q+5P/fMVyFGGZMWNGin3ve98DYPTo0U3aT3z+42+w+M5Alq2Niakr2b17N1D63YziOGPHjm3SMUltwUyUJEmSJBVQ1ZmoaHE8dOhQWhettNFn3UyUpI4gWpbzk7vG+J+Q/y2MMVD5MaO1oHwMSJQ+h6wkeryH+fLn8d6NGzeuZBvIrid79uw5qWMyE6WWlP98xWe7W7duQOlvQ/5z31j558S4zPht6dWrV4rF96187Dpk0wZEBn3ixIkpFmOoIoMuVQMzUZIkSZJUQFVnokaNGgXAP//zP6d10fralJYWSaomDWXYaz3r0dQJRCs9r9bfS1Wf+MxGRjY/QXRkp4rYsWNHWl69ejWQjRHMT5Cbz0pBNv4J4M477wSyzO7tt9+eYrNmzSp8TFJbMxMlSZIkSQV4EyVJkiRJBVRld77yAdY9e/Zsy8ORJEmqKg11YS0Xk3dDVjwihk8899xzKRbTzMTk4Pmug+PHjwdg6tSpAJxzzjkpFqXYpWpiJkqSJEmSCqjKTFR5q0mlQb+WNJckSaqsyN9J+YxSTIgb2aPNmzen2IIFC4AsS5XPNv3rv/4rABdccEETj1hqX8xESZIkSVIBX/ijtVslSR1U/hJnDwXp5MV3qq6uDsgm3wXYu3dvyTb5kucxkbXj2NVRmImSJEmSpAK8iZIkSZKkAuzOJ0mqCUeOHAFg+fLlAKxfvz7F9u3bB2QD4vOXxmPHjpU8du7cOcWmTJkCwIQJEwDo27dvixy71JbsFiudyEyUJEmSJBVQlSXOJUkq6tChQwA8/vjjADz44IMptmLFCgAOHz4MlLa2N9Rh47bbbgPgO9/5DgCzZ88GSktCS+1J+ee5MZkls0/SicxESZIkSVIBZqIkSVUhWtCb2iretWtXAK655hoATjkla0f87W9/W7LNtGnTUiyWY79r165NsY8//hiAX//61wB06dIFgLPOOitt06NHjyYdr9QS2iqr1JQMmNSemYmSJEmSpAK8iZIkSZKkAuzOJ0mqKk3t1helyWfMmFHyb4AlS5YAMHbsWACuv/76FDv//PNLXieKUAD84Ac/AODZZ58F4PLLLwdgzJgxaRu780lSx2MmSpIkSZIK6HCZKAcuSlLH1Ny/57t3707LdXV1QJalislzK+ndu/cJy1GQIl+sQlLGv8fU0fhrL0mSJEkFdLhMVLR0NDQ5oiSp9sR14cCBAwDs3LkzxXr16gXAqFGjAOjfv/8Jz9+6dSsACxcuTOt27doFwOjRo0ue369fv+Y7cElSu2MmSpIkSZIK8CZKkiRJkgrocN35ggMYJUl50Z1v/fr1AGzZsiXFokBEp06d6n3+0qVLAXjsscfSurjWRBn0yZMnA1mhCamWWNxLtcRMlCRJkiQV8IU/WoFBklQDjh07BmQT6/7ud79LsV/96ldAlkEaN25cinXv3h2ASZMmAXDhhRem2IgRIwAYOnQoACNHjgQazmhJkqqfmShJkiRJKqDDjomSJCnv+PHjAKxbtw6Abdu2pdjgwYMBOHjwIJBNvgvw2WefAdlEuueee26KReZp+PDhLXXYkqR2yEyUJEmSJBXgmChJUk3Yv38/AD/96U8B2LBhQ4pde+21AMycOROAbt26pdjzzz8PZFX5Xn311RT7sz/7MwC+9a1vATBs2DAATj21WEePSpdiK5tJUvtlJkqSJEmSCvAmSpIkSZIKsLCEJKkmRIGITZs2AXDkyJEUmzFjBgBjxow54XmXX345kE3S+8ILL6TYBx98AMD7778PwMCBA4Hi3fmi65497CWpOpiJkiRJkqQCzERJkjqsffv2peXNmzcDcOjQISCbRBegb9++9b7GgAEDgGyy3UGDBqVYZLeiSMXRo0dP6ngtJiFJ1cFMlCRJkiQVYCZKklT1YixReSZn69ataXnlypVAllnKT5Cbz0rVZ9euXQDs2LEjrYvsVEzW26lTp6KHLtW88rGAZmRVDcxESZIkSVIB3kRJkiRJUgF255MkVb36uv/ku94tX74cgBEjRgAwa9asFOvRo0fJ844fP56WX3rpJQBefPFFAPbu3Ztiw4YNA2D8+PEAdOnSpWknINUwS/yrGpmJkiRJkqQCzERJkjqstWvXpuVly5YBcNVVVwGVJ9YNdXV1afmuu+4CYOHChQD06dMnxaZOnQrAxIkTAejcuXNzHLZUkywooWpiJkqSJEmSCvjCH+2AKkmqcjHp7fvvvw/Ao48+CmTjmQDWr18PwLhx44BsbBRkJc5PPfXUktcDeO+990q2v+GGG1LsoosuAmDs2LHNdSqSpCpgJkqSJEmSCvAmSpIkSZIKsLCEJKnqRdnxpUuXAvDzn/8cgEOHDp2wbXTra6zhw4cDcOONNwJw6623Nvk4JUkdg5koSZIkSSrAwhKSJEmSVICZKEmSJEkqwJsoSZIkSSrAmyhJkiRJKsCbKEmSJEkqwJsoSZIkSSrAmyhJkiRJKsCbKEmSJEkqwJsoSZIkSSrAmyhJkiRJKsCbKEmSJEkqwJsoSZIkSSrAmyhJkiRJKsCbKEmSJEkq4P8DdeDW6o7THzsAAAAASUVORK5CYII=",
"path": "images_version_6/image_31.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, the straight line a parallel b, and AB perpendicular BC, then the degree of angle 1 is ()
Choices:
A:65°
B:25°
C:35°
D:45°
|
||
156
|
32
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAM8AAACOCAAAAACz7gNKAAAMcklEQVR4nO1dXWwcVxU+k6ZJmaKFFdsu6rastDX+kWrICletkSyyVQQJDklKw4OrVKxEjeSFkBjCi5Es1UAf3NbaGEEfXGEkTF2KURl3N3SR2IhU5sFqMbLSMkamMZWMZARbcFG3osv9eJiZ3fm5MzszOzNYyJ8UZ2fmzrnn2/tzzpxz76wA+r/Cgf+1AgFjn8/exj6fvY19Pnsb+3z2Nvb57G3s8+kU5Y0wpUfP52So0iPn85VcT5jihYiffy53nQy1xojbZ4O6cqFWEDGf2QvUF2oF0fK5/AOhN9waDoYr3ogNApU3Q60iSj4bY1WicOkQITIUiGTkiAphVhLZfA0hkmoimw9UOstXKdRvMNL5gGh5RHwlHWZjRctneWTxtRO/u4XC63tRjR8IRLQ8sniKHq6/EGpF0UESJQD1I5Mh1hE2H9b6qNABdhJL4dUXevs0CUnisvppNbbO9ESDRGT9TWsdAFhI7YRVTVR89HTAxgcbIdUT0fy2PPLc5/Rm59Op+ZBqCul7MkJpHdYaM7uZywxA8KMoEj6GzqbgjUQ1lKqi4KO2jvFkJb4VRl1h8bHaHWa6PN29G0K9oc0H2tjHiyOLp7glHvnbL8OoN1ww6X2WsaOiMXAp+PrC5mO0O8ZrO8nnAq8vZD6cmU2Htfha0FN2uHzMdJjhP7DFZNCOT6h8NDpM91cHxnBpIGDHJ0x/Z1mb2f76+5U3X8Pr7xBRrJuyd913b1wrcyLx40Afvzvl46CKSmfjhZ9eP5K96z46cptA9JfrtPLm9Vfvf/DzdxMR0dsDj14SmrICIBZAG3NHNJNECVgZS8dHFi19qr5wNpYZXwWArXhFJ6fjySHQ8aPXRhIlzCbSYyvWSwqujqYS8wCqCTlAFQLikzO3tSRKS5nsNTMRo1Nd6esrA7OZ3eAm7aDaJycDhZYw6dbHsylemMCk+EJicBX5YwEpgcD4sBwA5LTQtHS4Pz7t6sbG1AeGb9w/HowWCIxPqQAAhRwAMEiHDl3ahcvRXTsv/jz1k2DUCIxPoQQAxRwAQDp4yPqwxgC7oI4kfj22GoweQfFRxBQKAPCzA0mPM9ZaauhD20Eq0inkAgDIVALwjNDv8UGNoTaQvKfebD01Y1zyo0kwfGaKAJDLAXiSPuv5doZG/vCJ1nFO9q1ZMHxIBmTKAXiGvuT5bgYAEzd9q9VAQBH+0nhB8Cm1+sfzdKJtcRs8ePBFTV5R7cA+EOzzgiSIvu9t9N6sTiNFIir6lBJovnH5odve/ye/N9/0G/H+t4mISJJR7CLylZgMks+LX7j5t48+5fv221/+1yAR0Qb1UFcXkb8snu/+oUAfZzt8qILteN1VYS6eP/AwgKLfvgYEMH50+Z3+CQAPzhrOcgo6IH94Tp2t/SKw+UC69dvxOhiuZToQ8sdbxSeJqANCQfGRRCk7CwDo8x9orydH70luoZPH1ID4SKK0mFEeq+eOOxV01HTieD35SL/DAGyPYPhIotRIq49vdd+Jgy1xE3N9Z850okkgfCRRwuyAdjQ+btcMzcVI/MsnxwHW/cP+qQ5UCYKPJEpoJFY0LbcStj2m4DQVVxPvAiintxJOMeI28MvHnN+p6qa143N2d+UcJDa65wEAibWVmP8Jznf7GNYVMIzpQgDVe0xFNMhOfGayyg35Ccylan7V6ri/qTHq9Ip2ggGZa/yINdfyq4VqcfWRu9wPnB/yG9bulI9KZz0OnfozNlMUx/I378mfU+MLjVu2gaEvmy67RYd8JFFiADB5Tq9iPc6NBjh1t7VYM3MyPAO8nX7an03tjI9GB/3GKWlsgle6xH9IYwAw2ArXzQ8BkOP+3IyO+DTzO9uisb/LSV7/d3A0FzKNZt/aPbwLoJzwZZY74dPKvi0O6k4zALkFS98vOTia9WS5dS/6KwDweLcfx8crH856NgCPjZquS1n96pa2mDBEHc4qju3IsEfdAB/tw1nP1tRAh/SaBzpb4qb+cEr5dupZ7ih0hu/+Zkj1Zn9tvjw94kHW8EXD4dKnAABs28dCRr98dHQYkNzUHQAAarGaMWDtkHyrmhy+1W7tQ2zNq14++SidralgzJp2z7v2kjXHrYk/pDTJ3hcy+uNjXs92izVivW6dssvpbp5RmcmaTtxINAWPf8Kj4+OLj37sMMaXwgZNnZ8hTdRvLdh03FpndEHJY3lvqvnhY1rPxphJijJUlobM9/H55M+Zz7wltoT/IzPjSTe3fPh2R8NhTobkveS66QynvzG946ZhK6GrTf5g1VC+DVy3D9fuaODMB8BU3o0JGrTmWeU79EeV+KalhD089zfuiqkkr8pa/O/txS1krAO+OV8r8LSQ0Ssf/gIwqz0FA0bapbgZ3vnwFevppaPG43Me8vke4/HLI8+dMgT+lY93v0bmdIBANP79NtIE+s7HT1hPv/5R4/GP/vlN9xq6pw7OOmoVU6PWsgzI2q9NVKA5bsaLFm9wJ7ngVkNPfGxXGy5+kqvu/FHeWR2GOaE6ho9VzOVWLTbKDl74cNdRAwC2xQbvdIM7T7RQTdQ54nY5s/+zbhcytuPjbHea6JdMeimHE2NOsi2Om3LnvMUQA/hG1p3j07Z9HO1OE5MWIw8wOGe3mhE3023DM7xO8Bl3DyCu+5t96zAA64nWZz3OzNqbdKvjBgBoiNs8PrvdrhY4ueXjvPBYH09UoWj0skN2y+q4AVDiiTxsxsuOGihwycf0vGPFmGmmYuo/2+wW4zhuAMDydk/Z1biLsLY7PnZ2p4Wr3fzzc7ZBjcFp/veTXOOdZQAup9s7Pq74tOtsAP6TWOFqZ5vdWshwp3iU0/aV5NvZM3d87O2ODq18lhHj/LWH9STHcQOAbgdXoDHYdiGjHR+XdkdX10eWTPcpsMluTXCzrAxzvVwpKnZS823UsG0fd3ZHh2c5nj8AHJ/jaGeKuDVRT1aMtZuwFjPPoya07W/uWgdgOKK6kcw4b1R4868WcTPrPeU8QhiWEs4LGdvxcUsHQLXpDBi0ZJlr1qI2Kda32q8jnXDO57fh09buaGAAjk3oDlqwZrc0x80id+ysk3wFw7ZlgHZ82tsdfX2yaHH0wYB63Gw4nzJH3FQsxVyECup9jztcdeTjobM56WPObtk4brjO+T442Er8wv6iEx9XdseAiYxqwQ2uj5x8zyBEcdwscndS05Z7uXByfMx8PNsdI4aPtsKMrbNHDTbSxnFrDPD9Uw6evtPW8bG0j2e7Y0C9T7Pg+kEnGcYLJ+IGAHkPW89GbfP5tv3NY+to2t+I8+KzqbXWZ17EjQGTt++46tkMABpDY8Zqm7Dj46ezAQBW4+etNU2PNBuM77g18pbosCNqqaf5F2z4uLY7VtzoO2rZW1KLqQtYGN9xqw1kXcY7VLFMjlmtNGDHx73d4aB+JmOZf5rZrT9bHDcGrKXOeV7fIvHz+Vw+vjubismY+al0PaU+7ZhSpUp1MXd7nzQokqb6eMEuHh/vdkdXjSrBvJ9JzW4pjhvT31Q7L3pdCqLcz13ISGZVWMetAwDysfgTBgWU7JY14taYig37XJ9Z759sP78FQwfAtWxan3BsJNfBSZUuJAf978za4uTzLf0tIDoAlP2aGibzwFsmx63S2+cmBmWLlZhukleayswnODqAYT9tLV7DF/UeTVXdT+uwMKEdWHMhIysS5VCw8PHl5Biq0P2Fbr8zw8h0y3HT7XfuDGPKi4lkKgAyFQFSt6spm9V4ry7pEEz+bvbgwOhjle/dOfgEsF2pTOYHhMHpN4IRPzQKAMoy6EIJIDDkSiiRjIA7mw47lcn8wL1ERBQbGBidqtQCE72bngWKSi8rysr7DwTQRq/cQ8sPHTnqPrFnD1WmMQ0o0L8bonpReS2AACISlDSl/9cWbJZ+lROKX9P2Ch0kXCkQjY310LuvXvQr1AiQdW+VQHTokHZRaBbTyvl/C0PXxVfuoK7W1idlu1qQW/btEOSoNEDWbVU9oGxX690I9zWaRD63j7UDiKhHeensRpmISFlF7Hs/4Z5AkUpAKQcAB+il00Qb5Hc/oWs8IAiCIDwQiuwLpZOCcKVKRETIyUAUr4HLybYrsDuFbmQeEK72CkJOP9eEhR66PNwdimTdbH9QRyLUNwaXT9PlLroQjvCW5pG9j3jzonCxK/xqIuMjyQj3lwoURMVng3rodPg2LhI+IKKXThNdoK+GXlcUfAQiWj5ORA+EM70Z6orkfapl9UdL5NBHUNS/9xE29n//Z2/jv/VduI9lvUqZAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_32.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
Circle I is the inscribed circle of triangle ABC, D, E, F are 3 tangent points, if angle DEF = 52.0, then the degree of angle A is ()
Choices:
A:68°
B:52°
C:76°
D:38°
|
Vòng tròn I là đường trung tuyến của tam giác ABC, D, E, F là ba điểm tiếp xúc, nếu góc DEF = 52°, thì số đo góc A là ()
Lựa chọn:
A: 68°
B: 52°
C: 76°
D: 38°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: Circle I is the inscribed circle of triangle ABC, D, E, F are 3 tangent points, if angle DEF = 52.0, then the degree of angle A is ()
Choices:
A:68°
B:52°
C:76°
D:38°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: Circle I is the inscribed circle of triangle ABC, D, E, F are 3 tangent points, if angle DEF = 52.0, then the degree of angle A is ()
Choices:
A:68°
B:52°
C:76°
D:38°
|
Circle I is the inscribed circle of triangle ABC, D, E, F are 3 tangent points, if angle DEF = 52.0, then the degree of angle A is ()
Choices:
A:68°
B:52°
C:76°
D:38°
|
157
|
32
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAM8AAACOCAAAAACz7gNKAAAMcklEQVR4nO1dXWwcVxU+k6ZJmaKFFdsu6rastDX+kWrICletkSyyVQQJDklKw4OrVKxEjeSFkBjCi5Es1UAf3NbaGEEfXGEkTF2KURl3N3SR2IhU5sFqMbLSMkamMZWMZARbcFG3osv9eJiZ3fm5MzszOzNYyJ8UZ2fmzrnn2/tzzpxz76wA+r/Cgf+1AgFjn8/exj6fvY19Pnsb+3z2Nvb57G3s8+kU5Y0wpUfP52So0iPn85VcT5jihYiffy53nQy1xojbZ4O6cqFWEDGf2QvUF2oF0fK5/AOhN9waDoYr3ogNApU3Q60iSj4bY1WicOkQITIUiGTkiAphVhLZfA0hkmoimw9UOstXKdRvMNL5gGh5RHwlHWZjRctneWTxtRO/u4XC63tRjR8IRLQ8sniKHq6/EGpF0UESJQD1I5Mh1hE2H9b6qNABdhJL4dUXevs0CUnisvppNbbO9ESDRGT9TWsdAFhI7YRVTVR89HTAxgcbIdUT0fy2PPLc5/Rm59Op+ZBqCul7MkJpHdYaM7uZywxA8KMoEj6GzqbgjUQ1lKqi4KO2jvFkJb4VRl1h8bHaHWa6PN29G0K9oc0H2tjHiyOLp7glHvnbL8OoN1ww6X2WsaOiMXAp+PrC5mO0O8ZrO8nnAq8vZD6cmU2Htfha0FN2uHzMdJjhP7DFZNCOT6h8NDpM91cHxnBpIGDHJ0x/Z1mb2f76+5U3X8Pr7xBRrJuyd913b1wrcyLx40Afvzvl46CKSmfjhZ9eP5K96z46cptA9JfrtPLm9Vfvf/DzdxMR0dsDj14SmrICIBZAG3NHNJNECVgZS8dHFi19qr5wNpYZXwWArXhFJ6fjySHQ8aPXRhIlzCbSYyvWSwqujqYS8wCqCTlAFQLikzO3tSRKS5nsNTMRo1Nd6esrA7OZ3eAm7aDaJycDhZYw6dbHsylemMCk+EJicBX5YwEpgcD4sBwA5LTQtHS4Pz7t6sbG1AeGb9w/HowWCIxPqQAAhRwAMEiHDl3ahcvRXTsv/jz1k2DUCIxPoQQAxRwAQDp4yPqwxgC7oI4kfj22GoweQfFRxBQKAPCzA0mPM9ZaauhD20Eq0inkAgDIVALwjNDv8UGNoTaQvKfebD01Y1zyo0kwfGaKAJDLAXiSPuv5doZG/vCJ1nFO9q1ZMHxIBmTKAXiGvuT5bgYAEzd9q9VAQBH+0nhB8Cm1+sfzdKJtcRs8ePBFTV5R7cA+EOzzgiSIvu9t9N6sTiNFIir6lBJovnH5odve/ye/N9/0G/H+t4mISJJR7CLylZgMks+LX7j5t48+5fv221/+1yAR0Qb1UFcXkb8snu/+oUAfZzt8qILteN1VYS6eP/AwgKLfvgYEMH50+Z3+CQAPzhrOcgo6IH94Tp2t/SKw+UC69dvxOhiuZToQ8sdbxSeJqANCQfGRRCk7CwDo8x9orydH70luoZPH1ID4SKK0mFEeq+eOOxV01HTieD35SL/DAGyPYPhIotRIq49vdd+Jgy1xE3N9Z850okkgfCRRwuyAdjQ+btcMzcVI/MsnxwHW/cP+qQ5UCYKPJEpoJFY0LbcStj2m4DQVVxPvAiintxJOMeI28MvHnN+p6qa143N2d+UcJDa65wEAibWVmP8Jznf7GNYVMIzpQgDVe0xFNMhOfGayyg35Ccylan7V6ri/qTHq9Ip2ggGZa/yINdfyq4VqcfWRu9wPnB/yG9bulI9KZz0OnfozNlMUx/I378mfU+MLjVu2gaEvmy67RYd8JFFiADB5Tq9iPc6NBjh1t7VYM3MyPAO8nX7an03tjI9GB/3GKWlsgle6xH9IYwAw2ArXzQ8BkOP+3IyO+DTzO9uisb/LSV7/d3A0FzKNZt/aPbwLoJzwZZY74dPKvi0O6k4zALkFS98vOTia9WS5dS/6KwDweLcfx8crH856NgCPjZquS1n96pa2mDBEHc4qju3IsEfdAB/tw1nP1tRAh/SaBzpb4qb+cEr5dupZ7ih0hu/+Zkj1Zn9tvjw94kHW8EXD4dKnAABs28dCRr98dHQYkNzUHQAAarGaMWDtkHyrmhy+1W7tQ2zNq14++SidralgzJp2z7v2kjXHrYk/pDTJ3hcy+uNjXs92izVivW6dssvpbp5RmcmaTtxINAWPf8Kj4+OLj37sMMaXwgZNnZ8hTdRvLdh03FpndEHJY3lvqvnhY1rPxphJijJUlobM9/H55M+Zz7wltoT/IzPjSTe3fPh2R8NhTobkveS66QynvzG946ZhK6GrTf5g1VC+DVy3D9fuaODMB8BU3o0JGrTmWeU79EeV+KalhD089zfuiqkkr8pa/O/txS1krAO+OV8r8LSQ0Ssf/gIwqz0FA0bapbgZ3vnwFevppaPG43Me8vke4/HLI8+dMgT+lY93v0bmdIBANP79NtIE+s7HT1hPv/5R4/GP/vlN9xq6pw7OOmoVU6PWsgzI2q9NVKA5bsaLFm9wJ7ngVkNPfGxXGy5+kqvu/FHeWR2GOaE6ho9VzOVWLTbKDl74cNdRAwC2xQbvdIM7T7RQTdQ54nY5s/+zbhcytuPjbHea6JdMeimHE2NOsi2Om3LnvMUQA/hG1p3j07Z9HO1OE5MWIw8wOGe3mhE3023DM7xO8Bl3DyCu+5t96zAA64nWZz3OzNqbdKvjBgBoiNs8PrvdrhY4ueXjvPBYH09UoWj0skN2y+q4AVDiiTxsxsuOGihwycf0vGPFmGmmYuo/2+wW4zhuAMDydk/Z1biLsLY7PnZ2p4Wr3fzzc7ZBjcFp/veTXOOdZQAup9s7Pq74tOtsAP6TWOFqZ5vdWshwp3iU0/aV5NvZM3d87O2ODq18lhHj/LWH9STHcQOAbgdXoDHYdiGjHR+XdkdX10eWTPcpsMluTXCzrAxzvVwpKnZS823UsG0fd3ZHh2c5nj8AHJ/jaGeKuDVRT1aMtZuwFjPPoya07W/uWgdgOKK6kcw4b1R4868WcTPrPeU8QhiWEs4LGdvxcUsHQLXpDBi0ZJlr1qI2Kda32q8jnXDO57fh09buaGAAjk3oDlqwZrc0x80id+ysk3wFw7ZlgHZ82tsdfX2yaHH0wYB63Gw4nzJH3FQsxVyECup9jztcdeTjobM56WPObtk4brjO+T442Er8wv6iEx9XdseAiYxqwQ2uj5x8zyBEcdwscndS05Z7uXByfMx8PNsdI4aPtsKMrbNHDTbSxnFrDPD9Uw6evtPW8bG0j2e7Y0C9T7Pg+kEnGcYLJ+IGAHkPW89GbfP5tv3NY+to2t+I8+KzqbXWZ17EjQGTt++46tkMABpDY8Zqm7Dj46ezAQBW4+etNU2PNBuM77g18pbosCNqqaf5F2z4uLY7VtzoO2rZW1KLqQtYGN9xqw1kXcY7VLFMjlmtNGDHx73d4aB+JmOZf5rZrT9bHDcGrKXOeV7fIvHz+Vw+vjubismY+al0PaU+7ZhSpUp1MXd7nzQokqb6eMEuHh/vdkdXjSrBvJ9JzW4pjhvT31Q7L3pdCqLcz13ISGZVWMetAwDysfgTBgWU7JY14taYig37XJ9Z759sP78FQwfAtWxan3BsJNfBSZUuJAf978za4uTzLf0tIDoAlP2aGibzwFsmx63S2+cmBmWLlZhukleayswnODqAYT9tLV7DF/UeTVXdT+uwMKEdWHMhIysS5VCw8PHl5Biq0P2Fbr8zw8h0y3HT7XfuDGPKi4lkKgAyFQFSt6spm9V4ry7pEEz+bvbgwOhjle/dOfgEsF2pTOYHhMHpN4IRPzQKAMoy6EIJIDDkSiiRjIA7mw47lcn8wL1ERBQbGBidqtQCE72bngWKSi8rysr7DwTQRq/cQ8sPHTnqPrFnD1WmMQ0o0L8bonpReS2AACISlDSl/9cWbJZ+lROKX9P2Ch0kXCkQjY310LuvXvQr1AiQdW+VQHTokHZRaBbTyvl/C0PXxVfuoK7W1idlu1qQW/btEOSoNEDWbVU9oGxX690I9zWaRD63j7UDiKhHeensRpmISFlF7Hs/4Z5AkUpAKQcAB+il00Qb5Hc/oWs8IAiCIDwQiuwLpZOCcKVKRETIyUAUr4HLybYrsDuFbmQeEK72CkJOP9eEhR66PNwdimTdbH9QRyLUNwaXT9PlLroQjvCW5pG9j3jzonCxK/xqIuMjyQj3lwoURMVng3rodPg2LhI+IKKXThNdoK+GXlcUfAQiWj5ORA+EM70Z6orkfapl9UdL5NBHUNS/9xE29n//Z2/jv/VduI9lvUqZAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_32.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
Circle I is the inscribed circle of triangle ABC, if angle DEF = 52.0, then the degree of angle A is ()
Choices:
A:68°
B:52°
C:76°
D:38°
|
Vòng tròn I là đường trung tuyến của tam giác ABC, nếu góc DEF = 52,0 thì số độ của góc A là ()
Các lựa chọn:
A: 68°
B: 52°
C: 76°
D: 38°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: Circle I is the inscribed circle of triangle ABC, if angle DEF = 52.0, then the degree of angle A is ()
Choices:
A:68°
B:52°
C:76°
D:38°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: Circle I is the inscribed circle of triangle ABC, if angle DEF = 52.0, then the degree of angle A is ()
Choices:
A:68°
B:52°
C:76°
D:38°
|
Circle I is the inscribed circle of triangle ABC, if angle DEF = 52.0, then the degree of angle A is ()
Choices:
A:68°
B:52°
C:76°
D:38°
|
158
|
32
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAM8AAACOCAAAAACz7gNKAAAMcklEQVR4nO1dXWwcVxU+k6ZJmaKFFdsu6rastDX+kWrICletkSyyVQQJDklKw4OrVKxEjeSFkBjCi5Es1UAf3NbaGEEfXGEkTF2KURl3N3SR2IhU5sFqMbLSMkamMZWMZARbcFG3osv9eJiZ3fm5MzszOzNYyJ8UZ2fmzrnn2/tzzpxz76wA+r/Cgf+1AgFjn8/exj6fvY19Pnsb+3z2Nvb57G3s8+kU5Y0wpUfP52So0iPn85VcT5jihYiffy53nQy1xojbZ4O6cqFWEDGf2QvUF2oF0fK5/AOhN9waDoYr3ogNApU3Q60iSj4bY1WicOkQITIUiGTkiAphVhLZfA0hkmoimw9UOstXKdRvMNL5gGh5RHwlHWZjRctneWTxtRO/u4XC63tRjR8IRLQ8sniKHq6/EGpF0UESJQD1I5Mh1hE2H9b6qNABdhJL4dUXevs0CUnisvppNbbO9ESDRGT9TWsdAFhI7YRVTVR89HTAxgcbIdUT0fy2PPLc5/Rm59Op+ZBqCul7MkJpHdYaM7uZywxA8KMoEj6GzqbgjUQ1lKqi4KO2jvFkJb4VRl1h8bHaHWa6PN29G0K9oc0H2tjHiyOLp7glHvnbL8OoN1ww6X2WsaOiMXAp+PrC5mO0O8ZrO8nnAq8vZD6cmU2Htfha0FN2uHzMdJjhP7DFZNCOT6h8NDpM91cHxnBpIGDHJ0x/Z1mb2f76+5U3X8Pr7xBRrJuyd913b1wrcyLx40Afvzvl46CKSmfjhZ9eP5K96z46cptA9JfrtPLm9Vfvf/DzdxMR0dsDj14SmrICIBZAG3NHNJNECVgZS8dHFi19qr5wNpYZXwWArXhFJ6fjySHQ8aPXRhIlzCbSYyvWSwqujqYS8wCqCTlAFQLikzO3tSRKS5nsNTMRo1Nd6esrA7OZ3eAm7aDaJycDhZYw6dbHsylemMCk+EJicBX5YwEpgcD4sBwA5LTQtHS4Pz7t6sbG1AeGb9w/HowWCIxPqQAAhRwAMEiHDl3ahcvRXTsv/jz1k2DUCIxPoQQAxRwAQDp4yPqwxgC7oI4kfj22GoweQfFRxBQKAPCzA0mPM9ZaauhD20Eq0inkAgDIVALwjNDv8UGNoTaQvKfebD01Y1zyo0kwfGaKAJDLAXiSPuv5doZG/vCJ1nFO9q1ZMHxIBmTKAXiGvuT5bgYAEzd9q9VAQBH+0nhB8Cm1+sfzdKJtcRs8ePBFTV5R7cA+EOzzgiSIvu9t9N6sTiNFIir6lBJovnH5odve/ye/N9/0G/H+t4mISJJR7CLylZgMks+LX7j5t48+5fv221/+1yAR0Qb1UFcXkb8snu/+oUAfZzt8qILteN1VYS6eP/AwgKLfvgYEMH50+Z3+CQAPzhrOcgo6IH94Tp2t/SKw+UC69dvxOhiuZToQ8sdbxSeJqANCQfGRRCk7CwDo8x9orydH70luoZPH1ID4SKK0mFEeq+eOOxV01HTieD35SL/DAGyPYPhIotRIq49vdd+Jgy1xE3N9Z850okkgfCRRwuyAdjQ+btcMzcVI/MsnxwHW/cP+qQ5UCYKPJEpoJFY0LbcStj2m4DQVVxPvAiintxJOMeI28MvHnN+p6qa143N2d+UcJDa65wEAibWVmP8Jznf7GNYVMIzpQgDVe0xFNMhOfGayyg35Ccylan7V6ri/qTHq9Ip2ggGZa/yINdfyq4VqcfWRu9wPnB/yG9bulI9KZz0OnfozNlMUx/I378mfU+MLjVu2gaEvmy67RYd8JFFiADB5Tq9iPc6NBjh1t7VYM3MyPAO8nX7an03tjI9GB/3GKWlsgle6xH9IYwAw2ArXzQ8BkOP+3IyO+DTzO9uisb/LSV7/d3A0FzKNZt/aPbwLoJzwZZY74dPKvi0O6k4zALkFS98vOTia9WS5dS/6KwDweLcfx8crH856NgCPjZquS1n96pa2mDBEHc4qju3IsEfdAB/tw1nP1tRAh/SaBzpb4qb+cEr5dupZ7ih0hu/+Zkj1Zn9tvjw94kHW8EXD4dKnAABs28dCRr98dHQYkNzUHQAAarGaMWDtkHyrmhy+1W7tQ2zNq14++SidralgzJp2z7v2kjXHrYk/pDTJ3hcy+uNjXs92izVivW6dssvpbp5RmcmaTtxINAWPf8Kj4+OLj37sMMaXwgZNnZ8hTdRvLdh03FpndEHJY3lvqvnhY1rPxphJijJUlobM9/H55M+Zz7wltoT/IzPjSTe3fPh2R8NhTobkveS66QynvzG946ZhK6GrTf5g1VC+DVy3D9fuaODMB8BU3o0JGrTmWeU79EeV+KalhD089zfuiqkkr8pa/O/txS1krAO+OV8r8LSQ0Ssf/gIwqz0FA0bapbgZ3vnwFevppaPG43Me8vke4/HLI8+dMgT+lY93v0bmdIBANP79NtIE+s7HT1hPv/5R4/GP/vlN9xq6pw7OOmoVU6PWsgzI2q9NVKA5bsaLFm9wJ7ngVkNPfGxXGy5+kqvu/FHeWR2GOaE6ho9VzOVWLTbKDl74cNdRAwC2xQbvdIM7T7RQTdQ54nY5s/+zbhcytuPjbHea6JdMeimHE2NOsi2Om3LnvMUQA/hG1p3j07Z9HO1OE5MWIw8wOGe3mhE3023DM7xO8Bl3DyCu+5t96zAA64nWZz3OzNqbdKvjBgBoiNs8PrvdrhY4ueXjvPBYH09UoWj0skN2y+q4AVDiiTxsxsuOGihwycf0vGPFmGmmYuo/2+wW4zhuAMDydk/Z1biLsLY7PnZ2p4Wr3fzzc7ZBjcFp/veTXOOdZQAup9s7Pq74tOtsAP6TWOFqZ5vdWshwp3iU0/aV5NvZM3d87O2ODq18lhHj/LWH9STHcQOAbgdXoDHYdiGjHR+XdkdX10eWTPcpsMluTXCzrAxzvVwpKnZS823UsG0fd3ZHh2c5nj8AHJ/jaGeKuDVRT1aMtZuwFjPPoya07W/uWgdgOKK6kcw4b1R4868WcTPrPeU8QhiWEs4LGdvxcUsHQLXpDBi0ZJlr1qI2Kda32q8jnXDO57fh09buaGAAjk3oDlqwZrc0x80id+ysk3wFw7ZlgHZ82tsdfX2yaHH0wYB63Gw4nzJH3FQsxVyECup9jztcdeTjobM56WPObtk4brjO+T442Er8wv6iEx9XdseAiYxqwQ2uj5x8zyBEcdwscndS05Z7uXByfMx8PNsdI4aPtsKMrbNHDTbSxnFrDPD9Uw6evtPW8bG0j2e7Y0C9T7Pg+kEnGcYLJ+IGAHkPW89GbfP5tv3NY+to2t+I8+KzqbXWZ17EjQGTt++46tkMABpDY8Zqm7Dj46ezAQBW4+etNU2PNBuM77g18pbosCNqqaf5F2z4uLY7VtzoO2rZW1KLqQtYGN9xqw1kXcY7VLFMjlmtNGDHx73d4aB+JmOZf5rZrT9bHDcGrKXOeV7fIvHz+Vw+vjubismY+al0PaU+7ZhSpUp1MXd7nzQokqb6eMEuHh/vdkdXjSrBvJ9JzW4pjhvT31Q7L3pdCqLcz13ISGZVWMetAwDysfgTBgWU7JY14taYig37XJ9Z759sP78FQwfAtWxan3BsJNfBSZUuJAf978za4uTzLf0tIDoAlP2aGibzwFsmx63S2+cmBmWLlZhukleayswnODqAYT9tLV7DF/UeTVXdT+uwMKEdWHMhIysS5VCw8PHl5Biq0P2Fbr8zw8h0y3HT7XfuDGPKi4lkKgAyFQFSt6spm9V4ry7pEEz+bvbgwOhjle/dOfgEsF2pTOYHhMHpN4IRPzQKAMoy6EIJIDDkSiiRjIA7mw47lcn8wL1ERBQbGBidqtQCE72bngWKSi8rysr7DwTQRq/cQ8sPHTnqPrFnD1WmMQ0o0L8bonpReS2AACISlDSl/9cWbJZ+lROKX9P2Ch0kXCkQjY310LuvXvQr1AiQdW+VQHTokHZRaBbTyvl/C0PXxVfuoK7W1idlu1qQW/btEOSoNEDWbVU9oGxX690I9zWaRD63j7UDiKhHeensRpmISFlF7Hs/4Z5AkUpAKQcAB+il00Qb5Hc/oWs8IAiCIDwQiuwLpZOCcKVKRETIyUAUr4HLybYrsDuFbmQeEK72CkJOP9eEhR66PNwdimTdbH9QRyLUNwaXT9PlLroQjvCW5pG9j3jzonCxK/xqIuMjyQj3lwoURMVng3rodPg2LhI+IKKXThNdoK+GXlcUfAQiWj5ORA+EM70Z6orkfapl9UdL5NBHUNS/9xE29n//Z2/jv/VduI9lvUqZAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_32.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
If angle DEF = 52.0, then the degree of angle A is ()
Choices:
A:68°
B:52°
C:76°
D:38°
|
Nếu góc DEF = 52°, thì số đo của góc A là ()
Lựa chọn:
A: 68°
B: 52°
C: 76°
D: 38°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: If angle DEF = 52.0, then the degree of angle A is ()
Choices:
A:68°
B:52°
C:76°
D:38°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: If angle DEF = 52.0, then the degree of angle A is ()
Choices:
A:68°
B:52°
C:76°
D:38°
|
If angle DEF = 52.0, then the degree of angle A is ()
Choices:
A:68°
B:52°
C:76°
D:38°
|
159
|
32
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAASwAAADFCAYAAADuQc+LAABFsklEQVR4nO2dd1hUR/v3v0tdkCaCIChdqiIWkKYolmA09hCMGolKwF7iY0wxJmpM1ERjxfrgYxQ0KioWREREBRQsKFjACoJUaUvZPu8fvrs/kA67C4vzuS6uS/fMmbnPnnO+O3PPPfcwCCEEFAqFIgcotLcBFAqF0lyoYFEoFLmBChaFQpEbqGBRKBS5gQoWhUKRG6hgUSgUuYEKFoVCkRuoYFEoFLlBqb0NoFCaorKyEgKBACoqKmAyme1tDqUdoYJF6fDEx8eDEII+ffrA2Ni4vc2htCNUsCgdnjVr1sDOzg4uLi7tbQqlnaGCRelwEELAYDDA5/Nx+PBhsNlsWFtbo2vXru1tGqWdoYJF6XAwGAxUVVXh4cOHyMrKApfLhYaGRnubRekA0FlCSockPT0dN27cwPDhw1FRUYGcnJz2NonSAaCCRelwFBcXo6CgAOrq6jA0NMTgwYNhamra3mZROgB0SEjpcMTFxYHP52PBggV49+4dzMzM0K1bt/Y2i9IBoIJF6VA8ffoUhw8fRmZmJpKTk5Gfnw+hUEh9WBQAVLAoHYjq6mpcu3YNAoEAfD4f586dA4vFgru7O9TV1dvbPEoHgAoWpUNQVVWF9PR0CIVCbNmyBVZWVhAKhbh69SoePXoEVVXV9jaR0gGgTndKhyA5ORkbN27Ep59+CisrKwCAgoICcnNzQQihPSwKAIBBN6GgtCfnz5/HmTNnEB0djbdv3yIhIQHOzs5IS0vDtm3bcPXqVVRUVMDLywtff/01xowZ094mU9oROiSktDuqqqqws7ODl5dXraGfhoYGnJ2dUVVVhR49ekAoFLajlZSOAO1hUdoF0fIbCqUl0B4WpV1oSqxyc3Nx//59aGlpwcnJCRoaGlTkKNTpTul4lJaWIjQ0FHPnzsX8+fPx6NEjALVFjhACOjj4+KA9LEqHorS0FDt37sT169fh5OSE0tJShISEgMFg1EovQ3taHydUsCgdhpKSEoSGhuL06dOwt7fHDz/8gKdPn+K3336DmpoazM3Noa+v395mUtoROiSkyJSGhnIlJSW4cOEC1qxZAw8PD6xduxZ2dnaYNGkSJk+ejPv372PTpk3tYDGlI0EFiyJTGAxGneFcWVkZQkNDsWzZMixYsAALFy6Eubm5+Pjy5cvh4eGBK1eu4ODBg+ByubI2m9JBoENCikRo7QxeWVkZdu7ciTNnzsDX1xfTp0+HtbV1rTJMJhOzZs2CUCjE33//DUtLS3h6ekJJiT6+Hxu0h0WRGC2dtSstLcX+/fsRFRUFc3NzrFixoo5YibC2tsaXX36JHj164MCBA0hOTpaEyRQ5gwoWRSKIelfNFa2SkhKcPXsWwcHBsLCwwKZNm2oNA+vDwcEBf/75JxISEnDq1ClkZmaKj9Ewh48DKlgUiVGff6o+ysrKcPbsWSxevBi+vr746aefYGZm1uR5CgoKsLW1xebNmxEfH4/169eLRaq5bVPkGypYFJlSXl6O/fv3Y8OGDQgKCsKsWbPE2Rmag4qKCsaOHYsxY8bgxYsXWL16tfgY7WF1fqjXkiIzysrKEBwcjMjISLi4uCAgIKBFYiWCyWTiq6++QnV1NSIjI+Hs7AwfHx+aM+sjgPawKDKhtLQUx44dw4kTJ2BgYID169fXEauW9JDMzMzg5+cHGxsbbNu2jTrhPxKoYFGkTllZGSIjI/Hjjz9i8ODB+OOPP2r5rFrrMO/Xrx/WrFmDt2/f4ujRo7h3716DZelwsXNAh4QUqVJeXo7Q0FD88ssvCAwMxIwZM2BhYVGrTFuc5RYWFvjvf/+LBQsWQFFRESYmJtDT06tTjjrkOwe0h0WRGuXl5QgODkZISAgmTpyImTNnws7OTnxcEr0eZWVluLu7Y9asWXj+/Dl+//33NtdJ6bhQwaJIhfLycoSEhODChQvo2bMnVq5cCVtbW6m1N3v2bDg6OuL69esICwsDh8ORWluU9oMKFqVRWtMLKi0tRUREBLZv3w4TExP8+eefsLS0lIJ1/2eflpYW/P394eHhgZ9//hkPHz6kfqtOCBUsSqMwGIwWvfhlZWWIiIjAwoULMWXKFKxevbqOz6pm3ZKwT4S9vT38/f1hZ2eH1atX4/bt222un9KxoDndKRKjvLwcBw8exJ49ezBu3DjMnj0bDg4OMrVBIBDg3r17CAoKgrOzM+bNm4d+/frJ1AaK9KA9LIpEKC8vx759+3D27Fk4OTkhMDCwxWLV1t9OQggUFRXh7OyMuXPn4unTpwgJCUFpaWmb6qV0HKhgUdpMWVkZTpw4gWPHjkFXVxcbNmxoMOuCNKk5PJw3bx4GDhyIu3fvIiwsDGw2W+b2UCQPFSxKmygvL8elS5ewatUqDBo0CBs3bmy1g13SsVKrV6/GsGHD8Pvvv+PBgwe1Ev9RT4h8QgWL0mpYLBaOHTuGpUuXYs6cOVi0aBF69+7dpjqbIyTNFRsdHR34+vpi6tSpmDNnDlJSUsTHaCCpfEIFi9IqWCwW9u3bh5CQEIwZMwYzZ86UiIO9OULSnDIiUXNwcICfnx+6du2K4OBguuZQzqGzhJQWw2KxcPjwYfz777/Q1tbGX3/91WjPSiAQoLy8HMXFxaiqqkJFRQWqqqrEdXE4nFp5rQghUFBQgIqKCjQ1NUEIgbq6OrS0tMBkMqGjowNdXV0oKDT8e1uzPj6fj9OnT2PTpk0YMmQIVq5cCUNDQwl+IxRZQQWL0iLKy8tx8eJF/Pjjj3BxccG6devqZF0QCATg8Xjg8XgoLy9Hbm4uXrx4gUePHiEvLw9v375Ffn4+GAwGsrOzUVpaCqFQWCtrqaKiIrS0tGBsbAxCCLp37w5TU1Po6enBxsYGtra2MDY2hoaGBpSVlaGiogJFRcVGbf/5559x7do1eHp6Yt26dbXK012l5QMqWHJAR3mZWCwWIiIisGjRIsyePRtz5syptTZQRHp6Oq5evYqoqCgkJSWhsrIStra2sLS0hL6+PszMzGBmZgaBQABzc3MYGhpCTU1N3CtSUFBAdXU18vLy8Pr1aygoKODNmzd49uwZioqKkJWVhcePH0NZWRlubm4YPnw4Ro0aBVtb20Z7XTweD6tXr8bFixexfPly+Pn5gclkNvv6Rfeho9yPjxEqWHKKrF8aFouFQ4cOITg4GKNGjcK8efPEawNfv36NGzdu4Pbt20hPT0dVVRWMjIxgYGAAa2trWFhYQFNTE1paWlBTU4OmpiY0NDRACIGmpmaDPSOhUAgWiwUAqKysRFlZGdhsNioqKlBSUoI3b97g+fPnyM7Oxtu3b8FkMmFtbQ1XV1cMGTKk3gj7Z8+eISQkBOHh4Thw4ADc3Nya7JmJqPmd1xxyUmQHFSw5paWC1RaBY7FYOHDgAM6fPw8DAwNs3rwZSkpKuH//Pu7cuYO8vDwUFxeDw+GAyWTCwMAAdnZ2cHBwgJOTE9TV1VvVblNwuVykpKQgLS0Njx8/Rm5urtgGbW1tdO/eHX379oW7u3stn9X9+/exevVqaGtrY+HChXBzc2tWex9+h7SnJXuoYHUC+Hw+srKyUFVVBYFAUCshnlAohIGBAXr27NmqulksFk6fPo3du3eje/fuWLNmDXR1dREZGYnTp0/j2bNnMDExgaurK0aOHAl3d3doaGg0WJ80eyZsNhsJCQm4cuUKEhIS8PLlS5ibm2PKlCkYOXIkjI2Noa2tDQC4e/cupk+fjnHjxmHevHlSW5xNkTCEIvcUFRWRcePGkS5duhAAdf78/PxaVW95eTk5ceIE0dfXJwsWLCDXr18nBw4cIDY2NsTU1JT85z//IRkZGeLyQqGQCIXCNl9PY/W0pP7nz5+Tn3/+mZiYmBBra2uybds2kp2dTQghhMfjkSNHjpBBgwaRoKCgZrVNaX9oD6sTIBQK8ebNGyxbtgwaGhqYOXMmunXrBiaTibCwMISHh6N79+6IjY0F0LyhTEVFBU6ePInffvsNn3zyCcrLy/Ho0SPw+Xx8/vnnGDFiBKytraGjo9NsH1BLIBLoiQmFQpSWluLly5e4cuUKjh07BkIIJkyYgPnz58PQ0BAbNmxAVFQUhg4dinXr1onbpkO9jglNkSznkP8fs2RqagpDQ0NYWlpi1KhR4uNLly6FUChESEgIQkND8emnn0JHR6fROisqKhAaGor9+/ejqKgIt2/fhp6eHlxcXDB48GB4eXk1uelpW5GEYCgoKEBXVxe6urrQ19eHsbExEhISkJycjAULFsDb2xtubm7gcDi4ePEinJ2d8cknn9DddzowVLDkHNGLXV5eDj6fX8t/RAhBt27dMGnSJCQnJ+P48ePo169fo4JVUVGBU6dOYefOnUhNTcXw4cMBAJ6envjiiy9qxVzJU0/E1NQUM2fOxLBhwxAWFobz588jLCwM48ePh76+PszNzREcHAx9ff1mO+EpsocuzekEsNlsxMXFQVNTEz169BB/LhITJSUlGBkZ4d27d7UWAH8Ii8XCpUuXsG7dOqSmpsLW1hajRo3CyZMn8eOPP9YRK3mkV69eWLlyJS5evIiJEyciODgYERER+OSTT/DkyROcOnUKaWlp7W0mpQGoYHUCOBwOEhMTYWZmVm9aF01NTZiamjaaPbSyshKRkZFYtGgRXrx4gbFjx+LQoUNYunQpdHV165Rv69bwNe0gNWY1ZSWEGhoaWLx4MY4ePQpDQ0OsWrUKEyZMwMmTJ3Ho0CGUlZXJxA5Ky6BDwk4Am83G4cOHsW3btno3euDxeKioqIChoWG9/pny8nIcO3YMGzduRF5eHgICAhAQEICBAwc2GjneFmqKXUP/ljYqKipwdXWFkpISDA0NERkZCRUVFVy5cgUqKirYsGFDi+qTpyGyvEIFqxPAYrGgrq5eazhYk4yMDNy4cQNjx44VxyGJKCoqQlhYGPbu3YvMzEzMmzcPS5cubZcEfO2BgoICXFxcoK+vDy6Xi/v37+P+/fv4999/YW9vDz8/PygpKTVLjBgMBioqKnDx4kUUFRWBzWaDz+fX6j0qKiqie/fu8PDwgKmpKZSVlWVxmZ0HGYdRUCRMWVkZiY2NJf/5z39Ienp6neNv374lS5YsIerq6uTy5cukqqpKfKyoqIhs376dWFhYEHV1dTJv3jzC5/NlaX6782HM1Y8//kgcHR2Jnp4eMTc3JwkJCUQgENRbtj7y8vLIF198QVRUVAgAoqenRwwNDUmPHj2IsbExAUCYTCaJjIysdS8ozYMKlpyTnp5ONm7cSDZv3kyysrLqHP/zzz+Jg4MDmTJlSq0XpLCwkGzcuJFoamqSHj16kD///FOWZnc4aopReHg4cXd3JyoqKsTd3Z0kJCS0uL6ZM2eStWvXkoKCAiIQCMSit3nzZqKnp0e4XK7EbP+YoIIl51y4cIGYmZmR+/fv1/o8Pz+feHl5ke7du5P58+eT/Px88bHCwkKydetW0rVrV+Lk5EQOHz780f7a1xfZzuPxSGxsLJk0aRJRUVEhs2bNIikpKeLyzeHLL78ku3fvFv8/IiKClJeXk0uXLpEvv/ySRtO3EurDkkMIIXj9+jUiIyOxZ88evH79GmvXrkW3bt2gqKgIDoeD0tJSqKmpISgoCJMnT0b37t0BvHewi3xWysrKWL58OaZOnSpO7/KxOY0/vF5CCJSUlODl5QUAePHiBSIjI8WxWlpaWo3Wx+fz8fr1a1hZWYm3FysrK0NCQgJ69eoFZ2fnJuugNAwVLDmlqqoKKSkpYDAYGDlyJHJycpCZmQngfQI9dXV1rF+/Ht7e3uJzKisrcfLkSezevRuvX7/GmjVrMG3atGY7lT8Gaua7GjZsGBYuXIh169bh5MmTsLS0xOzZs6GiotLg+RwOB/fv30dpaSlu3bolzt9VUVEBoVAIXV1dGpjaFtq1f0eRGRUVFSQ8PJxYWFgQAMTb27u9TZIbfv75Z6KiokIMDAxIYmIi4XA4DZYtKysjW7duJaampuLF56qqqmTNmjUkMzNThlZ3Tmjg6EdAzaDQN2/eAHjfC3v37l07WyYfrFy5Ej/88APy8/Ph5+eHJ0+eNFi2oqIC0dHR+PXXX5GZmYnk5GSsXLkS1tbWdUIYSI2AWUrzoILVyamqqkJ4eDjWrFmDnJwcLFq0CKtXr0aPHj1w8uRJVFRUtLeJHZ4uXbpgxowZWLp0KTIzM/Hdd98hKSmp3rKiZIZ9+/aFiYkJevfuDXt7e5iamkJNTa1W2bauFvgYoT6sTozIZ7V9+3Y8fvwY3t7emDNnDrS1tfHPP//g6NGjGD9+fKMJ9yjvsbS0xLx585CWlobo6GgYGxvD0NAQJiYm4jKFhYV4/vw5rKysxAvMFRUV0bdvX+jq6kot8+rHBO1hyQGtGTZUVlbiwoUL2LFjB+7duwc7OzusW7cO1tbWMDY2Rv/+/fHkyRNkZ2dLweLW0dGHR5aWlvj1119hb2+Ps2fPYufOnbUWk2dnZyMtLQ0jR44UC5aGhgYcHBzQo0ePRp31lOZBBUsOEM1cNfeFrqqqwpUrV7By5Uq8evUK3t7emDVrFgYOHAglpfedalFa48uXL+P58+d16pCFf+XD+jv68EhRURHu7u7w8/ODuro6zp49izNnzoDD4QAA3rx5g/v372Pw4MF1lkBRJES7ufspUqGyspL8888/xMzMjMydO5dYW1uT8ePHk+Li4lrlSkpKyOHDh4mrqyuJiIhoJ2vlk/z8fDJr1iwCgPTp04eEhYWRmTNnEnV1dQKAGBkZkfPnzxMej9fepnY6qA+rE1FVVYX//e9/OHXqFFxdXcX7/nl4eKBr164A/i+jgI6ODoYPH47169cjIyMDQqFQapkZOhsREREoLi6GpaUl8vPzsWvXLlhbW2PZsmVQUlJCdXU1evXq1eF7jPIIfUI7CVVVVThx4gROnjwJBoOBb775BikpKbC3t8ekSZPE5Wq+RD179kT//v3x6tUr3L59uz3MlivI/19hsHv3bjAYDEyfPh0aGhpiR/u3336LX375BRs3boSjoyMUFRU7vF9O3qCC1QmoqqpCdHQ01q9fD319ffzyyy949eoVOBwOXFxc0Lt373rPEwqFmDlzJvLz83Hx4kUZW900He1lf/funXi7s6CgIEyYMAFVVVXw8vLC8ePH8dtvv8mdX07eoIIl51RVVSEyMhLffPMNRo8ejQ0bNkBbWxtbtmzBF198gcGDBzd4roKCAsaMGQNCCO7fvy92HsuahoSpo73sr169woEDBzBlyhSMGDECRkZGCAoKwqtXr6Curo6nT59izZo17W1mp4YKlhxTXV2NsLAwrF+/HuPGjUNAQAC0tLQQHx8PFosFHx+fJne3UVBQwIABA6CqqooLFy5AIBCIj8mqh8NgMJCZmYnly5fD19cXY8eOxdy5cxEaGlrLnpoQGUeJP3nyBEePHoWDgwNcXFygoqICAwMD+Pn5oby8HH379oWRkREuXLiAc+fOtZv4d3aoYMkpVVVVOHLkCI4fP47u3btjyZIlcHJyQnJyMi5evIgJEyaI0yU39WKPGjUKJiYmCAsLa1AgpI2ioiIUFBRw584d3Lx5E2/evGkybkmWPbAbN24gOjoa8+fPF+8SzWAwYGNjAy8vLwiFQnTt2hWDBg3Czp07ce/ePZnZ9jFBZwnlkKqqKly8eBH79u2Djo4O/v77b9jb2wN4/2Klp6dj8+bN6NKlS7Pqc3Z2RlJSEk6fPo2CggLxtvayEgRCCHr27Ik///wTTCYTTCYT48aNg5OTU4PnyFKsUlJScPv2bWhqasLX17fWxrGEECxZsgTz5s2DjY0Nvv32W4wbNw4nT56EpqYm+vTpIzM7PwZoD6sdac2Qprq6GlevXsWiRYtgb2+PLVu2iMXq5cuXKCgoQK9evWBtbS1+sZrzcvfu3RuWlpaIjIxEYWFhi+1qCyL7uFwuUlNT4ejo2KhYyZoDBw7g5cuXWLlyZZ3vUkFBAXZ2dtDT00NeXh6UlJRw4MABnDt3Dv/9739RXV3dTlZ3TqhgtSONbbtVH9XV1QgPD8fixYsxZcoULFy4EH379hUfT0hIAJvNhouLS4ttsbOzw7hx43Ds2DHk5eU1WlYaviNCCN6+fYvKysoOEw8mFAoRFxeH1NRUWFpaYsKECQ2Kv6OjI5SVlZGUlAQXFxcsXLgQKSkpWLVqlYyt7tx0jCeD0iTV1dU4cuQIDhw4ACcnJ8yePRvOzs61yiQmJoIQgqFDhza7XpH49OrVC0OHDkV6ejqePXvW7PMkRXl5OVJTU2Fubi4OcpUmzbGfy+Vi586dMDQ0xKRJk6CoqNigYDk7O0NHRwfXrl0Dk8kUL4W6c+cOQkJCIBQKm90upWGoYLUzzRmuiXpWx44dAyEEa9euxYABA2qVIYTg0aNHYDKZjYYy1IfoJTIzM4O5uTlSUlKQnp7eJptbSklJCW7evAlnZ2f06tVL4vW3FC6Xi7t37+L27dvw9PTEJ5980mj5QYMGQV9fH0lJSWCz2dDW1sbMmTPRv39/bN++HUlJSRAKhR0uVEPeoILVwamurkZMTAx+/fVXaGhoYOfOnXUcuQKBAOnp6SgrK4OBgYE4UwDQ9PR/zZxMTCYTX331FVJSUpCQkNCoXZJ+8YqLi3H79m04ODjA0NBQonWLqPldNGX/s2fPsG3bNri7u8PNzU2cRvrDekTo6+vD2NgYubm5ePv2LQghcHR0REBAADQ1NfHnn3/izp07TdpHaRwqWB2Y6upqREVFISAgAN7e3li9enW9s05sNhsxMTFiZ3tNmpMkTvSidOnSBX5+figoKMCDBw8kdyFNwOVykZOTAwaDAVNTU6mlYWluwjw+n4+7d+8iJiYGgYGB4s0kROc2VI+xsTF69+6NmJgYlJSUAAD69u2LHTt2IDU1FUeOHJF5z7WzQQWrg1JdXY3jx49j/fr1GD16NPz9/TFw4MB6y3K5XFy5cgWWlpZwcHBocVs1XxRNTU3069cPpaWluHnzZqvtbwnl5eUoLy9H9+7dwWQyZdIm0HCPJjY2FpGRkRg1ahT69u3b7N2ZzczM0L9/f8TGxqK0tBTA+1lER0dHfPfdd3jw4AH27NkDFoslqUv46KCC1QGprq7GsWPHcOzYMWhra2P58uUYPHhwg7/A5eXluHv3LmxtbWFnZ9fm9sePHw8Gg4FTp061ua7m8OrVK7x+/Rpjx45t96ycXC4XUVFRePnyJRYuXFhreN0U5ubmcHFxwe3bt8U9LOD9D8LXX3+NwYMH48GDBzh48CB4PJ4UrO/8UMHqYFRXV+PSpUsIDg4Gl8vFtm3b0K9fvwbFSiAQIDs7G+Xl5bCyspJIuuORI0dCW1sbiYmJUltiQggBm80Gi8XCuXPnEBcXJ47MlxX1facXLlzA48ePYWdnB09PT7Hvqjn+JR0dHTg6OiI3Nxf5+fl12lq+fDkGDBiAXbt24c6dO7WylVKaBxWsDgSbzUZsbCwWLlwIGxsbbNmypclI6cLCQqSlpaF3796tFqsPX0hVVVXY2dlBU1MTly5dqhX8KCnHMJfLRXx8PNzc3LBu3TpER0dj2LBhuHXrFvh8vkTaaA07duxAly5dsGjRIvFn9fmsGhIxDQ0NWFpa4tWrVygoKKh1zNDQENOnT4e3tzcCAgIa3X2HUj9UsCRMaxflstlsnDlzBkuWLMG4ceOwYMGCZkV7s1gs5ObmwtzcvNlLcUR2iqjvhXRxcUH//v1x6NAh8c46kpzFUlZWhpOTE4KDg3Hp0iVER0cjIiIC/fr1q7X0RVaIFpJXVlZi8ODBDfoLRTTkeFdRUYGJiQmKiorq3UbNyckJc+bMga6uLv766y8kJydL7Bo+BuhaQgnT0uh14L1YhYWF4ciRI7C3t8fcuXMxaNCgZp1bXl6O7OzsFgtWU/Tt2xfPnz9HWFgY3r59C319fYnOYikoKKBbt24YMmSIxOpsC3l5edixYwfc3d2bjLlqDBUVFVhaWtYrWKJsrwMGDMDixYuxadMmhIWFwdDQsEPEnskDtIclBVoiWqKe1dGjR8HlcrF+/Xo4Ozs3WxzKy8uRk5MDMzOzFglWU/UrKSnBzs4O+vr6uHPnTp3hTWeirKwMN27cwPPnz/Hpp5/WWu7UUlRUVGBlZYWCggIUFRXVOib6zpWUlDB16lSMHDkSKSkpOHjwINhsdpuu4WOBCpaUaI7giHxWa9asAZPJxK5du1r8slRUVKCwsBCmpqYSn2HT09PDtGnTcOHCBaSlpUm07o5EQkICQkJCMGPGjDbPsiorK8PMzAwlJSW1Zgo/hBCCdevWoU+fPjhx4gQuX75MRasZUMFqJ9hsNi5fvoy5c+fCy8sLP//8MxwdHZt1bs3eW3V1NYqLi2FoaNjsGKbm+tkMDAwwceJE3Lt3DxkZGQ3a0Brf1ofnt1eUtyjeLDMzE4sXLxan1mktSkpKMDQ0REVFRaO7ajMYDCgqKmLx4sUYP348Fi9ejLS0NBrt3gRUsNoBNpuNEydO4LfffsPw4cPh7+9fayFzUw9tzd4bn88Hm82GpqameM/BpmhuxDeDwYCJiQlsbGzw8uVLPH36tF4bWuPb+vD89oryPnbsGFJSUjB16lSYmZm1uT4FBQVoamqCy+WKQ0Iau59WVlaYPHkyXFxc8Ntvv1EnfBNQwZIxIrEKCwuDmpoavv32W7i7u7f6hRUIBODz+VBVVZWwpe9RVlbGF198gaysLERGRkqlDS6Xi1evXuHChQu4cOECnj9/LpMYpaKiIly8eFG8y5AkejcKCgpgMpng8/nNDs9wcnLCokWL8OLFCxw7dqzR5TsfO1SwZAibzUZ0dDR27dqFyspKbN++Hf37969VpqUvjVAohEAgkJpgMRgMTJw4EZWVlU0uiG4tmZmZOHDgAKZNmwY/Pz8EBwfjxYsXUmlLBJfLxeHDh8FiseDh4QErKyuJ9PIYDAZUVFQgEAjE6aabqldZWRkeHh4IDAzE9evXsXfvXnE6GkptqGDJCA6Hg2vXrmHevHmwtLTE1q1b6/VZNTQ8Evl5PhQ0gUAAHo8ntSUtDAYDurq6sLW1FQd7Sirvu+haLl++jJ07d4LFYqGiogKHDx+W+rKgsrIy7N69G4MHD8ZXX30lsXoZDAY0NTXB5/NbtPxGQUEBCxYsgLe3N27fvo3ff/9dYjZ1JqhgyQAOh4OIiAgsXboUPj4+mDdvXq2eVXN6VSIhE4VMfOi0lkSWzg/tqPn/kSNHwsjICMeOHWtzOyJEwsxisVBeXi7+/N27d+LFw9IgPz8f+/btg56eHtzd3WFsbCzR+kUbqNZMR9NcFi9eDHd3d4SFheH8+fN0950PoIIlZTgcDo4fP479+/fDwsICc+fOhYeHR5ud1jXPVVRUlPqD7enpCQsLC8TGxtaJL2orjo6OtbKkenp6tjgJYVPUFA1RqhdfX986WVslAZvNhqKiYqsi9nv27AlfX18MGDAAW7Zswf379yVunzxDI92bSXMTv9WEw+Hg3LlzOHLkCFgsFoKDgyWyuUJNGxQVFaGkpCSRzQ4+vLaa/+/SpQusrKwAAElJSRg+fLhEFloDgJubGxYvXgwNDQ0QQjB9+nSMHDlSInV/SGZmJm7cuAEej4dJkyahR48eEq1fKBSisrISSkpK4lnblv4gOTs7Y8mSJZgxYwZOnjwJDQ2NVu++I4qu7yxQwWomNYdizXkARD6rn376CZaWltizZ484EZwkEQmWLIYONjY2GDduHI4fP47evXtLLLtC165dMWXKFEyZMkUi9dWH6J5FREQgJiYGy5YtQ/fu3SXeDiEEXC4XCgoKzQ4zqY8+ffpg9+7dCAgIgFAoxK+//gpNTc0W19OZxAqgQ8IW0dx4IQ6Hg+joaAQEBMDDwwM//fSTVMQKeO+sVVZWBpvNlvrMkkiwYmJikJ2dLdW2pMGTJ09w8+ZNqKqqYtasWRJdeymCEILq6mooKys3O/FffaiqqsLDwwNBQUG4d+8eVq9eLUEr5RcqWBKGw+Hg1KlT2LBhA9zd3eHv7w9XV1eptaeqqgpNTU28e/dOarFLouGwoqIiLCwsYGxsjNTUVOTk5EilPUlS03e1d+9eVFRUwM/PT2LD2Q/h8/koKiqCurp6m2duVVRUMGvWLPFGt8HBweJjH2tEPBUsCcLhcBAeHo7Q0FAoKChgxYoV8PT0lGq3vEuXLtDT00NOTo5MNu3U1NTE5MmTkZSUhKSkJKm31xZEw3ehUIj09HRcv34dFhYW8PX1lVqbfD4f2dnZ0NbWhpaWVpvr09fXx/Tp09GvXz/s379fHFbS2YZ6zYUKloTgcDiIiYnB9u3bUVZWhl27dmHQoEG1HqzW/io2dp6GhgYMDQ3x6tUrVFZWNvu8llDzGtTV1fH555/jxYsXuHfvnkTqlxYiu9+9e4fdu3ejR48e8Pb2hra2ttTa5HK5ePHiBXR1daGrqyuROp2cnBAYGCjeNamjf+/ShAqWBOByubh+/TqCgoJgZmaGLVu21PFZtUU8Gvs11dHRgYmJSb2CJclfYdGEg6KiInr37o1evXohOzsbjx8/bnV9suLly5c4dOgQpkyZ0miuK0nYxOVy8fz5cxgYGEBfX7/N9YlwdHTEjh07kJiYiNDQUKmvBOioUMFqIxwOB+fPn8eSJUswYsQIzJs3r97ke9Ja4KuhoQEDAwNkZmaiqqpK4vWL+ND+MWPGgMfjITw8vNX1yYLU1FSEhITA2dkZgwYNEvuV6hOnttgkqo/P5yMzM1OiPSzg/eSKvb09fvnlFyQlJWHHjh0ycQF0NKhgtQEOh4OTJ09i37596NmzJwICAjBkyBDxgy+LXoSuri4sLS2RkZEh7mHJot1x48ZBS0sLcXFxzVrkyy7JQ15efX+FYDWwgkV0TkkjaaJ4rELk5ZWgoSI3b97EtWvXMH/+fFhaWgKQzvcjuudsNhsvXryAsbExDAwMJNqGsrIypk2bBk9PT6SlpWHXrl0fnfOdClYr4XK5iIyMxOHDh1FcXIw//vijTVkXWoumpiZsbGxQUlKCwsJCALLpvRgaGsLCwgIsFgsPHjxoct1c4toeMHP0xLBhwz74W4ILH0w28jKO4+s+WtCx8cSwYZ6w0dFCn6+P4nEtVeIhI8QH5qP/g7/XzcGgPl/geEZtG0QTA/r6+pgwYQK6dOnSqgDglpCTk4OKigqYmJhATU1N4vWrqqpi4cKF6NOnDw4cOID4+PiPa8sw8pEjFApbfA6HwyHR0dHE1taWfPLJJ+TOnTtSsKz55OXlkYEDB5J169aRly9fSrTuxr6f2NhYMm/ePLJo0SJSVFTUSC3PyX4PkJnnyppu8N05MlNVlQwPfkSqRZ9VPyLBw1WJ6sxz5J24yv1keM3/vwsnX0w8RvJqVBUYGEi8vLzIuXPniEAgaLrtNvLixQvyxx9/EE9PT/Lo0SOptpWUlERmzpxJ+vXrR1JTU6XaVkfio+9htXTTCC6Xi5iYGMydOxeurq5YvXo1BgwYIEULm4bJZMLLywvPnj1rtRO8Ierb3kqEi4sLXFxccObMmUaza4ro1qXpaf7HR37AP94H8U+QPcT5U5n2CPp7Pcz+OYho0XZ/ORngultD7CXStcSgwqfIxPvlMdHR0Xjy5Ik42FUWvc7Xr1/j7t27GDJkSK0NWFvyfDUXZ2dnLFq0CKqqqti0adNHk/jvoxcsoPnDAy6Xi9OnT2PDhg0YNGgQ/P3922UY+OELwGQyMWrUqDpZQZtzbkv5MMTBxsYGXbp0QXJysjjjQt02KlHazPXSpKsV/L90RZ38CXb9MAKFYIl00Wkc3P+3CadfsQGw8er0dpwaNQb98f4+7dixA8bGxpg6dWodu6VFdnY2Hj58iFGjRqFr165Sa0f0/fbv3x//+c9/8PjxY4SFheHNmzdSa7OjQAWrmXC5XJw9exZHjx4Fj8fDypUrMXTo0A4RwKeiogIXFxew2WxkZmbKtG1jY2P4+PjgwoULjYjlO+Sku8DGGACPhcK8POQVslCf58VhZjhCZljWPfDkAWJgAUNRpIDWUPz27xd48q0XbG0nYGtVEM7+4AIhh4OEhASkpqbCw8MDI0aMkMyFNoOcnByw2Ww4OTlJxX8l4sPdd0aNGoWHDx8iJCSk088cUsFqBlwuF7Gxsdi6dSuKioqwe/duuLi4tJtY1ZdVQVdXF7169UJxcXGjOwq3xubGemUGBgb4/PPPER8fLxashtpIDfsafcztMGTYMHg66EOz+zBsSCxuhgXFiN67Ca/nTMPQGqNK5V6j8EP4bTx9GoXt0wehuzKQkZGB7du3w9PTE25ubhLJE9YcHj58iNzcXNjb29eJcJf2c/Lrr7/C1tb2o9h9hwpWE3C5XNy4cQOBgYHo1asXtm7dWsdnJQ0fRWtwdnYGIQQ3btwQf0bauCMNqSc7Rc36VFVV0a9fP2hra+P58+fIz8//sAqgqApcG6DKajkSX2Xj6dOneF5Qiid7rbBn+FSENBoDyUPGgan47KAPTm4ag8a8YBwOB3fv3kVcXBwCAwMlksqnuSQlJeHdu3fw9PSUWZsiVFRUsGzZMowdOxaLFi1q0i0gz1DBagRR6MKyZcswdOhQBAUFwcXFRXy8rWIgaTw9PaGsrFwr93pbA1brO/fDz9TU1DBx4kRkZWXhypUrdSvRG4tdT28jZHpfaIoTGDBhPmkL9s5IwHdHGlqTyMbjA59h0EJg58ODGNdEHGZMTAzOnz+PCRMmwNbWVma9KwC4d+8eWCwWRowYIbN2az57lpaWmDRpElxdXfH999/jzp07MrFB1lDBagCRg33fvn3Q19dHQEAAvLy86s0U2hH8WAAwaNAgaGlpIS0trVmzdpKCwWDA19cXZWVluHbtWgvO1IK16yAURj9E3U5WMRJ/dceA5cCWexcx17rxVC1VVVWIjo7GmzdvMH/+fPEsnSx+UKqqqvDixQuoqqpiwIAB7fY89O/fH4GBgcjJycHRo0c7ZU+LClY98Hg8XL58GSEhIcjNzcXGjRvh6elZ7y9nRxEr4H1Px9LSEgKBAFeuXJGZA5bBYKB3797Q1dVFdnY2Xr161UahKEbsShcMPzgAJx+dw1z7pjeIjYiIQHp6OhwdHeHi4gIlJSWZZNsUCAQ4f/48+Hw+7Ozs2pQDq6V8eG0qKioYMWIE/P39ER8fj//+978y2S5NllDB+gAej4ebN29i5cqVIIRg7969Esu6IAu8vLwwbNgwbNy4Ee/evZNp297e3jA0NMTRo0c/WK7DRkkD62sqS4uAfqYwEX/y3mc1Zo8Vgq8EY1yvpgVAKBQiODgYGhoaWLx4sfhzWfyYcDgc/PXXX7CxscHkyZOl3l5zWL58OTw9PZGQkICdO3e2tzkSpdMKVmtEhcfjITY2FnPnzsWgQYPwww8/NLiQuaPi5OSETz75BC9fvkR8fDxYLFa95aQhuqNHj4aZmRlOnTpVayuw8siF6GHzPWLLPzihOBp7N73GnHGDIZIl3sNtmBrwHIvP/4uvmxgGAu+HY4cPHwaXy4Wbmxv69u0ruQtqANF3x2KxcOnSJeTl5cHV1bWOk789fZwrVqyAm5sbDhw4gOjo6E7T0+rUOd1bMiTgcrmIiIjAzp074ejoCH9//1oLmeUJe3t7+Pj4ICwsDD179oSHh0edMtK4Ln19fVhZWYHH4+Hu3bsYOHAgmEwmtEauxM4+jpjwiRr+t+cbuBkwUZp5Ff+dNxvnpkciZYxo7i8H4Wt+Qtb8U1hsXYW8vLrZJ1R1DNG1xggxNzcXO3bswIgRI+Dj4yPxa2qM169fY+/evfDx8Wnwh00kWrJ+joyMjODr64t3795h/fr10NLSkvhORO1BpxWsliy54fF4OH/+PI4cOYKKigps3LgRzs7OMp1lkiQGBgYICAjAV199hcTERLi6urZqy6nWYG1tDWdnZ4SHh6Nnz54wNTUFlK0xNyoLTv/ux86VPvg+E9C2H4EvNzxBho/5/y3BQSaePzGD4ZNvMTKm/vpn/vcpfnR//+/i4mLExsYiNzcXo0ePhp2dnQyu8P2zxeVycefOHaSkpOCHH35A7969GyzbXr0sUZjLnDlzEBoaCiaTKbW9BWSG1FcrdnC4XC6Jjo4m7u7uxMXFhSQlJbW3SW1CtFhZKBSSCRMmEF9fX3Lx4sUmz6n51xZKS0vJ8ePHia2tLUlISGhTXU1x/vx5MmTIEPLdd9+R7OzsRsu29bo+5PLly2T69Olk4sSJpKSkRKJ1SwLR9bLZbBIVFUUsLS3JihUrCIvFamfL2oZ8diEkBI/HQ3x8PAIDA2FkZIQtW7bU27WXJ2oOPb799lvk5uYiLCysyXMklWBQW1sbAwcOBJvNRlpaWq0dnSVJUVERbt68iZycHCxevLjJ3ZslPSSLjo7GgwcPsGLFCqnsvtNWRNerqqqK4cOHY+7cuUhMTMRPP/3Uzpa1jY9WsHg8Hi5duoRly5bB1dUVgYGBcHNzk2nyPUlT02YGgwFPT0/Y29sjKysLMTENjLGkQLdu3eDj44OkpCSpBTCGhobi/v37mDFjRoOboRIpOb0vX76MjIwM9O3bFy4uLjINZahJc69NWVkZAQEBGDx4MBITE7Fnz54W19FR+CgFi8fjISIiAvv374empia++eYbeHt71/FZydvNBOqK1sSJE9GjRw9s3bpVZttyqaurY+bMmXj69KlUBCs3NxfR0dFQVlbG7NmzGywnjbTUhYWF2Lt3LxgMBqZNm9ZuYtVSunXrhhkzZqB///44ePAg4uPjwefz5W5SqdM63RuCz+fjypUrOHjwIHJycrB//344OzvXG2clbzezPnx8fJCVlYW1a9fi1KlT+OKLLxpN3dvaayY1ZsJUVFTg7u4OJSUlvHz5EmVlZU3uVPP06VPk5eWBzWYjLy8PSkpK6NmzJ3R0dGqFC3C5XISEhKCqqgpjxox579SXESUlJQgLC0NaWhpmzJiBcePGyazt+mjpverfvz8CAgKQlpaGAwcOgMlkYuDAgVKyTkq0l/OsPeDxeOTatWvEwcGBjBw5kty6dau9TZIJubm5ZNu2bURbW5scOXKE8Pl8mbT7xx9/EH9/f3Lw4ME69oSEhJAZM2YQJycnwmQyCYAG/3R0dMjcuXPJs2fPSG5uLjE3Nyfff/89yc/Pl8l1EPJ+cubixYtEQ0OD/P777+Tt27cya1uS8Pl8cu/ePdKzZ0+yYsUKiWeolTYMQuRw3NMKeDwe4uLiMH/+fDg7O2POnDkYNmyYeBhIOlGvqj6ysrLw008/ISMjA0FBQfD392/yHNLG+KFnz57hjz/+QG5uLhYvXoyoqChcuXIFaWlptcrp6enBysoKtra2UFJSgrGxMQQCAbKzs/H69WvcuXMHFRUVUFJSwsyZM5GRkYFVq1bV6eFI8x6eOXMG69evR9++fbFy5coGQyja+p3JAjabjRMnTmDnzp1wd3fHX3/9JT8hPO2plrKCy+WS8PBw4u3tTcaNG0cuX74ss15GR+LevXtk2LBhxMfHp8lQB0mxdOlSoqCgUKvH1KdPH7JixQoSGRnZrJCA6upqsnnzZgKAaGpqkh07dsi0dxUdHU0mT55MXF1dSXJycqP54SUdPiEtKioqyHfffUdGjhxJ/vjjj/Y2p9nIlWC1Jk6Ix+ORs2fPksmTJxMnJydy8+ZNmWxI0FE5cuQIGTJkCPHx8SFZWVnNPq+1MVrh4eHE2NiYDBgwgOzfv5/k5ua2uA5CCHn+/DlZvnw5sbW1Ja9evWpVHa0hJyeHfP7558TFxYX873//E38uL8LUGC9fviQLFy4kDg4OJC4ujvB4vPY2qUnkSrBENPdh4fF45OrVq8TDw4M4OzuT27dvd4oHra3s3r2b2Nvbk4ULF5K8vLwmy7clqDQnJ4f89ddfpF+/fi0SyA/ZunUrcXV1Jfv27SMVFRWtrqcllJeXk3nz5hEnJyeyYcMGmbQpa27dukX8/PyIi4sLSUlJaW9zmkQuBas58Hg8EhcXR6ysrMjkyZNJXFxcpxer5opKWVkZ2bt3L9HW1ia//fZbs0SrLVy9epUYGBiQq1evtupX/MGDB+Tzzz8n3t7epLq6uukTWknN76+4uJj8/vvvRE9Pj2zatEnuI8Qbey7u3LlDBg4cSGbPnk3u3r3b6npkgZx42loGn8/H5cuXsXz5cgwYMADffPMNPDw8OrwztK00N+5IS0sLn376KZYsWYLQ0FCsXbsWqampDZYnbZyX6dWrF4YPH46oqChkZGTUqrc5dQcHB6OyshKzZs0Ck9l0bqzWIvr+MjIysG7dOoSEhCAgIACTJ0+GhoaG1NqVBY09F46Ojvj5559x9+5d/PPPP8jOzm5VPbKg0wkWn8/H+fPnsX//fqiqqiIwMBAjR46U2eJfeaFnz56YN28ehg4dirt372L79u1ITEyUSlsGBgaYNm0aYmJiWpQFUyAQIC0tDUlJSbCyspJJvqmkpCRs27YNN2/ehJeXF4KCgsRb3HdWlJWVMX78eIwdOxapqak4cOAAOBxOe5tVP+3av5MwfD6fREVFkbFjx5I+ffqQW7du1XGwt3eXtqMhEAjI2rVria2tLRk1ahS5d+9enWGXJL6zkpISYmFhQTZu3Ei4XG6jZUXtFRQUkKCgIDJhwgQSERHRZhsao7q6mqSlpZGxY8eS3r17k++++67TPCst8fkuWLCA9OvXj0REREh1+N1aOo1g8fl8cv36ddK3b1/i7e1N4uPj69woSWQj6KxcunSJeHp6EnNzc3Ly5MkmRaWlcLlcsmjRIhIYGNjskIr4+HiiqalJDh06RNhstkTtqfkccDgcEhUVRczNzYmHhwc5deqURNuSJzIyMsiKFSuIiYkJefjwYXubU4dOIVii2UA7Ozvi5+dHoqKiPso4q7bA5XLJrVu3iL+/P7GzsyOrV68mZWVlEqtfIBCQW7dukc8++4wsW7asyfL3798nX3/9NRkzZoxUX5ySkhKyadMmYmtrS2bNmkWuXbsmcXHsiDT2w52YmEimTp1KRo8eLXbCd5Qfe7lfS8jn83Hx4kXs3LkTZmZmmDVrFkaMGCH2WRE5iDyWFi25dmVlZQwePBiKiopQV1dHfHw8CgoKMG3aNInscK2goAAXFxdoaWnh9evXKCwshJ6eXoP1xsfH48aNG/j7779hZWXV6utq7LyEhASEhobi8ePH8PLywuzZs8XbuH0Mz01D1zhgwAAEBgbi22+/xT///AM1NTXY2dl1iGQAci1YfD4fUVFROHz4MPLy8rBr1y64u7tTB3sbGDRoEExNTfH333/j9OnTqKqqQl5eHhwdHWFqagp1dXVx2Za+1AwGA87OzkhMTMT58+cxa9ases+/efMmbt++DVNTU/j4+EjsfjIYDFRXVyMzMxOPHz/G+fPnkZycjGHDhmHNmjXQ09Nr1XXJIw2lbyaEQEVFBSNHjsT06dNx5swZMJlM/PTTTx0j71f7dOza3sXk8/kkLi6OeHp6kgEDBpCEhISPOoJd0nA4HHLlyhUycuRIoqOjQyZMmEAuXLhAhEJhq4bbonv95MkT8t1335FPP/20QaduQEAA8fLyIlFRURK7p3w+nwiFQnLlyhXi6+tLtLS0yLBhw8j58+flIsK7vViwYAFxd3cn27Zt6xBuFrnyYYkeej6fT27cuEFsbGzIxIkTydWrV6lYSQEOh0Pevn1LLl68SPz8/Ii5uTnx9vYmkZGRbfq+9+zZQ8zMzMiTJ09q1SMQCMiFCxfI0KFDSVBQkCQuQUx0dDQZNWoUMTU1JZMnTybnzp0jWVlZhMPhSLSdzkZubi5ZtmwZsbKyIlevXm3370vusjXw+XzExMRgzZo16NmzJ77++muJDhsodeFwOEhLS8OtW7eQnJyMzMxMmJqaYvz48fj0009bHMwZGxuLP//8E0OHDoW/v784PxeHw8GECRPQvXt3zJ07F0OHDm2z3dHR0QgPD0dmZiaMjIwwcOBAuLm5oV+/flINQu1MJCcnY//+/UhLS8OOHTualUOLNHNY3dxyIuTKh8Xn83Hp0iUcOnQIhBAEBgbC29ubipWUUVVVxcCBAzFw4EDEx8fj2LFjePz4McLCwvD48WPY2NjAyMgIpqamMDY2bvIBtLW1xWeffYZDhw5h1KhRMDAwQHV1NeLi4vD8+XNMmDCh1WKVk5ODzMxM5Obm4unTp3j48CEKCgpgZ2eHL774Ap6envR5aSHOzs7g8XhYsGABDh8+DBUVlSb3fxQ9A6LA36qqKmhoaMDGxgZubm5ITU2Frq5uk7n469Cu/bsWwOfzSUxMDPnss8+InZ0duXnzZocYU3+sJCQkkFmzZhEjIyNibW1NpkyZQrZu3Uri4+PJ27dvSWFhIWGxWA3eo6dPn5Lu3buTEydOEEIISU1NJWPGjCGzZ89u9iJcgUBAKioqSGFhIcnNzSWJiYlk27ZtxM/Pj9jY2BADAwPi6+tL4uPja51Xn/+0I0zZd2Sqq6vJ6dOnSe/evcmqVatIeXl5o+VZLBZJTEwkq1atIgYGBkRFRYWYmJiQoKAgkpmZSVasWNGqFEdy0cMSCAS4desWli9fDl1dXezbtw9ubm7yk3Ssg0GaSHTX1HEAcHFxgYuLC0pKSnDv3j1cvnwZoaGhWL9+PdTU1DB06FAMGTIEo0ePhoWFRZ3zu3XrBm9vb9y7dw+GhobIyspCYmIiLl682Oy983JycnD58mXExcUhLi4OLBYLFhYW8PLywldffYX+/fvXGzpR33V19lnBtsJkMvHZZ5/hwYMHiIqKAp/Px+bNm+stW1lZifnz5+Ps2bMIDAxEWloadHV1wWKxEBUVBWtra8yZM6dV6a1l5sO6evUqduzYgfz8fHA4HPB4PHA4HBgYGGDjxo0YNGhQvQn9BQIBbty4gYULF8LBwQH+/v4YPXp0nW49+QimojsqVVVVKCgoQHFxMfLz85GZmYmnT5/i6dOnyM/Ph6qqKmxsbGBlZQV9fX1YWFjAwMAA169fx7lz50AIgampKQwMDLB+/XrxfayqqsLr16/BYDCQk5ODZ8+eoaioCK9fv8aTJ09QWVkJIyMj9O7dG3Z2djAzM4OBgQF0dXWhr6/fMabhOxllZWX45ZdfEB8fj2+++QZz5swRh0iI7tuXX36JpKQk+Pj44Pvvv6817EtPT8fixYsxZswYTJo0qcWiJTPBevLkCQ4ePIhDhw7B0tIS9vb2UFRURGZmJjQ0NLB06dI6AYqiDSP27t0LoVCIJUuWwNvbWxbmUtoAl8vF48eP8fjxY6Snp6OgoABKSkoQCAQQCoVQUlKCsrIy2Gw2wsPDUVBQACMjI/Tv3x99+vQBk8kEl8sFl8uFQCAA8P5Z4PP5IIRAWVkZAoEAurq6sLOzg52dHRwcHKCqqtrOV/5xkJ6ejn379iEpKQm///47Bg8eDGVlZfD5fDx58gQDBgzAmDFjsGPHDrEgiQStoKAAO3bsgIuLC1xdXaGvr9+itmUyJBQKhbCzs8O3336L69evY9WqVZg0aRIA4NKlSxgzZox4iKGmpgbg/UN/7do1BAcHIzY2Frt27YKZmRny8vLA4XBob6oDInooFRUVYWRkBDMzM4wePRqFhYV49uwZ0tLSkJubi5ycHLx9+xYqKipQU1ODrq4u2Gw2bt68iZiYGLGo6ejowMTEBEKhEIaGhjA3N4e+vj5sbGxgZ2cHQ0NDKCoqgsvloqioSCxuFOlBCIGBgQHc3NwQHh6OPXv2QFVVFc7OziguLkZwcDD09fUxZcqUWr2nmjsq9evXD1ZWVq1K2SMTwRL5mt6+fYs7d+6IfRo8Hg9dunSBqqoq1NTUam0Ice/ePWzevBnXrl2Dm5sb7t69i4cPH9KHUkrUt4GspDaVrbmztKqqKiwtLcXLbUQzUAwGo8EwA1H7hBCUlpYiMTERiYmJ9drVmM31beXWkvMp71FUVER1dTXs7e0RGhoKc3Nz2NraoqioCMHBwVi4cCFcXV3rPVdHRwdTp05tddsyc7oXFBTg+fPn8Pf3h5mZGQAgIyMDa9euhbe3N9zc3MRdeg6Hgzt37qBXr17w9fWFuro6eDweeDyerMylSBiREDTm6K+urm7w2If/poLS/vTs2RN+fn5gs9lISkqCUCgEABgbGze5D2VrkZlgVVRUICMjAzExMZg6dSq0tLTQs2dPBAUFoVevXrC3t/8/o5SUMGzYMLi6utbyfVDHeueD3lP5RUFBQTz5paWlhZSUFADv4/akFesmM8HKz8/Hy5cvYW5uDgBISUlBbm4u3N3d0b9//1ozhEpKSujTp4+sTKNQKBLg2bNnAN6HNYh6Wx9SUVGB0tJSGBgY1BsV0BQyC2RKT0/Hu3fvcOzYMURHR+PKlSvo3bs3/Pz8cOPGDXC5XAC0q0+hdHRIA7n4TUxMoKWlhYyMDGRmZtY5np2djeTkZKSlpYHNZreqbZkIFovFQlFREZhMpnjdmLm5uXjn3vj4eBQWFgKgAXwUSkenoc1ODAwMsGrVKpw6dQq7d+9GVlaW+NizZ8+wc+dOHDhwACNHjoSmpmar2pbJkDA1NRUcDgcuLi61LlQ0O6SjowMVFZVa51DfRuclKSkJW7ZsQV5eHqqqqsTxVcD7l8HMzAx+fn7w9fVtZ0spLUFHRwdff/01tLS0cPz4cbi6usLQ0BB8Ph92dnYYPnw4vv76aygptV52ZCJY9+/fh1AoxNixY8WfXblyBVu2bAEhBM7OztDV1a11DhWrzouuri5MTU1x6dIlODo6wsLCAl26dAGDwcDTp0+RlZVV75CC0rFRUFCAoaEhZs6cCTU1Ndy4cUMc5NunTx94e3vD2tq6TW1IPdL97t27+PXXX8FkMjF37lxoaGhAS0sLP/zwA86dO4fRo0fjzJkz4oBRSudG1HOurKzE5MmT8f3332PYsGEA3oezZGVl4dSpUzA0NIS/v3+72kppOU2NjNo6cpJ6D2vQoEHigNATJ06IPzcyMsLatWuxevXqes+jQ8LOieielpWVQSAQQEdHBwCQlZWF06dPIygoCP369QOfz29HKymt5cN1hfUdbwtSF6y0tDSxYImmOgkhUFVVFefQrg8qVp2XoqIiPHjwAD4+PrCzs8Pbt28RGxuLXr16gRACb29vGiQsx0jz3ZW6YDk4OEi7CYqcUV1djcePHyM0NBRxcXEoKSmBnp4e1qxZA0VFRSgrK9OFzJR6kYt8WJTORXFxMdLT06GmpgYWi4X09HTw+XyYmZm1KpiQ8vFABYsic16+fInMzEyEhobC1NQUhw8fRkJCArp27dreplE6ODRlJ0WmiJL9qaioiIOIjY2Nm7WxAYVCBYsiNeqLmHny5AnKysrg4uIiHv4NGDBAnHJk//79SE1NlamdFPmBChZFqnwoWo8ePQKLxcL48ePFK/q7du2Krl274t9//8WDBw9QVVXVHqZS5ADqw6JIDdH0tkAgQHl5OQoKChAVFYXKykp4eXkhOTkZCgoKUFNTQ3JyMtatW4dvvvkGRkZG7Ww5paMidxupUuSPiooKXL58GUFBQSgsLBQHF34Ik8nEhQsXMHTo0DatN6N0XqhgUaSOUCgEi8XCmzdvIBAIoKCgIE7IWBNlZWWYm5tDXV29nSyldHSoYFEoFLmBOt0pFIrcQAWLQqHIDVSwKBSK3EAFi0KhyA1UsCgUitxABYtCocgNVLAoFIrcQAWLQqHIDVSwKBSK3EAFi0KhyA1UsCgUitxABYtCocgNVLAoFIrcQAWLQqHIDVSwKBSK3EAFi0KhyA1UsCgUitxABYtCocgNVLAoFIrcQAWLQqHIDVSwKBSK3EAFi0KhyA1UsCgUitzw/wAK8hHBfNrheAAAAABJRU5ErkJggg==",
"path": "images_version_5/image_32.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
Circle I is the inscribed circle of triangle ABC, then the degree of angle A is ()
Choices:
A:68°
B:52°
C:76°
D:38°
|
Vòng tròn I là đường trung tuyến của tam giác ABC, thì số đo góc A là ()
Lựa chọn:
A: 68°
B: 52°
C: 76°
D: 38°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: Circle I is the inscribed circle of triangle ABC, then the degree of angle A is ()
Choices:
A:68°
B:52°
C:76°
D:38°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: Circle I is the inscribed circle of triangle ABC, then the degree of angle A is ()
Choices:
A:68°
B:52°
C:76°
D:38°
|
Circle I is the inscribed circle of triangle ABC, then the degree of angle A is ()
Choices:
A:68°
B:52°
C:76°
D:38°
|
160
|
32
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAIjCAYAAADFk0cVAAC/xUlEQVR4nOzddXQU198G8CcJESIQQhIkSIJDcHcrDi2SluJaaCnF+VEKBUqLlAItDqVQ3CnuwS1IcA3uHggWCCG57x+8c3c22d3sbHYj8HzOyWG5d+TOzuzs3e9csRNCCBARERERkdnsk7sARERERESpDSvRREREREQasRJNRERERKQRK9FERERERBqxEk1EREREpBEr0UREREREGrESTURERESkESvRREREREQasRJNRERERKQRK9FERERERBqxEk1EREREpBEr0UREREREGrESTURERESkESvRREREREQasRJNRERERKQRK9FERERERBqxEk1EREREpBEr0UREREREGrESTURERESkUbJXou3s7GBnZ4dffvklWcvxyy+/yLKkdh06dICdnR38/f2TuygmVa9eHXZ2dqhevXpyF8UsKeVaTW5z586V78WNGzfi5ae28woA/v7+sLOzQ4cOHZJ83zdu3JDv59y5c5N8/2qp5d5hrpiYGEycOBFly5ZFunTp5PvcpEmT5C4agE/vnvKpHe+nZPfu3fL87t69O7mLk2QSXYmOjo7G0qVL0b59exQsWBAZM2aEo6MjvL29UapUKXTr1g3bt29HbGysNcr70VO+xIxVUIiIyDwtW7ZE7969cfToUbx8+TK5i0Mp1O3bt+Hg4CC/e+fPn2/WeuofwIb+3NzckCtXLjRv3hzr1q3TXK7du3ejT58+KFWqFLJkyQInJyd4enqiQIECaN26NRYuXIjIyEjN2yXrSVQleu3atShQoABatmyJ+fPn4+LFi3j69Cnev3+P8PBwHD9+HDNmzEDt2rVRsGBBbNy40VrlphTqY4roE1HqdfDgQaxYsQIA0LBhQwQHB+P06dM4c+YMJk2aZPZ2EnryQqnfggUL9AJ95laiExIZGYnr169jxYoVaNy4MRo0aGBWpffs2bOoVq0aatSogQkTJuD48eN48OABoqOj8fz5c4SFhWHx4sVo27YtsmXLhvHjx9ssUMmnB6alsXTF0aNHY/DgwRBCAABq1aqFxo0bo1ChQvD09MTTp08RFhaG9evXIzg4GJcuXcLgwYPRsGFDve0o65P1zJ07N9kfC3+MeK1+0KFDh2Rp9vCx8vf357VlA9u3bwcAODg4YPHixUiXLl0ylyg+nveUYcGCBQAAd3d3vHr1Crt27cKdO3eQLVs2s7fRuHFjjBgxQi/t+fPnOHbsGCZMmIDr169j8+bN6NatG+bNm2d0O9u2bcNXX32FFy9eAAACAwPRvHlzlC1bFj4+Pnj9+jVu3ryJLVu2YN26dXj27Bn69++Pzp07w9PTU/vBU6JYVIlesGABBg0aBADw8fHBsmXLUKNGjXjL1apVC927d8eZM2fQu3dvhIeHJ660REREZrh79y4AIFOmTCmyAk0pw5EjR3Dx4kUAwPjx49G9e3e8f/8eCxcuxMCBA83ejqenJwoXLhwvvVKlSvj6669RtGhRPHr0CAsWLMDvv/+OLFmyxFv2woULaNasGV6/fg0HBwf89ddf6N69O+zt4zcaaNu2LR4/foxffvkF06ZN03DEZE2am3Pcu3cP3bp1AwC4urpi9+7dBivQakWKFEFwcDD69+9vWSmJiIg0iIqKAgA4Ojomc0koJVOiwhkyZECHDh1Qu3ZtANZr0gF8+CHXrl07AB+ePhw9ejTeMkIItG7dGq9fvwYAzJ49Gz169DBYgVb4+Phg6tSpWLlyJa/zZKK5Ev3XX3/Jkzx8+HAUKlTIvB3Z26NNmzbx0k21t4nbFi0qKgoTJkxA+fLl4e3tbXS9d+/eYebMmWjYsCH8/Pzg7OwMX19flCpVCj/88AP27dtn8WO09+/fY/bs2WjQoAGyZs0KZ2dneHt7o2rVqpgwYQLevn1r0XatyZwe9qtXr0aTJk2QLVs2ODs7w8PDA7ly5UKVKlUwZMgQHDlyRNM+lXM1fPhwmWaoo4WpNoV3795F3759kSdPHqRNmxYZM2ZE3bp1sXnzZrPK8OzZM4wYMQIVKlSAt7c3nJ2dkTVrVjRu3BirVq3SdDyGaLlWY2NjMXPmTFSsWBEZMmSAm5sbihYtipEjRybYJu7YsWPo3Lkz8uXLBzc3N7i4uCB79uwoVaoUunfvjnXr1pm8fm/cuIEff/wRpUqVQsaMGeHi4oKAgADUqFED48ePx61btxI8tp07d+Krr75C9uzZ4ejoqHctaW0jGhYWhq5duyIgIAAuLi7IkiULvvrqK4SEhCS4LmCd87pp0ybUr18fPj4+cHV1Rb58+dC3b1/cu3fPrPW1OHDgAL755hvkz58f6dKlg7u7OwoUKIAmTZpg/vz58jGtIqHROeL2M3j+/Dl+++03lChRAp6enkbXe/nyJcaPH4+aNWsic+bM8n0rV64cfvzxRxw/ftziY4yMjMSECRNQo0YNZMqUCU5OTvD19UWdOnUwZ84cxMTEWLxttTNnzqBr167ImzcvXF1d4eHhgcDAQPTp08fotae8V0rl6ObNm/HuQ+ZQRhvo2LGjTAsICIi3LfVIBHHvvffv38ePP/6IwMBAeHh4xFs+ofam165dw/jx4/H555/D398fadOmRdq0aZEzZ058/fXX2LJli8ljsOZ9CQBOnz6Ntm3bws/PDy4uLsiRIwfatGkjryVrje4SFhaGnj17IjAwEOnTp0fatGmRK1cudOzYMVHXbVzv3r3DsmXLAABfffUVnJycZD3lwoULCA0Ntdq+1O+JoXrCpk2bcOLECQAf2vC3b9/e7G0HBQXBzc0t0WVUU0YsUgwfPjzetZ9Qs77ly5fjs88+g4+PD9KmTYv8+fNjwIABePr0qVllCA4ORps2bRAQEIC0adMiXbp0KFasGAYMGID79+8bXS/uPfPt27cYO3YsSpYsCQ8PD3h4eKBs2bKYMmUK3r9/b1ZZjBIaxMbGCh8fHwFAuLm5iefPn2tZ3SAAAoAYNmxYvLw5c+bI/KNHj4rixYvL/xtb78SJEyIgICDecnH/rl+/rrfesGHDZJ4xV65cEYUKFTK53bx584pLly5Z/H60b9/eaBm1biNnzpzx8t6/fy+++uqrBN+fUqVKadqn+lyZ+75Xq1ZNABDVqlUT+/btExkzZjS63tixY03uf+PGjcLT09Pkvhs2bChevnyp6bjUzL1Wz549K2rWrGm0HGXLlhWvXr0yuI8///xT2NvbJ/g+GjuOsWPHCkdHR5PrVqtWzeSxDRo0KN466mtJfayGrlH1ed20aZNwc3MzWA57e3sxfvx4k++5Nc5rr169jK7r6+srQkNDRc6cOQUA0b59e5PlMSUyMlK0bNkywXMX9/q5fv26zJszZ0687arvTZcuXRL+/v7xthl3veDgYOHt7Z1gWeIyde9QHDlyRPj5+ZncbtmyZcWDBw8seBd1Ro0aZfKz4OzsLObNmxdvPXPuQ+bYtWuXWdvatWuXXEf9/oWEhBg8B+rlTd1Trl27Ztb+27RpI6Kjow0eg7XuS0IIMXfuXKP3FkdHRzF37twErx9Tx6v49ddfRZo0aYyW087OTgwdOtTo+lqsWrVKbnfv3r1CCCFev34t3N3dBQDRo0cPk+urP7sJ3Tv69+8vlw0JCYmXHxQUJPO3b99u8TFZi3JPNPWnPmb152X79u2iVatWRtfLkyePuH//vtF9v3r1SjRt2tTkvt3d3cX69esNrq++Zz548EAUK1bM6HY+//xzERMTY/H7pKkSffbsWbnjevXqWbxTvQKY+FCpbwBFixYVdnZ2ol27dmLjxo3i2LFjYvXq1WLTpk1y+XPnzsmLH4Bo2rSpWLZsmTh69Kg4dOiQmDdvnmjTpo1wc3PTXIm+d++eyJQpkwAgPDw8RL9+/cTmzZvF8ePHxa5du8RPP/0kXF1dBQCRK1cuERERYdH7YetK9OTJk+X2K1euLObOnSv27dsnTpw4IXbs2CEmTpwo6tWrJ8qWLatpn8+ePRNnzpwR3bp1k9s/c+ZMvL93797JdZTKVr58+YS3t7fw9fUVv//+u9i/f784cuSI+PPPP2UFKk2aNOLs2bMG971t2zbh4OAgAAh/f38xZswYsXv3bnH8+HGxfv160aZNG1mmZs2aaTouNXOv1YoVKwp7e3vRvn17vWu1QoUKcpmBAwfG28apU6dkpSEgIECMHz9e7NixQ5w4cULs27dP/Pvvv6Jt27bC3d3dYKXx119/ldv39PQUgwYNEsHBweL48eNi586dYty4caJSpUqievXqRo+taNGiAoAoUqSI+Pfff8WRI0fEnj17xMSJEw0eq6lKdN68eYWnp6dInz69GDVqlDh48KA4ePCgGDlypEiXLp3cxn///Wfw/bbGeR03bpxcJmvWrGLy5Mni8OHDYs+ePWLAgAHCyclJ+Pv7y+CApZXomJgYUbt2bbmvvHnzir/++kvs27dPHDt2TGzYsEEMGjRI5MmTJ1GV6KJFiwpHR0fRo0cPERwcLEJDQ8WSJUvEwYMH5fI7d+6UlRAHBwfRoUMHsXr1anHs2DFx4MAB8c8//4hmzZoJR0fHePtKqBJ0+vRp+aPI19dXDBs2TGzfvl2cOHFCbN26VXTv3l3uu1y5cnqfdy2mTp0qj9nHx0eMGzdOhISEiP3794tffvlFlsHOzk5s3LhRb13lXtO4cWN53uPeh8zx6tUrcebMGTFixAhZlq1bt8bblrriqbx/GTNmFFmzZhXu7u5i8ODBYvfu3eLIkSNi9uzZ4uLFi3J5U/eUy5cvCycnJ/H555+LSZMmie3bt4vjx4+L7du3i2nTponAwEC5vrFKpTXuS0IIsW/fPnlvSps2rRg0aJDYu3evOHz4sJg6darIli2bcHJyEiVKlEhUJXrIkCF65Z01a5YICQkRoaGhYtGiRXplnTRpkuETp4Fyjfj7+4vY2FiZ3rZtW3ntmbqGza1EP3z4UNYfsmXLJqKiouIt4+vrK4APAcr3798n6risISwsTJw5c0YeX7du3eJd+3fu3JHLqyvRFStWFABEkyZNxKpVq8SxY8fEpk2bRMOGDeUyLVq0MLjf9+/fixo1asjPd8uWLcWKFStEaGioCAkJERMnThQ5cuQQAISTk5MIDQ2Ntw31PbNixYrCyclJ9OzZUwQHB4tjx46JxYsXi4IFC8plZsyYYfH7pKkSvWjRIrnTQYMGWbxTvQKYWTEBIGbPnm1yW8oH2N7eXixZssTock+ePBGRkZF6aQlVohs1aiQAiOzZs4urV68aXOb48ePy5v7zzz+bLKsxtq5EV6lSRX7BGYteCCFEeHi4Rfs2J6KvUCpbSlnVH0jFvn37hJ2dnQAgevbsGS//1atX8uZUp04d8fr1a4P7mjlzptyXpb/ytVyrCxYsiLfM27dvReHCheWXbNz3X/kCcXNzMxnFi4iIiPfL+dixY/JLLl++fOL27dtG1zeUpy77Z599Jt6+fWt0fXMr0QBE+vTpxfnz5+Mtc/bsWVmRzpo1a7wvFWuc1wcPHsgftjlz5jQY+dixY4de1MvSSvSECRPkNpo2bWr0/YuJiRF3797VS9NSiba3txfbtm0zWo7IyEiRJUsWAUC4urrqRT3junXrVrw0U/eO2NhY+SOrWLFi4vHjxwa3u3nzZnktzpo1y+j+jXn06JE8b1mzZjVYTvW91s/Pz2BFx5youjkSut4N7RP4ECk7efKkyeVN3VNevXol7t27Z3Td2NhY0aFDB3nPMBS4scZ9SQghI3lOTk7iwIED8fIfPnwocuXKpXc/13q8R44ckdeNse/PmJgY+ePZw8NDPHv2zOBy5njy5ImMrMetz2zdulWWde3atUa3of7sNm7cOF4l88CBA2Ly5MkiT548AvgQsTcUNLh7965epS8lSeiHjyLuk5sRI0bEWyY2NlbUqVNHAB8CY48ePYq3jBL4cHR01AuSqj19+lT+iKxcuXK8fPU909HR0eB9MDw8XH7HFC1a1OSxmaKpEj1x4kRZMHVkKjHMrZjUrFnT5Ha2bNkil+3Vq5fmcpiq/Kl/jZn6QAkhxIABA+TN3xK2rkTnzZtXABB9+vSxaNsJsbQSvW7dOqPLlS9fXgAQJUqUiJenRNZdXFzEw4cPTe6vbNmyAoBo3bp1wgdigLnXqqlo94wZM+Ryp06d0svr0qWL0eNMSIsWLQTw4Zf78ePHNa+vrqQldN1pqUSPGzfO6HbGjBkjl1u+fLlenjXOq3r7K1euNLq++umJJZXomJgY2bzBz89Pc5MhLZXoTp06mdyW+vr666+/NJVDCNP3jvXr1xu9duNq3ry5ACAqVaqkuQzq82YqGKKOEMe9fhI6Fi0srUT/+uuvCW7b3AqKMeHh4fJpjaFr3Br3pZCQEJln6ntj7dq1iapEK80ZSpUqpRcVjuvZs2fC2dlZABD//POP0eUSon4qG/eH/vv37+WP0aCgIKPbUH92E/pr3ry5OHLkiMHtnDp1Si7XtGlTi4/JFiypRJs6h+q6Wtz61Lt37+T7nlAdZdOmTXI7ly9f1stT3zP79u1rdBsDBw6Uy1naekBTx0L1jE/WbsSekNatW5vMV0/k0qdPH6vue+3atQA+jEYSd5zruKpWrQrgwygmt2/ftmo5rEEZVmf9+vV48uRJMpfmA09PT5Pva6lSpQB86GQTl3JuqlWrBl9fX5P7Uc6NuR3aLGXqWlWOBYh/PMq5OX/+vKaOnbGxsbKDUbVq1VCiRAktxdVTqVIlq035bGdnZ7JzTMeOHWXHD2VMX4U1zquyzQwZMqBx48ZG1+/UqZPJ7Sfk5MmTcji1Ll26wN3dPVHbM8Xc+6Crqyu6du1q1X0r5yR//vwoWrSoyWWVc3L06FHNnQyV8+bp6YmgoCCjy33zzTfx1klJEjpXWkVHR+POnTu4cOECzp49i7Nnz+LevXvImDEjAODUqVMWl8fUfWnHjh3ytanPc8OGDWVZtIqOjpYdyL/88kuTnT89PT1RpEgRAIm7lyujb5QsWRIFCxbUy3NwcECLFi0AABs2bEBERITF+1Fs2LABM2bMwPPnz+PlJWfdyhZatWpl9ByautaOHDkiOww2b97c5D6Uewxg+jow97q/fv26yf0Zo6kS7eHhIV8rI3QklYRu2kqv1hw5ciBnzpxW3bfSQzcyMhJp0qQxOc1no0aN5HoPHjywajmsQbkJXrlyBXny5EGnTp2wZMkS3LlzJ9nKlDdvXpPD+Hh5eQGAwWl7lXOzdetWk+fFzs4O48aNA2D781KgQAGjecqxAPGPp2XLlnB0dERUVBQqVaqEzz//HDNmzMC5c+dMjsZx/fp1eZNX31gskdDnTIuAgAB4e3sbzffx8ZEV9rNnz+rlWeO8njlzBgBQokQJpEljfEj84sWLw8nJSfPxKZR7D5D49z8h5t4HS5cuDVdXV6vuWzknYWFhCZ6TH374AcCH0Q/M7YmvUK6FEiVKmBy2K1OmTEavn+Tm7u6OXLlyJXo70dHRmDp1KsqXLw93d3dkz54dhQoVQpEiReTfo0ePACDBoIil9yXlvXV2djY4DrLCwcEBxYsXT+iQDDp//rwcHeSnn35K8PpSrkVL7+UXL16Uw8wZGjVMnR4VFSVH8DClffv2EB+e7su/t2/fIiwsDKNGjYKdnR3+/fdfVK5cWZ4zRXLWrWzB0mtNPRpKhQoVTF4D6mCFqevA0rKYS1MlWv2F+PDhQ4t2aKkMGTKYzFduIIYGME+suBe8uVLinPadOnXCoEGDkCZNGjx//hxz5sxBq1atkD17duTJkwf9+/c3GPG1pYS+7JUKdtxpTaOjoy2KENj6vJg6HvWPhbgRugIFCmDJkiXIkCED3r9/jw0bNqBbt24oXLgwfH190bZtW+zbty/eNtVfnom9/hP6nGmRUAQZ+FARAqBX0bLWeX327JlZ5UiTJo3ezVQra77/CfkU7oPKtaBcG6ZkzpxZb52Uwhozxz19+hQVKlTADz/8gMOHD+Pdu3cml3/z5o3JfEvvS8rnyMvLCw4ODib34ePjYzLfmKT+jlWGP3RwcEDLli0NLlOyZEk5hK+lY0Y7OzsjX758+Omnn7B69WoAH36UxJ0zIznrVrZg6bVmi+vA0rKYS9OMhcWKFZOvrTlWozkS+vAqzB0DVAvlzQ0ICMC6devMXi8gIMDqZbGGkSNHomvXrli0aBF27NiBQ4cOITIyElevXsX48eMxadIkTJo0Cd99911yF9Uk9UXfvHlzDBkyJBlLYx1BQUGoVasWli1bhq1bt2Lfvn14/Pgxnjx5goULF2LhwoVo3749/v33X4PR+8Re/+Z+zsxhTlkMRditfV4tLYet9pUYKeE+WKlSJcyYMcPs9bJmzWrR/pLyvFmbNT5HvXr1wrFjxwAATZo0QadOnVC0aFH4+vrCxcVFvj85cuTA7du3U+x7YQ71Z37s2LGoV6+eWetZ0vQhNjYWixYtkvs15wfnwYMH5dNbS9WuXRvFihXDqVOnsHTpUkyfPl2WP2vWrPDx8cHjx49x6tQpxMTEWPVenFqor4Pdu3eb3TzInICNrWiqRBcqVAje3t548uQJ9u3bhxcvXqSY6VSVX3K2mDxBOZEPHz5EgQIFTD4aTi1y5syJQYMGYdCgQYiOjsaRI0ewYsUK/P3333j79i2+//57lCtXLlHta23NxcUFrq6uiIyMREREhMlHjalJ+vTp0bVrV9mm9fz581i3bh0mT56Me/fuYd68eShRogR69eoFQD+KYYvr31LmRFSUyIM6Emyt85ohQwY8ePAgwXK8f/9eRtssEff9z58/v8XbSixvb2/cuXPHZvfBhw8f4vHjxzb9rHl5eeH+/ftmPapXzm1iniSkRC9evJBNCFq1aiUrfYYk5to1h/L04+nTpwlW7h4/fmzRPtSVpejoaJteXzt37rSov9KCBQv0JhOzRIECBXDq1ClER0cjLCwMJUuWlHlVq1bFf//9h9evX2PPnj2oWbNmovaVGqmvAycnp1Txna6pOYd6hprXr19j1qxZtiiTRZSL8datW7h586ZVt61UJCMjI3HgwAGrbjslcHR0RKVKlTBhwgQsXrwYwIcIz8qVKzVvy9aRuLiUc3PgwIEU2XzGGgoVKoSBAwfi0KFDMnKxfPlymR8QECC/6Pbu3ZssZTTk+vXrCA8PN5r/+PFjOetc3JulNc6r0vno5MmTJmelOnXqVIKPyk1RfxEm9/uvlCU0NNTqnwflnFy6dMnq91g15Vo4ceIEoqOjjS736NEjWQ5bftkm9T0NAC5fviyPXengZkhYWBhevXpl07IEBgYC+NA2WOlnYEhMTAxOnjxp8T6Ufgnbtm2zaBvmUppmODs7Y9GiRViyZInJP6Xz2YIFCxId7Vffh+Je2+qZMSdMmJCo/aRW6qCdra8Da9E87Xfv3r1lG5OhQ4fi4sWLZq0XGxuLhQsXat2d2T7//HP5+q+//rLqttU9+//44w+rbjul+eyzz+RrS0bvcHFxka+joqKsUiZTvvjiCwAfftRNnTrV5vtLTtmzZ0e+fPkA6J8be3t7NGjQAACwZ88evY5uyUkIYbIt4dy5c+WXUq1atfTyrHFelW0+ffoU69evN7rcv//+a9H2FcWKFUP27NkBALNmzbJ5pcYU5T4YGRmJmTNnWnXbyjkBbHsfVM5bREQE/vvvP6PLzZ492+j1Y01JfU8D9Ctbpn4MaWlWYyn1d4Kpz/PGjRtN/mg2xdXVVe5n9+7dmkYn0uL169dYtWoVgA/NK1q1aoUWLVqY/FMCh9evX8f+/fst3rcQQjbPAYBs2bLp5Tdo0EB2zFy/fr2m+tKqVats1iFRuf6T4tqvXLmyfKo0Y8YMvHjxwub7TCzNlWg/Pz9MmTIFwIcLslq1atizZ4/Jdc6fP4+6devKXvS2UKtWLfmLcfLkyVi6dKnRZZ8+fZpgJwy1MmXKoE6dOgA+zG8/bNgwk8vfuHEDS5YsMXv7SWnhwoUmo3LqX3+WtOlWty+7evWq5vW1+u677+Tj9CFDhshhkow5cOBAskcLjVmzZo3JDnW3b9+WP1rjnpv+/fvD3t4eQgi0aNHC5GgrSTkSy2+//YawsLB46RcuXMDIkSMBfLhm4g5BZ43z2r59e6RNmxYA0LdvX4PNOvbs2ZPoyqa9vT3+97//Afjw3rZr185oZDs2NtamTW7atGkDPz8/AMDgwYNN3pu1XgdBQUFyKLDp06dj9uzZJpc/e/asyR8vxnTs2FEGavr162fw0fupU6cwatQoAB++k5o0aaJ5P+ZK6nsaAOTJk0dGwI1VXDds2IDJkyfbvCwVKlSQo8JMnToVBw8ejLfM48ePEz207ODBg+Uxt2jRwuR7HRMTg8WLF2u+hpXmEsCHofTM0axZswTPhTmmTZsmn7wVK1ZMfk4VdnZ2WLhwobz2O3bsiGnTpsXrUK/25MkT9OjRA0FBQfEi2zdu3JAjWVSvXt3icivXf1Jc+y4uLrLT5YMHD9CiRQuTPw5evnwp66PJxaLGvR07dsSdO3cwdOhQPHr0CNWrV0edOnXQuHFjFCxYEJ6ennj69CkuXbqEjRs3YsuWLYiJidHrmGgLCxYsQNmyZfHq1Su0bNkSK1asQIsWLZArVy7ExMTgypUrCA4OxsqVK3HmzBlN4+HOmTMHpUuXxv379/Hrr79i69at6NSpE4oUKQIXFxeEh4fj9OnT2LJlC3bu3IkmTZoY7fWbnNq2bYv+/fujWbNmqFixInLnzg0XFxc8fPgQwcHBmD59OoAPQzQZG/rHlIoVK8rXffr0weDBg5ElSxZ5E/L397dqm/J06dJhyZIlqF+/PqKiotCoUSMEBQUhKCgIuXPnBgDcv38fx44dw+rVq3H69GlMnjzZ5kORWWLChAlo3bo1GjZsiJo1a6JgwYJInz49nj17htDQUEyePFn++OvWrZveusWLF8fw4cMxZMgQXLp0CUWKFEH37t1Ro0YNZMyYERERETh58iRWrVoFBwcH7Nq1y+bHkzdvXjx69Ajly5fHjz/+KG/ku3fvxu+//y7HS508eXK8IeascV4zZcqE3377Df3798eNGzdQqlQp/PTTTyhbtizevn2LTZs24a+//oKfnx8iIyMtbs8JAN27d8f69esRHByM1atXo0iRIvj+++/lUHMPHjzAoUOHsGTJErRq1Qq//PKLxfsyxcXFBQsWLECdOnUQGRmJzz77DG3btkXTpk2RLVs2REVFISwsDJs2bcLatWs1RZccHBywbNkyVKxYEa9evcI333yDFStWoFWrVsifPz8cHR3x6NEjnDhxAhs2bMDBgwfRr18/vaeE5vDx8cHYsWPRvXt33Lt3D6VLl8bAgQNRsWJFxMTEYPv27Rg7dixevXoFOzs7zJw50+RQeIlVokQJuLi44O3btxgyZAjSpEkDf39/2bHXz89P/lizlowZM6JBgwbYuHEjNm3ahHr16uHbb79Fjhw58OjRI/z333+YO3cucuXKhYiIiERdu+aYOnUqqlWrhnfv3qFWrVro27cv6tWrB2dnZ4SGhmL06NF48OABihcvjpMnT1rUBKZSpUoYOnQohg8fjuvXr6N48eLo3Lkz6tSpgyxZsiAqKgo3btxASEgIVq5ciXv37uHMmTPxIrqmKKNyODo66j1ZMSVr1qyoUKECDh48iBUrVmDy5Ml6TycUERER8YZafPfuHW7cuIGVK1fKwJq9vT3GjBljcF+BgYFYuXIlmjdvjlevXqF79+6YPn06vv76a5QpUwY+Pj54/fo1bt26hW3btmHNmjU2j9ZWrFgR169fx7p16/D333+jUqVK8vjTpUtn9U59AwYMwI4dO7Bjxw5s3rwZhQoVwnfffYcKFSrA09MTL1++RFhYGHbv3o01a9bAxcVFDqmZLCyaouX//ffff8Lf39+s2XoCAwPF1q1b420DJmbD0TJTlCI0NFRkz549wfLE3Z45M+3duHFDlClTxqzj7dixo1nljcvWMxaaU3ZPT0+D58pcymxlCb3vysx21apVM7k9c87Njh07RObMmc06vnnz5ll0XNa4Vk3NTqee6c/Yn4ODgxg1apTR7Y8aNUpvGmtDf4beb1PHpvVY1ed1w4YNcgrnuH/29vYmZzQUwjrntWfPnkbX8fb2FkePHhU5c+YUgOXTfgshxOvXr8WXX36ZYDnjvsdaZiw015YtW0SGDBkSLEtc5szyd+rUKTnzaUJ/w4cPN7vMcY0cOVJOA23oz9nZ2eRn2VozFgqhm4nW0J96SmGt+zT1ubt165bIkSOH0f3myJFDnDt3zuS1a437kmLu3Llymuy4f2nSpBH//POPaNu2rQAgChQooPl4FX/99ZeckdDUn5OTU7yZ6ky5ffu2vJ7q1q1r9npCCPHnn3/K/S5dulSma5mxEPgwFbyhqdfjOnXqlKhUqZJZ28yYMaOYNGmSiImJ0dvG+fPn5TKmZqtMyIkTJ4yeD/U1p56x0NA022oJXQeRkZGiXbt2Zh1/QEBAvPXNvWdqKbMxiQoJNmvWDI0aNcLKlSuxefNmHD16FI8ePcLLly+RLl06+Pv7o3z58ggKCkKNGjWSpINGqVKlEBYWhlmzZmHNmjU4e/Ysnj17howZM8LPzw+VK1dGixYtLJqVLWfOnDh8+DDWrl2LZcuW4fDhw3j48CGio6Ph6emJvHnzokKFCvjiiy9QpUoV6x+cFVy8eBHBwcHYsWMHLl26hIcPH+L58+fw8PBA/vz5Ua9ePXTr1i1Rvy4XLlyI0qVLY+XKlQgLC8PLly9NPpKyhpo1a+Lq1auYM2cONmzYgFOnTiE8PBz29vbw8fFBwYIFUa1aNQQFBSXr6AmmLF++HNu3b0dwcDBOnjyJBw8e4MmTJ3BxcYG/vz+qVq2K7777TnaYM+Snn37Cl19+iWnTpmH79u24desW3r17h6xZsyIgIACff/45vv766yQ7poYNGyI0NBRjx47Fzp07cf/+fXh6eqJKlSro168fKlSoYHJ9a5zXiRMnom7dupg0aRKOHj2KyMhIZMuWDQ0aNMD//vc/TZEsU1xdXbFixQrs2rULc+bMwf79+/HgwQOkSZMGfn5+KFSoEL788kuzI2CJUbduXVy7dg3Tp0/Hhg0bEBYWhhcvXsDX1xfZsmXDZ599ZvGTsqJFi+L8+fNYvHgxVq9ejWPHjuHx48eIjY1FxowZkT9/flSuXBlNmzbV63Sp1aBBg9CoUSNMmTIFO3fuxL1792Bvb48cOXKgTp066N27t9Vm10zI77//jrx582L+/Pk4d+4cnj9/bvG4subKnj07jh8/jjFjxmDt2rW4efOmvBc0adIEvXr1suq47glp3749SpQogT/++AO7du3CkydP4OPjg0qVKqFv374oV64cNmzYAODDCEOW6t27N7766iv8/fffCA4OxpUrVxAREQFnZ2f4+fmhSJEiqF27NoKCgkxO5hTXggUL5PeQqZkwDQkKCkLfvn0BfGjSYe491NHREenTp0fBggVRu3ZtdO7c2awhH4sWLYr9+/dj586dWLt2Lfbu3Yt79+7h6dOncHV1RZYsWVC6dGk0bNgQTZs2NRgZV8/il5imNsWLF0dISAjGjh2LAwcO4OHDhzZvH502bVrMmzcPPXv2xOzZs7F3717cuXMHr1+/hru7O/z9/VGqVCnUr19fb4K75GD3/78KiIiIiCyWJ08eXL16FW3atMGCBQuSuziftA4dOmDevHmoUaMGdu7cmdzF+Whp7lhIREREpHb06FHZ+ax8+fLJXBpSOhUPHTo0mUvycWMlmoiIiEy6cuWK0bzw8HB06dIFwIfxl5OyyRjFd+fOHdy4cQNVqlRJ1MgclLDUP/UeERER2VTt2rUREBCApk2bomjRonLkoAMHDmDatGm4f/8+AODnn3/W1FaZrC9btmypehr41IRtoomIiMgkf3//BGeq/P777zF58mQ5/B/Rx46VaCIiIjJpz549WL9+Pfbs2YP79+/jyZMnSJMmDTJnzozKlSuja9euevMEEH0KWIkmIiIiItKIz1yIiIiIiDRiJZqIiIiISCNWoomIiIiINLJpJbpDhw6ws7NLsqlZk4q/vz/s7OzQoUOH5C4KJVJMTAwmTpyIsmXLIl26dLCzs4OdnR2aNGmS3EVLNjdu3JDvw9y5c5O7OEnml19+kcednKKjo5E/f37Y2dlh2bJl8fIbNGgAOzs7DBs2LBlKR0RECkai6ZPWsmVL9O7dG0ePHsXLly+TuziUgP3798uKrp2dHfbu3ZvcRbK6yZMn49KlSyhYsCC++uqrePnKDGRjx47F7du3k7p4RET0/zRXoufOnSu/wG7cuGGDIhEljYMHD2LFihUAgIYNGyI4OBinT5/GmTNnMGnSpGQuHRkyf/58k/9P7V69eoXRo0cD+FBZNjTebvny5VG7dm28efMGI0aMSOoiEhHR/2Mkmj5Z27dvBwA4ODhg8eLFqFWrFooUKYLChQsjR44cyVw6iisqKkr+6HF3dwcArFixAm/evLHK9n/55RcIIZJ1pq/p06fjyZMnyJ49O5o3b250uX79+gEA5syZg7t37yZV8YiISIWVaPpkKZWPTJkyIV26dMlcGkrI2rVrERERAQCYOHEiAODFixdYu3ZtMpbKemJiYjBlyhQAH5oZmZr1rVatWvD19UV0dDSmT5+eVEUkIiIVVqLpkxUVFQUAcHR0TOaSkDnmzZsHAChUqBA6deqEQoUKAfh4mnQEBwfj1q1bAIA2bdqYXNbBwQFff/01gA9N7GJjY21ePiIi0md2JXr37t2ws7NDx44dZVpAQIBeJx87Ozvs3r3b6DYiIiIwdOhQBAYGws3NDZ6enqhatSoWLVpkVhkiIyMxYcIE1KhRA5kyZYKTkxN8fX1Rp04dzJkzBzExMeYejkmbNm1C/fr14ePjA1dXV+TLlw99+/bFvXv3NG0nLCwMPXv2RGBgINKnT4+0adMiV65c6NixI44fP57g+tHR0Zg4cSLKlCkDDw8PeHp6onTp0vjrr7/w7t27BEdRiDs6yv379/Hjjz8iMDAQHh4eRs/Xs2fPMGLECFSoUAHe3t5wdnZG1qxZ0bhxY6xatcqsY0+qc3XmzBl07doVefPmhaurKzw8PBAYGIg+ffoYbbOvvGdKpezmzZvxrmOtzp49ixEjRqBu3brIli0bnJ2d4e7ujrx586J9+/Y4dOiQyfXjjgzx9u1bjB07FiVLloSHhwc8PDxQtmxZTJkyBe/fv0+wPPv27UOzZs2QKVMmuLi4IFeuXPjuu+9w5coVAED16tVhZ2eH6tWraz5WtSNHjqBLly7Ily8f3N3d4ebmhgIFCqB79+64fPlyorat9ujRI2zbtg2AroLZunVrAMC2bdvw8OHDRO/DnNE5du7ciZYtWyIgIABp06aFq6sr/P39Ub58efTv3x87d+60eP/Lly8HAOTNmxdFihRJcPmgoCAAH56o7N+/3+L9EhGRhYSZdu3aJQAk+Ldr1y65Tvv27QUAkTNnTnHhwgXh7+9vdL3u3bub3P+RI0eEn5+fyX2XLVtWPHjwwNxDMqhXr15Gt+/r6ytCQ0NFzpw5BQDRvn17o9v59ddfRZo0aYxuy87OTgwdOtTo+s+ePRNly5Y1eawnTpyQ/58zZ068bajf/5CQEOHt7W3yfAkhxMaNG4Wnp6fJ97lhw4bi5cuXRsueVOdq1KhRwt7e3ug+nJ2dxbx58+KtZ851rIW5n42BAwca3cawYcPkcg8ePBDFihUzup3PP/9cxMTEGN3WiBEjhJ2dncF1PTw8xNatW0W1atUEAFGtWrV461+/ft3kdSWEENHR0aJbt24mj9fR0VHMnDlT03tpzJ9//ik/Nzdv3hRCCHHjxg15nOPHj0/0PtTnwJA+ffokeI4zZsxo8f6V+2Pbtm3NWv7169fCwcFBABDDhw+3eL9ERGQZs2sLr169EmfOnBEjRoyQXxhbt24VZ86c0ft79eqVXEepxPn4+Ii8efMKDw8P8fPPP4vdu3eL0NBQ8c8//4hs2bLJ7W3ZssXgvk+fPi3c3NxkRXbYsGFi+/bt4sSJE2Lr1q2ie/fussJarlw58e7dO4vejHHjxsmyZM2aVUyePFkcPnxY7NmzRwwYMEA4OTkJf39/4ePjY7ISPWTIELmdihUrilmzZomQkBARGhoqFi1aJCpUqCDzJ02aZHAbdevWlctUqFBBLFmyRISGhorNmzeL1q1by2M1pxKdMWNGkTVrVuHu7i4GDx4sdu/eLY4cOSJmz54tLl68KJfftm2b/FL29/cXY8aMEbt37xbHjx8X69evF23atJH7a9asmcFyJ9W5mjp1qiyLj4+PGDdunAgJCRH79+8Xv/zyiyyDnZ2d2Lhxo966yrXauHFjea7jXsdaBAcHCzc3N9G8eXMxY8YM+Z5t2bJFjB8/Xv7oAiD+/fdfg9tQV+AqVqwonJycRM+ePUVwcLA4duyYWLx4sShYsKBcZsaMGQa3s3jxYrlMhgwZxO+//y4OHjwoDh48KMaMGSMyZMggMmTIIPLly5eoSnS7du3kMvXr1xcLFy4UR44cEUePHhX//POPCAwMlPnr1q3T9H4aovyoqFq1ql56lSpVBABRrFixRO/DVCV6/fr1Mq9o0aJi+vTpYvfu3eLEiRNi9+7dYsaMGSIoKEhkzZrVon3fvn07wXuCIUWLFhUARK1atSzaLxERWU5byE0IMWfOHHmzv379uslllUocAOHp6SnOnj0bb5nLly8LFxcXAUB88cUX8fJjY2PlF0WxYsXE48ePDe5r8+bNMio5a9YsrYclHjx4IFxdXQXwIXJ7//79eMvs2LFDL7psqBJ95MgRWY6ff/7Z4L5iYmJkhdTDw0M8e/ZML3/VqlVyH40bNxbv37+Ptw11hT+hSjQA4e7uLk6ePGn0+F+9eiUyZcokAIg6deqI169fG1xu5syZcpvbt2/Xy0uqc/Xo0SN5rrJmzSpu3boVb5njx4/LirSfn5/Byro6Up8Yjx8/jncO1aKiokTt2rXlvgydT3UFztHRMd4TAiGECA8Pl+eoaNGi8fLfvn0rfH19BQDh5eUlwsLC4i0TFhYmvLy85L4sqUSvXLlS5v/zzz8Gj/nNmzeiZs2a8gdZdHS0weXMcfr0abm/uJHtv//+W+adPn3a4n0IYboS3bZtW3n+TD2FCQ8Pt2jfy5Ytk/vet2+f2et17NhRABBubm4iNjbWon0TEZFlkqwSbSq60qJFCxk5i0sdATp16pTJ/TVv3lwAEJUqVTLrWNTGjBkj97Ny5Uqjy6kfYRuqRAcFBQkAolSpUia/1J49eyacnZ0NVkSUKLSLi4vRJg+xsbGiZMmSZleif/31V6NlEUKIyZMny30+fPjQ5LJKM5PWrVvrpSfHuVqyZInR5dRPTZYvXx4v31qVaHOcPHlSliU0NDRevroC17dvX6PbGThwoFwuIiJCL2/JkiUyb+LEiUa3MXHixERVokuVKiUAiKZNmxo/YCHE+fPn5XaCg4NNLmtKv379BPCheU7cHyvqz1G/fv0s3ocQpivRyo+ghI7ZUuPHj5f7NvTjx5gff/xRrvf06VOblI2IiAxLktE57Ozs0KpVK6P5pUqVAvChQ5syhJVCGb4qf/78KFq0qMn9VK1aFQBw9OhRzR3XlDGDM2TIgMaNGxtdrlOnTkbzoqOjsXnzZgDAl19+abKDkqenp+w8FBISItPfv38vZ2GrV68eMmXKZHB9Ozs7tG3b1uj241I6YRmjvM/VqlWDr6+vyWWV91ldbvU2kupceXp6ys5VhnzzzTfx1kkKUVFRuHXrFs6fP4+zZ8/i7NmzemMPnzp1yuT6ps6V8lkBgOvXr+vl7dixAwBgb29v8tpo06aNxVNb3717F8eOHQMAk+MYA0DBggXh7e0NIP61Yq6YmBgsXrwYwIcJcTw9PfXyPT090aBBAwDA4sWLrdZhNa4sWbIAAPbu3YurV69affuPHz+WrzNkyGD2el5eXga3QUREtpcklWhvb29kzJjRaL76iyDu1MuhoaEAPox0EXcEhbh/P/zwAwDg3bt3ePr0qaYynjlzBgBQokQJpEmTxuhyxYsXh5OTk8G88+fPIzIyEgDw008/JVhe5dgePHggt3H16lU5eYS6wmRI6dKlzTo2d3d35MqVy+QySlm2bt2aYLnHjRsXr9zqbdj6XJ09exbAh3Nlani6TJkyyZFJlHVs5fXr1xg9ejSKFSsGNzc35MyZE4GBgShSpAiKFCmCEiVKyGWfPHliclsFChQwmmfqs6IcY0BAgMmKmJeXV4LXgzHKOQY+jGWc0HlWjjXutWKubdu24f79+wCMD/umpN+/f99mP5batWsHAAgPD0fhwoXRokULzJkzR452kljqz4CWSrR62fDwcKuUhYiIzJMklWhXV1fThVBNKhA3kvTo0SOL9qlUZs317NkzAEgwCpsmTRq9ioyaNcqqlMOcsvj4+Ji1/bjRu7iio6PjPQEwR9z3OKnOlVLhMBalV8ucObPeOrZw48YNFClSBIMGDcLp06cTjIYmNMOeqc+Lqc+KudcwYP61E1dSnWOFMga0p6cnGjZsaHAZdYTaVmNGf/bZZ5gyZQrSpk2Lt2/fYtmyZejUqRPy5s2LbNmy4bvvvkvwCYMpLi4u8rWWGRjVy6ZNm9bi/RMRkXbGQ64phFJRqFSpEmbMmGH2elmzZrVof+Y85lY/mldTV2rGjh2LevXqmbVPNzc38wpnIQcHB5P56nI3b94cQ4YMsWg/qelcWVPbtm1x/fp1OY56ixYtULBgQfj4+MDZ2RkAEBsbK89DUpTJVtTXyqJFixJstqPQEl1VqGcjjIiIkO+lKWvWrMHLly/h4eGheX8J6d69O7766issXrwYwcHBOHDgAJ4/f467d+/i77//xsyZMzFo0CCMGDFC87bVP2qePn1qdvnVPw4t/WFERESWSfGV6IwZM+Lhw4d4/PgxChcubLP9ZMiQAQ8ePEhw0ob379/rRYvV1E1WoqOjLSqvurKRUNTPWm0gXVxc4OrqisjISERERFj8PifVufLy8sL9+/fNaiKgnE9jTw8S6+LFi3Kii59++gkjR440uJyxa8aalGvHnGixpdeO+hq3s7Oz6Xlevny5pqgs8CHivXLlSr1JoazJ19cXvXv3Ru/evREbG4uTJ09i1apVmDp1KiIiIjBy5EiUKVPGZL8KQ9QV4GfPniFnzpxmrae+rpT250RElDQ0N+ewtEOSpZS2pJcuXcLNmzdtth+lk9/JkydNzgh36tQpvHv3zmBeYGCgbC+tzK6mVe7cueWjXXX7U0MSytdCeZ8PHDhg8aP3pDpXSsXtxIkTiI6ONrrco0ePZDlsVdk7d+6cfN2iRQujy1nzXBkTGBgI4EOHQ1PNV54+fYpr165ZtA91225Lr3FzKU0zsmTJgiVLliT4lyNHDr31bM3e3h4lS5bEiBEjZKdOQDfzoBbqGQovXbpk9nrKsvny5TMrUk9ERNajuRKtbrsXFRVl1cIY8sUXX8jXf/zxh832U6tWLQAfKhjr1683uty///5rNM/V1RWfffYZgA/TpB85ckRzOdKkSSNHrti6davRyLgQAgsWLNC8fWOU9/n169eYOnVqorYBJM25ioiIwH///Wd0udmzZ8umE8o61qb+wWXqx4eW5i2WUq692NhYLFy40OhyCxcutLhJSZ48eVCoUCEAwNKlS3Hr1i2LtpOQ69evywh/UFAQWrRokeDfV199BQDYs2ePzcplTMmSJeWTgIQ6jhpSunRp2ab56NGjZq+n/DirUqWK5n0SEVHiaK5EK0M9AbDJUE9xBQUFoWDBggCA6dOnY/bs2SaXP3v2rMlKsDHt27eXX2J9+/Y1WHnds2cPZs6caXI7gwcPltH6Fi1amHyPlOG77ty5o5f+7bffAgDevn2Lb7/91mBHtT///BPHjx83fVAafPfdd/Jx8JAhQ+RQfcYcOHBADsWnSKpz1bFjR9n5rl+/frh9+3a8ZU6dOoVRo0YBAPz8/NCkSRPN+zFH3rx55et58+YZXGb69OlYs2aNTfav1rRpU9mpcPjw4bh8+XK8ZS5fvozhw4cnaj8///wzgA/XZ7NmzUw2DYmKisK0adPw9u1bTftYsGCBrOh/+eWXZq2jLGftH5gAsGzZMpNNS0JDQ2XTioCAAM3bd3JyQtmyZQHA7B/f165dkxV2VqKJiJKB1oGlX7x4IWcYLFmypNi6dasICwsTly9fFpcvXxaRkZFyWXMns0hoApfTp08Ld3d3uUzdunXFvHnzxKFDh8SxY8fE5s2bxahRo0TFihUTNemCehZAPz8/MWXKFHHkyBGxd+9eMXDgQOHs7Cxy5syZ4LTf6kkb3N3dRa9evcTGjRvF8ePHRUhIiFiyZIno2bOnyJo1qwBgcJrpOnXqyG1UqFBBLFu2TBw7dkxs2bJFznaoTHoCQMydOzfeNrROJhIcHCxnZLS3txdfffWVWLp0qTh69Kg4evSoWLdunRg2bJiclXDy5MnxtpFU50o97bevr6/4888/xaFDh8SBAwfE8OHDZRkMTftt6ftjSGxsrChcuLAsS8uWLcWGDRvEsWPHxJo1a8SXX34pJ5VRlhk2bFi87Zia6ENt165dcjlDsxrGnfZ7zJgxIiQkRISEhIgxY8YILy8v4enpKfLmzSsAiOrVq8fbhjnTfqsn8vH29haDBw8W27ZtEydOnBD79+8X8+bNE998842cHdHULH+G5MmTR57bmJgYs9aJjY0V2bJlEwBE/vz5Ne1PCNPnIGfOnMLT01O0b99ezJ49W+zbt08cP35cBAcHi2HDhsnjdHBwMDiZjjn++OMPOeHRixcvElxemT3UwcHB4AyrRERkW5or0UIIMWDAAPllE/dP/cVurUq0EEKcOnVKfvEn9Dd8+HBLDksIIUTPnj2Nbtfb21scPXpU5MyZ02QlWggh/vrrLzmTmqk/Jycncfny5XjrP3v2TK+SHPevRIkSIjQ0VP5/6dKl8bZhSSVxx44dInPmzGa9z/PmzTO4jaQ6VyNHjpTThxv6c3Z2NlpGIaw3Y+GJEydEhgwZjJajSJEi4t69e0lSiRbiw0yNdnZ2Bsvi6uoqNm7cKKpUqSIAiHr16sVb35xK9Pv378WAAQOEg4NDgufYzc1N78d1Qvbv3y/X/fbbb81eTwj9z++hQ4c0rZtQJTqh43RxcTF5vSXkzp078v00ZzvVq1cXwIcfqkRElPQsGif6999/xz///IMqVarAy8srwSHUrKFo0aI4f/485s2bhyZNmiB79uxwcXGBk5MTsmTJgurVq+Pnn3/GsWPHMHToUIv3M3HiRGzcuBF169aFl5cXXFxckCdPHvTs2RMnTpwwe4KT3r174+rVqxgyZAjKly8Pb29vpEmTBm5ubsiXLx+CgoIwY8YM3L17F3ny5Im3vqenJ/bv348JEyagVKlScHd3h4eHB4oXL47Ro0fj4MGDeu97+vTpLT5mtZo1a+Lq1auYMmUK6tWrhyxZssDJyQkuLi7Inj076tSpg5EjR+LixYtyAoq4kupcDRo0CCdOnECXLl2QO3dupE2bFm5ubihYsCB69eplsozWVLx4cZw8eRLfffcdcubMCUdHR3h5eaFs2bIYN24cjhw5otcMytYGDx6MPXv2oEmTJvD19YWzszNy5syJTp06ITQ0FA0aNMCLFy8AWH7dODg4YMyYMTh//jz69euHEiVKIEOGDHBwcICHhwcCAwPRunVrzJs3D/fv39c0hrG6Y6CpGSkNUS9vzQ6Ge/fuxaxZs/D111+jSJEi8PHxQZo0aZAuXTqULFkS//vf/3D+/PlEXW9+fn5yVI9FixaZXPbu3buyOdX3339v8T6JiMhydkKk4kFrP3ELFy6U0ztfuXIFuXPnTuYSUWoQHR2N9OnT482bN/j555/x22+/JXeR6P8dOnQIFSpUgIODA65cuSJn3IxrxIgRGDJkCPLnz4/z58/rTcJDRERJg3feVGzJkiUAPowxa+k0zvTpWbNmjewkV758+WQuDamVL18e9evXR0xMDEaPHm1wmVevXmHChAkAgGHDhrECTUSUTHj3TaHu3r1rcjSA2bNnY9OmTQCAdu3aJfn43ZRyXblyxWjejRs30LdvXwAfpk2vW7duUhWLzDRmzBg4ODhgzpw5Bofqmzp1KsLDw1GmTBmTY5MTEZFtpfgZCz9VwcHBGDBgAFq0aIHq1asjZ86ciI2NxdWrV7Fs2TI5ZFqmTJkwcODA5C0spSgFChRAgwYN0KhRIwQGBsLNzQ2PHj3Crl27MGPGDERERAAAxo0bhzRpeAtIaYoUKYK5c+fiypUruHXrlpxERuHh4YFhw4ahWbNm/PFMRJSM2CY6hZo7d26CUxdnyZIFGzdu1JtFjiihipW9vT1GjBiBn376KYlKRERE9PFhJTqFevLkCVauXIktW7bgwoULePz4MV6+fAlPT08ULFgQn3/+Ob777jt4eHgkd1EphdmwYQM2b96MgwcP4uHDhwgPD4ezszP8/PxQvXp1dO/e3WbToBMREX0qWIkmIiIiItKIHQuJiIiIiDRiJZqIiIiISCNWoomIiIiINGIlmoiIiIhIo2StRN+4cQN2dnaws7PD3Llzk7Mo+OWXX2RZiIiIiIhMSXQlOjo6GkuXLkX79u1RsGBBZMyYEY6OjvD29kapUqXQrVs3bN++HbGxsdYoL6UwI0aMkD8+PDw8EBkZabN9vX79GlOnTsVnn30GPz8/ODs7I1OmTChZsiR69OiBbdu2mVxfmS65Ro0a8PHxgZOTE9KlS4ciRYrghx9+wLlz5xIsQ1RUFIYOHYqAgAC4uLigcOHCmDZtGlLCIDe7d++W58LQn7u7O/Lly4f27dtj9+7dVtmn+sdnQn+m9hkWFoa//voLTZo0QUBAANKmTQtXV1cEBATg66+/xsaNG81+jxcuXIjixYvDxcUF2bNnx//+9z+8fPnSKsdrbbt370afPn1QqlQpZMmSBU5OTvD09ESBAgXQunVrLFy4MFGfqerVq5t9fsw5T4ojR47g+++/R8GCBZEuXTq4u7sjd+7caNiwIf788088fvzY6LrPnz9Hr169kDVrVri4uKB06dJYvny5xcdoTXPnzjX4nijfablz50atWrUwcOBAbN682arfaxcuXMCUKVPQvn17lCxZEtmyZYOLiwvc3NyQK1cufP3111i7dq3Zn4NDhw6hc+fOyJ8/P9zd3eHs7IwsWbKgXr16mDVrFt69e5fgNo4cOYI6derA3d0dGTJkQIsWLUzOiEr0yRGJsGbNGpErVy4BIMG/fPnyiQ0bNuitf/36dZk/Z86cxBQl0YYNGybLQubLly+f3nlesGCBTfazc+dOkTNnTpPXWLFixYyuf+rUqQTXT5MmjRg3bpzRbbx//17UqVPH4LpdunSxwVFrs2vXLrM+i8pfp06dxPv37xO1T/XnJqG/Xbt2GdxGu3btzFq/bt264tmzZybLM3z4cIPrlihRQrx69SpRx2pNZ86cEVWrVjXruDNkyCDGjRsnYmJiNO+nWrVqmq4Je3t7cefOHaPbe/v2rfjmm2+EnZ2dye2sXr3a4PovX74URYsWNbjOyJEjNR+ftc2ZM0fT+5UjRw4xbdo0q+y7devWZu2zWrVqIjw83Oh2YmNjRe/evRPcTpEiRcTt27eNbic4OFg4OTkZvB7Pnj1rlWMmSu0srjGOGjVK70Zaq1YtMXnyZLFjxw5x7NgxERwcLKZMmSLq1q0r7O3tDVZyUlIlmrQLCQmR58/d3V0AELVr17b6foKDg4WLi4sAIDw8PES/fv3Epk2bxLFjx8SWLVvEjBkzROPGjUX58uUNrh8RESGyZMkiy1q1alWxZMkScfjwYbFx40bRu3dv4ejoKPOXLVtmcDvTpk0TAISfn5+YM2eOOHTokJgwYYJInz69ACA2b95s9WPXQl2J7tatmzhz5oz8O336tNi9e7cYPXq08PX1lcsNHTo0UftUV6LV+zP0Z6wS+9lnnwkAwsvLS3Tt2lUsXrxYHDx4UBw5ckT8/fffIn/+/HIflStXNlqZPHfunLC3txcuLi7it99+EyEhIWLZsmVy/R9//DFRx2otW7duFenSpZPHFBgYKIYPHy42b94sQkNDxZ49e8T8+fNFq1at5OcKQII/IAy5du1agudl2bJlch+mPr9RUVGifv36ctkqVaqIf/75R+zfv18cOnRILFu2TAwaNEjkzZvXaCV6wIABAoAoWLCgWL58uQgJCRG//vqrcHZ2Fvb29uLcuXOaj9Ga1JXoESNG6L1PBw4cEOvWrRPDhw8XFStW1KtYNmjQQERGRiZq3+3btxflypUTffv2FXPmzJHXQ3BwsJg8ebIoXLiw3F/FihWNfg7GjBkjl/Pw8BDDhg0T27ZtEwcPHhRz5szR207RokVFdHR0vG1ERUWJ7NmzCwCiQ4cOYvfu3WLbtm3y/JcrVy5Rx0r0sbCoEj1//nz5IfTx8RE7d+40ufzp06dFzZo1WYn+yHTr1k0AEN7e3vLGnVAkS6tHjx6JjBkzyi9eU5GTqKgog+njxo2T19lXX31lcJm1a9fqRWgMqV69ugAgTp06pZe+evVqAUB07NjRzKOyDXUletiwYUaXO3funEibNq0AINKlSyfevXtn8T6t8QSnffv24u+//xZv3741mP/69WtRuXJluZ/58+cbXO6XX34RAMTEiRP10u/cuSNcXV1FQECAxWW0lvPnzws3NzcBQDg4OIhJkyaZjDA/evRIfP/99xZXos2hVGwB00+ShgwZIpcz9cRGCGH0mvL39xdubm7i3r17eul//fWXACCGDx+u/QCsSF2JTug76cCBAyIgIEAu37x580Tt21BlVu39+/eiWbNmcn/r1q2Lt8y7d+9EhgwZBADh5OQkTpw4YXA/5cqVk9v577//4i2ze/duAUA0bdo0XhlKlSolAIibN29qO0Cij5Dmb767d+/KLwFXV1ezIwcxMTHxbtCsRKdeUVFRwsvLSwAQ33//vbh//75wcHAQAMSYMWOstp/OnTsLAMLZ2VlcvHjRom00bdpUXmenT582ulyJEiXkci9evIiXnzdvXpExY8Z46S9evBAARJ06dSwqn7WYW4kWQogvv/xSLhv3R4EWSdUM6syZM3I/X3zxhcFlunTpIiPicZUsWVI4OTnZtIwJiY2N1bvG5s6da/a6K1eutElzlJiYGOHn5yefJr1+/drgclevXpVPazp06GDx/hwdHUWpUqXipZ8+fVoAEF27drV429agpRIthBCPHz+WEVvAeDMWazl06JDcV//+/ePlnzp1SuY3a9bM6HbUQYN+/frFy1+0aJEAICZPnhwvr2/fvgKAOHjwYOIOhugjoLlj4V9//YXXr18DAIYPH45ChQqZtZ69vT3atGmT4HLBwcH4/PPPkTlzZjg7OyMgIADdunXDnTt3Elz33bt3mDZtml7HscyZM6NBgwZYuHChyU4g5o7O8e7dO8ycORMNGzaUndt8fX1RqlQp/PDDD9i3b5/Jjh/BwcFo06aN7DyVLl06FCtWDAMGDMD9+/dN7vvevXsYOHAgSpYsifTp08vjK1KkCFq2bIm5c+fixYsXpt8kK1m/fj2ePn0KAGjTpg0yZ86MmjVrAgDmz59vlX1ERERg8eLFAICWLVsif/78Fm1H3YEmV65cRpfLnTu3wXUUvr6+CA8Pj9cBUemIlTlzZovKlxz8/f3l67dv3yZfQcxUuHBheHt7AwCuXr1qcBlfX18AwJ49e/TSHzx4gLCwsGQ/P5s2bcKJEycAAA0bNkT79u3NXjcoKAhubm5WL9OOHTtw9+5dAMCXX34JV1dXg8vNnDkT0dHRsLOzw9ChQy3en6+vL8LCwvDw4UO99NT4GQIAb29vzJgxQ/5/9OjRNt2f+how9Lm15F4XFRUVL9/YZyk2Nhb79+8HkPrOFZFNaKlxx8bGCh8fHwFAuLm5iefPnyeqBh83Ev3jjz/qtTNT//n4+Ijz588b3daNGzdEwYIFja6P/29PaaxDhjkRtRMnTug9vjP2d/369Xjrvnr1Si8iaujP3d1drF+/3uC+9+7dq9eO0tifofXVEcr27dsbPT4tvvjiCwFA5M6dW6bNmzdP7ufYsWMJbkNZNmfOnAbz1c2GNm7cKNNfvHghLl26JB4+fGhWWfv06aMpEu3l5WUwf+zYsQKAyJ49u5g7d644fPiwmDx5snx8auzcJRVLI9H37983uEz79u3lMsY6BSZlh1zl+jfW3Obo0aMCgEibNq0YNWqUCAkJEStWrBCFChUyGnFLSkFBQfK92r59e6K3p75/VqtWzaJttGnTRm7DVLM8pQN5mTJlZFpMTIy4ffu2uHbtmtntgbt37y6AD+3AV6xYIUJCQsTIkSOFi4uLsLOzS9RTEWvQGokW4sP3orrd/t27d+Mto/6cJOap66BBg+R2pkyZEi8/IiJC9lUyNxI9adKkePmRkZHC29tbABCdO3cWe/bsEcHBwaJRo0YCgMGnCUSfIk3ffGfPnpUfvHr16iV65+ovAaWjRrVq1cTixYtFaGio2L59u17PfWMdx16+fKk3SkiTJk3EunXrRGhoqFixYoVeD/UKFSoYHJEgocrAuXPn9Dr5NG3aVCxbtkwcPXpUHDp0SMybN0+0adNGuLm5xatEv3//XtSoUUMAEHZ2dqJly5ZixYoVIjQ0VISEhIiJEyeKHDlyCOBDO7bQ0FC99d++fSuyZs0qgA8dRQYMGCA2b94sjh07Jjv09O7dW2TPnj1JKtGPHz+Wj3bVHdNevnwpXF1dBQDRq1evBLeTUCVaaQsKQDx9+lRs3rw5XoeeLFmyiD59+ojHjx8b3c+5c+dkU5Ovv/7a4DIbNmyQ2/zpp58MLvPmzRu9toTqv3bt2iV4vLZmbiX6woULsk20ulIUl9ZKdK1atYSXl5dwdHQUPj4+olq1amL06NHi6dOniTwyIY4fPy73Y6xduxBC9OrVy+D5KVy4cKJ/9CeW0qHTzc0t0aOiCJH4SvTLly9l07wcOXKI2NhYg8s9evRI7qdnz57i+fPnolevXvLHI/BhZJuqVavGG4EpridPnojcuXMbPEeJ7eRqDZZUooXQv1ctXbo0Xn5iKtGPHz8WBw8eFJ06dZIV5IwZMxptI9+iRQv5XWLoR0l0dLQoX768AD70iTB271y5cqW8b6r/0qVLZ7CtNdGnSFMlWmknBUAMGjQo0TtXfwkAH4YJM3Qj/+abb+Qyx48fj5ffv39/mf/zzz/Hy4+NjdUbPsjQkEQJVaKVKKW9vb1YsmSJ0WN68uRJvKiM0rHN0dFRbNq0yeB6T58+FYGBgQL4EDFX27FjhyybqWhndHS0wYqCtSvREydOlNu7dOmSXl7Lli0FAOHr65tgR5mEKtFKR7706dOLP/74w+AXr/KXLVs2k+3zp0yZIkeJqVGjhli6dKk4cuSI2LRpk+jbt68cyqlWrVri5cuXRrfz8uVL0a9fP+Hn5yccHR1Fvnz5xJ9//mnR8GPWltDoHHv37hVjxowRmTNnll+GBw4cMLo9rZVoY3+enp5izZo1iTo2deR8xYoVJpedNm2aKFSokHB0dBSZM2cWPXr0sFmnPHPdvXtXL2BgDYmtRM+dO1euP3jwYKPLKZ3MgA8jnBirBCt/ffr0Mbnfhw8fim+++Ub4+voKJycnUaxYMTFv3jzN5bcFSyvRs2bNkuv9+uuv8fK1VqJNDU3o5eUl9uzZY3Td+/fvi+LFi8vP+PDhw0VwcLAICQkRc+fOFcWKFRPAhyc2q1atMlmOnTt3iqpVq4q0adOKdOnSiaZNm4oLFy4kWH6iT4WmSrS68hS3B7wl1F8CWbJkMdo7/+LFi0b3+/btW+Hp6SkAiEKFChmN8Dx//lyO8lCoUKF4+aYq0Vu2bJF55kRY1d69eyeHV0voy2XTpk1yP5cvX5bp6h8vlkTTrF2JVnpnly1bNl7exo0bzarwC5FwJVoZT9bJyUnY2dkJZ2dn8fvvv4s7d+6IqKgocfbsWb0nFXny5DFZAT506JBe73b1X+7cucU///yTYMU/JTN3nGh7e3vx7bffJvhlaG4lukiRImLIkCFi/fr18unIvHnz9MbUdnBwMPoDMiErV66U2ylVqpTRiGlKpu7wFXfEA0slthJds2ZNuX5YWJjR5VatWiWXc3Z2lj8E9uzZIyIjI8XTp0/FokWL9IaRnD59eiKOLPlYWolWRugxdp+3ViW6R48eZjVje/Xqlfjzzz9FpkyZ4m3Dzs5OdO7cOdmHEyT6GGiqRI8YMUJ+EGfNmpXonau/BHr06GFyWaUpRdxK7IEDB+Q2/vjjD5PbUIZkAxBviCVTlegePXrIvBs3bph3cP9v//79ct2QkBCTy7569Uouqx7Ga+fOnTJ9woQJmvZvbefOnZNlMdSWLjo6Wj62TuyQT3EjXsuXLze4XNeuXeUyY8eONbjMixcvxPfff2+0XbmdnZ2oWbNmqu5xrmWylQwZMoh+/foZHRbQXAlFeGfMmCH3mTVrVs1j6V64cEF4eHjIyFlq/eJX3wfatGmT3MURt2/flk9mjDWTUyxYsEDv2ilVqpR48+ZNvOUuXbokm4f4+Pgketzk5GBpJTo4OFiu98033yS6HMr43soTpD///FPkzZtX2Nvbi0aNGokHDx6YXH/Dhg2ibNmyRj//vr6+4qeffkr055/oU6dpdA4PDw/5Whmhw1oKFChgMj9DhgwAEG/63rNnz8rX5cqVM7kNdb56vYQoPepz5MiBnDlzmr0eAISGhsrXFSpUSHBaZsWDBw/k68qVK8ue1r1790bZsmUxevRoHDx40KypW61p3rx5AIA0adKgRYsW8fLTpEmDr7/+GgCwbt06PH/+3OJ9ubi4yNfly5fHV199ZXC5UaNGwdnZGQCwZMmSePkPHjxAhQoVMG3aNLx//x6jR4/G1atX8e7dO4SHh2P16tUIDAzEzp07UaNGDaxcudLiMqcUw4YNg/jwI1n+RUZG4vTp03Ia7PHjx6NOnTp48+aNxfvx9PQ0mf/tt9/im2++AfBhdJlVq1aZve179+6hfv36ePnyJezs7DB79myzRwNKaWx577SEerSihEYJUX8OAWDkyJHx0gAgb9686NatGwDg8ePH2L59u5VKm/Kpv5fSpUuX6O0FBASgcOHCKFKkCKpUqYI+ffrg9OnTaNCgATZs2IAyZcoYHbFq4sSJ+OKLL3DkyBFUrVoVwcHBeP78OaKionD+/Hn0798f4eHhGD16NGrXrp0irkei1EpTJVoZYgpAvCGKEsvY0EoKe/sPRY2JidFLV4ZZA4BMmTKZ3IZ6SB71egl58uQJACBLlixmr6N49OiR5nUAIDIyUr52dHTE+vXrUbBgQQDA0aNHMWjQIFSqVAmenp6oX78+Fi9eHO+9sbbY2FgsWrQIAFCnTh34+PgYXE4ZyvDt27dYvny5xftTVzzq169vdLmMGTOidOnSAIBTp04hOjpaL/+HH37AuXPnYGdnhw0bNmDgwIHIlSsXHB0d4eXlhSZNmiAkJAQFCxZEVFQUOnToYPXrOyVImzYtihQpgj/++APTpk0D8GEIK1sPy/Xtt9/K13GHzDLm6dOnqFOnDm7cuAHgQ8WgZcuWtihekrDlvdMSCxYsAAA4OzvLH73GqD+HTk5OqFGjhtFl69atK18fPXo0kaVMPZTvCADw8vKyyT5cXFwwZ84cuLq64vbt2xgwYEC8ZU6dOoW+ffsiNjYWtWrVws6dO1GrVi2kS5cOTk5OKFiwIMaOHYuZM2cCAPbu3YtffvnFJuUl+hRoqkQXK1ZMvj5+/LjVC5NYCY3xLEyM32yN7Ruirtju3r0bZ86cMetPiegoChUqhDNnzmD16tXo1KmTHOfzzZs32LJlC1q3bo1y5cpZXGk3h3pM2U2bNhmNqKsj/okZMzp79uzydbZs2cxaNiYmBuHh4TL92bNnWL16NQCgVq1aRisA7u7uGDx4MIAPkcKlS5daXO7UoHPnzvLLfvbs2Tbdlzp6rFw/prx8+RL16tWT43H/9ttv6NGjh83KlxSyZs0qf3SeOnXK5j94TQkNDcX58+cBAI0aNZJP+YxRfw4zZcoEJycns5a15b0opVGeVgKweDx7c3h7e6NSpUoAgLVr1+L9+/d6+XPnzpVPGIYPHw4HBweD2+nUqRPy5s0LAPj3338T/d1I9KnSVIkuVKiQjKjs27cvySb2MEX9q1/dBMIQdQRIS7RAOeZ79+5pLN2HKKnCyckJhQsXNutPGexezcHBAU2aNMHs2bNx5coV3Lt3D7Nnz0apUqUAAMeOHdOL+lmb0pRDiwMHDuDatWsW7S8wMFC+TqjSoc5PkyaNfB0WFia/VEqWLGlyG8r7CAAXL17UVNbUxt7eXn6J3rt3T9OTGa20fEG/efMGn3/+uYxi/u9//8PPP/9sq6IlqapVqwL48CPN3Ii8Lah/2Joz4UvevHnh6OgIwPLP4cdMCKHXdKVy5co23Z/yYywyMhKPHz/Wy7tw4YJ8ndD9Tsl/+vTpJ/WDh8iaNFWi7ezs0KFDBwAfvghmzZplizJpUrhwYfn68OHDJpc9cuSIwfUSotxsbt26hZs3b2oqX4kSJeTrbdu2aVo3IVmyZEGnTp0QEhIiy7hhw4ZEtXE15tWrVzKi+9lnn2HJkiUm/5RrQwghHx1rpVQ6AOOz1MXNT5s2rd4PJPUXedyoTVzqZiCfQgVA/X7EbQJjTUrUE/gQkTUmOjoaQUFBsoL53Xff4Y8//rBZuZJax44d5esJEyYkSxmio6PlUxYfHx+TzaQUjo6OqFChAoAPgQhTbWjVn1M/P79EljZ12LRpEy5fvgzgQ98NW8/kp36ao+5HA/B+R5TktPZEvHPnjpxQw83NzewxI2NiYsSCBQv00uLOWGhKzpw5BQwM0aYe4i4wMNDoEHcvXryQMzBpHeJO3fNa6xB3b968EV5eXgKAyJw5s80mfFDPyhd35BFrUPdaX7lypVnrKEPhqWc11OL9+/dyhsz8+fMbHdrs2rVrcqSBzz77TC/v8ePHcoICQ0PyqU2ePFke4/jx4y0qc3LSMmPh69ev5YQrLi4uVpn8w5jOnTvLcsW9Byjev3+vNxZ027ZtU+VQdqbExsbK8XtNvReG/Pfff+LVq1eJLoN6pjot9zL18KaLFi0yulyHDh3kcvv27Ut0eZOa1tE5Hj9+LLJlyybXWbt2rU3Ld+fOHTmmvaGhQX/44QdZFlNDSqqHXk2fPv1H91kjSioWzdX777//6g2Vs3v3bpPLnzt3TtSqVUsUK1ZML90alWgh9CdbGTJkSLz82NhYvfGELZlsRakQJjTZSnh4eLyhnUaNGiW3Xb9+fZNfhi9evBCTJ0/WS9u7d6/euNFxRUVFiZIlSwrgw9Thccc6tsY40cqMi66uruL169dmrTN69Gi53/3798fLV/KMjRMthBBjxoyRy40ePTpe/rt370S9evXkMoYm4qhQoYLMnzt3rsH93LhxQ05CYmdnJy5evGjWMaYkWirR6s9M48aNDS6T0DjRp0+fNnldCqE/xF3mzJkNXvuxsbGiY8eOcrmgoCCbVuqT09mzZ2UQIk2aNGLq1KkmJ+p5/PixrBjFHU7QknGi1VOPHzt2zOxyv3z5Ug5dmTNnToNDrO3atUvOcFe4cOFUWTHTUok+cOCACAgIkMu3bNnS6LIJjRMdFhYmduzYYXJ/ERERokqVKnI7hiYW27p1q8wvWrSo0aDNTz/9ZFa5icg0iyrRQgjx66+/6o07WadOHTF16lSxc+dOcfz4cbF9+3Yxbdo00bBhQ3ljtVUl+sWLF3rTfjdt2lRO/LBy5Uo58x1g+bTf58+f15v2u1mzZmL58uUiNDRUHD58WCxatEh06NBBuLu7G5z2+7PPPpPr5siRQ4waNUrs2rVLnDhxQuzdu1f8888/onXr1sLNzU1kzJgxXtns7e1FtWrVxB9//CG2bNkijh07Jvbv3y/+/fdfvfFAe/fuHa/sia1E37x5U0Zzg4KCzF7v0qVLcr9du3aNl29OJfrNmzfyBwLwYYxd5fiXLVumNw13gwYNDH5xq7/c7ezsRNu2bcX69evle//bb7/JiXgAiM6dO5t9jCmJqRkLz5w5I44ePSoWL16s96PDxcVFnD592uD2EqpEz5kzRzg4OIhatWqJ8ePHi23btoljx46Jw4cPi3nz5onatWvL9R0cHIxG6fr27SuXK1y4sDh27Fi8ssf9S802bdqkdy8pXLiw+O233+R1vXfvXrFw4ULRrl07vXHNE1uJfvr0qZwspXDhwprLvXTpUnkfyJ49u5g6dao4evSo2Ldvnxg0aJB8spEmTRqDP5pTA3UlesSIEXrX3MGDB8X69evFr7/+KipWrKj3/deoUSODY2crEqpEK5/dYsWKiWHDhol169aJI0eOiOPHj4tNmzaJwYMHyx/5yvkzFoxRT6ITEBAgJkyYIA4ePCiOHz8uli9frvf5d3NzS5UBA6KUwuJKtBAfHjH6+/vr3UyM/QUGBoqtW7fqrW+tSrSyrQIFCpgsQ6VKlUR4eLjB9ROqRAshRGhoqMiePXuCxxq3Ei2EEJGRkXrRcFN/AQEBRstm6q9Zs2YGb+SJrUSrJ9kxFYU3RJl10NPTM96MlOZUooUQ4t69e/JJgLG/Bg0aiBcvXhjdxsKFC+VEEKb+WrRokWonINAy2QrwYUKMuJ9JNXMq0ebsJ2PGjCan/VY+21r+UrtTp06JSpUqmf3+TZo0KV7EWmslevr06XL5hCamMmbKlCmyOYGhP3d390RP8Z6czL2m1feuGTNmJLhdcyvR5vw1bNhQPHr0yOi+nj59Kp8cJvT5Dw4OTszbRfTJS1RvgmbNmqFRo0ZYuXIlNm/ejKNHj+LRo0d4+fIl0qVLB39/f5QvXx5BQUGoUaOGRUPEmcvf3x+nTp3CP//8gxUrVuDs2bN48eIFvLy8UKJECbRu3RqtWrWS401bolSpUggLC8OsWbOwZs0anD17Fs+ePUPGjBnh5+eHypUro0WLFvD394+3btq0aTFv3jz07NkTs2fPxt69e3Hnzh28fv0a7u7u8Pf3R6lSpVC/fn00atRIb90BAwagXLlyCA4ORkhICO7duyd7U2fOnBnlypVDu3bt0KBBA4uPzRT1mLINGzbUtG5QUBBOnz6NiIgIrFu3zuiEKaZkyZIFhw4dwuzZs7FkyRKcP38eERERyJgxI8qWLYsOHTqgadOmJrfRunVrVKtWDTNnzsT27dsRFhaGFy9ewNnZGdmyZUP58uXRvn17k2PgpnZOTk7w8vJCYGAgGjRogI4dOyY4vJkpDRo0wOzZsxESEoITJ07g4cOHCA8PhxACXl5eKFasGOrVq4cOHTpYZQKKj0nRokWxf/9+7Ny5E2vXrsXevXvlKCmurq7IkiULSpcujYYNG6Jp06YGJzfRSvkcOzg4oHXr1hZto3v37qhevTqmTp2K4OBg3L17Fw4ODsiVKxfq1auH3r17WzSefkqXJk0aeHh4IH369MiVKxfKlCmD6tWro06dOon6TlFUqlQJe/bswc6dO7F//37cunULDx8+RGRkJNKlS4eAgACUK1cOrVq1kkPcGZMhQwbs2LED69atw+LFi3H06FE8ePAA79+/h6enJwIDA1G/fn188803NhvTmuhTYScEB4gkIiIiItIi8T+hiYiIiIg+MaxEExERERFpxEo0EREREZFGrEQTEREREWnESjQRERERkUasRBMRERERacRKNBERERGRRqxEExERERFpxEo0EREREZFGrEQTEREREWnESjQRERERkUasRBMRERERacRKNBERERGRRqxEExERERFpxEo0EREREZFGrEQTEREREWnESjQRERERkUasRBMRERERacRKNBERERGRRqxEExERERFpxEo0EREREZFGrEQTEREREWnESjQRERERkUasRBMRERERacRKNBERERGRRqxEExERERFplCa5C0BERKR4/fo1ACAmJkamOTk5AQBcXFySpUxERIYwEk1EREREpBEj0URElGIcOHAAACCEkGmFCxcGAPj5+SVLmYiIDGEkmoiIiIhII1aiiYiIiIg0YnMOIiJKMYYNGwYAKFiwoEwrW7ZschWHiMgoRqKJiIiIiDRiJJqIiGxO6ShoZ2cn096/fw8AmD9/vkx7+/YtACBfvnwyLUOGDElRRCIiTRiJJiIiIiLSiJVoIiIiIiKN2JyDiIhsTmnGERkZKdNOnz4NALh165ZMe/fuHQDA3d09CUtHRKQdI9FERERERBoxEk1EREkmLCxMvt63bx8AoEaNGjJtzpw5AIC7d+8mbcGIiDRiJJqIiIiISCNGoomIyOaePn0KAHj06JFMc3V1BQBkzpxZppUrVw4AkDNnziQsHRGRdoxEExERERFpxEo0EREREZFGbM5BREQ2t2fPHgC6WQoBoHv37gCA8PBwmebv7w8AyJgxY9IVjojIAoxEExERERFpxEg0ERHZzMWLFwEA8+fPBwDcvHlT5h09ehQA8PDhQ5kWGxsLgJOtEFHKx0g0EREREZFGrEQTEREREWnE5hxERGRVb968ka93794NAIiJiQGg37Fw/fr1AICXL1/KtIoVKwLQjSFNRJRSMRJNRERERKQRI9FERGQVkZGRAICwsDCZpnQU/PPPPwEAefLkiZe3c+dOmXbu3DkAgLOzs20LS0SUSIxEExERERFpxEo0EREREZFGbM5BRERWoYz7PH36dJn2+++/A9DNRKhmb/8hjnP//n2ZJoQAwI6FRJTyMRJNRERERKSRnVB+9hMREZlpw4YNAIA1a9bItODgYADAvXv3ZNrBgwcBAGXKlAEAnD17VuZNnDgRgH7HwlevXgEAqlWrJtM6duwIAKhfv77Vyk9ElFiMRBMRERERacQ20UREZDH1UHQFCxYEoB9FNjVUnbu7OwBdlBrQDZOXJUsWmaYMhUdElJIwEk1EREREpBEr0UREREREGrFjIRERmaR8TdjZ2SVzSYiIUg5GoomIiIiINGLHQiIiMsmaEWj1xConTpwAAKRLl06mFS9eHICu0yHASDgRpUyMRBMRERERacRKNBERERGRRmzOQURENhcREQEAWLx4sUwbP348AMDb21um/fPPPwCAcuXKyTRTzTgM9Y1nsw8iSgqMRBMRERERacRINBER2YwSgZ4yZQoAYO/evTJP6USoLAMAc+bMAaAfTS5btqzR7TPqTETJhZFoIiIiIiKNWIkmIiIiItKIzTmIiMiqnj17Jl8rHQlXr14NAChUqJDMGzRoEADg4sWLMm3kyJEAgLRp08q0gIAAAICPj4+NSkxEpB0j0UREREREGtkJQ+MDERHRJykxQ8YpEeiNGzfKtN69ewMAWrVqBQDo06ePzFMizGqjRo0CAGzbtk2mlSlTBgAwduxYs8pBRJQUGIkmIiIiItKIlWgiIiIiIo3YsZCIiCSt4y4/f/5cvlY6Ef7yyy8yrXv37gCA1q1bAzDchEOtb9++AIDXr1/LtE2bNgEAZs+eDQBo27atzHNyctJUXiIia2EkmoiIiIhII0aiiYhSEaXjX3LP1KdEoJWZCAFgzZo1AIDmzZvLNCUCnS9fPrO26+LiAgBo3769TIuNjQUATJgwAQCQO3dumVe5cmUAQJo0/DojoqTFSDQRERERkUb86U5ElAqph6JLqqh0RESEfD1r1iwAwNatW2Wa0t65f//+8dK0UkeuleHxjh07prdvAHB2dgYAVKhQwaL9EBFZipFoIiIiIiKNWIkmIiIiItKIzTmIiFIRpemGujmHrTsbKjMRrlu3TqZNnz4dAFClShWZpgxt5+/vb9X9BwYGAgDGjRsHAGjSpInMy5w5MwAga9asMi1nzpzxthF3Jsbk7phJRKkfI9FERERERBrZibg/z4mIiKAbxm716tUAgF69esm877//HgDQuXNnmZYnTx6blufdu3cAgPXr18s0JTpduHBhmTZz5kwAjDYTkW0xEk1EREREpBEr0UREREREGrE5BxERSS9evJCvlWYRyr9NmzaVeR07dgQAFChQIAlL98Hbt2/l6z/++AMAsHv3bplWsWJFAMCIESPirZtSZnwkotSPkWgiIiIiIo04xB0REclOhMrQdQCwefNmAEDZsmUBAF26dJF5tu5EaIqLi4t83a5dOwDAmzdvZJpS7jJlysi0evXqAdDNcEhElFiMRBMRERERacRKNBERERGRRmzOQUT0iYqIiJCvly1bBgBYsWKFTMudOzcAXQc9c2ciVPdXt3UHPqVMLVq0kGk3b94EAEycOFGmZcyYEQBQuXJlm5aHiD4djEQTEREREWnEIe6IiD4xSifCTZs2ybQePXoAAJo3by7T+vfvDwDIlSuX0W0l9BWSHEPJhYWFAQAaN24s02rUqAFA1zmyZMmSFm+fw+QREcBINBERERGRZmwTTUT0CVBPorJ48WIAwC+//CLTvv32WwBAmzZtZJqpCLQiJUZjlXL/+++/Mq179+4AAAcHBwBAjhw5ZJ63t7em7afEYyaipMdINBERERGRRqxEExERERFpxI6FREQfMaUZh3omwv/++w8AUKJECZnWp08fAECBAgWMbisph66ztgkTJgAAtmzZAgAIDAyUeePHj0+OIhFRKsdINBERERGRRuxYSET0kVF3IpwzZw4AYOPGjTItW7ZsAIABAwbINGVilY9Vp06dAAD37t0DAOzatUvmLVmyBADQrFkzmebs7JyEpSOi1IiRaCIiIiIijViJJiIiIiLSiM05iIisJLk73kVERAAANmzYINMmTZoEAKhQoYJM+/XXXwGYNw50amRoRsF06dIBADp06AAAePfuncwbOnQoACBPnjwyrXTp0vG2QUSkxkg0EREREZFGHOKOiMgGDEVDbeX58+cAgLVr1wIAevbsKfO6du0KAOjcubNMy58/v83LlNKdPHlSvlYi0erotDKbY/ny5ZOyWESUijASTURERESkESvRREREREQasTkHEVEqpB4Levbs2QCAGTNmAAAaNWok85TxkdUz9BEQExMjXx8/fhwA8N1338m0MmXKAAC6desm04oVK5ZEpSOi1ICRaCIiIiIijRiJJiJKRZQI9MyZM2WaMqRdpkyZAAC//fabzMuXL18Slu6D5B7qzxRTHT6nT58uXy9btgwAULx4cZmmdDb09PS0WfmIKPVgJJqIiIiISCNGoomIUjhlCDsAWLlyJQD9qGmOHDkAAGPHjgUA5M6dOwlLF19KjkSbq1+/fgCAI0eOyLRWrVoBADp27AgAcHFxSfqCEVGKwUg0EREREZFGrEQTEREREWnE5hxERCmU0olw8+bNMu2HH34AAAQFBck0pelB3rx5k7B0H7eIiAgAwPjx42XavHnzAAArVqwAAJQoUULmOTk5xdtGUs5aSURJj5FoIiIiIiKN0iR3AYiISOfly5fy9dKlSwEAw4YNk2mdO3cGALRt21ampeQItC2isUnRcVEZxq558+Yy7fXr1wB05+Dff/+VeWXLlo23DUagiT5ujEQTEREREWnESjQRERERkUZszkFElAIozTjUMxEqY0LXr19fpinNOAIDA5OwdJazRZMGWzWTMNRMRP0+t2jRAgBw9OhRAPpjdSvLlylTxiZlI6KUh5FoIiIiIiKNOMQdEVEyUiLQ8+fPBwAsX75c5qVPnx6A/jBr1uhEGBMTA0A3hB4APH36FAAQGRkp0169ehUvLW65o6KiZJqhrxMlQqvk2dvrYjfKsHAeHh7xtuHq6irT0qVLB0A3Q6DS6Q8AvLy84m3XUqbKDwDv378HAKxevRoA8Mcff8i8KlWqAAAGDBgg0zJnzpzoMhFRysVINBERERGRRqxEExERERFpxOYcRERJTN2MYtOmTQCAwYMHA9Afb/i3334DAOTJk8es7SrNNKKjo2Wa8lq9z/v37wMArl69KtPOnTsHAHjw4IFMu3fvHgDg4cOHAPSbNty5cweAbmY/AIiNjY23nEL5qnFwcJBpSjMNPz+/eMv5+vrKtJw5cwIAvL29AQD58+eXeQUKFIi3DXd3dwCAo6OjTFOajqj3n1hDhw6Vr3fv3g0AqFy5skxTzp+pfSbFmNdEZBuMRBMRERERacRINBGZxEiZ9Sid8datWyfTevToAQDo1KkTAN1seABQsGBBTdsPCwsDAOzcuVOmbd26FQBw5MgRmabMvKdEcQEgd+7cAAAfHx+Z5u/vr/evEukGgICAAAD6nefSpk0LwHAHPaXj35s3b2SaEvW+ceNGvOVu374t0y5fvgwAePLkCQDg1q1bMu/8+fMA9KPOFSpUAADUqFFDptWuXVvvmK3REVEd8R8yZAgA3ZMFAOjbty8A3dB4gK5zpK0Z+tzys0xkXYxEExERERFpxEg0EVkVo136lOgzAMydOxeA/iQdSoS0W7duAPSjwwp1pHbfvn0AgMOHD8s0JQKtDEWXNWtWmZcpUyYAQL58+WRarly5AOgPLae0T1aiyep8pY2x+twqeYlpY6y0oVa/RwolWg4Az58/BwC8ffsWgG7oPQB49uwZAP3I9ZUrVwDo2m0DuvbdSiRY/X6UL18egG6YOkD3HplLiZbPmTNHpq1atQoAMGvWLJmmRMmt2TbbkIQ+h3G/+vlZJdKOkWgiIiIiIo1YiSYiIiIi0ojNOYjIqpKjOUdKbEKiNFFQP8rfsGEDAF0TCwAYO3YsACBNmjQAgBMnTsi80NBQAPrDzikzC6pnClSaKCjbVXdIDAwMBAAUL15cpqlnA/xYvHv3Tr4+efIkAODs2bMyTemAqAzvZ+j9U2aIBHRD7BUpUkSmVaxYEYDpmQjV50/pbKje7g8//ABA16zDVsz9TCjLpZTPDVFqwkg0EREREZFGjEQTUZJ6//49AN0wZUpnOEA3hJr6tmToFqV0SFMir9myZbNNYTVSd5BbvXo1AGDatGkyTYluDhs2TKZ5eXkBADZv3qy3HqDrrJYjRw6ZpnSCq1WrlkxTIqRKB8DEMPR+f0xRSqVz4sGDB2Xa9u3b46Vdu3YNgG4oPwAICgoCoHvv1RO8qKPNimPHjgEAWrduLdMaNWoEQNeRVBlakIhSH0aiiYiIiIg0YiWaiIiIiEgjNucgoiQVHh4OAOjQoQMAYNeuXTJPPTawOZSZ4JYsWWKdwllIacahzA4IAN9//z0AoHnz5jLt66+/BgBcunRJpikdC5VmBurlu3TpAgDImzdvvH2mtmYX1ihvUnaCu3r1KgBg/vz5Mk0Z51vpiNi9e3eZpzT1UDfxUJouLVu2TKZNmDABAFC6dGkA+mOGK1LbuSX6VDESTURERESkESPRRJSklE6Bygxzffr0kXlKx7i2bdvKtIwZMwLQRf8AXeRZmRFO6bAH6Ee2FbaKYCoz561cuRIAMHLkSJlXt25dAMCLFy9k2rlz5wDoIpQA8NVXXwEAPvvsMwD6M+l5enoCsP3sdkkptURZles0IiJCpimdDZWOiEuXLpV5ynE1btxYpilPI9RD4o0aNQqA7qlF1apVZd5vv/0Wrxwcgo4o5WIkmoiIiIhII1aiiYiIiIg0SpPcBSCij5/6Eb69/Yff7jlz5gSg/6hbGTO3du3aJrfXu3dvALpH7nPmzJF5ixcvBgA0aNBApinNIqxBacKh3tc///wDAHjy5InMO3z4MADA29tbppUtWxYAUK5cOZlWrVo1APrjEX/MUkuzBOU6VcbxVr/28fEBoN+JUBlj+ujRozJN6XhYs2ZNmabMVKjMmLhp0yaZV6ZMGQC6pkAA4OzsnNhDISIbYSSaiIiIiEgjRqKJyOYMRR+VDnfqTnamZtxTR7OVzoZNmzYFoB/9U4YTK1asmEyzRiRaiUD/999/Mm3KlCkAgDNnzgAAatSoEW+9ypUry9fKEHd58uQxuh/1caaWqO2nRnmKou4AW716dQD6wy1u2LAhXtoXX3wBQBfNVj+BUIa7U/IAXeSaiFIeRqKJiIiIiDRiJJqIkpQyqciePXsAAB4eHjIvS5YsRtczFJVNk+bDLSxr1qwy7cqVKwCAd+/eJbqsyiQqgG5IMvUwZMqEHAUKFACg35b722+/BaDfptYUjjaaumXPnh0AMGDAAJmmDHE3Y8YMmTZ16lQAugl0lKcTgO7aUj/tUD4fhQsXtkWxiSgRGIkmIiIiItKIlWgiIiIiIo3YnIOIkpQytFdISAgAwN/fX+apZ+szh/KoW+noBeiaWCSmecTr168BAJs3b5ZpvXr1AgA8ePBApjVs2BAAMGTIEABA0aJFZV7atGk17TMldyI0NWteQjMQfsoz7ikdZXv27CnTKlasCEDXxGPgwIEyr1WrVgB0M2CqKdcYAKRPn976hSUizRiJJiIiIiLSiJFoIkpSSsfC+fPnAwAmTpwo85QOeuaKjo4GoD8BijJ5i9ZJKpQh9wBg6dKlAIAxY8bINCUC3aVLF5mmvC5VqhQA3QQdHxtTUeSEIsyfYgQ6LicnJ/m6fPnyAHSdYtWTDSlPPtTLb9++PV7aqFGjbFdYIz7lJwpExnycd3wiIiIiIhtiJZqIiIiISCM25yCiJKWMvezq6grA9NjQCbl06RIAYN++fTJN6exnbuerJ0+eANCfVe7vv/8GANy8eVOmdevWDQDQu3dvmaa1IySR0uSnbNmyAPRnJ1TGNj9x4oRMU14vX75cphUqVAgA0KJFCwC6piGA7ZpdKNtTN53atGkTAN1nSGmqBehmIjXU8VSd5uDgAADw9fUFAFSqVEnmKR2GHR0dE38ARDbASDQRERERkUaMRBORzak77d25cwcA0KRJEwCAt7e35u3dv38fALBz504AwLlz52TeyJEjAQAZM2Y0uY3w8HAAugj0hAkTZJ7SibBr164ybfLkyQB0kTMiS8SNFAcEBMg85Rr8+eefZVpERAQA4N69ezJt6NChAIDcuXMDAMqVKyfzlEi3Otprzai0MvwjAKxatQoAsHr1agD6s4Qqn2t1lFwph7oD7t27dwEALi4uetsCAD8/PwCMRFPKxUg0EREREZFGrEQTEREREWlkJxIzrRcRkRmUDoAAsGbNGgC6R7pff/21zMuePbtZ2xs/fjwAYM6cOQD0x5desGABAMMzBiodoADg33//BQCMGDECgG52OQDo16+f3r9EtpJQswulecO4ceNkWmhoKACgdOnS8fIqVKhgk3Ka0q5dOwBA3rx5Zdp3330HwHCzKnVzDqXsypjs6mYrbMZBKR0j0UREREREGrFjIRHZ3JUrV+Tr6dOnA9BF2BKKPj969AgA0Lx5c5l24cIFAMCXX34JABg2bJjMMxWBXrhwoUz7/fffAeg6Z/Xt21fmKdslsra4D38T6vT3+eefAwAyZMgg0yZNmgQA2LhxIwDdkIyAbujIYsWKxdunrWYbjImJAaDfSVg9dJ9i/fr1AIDq1avLtCJFigAA6tSpA0C/IyJRSsdINBERERGRRvzJR0RWoUS7bty4IdM2b94MAJgxY4ZMU/J//fVXAPptJpXh46KiomSaMsSXOsKstLds1qwZAN1EDWrqYfWUYezUETulvaUSgVZHn5V92WqYMPp0mXMdqa87JTJbrVq1eMtdvXoVgO5zBugiwOqh89KlS2dZYQ1QJlEBdJ/lPHnyANCPfiueP38uXx88eBCA/tOnMmXKWL2MREmFkWgiIiIiIo1YiSYiIiIi0ojNOYjIqiIjI+XrkydPAtB/hF2rVi0AupnKbt68GW8bSkclQNdRShmKDgBq1qxpdP/KjGorV66UadOmTQOg39RE6YzYsmVLAPodmmzdEYvIFPV1Z+haVDrm/fDDDwCA3377TeYp173SYRYAOnXqBABwcnJKdNnUTa1OnDgBQNfk6tChQzJP6cx769Ytmfbq1SsAQGxsrEzz8vICkDxD8xElFiPRREREREQacbIVIkr1lOgzAGzbtg0A0L9/f5l27do1APoR7B07diRR6YhsSz3EozJ0o3pIPGWCo5IlS8o0S6PS6g67yoRFEyZMAGD4qZKzs7N8PXDgQAC6yDgA5MiRw6JyEKUEjEQTEREREWnESjQRERERkUbsWEhEqZbSjEM9Tm7v3r0B6GY6VFN3WAwPDwegP041UWo0YMAA+dre/kNs7JdffpFpLVq0AACsXbtWphka09kcSudAAAgODgYADB8+HABQo0YNmad8/tatWyfT8uXLB0A3RntCDLU2ZWdfSkkYiSYiIiIi0oiRaCJKdZRh9FatWgVA15kK0A2dp8xECABubm4AgMuXL8s0ZSiw1q1bAwDc3d1tWGIi21GubwBo06YNAN2wc4Cu49+PP/4o05QZQ8uWLatpXw8ePJCvnz59CgAoUqQIAP1OgunTpwcAFCpUSKYpMxWqZx81hVFnSukYiSYiIiIi0oiVaCIiIiIijdicg4hSBfVY0EpTjEmTJgEAzp8/L/OUsaA7d+4s05RHywsWLJBpixYtAgB88cUXANicgz4OykyF3bp1k2lnz54FoOsICAB+fn4AgMyZMwNIeLzmx48fAwCuXLki0/LkyQMA8PT0jLe8g4MDAF1TD0A3O6EyCylRasdINBERERGRRoxEE5FJ6mGmkqOjjxKB3rhxo0ybPHkyAOD48eMAgIIFC8q83377DYBuOC0ASJPmw62uRIkSMm38+PEAgDt37gAAsmTJYvWyf6qS+5ohXUQa0A1Bp+4UqAx3pwzxOGLECJlnaDZD5XOiRLUBoFatWgAMR6KVJzuBgYEWlZ8oNWAkmoiIiIhII0aiicgkdSQx7uQHtooyKkPYAcD27dsB6E8o8fLlSwC69s916tSReaVKlQKgiz6rqdt9li9fHgCwbds2AECGDBlkntLWMyFJ9X6kFOZGmD/29yE1UNokA0DFihUB6CZdAYC///4bgC4iXbp0aZnXuHFjAICzs7NMu337NgDgxIkTMq1Vq1YAdH0OiD41jEQTEREREWnESjQRERERkUZszkFEZrP1Y/q4MxECwJAhQwAAtWvXlml79+4FoOu81LVrV5mnfgQdl7rzYPPmzQEA06ZNAwAULVpU5pnbnONTa7bwqR3vx6ZLly7ytTJ757x58wDoOuQCQGxsLABg06ZNMu2///4DoN/USunYO3PmTABA3bp1ZZ6h5lREHxtGoomIiIiINOJPRSJKVurIlhIVU6JegK4DYExMjEwLCAgAAFSqVAmAfqdAhaFOcOqhuGrUqAFAN7TXpUuXZJ4SibO3Z5yBPh7r1q2Tr58+fQpANxTew4cPZd7UqVMB6A8T2adPHwD6EeY3b94AALJnzw6ATyro08NvCCIiIiIijViJJiIiIiLSiM05iChZKM04VqxYIdNWrlwJQL8ZhdJpsF+/fjKtevXqAICmTZsa3X5Cj5azZcsGQDeL4fXr12Xe4cOHAQAVKlQwfRBEKZS6OdPNmzcB6DrRAromGK1btwYALFiwQOZduXIFANCgQQOZ9t133wEw3HTK1P7ZxIM+ZoxEExERERFpxEg0ESUpJQIdHBwMQNexD9DNNtijRw+ZFhYWBgCIioqSaWXLlgUA5M2b1+JyKJ0H27ZtCwCYO3euzFOG9mIk2rYYrbSd8PBw+VqJQPv6+so0JbKcKVMmALoZDAHdk55ly5bF297YsWNlGmetpE8dI9FERERERBqxEk1EREREpJGdUPc+ICKyAfVY0Js3bwYAfP/99wCAL7/8UuYpnQfVy7do0QKAboZBQNcEQxkvOjGUZh3q7b99+xaA/njVpmZC/JQZGo+bkt/Ro0fla2UmwTFjxsi09u3bA9CNFz1jxgyZp3xGHRwcZJqXlxcAoGTJkjLt119/tXaxiVIVRqKJiIiIiDRix0IishllRrMlS5bItClTpgAAGjVqBADo0qWLzEuXLh0AXadDAHj58iUAoF69ejLNGhFohTKcnjrCduzYMQDAxo0bZVrjxo0B6EfnFJ9yBzn1MStDqU2cOFGm3blzBwDw+vVrAECWLFlkXs2aNQEAX3/9tUwz9P6aYuhh6qd4HhQXLlwAACxatEimBQYGAtB1yAUAJycnALqOhcoTH0DXobBq1aoyTXmf1Z+JMmXKAADq1KkDgE9r6NPDSDQRERERkUasRBMRERERacTmHERkVepOgcojZfWshMpYtb169QIAFC1aVOYpHZqUcZoBXTOKAgUKxNuXNZtR1K5dW75+/PgxAP1mKErzE63NDT4lynujnnEyNDQUgG6c4fLly8s8pUmBNXzKTTjU9u3bB0C/SdTPP/8MAMidO3e85ZX3LX/+/DKtWrVqAICYmBiZpnQsLF26tExTmmZ5e3sD4Ljq9OlhJJqIiIiISCNGoonIKpQItDqKPHPmTACAp6enTJswYQIAoFChQvG2oUTRlFkKAd0MaW5ublYtb1xKJykAOHLkCABg9erVMu3Ro0cAgGzZssVb91OOgqo79invzbhx42Sai4uL3r9KRB8Aihcvnuj9f8rvveLkyZPy9eHDhwEAHh4eMk0ZvtHUUxT1eVSeEnXr1k2mKZFqZRhKQHcuV65cGW+fhQsX1nYQRKkQI9FERERERBoxEk2UyiXn8GrKEHYAsHPnTgBAjx49ZJoy9FX//v1lWtwI9LVr1+RrJdqbPXt2mZYvXz6j+7fVMefNmxeAfhtSpb12kyZNZJqPj49N9p+aGDoH7969k6/PnDkDAOjcuTMA60SfSd+sWbPka+XzNGDAAJlmzudE3Y69YMGCAHRtnQHgwYMHAIA0aXTVBmW/33zzDQD9aPbIkSMBAGnTpjXzKIhSH0aiiYiIiIg0YiWaiIiIiEgjNucgSuWUR7XqR6m2btqhNONYtWqVTBsyZAgAICgoSKa1b98eAFCkSBGj2zp48KB8/fbtWwD6M6slB+VxtroT3NKlSwHoD9FmjeYcH9Nsh8qx3Lt3T6YpMxWqmwtQ4sTGxgLQdcRVmswAuqZIytCQgOXXlnr4ydOnTwPQdboFdE2bfvjhBwDAmjVrZN7AgQMB6M9eSfSx4V2NiIiIiEgjRqKJyGxKBHrhwoUAgMWLF8s8pcNYp06dZFrJkiUT3GZISIh8rUQyq1atmuiymstQJFjp2Kgux/jx4wEAly9flmmmIuzWKEdq8+LFCwD6kdGAgAAAQIYMGZKlTMnJVudU6bipTHaSOXNmmde0aVMA1pkUSD3s461btwAAu3fvlmktWrQAoHvidPv2bZmnPGGaM2eOTFOWUz+V+Biue/p0MRJNRERERKQRK9FERERERBqxOQfRR8JWj0PVY0ErHQmVTnbqzoy//vorAPNnKlPWPXfunExTxmUuV65cIkpsGUMdM/39/WWa0ixBPTtcYGAgAN1sbpYw1DE0tXr27BkAYP/+/TJNaRKgHvubtFOPvX3s2DEAutkJ//e//8m8unXrWm2fpUuXlq/37t0LANi6datMUzoCp0+fHgDQtm1bmafcNyZNmiTTlA676o7D7HBKqRmvXiIiIiIijRiJJiKDlEjSjh07ZNrw4cMB6CJKyqxkgPkR6JiYGAC6DnrPnz+XeZkyZQIAeHp6mtxG3KhtYqLwptZ1cXGRr9u1awcAWL9+vUxTotOJiUSbU47U4unTpwB0EVIA+OKLLwDod377WBh6eqA+j9Y8p+oOrcqwcRUrVgQAVKhQQeYpMwoaerKSUHnjUg/h6OfnBwC4f/++TFOGMlQ+B+oh8bp06QJANzQeAIwbNw6A/myK1hjOkp0TKbkwEk1EREREpBEr0UREREREGrE5BxFJ6k6ESgeibt26yTRlFrRvvvkGgPlNONSUzkhKMxF1h7N8+fKZtQ1bPLY19Pjbzc1Npilj4s6ePVumnTp1yurlSG3UHd7u3r0LQP/85MyZEwDg5OSUtAVLAknRfOD9+/cAdJ0JAd1nZ+XKlQCAYsWKmVW2xJRXac6hzIioLocyS6mXl5fMU8ZQnzx5skxr3rw5AN0484CuU6I1OucSJTVGoomIiIiINGIkmohkBHrZsmUyTZkNrU6dOjKtQ4cOAIBSpUpZvC8lcrl9+3YAumHtAN2QcckhoWiWh4cHAP2oX0REBADdkG6VK1e2TeFSMGWWQvVrX19fmabunPmpMvSUw1y7du0CAGzevFmm1a5dG4Au2uvo6JjYIiZIGe6xRIkS8cr22WefAdCPRCtD16k7G/74448AgHnz5sm0GTNmANANkal8zohSA0aiiYiIiIg0YiSa6BOlbv+sTJ6ijkQrbRX79u0r05SoUmLaICrRSqWNZ7169WSeMnReSqYM2Qbo2qT+999/AD7NSPT169fl6xs3bgAAGjZsKNNcXV2TukipnrqdudI34dq1azJt/PjxABIeCtKalGHs1EPSDR06FIBukh1D1PeKjh07AgAuXrwo00JDQwHo+hp0795d5iVFhJ0oMRiJJiIiIiLSiJVoIiIiIiKN2JyD6BOjNOPYsmWLTJs+fToAwN3dXaZNmjQJgGXD2MWlzFIIAHfu3AGga9aRJ08emafef0pVq1Yt+To4OBgAEBISAgCIioqSec7OzklbMBtSOsapjy86OhqA/gyOhw4dAgCMGDEiCUuX8mlt/rRx40b5+vz58wD0mzrFbTakdSZCSyhNR9QdBZXZCx8+fGjWNpQyqZuIKbMYTp06FQBQrlw5mad0YP4Yh0ekjwMj0UREREREGjESTfSJUCY5UYal+uGHH2RezZo1AQD9+vWTadaIQCseP34sX589exaAbtKGlBJ9Njeap44wK9HBc+fOAdCP7itDA6ZNm9bkvlLDRBFKR7cDBw7ItF69egHQHbuaMuQfAGzYsAEAULVqVQBAmjT82kmIeoKSjBkzAgB69OhhdHlLrqG417u521B/XpXhKZXOpY8ePZJ56mEO48qcObN83bp1awDAy5cvAQBdunSReYsWLQJgeDIZopSAkWgiIiIiIo1YiSYiIiIi0ojP1YhsICk6+phDacIBAGvWrAEADBkyBADQqFEjmaeM31q8eHGblEN5VAvoOiMp4866ubnZZJ+GmGpGYcn5UcbMvXr1KgBg7ty5Mq9ixYoA9JtzGLouUgNlvF719aF0Ro2MjJRpDg4O8dZVHsUbyiP98dqVz+jr169lWoMGDQAkbpZQQyy9H6k7+eXIkQMA8OTJEwBAeHi4zDPVnENNuaY6d+4MALhw4YLMU8bDVjdlKVOmjAWlJrINRqKJiIiIiDRiJJrIBtRRnuSIPioR6CVLlsi0hQsXAgAKFSoEAPjmm29kXunSpW1aHmU4O0A3xF1yRKKtrUiRIgCAK1euANB/v+/duwcA8PHxkWmpoROhIfb2H+ItSic3AKhSpUpyFeej8uDBA/la6VCoPMUAgLp16yZ5mUxRR6KVjoWGItGmGHoiVLJkSQBAz549Zd4ff/wBQP9zpXRKzJ49u+ayE1kbI9FERERERBqxEk1EREREpBGbcxDZmPK4UnmEaatH+oY6ESrjrAK6sX6V2eSUpghJQd2c4+7duwB0HaWSsjmHtd97ZcxjZbxoddON0NBQAECWLFlkmrmdrejj9/z5cwDAvn37ZJrSLGj48OEyLSk/p+ZQN+dQZhtVxg9XmnUkxNDnUPksffnllzLt+PHjAHQzYQLA7NmzAQADBw6UaS4uLmbtl8jaGIkmIiIiItKIkWiiJGLrCLQyEyEADBs2DIBuVkAA+PPPPwEkT2Tr1atX8rUye2HOnDkBAK6urkleHmvz9vYGALRs2VKmbdy4EYCuAyWgmxmS6ODBgwCAOXPmyLQ2bdoA0D3ZSImU4Q4BwN/fH4BuVspnz54levvqToe//fYbAKBPnz4ybcWKFQB0HREB3eygjEhTUmMkmoiIiIhII0aiiVIhdfvnbdu2AQC6desm0xo2bAhAfxi7okWL2rRMptp8qyeUePr0KQDdUFVJET2y9eQ3mTJlAgA0adJEpk2dOhUAcOnSJZlmKhJt6v0zNUlMUjC3bIrUOpRfUoiIiAAA7N+/HwBw8+ZNmadEpbNly5bk5TKX0nYZ0H2GlSdN6idOllJfO8oEPeph75Q+FOq0lStXAtD1s+D1R0mFkWgiIiIiIo1YiSYiIiIi0ojNOYhSEaUZh9K5BgCmTJkCAKhRo4ZM69ChAwCgTJkyRrdl7SYCprbx/v17+Vo5Bg8PDwD6j4dtxdaPd5Xt58iRQ6blz58fAHDt2jWZdvHiRQBAgQIFjG7D1PaTS0ouW2qzdOlSAMDJkycB6A/ppnTUS8mU2SsB3WdYGT4zKioq3vLWuM8oQ+kBQLNmzQAAV69elWkjR44EAPz0008AgLJly1q0HyKtGIkmIiIiItKIkWiiVCBuBHrJkiUyL23atACAfv36ybQSJUokYekSFhMTI18rUWlnZ+fkKo7NqIf/+vrrrwHoOn4CwObNmwEYjkSnVkoUEtBNpHP+/Pl4yymReXW0Xj1xx8dMPQnJpk2bAOiisl27dpV5tp6QyRrUkWilU7DymVY/cbKV4sWLAwB69Ogh07p37w5AF+VPnz69zFOuOyJbYCSaiIiIiEgjVqKJiIiIiDRicw6iFEo9FnRwcDAA3djD6qYQkydPBmD+ONCGxvW1tdjYWPlaadrxMTbnUD+GV8aMXr16tUxTZqlTz8CW2qnHOZ47dy4A3TUJ6K43pdmCeuzylDwznzUoTV3mz58v016+fAlAN8ueutNcaqC+xpXmOMpnWt1sy9Dy1qA0mapUqZJM+/bbbwHoz/6oGDduHAD9ZihE1sKrioiIiIhII0aiiVIYZZio3bt3yzRlNsJq1aoB0O9EqHUmwsREhkxFsU1tVx2hio6OBgC4urpaXI6USv0eeHl5AdDvRKjMXnjgwAGZVr58eQC62dlSMkPDlak7TirDLSrRVjUlGpshQwaZ9vPPP9uknCnF8+fPAQDTpk2TacqQdu3atUuWMiWW+hpXhrhTOhQqn+2koI4sKx0Llaci6s/X6NGjAQCDBw9OsrLRp4ORaCIiIiIijViJJiIiIiLSiM05iFIA9Uxf69atAwAMGTJEptWrVw+AbibChMaBttV4s6a2Z6iph6HlleVSQ0cfc2dbM/V+16pVS75+9eoVAN14toCuOUdqYOj41E03Xrx4YXTd8PBwAEBERITVy5WSPHz4UL6eNWsWAMDb21umVaxYEQDg5+eXtAWzAaUJknL9G7oHWHtmVFN69uwZb5/KmPrFihWTabVr1wbwcXZupqSV8r/FiIiIiIhSGEaiiZKREoFetmyZTFu4cCEAIFeuXDJNGRasXLlyABKO6KS0Gc/U5VGiV8qxu7m5JUuZkkrlypXl69OnTwMA5s2bJ9OU2ewyZcqUtAWzEnXH1qpVqwIA9u7dG2855X1QruHUzNSThzNnzsjXyme5S5cuMq1MmTI2Ll3SUYbhVD7Tyd05Nlu2bACA5s2byzTlycCff/4p05QnA6npKRClTIxEExERERFpxEg0fZLMbb9rC+r2z+vXrwegi1gBujam06dPl2nFixdPkrIlhqn3Tx2hSpPmw23nzZs3Ni9TYpl7TZhaTh1pNzSxxpEjRwAANWrUAAC4u7trKWKyq1ChgnyttElVH4PyWWvdujUA/TbiHxNleLV9+/bJNGXIt6ZNm8q0LFmyJG3BrEw9cdLr168B6D7Tyr9qyfFUTB3t79WrFwCgTZs2Mm3lypUA9K/TwoULJ1HpTLNVfxayDUaiiYiIiIg0YiWaiIiIiEgjNuegT5LyqEzdrMPWj9EMzUSozNiWO3dumTZjxgwA+kMypXaGmnOom7V8KvLnzw8AaNSokUxTOpXmzZsXgP4Mh6mBegbCoKAgvX8/VobuEcrQlDt27JBpffr0AQD4+vomTcGSgPqe+e7dOwC64SoNNedIbkozDfWskUpHT3XTlOHDhwPQzcKYXNiMI3VhJJqIiIiISKOU97ORKAklxa9+JeIaHBwMAPj+++9lnjLovzKEHfBxRaAV6olVHB0dAeiGx1JHg1LDBCyJYSgS/dVXXwHQTaST2iLRn7ILFy7I1/v37wegP4FH+/btAXxcwziqI9FK52DlM638m5Io56NSpUoy7bvvvgMAbNiwQaYpk1tNmDAh6QpHqd7H/Y1FRERERGQDrEQTEREREWnE5hxENqDuNPfff/8BAKZMmQIAqFixosxTHuF/7DNnqR9xKx13wsPDAeg6JwGAi4tL0hbMhgx1VFU6WKpno/Tz8wOgm+muYMGC8fIo+aibL8Rt/vX333/L169evQIAtGjRQqaltjG/zfH+/Xv5Wplt09XVVe/flMjJyUm+VprZKLMZAsCBAwcA6Mbn79atW7xtmLoW6NPESDQRERERkUaMRBNZkRKBXrVqlUxbvHgxAF2nuf79+8u8UqVKAfj4oxrqjlXe3t4AgLt37wLQnynsY4pEm6IeRqtZs2YAdDMX+vv7yzz1THeUtAw9SVA6wV6+fBkAsHfvXpmndFxr3rx5UhUxWagj0Xfu3AEApE+fHgCQLl26ZCmTVj4+PgB0s2gCuicJ//zzDwCgaNGiMk95UqgeqpMIYCSaiIiIiEgzVqKJiIiIiDRicw6iRFJ3IlRmK5s0aZJMU2bxmjp1KgDzx4FOKZ1YrFEOdQerzJkzAwCuX78OAHj9+rXMU89+Z4tyJCVTZVR3wFLGiV6zZg0A4Pjx4zKPzTmSj6Hzp3SGVWa/y5Ili8yrWbMmAF3Tho+VuiPw1atXAQBeXl56/6YWxYsXl6+//fZbAMC5c+cA6DqCA7pOiWXKlEm6wlGqwEg0EREREZFGjEQTWUiJyKg7FykzYalnx+rbty8AyyLQKYE1or6enp7ydY4cOQAYjkTbuhzJwdD5VHdQyps3LwAge/bsAHSdtQDg/PnzAIBChQrZsogJMtTJ7lN07do1AMDcuf/X3p0HWjXv/x9/kuYiKZFS0U0lpaRJNKFyXS7fvuFmKA3Sl7jmMkQy3+Qn91aaFDLdxE0aSLpluBHKkCYKkUpFg5Ty+2Pf9+fz2bWd9jpnn3P23uf1+MfyXvucvdpn73XWea/3+/15AoBhw4a5fR07dszz98+E1znMRK9YsQKAatWqAb5hLxNZI+Hw4cMBOPfcc90+aw4PM+3HHntsAR6dpCtlokVEREREIlImWiSCsP552rRpANx2220u1qFDBwB69OjhYk2bNo30HOmchcqtsCa6SpUqgF9cZPv27YVyTAUl2Z9n586dAXjzzTddzEYlFnYmOhvfk8my9ynA+PHjAV8bG362Ey00EjWznG6vc6I+hHDE3erVqwGfxc20muiQjSC1z9qdd97p9tnYO8tSA9x3330AlC5duoCOUNKRMtEiIiIiIhHpIlpEREREJCKVc4gkwco4/vnPf7rYk08+CfimGoDevXsD0LJlSxfb+xZtpo1qS4VEDTk2JixRY2FRfI3OPvtsIH7E3dy5cwG45ZZbXMxGJqbCjk1r3fbmX3J4YEKx5siyh/lmsvLFc/f84XOXrBAbgXhoHhav3LVlPQA/bPOvVYUjYuMTo37b+fPnu20rtbn33nuBxM1l6dYYnBeJPns7duxw2zbi7qijjgJ8qVYmK1489ia+6KKLXGzJkiUALFy40MVsZOn111/vYkXlXCWeMtEiIiIiIhEpEy2SAxvnNH36dAAmTpzo9m3atAmAkSNHuliTJk0K8OgyR/ny5d32cccdB/jXb/369fs8vihmdGwRmmOOOcbFLCu9aNEiF7MmLsuY5cU7g/1iIZ2fjmVVa1ZM9tdC7L1+54xJLnJhzd9/9K5lzwHQ5/zeLvbMusP/+5z+cRtXrQPg8ItGuNjzI7oBUD9hGnkXAMvG/8lF2j8eey0vbvKTi70yN/Z63f7iUwBcUCfn12/BggVx/wU/ws3Gn4WjChNloLPxfbxmzRq3vXXrVsCPrcymJruSJUu67auuugqAoUOHutiYMWMAaNGihYs1b94cSM1nUzKDMtEiIiIiIhHpIlpEREREJCKVc0haKsyVu8IVuWw1wgEDBgBQo0YNt2/EiNjt5qglHNl4izeKSpUqAVC7dm0APv30U7fvxBNPBKBWrVoFflypkIqGyHD2sK2QN2HCBBcbNGgQAIcddliuvn9MrCFs5Xs+0nVcrHRk4tkH5+H7JrDxFQB6NrwMgG8e8Y2Tm/vGZvLGVWnsiK3SOPIs/7lq0ucQAL6dGGu+jJtGvDL22vSdc5ULLX5n38fdv3EKABf2jM3ebjvlArcvUTvcuHHjAL+yJsDNN98MJP7ZZvvn2t6L7777rovZKqx5ey+mP1tNtFu3bi62ceNGwJd6ADz1VKxUqEGDBgV4dFKYlIkWEREREYlImWhJS5bVKciMtGWgZ8+e7WJXXnklAO3atQOgV69ebp+aCHOnVKlY3rFNmzYALF++3O377LNYFjJTM9HJvk9zylg3a9bMba9atQqAO+64w8VspFaqs3+HlU1xBvq/PntqIABPth8LwDd9/eqLCfsES8X2931kiAs90ij2ta89FMswXxCmjtcsA2Bnq9NcKOG6eRVjjZNN18cy0quDXZX37AHiP/s21qxu3bouZmMIs2mMXbLsvRiOeTv11FMBqFChwu9+XTaNq7SVKgGuvvpqID4T/eCDD8btCx8v2UmZaBERERGRiHQRLSIiIiISkco5JK3l9+2/sIlwypTYbd7HHnvMxazJq3v37gC0atWqwI4t0yRbemPlHGeccQYA99xzj9v3+eefA/DHP/4xZceTzDEVtJyOp0yZMm7bZmqXLVvWxd57L9YNeOihh7rYwQfHSjGSL3+KrRK5eUPyx5xbvx0aayDt/pfYPN2jkv3Ceo3cZgdeAmDL1v8GwnKOE2MlFq1uftCFpnSMfYbPC6qCvpzyKACTz+gDwDXBt7DzwPDhw13MVuHr0qXLPoeWbu+ngvDNN98AsHjxYhezcrfwvZiNEn2uGjduDMCNN97oYvfffz8AzzzzDOBnv4NvTpTsoky0iIiIiEhEykRLkWSZp5dfftnFnn76aQB27drlYjfddBPgG0SKYgYq1UqUKAH4BrodO3a4fatXr074NUWVZUM7derkYtOmTQP8KnEQ34yYnB8AWLPUf91xliLetcXF1v8Qy1jvLhbLhB9W2a88meyabMdfEhspNz7iEbLEr9I4m9gqjp0rJ3jcwbGGwnue/8WFHrom1rQ64LMKLnbm7bE7Hi8PjN1d2vOLf/zbb78NwMcff+xiN9xwAwAdOnSIeuRZyVYqDD+vNpIym1YqTCTRef+gg2KXT+GdCmu6tLtF48f7d71lrLP9tSpqlIkWEREREYlImWgpMsL65zlz5gAwbNiwfR73j3/8w21rjF3yks3S2+MqVowNIgtrBW0BAxsvBlCvXr18PZ78korxjFWqxIp///d//9fFrD7fxi6Cz0Tn5bk+fqYHAA1Gv+Ziv5YrF/vvxlUAfEMLt++Ol2MZ5oEtEw6Uy4PYe+C1Ub7GeVXP2IIqp+Uwha949TPc9sAXY9sDc3iWjz9e5rYffTRWL926dWsXa9myJQAHHlh0c01h/fN3330HQP36fkSh1eLnpLA/hwXprrvuAuC6664D4IUXXnD7bGGajh07upj1h0jmKrpnBxERERGRXNJFtIiIiIhIRCrnkKxnZRzz5s1zsSuuuAKA5s2bu5jdgku2hKMgV1PMZuGqXp988gkQ/7NKVM6x94px6fIzyM1YvZzeRyVLlgT8rWCAQw45BIAVK1a42Pfffw/48o/92rAdgJ3H+dD22rH3/ztf+mao8q57MNZM9uUUvzpbm3axhqojP33DxXocm9zT78s38y4bE/u+fxrrmyn/+W1nAFKxpuIv/20oDFfemzt3LgBTp051MWuaK8oWLFjgtn/4IdaMGpa8SDxrmv7rX/8KQLn/lkOBX8XwX//6l4vpPZb5lIkWEREREYnogN/2TumIZAnLQE+fPh2A22+/3e2zDECPHj1crG3btkDijGBOH5N0yYJmqjDrPHbs2H32P/HEEwV4NOlpz549bvu+++4DYPny5S5mC9d069Ytn4/kJ7c1vdfhAFxW/d8utm5Q1FF7sQz3Z2P+7CItrop9bh9ePNPFetVJdqDe/r366qsAjBs3zsUsY/i3v/3NxSpVqpSy58xU/fr1c9u22Mqtt97qYqloaM1UydyJ/M9//uO2hw4dCsCWLX6E5N133w34Rb0k8ygTLSIiIiISkS6iRUREREQiUmOhZJVwFvSUKVMAmDhxIgCVK/vlznr37g3AKaec4mI53ZazfblpHJOchbcyba6qrSAHsHXrViC+SaeoCd9rXbt2BfxqmgBvvvkmUBDlHL61r06L2M9t/RN+lvDK/5Zz5NxfuNFtvXPX6QC0G3q4iz32QazcIpUlHADbt8eaKV97LTYH++uvv3b7hg8fDkCFChX2+bqi+Jm312rlypUuZjOhw8brovJ65Fbjxo3dtjWzW9Mh+FVyw3Nb3bp1C+joJBWUiRYRERERiUiZaMkKu3bFRmTNmjXLxcaPj43qWrduHQCPP/6423fSSScB0TMpyrykXunSpd32scfGcphhs+Hrr78OxK/0FX5NURC+7/7whz8AfsVH8E1fX375JQA1a9ZM+LWFK5aBnnOTbz7s/GxbAP756QgXO7t6ajPQxkaLLV26FICGDRu6fdYgFypqIyx3797ttl955RUAfv31VxezUZPFi+fPzyfTJPO+sJF3AB06dAD8iqMAzz77LBD/mg4ZMmSfr5X0pUy0iIiIiEhEuogWEREREYlI5RySsayEA2D+/PlAfLNV9erVARg1ahSQ/CzOothIlC7atGkDwKpVq1zsgQceAOJ/ftWqVSvQ40pH7du3d9tW8mKNSjfffLPbl/j2e2w+86ZNPnLooaUiPf+2zRtiG41quNjRCR8Z+5zaSoSdR9Z2e0a8HyvjyK8SjnC+9ogRseeyVR379++f49cWtc++reQIfqaxlb0BnH/++QV+TNnIVsYFX4YVNlI/9thj+zxO0pcy0SIiIiIiESkTLZEVdqbWMtBz5sxxsSuvvBKIH1nXs2dPIPpqUEUtA5VObCXJtWvXutikSZMAeOutt1zsrLPOAqB8+fKRvn9hv3dT6cwzz3TbK1asAGDy5MkA3HDDDW5fokz0T9OvAuDIy/zrN33FMADaHbzPw72Nr7nNUQ+uAqDnhOb+uRJ8ya7F/w+ALr1jx9h/7iduX48Uj7EzNqLt+eefdzEbf9myZUsATjjhhHx57nSW6P1vK+jZ6D/wn78WLVq4mH02k/3+ez+P7Ms+p8OGDXOxMWPGAP79aXfnQM2G6UiZaBERERGRiJSJljwpqDFQ4SIqNqrKasfAj6sKxwedeuqpBXJsknr169d32506dQLgmWeecTGriQ7vPCQjm94L4eJBtWvH6oztLs3ChQvdPqtrLVXK1zwffHqsd+CxBn7M27kdY2MDJ4zs42Itq8S+ZvPqNwAYd+Xlbt/UbtMB+KhzotT1Grf14qDbAPiqXyxL3r/Odrdv7drtRFGywhEA7K98+7vvvgP8IirgR4zZ+0lirP/AekfAv0Z5uYtnvxuy6e5PqlWtWhXwCygB/PDDD4AfdWeL3AA0b94cSS/KRIuIiIiIRKSLaBERERGRiFTOIZElumWXX+z2tK2gBfDUU08BsHXrVhezMWgnn3yyix14oP5GzFQ2hgygd+/eAFx66aUu9s477wC+8alYsWIFeHTpp06dOoB//7/44otun5W+1KjhR9FRPPb4XjO/cqETnx8NwGM3+XKHAatj/z2kfqwU4i/3LnH7lnWqBUDiyorVbmvFkpoAHLHkegBOn53MvyixS8Z9DsCtrfbdt3HjRrdtTcdW1gG+EdNW3iuKwnO3lci9//77AHz00Udu38CBAwG/OmZeniu/f0dkg/D3lr1e1hhvjdXgS7IaNWpUgEcnOdFVhoiIiIhIRAf8pj8TJQ1ZBnru3LkADBo0yO379ddfgfjGwvAveclciRpVLXbeeee5WMmSJQHfSNq5c+eUPff+pGNz1I8//gjAzJkzgfjPy7hx4wA/2i1bTZs2zW3bnalWrXzK+uqrrwbgqKOOyvNzFVRDdX6ykXYTJkwAYNu2bW7f+PHjAahQoUKBH1dRkuh9ZIve2O++fv36uX12Dgw/3+XKlcv345Tfp0y0iIiIiEhEuogWEREREYlIjYWSNqyEA/zqdFdccQUATZo0cfuuvfZaIPoMU0l/Od0ev/766932rbfeCvjZ0ako59jfrfl0rnw75JBDAD8TeseOHW7fJ5/EVgg8/vjjXSycPZvpNmzYAMD8+fNdbM2a2Jzq/v37u5jN5E2FTC7jMFbOsWjRIgBGjhzp9pUtW7ZQjqmoSfQ+slK1du3aAdCrVy+3zxrsb7vtNhd75JFH8vEIZX+UiRYRERERiUiZaCl0loGeMWOGi91xxx2AH2HWo0cPt88apBL9Fa/VsTLP/n5mFmvdurWL2YqGn38eG3k2e7afm2Yr0xVFhx12GBC/Kt+CBQsAOPbYY12sffv2BXtg+chGgH344YcudvHFFwNw5JFH5vr7JrrzkOnnlFmzZrntZcuWAXDCCScA0KxZM7evePHiBXtgGSi/m0vtZ2AjPgHWr18PxN91sTsIffv2/d1jzM/jLOqUiRYRERERiUgX0SIiIiIiEamcQwpF2ET4r3/9C/DzSgHKly8PQJ8+fQA49dRT3b5kVyLMhlmuRU1OP7Mw9uc//xnw75lhw4a5fXXr1gVSMw8405QpUwaASy65xMVuvvlmwK9MB5lfzhGuRGgNcmEJwuWXX57n58im84aVAYwaNcrF7N930UUXASrhSFdWogW+TCmc6T127FjAl+UANG/eHICDDtIlXn5TJlpEREREJCL9mSIFylYbfP31113M/pK2sVQAo0ePBvxKhLkZP5ZNmSSJZ41zX331FQCDBw92+yZPngzABRdc4GJVqlTJ83Omy/spp2x9iRIlgPiV+iwb9cUXX7iYrXBoo/FSxRo9165d62I2bs9iYXasWrVqQPzKeCeeeOLvfv+dO3cCfkU9gO3btwPxYw5r1KiRm8PPKps2bXLbNgrSxh2Cz2qeffbZBXtgWaIwzgeNGzcG4psN7Wc6ZswYFytVqhTgR15K/lEmWkREREQkIl1Ei4iIiIhEpHIOyXdWwgF+JcIbb7zRxWyW6+OPP+5i4czSZKTLrXaJLi8/u3POOQeIX6HPZoyHDTkXXnghAMWKFcv1c6WLqK+Xlb5YqQX4kpf9NeBZCYbNcA/ncdtt5PD7hj+H3LLSji5duriYNUeWK1cOiL91bT/bSy+9NM/PnQ2safvdd991MVvh0/4LcNlllwE6d2aisORp+PDhgD8XAlSqVAmAihUrulitWrUK5uCKGGWiRUREREQiOuC3RB1ZIilgGZG5c+e6WL9+/QDfMAjQs2dPANq2betie4+xU+Og5MQaDAFuu+02wK/IBn41r+7du+fL86fzOMXly5cDcP/997uYjYjr37+/i82cOROIb/oNG9F+j2W9AGrXrg34MYPgGwlt5ODu3bvdvm+++QaAVatWuZiN4tu6des+38NG94U/21tuuQVIvkEu288lL730EgBDhgxxMRt/dtNNN7lYvXr1cvX9tQpeerG7Py+88IKLPfbYY0B8g/HQoUOB5EfESnL0aoqIiIiIRKRMtKScZaBfeeUVwP9VDH4xiDADZgs/ZEO9qhS+Dz/8EIDrrrvOxWzkU/i+C0eiFQV//etf3fajjz4KwJ49e3L8mgYNGgC+rrpDhw5uX4sWLYD48XSpYJm18LxhPRS2CNO9997r9nXt2hWAww8/PKXHkUnCuwcjRowA4Ntvv3Uxq5tt0qSJi+U2I6lMdHoKF2C5++67AVi4cKGLnX766YDvL5DUUCZaRERERCQiXUSLiIiIiESkco4sUdjNMuEYu1dffRWACRMmAPErpdkt2pYtW7qYGh0kPzz99NNue9SoUQCULVvWxWykYvXq1fP1OAr7s2mmTJnitq+++mogfiXHK6+8Eohv0DviiCMK6Oj2tXLlSrf9j3/8A/DnlunTp7t9NWvWLNDjSidWsnHttde62OrVqwH4v//7PxdLNP4vnZthJW++/PJLAB5++GEXmzNnDuA/S4lWNZXodPUiIiIiIhKR/vzIEomyCQXRAGIZ6Hnz5rnYgw8+CMDOnTsBnwUEP9pO2Q/Jb926dXPbP/30ExDfrGbvUxuJF2ZlUyHdbvI1b97cbVvT5cSJE12sY8eOQOFmn0NTp05122+//Tbgj7ty5cqFckzpYsuWLYAfY2djDME3Wu5v8Rmdg7OXLaxy8cUXu9iGDRsA36QbLm7WqFGjAjy67KJMtIiIiIhIRLqIFhERERGJSOUcWSy/SzjA32bt06ePizVs2BCAa665BohfnVC3EGVvBdF4Z6Ud4SxyW73tyCOPBPzKmZCa0o50e69XrVrVbTdu3BjwJS0AK1asAPzrAYXTcLR48WLAn1vAz5e3FQtt7ne2yemzsGnTJhezEjlbpS5cidAaRCU75KUsMyzhuuGGGwC44oorAD8rHnwTajhHPLeK2hxxZaJFRERERCJSJlqSZhnoWbNmudgdd9wBxP8Fe/nllwNwyimnAEXjr1HJvYJ4fxx88MEAnHXWWS62Zs0aACZNmhT3/wB9+/YF4IQTTsj1c6bzCDEb69euXTsXmzlzJhCfha9fv37c1xXEXQNbcS9cge2yyy4DsjcDbRK9lsuWLQNg5MiRLjZt2jQAevfuDcD555/v9pUrVy4/D1EKWKo+X3aH2H5n238BnnzySSB+1c9q1arl6nnS8XyXn5SJFhERERGJSBfRIiIiIiIRqZxDchQ2Eb7yyiuAX4kQoGTJkoBvVgBo06YNEN/EJZIOwluU1oC1fv16ABYuXOj2WdONlSZB/Cqbmc5KNi666CIXu/vuuwFo1qyZi+1dzpFqu3fvBmDJkiUutmDBAgBat27tYmG5QlFgrwH48+17773nYnaOtbKjo48+ugCPTjJR8eLFATjnnHMA+M9//uP22faYMWNcbMCAAYD/HS+JKRMtIiIiIhKRMtGSkGWI3njjDRezv1JXr169TywcY3fggb//t1k6N1tJ0WIr89kqhvfcc4/bZ82G4Xv9gQceAKBevXoulqmNbuXLlwfgtNNOc7GNGzcCftQdwK5duwCfxcrL5zbRZ9+e8+9//7uLWdPj6aef7mLZ3Cy3Y8cOt71y5UoABg8e7GLWWBhm4++77z5A59Fslt+/K++66y63fe211wLw0ksvudhJJ50EwBlnnOFimXq+y0/KRIuIiIiIRHTAb4lmFkmRZNln8Asd2BB2gMqVKwO+dhJ8nWhOfy0XxFgskVSycW9DhgxxMRuB99BDD7mY1RdapjbTWKYZ4Prrrwdg586dLnbuuecC0Llz53x5fjvPdOrUycWGDx8OwIUXXuhimVqXmVM20V7nN99808WsxjlcGOe6664Dil5duBSc5cuXA/D444+72PPPPw/4XijI28jPbKVMtIiIiIhIRLqIFhERERGJSOUc4sbYzZs3z8WsjKNRo0Yu1qNHDwA6dOjgYhpjJ9nIyhw++OADF7MV48LRUF26dAHghhtuAPzKiJliz549bttGqIUNlrVr1wbg4YcfTtlzfvTRR27bRgmuXbvWxayBM1tvHW/evBmA0aNHAzBu3Di3r3nz5oA/1wK0aNECyNySFikY4aVcbssl3333Xbc9dOhQAH766ScXs4ZWW6FYpZrKRIuIiIiIRKYRd0WYZaBfffVVwI/6AqhZsyYAl112mYtZBjpR9jkVfwWL5KQg32PWKGiZQfDv+zJlyrjYW2+9BcC6deuA+MVLbHxcOn8ewnGUtshKmE1ftWoV4BekqVSpktuX23+XvWbg73498sgjLmbZ75yky/km2eOwBkrw4xM/++wzwC+cAn5xn3DBm6jPJZLb8XiWYQa/gJo1HAM8+eSTAJQuXRqIH/dZVIsalIkWEREREYlIF9EiIiIiIhGpnKOIsRIO8LNwJ06cCMQ399gKYq1atXIxNRFKUda0aVMAatSo4WJWhjBlyhQAtm/f7vbZ56lhw4YuZl8bloTsrbBu29tzhauPvvPOO4CfFRuWd0U9tvnz5wPxjZn2eoRzojPpPBO+Bj///DMQv8qllWyEs3atgbNt27YADBo0yO0Ly2WMVnmVZITvD3vPJHsusceVKFHCxWzF0G7durmYrWhoKxfedtttbl/ZsmVze+gZTZloEREREZGINOIuhdJ53IutRhg29dx6662Az56FjYXWUBU2HolIPFt1zhrk7r//frfv/fffB+Ibx/r06QPErwBoY+YKIwObKFP1+eefu9gTTzwBwMcffwzA5MmT3T7LRiXL/u3Lli1zsYEDBwI+6wWZcc6x82l4rG+88QYQv+rbjBkzgPiGLRuH2LFjRwAOOkg3hCUzXHXVVQB8+OGHAFxwwQVun43FzaQ7SamQ/mcrEREREZE0o4toEREREZGIdB8phdJtXqndcgTfIGS3VMHPeOzfvz8QPxM3E26pihQ2a8Q59dRTAahfv77bZyvzWeMu+NuhtWrVcrEbb7wRgDPPPBMo2M9eonNW3bp13bYd53PPPQf4udEAderUARIfb7gSopU0LF26FIh/jezfnGnmzJkDwIMPPuhiVqZy0kknudjTTz8NxK/8WqVKFUBlHJJ5rJHQ3vfDhw93+2yF0VNOOcXFwkbFbKUrJRERERGRiNRYmIVsjN3s2bNdzMYoVatWzcV69OgB+PFSRa0hQCQ//fLLLwB88sknLvbuu+8CfswZ+JFoNu7tnHPOcfvOOussIHoTX6pYxvVvf/sb4FdhBOjevTvgM6sh+7cDnHvuuQAcfvjhAPTq1cvtC79furF/w2uvveZiL774IuB/ZlWrVnX7LAPdsmVLF7MMdGH9/ETyg52/Ro8e7WJ2nguz0+FdmVTK77GPUb6/MtEiIiIiIhGpKCtLhIuoWA2ijacC/5fVFVdc4WLt27cHlIEWyQ8lS5YE4rMxth2Omnz22WcBvzDHM8884/ZZ7LjjjnMxy36Gi74cddRRQOozM1Yf/ac//QmIP6ecccYZQHwm2hYcmTt3routWLEC8BnpdMk+r1mzxm1bZvm7775zMRv1t3jxYhdbt24d4PtJwhFfrVu3BnQ+lexnCzLt2rXLxWzEXdgDYjXRVi+dKnuf58K7fQsWLADiF74qV64cEH8etTtGNr6zYsWKbp+dT5OhTLSIiIiISES6iBYRERERiUjlHBnOxtj9+9//djFbMctuo4JvAGjRooWL6bajSOEIx0DZto2hHDVqlNs3YsQIwN+OBH9r1MoHAJo1awb4kXTFixd3+6yprXTp0i6W7Gf/yCOPBKBdu3aAb1AG+OKLL4D41fhWrlwJwKOPPupitmJjq1atknrO3ArH6llZif0XfMmbjemz277gX3tbiQ1g8+bNQPyKk/fccw+Q878l6sq1icaTimSC8LNv54abbrrJxcqUKQP4lUkBypcvn+fn3bp1K+DLOF5++WW3b/z48QBs2rTJxY444gjAN2qDL9mw8hMrbw33JUOZaBERERGRiJSJzlCWgbaRWdddd53bZwXylpEGX0SvRVSkKIqaHSyo7xWybLL9F3w25YMPPnCxWbNmATBp0iQXGzJkCOCzzWHzni0EEy5scswxx0Q6tsMOOwyIz9bYMVmWB+Crr74CfGYX4NVXXwXiFxzJD2GjoL1GYYOjbW/ZsgWIfw0s23zppZe6WOPGjQGoVKmSiyXzc476XlD2WTJVOLrRmo8XLVrkYjNnzgTiBx889NBDuXqubdu2ue1+/foBPgMdDkyw7HTYKGifeTse8ItF9ezZE4hv1I5CV1QiIiIiIhHpIlpEREREJCKtWJiEN954w23bajzff/89EL8yl81MDGM2Q/WBBx5wsaZNmwLxzT/JsBIOgHnz5gFw1VVXAXD88ce7fbaSWHj7NplGIjW4iKSncOapzSreuHGji9n5yOYd24zjcNseA36GdTg3tXbt2gBUrlzZxazkwc5jYQPz1KlTgfjzht0SDWdHW6lJonOK/bus2S98XFiesXz5cgA2bNiwz+OXLFkCxN/utVnaf/jDH1zMZjvXrFlzn2O0W7/hv71s2bL7HK+I5OzHH39023feeScQPxe/T58+gC+jCM8LOa0U+Je//MVtW1OwrbY8YMAAty+npsClS5e67f79+wPQuXNnAM477zy3L0pphzLRIiIiIiIRKROdBMt0AIwdOxbwK3cde+yxbl/9+vWB+KyvZYbCEVXXXnst4Jt/9pf1taL8119/3cVsDJaNdbrmmmvcvrD5R0SKjp07dwJ+pcNwO8zCWDb7oIN8b7nd6QpHxdl+u2u2Y8cOt+/FF1+M+17gM8DWlAfQoEEDwDch2TGG2+FdNhM2I9m2/boK7+LZ14aNRJZ1tv+Cv1tnWXgRyV92zgmHHFgW+b777gOgefPmbp99rsPPvl1/heP0LHtslQGJMseJ7qyH5yr7WmvkDsf/hnek9keZaBERERGRiHQRLSIiIiISkeZE58Bua4a3BK+//nrAN9jccsstbl9YmG5mzJgB+NsPsO882HAlMRPe8nzzzTcBv3oZwJw5cwD4+9//DvhmGYC1a9cC8Q2OahQUyS6JbldaKZmVVYA/N4SNxuvXrwd8wx74+arfffedi1lz37fffgtAiRIl3D47b4VlFFbuMX/+fBebPXs24M+nYQlJhQoVADj66KNdzB4Xzp+2lRjtNmvYEGnn5/Dx9jqE51FrSkxUOiIiqRGel6x519apAF8GNnLkSCC+vOrkk08G4pum7bonLLH4n//5HyDnBsBE1zzh+cvm1ltDdVhyG4Uy0SIiIiIiESkTnYNEq/tZRub9998HEq/8ZaPuwI9JCv/asgxOou9vf8WFK5TZCj+WkQb/l93ChQsBWLx4sdunTItI3iTKYuTUgx318YXNjjc8btsOz1XWOG3ZmpBljcLznX2PcCWzqBK9bhbbvHkzEL8iom1Hfb1T8TPb3x2+3L4HMu39JJKI3RH6+eefXcwGMNiKq3aXCaBu3bqAv2sEPhNt43whvgkwCrvzBdClS5dcfY+9KRMtIiIiIhKRMtFJCMeirFixAvALmoS1yGbZsmVue/DgwUD82DnLIicatWR1zJbpBqhevToAXbt2dbEyZcoAPgsUZoNERJKRKOOZl/4Jy5aGmafcfo9k9ylDK5I5qlWrBsCFF14IxI/NtPF34ZhNEy6icsghh+TnIUaiTLSIiIiISES6iBYRERERiUjlHEnYunWr27ZSDRvbFBanH3zwwYC/XQHQt29fwJdkgC+sT8TGP7Vt29bFrIg+p9XFEo27EhHJL3bO0flGRJJlAxXClZ2NXUN99NFH++wLy18TfW1hUSZaRERERCQiZaKT8P3337vtL774Aogfy2Lsr6dwsYJWrVoB0LhxYxez9eETsWxzgwYNcn/AIiIiIhkoXATKbNu2zW0najxMRlhVYOMybUGYnK7LcqJMtIiIiIhIRLqIFhERERGJSOUcSVi6dKnb/uGHHwB49tlnATjiiCPcvi+//BKAO++808VsFqI1IgK0bt0a8Ou4qylQREREskmiGe7JXOMcffTRbtuaDcP1N1avXg34Uoz9+eabb4D4MhFbk8NmTqucQ0RERESkgCgTnYMtW7YA8eu4lypVCkj8F5A1G5599tkuNnHiRADeeustFzvuuOMAvwKPss8iIiKSTXJ7bRNeX91yyy0ADBkyxMVsTJ5VAoSZaxNmnceOHQvA119/7WITJkwA4kcH54Yy0SIiIiIiEekiWkREREQkIpVz5ODjjz8GfAE6QLNmzYCcb1Ps2rXLbdvjKlSo4GLWUJgTNRuKSGFbsGABAA8//DAAa9eudfu2b98OwK+//upiOTUS1axZE/DN1gBdu3ZN7QGLSMYLr5d69OgB+AZDgOeeew7wqzmHAx7sfFSvXj0Xa9euXdz3gryXcRhlokVEREREIlImOgcffvghEL86zh//+Mffffzrr78O+KwN+MzMySef7GIVK1bc73Mr+ywihc3OVTVq1ABgxowZbl/Dhg0BOOaYY1ysbNmyQPz56/PPPwfgq6++Avx4KhGRRKxxEHyW+ZJLLnGx0qVLAzBv3jwgfjzd7t27gfhVn9u3bw9AnTp1Un+sKf+OIiIiIiJZ7oDfEhWxFWELFy5023fddRfgx9oB9OrVC4By5coB8XU6AwcOBGDq1KkuduaZZwLw0ksvuZj9FSUikm4S9WNs27YNgPPPP9/tGzBgAABt27bd53uEfSSWgZ48eTIQX7/YvXv31By0iGQlOx+l4u58fvSaKRMtIiIiIhKRLqJFRERERCJSY+FemjZt6rbD4nbzwgsv/O7XVq1aFYDBgwe72O23356r49CIOxEpDInONz/++CPgm3YgfgyVsdKNKVOmuFjfvn0BaNSoERA/Ek9EJCd2PkrFNVF+XEspEy0iIiIiEpEy0Xv55JNP3HaiTHQ47g7i/zoqWbIkAJUqVcrzcSj7LCKFbcOGDQAsWrQIgE6dOrl9tpjBt99+62Jz5swBoHr16i5m50gbMxUuRiUikox0vSZSJlpEREREJCJdRIuIiIiIRKRyjr0cf/zxhX0IIiJp4eeffwbgs88+A2DSpElu39y5cwHYtGmTi1kp26BBg1ysWLFigF9VzMreREQynTLRIiIiIiIRKRMtIiIJbdy4EYClS5cC8autbtmyJW4f+PF1NWvWdDHLQIuIZBtlokVEREREItJFtIiIiIhIRCrnEBGRhL744gsAVq9eDcQ3FtaoUQOAiRMnutjbb78NwKGHHlpQhygiUmiUiRYRERERiUiZaBERcbZv3+62161bB0CJEiUAqFKlyj6PP+qoo9z2SSedlM9HJyKSPpSJFhERERGJSJloEZEs9ttvvwFwwAEHJPX4JUuWuO0ff/wRgGbNmgGJx9U1adIk4bYZPXo0AC1atADghBNOSOo4RETSnTLRIiIiIiIR6SJaRERERCQilXOIiBQBVtYBOZd2fPrpp27bViXs0qULAMWKFdvn8YnG2T3//PNue9GiRQA0bNgw4hGLiKQ3ZaJFRERERCJSJlpEJIslyjrv3r0bgJ9++snFbJzdzJkzXWzbtm0AtGnTBoD33nvP7TvwwFgOpnTp0i5m+++++24X69OnDwBVq1bNw79CRCT9KBMtIiIiIhKRLqJFRERERCI64Lew20RERLLe1q1bAZg1a5aL9e3bF4D169e7mJWCRP01UapUKbc9bdo0AE477TQADjpIVYQikh2UiRYRERERiUiZaBGRImbPnj2AH2EH8PXXXwO+6RB886A9PtlfF+HKhrVq1QKgTJkyeThiEZH0o0y0iIiIiEhEuogWEREREYlI5RwiIiIiIhEpEy0iIiIiEpEuokVEREREItJFtIiIiIhIRLqIFhERERGJSBfRIiIiIiIR6SJaRERERCQiXUSLiIiIiESki2gRERERkYh0ES0iIiIiEpEuokVEREREItJFtIiIiIhIRLqIFhERERGJSBfRIiIiIiIR/X9f1d5SoWYsPwAAAABJRU5ErkJggg==",
"path": "images_version_6/image_32.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
Circle I is the inscribed circle of triangle ABC, then the degree of angle A is ()
Choices:
A:68°
B:52°
C:76°
D:38°
|
||
161
|
33
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAABgCAAAAAAVoyK8AAAJvklEQVR4nL2ae4xcVR3Hf/cx9857n13YUgrSta1AJW2BpkChgoCPAtqQAAaRkAikWEUIBRGjVEAMrQhYjCUQbdWWxmpCJIUiQlJi5F2wQKHQFvvcnd153Dv3cZ5f/9hu1V1md5md2e+fJ/fmM99zvuf8zj1nDND/q79zIJPsbXO0oU0JJ04eaY8ThsncD3uokTKHN3T2diQPXFSkkFmU4HwITkmrSFL1qObSZZp04toVKuuQ0ZdVYqg9EB1hRlat5tKtHDe6bpp+DcX9vKvqJIba3cTbae4mhz/eYDqIDDi3BWtFp9mftY56t/tOI0VGY+mEYQoZECAufq4fA6jwo+0K/YcR9A1/fGIa4T0VEtl73LaHzvdbVPw/ISucVWbpVt1Q6yPoPCtZ4jPELrzxEmZNSQZD7TtO4hYRH/F8Y+mObbsGkUvXnXR3bFBKEBNEpE45mJUJSjV5xg1JszX7HqZIc+UmSHBh6WxkirixsatJL+cTt2x9waaMIlVVVrKY29tCiVRjx31E5oek/VhsO/9DaA8AJOM4difA4+ZmfkiGtuwzLvuZb9hhwCAjs6+7TzDhNtR6TTpPU+zecMJylkq7ruG2qC5rTsJIN3nGHaXbpYR2l4VP+sxAQWpnf3mfcKjSULoxvMIeVZQK0lokF98URTpaPKP3iu2fXT9XpieHLnka8PPGs6tmzE5VXoytay+agjCDuqectEp5Raa2DeKGY4xOV6ahwhyU/ZvnfjHNZHz/w+9+7ZudnuvUCReWSMqgRSTCNGkZUuuodD+HOMXc9ae1rAvuaNVkGDtXq+/PqZNNRHtOkDDMOFPJR3EHKWtUOh3qJj8VX/q744s//LyXdFjZNhwnrLvAF4+LKf3x3TaBu7FhDu4bamZedKuDOePx9PED7T/Z+G5oojM9pU271XrpyWxUiqccrhSNPSzp2tFga811aADwn3x6fgUKr5zzL7kfEsyDqHdZq5bAIvXdGVPnzVoNURlsrL3SMmDH2v6FqEpEm5eEUBKy4EHXKYGikth16V+9TbO2Au+NToeEvzLWyzliBX/NEoRgErGu1zs0ixBgboxdM3ciGmyrOe6+dWDdYz1dqYQQJssubb0/QU41ckWt58cUKg5S2xa6waoFJ9LQrqXWT+XswJZo4IPHGGJEvShf/vciNMK6xx0BR9nfNKNtzpvA/iNdWJMu37qaAb99oIqBPgDsufmFgwgqdcM5YsTsuh24L/sGhsavJv3nPe1vD5xnL1i2A9CMB3rTItUX1p95wBPxgaX96J/7YBVBNDo90BEg4Uc6ZgCUDu+7PIKU9bIPAMA9TwBbT302jNSgi5qpSxnJUqgom6xyR3OpROqa7BrPqrvIdFHo7S5Mp/hX75yack179NTFjCPgEbRW1UBqAH3swj/79VoHK+C1mZ2zu2iBAqpH0luTzrivhQIPAQ7Wj4qGfOmc9+umg1cgBju8ggrY6PQRUgxiy9f3CQkJFFGFYvGEUohRxn24mEmhfe65d5BFAYkcZZjpuMmyXW8OiGiUGjdcNpyUSl3Z/WiF8kXbrionjIqGE4z95mgady9xjnAAH53zBxwGL2ugD5jo7n7cdKmLHCr0P1y8B55A1eeIRZVXJ0Qf/zepkVRksOyMhRf5ORVlsh4BmTAzoY4fN91SKYcF+cr615ZdGQcpYqusU6Znj//KhOjj7nlRQqyhbplfwo13QvgoLjsA/db3Jqfnjdai64VLjVez6p7dv6Ys2grttGHWBDa5n8Y7AoV9c9cNBIix6sR9feHmNd4zz1TrrjqfzjtPmkFuP7WH5K7esDk9JUWPd9/QkokmyXtlAGF50V2KLb/YB0J+xa7inX5JTY73IN+CVMtT5bNXv/f7LOnEQNjd2p7N1/wYaax3hqqHGN6iYwcUPhZYuwZgH63kY7/ZCO9mNUN77cJ35m9pNyvddu9rZ++lyv2z4snxLrQPFM77EapCamzrSE/Pd3a0vDkh62Ov8wE0U1ohUBLbv7RyYikbrjHrc8pzXWGaXp7Krz/wjSWNPasc0zsHmMcByO0Xb+A42FDvtb/fjyhOMp7j5Qw9v+7mM52SlZ9U77GSLI4kHv3qP2LwnQ21PrZ3IhJhi79x283zlKWl1zmp3oFQoPfBBXsQwgsQNtT7mJn38toOHyg8n9aOTLP6D8w+UbVnUMSoTFDpUubATeEvM4Zp2VbaaOy1UE164LjlVo8obuu9u+XeFtlQ6pj0jNFrUb6K7NvXTlvdarCm0GuOu59zc4fbcrR13dWXGeRPbO9aUzXzWNFliMLLX3xRAgyNXd+HVLPnWc7IcePft684ThO3aIJfTJ/Wu+wFqz7b8ypCxXlcaor12hVWqSJ/6Lxd8LWQSmJie9daGpk6IRN2kFF+q3tj/KcOnR0MZmPvnoc0YtwDK0X9GY+39t1ur+40BppCHdLIKqNC3ULK2vtj65EMgTf2EmosOndI2kQ7H06sSsRkJT7xrUZpRM8nQrJJ7r5v6v0J6SVZY+9dR2h4DAUGwHactVHwisBueE3J+pBG0FWfwgszXylxhCLSXnNmWk06NDZd8LcYEWeA16R5PoKuVagUeAT1x9P/Cc6aSh1B9yFUEAL80Vn9DL2TAv/vWueKRDXLqbzq45dSlpyimrO4DdPRGadN0uSole+u6TQsZTSpptWiu57Kc7kkt74PKW5QY297x6STa9Ghq864JtMTa2kXJ3b+Om4NBUAxFC58BCqUVSDSzV1lhnTUu3T2Xn7J9UUjJTNamSo3KdaN2PUzVM1r8/1v/eASEEs1GSgMlSRumHGGiu2ECqCUX4lO3xpCq/rvGscpDq84WD2YFEZkiyhn+dlH9vb4iail1N5k70ULHfne9qU6TwNdtqUTKaoaVjzvUGc4xesKm0zvOeQk9mb6s8RFV9EABMrpXCVp2TFzVLbJcJIsI1g2Tg50yHLGjEpYe8EJXzbuEmS2mNlSs8fdTENld9OhNvI6U2aqtPDQy8UnemYG5BQUtTXbu4DhFh+YsWi2Pa/qU/XcqypAvOIpqDIKzS9uKuIMheWvMrFiqk9rZx4EymIjFxoAmj7jfCnQjyVMRbj1evunK7oPJzpKV0iDiGiCh77jUJbI63hxDsXSLYRmZbbf3kGIjMEzkabjK5WqReuXOOm8cbpn5w7n1P7EMdIkgwhoOr1FWaAPTub9nUouNtvfk9a0zDtvGAZR89lE3Og19p2ZdKY68l7HvG3zX6r9L/zsZBrs9Ub/XXeErL3H8C2dybLet+zsWwlPT+88+dY4BLRWSjc980AgvrA9FIWTvl36gADVp2IxeXD/9RRNm9bRuUEH+A84P2xeYjjwsgAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_33.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, the straight line AB parallel CD, angle 1 = 136.0, angle E is a right angle, then angle C is equal to ()
Choices:
A:42°
B:44°
C:46°
D:48°
|
Như hình vẽ, đường thẳng AB song song với CD, góc 1 bằng 136°, góc E là góc vuông, thì góc C bằng ()
Lựa chọn:
A: 42°
B: 44°
C: 46°
D: 48°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the straight line AB parallel CD, angle 1 = 136.0, angle E is a right angle, then angle C is equal to ()
Choices:
A:42°
B:44°
C:46°
D:48°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the straight line AB parallel CD, angle 1 = 136.0, angle E is a right angle, then angle C is equal to ()
Choices:
A:42°
B:44°
C:46°
D:48°
|
As shown in the figure, the straight line AB parallel CD, angle 1 = 136.0, angle E is a right angle, then angle C is equal to ()
Choices:
A:42°
B:44°
C:46°
D:48°
|
162
|
33
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAABgCAAAAAAVoyK8AAAJvklEQVR4nL2ae4xcVR3Hf/cx9857n13YUgrSta1AJW2BpkChgoCPAtqQAAaRkAikWEUIBRGjVEAMrQhYjCUQbdWWxmpCJIUiQlJi5F2wQKHQFvvcnd153Dv3cZ5f/9hu1V1md5md2e+fJ/fmM99zvuf8zj1nDND/q79zIJPsbXO0oU0JJ04eaY8ThsncD3uokTKHN3T2diQPXFSkkFmU4HwITkmrSFL1qObSZZp04toVKuuQ0ZdVYqg9EB1hRlat5tKtHDe6bpp+DcX9vKvqJIba3cTbae4mhz/eYDqIDDi3BWtFp9mftY56t/tOI0VGY+mEYQoZECAufq4fA6jwo+0K/YcR9A1/fGIa4T0VEtl73LaHzvdbVPw/ISucVWbpVt1Q6yPoPCtZ4jPELrzxEmZNSQZD7TtO4hYRH/F8Y+mObbsGkUvXnXR3bFBKEBNEpE45mJUJSjV5xg1JszX7HqZIc+UmSHBh6WxkirixsatJL+cTt2x9waaMIlVVVrKY29tCiVRjx31E5oek/VhsO/9DaA8AJOM4difA4+ZmfkiGtuwzLvuZb9hhwCAjs6+7TzDhNtR6TTpPU+zecMJylkq7ruG2qC5rTsJIN3nGHaXbpYR2l4VP+sxAQWpnf3mfcKjSULoxvMIeVZQK0lokF98URTpaPKP3iu2fXT9XpieHLnka8PPGs6tmzE5VXoytay+agjCDuqectEp5Raa2DeKGY4xOV6ahwhyU/ZvnfjHNZHz/w+9+7ZudnuvUCReWSMqgRSTCNGkZUuuodD+HOMXc9ae1rAvuaNVkGDtXq+/PqZNNRHtOkDDMOFPJR3EHKWtUOh3qJj8VX/q744s//LyXdFjZNhwnrLvAF4+LKf3x3TaBu7FhDu4bamZedKuDOePx9PED7T/Z+G5oojM9pU271XrpyWxUiqccrhSNPSzp2tFga811aADwn3x6fgUKr5zzL7kfEsyDqHdZq5bAIvXdGVPnzVoNURlsrL3SMmDH2v6FqEpEm5eEUBKy4EHXKYGikth16V+9TbO2Au+NToeEvzLWyzliBX/NEoRgErGu1zs0ixBgboxdM3ciGmyrOe6+dWDdYz1dqYQQJssubb0/QU41ckWt58cUKg5S2xa6waoFJ9LQrqXWT+XswJZo4IPHGGJEvShf/vciNMK6xx0BR9nfNKNtzpvA/iNdWJMu37qaAb99oIqBPgDsufmFgwgqdcM5YsTsuh24L/sGhsavJv3nPe1vD5xnL1i2A9CMB3rTItUX1p95wBPxgaX96J/7YBVBNDo90BEg4Uc6ZgCUDu+7PIKU9bIPAMA9TwBbT302jNSgi5qpSxnJUqgom6xyR3OpROqa7BrPqrvIdFHo7S5Mp/hX75yack179NTFjCPgEbRW1UBqAH3swj/79VoHK+C1mZ2zu2iBAqpH0luTzrivhQIPAQ7Wj4qGfOmc9+umg1cgBju8ggrY6PQRUgxiy9f3CQkJFFGFYvGEUohRxn24mEmhfe65d5BFAYkcZZjpuMmyXW8OiGiUGjdcNpyUSl3Z/WiF8kXbrionjIqGE4z95mgady9xjnAAH53zBxwGL2ugD5jo7n7cdKmLHCr0P1y8B55A1eeIRZVXJ0Qf/zepkVRksOyMhRf5ORVlsh4BmTAzoY4fN91SKYcF+cr615ZdGQcpYqusU6Znj//KhOjj7nlRQqyhbplfwo13QvgoLjsA/db3Jqfnjdai64VLjVez6p7dv6Ys2grttGHWBDa5n8Y7AoV9c9cNBIix6sR9feHmNd4zz1TrrjqfzjtPmkFuP7WH5K7esDk9JUWPd9/QkokmyXtlAGF50V2KLb/YB0J+xa7inX5JTY73IN+CVMtT5bNXv/f7LOnEQNjd2p7N1/wYaax3hqqHGN6iYwcUPhZYuwZgH63kY7/ZCO9mNUN77cJ35m9pNyvddu9rZ++lyv2z4snxLrQPFM77EapCamzrSE/Pd3a0vDkh62Ov8wE0U1ohUBLbv7RyYikbrjHrc8pzXWGaXp7Krz/wjSWNPasc0zsHmMcByO0Xb+A42FDvtb/fjyhOMp7j5Qw9v+7mM52SlZ9U77GSLI4kHv3qP2LwnQ21PrZ3IhJhi79x283zlKWl1zmp3oFQoPfBBXsQwgsQNtT7mJn38toOHyg8n9aOTLP6D8w+UbVnUMSoTFDpUubATeEvM4Zp2VbaaOy1UE164LjlVo8obuu9u+XeFtlQ6pj0jNFrUb6K7NvXTlvdarCm0GuOu59zc4fbcrR13dWXGeRPbO9aUzXzWNFliMLLX3xRAgyNXd+HVLPnWc7IcePft684ThO3aIJfTJ/Wu+wFqz7b8ypCxXlcaor12hVWqSJ/6Lxd8LWQSmJie9daGpk6IRN2kFF+q3tj/KcOnR0MZmPvnoc0YtwDK0X9GY+39t1ur+40BppCHdLIKqNC3ULK2vtj65EMgTf2EmosOndI2kQ7H06sSsRkJT7xrUZpRM8nQrJJ7r5v6v0J6SVZY+9dR2h4DAUGwHactVHwisBueE3J+pBG0FWfwgszXylxhCLSXnNmWk06NDZd8LcYEWeA16R5PoKuVagUeAT1x9P/Cc6aSh1B9yFUEAL80Vn9DL2TAv/vWueKRDXLqbzq45dSlpyimrO4DdPRGadN0uSole+u6TQsZTSpptWiu57Kc7kkt74PKW5QY297x6STa9Ghq864JtMTa2kXJ3b+Om4NBUAxFC58BCqUVSDSzV1lhnTUu3T2Xn7J9UUjJTNamSo3KdaN2PUzVM1r8/1v/eASEEs1GSgMlSRumHGGiu2ECqCUX4lO3xpCq/rvGscpDq84WD2YFEZkiyhn+dlH9vb4iail1N5k70ULHfne9qU6TwNdtqUTKaoaVjzvUGc4xesKm0zvOeQk9mb6s8RFV9EABMrpXCVp2TFzVLbJcJIsI1g2Tg50yHLGjEpYe8EJXzbuEmS2mNlSs8fdTENld9OhNvI6U2aqtPDQy8UnemYG5BQUtTXbu4DhFh+YsWi2Pa/qU/XcqypAvOIpqDIKzS9uKuIMheWvMrFiqk9rZx4EymIjFxoAmj7jfCnQjyVMRbj1evunK7oPJzpKV0iDiGiCh77jUJbI63hxDsXSLYRmZbbf3kGIjMEzkabjK5WqReuXOOm8cbpn5w7n1P7EMdIkgwhoOr1FWaAPTub9nUouNtvfk9a0zDtvGAZR89lE3Og19p2ZdKY68l7HvG3zX6r9L/zsZBrs9Ub/XXeErL3H8C2dybLet+zsWwlPT+88+dY4BLRWSjc980AgvrA9FIWTvl36gADVp2IxeXD/9RRNm9bRuUEH+A84P2xeYjjwsgAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_33.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, the straight line AB parallel CD, angle 1 = 136.0, then angle C is equal to ()
Choices:
A:42°
B:44°
C:46°
D:48°
|
Như hình vẽ, đường thẳng AB song song với CD, góc 1 bằng 136°, thì góc C bằng ()
Lựa chọn:
A: 42°
B: 44°
C: 46°
D: 48°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the straight line AB parallel CD, angle 1 = 136.0, then angle C is equal to ()
Choices:
A:42°
B:44°
C:46°
D:48°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the straight line AB parallel CD, angle 1 = 136.0, then angle C is equal to ()
Choices:
A:42°
B:44°
C:46°
D:48°
|
As shown in the figure, the straight line AB parallel CD, angle 1 = 136.0, then angle C is equal to ()
Choices:
A:42°
B:44°
C:46°
D:48°
|
163
|
33
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAABgCAAAAAAVoyK8AAAJvklEQVR4nL2ae4xcVR3Hf/cx9857n13YUgrSta1AJW2BpkChgoCPAtqQAAaRkAikWEUIBRGjVEAMrQhYjCUQbdWWxmpCJIUiQlJi5F2wQKHQFvvcnd153Dv3cZ5f/9hu1V1md5md2e+fJ/fmM99zvuf8zj1nDND/q79zIJPsbXO0oU0JJ04eaY8ThsncD3uokTKHN3T2diQPXFSkkFmU4HwITkmrSFL1qObSZZp04toVKuuQ0ZdVYqg9EB1hRlat5tKtHDe6bpp+DcX9vKvqJIba3cTbae4mhz/eYDqIDDi3BWtFp9mftY56t/tOI0VGY+mEYQoZECAufq4fA6jwo+0K/YcR9A1/fGIa4T0VEtl73LaHzvdbVPw/ISucVWbpVt1Q6yPoPCtZ4jPELrzxEmZNSQZD7TtO4hYRH/F8Y+mObbsGkUvXnXR3bFBKEBNEpE45mJUJSjV5xg1JszX7HqZIc+UmSHBh6WxkirixsatJL+cTt2x9waaMIlVVVrKY29tCiVRjx31E5oek/VhsO/9DaA8AJOM4difA4+ZmfkiGtuwzLvuZb9hhwCAjs6+7TzDhNtR6TTpPU+zecMJylkq7ruG2qC5rTsJIN3nGHaXbpYR2l4VP+sxAQWpnf3mfcKjSULoxvMIeVZQK0lokF98URTpaPKP3iu2fXT9XpieHLnka8PPGs6tmzE5VXoytay+agjCDuqectEp5Raa2DeKGY4xOV6ahwhyU/ZvnfjHNZHz/w+9+7ZudnuvUCReWSMqgRSTCNGkZUuuodD+HOMXc9ae1rAvuaNVkGDtXq+/PqZNNRHtOkDDMOFPJR3EHKWtUOh3qJj8VX/q744s//LyXdFjZNhwnrLvAF4+LKf3x3TaBu7FhDu4bamZedKuDOePx9PED7T/Z+G5oojM9pU271XrpyWxUiqccrhSNPSzp2tFga811aADwn3x6fgUKr5zzL7kfEsyDqHdZq5bAIvXdGVPnzVoNURlsrL3SMmDH2v6FqEpEm5eEUBKy4EHXKYGikth16V+9TbO2Au+NToeEvzLWyzliBX/NEoRgErGu1zs0ixBgboxdM3ciGmyrOe6+dWDdYz1dqYQQJssubb0/QU41ckWt58cUKg5S2xa6waoFJ9LQrqXWT+XswJZo4IPHGGJEvShf/vciNMK6xx0BR9nfNKNtzpvA/iNdWJMu37qaAb99oIqBPgDsufmFgwgqdcM5YsTsuh24L/sGhsavJv3nPe1vD5xnL1i2A9CMB3rTItUX1p95wBPxgaX96J/7YBVBNDo90BEg4Uc6ZgCUDu+7PIKU9bIPAMA9TwBbT302jNSgi5qpSxnJUqgom6xyR3OpROqa7BrPqrvIdFHo7S5Mp/hX75yack179NTFjCPgEbRW1UBqAH3swj/79VoHK+C1mZ2zu2iBAqpH0luTzrivhQIPAQ7Wj4qGfOmc9+umg1cgBju8ggrY6PQRUgxiy9f3CQkJFFGFYvGEUohRxn24mEmhfe65d5BFAYkcZZjpuMmyXW8OiGiUGjdcNpyUSl3Z/WiF8kXbrionjIqGE4z95mgady9xjnAAH53zBxwGL2ugD5jo7n7cdKmLHCr0P1y8B55A1eeIRZVXJ0Qf/zepkVRksOyMhRf5ORVlsh4BmTAzoY4fN91SKYcF+cr615ZdGQcpYqusU6Znj//KhOjj7nlRQqyhbplfwo13QvgoLjsA/db3Jqfnjdai64VLjVez6p7dv6Ys2grttGHWBDa5n8Y7AoV9c9cNBIix6sR9feHmNd4zz1TrrjqfzjtPmkFuP7WH5K7esDk9JUWPd9/QkokmyXtlAGF50V2KLb/YB0J+xa7inX5JTY73IN+CVMtT5bNXv/f7LOnEQNjd2p7N1/wYaax3hqqHGN6iYwcUPhZYuwZgH63kY7/ZCO9mNUN77cJ35m9pNyvddu9rZ++lyv2z4snxLrQPFM77EapCamzrSE/Pd3a0vDkh62Ov8wE0U1ohUBLbv7RyYikbrjHrc8pzXWGaXp7Krz/wjSWNPasc0zsHmMcByO0Xb+A42FDvtb/fjyhOMp7j5Qw9v+7mM52SlZ9U77GSLI4kHv3qP2LwnQ21PrZ3IhJhi79x283zlKWl1zmp3oFQoPfBBXsQwgsQNtT7mJn38toOHyg8n9aOTLP6D8w+UbVnUMSoTFDpUubATeEvM4Zp2VbaaOy1UE164LjlVo8obuu9u+XeFtlQ6pj0jNFrUb6K7NvXTlvdarCm0GuOu59zc4fbcrR13dWXGeRPbO9aUzXzWNFliMLLX3xRAgyNXd+HVLPnWc7IcePft684ThO3aIJfTJ/Wu+wFqz7b8ypCxXlcaor12hVWqSJ/6Lxd8LWQSmJie9daGpk6IRN2kFF+q3tj/KcOnR0MZmPvnoc0YtwDK0X9GY+39t1ur+40BppCHdLIKqNC3ULK2vtj65EMgTf2EmosOndI2kQ7H06sSsRkJT7xrUZpRM8nQrJJ7r5v6v0J6SVZY+9dR2h4DAUGwHactVHwisBueE3J+pBG0FWfwgszXylxhCLSXnNmWk06NDZd8LcYEWeA16R5PoKuVagUeAT1x9P/Cc6aSh1B9yFUEAL80Vn9DL2TAv/vWueKRDXLqbzq45dSlpyimrO4DdPRGadN0uSole+u6TQsZTSpptWiu57Kc7kkt74PKW5QY297x6STa9Ghq864JtMTa2kXJ3b+Om4NBUAxFC58BCqUVSDSzV1lhnTUu3T2Xn7J9UUjJTNamSo3KdaN2PUzVM1r8/1v/eASEEs1GSgMlSRumHGGiu2ECqCUX4lO3xpCq/rvGscpDq84WD2YFEZkiyhn+dlH9vb4iail1N5k70ULHfne9qU6TwNdtqUTKaoaVjzvUGc4xesKm0zvOeQk9mb6s8RFV9EABMrpXCVp2TFzVLbJcJIsI1g2Tg50yHLGjEpYe8EJXzbuEmS2mNlSs8fdTENld9OhNvI6U2aqtPDQy8UnemYG5BQUtTXbu4DhFh+YsWi2Pa/qU/XcqypAvOIpqDIKzS9uKuIMheWvMrFiqk9rZx4EymIjFxoAmj7jfCnQjyVMRbj1evunK7oPJzpKV0iDiGiCh77jUJbI63hxDsXSLYRmZbbf3kGIjMEzkabjK5WqReuXOOm8cbpn5w7n1P7EMdIkgwhoOr1FWaAPTub9nUouNtvfk9a0zDtvGAZR89lE3Og19p2ZdKY68l7HvG3zX6r9L/zsZBrs9Ub/XXeErL3H8C2dybLet+zsWwlPT+88+dY4BLRWSjc980AgvrA9FIWTvl36gADVp2IxeXD/9RRNm9bRuUEH+A84P2xeYjjwsgAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_33.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, angle 1 = 136.0, then angle C is equal to ()
Choices:
A:42°
B:44°
C:46°
D:48°
|
Như hình vẽ, góc 1 = 136°, thì góc C bằng ()
Lựa chọn:
A: 42°
B: 44°
C: 46°
D: 48°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, angle 1 = 136.0, then angle C is equal to ()
Choices:
A:42°
B:44°
C:46°
D:48°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, angle 1 = 136.0, then angle C is equal to ()
Choices:
A:42°
B:44°
C:46°
D:48°
|
As shown in the figure, angle 1 = 136.0, then angle C is equal to ()
Choices:
A:42°
B:44°
C:46°
D:48°
|
164
|
33
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAASIAAADoCAYAAABLuunQAABP3klEQVR4nO29eXQdeHnf/bn7pqt932zZHu22JW/jsY2HYTwLgYEXAgnQEk4P4STlpS3TQpOWQ2lK80KAHHJCmqR9G0JeSgoJdCYwgGfz2ONtvNuSLVubJduyte9Xd1/eP5Tn59+9lsNgGUuyfp9z5ngk3VW693uf37N8H0sqlUphMBgMS4h1qR+AwWAwGCEyGAxLjhEig8Gw5BghMhgMS44RIoPBsOQYITIYDEuOESKDwbDkGCEyGAxLjhEig8Gw5BghMhgMS44RIoPBsOQYITIYDEuOfakfgGGVEe7jxJvduJqepqXiLpeJzXKj4xyXh8PgLqGhtZEqv+NuF2b2RgfnLg8TvutlY8x2n+V4X4SShlYaq/zc7dYMS4OJiAwPiDB9+/8j79z1FB9+5hn+pmvhS00c/394rKCCx/79tzlw4AD/8Cf/gq1FBTz7p+eYyLxw7AYvfbqBiq3/hm8fOMCBb/8uTUUNfPrnN/UL0fU/n+Ox/3yCIAP89NOP86G/7iL2K3qWhnskZTD8qpk+kfrazorUzj98MzUcPZD6LKQ+e2CByw39MPUbrqrUZw+Mp3072vkXqd1Upf7ziaj+3dSJ/1yVcj3xF6lLodvfHT/w2VSV65Opn03Lff8k9fF3/6/UgLpET+r/feKzqQP6TRmWnBUdEQWDQUZHR5mbmwMgHA4zNjbG5OQkoVCIZDIJQDweJxgMEg6HicVi6vsAqVRK/ZdMJkkkEiSTSVKpFPF4nGg0SjQaJRaLkfpH66ZoNEo4HCaRSNzzY08mk0QikbTHlNKsoZLJJNFolHg8rp5rb28v165dIxZbYZ/nITdP/G0Px//jOyj+p85EYylqvvodPvdEftq3HbUf4/c/foNX267f/ubMa/yPr+TytT/7XRrdt7+d/8Tn+MH/fi9ls3Lfc8wW5uBXl8jCnzPOXGjxT8tw/1jROSKbzYbT6SSVSimhcDgc2Gw2bDYbMC8afX193Lp1i/LycmpqarBa5/U3mUwqUbJYLGn/AepyiURCCZXVasVisah/7xW5jVQqpf6Nx+NYLBYcDgcWi0XdpzwWj8ejnteKomQT297O5Zo+xFebFvqBB5c//TuxEy/xV2t/iwuNmZet4LEPaMmnkqf41wXv4VP/s5A/em8pQy/9Hn/yyP/Ny9m/zBMw/KpZ0ULkdDqx2+2EQiFmZmZwOp34fD7sdruKcqampvjpT3/K66+/znPPPUd1dbW6fjweJxaLYbFYsNls2O12bDabikysVitWq5V4PE48HieVSqnL6IJ1L1gsFux2u7oNidosFgt+vx+LxaKiJKvVisPhoKioSD0uEcXVQKzrb/jKd5/gk/92vfpeX+9pePeH2ASEb13g5MX5ZHXzjs2Uu/Vr5/PE1/6B4pf+N3/5JwE2PPtV3vjtGtyZd2JYUla0EImAWCwW4vG4Eib5mRxvZmZmGB4eprOzk7a2Nurr68nJycHhcKijj1xH/k2lUiQSCXX8kqglkUioaGaxiFjKbekRmERc8lhEuOR6DzczdB99i765INcP/hV/vr+QTx/6If/itg5xs/MkdRUOjv/BY3z4H8p4/9O1zJ37X/yfQ25+9+cn+Zp+vHMU0/SBf8NXP/Dgn4nh7bGihUiOLhaLBZfLpd6o8rNEIoHNZqOpqYmZmRmmp6f50Y9+xPve9z727NmjridkikswGCQajeL1evF4PMRiMRKJhIqORATvBRFJuR2bzUZWVpY6ZiYSCXVEk8gtmUxis9lwOBwPeTQUYvDcAQ4MwNC5boJFNXgScWKQXnb//57nD/719+g7W/uP3/8yX3v137Pt3Z9ka+8L/Obd2gMMy44VLUSCzWbD5XJhs9nUkUWiCI/HQ319PTabjbfeeovr169z7tw5iouLqaqqwuPxALePaXJ7QNrxS25vsUeyTOR2k8mkEhur1Yrdbk+LlOSYJpd/uClh72e+yl4Avkrsxkv8y93bOP035/mmFul0Rn+Tv/vtWk2cHBQ/9Tm+8q5KvvXzXn7zt9ffccuG5cmKFyLJnwCq6iXHHbvdjt/vp76+nuLiYiKRCMFgkLNnzzI4OMhzzz3HY489BkAsFiMSiZBMJnG5XDidzrRIKBwOqzyS5I4Wg56XkjzXrVu3ACgvL8fpdKpjo9Vqxel0qmPhasNR9V7+4Ct/TuWX/4F/88S/YK384MnNNNxx6QrK6+DopeuAEaKVwoqO7/XqluRU9DK4vNkdDgclJSU0NzezceNGEokE58+f5+LFi0xMTBCJRNJyP3K7mbdltVrVcWyxeRo9vyXHPckDyRFTqnry/Gw226Krdb9K3nrrLT7/+c/f8/XDfSd45fzNBX9WUV4Hb7TR949f12x6Ai4PsPClDSuNFS1EC4mBnnDOpLa2ln379lFbW0s0GuXKlSscP36c69fn+1N8Ph9+vx+3243FYiEUCjE7O9+Q4vF4VM5G7zdaDHKEnJmZIRqNUlZWRmVlpWpJECHSxXA50tPTw0c/+lEee+wxvvGNb/Daa6/d0+10/egTPPMHRxhe4GfDI/2wuwmpea7d+mvUHTvK5Zk7LslIPzyxqeaeHoNhaVjxQiSVrcySO8xHFJJYBnC5XFRVVdHa2kprayvT09O88cYb9Pf343A40sr30peUGR3p4ne/hEGOl16vF7vdTiKRIBqNqihMnkckEkl7PkvN1NQU/+E//Ac2btzI97//fXJzc/nmN7/JO9/5znu6vU2/9mk2vviHfLcto2Ez1sUL33qRjb+x6/Zha9MH+Ny2v+L3/kdb2rhGrO27/OHP/y9+5+m19/QYDEvDis4RyRsUUMcWvZKlH3kkAZ1KpdizZw/V1dX89//+3zlw4AAbNmxg37596nYjkQiRSAS3243T6SQWixEKhdSx6X40NMpjsVqt+P1+9XxisRjBYBCr1YrP58Nms6nu7mg0qsRyKRsb4/E4f/mXf8kf/MEfMDY2htvt5nOf+xxf+MIXyM3NvePyM91Heatv7h+/Ok83wKlXeOUfFaRYBmAb/yU//PbP2LajgUP/9vf55Dur8Y6d5lv/6b9waMO3Of0v9e7F9Xzi29/mh9t20HDua3zjE/UET3+L//RfLrD1b17jg6ZitqKwpJbLx+s9IEIj0YrD4VCJa5hPQOuRjbyB7XY78Xicv/iLv+AnP/kJLS0tPP3002zatIni4mIlBl6vF4fDwdzcHJFIBKfTqdoE7kc0pEdcs7OznDt3jnA4TFVVFcXFxWRnZ2O324nFYmlCJAK1FLz00ks8//zz9PT0APCRj3yEL3/5y2zYsOGu1xl+88/45s8G7vrzbR//Kh/SOqrDty5w6Gcv8UbPLPg38MR7f43HN5cv3IQY7uPE//kxL7QNQtkmPvC+D/JojWlXXGmsaCGC+TezRDBOp1OV4+F2hDEzM0MoFMLv95Obm6uSzRcvXuTkyZO8/vrrjI+P86lPfYoPfehDwLyISTtAIBAgGo3icrlwu92/kj6etrY2vva1rxGNRvnkJz/Jtm3b8Hq9uFwulZfSo7sHnbQ+f/48zz//PAcPHgRgz549fP3rX2fnzp0P7DEYHl5W9NFM0DudRVflX71Erh/bUqkU69atw2KxcOXKFa5du8bZs2cpKyujvr6egoICdTkZGZHSvT56ca9ikEqliEajjIyM0NnZycGDBzl27BiFhYWEQiEllnI/IoryfB8UAwMDfPGLX+Q73/kOABs2bODLX/4yH/nIRx7YYzA8/KxoIZLqlXRISylcKk4SOWRnZ5OVlaWOM5Lg9vl8rFu3jn379uF2u7ly5Qr/7b/9Nz7+8Y/z7ne/G5gXMq/XmzbbFY1GSSaTaSMlvyyJRILZ2VlOnTrFn/7pn3Ly5ElsNhuPPPIILpfrDpGT6E4v+/8qCQQCfOMb3+CP/uiPCIfD5Obm8oUvfIHPfOYzuN3m6GO4v6xoIRL0SpkeReiRkp5T0XMzXq+X5uZm4vE4N27coKuriwsXLrBu3Tqqq6vxeDx3NDBK2T3ztvRy/tvpwBaRrKmpYXR0lImJibT7ybyNB3Eci8fjfOc73+GLX/wiQ0ND2O12PvvZz/KlL31pwUS0wXA/WNFCpL8x9SPXL8rfZCZ6KyoqsNvtdHd3Mz09TVdXFz/72c/Yt28fGzduvOP6eplf5tn0/qLM5sdMRLz8fj87d+6kubmZI0eO8K1vfYtYLKYS8LoASne17p10v/NUr732Gs8//zwXL14E4EMf+hBf+cpX/slEtMFwP1jRQgR35kveTsSw0GXy8vLYsmUL8Xicrq4uOjo6KCoqwu/3U1ZWpoZjRWj0Y6AeeS00j6b3H+mDulLly8rKoqGhgby8PILBYFrbgX79X1WO6OLFi3z+859n//79AGzbto1vfvOb7Nmz577ej8FwN1Z0Q+P9QKpu4XCYbdu28eEPf5ja2lomJyc5ffo0b775JoODg+ryMhkv0U88HleCJOMkmYlxuaz+X2ZXdiAQUEZviUQizYVR8kMSLcH9EaOhoSE+9alP0drayv79+1m7di3f/e53OXXqlBEhwwNlxUdEi0EMz5LJJA6HA4/HQ1VVFQ0NDQwNDTEyMsKpU6coKyujpKREjXgAd1TN9Ol8+Vof0dB/Lse6aDSa1pwYDoeJRCJpLo2QXhW8H4TDYb7xjW/wx3/8x0xNTZGbm8vv/d7v8dnPftYkog1LwqoWokgkQjQaxe12p9mBNDXNd9f9+Mc/prOzk4sXL1JeXk5lZWVaF7SIhUQ4upGZRDViciYRklTyxJHRZrPh8/mwWq1MTU2ppkVJkgN3CJ4I3L00NUoiemBgALvdzmc+8xm+9KUvUVhYeD9+pQbDPbGqhUiiERETebMXFxeTSCTo6+sjkUhw48YNDh06xJ49e2hsbFSd1frRS08ey890IVnIOkQfPbFarer4JV9nXlY3+of0it0v4uDBg3z+85/n9OnTALz3ve/lm9/8pklEG5YFq1qIXC4XDodD+Q2JWLjdbkpLS9m3bx+lpaXs37+fl19+mdzcXKqqqsjJybljsDaZTKb1FEnkoyMiIpeXkRG4ffzSbUH0pnd9y4gcCwcGBkgkEqxdu/auz7Gnp4fPf/7zvPjiiwC0tLQsajDVYPhVsKqT1XpEoh+vZOB0zZo1NDY2Ul5ejtVqpbu7m1OnTjE2NnbH7chtiIiI2MjP9SNbNBpVRzZBRkicTieRSIS5uTmVmJbriThZrVaCwSC7du1asL0A5ifj/9W/+lc0NDTw4osvUllZyV//9V9z7tw5I0KGZceqjoiETPMzwePxUFZWxtatW7FYLNy8eZPXXnuN7OxsiouLAVT+J9NsX34mTpF6n5FugibHunA4rHJF4XCYQCBAdna2cmoUoZT7++pXv8rAwMAdoxbhcJg/+7M/4w//8A9VIvrf/bt/x+c+9zmTiDYsW1a9EOlv7sx8kVh0NDU1YbVaOXr0KGNjY5w5cwaLxUJtbS15eXk4nc60HI4eCenbOOR+MrHb7eqYmEqlyMnJITs7WzkJ6HNzVquVrq4uvvGNb5CVlcXXv/51dTvf//73+eIXv0hPTw92u53f/d3f5Utf+hKlpaUP4DdpMNw7q1qI9ChDxES+L7YidrudDRs24Pf7CQQCnDlzhtOnT3P9+nU+/OEPs23b/OpAXTT0FUR6hCViJ4KlJ8izsrKwWCw4nU5KS0uVeGRamFitVp5//nni8Thf+MIXqKysVBatR44cAeDZZ5/l61//Os3NzQ/mF2kwLJJVnSOSYxLMi0QikVCrpDN9qYuKimhubqapqYl4PE53dzednZ0MDQ0RjUbV5XTfaX3+TT+yLTQCIknvTIN8/bJWq5UXXniB/fv3s379et7znvcoi9YjR47Q0tLCq6++ys9//nMjQoYVxaqOiEQgxF9IdtqLDxDcPrpZLBbq6upwOp309vbS3t5OT08PBQUFaQltuLP0Pjc3RyKRUL7XcKd1ycTEBHNzc6RSKcbHx5menlbGbHrD4/PPPw9AdnY2O3bsIBwOU1payle+8hX++T//5/fsBmAwLCWr+lWbeUyS/WgWy/xSQ70Erx+bHn/8cfLz81V/Edwur8vSRDlSxeNxZmdnsdvtlJWVkZ+fn2beNjw8zOnTp3nttdfo6uoimUzywgsvMD4+ztatW6mqqlJe1v/1v/5Xrl27BsC5c+fIysriS1/6Er//+79vEtGGFc2qFiKZCZNGQnF4jEajyvtHLD+k4uVyuXjqqadobGzkT/7kTzh58iQ5OTkAam+aPhMWj8cJhUL4fD5CoRDxeJzCwkKcTqfaJPKDH/yAN954Q+01e+GFFxgdHcXr9eL3+7Hb7fT29vLHf/zHaY+/srKSQ4cOceHCBWXRkZWVxVe+8hWysrIe3C/SYFgkK94qdrHIzJeIjM1mU7kayfPIqIZEReLS+O1vf5vDhw+TlZWlqmdyzNP3rIXDYVKpFC6XC6/XS1ZWlvKiHhkZoauri5mZGXw+nzLsX7duHbt376ampgav18uv//qv88orr7yt53Tu3DlaWlp+tb84w6LRvbPg9kC1uIpmuo3qYz7y9UKd9TLfqDtBLNdVVMKqFiLp4dEHXzNL5qlUSkUybrdb5Y6i0SidnZ2cPXuWQ4cOcePGDYqKiigpKaGgoEBFMrKaaHx8nN7eXsbHx9ULJZFIUFJSwpYtW2hqamLDhg0UFxen+WLLcc9qteJyuQgGg4yOjgK3X5jhcJihoSEACgsLTaJ6hZA5MxgMBolEIrhcrrQcpb4qC24L2N2693V3h8z15cuVVX00E+42C6ZXsZxOZ1oPkNPpZP369aRSKQYGBpiZmSEQCOD1emloaGDDhg1K1BKJBDMzM5SVlTExMaE6ryORiIrA+vv7mZqaoqSkhKqqKkpKSsjJyUkTpHg8rnazZa40qq+vf3C/MMOiyBQX3QNdtx+W159ESJDu8qBfT14LC3lf6VXd5SpMq16IpNy+kIWHhMoyeiE/k+t5vV7Wr1/P9u3bAWhvbycej1NeXs7mzZvx+Xxp66Oj0aiKvqLRKHNzc/T29nL06FHefPNNRkdHyc7OpqWlhdbWVrZs2UJ5ebl6fMFgUPU3PQjfasOvBn1IWu+4dzgcquigjwtJO4jue2WxWFRKIdMyRiIl+fDSc5biwW6EaBkhf2x9PZAe2ur9O/J1MplkZGSEubk5tZqovLyc+vp6JicnmZ6e5ubNm1y9epW6urq0apaImY7kiyorK7l58yYzMzNMTU1x7tw5pqamWL9+PRs2bCA/Px+3220E6CFAPpxkf54uQPplRKT0EaJMAROhgtuvZ+lZs9vtKiqXosuDXkP1dln1QhSLxe4YvdA/oWQZYzweV+6Jvb29DAwMUFZWRnFxMTk5OdTV1TE5OUl3dzdXrlxhZmYGp9NJc3PzP+kbVFJSQklJCbt27WJsbIxLly5x8OBBuru76e3tpb+/n1QqRX19PYWFhcvyRWS4N+bm5piZmSE7OzvNilhP2+pVW4mmMz3S9VynLOO0WCxqEacImZ43Wm6saiHSP5lk+l3ER14Acr4WAYjFYnR2dtLR0cFjjz1GVVUVubm5+P1+tm7disfj4dSpU1y7do2enh7VsZ05iS/nefn/eDxOOBxmZmYGu91OVlaWOsKJ3YfX600bRVnFdYYVjZ4jlEZXj8eTtgYL5oUKYO3atVRUVOByuVTOyGq1qiOZvqlGbkOfe5TXy3KNhsAIETabjenpaUKhEEBa+T0cDhOLxdKqabOzs8pcv7W1lZycHDU1v3HjRrxeLzdu3ODq1av09PQwOTmpeot0P2uY//SLRCKEQiFlC2KxzO9oW7NmjUpSjo2NMTo6qj7p5DEaIVpZyIdPMBgkHA7j9/vx+/0qHykfTG63G4vFwuDgIKlUin379lFZWZlmKwyoxLaeS5KdeBJZ6f1wS7Wm/O2wqoUI5qMK6Q1yOBwqCpEjmySqk8kkN2/epK2tjeHhYbUOKCcnR0VOTqeT8vJydu7cidfrpbe3l8uXL+PxePB6vXg8HtUnZLFYVCNlLBZL2+wh5XvZ7ipCJsnJX7SuyLA80YUoFosp4QiFQszMzBCPx7FarXg8HpxOp+rIl7/7QkIiectIJKLySpkr0fVhbmBZvm5WtRDJkcntdqs/XDweZ25ujmg0qvyAYL5rurOzk/PnzzM7O0tOTg55eXnY7XZlZCafcLt37yY7O5vLly9z5coVSkpKKCsrw+PxqKZGq9VKJBJJC8V18ZOwW/cu8nq9SpDkchKOG5Y/IkQOh4NEIkFubi7Z2dmqAhaJRNRqc5fLRWFhoRo5Gh8fx+v1ptnUiH/62NgYgUCA/Px8cnJy0sr9guSQdDeH5cSqFiJdfPTd9m63W1Uc4vE4k5OTDA4OEgwGcblcxONxNSAL80c8XcwcDgdVVVXs2LGDRCLBtWvXGB0dpbm5mYaGBrXCenZ2llQqpSpnUmLVu7flvuQFLJ9+0nNijmgrBxEiaeOQxkUpmujlePkvmUwyPT3NK6+8QiAQIBgMEgqFSKVSqml2bGwMi8VCU1MTjY2NrFmzBq/XC9yupEnFbDlGQ7DKhUiOOLLGx+v14na78fl8Ktk3MzNDd3c3AwMD+P1+KisrcTgcjI6OMjMzo0Jmr9ebNuyak5PDk08+SW5uLt/73vcIBoMUFBTQ0NBAfn4+FouFyclJUqkUeXl5uN1uJUQiLrrtrITs8okIt0NsI0QrA/lbiejI31s69vXKmMViwePxEAqF2L9/P0eOHOHSpUvcunVL+atnZ2fjdruZnZ1VuUlpql2zZg2AsiZOpVJpm2GWG6taiATdzlWQcDkQCDA6Osrk5CTl5eXk5ubi9XqVAEmIK0co+UM7nU5KSkqora1l+/bt9PX1cfnyZRwOB08//bSym43FYqp0mxlOS4gdDofTOqkX2vBhWBlIMULyjvr3pXFRx+PxsGbNGurr6xkcHGRiYoLS0lIqKyuprKzE5/MxMjLC+Pg4g4ODHD58mJycHFwul5p/FIub6elpAPx+/4I9bUuJESJQieHMXqKZmRnGx8cJh8M4HA6Kiopwu93k5OTgdDrTmtAikYjK64gwuFwuysrK2Lt3L36/n0OHDnHr1i1qamrYunWryvPoa4IyfYrkCChJdNn8YY5kKxcpr0tEq8+YyWtKfp5KpaitrcXhcDA+Pg7A1q1b2bVrF/X19fh8Pvr7+zl16hQ//OEPOX36NFVVVVRUVKhIS7zRZ2dn1QefEaJlhu4nrUcayWSS69evc+PGDUpKSqioqOCRRx4hFotRUVHB2NiYimTgtlVsZtOY3+9n/fr1qh9oZGSE1157jfHxcXbv3o3P5wNQ/kdwu7ohn5Iej+eOiWr5uRGjlYd8iMjfUYRCjt3SJyTFlKysLCorK7FYLMzOzlJUVMTGjRspKSkB5l9709PTOJ1OAoGAagHIjK78fr/KNS43Vr0QwcJHm5mZGbq6uujr6+OJJ55QiwgjkQg5OTmUl5enRUSS2NZFREqphYWFPPLII0xPT3P27FmOHTtGf3+/Wm8tnbFyPNSTi5IbkvwBpC9WNMeylYnelCqFB+mUlr+7PoLkcrnUdpesrCwlQnJ9aQ/xer0UFBSoihugepRyc3OXXbVMWNVClOk7JKX7iYkJenp6OHz4MO3t7fT29vLGG2+QSqUIh8NMTU3d4bSoLz+UP7YeHUmiOhAIcPHiRW7dusWpU6ew2+2Ul5eryAhu+2fL1ld5fPrt6vdjWNlIZVQqtXr1FeZtXgYHB3G5XNTU1FBdXa2ua7FYuHTpEseOHSMQCFBcXExxcTG5ubnq+vI6kQLIcuywXvVCJL07YoA2PT1NX18f7e3t9Pf309vbq0Y15ubm8Hq9tLS0qDO4oA8b6mMb0jDpdDqprq4mEAhQW1tLX18f58+fJ5VK8eSTT6YJkV66l2hJ7+7WFy0utxeU4ZdDqmjSkqFXQqXfZ2hoiL6+Pmw2G2VlZWkphOHhYc6dO8f58+dxu91s2LCBioqKtA9Jubz0KUn/2XJiVQtRZl+FdDVLs9iTTz7J7t27iUQiquEMUAlr/QWhRyz69+XTTvqTqqureeaZZ2hvb+fChQu0t7dTW1urGtFEcOx2O06nMy2pKUKnu/oZVi76ss3MjnsZspbXXSAQYHBwkMuXLzM6Osr+/ftxu9243W6ys7N56qmncLlcFBQUsH79emDeaC0ej6ulDdKXtBw/vFa1EOmfPlKdkupFTU0NGzZsoKqqing8riobk5OTXLp0SXkDySeXuDHqpleAOs5JvqigoECZ7/f09DA8PExXVxcul4vS0lJ1js/ctaYb88tRbTm+oAxvHznOy/yhniOUYetoNKpGQKamprh27Rrt7e3q9bR+/Xo+9rGPsWPHDiorK1UklEgkmJubU6Mk8uG2XFm+j+wBICV76V5ta2vj5s2bKolcWlqqejvcbjfj4+PMzc2pyCiz90iiH3FelCSjXEYPh4uLi2ltbaWtrY0333yTgYEBfvM3f5Py8nJV+dC7Y2Um7W5ukoaVgz4Vv1AFS6Jr6bqWIep169bxyCOP4HK5iMVi9PX1MT4+zsGDB7l16xbPPfcc27dvV8Im/W7LsUqWyaoWIpj/xJmamqKvr4+DBw/S19fHhz/8YSorK9MuFwqFuHjxIh0dHUxMTJCdnc3MzIzq7dH32sunnHwKLfRJ5PF42LZtG7FYjL/9279lbGyMvXv3UlZWRjAYVC9E2TKizwmZSGhlo3tVS5FESvW6xYd82Ny4cYPr16+zZ88ennjiCWpqakgkEhw9epT9+/fzd3/3dxw6dAiPx0NRUZHKEcmEwEp4vaxaIUqlUvT19dHR0cGlS5fo6Ojg5MmTxGIxtmzZwsTEBPn5+UxPT3Py5Eneeustzpw5w61bt/B4PJSXlzM5OcnVq1epra2lvLxc/fHl006vVkgFTf7f4XBQXV1NKBTixo0b3Lhxg5deeonr16+zb98+CgoKCIfDhEIhFQHp9h8r5QVmuBPdYxpIa83I/JvGYjFmZmaYnp5WrSAwH11v3LiR2dlZTp8+TXt7O7du3aK7uxu3201FRUVa0USv4C7HebNVLURDQ0NcuHCB48ePc/nyZQYHByksLCQQCDAxMYHP5yMQCHD69Gl+/OMf093dTTgcpry8XP2Bg8EgTqeT7OxstQ5IRy/rSz5KSqh+v5/6+nri8ThHjx7l5z//OYODg2zZsoWSkhLC4bDaHiLeM/oLy+SJViaZfzP5cJL/hFAoxMTEBNFoVB319SN5Xl4eDQ0N1NXVMTo6qsr8a9euVVG5vN70+cTl+LpZtUJksVgoKyvj0Ucfpbq6msnJSebm5vB4PGzdupWCggIcDgfZ2dns3r2bvLw8pqenSSaTajeZx+MhLy+PmpoalWTWtyjIJ5J8Xy/LygvK5/PxyCOPEAgE6O3tZXp6mpdeeomBgQE2b95McXFx2oszcz7JsPIIhUJEIhFV9ZLRIF0kLBaLcgKF+S0telk+lUoRiUSYnp5WPUjZ2dnk5uampQokOhdRWq6vmVUtRJWVlZSXl6dVpzIbvvx+P3v37mXv3r3qupI8lhePPvgaiUTSjMsW+vTRu2otFgsFBQXU19eza9cuzp49y5EjRxgaGqKyspLi4mIlWguNeRhWHmKaLy0dUiHVSaVS9Pf3c/HiRdxuN+vXr6e8vFy9FhKJBAMDA3R2djI0NEQsFiM/P5+Kigr8fn9ah75E0pmLGpcTq1aIgAWrCRK9hEKhu05EZw7IijBJ+Ksfo/T8kC5A+l4rq9VKfn4+ra2tRKNRrl+/zuDgIOfOncNqtVJVVaXM1PTrGlYmTqcTn8+nRjCkqRFQlbRoNKpaRoqLi9WuO8Fut3P16lWOHDnCyZMnCQaD2O12ysrK8Pv9aYZ5+s4zuY/lxqoWIv0NrYuEhM5S2peB1Ltt1hRrWbjdm6SLUGYkoy/AA9Q8WU1NDYFAgKtXr3Lr1i3a29tJJBI4nU4qKyvTxG05vpgMbw/5oJIPFvGcktdaJBJheHiYwcFBZmdnVUPt5OSk6tIfGBigra2NtrY2pqamyM3NpbCwkMLCwrSu6oVe48sRs3I6Y7sG3B7X0Ge6RIAkSsrsH5JoaCF0H6HMiXm5X/GmnpiYYGhoiLa2Ng4dOkR2djbvf//7aW5uVgZqcj3DykRed9KWIbYuc3NzDAwMcOTIEY4dO0ZXVxfT09OUlpaqeUSLxUIkEmFmZobr16+TTCbZsmULu3btYvfu3WzYsCHNeVRsZXWHieX42lnVEZEk9OD2G1uERsJjacEXsdBXvoig6Ec1/QWm//Ezx0EWeiyxWIy8vDyqq6vxer0cO3aMW7ducfnyZdxuN3V1dco7ybCy0Zc06OvMA4EAV65c4fjx42q1VCKRYHR0lFAoRCAQUM6eRUVFPProo/zWb/0W73jHO9JuX4+05PWXeVRbTqxqIcpEL7PrE++6mMgfU+/N0HeJy+Xke/qnk6wDEstXGdkQFz2v16vyUUVFRbzzne/k/PnznDx5ksnJSYqKiigqKlp2LyLDL4cUOfTVP+FwGLvdTnV1Ne9973upr69PG/+QGbRYLKa80v1+P1VVVTQ1NanbDofDqvii28voI0jLsdixqoVI/iD6H0WfF9OPY3rJXd+uKdfREQHSh1Ul4rFYLKpjWjftl80Ngt/vZ8+ePQD84Ac/oLOzk2vXrpGfn09+fv49te1nJitNrmlp0Ev1sgVG+sXKysooKyvjySef/KVuM5lMEg6H08RL7kteX/J6W46s6hxRZgUqMyeU+avR38D6cGtmp+pCb3h90lpfFQR3hsr6rqrOzk4OHDjAzZs3cTgcNDY28swzz1BSUnJHT5F+f/r9w+3WAhE8eTzSsb3Q89J/P3pyVT5Vzbzb4pEjlD7MfL9uR/9aIiTARETLjcw/yNs1pdfHN+7288yvF2oDyBQASSzKY/F4PKxbtw6LxcKJEyd4/fXXCQQCrF+/XpWAxdpB7kdEL/Mx6hPdYi8i20H1ZsvMcRR9nES/zHJ7Ia9U7jb4ej9uJ/P1tpw/OFa1EC0l+hte76bVByLtdjtZWVmsWbOGqakp+vv7GR8f59VXX2V8fJx9+/alJTrh9hrrzNXWgDJS13MUIkj6UVJ/weoiqVtKGCEy3E+Wr0SuAhZydZTv6y6Mubm51NTU0NLSQkFBAZcuXeLs2bOMjo7ecZu6cOjzS7IxRI+AJITP7HXShVFmnKRf6p9qUzAY7hUTES0heuQhb/rMfiMRp4KCAjZt2kQsFlN71s6cOUM4HFad10DaamoZI9CtQeWIpu9yE3HSzfmlKigNdPpmCZltMm0EhvuFEaIlQgQnc0hWepL0yEZmktasWUMwGGRwcJChoSHOnz9PKBTC6XSmzcyJh5EcpTKT5rrJv+7XLe0FkkiXjnK5rOSj9KOcwXA/MEK0hOhVKL0SlXlEk5Ks2+1m7dq17Nmzh+PHj3Po0CGGhobUxgaxJ5mZmQHA6/UqIdGbM6VvSb+veDyuelC8Xi8Oh0MlveVfGcw0ntmG+415NS0D9OhHckMSJUkEIsem/Px8GhsbWb9+PXa7neHhYS5evEhvb6/aCBuJRJT5mn7sktvOHNqVx6DniKTMr5eB5XqLKTMbDAthIqIlRN78EhmJFzbcHhvRK12SKHY4HDQ0NPDRj36UtrY2Lly4QCqVoq6uDq/XS3Z2tro9iXycTmda0lnvgZKNIRIhyXEQSGsr0Jf+3c0C12C4F8wraYnQy/cy5a/7x0gORnIzsoNNopaqqirKysqw2WycPXuWy5cvq+0ORUVFaohSEs4iSPqktzwOIC16kvsRYdLn6KS6tor7YA2/AlZ1Z/VSspAQhUKhtNkgvUFNbGllVk2ikYsXL/K9732PK1euYLFYeOc738knP/lJ5Z2t70KDO5s4RVj08ZJf9nmYniLDYjER0RKiv4GlMzbTZF9PaMvlMsv+eXl5xGIxLl++jNfrZc+ePTQ3N6tISHJHC3V4z8zMMDk5CaDuX+9tkpaCcDhMNBrF4/Hg9/uVsZcRIcP9wERES4z+69ePPPp4hS4MYgMyNzfHjRs3eOutt3j55ZeZmJigoKAAr9dLXl4eu3fv5j3veQ8Oh4OZmZk7Iim5D9mbfvHiRfr7+4F5H219l5reVV1UVERtbS1PPfUUO3fufHC/KMNDjYmIlgEiNCISeklfH/lwu93E43HGxsbo6+ujra2NK1eukEwmeeSRR9iyZQsDAwMcPnwYi8VCc3MzlZWVJJPJtKZGOU5JhW18fJzz589z9OhRPB4Pa9asUQZc4pkjTZA+n4+hoSFqa2uNEBnuG0aIlhApq4vhvm4bklkuF5EKBAIcOnSI48ePc+HCBcrLy/ngBz9Ic3Mz+fn5nDp1isuXLzM0NMSrr77Ktm3baG1txW63KysS2f5ps9moqalh3759ypJ27dq17N69m9zcXFXGTyQSTE1NqfXYwWBwRWwPNawcjBAtEfqku+RvpJNZt/fQo5i5uTk6Ojo4f/48PT09RCIRysvL2bNnDxUVFQDU1dWxefNmrl69SltbGy6Xi5qaGgoLC9PuU0rw+fn55OTkMDIywujoKC0tLXzgAx8gNzc37fGGw2FGRkZ444036OjoUCMlBsP9wAjREiJRj+woD4fDWCwW5UsdjUZVU+Hg4CA/+tGP6OjoIBKJ0NzczPbt26mvr6egoEDdZnl5Oe9+97s5fvw4x44do6Ojg5KSEhoaGqisrMTlct0RzYj4jY+PEwqF0ipoo6Oj9Pb2UlpaSlFREWVlZQwPD6cZtBsMi8UI0RKhu0PqzYP611Kyj8fjnD9/nrNnzzIxMcH69evZsmULv/Zrv6ZERTqv/X4/mzdvZnp6mgsXLnDr1i3efPNNotEoBQUFakxDckQyZyZbS/TZtGg0Sn9/P93d3TidTioqKigrK2NmZob8/PwH/SszPMQYIVpCxIIjGo2mJZR1d8jOzk5+9rOfMTo6Snl5OY8++ii1tbXU1NSk3ZYc7SSXVFVVRUNDA4cPH2b//v1EIhE2b96M2+1Wg7J2u53x8XGuX79OMBiksbGRuro63G43sViMvr4+ZmdnycrKUta2VVVV5OXlkZ2d/cB/X4aHFyNES4zeIyR9P/J9m83G8PAwL7/8MolEgn/2z/4ZW7Zsoa6uDr/fTygUUl7Hus1HPB5ncnIybW5N7Dtk+FUio9nZWW7evMn09DQAw8PDnDt3jvHxcW7cuIHL5aKoqAiPx0MqlSI3N/eO/JHBsFiMEC0RIg76SIeIkFi6Sq5odHRUdUB7PB5ycnIA0sz4peo2PT3N2bNnOXToEEeOHCEnJ4dPfOITbN68maysLKxWK9nZ2UqIvF4vHo+HkZERTpw4wfT0tDqu+Xw+du/ezdNPP012djZut1vNqskxzmC4H5hX0jIhs3dIX0Xd1NTE1NQUk5OTXL16ldzcXPLz89MsPWC+tN/R0cHx48fp6urCarVSX1/PM888Q1VVVZqvkBCNRpmamiIcDmO1WgkGg8zMzDA3N4ff72fbtm1kZ2erKpm+BMBguF+YzuolRo5MMogqE/c2m41EIsHExARXr17lzJkzHDx4EJvNxo4dO3j00UfZuXOnikpu3rzJoUOHOHXqFJ2dnaxdu5Znn32WxsZGysrK8Hg8aQOrEhEdPHiQH//4x/j9fpqamvB6vUQiEdra2rh69SrveMc7eO6558jJyUnrP1po/bbBcK+YiGiJyewn0pc6xuNxiouLKSkpwe/3c/nyZfr6+ujo6MDhcJCdna26oDs7Ozly5Aj9/f14PB6am5t58skn8fl86r7ExiMWiwHzVbqRkRH6+vrYvn07e/bsoby8HJi3prXZbJSVlZGXl4fD4SAYDALcsXLbYFgsRoiWCOlyTqVSOBwOnE7nHVs49Td8TU0Nn/rUp2hra+P06dOcPHmStrY2qqurqa+vp6+vj87OTioqKvjgBz9Ia2vrXXt9dNfGcDisfJAkJwW32wvEGRLmWwPksctlDIb7gRGiJURfWa2vEhJjMv3o4/P5aGlpIS8vj0gkwtGjRzl79qwaVrVarRQVFbFlyxZ2795NUVERcHuMBG5voLVarYRCIUZGRgiHw2RnZ6clsAGys7Oprq4mLy9PRVEzMzO43W58Pp85lhnuK0aIlhB9bQ/MV8FENPQV1JIcttlsVFdX88EPfpDc3FyGh4dpb2/n2rVr7Ny5k0984hNs3bpVVdVgfjRjenpaHeWkzD8+Ps6lS5cIBoPU1dVRU1OTFkGtW7eOgoICPB4PMzMztLe3093dTVNTE9u3b39QvyLDKsEI0RIhwqLbfEjdQHaS6Tay+syZbPXIyckhNzeXWCzGmjVr2LlzJ6Wlpeo+xO9a5sr0o5RU4BKJBHV1dWpWTcjJySEnJ4fR0VG6urq4cuUKg4ODVFZWkkgkzAYPw33FCNESoltxSCnebrcTiUQIh8PMzMzgcDjIyclR1bGrV6+yf/9+Ll++jM1mY+/evTQ2NtLa2prWaChbOVKpFNnZ2cr7WpienmZwcJDS0lLq6+spKSkhHA6nJbdhvrP78OHDxONxysvLyc3NJRqNph3jDIbFYoRoCVko2avvNtMTxnNzc1y/fp0zZ85w7tw5IpEIdXV1NDY2snHjRrXXTJCISj/ihUIhRkdH6evr4+jRo1y6dIlAIEBZWRmDg4PE43EVCcF81HTw4EFOnTpFfX29ylFlLn80GBaLEaIlRI5ZLpdLzZzBvGWr3+8nKytLRTG9vb1897vfpbe3l+zsbFpbW3nmmWeorKwEWNA+xOPxKEELBAJcv36d/fv38/d///d0d3cTDofJycnh+PHjJJNJ5TMkVbJYLMbAwADhcJjy8nIKCgooKCjA7XYbETLcV4wQLQK9jK2/MfUe0X/qDSs9RJn5H/0INTs7y61btzh9+jSXL18mkUiwdetWtm3bRmNjo+oN0tdFy/3ebXeZzWajqKiIrKwsHA4HDodDDd7CbcdIm81GaWkpWVlZPPLIIxQXF6sBWIPhfmI6q+8RWbujr+uR78sMWWYJXo4zcrSJRCKqy1m35ZDrzM7Ocv78eX7yk59w7do13G43zc3NPPvss2zYsEFVufTliEKmAIrf0cTEBKOjo8qETX88uje2/phtNhuFhYUUFRUpfySD4X5iIqJFoguPvKEzfw6339zSRS3fz9zIIX1EY2NjdHV1ce7cOa5du4bFYqGpqYkdO3bQ0NCQFjVlRmQLYbPZ8Pl8+Hw+qqqq7stzNxjuF0aI7hHZqGG1WtWxRibSJdLQbWDlOlIlk0hIyuoSYQWDQaanp2lra+Pll19mcnKSdevWUVtby8aNG1m7dq2Zejc8dJhX9CIQN0VdaPR/M49omZcVwRLi8Tijo6NcvHiR9vZ2RkZGyMnJYePGjWzatIk1a9aQlZWl7D8yr28wrFSMEC0CERrJ8YgoyPFKnyWTI5jValUmY5m5llgsxvXr13nllVcYGxujrq6OTZs2sW3bNuU3LaMW4itkEseGhwEjRPeInutxOBx3iFAikVhQnCSK0n2qw+EwY2NjXL16lc7OTqLRKCUlJWzevJnNmzdTXV2d5k2tW8IaDA8D5tW8CPRtrLKPLB6Pq6OT0+lUYxyxWEzttnc6nTidTlwuF6FQiBs3btDe3s7hw4eJRqNs3bqVhoYGNmzYQHFxMQ6Hg1QqRSgUIhaLqZK7OZYZHhaMEC0SXYwyy+iSE8qskonlx+joKAMDA7S3t9Pb20swGKSkpITm5maamprIy8tTR69IJEIgECCVSpm984aHDiNEi0QqXiJA+nCpHNGkcub1elW+KBQK0dnZyenTpzl16hRWq5XHHnuMTZs2sX79enJyctIaHSORCDMzMzidTmVUZjA8LBghukck16M3Kep9RJITylwdnUwmCYVCXL16lfb2dq5evYrNZqOqqopNmzbR2NioOp4FSWzLUU/vWzIYHgZMZ/UiuNsoh+SKZHbM4/Go5PLU1BRXrlyhvb2d06dPA7Bjxw42btzIhg0byMvLu6PZUczNYrFY2u56Y1BmeFgwEdEiyIxI9EqaPutls9mIxWJMTk7S3d3NkSNHuH79Oh6Ph7Vr19La2sqGDRvw+/0qshIvIUHK/jabjWAweEcHt8GwkjFCdJ/QZ8+kPC/9QslkkomJCS5evMjJkyd5/fXXcblcfOxjH2PXrl0UFxfj8XiUqb0cy6RjWwZh5V9JVJujmeFhwQjRItAXJOojHfrywWQyybVr1+jq6qKtrY2BgQHKyspYu3Ytzc3NrF279o4h08zqm9wuLNyRbTCsdIwQ3SNSyUomk+rIJN/X8zYzMzOcOHGCM2fOcPPmTYqKivj4xz9OS0uL2h+v23PoK6hlh1imxYc5lhkeNowQkb5/XqphcNs7eqFlgnrEIkcyGYS12WyEw2EGBwe5cuUKFy9eZHx8nNLSUjZu3EhLSwvFxcVptyX3rVfepA8p0z7ERESGhw0jRJBmLGa1WlXXciQSIRaL4fF4lA2rfnRyOp3K50caDaVEf+vWLX7+859z4cIFAoEA5eXlPPvss7S0tKR5S8PCxmrytS6CepuAfG0wPAysaiHS94jB7b1fkvuB2xas8Xg8bXpeFySJUOx2O9FolN7eXtra2ujo6GBqaoqamhpaWlpobGyksLDwFz6uTIH5RV8bDCudVS1EMkAqUZDkeWSmy+Vy4Xa7iUQihEIh3G53WqOhTNe73W513ZGREQ4dOsS5c+cIBAKsWbOGZ555hs2bN6uckL4qyIiKwbDKhUjyQRLRiDBlluHtdvuCVqoyjArzjYo9PT10dHTQ2dlJPB6nvr6ejRs30tDQQEFBgbpfOQaaErzBMM+qFiKHw6FK74lEgmAwSCQSUeMUuuDYbDYikQiRSAS73a6uC/Pe0t3d3bzwwgtcunSJvLw8Ghsb2bdvH01NTWlrfnRrWeMlZDDMs6qFSO/70f2BxKZDoiMZVJXISUQqGo0yPj5OZ2cnHR0djI2N4ff7qa+vp7W1lfXr16udYkCaT5E5lhkMt1nVQhSNRonH47hcLhXhOJ1O3G43TqeTmZkZwuEwHo9HzYvpgjU0NERHRweHDx/m1q1bVFZWKlfFNWvWpG1NFa9qETr9tgyG1c6qFiK9gTAWi6llh5Iv0ife5XKSOxobG+PkyZO0t7czNzdHZWWlmp4Xb2m43SMk15POaCNCBsNtVrUQSRQUDofVPne32004HFaRUlZWlsrryE76WCzG1atXefPNN+nt7eXxxx9n165drF+/nsLCwjtsXDO9rSG9V8hgWO2saiGC9O2qclySCEgiGN1xUZYednR0EA6HqampYc2aNZSWlt5hWJY5jS9RkJT9zfHMYJhnVQtRPB4nkUhgs9nSohXJ4ciRTZ+GHxkZ4cCBA1y5coU9e/awY8cOiouLsdlsKqrKHBHRzfJlSt9UzQyG26xqIZJoJxaLEY/H05oa4XZXdTgcZnR0lLfeeou2tjZCoRBNTU1s2bKF5ubmNIsOSO+6lq9ljET3KjJHM4NhnlUtRGL1GgqFiEajZGVlKQ8hiZRisRhjY2O0t7fz/e9/n66uLn7913+d5557jnXr1pGbm0s0GlWuiUDaiIi+Vz4ajWKxWPB4PMZz2mDQWNVCJHkb6ZAWsZA+otHRUfr7+2lra6Orqwu3282uXbvYsWMHtbW1ZGVlpU3c65PzcvuCREx6rshgMMyzqoVIREP6hsLhMMFgUDUzXr16lePHj3P48GFmZ2d5//vfz1NPPUVFRQVer1f1Iek5pUwLD7kfaQWA28b6pqnRYJjnoTHPFxHQvXv05kM5amUmjZPJZFpuaG5ujlu3bnH16lUuXLjAtWvXSCaTlJeX88wzz7Bt2zZ1GzKbJtfXK2TAHaX6zMl9M2tmMMzzUEREIjR6w6EclaQ5UapfelQiWzF0o/tUKsWpU6c4cOAAo6Oj5OXl8d73vpe9e/eSm5ubJiayJkgv7y/EQjYeRoAMhtusaCHSvYT0nfK6c6L8XCboZcUP3DYdE4OzmzdvcvnyZS5cuMDExAQVFRVs2rSJjRs3pjkqRiIREokELpfLlOANhvvAihYiSS5LH5B+7JJO6EgkgtfrxeVyEY1GCYfDysRMxjcAxsfHOXr0KMePH2dsbIzi4mLe9a53sWfPHvLz89V9SjlfRkKMEBkMi2dFC5G+ZgdIO56Jh7TL5VL9PXIEky5q8Zbu6enh4sWLnDp1iuHhYdatW0dLSwstLS2Ulpbecb9657XBYFg8K1qIJEejD65KAhrA5XKpIVa5vO6mGI1GGRoa4tixYxw7dozJyUmKiorYtWsXTz75JF6v9477FBuQzOZHg8Fw76xoIdKrT3pns+SFMruX9QgmEAjQ29vLxYsX6ejoYG5ujvr6erZu3cqmTZuUCGXOi+mJbRMRGQz3hxUtRHo/jhy37Ha76my+W2UqEAhw8+ZNTp8+zZkzZ5iZmaGiooKnnnqKxx9/XHU9S3lekGS4PjtmMBgWz4oWIomEpCdIqmByXFuISCRCR0cHZ8+epaenh2QySUNDAxs3bqSxsVGJkCSl4/G4Ms3PdGw0GAz3hxUtRFKql6FV8fyBO3t3pMI2PDzM2bNnOXbsGA6Hg3Xr1rF37162b9+O2+1Ou7zcruSVZFpfbxMw/UAGw+JZ0Z3V+pS7HNPE5ydzqHR2dpaTJ09y8uRJxsbGsFqt1NTU0NjYSH19vaqOiXk+3D6aSc5JH+UATMLaYLhPrOiISARIqmfxePyO/WOxWIxwOMzAwACHDh3i9ddfp6mpiX379tHa2kpNTQ12u51YLJY2Re90OvF4PCSTSUZHRwmFQhQWFqqZtHg8ru7XYDAsjhUtRHI0EgERY3o5YomIHDt2jFOnTjE9Pc3OnTtpbm6mrq6O4uJiVWmT45b0H+ke1WKcL/cFGHdFg+E+8lAIUSwWIxQKKY9pEYjx8XF6enp45ZVXOHToEM8++ywf/ehHKS8vV93WsVhMNTfqogS3LV19Ph8Wi0V1aksfkckPGQz3hxUtRIDyA0qlUni9XqxWK9FoNK08HwqFlI/Q2rVrycvLA27vNZNdY3pPkiSj5TK6lYeJhAyG+8tDIURiZCYRys2bNzl79iyHDh3iypUrbNmyhWeeeYZHHnkEv9+fNmkvc2kiLiJA+teZZfxMuw+DwbA4lk3VTM/J6N3LkO7ro/sOZQ6dRqNRBgYGOHDgAEeOHCGVSlFZWcnOnTvZvn07+fn5KteT6Sud2YGtf637FumDtZnXMxgM98aSR0S6wXwymVSLDTN7dDITyHI9Pbq5fv06Z86c4dixY1y6dIm9e/fyvve9j9raWnUck7yPXDdzB9lCLOQvbQTIYLh/LGlEpG9Ylf4cESLpjpYRi0xxkn4hmB/Z6Onp4Y033uDYsWNkZWXR0NBAa2srmzdvprCwEKvVSiwWIxgM4nA4jJeQwbCMWNKISBcefbmhiI3epKjPk+kkEgn6+/s5efIkhw8fpqOjg9/4jd/gk5/8JAUFBWpzBqCqXqb/x2BYXiypEOm5ID03JDvAgLTkcCaDg4NcvnxZbdkoLS1l69at7N69m5ycHAAlXMlkErvdjtfrNat8DIZlxpILkRzJMjeiSn+PCJFETjB/LJudneXSpUu8+eab9Pf3k0wmede73sX73vc+cnJyiEajqutaktJOpxOXy6UqZWa1j8GwPFjyZLXMbemioCelAXVkk+hpeHiYt956ixMnTtDd3U1FRQWPPfYYW7ZsobCwECAtt6QLXaaZvhEig2HpWXIhuhuZq3j0I1xXVxfHjh2jp6eHVCpFQ0MDzz77LLm5ucBtEVpohQ+gjn4mT2QwLA+WxdEsHo+rJLJ0LovFq9442NfXx4EDB+jp6WFubo6NGzdSW1vLhg0biEajakur7lEtM2jyNcyX7U00ZDAsH5ZciDJX/+jG9pIbcjqdJJNJzp07x4svvkgqlaKlpYXdu3ezZ88e4vE4o6OjAKpUL06Nuluj3j9k8kMGw/JhWRzN5OiV2dEsX1+6dInTp0/T1taGy+WiurqalpYW1q9fr7ylJTEdj8dV97S+4dVmsylLEH3RosFgWHqWjRBJH5EepYTDYUZHRzlz5gz79+8nlUrR2NjIpk2baGlpoaSkREU7ubm5KgkNtxcq6qb3sutM5tMMBsPyYFkIEdyumukRUVdXF/v376e/v5/s7Gxqa2vZvXs3VVVV5OTk4HQ6VZlfvKv16pj+fTn2idCFw+EFGyQNBsODZ0nfhXolS45mMF/Vmpqa4sKFCxw6dAiPx8M73vEOHnvsMbZv356WVxKvat3CVSIgETexfJXtrpFIRO28N0JkMCw9Sy5E+jog+d6FCxd45ZVXuHr1KkVFRTQ1NbFr1y7Wrl1LNBrF5XLNP3htkl4aFKXqpndi68lqES2zLtpgWD7cdyG6mz3G27HNCIfDDA8Pc/r0ad544w18Ph979+5l586dbNq0CYfDwfT0NLFYTJmgSXVM+oL0kY6F7leObiYSMqxWFvMe/VWx6Ol7mZ6XUYpoNEoqlUrr05HVPNIfJOhPPB6Pc+rUKX7yk58wMjKC3++nvr5euSpKs2I4HCaVSqlKmCSl9TU/+pFPvx+5r8xGR4NhJaBb4ejvncy2FEH37pLXvLxXMt+jsscPWBJnikWHBfoYhvT9AGkRhz4rJk9eyuoAwWCQgYEBTp8+zdGjRykrK+PZZ59ly5Yt1NTUqFI8zP+SJALSGx71ox2k9yhlkilUBsNKQsQoU5gyDQV1o0H9uvraLf2y4tW1FBXlRUdE8mQlaSyRim5YltlYKNfxer1YLBba29v5/ve/z+joKEVFRTQ3N/PYY49RXV1tmg4NhreBvP8yc5/6Bz7cFjG43acn0weyv2+hVppfNYuOiDIjIafTmTbxLpeRZkNZ/QPz1q5Wq5Wuri7efPNNCgsLefbZZ2lubiYnJyfNTXEhvTSbVg2rkXg8rmxtYN5nS9wmrFYrPp8Pu91OKBQikUjgdrvV+1KfKMiMqDIjpBUlRCIW8iTk2CTlcYfDoapbcLsD2ul0Mj4+Tnd3N319fZSUlJCXl8fs7CydnZ1cuXJFlfT18rusAIpEIjgcDtxu9x1VMoPhYUROE8FgkGg0qiIXESZ5P2RlZWGz2ZieniYajeLxeMjLy6Oqqorc3Ny0zcX6ctJgMAiA1+t94MWcRd+blM11IYrFYmkWsJle0zJ0GggEuHTpEhMTE9TU1ODxeJiYmGB8fFz9UsQoLRaLqeWJkUiEUCiE0+lUxzsjRIaHHRGicDisJgTkezabDZ/Ph8fjwe12K8+uaDSKw+GgtLQUv9+P3+9PS6Po1jsylSBHtwfJooVIz8bL17KAUBciESc9eZZIJJidnSWVSlFUVATM+0/rhmlSlvf5fAAqBBXDtLm5ucU+BYNhRSA5VpfLhdvtJhgMpgmSVK1nZ2fT0hqBQEAZAno8njQHVHk/Aeo9JuvXs7KyHthzW7QQST5IkDNoZvY+MxEm/5+Xl4fb7aa4uJhYLMbk5CR2ux2fz0cymVSbVb1er9roKgInvzCzY8ywGpDIJycnB5fLxfT0NMFgUKU6ZNGoHMncbjc2m41gMEhWVhZut/uO04v+YS8WytFolFgs9kCFaNFVM/3quhPiL+pDiEajzMzMMDMzo+bAksmk2i0vZ185C0vZXmbL3G53WpLcYFgNSN7VYrEQCoVUykLysIlEgmAwSCKRSEtaOxwOqqur8fl8hEIh4vG46heSQEFyTUJ2dvYDe173LSOV2ZwYDAaZm5tjenpaeQq53e4083qn00lhYaFKsmU2Y8Xj8bRGRbkfPaoyGFYrC/Xs6Su49CURcmqQD/PMVhu9j8jlcj3wZPWiIyI5YyYSCRUeRiIRLly4wPnz5zl79iyDg4NEo1G8Xi/l5eXs2bOH97///czOznLgwAFyc3PZtWsXfr9f3a5ubp/ZOS1VNIfDYebFDIZ/RIpC8p6IRCIAadMMdyvLi4DpSewHme64L53ViUSCaDSqxi9u3rzJxYsXuXTpEt3d3dy8eZO5uTncbjfj4+MUFBTQ0NDAxMQEZ8+epaqqis2bNysh0jtH9fuA231L4XCYRCKBx+Mx5XvDqmKh6YHMpmJZvz4zM4Pf78dutxMIBEilUmRnZ6vUhiwddblclJWV4Xa70+7jQXFfckTyS+jo6OCnP/0p169fVwnotWvXkpWVRSwWU2Fgf38/p06dIpVKUVNTQ0tLCzt37qS0tDRtXiYajRIKhdS5WHqSzDogw2pGksyZkYv+AT48PMyhQ4e4cOECo6OjzM3NqbEop9NJIpFgcnJS+bxv27aN3/md36GqqopUKkUoFFLupw+C+1K+j8fjDA4O0tbWxquvvsr09DS7d++mrq6Offv2qb3zwg9+8ANOnDiB0+lk8+bNFBcXq0gnsz1dXwskP1vIRM1geNjRrWwyTw2Zw9yxWIy5uTlu3brFmTNnGB4exu/34/P5cDgcRKNRxsbGmJubI5lMEgqF2Lp1K16vV1npPEjuS0ZqeHiYF154gePHjxONRqmvr2ffvn1s375dbVzVKSsr49FHHyWRSJCdnY3L5SIrKwun06l6jmRVtERTusVrNBpVO+ylodFgWA3o/u66q4WenrDb7RQWFrJnzx5yc3PxeDwMDQ1RW1tLTU0NBQUFeDwekskkt27d4q233mJgYIA///M/5/jx4/z2b/82tbW1D/R5LVqIwuEw/f39vPnmm/T29lJXV8fu3bvZvn07lZWV6nJ6r09BQQEtLS3E43HKy8vJzs7G4/Goy+rJb1krJGV9+bkc9QyG1YweHelD5R6Ph7q6OrKysrh27Zry9tq2bZs6gQCEQiEqKyt5+eWX+elPf8rMzAyPP/44paWlK6t8f+HCBTo6OlRe6KmnnuLxxx+nuLhYXUaSyzabTXWFiio3NjZSWlqaFtVkTv/a7XaysrLU1w6HA7/ff4f/isHwsCPVLWlC1NMVkj8NhULAfKe01+tlamqK8fFxfD4fJSUlae8Zl8vF7t27ycrKUrml06dPc+3aNT796U8/sOe16IPg4cOHuXz5MlarlXXr1rF9+3bq6upUl6feDyT/ud1uKisrWbt2LRUVFeqXIJUx6fKUX7LVak1bnGiz2XC73Wl9EgbDakE3O7tbwlrmxkKhkGp8lNMFzPcghUIhkskk+fn5tLa20tzcTF5eHr29vRw9evSBPqdFR0QvvvgiXq+XhoYGdu7cSVlZGTA/3xKNRpWLovQyhMNhvF4vmzdvTmtLf7sspZ2lwbDU6I4WmQIkFjtut5tEIsHY2Bg3btzA5XJRUlKiSvMywSBVNLvdTiQSYXp6mqmpqSUZel10RHT27FlGRkZYt24dTU1NaYNzsmVDN7WXkY3i4mJyc3PTIqFfxr7VuCwaViv6kKvkhvSThwycX7t2jZ6eHnw+HzU1Neq9qRujCfqolCTBHyT3JVltsVgoKChQSw5l04YcnxZqQZdoCe7N4MwMuhpWIxL56EKh+07L/0ciES5dusSVK1eorKykrq5OtdHoK93l8i6Xi4qKCm7dukV/fz/T09MP9HktOiKSpLIIjqit0+lUUZBUwWS4VTyGMiOhzH/vhomEDKsZiYCksVHec/oWm1gsxrVr17h27Rp+v5+ampo7Jhf0o53VaiUnJ4eCggKysrLSqtgPgkVHROKQODc3p3p7pB8oEokQCASUb67L5cLn8yk11vlFIpRpGWtyRYbViKQ59A99qR7rp4RkMsn4+Djj4+N4vV6Ki4tVD540MXq9Xlwul5rfTKVSeL1e1qxZQ0lJyQN9XosWIpn1EkuPTEER5ZapeVHwSCSixOkXzYrdTYQMhtVI5tos+U+PcHQL56ysLHw+HxaLhVgspiIp/X0UDoe5ceMGQ0ND5OTkqPVdD4pFC5E4JU5OTjI1NaWOWzB/PMvLy1PiE4vFmJ6eJhAIMDs7i9/vp6Ki4p8c1zDiYzCkk7kOaG5uThmZySqgUChEYWEhiUQCv9+v3l/ywQ/pJoXBYJBDhw7R2dnJO97xDqqrqx/oc1q0EG3YsAG3283w8DA9PT00NTWRk5Oj5sGkFT0QCDAyMsLNmzeJxWL4/f637QBnRMhguI3keCKRSJqPkFSgJyYmGB0dxeVyUVxcnDa8mrm3LB6PMzc3R2dnJ729vUxNTZGXl8fatWsf6HNatBC9+93v5ubNm5w4cYJAIEB1dTVerzdNUYPBIDdu3ODChQucPHmS8vJy3v/+91NeXn5XA6ZM+9nMr/V/DYbVhORYxRJWhlntdjtzc3Ncv36d3t5ewuEwbrdb9Q9Fo1G11UMq1sPDw7z22mscPXqUVCrF5s2beeKJJ9ixY8cDfU6LFqK9e/fS2dnJtWvXCAQCnDlzhmAwSE1NDdnZ2WoKeGxsjMHBQVKpFD6fT/nuvh1MRGQw3Ea3v5EjmnygJ5NJ+vr66O7uxul0UlVVpWbGxMHCZrMRCoW4evUq58+f59ixYwwODtLQ0EBrayvr169XPUcPikULUUtLCyUlJXi9Xk6cOMHx48f5yU9+gs/nw+1243K5yM3Npby8nPr6ej7ykY9QXV1NVlaWmpfJXImrk/m1iYIMhvmoKC8vT/lyydHM7XbT19dHV1cXTz75pBpyBdIEa2xsjL/6q7/i2LFj+Hw+6uvrefrpp2loaADg5s2bVFRUPLDns2gh8vl8rFu3TvUMDQ4OquSZ+AvZ7Xb8fj/V1dW0tLSojRyZ/kO/rAgZUTKsVvRRj3A4zNjYGJFIhM7OTs6cOUNvby/19fUMDAwwNTWluq1h/n3V2dlJT08PkUiExsZGtm3bxrZt2ygvL2dkZIRAIPBgn89iHRoFmVUZGRlhcnJSrf3x+/1q5W1ubq4yy8/sAzIiZDD8ciQSCcLhMOFwmO7ubv7+7/+e119/nevXr5NMJqmpqaG0tDTN912mGrKzs9mwYQNNTU20tLSwZs0asrKyVBVcdqA9KO6bVb9k6CUMjMfjaVYegnRUGy8hg+He0efLYrEYU1NTnDp1igsXLqjLdHV10d/fnzZWJaMhVVVVbNu2jdbWVlpaWnA4HOq2MjfqPAjuW0RkMBgM94pxnjcYDEuOESKDwbDkGCEyGAxLjhEig8Gw5BghMhgMS44RIoPBsOQYITIYDEuOESKDwbDkGCEyGAxLjhEig8Gw5BghMhgMS44RIoPBsOQYITIYDEuOESKDwbDkGCEyGAxLjhEig8Gw5BghMhgMS44RIoPBsOQYITIYDEuOESKDwbDkGCEyGAxLjhEig8Gw5BghMhgMS44RIoPBsOQYITIYDEvO/w/vlSumIH38dAAAAABJRU5ErkJggg==",
"path": "images_version_5/image_33.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, the straight line AB parallel CD, then angle C is equal to ()
Choices:
A:42°
B:44°
C:46°
D:48°
|
Như hình vẽ, đường thẳng AB song song với CD, thì góc C bằng ()
Lựa chọn:
A: 42°
B: 44°
C: 46°
D: 48°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the straight line AB parallel CD, then angle C is equal to ()
Choices:
A:42°
B:44°
C:46°
D:48°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the straight line AB parallel CD, then angle C is equal to ()
Choices:
A:42°
B:44°
C:46°
D:48°
|
As shown in the figure, the straight line AB parallel CD, then angle C is equal to ()
Choices:
A:42°
B:44°
C:46°
D:48°
|
165
|
33
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAtYAAAJ4CAYAAABBBqRYAADQ60lEQVR4nOydd3hUxfrHvwFCQgiQAKGEltCr9CKggCKIgAqionJpNlDvFUW5duACoqLYsdIEUcRK70U6hNB7772XhJb5/ZHfOzu7O9uSTQj4/TxPHg7vmTPl7Nk5s++8JUQppUAIIYQQQghJF9ludAcIIYQQQgi5FeDCmhBCCCGEkCDAhTUhhBBCCCFBgAtrQgghhBBCggAX1oQQQgghhAQBLqwJIYQQQggJAlxYE0IIIYQQEgS4sCaEEEIIISQIcGFNCCGEEEJIEODCmhBCCCGEkCDAhTUhhBBCCCFBgAtrQgghhBBCggAX1oQQQgghhAQBLqwJIYQQQggJAlxYE0IIIYQQEgS4sCaEEEIIISQIcGFNCCGEEEJIEODCmhBCCCGEkCDAhTUhhBBCCCFBgAtrC127dkVISAji4uJudFduCZo2bYqQkBA0bdr0RnfFb27GPl+/fh2ffvop6tWrh7x58yIkJAQhISF48MEHAQDz58/Xsvnz59/QvhJgz549+vMYNWrUje7OP5Z+/frpzyGjyKrfPV/znPS5X79+mdovQgRf38/MeFfHxcUhJCQEXbt29at8UBbWixYt0gMPCQnB33//HYxqCSEB8Nhjj6FXr15YuXIlzp8/f6O7QwghWZqBAwfqdUuePHlw6dIlv64zF3uuf9mzZ0dUVBRq166N3r17Y/v27Rk8CpLVCMrC+ocffvD6f0KyApmhmbpRLFmyBBMmTAAAtG7dGrNmzcK6deuwfv16fPbZZze4d/8sAtVu/BPgPQkOt/IcdiMYM2aMPr5w4QJ+//33dNeZkpKCs2fPIjExEUOHDkXVqlXxzTffpLtecvOQI70VXL58Wb/QIyMjceHCBUyYMAGff/45cuXKle4OkpufrLT1easye/ZsAED27Nkxbtw45M2b161M06ZNoZTK7K4RkqXp168fTR08cCvPF8uWLcO2bdsAONYuP/zwAzp16hRQPSNGjEDdunX1/69fv47Dhw9j2rRp+Oqrr3DlyhX07NkT5cqVw1133RXUMZCsSbo11n/99RfOnDkDAPj0008BAOfOncNff/2V3qoJIX5y8OBBAEDhwoWti2pCCCEOZGe9YMGCePvttwEAc+bM0XOpv8THx6Nq1ar6r3r16rj33nvx6aefak21UgpDhgwJ7gBIliXdC+vRo0cDACpXrozu3bujcuXKAGgOQkhmcvnyZQBAaGjoDe4JIYRkba5cuYLx48cDAB555BF07twZ2bNnR0pKCn788cegtdOtWzcULFgQALB8+fKg1UuyNulaWB87dgwzZ84EAL198sQTTwAAZs6ciaNHj/qs49ChQ3jttddQq1Yt5MuXDzlz5kSRIkVQrVo1PPbYYxg1ahTOnTuXpv5dv34do0aNQsuWLVGkSBHkzJkTUVFRKFeuHO6++268++672LRpk896zpw5g3feeQdVqlRB7ty5ERUVhTvvvNPvL+D69evxzDPPoFy5coiIiECePHlQpUoVvPTSS9izZ4/1mgkTJmhbuq1bt1rLlC1bVpf57bffrGUefPBBhISEOG1VAcCoUaP0tXv27EFKSgq+/fZbNGzYENHR0cidOzduu+02DBo0yG+HDk9489q1RUaYNWsW2rZtiyJFiiAsLAzx8fHo2bMnDhw4kKb2Zaz9+/fXMpvTiafPAkjVCL/88ssoW7YscuXKhQIFCqBly5aYNm2aX304ffo0Bg4ciNtvvx0FCxZEWFgYYmNj8cADD6TLrk/6Lj9w9+7d6zYuwd/IBHv37kWPHj0QFxeH8PBwxMbG4sEHH8S8efMAeLfzDCTShTe7W9fn8/Lly/jkk0/QoEEDFCxY0GOkgmvXrmH48OG47777EBsbi7CwMBQsWBB33nknPvnkEyQnJ3vtU3qQ53zv3r0AUpUOrp+FL8/19D77K1aswNNPP43y5csjMjISuXPnRsWKFfH8888HxYkq0Pk60Htie35+//13/XnmyJHD7R4uW7YMb731Fpo2barn+bx586Jy5cro2bOnzzneX7vlhQsXon379ihcuDDCw8NRunRp9OjRAzt27HAaq7/RCX755RfcfffdiImJQa5cuVChQgX06dMHp06dcisbjDksLXiLChLsd4hSCr/++iseeughlChRAuHh4YiOjka9evUwYMAAvTMeDCZNmqTvc6dOnVCkSBFtphFspaBEF0vP3OP6bG3duhXPPPMM4uPjER4ejqJFi+Lhhx/G0qVLvdZz+vRpjBw5Ep06dULlypURGRmpv8MtW7bEt99+iytXrni8/kZ8P4NFRr2Drah0MHToUAVAhYSEqL179yqllNqzZ48KCQlRANRHH33k9fq///5b5c2bVwHw+jdp0qSA+3b+/Hl1xx13+Kz7oYcecru2S5cuCoAqVaqU2rx5s4qLi/N4/fPPP++1H++++67Kli2bx+vDwsLU6NGj3a47duyYLvPVV1+5nT9w4IDPfqSkpKj8+fMrAKp3795O50aOHKmv3bBhg7rrrrs89rFevXrqwoULvm65R5o0aaIAqCZNmrid2717t25n5MiR6r///a/HfsTExKhNmzYF3L45Vm9/u3fvtvZ54cKFqkCBAh6vGzJkiNf2p0yZoqKiory23bp1a3X+/PmAx+bPuIR58+Zp2bx586z1zZw5U+XOndtaT0hIiBo0aJDq27evW92C6+fpjVKlSikAqkuXLm7nzM9s5cqVqkaNGm796du3r9M1O3bsUJUrV/Z6L8qVK6e2bdvm67amCXlmvP2Z34FgPvtXr15VPXv29Np2aGio+vbbb9M8vrTM1+m5JyNGjFD/+te/vJb357udPXt29eWXX3ocl7fnWRg4cKB+r7n+5cmTR82YMcPrPGd+92bPnq0ef/xxj/0tW7asOnz4sNP1aZnD/MFbn5VyzC+u3zXXPqX3HXLs2DHVqFEjr2MrXLiwWrZsWUDj88T999+vAKgyZcpo2ejRo3Vbq1at8nq9+cx4mkuFggULKgCqQoUKae6v+TlNnTrV4xydLVs2r+sumXO9/dWsWdPt+ROy4vfT1zOsVPrfwd7eVTbStbCuXr26AqDuvPNOJ7ksaKtXr+7x2uTkZBUbG6snpj59+qhp06apVatWqWXLlqnx48erXr16qRIlSqRpYd27d299w9q0aaN++ukntXjxYrVq1So1ffp09f7776s77rhDdejQwe1aWVjHxMSocuXKqTx58qi33npLzZ8/XyUkJKjvvvtOFS9eXNc/ffp0ax++/PJLXSYmJkZ9+OGHaunSpWrRokWqX79++ssREhKipkyZ4nZ9pUqVFAD16KOPup0bM2aM00NRpUoVtzKrV6+2vuyUcn7gGzZsqLJly6a6dOmipkyZolatWqX++OMPdfvtt+syr732mr+33g1/F9YNGzbU5caNG6cSEhLU7NmzVefOnXWZBg0aBNz+6dOn1fr1650WHuvXr3f7u3Llilufy5cvrwoWLKgKFSqk3nvvPbVo0SK1YsUKNXToUP1FzZEjh9qwYYO17ZkzZ6rs2bMrACouLk69//77av78+SoxMVFNmjRJderUSfepffv2AY9N+v7AAw8oACo2NtZtXIKvhfX27dtVRESEnuyef/55NWfOHLVy5Uo1cuRIvWitV6+ex4kuIxbWt912mwoJCVGdO3d2ej6nTp2qyx86dEgVLlxYzye9e/dW06ZNU4mJiWrevHnq9ddf12MrXbq0OnPmjN/32F927dql1q9fr+e1Bx54wO2z2LVrly4fzGffLNeqVSs1duxYtWLFCrVy5Ur13XffqSpVqujzEydODHhsaZ2v03NPbrvtNgVA3XHHHU735Pvvv9flv/vuOxUdHa26dOmiRowYoRYuXKgSExPV5MmT1f/+9z+9qAkJCVFz5syxjs3Xi3vcuHH6fHR0tHrvvffUkiVL1JIlS9T777+voqOjVXR0tCpfvrzHec787sln/eCDD6rff/9drVq1Sk2dOlW1bt1al+nYsaPT9WmZw/whWAvr9LxDLly4oN91OXPmVM8++6z666+/VGJiolq4cKEaNGiQVmxER0erPXv2BDRGV44fP65CQ0MVAPXOO+9o+fnz5/Uc8eKLL3qtw9+F9ahRo3S5V199Nc19ls+pXLlyKioqSuXLl0+9++67+jkcNGiQ04/e3377zVpP8eLFVf369dWAAQPU5MmT1cqVK9XixYvV2LFj1b333mtdHJtkxe+nr2c4GO/gTFtYr1u3TnfGVQvyzTff6HPr1q2zXj9nzhyPiz6Tq1evqrNnzwbcvxIlSigA1oWzycmTJ91ksrAGoKKioqyLpu3bt6vw8HAFQN1///1u548dO6a/pLGxsWrfvn1uZRITE/XiulixYm6TokyiRYoUcbv2ySef1G3Lg3ns2DGnMh9//LECUn/Fnj592umc6y/JMWPGuLWRnJysqlatqgCoAgUKqKtXr7qV8Qd/F9YA1NNPP61SUlLcyj311FO6TGJiYpr64Y9myrXPQOrOxYEDB9zKLFy4UGux/vOf/7idv3Dhgl7stWjRQl28eNHa1rfffqvbmj17duADU867LJ7wtbCWZwmAmjBhgtv5ixcvOi2qM2thDUANHz7ca11t2rRRAFSJEiXUzp07rWXM79tbb73ltb704O8kHKxn/9dff9Xnv/vuO2tbSUlJWqMYFxcX8Hc5vfN1Wu9J586drfdEOHDggMfvlVJKnTlzRi8AGjdubC3jbV5ITk5WhQoVUgBU/vz51datW93KbN26Ve8M+rOwBqAGDhzoViYlJUW1aNFCAak/1l3nc199TQvBWlin5x3ywgsvKAAqX758auXKldZ+7NmzRxUtWlQBUJ06dQpojK58+umnus+uu1ePPfaYAqAKFSrk9Ttifg4jRoxw+nGzZs0aNWPGDNWrVy+VM2dOBUBVrFjR+nn6i/k+ypcvn3X3asOGDXpxHRsbqy5fvuxWxtdu3YgRI7y+i7La91Mp789wsN7BmbawFo1wWFiY26Lt9OnTKiwsTAHuJgjCjz/+qAeSloWzL+QX6aeffhrwtebC+rPPPvNYrmPHjgpI/RXtyvvvv6/r+OmnnzzWMXDgQF3ul19+cTr3888/63ObN292Ole2bFm9ACpdurR1MfTggw8qAKpWrVpu7ZqTojdN6ddff63LrV271mM5b/i7sC5atKhKTk621rFlyxZdLi2fqVJpX1h70/A1aNBAAanbZ658/vnnCoAKDw9XR48e9dqeLFifeOIJ3wOxkN6F9YEDB7TJUrt27TzWsWbNmkxfWN91111e61m/fr0u+9dff3kt26dPH/3iySjSsohMz7Nfu3Ztn5+bUkpt2rRJ1zNr1iy/x6NU+ufrtNyTqKgode7cuYDbcuXPP//UdZ44ccLtvLd54aeffvJr3jEXa74W1rVr1/a4GJk+fbrXZzmrLqzT+g45fvy4VlD5mteHDRumgFSTJm+LNV/I96VevXpu56ZMmaL76u0HpPk5ePvLly+fGjBggDp16lSa+6uU8/voww8/9FjOXHe4rif8pWbNmgqAeuGFF9zOZbXvp1Len+FgvYMDXVinyXnx+vXrGDduHIDUZBRRUVFO56OionDfffcBAMaNG4fr16+71VG0aFF9PHLkyLR0wytS//jx49PsfBcSEoLHH3/c4/natWsDSDWKd3WskLjCUVFReOihhzzW8dRTT7ldI5hOAKaz2cGDB7Fjxw6EhISgSZMmupxZRimlM2A2adLEY/uAw+HUhowRAHbt2uW1nvTSoUMHhIWFWc9VqFABkZGRmdIPk6ioKLRu3drjebk/tj5JyMkmTZqgUKFCXtu58847AcCn80lGMX/+fKSkpAAAunTp4rFc9erVUb169czqFgDvzyfguM8RERFePyvAcZ8PHTqE/fv3B6eDQSCtz/7BgwexatUqAKnRDbxRqVIlHaEg0Ocso+drG23btkWePHkCuubixYvYs2cPNm7ciA0bNmDDhg1OkXLWrl0bUH1z5swBAGTLlg3/+te/PJbr1KmT30lbHn/8cY9lM3O+DSZpfYfMmDFDO/X5en7lu3v16lX9zAfKpk2b9LW2eNUtWrTQc7WZPCatnD17FiNHjsSvv/6a7rqA1DWJt/m5W7du+tlyXU+4opTCkSNHsG3bNv1d2bBhA2JjYwH4/q5khe+nL27UOzhNC+uZM2fi8OHDAOwPpyk/fPiw9QNu3LgxSpcuDQDo1asX6tWrh8GDB2PJkiVevVL9RR6+JUuWID4+Hi+88AL++OMPHD9+3O86ChYsiAIFCng8nz9/fn3smkJ6w4YNAICaNWt6DYFWuHBh7TUs15jnKlSoAMB50SzHlStXRkxMjHVhvW7dOu317MtLvWLFih7PeRtjsPHWDwCIjo7OlH6YlCtXDtmyef6ayP2x9SkhIQFA6svDU/pb+fvwww8BAEeOHMmAUfjGfPbMF6GNOnXqZHR3nLjtttu8npf7fOnSJeTIkcPrfW7Tpo2+7kbdaxtpffZl7EBqSntfz9mJEycABD72jJ6vbfj63IUTJ07gjTfeQIUKFZAnTx4dV7hatWqoVq2a048tGb+/yPciPj5efwY28ufPr++PL7LKfBtM0jom8/ktWrSo12e3atWqumxav7sSPSlHjhzo2LGj2/kcOXLg0UcfBQBMnDgRZ8+e9VnnvHnzoFJ3/6GUQkpKCs6cOYMFCxagXbt22LVrF5555hn06dMnTX02iY+P1z+ObcTExHhcTwhTpkxBmzZtkC9fPhQtWhQVKlTQ35Vq1aphypQpAHx/V7LC99MXN+odnKaFtYSj8abNMzXZtvA1oaGhmDRpEipVqgQAWLlyJd544w00atQIUVFRaNWqlUdttz+8/fbb6N69O0JCQnDs2DF8+eWXOlRStWrV0LdvX5/hACMiIryeNxdcrv2URW3hwoV99rVIkSJO15jIonjBggVaJgtoOdesWTMAqb/G5YeDlMmWLRvuuOMOr+17G6e3MQYbf+93RvfDxN8+ibZXuHr1aprCQ6U3tGFaOX36tD729cs+JiYmo7vjhLcFDZAa9jMt3Kh7bSOtz35mjT2j52sbvj53AFi1ahUqVqyIwYMHY9u2bT4zBSYlJQXUB/le+PpOAP5/L7LKfBtM0jqmzPzumjGqW7Ro4fHzEqVgcnIyfvnll4DbCQkJQb58+XDnnXfi999/17veQ4YMwdy5cwOuz8Sf51DWHK7rCaUUnnrqKbRp0wZTpkzx+cPN13clK3w/vXEj38EBpzQ3syqeOXPG4/alyZ9//onz58+7bRtUrlwZ69evx6RJkzBp0iQsWLAAO3fuRFJSEqZPn47p06dj6NChmDp1ql8PlEloaCiGDx+O3r1746effsLcuXORkJCAK1eu6C2IoUOHYuzYsXjggQcCqjsQ/Nke9PawNWnSBN988w2OHDmCLVu2oGLFinqRLQvr4sWLo3Tp0ti1axcWLFiADh066DK33XabX18AElzMF8gjjzyiM3uRwMmePbvX83Kv4+PjMXHiRL/rjY+PT1e/sgLmc/bjjz/6rUVKy5yQkfO1DV+f+5UrV/DII4/g5MmTCA0Nxb///W888MADKF++PKKjo/W7adeuXShTpgwA73MtyXzk+c2ZM2dA5h3FixcPuC0zq+LUqVP9ejf/8MMPePrppwNuy+TVV1/VprPDhw9PV1rz9KwnRowYgeHDhwMAatSogV69eqF+/fooVqwYIiIi9Petc+fOGDNmjM/vSlb/ft7Id3DAC+tffvkl4F8Vly5dwq+//opu3bq5ncuePTsefPBBPPjggwBSTUemTZuGYcOGYdWqVVi1ahWeffZZ/PHHH4F2FUDqy2DAgAEYMGAAkpKSsHjxYowbNw4//PADLly4gMceeww7d+50siEMBvnz58fhw4f92lYQzbm5ZSa42lnnzZsX27dv1/bVZrldu3Zh/vz5eOihh/y2ryYZQ3h4OCIiInDp0iWcOXPGaRszK2IutI4dO+b1xeXNnMrUTrlq8V25ePFiAD30jJhrHT16FBUrVkSOHAFPazctpqma63Z5RpDR83UgzJ07V9vsfvnllx4XQOZuTKDI98IfzWogZoYkFXl+r1y5ggIFCgT9PWwiZiCBsHjxYuzatctvMx8bppnM+vXr01wPAL+S7smz6rqe+O677wAAZcqUwZIlS5ArVy7r9en5vphkxvfTGzfyHRywKYiYdRQtWhQ//fSTz7+SJUs6XeeLokWLonv37li6dClq1aoFAJg8eXJQtghy5cqF5s2bY8SIERgyZAiA1K2HyZMnp7tuV+RDXL16Na5eveqx3LFjx3RWMtsHX7RoUZQrVw5A6sLa1b5aMO2s169fj5MnTzrJiX+/9oNJzZo1AaROzlnJ7MBGlSpV9LFp92jD23lzV8rbhHny5Mmg2dPJfb506RIWL14clDrTQ2Y+ZzJ2ADoLbmbi73ydEfdk48aN+thmLyv4ep69Id+L3bt3W031hFOnTmWKs2Fmz2EZTWY9vxcuXNA/9u6++26f65bvv/8eQKoGNb1OjNeuXdPH3tYC/rB79279brdx/PhxnX3TdT0h35cHHnjA46JaKYXExMR09dG1PSDjvp++uFHv4IAW1rt378aiRYsAAA899BA6duzo8+/hhx8GkGojvG/fPr/bCg0N1drWa9euBTWdKZD65RKCbTAPAM2bNweQai7jKd04kLo1JNsfco0rpp21q321YNpZT5gwAUDqJOzLvvqfRHh4uD6+fPlyhrd3//33A0jVzH755ZcZ3l56aNasmdY2e/sRvHbtWq+e29HR0dq3wtuE+dNPP6WtoxZMU64PPvggaPWmFXnOMuMZK1u2LCpXrgwA+PnnnwOaY4OJr/k6I+6JuWDx9NKUNNtpRd4TKSkpGDt2rMdyY8eOzRQzk8yewzKaVq1aaef+jz/+2OkzDSa//vqrfkZ69uzpc93y5JNPaifu9C6sV65cqY9LlCiRrrqUUl7n51GjRnlcT8i99bbAnDhxIg4dOpSuPrq2563N9H4/fXGj3sEBLaxNu5sOHTr4dY2Uc/3lt3DhQuzYscPjdVeuXNF2wpGRkQE5TJ06dQoTJ070OtGZv44zwtayW7du2qGjd+/e1tBea9euxbvvvgsAKFasmN5edUVeWEeOHNHOFK4La7GzVkrh888/BwBUq1bNa1STfxrmNuPOnTszvL0ePXpoD+63334b06ZN81p+8eLF2oQnsylWrJh2RP7jjz+s4aGSkpLwzDPP+KxLwhb99ddf1vu8efNmvPPOO+nssYO6deuiRYsWAFJtJ/v27eu1/J49ezwu7MVDXDzr04I8Z5nxjAHAW2+9BSDV2ap9+/ZeTRIuX76MYcOG6RBn/pLe+Toj7ons5AGet/lff/31dGng2rVrp+3F+/fvj+3bt7uV2b59O/r375/mNgIhs+ewjKZYsWLaRHTt2rV49tlnvS6ujx07prXJgSCL0YiICLRq1cqva2TtsnPnzjTvhF2+fNlprpMwxOlhwIAB2Lp1q5t88+bNGDRoEIDU58TVd0y+L5MmTbLuJu7cuRPPPfdcuvvn2h6Qcd9PX9yod3DAC2sg1TPVX01o/fr1tb2mubCeM2cOKlSogKZNm2LIkCGYMWMGEhMTsXjxYowcORJ33HGHvuFPPfVUQHaT586dwwMPPIDSpUujd+/e+OWXX7B8+XKsWrUKkydPxrPPPov//ve/AFIXpG3btvW7bn+JiYnR5iaHDh1CnTp18PHHH2P58uVYsmQJ/ve//6Fx48a4cOECQkJC8O2333oMy2cuos+ePetmX+1aTkIE0b7amYYNG+rjl156CX///Te2b9+OHTt2YMeOHUHXluTNmxc//fQTcuTIgcuXL6NNmzZ45JFHMH78eCQkJCAhIQGTJk1Cv379UL16dTRu3Bjr1q0Lah8CYejQofrHYMeOHfHvf/8b8+bNw6pVqzB69GjUqVMHK1asQN26db3WI5NzUlISmjZtiuHDhyMxMRF///033nnnHTRo0AAFChQIanSRkSNH6kXH//73PzRo0ADffvstli5ditWrV2P27NkYOnQoWrRogbJly3rdRUov8pytXLkS7733HtauXaufMXGeCiaPPfaYDi+6atUqVK5cGW+99RZmzZqFNWvWYPHixdoJKzY2Fs8//3zAz3p65+uMuCctW7bUi94333wTzz//PGbMmIFVq1Zh/PjxaN68OT744AM0atQoTfUDqRriTz75BECqwqZ+/fr44IMPsGzZMixbtgwffPABGjRogJSUFL2QyEhzjcyewzKDjz76SJstjBgxAtWrV8enn36KRYsWYc2aNZg/fz6+/PJLtGvXDiVKlMDXX38dUP379u3TO72tWrXyGYFHMPNPeNMS79692ykO9IYNG7BkyRIMGzYMtWvX1rv8ZcuWxbPPPhtQ310pV64cUlJS0KBBA7z33nv6OXzvvfdw++2363f/559/jpw5czpd27lzZwCpse8bNmyIkSNHYsWKFfj777/Rr18/1K5dG6dOndImXeklM76fvrhh72C/0sgopRYtWqSz3zz77LP+XqaUUuo///mPvnbZsmVKKf8zF7Vv314lJSUF1J5r2k1Pf8WKFbOmCPYni51Szpmndu/ebS0zaNAgndHO9hcWFqZGjx7tc0xlypTR11SpUsVa5ocffnCq+7fffktX35UKLJOeJ/zNvJieTH3+8sgjj3j8LMz74CsjmeBPJrQ5c+aoIkWK+PVM+vMs2AhGSnOllJo5c6ZO+23769u3r3r77bd1NitPmN95178SJUqojRs3+p150dvzabJnzx5Vt25dv+5zt27d3K6/dOmSPm/LVuovBw4ccEpxbf6Zz1Mwn/1r166pPn36qOzZs/sce+7cudWlS5cCGlN65+uMuCdKpWYqlMx9tr+mTZuqDRs2eK3Tn+/wwIEDVUhIiLWNiIgINWXKFHXHHXcoAOree+91u96f755gftds+DuH+UOwMi+m9x1y8uRJde+99/r1jDVr1iygMZrZjb1lQbYh6bajoqKcMqP6+32Qv+rVqwf82ZiYn9PkyZNVRESEtZ1s2bJ5zMx45coV1aJFC499zJUrl/rll1+8vkuy4vfTn3d1et/BGZZ50fzF5i2ToA3bL78+ffpg6tSpeOmll9CgQQOULFkS4eHhCA8PR1xcHB599FFMmTIFv/32m5NdmT+UKlUKa9aswZAhQ9CqVStUqFABUVFRyJEjBwoWLIgmTZrgww8/xObNm52cJzKCN954A6tXr8bTTz+NMmXKIFeuXMidOzcqVaqEF198EVu2bNG/JL1haq09OSSKnTWQqjWRLXniYOzYsfjggw9Qr1495MuXz2vyl2Bx1113YefOnfjiiy9w7733omjRosiZMyfCw8NRokQJtGjRAoMGDfL7WchI7rnnHmzYsAHPPvssSpUqhZw5c6Jw4cJo3bo1pk+fjn79+uHcuXMAgHz58nms59NPP8W4ceNw5513Im/evMiVKxcqVKiA1157DatXr9Z2wcGkVKlSWL58Of744w907NgR8fHxiIiIQGhoKGJiYtCwYUP07t0bCxYs0GGnTMyMWy+99FKa+1GsWDGsWLECTz75JMqWLRvw/JUWsmfPjvfffx+bNm1C7969UbNmTURHRyN79uzIkycPqlSpgieeeAKjR4/G4cOHPToveSK983VG3ZOWLVsiISEBnTp1QmxsrP6smzRpgm+//RZz5sxB7ty5093Om2++iQULFuDBBx9EoUKFEBYWhlKlSqF79+5ISEjAfffd59f3IhjciDkso8mfPz+mTZuGOXPmoFu3bihXrhwiIyORI0cO5M+fH3Xr1sXzzz+PqVOnYtasWQHVLTvlYWFhPjOzuiJrlzNnzgQUyjMiIgJxcXFo3749xo0bh4SEhHSZl5m0bt0aCQkJ6Natm56jCxUqhIceegiLFi1C7969rdeFhoZiypQp+Oyzz1CnTh1EREQgV65cKFu2LHr06IHExETtExcsMuv76YvMfgeHKMXAnoQQ/2nevDnmzJmDxo0bY+HChTe6O0GjX79+6N+/P8qVK4fNmzf7jNNKiHD16lXky5cPSUlJeOuttzBgwIAb3SVyC9G0aVMsWLAATZo0ccqwTLImN/9PXUJIpnHo0CHt3NGgQYMb3JvgIs53b7zxBhfVJCD+/PNPHWLwVvteEEICgwtrQojGW+SHpKQkdO3aVcdivdFmK8HkypUrWL58OeLj43VKY0IEb9+LPXv24OWXXwaQmk66ZcuWmdUtQkgW5J+ToowQ4pOnnnoKFy9exCOPPILatWsjf/78OH/+PBISEjBs2DC9wHjyySdRrVq1G9zb4JEzZ84sn8SH3DgqVqyI++67D23atEGVKlWQO3duHDt2DPPmzcPXX3+t43Z/+OGH/6jMn4QQdzgDEEKckDBEnmjXrp2OlU7IP4Hr169j0qRJmDRpkvV8tmzZMHDgQO52EEK4sCaEOBg6dCj++OMPzJ07FwcOHMDx48ehlEKhQoXQoEEDdO7cOWDPekJudiZNmoRp06ZhyZIlOHr0KE6ePImwsDAUK1YMTZs2xfPPP++WQpoQ8s+EUUEIIYQQQggJAnReJIQQQgghJAhwYU0IIYQQQkgQ4MKaEEIIIYSQIMCFdRDYs2cPQkJCEBISglGjRt3o7pA00q9fP/05/pP4p447KyOfR79+/W50VzKEBQsWICQkBDExMbhw4YLTuQMHDiAsLAw5c+bEtm3bblAPCSEkbaR7YX316lX8/PPP6NKlCypVqoQCBQogNDQUBQsWRO3atdGzZ0/Mnj0bKSkp1uvj4uL0S8T8i4yMRLFixVC9enV07twZn3/+OQ4ePJje7hJy07F//34MGTIELVq0QHx8PCIjI5ErVy4UK1YMLVu2xMCBA7F79+4b3U1C/CIlJQUvvvgiAKB3796IjIx0Ol+8eHF069YNV69eRe/evW9EFwkhJO2odPDnn3+q0qVLKwA+/8qXL68mT57sVkepUqX8uh6Ayp49u2rXrp3avXt3errtN9K3Ll26eC23e/du3ceRI0dmSt9I8Onbt6/+HLMCycnJ6uWXX1ZhYWE+vxshISHqkUceUfv27Qu4naw2bqL059G3b980XT9y5EhdR2bNl/4ybtw4BUAVKFBAnT9/3lpmz549KjQ0VAFQS5YsyeQeEkJI2kmzxnrw4MFo164ddu3aBQBo3rw5Pv/8c8yZMwerVq3CrFmz8MUXX6Bly5bIli0btm3bhjfffNNjfbGxsVi/fr3+S0xMxJw5czB8+HA8+eSTyJcvH65fv44//vgD1atXx8SJE9PadUKyPCdPnsRdd92FoUOH4vLly8iTJw+eeeYZjB8/HosXL8aKFSswceJE/Pe//0W5cuWglMIvv/yC3377LeC2+vXrB6UUFCNvkkxg0KBBAIBnn33WTVstlCpVCg899BAAYODAgZnWN0IISS9pShAzZswYvPHGGwCAmJgYjB8/Hs2aNXMr17x5czz//PNYv349evXqhZMnT3qsMzQ01GOA/e7du+Pjjz9Gv379MHToUJw7dw4dO3bEwoULUbt27bQMgZAsS0pKCjp27IglS5YAAO677z6MHDkShQoVcivbtm1bvPvuuxg7dixeffXVzO4qIQExa9YsbNy4EQB8Zil8/PHH8fPPP2PatGnYtm0bypcvnxldJISQdBGwxvrQoUPo2bMnACAiIgLz58+3LqpNqlWrhlmzZuGVV15JWy8B5MmTBx999BHee+89AEBSUhKeeuqpNNdHSFbl888/x+zZswGk/jj966+/rItqIVu2bOjcuTNWrVqF2267LbO6SUjADB8+HABQq1YtVKpUyWvZe++9FwUKFIBSCiNHjsyM7hFCSLoJeGH98ccf4+LFiwCA/v37o3Llyv41lC2bTw2FP/Tp0wf169cHAKxZswbTpk1Ld52uNG3aFCEhIdi7dy8AYPTo0W7OlU2bNvVax6xZs9C2bVsUKVIEYWFhiI+PR8+ePXHgwAG/+rBixQo8/fTTKF++PCIjI5E7d25UrFgRzz//PLZv3+7xulGjRuk+7tmzBykpKfj222/RsGFDREdHI3fu3LjtttswaNAgXLp0ye97YuPKlSuYNGkSXnjhBdStWxfR0dEIDQ1FgQIFUL9+ffTr1w8nTpzwWoc4r3bt2hUAsGXLFjz99NOIi4tDWFgYChcujHbt2mHZsmU++3P16lV8+umnqFu3LvLkyYOoqCjUqVMHH3/8Ma5cuRK06C3Xrl3D8OHDcd999yE2NhZhYWEoWLAg7rzzTnzyySdITk5Oc91Xr17FkCFDAADh4eEYOXIkcuTwb2OpePHiuOuuuwJu05+oIHPnzsVjjz2G+Ph45MqVCxEREYiLi0ODBg3wyiuvYO7cuQG360pan3khKSkJgwYNQvXq1ZE7d24UKFAAjRo1wnfffYeUlBTMnz9fj3P+/Plu17s+i57o2rUrQkJCEBcXZz1/+vRpjBw5Ep06dULlypURGRmJnDlzokiRImjZsiW+/fZbXLlyxY87Ejgyxm7dumlZfHy82/xlG/+FCxfw3nvv4fbbb0f+/PkRFhaG4sWLo0OHDpg8eXK6+5acnKxN+MTMwxuhoaFo27YtAGD8+PHpbp8QQjKFQAyyU1JSVExMjAKgcufOrc6ePZtuI29xECxVqpTf14jzCwD19NNPp7sPrjRp0sSns1iTJk10eVfnxf/+978er4uJiVGbNm3y2PbVq1dVz549vbYdGhqqvv32W+v1ptPShg0b1F133eWxnnr16qkLFy6k+T516dLF530qUKCAWrRokcc6TAfR3377TUVERHh0XP3555891nP69GlVr149r2NdvXq1VydTf5z4duzYoSpXrux1zOXKlVPbtm0L6F4KkyZN0vV06tQpTXUEiq9xv/TSS359zmklvc+8UkodPHhQVaxY0eP19957r5oxY4b+/7x589zq8NdZWZ57T3OWPw7ZNWvWVIcPH/bYhpQL1Hlx3rx5Ptu2jT8xMVHFxsZ6vaZ9+/YqKSkpoP6YzJ8/X9c1Z84cv675+uuv9TV79+5Nc9uEEJJZBLSw3rBhg9OLKhikZWF97Ngx3Y+KFSsGpR8mu3btUuvXr9cvmgceeECtX7/e6W/Xrl26vLmwbtiwoV54jxs3TiUkJKjZs2erzp076zINGjTw2LZZrlWrVmrs2LFqxYoVauXKleq7775TVapU0ecnTpzodr25sG7YsKHKli2b6tKli5oyZYpatWqV+uOPP9Ttt9+uy7z22mtpvk9PPPGEKl26tOrdu7caP368Wrp0qVq5cqX69ddfVY8ePVTOnDn1j4mjR49a65DPv2bNmio8PFzFx8erL774Qi1btkwtXbpU9evXT4WHhysAKm/evOrYsWPWelq2bKnHdPvtt6uffvpJJSQkqGnTpqknnnhCAVD169dP18L60KFDqnDhwgqAypMnj+rdu7eaNm2aSkxMVPPmzVOvv/66/mFQunRpdebMmYDv6SuvvKL74O2HRDDxNm5zoX/bbbepr776Ss2fP1+tXr1azZ8/X3399dfqoYceUrGxsWluP73P/NWrV1XNmjV1mRYtWqg//vhDJSQkqN9//101b95cAVB169bNlIV18eLFVf369dWAAQPU5MmT1cqVK9XixYvV2LFj1b333qv7YP44dyWtC+sLFy6o9evXq4EDB+o6ZsyY4TZ/mT+oDxw4oKKjoxWQGl2mW7duasaMGSohIUH98MMPqnr16rquRx55JKD+mAwYMEC34e93IzExUbc9duzYNLdNCCGZRUAL6x9//FFPcm+88UZQOpCWhbVSqS8vIFWTmZKSEpS+eOpbIOH2gFQtuq1PTz31lC6TmJjodv7XX3/V57/77jtrW0lJSVoLHRcXp65evep03lxYA1BjxoxxqyM5OVlVrVpVaxpd6/CXHTt2eL3369atU5GRkQqAeuutt6xlTO1e7dq1rS/csWPH6jJDhw51O//777/r8w888IC6du2aW5kPP/zQ6b6kZWHdpk0bBUCVKFFC7dy501omMTFR5c6d2+uYvXHPPffoPqRV6x0o3sb9r3/9S38/PYVGU0qpkydPpqntYDzzn332ma7jmWeesdbRvXt3rxpbpYK3sPb1uY0YMUL3Y/bs2dYyaV1YC4GE2+vQoYMu+/3337udT05OVs2aNdNlpk6dmqY+tWrVSgFQZcqU8fuaq1ev6rB7zz33XJraJYSQzCQgG2vTXrZw4cKBXBp0ChQoAAC4fv06zp8/f0P7YlK0aFF8/vnnVntV03lz4cKFbucHDx4MAGjXrp1Hx8zw8HB88cUXAFIzPtpsJYX27dtb7drDwsLwwgsvAEgN67Zp0ybPA/JCmTJlvNrlVqtWTY/jzz//9FnfiBEjkC9fPjf5448/jtjYWAD2+/bNN98ASL0333zzDbJnz+5W5uWXX0atWrV89sETGzZs0HamX3zxBUqXLm0tV7NmTTz//PMAUscTKFnpOwYAR44cAZDqbOYpNBoA5M+fP031B+OZ/+qrrwCk3q+PP/7YWsenn36KmJiYNPUxUMqVK+f1fLdu3VCzZk0A/n0vMpLDhw/jjz/+AAC0bNkSTz75pFuZsLAwjBgxQtv6y2cRKOJf4s0R15UcOXLoZ8tf/xRCCLmRBLSwNhewuXPnDnpnAsF8yWelhXWHDh0QFhZmPVehQgXdb4n/LRw8eBCrVq0CADzyyCNe26hUqRIKFiwIAFi6dKnHck888YTHc2aYQte+pJXTp09j586d2LhxIzZs2IANGzYgKioKALBp0yZcvXrV47XVqlXzGNEiJCREL0Rc+3rt2jX8/fffAFKjCHhajIaEhOBf//pXoEPS/PXXXwBSI+G0bt3aa9k777wTQGoEnf379wfUTlb6jgGpPxQB4O+//8bOnTuDWncwnvlDhw5h8+bNuo6IiAjr9ZGRkT7byAiUUjhy5Ai2bdumvxMbNmzQPxTXrl2b6X0ymTdvHq5fvw4A1kW1EBcXh3vuuQdAqoOkXBMIx48fBwBER0cHdJ0srOV6QgjJygS0sM6TJ48+lsggNwpzAZI3b94b2BNnKlas6PW8vFRcfwwkJCTo48cee8ya5t38E82maBQD7YupYUzPD5P169eje/fuKFq0KPLnz4+yZcuiatWqqFatGqpVq4Z+/foBSI3NfPr06TT11eyva1937tyJpKQkAPAZ07xOnTq+huMR+XwuXbqEHDlyeP1s2rRpo6/z9vnYyErfMQDo3LkzgNSdjapVq6Jjx44YOXIkduzYke66g/HMr1+/Xh/XrVvXa3v16tVLd5/9ZcqUKWjTpg3y5cuHokWLokKFCvo7Ua1aNUyZMgUAfEbNyWg2bNigjyXakifk/KVLl9L0Y/zUqVMAAl9YS3lveRAIISSrENDCWjRGAHD06NGgdyYQ5IWUI0cOp8XIjcaTxkzIli31lrtqfI4dO5am9ryFzPPWF+mHrS/+Mnz4cNSqVQsjR470awEpC2Abab1v5mLd1xZzekwBMuLzsZGVvmMAcPfdd+OLL75Arly5kJycjPHjx6N79+4oV64cihcvjh49eqRZ6xqMexrI558ZpjVKKTz11FNo06YNpkyZ4vNHq7fvRGYgi13A9/0pUqSI9Tp/CQ8PBxD4mKV8rly5Am6TEEIym4AyL1avXl0fJyYmBr0z/nLs2DEcOnQIQKp5xa2AuWD88ccf/U70Eaj2J1hs2bIFPXr0wLVr11CoUCG8+uqruOuuuxAXF4c8efIgNDQUQKqdsWwxq5s4ZbZ8PvHx8ToWrz/Ex8cH1E716tUxa9YsAKnfMV/2upnB888/j4cffhjjxo3DrFmzsHjxYpw9exYHDx7EN998g2+//RZvvPFGwKmng/HMm8+UN3t/17IZxYgRI3QSlBo1aqBXr16oX78+ihUrhoiICG3/37lzZ4wZM+am+k6kt68xMTE4d+5cwItyKZ9ZNvKEEJIeAlpYV65cGQULFsSJEyewcOFCnDt37oaYYcjCAwAaN26c6e1nBOKMCaQuEDyld88qjBo1CteuXUP27Nkxf/58j1nUvJl/BANzkeVLA5oeG035fI4ePYqKFSv6nbQlUJo0aYIPP/wQQKo5waOPPpoh7QRKoUKF0KtXL/Tq1QspKSlYs2YNfv/9d3z55Zc4c+YMBg0ahLp16+KBBx7wu85gPPOmSZMvDb+v50N2RVJSUryW82ai89133wFIdexdsmSJRy1rRn8v/MX1/pUsWdJjWfP+psVZNSYmBjt37gx47FKeC2tCyM1AQKYgZlayixcv4vvvv8+IPnlFKYXPPvtM/79du3YZ1pYvDVgwEec8AJg5c2amtZtWNm7cCCBVw+otNbFpR5sRlClTRm8x+2orPX2Rz+fSpUtYvHhxmuvxRYsWLbRj24QJE3Dw4MEMayutZMuWDbVq1cLAgQMxZ84cLf/ll18CqicYz3y1atX08cqVK72W9XVeTMp8Lfy2bt3q8Zx8Lx544AGPi2qlVIbv+Pk7d5k/ZpYvX+617IoVKwCkmm0FuhMDOD6rnTt3+vzxIhw7dgznzp1zup4QQrIyAac079Wrl7aHfeedd7Blyxa/rktJScHYsWMDbc6N999/X0/wtWrVQsuWLdNdpydkwXb58uUMa0MoW7asTg//888/Y9++fRneZnq4du0aAO82xEeOHNHRNDKKHDly6CgcM2bM8Ki1VEphzJgxaW7H1MR+8MEHaa7HFzlz5tRhGZOTk/Hkk0/6bQN/4MCBoKQWD4RatWrpXYNAHfGC8czHxsbqH3YTJkzwaL978eJFnwt/WSwmJiZ6NHvYsGGDk8OkK/58LyZOnKhN2TIKmbsA7/NX06ZNtXmKmLDY2Ldvn94pbNq0aZp2bO644w4AqanTJZKLL2SuN68nhJCsTMAL62LFiuk4phcvXkSTJk2wYMECr9ds2rQJLVu21FvcaeHChQt45ZVX8PrrrwNI1Zp405hLJIG4uLg0tymhxoIdZswTb731FoDUBVX79u29mi5cvnwZw4YNQ3Jycqb0zRWx/d22bRuWLVvmdv7SpUt4/PHHM8U569lnnwWQet+effZZ60J06NCh6dIS1q1bFy1atAAATJ06FX379vVafs+ePfjpp5/S1NaLL76IZs2aAUj9sdCuXTuvz4JSCj/++CNq166NdevWpalNT4wfP97rZ5iQkKA1vGnRYgbjme/ZsyeA1B9yvXv3tl770ksv+TQFadKkCYDUEH62z+78+fPo3r271zrkezFp0iSr5nvnzp147rnnvNYRDGTukjY9ERsbq3f9ZsyYYY29fuXKFXTv3l2Hy5QY+IFiLozNBbM3pFxYWJjPqC+EEJIlSGtmmf/9739OmcxatGihvvzySzV37lyVmJioZs+erYYNG6Zat26tsmfPrgCo6tWru9Uj2c5iY2OdUu4mJiaquXPnqhEjRqgnn3xS5cuXT7eVL18+NXnyZK/9k7KBZnQ0efPNN3U9gwcPVmvWrFHbt29X27dvVwcOHNDlzMyLtox+tvF6yu4mWd0AqIIFC6o333xTzZw5U61evVotWrRIjR49Wj311FMqf/78CoBbNjx/M64F0mcbK1as0NdHR0erwYMHqwULFqjly5erYcOGqXLlyikAqlGjRl77E6xsdy1atNDt3H777Wr8+PFq1apVavr06apTp04KgKpXr54uM2rUKLc6fGVePHjwoCpatKguU79+ffXNN9+oJUuWqMTERDVr1iz10UcfqXvuuUdlz55dPfTQQ75uo0eOHz/ulII9T548qkePHuqXX35RS5YsUStXrlSTJk1Sb775pqpYsaIu9/HHHwfclrdxlypVSkVFRakuXbqo4cOHq4ULF+qx9u3bVz+H2bNnVwkJCWkaa3qfedeU5vfee6/6888/1apVq9Sff/6pnw1fKc2PHTum8ubNqwCo8PBw1b9/f7Vs2TK1fPly9eWXX6oyZcqo8PBw3ZbtWRwyZIhuo2LFimrEiBFq+fLlasGCBapv374qX758Kjw8XNWqVcvr8yx1pDXz4rlz51R4eLgCoGrVqqVmzJihtm7dquevS5cu6bL79+93SmnevXt3NXPmTJWQkKDGjh2ratSoofuTnpTmSilVuXJlBUA98cQTfpVv2LChAqBat26drnYJISSzSPPCWimlfvvtNxUXF+e0wPb0V6VKFTVjxgy3OsyU1r7+smfPrtq3b6/27NnjtV+XLl3S19SqVSvN4ztw4IB+mbv+NWnSRJcL5sL62rVrqk+fPvrHiLe/3LlzO70glcq8hbVSSvXv399r/3r37u2zP8FaWJ8+fdpp4ez6V7NmTZWQkKD///PPP7vV4WthrZRSe/bscVqgefvr1q2b1zH5IikpSb344osqZ86cPtsKCQlRnTp1UgcPHgy4HV8La19th4eHq9GjR6d5nOl95pVK/dFToUIFj9e1aNFCzZgxw+vCWimlfvnlF4/9CA8PV7/88ovXZ/HKlStOP/Jc/3LlyuWzDqXSv7BWSqk+ffp47Ifr+BMTE1VsbKzXe9++fXuVlJSU5v4opdTgwYMVABUZGakuXrzoteyePXtUSEiIAqB++umndLVLCCGZRcCmICbt27fH1q1b8eOPP6JTp06oUKECoqOjdRraWrVq4bnnnsOcOXOwfv16vZXuDxEREShatCiqVauGTp064bPPPsO+ffvw22+/oVSpUl6vNTOzvfTSS2keX7FixbBixQo8+eSTKFu2rJPdYkaRPXt2vP/++9i0aRN69+6NmjVrIjo6GtmzZ0eePHlQpUoVPPHEExg9ejQOHz58Q2O7vvPOO5gyZQpatGiB6Oho5MyZE8WLF0f79u0xc+bMdJn+BEpUVBQWLVqETz75BLVr10ZkZCTy5MmDGjVqYPDgwViyZIlTqnNb6nR/KFWqFJYvX44//vgDHTt2RHx8PCIiIhAaGoqYmBg0bNgQvXv3xoIFC7zarPpDeHg4PvnkE2zfvh3vvfcemjdvjpIlSyJXrlwIDw9HbGwsWrRogUGDBmH37t0YM2aMdnwMFn///Te+//57PProo6hWrRpiYmKQI0cO5M2bF7Vq1cKrr76KTZs26UQyaSEYz3xsbCxWr16NgQMHomrVqsiVKxeioqLQoEEDDBs2DNOmTUPOnDl99uXhhx/GkiVL0K5dO8TExCBnzpwoUaIEunTpgoSEBDz88MNerw8NDcWUKVPw2WefoU6dOoiIiECuXLlQtmxZ9OjRA4mJiT7rCBbvvfcevvvuO9xxxx3Inz+/0/PvSs2aNbF161YMHjwY9evXR1RUFHLmzInY2Fi0b98eEydOxG+//ZbuOfDJJ59EeHg4Lly44NP/Yty4cVBKoXDhwmjfvn262iWEkMwiRKmbKJCqn/Tr1w/9+/dHuXLlsHnzZq8vFPLPYezYsTqt+Y4dO1CmTJkb3COSmcyfP1/brs+bNw9Nmza9sR36h9KjRw988803uPvuuzF79mxrmZSUFFSqVAnbtm3DoEGD8MYbb2RyLwkhJG2kS2OdVRFnyjfeeIOLaqIRh7SYmBiULl36BveGkH8mb775JnLmzIk5c+Y47S6ajB8/Htu2bUOBAgXw73//O5N7SAghaeeWW1hfuXIFy5cvR3x8PDp16nSju0MyiYMHD3qNXjF8+HBMnToVQGrWu8yMUU4IcVCiRAn06tULANC/f3+380opDBo0CEDq7qPEFyeEkJuBjEkfdwPJmTOn1xiy5NZk1qxZ6NOnDzp27IimTZuiVKlSSElJwc6dOzF+/Hj8+eefAIDChQvjtddeu7GdJeQfzltvvaXzIVy4cAGRkZH63OHDh9GhQwc8/vjjOpQiIYTcLNySNtbkn8eoUaPQrVs3r2WKFi2KKVOmOGX8I/8caGNNCCEko7nlNNbkn0mbNm3w1VdfYfr06di8eTOOHz+O8+fPIyoqCpUqVULbtm3Ro0cPbisTQgghJMOgxpoQQgghhJAgcMs5LxJCCCGEEHIj4MKaEEIIIYSQIMCFNSGEEEIIIUGAC2tCCCGEEEKCwA1dWO/ZswchISEICQnBqFGjbmRX0K9fP90XQgghhBBCAiXdC+urV6/i559/RpcuXVCpUiUUKFAAoaGhKFiwIGrXro2ePXti9uzZSElJCUZ/SRZj4MCB+gdJnjx5Mi05z7Bhw3S7vn6YXbt2DbNmzcKrr76KO+64AzExMQgNDUVUVBRq1aqFV155BTt37vSr3bNnz+LFF19EbGwswsPDUadOHfzyyy9BGlX6GDVqlNM9Mf+yZcuGvHnzomrVqujRowcSExMztC/r1q1DaGiobr9r165pqqdPnz5O45g/f77X8kopfPLJJ6hYsSLCwsJQtmxZDBw4EFevXk1T+xmJUgqTJk1Cjx49UK1aNRQqVAihoaHInz8/qlWrhu7du+PPP//MsL4/8sgjTvd2z549fl87e/ZsdO3aFWXLlkXu3LmRL18+lC9fHh06dMBXX32FCxcueLz20KFD6Nq1K2JiYhAREYEmTZpgzpw5QRhR+jEVLOZfWFgYChUqhHLlyuG+++7DO++8g7///jtT+nT48GFERUXpvvgTf10phQkTJuDBBx9EiRIlEB4ejoiICJQuXRodO3bEjBkz/Gp77NixqFGjBsLDw1GiRAm8+uqrOH/+fDpHRMgtjkoHf/75pypdurQC4POvfPnyavLkyU7X7969W58fOXJkerqSbvr27av7QvynfPnyTp/zmDFjMrzNgwcPqrx58zq16+n5OXbsmCpQoIDP5zNnzpzqk08+8dru+fPn1W233Wa9ftCgQRkw0sAYOXKkX99FACpbtmzq7bffzpB+XL9+XdWvX9+pvS5dugRcz5o1a1SOHDmc6pk3b57Xa7p3724db6tWrdS1a9fSNqAMYOHChap69ep+fVaxsbFBnx8nT57s1s7u3bt9Xnfq1Cn1wAMP+Ozz6tWrrdcfPHhQFS9e3Po8Zsbc4QvzPeDPX6VKldQvv/ySoX166KGHnNps0qSJ1/JnzpxRTZs29dn3Rx99VF2+fNljPf3797deV7NmTXXhwoUgj5KQW4c0ryLfffddFRISor9szZs3V59//rmaM2eOWrVqlZo1a5b64osvVMuWLVW2bNkUAFW9enWnOrLSwpoEztKlS/XnFxkZqQCoe+65J8PbbdeunQKgChUq5PP52b9/vy5To0YN1bdvXzV16lS1atUqNXfuXPXqq6+q8PBwXeabb77x2G6fPn2cXqZLly5V//vf/1RYWJjKli2b2rhxYwaN2D/MhfXAgQPV+vXr9d/atWvV7Nmz1VtvvaU/KwBqxIgRQe/Hp59+6vb5BLqwvn79uqpbt65bPd4W1lOnTlUAVHR0tPrss8/UsmXL1IgRI1RsbKwCoL766qv0DSxI/PDDDyo0NFSPqX79+uqDDz5QM2fO1M/ld999p9q1a6dy5sypAKh8+fIFrf3z58+rkiVLut1bXwvrM2fOqNq1a+vyrVu3VmPGjFFLly5VixYtUj/++KPq1auXKl68uMeF9SOPPKIAqNtvv11NmjRJLVq0SL300ksqJCRE5c6dW504cSJo40wL5sJ6xIgR+vuzbt06tXDhQvX777+r119/XVWrVs1psdm9e3d1/fr1oPdn4sSJbp+Tr4V1q1atdNn4+Hg1bNgwtXDhQjV37lw1ZMgQVbBgQX3+ueees9axceNGlS1bNhUeHq4GDBigli5dqsaPH68qVKigAKj//ve/QR8rIbcKaVpY//DDD/qLGRMTo+bOneu1/Lp169Rdd93FhfUtRs+ePRUAVbBgQfX+++9rzdOBAwcyrM0///xTP3cfffSRz+fnwIED6p577lFLly71WOeyZctUrly59ALm3Llz1nJxcXEqd+7c6tChQ07yjz/+WAFQ/fv3T/O4goG5sPb2fZo9e7b+UVyxYsWg9mH//v0qT548KiQkRI0ePTrNC2u5pxUrVlSvv/66Xwvrrl27KgDqr7/+cpKvXr1aAVDNmjVLw4iCy7x581T27NkVABUREaHGjx/vtfzu3bvVI488EtSF9YsvvqgAqLvvvlt16dLF74X1v/71LwVA5ciRQ/38888ey6WkpKirV6+6yZOTk1VYWJgqUaKEm8ZT+jR69Og0jSlYmAtrX7sjEydOdFqkvvrqq0Hty/nz51WJEiUUAKd3rreFdUJCgi5XunRp61y2d+9eFRUVpefrY8eOuZXp16+fAqA+/fRTJ/mBAwdURESEio+PT/f4CLlVCdjG+tChQ+jZsycAICIiAvPnz0ezZs28XlOtWjXMmjULr7zySqDNkSzKlStXMH78eACptpqdO3dG9uzZkZKSgh9//DFD2jx//jxeeOEFAMCHH36I/Pnz+7ymWLFimDlzJho0aOCxTP369fHcc88BSLWhnj17trXcwYMHUbFiRRQtWtRJfvfdd+vzNwN33303ateuDQDYsmULzp07F7S6n3/+eZw/fx5du3bFnXfemaY69u/fj7fffhsA8NVXXyFnzpx+XSf3/6677nKS16hRA/nz57/hn09SUhKeeOIJXL9+HdmyZcOkSZPwyCOPeL0mLi4O48ePx6effhqUPiQkJOCLL75AWFgYhg0b5vd1ixYtwpgxYwAAb731Fh599FGPZUNCQpAjRw43+cmTJ3H58mXUq1cPuXPndjp3s32HAKBt27ZYsmQJ8ubNCwAYMmQIVq9eHbT633jjDezfvx/NmjXDv/71L7+uWbx4sT7u1asX8uTJ41amZMmS6NatGwAgJSUFy5cvdyvj6btUrFgxVKxY8ab6nAjJbAJeWH/88ce4ePEiAKB///6oXLmyfw1ly4ZOnTr5LDdr1iy0bdsWRYoUQVhYGOLj49GzZ08cOHDA57VXrlzBsGHD0KxZM8TExCBnzpwoUqQI7rvvPowdO9arA6W/UUGuXLmCb7/9Fq1bt0axYsW0U0vt2rXxwgsvYOHChVBessTPmjULnTp1Qnx8PHLlyoW8efOievXq6NOnDw4fPuy17UOHDuG1115DrVq1kC9fPj2+atWq4bHHHsOoUaOCukjyxqRJk3Dq1CkAQKdOnVCkSBE9Cf/www8Z0ubrr7+OAwcOoGnTpujcuXNQ6zZ/HHpyZCxUqBC2bt2Ko0ePOsnFoa5IkSJB7VNGEhcXp4+Tk5ODUuevv/6KiRMnokCBAvjggw/SXM9zzz2HCxcuoEuXLn45agmFChUCACxYsMBJvn79epw6deqGfz4jRozAoUOHAAA9e/Z0W7R4o0uXLulu/9q1a3j66adx/fp1vPbaayhfvrzf137xxRcAgMjISPTu3TtN7UdHRyNHjhxISEhwc3K+Gb9DAFCuXDkMHjxY//+9994LSr0rVqzAl19+iZw5c+Krr77y+7orV67o49KlS3ssV6ZMGX18+fJlt/OevktHjhzB1q1bb7rPiZBMJRD1dkpKioqJiVEAVO7cudXZs2fTpS53NQX573//69HRIiYmRm3atMljXXv27FGVKlXy6qzRuHFjdfLkSev1/jgvrl69WsXHx/t0CrFtqV64cEHbBnv6i4yMVJMmTbK2/ffff7s57Nn+bNfPmzcvzVvynrj//vsVAFWmTBktM7f+V61a5bMOKVuqVCmfZZctW6ayZcumcubMqTZv3qyU8t/0wR9+++03XddHH31kLfP8888rAKpKlSpqwoQJaunSpWrQoEEqPDxchYSEqLVr16arD+klkPtRp04dBUCFh4erlJQUa5kmTZoEZH9btGhRBUANHz5cKeX8/fb3uRs/frwCoPLnz6+3qP3dnp8wYYK+9osvvlDLly9Xo0aN0s5yn3/+uV99yCjEPjkkJERt37493fUF+r0Wc61y5cqp5ORkpZTyyxTk8uXL2g/h4Ycf1vKrV6+qPXv2qL1793p1gjNp3bq1AqAaNWqkJk+erBYvXqxeffVVlS1bNhUREaGOHDniVz0ZRSCmIMLFixe1aUVERIS6cuWKWxnzPvuq9+rVq9qx1XQwluu9mYL89ddfutxnn33msdxLL72ky61bt87t/MqVKxUAlStXLvXuu++qpUuXqgkTJqjKlSsrAKp3795ex0DIP5mAFtYbNmzQX8Z777033Y2bL96GDRvqSWPcuHEqISFBzZ49W3Xu3FmXadCggbWe8+fPO0UnefDBB9XEiRNVQkKCmjBhgtMC4fbbb7dGB/C1sN64caOT01e7du3U+PHj1cqVK9WyZcvU6NGjVadOnVTu3LndXlDXrl1TzZo10y/Vxx57TE2YMEElJCSopUuXqk8//VQ7E+XMmVMlJCQ4XZ+cnKwdsPLkyaP69Omjpk2bplatWqWWLVumxo8fr3r16qVKlCiRKQvr48ePa+erd955R8vPnz+vIiIiFAD14osv+qzH34X1lStXtLPQm2++qeXBXFj/5z//0XVNmTLFWubEiROqTJky1h805n24Ufh7P+bOnasdis2FkiuBLKyfffZZ/eNVFuqBLqxPnz6tihQpogCo7777Tsv9XeykpKSoBx980Pr53H333Va738zi7Nmz2rY6WHbtgXyvd+3apb+bs2bN0nJ/FtYrVqzQZYYOHaoOHz6sunbtqnLnzq3l4eHhqlWrVmrx4sVe+7F9+3ZrlJ6QkBD1/fffB3oLgk5aFtZKKXXffffp65YtW+Z2PpCF9eDBg7XSIikpScv9WVgnJyeruLg4fb0tesf+/ftVdHS0fh96QuzeXf+qVq2abqUaIbcyAS2sf/zxR/3leuONN9LduPniBaCefvppq/bsqaee0mUSExPdzr/yyiv6/FtvveV2PiUlRT3xxBO6zLBhw9zK+FpY16xZUwGpzh4//fSTxzGdOHFCXbp0yUn24YcfKgAqNDRUTZ061XrdqVOnVJUqVfTixGTOnDm6b5402kqlajpsE16wF9YS9QGA2rZtm9O5xx57TAGpXuy+FjL+LqwHDRqkgFRnHPPeBmthfejQIZUnTx4FpDpiun5+JkePHlVPPfWUKlSokMqZM6eqXr36DXe4EnxFBZkzZ45655139M5H0aJF1datWz3W5+/CetGiRSokJESFhoaqDRs2aHmgC+unn35a/8g254FAFjtXr15VAwcOVKVLl1ahoaGqVKlS6q233tIa2hvF4sWL9Rgef/zxoNQZyPe6RYsWCoB67LHHnOT+LKxHjRqly7z77rtODnuuf9myZVMff/yx177s3LlTPfLIIyoqKkqFh4er22+/3eOP2cwmrQvrt956S1/3ww8/uJ33d2G9c+dO7Ug9Y8YMp3P+LKyVSn3W8ufPrxfXX3/9tVq0aJGaN2+e+vDDD3WEkbi4OLVlyxavdQ0bNkxVrlxZhYaGqiJFiqh///vf6vTp016vIeSfTkALa3NB5eotnBbMF2/RokU9vvy2bNnisd3k5GS9DVe5cmWPsWrPnj2rNSWVK1d2O+9tYT19+nR9zh9NrMmVK1f0FvlLL73ktayECwPgtFVs/qBJi6Yg2Atr2dKuV6+e27kpU6b49SNAKf8W1tu3b9fb0NOmTXM6F4yFdUpKijZrCdZzfaPwN451WFiY6tOnj9q/f7/X+vxZWF++fFlvD7uG4ApkYb1w4UIVEhKicuTI4bY1ndbFTlbC3KL3NQ/4i7/f6zFjxiggNeLN4cOHnc75s7AeOnSo07MDQLVp00YlJCSo5ORkdfToUTVs2DD9gy0kJMSjAiGrk9ZnTaLYeJpD/F1YN2/eXAGpMaZd8XdhrVRq5I/evXs7hXWUv8jISNW/f391/Phxv8dHCPGfgJwXzYxLrl7d6aVDhw4ICwuznqtQoQIiIyMBALt27XI6t2rVKpw5cwYA0LVrV2TPnt1aR968ebUH/qZNm3w6CppMmTJFH7/00kt+XwekOqFIW74iAJhRFJYuXaqPzSgUI0eODKh9AGjatClU6o+odKeO37RpE1atWgUAVmfUFi1aaMcXiSLgCemTt4xvPXr0QHJyMh5++GHce++9ae+4B959911MnDgRQKoDo0QduZW5fPkyxowZgzFjxnh1tJ0/f77+jExnR5P33nsPmzZtQqlSpfDOO++kqT9XrlzBM888A6UUXnrpJVSrVi1N9WRlMmLu9Od7ferUKbz88ssAUp/1tDidibM6kPrstG3bFn/99Rdq166tnbd79uyJKVOmIFu2bFBKoU+fPl6frVsNeT8BsGYmHDVqlP6sPDnk/vDDD5g9ezby5s2Ljz/+OM19UUrh119/xa+//mrN2nnhwgX8/PPPTu81QkjwCGhhbYbuMSfbYFCxYkWv56OjowG4T1obNmzQx/Xr1/dah3nevM4XEkKpZMmSKFWqlN/XAanhrYTbb7/dY8rpkJAQp8n5yJEj+rhx48baw7tXr16oV68eBg8ejCVLljh5gWcGo0ePBgDkyJEDHTt2dDufI0cOHYpr4sSJOHv2bJrbGjVqFObMmYO8efPik08+SXM9nvjxxx91WLe4uDiMGzcO2bIFHCgnSzJy5Ej9Ipe/8+fPY8WKFXjqqadw+PBhvPHGG3jsscfSvADaunUr3n33XQCpUSMiIiLSVM+7776LzZs3o2TJkujbt2+a6sjqZOTc6Y2XX34Zx48fR926ddGjR4801REeHu70/yFDhli/J40bN0b79u0BpM6vgcyxNzvme0nC7wXCiRMndLSVQYMGuYX09JeUlBQ8+uij6N27N/bu3Ysnn3wSiYmJSEpKwoULF7Bo0SLcf//92Lx5M7p27ZrmCC+EEM8EtIooWLCgPnYNOZZefL2UZSK/fv26k1xCvgFA4cKFvdZhamvM63xx4sQJAEjTZHfs2LGArwHgFI4qNDQUkyZNQqVKlQAAK1euxBtvvIFGjRohKioKrVq1wrhx49zuTbAxY1S3aNECMTEx1nKiyU5OTsYvv/ySpraOHz+u454PGDAAsbGxaarHE1OmTEG3bt2glELhwoUxa9asWz6EVGRkJOrWrYvvvvsOb7zxBgBg/PjxadoFUUrh2WefxeXLl9GuXTu0adMmTX3asmWLDlf2+eefB30nLKuQkXOnJ+bOnYvRo0cje/bs+Oabb9L8o9H8URAfH48KFSp4LNuyZUt9vHLlyjS1dzMi7wgAfsXXd+Xll1/GiRMnUKdOHR1TPy0MGzYMEyZMAJAaQvb7779HzZo1ER4ejty5c6NRo0b466+/dFzsoUOHUnNNSJBxj+LvherVq+vjxMTEoHcmvfiKQZ3erUlf9dswF7vz589HgQIF/LpOzCmEypUrY/369Zg0aRImTZqEBQsWYOfOnUhKSsL06dMxffp0DB06FFOnTnW7NljMmTNHJwaYOnWqX/fjhx9+wNNPPx1wW99//z1OnjyJqKgoFChQAD///LNbGTOxwfLly7Vm7a677vJ6D+bPn48OHTrg6tWriI6OxsyZM1G2bNmA+3gz07t3b7z33ntISUnB8OHD0b1794CuX7ZsmY5x27BhQ+vnc/z4cX28e/duXaZq1aqoWrUqgNS4+FeuXEHp0qVx6dIlaz2m5nPu3Ll6N6dt27Y3zUK8atWqyJ49O65fv55pc+f7778PAKhTpw62bt2KrVu3upXZvXu3Pp40aZL+sWzuRpUoUUIfFy9e3GubZtm0KhVuRszEMN5+eNg4dOiQNpu76667fCojjh07pr8n8fHxTjuxw4cPB5D6Y+i1117zWMe7776r2/z+++/RunXrgPpMCPFCIAbZKSkp2iM8I+JYe6NUqVJWJ51vvvlG17FgwQKvdZje7TNnznQ65815sXHjxgqAKlmypF/jMvnggw90vUuWLAn4em8cOnRIDR8+XDsTAqmhBjMKM7KKv38hISFq586dAbdlfh6B/nlzDlq+fLkOmxgZGWkNjXWzEqgzZ+HChRWQGsIxUEzHuUD/+vbtq+sxnboC/fMVAjCrEew41r4wnU8D/TPZs2ePljds2NBrm6bz8pAhQzJyeBlCWuNY58uXT78XAw3r6BodK5A/1/ehOJfWr1/fZ7vy/Q9W+EdCSCoB7Q2GhISga9euAFLtBL///vtALs8QRPMFwJqa1WTFihXW63xRq1YtAMC+ffuwd+/egPpXs2ZNfTxz5syArvVF0aJF0b17dyxdulT3cfLkyUhKSgpqO0Cqw8sff/wBIDX98E8//eT1T54NpZRPJ8bMYt26dbj33ntx4cIFhIeHY9KkST7t8m9lrl27BgBWBycSfCSNtFIKn3322Q3ujf+UKlUKJUuWBOA5K6lgni9WrFiG9iurMHLkSO1L0rZtW2s698xC2pbvtjfke38j+0vILUmgK/EDBw7oRAO5c+fWWfB8cf36dTVmzBgnWTA01ma4vSpVqngMt3fu3DmtbQ803N6sWbP0uUDD7SUlJemYokWKFMmwwPpmJq1Dhw4FvX5TG/rrr7/6dY1o6MzsjBnVJ1/Pz9atW7WGJjQ0NMvEzQ0mgdyPXbt26bLlypXLkP6kJfOijVsh3J5SqZpNSYCTLVs2NX/+fL+vzahY6f6E21PKeX7xlgSmadOmupyvcI5ZkUCftW3btukY+ADUmjVrMqxv0oa3cHtVq1ZVQGpYRG/xptevX6/ra9u2bfA7S8g/mIC9WYoVK4YvvvgCQKrWukmTJtrW0hObNm1Cy5Yt8eGHHwbanE/CwsLw1FNPAQA2btyI/v37u5VRSuGFF17QDiaBhlRr3rw5ateuDSDVwcpmByqcOnXKSWMcHh6unfCOHDmCjh07eo0KcP78eX1/hYULF2LHjh0er7ly5Yr+DCIjI92cCufPn68jj8iOQ6D88MMPAFKdTFu1auXXNR06dACQqsVavHix23npk6dQbsFi3759aN68OY4ePYrs2bNj3LhxuO+++zK0zaxMSkqKk/2lp3vRtGlT/Rl5C4lI/CMiIgJjx45FtmzZkJKSgtatW+O3337zes2+ffvQsWNH/Oc//3E7F4zvtb/06tVL+zD85z//sc5hY8eOxfz58wEArVu39mmPfbMzefJkNGzYUEcEef311538kEy6du2qPyu5RxlB27ZtAaSGRXz55ZetfkXJyclOz1NaHY8JIXbStAfUrVs3HDhwAO+88w6OHTuGpk2bokWLFnjggQdQqVIlREVF4dSpU9i2bRumTJmC6dOn4/r16x4nnfTyzjvv4Pfff8euXbswYMAAbNiwAd27d0dsbCx2796NL774Qk9mt99+O5555pmA2xgzZgzq1auHCxcu4LHHHsOECRPQsWNHlC5dGtevX8eOHTswa9Ys/Prrr1i/fr3TYrFPnz6YM2cO5syZg2nTpqFy5cro0aMHbr/9dkRFReH8+fPYunUr5s+fjz///BPh4eFOi/85c+ZgwIABuOOOO9C6dWvcdtttiImJQVJSErZt24avv/5aO0Q99dRTQd/a27dvn75/rVq18jus2kMPPYTXX38dQOrCvFGjRkHtlz+cPHkSzZs3x/79+wGkOu1VrFjRayiw6Ojom34b++DBg25jvHjxIjZt2oTvvvtOx0kvUKCAVycnElzuvvtufP/993j22Wdx8eJFdOjQAQ0aNECHDh1Qo0YN5M+fH2fPnsWuXbswffp0TJw4EZcvX0a+fPluaL9LliyJ//3vf+jTpw9WrVqFevXqoU+fPqhatSrOnj2L33//HV9//TUApDsOc1Zh9+7dOpqLUgrnzp3D8ePHsXLlSkyaNAnr16/XZZ9++mkMGjToRnVV8/LLL2P48OE4duwYRo4cie3bt6NHjx6oWLEirl+/jtWrV+Ozzz7Dpk2bAACVKlXK8B9lhPzjSI+6+7ffflNxcXF+OVlUqVLFLUVrMExBzLoqVqzotQ+NGjVSJ0+etF7vK6W5UkolJCSoEiVKpMmp6tKlS6pz585+3av4+HiPffP21759e5WUlOTWdnozLw4cOFBf7y2du43bbrtNAVBRUVFumTWlTl8pzT3hj+lDWpzsgpGd8kbgb+ZF8zlbtWqVx/r8TWnuCZqCeGb+/Pl6297XX8mSJdW4cePc6ghGRlV/TUGE1157TYWEhHjsa6FChYLupJ2ZBOo0XblyZfXbb7/5rNffzIvekOt9ZV5cvXq1io+P99n3GjVqqD179qSpL4QQz6RLtdm+fXu0adMGv/76K6ZNm4aVK1fi2LFjOH/+PPLmzYu4uDg0aNAADz30EJo1a5amcHX+EhcXh7Vr1+K7777DhAkTsGHDBpw7dw758+dHzZo18cQTT+Dxxx9PVwKQ2rVrY+vWrfj+++/x559/YsOGDTh9+jQKFCiAYsWKoXHjxujYsaPVtCFXrlwYPXo0/vOf/2D48OH4+++/ceDAAVy8eBGRkZGIi4tD7dq10apVK7etuT59+qB+/fqYNWsWli5dikOHDulQVkWKFEH9+vXRuXPnDDNvEOfDsLCwgMMyPfTQQ1i3bh3OnDmDiRMn4uGHH86ILhI/CA8PR8GCBVG9enXcf//96NSpU5qTupD00aRJE6xduxaTJ0/G5MmTsWTJEhw9ehRnzpxBZGQkihcvjnr16uGBBx7Afffdl2UczAYPHoz7778fX331FRYuXIjDhw8jPDwc5cuXx/33349///vfN1y7nhGEhoYib968yJcvHypUqIA6deqgRYsWaNy48Y3umhs1atTA+vXrMXr0aPz1119Yt24dTp06hZCQEBQqVAg1a9bEww8/jEcffRShoaE3uruE3HKEKPUPyjtLCCGEEEJIBnFr5G8mhBBCCCHkBsOFNSGEEEIIIUGAC2tCCCGEEEKCABfWhBBCCCGEBAEurAkhhBBCCAkCXFgTQgghhBASBLiwJoQQQgghJAhwYU0IIYQQQkgQ4MKaEEIIIYSQIMCFNSGEEEIIIUGAC2tCCCGEEEKCABfWhBBCCCGEBAEurAkhhBBCCAkCXFgTQgghhBASBLiwJoQQQgghJAhwYU0IIYQQQkgQ4MKaEEIIIYSQIMCFNSGEEEIIIUGAC2tCCCGEEEKCABfWhBBCCCGEBAEurAkhhBBCCAkCXFgTQgghhBASBLiwJoQQQgghJAhwYU0IIYQQQkgQ4MKaEEIIIYSQIMCFNSGEEEIIIUGAC2tCCCGEEEKCABfWhBBCCCGEBAEurAkhhBBCCAkCXFgTQgghhBASBLiwJoQQQgghJAhwYU0IIYQQQkgQ4MKaEEIIIYSQIMCFNSGEEEIIIUGAC2tCCCGEEEKCABfWhBBCCCGEBIEcN7oDhBBCsjDJuwEAy//erkVhVVoAAGoUS0e9V8/rw/2bVgMANh9NThWEF9bnKtWsDAAokSc0PY3po/P7NwEAVm8+CgBITldbRr3bEwEAS3df1rLClWoCACqXyAMASM8ICCE3B9RYE0IIIYQQEgSosSaEEPL/JOuj3dP/BwDo9sYvAIBdq3fqcw/NVQDSprE+tfRdAEDrlu9p2f7b2wMAOtUsAgA4v22mPtdp6g4AQK0PFmjZuP+kaoLz+2rs6n4AwOQXm2nR478WBwC0794AAFDkiKPeDj8fT23zD4dsWCvbIFM11du+b6sl7efdBwAY2KWglk15rhcA4J32PwMAfu1WXp+j9pqQWxNqrAkhhBBCCAkCXFgTQgghhBASBEKUUupGd4IQQsgN5NwKAMCQlu216Pe2PwEA/nr1GgBgcM67HOX/3xTkY4eFhXeO/qYPHy31EgAgdtoaLfu4mWejjqvbvgYANKvwrpbdszzVLKVvPZtBhcOhcEX/MgCAOxe8oWWJU3sAACqHu195al5q32q0cjhWfnPsewBAq7xGwXOTAQCdO57VosFTnwAAOBuOpPbz+7u+AACUmfGxPtOMtiCE3JJQY00IIYQQQkgQoPPiP5BLly7p44sXLwIAIiIitCx37twAgORkhyPThQsXAADZs2fXsvDwVJVPWFgYACBbNsfvtGvXUrVcV65c0TI5b9Yhx+a1grfNFPOcHIeEhGiZHF+/fl3LUlJS3OqRcjly5HCTmX2Xa0NDQ93GcKORvl296tDUyT2x3WvbfXKtC3B8huZnI/fJfIYOHz7sdA4AYmNjATjuF8niJKV+l5uN26FFr8aLSnde+us/4fi+xr83CgDwby9aapPQ8o8DAF77V08te2/dPgBA33pl3C84N1sffjs4CgDwQWIPLbNpqoX8zV4BAIz/aaWW5RLltamxTkqdN88XzKdFeaw1Rqaey3cSAHAxyTjFrwYhtyTUWBNCCCGEEBIEuLAmhBBCCCEkCNAU5B+IaR6QM2dOAM6mFWJSYMpsJhCu5hCm6cTu3anZ2g4dOqRlYh4QHx+vZTYTEDFH8Ga6YTNncDVr8FS/aR4iYzTbkmvM+myyrIL0yRyrjMsmExMP81r5fM3x2e6NYNabK1cuAFnLPIYESOHbAAB1Mqr+Kh304XtVAr049fkKs9tauHF1+WR9PDyuMwBgbWV/20p1Pby9nY8A3YXvAQD8p0BrLXr6+9T41e+3KaJlRyb/FwDwSbnnAQAzTHMSQsgtCTXWhBBCCCGEBAFqrP+BiJYacDicJSU5vGrOnTvnVk4cGk0HNdFoyr9nzpzR56ZMmQIAmDNnjpa1bZuapaxkyZJe+ycaVdMZTzSpohU1+yEym7OjqVmVY1NjK8fmtVK3qYH1phW/0XhzwDSRsZqOh1IuT548bteJptq8N3IPTafEmJgYt7aknG0ngJBAuLptNABg8BhHbL8nX7Y4Lf4/u3cmOP7TKlVTfptxPvnQWgDAig1HU/8fXlifq1qvOgAg1ouDYyqpjpfNPvhLSwpNTg1P+PUnF7Ss7L2p2SXnPZW6S+ezWkLITQ/fdIQQQgghhAQBLqwJIYQQQggJAjQF+QdibvfbYhuLyYDNZMRWj2z3m86LYk5y9OhRLdu6dSsAYN26dVpWsWJFAEC+fI54sGJmYJpseBuDTSbmC6ajonksiHmCae4g5WzOi1kZW2xvW7+9OXSa52zmL7aY4bZngwldiW/O6aPti5cBAHZfTDVT2jd/uD43bHqqU+BzC37Vsm6eLUFwcOsKfVyhWOpcsrT/7Vr28F9FAQAPtCgPALi4eqw+9/uCVGONHtMcdXzgLd52aCF9WKXdiwCA99p5Lk4IufXJ+qsFQgghhBBCbgKosf4HYmoTRdtsaiAlk6JNE2mrR7SdprNflSqpMbVEcw0AZ8+eBQD89ttvWnb//fcDABo3bqxl0hfphw1/Ncimo55o1M0skxIqznSUlPGYGnPXTIZZyYnRtmPgLfNiZGSkWzkZv6nVt4XgszmWSvtmW3LtzaDpJzcKh8P04dVzAQBzD6T+/8jq7frcpZhUx79c1x3fR3n6fCYv/OElAED///yoRbsTy7tcO0AffTCrDwCgTqsntaz2zj8AAI/6iMBHCCEANdaEEEIIIYQEBS6sCSGEEEIICQI0BSEAnLfxxQTDlMl2vy2Tn5gKiFkF4HBKNOtYtizVQWnfvn1atnr1agBAoUIOJ6ASJUq41SfYTBFsYxBsGRpNbM54WTlmtb/YxiWfoc2MQz5X0/zHm+OjGZ/aNZ65a7uE2HHEj77zhdR4z3dqyXv66Or+1EyKPRs58kImjF4DAPjYm2MhgK1XHgUA/PJUeS1zNx9xSArd8woAYPBdxbXs82k7AQCPPuXFY5IQQv4faqwJIYQQQggJAtRY/8OxZdITTK2kOLXZsvCJllOy9wEOjbWpib58+TIAZ4fCxMREAMDhw4e1TDI03n67I0SWINpWqcvsp+nsKKECfTkqJicnA3DWdst4bFkbsyKuWSkBxxhMDbRk1zx06JBbHbGxsQCcQyzawh3KfTDL2cITEhIsQku0AQD0HzxMy4oPSM14+GKzbloWZ7v47tRMipX8bi3VQzG2gkOyeKPssFFjTQjxTdZdLRBCCCGEEHITwYU1IYQQQgghQYCmIP9AbJn0bKYOvrIRutZni5lcuLDDQalq1aoAnGNbL168GACwZs0aLYuPT41bW6GCYz82d+7cHvshfbf1zTRnsSHXmOO3OUHanAGzCrb7b8s8KaYdtsybtpjltnvnK7a5a59I5iHOwWac+CFDhtyo7jiRvHu5Pv77bKpjYIsagQWGLmbaZ8xLzd662zgf9///xt/WzCEckxoY+6ClHCGEZATUWBNCCCGEEBIEqLH+B2Jqov3Fm6baX8qXTw15ZToUHj9+HICzQ92WLVsAAEuXLnW7tmjRogAcGmyzH7bQcuKwBzg0tmYYP1tIP8HU9rpq9rOiM6PZJxnr+fPntUzuidxDwOGEKJpoW1ZOE2/hCdPyXJG0sWPHDgDA22+/rWU///yzW7mWLVsCAJo3b545HfPAtt+66OOWi/sDAI788aiWFXa7wp2jx/Y4/tOoNQCgpKVcXO379HGFnqk7YpvPGU6Oeb22AgAwm2p2f7wfvSOEkFSy3uqAEEIIIYSQmxBqrP+B2LSSNptlE2+aWqnD1HCK7a5Zr4TDkwQwAFCzZk0AwNmzZ7Xs9OnTAIB58+ZpmWhWS5ZM1VHZbH1NDbOE1POVtMQ2fm/cbLbDNttxc8dAkHtnhtjzthNg3le5xmxLwjfebPcrK3LmzBl9/P777wMAPvnkEwCOcJEAEBUVBQDo27evljVt2jSju+cXt933nD6u9uogAMCYde217JXb3MN9aq5uAwD88fmfjjoeSa3DGgDvtnaOeuuUBQD899v/aFnzV24DYEsUA1xdNwYAMGjag1r25hdxnvtGCCEuUGNNCCGEEEJIEODCmhBCCCGEkCBAU5B/IKbJhi27npgM2MwIbFv73swIvIWuA4DGjRsDcJh4AMA333wDAJg7d66WlS2buqXrzQnLzMYox+Hh4Vom5iRm5kVxbjRNS+TY35B+WQVbVkwzG6Zgfv5yLyQbpvmZi4Oo+RleuXLF6V/z2LyHco3t8yeeMb9DX3/9NQCgf//+WnbixAkAjuf6lVde0efefPNNAA6TkEA4tz3VyW/Z7ouWs2sAANtN0cqZAICZV90Ko1CVFvpYR9Sr3FPLfh0xFQBQp54jH+KCl18DADzZNHUeiDiRoM99/s7/UsuUHaFlCT0rexyLaSDSZUTqNb/WqadllVZ/AAD4sEtqdthLCZ/rc+/8by0AoPbo2VrWPrCogISQfzjUWBNCCCGEEBIEQhRjZP3jsCUNMbWY8kiIA5rrsSui9TQ1wbawbDYtpmg5TU3dV199BQCYNGmSltWoUQMA0KJFqjbstttu0+cKFSrk1r5oYE1HPRnDxYsOrZxotkWbDTicLE0NbFbWVAu+HDUl9N7q1au1TJzfxKFU7iUA5M2bGpfMvA9yj31prG3abuKZyZMnAwBeeuklLZOQeiYdO3YEAAwYMACAYycnvRz9+wsAwMdTD6S7rjr/ek8fd6jiuVzyobX6eMHU1PHP2/H/4SHzOMbVrE1q+Lwm1WO1zLEP5SfJjlQyy3+fCAD4Y93hVEFRx1zS7v5Uh8r68QG3QAghAKixJoQQQgghJChwYU0IIYQQQkgQoCnIPxz5+G2Of6Z5hLcMhWJGYppinDt3DoBz5kNxpDOdq2xZ+zZs2AAAWLFihZbNmTMHAHDy5EkAwNNPP63PdejQwa1P0hfTFEH6eeHCBS0TMwYx/wAcjmGm+UtWzLQYKOvWrQMAfPDBB1om43/yyScBAHXq1NHnxIzGvDfyedkcYG1mP+Z9uxnMaTKDNWvWAHA2+5g/f75bOXHsHTJkiJY1aNAgQ/tGCCEkfdz8qwVCCCGEEEKyAAy3RwD4zrxo29hwldmcEm0h2GyaS7Ou0qVLu5XbsmULAGDv3r0AgMTERH2uaNGiAICKFStqWYECBTy2YfbJJpPx2xw6s2LYPemb6VB47NgxAMDWrVu1TLSiS5Ys0bKCBQsCcOwsmOOSem1h/Gw7ASZZ6f7cSA4cSHUGfPvtt7Vs1KhRbuXECVGcEgGHoyIhhJCbB2qsCSGEEEIICQJcWBNCCCGEEBIEaAryD8TcupeY1ubWvTirmTIpZ5oFSD02RzWJgRwZGalltpjGUq8ZW1tiIItJCODIuCiOhWIaAgBffvklAOBf//qXlrVq1cqtLWnfjG0tY7CZv5imFVJOHDpN05Ebjdw7iVMNACtXrgQAfPbZZ1omzqDm51CuXDkAjs/cX2dDW/ZGm/PiP8kkRJxiP/zwQy17//33ATjihQMO513JlAgAL7zwAgDnTKGEEEJuPqixJoQQQgghJAhkHbUbuaGYmkpvzos2RzbRStqu85V5z5ahUTA1y1WrVgXgCO22f/9+fW7btm0AgLVrHZncRNtdsmRJLZOQgb7Gajvn6qjpK8uhzaHPVj6YGl3bjkF8fLyWHT9+HABw6tQp6zWe+umrj1nRoTOjMTOFijOiOCgeOXJEn5OdjV69emlZ3759ATiHnSSEEHJrQI01IYQQQgghQYALa0IIIYQQQoIATUH+gfhyUPMWZzrYGQh9mYoIxYoVA+DYWt++fbs+d/bsWQAOkxAAmDp1KgCH0yMAVKtWLaC+2WJwy30wnS1tjnpiCmKWs5nMpNXJz2aKIpktAUeGPjGhAYBFixYBAD7//HMtE8dDMW0wTVikn7bP3JSJQ6fZJzm21XczM3v2bADOWRMlU6hgZgIdPHgwAEecakIIIbc2N/+bjhBCCCGEkCwANdb/cPzVlGaUY1qg9UZHRwMAatWqpWWibTU11ps2bQIAxMTEaJlodCVTI+AIM2diC0Eox7awg96cN211+BqzzVHU9ZypCZb6QkNDtUyOzXCHlSpVAuC4hwBw6dIlp3GZTnnedi5sYRdNbgVHRtFEv/rqq1o2ffp0t3J16tQBAHz88ccAgMaNG2dC7wghhGRFqLEmhBBCCCEkCHBhTQghhBBCSBCgKQjJspjmBpIF8fLlywAc2+8AUKpUKQDAhAkTtGzZsmUAgISEBC0Tk4U777xTy+Li4tzaFYc+07HS1RTEZophyzxoc870ZSYhddtMLNLjFCiZAc0+ieOhjEvG7qtvpsmIyMxxiSnKzWISIrGnJRY14IhPbY5VnpcBAwZoWadOnTK+g4QQQm4KqLEmhBBCCCEkCFBjTbIcoiG0aUVFEypZFAGgRIkSABzOeYBDA3ns2DEtW7lyJQBn58XChQs71Qv4F27QWxnzvK9yNu20q4OgzQHS1DpLOdHqm+dtGvPk5GR9LDsANgdIb6EYb+bQeTL+Dz/8UMs++ugjAMCZM2e0TDIj/ve//9UyyaAYHh6esZ0khBByU3Lzvh0JIYQQQgjJQlBjTbIcokU1NbCiITQ11YJotqtUqeJ2buLEifp469atAJwTesTGxgIAihcvrmVmohXBVWNuanP9tbu2JZcRm2ZTJtpgW/IYkZkaYxm/hM4zy+XOndutXlMrK/dYkuGY99dbYpi0aOL9TQaUEYi9NOCwoz5w4ICWyfhfeOEFLevbty8AoGDBgpnQQ0IIIbcC1FgTQgghhBASBLiwJoQQQgghJAjQFIRkOWyOd67h7mymCIUKFdLHUm737t1usv3792vZggULADhny6tcuTIAh3mA2Z6tXZvZg7csjGYd3swtXP/1hc1kxFavGVLPNbxeWtqyZWP0ljUyM0LwzZ8/H4Aja6IZdlFo06aNPpasiWXLls3wvhFCCLl1ocaaEEIIIYSQIECNNclyhIWFAXAO/SaaVQmVZmpW5dgMgVakSBEAQPPmzd1k06dP17IZM2YAcIRWAxzh+/Lly+fWhmBqp8V50JSZ2m5XTG2yPxpimybYFopQkr0AjntoYguV57oTYNZr0zrbzkn7pgOma3hCwOEsKOVsyXnSwo4dOwA4tNMA8OeffzqVqVGjhj4W7XTTpk2D0j4hhBAiUGNNCCGEEEJIEODCmhBCCCGEkCBAUxCS5bBlF7TFexZssZ0lfnOpUqW0TEwW1q1bp2UnT54EAGzfvl3LJG6xaT5gOkZ66q+JzcnSZlrhzTzDtd9mvabJhpT3Zn4COGJWm2Yi0ieJHX7x4kV9TkxrbFkezc/B9pnIeMzY2g0bNgTgiKN9/vx5r/21IddKLGoA+PrrrwE43xOJSz5gwAAAQNeuXQNuixBCCAkUaqwJIYQQQggJAtRYk5sCV22vr5B1gplJsGjRogCA2rVru9Vz8OBBLZs9ezYAIG/evFrmqrE22xSNrtlH0eLatLm2esz6RPMsfUuLxtoWAlAcP23ZGOXchQsX9DkZv+kUKe2a45I2bPfkvffe0zJxXuzYsSP8Qfr0xRdfaNmgQYMAOGePFMfT3r17a9krr7wCwNmhlRBCCMloqLEmhBBCCCEkCHBhTQghhBBCSBCgKQjJstgyGfqTldGUmeYJefLkAQBUqVLFrd7Fixdr2YkTJwAAq1atcquvfPnyAIDo6Gh9TkwlfGUjNMfjrZ+uGRptJhb+YpqH2OKDS/8kZrdp/mKWcy1vYnMe3bZtGwDgww8/1LLIyEgAwJAhQzz29+eff9bH4qAocarN8fTo0UPL+vbtC8ARp5wQQgi5UVBjTQghhBBCSBCgxppkOUTzbNNY27TDrtcBDs2qqXUVbWfZsmW1TLTYptOeaKoTEhK0bN++fQCAhx9+GABQp04dt/Z9aXi9haXz5oBpaqltjpK2EHi2+yMaY/Oc3E/R9tq0vmZbtlCINo31Sy+9BMDZyfLNN98E4AiFt2zZMn1OsiYuWrTIrf17771XH4u2u2rVqm7lCCGEkBsNNdaEEEIIIYQEAS6sCSGEEEIICQI0BSFZDlsMaDHjELMDycQIOMwNfMWWthETEwPA2bRA4ifPnTtXyyQz49atWwE4zBkAIH/+/ACc4z0LptmFr8yIgvRZTGFsDotmvTazD5tM6jPNM7yVt52Te2yT/fHHH1o2ffp0AECZMmW0rHXr1gCAxx57DICzo6JgZrsUs4/mzZt77BshhBCSlaDGmhBCCCGEkCBAjTXJctic8cQxULSjV65c0edEwxwREaFlElrOxJYhUDSvFSpU0DLRPO/cuVPL1q9fD8AR+q1AgQL6XOXKlQEAsbGxWmZzRvTmoGhy8eJFAI7xm9kjbQ6StrB8gqmxP3XqlFP95vmTJ08CAM6ePavPyf0027Rpz+X+i8OiiRm+r169ek7lTUfJwYMHAwA6deqkZf5q+AkhhJCsAjXWhBBCCCGEBAEurAkhhBBCCAkC3GslWQ5/YjWbJgli9mE61ImDnlnOZioh15iOh2Ki0KRJEy0TB8X9+/cDABYsWOBWly3LommyYsvGKO2bDoXnz58H4DCFKFq0qFs/TPMQG0ePHgXgHIt79uzZABxZEc1+iuOhmIQAQO3atQEAJUqU0DIxDzHNNAYOHAgA2Lt3r1s/Vq9erY8ljrZkSnzttdf0ufDwcK/jIYQQQm4GqLEmhBBCCCEkCFBjTbIcrqH1AEd4PfnX1DCL9tbUDks5W1g4m2bZdJQUDfg999yjZeKg+MknnwAAVqxYoc/ly5fPbQyXL18GAFy6dMmtT7Zwd6YsKSkJAJA7d26n/5vlChYsqGVyL8zxb9myBQAwfvx4LZs3bx4A4NChQ27ti8b6+PHjWibaaclOCTg+G9Ox86OPPnKrz4aEKBRt/9q1a/W5qKgot/Ki4RbHRlNGCCGEZEWosSaEEEIIISQIhChfGTQIuUGYj6ZoY0WzbIbTE822qfWVcqYtsGiszeQyUs7UbIsG2LTJFs32iBEjAAALFy7U50SLGh0d7VaHGapO6rOF+5P6AUc4Ohm/OVbRIpuaWxmjOa5jx44BcLanPnfuHACHJhxw2DZLf0uXLq3PNWrUCAAQHx/v1v5DDz2kZTNnzkRGYtppmwlkCCH/TFz9VWz+M7Z53twFlXnTtgSyyWxJtLyV85Z0yxPyHpB6bYnAfCUHIzceaqwJIYQQQggJAlxYE0IIIYQQEgRoCkKyHLIdZppHiJmHyEwTC1s2Qm/bezZnQDPcmy1ro5iibN26FQCQmJioz4kznoTiA4CYmBgAQOHChbVMsjXanAHN/soWpoS+Mx0FRWbeG1umSmm3Vq1aWlalShUAQNmyZbWsUKFCABzjt5mumG3JfTC3XuV+mY6aphOk4LptKSYvAHDkyBG38uKgWbVqVbdzhJB/Lq7vCFtGWHM+Emdyc273lp3X9v7wltnWLC998TfTrnmtzOHmnOvavs28kWQt+KkQQgghhBASBBhuj9wUuDr++ftL3ebQaHNUtGk8TKRcmTJlADhrGQ4cOADA4RwIABcuXADgcPYDgEqVKgFw1hjbtO3ST6nPTBBz6tQpt3HJsWhlzPGY5fbs2QMAOHPmjJaJZluSwJgadgkj6EuLLW2YGiCpzxbu0OZwU7FiRTcZIYT4o0W27eCZ7wiZv01tr2B7R9icHF3rB+wOhbb+enNctyVCs/3flnTMBjXbNx7ebUIIIYQQQoIAF9aEEEIIIYQEAZqCkCyLub0m21reYoTats1ssUxNkwUzg6OtHte+iGmHmIQAQN26dd3Kr1+/HoDzNmNsbCwAoHr16lomMaVtW5S2rT9XJ07z/MWLF7VMHB4XL16sZX///TcAZ8fCvHnzAnDEh65Zs6Y+J46P0m+zn+b9Fych876J+Yi5pcqYq4SQQLE5s7ualZnnZJ43TdhM53TXcqbTt8yv5nwsx1LO5qhozm2uORfMvtjmQFPm6vhoM7kz32m2LL5Sh2mGSFOQzIV3mxBCCCGEkCBAjTXJctg0CfKL31vII7O8/NI3y9vCINnKiUyyFwIObXBUVBQAZy2DaHRNB7zTp08DAM6ePatlBw8eBADs2rVLyypUqADArlERbFp1X0hmRlPzUrx4cad+AA4HSXFoNLMciszUzovjZf78+bVM+k7tNCEk2Nh280RrK7tlvrTT3uq1OR6ac5nr+8Wb5tw8b2qTbWOwvefMY9frbI7u0r7NUZJz8I2DGmtCCCGEEEKCABfWhBBCCCGEBAGagpAsh2yHmU4asr3lLd60LwcW2VazxYA2zS3kWjPjocSqlpjSkrEQcMR7FrMOwGEKsn37di3bsmULAOd419KumV3QV0xtf5B41GZc6oYNGwIATpw4oWUbN24EAMyfP9+tvzJ+iX8NOLYcTbMXyZDIrUdCSGYgpnkyl4oTNmDPqGhzPLRhM61wNe0w3zM250U5bzNN9OWMKI6PUp84t5tt2cxUvGVqJJkP7zwhhBBCCCFBgBprkuXw5qwiv+hNrYRopW2ZpkzNgy1jlU3LKm1t3bpVyzZt2gQAuP322wE4MgsCDofGPHnyaFnt2rUBALly5dKylStXAgD27t2rZTt27ADgrIWwOcm49tfsty2Dl62caEiSk5O1TDQ+cu/E6dFs37xvork3tTES1snU+vsKh0gIIf4g85a50yhZZmUeMudZObZpnW27gWaYUiEuLk4fFytWDIDjnWPOfTaHeFtoPZv2WK619VNktnO2udWW0ZHcOKixJoQQQgghJAhwYU0IIYQQQkgQoCkIyXKIWYK5bSfxoJOSktzK22Jcy7Fp9iAmHqZDoy026Pnz5wEA27Zt0zIxBZHMhOKwCDgcTMz2q1WrBsA5+9X+/fsBOMexFlMQcXYEHLFZbf213RvB3KKUrVLzfsl527ahbHOWKlVKn5M2TBMbcXw0sze6OtyYfTbboikIIcQbNrM2mQ/NuVzM7uRf02xO5k2baZwZ41pkhw8f1jK5pnnz5lom8f9tzoM2xCTOnDdl7rXFtjbNGmW+tDlbyrhsJibBcHgnwYMaa0IIIYQQQoIANdYky2L+WhctgPxCN7W4Nic7+XVvakxFM2A62cm1ZjbCdevWAQCOHj2qZaIlEA2JqbGWfprtSxuSlREAGjRoAMBZiy0h7TZv3qxl4nwj5UzHHNG42BwFzbBNcmzKbM4vch+lXvO+ihbE1Aa5atPNcZsac2nDlvmSzjWEEBveNNbmnOOq7TV35sQh29QOyzxkzqUyh8oOpVmvOZfLvBaoVtiWzVd2Es22fO30uWKbP10zNrr2l3Nu5kKNNSGEEEIIIUGAC2tCCCGEEEKCAE1BSJbDFsdZTBVsW2Sy5WfGI5WtPDMjl2k+IcjWnBmzes2aNQCctwjF9CM6OhqAs2OK1GG27+pcAwCNGjVy65OYgEhWRsCRLVGyPJrbl7L1aZqTyD0xtxm9xW21ZbSUek1TENk+NLdURWaOX/piMw+xmeLY4rcSQojNFETmJNPcQXIHyFxqmjrI3GPOh1KfOW/JfCSZY02ZWd/JkycBOOY585z0yZSZc74gTt8XLlzQsvz58wNwNiu0OYx7wzUrJOAYq9knOjdmLtRYE0IIIYQQEgSosSZZDm9aaZvmQcqboZTkvKmBlTrM0HYSakkcZACH1sLUAogWxAz55NqW2b5tDNIXM2tjvXr1ADhrYyQzo4S0q1q1qj5XqVIlAM4aa9FamBp2uU9mJkXppzkuwdU51KzXdh9sGiVzh0G0RWZ9rm1QY00IMbFprGXOMechmaNt2RBds/Sa522hVm2O8BLeFQBmzpwJwKFtNt8V4jRp9lc01rYwpaYWuUqVKgCAypUra5mEOzXnd9cxmGOVdukknrWgxpoQQgghhJAgQI01yXLYQrWJplg0oeYvetEUS6IWwPFL3tQkSBim7du3a9mBAwcAONvFSUIAU5Mh2mOpw9QaiIbA7JOtfRmXaVN39913A3DYDALAjz/+CMChGSlQoIA+Jxprsc8z6zU18dKu2IQDjvtk01jbtMi2pAZybH42YgNusz00cdWkUGNNCDGxzQ02DbTrHGbuFooW29xBk/KmTNoyfVhEAz19+nQtW7RoEQBg48aNAIBDhw7pc/JeMudDsfs2+yS7ibaEYabdtZw3E3UJMqea90HukzkGb6H6SObAT4AQQgghhJAgwIU1IYQQQgghQYCmIOSmQLa3bNmqbMh5c9tMttzErANwmE+YGRLFLMPctnPNvmULX2QLS2fbljPD/klovfLly2tZ3bp1AQC7d+8G4JyVUcxTWrRooWWy9VioUCEtk+1T2RY18TeUky30k2x9mvdfxmiTeYPONYQQG+bc4C1jrrdrzXnL3zlPTCpMU4yKFSsCcDi6nzp1Sp8rUqQIAIf5oHlsmiYeO3YMgCN0n1nfwoULtUzMBGXMpimfzcFc3m+ms6VgmjfaQs2SjIMaa0IIIYQQQoIANdbkpkA0td40xiai0RBnQ8ChLTBD5km9MTExWiZOJ6aTofziNx1SXDETEki9pubFpqEVzYQkgwGAO++8E4BD47BgwQJ9Thxn4uPjtax27doA7MlYTCcgbw6VNg2zlDO1/nLvTI2RnDe1ItK+WS+dFQkhgSJzjTl/uDpCmyHwZB42d+ts87bUZ75LRGbuIMpcbmqbBZl7GzZsqGWi4TY11nv27AEArFy5Ust+/fVXAEBCQoKWSSjWYsWKufVbxmNq322hVm27ldRYZy7UWBNCCCGEEBIEuLAmhBBCCCEkCNAUhGRZbGYUYlrgyzlOtsj27dunZRI3VBwGAceWW7ly5bRMttLkHODInGVzBhTMuNeu/TCx9d10NClTpgwAh4mFxNoGHE4ws2fP1jLZomzUqJGWmduQgjhX2sxobHGnbU5A4txjjku2T32ZvTB+NSEkUGwx9l3nF5t5hC2uvjn3Sb3m3CfXmhlrxRlR6jPNLsSEsFq1alpmvl8EeTeYToZinmHGsZY2xATEX6dL8/0h98n2PiKZAzXWhBBCCCGEBAFqrMlNQaCh2cRpcdu2bVom4euaNWumZWXLlnW7VpxfTOdFCcfnzXnR1BCIdtibJtg8Nq8tWLAgAIcW3dRyJCYmAgCWLFmiZeIYI44vgCNDo6lZlmNTCyLtSz9NrZBtd8CmsbZlcrRpsV3bJIQQf7HNGzLPmHOUaILNOUrmN7OcTWMtx+Z8LLuU4rhtaphFs23TUtvmUjOEq8ylpkyy7Mo7wLZDKjuqZhtm5l5fjv0k46HGmhBCCCGEkCDAhTUhhBBCCCFBgKYgJMthM6MQ8wXZUjPNDy5evAjAOSPWjh07ADhntVq/fj0AYOfOnVo2b948AM7bdrLld+bMGS3Lnz8/AMf2nQ3b1qMt9qqnawQZo2wLilkH4NiG3LBhg5ZJbGszRqrcLzOjpM2h0bVv5j03txxd6zW3VL2Ny9f4CSEkvZjvA3H6Nk3exLTD5jhuc/Izcx1IhkQxyzBzCJQsWdJjn0zTlY0bNwJwNuGTudzMmCvHYtph65ttHjXnWZvZC83vMhdqrAkhhBBCCAkC1FiTLIdoH0yNqasjnXlOnPvEORFwaKfFsQ9waKpFmw04fv2L1htwOJPUqFFDy2yZsFyxOcGYiNbA1B7IWE2NgzjfyL+mVkS0HGZmMBn3mjVrtEzqu/vuu7XMm8Za7qvNKdHmAGlqUmxaFdu4pA1qTwghwUDmF/N9IM7ntl01c+6xOVhLuSNHjmiZzK9yzsyS6y3s69GjR/Xx6tWrATjP0fIuMR3o5T3jbWfU1qaZ9VfGZTo+crcwc6HGmhBCCCGEkCDAhTUhhBBCCCFBgKYgJMshW13m9pWr+YBpfiBbamYZyURlmkJIZkJz20wcXUyZa72AI6a1t60/Xw593q61Od9IebMfYhbSsmVLLROzl7Vr17rJTJMRGYPZN7mP8q/p8COmKDYHRFtWMxNbfFlCCAkGMufIvGnORzJfyvxlnjdNRuRas5ztfSDmd+LEuHnzZn3u+PHjAIDp06e7tW/O23nz5gUA3HPPPVomphripA44su4Kly5dcuuvaSbiOn8D9syTJHPhW48QQgghhJAgQI01yXJ4czQRjYIZDkm0C6azhoREMh1DJDOhqR0WjYCpoTh9+jQAR4gks5z0w9TiSj9Nba+cNx3/zGtcsYX7s2VlFO1GkyZNtExCAZpOmeI4Y2aelPtTpEgRLZOwTnLPbRnMbJoPc1zymZhjsIXlowaFEBIMZP4RzbU598pc5i3DLOCYt0xElpSUpGWSxVfCr+7du1efk51Bc26T+drUPj/++OMAgHr16mlZ8eLFAdgdFaWfplO9aNttYQRNGbnxUGNNCCGEEEJIEODCmhBCCCGEkCDA/QOS5ZCtPNPJTrb+JGb1unXr9LmDBw8CcJh6AI5shabZg2yXmdtm4mBy8uRJLZPtN5tDo1zry6xBzE3M7Uapz+Y8aJqxuNbtKwapZOuqWbOmlsn9+fvvv7XswIEDAIBHH31UyyQzozjomG1LPG8T2aI0nYDk2DT7cI07TgghacFmVmczk/MHm4O5OffK/LZ//34t27VrFwCgdOnSAIBy5crpc3KtOR9K3GvznTJ//nwAjiy5ANC2bVsAQN26dbVM3i/SN3MOlr4FOmaS+fCtRwghhBBCSBCgxppkWUxtrziOiDZANACm7OGHH9YycQzxhTipbNiwQcs2bdoEADh16pSWSbgkcWQx+yZOfqZGxTUclCnz5XwSqCOKOL/UqVNHy0SDMm7cOC07ceIEAODOO+/UMskiJs6ZpnZctDGmTOo1x2XLYEZHRUJIMJB51ZxfXZ2tbfOst/KAY+617aqZGut9+/YBABo3bgwAaNasmT4nTvKmU+TixYsBOIfg++WXXwAACxYs0DKZt2NiYrTMNfOimS3XNs+SrAk11oQQQgghhAQBLqwJIYQQQggJAjQFIVkCMwaymHaISQbgiCktshUrVuhzYp5Qq1YtLRMzDonxDDgcH81rly1bBgBYtWqVlomDiRlfVJz8JMa1OLQAjuyGUsa81tzKs2XEsjkm2px1vJ2TLU3Jygg4TFzMLU05njx5spbJNmfz5s0BOGcBk3jaZkxXm1OibUvVW7xvQgjxF9uc4zqXmPOhaRbiqbwn5F0iJn+A470h81zBggXdrjPn8WrVqgEAzp8/r2UJCQkAHHGvAcd7Zvv27VomzvRiEmIzrzPHZ3tH+JO5mGQs1FgTQgghhBASBKixJlkCU7N55MgRAMDatWu1bOnSpQCAzZs3AwAOHz6sz4kGQULGAQ6NtakxlvOiPQCAiRMnAnDWGoim1tRAu2oLxNkPcDgvioOj2a5oIHxhc3y0OauIzHSWEQ1Fnjx5tKxixYpO/QUcTjXTpk3TMrmPou0vXLiwPif3waxDxiNjBuwhCOUac1zST2pPCCH+4s98Yb4/bM6ONs2uYO7IyXvDdE4Xza83Z0eT6OhoAI6QrwBQoUIFAMDx48e1TOZX810WFxcHwO7obpv7zWPX/jLr7Y2DGmtCCCGEEEKCADXWJEtg/qKWEHD169fXMrEfFhtnSeICOOyZa9eurWViK2wG0xeNcqNGjbRMtAtiRwc4tBtmcP7IyEintuQ6wBFyKSoqSstEa2BqUsxjQcZts7v2prE2ZTYNimjMzWQGorHfuXOnlsm4xe5aksgAQPXq1QE4EtAA3jU/3s659pkQQvxBNMpmwi7ZOZN/zXle5hnTxti2WybHW7du1TLTr0eQ3T/XUHgm5twu/TTfKaIBNzXQ8j4y3xuuoVtNjbTNR0fqoy9L1oIaa0IIIYQQQoIAF9aEEEIIIYQEAZqCkCyBuX0lWRNN50HZIrNtc8l2mS9nDXHuMzMPmsee6gUcYZhs24y2kHnivGduX8q1Zj/T6mhiK2PbDjTD58mWZsOGDbUsMTERALBo0SIADsdRwPE5mKYgNrMT2aK0tc9tSUJIepC513QYl3lITEHMecl0rPaGzFd79uzRMsnAazqdlylTBoDjfWSbA813hZjTmSYmMq/KWABHKFgxMQEc7yiZN816pb+mOYmU82ZmSDIfaqwJIYQQQggJAtRYkyyH6YjiDzZHQXF4sTl6mL/4/anX9dgV0SqY2ghbGCTRpPjSOLg6AfrSTtu0FbakCqIhqVmzppaJU40kijFDP61evdqtjhIlSgBwduyU8776RAghgSLzphk6NSwszKmMOd+Y87Agc6j5bpG5z9SEyw6juUsnc54ZitQVc06X5GGyCwg4kpKZbck14qwPODTWtneaYNvdpMY6a0GNNSGEEEIIIUGAC2tCCCGEEEKCAE1BSJbDmxmBN7MIM4OWbOmZJhxiYmFmEpTztpin/vZRthRtW5BmvTaHPqnHliXMFrPa29afr21Dib8qcbcBR2xr2b48dOiQPrd+/XoAzmYtsi0rjo2APfOire+EEBIoNhM6V/Mzc063ZX21OZMfPXoUgLP52/nz593KyfwuORRM50g5NuP/r1u3zulfADhz5gwA55jVkjFY/gXsMbKFQN+L5MZBjTUhhBBCCCFBIETRy4hkMUTTYMvk5y2Mm6lZlWOzDnnUfWmnpW6bk6EN0YbYHBbTgmuWMH+dVUxs90nuhelAc+rUKQCOcFCmlmXBggUAHBnCAOCBBx4AAFStWlXLJAulGaLKtR+EEJIWbO8D2R2Uudd0ZpT50szOKxpl06FwyZIlAIBt27ZpmWRLLFKkiJZJmD1xnjTnNNFsnzt3TsvEEdzsb61atQA4hzqVDMBly5Z167tgauLl/WLbwTSvs2WZJJkLNdaEEEIIIYQEAS6sCSGEEEIICQJ0XiRZDtlCs5lW2La3bKYbEq9UHE8Ax7aabSvNZjJiyrzFFbU5QLqOBXDfvjTbt23leXOi9MfB0lNfTCdLMeMoWbIkAOf41LJVajo0bt68GYCz2UeFChUAOMeI9Rb3mxBCAsWcS10dxk2HQtvcI07aW7Zs0bKlS5cCcDbjkHeI+e45fvw4AIdzvNQFOBwazfdCTEwMAKB+/fpa1rlzZwDAHXfc4XWMgjenTNu7wt941yRzoMaaEEIIIYSQIECNNbkpMTUKttBuonkwf7WLJsOXdtj2698WwslbW671m8e2sFG2a6VNU+suYzTDMonMLCdjMDU50oaplXbNQinaFgBo2rQpAGDNmjVaJhnERFNjXmNeSw0JISQYyFxiaqLFWVHmNPN9kJycDMB5bpMduTZt2mhZxYoV3a6Va2xhUkU7bu74SVsmkj1RMjYCQJUqVTyOz6xD5mvbTqocm+OSY1vmXtvOLMkcqLEmhBBCCCEkCHBhTQghhBBCSBCgKQjJcthiMHvbyrI5G4rMW5xq89hWztwi9BZb299Q8DazD9lyNPvkGoPb3HqUcmbcVqnDdHSRPtm2Dc1rXZFtTABo3Lix2/nx48cDALZu3aple/fuBQDkz59fy+TYdGi8Edg+G2/ZO7llSkjWwmYK4mpWZ2ZKlHnQdLAuWrSo078AcPfdd2dQjz1jvj/EBMSXKYpgc9KXY9vcT24c1FgTQgghhBASBJh5kWQ55JH09mj6m1HR38fbmxbTbM9buD1f2s5AtaeiybCF5zM1wSIzywn+hlyScuZ9FS2QqZ2eO3cuAODgwYNaJn2pXLmylrVs2RIAULhwYS2zaftd++brc3At7wm5FzIGU8sjGntTU2QLZWXTtnvbHbH939Z3m7OrrV5vuymEEHtYOttuXVb5DpnzgfTZlLnODb7GZXNydD3nekwynqzxtBFCCCGEEHKTw4U1IYQQQgghQYDOiyTL4c0sQPB3ay89W2DmtcHIJOhvX1ydVFxjTXvCm+kCYM9o6don875KrOzSpUu7lV++fLmWzZkzB4BzRrIyZcoAcI6jnTt3bqd++tq+dDWJMc/7+jzkGjO2tyB9sm3Lmvfa5tBoM1NyHYfNFMSU2Z5vb+UIIXZspnFZGfM77U+f/Z37s4qpC0mFnwYhhBBCCCFBgBprQm5ybI5vgs150dSauIYRNDXBoi2JjIzUslKlSgEAzpw5o2V79uwBAJw8eVLLZs2a5SZr3rw5AIfG2F+tsxlKy1s4KlOzLYijos3hx5bJzabF9hUe0Zu2yPbZSD/NMIrSP5tTKiGEkJsHaqwJIYQQQggJAtRYE3KLYNPY+tJYu15ramxFO2vWERUVBQCIj4/Xsho1agAA1qxZo2UbN250a6N69eoAHFpvX3jT9tq086bMNYGEzZ7ZlEk5Wwg+E6nXFsrKFlpPypvacanXtP++2WxFCSGE2KHGmhBCCCGEkCDAhTUhhBBCCCFBgKYghNwi+Aq5ZHPac83u58tkQihQoIA+vu222wA4O+MdP34cAHD69GktW7VqFQAgOTkZAFCiRAl9LiIiwq0NMc8wz0kbly5d0jLpuzgguo4RcDbxEBMM837ZTEZEZnNoNHHN/maapIijphl20GZiYwsP6M1RkxBCSNaEGmtCCCGEEEKCADXWhNzkuGqdAXvCEdfygEMbKv/6SigjbYSHh2uZOCOaWuTDhw8DAI4cOaJl4tyYlJQEwFmLGxsb6yazadhFY20LVWfTrNuSzPjrqCnHZluiUbY5L4rG2tRq2+6ryExHRbnX5rU2x0dCCCFZG2qsCSGEEEIICQJcWBNCCCGEEBIEaApCyC2CzRTEdKSTY1vWQG+xrU3zBJGZmQzFLCQuLk7LGjduDABYunSpli1YsACAwzxEYmIDDrMIMQkx+3Tu3Dm3vpkOjTZzCzHZkL6b4xNzE5vZh+0+mOMXx0vTZEX6ImMwzU6kPpvMrEMwx+DLGZUQQkjWgzM3IYQQQgghQYAaa0JuYWzOiCYis4WWs11nCzcn5M+fXx9XrlwZAHDs2DEtW7x4MQDg6NGjAIANGzboc5GRkW51iCb88uXLWiZaYdPxTzS7Zt9cHQlNDbvNUdE2bts5WwhCV2232ZbNoVHOm+UIIYTcGlBjTQghhBBCSBDgwpoQQgghhJAgwL1IQm4RbCYLNnMH07TCFTNmshybGQ1tMaNNxzxBTDUqVaqkZY899hgAYN26dQCAtWvXuvWtQoUKWiZOgXnz5vU6BhmjOVZxDJR+2BwbbeYf5vhlrKaToc3JUcZvcza0xQK3xR2X82Y5mowQQsjNBzXWhBBCCCGEBAGqQgi5ybGF1hNMDaxNeyrXilbU1KK6ZmUEHBpg0xlPMhOaGmDRypYoUULLihYt6lRfYmKiPrd582YAwPr1693qiImJ0TLp38WLF93GZdMse3NstN0vmxbbdJS0OXm6jt+8h7bska79No9tuw6EEEJuHqixJoQQQgghJAhwYU0IIYQQQkgQCFHcbyTkpiZQU5CkpCQ3mc1RzjSBcMU0rbh06RIAZ4e+XLlyudUnSPzqH3/8Ucu2bNniVkfTpk0BAE8++aSW5c6d26nfgN150nVaM+u1ZVcUzHqlDtN580Zji6NNCCEk60CNNSGEEEIIIUGAzouE3CL40mLKeVMT7arltmVqtIXss2nHbdkIvfUjOjpay8QBUJwYAUe4vcaNG2tZ1apVAdgdFZOTk936bsuG6C183blz5/Tx6dOn3c7LvfOmMTfvg+wYmDLpp4T9Axwa/jx58miZaOdNjTk11YQQkrWhxpoQQgghhJAgwIU1IYQQQgghQYDOi4Tcgnj7WnuLlWw7Z8psjoI2ExMxgTDjTe/fvx8AsGzZMgDAjBkz9LlTp04BAAoUKKBlYgpimow0atQIANC6dWstk3ZNMw7pkzcnShMZ48aNG7VsyZIlABzOlgCwZ88et2vFZEPujZi1mMfmfROZ2SeJ1V2+fHktu+eeewAADRo08Np3QgghWQdqrAkhhBBCCAkCdF4k5BbGpmG2aW9tTolybJOZYfzCw8MBOIfgO3HiBABg9+7dWrZu3ToAjtB6Zr3lypUDANSqVUvLDhw4AABYuHChlokmWpwYAaB48eJu9YnDny3joS1knVx7+fJlLTt58iQAYM2aNVq2ePFiAA5NOACUKlXKqT6zDnFQNLXYIjMdPEXrfeTIES0T7TU11oQQcvNAjTUhhBBCCCFBgBprQm4RTFto0R6b2lPRqJpaXJGJZtusQ8qZ5W2JZIQLFy7o4wULFgAAli5dqmVr164FAMTGxgIA2rdvr8+JBjp//vxatnLlSgDOIfhEoztr1iwtq1OnDgCgZs2abv0UTbSpMZax2mzC4+Pjtax58+ZO5QFHmL+4uDgtE7vvqKgoAM6aaOmHWceZM2cAAEePHtWybdu2AXAk23HtHyGEkJsDaqwJIYQQQggJAlxYE0IIIYQQEgRoCkLITY4tLJ7N8VDMPkwnQzGBsGVSdC1jaxNwhNTbtGmTlonD344dO7RMzFLEFMTMqFisWDG3NipUqAAAqF69upbt2rULgMMREnA4KppmHAULFnTqp+3emOYZYrJhmqLky5cPAHDs2DEtO378OACgRo0aWtauXTsADlMQX0jmRbPeefPmAXC+hxJukBBCyM0DNdaEEEIIIYQEAWqsCblFsDkemlpP0dCKxhRwaLElZJ6JhIUTjTDgcMw7fPiwlv32228AnLWtop02w+LVrVsXAFCxYkUAzslgbIhmu1WrVlomzpCSvMVst3DhwlpWqVIlAI5QfOYY/HUKtGnzJQRfUlKSlpl1uyIa7p07d2pZkSJFADiSwgBA0aJFATg7NJoh/QghhNwcUGNNCCGEEEJIEODCmhBCCCGEkCBAUxBCbnLEnMPMJCjHZkxlwebQaCsnTo5mbGWRmdkIExMTAQCnTp3SsjJlygBwzqR43333AbCbYpgOlUKePHkAODsvnj17FoAjJjYAHDp0CADw999/a5mYsYi5icSfNrFlXjTvg8S+NmOBi3mIGcfbrMdsGwD27NkDANi+fbuWSV9Mh00xBTl37pyWmY6UhBBCbg6osSaEEEIIISQIUGNNyC2CqW0VDaypPRWZ6WwnGli51nSAFLZu3aqPp06dCsDhlAc4nAzr16+vZeXLlwfgHALPG7ZQgLbsjiVKlADgcE4EgIULFwIApk+frmWiZRZtt+mcKY6HphZb2hLnRADYt28fAGeNfeXKlQE4QgGadYuGe/fu3frc+fPnAQCRkZFaJvfcHKuMKzo6Wsvy5s0LQgghNxfUWBNCCCGEEBIEuLAmhBBCCCEkCNAUhJBbEDHpsGVUNE0gXJ0WbbGwzdjKM2bMAOCctfCJJ54A4OyoKKYS4oAIOEwwxATCNM+wZXeUNkyTidOnT7vJbNkV5VoxhTFNYuRam0OjmG4AwMGDBwE4HCZNzHuyevVqAA4zkv379+tzYnZjxqyW+NRmfyVro7/ZGwkhhGRNqLEmhBBCCCEkCFBjTchNjmg+TS2yyEwHQNFO20LrmRpdwZaNUZwWTU24tGVmCsyXL5/bteLcJ46KphOlyEzNtWiKJZwfACxYsAAAsGjRIre2unTpomXitChOg+aYxSnQprE2M1XKeI4dO6Zly5cvd+qbWbeML3fu3Ppco0aNAAAtWrRwa9+8v3IPzc/BFtqPEEJI1oYaa0IIIYQQQoIAF9aEEEIIIYQEAe4xEvIPwebQKMe2zINybGYArFKlCgDgzJkzWiYOhbt27dIyccIzrxVzDzHBsJmkXLhwQR9v2rQJALB06VIt27Ztm9u1FStWBAC0bNlSyyQutIzZNDGxZX4UTFMMGWNycrKWSbtmbGvJlnjx4kUAzg6bderUAeAck9o0NxFsjpquGR0JIYRkfaixJoQQQgghJAiEKFuqNULITY1ruDnAoQ01NdaiyRVHQlOzK3WcOnVKy0QrvWrVKi2bP3++27X16tUD4JyNsUGDBgDszngS2k6cEwFg5cqVAJwzP8bFxQEA7r33Xi2TbIhFixbVMnE8lLGa05wc25wXZSwAMHHiRADOGmjR2JtaZ8nyuG7dOgDOmvs77rgDANC2bVstE2dL09lUtOjmPXTNikkIISTrwxmbEEIIIYSQIMCFNSGEEEIIIUGAzouE3ILYshG6OioCDjMDm9mBmI4UKlRIywoXLgzA2Txi8+bNAIDdu3drmTgemo6C4sBXqlQpAM7OeWLuYcan3rNnDwDn+NhVq1YFANx9991aZsaNdkXGY5pdSLxpE7knZsxqGU/dunW1rHHjxgCA2NhYtzoKFCgAwNmcQ8xToqOjtUzuiekAKZhmMnReJISQmw9qrAkhhBBCCAkC1FgTcpMj2lZTEyuaalNjLM56psZatKI27ahoT23n4uPj9fHTTz8NwOG8BwAJCQkAgBUrVmiZnC9ZsiQAR5g8wKEdNh0VixUrBgBo3769ltWsWROAsxY7UESjbGrzxcnTDK0nTokmtmyUgu1eyj20XWdq/QXzs3GtlxBCSNaHGmtCCCGEEEKCABfWhBBCCCGEBAGaghByi2AzI7A5w9kyL4pzny3zog3TYbBGjRoAnB30xIxi8eLFWpaYmAgA2LBhAwCHc6LZVkxMjJbVqlULANCoUSMtM88LYtJhZi10rdc2rqSkJC0Tp0XTFEScLc2sibbY167lxdQFcNwTm/OkZGwEHKYi5n1l/GpCCLn54MxNCCGEEEJIEKDGmpBbBFPD6c0p0XRydNXymhpuycZoIuXNesUZ0NTUisNhVFSUlh09ehQAsH79egDA3r179TnJytilSxctq127NgBHpkJPiJb57NmzWiZOm6JFNkPgCSdPntTHGzduBOAcAq9ChQoAnB01vTlNli5dGoAj7J5Z3tROy/i3b9+uZZLR0QztRwgh5OaDGmtCCCGEEEKCADXWhNzkiPbY1MqK3bFp2+t6zkTKmfbXUs7UhIvMpgE265VrzDBzonkWLbapOZekMaK5BoAiRYq4tSGY/RQtujlWb6EChdOnT+vjXbt2udUhGmsJ++cLGZ+pYT9+/DgAYNu2bVq2ZcsWAMDhw4e1rHjx4m7t2+7x/7V3Z79W1ecfxz9eVOZJj4dBQEBEDodRkCoqpg6VJm29aNK0TXrVJk36B/WuV72x8UIT01RtxSKODCoIyCwgoMzzZJr4u/jl813P2vth74Nd6GGf9+uGle9aew3H36/7u5/1PM8XADC8EbEGAAAAGsDEGgAAAGgAqSBAj4hpD06ViKsHen9sGeeUCR8X28254C6u3ug0h1jkaE6nkKTXX39dkvT555+XMac2rF27VpK0aNGiss8rKsZix4zTPuJ9OgUltsVz4WV2nxaLHZ2WEdNPvDLk1KlTy5ivG9videKVJDdu3Nj2DDNmzChjfm6vACl1bu0HABieiFgDAAAADSBiDfSIToV63T7jaHIsmMta9jkCfOXKlTJ25MgRSdLWrVvL2CeffCKpHjF3MaAj1UuWLCn7HL3tFqV1JD4WSvqesvaAXgTGRYSS9MUXX0iqL17jdnuXL18uY9OnT5dULzJ0tDkWKLa2A4xFkf/5z38kSZs3by5jjoR7YR2pWkgm/q39jN/lvysA4IdBxBoAAABoABNrAAAAoAGkggA9IusjHdMjnEYRC+TMBYoTJkwoY+PHj5eUFwAeOHCgbP/tb39rG3MhoYsSJemFF16QVPVsjpyCEvtTZ3xcXAHRYzFlwikdTlNxMaUkvfzyy5LqKx+6KDGmdXzwwQdt9+SVGWNBZ+zVLdX7cx89erR2fqlKe4krNHo7nosUEAC48xCxBgAAABpAxBq4BVlENSvyy2QrHrae438Rz3+rKyR2akt36dKlsn38+HFJ0pYtW8qYW+rFVQNXrlwpSVq1alUZc9GirxmPd1Hgze7TslUmO/E54rn82fvuu6+MOTofI9HejhH+7L9/6+qW8d7cvs/nl6SHHnpIktTf3992fVZbBIA7GxFrAAAAoAFMrAEAAIAG3PVtp/fTACRVqQQuTIspAe697BSH7HNSlTKQpWJkn83OkaWdeH/sGe2x2Bfan4n33un6TgH59NNPy9hrr70mSTp8+HAZc8Hd4sWLy9i6deskSfPnzy9jseCw9bmG2rN5qCkz/lu7aPDs2bNln3tax/STrADS29l/w6HeU5aS09fXJ6meiuIi007/dwAAGP74X3EAAACgARQvAt9Bt0h0Fu0c6vlaz5EdF6PO2Wc7RT7jeX0eP8Pp06fLvr1790qqVlGUqkh1PMfg4KAkafXq1WVsYGBAUueiyCw63BRHiMeNG1f7V5JmzZrV6LUAADAi1gAAAEADmFgDAAAADSAVBBgCpyq4t3FMtXCf45ie4VSEmAqRFcj5M/GzrWkR2fHdChV93azIMa4M6JUEL1y4IEnavn172ffGG29Iks6dO1fG5s2bJ0lasGBBGVuyZIkkac6cOW3XBwBgJCFiDQAAADSAsBJwCxwBjhHrrPBuqGNDacE31GvFlm6digFjmzm3ntuxY4ck6bPPPiv7Tp48KUmaNGlSGXN0eunSpWXsgQcekFRfXdBR8XgfWcQeAIBeQsQaAAAAaAATawAAAKABpIIAtyBL3XDRYLe+zK09o6UqZSKeLyuQNI/FVQz92aGu2heLF48cOSJJevPNNyXV+1g//PDDkuppH6tWrZIkzZw5s4x51cB43osXL7bd08SJEyXVU1YAAOglRKwBAACABhCxBoagdcXDLMLcKUotVZHqGLH2Z4Ya4c6KJ7NItT97/fr1MuZo9MGDB8vYnj17JFUtA6dOnVr2LVu2rPavJM2ePVtS9cxRLIr0Nm33AAAjCRFrAAAAoAGEk4Bb4Eh1jFh7O0adHWWOUdysBZ3zs2PecetCLteuXSv7HImOi8F427nO8TNffvllGXMrvY0bN5YxR6pXrlwpSRoYGCj75s+fL0nq7+8vY45Ux+f3tWKOtY+LkW3a7AEAeh0RawAAAKABTKwBAACABpAKAnwHWSpIt7EsFcKFh3FfViDZenxMBfHxXkVRko4ePSqpvpLigQMHJElXr14tYy5WXLx4sSRpcHCw7JsyZYqkvD3ejRs3yvbly5fb7nfcuHGS6ukppIIAAHodEWsAAACgAUSsge8gRl87Radju7ksYpu14HME2sePHTu27MsWj3HxoFvnSdKWLVskSZs3by5j/szjjz9exrz4y4MPPihJmjRpUtmXRar9jDFi7cVgYhTd0e6sLR8AAL2KiDUAAADQACbWAAAAQANIBQGGoHXFwyztI6Z6eDsrQMxWY4zHOQXD/8Z0En829rb2SoqxUNFjMZ1j1qxZkqr0D0latGiRJGn8+PGSuqdu+D5jKkrWizt7LooXAQC9jog1AAAA0IC7vs1CagBSnf7fpVtENluN0SsfRmPGjJFUj1Tb+fPnJUm7d+8uY45Uu2AxWr16ddlesmSJpGpFRakqMuzU2i/ycdmKknHlRT9rjIC7BV92XgAAegHfcAAAAEADmFgDAAAADaB4EbgFQy3Ac8pELFT0WDxH1ivaY06tOHfuXNm3b98+SdK7775bxo4cOSKpSiGRpDlz5kiSVqxYUcacAjJhwoS25/G/8X5jukermM7h68Zn8eqOZJoBAEYSItYAAABAA4hYAw2J0VlHm2ME2FHeLNobP+vPnD17VpK0Y8eOsm/Tpk2SpLfeequMjRo1SpL0u9/9roytWbNGktTf3992rVhkaFmbPRdWZs8QCyuzMd9T1oIQAIBeRcQaAAAAaAATawAAAKABpIIAtyBbUdApEDHVwekTMY0iW0mx9XhJOnz4sCRp7969kqTt27eXfUePHpUkTZ8+vYy5UHHx4sVtY93SL/wcrf/e7LPZc2XH+1lJ/wAAjCRErAEAAIAGELEGhsCR3Bs3bkiqR2yzdnOtn5M6rzh48eLFsv3RRx9JkrZu3SpJOnbsWNl33333SZJ+//vfl7Hly5dLkiZOnNjx+t6O95m1BTQXNMbjsxZ8WUs92uwBAEYiItYAAABAA5hYAwAAAA0gFQR3hE4pCy6Qy1ItXGwYPxtTGzqlZ2TXz4rxsp7VPi72h/Z1r1+/Xsa++uorSdLu3bvLmPtWnzlzRpI0bdq0sm/JkiWSqvQPqd6r+mb3HWW9pbPj/LeJx2d/h+wcFC8CAEYiItYAAABAA4hY447gyHNWPOfIaowOO1LqYkOpiiy72FCS7r777rbzZa3nvO3jYyTcEeh4/Lhx4yTVW+s5on38+PEy9s9//lOStG3btjJ2+fJlSdKMGTMkSevWrSv7HKmePHly231nhrryYaeIfLcIvz/T7VpErwEAvY6INQAAANAAItYYdrJFSGKEWKpHTr0dj8lyhh15jed1BDyeL4usdlpIJcsndqT6m2++KWMHDhyQVF/wZdeuXZKk8+fPl7G5c+dKqqLTixYtKvv6+vra7q0JQ40mN30cAAC9hIg1AAAA0AAm1gAAAEADSAXBsOP0jFio2FqgmK1yeO3atbLtQsVRo0aVsdGjR0uqFzT6M94Xr5HxeWMqiD+b3dPJkyfL9oYNGyRJn3zySRlzoeIDDzxQxl544QVJ0rJlyyTlKyrGdBbfS7d0FgAAcHsRsQYAAAAaQMQaw0624EtrgWCMZnvb0WSpiuhmRY6xBZ6jva3FkfFakaPZWXFkLEDcv3+/pKo4UZL27NnTdu8LFy6UVC38IkkDAwOSpHvvvbftGpa1HRxqaz0AAHB7ELEGAAAAGsDEGgAAAGgAqSAYdpxuEVM2nNrglI2rV6+WfS5GjGkfXiGxUzqHVKWYxIJGb8frZ/dkly5dkiTt27evjL3yyiuSpJ07d5axKVOmSKr3pX7uueckSYODg233nslSVzyWFU8CAIDvDxFrAAAAoAFErDHsZCsvOhobo9Ktx8dIr7djkZ+LG2PE2ueL0V5HueP5POaVFM+cOVP2uSgxFiqePn1akjRhwoQy5kLFFStWlLEHH3xQUr0tYKsYnfZ2jMT7GShYBADgh0XEGgAAAGgAE2sAAACgAaSCYNhxukVM43CqRFZE6JSNuHqixy5evFjGrl+/LkkaM2ZMGfN2PF+ndJOvv/5aUj3tY+PGjZKk48ePl7GZM2dKkh5++OEytnTpUkn1VRbHjRvXdq3Wa8bCyiztxfee3TcAAPj+8E0MAAAANICINYYdFxLG1Q0dqXUBYozOOpodi/cc7c5a8MVCRV8jFkpmqza6GHHTpk2SpM8++6zsu3LliqQqSi1V0enYWs+R6vHjx7c9c7aSY3Yffsb4DESqAQAYHvhGBgAAABrAxBoAAABoAKkgGHayAkUXHrqwMRbvuWjRx0hVKkjsD+0UjJh24b7QsUDQ53HaiSQdPHhQkvTOO+9Ikg4cOFD2Pf3005KkNWvWlDH3p+7r6ytj2aqNGd+T7zPrpx35OPpYAwDwwyJiDQAAADSAiDWGrRhZdoGeo75Ze7ysKDEr/Msiu/G4S5cuSZI+/fTTMub2eo5mz507t+xzUeK0adPK2JQpUyTVV3nMZMWTrRHorDgxRtN9fLeWgQAA4Pbi2xcAAABoABNrAAAAoAGkgmDYceGhi/ikKs3DhXxZOke2GmFMsXD6RJae4aJISTp58qQkaf369WVs9+7dkqQnn3xSkrR69eqyr7+/v3aP8XzxnrL0DD9jvE8flx3vtI8sFSReHwAAfP+IWAMAAAANIGKNYScrMnSE1tHsGHXuFKmN+xwVjm35Tp06JUn68MMPy9j27dslSdeuXStjg4ODkqRHHnlEkrR48eKyz9HxGGHOWus5shyLMrMVFz3maLafOe6Lfxs/I+32AAD4YRGxBgAAABrAxBoAAABoAKkgGHacUhHTJJyW4aJAr6IoSWPGjGk73mkUMRXE6SSnT58uY5999pkk6aWXXipje/fulST96le/KmO/+MUvJEnz5s2TJE2ePLns8z3FYsusQLJ1RcUopnG0poLEwkof52e+2bUAAMD3j4g1AAAA0AAi1hh2shUHHZVtjeZKeWs7b7s4UZIOHTokqSpOlKro9OjRo8vYmjVrJNVb6i1YsEBSFSmPEWbfW4yOe38Wnc6eNdO62mQ8npUVAQAYfvh2BgAAABpAxBrDThbldUTZkejYMu/q1au1fVLVou7gwYNl7IMPPpAkbdy4sYxdunRJkvTiiy+Wseeff16SdP/995exsWPHSqqi47EFnq8bI8tu7Zc9S4w2ZxFrf8bHxedqPb9URe+7nRcAANxeRKwBAACABjCxBgAAABpw17fdqqsw4mRpDNmKf50K6XyOWGTo4r7s+Hgtt8WL6Q5ZgaBduXJFknT8+PEy5hSQbdu2lbHDhw+3nXfGjBmSpBdeeKGMrVq16qb36RSQmAqS3Vv2N8zSMzqlgmQrULYekx1/s88AAIDbi4g1AAAA0ACKFyEpL4aLY96OUVxHaLPIqiO6jj5LVWS3WzGePxM/63NnEWtHbDdv3lzG1q9fL6nebm/KlCmSpJ///OdlbO3atZLqC750ihD7+llrveh/aYc3lGgz0WkAAIYfItYAAABAA5hYAwAAAA0gFWQEytI+oqwo0dtZ2oFTNrJzxd7OTqdwL+ibyYocnT7iaxw7dqzs+/zzzyXVCxXPnj0rqd6LeunSpZKkJUuWlLH+/v6b3seNGzfKtq87atSo2j0CAAAYEWsAAACgAUSsR6AYWXb0OEZgHR3u1hbP53FkN0Z4vVKhI7zxWnHVREfAY2Tb18+iwmfOnJEkvffee2XMKyqePn26jDkS/cwzz5SxJ598UpJ0zz33tJ03ckQ/3qej8v6bELEGAACtiFgDAAAADWBiDQAAADSAVJARKKZ4OAUjS/uIKSNOj8h6WzudI6Z9xNQOy3pR+7h4vPfHVIz9+/dLknbs2CGp3rP6xIkTkqR58+aVseXLl9f+laRp06a13VMn8T6dAvO/9KcGAAC9jVkCAAAA0AAi1iNQjMR6OxYlOhIdVz70doxYmyPVMWKdteXztUaPHp3ei7nI8euvvy5j77//fu3fc+fOlX333XefJGnNmjVl7Nlnn5VUFVHeCt97XCHSq0ZStAgAAG6GiDUAAADQACbWAAAAQANIBRmBYtqHt2Pqhgv0sgLEbHVFp0dk6R9Rp8K/y5cvl+0DBw5IqgoVJWnXrl2SpCtXrkiSFi5cWPatXLlSUrWyopSngPhZYzpL9vxZkeVQngEAAIxszBIAAACABhCxHoFixNYR6KwFX4xYeztGrLNo761ypPrYsWNlbMuWLZKkrVu3lrGLFy9Kku6//35J0vPPP1/2Pf3005KqAsPov//9b7rdKj6/t7MxAACAm2G2AAAAADSAiTUAAADQAFJBRqCsUDEWNLpndSze83HZaoS36saNG2XbRYkff/xxGfMqizFlZWBgQJK0ZMkSSdKiRYvKviwFxJ+Nqzc6FST20fZnY5qInz+el1QQAADQDbMFAAAAoAFErEegGH119DqusujobYxIx1UIWz/bSSx29IqKJ06cKGOOVHtFRamKFM+bN6+MrV27VpL06KOPSqpHnTtdN3uubOXHGLHOCjq97Wf+Xwo2AQBAbyJiDQAAADTgrm+/a6Is7ljZAjFxzPnJWWu92IIvy21udenSpbK9adOm2r+SdPr0aUn16PDcuXMl1fOovSDMtGnT2q7hnO0sDzprt5ctchMj8n7GmONtfuZs8RgAADCyEbEGAAAAGsDEGgAAAGgAxYsjUJb2EVMbsoK+a9euScpb1VksFHSbu6NHj5axDRs2SJLeeuutMjY4OChJeu6558rYihUrJFUpIVKVnuFruBBSqlI74v04tWPMmDFtz3rq1Km25+rr62v7bNaqz38bUkEAAEArItYAAABAA4hYj0CxVZy3swhwLN5zFDdrc5dFgt0+b/PmzWXswoULkqTHHnusjC1evFiS9PDDD5ex/v5+SfVCSXOBYixU9PXjczkqH5/B2zGK7WvEz8a/RetxLBQDAABuhlkCAAAA0AAm1gAAAEADSAUZgbJUkFh46IK+UaNGlbHx48dLylMhzpw5I0nav39/GXvzzTclVQWLkrRu3TpJ0m9/+9syNmPGDEnS2LFjy5ivG+/JqRguGuyUJhLFczg9ZNy4cWXMz+9e2HE79rZ2YSQrLgIAgJshYg0AAAA0gIj1COcIbGxV58hujCI7GhwL+44dOyZJ2rJliyRp69atZZ+j3mvWrCljq1evliTNmTOnjE2ZMqXtnlxkGAsPXVDp+40tAz0WI9bejhHm7Lw+T/ysI9UUKgIAgFvBzAEAAABoABNrAAAAoAGkgoxwTpWIhXrezgr1nP4hSR9//LGkqkBx9+7dZd8jjzwiSXrhhRfK2EMPPSRJmjBhQhnLVjB0ekZM93AqSJaekaV9dDouW1ExW1EySxmheBEAANwMEWsAAACgAXd9G8OC+F7EP3lWUOeoaBbNjbLoaeuKg/FaWaFep2vEQsWjR49KktavX1/G3n333dp5Z86cWfZ5dcVHH320jN1zzz2S6q3ysmLELGLdenwmPlen42ILPv+dYvFmFu1uvRci1wAAoBURawAAAKABTKwBAACABlC8+D1oTSPIUkFcRCflxXidUg/ivtZUkKwAL+pUPHjkyJEy5h7V77//fhnbuXOnJGnt2rWSpF/+8pdl34IFCyTlfaqz1RCze8pWV2xCTPsYKlI/AABAN0SsAQAAgAZQvHibxEixI7SORMdIbKeIdYwm+z9TPK71eKmKrHYqbMwiwZcvXy7b+/fvlyS9/fbbZcyR6vHjx5exgYEBSdKKFSskScuWLSv7+vr62u7Nf4erV6+WMUePR40aVca6FW0CAAAMR0SsAQAAgAYwsQYAAAAaQPHibRJTQZy+kaWCZGkfWRqHz+cVCKW8L7XPPdTCP5/v0KFDZWzTpk2SpI0bN5axXbt2SZJ+/etfl7E//OEPkqR7771XUr3vdfYMN27cqP0rVc9N+gcAALjTEbEGAAAAGkDE+jaJEdvWaGy3VRYdRc4KFWOruGx1xaH46quvyvbnn38uSdq+fXsZ27t3ryRp2rRpZWzlypWSpCeeeKKMTZo0qXbeLEoen9X7x44dW8a+S+s7AACA4YiINQAAANAAIta3SYxYO1KbLdri/OiYJ21xIRWfI4tYZ636LEazL126JKla2EWS3nnnHUn1HGuf95lnniljXvwlRqmdU+3js/aA8fp33323pHprPe+PueP+22V/EwAAgOGKmQsAAADQACbWAAAAQANIBfkexNQPqZ4mkqU7OD0ifq71HPGzMQWjtVDyxIkTZfvDDz+UJH300UdlbN++fZKk+++/v4w9/vjjkqRHHnmkjHklxai1uDI+S6e0l/j8PkdMe3G6C6kgAADgTsLMBQAAAGgAEethLFtkJRYDZq36zJFit86TpPfff1+StH///rbzDQwMlLF169ZJkiZPntx23qwFoO+j2/1mbQGz1oIsFgMAAO5ERKwBAACABjCxBgAAABpAKshtkvWxdrrDjRs3yj6nPbjHs1QV7cV+zz5flgoSffHFF5Kk9evXS6qnfVy5ckWStGTJkjK2YMECSdL8+fPLmPtT+994f9nqir6P2Is6K7bM7tfPH/tzU7QIAADuRMxgAAAAgAYQsb5NYnS2NVIbW8s5yhsjwd6ORXzZKouOIsfo8CeffCJJevXVVyXVI9zLly+XJD3xxBNl7Mknn2w776lTp9qex+32YjTZ9+lniBFrXzc+e1a86Gfs1oIQAABguGMGAwAAADSAiTUAAADQAFJBvkdZ3+lsNcJMdtzOnTslSVu2bClj27dvl1QVPs6ePbvscyrIgw8+WMbGjh3bdi2nlsT7dKpITFnxvfj4mAriz8ZzOAXm+vXrZcxFi7F4EwAA4E5ExBoAAABoABHr75EjvDHq60h0t4I9R3ljYeHWrVslSa+//noZc4HgokWLJElLly4t+xyxnjp1atvxMRLuFRdjQWMsuDQ/h8+RtQKM53VEO7Yb9H4i1gAA4E5HxBoAAABoABNrAAAAoAGkgvwAsp7N3YoX9+7dK6me9nHo0CFJ0sSJE8uYV1J0r+pZs2aVfZMmTZJUT7twikeWnhJTO1ygGFNWWlNb4j5/NhY0ZsdZLGj0cdkqjwAAAMMVEWsAAACgAYQEb5MY7W1dcTBrtxc5ynv+/Pkytm3bNknShg0bytiYMWMkSU899VQZe/zxxyVJjz76qKQ8Eh4LEV2gGO/RkeK4oqNlK0r63/gsPm8sgPR5Y8TchYzxnrIiTwAAgOGOiDUAAADQACbWAAAAQAN4136bxNQKp3Y4VSJLcYjHO+3jzTffLGMHDx6UJN13331lbHBwUJK0Zs2aMjZnzhxJ0jfffCOpWoExylZPzO43pn04fSMrUMxk/bGzftdZQWNMlQEAALhTELEGAAAAGjCiItZZhLVbm7smPtuJ28ydOHGijG3ZskWS9Pbbb5excePGSZLWrl1bxh577DFJ9dUVf/SjH0mSLly4IKleFDh27FhJ9eiwI8axLZ4LDmPkOIuytxY3DvVvFD/XKYoPAABu3XCc74wURKwBAACABtz1badE2TtEjMo6AhqjrX5E5x3HMUd4O7W9i9eIx2X5y63nj/yLL7ag27x5syTptddeK2MnT56UJE2YMKGMLVy4UJK0evXqMuZ86smTJ7ddy5HweB/+m2SR6E454XG7UxvBqNO+Ti37hnoOAAC+L1k9kt++dovwZvv9PdwpEhzf7mY1Stn3Z7Y4W+t8R2qf88RrxQXbzPMdaqC6I2INAAAANICJNQAAANCAnqgYy1YIjK85vD+mYFinorl4Xn82njdLI/Hrl+x1ydWrVyVJR48eLWMuVHzvvffK2PTp0yVJ69atK2OPPPKIJGnu3LllzK9/suf3a5usKDF7bRTHurUDbL3+/1LUkL3eAgBguPP3VvwOHmrKiI/rlFoRz+vtbt+3nVJBhjrfceprvN+4YjI6I2INAAAANKAnihezX3UxOu1HjL8Ms0K+1uPjLz5vZ784s+u7tV087rPPPpMkvfTSS2XfqVOnJNUXflm8eLEk6fHHHy9js2fPlpQXWQIAgOEtm5cMdXG0Tm/DoyyKbvFanpf4vPH4OPexbDE35iM5/ioAAABAA5hYAwAAAA3oieLFoRYqxuR7v07pVDyXvaKJ53Vf7Oy1SeyZ7fPs3btXkvTOO++UfX19fZLqhYpOBZk0aVIZy4oJ7FazebI+0gAAYOg8H4hpFFmB4I0bNyTV5wX+TJxneIVln+PatWtln+cZo0ePLmOe08T0EH+nZ2kaWeOCrLByqEWOpILk+KsAAAAADeiJiHVcebFTW5ms9Zw/G3/JuY1ePEcW2fUvt/hr0b8gz5w5U8b27dsnSfriiy8kSVOnTi37pkyZIkm6dOlSGduzZ48kaffu3WXM14i/EP0MMYrue3a7vfi38a/muPqSf/3G8/ZAPSsAAI3JmhW4hW6MRGdFfllk29/DMQI9fvx4SdX3/YULF8o+X2PMmDFlzPOHWbNmlTGvxJy9Sc/e2mdv4/1ckRsydIpm4/8RsQYAAAAawMQaAAAAaEBPxPTjKw+/rumWCuIUCf8bX9v4s9nKSfFVTtYf2693Ll++XMZ27twpSTp79qyk+uqJfq3jfVKVRpK9jonX8vPEdA+/6vHrJad/SFUhRHwd5Nc7WVEDAADIU0GuX78uqf49m61InKWNulAxpnb4e9vfwTFF1KkgMZVz2rRpkqQJEyaUMW93W8ujtfAwfu/HOUXrM6A7ItYAAABAA3oiYp21j8uirvE4R239669bxLo1wi1Vv+CywsYYHfevTp8vrrJoMcKdRd2zNoL+9elfvpF/3WbFEnHsypUrbZ8FAAAVf3/H73s3CYgFiH7T3C2K7fPFwkfPFTq1141zBV8/HucIeNasIcrmCJbNKXxP8X5dbIk6ItYAAABAA5hYAwAAAA3oiVSQmJDfqfAuvoZx6kf8bKv4iiTrCZn1q2zdJ1W9Jv26qL+/v+zz65Vz5861fTa+jvG9xNdLTmdxAWI8nwsVsxSXmM7i1zrx78ZqjAAAVLICRK+O7JQMqeo9HZsP+DOxcYBTM+N3rz/r7+WYYuJzxPM6FSMeN9QGDq3ppVkThsj3FOcPpILkiFgDAAAADbjr2x7ordbtEbJWeUOJWH8X/lV38eLFMuZt/1rMihJjQUDrPUrVr8pshaf4a7m1BV+8ln/Vxr9DVtQAAADaZas0xzG/Lc7a4GarOccosqPRHotvrf1Znz9ef/bs2WXMn4nH+Xs+zhU89/F8ICt27NZib+LEiR33j1RErAEAAIAGMLEGAAAAGtATxYuZbn2s/arDr15iP2cXEMQ0idYVDaWqaDBL9I9FCn19fbXjskKDTJayEV/XOFUkK57088dXT9lxAACgGVl6ZVZIaHGu0vrZbG6RfTbOI7IVmbOVF73dmhISPxvvzWkknZ4F/4+ZFgAAANCAnihejAV9WSJ+6yqLUtW2btu2bZKkTz/9tOz7+OOPJUlfffVV2zVia7sZM2ZIkp588sky9uKLL0qqVlCSpPXr10uSJk+eLElas2ZN2TdhwoSbPld8Bv8ijVFn/6frFMWOv4C9Hf8OTRdvAgCAzvz9HSPFrd/Hsb2uxQLEjM93q2+os8h5HPO9xfPSmjdHxBoAAABoABNrAAAAoAE9kYWerZAY00OuX78uqf5a49ixY5KkHTt2SJJ27txZ9u3bt692jFQVN8bCwzNnzkiS7r333jI2MDAgSTp79mwZc2rJrFmzJEnLli0r+7JUkOwVUfbKJUt7Mb+uiefw3yEeP2bMmNrx8foAACDXqUlCp+9sqXO6hecvR48eLfu8HkacM7iQ8PLly233FHtMZ2tYuEDRDRxiisn06dNrn4uYH3RHxBoAAABoQE8UL8ZH8C+yWLS3a9cuSdI//vGPMnbkyBFJ1S+y/v7+sm/OnDmSpPHjx5cx/7rL2tUcOnSojG3evLntnubOnStJWr58uSTpscceK/umTZvWdt7sl65/wcbVlHxcLEb0tn/JxvtwpDqenxZ8AADcOn+nZgWI3Yr8Or2ZPnHihCRpw4YNZZ8bLZw6daqM+U16nO/4HLHlr+/z3LlzZcxzCh+3atWqsu9Pf/qTpOote7zfOAeJzRxQYVYFAAAANKAncqyzhV9iq7zt27dLkv71r3+VMS8C88QTT0iSHn744bLvueeekyRNmTJlSNf/+9//XrY/+ugjSfVfi86pdlQ8/pL1r9Vube/8izNrPh/P13qeLDpNixwAAIbO35vxLbC3s7fm2fdsHOuUi+035HHhuuPHj0uStm7dWsYc2Y551+PGjZNUf5Pt6PTp06fLmM/t+42R6JUrV0qqR6Q9p+Etd3f8hQAAAIAGMLEGAAAAGtATqSCRX4288sorZeyDDz6QVG/Bt3DhQklV2sejjz5a9k2aNOmWrunWNJL04x//WFK9pZ3b3ridTSyK9OuV+CrJr4Hi/fp1UVZQGVdnai1ciOdwW534isivekgPAQCgs/hdmRUq+rvf389xf7e2tm460NfXJ6m+qrNXbnaLXEn6+uuvJUkLFiwoY26WENsA+zOxUNKpJR9++KGkemu/v/zlL5KquZMk/fGPf2y7FnJErAEAAIAG9ETE2gufSFXru3feeaeMHThwQFK9QNFFi45Uz5w5s+M1/Osyi+zGX4ZuqReLDGfMmCGpilzHX5yZbOEXR6BjE3ffS4xK3+xcUt4yEAAANCsrcozfx9mcwvs9R4hzFr+tPnz4cBlzoeLatWvLmNvmxRbCWcGhixU993njjTfKPrcm9qI0kvT0009LqloES/VFaFAhYg0AAAA0gIk1AAAA0ICeSAXxikRStcqiV1aUqtUVn3/++TLm1xrxdUmr+NrG6SYxjcJpGT6/VKWFxHSPRYsWSapeoXQrFHQBQ3x9k73K8XGxoLH1uFio6F6X3VZ5BAAA7WKKh1M+Y+qnv1+zlMv4fZutjhx7SUtVqodUNRo4f/58GTtz5kzbcVOnTm27VsbzF6fFxnlE6wqQkrRlyxZJ9VSUP//5zx2vMVIRsQYAAAAa0BMR640bN5btL7/8UlI9cjtv3jxJ9ZZ6LgrIVk7ydvwVGgsJW8dixNqFAHElpPvvv19SFcWO5/J2tnpityJDfyau8tgqnoOiRQAAmpHNHxztjd+3WWu9bF/WuMAczY5RbTckyJoaRJ7LxBaAfpt9zz33SJJWrFhR9u3du1dSvTGCm0B4n0TE+maIWAMAAAANYGINAAAANKAnUkFeffXVsu0E/4GBgTL22GOPSaqvkGiXL1+WVH/l4Vc4Li6Q6q9azAWNvqYkLVu2TFI9PcOvXDq9Dmpadi0KFQEA+O7i96i/2+NcwSma2fdt/F72nCOmfTit1GOnT58u+5zmGuciLlSM6agWmy/4WjG91ffne48rOF+4cEFSvVAyng+dEbEGAAAAGtATEeuPP/64bHsd+zVr1pSxwcFBSfWWNOZk/pjU71+VsVWdI9DxF59/BcZfq1OmTGm7hn99+t/4S7bTr9qmI8xEsQEAaEan7++soDFGfT2XiGN+++3PxtZ2+/fvl5S31svmNlmEOWvb23o/N+P5C5Hr7ohYAwAAAA1gYg0AAAA0oCdSQVxEKFWvXLwCoiRNnjxZUp7Gka2emBUkZLJ+1z5vp1WXfqj0i9uVYgIAwEiQFSDGVNJMloLhlIpsnwsJd+7cWcZ2794tqVorQ6rW48hSUOP8xfORmMbRet1YFOm1N44fP17GDh06JKkqbMTNEbEGAAAAGtATEev4y8vbsfDQv9yypHsXJWYFhdnxsTVOFtHOVkzyr8UsUjzUse/q+2zxBwDASOHv1zhX6PRmeKgrLDsCHosXvR1bCc+dO1dSfaXn1vuI9xev33p/cd+kSZMk1d/8u/VfbE2MHBFrAAAAoAFMrAEAAIAG9EQqSCw89OuMK1eulLGrV69KyvtS+3VJXHXIqzHGtA6/rokJ/u4dGV/lDKXHY9PpH1m6x1DHKGQEAGBo4nem5xExLTSbA2TpoJ1SRnyOM2fOlDFvx5We+/v7a/chVakacQ7k88XPei7jOVNswuB7i8c/8MADkqre2bg5ItYAAABAA3oiYj1mzJiy7V9fFy9eLGPeHmqk2L/uYsTav+CyX6bxF6oj3zGK3frLsKmCwqFEpSleBACgef5Oj4V/2cqL2Zg/k81BXLwYj/fcY/z48WXMb83jOfzZOH/xHKXTfCC2Lf7yyy8lSV9//XUZc0Gj2xfj5ohYAwAAAA3oiYh1zJ32L7Nz586VsfPnz0vKW+FZzFFys/UYifZ2bATvRunOyZakS5cuSaq3v3Gz9U6/UIdqqLnTAADg9vGcIossR853jvMHR57j3MOuXbsmSerr62u7VpxbZHOJ1jfkUby31v2uRZOkDRs2SJL27NlTxp566ilJ0uzZs9vOizoi1gAAAEADmFgDAAAADeiJVJD58+eXbbfeO3HiRBnbv3+/JGlwcLCMORHfr1Ky1Rtj6ojTPU6ePFnGjh07Jqn+esevaWKBwe1CCggAAD+MbOVFNzCIY1kxoucecZ5x9uxZSdKpU6ck1dv7urVebIHX6Z6yFJPI7fWcphLTPg4cOCCpSqOVqhTZOXPmdDwviFgDAAAAjeiJiPXPfvazsu0o8kcffVTGHG2OSff+1dcpET8m87v9zLZt28rYpk2bJEkzZswoYy+++GLbWFbMMBTdItL+xdvpuKYXowEAAFVb3RiddlMDL9QiVW+y3R5PquYFcSGXI0eOSKoixrEFnt/GxwXxLF7L27ENcWz/a36r/+9//1uS9N5775V9nlMsW7asjP3kJz+RJK1evbrtXKgjYg0AAAA0gIk1AAAA0ICeSAVZu3Zt2XYC/uHDh8uYU0G2bt1axpzmMXfuXEnSxIkTyz4XGsRXNKdPn5YkffXVV2XMr0vi6x0XRcaig9uF4kUAAH4YWfMDy3pbZ2mhMY3kiy++kCTt27dPUr0AcdasWZLqcxWL13faR0z/cF/sgwcPlrFPP/1UkvT+++9Lqs9tBgYGJEkrVqwoYw8++KCk+nwHOSLWAAAAQAN6ImK9fPnysj116lRJ9ZY0LmT84IMPythrr70mqfr1FQsCHG2ePHlyGXMx4sKFC8vYb37zG0n1Aki32XMrG6n65dipaHCo0eehHkeBIgAAt1+MDrstXWyjlzUa8FicezhivXfvXknSs88+W/atWrVKUtV2L4qR8Cwq7jfuf/3rX8uYI9WeA8W5zU9/+lNJVeQ6coMIqVpVGnVErAEAAIAGMLEGAAAAGtATqSAxmX7evHmS6kn/TuyPyfkuTHShYiwg8Gud+ErFfShj2odTUGLaSafzZX6IFBDSRAAAaEb8Tv3Rj34kqT5/cD9qp2RI1QqNccVDN1hwH+uYnnH06FFJ9dUQfa1uxZO+hlehjtdftGiRpCrVJG7H9Ti86rSbQeDmiFgDAAAADbjr2x7t2eZfY1K1EpJ/cUnSuXPnJFVtaOIvPkenY1GBI+CxoLGvr09S9atRyiPLrRHiH6pQkUg1AAC3j4sW46qJ3nYbPUl6+eWXJUlvvfVWGfPKi37j7XbAkjRt2jRJ9bmK5wixUNKNE+JqjG7RN3/+/DI2ODgoqXrz/sADD5R9bsIQ5za+pzgvias7okLEGgAAAGgAE2sAAACgAT1RvJiJKx+672PW/9GvTeLrlawQIOPXL/E1TKdCRQAA0FtieoRTJuJaFm5qEAsPN2/eLEnatm3bTc/rftaSdOjQobZrZWkfvlbkVRtjgaJXVXQqSEz78HnjuZwaS0ppd0SsAQAAgAb0bPEiAAAA8H0iYg0AAAA0gIk1AAAA0AAm1gAAAEADmFgDAAAADWBiDQAAADSAiTUAAADQACbWAAAAQAOYWAMAAAANYGINAAAANICJNQAAANAAJtYAAABAA5hYAwAAAA1gYg0AAAA04P8AxSELxQcAR8wAAAAASUVORK5CYII=",
"path": "images_version_6/image_33.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, the straight line AB parallel CD, then angle C is equal to ()
Choices:
A:42°
B:44°
C:46°
D:48°
|
||
166
|
34
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIoAAAB0CAAAAAB/dPXRAAAIJ0lEQVR4nO1bf4hc1RX+brbtC0kgFGx3WjcJbjYamxK3rSFGbRJwbTcYakpC44SlXdrSLCSC+WEsCLptQaqZ1G0cYauGzoKalaTVgG4a6kImWrul0o2aOlO6G1N2KGOUhm02Mi87O1//ePN73nv3vHezKiWHgWHeO++8733n3HPPPfeNIj4tMueTBlCRq1Dc5CoUN7kKxU3MoZxKB1L3zmPGUPL3+plvFDV7UB5ZvNjHfBAxhTJw07+v1NRhBIXITH3ji/PF2rMIReHXO/AVuTYwoNSG/IOzAAUDMbUI8rDNqLfJpz/75VmAkpkiT7X6jYoayd+1+wDQ8lCr++nPGCCZ+Mlx4Kxc/7n//AIAWq+jO3aGloeAFKPAfUL96RVx3/Pq46viMouGNhQf35UVg1gJ/xDu/jGAEjTHRla+BwCZ414K4WOlQBYCXZDAEJns9LrIAIojF0Vazu2TAHZ76hiH7ZqDqwwtlMR0OvxLToiEwNTsQondJ1RUwJ1v+mqYZFsqnh0ZFKsnczf7njdhRUHFe5rE6n17NeaMwnaybWyhVHf8jnF/2Gax8szWhYAw7z66S0OgESszS4eXSnXP35TWEGjEyuGviZHgie6FOvpMMm37SbFqLpLVzRMmrCSb1ulUyjT0dzZrJ1ADUjYNilXzy97R6hiwMj66Rax79IavQhcqBtl2/73y9Lb/AKBzUEgoVPjgWJra8okKVEAS2qgKDUUBT90jSLTKoSJ2v8Ro2JjNtZwTaDnDN9WWF+jOKSOqwaeBD2LwtiWCB3Uc+OhOUVSFZWXFiFg1G8lJ1MIO5hOfXy3W7fuxJdKrglWo+/aTzt+Ly/2LX8iKDFexUl6z+czWpTNnxr4jXgcdujut1B5glhJ/t//yt1ryS17bzQnoL6hAiQIAOkXmsxHZ8ockn930R5KJTq1DKw56Lpoik7IeUrx7gdA7QGxXB4Dr9AvbSradmV6eH/jBP/3VnXiynzktRpKcuxYA3tvoYgwK1W0Fh5wCmYwzMUSSBe3Q6O+WeMYx03mUJKe3ePundKISKwkAaZn5tlEJFJLkaGueJH92qXG1X4+tEisnUty2SEe3AoCXWtrF/tljNQEYWDWvNDPW2aqSMpTM5HKsnScyr1tbVcn7fz//L+C1qQ1IHned2qoPlf0TJ8n7JZwvF7uHex/e8VMmAKDlUuPZbQ6EIedXGUo0RTIad3NinXQ9LUZyIfL+OxGfAmFbipz++qUaKMmi61J68xNV86xurB3YTkYynoqXt5C/KXuimFfWyheJB7dX5llN1po5OAxEMtc2KjrJ5M/rkfkHHisZ88DQ62X+8hM90v0FvJXeCryw8kb37mgvBrqB+I7S7wD1igN69Pr5xYf8r3bZPnIrgPkfubDnXHkixURVl10fHNVSmG4rhdNgS9ZXlRy+nZ5hwgI50Ukm3y0fEUMpWjxamrr7lmhDvONF//OJeI3poPXKmldJkqkt7TpOONqmUYjWPownFHdeR9pJcux7kT595dzV72mGdJq4qerTlRFkA9pquPfILd8fGRmxdvXoC+fMmjFZdV2Sygiy9EjsCxk+/EHX6XOb5+o3l2M/CoYk2ELVmrPvQVDhlGAFPPlCsK3weig2YNmABRsWyj5zvqgweXQ0N1fBXj11K2BbNizb88n7N4t7l65QLNuCZVsofypfVMBTd19jA7aFJsCGbdm2J5aZ+MmASFwcZBeJqBMFzBw8WYknK2f5xfmzt8g7hu5QSk/pdg8O3lxj3ncu3H8oKJLKCKrnwYWXx3dUH/ZF8so18iV1SSqsOHw4tFg2rFIEl77sEXSUDuedWEFuLtyD5bFdgZFUoNRarHFT8UffvuJAstDkHHSLFioAp89vCg6lPvF75/OxlnwpTU+gXJC6y1Z5zemW+AH/5N+zbI/o0RQwvn7M8thh95G6vOKtOHksTSWwrwDEez4X4vUaceKP37MQkGABJgfTRbVA1Eih2P2vA9Uj2Ocu8WIblSoQNVIog6vrGpLed7ncf1KnYgSlIXt6s3L4tqVaHQMoww0NSe+7/PKwXsdNhIuPmGggAwBeam4PhKAiusRTKJA8I+qMO7Lu5RDpjRS0kJUCEdvZJH1f5a8f3hV2Z1SCNxu56DSNBF3jzQkGfZmkKKLN3d7LjwhHA8+uPyffsKoVCRR7yVvNUns7Fz0QEoloMCfubJbmiMnfBa3zBVCqbh07AmmOeFyydRYUSuXWr1zbLrWWO/R6aCTeKa4SQ/tFG38AiIH1kq0zz+tdJQqUCrUgDckAveVG8cor0SEmnSZhV7/Y2IsdBki8oEyvmuIEUmRhQrbxR7LA2/9gAsUjVt745nzs270cUE9u96kyawJF/Wnq2waR4hUrCUClWCAvRrLiLP7dhAkpXqycSHHgxrQCDm1sllYd43/rMiKlgZUC6fQOp1fGyXzbGd8nqWZse8yIFDakOAUqDG8Esm+3Aq+2rQC8s375OBU+PBY+57uzwgLJaKowvbLlUkH6tiZJ9u41I8V1MCcBlPdWpUFrR7TdU400FgnBV5hUAJ5887chLvV3UJ34lW5RoLTnNG2U80l617ZlsrzXpsTz0RT5wxs+ApBsazdiBIZvC+ajRwBs+9IBAFMLTP0T/g0wAm8sBoBl7wLAguDvjV8xKAoY7gCA1iv0J7DQZgjkX14HAGevLx/5ZKAoILt2HoCJn3/LEIMpFADDbQDwQOcGFCkx48UASv5XdwAZdeE4UHwBzjBuQ2ekU871pU5lqLVpjXyM/4TRyf/VvzGvmHyKoPwP5CybeUlmFMEAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_34.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, the straight lines AB and CD are intercepted by the straight line EF. If AB parallel CD, angle 1 = 100.0, then the size of angle 2 is ()
Choices:
A:10°
B:50°
C:80°
D:100°
|
Như hình vẽ, hai đường thẳng AB và CD bị cắt bởi đường thẳng EF. Nếu AB song song với CD, góc 1 = 100°, thì số đo của góc 2 là ()
Các lựa chọn:
A: 10°
B: 50°
C: 80°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the straight lines AB and CD are intercepted by the straight line EF. If AB parallel CD, angle 1 = 100.0, then the size of angle 2 is ()
Choices:
A:10°
B:50°
C:80°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the straight lines AB and CD are intercepted by the straight line EF. If AB parallel CD, angle 1 = 100.0, then the size of angle 2 is ()
Choices:
A:10°
B:50°
C:80°
D:100°
|
As shown in the figure, the straight lines AB and CD are intercepted by the straight line EF. If AB parallel CD, angle 1 = 100.0, then the size of angle 2 is ()
Choices:
A:10°
B:50°
C:80°
D:100°
|
167
|
34
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIoAAAB0CAAAAAB/dPXRAAAIJ0lEQVR4nO1bf4hc1RX+brbtC0kgFGx3WjcJbjYamxK3rSFGbRJwbTcYakpC44SlXdrSLCSC+WEsCLptQaqZ1G0cYauGzoKalaTVgG4a6kImWrul0o2aOlO6G1N2KGOUhm02Mi87O1//ePN73nv3vHezKiWHgWHeO++8733n3HPPPfeNIj4tMueTBlCRq1Dc5CoUN7kKxU3MoZxKB1L3zmPGUPL3+plvFDV7UB5ZvNjHfBAxhTJw07+v1NRhBIXITH3ji/PF2rMIReHXO/AVuTYwoNSG/IOzAAUDMbUI8rDNqLfJpz/75VmAkpkiT7X6jYoayd+1+wDQ8lCr++nPGCCZ+Mlx4Kxc/7n//AIAWq+jO3aGloeAFKPAfUL96RVx3/Pq46viMouGNhQf35UVg1gJ/xDu/jGAEjTHRla+BwCZ414K4WOlQBYCXZDAEJns9LrIAIojF0Vazu2TAHZ76hiH7ZqDqwwtlMR0OvxLToiEwNTsQondJ1RUwJ1v+mqYZFsqnh0ZFKsnczf7njdhRUHFe5rE6n17NeaMwnaybWyhVHf8jnF/2Gax8szWhYAw7z66S0OgESszS4eXSnXP35TWEGjEyuGviZHgie6FOvpMMm37SbFqLpLVzRMmrCSb1ulUyjT0dzZrJ1ADUjYNilXzy97R6hiwMj66Rax79IavQhcqBtl2/73y9Lb/AKBzUEgoVPjgWJra8okKVEAS2qgKDUUBT90jSLTKoSJ2v8Ro2JjNtZwTaDnDN9WWF+jOKSOqwaeBD2LwtiWCB3Uc+OhOUVSFZWXFiFg1G8lJ1MIO5hOfXy3W7fuxJdKrglWo+/aTzt+Ly/2LX8iKDFexUl6z+czWpTNnxr4jXgcdujut1B5glhJ/t//yt1ryS17bzQnoL6hAiQIAOkXmsxHZ8ockn930R5KJTq1DKw56Lpoik7IeUrx7gdA7QGxXB4Dr9AvbSradmV6eH/jBP/3VnXiynzktRpKcuxYA3tvoYgwK1W0Fh5wCmYwzMUSSBe3Q6O+WeMYx03mUJKe3ePundKISKwkAaZn5tlEJFJLkaGueJH92qXG1X4+tEisnUty2SEe3AoCXWtrF/tljNQEYWDWvNDPW2aqSMpTM5HKsnScyr1tbVcn7fz//L+C1qQ1IHned2qoPlf0TJ8n7JZwvF7uHex/e8VMmAKDlUuPZbQ6EIedXGUo0RTIad3NinXQ9LUZyIfL+OxGfAmFbipz++qUaKMmi61J68xNV86xurB3YTkYynoqXt5C/KXuimFfWyheJB7dX5llN1po5OAxEMtc2KjrJ5M/rkfkHHisZ88DQ62X+8hM90v0FvJXeCryw8kb37mgvBrqB+I7S7wD1igN69Pr5xYf8r3bZPnIrgPkfubDnXHkixURVl10fHNVSmG4rhdNgS9ZXlRy+nZ5hwgI50Ukm3y0fEUMpWjxamrr7lmhDvONF//OJeI3poPXKmldJkqkt7TpOONqmUYjWPownFHdeR9pJcux7kT595dzV72mGdJq4qerTlRFkA9pquPfILd8fGRmxdvXoC+fMmjFZdV2Sygiy9EjsCxk+/EHX6XOb5+o3l2M/CoYk2ELVmrPvQVDhlGAFPPlCsK3weig2YNmABRsWyj5zvqgweXQ0N1fBXj11K2BbNizb88n7N4t7l65QLNuCZVsofypfVMBTd19jA7aFJsCGbdm2J5aZ+MmASFwcZBeJqBMFzBw8WYknK2f5xfmzt8g7hu5QSk/pdg8O3lxj3ncu3H8oKJLKCKrnwYWXx3dUH/ZF8so18iV1SSqsOHw4tFg2rFIEl77sEXSUDuedWEFuLtyD5bFdgZFUoNRarHFT8UffvuJAstDkHHSLFioAp89vCg6lPvF75/OxlnwpTU+gXJC6y1Z5zemW+AH/5N+zbI/o0RQwvn7M8thh95G6vOKtOHksTSWwrwDEez4X4vUaceKP37MQkGABJgfTRbVA1Eih2P2vA9Uj2Ocu8WIblSoQNVIog6vrGpLed7ncf1KnYgSlIXt6s3L4tqVaHQMoww0NSe+7/PKwXsdNhIuPmGggAwBeam4PhKAiusRTKJA8I+qMO7Lu5RDpjRS0kJUCEdvZJH1f5a8f3hV2Z1SCNxu56DSNBF3jzQkGfZmkKKLN3d7LjwhHA8+uPyffsKoVCRR7yVvNUns7Fz0QEoloMCfubJbmiMnfBa3zBVCqbh07AmmOeFyydRYUSuXWr1zbLrWWO/R6aCTeKa4SQ/tFG38AiIH1kq0zz+tdJQqUCrUgDckAveVG8cor0SEmnSZhV7/Y2IsdBki8oEyvmuIEUmRhQrbxR7LA2/9gAsUjVt745nzs270cUE9u96kyawJF/Wnq2waR4hUrCUClWCAvRrLiLP7dhAkpXqycSHHgxrQCDm1sllYd43/rMiKlgZUC6fQOp1fGyXzbGd8nqWZse8yIFDakOAUqDG8Esm+3Aq+2rQC8s375OBU+PBY+57uzwgLJaKowvbLlUkH6tiZJ9u41I8V1MCcBlPdWpUFrR7TdU400FgnBV5hUAJ5887chLvV3UJ34lW5RoLTnNG2U80l617ZlsrzXpsTz0RT5wxs+ApBsazdiBIZvC+ajRwBs+9IBAFMLTP0T/g0wAm8sBoBl7wLAguDvjV8xKAoY7gCA1iv0J7DQZgjkX14HAGevLx/5ZKAoILt2HoCJn3/LEIMpFADDbQDwQOcGFCkx48UASv5XdwAZdeE4UHwBzjBuQ2ekU871pU5lqLVpjXyM/4TRyf/VvzGvmHyKoPwP5CybeUlmFMEAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_34.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, If AB parallel CD, angle 1 = 100.0, then the size of angle 2 is ()
Choices:
A:10°
B:50°
C:80°
D:100°
|
Như hình vẽ, nếu AB song song với CD, góc 1 = 100, thì số đo của góc 2 là ()
Lựa chọn:
A: 10°
B: 50°
C: 80°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, If AB parallel CD, angle 1 = 100.0, then the size of angle 2 is ()
Choices:
A:10°
B:50°
C:80°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, If AB parallel CD, angle 1 = 100.0, then the size of angle 2 is ()
Choices:
A:10°
B:50°
C:80°
D:100°
|
As shown in the figure, If AB parallel CD, angle 1 = 100.0, then the size of angle 2 is ()
Choices:
A:10°
B:50°
C:80°
D:100°
|
168
|
34
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIoAAAB0CAAAAAB/dPXRAAAIJ0lEQVR4nO1bf4hc1RX+brbtC0kgFGx3WjcJbjYamxK3rSFGbRJwbTcYakpC44SlXdrSLCSC+WEsCLptQaqZ1G0cYauGzoKalaTVgG4a6kImWrul0o2aOlO6G1N2KGOUhm02Mi87O1//ePN73nv3vHezKiWHgWHeO++8733n3HPPPfeNIj4tMueTBlCRq1Dc5CoUN7kKxU3MoZxKB1L3zmPGUPL3+plvFDV7UB5ZvNjHfBAxhTJw07+v1NRhBIXITH3ji/PF2rMIReHXO/AVuTYwoNSG/IOzAAUDMbUI8rDNqLfJpz/75VmAkpkiT7X6jYoayd+1+wDQ8lCr++nPGCCZ+Mlx4Kxc/7n//AIAWq+jO3aGloeAFKPAfUL96RVx3/Pq46viMouGNhQf35UVg1gJ/xDu/jGAEjTHRla+BwCZ414K4WOlQBYCXZDAEJns9LrIAIojF0Vazu2TAHZ76hiH7ZqDqwwtlMR0OvxLToiEwNTsQondJ1RUwJ1v+mqYZFsqnh0ZFKsnczf7njdhRUHFe5rE6n17NeaMwnaybWyhVHf8jnF/2Gax8szWhYAw7z66S0OgESszS4eXSnXP35TWEGjEyuGviZHgie6FOvpMMm37SbFqLpLVzRMmrCSb1ulUyjT0dzZrJ1ADUjYNilXzy97R6hiwMj66Rax79IavQhcqBtl2/73y9Lb/AKBzUEgoVPjgWJra8okKVEAS2qgKDUUBT90jSLTKoSJ2v8Ro2JjNtZwTaDnDN9WWF+jOKSOqwaeBD2LwtiWCB3Uc+OhOUVSFZWXFiFg1G8lJ1MIO5hOfXy3W7fuxJdKrglWo+/aTzt+Ly/2LX8iKDFexUl6z+czWpTNnxr4jXgcdujut1B5glhJ/t//yt1ryS17bzQnoL6hAiQIAOkXmsxHZ8ockn930R5KJTq1DKw56Lpoik7IeUrx7gdA7QGxXB4Dr9AvbSradmV6eH/jBP/3VnXiynzktRpKcuxYA3tvoYgwK1W0Fh5wCmYwzMUSSBe3Q6O+WeMYx03mUJKe3ePundKISKwkAaZn5tlEJFJLkaGueJH92qXG1X4+tEisnUty2SEe3AoCXWtrF/tljNQEYWDWvNDPW2aqSMpTM5HKsnScyr1tbVcn7fz//L+C1qQ1IHned2qoPlf0TJ8n7JZwvF7uHex/e8VMmAKDlUuPZbQ6EIedXGUo0RTIad3NinXQ9LUZyIfL+OxGfAmFbipz++qUaKMmi61J68xNV86xurB3YTkYynoqXt5C/KXuimFfWyheJB7dX5llN1po5OAxEMtc2KjrJ5M/rkfkHHisZ88DQ62X+8hM90v0FvJXeCryw8kb37mgvBrqB+I7S7wD1igN69Pr5xYf8r3bZPnIrgPkfubDnXHkixURVl10fHNVSmG4rhdNgS9ZXlRy+nZ5hwgI50Ukm3y0fEUMpWjxamrr7lmhDvONF//OJeI3poPXKmldJkqkt7TpOONqmUYjWPownFHdeR9pJcux7kT595dzV72mGdJq4qerTlRFkA9pquPfILd8fGRmxdvXoC+fMmjFZdV2Sygiy9EjsCxk+/EHX6XOb5+o3l2M/CoYk2ELVmrPvQVDhlGAFPPlCsK3weig2YNmABRsWyj5zvqgweXQ0N1fBXj11K2BbNizb88n7N4t7l65QLNuCZVsofypfVMBTd19jA7aFJsCGbdm2J5aZ+MmASFwcZBeJqBMFzBw8WYknK2f5xfmzt8g7hu5QSk/pdg8O3lxj3ncu3H8oKJLKCKrnwYWXx3dUH/ZF8so18iV1SSqsOHw4tFg2rFIEl77sEXSUDuedWEFuLtyD5bFdgZFUoNRarHFT8UffvuJAstDkHHSLFioAp89vCg6lPvF75/OxlnwpTU+gXJC6y1Z5zemW+AH/5N+zbI/o0RQwvn7M8thh95G6vOKtOHksTSWwrwDEez4X4vUaceKP37MQkGABJgfTRbVA1Eih2P2vA9Uj2Ocu8WIblSoQNVIog6vrGpLed7ncf1KnYgSlIXt6s3L4tqVaHQMoww0NSe+7/PKwXsdNhIuPmGggAwBeam4PhKAiusRTKJA8I+qMO7Lu5RDpjRS0kJUCEdvZJH1f5a8f3hV2Z1SCNxu56DSNBF3jzQkGfZmkKKLN3d7LjwhHA8+uPyffsKoVCRR7yVvNUns7Fz0QEoloMCfubJbmiMnfBa3zBVCqbh07AmmOeFyydRYUSuXWr1zbLrWWO/R6aCTeKa4SQ/tFG38AiIH1kq0zz+tdJQqUCrUgDckAveVG8cor0SEmnSZhV7/Y2IsdBki8oEyvmuIEUmRhQrbxR7LA2/9gAsUjVt745nzs270cUE9u96kyawJF/Wnq2waR4hUrCUClWCAvRrLiLP7dhAkpXqycSHHgxrQCDm1sllYd43/rMiKlgZUC6fQOp1fGyXzbGd8nqWZse8yIFDakOAUqDG8Esm+3Aq+2rQC8s375OBU+PBY+57uzwgLJaKowvbLlUkH6tiZJ9u41I8V1MCcBlPdWpUFrR7TdU400FgnBV5hUAJ5887chLvV3UJ34lW5RoLTnNG2U80l617ZlsrzXpsTz0RT5wxs+ApBsazdiBIZvC+ajRwBs+9IBAFMLTP0T/g0wAm8sBoBl7wLAguDvjV8xKAoY7gCA1iv0J7DQZgjkX14HAGevLx/5ZKAoILt2HoCJn3/LEIMpFADDbQDwQOcGFCkx48UASv5XdwAZdeE4UHwBzjBuQ2ekU871pU5lqLVpjXyM/4TRyf/VvzGvmHyKoPwP5CybeUlmFMEAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_34.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, angle 1 = 100.0, then the size of angle 2 is ()
Choices:
A:10°
B:50°
C:80°
D:100°
|
Như hình vẽ, góc 1 = 100, thì kích thước của góc 2 là ()
Các lựa chọn:
A: 10°
B: 50°
C: 80°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, angle 1 = 100.0, then the size of angle 2 is ()
Choices:
A:10°
B:50°
C:80°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, angle 1 = 100.0, then the size of angle 2 is ()
Choices:
A:10°
B:50°
C:80°
D:100°
|
As shown in the figure, angle 1 = 100.0, then the size of angle 2 is ()
Choices:
A:10°
B:50°
C:80°
D:100°
|
169
|
34
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAASoAAADUCAYAAAAr1W7yAAA6WklEQVR4nO2deXBb133vPwAIEgD3fd8pkuImkZRIbdRmybSdxW5cO24U13XGaZKmsdPMS5P3Ju7ykkzq5GXaTJ49TZ20cdIsbp7jxo5liZKonZJISqIkiqS4gvsC7iQIAiBw3x8yYJAEF8kUARDnM4MZEvfci9+9uPeL3/md3/kdmSRJEgKBQODGyF1tgEAgEKyEECqBQOD2CKESCARujxAqgUDg9gihEggEbo8QKoFA4PYIoRIIBG6Pj6sNEHgWkiRhMBiYm5tDLpfj6+uLr6+vq80SbHCEUAnuCbPZjFarZXp6msDAQKKioggPD3e1WR6HLc9aJpO52BLPQHT9BPeE2Wzm2LFjHDt2jKmpKeTyD28hMclh9chkMiFS94AQKsE9MTQ0RGVlJZcvXwZApVK52CKBNyC6foJVc/v2bSorKzGbzSQnJxMZGYlarbZvFx6C4EEhhEqwIpIkMT4+TmtrK52dnQAEBQXh7+/vYssE3oLo+glWpLu7mzNnzjA3N0d6ejomk4mRkRHm5uZcbZrASxBCJViR4eFhurq6UKlUpKWlodFoAPDxEQ65YH0Qd5pgHo7D5haLhYmJCSYnJ1EoFERERBAQEEBERASBgYEikO4EkXbwYBBCJViE7SGbmZmhqqoKX19fPvnJTxIbG4tOpyM2NhaNRjMvNUFwl+UE6saNG5w8eZLa2lokSSIoKIjExEQeffRRtm3bRmNjI52dnZSWlhIaGrqOVrs/QqgE83B80Lq6ujh+/Djp6ekUFxczOjpKa2srvr6+hIWFCa9hFVgsFqanp9FqtdTU1HD8+HEqKyuxWCxERkayefNmIiMjiY2N5dKlS/T09JCbmyuEagFCqASLkCSJtrY2jh8/zltvvcXExAQ///nPMZlM+Pn5kZWVRXJy8jyhEl0e5zQ1NfGtb32LwcFBtm3bxtNPP803vvGNedfr9OnTPPHEE2zatImHHnoIPz8/F1vtfgihEizCaDTS1taGTqcjOzsbnU6HxWJBr9cjSRJKpRK1Wi1EaRlsYn/ixAmqqqoICgoiKSmJw4cPk5ycPK/t1atXaWxsJCUlhejoaDF30glCqATzsFqtjI+Po9PpSE9P54UXXiAiIgKDwUBXVxednZ309vbi5+c3T6iEaM3HbDbzxhtvcPz4cXbs2EF5eTmf+cxnCAkJWdR2+/btvPDCCyQmJhIYGChif04QQuXFSJK0SGCuX79OfX09oaGhFBcXk56eDkBwcDB+fn7MzMwwPT1NQECAGPVbApPJRFNTEzU1Neh0Oj772c9SXl7uVKQAQkNDSU1NJTo6muDgYBQKxfoa7AEI6fZiHEXKZDLR29vLe++9x5tvvkl4eDibN2+2b7darTQ2NtLQ0MDw8DAzMzPMzMy4wmy3p6Ojg4sXLzI8PExcXBwHDx60C74zbIMTkZGRhIaGivw0J4gr4uVMT09z+fJlLly4wMWLF6mqqkImk/HMM8+we/du4G5A+N133+X06dM0NDRgMpnIysqio6ODQ4cOUVBQ4OKzcC9u375NRUUFcXFxbNu2jejo6GXbx8fHo1ar0Wg0BAYGolQq18lSz0F4VF7O3NwcQ0NDtLS00NDQgNVqtY/oTU9PAzA5OUlbWxsDAwPMzMxgNBoZHx+nq6uL0dFRF5+B+9HS0kJtbS0xMTHs2LFj3sRtZwQHB9u7fiI/zTnCo/JyAgMDefjhhykpKWFiYgKLxYJKpSIuLs7+gOXk5PC3f/u36PV6TCYTkiTh5+dHYGAgYWFhLj4D92JqaorBwUEGBwdRKpWEhYXdc8xJpHosRgiVFyNJkn1qTERExJJtAgICCAgIWGfrPA9JkjCZTMzMzGA2m5HL5fj5+QkPaQ0QV9CLsf1iL1eZU/yqrx5b1U5HD8pqtd5z5VNR/XMxQqgE4qFYQwICAggNDSUkJARJkpidnZ0nXAtFy2q1Mjg4SENDg4j3LYMQKoFgDfH19SUpKYn09HSmpqZobW1lYmLCvt3xR0Gv19PZ2Ulrayvd3d3o9XpXmOwRiBiVwGnwVgR075+8vDz27dvHe++9R2NjI+Hh4Rw6dGheftTExASXLl3ij3/8I9nZ2fzpn/4pkZGRLrTavRFCJRCsMRkZGRw8eJBbt27R1tbGsWPHGBkZISUlBT8/P4xGI5OTk7S2tjIzM0NQUBAxMTGuNtutkUlijSOB4J5Yjbc5NTVFU1MTx48f5yc/+Qk9PT2EhIRgMpkIDAxk586dHDp0iPLycpKSksRE5BUQHpVg1dTU1NDV1UVOTg6JiYn4+/t7bddwpfMODAykqKgIuVzO4OAg7e3t+Pn5YTKZ8Pf3Z+vWrRQUFJCRkWHfx9ncS8FdhFAJVs3Ro0c5deoUL7zwAoGBgajVaq+cQLtaMVEoFBQXF1NUVLSq4wiRWhohVIJVMTg4SE9PD2NjY4SHhxMbGysSGT9gJU9oJQESntTKCKESrIhOp+PmzZsYjUYSExNJSkrySk/KGc5CvGNjY4yPjxMSEkJQUNCK10qI1MoIoRKsSHt7O++//z4BAQEUFhaK+X0OOBOZ8+fP84c//IGDBw+yd+9eYmJiREWEj4jw3QUr0tHRweXLlwkNDeXAgQNi4YFlmJubo76+nvPnz6PT6fD19RUe0xogPCqBnYWxEqvVas+e7urqIioqiq1bt7rOQDdnZmaG9vZ2hoaGUKvV9tItgo+OECrBkkxPT1NbW8vw8LB95RnB0gwPD3P27FlmZmYoLS0lISHB1SZtGETXT2BnYRdldHSUyspKJicnKS8vJzU11UWWeQYDAwOcOXMGuVzOo48+Snx8vKtN2jAIoRIsycjICKdOnWJycpLDhw/PS04ULKavr4/6+nr8/PzYvXu36PatIUKoBIuQJAmj0UhPTw8jIyP4+/uTm5uLv7+/q01zS+bm5tBqtXR1daFUKomNjSUqKkoE0dcQIVSCRczNzVFTU0NTUxMFBQUUFBSsOLwuSdI9F4jbKMzMzFBRUUFLSwuHDh0SAw4PACFUgkVYrVaqqqq4desW27Zto7i4WHgHyzA9Pc3Fixfp6elhz5495ObmutqkDYcQKsEijEYj1dXVtLS0UFJSQmFh4Yr7eHP5XJ1OR1NTE9PT0xQWFpKYmOhqkzYcIj1BMI/p6WkaGxsxGo2Eh4eTmJiIRqNxtVluS0tLC3V1dYSHh5Oenk54ePiiNmIu30dHCJVgHs3NzVy6dIng4GASExPFdJkVuHbtGleuXCEnJ4ft27fj5+fntJ0Qq4+G6PoJ5nHr1i0qKipISkriwIEDKy6e6e1cvXqVS5cukZ+fz969e+cNOtgGGLy5W7xWCKES2DGbzbS1tdHe3k5KSgpFRUVLegjejiRJ9PT00N/fj9lsJjU1VZS+eYCIrp8A+HCe2vDwMBqNhqSkpCUXJd0ofJQFLLRaLefPn8fHx4ft27c7XZhBeFFrhxAqAQBDQ0OcP3+eubk5SkpKxPSPFWhvb6eiooLQ0FBKSko2vKi7GuGnCgDo6enh1KlTqFQqHnvsMa+Y/vFRYkdarZbq6moiIiI4cOAAISEha2ucYB5CqAQA9Pb2Ul9fj0ajYefOncJDWAKTyYRWq6W/vx+NRkNCQgIJCQlOM/e9OVt/rRFdPy/HbDbT399Pd3c3MpmM6OhosRDmMkxMTHDx4kV0Oh35+fmkpKS42iSvQAiVl6PX66moqKCrq4uDBw+Sk5PjapPcmrGxMd577z0UCgWPPvroshUlRDB97RBdPy9nYmKC8+fPMzg4yP79+8nOzna1SW5Nf38/zc3NyOVySkpKiIuLc7VJXoEQKi9hqXjJ8PAwt27dQq/XU1paOq+K50aPrzi7JktdJ4vFQk9PD+3t7fYucmpqqli0YZ0QXT8vYWE3RJIkOjs7aWxsJDg4mLS0NHts6qPkF3kSzs5PJpM5FSqr1crly5epr68nLy+PgoICsWTYOiI8Ki/FarVy9epVrl27Rl5eHiUlJfj43P3d8vYpH87O3WAwcOnSJVpbWykrK6O4uNgFlnkvQqi8FJlMxuXLl6murqawsJBdu3Z5nYdwL+kDIyMjtLS0MDExwZYtW0Qsb50RXT8vZWBggO7ubqampsjMzCQtLc3VJrktAwMD3L59m7m5OaKjo0lMTPRqj9MVeIRQOf7qPYgbZKPGZBxLizj+3dvbS21tLb6+vuTl5REVFeVKM13Gar/v69evc/LkSVJTU8nPz0elUj1gywQLEV0/L6S1tZWTJ08SFBTEnj17RM2pFWhoaKC6upq0tDT27t0rhMoFeIRQ2YK7D8rj2ajBY8dzcvy7ubmZM2fOEBkZyYEDBwgMDHSFeR7BxMQEHR0d9PT0kJGRQU5ODr6+vq42y+vwiK6fYG2wWq2MjIzQ29uL2WwmISGBTZs2eV0QfbUMDQ1RU1OD2Wxm69atxMbGutokr8UjPCrB2jA+Ps7Vq1cZGxsjNTWVpKQkIVLL0N3dTUVFBT4+PpSXlxMTE+Nqk7wWjxeq+52hvtGzrp0xMjLCsWPHMBgMPPLII16VhX4/dHV1cfz4cXx9ffnYxz5GUlKS03ZLXTtRPWHt8Oqun7cV3B8YGODatWts3ryZsrIyMU9tCaxWK1NTU/T19WE0GgkNDSU4OJhr164xMDCAXC4nJCSE2NhYoqOjRXB9HfBYofqoKQW2qRKeJlb3c95Wq5WZmRm6u7sZHBxk+/bt5OXlzQsKe9I1eNBMT09z4cIF+vv7KS0tJS4ujps3b/Ltb3+bU6dOIZfLKS4u5vHHH+fJJ59cMvlTXNO1w2OFai1ugqXmdbkz92Oz2WymtraWlpYWNm3aRGZmphi5WoaZmRlOnDjB6Ogou3btAqCuro7c3FwiIyMxm8309fXxX//1X6jVagICAoiOjhYTlB8gHhejkiQJi8XC3Nzcii+LxYLVal32eJ74q3evNhsMBs6ePUtbWxsHDhxY1crH3szY2BjV1dXodDq2bNmCJEkMDg7y5S9/md/85jf86le/4pFHHuHWrVu8//77nD9/nomJCVebvaHxOI+qpqaGEydO0NHRwejoqF2MFgpSSEgIaWlpPPTQQ+zfv981xroJ09PT1NbWotfr+cu//EtRHG8JJElCp9Nx584dVCoV/v7+zM7Okp+fT3Fxsb2ap5+fH2VlZTz77LOMjIxQU1NDaWmpKN/8APE4oZqcnOTOnTtUVFQwODiIWq1GpVKhUCiQy+VYrVb0ej1qtZrU1FTi4+O9WqgMBgOdnZ2MjY0RGBhIRkYGAQEBrjbLLZEkibq6Oq5fv05KSgrx8fH4+fmRlZVFaGjovLbZ2dn8yZ/8CW+99RadnZ0YDIZ5x/FET92d8Tihso1WBQcH09HRwWOPPUZmZibBwcH2X8Dm5mbu3LmDVqv1+ofy5s2bVFVVkZqayqZNm9BoNK42yW2Ry+VUVVVx6dIlHnvsMXbu3El2djbBwcGL2vr5+REaGopKpWJ6evqBz0f1djxOqPz8/MjJySExMRGr1cqhQ4fIzMy0bx8fHyc5OZmkpCROnjzp9UJVV1fHxYsXKS4upqysTAylL8Pw8DAdHR2MjY2RnZ3N1q1bl1wp2hYHDQ4ORqlUihWlHzAeF0yHu92Z6elp5ubmUKvV9vcvXrzIe++9h9lstrvuQUFBLrR07bmXJEJJkrh9+zY3b94kOzubXbt2iZGpJRgbG6OxsZHZ2VkiIyNJSUlZVnympqYYGBggOjqarVu3uvQH0XZPrHRveHICqtt7VAv7+waDgZ6eHiIiIoiKiiIxMRGAO3fuoNPpUCgU+Pj4EBISwo4dO5wKlSeXdVmtzXq9ntbWVmZmZoiNjSU+Pt5rUxJWEzNqaWnh5MmTBAcHU1BQsGJFif7+fq5cucLWrVspKytbFMNaTxxTVpY7T0/NHQQ3F6qlFiPo6OhALpej0Wjo7+9ndHSUM2fOoNFoSEtLs4tVbm7uqo65Eenu7ubMmTMolUp2797ttWv1rfb7bmpq4ty5c+zbt49Dhw7h7++/7DGHhoYYGRkhPj6eTZs22d93lQCs9nM9VazcWqicXUir1crw8DDvvvsut27d4rXXXmN2dpbZ2VmOHDnC7t2753UHV3NMT2K13mBnZyfvvPMOeXl5PPzww14rVKv5vqempuxZ+wkJCcvGpiYmJqioqMBkMvHFL36RzZs3L3nc9fDc70dwPPEZ8LgY1fj4ON3d3RiNRmQyGWNjY3R3d6PVarFYLERERIjAJncn1La3txMaGkpRUdGGi9WtFePj49TU1HDnzh3MZjPh4eFL3j9msxmtVktraysajYaysrJ5uVPrLQDe0jsAN/eonNHR0cGdO3d46qmn2LZtG3FxcZw9e5bf/OY3pKenExQU5JG/GKtlpXMzGAy0tLTY43hJSUmigucy9PX18Zvf/Iba2lrUavWScTyr1UpNTQ3t7e0kJSUtWUnBkQd9H27k+3whHiVUttiATqcjLS2N0tJSAAoLC7lx4wbR0dH2JZ+8lenpac6ePcvg4CAlJSWkp6e72iS3ZnR0lOvXr9PS0kJSUtK8xE1HRkZGGBwcRCaTUVxcbL+ukiQxMjKCXq/Hz8+PqKgo5PL17ah4WrzpfvCYp9pqtTI6OsrU1BTAvDiUTCYjIyPDaxcpcGRsbIyzZ8/i6+vLpz/9aXugV7AYW8VTW6qLXq9Hp9MxNTVFQECA/eHv6emhubmZoaEhQkJCSEhIsKd5tLW1odVqMRgMxMTEEB4ebheq9Rpd3ugiBR4kVJOTk7S0tAAsmtIQGxvL/v37SU1NBeDMmTOYTCavLMTf39+PVqtl8+bNFBcXi5pTS2A0GqmtraW5uZnc3FzCwsLw8/Ojr6+Pmpoadu7ciUwm4/r16/zhD3/g1KlTTE1NERgYyO9//3tUKhVGo5Hx8XEiIiI4cuSIfcTZxnoKSF9fH8ePH6epqYnh4WGMRqPTObAymQy5XE5qaiqHDx8mJyfHIwZaPEaopqamuH37NnK5nKKiIsLDw+3bQkND7cLV1dXFxYsX8fX1ZceOHV4jVFarla6uLtra2lAqlcTGxpKQkOBqs9yWmZkZzpw5g1arZdeuXVitVsbGxujv7+fcuXMUFBSgUqno6+ujubmZxsZGFAoFOp2O5uZmLBYLcrkcHx8ftm3bZvemXHk+jY2NvPfeezQ0NACg0WhQKBR2wZTJZHbPMSEhgbS0NI9Zz9FjhMpisdDU1ERqaio7d+50+hBWVVVx7NgxTCYTubm5y9YD32j9eqvVysWLF6mrq6O0tNQevxM4R6/Xc/HiRUwmE88//zxRUVG0trby2muv0dHRwWc+8xkyMzMpKytj06ZNvPjii/bViqxWq71bJ5fLCQoKcnkXOykpiS9/+ctERUXxxz/+keLiYrZv3054eDgajQa5XI5SqaSvr49XXnkFSZLIzc0lPj7epXavFrcWKqPRyMjICJ2dnZw+fZrz588zMDCARqOhrq4OpVKJJEn4+voyNzfH7373O27cuMEnP/lJ0tPTvSqwbjAYqKmpobm5mWeffZaioqINJ8ZrhV6vp729nampKUJDQ0lNTSU2NtZ+H3V3d9vrS0VFRa069umq6217BpKTk8nLy+PmzZvs37+fT3ziE/Y2RqPRnnZx5swZhoaGiI+PX/fA//3i1k/y+Pg4Fy5c4Lvf/S43b94EoLq6mt/97ndO16ybnZ3F39+f2NhYMjMzlxWqjfYAj4yM2KcR5eXl2eN194snTzNaifr6empqakhOTiYrK8uehR4VFUVQUBByuZypqal7Fh53yEqfmJhgZmZm3pzOzs5OLly4YB+tTExMJCgoyKPCIm4tVGq1mpSUFD75yU9SVFRESEgIVqsVk8k0z/22YbVaiYmJobS0lJCQEI/5tfio9PX1cfXqVQIDA9csNrURBcrGjRs3uHjxIqWlpezbt8+eDKtSqQgODkatVjM7O4vJZPKY5OG5uTlGR0eRyWRkZ2fbi/zB3ZHglpYWYmNjyc7OZt++fczMzCw7TcjdcGuhCgoKoqSkhJKSknX7TEmS7CLo7g+rLQZXV1fHmTNniImJIS8vzy7gFovFlea5HQqFApPJxM2bN7l16xZPP/00ubm5mM1mlEols7Oz+Pr6olarGR0dZXBwkNjYWJRKpcuupbM6V7Z7Uy6X29/T6/W0tbVhMBiIjo62l+IeHR2lu7ubqakpe45YUVHR+p/IR8SthcoVdHZ2Ultba7953Rlb1/bo0aOcP3+ewsJCJiYmOHHiBCqVatUPlycucnGvyGQyTCYTQ0NDNDQ0IEkSd+7cQa1WYzab8fPzY2Zmht7eXvR6PVVVVYyNjdmTiB09+PX8AXMmVHNzcygUCgoLC8nIyLC30+v1VFdXU1FRwRtvvEFYWBizs7NERESQn5/v0lHJj4oQqgXodDqqq6uZnZ11W7ff8UGZnZ3l6tWrdHV1kZmZyfj4OMPDw/PyZ5YSItsolg1Prle0HHK5HIVCQX9/P62trYyPjxMeHk5fXx9msxmTyYSPjw8mk4mRkREMBgMNDQ1MTEwQGxuLj4+PW3mnJpPJnoJiEyqj0Uh/fz86nY7JyUnGx8ftJagLCws5ePAgISEhrjX8IyCEykORy+VMT08zODhoj805KzPsmEOzUIRsdeYtFsu8rq7VanX7bu+9IJPJUCqVTE1NodVqiYyMJDk5GT8/v3kC5NhlNhgMGI1G+/7uzvj4OLW1tWRkZPDZz36WpKQkZmdn7SkYMTExHj0K7rmWPyAiIyMpKSlxaddvufrbkiQhl8tRqVTcunWLuro6IiMj2b9/Pzk5OURFRTE3N+fUM7K95+Pjg0wmY3p6mq6uLmprawkJCaGsrIzAwECPiM+tFlvek9FopKenB0mSyM/P5+GHH8bPz88u4HK5nLm5OaKjoxkbG0Oj0RAeHk5ERIS96+cKFt4LkiQxNzeHj48PMTEx9m22KiI7duygvLzc3huwWq32qT/u2kNYDUKoFpCcnExiYqLbPqy2h0oulyNJEr/4xS/YsmULX/rSl0hISECtVi/5UDkKldVqpaGhgaGhIerr68nNzWXv3r2kpqZuqO6fQqFgenqalpYWmpubSUxM5NChQxw5cgRgkUdlu3a2brE73QMLRUuhUCBJEkajkbGxMXsX1iZIBoPBXu3WlvjpqQihWoDtBnB3pqenGRkZwc/Pj/j4eDIyMuzpGCvZb7VauXHjBm+99Rb19fUcPHiQsrIyYmNjN2RKh8VioaqqivHxccrKyuYtwe4J3/VyzM3NodVqGRkZsa8TYEOpVJKcnIzFYkGlUi0SKnf9MXaGECo34V5GlGzTP1paWkhOTiY5OXlVAiNJkn159xMnTnDixAl8fX158cUX2bNnz4atqd7T08Px48cJCgri2WefJTk52dUmrRkWi4Xm5maGh4cXJfr6+PgQHR297P6eIlZCqNyEe7lZZmdnOXHiBP39/Rw8eJD8/PxV7Xf79m3ef/99qqqqGBwc5KGHHuLw4cNs3bp1Q4qUJElYLBZ6enrQarUUFRVRXFy8oVY0VqlU9lXDH3/88Xuac+gJAmVDCJUHMjo6SkNDA76+vuzcuXPJm9NWb6m/v5/u7m4aGxu5fv06er2elJQUysvL2bdv3zpbv35YrVaamppobm4mODiY5OTkDSFSFouF6elphoeHuXXrFmfOnGF2dpa4uDgUCgVZWVnLrhvgiQihWgJ3nes2MzNDZ2cnMzMzREVFkZmZueRNOTY2xvvvv8/Ro0e5fv06Go2Gw4cP88wzz1BUVOQRdYg+CnNzc5w/f54bN25QVlbGjh07nLZz1+96KWwlXX784x/z29/+1j4AcOzYMT7/+c/zzW9+k8TERLdPWL4XPE6onM3xs00nWEvcLVt7dHSUtrY2GhsbuX37Nj4+PkRGRjI7O4vFYkGr1TI2NmZ/TU1N2fOsfH19OXjwICkpKRQVFVFQULBi7GIjMDMzw/Xr1+no6OBjH/sYhYWFS7b1FJGCu7Gn0NBQCgsL7RPx4e4oX2FhIRqNxqPOZzV4nFDZ8kgcsSUurjXu9GVrtVreffddzp07h06nY9OmTYSGhlJfX8/ExAQNDQ1otVra29tpa2uzl9Pds2cP5eXlHDx40L5YqzdgtVoZGBigs7MTg8FAbm7uvLwjR9zpe14NarWarKwssrKyXG3KuuFxQmWrqmjLpn5QIuVuGAwGxsbG6OnpYWhoiISEBFpaWmhpaUGpVOLn50doaCh79uzh4Ycfxt/fn5CQELKyslAqlbz++uv4+vry7LPPkpiYuOGvWVNTE+fPnyckJIRNmzZ59PQRgQcKlS3PydYvdyy1upGxdUPVajUREREkJibi7+9PZ2cnERERxMfHk5qaSlpa2rwHc2pqitOnT/Paa6/h6+vL8ePH6e7uXlSvKiEhYd4Ui4SEBP7+7//eY6dd1NfXc/bsWZKSkigtLd1wwWVvwzPvQi9EoVCgUqnYsmULMTExPPXUUyQmJjIxMYFCoUCtVqNWq9FoNGg0GmZnZ2lpaeEnP/kJv/71rxkbGyMnJ4ennnqKl156ic7OzhU/88knn2Tr1q0P/uQeAE1NTVRXV/P1r3+dhx56yKNqLwkWs6GEytnsf9s0iOW22XCsQ7Xc9InVHOujtHfGyMgIWq2WrKws9u/fb192fKlVZmz1iAICAoiNjWVqaoqwsDCKi4vZu3cv586ds7c9dOgQX/7yl+etphwWFsbWrVvtE5Q9xWs1mUx0d3ej0+lQqVQkJibOW7FI4JlsqECFxWLBbDbPe9nmcjnb5jgnzhakd7ZtNZ+zVu2XKrXS2tpKdXU1YWFh9mF2Z6VHJEmyz/nKzMzkH//xH/ntb39LeXk5/v7+yGQyXnnlFXt7lUrFyZMn+dKXvkRvby+7du1iz549bNmyxX5NFg5euDN9fX2cPHkSi8VCWVnZkgF0gWexoYTKNlnX2f+2mkQ2HGNbVqt13vJHtsmetoC9DavVan9oFQrFvJez9rb37qU9zB+FmpmZ4ebNm+h0OmJjY0lMTCQgIACFQrFIqBzPQ6lUotFo8PPzIzU1laCgIPs55+bm8uSTTwLwla98hSNHjjAwMMCf//mf8/jjj6PVau0ema2K5EJb3ZX+/n7ef/99LBYLhw8f9phVVgTLs+GESqlU2rsqSqVykVDZcq58fHzs2+bm5rBarSgUCnx8fPDx8bF7EwuFymKxIJPJ7O1sL9txnAnbcu1tntVSSYcjIyNUVlYyMTHBnj177LWwnXXHHM/DUZSnp6ftdeZtn/Xtb38bHx8fXn/9dX74wx9y7NgxsrOzqaioYMuWLbzyyiuYzWZ7SRhHW92Zvr4+6urqUKvV7NmzZ8MntXoLG0qolsNisdhLuC4cyXKs87OartyDYKk40OjoKO+99x7j4+OUl5fbR+sWitG9IJfLycrK4nOf+xzj4+O8+uqrHD58mOvXr/Pyyy8D8PLLL1NSUsLly5fv/6TWEZPJREtLC52dnURHR5OcnExUVNSGT8PwFjbct+gYDHcUG9vy1o4F8Z3ta3stLJ7vKvr6+ujq6kKlUlFUVDRvrtrCh3A1tjrWs3r55ZdRqVT88z//M0NDQ6hUKv7u7/6Oq1ev8tBDD1FfX8/OnTv5whe+wPj4+Fqf2ppiMBg4f/68ffKxYykXgeez4YTK1uVTKBT2OMtq9/Px8UGpVM57uUqoTCYT9fX1tLS0kJCQQEZGxpqPXsXExPA3f/M3TE9P8+qrr9rfT09Pp6Kigl/+8pfExMTws5/9jNzcXH71q1+t6eevJTMzMxw/fhytVsuhQ4fIy8tztUmCNcRjhGq54PNy+yxss1yJXpsH5Rhkd1UA2Wq1UlVVRUNDA/n5+eTm5s7zoCwWy6Lu6f3Y+tJLL/HEE0+we/fuRds++9nP0tjYyBe+8AVGRkZ47rnnOHz4MK2trfd+Qg+Ynp4e+vr6UCgUFBQUrMnahgL3waOEaqGHdD/ejrN9HNdLs2FLKXCVUBmNRi5dukRrayulpaXzak7ZRHuht3iv10MmkxEaGsrvf/97HnnkEadtQkJCePXVVzl37hxbtmzh5MmT5Ofn853vfMct0hYkSaKlpYXbt2/bF6yNj493eZddsLZ4jFDBhw+o40jaUjekbTswr70zHFdjMZvN9gdw4fFtgXhbpUxbjtFS7W2ji8u1d/SSHAP6XV1d9Pf329MJkpKS7Pva0gYWBtMdz8PxcxxHI22pBrZRPNtnOsspcxSikpISqqqq+OEPf4iPjw8vv/wy+fn5XLhwYbmv7IEjk8morq6mqqqKzMxMtm/f7tGLGAic41FCZXuobUHx5UZ0bHMCbQ+m4//OjmubP2jzVJy1d6yn7th2LdtLkoRWq6W+vh4fHx/7YhOOAmRLQVh4/s7OA+anPjh2a23YBhoc29jecxycUCgU/PVf/zW3b9/miSeeoKmpibKyMp5//nmGh4dX+voeCCaTiRs3btDQ0MCWLVvYvn27S+wQPFg8Rqhs3olSqVzkiazEarpvNo/L19d3Xv6VMxQKxaKg+1q1VyqV1NfXc+7cObKysjh48KDdQ1Aqlfj6+s7z3BbG4RwHBWz7RUZG4ufnh1KpJCgoiMDAQPt52l42QbXlojl+juMxfXx8SEpK4u233+bdd98lJSWFn//852zevJmf//znK17ne2GlBVElSaK/v5+enh4MBgObN29m06ZNHr9gg2AxHiNU8GGm+WpFynajr7bCguPxl2tvS114EO0lSaKpqYkbN26QkZHBzp077ZUalzr/hceytTGZTLS3t/PWW2/R2tpKR0cHR48e5dKlS4yOjtq7kI72LLR1qfcAPv7xj3Pr1i2++c1vMj4+zvPPP8+xY8eWucJrS19fH1evXsVqtZKWliay0DcwG2pSsiO2uJDNE/OU4KpOp0Or1TI4OEhycvKiciwLWe68RkdH+cEPfsC//uu/2t/7+te/zpNPPslf/dVfUVhY+JFTHgICAvje977HkSNHeOONN5YMyt8PK31njY2NHD16lOjoaAoLCwkMDFyzzxa4FxtKqGxxFccYiyfN/B8YGODy5cuYzWby8vKIjY21b7ufZY1sSaLPPPMMgYGByOVy9Ho9xcXFREdHr+nKM3l5efzgBz9Ys+OthtbWVmpra3n66acpKyubV/1BsLHYcEK1MH3BU0QK7pYbPnbsGBqNhp07d86bp3Y/5xESEsLnP/95Pv/5z6+lmevGUvMfLRYLOp2Orq4uxsbGiIuLIz09fcX9BJ6LR8WoVsLWzXN8eVJgtbe3lwsXLqDRaDhw4MCipZ1cVr1gtoMrFRXU9S7XyMxU9w3OVVRQce4G3VPmZZpO0X3jHBUVFZy70Y3zpmamW6s5ceI8N7qncGwyOjrKuXPnmJqaorS0lKSkpHl7etoPlGBlNpxQLSyn4gk3rCRJTE1N0dvby9TUFJGRkWRkZKBSqZy2XT9m6Tj2v9i/6zBPlZfzRvMSzczNvHlkM/HFL/HvlZVU/vtLFMdv5sibzSzUIHPzmxzZHE/xS/9OZWUl//5SMfGbj/Bms2NLM80//QQ7/+EKM/Tw3l/t40//48Nj6XQ6KisrMZlMlJeXb6iVjwVLIAlczvj4uPTOO+9I3/jGN6SnnnpK+v3vf79kW6vVKlmt1gdv1MQV6fs74qUd3z0nDZoqpa+C9NVKZw1N0pV/SJT8Drwu3TE5vHvndemAX770o9uOTa9I/5DoJx14/Y5kctj/zusHJL/8H0n2phPvSs8++p9Sj71Nq/T6ga9KlR/sdPr0aSknJ0d6/vnnJa1WK5nN5ns6tXW7hoI1Y0N5VJ7K5OQkJ0+epL+/n/379y+7DNK6eYgGFQd+3cql/1VG1HLrWE6e5N++p+E7//ICmQ7tlJnP8d3/McB3fn3J7glNnvw3vqf5Dv/yQiYfNlWS+dx3+R8D3+HXlz5oadAzFRHMh2N4AQQGjzCttzI0NIRWq0WhUBATE0NycvI9L0DhCV62YD5CqNyAsbExqqqqGB8fZ//+/WRkZCzbfi0eNGmlLmR0AdtSF3c9F1F3mv8M+jP2FizcoGTnw3/B5P+7SKO96X8S9Gd7Wdx0Jw//xST/7+IHLaMP82L4d/n8Ty+jHdBy+acv8i+bXqDEz8i5c+dobGyktLSUgoJFR1oSyUlirMBzEELlQiRJsq+ALJfLiY6OJjExcU3TBpZirR5UbVstxsx4wp1tjM9k252bdE0CaGmrNZIZ77Ql8ZnbuHOzi0kAwjjw/T/wd+FX+Nd/+RX1Gf/E6e/vRW02c/bsWbtQbdmy5Z5sFeLkuWyo9ARPw2q1UldXR319PWlpaeTl5aHRaFxt1j1hsZhgezrpzjYGBBJJOwM6IMjC3aZOWxIQGAntA+iAIABlFLl/8hL/9CcfthkcG6OhoQGj0UhRURGZmZmrtlOIlGcjPCoXIpPJOH/+PJcvX2b79u3s2rVr3Urnrtj1Wwuio0hZddPlWw4MDHDr1i00Gg1paWnExsbeV+rJupy3YM0RHpULGRsbo7m5GZ1OR35+Pjk5Oa42aW2Z1DOy6qbLt6yvr+fixYskJCSQl5cnstC9DOFRuYiJiQmampowGo1ERkaSlJSERqNZty7Kmn7ODS1aZ+/rBmgnksAAx6ZOW6IbaIfIQAKcboXa2lpOnTrF5s2bOXTo0H3XnBJdQM9ECJWLaG1t5fz58wQHB7N9+3bCw50Hmd2d9Mxd+NV3MeRsY28ztZFbSY0GSCdzlx/1XU5b0ttcS+TWVKKdbBsaGqK7uxu9Xk9KSgqZmZn3nJIg8GyEULmIxsZGzpw5Q2JiIocOHUKtVrvapPtj616e1r3F5YbFm25WvwNH9lJob/o0urcus7jpTe42LVy0ZXBwkOrqavR6PcnJycTFxQmvyAsRQvUAWJizs5DZ2Vm0Wi0dHR3Ex8dTWFjocaN9doL28vxXB/jOqycYdXx/9I/8n2/N8D//bI89uTNo7/N8deA7vHpiXktG//h/+NbM/+TP9izOLO3u7qaiogJfX18eeughoqOd+VyCjY7wn9cYR4GSnJRm0ev1tLa2MjQ0hEajIT4+Hn9///U2c0UmWy5yuUP/wX91tADUVFDxQfJ4VO7DbI0HCOLAy2/yFyWPU/KJb/K/v7INTdcfeeVr/4b6/97kZyUO4hN0gJff/AtKHi/hE9/833xlm4auP77C1/5Nzf+9+TNKnGTAd3V1UV1dzd69ezl48CBhYWEP9LwF7okQqjXGWbfEUbAGBwd5//33MRqNHDp0yGlVSskNypQY+q9TWdlj/z/vG9+A0UoqK+/+vy3eJlRA2AG+39jKc5Xv8N+VlUwFFvC9qzp2bwpkofaEHfg+ja3PUfnOf1NZOUVgwfe4qtvNpsD5La1WK5OTk3R3dzMyMkJUVBQFBQUeVQ1DsHYIoVoHHAWnr6+Ps2fPkpSUtKRQ2RZ5cCXRe/+af9p7Dzsoo8gtf4Hc8tU0zaX8hVyWa6rX66mtraW3t5fU1FRSUlLsIuXMUxVsbESMap3p6+ujoaEBPz8/du3aZa855Wwu2sL3XC1e68n4+Djvv/8+Op2Oj3/84/MmajuKlDddE29GCNU6YTKZuH37Nl1dXSQkJJCamrpijW9v9hp0Oh21tbUYDAbKysrmVfAUeB9CqNYJg8HAuXPn6OrqYu/evfNWPl6Ohev+bXSsVitTU1N0d3czPDyMRqNZdg6kN1wTgRCqdWN2dpZTp07R2trK/v37F838F+Vz7yJJEjU1Ndy4cYO8vDwKCwvty4UJvBchVOtEf38/3d3dWK1WcnNz5y3cIPiQubk5rly5Qn19PSUlJWzfvn3eqs4C70QI1TrQ2NjItWvXiI2NXXJC7UpJot6C0Wikrq6O1tZWiouLKSoqWreKEgL3RdwB68C1a9e4ePEiGRkZ7Nixw+miDYK7JZnr6+sxGAxERkauWxFBgfsjhGoJ1tLDuXbtGtXV1eTm5rJ7926nSYsiRnW3lEtFRQVRUVHs3btXrHwssCOEagnWQjgsFgtarZaRkRGUSiUpKSn3XfDNG2hsbOT06dPExcVx4MABIVQCO0KoHiC9vb1cuXIFq9VKVlbWvCXaBfMxmUz2idpJSUls27bNcytKCNYcMYWGBzclo62tjaNHjxIUFOTRNaceBI7XfGJiglu3bjE1NUVmZiZJSUkiNiWYhxAq7nbzZmdn6e3tZWxsjNnZWSwWiz1OZXuoYmNjSUpKQq1Wr0rYtFotdXV1fOpTn2LPnj2ifO4SDA4OcuLECQwGA3v27CExMdHVJgncDCFUH6DT6fiP//gPTp8+TVtbG0ajEZlMhsViwWQyAfDMM8/wla98hezs7GXrR1ksFkZGRujr60Ov1xMbGyumgCzAUegHBgY4evQoW7Zs4ZFHHnE6UVvg3Qih+gB/f3/y8/Npb2+npaWF4OBgEhISiI6ORpIkdDodvb29/OxnP+Ppp59m165dS2ZMT05OUlVVxfDwMHl5eSQnJ6/z2XgGkiRhNBrp6upicnKS8PBwcnJyhOcpWIQQqg8ICwvj05/+NBEREchkMrKzszl48CBFRUX4+vpSX1/PK6+8wmuvvUZUVBS5ubmEhoY6HcEbHh7mxIkTGI1GHnvsMVJTU11wRu7P7OwsdXV1aLVaEhMTSUtLEyIlcIoY9WN+qRCz2czg4CChoaHk5+ejVqtRKBRkZ2cTEhIC3K2VZLFYljze0NAQV65cwWg0sm/fPuFROeCYn2YymaisrKS1tZWysrJVT9QWeB9CqJgfLxkZGcFoNBIUFGT/dbdYLPT39yOTyQgMDCQ8PBw/P79FAXWLxcLY2BhdXV1MT08TEhJCZmbmfS/ttBFxvGZjY2NcvXqV0dFR9uzZM6/mlEDgiBCqDzAajbS2tmIymdi6dSubNm2yb9PpdPz0pz+lq6uL8vJyiouLCQkJWTQHzWKxcPnyZRobGykpKaGwsNDrs83BeVFAvV5PR0cHw8PDqFQqcnNzRfqGYElEjOoDzGYzQ0ND9PX10dnZybFjx9DpdCgUCoaHh1EoFOzatYu0tDSys7OXPEZVVRVNTU3s37+foqKidT4Lz6GpqYm6ujrCwsLIysoSIiVYFiFUH2C1WtHr9bS0tPDuu+/y7rvv4uPjw9zcHPv27eN73/seBQUF+Pr6Lrn45fT0NFevXmV4eJji4mLy8vJEfW+cF7erqanh8uXLbNmyhd27d4vKEYJlEUL1AQaDgdu3b6NSqXjuuefQaDRYrVZaWlqQJIlf/OIXfOxjH+ORRx5x+uCNjIxw69YtZDIZ8fHxxMXF4ePjIx5AJ+j1ehoaGmhra+PJJ59k27ZtYuVjwbKIu+MDJicnuX37NjExMXzuc5+zpxRcv36dN954gx/96Ef09/ezadMmUlNTF03xaGhooKqqiri4ODZt2mSfUOvt3tRCjEYjnZ2dDA0NIUkSGRkZYq0+wYp4RTB9NV7N+Pg4w8PDdo/IxtatW9m9ezfp6ekYDAZu3rzJyMjIov1v3rxJZWUlKSkp7N+/33NXPl7AWhf0a2tr48SJE/j7+7Nv3z4hUoJV4RVCtRxWq5WRkRGGh4dRq9UEBwfP85ZkMhlxcXGEhoZitVoZGxvDaDTOO4ZtBKu3t5fk5GR7LEuwmNbWViorKwkLC+PQoUP23DSBYDm8QqgWrgPn6CFYrVba2tro7+9n8+bN89ISbOh0OlpbW5mdnSUmJmbeEuzj4+Ncv36dyclJ4uLiiI+PR6VSLdvl84Syw46Tse+n+7rU+XV0dHDt2jUiIiIoKysjODj4o5oq8AK8KkblbKl0Hx8fOjs7GRgYIC8vb1F29IULFzh69Cjj4+OEhYWRnp4+r6CbXC4nMDCQnTt3kp2dTUpKyqps8bbY1ezsLB0dHQwNDREeHk5CQoIojCdYNV4jVM5ECu5O42hubqa7u5t9+/bZVy6GDysqvPPOOwQHB5Obm0tGRsa8TPOgoCAKCgrIzMzEbDavqtibJ4jUR7Vx4f4jIyOcOHGCiYkJDh48SFpa2kc6vsC78BqhcnxwjEYjfX19nD59mmPHjlFdXY3RaKSjo4OIiAgUCgU+Pj5MT09z+/ZtcnJy+NSnPsWBAwecToeRyWSo1Wq7SIncqcWMjY1x7NgxIiIiePbZZ8nIyHC1SQIPwmuEypG5uTlGR0e5ePEib7/9NkqlEpVKxaVLl7BarUiShMlkIiAggJycHJ544glefPHFVYmPu8eeXEV/fz8tLS3ExMRQWloqqiQI7gmvESrHrp9KpSIjI4OvfvWrPPXUUygUChQKBVar1b7YpdVqxcfHh6CgIGJjY1ftIXmbJ7VUl9rG3NwcDQ0NNDY2kpKSQlZW1rzY1Er7CwQAMslLXIC1eCC8oUs3NDREb28v09PTmEwmu4cJH56/j48PsbGxbN68ed77zpiZmeGNN96grq6O4OBgDhw4wKOPPmrfLoRKsBq8xqNaiwfhXrp+traeJm5Xrlzhl7/8JdeuXWNgYACZTGZPVbBYLPj4+KBWq3nyySf5/ve/T1BQ0LLnZzQaOX/+PN3d3Xzta1+jsLBw3nZPujYC1+E1QrVeOD7YnkhycjIlJSW0t7czPT1NTk4OkZGRqFQqfHx8mJmZoaWlhdbWVl599VXKy8uXrBJhNBppb29Hp9OhVCrZtGkTMTEx63xGgo2AEConfFQvyCZWtr/dHUdbbakWMzMz9Pf389xzz5GXl0dAQABwd/L2f//3f/P222/zox/9iImJCXJzc52Ohup0Onp6eoiKiiI0NFSIlOC+EULlhPXqJroLjsIK4Ofnh9VqRalUkpiYaBcpALVazcMPP8zc3Bz9/f10dXXxzjvvsHv3buLi4uYdNyQkhC1btuDv749KpZo30udJQi5wPUKoBMB8wdDpdMzOziKXy+d5SjZPMzw8nJ07d1JTU0NXVxenT58mJSVlkVAFBAQQEBCw6mx9gWApvGKun8A5zmJpo6OjdHR0IJfLCQ0NnSdgjn8rFAoiIyOBu+vyGQyGe/rs+51DKPBOhFAJ5jE4OEhbWxuBgYEkJSUtWdBOqVQSFRWFRqPBYDBgNpvX2VKBNyGEyotx5tX09fXR2tpKREQEWVlZS5arUSqVhIWFERgYiI+Pj/COBA8UIVReynJlWK5fv05wcDCZmZlLCpVtlWOlUkloaOg9LQnmqakbAtchgumCeeh0Ovr6+ggKCppXSWIhk5OTtLa2YjQaSUhImDcyKBCsNcKj8lKcddX0er190dSVSgS3tbXx5ptv0tnZSU5OjljuSvBAEUIlAO4mcvb39+Pr60taWtqyRe26urq4fv06HR0dqNVq8vPzRe1zwQNFdP0EAExMTNDU1IReryciImLJmJMkSbzzzjtcuHCBrKws9uzZQ15eHgqFwmlbWD6pUyR+ClaDECoBcLew3blz54iIiGDXrl2LkjcBqqqqqKyspKqqCoVCwZEjRzh06JBTkYLFGe8Cwf0iun4C4G7M6dSpU4yOjjrNn+rr6+PHP/4xL7/8Mi0tLRQVFfHFL35xUTWEhTjzlBYmkQpvSrASXlOPSjAfSZKYmJigvr6et99+m4qKCurr60lKSmLr1q2oVCrk8ru/Y0ajEaPRiFwuJyoqitLSUnbs2EFBQcGqPwtE905w/4iunxczOztLT08PJ06coKmpiZiYGAwGA2fPnp03vWZ2dha1Ws2XvvQlPve5z5GZmWk/hqfV2xJ4JsKj8mJMJhOjo6NotVpmZmbsVRMsFgvwoSdktVpRKBQkJSURHx9/T8mdAsFaIIRKIBC4PSKYLhAI3B4hVAKBwO0RQiUQCNweIVQCgcDtEUIlEAjcHiFUAoHA7RFCJRAI3B4hVAKBwO0RQiUQCNweIVQCgcDtEUIlEAjcHiFUAoHA7RFCJRAI3B4hVAKBwO0RQiUQCNweIVQCgcDtEUIlEAjcHiFUAoHA7RFCJRAI3B4hVAKBwO0RQiUQCNweIVQCgcDt+f9sP6Ruhm55PQAAAABJRU5ErkJggg==",
"path": "images_version_5/image_34.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, If AB parallel CD, then the size of angle 2 is ()
Choices:
A:10°
B:50°
C:80°
D:100°
|
Như hình vẽ, nếu AB song song với CD thì số đo góc 2 là ()
Các lựa chọn:
A: 10°
B: 50°
C: 80°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, If AB parallel CD, then the size of angle 2 is ()
Choices:
A:10°
B:50°
C:80°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, If AB parallel CD, then the size of angle 2 is ()
Choices:
A:10°
B:50°
C:80°
D:100°
|
As shown in the figure, If AB parallel CD, then the size of angle 2 is ()
Choices:
A:10°
B:50°
C:80°
D:100°
|
170
|
34
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAwQAAAJLCAYAAABZglHvAACsG0lEQVR4nOzdd1hUR9sG8JsOgkgRBBQBuyj23lBjjRpN9Es0aiwxxZQ3yWtiupoYkxjTNaYaNcYYe+8aewcbWGIviAp2EASE+f7gndmzsBUWEPf+XReXxzltds/Z3TPzTHEQQggQEREREZFdcizpDBARERERUclhgYCIiIiIyI6xQEBEREREZMdYICAiIiIismMsEBARERER2TEWCIiIiIiI7BgLBEREREREdowFAiIiIiIiO8YCARERERGRHWOBgIiIiIjIjrFAQERERERkx1ggICIiIiKyYywQEBERERHZMRYIiIiIiIjsGAsERERERER2jAUCIiIiIiI7xgIBEREREZEdY4GAiIiIiMiOsUBARERERGTHWCAwYOjQoXBwcEB4eHhJZ+Wh0L59ezg4OKB9+/YlnRWLlcY8Z2dn47vvvkOzZs3g7e0NBwcHODg4oE+fPgCAzZs3q7TNmzeXaF4J2LFjBx5//HEEBQXB2dlZXZtbt26VdNaoiIWHh8PBwQFDhw7Nt+7cuXPqXpgxY0aRnJ/fBUVjxowZ6n09d+5cSWfngWNP9518nePGjSvprFjMJgWC7du3qxfv4OCArVu32uKwRGSFAQMG4PXXX8e+ffuQkpJS0tmxW7Iw6eDgYHSb5cuXIzo6GkuWLMHVq1eRnZ1ts/PXqFFDnX/48OEW7ycfUg39ubm5ITg4GF26dMGPP/6I9PR0m+WXHg7Xr1/HlClT8Nhjj6Fq1arw9vaGm5sbgoKC0L59e7z//vuIj483uK+2EKT9c3Jygo+PD8LCwtCiRQu8/PLLmDVrFlJTU4v51RE9/GxSIPjjjz9M/p/oQTBu3DizD2ql1c6dOzF//nwAQI8ePbB+/XocPnwYcXFx+P7770s4d5TXqFGjkJ2djZCQEPzxxx+IjY1FXFwc4uLi4O3tXeDj7ty5EydPnlT/X7BggU0e3jMzM3HlyhWsX78eL730EurVq6d3HrJfOTk5+Oyzz1ClShW8+uqrWL58Oc6cOYOUlBRkZmbi6tWr2LJlCz799FNERUWhS5cuOHr0qMXHvn37Ni5cuIA9e/Zg6tSpeOaZZxASEoL//ve/uHv3bhG/uuKJ2JR2pbE2nPJzLuwBMjIy1IOIl5cXUlNTMX/+fEyePBkeHh6FziCVfg97aPBBsGHDBgCAk5MT/vrrL4MPle3bt4cQorizRnlcuHBBPUy/9957GDx4sM2OLStjPD09cffuXaSkpGDx4sV4+umnLT5GSEgI1q5dq5eWnp6Of//9F7/++iu2bt2KU6dOoUePHoiLi4Obm5vN8k+ly7179zBgwAAsWbIEAODq6oonn3wSXbp0QXh4OMqUKYOrV68iJiYGixcvxsGDB7F+/Xr88ssv+Pbbbw0es3fv3vjkk0/U/9PS0nDr1i0cPXoUW7ZswYoVK5CSkoJvvvkGK1euxIoVK1C9evVieLVEliuNv7WFjhAsXbpUtXn97rvvAAB37tzB0qVLC3toIrLQpUuXAAAVKlQoVA0zFT15rYDc5j22kpGRgXnz5gEARowYgXr16gGwPmLr4uKCunXr6v01bdoUgwYNwqZNm1S/mpMnT6oHQbJPL730kroHmjZtiuPHj2PWrFkYPHgw2rZti8aNG+PRRx/FmDFjcODAASxbtgxVqlQxeUwfHx+9e69Zs2bo0qULXn/9dSxevBinT59G586dAQAnTpxAz5492e+GyAYKXSCYOXMmACAyMhLDhw9HZGQkADYbIipOGRkZAHIf5ujBJq8VYNvrtWzZMty8eRMAMHDgQAwcOBBAbvTo8uXLNjmHo6Mj3nzzTfX/PXv22OS4VPosXboU06dPBwDUrVsX//zzDyIiIkzu06tXL8TExKBjx44FPm/lypWxevVq9OjRA0BuoYBNVYgKr1AFgqSkJKxbtw4AMGjQIABQP0Lr1q3D1atXzR4jMTER77zzDho1aoRy5crB1dUVQUFBiIqKwoABAzBjxgzcuXOnQPnLzs7GjBkz0LVrVwQFBcHV1RU+Pj6oXr06HnnkEXz66acWtWW8desWxowZgzp16sDT0xM+Pj5o164dZs+ebVE+4uLi8Pzzz6N69eooU6YMypYtizp16uCNN94wOhLB/PnzVbu8f//91+A21apVU9ssXLjQ4DZ9+vSBg4MDmjZtqpeedzSEnJwc/PLLL2jVqhV8fX3h6emJevXqYcKECUhLS7PodRpjasQeQ+0z169fj169eiEoKAhubm6IiIjAyJEjkZCQUKDzy9f60UcfqTRDHdhMjQpx6dIl/Pe//0W1atXg4eEBf39/dO3aFatXr7YoDzdv3sQnn3yCli1bonz58nBzc0NISAh69+6NRYsWFeh1aV+HLJifP38+3+uSLB3h4fz583jxxRcRHh4Od3d3hISEoE+fPti0aRMA030xrGlva2qklbz3Z0ZGBr799lu0aNEC5cuXN9pe9f79+5g2bRoeffRRhISEwM3NDeXLl0e7du3w7bff4t69eybzVJTk6GUdOnRQaR06dNC7VoVpoywrYWrWrImmTZti4MCBcHR0RHZ2tsXfVZbQjr5W0PfT0H0yf/58dOrUCYGBgfDw8ECtWrXwzjvvqEKOMfHx8fjkk0/QtWtXVKpUCW5ubvDy8kL16tUxZMgQ7N692+T+ee/n27dvY/z48WjYsCF8fHzyXZe7d+9i7ty5GDFiBBo0aIBy5crBxcUFAQEBiI6OxpdffllsnV737t2L5557DjVq1ICXlxc8PT1Rq1YtvPzyy0Xex2PChAlqefr06fDy8rJoP19fXzz22GOFOreTkxNmzJiBMmXKAAB+/fVXXLt2rVDHNMTBwUGvkDNs2LB836+mCiOF/V0VQmDBggXo27cvQkND4e7uDl9fXzRr1gzjx483GRnJO1piYZ9jDJHf4dJHH32U7/0x9P2uNW/ePDzyyCMICAiAh4cHatasidGjR+PGjRsW5WH9+vUYNGgQIiIi4OHhAW9vb9SvXx+jR4+2SUXIiRMn8Oqrr6Ju3brw8vKCq6srQkJC0KBBAwwfPhxz587Vq+SRjN0f2t9hS/5MvX82f+2iEL7++msBQDg4OIjz588LIYQ4d+6ccHBwEADEV199ZXL/rVu3Cm9vbwHA5N/y5cutzltKSopo27at2WP37ds3375DhgwRAERYWJg4duyYCA8PN7r/yy+/bDIfn376qXB0dDS6v5ubm5g5c2a+/ZKSktQ2P/74Y771CQkJZvORk5Mj/Pz8BAAxatQovXXTp09X+8bHx4uOHTsazWOzZs1EamqqubfcqOjoaAFAREdH51t39uxZdZ7p06eLt99+22g+AgICxNGjR60+v/a1mvo7e/aswTxv27ZN+Pv7G91v0qRJJs+/cuVK4ePjY/LcPXr0ECkpKVa/Nktel7Rp0yaVtmnTJoPHW7dunfD09DR4HAcHBzFhwgQxduzYfMeW8l5PU8LCwgQAMWTIkHzrtNds3759okGDBvnyM3bsWL19Tp06JSIjI02+F9WrVxcnTpww97YWirx38r4/8nvF1J+598yYpKQk4ezsLACIjz/+WKV36NBBABBRUVFmjyGvR1hYmMntVqxYofL72WefFSi/ee+T4cOHG31PgoODxZEjRwweR3tPm/p75513jOZFez+fOHHC4Pe99rpor6+xv4iICHHs2DGj5zR171vyGcrKyhIjR440mQcXFxfxyy+/mH3fjH0XmBIXF6f2b9OmjdX756V9zYbeE2Oef/55td/s2bMLnY+8LLm3tN9DtvxdTUpKEq1btzZ57goVKojdu3cb3N+WzzHGyPvY1J/2emrvuw0bNoinn37a6H7VqlUTly9fNnru1NRU8fjjj5s8t5eXV4GeH6V58+YJV1dXs68xLi4u376G7o+874Elf4Y+D0X12gtVIKhfv74AINq1a6eXLh/E69evb3Tfe/fuiZCQEAFAlC1bVowePVqsXr1axMbGit27d4u5c+eK119/XYSGhhbogo4aNUq9MT179hRz5swRO3bsELGxsWLNmjVi4sSJom3btqJfv3759pUfpICAAFG9enVRtmxZ8cEHH4jNmzeLmJgY8euvv4pKlSqp469Zs8ZgHn744Qe1TUBAgPjyyy/Frl27xPbt28W4cePUg5eDg4NYuXJlvv1r164tAIinnnoq37pZs2bpXfw6derk2+bAgQNqfd73UPvF1apVK+Ho6CiGDBkiVq5cKWJjY8XixYtFy5Yt1TamflDNsbRA0KpVK7XdX3/9JWJiYsSGDRvEM888o7Zp0aKF1ee/efOmiIuL0/sBjYuLy/eXmZmZL881atQQ5cuXF4GBgeLzzz8X27dvF3v37hVff/21esh3dnYW8fHxBs+9bt064eTkJACI8PBwMXHiRLF582axf/9+sXz5cjFo0CCVpyeeeMLq1ybz3rt3bwFAhISE5HtdkrmHgJMnT4oyZcoIAMLJyUm8/PLLYuPGjWLfvn1i+vTp6mG7WbNm6jh5FUWBoF69esLBwUE888wzevfnqlWr1PaJiYmiQoUK6vtk1KhRYvXq1WL//v1i06ZN4t1331WvrUqVKuLWrVsWv8fWMlYgSEhIEHFxceL3339X63///Xe9a3Xz5s0CnfObb75Rxzx9+rRKnzZtmko/cOCAyWNYUiDIyclRDzkODg4Gfwgtob1PmjZtqu6rOXPmiJiYGLFq1Srx1FNPqW0qVaokbt++ne8469evF56enuLJJ58UP/30k/psrVmzRnz11Vd6Dyy///67wbxoCwT16tUTLi4u4tVXXxXr168XMTExYs6cOWLnzp1q+9atW4uoqCjx/vvvi8WLF4s9e/ao36z+/furCqCaNWuK9PR0g+csbIFA+53YvXt38eeff4q9e/eKffv2iV9//VXUqVNHrV+2bFm+/QtbIJgyZYra//PPP7d6/7wKWiCYN2+e2u/FF18sdD7yiouLE2vXrlXn+OSTT/J9v169elVtb6vf1dTUVPX77+rqKl544QWxdOlSsX//frFt2zYxYcIEVUnl6+srzp07l+8YtnqOMeXff//VKxyOHDky3/uTkJCgttfed/L3vk+fPmLRokUiNjZWrFq1SvTo0UNt079/f4PnvX//vqrscHBwEAMGDBDz588XMTExYteuXeK7774TlStXVu9fTEyM1a/typUr6hktMDBQfPzxx2LdunVi//79YufOneLPP/8Uzz//vChfvrxVBYLU1FSDzx/aP20FyZgxY4rttRe4QHD48GGV4by1ED///LNad/jwYYP7b9y40ejDqlZWVpbBHwJzQkNDBQCDD/xa169fz5emrcnz8fEx+LB38uRJ4e7uLgCIxx57LN/6pKQk9QASEhIiLly4kG+b/fv3qxuuYsWKeg+kQgj1ABsUFJRv32effVadW94YSUlJetvIhwRHR8d8Dxp5a81nzZqV7xz37t0TdevWFQCEv7+/yMrKyreNJSwtEAAQzz33nMjJycm33YgRI9Q2+/fvL1A+TNVsG8uzfEDSfqlJ27ZtU9Gw//znP/nWp6amqofULl26iLt37xo81y+//KLOtWHDButfmNCvDTLG3EOAvJcAiPnz5+dbf/fuXb3CQHEVCACIadOmmTxWz549BQARGhqq90Cspf28ffDBByaPVxjGCgRSYR/GDGnYsKH6kdW6ffu2+p564403TB5DXg9Dhcp9+/aJ2bNnqx8iIH/U0Rp5P/ePPvqowe+Xjz/+WG3z5ptv5lufnJxsshCVkZEhOnfurD4b9+/fz7eN9nvB0dFRrFu3zmTezUWY1q9frwoFv/32m8FtClMgWLBggVr/66+/Gjx+enq6KriFh4fne28Lew8+99xzan9z75clClogOHXqlNqvY8eOhc6HubyZ+06z1e/qK6+8IgCIcuXKiX379hk817lz50RwcLAAIAYNGpRvvS2eYyxl7OE3r7y145988km+bXJyckSXLl0EkFvZlve5RgghvvzySwHkRsG0FUNaN27cUAXjgkSxtJUppio+0tPTRVpaWr50S9+TvJYvX66+P6Kjo/M9Fxblay9wgUDWwLu5ueX7Qr5586Zwc3Mz+aMxe/Zs9YYV5IHfHBcXFwFAfPfdd1bvq/0gff/990a369+/vwByS+h5TZw4UR1jzpw5Ro/xySefqO3mzZunt+7vv/9W6/KGn6tVq6Ye3KpUqWLwIa5Pnz4CgGjUqFG+82q/uEzVTP/0009qu0OHDhndzhRLCwTBwcHi3r17Bo9x/PhxtV1BrqkQBS8QGKphk1q0aCEAiIYNG+ZbN3nyZAFAuLu769UiGSIftAcOHGj+hRhQ2AJBQkKC+hJ6/PHHjR7j4MGDxV4gMPdDr62hWrp0qcltR48erR56i0pxFwji4+PV8aZOnZpv/f/93/8JILd5gaEHYsmS8D+QW6NvqMBoDe194ubmJi5dumRwu+zsbPXw5Ovra/T7wRTtPWuotkz7vTB8+HCrj2+I/O7t2bOnwfWFKRA0btzY7OdUCCGOHj2qjrN+/Xq9dYW9B7XNFQr6u6BV0ALBzZs31X6GvoNtoaAFgoL+riYnJ6uHdHO/dVOnTlUPh3krnGzxHGOpghQIGjdubLDyTwgh1qxZY/Q7PTMzUxWEzFVyrFq1Sh3n5MmTVr2mCRMmFOp9KUiBIC4uTpQtW1YAuZHsa9eu6a0v6tdeoE7F2dnZ+OuvvwDkToLk4+Ojt97HxwePPvooAOCvv/4yOAtncHCwWpYjFdiSPP7cuXML3CnWwcHB5PjdjRs3BpDbYTRv5x45LryPjw/69u1r9BgjRozIt4+k7YSr7QR66dIlnDp1Cg4ODoiOjlbbabcRQqgZo6Ojo42eH9B1BDdEvkYAOHPmjMnjFFa/fv2Mjmles2ZN1WmtqPOh5ePjo0azMES+P4byJIfejY6ORmBgoMnztGvXDgCwa9eugma1UDZv3oycnBwAwJAhQ4xuV79+fdSvX7+4sgXA9P0J6N7nMmXKmLxWgO59TkxMxMWLF22TwRImO5S7uLjgySefzLdeDvhw9epVNQhEYcTGxuLXX3/FkSNHCn0sAOjSpQtCQkIMrnN0dFT3482bN7F//36Tx8rIyMCFCxdw9OhRxMfHIz4+Xm888EOHDpnc39y9ZkhycjJOnjypzhcfH4+AgACLzmetS5cuITY2FgAMXmut2rVro3z58gBs/72inQnd09PTpse2hrYj84M2O3tBf1fXrl2rOuubu8by+ywrK0vdF3kV5jmmKD399NNGJwk19f7s3btXdZi19P0BrP8MyGfImzdvFssw+teuXUOvXr2QkpKCsmXLYtmyZfD399fbpqhfe4EKBOvWrVOZkj82ecn0y5cv53vQBYA2bdqo8Yhff/11NGvWDJ999hl27tyJzMzMgmRLj/wR2blzJyIiIvDKK69g8eLFSE5OtvgY5cuXz3dBtPz8/NRy3i8jOUV7w4YNTQ4tWKFCBTUKQN5p3StUqICaNWsC0H/Yl8uRkZEICAgwWCA4fPiw6qVvaHQfrVq1ahldZ+o12pqpfAC5o1MURz60qlevDkdH4x8T+f4YylNMTAyA3C94cyMJfPnllwCAK1euFMGrME9772m/jA1p0qRJUWdHjxxP3xj5PqelpcHZ2dnk+9yzZ0+1X0m917aUk5OjRgnp3r27we8rbbolw0GHhYVB5EaP1V9WVhYSEhLwxx9/oHLlyli3bh3atGmDnTt3Fvo15B0BLa9mzZqp5bzfkUDuqD+fffYZ6tevD09PT4SFhaFOnTqIiopCVFQUGjZsqLY1NxKNuXtN2rFjB5566in4+/sjMDAQNWrUUOeLiorCr7/+atH5rCXvdQAYMGCA2e8VeX5b3+tly5ZVy8UxW7Ax2u/dB23+lYL+rmqvcXBwsMnrW7duXbWtsWtcmOeYomSL96dly5Ym3x9tgdHaz8Bjjz2mKrsff/xxdOzYEd988w1iY2MNVnIXRmZmJp544gmcO3cOjo6OmDNnDurUqZNvu6J+7QUqEMgfFVO1p9rIgaEfIRcXFyxfvhy1a9cGAOzbtw/vvfceWrduDR8fH3Tv3t1odMESH374IYYPHw4HBwckJSXhhx9+wBNPPIEKFSogKioKY8eONTssqhzSzBjtg2LefMqH8QoVKpjNa1BQkN4+WvJhfsuWLSpNPvjLdXIYw6NHj6oCj9zG0dERbdu2NXl+U6/T1Gu0NUvf76LOh5aleZK161JWVlaBalsKO8RrQWmHdjQXzZC1n8VFFgSNSUpKKtBxS+q9tqX169cjMTERgPHKGW3kYOnSpQUaxtnZ2RkVK1bE4MGDsXPnTvj5+eHWrVsYNGgQ7t+/X/AXAPP3m/Y7NO935Llz5xAVFYX33nsPhw8fNvvdkJ6ebnK9uXsNyB2mtE2bNpg3b57ZoRHNnc9aD8q9LiMPACwaXryoaAtc2ofIB0FBf1dtfY0L8xxTlB6U98cYf39/LFu2DBUrVoQQAps2bcJ///tfNGnSBH5+fujbty9WrFhRoLzkNXLkSGzbtg0A8Pnnnxt9ri7q1+5s7YG1sxDfunXLomnrlyxZosIgWpGRkYiLi8Py5cuxfPlybNmyBadPn0Z6ejrWrFmDNWvW4Ouvv8aqVavM/mjk5eLigmnTpmHUqFGYM2cO/vnnH8TExCAzM1OFdb/++mv8+eef6N27t1XHtoaxkJiWNqSdV3R0NH7++WdcuXIFx48fR61atVThQBYIKlWqhCpVquDMmTPYsmUL+vXrp7apV6+eRT9yZFvaL7Enn3wSH374YQnmpnRzcnIyuV6+1xEREVi2bJnFxzU3iVJpoK1sMRdCBnIfUOfPn49nn322wOcMDg7G4MGD8d133+Hs2bPYtGmTmjm2IMx9R5r6fhw8eDDOnj0LBwcHDBs2DP3790ft2rUREBCgfptycnLUPWTqWID5e23jxo1qPpMqVargzTffRJs2bVC5cmV4eXmp/ceMGYPx48ebPFZBaL9XZs+ebXFEw9a/Adpmg/v37y/U9S+MAwcOqGUZTS/t5DV2dXU12gzIkEqVKhVVlh4o2s/A5s2bTUY/tKx9hgSAtm3b4tSpU1i4cCFWrVqFrVu3IiEhAXfu3MGiRYuwaNEidO3aFYsWLTJb8DLm66+/xu+//w4gt2XLW2+9ZXTbon7tVhcI5s2bZ3WtR1paGhYsWIBhw4blW+fk5IQ+ffqgT58+AHKbGK1evRpTp05FbGwsYmNj8cILL2Dx4sXWZhVAbqFj/PjxGD9+PNLT07Fjxw789ddf+OOPP5CamooBAwbg9OnTen0abMHPzw+XL1+2KFQja1gM1XDk7Ufg7e2NkydPqv4D2u3OnDmDzZs3o2/fvhb3H6Ci4e7ujjJlyiAtLQ23bt3SC+0+iLQPDElJSSZ/XEw1u9PW7OSNmuRlq6YG8kvx6tWrqFWrFpydrf5aK5VSUlKwZMkSq/f7448/ClUgAPTD/XFxcYV6IDRXw6ytFdN+Rx4/fhzbt28HALz77rt6E2VpmZvYzBqyKZCPjw927dpl9IfWlufU0j4A5G0yUpy0vysrV67E22+/XSL5WL9+vVpu06ZNieTB1uQ1zszMhL+/v82fTUo77WfA1dW1yD8D7u7uejO/nzlzBitXrsSUKVNw4sQJrF27Fu+//z6++eYbq4+9evVqjB49GkBuE6Cff/7Z5PZF/dqtbjIka6SCg4MxZ84cs3+VK1fW28+c4OBgDB8+HLt27UKjRo0AACtWrLBJ6NXDwwOdOnXC77//jkmTJgHIrTGzVdhHS16oAwcOICsry+h2SUlJOH/+vN4+WsHBwahevTqA3AJB3v4DkrYfQVxcHK5fv66XTpZFa2xJtl3esWPHA988RdteUdtO0RBT67VRQFMPRdevX7dZ+2r5PqelpWHHjh02OWZpMH/+fHVfffzxx2a/iwcPHgwA2LZtm8lZuS2hbSZk6vvNEvv27bN4vfY7UtupuX///kb3N3c/W0Oes2PHjiZr3Wx5Ti1tfwhbdBAvqLp166q+RNu2bbOqJttWkpOT1eAmnp6e6NKlS5Gcp6R+N4CSvcYPqpJ+f6pUqYJXX30V+/btUxVn8+bNs/o4x44dQ//+/ZGdnY3Q0FAsXrzYbIubon7tVhUIzp49q2pk+vbti/79+5v9+7//+z8AuW3gL1y4YPG5XFxcVC3E/fv3bd77/ZFHHlHLRTHleadOnQDkNqtauHCh0e2mTZumwthyn7y0/Qjy9h+QtP0I5s+fDyD3i8xc/wF74u7urpYNTTVua4899hiA3JrwH374ocjPVxgdOnRQtfumCu+HDh0yOXKKr6+v6jtk6qFozpw5BcuoAdomf1988YXNjvugk9fJ19cX77zzjtnvYlkTJYTArFmzCnVu7UN6aGhooY6lHaQir5ycHDWKkq+vr6okAvQLJaYK3D/99FOh8qclz2nqfAcPHsTu3bttdk6tatWqITIyEgDw999/W/WbamvvvfeeWh4+fLjFEb9bt25h+fLlhTp3Tk4Ohg4dqq7D888/X2R9CIr7d6N79+5qIJJvvvmm0H10ioN8j4rj/WnTpo261j/99FOB+kTZgre3txoQwdpnyOvXr6NXr164c+cOPD09sWzZMov6mxb1a7eqQDBr1iz18NqvXz+L9pHb5f0R2rZtG06dOmV0v8zMTNUO3svLy6qOjDdu3MCyZctMthfVlq6Koi3xsGHDVJuyUaNGGRzi8NChQ/j0008BABUrVlTNpvKSBaMrV66okmjeAoHsRyCEwOTJkwEAUVFRFrcxswfa0Ovp06eL/Hwvvvii6nz34YcfYvXq1Sa337Fjh2rqVdwqVqyoOjItXrwYCxYsyLdNeno6nn/+ebPHksOdLV261OD7fOzYMYwZM6aQOdZp2rSpqh1ctWoVxo4da3L7c+fOGS2QyBEa5MhfD6rz58+re6V3794mRzKT6tatq9pZF6ZAsH//fsydOxdAbtjaWEWGpTIyMvDCCy8Y7ND4+eefIy4uDkDuQ6e2Bk1GTgHd0Kt5/fjjjwVqVmWMPOf27dsNDjWcnJxstHO3rXzwwQcAgHv37uGJJ54w2YQvIyMDU6dOVcNY2tLjjz+uRvM7fPgwHnnkERXtNmbVqlVo0qQJNm7cWODzXrhwAd26dcOqVasA5DZfM/aZ37x5s/pMDx06tEDn8/f3h6urK4Di+d2oWLGial596NAhvPDCCyYLBUlJSfjtt9+KPF+myN/W4nh/3N3d8eabbwLIfSbq37+/ycJoSkoKpkyZYvV51q5da7SiAgBu376NvXv3ArDuGTIrKwv9+vXD6dOn4eDggD/++AMNGjSwaN+ifu1WNbaVPyKBgYEW1zw3b94clSpVQkJCAmbNmoX3338fQG7nrPHjx6Nt27bo0aMH6tWrh4CAAKSnp+PEiRP46aef1JjTI0aMsKpd8J07d9C7d2+Eh4fjiSeeQPPmzREWFgZnZ2dcvnwZy5cvVx+gSpUqoVevXta8DRYJCAjApEmT8PLLLyMxMRFNmjTBO++8g1atWiE7OxsbNmzApEmTkJqaCgcHB/zyyy9Gf9S1D/+3b9/O139Au92ZM2dw+/ZtAOw/kFerVq3U8htvvIH3339fDesGAOHh4TZtf+7t7Y05c+age/fuyMjIQM+ePdG3b1/07dsXVatWBZDbZyY2NhaLFy/G4cOHMXnyZL3xg4vT119/jY0bNyItLQ39+/fHyJEj8cQTT8Db2xvx8fH44osvcPToUTRt2tRkM4+XXnoJy5YtQ3p6Otq3b49x48ahYcOGSE1NxYYNG/Ddd98hMDAQzs7OVg0DbMr06dPRpEkTXL58GR9//DHWrl2L4cOHIyoqCu7u7rh+/ToOHz6MNWvW4J9//kGfPn0wYMAAm5y7JPzxxx+qwsPUPCd59e3bF59++ilOnjyJXbt2oWXLlvm2ycrKyje8Z3Z2Nq5evYoNGzbghx9+UDWBb731VoE662k1adIEy5cvR+vWrfHGG2+gevXqSEpKwsyZM/H3338DyP2eztsxv2HDhqhbty7i4+Px448/4tatWxg4cCCCg4Nx8eJF/Pnnn1iwYAFat25ts6ZkzzzzDJYvX47U1FRER0fj7bffRuPGjSGEwM6dO/H111/jypUraNmyZZHNKTJgwACsXbsWM2fORGxsLCIjI/HCCy8gOjoaAQEBuHv3Lk6fPo1t27Zh0aJFuHHjBp555pkiycvUqVNx48YNLF++HHv27EHNmjXx5JNPomvXrggPD4eHhweuXr2K/fv3Y/HixRY1Lbp165be/Zeeno5bt27h6NGj2Lx5M1asWKEekGvWrIkVK1agXLlyRfL6gNwRtpo2bYodO3bg999/R8OGDdGgQQP1e+3n52fz6MRXX32FnTt3Ij4+Hr///jt2796N559/Ho0bN4aXlxdu3bqFI0eOYMOGDVi1ahWioqL05jQqbq1atcLZs2exbNky/Pzzz2jdurWKGnh7exf6OyKv0aNHY+PGjdi4cSNWr16NyMhIvPjii2jZsiV8fHyQkpKCf//9F5s3b8aSJUvg7u6OV155xapzzJkzB7169ULnzp3RpUsX1K1bF35+fkhJSUF8fDymTJmCS5cuAcgdJchS48ePVy09Bg0ahBo1ahgcTlny9fVFxYoVi+e1WziBmti+fbua9eyFF16wdDchhBD/+c9/1L67d+8WQujPDmnq74knnhDp6elWnU87s6Cpv4oVK4r9+/fn29+SWV+F0J+V8OzZswa3mTBhgpoB1tCfm5ubmDlzptnXVLVqVbVPnTp1DG7zxx9/6B174cKFhcq7ENbN0miMpTMVF2ZmW0s9+eSTRq+F9n0wlWctS2Y/3rhxowgKCrLonrTkXjCksDMVS+vWrROenp5G8zd27Fjx4YcfCiB3BmZjtJ/5vH+hoaHiyJEjFs9UbOr+1Dp37pxo2rSpRe/zsGHD8u2flpam1hua3dtSxTFTcfXq1QUA4e3tbdXsvfv371fnfvHFF/XWWTpTMQDh4OAgXnvtNaMzjZqT93M/dOhQo+cKDg4WR44cMXicAwcOCF9fX6P7RkVFicTERL37Ny9rZjAXQohhw4YZPZ+Tk5P49ttvzR6zMDMVCyHE/fv3xejRo4WTk5PZa+Xp6SnS0tL09rflbNnZ2dni448/VjOsmvvr0aOH+Pfff42+Zkv+vL29xX//+998s/PmpZ2t9b///W+BX+OKFSuEg4OD0e9EyZa/q9evXxfdunWz6P3o0KFDvv1t+RxjzoEDB4Sbm5vBvGnvcWvuO1OfWSFyv6+feeYZi96fiIgIq1+TdqZnU38vv/yyyM7Otjj/lh7X0PtX1K/d4iZD2nbF1tRI5d1eHmf06NFYtWoV3njjDbRo0QKVK1eGu7s73N3dER4ejqeeegorV67EwoUL9drwWSIsLAwHDx7EpEmT0L17d9SsWRM+Pj5wdnZG+fLlER0djS+//BLHjh3T66RRFN577z0cOHAAzz33HKpWrQoPDw94enqidu3aeO2113D8+HGLam+0UQJjHYVlPwIgt+lDSdU0P8j+/PNPfPHFF2jWrBnKlStnctIxW+nYsSNOnz6NKVOmoFu3bggODoarqyvc3d0RGhqKLl26YMKECRbfC0Wpc+fOiI+PxwsvvICwsDC4urqiQoUK6NGjB9asWYNx48apdoumauW+++47/PXXX2jXrh28vb3h4eGBmjVr4p133sGBAwdUO2hbCgsLw549e7B48WL0798fERERKFOmDFxcXBAQEIBWrVph1KhR2LJlC6ZNm5Zvf22N7htvvGHz/NnKrl27cPLkSQBAz549LRr6WWrYsKGaEHLu3LkWTwLp6OiIcuXKoWHDhnjllVewf/9+fPvttzbrcDl9+nT89ddfaN++Pfz9/eHm5oYaNWpg9OjROHLkiNH7pUGDBjh48CBefPFFhIWFwcXFBX5+fmjWrBm+/PJL7N271+ajtPz++++YNWsW2rZti7Jly8LNzQ1hYWFqjobXXnvNpuczxMnJCRMnTsTRo0cxatQoNGzYEL6+vnByckLZsmVRp04dDBw4EDNnzsTly5fh4eFRZHlxdHTEhx9+iDNnzuD7779Hz549ER4eDi8vL/X9ER0djffffx9Hjx7FihUrUKNGDYuO7eDgAG9vb1SqVAnNmzfHyJEjMWvWLCQmJuKrr74yO9Sj/Ew7OztbXUOs1aNHD2zcuBG9e/dGSEiIRU30CsvPzw+rV6/Gxo0bMWzYMFSvXh1eXl5wdnaGn58fmjZtipdffhmrVq3SG22pJDRo0AC7du3CgAEDULlyZau+kwrKw8MDM2fORExMDEaOHIk6deqgXLlycHZ2ho+PDxo0aIBnn30WCxYswLFjx6w+/rfffouFCxfixRdfRJMmTVCxYkW4urrCw8MDNWrUwNChQ7F9+3ZMmTKlWJ4jtIrqtTv8ryRDRGSRTp06YePGjWjTpo2aTOVhMG7cOHz00UeoXr06jh07ZnZMeiq4c+fOqXa306dPL3D7biJT2rdvjy1btmDYsGFqrHciMqx4izVEVKolJiaqzqwtWrQo4dzYlhzE4L333mNhgKiUy8jIwJ49e+Dk5KQ3IhIRGcYCAREppkb+Sk9Px9ChQ9W48yXdvMmWMjMzsWfPHkRERBT5KDFEVPT27t2Le/fu4emnn0a1atVKOjtEDzz7mNKTiCwyYsQI3L17F08++SQaN26sRlWIiYnB1KlTVYHh2WefRVRUVAnn1nZcXV0f+MnjiMhybdu2NTn0OBHpY4GAiPTExMSYnFTs8ccfV3NdEBERUenHAgERKV9//TUWL16Mf/75BwkJCUhOToYQAoGBgWjRogWeeeYZNYEZERERPRw4yhARERERkR1jp2IiIiIiIjvGAgERERERkR1jgYCIiIiIyI6xQEBEREREZMdKtEAQHx+PQYMGITQ0FK6urnBwcICDgwMOHjxYktkqUUOHDoWDgwPCw8NLOivFYsaMGeq6nzt3rkTz0rFjRzg4OGDixIn51r300ktwcHDAkCFDSiBnREREREWnxAoEsbGxaNasGWbPno2EhAQ1+yk9GO7cuYO///4bzz33HBo1agQfHx+4uroiICAA7du3x5dffolbt26VdDZtZtGiRdi0aRP8/f3x8ssv51v/7rvvwtXVFbNmzcK+fftKIIdERERERaPECgTvvvsu0tPT4e3tjalTp2Lv3r2Ii4tDXFwcatWqVVLZIgCrV69GYGAgBgwYgN9++w0HDhzA7du3kZWVhWvXrmHLli146623UKtWLWzatKmks1toOTk5+OCDDwAAb775Jry8vPJtExoaiiFDhkAIobYlIiIiehiUyDwEWVlZ8PLyQmZmJt58801MmjSpuLPwwBo6dChmzpyJsLCwEmtC8+eff2Lw4MFwdHRE586d0a1bN9SvXx8+Pj5ISEjA7NmzMXfuXABAmTJlsGPHDjRo0KBE8moL8+fPx5NPPgkPDw9cuXIF3t7eBrf7999/VWF17969aNq0aXFmk4iIiKhIlEiE4Nq1a8jMzAQA1KhRoySyQCa4uLjghRdewNmzZ7FmzRq8/vrr6NChAxo2bIhevXrh77//xvfffw8ASEtLw6hRo0o4x4Xz7bffAgB69epltDAAADVr1kSjRo0AAN99911xZI2IiIioyJVIgSAjI0Mtu7i4lEQWyISnnnoKP/30EypXrmx0m1dffRVNmjQBAGzevBnXr18vruzZ1PHjx7Fz504AwKBBg8xuP3DgQADAwoULcfv27SLNGxEREVFxKHCBIDMzE1OnTkWHDh0QEBAAV1dXBAUF4dFHH8Wff/6JnJycfPuMGzcODg4OiIiIUGnDhg1To8w4ODhg3LhxVuXj7t27mDt3LkaMGIEGDRqgXLlycHFxQUBAAKKjo/Hll18iNTXV5DHynnvfvn0YMGAAKlWqBDc3N1SsWBGDBw/GsWPHLMrPxx9/jKioKHh6esLf3x9t2rTB77//DiEENm/erM63efNmq16rVlpaGr799lt06NABFSpUgKurKwIDA9GlSxdMnz4d2dnZBT62pdq3bw8gtw3+2bNnC3QMS0YZio2NxbPPPosaNWrA09MT7u7uCA0NRePGjfHyyy9j2bJlKGjLt3nz5gEAPD090a1bN7Pb9+3bFwBw7949LF26tEDnJCIiInqgiAI4d+6cqF27tgBg9K9Nmzbi+vXrevuNHTvW5D4AxNixY63KS3R0tNljRkREiGPHjhk9hvbckydPFs7OzgaPU6ZMGbFlyxajx7lw4YKoVq2a0Xz07NlTrFu3Tv1/06ZN+Y4xZMgQAUCEhYUZPc/evXtFxYoVTb7mZs2aiStXrljzVlrt1VdfVeeLjY0t0DGmT5+ujnH27Nl867/++mvh6Oho9hqnpKQU6Pzt27cXAETbtm0t3ic4OFgAEMOGDSvQOYmIiIgeJM7WFiBSU1PRsWNHnDlzBgDQp08fDB8+HCEhITh79iymTJmCLVu2YPv27ejZsye2bdsGJycnALljuffr1w+JiYno2rUrAOCTTz5B79691fEDAwOtys/9+/cRFRWFxx57DE2aNEFISAiEEDh//jwWL16MefPm4ezZs+jTpw8OHjwId3d3o8dau3Yt9uzZg3r16uG1115DVFQU0tPTsXjxYnz33XdIS0vD4MGDcfLkSbi6uurtm5mZiUcffRSnTp0CAHTv3h3PP/88QkNDkZCQgF9++QUrVqxAcnKyVa8vr7i4OHTo0AF3795FYGAgRo4cibZt28Lf3x9JSUlYtmwZfv75Z+zduxe9e/fGtm3biqxZ1pYtWwAAzs7OqFatms2Pf/jwYbz55pvIyclBREQEXnnlFTRo0AB+fn5ITU3FyZMnsWnTJixevLhAx8/KysKePXsAwKoOwk2bNsWyZcuwbdu2Ap2XiIiI6IFibQnizTffVLWyH3zwQb71OTk5YuDAgWqbqVOn5tvm7Nmzav306dMLUpBRTpw4YXL9+vXrVQ3zb7/9ZnAbaGqaH330UZGRkZFvm08++URts2jRonzrv/76a7X+lVdeMXieV155Re9c1kYIcnJyRL169QQAUb9+fZGcnGzwPKtXrzb7mgtrxYoV6nX06NGjwMcxFSH48MMPBQDh6elpMtpx69YtkZ2dbfW59+zZo849a9Ysi/f76KOP1H5Xr161+rxEREREDxKr+hBkZGTgt99+AwBERkYabO/v4OCAqVOnwt/fHwAwZcoUa05hterVq5tc36lTJzz22GMAgCVLlpjc1t3dHdOnT89X+w8A//nPf1S6oZrhn3/+GQAQEhJidBjVSZMmISQkxGQeTFm5ciUOHz4MAPjjjz9Qvnx5g9t169YN/fr1AwBMnz69wOcz5saNG2ryLicnJ4wfP97m5wCAK1euAMgdiapChQpGtytXrhwcHa3vDpOQkKCWrYlMabe9dOmS1eclIiIiepBY9RQVGxurZqcdOnSoagqUl7e3N5588kkAwNGjR3H58uXC5dIKycnJOHnyJOLj49VfQEAAAODQoUMm9+3cubPRB8OyZcuqwodsLiVdunQJ//77LwDgySefNNosyd3dHf/3f/9n1evRkp1Ya9asiXr16pnctl27dgByO0jbsoNxdnY2Bg4ciPPnzwMAPvjgAzRs2NBmx9cKDg4GkHsP7d271+bH1zbf8vX1tXg/Pz8/g8cgIiIiKo2s6kMQHx+vlps3b25y2+bNm+PHH39U+8mHu6KwY8cOfP/999iwYQNu3LhhdLtr166ZPI65GZLlg2BKSopeuvZ9ady4scljyKE6CyImJgZA7gRZDg4OFu2TmZmJGzduqEJRYb300ktYs2YNAKBHjx748MMPbXJcQwYMGIDPPvsMGRkZaN26Nbp164YePXqgbdu2iIyMtPg9MEZ7r1hTINBuW1qHWyUiIiKSrIoQaB+gTDXhAICgoCCD+9nauHHj0KZNG8ybN8/sedLT002uL1OmjMn1sllK3hr3mzdvqmVzTU8K82CelJRUoP3S0tIKfE6td999F7/88gsAoE2bNpg/f77RKJEt1KpVC3PmzIGvry/u37+PFStWYOTIkahbty4CAwMxePDgQnXs1UZyzN0bWtptPTw8Cnx+IiIiogeB1aMMSeZqZ0UBx4W3xsaNG/HRRx8BAKpUqYI333wTbdq0QeXKleHl5aUeVseMGVNk7dyLkyyItG7dGj/99JPF+xWm34I0ceJEfP755wCARo0aYcWKFcXyMNy3b1906tQJc+fOxdq1a7Ft2zYkJyfj2rVr+PPPP/Hnn39iyJAh+P33363uR6AtnFlTaNVua6vICxEREVFJsapAoG07feXKFdSoUcPotlevXjW4ny39+uuvAAAfHx/s2rXLaO28tga/KGibkJirxS9Mm3N/f39cvXoVycnJqFu3boGPY62pU6finXfeAQDUrl0ba9euRbly5Yrt/OXKlcPzzz+P559/HkBun4Jly5Zh8uTJSExMxMyZM9GwYUO89tprVh1X+zBvzT2i3ZYFAiIiIirtrKpS1T6EyvHbjdF2Ai2qh9cjR44AADp27GiyqY5se19U6tSpY/G5CpMX2Xn3xIkTqlNvUZs1axZeeeUVALlRmA0bNhgd3ai4REZG4p133sHu3bvh6ekJQDfjsDWioqLU8okTJyzeT27r6emJKlWqWH1eIiIiogeJVQWCxo0bw8fHBwAwc+ZMo6PXpKSkqAe0yMjIIutQfP/+fQCm28gfPHgQu3fvLpLzS5UqVVLRkvnz5+PevXsGt7t37x7mz59f4PPI4VMB4IsvvijwcSy1aNEiDBs2DEIIVKpUCRs3brRJ8yNbCQ0NVe+7uQ7jhoSEhKgH+n379lm8n9y2RYsWcHYucKs7IiIiogeCVQUCNzc3jBgxAkBu7bxsv68lhMArr7yiHtBk7XJRkMOAbt++Pd9QoEBu85xBgwYV2fm1XnjhBQBAYmIi3nrrLYPbvPXWW0hMTCzwOfr27YvatWsDAH788UdMmzbN5Pbx8fFYvnx5gc61bt06DBgwANnZ2QgMDMSGDRsQHh5eoGMV1JIlS9Qwt4ZcvHgRx48fBwBEREQU6Bxt27YFAIuHNc3IyFBzQch9iYiIiEozq6s3x4wZg0WLFuHMmTMYP3484uPjMXz4cISEhODs2bOYMmUKNm/eDABo2bKlavddFJ555hksX74cqampiI6Oxttvv43GjRtDCIGdO3fi66+/xpUrV9CyZUvs2rWryPIB5BZ8pk+fjvj4eEyZMgVnzpzBCy+8gEqVKiEhIQG//PILVq5ciWbNmqmHT2uHzXRycsLcuXPRqlUrpKamYsSIEZg/fz6efvpp1KxZEy4uLkhKSsKBAwewYsUK7Ny5E6NGjUKvXr2sOs/u3bvx+OOPIzMzEy4uLvjmm2+QlZWlN7xqXpUqVVLRI1v59ttvMXDgQPTo0QMdO3ZE7dq1Ua5cOdy8eRMxMTGYPHmyGvFn5MiRBTpHjx49MHPmTFy4cAGnTp1CtWrVTG6/detWZGVlqX2JiIiISr2CTG989uxZUatWLQHA6F/r1q3F9evXje4vt5s+fXpBZ1kWQggxbNgwo3lwcnIS3377rRg7dqxKM0SuGzt2rMlzRUdHCwAiOjra4Prz58+LqlWrGs1Ply5dxOrVq9X/d+/ene8YQ4YMEQBEWFiY0XwcOnRIVK9e3eT7L/8++ugjk6/JEO37ZelfQa/j9OnT1THOnj2rt06+36b+nJycxKefflqgcwshRHp6uvDx8bH4vRo6dKgAIGrWrFngcxIRERE9SKwbp/F/wsPDcejQIUyZMgXR0dHw9/eHi4sLKlSogG7dumHWrFnYunVrkY0upPX7779j1qxZaNu2LcqWLQs3NzeEhYVh8ODB2Llzp9UjzxRG5cqVcejQIXz00UeoW7cuPDw84OPjgxYtWmDq1KlYvXq1Xv+Cgo7UU69ePRw9ehQzZ85Enz59EBoaCnd3d7i6uiI4OBjt27fHBx98gNjYWIwZM8ZWL6/YzZs3D7Nnz8bQoUPRoEEDBAUFwdnZGV5eXqhbty5eeuklHDhwAO+++26Bz+Hu7o7hw4cDAGbPnm1y23v37mHx4sUAcidoIyIiInoYOAhRDBMGkPLJJ5/gww8/hLOzM1JSUvQmx6KSceHCBVSvXh2ZmZnYtm0b2rRpY3C7P//8E4MHD4afnx/OnTuHsmXLFnNOiYiIiGyvQBECKhghBObOnQsAaNCgAQsDD4jKlSvj2WefBQCjE9jl5OTg008/BQC8+eabLAwQERHRQ4MFAhs6d+6cGgrVkDFjxqiOuUOGDCmubJEFxo4dC29vb6xbt87gMLXz58/HsWPHEBoaitdff734M0hERERURDiIug3NmDED06dPx9NPP43WrVsjJCQEWVlZOHbsGGbOnKlGX4qMjMRzzz1XspklPRUqVMDs2bMRExNjcE6D7OxsjB07Fh07doSHh0cJ5JCIiIioaLAPgQ2NGzfO4NwMWrVq1cLq1auLfUx/IiIiIiJDGCGwoWeffRblypXD2rVrcerUKSQnJyM9PR1+fn6oX78+Hn/8cQwfPhyurq4lnVUiIiIiIgCMEBARERER2TV2KiYiIiIismMsEBARERER2TEWCIiIiIiI7FiJFgjOnTsHBwcHODg4YMaMGSWZFYwbN07lhYiIiIjIXhS6QJCVlYW///4bQ4YMQe3ateHv7w8XFxeUL18ejRs3xsiRI7Fhwwbk5OTYIr/0gPnkk09UQaps2bJIS0uz6fFv3bqF9evXY8KECejTpw9CQkLU+dq3b2/18Xbt2oXBgwcjPDwc7u7uCA4ORrdu3fD3339btH9GRgbGjBmDiIgIuLu7o27dupg6dSoehL75mzdvVu+NoT8vLy/UqFEDQ4YMUXNiFJa2IG3uz5JzXr9+HWPHjkX9+vVRrlw5eHt7o379+hg7diyuX79uUZ7WrFmDVq1aoUyZMqhQoQKef/55XLlypZCvtGjExsbivffeQ4sWLVCxYkW4ubnB29sbVatWRb9+/fDzzz/j1q1bhT6PEALz589Hnz59EBoaCnd3d5QpUwZVqlRB//79sXbtWouPZY+fIWdnZ/j5+SEiIgLt2rXDG2+8gYULFyIzM9Om5z916hTmzJmDN954A61bt0aZMmUKXGl2//59/Pzzz2jXrh0CAgLg4eGBatWq4cUXX8TRo0ctPo69fSaJ7JYohCVLlogqVaoIAGb/atSoIVasWKG3/9mzZ9X66dOnFyYrhTZ27FiVF7JcjRo19K7zrFmzbHr88PBwo/dUdHS0Vcf66KOPhKOjo9Hj9erVS6Snpxvd//79+6JLly4G933uuecK+UoLb9OmTRZ9FuXf8OHDxf379wt1Tu3nxtzfpk2bTB5r7969Ijg42Oj+ISEhYt++fSaPMWPGDOHg4JBv38qVK4vExMRCvVZbunDhgujdu7dF75uHh4d47733RFpaWoHOdevWLdG+fXuz53nqqadERkaGyWPxM6T/FxAQIMaPHy+ysrIKfe7NmzebPJc1v5HXrl0TzZs3N3osNzc3MW3aNLPHsafPJJG9K/DT76effqr3Ie/UqZOYPHmy2Lhxo4iNjRXr168XU6ZMEV27dlU/IPXr19c7xoNUICDr7dq1S10/Ly8vAUB07tzZpucICwtT56hQoYLo2bNngQoEv/76q9qvatWqYtq0aWLv3r1iyZIlokOHDmrdwIEDjR5j6tSpAoCoWLGimD59uti9e7f49ttvRbly5QQAsXr1ahu84oLTPsyMHDlSxMXFqb/Dhw+LzZs3i88++0wEBgaq7caMGVOoc2oLBNrzGfpLTU01epyEhARRoUIFAUA4OzuL0aNHi61bt4qtW7eK0aNHC2dnZ3UPJCQkGDxGcnKy8PT0FI6OjmLUqFFi+/btYtmyZerB6KmnnirUa7WV/fv36z1khYWFiXfeeUcsX75c7N27V2zfvl38/fffYsSIEcLf319td+DAgQKdr3v37uoYERERYurUqWLbtm3in3/+EZMmTRLly5dX61966SWjx7H3z9CuXbvEqlWrxOeffy46d+6s9/vXrFkzkZSUZLNzOzo6ijp16ohmzZpZ/Rt5//590a5dO7XfE088IVavXi327Nkjvv/+e/X5d3JyEmvWrDF6HHv6TBJRAQsEf/zxh14NyT///GNy+8OHD4uOHTuyQPCQGTlypAAgypcvLyZOnKh+yIz9OBTEpEmTxIIFC8T58+dVmrUFgps3bwofHx9VK5WcnKy3/v79+6JXr17quFu2bDF4HFnLeujQIb30xYsXCwBi2LBh1r04G9M+UIwdO9bodkeOHBEeHh4CgPD29haZmZkFPqetImtDhgxRx5k3b16+9fPmzVPrjb3PM2bMEADEG2+8oZeekpIiKlWqJNzd3c3WgBe1q1ev6hUG3nvvPXHv3j2j29+5c0eMGTNGODs7F6hAEBMTo85VpUoVcefOnXzbnD9/Xn0+HB0dDT7Y8jOUX3x8vGjYsKHavk2bNoW6v06cOCEmTZokNm/eLFJSUoQQQkyfPt3q30jtPoYKeCdPnhTe3t4CgKhevbrR6Ia9fCaJKJfVv+KXLl0Snp6eAoAoU6aMOHLkiEX7ZWdn52tOwgJB6ZWRkSH8/PzUj87ly5eFk5OTACAmTpxYpOe2tkDwxRdfqH3mzJljcJuLFy+q/Pfs2dPgNtWrVxf+/v750u/cuSMAiC5dulj8GoqCNQ8z/fr1U9vmfTizhi0KBFeuXFHvfdeuXY1u17VrV1WzeeXKlXzrJ0yYIACI5cuX51v3xBNPCAAl3kShT58+6v0aN26cxftt2bJFnDlzxurzfffdd+p833//vdHt3njjDbWdofePnyHD0tLS9AoF33zzjU3zU5ACQWRkpAAgfH19xd27dw1u89lnn6njLliwIN96e/pMElEuqzsVf/PNN7h79y4A4KOPPkJkZKRF+zk6OmLQoEFmt1u/fj169eqFoKAguLm5ISIiAiNHjkRCQoLZfTMzMzF16lR06NABAQEBcHV1RVBQEB599FH8+eefJjs2WzrKUGZmJn755Rf06NFDdQIMDAxE48aN8corr2Dbtm0mO8etX78egwYNQkREBDw8PFQHrdGjR+Py5csmz52YmIh33nkHjRo1Qrly5dTri4qKwoABAzBjxgzcuXPH9JtkI8uXL8eNGzcAAIMGDUJQUBA6duwIAPjjjz+KJQ+WWrJkCQDA29sbTzzxhMFtKlWqhE6dOgHIvUapqan5tgkMDMT169dx5MgRvXTZWTYoKMh2mS5i4eHhavnevXsllxEAy5YtQ3Z2NgBg2LBhRrcbOnQoACA7OxvLli3Ltz4wMBAAsGXLFr30u3fvIiYmBq6urvDz87NRrq135MgRLF26FABQv359fPDBBxbv265dO0RERFh9Tm2n1ypVqhjdrmrVqmo5IyMj33p+hgzz8PDArFmz1O/Gl19+iaysrBLLz8mTJ1WH4aeeegplypQxuJ38LAHAokWL8q23l88kEWlYU3rIyckRAQEBAoDw9PQUt2/fLlRpJG+E4O2331b/z/sXEBAgjh49avRY586dE7Vr1za6P/4X0r1+/brB/S2p6Txw4ICIiIgweQ4A4uzZs/n2TU1NFY8//rjJ/by8vAzWpAghxNatW1WY19Sfof21tV5Dhgwx+vqs8dhjjwkgty2xNHPmTHWe2NhYs8eQ24aFhVl1brmfJRGCjIwM1dbVVE2XELn9YuSxDTWDmzRpkgAgQkNDxYwZM8SePXvE5MmTha+vr9H3vjgVNEJw+fJlg9tomwwY6xBsiwjB4MGDzeZFCCESExPVds8880y+9QkJCcLV1VU4OjqK0aNHix07dogVK1aIVq1aCQCib9++Bc6jLYwaNUrl/7fffrPJMc19hpYuXWp1hODw4cN66/gZMk/bUXrHjh351mtr+q05rrURgmnTppmN5EhyQIjKlSvnW2cvn0ki0rHqVzw+Pl59+Lt161bok2sLBPILIjo6Wvz1118iJiZGbNiwQTzzzDNqmxYtWhg8TkpKit5oR3369BHLli0TMTExYv78+SI6Olqta9mypcGRVcw92Bw5ckR1nAUgHn/8cTF37lyxb98+sXv3bjFz5kwxaNAg4enpma9AcP/+fdXpzsHBQQwYMEDMnz9fxMTEiF27donvvvtOVK5cWQAQrq6uIiYmRm//e/fuiZCQEAFAlC1bVowePVqsXr1axMbGit27d4u5c+eK119/XYSGhhZLgSA5OVm4uLgIQL9TakpKiihTpowAIF577TWzxymOAoH2njWXp0WLFqltf/jhh3zr09PTjY7cYejHsLhZ+jBz7Ngx1YegadOmRreztkDQqVMn4efnJ1xcXERAQICIjo4Wn332mbhx44bJfDdp0kQAEOXKlTP7GmWh2Fi+v/nmG4PXJyQkRFy8eNHs8YuSfJ0ADDavKAhzn6F79+6pkbqqVq1qsGP3xYsX1QN5y5Yt863nZ8g8bZOqzz//PN/64ioQvPnmm2p7c31OZKWOg4NDvvvCXj6TRKRjVYFg9uzZ6sP83nvvFfrk2gIBkDvsXE5OTr7tRowYobbZv39/vvXaL8EPPvgg3/qcnBwxcOBAtc3UqVPzbWOuQCDbiTo6Opqsebl27Vq+4QG//PJLAUC4uLiIVatWGdzvxo0bok6dOgLIjWRobdy4UeXNVA1aVlaWwaiNrQsE2nbJJ06c0Fs3YMAAAUAEBgaaHYqvOAoEq1evVttPmjTJ5Lb79u1T277zzjsGt0lJSRGjRo0SFStWFC4uLqJGjRri66+/FtnZ2Va9hqJgbpShrVu3iokTJ4qgoCAB5HYoNlSbKVlbIDD25+PjI5YsWWL0PHIkkzp16ph9jfIzEhQUZHSb+fPni8aNGws3Nzfh7+8vnnnmGZt2dC8oWYgOCQmx2TEt+Qzt2LFD9fepWrWq+Omnn8T27dvFpk2bxJdffqlGnQkPDxfHjx/Pt7+9foaseXDfsGGD2m/48OH51hdXgeCpp55S2+ft+J3Xyy+/rLbNe93t5TNJRDrOsMK1a9fUcoUKFazZ1azg4GBMnjzZYBv+N998E7/99hsAYNu2bWjYsKFal5GRodZFRkZi3Lhx+fZ3cHDA1KlTsWbNGly/fh1TpkzByJEjLc7b2rVrceDAAQDAq6++iv79+xvd1t/fX+//WVlZ+OqrrwAAr7zyCrp3725wP19fX0yaNAmPPvootm/fjlOnTqFatWoAoDeBS7t27Yye29nZGd7e3pa9qEKQfQSaNWuG6tWr660bNGgQ5syZg6SkJKxZswY9e/Ys8vyYkpKSopa9vLxMbuvp6amWDbV/lsf48ssv8eWXX9omg0Xkxx9/xI8//mhwnaOjI1544QW8/vrrqFWrVqHPFRUVhT59+qBZs2YICQlBVlYW/v33X8yePRvr1q3DrVu30LdvXyxfvtzg/S+vkbnrA+iukbHrAwD9+vVDv379CvhqisadO3dU23Jbf3ea06pVKxw4cADff/89vv/+e7z44ot66728vPDRRx/hpZdeQvny5fPtb6+fIWtov/dv3rxZYvmw1bWyh88kEemzqlOx9stG+2ViC/369YObm5vBdTVr1lRfTGfOnNFbFxsbq2byHDp0KJycnAwew9vbG08++SQA4OjRo2Y78GqtXLlSLb/xxhsW7wcAe/fuVeeS5zdG+7C/a9cutRwcHKyWp0+fbtX5AaB9+/YQudEgq2e7zOvo0aOIjY0FAIOdxLt06aI6ks2aNcvksWSezp07V6g8maLtMOvq6mpyW+39l56eXmR5Kmk5OTmYN28efvvtN5Mzrc6YMUNdI2OzQr/++us4fPgwPv74Y/Ts2RONGjVC8+bN8cwzz2Dt2rX46aefAOR2OhwxYoTB91VeI3PXB9Bdo9J2fYrqu9OSz5AQAgsWLMCCBQsMdnhNTU3F33//rfc9p8XPkHnaB2fttZaGDh2qrpWhSitbsdW1sofPJBHps6pAULZsWbUsRxqyFXM1lb6+vgDyf9nGx8er5ebNm5s8hna9dj9zZHSgcuXKCAsLs3g/AIiJiVHLLVu2VCMZGfrT/qhoowJt2rRRI4S8/vrraNasGT777DPs3LnT5ANdUZg5cyaA3GiEoUiJs7MznnrqKQC5I1Xcvn27WPOXl7u7u1o2915pR1fx8PAosjwVh7Fjx6oHEPmXlpaGw4cP46233kJKSgq++uordOnSpVA/5D4+PibXv/DCCxgxYgSA3FGyDI1oIq+RJfeyvEal7foU5XenKTk5OXjqqacwatQonD9/Hs8++yz279+P9PR0pKamYvv27Xjsscdw7NgxDB06FKNGjcp3DHv9DFlD+7tUHFFaY2x1rezhM0lE+qwqEGjDyVevXrVpRowNjyY5OuZmVQ6FJsmhLwHzoXjtkHba/cyRTaW0NfWWSkpKsnofAEhLS1PLLi4uWL58OWrXrg0A2LdvH9577z20bt0aPj4+6N69O/766698742t5eTkYPbs2QByIwEBAQEGt5ORg3v37mHevHlFmidztA9ipkLagP6DmiWh8tLGw8MDUVFR+OKLLzB16lQAucMBfvbZZ0V63hdeeEEt5x1+ENBdI3PXB9Bdo9J2fby9veHi4gLA9t+dpkydOhXz588HkDu08m+//YaGDRvC3d0dnp6eaN26NZYuXYrBgwcDAL7++ut8kQJ+hszTNqctyWE0bXWt7OEzSUT6rCoQ1K9fXy3v37/f5pkpLHNzCAgT8wPY4viGaB/SN2/ejLi4OIv+8vZxiIyMRFxcHBYvXozhw4erccPT09OxZs0aDBw4EM2bNy9wAcQSGzduxKVLlwAAq1atMhrp0EZiSnpOgkqVKqllc3NZXLx4US2HhoYWWZ4eBM8++6x6cJk2bVqRnks7V4m8f7TkNbJkrhF5jUrj9ZHfn4mJicVWKJDXtmzZsnjnnXeMbvfpp5+qZdknS+JnyDwZRQZym7iWlIJcKwcHB739tMd52D+TRKRjVYEgMjJSRQm2bdtWbJNgmaKtjdE2szFE+yNsTS2OfM2JiYlW5k6/s5mrqyvq1q1r0Z9sh6/l5OSEPn36YNq0aTh16hQSExMxbdo0NG7cGEBufwptbaytyeZC1tixY0e+fh/FqUaNGqpfyfHjx01uq10vozEPK0dHR9UhPDEx0aqImbXMFcRlgeH27dsmP8OXL19W3zml8fpER0erZWPt9W3t2LFjAHLfY2N9tIDcB0AZYc37OeFnyLz169er5TZt2pRYPrSFb0uvVWhoaL5+LfbymSQiHasKBA4ODmpmwrt37+arSSoJdevWVct79uwxue3evXsN7mdOo0aNAAAXLlzA+fPnrcqfdkSkdevWWbWvOcHBwRg+fDh27dql8rhixYoi6dyVmpqKxYsXAwAeeeQRzJkzx+SfvDeEEGY7FxclV1dXNGvWDEBuR21TbWJlcxY3Nzc0adKkWPJXku7fv6+Wi3J2VTlzKgCEhITkW699gDLUpMjQutatW9sod8VHOzvs5MmTi7yJH5DbpwfQv9bGyHtA7iPxM2RafHw8Nm7cCCD34bokX7eln6UrV67gxIkTAAx/luzlM0lEGtaOU5qQkKAmn/L09BTHjh2zaL/s7Gwxa9YsvbS8MxWbEhYWZnAc/Xv37gkfHx81ZrKhSceEEOLOnTuifPnyAoCIjIzMt97UPATr16+3eGKevNLT09UY4EFBQYWe3dkY7UyjiYmJNj++djzsBQsWWLRP48aN1djntiTzYck8BEIIMXHiRLWPsTkkLl68KJycnAQA8eijj9owt8XHmjHU7969qyYnc3d3N/q5sYVnn31W5Svvd4AQQly+fFk4OjoKwPRMuF27dlVzgZiaPfVBJieDAiDGjx9v8X5bt24VZ86csfp8devWFQCEm5ubuHnzptHt4uLiVL569eqVbz0/Q4alpaWpOWoAiO+++86m+bF2HgIhhKhdu7YAIPz8/MTdu3cNbvPZZ5+p486bNy/fenv6TBJRLqsLBEII8fvvv6svk8DAQLF582aT2x85ckR06tRJ1K9fXy/dFgUCIfQnJvvwww/zrc/JydGb8bggE5PJh1tzE5Ndv34938Rkn376qTp29+7dDc4WKt25c0dMnjxZL23r1q3i5MmTRvfJyMgQjRo1EgCEl5dXvgnBbDExmZxpuUyZMkZ/ZPLS/uhs374933q5rignJhMi95qUK1dOnevatWt66+/fvy969eqljvvPP/9YlZ8HhTUPM9rPTO/evQ1uY25issOHD5u8L4UQ4qefflLHCAoKMnrvDx48WG03f/78fOvnzZtX6Hv4QXD58mU16ZP8vsrIyDC6fWpqqhg3bpxwcXExOPOsuc/Qu+++q7YZNmyYwYkf09PT1ecbgPj555/zbcPPUH5HjhxR37vy+ygzM9PgtsU1MZkQQkybNk3t8/LLL+dbf+rUKTW7cNWqVY1OIGkvn0kiymXVxGTSsGHDkJCQgDFjxiApKQnt27dHly5d0Lt3b9SuXRs+Pj64ceMGTpw4gZUrV2LNmjXIzs7W65RsS2PGjMGiRYtw5swZjB8/HvHx8Rg+fDhCQkJw9uxZTJkyBZs3bwaQO/Tn888/b/U5Zs2ahWbNmiE1NRUDBgzA/Pnz0b9/f1SpUgXZ2dk4deoU1q9fjwULFiAuLg7h4eFq39GjR2Pjxo3YuHEjVq9ejcjISLz44oto2bIlfHx8kJKSgn///RebN2/GkiVL4O7ujldeeUXtv3HjRowfPx5t27ZFjx49UK9ePQQEBCA9PR0nTpzATz/9pDp5jxgxIl/Iv7AuXLig3r/u3bubHRFK6tu3L959910AuZ2LCxJSPnjwIA4ePGhw3ZUrV/LNq9CvX798o134+flh4sSJePHFF3H+/Hk0b94c77//PqKiopCYmIhvv/0WmzZtAgAMGDAAHTp0sDqfD5qkpKR8Q+veu3cPJ0+exB9//IE1a9YAyB1ecPz48QU6R2xsLEaMGIEOHTqge/fuiIqKgr+/P+7fv4/jx4/jzz//VG2rnZyc8PPPPxsdg3/ChAlYs2YNkpOTMWDAAMTExKhJ7VasWKEm9wsICMAnn3xSoPw+CIKCgrBixQr07NkTV69exfjx4zFr1iw8/fTTaN26NQIDA5GZmYlLly7hn3/+wcKFC5GcnFzg8/33v//FtGnTkJSUhOnTp+PkyZN48cUXUatWLWRnZ6sJy2Szrtq1a+s1bZL4GcptJnvz5k0cPnwYGzduxPr161X/mBYtWmDBggVqJKmCWrBggd7IPtu3bze4DOTeS926dct3jCFDhuD333/Hjh078MMPP+DKlSt47rnn4Ovri71792L8+PG4c+cOHB0dMXnyZKO/F/bymSSi/ylMaWLhwoUiPDxc1RKY+qtTp45Yu3at3v62ihDIY9WqVctkHlq3bi2uX79ucH9zEQIhhIiJiRGhoaFmX+vZs2fz7ZuWlqYXpTD1FxERYTRvpv6eeOIJkZ6enu/chY0QfPLJJ2p/U9ERQ+rVqycACB8fH3Hv3j29dfKYpiIElr52U++9NGbMGOHg4GB030cffdTg+1daaK+zJX8BAQH5PpNa5iIE2tpLU3/+/v5iyZIlZvO/e/duERQUZPQ4QUFBYvfu3YV5ix4Y586dEz169LDo/fP09BTjxo3L9/kRwrLP0IEDB0RERITZ8zRo0ECcO3fOZL75Gcr/GZowYYLRWnbJ0giB/J2z5M9UhDQ5OVk0bdrU6L6urq7il19+Mft+2NNnksjeFapAIERuc5XZs2eLQYMGiZo1awpfX1/h7Ows/Pz8RKNGjcRLL70kNm7caDBUbcsCgczLlClTRHR0tPD39xcuLi6iQoUKolu3bmLWrFkiOzvb6L6WFAiEyH2w//7770XHjh1FYGCgcHFxEUFBQaJx48bitddeE7t27TK5f0xMjBg5cqSoU6eOKFeunHB2dhY+Pj6iQYMG4tlnnxULFizI98N/9+5dsWrVKvHGG2+IFi1aiMqVKwt3d3fh7u4uwsPDxVNPPSVWrlxp9JyFLRDUrFlTALntkO/cuWPVvh999JE6d962qsVdIBBCiB07doinn35ahIaGCldXVxEYGCg6d+4s/vrrL6te14PI3MOMq6urCAoKEo888oj46quvxI0bN0wez1yB4OrVq2LatGlixIgRonHjxqJSpUrCw8NDuLu7i5CQENG9e3fx3XffWdVvJjk5WXzwwQeibt26wsvLS3h5eYmoqCjxwQcf5Gum8jDYu3evePvtt0WzZs1EcHCwcHV1FV5eXqJKlSqiX79+4pdffjH5/lnyGRIit+nRDz/8ILp06SKCgoKEq6urcHNzE6GhoeKxxx4Ts2bNMtrcJS97/Aw5OjqKcuXKicqVK4u2bduK119/XSxcuNBkcy+t4i4QCCFEVlaWmDp1qmjTpo3w9/cX7u7uokqVKuK5554T8fHxFr8n9vaZJLJXDkIUcnB+IiIiIiIqtawadpSIiIiIiB4uLBAQEREREdkxFgiIiIiIiOwYCwRERERERHaMBQIiIiIiIjvGAgERERERkR1jgYCIiIiIyI6xQEBEREREZMdYICAiIiIismMsEBARERER2TEWCIiIiIiI7BgLBEREREREdowFAiIiIiIiO8YCARERERGRHWOBgIiIiIjIjrFAQERERERkx1ggICIiIiKyYywQEBERERHZMRYIiIiIiIjsGAsERERERER2jAUCIiIiIiI7xgIBEREREZEdY4GAiIiIiMiOsUBARERERGTHnEs6A0RE9kgIoZbT09MBAPfv3wcAODrq6mpcXV31/iUiIrI1RgiIiIiIiOwYIwRERCUgKytLLZ87dw4AkJqaCgAoW7asWhcYGAgA8Pf3L77MEZUwbQRNcnBwKIGcENkHRgiIiIiIiOwYIwRERCVAGyFYs2YNAF2EoFu3bmpdUFCQ0WNoa1FZe0oPE97PRMWLEQIiIiIiIjvGAgERERERkR1jkyEiohKQlJSklv/55x8AQE5ODgD9JkPu7u7FmzEiIrI7jBAQEREREdkxRgiIiIrRkSNHAOiiAoCug3FYWBgAICAgQK3z8PAweix2vCQiIltghICIiIiIyI6xQEBEREREZMfYZIiIqIjIeQJu3bql0k6dOgUAOH/+fL7tvb29AQCenp5FnzkiIqL/YYSAiIiIiMiOMUJARFRELl68CACIjY1VaXJo0apVq6o0uf769esAgPv37xdXFomIiBghICIiIiKyZywQEBERERHZMTYZIiIqIteuXQMAXLhwQaVVq1YNAFClShWVVqZMGb39nJ351UxERMWHEQIiIiIiIjvGaigiIgvJYUQl7UzB2dnZAIDbt2+rtDt37gAAnJycVFr58uUBAF5eXvnSypYtCwBwd3e3ZbaJbCrv5wDgrNlEpR0jBEREREREdowRAiIiKxmqDU1LSwMA7Ny5U6W5uroCAB577DGVFhwcDABITk7Olyb7Ejg6sq6GHly2igYcOnQIALBhwwYAQExMjFonoxBysj4ACA0NBQB0795dpTVp0gQAcOzYMQD6E/41b94cAODr62uT/BI9zPirQ0RERERkx1ggICIiIiKyY2wyRERkIVNNJeTQomvXrlVpcjbixo0bq7QbN24AAE6dOqXSZNMiPz8/s+chKi1kR3sASE1NBQCcO3dOpe3btw+A7jPzzz//5Ns3ICBApdWuXTtfmmxut2vXLgBAQkKCWlenTh0AbDJEZAlGCIiIiIiI7BgjBEREVpIdHk+fPq3SZC3nwoULVZocgnTGjBkqLTMzEwDg5uam0mrWrAkACAsLA2A+QsBhH6k0OH78uFr+4IMPAABXr15VabJD8JNPPgkAePvtt9U6U/f4pk2bVFqfPn0AANWrVwcAPPLII2qd9jNGRKYxQkBEREREZMdYICAiIiIismNsMkREZKWMjAwA+k2G5LwCtWrVypem7Vx59+5dAPpNIlxcXAAAHh4eANj8h0of7f0sPxfr169XaXJ+Du28ApUrVwYAdO7cGYCuyZw5sbGxalnOPxAeHg4AqFChglonO+sTkXmMEBARERER2TFGCIiILJSTkwMAuHXrFgD92YblEKMjRoxQaeXLlwcApKenqzQ5PKl2RtVLly4B0HWCNBchYASBHjRZWVlqeebMmQD0h+Bt0aIFAKBr164q7emnnwYA+Pj4WHWupk2bqmX5eZOzGJctW1at44zfRJbjp4WIiIiIyI6xQEBEREREZMfYZIiI7JK2E6SlTXAOHDgAAIiPjwegPwOqnI1YNh3SKleunFqWzYLS0tJUmpzF1cvLCwDg7u5uUX6ISpqcV0M754CcgVjbpG7QoEEA9JsMWdtUSNJ+7iIiIgDoOhNrP2tOTk4FOj6RPWKEgIiIiIjIjjFCQER2yVxUQNZ8ams5V65cCQDYvXs3AOD9999X62rXrm30WLIzMqAbJvHo0aMqTQ5FKmtMtdGDMmXKmMwnUUk6e/YsAGDHjh0q7dq1awCAkJAQldaxY0cAhiNo1tIOJ+rn5wcACAgIAKAfPXB25iMOkaUYISAiIiIismMsEBARERER2THG04jI7slOvbIpEABs374dgH5TCDnbqmxu1L9/f7WudevW+Y4rO1ouX75cpW3atAmAfpMh2TypZs2aAHTNMACgU6dOAIB69epZ96KIisGRI0cAAOvWrVNpsqlQkyZNVJp2BuHCqlixolqWs3vLpnXaeQjkDOBEZB4jBEREREREdowRAiKye/fv3wcAJCUlqbSTJ08C0K/Jl52Dq1SpAkC/Y3LeoUMB4M6dOwCA06dPq7QrV64A0O84nJ2dDUA3A7KczRgAbty4UaDXRFQc5OckJiZGpXXv3h2AbnZiQFeTbwvaoUW1y0RUcIwQEBERERHZMUYIiMjuyXbHXbp0UWnNmjUDANy+fVulyZp8OXGYdlhFQzWgkZGRAIDRo0erNDnEqOw3AOgmSZOTlmnbQcthFYkeFCkpKWr56tWrev8Curb72nu3JCYJ004+KFk6CSGRvWGEgIiIiIjIjrFAQERERERkx9hkiIjskrY5gWzOUL58eZWmXS7ocWUHY21HY6LSSt7b2uZusnN8VlaWSnN0zK1rlE3gtGlE9GDiJ5SIiIiIyI4xQkBEdslQ50Jt7X5BOx+y0yI9rOS9rb3HTXUWlsP0AoY7+BY1fhaJLMcIARERERGRHWOBgIiIiIjIjrHJEBHR/7CJAZF52k7yvr6+AAAfHx+VJpsH3bt3T6WZaloktzf3+ZNNkJKTk1Xa9evXAQBBQUEAOG8HUUExQkBEREREZMcYISAiIiKLubq6quXKlSsDAKpWrarS5EzGp06dUmlyvaHhfE1FBuTM3gCQlJQEAEhMTFRpqampAHSzezNCQFQwjBAQEREREdkxFgiIiIiIiOwYmwwREf2PobHSTTVnsHZ7oodN3bp1AQDR0dEqbeXKlQCAY8eOqTR/f38AQKdOnVSas7PxR5Dbt28DAHbt2qXSVqxYAQCoVauWSuvXrx8AICAgoGAvgIgAMEJARERERGTXGCEgIiKiAqlWrRoAoGPHjiotLi4OAHD69GmVtmbNGgC6YUIBIDw8HADg5uYGAMjIyFDr7ty5A0C/Y3JaWhoAwNvbW6XJ4UaJqHAYISAiIiIismMOwlAjWCIiInroFFW/FznUKAAcP34cALB27VqV9vPPPwMAEhISVJqczCwzMxOAbuhQAGjZsiUA/T4HXbt2BaAb6hTQHwKViAqOEQIiIiIiIjvGAgERERERkR1jp2IiomK0b98+AMCFCxdUWmRkJAAgNDQUAODp6anWcRhTKiq2vLe0zX0aNWoEAHB01NU5Xr16FQBw5swZlSY7E8smQ9r7vkGDBgCAevXqqTTZgdkQ2RSKnxeigmGEgIiIiIjIjjFCQERUjFatWgUA2Lhxo0obMWIEAF0tq4eHh1rn5ORUjLmjh11x1KDLe7Zx48YqTUYNrGVpfhkZICocRgiIiIiIiOwYCwRERERERHaMTYaIiIqY7FAJ6MZhv3nzpkrz9/cHAAQHBwPQ74xJVBK08xXYojmOLZv02DpvRMQIARERERGRXWOEgIioiCQnJwMADh8+rNIyMjIA6IYYBXQzr7IDMZU0QzMZmyIjXbdu3VJpcgZib29vlWbLe5tRASLbY4SAiIiIiMiOsUBARERERGTH2GSIiKiIyFlZV69erdK8vLwAAA0bNlRpfn5+xZsxIiOsbY6zbds2AMDSpUtVWseOHQEA7dq1U2lBQUEAABcXl8JmkYiKACMERERERER2jBECIqIicvbsWQDA7t27VVqHDh30/gUAX1/f4s0YUSHcv39fLcfHxwPQRQoAICoqCgDg6uqq0tgRmOjBxggBEREREZEdY4GAiIiIiMiOsckQEZEJls6KmpOTAwC4e/euSjt//jwA4MKFCyotMDAQANCgQQNbZpOoyKWlpQHQdZYHgKSkJACAh4eHSouIiAAAVKhQoRhzR0SFwQgBEREREZEdY4SAiMgGUlNTAQAxMTEq7dq1awCAmjVrqrSwsLDizRiRjcj7ecuWLSpNRg2aN2+u0ipVqlS8GSOiQmOEgIiIiIjIjjFCQERkgqXDJd64cQMA8M8//6i0O3fuAAC6du2q0mT7aqLS5sqVKwCAzZs3qzR/f38A+vd4xYoVizVfRFR4jBAQEREREdkxFgiIiIiIiOwYmwwREdnA9evXAQAbN25UaeHh4QCAzp07q7Rq1aoVa76IbCUxMRGAbnZiAOjSpQsAoHXr1iotICCgeDNGRIXGCAERERERkR1jhICIyEpysrLMzEyVlpCQAEAXKQCAOnXq6P0LAK6ursWRRaJCuX//vlqW97acYM/FxUWtCw4OBqCbcI+ISidGCIiIiIiI7BgLBEREREREdoxNhoiIrCSbU+zbt0+lHT9+HABQr149lSaXtU0sbEE2WdKydL4EIkvIGYgBYN26dQCAkydPAgA6deqk1jVo0KBY80VERYMRAiIiIiIiO8YIARGRlXJycgAAO3fuVGlxcXEAgCZNmqi0xo0bA2DtPZU+qampannHjh0AdDNvDx48WK3TdpgnotKLEQIiIiIiIjvGAgERERERkR1jkyEiIitlZGQAAPbu3avSLl68CAAYPny4SmvYsGGRnJ9NkKioJScnq2XZYd7b2xuA/n0dGhpavBkjoiLBCAERERERkR1jhICIyEKyo+WxY8cA6CIFAODv7w9Av8a0TJkyxZg7osKTQ4sePHhQpcl7u2rVqnr/t4YcKpfRLaIHEyMERERERER2jBECIiILnThxAgCwa9cuAEC5cuXUOhkZ8PPzK/6MEdnI/v37AQB79uxRaZGRkQCApk2bAgDc3NwKfHztpHqMFhA9OBghICIiIiKyYywQEBERERHZMTYZIiKykJyNeN26dQCABg0aqHXt27cHAHh4eBR3tohsJjY2FoCuWRwAvP766wCAdu3aAQBcXFxMHkPbLEhi8yCiBxsjBEREREREdowRAiIiE7KystTy6dOnAQBnzpwBAPTp00eta9SoEYDCdbgkKk6yJv/SpUsq7fLlywD07/uIiAgAQHBwcDHmjoiKEyMERERERER2jAUCIiIiIiI7xiZDREQGpKWlAdA1DwKAa9euAdDNQFy5cmW1rnz58sWYOyptHsSOtufOnQMAbNu2TaU5O+c+Fsg5BwAgICDAquOW9OsiIusxQkBEREREZMcYISAiMiApKQmAfu3p/fv3AQDNmjUDAFSsWLH4M0ZkIzL6JYfRBQBfX18AunscYPSLyB4wQkBEREREZMdYICAiIiIismNsMkREZEBCQgIAYOPGjSotJCQEANCpUycAQIUKFYo/Y1QqPYgdbWWn4r1796q0gQMHAgA6dOig0nx8fIozW0RUAhghICIiIiKyY4wQEBEZIGdvjY+PV2nVqlUDALRs2RIA4O/vX/wZIyqAzMxMAEBiYqJKk7MSy2F0AaBSpUp6/xbEgzjEKhGZxggBEREREZEdY4GAiIiIiMiOsckQEdm9rKwsALomFABw8eJFAPpNHWQnYmtnbiUqabdv3wYA7NixQ6UlJycDAKKiolRaeHh4seaLiB4MjBAQEREREdkxRgiIyO7dvXsXgP6MrRcuXAAAdOzYUaVFRkYWb8aIbOTmzZsAgJUrV6o0JycnAED37t1Vmuw4XxjsQExU+jBCQERERERkxxghICK7J9tXb9u2TaXdu3cPANCvXz+VVqtWreLNGJGNyP4xJ06cUGl16tQBADRr1kylycn3iMi+MEJARERERGTHWCAgIiIiIrJjbDJERA+FwsyOeu3aNQBAXFycSpNNJ5o3b67SKleubPb87FBJhlh7fxbmfs7OzlbLsqnQmTNn8h1DDqMbERGh0mRHYyKyL4wQEBERERHZMUYIiOihYGntqax5PX/+vEo7duwYAKBcuXIqrUqVKgAMT0JWmNpbsk/W3h/a7Q3db6bk5OSo5d27dwMA4uPjAQB169ZV6+rVqweAUQEiYoSAiIiIiMiusUBARERERGTH2GSIiOyKbE4RGxur0vbv3w9AvzmFHJvd2Tn/1ySbB1FxsvZ+S09PV8u7du0CAJw6dQoA0Lt3b7WucePGNsgdET0MGCEgIiIiIrJjjBAQkV2Rta2ysyUA7N27FwAwfPhwldaqVSsA7HBJtlGcHdGvX7+ulk+ePAkAuHPnDgCgfv36ah1n3iYiiRECIiIiIiI7xgIBEREREZEdY5MhIrIrV65cAQBcvHhRpaWkpAAAatSoodLkPAREpYW8t48cOaLS7t+/D0A3K3FoaKhax87xRCQxQkBEREREZMcYISilTM1c+TDV+nBGWNKS94Ohe0B7rxhaf+nSJQBATEwMAMDV1VWtk8ONBgYG2i6zRBrF8b114MABAMCGDRtUWkREBAAgKioKAODu7l7k+SCi0ocRAiIiIiIiO8YCARERERGRHWOTISKyC3KmVtmcwtvbW62rU6cOAMDPz6/4M0ZkI0ePHgWgm1cDAPr27QsAaNeuHQA2GSIiwxghICIiIiKyY4wQlFL20rHWXl4nWcbU/WDuXjlx4gQAYPPmzQCAfv36qXUdOnQAAJQtW7aQOSQqXrdv31bLZ8+eBQAkJCSotGrVqgEAIiMjizdjRFSqMEJARERERGTHGCEgoodOTk4OAOD69esqTQ47mpWVBQCoVKmSWle9enUAgJOTU3FlkahQkpKSAAD79u1TafLebtCggUoLDg4u1nwRUenECAERERERkR1jgYCIiIiIyI6xyRARPXRu3boFAIiNjVVpN2/eBKCbubVy5cpqHZsKUWlz8eJFAMC6detUmrNz7k96165dVVpQUFDxZoyISiVGCIiIiIiI7BgjBHZMCJEvrSSG+ZT54BCjZCuyM/GaNWtUWnp6OgCgW7duAICwsDCTx+B9SQ+yCxcuAADWrl2r0rp37w4A6NGjh0rTRsKsof19sPYz8KD8thCR5RghICIiIiKyYywQEBERERHZMTYZogdGYULURFpXrlwBAOzfv1+l1a5dGwDQtm1bAEBISEjxZ4yoAOS8GikpKSotMTERAJCRkaHSfH19AQDlypVTafIzID8Tjo66ekAfHx8A+nMVVKhQAQDg7u5us/wT0YOPEQIiIiIiIjvGCIGdeJA7ecl8aPPIDp2lR0nfW7L2NC0tTaXJIRmvXr2q0po2bQoAqFu3LgDA1dXV5HF579GDIjU1FQCwfft2lXb58mUAQPPmzVWajHodPnxYpY0fPx4AsHHjRgD6EYLGjRsDAHr37q3S+vbtCwCoVatWgfPLzw5R6cMIARERERGRHWOBgIiIiIjIjrHJkJ0oDSFcbR4NNUOhB1NJX7esrCwAQExMjEo7efIkAKB69eoqrUaNGgDMNxUietDI5nDr169XaTdu3AAAtGrVKt/2Bw8eVMt16tQBAAQEBADQfV4AXcfkefPmqTQPDw8AgJeXl0qTHY1dXFwK/iKI6IHGCAERERERkR1jhOAhpK2llR0ui6rmVtYOa2uJtZ3WCntcKl1K4rrJGYi3bNmi0k6fPg0A6NChg0pr2LBh8WaMyEZu3rwJANi7d69Kk0OL1q9fX6WdOHECgH5n+pdffhmALkKmHaZ04sSJAIBx48aptNWrVwPQH4q0c+fOAIDy5csX8pUQ0YOKEQIiIiIiIjvGCMFDaN++fWpZtjk9e/YsAF27UwDIzs4GoIsi5F02RU5oU6VKFQDAI488ota1b9/e+kwTFZAcklHbh+Du3bsAgOeff16lRUZGFm/GiApARnOTk5NV2r///gtAf7IwT09PAMC9e/dUWlRUFADdcKIAEB4ernd8Nzc3tSwn6Rs8eLBKu379OgD93xE5tCkjBEQPL0YIiIiIiIjsGAsERERERER2jE2GHkJ37txRyzLUvG7dOgD6nc3k8HLaMLSTkxMA/Y7BshmRbIah3TciIgIAULFiRbWOTYaoqMmOxABw/vx5ALqOlwBQtmxZAEC1atVUmnYYRaIHlWwypB069MCBAwD0m//I71xtE6CaNWsCAHx9fS06l5yN+PHHH1dpCxcuBKD7XAH6nzdj+eVAEESlGyMERERERER2jBGCh5DsKAYAISEhAHRD1MnOxQDw6KOPAtANR6fdTnZYA3Sd1uSQdoAu8nDu3DkArH2l4nX48GG1vHPnTgC6aBWgm5CsTJkyxZsxokKS0Vl5XwPArl27AOi+swGgZcuWAHS1/IDu+9tSMrqgjSjIiLHsrA+YHraakQGihwMjBEREREREdowFAiIiIiIiO8YmQw8hbSczOfZ6aGgoAP15Bjp16gRAv8mQIbdu3QIAhIWFqbTKlSsDADZs2ACATYaoeGk7XO7YsQOA/tjrstmctsM8UWlw7do1APrNO2WHeW3zoAYNGgDQ/7631v379/X+BXTNjlxcXFRaYc5BRKUDIwRERERERHaMEYKHnBwuTnYQ09YEyaFDDZG1roCu47B2NmI5/J0c+s7b29sm+aXSx1CHw6LqaCjPdeTIEZUmOxgPHDhQpbVq1QqAfi0n0YNMRgGOHTsGQH8G4oCAAAD6w47aotY+JSUFAHDlyhWVVqFCBQD6HZQZAbacqQ7YWgX9jizO71uyL4wQEBERERHZMRYIiIiIiIjsGJsMlSLaUKGpEKF2VsmEhAQAQPny5QEAgYGBap3saKwl5xdITk5WaXL2Ymdn3e3i4+MDAGjRogWAgjUZyhv6ZNizdCrq66adIfvUqVMAgLS0NJUWHBwMQH+2bFdX1yLNE9mvopqZ9+TJkwB0AzVom+zUq1cPAODn52fTc16+fBkAsGfPHpUmOytr57OxdOZj0r8viuI3ztDxLX02IDKFEQIiIiIiIjvGCEEpYGknJUkOWwfohq6Ts19qZ26VtUM3btxQaZs3b863XZUqVQDoIgWALlpQp04dq/Jm7WshunjxolqW96e2s3Dr1q0B6DpeEtlacXxvHT9+HACwdetWAEB0dLRaJ4eI1s4gX1Da15KUlAQAuH79ukqTkTY527ehfVkLbZmifp/k8bXXlNeICooRAiIiIiIiO8YCARERERGRHWOToVLA2tCfdjZi2Xxo+fLlAIC4uDi1burUqQD0x7uWy9ox3WWTDFPzFliKYcyHT1GPi33+/Hm1vGzZMgBA3bp1VVqXLl0AsMkQFZ2i+t6S8wAAuqZxV69eBQBUqlRJrbPFrMS3b98GAKxbt06lZWZmAgBefPFFlVa7du0Cn0Oyx7HyS7KpzsP+3lLxYISAiIiIiMiOMULwELp165ZalrVOGRkZAPRrEuTMmNpOyHKIx+zsbJUmhyy1xcyYRNa6cOGCWj5z5gwA/SERGzVqBICzZVPpIb+j9+/fr9LkkM9ZWVkAAH9/f7WuMN+98nhyxnk5dC8A1KpVC4D+58kU1kTr4yAZ9DBhhICIiIiIyI4xQvAQkkONArpap//7v/8DADRp0kStCwkJAQBs2bJFpc2ZMwcAULVqVZUma15ZO0SG2Pq+kBPryYma5OR6gC5aVblyZZVm68maiIpaYmIiAN33LQDExMQA0PXVKszketp+ZPv27QOgi65pPzvaZVuyl98Ke3mdZB8YISAiIiIismMsEBARERER2TE2GXqIyA5OcvZJAEhOTgagm224efPm+fZr2LChWj506BAAoEKFCipNzkpMVBxSU1MB6JqyyWEYAaBZs2YA9Ju0EZU2cnb4AwcOqDTZRE4245FN5wpCO/Ow/PzI5i2NGzdW6wx9juTviPYYcrAJ2bk5MDBQrXN0ZL2ilrajMZsUUWnCTzIRERERkR1j1W8pp+08JmudtJPdSKYmFdPWYlSrVg2Afg0QUXGSw+HKCIG2c+VTTz0FAKhevXrxZ4yoELTf1bL2XUbDAOD+/fsAdLXxMroL6L7Tvby8VJqh2mfZAf/EiRMqTUaMfXx8AOhPeObi4pLvGKdPnwagG6YU0EUrgoKCAOgPiWooQmCPE5NJ9vI66eHDCAERERERkR1jgYCIiIiIyI6xyVApd+fOHbUsO6Vp1axZEwDg6+tr9BjBwcFquX379gCAiIiIfNtt3rxZLWdmZgIA2rVrBwBwd3e3PNNEJly+fBmArslC7dq11TrZIVLOoUH0oJOzxMt5BgBdk546deqoNDmfhuy4K+cqAHRzCbRs2VKlyaYp2o7JS5cuBQBs3LhRpcnmRmXLlgUALFq0SK2T39syj4BuFmU55wcADBw4EIBucAonJycTr5jNZiR5DdeuXQsAOH78uFp37do1APrvvWxWpm1eZop8n7XNtuRvd+fOnVVaZGQkACAgIMC6F0B2hRECIiIiIiI7xghBKaftQHzkyBEA+rUFjRo1AqDfCSwvbfTAUCThwoULAIAdO3aoNNnRs0WLFgAYIaCCkTVh8h4DdJ0aZYdHbQRL2yGSqDRIS0sDoB9hldGvVq1aqTT5WZCd6mWkDAC2bt0KAKhXr55Kk9+52kiCjDwcO3ZMpcnafNlJWdvhODs7G4D+b4YcZlo7q72hzsRknrz28nqsXLlSrTt69Gi+7cuUKQNAPwKTN9qi/X/ejuiA7jtSRnPyLhMZwwgBEREREZEdY4GAiIiIiMiOsclQKSdDvoCuw5K2Q7DshGZtU4udO3eq5TVr1gDQdSQGdJ3hzHUus4Qcs5od0eyPbCahbY528OBBALpZtQ3Nrk1UWsjmHNp7XH6XDhs2TKXJuV9OnToFAJg6dapad/bsWQDA008/rdJq1KgBAGjbtq1Kk/Nz/Oc//1Fp8ntV/qvtsGpovgDZfMjb2zvfcck6ctbpl19+GYD+/D4rVqwAoD9zdNOmTQHoN82SzYjkddHOHSGbi02cOFGlyWuq7bBesWLFwr4UsgOMEBARERER2TFGCEoBOSyZnN0SAM6fPw8A2LRpk0rbtm0bAODKlSsqTdYuyFpXbe2CrEnQzgQrOynNnz9fpR06dAgA8Nhjj6m0qlWrAtB1QCMqCDkDqhxWEdB1ehw8eDAAXcd4gNEkKh20nTzPnDkDQH8ACDl4gzaaKzvPy+9j+V0MABcvXgQA3L59O9+5tLXORT3DPD9/5mmjLvJahoWFAQDq1q2r1h0+fBiAbqhvAOjVq5fR48rnADksrZa2w7qcmVobFTA0mzRRXrxLiIiIiIjsGKt3SwE5Ucz27dtV2oQJEwDoahm09u7dq5ZlTb+pGh1D6+7du6eWPT09AegP/yjbr9oiQsDaJvslo17//vuvSpPDI8raNEOT5D0oDLXB5v1M8fHxallGv2QtMaCbMFJ+t2rJWn5tG35Zw6uNMpREbT3vbfNMvUfaCI8cklQbtTdEtgaQv//aPgcyUh8aGqrS5H3DocDJWowQEBERERHZMRYIiIiIiIjsGJsMlQIeHh4AgPDwcJUmO/hqO1z6+PgA0B9WTg5vJ9MMNXEwRHsMOUuldvhHeS52ViJraWdWjY2NBQCULVtWpcmmaaVhVmI2oSBD5EAMgG64Ue33Z3R0NAD9ZkGSbOpRrlw5lSZ/A7RNOeV3u6FOpvRgkB3Db9y4AUD/+6JWrVoA9H/XDZEzV588eRKAftNdeQx5PwG6pkiGmqMRmcKnOSIiIiIiO8YIQSkga5GaNWum0rTL9kxGPAxNtsPa25JnaOI6OQQuoBsuT0ahAF1nYkPRLO1EfEQPCnmfy1p77WAPcXFxAIAnn3xSpclJo7KyslSa7FwqowDa4aBlhEDWNAPA1atXAejXGMtj8HNinrloed7fD+32cp02Qm7o90YOP3v69GkAumGWAaBChQoA9IeXlddNe53lkLOyQ7n2GJK2pQBRQTFCQERERERkx1ggICIiIiKyY2wyRKWaHKM5JiZGpckwvLnxnanoGZqnYtWqVWpZzq7dsGFDlSbH6l6/fj0A/fG0i7ophDbsb2kHfLJP2ntFNhWSs8QePXpUrZP3kXauDdkESNtkSHYOlp1CL126pNbJpic7d+5UabKzqWx6Aug+b4aaUBrKtz2ztsmQtmmPbCKm/d6qVq2a0XPI66edI2jdunUAgJkzZ6o0Pz8/APqdx8uXLw8AiIqKAgD4+/ubzDdRQTFCQERERERkxxghoFJNzmqrrXmRtSscjq/4map9lNdFDjUKABcuXACgm/ka0M3Mfe3aNQD6tZ2mzmltjb42r6byrT0uowYkO5JqO8xfvnwZAHDq1CkAunsY0NXoaofblZEBGVkAdLX7Mk3O4g3oOpJqIw8ykqbtVCyPwU7Ftqe9VjL6rH3vDUUIMjIyAOjuD/l7BQB37twBoH+vyIi3jP4AuihEx44dAeiG/CayNUYIiIiIiIjsGAsERERERER2jE2GiMjmZLOK1NRUlSbHTTc0C3aZMmWsOr6hJj7WdgjWNvmQ+dU2tTA1n4V8DeygaX/kNdcOWiDHiD937hwAICAgQK0LCwsDoN+E0VSTHlPzb2jHoJfNUQzljR4MsjmQHPRC26xo0KBBAIDKlSurNNmsUs5uDeiaKsnvSkMDNRDZAiMERERERER2jEVNKtVkTZx25mYOO2o5UzXpltY2ao8ha9rlUKFyllZAN0Oxtva0ffv2AIDIyEiVFhgYCEA3zF9BOvIa2kfWrMnXpY1eyM7N2uFrZee9tm3bqrSyZcvqHZ81svZBe51ldEhbQ5+QkABAd1/IISIBoEuXLgD0IwSGOsLLz46877XDicpOptpImuysLIelBAwPO0qGWTrsqNxOO+yofJ+1M6wbIq+bnG24RYsWal3Xrl0BGB78Qnv95FC28vuIg2VQUWGEgIiIiIjIjrFAQERERERkx9hkiEo12WEvNDRUpbE5R/Ey1OxB/qtd98cffwAA6tevr9JGjhwJAKhUqZJKk7O4FqbZg6kmQ/K42jHdZVg+Pj5epdWpUwcA0K5dO5UWERFh9Pj08NJ2QJdNzU6ePKnSTpw4AUD3PdSpUye1buDAgfmOZ0mnYkP3v6G5M/g9VzQsaU6pvS/k9tqmZLLJkOwYrO0QbKjpj+w0rt1ONhWSTcSsHYCByFKMEBARERER2TFGCKhUM1RTQyVP1qJqZ1uVNWIVK1ZUaXIYPhlR0LL1NZU1rocOHQIALFy4UK2TkQE5Gyig60ysnY3UUD7Jvsja/Z07d6o0ObykvGdq1apl8hj8vnr4yE7HcuhZQPf9Fx4eDkD/u88QORCGjHwDuvtNDtRgaYRAG+FgFIkswV83IiIiIiI7xggB0UPOUFvYoqoxunv3LgDdxDradtay1ktb+1VUNe7yNcshaAHdkKLr16/X+xcAXF1dAQD/+c9/VFqbNm301hEBuiFG165dq9K8vb0BAIMHDwagf4+TfZA1+bI/CQBcu3YNAFC3bl0Auj5Ixsi+A9ohZ22B/erIEowQEBERERHZMRYIiIiIiIjsGJsMET3kijNMfO/ePQC65jiXL19W62SHXe0srkXlyJEjAIDVq1erNNkJ9OrVqwCARx55RK3r3LkzAKBBgwYqjU2FSDa10A4TKpsMaTuPNmrUCADQuHFjAPqzB5N9kJ1+z549q9Ju3LgBAOjduzcAoHr16sWWHzYPImsxQkBEREREZMcYISAim5E1YnLSL20te8uWLQEUrpZMDh2qHc5URiEuXryo0o4dOwYAOHDggEqTHZ7lEIBdu3ZV66KjowucJ3p4yfvt+PHjKk12Gi1XrpxKk52IGRl4eGmjRHJYZdlpGADi4uIAAJs3b1ZpMmIaEhICQH+42Zo1awLQTcRIVNIYISAiIiIismMsEBARERER2TE2GaKHTt5x99m5qmilpaWp5fPnz+ulBQYGqnU1atQAULgQ+c2bNwHodxZetWoVAP3mQXI2T9lZGAD69+8PQNcBNCAgoMD5IPsgZ5/dtm2bSpMzXctZiQGgRYsWBTp+cc4RQoWj/Z6TTRInT56s0v7++28AumZmWmvWrAEAPPfccyrtnXfeAQCEhoaqNDlTMVFJYISAiIiIiMiOMULwENLWUBiqgcpLWyNVVDPHFif5eix57WQd2WkYAE6fPg1AV1sG6Ib7lDNuamvhZQc7bec8OXSjrPnXLst/U1JS1DrZmU8OHQroOi7LYU0BXcdhGQ0AgHr16gGw/Syg9PCStcLa6JMcVrJHjx4qrWHDhoU+FyMDDzb5nQYAvr6+APSvu/x+8/T0zLdvenp6vu1lFJPXnR4Upf/pj4iIiIiICowFAiIiIiIiO8YmQw8hbVMZ2SnOFO3YyA9DkyGJoVjb087Ounz5cgDA1q1bVVpycjIA3VwDMrQOAPHx8QCA27dvqzQ5X4H2uGfOnAGga5KkbTLk5eUFAGjTpo1Kk/MJaJsMaTvqEVlD2+TyypUrAHSd5QFd8486deqotKCgoAKdi99RpYd2MAQ5h4D8l+hh8PA8/RERERERkdUYIXgIaWv5ZUco2ZFTGz2QkYGHKSpARUvWjgK6Tr8JCQkqLSkpCQBQqVIlAMDJkyfVOrmsHVrPzc0NgH4kQdb+d+nSBYB+Jz0fHx8A+jVz8ni//vqrSpMdjQcPHqzSZNSA9zuZop2VWA43Ku87QBf90qYREZV2/GUkIiIiIrJjjBA8hLTtUmUUwNBkKXId27GSpQwN5aptW1u+fHkAutp4be2+bIcttwGAihUrAgAiIiJUWpUqVQCYronV9ivYtGkTAGDq1KkqTUYI1q5dq9IuXryY71ymyCiHdrhBY9sAwNixY81uTw8+2dcFALZs2QIAqFy5skpr3rw5gMJNsEdE9KBhhICIiIiIyI6xQEBEREREZMcY2yYii2mHqHV3dwcA1K9fX6XJ4Rf/7//+D4D+8J9yuFHtMWSzC23zCzmDp/xXzgAK6Dom//zzzyrtr7/+AqA/23FkZKRePgDgtddeA6A/hKQt9e3bFwDQoEGDIjk+FQ9tp+K9e/cCAN566y2V9sgjjwAwPCMtEVFpxQgBEREREZEdY4SADNJ2HjXUkTQvbcdkuWyLYxii7SAtj2to38J0lpbHtSTfpfmc1rp+/bpalpOJaYcAbd++PQBdLbkcVhQAQkJCCnRO7eR6cvhcOUEZAAQHBwPQ72js5+cHAGjcuLFKa9euHQD9idTy6tSpk1p++eWXAQDe3t5Gt5fnAXSvWXt/lsQ1IutkZmYC0HU6l5PrAboomDbSpR0il4joYcEIARERERGRHWOBgIiIiIjIjrHJEBkkm2bkXTZG21E07+zIlh5DO3679niSbEqjbUIim2dom2TI4xg6hqVkfi3Jd2k8Z95mSZY2aTl16pRalh0uW7ZsqdJatGiht732tViaT5m3rKwsAPr3RY0aNQAAH330kUobOHAgAODdd99VafIe0b6uiRMn5suvJJuGbNiwQaXJ8ei/+OILlSY7KcvZjrWzLhu6P+X5tdvRgyUxMRGA7tpr79m2bdsC0HWWJyJ6WDFCQERERERkxxghIINkDSigq/k0NNux3E67vaFjSIZqv03NmKw9p1zWHtfQOWR+5bm025g6h6nZnM3Je07teQ2d09R7WtTn1DIVGUhLS1PLMjKg7XApO/NqO1zKzr6yltzSCIGp66zdz9Ax5MzD2s6/cohT7eurU6cOAN3woAsXLlTrXn31VQC62mIAmD17NgDgmWeeUWl//vknAGDy5Ml659aey9x9b+oaUfG7fPkyAGD16tUAgAoVKqh1Xbt2BaCbUZuI6GHFCAERERERkR1jgYCIiIiIyI6xyRAZZKhZjhyvW8tUZ0lDTXUMjdGu7TSal7aDpqFzGmp2ITujymYa5raXedI267C2w67Mpza/8rymzqnd3hbnNHQMa5sKSdo5B/755x8AuqY4ANCmTRsAQHh4uNHjW9osxtR1NneM1NRUAPr3p6GmWPJ9GD9+PABg6dKlat2vv/4KQH+W2sGDBwMAXn/9dZW2bt06ALrZmd9//321btSoUQD0Z12W91RhrjMVLdlM7ODBgwCAPn36qHXyHi9fvnxxZ4uIqFgxQkBEREREZMcYIaAio61xlzW22lpRQ50v89LWDhuqVTfEUO2wPSto59UbN26o5ZUrVwLQ73A5ZMgQAPodayVTHcVLirzf5MzKw4cPV+t++eUXAMAPP/yg0saNGwcAOHDggEr79NNPAQCTJk0CAHz44Ydq3dy5cwHoog0A0LRpU5vlnwpPRpHOnz+v0uSyvLfDwsLUusDAwGLMHRFRyWGEgIiIiIjIjrFAQERERERkx9hkiMySnTFNdY411PzH0Njy2g7EBW1OYqiTrFbeDq0PUrOV0kQ7Jv+FCxcA6DenaNSoEQDA39/f6DEsaRYG6F8jc9fXGtpj5Z0zQ9vc548//gAAfPPNNyrtpZdeAqA/S+2YMWMAAP379wcA/Oc//1HrNm7cCEB/JuRnn30WADBhwgSVxg6qJSc9PR0AsG3bNpV27tw5ALr7uVatWsWeLyKiksYIARERERGRHWOEgMyStbfa4TvzdvA1N5usLfNhaZSBkQHLaYfsPHHiBADg5MmTKq1SpUoAgGrVqqk0X1/fYspd0dDW/L/xxhsAgM8++0ylyQ7GcphSrapVqwLQDUMKAH/99RcA4K233lJp06ZNAwAsWbJEpX399dcA9GdApuIhZ99eu3atSpNRA9lJvm7dusWfMSKiEsYIARERERGRHWOEoJTTtpE21J4/by25Ldtna49n6XG121lSg2/ouObapct95PuhPQ+jBoZp+3vs3LkTAHD06FGVFhUVBQCoU6eOSjN1HeSQs9r329T2tr4vrfXaa68BAI4dO6bSWrdubdUxBg0aBADo2bOnSnvnnXcAAD///LNKkzXRs2bNUmk//vgjAP0IDNleQkICAP3+MbJPR7169QDoomFERPaEEQIiIiIiIjvGAgERERERkR1jk6FSTtvUwlAHX20HXKDkm8xYe35Dw1Gaa3Ykm6vIf7WdoUv69T+oMjIy1PKuXbsAABcvXlRpcvhM2XTIGHltrG0yVFTDjpqiPafsIL1o0SKD663h4+OjlmXH5IEDB6q0V199FQCwYcMGlSbf1/fffx+ArqkRkP8zTJaR99GpU6dU2pEjRwAAHh4eKi08PBwAULFiRQD8jiAi+8QIARERERGRHWPV00Mkb+2slqz10kYPClMTlncIUEORCu3xC1rLqc2v7PiqfX2mJk2T5zT3OuU5DNVSZ2VlWXSMvOc0t4+sLddun/eclp5XewxLO+7K91CmyYnHAODy5cv5zi07E1euXFmlyetsSN5JwMwxd53z0r5mmQ9DkQXta5DHM7S9XNa+JpknQ6/B0PaGrqnUrFkztSw7bf/0008qbezYsQB0k6XNnj1brfv1118BAG3atMl3XDJOXvu9e/eqNPne16hRQ6U1bdoUAODm5laMuSMierAwQkBEREREZMdYICAiIiIismNsMvQQkU0WDM1NIJsxWNqEw5y8TZC0zTtkMwpt04mCzl5saE4FbZMaQ3MNyPNaek5Dzanka9COz29KaTonoLtHzp07BwCIj4/Pd1zteOyhoaEA9K+HvA7a+02ulx25LW1qZeo6G2oKZKiplZY8hqHzG7pn8q7TrjeUN/mvoWtlqNO79lzyer3yyisqrV+/fgB08yFoZzZu27YtAGDo0KEqbdKkSQB0Y+hTfnL27UOHDqk0ObeGnAsC0DUZIiKyZ4wQEBERERHZMUYISjlt7aWpjru2igxYoqiGjczbkdncdoVhqkPpw3BOWYMvIwNbt25V62rWrAkAaNy4sUoz1OFSO5yrJXkz1+k3b5qh62zovQkICMiXRxlt8fb2Vmlly5Y1ml9DNf2G8pY3AmKIqQ7uxsjO2osXLwYArFixQq2Tw5TOmDFDpcn1MlIA6EcQShNL7wtrjyU7x8vZiQEgPT0dAFC7dm2VVr169QKdi4joYcIIARERERGRHWOBgIiIiIjIjrHJ0EOkOJsFSYZmDzY0rr8tFcfrNNUp9WE4p7xex48fB6Df8XLw4MEAgJYtW6o0Q01kCnodCtLRWJIdRbXNQOTMytoZae/duwcAWLVqlUq7ffs2AF2TqHLlyql11nbMtvQ1FPSa9uzZUy23b98eADBhwgSV9uWXXwIAhg0bptKCgoIAAN26dbPqXA+TxMREtRwbGwtAvzlYlSpVAOhmJSYiolyMEBARERER2TFGCKhA8s6qa6hzc3HWrpN1kpOTAeiGHb169apaFxYWBgCIiIiw6TltcT/cuHEDgH5nWu2Mv3m99dZbarlv374AgJdeegkA0LBhQ7XO19e30HkrKl5eXgCAzz77TKUNHDgQADBz5kyVVlojA7b8njh27JhaltGhChUqqDR5zU11MCciskeMEBARERER2TEWCIiIiIiI7BibDJFB2o54hmZ2lWmG1rGp0IPpypUrann37t0AdE2+6tatq9YFBwcbPYahWXiLk7u7OwCgUaNGKq1///4A9JuByCZsd+/eVWlyXgXZhMTV1bVoM1uE5PXSNp0i/Y7lMTExAIAnn3xSpclZn7XzUxARESMERERERER2jRECMkgbIcjOzja6XUkMz0kFIzsQA8CaNWsAAGXKlAGgP8SonPnXkJK+zj4+PgCA5557TqVpl6n0KehMxdrvJdlJ/sKFCyrt5s2bAICQkBCVVrVqVZvng4joYcAIARERERGRHWOEgAzSDiNqSS1ZSUyKRta5dOmSWt6+fTsA4NFHHwUAdOjQQa0rX768RceTNaqsRTXh3lkAwJ6tJ1WSW50uAIAGhZobK7fvR8rFoyrlwLHcoWPvuef2kajdMFKtCy2bf2I5y06TohYvHj0AADh29Z5Kc69QGwDQMDJUpVl2qiy1lHpqPwBg19kMlVahdu7woJGhun4heQ8rh6AFgK1btwIAUlJ0+W3evDkAoHLlypZkiPcxEdk1PsUREREREdkxFgiIiIiIiOwYmwyRQWwCVLppO0impqYC0G8yJJtWyA7E1apVs8m57LvZRW5TmrNrPlYpw96bBwA4c+C0Suv7T+77ZXWToawTanHu0NymXs+tr6TSnhjeAgAQdCV3SNlBixLUus6/5s7aO+OpGirNVMuerBNzAQBDH9V12F5f6QkAwPAWQSrtyu5BAIBFCZ1V2q+rZgAAnqph6Ay5TYVO/NZLl+9Nua/lkyG6pmorX3odADDmib9V2oJhNfTyLTsSA8A///wDQP9e7Nq1KwDdzNtERGQcn/qIiIiIiOwYIwRED6E7d+6oZdnhMjExUaXJDpeFiQzIaIC2VtbuOhrf2asWJ3XNrUFf1GuOSlu6J7fm/DPXjoU4SW6t+t5PO6mUIZfHAAAOXxqh0vJWyI9/7ze13LVePwDAj1GHVdp/IpFfVu7r+bTTEADA5TG67S+N0K+h/99ZAADv/dZVpdTr9yMAIOrwf1SaOtWdtQCATxYNVuvWrhoIANAGTPp0yb0/f+s4RaVtH/QNAKDD/zKQlJSk1m3btg2A7r4GgE6dct+vihUL1Xu7QDiEKRGVNowQEBERERHZMRYIiIiIiIjsGJsMET2EtE2GNmzYAAC4deuWSmvfvj0AoGbNmoU+l7YphKGmEg+1dHe12OGvUwCAtyLcNRtsKvw57uRev18+K6OSPtmb21TIYL/d/3GpMUQtT3jzPQBA7792qbSRn+TOTq09xJ0NvwAAPivzCQBg7whznZBzU2sMmaBS3nyvNwDgr10jdflt+b+90+8CAFLKl1PrdDMNaHnlrit3XaWk3s2dPT0p8xoA/Zm3nZycAABBQboOzyXZmdiuPxNEVCoxQkBEREREZMcYISB6CN28eVMt79y5EwAQEhKi0mSEoDCdig0pDR0nbdrxuUI9tdik8Ecz7GBulOFP7wEqaWs9Yxtr6er0W3YZCgC48/wOlXbsfxEC7aEObvoTAOA9YGu+daZP1VItdhmaG516fscxlfZJy/8dqUJuJ+v/+PdQ6577LXe40Yk9NcOZrngbAPBt9ZdV2hK33JmMt27IzduxY7rjy87E9epZnONCs7TjcGn4TBARMUJARERERGTHWCAgIiIiIrJjbDJEVMppmy7IpkKnT+tmxpWzTleoUEGlhYaGAgBcXV2LI4sPlNLWhOPc6RgAQEaNp1Wav7UHqZjbObjJv1tV0oX/9Tuv531OpZ2OyW2WU+Npq8+gOVVu46l/t15QaXf+1/jIG34AgA5fLFXrAlfkztvw07epKq1at88BAJtGRKi0zP91lN+yZQsA4Pz582rdY489BgCoX79+gfNdGKXtniIiyosRAiIiIiIiO8YIAVEpl5OTo5YPHjwIAIiPj1dpVapUAQDUrVtXpZUpoxvCkh5s2dmZuQtNq6q0qka2Ncord3DPAJxRSVeS/7fgna07lzqV1WfQnCogd+HMFZWmTiUTXALVujqPvwYA+Pxx08e9+r/o19GjRwEAGRkZal2jRo0AADVq1Mi/YxFhVICIHiaMEBARERER2TFGCIhKOW1N5bZt2wAAe/fuVWmPPPIIAKBVq1YqTfYrsEc2HXa0tKiQWyMfXiynst1ZrlzRRRni4uIA6KJbFStWVOuCg4MB6CYo+//27i1Gq/Jq4Pi/DGeY4YxyPs9wGI5FjiKFitjapo2k2lQJrelF23y2xpse0qZJb/w0vTGt/ZKmxtje1CsMNdZAgEqFCiiiIhAZhIIMhxGQQZjh6HcxPs/ew7zMeYb3Zf9/N27WM7P3prwz6d5rrWfdKpn8bEm6LWT3/xVIkiRJ8oFAkiRJyjJLhqQCl55K/OGHHwJQVVUVY9OnTwdg6tSpnXtjyh/VFwA43SmXar+rpJvjt26tm7I8cuRIoH6TfElJCZKk1jNDIEmSJGWYGQKpQJ07dw6A/fv3x1jYinHIkCExNnr0aMCtRoOCbfh893A8DEdjm/u9VXXNuR+RfC4e6NvYpVp8hdSlvtjadMgDMdbIpRr11ltvxeONGzcC8OijjwJw7733xrUePXq08grtq2A/W5IyzwyBJEmSlGE+EEiSJEkZZsmQVKAqKiqAZPYAQL9+/YD6DZeDBg3q3BtTu5pQWjc/oseeIzF26ov/jm3uSY7VNZu/NWRWDI27I14hxkoX1ZXe7DnS4iukLlVX5jNk1rgYu+NmX3wTp07VXf/o0aMxduFCXWP02LF195SeSmypjiS1jRkCSZIkKcPMEEgFat++fQD861//irEFCxYA9Rsue/Xq1an3pXY26x4AHqr6VQy9ufe3AMxr5k6y7+1YV3fwyP/F2Oycl3oIgKpfvQnA3t/Oi2uNX+q9eJRcKtcVbu7kyZPxeOfOnUCSFQAYM2YMAMOHDwfMCkhSezJDIEmSJGWYDwSSJElShlkyJHWwzz//vEGsLeUOtbW1ABz+Yq/4Q4cOxbVVq1YBMHt2Uq7h/IECV1JXMvSDJ07E0MPPbQDg0edWxNjAG7/vzCvx8Pe/vgjAL7fcHWPdcl7qBwA8ceJhAJ7b8Ghce25FgyukLvX7ePzri78EYMvdua5wc+kG4vXr1wPQvXv3GPvqV78KwB13tLRFWZLUFDMEkiRJUoaZIZA6SK7MwI1rzc0UpJsrw3ajYWvGdAZgxIgRAPTp06dlN6tWqT6wNR6/eehCjq/YDcCBdGhn3dvv9VcafvXQafcBMGtEOloCwLLfvBQj35/3LQDmffMXMfa7x+cC0PtIXWbg6Sf/HNd6/bGu6ff5eU28tS9ZBsBvXvp+3fm/lTQVf/MXvwPg8bnJ5+3IK08D8OSfk8b1P773fN33tixBwJEjybaqO3bsAOCee+6JseXLlwMwcODNMxWSpNYxQyBJkiRlmA8EkiRJUoZZMiR1kJY2DjdWRpTeo/2f//wnAJcuXQLqzxwIJUMtvWaa+7s3X83xd+Lxpk0f3/Tryn/+8+QPZzZ98fUNv27uiFwlQ18YuCwePrOvrmxszaZ1MfbyFyc8XzwDgKferopriycVA7kbiXMZuOwZAPZVrImxTete/uK+z8dY8YynAHi7anGMTSpu+irXr1+Px9XV1UD9puLTp08DMHTo0BibMaPu71VUVNS8v4QkqdnMEEiSJEkZZoZAyhONvZmvrKyMx6+//joAo0ePBtqWIQjXbKwBWjd3xz3/E4//955GvrC9dat7cz5t5Q9jaNrKjrjMtHi88od1x+1xmXST/FtvvQXAsWPHYmzcuHEAjB07NsZuzAykP7NmtSSpbcwQSJIkSRlmhkAqAOkMwd69ewGYNGkSAIsWLYprxcXFDb63OX0C6T83t6+gpVunSsGnn34aj0NPzJkzZ2LsG9/4BgBlZWU3PUdTnzs/n5LUfGYIJEmSpAzzgUCSJEnKMEuGpDxz+fLleHzgQN2M2/QU15EjRwJJ42WuMqG2sNFYHa2qKtkSNTQVDxs2LMaWLFkCwIQJEzr3xiQpo8wQSJIkSRlmhkDKMzU1NfF4y5YtQP0MwT331O1vOX369A69j6aaMW3WVHOFQWRhu9H0ELJPPvkEqJ8NKC8vB6Bbt+aOUmvIz6ckNZ8ZAkmSJCnDfCCQJEmSMsySISnP1NbWxuONGzcCcPHixRj72c9+BsDMmTObdT5LJ3SrhQb1nTt3AvDuu+/GtVAeNHv27BhrS6mQJKnlzBBIkiRJGWaGQMozx48fj8eh+XLAgAExNm3aNACGDBnSuTcmtdLVq1cB2L59OwB79uyJa/PnzwfgrrvuirHQhNyli++sJKkz+NtWkiRJyjAfCCRJkqQMs2RIyhP79u0DYNeuXTEWprdOnDgxxkpKSlp03lwTh200Vme6dOkSALt37wagoqIirv3kJz8BYM6cOTFmqZAkdS5/60qSJEkZZoZAyhMhM7B169YYC5mBBQsWxFjPnj0798akVqiuro7HoYk4TOFON8SPGjUKgO7du3fi3UmS0swQSJIkSRlmhkC3nRtr5gulXj5kCHbs2BFjTz75JACLFy+OsaKiohadt1D+/rq9pLcWXb9+PQBDhw4FYNy4cXGtuLi4c29MktSAGQJJkiQpw3wgkCRJkjLMkiHddgqhRObatWtAMokY4PTp0wB069YtxsaOHQsk249KhSJsowuwefNmAJYuXQrAsmXL4polQ5J065khkCRJkjLMDIF0Cxw7dgyA7du3x9j169cBKCsrizEzAyo0ly9fBuDw4cMxdujQIQBWr14NwNy5c+Oa241K0q1nhkCSJEnKMB8IJEmSpAyzZEh5LT1ToBCahZvr4MGDALz66qsxVlJSAsBdd90VY4MGDercG5NuIvws5vo5PHfuXDx+//33ATh//nyMlZaWAjB69GjAMiFJyjdmCCRJkqQMM0OgvJZ+G1lbWwskDbkAZ8+erbcGyZae4Y1mOsuQ6y1naNwNby8BevXq1eDr2lNouNy9e3eMPfjggwDcfffdMRayBlI+O3nyZDzesGEDADU1NTEWPtOjRo3q3BuTJDWLGQJJkiQpw3wgkCRJkjLMkiEVjKqqKgBeeOGFGAsTUEOTLsClS5eApNwnlBBBskd62ne/+10AHn/88RibPHkyAL17927zfaevH6YRV1ZWAnDhwoW4FkqXJkyY0OZrSu2tsfK5EydOxOPQKD9z5swYu//++wEYMWJEB92dJKktzBBIkiRJGWaGQAWjT58+AEyfPj3GPvroIwAOHDgQY/369QNg5MiRANxxxx1xLTQVh2wDJE3Kzz//fIw99NBDACxatAiAbt26tfq+q6ur4/G2bdsA+OSTTwAoLy+Pa2PGjGn1NaTOkm7SD9m4I0eOxFj4vKe3zJ06dSpgk7wk5SszBJIkSVKG+UAgSZIkZZglQyoYAwcOBODhhx+OscGDBwP1Gx5DQ/Dy5csBmDNnTlwLE1L37NkTY08//TQAf/rTn2Js6NChAEybNg2AAQMGxLWioqIW3XcoD4Jkj/ZQavH1r389ro0bN65F55VuhfTMjzBHI8zVgGTWwPjx42PMUiFJym9mCCRJkqQMM0OgvJZuYMy17eGVK1eA+pNSFy5cCCTNx2HqcFrIIgD079+/wXrYDjS9ZWhrnTp1Kh5v374dgClTpgCwdOnSuGZTsfJF+ucuCD9/6a17N23aBEBFRUWMLVmyBKjf/C9Jym9mCCRJkqQMM0OgvNbYMCRIBn2FmnxI6pVz1S2HN/7Hjx9vcI3i4uIYC1sm9ujRo1n3ceP5Idl+Mb0l42effQYkWYnS0tIG9yHdauGzmCtTcPbs2Xj89ttvA3D16tUYW716NQBlZWUdeYuSpHZkhkCSJEnKMB8IJEmSpAyzZEgFI5QFHT16NMZCg+OsWbNibNKkSTc9R5hQ/Je//CXGQknPypUrY+zLX/4ykLvhuDHpkqE333wTgH379sXYvHnzAJg9ezZgmZBuncYah3P9OTTaHzp0KMbClrp33nlnjIWtetOTiiVJ+c0MgSRJkpRhZghUMMIWo+ltPCsrKwH473//G2OvvfYakGQD0oPEwhvNdGzRokVA/UFK6W1JW3OPANu2bQNg//79MfaVr3wFqD8sTSoE4XMchpFBMiww3UBsZkCSCo8ZAkmSJCnDfCCQJEmSMsySIRWM69evA0lzI8CBAwcA+Mc//hFj4bhr17qPd3qP9DAZ+KmnnoqxGTNmANC9e/cYC9/bUmHOACR7tIcyJUialcvLy4GmJzFLHaWln7edO3cCSbM8wMyZMwFYvHhxjOVqVpYk5TczBJIkSVKGmSFQwaipqQHggw8+iLGePXsCsGbNmhjr3bs3kGQUQhYBkreXf/3rX2PsgQceAOD++++PsZa+PQ0Tk99///0G5xgxYkSMDR8+HEgyEL5NVT5LZ+P27t0LwMGDB2Ns1apVAMydOzfGWptdkyTdOmYIJEmSpAzzgUCSJEnKMHO7KhjV1dVA/ZKhMCH1sccei7Fx48bV+7533nknHr/44osAPPvsszF2/PhxoP6E43COdKNxY0I5RZg9AEl5UPq8xcXF9b7PRmLlozAVPD3fI8z/SJe5TZw4EUjmEUiSCpMZAkmSJCnDzBCo3YU3iO399vvTTz8F6m/jOWzYMKB+4+6NZs2aFY8rKioAeOWVV2IsNCu/9957MVZSUlLv/E0J37tp06YYW7FiBZBMJ4ak4Vm3r1yN4oWWCQqNwxs2bIixPn36AMnWvWBmQJJuF2YIJEmSpAwzQ6C8FLYMPXv2bIyFzECvXr1irF+/fkDjtf7pt7Ohrn/AgAGNXivUUDcmvSXjoUOHADh27FiMjRkzBkgGnzV1n1K+CJm0dMartLQUgGXLlsVY//79O/W+JEkdwwyBJEmSlGE+EEiSJEkZZsmQ2l1jDZTNbbgMZTzpqahhe9ApU6bEWHpLz+aoqqoCkpIIgPLyciDZwhSSBspcQnPznj17YixsiRpKkiBpdA7TlNvLjf8bFlrD6u0knxuI0/fW0nsKJXC7du2KsUWLFgGwZMmSGOvbt29bblGSlCfMEEiSJEkZZoZAnaKlb1K7dq37aKYHI504cQJI3ugDTJ8+vclrv/HGG/H41VdfBZK3/JBsnThhwoQYu3GAWFqXLl0afM3ChQsBmDx5coyNHTu2yXtri3x5E63CVltbG49DZiAMIRs0aFBcGzlyJND4z4YkqTCZIZAkSZIyzAcCSZIkKcMsGVKHaUvD5eXLlwH48MMPY+zo0aNA/UmpgwcPvuk5QgPxCy+8EGPr1q0DkvkFANOmTQNg4sSJMdajR4+bnjdMMU7PFwh7tF+5ciXG0vMS2pOlQvkjn/8tmntvp0+fjsdhMvG5c+cAWL58eVwbP358O96dJCmfmCGQJEmSMswMgTpMU28owzTgyspKADZv3hzXXnvtNQB27NjR4OtD4yMkGYKioqIYCw3Jn332GQAffPBBXJs6dSoADz74YIyFyauNZQVySf/9QjYgV1agLds/Sh0tPaE7/NyFn6vVq1fHtXQGTZJ0ezFDIEmSJGWYDwSSJElShlkypFvm6tWrAJw5cwaArVu3xrW1a9cC0K1btxgLE3//85//xFiYaJwuywkNyWGKaigTAvj2t78NwE9/+tMY66gynlxN1VK+CRPAAQ4cOAAkU7vnz58f10IzvSTp9mOGQJIkScowMwTqME1tOxre+IdmxSeeeCKufec73wHqNwuH45AVuPH4xlhoLk6/2Rw2bFiD++goNhCrPbRl+94bhawcwN69ewHYt29fjIXp2mVlZUDTU4nb894kSbeOGQJJkiQpw3wgkCRJkjLsS5/b+agOUijlBOE+8/HelF9OnToFwLFjx4Bk1gUkzezpMrZcPwO5Pm+hvC2UtE2ZMuWm33fj97bExYsX4/GLL74IwO7du2MsTPAOszm+9rWvNXq+QvkZlyQ1zgyBJEmSlGE2FavDFMqbws7cdvTGaznFuLBs374dgL/97W8A7Nq1K66dOHECqP/vGP590//O165dA5KsACQTrletWgXAM888E9dCU3x7fD7CtG+Af//73wAcPXo0xp588kkAZs+e3azz+ZmVpNuDGQJJkiQpw8wQSB0kvD1Nvx22ZaewjRkzBoB58+YB8NFHH8W10E+QHoQ3ZMgQINliF5LMQLqePwwEq6ioAOC5556LaytXrgRgzpw5rb7vkBlI329VVRVQf/jfpEmTgGQwmSQpG8wQSJIkSRnmA4EkSZKUYZYM6baQz825uZpMc63p1muqEXzGjBkAlJaWAvXLfo4fPw7AmjVrYqy8vByAvn37NjhvTU1NPH755ZcBWLt2LQDPPvtsXDt37hwA06ZNi7EePXo0568ThfKgjz/+OMaGDh0KwIABA2LMUiFJyiYzBJIkSVKGmSHQbaFQ3rQXyn1mVWPZnLTwhj49hCw0544aNSrGcmUGgrDVKMB9990HwNWrV4Ek2wBw5MgRANatWxdjixcvBmD48OE3PX9a//79AZg5c2aM9enTB6jf8By2OM3FIWSSdPsyQyBJkiRlmA8EkiRJUoZZMiRJOTRWDhOadGtra2OsS5e69ytNNfyG0pv0+QcNGgTAwoULAdi5c2dcCyVDmzdvjrGxY8cCzS8ZCqVL6RKmcA5JkswQSJIkSRlmhkBSJrWmSfbMmTMAHDp0CEiyApBs39nUORpbLyoqApIJx5BkCE6cOBFj6S1LO4sNxJJ0+zJDIEmSJGWYDwSSJElShlkyJEnNdPLkSQAOHjwIQHFxcVwLU367dm39r9UwyyBMEQbo3bs3AGfPno2xK1eutPoakiTdyAyBJEmSlGFmCCRlUmuaZCsrKwGoqKgAYNiwYXGtrKwMgO7du7f6nkKGYODAgTEWshDnz5+PMRt8JUntyQyBJEmSlGE+EEiSJEkZZsmQpEzJNSm4ucL8gXfeeQeAyZMnx7XS0lKgbSVD4d4uXboUY6GMKMw5gKanIbeX9KwGy5Qk6fZlhkCSJEnKMDMEktRMVVVVQNJcXFJSEtcGDx7c5vNXV1cDSdMyJNmCkSNHxljfvn3bfC1JkgIzBJIkSVKGmSGQlCktrYW/cOFCPO7fvz+Q9AuktwdtD2Hg2UsvvRRjo0aNAmDp0qUxNmjQoHa9riQp28wQSJIkSRnmA4EkSZKUYZYMSVIONTU1ABw/fjzGwpai48ePB5Ipwm115MgRINnONGxvCkl50vTp02OsvUuVJEnZZoZAkiRJyjAzBJKUw7lz5wDYv39/jIUG47DFaFsGhKWHfq1btw6AN954A4CysrK4dvfddwNQXl4eY0VFRa2+VtAeg8Y66rySpM5lhkCSJEnKMB8IJEmSpAyzZEiScjh79iwAW7ZsibFQKrRo0SIAhg8f3uLzbtu2DYBNmzY1iIVSoEceeSSu3XvvvfXWWiOU8eQq8ZEkyQyBJEmSlGFmCCQphzA1eOPGjTG2YsUKAEaPHg1A167N+xVaWVkZj//whz8A8Pe//z3GJk6cCMD3vvc9AH70ox/FtZKSkhbf+820tOG3qa+3gViSbg9mCCRJkqQM84FAkiRJyrAvfW6XmaQMCb/ywpwBgD179gCwdu3aGFu/fn29NUhKhWbNmgVAz54941qXLg3fr1y6dKnef9NfN3To0BibP38+AAsWLABgxowZLfo7tYYzBCRJgRkCSZIkKcNsKpaUSbW1tfH4448/BmDDhg0xFiYU33nnnTFWU1MDwOuvvw7Uf8ue6417uEavXr1i7Mc//jEAjz32WIyVlpbe9D7DeX17L0nqKGYIJEmSpAyzh0BSJl2+fDkenzlzBoDDhw/H2MWLFwHo0aNHjF2/fh2Aa9euNThfrl+l4evTQ8VCH8KIESNiLH0NSZI6mxkCSZIkKcN8IJAkSZIyzJIhSZIkKcPMEEiSJEkZ5gOBJEmSlGE+EEiSJEkZ5gOBJEmSlGE+EEiSJEkZ5gOBJEmSlGE+EEiSJEkZ5gOBJEmSlGE+EEiSJEkZ5gOBJEmSlGE+EEiSJEkZ5gOBJEmSlGE+EEiSJEkZ9v8yIRrbkIRQuQAAAABJRU5ErkJggg==",
"path": "images_version_6/image_34.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, If AB parallel CD, then the size of angle 2 is ()
Choices:
A:10°
B:50°
C:80°
D:100°
|
||
171
|
35
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAALUAAABkCAAAAADlWi7/AAAFKElEQVR4nNWbf0yUdRzH33feXYCeRz8mhhophJSxufinzYpyrB+T3PjD1AquodYClhHNmjqHaykDcQsHmz+wMW5FhBeImSvFlSVDEotVEnDKUFkDjR8HBxxwT3/wY+w4uPvueX8f1usf7nbj/bz48H0+z/f7PN/TKQAAfL0J0skuNY64oy4SkvTjP1LaCVn+yP50vePWwKuEpHHril+eJGT55VICkGomBBkAoKs70U3I8oezoVCpzrtKSNIDQOqO1hhClj9qOyNj2x2hjChFUXYqyipFA96qUYaXH2Ak6YGy6shIxt/vj2HHCzBllg0RovQYcDkcZWsJUf6oXQrgypIgQpShP6sAGOkgRPmj6H1gT321olMfpVvT23j/hqbQHof6rDlpfsUNS+/D9uWMMJ3CSNEavWZHYpZHO2vCcJ7CAAA/lhq6FgLQAx7GyTIdBePCxsHByEOsUAMAxJvDggbG/4XscT6Rp0O/JXMrO1UDUg5Q2geAiVprQfqhJbwwrc7G97KI0lrV+sWKxcw4baxTznKPo4n1m0Xkw2hhbT3BmOdNRwPrxHK2tPweoli/CqGHyrZ2pRUt5KdKHiF3D2ZLkJZ8RR/b+oWUskgdIQNpcqSl1lpJsksqisRaD6ZXkufqU8g7G7u3lVDXL9ORZt25r1xeRWQltx8ukNhUJY3rewX7TXKSAcjqIT2pdhmxU0iptXOXXGk5td5SJiF0OhJqffdt2dISekhPRik90xu6dUuu9ErzrevOHScn+oI8rhvPf8QN9A231s35JdS82aBaN1RqI021dtgOE9PmgmjdUqqVNNH6j4JjtCx/0Kx/+E47ado85NyNNE5QQJD6de3vWkqTRkjN9zmUnECh1Lq+QVtpSq1/Pp1LSBGBcDZevPbBiJGgIoB669OX8hgiQqi2Lun6kCIihFrrsmErR0QIlT3E3jcf0ip7yEnnTpKHGOK1vhwdtbq87k8A+HKepMWtkz5ubv379mYdAFvnPEkLj5CMoZ8AZFx9AqhwzZe0qHVV1WUAMD0NlDqyJfgEhmDnSw6enEVbkxP4NoEiOK47lk2+MvWQTUQQs/63I3zy5XG3RutxX4hZW1afAgCcAfC6/qQEn8AQs16w25UPINEEAMkj81Zt0XnIjZfN91AXNv6m+sonfKNAUDd7+rYpiyUihLrZ04bYfSQPMdTOVGuaNF2cT6B2tbt+xV6KhxjqV2ANRScYIkIQVrs3C2m7ZgOFcD9kZXqG+hAxGHdxVmZuJ6SIwLk7eWd3sWbbdAHW3cllObt6KUEBwroTfCcvV+YmBS9oz9E79x65jxTlH97T/95tJTK27vmE95TUUpyJUVra3FB3WrxWTgybC+oTadu7GhWbu6tlYIvNwsybDfJenN6cg5yc7tk+cZoHwx5g7yDybAxZZPSMKboxrw9Mbo/J4Lz9j78vCBvGFOCh8Ac9s3xuMvY9+w5/39N1JcQVHNzn3bxHjHr3qDnc568IQ7TOP4IQV/BzR2mBs8OsdWGtDXgq5tgiXqT3EfJ0ChBazOx8F2IB1PxaSYz0Iv2N+La2thgz0br/ehKA0JfO8iJn0JaGz7E9mmh9YW00APRJfPY49Ffc0E0kMK+NVWsAAPXP8yK9Oe+KjlsM5hXdU2sFgMagx2iRM7BbHXviwLRuiVgBABt3PEOL9Eb5LQnrIsG03h8PoPLR3M20xBl8s+pxRDzSeo23gyhqtOkoLEvbWHm+sK8DUGA787/6Fn3UKCJueRYkfob/AMefBdVKp7tKAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_35.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure: AB parallel DE, angle B = 30.0, angle C = 110.0, the degree of angle D is ()
Choices:
A:115°
B:120°
C:100°
D:80°
|
Như hình vẽ: AB song song với DE, góc B bằng 30°, góc C bằng 110°, số đo của góc D là ()
Lựa chọn:
A: 115°
B: 120°
C: 100°
D: 80°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure: AB parallel DE, angle B = 30.0, angle C = 110.0, the degree of angle D is ()
Choices:
A:115°
B:120°
C:100°
D:80°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure: AB parallel DE, angle B = 30.0, angle C = 110.0, the degree of angle D is ()
Choices:
A:115°
B:120°
C:100°
D:80°
|
As shown in the figure: AB parallel DE, angle B = 30.0, angle C = 110.0, the degree of angle D is ()
Choices:
A:115°
B:120°
C:100°
D:80°
|
172
|
35
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAALUAAABkCAAAAADlWi7/AAAFKElEQVR4nNWbf0yUdRzH33feXYCeRz8mhhophJSxufinzYpyrB+T3PjD1AquodYClhHNmjqHaykDcQsHmz+wMW5FhBeImSvFlSVDEotVEnDKUFkDjR8HBxxwT3/wY+w4uPvueX8f1usf7nbj/bz48H0+z/f7PN/TKQAAfL0J0skuNY64oy4SkvTjP1LaCVn+yP50vePWwKuEpHHril+eJGT55VICkGomBBkAoKs70U3I8oezoVCpzrtKSNIDQOqO1hhClj9qOyNj2x2hjChFUXYqyipFA96qUYaXH2Ak6YGy6shIxt/vj2HHCzBllg0RovQYcDkcZWsJUf6oXQrgypIgQpShP6sAGOkgRPmj6H1gT321olMfpVvT23j/hqbQHof6rDlpfsUNS+/D9uWMMJ3CSNEavWZHYpZHO2vCcJ7CAAA/lhq6FgLQAx7GyTIdBePCxsHByEOsUAMAxJvDggbG/4XscT6Rp0O/JXMrO1UDUg5Q2geAiVprQfqhJbwwrc7G97KI0lrV+sWKxcw4baxTznKPo4n1m0Xkw2hhbT3BmOdNRwPrxHK2tPweoli/CqGHyrZ2pRUt5KdKHiF3D2ZLkJZ8RR/b+oWUskgdIQNpcqSl1lpJsksqisRaD6ZXkufqU8g7G7u3lVDXL9ORZt25r1xeRWQltx8ukNhUJY3rewX7TXKSAcjqIT2pdhmxU0iptXOXXGk5td5SJiF0OhJqffdt2dISekhPRik90xu6dUuu9ErzrevOHScn+oI8rhvPf8QN9A231s35JdS82aBaN1RqI021dtgOE9PmgmjdUqqVNNH6j4JjtCx/0Kx/+E47ado85NyNNE5QQJD6de3vWkqTRkjN9zmUnECh1Lq+QVtpSq1/Pp1LSBGBcDZevPbBiJGgIoB669OX8hgiQqi2Lun6kCIihFrrsmErR0QIlT3E3jcf0ip7yEnnTpKHGOK1vhwdtbq87k8A+HKepMWtkz5ubv379mYdAFvnPEkLj5CMoZ8AZFx9AqhwzZe0qHVV1WUAMD0NlDqyJfgEhmDnSw6enEVbkxP4NoEiOK47lk2+MvWQTUQQs/63I3zy5XG3RutxX4hZW1afAgCcAfC6/qQEn8AQs16w25UPINEEAMkj81Zt0XnIjZfN91AXNv6m+sonfKNAUDd7+rYpiyUihLrZ04bYfSQPMdTOVGuaNF2cT6B2tbt+xV6KhxjqV2ANRScYIkIQVrs3C2m7ZgOFcD9kZXqG+hAxGHdxVmZuJ6SIwLk7eWd3sWbbdAHW3cllObt6KUEBwroTfCcvV+YmBS9oz9E79x65jxTlH97T/95tJTK27vmE95TUUpyJUVra3FB3WrxWTgybC+oTadu7GhWbu6tlYIvNwsybDfJenN6cg5yc7tk+cZoHwx5g7yDybAxZZPSMKboxrw9Mbo/J4Lz9j78vCBvGFOCh8Ac9s3xuMvY9+w5/39N1JcQVHNzn3bxHjHr3qDnc568IQ7TOP4IQV/BzR2mBs8OsdWGtDXgq5tgiXqT3EfJ0ChBazOx8F2IB1PxaSYz0Iv2N+La2thgz0br/ehKA0JfO8iJn0JaGz7E9mmh9YW00APRJfPY49Ffc0E0kMK+NVWsAAPXP8yK9Oe+KjlsM5hXdU2sFgMagx2iRM7BbHXviwLRuiVgBABt3PEOL9Eb5LQnrIsG03h8PoPLR3M20xBl8s+pxRDzSeo23gyhqtOkoLEvbWHm+sK8DUGA787/6Fn3UKCJueRYkfob/AMefBdVKp7tKAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_35.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure: AB parallel DE, angle B = 30.0, angle C = 110.0, the degree of angle D is ()
Choices:
A:115°
B:120°
C:100°
D:80°
|
Như hình vẽ: AB song song với DE, góc B bằng 30°, góc C bằng 110°, số đo của góc D là ()
Lựa chọn:
A: 115°
B: 120°
C: 100°
D: 80°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure: AB parallel DE, angle B = 30.0, angle C = 110.0, the degree of angle D is ()
Choices:
A:115°
B:120°
C:100°
D:80°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure: AB parallel DE, angle B = 30.0, angle C = 110.0, the degree of angle D is ()
Choices:
A:115°
B:120°
C:100°
D:80°
|
As shown in the figure: AB parallel DE, angle B = 30.0, angle C = 110.0, the degree of angle D is ()
Choices:
A:115°
B:120°
C:100°
D:80°
|
173
|
35
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAALUAAABkCAAAAADlWi7/AAAFKElEQVR4nNWbf0yUdRzH33feXYCeRz8mhhophJSxufinzYpyrB+T3PjD1AquodYClhHNmjqHaykDcQsHmz+wMW5FhBeImSvFlSVDEotVEnDKUFkDjR8HBxxwT3/wY+w4uPvueX8f1usf7nbj/bz48H0+z/f7PN/TKQAAfL0J0skuNY64oy4SkvTjP1LaCVn+yP50vePWwKuEpHHril+eJGT55VICkGomBBkAoKs70U3I8oezoVCpzrtKSNIDQOqO1hhClj9qOyNj2x2hjChFUXYqyipFA96qUYaXH2Ak6YGy6shIxt/vj2HHCzBllg0RovQYcDkcZWsJUf6oXQrgypIgQpShP6sAGOkgRPmj6H1gT321olMfpVvT23j/hqbQHof6rDlpfsUNS+/D9uWMMJ3CSNEavWZHYpZHO2vCcJ7CAAA/lhq6FgLQAx7GyTIdBePCxsHByEOsUAMAxJvDggbG/4XscT6Rp0O/JXMrO1UDUg5Q2geAiVprQfqhJbwwrc7G97KI0lrV+sWKxcw4baxTznKPo4n1m0Xkw2hhbT3BmOdNRwPrxHK2tPweoli/CqGHyrZ2pRUt5KdKHiF3D2ZLkJZ8RR/b+oWUskgdIQNpcqSl1lpJsksqisRaD6ZXkufqU8g7G7u3lVDXL9ORZt25r1xeRWQltx8ukNhUJY3rewX7TXKSAcjqIT2pdhmxU0iptXOXXGk5td5SJiF0OhJqffdt2dISekhPRik90xu6dUuu9ErzrevOHScn+oI8rhvPf8QN9A231s35JdS82aBaN1RqI021dtgOE9PmgmjdUqqVNNH6j4JjtCx/0Kx/+E47ado85NyNNE5QQJD6de3vWkqTRkjN9zmUnECh1Lq+QVtpSq1/Pp1LSBGBcDZevPbBiJGgIoB669OX8hgiQqi2Lun6kCIihFrrsmErR0QIlT3E3jcf0ip7yEnnTpKHGOK1vhwdtbq87k8A+HKepMWtkz5ubv379mYdAFvnPEkLj5CMoZ8AZFx9AqhwzZe0qHVV1WUAMD0NlDqyJfgEhmDnSw6enEVbkxP4NoEiOK47lk2+MvWQTUQQs/63I3zy5XG3RutxX4hZW1afAgCcAfC6/qQEn8AQs16w25UPINEEAMkj81Zt0XnIjZfN91AXNv6m+sonfKNAUDd7+rYpiyUihLrZ04bYfSQPMdTOVGuaNF2cT6B2tbt+xV6KhxjqV2ANRScYIkIQVrs3C2m7ZgOFcD9kZXqG+hAxGHdxVmZuJ6SIwLk7eWd3sWbbdAHW3cllObt6KUEBwroTfCcvV+YmBS9oz9E79x65jxTlH97T/95tJTK27vmE95TUUpyJUVra3FB3WrxWTgybC+oTadu7GhWbu6tlYIvNwsybDfJenN6cg5yc7tk+cZoHwx5g7yDybAxZZPSMKboxrw9Mbo/J4Lz9j78vCBvGFOCh8Ac9s3xuMvY9+w5/39N1JcQVHNzn3bxHjHr3qDnc568IQ7TOP4IQV/BzR2mBs8OsdWGtDXgq5tgiXqT3EfJ0ChBazOx8F2IB1PxaSYz0Iv2N+La2thgz0br/ehKA0JfO8iJn0JaGz7E9mmh9YW00APRJfPY49Ffc0E0kMK+NVWsAAPXP8yK9Oe+KjlsM5hXdU2sFgMagx2iRM7BbHXviwLRuiVgBABt3PEOL9Eb5LQnrIsG03h8PoPLR3M20xBl8s+pxRDzSeo23gyhqtOkoLEvbWHm+sK8DUGA787/6Fn3UKCJueRYkfob/AMefBdVKp7tKAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_35.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure: angle B = 30.0, angle C = 110.0, the degree of angle D is ()
Choices:
A:115°
B:120°
C:100°
D:80°
|
Như hình vẽ: góc B = 30,0, góc C = 110,0, số đo góc D là ()
Lựa chọn:
A: 115°
B: 120°
C: 100°
D: 80°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure: angle B = 30.0, angle C = 110.0, the degree of angle D is ()
Choices:
A:115°
B:120°
C:100°
D:80°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure: angle B = 30.0, angle C = 110.0, the degree of angle D is ()
Choices:
A:115°
B:120°
C:100°
D:80°
|
As shown in the figure: angle B = 30.0, angle C = 110.0, the degree of angle D is ()
Choices:
A:115°
B:120°
C:100°
D:80°
|
174
|
35
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAASsAAADJCAYAAAB7XxSJAAAeiklEQVR4nO3de1RU5/3v8ffcGEAYEFAgIEbBKyoRUASNCdbESxtNclymjb+kTU+bxq60qUlNf9o2SdvT5pykJ/djsoy5/PqzTdNok+UlIoliiCICIigQRMAbiKjchssMw8zs84cy8UIMKjizZ76vtVwrsPfsfAc2n3meZz/72RpFURSEEMLDad1dgBBC9IeElRBCFSSshBCqIGElhFAFCSshhCpIWAkhVEHCSgihChJWQghVkLASQqiChJUQQhUkrIQQqiBhJYRQBQkrIYQqSFgJIVRBwkoIoQoSVkIIVZCwEkKogoSVEEIVJKyEEKogYSWEUIUBDSuz2czGjRtpaGgYyMMKL+VwOFi3bh133303UVFRJCQkMGLECMLDwwkLC2PChAmsW7fO3WUKD6EfqAOVlJSQn5+Pw+HAbrcP1GGFF9Nqtdx55534+/uTl5fH0aNHSUtLIykpCbPZzPr169m6dStBQUEsXryYgIAAd5cs3GhAwspqtbJlyxa++OILFi9ejE6nG4jDCi+n0WhISEhAp9PR0dFBSEgIS5cuZeLEiQAcOXKErVu3smHDBubNmydh5eNuOKy6u7vZs2cPhYWFdHR0EB8fT1BQ0EDUJnxEVVUVBw8eJCMjA5PJBICiKKSlpdHW1obdbkerleFVXzcgYdXQ0EBMTAwxMTHYbDbpBoprUl9fT0NDAwsXLiQsLAyAvLw8Xn/9dUaNGsVTTz3FkCFD3FylcLcbCqvq6mpyc3MZM2YMDQ0NnD59mpCQEPT6ARsKE15MURQ6Ojqoq6ujsrKSDz74AJPJhNPpxGAwMH36dNLS0hg7dqy7SxUe4IZS5cCBA+zevZsf/vCHlJWVcerUKUaOHCmfgqLfysvLaWlpAeDNN98EICYmhszMTB5//HGioqLcWZ7wINcdVmvXriU4OJh3330XgLq6OpqamoiNjZUBdtEvTqeTHTt2EBgYyEsvvcTkyZMJCwtj69at/OY3v+Hs2bMsW7aM5ORkd5cqPMA1h1V3dzfl5eVs3rwZs9lMeXk5drud7OxsoqKiMBgMg1Gn8EKKolBdXc3o0aOZO3eu69xJSkoiPT2dwsJC4uPjJawEcB1h1d7ezoEDBxg+fDgOh4PCwkIsFgsdHR2Eh4fjdDrlyo3ol+bmZtrb2/H397/kQy44OJjJkydz8OBBTp065cYKhSe55rBqa2tDo9Hwxz/+kZiYGOx2O9XV1bz//vt0d3ej0WgGo07hZcxmM4cOHSIwMJDQ0NBLtp07d47i4mICAwNlzEq4XFNYZWdnc/ToURYuXMgtt9xy/gB6PSEhIVitVjo7O11hpSiKBJf4Rq2trWzZsoXMzEzuuusu1/fLysp49913KSws5Gc/+xnz5893Y5XCk/Q7rN5++202b95McHAwjzzyCBqNhuPHj5Obm0tNTQ0lJSXYbDbeeust7r33XvlEFFfonapQVFTEpk2byM7OprOzE7PZjMlkwm63U1BQQH19PYsWLeKee+4hISHB3WULD9HvsFq3bh3Nzc3MmDGDzs5O/Pz8qKmpYf369Zw5c4agoCB0Oh1vvPEGSUlJElbiCk6nk/b2djZs2MCnn35KSEgIe/bsoaCgAL1eT3t7O0ajkfnz5/P73/+e4OBgd5csPIhGURSlPzs2NjaiKAp+fn6Ehoai1Wrp7u7GbDbjdDpdXT6n00lYWBh+fn6DWrhQJ4fDgdlsxmq1otVqLxku6D2PAgICMJlMMowgLtHvsLrct41JyZiVEGIgXXdYCSHEzSQTooQQqnBD9wa2tLRw6NAh8vPz6erqAs7Pn/Hz8+vzZubLu4WKotDbsJMuozpdrWF+8e+0d1jAYDBgs9lwOBzodDr8/f258847uf32229GuULFbiisDAaD66ZlPz8/10xkrVaLRqO54kTuK5B6A0vCSr36CqzLf5+954PT6SQ0NJT6+nry8/NJTk6WOx5Ev9xQWAUFBZGcnExISIjrKqHBYMBqtWK32/sMrIt923bh2S6eAPxt+2k0GpxOJxaLBYPBQElJCc3NzcybN49JkybdjHKFyg3IAHtvMF38CSkhJC7Xe3689dZbHD16lB/96EeMHDmSwMBAN1cm1ECuBoqbxul0smHDBtra2khISGD27NmynJDoNxks8Ak9nCn6O7+cF4vpQpfMFDuPX/79AM197ruOR5KH46/RoPEfTvIj6yg603PZblV8+EgyCQnjSUhI5oktJ+m54lhfs1gs7Nu3j4MHD5KYmEhmZqYElbgmElY+oDnnaVJnvUPcH/ZSb1NQFAvHP3+MrlXJ3PnXg5eEzPl9/0HimhJaFQWltYQ1if9gVupvyTV/vV/xi98n94EsvqqupPqrLBZs+yFvVnxzDTk5OWzcuJHvf//7pKSkDNp7FV5MEV7utPLPe1EWrK+7Ykvbp/9TMRpXKl+4vlOuvDrZqDy0uemyPeuU9QsuPka18vbMXyk7L9rDsu2nyrz/Pun62ul0uv77mWeeUZ5//nmlsrJSsVgsA/CehC+SlpXXi+SBjxU+XRZzxRbT2Bmkdvfg6P3GwU9Zc2gpS2eHXbZnDPf8/CG2vZPNMQDiSV74BRuyzpxvlfWcYdfmahYmx7peodFoMJvNbNq0Cb1eT0pKCuPGjcPf338Q3qPwBfIYGh/W/FUuRZNTibzwtfnEQQ7PnM0E05X7msZmMD3nIEeBW4Hklf/kyKPzmfB4F3r9SO5//b/4w8Sv91cUhaKiIrZs2cIzzzxDbGzslQcV4hpIWPkiawuVu57nwR+f4c3dy+nNmLOna2H0Uob19RqdHgOF1NRAZjxgGMsD7xXzwEW7KIoCF+ZerVmzhoaGBp599lmio6MH9/0InyDdQF+Ss+L8BM2AMDJeCOL/FHzCI2Mve8BH+BD6aFhBfDzTrnJo5cJdCD09Pbzzzjv4+flxzz33EBMTIzPUxYCQs8iXZL58/vYmm5nSlxP4eG4c89+ruuqUg/7SaDS0tbWRm5tLVVUV06ZNIy0tbQCOLMR50g30RYZgRiQ9yJovFBbGLuHNtIP8srcv2NSJGa5sXdXUUAgkXuWwH3/8MdnZ2bz66qsMG9ZnZ1KI6yYtK18WM4P7Zx4i51AjAMOiRsPhOk73tW9nK+eYRnx834d65ZVXMJvNrF69moiIiEErWfguCStvV/dPFvun8VZVXxsd2HsgeEgAAKYJs5lZkEeV+co9G7/aw+F7ZzDxsu83Nzezbds2FEUhNTWVSZMmyQoaYlBIWHm72Cl8Z2wB63NrrtxWX8imgsmkjr7Q6YvPYOnk/2bN5vrLdqxh8+ufsGDJLNc0BwCr1UpRURFZWVncf//9ZGRkDNa7EEJmsPuCpp2/UkYYpyort32lNFsURVFsirlqm7JyqlEZ8audysXz1du+WKmMMGYqL+6tVyyKotjMVcq2lVOV4My3lcO2r/ez2WzK2rVrlRdffFGpqalRbDabIsRgkpaVDwjLfIGi3U9hfXkuIwM0aDR+xGS+jPWp3RS9kMnF89VNs/9M0e4HKf/5bYRqNPgNm8n/tj7FFxt+Qu8sh46ODl599VUMBgPz589n1KhRlzz+XYjBIEvEiGtiNpvZv38/W7Zs4eGHHyYpKcndJQkfIVMXxDXZvHkzpaWl/OEPfyAoKMjd5QgfIi0r0W/PPvss4eHh3HfffYwYMcLd5QgfIy0r8a1aWlrYu3cvQUFBTJ8+XYJKuIWElbiqrq4u9u7dy44dO1i9ejXh4eHyNCLhFhJW4hs5HA7++te/YrFYePrppwkLO3/dUIJKuIOElehTY2MjH3/8MdHR0SQlJREZGfntLxJiEMk8K3GF+vp6ioqKOH36NHfeeSfTp093d0lCSMtKfE1RFFpaWti+fTsnTpzg17/+tUxPEB5DWlbCxWKxsH79egCWLVsmQSU8isyzEgAcP36cnTt3oigK06dPl0e6C48jLStBR0cH+/btY9euXXzve9+ToBIeScasBGvXrsXpdPLGG28QHBzs7nKE6JOElQ9rb29n3bp1hIWFMWPGDFdQyaRP4YmkG+ijWltbKSoq4tSpU2RkZDB+/HjXNgkq4YmkZeVjFEXBarXy0UcfUVtby5///Gf8/PzcXZYQ30paVj6mq6uL559/HrvdzvLlyyWohGpIy8pHKIpCTU0N+/fvJzQ0lBkzZhAXF+fusoToNwkrH2C322loaCAvL4+SkhKeffZZQkJC3F2WENdEJoV6uZ6eHqqqqvj8888JCwvj/vvvZ8iQIe4uS4hrJi0rL+ZwOKitrSU3N5eYmBiSk5MlqIRqSVh5KUVRKC8vp7S0FIPBwIwZM4iNjXV3WUJcNwkrL+R0OmlsbGT79u2cPXuWv/zlL+j18qsW6iZjVl6mp6eH2tpasrKyiI6OJiMjQ1pUwivIx62XOXz4MHl5eYSHh5OWliZBJbyGTAr1Ek6nk5MnT1JWVkZDQwOLFy9m5MiR7i5LiAEj3UAvoCgKp0+fZsOGDZhMJpYuXUpAQIC7yxJiQEk3UOUURaGiooKtW7cyevRopk+fLkElvJKElYp1dXVRXV1NaWkpVquVtLQ0eQCp8FrSDVSpnp4e9u/fz44dOzAYDDz11FPodDp3lyXEoJGWlQqZzWbKysooLS1l6tSpJCcnS1AJrydhpTLd3d189dVXHDx4kLi4OKZNm8awYcPcXZYQg07CSkV6enqoqKigsrISjUbDnDlzZDBd+AyZZ6USVquV4uJiNm/eDMAjjzwiQSV8irSsVKC7u5uqqiqKioqYMmUKU6dOlRU+hc+Rq4Eerru7m0OHDnH48GEUReG73/0uQ4cOdXdZQtx00rLyYL1jVDk5Oej1ep544gm0Wum5C98kYeWhurq6KC8vZ9++fSQmJpKSkiKPyBI+TcLKA7W1tVFcXEx5eTmxsbGkpqYyfPhwHA4HWq1WQkv4JAkrD2OxWDhw4AD79+/H4XBw9913ExgYCCATP4VPk7DyIG1tbWRnZ1NdXc348eNZsGAB/v7+7i5LCI8gYeUhGhsbKS0t5cyZM6SkpJCUlCRBJcRFJKw8QEdHB6WlpRw7dozRo0cza9YsV9dPCHGehJWbWa1Wdu/ezdGjR4mOjmbBggXuLkkIjyRh5UaNjY3s2bOH2tpapk6dSlpamrtLEsJjSVjdgObmZnbu3Mnp06cxGAwoikJiYiJjxowhMDAQu92O0Wjs88Gi586dY//+/dTW1jJu3DimTJlCUFCQG96FEOog06Gvg81m48SJE3z55Ze89957vPbaa7zxxhu8/vrrbNq0iby8PL788kuOHDlCe3v7Fa+3WCzk5+dTXV1NdHQ08+fPv2SZl54zRaxbloC/Zhbraq5WiZWjWatJN2nQrMi5ym5HyVo9j1iTBo1Ggyl2HquzjmK9bLfmvX/hzoQExickkLDkNQ40X9OPRYhBJWF1Hf71r3/x6KOP8tprr7Fq1SqKi4v5/PPPyc3NJTMzk6ysLFatWkVtbe0VA+Wtra1s27aNiooKRo8ezdKlSzEYDOc39pyhaN0ypi7+F7E/fYLUq9RgPZrF6vRU/rPufp586Co79lSxbuEEHj3zGDn1NhTFRn3OY5x5dAIL37soCRs3svy3wawpq6ayupqyP2p46ultmK/7pyTEwJKwugZ2u53s7Gy2bt2KTqdj+fLlTJs2jaCgICIjIwkPDyc9PZ3U1FT8/f2JiorCZDK5Xn/u3DmKioqoq6sjOTmZtLS0r4MKYO9/8TIr2Jn7AvNHXG35lxo2vJzL7H8U8eFPUom4ygIM5s9f4PFz/4stb97HmGADYCB4zH28+eGvKfvNe+ztubBjxW7qH1zIxAuzJfwnfof7Kr+k7Hp/WEIMMAmra1BTU8O6devo6OjgvvvuY8mSJRiNRi5euGLo0KHcfvvtpKamXvKA0ZaWFvbt28fhw4e59dZbSU9Pv3KFz9kr+ftPUhlu4FvE8x+v/YX5o75tHpaZ3A/e4daH72bKZcc0pC/l6bC/8vHeC9+YOIuYf3xKxYW+obViBx+Pv51J31aKEDeJhFU/1dfXs3PnTvbt28ecOXN4+OGHXdsuv1cvICCACRMmuBbH6+rqYufOnRQWFuLv78+iRYv6HHQfeMeoLIAFKVP62DaBpO90k1d1oSsY+T9488/t/HxSAuPHj+eOFwP4vy8swNTHK4VwB7ka2E/V1dUUFhaSmJhIYmLiVRe/i46OZsmSJURHR1NYWEhWVhYTJ05k0aJFxMXF3cSqm6g/PI6Y8L62GdD7wZ7yE0A8AGHpq9lVvfom1idE/0nLqp+ampqoq6tj1KhRV31Ag6IoGI1GoqOjATh58iRFRUX09PQQHx9PRETEzSr5gghCv6ERF5c48+aWIsQNkLDqp87OTjo7OwkJCblqq+ryLmFERATx8fFYrVYaGxuRhVmFuD4SVv109uxZWltbGTZs2DWNN82aNYuVK1fi7+9Pbm4uubm5g1hlX87R2tn3lhPle25uKULcAAmrfgoODsZgMFBaWkpbW9sl2y5uLTU0NFBVVeX6WqvVEh0dTUZGBqGhoRw5coS9e/fS3d19E6oOJ2bcYY429vSxzUxnE8xMvJljaEJcPwmrfho7diyTJ0+moqKC0tJS7Ha7a1tv16+iooLCwkIaGhqueH1cXBy33XYbQUFBFBUVUVlZic1mG+SqJ5CywMiO0q/62FbJ/qxh3DUlfpBrEGJgSFj1U1JSEg888AAmk4mdO3fy6aefXrK9sbGR5557jgMHDhAe3uflNxISEpg9ezZ+fn7s3r2b4uLiQa7aQMrd/8GxF/719eTPC8w5H/D/eJS7pw5yCUIMEJm60E+hoaHMnDmTIUOGsHbtWn73u9+xfv16Ojo66OjoYNiwYTz00EPcdtttREZGfuNxoqKiWLRoEQcOHKC4uJgjR47w4IMPotPpUBRlwNdXNy1YxZuTEnlgeQo7Xv4eY4IdnMpfz4ofbmTZhyWkf+sEVCE8g4TVNRg6dCh33HEHjY2NREZGEhAQQFdXF52dndxyyy1kZmYSEhLyja9XFMU1hqUoChaLherqavLy8rjtttsoesbEnFcufc2eBA0/BWAmb1fv5ifxQM06ZiX8lEuHx+eg6X3tr3aivJx54Yt4Hvn0K6L/+BiZMfdT3w7Biffxn+/sYWVm2ED8WIS4KeQhp2509uxZCgsLKSsrIz09nYyMDHkohBDfQMLKzcxmM/n5+Rw8eJDhw4dfchuPEOJrMsDuZiaTiZSUFMaPH4/VaiUnJwer9fKVpoQQElYeoHdpmYSEBMrKyiguLu5z0T4hfJmElYcIDw9n6tSpjBo1iqysLLZv3+7ukoTwKDJm5UEURaG1tZWKigoOHDhAV1cXK1ascK3vLo+NF75MWlYeRKPRMHToUJKTk5k4cSIA2dnZNDU1SVAJnyctKw/ldDo5evQo77//PmlpaSxYsECmNQifJmHlwXqforNlyxYURWHFihUA0iUUPknCysM5nU4KCgooLS1Fo9GwZMkSwsJk5rnwPTJm5eG0Wi1paWmkpaVRU1NDXl4eTU1N7i5LiJtOWlYq4XQ6aWxs5JVXXuGWW27hiSeecHdJQtxUElYq4nQ6qaiooLi4mJaWFh5++GGGDh3q7rKEuCmkG6giWq2WSZMmMXXqVHQ6HZ9//jknT550d1lC3BSyRIwKTZ48mdDQUNauXYtWqyUiIsL1jEIhvJV0A1XKbrdz5swZNm7cSFtbG7/97W9lOoPwahJWKldWVkZhYSHnzp1j6dKljBw50t0lCTEoZMxK5SZNmsQdd9xBXV0d+fn5NDY2urbJ55DwJtKy8hLt7e289NJLhIeH8/jjj+N0OoHzg/JCeAM5k71EcHAwy5cvJyIiglWrVtHV1SVBJbyKnM1eZPjw4aSmphIWFkZ2dnafzy8UQq2kG+iFuru7+dOf/sTEiRO59957CQgIkCuFQvWkZeWFjEYjTz/9NKdOnWLlypV0dna6uyQhbpi0rLxYSUkJBQUF6PV6Fi1aREREhLtLEhdYLBa3X63VaDQ4nU66u7vR6/VotVocDgdGoxE/Pz+PG/OUsPJyjY2NfPjhh4wdO5YRI0bgdDrR6XSXdAv7OgUG67TQarUoiuI6vkajcdXicDjo6enBZrNht9tdVzTVpPe9XP7z02g06PV6FEXBZrNhs9ncHlZwvk6r1YrRaESr1WK1WomMjOTWW2+96pPF3UHCykc899xz5ObmMmzYMAICAjAYDGi1WpxOp+sfnP+jUhRlUIJCo9FgMBhwOBzY7XYURUGv12MwnH+GfVdXF83NzZw7d47W1lZ6eno84g/6WvQGktPpdNXe+yRuk8lEWFgYYWFhBAcHu7a5U2+IGgwG7HY7FouFcePGcddddzFjxgy31nY5CSuV6++qoc3NzRw+fJiGhgZ0Oh1GoxGdTofVakWv1+Pn54der6erqws4/0c3GLU6nU40Gg1arRaNRoPD4XAFo8FgYMiQIej1emw2m1e1rABXKPT+rL9pv5ut93fR+/sJDAwkLCyMkJAQd5d2CQkrL9DV1UVFRQXV1dV0dHSg1+txOByuf3q9nvj4eMaMGUNUVBQWi8UVGDabzfVH1BteGo1mUNZ7VxQFh8OBVqt1Hb+3Rjh/YcBoNA74/1d4B1l1wQt0dXVRUFDABx98QGVlJX5+fgwfPhxFUejp6cFoNBIaGsqiRYtYvnw5JpPJ9dohQ4ZccqzeLpnwTg6HA4vFgsViweFwuFpUF9NoNAQEBBAYGDgoLezrJS0rL9HZ2cm2bdv47LPPaG9vZ9WqVcTFxdHT04NGo+HJJ5+kpKSEBQsW8Itf/IKYmBh3lyzc4PTp03zyySf8+9//5tSpUxiNRqxW6yUXPIxGI4sWLeIHP/gB48aNc3PFX/Oc2BQ3ZMiQIXR0dOBwOEhISCA+Pp7AwEDX9scee4z333+f7Oxspk2bxpw5c2SVUR8UEhLCtGnTKC0tpampicDAQJYtW0ZERAROpxOLxcJHH31ES0uLx40ZSlh5kZKSEpqamrjrrruuONHS09Npbm6moKCAvXv3MmrUKAkrH6MoCgEBAaSkpFBcXIxGoyE+Pp4nn3zykv16pzKEh4e7qdK+edasL3HdLBYL9fX1+Pv7M3PmzD5XDo2KimLatGlUV1dz4sQJN1Qp3OniK5U1NTWEhYWxcOFCAHJzc9m0aRMAM2fOZPbs2QwfPtxttfZFWlZewGKxcOjQIfz9/YmPjyc2NrbP/XoH3B0Oh0dcMhfu4XQ6OXbsGImJiUyYMAGApqYm11poU6ZMcWd530jCygu0t7eTn5+P0WgkLi7uqvudOHGC0aNHe1wTX9wcDoeD48eP09TURH5+Pn/7299wOBycPHnSddHF39/fzVX2TcLKC5jNZvLz84mKirpqWDU1NXHy5EnmzZsnVwN9VGtrK/v27UOn03HkyBFeeOEFenp6yMjIICUlxd3lXZWElRfo6OigrKyMuXPnkpaW1uc+FouFs2fPYjQaiYyMJCgo6CZXKTzB2bNn2b17N6NHj+bRRx8lLS2Nbdu2YTAYiIqKcnd5VyUD7F6go6MDPz8/YmNjXfecXe7tt99m27ZtzJkzh9TUVFmBwUd1dnZy6NAhxo8fT3p6OjExMaSlpTFx4kSPHxqQlpXKnThxgsrKSsaNG3dF187hcHDu3Dlqa2vZtWsXOp2Oe+65hzFjxgzK7TTC8zU2NrpuVo6KikJRFGJjY11Lw9jtdrq7u9HpdB43diVhpXI5OTls376dpKSkK26dOXHiBBs2bGDNmjUsXbqUJUuWMG7cOI+6hULcPGVlZZSVlXHrrbcSFxfnmsrQO9/OYrFw7NgxzGYzERERVx3/dAc5a1XKbDazYsUKdu3ahc1mo66ujpycHNdaVYGBgdhsNmJiYnj33XcZO3Ys4eHhGI1GWeLYh1y8KkdVVRW1tbVMnz79ilb48ePH2bx5M3v27OHHP/6xa0qDJ5GwUimdTkdcXBzz588nNDQUPz8/zGYzVqsVrVbrWu1x8uTJZGZmurtc4SYajYauri4+++wzPvnkE44dO4bT6eSTTz4hJCSE9vZ2dDodZWVllJSUYLFYMJlMfU4qdje5kVmF+ruGlRAAdXV1zJs3j/r6eoKCgnA6nURGRtLd3c2ZM2cAXGNXc+fO5YknnvC4LiBIWAkhVEKmLgghVEHCSgihChJWQghVkLASQqiChJUQQhUkrIQQqiBhJYRQBQkrIYQqSFgJIVRBwkoIoQoSVkIIVZCwEkKogoSVEEIVJKyEEKogYSWEUAUJKyGEKkhYCSFUQcJKCKEKElZCCFWQsBJCqIKElRBCFSSshBCqIGElhFAFCSshhCpIWAkhVEHCSgihChJWQghVkLASQqiChJUQQhUkrIQQqiBhJYRQBQkrIYQqSFgJIVRBwkoIoQoSVkIIVZCwEkKogoSVEEIVJKyEEKogYSWEUIX/D3y7JPhYd4yFAAAAAElFTkSuQmCC",
"path": "images_version_5/image_35.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure: AB parallel DE, the degree of angle D is ()
Choices:
A:115°
B:120°
C:100°
D:80°
|
Như hình vẽ: AB song song với DE, số đo góc D là ()
Lựa chọn:
A: 115°
B: 120°
C: 100°
D: 80°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure: AB parallel DE, the degree of angle D is ()
Choices:
A:115°
B:120°
C:100°
D:80°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure: AB parallel DE, the degree of angle D is ()
Choices:
A:115°
B:120°
C:100°
D:80°
|
As shown in the figure: AB parallel DE, the degree of angle D is ()
Choices:
A:115°
B:120°
C:100°
D:80°
|
175
|
35
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAvEAAAIGCAYAAADdr9BAAACGDklEQVR4nO3dd3gUVdsG8HvTE9IISSC0JFQhFCmG0ItIR2kfRZAmCigqvioiFkCkCWJBEekowouAIKGEEukEIaEkoQcISA09CSmknO+PvHOymy3ZTZ9w/64rF8OZmTNndnZnzz5zikYIIUBERERERKphVdwFICIiIiIiy7AST0RERESkMqzEExERERGpDCvxREREREQqw0o8EREREZHKsBJPRERERKQyrMQTEREREakMK/FERERERCrDSjwRERERkcqwEk9EREREpDKsxBMRERERqQwr8UREREREKsNKPBERERGRyrAST0RERESkMqzEExERERGpDCvxREREREQqw0o8EREREZHKsBJPRERERKQyrMQTEREREakMK/EGDB8+HBqNBn5+fsVdlFKhXbt20Gg0aNeuXXEXxWxqLHNGRga+//57BAYGwtXVFRqNBhqNBr169QIA7N27V6bt3bu3WMtKVNLk9vmYMmWKXF9Y+N1TsIrimhUHNX4/kXG//fYb2rRpg7Jly8LKygoajQbPP/+8WfsWSCX+4MGD8oOi0Wiwf//+gsiWiCwwaNAgjB8/HseOHUNCQkJxF4e05PUeqV2xNPTn7OyMWrVqYdiwYfxhRgAAPz8/o++VSpUqoWHDhhg6dCjmz5+PGzdumJWndmXY3L9NmzYV7okSlQITJkzA0KFDceDAATx69AhCCIv2L5BK/K+//mry/0QlQWmNygDA4cOHsW7dOgBA9+7dsWvXLkRGRiIqKgo//PBDMZeOCuse+eTJE1y8eBG//vor2rdvj9dffx0ZGRkFkjeVLk+ePMHNmzcRGRmJ3377De+++y58fX3Rp08fxMbGFnfxzMYnilRa/Pvvv5g3bx4AICgoCFu2bMGpU6cQFRWFDRs2mJWHTX4LkZqaKisPzs7OSExMxLp16zB//nw4OjrmN3sqBXijLXy7d+8GAFhbW2P16tVwdXXV26Zdu3YW/8qn/Cuoe+TYsWPx1ltvyf8LIfDgwQOEhYXh22+/RVxcHJYtW4bKlStj6tSpBX4epC4VK1bEjh075P/T0tLw8OFDxMbG4vDhw1i/fj0eP36MjRs3IjQ0FL/99htefvnlXPNdtmwZXnjhhVy38/X1zVf5iUq7PXv2yKDLkiVLEBAQYHEe+a7E//XXX3j06BEA4Pvvv8frr7+O+Ph4/PXXXxg4cGB+syciMyiPxcuXL2+wAk/Fp6Dukd7e3qhXr55eetu2bfHyyy+jadOmSE5OxnfffYfPPvsMtra2BXUKpEK2trYG3y8AMHLkSHz77beYMmUK5s2bh/j4eAwcOBAHDhxAkyZNTObr7+9vNF8iMp92c7ZatWrlKY98N6dZuXIlAKBu3boYOXIk6tatC4BNaoiKUmpqKgCw4lYCFcU9sm7duujevTsAID4+HmfPni2wvKl0cnFxwTfffINZs2YBAJKTkzFq1KhiLhXRs0P53gby/t2dr0p8XFwcdu7cCQAYMmQIAGDw4MEAgJ07d+LOnTu55nHz5k1MnDgRjRs3hpubG+zs7FChQgXUr18fgwYNwooVKxAfH5+n8mVkZGDFihXo3LkzKlSoADs7O7i7u6NmzZp48cUXMWPGDJw5cybXfB49eoQvvvgCAQEBKFOmDNzd3dGmTRv8/vvvZpUjKioKb775JmrWrAknJye4uLggICAA77//vtG2iOvWrZPt/s6fP29wmxo1ashtjLWf6tWrFzQajd7jzxUrVsh9Y2NjkZmZiUWLFqFFixYoW7YsypQpgwYNGmD69OlISkoy6zyNMdWTPjY2VpZjxYoVAIBdu3ahZ8+eqFChAuzt7eHv74+xY8fi+vXreTq+cq7aTQwMdcQy1S70xo0b+M9//oMaNWrA0dER5cqVQ+fOnbF9+3azyvDw4UN89dVXaN68OTw9PWFvb4+KFSvilVdewZ9//pmn89I+D6WiePXqVb3zUpjblvTq1asYM2YM/Pz84ODggIoVK6JXr17Ys2cPANN9CwxdT2OUDnjDhw/XW5fz/ZmamorvvvsOQUFB8PT0hEajwZQpU/T2S09Px9KlS9GtWzdUrFgR9vb28PT0RJs2bfDdd98hJSXFZJkKWkHcI82lPaJJXs8z57V99OgRJk+ejICAADg7O8PDwwPt2rXL9d739OlTBAcHY9y4cXjhhRdQtmxZ2Nraoly5cmjWrBmmTJmCe/fu5Xo+2u+PiIgIDB8+HP7+/rC3t9d7/12+fBnffPMNevbsCT8/Pzg6OsLR0RG+vr4YMGAAQkJC8vSaWKqkvQdzM2HCBDRr1gwAcPLkSbPvaUVNube0b99eprVv317vfmfqvpOSkoI5c+agcePGcHFxgYuLCwIDA/Hjjz8iPT091zIU1bUNCwtDv379UKFCBTg4OMDf3x9vvvmm0bqAMdevX8cnn3yCxo0bo2zZsnBwcEDVqlUxYMAAeT83RQiBlStXypFTnJ2dUb9+fXz55ZeyXqa87obuxznvJ48fP8a0adPQqFEjuLu7G71eSUlJ+O6779C+fXuUL18ednZ28Pb2RqdOnbB8+XKz+v0U1bWKjY3F+++/j4CAALi4uMDJyQk1a9bE6NGjERUVZXAf5d5mqk5idj8VkQ/z5s0TAIRGoxFXr14VQggRGxsrNBqNACC++eYbk/vv379fuLq6CgAm/4KDgy0uW0JCgmjdunWuefft21dv32HDhgkAwtfXV5w9e1b4+fkZ3f/tt982WY4ZM2YIKysro/vb29uLlStX6u0XFxcnt/n555/11l+/fj3XcmRmZgoPDw8BQHzwwQc665YvXy73jY6OFh06dDBaxsDAQJGYmJjbS25U27ZtBQDRtm1bvXVXrlyRx1m+fLn4+OOPjZbDy8tLnDlzxuLja5+rqb8rV64YLPOBAwdEuXLljO43Z84ck8ffunWrcHd3N3ns7t27i4SEBIvPzZzzUuzZs0em7dmzx2B+O3fuFGXKlDGYj0ajEdOnTxeTJ0/Wy1uR83qa4uvrKwCIYcOG6a3TvmbHjh0Tzz//vF55Jk+erLNPTEyMqFu3rsnXombNmuLChQu5vp6+vr4my26u/N4jta9ZzvPNqV+/fnLbW7du5am82tf28uXLonr16kZfy379+om0tDSD+Sj3UFN/5cqVEwcPHjRaFu33x88//yxsbGyMvrcvX75s1mdhyJAhRsuc2+fD1Ptekd/3oPZ3T14pr5sleaxevVqW74033tBbr33uxu4dhU373mLqT/u+o13u27dvi4YNGxrdr2fPniIjI8Po8Qvi/mKOuXPnGq0zlClTRmzbts3kd6piyZIlwtHR0WR5X3/9daOfh9TUVNGjRw+T5xobG2vy/qT9+l+4cMFgXSrn98TRo0dFpUqVTJY7MDBQ3L592+i5F9W1WrlypbC3tzd6DGtrazFjxgy9/ZTPqKk/7fqIKfmqxCsfiDZt2uikK5Xnhg0bGt03JSVFVKxYUQAQLi4uYsKECWL79u0iIiJCHDlyRKxdu1aMHz9eVKlSJU+V+A8++EC+GD169BBr1qwRhw4dEhERESIkJETMnj1btG7dWvTr109vX+VG6uXlJWrWrClcXFzEZ599Jvbu3SvCw8PF4sWLReXKlWX+ISEhBsvw008/yW28vLzE3LlzRVhYmDh48KCYMmWKrCxpNBqxdetWvf3r1KkjAIgBAwborfvtt990LnhAQIDeNidOnJDrc76G2pWkFi1aCCsrKzFs2DCxdetWERERITZu3CiaN28ut5k4caK5L70ecyvxLVq0kNutXr1ahIeHi927d4uhQ4fKbYKCgiw+/sOHD0VUVJQYO3aszCcqKkrv7+nTp3plrlWrlvD09BTe3t5i1qxZ4uDBg+Lo0aNi3rx5smJuY2MjoqOjDR57586dwtraWgAQfn5+Yvbs2WLv3r3i+PHjIjg4WAwZMkSWqU+fPhafm1L2V155RQAQFStW1DsvRW6VlIsXLwonJyd583n77bdFaGioOHbsmFi+fLm8KQYGBsp8ciqMSnyDBg2ERqMRQ4cO1Xl/btu2TW5/8+ZNUb58eXk/+eCDD8T27dvF8ePHxZ49e8Qnn3wiz61atWri0aNHBsukHLOgKvH5uUcKYX4l/uzZs/IL+4UXXshzebW/dF944QVhZWUlxowZI3bv3i2OHTsmli5dKmrVqiW3eeeddwzmM3jwYFGtWjXxwQcfiLVr14qwsDBx7NgxsX79ejFmzBhhZ2cn74t37twxmIfy/qhbt66wtrYWfn5+4scff5T30JkzZ8ptL168KOzs7ETPnj3FDz/8IHbv3i2OHz8udu/eLRYsWCACAgJkmb/44guDx8tvJb4g3oPFVYnXDho999xzeutLQiX+6dOnIioqSixbtkyWZdmyZXr3u4cPHxosd4sWLYSdnZ149913xa5du0RERIRYvXq1/J4FIBYuXGjw2AV1f8nN+vXrZVnc3NzEjBkzxOHDh8Xhw4fFV199JVxdXYW7u7uoWbOm0e9UIYRYunSpzKdevXpi/vz54uDBg+L48eNiw4YNolu3bnL9f/7zH4N5vPnmm3KbunXrimXLloljx46J0NBQMW7cOGFtbS2CgoLMrsQ3aNBA2NrainfeeUfs2rVLhIeHizVr1ojDhw/L7SMjI2W9yNvbW0yePFns3r1bnDhxQuzYsUO8/fbb8sd8s2bNdL6zi/pabdmyRQZjnJ2dxeTJk8WBAwdEWFiY+Oabb4Snp6c89wULFujse/78+VzrJIbOzZA8V+IjIyPlwRctWqSz7pdffpHrIiMjDe4fGhpqtIKpLS0tTTx+/Nji8lWpUkUAMFhJ13b//n29NO0okru7u8EK2sWLF4WDg4MAIF5++WW99XFxcfKNUrFiRXHt2jW9bY4fPy7fsJUqVdK7aMoFrlChgt6+r7/+ujy28kMgLi5OZ5tvv/1WABBWVlY6NzYh9KPTv/32m94xUlJSRL169QSQFTUz9os9N+ZW4oGsKFBmZqbedqNGjZLbHD9+PE/lMCeSlrPMypfh9evX9bY5cOCA/BC/++67eusTExPlzaRTp07iyZMnBo+1aNEieazdu3dbfmLCvC//3CopynsJgFi3bp3e+idPnuhU4IuqEg9ALF261GReSsSoSpUq4tKlSwa30f68ffbZZwa3KchKfH7vkULoXrOxY8fq3OQjIyPF/v37xezZs0WFChUEAOHq6ioOHTqU5zJrf0YAiNWrV+ttEx8fL3+cWFlZGSx/TEyMwc+xIjIyUjg7O5u8FtrRqvr16+vdw7QlJiaKmzdvGl2fmZkphg8fLoCsaKahL+78VuIL4j1YXJV4IYQMTFlbW+tdO+1zN1Rxzvl3/vz5PJc/N+Y8UTRUbltbW4Pb379/X96nGzRoYDCfgrq/mJKamip8fHxkBd7QU+eoqCid1guGvlOvXbsm6x7Dhg0z+r09adIk+RnOeb0iIiLkd1tgYKDB765169bp3Ctyq8RbWVmJnTt3Gj3/zMxM0aBBAwFkBTfu3r1rcLvt27fLJxVLlizRW18U1+rp06fyaYGzs7M4ceKE3jaxsbHyejo5ORk8H0vqJMbkeU8l0m1vb693c3348KF8xJCzGYfi999/l4XPSyU9N7a2tgKA+P777y3eV7sS/8MPPxjdbuDAgQKAKFu2rN662bNnyzzWrFljNI+vvvpKbvfHH3/orPvvf/8r1509e1ZnXY0aNWRlq1q1agYrXr169RIAROPGjfWOq11JMhUBXrhwodzu1KlTRrczxdxKvI+Pj0hJSTGYx7lz5+R2ebmmQuS9Er9582aj2ymRiEaNGumtmz9/vgAgHBwcjEYbFUrlePDgwbmfiAH5rcRfv35d3hh79+5tNI+TJ08WeSW+Q4cOJvOJioqS2/71118mt50wYYIAsn5YG1KQlfj83iOF0L1mpv6srKzE6NGj9e4TltL+jPTo0cPodv/884/c7q233srTscaPHy+ArEihIdqV+P379+fpGNru378vn4qtX79eb31+KvEF9R4szkq8dlOTnN/JOX/c5fZXUE+yDMlrJd5YxFkIISZOnCi3y/kDryDvL6asXbtWHmfu3LlGt9OuWxj6TlXuOxUrVhTJyclG80lLS5MV0U8//VRn3ejRo8363u/du7fZlfiRI0cazUcIIYKDg82ua/Tv318AEC1bttRJL45rpf1EMKdVq1bJ7b7++mu99QVRic9Tx9aMjAysXr0aQNbEMu7u7jrr3d3d0a1bNwDA6tWrDXZC8PHxkcvLly/PSzFMUvJfu3ZtnjtmajQavPrqq0bXK0NxPXz4UA4hp1DG7XZ3d0ffvn2N5qE9GoCyj0K7I6h2R8QbN24gJiYGGo0Gbdu2ldtpbyOEkLNCtm3b1ujxgeyOdoZoDzd2+fJlk/nkV79+/WBvb29wXe3ateHs7Fwk5dDm7u4uR/0wRHl9DJXpr7/+ApD1+nt7e5s8Tps2bQBkdWgqDnv37kVmZiYAYNiwYUa3a9iwIRo2bFhUxQJg+v0JZL/OTk5OJq8VkP0637x5E//++6/eepEV2Mj35DcFcY+0RGZmJv744w8sWbIET58+zVdeihEjRhhdFxgYKMc0znnfMuThw4e4dOkSTp8+jejoaERHR8vX5MyZM0hLSzO6b5UqVdC6dWuLyp6Wlobr16/j7Nmz8ng3b95EuXLlAACnTp2yKL/cFOR7sLgo91cApXLGZ3O/565cuaKzrqiurfI50mg0Ju/BI0aMMDlhoVLenj17wsHBweh2NjY2aN68OQD9753Q0FAAwPPPP48GDRoYzWPo0KFG1+Vk7n28du3aJo8JZL/Ox44d07l3Fse1GjlypNHt/u///g9ubm46+xS0PFXid+7ciVu3bgHIHnEhJyX91q1bBgvfqlUrVKtWDQAwfvx4BAYGYubMmTh8+HCBfAkpH4LDhw/D398f48aNw8aNG3H37l2z8/D09JQ3fUM8PDzkcs6bXnR0NACgUaNGJocOKl++vBxVQtlHe13t2rUB6FbQleW6devCy8vLYCU+MjISDx48AKD7Y8CQ5557zug6U+dY0EyVAwDKli1bJOXQVrNmTVhZGf+YKK+PoTKFh4cDAHbs2JHrFOVz584FANy+fbsQziJ32u+93MaJbtq0aWEXR0duN3TldU5KSoKNjY3J17lHjx5yv8J8rQviHpnT5MmT5Y8M5S8pKQmRkZH46KOPkJCQgG+++QadOnVCcnJyvs8htwl9AgMDAQAXL140eM+OiorCyJEj4ePjAw8PD9SoUQP16tVD/fr1Ub9+fTmaRWZmJh4+fGj0OLldf0VaWhp++uknBAUFwdnZGVWqVEHdunXl8erXr4+4uDgAyHVkHEuVxPegpbTvYabmmtizZ4/e+zDnX0mcATav33NFdW2VkUz8/f3h6elpdDsvLy+dkai0PX78GDExMQCAX375JdfvnfXr1+uVNSUlReZRkN8F5t7Hz58/n2u5x40bByBrFCylnqOdR2FfK+X70s/Pz2SAzs7ODo0aNdLZp6DlqRKvjG9sKkqpHX0yNB6yra0tgoODUadOHQBZv6gmTZqEli1bwt3dHV27ds1XhOrzzz/HyJEjodFoEBcXh59++gl9+vRB+fLlUb9+fUyePDnX4d2cnJxMrteu3OUsp/LGKl++fK5lrVChgs4+2pQK+L59+2SaUllX1ilDbp05c0b+SFG2sbKyyjWKZeo8TZ1jQTP39S7KaeXNLZMSxVakpaXpPZ0xR36H88wr7UpUbk8NvLy8Crs4OpQfb8YoFTNLFeZrXRD3SHM4Ojqifv36+Prrr7FgwQIAWfeKmTNn5ik/bbm9D5R7mxBCrxK+dOlSNG7cGMuXLzfrC9LUj47crj+Qde9s3rw5xo0bh3/++SfXQFBB/MjRVhLfg5ZSftjY2NjAxcWlmEtT8PL6PVdU11b5DOX2uQOM1ysKoqza31sF+V1QFPfxorpWBVW/KwgWz9iqzDQIZF1sY80ftG3atAkJCQl6N4a6desiKioKwcHBCA4Oxr59+3Dp0iUkJycjJCQEISEhmDdvHrZt22bWG1ubra0tli5dig8++ABr1qzB33//jfDwcDx9+lQ+Xp03bx5WrVqFV155xaK8LWHqsZdCCGF0Xdu2bfHLL7/g9u3bOHfuHJ577jlZoVcq8ZUrV0a1atVw+fJl7Nu3D/369ZPbNGjQwKwvQSpY2l8E/fv3x+eff16MpVE3a2trk+uV19rf3x+bN282O19/f/98lcuYgrxHWuL111/HxIkT8eDBAyxduhRffvllnvMCcr93GbtvnTt3DmPGjEF6ejq8vb3x0UcfoUOHDvDz84OLi4t8Mrls2TK8/vrrJvMCcr/+APDee+8hIiICQNbcGCNHjkSDBg3g7e0NBwcHeS5Vq1bFv//+a/J4eVHS3oOWiouLw82bNwFAPv2lLEV1bZX3ZH7qDNrfO+PHj5efr9zY2dmZtV1O5pRVYe59vGXLlli4cKHZ+VasWFEvj6L6HOa3flcQLK7E//HHHxZHMZKSkrB+/XqDbSytra3Rq1cv9OrVC0DWo+Xt27djwYIFiIiIQEREBEaPHo2NGzdaWlQAWT8Upk2bhmnTpiE5ORmHDh3C6tWr8euvvyIxMRGDBg3CpUuXdNroFwQPDw/cunXLrCiU8kRA+5GeIme7eFdXV1y8eFG2h9fe7vLly9i7dy/69u1rdnt4KhwODg5wcnJCUlISHj16VOKnKdf+oRcXF4fKlSsb3dZUkzTtiFbOpxM5PXnyxIISGqc0ebtz5w6ee+452NhYfFsrUAV9jzSXlZUVatasiX/++Qc3b97EgwcPDN5TzHXnzh1UqVLF6Hol6qXRaHTePytWrEB6ejqsra2xd+9e+bQ1J1NNaCwRHx+PtWvXAgBeffVVkxNRFdQxcypp70FL7dq1Sy63atWqGEtS8hTVtVU+q+ZMAGcs4qzd/DcpKSlP3zva/Xdyi2znNfJtSLly5XDnzh3cvXs3z9+XRX2t8lu/KwgWN6dRHvv6+PhgzZo1uf5VrVpVZ7/c+Pj4YOTIkQgLC0Pjxo0BAFu2bCmQx5+Ojo7o2LEjli1bhjlz5gDIeqy6ZcuWfOedk/ImPHHihMlOW3Fxcbh69arOPtp8fHxQs2ZNAFmV+Jzt4RXa7eKjoqJw//59nXSyLGpQEJS2cIcOHSpRj80NUTopAtntCo0xtV47kmyqwnT//v0Ca5esvM5JSUk4dOhQgeSZH4V9jzRFe9ZJU/cdcxw7dsys9TVr1tSJ5J0+fRpAVidoYxV4IPf3mbkuXrwoz3XgwIFGtzt//jwSExML5Jg5lbT3oCWEEPjhhx/k/3v37l2Mpcldcd3HC/va1q9fH0BWx1rl+9uQu3fvGu1z4OXlhUqVKgHI6kiZlyiwg4MDqlevDiB/3wWWUl7nCxcuyDpRXvMo7Gul1NViY2NN/pBJS0vDiRMndPYpaBZV4q9cuYKDBw8CAPr27YuBAwfm+vd///d/ALLaaV67ds3sY9na2soocnp6ep7aF5vy4osvyuWC7uQEAB07dgSQ9Th9w4YNRrdbunSp/KAp++Sk3S4+Z3t4hXa7+HXr1gHIutlZOqpDaabdUz81NbXQj/fyyy8DyIo4//TTT4V+vPxo3769jKKbqkyeOnXK5MgeZcuWlZEcUzf4NWvW5K2gBmg3h/v6668LLN+8KMp7ZE5JSUk4c+YMgKz3uqnOceZYuXKl0XXh4eGyo1bO+5byQ8LUD9fbt2/LJkf5pf3DxdQxLXlEb6mS9B601OzZs3H06FEAQOPGjdG5c+diLpFpRX0fL6prq3yOhBAm78ErVqwwWTlXvncuX74sO65aSqkfnTp1CpGRkUa3K4jAg0IpN5D317k4rtWyZcuMbrd+/Xo8fvxYZ5+CZlEl/rfffpNvnn79+pm1j7KdEAK//fabTD9w4IDsAW3I06dPZbtuZ2dnizpQPHjwAJs3bzb5Rt+5c6dcLox2iSNGjJAdaT744AODQxidOnUKM2bMAABUqlRJNinKSfkxc/v2bfzxxx8A9CvxSrt4IQTmz58PIOuXvanRdZ412k2mLl26VOjHGzNmjKxIff7559i+fbvJ7Q8dOiSbQRW1SpUqyQ6YGzduNHjzT05OxptvvplrXsrQXX/99ZfB1/ns2bP44osv8lnibC+88AI6deoEANi2bRsmT55scvvY2FijPyKUkQuMjf6Qm4K8R1pq8uTJ8oll586dzWpLbsrmzZvl/UZbYmKifB9YWVlh9OjROuuVJ4cXLlzAkSNH9PZPSkrCq6++WmCdS2vUqCGjs8YqFVu2bJH3xcJQkO/BopKYmIgPP/wQn3zyCYCsjp9Lliwp1GOuWLFCfsaU0YksVdT38aK6tr169ZLnNm3aNJw/f15vmzNnzmD69Okm8/noo49kP5wxY8bkGi3ftm2bXkX9zTfflJ+pN954w+CP4w0bNuS5mbMhffv2lU/ufv75ZyxdutTk9tHR0QgODtZJK6pr1bt3b9kWf8aMGQYDW//++y8+/PBDAFmfrfw0lTTFogZDyheMt7e32RHeZs2aoXLlyrh+/Tp+++03fPrppwCyxiGdNm0aWrduje7du6NBgwbw8vJCcnIyLly4gIULF+L48eMAssZSt6RtU3x8PF555RX4+fmhT58+aNasGXx9fWFjY4Nbt24hODhY3qwqV66Mnj17WvIymMXLywtz5szB22+/jZs3b6Jp06aYOHEiWrRogYyMDOzevRtz5sxBYmIiNBoNFi1aZHQoSu0K++PHj/Xaw2tvd/nyZfnLj+3hdbVo0UIuv//++/j000/h4+Mjb1Z+fn4F2obO1dUVa9asQdeuXZGamooePXqgb9++6Nu3r3xceevWLURERGDjxo2IjIzE/PnzZSW4qM2bNw+hoaFISkrCwIEDMXbsWPTp0weurq6Ijo7G119/jTNnzuCFF14w2dTirbfewubNm5GcnIx27dphypQpaNSoERITE7F79258//338Pb2ho2NjUVDvpqyfPlyNG3aFLdu3cKXX36JHTt2YOTIkahfvz4cHBxw//59REZGIiQkBH///Td69eqFQYMGFcixtRXkPTKnuLg4vWHKUlJScPHiRfz6668ICQkBkBWpnDZtWj7OIkvTpk3x6quvys7yrq6uiIyMxOzZs2UF4+2339YbOu61117D/PnzkZmZiW7dumHChAlo0aIFHBwcEBERgW+//RYXL15Ey5YtC+SRd7ly5dCtWzds3boV27ZtQ5cuXTB69GhUrVoVcXFx2LBhA1asWIFq1arh0aNHBfaey6mkvAcVaWlpOu8XZcSs2NhYHDp0SCdK6Obmht9//102RzDlypUrZj3l8fT0lCNzFKSqVavKz8vcuXNRqVIl1K5dW967y5cvX+Cj6xTFtbWzs8P8+fPRr18/PHz4EEFBQfj444/Rrl07CCGwd+9ezJ49G0DWD+WLFy8azMff3x8LFy7EiBEj8ODBA7Rs2RKvvfYaevTogapVqyI9PR3Xr1/H0aNHsX79ely6dAnBwcE6n+MmTZrgjTfewKJFi3D06FG88MIL+Oijj1C/fn3Ex8dj48aNWLBgAQIDA+VTnPw2c7K2tsbatWvRokULJCYmYtSoUVi3bh1effVV1K5dG7a2toiLi8OJEyewZcsWHD58GB988IFe/a0orpWtrS0WLVqEnj17IiEhAa1atcJHH32EF198ETY2Njh8+DBmzZolm9rMnTs3309GjTJ3VqiDBw/KmaVGjx5t0YxS7777rtz3yJEjQgjzZ4Dr06ePyVnHDNGeNdLUX6VKlcTx48f19jd31jztWSWvXLlicJvp06fLmTAN/dnb24uVK1fmek7Vq1eX+wQEBBjc5tdff9XJe8OGDfkquxCWzcBpjLkztuZnhk9zKTO9GfrTfh1MlVmbOTOuhYaGigoVKpj1njTnvWBIfmdsVezcuVNOR23ob/LkyeLzzz8XQNZMtMZof+Zz/lWpUkWcPn3a7BlbTb0/tcXGxooXXnjBrNd5xIgRBvNQ1udlxsmCvkcKYf6Mrcqfl5eX2LFjh8VlV2i/ny9fviz8/f2NHqtv375Gp3SfOnWqyXJ+8MEHuV5jSz7v165dE1WrVjV6vKpVq+b6nsvPjK2K/L4HC3LGVnP+rK2tRZ8+fURsbKzJPC2dsRWAeO+99/TyWbBggVxvajb03Gjnk/NP+3vE3Bkxzbk3FsT9xRxz5swxWmdwcnISW7duNev76b///a9wdXXNtaxWVlbi77//1ts/NTVV9OjRw+h+/v7+IiYmRv5/1qxZennkZUbSU6dOiZo1a5r1Ok+dOtVgHkV1rVasWCFn3jb2+ZoxY4bR/Yt0xlbtx5SmZiA1RHt7JZ8JEyZg27ZteP/99xEUFISqVavCwcEBDg4O8PPzw4ABA7B161Zs2LDB5Kxjhvj6+uLkyZOYM2cOunbtitq1a8Pd3R02Njbw9PRE27ZtMXfuXJw9e9asyEN+TJo0CSdOnMAbb7yB6tWrw9HREWXKlEGdOnXw3nvv4dy5c2bNeqYdjTfWWVVpFw9k/SourohuSbZq1Sp8/fXXCAwMhJubm8mJnApKhw4dcOnSJfz444/o0qULfHx8YGdnBwcHB1SpUgWdOnXC9OnTzX4vFKaXXnoJ0dHRGD16NHx9fWFnZ4fy5cuje/fuCAkJwZQpUxAfHw8AciY6Q77//nusXr0abdq0gaurKxwdHVG7dm1MnDgRJ06cQN26dQu87L6+vvjnn3+wceNGDBw4EP7+/nBycoKtrS28vLzQokULfPDBB9i3b1+uj2rzoqDvkeaws7NDhQoV8OKLL+Kbb77B+fPn5ePk/PL390dERAQmTZqEOnXqwMnJCW5ubmjTpg1WrVqF9evXG31y9cUXX2Dr1q3o1KkTypYtCzs7O1SuXBl9+vTBzp075eRmBaVKlSo4fvw4PvroI9SqVQv29vZwc3NDw4YNMXnyZJw8ebJQ3nM5Ffd70BQnJyf4+Pigfv36GDJkCH744Qdcu3YNGzZsgK+vb5GUQZkZtGzZshg+fHie8xk7diw2bNiATp06yad6ha2oru2HH36IAwcOoE+fPvD29oa9vT18fX0xcuRIhIeHy5meczNgwADExsZi1qxZaNeuHby9vWFrawsnJydUq1YNPXv2xLx58xAbG6tTd1DY2dlh8+bNWL58OVq1agU3Nzc4OTmhTp06mDRpEiIiInSa65r6PrBEgwYNcObMGaxcuRK9evVClSpV4ODgADs7O/j4+KBdu3b47LPPEBERYbRZZlFdq2HDhuHcuXN47733UKdOHZQpUwaOjo6oXr063njjDZw4cUI2VyssGiEKeRBLIipVOnbsiNDQULRq1QoHDhwo7uJQAZoyZQqmTp0KAIU+vjE9e/z8/HD16lVMnTq1QPvFUPE4ePCgbDa4e/dunQFDqGgUfhiSiEqNmzdvys63QUFBxVwaIlKLa9eu4erVq3Bzc8N7771X3MWhAqB0CrW1tUWTJk2KuTTPJlbiiUgyNWJUcnIyhg8fLsfkLu6mP0SkHspoc++++26BNb2gwnPv3j2TQ3vv2LEDv/zyC4Cs4SG1J4mioqOuaeWIqFCNGjUKT548Qf/+/dGkSRN4eHggISEB4eHhWLBggazkv/7663JyEiKi3Lz22mt47bXXirsYZKbo6Gi88sor+L//+z907NgR1atXh5WVFa5evYrNmzdj1apVyMjIgKOjoxwqm4oeK/FEpCM8PNzk2MK9e/cu1DG3iYio+MXHx2Pp0qVGO3+6urpi3bp1qFWrVhGXjBSsxBORNG/ePGzcuBF///03rl+/jrt370IIAW9vbwQFBWHo0KFyUigiIiqdmjZtihUrVmD79u2IjIzE3bt38ejRI7i6uqJGjRro0qULxo0bZ9FEnFTwODoNEREREZHKsGMrEREREZHKsBJPRERERKQyrMQTEREREanMM1+Jj42NhUajgUajwYoVK4q7OEWuJJ3/1KlTodFo0LVrV711f/zxBzQaDWrVqoWnT58WQ+mIiIiISo5nvhJfUuzdu1dWprX/bGxs4OHhAX9/f7Rp0wbvv/8+NmzYUOoqstevX8fs2bMBAJMnT9Zb369fP9StWxcXL17k8IZERET0zGMlvoTLyMjAw4cPERsbiwMHDuC7775Dv379ULlyZXz11VdIT08v7iIWiGnTpiE5ORmdO3dGUFCQ3norKyt8+umnAICZM2ciISGhqItIREREVGKwEl8CjR07FlFRUfIvLCwM27Ztw6xZs/DSSy9Bo9Hg7t27+Pzzz9GyZUvcvXs3z8fy8/ODEAJCCAwfPrzgTsICN27cwPLlywEAH3zwgdHtBgwYgEqVKuH+/ftYuHBhURWPiIiIqMRhJb4E8vb2Rr169eRfUFAQunbtio8//hg7d+5EVFQUGjVqBAA4evQo+vTpo+rmNQsWLEBaWhp8fHzw4osvGt3O2toaAwYMAAD89NNPyMjIKKoiEhEREZUorMSrUEBAAA4dOiQr8gcPHsSCBQuKuVR5k5mZKTvUDho0CFZWpt+SgwcPBgBcvXoVu3fvLuziEREREZVIearER0dH46uvvkLnzp1RuXJl2Nvbw9nZGTVr1sSwYcNw5MgRk/tPmTJFdtwEgJSUFMyZMweNGzeGi4sLXFxcEBgYiB9//NGsNt8HDhxAnz59UL58eTg4OKBatWoYM2YMYmJiAADt2rWDRqNBu3bt8nK60tGjR/HGG2+gVq1acHZ2RpkyZfDcc8/h7bffxsWLF/OVt6UcHR3x22+/yddw7ty5SEtLszgfc0anuXnzJiZOnIjGjRvDzc0NdnZ2qFChAurXr49BgwZhxYoViI+Pz9N5HDx4EDdv3gQA9O3bN9ftGzduDH9/fwDA2rVr83RMIiIiItUTFtqzZ48AkOvfxIkTjeYxefJkud3t27dFw4YNjebTs2dPkZGRYTSvr776Smg0GoP7uri4iB07doi2bdsKAKJt27Z6+1+5ckVuv3z5coPHSEtLE2PHjjV5vra2tmLRokWWvpyS9us6efJks/fr1KmT3O/QoUMWHze389+/f79wdXXN9XoHBwdbfGwhhJgyZYp8/ZKTk83aZ+DAgQKA8Pf3z9MxiYiIiNTO4kh8eno6ypQpg/79+2PhwoXYu3cvjh8/jpCQEHzzzTfw9fUFAMyaNUt2VjSlT58+OHv2LN59913s2rULERERWL16NerUqQMACA4OxuLFiw3uu2bNGnz22WcQQqBs2bKYNWsWDh8+jMOHD2P27NmwsbHBwIEDcevWLUtPU8frr7+On3/+GQDQtWtXrFq1CkePHsWxY8ewePFiBAQEIC0tDW+++SaCg4PzdSxLdezYUS4fOHCgQPNOTU3FwIEDER8fDxcXF0yYMAHbt29HREQEjhw5grVr12L8+PGoUqVKno+hlLl+/fpwcHAwa5/AwEAAwJUrV3Djxo08H5uIiIhItSyt9d+9e1c8fPjQ6PrU1FTx0ksvCQDC19dXpKen622jHYm3tbUVe/bs0dvm/v37onz58gKAaNCggd76lJQU4e3tLQAIDw8Pcf78eb1tzp8/Lzw8POSx8hKJX79+vVy/ePFig+ecnJwsOnToIAAIPz8/kZaWZnA7U/Iaid+9e7fcb+TIkRYf19T5h4aGmhVpT0tLE48fP7b42JmZmaJMmTICgHj99dfN3m/fvn2yXH/88YfFxyUiIiJSO4sj8Z6ennB3dze63s7ODnPmzAGQ1fnw5MmTJvN75513DLZV9/DwwIgRIwAAkZGRePz4sc76jRs3Ii4uDkDW5EC1atXSy6NWrVoGJw6yxMyZMwEAvXv3xqhRowxu4+DggB9//BFAVhvzvXv35uuYlihXrpxcfvjwYYHmffv2bbncpk0bo9vZ2NjA1dXV4vwfPnyIJ0+eAMgakcdc2ttev37d4uMSERERqV2+R6dJTU3FtWvXcObMGURHRyM6OhpCCLn+1KlTJvdXRhsxpEmTJnL5ypUrOutCQ0MBZE0C9NprrxnNY8iQIbLzp6Vu3LiBiIgIAED//v1NblunTh14enoCAMLCwvJ0vLxwdnaWywU9AZKPj49cNqdplKW0x7cvW7as2ft5eHgYzIOIiIjoWZGnSvyTJ08wc+ZMNGzYEGXKlIGvry8CAgJQv3591K9fXw59CAD37t0zmddzzz1ndJ12ZS1nBTU6OhoA4O/vb7IC6OHhgWrVqpksgzHh4eFyedCgQXIUF2N/yrlqR7ALm/brkpdouCmtWrWSr9348eMRGBiImTNn4vDhwwUyLv2DBw/ksiWVeO1t79+/n+9yEBEREamNjaU7xMbGokOHDnqRcWOSk5NNrndycjK6TnvM8JwT+yhNR8xphuHl5YVLly7lul1OSnMdSyUlJeVpv7zQ/pGk/aOnINja2iI4OBj9+vXD2bNncezYMRw7dgxA1hCXbdu2xWuvvYYBAwbA2tra4vy1O7Lm9j7Rpr2to6OjxcclIiIiUjuLK/GvvfYarly5Ao1GgxEjRmDgwIGoU6cOvLy8YG9vDyBrAh+lUqfdtEZttH84/P7772jQoIFZ+1kSVc6vEydOyOXatWsXeP5169ZFVFQUgoODERwcjH379uHSpUtITk5GSEgIQkJCMG/ePGzbts2idu1A1o8rhXZUPjfa22rnQURERPSssKgSf+7cORw8eBAA8Mknn2D69OkGtyvoDpaGKBVlc6LleW03rd1pVKPRoF69ennKpzDt2rVLLrdq1apQjmFtbY1evXqhV69eAIBbt25h+/btWLBgASIiIhAREYHRo0dj48aNFuWrXQG35D2jvS0r8URERPQssqhN/OnTp+XywIEDjW6n3Za8sAQEBADI6vBqKor74MEDXL58OU/H0G7bv3PnzjzlUZiio6NlB98qVaqgadOmRXJcHx8fjBw5EmFhYWjcuDEAYMuWLRY1iQEAe3t71KxZEwBw4cIFs/fT3rZ+/foWHZOIiIioNLCoEp+eni6XTbX7XrhwYd5LZKYXX3wRQFbTnVWrVhndbtWqVXlu0lOjRg3UrVsXAPDf//4X165dy1M+hSE5ORlDhw6V5/bhhx/Cxsbi1lH5Ymtri7Zt2wLIem88evTI4jxat24NALKtvTm02+Vrj2BERERE9KywqBKvRE0BYOXKlQa3+fnnn7Fp06Z8FcocvXv3lm2wp06diosXL+ptc/HiRUydOjVfx/nss88AACkpKejTp4/JpjmpqalYsGABUlJS8nXM3Jw5cwatWrWS7eHbtm2LsWPHFvhxDhw4gJiYGKPrnz59in379gHIGuoyL01blEr8vXv3zO4sffToUQBAs2bNYGdnZ/ExiYiIiNTOotBto0aNUK9ePURHR+Pnn3/Go0ePMHjwYPj4+ODff//FqlWrsH79erRs2RKHDh0qrDIDyBrZ5LvvvsOrr76KBw8eoFmzZpg4caKclGj//v2YPXs2MjMzUbNmTVy8eDFP48UPGjQIO3bswMqVKxEREYG6deti9OjRaNu2Lby8vPDkyRNcunQJBw4cwJ9//okHDx5g6NCh+Tq3uLg4OYQmkDWk58OHDxEZGYnQ0FDs2rVLRuCDgoKwfv162Nra5uuYhoSGhmLatGlo3bo1unfvjgYNGsDLywvJycm4cOECFi5ciOPHjwMARo0alacnAV26dIG1tTUyMjIQGhpqdEItRUJCgozEd+/e3fKTIiIiIioNLJ3i9cSJE6Js2bJy2vucf/Xr1xc3b96U/588ebJeHpMnT5brTdmzZ4/cbs+ePQa3+eqrr4RGozFYFicnJ7F161bRunVrAUB06dJFb/8rV67I7ZcvX27wGOnp6WLChAnC2tra6Hkrf2XKlBFJSUm5vYwmz9WcPy8vLzF9+nSRlpZm8bHMPX/t62Tqr0+fPiI5OTnPZejcubMAINq3b5/rtitWrBAAhLW1tbh+/Xqej0lERESkZhZP9vT888/j5MmTGDNmDHx9fWFrawsPDw8EBgZi7ty5OHr0qM5Mn4Xt008/xb59+9CrVy94e3vD3t4evr6+GDlyJMLDw9GtWzfEx8cDANzc3PJ0DGtra8yePRtnzpzBBx98gEaNGqFs2bKwtraGi4sLAgICMHjwYKxcuRK3bt0q0LHLrays4ObmhqpVq6J169YYP348NmzYgOvXr2PSpEmF2g5+woQJ2LZtG95//30EBQWhatWqcHBwgIODA/z8/DBgwABs3boVGzZs0Bnz3VJvv/02AGDfvn24ceOGyW1Xr14NAHj55ZdRqVKlPB+TiIiISM00Qqh4IHczpKWlwc3NDcnJyfjss88wbdq04i4S5ZCZmYl69erh7NmzmDZtmuyHkNPVq1dRvXp1ZGRk4ODBg2jZsmURl5SIiIioZLA4Eq82mzZtkkMfBgUFFXNpyBArKytMmTIFAPDdd98hMTHR4HYzZsxARkYGOnXqxAo8ERERPdNUH4mPiYlBjRo1DK6LjY1F69atcf36dZQvXx7Xr18v8mEYyTxCCLRo0QJHjhzBzJkzMXHiRJ31169fR/Xq1ZGeno7jx4+jYcOGxVRSIiIiouKn+hrtc889h27duqFHjx4ICAhAmTJlEBcXhz179mDhwoVy7PK5c+eyAl+CaTQaLF68GOvXr4ezs7Pe+mvXruGTTz5BtWrVWIEnIiKiZ57qI/G5DRtpZWWFr776Cp988kkRlYiIiIiIqHCpPjQdHByM7du34/Dhw7hz5w7u378Pe3t7VKpUCe3atcPbb7+NevXqFXcxiYiIiIgKjOoj8UREREREz5pSPzoNEREREVFpw0o8EREREZHKsBJPRERERKQyrMQTEREREalMsVbiY2NjodFooNFosGLFiuIsCqZMmSLLQkRERERUkuW7Ep+Wlob//ve/GDZsGOrUqYNy5crB1tYWnp6eaNKkCcaOHYvdu3cjMzOzIMpLJcxXX30lf/y4uLggKSmpQPN/9OgRdu3ahenTp6NXr16oWLGiPF67du3MzicmJgZr1qzB+++/j5YtW8LJycniH5DDhw+X++T2FxsbazKvo0ePolOnTnB2dkbZsmUxcOBAxMTEmH0+haldu3ZGz8vW1hZeXl5o27Ytvv76azx8+LBAjhkXF4ctW7bgiy++QNeuXeHp6SmPOXz4cLPySElJwV9//YV33nkHzZo1g4eHB2xtbeHh4YHmzZtjypQpuHXrltllSkpKwpw5cxAYGAgPDw84OzujTp06+PDDD3Ht2jWz8ijJ1zmnc+fO4csvv0Tbtm1RtWpVODo6wtnZGb6+vujZsyfmzZuH27dv5+sYiYmJ2L9/P+bOnYv+/fvD399fXmc/Pz+L8zt9+jTGjBmDGjVqwNHREV5eXmjTpg1++eUXpKenm51PSEgI+vTpg8qVK8Pe3h6VK1dGnz59EBISYtb+jx8/xnvvvYeKFSvCwcEBTZs2xR9//GHx+RSGFStWGP0se3p6onr16ujYsSMmTpyI7du3F8p39dWrVzFx4kQ0adIE7u7u8nPZokULTJs2DXfv3jUrn2ftM0mUK5EPmzZtEtWqVRMAcv2rVauW2LJli87+V65ckeuXL1+en6Lk2+TJk2VZyHy1atXSuc6//fZbgebv5+dn9D3Vtm1bs/LYu3evyfemue+9YcOGmfVeByCuXLliNJ9du3YJOzs7vX3Kli0roqOjzSpLYWrbtq3Z51m+fHkRFhaW72OaOsawYcNy3f/UqVPCxcUl1/K6uLiItWvX5ppfTEyMqF27ttF83NzcxNatW03mUdKvs+Lhw4di+PDhwtraOtfXz8bGRowZM0bcv38/T8dq166d0bx9fX0tymvJkiXC3t7eaH5BQUHi3r17JvPIzMwUb775pslzfvPNN0VmZqbRPBISEkSDBg0M7jt9+nSLzqkwLF++3OzPMwBRtWpVsWDBggI7/u+//y6cnJxMHrNcuXIiNDTUZD7P0meSyFx5rrHOmDFDaDQa+SHo2LGjmD9/vggNDRURERFi165d4scffxSdO3cWVlZWAoBo2LChTh4lqRJPlgsLC5PXz9nZWQAQL730UoEew9fXV6fC2KNHD4sr8Xv27JH7WFlZiYCAABEYGJjnSnzFihVFVFSUyb+nT58azCM1NVVUqVJFABDDhw8Xe/fuFTt37hRdu3YVAESzZs3MfGUKj3YlPud5RUREiHXr1omXX35ZbuPh4SHu3r2br2Nqf6FWqVJFdOrUyaJK/IEDB+T2LVu2FDNnzhS7du0Sx48fFzt27BCjR4+WlVRra2uxbds2o3klJCSI5557Tub3xhtviNDQUHH48GExffp0+V53cnISp06dMpiHGq6zEFn3YO1z9fLyEu+99574888/RVhYmDhy5Ij4888/xbvvvisqVaokt9u4cWOejqf93ipbtqx46aWX5OtpSSU+JCREfq+UL19e/PDDD+Kff/4R27dvF3369JHHaNOmjcjIyDCaz6RJk+S2jRo1EmvWrBFHjx4Va9asEY0aNZLrPv30U6N5TJgwQQAQderUEX/88YcICwsTX375pbC3txdWVlbi9OnTlrxEBU67Ev/VV1/pfJ4PHTokNm/eLKZOnSpatGih8zns1q2bSEpKytexDx8+LD93VlZWYsSIEWLTpk3i6NGjYv369aJnz57yeGXKlDEa/HiWPpNElshTJf7XX3/Vuen//fffJrePjIwUHTp0YCW+lBk7dqwAIDw9PcXs2bPljfr69esFdow5c+aI9evXi6tXr8o0SyvxFy5cEHPmzBF79+4VCQkJQgjdLzZLK/GWRgy1KU8FevfurZOenp4umjRpIgDonGtx0K5omTJ06FC53axZs/J1zC+++EIEBweL27dvCyF07w3mVOIPHTok+vfvb7LCtGnTJhl4qF69utHoqvZTua+//lpv/eHDh4WNjY0AINq3b28wDzVc56SkJFGvXj15riNGjBDx8fFGt09NTRXfffedKFOmTJ4r8b/88ov4/fffxcWLF2Wa8kPd3M9VWlqaqFGjhgAgXF1dRUxMjN42b731ljyvlStXGszn4sWL8jo2bdpUr8L65MkT0bRpUwFkPYEwdBwhsp4WlilTRty8eVMn/dtvvxUAxNSpU806r8Jiyb3u0KFDwt/fX27fv3//fB1bO+jy008/GdzmP//5j9zmnXfeMbjNs/KZJLKUxZX4GzduiDJlyshfveZGGTIyMvSaWrASr16pqanCw8NDABBvvfWWuHXrloy4zJ49u1CPbWkl3pDiqsT//vvvAoCYP3++3jrly+zw4cN5zr8gmFuJj46Oltvl/GLML0sr8ebq27evzPf48eN6658+fSrc3d1lZNVYFHf06NEyn/DwcL31arjO48ePl+cwfPhws/eLjo42eM55ZWkl/o8//pDlnjlzpsFtnjx5IsqWLSsAiHr16hncRruib6xJmPbTxnHjxhncxtbWVjRp0kQvPTIyUgBZzXGKk6X3urt378qIdX6euggh5DUoV66c0W0ePXokj2XodXyWPpNElrK4Y+u3336LJ0+eAACmTp2KunXrmrWflZUVhgwZkut2u3btQs+ePVGhQgXY29vD398fY8eOxfXr13Pd9+nTp1iwYAHat28PLy8v2NnZoUKFCujWrRtWrVplssOOuaPTPH36FIsWLUL37t1RqVIl2Nvbw9vbG02aNMG4ceNw4MABCCFMnt+QIUPg7+8PR0dHuLq6omHDhpgwYUKune5u3ryJiRMnonHjxnBzc5PnV79+fQwaNAgrVqxAfHy86RepgAQHB+PBgwcAgCFDhqBChQro0KEDAODXX38tkjKokbe3NwBg3759OumZmZk4ePAgAKBChQpFXq680O6ImJKSUnwFsUD79u3l8qVLl/TW7927F48ePQIADBs2DFZWhm+R2p1t//zzT731Jf0637t3D4sWLZLl+OGHH8zeNyAgAE2aNCmsouVq06ZNctlYp2cnJyf0798fABAdHY2LFy/qrBdC4K+//gIAPPfccwgKCjKYT1BQEGrXri2Pa+je7u3tjfPnz+POnTs66Xv37gWgns+zwtPTEwsXLpT/nzlzZp7zevr0KQDA39/f6DZubm7w9PQEAKSmpuqtf1Y+k0R5YkmNPzMzU3h5ecn2a48fP87XL4ickfiPP/5Yp02e9p+Xl5c4c+aM0bxiY2NFnTp1jO4PQLRq1cpohyxzOraeOHFC51GjsT9D7foSExNF7969Te7n7OwsgoODDR57//79wtXVNddjG9pfu014QUU1lTbR1atXl2krV66Ux4mIiMg1D2VbSyPbyn5qjMQnJSUJT09PAUC8/vrrYt++fWLXrl3ysbOhSFRRy0skfvTo0Qa30f6MW3K9CisS/80338h8N2zYoLf+888/zzU6K0RWkw7liWSbNm301pf06zx//nx5np999lmB5KndfyUv+5n7uVKixLVr1za53erVq2V5li1bprPu0qVLub53FdodXy9fvqy3/u233xYAREBAgFi3bp0ICwsT06dPFw4ODkKj0Rhto11U8nKvy8zM1OlEeuPGDb1ttL8zjeWr9CswFYl//PixzKdPnz5665+VzyRRXlgUiT9z5owcCqp169ZwdXW1ZHeTFi9ejNmzZ6Nt27ZYvXo1wsPDsXv3bgwdOhQAcPfuXYwcOdLgvomJiejQoQPOnj0LAOjVqxc2b96M8PBwrFu3Dm3btgUAHDx4ED169EBGRobF5Ttz5gxat26NK1euAAB69+6NtWvX4tixYzhy5AhWrlyJIUOGoEyZMnr7ZmRkoGfPnti4cSM0Gg0GDRqEdevWITw8HGFhYfj+++9RtWpVJCYmom/fvoiIiNDZPzU1FQMHDkR8fDxcXFwwYcIEbN++HREREThy5AjWrl2L8ePHo0qVKhafV17cu3cP27dvBwAMHjxYpvfp0wdOTk4ASnc0/v79+2jdujXc3d1hb28PHx8fdO7cGT/++GOuQ2w6Ojpi4cKFsLa2xtKlS9G2bVu89NJL2LJlC1xdXbFkyZIiOov8mzt3rlx++eWXi7Ek5tOOwj333HN665V7iLH1ChsbG1SvXl1vH0VJv87ar0OPHj2KsSSWSUxMlE9lTV2fnOtzXiNzr3Nu+QBZT6SrV6+O06dP4//+7//QvHlzfPrpp0hJScHnn3+OBg0amMy/JNJoNHjxxRfl/w8cOJCnfEaPHg0g656pHd3XNm3aNL3ttT0rn0miPLGkxq+0KQMgJk2alO9fENrRNiCrx7mhzmajRo2S2xhqx/rhhx+ajCplZmaKwYMHy20MDZ+VWyReiShYWVmJNWvWGD2ne/fu6XWQmjt3rgAgbG1tjY6K8eDBAxEQECCfGGgLDQ01GWlXpKWlGXw6UtCR+O+//17md+HCBZ11gwYNEgCEt7e3SEtLM5mPkofaIvGm/ipVqiQOHTqUa15///23aNOmjXB0dBSurq6id+/e4uzZs3k+n4KU2+g0GzZs0Hmq1K9fP6N5laRI/MmTJ2W/jYCAAIPbNGvWTABZTxpz0717d1nGlJQUg9uU1Otcs2ZNeT8zVnZLFUUk/uzZs/IYb7/9tslt7969K7cdOHCgzrqff/5Zrlu3bp3JfNatWye3XbhwocFt7ty5I0aNGiW8vb2FnZ2daNiwodEOtUUtL/c6IbKG8FT2+/LLL/XWmxOJT09Pl9+9VlZWYtSoUWLz5s3i2LFjeveRjz/+2GAez8pnkigvbCyp8N+7d08uly9f3pJdc+Xj44P58+cbbJP+4Ycfyl/JBw4cQKNGjeS61NRUua5u3bqYMmWK3v4ajQYLFixASEgI7t+/jx9//BFjx441u2w7duzAiRMnAADvvPMOBg4caHTbcuXK6fw/LS0N33zzDQBg3Lhx6Nq1q8H9ypYtizlz5qBbt244ePAgYmJiUKNGDQDQmWClTZs2Ro9tY2NToE9HjFGi7IGBgahZs6bOuiFDhmDNmjWIi4tDSEiIqqJ8udFoNAgKCkLPnj3RuHFjlC9fHikpKYiKisLSpUtx9OhR3LhxA506ddJ7n+bUvn17nfbZJVX9+vWNrqtVqxYmTJiAESNGFGGJ8iY1NRWjRo2ST+FmzJhhcLuEhAQAgLOzc655aj91S0xMhL29vd42JfU6K/dyNzc3g+UuqZTrA+R+jXJen8LIR+Ht7Y3Fixdj8eLFJvNSE+3vsrxO6mZtbY1Vq1bh5ZdfxqxZs7BkyRK9iHf79u0xceJEdOrUyWAez8pnkigvLGpOo33jM9RsJD/69etn9Mukdu3a8gN8+fJlnXURERGy08vw4cNhbW1tMA9XV1fZ0enMmTMWzdy4detWufz++++bvR+QNTuccizl+MZoV9DDwsLkso+Pj1xevny5RccHsmbgFFkjEZk9O6kxZ86ckc19DHVU7tSpk+xA9Ntvv5nMSylTbrOblhTffvstwsLCMGnSJHTp0gWNGjVC8+bN8eabb+LIkSOYNGkSAODJkycYNWqUyQ7OpcGFCxewbNkyHD582Og2fn5+8jorHf2Kw7hx4xAeHg4gq3OcseY/SgddOzu7XPPUvl8lJycXQCmLjnIvL8j7eGxsrLzWhUW7A3Vu18jU9SmofEoz7Uqz9ne/YsqUKfJ6m5pV+dy5c1i9ejWioqIMrg8LC8Ovv/5q9Dv5WflMEuWFRZV4FxcXuayMUFNQcmuXWLZsWQD6N5Po6Gi53KxZM5N5aK/X3i83ShS+atWq8PX1NXs/ALLiAADNmzc3Op29RqPRuWlqR99btWqFatWqAQDGjx+PwMBAzJw5E4cPH5a9/4vKypUrAWRF/Q09kbCxscGAAQMAAJs3b8bjx4+LtHyFyd3d3eg6jUaD6dOno2PHjgCA48ePm6zcqoXyJa38ZWRk4M6dO9iwYQMaNmyIw4cPo2PHjti4cWNxF9WomTNnyuhfkyZN8NNPPxnd1sHBAQDM+lxpj6Th6OiYz1IWLeVeXtD38cKmXB8g92tk6voUVD6lmfZ3bV6f8B44cADNmzfHX3/9hUqVKuG3337D7du38fTpU/z777/46aef4OjoiN9//x2BgYEG27I/K59JorywqBKvDAMFQG84rfxSOkQaowwrlbNTqjLMIZB7Ex/t4aO098uN8uhZOyJurri4OIv3AaDTQdLW1hbBwcGoU6cOAODYsWOYNGkSWrZsCXd3d3Tt2hWrV6/OU4ddS2RmZuL3338HkBVx9/LyMridEqFPSUnBH3/8UahlKmm0O2blHMqsNLCysoK3tzf69OmDgwcPolatWkhNTcXw4cPz/Mi9MP3yyy/yCUnt2rWxfft2k9FnpXJrrNmENu0KsDmP+ksS5V7++PFjg8P6lVTagaTcrpGp61NQ+ZRm2s1nPTw8LN4/NTUVgwYNwqNHj1ChQgUcOXIEQ4YMQfny5WFra4vKlSvjrbfewoEDB+Dg4IDr16/LgSy0PSufSaK8sKgS37BhQ7l8/PjxAi9MfuU2xnt+H/Pmlr8h2hXrvXv3Iioqyqy/nG3269ati6ioKGzcuBEjR46UvfCTk5MREhKCwYMHo1mzZnn+0WCO0NBQ3LhxAwCwbds2o08UtJ94lOZRagzRnjdBea1KK2dnZ/k+jY+Px/r164u5RLrWrFmDt956CwDg6+uL3bt3G/3hqahcuTKArMqA0kzPmH///RcA4OXlpap25UD2vTwzMxMnT54s3sJYQLk+AHKdO0S5PgD0Ru4qqHxKM+UJNAA5Vr4lQkJC5D3wnXfeMToGe0BAgAz8hIeH49SpUzrrn5XPJFFeWFSJr1u3rozgHDhwoMgmFjJFO0Kg3QTFEO2nB5ZEFpRzvnnzpoWl0+0cZGdnh3r16pn1p7Qr12ZtbY1evXph6dKliImJwc2bN7F06VI58UpERITBIboKitKUxhKHDh3S68dQmpX2dvA5aTeDM9bmtThs3rwZQ4cORWZmJnx8fBAaGqpTcTNG+0fYuXPnjG6Xnp4uJ4tSnpCpiTLsLqDb56ekc3Z2lhVpU9cn5/qc18jc65xbPqWVEAK7d++W/2/VqpXFeWg3jWncuLHJbbUnD8t5PZ6VzyRRXlhUiddoNLIDy5MnT0rEuKr16tWTy//884/JbY8ePWpwv9woN6Br167h6tWrFpVPe4SSnTt3WrRvbnx8fDBy5EiEhYXJMm7ZsqVQOvQkJibKds8vvvgi1qxZY/JPeW8IIXLt4FqanDlzRi5XrFixGEtSNNLT0+VyWlpaMZYkW2hoKPr374/09HSUK1cOu3btkk+ucqNdWTHVHCo8PFw+um/ZsmX+ClwMBg4cKNsML1myRFVt45VrdP78eZOBG+3rl/Ma+fv7y89nbs3e9u/fDwCoVKmSzizFpdm2bdvkLLdBQUF5msnUxiZ78Dvt+4Qh2vcO7f2AZ+czSZQXFlXigayOlUr79S+++CLXKIYiMzMTq1atsvRwuWrSpInscLhy5Uqj7cITEhJk++y6deta1L69Z8+ecvnbb7+1qHytWrWSUf+FCxcWytMLW1tbGVlLT0/P9ZFjXqxfv1620x87diwGDhxo8u/111+X0ZVnqRL/yy+/yGXtaGdpdezYMblcEpoaHD58GK+88gpSU1Ph6uqKHTt2ICAgwOz927VrBzc3NwBZ9xNjT1a0R3nq3bt3vspcHDw9PfHGG28AAG7duoXx48ebve/p06f1JqQrSr169ZLLxkbbSkpK0rnf16pVS2e9RqPBK6+8AiArunvkyBGD+Rw5ckR+x73yyit5alKpNvfu3cOYMWPk/z/55JM85ePv7y+Xc5ssSrtyrr0f8Ox8JonyJC+Dyy9btkxOqODt7S327t1rcvvTp0+Ljh07ioYNG+qka0/oktskFMqEIIYmftGe7Onzzz/XW5+ZmSmGDh2ar8memjRpYtZkT/fv39eb7GnGjBky765du4rExESj+8fHx4v58+frpO3fv19cvHjR6D6pqamicePGAoBwdnbWm2SpICZ7at++vQAgnJycxJMnT8zaZ+bMmfK4Bw8e1FuvrFPDZE9hYWHi5s2bRtdnZmaKTz/9VObZsGFDgxOXqYH2ZE+mxMbGymnMAYgTJ07obVOUkz2dOHFCuLu7y4lhDL3nzKE9zfvXX3+tt/7w4cPCxsYm3+/B4vbkyRNRt25dea6jRo0SCQkJRrd/+vSp+OGHH4Szs7PYuHGj3vqimOxJKUf16tUFAOHq6ipiYmL0tnnrrbdy/XyfP39eXsemTZvq3beTkpJE06ZNBQBhY2OjN7GdWlhyrzt06JDw9/eX2w8aNMjotrlN9vTw4UPh5OQkAAgXFxcRGRlpMJ9t27YJKysrOVleRkaG3jbPymeSyFIWTfakGDFiBK5fv44vvvgCcXFxaNeuHTp16oRXXnkFderUgbu7Ox48eIALFy5g69atCAkJQUZGhk7H2IL0xRdf4M8//8Tly5cxbdo0REdHY+TIkahYsSKuXLmCH3/8UY5RrYzrbanffvsNgYGBSExMxKBBg7Bu3ToMHDgQ1apVQ0ZGBmJiYrBr1y6sX78eUVFROo9dJ0yYgNDQUISGhmL79u2oW7cuxowZg+bNm8Pd3R0JCQk4f/489u7di02bNsHBwQHjxo2T+4eGhmLatGlo3bo1unfvjgYNGsDLywvJycm4cOECFi5cKDsajxo1Su9xZH5du3ZNvn5du3bNdSQhRd++fWUU59dff83TI86TJ08a7Xh3+/ZtvUhcv379DI5KsH79ep3RDQ4ePGhwGcgaxahLly46aSEhIZg1axa6dOmCl156CXXr1oW7uztSU1MRGRkpJ3sCskZaWrx4camI2uUcijUzMxP379/HgQMH8MMPP+D+/fsAgMGDB+P555/P83GUCc4U2iNjxMTE6F3nnONSX7p0CZ07d5ZPob766iu4ubmZHErW29vbYN+Tjz76CGvXrsWFCxcwYcIExMTEyOYne/bswYwZM5Ceng5HR0d89913Fp9rSeHk5ITg4GB07doVFy5cwJIlS7B582YMHjwYbdu2hY+PD4QQuHXrFvbv348NGzbg2rVr+TpmTEyM3udN+VwmJibqXecuXbroNeWwtbXFDz/8gJ49eyI+Ph4tW7bEZ599hsDAQDx8+BCLFy/Ghg0bAGQ9CX3ttdcMlqVWrVr48MMPMWvWLISHh6Nly5b4+OOPUb16dVy6dAmzZ8+WnTs/+ugjvYnt1OjGjRs6n4mEhATcv38fJ06cQEhIiM6wuD169MCyZcvyfCx3d3dMnDgRX3zxBRISEtCiRQu88847eOmll1C2bFncuXMHf/31FxYvXozMzEwAwKxZs+RIdNqelc8kkcXy8wtgw4YNws/Pz+D08zn/AgICxI4dO3T2L6hIvJLXc889Z7IMLVu2FPfv3ze4f26ReCGECA8PF1WqVMn1XK9cuaK3b1JSks7TAFN//v7+Rstm6q9Pnz4iOTlZ79j5jcR/9dVXcn9TTyEMadCggQAg3N3d9abBVvI0FYEz99xNvfZC6EYJc/szFMkxtxxVq1bNcwS4pNCOxJvzN2DAAKNTnJsbiR82bJhFx8xJO9po7t/kyZONlufixYuiZs2aRvd1dXUVwcHBlr60JdL9+/fFa6+9JqOhpv5sbW3Fu+++Kx49eqSXjzmReEuv0549e4zmtWjRImFnZ2d038DAQHH37l2T556RkSFGjhxpsgyvv/66weiwWlj6mvv6+oqFCxfmmm9ukXghsp5Qjh8/Xmg0mlzfV3PmzDF5vGfpM0lkrnyFbPv06YMePXpg/fr12L59O44dO4a4uDgkJCTA1dUVfn5+CAoKQt++fdG+fftCjUz6+fnh1KlTWLx4MdatW4fo6GjEx8fDw8MDjRo1wuDBg/Hqq68a/JVvriZNmuD8+fNYsmQJNm3ahOjoaDx8+BDlypVDpUqV0KpVKwwcONBg5ydHR0esXLkS7777LpYuXYr9+/fj+vXrePLkCZydneHn54cmTZqga9eu6NGjh86+EyZMQLNmzbBr1y6EhYXh5s2bcijJChUqoFmzZhg6dCi6deuW53MzRWnTbm9vj+7du1u0b9++fREZGYlHjx5h8+bN+L//+7/CKGKhGzFiBMqXL4+wsDBERkYiLi4O9+/fh42NDTw9PdG4cWP07NkTr776qs5EMqWNMilZlSpV0Lx5cwwdOlRnpuHSokaNGjhx4gR++uknrFu3DjExMXj69CmqVKmCbt264b333rN44reSysPDA7/++is++eQTrF27FqGhobhy5Qru3bsHa2treHp6omHDhujQoQNeffVVg08visMbb7yB5s2b44cffkBoaChu3ryJMmXKoE6dOhg8eLBZTyWtrKywdOlS9O3bF4sWLcKxY8dw7949eHp64oUXXsDo0aPRtWvXIjqjomVjYwMXFxe4ubmhWrVqeOGFF+RT9fx8T2rTaDT49ttvMWTIECxZsgQHDx7E1atXkZSUBGdnZ9SoUQNt27bF6NGj9fot5PQsfSaJzKUR4hkbE4+IiIiISOUK5uc2EREREREVGVbiiYiIiIhUhpV4IiIiIiKVYSWeiIiIiEhlWIknIiIiIlIZVuKJiIiIiFSGlXgiIiIiIpVhJZ6IiIiISGVYiSciIiIiUhlW4omIiIiIVIaVeCIiIiIilWElnoiIiIhIZViJJyIiIiJSGVbiiYiIiIhUhpV4IiIiIiKVYSWeiIiIiEhlWIknIiIiIlIZVuKJiIiIiFSGlXgiIiIiIpVhJZ6IiIiISGVYiSciIiIiUhlW4omIiIiIVIaVeCIiIiIilWElnoiIiIhIZViJJyIiIiJSGVbiiYiIiIhUhpV4IiIiIiKVYSWeiIiIiEhlWIknIiIiIlIZVuKJiIiIiFSGlXgiIiIiIpVhJZ6IiIiISGVYiSciIiIiUhlW4omIiIiIVIaVeCIiIiIilWElnoiIiIhIZViJJyIiIiJSGVbiiYiIiIhUhpV4IiIiIiKVYSWeiIiIiEhlWIknIiIiIlIZVuKJiIiIiFSGlXgiIiIiIpVhJZ6IiIiISGVYiSciIiIiUhlW4omIiIiIVIaVeCIiIiIilWElnoiIiIhIZViJJyIiIiJSGVbiiYiIiIhUhpV4IiIiIiKVYSWeiIiIiEhlWIknIiIiIlIZVuKJiIiIiFSGlXgiIiIiIpWxKe4CFLb4+Hi5vGvXLgBAixYtAAA+Pj7FUiYiIrXKyMgAACxfvhwA8Mcff8h1kZGRAABnZ2eZlpqaCgBISkqSaUIIAED58uUBAB988IFcN2rUqMIoNhFRqcNIPBERERGRyrAST0RERESkMqW2Oc3JkycBAEeOHJFpymPg9PT04igSEZHqWVllxX7atWsHAHBwcJDrDh8+DAC4cuWKTGvWrBkAoGHDhjJNaea4atUqAMDWrVvlOqUpziuvvCLTHB0dC6z8RESlBSPxREREREQqU6oi8SkpKXJ5y5YtAIB9+/bJNCWyY21tXbQFIyIqJTQaDQCgRo0aAHTvp4mJiQAANzc3mda/f38AQN26dfXyunjxIgDdSPz69esBAJ07d5ZpjMQTEeljJJ6IiIiISGVKRSReGcLs0KFDMu3YsWMAsiNDAFC9enUAusOfERFR3l24cEEuK0NMKsP4AoCrq6vePsoQk0p7+cePH8t1Sp8lpe09EREZxrskEREREZHKsBJPRERERKQypao5za1bt2RapUqVdP4FgKdPnwLgEJNERAXlxo0bclm5B3fr1k2meXh46O2jDEU5f/58AIC/v79cp8zeWqZMmYIvLBFRKcJIPBERERGRyqg2Eh8TEyOX9+/fDwCoWbOmTFMiQrdv35ZpyrBnNjaqPW0iomKldEpVBg24fv26XHfu3DkAwJo1a2Sa0rE1MzNTptna2gIAAgMDAWR3cAWAWrVqFUaxiYhKHUbiiYiIiIhUhpV4IiIiIiKVUW27khMnTsjlgwcPAgCGDRsm06KjowEAN2/elGm+vr4A2GGKiCi/Tp8+DQB4+PCh3rqff/5ZL017kIH27dsDAMaNGwcAqFChQmEUkYioVGMknoiIiIhIZVQXiV+0aBEAwMXFRaYtW7ZMbzuls9X9+/dlWuXKlQEA1tbWhVlEIqJSS+mgGhoaCgBwcnKS6+bNmwcAqF+/vkxThpjcunWrTPv4448BAHfv3gUADB48WK5r3LhxYRSbiKjUYSSeiIiIiEhlWIknIiIiIlKZEt2cRpmJFcjuRBUcHAwAiI+P11unPRPrzp07Aeh2mFLGJiYiorxRxolX5uqoVq2aXNexY0cAhu+1DRs2lMvNmzcHABw7dgwAUL16dbmOzWmIiMzDSDwRERERkcqU6Eh8QkKCXFaGlPT29gYAZGRkyHVKNCc5OVmmKbMJlitXTqYpHbKsrPjbhYgoLx48eAAg+/7s4OAg15l62qk9GIHS8TUyMhKA7lDARERkHtZmiYiIiIhUpkRH4h8/fiyXNRoNAODLL78EoDtxiNIWXmmjCQArVqwAoNuuXsmDiIjMp90HKSoqCkD20JLu7u5m5XHv3j25fPz4cZ08ONkTEZHlGIknIiIiIlIZVuKJiIiIiFSmRDanUYaHvHLlikzr1q0bAKBixYp629vYZJ2Gm5ubTEtJSQEAPHnyRKblbE6jDJVmaB0REWV59OiRXN6yZQsAoH379gCAl156yeS+0dHRAHRn1lYGIxg9ejQAoEuXLgVWViKiZwUj8UREREREKlNiIvGLFy+Wy8qETtpDko0YMQJAdsT86tWrct3+/fsBAJcuXZJpJ0+eBAA8ffpUpi1cuBAA0KtXLwDsTEVEpFCeTCrD8wJAeHg4AGDz5s0yTXlSqjzl1O706urqCkB34r2jR48CAG7cuCHTXn75ZQBAz549AQA1atQooLMgInp2MBJPRERERKQyrMQTEREREalMiWlOs2TJErmszAgYFBQk05RHt3Z2dgB0m86sWrUKABAXFyfTnJ2dAQDW1tYy7ccffwQANGzYEACb0xARKZQZrbVnyl6/fj0AYNu2bTJNGUDg0KFDALKbywDZgwxo52Fvbw9At/Pq559/DkC3ySQREVmGkXgiIiIiIpXRCO1xFovRnTt35LJSJCXqDmTPCmhllfW7Q3smVqVjlRJJAgwPGams9/Dw0MufiIiAjIwMuazcW5Uhe4Hse7BynzZ1r9Ve7+joKNOUDrAc2peIKO8YiSciIiIiUhlW4omIiIiIVKbENKcxl6lHuHnNq6DyIyIiIiIqCozEExERERGpjOoi8UREREREzzpG4omIiIiIVIaVeCIiIiIilWElnoiIiIhIZViJJyIiIiJSGZviLkBePXz4UC5HRUUBAI4cOSLTkpKS9PZRZh9UZmq1sbH89M0ZilK7r7ChfsMczpKIzFEQ4w6Yut8YGmbX1tZWpj19+hSA7iyu1tbWAAAHBwcAQLt27eS61q1b57u8RERkHkbiiYiIiIhURrWReO1oUZkyZfTWK9F2JVqkvY+VVdZvF+0IlbkRL0uj6Eq+nFiKiPLD0qi8OfcZQ/fAzMxMmebu7g4AuHHjhkxTnng2btwYQPb9lIiIihbvvkREREREKsNKPBERERGRyqi2OY2zs7NcVh7rurm5yTSlOY3yOBjIbk6TkpICAEhPT5frlMfKBd2RjBPiEpGlDDWFKch7iZK/9nGUZjTJyckyTblnnjx5UqY9ePAAANC5c2cAQL169QqsXEREZD5G4omIiIiIVEYjSlGo2FBk3VSnq1J06kRE+WLoXrlw4UIAwJUrV2Ta8OHDAQC+vr4AACcnp8IvHBER6WEknoiIiIhIZViJJyIiIiJSmVLVnIaIiPJG6di6fv16mfb48WMAQI0aNWRamzZtAGTP3EpERMWDkXgiIiIiIpVR7RCTRERAmlyKC/8DAPDVpx8DAFbszJ5lNOF//7pU6iTThs+eBQCYMriRTPMw41hx4StlysdvTgIArDlxV6al2nsBABoNmiHTFs0eBgBo6p0907R+9hfk4to3BwIAPj2QpLVBVgfS7t/9BQCY26OKXGMiV5O0h5NUhpGMjIyUad26dQMAtGjRIo9HICKiwsJIPBERERGRyjAST0Sq9WDPBLnctOspAMC7e8MAADe2ZEeqXWyzJnh7eG67TPuoU9Ykce1unZJpER82AGA4sq0cSzlO1rFOAgAeBVWUaQ4pNwEAR34cItNaNc2Ksu+M/hoA0MZVP//jcwbK5f0DQgAAZ5d7yzTbtDgAQMj4rO1+rvZ3djnqGiiwGfbs2SOX//47Kz9lCEkAqFmzZt4yJiKiQsdIPBERERGRyrAST0RERESkMhxikohU6A4AYG3vCjJlZb/rAIBtgyuZlUP89lEAAO/e2d1Zd6b8r7mLzpZnAAA/NMhqfhM+46Zc82sPU11hszvW/t6tcta/gw2V8RIAYEmrH2VK9YPfAgDaG8g1JeRNAECve1/ItJAhlfW2U27tyuzV2iZPngwAcHR0lGm9e/cGkD0TKwA4ODgYKAEREZUEjMQTEREREakMO7YSkQqVBwAM2Jj9IHGAhTm41goCADRNPS3TMgxtGLkNALAgqj8AYG4b0wNRZsuOtvd86zUAwJB5OwEAsYNHyHV+qA4AaNxtn0xbGpLVibVVF/2OrXuDYwAA3d7Wj75rUyLw8fHxMm3v3r0AABubrFt/kyZN5LratWvnekZERFRyMBJPRERERKQyrMQTEREREakMm9MQ0TPpwdn9AIDw+k1lWnkD28Vfy5rB9HzLrO6udQyM8Z4b11pZM54G7snK64rWOr///dv4o//KtItvdsk61rjsGVttbLI6nPaZnzVj7NRcxoZXOraGh4fLtC1btgAAvvgiq1Ns5cqmm+QQEVHJxUg8EREREZHKMBJPRKVfykMAwLm9M2XSqyOzOor+fHCsTDMU3L57+3LWQrWsjq1eeTm+ddat1hbHAACXLmWval/9fwu2tWTagOXHs/41kaXO6MAGhpFcsGABAODWrVsyTRla0sfHx9ySExFRCcVIPBERERGRyrAST0RERESkMmxOQ0Sly573AQCaDt/prSrbfqpcXnt0EwDgJT9b8/ItVwYAkId+rUD1rDYzL+Rl3xwMzcSalpYGAPj1119lmp2dHQCgZ8+eMq1SJfNmsyUiopKPkXgiIiIiIpVhJJ6ISpf23wIAhPg2Oy0tAQDw75lgmTSzY1UAwDefHpRpwSOyOpeaGZsvFkoE/vHjxzJNGUbywoULMm3QoEEAgOeff77oCkdEREWGkXgiIiIiIpVhJZ6IiIiISGXYnIaISj9bFwBAlYavyqQF+7I6iHar3E+m/dwsa0bVdw0NGH//CQAgXivJ7E6u/xsY/tj//htg7n4mbNy4US7v3LkTAPD999/LNC+vPI1oT0REKsFIPBERERGRyjAST0TPpkpBAIA+LaNk0taoOwCAd+uWl2leFaplLZy/DgC4rZWF2ZH4J48AAPf+N8hk9eomts3Fd999BwCwssqOwUyaNAkA4OnpmfeMiYhIVRiJJyIiIiJSGUbiiUh9rv8XAPBKjexhJLtG/gMAGFPL3EwyAADpadkpLmUc9bZyrdMGANDy6H4AwIX4MXJdLTND8XfOHgIAnO81EABgqMm9IQ8ePJDL//yTdX7KZE9NmzaV6+rVq2dmjkREVFowEk9EREREpDKsxBMRERERqQyb0xCR+lRuAAB4sdZRmbRqf9YwjmNqmdlr9EbWgI+bj9aXSV2qGWgfU70FAKB//TcAAAuCZ8pVPQZXMnGAS3IpeP4mAEDXsT8CAMob2lxLSkoKgOyZWAEgJCQEAPCf//wHAODr65tLLkREVJoxEk9EREREpDIaofSSIiJSmQd73pfLz3fdBwAYuGk1AOCTds/JdWUdsnqvJlwMlWnTBvQCAPy37XaZdvLb9gAADwPHit8/AQBQr1N2dPzdvasAAOOCKso064SLAIDQaQNkWv/wtwAA4TtGAQBq2ernn5aW3cN2xYoVAIDHjx/LtD59+gAAqlSpAgCwtTWQCRERPTMYiSciIiIiUhlW4omIiIiIVIYdW4lItTzafy2Xww/+AQD46tOOAADfrjfkuoT//etSqZNMGz77YNZ+/bPHWzfUjEbh2mb6/46zUqZ9/ObzAAD3E3dlWqq9FwCg7ZvZY9jvWz8YgOFmNImJiQCAhQsXyjRl5tUuXbrINH9/fwCARqMxUUoiInpWMBJPRERERKQy7NhKRFTE4uPj5XJERAQAYMuWLTJt6NChAICGDRsWbcGIiEg1GIknIiIiIlIZVuKJiIiIiFSGHVuJiIpYcHCwXD516hQAYOrUqTLN2dm5yMtERETqwkg8EREREZHKsGMrEVERmTx5MgCgXLlyMq13794AsmdiJSIiMgcj8UREREREKsM28UREheDhw4dyOSwsDEB2W/fAwEC5jhF4IiLKC0biiYiIiIhUhpV4IiIiIiKVYXMaIqIClJSUBCC7CQ0AhIaGAgAmTZoEQLdjqzK2gEajKaoiEhFRKcBIPBERERGRyjAST0SUTxkZGXJ57ty5AIDk5GSZNmHCBACAh4eH3r6MwBMRUV4wEk9EREREpDKsxBMRERERqQyb0xAR5dGdO3cAABs3bpRpPj4+AICGDRvKtPLlyxdtwYiIqNRjJJ6IiIiISGUYiScissCNGzfk8smTJwEAt2/flmmDBw8GANSsWbNIy0VERM8WRuKJiIiIiFSGlXgiIiIiIpVhcxoiIhOUGVUfPnwIANixY4dcd+3aNQDAhx9+KNOcnZ2LsHRERPSsYiSeiIiIiEhlGIknIjJBmXl11apVAHQj7UonVkbfiYioqDEST0RERESkMhqhNPgkIiIAwNWrV+Xy33//DSC7bXxgYKBcV69evaItGBER0f8wEk9EREREpDKsxBMRERERqQw7thIR/U9iYiIA4J9//pFpe/fuBQDMmTMHAODt7V3k5SIiIsqJkXgiIiIiIpVhJJ6I6H8WLVoEAMjMzJRpP/74IwDAxcWlWMpERERkCCPxREREREQqw0o8EREREZHKsDkNET2TEhISAABLliyRaR4eHgCAoKAgmZazGY321BoajaYwi0hERGQUI/FERERERCrDSDwRPTMePXokl0+cOAEAuHnzpkzr3r07AKBWrVpG82D0nYiISgJG4omIiIiIVIaVeCIiIiIilWFzGiIqlbQ7oKakpAAA1q1bJ9MuX74MAJg+fbpMs7OzK6LSERER5Q8j8UREREREKqMR2uEqIqJS4smTJ3J59uzZAAAfHx+ZpnRirVq1atEWjIiIqAAwEk9EREREpDJsE09EpYLyUPHSpUsAgIiICLnO3d0dgO4kTozAExGRmjEST0RERESkMqzEExERERGpDJvTEJFqpaeny+Vbt24BAA4fPgwAOHnypFw3efJkAICbm1vRFY6IiKgQMRJPRERERKQyHGKSiFQnLS0NAHDhwgWZtnv3bgCAh4cHAKBPnz5yXZkyZYqwdERERIWPkXgiIiIiIpVhJZ6IiIiISGXYsZWIVCEjI0MuX758GQCwf/9+mVapUiUAQOPGjQGwCQ0REZVujMQTEREREakMI/FEVKIpfe9Pnz4t006dOgUAsLW1lWnKbKyVK1cuwtIREREVD0biiYiIiIhUhpV4IiIiIiKVYXMaIipxMjMz5fKdO3cAADt27JBpd+/eBQDMmDFDptnY8HZGRETPDkbiiYiIiIhUhjO2ElGJoczEqgwhCQAhISEAAB8fH5nWokULAOzESkREzy5G4omIiIiIVIaNSImoxDh//jwA4PDhwzKtXLlyAIBmzZrJNEbgiYjoWcdIPBERERGRyrAST0RERESkMmxOQ0TFQnsYyRs3bgAAoqOjAQC3bt2S6/7zn/8AAFxcXIqwdERERCUbI/FERERERCrDISaJqEgpt5zbt2/LtPXr1wMAXF1dAQD9+/eX6xwdHYuwdEREROrASDwRERERkcqwEk9EREREpDLs2EpEhU671d6ZM2cAAFu3bpVp1apVAwAEBgYCYBMaIiKi3DAST0RERESkMozEE1GhSUpKAgDExMTItFOnTgEAUlJSZJoyG2uVKlWKsHRERETqxUg8EREREZHKsBJPRERERKQyHCeeiApUWlqaXI6IiAAAhIaGyjRbW1sAwAcffCDTrK2ti6h0REREpQMj8UREREREKsOOrURUIOLj4wEA0dHRMk3pxNqoUSOZ1rhxYwCMvhMREeUHI/FERERERCrDSjwRERERkcqwOQ0R5UtqaioA4OzZswCAyMhIua5q1aoAgBdeeEGmeXl5FWHpiIiISidG4omIiIiIVIaReCKymPYwkmfOnAEAnDt3DgCg0Wjkug4dOgAAHB0di7B0REREpR8j8UREREREKsPJnojIbCkpKQCyh44EgB07dgAAfH19AQCDBg2S6+zs7IqwdERERM8ORuKJiIiIiFSGlXgiIiIiIpVhx1YiMkkZQhIALly4AAAIDw+XaQ0aNACQPSsrm9AQEREVPkbiiYiIiIhUhh1bicggJQIfFRUl086fPw8A0L5tdO/eHQBQtmzZIiwdERHRs42ReCIiIiIilWElnoiIiIhIZdixlYgkQzOx7tmzR6bZ2GTdMt577z2ZZmXFWAAREVFR47cvEREREZHKMBJPREhKSgIAnD59Wqb9888/AICAgACZ1qRJEwCARqMpwtIRERFRTozEExERERGpDCvxREREREQqw+Y0RM+wx48fAwCOHz8OQLc5TeXKlQEATZs2lWne3t4AgIyMDJmmdGxlExsiIqKiw0g8EREREZHKMBJP9IxJTk6WyydOnAAAREREANCNsHfq1AkA4OTkpJeHtbV1YRaRiIiIcsFIPBERERGRyjAST/SMUNq/79y5U6bFxMQAAJ577jkAQNeuXeU6BweHIiwdERERWYKReCIiIiIilWElnoiIiIhIZdichqgUu3Pnjlw+deoUACAuLk6mKTOwNmzYEACb0BAREakFI/FERERERCrDSDxRKZSYmAggO/oOALGxsQCAatWqybRWrVoBMDyMJBEREZVcjMQTEREREakMK/FERERERCrD5jREpURKSopcPnjwIADgypUrMs3HxweA7ljwREREpE6MxBMRERERqQwj8UQqpwwjeejQIZl2+fJlAECjRo1kWrNmzYq2YERERFRoGIknIiIiIlIZVuKJiIiIiFSGzWmIzPDgwQO5/PfffwMAbt++DQCwtbWV64QQAICAgACZVrNmTQC6Y7Gnp6cDAOzt7QEAZcqUsbhM9+7dAwBEREQAyG5CAwC1a9cGADRo0ECmOTs7W3wMIiIiKpkYiSciIiIiUhlG4olyePr0qVxWou0nTpyQacuXLwcAXLx4EUB2NB0AMjMzAQDdunWTac2bN9fbztPTEwDg6+sLwPxIfHJyslw+cuQIgOwIvDKEJAB06dIFgO5TAkPS4sIBACvfHwgAGLe6glz3Y0zWMJWjqptVNCOyhr28EvKlTHm1/0wAwJHX/5Zp4tv2ecw+ewjNkC/HAABG/bgTAHAjIXszl0qdAADjliyUaV908QcAOORyiAdhMwAAfV5bBgC4rbUu/fl3AQDrFr0r0xp5mF98IiKivGIknoiIiIhIZRiJJ8rhjz/+kMurVq0CAKSlpcm0qVOnAgCef/55AMCTJ0/kOhubrI/UP//8I9M2bdoEIDtyDgCffPIJAKBOnTpmlenRo0cAstvjA0BMTAwAoG7dugCAzp07y3UGI/BpcQCA8JXvy6ThSysBAObOfA8A0HT1WrPKY0rKlRC5/OWrHwIALr2+Qqb957WsSHz//Bwk7QIAYEm37Db/X1ZbAwDYc2MLAKCmS/bmCRez0t5/Mfv17jb1NADg7xEGHjXc2SAXx36aldGC6P+93lqh+5Qz87PymrBdpm1akjWZlqsFp0NERGQpRuKJiIiIiFSGlXgiIiIiIpVhcxp6pilDPQLZTVW2bt0q06ytrQEAo0aNkmkvvPACgOyOqoaGblQ6swLA9evXAQAnT56UaRUqZHUgdXU13uhCGUJSe18lLwBo3LgxAKBhw4YAcu/EirCVAIBvkd2c5u/9TQEA3teWAAC+Mp1DLi4BANZ/u1+mtFmd1XF2hn92G5Q97yPf4nd/DQAYdy+7xEd39AYA1DTwMrjUzFr389oPZVqlV7I6KIcNyc6jubLvmYMy7car4wDoNqNRONR9EQDQ+9wqmRaNrOY0Lcw6EyIiorxhJJ6IiIiISGUYiadn2qVLl+TykiVZ0WjtYRx7986K4Pbr109vX2ViJ41Go7eubNmycrl169YAdCPxlStXNlqmhw8fAtDtHBsbGwsA8PPzk2lKtN/siaLafAQA+L2NeZtbLquD6JAfZhRS/vFyaf+apQAAv6GnZFqDXB5EAIBt8+zutBM8AgEAG8O0IvHKa1O3lUyrNG0bAODMkHeyVul0bA3NyuO51jJtWO7FICIiyjdG4omIiIiIVIaVeCIiIiIilWFzGnom3bhxA4DuuOtK85Xx48fLtKFDhxrNw1AzGkMcHR0B6I4Jr6QpkpKS5LJSpqioKJlWpUoVAMDLL79s1jFLp1i5dO5o1r9dRzQwvKlR2deg4YupAICpF7KbVKHN/8aML99XJv08/X8zttarAQC4bZN923RrntVRduE3XWUax4cnIqKiwEg8EREREZHKMBJPzyRlttNjx47JtICAAJ1/AcDOzi7fx/Lx8QGg2zlWSVOOHxKSPcupMgOrdtS9atWq+S6H+t2XSzfO1wYAVCpnaR7ZvV9t/ndpD52+prVef/ZWj+aTAAB7YyZZejAiIqJCw0g8EREREZHKsBJPRERERKQybE5Dz6T797OaZmjPgFqzZk0AgJeXV77zV8aQB7JndlWa0Gj7999/AQDh4eF65ahePbtph5ubW77LVLp4AgDczRwi35CqAS2zFk4XQHGIiIiKGCPxREREREQqw0g8PZOePHmi8y+QHe0uiM6s5g4/6emZFVHWjrqnpKQAAO7cuSPTXF1dLcqXiIiISjdG4omIiIiIVIaReHom3b17FwDw6NEjmaa0hS9TJh8NrS3UqlUrANnt4AFg3759AID9+/fLtFu3bgEA2rZtW2RlK9nuAQAePcllMxOunT5UQGUhIiIqeozEExERERGpDCvxREREREQqw+Y09ExycXEBANjaZs/geerUKQBAhw4dzMpDGUbSUGdTpfkLACQkJAAAatWqpbedlVXW72jt4SdbtGgBADh69KhMu3jxIgDdTreNGzcGkD2EZemXPT1rpdrnAQBX7qRprbdF7uLl0pP/TQDbsg1nwyUiIvVhJJ6IiIiISGUYiadnkhIVr1+/vkw7c+YMgOyIPAAEBAQAAGxs9D8qhiLwSh4xMTEyTRm60lAk3pCqVbMiw0+fPpVpymRQ2pNCOTk5AQDq1KkDoGCGxizZ6silJl2znj4sOXU2e/VLDczI45xcigjJ6sj80rjqxjYmIiIqsRiJJyIiIiJSGVbiiYiIiIhUhs1p6JnUsGFDAMCAAQNk2nfffQcA+Pvvv2Wau7s7AODll182mpf2zKpTpkwBkN0MBwD69u2bpzLWqFFDLitNZ4KDg2XawYMHAQDJyckAgKCgoDwdRz2yO6426TQEABA77A+ZFvZeVnOa5ib6t8bvWSOXf8KbAIC/GhVkGYmIiIoGI/FERERERCrDSDw9k5QIe8uWLWWaMlProkWLZNpnn30GAFi1apVMS0xM1PlXmekVAF577TUAwPPPPy/Typcvn+/yVqhQAYDuE4ETJ04AAI4fPw4gexhKAHj11VcBANbW1jLN1JCYauPa9RMAwM/1sp94DBjbBAAQ+m0PAEBNlwy57uaRrOv3/rANMm3w2pMATEfuiYiISipG4omIiIiIVIaVeCIiIiIilWFzGnqmlS1bVi63bdsWgG5HVaUpjKOjo0xLSkoCADx58gQAULFiRbmuffv2ALLHhs8PpfkLYHhmV2W90rFVe2z6w4cPA9Bt1hP+hSsAoMN35h3/UI2sZjdv6KRmNT9aHHNQpoxShlm/tAQA0KpG9h6HTB4he2ZcTc4yjc/uXCy+bW9g36yDjtiWPU68z5djAADtK/UBANxIyN7aJaA3AGDi0uwSfdTew2TpiIiISjJG4omIiIiIVEYjtMN9RKQ6d+/eBQAcO3ZMpkVHRwMAmjdvLtNatGgBQLezKxEREakTI/FERERERCrDSjwRERERkcqwOQ1RKREfHy+Xjxw5AgCIjIyUad7e3gCAoUOHFm3BiIiIqMAxEk9EREREpDKMxBOVQvfv3wcAhIWFybSbN28CAGrWrCnTlI6vDg4ORVg6IiIiyi9G4omIiIiIVIaReKJSTInIA8CpU6cAAKdPn5ZpTZo0AQDUr18fAODi4lKEpSMiIqK8YiSeiIiIiEhlWIknIiIiIlIZm+IuABEVnnLlysnlRo0aAQCSkpJkWkhICIDsTq/9+vUrwtIRERFRXjEST0RERESkMuzYSvSMUD7qjx49kmlnzpwBAJw4cQKAbpT+/fffBwDY2trq5aHRaAq1rERERGQaI/FERERERCrDSjwRERERkcqwOQ3RMyw5ORlA9syu4eHhcl1AQAAAICgoSKZpd5QlIiKi4sNIPBERERGRyjAST0TIzMwEAFy5ckWmrVixAgDQrFkzmda1a1cAgLW1ddEVjoiIiPQwEk9EREREpDKsxBMRERERqQyb0xCR9PTpU7l87do1AMCWLVtkmnK7UMaQ18Yx5ImIiIoOI/FERERERCrDSDwRGaR0dj169KhMO3XqFADdaHu/fv0AAB4eHkVYOiIiomcbI/FERERERCrDSDwRmaR9i1Ai8WvWrJFprVu3BgA0b94cACeEIiIiKgqMxBMRERERqQwr8UREREREKsPmNERkNqWz6507d2Tad999BwCoWLEiAOC9994r8nIRERE9axiJJyIiIiJSGUbiichiSkQeAM6cOQMAOH78OADg4cOHct3QoUMBAGXLli3C0hEREZV+jMQTEREREakMK/FERERERCrD5jREVCCioqIAAPv27ZNp5cuXBwAEBQXJtCpVqhRtwYiIiEohRuKJiIiIiFTGprgLQESlQ/369QEA7u7uMm3RokUAACur7HiBp6cnAMDR0bHoCkdERFTKMBJPRERERKQyrMQTEREREakMO7YSUYFKT0+Xy3FxcQCADRs2yLTHjx8DAD799FOZptFoiqh0REREpQMj8UREREREKsNIPBEVuujoaLl87NgxAMC9e/dkWv/+/QEAvr6+RVswIiIilWIknoiIiIhIZTjEJBEVunr16sllJycnAMD3338v044cOQIAcHBwAJA9SZQ27YeGbENPRETPOkbiiYiIiIhUhpV4IiIiIiKVYcdWIioWCQkJcnnevHkAgHLlygEAxo0bJ9dlZmbq7as9AywREdGziN+EREREREQqw0g8ERU7ZVKov//+GwBw6tQpuU6ZFMrZ2bnoC0ZERFRCMRJPRERERKQyrMQTEREREakMm9MQUYkRExMDANi4caNMq169OgCgefPmMs3Hx6doC0ZERFTCMBJPRERERKQyjMQTUYmTmpoql6dNmwYAqFu3rkzr1asXAMDR0VGmcRZXIiJ6ljAST0RERESkMqzEExERERGpDJvTEFGJFh8fDwBYtGiRTLty5QoAYPbs2TKN48gTEdGzhJF4IiIiIiKVYSSeiFTh5MmTcvno0aMAABsbG5n28ssvAwA8PT2LtFxEVLCSk5MBAKye5I3SyT8zM1OmKYMFaN8zrayy4rgZGRkyzd7eHgBgZ2ensw2VTLw6REREREQqw0g8EanOnTt3AABr166VabVq1QIAVKlSBYBuFMra2hpA7sNQWno7LI23T+3Im3J+hs5TeS0Nvabakb20tDQAwNOnT2Vaeno6AN1rROpg6Hqb+zlQ9tWOBiv7ar8/lOXS+PkqStqvX0pKCoDsSDuQ/VlX1gFA+fLlAQB+fn46/6eSiZF4IiIiIiKVYSWeiIiIiEhl2JyGiEqFKVOmAAD2798PAPDy8pLrlJldbW1tZZryKFm7SYeybKiZh9IUQPuWWZqagyjnp/0aKc1ilOYvQPb5K00itLdXJCUlyeUHDx4AAO7duyfTHj16BCC7qQ2/htTDUFMY7c+BoWuppCmfOVdXV7nOw8ND518AcHFxMZoHmU+76ZOhz6vyuVY6EgNA7dq1AQAvvfQSACAoKKjQy0l5x0g8EREREZHKMBJPRIVO+zaTW+fSvFIivufPnwcA3Lp1S65TOrZqd+pS0rQ7dSnRKmV4Ne007ehyznWlgaGoqnKttDu7KmlKlN7Q0wjtaF+ZMmUA6L5WSsfF0vQk41mRn46tCu33gvJeMfSZy88xSJfyGda+foY+805OTgCyn4y4ubkVVREpDxiJJyIiIiJSGVbiiYiIiIhUhs1piKhIKc1Szpw5I9NiYmIAAImJiQB0H6crzTa0xx5XlrW3q169OgCgZs2aAIAKFSrIdUrHLe1HycrjZe3xqQ11/srZ7EY7D2VdaaB8FWi/zsprZOg8DV0XhXazJe1lIiIqOIzEExERERGpTOnplUVEqqBE4o8ePSrT1qxZAwA4d+4cAN1Obt7e3gB0O7YpQxNqR3nd3d0BAC+//DIAYOzYsXKd9pB2OSkdL3NjaChFIqLioDwB0x4eUllW1hnqxJobZR9lWF6loytQujrylxaMxBMRERERqQwr8UREREREKsOOrURULJ48eSKXt2/fDgDYtWsXACAhIUGu++STTwAAVatWlWlKcxrtx8X/+c9/AAAnT54EAHTt2lWue+eddwAAlSpVKrDyExEVl9u3bwMANm3aJNP+/PNPAMDNmzcB6DY3VDrmG6ryad9HlX2UZomDBg2S65TZXKnkYCSeiIiIiEhl2EuBiIqFdodSZWhJpUNWjRo15Dpl6EjtDlaGjBkzBgCwYsUKAMDOnTvluhdeeAEA0KFDB5lWtmzZvBadiKhYKTOpKvc2ADh16hQA4P79+wB075mDBw8GAHh6eso0ZaZW7c6x69atAwA8fPhQZxsqmRiJJyIiIiJSGUbiiajYKe3YlQjSSy+9JNeZGwlq3rw5AODBgwcAdIewDAsLAwD4+/vLNEbiiUhNtNuzK0NANmnSRKYdP34cQHYbd+UpJpDdZyg3Stt5pW18uXLl8lFiKmyMxBMRERERqQwr8UREREREKsPmNERULLQ7U924cQMA4ODgAABo2bKlXKc8NjZXhQoVAOh2+IqJiQEAXLt2TaY1btzYwhITERUf7aEgFdpNbC5dugQA8PDwAAB069ZNb/v9+/fL5UePHgHIHk4SyL73Kp1ilRmzqWRiJJ6IiIiISGUYiSeiIqVE4KOiomSaEoFXOmJVrlw5z/krkSllQigge+hKzm1HRKWJdsf/2NhYAEBAQAAAoE6dOnrbK4MHAMCdO3f01jdo0KCAS0iFiZF4IiIiIiKVYSWeiIiIiEhl2JyGiIpUQkICAODIkSMyTRmTuGrVqgWWv3Yn1mrVqgHgmMdEVDooTQSvXr0q05SmMsq99ddff9Xb/t9//5VplSpV0stXadpI6sBIPBERERGRyjAST0RFKj4+HoBuJF4ZFrIgIvFKNEo74tS5c2cAhiNPRERqowwP+c8//8g0a2trAMDFixcBAF9//bVcp3T0b9GihUzTnu2V1ImReCIiIiIilWElnoiIiIhIZdichoiKVGJiIgAgOjpapnXs2BEA0KxZszznq4w/f/fuXQDZnWUBoHz58gAAZ2fnPOdPRFRSKPe5gwcPyjSlA/+bb74JQPd+un37dgCAra2tTFOaMZJ6MRJPRERERKQyjMQTUZFSIvF2dnYyTZmh1cXFJc/5Ll68GACwe/duAECHDh3kuqZNmwIAPD0985w/EVFJ8eTJEwC6M1/369cPANC8eXMAgI+Pj1ynROVTUlJkGofcVT9G4omIiIiIVIaVeCIiIiIilWFzGiIqdNqzp547dw4AULt2bZlmzvjtyoyDAHDv3j0AwOXLl2Xa3r17AWSPldyzZ0+5rmbNmjrriIjU7M6dOwCyO/QD2fdUpcOqEEKuU5osat9Hlc7/6enpMi01NRVA9r2SM7iWbIzEExERERGpDCPxRFTo9uzZI5d37NgBAGjYsKFMK1OmTK55aEfz169fDwBYsGCBTOvfvz+A7M5d2pF+Gxve6ohI3bSH5VWW/fz8ZJoy47VGo9Hbt2zZsnppShQ/NjZWpikzaiuDABTELNpUeBiJJyIiIiJSGYaniKhAKZEcAHj//fcBZLdXB4CnT58CAK5fvy7TlEi90g5TO5Lk5OSksx+Q3YZ+2bJlMq1WrVoAsodN057syVBkioiopFHasRu6Z124cEEuK/2BAgMDZZo5fYuuXr0ql4ODgwEAhw4dkmkjR44EANSpU8eSYlMxYSSeiIiIiEhlWIknIiIiIlIZNqchogKlPYyj0imqS5cuMs3d3R2A7oytShMcZTZBK6vs+ILSLEZ7+/r16wMA2rdvX5BFJyIqVkozmqSkJJm2a9cuAMCmTZtkmtIZNTMzU6Yp693c3AAACQkJcp1yX9buHHvy5EkAusNUurq6AgAcHR3zcxpURBiJJyIiIiJSGY3Qng2AiCiPTHXIIiIi82l3/O/cuTMA4MaNGzLN2dkZgG4kvnz58gCyJ2yKi4vTy9fQBFAdO3aUae+99x4ADi2pFozEExERERGpDCvxREREREQqw+Y0REREREQqw0g8EREREZHKsBJPRERERKQyrMQTEREREakMK/FERERERCrDSjwRERERkcqwEk9EREREpDKsxBMRERERqQwr8UREREREKsNKPBERERGRyrAST0RERESkMqzEExERERGpDCvxREREREQqw0o8EREREZHK/D/6nL0cl7879AAAAABJRU5ErkJggg==",
"path": "images_version_6/image_35.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure: AB parallel DE, the degree of angle D is ()
Choices:
A:115°
B:120°
C:100°
D:80°
|
||
176
|
36
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHQAAABtCAAAAABVKBqoAAALP0lEQVR4nMWbe1wU1xXHfzPsLu+HCCKIYkQ0ogkKCgKaoEbRRA2xWgVJTZNgHjXix1DRqKBEJBqMxpqHxmj6SWITYs3HtmpiakQUUFFUQCMRAUGIoDzlsewud/rHssvszp2Z3W0/9vyxzD33nPnO3Pece2E4gMOjEcZwwT4ioIkorHXQaEG0AKsEq7L7X0O1SoGq8V7LvcbfmqBu6IWrN3H09fYb6OXnaD2UEanTvw+Ybqq49kv1b/W6IL9AX8ZpqB3a6uza7tRUN3r5+geG+FjIkoFWJa/iQ2t+KGEQEDbRVWB468L1hxgwbRojyJGA0ou3IVfjbUxwZ79pCYwOD6RaBgWh48rlw3sjEwZZgDXQqW+aj++XPaG/fFj0Vee8sCDpBtdQfury9LgRcizDBfVm5z+fxQzQXx472rJ4lpvM3eDjM+XWF6un/O4xOcM+OuVNNbtut7tleQIoO1gTl2BJdQHA7U+qn0+UMpZqSF17o8Nrc5Z5QbfvxOTXvCxEAsCpg4rkCRZAwXEcMZHKBP/y23PH7iJVScsuEeuk6ePZ+7WiuZxBhG+qbbDz4u4r7M/ujF1pfce/lBWQKtZt5fopsDt/2MIIq5lA69bKtCdloMLiJYQQ0v1OfM35hRVWlq5e9sXmyRQvHdqWvPw+UU+d8dAm6vfPHpeGUqe29nWKDwZCNfNiJrGhgPF8yifHJA1o0O50t/ecAMyOLN9nCxQxa/f9bCW0911Nmh0AhHgsOP1Pm6iRK7MvWgfNrtvqAABQhjWk7L9sE3XGqxk3JLIFDSlnQaXh8sIccmhxrU2NiXz0YrvlDankwIrhhutRHnlLJmT22PSub7huF80zh3Zsmx1jTLiFHsMqux02QbH26mFLoZ84v9mfYCbeblWllX1pE9Q/+YtblkGvnUnlz7DB7gXwTj2caxN1RrhYhzOFanfPN1mVeA/LB0KS9vxqE/W1W/+2BPqNbqFpdlT9PWDuzKyHtkB9/nCwTR7acDLB0zR7ctc1AMt9Mm2BYoHLUXnoSednzLJdg4o5gHmn4SObqK98T+1vfGjzz3GCD4XYsiYAbuty6c8sIyFDcuSgZ7jZgvyItnIAGLXywBUboPbzf+iUhnJH4oX5qsg8AMDUJdsbbaBGeZyQht7siqQYzMpXAwDix2/WWA91GVskDT0aTVtUBzv1zTPJrC3jYUwTpY/3QzVXomlezhF9qwCHNSVfWQ8NdiiWghYOHkl1C7/e1xaGpn53znpq5C9qCWiB/0Cq1+NeBtT4pB1VVkOn/HpfHNp7J4Du5R142nA5d2aG1eNhgLZaHFqpDBZxm1Rv7Cyv+76n689Qn8uz4M0nCdctRuhNuyARrzDO2BbYlPpPjfrKlO17XsmVhUZe6xWF1irtRbw8h102fnh4rj9lWNLeXjv4aE5cumx5B1YJ+rcR2u4n6vbMrf62MHL1vhIAgDrdfwODGLUs1NWpQQza1TVM1C2qpbw/MXVRViMAFNYmAaiGSg6q8KsVg7Z1DBV1s59QyEslPpGhBlDsPxLAj9ED5KAq3xoxaEeHRDBoTiF/rliFnQC6FHbAqR8TZKNmCs96MahW5yLuF4ISXsppQ/EhILK6HMdT3wmTYwIuHYLn6Pur0QoDU0ZxiP6BPwENXp8VGPF06XJHt51T5ZlwFIVqtVItIjrTJFQ4PiLt48DkxTpX2QoFAEfBPG4sXq2U36iBZ/nJzuKfUjpZv2EWMeHQJQaVFs/gk/yksw6nsi1yBPihBnOoUhhp5fuF1TTx0+kn9975VMzYXNRO5hpDnSoUGqlKDVEV8RdtY8YgdJ3/XMug3QKo4U1VKkEb44v30AtmmtErPyu1ECrojEaoQhKKp+6Yj6Axi7Y+sAjaKeiMBqiTk/QKM7pVMC0mjtmso5maia5psBjU3VUwQpqIU/AlgS6l15L1oeY3wZLEAHVxrpXen5lzqVXwIKnFh+ShunrBVGLspy514KSok7puCnQBqd8UUkxNhTKVGKFDtRpWKkKsij4lVIYmZVfLQSuHC5YkRugYXQUAQkAIQDj9NcARQ6Tu6QItiHnYbt60DNoXEl/OhwhmPyN0hPaGPs2wICwHEJYlAPS/IBjtVgiWJWZVsNxrq0wTvihcZRqhCv9qAIw++kuLQw4IPQ4IRlLV2zWfSzJrGeFuQv+AH1V3H2D0OFrtMmEV7ZSb+qSd+FEKWjDKW6DjQe9VA2AJC+jLlRAWACEsOIAlGOueD8Jy5qUQlLxHKgyYP0YYk++HOozrb/4sA4BlATAsqy9SFj5DC/RVbibTFm1pFmWWd4YKlbxbzD/7EByRmGAj6+hD5YvBm7rFfHIHjpaEjlNepM24/TK5s4SqZ5I1u0VcukpDKXfkQZkXDoGRgrqPKKaPWa7pRdQoCnC+eQ5Fyy/NGK1kEByILRWpPN91X1PHQ80/ZrjLQL2nHZbeKIhsFotrhr30vuDjAUBZNSVgY7Ywi23PlYTaR+SJZb3w1Ka+OGDr5zsy9vT16P3zBEsVAdRv+iF6BNEgs86JhnXe9HhfX+FMyZdc3kY1APyr6QWqrWkPWao9IgkdpxLdR1BtrNoPAHCPei09/kwPgAcHXvKk2ppC7VcckVxAuITTAmB68dh47AQAaG48KLy62h3AZwGxdFOzsWBSxHbJthRxTXQYwOMr994E0Fpb+pZLPICz+UkiI425ekXjZ1LQMZ754pnT4zIagVLvnL8dOAPc+yBeLHRiDvVIPXpeAsqL71Bk2ahMgorJcIIa2DF6qZidoADClu6qE78tM/GuxGKXWdPz4dWf2MuvDIrBF/VrRe2Epb40eJPECmQiocT6jOK0/sx83cHNjx11Of7dnz3E7YT7pz1vr+oR385KzZTc7SpadJ0QQvLmUDZupfZPlenqreIPOYMS6+NJWPyGWqA4e8UUCSNao3bZUpcmOvJMoQVweRIXuUVzOeNF2uRiFPpGfPN6h81ixzg2erwtSdVurbSLm09lGS7o3dczW7nqrshNZxcIPudNRDnoy+FUZr+IjBnOWwLfEplRQnVlUjfs2nzuK7HtLqPQjxwQQr6N3UVvxFmbJFrvtSVv3CE/zbtOy5M5ckAIIaQ0MamMpj/7nEYM2XZw9h41IeRAQpONUNK5/bkPWoTqxsTTIg7nXlqcTwghRLvhrS4JqOgxEgDApQOtCxeYK8m2h9R+fHfv9diX+4I0rSnBqwUG8mdX+mr88PGepc+Yfeud/Pr3UYK4Vc3BqxMW969x61ckCp7WUijQVJBDFk4Yxm/lDZu7N5ieOGupPJkfGTeWr7qQmTbRZijQk5vTOS5kPO8j/t1jS97of3t12ZWS+kkJ5kHqI1/vHmI7FEDF8TJHVUBoqP7QBU6vj9rW96VbU3S9VeM0fQYl4LbzRrbpotdKKMAVldU8aOKC/Eb4MS6eSxYkVrNt1TVVDe5eg0eG+VJdtGvc15s8i9VQAKirbW580NjMaZtuuLgyYJQKpf2gYb52ag3tDoyy9tt343uae7Wsn9J2KAD0qntAeppOd9tzdkqFyk6n09HdOQaKriGLylY2D+58Msvtv4JaLR8OWXj/jxPX2UN2lpGUvJf/VH5Feqbpl+6OQHivOH3PRGn1+d6e1T3P2m1ztnQDt0wzBBjkaHoIwGrotpK/jsBdzlK/ErdBQK27ad+xFvrLsfQRwDTJ4BpPdNxYQPuXKNMjsdbW6c8O0QDGBVsIrboSjvql3q+bmlv7pu329gDAWQa9mnyzgXSEJ5uFkqyFBn5bG4SailAPi6yH71R1co4h5mpr+2nLmoYElMyMsfT8rQnLVig0uyocX33CBuSjHJFo0P/Lfxwwj+o1+fIfav/QTTQH0V4AAAAASUVORK5CYII=",
"path": "images_version_1-4/image_36.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, AB is the diameter of circle O, point C is on circle O, passing point C to draw the tangent of circle O and it intersects the extended line of AB at point D. Connect AC. If angle D = 50.0, then the degree of angle A is ()
Choices:
A:20°
B:25°
C:.40°
D:50°
|
Như hình vẽ, AB là đường kính của đường tròn O, điểm C nằm trên đường tròn O, kẻ tiếp tuyến tại điểm C và nó cắt tia kéo dài của AB tại điểm D. Nối AC. Nếu góc D bằng 50°, thì số đo góc A là ()
Các lựa chọn:
A: 20°
B: 25°
C: 40°
D: 50°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB is the diameter of circle O, point C is on circle O, passing point C to draw the tangent of circle O and it intersects the extended line of AB at point D. Connect AC. If angle D = 50.0, then the degree of angle A is ()
Choices:
A:20°
B:25°
C:.40°
D:50°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB is the diameter of circle O, point C is on circle O, passing point C to draw the tangent of circle O and it intersects the extended line of AB at point D. Connect AC. If angle D = 50.0, then the degree of angle A is ()
Choices:
A:20°
B:25°
C:.40°
D:50°
|
As shown in the figure, AB is the diameter of circle O, point C is on circle O, passing point C to draw the tangent of circle O and it intersects the extended line of AB at point D. Connect AC. If angle D = 50.0, then the degree of angle A is ()
Choices:
A:20°
B:25°
C:.40°
D:50°
|
177
|
36
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHQAAABtCAAAAABVKBqoAAALP0lEQVR4nMWbe1wU1xXHfzPsLu+HCCKIYkQ0ogkKCgKaoEbRRA2xWgVJTZNgHjXix1DRqKBEJBqMxpqHxmj6SWITYs3HtmpiakQUUFFUQCMRAUGIoDzlsewud/rHssvszp2Z3W0/9vyxzD33nPnO3Pece2E4gMOjEcZwwT4ioIkorHXQaEG0AKsEq7L7X0O1SoGq8V7LvcbfmqBu6IWrN3H09fYb6OXnaD2UEanTvw+Ybqq49kv1b/W6IL9AX8ZpqB3a6uza7tRUN3r5+geG+FjIkoFWJa/iQ2t+KGEQEDbRVWB468L1hxgwbRojyJGA0ou3IVfjbUxwZ79pCYwOD6RaBgWh48rlw3sjEwZZgDXQqW+aj++XPaG/fFj0Vee8sCDpBtdQfury9LgRcizDBfVm5z+fxQzQXx472rJ4lpvM3eDjM+XWF6un/O4xOcM+OuVNNbtut7tleQIoO1gTl2BJdQHA7U+qn0+UMpZqSF17o8Nrc5Z5QbfvxOTXvCxEAsCpg4rkCRZAwXEcMZHKBP/y23PH7iJVScsuEeuk6ePZ+7WiuZxBhG+qbbDz4u4r7M/ujF1pfce/lBWQKtZt5fopsDt/2MIIq5lA69bKtCdloMLiJYQQ0v1OfM35hRVWlq5e9sXmyRQvHdqWvPw+UU+d8dAm6vfPHpeGUqe29nWKDwZCNfNiJrGhgPF8yifHJA1o0O50t/ecAMyOLN9nCxQxa/f9bCW0911Nmh0AhHgsOP1Pm6iRK7MvWgfNrtvqAABQhjWk7L9sE3XGqxk3JLIFDSlnQaXh8sIccmhxrU2NiXz0YrvlDankwIrhhutRHnlLJmT22PSub7huF80zh3Zsmx1jTLiFHsMqux02QbH26mFLoZ84v9mfYCbeblWllX1pE9Q/+YtblkGvnUnlz7DB7gXwTj2caxN1RrhYhzOFanfPN1mVeA/LB0KS9vxqE/W1W/+2BPqNbqFpdlT9PWDuzKyHtkB9/nCwTR7acDLB0zR7ctc1AMt9Mm2BYoHLUXnoSednzLJdg4o5gHmn4SObqK98T+1vfGjzz3GCD4XYsiYAbuty6c8sIyFDcuSgZ7jZgvyItnIAGLXywBUboPbzf+iUhnJH4oX5qsg8AMDUJdsbbaBGeZyQht7siqQYzMpXAwDix2/WWA91GVskDT0aTVtUBzv1zTPJrC3jYUwTpY/3QzVXomlezhF9qwCHNSVfWQ8NdiiWghYOHkl1C7/e1xaGpn53znpq5C9qCWiB/0Cq1+NeBtT4pB1VVkOn/HpfHNp7J4Du5R142nA5d2aG1eNhgLZaHFqpDBZxm1Rv7Cyv+76n689Qn8uz4M0nCdctRuhNuyARrzDO2BbYlPpPjfrKlO17XsmVhUZe6xWF1irtRbw8h102fnh4rj9lWNLeXjv4aE5cumx5B1YJ+rcR2u4n6vbMrf62MHL1vhIAgDrdfwODGLUs1NWpQQza1TVM1C2qpbw/MXVRViMAFNYmAaiGSg6q8KsVg7Z1DBV1s59QyEslPpGhBlDsPxLAj9ED5KAq3xoxaEeHRDBoTiF/rliFnQC6FHbAqR8TZKNmCs96MahW5yLuF4ISXsppQ/EhILK6HMdT3wmTYwIuHYLn6Pur0QoDU0ZxiP6BPwENXp8VGPF06XJHt51T5ZlwFIVqtVItIjrTJFQ4PiLt48DkxTpX2QoFAEfBPG4sXq2U36iBZ/nJzuKfUjpZv2EWMeHQJQaVFs/gk/yksw6nsi1yBPihBnOoUhhp5fuF1TTx0+kn9975VMzYXNRO5hpDnSoUGqlKDVEV8RdtY8YgdJ3/XMug3QKo4U1VKkEb44v30AtmmtErPyu1ECrojEaoQhKKp+6Yj6Axi7Y+sAjaKeiMBqiTk/QKM7pVMC0mjtmso5maia5psBjU3VUwQpqIU/AlgS6l15L1oeY3wZLEAHVxrpXen5lzqVXwIKnFh+ShunrBVGLspy514KSok7puCnQBqd8UUkxNhTKVGKFDtRpWKkKsij4lVIYmZVfLQSuHC5YkRugYXQUAQkAIQDj9NcARQ6Tu6QItiHnYbt60DNoXEl/OhwhmPyN0hPaGPs2wICwHEJYlAPS/IBjtVgiWJWZVsNxrq0wTvihcZRqhCv9qAIw++kuLQw4IPQ4IRlLV2zWfSzJrGeFuQv+AH1V3H2D0OFrtMmEV7ZSb+qSd+FEKWjDKW6DjQe9VA2AJC+jLlRAWACEsOIAlGOueD8Jy5qUQlLxHKgyYP0YYk++HOozrb/4sA4BlATAsqy9SFj5DC/RVbibTFm1pFmWWd4YKlbxbzD/7EByRmGAj6+hD5YvBm7rFfHIHjpaEjlNepM24/TK5s4SqZ5I1u0VcukpDKXfkQZkXDoGRgrqPKKaPWa7pRdQoCnC+eQ5Fyy/NGK1kEByILRWpPN91X1PHQ80/ZrjLQL2nHZbeKIhsFotrhr30vuDjAUBZNSVgY7Ywi23PlYTaR+SJZb3w1Ka+OGDr5zsy9vT16P3zBEsVAdRv+iF6BNEgs86JhnXe9HhfX+FMyZdc3kY1APyr6QWqrWkPWao9IgkdpxLdR1BtrNoPAHCPei09/kwPgAcHXvKk2ppC7VcckVxAuITTAmB68dh47AQAaG48KLy62h3AZwGxdFOzsWBSxHbJthRxTXQYwOMr994E0Fpb+pZLPICz+UkiI425ekXjZ1LQMZ754pnT4zIagVLvnL8dOAPc+yBeLHRiDvVIPXpeAsqL71Bk2ahMgorJcIIa2DF6qZidoADClu6qE78tM/GuxGKXWdPz4dWf2MuvDIrBF/VrRe2Epb40eJPECmQiocT6jOK0/sx83cHNjx11Of7dnz3E7YT7pz1vr+oR385KzZTc7SpadJ0QQvLmUDZupfZPlenqreIPOYMS6+NJWPyGWqA4e8UUCSNao3bZUpcmOvJMoQVweRIXuUVzOeNF2uRiFPpGfPN6h81ixzg2erwtSdVurbSLm09lGS7o3dczW7nqrshNZxcIPudNRDnoy+FUZr+IjBnOWwLfEplRQnVlUjfs2nzuK7HtLqPQjxwQQr6N3UVvxFmbJFrvtSVv3CE/zbtOy5M5ckAIIaQ0MamMpj/7nEYM2XZw9h41IeRAQpONUNK5/bkPWoTqxsTTIg7nXlqcTwghRLvhrS4JqOgxEgDApQOtCxeYK8m2h9R+fHfv9diX+4I0rSnBqwUG8mdX+mr88PGepc+Yfeud/Pr3UYK4Vc3BqxMW969x61ckCp7WUijQVJBDFk4Yxm/lDZu7N5ieOGupPJkfGTeWr7qQmTbRZijQk5vTOS5kPO8j/t1jS97of3t12ZWS+kkJ5kHqI1/vHmI7FEDF8TJHVUBoqP7QBU6vj9rW96VbU3S9VeM0fQYl4LbzRrbpotdKKMAVldU8aOKC/Eb4MS6eSxYkVrNt1TVVDe5eg0eG+VJdtGvc15s8i9VQAKirbW580NjMaZtuuLgyYJQKpf2gYb52ag3tDoyy9tt343uae7Wsn9J2KAD0qntAeppOd9tzdkqFyk6n09HdOQaKriGLylY2D+58Msvtv4JaLR8OWXj/jxPX2UN2lpGUvJf/VH5Feqbpl+6OQHivOH3PRGn1+d6e1T3P2m1ztnQDt0wzBBjkaHoIwGrotpK/jsBdzlK/ErdBQK27ad+xFvrLsfQRwDTJ4BpPdNxYQPuXKNMjsdbW6c8O0QDGBVsIrboSjvql3q+bmlv7pu329gDAWQa9mnyzgXSEJ5uFkqyFBn5bG4SailAPi6yH71R1co4h5mpr+2nLmoYElMyMsfT8rQnLVig0uyocX33CBuSjHJFo0P/Lfxwwj+o1+fIfav/QTTQH0V4AAAAASUVORK5CYII=",
"path": "images_version_1-4/image_36.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, passing point C to draw the tangent of circle O. If angle D = 50.0, then the degree of angle A is ()
Choices:
A:20°
B:25°
C:.40°
D:50°
|
Như hình vẽ, kẻ tiếp tuyến qua điểm C đến đường tròn O. Nếu góc D bằng 50°, thì số đo của góc A là ()
Các lựa chọn:
A: 20°
B: 25°
C: 40°
D: 50°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, passing point C to draw the tangent of circle O. If angle D = 50.0, then the degree of angle A is ()
Choices:
A:20°
B:25°
C:.40°
D:50°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, passing point C to draw the tangent of circle O. If angle D = 50.0, then the degree of angle A is ()
Choices:
A:20°
B:25°
C:.40°
D:50°
|
As shown in the figure, passing point C to draw the tangent of circle O. If angle D = 50.0, then the degree of angle A is ()
Choices:
A:20°
B:25°
C:.40°
D:50°
|
178
|
36
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHQAAABtCAAAAABVKBqoAAALP0lEQVR4nMWbe1wU1xXHfzPsLu+HCCKIYkQ0ogkKCgKaoEbRRA2xWgVJTZNgHjXix1DRqKBEJBqMxpqHxmj6SWITYs3HtmpiakQUUFFUQCMRAUGIoDzlsewud/rHssvszp2Z3W0/9vyxzD33nPnO3Pece2E4gMOjEcZwwT4ioIkorHXQaEG0AKsEq7L7X0O1SoGq8V7LvcbfmqBu6IWrN3H09fYb6OXnaD2UEanTvw+Ybqq49kv1b/W6IL9AX8ZpqB3a6uza7tRUN3r5+geG+FjIkoFWJa/iQ2t+KGEQEDbRVWB468L1hxgwbRojyJGA0ou3IVfjbUxwZ79pCYwOD6RaBgWh48rlw3sjEwZZgDXQqW+aj++XPaG/fFj0Vee8sCDpBtdQfury9LgRcizDBfVm5z+fxQzQXx472rJ4lpvM3eDjM+XWF6un/O4xOcM+OuVNNbtut7tleQIoO1gTl2BJdQHA7U+qn0+UMpZqSF17o8Nrc5Z5QbfvxOTXvCxEAsCpg4rkCRZAwXEcMZHKBP/y23PH7iJVScsuEeuk6ePZ+7WiuZxBhG+qbbDz4u4r7M/ujF1pfce/lBWQKtZt5fopsDt/2MIIq5lA69bKtCdloMLiJYQQ0v1OfM35hRVWlq5e9sXmyRQvHdqWvPw+UU+d8dAm6vfPHpeGUqe29nWKDwZCNfNiJrGhgPF8yifHJA1o0O50t/ecAMyOLN9nCxQxa/f9bCW0911Nmh0AhHgsOP1Pm6iRK7MvWgfNrtvqAABQhjWk7L9sE3XGqxk3JLIFDSlnQaXh8sIccmhxrU2NiXz0YrvlDankwIrhhutRHnlLJmT22PSub7huF80zh3Zsmx1jTLiFHsMqux02QbH26mFLoZ84v9mfYCbeblWllX1pE9Q/+YtblkGvnUnlz7DB7gXwTj2caxN1RrhYhzOFanfPN1mVeA/LB0KS9vxqE/W1W/+2BPqNbqFpdlT9PWDuzKyHtkB9/nCwTR7acDLB0zR7ctc1AMt9Mm2BYoHLUXnoSednzLJdg4o5gHmn4SObqK98T+1vfGjzz3GCD4XYsiYAbuty6c8sIyFDcuSgZ7jZgvyItnIAGLXywBUboPbzf+iUhnJH4oX5qsg8AMDUJdsbbaBGeZyQht7siqQYzMpXAwDix2/WWA91GVskDT0aTVtUBzv1zTPJrC3jYUwTpY/3QzVXomlezhF9qwCHNSVfWQ8NdiiWghYOHkl1C7/e1xaGpn53znpq5C9qCWiB/0Cq1+NeBtT4pB1VVkOn/HpfHNp7J4Du5R142nA5d2aG1eNhgLZaHFqpDBZxm1Rv7Cyv+76n689Qn8uz4M0nCdctRuhNuyARrzDO2BbYlPpPjfrKlO17XsmVhUZe6xWF1irtRbw8h102fnh4rj9lWNLeXjv4aE5cumx5B1YJ+rcR2u4n6vbMrf62MHL1vhIAgDrdfwODGLUs1NWpQQza1TVM1C2qpbw/MXVRViMAFNYmAaiGSg6q8KsVg7Z1DBV1s59QyEslPpGhBlDsPxLAj9ED5KAq3xoxaEeHRDBoTiF/rliFnQC6FHbAqR8TZKNmCs96MahW5yLuF4ISXsppQ/EhILK6HMdT3wmTYwIuHYLn6Pur0QoDU0ZxiP6BPwENXp8VGPF06XJHt51T5ZlwFIVqtVItIjrTJFQ4PiLt48DkxTpX2QoFAEfBPG4sXq2U36iBZ/nJzuKfUjpZv2EWMeHQJQaVFs/gk/yksw6nsi1yBPihBnOoUhhp5fuF1TTx0+kn9975VMzYXNRO5hpDnSoUGqlKDVEV8RdtY8YgdJ3/XMug3QKo4U1VKkEb44v30AtmmtErPyu1ECrojEaoQhKKp+6Yj6Axi7Y+sAjaKeiMBqiTk/QKM7pVMC0mjtmso5maia5psBjU3VUwQpqIU/AlgS6l15L1oeY3wZLEAHVxrpXen5lzqVXwIKnFh+ShunrBVGLspy514KSok7puCnQBqd8UUkxNhTKVGKFDtRpWKkKsij4lVIYmZVfLQSuHC5YkRugYXQUAQkAIQDj9NcARQ6Tu6QItiHnYbt60DNoXEl/OhwhmPyN0hPaGPs2wICwHEJYlAPS/IBjtVgiWJWZVsNxrq0wTvihcZRqhCv9qAIw++kuLQw4IPQ4IRlLV2zWfSzJrGeFuQv+AH1V3H2D0OFrtMmEV7ZSb+qSd+FEKWjDKW6DjQe9VA2AJC+jLlRAWACEsOIAlGOueD8Jy5qUQlLxHKgyYP0YYk++HOozrb/4sA4BlATAsqy9SFj5DC/RVbibTFm1pFmWWd4YKlbxbzD/7EByRmGAj6+hD5YvBm7rFfHIHjpaEjlNepM24/TK5s4SqZ5I1u0VcukpDKXfkQZkXDoGRgrqPKKaPWa7pRdQoCnC+eQ5Fyy/NGK1kEByILRWpPN91X1PHQ80/ZrjLQL2nHZbeKIhsFotrhr30vuDjAUBZNSVgY7Ywi23PlYTaR+SJZb3w1Ka+OGDr5zsy9vT16P3zBEsVAdRv+iF6BNEgs86JhnXe9HhfX+FMyZdc3kY1APyr6QWqrWkPWao9IgkdpxLdR1BtrNoPAHCPei09/kwPgAcHXvKk2ppC7VcckVxAuITTAmB68dh47AQAaG48KLy62h3AZwGxdFOzsWBSxHbJthRxTXQYwOMr994E0Fpb+pZLPICz+UkiI425ekXjZ1LQMZ754pnT4zIagVLvnL8dOAPc+yBeLHRiDvVIPXpeAsqL71Bk2ahMgorJcIIa2DF6qZidoADClu6qE78tM/GuxGKXWdPz4dWf2MuvDIrBF/VrRe2Epb40eJPECmQiocT6jOK0/sx83cHNjx11Of7dnz3E7YT7pz1vr+oR385KzZTc7SpadJ0QQvLmUDZupfZPlenqreIPOYMS6+NJWPyGWqA4e8UUCSNao3bZUpcmOvJMoQVweRIXuUVzOeNF2uRiFPpGfPN6h81ixzg2erwtSdVurbSLm09lGS7o3dczW7nqrshNZxcIPudNRDnoy+FUZr+IjBnOWwLfEplRQnVlUjfs2nzuK7HtLqPQjxwQQr6N3UVvxFmbJFrvtSVv3CE/zbtOy5M5ckAIIaQ0MamMpj/7nEYM2XZw9h41IeRAQpONUNK5/bkPWoTqxsTTIg7nXlqcTwghRLvhrS4JqOgxEgDApQOtCxeYK8m2h9R+fHfv9diX+4I0rSnBqwUG8mdX+mr88PGepc+Yfeud/Pr3UYK4Vc3BqxMW969x61ckCp7WUijQVJBDFk4Yxm/lDZu7N5ieOGupPJkfGTeWr7qQmTbRZijQk5vTOS5kPO8j/t1jS97of3t12ZWS+kkJ5kHqI1/vHmI7FEDF8TJHVUBoqP7QBU6vj9rW96VbU3S9VeM0fQYl4LbzRrbpotdKKMAVldU8aOKC/Eb4MS6eSxYkVrNt1TVVDe5eg0eG+VJdtGvc15s8i9VQAKirbW580NjMaZtuuLgyYJQKpf2gYb52ag3tDoyy9tt343uae7Wsn9J2KAD0qntAeppOd9tzdkqFyk6n09HdOQaKriGLylY2D+58Msvtv4JaLR8OWXj/jxPX2UN2lpGUvJf/VH5Feqbpl+6OQHivOH3PRGn1+d6e1T3P2m1ztnQDt0wzBBjkaHoIwGrotpK/jsBdzlK/ErdBQK27ad+xFvrLsfQRwDTJ4BpPdNxYQPuXKNMjsdbW6c8O0QDGBVsIrboSjvql3q+bmlv7pu329gDAWQa9mnyzgXSEJ5uFkqyFBn5bG4SailAPi6yH71R1co4h5mpr+2nLmoYElMyMsfT8rQnLVig0uyocX33CBuSjHJFo0P/Lfxwwj+o1+fIfav/QTTQH0V4AAAAASUVORK5CYII=",
"path": "images_version_1-4/image_36.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, If angle D = 50.0, then the degree of angle A is ()
Choices:
A:20°
B:25°
C:.40°
D:50°
|
Như hình vẽ, nếu góc D bằng 50,0 thì số đo của góc A là ()
Các lựa chọn:
A: 20°
B: 25°
C: 40°
D: 50°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, If angle D = 50.0, then the degree of angle A is ()
Choices:
A:20°
B:25°
C:.40°
D:50°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, If angle D = 50.0, then the degree of angle A is ()
Choices:
A:20°
B:25°
C:.40°
D:50°
|
As shown in the figure, If angle D = 50.0, then the degree of angle A is ()
Choices:
A:20°
B:25°
C:.40°
D:50°
|
179
|
36
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAMwAAADLCAYAAAAiJ3xKAABFZUlEQVR4nO29aXCbV3rv+cMOEAABAgTAFdx3UhS1UdQu2bJs2eq23Vv6pq6r46TSM6m66dxU7q303LnVk/thqm5P1WTmVjJTNZX0pKe7nW5f2XHbrcXUSomiJGqhKK4iKe7gDnAHsWM+qN83ILVS4gJS+FWxLOPdznve8z/Lc57zHEk4HA4TI0aMF0K63gmIEWMjERNMjBjLICaYGDGWQUwwMWIsg5hgYsRYBjHBxIixDGKCiRFjGcQEEyPGMpCvxE1ic58x1hOJRLJmz1oRwcR4Oi/7MWOVUHQSE8wKIwhEKPCvWvCX3i/G+hITzEvyvJbjScfD4TChUOixwi+RSJBKpc+859OOxYS0tmxowUQWotUsOE8rrD6fD5/PRyAQwOfz4fF48Hq9eL1e5ufncbvdeL1eMX2BQAC3243P5xN/k0qlKJVKNBoNSqWSUCgk/qbVatFoNKjVajQaDSqVCoVCgUKhQKlUolAonirMGKvDhhZMKBQiFAoRCASQyWTI5avzOuFwWPwT/n92dpapqSmmpqaYm5tjbm6O6elpZmZmmJmZEf/tdruRSCSEQiF8Ph/T09MsLCyI95PJZGg0GuLj41Gr1aJgNBoNRqOR+Ph49Ho9CQkJ6PV6dDoder0eo9FIQkICarUamUwGPBL2Wg6AX0ckK+Hev9Y1mlAoHA4HfX19SKVSUlNTSU9PX5H0LC104XAYh8PB2NgYExMTuFwunE4n4+PjjI+PMz8/j0QiISEhQWwVDAYDWq0WtVoNgFQqRaFQoNVqUalU4r0FIQmtkUwmIxAI4PF4RCEKf/Pz8/j9fgwGA4mJiVgsFsxmMyaTCbPZTHJyMhaLRRRQZPo3MzEr2TMQMicUCtHW1sbt27fJycnBZDKtyH3hUQGbmZlhcnKShYUFnE4nQ0NDjI6OMjU1hcfjEQuhwWAQWweLxYLBYMBgMGA2m0UBwSPBqFQqjEbjYy2h3+9nenoat9uNXC7H7/czPz/P5OQkk5OTTE1N4XK5xHMkEgkej4eBgQEcDofYGiUlJWGz2TAajWI64uPj16zr+jqw4QQDEAwGcTqd3Lt3j5s3b2K32xfV2i9DOBwWu06Tk5M8ePCAxsZGuru7mZ2dRS6XEwwGUavV2Gw2MjIyyMnJIScnh/j4+MdqdXjxgbpcLsdsNmM2m596jnC/UCjE2NgYvb29dHV10dfXx8TEBENDQzQ3NyOXy9FqteTm5rJlyxbKysrQaDRPvWeM5bHhBBMIBHA6nTQ1NdHT04PX60Wr1RIXF7es+ywtzCMjI7S0tNDa2orL5WJhYQEAjUZDeno66enpmM1m9Ho9KpUKvV4v1uDLJbLgPk1UT/tdJpNhtVrRaDSkpKQwNzeH2+1mYWGB0dFRhoeHGR8fp7Ozk56eHr7++mtsNhu5ublUVFSQkJDw1LTEeD4bRjBCARK6SNPT00ilUoxGI1qt9oUG/JGFMBQKsbCwwOzsLKOjo3R0dNDe3s7AwADhcJjExEQyMjJISUkRBZOYmPjE+75KoXuZa2UyGUajEaPRuOj3sbEx+vv7GRgYYHBwkKGhIXp6ehgaGmJ8fJzZ2VmysrLErqNGo4l115bJhhn0Cx+2r68Ph8OBRCLh9u3bDAwM8M4771BWViYW6KelJ3IScGpqiu7ubq5evcrdu3eZm5sjMzOTiooKMjMzSU9Px2q1IpfLkUql4jyJRCKJ2oIlzPGEw2Hm5uaYmJhgeHhYrAy6urpISEhg165d7N69m7y8PHQ6nXh9tL7X84gN+pcgkUgIBAJMTExw8+ZN+vv7KSsrQyqVolariYuLQ6lUPvXaSLq7u2lvb6ejo4PBwUFCoRB5eXmkp6eTlZWF3W4nISEBnU73WKsVaVqONiQSyaJxlGBwSExMJCUlhby8PLq6uhgYGKCjo4Oenh7S0tIoLS2loKCA5ORkpNJHvrjR+o7RwIYQDDzqirW3t9PQ0MDg4CAKhYLJyUlCoZA4qbcUQSw+nw+v18vg4CC3bt2ipaWF0dFR5HI5ZWVlVFVVUVJSIlq0BDZSwXmS94BSqUSpVJKQkEBubi7bt2+nsbGR2tpaOjo6GBsbY3x8HKfTSVFREampqRgMhphwnkHUd8mEQj88PMzJkydpa2vD5XIBj7ogGRkZfPzxxxQUFCCVSh8bUAeDQQYGBqipqeH27duMjIyQkZFBZWUlVVVVmEwmZDIZCoVCLCir/U5rydJxm+BtMD4+zr1797hy5QpjY2NYLBYOHDjAwYMHsdls4jUbIR9iXTIWZ0J/fz9dXV2YTCbeeOMNlEolMzMz9PX1iTPlQmFfel1TUxONjY0MDw8jl8s5ePAgBQUFFBYWkpaWtuiZG6FwLJfIdxJcbpRKJUajEbVajU6no6WlBYfDwbVr13A4HJSVlVFWVobVao05fy4hagUjzIC7XC7Onj3L+Pg4R44coaysDJ1OR39/PwADAwNMTU0xPz8vdqn8fj8ul4tr165x/fp1BgYGyMrKYu/evbzxxhuLrEuvU0FY2voK1r+ysjKuX7/OxYsXqa2t5eHDhywsLLBlyxZSUlKQy+VRbexYS6KuSyZ8mPn5ee7cucNnn31GdXU1KSkp/PSnPyUvL4/e3l7+8R//kfr6egCOHz/ON77xDbZu3Uo4HKauro7f/e539Pf3Y7PZOHjwIEVFRaSkpBAXFxfro/8eofUIBALMzs4yMjLC3bt3aWhooLe3l5KSEt5880327NkjGhSiMc9iXTIedR+0Wi2pqans37+ftLQ0LBYLcrkchUIh+o1ptVoKCwuRyWT09fVx+/ZtGhsbcblcFBcXs3XrVnbu3InVahXvHY0ffT0Q8kEul5OQkCBa1vR6PQqFguHhYU6fPs309DTl5eWkp6e/9l20qGthIu+5sLDA3NwcEokElUpFXFwcEokEv98v/i6Xy5HJZAwODlJfX8/JkyeRSCQcOXKE999/n8zMzFVN52ZDMOH39PTwxRdfUFdXh9Fo5MiRIxw9ehSTyYRSqYyqvFzLFiZqBSPcV3B3XzojLbjGA1y+fJlr167R1taG1+uluLiYY8eOsXXrVtFlJpo+cDQj5LPX62VsbIzm5maqq6txOp2kpaXxne98h5KSEnHeKxryNdYl+z3CDLuA8HGE32ZnZ2lububSpUtMTU2JjpBxcXEMDAxgt9uJi4uLio+6URCcUFUqFenp6SQkJBAIBLh27RoDAwNUV1czMzPDtm3b0Ov1r50xIKoF86wPEQqFqKur49SpUwwPD3P48GE+/PBDZmdnOXfuHCdPnhTNpgaD4bX7sK9CZD7pdDpOnDhBTk4O1dXVXLhwgeHhYVQqFSUlJej1+nVM6doT1YJZitD0Tk9Pc/r0aW7cuIHb7eZb3/oWlZWVWK1WrFYrd+7cYXBwkF/96lfMzs7yh3/4h+uc8o1Pbm4ucrkclUpFS0sLP//5zzlx4gSVlZXisoTXoULaMIIRxDI2Nsbdu3epra0lFAqxc+dO3njjDSwWi3iu1WrFYDBQX1+PVCqlvLycgoKCqBusbgSE/FIqleTn54vOqLW1tdTV1REKhdi7dy9Go/G1aMU3ROTLSJ+wCxcucPLkSYLBIG+//TY/+MEPFi28ArDZbGzbtg2A+vp6fvOb39DT07Pm6d5MCIaW7OxsvvGNb/Dd736X/v5+vvrqK27dusXU1NR6J3FN2DAtzOTkJNXV1dy6dQutVsu7777Ltm3bRKdLoWaTSCSYzWYqKipobGykt7eX9vZ2rly5glQqJS8vb9H5MZZPUlISO3fuZG5ujoaGBr744guCwSB79uzBYDAAmzd/o1owQssyNzdHY2Mjly5dQqVSsXv3bg4fPoxCoXjihzEYDBQXF5OXl0cgEECr1dLU1IRMJhODRrwO3YfVQLCiJSUlcfToUSQSCV9++SU3b95EqVSye/dutFrtps3fqBaMwKVLl7h48SIej4djx45x/PjxZ66wFJYVx8XFkZKSwv79+7l16xY3b94Ua0eLxbJpP+pqI+RZYmIiBw4cQKlU8sUXXzA6OorJZKKgoGDZS8Y3ClE7hpFIJLjdbmpra7l69Sqzs7O8/fbb7Ny5E5VK9dTCLvwWFxdHUlISZrMZmUwmOhJWV1dz584dPB6P+JwYL09SUhKVlZXs3LkTgJMnT3Lv3j0CgQCw+fI36gQTmcFdXV2cOXOG8fFx8vPzOX78uOiS/7yWQSKRkJWVhdFopL+/ny1btrB3714cDge3b9+mpaVFFE2Ml0OI3Jmamsrbb79NWVkZjY2N3Lhxg66uLoLB4HonccWJOsHAo8L+4MEDrl69SltbG7t27eI73/nOstxcJBIJ+fn5GAwGGhoakEql7Nq1i6NHjzI4OMhnn33G2NiYeG6MVyMvL49Dhw6xd+9e2tvb+e1vfytG3tlMRJVghII7OTnJpUuXaGlpoaioiO3bt5OVlbXsULDJyclYrVY8Hg+jo6PIZDIOHTpEVlYWY2NjXLhwge7u7kXPjrE8IuMc5OTkcOzYMYxGI+3t7Vy9epWJiYlNFcI2qgQDj2bxW1tbqa+vx+PxcPz4cQoLC4HlBaGQSCTEx8eTlJREYmIiPT099Pb2kp+fz4EDB0hLSxOXLft8PtH6E+PlCIfDqFQqtm3bxvbt21EoFJw9e5ampqb1TtqKEnWC6ejo4NNPP0WpVLJnzx7KysqWHSwvUlQWi4WsrCyGhoa4d+8eoVCI3bt38/bbb6NSqbh58yanT58WI+rHeHUOHDjAkSNH6Ovr49q1azQ3NxMIBDZFhRQVghEycmBggLt379LX10dpaSn79+8XxfKy5l+DwUBOTg5zc3N0d3ezsLCARCKhuLiYAwcOEAqFuHLlCs3NzXg8nk3VfVhrhB5AcnIyFRUVFBYW4nA4uHDhAhMTE+udvBUhKgQDj9Zf1NTU0NTURHJyMvv376egoOCVY4HpdDqysrKQSCRMTEwwPT0NQHx8PB988AFFRUUMDw9z+fJlWltbV+p1XnvS0tL44IMPUKlU1NXV0dXVJS7628gV0rpPXAor/BwOBzdu3CAYDPLhhx+SkZGxIvcXJjETExOZmJigq6sLjUZDQkICcXFx7N+/H4ArV64AYDabSUtLQyaTxSY1XwGtVkt5eTltbW3Mzs5SU1ODRqNh+/bt6520V2JdWxihphkaGuLGjRvMzc1ht9vZtWvXY3GDXxalUkliYqK4pv/Bgwc4nU7xeG5uLnv27MFisdDb20tNTU3M3PyKCBWNIJCysjLa29tpamoStwrZqHkbFV2ytrY2zp07R2ZmJrt3714xBz7hep1Oh9VqRaVS0dXVJQYCBFAoFGRnZ/P++++j0+k4c+YMLS0tzM7OAjHRvCrFxcXs37+fQCBAW1sbjY2NG3p+Zt0EI3TF2trauH//Pm63m/LyckpLS1fleenp6SQnJ+NyuZiYmFi0OWtcXBzbtm0TF6GdP3+e2traVUnH64Iw9pTL5aSnp1NVVYXH4+HcuXNMTk6ud/JemnVtYebn57l58yZDQ0NkZmZSWFiIxWJZ8aDf4XCY9PR07HY7CwsLjI2N4XQ6CYVC4jl6vZ6dO3dSVVXFyMgI9fX1dHZ24vf7Y63MK2I0Gjl8+DAmk4m2tjZ6e3tFa+VGy9t1EYywk9bExASNjY1IpVIOHz5MUlLSqj0zNTUVu91OIBBgaGiIwcFB0ddJEGdqaipvvfUWxcXFOBwOfvOb3zAyMrJqaXodCIfDKJVKysrKKC4uRqFQcO/ePTo7O9c7aS/FmgtGqFHGx8dpb29namoKm83G9u3bX2o3r+cRubAsISEBk8nE9PQ0/f39i1oY4TyTycTbb79NQUEB7e3t1NTU0N/fvyFrw2ijqKiIiooKmpubN6wJf926ZP39/bS0tKDT6cjOzsZqta66KVev15OTk4Pf76evrw+v17vouPDsLVu2UFlZSUJCAnfu3OHatWvMz88DMSPAq5CRkcGOHTvEzaxmZmY2nMVsTQUjrGEJBAJ0d3fT2dlJcXEx+fn5a/J8vV7P1q1bxbCywiTmk7atKy0t5Xvf+x4LCwvU1tZy8+ZN8fwYy0PIU71eT0ZGBmlpaUxOTlJbW7vh8nTNWxi/309/fz99fX0sLCxQVlZGbm7umjxbq9VSXFyMWq1mZGSEsbEx3G73E881Go2UlJRQWVmJUqnk7NmztLS0iD5RG6lWjAYE0RiNRrZs2YJUKuXmzZsbLnjGmgvG6/XS1NTExMQEVquV3NxcMTrlanbHBBNncnIyRqMRv98vbpUBT25ljEYjb775JqWlpXR0dHDnzh26urrE1YQxlo9SqWTr1q2YTCYePnzIyMiIOJbcCJXQmgtmYWGB69evI5FIOHjw4Lqs/bbb7SQnJ9PV1cXo6OhTzxP2UKmqquLgwYM0NTXx29/+NjaeeQXkcjk5OTlkZWWhUqloa2ujq6trw+TlmglGyBCn00l/fz86nY7y8nLUavVaJUEkKyuLzMxMOjs7cTgcTzwnssXLzs7m8OHDJCYm0tvby8WLF0WhbZQPHQ0IS5rj4uJITk7GbDaL3fONwpoIRihULpeLgYEBwuEwVquV9PT0p+5+vJpkZGSQmZnJ0NAQw8PDj6UzknA4jFqtZuvWrezbt4/4+HhOnTrF/fv3xeMx0Swfs9lMeno6Lpdr0TeIdta0S/bw4UNaWlpIT08nIyNj3Xa1EjySVSqVKGK/3//c6/bt28fhw4cJBoNcuXKFCxcurEFqNycWi4WioiIARkdHGRkZ2RCLzNZUMH19fXR3d5OVlfXYhqxrgdDNkkqlomhmZmZoaWl55opL4br4+Hi2bNnCzp07cTqd1NTULHKfifaPHQ0IlWNCQgI5OTmo1WomJyfp7+/fEE6ZayqYsbExXC4XGRkZi7bQWw/0ej2FhYUsLCxw7969Fw65ZLVa+eCDD0hLS+Phw4dcvHhRDKQR48UQLJZJSUkYjUY8Hg89PT2iMSWaWfUFZBKJBK/Xy+DgIPPz85hMJlJSUlbFDWY5qNVqcnNz6ezsFJcuvwhyuRyr1cqbb76JWq3m2rVrKJVKTCYTiYmJsWiay0Aul5OZmSmWj9nZ2VX1J1wJ1qSFWVhY4MGDBywsLGCz2UhMTBStY+tVuJRKJRkZGej1emZnZxkfH3/upKSQVplMRnl5OVVVVWg0Gtra2rh27doTPQdiPJvc3FzMZjMOh4OpqalFvn/RyJoJpqOjA4/Hg8ViEXetWs+aWKFQYLPZxK3In2VijkQYz6hUKoqKivjggw/weDx88cUX9PT0iGOhaP3g0YRMJiMnJweTycTIyAjj4+NRP45ZE8H4fD6Gh4cJh8MkJiYuOyDfSiMM/A0GA0lJSeh0Oh48eMDg4OCy7mMwGKisrGT79u2o1Wq++uor7ty5s6JpFVq8pX8bHcEcbzKZMBgMzM/P43Q6RYfMaGVNSq7b7WZ+fh6bzYbFYlm00et6Y7VasVgsDA4OLmvtS+QH37NnDz6fj5qaGuLj47Hb7SQlJb2S97UgikAgIAYalMlk4jbrm2GsJLxjfHw8Wq2W6elp0WUqWlm1kivUhLOzs0xMTCCVSrFYLCQnJ4vzL9GA1WolIyMDj8eD0+lkfn7+hScjhQKbn5/PsWPHyM3NpaOjg5MnT77SMtzIZzudTlpbW2lubqarqwun07lpgnwL+WcwGMjLy8Ptdkf9gr1Vb2FcLpfoRmI2m0lKSlr3LlkkQmRMqVTK+Pg4DoeDjIwMcWez5yGIKyUlhaNHj3L+/HkaGxvFgB42m00873lECsXlcnHnzh2am5txOBzIZDKkUinx8fEcOXKE0tJStFrtC987mjEajeTn5/PgwQMcDgehUCiqeiGRrHrJnZycZHx8XJz4i4YBv/B8If5ySkoKWq1WXNhks9leWDACCoWCvXv3iq4etbW1yGQyjh07hkKheKEulHB8fHyc5uZmvv76axwOB1KpVJzgE7yrZTIZFRUVUdVavywGg4GsrCzu3LnD0NDQopWw0caqC2ZmZoapqSkkEgkKhWK1H7csIkVjsViYmJigp6dH3FB2ufeRSCRUVVWhUqn4xS9+QU1NDTabjdLSUjQazTPvIcQ5mJub49y5c5w7d464uDhOnDjBkSNHUKlUNDc3U11dTV1dHW63m4KCAvR6/YYfz8TFxWG1WsWJy0AgsC4+hi/Cqrd7CwsLeDwetFrtsmvttUKtVpOXl4dGo2FgYICZmZll30MosBaLhfLycrZv347H4+HMmTP09PQsEtXTmJ2d5eLFi9y8eROPx8PevXs5ePAgSUlJJCQkUF5ezo4dO/B4PPT19T118dtGQ6lUotfrkclk+Hy+qF4+seqC8Xq9hEIhTCZT1O57qFAoKC0tFecDJiYm8Hq9yzbhRormxIkTZGVlcffuXe7evcvg4OBzW4GRkRG+/PJLHA4HFRUVHD9+nNTUVPE6IcaXXq8nHA6LebsZUCqV6HQ6pFIpk5OTj8VbiBZWRTBCIfP7/WJoULPZHLWCUSqV5OfnYzKZcDqdDA0NvdJac5lMRnZ2Nnv37mX79u1cuXKF06dPi4UgUoSCKCcmJsS5oIyMDN58801xUC/g8XiYmJgQJ/fkcnlU1sIvg0wmw2AwoFarcblcUbud4qq1MOFwmIWFBdxuN+FwOGpbGKGrpFKpSExMRKvVMjQ09MyVmM+7H4BUKqWoqIhDhw6hVCppbW3l6tWrT13DPjIyIjpxZmRkUFhYKFoTBVHMzMzQ2dmJQqHAarWi0Wg2lWCMRiNKpRKn0xm1M/6rJphgMMjCwgLz8/OEQiESEhKeO/Bdb6xWK1lZWQwPDzMwMPDS94lcDrB792727NlDOBzmX/7lX3jw4METr5mYmGB0dBSj0YjVakWr1SKVShd144aHh7l37x5ms5ni4mJ0Op34vI1KZHfTYDCIgnntWphQKITH42F+fp5gMIjBYBAFE60fODU1ldLSUoaHh8WB+quiUCh44403qKqqWjSoXzo+8ng8uN1u5HL5IuNI5L6f9fX11NXVYbfb2bFjx6YwKQvIZDJ0Oh1yuRyXy/V6jWHgkSh8Pp/o1qHVaqPWVCgIw2azkZ+fj8fjYXh4mMnJSUKh0Et3e4SWxmazsWPHDsrLy+nr66OmpkacoBPQ6XTo9Xrm5+cfs9INDw9z+vRpGhoaSExMpLy8nNzc3E3THYNHXViNRoNMJmNubu6FVsCuB6sqmFAoJLpxKJXKqK8RNRoNqampost/T0/PivWls7Ky+N73vofBYKCpqYlLly4xNDQkHk9LSyMnJ4eZmRn6+vrEYxMTE9TV1fHzn/+csbExPvroIyorKzfNLH8kSqUSuVyO1+uNWvefVZu4FCJc+v1+wuEwGo0mat0d4F8H/1qtlpycHEZGRmhsbBS9AF4VYYXhW2+9xfXr17l27RpGo5GEhAS0Wi1paWlUVFTQ2tpKV1cXf/M3f4PZbMbr9TI/P09FRQVbt25l//79orvNZkOpVCKVSvF4PFEb+21VW5hAIEAgEBAjuAu/RzMKhYKCggI0Gg1NTU3ixkqvgvDOCoWC3bt3s3PnTtxuN3fv3uX27dvi2CU3N5c333wTu93O6OgonZ2djI6OotPpePvtt3n33XdJS0tDLpdHfT6+DAqFAqlU+vq2MMFgkEAgQCgUivrumIBMJiM3N5fW1tZFO5G9KkIB12q15OfnU15ezo0bNxgdHSU5OZns7Gx0Oh2HDh1iy5YtTE1NEQqFUCgUaLVaTCYTarV6UwpFICaY3wtmI8XukkqlJCcnY7VakUgkOBwO8vLyVtRny+v1MjY2RnNzM6FQiOTkZD788EOKi4tRqVQkJydjsVjEiiaysokJZn1Z9UG/8LdRPrSwEjM5ORmTyURvby9dXV0r+ozZ2Vn6+/txOBw8ePCAkydPUldXt2i1oVwuX2QoWe3Y09GAsITB7/dHrctP9I7C1wGhJZTJZFitVlJSUujr66Ozs3NFW0iFQrGoUDQ3N/PVV19x9uxZ0ZwqCOR1EIrARuiFrFqXTCKRIJVKxdnqjZAZkZhMJjIyMsQ9OL1e74p5W5vNZg4ePCg6ewaDQaRSKfX19SQnJ1NeXi6GoXpdxAKPvEPC4bDYNYtGVlUwwhp0ISM2ApFrZDIzM6mvr8flcuFyuVZsl7TExEROnDjBgQMHmJubY3Z2lrt379LX18fFixeRSCTs27cPYMOvdVkOPp+PUCiESqWKWiPRqgtGJpMtmsDcKAiCiY+PZ25ujocPH6LRaDAaja90XyFEU3JyMjabTRzr5ebmcufOHT7//HNxHFVYWBh1i+5WE7/fTzAYjGrBrGoQDJlMJjavGy1el1KpJDExEbPZjM/no7Ozk7m5uRW5t1QqRalUolar0Wg04mRpRUUFRUVFjI6OUl1dLc72b5bQSs9DGNe9toKRy+XienZhXcxGIHLOJCkpCYVCQXd394rtx7h0QC88z2638/7772Mymbh+/Tr3799nbGxsRZ65ERAEo1arX1/BCC/u9Xqj1t3haUilUnJycrDZbIyPj+N0Old1ezkhmuaBAwcoKCjgzJkz1NTURH341JXC5/OJXbJoiiwUyaoLRqlUIpFIcLvdz9xSIhqRSCTk5OSQkpLC1NQUIyMji+L/riTCPZVKJRUVFezbt4+FhQUaGhqor6+P2gVVK0UoFGJhYYFgMIhOp4vasduqCUYqlaJSqUSny+npaXFR0EaoKQVrWWpqKikpKXi9XnEl5mp1LYXumdlsZu/eveI+NJ9++umyw9huNILBoOjWn5CQELUBU1ZVMHFxcWi1WmQyGS6Xa8NGOUlISMBqtTI5OflKKzGXg16v5/jx45SXl4tGgNbW1k1nAIgMiTs1NYXP58NsNq/L3qcvwqp1FIUFQVqtFolEsqEFYzQaKSgoYHBwkN7eXvx+/6oOSoXWLTMzk127djE6OkpTUxMKhUIMubTZ5meCwaAomMTExKhdzr4qLUxkfzwuLg6pVLpIMBvN3cNsNrNt2za8Xi8PHz4UzcurWdML+VNSUsKHH36IVCrl9u3bXL58GafTuWrPXS+CwSDT09N4vV7RMzsaWXX/A2HQ73K5Hhu4bhTRGAwGCgoKUCgUjI+PMzo6umZBGjQaDdnZ2bz11luYTCbOnj3L/fv3WVhY2FTdM5/Px+zsLIFA4PUcwwhoNBpUKhVzc3NRGwnkWQh7ydhsNsxmM6FQiN7e3peKjvkyz4ZH45mDBw9SXl7O9PQ0t2/fpqmpKWrXvS8XQSzCpOVKrHBdLVbd2K3X6zEajeK20rAxrGRLEUzMMzMzNDc3ixvbrvZYInLX4d27d+P3+7l48SKzs7OkpaWRlJT0WDimjYbb7WZsbIy4uLhFG25F4zutegtjMpnEDXJmZmaYm5t7YiSWpbPeT3Ntf57L+4u4xL+s23xubi5Wq5XW1lYmJiaeeL/V/Mjp6ens3buXnJwcJiYm+Oqrr+jv7wc2ZiUkMDMzQ09PD3q9npSUlKj1VIY1EIzZbBaDNkxMTIju7JEsVxyRolrK8wrv09xSXoT09HRsNhujo6OMj4+L9xNamdVuaeRyOTk5ORw6dIikpCRqampobGwUo4tuVNFMTk7S2dmJTqcjNTX19RSMUIB0Oh2JiYmEQiHGx8cZHh5+qovM0kGssKZG+E1wS3lSF0Tw+o1chyP8/qTnRJ7zrNV9kUIwm80kJyej1WoZHR2lt7eXYDD4xPutpngqKys5dOgQRqORK1eucOrUqahdofgshO86PT1NZ2cnGo2G5OTkdU7Vs1kTKQsTmEJf9Wkf91k1ZGQBfFZhjLzH02r95UbkjzSTW61W0tLSGBsbo6WlZU2XLQhpUSqVFBUVcfDgQRYWFrh+/ToNDQ243e4NYzmLHPsJXXWj0YjZbF7nlD2bNRGMUqkkKSkJeNQtW2rdedJHXlrYhePrPYdjMpnIzc1lcnKS1tbWp1qqVrvQWiwW3nrrLXJzc3G5XFy4cIHOzs5VfeZKEw6HcblcTE9Po9FoMJvNGAyGqBb8mghGo9GQn5+PRqNhYmJCdJNf2v16Vlcm0mM3spu2FkSmSavVkp2dTTAYZGhoaF1M5cJ4xWAw8O6777Jv3z5u377N1atX6e3t3TDjmWAwSE9PD5OTk6SkpET1DL/AmgmmsLAQjUbD6Ojoou0MlooGFm+BF3ks8vjSa4X/jxzMP617snTA/6zCJdxDOFej0WC328U4yIJolqZ1LaxmUqmUgoICdu7cid1up7OzkwsXLoieABtBNJ2dnUxMTJCamiq6/EB0mpRhjQSjUqnEQHVTU1OMjo4+MUDeiwgi8vjSY08qqMsRzJMK+NJnqlQqUlJSxPmP9vZ2cZHXi9xvpYi8d05ODt/+9rcBuHDhAu3t7eLEajSLxu/3i5PAaWlp4obB0cyqCyayEFksFoxGI319faJZdrkIwnhaQRC6a087J/LYs1qxJ10jzPobjUYsFgtyuVysISOf/SLpXEl0Oh1btmxh//79JCcn89lnn1FfX78o/dGERCIhEAgwOjrK5OQkarWarKysqJ7hF1hTg7fdbicrK4uenp5nru94XkF7XgF4keuXW5gjz5XJZGKgv+Hh4UWTmMtJx0oQuZx69+7d7Nq1i7GxMW7fvk1LS0vULdoT8kPY4t3j8ZCQkIDdbo/68QussWBycnIoLi5mYGCAvr6+RfMxwjwKRF+N+CRSU1PJyMhgfn6eiYkJ3G73K+0l8yoI3bO0tDQOHDhARUUFPT09fPrpp1EbE2BsbIy2tjYkEgk2mw2bzbYhgqyviWAiJ/7sdjvhcJjR0VEGBwfx+/0bQiBLSUtLIysrC5/Px/DwMMPDw1ERSspisfDOO++QmZlJd3c358+fp6enJ+rmZ1wuF/39/RiNRpKSkqIqbc9izVqYpaKZm5ujsbFxkVk22j7qk4j0YEhKSkKlUuF0Ounv71/3IB+C+0xJSQm7du0iOTmZW7duUV9fL65FWs/8FaYOFhYWxK6s3W7HbrevW5qWy5o77Wg0GqqqqgiHw1y9enXRYqxoF8tSdDodKSkpeDwecSVmtFBVVcW3vvUtZmdnqauro66ubsXiqr0KgUCAhw8f0tPTg9frpbCwkLy8vKjvigmsuWBUKhVlZWWYzWZGRkZ4+PDhhl0MpdPpKCkpQSaT0dvbu2J7ybwKQsGLi4sjPz+fN954A6lUyunTp2lvb8fn861rXvt8Pu7du4fT6SQ7O5vk5ORFOxREO2suGIVCQXp6Ona7HbVaTUtLi7g//UYjLi6OsrIyNBoNg4ODuFwuAoHAugtfKHgGg4Fjx46Rl5fHwMAAt27doqOj46UK5pPM8csRXqR1rKmpiVAoRGVlJQkJCctOy3qyptHShNl3pVJJbm4u/f39NDc3YzabKSkpWcukrAhqtZr8/Hz0ej1Op5Ph4WHS0tKiIkiFMGeUlJTEgQMHCAaD1NbWMj8/T3p6uuiz9SJpfBEz/os4xM7NzTEwMEB/fz+lpaXs379f3KVgo7Bu4QXtdjslJSW0tbXR3d3N2NgYZrN5RaLjrwWR4rfZbMTHx9PX14fdbo+6WjM3N5dAIEBvby+9vb2cPn2aI0eOPHdzWWGQ7vf7mZiYYHx8nFAohNfrxe/3i061GRkZLyS+3t5ebt68idFoJCcnB4PBAGyMrpjAmgtGKGgWi4XCwkISEhIYGxujoaGBXbt2RV1hexHS09PJysqiu7ub7OxsCgsL1ztJwL8WRLVaTWlpKYcPH6ampoazZ89is9kwGAxidJZnFVphoF5fX8/s7Kw4GSqXyykuLkapVGI2m1Eqlc+8T2trK/fu3WP79u0UFRWt4JuuHeuytE3oLlgsFrZs2UIwGOTSpUtRO8n2PDIzM8nLy6O7u3vNAv0tF7lczuHDh9m3bx8ymYzz589z5cqVF7pWKpUyMzNDe3s71dXVYgCOnp4eqqur+eUvf0lPT88Tr5VIJPh8Ppqbm2lra8Pj8VBRUUFeXt5Kvt6asa5rQQV3jtTUVHp6emhra2NiYmLDWcxsNhsZGRniZq8zMzPrNuv/JCLdZyoqKti/fz/j4+Ncu3aNjo6OZ04eC93O+Ph4EhMTSUpKorS0lEO/3+3Z4/Fw/vz5RRXF0ntNT09z+fJlXC4XJSUlZGZmEhcXt+5rm16GdROMMMlWVFREaWkparWaxsZGmpubN0wmCh88Li6O5ORkEhISxOW2Xq93vZO3CCFP7XY73/zmN0lJSaG3t5fq6moxkMaTrhHWHyUmJlJUVMShQ4d47733ePfdd3njjTdIS0tjfHyc+fn5RdcKlV4gEKC/v5+6ujpUKhVvvvkmJpNp1d93tYiKaANFRUW8+eabdHd3c+PGjTWJLLnSxMfHk5eXh8/nE5cLRxuR5uZvfvOblJWVcfXqVa5du4bD4Xhmyz41NYXD4WB2dpapqSn6+/tpbW1FoVBw/PhxcnJyHnsOPBq31NbWIpPJKCoqYuvWrRvCyfJprKtghIxNSUmhsrISnU5HX18f9fX1axIobyXRaDTijHVbW1tUb08hk8koKytj586dmEwm7t+/z7Vr1x6rqATLVygUYmpqioGBAQYGBqitreXkyZM8fPiQ1NRUTpw4sci9Rbh+YWGBu3fv0tTUREFBAaWlpWg0mnU3ub8K697ChMOPds3NyMhg586dSKVSvvjiC3p7e9c7actCoVCQk5ODSqVicHAwKmb9n4TQjVQoFJSVlfHtb3+b6elpLl68SHd392MtYzgcxu12Mz09zdTUFC6Xi5s3b/LP//zPjI+Pk5mZybZt24iPj18kgvn5eZqbm7l//z6zs7PiJlEbnXUXjIBSqeTIkSOUlZXR19fH1atX6ezs3DAGALlcTkpKCjabDalUSl9fHy6XK6rTbzKZqKiooKqqCqVSya9//WuampoWnRMIBHA4HDidTsxmMz/4wQ/4z//5P/Pxxx/jcDiorq6mo6NDdG8SGBoa4rPPPsPtdlNVVUV+fv6m2Eo9KgQTOSCtqKggIyOD5uZmrl69KtbU0VroBGQymRi3TK/X09XV9dTBdDQg5LnJZGL//v2UlJTQ1dXFrVu3ePjwoXhcEIzf7ycrK4tDhw5x+PBh3nvvPebm5mhoaKCnp2eRN/TIyAgNDQ20t7eTmprKkSNHSExMXPTcjUpUCCaSgoICvvvd7+LxeLh27RptbW1R4WX7LARrkkKhwGq1Yjab6enpiWrBwL92z/Ly8jh8+DCFhYU0Njby29/+Vlx2EQwGGR0dRaVSkZ+fLy7yCwaDKBQKFArFYyK4du0aNTU1pKWlsW/fPrZs2bIhFoe9CFEnGKPRSGlpKbt27UKlUvHVV1/x4MEDYGMsAUhMTCQtLY2ZmRnGx8c3TAB2u93OiRMnsFgstLe3c+nSJUZGRnA6ndy/f5/JyUkxUs7Nmzf52c9+hsPhwGazkZ+fj9lsJhAIcO/ePW7dusXCwgLvvPMOZWVl6/1qK0pUbVUr1NQJCQkcPHiQYDDI5cuXSUtLw2w2k56eHrXbUQskJiaSlZXF3bt3mZiYYGJiYlFE+mgkHA6jVqvZuXMnAwMDXL16lZqaGoaGhlAqlXR0dGCz2ejr62Nubo47d+5w6dIlkpOT2bNnD9nZ2cCjkEnnzp3D5XKRl5fHvn37MBgMm6JlEYi6ryhkbnFxMcFgkMHBQXFu5oc//CE6nW6dU/hkBLGbTCaysrJQq9W4XC66u7vRarUbIoQQwOHDh9FqtfzTP/0T1dXVBAIBbDYbPp8Ph8Mhfp+8vDz+8A//kKqqKhQKBT09PVy5coXLly9z+PBh3n33XeLi4tb5bVaeqBNMJDk5Obz33nt89dVXtLe3c+rUKfbv309KSgoQfQNIwVybmJiI0WhkdnaWnp4e8vLyol4wka17SUkJ+/btw+VyMTExwfHjx0lNTSUYDOL3+8Wx2u7du4mLi2N4eJhTp07R2toqWt1ycnKiulV9WaL2jQSXE+HDXbx4kXPnzqFWqzl27BhqtTpqJ8Di4uJITU2lo6OD3t5e5ufnsVgs652s5yKIJikpiffeew+fz0dHRwfl5eXs2LEDo9H42DVDQ0PcunWLO3fuoFaref/990UP5o3oK/Y8om7Q/ySOHDnC+++/D8DFixf58ssvoyJCy9MQ3N7NZrM4h/EiYWmjBblcTnp6Ovv27SMvL49PPvmEL7/88jH/uKmpKa5du8avf/1r7HY73/rWtyguLt6UXTGBqBZMZISWsrIy3njjDWQyGXV1dVy8eBGn0xmVljO5XE5hYSEWi0XcRDZaZ/6XIghbKpVSVFTEzp07kclkNDY2cv78edHcPDY2xpkzZ7h16xYmk4nKykp27NghimWztSwCUS2YSMxmMx988AHbtm1jZmaGr776iuvXr+P1eqMqWn04HEYmk5GUlITVasXr9TI0NMT4+HjUpPF5RFZUFRUVHDx4EJ/Px9mzZ0UPhqamJs6fP8/U1BTHjx9n9+7dGI3GTdkNiyRqxzCRCIJQq9UcPXoUs9nMF198walTpxgdHeWDDz7AZDJF3ZjGZDKRmpoqBi2M9OjdKGi1Wt555x3UajV1dXV8+umnBINB3G43WVlZlJeXs3fvXnG58WZnw7QwghBsNhu7du1i//79qFQqbt26xfnz5+nu7n7mFhfrgdVqpbCwkLGxMXp6eqJKzC+CkJ9ms5mioiJ0Oh1fffUVp0+fxu12s2vXLvbt24fRaIy6ymq12DCCgcXRM7///e/z1ltvIZfL+Zd/+RfOnDnD6OhoVATTE9KZlJREWVkZU1NT9Pb2PnFPnI2EQqGgq6sLl8slBjFJSEjY9N2wSDZElywSodaTyWTs2bOH+Ph4Tp06xZ07d3A4HBw/fpytW7eKE5zr+SETEhLE+QghDFN6ejpKpXLd0vQiRAra4/Fw8eJF6uvr6e3t5Xvf+x4ej4euri5aWlrQarWiufl1EM2GEwz864cxGo1UVlaysLDAlStX6O7u5tKlS0xPT7N161aSkpLWLapiZHfGZrMxPT3NgwcPMBgMouduNCKIxefzMTo6SktLC5cvX2ZmZobs7GwOHTrEyMgIdXV13Lx5k3A4zKFDh1CpVK9Ft2xDCkZAmFk/evQoWVlZ1NTUcObMGVpbWxkYGODdd98lPT19XdOoUCgoLCykpaWFhoYGcnNzo1ow8GhnsMHBQb788ktqa2uJi4vj8OHDvP322yQlJTE2NoZarebTTz9lenqa7Oxs7HY7KpVqvZO+6mxowUSSkZHB4cOH0ev1NDY2cuPGDcbHx9mxYweVlZWLAi+sZS0ok8nEKJ9tbW1ROR8T2QVzOBw0NDRw9epVJicnyc/PZ+/evZSVlWGz2cT9XLZv386dO3e4f/8+//W//ld+9KMfUVZWtulbmQ0vGOHjKBQKsrOzsdlsmM1mzp49S0dHB7Ozs/j9fgoKCsTFXUv3rVxNJBIJdrudxMREJicnF+1Wtt6FS8iHYDDI9PQ0IyMj3Lt3j8bGRnp7eykoKBBjmSkUCuBRnn399df8+Mc/5t69e+K9qqqqsFgsoqg2q2g2vGAEIqPWHzhwgJKSEqqrq7l+/To/+9nPKCgoYP/+/Rw8eHBNHSGFcUxycjIGg4HBwUF6enrE8KrrReSzx8bGqK+v59y5czgcDiwWC9///vepqKggLS0NqfSRMdXv9/Onf/qn/NM//RPwKARtZWUl/f393Lp1i1AoxEcffbSpu2abRjACwsrHpKQkDh48iMlkoqmpiaGhIS5cuEBPTw9FRUUUFRWRmpq66NqVrhWFgb9Go8FqtWK1Wunv76ejo4OsrCwxvWtVGy8V6NDQkBgLzuFwIJPJOHjwIKWlpZSUlIjxCeBRBJiPPvqIkydPkpaWxk9/+lO+//3vMzU1xa1bt/jtb39LQ0MD2dnZ7NixY0PGTX4RNp1gIp0cMzIySEtLo6CggJqaGu7evUtdXR3Dw8NMT0+zfft2zGYzCoVCtPIsvc9KISyA6+npoaOjgz179qDX61c9QubSd/J6vczNzeFyuWhububatWsMDw+TkJBAVVUVhw8fXlSRCPnwZ3/2Z5w8eZLCwkIuXrxIUlIS8MhSuW/fPnp7e7lz5w4XLlwQI5oKz99MopGEV+BtojVDhI/l9/sXRWBsaWkR16lXVFSwb98+SkpKxH66wEq9lxAY4vr161y6dAmlUsl7771Hbm4uZrMZlUqFVCpd8XxcKkSv18v9+/epqamhra0Nr9dLamoq27Zto6SkhPT0dHQ63WOm+H/4h3/gT//0T8nMzKS+vn6RlU+I8D8xMcGlS5f49a9/TVVVFe+88w4lJSWr8l7Pe8/VZNO1MJFEbkmhVCopKChAJpNhtVrp6upiaGiInp4eXC4XDQ0N5OTkkJmZSUJCAjqd7rEP8SofXqfTkZmZicFgYGBggBs3bqBSqcS9ZFaCpfcRfL7Gx8cZGBigs7OTwcFBZmZmsFgspKamUlRUJBpEhAVfke85MjLCf/yP/xG1Ws3nn3/+RJO4VCrFarWydetWurq66Ovro7q6Why7baZWZlMLBhZ/fIlEQl5eHjk5OTidTjo6Oqirq+P+/fs0NzeTnZ3Ntm3bsNvtpKSkYDKZkMvlyGQypFIpUqn0pS1swqIyi8VCZ2cnDQ0NpKenk5mZiVqtfqlYBUu7W8FgkFAoRCgUYn5+nqmpKUZHR+nq6qK1tZXOzk50Oh3btm1j165dFBYWLloU9qR3+i//5b8wNTXFX//1X7N169bHji/tAr///vv8/Oc/p6GhgcLCQnFTp80imk3dJVtKZAELBoN4PB5mZ2cZGRnhwYMHtLa2iqGRbDYbubm5pKenk5aWRkpKylP3rnnRXbx8Ph///b//d86cOUNvby+7du3i2LFj7N27F51O98L5+LQWyeVyMTg4yMDAAH19ffT394uBLOx2O1u2bCEnJwebzYZOp0OtVouD+ic9e2JigpSUFHQ6Hd3d3U9ccbk0TV6vlytXrlBbW0tfXx/vv/8+J06cWFWPi1iXbJWIrA1lMhlarRatVktSUhKJiYmYTCYePHiAy+XC4/HQ09ODw+HAbDaTmppKQkICer0ejUZDfHw8BoNh0bzO81AqlaSkpGC1Wnnw4IEYq1iI9fWi9wmHw2JQ8NnZWebn51lYWBAXq42Pj+Pz+VAoFBQUFGCxWMjOzmbLli1YrdYn5smT+OKLLwgEAvzgBz94TCyBQIDLly9z+vRpRkZG+OSTT5BIJKhUKrZv347P56O3t5eGhgYSEhLYtWvXhg5CLvBaCUbgSYUkLS2NtLQ0jh49yvj4OG1tbWJUR4fDQUdHxyITsd1uJzs7m8zMTLRa7aJlBUv/DY/6+aFQCLvdTk5ODjdv3sTn8+H1esXaVxBOZBojPYElEgnBYJDJyUkGBwd5+PAh/f39OJ1OcRs9odDm5uZSXl5OeXn5oiXDy6nhT58+DcDx48eBR3tUnj9/ns8//5yzZ8+Kk7B/9Vd/tejewgrM4eFhbt26xZdffklKSgo5OTlrYgRYTV5LwTwPk8lEeXk5mZmZeDweJiYmGBgYYGRkhMnJScbGxhgdHeX27duiIFQqFTabDaPRiMFgwGw2YzKZRK9pmUyGSqUiOzubkpISDAYDaWlpZGVlodVqCYVCuFwuZDIZfr+f+fl5JicnmZycFIOAT01N4Xa7F42jpFIpZrOZhIQEUlNTSUpKwmg0Eh8fj16vf8wz+kVbsbm5Oc6ePYvJZKKnp4cPP/yQs2fPikuUI6msrHzsvomJiXz44YcEg0Hu3r3LuXPn8Pl8lJSUiOOZ56UlGoUVE8zvifw4MpkMg8EgTr7l5uaSkpLC6OgoTqdTLMBOpxOXy4Xb7UYqleJ2u4mLi0Oj0aDT6dBqteKst0wmQ6FQYDabaWlpweVyodVqaWlpAR650U9PTyOTyQgEArjdbqamppiZmWFmZkb8t9frRa/XYzKZSExMFIUp/Fev16NWq8X5lmAw+FIFTwgX6/F4+OEPfwg8MlwcPXqUtrY2BgcHxXOTk5N5+PDhouvlcjkqlUqcazp37hwAFotFNKYsbVEju6ZyuXxNXZhelJhgnsDSDyRYgOx2+6L95p1OJ06nk9nZWebm5piZmWF2dpbZ2VlxywshSHc4HBaFMDY2JoZh7ezsRKPRiIPvyGfKZDLRQieTyZDL5ej1erH10Ov14rzJ1NQUExMT4pzTqxaymzdvkpCQQDAYpKSkhLKyMvLz8zl37hyDg4NotVrm5+cxGo3cuXPnseuF9M7NzSGXy2lubkatVpOZmcmBAwfQ6XSiqH0+n5g/oVAImUz2VNP+ehMTzAuwdDwCj2a44+LisFqt+P1+/H6/OCbxeDy43W7cbrcYmkgw+3o8HtHk29fXx/j4uBg4QwjYLYhFoVCIZm2lUolcLkculyOVSsVA4H6/X9xTMxgMiqblVxXM1q1bHzMjX7p0ia+//hqlUsmhQ4c4deoUKSkpi7bri1wmLpjhbTYbe/bswWaz4Xa7xbzo7u7md7/7HZ2dnQSDQbE1DgaDpKens3PnTo4cOSL+Hg0tTUwwL8CTPpQwuH6Wo6FQeIXCA4j73s/NzdHZ2cnw8DCBQEBsTYQCJ8z7CH+CUISBfyAQIBAIiCKJTNdqUFtby6lTp5DJZPz4xz/G4XAAsGPHjkUbJUWOTcLhsJjuiooKcbwlVAzBYJCenh6am5tRqVSkp6cTFxfH3Nwc9fX1TE5OkpSURH5+PlqtdlXea7m8VvMw68WTCrHQZ3+R1uBpIlirfD99+jTf+c53APjFL37Bhx9+yB/90R/xySefcPHiRfbu3fvC9xK6lxKJhIWFBU6ePMnQ0JC4NUZqairDw8P8/d//Pffu3aOyspITJ06wY8eOp75vbB5mkyB8yOnpadra2mhtbSUYDJKZmSlaloT4X0vHMNFCbW0t//bf/lsCgQB/+7d/yx/8wR8AUF9fj1wuZ+fOnS8do0B4Z71eT1ZWFjabbVHUTbfbzb179ygsLKS0tBSlUrnuZumYYFYJiUSC1+tlfHycjo4OGhoaaG5uJhgMMjIyglwuJxgMEhcXR0lJCXq9ft0Lw1La29t55513mJub4yc/+Qk/+tGPCIfDTExM0NXVxdatW9FqtctOs+CwKZjMpVIpRqNxkdVsy5YtDA8Pc/fuXUZHR5mfn3/MOXY9iAlmFRBalsbGRk6ePInT6SQxMZH9+/ej0WgYHx/n5MmTeL1eSktLKS4ujjqxdHV1ceTIEebm5viLv/gLfvKTn4jHdDod77//Pt/4xjde+v4zMzP09/czNzeHxWIhISFhkSBUKhU6nY64uDgkEom4MdV6ExPMCiMMytva2qiurub27dvs2bNH3Bg1Li6O9vZ2uru78Xg8Yp8+mhgZGeEb3/gGIyMjfPvb3+anP/3pouOC5/LLEGmW7+3txe/3o9VqHxOMz+cjEAigVqtRq9VR0bpATDCrwuzsLF9//TX19fVoNBreeOMNDhw4IApDIpHQ29vL9PQ06enpUVMY4NEM/1tvvUV7eztvvvkmn3zyyars8zI/P8/4+DhKpZKEhATUavWi40NDQzgcDuLi4kQTfjTMycQEs4IIHsl9fX1cv34dlUrFN7/5TYqKiha1IsK4xev1Yjabo6aFmZub4/jx4zQ3N7Nv3z4+//zzVdsUKRwOo1QqSU5Oxmw2P3a8rq6OmpoaMjMzSU5OFgW13t3WmGBWCKH2Exw3x8bGKC0tpaqqatGW24IDZ05ODqFQSFxtud4EAgE+/vhjamtrKSws5NNPP13x7RGFPIoc8FdWVpKXlyeeIwTkuHXrFlKplKqqKjIzM1c0Ha9CTDArzNjYGJ2dneJOXmlpaYtq6XA4jEqlWrQjWTTEJv744485efIkSUlJi9bsrzTC9h8tLS10dXWxd+9eVCoVbrcbj8fD9evX+fnPf47H42HXrl0cOnSItLQ0YP1bF4gJZsXxer3Mz88jk8lQq9XiHEU070D2l3/5l/zyl79cNbEI7zw3N0dLSwu/+tWvqKmpwel0Mjc3R2pqKj6fj9nZWTwej7iLdlVVFUlJSVFlQYwJZoVRKpWit7Db7cbv96NUKhcFzXO73czPz6PRaIiLi1vXzVMDgQCDg4PodDo+/fRTCgsLV+1ZgleDSqUiKyuLrKws0QlT2HUhPT2dbdu2sXv3bux2+6ql5WWJCWaFMRqNpKSkEAgEGBsbY2hoiJSUFJRKpdh3HxoaYmxsDLvdTlpamuiRvB61qFwu55NPPqG9vZ3S0tJVeYYwdlOpVOTk5PDRRx8RDAZRKBQsLCwQCAREh9PExERxzBItrUokMV+yFUJoQdxuN83Nzfzd3/0dTqeT0tJS9u/fT2pqKm63mwcPHrCwsEBmZiZlZWXrHix9LREcLoWVoVKpFL/fLzqoCqKKDEv7IqxlN3f9zTObBGHgHhcXR15eHseOHSMjI4P29nbq6uq4fPkyN27cYGhoCLlcTlJSEgaD4eU+9sN/YP8Sb+ZHf3/JpcjzPK18/qPD2DRSpFINtsP/iXMDkRtO+en4zcfsLiqiqOht/terY6zmdlRCVFJhkZ0wmy+s79HpdCgUiqgwgjyNmGBWmHA4jNFo5Pvf/z4fffQRFRUVOJ1OGhsb6evro7i4mOPHj1NeXo7BYHi5guF00LH3/6Hz997O//r3v3NYPMnBb/7Ndv69+8+5MRkiFJrkxp+P8Sc7/j3nXL8/5e7/xo8G/oKrbW20tX3Clv/vL/lydGXy4WkIYnjWXzQTG8OsAkL3ori4GK1Wy/T0NH6/H5VKhd1ux2q1vtpAf36acUshz5wluf/P/C9tP+GL+x+QpQBQk/XB/8Wv76bxP/zyz2j882IGW69StP1/4lEHyERRZR9/3wrfsr180jY7McGsAkItGR8fT1lZ2TPPeWkyrTyrXHfUncT1B/+NikVeNwqqjv6Ajr+5Se+fF5O57R2GT9/Hf3gLCly03cxg74lXS9ZmJ9YlW0WeJIqV6HaMjvU+9xxHRz17CzMeP5Cax45LTfQAFP+P/E36/8H+oiKKiv4N9z/+b7HW5TmsSAsTjZNx0cpK5NX83DgWZT+ffLydf//PDYx79ZR88Nf87f/5HziargB66WuEzG8k8djjMjIpp/VRtxElBX/w/3LzD145Sa8NsRZmgzL+z2dY+OHv6PeECS+08w97znNi73/iygxAkKDvKRcq5CiZYWFuDRO7iYiNYTYgOX9SS/hPIn5Qp7D7r37BP15M4x+u/M8ceE+G7Gmrhv0BfMSjWVm/yteGWAuzaUil7EgB3SPjQCaZ5dDY2/v4af19NKoURMeCgo1HTDCbCM+8S/y3vWQvzf1jj53j72/h9jvbKXjsSIwXISaYDccgv/5mPH9yZmbJ763c+GyGnTmPHBZz9nyXpL//kuuLpu5nOP+r/5sj3973TJN0jGcQjrHhGPz1+2FV+h+HP++YCfvC4bBvpiN85j9UhPWHfxbuEs9yhqv/zBJO/+PPw90L4XDYNxPu+PyPw+np/yFcM71uSd/wxASzIVkIt3z278JvperDQBh9avitf/dZuGVhyWm+/nD1jw+GLSrCoA+nvvXjcHW/b11SvFlYEW/lGDFeF2JjmBgxlkFMMDFiLIOYYGLEWAYxwcSIsQxigokRYxnEBBMjxjKICSZGjGUQE0yMGMsgJpgYMZZBTDAxYiyDmGBixFgGMcHEiLEMYoKJEWMZxAQTI8YyiAkmRoxlEBNMjBjLICaYGDGWQUwwMWIsg/8fQZuoyWVslnUAAAAASUVORK5CYII=",
"path": "images_version_5/image_36.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, passing point C to draw the tangent of circle O. then the degree of angle A is ()
Choices:
A:20°
B:25°
C:.40°
D:50°
|
Như hình vẽ, kẻ tiếp tuyến qua điểm C đến đường tròn O. Số đo góc A là ()
Lựa chọn:
A: 20°
B: 25°
C: 40°
D: 50°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, passing point C to draw the tangent of circle O. then the degree of angle A is ()
Choices:
A:20°
B:25°
C:.40°
D:50°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, passing point C to draw the tangent of circle O. then the degree of angle A is ()
Choices:
A:20°
B:25°
C:.40°
D:50°
|
As shown in the figure, passing point C to draw the tangent of circle O. then the degree of angle A is ()
Choices:
A:20°
B:25°
C:.40°
D:50°
|
180
|
36
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAKpCAYAAAB+YWLTAADXfElEQVR4nOydd1hVx9PHv5deFJEmIiLYxYIdscSusbfEEltsUROTn8ZouprEmF41JpoYa4zGLnZRsaICNrD3hgWx0aTO+wfv2ezl9ssBNM7nee7DcM6e3T19zszujIaICAzDMAzDMEyBsSnuDjAMwzAMw/xXYMWKYRiGYRhGJVixYhiGYRiGUQlWrBiGYRiGYVSCFSuGYRiGYRiVYMWKYRiGYRhGJVixYhiGYRiGUQlWrBiGYRiGYVSCFSuGYRiGYRiVYMWKYRiGYRhGJVixYhiGYRiGUQlWrBiGYRiGYVSCFSuGYRiGYRiVYMWKYRiGYRhGJVixYhiGYRiGUQlWrBiGYRiGYVSCFSuGYRiGYRiVYMWKYRiGYRhGJVixYhiGYRiGUQlWrPTw6quvQqPRIDAwsLi78p+gVatW0Gg0aNWqVXF3xWyexT7n5OTgp59+QuPGjeHm5gaNRgONRoOePXsCACIjI8WyyMjIYu0r89+Er7HCIzAwEBqNBq+++mpxd4UxgZ0alezbtw8tWrQQ/+/evRsvvPCCGlUzDGMmAwYMwIoVK4q7GwzDMHq5fv06li1bhu3bt+P8+fNITExETk4OPDw8UKtWLbRo0QIDBw5EUFBQcXe1QKhisVq0aJHR/xnmaWDatGnia/q/xoEDB4RS1aVLF2zfvh0nTpxAXFwcfv7552LuHcMwzwKF9YzMyMjAxIkTUaVKFUyePBnbt2/HlStXkJqaiidPniAhIQHbtm3Dxx9/jEqVKqFfv364fv36U9N/SymwxSojI0M80EuUKIGUlBSsWLECM2fOhLOzc4E7yDz7sEug8ImIiAAA2NraYunSpXBzc9Mp06pVKxBRUXeNeY7ga6zwuHLlSnF3wSqSkpLQvXt3HDhwAABQsmRJDBgwAG3btoW/vz/s7e1x+/Zt7N+/H6tXr8b58+fxzz//ICwsDOPHjy/ezltJgS1W69atw8OHDwEAP/30EwDg8ePHWLduXUGrZhjGTG7evAkAKFOmjF6limEYpqjJzc1F//79hVLVuXNnXLhwAXPmzEHfvn3RtGlTNGrUCN26dcOXX36JM2fOYOHChfDx8SnmnheMAitWCxcuBAAEBwdj+PDhCA4OBsDuQIYpSjIyMgAA9vb2xdwThmGYPGbOnCms6e3atcO6deuMKk02NjYYMmQIYmNjUadOnaLqpvpQAbhz5w7Z2dkRAJoxYwYREX3++ecEgGxtben27dsm67h58ya9++67VK9ePXJzcyN7e3sqU6YM1apVi/r370/z58+nR48eWdW/7Oxsmj9/PnXo0IHKlClD9vb2VKpUKapcuTK1adOGPv/8czp58qTOdkOHDiUAVKFCBSIievDgAX388ccUHBxMLi4uVKpUKWrRogUtWbLErH6cOHGCRo0aRZUrVyZnZ2cqUaIEBQcH0/jx4+ny5ct6t/nnn38IAAGgM2fO6C1TqVIlUWblypV6y/To0YMAUMOGDbWWz58/X2x7+fJlysnJoTlz5lBYWBi5u7uTi4sL1a5dm6ZPn06pqalm7achWrZsSQCoZcuWOusuX74s+jF//nwiItq2bRt17dqVypQpQw4ODhQYGEhjxoyh69evW9W+vK/GfvK5yN/nGzdu0IQJE6hSpUrk5OREHh4e1KFDB9q0aZNZfbh//z599tln1KRJE/L09CQHBwcqW7Ysde/enVatWmXVfhGRWfulsGvXLrFs165dBuu8cuUKjR49mipUqECOjo5UtmxZ6tGjB+3cuZOIiKZOnapTt4K+82mIChUqEAAaOnSozrr81+eTJ0/ohx9+oNDQUPL09CQANHXqVJ3tsrKy6I8//qBOnTpR2bJlycHBgTw9PalFixb0ww8/UHp6utE+qYHSb6V/27dvp27dupGvry85OjpSUFAQvfHGGyav54sXL9K3335LXbt2pQoVKpCTkxM5OTlRQEAA9e3blzZv3myyLw8ePKDp06dTkyZNyN3dnezs7MjLy4tq1KhBPXv2pNmzZ9OdO3f0brtjxw7q378/BQYGkpOTEzk7O1OFChUoNDSUJk6cSDt27NDZxtQ1pvazdd26ddShQwfy9PQkZ2dnqlKlCr3zzjt069YtIjJ+jZlD/mv9wYMHNGXKFAoODiZXV1cqXbo0tWzZ0uz+Xr58mcaPH0/BwcFUokQJcnZ2psqVK9Nrr71GJ06cMLqtsX3Rd9yXL19Obdq0IS8vL3JycqKqVavSpEmTKCkpSWd7a56RpsjMzKRy5coRAHJycrL6+W0OBen/3bt36cMPP6S6detSqVKlyNHRkSpUqECDBg2ivXv3WtWfAilW33//PQEgjUZDV69eJaK8h7JGoyEA9N133xndfs+ePeTm5mbyYISHh1vct+TkZGrRooXJuvv06aOzrXzznz59mgIDAw1u/8Ybbxjtx4wZM8jGxsbg9o6OjrRw4UKd7e7evSvK/Prrrzrrb9y4YbIfubm55OHhQQBo4sSJWuvkCzE+Pp7atGljsI+NGzemlJQUU4fcIJYoVu+++67Bfnh7e9OpU6csbr+gitXevXvFy1zf75tvvjHa/saNG8nd3d1o2126dKHk5GSL901txWrbtm3k6uqqtx6NRkOff/55kStW0dHRVLduXZ3+5FesLly4QMHBwUaPRZUqVejcuXOmDmuBkPs3bdo0g31xc3Oj3bt3663j0qVLZp3bQYMGUVZWlt46Tp06RX5+fibrmDlzps62EyZMMLmdp6enznaWKFYFebbm5ubS6NGjDW7r6+tLR44cUVWxunTpktbHbP7fSy+9ZPBcEBEtXLiQHB0dDW5va2srDBT6MFexioiIoFdeecVgO5UrVxaKp0JhKFbh4eFa12lhYm3/t27dalIHeeONNygnJ8ei/hRIsQoJCSEA9MILL2gtVxSakJAQg9s+efJE3PQlS5akyZMn0+bNmyk2NpYOHjxIy5cvp/Hjx1P58uWtUqwmTpwoDkzXrl3p77//pv3791NsbCxt2bKFvvrqK2rRogW99NJLOtsqN7+3tzdVqVKFSpYsSR999BFFRkZSTEwM/f777+Tv7y/q37Jli94+/PLLL6KMt7c3ffvttxQVFUX79u2jadOmiReYRqOhjRs36mxfo0YNAkD9+vXTWbd48WKtk1+zZk2dMkePHhXr8x9D+UJs2rQp2djY0NChQ2njxo0UGxtLa9asobCwMFHmvffeM/fQ62CuYtW0aVNRbunSpRQTE0MRERE0ZMgQUaZJkyYWt//gwQOKi4ujsWPHinri4uJ0fpmZmTp9rlq1Knl5eZGPjw99+eWXtG/fPjp8+DB9//33Qlmys7Oj+Ph4vW1v27aNbG1tCQAFBgbSV199RZGRkXTkyBEKDw+nQYMGiT717t3b4n1T+q5YJv38/HT2S8HUS+/8+fPk4uIiHvJvvPEG7dixg6Kjo2n+/PlCaWncuLGoJz+FoVjVqVOHNBoNDRkyROv6lK2FCQkJVKZMGfE8mThxIm3evJmOHDlCu3btovfff1/sW8WKFenhw4dmH2NLUfrdsGFDAkDVqlWjefPmUXR0NEVERNDo0aPFx1bJkiXpypUrOnWcP3+eHBwcqFu3bvTzzz9TREQEHTlyhCIiImj27NlUs2ZN0c6UKVP09qNBgwYEgOzt7en111+n8PBwio6OpkOHDtGaNWvo/fffp6pVq+ooVvILsU6dOvTrr79SZGQkHT16lCIjI+m3336jPn36kJ+fn06b5ipWBX22zpgxQ5Tx9/enWbNm0aFDh2jPnj304YcfkrOzM1WsWJG8vb1VU6waNWpENjY2NGbMGIqIiKDo6GiaN28eVa1aVZR588039dazYcMGYXAoUaIETZ06lfbu3UtRUVH03XffkZeXl6hj9uzZeuswV7FSnqM9e/ak1atXU2xsLG3atIm6dOkiyvTv319re2uekaZ45513RF3Lli0zeztrsKb/R48eJQcHB3GPjB8/nnbt2kWHDx+mOXPmUFBQkKhr8uTJFvXHasXqxIkTotG5c+dqrZszZ45YZ8i8uWPHDoMvfZmsrCyrXIHly5cnAHoVJxl9ZlHl5gdA7u7uel+a58+fJycnJwJA3bt311l/9+5d8SD38/Oja9eu6ZQ5cuSIUK7KlSunc9EqF4mvr6/OtiNGjBBtK8rZ3bt3tcr88MMPBIBsbGzowYMHWuvya/iLFy/WaePJkydUq1YtAvK+To19jRnDXMUKAI0aNYpyc3N1yo0cOVKUOXLkiFX9MGZpMdRnIO/r+saNGzpl9u7dKx6Wb731ls76lJQU8bLv0KGDQZfq3LlzRVsRERGW7xjpulj0Yeqlp1xLAGjFihU661NTU7WUqqJSrADQvHnzjNbVtWtXAkDly5enixcv6i0j328fffSR0foKgtzv+vXr67VELlq0SJTR94xKSUmhhIQEg23k5ubSq6++SgDI1dVVR1G8ePGiqF+fRUqu5/79+1rLBg8eLK4lY1ZUfc9OcxWrgjxbExISxPqKFSvqdWXu379fvDTVUqwA0NKlS3XKPH78WBgZbGxsdN55skusRIkSdPToUZ06rly5QmXLliUA5OLiQomJiTplzFWsAND06dN1yuTm5lKHDh0IyPsYzP++yL+/BaV9+/airsK2EitY0v9GjRoRkPcRuXXrVp319+/fFx+TNjY2Bj+e9WH14HVl0LqjoyNefvllrXV9+/aFo6OjVrn83L59W8jGgona2dlZNctJqV8OXKoPDw8Po+s//fRT1KxZU2d55cqVRUTrvXv36qyfP38+0tLSAADfffcdypcvr1OmXr16eP/99wHkzepau3at1vqWLVuKfTlz5ozWut27dwMABg8ejIoVK4KIxLL8ZerWrQt3d3eD+9i7d28MGjRIZ7mjoyPGjRsHIG/K7KlTpwzWoQZly5bFzJkz9cYgeeedd4Ss73gXJjNnzkS5cuV0ljdv3hyhoaEG+zR//nzcuXMHTk5OWLx4MVxcXPTWP2rUKDRu3FhsUxzcvHkTGzZsAAD06tULL730kk4ZFxcXzJ07t6i7hjZt2mD48OEG18fHx4u+z5o1CxUrVtRbrl69enjjjTcAAH/++af6HdXD3LlzUaJECZ3lgwcPRqdOnQAAa9euxa1bt7TWu7q6omzZsgbr1Wg0+O6772Bra4vU1FQxQFjB3OerRqNB6dKl9W5bv359vX1XMPXsNIW1z9aFCxfiyZMnAIAffvhB72Dopk2binOtFl27dsWAAQN0lpcsWVLcF7m5ufjtt9+01q9Zs0bM2v3www9Rt25dnToqVKiAb775BgCQlpZWoOdAgwYN8MEHH+gs12g0ePvttwEA2dnZiIqKsroNc7h3756Qy5QpU6htWcrhw4cRHR0NABg5ciQ6dOigU6Z06dJa53X27Nlm12+VYpWTk4OlS5cCyAtGmP+l7e7ujs6dOwMAli5dipycHJ065IdGYbxMlPqXL18uFBxL0Wg0eOWVVwyub9CgAQDgwYMHIuSEgvKgc3d3R58+fQzWMXLkSJ1tFOR0KnIsqJs3b+LChQvQaDRo2bKlKCeXISLs2bMHwL8KmiEGDhxocJ2yjwBw6dIlo/UUlJdeekko5PmpVq2aeMgXdj9k3N3d0aVLF4PrleOjr09KyJGWLVuanD6svPwK+2FniMjISOTm5gIAhg4darBcSEgIQkJCiqpbAIxfn8C/x9nFxcXouQL+Pc4JCQlWBSC0hNq1a2vdP/lRlMXs7GyTsd6ysrJw48YNnD59GvHx8YiPj0dCQgI8PT0BAMePH9cqLz9fFyxYYFG/lW337NmDixcvWrStuRTk2bpjxw4AgKenp9HzPWTIkIJ3VGLYsGEG1zVu3Fgoifmf48r/Go3G6AfCyy+/jFKlSumtwxJeeeUVgwEyi/J5npycLGRXV9dCbctS5OM7YsQIg+WaNWuGGjVq6GxjCqsUq23btokvLH2WDnn5rVu39HaoefPm4sty/PjxaNy4Mb744gscOHAAmZmZ1nRLC+XlcODAAQQFBWHcuHFYs2YNEhMTza7Dy8tLPLj0IX+xyRcRkPcVDeR9JRubAl+mTBmRk1DZRl5XrVo1ANpKkyIHBwfD29tbr2J14sQJ3L9/H4C2gqaP6tWrG1xnbB/Vxlg/AIgv68Luh0yVKlVgY2P4NlGOj74+xcTEAAC2bt0qogEb+n377bcAtC0NRYl87RlTBgCgYcOGhd0dLUxNu1aOc1paGuzs7Iwe565du4rtCvtYN2rUyOh6xUoJ6N77QJ4y9csvv6BJkyYoUaIEypcvj+DgYNSuXVv87t69C0DbOgAAQUFBwlr/ww8/oGbNmpgyZQp27txp8kNTUUiSkpJQq1Yt9O/fH/Pnz8eFCxdM77SZqPFsrVu3LmxtbQ3WUbt2bYMfatZg7vk8f/681jtM6W9gYKDRDywHBwfUq1dPaxtreFqe5yVLlhRyampqobZlKcrxlY+5IRSvRP7zagyrFCslRpWxr3nZkqUvppW9vT3Cw8OFNhgdHY0PPvgAzZo1g7u7Ozp16mTQ2mUOH3/8MYYPHw6NRoO7d+/il19+Qe/evVGmTBnUrl0bU6dOxZ07d4zWYch1oyC/cPP3U1FqzDGB+vr6am0joyhFsptPUaCUda1btwYAnDp1SiiOShkbGxuT7lBj+2lsH9XG3ONd2P2QMbdPirVHISsrS+dL2xysta4WlAcPHgjZlHXN29u7sLujRX5XVX4U5cJSCvtYmzqO8rMh/71///59hIWFYdy4cTh06JDJB3p6errOsr///hthYWEA8p4Nn332Gdq2bQt3d3e0bNkSv/32m3CpybRt2xazZs2Cs7Mznjx5guXLl2P48OGoUqUK/P39MWbMGB0LmaUU5NmqXKumjq+tra3Ja8cSzD2fRKR1P6n1LjCXp+V57uXlJWRT79qiRjm+Hh4esLMznoBGOSf5z6sxLFas5KjqDx8+hKOjo94vQycnJ/FiWbt2rV7tODg4GHFxcVizZg2GDx+OSpUqAch7SGzZsgUDBw5EaGioVQ9Oe3t7zJs3D/Hx8fjoo4/QtGlTODg4gIgQHx+PTz/9FJUrVy70CPHm5CwiIykg9I2zUpQsRbHy9/fXGWel/K1Tp46qDxfGPOSHVt++fREXF2f2j9HGmFUC+PdYBwUFWXScC9vyVpB8Zf/73/8QGxsLAOjZsyfWr1+PK1euIC0tDbm5uaC8iUdi7Ka+Z0i5cuVw4MABRERE4PXXX0fNmjWh0WiQlZWFPXv2YOzYsahVqxbOnTuns+0bb7yBK1eu4IcffkDnzp2Fi+rmzZuYM2cO6tWrh48++sjq/XsWMXU+jT3HzdnenDqeJeQhA0eOHCnGnhimsM6JxbkC//nnH71fR8ZIS0vDypUr9fqobW1t0bNnTzFY8datW9i8eTNmz56N2NhYxMbGYvTo0VizZo2lXQWQp7x99tln+Oyzz5Ceno79+/dj6dKlWLRoEVJSUjBgwABcvHjR6EBRa/Dw8MCtW7fMcjco2ry+waD5x1m5ubnh/PnzYnyVXO7SpUuIjIxEnz59zB5fxRQOTk5OcHFxQVpaGh4+fIhatWoVd5eMIivfd+/ehb+/v8Gyxtzp8hdxfiteftRyDygupTt37qB69eomv0CLClNf6fJ6+d5//Pgxli9fDiBvvMxff/1lsA5zvqDbtm2Ltm3bAshz70VERGDu3LnYuXMnLl68iH79+uHo0aM62/n4+GD8+PEYP348cnNzcezYMaxevRq//PILHj58iM8//xyNGjVCjx49TPZBTUqXLo3bt2+b/ODOyckx28JgDnfu3NE7CUlB6U/+CQHKuS3ou+BZo2XLlmKIw8aNG9GvX79i7tG/KMc3KSkJ2dnZRp8ZyjnRN9HDEBZbrBS3XtmyZfH333+b/AUEBGhtZ4qyZcti+PDhiIqKQv369QEAGzZssFiZ04ezszPatWuHP//8U8zASE9PFzOK1ER5kR49ehRZWVkGy929exdXr17V2kambNmyqFKlCoA8xSr/+CoFeZxVXFwckpKStJYzBbMgWIPiu9+/f3+xufjMRZ6dpYxZMoSx9fK4CmMvtaSkJJ1xQdaiHOe0tDTs379flTrVQJl1ZM56+d4/f/68eGb079/f4PZnz55FSkqKRX3y9PREv379sGPHDnTv3h0AcOzYMZw/f97odjY2Nqhfvz6mT58uBo8DeR/aRY1yrR47dsyoOysuLk6kelIDc89nlSpV4ODgIJYr5/bKlStGlcGsrCyh4BbXh5iaz8gOHTrAz88PALBixQoxM7IwMbf/yvHNzMzU+1Ehc/jwYQC659UYFilWly9fxr59+wAAffr0Qf/+/U3+lFAMu3fvxrVr18xuy97eXlhbsrOzrRqvYgzlCw7QHfipBu3atQOQ5y5dtWqVwXLz5s0TpkZlm/zI46zyj69SkMdZrVixAkDeRWZqfNXzhJOTk5DVfOAaQnlxpaam4pdffin09gpC69athbXJ2EfQ8ePHjY6vKV26tBhbaUwB+/vvv63rqB5ki8nXX3+tWr0FJS4uzuhDWwn5YGtrq3U/Z2dnC9mYQp5/Wr+lWPsMrF+/vvhyL4xnpylk69vGjRsNllM7X62h0EFA3rWuDIjO/xxX/icio2E+Vq5ciUePHumto6hQ8xnp4OAgwuQ8efIEI0aMMHtc140bN7Bz506L2zS3//LxnTdvnsFyUVFRIsyQJefEIsVq8eLFQgnQF+dGH0o5IsLixYvF8r179xqdZZKZmSnGCZUoUcKiAbP379/H+vXrjfpGt23bJuSgoCCz6zaXYcOGiUGEEydO1Du1+/jx45gxYwaAvPEQijs0P/I4K+ULMb9iJY+zmjlzJoC8WTHGZt48b8ju3sKaRi4zZswYMYDz448/xubNm42W379/v3DhFjXlypUTE1HWrFmDlStX6pRJT0/Ha6+9ZrIuJaTBunXr9B7n06dPY8qUKQXs8b80atRIxKHZtGkTpk6darT8lStXDCp2yhhRZaZuQXnttdf0ujyXLl2KTZs2AcgbQyVfm5UrVxZf3oaUgw0bNoj7XB/Hjh3DsWPHDK4nIq0wAPL+Ll++3KiHICYmRlgjC+PZaYqhQ4eK2X4TJkzQ65qOiopS/WNm/fr1ei10KSkp4r6wsbHB6NGjtdb36tVLWG5mzJih98Pk+vXrQglxcXExGtqhMFH7Gfm///1PfPRv3boVvXr1MjqUgIjw119/oUGDBjhx4oTF7Znb/8aNG4tZnn/88Qe2b9+uU+bRo0fiXNrY2GDs2LFm98OiwQiKYuTj42O2JSQ0NBT+/v64ceMGFi9ejA8//BBAXiySzz77DC1atECXLl1Qp04deHt7Iz09HefOncNvv/0mBryNHDnSonETjx8/Ro8ePRAYGIjevXsjNDQUFSpUgJ2dHW7duoXw8HD88ccfAPIUkm7dullyGMzC29sb33zzDd544w0kJCSgYcOGeO+999C0aVPk5OQgIiIC33zzDVJSUqDRaDB37lyDYRlkJerRo0c646vkcpcuXRJfPTy+SpumTZsKecKECfjwww9RtmxZ8RILDAxUdXyOm5sb/v77b3Tq1AkZGRno2rUr+vTpgz59+oiJGrdu3UJsbCzWrFmDEydOYObMmUYDOhYm33//PXbs2IG0tDT0798fY8eORe/eveHm5ob4+Hh8/fXXOHXqFBo1amTULfL6669j/fr1SE9PR6tWrTBt2jTUq1cPKSkpiIiIwE8//QQfHx/Y2dlZFP7EGPPnz0fDhg1x69YtfPrpp9i6dSuGDx+O2rVrw8nJCUlJSThx4gS2bNmCnTt3omfPnnqDPapJw4YNERMTg4YNG+Ldd99F7dq18ejRI6xcuRJz5swBkOc6VcahKHh6eqJz587YuHEjNm3ahBdffBGjR49GQEAA7t69i1WrVmHBggWoWLEiHj58qPcYHjt2DMOGDUOjRo3QrVs31K9fH76+vsjKysLly5cxf/588TLp0aOH1gvp3XffxZgxY9CjRw+88MILqFq1KlxdXZGUlIR9+/YJhc7W1hajRo0qrMNnED8/P0ydOhUffPABLl26hAYNGuC9995Do0aNkJGRga1bt+K7776Dn58fUlNTkZiYqIqLq2HDhnjllVewe/duvPTSS3Bzc8OJEyfw1Vdf4ezZswDyBv3nDw9ib2+PuXPnolu3bkhOTkbz5s0xadIktG3bFnZ2djhw4AC+/PJL4Sb89ttvtWbUFSVqPyNtbGzwzz//oGvXrjh06BDCw8NRqVIlDBw4EG3atIG/vz/s7e1x+/ZtHDx4EKtWrdIJhl1Y/Z87dy5CQ0ORmZmJLl264M0330S3bt1QokQJHD16FF9++aWI9fXOO+9Y5p41N0T7vn37RKj40aNHmx3anYjorbfeEtsePHiQiHRTBRj69e7d2+KM9PnTpBj6lStXTm96FHPSgxBpp90wlJzy888/tyoJc37k5J/68gISaafJAECrVq0qUN+JLEtRYghLkjAbo6AJVYmI+vbta/BcGErCbAxzUijs2LGDfH19zbomzbkW9KFGShsi40mYgbzEwh9//DEBeRnrDSHf8/l/5cuXp5MnT5qd0sbcxK9XrlwRaSpM/YYNG6azfVpamlhfv359s9rUh3ysjD3n3NzcKDIyUm8d165do4CAAIPbBgQEGD2G5ialbd68uU5qGqVOYz8nJye916olSZiNYer8m0rC7OXlRdHR0SK12ZgxY4y2Z4j8SZjl/HH5f3369DGa9mvBggVFkoTZ0L2tIF+f+jD3GWkJ6enp9L///U8rzZChn0ajoUGDBtHNmzetasuS/hdWEmazVU/ZJG0skrg++vTpg59//lnUExoaismTJyM0NBTbt29HVFQUEhIShMbu6+uL0NBQDBkyRERwt4QKFSrg2LFj2L59O3bu3IlLly7hzp07SElJgbu7O2rWrIlu3brhtdde0xpsWxh88MEH6Nq1K2bNmoWdO3ciISEBNjY2CAgIQIcOHTB+/Hiz3A6tWrUSpk1DA9IVkyuQZ94vLsvH08ySJUvQsGFDrFy5EmfPnkVycrLJ2WsFpU2bNrh48SLmz5+PDRs24Pjx40hKSoKNjQ28vb1Ro0YNtGzZEn369BEBYYuL9u3bIz4+Hl9++SW2bNmCW7duoXTp0mjYsCHefPNNdOzYEePHjwcAMQVfHz/99BOaNGmC3377DceOHUNWVhYCAgLQq1cvvPPOO4Xioq5QoQIOHTqEdevWYfny5Th06BDu3LmDrKwsuLu7o0qVKggLC0P37t31WtzlqPcTJkxQpU/Tpk1DWFgYZs6cKVxofn5+6Ny5M95//32Dsy/Lly+PI0eO4KuvvsK6detw9epVODk5ITAwED179sT//vc/ozOUXnnlFQQGBmL79u3Yu3cvbty4gTt37iA7Oxs+Pj6oX78++vfvj379+ukEwN2zZw+2b9+O7du349SpU7h9+zYePHgAFxcXVK5cGW3btsXYsWOLxQ2ooNFo8Ntvv6Fz58745ZdfEBMTg7S0NPj7+6Nz586YNGkS/P398fjxYwDGr1VzCQoKQmxsLL799lusWbMGV69ehb29PUJCQvDaa6+ZzBAwdOhQtGzZEj/++CO2bduGa9euITc3F35+fmjTpg3efPNN1K5du8D9LCiF8Yx0cnLCjz/+iLfffht///03IiIicO7cOSQmJoKI4OHhgVq1aqFly5YYOHAgKlSoUCT979ChAy5cuIAff/wRmzZtwqVLl5CRkYEyZcqgRYsWGDNmDJo3b25xHzRE/6HAGQzDFDrt2rXDjh070Lx58yLP21iYTJs2DZ988gmqVKmC06dPm4yfZQjF7TB16lRMmzZNxR4ylnDjxg0RHuGPP/4wmrrEEMo1AeA/FWOKKVysTsLMMMzzR0JCghhg36RJk2Lujbook2U++OADq5Uq5ulBnqDwX7tWmacbVqwYhhEYm6mbnp6OV199VcRYUjvJbXGSmZmJQ4cOISgoyGD+U+bpITU1VeSr1cfRo0fx2WefAcjLfSnHaWOYwubpCFHMMMxTwciRI5Gamoq+ffuiQYMG8PDwQHJyMmJiYjB79myheI0YMeKpGA+iFg4ODk99EFfmXxITE1GjRg307NkTL774IqpVqwZHR0ckJCRgy5YtmDdvHtLT06HRaPD9998Xd3eZ5wxWrBiG0SImJsZocM9evXoZjaHEMEXBkydPsGzZMixbtkzvegcHB/z+++88iYcpclixYhhG8P3332PNmjXYuXMnbty4IWbt+Pj4oEmTJhgyZIgIJMowxUW5cuWwfPlybN68GTExMbh7966YuRgYGIh27drhzTffLNDsMoaxFp4VyDAMwzAMoxI8eJ1hGIZhGEYlWLFiGIZhGIZRCVasGIZhGIZhVIIVK4ZhGIZhGJUoNMVqwYIF0Gg00Gg0uHLlSmE1858kMDAQGo0Gr776anF3hWEKzP79+9GrVy/4+vrCzs5OPBcePnxYJO23atUKGo3GYI7NoiIyMlLse2RkZLH25b9ARESEOJ779u0r7u48dVy4cEEcnyVLlhR3d54rONwCwzCFRnh4OHr16oWcnJzi7gpjgFu3buGvv/7Cpk2bcP78eSQmJsLFxQVlypRBs2bN0Lt3b3Tu3Lm4u8kwzwzsCiwiXn31VWg0GgQGBhZ3V1TlypUr4qtowYIFxd2d55an1RoyceJE5OTkwM/PD4sWLUJsbCzi4uIQFxcHNze34u7ecw0RYcaMGahSpQomTZqEXbt24caNG8jIyMCDBw9w5swZzJs3D126dEFYWBhOnjxZ6H3Kzs4W1/H06dMLvb1nEX9/f2g0GowcObK4u8IYgC1WDMMUCteuXcP58+cB5CU2Hjx4cLH042lSNJ8WsrKyMGTIEBG13MXFBUOGDMGLL76IcuXKITU1FXFxcVi0aBGio6Nx8OBBNG/eHOvXr0eLFi2KufcM83TDihXDMIXCzZs3hVy1atVi7AmTnw8++EAoVSEhIVizZg2CgoK0yrRs2RJvvPEGfvrpJ7z99tt4+PAhevbsiePHj8Pf3784us0wzwTsCmQYplDIyMgQsr29fTH2hJE5ePAgvvvuOwB5bqWIiAgdpUpBo9Fg/PjxmDFjBgDg/v37GD16dJH1lWGeRaxWrB48eID33nsP1atXh7OzM3x8fNCuXTusWLHCrO3zz3yLjY3Fq6++iqCgIDg6OkKj0WiVv3TpEr777jt069YNgYGBcHZ2hrOzMypUqIB+/fphy5YtBtt64403oNFoULZsWb3rb9y4Ifz6NjY2SExM1ClDRPDw8IBGo8GkSZPM2kcAmDZtGjQaDRYuXAgAuHr1qmhL/hnjzJkzGDVqFAIDA+Ho6IgyZcqgV69eOHjwoFl9uHHjBt5//33Ur18fpUuXhpOTEwICAtCvXz/s2rXL7H3Jj0aj0XogDxs2TGe/pk2bprVNQc4joDvbNDc3F3PnzkXTpk1RunRpuLq6ok6dOvj888+RlpZmch9OnDiBwYMHo1y5cuK4DBo0CEeOHAFg/ti4Bw8eYPr06QgLC4OXlxccHR3h5+eHHj16YPXq1Ua3zX+soqOjMWDAAPj7+8PR0RHlypXD4MGDcfr0aZ1tlTFurVu3Fstat26tcx6sHf+WkpKCL7/8EmFhYfDw8ICjoyP8/f3x0ksvYcOGDXq3UY6ZsT5Z25/ExER8+umnaNasGXx8fODo6Ijy5cujWbNm+PTTT3H27FmdbYzNCtQ3RnD16tXo3Lkz/Pz8YGdnZ3A24aZNmzBo0CBUrFgRrq6uKFWqFGrWrIn+/ftj1apVSE9Pt2ofAWD79u0YNGgQgoKC4OzsDDc3N4SEhGDy5Mm4deuW1fUCwFdffQUlk9kPP/wALy8vk9tMmjQJderUAZC33ydOnChQH/Th7++vpYB//PHHOtexqXFFy5YtQ5s2beDl5QVnZ2dUr14d7733Hh48eGBWH7Zu3YqBAweK416qVCnUrVsX7733Hm7fvm1wu48++ggajQZ2dnlOoPT0dHz99deoV68eSpYsCTc3N4SGhmL27NlWT+Ro3rw5NBqNsATPmzdP5/i0a9fO5P517doVvr6+cHJyQlBQEF5//XUt67IxDh48iJEjR6JKlSpwdXVFiRIlUKNGDYwbNw4XL160ar/+k5AVnDx5ksqWLUsA9P6GDx9O8+fPF/9fvnxZp44KFSoQABo6dCj9+uuvZGdnp1OPwqVLlwy2Jf8GDRpEWVlZOm39888/oszp06d11i9evFirnhUrVuiUOXr0qFgfHh5u9rGaOnWqWX03dGxWrVpFLi4uerextbWlZcuWGW3/jz/+IGdnZ6NtjxgxQu9xM4U5+zV16lRRvqDnkYi0rqv4+Hhq06aNwXoaN25MKSkpBvu/YMECsre317utvb09LViwgIYOHUoAqEKFCgbr2bhxI7m7uxvdpy5dulBycrLR4zh16lSaOXOm3nsBALm4uNDu3bu1tr18+bJZx3T+/PkG+2+II0eOkJ+fn9F6e/fuTenp6VrbKcdM7f4sWbKEXF1djdar7zy1bNmSAFDLli111snH788//6TBgwfr1Jl/u3v37lHbtm0t3sddu3aJdbt27dK7jykpKdSrVy+j9ZYoUcKiZ5DM/fv3ycbGhgCQv78/5eTkmL3tnDlzRB8mTJhgVfvGKFeunMljOmLECFF++/btYnlkZCT169fP4HZVq1alO3fuGGw7OTmZunfvbrTtkiVL0saNG/Vu/+GHHxKQ90xOSEig2rVrG6ynV69elJuba/Hxadasmcnj07ZtW1H+/PnzYvnixYtp4sSJBrfz8fGhM2fOGGw7KyuLXnvtNaNt29vb07x58yzer/8iFitWDx8+JH9/f3Ew+/XrR5s2baKYmBhaunQpNWzYkABQo0aNRBljilVwcDDZ2tpSYGAgzZo1i6Kiomjfvn30xRdfiLLnz58nBwcH6tatG/38888UERFBR44coYiICJo9ezbVrFlTtDVlyhSdtu7cuSPW//rrrzrrR4wYoXWBvPHGGzplfvjhBwJANjY29PDhQ7OP1507dyguLo569OhBAMjPz4/i4uJ0fvqOTb169cjJyYmCgoJo1qxZdPDgQYqKiqJp06aRk5MTASA3Nze6e/eu3rbnzZsn9qlWrVo0c+ZM2rdvHx05coRWrVpFnTt3Fuvffvtts/dJIS4ujrZu3SrqmD59us5+yQ+zgp5HIm3FqmnTpmRjY0NDhw6ljRs3UmxsLK1Zs4bCwsJEmffee09vPXv37hUvGGdnZ/rggw9oz549dOjQIfrll1/I39+fHBwcqF69egZf2ERE27ZtI1tbWwJAgYGB9NVXX1FkZCQdOXKEwsPDadCgQaIvvXv31luHsr5Jkyak0WgoJCSE/vzzT4qOjqY9e/bQhAkTRF8DAgIoIyNDbJuZmUlxcXH0559/aikI+c/DgwcPzDup/8+NGzeodOnSBIA0Gg0NGzaMtm7dSjExMbRo0SIKCQkR7fXt21dnW1N9srQ/CxcuFHU5OTnRm2++SZs2baIjR47Qnj17aNasWdSxY0eqWLGizrbmKlZ16tQhANSiRQtaunQpxcTEUEREBP3xxx+ifGpqqtZLs0GDBjRnzhzav38/xcTE0Jo1a2jChAnk5+dnsWKVnZ1NrVu3Fsd8wIABtGLFCoqJiaGoqCj66aefKCAggACQg4MDxcTEWHQMiYjCw8NFH0aPHm3Rtrdu3RLbNmzY0OK2TXHmzBk6duyYaOPNN9/UuY5v3rwpysuKVdOmTcU9tmbNGoqNjaWNGzdSp06dRJlBgwbpbTc7O5teeOEF8Xx/5ZVXaOXKleK4//DDD1S+fHkCQI6OjnTkyBGdOhTFysbGhkJDQ8nR0ZHGjx9PERERFBsbS3/99RdVq1ZN9EW+pszl0qVLFBcXR2XKlBH7mv/4yO9aWbFSjk/r1q1p2bJl4tqWn0/Nmzc32PYrr7wiynXp0oX++usvOnz4MB0+fJjmzp1LNWrUENetIeXzecJixertt98WB3jGjBk66zMzM6lDhw5aiooxxQoA1a5d2+iDNiUlhRISEgyuz83NpVdffZUAkKurq17FRznx/fr101lXqVIlAiC+WGrWrKlTRlGM6tevb7AfxjDH8qEgH5sGDRro3Z8lS5aIMt9//73O+mvXrglL19ChQw1agD744APxQDh79qzF+yW/mExZIdQ4j7JipXyJ5efJkydUq1YtAkCenp56911RDBwcHGj//v066+/cuUMVK1YU7eg7bykpKeIh16FDB0pNTdW7X3PnzhX1RERE6KyX96dz585aipPC9OnTRZnVq1frrDfHGmIJL730ktGXwJMnT4QSAIA2bdpUaH26efOmuJZ9fHx0PkRkrl+/rrPMXMUKAA0ZMsSoNWH8+PFaH2CGymZkZNDt27e1lpk6Ht9++y0BeV/++o4nUZ7FSfkAMfYiNIR8Hc2ZM8fi7RVPhb29vcXbmkNWVpbo32effWa0rKxYAaAvv/xSp0xOTo6watvb29O9e/d0ynz55ZfiWbBlyxa9bSUlJVH16tUJALVq1UpnvaJYKfXs2bNHp0xiYiJ5eXkV6D1C9K9lT7be6UNWrADQ2LFj9ZZTnrkA6MSJEzrrly1bpvWBpI+0tDRxn1WqVImys7Mt37H/EBYpVk+ePBFfsXXq1DFoRr5+/bqWi8WUYqXvIrSUpKQkYTlYuXKlzvoxY8YQAPL19dVafuPGDaFpx8bGClm2AuXm5pKHhwcB1ll2iKxXrI4fP663TG5urnDT9OrVS2e9Yvb18/PTcdXIZGVliRv1ww8/NHt/FCxRrMzB1HmUFStDFiAiot9++83gMYyKihLrjLk01q1bZ1SxmjlzJgF5FhRjbgYiosaNGxMAGjhwoM46pQ1j9Tx+/JgcHBwM9llNxSohIUGcg44dOxosd/nyZeG27Ny5c6H16b333hP1rFmzxuLtzVWs3N3d6fHjxwbruX//vlDw6tevb/HLw9jxyMzMFEqLKTfbpk2bRD3nz5+3qA+yYrhu3TqLtiUiqlu3rtje2LGyFmsVq9DQUIPlNmzYIMrlt6ZkZGSQj48PAaBJkyYZbW/9+vWinkuXLmmtkxWryZMnG6zjnXfeEe8YQ0MDTGGNYuXv76/3g42IKD4+XpT75ZdfdNYrH6Evv/yy0fZOnDih6sfds4xFg9djY2PFIMChQ4fCxkb/5v7+/ujQoYNZdZYvX97iuChZWVm4ceMGTp8+jfj4eMTHxyMhIQGenp4AgOPHj+tsowxAvX37Ns6cOSOWKzFugoODUb9+fVSsWBFEhN27d4syJ06cwP379wHkTUEuKmrXri0GjOZHo9GgXr16APIGhOdn3bp1AIBu3brBycnJYBt2dnYICwsDAERFRRW0yxZhzXmUGThwoMF1DRo0EHL+47Njxw4hDx061GAdXbp0EX3Rh3KMW7ZsCR8fH6N9feGFFwAYP8bt27c3WE/JkiVRpUoVAPrPt5rs2rVLDLAdMWKEwXKBgYFo3749gLz7qLCiq2/cuBEAEBQUhB49ehRKG0DevVKyZEmD63ft2iUmRLz11luwtbVVre3Dhw+LQel9+/Y1Wla5lgDL79nk5GQhu7q6WrRt/m0eP35s8faFxSuvvGJwnbFnQVRUFO7evQvAsuNubOKQOc8lIirSVG8vv/wyHBwc9K4LDg6Gs7MzAN3jc+3aNfEcNnV8ateuDXd3dwBF/y552rAojlVcXJyQGzVqZLRs48aNxQPRGIYUh/xkZWVh7ty5WLx4MY4ePYrMzEyDZe/du6ezTFaIIiMjUb16dSED/yperVq1wqVLlxAZGYmXXnpJq4yNjU2RBsdT+mgIDw8PANoPSwB49OgRLly4AACYM2cO5syZY1Z7xma9qEVBz6OMseOjHBtA9/jEx8cDABwdHVGrVi2Dddja2qJu3bpaiphMTEwMgLyZNqZmdioYO8bWnm+1UY4PAISGhhotGxoais2bNyMtLQ2XLl0Syp9aZGVlif60aNHC7ONsDaaeRUePHhWy/JJVA+VaAiA+dMzB0ntWVhxTUlIs2jb/Nk9T5HxrnwXycTf1TpOx9j421pfCxFifNBoN3N3dkZ6ertOn6OhoIb/88stmt1cU75KnGYssVvKUVVNf6GXKlDGrztKlS5ssc//+fYSFhWHcuHE4dOiQ0ZcxAL3TnH19fVGtWjUA2pGY9SlWhsrUqVPHrP6qhYuLi9H1isUwv6VA+QKzFHPCExQENc6jjLHjI1tT8x8f5Tr28PAwaXXw9vbWuzwrK8uqJMLGjrG151ttFOssYPo+9vX11budmn2h/w8NYChcilqYurdlRV/tvhTVPStbYK15+d25cwdAXlwyY9a9osbaZ4Hax93W1tagZchUXwqT/9q75GnHIouV8oADYPLLUS5rDHPM6f/73/8QGxsLAOjZsyeGDx+OOnXqwMfHB05OTqIvAQEBuH79usG2W7ZsibNnzwo3X0JCgsgArli0lNg7p06dQmJiIry8vLB3714AMBjP5mlDvjnGjx9v1J0jY+yBoAZqncenAfkY9+3bFx9//HEx9qb4KMpzVJjWKsC8Z1FhIV9PkZGRRl3QMqY+cPMTEhIiZNkCZw63bt0Syphcz7OMfNz37t0rXFmmMNdw8KwjH59ly5ahZs2aZm0nW+aeRyxSrOSDdefOHaNpKqzVdPPz+PFjLF++HECeH/2vv/4yWNZUELhWrVph7ty5YpyVEgQyODhYWCb8/f1RsWJFXLp0Cbt370bVqlWRlJQEoGjHVxUE+aGclpZm1N1VVKh5HguKYpm4f/8+cnJyjL5Q9QWLBQAnJye4uLggLS0NDx8+fCqOsVrkv88DAgIMllUsGPm3U7MvNjY2yM3NRUJCgur1W4IcSPPWrVsGo5Vbg3zPOjg4FNr11KxZM3E8N27ciNzcXINjZfOzfv16If9X8gXKx93U0IDnEfn42NjY8PExE4tcgbVr1xay7HvVh6n15nL+/HlkZWUBAPr372+w3NmzZ02OGcg/ziq/G1BBdgcqZTQaTYHGVRT217aMt7c3ypUrBwCIiIgoVKuCuful5nksKMpXV0ZGhta4wfzk5OTg2LFjBtcrkwf2799f7KZvNa8v+eF56NAho2UPHz4MIM/VoKaioWBvby/6s3fv3mK1YtavX1/Ie/bsUbVu5VoCgG3btqlat4yHhwe6desGIC8jg6msAAo5OTmYPXu2+N/YpI+CUJTPSaDojruaFOUxehaPz9OARYpVgwYNxNf+4sWLDT7kbt68qdpJyM7OFrKxl9dvv/1msi4/Pz8xuNZSxap27doF+iJXZubJ+dMKk+7duwPIm+WxcuXKQmtHnnFobN/UPI8FpW3btkJetGiRwXIbN24U1kp9KMc4NTUVv/zyi3odtAJzz4M5tGrVSljx5s2bZ7DctWvXsH37drGNks5DbRRF4PLly2ImZnHQunVrMStu5syZqo6Rad68uXi+/Pbbb4U6427y5Mni5TxhwgSTk0QA4JtvvhFpbF588cVCcwXa2tqK66gonpUvvPCCcP/9+uuvhf5RpwZF+S6pXr268EwtXbrU7NQ3zzsWKVaOjo4YNmwYAODYsWP45ptvdMpkZ2dj1KhRJgcmm0vlypXFQ8DQS3DDhg2YOXOmWfUpVqvNmzfj/PnzWuOrFORxVhEREQAKPr5KGex69+7dIpkNMmnSJDg6OgIAxowZozX7RR/W5v/y9PQUY7OM5YpS+zwWhLCwMDED7JdffsGBAwd0yiQmJmLChAlG6xkzZoxwD3388cfYvHmz0fL79+9X3dKhIA+mLmjOLj8/P/Tq1QtA3ozHP//8U6dMZmYmhg8fLqyQ48aNK1Cbxhg3bpxQaEaPHq01azE/N27cKLR+uLu7iwTEsbGxGD9+vMGPy6ysLIuGQzg5OeGdd94BkDeovH///khNTTVYPjk5GbNmzbKg9//StGlTjB8/HkDe8WrXrp3Bqf9EhJ9++gkffPABgDw3+ty5c/WW/eOPP0TOuunTp1vVN+Dfa7kocs+5uLjg7bffBpBnEBgwYIDRD7/Hjx8X+0dUUR4fIC8PIpD3Qdy7d2+jiviTJ08wa9Ys8Vx4brE08FX+lDYDBgygzZs3U2xsLP39998ilY25KW2GDh1qss0uXbqIujp27EirV6+mmJgY2rRpE40YMYJsbW2pSpUq5O3tbbJOOWI5oD/KOhFpRd0GQKtWrTLzCOlHDmb3yiuvUFRUFJ07d47Onz+vE+TP3GNjKuioHEzTwcGBRowYIdI9HDp0iFatWkXvvvuuiDxvbf4xJYeVp6cnLV26lE6dOiX2KykpSZRT4zyaykGpYCpwaf6UNh9++CHt3buXDh8+TLNnz6by5cuTvb29CIgYGBiot53t27eLIJk2Njb08ssv07Jlyyg6Opqio6Np/fr1NHXqVJEuZebMmTp1KP2U8yrqw1igSyIS92VQUBCtXbuWTp8+Lc6DpcEcr1+/rpXSZvjw4bRt2zaKiYmhJUuWaAWKzJ/SRkHNoKWLFi0SdTk7O9Nbb71FmzdvpqNHj9LevXvp119/pU6dOhUopY05AW71pbSZO3cuRUVFUWxsLK1bt44mTZpE5cqVsyqljZyDMCAggGbMmEG7du2io0eP0p49e+j333+ngQMHkqurK3l6epp59HTJyMigl19+WbTl4uJCY8eOpXXr1lFMTIxIEyQ/x93c3Iyex99//93s4J7GUHL+OTk50dy5cyk+Pl5cx3LgZvmZunfvXoP1mQo6mpWVRa1atRJlKlSoQF988YU47rt376a5c+fSgAEDyNXVlcqUKaNTh5wr0Bjm9tkY7777rrgvv/rqKzp27Jg4PnLKn/y5Ao1hKuionPrG29ubPv74Y9q+fTsdPXqU9u3bRwsWLKARI0aIZ4axoNTPA1YlYY6PjydfX18txUP+DRs2zKIkzKa4du2ayJGl7xcQEEAnT540q04l0rry05cXkIho+PDhooxGo6HExEQzj45+cnJyqEmTJgb3QUYtxYooLx2Bm5ubwXaVn42NDe3cudOqfduwYQNpNBq99crKghrnUS3Fish4EmY7Ozv6/fffRVLe6tWrG2xrx44dRu8H+bdw4UKd7dVSrGbPnm2w3aJMwqygdpqdBQsWmEwoXpAkzOYeo8TERJFbztjPmiTMaWlpNGTIELOupaCgILP6a4icnBz65JNPDCZ5l3+NGzfWm+5ERi3FKiYmRmQZyP8zlIS5IIoVUZ7CLCsPxn5VqlTR2b4oFaurV68aTPpuLAmzMUwpVtnZ2TRx4kTxMWrs5+rqajDK+/OCRa5AhZo1a+LkyZOYPHkyqlSpAkdHR3h5eaF169ZYunSpXtdBQShfvjyOHDmCSZMmoWrVqnB0dESpUqUQEhKCqVOn4tixYwgODjarrnLlyqFSpUrif0MuPsUdCOTtrzwjyBpsbGywbds2fPTRRwgJCUGJEiWKZBBiv379cOXKFXz55Zdo1aoVfHx8YG9vDxcXF1SsWBHdunXD999/jytXrmjtsyV06dIFO3bsQI8ePeDn5wd7e3u95dQ8j2owdOhQxMTEYODAgfDz84ODgwPKlSuHvn37Yt++fRg5cqQY61KqVCmD9bRp0wYXL17ErFmz8OKLL6Js2bJwcHCAk5MTypcvjw4dOuDzzz/HmTNnMGTIkELbn7Fjx2LVqlXo0KEDfHx8CjzmqV69ejh79iy++OILhIaGwt3dHQ4ODvDz80Pv3r2xfv16rFq1ymhkfzUZOnQoLl68iA8//BANGjQQ/QkICEDz5s3x+eefY9euXYXeDy8vL+zevRurV6/GSy+9BH9/fzg6OqJ06dKoVasWBg4ciHXr1hmNBm4IZ2dnLFy4EDExMRg7dixq1qyJUqVKwc7ODu7u7qhbty5GjBiBlStX4vTp0wXaDxsbG0yZMgXnz5/HV199hVatWqFcuXJwcHBAqVKlUK1aNQwbNgzh4eE4ePCg1uSlwqRBgwY4cOAA+vXrh4CAgEIPAwPkuQQXL16Mw4cPY8yYMQgODoabmxtsbW3FcR85ciRWrVpldMJLURAQEIDDhw9j+PDhqFSpUpHcf7a2tvj2229x6tQpvP3226hbty5Kly4NW1tbuLm5oWbNmhg0aBAWL16M27dvF8k5e5rRED3FwYIYppipXLkyLl68KB4aDMMwDGMMqyxWDPM8EB0dLQaINmnSpJh7wzAMwzwLsGLFPLco+RT1kZSUhFGjRgHImw3br1+/ouoWwzAM8wxTOIFnGOYZoH379ggKCkKvXr1Qp04dlCpVCg8ePMD+/fsxe/Zs3Lp1C0DedOOCjrFjGIZhng94jBXz3BIYGIirV68aLfP6669j5syZZqf9YBiGYZ5vWLFinlt2796N8PBw7N69G7du3cK9e/dgZ2cHX19fNG/eHK+99hqaNm1a3N1kGIZhniFYsWIYhmEYhlEJ9m8wDMMwDMOoBCtWDMMwDMMwKsGKFcMwDMMwjEoUmmK1YMECkencUOZ05tkhPj4egwYNQvny5eHg4CDO7bFjx4q7a8XGq6++Co1Gg8DAwOLuSpGinPtp06YVaz8WLlwIjUaDmjVrIjc3V2vd4cOHodFo4OHhgaSkpGLqIcMwzyNssWJMEhsbi8aNG+Ovv/7CjRs3kJWVVdxdYkzQrl07oQC1adOmuLujOqmpqXj//fcBAB9//LFOOIzGjRujY8eOePDgQbErgAzDPF+wYsWY5P3330d6ejrc3Nwwe/ZsHD58GHFxcYiLi0P16tWLu3tMPm7cuKGVjDgyMhLXrl0rxh6pz88//4xbt26hRo0a6Nu3r94yU6ZMAQDMnTvXZLwyhmEYtWDFijFKVlYWdu/eDQB47bXXMHbsWDRq1Ai1atVCrVq1iiSzOmMZS5YsQW5uLhwcHGBvbw8iwpIlS1Srn4hARMVmCUpPT8d3330HAJgwYYLB4K1NmzZFkyZNkJmZia+//roou8gwzHMMK1aMUe7du4fMzEwAQNWqVYu5N4w5LF68GADQqVMndOrUSWvZf4ElS5YgKSkJjo6OePnll42WfeWVVwDkjcd6+PBhEfSOYZjnHVasGKNkZGQI2d7evhh7wphDdHQ0Tp06BQAYOHAgBg4cCAA4c+YMDh8+XJxdU4158+YBALp06QJ3d3ejZfv16wc7OzukpqZi+fLlRdA7hmGed6xWrB48eID33nsP1atXh7OzM3x8fNCuXTusWLHConqys7Mxb948dO7cGX5+fnB0dISXlxdeeOEF/Pjjj3jy5InJOk6cOIHBgwejXLlycHJyQkBAAAYNGoQjR44AMD5768qVK2KQ74IFCwAAq1evFv2xs7NDq1at9La7fft2DBo0CEFBQXB2doabmxtCQkIwefJkkcDXFIcPH8aoUaNQtWpVlChRAq6urqhevTreeOMNnD9/3qw6TJGZmYnZs2ejdevW8Pb2hoODA3x9fdG5c2fhNsrPtGnToNFoEBQUJJYNGzZMHCtrZoUpL7eRI0eibt26KFWqFOzt7eHt7Y2WLVvi22+/RUpKitE68rcdHR2NAQMGwN/fH46OjihXrhwGDx6M06dPm9WfTz/9FLVr14arqys8PT3RvHlz/PnnnyAiREZGivYiIyMt2leZtLQ0/Pjjj2jdujXKlCkDBwcH+Pj4oEOHDpg/fz5ycnKsrjs/ixYtAgCUKlUK3bp1Q/fu3eHm5qa1rqCYOv8PHz7E559/jrCwMJQuXVqc4+DgYPTq1Qu//vor7t69a1XbV69exaFDhwAAffr0MVnex8cHzZs3BwBWrBiGKRrICk6ePElly5YlAHp/w4cPp/nz54v/L1++rLeeCxcuUHBwsMF6AFCVKlXo3LlzBvuyYMECsre317utvb09LViwgIYOHUoAqEKFCjrbX758WZT/888/afDgwTr1tGzZUmublJQU6tWrl9F+lyhRgsLDww32Oysri8aOHWu0Dnt7e5o7d645p8QgV65coRo1ahhtp3nz5pSUlKS13dSpU41uA4CmTp1qUV9atmxpss6goCA6ffq0wTrktmfOnEl2dnZ663FxcaHdu3cbrOfatWtUuXJlg/3o2rUrbdu2Tfy/a9cunTqMXVcKhw8fpnLlyhnd58aNG9Pt27ctOZR6yczMJC8vL3EPKgwbNowAkKenJ2VmZha4HWPn/9SpU+Tn52fyPM+cOdOqthcsWCDquHjxolnbvPfeewSAnJycKCMjw6p2GYZhzMVixerhw4fk7+8vHm79+vWjTZs2UUxMDC1dupQaNmxIAKhRo0ZGFauEhAQqU6YMAaCSJUvSxIkTafPmzXTkyBHatWsXvf/+++Ti4kIAqGLFivTw4UOdOvbu3Us2NjYEgJydnemDDz6gPXv20KFDh+iXX34hf39/cnBwoHr16pmlWNWpU4cAUIsWLWjp0qUUExNDERER9Mcff4jy2dnZ1Lp1awJAGo2GBgwYQCtWrKCYmBiKioqin376iQICAggAOTg4UExMjN7jOGTIENFup06daMmSJXT48GGKjo6m33//nWrWrCnWr1+/3tLTREREycnJVLFiRVFPz549af369RQTE0MrVqzQUnTCwsIoOztbbHvnzh2Ki4ujrVu3ijLTp0+nuLg48btz545F/WnWrBnVrl2bPvzwQ1qzZg0dOnSIDh48SMuXL6f+/fuLc1mtWjVKT0/XW4fSlyZNmpBGo6GQkBD6888/KTo6mvbs2UMTJkwQ9QQEBOh9kWZkZFCtWrW0jv+aNWsoJiaG1q5dS507dyYAFBoaWiDF6sSJE+Tq6koAyMfHh6ZOnUoRERF09OhR2rp1K73xxhtCMQwNDS2w0rNmzRrR3507d4rlO3bsEMvXrFlToDaIjCtWDRo0EB8Fr7/+OoWHh1N0dDQdOnSI1qxZQ++//z5VrVrVasVqxIgRBIA8PDzM3mb16tWiz/v27bOqXYZhGHOxWLF6++23xUNqxowZOuszMzOpQ4cOWl+n+hSrrl27EgAqX768wS/PI0eOiBfTRx99pLM+JCREKDD79+/XWX/nzh0txcKUYgWAhgwZQrm5uQb3/9tvvxUvjk2bNuktc//+faEYNW/eXGf9ypUrRXu///673jrS09OpTZs2BIACAwMpKyvLYJ8M8c4774h29B2/3NxcGjhwoCgze/ZsnTLy8Zk/f77FfZAxZnkkItq+fbtQimRlVkY+V507d9arOE2fPl2UWb16tc7677//XqwfN26c3nbGjRun1ZalilVubq5Q1ENCQigxMVFvO5s3bza5z+aiWFH9/f0pJydHLM/JyREfQ7169SpQG0SGFauLFy+aZZHKzc2l+/fvW9W2Yn1t27at2dtcvXpV9Ovrr7+2ql2GYRhzsUixevLkCZUuXVpYd+SHt8z169e13HP5Fau4uDixbt26dUbbnDx5MgEgPz8/reVRUVGijgkTJhjcft26dWYrVu7u7vT48WODdWVmZgoXqLE2iYg2bdok6j1//rzWOuWr3tRL7tSpU6KO7du3Gy2bnydPnpC7uzsBoODgYC1rlMyjR4/I09NTlMuPmoqVOfTs2ZOAPFecPpS+ODk5GbSYPX78mBwcHAyep2rVqolrypBlLD09XculZaliFR4eLrY9fvy44R0mor59+xIAatasmdFyxkhKShL7PHnyZJ31kyZNEh8h+d2+lmJIsdq/f7/Z+2wtJUuWJAA0YMAAs7d58uSJ6Ndbb71VKP1iGIZRsGjwemxsLB48eAAAGDp0qMH4Mf7+/ujQoYPBetatWwcAcHFxQZcuXYy2+cILLwAAEhIScP36dbF8x44dQh46dKjB7bt06QJPT0+jbSh069YNJUuWNLj+8OHDYlC6oaCE+fsNAFFRUUK+efMmYmNjzaqjRo0a8PLy0qnDHGJjY8X08ldffRW2trZ6y7m5uYl+nDp1yuxB92qQmJiI8+fPIz4+Xvy8vb0BAMePHze6bfv27eHj46N3XcmSJVGlShUAwKVLl7TW3bx5E2fPngWQd/wNxeFycnIyOZXfGMo1Xq1aNdSpU8doWeVaiY6Otnog+7Jly0RYjEGDBumsV5ZlZmYW2iDusmXLClmZCKImGRkZSE5OBgCULl3a7O0cHR3h7OwMIO+aYxiGKUwsUqzi4uKE3KhRI6NlGzdubHBdTEwMgLzZUnZ2dlozzfL/unbtKra7ffu2kOPj4wHkPTRr1aplsC1bW1vUrVvXaF8VTL0AlX4DQFhYmNF+lyhRQm+/5ToGDBhgtA6NRoN79+7p1GEOyvEBgNDQUKNl5fXydoXB/v370a9fP3h6esLHxwdVq1ZF7dq1xe/3338HALHfhjAV8d3DwwMAxItYQd6/Bg0aGK2jYcOGRtcbQznPZ8+eNXmOx40bByBP6bl//75V7S1cuBBA3jVcu3ZtnfXycrVmB+YnKCgILVq0AAD88MMPqFmzJqZMmYKdO3ciLS2twPXLx8YSxUouz3kDGYYpbCxSrBRrFQCD1gKFMmXKGFxn7VRr+eGs9MXDw8OgNUZBsYKYwtTDWo1+q1GHOcgvIWPnAgB8fX31bqc206ZNQ/PmzfHPP/+YbCc9Pd3oehcXF6PrFWtqfguQJdewudeNPorqPAPAuXPnRIwqfdYqBWXdwYMHVQvlkZ+///4bYWFhAPIsoJ999hnatm0Ld3d3tGzZEr/99ptZIVT0IVsXTV0f+VHKK5YrhmGYwsLOksJEJGSNRmN22fwoL7ugoCCsX7/e7PblmEqFgSkFTX5JR0ZGmu1ilF/gch1//fWXSSuZgqVf6DIFOVdqsWPHDnzyyScAgIoVK+Kdd95B8+bNERAQgBIlSohjP2XKFHz22WeF3p/CRjnPzZo1w2+//Wb2dn5+fha3pVirAGDy5MmYPHmyyW0WLVpUKMe5XLlyOHDgAHbs2IHVq1dj9+7dOHXqFLKysrBnzx7s2bMH3377LTZt2mRxJH93d3fY2dkhOzvbog+A3NxcPHr0CEDBlGWGYRhzsEixUtwrAHDnzh2jD0ZjX+yKQnLnzh1Ur14ddnYWdQPAv4rG/fv3kZOTY1QpUmtchaxIOTg4GHVBmlOHRqOxqg5zkM/V7du3jZ6rO3fu6N1OTRQXn7u7O6Kiogxai2SLUmEgK6imrEoFuW48PT1x584dJCYmFto5BmB1HsAlS5bg008/Nal0W0vbtm3Rtm1bAHnut4iICMydOxc7d+7ExYsX0a9fPxw9etSiOjUaDby8vHD79m2LrpNHjx6JILisWDEMU9hY5AqUx25ER0cbLWtsfb169QDkuT32799vSRcENWvWBJA3oFUe+5WfnJwcHDt2zKo28qP0GwC2bdtWbHWYg/wyVyJVG0JOdVJYSsDJkycBAG3atDHqgpPHoBUGynVjTlsF6Ytyns+dO4erV69aXY8pdu3ahWvXrgEA3nzzTfz9999Gf2+//TaAvIwDe/bsKbR+yXh6eqJfv37YsWMHunfvDgA4duyYVe5I5Rl07tw5s7eRy+obf8YwDKMmFilWDRo0EF/8ixcvNuhCunnzplGloUePHkK2Nuu88jUMGB+Mu3HjRtUGrDZv3lxYdH777Tc8fvzY4joqV66M4OBgAHkzuZSXoto0aNBA5FFbuHChwdlmycnJ+OeffwAAwcHBWjO71CQ7OxuA8TFEx44dw8GDBwulfQV/f39hvVuxYoXB8T5PnjyxOD2TjKJAANZf4+agXPu2trb46KOP0L9/f6O/jz76SOR8LKxB7MaQ71tTExT0oQyOP3v2rM7EBEPIH3nK9gzDMIWFRYqVo6Mjhg0bBiDvJfjNN9/olMnOzsaoUaPE1G99NGrUSIRj2LRpE6ZOnWq03StXruDvv//WWhYWFibGJ/3yyy84cOCAznaJiYmYMGGC8Z2yACcnJ7zzzjsA8txr/fv3R2pqqsHyycnJmDVrls7yjz76CEDey7t3795GXU4ZGRmYPXu2xQN+HR0dMXLkSAB51iJlfJMMEWHcuHHiBafMTisMlPAH+/bt0wmBAOSdK2MDr9Vk9OjRAPJCeEyaNElvmUmTJiEhIcHqNvr06YMaNWoAAH799VeRONgQ8fHxCA8Pt6iNtLQ0rFq1CkCewmBqMD6Q5wpt06YNAGDlypUWDwI3xrFjx4xah4kIERERAGAwd6cpFMUoNzfXbIuiYpENDAyEv7+/xW0yDMNYhKWBr/KntBkwYABt3ryZYmNj6e+//xapbEyltLl586ZWvsHQ0FCaM2cOHThwgI4cOULbt2+n7777jtq3b0+2trbUp08fnTryp7T58MMPae/evXT48GGaPXs2lS9fnuzt7alu3boignl+LA2AmZ2dTW3bthXbBAQE0IwZM2jXrl109OhR2rNnD/3+++80cOBAcnV1JU9PT731KMElAZCXlxd9+OGHtG3bNjp69Cjt27ePFi5cSCNHjiQPDw8CQMnJySb7lp/Hjx9rRZ7v1asXhYeHU2xsLK1cuZJatWol1uVPaWPt8THEihUrRD3+/v40c+ZMOnDgAO3fv5+++eYbKlu2LGk0GgoLCxPl9KGsM5WnUEnXkz/PI5FuSpvOnTvTunXrKDY2ltatW0ddunQhIC+Hn1ImMjJSpx5zUtqUKFFC1NGxY0dauHAhHTx4kGJjY2nz5s00Y8YMatq0KQGgiRMnmjqMWixatMisSOf5mTt3rthu6dKlFrVJZPgcKPlBGzVqRJ9++ilt2LBBpHpaunQptW/fXmzbs2dPi9slyjt3SpDiDz/80GT53Nxc8bx64403rGqTYRjGEqxKwhwfH0++vr5aKT/k37Bhw8xKwnzlyhUtBczYb9iwYXrrMJaE2c7Ojn7//XeRWLl69eo621ujOKSlpWnl+jP2CwoK0ltHdnY2TZ48mWxtbU3W4erqSmlpaWb1Td/+Va9e3Wj9zZo1MxiNW83I60oyYH0/W1tb+vHHH7WSP+tDDcWKKC/NSaVKlQz2p0OHDrR582bx/8GDB3XqMCcJ8/Hjx6lKlSpmXSuffPKJ0X3KT7t27QjIy1l58+ZNs7dLTEwU192LL75oUZtEphUrUz99Sb8tYfTo0QTk5RA1RWRkpGg3KirK6jYZhmHMxSrFiigvhcbkyZOpSpUq5OjoSF5eXtS6dWvxBWyOYkWU90W5Zs0a6t+/PwUFBZGLiwvZ29uTt7c3NW3alCZOnEi7d+82mr/v+PHjNHDgQPLz8yMHBwcqV64c9e3bV7wMe/ToQUCeVSw/BVEcYmJiaOzYsVSzZk0qVaoU2dnZkbu7O9WtW5dGjBhBK1eupCdPnhit4+zZszRx4kSqV68elS5dmmxtbalkyZJUs2ZNGjhwIC1cuNBomh1zyMjIoFmzZlHLli3J09OT7O3tqUyZMvTiiy/S4sWLDaYmIlI/pc3ixYupRYsWVLJkSXJ0dKQKFSrQ4MGD6dChQ0RERaZYERGlpKTQJ598QrVq1SJnZ2dyd3enJk2a0OzZsyknJ0crqfHp06d1tjdHsSIiysrKooULF1LPnj2pfPny5OTkRA4ODlS2bFlq1aoVffTRRxQbG2u0jvzcuHFDWGubNm1q0bZEJBKJ29ra0q1btyza1tA5yMjIoF27dtEHH3xALVq0EPezg4MD+fv7U/fu3Wnp0qVGrzdzOHHihOjDgQMHjJZ97bXXCADVq1evQG0yDMOYi4aoCIIYFTOVK1fGxYsXMWjQICxevLi4u8M8I0yfPh0ff/wx7OzskJycbDD9DVP0vPjii9i6dStGjBiBP/74Q2+Z5ORkBAQE4OHDh/jrr7/wyiuvFHEvGYZ5HrFo8PqzSHR0NC5evAgAaNKkSTH3hnlWICKRU69u3bqsVD1lKJMxFi1aZDCcxaxZs/Dw4UPUqFED/fv3L8ruMQzzHPPMK1YXLlwwuC4pKQmjRo0CkDdLrl+/fkXVLeYp58qVKyIEhD6mTJki8goaS/LNFA+hoaHo27cvsrKy8MUXX+isT01Nxffffw8gL9yFoYTxDMMwamN5yPOnjPbt2yMoKAi9evVCnTp1UKpUKTx48AD79+/H7NmzcevWLQB5IQ68vLyKubfM08KCBQswf/58vPLKK2jWrBn8/PyQlZWF06dPY+HChYiMjASQF9tLUc6Zp4vvvvsONWrUgKOjI3Jzc7WUp6tXr+KNN96Ah4eHViJ3hmGYwuaZH2MVGBhoMrL166+/jpkzZ/JXKyOYNm2a3theMtWrV8fmzZutirfEMAzDPJ8884rV7t27ER4ejt27d+PWrVu4d+8e7Ozs4Ovri+bNm+O1115D06ZNi7ubzFPG9evXsXLlSmzduhUXLlxAYmIi0tPT4eHhgZCQEPTq1QvDhw+Hg4NDcXeVYRiGeYZ45hUrhmEYhmGYpwX2jTEMwzAMw6gEK1YMwzAMwzAqwYoVwzAMwzCMSrBixTAMwzAMoxLFqlhduXIFGo0GGo0GCxYsKM6uYNq0aaIvDMMwDMMw1lBgxSorKwvLli3D0KFDUaNGDXh6esLe3h5eXl5o0KABxo4di4iICOTm5qrRX+YpY/r06UIhLVmyJNLS0lSt/+zZs/jhhx/Qs2dPBAUFwdnZGS4uLggKCkK/fv2wceNGWDKxNSoqCoMHD0ZgYCCcnJxQtmxZvPjii1i2bJlZ22dkZGDKlCkICgqCk5MTatWqhdmzZ1vUh8IiMjJSnAt9vxIlSqBq1aoYOnSoCIBaUB4/foxly5Zh1KhRqF+/Ptzd3eHg4ABvb2+0atUK3377LR4+fGiynsDAQKN9V37mxBRbsmSJSENUvnx5TJo0CcnJyQXf2UIgMjISEyZMQIMGDVC2bFk4ODjA3d0d1atXx8CBA7FkyRLV7ylL6Nu3r9bxv3LlilnbLVu2DB07dkTZsmXh5OSEwMBADB48GAcPHjRr+4SEBLz66qvw9vaGi4sLWrZsiR07dhRgT9RD/giXf46OjvDx8UGVKlXQuXNnTJkyBXv27CmStvX9zLnHk5KSMHXqVISEhKBUqVJwc3NDSEgIpk6diqSkJLP6tGXLFjRt2hQuLi4oU6YMXnvtNdy+fbuAe/qMU5AMzmvXrqWKFSuKTPPGflWrVqUNGzZobX/58mWxfv78+QXpSoGZOnWq6AtjPlWrVtU6z4sXL1at7iFDhph1bXXs2JEePHhgsr5PPvmEbGxsDNbTrVs3Sk9PN7h9dnY2dejQQe+2o0aNUm2/rWXXrl1mHS/lN3z4cMrOzra6vU2bNpGjo6PJdsqUKUM7d+40WleFChXM6nOFChWM1vPJJ5/o3a5evXqUkpJi9b6qTVxcHL3wwgtm7XPp0qXp22+/pZycnCLt44YNG3T6cvnyZaPbpKenU9euXQ3ui42NDX366adG67h58yb5+/vr3VbN54u1yO8Kc341atSgf/75p8jb3rVrl9G6Dh8+TGXLljW4vZ+fH0VHRxutY8GCBaTRaHS2DQgIoISEBFX2+VnEai1ixowZWge0Xbt2NHPmTNqxYwfFxsbS9u3badasWdSxY0fxMgsJCdGq42lSrBjLiYqKEuevRIkSBIDat2+vWv1t27YlAOTh4UGvvfYaLV26lA4cOECHDx+mOXPmULVq1UT7zZs3N/ri+f3330XZSpUq0bx58+jw4cO0du1aat26tVg3cOBAg3XMnj2bAFC5cuVo/vz5dPDgQfrxxx+pVKlSBIA2b96s2r5bg6xYjR07luLi4sTvxIkTFBkZSV988QX5+PiIclOmTLG6vcWLF4sXXseOHemHH36gnTt30pEjR2j9+vXUr18/0Y6LiwsdPXrUYF2KYtWjRw+tfuf/nT171mAdJ0+eJBsbG3JycqLPPvuMoqKiaPny5eI6effdd63eVzXZunUrubm5iWNTs2ZN+uSTT2jz5s0UExNDu3fvpkWLFtErr7wi7isAZn08qEVycjIFBAQQAK3rxZRi9corr4iyrVu3prVr19Lhw4dp3rx5VKlSJbHu999/N1hH3759CQCFhYVReHg47du3jyZMmEAajYZcXV3p3r17Ku+tZcjKzZ9//ql1j+3du5dWr15N77//PtWuXVvnQ6agyrHctrH7JC4uzuiHxI0bN6hMmTIEgOzs7Gjy5Mm0Z88e2rNnD02ePJns7OzER9GNGzf01pGYmEiurq5kY2NDEydOpH379tH69espNDSUAFC/fv0KtK/PMlYpVosWLRIn19vb2+TX6IkTJ6hNmzasWP3HGDt2LAEgLy8v+uqrr8RL1tCNaClDhw6lOXPm0JMnT/SuT01NpebNm4traNGiRXrLPXjwgNzd3cWXVGJiotb67Oxs6tatm6hn9+7deutp1aoVAaDjx49rLV+zZg0BoGHDhlmxl+ohK1ZTp041WO7kyZPk7OxMAMjNzY0yMzOtam/ZsmU0evRounr1qsEyP//8s+hTmzZtDJZTFKuhQ4da1RciomnTphEA+umnn7SW37hxg1xcXCgoKMjqutXi1KlT5OrqSgDI1taWfv75Z6Mv27t379Lrr79e5IrV//73PwJAbdu2paFDh5qlWEVGRopy3bp107GGJiYmCmWtdOnSevfnyZMn5OjoSOXLl9dRDJQ+LVy4UI1dtBpZuTFlFVq/fj15eXmJ8pMmTVKt7YIgn1N91rR//vlHrDf0XFuwYAEBoAkTJmgtT05OJn9/f3JycqKMjIwC9fNZxeKzc/PmTfFgcHFxoZMnT5q1XU5Ojo4ZlxWrZ5eMjAzy8PAgAPT666/TrVu3yNbWlgDQV199VWT9iIuLE9dQ9+7d9Zb5+uuvRZm///5bb5nr16+L/nft2lVvmSpVqpCnp6fO8sePHxMA6tChg/U7ogLmKlZERC+99JIom19RVJuGDRsKpduQtUENxWrUqFHiSz4/9evXJwcHB6vrVoPc3FyqV6+eOO4LFiwwe9uVK1cWmSszOjqabG1tydHRkc6ePWu2YtW5c2ehMF6/fl1vmb///lvU9e233+qsv3nzJgGgPn366Kxbv349AaAZM2ZYvW9qYIliRUR07tw5LQvlkSNHVGnbWm7fvi2edR07djRYrmPHjuJ83r59W2f9559/TgAoPDxcZ13v3r0JwHPrDrR48PoPP/yA1NRUAMAnn3yC4OBgs7azsbHBoEGDTJbbvn07unXrBl9fXzg6OiIoKAhjx47FjRs3TG6bmZmJ2bNno3Xr1vD29oaDgwN8fX3RuXNnLFmyxOgAenNnBWZmZmLu3Lno0qULypUrJwYsNmjQAOPGjcPevXuNDmTevn07Bg0aJAZiK4MFJ0+ejFu3bhltOyEhAe+99x7q16+PUqVKif2rXbs2BgwYgAULFuDx48fGD5JKhIeH4/79+wCAQYMGwdfXF23atAEALFq0qEj6AAC1atWCl5cXAODixYt6y6xduxYA4Obmht69e+st4+/vj3bt2gHIO0cpKSk6ZXx8fJCUlISTJ09qLVcGifr6+lqzC8WCPAj8yZMnhdpWq1atAAC5ubm4fPlyobXj4+MDIC9/qMzt27dx9uzZYj8/mzZtwtGjRwEAXbp0wdChQ83etk+fPnB1dS2srgmys7MxatQo5OTk4L333kPVqlXN2i4lJUUMLm/fvj38/f31luvduzfc3NwAAKtXr9ZZX7p0adjZ2SEmJkZn0P6zeJ8BQJUqVfDFF1+I/7/88sti7A2wfv165OTkAACGDRtmsNyrr74KAMjJycH69et11hu631JTUxETEwMHBwd4eHio1OtnDEu0sNzcXPL29iYA5OrqSo8ePSqQVpffYvXuu+9q+aTln7e3N506dcpgXVeuXKEaNWoY3B7IG4eTlJSkd3tzvgSOHj1KQUFBRtuAga+6lJQU6tWrl9HtSpQooVf7JyLas2eP1lePoZ++7WVLRkEsAjLdu3cnIG+8ksLChQtFO7GxsSbrUMqaGpBsCuW41K5dW2ddRkaGGC9g7OuMKG/coNInfe7tb775hgBQ+fLlacGCBXTo0CGaOXMmlS5d2uCxL0qstVjdunVLbxnZUmHOl7kh3nzzTZPXhRoWq+joaAJAzs7ONGPGDIqKiqIVK1ZQcHAwAaCJEydaXbca9OnTRxyHiIiIAtcnPz9btmxZ8A4SCZd+lSpVhAveHIvVjh07RJkvvvjCaBvKBBA7Ozu9buguXboQAGrWrBlt2LCB9u/fT5MmTSIbGxtycXHRaz0pSiy1WBHlDVtQhiO4uLjo3W9z7jc1LFaDBw82ee8TESUkJIhyQ4YM0Vl/48YNcnBwIBsbG5o8eTLt37+fNmzYQE2bNjVodXxesOjsxMfHiwP94osvFrhx+cGgnIyWLVvS0qVLKSYmhiIiIrRmhjVp0kRvPcnJyVqzE3v27Enr16+nmJgYWrFiBbVs2VKsCwsL0zsTytQFe/LkSa2BpL169aLly5dTdHQ0HTx4kBYuXEiDBg0iV1dXnYdPdna2GCCt0WhowIABtGLFCoqJiaGoqCj66aefxNgDBwcHiomJ0dr+yZMn5OfnRwCoZMmSNHnyZNq8eTPFxsbSwYMHafny5TR+/HgqX758kShWiYmJZG9vT4D24Ofk5GRycXEhAPS///3PZD1qKFZHjhwR9bz88ss66+Vr1lSfVq9eLcr+8ssvOuvT09PFwMz8P30PnqLGXMXq9OnTYoxVo0aNDJZTS7GqU6eOeJEa+hhTFKugoCCqXbs2ubi4kLOzMwUGBlLfvn1pzZo1lJuba7ItZRxO/l+tWrUK/CFYUJRB4K6urgWajamgtmJ16dIlcf9u375dLDdHsZo1a5Yos2bNGqPtvPXWW6KsvqEk58+fJ09PT51zqNFo6I8//ijILqqCNYoV0b+uUgB08OBBnfWWKlbt2rUjDw8Psre3J29vb2rZsiV98cUXdP/+faP9UFzzpUqVMtln5aPV0HPihx9+0Hu/+fn5GXQHPw9YpFj99ddf4sB98MEHBW5cfjAAeVPW9T08R44cKcro80+/8847Yv1HH32ksz43N5cGDhwoysyePVunjCnFShkbYWNjY3CcDhHRvXv3KC0tTWvZt99+SwDI3t6eNm3apHe7+/fvU82aNQnIs6zJyF+DxqwiWVlZel8eaitWP/30k6jv3LlzWusGDBhAQN5MoqysLKP1qKFYyZaXFStW6KzfvHmzWP/NN98YrUuxeACg9957T2+Z5ORkmjhxIpUrV47s7e2patWq9P333xf5VHh9mJoVuGfPHvrqq6/I19eXgLyB6/v37zdYnxqKlTxlv0uXLgbLmRNuoVmzZmZNjJg9ezYFBweTvb09+fr60ptvvlmkA7/1oYwdUj4i1UBtxUqxJA0YMEBruTmKlextMDVFX7H8AqAtW7boLXPx4kXq27cvubu7k5OTE4WFhdHGjRut2i+1sVax+uijj8R2+ibaWKpYGfq5u7vT2rVrDfZDmQ1Ys2ZNk31W3km+vr4Gy6xYsYIaNGhAjo6O5OnpSUOGDFFtAtOzikWKlfxCzT/zxhrkB0PZsmUNzv46c+aMwXafPHkiTKzBwcEGvwQfPXokvoKCg4N11htTrLZs2SLWmWOJkcnMzBSxQvLPnsjPpk2bRDvnz58Xy2WF1pqvbrUVqwYNGhAAaty4sc66jRs3mqUEEhVcsVq5cqWoo0GDBnqVcnl2y6+//mq0vlOnTomy48aNs6pPxYm5caxsbGxo9OjRdPr0aaP1FVSxSkpKEgqTra2t0UG7VapUoe7du9OsWbMoMjKSjh49Srt27aIZM2ZQ+fLlRT9q1KhBDx8+tLgvxc3x48fFPvTq1UuVOtVUrJTQGaVKldJxD5mjWCkzFwGYvK6UsCUAaOXKlQXqd3FgrWIlW3f0vT/NVaxq165NH3/8MYWHhwuvxcKFC7Vi7Nna2hr8iFeskqGhoSb73LhxYwLyhqkw5mORYjV9+nRx4tQwycoPhjfffNNoWcUNl1+x2b9/v6jj66+/NlqHEh4A0J2tYEyxkseIXLlyxbyd+3/27dsnto2KijJaNiUlRe8Xzc6dO8XyH3/80aL21ebkyZOiLz///LPO+qysLOHy6Nu3b6H14/Tp01SyZEkC8sbUGJqdKocGmTdvntE6L168KMqOGDGiMLpdqFgSILR06dI0ceLEQpsOnZ2dTS+++KJoz9SYL2MWpcePH2u9NEx9oDyNyM+BQYMGFXd3tEhKShJjZ/W5wM1RrIYPHy7KXLx40Wh78+bNE2WfhoCflmKtYiXH0ps+fbpVbZuyvP7222+iDT8/Px3vCRGJuJItWrQw2V6LFi2EosaYj0WzAkuWLClkZWagWlSvXt3o+tKlSwOATmqK+Ph4IYeGhhqtQ14vb2cKZSZPQEAAKlSoYPZ2ABATEyPksLAwkylHFOSUAM2bN0fFihUBAOPHj0fjxo3xxRdf4MCBA8jMzLSoPwVl4cKFAAA7Ozv0799fZ72dnR369esHIG/2yaNHj1TvQ0JCAjp16oTk5GRoNBrMmzfP4OxUJycnIZs6VhkZGUJ2dnZWp7PFxNSpU0F5H07il5aWhhMnTogUL9999x06dOiA9PR01dt//fXXsWXLFgB5M+A+/vhjo+Xd3d0NritZsiT++ecfeHp6AgDmzp1b5Nd9QSnMZ2dBefvtt5GYmIhGjRphzJgxVtXxvN5nliC/u5SZkZZi7D4BgNGjR2PkyJEA8p6T+mZeKufKnHtIOVfP03lSA4sUK2VaOwDcuXNH1Y64uLgYXW9jk9dVZZqogjLlHwDKlCljtA55mq68nSnu3bsHAChbtqzZ2yjcvXvX4m0AaE01tre3R3h4OGrUqAEAiI6OxgcffIBmzZrB3d0dnTp1wtKlS3WOjdrk5ubir7/+AgB06NAB3t7eesspYTWePHmCf/75R9U+3L9/Hx06dBA5y3766ScMGDDAYHn5haYvhIKM/MKTldz/Cs7Ozqhduza+/vprzJ49G0DeVGl5KrgavP/++5g7dy6AvI+CFStWwNbWtkB1lipVSijyynTuZ4nCfHYWhJ07d2LhwoWwtbXFnDlzxHPWUvg+M43yHgFQqGEIRo8eLeT8oRCAf8+VqfME/HuunqfzpAZ2lhQOCQkR8pEjR1TvTEExFYOKCpgo11T9+pCVncjISPHVbQolRohCcHAw4uLiEB4ejvDwcOzevRsXL15Eeno6tmzZgi1btuD777/Hpk2bdLZVix07duDmzZsA8mLymHM8Fi1ahFGjRqnSfnJyMl588UURR+qzzz7Dm2++aXQbOZ6OqVho169fF3L58uUL0NOnnxEjRuC9997D/fv3MW/ePHz66aeq1PvVV1+JOD3169fHhg0bVPvala2SynX4rODn5wdvb28kJibi+PHjyMnJKbCyqQZfffUVAKBhw4Y4e/Yszp49q1NGjj0WHh4uPqhki3X++6xhw4YG23ye7jMZxfMBANWqVSu0dkzdJ/7+/rhz545ZsSGVc/U8nSc1sEixCg4OhpeXF+7du4e9e/fi8ePHVps01ULW/G/fvm00oJ38pWjJF4PytZmQkGBx/2RFysHBAbVq1bK4DgVbW1v07NkTPXv2BADcunULmzdvxuzZsxEbG4vY2FiMHj0aa9assboNYyhuQEvYv38/Ll26JFyZ1pKeno5u3bohOjoaADBp0iR89NFHJrerWrUqbG1tkZOTgzNnzhgtK69XrIP/VWxsbFClShUcOnQICQkJuH//foG/omfPno333nsPQN7x27p1K0qVKqVGdwEU/MOouHnhhRewatUqpKamYvfu3SKgbnGiuHoOHTpk1PKr8NZbbwlZVqzkl7m595mdnR0qV65sUX+fVdLS0nDgwAEAgKurK+rWrVtobZm6T4KDgxEbG4tHjx7h9u3bBgOu3rp1SwSc/q8/D9XGIruvRqMR0VhTU1Pxxx9/FEafLEJWVA4dOmS07OHDh/VuZ4r69esDAK5du4arV69a1L969eoJedu2bRZta4qyZcti+PDhiIqKEn3csGFDoYyZSUlJEQpb27Zt8ffffxv9KdcGEWHx4sUFajsrKwt9+vQRZu0xY8bg66+/NmtbBwcHNG7cGAAQFRVldFyBUr+jo6PRL+7/CtnZ2ULOysoqUF2LFy/GuHHjAAAVK1ZERESElvtLDU6dOiVkPz8/VesuCuQo1z/++GPxdaQQaNSoERwcHADodz8pZGZm4uDBgzrb/NeZP3++GG/arVs32NlZZNOwCFP3SfPmzYVs7FzJ65o1a6ZS754TLB3triQ0BfIC3ZmaWqtQ0FyBhiIzy+EWatasaTDcwuPHj0UyTEvDLWzfvl2sszTcQnp6usip5+vrW2hBCidMmGBwxqMazJ8/3+Ip0kpYBjk6u6VkZ2drxaoaPHiwWYEiZZRo0oB5uQI7d+5sdX+LE0sir6empoogoU5OTgUKWLlq1Spx7Pz9/Y3mk7OWhw8finApLi4uBkOzPM3k5uZS3bp1rZoRt2rVqiLLFZgfc3MFdurUiYC8QLDm5Ao0NYv7acWaXIHKDGYAdOzYsULt34gRI4xeY7du3RIzA83JFWhjY2M0Qjuji1Vx8f/8809x4nx8fCgyMtJo+ZMnT1K7du0oJCREa7kaihWRdoDQjz/+WGd9bm6uVgR3awKEKkqCqQChSUlJOlNc5VQpnTp1MvqAfPz4Mc2cOVNr2Z49e7TiWuUnIyOD6tevL+KN5A/MqUYcKyVyvIuLC6Wmppq1zRdffCHa3bdvn856ZZ2hOFa5ubk0bNgwUa5Pnz5WKQBJSUlUqlQp0Vb+RMDZ2dnUrVs30Y6+dDbPApYoVvI906NHD71lzImrs3XrVnJwcBDPgjNnzljc782bN+udFq6QP9yCqdAsTzPx8fHiw9TOzo5++eUXo8FlExMTady4cQRAZ6q9uXGsTN1npjBXsZIDGXfv3l3nXk1MTBQZJtzd3U1GCH9asUSxCg8PFx/0AOj99983WNbU/XbixAmj7wEi7XALvr6+Bt81clobfYGV5fh/aqVBe56wyh45bNgw3LhxA1OmTMHdu3fRqlUrdOjQAT169ECNGjXg7u6O+/fv49y5c9i4cSO2bNmCnJwcrcHvajJlyhSsXr0aly5dwmeffYb4+HgMHz4cfn5+uHz5MmbNmiUSeIaFheG1116zuI3FixejcePGSElJwYABA7BixQr0798fFStWRE5ODi5cuIDt27dj5cqViIuL00pyO3nyZOzYsQM7duzA5s2bERwcjDFjxiAsLAzu7u5ITk7G2bNnERkZibVr18LJyUm4VYC8QeOfffYZWrRogS5duqBOnTrw9vZGeno6zp07h99++01MJhg5cqTqZuZr166J49epUyeTMzgV+vTpg/fffx9A3iB2S83J77zzDubPnw8gz3X7wQcf4PTp00a30efi9fDwwFdffYUxY8bg6tWrCA0NxYcffojatWsjISEBP/74I3bt2gUAGDBgAFq3bm1RP59G7t69qxNS5MmTJzh//jwWLVokQiE4OTnhs88+s6qNgwcPolevXsjMzIS9vT1++OEHZGVlGQ1l4u/vrzNl/Msvv8TAgQPRu3dvNG/eHJUqVUKJEiXw8OFDREVF4ddffxWDaKtVq4Zp06ZZ1d+ngZo1a2LlypXo27cvUlJS8MYbb+DXX39Fv3790KhRI3h7eyM1NRXXrl3Dtm3bsHbt2iJLrF5Q2rRpg/79+2PZsmVYv3492rdvj/Hjx8PPzw9xcXH4/PPPce3aNQB551wJofMsc/nyZeHyJiI8fvwYiYmJiI6ORnh4OOLi4kTZUaNG4fPPP7e6rdjYWIwcORKtW7dGp06dULt2bXh6eiI7OxtnzpzBkiVLsH37dgAQszwNJe7+/PPPsWXLFiQmJmLAgAGIiYlB165dAeQNJ/nuu+8AAN7e3pg+fbrVfX5uKYhWtmrVKgoMDBSarbFfzZo1aevWrVrbq2WxUuqqXr260T40a9asQEmYY2JitKJAG/rp+6pLS0vTspoZ+wUFBRnsm7Ff7969KT09Xaftglqs5MCwxqx1+lDyxLm7u+u4b5Q6DX1Jm5PmJP/PGFOmTCGNRmNw286dO+s9fs8KlgQIBfISm+e/J2VMfUGbe13KP333uZzL09jvhRde+M+kyjh+/Dg1a9bMrP329PSkn3/+Wcey9bRZrIjynnNyTrz8PxsbG5PW1KcdS6/74OBgWrVqlcl6Td1v8nAMU9eLsZQ2CgcPHhTprfT9fH199eY0ZExTINNG79690bVrV6xcuRKbN29GdHQ07t69i+TkZLi5uSEwMBBNmjRBnz590Lp1a6vCFZhLYGAgjh8/jt9//x0rVqxAfHw8Hj9+DA8PD9SrVw8DBw7EK6+8YnWcFgBo0KABzp49iz/++ANr165FfHw8Hjx4AE9PT5QrVw7NmzdH//79taxVCs7Ozli4cCHeeustzJs3D3v27MGNGzeQmpqKEiVKIDAwEA0aNECnTp3El4PC5MmTERoaiu3btyMqKgoJCQkiPpavry9CQ0MxZMgQdO7c2ep9M4Yy+NzR0RFdunSxaNs+ffrgxIkTePjwIdavX4+XX365MLpoFp988gk6duyIX375BXv37sWdO3fg7u6OkJAQDBs2zKxZUc8yDg4O8PDwQM2aNdG5c2cMGzbsqbAafPvtt9ixYweioqJw9uxZ3Lt3Dw8fPoSLiwv8/PwQGhqKAQMGoEOHDoX6DClK6tSpg3379mHnzp1Yt24d9uzZI2Znuri4oGzZsmjYsCG6dOmCXr16aQXgfJpxdnbGxo0bsXTpUixYsADHjx/Hw4cPUaZMGbRo0QLjxo1DWFhYcXezULC3t4ebmxtKlSqFatWqoWHDhujQoYPWYPGC0LlzZ8ybNw9RUVE4evQo7ty5g6SkJBARPDw8EBISghdffBGvvvqqWbP1Q0NDERcXh59++glr164VsQGDgoLQo0cPjB8/3uzwQIw2GqJnfA4zwzAMwzDMU4L15huGYRiGYRhGC1asGIZhGIZhVIIVK4ZhGIZhGJVgxYphGIZhGEYlWLFiGIZhGIZRCVasGIZhGIZhVIIVK4ZhGIZhGJVgxYphGIZhGEYlWLFiGIZhGIZRCVasGIZhGIZhVIIVK4ZhGIZhGJVgxYphGIZhGEYlWLFiGIZhGIZRCVasGIZhGIZhVIIVK4ZhGIZhGJVgxYphGIZhGEYlWLFiGIZhGIZRCVasGIZhGIZhVIIVK4ZhGIZhGJVgxYphGIZhGEYlWLFiGIZhGIZRCVasGIZhGIZhVIIVK4ZhGIZhGJVgxYphGIZhGEYlWLFiGIZhGIZRCVasGIZhGIZhVIIVK4ZhGIZhGJVgxYphGIZhGEYlWLFiGIZhGIZRCbvi7kBRQUTF3QWGYRiGearQaDTF3YX/HGyxYhiGYRiGUYnnxmLFMIxpnvavV7Y8MwzztMMWK4ZhGIZhGJVgxYphGIZhGEYl2BXIMP9xDLn39LnVnlVXm759fFb3hWGYZxu2WDEMwzAMw6gEK1YMwzAMwzAqwa5AhnmKKcxZetbWLbvYcnNzdZZZ2raNjU2B+mNOG9bC7kSGYSyFLVYMwzAMwzAqwYoVwzAMwzCMSrArkCkQptwt7ErJQw23VGZmptZfAMjOztZZDwBPnjwRckZGhl45NTUVAJCWlqZ3vYx8HuU2lW3ltg1tp7j8AMDBwUHIzs7OOssUF6Ox7VxdXXXqAAAnJyedZY6OjkK2t7fXK8t1K8sLct742meY5xO2WDEMwzAMw6gEK1YMwzAMwzAqwa5ApkAoLhvZdSO7imxtbYVsZ/f8Xm6KW0h2DxlyFcnLk5OThfzw4UOtvwCQkpKiV3706JGQHz9+rFdWysjLZLeg7AaTz6/s9lPqSE9P19t/WZavBdlN5+bmBuBfF17+9mRXoLydu7u7Th0AULJkSQBA6dKldZYBQIkSJfQul+tTtpX7JPdfRj5OT3uuRYZhCh+2WDEMwzAMw6gEK1YMwzAMwzAqoaHnZOrKc7KbhYYhF8fNmzcBAFevXhXLZNdNuXLlhFy+fHm9dTyL58ZSl4+yj8rxAoC7d+8K+d69e0K+f/++kJOSkoScmJio9Rf4d2Zf/j7JbjBDs+dKlSqls152fcnI51SeSadsK8+6M4Qhd6LifpRnJMpuN9m1LM92NOQGVWR5mXycsrKyhKwcAwDw8vISsre3NwDA09NTLPPw8BCyvLxs2bI62+XfB1M8i/cA89+A3dfqwxYrhmEYhmEYlXh+RxMzJjH0JSNbHk6fPg0AiImJEcsqVaokZPkr/1nCkvhc8uDvBw8eCFke0K1YnhISEsSyO3fuCFkekC5bZfRZMmQrizxoW7Y2yZYTubwsK1YXQ9YtGdliJVunlAHflk5MkK1GygB4eeC8XJ9cVrY8ycdalpVjKVv+5MH8hgboy8f9+vXrALQtjIYGzvv6+gq5TJkyOmUMHX/53JljNWCrFsM8G7DFimEYhmEYRiVYsWIYhmEYhlEJdgUyZpGTkyNkeUD1sWPHAACHDh0SywICAoRszqDmpxHF7WIolpPsejp79qyQjx8/LuRLly4JWYlHJbu45GMqu/Fkd1KFChWErLhYZVer7E6yZLC0jBqDVy11U8nHQXFJygPC1WpHwdB5lCcQXLlyRcgXLlwAoD0pQ55gILt04+PjhSzvl+JWrVy5slhWp04dIdeuXVvIsptRht1/DPPswRYrhmEYhmEYlWDFimEYhmEYRiXYFcgYRI4fJLv/4uLihHz58mUA2jGI5JllLi4uhdlFs7HU3XX79m0AwMmTJ8WyU6dOCVmecSbP/pOR3TtKDC85lpfs+pJTq8juU3m5MqNMdv89LZjjslLD5ahGHbLL1MfHR8jy+fLz8wOgHQtLnk0on3N5duetW7eErMQbO3/+vFim3C8AsHXrViHL7l/ZdVivXj0hy7M3TcEuRIYpPthixTAMwzAMoxKsWDEMwzAMw6gEuwIZg+4VfQEuAe1gi0rgSDlgouwKtDRwpLWYchHJM8Hk/VJm6wHaLp1z584BAM6cOSOWKUEjAW1Xi5wKRZ7Fp7iTAP2uQHk7a3mWXD5PY19lt6B8DcuyKeSZhdeuXROycr3cuHFDLJNnE8puQXm5nLJIvj6DgoIAGA7+KrsyLQlwyzCMurDFimEYhmEYRiVYsWIYhmEYhlEJDT0nNuHnZDetwpDbQA6OKOdMk8srOQJlN1mnTp2ELAdBNOT6UuPc6NsHuV45F58cuHPv3r1CPnLkiJCV2WCBgYFimTxDS14uu/fkWWayG1Rxmco59+Q+yzJfq88WsptZPneKLM8slIOMyjMIFdczoO1+VgKVAv/OCmzcuLFY1qRJEyFXqVJFyCVKlDDaZ77GGAU1Ztoy2rDFimEYhmEYRiVYsWIYhmEYhlEJnhX4HKOYgOVAoLKrQs7/J892kt17imtLznUnBwV1cHBQrZ/morj6ZJeK7GqRZ2nJbhzZlaK495SZWIB2DkQ5WKPsdrFkFqQ+txHzbCBfk6ZyNMrXijxjVnaNyzNI5etQdgUq7nb5WpZnFvr7+wu5Vq1aQq5WrZqQy5YtC0DbJS3D1yHDFBy2WDEMwzAMw6gEK1YMwzAMwzAqwa5ARitgpuw+O3r0qJBl95m9vb2QHzx4AEDbpSYHKpTz3lmCIfdfZmamkOX8hHL/oqOjAWjn+ZODf8ruOtmtGRYWJuSaNWsC0HbdmAO7Up4PLDnP8rUsu8ZlWXYXyrkCGzRoIOTjx48DAPbt2yeWyW5BOVCpHGRUDu5bo0YNAEC5cuXEMjnIKLsIGabgsMWKYRiGYRhGJTiO1XOGPkuQHE9n5cqVQj59+rSQ79+/r7c+xVIlp3IZPny4kOWBs/LXsKnzIfczJydHyHK8rN27dwtZiacFALdv39bpU2hoqJBly5SHh4eQ5UHIilXO0Be8DF9bjDWYMylDtgQrk0zS0tLEMtkydezYMSHv2bNHyLIlS0mH88ILL4hlLVu2FHKZMmVM9omv9/8WHMdKfdhixTAMwzAMoxKsWDEMwzAMw6gED17/j2KOeVeJTSXHypFdY23bthWyPND28ePHQlbS3shuNHnwuiFXmqn+yXGz4uLihKwM4AW0XZjygHTFtSG7IatXry5kOd6PKdjtwRQW5lxb8v2j3IPyveju7i5kOZacHFtNnsShpKbav3+/zjJAezKHLMupmkylj2KY5x22WDEMwzAMw6gEK1YMwzAMwzAqwa7A/yjybCI59pM8u2/Lli0AtGcWtWnTRsiyK0B2LchuOgV5tt7Dhw+FnJqaKmRDMaGysrJ0+ie7KqKiovS2I6ebadasmZAVF6bsJjEEuzCYpxlLZs8qaZjyy/J9rNxLO3fuFMvkuFgXL14Ushzfrk6dOkKW0+8oLni5H3xPMc87bLFiGIZhGIZRCVasGIZhGIZhVIIDhD7jGDLByy642NhYIa9atUrI27ZtA6Bt2v/666+FXKVKFSFfuXJFyPPmzRPy4cOHdfrUuXNnIXfv3l3IdevW1dvXAwcOCHnDhg0AtN2NctBCOZihkp4j/z64uLgA4PQczPOFoZm2SmBRAEhOTgbwbxBdADhy5IiQ5TRW8j2vpHgCgHbt2gm5adOmALRnBcvwvfb0wwFC1YctVgzDMAzDMCrBihXDMAzDMIxK8KzA/yiyG0yejSdntW/RogUA7YCZSi4xQDvoppI7D9CecaSvDTkYp+wiUIKJAtq5/eSgn8qswODgYLFMdiE2atRIyHLQQn2wG4J5njB0vcv3cenSpbX+Atr3bsmSJYUs3/NyMN5NmzYJ+dGjRwCAkJAQsUx+PhhyM/G9yfyXYYsVwzAMwzCMSrBixTAMwzAMoxI8K/A/iry/cqC/lJQUIStmekdHR7FMmVEnrwe0g3jqq0N2N8juvxs3bghZnkG4cuVKve0oAUp79uwplgUGBsIUz9v5ZRi1kO8/eQbh5cuXhbx27Vohy7N4lSC8cmDh9u3bC1nOPSrnOOT79emBZwWqD1usGIZhGIZhVIItVs8B8r7LqW6UAe7mfLHIdciyvvg1kZGRQpZT05w+fVrIGRkZQpYHqnfs2BGA9oB12YpmqE8Mw1iHoftfvkfv3r0r5Pj4eCErsfCSkpLEMnkyzMsvvyxkORaWbL1S4Pu5eGCLlfqwxYphGIZhGEYlWLFiGIZhGIZRCY5j9Rwgx7QylOZFwZA53tB2SooM2T2wa9cuIT98+FDIlSpVErKbm5uQZVff9evXAQABAQF617O7gGHURb6nZLeQPKlFjk0lx8BSBrvLLn/lHgb+dRUCwOPHj4Vcv359ISuxswyl52KYZw22WDEMwzAMw6gEK1YMwzAMwzAqwa7A5wC1zeryzEIlps3GjRvFMjn9RevWrYXcu3dvISsuRADYvn27kJX4Vk5OTmJZiRIlhFyqVCkhs+uAYdTFnPtIvh+7desGQNvNL7v/duzYIWT5uSC7GZXZgnI6HYZ5lmGLFcMwDMMwjEqwYsUwDMMwDKMS7ApktDAULE7JYg9oZ7c/ePAgACAtLU0s69Onj5BDQ0OF7OPjo1eOjY0VspIC56+//hLLZLfhwIEDzdgLhmGKksqVKwtZTm8lu/xOnjwp5IULFwpZcSfKzwpPT0+97bDLn3kWYIsVwzAMwzCMSrBixTAMwzAMoxLsCmQMuv/k/GBHjhwR8r59+4SszBBs1KiRWNa2bVshe3t7m2xfdgsqs/4OHz4slsnBSUNCQoRcrVo1Icu5x9hdwDCFh777S77/qlatKmTZLSjfx/IzRJlZLM82btasmZDd3d2FzDOBmWcBtlgxDMMwDMOoBCtWDMMwDMMwKsGuwOcYfS7AzMxMIcvB/WRZNu936tQJAPDiiy+KZfb29hb1o0yZMkJWcoidOXNGLJPdgsuXLxfy4MGDhSy7BRmGKVoMueUqVqwo5O7duwvZz89PyCtWrAAAJCYmimWya1EeZiDnKWSYpxW2WDEMwzAMw6gEW6wYPHjwQMhyOoro6Gghu7q6CrlLly5CVixMcrwaGUNfsrK1TI5ZU69ePQDA8ePHxbIrV64IWbZk7dmzR8jywNgqVaqY3Q+GYYoGX19fIctWqJSUFADA0aNHxbK1a9cKOScnR8hNmzYVspzeSoHvc+ZpgC1WDMMwDMMwKsGKFcMwDMMwjEqwK/A5wFCcKsUEL7vddu3aJWTZvdekSRMht27dWsjKQPWCmOBlk35wcDAAbXdedna2kGWXZFxcnJBtbW2FrLgWPTw8xDKOf8MwRY98r8n3oOwWbN++vc769evXC/nQoUNClge1y88k5bnA9znzNMAWK4ZhGIZhGJVgxYphGIZhGEYl2BX4HKO4/Xbu3CmWPXnyRMgdO3YUcufOnYUsx7FSA2dnZyGXL18eAODi4iKWyTFvWrRoIWR51qLsLlDcDPLMIzm1DrsLGKboMXSveXl5AQBeeOEFsUx2+ckzBO/cuSNk2dWvxLGTnxsMU1ywxYphGIZhGEYlWLFiGIZhGIZRCXYF/keR3V1paWlCPnLkiJD37t0LAEhOThbL5NQ0sivN0gCgpjA0W0gx5cuzhuQ0O/Lsvzp16gj57t27QlaCnMpBQ1u1aiVkJycnvW2zW5Bhig/5ng8NDRXyzZs3hXzq1Ckhr1y5UshK0OLGjRuLZfKzgu9zpihhixXDMAzDMIxKsGLFMAzDMAyjEuwKfMYxx8R94cIFIW/evFnISjb5GjVqiGXy7D83Nze99RWmKV3Zn6CgILHs8ePHQr527ZqQ27RpI+T09HQhz5kzBwAQExMjlsmzAmvWrClk2S3IMEzRozxPZNd9uXLlhCwPT5Dde5s2bRKyvqDAlStXFrLaM5kZxhhssWIYhmEYhlEJVqwYhmEYhmFUgu2j/yFkt+DZs2eFrMz+A4DTp08LWcnRJZvaDQXYK6qZNMo+VK1aVSy7cuWKkOVchu3atROyPBvo0qVLALRnQK5atUrIslswICBAp22AZw4xzNOCnDc0KytLyI8ePRLymTNndNa//vrrQi5ZsmRhdpFhtGCLFcMwDMMwjEqwYsUwDMMwDKMS7Ap8RpHdVgoPHjwQsuwyO3nypJDlGYANGjQAoD0D72mhbNmyQvbx8RGynMtQzhsmBwtVgoHKx+P8+fNC3rFjh5Bbtmwp5IoVKwpZOb7sEmSYosHQvSY/6ypVqiRkOZfpsmXLAPzrEgS0h0DIQwWU3ITmts8wlsIWK4ZhGIZhGJVgi9UzjjyAU073cPjwYb3l5ThV1atX11lf3F9tytepHENLTnUhf21evnxZyPIAdyVO1QsvvCCWyXGudu/eLWRXV1ch+/v7C9ne3l6rP0DxHxuGeR6R7zs5tVb9+vWFrFikZWv0li1bhOzs7Czk1q1bF0o/GUaBLVYMwzAMwzAqwYoVwzAMwzCMSrAr8Bnn3LlzQv7nn3+E7ODgIOSGDRsKuXbt2kI2lLKmqDHlYpPjTskD7RMSEoR87NgxISsD9Js0aSKWyS69+fPnC/nQoUNClo9Zp06dAGi7HhiGeTpR3P7ys+Tvv/8W8v79+4UsP0/k4RBy2ht2+zMFgS1WDMMwDMMwKsGKFcMwDMMwjEqwK/Apx9CstOvXrwPQTtty9epVIcvpXlq0aCFkfe6/p93sXapUKSHLcWyioqKErKSxAf6dASjP+AsODhayPFswJiZGyHv27BFy+fLlAfw7wxAAnJyc9PbvaT9+DPNfwdC9psS9q1evnlh29OhRId+8eVPI8sxBeZaxPPuYYQoCW6wYhmEYhmFUghUrhmEYhmEYlWBX4DNERkaGkJUgl3FxcWKZnAZGdv9Vq1ZNyM+i26pEiRJClmcFHjx4UMj37t0TshI0VXYFyi7QXr16CTk1NVXIchqgyMhIANquWDkgIcMwTx9ykF/5PldS3gDAgQMHhKyk9QK0nzOyrPAsPjuZ4oEtVgzDMAzDMCrBihXDMAzDMIxKsCvwKUR2P2VnZwtZntmiuMFycnLEst69ewu5QoUKhdnFIkXO86XM1gO0Z/TIrsALFy7obFe6dGkhu7i4CFl2mcrIMwQVPD09hSy7HGxtbYXM7gKGKT5k939ISIiQT58+LeTk5GQhy3lD5eeF7CJkGEthixXDMAzDMIxKsGLFMAzDMAyjEuwKfEqQ3X8ycj48eRZcSkoKAO0Zf40bNxayHFTzWUfO4Se7/3x8fIQsuwLPnj0LAPDz8xPLZFegTOXKlYUsu1UV18GVK1fEMtlt0L59eyHLszENBXRlGKbwUO41+f4z5NpTZg0DQGxsrJDLlSsnZCUwsJwrlO9txlzYYsUwDMMwDKMSbLF6ypEHXW7fvl3IgYGBAIAmTZqIZYasVM/i15XcZ/lLUY4vI1usLl68KGRl8Lo8eNUQ9vb2Qq5YsaKQe/bsCQDYsmWLWLZ582Yhy9YwuU8lS5bU2+9n8RwwzH8FOaVVVlaWkA8dOiRk+Vl7/PhxAEDt2rXFMnnSC8MYgy1WDMMwDMMwKsGKFcMwDMMwjEqwK7AYMRSv6vz580I+ceKEkNPS0oSsuLlq1apVmF18qpFjWsmDzJXjJw9oz83NFbJ83GVZNvUr6WsePHgglsnHPyIiQsiya6FTp06W7QTDMKphyOVuZ/fvq05+boSFhQlZHk6gDLuQ49WxK5AxF7ZYMQzDMAzDqAQrVgzDMAzDMCrBrsCnhNTUVCHLM1XkOFbKTEAAqF69OgDA29tbLHseZp7J+yib9AMCAoSsuE/v3r0rliUlJQnZw8NDyHI6Ghlldl+jRo3EsidPnghZni14+PBhIctxseTzpcw+fB7OEcM8zbi7uwu5devWQpbd/vri2MnPDTlGlgzf3wzAFiuGYRiGYRjVYMWKYRiGYRhGJdgVWMTIs9DkmWryDDYlOB0A2Nj8q/vKZmtfX9/C6uIzg5yCQnYFKjMsZTfqjRs3hCwHUpVdgfqCksptdOjQQcjXrl0TshKQFACWL18u5KFDhwpZdlsyDFO0yPe2nCJLDgB65swZIV++fBkAcOzYMbFMDv5bp06dwugm8x+BLVYMwzAMwzAqwYoVwzAMwzCMSrArsIiQXYAKiYmJQpbN0A8fPhRyjRo1hCxnaHdzc1O5h08vhmbayMe0dOnSQlZm78hZ7GXXnXxMTbUptyHPCnrxxReFLOdwPHr0qJB3794t5BdeeAGAtstSX3sMwxQP8nNBGUYQHx8vlnl6egqZXYGMMdhixTAMwzAMoxKsWDEMwzAMw6gEuwKLEdk9dfLkSSGXKFFCyBUrVhSyj4+PTh3sQspDnrFTqVIlAMDNmzfFsqtXrwo5IyNDyE5OTkbr1TdTENB2BTx+/FjIckDB2NhYISuzD2V3gqurq966+ZwyTNFToUIFITds2BAAcPDgQbHs0qVLQpbvefnZw/cxA7DFimEYhmEYRjXYYlWI6Pt6ycnJEcvkL6Dz588LuX79+kKuWrVqYXbxP4P81Vi3bl0AwO3bt8Uy2WIlD2qXY1qZ+to0ZL2qVauW3j4tWbJEyPv27QMAlClTRiyTJyPI/WAYpvAwdB/LzxDFeuXv7y+WySlvlPsZAJo2bSpkOV0O8/zCFiuGYRiGYRiVYMWKYRiGYRhGJdgVWERkZWUB0E6tIrun0tPThSynWahcuXIR9O7ZRx4IHhwcDACIjIwUy2S36927d4Xs5eUlZBcXF6vals3/NWvWFHJoaKiQT5w4AQDYsmWLWCYPnG/cuLGQ7ez035Y8GJZh1MWQW1C5p+VJKnJMq0OHDglZed7I2zHPN2yxYhiGYRiGUQlWrBiGYRiGYVSCXYFFhBI7KS4uTiy7d++ekOUYVbL7T3ZPsStIG/l4yO6zsmXLAtA2yyuuWAC4fv26kP38/IQsH2vFLWDomJtyIQBAu3bthJybmwsACA8PF8vkOFdyuhz5/BtyCzIMU3g4ODgA+HeGMfBvmhtA+zkuzz6WU1YpzwWObfX8wRYrhmEYhmEYlWDFimEYhmEYRiXYz1BEKLP+oqKixDLZRNyyZUshWzs7jdFGNsvL6YMuXLgg5MDAQCHLbkFrkc9p+fLlhRwWFgZAOxWG7E5IS0sT8pgxY4SsL4ApuxMYpnBRXPBKeiwACAoKEvK5c+eEfPr0aSHLLn0O7vz8whYrhmEYhmEYlWDFimEYhmEYRiXYFagysitIJikpCYC2S6pGjRpCDgkJEbIcOJKxHtl0LwdmlU338jmoV6+eVe0Ycs3J10LFihUBAK1btxbLEhMThXzlyhUh79y5U8hyHjIlzyDPMmIY9ZHvJRubPJuDPCxDmW0MAJ6enkKWn+lybkF2BT6/sMWKYRiGYRhGJVixYhiGYRiGUQl2BaqAIfff/fv3hawEpZTNzXJQUHkGma2trdpdfC6pUKGCkOWgoDt27BDyrVu3jNZRELebXF5x7xoKOLh7924hb9y4UcglSpQQcvv27XXqZbcgwxQNsvtPfl7Ls4xNPU+Y5wO2WDEMwzAMw6gEK1YMwzAMwzAqwa7AQuTixYtCPnnyJABtE7LsqjLk/mP3jvXIpnt5to6jo6OQ9blrAcDX1xcAYG9vX2j9a968uZCVWUgAsHz5ciHv2bNHp0ybNm0KrU8Mw+jH29tbyPJsYtkVeOfOHSErOQS9vLzEMjn3Jz/b/7uwxYphGIZhGEYl2GJViFy9elXIly5dAgAEBweLZbIVhSkY+r7+ZCuQIeuVnGJGsSoC/6amUMtipa9/bm5uQq5Tp46QlWsFAOLj44WsDHCXrZ5yrC5DfeUvY4axDOWekSeHlC5dWshyqhs57uCDBw+ErMS3cnV1FctKliypfmeZpw62WDEMwzAMw6gEK1YMwzAMwzAqwa7AQuTu3btCVgZJywPW5ThWTOEim+CrV68u5PPnzwv52LFjQm7UqBEAbTN+YSJfC7169RLyw4cPhay4KuWUN3KKnGrVqhViDxnm+UN2o8sDz5XJLQDg7u4uZDlN1eXLlwEAAQEBYhm7Ap8P2GLFMAzDMAyjEqxYMQzDMAzDqAS7Aq1Eni2SkZEh5Bs3bgg5NTVVyMosMz8/P7FMnhXGFC7yzJ3KlSsLWXYFyrPx0tPTi6Zj/4/sZpDdgu3atROysg/79+8XyxwcHISsXGOAduwcTnvDMOoi36+BgYFC1vcuSE5OFstkFyLz34UtVgzDMAzDMCrBihXDMAzDMIxKsCtQBWS30dmzZ/UuL1OmDABtF43snpJhd436yC4zeWamPEtHzkyvzO6RTfey+V/G2vMlbye76+T0RiEhIULOyckBAJw5c0YsO336tJBlV2CrVq2ELM9aYrcgw6iLPLTg3r17QlZmBcozew3dc3xf/rdgixXDMAzDMIxKsGLFMAzDMAyjEuwKVAHZ5Xfu3DkhP3nyRMiK+8lQgDg2/xYuch49xS0LaM/SlGd0KrMFZfea7EJUG0Pn39HRUcg1atQAoB1AdNOmTUJeu3atkOW+1qxZU8iyS1RxP/C1xzCWIbvr5byB8vM/KioKgHbQUPld4ezsXJhdZIoRtlgxDMMwDMOoBCtWDMMwDMMwKsGuQBXIzMwUsjyzzMbmX71VmQ1oaGYZoz6yi0s+F6VKlRKyPOuvRIkSQlZmd5YrV04sK0xXoDko/Q4NDRXL7ty5I+SDBw8KOTw8XMiySzosLKwwu1hsyLOqrIVdoowxDM3ilYcLyM8WJUB0UlKSWPb48WMhy7PC1bh+macHtlgxDMMwDMOoBJtPVCAtLU3IchobeZC0t7c3AG3LCVP8yOljlHME/DuQ/fbt20XeJxl9X8nyF3LTpk2FLFtOd+/eLWQ5dVJAQICQFWudPBD3abfaGPqyz87OFrJyHOR9kfdRthrLyzmWEGMuhq5D+V5zdXUFADx69Egsk+Ncyc8e5r8Fv+UZhmEYhmFUghUrhmEYhmEYlWBXoBnoM/vKGctl867s6pNdS2XLlgWg7Xpgih/ZHC8PTr9w4QIA7YGnspvXxcVFyEXlQlLqlturWrWqkOWYVzdv3hSyHFtn5cqVQh44cCAA7TRLTyPmDOyVz9P169cB/JsCCPjXLQNo35eenp5C5okljLkYGsguD16vUqUKAO2hIvLQguDg4MLsIlOMsMWKYRiGYRhGJVixYhiGYRiGUQm2fVvJ/fv3hSzHEpKR3QzKDCx2NzxdyG6hoKAgISsuXTkdhexek92GsguuKDDkhpDT87Rv317IERERQj5+/LiQAwMDAQBNmjQRy+SZrIbaLCzMcfnJ911sbKyQ4+PjhaycJ9ntLrvo5Zlbbdq0EXKtWrWELLsOFXimIGMKd3d3IStueiUmHqD9DMnNzRUyzxb/b8Fnk2EYhmEYRiVYsWIYhmEYhlEJ9ktZyYMHD4Qsu4tkd4HscihZsqROHexaKDoMuc/kcyS70hRX0MOHD8WyS5cuCVl2mRW1K9AQ9vb2Qm7WrJmQZfeZnHJp3759ALRdZh07dtRbX1HMfDRUr3x/yS6/rVu3Cll2sShuFTlliHy/yudURj4O9erV01nGMKaQZwUqQwtkl3VCQoKQZVcg89+CLVYMwzAMwzAqwYoVwzAMwzCMSrAr0ErkLOWya0F2mciuFObpwRy3oDJbUA7+evnyZSHXr1+/MLtoNob2RZbDwsKELLstFy9eDEA7r6Ds4pRnyTk7O6vUY12UvsqukZSUFCFv375drywHae3WrZuQlZl+8r7KLsRt27YJ+cCBA0KWAzlWq1YNgLYLn3MJMqaQr0kl+LAcWFhGzm/p4OBQuB1jihS2WDEMwzAMw6gEK1YMwzAMwzAqwa5AK0lPTxfykydPhCwHFnxaZosx5iHPIlPyfMlmfCUHHaDtCpbzDRYnhtyCchDUkJAQIZ86dQqA9mzHzZs3C1m+lmvUqKG3bn1tW4ucf3PXrl1CPnTokJDle00OgtqyZUshK8F4ZeT9lmdJHjx4UMhXr14VsuIW1Debl2EMIbv0lGtHnlmamZkp5OLOPcoUHmyxYhiGYRiGUQm2WFlJRkaGkOVBtx4eHkKWv0KYpx95soEycPvatWtimZyaQh7UXr58eSEbslIW9ZenOdYrZcD3+vXrxbI9e/YIuWLFikKWLTf+/v566y4ot2/fFrLcp0ePHgm5cePGQu7cubOQS5cuLWRl3+W+yamk5PMl75d8zJT7m9OOMNaiWK9KlCghlskWVzm2mjxxhj0dzz78pGAYhmEYhlEJVqwYhmEYhmFUgl2BBtDn4sjKyhKybNKVXQienp5CZlfgs4U88FTJTC8Pbk5KShKynJpCdpk9LQPZDSEPpFX6Lae/kQfUym5BefnQoUOFrAz4N2fArSG3oeJWlV2tN27cELIcT6tdu3ZClgfXm0K+X2U3rjwJRa5PcR2q6epkni+Ue01OcyMjT6J4GlNkMdbDFiuGYRiGYRiVYMWKYRiGYRhGJdgVaAaKa0N2G8jpL2TXB88KfLYwNHtOMcd7eXmJZbKrSHYF3rlzR8hPoyvQ0D4qs9zkGFVynJ3ly5cLWYl5BQB79+4VcqNGjQAA7u7uVvdPmQ0ox9OSqVChgpCrV68uZHmmn4w+950cd+z8+fNClmeCyudOSeHDrkDGWhRXoHxvyO8QeWiBvNyQ65B5dmCLFcMwDMMwjEqwYsUwDMMwDKMS7Ao0g5ycHADa5lp5lpQcRFAOVKi4E5hnF9k9FBQUJORbt24JWU51U7t27aLpmJXom7EnByds0qSJkOX9kmdHrlmzRmfb0NBQq/ukzNKTXaqy+0Q+B4ZmAhpydyrI5+vYsWNClmfxBgcHC1kO6qivDYZRMHTtKa5q2bUnu/9kWZ61yjz7sMWKYRiGYRhGJVixYhiGYRiGUQl2BZqB4uqTzbWyK1BxFQLaZl99rkB2JzxblCtXTshyoMrt27cL+fLly0I25ZJ62pFnybVt21bI8r5s2rRJyDt37tSpw1K3oHJfyTNt5Rl/5gRM1Hes5Vxshw8fFvKBAweE/NJLLwm5YcOGQpYDqTKMNSjXkOxWlq9rOUConHuWefZhixXDMAzDMIxKsGLFMAzDMAyjEuwKNAPFvSMHT5Rl2f0jz1qSc88xTz/63HhyDi8lfyAAhIeHC1mecSa7n+SZbUowzqfRFWyoT/K+y26ymzdvCvnChQsAgN27d4tl/v7+Qi5btqyQlWOQH8VVUrJkSbHsypUrQpaDe5qDcj5kN+XRo0eFLAd9DQkJEXLlypWF/Cy6cZmnC+V6l4eEyC7mlJQUIct5aJlnH7ZYMQzD/F97dx4l5XXeefyxEbsAsTRLs9PsCMQi9lUIgUCShbFi2SdjHdsTL3EmYyfjeOycOcdxZs6cE/0xnmSkyXGO41ixjBUiYS0WQkiAQOxCIPZ931exCVog0PyhuU//XvG+6mq43V1d9f3845+vqquqq94q3r7P+9wLAJFwYgUAABAJpcAchFKJLgSqnYBKy390FtV9Oo2vHYJatrp48aJn7RDUfe2yFrasK3Rx1Mcff9zzU089ZWZmmzZt8rHFixd7njRpkmctEaowXlZW5mPLly/3fODAAc+6R2NpaannsMioWUXX3zPPPONj2o31xBNPeNYORn2Pwmc+H0u3qFv03wQ9DrUUmPXvCeomZqwAAAAiYcYqB+Gv1o8++sjH9GJD/atWZziyLtZF/gvvqV7ErDMaOrty/Phxzxs2bPCsMyp1fcZK/9Ju376956lTp5qZ2cqVK31MZ5v0An7d7klfjzBjNWTIEB/bunWr53CBvJnZz372M8+6HY2uAxTWmNP7Gzx4sOfx48d71gv0geqgM1b6b4Kui6j/tqDu419+AACASDixAgAAiIRSYA7SSoGatRSYtXYVF8HWfbrdS58+fTyfP3/es17EPW7cOM+6nlNdkbU9j74Oo0aNMrPk52HXrl2e161b51kv+B8+fLjnJk2amFlyHakpU6Z4Xrp0qectW7Z41i1BdNubUKp88MEHfWzYsGGemzdvbmn4jKI66OdFS4Favubi9cLCjBUAAEAknFgBAABEQikwB6FEoNO1WvrQ9a1Yu6pw6XurZSvtYNNSla5vVddllclCd59u96PbxKxatcrziRMnPGtptEePHmZWsbWNWXL9q0GDBnk+d+6cZ/3cabklPKdWrVr5WKNGjSr9XYDqQCmw+DBjBQAAEAknVgAAAJFQCsxBZaXArO4pFBadxtdSVtu2bT3r+3/kyBHPvXr1MrNkZ5zetq6Xp7SscfLkSc+bN2/2rKU7ff1mzZplZmb9+/f3Me3y09uWlJSk3p+WaSsrx9f11xp1C6XA4sOMFQAAQCScWAEAAERCKTAHoXSgpQfNWlqgzFC4dBq/RYsWnrVUpZ1o+/fv9xz2u9P96wqJdkAePHjQs5ZDL1y44Pn555/3HBb0DHsGmmWXTHXPwsrwWUQ+0NK0fofofrP67wnqPmasAAAAIuHECgAAIBJKgcBnyOr41Ol97QosLS31fODAAc/t2rUzM7OhQ4dWy/Osbdr5lEuJQ7sFX3nlFTNL7uE3c+ZMz7r/JuU91DV0ihcfZqwAAAAiYcYqB+EvDr3wUDPrWBU3vWC9a9eunlevXu356NGjZpZcu0bXaqrrWrdu7XnixIme9bU5fvy4Z123J3yW1qxZ42PaEKBb5OislmImC/lKj3U9TrPWt0Ldx7sJAAAQCSdWAAAAkVAKzEEo7+kFy7qeTtZULwpLVslXy1PdunXzrKWts2fPJv7XLHnRux5bdfEYatOmjedHHnnE84QJEzxfunTJs657tW7dOjNLXuy/aNEiz/pajxs3LvXxC2l7IBSWq1evetZmDr0UoLJtmFC3MGMFAAAQCSdWAAAAkVAKzEFaKVCzTu+yS3nxySoF6ngog+3Zs8fHGjdu7Pmuu+6qvidYjULZTcsa2tEX1u/S25olPzM9e/Y0M7N3333Xx+bOnes5ayuhvn37etYOKyCf6Lpu+u8DpcDCxYwVAABAJJxYAQAAREIpMAdppUAtPej0rnaApN0HHUuFR7dc0e44XTTz8OHDZma2a9cuH9OyYV0tBQZartPXIxdlZWVmliwPbtu2zfOJEyc8L1iwwLOWWnVh1rRFevncobZkbfFEKbBwMWMFAAAQCSdWAAAAkVAKzEEoLeiioFoK1P3fysvLPbOHYOHKem+bNm3quX379p5DOWvv3r0+dv78ec+dOnWqludZU26n1BZevy5duvjYzJkzPb/wwgueV65c6bl3796etcNSF14FaltWKbBRo0aeKQUWFmasAAAAIuHECgAAIBJKgTlIKwVmTd1qWfCjjz7yzAKGxUG740K3m5nZ8ePHzSy5H96ZM2c8a4lAS4vFtAeedkn169fPs+43qB24r732mmctwT/22GNmVryvI/KLdopnLRCq/7ag7mPGCgAAIBJOk3OQNmOla/XoX8OXL1/2rH+pMGNVHPRY0Bmrffv2mZnZhg0bfCzMYpmZnTt3zrOuaVUMTQ9hBkl/V/18DRkyxLNeCDxnzhzP69ev9xwugh80aJCP6cXtQE0Is9BXrlzxMZ2xuvPOOz3z70NhYcYKAAAgEk6sAAAAIqEUmINwQbJebKilBb1gWdcm0gtqw/pGXERbeLLWtOrYsaPn0tJSM0s2Nxw9etSzbtvSokWLanme+S7r86BbA40dO9ZzKK+aJUusoUTYqlUrH+vVq1e05wnkIpT9Ll265GNayg7fCWbJf1tQ9zFjBQAAEAknVgAAAJFQCsxBKPU1adLEx3TrEl3T6uzZs561Q1DLGSg+LVu2NLPkdivvv/++50OHDnnWrVqQ1KxZM88zZsxIvc2KFSvMzGzBggU+piWY/v37p/4cpXnciqzO3bCOoXb8aqe4/pug29ug7mPGCgAAIBJOrAAAACKhFJiDUArUTkAtBepUcFYpEMUtLPrZp08fHzt8+LDn/fv3e9ayFbveZ3ddduvWzfOIESM8hw7LTZs2+ZguwNi+fXvPoUT76fumLIjbFboCs0qBbdq08cwCtoWFGSsAAIBIOLECAACIhFJghrTyg+5fph2CukBoZaVAvd+sEgcKT+gAGjp0qI/t2bMnNeuCgtotFI6RYi5TZX1mBgwY4DmU/X7xi1/42Nq1az1rCWbChAmp48DtCqVAXTRaFwjWBWzpCiwszFgBAABEwokVAABAJJQCb5GWBbO6Aq9cuZLz/VEWLGxh/z/tCtROtVOnTnnWfQPvvPNOz5QLsmlXVY8ePczMbOrUqT62atUqz/Pnz/ccujXNzEaPHp16f0Exl2BRdaED8OLFiz6ml41oRyp7BRYWZqwAAAAi4cQKAAAgEkqBt0hLBTqNq/u/lZeX1+hzQn7R0lEoAbRr187HdK8wXURQFwstKSnxTCkwKat8HvYTnDhxoo9pWf7FF1/0rN2CWnYdMmSImSXLtUBldAHQUAK8ceOGj2UtMo3CwowVAABAJMxY3aLwV7FZ8gLY48ePew67mysuTC9u+v6XlZV5vnDhgufNmzd77tq1q+e2bdvedB9cUP2JtNdBLw4eNWqUZ90yaNGiRZ71IuNOnTqZWXL7G73wmNcdaXTtwpMnT5pZcs1DXSvtjjvS//nl2Kr7mLECAACIhBMrAACASCgF3iLdjiCUaMzMtm/f7lnLO2GbkqytcHKZ/q3sNlUtEVVWloxxH7d63zFKptX5/GPo2bOn5yNHjnjWUuDIkSM/8z6qWjYo1lJ0586dPY8dO9bzgQMHPB89etTzK6+8YmZm06ZN87Fu3bp5phyLNPqdv2/fPjNLXjZSWlrqWb//UVh4ZwEAACLhxAoAACASSoG3SNcg0rWJ1OnTpz2HbkHt8splKljLDGklh1xKOzHKbllrBoXxqpaYqlI+udX7zvcymZan9BhauHChZ93qJsh6L3S9HFWs5T99nbQDS7sxJ02a5Fk7BJcsWWJmya5ALfnrekSUBRHoOoa7du0ys+T6aB07dvRMKbBw8c4CAABEwokVAABAJJQCc5A2va/Tu7rom5ZjtIxz7NgxM0tOBd/Odhmh/JBLmUdvU9nt9fnrbXXaOus2abJKmZU9p1x+rjK5/N563/p7xZimr6wspOXkDh06eNatLk6cOOE5bHUTFq80S5a4sp5z1u9YlWOoUGnXpb424XVfunSpj+l2JbNmzfJcr1696nyKyENZn5nz5897DqVAXZxWP+coXMxYAQAARMKJFQAAQCSUAiPQRT+1jJO2b1RW51ZVxSzfxFictKpudXHSWy0F1obKujgbNGjgWTvOtNQXjhszsy1btphZspyQtd8YkrKOJ30P+vXr53nixIlmVtEdaGa2cuVKz927d/fcv39/z/pdUNljo27J6v7U8bRFoXUvWS3/o3AxYwUAABAJJ1YAAACRUEeIQMsJuqCglnHCYqHXrl2r0n3H3osv7f6yprgpYdQc3XtS9xDcuXOn561bt5pZRZnKzKxhw4a3/Ji1XSrNNyUlJZ6nTp1qZsk9HDdu3OhZF3HV7t577rmnOp8i8oR+N+qioNoVGBaR1fJfixYtPPP5K1zMWAEAAETCjFUEur1F7969PV+8eNFzmLHSv2j0osZctsVI276kKmtUZcnl8di24/ZUtvWPNj306NHD87Zt2zwfPXrUzMzKy8t9TNdTQ9VlXYQcZhYeeughH2vevLnn119/3bO+dzojEbav4rNTeK5fv+553759nnX2qrS01MyS6xzqvxUoXMxYAQAARMKJFQAAQCSUAiPQ6d2+fft6Dhcbm5kdOnTIzMzOnDnjY7p2kd5HVcuCabeNvd5T7HWlKiuJxLiws6pll9gXk1blPdL3v0uXLp6bNWvmOZQZQknQLFkKbNSoUerjZD2nmngP6qqwPVCfPn18TEuwWqINW5eYJS9qf/TRR80sWQqiLFh49P0Pl3yYVWxf1rJlSx+jUag4MGMFAAAQCSdWAAAAkVAKjEDXEtKOLi3TnDt3zszMTpw44WO6dUlVu0XClHLWdPKtdgvmMlUdo8xY2dY+1dntWJXHuZ0SaNprmXV/egyFbiKz5LpooaN0+/btPqadpVpCrEopMEaZtxBUtgVRWVmZ58cee8zzc88951lLgaGMOGjQIB/TzkLKgnWXrke4f/9+z7qlTdgiScv5KA7MWAEAAETCiRUAAEAklAJvUS5lN90iI5RsDhw44GNautEOwXyRVQqKUSIKXVdmlZdgqipmR2SsclhlZUZ9PbS8p8fQnj17zCzZhaTb3+jxVNnrm/WckE1L+1re021vVq5c6fmFF14ws2Q34ZQpU1Lvm7JgftL35aOPPvKsl3TooqDamdu9e3czSy4gi+LAjBUAAEAknFgBAABEQimwGmlpJkwL675SYczMbMCAAbf9eDE66XK579iq677zsdSVy3OqV6+e5w4dOnhu1aqVmZkdO3bMx3RBwup8TsUqq+Sv5Z1Ro0Z51j3kXn75ZTMzW7t2rY/p+9mrVy/PDRo0iPSMEUPaZyJ0dpuZ7d2717OWerXTO3z/sz9g8WHGCgAAIBJOrAAAACKhFFiNdEHB0Dnyzjvv+Jh2CGrHyR13pL8taQt2Vmf5D7Uv7DdmZta1a1czq9h30ixZCrx8+bJn7U7KpUMQlct67bT8M2HCBM/hfdIuzjlz5nj+1re+lXofyE8nT570rHtF6vduu3btbsp0fBYfZqwAAAAiYcYqgqwLXFu3bu05XMiot9W1UA4fPuxZZynq16+f+jgoDjqTEZodFi1a5GN6IbvmrDWtUL103bHp06ebWXL7k61bt3p+8803PU+cONGzNrUoPv+16+zZs54PHjzoWded0y2oqCAUL75xAQAAIuHECgAAIBJKgZFVVhbUEs2lS5c8b9iw4abbmiVLgSrcN9PNhSGrzKPbqIQyQ8OGDX3szJkznrU8UVpa6jnrGEIc+t5p40lYm+748eM+ptufaCOLrnWkF0A3adLEc/isUxKsHvpdeuPGDTMz+/DDD30sa/24cePGedbvdxQvZqwAAAAi4cQKAAAgEkqBNSRM9Y8ePdrHVqxY4fntt9/2PGLECM/NmjXzTNmvuIWyoJb5dO2q/fv3ex42bJhnttSoXfqZ19Lu008/7Vm/C/RSAN0uR38W1SusK7hnzx4f0+3ItETYt29fz7pNUdpagygOzFgBAABEwokVAABAJJQCa0jo5Bo4cKCP7dixw/OmTZs86/SzLj6XVtKhQ6h4hFJQ6DYzM1u3bp1nLQVevHjRc/Pmzav/ycHM0ruCtbOvd+/enu+//37P7733nud58+Z51s//oEGDzMysQYMGlT42bs/Vq1fNLPm+aAdujx49PHfo0MFzvXr1PIf3g/el+DBjBQAAEAknVgAAAJFQCqwhYZHGzp07+5guJrdr1y7PW7Zs8dyyZUvPWgJC8QklJS0nb9u2zbPuN6n7mumCk7qAJSWK6pXWFdaiRQvP06ZN8/zBBx94Xrx4sWddRLRRo0ZmlvweyJeOs9jPo6aOzaznfe7cOTNLXqIRFg01Mxs5cqRn/Y4GzJixAgAAiIYTKwAAgEgoBVajtA4h7ejp2bOnZ93nbfPmzZ51sUBKgcUtlIK0s0wXkNWuJd3XrFOnTp61bMHeczVDX9/Pf77ib9mw96OZ2YQJEzxfv37d87JlyzyHcqFeTqClRS1r1XYpLeb9xv5dsp6z7t166NAhM0t+L999992ex48f75muW3waM1YAAACRcGIFAAAQCaXAWqRdgVrm006vvXv3ej558qTnUCJMW5AOhaOycrJ2/GlJ4sCBA571OKODKT/pZQFhnzqz5KKvIesCopMnT/asx0JsWj7T7rhr166Zmdnp06d97NSpU6m31f31ws+ZVRzPWhrt2rVr6mNX53ecvtarV682s+QCrWVlZZ61BKv4DoYZM1YAAADRMGNVQ9LWtCkpKfGsO6TrrILOUq1fv97ziBEjbrotio9eyNy9e3fPOtOp22/ocYaalzWjERoTzJIXSd93332elyxZYmZm8+fP9zGdpdJZFL2/XB7/VoXZNd2Ga82aNZ51a6WwTcynhbXV+vfv72M6K6sNPDoe+3fZunWr57CVzbBhw3ysX79+UR8PhYsZKwAAgEg4sQIAAIiEUmANy1rTRsuCYRd7M7ONGzd61q0uunXrZmaUAotdOA7MzHr16uX5lVde8RzW5EHdoNsOaSkwrG/10ksv+dibb77pWS96nzp1anU+RRe+wy5cuOBj27dv96zbc2lJT0vS4fjULZn0mP3CF77guU+fPrf0PPUSDC1J7ty507M2DZWXl5uZ2ZAhQ3xMP1/AZ2HGCgAAIBJOrAAAACKhFJgnmjZt6nnUqFGedZsS3ek+TFvr9HqbNm1S75u1VQqXdoXp2j+6ZpB2lmrJ5s477zSzZEmaY6V2pK1XZpb8XghlqbNnz/rYihUrPC9fvtyzloi1W7R+/fo3PV5V6fMLXXq6hpp+D+naVFrGGzdunOfQjaddz1ri1HJcVimwKtsznT9/3vNbb73lWV/XsK6gvo5NmjTxzOcEn4UZKwAAgEg4sQIAAIiEUmAt0ulk7QTSheh0a5JNmzZ53rBhg5klt1yYOHGi5+radR61J638oOWJDh06eNZuUS197Nq1y3NYkLFx48ZRnyduT1ZZMGxN9Oijj/pY2pY3ZmYLFizwPH36dM+6LUuM5xSylv/0+0uPSV1sc+zYsTfdRrfC0c7CDz74IOfnmfW9px2TBw8e9Kyl1E6dOnmeMmWKmZm1atUq58cGAmasAAAAIuHECgAAIBJKgXlOp9XD9LRZRddMw4YNfUyn2ps1a+a5pnaHR+3SzixdzPD999/3rJ1XoeOJUmD+SivB6Z6AWhZctGiR57ffftuzHhdhD8GOHTtW+nhVce7cOc9HjhzxfOPGjdTbaDkudAWGjkUzsxkzZnjOpXyZther0n0Aly1b5rlevXqe9bt28ODBZpa95yLwWZixAgAAiIQTKwAAgEgoBeaJrK6b0tJSzyNHjvS8atUqM0t2Da5Zs8bz8OHDPWspAIVLS3paCly9erVn3Q/twQcfrJknhqi0fDVw4EDPFy9e9Lxnzx7Put9oKG1pqS0sFGuWfdlA1njIWubTff60FHjp0iXPO3bsuOl5a3lSL2sI3ZCfJa0EeOXKFc/r1q3zrN3VuuDo3Xff7TmtPM5lFMgVM1YAAACRMGOVh/QvI72gU7csCTNSus3Niy++6LmkpMTzoEGDquNpIs/osaIX/L733nued+/e7VlnOJD/0mZM9D3X2Stdt+m5557zHC5w79u3r4/17NnTs66LlsvzuHz5spkl10rT2St9Hjt37vSsx16YiddZ9qFDh3rW37GyWSNd80ovWNdZO33sCRMmeM7aLgeoKmasAAAAIuHECgAAIBJKgXVI2EnezGzy5MlmZlZeXu5j8+bN86zr2GRd1BxwUWZh0G2RtOmhXbt2nvfu3es5ND7of8/awoNjJP/pezdkyBDP2uASysJaHtS1sLRBJouW98KaVWfOnPGx1q1be9btdPR7SLesCdvv6DY8etlDjx49Uu8j7Zg8evSo5xdeeMFzKFmamY0ePdpz7969Pac1+XDc41YwYwUAABAJJ1YAAACRUArMc1lT0WFtF53y37Jli+fNmzd71unz9u3bew7b3rDlTWHQ9Y20HNOhQwfPutVR6BDUYyKrFIj8lLXWlL6P48eP93zt2jUzM1u4cKGPaWdxmzZtPHfv3j31vtNKgeF+P/1zkyZN8qwdh9qJOHfuXDNLbre0b98+z3p86neZPqfjx4/fdB9abtR1scJlFGbJ31fxPYjbwYwVAABAJJxYAQAAREIpsI7TRe2+/OUve/7Vr37lefny5Z5124b+/fubWXJLC9QtWaUgXVSxbdu2nrVEGMotumXI4MGDq+NpogZkla+0EzjcJpTwzMw2bNjg+erVq56/+93vetYy3vXr1z2fOHHCzMwaNmzoY507d/asW9oovY9wrKZtlZOr8B23ZMkSH+vUqZPncePGec5aMJnyH2JhxgoAACASTqwAAAAioRRYx911112etcw3YsQIz7qb+yuvvOI5dJFpx0zaLvFmTJPXZdr5pOWRsFjkqVOnfEw7vnTBUTpHC0Mo+z7yyCM+9vvf/96zdtItXrzYs35H6KLEYQ8+7TYNlxiYJffu067lV1991XMoS+r3ly7cqeVrPT618zl0Nl65csXHvvSlL3nWfRSB6saMFQAAQCScWAEAAERCKbCOCuUYLdG0bNnS88SJEz1rB85bb73lOZSFdKpdO3p0wUnUXVmLPq5bt87MzE6fPu1jmvXntCyIukVLt40aNTIzs+HDh/vYoUOHPOseo9php3vw6Z6lO3fuNLPkfpO6N+GlS5c8v/vuu561zBgWsB0zZoyP6f6AateuXZ7feOMNz2fPnjWzZAekdgK2aNHCM6VsVDdmrAAAACLhxAoAACAS5vfruKxpbe3M0VLg4cOHPa9atcrMktP13/nOdzyzcGjdksu+cVoKDGWhUEYxM9u7d6/npk2betauLxSW++67z7O+57/+9a89L1iwwLN25oUSoC4sqouP5rJo6R//8R+bmdno0aN9TBe41X0Dly5d6lkvawi/w0MPPeRjuqgpUJOYsQIAAIiEGasiUFZW5vnhhx/2HNa00rVrdH2Z8ePHey4tLU29by4EzU/6vuhf/3pBelgD7eLFiz6mswM6q8CMVWGorOllwIABnvXib53V1AaHGTNmmJlZx44dfUxnyK9du+Y5a5ulUaNGmVlyhunYsWOe9Ttp69atnocMGeI5zHbpdx0NF6gtzFgBAABEwokVAABAJMyVFigtBekUe9r0/qJFi3xM14YJFzebmU2bNi11PJQUKAnWDXoshPJNWIvIzGz//v2edTuSkpKS6n9yqDFZjQ7t27f3rJcN6MXperzcc889ZmZ27733+phus1UVulZW2KLGLLn+lX73zJw503No1tE1tvR35PsJNYkZKwAAgEg4sQIAAIiEUmARmzx5spmZNW/e3MeeffZZz1oi/PDDDz3rrvFse1O3aKdUKJ+cOXPGx3QNIh3v2rVr6v1RCi4senzo9lZ6CYG+17NnzzazZBnv8ccf99ywYcNKH/PcuXNmZrZ8+XIfmzt3rufevXt71k5lXauPNauQT5ixAgAAiIQTKwAAgEgoBRaBrDJN2LJm4MCBPnb//fd71s6cFStWeNYFBYcOHWpmZq1bt67SY6N2aKmnb9++ZpZcIHbjxo2eT5w44VkXEWWx0MKS1SH4+c9X/N3dr18/z+Xl5Z63bdtmZmYbNmzwMf0u0O8T7eg7efKk54ULF5qZ2fr1631Mt2EaOXKkZ+0+TCv/8X2DfMCMFQAAQCScWAEAAERCKRCJqfsvfvGLnnXPL+0QDHsMmlV0Cz7wwAM+pov0aWmBafraoa+7dnGGxSB13zbt/tROr1OnTnnWLlIUlsouGzBL7tF34MABMzNbvXq1j82fP99zz549Pesis5s2bfL85ptvmlny2Hz00Uc9h70EzZKLj/J9gnzFjBUAAEAknFgBAABEQimwiIWpdC3XaeeOlve0XPjiiy96fvXVV80s2UGm5UTt7qEsmJ/0PQr7B5ol39PDhw97Lisrq5knhrzUtGlTz9OnTzez5PeGdhDPmTPHs15acPnyZc/du3c3s4p9B83Mxo4d67lFixYxnjZQY5ixAgAAiIQZK2SuY9OuXTvPI0aM8Kxbnaxdu9bMkmte6TpHuu5M+Mv004+T9VxQM/Ti9bC2lZnZ3r17Pe/bt8/zhAkTPGe9jygsWd8RYSZb17nStdC00UXp98mUKVPMzGz48OE+phepZz0PIF8xYwUAABAJJ1YAAACRUApEQmVT/mZmX/3qVz2HC5/nzZvnY7///e896/pHX/rSl1Lvr379+rf7tJGjtPc3rGdlltzeaN26dZ7379/v+cqVK57DtiI0JiDQz/Pu3bs9a5NEly5dPA8YMMDMkltlcQyhLmPGCgAAIBJOrAAAACKhFIhMWWVB3XpizJgxZpbc5iSsbWVm9u6773o+cuSI5xkzZngePHiwZ906I+15ID4twegaVXfcUfH1oJ2gx44d89y5c2czS25jhLorly7P8vJyz2GrqzVr1viYlo0ff/zx1J/TEuGWLVvMLLk+Fl2BqMuYsQIAAIiEEysAAIBIKAUiJ1lT8GHKfuTIkT6mXWNLly71rAtOLl682PP58+c9h7Kgdqpp6TGX54TcpG1ppN2aukCsvkc7duzwHLYbadOmTbU9T1SvrPLf1atXPev2RqF0Z2b21ltvmZnZhQsXfKxHjx6eJ02a5Pn48eOeddub1atXm1ny86w/17Bhw9Tnyucf+YoZKwAAgEg4sQIAAIiEUiBuS5iO10UBH3jgAc+6P+CSJUs8v/baa563bt3q+dChQ2Zm9tBDD/lY6DxD9dP3UfcN1PLP+vXrPffs2dPMKAUWimvXrnk+fPiw55dfftnzsmXLPIcFYu+77z4fe/DBBz1rSf/kyZOeGzVq5HnOnDlmliw3azlRFxPVsiCQr5ixAgAAiIQTKwAAgEgoBaJade3a1bOWC5o1a+Z5w4YNnletWmVmyT0G7733Xs/afah7j6Wha6jqtAMzlPnMzA4ePOh527Ztni9evFgzTwy3rLJFP3XhXi3zvv32257ff/99z7179/Y8duxYM0vuMandpPrYOj5s2DDPYRHhjRs3+tjf/d3fef7+97/vWR+HDkHkK2asAAAAImHGClFk/cWoF0PrBan616uunTR//nwzM9u5c6eP6ayIXlzbp08fzx06dPAcZsOy/lLnr9ts+prpRcN6cbrOXpw+fTrn++N1r15Zx/v169c9hwvEdU2p9957z7POHuvWNPpZ05nncePGmVnyc670PX/99dc9/+QnP0l9/DSjR4/2XFJS4jltZoxjDPmAGSsAAIBIOLECAACIhFIgqlXW1HxY/8bMbMKECZ4HDBhgZmYLFizwsZUrV3r+1a9+5VnLE+PHj/c8ceJEM0teII/cZG1vo6XWsI2NWcVaR/v27fMxbVio7MJp3J5cXl9dP2rNmjVmZvbGG2/4mF68rqW2r371q56HDBniuVOnTp4///mb/zbXcv23v/1tz7/+9a9Tn19oktDGFG2WeOeddzzfuHHD8xNPPOGZ9a2QT5ixAgAAiIQTKwAAgEgoBaJWaAlDO4rCFhihnGeWXK9q06ZNno8ePep54cKFnkNZql+/fj6muWPHjjk/z2LoMtLfUd+Xxo0be27btm1qDiUb7eLUbYwUHYJVV5VSqn4etLtv8+bNnkPZT9cr08/a3Xff7TmU5c2SHXhp5b8rV6541hLd888/71lLiE8++aTnUHI8d+6cj2n576WXXvKs62xpl3FY607L1IrjDTWJGSsAAIBIOLECAACIhFIgakXW1HwofWhnmZYQtBNwyZIlntetW+d5xYoVZmZ27NgxHwsLI5olt9PQzjctSYYuo1xKMcVQZtDXqXPnzp5D2VVLgWPGjPGsnZna0UW3YNWPrQ8//NDMzC5duuRjZ8+e9awlv+XLl3vWz0HLli3NLLnopi74mUuZPO14/973vudZy399+/b1vGjRIs+h5K/uuusuz2HhUbPkQqVh+xuzZPm/adOmZmY2atSo1OdMGRo1iRkrAACASDixAgAAiORzHxfJvGiR/JoFI2vqXhcf/OijjzzrgoKhFLhlyxYfO3HihGddTFAXPtTyQ+iIytoDLUshHWf6Hujecrpg6+LFi83MrEGDBj728MMPew6LP5oly4n6HoQus0J67bJUtQQayn9mZhs3bjSzZAl827ZtqbfVkt7QoUM9h+Nay7l33nmnZ+0WVFnvzS9/+UszSy4E2q1bN89hQVKz5H6TafS10bKx7kcZjjczs+eee85zKG1Onz7dx7SrUTsZi+E4qwrK8vExYwUAABAJJ1YAAACR0BWIvJS1aKWWnDRrt2AoZ+hClrt37/asCynqHnfaYRUWIiwrK/MxLXGE7iqzZCmlKtPqdakkob+jvg5hQcZDhw752KpVqzxryU9fs0IqP1Tld7l+/brny5cvez516pRnfS137drlOezLeOHCBR/Tvf20/KcL4upnI+z5eMcd6V/9uRyTWhb+0Y9+ZGZmjRo18rG5c+d6rqz8l0VLd/o5Hjx4sGf9TB84cMDMknuMZu11SYcgqhszVgAAAJFwYgUAABAJpUDkvVym63V6v1evXmaWLOOdOXPGsy5mGToIzSq6rswqFlvU/ci0u6pLly6eS0tLPeu+hlpuCeVJLXFozion5UupokmTJp615BRKUVqy0v3ctPtMS4haOsrqRKtNlZX39H3R8p52s4X8wQcf+Jjuh6edqlrW2rp1q2d9XUM5Vo/DESNGeNbFOHWxzcqef1X97d/+refw+/z4xz/2MS3XVUVliwabJRcOnjlzpudnnnnGzJLHnr4e+lnTxUkpC6I6MGMFAAAQCetYoSBUNsOgswrl5eWeL1686Fkvyt2xY4eZJWcPdK0s1a5dO8+6bpPO1oRteXR2Sy/mvlU1dVzr63v16lXP//7v/25mZq+99pqP6RYkOqMybdo0z2PHjvUcZmJq4zMa4yJ6bXoIF5ibVVyEHi6sNkseQ9pEoY0YOhs6aNAgz2EGVo83bSrQWUCdoVG3+hrrWlJ6DIfH37t3r49VNltWVVnvka7btXTpUjMzW7ZsmY/p666zW4888ojnqq7bVYgKqZEkXzBjBQAAEAknVgAAAJFw8ToKQtrUvU5x65R/06ZNU7Ne1BrW39GL0UN50CxZ/tHSoq6LdeTIEc9hTR298FtLgc2aNfPcuHFjz82bN/cc1ozS29bGNL6WrUJZSNca0tdJ12TSrBd5B7Xxu+hxo2XhcFG2julF6FeuXPGsa1DpBelhXEunukWSri+l61Fpw4SWAvU1rkzsUtaLL77oWbeS+vrXv25mVS//6X289dZbZmY2b948H9Oy/OzZsz3rMaJrpA0bNszMkq+1lqT1onb93GmpWj93wO1gxgoAACASTqwAAAAioRSIgnU75ZDQxRf+18zsgQce8Kzln23btnnWkkNaWVDX0NKyhpYhtOSjHWKhRKTrQWkpU+8vq6xW2W2yfk67zLSMF56frhm2evVqz1qa0S6utG6stPLgp2W9pzpeWVlYO0Tff/99z9rRt2fPHjNLdvHpWmj6u1y7di31cUKpSjtF77nnntSs64Rlqc1ONS3TqRkzZtw0dunSJc9vvvmmZ93qZv78+Z614zD44Q9/mPp4Wa9BKNmPHDnSx44dO+b5nXfe8fzyyy971g5HPYbD8V5M3YGIhxkrAACASDixAgAAiIRSIHALtFtQSzpaptNuwVDu0M447XzSktTJkyc9a5fZ2rVrzSy7XKddUrqIpHZshc5Cs4pORf1ddMFJpaU7fZxQnhwwYEDqY2gptXv37p61hBlKgNppqY+npTbtzNPXTHPo6NP7061kLl++7LmyrYS0BBpeL7NkZ5l2empnaXjdtbNTOzq1uzIXNd01qSU9Ld3p8RLK3bNmzUq9rX4GqkJLelX5vUM376efk5Z/161b5/mNN97wrGXrcDxnbXlTne8F5ce6jxkrAACASDixAgAAiIRSIJCisul4LVVp6UuzCp1h2oWkZT7tONOylZazwm10TMtaWrbSce040+7DUPbTspyW+ZT+vrrIZSiPbdmyJfU5633rbVQoF50/fz718XQxSf299HW6cOHCTTnrv2tHn5bmtMQVSkpa/tP/njWu9xf27tPH0/Kalqfysfzz0ksvedaSnubvfOc7N/2cHm/aSavds9qBmaZDhw6eQ4dmLu64o+KfND2W9X3R7lMtBaqwYKu+t3rfVelgzbqtlhP1vtPKjPl4fCAbM1YAAACRcGIFAAAQCaVA4BZUdWo+TO937drVx3Txz6wuIy1nhVKglg11LzstM2npS2+jOZRjdExLbUp/37TSnHYyarejPtddu3Z51pKkljArk7X/o+ZwfzqmpRYtC2V17IWsXZJ6f/q+6AKX2sEYXqe6WsbRhV61C1JLmKF7buDAgT7Wu3dvz1pq0/KflohDp6d2r7777ru39Jyz3nP9bOj45s2bPYfSrVlFd++ECRN8TI+FrPKudhaG910/L1oW1Oeqr68+Tm3sn4nbx4wVAABAJMxYATWgKtvHKP0rPlwUrFve6AyJ5qytZPTC4zDbpLNUelulsy46YxHuT9eX0tmcAwcOeNZtgPT+wl/uOpOQtWZQ1kX0+rPhNrpOlP53zTpbpvcXsr6mOguoMw/6emgOt6mrM1aDBw9OzZVZvHix59dff92zvh+TJk3y/Oqrr5pZsrFDj6csaceIHiv63uq4rvE2ZsyY1PHwmcg67vfu3ev5D3/4g2edlQ23z2oI0fvr3Lmz5+HDh3uePHnyZ95HXT22Ch0zVgAAAJFwYgUAABAJpUCgBtzqlL2WMEI5IKsscKvSyleffuysC8zD7bVkphfzamnk2LFjnvWC3lC60zJfVilQn0dlOavkp/env7s+p5CzynxZivVi42XLlnkOpT2z5Hv6k5/8xPORI0duuo97773Xc58+fSp9zMq2mNH/nnUsDBkyJHU8rFOWVZ7WYyFs62OWvBg+fE61zKdrfOnnZM2aNZ51e6awRZI2BOiF/8hPzFgBAABEwokVAABAJJ/7uEjaCork1wSiudWyln7WtLSouTo/jzHKcXxf5GbevHlmZvZHf/RHqf/9N7/5jedZs2Z5/sY3vuF59uzZZma2aNEiHxs7dmzU51lVaWuh6XF15coVz88//7zno0ePeu7UqZOZmY0bN87HOnbs6FlL408//bTn9957z/PIkSPNzOyRRx7xMS2ZxjhOi7V8XZ2YsQIAAIiEEysAAIBI6AoEilxWKeD8+fOet23b5nnr1q2eQ3dU2ALErKJ88en71rKFbttRlS1tUPu0A/BrX/uamSU7Kn/+8597/spXvpJ6H9oFFzrvdGFMXUw0H2Uds7otUvfu3c0sufCodhlqt6CWC3XB3lAW7Nu3r4/dfffdnvV10udEKbt28Y0GAAAQCSdWAAAAkVAKBIpUKNPp/oC6n9/OnTs9r1+/3rMughhKgcePH/cxLXfoQoq6OOKAAQM8h/IJpYz8tX37ds/Tp0/3HBa5/OlPf+pj3//+9z3r+3j69GnPu3fv9hz2IdSFL/Pl/ddStna16iKeujemHsNhn0/9uSyDBg3yrN2C69atMzOzEydO+Jjuo6j7WyJ/MGMFAAAQCSdWAAAAkVAKBIpIWgfghg0bPOtih2fOnPHcpk0bz+PHj/fcuHFjM0uWEPU+tMyo3Uz9+/f3HMon+VL+wSe0XDd58mTPusfdD37wAzNLlgKzaCfozJkzPX/hC1+4jWdZcy5cuOD54MGDnvX1KCkp8dyyZUszy61cp/t/6usUyuf6udUOTOQnZqwAAAAiYcYKKHD6165eTB7WplqwYIGPrV271vOYMWM8jx492nPv3r09h7+o9eLmvXv3ei4vL/esF/bqViHIH9qEoDNJOv7YY495fvLJJ3O+70aNGnmeO3furT7FGpE2s6sXqe/fv9/ztWvXPOsF+FWZsbp69apnnZEKr5m+dlywnv+YsQIAAIiEEysAAIBIKAUCReTixYueX3/9dTNLbi8SLkY3M7v//vs9T5gwwXNaGU9LJ1om0W1xdAsPyhn5Qy++njp1qmct706ZMsXz7NmzPeuaZYVO14/SZg3dViaU/8yS5bvKHD161PORI0c8h1J7WBNLx8yyt6NC7WLGCgAAIBJOrAAAACIpnnlcoIhoiUA7jg4cOOB55cqVZpZcQ+fRRx/13K9fP8+VdfFlbVej61i1bt065/tD9dLy34wZMzzrdkXjxo3zrF18xVT+U7rOmpb/OnTo4FmP8apYsWKF5yVLlnju1q3bTY+RVWJkHbj8wYwVAABAJJxYAQAARFKcc7pAAcrqENIOprAoqJnZyZMnzSy51YwuBKrb2CgtOYTH1G7CsrIyzzdu3PCsJUddLBQ1Jyw++c1vftPHli1b5rlv376e58yZ41m3WSlUaZ8fPX7ff/99z7pY6MiRIz336tXrMx8jfObMkt2477zzjmf9bITPYygJom7g2w0AACASTqwAAAAioRQIFDgtP+zatctzKH20b9/exzp16uQ5l+6vUBbUMl9JSUnOP/fpjOoVSoDPP/+8j+n7v2jRotTxYhO6WXXhzi1btnjevXu357Fjx3rWz8Hly5fNLLlfZujENTN75plnPOttRowY4XnSpElmlvxcKj47+YkZKwAAgEg4sQIAAIiEUiBQ4HSRTt3vLCzSqQsO6sKHKqvkwF5l+e8v//IvPT/77LNmVtzlv6xjVhdNDWW/3/72tz6mC3eeOXMm9ec6duzoOSzMq/tzaslP9xWcOHGiZ+3MDe+HdgpS/st/zFgBAABEwokVAABAJJQCgQKn5T0t+4USYeheMjO7du1a6s9llU+uX79+031ouVEXDtX9BIt1v7maEhYCNTM7fPiw57DQpy7+qYuCFjNdDDSt27V79+6pWRdP1bK7fpaCzp07ex46dKjnUaNGee7SpUuVnzvyCzNWAAAAkfBnI1Dg7rrrLs+lpaWew6yGrnOl6/bobXX2Km2bD/05vT/961vX4gkXzptVXJjLRbnx6Izg7NmzPW/fvt3MktsYFZu0LZnMkrNTYVumJ554wsfC7KyZWf369T1fuXLFs84UhvvWY123icrapobPQd3HjBUAAEAknFgBAABE8rmPi2TesUh+TRSxrAvM9cLyzZs3e37qqafMLLkmj5aIxo8f71nX59H727Fjh5klyyFa4hg4cKBnvXAXyDf6b0Qo++kF6Pr50nWl9DZaJg+3zyo3ajkx63nUBNaii48ZKwAAgEg4sQIAAIiErkCgQGSVEHT9qF69enmeNm2amZktX77cx0LXmFmym6mkpMSzljtCCVD/u26L0qJFC89acsib0vyeX3oc3+vbnpen3TbTDzwtvPG/PN+XdtPyrR7n/tc/8/yn/1SxXcqpDyvKRSUTZTuaf/0bMzN7oHN6CcmsoiS189++4/mJv1np+bx1NTOzr/3Tv/rYX41v6znrnouBHp+hTJdVrlNa3quKvPkMIDpmrAAAACLhxAoAACASugKBIhU+E2vWrPGx+fPnez527Jhn3aqjefPmnidNmmRmZsOHD/exDh06eNaFKvPyM7jmZx7b/ZeKzscVb/+JmZmVRXmQI57+bVZPzz9qXbFw51v/54ueuzcq97zv93/uedJ3Pyk5/XLbUz72QCt5mHX/0+P0RQ97fvmHgzzXt7NmZvaHb/1nH/vwfzzr+UvtKvlVUHDoCoyPGSsAAIBIOLECAACIhK5AoIjotH/I/fv397GmTZt6Pn/+vGddBFG7oMJegG3bVnSWafkv731Q8TueKunr+c6Yj7Hxdx7/ZttPPb+4Ucp/ieazRhXjX/y/np9b98lei9999ns+tuE/V7x3h7e+7bnfsL/2nOxr+6R22G/kAR95uqJRkVIgEAEzVgAAAJFwYgUAABBJHZqzB3C70jrztMtP9/aL+Rh1QreKcmbMitjOFc97PvuVf/A8JKfVOCtuNPqBr39yfz9b7WP7pRTYbeh0z8fmbfR87b6buwK3re7qY2MfyeV5AMgVM1YAAACRMGMFFDmdYarqmjZ1dnbq/ztxcn+1P8aRnRXrhI0d2fUzblmJjp9sR3Tv4k0+tE/+c7f+f+r5Z5sqtrQZ3y9lS5tfVayh9ddcsA5ExYwVAABAJJxYAQAARFI0pUCW7Qfiq+ufqw8unfJc0uCg59nfHGZmZn/xu/U+durDZp4HfPHHnn/+93/l+YHOekX6fjMzO7ChYqTbF9p7rvJL17WbmZndYxULTyXWJbMGnvt85V88r/5KFR8HwG1hxgoAACASTqwAAAAiKZpSIAB8llO/e83zlTl/MDOzg/9S6mONyo96XvXUf/A8aew5zws2P+l5QvPrZmZ2/WqkJ1j/k6/rBnah4nlekv8edR8eALeKGSsAAIBIOLECAACIhFIggKJV9ifLPH/8J5XcuFFFWXDUD3/j+Z8XdfL8y6X/zfOEh+uZmVm9ima923PtIzMzu2oVWxA1pvwH5B1mrAAAACLhxAoAACASSoEAUGUdPQ2c3MfzPx4/JbcpMzOzbvdUjPxm/375792q9pAHD5iZ2YaGFYuQPl61ewBQA5ixAgAAiIQTKwAAgEgoBQLAbSj/4GzF/7nr5v/eZcBYz5sPnpT/0q1Kj3Pt4BYzM1s7fZSP9cm6MYBaw4wVAABAJMxYASgyhz0992h/z29+t2L8l9Ob22fb6mnVCxVbzAz/+y433bJszJc9t5/0sueVfz3C8+j6lqHivt/87T+amdnkx37oY+0qeZYAah4zVgAAAJFwYgUAABDJ5z7++OOPa/tJAEBtOPJvX/Rc9letPf9u4c/NzOzhXs0qbnxxl8eF/71iBakvr/1zz+sXfaPi/jxVXNz+xp/19fwfP/yF5yVPVTyP7vUuet71h7/wfP/3W5mZ2bObn/SxCZVVLAHUOGasAAAAIuHECgAAIBK6AgEUrY6P/87zuvo/8vwX932yZc2sIxVlOWtWsY3N1K//g+dV82Z5rij/qVaeHvjf73r+559+zfPIuyru49SHFeXHjlP/k+d/Wf4zM6P8B+Q7ZqwAAAAi4cQKAAAgEroCAQAAImHGCgAAIBJOrAAAACLhxAoAACASTqwAAAAi4cQKAAAgEk6sAAAAIuHECgAAIBJOrAAAACLhxAoAACASTqwAAAAi4cQKAAAgEk6sAAAAIuHECgAAIJL/B4dKSDN51oMpAAAAAElFTkSuQmCC",
"path": "images_version_6/image_36.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, passing point C to draw the tangent of circle O. then the degree of angle A is ()
Choices:
A:20°
B:25°
C:.40°
D:50°
|
||
181
|
37
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIoAAABRCAAAAAAoFWFUAAAN/UlEQVR4nL1aaZRdxXGu6u67vHU0kt4IpBFGMgYhgsMSs2MwEDA47GKRiAnBLHYIJLEPsbGdEy/HhJOcnGMfgsEYTGwhwDaLBDiAgsxmCSJMUGQhLHakkdDMSMzM2+693V1V+THSaLSFNzPP+f6+V32/W1X9dVX1RYa2AlkQCe69ZR0AfH9+R4Ct2qFqLxMApTFxeOHfnHhf7fafPD+W5dtOxacUBj7aPOeg+MT9ezba1i1Nu6kwgJZm7+ZSOX2jp1AJW7dst1e8jnWW5N4bOH6/9XdOPSwag2m7qSgFbGLz6rMXRocc/bMjWFo3bXeAFJAofOvlK6/rxkxZPYZXbTcViwE4eI+P7kqDiMIWt/KEqLAYYFEIwqAQPBhGhFSt+sn0yz4Gv++cERGzGpNojZeKQiACQEFNqYqMTQMFPUsXJnJowd/wY+j/0nHljIOxpCKOV22JlUYAT4hKgVWO1y98+ojzn5m1oFwzOU+GbRi0nrTIOF6vCCiNwqLRK80Q9b56/xvnPZS7o/uzQT3ANDRAoQFrxuCWcXsFAdh5HWjwEqy795GZVx2Tzy1qnD9dM2IVmsWiB42+1ZNlAl4BAU8mApcGfsW/v/+ZBw9ADXduuHgaWR/ZKCqDkBnbGTf+HaRBa0h4aPEjePG5HYlD+8zW8w8F4EiFkFkMQ2zYwv9DgBg0gxpau+iFEy46KudRgVr2m08fH0Kiw1QZVoozY0BaFRZkbJkKApNBT8ZiLB5RFNeX3V294px8IHEKEa9actTn3LgDPgYqlGJonA/A5wAAPPu1i5fOvOGklLXEwF6/v2jun6oijOHMGS8VQBBR4CkCyhAa/3XHexd+fkZoJUdiLITv3HnwJSokHIvSj5MKZcqAKMMOQ/vmY091XntMh7Agox6EzmrfkqkXRKGkOvjDUwFJIS/OB6rx7MLek+cdoHAw7HQcOQkwS36ZnFvJV1Uxw3FyGQMVptA3VVHWL3qkfNXpeRUJAoB40KBSvq/nyv0aPq/8WNR1vFTIxwJu9a0rz1twqHU5JY5yLtEFAElgyfsLuiD02uEY6sdxUwGkzY8vslfNj0lrEAFFpDWwOMkt/u8LDxVQRKapc22k4g2CsEJmVAggpBSwV7TqrhcPu/ZE77dVqwwaGBQkEj+x4uxjLIw3X/8PKqwQSFCheCNN1wmS2o7BpQ/0Ljh/OmUm3C4c5ENi4qJ/9rcnHW4UjHcX76CymzoqBBYBahYDgCKIp7j/lsfmXH2mt2mQ3yFhyihbj8LG2y/MORagHT3mbl5BEBFQSI0YqlOoKU8u6j3z87MzigwI4AgXTKgIDeq5/8CLIPagJ8xjT2kroAA4ixSAe3/Jwk+ddfxUAQ3iUVEGheE/sWhGxNcemnVRqDKIxiv4o6jsFiCB4bDn6ENZ969rzv55V0kjcAphAKCC7V5R3geW6yuKp8VNyHs/Ua/AHgIkgohsKa4t/GnXRafPABAHIfmQSBtKZZtXwGWxTu754GulGscQ8rgPnxEeuwdIBJT4dNO/vHjS9Z8IfCOm0FBmAtYAICO5wmJSenTd9UUwViKvx+SV4SpG1KioIiNk4kRqQlUeyrjREG4QffCDU4689w1hK+xlZzCLs2mDbeLcL77yhs2EWcYA5ppLb+wGgNnrB0iaxMMQYmRuqmxy87ZryujBuGoRV/5wzYlX/vFABYSM7LbBPIessOE6/YMrrpvhy9J6pQYAoGxAAPc9eNu+h8PTcWEkVZHR1Islym/4s3NLvRVyxaDw6ML+P791UsNWQCyg2q1OZhuhk7yvr1h16UGcZjkZm7o54xU8fVpBX7hqqNIojrI1xXc7O/sXr/67xjQUeuen9x72xTMw0WUQP9zb0c4rEZQzW7RD0durT/2TwaAgu/z+kV4pSuzeWXtl6Zbb75mldjotDM/CNOk7WQLp+d1DSxc8M9PZXN5BgAZw+BjYCVp7LHnoXHvfPsfhJGdbnbWNvEoWA73adwp89bUggdxOIuC4b+s5r3xymV87e+RpGmHE67gzlIZcBQAAOnKotvUu2DIATn55MLvirp43u7+8hViEd6Stqeem/tMthexAdeDS2TzQEQC4NAo5i1FYlNo1AILGZ8GmRyZd4iPKCwCNLW01gvSv/lznvpf/+LxjfFQt7zA2HfCt73wDKqEzHxc/BRITBIa8zjEighLaJW1RPOPg40NX5lkgyVkOYEzqloWN/OLuo1N5r9RtGAujbJUfqkv12VIlQMBAMGdEQGsQFEEloEd5lwk5AxXIU5tvzAk+MDePxz4hiEzofYsRirO8/vUJYenb/zm/o55wffTZteqg7EN/1yHVzA0LGO8FlDnvhIls4/4bNw/x7y4565Xau9ef/mzVWifMtDfDnVF1/YdUoBsqd1UbltmPyhUAeNqeDFCppizCtNcVKSMmZu+yp768tuZWXjL/5UFvn5z3/ar3JC1zEabEZh9kg94n7AdGjIRYDfJc/0uhtwwCgADuqtQjSaIUArHIS78+9wDc+EzPGYeXUNsPBiIA8a7VUaQdzKIEuqRoxTSonI0yM+XGvqAaYVEQhUXhXpfUIKKRV/7HKUdn4buPf+L0NGDVoJxnpYy0Wq8Ek2RIAEx/J0qkUY9O22ZhI0T5IVTD5RvszSsA7BjdqmVHnKYweafv8MmQRbXXg0MVjmULOduXL6te6gpSbyQZLbcq3zcj3YqTtzoSQNzr2wkLi2r+z/P7zgMwdrMp6LDgf/v8wUdorRRwq8VtYLpQZBpUkyioudiPplKf5uOyV5Mzz6hwr/WyEOpQDSxPFviG8/HUmR0N5Tc9GX+hgojMLU+tGwIKxepyTqAU0ugiUpUEHaConBHmPcgVUsMipTr0CfU8QX8VmsjE9EczF21Uz136zvc+qbRChca0GKWCVkoFkUI0CnYuZ3eubXdfjtJCEdizgA4GnljzvZwNNUP58PAHh8Dsmy7lsdwnDGOv/kMRFkCFHhBw91qXORKPqNBl/PSK74akFTkINGeQE9YkbZrMI6PZVuFvO9NwV8fogB0aEO/U0ue+HggHRAbZYcgWa0Fpok3HTmwEBBCQYbgy2HVt8UaL88otffG6mezz5DEUIQQOEMS3675itFeGmeyeLKi0kA7dS8sun0UYNEOjAMQIcBZbgnYFCADQIyAM18q4J68giOWcXf74F+aCOAlZA3mlFAO5UEkbWrHhx+zUHe55N5IGFaarXjpuhqdIMyoAFQl5A2CUpwk3yzswPLHaHpk9JKEkOe16nvjYuR7EUwRMhlhxyEQaedxTpj3gI2dnOszUh7+KLveGYhG7pRqwUD3KapALNdIE+9OxUBGvzfolH3wRyOihJFRT9WZtwlJGJakOevRtvLz/qA2AAQ2tWv1v7AtJYyqAr+Vjsb5oQo9FBd6o9gnLRwYoW/+bpd9NERIsbh567ODyXzYHbpt9xmrrVVqvM/qPsm8jFX57+fWRApWL4ynJ9MeTe0qra6/8/fLghaNPfa4YjP8+aexU0uUPzj8wCoGSbCu/96Wr16hNr8+cBlsf9T+8Va93u/axf0gqb3393SxTSSMOcYp0L77mb5/LXI5mdvQpEzcBqS2yIgAySrddmEViwzT2RmzMWYzsQvfmHf+45eYDvtoFzCHEM+xZ+WWX6jDHtA9fG31zPz/hpPUmicFFaaB2UAnFKaMw54F1TFnkk1LoNt752RM6zvzFzdd3lg03fTFS07pBkroO/JmnIXpRPEFhURChczqAvspIgCznA1S81RvbBNFascXe24/4dAd0XX7kzZMNqmIHWolN2WS5aq1iwsCYYO8NQougFMEU2PouNUIlBAArakqMMaQmtNhh+n9evKyDGh+Wj53+QN0CoIbNG0rdczatWyMn+qE6ZfUJTyaDCG3mghBGpy0q8Y26rQ1QDkGyBtYe3vhNx7ow2Xae8ViDt7iNX4s+s+ECdVjx+MULnO4o6rBoJrqD+tiFuUHQ4Wa7o4BkDQCkxRklZIB6V/7qVgi9skFAax4+7nQEEGL0SVmyMPROiwqAJloloPRO1fVSVp/MI15B1RwE2mj7Q0wQGpKuf+gWjChUKvB+ZtcjJOlQYgzGk7UqQmJyYaRqgzxhiXv77kB9HOOvvyuwvX9uimTpXRWo/GjJQ4PUSJ+79HVq1l2VrKtRuuxixyJC3lrnmMSl7LyIeNfaAGGvGCS74OS3MgfnrRl5q5xL6dTBVVMHvrLs4Q4I19x900FWR1zySbngIV9cP5spYIoEAFC0Bg0yge+Tklgxgqgy1DYdNb0+ae3c/UeopHH9rElLSmHlpo2ztnT+/u6/ngvaiAJdIBcLpfVmIAC82yB3nMhDKjFiLaLB6knZZLffX6weoaKbP3vpvm6SZL8rKnrTP8/7FFWxLFlIwjbm3JwCCgDodn3TZynGRhCWkujRDSdE3tbf/3AkV2jD8VfbGic1bkr9gTmhNqDi7c9VAYzMWFVboCEM9NnLXTO74IZqVYQr/2BG5ovJYKcqisQ9JVO46KyijQCERVEAQjYPIERmDx3BOKHTCAdyEeoNKy+Lg6Hcw/3zRgIkzddO0ZLk3EwAgBIHIE4ZaprAZ/k8s0FjAKRt3QaTKWsYKL/UfSRKOfvGvP23f9chUDpky0AIUL13/pTefaplYAgAdF6BDlHIswRI24SwDdB58B7VJL5/diVtPnr1t68pjuSKTX9U+Zb4dec8WBdf9w3OhG3imZpWOEuEiW0zE6b2oOqFRJwfnowf1Jcy4fZDhIx7+fx+6H6yu4RO67bckbYKQcBm/n8B2REevWZUCAsAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_37.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, AB parallel CD, CP intersects AB at O, AO = PO, if angle C = 50.0, then the degree of angle A is ()
Choices:
A:25°
B:35°
C:15°
D:50°
|
Như hình vẽ, AB song song với CD, CP cắt AB tại O, AO = PO, nếu góc C bằng 50°, thì số đo của góc A là ()
Các lựa chọn:
A: 25°
B: 35°
C: 15°
D: 50°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB parallel CD, CP intersects AB at O, AO = PO, if angle C = 50.0, then the degree of angle A is ()
Choices:
A:25°
B:35°
C:15°
D:50°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB parallel CD, CP intersects AB at O, AO = PO, if angle C = 50.0, then the degree of angle A is ()
Choices:
A:25°
B:35°
C:15°
D:50°
|
As shown in the figure, AB parallel CD, CP intersects AB at O, AO = PO, if angle C = 50.0, then the degree of angle A is ()
Choices:
A:25°
B:35°
C:15°
D:50°
|
182
|
37
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIoAAABRCAAAAAAoFWFUAAAN/UlEQVR4nL1aaZRdxXGu6u67vHU0kt4IpBFGMgYhgsMSs2MwEDA47GKRiAnBLHYIJLEPsbGdEy/HhJOcnGMfgsEYTGwhwDaLBDiAgsxmCSJMUGQhLHakkdDMSMzM2+693V1V+THSaLSFNzPP+f6+V32/W1X9dVX1RYa2AlkQCe69ZR0AfH9+R4Ct2qFqLxMApTFxeOHfnHhf7fafPD+W5dtOxacUBj7aPOeg+MT9ezba1i1Nu6kwgJZm7+ZSOX2jp1AJW7dst1e8jnWW5N4bOH6/9XdOPSwag2m7qSgFbGLz6rMXRocc/bMjWFo3bXeAFJAofOvlK6/rxkxZPYZXbTcViwE4eI+P7kqDiMIWt/KEqLAYYFEIwqAQPBhGhFSt+sn0yz4Gv++cERGzGpNojZeKQiACQEFNqYqMTQMFPUsXJnJowd/wY+j/0nHljIOxpCKOV22JlUYAT4hKgVWO1y98+ojzn5m1oFwzOU+GbRi0nrTIOF6vCCiNwqLRK80Q9b56/xvnPZS7o/uzQT3ANDRAoQFrxuCWcXsFAdh5HWjwEqy795GZVx2Tzy1qnD9dM2IVmsWiB42+1ZNlAl4BAU8mApcGfsW/v/+ZBw9ADXduuHgaWR/ZKCqDkBnbGTf+HaRBa0h4aPEjePG5HYlD+8zW8w8F4EiFkFkMQ2zYwv9DgBg0gxpau+iFEy46KudRgVr2m08fH0Kiw1QZVoozY0BaFRZkbJkKApNBT8ZiLB5RFNeX3V294px8IHEKEa9actTn3LgDPgYqlGJonA/A5wAAPPu1i5fOvOGklLXEwF6/v2jun6oijOHMGS8VQBBR4CkCyhAa/3XHexd+fkZoJUdiLITv3HnwJSokHIvSj5MKZcqAKMMOQ/vmY091XntMh7Agox6EzmrfkqkXRKGkOvjDUwFJIS/OB6rx7MLek+cdoHAw7HQcOQkwS36ZnFvJV1Uxw3FyGQMVptA3VVHWL3qkfNXpeRUJAoB40KBSvq/nyv0aPq/8WNR1vFTIxwJu9a0rz1twqHU5JY5yLtEFAElgyfsLuiD02uEY6sdxUwGkzY8vslfNj0lrEAFFpDWwOMkt/u8LDxVQRKapc22k4g2CsEJmVAggpBSwV7TqrhcPu/ZE77dVqwwaGBQkEj+x4uxjLIw3X/8PKqwQSFCheCNN1wmS2o7BpQ/0Ljh/OmUm3C4c5ENi4qJ/9rcnHW4UjHcX76CymzoqBBYBahYDgCKIp7j/lsfmXH2mt2mQ3yFhyihbj8LG2y/MORagHT3mbl5BEBFQSI0YqlOoKU8u6j3z87MzigwI4AgXTKgIDeq5/8CLIPagJ8xjT2kroAA4ixSAe3/Jwk+ddfxUAQ3iUVEGheE/sWhGxNcemnVRqDKIxiv4o6jsFiCB4bDn6ENZ969rzv55V0kjcAphAKCC7V5R3geW6yuKp8VNyHs/Ua/AHgIkgohsKa4t/GnXRafPABAHIfmQSBtKZZtXwGWxTu754GulGscQ8rgPnxEeuwdIBJT4dNO/vHjS9Z8IfCOm0FBmAtYAICO5wmJSenTd9UUwViKvx+SV4SpG1KioIiNk4kRqQlUeyrjREG4QffCDU4689w1hK+xlZzCLs2mDbeLcL77yhs2EWcYA5ppLb+wGgNnrB0iaxMMQYmRuqmxy87ZryujBuGoRV/5wzYlX/vFABYSM7LbBPIessOE6/YMrrpvhy9J6pQYAoGxAAPc9eNu+h8PTcWEkVZHR1Islym/4s3NLvRVyxaDw6ML+P791UsNWQCyg2q1OZhuhk7yvr1h16UGcZjkZm7o54xU8fVpBX7hqqNIojrI1xXc7O/sXr/67xjQUeuen9x72xTMw0WUQP9zb0c4rEZQzW7RD0durT/2TwaAgu/z+kV4pSuzeWXtl6Zbb75mldjotDM/CNOk7WQLp+d1DSxc8M9PZXN5BgAZw+BjYCVp7LHnoXHvfPsfhJGdbnbWNvEoWA73adwp89bUggdxOIuC4b+s5r3xymV87e+RpGmHE67gzlIZcBQAAOnKotvUu2DIATn55MLvirp43u7+8hViEd6Stqeem/tMthexAdeDS2TzQEQC4NAo5i1FYlNo1AILGZ8GmRyZd4iPKCwCNLW01gvSv/lznvpf/+LxjfFQt7zA2HfCt73wDKqEzHxc/BRITBIa8zjEighLaJW1RPOPg40NX5lkgyVkOYEzqloWN/OLuo1N5r9RtGAujbJUfqkv12VIlQMBAMGdEQGsQFEEloEd5lwk5AxXIU5tvzAk+MDePxz4hiEzofYsRirO8/vUJYenb/zm/o55wffTZteqg7EN/1yHVzA0LGO8FlDnvhIls4/4bNw/x7y4565Xau9ef/mzVWifMtDfDnVF1/YdUoBsqd1UbltmPyhUAeNqeDFCppizCtNcVKSMmZu+yp768tuZWXjL/5UFvn5z3/ar3JC1zEabEZh9kg94n7AdGjIRYDfJc/0uhtwwCgADuqtQjSaIUArHIS78+9wDc+EzPGYeXUNsPBiIA8a7VUaQdzKIEuqRoxTSonI0yM+XGvqAaYVEQhUXhXpfUIKKRV/7HKUdn4buPf+L0NGDVoJxnpYy0Wq8Ek2RIAEx/J0qkUY9O22ZhI0T5IVTD5RvszSsA7BjdqmVHnKYweafv8MmQRbXXg0MVjmULOduXL6te6gpSbyQZLbcq3zcj3YqTtzoSQNzr2wkLi2r+z/P7zgMwdrMp6LDgf/v8wUdorRRwq8VtYLpQZBpUkyioudiPplKf5uOyV5Mzz6hwr/WyEOpQDSxPFviG8/HUmR0N5Tc9GX+hgojMLU+tGwIKxepyTqAU0ugiUpUEHaConBHmPcgVUsMipTr0CfU8QX8VmsjE9EczF21Uz136zvc+qbRChca0GKWCVkoFkUI0CnYuZ3eubXdfjtJCEdizgA4GnljzvZwNNUP58PAHh8Dsmy7lsdwnDGOv/kMRFkCFHhBw91qXORKPqNBl/PSK74akFTkINGeQE9YkbZrMI6PZVuFvO9NwV8fogB0aEO/U0ue+HggHRAbZYcgWa0Fpok3HTmwEBBCQYbgy2HVt8UaL88otffG6mezz5DEUIQQOEMS3675itFeGmeyeLKi0kA7dS8sun0UYNEOjAMQIcBZbgnYFCADQIyAM18q4J68giOWcXf74F+aCOAlZA3mlFAO5UEkbWrHhx+zUHe55N5IGFaarXjpuhqdIMyoAFQl5A2CUpwk3yzswPLHaHpk9JKEkOe16nvjYuR7EUwRMhlhxyEQaedxTpj3gI2dnOszUh7+KLveGYhG7pRqwUD3KapALNdIE+9OxUBGvzfolH3wRyOihJFRT9WZtwlJGJakOevRtvLz/qA2AAQ2tWv1v7AtJYyqAr+Vjsb5oQo9FBd6o9gnLRwYoW/+bpd9NERIsbh567ODyXzYHbpt9xmrrVVqvM/qPsm8jFX57+fWRApWL4ynJ9MeTe0qra6/8/fLghaNPfa4YjP8+aexU0uUPzj8wCoGSbCu/96Wr16hNr8+cBlsf9T+8Va93u/axf0gqb3393SxTSSMOcYp0L77mb5/LXI5mdvQpEzcBqS2yIgAySrddmEViwzT2RmzMWYzsQvfmHf+45eYDvtoFzCHEM+xZ+WWX6jDHtA9fG31zPz/hpPUmicFFaaB2UAnFKaMw54F1TFnkk1LoNt752RM6zvzFzdd3lg03fTFS07pBkroO/JmnIXpRPEFhURChczqAvspIgCznA1S81RvbBNFascXe24/4dAd0XX7kzZMNqmIHWolN2WS5aq1iwsCYYO8NQougFMEU2PouNUIlBAArakqMMaQmtNhh+n9evKyDGh+Wj53+QN0CoIbNG0rdczatWyMn+qE6ZfUJTyaDCG3mghBGpy0q8Y26rQ1QDkGyBtYe3vhNx7ow2Xae8ViDt7iNX4s+s+ECdVjx+MULnO4o6rBoJrqD+tiFuUHQ4Wa7o4BkDQCkxRklZIB6V/7qVgi9skFAax4+7nQEEGL0SVmyMPROiwqAJloloPRO1fVSVp/MI15B1RwE2mj7Q0wQGpKuf+gWjChUKvB+ZtcjJOlQYgzGk7UqQmJyYaRqgzxhiXv77kB9HOOvvyuwvX9uimTpXRWo/GjJQ4PUSJ+79HVq1l2VrKtRuuxixyJC3lrnmMSl7LyIeNfaAGGvGCS74OS3MgfnrRl5q5xL6dTBVVMHvrLs4Q4I19x900FWR1zySbngIV9cP5spYIoEAFC0Bg0yge+Tklgxgqgy1DYdNb0+ae3c/UeopHH9rElLSmHlpo2ztnT+/u6/ngvaiAJdIBcLpfVmIAC82yB3nMhDKjFiLaLB6knZZLffX6weoaKbP3vpvm6SZL8rKnrTP8/7FFWxLFlIwjbm3JwCCgDodn3TZynGRhCWkujRDSdE3tbf/3AkV2jD8VfbGic1bkr9gTmhNqDi7c9VAYzMWFVboCEM9NnLXTO74IZqVYQr/2BG5ovJYKcqisQ9JVO46KyijQCERVEAQjYPIERmDx3BOKHTCAdyEeoNKy+Lg6Hcw/3zRgIkzddO0ZLk3EwAgBIHIE4ZaprAZ/k8s0FjAKRt3QaTKWsYKL/UfSRKOfvGvP23f9chUDpky0AIUL13/pTefaplYAgAdF6BDlHIswRI24SwDdB58B7VJL5/diVtPnr1t68pjuSKTX9U+Zb4dec8WBdf9w3OhG3imZpWOEuEiW0zE6b2oOqFRJwfnowf1Jcy4fZDhIx7+fx+6H6yu4RO67bckbYKQcBm/n8B2REevWZUCAsAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_37.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, AB parallel CD, AO = PO, the degree of angle A is ()
Choices:
A:25°
B:35°
C:15°
D:50°
|
Như hình vẽ, AB song song với CD, AO = PO, số đo góc A là ()
Lựa chọn:
A: 25°
B: 35°
C: 15°
D: 50°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB parallel CD, AO = PO, the degree of angle A is ()
Choices:
A:25°
B:35°
C:15°
D:50°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB parallel CD, AO = PO, the degree of angle A is ()
Choices:
A:25°
B:35°
C:15°
D:50°
|
As shown in the figure, AB parallel CD, AO = PO, the degree of angle A is ()
Choices:
A:25°
B:35°
C:15°
D:50°
|
183
|
37
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIoAAABRCAAAAAAoFWFUAAAN/UlEQVR4nL1aaZRdxXGu6u67vHU0kt4IpBFGMgYhgsMSs2MwEDA47GKRiAnBLHYIJLEPsbGdEy/HhJOcnGMfgsEYTGwhwDaLBDiAgsxmCSJMUGQhLHakkdDMSMzM2+693V1V+THSaLSFNzPP+f6+V32/W1X9dVX1RYa2AlkQCe69ZR0AfH9+R4Ct2qFqLxMApTFxeOHfnHhf7fafPD+W5dtOxacUBj7aPOeg+MT9ezba1i1Nu6kwgJZm7+ZSOX2jp1AJW7dst1e8jnWW5N4bOH6/9XdOPSwag2m7qSgFbGLz6rMXRocc/bMjWFo3bXeAFJAofOvlK6/rxkxZPYZXbTcViwE4eI+P7kqDiMIWt/KEqLAYYFEIwqAQPBhGhFSt+sn0yz4Gv++cERGzGpNojZeKQiACQEFNqYqMTQMFPUsXJnJowd/wY+j/0nHljIOxpCKOV22JlUYAT4hKgVWO1y98+ojzn5m1oFwzOU+GbRi0nrTIOF6vCCiNwqLRK80Q9b56/xvnPZS7o/uzQT3ANDRAoQFrxuCWcXsFAdh5HWjwEqy795GZVx2Tzy1qnD9dM2IVmsWiB42+1ZNlAl4BAU8mApcGfsW/v/+ZBw9ADXduuHgaWR/ZKCqDkBnbGTf+HaRBa0h4aPEjePG5HYlD+8zW8w8F4EiFkFkMQ2zYwv9DgBg0gxpau+iFEy46KudRgVr2m08fH0Kiw1QZVoozY0BaFRZkbJkKApNBT8ZiLB5RFNeX3V294px8IHEKEa9actTn3LgDPgYqlGJonA/A5wAAPPu1i5fOvOGklLXEwF6/v2jun6oijOHMGS8VQBBR4CkCyhAa/3XHexd+fkZoJUdiLITv3HnwJSokHIvSj5MKZcqAKMMOQ/vmY091XntMh7Agox6EzmrfkqkXRKGkOvjDUwFJIS/OB6rx7MLek+cdoHAw7HQcOQkwS36ZnFvJV1Uxw3FyGQMVptA3VVHWL3qkfNXpeRUJAoB40KBSvq/nyv0aPq/8WNR1vFTIxwJu9a0rz1twqHU5JY5yLtEFAElgyfsLuiD02uEY6sdxUwGkzY8vslfNj0lrEAFFpDWwOMkt/u8LDxVQRKapc22k4g2CsEJmVAggpBSwV7TqrhcPu/ZE77dVqwwaGBQkEj+x4uxjLIw3X/8PKqwQSFCheCNN1wmS2o7BpQ/0Ljh/OmUm3C4c5ENi4qJ/9rcnHW4UjHcX76CymzoqBBYBahYDgCKIp7j/lsfmXH2mt2mQ3yFhyihbj8LG2y/MORagHT3mbl5BEBFQSI0YqlOoKU8u6j3z87MzigwI4AgXTKgIDeq5/8CLIPagJ8xjT2kroAA4ixSAe3/Jwk+ddfxUAQ3iUVEGheE/sWhGxNcemnVRqDKIxiv4o6jsFiCB4bDn6ENZ969rzv55V0kjcAphAKCC7V5R3geW6yuKp8VNyHs/Ua/AHgIkgohsKa4t/GnXRafPABAHIfmQSBtKZZtXwGWxTu754GulGscQ8rgPnxEeuwdIBJT4dNO/vHjS9Z8IfCOm0FBmAtYAICO5wmJSenTd9UUwViKvx+SV4SpG1KioIiNk4kRqQlUeyrjREG4QffCDU4689w1hK+xlZzCLs2mDbeLcL77yhs2EWcYA5ppLb+wGgNnrB0iaxMMQYmRuqmxy87ZryujBuGoRV/5wzYlX/vFABYSM7LbBPIessOE6/YMrrpvhy9J6pQYAoGxAAPc9eNu+h8PTcWEkVZHR1Islym/4s3NLvRVyxaDw6ML+P791UsNWQCyg2q1OZhuhk7yvr1h16UGcZjkZm7o54xU8fVpBX7hqqNIojrI1xXc7O/sXr/67xjQUeuen9x72xTMw0WUQP9zb0c4rEZQzW7RD0durT/2TwaAgu/z+kV4pSuzeWXtl6Zbb75mldjotDM/CNOk7WQLp+d1DSxc8M9PZXN5BgAZw+BjYCVp7LHnoXHvfPsfhJGdbnbWNvEoWA73adwp89bUggdxOIuC4b+s5r3xymV87e+RpGmHE67gzlIZcBQAAOnKotvUu2DIATn55MLvirp43u7+8hViEd6Stqeem/tMthexAdeDS2TzQEQC4NAo5i1FYlNo1AILGZ8GmRyZd4iPKCwCNLW01gvSv/lznvpf/+LxjfFQt7zA2HfCt73wDKqEzHxc/BRITBIa8zjEighLaJW1RPOPg40NX5lkgyVkOYEzqloWN/OLuo1N5r9RtGAujbJUfqkv12VIlQMBAMGdEQGsQFEEloEd5lwk5AxXIU5tvzAk+MDePxz4hiEzofYsRirO8/vUJYenb/zm/o55wffTZteqg7EN/1yHVzA0LGO8FlDnvhIls4/4bNw/x7y4565Xau9ef/mzVWifMtDfDnVF1/YdUoBsqd1UbltmPyhUAeNqeDFCppizCtNcVKSMmZu+yp768tuZWXjL/5UFvn5z3/ar3JC1zEabEZh9kg94n7AdGjIRYDfJc/0uhtwwCgADuqtQjSaIUArHIS78+9wDc+EzPGYeXUNsPBiIA8a7VUaQdzKIEuqRoxTSonI0yM+XGvqAaYVEQhUXhXpfUIKKRV/7HKUdn4buPf+L0NGDVoJxnpYy0Wq8Ek2RIAEx/J0qkUY9O22ZhI0T5IVTD5RvszSsA7BjdqmVHnKYweafv8MmQRbXXg0MVjmULOduXL6te6gpSbyQZLbcq3zcj3YqTtzoSQNzr2wkLi2r+z/P7zgMwdrMp6LDgf/v8wUdorRRwq8VtYLpQZBpUkyioudiPplKf5uOyV5Mzz6hwr/WyEOpQDSxPFviG8/HUmR0N5Tc9GX+hgojMLU+tGwIKxepyTqAU0ugiUpUEHaConBHmPcgVUsMipTr0CfU8QX8VmsjE9EczF21Uz136zvc+qbRChca0GKWCVkoFkUI0CnYuZ3eubXdfjtJCEdizgA4GnljzvZwNNUP58PAHh8Dsmy7lsdwnDGOv/kMRFkCFHhBw91qXORKPqNBl/PSK74akFTkINGeQE9YkbZrMI6PZVuFvO9NwV8fogB0aEO/U0ue+HggHRAbZYcgWa0Fpok3HTmwEBBCQYbgy2HVt8UaL88otffG6mezz5DEUIQQOEMS3675itFeGmeyeLKi0kA7dS8sun0UYNEOjAMQIcBZbgnYFCADQIyAM18q4J68giOWcXf74F+aCOAlZA3mlFAO5UEkbWrHhx+zUHe55N5IGFaarXjpuhqdIMyoAFQl5A2CUpwk3yzswPLHaHpk9JKEkOe16nvjYuR7EUwRMhlhxyEQaedxTpj3gI2dnOszUh7+KLveGYhG7pRqwUD3KapALNdIE+9OxUBGvzfolH3wRyOihJFRT9WZtwlJGJakOevRtvLz/qA2AAQ2tWv1v7AtJYyqAr+Vjsb5oQo9FBd6o9gnLRwYoW/+bpd9NERIsbh567ODyXzYHbpt9xmrrVVqvM/qPsm8jFX57+fWRApWL4ynJ9MeTe0qra6/8/fLghaNPfa4YjP8+aexU0uUPzj8wCoGSbCu/96Wr16hNr8+cBlsf9T+8Va93u/axf0gqb3393SxTSSMOcYp0L77mb5/LXI5mdvQpEzcBqS2yIgAySrddmEViwzT2RmzMWYzsQvfmHf+45eYDvtoFzCHEM+xZ+WWX6jDHtA9fG31zPz/hpPUmicFFaaB2UAnFKaMw54F1TFnkk1LoNt752RM6zvzFzdd3lg03fTFS07pBkroO/JmnIXpRPEFhURChczqAvspIgCznA1S81RvbBNFascXe24/4dAd0XX7kzZMNqmIHWolN2WS5aq1iwsCYYO8NQougFMEU2PouNUIlBAArakqMMaQmtNhh+n9evKyDGh+Wj53+QN0CoIbNG0rdczatWyMn+qE6ZfUJTyaDCG3mghBGpy0q8Y26rQ1QDkGyBtYe3vhNx7ow2Xae8ViDt7iNX4s+s+ECdVjx+MULnO4o6rBoJrqD+tiFuUHQ4Wa7o4BkDQCkxRklZIB6V/7qVgi9skFAax4+7nQEEGL0SVmyMPROiwqAJloloPRO1fVSVp/MI15B1RwE2mj7Q0wQGpKuf+gWjChUKvB+ZtcjJOlQYgzGk7UqQmJyYaRqgzxhiXv77kB9HOOvvyuwvX9uimTpXRWo/GjJQ4PUSJ+79HVq1l2VrKtRuuxixyJC3lrnmMSl7LyIeNfaAGGvGCS74OS3MgfnrRl5q5xL6dTBVVMHvrLs4Q4I19x900FWR1zySbngIV9cP5spYIoEAFC0Bg0yge+Tklgxgqgy1DYdNb0+ae3c/UeopHH9rElLSmHlpo2ztnT+/u6/ngvaiAJdIBcLpfVmIAC82yB3nMhDKjFiLaLB6knZZLffX6weoaKbP3vpvm6SZL8rKnrTP8/7FFWxLFlIwjbm3JwCCgDodn3TZynGRhCWkujRDSdE3tbf/3AkV2jD8VfbGic1bkr9gTmhNqDi7c9VAYzMWFVboCEM9NnLXTO74IZqVYQr/2BG5ovJYKcqisQ9JVO46KyijQCERVEAQjYPIERmDx3BOKHTCAdyEeoNKy+Lg6Hcw/3zRgIkzddO0ZLk3EwAgBIHIE4ZaprAZ/k8s0FjAKRt3QaTKWsYKL/UfSRKOfvGvP23f9chUDpky0AIUL13/pTefaplYAgAdF6BDlHIswRI24SwDdB58B7VJL5/diVtPnr1t68pjuSKTX9U+Zb4dec8WBdf9w3OhG3imZpWOEuEiW0zE6b2oOqFRJwfnowf1Jcy4fZDhIx7+fx+6H6yu4RO67bckbYKQcBm/n8B2REevWZUCAsAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_37.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, the degree of angle A is ()
Choices:
A:25°
B:35°
C:15°
D:50°
|
Như hình vẽ, số đo góc A là ()
Lựa chọn:
A: 25°
B: 35°
C: 15°
D: 50°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the degree of angle A is ()
Choices:
A:25°
B:35°
C:15°
D:50°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the degree of angle A is ()
Choices:
A:25°
B:35°
C:15°
D:50°
|
As shown in the figure, the degree of angle A is ()
Choices:
A:25°
B:35°
C:15°
D:50°
|
184
|
37
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIoAAABRCAAAAAAoFWFUAAAN/UlEQVR4nL1aaZRdxXGu6u67vHU0kt4IpBFGMgYhgsMSs2MwEDA47GKRiAnBLHYIJLEPsbGdEy/HhJOcnGMfgsEYTGwhwDaLBDiAgsxmCSJMUGQhLHakkdDMSMzM2+693V1V+THSaLSFNzPP+f6+V32/W1X9dVX1RYa2AlkQCe69ZR0AfH9+R4Ct2qFqLxMApTFxeOHfnHhf7fafPD+W5dtOxacUBj7aPOeg+MT9ezba1i1Nu6kwgJZm7+ZSOX2jp1AJW7dst1e8jnWW5N4bOH6/9XdOPSwag2m7qSgFbGLz6rMXRocc/bMjWFo3bXeAFJAofOvlK6/rxkxZPYZXbTcViwE4eI+P7kqDiMIWt/KEqLAYYFEIwqAQPBhGhFSt+sn0yz4Gv++cERGzGpNojZeKQiACQEFNqYqMTQMFPUsXJnJowd/wY+j/0nHljIOxpCKOV22JlUYAT4hKgVWO1y98+ojzn5m1oFwzOU+GbRi0nrTIOF6vCCiNwqLRK80Q9b56/xvnPZS7o/uzQT3ANDRAoQFrxuCWcXsFAdh5HWjwEqy795GZVx2Tzy1qnD9dM2IVmsWiB42+1ZNlAl4BAU8mApcGfsW/v/+ZBw9ADXduuHgaWR/ZKCqDkBnbGTf+HaRBa0h4aPEjePG5HYlD+8zW8w8F4EiFkFkMQ2zYwv9DgBg0gxpau+iFEy46KudRgVr2m08fH0Kiw1QZVoozY0BaFRZkbJkKApNBT8ZiLB5RFNeX3V294px8IHEKEa9actTn3LgDPgYqlGJonA/A5wAAPPu1i5fOvOGklLXEwF6/v2jun6oijOHMGS8VQBBR4CkCyhAa/3XHexd+fkZoJUdiLITv3HnwJSokHIvSj5MKZcqAKMMOQ/vmY091XntMh7Agox6EzmrfkqkXRKGkOvjDUwFJIS/OB6rx7MLek+cdoHAw7HQcOQkwS36ZnFvJV1Uxw3FyGQMVptA3VVHWL3qkfNXpeRUJAoB40KBSvq/nyv0aPq/8WNR1vFTIxwJu9a0rz1twqHU5JY5yLtEFAElgyfsLuiD02uEY6sdxUwGkzY8vslfNj0lrEAFFpDWwOMkt/u8LDxVQRKapc22k4g2CsEJmVAggpBSwV7TqrhcPu/ZE77dVqwwaGBQkEj+x4uxjLIw3X/8PKqwQSFCheCNN1wmS2o7BpQ/0Ljh/OmUm3C4c5ENi4qJ/9rcnHW4UjHcX76CymzoqBBYBahYDgCKIp7j/lsfmXH2mt2mQ3yFhyihbj8LG2y/MORagHT3mbl5BEBFQSI0YqlOoKU8u6j3z87MzigwI4AgXTKgIDeq5/8CLIPagJ8xjT2kroAA4ixSAe3/Jwk+ddfxUAQ3iUVEGheE/sWhGxNcemnVRqDKIxiv4o6jsFiCB4bDn6ENZ969rzv55V0kjcAphAKCC7V5R3geW6yuKp8VNyHs/Ua/AHgIkgohsKa4t/GnXRafPABAHIfmQSBtKZZtXwGWxTu754GulGscQ8rgPnxEeuwdIBJT4dNO/vHjS9Z8IfCOm0FBmAtYAICO5wmJSenTd9UUwViKvx+SV4SpG1KioIiNk4kRqQlUeyrjREG4QffCDU4689w1hK+xlZzCLs2mDbeLcL77yhs2EWcYA5ppLb+wGgNnrB0iaxMMQYmRuqmxy87ZryujBuGoRV/5wzYlX/vFABYSM7LbBPIessOE6/YMrrpvhy9J6pQYAoGxAAPc9eNu+h8PTcWEkVZHR1Islym/4s3NLvRVyxaDw6ML+P791UsNWQCyg2q1OZhuhk7yvr1h16UGcZjkZm7o54xU8fVpBX7hqqNIojrI1xXc7O/sXr/67xjQUeuen9x72xTMw0WUQP9zb0c4rEZQzW7RD0durT/2TwaAgu/z+kV4pSuzeWXtl6Zbb75mldjotDM/CNOk7WQLp+d1DSxc8M9PZXN5BgAZw+BjYCVp7LHnoXHvfPsfhJGdbnbWNvEoWA73adwp89bUggdxOIuC4b+s5r3xymV87e+RpGmHE67gzlIZcBQAAOnKotvUu2DIATn55MLvirp43u7+8hViEd6Stqeem/tMthexAdeDS2TzQEQC4NAo5i1FYlNo1AILGZ8GmRyZd4iPKCwCNLW01gvSv/lznvpf/+LxjfFQt7zA2HfCt73wDKqEzHxc/BRITBIa8zjEighLaJW1RPOPg40NX5lkgyVkOYEzqloWN/OLuo1N5r9RtGAujbJUfqkv12VIlQMBAMGdEQGsQFEEloEd5lwk5AxXIU5tvzAk+MDePxz4hiEzofYsRirO8/vUJYenb/zm/o55wffTZteqg7EN/1yHVzA0LGO8FlDnvhIls4/4bNw/x7y4565Xau9ef/mzVWifMtDfDnVF1/YdUoBsqd1UbltmPyhUAeNqeDFCppizCtNcVKSMmZu+yp768tuZWXjL/5UFvn5z3/ar3JC1zEabEZh9kg94n7AdGjIRYDfJc/0uhtwwCgADuqtQjSaIUArHIS78+9wDc+EzPGYeXUNsPBiIA8a7VUaQdzKIEuqRoxTSonI0yM+XGvqAaYVEQhUXhXpfUIKKRV/7HKUdn4buPf+L0NGDVoJxnpYy0Wq8Ek2RIAEx/J0qkUY9O22ZhI0T5IVTD5RvszSsA7BjdqmVHnKYweafv8MmQRbXXg0MVjmULOduXL6te6gpSbyQZLbcq3zcj3YqTtzoSQNzr2wkLi2r+z/P7zgMwdrMp6LDgf/v8wUdorRRwq8VtYLpQZBpUkyioudiPplKf5uOyV5Mzz6hwr/WyEOpQDSxPFviG8/HUmR0N5Tc9GX+hgojMLU+tGwIKxepyTqAU0ugiUpUEHaConBHmPcgVUsMipTr0CfU8QX8VmsjE9EczF21Uz136zvc+qbRChca0GKWCVkoFkUI0CnYuZ3eubXdfjtJCEdizgA4GnljzvZwNNUP58PAHh8Dsmy7lsdwnDGOv/kMRFkCFHhBw91qXORKPqNBl/PSK74akFTkINGeQE9YkbZrMI6PZVuFvO9NwV8fogB0aEO/U0ue+HggHRAbZYcgWa0Fpok3HTmwEBBCQYbgy2HVt8UaL88otffG6mezz5DEUIQQOEMS3675itFeGmeyeLKi0kA7dS8sun0UYNEOjAMQIcBZbgnYFCADQIyAM18q4J68giOWcXf74F+aCOAlZA3mlFAO5UEkbWrHhx+zUHe55N5IGFaarXjpuhqdIMyoAFQl5A2CUpwk3yzswPLHaHpk9JKEkOe16nvjYuR7EUwRMhlhxyEQaedxTpj3gI2dnOszUh7+KLveGYhG7pRqwUD3KapALNdIE+9OxUBGvzfolH3wRyOihJFRT9WZtwlJGJakOevRtvLz/qA2AAQ2tWv1v7AtJYyqAr+Vjsb5oQo9FBd6o9gnLRwYoW/+bpd9NERIsbh567ODyXzYHbpt9xmrrVVqvM/qPsm8jFX57+fWRApWL4ynJ9MeTe0qra6/8/fLghaNPfa4YjP8+aexU0uUPzj8wCoGSbCu/96Wr16hNr8+cBlsf9T+8Va93u/axf0gqb3393SxTSSMOcYp0L77mb5/LXI5mdvQpEzcBqS2yIgAySrddmEViwzT2RmzMWYzsQvfmHf+45eYDvtoFzCHEM+xZ+WWX6jDHtA9fG31zPz/hpPUmicFFaaB2UAnFKaMw54F1TFnkk1LoNt752RM6zvzFzdd3lg03fTFS07pBkroO/JmnIXpRPEFhURChczqAvspIgCznA1S81RvbBNFascXe24/4dAd0XX7kzZMNqmIHWolN2WS5aq1iwsCYYO8NQougFMEU2PouNUIlBAArakqMMaQmtNhh+n9evKyDGh+Wj53+QN0CoIbNG0rdczatWyMn+qE6ZfUJTyaDCG3mghBGpy0q8Y26rQ1QDkGyBtYe3vhNx7ow2Xae8ViDt7iNX4s+s+ECdVjx+MULnO4o6rBoJrqD+tiFuUHQ4Wa7o4BkDQCkxRklZIB6V/7qVgi9skFAax4+7nQEEGL0SVmyMPROiwqAJloloPRO1fVSVp/MI15B1RwE2mj7Q0wQGpKuf+gWjChUKvB+ZtcjJOlQYgzGk7UqQmJyYaRqgzxhiXv77kB9HOOvvyuwvX9uimTpXRWo/GjJQ4PUSJ+79HVq1l2VrKtRuuxixyJC3lrnmMSl7LyIeNfaAGGvGCS74OS3MgfnrRl5q5xL6dTBVVMHvrLs4Q4I19x900FWR1zySbngIV9cP5spYIoEAFC0Bg0yge+Tklgxgqgy1DYdNb0+ae3c/UeopHH9rElLSmHlpo2ztnT+/u6/ngvaiAJdIBcLpfVmIAC82yB3nMhDKjFiLaLB6knZZLffX6weoaKbP3vpvm6SZL8rKnrTP8/7FFWxLFlIwjbm3JwCCgDodn3TZynGRhCWkujRDSdE3tbf/3AkV2jD8VfbGic1bkr9gTmhNqDi7c9VAYzMWFVboCEM9NnLXTO74IZqVYQr/2BG5ovJYKcqisQ9JVO46KyijQCERVEAQjYPIERmDx3BOKHTCAdyEeoNKy+Lg6Hcw/3zRgIkzddO0ZLk3EwAgBIHIE4ZaprAZ/k8s0FjAKRt3QaTKWsYKL/UfSRKOfvGvP23f9chUDpky0AIUL13/pTefaplYAgAdF6BDlHIswRI24SwDdB58B7VJL5/diVtPnr1t68pjuSKTX9U+Zb4dec8WBdf9w3OhG3imZpWOEuEiW0zE6b2oOqFRJwfnowf1Jcy4fZDhIx7+fx+6H6yu4RO67bckbYKQcBm/n8B2REevWZUCAsAAAAASUVORK5CYII=",
"path": "images_version_5/image_37.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, AB parallel CD, AO = PO, then the degree of angle A is ()
Choices:
A:25°
B:35°
C:15°
D:50°
|
Như hình vẽ, AB song song với CD, AO = PO, thì số đo góc A là ()
Lựa chọn:
A: 25°
B: 35°
C: 15°
D: 50°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB parallel CD, AO = PO, then the degree of angle A is ()
Choices:
A:25°
B:35°
C:15°
D:50°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB parallel CD, AO = PO, then the degree of angle A is ()
Choices:
A:25°
B:35°
C:15°
D:50°
|
As shown in the figure, AB parallel CD, AO = PO, then the degree of angle A is ()
Choices:
A:25°
B:35°
C:15°
D:50°
|
185
|
37
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAACOQAAAX/CAYAAAAJvbQ3AAEAAElEQVR4nOzdd1gU1/c/8PfSO0i3gb2gqNgVpBgLYsNuLLGlGI09Gj+JscbEElssUROj2BK7UUSsSLGCgGDBghRFkaJIrzu/P/LTr8rcZctsw/N6nn0enbt75uzs7DJz58y9Io7jOBBCCCGEEEIIIYQQQgghhBBCCCGEEEIEoaPuBAghhBBCCCGEEEIIIYQQQgghhBBCCKlOqCCHEEIIIYQQQgghhBBCCCGEEEIIIYQQAVFBDiGEEEIIIYQQQgghhBBCCCGEEEIIIQKighxCCCGEEEIIIYQQQgghhBBCCCGEEEIERAU5hBBCCCGEEEIIIYQQQgghhBBCCCGECIgKcgghhBBCCCGEEEIIIYQQQgghhBBCCBEQFeQQQgghhBBCCCGEEEIIIYQQQgghhBAiICrIIYQQQgghhBBCCCGEEEIIIYQQQgghREBUkEMIIYQQQgghhBBCCCGEEEIIIYQQQoiAqCCHEEIIIYQQQgghhBBCCCGEEEIIIYQQAVFBDiGEEEIIIYQQQgghhBBCCCGEEEIIIQKighxCCCGEEEIIIYQQQgghhBBCCCGEEEIERAU5hBBCCCGEEEIIIYQQQgghhBBCCCGECIgKcgghhBBCCCGEEEIIIYQQQgghhBBCCBEQFeQQQgghhBBCCCGEEEIIIYQQQgghhBAiICrIIYQQQgghhBBCCCGEEEIIIYQQQgghREBUkEMIIYQQQgghhBBCCCGEEEIIIYQQQoiAqCCHEEIIIYQQQgghhBBCCCGEEEIIIYQQAVFBDiGEEEIIIYQQQgghhBBCCCGEEEIIIQKighyiVN7e3hCJRJUely5dUndqhGiEevXq8X5HkpOT1Z0a+cClS5d4Pytvb291p0aqwHEcLl68iEWLFsHPzw9NmjSBvb09DA0NeT/TmTNnVoqxePFi3ucuXrxY5e+HEEIIqY6Sk5N5/9bWq1dP5ljjx4/njbVr1y7B81Y3OkYlhBBCiJDo2IJoG+pf/7hRny0hRGh37tzBmjVrMGLECLRo0QK1atWCqakp729NmzZtpIqpp9yUCSGEEELUZ8eOHVi5ciUePnyo7lQIIYQQQoicysrKkJOTg4KCAhQVFUFfXx/GxsawtbWFoaGhutMjRCEvX75EQUEBCgoKYGBgAFNTU1hZWdG+Taq14uLit7/rZWVlMDU1hbm5OaysrNSdGiGEEEII+QiFh4fjxx9/RGhoqOCxVV6Qk5SUhIYNG4LjON72fv364eTJkyrOihBCCCHVSUFBAcaOHYtjx46pOxVCiILy8/Ph6OiIgoIC3vaWLVsiPj5e6XkkJSUxc5CWoaEhLCwsYGlpCSMjI4EyI4SQ6iUnJwchISG4cuUKIiMj8fjxY6SlpUEsFvM+39raGk2aNEHLli3RpUsXeHl5oWHDhgrn8eDBA5SWlsr0GpFIBAMDAxgaGsLQ0JB+75VMG/sYExMTcf78eYSHhyMuLg6JiYkoLCys9DwdHR3UqVMHTZo0QdeuXeHl5QVPT0/o6dG9lR+DtLQ0vHr1Sq7XGhgYwNLSUqN+f0pKSnDp0iWEhobi2rVrePDgAZ49e8b73TU3N0fDhg3RunVreHp6omfPnqhbt64asiaEEEIIIR+LZcuWYcmSJaioqFBKfJWfxQUEBDBPlAEgODgYL168gIODgwqzIoQQQkh1MmHCBCrGIaSaOHz4sMRCmNu3b+PmzZto166dUvOYMGGCoHdIGBoawsXFBW3atEHbtm3h7++POnXqCBafEEK0SUVFBQ4fPozdu3fj3LlzKCsrk/q1L1++xLVr13Dt2jX8+eefAIDmzZtj6NChmDhxolzTngFAr169kJKSItdr32VhYQEHBwfUqVMHzZs3R7NmzeDm5oYOHTrQCCgK0pY+xpKSEuzatQt//fUXbty4IdVrxGIxUlNTkZqaivPnzwMA7OzsMHLkSEyfPh2NGjVSZspEzX744QcEBAQoHMfQ0BD169dHhw4d0KFDB3h6eqJ169YCZCiduLg4bNq0CYcOHUJOTo5Ur8nLy0NsbCxiY2MREBAAkUiEbt26YdKkSRg1ahQVpRFCCCGEEEFt2rQJCxcuVOo6VHoEy3Ecdu/eLfE55eXl2Lt3L+bMmaOirAghhGiz5ORk7Nq1q9LyevXqYfz48SrPh6jfrl27cOjQIXWnQQgRCN9vPN9zlF2QI7SSkhLExMQgJiYGO3fuxIwZM+Dj44PJkydj6NCh6k6PEEJUQiwWY8eOHfj555+RnJwsWNx79+5h2bJlWL58Ofz8/LBw4UJ06NBBsPiyyM3NRW5uLh4+fIiQkJC3y42MjNCxY0cMHDgQw4YNoxEgZKQNfYxisRjbt2/HsmXL8OzZM4XjZWZmYuPGjdiyZQtGjx6NX375BbVq1RIgU1JdlZSUICEhAQkJCdizZw8AoEOHDvj666/x6aefKm0EncTERMybNw/Hjh2TWDQnDY7jEBYWhrCwMCxZsgTLli3DqFGjBMpUu1D/F9E269ev5y3GmzlzJk1PRwghRCM8fPgQs2fPVvp6VFqQExoaiqSkpCqfFxAQQAU5hBBCpJKcnIwlS5ZUWu7l5UUdEh8hjuOwatUqZruvry8GDhyIZs2awdLSEvr6+pWeY2trq8wUCSEySEpKQlhYWJXP+/vvv7FmzRoYGBioICvlEIvFuHDhAi5cuIDu3btj8+bNaNasmbrTIoQQpYmJicGXX36JqKgopa1DLBYjMDAQgYGB8Pf3x/r16+Hs7Ky09cmiuLj47UXmb7/9Ft27d8e3334LX19fdaemFTS9j/HBgweYMGECrly5InjsiooK7N69G//++y/Wrl2LiRMnCr4OUn1FRkYiMjISv/zyC/bs2YNOnToJFpvjOKxduxY//vgjioqKBIv7xuPHjzF69Gjs3bsXf/zxB2rXri34OjQZ9X8RbbN+/Xre0QbHjx9PBTmEEEI0wtq1a5kj9Lq6umL06NFo06YNbGxseIvZjY2NpVqPSgtypLm7FQDi4+MRHR2Ntm3bKjchQgghhFQr165dw7179yotF4lE2L9/P0aOHKmGrAgh8qpqKoo3srOzERgYiMGDB6sgK+W7ePEi2rZti3379mHQoEHqTocQQgS3fft2TJ8+HSUlJSpb5/Hjx3HmzBlkZGTAzMxMZeuVBsdxb4sy3dzcsGnTJnTt2lXdaWk0Te5jDAoKwqefforc3Fylruf169eYNGkSrl27hs2bN/PebEAIy8OHD+Hu7o4lS5bghx9+UDhefn4+xo4di+PHjyueXBVOnz6N9u3b49ixY+jcubPS10cIIYQQQqqf8vLyt6NIfmjKlCnYuHEjdHR0BFmXMFGkkJ+fj8OHD0v9fGlPrAkhhBBC3oiIiOBd7u/vT8U4hGgZaaaieFd1O38oKirC8OHDcebMGXWnQgghgpozZw6++uqrKotxTExMMHDgQKxevRpnz57Fw4cP8erVK5SWlqK4uBhZWVm4c+cOjh8/jsWLF8PLy6vKgoSioiKUl5cL+XYEFxMTAw8PD0yePBnFxcXqTkcjaXIf465du9C/f/8qi3GcnZ0xbdo0HDlyBPfu3cOrV69QVlaGgoICpKWlISQkBL/++it69OhRZSfwH3/8gX79+tH+QmRWUVGBBQsWYPHixQrFycnJgbe3d5XFOHp6eujTpw/Wr1+PsLAwPH/+HIWFhSgrK8OrV68QHx+PgwcPYvLkyVWOfpOeng5vb2+cPn1aodwJIYQQQsjHKSYmBgUFBZWWOzg4YP369YIV4wAqHCHn8OHDvG+K5c2w83R3ByGkOktOTlZ3CoRUK5GRkbzLFR01Y/HixQp3UhJCZCPtVBRvnD59GhkZGbC3t1diVpU5OztL9fec4zgUFBQgLy8PiYmJiIuLw8mTJ3H+/HnmxeHy8nKMGTMGt2/fhoODg8CZE0KI6k2bNg2bNm2S+BwXFxfMmzcPQ4cOhampKfN5hoaGsLGxgYuLCwYOHIhFixYhOzsbBw8exJYtW3D79m2h0wfw39Qgly5dkvickpISFBcXIzc3F8+fP8eTJ09w+/ZtxMTEICwsDK9evZL4eo7jsG3bNkRFReHYsWOoW7eugO9A+2lqH+P+/fsxadIkiMVi5nPatGmDn376CX369OHt4NXT04OJiQlq1aoFb29vzJkzBykpKfj111+xdetW5jHD2bNnMXjwYPz777/Ul1rNVTV6ZFlZGV6+fInnz5/jypUrCAoKQlBQkMTXLV26FO3atUP//v1lzicvLw+9evXCzZs3mc8xNDTE9OnTMXPmTNSqVYv3OVZWVrCyskLLli0xbNgwbNq0CcePH8eCBQuQkJDA+5qSkhIMHjwYJ0+eRI8ePWTOnRBCCCGEfLxY15L69esn+DmVykbIYd2NwpqnNisrCydPnlRiRoQQQgipbtLT03mXN2/eXMWZEEIUxTp/aNWqFUxMTCotLy8vx969e5WclfxEIhHMzMxQs2ZNeHh4YMqUKTh9+jQePHiAvn37Ml+XlZWFJUuWqDBTQghRjtWrV0ssxrGwsHhbSDNu3DiJxTgsNjY2+PrrrxEXF4djx46hcePGiqQsN0NDQ1haWqJu3bro2LEjhgwZgkWLFuH48ePIyspCREQEPv/88yqnzrp58ya8vb2Rlpamosy1gyb2MV67dg0TJkxgFuPo6+vj119/xc2bN9G3b1+Z7rZ0dnbGxo0bER0dDRcXF+bzTp8+jVmzZsmcO6le9PX14eDggDZt2mDKlCkIDAzE7du34e7uznwNx3GYMmUKCgsLZVoXx3EYO3Ys82IGALRv3x63b9/GqlWrmMU4fHR1dTFkyBDEx8dj4cKFzO9McXExhg4dikePHsmUOyGEEEII+bip8lqSSgpykpKSEBYWxtu2YMEC5rzYAQEBykyLEEIIIdUM625jKysr1SZCCFGIpKkovvjiC/j7+/O2aeP5Q/369XHy5El88cUXzOcEBARUOfUFIYRosnPnzmH+/PnM9mbNmuHmzZv4+uuvIRKJFF6fSCSCv78/4uPjsWTJEujpqWyA6Crp6OjA3d0df/zxB5KSkjBnzhyJ+T1+/BiffPIJ/R34/zSxjzErKwtDhw5FaWkpb7uFhQXOnTuHOXPmKDTsuaurK27cuCFxJJDNmzdj3759cq+DVE8uLi4ICQnBZ599xnzO06dP8eeff8oUd8WKFfj333+Z7UOHDsXly5fRqFEjmeK+S09PD0uWLMGxY8dgaGjI+5zXr19j8ODBVU6FSAghhBBCyBuqvJakkoKcgIAA3mExbW1t4evri7Fjx/K+7vTp08jMzFR2eoQQQgipJvLz83mX6+rqqjgTQogiWFNR6OnpYeTIkczzh7i4OMTExCg7PcGJRCJs3rwZTZs25W0vLCzE+fPnVZwVIYQIIzc3V+I0Pi1btlT4gi2LoaEhFi5ciLCwMDg5OQkeX1G2trb49ddfcf36dYnv//79+xILNz8mmtjHOGvWLOYoRkZGRggODoaXl5cg6zI1NUVgYCA8PT2Zz5k+fToyMjIEWR+pPvT19fHHH38wi9YAYPv27VLHu3fvnsRpnQcPHowDBw7AwMBAljSZBgwYgCNHjjDP7ePj47Fs2TJB1kUIIYQQQqo/VV5LUnpBDsdx2L17N2/byJEjoaenhxEjRvAenJeVlWn0sPOEEEII0Sx8nfOEEO3DmorC19cXtra26NmzJxwdHWV6rabT19fHvHnzmO3Xrl1TYTaEECKc77//Hk+ePOFtc3R0xNmzZ2Ftba3UHLp06YLr16+jbdu2Sl2PvNq2bYurV6+iQ4cOzOccPHgQ//zzjwqz0jya2Md48eJFiXF37NiBLl26CLpOQ0NDHDt2DPXq1eNtf/nyJebMmSPoOkn1YGBggA0bNjDb79y5I/XUT5MnT2aOCtW6dWvs2bNHoRGh+PTt2xerVq1itq9atQoJCQmCrpMQQgghhFRPqryWpPSCnNDQUCQlJfG2jRkzBgBQo0YN9OvXj/c52jjsPCGEEEKUKy0tDbdv3670KCsr433+gwcPeJ//4UOTvH79GklJSbh//z7S0tJo+G3y0ZA0FcWb8wddXV2MGjWK9zn79+9n/hZouj59+jDbHj9+rMJMlCcrKwuPHz/GgwcPkJ6ezhwxgxBSPSQlJTFHXBCJRNi3bx9q1qypklwcHR0RGhoKU1NTlaxPVra2tggKCpI4Us78+fNRXFyswqw0iyb2MS5YsIDZNnr0aObxiqKsra2xc+dO5hRv+/fvx71795SybqLd2rdvL3HEpsuXL1cZ48yZM8zjdUNDQ+zbtw8mJiZy5yjJrFmz0L17d962srIyLFmyRCnrJYQQQrQFx3FIT0/HgwcPkJiYiMzMTLqJlXzUcnJyeK8F5eTk8D6fde3pwwff6O4sSp9Em3Wy27hxY3Tq1Ont/8eOHYujR49Wet6tW7cQGxuLNm3aKCtFAP/9QIWHh+PatWuIiYnB3bt38erVK+Tm5iI/Px8GBgYwMTGBqakpatWqBWdnZ9SvXx9t27ZFly5dUKdOHaXmp6iysjJcvHgRkZGRiI6Oxv379/H69Wvk5uaisLAQRkZGMDY2hpmZGerUqQNnZ2c0aNAA7du3R+fOnWFvb6+SPEtKSnDu3DkEBQUhNjYWiYmJeP36NXR1dWFvbw87Ozu4ubnBz88Pn3zyCczMzFSSV3FxMc6ePYvQ0FDExsbi8ePHyM7ORmFhIQwMDGBmZgYnJyc0bdoUHh4e8PX1Rf369VWS28coPj4ex48fx9WrV3H37l1kZ2ejpKQE1tbWsLe3R/369dGrVy/4+fnR58BQUVGB0NBQBAYG4ubNm3j48CFycnLAcRzs7Oxgb28PFxcX+Pn5oXfv3qhRo4a6U34rLS3tvbkdWR2yBQUFMhdYNG3aFPr6+grl967ExEQcO3YMERERuH37NjIzM1FYWIgaNWrAzs4OdevWRY8ePeDn5wcXFxfB1iuN27dv48KFC7h69SoePnyIJ0+eID8/H6WlpTAxMYGtrS0aNmyI9u3bo3v37ujevbtGTfv0ww8/yNSh3rt3b6mep86Tk6KiIhw6dAgnTpzA5cuXkZ6e/l67jo4OGjZsCHd3dwwaNAh9+/bl/UwuXbrEG9/b21sJWWufly9f4syZM7h48SLu3r2LpKQk5ObmoqSkBFZWVmjYsCEWLlwIPz8/mWMnJibi3LlzuHLlCu7fv4/U1FTk5eWhqKgIxsbGsLa2RoMGDeDm5gYfHx/06tULRkZGSniX2m337t2830ULCwsMGDDg7f/Hjh2LtWvXVnpeVlYWTp06BX9/f2WmqRQ1a9aEiYkJCgsLK7W9fv1aDRkp7vHjx/jnn39w+vRpxMXFITc39712Y2NjtG7dGn369MG4cePg7Oys1HwKCwtx5coVxMTE4N69e7h37x7S09ORm5uLvLw8iEQiGBsbw8HBAc7OzmjTpg08PDzwySefqP0ifkVFBS5fvowzZ84gJiYGDx48QHZ2NvLz82FkZITatWvD19cX69evlzpmaWkpbty4gaioqLfbIy0tDbm5ucjNzQXHcTA2NoadnR2cnJzQqlUrdOnSBb1791bKnNraqKKiAhEREQgNDUVUVBQSExORnp6OgoICiMVimJqaombNmmjcuDG6dOkCX19fpfdvaJKffvqJWSQ5ZswY5kVVZVFVH4K8bG1t8c8//6Bz584oLy+v1J6SkoI//vgD06ZNU0N26qdpfYznzp3D1atXedvMzc2xbt06QdbD4u3tjVGjRmHfvn2V2sRiMZYvX04jjxNePXv2RGhoKG+bNP0oS5cuZbbNnDkTLVq0kDu3qryZ6tXV1ZX3d/LgwYNYvHgxcypYbUL9X8LQtv4vTd6WkhQUFFTaRyXdNMeaJoSPvb29oNen8vPzERQUhODgYMTFxSE5ORl5eXkwNDSEnZ0dHBwc0LFjR/j5+cHLywuGhoaCrbsqb/qsIiIicOfOHSQlJeHVq1dvr0NZWFjA2dkZLVq0gKenJ/r16wdbW1uV5Se04uJiBAYG4vTp04iNjUVycjJyc3Ohr68PS0tLNGjQ4G1/Qc+ePdXeh1ZSUoKQkBCEhYUhOjoaSUlJyMjIQEFBAUQi0dvrq02aNIG7uzv8/PzQpEkTleSWlJSEPXv24MyZM4iNja3Ur2RqaoqWLVuid+/eGDFiBO/vR3p6Ou9Ic46OjmjWrJnScgeAyMhIBAcHIyoqCvfv30dGRgby8/Ohr68PR0dHdOjQQa7RQjX5M3sjPz8f586dQ3h4OOLi4pCUlITs7GwUFBRAV1cX5ubmcHJyQvPmzeHh4YF+/fppfE1CVVR9zf348eOYMGGC1M9fsGCBxBsv3ggJCZH+mgunRPn5+ZyZmRkHoNJj6dKl7z23pKSEs7a25n3ujBkzlJbjy5cvuQULFnBOTk6865b24eTkxM2cOZO7du2a0nKVx5MnT7gZM2ZwdnZ2Cr2/pk2bcj/88AMXHx8v0/q9vLx444WEhLz3vNLSUm716tWco6Oj1DlZWFhwK1eu5IqLiwXcYu9LSUnhpkyZwllYWMi0vUQiEefh4cGdPHlS7nWXl5dzlpaWlWLr6elxubm5csUMCgpi5qxI3BMnTvDG9Pf3r/K1O3fu5H3tuHHjKj330qVLnKenp0yfxeDBg7nExES53pcqODs78+adlJQkU5xx48bxxtm5c+d7zxOLxdyOHTu4hg0bSr0NDQ0Nue+++457/fq1cG9cAaz3KsRD0nYPCQnhfY2Xl1el58bGxnL9+/fnRCKR1Ov29vbmYmJilLbdOI7jioqKuE2bNnEuLi4ybxt7e3tuyZIlXE5OjlJzlJay9gOWRYsW8T5/0aJFCr+X0tJSbs2aNczjINajYcOG3N9//10pnqzvjY8sv83yEur3T9o4ycnJ3MSJEzkjI6Mqt+26deukXn95eTm3Z88erkOHDjLvb5aWltysWbO458+fy/SeqzOxWMw1aNCAd3tNnDix0vNbtmzJ+9yBAwcKnhvruNbZ2VnQ9dSqVYt3PX5+foKuR17S/h6mpaVxn376Kaerqyv1d0JXV5cbO3Ysl5aWJmjODx484H766SeuW7dunIGBgVx/H4yNjbkJEyZw9+7dEywvabdlaWkpt27dOq5evXpV5tm6desq1/v06VNu7dq1XM+ePTkTExO5toeenh43dOhQ7vr164Jtj6SkJMG+Y9IeGyvi+fPn3Lx58zgHBweZt5+Liwu3a9curry8XOE8ZDlGVbVXr15xxsbGvPnp6+tzqamp6k5RItYxhiq27Zw5c5j7T9OmTTmxWKz0HDSNJvYxDho0iPk5LV68WLD1SJKUlMTp6enx5mBgYMBlZWWpJA8iLEnnu0I4c+YMM/6IESMkvvbWrVvM11paWqqsz2DSpEnMPGbPnq2SHJSN+r/kpyn9X9VhW0qL9V6FeFTV9yZtv1BeXh73ww8/8F5zYT0cHBy4P/74g6uoqFDexuM4LiwsjOvfvz+nr68v07bR09PjhgwZojH7gbSKioq45cuXc7a2tjJ9N3/55ReupKTkvVjK7LN9IzExkZs8eTJnZWUl8/7buXNn7vjx44Ll8qHk5GRu5MiRnI6OjtQ5iUQirn///tzDhw/fiyVUf7C0ccRiMbdr1y6uRYsWVeZsaWkpUw6a/Jm9ERsby40ePVrmfhmRSMT17NmTu3TpktJzFJq6rrmz9klFHx/WOkii1IKcXbt2MZN8/Phxped//fXXvM+1s7PjSktLBc9v7969nL29veAfQGxsrOC5yqqiooJbt24ds7NCkYcsB6PSFOTcuXOHc3V1lTufxo0b8+5PiigtLeWWLl0qd4f9uw8vLy/uwYMHcuXRv39/3piBgYFyxZPUqadI3JkzZ/LG++2336p8rTR/nEtKSrjJkyfLdELy7sPAwID7888/5XpvyqbKgpynT5/KXND07sPBwYGLiooSdgPIQZM7JMRiMbdo0SJmh2hVDx0dHW7JkiVK2W6HDh1iXuSVdT84fPiwUnKURXUpyHn8+LFchRzvPoYOHcoVFha+jSnre+NT3QpyNm7cKNPJjbQFOSEhIVzTpk0V3u/Mzc2533//Xab3XV1dunSJuZ0uXrxY6fkrV67kfa6+vj6XkZEhaG6qKshh7aujRo0SdD3ykub38NSpU1yNGjXk/k7UqFGD+/fffxXO9cSJE1z79u0F/Tuhp6fHzZ49u1InoDyk2ZZxcXFSdU69eUgqyLl8+TLn5eUlU0edNI+xY8cKUritLQU5JSUl3LJly5iFJrI82rZty926dUuhfDS5IGfz5s3M9z5mzBh1p1cldRbkZGRkcKampsztp42dr4rStD7GzMxM5kUzQ0NDwY9DJBk6dChz26xfv15leRDhKLsgJzo6mhnf19dX4mtZfYCAagth4uPjmXnY29sr5VqCqlH/l3w0qf9L27elLDS9ICc8PJz5PGkenTp1UkqR6+PHjzlfX1+Ft5GOjg73zTffcAUFBYLnKLSYmBiucePGcr/Xli1bcnfv3n0bT5kFOXl5edyMGTNkutGI9ejRoweXnJyscE7v+vvvvzlzc3O5czIxMeF27dr1Np4qC3JSU1M5d3d3qXOVtiBH0z8zjuO4Fy9ecGPGjFE4P+C/QmptKMBX9zV3TSjI0YES7dq1i3e5u7s779BCY8eO5X1+ZmYmTp06JWRqWLhwIcaMGYOMjAxB4wJQ+1x8YrEYEydOxKxZs2Qa+k9aQr6/ixcvomvXroiPj5c7xsOHD+Hp6YkHDx4IklNWVhZ69OiBhQsXorS0VOF4oaGhaNeuHQIDA2V+LWv47osXL8qVS1WvEzquEMOP5+TkoEePHti6davc+15paSm++OILbNq0SeF8tFVcXBw6derEnONbGi9evMAnn3yCK1euCJhZ9VFaWophw4ZhyZIlvMMmS0MsFmPRokWYN2+eYHkVFxdj/PjxGDZsGJ49e6ZwvBcvXmDo0KH47rvv1P73TtvFx8eja9euiIyMVCjO4cOH0aNHD5nmLP2YTJ06FdOmTeOdAkheYrEY33//PXx8fHD//n2F4+Xl5eHrr7/GmDFjBDn20Gas84e6devyDgE6evRo6OhUPqUpKyvjnb5B06WnpzP31YYNG6o4G/kcOHAAAwcOfG94fVm9evUKgwYNwvbt2xXK5cyZM4iKilIoxofKy8uxdu1aeHp64uXLl4LG/tCFCxfg7u6OO3fuCBLvypUrCA0NhVgsFiTeG3v27EG7du2QnJwsaFxN9OTJE7i7u+PHH39EUVGRwvGio6PRpUsXHD58WIDsNM+RI0eYbRMnTlRhJtrHzs4On376KbP9xIkTKsxGM2haH+PJkyeZU3H4+/vDzs5O4XVI6/PPP2e28U3dRYik6fuqOh+RtE998cUXcuckq5YtW6Jz5868bRkZGYiIiFBZLh8b6v8SjqZuy+rm77//xieffIKUlBS5Y1y/fh3e3t548eKFYHkdPnwYrVq1QnBwsMKxxGIxNm3aBA8PDzx9+lSA7JTjzJkzcHd3x8OHD+WOcfv2bXh4eOD69esCZsa/Hjc3N2zYsAEVFRUKxzt//jzat2+v0PWZd61evRqffvop8vLy5I5RWFiI8ePH804Hr0xxcXHo2LEjLl++LGhcTf/MACAsLAyurq6CTSt74MABdOjQQbB+I2XQpGvu6qS0gpzk5GTmXLSsk+IuXbqgUaNGvG2seaLlsXr1aixbtkyweJpm2rRpgm4vZbl+/ToGDBiA169fKxzr6dOnGDhwoMJf5uzsbHh7ewv6Awv8d6HN398fhw4dkul1rIKWCxcuyJzDy5cvcevWLYnPkSduVlYWb0GVg4ODwnNGFxUVYcCAAQgPD1coDvBfIdn06dMF/2y1QWJiInr16oW0tDSFY71+/Rr+/v7Izs4WILPqQywWY+zYsRIvOshi9erV2L17t8Jx8vPz0atXL6X8TVi1ahW++eYbweN+LFJSUtCrVy+kp6cLEu/KlSsYM2YMFUl9YMGCBdiyZYugMcvLyzFy5Ej88ssvgsYFgH379mH48OFyd8Rpu4KCAuZF6dGjR0MkElVaXrt2bfj4+PC+RhuOhz8kqSOuQ4cOKsxEPlevXsW4ceME2YfFYjEmT54s1xzhqnD9+nX07NlT0GK/d8XExMDf31+hzjVVevToEby8vJRyw4umSEhIQKdOnQQv8iosLMTIkSM1dl+XV15eHvNiqIODA7y8vFSckfYZN24cs03om9Y0nSb2MUr6mz106FCF48uie/fuqFGjBm/b1atXteZvCVGdnJwcZpuRkRGz7d69e0hNTeVta9GiBZo1a6ZoajKR9F07c+aMCjP5eFD/l3A0dVtWN//++y/Gjh0ryEXg27dvY9SoUQJkBWzYsAHDhg0T/Ib6mJgY+Pj4CFKUJrTQ0FAMGDBAkHPoly9fon///kq7KSQiIgJdu3bFo0ePBI2blZWFPn36MI9rpbV9+3ZBi/C+/fZblRVxp6amwtfXV7A+8Tc0/TMD/u+mWqH7TZKSkuDj44O7d+8KGlcImnbNXZ30lBU4ICCA96KQgYEBhg8fznzdmDFjsHjx4krLT506haysLNja2iqUV2JiIhYuXMhs19fXh4eHB7y8vNCkSRPUqlULpqam0NXVRW5uLl6/fo2nT5/i1q1biIuLw82bN5l3xKjD5cuX8fvvvzPbjY2N4ePjAw8PDzRu3BgODg4wNTUF8N+F9tevXyM5ORlxcXG4desWYmNjBb+DEvjvToUZM2ZUupvfzs4Offr0gY+PD2rWrAk7Ozvk5+cjLS0N58+fx7Fjx5h32yYkJODnn3/m3X+kUVZWhv79+0usJNTR0UG3bt0wePBg1K9fHzVr1kReXh7S0tIQERGBgwcPMvOrqKjA6NGjUbNmTXh4eEiVk6urK+zs7JCZmfne8ri4OGRnZ8PGxkbq93fp0qUqP0t54oaEhPB+11kXx2QxZcqUSsU4+vr66NatG/r06YPGjRvD3t4eenp6ePHiBaKionD06FHmiEscx+HLL7/ErVu3YGhoqHB+2uBNUdOH1fuWlpbo2bMnevbsiTp16sDe3h7FxcVIT0/HpUuXcPToUTx//pw3ZmZmJubMmcO8Q/FjtGzZMhw8ePC9ZTo6OujYsSP69u0LFxcX2Nvbw8jICBkZGYiPj8e///6Lq1evMmPOmTMHfn5+cv/dKysrQ79+/SQWtOnp6cHd3R3e3t5o1aoVbGxsYGFhgezsbKSlpeHChQsICgpiFmBt2bIFjRo1wqxZs+TKURG7du3i3Qfr1avHe8dLUlIS6tWrp/zEpFBWVobBgwdLPPGoU6cOhg8fjgEDBsDZ2fnt35tnz54hMjISBw4cwIULF977XT9+/Di2bdumiregFc6ePYvly5dXWu7o6Ii+ffvC09MTjo6OsLOzQ2lpKZ48eYIbN25UeSA/btw4ic8RiUTo2LEjvL290a5dO9ja2sLKygo5OTl4/vw5wsLCEBgYyCyS/PfffzFnzhxs2LBBtjdcDRw+fJjZGTVmzBjm68aOHctbVBwbG4u4uDi0atVKsByVqby8HKtWreJts7CwwCeffKLijGRTWFiI0aNHo6Sk5L3lNjY2GDFiBIYMGYL69eujVq1ayMnJQVpaGkJCQrBv3z7ExMTwxuQ4DhMmTECLFi3g6uoqWK6Ojo5o164d2rdvj6ZNm6JGjRqoUaMG9PX1kZOTg4yMDERGRiI8PFziKGbR0dGYMmWK4MdEhYWFGD58eKXvg4GBAby9vdGnTx/Ur18fDg4O0NfXR3Z2Nm7fvo1Tp07JNWqPtbX12+3h4uICa2trWFlZwdjYGK9fv0ZWVhZiYmIQERGB8PBwZvFnamoqRo4ciQsXLvAW0Gmz1NRU+Pj4SPzbbWFhAR8fH3h7e6Nhw4awsbGBoaEhMjIykJiYiODgYFy4cAHFxcWVXltRUYFx48ahfv366NSpkzLfispcvnyZeeGje/fuvKObkfd16dLl7THEh+7fvy/zubs208Q+xpCQEN7lOjo66Nmzp9xx5aGvr4/u3bvzXtQtKytDREQE+vTpo9KciGaT9PeMVdwFsPd7APD19VUoJ3n07t0b3377LW+bpFyJ/Kj/S7j+L03cltXNvXv3MGrUqEojZdStWxd+fn7o1q0bHBwcYGNjg5ycHKSmpiI4OBgnTpxgFo1cvHgRu3btwvjx4+XOa/v27Zg5c6bE5zRu3Bjdu3dH165d4ejoCBsbGxQXF7+9BnLq1CnExcXxvvbRo0fw9/dHeHi4xlwDSU1NxeDBgyUWRtnZ2WH48OHo0qULateuDTMzMzx79gyJiYk4fPhwpVH7MzMzMXLkSPTq1UvQXKOjo9GnTx+JxVJ2dnbo3r07vLy84OTkBBsbG+jq6uLFixdISEhAUFAQwsLCeEdpKSwsxKBBgxAVFYUGDRrInN/169cxdepUic/x8PDA8OHD0a1bN9SsWRNWVlZ48eIFnj59iqCgIBw4cOC9whWO4zBp0iR89913MucjC7FYjNGjR1e67qSrq4suXbqgX79+aNKkCRwcHGBsbIxXr17h3r17OHPmjMRZGzT9MwOAoKAgfPrppxJvYKtTpw4++eQTdOvWDbVq1YKtrS0qKirw4sULxMfH49SpU7h27RrvazMzM9GvXz9ERUXB2tparhyFpknX3MePH8/7uz1+/HjeYt6dO3cq9DvPS6ZJtqQkFou5Bg0a8M6nNWjQIImvTUxMZM7FJcS8x6NHj2bGnzx5MpeWliZTvNevX3P//PMPN3LkyLdzn8XExCicp7xYc+7p6upyP/zwA/fy5UuZ4mVkZHA7d+7k+vXrx+no6HAAuFevXkn9ei8vL958PpzH1cbGhlu/fn2V8/tmZ2dz48ePZ36GBgYGXGZmpkzv8Y3Zs2dLnAvOx8eHe/TokcQYJSUl3C+//CJxHrxatWpx2dnZUuc1bNgw3jiHDh2S6f1NnTpVqjnvZI07efJk3jjbt2+X6vWsufs+3EdEIhE3atQoLiUlRWI8sVjMBQQESJw787fffpPpPSqTNHPcSoM1r/SH29HExIRbuHAhl5+fLzFeQUEB991330ncV27duqXAOxeONPMxK3M9Dg4OleYk7dOnD3f79u0qYwYGBnI1a9ZkbmNF5l//+uuvmXH19PS4b775Rqo5UAsKCrjFixdzxsbGzFjR0dFy5yk0ob5THxJyPuIFCxZI/Gx++OEHrri4uMo4169f51q0aPHe6y0sLJixZSHUnMGSCPVZseJ8uC1sbGy4rVu3chUVFRLjlZWVMY8HV65cKfF3cfTo0dydO3eqzLmsrIz77bffOGtra2asEydOyLQdqgNvb2/ebeHm5ibxdXl5eZyJiQnva2fOnClYfqzjWmdnZ0HiT5kyhbk/zJgxQ5B1CIH1e8j3+zNx4kQuNze3yph79+7lrKysmO+/VatWXFlZmcy5vnv8W69ePW7evHnczZs3ZYoRHR3NDRw4UOJ3/8KFCzLnxnHSb0uRSMSNHz+eS09PrzKmpGPl1atXv43p4ODATZ06lQsLC+PEYrHUOT98+JCbOHGixO3x119/SR3vXUlJSYJ9x1jHxjt37pQ5VlFREefm5sZ8v7a2ttyqVauk2tefPHnCjR07lhnL2dm5yuP0D6nqWFhWP/30E/N9/v7772rNTVqsYwxVbltJvz9nz55VWR7qpIl9jE+ePGHGbdOmjdxxFbF+/XpmTj/99JNaciLyY/0dA4Tpyp8/fz4z/vfff8983aRJk5ivO378uCC5yUIsFjPPqYyMjLjy8nKV56RM1P/FT5P7v7RtWwpNWX100q7nw37xunXrcgEBAVWe/6SmpnJ+fn7Mbezg4CDX+SnHcVx4eDinr6/PjN2lSxfu9OnTUsUKCgrimjdvzow1Z84cuXIUmlgsZvb3AOCMjY25devWVblNb9++zXXs2LHS6+vWrcsbV54+28zMTGY8AJyTkxO3bds2qfpt7969y/Xp04cZq2PHjlX2UX6ouLiYa9SoETOms7Mzd+bMmSrjVFRUcGvWrKnUl8bqV5a1P5jVr8wXv3///lVed+U4dl+Hpn9mHMdxDx484CwtLZlxW7Rowf3zzz9Sxb569SrXuXNnZqwhQ4bInJ+yaOo193cJ2XdUFaUU5Fy6dIm5YY4ePVrl61lFJYqe1JaUlDB/UDZu3KhQbI7juOfPn3MLFizgHjx4oHAseaSlpXEikajSexOJRNy///6rcPzExERu+vTpXF5entSvYV24ePfRrFmzKossPjR9+nRmPHk6VW7evPm24Ijv8eOPP8rUUR0TE8PZ2Ngw433++edSx/r99995Y0yePFmm98h3cGZoaKhw3CZNmvDmJ80fUY5j/3F+96Gvr8/t3btXprwiIiKYF+fU1UHGR9kFOe8+atasycXGxsoUd+3atcx4Ql7kVIS6OyQ+fKxYsUKmuAkJCZy9vT1vLHt7e7lO8IKCgpj51a5dm4uIiJA55rVr1zhbW1vemB06dJA5nrJoekFOUlIS72/vm9+6oKAgmeIVFRVxPj4+Uu2bsqgOBTnvPlq0aME9f/5coXxv3brF7DSxtLTkjh07JnPMBw8ecPXr1+eNWbduXa6oqEihnLVJUlIS73EsAG7t2rVVvp5VdC/v7ygfZRXkpKSkSLzgWrNmTZkK4pWN9Xv44WPLli0yxX306BHn4ODAjCfP+drUqVO5Vq1acYcOHZLpWJ7PH3/8UanT/M3Dw8NDrpjSbEt9fX3uyJEjCuX+xurVq7n69etzf/zxR5U3QlTl5MmTnKmpKW/O9evXl+t7p6kFOfPmzWN+Pu7u7tzTp09ljrlt2zbm/vTtt9/KFEtTC3KGDh3K3G6XL19Wa27S0oSCHEm/E6tXr1ZZHuqkiX2MgYGBzJwmTpwod1xFhIaGMnMaOnSoWnJ6lzTHDup+qPt3813KLshp3bo1M/7BgweZr2vfvj3zdampqYLkJitJ58PSFDdoE+r/qkzT+7+0aVsqg7oLct59uLu7y3SzellZGTd48GBmPHmKEAsKCph9QDo6OtzChQtlvtifl5fH+fr68sbU1dXViBtq9+7dy9yO9vb2Ut3Y9kZ5eTn31VdfSfW9kqcgZ/jw4cx4AwcOlKtvRtKNmZs2bZIp1i+//MKM5erqKvOADJGRkRJvbH/zEKog58OHEDfOa/pnVlFRwXXp0oUZ78svv5SqWOhdZWVlEgeuOHXqlEzxlEGTr7m/S+sLclg7Qo0aNbiSkpIqX79161bmRlXkDwjrAMjb21vumJqE9SM3fvx4teVUVUFO/fr1uaysLJnjlpWVcS4uLrwx5elU6dGjBzPHb775RuZ4HPdfpSKrIEQkEnF3796VKs79+/d5YzRp0kTqXJ4/f84bY9q0aQrFffr0KW9cJycnqWNI88dZ3osQy5cvV8pviZBUVZBjZWXFJSYmypVjz549eWPa2dlpxAmeJnVISHPRmM++ffuYMWU9wSspKWGe3Dk4OCh00hsdHc0sJhGi8FMIml6QI+mkcd++fXLllpuby7Vq1arK/VMW1akgp1GjRlxGRobC+bIu5piYmHCRkZFyx01NTWWeUGzYsEHhvLXF4sWLebeBrq6uVMVUwcHBzH1AqN8nRQtyxGIxl5+fzz1//py7fPkyt2XLFs7Pz4/T09Nj5m5hYcHduHFDkPyFIk0Ryf/+9z+5Yt+8eZNZ5GFvby9zJ0VSUpLChTjv2r59O/M9x8XFyRxPmm0pVDEOx/03ooOQx26nTp1i7r/yfO80sSDn7t27zPfYrVs3mffJd23evJk3rrGxsVSjIb2hqQU5bdq0Ye7X8t69pmqaUJBz6NAh5nacNm2ayvJQJ03sY5Q0Gs2qVavkiqmojIwMZk5VjTaoClX9vdOEh7p/N9+lzIIcSQUMIpFI4ujxrBENTU1NBT3mkoWkUSY1pZ9CKNT/9T5t6P/Slm2pLJpSkNOpUyeusLBQ5rivXr1iFj75+/vLHO/7779n5ijrDS3vKisr47p27cobt6rRBJWtvLycq1evHm9uZmZmXFRUlMwxKyoqJBZLvXnI2md79uxZZqwRI0Yo9Hdu7ty5vHFr1aol9TllQUEBc1Q4JycnuW9EvHjxIvNmkTcPZRTkyPvb9y5N/8w4TnI/0rx58+TOj+PYxUht27ZVKK4QNPma+7u0uiAnPz+fMzMz430DX331lVQxXr58yRx+aNasWXLntmvXLt6YW7dulTumJmFdyAgODlZbTpIKcnR1dbkrV67IHfvo0aPM2LJUgkZFRTHjtG7dWqHhTTdu3CjIH7E6derwxpD2bky+A3R7e3vu4cOHCsXdvXs37+tlKQKr6o/z119/LXWsD5WUlDDvaBDiD74QVFWQc+DAAblzjI6OZsbVhKmKNKVDws/PT6H4rIKK6dOnyxSHNaqWrq4ud+3aNYVy5Dh257OPj4/CsYWgyQU5r169Yg59PGDAAIXyu3btGnN0kTcPWVSngpyQkBCFcz19+jQzvqxTPfI5fvw4b+wGDRqorWNblSRNRdG7d2+pYpSXl3OOjo68MYTqgJJm5EchH66urjKPbKcKVRWRtGjRQqHj559//pkZW96pkITEGr54/vz5Mseqaluq88YKabGmCBg5cqTMsTSxIGfEiBG8cZycnOS6seRD/v7+vPGXLFkidQxNLcixs7PjzcvU1FSteclCEwpyrl27xvyNUPcFFlXQ1D5GVgc9IHl0EWVjnWvY29urLac3VHkMJe9D3b+b71JWQc6rV6+4xo0bM2N37tyZ+dqCggLm61xcXBTKSxGSphVW5AK3JqL+r/dpQ/+XtmxLZdGEghxzc3OpR/Lnwxo93tLSUqb+mszMTOYxzdSpU+XO742UlBTe2UFEIpHg21sWBw8eZH42isxakpuby+wDevOQtSCnU6dOvHHatWun0I0YHPdf0VSHDh144wcEBEgVY9u2bcz3Ks2okZJIKm4FhC/IEeo6gqZ/ZiUlJZyTkxNvjP79+yvc5/v69Wvm719oaKhCsRWhDdfc31BlQY4OBHb48GHk5+fzto0dO1aqGDVq1EC/fv142/bt24fy8nK5cnvx4gXv8nr16skVT9No2/sbO3YsunTpIvfr+/btCysrK962mJgYqePs2LGD2bZx40bo6urKmtpbX3/9NVq2bMnbdujQIeTl5UkVx8fHh3f5hQsXpHr9xYsXKy3r3r07GjVqBCcnJ0HjvoktBHNzc6xcuVLu1xsYGGDYsGG8bbLsI9rO29sbw4cPl/v1bm5uaN68OW/bx7QdJdHR0cHGjRsVijF69Gje5bJu4w0bNvAunzRpEjp16iRzXh+aMmUK6tSpU2n5pUuXkJKSonD86uzYsWMoKiqqtFxPTw/r1q1TKHanTp0wZswYhWJURyNHjoS3t7fCcdavX8+7vFevXhg6dKjC8QcOHMj7/Xz8+DEiIiIUjq/pwsLC8PjxY942ac8fdHV1MWrUKN62U6dOITs7W+78VElXVxddunTBrl27EBUVhdatW6s7JZmtXbtWoePnWbNmwdnZmbctICBA7rhCWbp0Ke/yc+fOCboeU1NTrFmzRtCYyrBw4ULez/vChQvgOE4NGQknLS0Nhw8f5m1bsWIFbGxsFF7Hzz//DJFIVGm5JuzriigvL0dWVhZvm4ODg4qz0W41a9ZktrH6gKoTTe1jfPbsGbNNnfu4vb097/LMzEy5+1JJ9fHy5UsMGjQIDx8+ZD5n6tSpzDZt2+8B4Pnz5yrM5ONA/V/C9X9p0raszubMmYOGDRvK/fqRI0dCR6fyZdTXr18jKSlJ6jh//vkn7zGNra0tfv75Z7nze8PJyQlff/11peUcx2HPnj0Kx5fXX3/9xbvcxcUFkydPljuuubm5INvtjWvXruH69eu8bb/99hsMDQ0Viq+np8fsS5D23G/fvn28y318fDBo0CC5cwOAZcuWMa+1Ck0kEmHLli0Kx9GGz+zo0aNITU2ttNzQ0BC//fYbb1+ALCwsLDB//nyFclQGbbjmrg6CF+Ts2rWLd3n9+vXh7u4udRzWiXVGRgaCgoLkSY25c2vyByQLbXt/M2bMUOj1BgYGzIts0h50chzH7GT18fFBt27d5E0PwH8XVRYuXMjbVlhYiBMnTkgVh1XgwiqIkeZ5b2LyxZY2bkhICO9yoQpyJk6cCHNzc4Vi9O7dm3f5x3Riouh3DaDtWJX+/fujQYMGCsVgbeNbt25JfUHr6tWrSEhIqLRcV1cXixcvViS9t/T19Xk76TiOw+nTpwVZR3X177//8i7v0aOHwvsPAIVOZKurr776SuEYT58+ZV5o/+mnnxSO/8bMmTN5l586dUqwdWgq1vmDqakp/P39pY7DOn8oLS1ldlxoEgsLCyxcuBC7d+/GuHHjYGBgoO6UZObi4oJevXopFMPIyIi3IxEAwsPDkZGRoVB8RbVv3x61a9eutDw2NhYlJSWCrWfo0KGwtrYWLJ6yODo68l7wyMzMRGJiohoyEs7u3btRUVFRaXmLFi0wcuRIQdbRvHlz3u/M48ePeY/ptEVBQQHz+FVVHb3VhaWlJbOtsLBQhZmoh6b2MbKKhID/CoDUhfV3g+O4j2J/IfzEYjGOHj2Kdu3a4dKlS8znVfX3Tdv2e0ByzkQ+1P8lXP+XpmzL6szAwEDhvrKaNWuiVatWvG2y9Ivv3LmTd/m8efNgYWEhV24fmj59Ou81QnX1K7169Qrnz5/nbZs7dy709PQUij9u3Djeojl5sD4fPz8/dO3aVZB1+Pr6omnTppWWh4WFVXkN9+XLl8wb9oTo+7S2tmbe2C40T09PNGvWTOE4mv6ZAewcJ02aJNhAGuPGjeM9x5a3jkJR2nLNXR0ELchJSUlBaGgob5usd237+fkx7ziTt7KLFa+6XOjQpvfXtGlTtGnTRuE4rq6uvMuTk5Olen1MTAwyMzN524QaaaB///7MTjTWAcmHFCnISUlJ4a3W/uSTT5ixpYmbmJjIezdAkyZNeC9SyEOIjm5F9xFtZ2pqyrwbUBYf+3asihD7avPmzXlPRHJzc/Hy5UupYrAKPry9vSXeXSurnj178i5nFemR/zpBw8LCeNtYdzTJqmvXrqhfv74gsaoDZ2dneHl5KRwnMDAQYrG40vJGjRqhQ4cOCsd/o0ePHrwdJ9X9e1VQUMA8URs8eDBMTU2ljtWmTRvmXRLaMNpEbm4uFi1ahMaNG6NPnz64cuWKulOSmVBFCiNHjuT9PojFYokXklSFr3OnoqIC9+7dE2wdn332mWCxlI11Ufz27dsqzkRYrOMq1v4pr+p4XMU3IuAbit6p+LExMjJithUXF6swE9XT5D5GSdtenfu4pHVL+l6qQnx8vMY/WBdNNM3t27clPmJjY3Hx4kXs27cP33zzDZo0aYIhQ4ZI7L/R19fHH3/8IfHiKO33BKD+rzeEOE7TlG1Znfn4+Agygpei/eIJCQl48OBBpeUikUiwc2gAqFWrFlq0aFFpeVRUlFoKFC9dusQ7Qp+hoaHCI7oA/40yNWLECIXjcBzHvIj/6aefKhz/XXy/KeXl5VWOjh0aGsrbN2lubo4BAwYIkptQ/dNVEaKvQxs+s7y8PObfCiFzNDY2hoeHR6Xl6enpgvZRSUtbrrmrg2IliB8ICAhgVt7KuqENDAwwYsQI3qGrAgMDkZ2dLfMQ0awO+t27d2PkyJHMimJtwXp/v/76KwYOHChIAYxQZLmTSZJGjRrxLs/NzZXq9awfTV1dXQwZMkTuvN5lZGQEf39/3k4eaaehcHJyQsOGDSvdZfrkyRM8fPgQjRs3Zr6Wb/opZ2fntxX4fAU50sRV9nRVRkZGaNu2rcJx6tevD11d3Up3txYUFEAsFvMOOVmddOrUSeFqc0Dx71p1J8RvmoGBAerWrctbQJebmyvV37yzZ8/yLhfiJOddbdq0gampKQoKCt5bTiMmsT169AivXr3ibVN0NIkPY23btk2weNrM3d1dkAumrO+VLCO3SMPW1hZNmzatdJdfXFwcKioqFBrOU5MdOXJE4ako3vXZZ59h3rx5lZZHR0cjPj6e2ZGmaYKDgxEcHIxp06Zh9erVWnMBW6i/N87OznBzc0N0dHSltsuXLys0FacQWJ26ycnJgpxzvZm6TFtI2h7aKicnB5GRkbxtQh9X8XWeAdp9XFVaWsps09fXV2Em2k/S9pK0nasDTe5j1NR9XJP3F1afJZGd0MezIpEIW7durfLYg/Z7AlD/1xtCHKdpyraszjTlGhRrf23Xrh3q1q0rd158PDw8Kt0YUVFRgbi4OMFGDZEW69pXjx49JI4CKYvhw4crPNVzfHw80tPTKy3X1dUVrNjlDQ8PD2zatKnS8piYGPTp04f5Ota5qYeHB4yNjQXJrVu3bjAxMVH6qIqKjpACaMdnFhISgrKyskrL7e3tBfttejfHwMBA3hybN28u6Lqqoi3X3NVBsCvRHMdh9+7dvG0dO3ZEkyZNZI4padj5/fv3yxyvXbt2vEM3icVi9O/fH/Pnz2dWbmkDHx8f3uKC/Px8dOvWDStXrtSYi+dubm6CxGEN5yft+4yPj+dd3rRpU8EOCgCgc+fOvMsfP34s9R84eUfJ4SvIeTM6DgDUrl2bd9i1quIquyCnRYsWgkzVIBKJYGZmVmk5x3EaO52bkDTlu1ad2djYCHbypMh2LikpYd6J3rp1a4Xy+pCuri4cHR0rLU9MTOS984EAd+7c4V3u6Ogocc57WQn9WWszIYo6gf/uJOKjjG3NN8JccXGxIPPTayrWVBQ1a9Z873hFWqNGjWIW27LWpahatWpJfed1bGwswsLCcPLkSaxZswajRo2Cra0tM/bGjRvh4+OjFcPtGxkZCXqizzqGYf2eqhJragS+DiF5NG/eXLBONVVQ9vZQh+joaN47EA0NDQUZXvtdrNFFtXnKKklFhHRxVDaSpsKTNHqOttP0PkZJ+zhfx7uqSPp+aUtxL1EtS0tL7N+/HxMnTqzyubTfE+r/+j+K9n9pyras7jSlX1zd/UqAes4tWNfe2rdvL9g6WrdurfDNyKzPp169eoJNJ/aGvJ8Pqx9EyH1IR0dH6QXUFhYWzAI3WWjDZ8bK0dXVVdARdwHt+N5r4jV3VROsICc8PJw5R7w8d7cC/21Q1pdTng51XV1d5nx6ZWVlWLlyJerUqYMhQ4Zg7969WlecY2dnx5znLz8/H/Pnz0ft2rXx2Wef4ejRo3j9+rWKM/w/ki48yMLc3Jx3ubQHQ3xDBQLCHay9wbpTViwW4+HDh1LFkLcgh29YtA9jyTNtFV9ckUgEHx8fia+TllD7CKD4fqLNNOW7Vp1pyr6akJDA7AQT+sIRwD9NolgsxvPnzwVfV3XAKqhgzUMtLyrI+T8uLi4Kx8jJycGTJ09421T1vQKAtLQ0wdelCVJSUpjTD0kqrJGkdu3azGOmffv2KaVoUF9fHy1btpTq0bp1a3Tr1g39+vXD7NmzsW/fPjx9+hR79+5lnkBfvXoVAwYMUOuFDmm0aNFC0JGcWL+PrON3Wbx8+RInTpzA8uXLMXLkSLRt2xaNGjWCvb09jI2NIRKJJD6WLl3KG1eoYm8hfr9kUVBQgODgYKxevRqfffYZOnbsiMaNG8PR0RGmpqZVbg/WRTxtLn5ndSI1atRI8BHLquNvv6SCMkkFJqQySVPEaFPhnqw0vY9RU6cS+1j3FyKf7t27Iz4+XurpUmi/J9T/9X8U7f/SlG1Z3WlKvzjr3KK69yvdv3+fd7mQfZdC3DChDZ9PdelXbtasmSDFKNrwmWlDjsqgTdfcVU2wghzWyauenp5C8yCyTrSjo6PlmpP+22+/lTiPaGlpKY4ePYqxY8fCwcEBLVu2xNdff409e/bwDv2naZYuXco7Gsgb+fn52LNnD4YMGQJra2u0a9cOs2bNwqFDh1R6EbVGjRqCxGF1hn44PRHLs2fPeJcLPYwX39ydVeXwIdbFpZCQEOYwzvfu3eP9XKUpyJEU986dO3jx4kWl5a6uroId6Aq1jwCK7yfaTFO+a9WZpuyrkkbQsLOzq/JimqyPGzdu8K4rOztbujf7keH7zQTAe6eVIoSYG7u64BsVUVapqanMtg4dOgj+vTp48CDvuqrr90rIqSjexTp/ePHiBYKDg+WOqyyGhoYYPXo0bt++zRwVKCQkBKtWrVJxZrKRNNWpkPHS09OZ+40kFRUVOHDgAAYMGABHR0cMHDgQCxYswIEDBxATE4PExERkZmYqdEFJqItRQvx+SePUqVP49NNPYW9vjz59+mDevHnYs2cPIiMj8ejRI7x48UKhO4vUeXFOUazjqjt37gj+229iYsK7Lm3+7Tc1NWUWVb58+VLF2Wg3SfuBqampCjNRLU3vY5R05606v7usdevq6jJ/a8jHxcjICGPGjEFERAQuXLgg0wgd2rbfA+yL6EQ+1P/1PkX2e03ZltWdpvSLs/bZuXPnCr6/TpkyhXddqv6d5jiOOWIq32wNilC0wIH1+Zw6dUrwz4d1801Vn0916VcWqq9DGz4zVo6bN28WPEc/Pz+5clQGbbrmrmqCFOQUFhbi8OHDvG2+vr4KXaCX1Bkvzyg5tra2OHr0qFQdFxzH4c6dO9i6dSs+++wzNGjQAA0aNMDnn3+OI0eOaOSdXU2aNMHu3bulGqZNLBYjOjoa69evx/Dhw1GrVi24uLhg2rRpCA4OVupBm6YMGcoaBUnoTnBzc3PmgZu0IzHZ29vz/shkZmYyqy35Rrlp3rx5paI0Hx8fiETvV6ZKiss3Og4g3HRVgObsI9qOtqPyaco21pQDjaKiInWnoJFYd80IPYymkEM/ajshti19r5RH0lQULVu2ZN7pII3BgwczLzopa9oqIVhZWeHo0aPMk/1ly5Zp9A0CQv+eseKVlZXJfLdnWFgY3NzcMHLkSJw8eVJpow0Jdf4k9Lb8UFxcHDw9PdGvXz/8888/ShvOV5svAmjC7782//br6uoyp+RkdSYTfpJunKpVq5YKM1EdbehjlLTt1TldX0ZGBu9yBwcHwUf3IppLT08P1tbWqF+/Ptzc3DBo0CAsX74c586dw4sXL7Bnzx64u7vLHFdT93tJf1dYI1AS+VD/1/sUOVbTlG1Z3WnCdi4uLsarV6/UnYbKzy1yc3OZUwoKfe1N0b5QTfhNqerzqS79ykLlqw2fmTbkqAzadM1d1QQpyDl8+DBzOGp5h5J9o0GDBsyTBHmHne/cuTOuXr0q11x1SUlJ2LFjB4YOHQpHR0d8+eWXggybLqRBgwbh/PnzclUz3rt3D5s2bUKfPn1Qu3ZtzJkzR6uHyq4K6wdJGZ3grLsyZPlRZBW8XLhwgXc5X0EO353XNjY2vMPRyRJXUn6EEOXTlGkhJM3f/jFjFfGq6gL2x0iIu8bpe6U8ypiK4g0zMzMMGjSIt+3kyZMaPTqDhYUFVq5cydtWUlKCLVu2qDgj6Ql9B7Kk3zNpj5/FYjHmzp0LLy8vZqG5JlLmqBfr1q1D27ZtER4errR1VAea8Puv7b/9derU4V1eXFxMRTkySE5OZraxtrG204Y+Rknb/vHjx3Llpqi0tDTm7wYVJVQvHMdJfJSVlSE7OxuPHz9GdHQ0jh49iu+//x49evRQ6HzR0NCQWRCXkpICsVgsd2xFSCpYp32/etKE4zRA+4/ViGp8rPurpJs+VNl3IA1N+Iyq+nyqS7+yUH0d2vCZaUOOyqBt19xVqephVKTAuovE0NAQDRo0kGtqqXd169YNly9frrQ8PT0dwcHB6Nevn8wxXV1dcfv2bWzatAkrVqxAVlaWzDFycnLwxx9/4K+//sK4cePw66+/CjrcoCK8vLzw4MEDrFq1Chs2bEB+fr7MMV68eIG1a9diy5Yt+Oabb7Bs2TKJ8wVrI9bdscoYytfU1BQ5OTmVlsvyo9i9e3ds3Lix0vKLFy9i1qxZ7y3jOA6XLl3ijcGKHRsbW2VcsViM0NDQSq/X1dWFl5dXFe+AEKIsmjJqmzzTiHzMhO601ObRCDQRfa+UR9Jd6K1atVL4/KFTp07Yt29fpeWlpaXYv38/vvnmG4XiK1O/fv3QuHFj3jmPd+7ciZUrVzKnglEnY2NjQeNJOh6XdoSbadOmaXQRk6qtXr0a8+bNU3caWkFTfv+1WZMmTRAVFcXbdvfuXZpmU0qSignr16+vwkxURxv6GCVN05iQkKBQfvK6d+8es61JkyYqzIRUZ40bN+btQy8pKUFSUhIaNmyo8pxo3//4aMpxWnU8TyfC+1j3V0nn7EJfe1O0yEMTPiN5P5+PtV9ZGz4zbchRGbTtmrsqKVyQk5KSwnvRH/hvh+vQoYOiq5Bo165dchXkAP+dzM+ZMwfTpk3DiRMnsG/fPly8eFHmIdArKirw119/4cKFCzh69Cjatm0rVz5Cs7CwwE8//YT//e9/OHToEP7++2+Eh4fLXB1WXFyMX3/9FefOncPRo0fRoEEDJWWsevr6+rxfTmUM215QUMC73MDAQOoYXl5e0NHRqfSHNiwsDBUVFe8N0RUbG1vpDnAdHR14e3vzxu7evTvWrl0rV1wAaNu2LY3MQIgaaeLFWfJ/WAWtsh5zVEXoeB87+l4ph6SpKACgT58+Sl3/rl27NLogB/jvuIyvICc7Oxvx8fG8IxuqG+tYV16SbiiQ5vh57969VRbjGBsbo2PHjmjdujUaNGiAmjVrwsbGBmZmZjAwMIC+vj7v67Zs2YLff/+9yhw0SVhYGObPny/xOfr6+mjXrh3c3NzQsGFD1KpVC7a2tjA3N4ehoSH09PQqTXMLAP/++y8WLFigrNTVgn7/Fefm5ob9+/fztsXGxsLHx0fFGWmnmzdvMtvc3NxUmIlqaEsfo6SpNSMjIwXMSHqsAjhAcr6qomghlSqYmppW20I3obRp0wZXr17lbYuMjFR5QU55eXmlmwvfMDc3V0uBEFE+Ok4j2uRj3V9Z59LAf31CQo6So2hfhDZ8RkZGRrzv82PtV9aGz0xHR0drCpyEpG3X3FVJ4YKcgIAAtVYDvxl23traWu4YBgYGGDp0KIYOHYqKigpERkYiJCQE4eHhuHLlCl6/fi1VnJSUFPTu3RvXr1/XqKIVU1NTjB8/HuPHj0dJSQmuXLmC0NBQhIeH49q1a1J/EW7duoXevXvj2rVrsLGxUXLWqmFsbMz746CMPzysIcpkuZu4Ro0aaNOmDaKjo99bnpubi8jISHTu3PntMr5ppdzc3JijOHl6ekJPT++9IZqljQvQdFWEqJukKuObN2+q7ECEOjD5seZJ/VhPnLSFpO/VyZMnUa9ePZXkUd2mpJA0FYUq3Lx5E3fu3EGLFi3UlkNV2rVrx2y7du2aRhbkCP2ZSvo9q+rOmsLCQnz77bfM9rZt2+L7779H37595RoBlDVdg6biOA7Tpk1j3j3XqFEjfP/99xg6dKhcHaM3btxQNEWNw9rHWrVqxTv6FqlM0u/YpUuXKo3ESiorLi7GlStXeNt0dXU18m+BorSlj9He3h516tTB06dPK7Xdv38fL168UPkoUJKmIpT0fVQVV1dXdadQJS8vL2ZBGPmPpH0pLCwMI0eOVGE2QExMDPNijJubG28hMdF+1P9FtImk/XXhwoUYNmyYSvJQ9cwekq555eXlCVqQo2hfKOsz6tOnD1atWqVQbGlV9btlZWVFBTnv0IbPzMTEhLe2YNKkSZg5c6aSsnqfMqdDZ9G2a+6qpFBBDsdx2L17t1C5yKW0tBR///03pk6dKkg8XV1ddO7cGZ07d8b//vc/iMVixMbGIiwsDIGBgQgLC5M43FpWVhZGjx7NvFtA3QwNDeHj4/P2brSysjJERkYiNDQUgYGBuHbtmsRhzh49eoSpU6fin3/+UVXKSmVnZ8f7o8g3zJUi8vLymNWQdnZ2MsXq3r17pYIc4L9CmaoKZyQVzZibm6N9+/a4du2azHGrik0IUT5JhZK1atWCo6OjCrMhH2Jt/ydPngi6HqHjKZMmDN1ZFUnfK1tbW7Rs2VKF2VQfkqarUmUOq1evVncaTJL2vbS0NBVmIj2hj59Z8YyMjKrsvNu7dy9evHjB2zZlyhSsX79e4h17VXn16pXcr1WHc+fOIS4ujrdt0KBB2L17N8zMzOSOr23bQxqs72BJSQn99kupa9euMDEx4b0B6NKlSygpKYGhoaEaMtMeZ86cQXFxMW9bhw4dlDLstzppWx9jjx49mMc0p06dwsSJEwXOjq2goIBZSGJiYoKuXbuqLBdSvfXo0YPZdurUKRVm8p/AwEBmm6RciXaj/i+iTSwsLKCvr897TdHY2LjanltYWloy33dOTg5q1aol2LqkHVCBhfWbIhaLNebzcXR05O0L+lj7lbXhM7OxseHdN/X09DQmR2XQxmvuqqLQuE7h4eFITEwUKhe5KbNTX0dHB23btsXMmTNx/vx5ZGRkYMOGDRJHwLl27ZpaTkLkoa+vj65du+J///sfLl++jLS0NPz0008S7+Q5ePCgxHnMtQnrD7+k+YflcffuXZlzYGEVvrxbKFNeXs57d9Qnn3wiMTZfuzRxDQwM4OHhITE2IUS5nJycmG1808wR1WIdN7AukMrr1q1bgsR5d6rCdwk51KY27Jf0vRKepKkoVGnv3r0aPXSspGlANXXfE/r4OSEhgXe5NMfOBw8e5F3+ySefYNOmTQoV4wCa+xmwsLaHi4sL9u3bp1AxDqB920MarN//6vhelcXQ0JB57pqbm4vg4GAVZ6R9AgICmG3yTt2uybStj9HX15fZdujQIYGykU5QUBBz9GsvLy8qfiOCcXZ2RrNmzXjbUlNTcf36dZXmI2ka3N69e6swE6JKdJ5OtImOjg5q167N21ad91eRSISaNWvytt2/f1/QdbH6DqSlDed+rH5lofqBlRVPWbThM9OGHJVBG6+5q4pCBTmacHcr8N88yXfu3FHJuqysrDB9+nTcvXsXU6ZMYT5PW0eQcXR0xA8//ID79+9j0KBBvM/hOI7ZqattmjRpwrucNf+wvFjxdHR00LhxY5lidevWjfciwuXLl9+ONhAZGVlpuC59fX1069ZNYmy+DtN34964cQP5+fmVntOpU6dqd3ceIdqmefPmzLaHDx+qMBPChzU1zqtXr5CSkiLYeoT6+8W6OMv3N0Ae+fn5vMNXapq6desytwV9r+Sj7qko3khPT9foi8GS7vDS1NGl7t+/L+j3mtUR1LRpU4mvq6ioYE7xsmjRIkGmLnj8+LHCMVSJNY3J/PnzBRnKV9u2hzRYx1VZWVnVckQgZRkxYgSzbdu2bSrMRPs8fPgQJ06cYLaz+mu0mbb1Mfbt25c5DPzZs2eRlJQkdGpMW7duZbZJ+h4SIo/hw4cz2yTti0ILDw9nXoxp0KABOnTooLJciGpR/xfRNqx9trrvr6xzdyFvTiwpKVG4IIf1+SQmJmpE/xXA7lcW8jpmaWmp4EUTyqINn9nH+r3XxmvuqiJ3QU5hYSGzCr1///7gOE7wR2ZmJvT0+GfZknTnkDIYGhpi8+bNzGp71rQ+2sLS0hIHDhxgDp2l7e/vjVatWvEuv3//vqBz2rHuEGnQoIHMhSxmZma8J5Xvzi/P9/l07ty5ynV17doVRkZGMsUFaLoqQjSBvb09nJ2dedtCQ0NVnA35kLOzM3PY5JMnTwqyjvLycpw+fVqQWJaWlrzLhfrbyDf1oibS0dFBu3bteNvoeyUf1lQUrq6uSjl/KCsrYw5VqurzB1lkZWUx2xQdzURZysvLERMTI1i8qKgo3uWurq4SX/fkyRMUFRVVWm5tbS3IiI5FRUW4efOmwnFUpby8nFkwM2DAAEHWERERIUgcTdKxY0fe5RzHMQucSGVDhgyBlZUVb9vp06cFHymwOlm4cCFzJDcvLy+4uLioOCPl0sY+RjMzMwwdOpS3TSwWY82aNdJvAAVER0cz+2rMzc0xbNgwleRBPh7jx49nFjj//fffePr0qUry+PXXX5ltknIk2o/6v4i2YZ1bhIeHa0zxgDKwzt0jIyMFW8etW7dQXl6uUAzW5/Py5UuNmSmkc+fOvMsvX74s2Igrp0+f5p1iTBNpw2fGyjEuLk7w6Zs0iTZec1cVuQtyjhw5UmkEjjdGjx4td0KS2NraMgtg1DXs/Lfffsu7/NmzZ1rz48Wir6+PGTNm8LYJeTe/OrE65cvLy3H06FFB1lFSUoJjx47JtP6qVDVtFV9njDRFM0ZGRujSpYtMcaWNTYiysKbW0YbRN4TGmpbu/PnzKs6E8GH9Vu7bt0+Q+GfPnkVmZqYgsVjT5Tx69EiQ+JcvXxYkjiqwvldhYWFaf6ynapKmolDW+YOenh7zLt4TJ05o7EgXN27cYLbVqVNHhZnIRtK0AbKIj49nDmNd1YiPGRkZvMvr1q0ryIWZ8PBwrfruv3z5kreD0tLSkll8KYsHDx6o7MKbKtWrV485LDgdV0nP2NgYn3/+ObN9zpw5KsxGewQGBkocdXnatGkqzEY1tLWP8ZtvvmG2bd++XSV3wH733XfMtgkTJmhMh7QyiqqEfmjCtKraoH79+vDz8+NtKykpwY8//qj0HC5fvswcRczIyEji3x5tRv1f/4f6v7QD7bP/Ye2v2dnZgt7UomlY177Onz8vcVRgWQgxk0fnzp2Zox5qym+Kh4cHDAwMKi0vKysTbKpUofqnVUEbPjPWdQCxWFxtBrzgo63X3FVB7oIc1lCyZmZmgt1px2fUqFG8y58/f44zZ84obb0s7du3Z7ZlZ2erMBPlYL0/SXftapM2bdow75oW6g/QqVOnmBWPPXv2lCsm68f8woUL741o8y7WgZ80sd/EvXr1aqU2ExMTZoUuIarw4ahOb/DdHV/dsYauj4+PR0hIiIqzIR9ifT7Xrl1jVnXLYv369QrHeKNevXq8y1NTUwWp4j9w4IDCMVSF9bllZ2dj7969Ks5Gu7HOH0QiET799FOlrZd1/lBSUoK///5baeuVF8dxEk/OWUMVa4IDBw4Icocf60K0gYFBlQU5rM5dIaZmAoDNmzcLEkdVaHvIj/X7HxAQUK3vaBPavHnzmCN7nT9/XuXTFKWmpmrs1H8AkJCQgM8++4zZ3qlTJwwePFiFGamGtvYxtm/fnlmYUFZWhi+//FKpd77v3buXedHB0NBQYrEOIYpYtGgRsy0gIECpF5pKSkrw1VdfMdu/+OIL1KxZU2nrVyfq//o/1P+lHWif/U/Xrl2Z16A2bNig4mxUx9vbm3c0QkkX02UhFosF6V80MjKCr68vb9vmzZvVMhDEh0xNTZnXEoXIMSkpSeJ0uZpGGz4zJycn5qjr1fl7r63X3FVBroKc1NRU5oHNoEGDBOvc4zNw4EBm5Zs65pvmq0p8g5WnNmG9v+rw3oD/LgCxhu+9cOECbwGKLMRiMZYtW8bbZmJiInfHEt/UUsB/w/2dPXsWxcXFldYlbdEMX+EOKy4AuLu7S/weEKJs1tbWvMvT0tJUnIn6+fr6onbt2rxtrN8iojr9+vVj7q/Tp09XqLP++PHjOHfunNyv/5CtrS1zFA5FC6AvXbqEW7duKRRDlVq2bMkcZnTFihUKD437sSgsLGTetePh4QEnJyelrbtr166oX78+b5s6zh+qcuTIESQnJ/O26enpoWvXrqpNSAZPnjxRuFDt1atX2Lp1K29b7969qxzVhfU7++zZM4XyAoB79+4hMDBQ4TiqxNoeWVlZCo/0k5WVhb/++kuhGJps0qRJvMtzc3Px22+/qTgb7WVnZ4d58+Yx26dOnaqy44Jbt26hc+fOGnsR6O7du+jVqxdz9DYdHR2sW7eu2k3Dou19jD///DNzBIBLly5h+fLl8qYn0aNHjySOljR9+nTUqlVLKesmpEOHDswp2ziOw7hx45Cenq6Udc+ZMwd37tzhbbOwsMD//vc/paxXE1D/1/+h/i/tQPvsf3R1dTFhwgTetv379zOnGNZ2NWrUYN4kvnr1aoX70wICAgQbrZV17vf48WONGTmGVbQfHx/P7EOR1qxZszT6pgU+2vCZsXIMCwtDWFiYirNRDW295q4KchXkBAQEMC8ase4uEYqpqSkGDhzI26aOYecfPHjAu9zMzAzm5uYqzUUZWO+vOp3UT5w4kXc5x3EKXyD9448/EBsby9s2bNgw5p2CVTE0NOS9GFNeXo4lS5ZUWt6tWzfo6+tLFbtDhw6V9l1WXICmqyLqV7t2bd5O6czMzGozmpe09PT0mJ2yISEhEudYJ8pnZGSEyZMn87bduHFD7k6j1NRUicPly6tt27a8yxU5qSktLcWsWbPkfr26zJ49m3f5gwcPMHPmTNUmo6UkTUWh7PMHAMwReCIjI3Hv3j2lr19aL1++lHgRoXfv3swp5TTF//73PxQWFsr9+iVLljDnQGcdt7+LdSdOamqqQtPulZWV4bPPPoNYLJY7hjqYmJjwTldSXl6O0NBQhWJ//vnnyM/PVyiGJmvevDnzrrvly5fzjkpK+M2fPx+urq68bYWFhejduzdzmjqh7Nq1C+7u7nj+/LlS1yOvf/75B+7u7njy5AnzOQsWLOCdYlrbaXsfY+vWrSUe3y5cuFDiFGTyyMzMRN++fZl3htavXx+LFy8WdJ2EfGjDhg3MQumnT59iwIABzON/ef32228SR+dbsWJFtR0dB6D+r3dR/5d2YN3opUnn4KoydepU3puay8vLMWLECN4boasDViHS3bt3FSoiyc/Px/fffy/36z/k6+sLFxcX3raZM2cq1JcglMGDBzNvZvvhhx8QFxcnV9wdO3bg33//VSQ1tdCGz+yzzz6Dra0tb9u4ceOq7d9ubbzmrgpyF+Twsbe3R48ePRRKSBqs+aNLSkoknuQKWTH5BuuOwJYtWwq6Hmls3bpV8GmyNOn9KUu7du2Y+21UVBTmzp0rV9yoqCh8++23vG0ikUjhoYNZhTDR0dFSP5ePnp4e71QAfHFljU2IMhgZGTGn19G2u9iFMH36dOYJ7/z58wUZEvRDJSUlWnngrg6zZ89GjRo1eNsWLVok85CVz58/R69evZRydxHrLpaTJ0/i8uXLcsX89ttvmQfNmmz48OHMaTw3b96slJESKioqcPjwYZlft2vXLohEIt6HOi/MsO4y19fXZ945ISTW+QOgOaPkZGdnw9/fX2KnwYwZM1SYkXzS0tIwadIkuU6wT548iU2bNvG2NWrUSKo7Xezs7Jh3y65atUrmnID/Og1mzJiBqKgouV6vbm5ubrzL5d0eALBy5cqP4m//ihUroKNTuduktLQUQ4YMYd7AoojMzMxqN9WCvr4+du/ezRzp5MWLF+jatSsuXLgg+LqfP3+OESNGYMKECSgoKBA8vqJu3rwJPz8/fPrppxKnQvP19cXChQsVWtfixYuZxwjq/FuorX2M71qyZAmzn4zjOIwZMwZ//vmn3Dm+KzU1FZ6enszfHz09PezcuZO3GJMQIdWqVQsbN25ktkdGRuKTTz5BRkaGIOtbtWqVxGPhXr16MW+AkVa9evWYv5OagPq/3kf9X5qvefPmvMtPnjyp4kzUz8nJiXkzXVRUFMaPH6/wCKZ8rl69itTUVMHjSmvIkCFwdnbmbfvf//6HmzdvyhxTLBZj/Pjxgo7EJhKJsGLFCt62V69eYcCAAUoZ+S0lJQXXr1+X6rl6enrMKSNfv34t100Ohw4dkjgNpCbThs/M1NSUeQ6XnJyMIUOGCF68DAB37tzB7du3BY8rLW295q5sMhfkhIeHIzExkbdt+PDhvHMCCq1Xr17MqjJJnQg7d+5EgwYNMH78eMTHxyucx/Hjx5lV+cOHD1c4vqxWrFgBJycnzJgxA0lJSQrH27hxI/PgSB3vT5lWrlzJ29EKAGvWrJF5iOH4+Hj4+fkx7xidNGkS84BUWrIUwrAuqioa29LSkjkPIiGqxJq+Y9GiRWo96VAHY2Nj/P7777xtFRUVGDJkCH788UdB7vDPycnBihUrUK9ePcyZM0fheB8DGxsbiX9TZs6ciUGDBlVZYMNxHHbv3o2WLVu+d7JVt25dwXIdNWoUc0rCCRMmyHRSIxaL8c0330jssNVkIpEI27dvZ26PGTNm4PPPPxfkjqaioiL8/vvvaNKkCUaOHKlwPE0gaSqK3r17w8bGRuk5uLi4oHXr1rxte/fuVev80iUlJdizZw9cXV0RHh7OfF7v3r01ei7kd/3zzz+YNWuWTH9rQkNDMXLkSOZnsXz5cubx+od69+7Nu3zHjh34+++/pc4J+G9knHHjxjH/tmoD1vY4d+4cswOLheM4fP/995g/f74QqWm81q1bM0dJS09PR4cOHXDkyBFB1pWYmIgpU6bA2dlZY4bYFlKbNm0QEBDAvKj58uVL9OrVC998840gIx+/fv0ay5cvR9OmTXHw4EGF4wnpyZMn2LZtG9zd3dG+fXucPn1a4vN9fHxw9OhR5rRI2kyb+xjfZWJiguPHj8PKyoq3vaKiAl988QUmTZqE169fy5npfyMOurm5ISEhgfmclStXwsvLS+51ECKLsWPHShytNTIyEm3atFFo2uPMzEwMGzZM4kWWevXq4e+//9aYwhllov6v/0P9X5qPtb+GhoZqzI0xqrR48WI0aNCAt+3AgQPw9PSUOFqitDiOQ2BgIDw9PdG1a1e1/jbo6ekxRwTPz89H3759cffuXanjVVRUYMqUKYKdg72rf//+zOkY7927h7Zt2wo2zVBsbCxGjx6NRo0a4dy5c1K/bvz48ejcuTNvW3p6Otq2bYt169ZVOR3Yq1evMGnSJAwfPvy9Phgh+5VVQRs+sylTpjA/s7CwMLRv316w4pnw8HD0798frq6uar8hVhuvuSsdJ6OJEydyAHgfV69elTWc3KZMmcLM4+7du7yv8fLyeu95rVq14n766SfuwYMHMq07KyuLmzt3Lqejo8O7flNTU+758+dCvE2ZODs7v81BJBJxnTt35tatW8c9efJEpjhPnjzhJkyYwNy+tWvX5oqLi6WK9eE2f/MICQmR4x1WFhISwhvfy8tL5lizZs1ivmcAXK9evbikpCSJMUpLS7lVq1ZxhoaGzDg1a9bksrKy5HvD7ygrK+PMzc0l5gyAq1GjBldRUSFT7Ojo6CrjAuD69++v8PvYuXMnb+xx48YpHPuNd78b7z6q+jxVQajcxo0bxxtn586dguSZlJTEG9/Z2VmQ+Io6cOAAcz81NzfnJk2axO3atYsLCwvjoqOjufj4eN5HaWkpcx1C/t6wCPmbOWPGDInf3+bNm3M7d+6U+J75vHz5ktu5cyfXr1+/937rGjZsKHOOyqCs7/uiRYt44y5atEiueH5+fhI/Hz09Pc7X15fbvHkzd+rUKS4qKooLDQ3l/v77b27WrFlcnTp1eF938uRJZkx5DB06lBmvSZMm3JUrV6qMERERwXXu3Pm915qZmXEWFhaCfFaq/I1ft26dxM/NycmJW79+PZefny9T3Pz8fO7gwYPc8OHDOTMzs7fxdHV1Zc6R9XdVkf1VUUuXLmXm9Pfff6ssj1WrVjHzCAoKqvL1rN/oWrVqMf+ufPi4desWFx4ezgUGBnJr1qzhPv30U87GxkbifgWAs7e351JTU1WwlarG+j3k+13y8PCo8lyrqKiI+/777zldXV3m++/Ro4dMOV68eJEZS1dXl1uwYAFXWFhYZZxTp05xzZo1qxSjbt26gnzHhP7bwvLgwQOJ2/fLL7/kcnJyqoxz5coVrlOnTlJvD1mP54U83hTy2LikpITr2LGjxO9or169uAsXLsgcOzExkVu1ahXXqVMnTiQSvY03adIkqWOo4hhVSBs2bKjyN8/CwoKbO3cud/v2bZnjX716lZs6dSrzOAMA9+rVK6lisY4x2rdvX+XvfXR0NHflyhUuODiY27lzJ7d06VJu+PDhXJMmTap8/+8+xowZI9XvlTRYvznyfjeEoM19jHzCwsI4ExMTiZ+pjY0Nt3LlSqn7hcRiMRccHMz5+PhUub9MmzZN3k1ANAzr7xgg33mdMpWVlXGDBg2qcv/08/OTqW/j+fPn3JIlSyT+ngP/HSfL8j2VhPW7r0nbnfq/KtPk/i9t25ZCKykp4aysrJifjbe3N7d27VruzJkz3I0bN5j764sXLySuR9n9QkJev7h69arEa0dmZmbc7NmzZb6mV15ezl28eJGbOnUqV7NmzfdihoeHy5ynkMRiMefp6cl8z8bGxty6deu4srIyiXHu3LnDe14m1Pk5x3FcdnY2V79+fWauOjo63LBhw7jIyEiZY8fHx3OLFy/mWrZs+V7MZcuWyRTn0aNHVV4XtLOz4yZPnszt3buXu3jxInfz5k3u9OnT3Pbt27lBgwZxRkZGlV7j7OzMbdq0SZB9XRXX/N7Qhs8sMTGRs7a2ZuZoYGDATZo0iUtISJAprlgs5q5fv87NnTuXa9CgwXsx9+zZI1MsZdCGa+7Kvq76LpluNSksLMShQ4d42xo2bMis8lKG0aNHY8uWLbxtAQEBUt3pFxcXh7i4OCxYsACOjo7o0KED2rdvj4YNG8La2hrW1tYwMjJCQUEBMjMzkZCQgPDwcFy4cEHiHdArV66Eo6Oj3O9NCBzH4dq1a7h27RpmzZoFZ2dntG/fHu3bt4ezs/Pb96evr4/8/Hykp6fj3r17CAkJQXh4uMQKym3btsHQ0FCF70Y1VqxYgatXr+LatWu87WfPnkXDhg3h7e2NQYMGoV69eqhZsyby8vKQlpaGy5cv4+DBgxKnDdPX18eBAwcEuRP8zdRSQUFBEp/n7e0t9d3Eb7Rp0wY2NjZVToFG01URTeHv749atWrh2bNnldry8vKwY8cO7Nixo8o4SUlJzOF/tc2aNWuQkpKC48eP87bfu3cPEyZMwKxZs+Dh4QFPT080aNAA1tbWqFGjBoqLi5GTk4OcnBw8efIEMTExiImJwYMHDwS5u+hjt3//fri7u+POnTu87eXl5QgODkZwcLDUMefMmYN+/frxtsn6d+CNn376CSdPnkRJSUmltgcPHsDd3R09evRA//790axZM9ja2iI/Px8ZGRmIjo5GUFAQb0X+xo0bsXjxYuTm5sqVl7rMnDkTjx8/Zo70k5qaipkzZ+KHH35Aly5d4OnpiWbNmr097iorK3v7vXr27BliY2MRExODu3fvVnn3ijZjTUVhZmYm1RREQvn000/x3Xff8U6lFBAQgD59+sgV99mzZ3B1dVU0PSYrKyucPHlS4+9UGj9+PM6cOYPIyMi3yyIiItC0aVN4eXlh8ODBaNCgARwdHZGbm4unT5/i0qVLOHLkiMTRAmxtbbFz506ZcvHx8UH37t1x8eLFSm0VFRX46aefsGXLFowYMQLu7u5wdnaGmZkZXr16hfT0dFy/fh2BgYG8ozZ4e3vD09MTS5culSkndWrcuDHGjRvHnI54+/bt2LdvH4YOHQovLy80bNgQFhYWyM3NxYsXLxATE4OTJ0/y3rXVrFkzTJ8+HVOmTFH221AbAwMDnDx5Eu7u7swp5c6ePYuzZ8+ibt268PT0hLu7O2rXrg1ra2uYm5sjLy/v7e//w4cPER0djZiYGKVMOanppk+fDiMjI0yZMoU5IlZubi5Wr16N1atXo1GjRvDw8EDr1q1Rv3592NrawtTUFGKxGPn5+Xjx4gUePnyImJgYhIaGIjMzU+nvISoqSqm/+8B/o9GuXLlSa4eQl0Z162MEgG7duiEwMBADBgxg3r2ZnZ2N7777Dj/++CO6desGLy8vuLi4oGbNmjA1NUVpaenb34qoqCicPXtWqt+KKVOmKGUaVUKqoqenhwMHDmD48OHM/gcACAoKQlBQEJydndGrVy+0a9cOjRo1gqWl5dv+6bS0NNy9exchISG4cuVKledI9vb2OH/+vObfES0g6v+qjPq/NJeBgQE+//xz/Prrr7ztly5dwqVLl6qMs2jRIrVOwS2kzp07Y8+ePRg5ciTv/pWfn4+1a9diw4YNcHNzg5eXF9zc3GBjYwNra2vo6em93V8zMzMRHx+PmJgY3Lp1SyOnZwX+G3V69+7dcHNz4x0Js6ioCLNmzcLPP/+MESNGoEuXLqhduzZMTU3x/PlzJCYm4vDhw7hy5Uql/pyOHTuid+/ezFF4ZGVtbY3g4GC4u7sjKyurUrtYLMahQ4dw6NAhNG7cGJ6enujSpQscHBxgbW0NExMT5ObmIicnB69evcK9e/fe/qYIdZ7SsGFDHDx4EP3792f+nczMzMTWrVuxdetWqWIaGxvj0KFDzH5qTR6pUxs+swYNGuDEiRPo2bMnioqKKrWXlpZix44d+Ouvv9CyZUt4enqiQ4cOsLOzg7W1NQwNDfH69Wvk5OQgOzsbd+7cQUxMDGJjYyVOe6xu2nbNXelkqd7ZvXs3swJpwYIFglcLVaVevXq8udSqVYsrLy+v9HxWtbCQj6FDh3JisVjl24LjJFfxC/WYPXu2TDlp0wg5HMdxmZmZXIsWLZSy7XR1dbkDBw4I8r7f+PXXX6tc78aNG+WKPWTIkCpj37p1S+H3QCPk0Ag5Qvnnn38U/p5K2u7aeFdLaWkpN3LkSKX/bQBohBx5PH/+nHN1dRVk+48dO5arqKjgysvLeduNjY3lznP58uWC7iszZszgOE64z0rVv/FisZj79ttvVfK9qg4j5ISFhTHzGTNmjMrzYf3OGhkZVTligirOJT58uLq6cvHx8arZOFKS9Hv46NEjqUb8kfZhaGgo9918d+/e5SwtLQX9POrXr889f/5csL8Jqhohh+M4Lj09nXnnoLwPa2tr7u7du4Idz2vqCDlvpKWlCfZ3u6pHdR4h542LFy9yDg4OKtme7z5cXFy4oqIiqXJURR/Lhw89PT1uwoQJXHp6uuDbXNNGyNH2PkZJ4uPjJd6pK+RDV1eXW7t2rZK2ClEXbRoh542Kigpu3rx5Kvu9bNOmDZeSkiLoe9CGEXI4jvq/+Ghq/5c2bkuhvXz5kqtVq5ZC27yq8yNtGiHnjcOHD0sc8UHIh7pHyHnjwoULnL6+vmDvy9bWlktMTFTKefXdu3eZo5ML/ZB1tJU3jhw5Isg+ZGRkxJ04cYLjOI77888/eZ/z9ddfy5SbKkfIeUMbPrPw8HCJo4YJ+dCEEXI4TvOvuatyhByZbpeWNK/j6NGjZQkliFGjRvEuf/bsmUxzuAllwoQJ+Oeff6rtfLULFy7EmjVr1J2GUtna2uLSpUvw9PQUNK65uTmOHTuG4cOHCxpXmhFqPvnkE6XEtrOzU/pdgYTIYsSIETLPPVnd6evrY//+/VixYgX09fXVnQ75gKOjIyIiIvDpp5/KHUNPTw+LFi1CQEAAdHR0mKNMGBsby72O7777DmPGjJH79e/68ssvsW7dOkFiqYtIJMLq1auxa9cumJmZqTudSsrKyphtpqamKszkP5p2/sBaZ3FxMf755x8VZ8NmYGCAxYsX4+bNm2jZsqW605Faw4YNceLECVhaWiocy8TEBCdPnoSHh4dcr2/evDkOHjwo2N+/Bg0a4OzZs2ofCVVeDg4OOHnyJMzNzQWJZ2tri6CgoI/qjvRatWohIiKC2Q9BZOPj44Nbt26pbHtaW1vj119/RWxsLIyMjFSyTlnY29tj9uzZePz4Mf766y84ODgIvg46RpBMyD7Gli1b4ubNmxg/frwAmbE1a9YMoaGhmDVrllLXQ4g0dHR0sHLlSgQGBqJOnTpKW4+uri5mz56NK1euwMnJSdDYrN9JExMTQdejKOr/qoz6vzRXjRo1cOrUKaUc22izIUOGICwsDA0aNFB3KirTvXt3HD9+XKE+yjesrKxw4sQJpW2/5s2bIzIyEj169FBKfCEMHjwYoaGhqF+/vtwxnJyccP78efTv3x8AlNKvrCra8Jl5eHjgxo0baNu2rbpTURltu+auTFIX5KSmpiIkJIS3zc3NDc2aNRMsKWlJ6rjhO7F3dXVVygFZzZo1sXfvXvz1119qHbqrTZs2ck9JIUmTJk0QHByMJUuWCB5bE9na2uL8+fNYvHgxDAwMFI7n6emJmzdvvv2jJqQ2bdrA2tqa2V6zZk25O8mrKsjx9vautsVnRHt9//33uHjxokqHN9d0IpEI3333HaKiouDj4yN4fENDQwwdOpQ5xDuRzMLCAvv370dQUBDatWsn02v9/Pxw48YNLF68+O3vMWuYSjs7O7lz1NXVRUBAAKZOnSp3DENDQ6xZswbbtm2rNn87xo0bh7i4OAwePFjw2Lq6uvD19cX+/ftlfu3169d5l5uZmWHChAmKpiYTSVNR2Nvbq+UkeejQoczjO0kXBlWladOmWLlyJVJTU7Fo0SKt7Ezu2rUrwsLC0KRJE7ljNG3aFFevXkXPnj0VyqVXr14ICQlB7dq1FYrj5+eH69evo1GjRgrFUbfWrVvj+vXrChfRdOrUCdevX0enTp0Eykx7WFhYYN++fTh27BgaNmwoeHwbGxt88803mD17tuCxNZGDgwP27duHsLAwhb/vLHXq1MHy5cuRnJyMOXPmaMzvqkgkQsuWLfHNN9/g3LlzePbsGdasWaPU6QlZxwhOTk4YOHCg0tbLpzr0MValRo0a2LlzJ0JCQuQuLmWxs7PDypUrERsbC3d3d0FjE6Kovn374s6dO/jhhx9gYWEhaGxfX19cv34da9asEfzi4NOnT3mngQKAadOmCbouIVD/V2XU/6W52rRpg7i4OHz55ZcwNDRUdzoao2PHjrh16xa+++47pWyXNm3aYP369WjTpo3gseXl5+eHiIgIhc6lmjVrhvDwcHTp0kXAzCpzdHTE2bNn8eeffyqloKx27dqYP38+PvvsM7ljdOrUCbdv38bSpUslXif8kIWFBebPn4/bt2+/dyypjH5lVdKGz6xx48a4evUqVq5cKfhx0pv4P/30E3x9fQWPLS9tuuauTHrSPjErKwsLFy7kbVPXyV+LFi3w66+/Ii8vr1Ib30H5xo0bsXz5cpw5cwanTp1CaGgokpOT5V6/q6srPvvsM3z11VeC3WmoiOPHjyMrKwtBQUE4deoUIiIimCcS0ujcuTPGjx+PCRMmCPIl0Sb6+vpYtGgRxo8fj5UrV2Lv3r28+5kk7u7umDdvHgYMGKCkLP870fD29sbRo0d52xU5+WjWrBlzTmJAutF5CFEHHx8fXL16FQkJCQgODsaNGzfw4MEDPHv2DDk5OSgpKfko54Bu1aoVLl68iPDwcGzevBknT55EYWGhXLGsrKzg4+MDX19fDB06VKYDfmXz8/NDRkZGpeXquOtXFn369EGfPn0QFRWFEydO4PLly7h//z6ys7NRVlYGMzMz2Nvbw8XFBR4eHvD39+e9MPz8+XPe+IqO6KCjo4NNmzZhxIgRmD17NqKioqR+nb+/P5YvX66WCyvKVr9+fRw5cgS3bt3Cxo0bcfjwYebdJFUxNTWFp6cnevXqheHDh6NWrVpyxbl48SLv8unTp8PW1laumPJKT09nXlRu0aIF9PSkPhURTI0aNbBlyxY8efKkUptIJEJxcbHSR04wNTWFpaUlLC0tYWtri9atW6Ndu3bo0KEDWrRoodR1q0qrVq1w69YtrFq1Cr/99pvE+Z7fZWdnh9mzZ2PWrFmCdUi6u7sjNjYWK1aswLZt25Cfny/1a9u3b4/58+djyJAhguSiCd7cNbZ27Vr89ttvvHOsszRr1gxz5szBxIkTlXIjiDbx9/dHv379cPjwYWzduhXh4eFyH186OTmhZ8+e6Nu3L/r27fvRnXsDQLdu3XD27FnEx8dj9+7dOHz4sEJ9NZaWlujXrx9GjBgBPz8/ld84pa+vD0NDQxgaGsLS0hL29vZwcHCAk5MTmjZtiubNm1d5c43QSkpKcOXKFd62BQsWqHy/qw59jNLy9vZGeHg4wsPD8ddff+Ho0aPIzc2VK1bXrl3x2WefYcyYMRp/fkM+bhYWFvjpp58wZ84cBAQEYM+ePYiOjpYrlrW1NUaMGIFJkybJfBOLLFjnURYWFpg7d67S1qsI6v/i97H0f2kbe3t7bNu2DatWrcLp06cRERGBO3fuICUlBdnZ2SgsLER5ebm601Q5MzMzrFixAjNmzMDWrVsREBCAlJQUuWLp6uqiQ4cO6NmzJ4YMGYLWrVsLnK0w2rZti/j4eKxZswbr16+Xur/A1tYWM2bMwNy5c1VW2CUSiTBp0iSMGjUKe/bswfbt23Hz5k254zVt2hQ9evTAgAED0KNHD0HOq01MTPDjjz9i7ty5OHnyJM6ePYuYmBgkJSUhLy8POjo6sLCwgLOzM1q1aoXevXujT58+vNe0ldWvrEra8JkZGBhg3rx5+PLLL/Hnn3/ir7/+wr179+SKJRKJ0KpVK/Ts2RP+/v4aW6yvqdfcO3TowNtPWK9ePcHW8YaI4zhO8KhaJD09HVeuXEFcXBwePXqExMREPH/+HHl5ecjLy4NIJIKFhQUsLCxgb2+PVq1awc3NDe7u7loxXU9ycjKuXr2K27dvIzExEYmJiXjx4gXy8vJQUFAAHR0dWFpawsLCAjVr1kTr1q3h5uYGLy8vpdzxp62Kiopw5swZhIWFITY2Fo8fP0ZWVhaKioqgr68Pc3NzODk5oVmzZujatSv69OnzUQ03SAjRPoWFhbh48SKuXr2KW7duITk5Gc+fP0dBQQHKy8thamoKc3NzWFhYwMnJCc2bN0ezZs3g5uaGdu3aqXVEOMK2bt063gKIzz//HH/88Ydg64mJiUFQUBAuXryItLQ0ZGZm4vXr1zA1NYWDgwNatGgBLy8v+Pv7K+UAVlOVlZUhNDQUV65ceXvym5aWhvz8fJSWlsLExOTt96p27dpvv1etW7dGp06dFL4YlpKSwru9LS0tkZSUhBo1aigUnxAAWLx4Me/ImYsWLcLixYsrLS8qKkJwcDDOnDmDW7du4fHjx8jNzUV5eTnMzc1Rr149tG3bFr6+vujfv79SO9ZevXqFwMBAXLp0CTdv3kRmZiays7MhFothZmaGmjVromnTpujcuTN8fX3RqlUr3jjl5eW8ncV6enpqKTSTV2FhIYKCghASEoLr16/jxYsXePnyJcrKymBqago7Ozs0bdoU7du3h6+vLzp27Mg7yllFRQXvFA+6uroaMxqJsr148QLnz5/H9evX315YyMrKQmFhITiOg7m5OczNzWFlZYWGDRuiefPmaN68OTp27KjQaFLVWUJCAq5evYqoqCgkJia+t02Li4uhp6cHY2Nj2NnZoXbt2mjSpAlcXV3RpUsXuLm50bHqB0JDQ+Ht7V1pecOGDZGQkKBVv13arqSkBDdu3EB4eDji4uKQmJiIp0+fIj8/H4WFhdDX14epqSlsbGzQsGFDNGnSBF27doWnpydq1qyp7vQJkduTJ08QGhqKa9eu4cGDB3j8+DFevXr1tg/CxMQEZmZmqFu3Lho1aoQ2bdqgW7duaN++vUp+oyZMmMA7GtbChQs/mlHjqyvq/yLaJjo6GqGhoYiKisKjR4/w5MkT5Obmori4GAYGBm/PLezt7dGsWTM0a9YMLVq0gIeHhyDTR6tSUVERTp48ieDgYMTExCAlJQV5eXnQ09ODhYUFGjRogDZt2qB3797o3bu3RkydlJKSgvPnzyMyMhL37t1DamoqsrOzUVRUBB0dnbefT40aNdC4ceO3535du3ZV6miYQmjdujXi4uIqLY+IiNDYQg9paMNnlpCQgIsXLyIyMhIPHjxAamoqcnJyUFRUBD09vbd/p2xsbNC0aVM0a9bs7Y272jKC0bs+xmvuH31BDiGEEEJIdTFixAgcPHiw0vK1a9di1qxZasiIqNLOnTsxceLESsuXLFnCvAudEFnJWpBDCCFE/RYtWoSlS5dWWh4QEKDQkOuEEFJd1KtXr9KoFDVq1EBSUpLWXeAmhBBCZJWfnw8rKytUVFRUanv58iXd5EeIgj7ucaYJIYQQQqqJ169f49SpU7xt2nwXA5Ee3zDrNjY2VIxFCCGEfOT4jhGaNWuG0aNHqyEbQgjRLG9GYvvQt99+S8U4hBBCPgr//PMPbzFO8+bNqRiHEAFQQQ4hhBBCSDXw119/oaCgoNJyS0tLtG3bVg0ZEVULCQmptGzu3Lm880ITQggh5ONQWFiI69evV1q+ePFimoaDEELAX7RoZ2eH6dOnqyEbQgghRPU2btzIu9zHx0fFmRBSPVFBDiGEEEKIlktLS8PPP//M2+bv7w89PT0VZ0RU7cGDB0hLS3tvmYODA6ZNm6amjAghhBCiCSIiIlBWVvbeMldXVwwfPlxNGRFCiGbhu7Hhu+++g5mZmRqyIYQQQlRr27ZtiIuL420bNmyYirMhpHqighxCCCGEEC1WUlKCUaNGISsri7d94sSJKs6IqAPfXZ3z58+HiYmJGrIhhBBCiKbgO0ZYunQpRCKRGrIhhBDN82FBTs2aNTFlyhQ1ZUMIIYSoTkxMDHOq+4YNG8LT01PFGRFSPVFBDiGEEEKIil2+fBnffPMNkpOTFYqTnp4Ob29vhIWF8bZ36dKFTpw+Eh9ebKtduzYmT56spmwIIYQQoik+PEZo3749/P391ZMMIYRomLt37yI9Pf29Zd9//z2MjY3VlBEhhBAi2aJFi7Bt2zaUlJQoFOfkyZPw8vJCUVERb/u8efOgo0NlBIQIgb5JhBBCCCEqVlRUhM2bN6Nx48YYNmwYDh8+zDz54fP69Wv8/PPPcHV1xbVr13ifo6Ojg3Xr1gmVMtFgHMfh0qVL7y374YcfYGRkpJ6ECCGEEKIRcnNzER0d/d6ypUuXqikbQgjRPB+OjlO3bl188cUXasqGEEIIqVpiYiImT56MevXq4bvvvkNUVJRMr7916xZGjhwJf39/5OXl8T6nVatWmDRpkhDpEkIA6Kk7AUIIIYSQj1V5eTkOHz6Mw4cPw9TUFJ07d4abmxtat24NOzs7WFlZwcDAAK9evcLLly9x7949hIWF4cqVKygsLJQYe+7cuejUqZOK3glRJ5FIhIyMDHWnQQghhBANY2FhgfLycnWnQQghGmvq1KmYOnWqutMghBBCZJaeno5Vq1Zh1apVcHJyQqdOndC2bVs0bdoUVlZWsLKyQmlpKV6+fInMzEzcuHEDYWFhiI+PlxjX2NgYu3btgq6uroreCSHVHxXkEEIIIYRogIKCAly4cAEXLlxQONbAgQOxfPlyAbIihBBCCCGEEEIIIYQQoqlSU1ORmpqKQ4cOKRRHV1cXu3btgpubm0CZEUIAmrKKEEIIIaRaGTt2LA4dOkR3MRBCCCGEEEIIIYQQQgipkqmpKQ4cOIDhw4erOxVCqh0qyCGEEEIIqQbs7Oywa9cu7N69G/r6+upOhxBCCCGEEEIIIYQQQoiG8/T0RFRUFIYMGaLuVAiplqgghxBCCCFExXx8fHDhwgVMnjwZjo6OCsVq0KABVq5ciYcPH2LcuHECZUgIIYQQQgghhBBCCCFEk2zcuBE7duyAr68vDA0N5Y6jq6uLXr16ITAwEKGhoWjWrJmAWRJC3qWn7gQIIYQQQj42urq66N69O7p3747ff/8djx49wpUrVxAbG4ukpCQkJycjIyMDBQUFKCwshFgshpGRESwtLVGnTh00btwY7dq1Q/fu3dG6dWt1vx1CCCGEEEIIIYQQQgghSlajRg1MnDgREydORElJCW7evIlr167h3r17SE5ORmpqKl69eoXCwkIUFRVBV1cXxsbGsLe3h5OTE1q2bImOHTuid+/esLW1VffbIeSjIOI4jlN3EoQQQgghhBBCCCGEEEIIIYQQQgghhFQXNGUVIYQQQgghhBBCCCGEEEIIIYQQQgghAqKCHEIIIYQQQgghhBBCCCGEEEIIIYQQQgREBTmEEEIIIYQQQgghhBBCCCGEEEIIIYQIiApyCCGEEEIIIYQQQgghhBBCCCGEEEIIERAV5BBCCCGEEEIIIYQQQgghhBBCCCGEECIgKsghhBBCCCGEEEIIIYQQQgghhBBCCCFEQFSQQwghhBBCCCGEEEIIIYQQQgghhBBCiICoIIcQQgghhBBCCCGEEEIIIYQQQgghhBABUUEOIYQQQgghhBBCCCGEEEIIIYQQQgghAqKCHCKz8ePHQyQSVXrs2rVL3akRLbNr1y7efWn8+PHqTk3rJCcnw8TE5L3tqK+vj/v370sdo1+/fpU+i3nz5ikxa0IIIYQQQgghhBBCCCGEEEIIqZ6oIIcQQqqB2bNno6io6L1lEydORNOmTaWO8fPPP0NH5/0/Cxs2bMDDhw8FyZEQQgghhBBCCCGEEEIIIYQQQj4WVJBDiBZYvHgx70gybx5HjhxRd4pEjc6dO4djx469t8zExASLFi2SKU6rVq3w6aefvrestLQUM2fOVDRFQgghhBBCCCGEEEIIIYQQQgj5qFBBDiEajuM47N69W+JzaLqwj1dZWRmmT59eafmMGTNQq1YtmeMtW7YM+vr67y0LCgpCUFCQ3DkSQgghhBBCCCGEEEIIIYQQQsjHhgpyCNFwoaGhSEpKkvic4OBgvHjxQkUZEU2yY8cOJCQkvLfMxMQEs2fPlite/fr1MWrUqErL58+fD47j5IpJCCGEEEIIIYQQQgghhBBCCCEfGyrIIUTDSTP6TXl5Ofbu3av8ZIhGKSkpwfLlyystnzRpEmxtbeWOO3fuXIhEoveWxcfH48CBA3LHJIQQQgghhBBCCCGEEEIIIYSQjwkV5BCiwfLz83H48GGpnhsQEKDkbIim+f333/H06dP3lunp6WHOnDkKxW3RogX69etXafnixYtRUVGhUGxCCCGEEEIIIYQQQgghhBBCCPkYUEEOIRrs8OHDKCgokOq58fHxiI6OVnJGRFMUFhZixYoVlZYPGzYMzs7OCsefO3dupWX379/H/v37FY5NCCGEEEIIIYQQQgghhBBCCCHVHRXkEKLBpJmuSpHnq9v48ePBcVylh7a9D3UICAjAixcvKi2fPHmyIPG7desGFxeXSstXr14tSHxCCCGEEEIIIYQQQgghhBBCCKnOqCCHEA2VlJSEsLAw3rbOnTvzLv/7779RVlamzLSIBuA4Dr/99lul5U2bNoWnp6dg65k0aVKlZfHx8bh48aJg6yCEEEIIIYQQQgghhBBCCCGEkOqICnII0VABAQHgOK7ScgcHB+zYsYP3NVlZWQgMDFR2akTNTp8+jYSEhErLP//8c0HX89lnn8HAwKDS8g0bNgi6HkIIIYQQQgghhBBCCCGEEEIIqW6oIIcQDcRxHHbv3s3bNnLkSLi4uKBTp0687TTdU/W3cePGSst0dXXx2WefCboeW1tb9OvXr9LywMBAJCUlCbouQgghhBBCCCGEEEIIIYQQQgipTqgghxANFBoayix4GDt2LAAwiy9Onz6NzMxMpeVG1OvZs2c4e/ZspeUeHh6wt7cXfH1DhgyptEwsFmPPnj2Cr4sQQgghhBBCCCGEEEIIIYQQQqoLKsjRQgUFBUhJSUFCQgKePn2KwsJCdadEBMYa5aZ58+Zo164dAGDEiBHQ19ev9JyysjLs3btXmekRNdq/fz/EYnGl5YMHD1bK+vr168c7bRXtY4QQQgghhBBCCCGEEEIIIYQQwqanjKAVFRWIiYnBjRs3cPfuXdy7dw+pqanIzc3F69evUVFRAWNjY1hbW6Nu3bpo2bIlOnXqhD59+sDBwUEZKckkMTERx44dQ0REBG7fvo3MzEwUFhaiRo0asLOzQ926ddGjRw/4+fnBxcVF6fmUl5fjxIkTOHbsGMLCwpCamvpeu0gkgrOzMzp16oSBAwdi8ODBMDQ0rBTn2rVrKC4urrS8c+fOMDIyUlr+iqioqEBERARCQ0MRFRWFxMREpKeno6CgAGKxGKampqhZsyYaN26MLl26wNfXF23atFF32gopKCjAkSNHeNvGjBnz9t82Njbw8/PDv//+W+l5AQEBmDVrltJy1BZ3797FpUuXEBMTg1u3biErKwuvX79Gbm4udHV1YWJiAhMTE9jZ2cHZ2Rn16tWDq6srunTpgubNm0MkEqn7LVTCVwgjEokwaNAgpazPwsICPXr0QFBQ0HvLHz58iOvXrzOnTiOEEEIIIYQQQgghhBBCCCGEkI+ZiOM4TohA2dnZOHLkCE6dOoXQ0FC8fv1a9mREIvTq1QuzZ89Gr169hEgLly5dgo+PT6XlXl5euHTp0nvLbt26hR9//BGBgYGQdrN4e3tj3bp1SikC4TgOu3fvxoIFC/D06VOpX+fo6IgffvgBU6dOfa+goF69ekhJSan0/KSkJNSrV0/q+OPHj0dAQECl5Tt37sT48eOljiNJeno61q1bh4CAALx48UKm17q4uGDevHkYM2YMdHV1BclHlQICAni3o0gkQlJSEpydnd8uO3LkCIYOHcobJyYmRuOLk3bt2oUJEyZUWj5u3DjmKEFVqaiowJ9//ok///wTUVFRcudmZWWFvn37YsSIEejduzfvKDGqdv/+fTRr1qzScldXV8TFxSltvVu2bMHUqVMrLZ85cybWrVuntPUSQgghhBBCCCGEEEIIIYQQQoi2UnjKqoSEBPTt2xc1a9bEV199hRMnTshVjAP8V4By5swZ9O7dG3369MHz588VTU/q9S5evBjt27fHyZMnpS7GAf4r+GnXrh2WLl0qaE5ZWVno27cvxo8fL1MxDvBfMcu0adPg4+ODrKwsQfNSttLSUvz0009o0KABVq1aJXMxDvDfqCjjx49Hx44dlVqkoCysQpRu3bq9V4wD/DedkJWVlUxxqrPIyEi0b98ekydPVqgYBwBycnKwb98+DBgwAL///rtAGSrm9OnTvMu9vb2Vul4vLy/e5ax8CCGEEEIIIYQQQgghhBBCCCHkY6dwQc7t27cRFBSEsrIyIfJ5Kzg4GG3atEFMTIygcT9UWlqKYcOGYcmSJSgvL5crhlgsxqJFizBv3jxBcnr69Ck8PDwUvtgdGhoKDw8PpKenC5KXsj158gTu7u748ccfUVRUpHC86OhodOnSBYcPHxYgO9VITk5GaGgob9vYsWMrLTM0NMTw4cN5n79//37Bv5eaLCgoCN26dUNsbKzgsQUaSExhwcHBvMtZBTNCadGiBezs7Cotv3//PpKSkpS6bkIIIYQQQgghhBBCCCGEEEII0UYKF+QoU0ZGBrp3746EhASlxBeLxRg7diyOHDkiSLzVq1dj9+7dCsXIyclB7969cf/+fUFyun//Pvz9/VFcXCxIPGVJSEhAp06dFB7V5EOFhYUYOXIk/vnnH0HjKktAQABv8YeRkRGGDRvG+xq+Qh0AyMzMRFBQkKD5aaqIiAgMGjQIJSUl6k5FaYqKipjFWsouyAHYo/CwioQIIYQQQgghhBBCCCGEEEIIIeRjpqeswObm5nBzc0P79u3h6uoKGxsb1KhRA2ZmZsjNzcXLly8RFxeHK1eu4OLFi8yRPHJycjBo0CDExMTAyMhI0ByXLVuGgwcPvrdMR0cHHTt2RN++feHi4gJ7e3sYGRkhIyMD8fHx+Pfff3H16lVmzDlz5sDPzw+2trZy5TR27FjcvXuX2W5jY4OhQ4di8ODBaNiwIWrWrImSkhI8f/4ct27dwsGDB3H69On3ChOuX7+OxYsXy5WPKqSmpsLHx0fiSD4WFhbw8fGBt7c3GjZsCBsbGxgaGiIjIwOJiYkIDg7GhQsXeAuPKioqMG7cONSvXx+dOnVS5ltRCMdxzIKufv36wdLSkrfN3d0d9evX5x2pZNeuXRg4cKCgeWqasrIyfPXVVygtLWU+p1WrVujZsydcXFzg7OwMc3NzGBoaIi8vD69fv0ZmZibi4+MRFxeHyMhIuafdU6bIyEje/dvJyUnu3xtZtGvXDocOHaq0/NKlS/j666+Vvn5CCCGEEEIIIYQQQgghhBBCCNEmghbkWFlZwd/fHyNGjECPHj2gpyc5vL+/PwDg2bNnWL9+PdauXYuKiopKz0tISMAvv/yCJUuWCJZrQkICIiIi3lvWp08frF69Gi1atOB9jZ+fH7777jucOnUKX3zxBZ4/f17pOVlZWfjll1+wZs0amXPasWMHAgMDedtEIhG++OILrF69GhYWFu+1mZiYoEaNGnBxccGnn36KBw8eYNKkSe+9vzVr1sDAwEDmnJStuLgY/v7+zGIcW1tbzJs3D5MnT4a5uTkzzjfffIOnT5/i+++/x549eyq1l5aWYsSIEbhz5w5MTU0Fy19IYWFhePz4MW8baxQc4L99Y+zYsVi6dGmltlOnTiErK0slBRvqEhAQwCxi8/b2xpo1a9C2bVup45WVlSEsLAwnTpzAvn37kJ2dLVSqCmGNHuXq6qqS9bdq1Yp3udCjWhFCCCGEEEIIIYQQQgghhBBCSHUgyJRVDg4OWL16NdLS0rBz5074+vpWWYzzrlq1amHVqlWIiIiAg4MD73PWrVuHV69eCZEuAODFixfvFf+sWLECQUFBzGKcd/Xt2xchISGwt7fnbd+7dy/Ky8tlyic3Nxfff/89s3379u3Ytm1bpWIcPk2aNEFoaChGjRr1dll5eTkKCwtlykkVFi1ahJiYGN42d3d3xMbGYu7cuRKLcd6oU6cOdu/ejW3btkFXV7dSe0pKikaPFLRr1y7e5TY2NujTp4/E144ZM4Z3eVlZGfbt26doahrt8OHDvMtHjBiB8+fPy1SMAwD6+vr45JNPsGHDBjx58gRbt25FvXr1BMhUMTdv3uRdrqqCHNZ6Hj9+LOhvMyGEEEIIIYQQQgghhBBCCCGEVAcKF+R069YNjx8/xrfffgsTExOFYnXu3BlBQUEwMzOr1JaXl8c78okQ1q5di++++06m1zRt2hTr1q3jbcvIyMCpU6dkirdlyxZkZGTwti1fvhyff/65TPF0dHQQEBCAXr16yfQ6Vbp37x7Wrl3L29atWzdcuHABtWvXljnul19+id9++423bfPmzXjx4oXMMZWtoKBAYmGJvr6+xNc3btwYnTt35m0LCAhQOD9NVVpaiosXL1ZabmFhge3bt/MWZsnC2NgYX3311dvRvNQpOjqad7k0RYRCqFOnDqysrHjbWMVChBBCCCGEEEIIIYQQQgghhBDysVK4IMfBwUHhQpx3tW3bFj/++CNv299//y3Yet7w8/PDrFmz5HrtqFGjmNO48BUJsIjFYmzatIm3zc3NDfPnz5crPz09PWzfvh3GxsZyvV7ZlixZwjuSkJOTE44dOwZDQ0O5Y0+ZMoW3iKKoqAjbtm2TO66yHD58GPn5+bxtkqarkuZ5MTExiI+Plzs3Tfb8+XOUlZVVWu7n5yfVaFLaQiwWIzExkbfNyclJZXmw1vXgwQOV5UAIIYQQQgghhBBCCCGEEEIIIdpAkCmrhDZ9+nTY2tpWWh4ZGYnXr18Lth4dHR1s3LhRoRijR4/mXc6aholPaGgo0tLSeNvWr18PHR35PyZnZ2d8++23cr9eWdLS0pgjwqxYsQI2NjYKr+Pnn3+GSCSqtFwTR4xhTVfVqFEj5sg3H5I0ks7OnTvlTU2jsUY70oQppoT07Nkz3sIjAHKNIiUv1rpSUlJUlgMhhBBCCCGEEEIIIYQQQgghhGgDjSzIMTIy4p1qqaKiApGRkYKtp3///mjQoIFCMXr37s27/NatW+A4TqoY//77L+/yZs2awdPTU+7c3vjyyy95C1PUaffu3aioqKi0vEWLFhg5cqQg62jevDnvfvT48WMkJCQIsg4hJCcnIzQ0lLdtzJgxUsexsbGBn58fb9u+fft4RyPSdqz9Oi8vT8WZKJekghdNKMhJTk5WWQ6EEEIIIYQQQgghhBBCCCGEEKINNLIgBwDc3d15l9++fVuwdQhR+NG8eXPo6elVWp6bm4uXL19KFSMkJIR3OWv0HVnVqVMHXl5egsQSCqsIaeTIkYIWD/Xs2ZN3OWubq8Pu3buZxVuyFOQA7GmrMjIycPr0aZlz03SskZSCg4N5C7601dOnT3mXW1hYwMjISGV5ODo68i5/8uSJynIghBBCCCGEEEIIIYQQQgghhBBtoLEFOQ4ODrzLhRyJgVX0IwsDAwPUrVuXty03N7fK1xcVFTGLjPhGd5EXayQfdcjJyWGOdDRo0CBB1+Xh4cG7XJYpxZSJ4zjs3r2bt61r165o2LChTPH69euHGjVq8LaxpsXSZk5OTjA3N6+0PDExEYsWLVJDRsrB+i0xMTFRaR6s9VW3EYkIIYQQQgghhBBCCCGEEEIIIURRGluQY21tzbs8PT1dkPg2NjbMQhpZWVhY8C6XpiAnISEBYrG40nIdHR20bNlS4dzeaN26tWCxFBUdHc37ng0NDdGsWTNB18WaYkdTpqwKDw9HYmIib5uso+MA/23D4cOH87YFBgYiOztb5piaTE9PD97e3rxty5cvx+DBg3H37l3VJqUEhYWFvMuNjY1Vmgdrfaz8CCGEEEIIIYQQQgghhBBCCCHkY6W0gpzS0lKEhIRg/fr1mDRpErp06YKmTZuiVq1aMDMzg0gkkvjo3r07b1yhRmKwtbUVJA4A3hE6AOkKclJSUniXN2rUSNDRLzSpICc+Pp53eaNGjaCrqyvoulhTGqWlpQm6HnmxRq0xMDDAiBEj5IrJmraqtLQU+/fvlyumJpsyZQqz7dixY2jRogW6deuG9evX49GjRyrMTDiaXpBTUFCg0jwIIYQQQgghhBBCCCGEEEIIIUTT6QkdMDw8HAEBAThy5AhycnKEDo/i4mJB4rCm9ZEHq4ikoqKiyte+ePGCd7mjo6NCOX2INQWYOrCKkO7cuQORSKSSHDRhpJjCwkIcPnyYt61Pnz7MUaKq4u7ujgYNGuDx48eV2gICAjBt2jS54moqX19f9OzZE+fOnWM+JyIiAhEREZg1axZq164NT09PuLu7w93dHa1atYKOjsYOFgYAKC8v510udAFbVfT0+P9ksPIjhBBCCCGEEEIIIYQQQgghhJCPlWBXoZOTk+H//9i7z+ioqvf/+5/0Rgi9RjqE3gWkSu+9owI2lCJgR0RBRX4IKogFsAGCIFKkCiI9NOkI0mvoLRBCCiHJ3A++t/6NmROSOWcmhfdrraxF9p597WuGnGnnOnt36qSGDRvqu+++c0oxjpS6IpfU8PHxsSSOWUar6Bhtg+UoDw8PBQQEWBrTUZcuXUrvFBQTE5PeKWjhwoWGKz4ZrXKTWkbbXe3Zs0eHDh0yFTsjmjdvnsqUKZOq2168eFHz5s3TkCFDVK1aNeXNm1fdunXT9OnTdePGDSdn6hij1bKsKlBMLaPjxsrVvAAAAAAAAAAAAAAgK7CkIOfnn39W+fLltXTpUivCPVTu3btnt93qghxnxXSEVduOmREXF5feKRhuV5UjRw61a9fOVGyjgpyU5s3McufOrR07dqh169ZpHhseHq5FixbpxRdfVKFChdShQwetXbvWCVk6zqjgxdWFZUbzZZRiPwAAAAAAAAAAAADIKExvWTV//nz17t1bNpvNinzw/0tMTLQ8plWrC5llVIT0MDl37pw2btxot69BgwY6ceKE6TnKli2ro0ePJmv/8ccfNX78eMPthzKrnDlz6tdff9WSJUv09ttv6/Dhw2mOcf/+fS1fvlzLly/X448/rs8//1wVK1Z0QrZpY1TwklEKclghBwAAAAAAAAAAAACSMnVG/vjx43rmmWdSLMZxd3dXlSpVVL16dZUuXVrBwcHKkyePAgMD5efnJ09PT7m5uSUbt2vXLj3zzDNm0ssUfH197bYbbWVlhjNiOsLd3bKd0jKtWbNmGR43fxeEOMuVK1e0evVq06vwZFSdOnVSp06dtHXrVs2aNUu//vqrLl68mOY4GzduVO3atTVt2jTTW4iZlTdvXrvtERERSkxMdNkxdevWLbvt+fLlc8n8AAAAAAAAAAAAAJBZmCrIefXVVxUdHW23r2DBghoxYoT69OmjPHnypDn2tWvXzKSWaeTIkcNuu9XFM/fv31dsbKylMR1ltJpG5cqV9eOPP7o4G9ez2Wz64Ycf0jWHWbNmZdmCnL/Vq1dP9erVkyQdPXpUGzZs0ObNm7VlyxZduHAhVTGio6PVv39/BQYGqlOnTk7MNmVFixa12x4fH69r166pQIECLsnDqLDJKD8AAAAAAAAAAAAAeFg5XJBz7NgxrVixwm5f/fr1tWjRIlOrJhitxJDVGJ1IP3/+vKXzWB3PjNy5c9ttv3fvXobYHsjZQkNDderUqXTNYfny5QoPD1euXLnSNQ9XKVu2rMqWLauBAwdKkk6fPq3Nmzdr9erVWrVqVYoFcImJierbt69OnTpluFKNs6VU8HLx4kUKcgAAAAAAAAAAAAAgg3F4n5MFCxbYbc+fP78WL15seguT8PBwU+MzixIlSthtP3funG7fvm3ZPAcOHLAslllFihSx2/6w/J/PnDkzvVPQvXv3NG/evPROI92UKFFC/fv3108//aQbN25owYIFatCggeHtIyMjNWHCBBdmmFRAQIBhMZAj23E5ymiuYsWKuSwHAAAAAAAAAAAAAMgMHC7ICQ0Ntds+ePBgS1aROH36tOkYmUHp0qXl5eVlt8/KIpr9+/dbFsuscuXK2W2/ceNGll8ZKTo6WgsXLkzvNCRljMKgjMDLy0vdunXT5s2b9f3338vT0/7CYT/99JOLM0uqcuXKdtuPHz/ukvljYmIMV9qqUqWKS3IAAAAAAAAAAAAAgMzC4YKcY8eO2W3v0KGDw8n8m1HBT1bj5eWlGjVq2O1bvny5ZfMsW7bMslhm1apVy267zWbL8v/vixYtUmRkpGGfzWaz/Gfy5Ml259u9e7cOHz7sxHub+Tz99NP64IMP7PZduHBBJ06ccHFG/4/R88TBgwddMv9ff/2lxMTEZO3ZsmVT2bJlXZIDAAAAAAAAAAAAAGQWDhfkXLt2zW570aJFHU7mb5GRkdq9e7fpOJlFkyZN7Lb/9NNPdk+Ap9Xhw4cz1Ao5xYoVM9yqa+3atS7OxrWMVqUJCgpS27ZtnTJnr1695OHhkaZ8HmYvvfSSfHx87PadO3fOxdn8P+ldkGM0T7Vq1eTu7vBLCQAAAAAAAAAAAABkSQ6fRY2Li7Pb7ufn53Ayf/v22291794903Eyi86dO9ttv3jxoiXbGxmtkJKejO7zrFmzdPv2bdcm4yJhYWHasGGD3b6uXbsaFoGYlT9/fsOirzlz5ighIcEp82ZWAQEBhiu+3Lhxw8XZ/D+1a9e2237kyBHFx8c7ff4///zTbrtRXgAAAAAAAAAAAADwMHO4ICdXrlx22y9duuRwMpJ07949TZkyxVSMzKZmzZoqV66c3b7XX39dMTExDsfeu3evvvvuO4fHO8uzzz5rt/3OnTtZ9v9/1qxZstlsdvueeOIJp85tFP/y5cv67bffnDp3ZuTt7W23PSAgwMWZ/D9FixZV6dKlk7XHxsZqz549Tp/faDu5Fi1aOH1uAAAAAAAAAAAAAMhsHC7IyZs3r932devWOZyMJL3xxhs6e/asqRiZ0csvv2y3PSwsTEOGDHEo5u3bt9W/f39Ltr2yWrly5dSqVSu7fR9++KG2bdvm4oycb9asWXbbCxUqpMcff9ypc3fp0kW+vr52+4zyelglJCTo9OnTdvsKFSrk4mySMjpmNm7c6NR579y5Y3fbO39/fzVs2NCpcwMAAAAAAAAAAABAZuRwQU61atXstk+aNMnh7VN++uknff75546mlKn169dPpUqVstv3/fff69VXXzVcXcWeO3fuqF27djp48KBVKVpu/PjxcndP/icYFxenrl276vjx45bPef36dcNto5wpNDRUp06dstvXq1cvu4+DlQIDA9W+fXu7fUuXLs2024T99ttv2r17t6Uxly5dqps3byZr9/b2trtCjSsZFeRs2rTJqfOGhoba3drs8ccfd9pWawAAAAAAAAAAAACQmTlcBdCyZUu77YcPH9ZLL72U5nhfffWVnnjiiTQVnWQl3t7e+uyzzwz7P/30UzVq1EjHjh17YKyVK1eqYsWK2rp16z9tgYGBCgoKsiRXq1SpUkWvvPKK3b4rV67o0Ucf1aJFiyyZ69SpUxo0aJCKFi2qH3/80ZKYaTFz5kzDvj59+rgkB6N57t27p3nz5rkkB6tt375djz76qJo2barffvvN9PPHiRMnNGjQILt9rVq1Uvbs2U3FN6tJkyZ2c9iyZYvi4uKcNu/69evttnfs2NFpcwIAAAAAAAAAAABAZuZwQU779u0NCzymTZumzp076/Llyw+Mc/jwYbVu3VqDBw9OsrXSI4884mhqmVabNm00cOBAw/7Q0FCVK1dODRs21KRJk7Rs2TLt2rVLW7du1cKFC/XOO+8oJCRE7dq10/nz55OMHTdunHLkyOHke5B2H374oWrVqmW3786dO+rWrZtatmxpWBCQktOnT2vixImqU6eOSpcuralTpyomJsZsymkWHR2tBQsW2O0LCQlRjRo1XJJHmzZtlDNnTrt9KRUMZQbr169Xq1atFBwcrGHDhmnr1q1p2qrt/v37mj59umrXrq2rV6/avc3zzz9vVboO8/X1VZcuXZK1R0ZGmt4uMCVLlixJ1ubt7a3u3bs7bU4AAAAAAAAAAAAAyMw8HR2YI0cOvfrqq3r33Xft9i9ZskS//vqrOnbsqCZNmqhs2bIKCgpSVFSUrl27pr/++ksrVqzQrl27kq1qkTdvXn388cfq2bOno+llWpMnT9bRo0cNt1Wy2WwKDQ1VaGhoqmN269ZNgwcP1scff2y338PDw6FcreDt7a3ly5erXr16OnnypN3brFmzRmvWrNEjjzyihg0bql69eipcuLBy5cqlwMBARUZG6vbt27p9+7ZOnDihvXv3at++fbp48aKL7419ixYtUmRkpN2+J554wmV5eHt7q1u3bvrmm2+S9e3cuVNHjx5V2bJlXZaPM1y6dElTpkzRlClTFBgYqBo1aqhmzZqqUKGCcufOrZw5cyowMFCxsbG6ffu2jh8/rl27dmnVqlW6ceOGYdxu3bqpXbt2Lrwnxp588km7BVSLFi1S69atLZ9v//79On36dLL2tm3bGhZ4AQAAAAAAAAAAAMDDzuGCHEl69dVXtXjxYu3fv99uf1xcnBYsWGC4Oog9Pj4+WrhwYZpWt8hKvL29tXTpUnXq1MmhVWH+q1mzZvrhhx/k5uamhIQEu7fx8fExPY8Z+fLl06ZNm9SqVSsdPHjQ8Hbnz5/Xjz/+mC5bTpmREbar+vd89gpypP/lOX78eJfm40yRkZHauHGjNm7caCpO2bJl9dVXX1mTlAUaN26swoULJys4W7ZsmRISEiwvsFu8eLHd9ieffNLSeQAAAAAAAAAAAAAgK3F4yypJ8vf31/Lly1W4cGFLkvH399eCBQvUsGFDS+JlVoGBgVq1apWGDx8uNzc3h+O8+OKLWrlypfz8/CRJERERdm/3d396KlSokLZs2eLyAhVnCwsLM1ztqHbt2ipZsqRL82nYsKGCg4Pt9s2ePduwaOthVaNGDYWGhipv3rzpnco/3N3d7W6fdf36dadsWzV//vxkbQULFlT79u0tnwsAAAAAAAAAAAAAsgpTBTmSFBwcrD/++EP16tUzFads2bIKDQ3lJO//z9vbW5MmTdL27dvVpEmTNI2tV6+e1q9fr6lTp8rb21uSlJCQoLt37ya7rY+PjwIDAy3J2azs2bPrxx9/1C+//OKUQpXcuXNryJAheuWVVyyPbWTWrFnJtmT7W3oUH7m7u6tXr152+y5duqTff//dxRmZU7JkSQUFBVke19fXV++++65CQ0OVJ08ey+ObNXDgQLsrWxmtfuSozZs36/jx48naBw0aJC8vL0vnAgAAAAAAAAAAAICsxNSWVX8rXLiwNm7cqK+++kqffPKJwsLCUj32kUce0dChQzV06NB/ikfw/9SuXVvr1q3TkSNH9Msvvyg0NFRHjhzR9evXde/ePfn7+ytPnjwqV66c6tSpo44dO6py5crJ4ly5csVuYUiBAgVccTfSpFOnTmrXrp0WLlyoadOmKTQ01OEtzIoUKaLmzZurbdu2atu2rcv/xgoXLqzRo0fb7evdu7dLc/nbiy++qICAgHSZ22pPPfWUevfurc2bN2vFihVat26dDh065PDfS8GCBdWnTx8NHjxYxYsXtzhb6+TLl099+vTRjBkzkrQvW7ZM169ft2xFn2+//TZZm6+vr1588UVL4gMAAAAAAAAAAABAVuVmM1q+w0H379/XmjVrtH79em3btk2XL1/WzZs3FRMTo4CAAOXOnVtlypRRtWrV1KJFCzVo0ECensnrghITExUXF5es3d3dncIdB/zyyy/q0qVLsvZmzZpl+FVRrl69qrVr1+qPP/7QX3/9pXPnzunGjRuKjo6WzWZTYGCgAgMDlSNHDpUsWVLlypVTuXLlVKtWLZUpUya904eLRUZGaseOHdq3b59OnDihkydP6vz587pz547u3r2ruLg4BQYGKigoSDlz5lT58uVVrVo1Pfroo6pfv748PDzS+y6kyp9//qkqVaoka584caJee+010/EjIiJUsGBBxcTEJGl/9tln7RbqAAAAAAAAAAAAAAD+H8sLcpAxvfnmm5owYUKy9qFDh+qzzz5Lh4wAmNWpUyctXbo0SVuxYsV08uRJ04VFEydO1BtvvJGkzdPTU0ePHnXKlnIAAAAAAAAAAAAAkJW4p3cCcL6EhATNnz/fbl+9evVcnA0Aq7z//vtyc3NL0nb27FnD4z214uLiNHny5GTt/fr1oxgHAAAAAAAAAAAAAFKBgpyHwLJly3Tu3Llk7e7u7mrUqFE6ZATACpUrV1b37t2TtU+cONFU3Dlz5ujSpUtJ2ry9vfXuu++aigsAAAAAAAAAAAAADwsKcrK4u3fv6s0337Tb16BBA+XPn9/FGQGw0vvvvy9PT88kbfv379fq1asdipeYmGi3oOf5559XkSJFHIoJAAAAAAAAAAAAAA8bCnKysMTERA0YMEAnTpyw2//MM8+4OCMAVgsJCdGgQYOStb/zzjuy2WxpjjdnzhwdPXo0SVvOnDn13nvvOZwjAAAAAAAAAAAAADxsKMjJYM6ePaunnnpKhw4dMhUnMjJSnTp10rx58+z2FylSRL179zY1B4CM4b333lPevHmTtO3evVsLFy5MU5y4uDi721K9//77yp07t6kcAQAAAAAAAAAAAOBhQkFOBhMfH685c+aocuXKatWqlX744QdFRESkenxsbKy+/PJLVaxYUcuXLze83ccffywvLy8rUgaQznLkyKH/+7//S9Y+atQoxcfHpzrO1KlTde7cuSRtlSpV0sCBA03nCAAAAAAAAAAAAAAPE8/0TgD22Ww2/fbbb/rtt9/k7e2tWrVqqXr16qpataoKFCigHDlyyM/PT7dv31Z4eLhOnTqlzZs3KzQ09IEFPD179lT37t1ddE8AuMIzzzyjGzduKCYmJkl7WFiYSpQokaoYnp6eGj16dJK2Dh06yMPDw7I8AQAAAAAAAAAAAOBh4Gaz2WzpnQT+n5MnT6p06dJOi1+nTh2tXbtWAQEBTpsDAAAAAAAAAAAAAADgYcaWVQ+RFi1aaM2aNRTjAAAAAAAAAAAAAAAAOBEFOQ+BwMBATZw4UatWrVJgYGB6pwMAAAAAAAAAAAAAAJClsWVVBvTHH39owYIFWrx4sc6cOeNwnIIFC+qZZ57RSy+9pPz581uYIQAAAAAAAAAAAAAAAIxQkJPBXbhwQdu2bdOePXt0+vRpnT17VpcvX1ZUVJSio6MVHx8vHx8fZc+eXYULF1apUqVUvXp1NWrUSLVr15abm1t63wUAAAAAAAAAAAAAAICHCgU5AAAAAAAAAAAAAAAAgIXc0zsBAAAAAAAAAAAAAAAAICuhIAcAAAAAAAAAAAAAAACwEAU5AAAAAAAAAAAAAAAAgIUoyAEAAAAAAAAAAAAAAAAsREEOAAAAAAAAAAAAAAAAYCEKcgAAAAAAAAAAAAAAAAALUZADAAAAAAAAAAAAAAAAWIiCHAAAAAAAAAAAAAAAAMBCFOQAAAAAAAAAAAAAAAAAFqIgBwAAAAAAAAAAAAAAALDQQ1uQM2bMGLm5uSX7GTNmTHqnlunMnDnT7mPZv3//9E4NAAAAAAAAAAAAAADA5TzTO4G/3bt3T7dv31Z0dLRiY2Pl7e0tf39/5cmTR15eXumdHgBA0t27d3X79m1FRUUpe/bsypkzp3x9fdM7LQAAHHb37l1FRkYqKipK8fHx8vHxUbZs2ZQnTx65ubmld3oA8FC7c+eObt26pZiYGAUEBChXrlwKCAhI77QAAAAAAABSJV0Kcq5evaoNGzZo27Zt2rNnj86cOaMrV67IZrMlu62bm5vy5s2rkJAQVapUSfXq1VOjRo1UuHDhdMgcwMNszJgxeu+99wz7Fy5cqK5du7owI+eJi4vTH3/8oa1bt+rQoUM6ePCgjh07pnv37iW7rZ+fn0qWLKm6deuqbt26at68uQoVKuS03I4fP664uDinxZckLy8vhYSEWB43NjZWixYt0vLly7V3715duXJFiYmJKliwoKpWraqOHTuqc+fOnGSwwO3bt3XhwgVTMTw8PBQYGKjs2bMrMDAwy52YP3/+vA4ePKiDBw/q9OnTCgsLU1hYmG7duqWoqChFRUXJx8dHOXLkUFBQkAoUKKBq1arp0Ucf1WOPPaaiRYs6Ja+oqCidOXPGKbH/LV++fMqXL5/lcU+fPq2ff/5Zq1at0unTp3X9+nUFBgYqODhYjRs3VteuXVWvXj3L50XqHD16VJs2bdL27dt18OBBnTlzRrdu3bJ7W09PTxUqVEjly5dXlSpV1KBBAzVo0EDZs2d3cdbWu3nzpnbv3q39+/crJibG7m2GDx+uHDlyOC2HM2fOKCoqymnx/1axYkXLYyYkJGjZsmVatmyZ/vjjD12+fFmxsbEqWLCgypcvrw4dOqhbt27KlSuX5XM/bBx9TfDw8JCPj498fHzk6+urnDlzyt09ay8QfOjQIafPERAQoOLFizt1jgsXLmjhwoVatWqV9u/fr2vXriW7TXBwsGrUqKE2bdq4/Fj7/ffftWTJEoWGhurSpUu6e/eu8ufPr9KlS6tdu3bq0aOHUz8LAQAAAACAzMXNZq8KxgliY2M1Z84czZkzR6GhoUpMTDQVr2bNmurevbv69eun/Pnzp3m80Yn10aNHs21VGs2cOVNPP/10svZ+/fpp5syZrk8IcAKbzaaSJUumeEKgXbt2Wr58uQuzstb58+e1cOFCrVmzRqGhoQ6fJPP09FSXLl00dOhQp5x0LlasmM6dO2d53H8rXLiw6WKO/5o7d65GjBih8+fPp3i7ggUL6oMPPtCzzz5r6fwPG6PXJke5ubmpSJEiqlq1qqpWraqmTZuqfv36maZI5969e/rjjz+0ZcsWbdmyRTt27DAsQkithg0b6rnnnlP37t0tXSlr48aNaty4sWXxjLz99tsaO3asZfHu3LmjUaNGadq0abp//36Kt23atKk+/fRTVa5c2bL5Yezq1auaPn265s+fr8OHD5uK5eXlpaZNm6pXr17q0aOH/Pz8LMrSee7evau9e/dq165d//ycPn36gePOnDmjYsWKOS2vxx9/XJs2bXJa/L/dv39fnp7WXYeyZs0aDR8+XEeOHEnxdkFBQRo5cqReeeUVS+d/2Fj1muDu7q48efIof/78KlmypMqVK6dy5cqpTp06Kl26tAWZpj9XvCepV6+etmzZ4pTY586d08iRI/Xzzz8rPj4+1eP8/f3Vv39/vf/++8qdO7dTcpOkXbt2aejQodqxY0eKt/P19dXw4cM1atQoiuwBAAAAAIBkc7LY2Fjb+PHjbfny5bNJsvzHy8vL9sQTT9iOHDmSprxGjx5tN97o0aOd80BkYTNmzLD7WPbr1y+9UwMss2HDhgc+H3l6etquXLmS3qmmye3bt21Tpkyx1a1b1+bm5mb5c3SnTp1s169ftzTnokWLOuX15N8/hQsXtizf+Ph425AhQ9KcQ9++fW1xcXGW5fGwMXptsvKnePHittGjR9tu376d3nf3gebNm+e0x6FYsWK2VatWWZZrap5vrfh5++23Lcv5zJkztvLly6dpfj8/P9svv/xiWQ5I7sqVK7YXXnjB5uvr65S/oVy5ctlGjhxpu3nzZnrf1X8kJibadu7cafvyyy9t/fv3t1WoUMHm7u7u0P07c+aMU3Nt1KiRS471+/fvW5bz+PHj0/x+qUWLFrY7d+5YlsPDxhWvCQUKFLD17t3btnjxYltMTEx632WHueJ4qlevnlNy//LLL23+/v6mcsudO7fTXld/+OEHm7e3d5ryqV69uu3SpUtOyQcAAAAAAGQeTl2zef369apUqZJGjBhhd5lhK9y/f18//vijKlSooOeee043btxwyjwAHm6pWe0pPj5ec+bMcX4yFgoNDdXQoUO1bds2u9sGmrVkyRJVrFhRv/32m+WxM4uBAwfqiy++SPO4H374Qb1793bK/wuscebMGb333nsKCQnJdMe+lc6ePavWrVurb9++io2NTe90XO7q1atq0KBBmldeiYmJUdeuXbVkyRLnJPaQ+/LLLxUSEqLp06c77e8yPDxc48aNU7FixTRhwoQHrozkChEREapVq5YGDx6smTNn6q+//jK9Min+58MPP9SIESPS/Lq8Zs0atWzZ0u62n8gYrly5onnz5qlLly7Kly+fhg0bprNnz6Z3Wg8Fm82mF198UYMHD1Z0dLSpWDdv3lSXLl00fvx4i7L7nx9//FF9+/ZN85a5e/fuVcOGDRUeHm5pPgAAAAAAIHNxSkFOYmKi3n//fTVv3lwnTpxwxhR25/zuu+9UvXp1l8wH4OFx9+5dLVy4MFW3nTVrlpOzyXyuXr2qdu3aaf78+emdistNnz5d33zzTZI2Ly8vDR48WNu3b1dERMQ/W4m8/vrrybb9WbRokaVb6sA5rl69qqeeekp9+/ZN0xYLWc3s2bPVsmVLxcTEpHcqLpOYmKiuXbsm2+LukUce0RdffKFTp04pNjZW169f17Jly9S8efNk45966qkHbn2D1IuIiFDnzp01ZMgQRUREuGTOyMhIvfnmm2w1mIWtWrVK7777bpI2Nzc3PfHEE1q/fr3Cw8MVHR2tv/76S2PHjlWOHDmS3Hb79u0aNGiQCzOGoyIjIzVlyhSVKlVKL7zwAsUUTjZkyBBNnz7dsng2m01vvfWWJk2aZEm8/fv36/nnn0/W3qZNG61YsULXr19XbGysTp48qc8++0wFCxZMcruTJ0+qZ8+eFNgDAAAAAPAQs3wz+/j4eD3xxBP6+eefH3jbnDlzqmXLlqpXr54qVKig4sWLK1euXAoICND9+/d19+5dXbx4USdOnNDu3bu1ceNG7dq1K8WrPO/cuWPl3QEALVy4UFFRUam67cGDB7V3794sUxwYEBCgJk2aqG7duqpRo4ZKlCih/Pnzy8/PT7dv39a1a9f0xx9/aM2aNVq4cKHh6gDx8fHq27evChUqpAYNGrj4XqSPiIgIvfXWW0na8uXLpxUrVujRRx9N0l6tWjVVq1ZNTz/9tFq1aqWwsLB/+j788EP169dPRYoUcUnecNzs2bMl/W91o8zC29tb1apVU7ly5RQSEqKSJUsqR44cyp49u3x8fHTnzh2Fh4frr7/+0p49e7R69eoUC242b96svn37asGCBS68F+lnzpw52rp1a5K2tm3bav78+QoICPinzcfHR+3bt1f79u31+eefa/jw4f+8n717965eeeUVrVq1yqW5Z0VXrlxR06ZNU7VaUfHixdW8eXPVrVtXISEhKlq0qAIDA+Xn56eYmBhFRkbq3LlzOn78uLZt26b169c/8EIDPodkTfHx8Ro2bFiSz6ABAQGaP3++2rZtm+S25cuXV/ny5fX000+rTZs2OnDgwD9933//vQYMGKDatWu7LHc4LiEhQV9//bUWL16sadOmqWvXrumdUpYzffp0ffXVV4b9uXPn1vPPP6/27durfPnyypYtm27fvq0///xTixcv1owZMwxX1XnttddUuXJlNW3a1FSOr7zySpL3PZ6enpo2bVqyAsySJUtq6NCh6t+/v7p06aJ169b907d27Vr9/PPP6tmzp6lcAAAAAABAJmXl/lf379+3derU6YF7adeuXdu2aNEi271799I8x4ULF2wTJkywFS1a1G7soKCgVMUZPXq03fGjR49Oc04AsrZGjRo98Hnt3z8vvfRSeqecasuXL0+Wv5eXl61bt262JUuWpOl5+ty5c7YePXqk+NgUKVLEdufOHVM5Gz3/nzlzxlRcq40dOzbZ47p9+/YHjjt8+LAtW7ZsScYOHDjQBRlnLTNmzDD8O9ywYUOqYsTGxtquXbtmO3TokG3u3Lm2gQMH2vLkyfPA54DvvvvOuXfOAfPmzbNJsrm5udkee+wx29ixY20bN260xcTEpClORESEbfLkybagoKAUH4M5c+Y4nOuGDRvsxmzUqJHDMZ2ldOnSSXKsWbOmLTY29oHjPvjgg2T3748//nBBxlnXpUuXbGXKlEnx79Ld3d3Wo0ePVD0X27Nv3z7byy+/bAsMDLQbv2PHjtbeKQfcunUr1e9XChQoYCtfvrxhv7NfV43eX6X2OdpV5syZkyzHRYsWPXDclStXbIUKFUoyrnXr1i7IOGsxek2QZJsxY0aKYxMSEmxRUVG2mzdv2o4ePWrbuHGj7dtvv7UNGzbMVqdOHZuHh0eqj5c33njDlpiY6Jo77SCj3DOiY8eO2Xx9fQ1z7tmzp+3WrVspxrh48aKtcePGhjHy58//wBgp2bJlS7KYn3zyyQPHRUVF2SpVqpRkXLly5RzOAwAAAAAAZG6Wblk1bNgwLVmyxLC/QIECWrBggXbs2KEuXbrI29s7zXMULlxYr7/+uk6ePKnvv/8+2ZLAAGClM2fOaPPmzXb76tSpY7d93rx5hivFZGQ5cuTQqFGjdO7cOS1YsEAdO3ZM0/N0kSJFNH/+/BSXiA8LC9OECROsSDfD++WXX5L8PmDAAMO/mX8rV66cRowYkaRtyZIlLHWfDnx8fJQ3b15VqFBBvXv31ldffaWLFy9q3LhxybYX+7cRI0bo7t27Lsz0wUqUKKGpU6fq4sWL2rZtm95++201atQoxfthT/bs2TVs2DAdPnxYlSpVMrzdyJEjs/z2XYcOHUq2YsrUqVPl4+PzwLFvvfWWQkJCkrQtXrzY0vweJjExMerQoYOOHz9ueJsaNWpoz549mj9/fqqei+2pWrWqPv30U507d06jRo1K8/GTnnLmzKnmzZvrrbfe0uLFi3X+/HldvnxZr7/+enqnluH99/W8bdu26tKlywPH5c+fP9l7nrVr1yoyMtLS/GDM3d1d/v7+ypUrl0JCQtSoUSM9++yzmjx5srZv367w8HDNmjVLjRo1emCsCRMmaODAgS7I+uHw8ssvKzY21m7fiy++qJ9++inZ1m//VahQIf32229q37693f6rV69q9OjRDuf432O/UqVKevnllx84zt/fX1OnTk3SduTIER09etThXAAAAAAAQOZlWUHO999/n+Jyw3Xr1tX+/fvVrVs3S+bz9PTU008/raNHj2rIkCGWxASA/5o1a5bdQoj8+fPru+++szvmxo0bWrFihbNTs0y2bNk0evRonT17Vh988IHpQsfhw4en+OX3559/nuKWN1lBRESE9u7dm6Tt+eefT/X4AQMGyM3N7Z/fL1++rCNHjliWHxzn7e2tt956S8uXLzc8GX/9+nXNnz/fxZmlrFatWnrxxRctK2QuVKiQ1q9fr+DgYLv9YWFhWX4Lpg0bNiT5vWrVqqpZs2aqxnp4eGjAgAFJ2tavX29Zbg+bF154Qbt37zbsf/HFF7Vjxw5VrVrVkvly5sypDz74QIcOHVKTJk0siWmlbNmyqUGDBnrllVc0b948nThxQuHh4VqzZo3GjRunzp07Gx67SO6/x3paXs979eqVpKjg/v37Cg0NtSo1mJQ9e3b17dtXGzdu1LZt2x64rer06dOTbUeKtNu8ebN+/fVXu33169fXF198kepYXl5emjt3rkqXLm23/6uvvkqyFWxa/PfYf/bZZ5O8P09JvXr1khUu8zoPAAAAAMDDyZKCnLCwMA0fPtywv0mTJlq3bp3y589vxXRJZM+eXZ9//rmWLVumXLlyWR4fwMPLZrPphx9+sNvXq1cvlS9fXrVr17bbP3PmTCdmZp3KlSvrxIkTGjNmjIKCgiyL++6776pKlSp2+yIiIjJVwZIjLl26lKSQy8/PT5UrV071+Lx58yY7sXD+/HnL8oN5zZo1S/Gk3NKlS12YTfrIkyePPv74Y8P+rH6cX7hwIcnvaV115bHHHkvyO8e4Y3755RfNnj3bsH/kyJGaOnWqPD09LZ+7ZMmS+v333/XBBx/Iw8PD8viOCAoKUkREhDZv3qxPPvlEvXr1UqlSpdI7rUwrJiZG4eHhSdrScqx7eHioVq1aSdo41jOmxx57TJs2bdKkSZNSfL746KOPDItJkDpGq2V6enrqm2++SfPzabZs2fTll1/a7YuPj9enn36a5hwlXucBAAAAAIA1LCnIGTRokOHS2+XLl9fSpUudvqR7+/bttX37dpUoUcKp8wB4eGzatElnzpyx2/fUU09Jkvr27Wu3f9WqVbp+/brTcrNKkSJFVKBAAcvjuru767333jPs//333y2fMyO5detWkt9z5syZ6itq/5Y7d+4kv//3hCDS36uvvmr4/mbHjh0uziZ9dO3a1bAgeteuXS7OxrX+e5yntTCcY9y8u3fvatCgQYb9/fr104cffujUHNzd3TVq1CgtXrxY/v7+Tp0rNdzc3OTubumuxA+1/x7nEsd6Vubm5qbhw4drxYoV8vPzs3sbm82mp59+Wnfu3HFxdllDWFiYYUHTk08+qbJlyzoUt3nz5oZbj82YMcNwe6yU8DoPAAAAAACsYPrb2i1btmjlypV2+3x9fbVgwQJly5bN7DSpUqZMGa1bt84lcwHI+oxWuSlXrpxq1KghSerZs6e8vLyS3eb+/fuaM2eOM9PL8Fq2bGl4cnLfvn0uzsa1smfPnuT3iIiINMe4fft2kt+tXMEI1ggICFDDhg3t9l2/fl137951cUau5+npqcaNG9vtO3v2rGuTcTGzxznHuHmTJ0/WlStX7PaVLVs2xe10rdahQwfDFRqQef33OJc41h8GLVu21I8//mhY3Hbt2jWnF/tlVfPmzbO7HbAkDR061FRso63M79y5Y/idVUp4nQcAAAAAAFYwvXb76NGjDftef/11lS9f3uwUaZIzZ06nxd6xY4eWLVumXbt26ejRowoPD1d8fLzy5MmjfPnyqXTp0mrdurVat27tlBUn7LHZbNq6davWr1+vnTt36tSpU7py5YqioqLk5uamgIAAFSpUSKVKlVLt2rXVrFkzPfrooy7JzVnOnTundevWafv27Tp69KjOnTun27dvKzo6Wt7e3sqePbty5sypkJAQVahQQTVq1FDTpk2d9gXYvXv3tGHDBm3evFl79+7VmTNndO3atX/+D7Jly6bg4GCVKVNG9erVU5s2bVSmTBmn5PK3mJgYrVmzRrt379a+fft06tQpRURE6M6dO4qNjZWfn5/8/f0VGBioRx55REWLFlXJkiVVq1Yt1a5dWzly5HBqfplBVFSUFi1aZLfvySef/OffuXPnVps2bexuTzNr1iy9/PLLTssxo/P19VXVqlW1bdu2ZH1Z/UT9f7dojIqK0uHDh1P9mhgREaETJ04kaStUqJBl+cE6JUuWNOyLiIhwWVFyeipcuLDddqPVE7OK/x7nO3fuTNP4/96eYzxtIiMj9cknnxj2f/nlly5fscaZn0OQPrJly6aAgABFRUX907Zz5061adMmVeNtNpt2796dpI1jPXPo3Lmzhg0bpkmTJtnt/+yzz/Taa68pb968Ls4sc1u8eLHd9rJly6patWqmYrdr107Zs2e3u3rRokWL1LVr1zTFy58/v27evPnP7zt37lTNmjVTPZ7XeQAAAAAAIJksyDl27JjWr19vty937tx68803zYTPMJYsWaIxY8bowIEDdvsvXbqkS5cuaf/+/VqwYIHc3d31zDPPaOzYsclO1ljl7t27+vLLL/Xll1+muBd5XFycbt26pb/++ktLly7VyJEjVapUKQ0bNkzPPfecJVuJzZw5U08//XSy9n79+hmuMJJWcXFxmjt3rr766qsUt8CIiYlRTEyMrl69qqNHj/5TJOHp6ak6deroqaeeUp8+fSw5QXr69GlNnDhRP/30U7Kr3/4tPDxc4eHh+vPPP7Vw4UK9/PLLqlOnjkaMGKGOHTuazuPfjh49qo8//lgLFixIcRn1u3fv6u7du7p27ZpOnTqVpM/NzU1VqlRRjx491LNnz4d2G7iFCxfaXd3Czc1NTzzxRJK2p556ym5BzoEDB7R//35VrVrVWWlmeEbFiVl9mf+8efOqdOnSSYpqZsyYoYkTJ6Zq/KxZsxQfH//P7zlz5lSlSpUszxPmpXQC3tvb24WZpB+jbT0ywvY9zlSvXr0kv+/evVsHDx5M9bH63/dIRlttwL65c+cavv9q2bKlmjRp4tqEkGXVrVs3yVabM2bMSHVBzvLly5NsYeru7q769etbniOc48MPP9SCBQt04cKFZH337t3Tt99+q7feeisdMsucbt++naxA7W/t27c3Hd/X11fNmze3e1HFunXrZLPZ0rSFbL169XT48OF/fp85c2aK2yT+24EDB7R3794kbbzOAwAAAADwcDK1ZdV3331n2Ddw4EAFBASYCZ/uIiIi1LVrV3Xu3NmwGMeexMREffvttypdurRWrVpleV4LFy5UqVKlNGLEiBSLcYycPHlSL730ksqVK5fky+WM6pdfflFISIiefvrpFItxUhIfH68tW7bohRdeUKFCheyu2JFad+/e1fDhw1WmTBlNmzYtxWIcIzt27FCnTp3UvHlznTt3zuFc/nbv3j2NGjVKVapU0XfffWeq2MFms2n//v0aOXLkP9syPYyMiskaNGigokWLJmlr166d4apCVhWlZVY+Pj52242Wqs9K2rVrl+T3L774IlWvJWFhYXr//feTxfLw8LA0P1gjpdeAh2W1sWvXrtltz+qrBtSuXVt58uT553ebzabBgwcnKaYz8tVXX2nPnj1J2qwu0s3qUvoc8vrrr7swE2R1/309X7RokVavXv3AcREREXr11VeTtNWrVy/J8wYyNj8/P40cOdKw/5tvvnFhNpnf5s2blZiYaLfPaPvLtDIqxrx27Zr++uuvNMX677G/a9cuff311w8cd//+fQ0aNCjJ550iRYo81BdpAAAAAADwMDNVkGO0nYskPfPMM2ZCp7vz58+rbt26hksqp0ZkZKQ6deqkX375xZKcEhISNGzYMHXv3l1Xr141He/s2bNq2bKl3nvvvQx5cjw6Olr9+vVTly5dLN3eJjIy0vDk4YMcOnRI1apV02effaaEhATTuaxdu1Y1a9bU5s2bHY4RExOjDh066MMPP1RcXJzpnP7Nkb+Ls2fPys3Nze7P448/bml+znL27Flt2rTJbt9TTz2VrM3Hx0c9evSwe/u5c+fq/v37luaWmR7fK1eu2G131hZyGcmwYcOSrJASGxurtm3bpliUc/bsWbVq1SrJ8vgeHh5cfZ2B/XeVsb898sgj8vLycijmmDFjDI/zjFjkZ3S1e1Yv6vTw8NArr7ySpC00NFR9+vRRbGys4bg5c+Zo+PDhSdrq1q3Lii5pcP78ecMi7aJFi6pp06YuzsgxRsd5sWLF0js1/MvTTz+t3Llz//O7zWZTr169DFeKlaSbN2+qbdu2OnnyZJL2d955x2l5wjn69++v7Nmz2+07c+aMDh48mOaYxYoVMzz+s7L/FqL+W61atSyZI6Xtuf+7Ys2DtGvXTuXKlUvS9tJLL2nu3LmGY2JiYtSrV69kFwCNGjUqy///AgAAAAAA+xwuyDl27JhOnz5tt69mzZoqXry4w0mltxs3bqhFixZJlid2VFxcnPr06ZNk2xJHJCYmqm/fvpoyZYrpnP7NZrNpzJgxyU4Mpbdbt26pcePG+uGHH9I7lX9s2bJFdevWTfbFulk3btxQ69atDQtAHqR79+5as2aNpTk97GbNmmW3GMnX11fdu3e3O8ZeoY4kXb9+Xb/++qul+WUWiYmJhsUnmfk1IrWKFi2qYcOGJWm7ePGiateureHDh2vXrl26e/euYmJidPDgQb377ruqXLmyjhw5kmTM3yuaIeOJjo42LKhM6YRQVnLkyBHDk5GZpSjCjKFDhyZ7PluwYIEqVKigadOm6ezZs4qLi1N4eLhWr16tjh076qmnnkpSqOnt7a3Jkye7OPPMLaXXVaPXacBRgYGByVaui4iIUPPmzfX0009r8+bNioiI0L1793T8+HFNnDhR5cqV09atW5OM+Xt1TGQufn5+KT6vrFy50oXZZG779++32x4cHJyk6M2MypUry93d/tdc+/btS1Msd3d3TZw4MUkhTVxcnJ544gl16tRJq1evVnh4uOLi4nT27FlNmzZN5cuXT3ZRV82aNe1u8Q0AAAAAAB4Ono4O3LBhg2FfZv6iMTExUb169dLRo0eTtPv7+6tx48Zq2bKlihcvrvz58ys+Pl7Xrl3T1q1btWjRIsMCpdjYWA0YMCDFx+xB3njjjRSvxJKkcuXKqVevXipfvrwKFy4sm82mCxcu6ODBg5o7d65hfpI0ZcoUFSpUSG+++abDOVolOjpazZs3T/EKOknKlSuXWrRooUaNGqlgwYLKly+fvL29dfPmTd28eVMHDhzQzp07tXPnTkVFRZnKae/evWrdurXu3r1reJu8efOqSZMmatSokYoUKaLcuXPLw8NDV69e1dGjR/Xrr79q8+bNdlfWiY6OVufOnbV7926VKFEi1Xn9+OOPKX4JHBQUpGbNmqlOnToqVaqU8uTJo4CAACUkJCgiIkIRERE6efKk/vzzT+3fvz/Ny3hnRTabzbAQrF27doYru9SrV0/FixfXmTNnkvXNnDnzodyKZMeOHQoPD7fbV61aNafPHxERoevXr8tms8nPz0958+Y13ELLWcaNG6fdu3cnef6/d++ePvvsM3322WcPHN+kSRNNnDjRmSnChEmTJikmJsZuX5cuXVycTfowKugNCgpSnz59nDp3fHy8bt68qVu3bsnb21vZsmVT3rx5XXoFekBAgJYsWaK6desmea9x+vRpDRw4MFUxpk6d+tAUcFklq34OgX13797V9evXdf/+ffn5+Sl37tzy9/d3aQ6DBg3Sjh07NHv27H/aEhMTNXPmzFStXFahQoUMdaEB0qZNmzaG2+T9t/Aqo7PZbLp9+7Zu3LghNzc3+fv7K2/evA6v6pcW//2O5W+lS5e2bA4fHx898sgjdreFPnbsWJrjtW3bVqNGjdIHH3yQpH3p0qVaunTpA8cXLFhQS5Yskaenw1+9AQAAAACATM7hbwVSKpZo2LCho2HT3XfffadLly7987unp6defPFFjR49Wnny5LE7pmPHjho3bpymTJmiN998U/Hx8clus3HjRi1fvlzt27dPc07Lli3TJ598YthfvHhxffPNN4ZXovfo0UMffPCBli5dqhdeeMFwu6u3335b9erVU/369dOco5X69u2b4t9XsWLFNH78eHXr1k0eHh6Gt+vdu7ek/xW7LF++XHPnztWKFSsM9603cuPGDXXq1MmwGKdIkSJ6++231a9fP8OT/e3atdNrr72mI0eO6NVXX9WqVauS3ebWrVvq3bu3tm/fbnhV37/ZbDbDbWz8/Pz04Ycf6oUXXkjTCYsLFy5o2bJlWrBggTZu3JjqcVnJ5s2bDYvXjFbBkf637cRTTz2V7Apq6X9Xzt64ccPwOSSr+uabbwz7nLFyxuLFi3Xy5Elt2bJFR48eTbZVmJubm/LmzavKlSurVq1aatWqlerWrZvi84hZnp6eWrJkiXr16mX3uE9Jhw4d9OOPP/IFfga1ceNGffjhh3b78ufPr65du7o4I9cbOnSo4Qptb731lrJly2bpfOHh4Zo0aZK2bNmi7du368qVK8lWM/P29lbRokVVvXp11a9fX23btnX6ilyVK1fWmjVr1Llz5zRtienl5aWpU6dm+m1e04PR+0QPDw/VrVvXxdnAauvWrdPSpUu1ZcsWHTp0yO4WcLly5VLFihVVs2ZNtWzZUo0aNXJ60e23334rT09PzZgxI03jHnvsMf3yyy8KDAx0UmZwtsaNG8vNzc3uCppp3QYpPXz//ffasmWLtm7dqtOnTyf7vsLd3V0FCxZUlSpVVKdOHbVu3Vo1atSwtMDVZrMpLCzMbl/JkiUtm0eSSpQoYbcgx9FtsN977z0lJiYavu8zEhISouXLl6tw4cIOzQsAAAAAALIIm4Nq1qxpk2T35+LFi46GdZnRo0cb5v/3T2BgoG3t2rVpirtw4UKbu7u73XidOnVKc56RkZG24OBgwxxbtWpli4yMTHW869ev22rVqmUYr3z58ra4uLg05Thjxgy7sfr165fGe2sc6++fwYMH22JjY9Mc929Hjx61Pfnkk7bly5enekyPHj0M8+nYsaPt1q1bac5j1KhRhjG/+OKLVMXYvn273fG+vr62nTt3pjmn/zpw4IBt6NChaR535swZw/vWqFEj03k5W//+/e3mnjt37gceG8ePHze875MnT7Ykv8zy+J45c8bm4+NjN89s2bLZoqKiHI5dtGjRBz5/p/ancOHCtvfee8+h4zgt4uPjbePHj7cFBQU9MKdcuXLZPv30U1tCQoJTc8rqUno92bBhg8Nx4+LibBMnTrT5+/sbxp8/f76p3FN6jzJjxgxTsa1w+PBhW5MmTQxzrF+/vi0+Pt7h+Bs2bLDsGJdka9iwoW3RokUWPgL2nTt3ztalS5dU5VS7dm3b9u3bnZ5TVnTnzh2bm5ub3ce1dOnS6Z1emhj9fRQtWtRlOaT0XHnmzBmnzt2oUSPLjvNcuXLZXn31VZd8Dv3mm29sBQsWfGBO/v7+trffftvUZxek/JrgytfElN5/Xr9+3bJYZlj52lm6dGnbpEmTbNHR0aZy+tuVK1cM53rnnXcsmeNvffr0sTuPn5+fqbhLliyxlSpV6oGPnZeXl23gwIFO/3wBAAAAAAAyhwcvw2Hg5MmTdtuzZ8+uQoUKORo2w/Dy8tLvv/+e5lUcunbtqmeffdZu39+rZKTFZ599pgsXLtjtq127thYtWpSmK9Dz5MmjlStXqkyZMnb7Dx8+bLgct7PduXNHr732mmH/6NGj9cUXX5i6+jUkJESzZ89Wu3btUnX733//XT///LPdvp49e+qXX35Rjhw50pzHBx98oNdff91u37hx43Tv3r0Hxli9erXd9hEjRliy9UXlypVTtaVOVhIVFaWFCxfa7evZs+cDl3IvXbq06tSpY7dv1qxZpvPLTF577TXDv+Nnn33W5VtNGLl48aJGjx6tEiVKaOrUqXavfLaCh4eH3nzzTZ05c0Zffvml2rVrp2LFisnf31/+/v4qXry4OnTooOnTp+v06dN6+eWXU7VSFpwrLi5ON2/e1OHDhzV//nwNGTJEwcHBev311xUdHW13zIgRI9SjRw8XZ+ocNptNkZGRunDhgjZs2KBPPvlEDRs2VIUKFbR+/Xq7Y2rWrKkVK1Y4deWptNq8ebO6du2qWrVq6cCBA06bp0iRIlq0aJH27dunkSNHqlatWipQoIC8vLyUO3duVaxYUYMGDdJvv/2mHTt2GL5eIGWnT582fK4uW7asi7NBRhEeHq5PPvlEpUqV0vvvv293xVKrPPfcczp58qRmzJihbt26qVSpUgoMDJSvr6+KFCmi5s2ba9KkSTp16pTGjh3r8u0y4RwVK1Y07DNa+SUzO3HihF5++WWVLl1aCxYsMB3v+vXrhn358+c3Hf/fChQoYLc9JibG1FbWHTt21JEjR/Tzzz+rb9++CgkJUVBQkLy9vRUcHKyGDRtq3LhxOnr0qL766iuHvicAAAAAAABZj0P7YERHR+v27dt2+4KDg83kk2GMHTtWtWvXdnjsjBkzkn0RfP/+fYWGhqpz586pihMbG6vJkyfb7fP399eCBQscOqmdJ08e/fzzz6pevbrd7ZsmTJigAQMGuPxk8KRJk3Tz5k27fb1799aYMWNcmo8kvfPOO3bba9SooVmzZplaxnvcuHHauHGjdu3alaT90qVLmj9/vvr27ZvieHvLcEtSr169HM7pYbdw4ULDrclS2q7qv7fbsWNHsvZ9+/bp4MGDqlSpkqkcM4NFixZp0aJFdvv8/f0Ni9HS061btzRo0CAtX75c8+bNU1BQkFPmyZkzpwYNGqRBgwY5JT5Sp3HjxpbH9Pf310cffaQhQ4ZYHtvZpk2bpoEDB5qOM2DAAE2aNCnDFNz9165du1SrVi19+umnGjx4sNPmqVq1qqpWrZrmrS2QOhcvXjTse+SRR1yYCTKimJgYjR49WitWrNAvv/zitK1i/P391b9/f/Xv398p8ZHxpPT8cuHCBVWvXt2F2bjOxYsX1aNHD/Xv31/Tp0+Xt7e3Q3GMPudLsvx9d0rxwsPDFRAQ4HBsT09Pde/eXd27d3c4BgAAAAAAeLg4VHFx+fJlwz6jq5EykxIlSqS4UsuD5MuXT82bN7fbt2/fvlTHWbZsmeGKOiNGjDB10qFKlSoaMGCA3b4zZ85ow4YNDsd2xP379zVt2jS7fQULFtQXX3zh0nwkaceOHfrjjz/s9k2ZMsX01a6enp56//337falZjWVq1ev2m0vVqyYmbQeajNnzrTbXqpUqVSvZJDSSjozZsxwNLVMIywszPC5RZLeeustp50cs8KqVatUr169FK/iBf4tODhYb775po4ePZopi3HMcnNzU5s2bbRt2zZNnz49wxbj/C0uLk5DhgzRG2+8kd6pwEFZ/XMIrPF3Ad6JEyfSOxVkEQULFjTsM/pclpXMnDlTLVq0MFwh8EEiIiIM+wIDAx1NK83xjC4sAwAAAAAAcBaHVsgxWkFCUpZYlvell14yvTpMy5YttWrVqmTtaSnIMdoqKVu2bHr11Vcdzu1vo0eP1jfffKOEhIRkfT/99FOat+syY/Xq1bpy5Yrdvrffflu5cuVyWS5/MyqeaNOmjerWrWvJHK1atVJISIiOHTuWpH3z5s2KjIxM8ctEo9V5IiMj03Vp/GLFijlt2x9nOnv2rDZt2mS378knn0x1nNy5c6tNmzZaunRpsr4ff/xREyZMkKenQ0+9kjL24xsXF6eePXsqPDzcbn/lypWdchI8ODhYzZs3V9WqVVWpUiUVK1ZMQUFByp49u6KionTz5k1dvHhRW7Zs0aZNm7R27Vq7z3t/++uvv9SiRQtt2bLF1BW0yPo6deqkoUOHqkGDBqaO6/8aM2ZMuqwKl1b169fX1KlTU9zGwwru7u569NFH1bBhQ1WqVEkVK1ZUvnz5FBQUJB8fH926dUs3b97UkSNHtHnzZq1evTrZ6+p/TZw4UTly5NDIkSOdmjusl5U+h2TU1/P0kidPHrVo0ULVqlVTpUqVVKpUKQUFBSkoKEixsbEKDw/XlStXtG3bNm3evFmrVq1KcZvXS5cuqWnTptq5cyfFWjAtpVVX0lqkcvbsWZPZpE6pUqXUvHlzVa5cWZUqVVJwcLCCgoKULVs2RUZG6ubNmzp37pxCQ0O1fv16hYaGphhv06ZN6tq1q1auXJnm70tSOlZ9fX3TFOtBUoqXmq2hAQAAAAAArOTQ2aOYmBjDvvQsBLBKz549Tccw2pYmtV++JSYmat26dXb7OnfubMkV6AUKFFDTpk21Zs2aZH1r1641HT8tli9fbrc9ICAg1VsFWclms2nZsmV2+3r37m3pXM2bN0924jA+Pl5btmxR69atDcflzp3bbvvKlSvVr18/S3N8GPzwww+GJ8bSUpAj/W/bKnsFOdeuXdOqVavUvn17h3LM6F544QW723VJ/3tt+OGHHxxe5v6/8ufPr+eee07du3dXlSpVDG/394m8EiVKqEGDBnrrrbd06tQpTZw4Ud98843dbfskaf/+/Ro4cKB++OEHS/JF1rRkyRItWbJERYsW1RtvvKFnn302S7wPSq0tW7aoatWqaty4sd544w3D1QEdVadOHQ0YMEDt2rVT3rx5DW+XL18+5cuXT+XKlVOXLl1ks9m0YsUKvf/++9q9e7fhuHfeeUe1atVSs2bNLM0bzpXVP4c8bIKCgtSvXz/17t1btWrVMjzJ7+XlpcDAQBUtWlS1a9fWyy+/rCtXrmjy5MmaPHmy4Un28+fPq1evXlq/fr3Lt+NF1pJSkUdsbKwLM0lZ8eLFNWDAAHXt2lWlS5c2vF3OnDmVM2dOlSpVSk2bNtWYMWN04MABjRs3zvDCIOl/F9KMGTPGcKVXI3FxcYZ9VhY1SzJcrfRBeQAAAAAAADiDQ99KpvQlRkpffmQGJUqUSHE56tQqVaqU3fY7d+6kavyhQ4cMl1O2omDob0bFJWfPntXFixctm+dBjIqPunXrpuzZs7ssj78dPHjQ7oo9Hh4e6tChg6Vz1a9f3277g1ZTMlqRYOTIkTp37pzpvB4mNpvNsPCibt26KlmyZJritWvXTjlz5rTbZ7QtVmY3YcKEFO/b5MmTUyycSYvp06fr/PnzGjt2rEMxS5YsqWnTpmnNmjXKly+f4e1mz55tt2AR+K9z585p8ODBql27to4ePZre6bhUQkKC1q5dqxYtWqhx48YKCwszHbNUqVLat2+ftm/frqeffjrFYhx73Nzc1L59e23fvl2vv/664YpyiYmJeuGFFzLUiVQ8WFb+HPKweffdd3Xx4kV99tlnqlOnTpoLZgoUKKDx48dr+/bthp+9pP+t6vHtt9+aTRcPucxQ5LFixQqdPHlSI0aMSLEYx0iVKlU0f/58zZ07V9myZTO83f/93//pr7/+SlPslFan9PDwSFOsB0kpXnx8vKVzAQAAAAAAPIhDlyKldPVpRvkyylHVqlWzJI5REUlqC3IOHjxo2FerVi2HcrKnTp06KeZQuHBhy+Yycvv2bZ0+fdpun1GxirMZXVFfrFgxywuEjB7jB53UNbqi/9KlS3r00Uc1duxY9e3b1/IlwLOi0NBQnTp1ym5fWlfHkf73HNmjRw9Nnz49Wd+KFSt08+ZNwxWOMqO5c+dqxIgRhv39+/fXiy++aNl8LVu2tCRO06ZNtX37dtWpU0fXr1+3e5s33nhDLVq0sGQ+ZBzff/+9Hn300VTdNioqShEREbp06ZL27t2r0NBQ7d+/3+5tDxw4oBo1amjVqlVq2LChhRk7V8+ePe2+3sbHx+vWrVu6ffu2Dh06pJ07d2rDhg2KioqyG2fjxo2qUqWKlixZokaNGjmcT3BwsIKDgx0e/zdPT09NmDBBRYoU0UsvvWT3NqdPn9bUqVP18ssvm54PrpGVP4c8bJo0aWJJnGrVqumPP/7QY489puPHj9u9zTvvvMP7Ypjiyi2XHNW2bVtL4vTu3VslS5bU448/bndVsvj4eI0cOdLuiqBGUloFx+oimZTiUbgJAAAAAABczaEVcvz8/Az7Mvue3Hny5LEkTmBgoN321BbkGH2ZXLhw4TRfKZ6SMmXKGG5/9d9tlJzl8OHDhn1WFh+lhVFBVNmyZS2fy6gw40ErFFWvXt2woOr69et64YUXFBwcrBdffFGrVq1SdHS06VyzKqOVXby9vR1ekcpoq7W4uDjNnTvXoZgZ0erVq9W/f3/D7b5at26tr7/+2sVZpV6JEiW0dOlSwy/nDxw44PIt/OB8xYsXV8WKFVP1U7t2bbVo0UL9+/fXlClTtG/fPu3Zs0ft2rWzGzs6Olrt2rV74CpnGUnOnDnt3ve/t6Pq3Lmz3nnnHS1fvlyXLl3S559/rgIFCtiNdfv2bbVt21Zbt2518b0wNmTIEA0ZMsSwf/LkyYbb1yHjycqfQ+C4XLlyaeXKlYYrFF67dk1z5sxxcVbISlJaTS2l56XMqlatWpo9e7Zh//Lly3XixIlUx0upEMaVBTlWbZ8LAAAAAACQWg4V5BgVm0hSeHi4w8lkBEZf4qaV0TLJqT3hc+nSJbvt5cqVczgne9zd3Q2LTIxysNr58+fttru7u6tChQouyeG/jLZ8Wrlypdzc3Cz9KV++vN25bt68+cA8P/rooxSX5L5586amT5+uNm3aKEeOHKpXr55GjBihZcuWZfpj1SrR0dFauHCh3b7WrVsrV65cDsWtV6+eSpQoYbdv1qxZDsXMaLZt26auXbvq/v37dvvr1aunhQsXZvgrUR977DENGDDAsD8rFVDBGtWrV9fy5cs1ZcoUu/2RkZF68skns+RqHdmzZ9eQIUN06NAhde7c2e5toqKi1LNnT8OtN9PD+PHjDbeoCwsL05YtW1ycERyVlT+HwJxSpUpp5MiRhv28nsOMlD6bBQQEuDAT1+natavhqjs2m03z5s1LdayUVhGytwqPGSldiJJRVjMCAAAAAAAPD4cKcgoVKmTYd+XKFYeTyQhSWgbflYy2T8mRI4flcxnFNMrBalevXrXbnj17dsv3k08tVxUjpSQ1X0w2bNhQkyZNSlW8+/fva9u2bfroo4/UsWNH5c2bV9WrV9frr7+u0NBQwxVOsrqFCxcqMjLSbp/RKjepZbTd1Z49e3To0CFTsdPbgQMH1LZtW8MvvKtUqaKVK1carsCV0YwaNcrw+f/XX391cTbILF566SW9/fbbdvsOHz6sTz75xMUZuU7u3Lm1cOFC9ejRw27/xYsX9cYbb7g4K2MBAQF66623DPtXrlzpwmxgRlb+HALzhgwZYriC1+bNm3X37l0XZ4Ss4vLly4Z9KT0vZXZjx4417EvLa2dKFz4ZfRZzVErxrLoACwAAAAAAILUcKsjx8fEx3Nrp/PnzD+2JfSsZFWNkz57d8rmMYlp9pZoRoxP6zig+Si2rvxR0RGpXVnjppZf0888/p3jFuD2JiYnat2+fPv74YzVs2FAlSpTQmDFjdOvWLUfSzbSMtqvKkSOH4ZY0qWVUkJPSvJnB8ePH1aJFC8PVL0JCQrRmzRoFBQW5NjETChQooIYNG9rtu3r1qk6fPu3ijJBZvPPOOypcuLDdvs8//9xwBamswN3dXXPmzFFISIjd/lmzZmWoAonu3bsb9m3fvt2FmcCM4OBgwz6jFQ7x8PD19VX79u3t9iUkJGjnzp0uzghZxdmzZw37UnpeyuyqVq2q0qVL2+3bt29filt5/VtKq45avaJeSvEcXf0UAAAAAADAUQ4V5EhSmTJl7LZHR0en+GUVUsfoBJ4zVpswWmLbVVttGM2TLVs2l8xvz71799Jt7r+lpbCte/fuOnHihAYOHOjwKk9nz57Ve++9p+LFi2v8+PGp3l4tMzt37pw2btxot69BgwY6ceKEDh065PDPvXv3DLeE+/HHHxUfH+/Ee+cc586dU9OmTXXt2jW7/UWLFtXvv/9uuDVMRtayZUvDvqNHj7owE2QmPj4+GjRokN2+y5cvZ/kVlry8vAxXAoqLi8tQxYeFCxdWxYoV7fZxjGceJUqUMFxB8fDhwy7OBhkRr+dwhoMHD9ptd3NzU9GiRV2cjWsZHVP3799PddF6Sp8NrC7eNYoXGBjIllUAAAAAAMDlHC7IqVatmmHf/v37HQ2L/5+Xl5fd9pT2Q3dUVFSU3XZvb2/L57LHqIAkPZeUd3d3+NBIN/nz59dXX32lS5cu6fPPP1eDBg0M/45SEhERobfeekvNmjXTjRs3nJBpxjFr1izDwqfly5erUqVKpn+MTvxcuXJFq1evdubds9zly5fVtGlTXbhwwW5/gQIFtHbtWj3yyCMuzswa5cuXN+wLCwtzYSbIbJo0aWLYZ1T0l5W0adNG+fPnt9u3YcMGF2eTMqPj/Pr16y5bGRDm+Pn5GRa7nj9/XuHh4S7OCBkNr+ew2vnz5w23cy5dunS6XkjiClYcU3ny5DG8EMjq7aKN4hUrVszSeQAAAAAAAFLD09GBNWrUMOzbuHGjOnfu7Gho6H8nG+y5c+eO5XMZxTTKwWpGq/5YvXR1Whjl1Lp1a02YMMElOThaEJUrVy4NGTJEQ4YMUVRUlDZv3qxNmzYpNDRUu3fvTvXKRxs2bFCHDh20YcMGh1fdychsNpt++OGHdM1h1qxZprfFcpUbN26oWbNmOnXqlN3+3Llza+3atSpVqpSLM7NO3rx5Dfuc8dyLrKN69eqGfTt27HBhJunDzc1NrVq10qxZs5L1ZbTtYVI6ziMjI1323gfm1KhRQ3/99VeydpvNpk2bNvE55CHH6zmstnbtWsO+lN4DZBVWHVPFixfXoUOHkrUbfb5wlFG84sWLWzoPAAAAAABAajhckNO8eXPDvt9++83RsPj/GX3p5YwiFaOYKX3xZiWj5avv3LmjhIQEw20JnCl37tx22xMTEw23u8iIAgIC1Lp1a7Vu3VqSFBMTox07dmjDhg1avnz5A1ez2r59u0aPHq3x48e7IFvXCg0NtfzL37Ravny5wsPDlStXrnTN40EiIiLUokULw61AsmfPrtWrV6tChQouzsxaQUFBhn2u2sIPmZO3t7cCAwMVGRmZrO/ixYvpkJHrlShRwm777du3de/evQxT2MlxnjU0b97csKh29erVFOQ85DjOYbVly5YZ9j3++OOuSySdWHVMlStXzm5BzrFjxxzKy567d+/q8uXLhvMDAAAAAAC4msP78gQHBxsWJhw7dkwHDhxwOClIhQoVstt+5MgRS+dJTEw0/ALMKAerFSlSxG57YmKiYQGAsxnllNm3QfDz81Pjxo31/vvva9++fTp16pTeeOMNZc+e3XDM559/rmvXrrkwS9eYOXNmeqege/fuad68eemdRoqioqLUpk0b7du3z26/v7+/Vq5cqZo1a7o4M+uldHz7+vq6MBNkRkbPo5n9dSO1jIprpYz1GHCcZw0tW7Y03F508eLFio+Pd3FGyEg4zmGlGzduaOXKlYb9mWW1SzOsOqaMtj2/fv26ZQXM+/btM9ySOKVt1wEAAAAAAJzF4YIcSerZs6dh3/Tp082EfuiVKVPGbvvFixd148YNy+Y5ceKEoqKi7PaFhIRYNk9KypcvLzc3N7t9f/zxh0ty+C+jq+dOnTpl+AVfZlSiRAl99NFHOnr0qOrVq2f3NtHR0Vq+fLmLM3Ou6OhoLVy4ML3TkJQxCoOMxMbGqkOHDtq2bZvdfh8fHy1ZskT169d3cWbOcf36dcO+lK4MBqT/rSRlz71791ycSfqIjY017DMqnEgPRse5m5tbisWpyFjy5s2rxo0b2+27ceOGFi9e7OKMkJHweg4rTZkyRffv37fbV6tWLRUuXNjFGbmeVcdUSgX8Vn3uTylOVriAAAAAAAAAZD6mzpA8/fTThtsJzZw5M0uuquEqlStXNuzbuXOnZfOk9IVVpUqVLJsnJUFBQSpZsqTdvi1btrgkh/+qVauW3fbw8HAdPHjQxdk4X8GCBbVixQrlz5/fbv/69etdnJFzLVq0yO7WMn/32Ww2y38mT55sd77du3en20pQKbl//766d+9u+H/v6emp+fPnp7h9YWazZ88ew75ixYq5LhFkOrGxsbp7967dvmzZsrk4m/Rx9epVw76MVOiyd+9eu+0FCxaUt7e3i7OBGc8995xh34QJE1yYCTIaXs9hlWvXrmnKlCmG/QMHDnRhNunHqmOqXr16hltYrlu3Lq1ppSlO0aJFDb9zAAAAAAAAcCZTBTmFCxdW586d7fbFxMRo5MiRZsI/1CpUqKCcOXPa7fv5558tm+enn36y216sWDGXXu3XrFkzu+0LFy7UnTt3XJbH3+rUqaOAgAC7fWvXrnVxNq6RI0cOw5Nb586dc3E2zmW0Kk1QUJDatm3rlDl79eqVYgFjRpKYmKgnn3xSK1assNvv7u6uH374QR07dnRxZs61Zs0aw77y5cu7MBNkNrt27TLsCw4OdmEm6efQoUN22/Plyyc/Pz8XZ2PfiRMndObMGbt9HOOZT+fOnQ3fq+7Zs0dz5sxxcUbIKHg9h1UGDRpkuAJe3rx51atXLxdnlD5+//13u+1+fn4qXrx4quP4+/urbt26dvuWLVtmeiXaO3fuaMOGDXb7stJFBAAAAAAAIHMxvYfAmDFjDLcimDFjhstX1jh+/LhL53MWd3d3NWnSxG7f4sWLFRMTY3qOa9euGX655uovrNq3b2+3PSoqSrNnz3ZpLpLk6+urVq1a2e378ssvlZCQ4OKMXMNoGW8rt0lLb2FhYYZf1Hbt2tXwqk2z8ufPb3hMz5kzJ8P8TdlsNj3//POGhX9ubm76+uuv1bt3bxdn5lzHjh0zXDGsSJEiD8V2BHBcSoWaFSpUcGEm6SMmJsbwinRXrbaXGrNmzTLsMzpBiIzLx8dHo0aNMux/7bXXUly5yRmyyueQzOzmzZuGBcXe3t5sWYNUmzBhghYtWmTYP2bMGPn6+rowo/Sxdu1aXbx40W7fo48+Kk9PzzTF6969u932CxcuaOPGjWlNL4kFCxYYbhXao0cPU7EBAAAAAAAcZbogp0KFCurfv7/dvsTERPXp00cXLlwwO02qrF27Nktd+dSzZ0+77ZGRkfrss89Mxx87dqzi4+Pt9rn6ar+WLVuqUKFCdvvGjRunW7duuTQfSXr22Wfttp8+fVo//viji7NxDaPtOoxWC8qMZs2aZXj15RNPPOHUuY3iX758Wb/99ptT506tV155Rd9//71h/+TJkw2Pjcxs1KhRhkVR7dq1c3E2yEyio6M1bdo0w/5GjRq5MJv0MWPGDMNC4ccff9y1yRi4du2a4daBEsd5ZvXss8+qbNmydvuuXr2qXr16KS4uziW5TJgwQSNGjHDJXDA2fvx4w9U1mzVr5rTCa2QtU6ZMSfF4rlixogYMGODCjNJPSqseO/La2aNHD3l5edntmzRpUprj/c1msxluL1agQAHDCyMAAAAAAACczXRBjiR9/PHHKliwoN2+q1evqlmzZk69QtVms+mjjz5S69atDZeUzozat2+vPHny2O378MMPdfnyZYdj//XXX5o6dardvhIlSrj8BJqHh4cGDRpkt+/SpUsaMmSIS/ORpFatWhkuaz98+HCdPHnSxRk5n9GV3UbFUpmR0QoJhQoVcvrffZcuXQyvpE1p5QZXGT16dIonrMeNG6ehQ4e6LiEX+fnnn1O8Avqpp55yYTbIbN555x1du3bNbp+Hh4e6dOni4oxc68aNG3rnnXcM+zPCFemJiYl67rnnFBUVZbc/JCREjz76qIuzghW8vLz03XffGa7WuXHjRvXp08ewAN0Kd+7cUe/evfXmm28qMTHRafPgwbZs2WJ4Ql7i9RwPFhkZqeeff17Dhg0zLOD39/fXTz/9lOaVYTKjCRMmGG7L6enp6dBFPLlz5zYct3z5cm3dujXNMSVp7ty5+vPPP+32DRw40HDrYAAAAAAAAGezpCAnZ86c+v777w2/DD927Jhq1aql/fv3WzFdEsePH1ezZs00YsQIp37Znh58fX01fPhwu313795Vz549FRsbm+a44eHh6tGjh+Hj9cYbbxj+XzrT0KFDlTdvXrt9c+fO1XvvvefSfNzc3DR+/Hi7fbdu3VKHDh105coVy+c9d+6c4dY5/zZ58mTDk4uOSEhIMCwKqVixYqrjnD17Vm5ubnZ/0nulhNDQUJ06dcpuX69evZz+dx8YGGi4PdvSpUt1+/btB8Zw1uP76aef6v333zfsHzlypN566y2H41vB6ISAGaGhoerXr5/hSZf69eurTp06ls+LrGHixIn69NNPDft79uyp/PnzpznumDFjDI/zmTNnpjneqlWrdP/+/TSPe5CIiAi1bt1a4eHhdvubNm2qMmXKpDpeWFiY5QXcNptNw4YN0/Llyw1v8/rrr1s6J1yrbt26evPNNw37Fy1apBYtWujmzZuWz71mzRpVq1ZNP/30k0PjjY7zYsWKWZtoBrN7927LYx49elSdOnUyXBGpWLFi6tatm+XzImuIj4/Xd999pwoVKujbb781vJ2bm5umT59uejvKYsWKGR7/aXXv3j3DQhQzfv755xRXCerVq5ceeeQRh2K//vrrhvf12WefTfNn3MuXLxt+bxIQEKDBgwenNUUAAAAAAADLWHb2uVWrVvroo48M+8PCwlS7dm2NGTPGcFuDtLhy5Ypef/11VapUSevXrzcdL6MaNmyYgoOD7faFhoaqZ8+eio6OTnW8W7duqX379jp8+LDd/vLly+uZZ55xKFezAgMDUzyxOWbMGL300kuG+8KnxokTJ9S/f3+tWLEiVbdv37694Zf3R44cUfXq1bV582aH8/m3/fv364knnlCpUqX0+++/P/D2L7/8sooUKaJ3333XkhOYb775pmHRXEZY4cAKKZ3I7tOnj0tyMJrn3r17mjdvnkty+K/vvvtOr776qmH/sGHD9OGHH7owI/tatGihxx9/XOvWrbMk3hdffKFmzZoZFja6u7vrk08+sWQuZC27du1S69at9cYbbxjext/fP8UiN1d66623VLZsWc2aNcuy4uV9+/apUaNGhifW3dzcNHbs2DTF3Lt3r4oXL65hw4bp4sWLpnMMDw9X+/bt9cUXXxjepkqVKoZbryLzGDt2rGHBqyRt2LBBFSpU0Lx58wwLMNPiwIED6tKli1q2bKnTp0+bjvewee6551StWjUtWrTIkv+PBQsWqHbt2ikWXU2cOPGhWNEEqZeYmKidO3fqzTffVNGiRfXcc8/p/PnzKY756quv9OSTT7oow9SJiYlR1apV1alTJ0uK3RISEjRq1Cj16tUrxVWC0voa/2+VKlVSv3797PYdO3ZM3bp1S/Vn/lu3bqlt27a6ceOG3f6RI0cqd+7cDucKAAAAAABglqXfSr722mu6cuWK4QnMuLg4vffee5o6daqGDBmiJ598UsWLF091/ISEBG3cuFGzZ8/W/PnzHVodJrPJli2bvvjiC3Xq1Mlu/7Jly1S1alV9++23atiwYYqxVqxYoRdeeEGXLl2y2+/h4aHp06cb7unuCk8++aSWLVumBQsW2O3/4osvtHLlSo0fP15du3ZN1dLTsbGxWrlypX788UctW7ZMCQkJho+nPdOnT9eePXt05syZZH2XL19W48aN1bVrV73xxhuqWbNmquNK0qFDh7Ro0SItXLhQhw4dStNY6X8nGz/44AONGzdOjz/+uHr06KEuXboYbnVmz9GjR/XGG28Yrh5Qo0YNVatWLc25ZTTR0dGGf1chISGqUaOGS/Jo06aNcubMqVu3biXrmzlzpgYOHOiSPP62ZMkSvfDCC4b9TZo00bPPPuvQ3+eDFC9eXAEBAam+vc1m06ZNm7Rp0yaVKVNGPXr0UPfu3VW5cuU0xVi5cqU++ugjbdmyJcXbvvbaa6pVq1aqYyPzOHPmTKqfJ6OjoxUREaFLly5pz5492rRpU6quRP/0009VsmRJs6la5vTp0+rfv79effVVde3aVT179lSjRo3SvIXDzp079e233+r7779XQkKC4e2GDRvm0OpSMTExmjJlir766is1adJEPXr0UKdOndJ0Mi0iIkJTp07V5MmTUyxY9fX11YwZM9jGIgtwd3fXvHnz1KZNG8NC6atXr6pPnz4aN26chg0bpq5duypnzpypniMqKkpLly7VrFmztGbNGqtSd4r79+/r2LFjqbptSsVvx48f1927dx8Yw9vbO02rYUn/K0Tv1q2bHnnkEXXr1k3du3dXnTp10rRCSGhoqCZMmPDAQvsePXqwOk4WdfHixRTfo9psNt27d0+xsbG6fv26rly5opMnT+rgwYPavXu33ffj9gQEBOjbb791aIsmV7DZbFq6dKmWLl2qatWqqXv37urRo0ea3ofEx8fr559/1kcfffTA9zkff/yxihYtairn8ePHa8WKFXYLaVavXq369etr1qxZhltIS9LWrVvVv39/w62ky5Ytm+JFBwAAAAAAAK5g+WWCH3/8sfz8/FK8YuratWt699139e6776pixYqqV6+eKlasqOLFiytXrlzy9/dXfHy87t69q4sXL+rEiRPavXu3QkNDFRERYXXKGV7Hjh31yiuvGK4ec+LECTVq1EgVK1ZUz549Va5cORUuXFg2m00XL17UwYMHNW/ePJ04cSLFecaOHav69es74y6kycyZM3Xq1Cnt3bvXbv+ZM2fUs2dP5c6dWy1btlSjRo1UoEAB5cuXT15eXrp165Zu3rypgwcPateuXdq+fbsiIyMdzidXrlxavXq16tWrZ/cLw8TERC1YsEALFixQ6dKl1bBhQz322GPKnz//P3/Pd+7c0e3bt3Xr1i0dOXJE+/bt0759+3T9+nWH8/q3hIQErVu3TuvWrdOLL76o0qVLq2bNmqpRo4aCg4OVM2dO5cqVS25uboqKitKFCxd0+PBh/f7779q5c6fh1Y+enp4pLtuemSxatMjw7+CJJ55wWR7e3t7q1q2bvvnmm2R9O3fu1NGjR1W2bFmX5bNkyZIUT6qvX78+TQUvabFhwwaHt9k6fvy4xo4dq7Fjxyp//vyqVq2aqlWrprJlyypnzpwKCgpS9uzZFR0drfDwcF24cEFbt27Vxo0bdeHChQfGb926tcaNG+dQbsj4nL0S3MiRI1MsdEtPN2/e1Ndff62vv/5aAQEBqlKliqpVq6bKlSsrd+7cypEjh3LkyCFJunPnju7cuaOTJ09q//792rFjh+FJr39r1qyZJkyYYCrP+Ph4rVmzRmvWrNELL7ygkJAQVa1aVdWqVVORIkUUFBSkoKAg+fr66tatWwoPD9eRI0e0adMmbdu27YGrB7q5uenbb7/NEgWn+J+AgACtWrVKnTt3TrFg5tChQ3r++ec1ePBgPfroo6pbt65CQkJUpEgRZc+eXX5+foqNjVVkZKTOnj2rY8eOafv27dq5c6fhdkgZzcWLF1WpUiXTcVq2bJmq2xUtWlRnz551aI7z589r0qRJmjRpknLlyqWqVauqatWqqlChgnLnzv3PsX7v3j2Fh4fr8uXL2r59uzZt2pSq56Pq1avr+++/dyg3ZHyjRo3SqFGjnDpHjRo1NHPmzDRt4Zue/v6cOXLkSBUpUuSf187SpUsrR44cCgoKUmBgoCIjI3Xz5k2dO3dOoaGh2rRpU6o+mw4YMMCSCwjy58+vmTNnqn379nY/i+7evVuVK1dWu3bt1K5dO5UrV07ZsmXT7du39eeff2rJkiUprpTs6+ur+fPny8fHx3SuAAAAAAAAZjhl3e4PPvhAFStW1HPPPffAqyoPHTpk6coLrlrlwtUmTpyoy5cvp7iljZnH8qWXXkpxj3hX8vf31++//67mzZsbFuVI/zupOHfuXM2dO9fpOZUpU0abN29WixYtUjyZf+LECZ04cULfffed03MyYrPZdPz4cR0/ftz0Y/PJJ5+oatWq1iSWzjLCdlX/ns9eQY70vzzHjx/v0nwyu6tXr2r16tVavXq1JfHatWunBQsWsGoG0szf318TJ07UoEGD0juVCYje4wAAiglJREFUVImKitK2bdu0bds2y2K2atVKCxcutHS1vYSEBB0+fFiHDx+25DXf09NT33zzjUuLMeEa/v7++vXXX/X2229rwoQJKW6HFBcXp61bt2rr1q2WzO3m5kaBl0nh4eFav369ZdsR16pVS6tWrUrTanzA3woWLKh3331XAwYMkLu7ZTt9u1RYWJjCwsK0bNkyS+INGDBAU6dOtSSWJLVt21affPKJXnnlFbv9CQkJ/6z8kxaenp6aN2+e0y4qAAAAAAAASAunfbPUs2dP7du3L9VXVpoVHBysGTNmaO3atS6Zz9Xc3d01e/ZsDRkyxNK4bm5uGj16tD777DNL45qVK1cubdq0Sd27d0/vVP5Rrlw57dq1S82aNUvvVJzO3d1d33zzjYYOHZreqVgiLCxMGzZssNtXu3Ztl28r07BhQwUHB9vtmz17door1sB5PDw89Pbbb2vp0qXy9fVN73SQyTRt2lSHDh3KNMU4VvPw8NCoUaO0fPnyDH3yu3Dhwlq3bp369++f3qnASTw8PDR+/Hj9/vvvCgkJccmctWrVUmhoqEaPHu2S+fBgzz33nDZt2qRcuXKldyrIZGrUqKHvvvtOZ8+e1Ysvvphpi3Gs5Ovrq88//1zTp0+3/PF4+eWXNWnSJMsK4f39/fXTTz+laYtqAAAAAAAAZ3Lqt0ulSpXS6tWrtXTpUtWuXdspc5QpU0ZffPGFTp48qf79+8vNzc0p82QEHh4e+vzzz7VgwQLlz5/fdLyiRYtq9erVGjNmTIZ83LJly6aff/5ZP/zwg/Lly2dZ3Lx586pw4cIOjS1QoIDWrFmjb7/91pL/g/8qXLiwRowYob59+z7wts66CrtmzZravn27nnvuOafETw+zZs0yvEre1avjSP8reOrVq5fdvkuXLun33393cUZo2LCh/vjjD40dO5YTL0i1bNmy6dlnn9X27du1du1aFS9ePL1TssuoANAqLVq00N69e/XBBx/I09Mpiy+a5uvrq+HDh+vw4cNq2LBheqcDF2jatKn+/PNPTZ48WUWKFHHKHI0aNdLy5cv1xx9/qF69ek6ZA2lTpUoV/f777/rmm28orkWqBAQEqFmzZvq///s/nTx5Urt379Yzzzwjb2/v9E4tQ+jQoYMOHjxo+YVB/zZ8+HCtWrXK9HN1pUqVtHXrVnXt2tWizAAAAAAAAMxzyVmTDh06qEOHDtq2bZvmzJmjxYsX6+rVqw7Hy5cvnzp27KhevXqpcePGGbKYxJm6deumli1b6ssvv9RXX32l8+fPp2l8qVKl9NJLL2nAgAGZ4ovqp556Sl26dNG3336radOm6ejRo2mO4e3trYYNG6pfv37q3r27qb3k3dzc9Oyzz6pPnz6aPXu2vv76a+3Zs8fheCEhIWrWrJk6dOigZs2apboYYO/evbpw4YJWrFihVatWaevWrbp586ZDObi7u6tJkyZ6+umn1atXryxXkFC4cGHDq9Z79+7t4mz+58UXX8zQq0hkRDt27NC6deu0fv16bd68WTdu3DAVLzAwUJ07d9Zzzz2nBg0aWJQlshpvb28FBQX981O6dGnVrFlTNWvW1KOPPip/f//0TvGBVqxYoTNnzmjlypVavXq1tm3bplu3bpmKWbBgQXXp0kXPP/+8qlSpYkmerVu3/ucYX79+vfbs2aO4uDhTMUuXLq0nn3xSAwYMUIECBSzJE5mHt7e3hg0bpsGDB2vp0qX66aef9Ouvvyo6OtrhmGXLllXXrl3Vp08flS9f3sJsHx5Lly7V2rVrtX79em3atEkXL140Fc/X11dt2rTRM888ozZt2jx0nw1hn5ubm3x8fOTt7S0/Pz/lzp1b+fPnV4ECBVSiRAmVLVtW5cuXV+XKlTNsMWlq5MiRQ3v27NH69eu1YcMGbdmyRXfu3DEVM3fu3OrRo4deeOEFy17jH6R58+Y6cuSIJk2apC+++EJXrlxJ9diSJUvqlVde0YABAzL1/yUAAAAAAMia3GxGy0Y4UWJiog4ePKjt27dr7969On36tM6dO6fw8HBFR0fr3r178vb2lr+/v/Lly6fg4GCFhISocuXKqlevnipUqMAXrf8/m82mLVu2aP369dq1a5dOnjypK1euKCoqStL/rvgrVKiQSpcurdq1a6tZs2aqVatWOmdtzoEDB7R+/Xr98ccfOnHihM6fP6/IyEjFxcUpICBAgYGByp07t0JCQlSuXDnVqlVLjRs3dmrxw7lz57R27Vrt2rVLR44cUVhYmG7evKmYmBi5u7srMDBQgYGBypkzp0qXLq1y5cqpXLlyqlu3rh555BHL8jh69Kh27NihI0eO6OTJkzp9+rSuX7+uu3fv6u7du/L29lb27NkVFBSk4OBgVa1aVdWqVVOTJk1UqFAhy/IAXCEsLEz79+/Xn3/+qdOnTyssLEwXLlzQrVu3FB0drZiYmH9OxuTKlUsFCxZUyZIlVblyZdWtW1ePPfaYvLy80vtuAC5ns9l04sQJ7dy5U4cPH9bp06d1+vRpXb169Z/Xi/j4+CTvxQoVKqSQkBBVqlRJ9evXV8WKFZ3+Xuz+/fv666+/tH//fv31118KCwtTWFiYLl++rMjIyCTvGf38/JQvXz4VLlxYZcuWVbVq1dS4cWOVKlXKqTki84mNjdWuXbu0fft2HTx4UGfOnNH58+d1584dRUdHKz4+Xj4+PsqWLZsKFiyoRx55ROXLl1fVqlVT3HISjrt69ar27dunAwcO6NSpUwoLC9P58+d18+bNf17PbTabfH19FRQUpIIFC6pYsWKqVKmS6tSpo4YNG8rPzy+97waQIdhsNp06dUr79+9P8hx34cIFRURE/HNMeXh4yNfXV7ly5VLhwoVVqlQpValSRfXr11fNmjXT9QKNuLg4bdy4UatXr9a+fft04sQJ3b59W7GxsfL391euXLkUEhKiGjVqqE2bNqpbt26Wu6AEAAAAAABkHelSkAMAAAAAAAAAAAAAAABkVVxGBAAAAAAAAAAAAAAAAFiIghwAAAAAAAAAAAAAAADAQhTkAAAAAAAAAAAAAAAAABaiIAcAAAAAAAAAAAAAAACwEAU5AAAAAAAAAAAAAAAAgIUoyAEAAAAAAAAAAAAAAAAsREEOAAAAAAAAAAAAAAAAYCEKcgAAAAAAAAAAAAAAAAALUZADAAAAAAAAAAAAAAAAWIiCHAAAAAAAAAAAAAAAAMBCFOQAAAAAAAAAAAAAAAAAFqIgBwAAAAAAAAAAAAAAALCQZ2pvaLPZnJkHAAAAAAAA8FByc3MzHSMxMdHUeEe++7MibytiJCQkmI5h1pw5c9I8Zvz48abnPXbsmOkYmdXkyZNNje/du7fpHIKCgkyN9/LycmicFccNAAAArJMRPtNZkUPNmjX/+feePXtMxwMr5AAAAAAAAAAAAAAAAACWoiAHAAAAAAAAAAAAAAAAsBAFOQAAAAAAAAAAAAAAAICFKMgBAAAAAAAAAAAAAAAALERBDgAAAAAAAAAAAAAAAGAhCnIAAAAAAAAAAAAAAAAAC1GQAwAAAAAAAAAAAAAAAFiIghwAAAAAAAAAAAAAAADAQhTkAAAAAAAAAAAAAAAAABaiIAcAAAAAAAAAAAAAAACwEAU5AAAAAAAAAAAAAAAAgIU80zsBAAAAAAAAAOa4u7v+ujubzWY6RkxMjOkYbm5upsZ7e3ubzqFr165pHmPFfZ83b56p8QMHDjSdQ/v27dM8Zs6cOabnnTp1qqnxhQsXNp1Dx44dTccAAAAAkHWxQg4AAAAAAAAAAAAAAABgIQpyAAAAAAAAAAAAAAAAAAtRkAMAAAAAAAAAAAAAAABYiIIcAAAAAAAAAAAAAAAAwEIU5AAAAAAAAAAAAAAAAAAWoiAHAAAAAAAAAAAAAAAAsBAFOQAAAAAAAAAAAAAAAICFKMgBAAAAAAAAAAAAAAAALERBDgAAAAAAAAAAAAAAAGAhCnIAAAAAAAAAAAAAAAAAC1GQAwAAAAAAAAAAAAAAAFiIghwAAAAAAAAAAAAAAADAQhTkAAAAAAAAAAAAAAAAABaiIAcAAAAAAAAAAAAAAACwEAU5AAAAAAAAAAAAAAAAgIUoyAEAAAAAAAAAAAAAAAAs5JneCQAAAAAAAAAwJz4+3uXjPT3Nf7Xo7e1tOoZZZh87SfLx8UnzmCtXrpiet2zZsqbGh4SEmM7B19c3zWMaNGhget5Vq1aZGn/hwgXTOVy8eNHU+AIFCjg0zpG/NwAAAACuxwo5AAAAAAAAAAAAAAAAgIUoyAEAAAAAAAAAAAAAAAAsREEOAAAAAAAAAAAAAAAAYCEKcgAAAAAAAAAAAAAAAAALUZADAAAAAAAAAAAAAAAAWIiCHAAAAAAAAAAAAAAAAMBCFOQAAAAAAAAAAAAAAAAAFqIgBwAAAAAAAAAAAAAAALAQBTkAAAAAAAAAAAAAAACAhSjIAQAAAAAAAAAAAAAAACxEQQ4AAAAAAAAAAAAAAABgIQpyAAAAAAAAAAAAAAAAAAtRkAMAAAAAAAAAAAAAAABYiIIcAAAAAAAAAAAAAAAAwEIU5AAAAAAAAAAAAAAAAAAW8kzvBAAAAAAAAACYk5iYmN4pOMTDw8N0DJvNZmp8dHS06RyuXr2a5jFXrlwxPW9gYKCp8dmzZzedQ2xsbJrHHD9+3PS8Fy5cMDU+ICDAdA558+Y1Nd7b29t0DgAAAAAyLlbIAQAAAAAAAAAAAAAAACxEQQ4AAAAAAAAAAAAAAABgIQpyAAAAAAAAAAAAAAAAAAtRkAMAAAAAAAAAAAAAAABYiIIcAAAAAAAAAAAAAAAAwEIU5AAAAAAAAAAAAAAAAAAWoiAHAAAAAAAAAAAAAAAAsBAFOQAAAAAAAAAAAAAAAICFKMgBAAAAAAAAAAAAAAAALERBDgAAAAAAAAAAAAAAAGAhCnIAAAAAAAAAAAAAAAAAC1GQAwAAAAAAAAAAAAAAAFiIghwAAAAAAAAAAAAAAADAQp7pnQAAAAAAAADwMIuPjzcdw8PDw9R4b2/vNI+x2Wym5pSke/fumY6RkJBgaryfn5/pHM6ePZvmMbdu3TI9b8uWLU2NL1KkiOkcTp48meYxX3/9tel58+TJY2p81apVTefg4+NjOgYAAACArIsVcgAAAAAAAAAAAAAAAAALUZADAAAAAAAAAAAAAAAAWIiCHAAAAAAAAAAAAAAAAMBCFOQAAAAAAAAAAAAAAAAAFqIgBwAAAAAAAAAAAAAAALAQBTkAAAAAAAAAAAAAAACAhSjIAQAAAAAAAAAAAAAAACxEQQ4AAAAAAAAAAAAAAABgIQpyAAAAAAAAAAAAAAAAAAtRkAMAAAAAAAAAAAAAAABYiIIcAAAAAAAAAAAAAAAAwEIU5AAAAAAAAAAAAAAAAAAWoiAHAAAAAAAAAAAAAAAAsBAFOQAAAAAAAAAAAAAAAICFKMgBAAAAAAAAAAAAAAAALOSZ3gkAAAAAAAAADzN3d/PXzLm5uVmQSdokJiaajuHpaf7rSS8vL1PjrXj89+3bl+YxGzduND3vggULTMdID6NHjzYdY+DAgabG58mTx3QOCQkJpsY7etymx/EOAAAAIO1YIQcAAAAAAAAAAAAAAACwEAU5AAAAAAAAAAAAAAAAgIUoyAEAAAAAAAAAAAAAAAAsREEOAAAAAAAAAAAAAAAAYCEKcgAAAAAAAAAAAAAAAAALUZADAAAAAAAAAAAAAAAAWIiCHAAAAAAAAAAAAAAAAMBCFOQAAAAAAAAAAAAAAAAAFqIgBwAAAAAAAAAAAAAAALAQBTkAAAAAAAAAAAAAAACAhSjIAQAAAAAAAAAAAAAAACxEQQ4AAAAAAAAAAAAAAABgIQpyAAAAAAAAAAAAAAAAAAtRkAMAAAAAAAAAAAAAAABYiIIcAAAAAAAAAAAAAAAAwEIU5AAAAAAAAAAAAAAAAAAW8kzvBAAAAAAAAICHmbt7+l8zl5CQkOYxNpvN9LxW3Hc3NzdT40+ePGk6h127dqV5zDPPPGN63sGDB5saHxwcbDoHRx7/e/fumZ7X7N9OXFyc6Rw8PDxMjc8Ixz4AAAAA5+EdPwAAAAAAAAAAAAAAAGAhCnIAAAAAAAAAAAAAAAAAC1GQAwAAAAAAAAAAAAAAAFiIghwAAAAAAAAAAAAAAADAQhTkAAAAAAAAAAAAAAAAABaiIAcAAAAAAAAAAAAAAACwEAU5AAAAAAAAAAAAAAAAgIUoyAEAAAAAAAAAAAAAAAAsREEOAAAAAAAAAAAAAAAAYCEKcgAAAAAAAAAAAAAAAAALUZADAAAAAAAAAAAAAAAAWIiCHAAAAAAAAAAAAAAAAMBCFOQAAAAAAAAAAAAAAAAAFqIgBwAAAAAAAAAAAAAAALAQBTkAAAAAAAAAAAAAAACAhTzTOwEAAAAAAADgYRYXF2c6hpubm6nxXl5epnNwxP3799Nl3n87e/as6RiJiYlpHlO7dm3T8+bLl8/U+NjYWNM5OPK34+PjY3rehIQEU+O9vb1N52D2uAMAAACQtbFCDgAAAAAAAAAAAAAAAGAhCnIAAAAAAAAAAAAAAAAAC1GQAwAAAAAAAAAAAAAAAFiIghwAAAAAAAAAAAAAAADAQhTkAAAAAAAAAAAAAAAAABaiIAcAAAAAAAAAAAAAAACwEAU5AAAAAAAAAAAAAAAAgIUoyAEAAAAAAAAAAAAAAAAsREEOAAAAAAAAAAAAAAAAYCEKcgAAAAAAAAAAAAAAAAALUZADAAAAAAAAAAAAAAAAWIiCHAAAAAAAAAAAAAAAAMBCFOQAAAAAAAAAAAAAAAAAFqIgBwAAAAAAAAAAAAAAALAQBTkAAAAAAAAAAAAAAACAhSjIAQAAAAAAAAAAAAAAACzkmd4JAAAAAABSlpiY6NA4m81mal5Pz/T/yJhe993d3fz1K25ubqZjmOXI4+DoY26lzPz4x8fHp8u8/+bIsWvF/7vZxzwjHDOxsbEOjTP7N7t//35T4yXp+++/NzW+UKFCaR7zxBNPmJpTkooWLWo6hllHjx41HSNnzpxpHlO4cGHT8/r4+Jgan5CQYDoHR54/rHjOMXvcZYTXOwAAAABZGyvkAAAAAAAAAAAAAAAAABaiIAcAAAAAAAAAAAAAAACwEAU5AAAAAAAAAAAAAAAAgIUoyAEAAAAAAAAAAAAAAAAsREEOAAAAAAAAAAAAAAAAYCEKcgAAAAAAAAAAAAAAAAALUZADAAAAAAAAAAAAAAAAWIiCHAAAAAAAAAAAAAAAAMBCFOQAAAAAAAAAAAAAAAAAFqIgBwAAAAAAAAAAAAAAALAQBTkAAAAAAAAAAAAAAACAhSjIAQAAAAAAAAAAAAAAACzkmd4JAAAAAABS5u7u2LUUbm5uFmeSdgkJCek6Pj2ZffxtNlu65ODh4WF6XrP/b7GxsaZzcOS48fHxMT2vp6e5r1ri4uJM5+DI4+fl5WV6Xkefq6x04cIFU+PXrFnj0LjZs2ebmjcmJsbUeMn8c0alSpXSPCYgIMDUnJIUHx9vOsbQoUNNjf/mm29M5+CI69evm44xcOBAU+Pr1q1rOofs2bOnecy9e/dMz5uYmGhqfFZ53gMAAACQcfGJAQAAAAAAAAAAAAAAALAQBTkAAAAAAAAAAAAAAACAhSjIAQAAAAAAAAAAAAAAACxEQQ4AAAAAAAAAAAAAAABgIQpyAAAAAAAAAAAAAAAAAAtRkAMAAAAAAAAAAAAAAABYiIIcAAAAAAAAAAAAAAAAwEIU5AAAAAAAAAAAAAAAAAAWoiAHAAAAAAAAAAAAAAAAsBAFOQAAAAAAAAAAAAAAAICFKMgBAAAAAAAAAAAAAAAALERBDgAAAAAAAAAAAAAAAGAhCnIAAAAAAAAAAAAAAAAAC1GQAwAAAAAAAAAAAAAAAFiIghwAAAAAAAAAAAAAAADAQhTkAAAAAAAAAAAAAAAAABZys9lsttTcMJU3AwAAAABkEAkJCabGJyYmms7B3d3cdSAeHh4OjXNzczM1b0YQHx9vOoYjfwNWPHZmY5j9u7EqhiPi4uJMjbci7/v376d5jBXHe1hYmKnxs2fPNp3D2rVrTY2vXr26Q+M6d+5sat4NGzaYGi9JxYsXNzW+T58+aR6TPXt2U3NKUmRkpOkYnp6epsb7+fmZzsGR52yzr9OS+ftuxbHvyPOet7e36Xm9vLxMjef7bgAAAFjFiu9SzL43tyKHmjVr/vPvPXv2mI4HVsgBAAAAAAAAAAAAAAAALEVBDgAAAAAAAAAAAAAAAGAhCnIAAAAAAAAAAAAAAAAAC1GQAwAAAAAAAAAAAAAAAFiIghwAAAAAAAAAAAAAAADAQhTkAAAAAAAAAAAAAAAAABaiIAcAAAAAAAAAAAAAAACwEAU5AAAAAAAAAAAAAAAAgIUoyAEAAAAAAAAAAAAAAAAsREEOAAAAAAAAAAAAAAAAYCEKcgAAAAAAAAAAAAAAAAALUZADAAAAAAAAAAAAAAAAWIiCHAAAAAAAAAAAAAAAAMBCFOQAAAAAAAAAAAAAAAAAFqIgBwAAAAAAAAAAAAAAALCQZ3onAAAAAABImc1mS5d53d3NX8Ph4eFharybm5tD48w+ZomJiabGW5GD2cdOcuzxi4+PNz2v2b8dK+67Ff+HjvDx8TE1/urVq6Zz2LdvX5rHzJs3z/S8x48fNzW+U6dOpnNYtGiRqfF+fn4OjZs2bZqpeYODg02Nl6RWrVqZGu/l5ZXmMXfv3jU1p6Pz/pejrxV/i42NNZ2Dt7d3msd4eqb/V7MJCQmmY2TW+x4XF2c6htn7YcV7LQAAAAAZF+/4AQAAAAAAAAAAAAAAAAtRkAMAAAAAAAAAAAAAAABYiIIcAAAAAAAAAAAAAAAAwEIU5AAAAAAAAAAAAAAAAAAWoiAHAAAAAAAAAAAAAAAAsBAFOQAAAAAAAAAAAAAAAICFKMgBAAAAAAAAAAAAAAAALERBDgAAAAAAAAAAAAAAAGAhCnIAAAAAAAAAAAAAAAAAC1GQAwAAAAAAAAAAAAAAAFiIghwAAAAAAAAAAAAAAADAQhTkAAAAAAAAAAAAAAAAABaiIAcAAAAAAAAAAAAAAACwEAU5AAAAAAAAAAAAAAAAgIUoyAEAAAAAAAAAAAAAAAAsREEOAAAAAAAAAAAAAAD4/9i501jbz7Ju/Pfaa9jzPj0dTimlGgqtFiGUpgIiQ8EGJUAKAoUQQ6SWIcoL0UQmRVEJJAQNEJHgiHAYBNKWlqnSFgQKQqsNhRJUylToSE/PsKc1Pi/+qf/z7Ngn+3dfV7v2OefzedUX5/u77rXWb1zr2w0k6kx7AQAAAPy/tVqtqlync+Q/8o3H46rcYDAIzR0Oh6F8KaW02+1QvvZzj64huu5S4u9f9PMrpZRut9s4853vfCc89wMf+EAof8kll4TXcNpppzXOXHzxxeG5j3/840P5hYWF8Brm5+dD+b1791bldu3aFZr7nOc8J5QvpZQHP/jBoXzNsV97jj5cxrkuuo0DBw6E19Dv9xtn1tbWwnOXlpammi+l7pw/Go3Cc6PXq9nZ2fAaote72mNoZsb/ZwsAAEcCd+4AAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASNSZ9gIAAAC4f0wmk2kvoQyHw1B+NBpV5Tqd2OPu7OxsKJ9hMBiEt7GxsdE40+12w3Ojn/u1114bXsM//uM/Ns784Ac/CM996lOfGsp/7GMfC6/h4Q9/eONMq9UKz2232+FtRL33ve8N5X/0ox9V5S688MLQ3JNPPjmUL6X+fHmvfr/fOBM91kvJOd/WrD17DTXbWFlZCc+NyrhXqNn3otfpUuLnrfF4PPU1zMz4/2UBAOBo5o4fAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQqDPtBQAAAPD/Nh6Pq3KTySQ0t91uh/IZatewE9a+vr4eytd+7ofbv39/48yll14annvJJZeE8q1WK7yGCy+8sHHmggsuCM/dtWtXKB/db0opZTAYNM5kvOf9fj+Uv+aaa8Jr+OlPfxrKP/e5z63KPepRjwrN3Qlqzjmzs7PhuTMz8f9fsNfrhbcRtbm52TgTPWZKiR+7Ge9dzTYyzjmrq6uhfMb7v7i4GMpn7P8AAMDO5Y4fAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARJ1pLwAAAID7R6vVmmq+lFLa7XZ4GzWia9+/f394DTfddFMov3fv3vAavvjFLzbOPPGJTwzPfcMb3hDKP/axjw2vYX5+vnFmOByG50b3veXl5fAaaszMxP+frauuuiqU//rXvx5ew5Of/ORQ/pGPfGR4DdOyvr4eytecr3u9XmhmKaVsbGyEtxHdfzud+FekNe/f4uJieG70tY/H4/Aaaj7DjPd8YWFhqvlSSplMJuFtAAAARy9/IQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJCoM+0FAADwwGq1WtNeQhmPx40zo9EoPLfTid3+Zrx3w+GwcWYnvPZ+vx9eQ837Nzc3F547mUxC+ZrPbKvovlObj772mmM1exuHDh2qyl111VWhuX/3d38XypdSyoEDB0L53/zN3wyv4Y1vfGPjzMLCQnhut9sN5aP7bil1x03G+TZqdnY2vI2a4+76668Pz/3CF74Qyj/2sY8Nr+G8884L5QeDwQOau1f0Ol1KzjWzqYxjNWOf3wna7fZU5kY/g4z722nsezvFTni2AgAAdi5/IQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiTrTXgAAANs3Go3C29jY2AjlW61WeA29Xq9xptOJ37oOBoNQfjgchtfQ7XYbZ2Zm4j36fr8fys/Pz4fXMC3RfbbmM9squu/UHvvRuTfddFMoX0opl156aSh/5ZVXVuVOO+200NzXvOY1oXwppTzlKU8J5aPn61JKGY/HjTPtdjs8dzKZhPJzc3PhNdSouT5tFT3uaj6zrX7wgx80znzqU58Kz330ox8dyj/5yU8Or2F1dTWUX1paCq+hRvSYAQAAAHYefyEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQqDPtBQAAsH3tdju8jaWlpYSVxEwmkwcks1Wv15tqvpRShsNh48xoNArPnZ+fD28jquZ1bG5uhue2Wq3wNqJWV1dD+X/7t3+ryr3nPe8Jzf3+978fypdSyvOe97xQ/kMf+lBV7tRTTw3NzTjeNzY2QvmM897CwkLjTMY5J2PtUf1+fypzo/vOzTffHF7De9/73saZs846Kzz3mc98Zig/MxP//8ai73/t/h+91uyEaxUAAACQy1/IAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIFFn2gsAAGD7RqNReBubm5uh/MxMvNPd6UznNnQ4HIby03rtGXOjn3ur1QqvodfrNc5k7Cv/9V//Fcpffvnl4TV89rOfDeV3795dlXvVq14Vmvv4xz8+lC+llF27doXyk8mkKjcej0Nzo/lSSul2u1NfQ815r91uh+fec8894W1E1Rw3Bw4cCM/94Q9/GMpfdtll4TWcddZZjTO//uu/Hp4bvV7VXCe2qj1n3Kvf71flosdN9HwBAAAA7Dz+Qg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACBRZ9oLAABg+9rtdngb8/PzofzGxkZ4DYPBoHFmYWEhPHcymYTyNeveam1trXGm2+2G53Y6sVv/1dXV8Bo+85nPNM68//3vD8+9/fbbQ/nzzjsvvIZ3vOMdofzDH/7wqtzMTOz/wWi1WqF8KfH3v9frVeV2794dmptxvI9Go1B+dnY2vIaa15Hx2o877rhQPmPf29zcbJwZj8fhuddcc00on3HOrzlvZdxj1B6v9zpw4EB4DdHz3tLSUlWuZn87XMZxl7HvAAAAAHn8hRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAECizrQXAADA9o3H4/A2RqNRKL+wsBBew3A4bJw5cOBAeO7MTKyPvrS0FF5Dt9ttnPnhD38Ynrt3795Q/pJLLgmvYWVlpXHm4osvDs99+tOfHspn7PPRfW92drYqN5lMQnNbrVYoX0opJ598cngb09DpxB+Xa851hxsMBuE1tNvt8DZqRPedjY2N8Bpqrpkf+9jHwnN//OMfh/IXXXRReA0/8zM/0zizuroanrt///5Qfiecbzc3N6ty0XNGdN0AAADAzuNpHwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJOtNeAAAA2zeZTMLbGI/HCSuJabfbjTPLy8vhuYPBIJS/7rrrwmt417ve1Tjzta99LTz3Oc95Tij/93//9+E1POpRj2qc6ff74bnRz312dja8hpmZ2P8LUXvsR1/7aDQK5UspZX5+PpSvfQ3r6+uhuTXnqa0WFxfD25iGjGvN2tpawkpiLrvsssaZu+66Kzz3oosuCuX37NkTXsPGxkbjTPRYLaWU4XAYykfPlaXEz3utVqsql7F2AAAA4Oji2wIAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASdaa9AAAAtq/dboe30enEbgFHo1F4DbfddlvjzBVXXBGeu3fv3lC+3++H13DxxRc3zrz73e8Oz52bmwvlMz73mm30er3w3Og2JpNJeA3j8Ti8jRrR157xuUePm9rz3srKSmhuhujnnrHvDQaDqcxdWFgI5S+99NLwGr797W83zjzvec8Lz33IQx4Syme8/zVarVZ4GzMzsf/vazgchtfQ7XZD+bW1tapc9Hw5Pz8fygMAAAA7j7+QAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASNSZ9gKAnWE4HIbynU78dNJqtcLbqDGZTEL58XgcXsPMTKwfmfHe1byOjNceXXv0vctYw7RE991SShmNRqF87fuf8blFRfff2vNm9LVHP7NSSrnhhhtC+b/9278Nr+ErX/lK48zZZ58dnvvmN785lH/Sk54UXkPNvhO9TpcS3/emddxmnOt2gui1pvacFT1ntNvtUD5jG7WvPXqez9jno9tYX18Pr6HmGJqbmwvP/eQnPxnKf/3rXw+v4dnPfnbjzKMf/ejw3H6/H95GVLfbncrc6PGecc6JWlpamvYSAAAAgKPE9H8NAwAAAAAAAACAo4hCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIk6014AsDPMzBy7/bzxeBzKTyaTqa8h4/Or2Uar1QrPHQ6HoXzGa695/9fW1sJzB4NBKL979+7wGjqd2K1A7f6/vr4emtvv90P5UkrZtWtXKF+7D1x55ZWhuR/+8IdD+VJKuf3220P5F7/4xeE1vOlNb2qcefCDHxyeOxqNQvmMY7/muJubmwvPzbheMT2117voPr+xsRHKl1JKr9cL5WtfQ/T+KvreZaxhaWkpvIaae62rr746PPfGG28M5Z/1rGeF13D22Wc3zkTvTUuJ318BAAAAcHQ4dn+BBwAAAAAAAACA+4FCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQqDPtBQA7w8xMrJ/XarWSVlJvPB5X5SaTSWhuNJ9hNBqFt7G2ttY4s7S0FJ7b7XbD25iGjNcelbHvDYfDUL5235ubmwvNvfPOO0P5Ukp561vfGspffvnlVbmf//mfD8192cteFsqXUsoznvGMUD6635RSSr/fb5zZ2NgIz42ecxYWFsJrqLETrjUcmaL3eJ1O/JExuoaa80UppRw6dCg0d3Z2NpQvpZRerxfKr66uhtfw3e9+t3Hmi1/8Ynhu9Hr3S7/0S+E1TEvtcwkAAAAARxd/IQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBEnWkvANgZWq3WtJdQJpPJVOZGX3vGezczE+tHZqxhcXGxcebQoUPhuXNzc+FtRB04cKBx5oQTTgjPHY1Gofza2lp4DdHj7jOf+UxVbu/evaG5t99+eyhfSinPeMYzQvnLLrusKnf66aeH5m5ubobypZSyuroays/OzobXsLCwEN5Gjeg+n3GtqjlnZ5znp3WdZbqi9xgZ55yNjY1QfmlpqSoXvceInitLib9/t9xyS3gNH/3oRxtnzjzzzPDc5z73uaF8dL8ppW4fGA6H4blR7XZ72ksAAAAAIIG/kAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEjUmfYCgJ1hMplMewlTW0O73Z7K3Ezj8Ti8jX6/3ziztLQUnjszM/1u6Iknntg4MxgMwnN/8IMfhPKXXXZZeA3vf//7Q/lf/MVfrMq99KUvDc395V/+5VC+lLrP/XC156zo8To3NxfKZ8g4X9ccQ61WKzw3es4ZjUbhNWxuboa3UWNxcXEqc8lRe+6IHq8Z55zoea82Hz1nZBwz3/rWt0L5j3/84+E1nHnmmY0zL3jBC8Jze71eKJ9xjzit8+3s7GwovxOezQAAAACIm/6voAAAAAAAAAAAcBRRyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJOtNeALAzTCaTaS8hrNVqTXsJR7T5+fnGmdFoFJ579913h/IZ++53vvOdxpm3v/3t4bnf/OY3Q/lnP/vZ4TV85CMfCeX37NlTlVteXg7NbbfboXwp0ztnjMfjUH5jYyNpJfV6vV54G91uN2ElD7yZmXiffVqv/Wi41h/Lave94XAYmhvNlxLf5/v9flUuer49dOhQKF9KKddee20ov7S0FF7D+eef3zgzNzcXnru2thbeRtTCwkLjTMY+H91Gxn0OAAAAANPnL+QAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASdaa9AODoMJlMwttotVoJK3ngjcfj8Db6/X4oPxqNwmuYm5trnDl48GB47t69e0P5973vfeE17Nmzp3HmBS94QXjuO9/5zlD+1FNPDa9hWqLnjMFgkLSSer1eryoXfe0Z58ratd8r45xT8xm22+3w3E4ndvub8do3NjYaZzKus4uLi+FtcOSJ7jubm5tJK6lXe9yur6+H5n74wx8O5Usp5dZbbw3lX/va14bXsLy83DiTcY8XvUeuuTfdqmb/jV4jS4m/9mP52QoAAADgaOIv5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgUWfaCwC412QyCeVbrVZVbjweh+YOh8NQvpRS+v1+KP+Tn/wkvIa3ve1tjTNf+cpXwnOf8pSnhPL/9E//FF7DGWec0TjT7XbDc6P7zv79+8NrmJubC+VHo1FVrtfrheZG86XUr/1ea2trVblOJ3b7lfHao+e96GvI2sY0zMzE++yLi4sJK2kuep1lumqP2+g+u7y8HMqXUsrGxkYoX3uf9IlPfCI096677grlSynl937v90L5jHP+5uZm48zCwkJ4bvT+NnqdLqWU2dnZxpnouksppd1uh/IZ1xoAADiaTOu3g2NVxndIGc81vssCjga+5QEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACTqbPcfDgaDxhvv9XqNM1sNh8PGmU5n2y/rfnPo0KHwNpaWlhpnxuNxeO7q6mooX7PurQ4ePBjKz83NVeW63W5o7vr6eiifYWFhYSpzNzY2wtuo/dzuNZlMqnJ33HFHaO4///M/h/KllHLZZZeF8vv37w+v4dWvfnXjzGtf+9rw3DPOOCOUr/3cD1dzrcnQbrdD+YzzbXQNR7Loa5/W+TbDsfy5R7VaranMzTjXRWW89przbcZrj94jj0aj8Brm5+dD+drXkLH2qOjz2eWXX16Vu/7660NzX/GKV4TypZSysrISymfs/zXP5Rlzo/f20zrfukYCAHB/mNZzffT3nlLi9/YZz6V/9Ed/FMp/6EMfqsrdcsstobk7wemnn9448/nPfz48d3l5ObyN6DP1zEz871LU/O43OzsbnjutZ2Ign7+QAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQKLWZDKZbOcfbvOf/V/G43HjzFZra2uNMzMz8Z7R5uZmKH/88ceH11Dz2v/qr/4qPPflL395KL+yshJeQ6vVCuWHw2F4DTU6nU54G4PBIJQ/cOBAVW5paSk0N/qZlVLK1772tVD+3e9+d1Xum9/8Zmjuk570pFC+lFIuuuiiUP7Rj350eA379u1rnDnppJPCc6Nqrk9bjUajxpmM4z269ozrLHBkyLjORu+PMs45vV5vKnOjzwcZ7//q6mooX3uPuHv37tDcjPvqj33sY6H8tddeW5X7nd/5ndDcU089NZQvJf7+ZTxbZdwrTWNuxnEHAAA7RcbvVv1+v3Gm2+2G59Z8d7rTfPCDH6zKRZ9nM36zO+WUU0L5xzzmMeE11Pjc5z4X3sbc3Fwov7i4GF5Dxu8AHBsyvseIfg+asYZzzz33f/77+uuvD28PfyEHAAAAAAAAAABSKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQqLPdf3jo0KHGG19aWmqc2Wp5eblxZjQahecuLCyE8j/60Y/Ca3jWs57VOHPBBReE59a854e7/fbbw2s46aSTQvnafWAwGITmZuzz3W43lF9cXKzKfeITnwjNff/73x/Kl1LKnXfeGcr/xm/8RlXuXe96V2jucccdF8qXUsrq6moo3+/3w2uIHne1JpNJKJ/x2mu0Wq3wNmZmYr3YnbAG4MgxHo9D+Yzz7ezsbONMxrkueo8XvVaVEn++GA6HVbma57jDXXvttaF8KaXccMMNofyLXvSiqtzP/dzPheZGj5lSStnY2AjlNzc3w2uYn59vnMnY56Myjn0AADia1Dzbdjrb/hnwPtU+j95rJ3z/+LnPfa4qd/7554fm1v5ec7h2ux3KP+95z2uciT7Hl1LK/v37w9uI/mYR/d2llLrf/TzPAoeb/lUQAAAAAAAAAACOIgo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAECiznb/4dLSUuONf+9732uc2Wr37t0PSGarO++8M5S/9NJLw2v4xje+0Tjz6le/Ojx3dXU1lD/55JPDa2i1WqH8ZDKpyo1Go9Dcm2++OZQvpZT3ve99ofwHPvCBqtzZZ58dmvvKV74ylC+llF/91V8N5Wv3m/X19dDcdrsdypdSysrKSngbUTXHzXA4DM8dj8ehfLfbDa9hZubY7adGz3vAA2MnHKsZ16rNzc3GmX6/H55b8yyTvYb9+/eH8rOzs1W57373u6G5Nc8kW/3Kr/xKKH/uuedW5e65557Q3Ix7jMXFxVC+9rnmcDvh/AEAAMe6jO8fa55tM54p5ubmQvnBYBBeQ/S3l5tuuqkqd9FFF4XmLi8vh/KllPLWt741lP/rv/7rxpl/+Id/CM0spZSHPvSh4W1Ej5uM53qAqGP3F0gAAAAAAAAAALgfKOQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQqLPdfzgejxtv/KEPfWjjzFatVqtxZmNjIzx3fX09lL/jjjvCazjvvPMaZyaTSXhut9sN5TPWcMstt4TyN954Y1Xu4x//eGjulVdeGcqXUsqLX/ziUP6aa66pyp122mmhuYPBIJQvpZR+vx/Kz8/PV+UWFhZCczNee1T0uC2l7nzb6Wz7MnK/qVn3TlFzbT3czEy8V3skv39wLGm321PfxnA4DK+h5pyzvLwcnpux9qjdu3eH8jfddFNV7oMf/GBo7oMe9KBQvpRSnvCEJ4Tytdeq4447LjR3J9zfTuseDwAAyDUajcLb2NzcbJyZm5sLz43KeO3/8R//EcrX/mb3tKc9LTQ3w2te85pQ/lvf+lbjTMazaPR31gy1vxkdruY7pYzv8YCjh7+QAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQKLWZDKZbOcfDofDxhtvt9uNM1vdddddU5n70pe+NJT/4z/+46ms4S//8i/Dc5/ylKeE8v/5n/8ZXsOznvWsUP7mm28Or4EHXsaxOw3j8Ti8jW2eiu9XrVarcWYnrJuYms8deOBlHKvRbYxGo/Aa5ufnG2eWlpbCc++8887wNo5Vu3btCm+j3++H8hsbG1W56D6fcY/X6XRC+ZrncP5/7nMAAMiyE74HPe+88xpn3va2t4XnnnHGGaF8zXcBW73iFa8I5Z/4xCdW5X7t134tNHd9fT2UL6WUpz71qaH8hRde2Djz+te/PjSzlFJ2794d3kb0mW5az4Q74XzBAy9jf4t+F5WxhnPPPfd//vv6668Pbw9/IQcAAAAAAAAAAFIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJCos91/eOjQocYbn5+fb5zZ6sQTT2ycectb3hKe+9a3vjWUX1xcDK9hc3OzcebMM88Mz52ZifW0MtZw5ZVXhvKnn356VW48Hofm7tu3L5QvpZRdu3aF8t1uN7yGaRkMBqH8xsZGVW52djY0t9frhfKlxPe9mvPFVnNzc40zrVYrPHcymYTy0feudg3Rc2XGNqLvXSmljEaj8DaA+1/G8R49Z3c62350uE/D4bBxJuMaF70/+slPfhJewyWXXBLKH3fccVW5F77whaG5NZ/ZVtF7rdpr1cLCQmhuxnG3E0zrWh99/zLuMwEAYKdot9vhbUzrHjl6b3/nnXeG1/CNb3wjlH/mM59Zldu9e3do7imnnBLKl1LKS17yklD+b/7mbxpnnvOc54RmllLK4x//+PA2ot9JRL+PKKWUAwcONM6srKyE53omhqOHv5ADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgESd7f7DXbt23Z/ruE9/8id/0jjzp3/6p+G5b3jDG8LbiDrppJMaZ3q9XnjuYDAI5Tudbe9W9+lhD3tYKD+ZTKpyw+EwNPeEE04I5TOsr69X5aKfW7fbDeUztlH7GkajUWhudL8ppZR2ux3Kz8/Ph9cwHo8bZ1qtVnhudBsZa6gxMxPvtNaeq+4V3XdLyXkdwP0v41wXPedkXO+mda255557QvkrrrgivIb9+/eH8hdddFFVbmFhITS35jPbKrrv1aq9L75Xxv1Vv98P5TPe/4z79BpH6j0eAADcHzY3N8PbqPn9Z3V1NTw3+lx56aWXhtfwkIc8JJR/3OMeV5Xb2NgIzc14Hv7+978fyi8vLzfORN/vUnJ+K4w+E2c8Vy4uLk5lLnD08CscAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgUWe7/3A4HDbe+OrqauPMVocOHWqcmUwm4bkHDx4M5f/93/89vIaLLrqoceakk04Kzz0atFqtqly32w3Nzdj3ZmZiPbn5+fmqXHTtGa99Wtrt9rSXEJbx/tccNzvhc6893qPb2Amv/WjYd6GJ0WgU3kb02O10tn37fJ9qXkfNvfhWvV4vlI/eo5RSd94aDAbhuZ/97GdD+dtuuy28hte97nWhfO19anSfz7jOfuhDHwrl3/jGN1blbr755tDcDOecc04o/4d/+IfhNTz72c9unMk43qPG43F4GzX7f8Z5PuO8FRV9tgUAINfc3Fx4G+vr640zCwsL4bnR7yCvvvrq8Bqe+MQnhvK134ksLy+H5r7hDW8I5Usp5V/+5V9C+Ze//OWNM7t27QrNLKXu992tot8FZjzf1byOjPcv4/sYYGeY/rdsAAAAAAAAAABwFFHIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIk62/2HN910U+ONv/CFL2yc2eob3/hG48y+ffvCc1dWVkL5//7v/w6vYX5+vnHm0KFD4bmzs7Oh/MxMvOfV6Wx710wVXftkMgmvIbqNVqsVXgMAR7fotWY4HIbXUHPN3QnXuIw1tNvtxpmM+6uo0WgU3sZgMGicufzyy8Nzb7zxxlD+93//98NriL5/CwsLVblvfetbobl//ud/HsqXUsrBgwdD+Y9+9KNVuTPPPDM096677grlSynlL/7iL0L597znPeE1HH/88Y0z55xzTnju3NxceBtRNefsjPN8t9sNbyOq5lq/E66zAABHq+hzUSl1vxll/F523nnnhfJ33HFHeA0f+chHQvl3vvOdVblbbrklNPekk04K5Usp5S1veUsof+GFFzbO1Hx3tVXGc9G0fis8XM3vxZ6tgMNN/5t9AAAAAAAAAAA4iijkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkKiz3X949tln34/LuG9f/OIXG2ee/OQnh+eef/75ofznP//58BpqPOxhDwtv47vf/W4o3+v1wmtot9uhfKvVCq9hWiaTyVTyR/J7BsCRZ2ameS8841o1retsVMbcnfDav/SlLzXOfP3rXw/Pvfjii0P5xcXF8Brm5uZC+euuu64q9/a3vz00t+ZY3epNb3pTKF/7jDM/Px+ae+qpp4bypZTyzGc+M5S/9dZbw2u44YYbGmfOOeec8NyMfSdqWs840bkZ59uaNUxrLgDAsWB5eTm8jZr7teOPPz48t/Z59F7R33tKid+r3n333VW56Pu3vr4eypdSytLSUngbTQ0Gg/A2Op1t/wR9n8bjcSh/8ODB8BpWVlbC2wCObdP/hgwAAAAAAAAAAI4iCjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAk6mz3H95zzz2NN76ystI4s9Vtt93WODMcDsNzP/rRj4byJ554YngN4/G4cebQoUPhuZ3OtneL/1Wr1Qqv4Ug1mUymvYTq938nrB144B3L5+xjWfRzn5mJd7oztlEjer0bjUbhNdS8/xnX6eg2vvrVr4bXcPXVVzfOXHDBBeG5D3/4w0P5fr8fXsOPf/zjUP6aa66pyt1yyy2huS972ctC+VJKecxjHhPKT+ta1W63w9uI7ju33npreA379u1rnJmdnQ3P3QlqznsZ3ydEz7cZ10j3eAAAO0vGc+Xq6mrjzNzcXHhudBsHDx6c+hr27NlTlRsMBqG5S0tLoXwp8X2n2+02zkR/Jyylbn/dqtfrhfIZv1Nvbm42zmQ8U3umg6OHv5ADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgESd7f7DlZWVxhtfXV1tnNnqlFNOCW+jxsxMrKuU8dp7vV7jzNLSUnjuZDIJ5VutVngN0W3UvobxeDyVuYeL7nu1713G2gE4NrTb7anMzbhWRbeR8dprrtXRe5RSSvna174Wyn/qU58Kr+FpT3ta48zjHve48NzNzc1Qvua+fKvvfe97ofwVV1xRlTvjjDNCc5/+9KeH8qWUsrGxEcp3u92qXPS4id6XlxJ/LhyNRuE1zM/PN84Mh8Pw3J3w/tdso9PZ9tck9yl6rfFsBgBw9Kl9rjnccccd1ziTcW+5f//+UP5Ivr+NPh/ceeed4TXs3r07lK/5HirjM5udnQ1vI/o9XMbvlTVryJgLHD38hRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASdbb7D9fW1hpvfHFxsXFmqx//+MeNM6eeemp47uzsbCjf6/XCa/jpT3/aOHPCCSeE57ZarfA2pm0ymTyguaz8NB3JawfqHQ3nfI5M4/G4cWY4HIbnRvf5drsdXsNgMGicufHGG8Nzr7rqqlD+nHPOCa/h/PPPb5wZjUbhudHPfX19PbyGm2++OZS/4447qnLPf/7zQ3OPP/74UL6U+LG7ublZlVtaWgrNvfvuu0P5Ukr59re/Hcp3u93wGh71qEc1zszMxP/fnehxl3GP4j4HAICdoua7gK1qvsPft29feG70uTDju5To7xe33357VS76m9uePXtC+Qw132lkfGbR31lLqfv+8HAbGxvhNczPz4e3ARzb/IUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAos52/+HCwkLjjd9xxx2NM1udeuqpjTMbGxvhuaurq6H8CSecEF7D8ccf3zjz05/+NDx3ZWUllJ+Zife82u12eBs1Wq3WVOYebjKZTDUPwM6WcZ6PbiPjejkejxtnMl579B5jbW0tvIabbrqpceZLX/pSeO4pp5wSyj//+c8Pr2FaOp1tP/b8rzI+99tuuy2Ur30Ni4uLobkZ9+XR54PaNQyHw9Dc6667LpQvpZR//dd/DeXPOuus8BrOOeecxpmMzz16rci41mQ8m9aoucYdLuN6N63XDgDA/67b7Ya3UXOfuWfPnvDc0WgUyu+E77JOPvnkqlz0ufLAgQOhfCnxfWd2drZxJuN57ODBg+Ft9Hq9UH5ubi68hpp9IPo9FHB08Q0NAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgUWe7//DQoUONN37yySc3zmw1HA4bZ+bm5sJz2+12KF+z7q06nW1/PP/j+OOPD89dXV0N5bvdbngNrVYrlJ+ZqeuaReeOx+NQPsNOWAMA95/JZBLexmg0CuUzrvU191rR+7MM+/btC2/jy1/+cuPM+vp6eO4rX/nKUD7j/nZzc7NxJuNzjx43Gc8XJ554Yih/2mmnVeV27doVmht9NiillKWlpVC+dt+79dZbQ3M/85nPhPKlxPed3/qt3wqv4aSTTmqcybjWRJ+tovlS6p6NpjUXAICjW8azVc3zRcb9be3vLZmi99j9fr8qF/0ObGVlJZTPUPM9YMZ+s7y8HN5G9Nk0+h1oKXW/1QIcbvpXUQAAAAAAAAAAOIoo5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiTrb/YfLy8uNNz6ZTBpntmq1Wo0zg8EgPDeqZt1b1bx/MzPxjtX8/Hx4G1HRfWc8Hiet5IGXse/UyDhegSNP9JwzHA6rchsbG6G53W43lC+llNnZ2VC+9rVH71MyrtPtdjuUz7jXqtlGr9cLz7311ltD+c9+9rPhNYxGo8aZ3/7t3w7PzXj/jlTRff7gwYPhNTzykY8M5a+77rqq3N69e0NzH/GIR4TypZRy1llnhfJXX311Ve6Nb3xjaO6ePXtC+VJKefOb3xzKZ7z/Gc+IR6ppPVt1Otv+qgUAgGPE4uLiVOZO67eqbMfyc03Ukfx8Et1/j+TXDhw9XMEAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABI1Jn2AuBo0mq1pr0E4BgyGo3C29jY2AjlFxcXq3JLS0uhuRnG43EoPxwOpzJ3MpmE8hna7XZ4G91ut3Fm37594bmf/vSnQ/lvfvOb4TW8+c1vbpyZn58Pz+33+6F8r9cLr6Fm34keMxlWVlbC23jMYx4Tyte+/+94xztCc3/hF34hlM9w+umnV+Ve97rXhea+6EUvCuVLie+/s7Oz4TUAAADHrp3wPRIAHMv8hRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAECi1mQymdxfG8/Y9Hg8nsrcqFarFd7GzEzzvlTG3OFwGN5GVMbrOJLmZqp9DTXHGjBdGcdtdBuzs7NVuei1OuNaFT3n1+Zrru8Zcw83GAxC+c3NzfAaava9z33uc+G51157bSj/Z3/2Z+E19Hq9xpnRaBSe2263Q/novltK3euI7q8Zut1ueBvR97/2fJ1xvEbNz8+H8rXXjOg1LvqZlRI/djOebTudTngbAAAAANy3jO/to99lZazh3HPP/Z//vv7668Pbw1/IAQAAAAAAAACAVAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJOps9x9OJpP7cx2pWq3WtJcwNRmf07H8/u0E03r/fe5w5Gm32+FtdLvdUH48HlflBoNBaG7GOavT2fZtUKrotXo4HIbXEH3/Z2bine4rr7yyceYLX/hCeO7rX//6UD56zJRStw/UHmuHi659NBqF11CzjYxjNXrOyHj/p3Xe6/V6obkZr73f74fyta/94MGDobkZx/vy8nIofyQ9hwMAAAAA/zd/IQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBEnftz45PJJLyNVqs1lblRNevequZ1ZMzdCY7U13Gkrhs4do1Go1B+OBxW5Tqd2C1Iu90O5UuJ3y8MBoOqXO17dq+ZmXifOvq5X3nlleE1fOUrX2mc+d3f/d3w3BNOOCGUH4/H4TXU7AMLCwvhudHPPZovpe5eqdvthudGj/eM4y56n3gk32f2er1Qvva1R4/3jOfK6Dk/Q/SaCwAAAADU8RdyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJCos91/OJlM7s91pGq1WtNewtTshM/pSH7/d8Lad8IagGNH9JwzM1PX7W2326G5Gde70WgUyte+hl6vF5o7GAxC+VJK+epXvxrKX3XVVeE1vOQlL2mceehDHxqeG/3cM67T3W63cWZtbS08N7rvdTrbfnS4T7XnjGnLOOdE379p3eePx+PwNjY3N0P5ubm5qly/3w/NjZ4vMuyEfQ8AAAAAqHNkfiMOAAAAAAAAAAA7lEIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiTrb/YeTyaTxxlutVuNMhmnNPVzN+7VT5u6E9y/qWN73AJqInre63W5VLnq96vf7oXwppYzH41B+fn6+Khdd+5e//OVQvpRSrrjiilD+Va96VXgNj3jEI8LbqDEzE+ujj0aj8Bpq9v/a/e1w0X2+3W6H11Aj4z0fDoehfHS/yVC7hiP1cz/c6upqVa7X64XmRvOlxK93O+H9BwAAAADqTP+bZQAAAAAAAAAAOIoo5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJCoM+0FwP+m1WpNewkAx4TRaBTKt9vtpJU0MzMT7xT3er1QfmNjoyp3ww03hOZ+9atfDeVLKeUJT3hCKH/qqaeG1zAcDhtnovtrKaXMzs6G8hn7/Hg8bpzJuDfKOG6mIWPd0c99MpmE1xDdf2uOmVJK6XSO/Ee+2tcQ3Xdq3/PDZZy3oqZ1rQYAAACAY92R+a08AAAAAAAAAADsUAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIFFnu/9wZkZ3p4lWq3VMzeX/M5lMpr0EgEai56319fWq3Pz8fGhuu90O5UspZTAYhPK33HJLVe7Tn/50aO7P/uzPhvKllHLBBReE8sPhMLyGGhnX2ejaR6NReA2zs7PhbdQYj8ehfMZr73S2/fiROjf62jOehaJr6PV6U5mb8f5Ht1F7zo8+G0Xfu1LqPzcAAAAA4MinZQMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARJ1pLwAAmJ52ux3Kt1qtqtzm5mZo7uzsbChfSil33313KP/JT36yKhdd+0te8pJQvpRShsNhKN/pxG8hR6NR48zc3Fx47mAwCOUnk0l4Df1+v3HmwIED4bnR4/24444Lr6Hmc894z2vmHm5tbS28ht27d4fyGxsbD2juXgsLC6F8KaXMz8+Ht1FjPB6H8jth38s432a8DgAAAACgOX8hBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkKgz7QUAAHUmk0l4G6PRKJTvdrvhNdT44Q9/GN7Gpz/96VD+1ltvrcr9wR/8QWhuhujnPjc3l7SSZvbv3x/eRqvVCuWXlpbCaxiPx40zJ554YnjugQMHQvnbbrstvIYHPehBjTMzM/H/hyC6jV6vF17D5uZmKF973C4vL4fmDofDUL6U+L5Xc8yUUsrCwkJobvR8UUr8/cvY/zNeBwAAAADQnL+QAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAOD/tHevoZaWZdzA77XXYZ/3zDiOTjoz6BBpFlFaQmVHo8PUl8BAMawvmUSKEGVTAxaKYBFIVkYkRIgdqClFIUK/GIIYQ2JmpSmlzaAzYzPOntnHdXg/GVMvL++s+7qatdXf75Mf5v9c11p7Pc9a+1n/dgAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAotaoFwAA6jQajfAx2u12KN/r9apyL774YmjuI488EsqXUsqjjz4ayn/nO9+pyvX7/dDcbrcbypdSyvT0dCi/uLgY3uHYsWNDZ0499dTw3LWg5mc4Pz8fnjs1NRXKT0xMhHcYDAZDZ1ZWVsJzo+fNzMxMeIdWK/arV6fTqcpFH3vGe030+RsbG83/jiTjehv9uWc89przDgAAAACI8xdyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASNQa9QIAwOgsLy+H8vv27avK/fGPfwzN/e1vfxvKl1LKDTfcEMovLS1V5cbHx0NzMywuLobyjUYjvMPMzMzQmeeeey48d3JyMpR/4IEHwjtce+21Q2eefvrp8NxPfvKTofytt94a3qHX6w2d+dGPfhSee/PNN4fyb3nLW8I7fPOb3wzlzznnnKpcv98PzW2326F8KfXXy5dEH0OtTqcTPkaz2Qzlu93uyHcAAAAAAOr4CzkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBErVEvAACMTr/fD+WfeuqpqtyDDz4Ymnv11VeH8qWUMj4+HsqPjY2m15wxN/rYR2Xjxo3hY7zwwguh/BlnnBHe4Z577hk6c/bZZ4fntlqxj/6NRiO8wwMPPDB0Zn5+Pjx3z549ofwTTzwR3iF63XvjG99YlbvvvvtCc3fu3BnKl1JKp9MJ5Xft2lWV++hHPxqaOxgMQvmMYzSbzZHvAAAAAADU8RdyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJCoNeoFAIA6S0tL4WM8+OCDofwvfvGLqtxVV10Vmvu6170ulC+llF6vF8o3m82q3GAwCM2N7l1KKd1uN5QfG4t3uo8ePTp0ZmZmJjz373//eyh/zTXXhHfodDpDZ2655Zbw3PPPPz+U37t3b3iHP//5z0Nntm7dGp57+umnh/JPPPFEeIcXXnghlL/77rurcjWvt+N973vfC+VLqb9evuTgwYNVuWeeeSY0d/PmzaF8KaW0WrFfuTOu+RnXbAAAAABgeO7MAQAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAErVGvQAAUOdvf/tb+Bhf+cpXQvkNGzZU5ZaXl0Nzo/lSSul0OqH84uJiVa7X64Xmzs7OhvIZO0TzpZSycePGoTNLS0vhuVu2bAnlf/3rX4d3uO+++4bOXHvtteG5N9xwQyi/devW8A6rq6tDZ9avXx+eG33NZjz2xx9/PJTfv39/VW7btm2hua1W/FfG8fHxUH5hYSG8Q41GoxE+RvS11263wzsMBoPwMQAAAABOhuh9jIz7OTXWwv2XtbAD/zd/IQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBErVEvwNqzuroaync6nfAOy8vLofz4+HhVbjAYhOaurKyE8qXEn7+lpaWq3MTERGhut9sN5UsppdWKXZJqf37Rn1v0uSullH6/H8pHz5lS6h5Ho9EIz40+9ug1q5S68y5j7pNPPhnKf//73w/vcP3114fyBw8erMrddNNNobmvfe1rQ/lSSrnuuutC+dNOOy28Q43oOZNxjIz3+hoZ19szzzwzlM94r9+xY8fQmampqfDc+++/P5S/9NJLwzs0m82hMxmvt8nJyVA+47zr9Xqh/ObNm6ty0d0/+9nPhvKl1H82f8muXbuqctu2bQvNzfh8G/39AgAAAHh5WQvfly0uLoZ3yLgXWyP63Uv0PlQpdd+1ttvt8NyxsdjfUnEfam3yF3IAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJWqNegLWn0+mE8oPBILzD6upqKD82Vtc1a7Vip0Tt3OM1Go1QfnJysirX7XZDczP0+/1QvtlsVuUmJiZCc3u9XihfSinLy8uh/Pj4eHiHmtfA4uJieO7s7GwoH71mlVJ3zdm7d2947g9+8INQ/sMf/nB4h4suuiiUX7duXVXuIx/5SGjuz3/+81C+lFJuuummUP7qq6+uym3YsCE0d25uLpQvJf5+F71el1LKwsLC0JmM96qZmZlQPuN6W/N54fTTTw/P3bJlS/gYUTWfEzPea44ePRrK137GOF673Q7la1//0evtBz7wgVC+lPjn29p89JqR8XtN9PeDjOtt9PkHAAAATlzGd4VRGfcwa+4nRL/fzTjGWriPV2v//v2h/KZNm5I2IdPorwgAAAAAAAAAAPAKopADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRqjXoB1p6VlZVQvtlshneYmpoK5cfGRtM1y5jb7/dD+UOHDlXlpqenQ3PHx8dD+VJKWVpaCuUHg0FVLvp6q517vOh5k3He1Yi+XkuJX3MyXnvPP//80JnbbrstPPf8888P5d/97neHd1i3bl34GDVOO+20UP6KK64I73DXXXeF8jfddFNV7vbbbw/NXQsajUb4GDMzM0NnMq630etW9JpVa2JiInyMViv20X9ubm4kOywvL4fnTk5OhvJHjhwJ7zA/Px/Kv+lNb6rKRX/uGef7q1n0mpNx3fMzBAAAgJOn1+uFj7EWvjepEb0PVUop7XY7lF9dXQ3vUPMzzPiOOPq9iXtAa5O/kAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEjUGvUCrD2dTieU7/V6SZucfCsrK6H82Fi849ZsNkP5jRs3hncYlYmJiVB+cXGxKre0tBSaG927lPjPPfraLaWUVmv4t4R169aF5/b7/VD+wIED4R1+9rOfDZ2ZmZkJz7388stD+Zqf2X+LXrNrz5/l5eXQ3FNOOSWUL6WUt7/97aH8E088UZX76U9/Gpr7sY99LJQvJf5eH83XajQa4WNEr7cZn3Oee+65oTPPPvtseO7s7Gwov2XLlvAO55577tCZ3/3ud+G5f/3rX0P5xx57LLzDYDAI5d/1rndV5VZXV0NzFxYWQvlS4ufd5ORkVa7b7YbmRp+7UtbG9Tb62gMAAABOXLvdDh8jeu8/4z5qzfdO0e97SonfR8p4/mt2iN6H4pXLX8gBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgUWvUC/DK02g0wscYG4t1xQaDQVWu2+2G5q6urobypZTSbDZD+U6nU5VbXl4OzY0+d6WUMjs7G8pPTk5W5VZWVkJzM9S+Zl8S/fnVHiP6MyullPn5+VB+9+7d4R327t07dOZb3/pWeG705xa9VpYSv+ZMT0+f1NxLMs7bDRs2hPIf+tCHqnK33XZbaO773ve+UL6UUlqt2EfAgwcPhndYt27d0Jn9+/eH5956662h/M033xzeYfv27UNnrrnmmvDcz33uc6F8xjXnzW9+89CZP/zhD+G573znO0P59773veEdbrnlllC+9nNm9Dpfc66uFdHX7Pj4eHiHfr8fyvd6vfAOGecuAAAAcGIy7mFu3LgxlI/ejyil7vvGjO+Io8/fpk2bwjvU3E/LuP/y3HPPhfLR1w3/G+7MAQAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEjUGg8HgRP7hCf4zKP1+P3yMZrOZsMnLU6/XC+Vrn7voOb66uhrKl1JKq9UK5cfG6jqG0cce/ZmVEn/sGWoex/PPPx+e+/DDD4fy9957b3iHW2+9NXyMGp1OJ5TvdrvhHWrPm5esrKxU5drtdmhuNF9K/Nx97LHHqnK7d+8OzX3HO94RypdSygc/+MFQvtFohHcYlbVwza/5rJTxnEevGYuLi+Ed5ubmhs5k/B6yvLwcykev1xnHqP35RT+jZXwuj/4Ma9+rMt4roqLXjIzX/6v5dysAAAA42TLu40XvB2R8d3PqqacOncm4B3H06NFQfnZ2NrxDzb3E6N6llHLKKaeE8hnf0V944YX//u89e/aEj4e/kAMAAAAAAAAAAKkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARK1RL8Da02g0QvmxsXjPa2FhIZRfWVmpyq1fvz40t9frhfKllLJ3795QfvPmzVW5w4cPh+aedtppoXwppQwGg1B+cXGxKjc5ORmam+HYsWOh/NTUVHiHpaWloTPPPPNMeO4vf/nLUP6WW24J71Bz3et0OuG53W43lM/Yod/vh/K11/x2ux2aG33uSolfs7du3VqVi14vf/WrX4XypZRy8cUXh/LNZjO8w/Ly8knJ/Lfoay/jeltz3kXP1VJKmZiYCOUz3i9r3uszHvvMzEwoX/vZ8ni1n1NeUvv8t1ov/1/5aq/X8/PzI5l7vOnp6VA+es0qJf4ZGwAAADi5nnrqqVD+Zz/7WXiHXbt2hY9RY9OmTaH8gQMHkjYZzpVXXhk+xnXXXRfKb9u2LbwD+fyFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQKLWqBdg7VlcXAzlJycnwztMTU2F8q1W3Ut7eXk5NPeOO+4I5UspZefOnaH8gQMHqnKbNm0Kzb3xxhtD+VJK2bx5cyjf7XarchdffHFo7uzsbChfSimNRiOUX1lZCe+wZ8+eoTO33XZbeO71118fym/YsCG8Q825v7CwEJ47Pj4eys/Pz4d3mJ6eDuWbzWZVrvZ8fcnS0lIoX0r8vab2uXv9618fmvvAAw+E8mvFxMTESclk6/f74WMMBoOTkvlv0fMu+l5Vq/Y6c7zoz63T6YR3iD7/tZ9To7v3er1QvpT4a6f2NZDxGS0q+vxFXzel5JxDAAAAwIl58cUXw8fYvn17KP+lL30pvMPjjz8+dGbfvn3huT/84Q9D+a1bt4Z3GBsb/m+atNvt8Nz9+/eH8hnf1ZLPX8gBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgUWvUC7D2TE5OhvKrq6vhHZaWlkL5Xq9Xlbv44otDcw8fPhzKl1LKI488EsqfeuqpVblDhw6F5n7hC18I5Usp5f777w/ld+/eXZVbt25daG6GTqcTyj/22GPhHW6//fahMzt37gzPPeecc0L5lZWV8A7NZnPozPj4eHhuv98P5WdnZ8M7dLvdUH5xcbEqNzc3F5o7PT0dypcSf+y1pqamQvmZmZnwDs8880wov3379vAONa//2vf347Xb7VA+et6WUvc4Mq45g8EgfIyXq0ajEcpnPHc17zWZ+Zfb3OO9nF+7Y2P+NzAAAACvVrX3To83MTERytf8Xppx/yt6LyZDxv2Emucveu87w/z8fPgY+/btGzpz4YUXhueeccYZofzRo0fDO6xfv37ozOOPPx6ee95554XyZ511VngH8rk7CAAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASNQa9QKsPUtLS6H8xMREeIejR4+G8jt27KjKrV+/PjT3rrvuCuVLKWV2djaU73Q6VblNmzaF5u7cuTOUL6WUvXv3hvJnn312Ve7gwYOhuRs2bAjlSynlL3/5Syh/++23h3f4/Oc/P3TmvPPOC8+Najab4WO0WsO/HQ4Gg/DcsbHR92Kjz9/09HRVrtfrheaurq6G8qXE369qXwPRxx59ny4l/j67sLAQ3qHdbg+dyTjv1oJ+vz90JuOx18wFAAAAoM7U1NSoV6i6l5hxHyrju8JGozHSfCmlzM/PD50ZHx8Pz43eQz58+HB4hyNHjgydec973hOeu7y8HMqfcsop4R1qvn/Ytm1beO6nPvWpUP7RRx8N70C+0X8TCAAAAAAAAAAAryAKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACBRa9QLsPY0m81QfmFhIbzDj3/841D+oYceqsrdeeedoblbtmwJ5UsppdfrhfKDwaAqt7i4GJq7bdu2UL6UUj796U+H8ps2barKRV/z+/btC+VLKeUb3/hGKH/JJZeEd3jb2942dCb6ei2llCNHjoTyjUYjvMPc3NzQmdpz7XjLy8uhfKfTCe8wqmtOv98PzV1ZWQnlSyllYmIilK99DJOTk6G55557bihfSinT09OhfMZ5l3EOvVzVvO9kPOdjY7r4AAAAACdLxj3M6P3bmnugGfehjh07Fj5Gu90O5TPun8/Ozg6diX7fVkop4+Pjofzdd98d3uHZZ58dOnPRRReF50Yfe7fbDe9Qc+4ePXo0PPcf//hHKP+vf/0rvEOrpT6SzV15AAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgESNwWAwOJF/eIL/jFeA6M9637594R0uvfTSUP68886ryn33u98NzV1eXg7lSyllenp6JDt0u93Q3OjepZSytLQUyk9OTlbljh07Fpp7zz33hPKllPK1r30tlH/66afDO/R6vaEzjUYjPDf62hsbi3dLO53O0JmVlZXw3H6/Hz4Go1P72ms2m6G5q6uroXwp8fMm+hhKyXkcnFwZ11sAAACAV4uM++c19+2PV3PvO+M74Yx73zt27Ajlv/zlL4d3uPDCC4fOZNz3jN5/veyyy8I7bNmyZejMjTfeGJ4bNTs7O5K5GefN6aefHspfddVV4R3uvffef//3nj17wsfDX8gBAAAAAAAAAIBUCjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgUetE/+FgMBj64I1GY+gML3+Li4vhYxw+fDiU37BhQ1VubCzWUZuZmQnlS6k71zLyExMTobn//Oc/Q/lSSpmdnQ3lW60TvqT9h+np6dDcT3ziE6F8KaXs2LEjlM947a2srAydGR8fD89dC2rOm36/P5K5x4tes0oppdfrhfLtdju8Q43oc1dK/LHXnDOllDI1NRWauxaM6vmP/sxKqX+veMnL+fNtxs8NAAAAgBPTbDbDx1haWgrla+7hZ9z/OnToUPgYk5OToXzG9xc1z0XGz/3ZZ58N5R9++OHwDpdffvnQmeh3jaXEv3N48cUXwzvUvPZ2794dnnvgwIFQ/pJLLgnvcO+994aPwX/yF3IAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJWqNegLVnMBiE8gsLC+Ed/vSnP4Xy73//+6tyzWYzNDf63JVSyuLiYig/OTlZlVtdXQ3N3bp1ayj/ajc7OxvK9/v98A7tdjt8jBrR8yb62i2llLGx4fuprVb8LbTX64XyGdfb6OOofd10u93Q3OXl5VC+lFKmpqZGko+erxnne/Tn3mg0RrJDxnm3FtRc9zI+Y0Q/5wAAAABwckXvBdbcg864Bzc3Nxc+xlq4l3Xo0KGhMxmP/aGHHgrlt2zZEt7hggsuGDqTcd84eh804/mv+f7hq1/9anjuJZdcEsqfddZZ4R3I5y/kAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkKj1vzz4YDAIH6PRaCRs8uqR8ZxHzc7Oho/xhje8IZQ/ePBgVe7QoUOhuZ1OJ5QfpSNHjoTyd9xxR3iHyy67LJTfuHFjVe75558Pzd28eXMoX0r8+Z+bmwvvUKPf749k7vHa7faoV6jWbDZD+ampqfAOY2Oj6eZGH3vG9Tb6GaP2PbfX64XmdrvdUL6U+Lmb8Xmj5tzN+FwYff5HJeN6Gz3vAAAAADhxGfdiMu4BDyvj/mPGMaL3AjPufa9fv37oTMZ9vJ/85Ceh/Pbt28M7bNq0aejM0tJSeO7CwkIof/fdd4d3+MxnPjN05utf/3p47pVXXhnKz8zMhHcgn7+QAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJBIIQcAAAAAAAAAABIp5AAAAAAAAAAAQCKFHAAAAAAAAAAASKSQAwAAAAAAAAAAiRRyAAAAAAAAAAAgkUIOAAAAAAAAAAAkUsgBAAAAAAAAAIBECjkAAAAAAAAAAJCodaL/sNFo/C/3IEnGz6nX64XyZ555ZniHa665JpTftWtXVe7b3/52aO71118fypcSf/6ffPLJqtwXv/jF0NwrrrgilC+llJmZmVC+1TrhS9p/2Lx5c2ju0tJSKF9KKdPT06H8wsJCeIfJycmhM91uNzy30+mE8oPBILxDzeOInqullNJut0P5sbF4r7bf74fyy8vLVbna8/Ul0eeulPhrZ3V1tSoXfc5rztX/Fn3sGeddzWeWjGtO9BjNZjO8Q811L+M5zzgGAAAAACdmfn4+fIypqalQvuZeVsZ954mJifAxojLuJdbcw3zNa14TnnvgwIHwMaLuvPPOUa9Q5ZxzzgkfY//+/UNn5ubmwnPXwvdl5PMXcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEjUGAwGgxP5h/1+/3+9C2tEr9cL5VutVniH1dXVUP73v/99Ve7jH/94aO6BAwdC+Qxbtmypyv3mN78Zydzjzc7OhvKNRqMqF329NZvNUD7rGFGu8wAAAAAAAIzKCVYX/p9qvyuMypi7sLAQyk9NTYV3eOtb3/rv/96zZ0/4ePgLOQAAAAAAAAAAkEohBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgEQKOQAAAAAAAAAAkEghBwAAAAAAAAAAEinkAAAAAAAAAABAIoUcAAAAAAAAAABIpJADAAAAAAAAAACJFHIAAAAAAAAAACCRQg4AAAAAAAAAACRSyAEAAAAAAAAAgESNwWAwOJF/eMEFF/yvdwEAAAAAAAAAYIT27Nkz6hVeEfyFHAAAAAAAAAAASKSQAwAAAAAAAAAAiU74/7IKAAAAAAAAAAD4//MXcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAASKeQAAAAAAAAAAEAihRwAAAAAAAAAAEikkAMAAAAAAAAAAIkUcgAAAAAAAAAAIJFCDgAAAAAAAAAAJFLIAQAAAAAAAACARAo5AAAAAAAAAACQSCEHAAAAAAAAAAAS/R94tXxwa1Al5wAAAABJRU5ErkJggg==",
"path": "images_version_6/image_37.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, AB parallel CD, AO = PO, then the degree of angle A is ()
Choices:
A:25°
B:35°
C:15°
D:50°
|
||
186
|
38
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGgAAABYCAAAAAA8De3QAAAE9klEQVR4nLWZTWwbRRTH/+uP2I6D48QfqR0ntmO7QeVbokAiJKDQhAMS3KKqCIleOHLgwAkhwYkLUiWOUIkDQhUfl1LEgXIoDYqaHlqBiuLPJI6dT8eJsePau85yaJzam/HszNr7P3nevqefdjzz3rxZQZZB163KrIoHk0yyoOLxzYdqHmwgNYcf7/R1RxDrQqXfrgq64x51dQdqfJV5b3PzXRXQss2Lge5A1lxgWv72Uzqo9PMzN/rsABoNAAahwUsxmCAmLkK48B0dtPC2c8UlAAspmwxBkqxqS1QhKfgS/sXTgMVEA4lXAhEUC6JZvDd8rgFDfP0VWRZ4WLIV+CtoA/YrNNCOwYf/wt7dkaUx2eQExPEhDkhTC+cBXA/gUFbXtfz8oixXru7J0u2vDxgCWlR6IyvL9+f+Ud1HAAo1HxaBG+FBiL9+P8f1PtUf9tfX0oXPYyygpBc+YSkxcBawvv4bFweG6ReFxlSYITMA8voU4Ptz+gwA1Pk4sDzeJKr75owjQNh9hhOhEAMoMQrAZU7rDarvRgFgPAUAEKAxl6uDMv0OAIiUqgBQKdb0AqVDAIB+RxJAzXJpQxtIdcOWf6o9/JH8hW+nKqT6RvGho8IXqhU1vgsAhqnLRY9+GD1xPUHbUqD5M7auJyjhOV7Opwxr+oHkrclHA39KP9Cq0f1oEC2IuoFSYy0Dp3VZL1CtGG0dhrvId3RQeqDtrBUqV3QCZSbahjan9uVABZWqoXZDZFUfUMJlbjcE6wVdQGsxhUEYSegB2pRHlaZonvOsygSK+06YRszZ3oMa28qZAzCqde4ooBXL8EljbK/3pTw1TjA+1p/pNeigRJg5YELjnu0MSg1YSebwg1KPQStRorlvSFtF7wgq1kLkB6fzvQUtuY3kB6OSppNdJ5C8MdnhieDXtJU6gfI41Skktn3YQ1A80OEB4DJr2UodQGKBvOYAAMEegtI2Z+eYyF61Z6BMmBJjd2g4pJBB5XKEFhRZ7hUoMWShBQU1NBZk0CplKQAwufm3EhG03SBViBZF+dMQERT3qnTEfnCTSKDDzU7p51j8FZ0EWjN61MJiO1IPQMmgapjTttw9qF48rR4X4q3oBFDK3q8eF+FtLAggRQtBlsXB+UonQXtVWp47VmylW1B62EzwO6FgY6dLUJZhKQAQ3MnuQBuyny1ycoOrsTgBSvgYL+Q8fPcbSpBEaiHIGuNKQ0pQto/QQpAVKfLc5CpBDOmnKYeN55CiAFVL9JLXpgmeo4MClHLY2GMjB2XNoBWW9NOUeZijsWgHFWvsfxGAaE4rKO5h+VZxrIC4pRG0zryJAACCn33u2kB5oWMLQVZsi7mxaAMlGNPcsVxm5luoVpC0w5a4WxRkTkOtoIx1kBcUZW4sWkFpptLapodfLDhB5TI/iP2q0ADUH5S2ACDt5Eg/TYWqR43F1truIe1QaQKqn9lfvv3Ws1h9kp8Dkzd5FkDiZqBv6e6XlO1uAAaTT8x4PkZR4ko/TUVzABY/eWH2tXfGaOdBA5A9eBNZH+KsNbxdfmMe+x+9/xTg+oDmZwLu1v6+br4spZ7b1gISrPf9Vy2zAMxump8J+OPV2HDWjqF7Ri33pYIYw63nGRwP5Zmbsjg5381ntbkvWD695aQpzDuoXbiaZuYBIENtmUyl3/27S9cuj3QDulS8cs5W8FJr2f/JPnqlZtgthgAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_38.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, in triangle ABC, AB = AC, passing point A to draw AD parallel BC. If angle 1 = 70.0, then the size of angle BAC is ()
Choices:
A:40°
B:30°
C:.70°
D:50°
|
Như hình vẽ, trong tam giác $ABC$, $AB = AC$, kẻ $AD$ song song với $BC$. Nếu góc 1 bằng $70^\circ$, thì số đo của góc $BAC$ là ()
Lựa chọn:
A: $40^\circ$
B: $30^\circ$
C: $70^\circ$
D: $50^\circ$
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, in triangle ABC, AB = AC, passing point A to draw AD parallel BC. If angle 1 = 70.0, then the size of angle BAC is ()
Choices:
A:40°
B:30°
C:.70°
D:50°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, in triangle ABC, AB = AC, passing point A to draw AD parallel BC. If angle 1 = 70.0, then the size of angle BAC is ()
Choices:
A:40°
B:30°
C:.70°
D:50°
|
As shown in the figure, in triangle ABC, AB = AC, passing point A to draw AD parallel BC. If angle 1 = 70.0, then the size of angle BAC is ()
Choices:
A:40°
B:30°
C:.70°
D:50°
|
187
|
38
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGgAAABYCAAAAAA8De3QAAAE9klEQVR4nLWZTWwbRRTH/+uP2I6D48QfqR0ntmO7QeVbokAiJKDQhAMS3KKqCIleOHLgwAkhwYkLUiWOUIkDQhUfl1LEgXIoDYqaHlqBiuLPJI6dT8eJsePau85yaJzam/HszNr7P3nevqefdjzz3rxZQZZB163KrIoHk0yyoOLxzYdqHmwgNYcf7/R1RxDrQqXfrgq64x51dQdqfJV5b3PzXRXQss2Lge5A1lxgWv72Uzqo9PMzN/rsABoNAAahwUsxmCAmLkK48B0dtPC2c8UlAAspmwxBkqxqS1QhKfgS/sXTgMVEA4lXAhEUC6JZvDd8rgFDfP0VWRZ4WLIV+CtoA/YrNNCOwYf/wt7dkaUx2eQExPEhDkhTC+cBXA/gUFbXtfz8oixXru7J0u2vDxgCWlR6IyvL9+f+Ud1HAAo1HxaBG+FBiL9+P8f1PtUf9tfX0oXPYyygpBc+YSkxcBawvv4bFweG6ReFxlSYITMA8voU4Ptz+gwA1Pk4sDzeJKr75owjQNh9hhOhEAMoMQrAZU7rDarvRgFgPAUAEKAxl6uDMv0OAIiUqgBQKdb0AqVDAIB+RxJAzXJpQxtIdcOWf6o9/JH8hW+nKqT6RvGho8IXqhU1vgsAhqnLRY9+GD1xPUHbUqD5M7auJyjhOV7Opwxr+oHkrclHA39KP9Cq0f1oEC2IuoFSYy0Dp3VZL1CtGG0dhrvId3RQeqDtrBUqV3QCZSbahjan9uVABZWqoXZDZFUfUMJlbjcE6wVdQGsxhUEYSegB2pRHlaZonvOsygSK+06YRszZ3oMa28qZAzCqde4ooBXL8EljbK/3pTw1TjA+1p/pNeigRJg5YELjnu0MSg1YSebwg1KPQStRorlvSFtF7wgq1kLkB6fzvQUtuY3kB6OSppNdJ5C8MdnhieDXtJU6gfI41Skktn3YQ1A80OEB4DJr2UodQGKBvOYAAMEegtI2Z+eYyF61Z6BMmBJjd2g4pJBB5XKEFhRZ7hUoMWShBQU1NBZk0CplKQAwufm3EhG03SBViBZF+dMQERT3qnTEfnCTSKDDzU7p51j8FZ0EWjN61MJiO1IPQMmgapjTttw9qF48rR4X4q3oBFDK3q8eF+FtLAggRQtBlsXB+UonQXtVWp47VmylW1B62EzwO6FgY6dLUJZhKQAQ3MnuQBuyny1ycoOrsTgBSvgYL+Q8fPcbSpBEaiHIGuNKQ0pQto/QQpAVKfLc5CpBDOmnKYeN55CiAFVL9JLXpgmeo4MClHLY2GMjB2XNoBWW9NOUeZijsWgHFWvsfxGAaE4rKO5h+VZxrIC4pRG0zryJAACCn33u2kB5oWMLQVZsi7mxaAMlGNPcsVxm5luoVpC0w5a4WxRkTkOtoIx1kBcUZW4sWkFpptLapodfLDhB5TI/iP2q0ADUH5S2ACDt5Eg/TYWqR43F1truIe1QaQKqn9lfvv3Ws1h9kp8Dkzd5FkDiZqBv6e6XlO1uAAaTT8x4PkZR4ko/TUVzABY/eWH2tXfGaOdBA5A9eBNZH+KsNbxdfmMe+x+9/xTg+oDmZwLu1v6+br4spZ7b1gISrPf9Vy2zAMxump8J+OPV2HDWjqF7Ri33pYIYw63nGRwP5Zmbsjg5381ntbkvWD695aQpzDuoXbiaZuYBIENtmUyl3/27S9cuj3QDulS8cs5W8FJr2f/JPnqlZtgthgAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_38.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, AB = AC, AD parallel BC. If angle 1 = 70.0, then the size of angle BAC is ()
Choices:
A:40°
B:30°
C:.70°
D:50°
|
Như hình vẽ, $AB = AC$, $AD$ song song với $BC$. Nếu góc 1 bằng $70^\circ$, thì số đo của góc $BAC$ là ()
Các lựa chọn:
A: $40^\circ$
B: $30^\circ$
C: $70^\circ$
D: $50^\circ$
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB = AC, AD parallel BC. If angle 1 = 70.0, then the size of angle BAC is ()
Choices:
A:40°
B:30°
C:.70°
D:50°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB = AC, AD parallel BC. If angle 1 = 70.0, then the size of angle BAC is ()
Choices:
A:40°
B:30°
C:.70°
D:50°
|
As shown in the figure, AB = AC, AD parallel BC. If angle 1 = 70.0, then the size of angle BAC is ()
Choices:
A:40°
B:30°
C:.70°
D:50°
|
188
|
38
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGgAAABYCAAAAAA8De3QAAAE9klEQVR4nLWZTWwbRRTH/+uP2I6D48QfqR0ntmO7QeVbokAiJKDQhAMS3KKqCIleOHLgwAkhwYkLUiWOUIkDQhUfl1LEgXIoDYqaHlqBiuLPJI6dT8eJsePau85yaJzam/HszNr7P3nevqefdjzz3rxZQZZB163KrIoHk0yyoOLxzYdqHmwgNYcf7/R1RxDrQqXfrgq64x51dQdqfJV5b3PzXRXQss2Lge5A1lxgWv72Uzqo9PMzN/rsABoNAAahwUsxmCAmLkK48B0dtPC2c8UlAAspmwxBkqxqS1QhKfgS/sXTgMVEA4lXAhEUC6JZvDd8rgFDfP0VWRZ4WLIV+CtoA/YrNNCOwYf/wt7dkaUx2eQExPEhDkhTC+cBXA/gUFbXtfz8oixXru7J0u2vDxgCWlR6IyvL9+f+Ud1HAAo1HxaBG+FBiL9+P8f1PtUf9tfX0oXPYyygpBc+YSkxcBawvv4bFweG6ReFxlSYITMA8voU4Ptz+gwA1Pk4sDzeJKr75owjQNh9hhOhEAMoMQrAZU7rDarvRgFgPAUAEKAxl6uDMv0OAIiUqgBQKdb0AqVDAIB+RxJAzXJpQxtIdcOWf6o9/JH8hW+nKqT6RvGho8IXqhU1vgsAhqnLRY9+GD1xPUHbUqD5M7auJyjhOV7Opwxr+oHkrclHA39KP9Cq0f1oEC2IuoFSYy0Dp3VZL1CtGG0dhrvId3RQeqDtrBUqV3QCZSbahjan9uVABZWqoXZDZFUfUMJlbjcE6wVdQGsxhUEYSegB2pRHlaZonvOsygSK+06YRszZ3oMa28qZAzCqde4ooBXL8EljbK/3pTw1TjA+1p/pNeigRJg5YELjnu0MSg1YSebwg1KPQStRorlvSFtF7wgq1kLkB6fzvQUtuY3kB6OSppNdJ5C8MdnhieDXtJU6gfI41Skktn3YQ1A80OEB4DJr2UodQGKBvOYAAMEegtI2Z+eYyF61Z6BMmBJjd2g4pJBB5XKEFhRZ7hUoMWShBQU1NBZk0CplKQAwufm3EhG03SBViBZF+dMQERT3qnTEfnCTSKDDzU7p51j8FZ0EWjN61MJiO1IPQMmgapjTttw9qF48rR4X4q3oBFDK3q8eF+FtLAggRQtBlsXB+UonQXtVWp47VmylW1B62EzwO6FgY6dLUJZhKQAQ3MnuQBuyny1ycoOrsTgBSvgYL+Q8fPcbSpBEaiHIGuNKQ0pQto/QQpAVKfLc5CpBDOmnKYeN55CiAFVL9JLXpgmeo4MClHLY2GMjB2XNoBWW9NOUeZijsWgHFWvsfxGAaE4rKO5h+VZxrIC4pRG0zryJAACCn33u2kB5oWMLQVZsi7mxaAMlGNPcsVxm5luoVpC0w5a4WxRkTkOtoIx1kBcUZW4sWkFpptLapodfLDhB5TI/iP2q0ADUH5S2ACDt5Eg/TYWqR43F1truIe1QaQKqn9lfvv3Ws1h9kp8Dkzd5FkDiZqBv6e6XlO1uAAaTT8x4PkZR4ko/TUVzABY/eWH2tXfGaOdBA5A9eBNZH+KsNbxdfmMe+x+9/xTg+oDmZwLu1v6+br4spZ7b1gISrPf9Vy2zAMxump8J+OPV2HDWjqF7Ri33pYIYw63nGRwP5Zmbsjg5381ntbkvWD695aQpzDuoXbiaZuYBIENtmUyl3/27S9cuj3QDulS8cs5W8FJr2f/JPnqlZtgthgAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_38.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, If angle 1 = 70.0, then the size of angle BAC is ()
Choices:
A:40°
B:30°
C:.70°
D:50°
|
Như hình vẽ, nếu góc 1 = 70°, thì số đo của góc BAC là ()
Lựa chọn:
A: 40°
B: 30°
C: 70°
D: 50°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, If angle 1 = 70.0, then the size of angle BAC is ()
Choices:
A:40°
B:30°
C:.70°
D:50°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, If angle 1 = 70.0, then the size of angle BAC is ()
Choices:
A:40°
B:30°
C:.70°
D:50°
|
As shown in the figure, If angle 1 = 70.0, then the size of angle BAC is ()
Choices:
A:40°
B:30°
C:.70°
D:50°
|
189
|
38
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAD2CAYAAAA5zlnWAAAnoUlEQVR4nO3de4xc130f8O+9c+/c5zx3l/vkckmuRVIRGcpSWslWDAqO8ijkVEFj10aMxA6UAi7koiiUp4IobdrCtowGsIIkbZDYaYI2UIrEiIU6DwFOFKlKY9UiJYuU+JSo5XIfMzuzM3fu+9E/qHM8+yT3OY/7+wACKHKXvLs79zvnnvM7vyMkSZKAEJJKYqcvgBDSORQAhKQYBQAhKUYBQEiKUQAQkmIUAISkGAUAISlGAUBIilEAEJJiFACEpBgFACEpRgFASIpRABCSYhQAhKQYBQAhKUYBQEiKUQAQkmIUAISkGAUAISlGAUBIilEAEJJiFACEpBgFACEpRgFASIpRABCSYhQAhKQYBQAhKUYBQEiKUQAQkmIUAISkGAUAISlGAUBIilEAEJJi0k4+OUmS3bqOniEIAgCgUqng+vXrqFar8H0fBw8exIkTJyDLciq/L+TOsNdPt6ARwDa1Wi3Mzs5ieXkZkiQhm8123Q+X7D9BEPh/vWBbIwD2DtcrX+ReWFhYwD/8wz+gUCjggQceQC6X49+PNH9fyPf0wuuARgDb0Gq1cOXKFbz55puYm5uDLMtQVbUnfuBkdyRJsu6jXhRFiKIIcRx34Kq2bkdzAGlUq9Xw5ptv4ty5c3jvvfcwODgIAMhkMh2+MrJfkiRBHMdIkgSiKEIURf77rusiiiJks1koitL1bwoUAFvgui6WlpZQq9XQbDYRBAFEUUQ2m4Usy13/wya7y/M81Go12LaNMAwhCAKy2SwkSYIgCDwcVFVFPp+HJHXf7dZ9V9Slms0mZmdnYVkWDMPA4OAgBgYGUCwWYZomstlspy+R7BNBEJDJZGBZFs6dO4crV66gWq3CNE2cOnUKpVIJzWYTlmXBtm0MDAzgvvvuw8DAQKcvfQ0KgDsQRRFs20ar1YIgCCiXyyiVSlBVFYqiQFXVrkx3sreCIMDs7CwuXbqEer2OkZERAIBhGAjDEJZloVqtwrIs5HI5DA0NYXp6usNXvRK9am/D931YlgXHcaAoCnRd50M6hob/6ZTJZOB5HoIgQC6Xw9jYGA4fPowPfOADCIIAMzMz8DwPMzMzePnllwEATz75ZIeveiUKgNuo1+u4fv06giCAoigQRRGu66LVaiFJEsiyTMP/lIrjGMvLy3AcB5OTkzh48CAGBgb4XMDY2BiOHDmCVquFs2fPYmFhodOXvAYFwCaiKMLc3Bxee+01SJKEgwcPIooiVCoVvPPOOwAAVVUpAFLK8zwsLi7Ctm2Mj4/j6NGjUBSF/7mqqjh16hSiKMKrr76K2dnZDl7t+igANhAEAZaWltBoNCCKIjRNg6ZpaDabqNfrcF2XL/Ws9/wfhiE8z4PnefB9n68Lr7d23F5AxH7N1pmprLgzkiSBIAi8xkPX9TU/52aziWaziTiOMTIygvHx8RUBAADZbBYDAwNIkgSO4+znl3BHKAA20Gw2ce3aNURRhJMnT6JQKMA0TczNzWFxcRGGYcA0zTU/cMayLNy8eROVSgXLy8uI45i/gNpv6va5g/YbfnUYkP0hCALiOEYURZAkCfl8HoODgzh48CBM0wRwa2TYbDZRqVTgeR4URcHg4CCGhobWnQtiQSLL8n5/ObdFAbCK53loNBq4ceMGqtUqCoUCDh48iFKpBEEQsLy8jCRJEIYhwjBEFEXr3qCWZWFmZoa/SDRNQ6FQ4C8w9g7DXjBBEPARQxiG0HWdlxf3SlVZvxBFEXEcr6jrb7+xgyDA/Pw8f6Y3DAP5fH7DiWAWKN34c6QAWGV2dhZnz55Fq9WCYRjQdR3FYhGqqgK4leatVgv1eh3Ly8uwbRtRFK35exqNBmZnZ+E4DvL5PEZHRzE1NQVJkuD7Pv84VkHYbDZ5kZHjOBgZGcHk5CQkSUIYhgC+NyxlaGSwd+I45kVemqatmOfxfR+zs7O8DLxcLm84EgRuvam4rgvXdffj0reEAqCN7/uo1WqYnZ1FkiQoFArQdX3NDzeTycA0TQwMDEDTtBU3dJIksG0bjuMgiiIIggBJkvjHK4qCIAj4zStJEi8ptW0bqqoik8mgWCziwIEDkGUZQRCsmSdoL0cleyeTyUAUxRXP/ywAFhYWkMvlMDIywt8g2sVxDMuysLCwwB8puk33XVGHsMIN13V58udyOaiqym8yz/N4MBw5cgSTk5MYHx+H67oIggCyLMO2bSwsLMDzPJRKJfi+z7cKJ0nCX1AM+7UgCAjDELIswzAM5HI5vuzYXm/ejiYJ9956OzyDIMCNGzdQqVQwMTGByclJaJq25nM9z8Ply5dx7do1AECpVNqfi94CCoD3sXfhQqGAqakpKIqCkZGRFdt8kyRBLpfD1NQUhoaGIIoiSqXSiuGh4zioVquI4xhDQ0NwXZfPFViWBUmS1n23CIIArVYLsiyjVCohl8vxm14URYRhCN/3+RyBpmkwDGPdYCB7y/d9VCoVtFotjIyM4PDhw9B1fc3HLS4u4vXXX8e7776LsbExXinYTSgA3idJEnK5HI4cOYKJiQmIoghZliFJEr/JstkshoeHUS6X+YSOJEn84wDAtm3UajXouo7R0VHYto2lpSV4nscnjYaHh1e8o8RxjGaziVqthgMHDmBgYIDPOAO3gqfRaGBxcRE3b95Es9nEoUOHcNddd60bJmRvua6LRqOBMAwxNjaGqakpGIax4mOazSbeffddfOc734HjOPjoRz+KqampzlzwJigA3sc2eLD1/vWwR4ONCn/YWi+bQCyVStB1nS8bsWAYHh7mn+O6LqrVKhqNBjKZDHRdX7O8GEURlpaWcPHiRZw/fx6VSgUf+tCHcOTIkd39JpBNsbLwd955B4uLi/A8jz+eWZaFOI4RBAEsy0KlUsHc3BxM08TIyAiOHTuGo0ePdvpLWIMCYJfEcQzHcfh+cEmS+CpCEARwHIeXjba/+1cqFVy8eBGu66JcLq87oxzHMRYXF3H+/Hm8/PLLuHnzJoaHh/FDP/RD+/1lplqz2cT58+dx7tw5LCwsQJIkLC8vY2Fhgc8hsZWcer0OSZLw0EMP4eDBg5icnEQul+v0l7AGBcAu8TyP3+CsRyDbJFQsFlGtVhEEAVzXhW3bkCQJjUYD8/PzaDQayOVyGB0dRblcXtNchNWWK4oC3/extLQEy7JoAnAfJUmCKIoQBAE0TcPx48f55jDXdeF5HhzHQRAEyGQyKBQKKJfLOHbsGEZGRjYcVXYaBcAucRyHF/0YhsFXDwRBgGma0HWdbyRaXFyEZVmYn5+Hbdt8wnFycnLdZ3pZljE2NoZ77rkHly5dQqVS2XTdmey+OI6hKArGxsagqiruvvtuiKLI39XZHFKhUICmaSgWizAMA4qidHW3KAqAXeK6Lur1OqIo4k1CGEEQ+NyC4zh477334Ps+XNflcwVDQ0ObTugpioJcLgdd15HNZrv6RdWPBEHgJb+FQoG3f/d9H2EY8lWkbDbLl3F7AQXALvE8D81mE7quY2BgYE1pqKIoKBQKuHnzJubm5pDP5zExMYHh4WEMDAzcdjafbS5iRUQ0/N9f7OYuFosrKjJX/yxYK7BeQQGwC8IwhOu68H0fhUKBD//aA0BV1RVzAYqiYHh4GAcOHLij4Xx75R/d/J2xUUFWL6MA2CHf99FsNuE4Dm8AaRjGmiG6oigoFosolUpotVoYHBzEyMhIV+4QI+nRX3HWAaxTsOM4UFUVmqatW/PNSosNw+ClwettIiJkP1EA7BCb/fd9n0/SrYdNBKqqyjf+LCws0HIe6SgKgB1iZaFJkvAa/s2wRwRW3WdZ1h3/W6v3p1MjUrJTFAA7xApAMpkMyuXyis1D62GTgYIgYGlpCc1m847+ndU3PQUA2Q00CbhNURTx0t84jiHL8qYtwhhN0zAwMMB3DTqOgziOb7uuH8cxX21wHAee523YYebhhx/G2bNnUSwWAQCDg4O8LqH910ePHsUv/dIvdeU+dbI/6Ce/TWzyz7ZtyLK8pmvMRtgcQXtpMCsf3Uwcx/A8D7Zt874FrFPQak8//TQefvhh1Ot1AOAdjNfzmc98BhMTE7e9btKfKAC2iQUAK/3Vdf2OqvNEUeSHi4iiCN/30Wg0eKXZepIkQRAEiOMYhUIBExMT0HUdrVZr3TPnzpw5g8ceewxf//rX+e89+uijeOqpp1a0pTJNk27+lKM5gG1iARCG4R1N/rUTRRGKokDTNARBgGq1imazueFqQBAECMMQmUwGhw8fxoMPPojR0VE0Gg20Wq11P+fpp5/mv1ZVFc8//zw+/vGPo16v48yZMzhz5gzuv//+rX3RpO9QAGyT53n8rEAWAFuZlNM0jR8vVqvVNryRAfANRWNjYzh9+jR+8Ad/ECdOnIBpmhtWpp0+fRqPPfYYgFvHUX3yk5/EzMwMfuInfgIf//jHMTc3d+dfLOlbQrKNRej23vVpFAQBLl++jLfeegtDQ0M4derUlgOgXq9jYWEB8/PzsCwLhw4dwokTJ9b9O9hWVPYf23giSdKaHoPtvvvd7+Lee+/F4OAgrl27hhdeeAGf+9znMDMzg2KxiGeeeQaPP/74tr8PpPfRCGCL2DM7W/pTVRWqqm45DHVd580/2veSr4d1Fmb7zw3DgKZpkGV509r0e+65B5/+9KcxNzeH3/3d38Wjjz6KCxcu4IknnoBlWfi5n/s5PPzww7h8+fKWrp30DwqALbJtm58Hx27+7WwQYTvLdF3nM/yslfhueuqppyBJEr74xS/CdV2Ypolnn30Wf//3f4/jx4/jb//2b3Hy5El84Qtf2HBVgfQvCoAt8jwPtVoNQRAgn8+v6N67VaxDcDabRRAEqNVqsG17V0uDp6en+Sjga1/7Gv/9Bx54AG+88QafLPzlX/5l/MAP/ABeffXVXfu3SfejANgi9ggAAAMDAztu/MAafbBTh9nfvZt+4zd+A48//viaHoKSJOHXf/3X8dprr+GBBx7A2bNn8eCDD+Lnf/7nt1SiTHoXBcAWxHHM+7+xvm+mae5oMlTTNJRKJWQyGX7U2G5Prk5MTOD3fu/3MD09ve6fHz9+HK+88gqeffZZmKaJL3/5yzh58iReeOGFXb0O0n0oAO4QO9jDtm3EcYxsNot8Ps+39m6XrusYHBxENpvlFX6d8sQTT+CNN97Ao48+infeeQePPPIIPvvZz6JSqXTsmsjeogC4Q6znn+M4/Mz43WjmoaoqCoUCVFXl+wts296FK96eiYkJfOMb38Cf/umfYmRkBF/72tdw4sQJ/Mmf/EnHronsHQqAO8T2/buuC13XoWnarkzWiaLIl/UymQw8z+NB00k/+ZM/iQsXLuAzn/kMKpUKPvWpT+FjH/vYpvsKSO+hALhDvu9jeXkZURStObtvN6iqCl3XEYYharVaV0zCFYtFfPWrX8W3vvUtTE9P4/nnn8fJkyfxW7/1W7Rk2CcoAO6Q7/totVoQRZG3ht7NyTr2KACg6w7+OHPmDN544w08+eSTcF0Xn//85/H88893+rLILqAAuAOsSIcd381af+1mAGiahnK5DFmWYVlWxx8BVlNVFc888wy+/e1v48knn+T7DEhvo+3At+G6LpaXl/nGH7aLb7eX6lhpcK1Ww+LiIt/v321dg0+fPo3Tp093+jLILqERwG14noelpSU++Xen+/63qr2jUJIk8DwPlmXRszbZUzQCuA3HcbC0tATf95HP51cc+bXbstksNE3jG4SWlpYgiuKaU4Y6z0Vtrg5vgz/NGAMYysnrfLyC4kgJa89ACtBcrKIlFTFS2vyEJLK7KABugx38IcsyyuXynt+Mmqbx0uBarbZicrB7fAe/feZn8Ufr/Ik1+zam/stlvPT4UQDA0mtfwWd/5FfxSn4MZSxhFo/gd/7i9/FTd7MbfQnf+pVP4dnle3FX6zVc/qfP4A8+dwr5ffta0o0CYBNsKO66LlRV3Vbjj61iTUOr1SpqtRry+fyKs+i6w4fw1Ftv4anVv914Eb9wz6/grodv3fxYeh7/9sEv48g3LuN/PXIAMgIs/M0v4P4f/TUc/O6X8JE8gBe/gK983x/gz39qHECAV371E3juyp/j/fwge4zmADYQhiEajQavystms9B1HZIk7enNqOs6SqUSZFmGbdt7skV4bwR4/b89gb/8N7+Nn3n/5r3xzd/Gc5/7Q3zpkQO49UAg48Aj/x7/9Ye/gt/85jwAYP7mJUyNjb//d8g4MLWMizc6cPkpRQGwgfauv+zZfD9m5Nm5Aaqq8hOBfd/f8393x5b+Cl/+D6fxn3/21Ps3ewOv/dU38YmP3oeV37U8PvjIj+HrL76OAMDwQ59E4y/+EgsBAPc8/vff3I9HT+/71acWBcAGXNdFtVqF53nI5XKb9t/bTYIg8EYjkiTxCsRuqwtY7fwf/wrO/tqT+JEy+51FzF09hlOTa5/mhw9MAefexXUAGP+XeOanZ/CLDx3H8X/+xzj+5f9069GA7AuaA9gAq8kXBAGDg4P7OhPPThlmpcHVahWSJEHTtH3597cseAX/4z9O4BdfO9X2bn8db748iO8z1vn4ye/Dh9v+t3zv4/jq/6XehJ1AI4ANuK7L9+YXi8U9n/xbTdM0frLP7boGd1rjhd/HV3788/jY+O0/9nufZG+4jEj2DwXAKkmS8KYfrBKvUCjseunv7ei6joGBAUiStGIysvs08OL//GN84l98eNXSnYHi0Aaf0qqjktex+SFqZD9QAKzChv62bfOefbc7728vrNc12PO68D2z8SKe+6NP4LEPr35wH8D4XS/jzevrfE71Bt4eymHvSqrInaIAWMV1XVQqFTiOw0t/O7EGL0kSCoUCf+5nB5Fs1Dq8Y86+iOcefhj3rJm4O4pTjwzh21eurPmU1//fN3HswycwvC8XSDZDAbBKe9ffQqGw6/v+t6J9RaC9a3A3uXLx/wD3H8XUOn927w//K1z8yp/j9fbMCl7Bc1/K4l//s1P7dIVkM7QKsAor/VUUBeVyedf3/W+VoijI5/P8DEFFUbqqNPjGxVdx/13rz/7JD/47/OE/mcKjny7iuS8+iin3LTz39E/jv//UH+Ls3ft8oWRdNAJoE4YhHMeB7/uQJAnFYnHHXX93ilUGiqLI5ya6iVSYwqS50e7IMn7sdy7jz378dTz9o2dw5me+grkf/zO8+qWHUd7gM8j+orMB3xcEASzLwvXr13Ht2jWMjIzg3nvv7cgEYDvWjPTq1auYn5/H0aNHcfLkyb763pPOoRHA+9j2W9u2edOPvdj3v1XsEUBVVX4uQavV6pp2YaS3UQC8r73rby6Xg2GsV8K2/wRB4KsRsizzScpuexQgvYkC4H3syC/W9bfbmnCoqgrDMHhpcDd0DSa9jwLgfb7vw3EciKLIA6BTy3/rYaXBSZLwrsGE7FT3vMI7JI5j2LbNj/xivflUVe2qEQArDZZlGa1WC47jII7jTl8W6XGpD4D2yT+2405Vu68vHQsATdPg+z48z+u+qkDSc1IfAKzxByv9NQyjq4b+TCaT4Q1DRVGE53loNBq90SyEdK3UVwKyWfUwDDuy7Xcr2jcn+b6PpaUlSJKEbDbb6UsjPar73ur2GdtkA2Bfuv7ulKZpKBQKiOOYVgPIjqU6AIIggOu6vPS3G2f/VzMMAwMDA7w0uJsbhZDu172v9D3Geu21d/3tdNnvnWCTgYqiwHVduK5Lk4Fk21IbAKzpZ6vV6qrS39thuwE1TePnFtCSINmu1AaA7/uo1Wr8yK9O7vvfKjZaaS8NpkcBsh298YrfA57nYXl5GVEUdcW+/61SVRWmaSIMQ1QqFZoMJNuSygBgjT9d14Uoinz5r1dGAMCtycByuQxBEFCv17v+3ADSnXrnFb9LoihaUUqbzWaRz+ehKEpPjQAMw8Dg4CCy2SxarRZc1+30JZEelLoAYKW/rVaLF9bsx5Ffu41tDlIUBUEQ8HMECdmK1AUA6/pr2zYMw4BhGD31zs+IogjDMPimJdd1sby8TCMBsiWpCwC2/s/2/RcKhZ569m/Hugbruo4gCPjIhpA71Zuv/B3wfZ8X//Ti7P9q7X0CqDSYbFVqAqC9aCYIAkiShHw+37W7/+4UKw2WJAnNZpMeAciW9O4rf4vY0L/VakEQBCiK0rFTf3YTWw7MZrP8TEOqCiR3KjUB4HkeqtUqbNuGpmk9/87PsA5GiqIgSRI4joNGo4EwDDt9aaQH9P4dcIdY7b/rurz0t9ff/Rm2l4GNAtgeB0JuJzUBwI78iuOYz/73SwAAtyYD8/k84jjmLc4IuZ1UBECSJLyPXq+W/t4OO0JMEIQV25wJ2Uz/3AEbCMMQjUYDlmUhSRJks1l+yEY/jQDYagB1DSZb0fc9AdnkX6vV4jd/P/bQY/0BstksgiCA53nwPA+apnX60kgX6/sRAKv9d10XpmnCNM2+GvozrCpQVVVIkgTP82iXILmt/rsTVmH7/lnX336b/GvHWodTaTC5U30fAOuV/vbjCIAxDAOlUokfIUaTgWQzfXsnsKYfjuMgDEPIsox8Pg9d1/s+AFjX4EajQQFANtW3d0J7r7xMJgNVVfty8m81thyYzWbheR5ve07Ievo6ANjsP3su7oWuvzvFNjmx8w3ZwSfUOpysp28DoL3rL5v86+ehfzs24lFVdcUeCEJW69s7wvM8NJtNRFGUugAAbtUF5HI5RFFEewPIhvryjgjDcMWRX91+6OdeaO8aTK3CyEb6LgCCIECz2eRDXkVRYJomMplMKgNAkiTYtk0BQNbVd6XA7JnXsixks9meOfJrt7HSYFVVEUURHMdBq9XqiyYoZPf03QiAlf46jgPTNGEYRqcvqWN0Xeelwa7rUmkwWaPvAiAIAjQaDd71t1QqpXIEwLDuR0EQ0GQgWaPvAoCV/gqCgFKphHw+n6rZ/9V0Xeddg2lvAFmtb+6MOI5h2zZarRaiKIIkSTBNE5qmpfqZ1zRNDA4OIpPJoNlswvO8Tl8S6SJ9EwC+76Ner/PSX03TeDVcmrWXBvu+D9d1qWEo4fomANjsP5v869d9/1uVyWSg6zoURYEoivwIMdofQIA+C4B6vQ7P81AoFFL/7N9OlmU+IvJ9n7YJE65v7pAgCHjfv3K5jFKpRAHQxjAMFAoFhGHID0clpC/ukDiO4XkefN9HJpNBoVDou66/O7W6NJgCgAB9EABBEKBWq8GyLAiCgGw2C0VROn1ZXYc1Cslms3AcB67rIoqiTl8W6bCeDwBW+cdKf3VdhyT1XYXzjimKgkKhAEVR+IiJWoeTng8ANqnFjvyiyb+NSZIERVEgyzJc10WtVqPS4JTr+TvF8zx+GGYa9/1vhSiKUFWVSoMJ19N3ShzHvPGnIAgoFos0ArgN0zRRLpd5aTCNANKtZ++UKIpg2zZ/js1ms8jlclAUJdWlv7djmiYGBgaQyWRgWRYFQMr1bACwnn+tVguyLPNtr2RzbDlQVVXeOYmahaRXzweA4zjQdR2GYdDQ/w4IggDDMKCqKjKZDJ9DoU1C6dSzd0wQBKjX67zrb9r3/W+FIAhQFIV3DabS4PTq2QDwPA+WZSGOY5RKJZr934IkSVZ0DaYASK+eu2OSJIHnebBtG0EQQJIk5HI5egTYAkEQkMvlMDQ0xI8Qo3mAdOq5O4a1/LJtG6IoQlEUanS5DWw5UJZlOI4Dz/OQJEmnL4vss54LgPauv6yohd75t06WZZimCUVRkCQJbNvmBVUkPXruzmGz/67rwjTN1B34sZvYRCA7SLRer9OjQMr0XACwgz9Y199isUiz/zug6zpyuRyCIMDi4iKVBqdMTwUAmwD0PA+CIFDnnx1KkoT3DEySBPV6nVYDUqZnSufCMORdf5MkgSzL0HUdsix3+tJ6FlsNCMMQ9XqdCoJSqGcCgBX+tFotSJIEXdeRzWY7fVk9T9M0vpciDEM+wqKmKunQM2Nn3/f59lU2+UfP/jvHqgJZ12DHcfgkK+l/PRMAbJba933k83kUCgWa/d8lrGuwpmlUGpwyPRMAvu/zravlcplm/3eZaZoolUqIogjVapUCICW6PgCSJFlxog0r/dV1nWb/d0mSJLwykEqD06Xr7yDW88+yLN7Simb+d5cgCPwMQVYURF2D06EnAoA1/mClv9T4Y/exkRWb/fc8jx+0SvpX1wcA6/vPuv4WCgV69t8jbISlqiocx0GlUqHKwD7X9QHg+z4sy0IYhlT5t8cEQYCu6zBNk3cNpsnA/tbVd1IURXBdF57nQRRFCoB9wJqGsiPEqDKwv3XtnRSGISzLgm3bSJIE2WyWP//T+v/eYJOBrL2abdu0GtDnunY2zfd9VCoVNJtNfuQXPfvvPU3TeOAGQQDbtmHbNjRNo+DtQ107AmCz/7ZtwzAMKv3dR5qmQVEUZDIZuK6L5eVlGgn0qa4NgDAM0Wg0EAQBdf3tADYZ6Ps+FhcXaTKwT3VtALDS3yRJaPKvAwzDQLFYRBRFfCRG+k/XzQGwo6tZEQprX61pWqcvLVVYlyDLstBsNuH7fqcvieyBrguAIAiwvLwMy7KQyWR4YQrZP+z0oCiKIMsy34sRRRE9hvWZrhtTs33/lmVB0zSYpkmzzx2QyWRgGAY/bNW2bb4dm/SPrgwA1p3WNE169u8g1idAURR4nkeNQvpQ191ZrAAoiiKUy2Wa/e8wwzBQKBSoa3Cf6qoAiOMYruvC932Iooh8Pk/r/x3G+gQkSYLl5WXelIX0h64JANb0s9ls8ko0VVVp+N9BrGvwwMAAJEmCbdvwPA9xHHf60sgu6Zq7i237tSyL1/1T44/OUxQFuVwO2WyWj9Bs26YQ6BNdEwCs849t28jlcnTcdxeRZZkfIWbbNm0T7iNdc4f5vs9LfwuFAjX+6CKZTAa6rsMwDB7UNBfQH7omAFgfOgAUAF0ol8vxyUBaDuwfuxIA650rnyQJ4ji+7bNiHMdotVpwHAdxHEOSJBiGAVVVqQCoi7R3DW61WtsOgCRJEEURwjBEGIaI43jN62e91xPZGzsuBWY/UFEUVzyzs2OmJEnatJSXbfu1LAuSJEHTNJr86zKsNDhJEszMzMDzPDiOs60jxMIwhOM4CMMQwPfmF9p/5nEcQxRFegPYB7uyFyBJErRaLViWBd/3eaoLggBJkpDNZvlZ9LIsr/jhtp/5xzb+UAB0H1EUoes6X5p1XReNRgP5fH7TEGBvEOzMQcdx4Ps+oijir5FMJoNMJsNXf2jj1/7ZdgCsTueFhQX84z/+I+bm5iBJEgqFAkZHR5EkCebn52GaJk6cOIHR0VGYpsmf79nJtK7rYmBgAMVikWb/u5QoitA0DYZhwPM8VKtVyLK8aQCEYYharYYrV65gfn4eiqJA0zRIkoQoitBoNFCv1zE/P49sNouHHnoIp06donf/fbLjEYAgCJBlGbZt48KFC3jnnXdQLpdx6NAhjI6OIgxDzM7O8gaflmXhxIkTMAwDwK1HAFZeSm2/uxt7FMjn83BdF0tLSygUCigWi+t+vOM4eO+99zAzM4P5+Xke8qZpQpZlCILAR4/Xrl1DkiS455576Oe/j7YdAGz4xv8iSUKj0YDjOCiVSjhy5Ajuvvtuvr33/Pnz+Ou//mu8++67GB8f58+UrusiCAKoqopisYh8Pr8rXxjZG2w14MaNG5t2DXYcBzMzM3jhhRdw8eJFHD9+HCdPnsTY2BiKxSIkSYLv+7BtG0NDQ1heXkatVqPeg/ts1/oBhGHI38nHx8cxPT2N8fFx/mxv2zauXr0KVVX5ltJmswnbtvmBFPTs191Y1+AwDDE/P8/PEFz9ZhAEAa5evYo33ngDly5dQrPZRD6fx9TUFIaHh1ec7FQqlZDNZjE/P49KpbLhaILsjV2ZA4iiCMvLy7BtG6qq4q677sKxY8cArCzxVVUVpmnyF0C1WkWz2YSu67Tpp0dks1kUCgXous7rAZrNJgzD4D8/13Xx4osv4qWXXsLIyAg+8pGP4Pu///tx4MCBNce6sVA5efIkXNfF8PBwJ76s1NrxCIBN4rHqMMMwoOs6AMCyLFy9ehW1Wg2qquLEiRM4duwYP4e+UqnAsizoug5d1/n6L9WZdx/2Li+KIl/ZYWcHLC0tQZIk6LqOMAxx48YNnD9/HpcvX8aJEydw3333YWpqasPVHUVRMD4+jiRJaAVon+04AFjX2IWFBTiOA0EQMDc3h3PnzuHtt9/mz4qHDh3C6dOnMT09jXw+j1qthkqlAs/zUCwWVzwaUAB0L9YijE3+NptN3Lx5k/dtfPfdd3Hu3DlUq1Xouo5Dhw7hrrvuQjabXffvY8uAbOWHnv/3144DwPM8zM7OYnFxEbIsI5fLAQDq9TouX76Mubk5ZLNZTE1N4e6778bIyAiAW8HRvjbMnidFUaRKsC4mSRLCMESz2UQYhoiiiHdvjuMYMzMzePvtt+F5HoaGhjAyMrLhzc8IgkA3fofsOAAcx8HVq1exsLCAAwcO4PDhwxgfH+d7yavVKi/7bF/fz2Qy0DQNjuNgdnYW8/Pz/NgvCoDuxQLatm2EYQjTNKGqKhRFQRzHmJubw/Xr15HNZjE+Pg7TNDt9yWQTuzICuHHjBmq1GiYmJjA9PY2hoSFkMhkcO3YMvu/jwoULuHHjBpaWlnDgwAEAgKqqfFKIVYaxgKAA6F7snZod1VYoFDAwMABN0xDHMRqNBmq1GkzTxNDQEK3sdLkdB0AQBFhYWIBt2xgbG8Phw4eRz+eRz+dRLpeRyWTwd3/3d6hUKvjgBz+IQqGAwcFBFAoFfOADH1hTOkx6w+pSb0mSeDu3MAwhyzI1dekB2wqA9huVPb/HcYzx8XFMTk7yYR8r+2TPi7ZtIwgC/uKh4WF/YZWCxWIRcRyj2WwiCIJNP4fNI0iSRBuAOmBHRfdJkvANQGwpZ2RkhA/lFxYWcP36dQRBwIeE5XJ5zVow6Q+iKGJiYgJHjhyBbdt46623UK/XN/2cZrOJarWKVqtFj34dsK07MUkS3ie+UqkA+N5hkgD4ZNDFixexuLiIQ4cOYXx8HKOjozAMg1K+T4miiEOHDqHRaKBarWJpaYkf8c7mCNpXeYIg4LsDaem3M7YVAOzwjkuXLvEZ33w+jyAI0Gq1MD8/jytXruD111+H4zh45JFHMD09jYmJCbr5+5goijhy5AhM04Trurhw4QLm5+fx0ksvYXJyEoODg7y5qOM4CIKAN4BRFIV2gXbAtr7jbGdfrVZDs9lEJpOBoiiIogi2bWN5eRmVSgVzc3MIggCHDh3C9PQ0PfP3OVbUMzo6yjf9tFotzMzMoFqt8klCdvhrq9XiXaCoDLwzhIQevAhJLRpzEZJiFACEpBgFACEpRgFASIpRABCSYhQAhKQYBQAhKUYBQEiKUQAQkmIUAISkGAUAISlGAUBIilEAEJJiFACEpBgFACEpRgFASIpRABCSYhQAhKQYBQAhKUYBQEiKUQAQkmIUAISkGAUAISlGAUBIilEAEJJiFACEpBgFACEpRgFASIpRABCSYhQAhKQYBQAhKUYBQEiKUQAQkmIUAISkGAUAISlGAUBIiv1/2Suil3nZk6UAAAAASUVORK5CYII=",
"path": "images_version_5/image_38.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, AB = AC, AD parallel BC. then the size of angle BAC is ()
Choices:
A:40°
B:30°
C:.70°
D:50°
|
Như hình vẽ, $AB = AC$, $AD$ song song với $BC$. Kích thước của góc $\angle BAC$ là ()
Lựa chọn:
A: 40°
B: 30°
C: 70°
D: 50°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB = AC, AD parallel BC. then the size of angle BAC is ()
Choices:
A:40°
B:30°
C:.70°
D:50°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB = AC, AD parallel BC. then the size of angle BAC is ()
Choices:
A:40°
B:30°
C:.70°
D:50°
|
As shown in the figure, AB = AC, AD parallel BC. then the size of angle BAC is ()
Choices:
A:40°
B:30°
C:.70°
D:50°
|
190
|
38
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAABlIAAAX3CAYAAAA0cOYiAAEAAElEQVR4nOzdeVxN+f8H8Ff7Xmi3JYQsUXahsssWQmM3Y2bs+2BmjGVmGMvMYMwww9coZM0aDUZKoRBly5oKKRXatd7z+8Mvg87ndpdzt3o/H48ej5nzOfd93vc492yfTYvjOA6EEEIIIYQQQgghhBBCCCGkAm1VJ0AIIYQQQgghhBBCCCGEEKKuqCKFEEIIIYQQQgghhBBCCCGEgSpSCCGEEEIIIYQQQgghhBBCGKgihRBCCCGEEEIIIYQQQgghhIEqUgghhBBCCCGEEEIIIYQQQhioIoUQQgghhBBCCCGEEEIIIYSBKlIIIYQQQgghhBBCCCGEEEIYqCKFEEIIIYQQQgghhBBCCCGEgSpSCCGEEEIIIYQQQgghhBBCGKgihRBCCCGEEEIIIYQQQgghhIEqUgghhBBCCCGEEEIIIYQQQhioIoUQQgghhBBCCCGEEEIIIYSBKlIIIYQQQgghhBBCCCGEEEIYqCKFEEIIIYQQQgghhBBCCCGEgSpSCCGEEEIIIYQQQgghhBBCGKgihRBCCCGEEEIIIYQQQgghhIEqUgghhBBCCCGEEEIIIYQQQhioIoUQQgghhBBCCCGEEEIIIYSBKlIIIYQQQgghhBBCCCGEEEIYqCKFKJSnpye0tLQq/IWHh6s6NULUQoMGDXh/I0lJSapOjXwkPDyc99/K09NT1amRSnAch3PnzmHZsmXw9vZGkyZNYGNjAwMDA95/0zlz5lSIsXz5ct51ly9frvTvQwghhBBCCKk+kpKSeJ9FGjRoIHWsiRMn8sby9/cXPG9Vo2d4IjRdVSdACCGEEKIo27dvx5o1a/Dw4UNVp0IIIYRUO2/evEF2djYKCgpQVFQEAwMDmJiYwMrKCjo6OqpOjxBCCCEqkJOTg9zcXBQUFKCsrAyGhoYwNzdHrVq1VJ2aWEqvSElMTESjRo3AcRxv+cCBAxEcHKzkrAghhBBSleTn52PcuHE4cuSIqlMhhMgpLy8PdnZ2yM/P5y1v2bIlbt26pfA8EhMTmTlIysDAAObm5rCwsIChoaFAmZGqyNPTE+fPn+ct09XVxbNnz2Bra6vkrMRLTk5GeHg4Ll26hLi4OCQmJiIjI4N3XR0dHdja2sLZ2RkuLi5wd3eHh4cHrKyslJy15li+fDlWrFjBLA8KCsLw4cMVmkN+fj4SExOl/pyOjg4MDAxgYGAAQ0ND1KxZE9raNEAKIaR6y8rKwrNnz+SKoaOjAzMzM5ibm8PMzAxaWloCZSec2NhYREZGIioqCvHx8UhMTERubi7vuvr6+qhXrx5atGiBNm3aoHv37ujSpQuMjIyUnDU/pVekBAQEMCtRAODUqVN48eKF2t0UEkIIIURzTJo0iSpRCKkigoKCxFZg3L59G9euXUPbtm0VmsekSZOYL7ZlYWBggObNm6NNmzZwc3ODj48P6tatK1h8orkSExMRERHBLC8tLcXu3bsxf/58JWbFLycnB9u3b8fevXtx9epViT9XVlaG58+f4/nz5wgNDcX69euhra2Nrl27YuTIkRg7diwsLCwUmLlm4TgOO3fuFLuOv7+/witSrl69Ci8vL7njaGtrw8rKCra2tmjUqBGcnZ3h7OyMTp06wcnJSYBMCSFE/R09ehSTJk0SLJ6Wlhbq16+PNm3aoE2bNujZsye6du2qksqVxMREbNmyBQcPHpRq6Pri4mIkJCQgISEBx48fBwAYGxujf//+GD16NAYPHgxdXdUNsKXULUty8Venm0JCCCHqLykpiXc81wYNGmDixIlKz4eonr+/Pw4ePKjqNAghApFkzG5/f3+FV6QIraioCLGxsYiNjcWOHTswe/ZseHl5YcqUKfD19VV1ekSFKmt8WL6OKp+Zc3Jy8NNPP2Hz5s3IyckRJKZIJEJERAQiIiKwcOFCTJw4EV9//TVVMAI4f/58pT1BNKlRqkgkQnp6OtLT03Hr1i0cPXr0XZmdnR28vLwwYsQI9O/fn3rvEUKIhDiOQ3JyMpKTk3Hs2DGsWLECjo6OGD9+PObOnauUBgoJCQlYsmQJDh48iLKyMkFiFhQU4NChQzh06BBq166N2bNnY8aMGTA2NhYkvjSU2pdSkos/8PamkBBCCJFEUlISVqxYUeGvKk6WRyrHcRzWrl3LLO/Xrx+2bNmCsLAwXL9+Hbdu3arwt3jxYiVmTAgRp7KW+eX27t2L4uJiJWSkOCKRCKGhoRgxYgR69uyJe/fuqTologKSND4EgFu3buHatWtKyKiiAwcOoFmzZli9erVglSgfKygowObNm9G4cWMsWrRI7mH1NJ0k97XljVI1XVpaGvbu3Ythw4bBxsYGs2fPlqo1MyGEkP8kJiZixYoVaNq0qUKvEaWlpVi+fDlatmyJffv2CVaJ8rHnz59j0aJFcHR0xPbt2ytteCI0pVakSPpS69atW7h+/bpikyGEEEJIlRMdHY27d+9WWK6lpYW9e/fin3/+wZQpU+Dp6QlXV1e0bNmywp+dnZ0KMieE8JGkZT4AvHz5EidOnFBCRspx7tw5uLm50RCF1ZCkjQ8B5TdALCoqwtSpUzFq1CikpqYqbZtr165F//79lbI9dZSXl4egoCCJ1q1qjVJzc3Px22+/oXHjxvjyyy/x6tUrVadECCEa6cWLFxg3bhzGjx+P0tJSQWM/f/4cnp6eWLFiBQoLCwWNzZKeno7Jkydj2bJlStleOaVVpEhz8Qckr3QhhBBCCCl34cIF3uU+Pj7w8/NTcjaEEHlI2jK/XFV7fnjz5g1GjhyJ06dPqzoVokTSHMd79+5FSUmJ4pJ5T15eHvr06YM///yz0nXt7OwwYcIEbN26FREREXj69ClycnJQWlqK/Px8vHjxAlevXsWePXswe/ZsuLi4VBpTUT1fNEFl80S9r6o2Si0rK8PWrVvRtGlTHDp0SNXpEEKIxtq1axc+/fRTweLdu3cP7du3x8WLFytdt0WLFpg1axb27NmDq1ev4sWLF8jPz0dpaSlycnLw9OlTREREYNu2bZgwYQLq1atXaUxl3x8obY4UaS7+wNubwl9++QV6enoKzIoQQlSLuqkTIizWRLfDhg2TK+7y5cuxfPlyuWIQQqQjTct8APjnn3+Qnp4OGxsbBWZVkYODg0TXc47jkJ+fj9zcXCQkJODmzZsIDg7G2bNnmS0DS0tLMXbsWNy+fVsj5j0g8pG28WFmZiaCg4PlvsZVJjc3F3379kVUVJTY9fr06YMFCxagZ8+e0Nbmb7NpbGwMY2Nj2NjYoF27dvjkk08AAA8fPsTu3buxZcsWZGRkCP4dNJm0lcT+/v5wc3NTTDJi7NixQ+z8hCKRCIWFhSgsLERGRgbS0tLw6NEj3Lp1C5cvX8bVq1crHQomMzMTvr6+WLhwIVavXq2SCZQJIUQZwsLC4OnpWel6RUVFyMnJQXp6Om7evInIyEgcPHgQmZmZzM/s2rULnp6ecleoxMfHw8vLC+np6cx19PX1MWHCBMyaNQstW7ZkrmdmZgYzMzPUrVsX3bp1w+TJk8FxHC5dugR/f3/s2rULRUVFcuUrBKX1SGFd/Dt27Mi7vPymkBBCCCFEUmlpabzLnZ2dlZwJIURerOcHFxcX3skl1X1+AC0tLZiamsLe3h5du3bFtGnT8M8//+DBgwcYMGAA83OZmZlYsWKFEjMlqsJqfGhgYABXV1fezyi6J5ZIJMKYMWPEVqI4OTnh3LlzOH36NHr37s2sRBHHyckJK1asQFJSEn755RelTIirCcTNE9WpUyfe5crsqSQNbW1tGBsbo1atWmjatCk8PDzw2WefYcOGDYiKisKrV68QEBAADw+PSmOtXbsWU6dOVULWhBCi3gwMDGBtbY0WLVrgk08+webNm5GSkoJVq1bB0NCQ+bnFixcjLy9P5u1mZGRgwIABYitRevfujXv37mHr1q1iK1FYtLS04O7ujm3btuHx48eYNm2aTPcYQlLK1sVd/JcsWYIuXbrwllW18T0JIYQQolivX7/mXV6jRg3lJkIIkYu4lvmff/45fHx8eMs08fnB0dERwcHB+Pzzz5nrBAQEVOuhjaoLVqXIwIEDmS+Ny3tiKcry5cvFNnD08fHB9evX4eXlJcj2jI2NMW/ePNy/fx8jR44UJKYmY80TZWtri+3bt/N+JjMzUyPnjDI3N8f48eMRHh6OS5cuoVu3bmLX/+uvv/D1118rKTtCCNEc+vr6+PrrrxEcHMysTMnIyMD+/ftlii8SiTBixAhmj2wtLS18//33OHPmDBwdHWXaxsdq166NP/74AzExMWjTpo0gMWWhlIoU1sXfysoK/fr1w7hx43g/988//1C3XkIIIYRIjNWqRkdHR8mZEELkwWqZr6urCz8/P+bzw82bNxEbG6vo9ASnpaWFP/74A02bNuUtLygowNmzZ5WcFVEmcY0Px44dixEjRvC+DCktLUVgYKBCcoqJicGqVauY5WPGjMGhQ4dgamoq+LZtbW2xf/9+bN26FUZGRoLH1wTi5ony8/ND8+bNmSN8aPqcUZ07d8b58+exfv166OqyR6Rfs2YNQkJClJgZIYRojl69eomtcD527JhMcTdu3Ijz588zy//880989913MsWujKurK6KjozF9+nSFxK+MwitSKrv46+rqYtSoUdDX169QXlJSotbd8wkhhBCiXvgabhBCNA/rJWC/fv1gZWWF3r17w87OTqrPqjs9PT0sXLiQWR4dHa3EbIiysRof1qpVC97e3qhRowYGDRrE/KzQRCIRPvvsM+acFT169IC/v7/Ch9j4/PPPERoaCmtra4VuRx2JmyeqvDJ5/PjxvOVVoVGqlpYW5syZgxMnTjAr0ziOw6RJk6jHHiGEMMyfP5/ZK0WWe8snT55gyZIlzPKlS5fiiy++kDquNAwMDPD7779jy5YtYivbFUHhFSniLv5jx44FANSsWRMDBw7kXUcTu+cTQgghRLFSUlJw+/btCn+sMcEfPHjAu/7Hf+okOzsbiYmJuH//PlJSUtRicj1ClKGylvnA215mo0eP5l1nz549ajk/gCT69+/PLHv8+LESMyHKJK7x4ciRI981OmT1xLpx44bgPbH27NmDmzdv8pZZW1tjz549Snt50blzZxw4cEAp21InrEphZ2dntG3bFgAwatQo6OnpVVinKjVK7du3LwIDA5mVdunp6Vi5cqWSs1KMzMxMPH78GA8ePEBaWhpEIpGqUyKEaDgTExN0796dtywjI0PqeVK+//57FBQU8JZ5enpi2bJlUucoqylTpuDbb79V2vYAQOF3PqyKECcnpw+6oY4bNw6HDx+usN6NGzcQFxen8PHPOI5DZGQkoqOjERsbi/j4eLx+/Ro5OTnIy8uDvr4+jI2NYWJigtq1a8PBwQGOjo5wc3ND586dUbduXYXmJ6+SkhKcO3cOV69exfXr13H//n1kZ2cjJycHBQUFMDQ0hJGREUxNTVG3bl04ODigYcOGaNeuHTp16gQbGxul5FlUVIR///0XISEhiIuLQ0JCArKzs6GjowMbGxtYW1vD1dUV3t7e6Nmzp0K6kfMpLCzEmTNncP78ecTFxeHx48d4+fIlCgoKoK+vD1NTU9SvXx9NmzZF165d0a9fP8HGASQV3bp1C0ePHkVUVBTi4+Px8uVLFBUVoVatWrCxsYGjoyP69OkDb29v+ndgKCsrw/nz53HixAlcu3YNDx8+RFZWFjiOg7W1NWxsbNC8eXN4e3ujb9++qFmzpqpTficlJeWDeTBYlfX5+flSvxhv2rQp78OorBISEnDkyBFcuHABt2/fRkZGBgoKClCzZk1YW1ujXr166NWrF7y9vdG8eXPBtiuJ27dvIzQ0FFFRUXj48CGePn2KvLw8FBcXw9jYGFZWVmjUqBHatWuHHj16oEePHmo1PNa3334rVWOLvn37SrSeKnu0vHnzBgcPHsTx48dx8eJFpKWlfVCura2NRo0awd3dHUOHDsWAAQN4/03Cw8N543t6eioga83z6tUrnD59GufOnUN8fDwSExORk5ODoqIi1KhRA40aNcLSpUvh7e0tdeyEhAT8+++/uHTpEu7fv48nT54gNzcXb968gZGREWrVqoWGDRvC1dUVXl5e6NOnj9hJIKurnTt38v4Wzc3NMXjw4Hf/P27cOPz6668V1svMzMTJkyeZ86ioM3t7exgbG/M+oGZnZ6sgI6IMERERlfY8AP7rkZWZmVlhvYCAAOaE9NISiURYsWIFs3z16tWwtbUVZFuSUqd7UWXIz8/HoUOHeMvKK5QBwNLSEt7e3rzDswQEBGDu3LkKy1GZhg4ditmzZ2P9+vW85Rs3bsSCBQs0rufS48ePsW/fPvzzzz+4efNmhZ41RkZGaN26Nfr3748JEybAwcFBofkUFBTg0qVLiI2Nxd27d3H37l2kpaUhJycHubm50NLSgpGREWxtbeHg4IA2bdqga9eu6NmzJ0xMTBSaW2XKyspw8eJFnD59GrGxsXjw4AFevnyJvLw8GBoaok6dOujXrx82bNggcczi4mJcuXIFMTEx7/ZHSkoKcnJykJOTA47jYGRkBGtra9SvXx8uLi7o3Lkz+vbtS/Mz/r+ysjJcuHAB58+fR0xMDBISEpCWlob8/HyIRCKYmJjA3t4eTk5O6Ny5M/r166fS+S+qqkaNGjHLsrOzJX63mpiYyHwG19PTw5YtW5Q+GbzS7w84BcrLy+NMTU05ABX+vv/++w/WLSoq4mrVqsW77uzZsxWW46tXr7glS5Zw9evX5922pH/169fn5syZw0VHRyssV1k8ffqUmz17NmdtbS3X92vatCn37bffcrdu3ZJq+x4eHrzxwsLCPlivuLiYW7duHWdnZydxTubm5tyaNWu4wsJCAffYh5KTk7lp06Zx5ubmUu0vLS0trmvXrlxwcLDM2y4tLeUsLCwqxNbV1eVycnJkihkSEsLMWZ64x48f543p4+NT6Wd37NjB+9kJEyZUWDc8PJzr3r27VP8Ww4YN4xISEmT6Xsrg4ODAm3diYqJUcSZMmMAbZ8eOHR+sJxKJuO3bt3ONGjWSeB8aGBhwixYt4rKzs4X74nJgfVch/sTt97CwMN7PeHh4VFg3Li6OGzRoEKelpSXxtj09PbnY2FiF7TeO47g3b95wv//+O9e8eXOp942NjQ23YsUKLisrS6E5SkpRxwHLsmXLeNdftmyZ3N+luLiY++WXX5j3Qay/Ro0acXv37q0QT9rvxkeac7OshDr/SRonKSmJ+/TTTzlDQ8NK9+369esl3n5paSm3a9curn379lIfbxYWFtzcuXO51NRUqb5zVSYSibiGDRvy7q9PP/20wvotW7bkXXfIkCGC58a6r3VwcBB0O7Vr1+bdjre3t6DbIepj4sSJzPP8x2bMmMG7rrW1NVdcXCxIPqdOnWKet5ydnTmRSCTIdgibv78/7/7X0tLikpKSPlg3KCiI+e8l9L0l634YqPjcIbSCggKubt26zO2vWrVKoduXhKT3iykpKdwnn3zC6ejoSHzPoKOjw40bN45LSUkRNOcHDx5wP/74I9etWzdOX19f6nsZAJyRkRE3adIk7u7du4LlJem+LC4u5tavX881aNCg0jxbt25d6XafPXvG/frrr1zv3r05Y2NjmfaHrq4u5+vry12+fFmw/ZGYmCjYPYik7w7kkZqayi1cuJCztbWVev81b96c8/f350pLS+XOQ5pneFVgPXMBFd+byuObb75hbic9PV3iOIsXL2bG+fLLLwXLV50ptCKFdfEHwD1+/LjC+lOnTuVdV8ibwvft3r2bs7GxkenEKO4vLi5O8FylVVZWxq1fv55ZkSXPnzQv0SSpSLlz5w7XqlUrmfNxcnLiPZ7kUVxczH3//fcy30h8fIJ+8OCBTHkMGjSIN+aJEydkijd//nyxucoad86cObzxfvvtt0o/K8nLuqKiIm7KlClSvZR+/09fX5/73//+J9N3UzRlVqQ8e/ZM6oqo9/9sbW25mJgYYXeADNS5IkUkEnHLli3jdHV1Zdq+trY2t2LFCoXst4MHDzJfzkl7HAQFBSkkR2lUlYqUx48fy/QC/v0/X19frqCg4F1Mab8bn6pWkbJp0yapHoYlrUgJCwvjmjZtKvdxZ2Zmxm3ZskWq711VhYeHM/fTuXPnKqy/Zs0a3nX19PSkejCUhLIqUljH6ujRowXdDlEP4hofLl26tML6ly9fZv5Gjhw5IkhOI0aMYG5DXe+pqxpPT0/e/d+9e/cK6xYWFnI1atTgXV/oRqmqrEjhOI7bvHkzc/uOjo4K335lJLlfPHnyJFezZk2Z7xlq1qzJHTt2TO5cjx8/zrVr107ue5j3/3R1dbl58+ZxRUVFcucnyb68efMm16JFC4nzE1eRcvHiRc7Dw4PT1tYWdJ+MGzdOkAaJmlKRUlRUxP3www+ckZGR3PvOzc2Nu3Hjhlz5UEXKW9OmTWNuR9L37aWlpZy9vT1vDG1tbZnfe2oahfa3YY3p6e7uzjvcDmvM14yMDJw8eVLI1LB06VKMHTsW6enpgsYFoPKJbkUiET799FPMnTtX6rHuJCHk9zt37hy6dOmCW7duyRzj4cOH6N69Ox48eCBITpmZmejVqxeWLl2K4uJiueOdP38ebdu2xYkTJ6T+bI8ePXiXnzt3TqZcKvuc0HFZ+UsjKysLvXr1wp9//inzsVdcXIzPP/8cv//+u9z5aKqbN2+iY8eOzDHnJfHixQv07NkTly5dEjCzqqO4uBgjRozAihUrUFpaKlMMkUiEZcuWiZ1sWFqFhYWYOHEiRowYgefPn8sd78WLF/D19cWiRYtUfr3TdLdu3UKXLl1w9epVueIEBQWhV69eyM/PFyizqmX69OmYOXMmcyxfWYhEInzzzTfw8vLC/fv35Y6Xm5uLqVOnYuzYsYLce2gy1vNDvXr1eIenGzNmDO8QAiUlJQgMDBQ4O8VLS0tjHqvihmUgmisoKIj5zPb+EE7lOnTogCZNmvCuz/r9SKOoqIj57G1sbAw/Pz+5t0HES0pKwvnz53nL+N6ZGBgYYOTIkbzra/KcUXwmTpwIc3Nz3rLExES53isow/79+zFkyJAPhimW1uvXrzF06FBs3bpVrlxOnz6NmJgYuWJ8rLS0FL/++iu6d++OV69eCRr7Y6GhoXB3d8edO3cEiXfp0iWcP39e8Hlpdu3ahbZt2yIpKUnQuOro6dOncHd3x3fffYc3b97IHe/69evo3LkzgoKCBMiuektISOBdXq9ePYmHNr906RJSU1N5y7p27QonJyeZ89MkCqtIkfbiD7ydRK5x48a8ZUJOOr9u3Tr88MMPgsVTNzNnzhR0fynK5cuXMXjwYEHGe3727BmGDBki98uHly9fwtPTU66XzXxyc3Ph4+ODgwcPSvU5VkVEaGio1Dm8evUKN27cELuOLHEzMzN5b1htbW3RokULqeO9782bNxg8eDAiIyPligO8rQCcNWuW4P+2miAhIQF9+vRBSkqK3LGys7Ph4+ODly9fCpBZ1SESiTBu3DjmWNbSWrduHXPSWWnk5eWhT58+CrkmrF27FjNmzBA8bnWRnJyMPn36VJgHRVaXLl3C2LFjqXLrI0uWLMHmzZsFjVlaWgo/Pz/89NNPgsYFgMDAQIwcOVLmylhNl5+fz3xYHjNmDLS0tCosr1OnDry8vHg/own3wx87deoUs6x9+/ZKzIQoC6vyo1OnTsyXEqzn6ZCQEN75U6QRHh7OrMzz9vZW+TwI1UFAQADv9dzQ0BAjRozg/Yy4RqkhISGC5qdKRkZGzH0AQPAGuEKKiorChAkTBLnGi0QiTJkyBfv27RMgM+FdvnwZvXv3FrQRy/tiY2Ph4+OD3NxchcQX2qNHj+Dh4aGQhtzq4t69e+jYsaPglXMFBQXw8/NT22NdExQUFDDfg0lzbynuWsKqzK+KFDbZPOvir6+vL3YHjx07FsuXL6+w/OTJk8jMzISVlZVceSUkJGDp0qXMcj09PXTt2hUeHh5o0qQJateuDRMTE+jo6CAnJwfZ2dl49uwZbty4gZs3b+LatWtq1cLj4sWL2LJlC7PcyMgIXl5e72oLbW1t390MZ2dnIzs7G0lJSbh58yZu3LiBuLg4wWvkASA9PR2zZ8+u0HrW2toa/fv3h5eXF+zt7WFtbY28vDykpKTg7NmzOHLkCLP1xr1797Bq1Sre40cSJSUlGDRokNgWDdra2ujWrRuGDRsGR0dH2NvbIzc3FykpKbhw4QIOHDjAzK+srAxjxoyBvb09unbtKlFOrVq1grW1NTIyMj5YfvPmTbx8+RKWlpYSf7/w8PBK/y1liRsWFsb7W2e91JDGtGnTKlSi6OnpoVu3bujfvz+cnJxgY2MDXV1dvHjxAjExMTh8+DCzJRLHcfjiiy9w48YNGBgYyJ2fJiivjHrx4sUHyy0sLNC7d2/07t0bdevWhY2NDQoLC5GWlobw8HAcPnyY2dogIyMD8+fPF6TVY1Xxww8/4MCBAx8s09bWRocOHTBgwAA0b94cNjY2MDQ0RHp6Om7duoVjx44hKiqKGXP+/Pnw9vaW+bpXUlKCgQMHiq2I1NXVhbu7Ozw9PeHi4gJLS0uYm5vj5cuXSElJQWhoKEJCQpgVZ5s3b0bjxo1VMpGpv78/7zHYoEEDJCcnV1iemJiIBg0aKD4xCZSUlGDYsGFiK1Hq1q2LkSNHYvDgwXBwcHh3vXn+/DmuXr2K/fv3IzQ09IPz+tGjR/HXX38p4ytohDNnzmDlypUVltvZ2WHAgAHo3r077OzsYG1tjeLiYjx9+hRXrlyptNHDhAkTxK6jpaWFDh06wNPTE23btoWVlRVq1KiBrKwspKamIiIiAidOnGBWbh87dgzz58/Hxo0bpfvCVYC0LfPLjRs3jrcxSFxcHG7evAkXFxfBclSk0tJSrF27lrfM3NwcPXv2VHJGRNHENT4Ud8yPHTsWS5curXAPXt4Ta/bs2TLnFBYWxizr3bu3zHGJZDiOYzamGThwICwsLHjLykf9SExMrFDm7++PIUOGCJqnKnl7e2P79u28ZRcvXlRyNpIpKCjAmDFjUFRU9MFyS0tLjBo1CsOHD4ejoyNq166NrKwspKSkICwsDIGBgYiNjeWNyXEcJk2ahBYtWqBVq1aC5WpnZ4e2bduiXbt2aNq0KWrWrImaNWtCT08PWVlZSE9Px9WrVxEZGSm2V/X169cxbdo0wZ8ZCwoKMHLkyAr3C/r6+vD09ET//v3h6OgIW1tb6Onp4eXLl7h9+zZOnjwpUy+ZWrVqvdsfzZs3R61atVCjRg0YGRkhOzsbmZmZiI2NxYULFxAZGcls1PTkyRP4+fkhNDSUt2GIJnvy5Am8vLzEPtuYm5vDy8sLnp6eaNSoESwtLWFgYID09HQkJCTg1KlTCA0NRWFhYYXPlpWVYcKECXB0dETHjh0V+VWqpPXr1zN7CA0bNkziOHR/8P8UMV6YuEkihw4dKvazCQkJzHHbNmzYIHduY8aMYcafMmWK1BN3ZWdnc/v27eP8/Pzezaeh6MmCxXF3d+f9bjo6Oty3337LvXr1Sqp46enp3I4dO7iBAwe+Gyvy9evXEn+eNZb0x+P0W1pachs2bKh0bL6XL18yJ2ME3s6FkZGRIdV3LDdv3jyx4zN6eXlxjx49EhujqKiI++mnn8TOrVK7dm3u5cuXEufFGqP44MGDUn2/6dOnSzQOpbRxp0yZwhtn69atEn2eNSbkx8eIlpYWN3r0aC45OVlsPJFIxAUEBHBmZmbM7yjJ3C3Koug5Uj7ej8bGxtzSpUu5vLw8sfHy8/O5RYsWiT1W5B2vVCjKGveUtR1bW9sKE0X279+fu337dqUxT5w4wRxnFAA3b948mfNlzTsGvB2/eMaMGRUmK+WTn5/PLV++nDnOra6uLnf9+nWZ8xSaUL+pjwk5R8qSJUvE/tt8++23XGFhYaVxLl++XGFcaHNzc2ZsaVSFOVI+3heWlpbcn3/+yZWVlYmNV1JSwrwfZM3HUf43ZswY7s6dO5XmXFJSwv32229crVq1mLGOHz8u1X6oClhzAri6uor9XG5uLnNekTlz5giWn6LnSBE3frXQ8xwQ9bB8+XLef289Pb1Kn2lY8961adNGrpx69erFPA6FnEia8BM3T1Rl82IsXbpU5uNJUqqeI4XjOO7Vq1fMuTNr166tlBxYWPeLfPdnn376KZeTk1NpzN27dzPnwAHAubi4cCUlJVLn+v77gQYNGnALFy7krl27JlWM69evc0OGDBF7bxQaGip1bhwn+b7U0tLiJk6cyKWlpVUaU9y7hHXr1r2LaWtry02fPp2LiIjgRCKRxDk/fPiQ+/TTT8Xuj7///lvieO9T1zlS3rx5w7m6ujK/r5WVFbd27VqJjvWnT59y48aNY8ZycHCo9D3Gx6r7HClhYWHM53hbW1vuzZs3EsUpLS0VG6c6UUhFiriL/+HDhyv9PKsyQN6bwqKiIuYLhk2bNskVm+M4LjU1lVuyZInKJthJSUnhvaHQ0tISZDKyhIQEbtasWVxubq7En2E9cL7/16xZs0pfjn9s1qxZzHiyVLhdu3ZN7KRi3333nVQX0NjYWM7S0pIZb/LkyRLH2rJlC2+MKVOmSPUdnZ2dK8QwMDCQO26TJk1486us0qmcuAtH+Z+enh63e/duqfK6cOEC86WKvOcSISm6IuX9P3t7ey4uLk6quL/++isznpAvp+Sh6oqUj/9Wr14tVdx79+5xNjY2vLFsbGxkejAKCQlh5lenTh3uwoULUseMjo7mrKyseGO2b99e6niKou4VKYmJibzn3vJzXUhIiFTx3rx5w3l5eUl0bEqjKlSkvP/XokULLjU1Va58b9y4wenp6fHGt7CwkGmS5wcPHnCOjo68MevVqyfxw01VkJiYyHwx9uuvv1b6eVZjKVnPo3wUVZGSnJws9kWUvb29VA2ZlIF1TlS3PyEnahWauMaHgwcPrvTz27ZtY35veRq7sK71hoaGlVZEE/mxGg1aWlpW2ujwwYMHzGNCiEapHKceFSkcJ/7aL1SlkSwkPTdu3rxZqriPHj3ibG1tmfFkeZ81ffp0zsXFhTt48KBU7zr4bNu2rULDsvK/rl27yhRTkn2pp6fHHTp0SK7cy61bt45zdHTktm3bJvHk2yzBwcGciYkJb86Ojo4y3Zeoa0XKwoULmf8+7u7u3LNnz6SO+ddffzGPpwULFkgVq7pWpBQXF3Pr1q1jvhMDwO3fv1/ieLdv32bG6d27t8x5aiKFVKSwLv41a9bkioqKKv38n3/+qZCbQtYPyNPTU+aY6oT1A5w4caLKcqqsIsXR0ZHLzMyUOm5JSQnXvHlz3piyvCQX1/JqxowZUsfjOI6LiopinrS0tLS4+Ph4ieLcv3+fN0aTJk0kziU1NZU3xsyZM+WK++zZM9649evXlziGJBUpst4crVy5UiHnEiEpqyKlRo0aXEJCgkw59u7dmzemtbW1YC+n5KFOFSmSvOzjExgYyIx59OhRqWIVFRUxX8za2trKVaFw/fp1ZiWAEBX2QlD3ipQvv/yS+W8dGBgoU245OTmci4tLpcenNKpSRUrjxo259PR0ufNlNfQxNjbmrl69KnPcJ0+eMBtfbNy4Ue68NQWrZb6Ojo5ElWCnTp1iHgNCnZ/krUgRiURcXl4el5qayl28eJHbvHkz5+3tzenq6jJzNzc3565cuSJI/kKiihT5iWt8eODAgUo/n5WVxRkaGvJ+fu7cuTLllJWVxcypVatWMsUkksvLy+NMTU159/+0adMkitGpUyfez1fWs09S6lKRMmDAAGYe0vaqEJIk58avv/5aptjXrl1jvpy3sbGRqDfz+xITE+WuQHnf1q1bmd/55s2bUseTZF8KVYnCcW97Qwj5bHvy5Enm9V2W+xJ1rEiJj49nfsdu3bpJfUy+748//uCNa2RkJFHvo3LVoSKlqKiIy8zM5O7cucPt27ePmz59OrOhZvnf4sWLpcrz6NGjzFgzZ86U4ZtrLsEnmxc3SeTIkSOhr69faQxx68kzviLfmOkA4OfnJ3NMdaJp309HRweBgYFSzcdRTldXFz/++CNvWVxcHHOeEj7Xrl3D2bNnectat26NDRs2SJ0f8HaCyDVr1vCWcRzHLPtYkyZNULdu3QrLHzx4IPHk4efOnauwzMbGBrNmzRI8LgD06NFDos9LYurUqVKN2/i+BQsWMOeX4BtLvSr766+/0LBhQ5k+yzpWMzIymPPRVEfe3t4yzxUyevRo5hj+rN8Zy99//807PraOjg6OHTsm1zwhrq6uzONB1nNldZKVlcUc93zw4MEYPXq0THHNzMywdevWKjfeslC2bdsGa2truWKcOnWKOe56QEAA2rVrJ3PsevXqMcd637hxI3Os7aqEEzMnQK9evWBnZ1dpDHHrKXpOr+TkZGhpaVX6p62tDVNTU9jb28Pd3R3Tpk1DSEgIc+LhVq1aISIigiaZr6JYx6WFhQUGDRpU6efFrRcYGCjThNbingHq1asndTwiHXHzRLEmk5d0vdjY2Cp13y7ueHz27JkSM5FOixYt8MMPP8j0WTc3N3z77be8Zenp6dizZ49U8Ro0aCDovePnn3+O/v3785ZJm5skJk6cKPN7Aj5169aFrq5w00h7e3vj888/5y3bu3evYNtRpRUrVvBea+rXr48jR47INS/ttGnT4OPjU2H5mzdvqs2ckF5eXhLdXxoYGMDKygotWrSAn58f/vjjD6Snp/PGNDY2xqZNm/DTTz9JlQvdH/xH8IoUIS7+NWvWxMCBA3nLZL0pBFBhsuVy6jL5rLw07fuNGzcOnTt3lvnzAwYMQI0aNXjLWBOy8WG9vACATZs2QUdHR9rU3pk6dSpatmzJW3bw4EHk5uZKFIc1cbuklQF8L2J79OiBxo0bo379+oLGLY8tBDMzM4krnPjo6+tjxIgRvGXSHCOaztPTEyNHjpT5866urnB2duYtq077URxtbW1s2rRJrhhjxozhXS7tPmZNUP3ZZ58JMjnftGnTeCt3w8PDmRX65K0jR47wTvSnq6uL9evXyxW7Y8eOYicmrq78/Pzg6ekpdxxWRWGfPn3g6+srd/whQ4bw/j4fP36MCxcuyB1f3UVERODx48e8ZZI+P+jo6DArI0+ePImXL1/KnJ8y6ejooHPnzvD390dMTAxat26t6pSIAohrfDhixAgYGhpKFIf1+0hPT0dISIjUeaWmpjLLJKnQJPJhVa41btwYnTp1kijGqFGjoKenx1u2Y8cOWVNTO/b29swy1nsRdfDrr7/K9X5h7ty5cHBw4C0LCAiQOa5Qvv/+e97l//77r6DbMTExwS+//CJoTEVYunQp7793aGioxjeUSUlJYV7HVq9eLVOD6Y+tWrWKt7JPHY51TVO3bl0sWrQI9+7dw4wZM6T+PN0f/EfwihTWxd/R0RHu7u4SxxH6phAAs7Zd0pfZ6k7Tvt/s2bPl+ry+vj7z5YikLx45jmOe/L28vNCtWzdZ0wPw9mF46dKlvGUFBQU4fvy4RHFYFROStlRnVaSwYksaNywsjHe5UBUpn376KczMzOSK0bdvX97l1akCQN7fGkD7sTKDBg2SucdPOdY+vnHjhsQ32lFRUbh3716F5To6Oli+fLk86b2jp6eH6dOnV1jOcRz++ecfQbZRVR07dox3ea9eveQ+fgBgypQpcseoar788ku5Yzx79oz5AoDVO1YWc+bM4V1+8uRJwbahrljPDyYmJrytEVlYzw/FxcUIDAyUITPlMjc3x9KlS7Fz505MmDBBop78RDOJa3woTaV4v379mL2vZemJxcoJALMBGxFGUlISzp8/z1smzTFhaWkJb29v3jJ5GqWqGwsLC2ZZQUGBEjORXPPmzdGnTx+5YhgaGmLq1Km8ZZGRkcxW6MrSrl071KlTp8LyuLg4FBUVCbYdX19f1KpVS7B4imJnZ8fbUCYjIwMJCQkqyEg4O3fuRFlZWYXl5b0ihODs7Mz7m3n8+DHvMy/h5+Pjg507d+LHH3+UufcI3R/8R9CKlOTkZEEu/sDbbnCsGkxZax9Z8arKA6omfb+mTZuiTZs2csdp1aoV7/KkpCSJPh8bG4uMjAzeMqFa9g4aNIh5o8caUuxj8lSkJCcn8w7z07NnT2ZsSeImJCTwtj5v0qQJ782TLIS4AMt7jGg6ExMTZg8/aVT3/VgZIY5VZ2dn3u7kOTk5ePXqlUQxWC/qPT09xbbck1bv3r15l7MqVwkgEokQERHBW8bqjSStLl26wNHRUZBYVYGDgwM8PDzkjnPixAmIRKIKyxs3bizokEu9evXibRRT1X9X4lrmDxs2DCYmJhLHatOmDbMnsCa0XszJycGyZcvg5OSE/v3749KlS6pOiWnatGm4deuW2v+p67BorOPRwcEB3bt3lziOnp4e8x5Elp5YfL0my8kzRAup3M6dO5kNZ6R9LhXXKLWqNHoR12ursLBQiZlITqiXy35+frz3CyKRCOHh4YJsQx5dunSpsKysrAx3794VbBvjx48XLJaisRqU3759W8mZCIv13Mk6PmVFz53yO3r06LsRaTZv3ixTpSbdH/xHuAEA8faGUKiLv76+PkaNGoXNmzdXKDtx4gRevnwpdVcx1oPVzp074efnx2wNrClY3+/nn3/GkCFDBKm4EIo0vZPEady4Me/ynJwciT7PGi5DR0cHw4cPlzmv9xkaGsLHx4f3gUnS4Trq16+PRo0aVWi18PTpUzx8+BBOTk7Mz/IN0+Xg4PCu9TNfRYokcRU9rJehoSHc3NzkjuPo6AgdHZ0KrSXy8/MhEomgrS14xzy10rFjR0HGepX3t1bVCXFO09fXR7169XgrPnNyciS65p05c4Z3+dChQ+XO731t2rSBiYkJ8vPzP1hOPZTYHj16xJy/S97WiR/Hqi7jBlfG3d1dkAc51u9Kmp4SkrCyskLTpk0rtLC7efMmysrK5BoKRJ0dOnRI7mGB3zd+/HgsXLiwwvLr16/j1q1bzIYB6ubUqVM4deoUZs6ciXXr1qndQ6qNjQ1sbGxUnYZGSk5OZr7sHDNmjNTnrfHjx+P333+vsLy4uBh79uzBzJkzJY5VXFzMLGMNF0XkJ26eqC5duqBRo0ZSxRs4cCBq1qzJe9/h7+8v0Rw86k7c8SjuOFYloe7HHRwc4OrqiuvXr1cou3jxolxDOgvB1taWd3lSUpIg76TKh8DUFOL2h6bKysrC1atXecuEfu7s2rUr73J67pRecnIypk+fjq1bt2Lfvn1o1qyZxJ+l+4P/CPYGUdzFv0OHDmjSpInUMcV1z5dlsqq2bdvydjkSiUQYNGgQFi9ezOydoAm8vLx4Xwrn5eWhW7duWLNmjdq89HR1dRUkjrm5Oe9ySb8na8K9pk2biu0uLC3WmLaPHz+WuOuxrL1S+CpSynujAECdOnXQtGlTqeMquiKlRYsWggxpoaWlBVNT0wrLOY5T22HvhKQuv7WqzNLSUrAJ1uTZz0VFRcyWTUKPsa+jo8M7FmpCQkKVGTJCaHfu3OFdbmdnJ+jLSJpP4T9CVMYDQExMDO9yRexrvh6dhYWFVXr+IdbwQ/b29h/cr0hq9OjRzEYSipp0vnbt2hL3kIiLi0NERASCg4Pxyy+/YPTo0cyhmYC38/V5eXmJHVKBaBYhGx8CQPv27Xnv5QHpj3lxFXbq+nK6KoiMjGQO8yPLMWFgYMB8mV7eKFXTiWtRLekcQ8pkaGjInHNSFqxnPNb9pjKxhtxKS0sTJL6zszOMjIwEiaUMit4fqnD9+nXe3toGBgZSvZyXBGu0k+owtNfff/8t8f1ldHQ0Tp8+jR07dmDmzJliKy1v3LiBtm3bMkdL4EP3B/8RrCJF3MVfltZkwNuXz6xW0LI8COno6DDHyi4pKcGaNWtQt25dDB8+HLt379a4ShVra2vmxNp5eXlYvHgx6tSpg/Hjx+Pw4cPIzs5Wcob/EffAKA3W/BmSvtx98OAB73KhXj6XY53ERCIRHj58KFEMWStS+Lo8fhxLluG9+OJqaWnBy8tL7OckJdQxAsh/nGgydfmtVWXqcqzeu3cPJSUlvGVC39AC/MNJikQisRPRVWesF+EuLi6CbocqUv7TvHlzuWNkZWXh6dOnvGXK+l0Bbyf0rIrEtcwXVyEiTp06dZj3TIqaH0BPTw8tW7aU6K9169bo1q0bBg4ciHnz5iEwMBDPnj3D7t27mS8LoqKiMHjwYOY5nmgOcY0P27ZtK/OLVtbzdnlPLEmJezkp5PwG5EOsdxvlo3TIQuhGqepG3PBd6viSvUWLFoL2LGXdP7Leb0jj1atXOH78OFauXAk/Pz+4ubmhcePGsLGxgZGREbS0tMT+sSacF6oRoxD3d9LIz8/HqVOnsG7dOowfPx4dOnSAk5MT7OzsYGJiUun++PTTT3njanKjTtZ1pXHjxoL3oK5u98bvc3R0lPj+smPHjujTpw8mTpyI3377DbGxsbh27RpzmPeCggIMHDhQ4p49dH/wH8EqUlgXf11dXbnGghR3UyjLmIILFiwQO058cXExDh8+jHHjxsHW1hYtW7bE1KlTsWvXLt7hVtTN999/z9v6vlxeXh527dqF4cOHo1atWmjbti3mzp2LgwcPKvXlV82aNQWJwzpJ8016xef58+e8y4VsLQK8vXGSNoePsV4KhIWFMVu13b17l/ffVZKKFHFx79y5gxcvXlRY3qpVK8FeKgt1jADyHyeaTF1+a1WZuhyr4lqsW1tbV3qTL+3flStXeLdVFVo5KgLfORMAb88eebCGD6iOhJj48MmTJ8yy9u3bC/67OnDgAO+2qurvSuiW+eVYzw8vXrzAqVOnZI6rKAYGBhgzZgxu377N7IUTFhaGtWvXKjkzIjShex68/1nWkGDSzA/EatABQOL52oh0CgoKmPNE9e/fX+YJtd3d3d8N5fwxTZgzqjLirovSzK2lLOKGzBYyXlpaGvO6Kk5ZWRn279+PwYMHw87ODkOGDMGSJUuwf/9+xMbGIiEhARkZGXLNPyPU3DXKmtj65MmT+OSTT2BjY4P+/ftj4cKF2LVrF65evYpHjx7hxYsXEo8uwkdd5/KRBOu5886dO4LfGxsbG/Nuq6reGwvJzc0NwcHB+O2333jLc3NzMXbsWIl6lND9wX8EqUgRd/Hv16+fXC9Wxd1QytIrxcrKCocPH5bo4spxHO7cuYM///wT48ePR8OGDdGwYUNMnjwZhw4dUstatyZNmmDnzp0SzYkgEolw/fp1bNiwASNHjkTt2rXRvHlzzJw5E6dOnVLoC1J1GeeZ1etI6IuzmZkZ8wWppD2fbGxseCtkMjIymC0C+HqVODs7V6hM9PLyqvDwJS4ua2IvoYb1AtTnGNF0tB8VT132saSVsoombiK66ozVq4g1nJushByWUtMJsW/pd6U44lrmt2zZUq5x1IcNG8Z88FbU8F5CqFGjBg4fPsxsbfvDDz9oRMMuwsY6/nR0dPDJJ5/IHNfBwQHdunXjLZOmJ1bt2rWZZZo8DI06CwoKYrZMl3Vkj3KsdynXrl3T+ImuxTUCFXccq4rQ93useCUlJVKPGBAREQFXV1f4+fkhODhYYb0fhXq/JPS+/NjNmzfRvXt3DBw4EPv27ZOrskQcTW6QqA73x1Xx3lhRZs6ciW+//Za3LD4+Hr/88kulMej+4D+CVKQo8uLfsGFD5iS+snbP79SpE6KiopjDhomTmJiI7du3w9fXF3Z2dvjiiy8E6T4ppKFDh+Ls2bMytUq9e/cufv/9d/Tv3x916tTB/Pnzq3SXOdbJVxEXZ1YNrjQXAFZFBd88KAB/RQpfS0dLS0ve4WCkiSsuP0KI4qlL9/DqNkaqpFiNL5T1YF0dCdEilX5XiqOIYYHLmZqaMic7DQ4OVuuWc+bm5lizZg1vWVFRETZv3qzkjIhQxDU+7NOnj9w9Clm/m7S0NIl7YtWtW5dZVpXnalIlVuVajRo1mEOySEroRqnqRNxE3eKOY1UR15pbFuLu9yR9vyASifDVV1/Bw8NDqiEAVU2RPY7Wr18PNzc3REZGKmwbVYE63B9XxXtjRfruu++YQ8hu2rSp0gpUuj/4T+XdFiTAuggbGBigYcOGcrd26NatGy5evFhheflNoSw3GK1atcLt27fx+++/Y/Xq1cjMzJQ6RlZWFrZt24a///4bEyZMwM8//yzoEC/y8PDwwIMHD7B27Vps3LhRpgkqX7x4gV9//RWbN2/GjBkz8MMPP6jlxG3yYJ0sWK0Y5WFiYoKsrKwKy6W5APTo0QObNm2qsPzcuXOYO3fuB8s4juMdd5xV2dGjRw/ExcVVGlckEuH8+fMVPq+jowMPD49KvgEhRFHUpZekLMMJVGd8EzXKQ5Nbt6kj+l0pjriXeC4uLnI/P3Ts2BGBgYEVlpfPDzBjxgy54ivSwIED4eTkxDuP3o4dO7BmzRqZ5o8hqiWu8WHnzp3lPuadnZ2ho6PDex3w9/eX6JnZxMQEtWvX5m1t/OjRI5SUlEBPT0+uPMl/xM0T1a1bN4nn0hSnWbNmvJMyBwYGYvXq1RKNZKGOWC/+tbS04ODgoORsKif0vC3i3ldI2qNk5syZVDn/nnXr1mHhwoWqTkMjqMv9MZGcgYEBpk2bxtszJTU1FSEhIRgyZAjz802aNGGWxcfHC5KjppD7qinu4l9UVIT27dvLuwmxJL0p5GNgYID58+dj5syZOH78OAIDA3Hu3Dmpu0KWlZXh77//RmhoKA4fPgw3NzeZ8hGaubk5fvzxR3z99dc4ePAg9u7di8jISKm7wBUWFuLnn3/Gv//+i8OHDzPHWtVEenp6vBUZiui+mZ+fz7tcX19f4hgeHh7Q1tau8OItIiICZWVlHwwfFhcXV6HFpba2Njw9PXlj9+jRA7/++qtMcYG34y9SS2hCVIdeqqk3VkMEae85KiN0vOqOfleKIa5lPvB2XgBF8vf3V+uKFODtfRnfS9SXL1/i1q1bvD2JlSk9PR3p6ekqzUESjo6OajNfgrjKw6VLl2Lp0qUK23Z5TyxJ5ttwdXXlrUgpLS3F7du34erqqogUqyVx80QFBwcjODhYYduWp1Gqqj19+pQ5PLaTk5PYOWNVhfUuQFbiGspK8n5h9+7dlVaiGBkZoUOHDmjdujUaNmwIe3t7WFpawtTUFPr6+sxK1c2bN2PLli2V5qBOIiIisHjxYrHr6OnpoW3btnB1dUWjRo1Qu3ZtWFlZwczMDAYGBtDV1eWdq+rYsWNYsmSJolJXCbo/1kziRpAJDw8XW5HSuHFjmJmZ8TYIuXnzJkQiUbU5LuSuSBF38VcGaW4KWfT19eHr6wtfX1+UlZXh6tWrCAsLQ2RkJC5duoTs7GyJ4iQnJ6Nv3764fPmyWlU2mJiYYOLEiZg4cSKKiopw6dIlnD9/HpGRkYiOjpa40uDGjRvo27cvoqOjYWlpqeCslcPIyIi3IkURL6JYLdCkaZ1Ss2ZNtGnTBtevX/9geU5ODq5evYpOnTq9W8Y3/Jarqyuz11T37t2hq6v7wXB5ksYFaFgvQlRNXMu0a9euSVVpKw9HR0elbEfTsObeoooU9SbudxUcHIwGDRooJQ91HKZEHuJa5ivDtWvXcOfOHd6559RF27ZtmWXR0dEqr0jZvHkzVqxYodIcJBEWFsZsRKRM4hofKkNxcTH27t2L6dOnV7pu27ZtcfLkSd6y8PBwqkgRiLh5opQlICBAIytSzp49yyxTl0atHxP6mifufq+y0TUKCgqwYMECZrmbmxu++eYbDBgwQKYRSeSZI1kVOI7DzJkzmb3EGzdujG+++Qa+vr4yDdF25coVeVNUO6xjzMXFhbc3MFEP4s6P0dHRYj+rpaUFV1dXREREVCjLysrCjRs3qs39gVwVKepw8ZfmplASOjo66NSpEzp16oSvv/4aIpEIcXFxiIiIwIkTJxARESG2q2RmZibGjBmDqKgoQfIRmoGBAby8vODl5QXgbbfPq1ev4vz58zhx4gSio6PFDjPy6NEjTJ8+Hfv27VNWygplbW3NW1HGNwSXPHJzc5nDrVhbW0sVq0ePHhUqUoC3FRyVVXiIq+wwMzNDu3btKpxAJYlbWWxCiOKJq+CuXbs27OzslJgN+Rhr/z99+lTQ7QgdT5E0YVgAcb8rKysrtGzZUonZVB3qMDa/v78/1q1bp+o0mMQde1V5/sKqStWND4G3x7wkz8y9e/fG999/z1t26tSpCsP+EtmImydKWYRolKoKx48fZ5apQ8UpH6HfL7DiGRoaVvqyf/fu3Xjx4gVv2bRp07Bhwwa5hvB7/fq1zJ9VhX///Rc3b97kLRs6dCh27twpVy8nTdsfkmDdoxQVFdG9sRrT19dn9iqR5N6yd+/evBUpwNv7g+pSkSJXvxt1uPgDin0Y09bWhpubG+bMmYOzZ88iPT0dGzduFNvjJDo6mtmKR93o6emhS5cu+Prrr3Hx4kWkpKTgxx9/FDvZ4YEDBzRqMjJxateuzbv87t27gm5H3JiBrBxYWBUW71dwlJaW8k6QxjfRfGXlksTV19dH165dxcYmhChW/fr1mWXqPLFydcG6b2A9uMnqxo0bgsR5f0jH9wk5B4smHJf0uxKeqlvml9u9e7dazykkbrhUOvY0izo0PgSAmJgY3Llzp9L1OnfuzOxFee7cOZnmFiUVqUOFclFREfbu3avqNKSSmZkp9l2LuvawEfr9At+8N4Bk7xYOHDjAu7xnz574/fff5Z4HSdOuUaz90bx5cwQGBso9VJym7Q9JsO6Pq+J3rWpY95eS/NuJG3qX9TuqiuSqSFGHiz8g+U2hEGrUqIFZs2YhPj4e06ZNY66nqT027Ozs8O233+L+/fsYOnQo7zocx1WZHwlrwqSPJ12XFyuetrY2nJycpIrVrVs33pubixcvvmvde/Xq1Qq1zHp6eujWrZvY2HyVNO/HvXLlCu94rB07dqy0CzEhRLGcnZ2ZZUJMVkrkwxpC6PXr10hOThZsO0Jdv1gPjeLG5JZGXl4e79Ca6qZevXrMfUG/K9moQ8t84L/5AdSVuKGFNaE3F/mPujQ+BCR7ftfR0cHw4cN5y0pLS/H3338LnFX1U9k8UcqkLu90JPXbb78xRwjp0KED6tSpo+SMJHP//n1B73tYDWeaNm0q9nNlZWW4dOkSb9myZct45/iQ1uPHj+WOoUx8DUUBYPHixVINw86iaftDEqznzszMzCrZA6cqYd1fSnJv6ebmhsaNG/OWxcXFVclh7PjIXJEi7uI/aNAgcBwn+F9GRgZ0dflHIwsICJD1q8jEwMAAf/zxB/r27ctbzhr+SFNYWFhg//79zG55mv79yrm4uPAuv3//vqDjzF++fJl3ecOGDaWugDA1NUX79u0rLC8sLHx3U8T379OpU6dKt9WlS5cK46BWFhegYb0IUQc2NjZwcHDgLTt//rySsyEfc3BwYA7vJdRksqWlpfjnn38EiWVhYcG7XKhrI98QlepIW1ubOVcF/a5kw2qZ36pVK4U8P5SUlDCHUVX284M0xLX6V8eJlAkb6zjT0dHBixcvFHLc+/j48G4zMDBQop5YkydPZpZt3LgRhYWFEn13wu/QoUPMOTMOHTqkkGNiw4YNvNuLiYkRO3qCOklPT8dvv/3GLJ86daoSs5FOaWkpYmNjBYsXExPDu7xVq1ZiP/f06VO8efOmwvJatWoJMsLEmzdvcO3aNbnjKEtpaSmzomPw4MGCbOPChQuCxFEnHTp04F3OcRyzYoqoXmFhIbNRnCT3llpaWvjss8+Y5WvWrJE5N00ic0WKuIv/mDFjZE5IHCsrK2bFhaq657Mm6Xr+/LnYuVQ0gZ6eHmbPns1bJmTrWVVi3SyUlpbi8OHDgmyjqKgIR44ckWr7lalseC9p50cpZ2hoiM6dO0sVV9LYhCgKawgiTWjtLjTW8H3iJuUkysM6Vwo1KeOZM2eQkZEhSCxWt+9Hjx4JEv/ixYuCxFEG1u+qsnnzSEXiWuYr6vlBV1cXI0eO5C07fvy42racFNeqr27dukrMhN/y5csV8rJX6D9Vz5dQUFCAgwcP8pb17t0bNjY2Ctku6/eUmpqK06dPV/r5Tp06oV27drxlz58/x88//yxXftUdqxeIhYUFBgwYoJBt+vn5Me+ZNaVXyrRp05itqa2treHn56fkjKQjVC+kW7du4f79+7xllY1AkZ6ezru8Xr16gvRGiYyM1Kh7o1evXqG0tLTCcgsLC2ajImk8ePAAz549kzuOumnQoAFz2GJ67lRfV69eZZZJem/56aefMhtoHz58uEpWHH5M5ooU1sXW1NRUsJpbPqNHj+ZdLulNodBYN5gA8PLlSyVmohis71dVxsZt06YNs5WiUC+2Tp48yZwMrnfv3jLFZL2MCw0N/aAHyfsqmx9FXOzyuFFRURXKjI2NP5iMnhBl+7gXVTm+1lZVHWtIxlu3biEsLEzJ2ZCPsf59oqOjmT0XpcFqbSqLBg0a8C5/8uSJIBOm7t+/X+4YysL6d3v58iV2796t5Gw0G+v5QUtLC5988onCtst6flDX+QE4jhPb+5s1VCBRP+IaH7KOSyEMHDiQWSEu6UvzH374gVn2008/Kb0Xw4MHD5S6PUV58uQJ855s+PDhMDAwUMh2bW1tmc+Q6j5nFACsXbsWhw4dYpYvX76c+UygLvbv3y/I0JasYeT19fUrrUhhNTQTYggrAPjjjz8EiaMstD9kx7o/DggIEORZgQhPXCWXpPeWNjY2mDlzJrP8yy+/REFBgdS5yUPZ9wcyVaSIu/gPHTpUsJMOnyFDhsDExIS3TBUtKfT19ZllrDw1Cev7VYXvBrx9cB8xYgRvWWhoKG/FgTREIhHzIcTY2FjmSke+IbiAtzXMZ86cqdDdXprKDr4KF1ZcAHB3dxf7OyBE0WrVqsW7PCUlRcmZqF6/fv2YY0OLeyFClGPgwIHM43XWrFlyPVwfPXoU//77r8yf/5iVlRWzZZK8DVfCw8OZY3uro5YtWzKHMFi9ejVvS0ZSkbiW+V27dmVOXCqELl26wNHRkbdMHVtiHzp0CElJSbxlurq66NKli3ITIjJjHV/GxsbMl1BCMDQ0xLBhw3jLJO2J1a9fP+aL94KCAowYMULsXD5CCgwMxNixY5WyLUUTN0+UonrmVRZfVY1SJfXbb79h8eLFzPKWLVviiy++UGJGsnn69KncDTBev36NP//8k7esb9++lfaiYN2HPn/+XK68AODu3bs4ceKE3HGUibU/MjMz5e5Zk5mZWaXnlGIN8ZSTkyN2CD6iGgUFBcxzBwB4eHhIHGvhwoWwsrLiLYuPj1fa+VgkEmHmzJnYvHmzUrZXTqaKFHEXf0W2rAHevsAfMmQIb5kquuezar5MTU1hZmam1FwUgfX9ateureRMFOfTTz/lXc5xnNwvtrZt28ac+HfEiBEyj3FtYGDA+xBdWlqKFStWVFjOmqCeT/v27Sscu6y4AA3rRVSvTp06vF3RMzIyqkzvOUnp6uoyW4iEhYXRUBwqZmhoiClTpvCWXblyRebKridPnmDGjBnypMbLzc2Nd7k8PTaLi4sxd+5cmT+vKvPmzeNd/uDBA8yZM0e5yWgoVbXML8fq8XL16lXcvXtX4duX1KtXr/D1118zy/v27cvsaUDUi7jGh4MGDVL4XDfiemKxWrR/bNu2bcwhPOLj4zFgwADmeOtCKL9mjB07tsoM2cqaM6d27doKH4pu2LBhzF4b6jhnVG5uLj7//HPMnj2b+UxubGyMffv2MefSVTdff/21XK21V6xYgVevXvGWsd5rvI81GseTJ0/kGr61pKQE48ePh0gkkjmGKhgbG/Oe40pLS+WeC2/y5MkKPT+qmrOzM/r168dbtnLlSt5RUojqfPfdd8yh/XR0dJiNL/jUqlULmzZtYpYHBgYq/PkoLS0Nffr0we+//67Q7fCRuSKFj42NDXr16iVXQpJgtaSo7KYwICBA8PEJWTXMrEnaFenPP/8UfDgxdfp+itK2bVvmcRsTE4OvvvpKprgxMTHMOXS0tLSwaNEimeKWY1Vg8E3gK01lh66uLm+XYNbEwFSRQlTN0NCQOQyRprWKEsKsWbOYPQkWL17MnLNJHkVFRTh27JjgcauiefPmoWbNmrxly5Ytw8aNG6WKl5qaij59+iikBxZrSMjg4GCZ5zhZsGABs4GBOhs5ciRzuNM//vhDIS3vysrKZBpP3d/fH1paWrx/y5cvFzxPafLio6enx+wdLCRxLb3VpVfKy5cv4ePjI/ZlFmv+QqJ+VNnzAHh7j25nZ8dbJukx37BhQ6xfv55ZfvHiRbi7uzN7UMnj6tWr6NSpk8zDVjZo0IB5LlQVcfNE+fn5QVtb5pHXJWJmZoZBgwbxlh07dkxthuMpLS3F9u3b0aJFC/zvf/9jrqelpYW//vpLo4Y7TElJwWeffSZTY83g4GDmS8PGjRtLNNqFtbU1s/f62rVrpc4JeNsAdfbs2YiJiZHp86rm6urKu1zW/QG8nXS7OjwbrV69mve8VVxcjOHDhytkyKWMjAwaslpK69atw6+//sosHzVqFGxtbaWK6efnJ3ZY3o0bN+KTTz5RyDBfe/fuRevWrREaGir1Zz09PZn3BpLey0h9pRZ38R85cqRSWgL06dOH2Y1I3E3hjh070LBhQ0ycOBG3bt2SO4+jR48yxzxkTWqpSKtXr0b9+vUxe/ZsJCYmyh1v06ZNCA4O5i1TxfdTpDVr1jBvXH/55ResXLlSqni3bt2Ct7c3swXCZ599BmdnZ6nzfJ80FRiSzo8ibWwLCwu0bdtWqtiEKAJrmJNly5bhyZMnSs5GtYyMjLBlyxbesrKyMgwfPhzfffedIC3GsrKysHr1ajRo0ADz58+XO151YGlpKfaaMmfOHAwdOrTSihGO47Bz5060bNnygwlH69WrJ1iuo0ePZg7dOGnSJKSlpUkcSyQSYcaMGWJbL6kzLS0tbN26lbk/Zs+ejcmTJ/MOgSmtN2/eYMuWLWjSpInaT5wrKXEt8/v27QtLS0uF59C8eXO0bt2at0zV8wMUFRVh165daNWqFSIjI5nr9e3bV+b59YjysRof1qpVi9mKV0g6OjoYNWoUb9mVK1ck7on1xRdfYPr06czymzdvwsXFBb///rsgQx0mJCRg8uTJ6NSpE2JjY+WOp07EvatQRs88cdtR9ZxRIpEIV65cwaJFi+Dg4IDJkyfj6dOnYj+zefNmjRzybd++fZg7d65U9+Lnz5+Hn58f81q1cuVKiSvi+vbty7t8+/btUh8DJSUlmDBhAvPZQxOw9se///6L1atXSxWL4zh88803Yoeiq0pat27N7LWdlpaG9u3bi53bSBoJCQmYNm0aHBwcBJvPuKq7evUq+vfvj4ULFzLXMTY2xvfffy9T/O3bt4udN3zfvn1wcXHBmTNnZIr/sYiICHh5eWH06NHM3jXKIHWth7iLvzJa1gBvW8yPHDmSdxy08ptC1kvqkpISBAQEICAgAC4uLhg5ciRGjhwJJycnibf/8uVLrFmzBr/88gvvxc/ExEShE2aKU1BQgN9++w2bNm1Cx44dMWrUKPj6+jJbJ/N59uwZli5dih07dvCW16lTB97e3kKlrBbc3Nwwe/ZsZourJUuWICIiAn/99Rez5Tvw9vjasGEDvvvuOxQVFfGuY29vL/UFmU/5EFysYTLK1axZk9nKgkXSipTu3btDR0dHqtiEKMLgwYN5b6iePHmCli1bYuTIkejWrRsaNmwIU1NT5lB3TZs2lXgYPHU2cOBAzJ49m7d3A8dx+PHHH3Ho0CEsXLgQY8aMkeo7v379GseOHcOhQ4fw77//vjvXNWrUSLD8q7qpU6fixIkTCAkJ4S0/evQoTpw4gV69emHQoEFo0KABbG1tkZ+fj+fPn+PKlSs4ePAgby/bzZs3M1ubSsvKygqDBw/m7RXx8OFDeHh4wN/fH507dxYb5+LFi1iwYAGio6PfLTM1NYW2tjZycnIEyVUZXF1dsWbNGubQZNu3b8e///6LefPmYfLkyVLNJ5efn4+QkBAEBQUhJCTkXUOMqnKNVXXL/Pe3xTc/z/Pnz3HmzBn0799fprglJSW4ffu2ROuKRCLk5OQgOzsb9+/fR0xMDM6cOVNpr3IbGxts27ZNpvyI8olrfDhixAil3WuMGTOG2dPR398fa9askSjOhg0bkJGRgQMHDvCW5+bmYubMmfjll18we/Zs+Pn5MXvD8CkuLsY///yDXbt24ejRo2o/8bksxM0T1bRpU6U1TvP29kbNmjV5h0T39/fH1KlTZY6dkpIi9lzIcRyKiopQWFiIjIwMpKWl4dGjR7h16xZiYmIkHqbdxMQE//vf/zSqsUHdunU/uG/buHEjrl27hr///lvsu6jCwkL88MMPWLNmDfN30atXL6kauo4dO5Z35BGRSIRx48YhPj4e33zzTaVzH4eEhGD+/Pm4d+/eB8vr1atXaSWYOvHz88OKFSt49+/XX3+NxMRErF27ttL5Z6KiojB37lxcvnz5g+Watj+ktXLlSkRERODKlSsVynJycuDr64s+ffpg0aJFUo9m8vjxYxw6dAiHDh3ClStX5Bp2XxMlJiYyOxF8rKCgANnZ2Xj+/DmuXbuG8+fP4+bNm5V+7tdff5X5Od7IyAgnTpxAjx49EB8fz7tOQkIC+vbtiy5dumDmzJkYPHgwc8hQPq9fv8bBgwexY8eOD54lVUmqihRxF/9GjRpJPJm1EMaMGcOcUCYgIECiF9U3b97EzZs3sWTJEtjZ2aF9+/Zo164dGjVqhFq1aqFWrVowNDREfn4+MjIycO/ePURGRiI0NFRsi8M1a9ZIdeOoCBzHITo6GtHR0Zg7dy4cHBzQrl07tGvXDg4ODu++n56eHvLy8pCWloa7d+8iLCwMkZGRYlsT/fXXXzAwMFDit1GO1atXIyoqivnjPHPmDBo1agRPT08MHToUDRo0gL29PXJzc5GSkoKLFy/iwIEDYh+E9fT0sH//fkFaXpYPwcV6EVfO09NT6m7ibdq0gaWlZaUP9TSsF1EXPj4+qF27Nu9Eibm5udi+fTu2b99eaZzExESxlaWa5JdffkFycjKOHj3KW3737l1MmjQJc+fORdeuXdG9e3c0bNgQtWrVQs2aNVFYWIisrCxkZWXh6dOniI2NRWxsLB48eKBx4x+roz179sDd3R137tzhLS8tLcWpU6dw6tQpiWPOnz8fAwcO5C2TdbiQH3/8EcHBwbyNAx48eAB3d/d3FT7NmjWDlZUV8vLykJ6ejuvXryMkJIR3KK9NmzZh+fLlGlWRArztMfT48WNmz5onT55gzpw5+Pbbb9G5c2d0794dzZo1e3ffVVJS8u539fz5c8TFxSE2Nhbx8fFVetJ6Vst8U1NTiYYiEconn3yCRYsW8T6IBwQEyFyR8vz5c7Rq1Ure9Jhq1KiB4OBgQXucEcVSh8aHwNuGV05OTnj48GGFst27d2PVqlUSVdjq6upiz549MDIyEjuXRlJSEubOnYv58+fDzc0NXbp0gbOzMxwdHWFhYQFjY2MUFRUhLy8PT58+xYMHD3D58mVcunRJIcN/qBNx80Qp85jQ19eHr68vb8XslStXcO/ePTRr1kym2EuWLMGSJUvkTVGstm3bwt/fX+OGGp84cSJOnz6Nq1evvlt24cIFNG3aFB4eHhg2bBgaNmwIOzs75OTk4NmzZwgPD8ehQ4eQnZ3NjGtlZcVsAMvi5eWFHj164Ny5cxXKysrK8OOPP2Lz5s0YNWoU3N3d4eDgAFNTU7x+/RppaWm4fPkyTpw4wVtZ7Onpie7du8vcwl0VnJycMGHCBOaw9lu3bkVgYCB8fX3h4eGBRo0awdzcHDk5OXjx4gViY2MRHBzMW4nYrFkzzJo1C9OmTVP011AZfX19BAcHw93dnTk06ZkzZ3DmzBnUq1cP3bt3h7u7O+rUqYNatWq9axxcfn/88OFDXL9+HbGxsQoZuliTSDLvkTy++eYbfPnll3LFsLW1RXh4OPr27Su2F+mlS5dw6dIlGBsbo3PnzujUqROcnJxQr149mJmZwcDAAAUFBcjJycHjx49x//59XLhwAbGxserXuIKTws6dOzkAvH9LliyRJpQgGjRowJtL7dq1udLS0grre3h4MPMX6s/X15cTiURK3xccx3EODg4K/37z5s2TKifWPg8LCxPkO4eFhfHG9/DwkCleRkYG16JFC4XsOx0dHW7//v2CfO9yP//8c6Xb3bRpk0yxhw8fXmnsGzduyP0dduzYwRt7woQJcscux/ptJCYmCrYNVec2YcIE3jg7duwQJM/ExETe+A4ODoLEF8K+ffvk/p2K2+9Cn2/4CH3OLC4u5vz8/BR+bQDANWrUSLD9IA9F/d6XLVvGG3fZsmUyx0xNTeVatWolyP4fN24cV1ZWxpWWlvKWGxkZyZznypUrBT1WZs+ezXGccP9Wyj7Hi0QibsGCBUr5Xeno6EidH+u6Ku/xKquIiAhmPmPHjlV6PqzzrKGhIff69WuZPqvIv1atWnG3bt1Szs4hgsjPz+fMzMx4/z3r16+v9GdF1vULAPfPP/9IHW/9+vWcnp6e0n8Ln376qVR5ins2VoUePXow83n06JFSc2Hd0wLgFi1aJPNnFflnb2/PbdmyhSsrK1PSXpKNuPvFR48ecZaWloLtEwMDAy4yMlKmPOPj4zkLCwtB/40cHR251NRUwe6ZFXHvzZKWlsbVq1dP0P1Rq1YtLj4+XrD3HUI+jyvi3UFKSopgzzWV/X322WcS56WMZ3h5iLtvV9SfsbEx98cffwj6PQoKCrjx48cr/bvo6upy27dvlzhPcffykj47StU8UV1a1pRjje/5/Plz/Pvvv0rO5u144fv27VPpBHaKtHTpUvzyyy+qTkOhrKysEB4eju7duwsa18zMDEeOHBF8bhlJeoRIOz+KpLGtra0V2vqSEGmNGjVK6vmMqjo9PT3s2bMHq1evrhJDllU1dnZ2uHDhglzDgerq6mLZsmUICAiAtrY2s9ViZcMziLNo0SLBxiD/4osvxE5crAm0tLSwbt06+Pv7w9TUVNXpVFBSUsIsk2a4MaGo2/MDa5uFhYXYt2+fkrNh09fXx/Lly3Ht2jWNa3ld3YnrefDJJ58o/VlR3O9M0knn3zdnzhxER0ejffv2cmQluWbNmuH48eMS9Sx+H+tcKM2QIkIRN09Ux44dlT48avfu3ZlDf+/atUutWv+2bdsW27dvR1JSEqZMmSJzD1t10KhRIxw/frzSIaIkYWxsjODgYHTt2lWmzzs7O+PAgQOCPR80bNgQZ86cUfnILLKytbVFcHAwzMzMBIlnZWWFkJAQuefF1SS1a9fGhQsXlDbfE5FNz549cfv2bcF7SZX3WN23bx9q164taGyWPn36IDY2VuE9dz4m8VVI3MXf1dVV5u6f8hD3A+W7KWzVqpVCXiTZ29tj9+7d+Pvvv1U6lnWbNm0UcmPRpEkTnDp1CitWrBA8tjqysrLC2bNnsXz5cuakstLo3r07rl27JtiY9e9r06YNatWqxSy3t7eX+eJdWUWKp6dnla00JJrrm2++wblz55Q61KS609LSwqJFixATEwMvLy/B4xsYGMDX15c53CYRz9zcHHv27EFISIjU46N7e3vjypUrWL58+bvzcVZWFu+61tbWMueoo6ODgIAAsZMNV8bAwAC//PIL/vrrrypz7ZgwYQJu3ryJYcOGCR5bR0cH/fr1w549e6T+7Mdjc5czNTXFpEmT5E1NKuKGBbaxsUGvXr2Umg8A+Pr6Mu/vZHmpLLSmTZtizZo1ePLkCZYtW0aV4BpIHSYUf5+TkxNzMthjx44xrxviuLm5ITo6Gv7+/mjevLmcGbK3sXv3bty5c0fq56hnz57xDvcKADNnzhQiPamImydKFceEtrY2c34RVTVKLWdiYoJevXrhp59+wqNHjxATE4NPP/1UkOdyddClSxdERESgSZMmMsdo2rQpoqKi0Lt3b7ly6dOnD8LCwlCnTh254nh7e+Py5cto3LixXHFUrXXr1rh8+bLclR8dO3bE5cuX0bFjR4Ey0xzm5uYIDAzEkSNHFFJBbGlpiRkzZjAnuCf8TE1N8dlnnyEqKgpnz56Fo6OjwrY1atQo3Lt3DytWrJDr+ZNFW1sbgwYNQmRkJE6fPq2SxkYSz5GSmZmJpUuX8pa5u7sLlpA0WrRogZ9//pm3xQ9fy8tNmzZh5cqVOH36NE6ePInz588jKSlJ5u23atUK48ePx5dffilYzbU8jh49iszMTISEhODkyZO4cOEC8wZSEp06dcLEiRMxadKkKnPjIik9PT0sW7YMEydOxJo1a7B79+5KJ3X/mLu7OxYuXKjQsb+1tLTg6emJw4cP85bL89K0WbNmzDknAJofhagvLy8vREVF4d69ezh16hSuXLmCBw8e4Pnz58jKykJRUVG1nOPDxcUF586dQ2RkJP744w8EBwfLPB55jRo14OXlhX79+sHX11dsha6yeXt7Iz09vcJyVbTEl0b//v3Rv39/xMTE4Pjx47h48SLu37+Ply9foqSkBKamprCxsUHz5s3RtWtX+Pj48D6wpqam8saXt4WgtrY2fv/9d4waNQrz5s1DTEyMxJ/z8fHBypUrVdLoRtEcHR1x6NAh3LhxA5s2bUJQUJDYsczFMTExQffu3dGnTx+MHDlS5tZcfGOeA8CsWbMknrBSKGlpacyH3RYtWkBXV6rpGgVRs2ZNbN68mXfiVy0tLRQWFsLQ0FChOZiYmMDCwgIWFhawsrJC69at0bZtW7Rv3x4tWrRQ6LaJYpWWlsLDwwPdunWrUGZiYgIXFxcVZPV2LsjIyEjesrS0NNSoUUPqmNra2pgwYQLGjx+PM2fOYM+ePTh+/LhMFTPl6tevj2HDhuGTTz5Bhw4dZI7DOg+am5vjq6++kjmurOrUqYNly5bxlsnTK1UeU6ZMUeq9kZaWFgwMDKCvrw8jIyNYWlrC1tYWdnZ2aNiwIZo1a4bmzZvDxcVFJdcGZXJxccGNGzewdu1a/Pbbb5XOS1rO2toa8+bNw9y5cwWbs9bd3R1xcXFYvXo1/vrrL+Tl5Un82Xbt2mHx4sUYPny4ILmoA2dnZ1y9ehW//vorfvvtN2RmZkr82WbNmmH+/Pn49NNPNbrnlBB8fHwwcOBABAUF4c8//0RkZKTMz9/169dH7969MWDAAAwYMKDavZuUlL6+/rt7SwsLi3eNKNq1a4f27dsrtTemmZkZli5diq+++goHDhzA/v37cfbsWbG95sXR0tJCmzZt4OvrizFjxsDBwUHgjKXMh2M1jagm0tLScOnSJdy8eROPHj1CQkICUlNTkZubi9zcXGhpacHc3Bzm5uawsbGBi4sLXF1d4e7urhHDGiUlJSEqKgq3b99GQkICEhIS8OLFC+Tm5iI/Px/a2tqwsLCAubk57O3t0bp1a7i6ur6bRIu89ebNG5w+fRoRERGIi4vD48ePkZmZiTdv3kBPTw9mZmaoX78+mjVrhi5duqB///5o2LChqtMmhBCmgoICnDt3DlFRUbhx4waSkpKQmpqK/Px8lJaWwsTEBGZmZjA3N0f9+vXh7OyMZs2awdXVFW3btlVpD0zCtn79et4X15MnT+adWFZWsbGxCAkJwblz55CSkoKMjAxkZ2fDxMQEtra2aNGiBTw8PODj44MGDRoItl11V1JSgvPnz+PSpUuIjY1FYmIiUlJSkJeXh+LiYhgbG7/7XdWpU+fd76p169bo2LGj3A+HycnJvPvbwsICiYmJqFmzplzxCSFEnJKSEsTGxiIqKgpxcXFITEzEkydPkJWVhYKCApSUlEBfX//dtaJevXpwdnaGi4sLunXrJliL9kmTJvH2DFq6dGm1GWWBqMby5ct5j7Fly5Zh+fLlFZa/efMGp06dwunTp3Hjxg08fvwYOTk5KC0thZmZGRo0aAA3Nzf069cPgwYNEqwChc/r169x4sQJhIeH49q1a8jIyMDLly8hEolgamoKe3t7NG3aFJ06dUK/fv2YFcOlpaUoLS2tsFxXV1ejKskKCgoQEhKCsLAwXL58GS9evMCrV69QUlICExMTWFtbo2nTpmjXrh369euHDh068Pa6Lisr432BrKOjU216nb548QJnz57F5cuXcefOHSQnJyMzMxMFBQXgOA5mZmYwMzNDjRo10KhRIzg7O8PZ2RkdOnSQq/cWUR+5ubm4fPkyoqKiEB8fj8TERDx79gx5eXkoKCiASCSCgYHBu3fTDg4OaNGiBVxdXdG9e3eF9G6RVbWvSCGEEEIIqSpGjRqFAwcOVFj+66+/Yu7cuSrIiCjTjh07eMcJXrFiBbNnOSGEVDUNGjRAcnLyB8tq1qyJxMREQeanIIRF2ooUQgghmqV69zcjhBBCCKkisrOzcfLkSd4yVQ3DSpSLbzgbS0tLqkQjhFQbCQkJFSpRAGDBggVUiUIIIYQQuVBFCiGEEEJIFfD3338jPz+/wnILCwu4ubmpICOibGFhYRWWffXVV2oxlx8hhCgDX4WytbU1Zs2apYJsCCGEEFKVUEUKIYQQQoiGS0lJwapVq3jLfHx8NGpMaiKbBw8eICUl5YNltra2mDlzpooyIoQQ5eOrUF60aBFMTU1VkA0hhBBCqhKqSCGEEEII0WBFRUUYPXo0MjMzecv55swgVQ9fK+zFixfD2NhYBdkQQohqfFyRYm9vj2nTpqkoG0IIIYRUJVSRQgghhBCiZBcvXsSMGTOQlJQkV5y0tDR4enoiIiKCt7xz587o3r27XNsgmuHjipQ6depgypQpKsqGEEKULz4+HmlpaR8s++abb2BkZKSijAghhBBSlVBFCiGEEEKIkr158wZ//PEHnJycMGLECAQFBeHNmzcSfz47OxurVq1Cq1atEB0dzbuOtrY21q9fL1TKRI1xHIfw8PAPln377bcwNDRUTUKEEKICH/dGqVevHj7//HMVZUMIIYSQqoYGzCaEEEIIUZHS0lIEBQUhKCgIJiYm6NSpE1xdXdG6dWtYW1ujRo0a0NfXx+vXr/Hq1SvcvXsXERERuHTpEgoKCsTG/uqrr9CxY0clfROiSlpaWkhPT1d1GoQQolLTp0/H9OnTVZ0GIYQQQqooqkghhBBCCFED+fn5CA0NRWhoqNyxhgwZgpUrVwqQFSGEEEIIIYQQQmhoL0IIIYSQKmTcuHE4ePAgdHR0VJ0KIYQQQgghhBBSJVBFCiGEEEJIFWBtbQ1/f3/s3LkTenp6qk6HEEIIIYQQQgipMqgihRBCCCFEyby8vBAaGoopU6bAzs5OrlgNGzbEmjVr8PDhQ0yYMEGgDAkhhBBCCCGEEFKO5kghhBBCCFEyHR0d9OjRAz169MCWLVvw6NEjXLp0CXFxcUhMTERSUhLS09ORn5+PgoICiEQiGBoawsLCAnXr1oWTkxPatm2LHj16oHXr1qr+OoQQQgghhBBCSJWmxXEcp+okCCGEEEIIIYQQQgghhBBC1BEN7UUIIYQQQgghhBBCCCGEEMJAFSmEEEIIIYQQQgghhBBCCCEMVJFCCCGEEEIIIYQQQgghhBDCQBUphBBCCCGEEEIIIYQQQgghDFSRQgghhBBCCCGEEEIIIYQQwkAVKYQQQgghhBBCCCGEEEIIIQxUkUIIIYQQQgghhBBCCCGEEMJAFSmEEEIIIYQQQgghhBBCCCEMVJFCCCGEEEIIIYQQQgghhBDCQBUphBBCCCGEEEIIIYQQQgghDBpTkdKgQQNoaWlV+EtKSlJ1aoRUsHz5ct7jdfny5apOjagZf39/3mNl4sSJqk6NVDOFhYU4cOAA5s2bh27duqFhw4awtLSErq4u7zF69OhRVadMqii6hhKiecLDw3l/t56enqpOTePk5OTAzs6uwr4MDQ2VOMaMGTMqfH7kyJEKzJoQQgghpOrTVXUChBBCCFGdN2/e4IcffsBff/2FV69eqTodQgipdt68eYPs7GwUFBSgqKgIBgYGMDExgZWVFXR0dFSdHlGy5cuX48WLFx8s69OnD3r27ClxjO+++w7+/v7Iz89/t+zgwYM4f/48PDw8BMuVEEIIIaQ6oYoUQgghpJp6+PAhhg4dijt37qg6FUKIgBITEz94gSoLAwMDmJubw8LCAoaGhgJlJixPT0+cP3+et0xXVxfPnj2Dra2tkrMSLzk5GeHh4bh06RLi4uKQmJiIjIwM3nV1dHRga2sLZ2dnuLi4wN3dHR4eHrCyslJy1kRZ4uPjsWnTpg+WaWlpYfXq1VLFsbW1xZw5c7By5coPls+aNQvXr1+nCjpCCCGEEBlQRQohhBBSDWVlZcHb2xuPHj1SdSqEEIFNmjSJWcEgCwMDAzRv3hxt2rSBm5sbfHx8ULduXcHiyyIxMRERERHM8tLSUuzevRvz589XYlb8cnJysH37duzduxdXr16V+HNlZWV4/vw5nj9/jtDQUKxfvx7a2tro2rUrRo4cibFjx8LCwkKBmRNlmzVrFkpLSz9Y5ufnB1dXV6ljffXVV9iyZcsHvU1v3ryJv/76C9OmTZM7V0IIIYSQ6kbuipQNGzYgKyurwvI5c+agRo0a8oYnRFDh4eEIDw+vsNzT05PGcCaEVCtz5syhShRCiESKiooQGxuL2NhY7NixA7Nnz4aXlxemTJkCX19fleQUEBAAjuMqXUeVFSk5OTn46aefsHnzZuTk5AgSUyQSISIiAhEREVi4cCEmTpyIr7/+WuUVW0R+p06dqjAPipaWFr799luZ4llYWGDmzJlYsWLFB8tXrFiBCRMmwMTEROZcCSGEEEKqI0EqUpKTkyssnzhxIlWkELUTHh5e4WGiHFWkEEKqi2fPnmHPnj28ZYaGhvjkk0/Qo0cPNGzYEKamptDW1q6wnoODg6LTJISoKZFIhNDQUISGhqJHjx74448/0KxZM6Vtn+M47Ny5s9L1bt26hWvXrqFt27ZKyOpDBw4cwJw5c5CamqqwbRQUFGDz5s3Yvn07Zs+ejaVLl9LLcQ323XffVVg2cOBAtGjRQuaYM2bMwLp161BQUPBuWXp6OjZt2oTFixfLHJcQQgghpDqiob0IIYSQambXrl0oKSmpsLxWrVqIjIxE8+bNVZAVIUQTnTt3Dm5ubggMDMTQoUOVss3z588jMTFRonUDAgKUWpFSVFSEOXPm4M8//1TqNteuXYuoqCixw50R9XX06FHExMRUWL5o0SK54lpZWeGzzz6rMO/KunXrMG3aNJibm8sVnxBCCCGkOqnYxJQQQgghVdqFCxd4ly9btowqUQghUnvz5g1GjhyJ06dPK2V7/v7+Eq+7d+9e3opjRcjLy0OfPn0kqkSxs7PDhAkTsHXrVkRERODp06fIyclBaWkp8vPz8eLFC1y9ehV79uzB7Nmz4eLiUmlMoYYPI8rFcRyWLVtWYXnnzp3h7u4ud/z58+dX6Fn66tUrbNy4Ue7YhBBCCCHVCfVIIYQQFZo4cSImTpyo6jRINcOa7HjYsGFKzoQQokwODg5ISkqqdD2O45Cfn4/c3FwkJCTg5s2bCA4OxtmzZytMhF2utLQUY8eOxe3bt2Fraytw5v/Jy8tDUFCQxOtnZmYiODhY4ee33Nxc9O3bF1FRUWLX69OnDxYsWICePXvyDpsIAMbGxjA2NoaNjQ3atWuHTz75BADw8OFD7N69G1u2bEFGRobg30Eenp6elc5ZQ/idOnUKN2/erLB8ypQpgsR3cHBA37598c8//3ywfNOmTVi4cCEMDAwE2Q4hhBBCSFVHPVIIIYSQaqSsrAyZmZkVlpuamtJkxYQQAG8nuDY1NYW9vT26du2KadOm4Z9//sGDBw8wYMAA5ucyMzOZc9EJJSgoCPn5+RWWGxgYwNXVlfcz0vRgkYVIJMKYMWPEVqI4OTnh3LlzOH36NHr37s2sRBHHyckJK1asQFJSEn755RdYWFjIkzZRExs2bKiwrEaNGhgxYoRg25g8eXKFZRkZGQgMDBRsG4QQQgghVR1VpBBCCCHVSFZWFm+r4Ro1aig/GUKIRnF0dERwcDA+//xz5joBAQEKHWKKVSkycOBATJ06lbfsn3/+QXp6usJyWr58OYKDg5nlPj4+uH79Ory8vATZnrGxMebNm4f79+9j5MiRgsQkqhEfH48zZ85UWD5mzBgYGRkJtp1Bgwbx9hT77bffBNsGIYQQQkhVRxUphBBCSDWSl5fHu1xHR0fJmRBCNJGWlhb++OMPNG3alLe8oKAAZ8+eVci2ExMTmZOpjx07FiNGjIChoWGFstLSUoW1vI+JicGqVauY5WPGjMGhQ4dgamoq+LZtbW2xf/9+bN26VdCX7kR5Pp4EvtykSZME3Y6enh7GjBlTYfmNGzdw/vx5QbdFCCGEEFJVUUUKIYQQUo3QGPaEEHnp6elh4cKFzPLo6GiFbDcgIID3HFarVi14e3ujRo0aGDRoEPOzQhOJRPjss89QVlbGW96jRw/4+/vLNIyXND7//HOEhobC2tpaodshwioqKsK+ffsqLG/QoAHatm0r+PaGDx/Ou1wRvw1CCCGEkKqIJpsnhBBCqqgHDx6guLj4g2XPnz/nXbekpAS3b9+uNKaJiQkcHR0FyY+op8LCQqSnp6OgoADGxsaoWbMmzMzMVJ0WUTP9+/dnlj1+/Fjw7XEch507d/KWjRw5Evr6+gCAcePG4eDBgxXWuXHjBmJjY5nzqMhiz549vJOEA4C1tTX27NkDXV3lPG517twZBw4cUMq2iDCCg4ORlZVVYfnQoUMVsr3OnTvD3t4eqampHyw/dOgQ/vjjD+rVRAghhBBSCanu7PPz85GYmPjBspKSEt51Hzx4wBw+hI+NjQ1sbGykSUesvLw8hISE4NSpU7h58yaSkpKQm5sLAwMDWFtbw9bWFh06dIC3tzc8PDxgYGAg2LYr8+rVK5w+fRoXLlzAnTt3kJiYiNevX6OgoAD6+vowNzeHg4MDWrRoge7du2PgwIGwsrJSWn4fU+d9WZmPXyKyxsdOT0+X6AViOX19fTRp0kTu/N4XHR2N48eP4+rVq7h37x5evXqF0tJSWFlZwcbGBk5OTujfvz/69+8POzs7QbctTllZGS5cuIDz588jJiYGCQkJSEtLQ35+PkQiEUxMTGBvbw8nJyd07twZ/fr1Q5s2bZSWn1A4jkNkZCSio6MRGxuL+Ph4vH79Gjk5OcjLy4O+vj6MjY1hYmKC2rVrw8HBAY6OjnBzc0Pnzp1VNkl3VlYWnj17ptRttmzZUpA4t2/fRmhoKKKiovDw4UM8ffoUeXl5KC4uhrGxMaysrNCoUSO0a9cOPXr0QI8ePTR++Kl79+7hzJkzuHTpEh48ePDuO5eUlMDExOTdd3Zzc4Onpyd69uwJPT09mbfXp08fJCcnS7Tu8+fP0apVq0rX8/DwQHh4uMw5CYHjONy5cwdRUVGIj4/H3bt3kZiYiOzsbOTk5KC4uBhGRkaoUaMG6tati+bNm6NDhw7o168fHBwcVJo78HZfHz16FOHh4bh16xbS0tKQl5cHc3Nz2NjYwN7eHl5eXvD29oabmxu0tLQUmg/Hcfj3338RFBSEsLAwPH78GCKR6IN1ateujXbt2mHw4MEYMWIEzM3NK8SJi4vjfSnYpk0btZ6D58qVKwgLC8OVK1fw6NEjpKSkID8//93v0tbWFo0bN0bHjh3Rq1cvdOnSReH/JprA3t4exsbGKCgoqFCWnZ0t+PYiIiIqPIeUGzdu3Lv/7tevH6ysrJCZmVlhvYCAAMEqUkQiEVasWMEsX716Ne+cFIpUs2ZNpW5PmZKSknD27FnExsYiLi4OaWlpyMnJQXZ2NrS0tGBsbAwjIyNYWlqiQYMGcHBwQPPmzdG5c2e0atVKaRVa0ti9ezfv8mHDhilke1paWhg6dCg2b978wfKcnBwcP34co0aNUsh2CSGEEEKqDE4KYWFhHACF/C1btkzsth0cHHg/l5iY+MF6ubm53LfffstZWFhIvG1bW1tu27ZtXFlZmTS7Q2oRERHcoEGDOD09Pan2ja6uLjd8+HAuNjZWkDyqwr6UFOu7yvvn4OAgdrvLli2T+Dg/cuQI17p1a4m3ra2tzU2ePJlLS0tTzE77f6mpqdzChQs5W1tbqfdP8+bNOX9/f660tFShOQrh1atX3JIlS7j69evLdUzUr1+fmzNnDhcdHS3V9nfs2MEbb8KECXJ9XpF/8njz5g33+++/c82bN5d6uzY2NtyKFSu4rKwsuXJQtrKyMm7v3r1cu3btpP7OlpaW3IIFC2T+vSviHOjh4SHsDpJQbm4ut3v3bm7kyJGctbW1zPl37tyZ279/PycSiQTJKzExkXc7fNeJx48fc2PHjuV0dXUlzrdNmzZcWFiYILnyOX78ONesWTOp9qGFhQW3fPlyrqio6INYHh4evOtLm78011BZZWVlcStXruQaNGgg9THk4ODAbdiwgXvz5o1g+QiN9W9R2f2LtGrXrs27HW9vb0G3w3EcN3HiRN5tNWrUqMK6M2bM4F3X2tqaKy4uFiSfU6dOMY8RZ2dnwc4xmoL1nCjvNWPfvn2cp6cnp6WlJfN539jYmPPx8eH27t3L5eXlCfOF5ZSTk8Pp6+tXyLVGjRoKfY46efIk7z7y8fFR2DYJIYQQQqqKKlWREhkZKddLo44dO3KZmZmy7EexHj9+zPXr10/ufaStrc3NmDGDy8/PlysfTd6X0lLnipSsrCxu2LBhMudgZmbGhYSECL7PioqKuB9++IEzMjKSez+5ublxN27cEDxHoezevZuzsbER/PiIi4uTOIfqVJFy8OBB5ks3af5sbW25oKAgmfNQpri4OK5t27Zyf2cTExNuw4YNUr9cqQoVKWlpadyIESMEOSe9/9ehQwfu3r17cucnaUXKli1bOGNjY5nz/eKLLwR9uZafn89NmDBBrn3YsmVL7vHjx+9iakJFikgk4rZs2cLVqFFD7mOoUaNGXHh4uNw5KYKyKlJYx/To0aMF3U5eXh5namrKu62lS5dWWP/y5cvMf7cjR44IktOIESOY2/jf//4nyDY0idAVKffv3+c8PT0FPe8D4ObMmSPsF5fRkSNHePMbNGiQQrebnZ3N6ejoVNiumZmZYJWMhBBCCCFVVZWZbH7v3r3o2bOnxEOY8Ll8+TI8PT3x4sULwfIKCgqCi4sLTp06JXcskUiE33//HV27dlXoUD7qui+rkqdPn6JLly44fPiwzDFyc3Ph4+ODI0eOCJqXu7s7vvvuO7x580bueNevX0fnzp0RFBQkQHbCWrp0KcaOHcsc7k0eHE3m/YHCwkJMnDgRI0aMYM7PIY0XL17A19cXixYtUut9vWvXLnTs2BHXrl2TO1Z+fj7mzJkDHx8fqYbNrAqePn2KgwcPCnJOet+VK1fQtm1bnD59WtC4H+M4DrNmzcLUqVN5h0CS1NatWzF27FiUlpbKnVN2djb69Okj9wTDt2/fRpcuXXD37l25c1KG169fw9vbG1OnTuUdgkxaCQkJ6NmzJ3777Tf5k9NAaWlpzGO6UaNGgm4rKCiIee4bO3ZshWUdOnRgDsHq7+8vdz5FRUU4efIkb5mxsTH8/Pzk3kZ1FhMTg06dOilkGEl1uW9gPRt6eHgodLvm5ua8w9vl5ubiwoULCt02IYQQQoimqxIVKceOHcO4ceMqTKgri9u3b2P06NECZAVs3LgRI0aMEPylV2xsLLy8vAR5Ifkxdd2XVUlmZib69OmD+Ph4uWMVFxdj9OjRePjwodyx7t27h44dOyImJkbuWO8rKCiAn58f9u3bJ2hceaxbtw4//PCDqtOoFvLy8gR5Yctn7dq1mDFjhuBxhbBlyxaMHz8eRUVFgsYNDg5G3759q11liqLk5+dj8ODBiIiIUNg2Fi5ciE2bNgkSa+/evVi1apVcMYqLi+Hj44OLFy8KklNaWhoGDhyIly9fChJPUdLS0uDu7i5Iw5b3lZWVYfbs2Vi3bp2gcTWBuH3Zvn17QbfFqvzo1KkTnJyceMvenzflfSEhIbzzp0gjPDycWYnk7e0NExMTueJXZw8fPkTv3r3x+vVrVaeiUKxKfEVXpACAl5cX73Khz4+EEEIIIVWN+s26J6W7d+9i9OjRKCsr+2B5vXr14O3tjW7dusHW1haWlpbIysrCkydPcOrUKRw/fpz5AHTu3Dn4+/tj4sSJMue1detWzJkzR+w6Tk5O6NGjB7p06QI7OztYWlqisLAQL168QExMDE6ePImbN2/yfvbRo0fw8fFBZGSkYJO7q+u+rEpEIhH8/Pxw7969D5YbGxvDy8sLffv2haOjI2xtbVFaWor09HRcvHgRhw4dwuPHj3ljFhYW4osvvkBYWJjMeT158gReXl5IS0tjrmNubg4vLy94enqiUaNGsLS0hIGBAdLT05GQkIBTp04hNDQUhYWFFT5bVlaGCRMmwNHRER07dpQ5TyEkJCRg6dKlzHI9PT107doVHh4eaNKkCWrXrg0TExPo6Oi8m9T02bNnuHHjBm7evIlr166hpKREid9Ac5SUlGDgwIGIjIxkrqOrqwt3d3d4enrCxcUFlpaWMDc3x8uXL5GSkoLQ0FCEhIQwX9Ju3rwZjRs3xty5cxX1NaR2/PhxTJ8+Xew6NjY2GDVqFDp27Ig6derA1NQUKSkpSEhIwMGDBxEdHc387KVLlzBq1CicOHGi0gmvk5KSeJc5OjpWWO7g4MC7vroyNDREmzZt0K5dO7Rp0wZWVlaoWbMmzM3NkZeXh9evXyM+Ph7R0dE4c+YM8zpVXFwMX19f3LlzB9bW1oLmGBAQgJ9//rnC8tatW7+bSN7GxgampqbIyMjA/fv3ERwcjNDQUGar6VWrVmHUqFFo2rSpTDnNnz9fbCtvMzMzDBkyBL6+vmjWrBnq1KkDkUiE1NRU3L17F0FBQTh27NgHlXmPHz+u9JhXpezsbPTo0UNszxkjIyN0794dXl5eaNq0KaysrGBsbIzMzEwkJyfjzJkzOH36NHJzc3k/v3DhQjRq1Ehhk0Srm9LSUqxdu5a3zNzcHD179hRsW0lJSTh//jxvGV9vlPfLli5dWuG3VFJSgsDAQMyePVvmnMTdc/Xu3VvmuASYPn262B5jTk5O6Nu3L1q2bAlHR0eYm5vDyMgI+fn5yM7OxsuXL3Hnzh3cuHEDMTExyMjIUF7yEnry5Anv9VZPTw8uLi4K337btm15lyuiBxAhhBBCSJUi79hgkk5crqjtfDzefr169biAgIBKJ3h88uQJ5+3tzRw/19bWlispKZEp18jISLETynfu3Jn7559/JIoVEhLCOTs7M2PNnz9f6vw0aV8KTRkT2Irbzsf7WFdXl5sxYwaXkZEhNl5JSQn3yy+/iJ2g+Pjx4zLl+ubNG87V1ZUZ18rKilu7di2Xk5NTaaynT59y48aNY8ZycHBQ+SSfY8aMYeY3ZcoULiUlRap42dnZ3L59+zg/P793k4bGxsZK/Hl550hRhGvXrnEmJia8eRkbG0scZ+rUqcx9XX7sJyUlVRonPz+fW758OXOODF1dXe769evyfGXBJCcni517wcTEhNu8eTNXWloqNs6tW7cqnZz+p59+kilHaSZHVwdXr1794PgbMWIEFxQUJNVE369eveJWrVoldp6V8ePHy5Qfa3+am5tXmNOhU6dO3MWLFyuNeenSJa5p06bMXIcNGyZTrv/++6/YY2ro0KFcampqpXFSUlK4IUOG8H5nvriqnCNFJBKJvUcxMTHhvv32Wy49Pb3SWC9fvuRmz57NO79A+fd/9uyZ1DkqgqLnSJk2bRpzn86ePVuQbZRbvnw573b09PQqvX/q3r0772fbtGkjV069evVifv+7d+/KFVtTCTFHirhzVOvWrblz585JlVNZWRl38eJFbvHixVzdunUVcnzK4tChQ7zfsUWLFkrZfnx8PO/2DQ0NaZ4UQgghhBAxNL4i5f0/d3d37tWrVxLHLCkpETvZ99GjR6XOMz8/n3N0dOSNp62tzS1dulTqyWJzc3OZk9Xr6OhIPZm3puxLRVB1Rcr7f2ZmZtzZs2elihsUFMRpa2vzxvPx8ZEp14ULF4o9DmR5KfTXX38xXzQtWLBApjyFUFRUxHzRt2nTJrnjp6amckuWLOEePHgg8WfUrSLlyZMnnL29PfMcJulvOSQkhHlc1alTh7tw4YLUuUVHR3NWVla8Mdu3by91PEXge7lc/ufg4MA9evRI4lglJSXcl19+yYxnaGgoVbxymliRYm5uzi1ZsoR7+fKlXLHu3r3LrKDQ1tbm7t+/L3VM1v78+G/GjBlSXf9TU1O5Jk2a8MaS5AXyx0pLS7kWLVow81uyZIm0X537+uuvJfruqqxI2bx5MzMvZ2dn7s6dO1LHPH78OLNSztfXV+p4iqCoipTk5GSx5zl7e3vu9evXgnwHjntbEdawYUPebQ0ePLjSz2/bto2Zq7T3z+9jXYsMDQ2lvs+vKoSoSGFd87p168bl5+fLlV9JSQm3Z88e7n//+59ccYTwzTff8H5PPz8/pWy/tLSUMzAw4M1BXRqmEEIIIYSooypTkdKxY0euoKBA6rivX7/mbGxseGPK8mKadWMMgNu8ebPU8cqVlJRwXbp04Y07dOhQqWJpyr5UBHWpSNHT0+Oio6Nliv35558zY0r7Yi0+Pp7Zy6Vbt25cYWGhTDlyHMf98ccfvHGNjIy4tLQ0mePKg/WQ7+npqZJ8OE69KlJycnI4FxcX5nH766+/ShSnqKiIWaFsa2sr1/Xh+vXrzIf/Y8eOyRxXCBcuXGDuOysrK+7evXtSxywrK+N8fX2ZcUeNGiV1TE2rSHn9+rVUFfuVSUpKYlYWzp07V+p4klSkzJo1S6ZcL1y4wGlpafHG3LBhg1Sx9u7dy8zviy++kCk/juO4SZMmVfr9VVWRkpmZyaw8b9asmVzH1YkTJ3j/bbS0tLi4uDiZ4wpF3ooUkUjE5eXlcampqdzFixe5zZs3c97e3mJ7xpqbm3NXrlwR9HuEh4czt3fgwIFKP5+VlcUZGhoK9nsvj8nKqVWrVjLFrAqEqEjhe0bR1tbmEhISFJe4CrAayP3www9Ky6FNmza8OWzbtk1pORBCCCGEaJoqMdm8mZkZAgMDYWRkJPVna9SogcWLF/OWhYWFMcco55OZmYnffvuNt2z69OmYOnWq1PmV09XVxd69e2Fubl6h7OjRo4KNa68u+7Kq+/HHH2WeK+THH3+Erm7F6Y1KSkrEzkXBZ8WKFSgtLa2wvH79+jhy5Ihc8+9MmzYNPj4+FZa/efMGf/31l8xx5ZGcnMy73M/PT8mZqJ/S0lKMGDGCOS/TtGnTJJ6H5O+//0ZiYmKF5To6Ojh27BgaNGggc56urq5Ys2YNb9mGDRtkjiuE1atXM8v+/PNPmea00NbWRkBAAOrVq8dbHhQUhISEBKnjapIaNWqgZs2agsVzcHBgHiv79u0TbDvl2rRpI/NE5O7u7hg0aBBv2blz56SKxbo/qV27Nn755Repcyu3YcMG2NnZyfx5RVq3bh1ycnIqLDc3N8fJkyflOq4GDBjAO8cGx3HYuHGjzHEVLTk5GVpaWpX+aWtrw9TUFPb29nB3d8e0adMQEhLCe88AAK1atUJERITSJpm3sLBg/jYkXS8wMJD5fcRJSUlhlrHO1aRyIpEIz549q7C8Q4cOaNiwoQoyUpwHDx7wLq9fv77ScmBti5UbIYQQQggBqkRFyvz589GoUSOZP+/n5wdt7Yq7Ijs7m/dlIMv//ve/DyZfLWdlZYVVq1bJnF+5+vXr81bGcByHXbt2yR0fUJ99WZU1bNgQCxYskPnzNjY2zIlMY2NjJY6TkpKCoKAg3rLVq1fD0tJSpvzet2rVKt7JsAMCAuSOLYsXL17wLpfnxX5VMX36dJw+fZq3zNvbm/kSlg/rJeJnn30mcwXi+6ZNm4a6detWWB4eHs6sLFO01NRU/PPPP7xlPXv2xPDhw2WObWxszHwRX1ZWxnzRSNhGjBiBli1bVliempqK27dvC7qtDRs2QF9fX+bPjxkzhne5NOf7xMREREVF8Zb99NNPMDU1lSk34G2lxMqVK2X+vKIUFhYyK+0XL14syIvZJUuWwNjYuMLygwcPoqCgQO746k5HRwedO3eGv78/YmJi0Lp1a0Hj5+fnM+9TRowYAUNDQ4nijBs3jnd5eno6QkJCpM4rNTWVWaaulYqaIDMzE2VlZRWWV7V7NJFIhKdPn/KW1alTR2l5sLalqvsoQgghhBBNoPEVKfr6+pgyZYpcMezt7eHi4sJbJs2Lih07dvAuX7hwIW9PElnMmjWL98X0yZMn5Y6tTvuyKps5cyZvZZM0+vbty7tcmn28c+dO3gfWFi1aCNZDw9nZGX369Kmw/PHjx7h3754g25AG328HAHJzc5WciXpZu3Yttm7dylvWunVr7N+/Hzo6OhLFioqK4v231dHRwfLly+VJ8x09PT1Mnz69wnKO45iVGYp26NAh3t8TACxdulTu+KNGjULz5s15yxTRi6Kq09LSwuDBg3nLoqOjBdtO69at4eHhIVcM1vn+6dOnePnypUQxjh07xru8Ro0aGDVqlMy5lRs9erRg9zlCOXLkCLKysiost7S0xJw5cwTZhqWlJe9L+ry8PERERAiyDXVlbm6OpUuXYufOnZgwYYJclYUsQUFBvA2UAGDs2LESx+nXrx+srKx4y2SpiGblBLz9TRHZVJd7tNTUVJSUlPCWqUNFilCjHBBCCCGEVEUaX5Hi5eUFW1tbueO0atWKd7mkN5P37t3j7QqtpaUl6LBBtWvXRosWLSosj4mJEftgJwl12ZdVnRAvrYTYx6wXa35+fsyHWVmwes+EhYUJtg1JsXrZCFERqamCgoKYQ/LVqVMHJ0+elKq1Ouu48vT0hL29vUw58lGn4woAzpw5w7u8fv366NatmyDbYL04fPToEbUglYG7uzvvciF7pAhx/bewsGAOFyTpOZ/1uxg+fLhcQziWMzQ0xLBhw+SOIyTWucjHx0em4UtZ1O1cpCw5OTlYtmwZnJyc0L9/f1y6dEnwbbB6rzo4OKB79+4Sx9HT02P+Fk+ePClxhWS5N2/eMMuE+D1VV7Vq1eK9/4yIiKhSlSl8w5eVE+I5TFKs3lOs3jKEEEIIIaQKVKSwXoRIq3HjxrzL+cbW5sN6ida2bVvBx0vu2rVrhWVlZWXMuQ0kpS77sipr2LChIC+T5d3HWVlZuHr1Km/Z0KFDZc6LD9/xCqimhxLfUD7A2945rGGtqrLo6GiMGzeOd/4iU1NTnDhxQurWkaxzodDHVZs2bWBiYlJhuap6vl28eJF3+ciRIwWrmPzkk0+YZRcuXBBkG9UJ64WVkJX+6nJdZZ3v+XoMyorVc0YVOI7Dv//+y1tWla9xqnLq1Cm4u7tj1qxZKCoqEiRmcnIywsPDecvGjBkj9Xl1/PjxvMuLi4uxZ88eqWIVFxczy/T09KSKRf6jo6ODZs2aVViem5uL6dOnQyQSqSAr4Yk7b/MNFagorG1VpUorQgghhBChVZyxWsO4uroKEoc1JIWkLyliYmJ4lws9XjTA7op97949dOnSRea46rIvqzJ12cfXr1/nfSA1MDDgfYiVh7jjVdnatm2LGjVqVBjuRSQSYdCgQZg3bx7mz58Pa2trpeembImJiRgyZAgKCwsrlOno6GDfvn1o06aNVDGLioqYrfmFPhfq6OjAzs6uwkTrCQkJKC0tha6u8i5vKSkpePXqFW9Zhw4dBNtOgwYNYGtryzvXz61btwTbTnVRq1Yt3uVpaWmCbUMdzvmvX79mzukg5O9SEfc7skpMTGT+JoXO09bWFrq6uhUmLVfFNU4StWvXlrjhQFlZGXJycpCdnY0HDx7g2rVrOHPmDDIzM3nX37RpE2JiYnDmzBm55t0B3vZG4avkB6Qb1qtc+/bt0bRpU9y/f79Cmb+/P2bOnClxLHG9TsRVspDK9erVC3fv3q2wfNeuXUhOTsbatWsFmWtNlVjzJ2lpaSm1RxOrZ151mN+JEEIIIURWGl+RwhrzWFpmZma8yyV9Mc16iSX0S2mAPTxRSkqKXHHVZV9WZeqyj1nHa+PGjSWeC0NSijpeZaGjo4Mvv/wSa9asqVBWUlKCNWvWYP369Rg4cCCGDh2Kvn37VslKlaysLHh7eyM9PZ23fMOGDRgwYIDUce/du8cc91tR58KPK1JEIhFSU1MF7wkoDt+wjuWEepFerk2bNrwvQfleDlZ1ZWVluHz5MuLi4nDr1i3cvn0bmZmZyMnJQW5uLvLy8pgvYsURqjWuoaGh3C+Ty8lzzmcN+2ZkZAQnJye58npfkyZNYGhoyFs5q2ysa5ypqSnq1q0r+PZq1apV4XyampoKjuMEHSpTCHp6eszemZIoKipCUFAQFi1axHsdj4qKwuDBg3H69GmZe2dwHIedO3fylrVt2xbOzs4yxR03bhyWLFlSYfn169dx69Yt5rCpHxM3NJxQPXKqqylTpuD333/nPXdHRESgU6dOaNOmDUaMGIFBgwahZcuWavcbqwyrokLIIQclwdqeSCRCYWEhDA0NlZoPIYQQQogm0PihvWrWrClIHNbLY9bkwR9jvaj46quvoKWlJejftGnTeLcl7RjPH1OXfVmVKXofSzrsAet4vXPnjuDHK2voAHmPV1ktWLBA7PBqxcXFOHz4MMaNGwdbW1u0bNkSU6dOxa5du5CYmKjETBWjuLgYQ4cOZbaWnj17NmbMmCFTbHHzdFhbWwt+bF25coV3W8o+tp4/f867XF9fH40aNRJ0W3xzZInLoSqKi4vDnDlzULduXbi7u2P69On4888/ceHCBdy7dw/Pnz9Hbm6uTJUoAASrCBBy0ml5rqt8PZiAt79JbW3hbgN1dHQEaywgL9a5KC8vT/DzkJaWFm+ldGlpKbKzsxX9VZXOwMAAY8aMwe3bt9GzZ0/edcLCwrB27VqZtxEZGVmhkrycLL1R3v8s66U7az4WPqyKTQDMnlBEMs2bN8fkyZPFrhMXF4dvv/0WLi4usLGxwbBhw/Drr78iOjq6Qs8wdcTKUeiGTJUR13NXE/YjIYQQQogqaHxFijpM6lhYWIjXr1+rOg2xk19KQh32ZVWnLvtYHV66ynu8ysrKygqHDx/mnV/jYxzH4c6dO/jzzz8xfvx4NGzYEA0bNsTkyZNx6NAhjWx5+vnnnzPHnR88eDB+/fVXmWOrw3EFKP/YysjI4F1ubm4ueEtZ1st5Vg5VSUZGBiZPngw3Nzds3LhR0CG43idUpb+6nO9ZvVZYw4XJw8LCQvCYsqiu5yJlqlGjBg4fPozmzZvzlv/www8yNz7w9/fnXa6joyN2rqjKODg4oFu3brxlgYGBEr88rl27NrNMUeel6mTTpk0SD1WcmZmJI0eOYP78+ejcuTNq1aqFAQMGYP369WIndVclVgMjZffmE3d+UuZcLYQQQgghmkTjK1LUgbpMykfjMhNJqcMxq8rjtVOnToiKimJO4CxOYmIitm/fDl9fX9jZ2eGLL74QO7STOvn++++Zw6W4ublhz549crVQV4fjClD+scV6GaGIF9WsmFX5hS0AhIeHo1mzZti+fbvMPU2qK1aFrzKPT2WrruciZTM3N+cdKhN4e9xt3rxZ6pgFBQUICgriLevTpw9sbW2ljvm+cePG8S5PS0vDqVOnJIohbng4cT0ziWQMDAwQGhqKCRMmSP3Z3NxchISEYN68eXBwcEDPnj1x6NAhtbpusCopSkpKlNp7n3XfYGhoKGhvRUIIIYSQqoTukgSgLq3S1ekhgag3dTlmValVq1a4ffs2fv75Z5mHo8nKysK2bdvQvHlzfPbZZ2rRM40lMDAQy5Yt4y2rV68eTpw4IVEvHXHU5bhS9rmQNS+MIlp0sv6NqvIL28jISPTv35+GzBGYpENBSkNdhvCsruciVRg4cCBzrp0dO3ZIfZwFBQUxK8I6d+6M27dvy/Xn7OzMHEKJ1RPmYyYmJsxeKY8ePWJeE4jkDA0N4e/vj/DwcHTu3FmmGCKRCOfOnYOvry/c3Nxw4cIFgbOUjbh7LWU2imBti3qjEEIIIYSwafxk8+qAWu0QTUPH7FsGBgaYP38+Zs6ciePHjyMwMBDnzp2TaALn95WVleHvv/9GaGgoDh8+DDc3NwVlLJuIiAh8+umnvGVmZmY4ceKE2HljJFVdjyvWhMqsCWXlkZ+fz7tcX19f8G2pg8zMTIwcObLSIU+aN2+Odu3aoUmTJqhXrx6sra1hZmYGY2Nj6Onp8Q6x9vz5c/Tt21dRqasN1oTB0p7nJKGImLKoruciVenRowcePnxYYfnLly9x69YttG7dWuJY4iozli5diqVLl8qSokSCg4Px6tUr1KpVq9J1XV1deYeQKy0txe3bt+Hq6qqIFKsdDw8PXLp0CTdu3IC/vz+Cg4OZ8+eIExcXB09PT6xatQoLFy5UQKaSs7a2Zpa9fv0apqamSsmD1fjHxsZGKdsnhBBCCNFEVJEiAHEtd5YuXYoRI0YoJQ+hJjInVR/rmHVxcUFgYKCSs1E9fX19+Pr6wtfXF2VlZbh69SrCwsIQGRmJS5cuSTxhcHJyMvr27YvLly+jYcOGCs5aMg8ePMDQoUN5eyzo6OjgwIEDcHFxEWRb4s6F165dU9rLfkdHR6Vsp5yRkRHvcmW+qGbloOlWrFjBnHPAwsICCxYswMSJE8UOtcNSXVrdsubVqcoVKax/WysrK4SFhSktjzp16ihtW6rUtm1bZll0dLTEFSnJycnMObyUobi4GHv37sX06dMrXbdt27Y4efIkb1l4eDhVpAisdevWWL9+PdavX4/k5GScO3cOERERiIyMlLhipaysDIsWLYKhoSFmzZql4IzZHBwcmGUpKSmoV6+eUvJISUnhXS4uP0IIIYSQ6o4qUgRgbm4OPT093q78RkZGaNmypQqyIoTN0tKSd3lRUVG1P151dHTQqVMndOrUCV9//TVEIhHi4uIQERGBEydOICIiQuywHZmZmRgzZgyioqKUmDU7F29vb+aQSL///jv69esn2PZYxxXwdnJeOzs7wbalTlitS3NycsBxnKATzmdlZUmVgybLzs7G9u3becucnZ0RHByMRo0ayRxfnYfiExLrd/fixQsUFxcLVsFZVFSE9PR0QWLJi3UuysvLq/bXOEUQd+5nvazlExAQoPLh0Pz9/SWqSOnduze+//573rJTp05h7ty5QqdG/p+DgwMmTZqESZMmAXjbu/D8+fP4999/ceLECWRkZIj9/Lx589CzZ0+0aNFCGelWYGxsDCsrK2RmZlYok+b3Ii+qSCGEEEIIkR6NfSAAbW1tZqtDGtOdqKP69evzLqfjtSJtbW24ublhzpw5OHv2LNLT07Fx40axPU6io6OZLVWVpbCwEEOGDGG21Jw/fz6mTJki6DZZxxVQtY8t1lj5xcXFMg1BIk58fLxUOWiy4OBg3jHcjYyMcPjwYbkqUYCqfUy+r0GDBryVeSUlJbh7965g24mPj0dpaalg8eTBOhcVFhYqZMi96s7c3JxZJunvjOM47Ny5U6iUZBYTE4M7d+5Uul7nzp2Zvb3OnTvH+5KcKEbt2rXxySef4O+//0ZaWhpOnz6NgQMHMtcvKyvD8uXLlZcgD1bPWXWoSGnQoIHSciCEEEII0TRUkSIQZ2dn3uV8Y0YTomqs4zUzM7PatNKWVY0aNTBr1izEx8dj2rRpzPX27dunxKw+xHEcJk6ciEuXLvGWDxs2DGvXrhV8u6zjCqja58ImTZowy+Li4gTdFite06ZNBd2OOoiMjORd/sknn6BZs2Zyx3/8+LHcMTSBqakps4WxkMen0Me6PKrruUhVxA1/WVRUJFEMaYZoUjRJJp3X0dHB8OHDectKS0vx999/C5wVkYS2tjb69OmD4OBghISEMOcbCQ4OVmmlKmtI1QcPHigth/v37/Mul2ZOI0IIIYSQ6oYqUgTSoUMH3uWRkZEqH6aAkI+xjleO45gvL8mHDAwM8McffzAnqz537pySM/rPN998g/379/OWtW/fHrt371bIZMw2NjbMF7bnz58XfHvqok6dOszJia9cuSLYdp48ecKcL6RVq1aCbUddsF7yDB48WJD41elc16lTJ97lwcHBgm3j+PHjgsWSV+vWrZlDllXlc5GqiOt9IenE2QEBAbzLdXR08OLFC3AcJ/ifj48P7zYDAwNRVlZWac6TJ09mlm3cuBGFhYUSfXeiGP3798e2bdt4y4qKinDx4kUlZ/Qf1rxCt27dUsr2MzMzmfcT7dq1U0oOhBBCCCGaSO43aTo6OrzL+SY2rsp69uzJu/zly5eIjY1VcjaEhY7Xtxo0aMAcmurs2bNKzkazLViwgHf58+fPxc6loij/+9//sHr1at4yBwcHBAcHK3Ricta5sKofV127duVdfvDgQcEq08X1cmJtX5Ox5tsQYvx2kUhUrV6o9+jRg3f5yZMnBZkg/vXr1wgJCZE7jlAMDAyYv4mqfi5SBXEVxnXr1q308wUFBTh48CBvWe/evWFjYyNzbuKMGTOGd3lqaipOnz5d6ec7derEfOn8/Plz/Pzzz3LlR+Tn5+fHPAaTk5OVnM1/VF2RwtpOvXr1FPZ7I4QQQgipCuSuSDE0NORdzjeueVXWpUsX5mS/GzduVHI2hIWO1/8MHTqUd3lAQABzQmtSkbiWey9fvlRiJsC///6LqVOn8pZZWFjg5MmTsLW1VWgOrOPq1q1bCAsLU+i2Val37968y5OSkphDrElr9+7dvMudnJyq5OSwrApuISoCjx07hmfPnskdR1MMHjyYtyFBYWEh/vzzT7njb9myRe0aJLDORSEhIXj06JGSs6m6OI4T2wNTkgm9Dx06hNzcXN6y0aNHy5xbZQYOHMic30WS4b0A4IcffmCW/fTTT8x5rRRFmUNDaQpWpYUq57Fp3bo17zPJ69evlXJtunnzJu/yjh07KnzbhBBCCCGaTO6KFNZwJsqcLE8d6OjoYNKkSbxle/bsqTZjsas7Ol7/89lnn/Euz8nJwW+//abkbDQXa/gYADAxMVFaHrdv34avry/vZM+6uroICgqS6IWWvPr164c6derwlol74aTpfH19mT3ehPjehw8fZrYg9fPzkzu+OmKdr58/fy5XXI7jsG7dOrliaBpbW1v06dOHt+zHH39kDvEiiZSUFKxatUrmzyvK6NGjeSvdysrK1DJfTXXo0CEkJSXxlunq6qJLly6VxmBVWhgbGzMrxIRgaGiIYcOG8ZYdP35cojnj+vXrx+zxVVBQgBEjRoidQ0ZIgYGBGDt2rFK2pUlY92nKvEf7mIGBAbp168Zbpowhx1hDW7KuE4QQQggh5C25K1JY3aXv3r0rb2iNM336dN6b9dLSUowaNYrGSlYDdLz+x9nZGf369eMtW7lypWCt6Ks6VutPU1NTmJmZKSWHtLQ0DBgwgDlEz5YtW9CrVy+l5KKrq4uZM2fyloWFhVXZoU7s7OzQv39/3rLTp0/LNRdFYWEh5s+fz1umra2NCRMmyBxbnbF6eYaGhsoVd8OGDYiKipIrhiaaO3cu7/Lc3FxMmDBBpqEIi4uLMWHCBOTn58ubnuBq1arF/G3s2LEDQUFBSs6o6nn16hW+/vprZnnfvn2ZPT7KPXnyhNlbcdCgQRLPsSIrVo+XoqIiscMpvm/btm0wNjbmLYuPj8eAAQOQl5cnc46VKS4uxty5czF27Fi16xmmDlj3abVr11ZyJh9i3YOHh4crfNsRERG8y1k5EUIIIYSQt+SuSHF2duZdLuQEppqifv36mDFjBm9ZTEwMJk6cqJA5E6KiovDkyRPB41ZFrOP19u3bSExMVHI2qrd69WreSceLi4sxfPhwhQwRkZGRobIhngICAgQfMuHvv//mXd6yZUtBt8NSUFCAQYMGMc8BixYtEjshriLMmjWLWWm5ePFiHDlyRPBtFhUV4dixY4LHlcbixYuZZZ9//jkSEhKkjslxHD777DNmi++RI0eiUaNGUsfVBK6urrzLt27dKnML74iICLEvfquy3r17/x979x0eRdU+fPzedBKSkAQSulQhIIFQBOm9V6WKolhQmuLjQxELqKDgY8MGqEgvIiAICCK999CL9A6BkJDe5/3DF3+GzFm2zG7a93Nde116n50z9y6Z2Zm5Z86Rpk2b6ratW7dOnn32WauOUVJTU6V///52F7Ycady4ccq7zp9//nmHFNTi4uJkzZo1hveb20RFRUn37t3NDpP2+uuvP7Sf2bNnK+eRUs1hYqSWLVtK8eLFddssHd6rQoUK8sUXXyjbd+zYIY0aNVLux+2xb98+adCggXz55ZeG9+1su3fvNnx/cuDAATl8+LBum7OO01RURQtHz991/PhxuX37drZ4tWrVpEyZMg5dNwAAQF5ndyFF9cj+li1bLD4ByU/Gjx+vnMT7559/lqZNm8qVK1fsXo+mabJq1Spp2rSpNGzYkEKKhcqWLascdmjo0KEFbq6UmjVryn/+8x/dtps3b0q9evVk6dKlhqzr3LlzMmTIEHnkkUdk/vz5hvRprZkzZ0qFChXk+eefN2RCz+XLl8u3336r29a7d2+7+3+YzMxMefrpp2X//v267b169ZKPP/7Y4Xk8qFChQjJ16lTdtoyMDHnqqafk3XfflczMTLvXFRMTI5MmTZJy5copn9pwlkaNGkn37t11227duiXt2rWzanLbjIwMee2112TBggW67V5eXjJhwgRbUs0T2rVrpxu/ffu2PPPMM7rD2JmzfPlyadeunaSkpBiRXp701Vdfibu7u27bzz//LLVr15Y9e/Y8tJ9du3ZJeHh4lqc6XF1dpUSJEoblaoTixYvL5MmTddsSEhKkefPmyn24tW7cuCFvvfWWlClTRj777DND+syNUlJSZO7cuVKjRg3l8EAif2+/qrmj/m327Nm68cDAQKfcHe/q6ip9+vTRbdu7d6/FTywPGjRIhg4dqmw/cuSIhIWFyTfffGP1vkvPuXPn5KWXXpIGDRpIRESE3f3lBqdOnZLWrVtL3bp1ZfHixXZ/T5GRkfLss8/qtoWFhUmVKlXs6t9e1apVk8qVK2eLnzx5Um7cuOGw9armNOrWrZvD1gkAAJBfuNnbQdOmTaVIkSK6k1MPHDhQZs+eLV27dpXq1atLQECAcpLY4OBgCQ4OtjedHOfr6yvz58+X5s2b616s2b17t1SrVk0GDRokb7zxhvKubT0ZGRmydetWWbp0qSxbtsyhB9n5WdeuXXUv8q5Zs0aqVKkiTz/9tNStW1dKlSolPj4+uk9seHh4yKOPPuqMdB1u4sSJsnXrVtm7d2+2ttjYWOnZs6e0bdtWRo8erRwHXOX8+fOydOlSWbp0qezdu1d516kzpaWlyezZs2X27NkSFhYmvXv3lt69e+uezKpERUXJ5MmT5bPPPtMtBvj4+Ei/fv2MTFvXjh07lE9hlCtXTkaNGiXHjx83fL2W3MXZuXNnef3112XKlCnZ2jRNkwkTJsjSpUtl1KhR0r9/f+XFXT3R0dGyYsUKWbp0qfz555//7Gtzw5MZU6ZMkU2bNuk+MXHu3DkJCwuTzz77TF544QXdfct9J06ckBdeeMHsRe333nsvV3xmR3niiSekQoUKunOMrVq1Slq0aCE//fTTQ7fdy5cvy1tvvSULFy7Msg8qU6aMITc25CU1a9aUCRMmyOjRo3Xbjx07Jg0aNJDatWtLz549pWrVqlKyZEnRNE1u3LghJ06ckCVLlsihQ4eyLTtixAjZv39/rjs2GTp0qKxfv16WL1+erS01NVWGDRsmc+fOldGjR0u3bt3MbpcPunHjhvz666+yZMkS2bp1q2RkZBiYuWOkpaXJsWPHLHpvZmamxMbGyr179+T06dOyf/9+WbdunURFRZldLjg4WH744YeH9r9t2zblk3q9evWy6nfBHv3799f9rRL5+6kUVTHuQV9++aXcvn1bFi9erNseFxcnw4cPl88++0xef/116du3r/JpGD2pqamyZs0amTt3rixfvjxP/L3Z4sCBA9KnTx8JDAyUJ598Unr37i0tWrQQNzfLTls1TZNffvlF/vvf/yr38S+//LKRKdusf//+Mn78+Gzx5cuXy+DBgx2yTtVTwc54AgwAACCvs7uQ4uHhIS+99JJy3PvNmzdbNNbruHHjdA8k86IGDRrI3LlzpW/fvroXWePj4+Xzzz+XKVOmSHh4uDRr1kzCw8MlKChIAgMDxc3NTWJiYiQmJkZu374tR48elYiICDl8+HCuHIc8rxk8eLBMmzZN96L+lStXLDphfuSRRxwyRENO8PDwkJUrV0qjRo2UQ3SsW7dO1q1bJ2XKlJGmTZtKo0aNpFSpUhIYGCi+vr4SFxf3z9/smTNn5ODBgxIRESHXrl1z8qexzpEjR+TIkSPyzjvvSPHixaVevXpSt25dqVixogQGBkpgYKB4eXlJQkKC3L59W06dOiXbtm2TDRs2mJ3zaPLkyVZdHLGVuYsoFy9elHr16jlkvZYWxD777DO5dOmS7gVMkb/vuhw4cKC88cYb0rhxY2natKlUqFBBAgMDJSAgQJKTk//5u7py5YpERERIRESE/PXXX4Y8zeIIZcuWlTlz5kj37t11v6fY2Fh5+eWX5d1335U+ffpI/fr1pWTJkuLj4yM3btyQc+fOyZIlS2Tnzp1mv+cOHTqYHUosP3Bzc5Px48fLgAEDdNu3b98uVatWlfbt20ubNm2kRo0aEhAQICkpKXLr1i05c+aMrF69Wnbs2JHtzmYvLy+ZPn26dOzY0RkfJVcZNWqUHD16VObNm6d8z8GDB+XgwYMW99mwYUOZOHGi8ikiV1dXq/M00vz586VVq1aye/du3fY9e/bIk08+KcHBwdK0aVNp0qSJlClTRgIDA8Xf318SExP/2RdduHDhn32RXpEvt7t+/brUqFHDYf0XKVJEVq5cadEQQeaeXHfmRd169epJ5cqV5cyZM9na5s2bJx999JFFf8Nubm6yYMECKVSokPJJG5G/f5/feOMNefPNN6V27drSsGFDCQ0NlfLly4u/v794e3tLSkqKxMfHy5UrV+Svv/6SPXv2yM6dOyUxMdGuz5qX3L17V3788Uf58ccfpVChQlKrVi2pW7euhIWFSdGiRf/ZPlNSUiQ2NlbOnj0rERERsnr1arPHn/Xr13dYkcJazzzzjO7579KlSx2SY1RUlO78KOHh4VK9enXD1wcAAJDf2F1IEREZO3asLFiwQK5fv25Ed/lCr169xMXFRfr3768cRiQjI0P279+vHJYHjlGjRg159dVXlUMPFUTBwcGyZcsWad++vdkhr65cuSLz58/PsaG5HOnmzZuycuVKu+d36tmzpwwZMsSgrPI2V1dXWbx4sQwYMMDspL0xMTGyatUqWbVqlROzc5yuXbvKt99+a/bv4ObNm8o7oB/miSeekMWLF4vJZLI1xTyjf//+smDBAlm7dq1ue2Zmpvz+++/y+++/W9ynyWSSmTNnKufMKgh++uknyczMVA4bZ41atWrJ8uXLxdPTU1nc9fT0tHs99vD29pZ169ZJt27dzM7RFRkZKUuWLGEiehvVqFFDFixYYNFTi4mJifLLL7/otpUtW1YaN25sdHpmPf300/L+++9ni1+/fl3+/PNPi4cZc3V1lVmzZkmtWrVk1KhRZucdyszMNPw8oE6dOob1lZskJSXJrl277J7XqESJEjJnzpwcL+7eV7FiRXniiSeyfa4tW7bI3bt3JTAw0ND1rVixQnc//cwzzxi6HgAAgPzK7jlSREQCAgJk9erVEhISYkR3+cZTTz0lW7duVc6Zgpzz5ZdfSpcuXXI6jVylZMmSsn37dnn66adzOpU8a+DAgbJo0aICcYHbUu7u7rJgwQKZNGmS04ZpyQ0GDx4sc+bMMfwCcpcuXeSPP/6QwoULG9pvbuXi4iI///yzYXfQu7q6yrRp06Rv376G9JdXubu7y7x58+Tjjz+2eLgcPT169JAtW7ZIsWLFRER0h7QTEeWwrs7k6+sra9eulTfeeIN9tME8PDxk/PjxcuDAAYsn8F66dKnExcXptvXr18/p/0bmnoCxZc7HESNGyO7dux32ZOiDqlatKr/99pvMmDHDKevLi8qXLy/bt2/PdUPzvvLKK9li6enpDino6t3U4uXlpXzyEwAAAFkZUkgR+fuOxCNHjsigQYNy/M7D3OTxxx+Xw4cPy+jRox3yvdSqVUu+/PJLqVWrluF952ceHh6yfPlymT59ujzyyCM5nU6u4efnJ/Pnz5dff/3VIXMvBAUFybBhw5QT3DtajRo1HHIxv0SJEjJv3jz56aefcs1djrmJyWSS0aNHy/79+6VFixaG9+/p6Sk9e/aU7777zvC+7fHss8/Knj17pHbt2nb35ePjI1988YUsX75cfH19Dcgu7/Dz85Nt27bZPRFuqVKlZM2aNTJo0CCDMsvbTCaTjBkzRo4ePSo9evSwam6QGjVqyJIlS2TZsmXi5+f3T1xvvjwR+afQktM8PDzk888/l82bN0t4eLjh/RcuXFief/55mThxouF950ZVqlSRyZMny+XLl2XcuHFW/b6aK07kxA0dlStXlrp16+q2rVixQvm3bU7t2rVl9+7dMmvWLKlWrZqdGarXMW/ePDl+/Hiev0GodOnSDpkv09XVVYYOHSoHDx7MlTe39evXT/dmREvmGbLGpUuXZMOGDdni/fv3l6JFixq6LgAAgPzKkKG97gsODpbp06fLJ598ImvWrJHt27fL8ePH5dKlSxIVFSWJiYnZxikvCAoXLiyTJk2S119/XaZNmyazZ8+WS5cu2dSXq6ur1KtXT9q0aSNPPfWU1KxZ0+BsCw4XFxcZNGiQvPTSS7Jz505Zv369REREyLlz5+TWrVsSFxcnqampuWKCdGfr3r27dO7cWZYsWSLTpk2Tbdu22TwnRdmyZaVNmzbSqVMn6dSpk3h4eBicreW+/vprmThxovzxxx+yevVq2bJli11z3dSoUUMGDBggr7zySoG7uG2LsLAw2bhxo2zbtk2+/fZbWblypc3jvRcpUkRatGgh7du3l549exo+/IVRatasKfv27ZOff/5ZPvvsMzlw4IBVywcGBsrAgQPlv//9r2Hz7vj4+MhTTz2VLe6IC1hG8ff3l+XLl8vcuXPl448/lpMnT1q8bFBQkLz66qsyevRotlMdVatWlWXLlsmlS5dk2bJlsnnzZjlx4oTcuHFDkpKSxNvbWwICAqRq1apSt25d6dKlizRo0CDbEwMZGRly+/btbP27uLjkmkLKfU2bNpUDBw7I77//Lt999538+eefZodgMickJERatWolHTp0kB49eoiPj4/B2eYsHx8f8ff3F39/fylatKjUrFlT6tSpI/Xq1bN5ToX09HRp1qyZNGnSRHd9YWFh9qZtk0mTJsm2bdt0227evClFihSxuk8XFxd57rnnZMCAAbJu3TpZsGCB/PbbbzYVZu4rW7asPPnkk9KvXz95/PHHbe4nt2ndurXcuHFD9u7dKytXrpQNGzbIwYMHbd42AwICpHfv3jJkyJAc+5uyhIeHhwwZMkTGjRuXJb5//345fPiwYed6M2bM0D2Wf/311w3pHwAAoCAwaQXxKnEucPDgQdmyZYvs379fzp49K1euXJHY2FhJTk4WDw8P8fX1FV9fXwkODpaqVatK1apVpXr16tK4cWPx9/fP6fRRwNy6dUvWr18ve/bs+ac4eufOHUlMTBRN0/75ey1SpIhUrFhRQkNDJTQ0VB5//PFcN4TCg27evCk7d+6UI0eOyNmzZ+XcuXNy48YNiYuLk7i4ODGZTOLn5yd+fn4SHBwsYWFhEh4eLo0aNXLohL0FQWJiomzcuFF27dolhw8flosXL8qNGzckISFB0tPTxcfHR3x9fcXPz0/Kli0roaGhUrVqVQkPD5c6derkyad/Tp06JWvXrpVdu3bJ6dOn5cqVKxIfHy8ZGRlSqFAhKVasmFSsWFFq164tzZs3l1atWuVo8TE30jRNNm3aJBs2bJDt27fLlStXJCoqShISEsTb21uKFCkilStXlrCwMGnTpo20bNlSvLy8dPvRm8PMZDLxZK0NIiIidJ++qlSpku4k3rlJTEyMrF+/Xnbv3i1Hjx6VS5cuya1btyQxMVEyMjKkcOHC//wOlC9f/p99Ud26daVGjRoMFQarpKWlSUREhOzatUsOHTokFy5ckMuXL0tMTIwkJiZKWlqaeHh4iI+Pj4SEhEiZMmUkNDRUwsLCpEmTJlKpUqWc/ghOk5ycLPv27ZP9+/fLX3/9JefOnZOLFy/KvXv3JD4+XlJSUv4p9hUpUkSqVKkitWrVkjp16kjLli3zzO/n7du3pWzZspKcnJwlPnToUPnmm2/s7j8zM1MeeeQRuXr1apZ4q1atZP369Xb3DwAAUFBQSAEAAIBdpk6dKkOGDMkW79q1q6xYsSIHMgKAvGPEiBEyZcqULDFfX1+5fPmyTU9D/dsvv/wivXv3zhbfvHmzNGvWzK6+AQAAChLD5kgBAABAwTR//nzdeKNGjZycCQDkPW+99ZZ4e3tnicXFxRky/9snn3ySLdaqVSuKKAAAAFaikAIAAACbRUREyI4dO3TbWrRo4eRsACDvCQkJkWHDhmWLf/XVV9mG/LLGxo0bZf/+/dniEyZMsLlPAACAgopCCgAAAGySkZEhr732mm5buXLlpF69ek7OCADyplGjRmWbC/PWrVsya9Ysm/ucPHlytlinTp2kQYMGNvcJAABQUFFIAQAAgE3efvtt2b59u27bwIEDnZwNAORdQUFBMm7cuGzxiRMn2vRUytatW2XdunVZYu7u7vLZZ5/ZnCMAAEBBRiEFAACggMjIyJCuXbvKzp077eonLS1NBg0apHu3s4hI4cKFZejQoXatAwAKmuHDh0u1atWyxK5evSpff/211X2NGTMmW+y1116TKlWq2JwfAABAQWbSNE3L6SQAAADgeOnp6eLu7i4iIg0bNpRnnnlGnnrqKQkODrZo+YyMDFm4cKF8/PHHcuLECeX7PvnkExk5cqQhOQNAQbJhwwZp3bp1llhAQICcP39eihQpYlEfK1askO7du2eJFS9eXE6fPi1+fn4GZQoAAFCwUEgBAAAoIP5dSLnP1dVV6tSpI7Vr15bw8HApVaqUFClSRHx8fCQ2Nlaio6Pl0qVLsm3bNtm6datERkaaXUfjxo1l06ZN4ubm5siPAgD51tSpU+XWrVtZYl27dpXatWtbtPz8+fPlzJkzWWJNmzaVli1bGpYjAABAQUMhBQAAoIDQK6QYqVKlSrJt2zYpXry4w9YBAAAAAICzMUcKAAAA7Fa7dm3ZsmULRRQAAAAAQL5DIQUAAAA28/DwkFGjRsnOnTulZMmSOZ0OAAAAAACGo5ACAABQQLi5ucnRo0fl3XfflWrVqtnVV0BAgLz22mty8uRJmTx5snh6ehqUJQAAAAAAuQtzpAAAABRQkZGRsmvXLtm3b5+cO3dOLl68KNevX5f4+HhJTEyU1NRU8fDwkMKFC0upUqWkfPnyEh4eLk2aNJEmTZowoTwAAAAAoECgkAIAAAAAAAAAAKDA0F4AAAAAAAAAAAAKFFIAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUEgBAAAAAAAAAABQoJACAAAAAAAAAACgQCEFAAAAAAAAAABAgUIKAAAAAAAAAACAAoUUAAAAAAAAAAAABQopAAAAAAAAAAAACgW2kDJ+/HgxmUzZXuPHj8/p1PKcWbNm6X6Xzz//fE6nBgAAAAAAAACAXdxyOoH7UlJSJCYmRhITEyU5OVk8PDzE29tbihYtKu7u7jmdHgAgj7pz547ExsZKenq6+Pr6SlBQkHh4eOR0WgAMkpSUJHfv3pX4+Hjx9PQUf39/CQgIyOm0kIfExsZKXFycJCYmSkZGhnh5eYmfn58EBgbmdGpwsNjYWImOjpakpCTx8fGRwMBA8fHxyem0ADhYQkKC3L17VxISEqRQoUISEBAgfn5+OZ0WACCXy5FCyq1bt2TTpk2yc+dOOXDggFy4cEFu3rwpmqZle6/JZJJixYpJlSpVpEaNGtKoUSNp1qyZlCpVKgcyB1CQjR8/Xt5//31l+5IlS+Spp55yYka5x5o1a6Rjx45m37Np0yZp3ry5w3M5dOiQLF26VNavXy/Hjx+XuLi4LO2urq5SsWJFadiwoXTp0kU6d+7stMJKcnKyLF26VFauXCkHDx6UmzdvSmZmppQoUUJq1aol3bp1kx49enARxwAxMTFy9epVu/pwdXUVX19f8fPzE19fXzGZTAZllztcuXJFjh49KkePHpXz58/L5cuX5fLlyxIdHS0JCQmSkJAgnp6eUqRIEfH395fixYtLeHi41KtXT5544gl55JFHciTvhIQEWbZsmaxevVr27t0rFy9ezHYMGRgYKDVq1JB27dpJz549pXLlyk7L7+jRo/LLL7/IunXr5PLlyxIVFSWBgYFSpkwZadu2rfTq1Utq1qzptHyQVUREhGzbtk127dolJ06ckAsXLmT7nbjPw8NDypQpI9WrV5datWpJ06ZNpWHDhlKoUCEnZ51zLly4IAkJCTmy7uDgYAkODja0z6tXr8qSJUtkzZo1cujQIYmMjMz2ntKlS0udOnWkY8eO0rNnT6cW1P78809Zvny5bNu2Ta5fvy7x8fESEhIilStXls6dO0vv3r2lZMmSTssnv0pLS5PTp09bvZyLi4t4enr+8woICBA3t1xzb6pD/PXXX5KamurQdbi7u0uVKlUcuo6oqChZunSp/P7773LgwAHdY8SQkBCpVauWdOjQQXr27OnUa067du2SZcuWycaNG+Xq1asSExMjxYoVk/Lly0uHDh2kd+/eUqlSJaflAwBQ0JwkKSlJ++GHH7RmzZppLi4umojY9apbt642efJk7ebNmzblM27cON1+x40bZ+wHLwBmzpyp+10+99xzOZ0aYJjMzEytfPnyZvdLnTt3zuk0c0R8fLz2yCOPPHS/vWnTJofmsXXrVq1JkyZW/56UKFFC+/TTT7W0tDSH5jd//nytTJkyFuXz448/OjSXgkD122Try2QyaY888ojWrVs3bdy4cdrWrVu1zMzMnP6YFktOTta2bNmiTZw4UevQoYMWEBBg93fStGlTbc6cOVpSUpJTPkN8fLw2duxYrUiRIlb/23Xu3Fk7evSoQ/O7fv261r9/f81kMj00p549e2oXLlxwaD74P+fPn9dGjhyplStXzu6/e29vb+2pp57Sli5d6vDfjdygWbNmhu5LrXkZeV528eJF7emnn9bc3Nys/vceMmSIdufOHcNy0bN3716tQYMGD83Hy8tLGzNmjBYfH+/QfPK7CxcuGHZsULRoUa1atWpap06dtP/+97/ajBkztCNHjuSpYwRzLDnGt/dVqlQph+V/+/ZtbciQIVqhQoWsysnd3V3r37+/dunSJYflpmmadvr0aa1Dhw4PzcfV1VUbNGiQFhkZ6dB8AADmObyQkpycrE2aNEkLDg52yI/u/R+4kydPWpUXhRTjUEhBQbBp06aH7o/c3NxsLu7mZW+88YZF+2tHFVKSk5O1QYMGWXTx0tzrscce006cOGF4funp6dqwYcOszmfAgAFaamqq4fkUFEYXUvRe5cuX18aNG6fFxMTk9Md9qIULFzrseyhXrpy2Zs0ah+a/ZcsWiwqRD9tHjx8/3iEXtw4ePKiVKlXKqnyCgoK0HTt2GJ4L/s/Zs2e1vn37aq6urg752y9ZsqQ2efJkLSEhIac/qsPkh0LKt99+q3l7e9uVS1BQkPbrr78aks+D5syZo3l4eFiVT+3atbXr1687JJ+CwKhCirlXQECA1q1bN23u3LlabGxsTn9km+XlQsqSJUu0wMBAu3Lz8fHRpk2b5pD81q1bp/n7+1uVT/ny5a2+9gUAMI5DJ5vfuHGj1KhRQ8aMGaP72LQR0tLSZP78+VK9enV56aWX5M6dOw5ZD4CCbdasWQ99T3p6usybN8/xyeQiBw4ckK+++irH1h8dHS3NmjWT77//Xnd4SGscO3ZMGjRoIOvXrzcou78NHjxYvvnmG6uXmzNnjvTr18/uzwXHuXDhgrz//vtSpUqVArft/9vFixelQ4cOMmDAAElOTja8/9mzZ0vr1q3lypUrdvWTnp4u48ePlx49ehg6TMnJkyelefPmcu3aNauWi4qKklatWsnevXsNywV/u/9v/dhjj8miRYskIyPDIeu5fv26jB49WsqXLy8zZsxgf22wIkWK2LW8pmny6quvytChQyUxMdGuvqKiouTJJ5+USZMm2dXPg+bPny8DBgywep908OBBadq0qdy9e9fQfGCc6OhoWbFihTz77LMSHBwszz//vBw7diyn0yowJk6cKL169bJ7G0lISPhnP2LkPn7Lli3SsWNHuXfvnlXLXbhwQZo0aSIXLlwwLBcAgOUcUkjJzMyUDz74QNq0aSNnzpxxxCp01zljxgypXbu2U9YHoOCIj4+XJUuWWPTe2bNnOzib3CMjI0Nefvllh12gepj4+Hhp37697Nmzx7A+Y2NjpVu3brJjxw5D+ps+fbr88MMPWWLu7u4ydOhQ2bVrl9y7d0/i4+Pl4MGDMnLkSPHy8sry3qVLl8qECRMMyQWOc+vWLXn22WdlwIABkp6entPp5Ji5c+dKu3btJCkpybA+Fy1aJC+88IKkpaUZ1ueKFSukX79+huy74uPjpVu3bhIbG5slXq1aNZk1a5ZcuXJFUlJS5MaNG7Jo0SKpW7dulvclJydLjx495NatW3bngr9dv35dmjdvLu+//75DCnt6IiMj5aWXXpJx48Y5ZX0FgYuLi/Tq1cuuPoYNGybTp083KKO/CzNvvfWWfPHFF4b0d+jQIXn55ZezxTt27CirVq2S27dvS3Jyspw9e1amTJkiJUqUyPK+s2fPSp8+fSjg5QHJyckye/ZsCQsLk169etl9YwDM+9///ifvvPOOodvGd999JyNGjDCkr6tXr0rPnj2zHTM+8cQTsnjxYrlx44akpKTI5cuXZcaMGfLoo49med+dO3eka9euhh5vAQAsZPQjLmlpaVrv3r0tfty1b9++2tdff61t3LhRu3Dhgnbv3j0tPT1dS0pK0m7fvq0dOnRI++WXX7TRo0dr9evXf+j8Kv7+/hblydBexmFoL+R31g4RdODAgZxO2Sn+97//WfW9GD20V79+/cyur2rVqtqXX36pHTlyRIuLi9NSUlK0y5cva0uXLtV69Ohhdiiw4OBg7caNG3blFxMTk20eiuDgYG3v3r3KZU6cOKGVLVs2yzKenp4OH585P3LG0F56r2effTanP7ou1dBeHh4eWv369bXnn39e+/jjj7XFixdr69at03bv3q1FRERoW7Zs0X799VdtwoQJWo8ePSwaY7xnz56G5Hzo0CHNy8tLuR53d3ftueee037//Xft5s2bWmpqqnbv3j1t37592oQJE7TSpUubzfPdd9+1O8f3338/W78vvfSScu6MzMxMbdSoUdmWefXVV+3OBZp28uRJrWTJkhZtq9WrV9dee+01bcGCBdq+ffu0W7duaQkJCVp6eroWGxurXblyRdu6dav2ww8/aM8995xFQ8u9/vrrOf0VGC6nhvZq3769XXlPmzbNbP9BQUHamDFjtB07dmjR0dFaWlqadvv2bW3Dhg3a0KFDzQ4F5uLioq1fv97u77ZFixZZ+nVzczM7R9q9e/e0Vq1aZctn0aJFdudS0DhjaC9zLx8fH+3bb7/N6a/BInltaK81a9aYPcb38fHRhg0bpm3cuFG7ffu2lpaWpt29e1fbvn27Nnr06IcOBTZjxgy7cxw4cGC2ft9//33l+1NSUrT+/ftnW2bSpEl25wIAsI6hhZS0tDSte/fuD/2hrF+/vrZ06VItJSXF6nVcvXpV++STT5Q/6BRSABjN2osIw4cPz+mUHe78+fO6Fxn69u2r/F6MLKTMmTNHuR5XV1ft448/1tLT0832sWvXLrMnh+3atbMrxwkTJmTpz93dXdu1a9dDlztx4oRWuHDhLMsOHjzYrlwKInOFFEv/FpOTk7XIyEjt2LFj2oIFC7TBgwdrRYsWfeg+wIiTbKPdL6SYTCbtiSee0CZMmKBt3rzZ6oni7927p3355ZcPHdN73rx5duWbkpKiVa1aVdl/WFiYdurUKbN9JCYmaq+//rqyDxcXF2379u0255iQkJDte+jatatFc7C8+OKL2fYPV69etTkXaNrx48cfOiejh4eH9vLLL2tHjx61uv/MzExt+/bt2ksvvaR5enrq9p8fCymO9Morryj/rX7++Web+z19+rTZImyfPn206Ohos31cu3YtW6Hj36+QkJCH9mHO9u3bs/X52WefPXS5hIQErUaNGlmWCw0NtTmPgspcIeVh1wMyMzO1xMRELTo6Wjt79qy2bds2bc6cOdp///tfrXnz5sr9g97r2Wef1ZKTk53zoW2kOla+cOFCTqeWTVRUlFasWDHl992iRQvt2rVrZvuIjo7W+vTpo+zD29tbO3v2rM05Xrp0Kdu8XZacO2ZkZGht27bNslxgYKDVx3EAAPsYWkgZMmSI2QOF4sWLa7/88osh60pLS9N++uknrUSJElnWQSEFgJHOnz+vvKupQYMGuvGiRYvm+0nC27Vrp/t9bNy4UfkbYFQhJTY2VitevLjywuj8+fMt7uvatWtahQoVlDkvW7bM5jzr1KmTpa+hQ4davOyDRZgSJUo4ZILs/MyIQoqelJQU7aOPPjJ7ka5YsWJaXFyccR/GAHv27NGmTp1q2OTE165dy3Yx79+vsmXLKp/KsMTkyZOVfderV8+qiXsnTZqk7Cs8PFzLyMiwKceVK1dm6cvT09PiYsi9e/ey3fU6depUm/KApkVGRmrlypUzex7Spk0b7fz584as79q1a9qQIUOyPSlPIcVyiYmJyoJsQECAXReXO3bsqPw7sObpr9TUVK1Lly7Kvl577TWbc3zzzTez9FWjRg2Lf+f1ijBMPm0dewopD5OYmKgtXbpU69y580NH0xARrXPnzrn6vCEvFVIGDx5s2Pf86quvKvvq2rWrzTl+/fXXWfoKDg7WEhISLFr2/Pnzmru7e5bl16xZY3MuAADrGVZImTFjhtkDhIYNG2o3b940anX/uHfvnjZs2LB/1kMhBYCRVPuKkJAQ7fjx48p9nj0X4HO7efPmZfu8bm5u2qFDh7RNmzYpvxOjCil6Q+ncf40ZM8bq/g4fPqy8e7BKlSo2FTBiYmKyFeAOHTpk8fKRkZHZlj9+/LjVeRRkjiqk3Pfnn3+aLaaYG54lv7h9+7bZ4bN+++03m/q9d++e8gJrUFDQQ+8m1WPuaTlriq//9p///CdLP927d7dq+eHDh2dZvlevXjblUdBlZGSYfXLUZDJpH3zwgUPWffDgQa1WrVr/rItCiuXmz5+v/Dez5saDB23ZskXZb+PGjR/6tOqD4uLitMqVK+v25+bmZvPQm7Vr187S15dffmnV8g8WsvPKMFG5hSMLKf927NgxrWvXrmavk4iI1q9fP8PWabS8Ukg5d+5ctic97r8qV65s9Q0u6enpWuPGjZX/Zjt27LApzyeffDJLPyNGjLBq+QeLuyNHjrQpDwCAbQyZbP7y5ctmJ95q2bKlbNiwQUJCQoxYXRZ+fn7y9ddfy2+//SaBgYGG9w+g4NI0TebMmaPb1rdvX6lWrZrUr19ft33WrFkOzCzn3L17V954441s8ddee01q1qzp8PUnJSXJN998o9tWoUIFef/9963uMywsTN58803dttOnT8uKFSus7vP69etZJrgsVKiQhIWFWbx8sWLFpHLlylliTEyau7Ru3VreeustZbstfzd5TdGiReXTTz9Vtq9atcqmfr///nu5d++ebtukSZOkZMmSVvf59ddfi7+/v27b//73P6v7E/l7sth/a9CggVXLP/HEE1n+n23cNlOmTJEtW7Yo26dNmybvvvuuQ9YdHh4uu3fvlqFDhzqk//zM3HHSwIEDbe73k08+0Y27ubnJDz/8IK6urlb1V7hwYfn2229129LT0+Xzzz+3OkcR9h8FRfXq1WXFihUyf/588fHxUb5v4cKFMnXqVCdmlv98/vnnkpGRodv23XffSeHCha3qz9XVVb7//ntxc3PTbVftax6GbR8A8jZDCilDhgyRuLg43bZq1arJihUrxMvLy4hVKXXp0kV27dolFSpUcOh6ABQcW7ZskQsXLui2PfvssyIiMmDAAN32NWvWyO3btx2WW0558803s32uMmXK2FTAsMXSpUuV3+t7770nHh4eNvU7evRo8fX11W2z5cQ2Ojo6y/8HBASIyWSyqo+goKAs/3/37l2r84Bjvfnmm8rjm927dzs5m5zx1FNPKW9k2bdvn019Tps2TTdesWJFeeGFF2zqs2jRosqbfg4dOiS7du2yus8Ht3Nrb+hhG7ff5cuX5Z133lG2v/feezJo0CCH5uDp6SnffPONTJ06VXnBDVlduXJFNmzYoNtWo0YNqVOnjk39Xr58WX7//XfdtmeeeUaqVq1qU79t2rSRZs2a6bbNnDlTkpOTre6T/UfB8vTTT8uWLVukaNGiyvf85z//kYsXLzovqXwkKSlJefNb8+bNpXXr1jb1GxoaKv3799dtW7lypVy7ds3qPtn2ASBvs7uQsn37dlm9erVum5eXl/zyyy9WV/9t9eijjyoPygHAWqq7JUNDQ/85ye/Tp4+4u7tne09aWprMmzfPkek53aZNm3S/kylTpjhtPz9//nzdeNGiRaVfv3429+vn56csim3YsEFu3bpldX//prq73pyYmJgs/6+6mx45x8fHR5o2barbdvv2bYmPj3dyRs7n5uYmLVq00G2z5YLQnj175Ny5c7ptQ4cOFRcX2w9dBw8erLwbfcGCBVb3Z+92zjZuvw8++EASExN125o3by7jxo1zWi6vvvqqvP32205bX142e/ZsyczM1G2z52mUhQsXZnka9N9ee+01m/sVERk2bJhuPDY2VnkubA77j4KnTp06snLlSilUqJBue3JysowePdrJWeUPv/32m/LGXkdt+5mZmbJo0SKr+2PbB4C8ze5CirkTlJEjR0q1atXsXYVVAgICHNb37t27ZezYsdKmTRspU6aM+Pj4iKenp5QqVUrCw8Old+/eMnPmTLl586bDcniQpmmyfft2+eCDD6Rz584SGhoqAQEB4uHhIZ6enhIYGCiPPfaYdO/eXT7++GOb7w7NTS5duiQ//fSTvPzyy9KkSRMpW7as+Pn5iZubm3h7e0vx4sUlNDRUunfvLm+//bYsW7bMpouYlkpJSZG1a9fK2LFjpX379lKlSpUs/wZBQUFSs2ZN6dWrl3z55Zfy119/OSyX+5KSkmTFihXy7rvv/vN3UbJkSSlcuLC4ubmJr6+vhISESKVKlaRFixby/PPPy4cffih//PFHtoOzgiohIUGWLl2q2/bMM8/8899BQUHSsWNH3ffNnj3bIbnlhOTkZHnllVeyxTt37iw9evRwSg6xsbGyfv163baePXva/DTKfao7zjIyMqwepunBoSwTEhLkxIkTFi9/7949OXPmTJaYLcMZwfEqVqyobHPkb09uUqpUKd246qKGOcuWLdONu7i4SN++fa3u799CQkKkVatWVq33Yf392969e61a/sH3s41b58KFC8rfWXd3d5k6dapdhTdbOPI8JD8x9+/272Msa6m246pVq0p4eLjN/Yr8fbzz4AXQ+1THi+aw/yiYGjRoIJMmTVK2L168WI4cOeLEjPIH1bbv7++vPE+zVN26deXRRx/VbWPbB4ACyJ4JVk6dOqWcfCsoKEiLj483Yh4Xh7Bmsvlff/1Vq1mz5kMnibv/cnFx0V566SXt5s2bDss/Li5OmzRpklamTBmL87r/qlSpkvb1119rSUlJhuSimtD3ueeeM6R/TdO0lJQUbebMmVq9evWs/rzy/yeDbNy4sTZ9+nSrJ5pTOXfunPbqq69qRYoUsTqfBg0aaMuXLzckj387efKk9uKLL2p+fn42fU8if0/KWqtWLe2jjz7Szp07Z3iOecWsWbOU38/FixezvHfJkiXK7zMiIiJnPoDBxo4dm+2zeXt7Z/suHDnZ/IoVK5R9r1692q6+NU3TMjMztaJFi+r237NnT6v7e3By2v/+978WLztlypQsywYEBFg9QW5B5+jJ5u/T2zbuvyIjIw1bT242evRo3c/v5+dndV/h4eG6fdWrV8+QXL/++mvlv9exY8es6uvBybK9vb21W7duWbRsUlKSVrJkySzLf/7557Z8pAJrzJgxyn/LV155JafTg8LWrVuV/27du3e3ud/o6GjNxcVFt1+jJmN+6qmndPsPDg7WMjMzrerr5Zdftnkfd+jQIc1kMmVZ/uDBg9Z+nALNWZPN68nMzDR7Tjto0CCHrt9auX2y+czMTC0oKEg3x169ehmyjjfffFO3f1dXV+3evXtW9TVx4sQsfZQqVUpLTk62aNkbN25o3t7eWZZftmyZLR8JAGAju27TmjFjhrJt8ODBZidUywvu3bsnTz31lPTo0UMOHz5s8XKZmZny448/SuXKlWXNmjWG57VkyRKpVKmSjBkzxqbJxc6ePSvDhw+X0NBQ+fPPPw3Pz2i//vqrVKlSRQYOHGjzEzXp6emyfft2eeWVV6RkyZKyc+dOm/OJj4+XESNGyKOPPirTpk2z6QmO3bt3S/fu3aVNmzZy6dIlm3O5LyUlRd555x2pWbOmzJgxQ2JjY23uS9M0OXTokIwdO9bmMarzA9WwXk2aNJFHHnkkS6xz585SpEgRq/rJS44ePao7GfN7772X7btwpM2bN+vGXV1dlcMrWcNkMimHKFKt25zOnTtn+f9vvvnGot+Sy5cvywcffJCtL2snyIVzmPsNUO0X8pvIyEjdeLFixazqJyYmRg4dOqTbpto2rdWyZUtl26ZNm6zqq23btlmGdkxMTFTOw/Kg9957T65fv/7P/5tMJunSpYtV6y/IMjIylE81uLi4yJtvvunkjGCpmTNnKtvsGdZr69atyuHCHL3/iIyMlOPHj1vV14PHCPv27ZPvv//+oculpaXJkCFDsgxhVrZsWalVq5ZV60fOMZlMZucWnD9/vnLIQmR39OhRiYqK0m1z9LafkZEhW7dutaqvB7f9a9euWTzX5GuvvZblb8Pb29vm+V8AALaxq5Bi7lFGWycDzS2uXLkiDRs2tGmoh/vi4uKke/fu8uuvvxqSU0ZGhrz++uvSq1cvq8fr13Px4kVp166dvP/++8rxhHNSYmKiPPfcc/Lkk08aOvFeXFyc8qLPwxw7dkzCw8NlypQpkpGRYXcu69evl7p161p9APZvSUlJ0rVrV5k4caKkpqbandO/2fJ3cfHiRTGZTLqv5s2bG5qfo1y8eFG2bNmi23Z/kvl/8/T0lN69e+u+f8GCBZKWlmZobs78fjMzM2XQoEHZPsNjjz0m//nPfwxfnzkHDhzQjYeGhho2R0u9evV043fu3JHLly9b1dfrr7+eZbix5ORk6dSpk9liysWLF6V9+/ZZTghdXV3lrbfesmrdcB7VfB5lypTRnT/JEuPHj1du57mxOLt//37duLXF+IiICOXvzuOPP251XnrM7S8OHjxoVV9FixbNduF34cKF8vrrrysv6IqITJ48OVtxul+/flKpUiWr1l+Q7dy5U27cuKHb1rhxY6lcubKTM7JefjheslZCQoL88ssvum0hISF2DcGjOkYQMW7/oTpGELF+/3F/6N1/Gz58uNn5mpKSkqRv377Zbgh75513xGQyWbV+5KwOHToo91MJCQk2zfvavHlz5T4lP09in9e2/bCwMGnbtm2W2KRJk+TTTz9VLpORkSHDhg3Ltv8cMWKE+Pr6WrV+AIB9bC6knD59Ws6fP6/bVrduXSlfvrzNSeW0O3fuSNu2ba0az14lNTVVnn766Wxj3VsrMzNTBgwYIF999ZXdOf2bpmkyfvx4i++gdJbo6Ghp0aKFzJkzJ6dT+cf27dulYcOGcvbsWUP7vXPnjnTo0EF54f5hevXqJevWrTM0p4Ju9uzZuhfzvLy8pFevXrrL6BVYRP6ecPr33383ND9n+u6772T37t1ZYiaTSaZOnWrzRWJbqQoQRt6FaW4M9YiICKv6euSRR+T111/PErt27ZrUr19fRowYIfv27ZP4+HhJSkqSo0ePynvvvSdhYWFy8uTJLMvcf4IQuU9iYqKyEG7upDs/OXnypBw9elS3TTUfiYrqaRQR47Zzk8kkNWvW1G2zdhsX+fvJkgfnxfjqq6+kdu3aMm/ePLl27ZqkpaVJZGSkLFu2TJo2bSpjxozJ8v4iRYrIxIkTrV53QWbud1V1YwNy3pIlSyQ+Pl637ZlnnhE3Nzeb+1btP0qXLi1BQUE29/tvYWFhynl3rN1/uLi4yP/+978sBZDU1FTp37+/dO/eXdauXSt3796V1NRUuXjxokybNk2qVauW7Sa/unXr2vUkD3LOgAEDlG2rV692YiZ5m2rbd3V1lccee8yQdRQrVkw5H5wtxw6TJk3KcrOVpmkycuRIadasmSxbtkwiIyMlLS1Nrl27JnPnzpXatWvLt99+m6WPcuXKyahRo6xeNwDAPjYfrZob/qBNmza2dpvjMjMzpW/fvnLq1KkscW9vb2nRooW0a9dOypcvLyEhIZKeni6RkZGyY8cOWbp0qbKwlJycLIMGDbJ6yIh/GzVqlNk7lET+vsuyb9++Uq1aNSlVqpRomiZXr16Vo0ePyoIFC5T5ifx90l+yZEkZPXq0zTkaJTExUdq0aWP27hIRkcDAQGnbtq00a9ZMSpQoIcHBweLh4SFRUVESFRUlhw8flr1798revXslISHBrpwOHjwoHTp0UJ78ifx9gNWyZUtp1qyZlC1bVoKCgsTV1VVu3bolp06dkt9//122bt2q+yRLYmKi9OjRQ/bv3y8VKlSwOK/58+ebPdD29/eX1q1bS4MGDaRSpUpStGhR8fHxkYyMDLl3757cu3dPzp49K0eOHJFDhw5ZPSxBfqRpmrKA17lzZ/H399dta9SokZQvX14uXLiQrW3WrFnSrVs3Q/N0hmvXrsnYsWOzxQcOHCiNGzd2ai43btxQTtxt5J3H5u4IP336tNX9ffTRR7J///4s+/+UlBSZMmWKTJky5aHLt2zZUndYNeQOX3zxhSQlJem2Pfnkk07OJmeobsTw9/eXp59+2qq+Hjz2us/d3V3KlStnZWZqlSpVkh07dmSL//XXX1b3VapUKVm0aJF07Ngxy+/74cOHlQX2f3N1dZXFixcb+vkKgvx6HpLfmXuizt5igGr/YeQxgqenp5QpU0Z3WF5bjhE6deok77zzjnz44YdZ4itWrJAVK1Y8dPkSJUrI8uXL7SpAIed07NhR3n33Xd02vd+o3O7evXty+/Zt0TRNChUqJMWKFRNPT0+Hr1e17ZctW9bQ9VeqVEmuXbuWLW7Lth8eHi5Tp06VF198MUt869atFo1U4ePjIytWrFCelwIAHMjWyVVeeukl5QRpa9assXvyFkdTTTb/4MSfbm5u2rBhw7Tbt2+b7S8tLU377LPPNDc3N+X38ttvv9mUq7kJlkVEK1++vLZ+/fqH9rN8+XItJCRE2Y+rq6u2bds2q/MzerJ51USO91/lypXTFi1aZPHEywkJCdqiRYu0rl27/jMJ5a+//mpxPrdv39bKlCmjzKds2bLa9OnTLZok7sSJE1qHDh2UfT3++ONaRkaGRXllZmYq8ypUqJD2+eefawkJCRZ/Tk3TtCtXrmjffvut1rx5c01ENH9/f6uW1zTzkzc2a9bM6v6cbfPmzcr8V6xYYXbZ9957T3c5d3f3h+5DLOXM77d79+7Z1lG0aFHtzp07ymUcNdn8zp07lf3OmzfP5n4flJ6ertyPDx482KY+7927Z3a7V726du2qxcXFGfbZChpHTza/adMmrVChQrr9h4SEaElJSTb3rTpGERFt5syZdudulOHDhyvznDRpktX9tW3bVrevSpUqGZr3+++/r8zb0sniH/Trr79qPj4+Vm3jvr6+2qpVqwz9bAVBenq62W0vr8jrx0vWOn/+fLYJ0u+/rJloXU9mZqbm5eWl2/dLL71k0Cf4W4sWLXTXExoaanPub7/9ttXHCFWqVNH++usvQz9bQZKTk83fl5GRoQUEBOjm4ObmZvVxRLNmzZSfyZ6J4VWTzX/22Wfa4MGDtRo1amju7u7Z2k0mkxYcHKy1bt1aGzt2rLZ161aLz9+t8eijj+rm17p1a0PXM3DgQN31eHt729zn1KlTzV4/0nuVKFFC27Nnj4GfDABgDZuH9jI3/EJYWJit3ea4f0/86evrK2vXrpWvv/5aihYtanY5Nzc3+c9//iOLFi1SPvL9008/WZ1PfHy8DB06VNnevn17OXLkiEXDZ3Tr1k2OHTumHCs0IyNDXnnlFUPnc7DWrFmzzM69M3ToUDl16pT06dPH4omXvb29pU+fPrJixQo5ceKE1UMHDB06VK5cuaLb1q1bNzl8+LAMGjTIojteQkND5ffff5d33nlHt33v3r0ydepUi/Las2ePbl5eXl6yZcsWeeONN8Tb29uivu4rXbq0DBkyRDZt2iSHDx+W5557zqrl8wPV3ZJBQUHSoUMHs8s+88wzuvG0tDSZP3++vak51bJly2T58uXZ4p988olhQ2RYw9z8JCVKlDBsPa6urhIcHKzbZuv40n5+frJy5UqZNGmSRXeOBQYGyueffy6//vqrYXO/wDhpaWny6aefSqdOnZRPo3z11Vfi5eXl5Myc5+TJk9KqVSv5+uuvddsbN24s//3vf63uV7WdG7mNP6w/W7fz7t27y+7duy2e2LZdu3ayd+9e6dSpk03rK8hOnTql3Pby8jlIfjdr1izlHEj2Po0SGRkpycnJum3O2n/Yuu8wmUwyYcIEWb58uUXzJLm7u8vgwYNl9+7deWIuIKi5uLgo91np6ely7NgxJ2dknTfffFOmTp0qR48e1b1+oGmaREZGyvr16+Wjjz6Spk2byiOPPCIffPCBxMTEGJZHTh87JCYm2jz/6quvviobN26U2rVrP/S9JpNJ+vbtK/v27TNs7hcAgPVsLqSo5onw8/OTkiVL2pxQbuHu7i5//vmn1eN7P/XUU9ke0bxv9erVcufOHav6mzJlily9elW3rX79+rJ06VKrLrQVLVpUVq9eLY8++qhu+4kTJ2TGjBlW5WiU2NhYsxdexo0bJ998841dj+hWqVJF5s6dK507d7bo/X/++acsXrxYt61Pnz7y66+/SpEiRazO48MPP5SRI0fqtn300UeSkpLy0D7Wrl2rGx8zZowhY/OHhYVZNPRQfpKQkCBLlizRbevTp89D5wSpXLmyNGjQQLdt9uzZdufnLLGxsTJ8+PBs8SZNmsjzzz/v/ITk77lmVEJCQgxdV/Hixa3O4WFcXV1l9OjRcuHCBfn222+lc+fOUq5cOfH29hZvb28pX768dO3aVaZPny7nz5+XN954Q1mUh/OkpqZKVFSUnDhxQn7++WcZNmyYlC5dWkaOHCmJiYm6y4wZMybfzNGgaZrExcXJ1atXZdOmTfLZZ59J06ZNpXr16rJx40bdZerWrSurVq2y+GaHf1NtY87axs3lYInHHntMNm7cKFu3bpURI0ZIrVq1pFixYuLu7i7BwcESHh4ub775puzcuVPWrl0rVatWtXldBZm5uer4TnMnzcywqV5eXtKvXz+7+s8NxwhJSUl2DSXcrVs3OXnypCxevFgGDBggVapUEX9/f/Hw8JDSpUtL06ZN5aOPPpJTp07Jd999Z9P5B3Ifc3N4mLuJKK+6du2ajBs3TipUqCBTp05VFlctFR8fryyi5pVjhyZNmsj+/fvl999/l1deeUWqV68ugYGB4u7uLiVKlJAGDRrIu+++K4cPH5aFCxcq52oBADiHTQOqJiYmKu8iKF26tD355BoTJkyQ+vXr27zszJkzJT09PUs8LS1Ntm3bJj169LCon+TkZPnyyy9127y9veWXX36x+okDkb+LKYsXL5batWtLZmZmtvZPPvlEBg0a5PSLeF988YVERUXptvXr10/Gjx/v1HxERDlubZ06dWT27NlZJoi01kcffSSbN2+Wffv2ZYlfv35dfv75Z7MTEIqI7vjMIiJ9+/a1OaeCztwkqJaMdX//fQ9Ozi7y90SER48elRo1atiVozOMHj06y9N5In8Xl6dNm2bX37w9VPsGETF8fGBVf3fv3rW774CAABkyZIgMGTLE7r5gO0ufGrCGt7e3TJ48WYYNG2Z43442bdo0GTx4sN39DBo0SL744gubjk00TZPo6GjdNmdt4yLGbOdNmjSRJk2a2N0P9OmNUX9fmTJlnJgJLLVp0yblExvdu3e3uyiQG44RRP7ef/j4+Njct5ubm/Tq1Ut69eplcx/IW8zts1Q3U+YH0dHRMmTIEFm5cqUsXLjQ5u00N2379jCZTNKhQ4eHjn4AAMh5Nl0pv3HjhrLNXKU+r6hQoYJNQ1LcFxwcrJzoMiIiwuJ+fvvtN+UTLGPGjLHrZLFmzZoyaNAg3bYLFy6YncTTEdLS0mTatGm6bSVKlJBvvvnGqfmIiOzevVv27Nmj2/bVV1/ZPXmdm5ubfPDBB7ptljy9cOvWLd04E9baTjWsV6VKlZRPmjzI3JMrM2fOtDU1p9m5c6dMnz49W/zNN9+UatWq5UBGf1NNNC/y9zCMRlL1Z+QwBMg/SpcuLaNHj5ZTp07lySKKvUwmk3Ts2PGffYctRRQRkbi4ON2bO0Sct42LsJ3nBfn9PCQ/Mnf8Y++wXiK54xhBhP0HrGdu+CnVuV5+smbNGmnUqJHNT3Sw7QMAnM2mQorqjm0RyRePGQ8fPtzupzHatWunG7emkKIaUqpw4cLy5ptv2pTXv40bN0459MaiRYvs7t8aa9eulZs3b+q2vf322xIYGOjUfETUJ30dO3aUhg0bGrKO9u3bS5UqVbLFt27dKnFxcWaXVT0Z8LDlHK1cuXKiaZrua/PmzTmamzkXL16ULVu26Lap5j7RExQUJB07dtRtmz9/frYn1azlyO83LS1NBg0alO0x+3Llysl7771nV9/2MjfcndFzUaj6s2TIPRQs3bt3lzlz5siECRMMvRN+/Pjxyu08p4bX09O4cWM5cuSIrF69Wp544gm7+soN2/jD8kDukF/OQ/Lq8ZK14uLiZNmyZbptpUuXltatW9u9DvYfyKvMPeWgGkJUZfPmzcp9ipE32pUuXVoGDhwoU6ZMkY0bN8r58+clKipK0tLSJCYmRs6dOydbt26Vjz76SNq1a/fQoT6PHz8ubdu2tWloPLZ9AICz2VQtUE3wKCJ236WfG/Tp08fuPlTD91g6EWFmZqZs2LBBt61Hjx423/H5b8WLF1fOAbN+/Xq7+7fGypUrdeM+Pj4WD6lkJE3T5LffftNts3cc5wfpPb2Unp4u27dvN7ucasLv1atXG5JXQTNnzhzlOL3WFFJE1MOARUZGypo1a6zOzVkmTZokx48fzxb/5ptvpFChQjmQ0f9JTU1Vtrm52TRKpZLqiSJzOaBgWr58ubRs2VIqVaok3333XYE7kd6+fbvUqlVL2rRpI3/++addfeWGbfxheSB3yO/nIfnNzz//rLwg/NxzzxkylDD7D+RV5i7Oq+b+yAkhISHy9ttvy6FDh+TKlSvy008/yWuvvSYtWrSQ8uXLS2BgoLi5uYm/v79UqFBBmjRpIm+99ZasXbtWTp8+La+88orZbf3QoUM2DTHKtg8AcDabjlzN/VA8bDLm3K5ChQpmH7G1VKVKlXTjsbGxFi1/7Ngx5SOiRhR67lMVBS5evGh2DGqjqYpGPXv2FD8/P6flcd/Ro0d1n5BxdXWVrl27Grquxo0b68Yf9vSSanLCsWPHKudPgT5zk6A2bNhQKlasaFV/nTt3loCAAN021fBhOe2vv/6SiRMnZos/+eST0qlTpxzIKKuMjAxlmy2TWpuj6s/ep4mQf126dEmGDh0q9evXl1OnTuV0Ok6VkZEh69evl7Zt20qLFi1snhw3N2zjImzneUF+Pg/Jj8wN62XUE3bsP5BX5YWL89OnT5crV67IhAkTpGbNmlYvX7FiRZk2bZqsW7dOgoODle+bO3eurFu3zqq+2fYBAM5mU5ne3N1eueUH31bh4eGG9KO6+G9pIeXo0aPKtscff9ymnPSYm/fh6NGjUqpUKcPWpRITEyPnz5/XbVMVGRxt//79uvFy5coZXthRfccPuxinGgrh+vXrUq9ePZkwYYIMGDDA8Mea86Nt27bJuXPndNusfRpF5O99ZO/evXXnGlm1apVERUUpnyjKKa+88kq2u+kLFy4sU6ZMyaGMsjJ3V1l6erqhd52pToa4QJd//PTTT1KvXj2L3puQkCD37t2T69evy8GDB2Xbtm1y6NAh3fcePnxY6tSpI2vWrJGmTZsamLFj9enTR/f3Nj09XaKjoyUmJkaOHTsme/fulU2bNimH39i8ebPUrFlTli9fLs2aNbMqh4dt40Yy1x/bee6Xn89D8pszZ87Izp07dduaNGmivPHMWuw/kFc5c2gqW6mGLLdWq1atZNeuXdKgQQPlnCijRo2Stm3bWtwn2z4AwNlsuvJkboiXvD6sRdGiRQ3pRzUZmaWFlL/++ks3XqpUKSlWrJjNeT3o0UcfFW9vb91H7k+fPi3t27c3bF0qJ06cULYZWTSyhqqQVbVqVcPXpbqg/rAngmrXri0NGjSQ3bt3Z2u7ffu2vPLKKzJ27Fjp2bOndOvWTZo1a2bIkHD5keopEQ8PD5ufAHv22Wd1CympqamyYMECGT58uE39OsKMGTN0x2P/4IMPpHTp0s5PSIe5ExRnFVI8PDwMWwdyVvny5ZVP9Zlz/+7pgwcPyrhx42TVqlXZ3pOYmCidO3eWLVu2GHZzhqMFBAQon6K7r0ePHiLy93HMnDlzZOLEibpPbsbExEinTp3kjz/+kEaNGlmcw8O2cSOZ64/tPPfLz+ch+Y2jJ5m/j/0H8ipzw3fl9LC6jlChQgVZsWKFNGvWTNLS0rK1Hz58WNavX2/x3Els+wAAZ7NpaC9VkUBE5O7duzYnkxs87EKCpVSPfmZmZlq0/PXr13XjoaGhNuekx8XFRVkcUOVgtCtXrujGXVxcpHr16k7J4UGqobFWr14tJpPJ0Fe1atV01xUVFfXQPCdPnmz2MeOoqCiZPn26dOzYUYoUKSKNGjWSMWPGyG+//Zbnt1WjJCYmypIlS3TbOnToIIGBgTb126hRI6lQoYJu2+zZs23q0xFu3bolI0eOzBavVauWvPbaazmQkT5zd+WZGy/fFqqx3HPLnYHIebVr15aVK1fKV199pdseFxcnzzzzTL68O97Pz0+GDRsmx44d+6e48qCEhATp06ePcohSPblhG39YHsgd8vN5SH6SmZkpc+fO1W3z8fGRXr16GbYu9h/Iq8yd7/n4+DgxE+d54oknZNCgQcr2BQsWWNwX2z4AwNlsKqSULFlS2aZ3d2JeklsmqVQ97lqkSBHD16XqU5WD0W7duqUb9/PzM3xsU0s5q4hkjiUHf02bNpUvvvjCov7S0tJk586dMnnyZOnWrZsUK1ZMateuLSNHjpRt27YpJ1rP75YsWSJxcXG6bapJ4y2lGhbswIEDcuzYMbv6Nsrrr78u0dHRWWIuLi4ybdq0HNv+9Jgrcqv+/Wyl6s+oQjvyj+HDh8vbb7+t23bixAn57LPPnJyR8wQFBcmSJUukd+/euu3Xrl2TUaNGWdyfr6+v8skyZ23jImzneUF+Pg/JT/7880+5evWqbluvXr2kcOHChq0rNxwjPCwPQM+NGzeUbeb2dXndO++8o7zu8vvvv1vcD9s+AMDZbCqkeHp6KofAunLlSoG9IGsk1UV0R0y8rurT6Ls4VFR3dziiaGQpow+8bGHpnczDhw+XxYsXm71DU09mZqZERETIp59+Kk2bNpUKFSrI+PHjs11Uz+9Uw3oVKVJEOnfubFff5uZXyQ2Tzq9Zs0Z+/vnnbPFBgwZJ/fr1cyAjNXNPBllz17slVP3Z+nQS8rd3331XOdfV119/rTt0RX7h4uIi8+bNkypVqui2z54926oL26oLEc7axkXYzvMCc0NOqp4ohvM5a1gvkdxxjPCwPAA9Fy9eVLblluF1HaF48eLKueRu3bqlnD/1QWz7AABns6mQIvL33Bp6EhMTzR4QwDKqCy+OmONC9diws4YkUa3HyDvVrJUbxti2piDZq1cvOXPmjAwePNjmp6ouXrwo77//vpQvX14mTZpk8TB0edmlS5d05wYR+XsS1DNnzsixY8dsfqWkpCiHzps/f77hY/daIzExUQYPHpwtHhISIh9//HEOZGRecHCwss3oO5BV/ZnLAQWXp6enDBkyRLftxo0bVt1ZmRe5u7srn7xJTU21qmis2sactY2bywG5h+ocRMT8vHtwnpiYGFmxYoVuW8WKFaVJkyaGri83HCP4+voyvA+sppqXU+Tv+dzyM3OT2J86dcqiPry9vZXXMjh2AAA4gs2z84aHh8vOnTt12w4dOpTvf/gdTTVxmrmxOW2VkJCgG3fWpGmqC//x8fFOWb8eFxeba4w5JiQkRL777juZMGGCLFiwQBYvXiy7d++2+m7oe/fuyVtvvSXr1q2TxYsXK58+yw9mz56tLFitXLlSVq5c6bB137x5U9auXWv3Uy+2+uuvv3Tv3B00aJBcvXpVORzHw1y4cMFsm+rvqXz58mbHgi5Xrpyyzcih+NLS0pTDGprLAQVby5YtlW2bN2+Wbt26OTEb5+vYsaOEhIToDtW5adMmGTNmjEX9lCtXTo4fP54tbvRwm+b6YzvP/SpVqiS+vr66Tw8fOXJEMjMz8+RxXH6ycOFC5STazz//vJhMJkPXV7RoUfHx8dE9p3HW/oN9B6yVkpKiHOrX29tb+bRnfqGaJ1RE5PLlyxb3k9PHDn5+fjyRAgAFiM2FlDp16ijbNm/erJyAFJYpVKiQbjw2Ntbwdan6VOVgNNVTNkY/jmsNVU4dOnSQTz75xCk52FrICgwMlGHDhsmwYcMkISFBtm7dKlu2bJFt27bJ/v37LX7SaNOmTdK1a1fZtGlTrpk7yEiapsmcOXNyNIfZs2fnWCFF5cMPP5QPP/zQIX2/8MILyrZNmzZJ8+bNle3mivPnzp2zJ60sLl68qHwaixsEoFK7dm1l2+7du52YSc4wmUzSvn17mT17dra2vXv3WtyPahu7evWqpKamGnaDh2qfwcWQvMFkMkl4eLhs3bo1W1tMTIwcPnxYwsPDcyAz3Kca1svFxUWee+45h6yzfPnyuheljTxGMNcfxwiw1s6dO5VDaYeFheWquQodoVixYso2a655lC9fXreQ4qxtnyIqABQsNhdS2rRpo2z7448/bO0W/5/qwMIRxQVVn+YOboykehQ2NjZWMjIycuQgMigoSDeemZkpjz32mJOzsZ2Pj4906NBBOnToICJ/z3uze/du2bRpk6xcuVIOHTpkdvldu3bJuHHjZNKkSU7I1rm2bdtm+AG2tVauXCl3797lwp0FgoKCpFixYrpPi5w+fdqw9fz111/KttDQUMPWg/zFw8NDeYf8tWvXciAj56tQoYJuPCYmRlJSUiwqyKu2sYyMDDl79qzZu1etodrO2cbzjjZt2ugWUkRE1q5dSyElB504cUL27dun29aqVSspU6aMQ9YbGhqqW0gx8hghPj5eOTk4+w9Y67ffflO2mbu5KL/w9/dXtlkzxHhoaKisWrUqW/zatWsSHx9v2HDhHDsAAETsmCOldOnSygvKp0+flsOHD9ucFERKliypGz958qSh68nMzFSeYKhyMFrZsmV145mZmTk21rUqp7t37zo5E2MVKlRIWrRoIR988IFERETIuXPnZNSoUeLn56dc5uuvv5bIyEgnZukcuWGy95SUFFm4cGFOp5FnqC6MRUREGLaOgwcPWr1+QESU+9G8/rthKXPjg1v6HZjbxozaztPT05Vj0rON5x33bxDRs3jxYidmggc5c5L5f1Ntv7dv3zasoB0REaEcEpb9B6yRnp4uCxYsULbntifWHcHcsYE18w2ptj1N0wy7JnXlyhW5c+eOVesHAORPdg0g3KdPH2Xb9OnT7em6wFNNpHnt2jXlj7gtzpw5o5wjxVnjslarVk05VvKePXucksODVHeWnDt3zqpJ4HO7ChUqyOTJk+XUqVPSqFEj3fckJiY6dK6QnJCYmChLlizJ6TREJHcUdPKKunXr6sbPnTtn2H5Rtc8pXbq0hISEGLIO5E/37t3TjaekpDg5k5yhmg9BxPJ5x2rWrKmcI86o44FDhw4p/01U+xjkPrVr15ZKlSrpth06dMiqIeVgnPT0dJk3b55uW5EiRRw69LO57deo/Ye5fth/wBpz5sxR3qhWokQJeeKJJ5yckfOp5iQUMf+0yoPY9gEAzmRXIWXgwIHKYZdmzZqVL+9id5awsDBlm5Enh+YOCmrUqGHYeszx9/eXihUr6rZt377dKTk86PHHH9eN3717V3kna15WokQJWbVqlfJC8caNG52ckWMtXbpUdwie+22aphn++vLLL3XXt3///hx78iqvUU3orWmabNq0ye7+09PTlUPFtGrVyu7+kX8lJydLfHy8bptRQ0rkdnoTzd9n7qnHf/P29pb69evrtm3YsMGmvKzph+087zCZTPLiiy8q2ydPnuzEbHDf2rVr5ebNm7ptffv2teouc2s1atRIOYSgo/cfjzzyiPJcBnhQUlKSTJgwQdk+aNAgi29AyMsOHDigbLNm3pHKlSsrhwx09Lbv5eWlvBkRAJA/2fULXapUKeWdRUlJSTJ27Fh7ui/QqlevLgEBAbptRg5ZsGjRIt14uXLlpFSpUoat52Fat26tG1+yZIlVk80ZpUGDBuLj46Pbtn79eidn4xxFihSRl156Sbft0qVLTs7GsVRPgfj7+0unTp0css6+ffuaLTw7W61atRxSMDJX0Ni0aZNyOUvGgm7UqJEUKlRIt2358uU2fhP/Z8OGDcoCm7l5wQDVfAAifz/NVBDozU0g8veQX6rtVo9qWztx4oScOXPGptz+TbWvqFSpEhPG5jEvvPCCeHt767YtW7Ysx27GKchyalgvkb8LsQ0bNtRt++233+x+ojw2NlZ5jMMxAqzxzjvvyIULF3TbPD09ZdCgQU7OKGesW7dO2WbtnGiqawkbN25UHttbKjMzUzk6Q+PGjR1aIAYA5D523+owfvx45R0TM2fOdPqd7OYmCs5LXFxclHdfL1u2TJKSkuxeR2RkpPz555+6bc4+IejSpYtuPCEhQebOnevUXET+vrukffv2um3ffvutZGRkODkj51A9mmzkcHI57fLly8oT4aeeesqiCZFtERISotym582bl2//pozk5eWl3Ff89ttvdp8oqYYjMbdeQMR8gb169epOzCRnJCUlKe/WtPbp1l69einbVNuopc6ePSu7d+/Wbevdu7ddfcP5goODZfjw4cr2V155RRITE52YUf45D7FFVFSU7oTPIn9fFFU97W0k1f7j6tWrsnnzZrv6/uWXX5TDArL/gKV+/vln+eKLL5Ttr732mtPmKc1Jp0+fVo6MUbZsWatv6FRt+8nJyXYP57xp0yblPEts+wBQ8NhdSKlevbo8//zzum2ZmZny9NNPy9WrV+1djUXWr1+fr+4IUs1BExcXJ1OmTLG7/wkTJkh6erpuW9++fe3u3xrt2rVTHjR+9NFHEh0d7dR8REQ5ZMT58+dl/vz5Ts7GOTw8PHTjqqdz8qLZs2cr70rs37+/Q9et6v/GjRvyxx9/OHTd+YXqO4yPj5cffvjB5n5v3LihfNqvS5cuFg9NhIInMTFRpk2bpmxv1qyZE7PJGTNnzlTe4GHJ02b/Fhoaqpy4ddq0aWbnYnkYc8dOjt7/wzFGjRolRYsW1W07ceKE0+7szszMlOHDh8t3333nlPXlRvPnz5fU1FTdNkc/jXJf7969lfMsmbt4/TCapslXX32l21a8eHHljTLAvy1ZskSee+455XlI8eLF5e2333ZyVjnjnXfeUd5E1rlzZ6v7a9OmjQQHB+u2ffnll3Y9kaYantnDw0N69uxpc78AgLzJkME3P/30UylRooRu261bt6R169Zmx862l6ZpMnnyZOnQoYNyste8qEuXLsqTw4kTJ8qNGzds7vv48eMydepU3bYKFSpYfeHDXq6urjJkyBDdtuvXr8uwYcOcmo+ISPv27ZWPFY8YMULOnj3r5IwcT3UnZX66M2r27Nm68ZIlSzr87/7JJ59UPv6tygtZderUSTn8zscff2zzb8B7772nvACUE/sf5B3vvvuuck44V1dXefLJJ52ckXPduXNH3n33XWW7LXdrqra5yMhI+eyzz6zuT+TvmyBUxdYWLVpYPYwIcofAwED5+uuvle3z58+XESNGODSHmzdvStu2beWbb75x6HpyO9WwXm5ubvLss886JYegoCDlzWArV66UHTt22NTvggUL5MiRI7ptgwcPVg7dCoiIpKamyjvvvCO9e/dWPtXk4uIi8+bNs2qS9bxq8eLFsnTpUmW7LfsLNzc3eeWVV3Tbjhw5IgsWLLC6T5G/52tVPWnXv39/5VDsAID8y5BCSkBAgPz000/KIb5Onz4tjz/+uBw6dMiI1WXx119/SevWrWXMmDHKpyvyKi8vL+XJX3x8vPTp08emOzPv3r0rvXv3Vn5fo0aNypEJ7l577TUpVqyYbtuCBQvk/fffd2o+JpNJJk2apNsWHR0tXbt2VU6oaY9Lly4pH3X+ty+//FISEhIMW29GRobyYv5jjz1mcT8XL14Uk8mk+3J2ge5B27Ztk3Pnzum29e3b1+F/976+vsoholasWCExMTEP7SM3f7/O4OrqKm+++aZu2507d2To0KFW97lu3TqZMWOGbluDBg2kadOmVveJguF///uffP7558r2Pn36SEhIiNX9jh8/Xrmd2zKn0po1ayQtLc3q5R7m3r170qFDB7l7965ue6tWreTRRx+1ut9nnnlGWcCfMGGCHD161Kr+MjIyZODAgcoLWKNHj7Y6R+Qeffv2lX79+inbp0yZIv369XPIMF8LFy6UmjVr2jShsaN+z2fNmqXsd/z48Tb3a87hw4eV53kdOnSwaT9oq5EjR4rJZNJte/HFF60+dr5x44byfMzHx8em4w4UDJqmydKlSyU8PFwmTpxo9qmIDz/8UFq1amXX+po3b67c9i9evGh1f+bmf7PVtm3bzD6V07hxY2nQoIFNfQ8bNkw5b9Ybb7xh9U2oCQkJyhEqXFxcZOTIkVbnCADI+wy7ati+fXuZPHmysv3y5ctSv359GT9+vCHze9y8eVNGjhwpNWrUcPo8LM70+uuvKyeq3bZtm/Tp08eqE8Po6Gjp0qWLnDhxQre9WrVq8sILL9iUq718fX3NXpAaP368DB8+XHkhxBJnzpyR559/XnlnyYO6dOmifGT35MmTUrt2bdm6davN+fzboUOHpH///lKpUiXl3DX/9sYbb0jZsmXlvffeM+SJr9GjRytPgvPL+K/mLkA+/fTTTslBtZ6UlBRZuHChU3LI61555RXlxdn58+dbVXQ9dOiQ9O3bV3lCZ+vd78jf9u3bJx06dJBRo0Yp3+Pt7S0ffPCBE7NSe+utt6Rq1aoye/Zsw246iYiIkGbNmsn+/ft1200mk0yYMMGmvj08POSjjz7SbUtOTpYuXbrI5cuXLeorMzNTBg0apPytbtOmjbRr186mPJF7zJgxQznPm4jIokWLJCwszOzkxtbYunWrtGjRQp5++mnlE2kFSU5OMv+gGjVqyHPPPafbdvr0aenZs6fF5xLR0dHSqVMn5VyBY8eOlaCgIJtzRf509OhR+fDDD6Vy5crSs2dP5Xn3fWPGjJGxY8c6KTvLtW3bVpo3b25ToVjPN998I61bt1beCOri4mLXcXdwcLDyuOz27dvSqVMni4cLT0lJkZ49eypHa3jxxRclNDTU5lwBAHmYZrA333xTExGzr+DgYO2DDz7Qzp8/b1Xf6enp2vr167XnnntO8/Ly0u3b39/for7GjRunu/y4ceOs/9AKqs9vreXLl5v9PitXrqxt2bLlof2sXLlSK1mypLIfV1dXbdu2bVbnN3PmTN3+nnvuOav70jRN69Wrl9nPW758ee3nn3/W0tPTLeovKSlJW7JkidajRw/N1dVVExHt119/tTifqKgorXz58sp8XFxctF69emn79u2z+rMePXpUGz9+vPbYY49l6fPDDz986LIP/tu1atVKmz59unb79m2rcjh58qTWpUsX5eerU6eOVf1duHBB2VezZs2s6stICQkJmq+vr25eVapUcVoeKSkpWkBAgG4ejz/++EOXz63f732bNm1S5rdp0ybD1vPnn39qJpNJua5nn31Wu3PnjnL5zMxM7aefftIKFy6s7GPgwIGG5QvnU/02iYj2008/aUePHrXotWfPHm3dunXarFmztOHDh2thYWEPPc4REW3atGk25646RhERbebMmVb3V7NmzX+WDwoK0gYNGqRt2LDB4t/Rf9uzZ4/28ssv//N7qnqNGDHC6r7/LTMzU2vatKmy/+DgYG3lypVm+7h06ZLWrl07ZR+FChXSTp48aVeeyD1u3rypVatW7aHbZsOGDbWFCxdqCQkJVvV/9+5dbfr06VqDBg2Ufb/++usW9+eo33Nz+z4jz3PuS01N1YoWLaq7vqJFi2qpqamGr/Nhbt68qcxJRLS6detqx48fN9vH9u3btUqVKin7qFq1qpacnOykTwSjmdv+Bg8ebPa44MiRI9r+/fu17du3a7/99ps2ffp0bcyYMVqnTp20kJAQi44RRERzc3PTPv/8c8M+U7NmzZTrunDhgtX9+fv7/7P8o48+qr3zzjva4cOHreojMzNTW7lypda4ceOHfh+jRo2yOscHJSYmapUrV1auo1KlStqOHTvM9nHs2DGtbt26Zo8/IiMj7c4VAJA3uYnBPv30UylUqJDZuxAjIyPlvffek/fee08ee+wxadSokTz22GNSvnx5CQwMFG9vb0lPT5f4+Hi5du2anDlzRvbv3y/btm3LV3OgWKpbt27yn//8R/m0xpkzZ6RZs2by2GOPSZ8+fSQ0NFRKlSolmqbJtWvX5OjRo7Jw4UI5c+aM2fVMmDBBGjdu7IiPYJVZs2bJuXPn5ODBg7rtFy5ckD59+khQUJC0a9dOmjVrJsWLF5fg4GBxd3eX6OhoiYqKkqNHj8q+fftk165dEhcXZ3M+gYGBsnbtWmnUqJHuHWmZmZnyyy+/yC+//CKVK1eWpk2byhNPPCEhISH//D3HxsZKTEyMREdHy8mTJyUiLe4bdgAAfPVJREFUIkIiIiLk9u3bNuf1bxkZGbJhwwbZsGGDvPrqq1K5cmWpW7eu1KlTR0qXLi0BAQESGBgoJpNJEhIS5OrVq3LixAn5888/Ze/evcq78d3c3OTHH380JMectnTpUuXfgTMnGb4/MaHeWP179+6VU6dOSdWqVZ2WT17VunVrGTlypHzyySe67XPnzpUVK1ZI3759pWXLllK+fHlxd3eXyMhI2bt3ryxcuFBOnjyp7P/RRx9VTiyLvM/RT16OHTtWOVZ3TouKipLvv/9evv/+e/Hx8ZGaNWtKeHi4hIWFSVBQkBQpUkSKFCkiIiKxsbESGxsrZ8+elUOHDsnu3bstmh+sdevWym3TUiaTSebNmyfh4eESFRWVrT0yMlK6dOki9erVkz59+kh4eLgEBgZKUlKSnDlzRv744w9ZunSp2TvPp0yZwv42HwkJCZHNmzdLu3btJCIiQvm+nTt3ys6dO8Xb21ueeOIJadCggVSuXFnKlCkjvr6+4unpKYmJiRIbGyvnz5+X06dPy/bt2yUiIkI5OXJBtmrVKuUTG88884xy8ndHCgkJkVmzZkmXLl10j3H3798vYWFh0rlzZ+ncubOEhoZK4cKFJSYmRo4cOSLLly83O+KBl5eX/Pzzz+Lp6enIj4EcMnXqVOVcokapXLmyzJgxQ5o0aeLQ9Rjlr7/+kgkTJsiECRMkJCREwsPDJTw8XKpWrSoBAQHi7+8vfn5+kpiYKHfv3pWrV6/Kjh07ZPPmzXL16tWH9t+hQwflk6jWKFSokPz888/yxBNP6P7+nz17Vho1aiQtW7aUHj16SFhYmPj7+0tcXJycPHlSVq1aJatXr1bu600mk8yZM0c5HDkAoABwVIVm0aJFZu/0ddSrZcuWFuWXl55I0TRNy8jI0Pr16+ew72348OE2f06jn0jRtL+fAqldu7bDPq81T6Tcd+LECa106dJO+Tu29okUR72mTJli9feUW5+YaNmypTKvs2fPOjUXc09tjB492uyyufX7vc9ZT6Ro2t9PKT755JOG/90XL15c++uvvwzNFc5n7q5sR728vb21b7/91u7cHflEiqNf7du31+Lj4+3+Du7btm2b5u3tbXieb775pmE5IndJTEzUBgwY4PTt383NTZsxY4bFeeaXJ1LMPdVs7d3rRvv8888d8u9sy3kEchdz258jX0WKFNEmTJjgkKeZHPlEiiNfnTt31pKSkgz9Ln755ZeHPjlry+urr74yNE8AQN7jsJmV+/TpIxEREU4bd7p06dIyc+ZMWb9+vVPW52wuLi4yd+5cGTZsmKH9mkwmGTdunEyZMsXQfu0VGBgoW7ZskV69euV0Kv8IDQ2Vffv2SevWrXM6FYdzcXGRH374QV577bWcTsUQly9flk2bNum21a9fXypWrOjUfJo2baqc+2ju3Lnc8WohV1dXWbhwodlJhq1Vrlw52bBhg1SuXNmwPlEwtGrVSo4dOyZDhgzJ6VRyhKurq7zzzjuycuVK8fHxMazfxo0by++//y6BgYGG9Tlq1Cj59NNPDesPuUuhQoVk9uzZsmjRIilZsqRT1tm2bVuJiIjIsXkGc8qtW7dkzZo1um21a9eWsLAwJ2eU1RtvvCFffPGFuLq6GtKft7e3LFq0SLp3725Ifyg4qlatKp9//rlcuXJF3n77bZ5mkr+PG95++21ZsWKFeHl5Gdp3z549ZcGCBVKoUCFD+nN1dZWvvvpKhg8fbkh/AIC8y2GFFBGRSpUqydq1a2XFihVSv359h6zj0UcflW+++UbOnj0rzz//vJhMJoesJzdwdXWVr7/+Wn755RcJCQmxu79HHnlE1q5dK+PHj8+V31vhwoVl8eLFMmfOHAkODjas32LFikmpUqVsWrZ48eKybt06+fHHHw35N3hQqVKlZMyYMTJgwICHvjc8PNzw9YuI1K1bV3bt2iUvvfSSQ/rPCbNnz1YOX+asSeb/zcXFRfr27avbdv36dfnzzz+dnFHe5eHhIQsWLJAvvvjC7ou33bt3l3379km1atUMyg75XeHCheXFF1+UXbt2yfr166V8+fI5nZIuVeHWKG3btpWDBw/Khx9+KG5uho8aK82aNZN9+/bZPfxo0aJFZdGiRTJ58mSDMkNu1qdPHzl16pS8//77DhmGxcXFRbp06SLbtm2TP/74Qx577DHD15HbzZs3T9LT03XbnD3JvMqIESNkzZo1UrZsWbv6qVGjhuzYsUOeeuopgzJDfubp6SmNGzeW9957Tw4fPiwnT56UN954QwoXLpzTqeUKTZs2lT179siECRPExcUxl6R69+4t27dvt3vfXK5cOfnjjz8oogAARETE+LNdHV27dpWuXbvKzp07Zd68ebJs2TK5deuWzf0FBwdLt27dpG/fvtKiRYtcWQRwpJ49e0q7du3k22+/le+++06uXLli1fKVKlWS4cOHy6BBgwy/+8MRnn32WXnyySflxx9/lGnTpsmpU6es7sPDw0OaNm0qzz33nPTq1cuuu4BMJpO8+OKL8vTTT8vcuXPl+++/lwMHDtjcX5UqVaR169bStWtXad26tcUHkwcPHpSrV6/KqlWrZM2aNbJjxw7dceQt4eLiIi1btpSBAwdK3759HXZAm1NKlSol48aN020z8mkGa7z66quG3rWdW5QrV075XZcrV85h6x0xYoQ8+eSTMnHiRJk7d64kJSVZvGyTJk1k7Nix0r59e4flh7zLw8ND/P39/3ndn4Oqbt26Uq9ePfH29s7pFB9q1apVcuHCBVm9erWsXbtWdu7cKdHR0Xb1WaJECXnyySfl5Zdflpo1axqUqVqFChVk69atsmDBAvnkk0/kyJEjFi9bpEgRGTRokIwePdrQJ1uQ+/n6+sp7770nI0eOlMWLF8vPP/8s69evl7S0NJv6M5lMUqtWLenZs6f0799fHnnkEYMzzltmzZqlG/fw8MiRG1VU2rRpIydPnpQvvvhCvvnmG7l586bFy1asWFH+85//yKBBgxxSKEbeYjKZxMPDQzw9PcXT01MCAwMlJCREQkJCpHz58lK1alUJDQ2VWrVq5YnzbHN2794tGzZskI0bN8rWrVuVcyFZytfXV3r06CEvvfSS0+aGqV27tkRERMj06dPl888/l/Pnz1u8bIkSJWTYsGEyYsSIPHGsBwBwDpOmuk3bgTIzM+Xo0aOya9cuOXjwoJw/f14uXbokd+/elcTERElJSREPDw/x9vaW4OBgKV26tFSpUkXCwsKkUaNGUr169QJXPFHRNE22b98uGzdulH379snZs2fl5s2bkpCQICIiPj4+UrJkSalcubLUr19fWrduLY8//ngOZ22fw4cPy8aNG2XPnj1y5swZuXLlisTFxUlqaqr4+PiIr6+vBAUFSZUqVSQ0NFQef/xxadGihUMvWl+6dEnWr18v+/btk5MnT8rly5clKipKkpKSxMXFRXx9fcXX11cCAgKkcuXKEhoaKqGhodKwYUMpU6aMYXmcOnVKdu/eLSdPnpSzZ8/K+fPn5fbt2xIfHy/x8fHi4eEhfn5+4u/vL6VLl5ZatWpJeHi4tGzZ0mnDXwCOFhMTI2vWrJENGzbI0aNH5eLFixIbGyvp6elSuHBhCQkJkdDQUGnUqJF07tyZyaZR4GiaJmfOnJG9e/fKiRMn5Pz583L+/Hm5devWP78X6enpWY7FSpYsKVWqVJEaNWpI48aN5bHHHsvRY7EDBw7I6tWrZe/evXLq1Cm5c+eOxMfHi6enp/j7+0uFChWkZs2a0rZtW2nTpg0XQfCPuLg42bNnj+zatUtOnDghFy5ckKtXr0p8fLwkJiZKZmameHp6ip+fn5QoUUIeeeQRqV69uoSHh0vTpk2ZZDiPS01Nlc2bN8vatWslIiJCzpw5IzExMZKcnCze3t4SGBgoVapUkTp16kjHjh2lYcOG+e4GI8AWly9flkOHDsmRI0fk/PnzcvnyZbl69apER0dLYmKiJCUliclk+qfAVKJECalYsaKEhYVJw4YN5YknnhB3d/ccyz8zM1N27Ngha9askQMHDsjp06f/uf7k5eX1z3l6rVq1pH379tKiRYsczRcAkDvlSCEFAAAAAAAAAAAgL+D2GgAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUUgAAAAAAAAAAABQopAAAAAAAAAAAAChQSAEAAAAAAAAAAFCgkAIAAAAAAAAAAKBAIQUAAAAAAAAAAECBQgoAAAAAAAAAAIAChRQAAAAAAAAAAAAFCikAAAAAAAAAAAAKFFIAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUEgBAAAAAAAAAABQoJACAAAAAAAAAACgQCEFAAAAAAAAAABAgUIKAAAAAAAAAACAAoUUAAAAAAAAAAAABQopAAAAAAAAAAAAChRSAAAAAAAAAAAAFCikAAAAAAAAAAAAKFBIAQAAAAAAAAAAUKCQAgAAAAAAAAAAoEAhBQAAAAAAAAAAQIFCCgAAAAAAAAAAgAKFFAAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUUgAAAAAAAAAAABQopAAAAAAAAAAAAChQSAEAAAAAAAAAAFCgkAIAAAAAAAAAAKBAIQUAAAAAAAAAAECBQgoAAAAAAAAAAIAChRQAAAAAAAAAAAAFCikAAAAAAAAAAAAKFFIAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUEgBAAAAAAAAAABQoJACAAAAAAAAAACgQCEFAAAAAAAAAABAgUIKAAAAAAAAAACAAoUUAAAAAAAAAAAABQopAAAAAAAAAAAAChRSAAAAAAAAAAAAFCikAAAAAAAAAAAAKFBIAQAAAAAAAAAAUKCQAgAAAAAAAAAAoEAhBQAAAAAAAAAAQIFCCgAAAAAAAAAAgAKFFAAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUUgAAAAAAAAAAABQopAAAAAAAAAAAAChQSAEAAAAAAAAAAFCgkAIAAAAAAAAAAKBAIQUAAAAAAAAAAECBQgoAAAAAAAAAAIAChRQAAAAAAAAAAAAFCikAAAAAAAAAAAAKFFIAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUEgBAAAAAAAAAABQoJACAAAAAAAAAACgQCEFAAAAAAAAAABAgUIKAAAAAAAAAACAAoUUAAAAAAAAAAAABQopAAAAAAAAAAAAChRSAAAAAAAAAAAAFCikAAAAAAAAAAAAKFBIAQAAAAAAAAAAUKCQAgAAAAAAAAAAoEAhBQAAAAAAAAAAQIFCCgAAAAAAAAAAgAKFFAAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUUgAAAAAAAAAAABQopAAAAAAAAAAAAChQSAEAAAAAAAAAAFCgkAIAAAAAAAAAAKBAIQUAAAAAAAAAAECBQgoAAAAAAAAAAIAChRQAAAAAAAAAAAAFCikAAAAAAAAAAAAKFFIAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUEgBAAAAAAAAAABQoJACAAAAAAAAAACgQCEFAAAAAAAAAABAgUIKAAAAAAAAAACAAoUUAAAAAAAAAAAABQopAAAAAAAAAAAAChRSAAAAAAAAAAAAFCikAAAAAAAAAAAAKFBIAQAAAAAAAAAAUKCQAgAAAAAAAAAAoEAhBQAAAAAAAAAAQIFCCgAAAAAAAAAAgAKFFAAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUUgAAAAAAAAAAABQopAAAAAAAAAAAAChQSAEAAAAAAAAAAFCgkAIAAAAAAAAAAKBAIQUAAAAAAAAAAECBQgoAAAAAAAAAAIAChRQAAAAAAAAAAAAFCikAAAAAAAAAAAAKFFIAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUEgBAAAAAAAAAABQoJACAAAAAAAAAACgQCEFAAAAAAAAAABAgUIKAAAAAAAAAACAAoUUAAAAAAAAAAAABQopAAAAAAAAAAAAChRSAAAAAAAAAAAAFCikAAAAAAAAAAAAKFBIAQAAAAAAAAAAUKCQAgAAAAAAAAAAoEAhBQAAAAAAAAAAQIFCCgAAAAAAAAAAgAKFFAAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUUgAAAAAAAAAAABQopAAAAAAAAAAAAChQSAEAAAAAAAAAAFCgkAIAAAAAAAAAAKBAIQUAAAAAAAAAAECBQgoAAAAAAAAAAIAChRQAAAAAAAAAAAAFCikAAAAAAAAAAAAKFFIAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUEgBAAAAAAAAAABQoJACAAAAAAAAAACgQCEFAAAAAAAAAABAgUIKAAAAAAAAAACAAoUUAAAAAAAAAAAABQopAAAAAAAAAAAAChRSAAAAAAAAAAAAFCikAAAAAAAAAAAAKFBIAQAAAAAAAAAAUKCQAgAAAAAAAAAAoEAhBQAAAAAAAAAAQIFCCgAAAAAAAAAAgAKFFAAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUUgAAAAAAAAAAABQopAAAAAAAAAAAAChQSAEAAAAAAAAAAFCgkAIAAAAAAAAAAKBAIQUAAAAAAAAAAECBQgoAAAAAAAAAAIAChRQAAAAAAAAAAAAFCikAAAAAAAAAAAAKFFIAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUEgBAAAAAAAAAABQoJACAAAAAAAAAACgQCEFAAAAAAAAAABAgUIKAAAAAAAAAACAAoUUAAAAAAAAAAAABQopAAAAAAAAAAAAChRSAAAAAAAAAAAAFCikAAAAAAAAAAAAKFBIAQAAAAAAAAAAUKCQAgAAAAAAAAAAoEAhBQAAAAAAAAAAQIFCCgAAAAAAAAAAgAKFFAAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUUgAAAAAAAAAAABQopAAAAAAAAAAAAChQSAEAAAAAAAAAAFCgkAIAAAAAAAAAAKBAIQUAAAAAAAAAAECBQgoAAAAAAAAAAIAChRQAAAAAAAAAAAAFCikAAAAAAAAAAAAKFFIAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUEgBAAAAAAAAAABQoJACAAAAAAAAAACgQCEFAAAAAAAAAABAgUIKAAAAAAAAAACAAoUUAAAAAAAAAAAABQopAAAAAAAAAAAAChRSAAAAAAAAAAAAFCikAAAAAAAAAAAAKFBIAQAAAAAAAAAAUKCQAgAAAAAAAAAAoEAhBQAAAAAAAAAAQIFCCgAAAAAAAAAAgAKFFAAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUUgAAAAAAAAAAABQopAAAAAAAAAAAAChQSAEAAAAAAAAAAFCgkAIAAAAAAAAAAKBAIQUAAAAAAAAAAECBQgoAAAAAAAAAAIAChRQAAAAAAAAAAAAFCikAAAAAAAAAAAAKFFIAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUEgBAAAAAAAAAABQoJACAAAAAAAAAACgQCEFAAAAAAAAAABAgUIKAAAAAAAAAACAAoUUAAAAAAAAAAAABQopAAAAAAAAAAAAChRSAAAAAAAAAAAAFCikAAAAAAAAAAAAKFBIAQAAAAAAAAAAUKCQAgAAAAAAAAAAoEAhBQAAAAAAAAAAQIFCCgAAAAAAAAAAgAKFFAAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUUgAAAAAAAAAAABTccjoBZKdpWk6nAAAwgMlksur9d+7c0Y1fvnxZNx4VFaXsKzU1VTdepkwZ3XhoaKhu3N3dXTfObxUAAACA/MDa8zYABRNPpAAAAAAAAAAAAChQSAEAAAAAAAAAAFCgkAIAAAAAAAAAAKBAIQUAAAAAAAAAAECBQgoAAAAAAAAAAICCW04nAAAA/paQkKAbv379um48OTlZ2Zevr69u3MPDQzduMpkekh0AAAAAZGXUeYSmaYb0AwCOwhMpAAAAAAAAAAAAChRSAAAAAAAAAAAAFCikAAAAAAAAAAAAKFBIAQAAAAAAAAAAUKCQAgAAAAAAAAAAoOCW0wkUBJqmWfV+k8nkoEwAALlZZGSkbnz37t26cX9/f2VfDRo00I37+vrqxq397eG3CgAAAIBROL8AkNvxRAoAAAAAAAAAAIAChRQAAAAAAAAAAAAFCikAAAAAAAAAAAAKFFIAAAAAAAAAAAAUKKQAAAAAAAAAAAAouOV0AgAAFDQJCQm68XPnzunGjx8/rhuvUKGCch3u7u66cS8vL924yWRS9gUAAAAg52maZtX7nXGMn5GRYdX7VTm5uHCvN4Dcjb0UAAAAAAAAAACAAoUUAAAAAAAAAAAABQopAAAAAAAAAAAAChRSAAAAAAAAAAAAFCikAAAAAAAAAAAAKFBIAQAAAAAAAAAAUHDL6QQAAMivoqOjdePHjx/XjR8+fFg3fuXKFd140aJFrc7J1dXV6mUAAAAAOI+mabrxzMxMq97v4qK+f9pcmzXrSE5O1o1nZGToxj08PHTjnp6eunGTyWRBdgDgeDyRAgAAAAAAAAAAoEAhBQAAAAAAAAAAQIFCCgAAAAAAAAAAgAKFFAAAAAAAAAAAAAUKKQAAAAAAAAAAAApuOZ0AAAB5XXJysm787t27uvHo6GjdeFxcnG48LS1NN+7ior4fwsPDQzfu7u6uGzeZTMq+AAAAAOReKSkpunHVeYeISGJiom48PT1dN646X1Cdd7i56V9yVPWjOrdRxb28vHTjfn5+unFzOQGAJXgiBQAAAAAAAAAAQIFCCgAAAAAAAAAAgAKFFAAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUUgAAAAAAAAAAABTccjoBAADyiri4ON349evXdePx8fG6cR8fH9140aJFdeNBQUG68SJFiujGRUQKFy6sG/fw8FAuAwAAACDnmUwm3birq6tuXHXecfjwYeU6zp07pxuPiorSjavOL8LCwnTjAQEBunHVOZXqMyQmJurGVedIderU0Y2bWwYALMETKQAAAAAAAAAAAAoUUgAAAAAAAAAAABQopAAAAAAAAAAAAChQSAEAAAAAAAAAAFCgkAIAAAAAAAAAAKDgltMJAACQ22RkZOjGExMTdeMJCQm6cZPJpBsPDAzUjQcEBOjGvby8dOOenp66cXPLuLnx0w8AAADkJ2lpabrx69evK5c5c+aMbjwmJkY3Xrx4caty8vHx0Y2np6frxuPj43XjUVFRVr3f19dXmVOxYsV045UqVVIuAwD38UQKAAAAAAAAAACAAoUUAAAAAAAAAAAABQopAAAAAAAAAAAAChRSAAAAAAAAAAAAFCikAAAAAAAAAAAAKLjldAIAAOSU1NRU3Xh8fLxuPCkpSTfu6empG/f29taNe3l56cb9/Px047Zwd3fXjZtMJsPWAQAAACDnubq66sZTUlKUy6SlpenGfX19deMlS5bUjZcvX143XrlyZavWe/XqVd246jOo3r9jxw7duDn//e9/rV4GQMHDEykAAAAAAAAAAAAKFFIAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUEgBAAAAAAAAAABQoJACAAAAAAAAAACg4JbTCQAAkFNiYmJ045cvX9aNp6Wl6cY9PT114y4u+vcrJCcn68YTEhJ045qm6cbd3d114yIiHh4eyjYAAAAA+UdmZqZu/N69e8plkpKSdONly5bVjZcpU0Y3HhQUpBs3mUy6cdV5SsmSJXXjFSpU0I2rzp0OHTqkGxcRiYyMVLYBwMPwRAoAAAAAAAAAAIAChRQAAAAAAAAAAAAFCikAAAAAAAAAAAAKFFIAAAAAAAAAAAAUKKQAAAAAAAAAAAAouOV0AgAAOFpGRoZu/ObNm7rxiIgI3bibm/7PZpkyZaxa7507d3TjFy9e1I2reHl5Kds8PDys6gsAAABA3pSSkqIbv337tnKZxMRE3XipUqV04xUrVtSNe3p6PiQ7y6jObcLCwnTjqnOt/fv3K9dx/fp16xMDgP+PJ1IAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUEgBAAAAAAAAAABQoJACAAAAAAAAAACgQCEFAAAAAAAAAABAwS2nEwAAwChpaWm68bt37+rGY2NjdeMuLvr3GRQqVMiqeFxcnG48JiZGN56cnKwb9/Dw0I17enrqxkVE3Nxy5ic+PT1dN56SkmJVPDU1VTeemZlpdU6aplm9jBFMJpMh77e2HxH1Z7Y2DgAAkJ+ojnlUx1vu7u66cS8vL924t7e3btzRx+aq8w5VXER9XF28eHHdeKlSpXTj5s5JjKA6FwoKCtKNmzuuTUpKMiQnAAUTT6QAAAAAAAAAAAAoUEgBAAAAAAAAAABQoJACAAAAAAAAAACgQCEFAAAAAAAAAABAgUIKAAAAAAAAAACAgltOJwAAgFHi4uJ04xcuXNCNZ2Rk6MZr1KihG/f399eNFy5cWDd+8+ZN3fjt27d14z4+Plb17+npqRvPSfHx8brxGzdu6Mbv3LmjG793755uPDMzU7luNzfrDms0TbPq/Somk8mQflT52JKnKidrczXqOwIAADCa6rjG3PGi6vhfdRzp5+enGy9atKhuvEyZMrpx1fG8iipP1fmO6pg6JSVFuQ7VuYTqsxUrVkw3btSxsLVU63V3d1cuY64NAB6GJ1IAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUEgBAAAAAAAAAABQoJACAAAAAAAAAACgQCEFAAAAAAAAAABAwS2nEwAAQE9KSopuPDY2VrnMtWvXdONRUVG6cX9/f914mTJldOMBAQG6cZPJpBu/d++eblzTNN14enq6VfGMjAzduLl1OFp8fLxu/OrVq7rxO3fu6MZV//6FChVSrlv176n698nMzNSNq747VT+quEpaWppuXPWZVXHV34WIiLe3t27c19dXN27tdwQAAJBbubio7xlWHdtYe5xn1HGhiup48datW7rxyMhIq9fh4+OjG/fz89ONG/XZjKL6tzR3jsSxLQB78EQKAAAAAAAAAACAAoUUAAAAAAAAAAAABQopAAAAAAAAAAAAChRSAAAAAAAAAAAAFCikAAAAAAAAAAAAKLjldAIAAOi5fv26bvzQoUPKZRISEnTjPj4+unFvb2/deJEiRXTjXl5eynXrMZlMunFVnjExMbrxe/fu6cYTExOV687IyDCfnIPExsbqxlX/nklJSbpxPz8/3XiJEiWU6y5Xrpxu3M1N/3AnNTVV2Zc1XF1drXp/XFycbvzu3bu68ejoaN246rsTESlevLhuvGzZsrpx1XeUnp6uXIceTdN046ptwVqq/gEAACyRmZmpG3dx0b/P2MPDQzdeqFAhq95vLdVxquqY+ubNm7pxd3d35ToCAwN1456eng/JLndISUnRjScnJyuXMdcGAA/DEykAAAAAAAAAAAAKFFIAAAAAAAAAAAAUKKQAAAAAAAAAAAAoUEgBAAAAAAAAAABQoJACAAAAAAAAAACgQCEFAAAAAAAAAABAwS2nEwAAFGypqam68ejoaN349evXlX1pmqYb9/f31417e3vrxj09PZXrMIKrq6tuvHDhwrrxoKAg3XihQoWU61B9r9ZSfaeJiYm68aSkJN14RkaGbtxkMunG3dz0D1FU35GI+ntS/XumpaXpxlWfWUWVq6ofFxf9+1hU36mXl5duXPV3JCJSpEgR3XhwcLBu3N3dXTeu+o5U/24qqver4qrvLjMz06r3AwAA2EN1vKU6nlMdF1pLdSyvOheKjIzUjfv6+irXUbx4cd246tjT0VTHefHx8bpx1WdWnXeIGPfvA6Bg4okUAAAAAAAAAAAABQopAAAAAAAAAAAAChRSAAAAAAAAAAAAFCikAAAAAAAAAAAAKFBIAQAAAAAAAAAAUHDL6QQAAAVDenq6bjw+Pl43npycrBt3cVHfA+Dh4aEb9/X11Y17eXnpxjVNU65DT0pKilX9+Pv768YrVKigGy9btqxuvFSpUsqcVN9fWlqabtzd3V03npiYqBuPjIzUjau+i4CAAN14amqqblz1b2kymXTjIurv29XVVTdu7m/JGtb2o/oMqm1E9W/j4+OjXIfqb97T01M3rvoM1sYdTfVvbO02CwAAYAlzx55GvF9Fdcx+7do13fidO3d046VLl1auQ3WOUahQoYdk5xiq84izZ8/qxi9cuGD1OlTnJABgCZ5IAQAAAAAAAAAAUKCQAgAAAAAAAAAAoEAhBQAAAAAAAAAAQIFCCgAAAAAAAAAAgAKFFAAAAAAA/h/7dh9raWIf9P085zzn/e2+zMzOrtf2xpv4Ld7FrqxWCVYUC4eCZFUGIROUisZVaOOqQaFEFAjBFEJpcAQIR4TWQE0JbRRFxGqjhpdIjaykSRFNnBAce7327jqb9ezO3HPf73m99/QPF4Hh95uZMzt3zp07n8+f33Pv8/zu27nPub/7AABAolz3AAA8GpbLZdir1XinPxwOw/7UU0+l52g2m2G/fv162Pv9ftiLokjPEck+tuz42cdw9erVsGefo83NzXSmRqORPraK8Xgc9p2dnbCfnZ2FPfvYJpNJ2BeLRdhPT0/DXqlUKkdHR2Evy/hyp9Vqpcc6T/P5POzHx8dhr9frYb/d1z/73su+lzLZ22dfn9lsFvbpdLrScdrtdti73W7YV/24AAAusuya6tatW2HPriOz10GVSqXyDd/wDWHvdDp3mO583Lx5M+y/8Ru/EfaXXnop7E888UR6jtt9PgDuxKtOAAAAAACAhEUKAAAAAABAwiIFAAAAAAAgYZECAAAAAACQsEgBAAAAAABIlOseAIBHQ1nGv3L6/X7Y3/KWt4T9ySefTM9Rrcb/H1Cv11eaKTtOptFohP2xxx4L+9bWVtjPzs5WOm82f6Wy+secOTk5Cfvu7m7YO51O2B9//PGVjj8ajcI+nU7DXqlUKq+99lr6WCT7+hRFsdJxMtnX8/DwMOzZ5/TatWth397eTs/d6/XuMN3dWS6XYT84OAj7zZs3w/7Vr3417Nnn4s1vfnPY3/rWt4a91WqFHQDgYTSZTMKeXYMtFouwP/HEE+k5nnrqqbB3u93bD/c6Zdd/L730Uth/9Vd/Nezj8Tjsv+f3/J703NnHDHA33JECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAASFikAAAAAAACJct0DAPBoKIoi7LVaLeztdnulvk7Vavx/CY1GY6W+TsvlMuzj8Tjsx8fHYe92u2Hf3NwMe6fTCfvp6WnYDw8Pw16pVCq7u7srneOxxx5Lj7WKyWQS9p2dnbAfHByEPftZyObv9XrpTM1mM31sFdnXYTQahf25554L++c+97mw37p1K+zf+q3fGva3vOUtYQcAuMhms1nYj46Owv7iiy+G/ebNm2GfTqdhz16n3O6xbKazs7Owz+fzlY6TXf/duHEj7Nk17/Xr18P+tre9LeyVSqXy9NNPp48B3Ik7UgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgIRFCgAAAAAAQMIiBQAAAAAAIFGuewAA4ME5OzsL+3g8DvtkMgn76elp2MsyvrTodrth73Q6YZ/P52HP5qxUKpX9/f2V3qcoivRYq7h161bYn3vuubBnn9Otra2VerPZvIvpXp/s++XmzZth/9znPhf2X/qlXwr7V7/61bA/9thjYf/ABz4QdgCAi+zw8DDs2bXTr//6r4f9tddeC3t2DZ5dH9/uWIvFIuxHR0dhH41GYd/d3Q373t5e2LOP4X3ve1/Y3/jGN4b9TW96U9grlUql3++njwHciTtSAAAAAAAAEhYpAAAAAAAACYsUAAAAAACAhEUKAAAAAABAwiIFAAAAAAAgUa57AADgwZlOp2Hf398P+3g8DntZxpcQjUYj7PV6PexFUYR9Y2Mj7Ds7O2GvVCqV+Xwe9slkEvaTk5OwZx/bwcFB2F999dWV3r7f74f98ccfD/vW1lbYa7Va2O+n7OuTfZ2bzWbYZ7NZ2EejUdiPjo7Cvlwuww4AcBFk1yqnp6dhz65f2+122N/+9reHPbsG63Q6Ya9U8mvk7PVC9rog+xiya9XhcBj27Jr3bW97W9ivX78e9uxzB/B6uSMFAAAAAAAgYZECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAAS5boHAAAenPF4HPZbt26FfTqdhr3b7Ya91WqFfblchr0oirD3er2wdzqdsFcqlUq1Gv9/yGQyCfvNmzfDfnR0FPZXX3017CcnJ2FvNpthv379etjf9KY3hT37nD4I9Xo97E888UTY3/Wud4X9i1/8Ytiz77vscwcAcJGdnZ2FPbu2ya6psuu/d77znWHProP7/X7Yb6cs4z8VZscaDodhb7fbYd/Y2Ah79voi+9zVarWwA5wXd6QAAAAAAAAkLFIAAAAAAAASFikAAAAAAAAJixQAAAAAAICERQoAAAAAAECiXPcAAMCDM5lMwr63txf209PTsG9sbIS91+vdy1j/nqIowt5ut9P3yR4bj8dh/+3f/u2wz2azsGefu263G/bNzc2wX716NeytVivsF1Gz2Qx7v98Pe6fTCXuj0Qh7rVa7t8EAANYou4bNrp2uXLkS9uFwGPZ6vR725XIZ9uy6tlKpVBaLxUrHqlbj/8XOrueya+TsehHgonNHCgAAAAAAQMIiBQAAAAAAIGGRAgAAAAAAkLBIAQAAAAAASFikAAAAAAAAJMp1DwAAPDjT6TTsh4eHYe90OmHf3t4O+2AwCHtRFHcx3Z01m830seFwGPavfvWrYb9x40bYs4/hySefDPtjjz0W9uxz1Gq1wv4wWSwWYc++v+bzediXy+VKHQDgIqtW4/9XbjQaYd/Y2Ah7di206jX17a6p7tf1VjZT9rkAeFh5VgMAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgIRFCgAAAAAAQKJc9wAAwP23WCzCPplMwj6bzcI+HA7DvrGxEfZutxv2oijCvqpWq5U+ls20s7MT9vl8HvZmsxn2xx57LOzXrl1b6TiXwXK5DPvZ2dlKb591AIDLpFqN/4856wBcPJ6xAQAAAAAAEhYpAAAAAAAACYsUAAAAAACAhEUKAAAAAABAwiIFAAAAAAAgUa57AADg3sxms/Sxw8PDsI/H47BXq/H/VrRarbB3u92w12q1dKb7odlspo9tbGyEfXNzM+zHx8dhv3LlStivX78e9nq9ns4EAAAAPPzckQIAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAIly3QMAAPdmMpmkj41Go7CPx+Owt1qtsLfb7bCX5XouIRqNRvpYv98Pe7fbXelYRVGE/fT0NOz1ej2dCQAAAHj4uSMFAAAAAAAgYZECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAAS5boHAADuzXg8Th+7detW2GezWdj7/X7YO53O6oOdo6Io0sfa7XbYW61W2KvV+P9JTk5Owv7aa6+FfWtrK+zdbjfst/sYAAAAgIvHHSkAAAAAAAAJixQAAAAAAICERQoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJAo1z0AAHBvJpNJ+tjBwUHY6/V62Dc3N8Pe7/dXH+yCabVaYe92u2E/PT0N+2g0Cnuj0Vjp+JdZURRr6QAAAHCe3JECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAASFikAAAAAAACJct0DAAD3Zjqdpo+Nx+Owt1qtsG9tbYW93++HvSiKO0x3cWQf88bGRtj39/fDPhqNwt7tdsP+2GOP3Xm4h1T29V+136/jAwAAwHlyRwoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACTKdQ8AAHzN6elp2Mfjcdgnk0l6rLOzs7DX6/Ww93q9sDebzfQcD4t2ux327e3tsGef752dnZXePvsa1Gq1sD9Mso9tsViEPftezT530+l0pfOu0/vf//6wf/aznw37xsbGSse/cuVK2LOf2QdxrKeffjrsf/pP/+mwl6WXHAAAwMPNHSkAAAAAAAAJixQAAAAAAICERQoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJAo1z0AAPA1k8kk7KPRKOwnJyfpser1etjb7XbYG43GHaZ7eHU6nZXefmdnJ+zz+Tzs2dcte/tarbbSPBfR2dlZ2KfTadiz79Wjo6OwZ5/TxWJxF9M9WB/72MfC/v73vz/se3t7Kx3/xRdfXHGi9fnu7/7usD/55JMPdhAAAID7zB0pAAAAAAAACYsUAAAAAACAhEUKAAAAAABAwiIFAAAAAAAgYZECAAAAAACQKNc9AADwNZPJJOyj0Sjs0+k0PVa32w17p9MJe61Wu8N0D69qNf6/kexz0Wq1VjrObDYL+8HBQdiLogh7s9kM+zotl8uwz+fzsJ+dnYV9OByG/cknnwx79rU5Pj4O+2AwCHulUqmU5fle7n77t3972D/0oQ+F/dOf/vR9Oe8HP/jB9LEf/MEfDHv2HLOqXq8X9uzrCQAA8LBzRwoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACTKdQ8AAHzNZDIJ+2g0CvtyuUyPtbW1FfZ+v7/6YJdUtRr/P0mz2Qx7u90O+3w+D/vOzs5K5200GmEviiLsD0L2sS0Wi7DXarWwf8M3fEPYu91u2B9//PGwHxwchH0wGIS9UqlUhsNh+th5+tjHPhb2T3/60ysdp9Vqhf1nf/Zn0/f57Gc/G/ZPfOITYf/Qhz600kwAAACPGnekAAAAAAAAJCxSAAAAAAAAEhYpAAAAAAAACYsUAAAAAACAhEUKAAAAAABAolz3AADA10yn07AfHx+Hvdvtpsfa3NwMe7/fD3tRFHeY7tHRbrfDPhgMwj6ZTMK+u7sb9k6nE/bt7e27mO7Byr4ver1e2J944omwN5vNsI/H47BvbW2tdN5q9eL9b9C73/3usH/oQx8K+6c//emw/8AP/EDYn3/++fTcP/mTPxn2P/AH/kDY/9Af+kNh/8QnPhH269evp+cGAAC4jC7eq04AAAAAAIALwiIFAAAAAAAgYZECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAASxXK5XK57iMtu1U9xURTnNAkAF8F8Pg/7888/H/bPf/7zYb969Wp6jmeffTbs/X4/7H73/Bt7e3thf+2118L+6quvhv3o6Cjsb37zm8P+jne8I+zr/Npk1zCnp6f3pWfHr1bj//UpyzLstVot7Lc71rr85m/+Ztjf8573hP3KlSthf+GFF9Jz/PzP/3zYP/rRj4b95ZdfDvvGxkbYP/7xj4f9e77ne9KZAAAAHmYX65UlAAAAAADABWKRAgAAAAAAkLBIAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEsVyuVyue4jLbtVPcVEU5zQJAA/SbDYL++HhYdhfeumlsL/88sthf+KJJ9JzP/vss2FvNBrp+/A12dft4OAg7F/+8pfD/sorr4T9jW98Y9ifeeaZsPuaPRo+8pGPhP1Tn/pU2P/6X//r6bG+//u/P+xHR0dh/zN/5s+E/W//7b8d9sViEfZv//ZvD/snP/nJsH/jN35j2AEAAC4ad6QAAAAAAAAkLFIAAAAAAAASFikAAAAAAAAJixQAAAAAAICERQoAAAAAAECiWC6Xy3UPcdmt+ikuiuKcJgHgQdrb2wv7jRs3wn7r1q2wn5ychP2JJ55Iz/32t7897GVZpu/D7S0Wi7B//vOfD/tzzz0X9uvXr4f9m7/5m8Pe6/XCXqvVws7D6fnnnw/7O97xjrBfuXIlPdYLL7wQ9lartdJMv/IrvxL2j3zkI2HPfhay837sYx8L+w/8wA+E3fMXAACwLu5IAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEhYpAAAAAAAACYsUAAAAAACARLFcLpfrHuKyW/VTXBTFOU0CwIP06quvhv3LX/5y2CeTSdjb7XbYH3/88fTcb3zjG8Nerfofivvt+eefD/vnP//5sPf7/bC/+c1vDvv29nbYe71eOpNricvjIx/5SNg/9alPpe/z4z/+42H/3u/93vsxUmWxWIT9h3/4h8P+Iz/yI2HPnvPe/e53h/2Tn/xk2N/73veGHQAA4H7x1xQAAAAAAICERQoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEiU6x4AAC6r2WwW9oODg7A3Go2wb29vh73f79/bYNxXzWYz7NnX5/T0NOy3bt0Ke71eD3uv17uL6XjY/aW/9JfCXpb5ZfwHPvCB8xrntuf+C3/hL4T9O7/zO8P+kY98JOy/8iu/EvZv+ZZvCfv3f//3h71SqVQ+9rGPhd3PDwAAsAp3pAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgIRFCgAAAAAAQKJYLpfLdQ9x2a36KS6K4pwmAeA8nJ2dhf1LX/pS2H/rt34r7BsbG2F/+9vfvtLbVyqVSr1eD7vfMfffrVu3wv7KK6+EfXd3N+yLxSLsb3rTm8L+Td/0TXcxHTx8fuzHfizsP/RDPxT2vb299FhPPfVU2D/5yU+G/QMf+MBtZwMAAB5N7kgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAASFikAAAAAAAAJixQAAAAAAIBEsVwul+se4rJb9VNcFMU5TQLA63F6ehr24+PjsL/wwgsr9evXr4f93e9+d9hbrVbYebBOTk7Cvre3F/aXXnop7K+99lrY3/KWt4T9mWeeufNwcIm8/PLLYf/oRz+avs/P/uzPrnSO7/7u7w77xz/+8bBfuXJlpeMDAAAPJ3ekAAAAAAAAJCxSAAAAAAAAEhYpAAAAAAAACYsUAAAAAACAhEUKAAAAAABAolgul8t1D3HZrfopLorinCYB4PU4Pj4O+87OTthfeeWVld7+DW94Q9ifeeaZsNdqtbDzYJ2dnYV9PB6H/bnnngv7Cy+8EPYnn3wy7O9617vSmTqdTvoYPEp++qd/Ouzf933fF/YbN26E/cqVK2H/xCc+Efbv/M7vvIvpAACAh4U7UgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgIRFCgAAAAAAQMIiBQAAAAAAIFEsl8vluoe47Fb9FBdFcU6TAPB63Lp1K+xf+cpXwn5wcBD27PfCE088Efann3467GVZhp2L7fOf/3zYv/CFL4R9a2sr7Nn3RaVSqWxuboa93W7fYTp4NOzt7YX9T/yJPxH2T33qUysd/4Mf/GDYP/GJT4T9qaeeWun4AADAg+WOFAAAAAAAgIRFCgAAAAAAQMIiBQAAAAAAIGGRAgAAAAAAkLBIAQAAAAAASBTL5XK57iEuu1U/xUVRnNMkALwer7zySti/8IUvhP3s7Czs29vbYb927VrYr1+/HvZq1f9DPIxefPHFsH/xi18Me1mWYc++X2732NWrV28/HBD6hV/4hbD/sT/2x8L+/PPPh73X64X9r/yVvxL27/3e7w179rwAAACcD3+BAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEhYpAAAAAAAACYsUAAAAAACARLFcLpfrHuKyW/VTXBTFOU0CwOvx4osvhv03f/M3w97tdsP+Td/0TWHf3NwMe6fTCbvfFw+nGzduhP0rX/lK2I+Pj8NelmV6jieffDLsTz31VNh9L8G9mUwmYf+hH/qhsP+Nv/E3wr5YLML+Mz/zM2H/0Ic+dMfZAACA+8cdKQAAAAAAAAmLFAAAAAAAgIRFCgAAAAAAQMIiBQAAAAAAIGGRAgAAAAAAkLBIAQAAAAAASJTrHgAALprpdBr28Xgc9sViEfZ6vR72fr8f9k6nE/aiKMLOw6ndbod9a2sr7LPZLOyHh4fpObLvVeD+arVaYf/4xz8e9u/6ru8K+z/8h/8w7B/60IfuaS4AAOD+ckcKAAAAAABAwiIFAAAAAAAgYZECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkynUPAADrMplMwr6/vx/24+PjsBdFEfZmsxn2dru90nG4XDqdTti3trbCvru7G/abN2+m58i+txeLRdjr9Xp6LOD+efe7371SBwAALgZ3pAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgIRFCgAAAAAAQKJc9wAAsC7T6TTso9Eo7JPJJOydTmelXqvV7mI6Lqt6vR72Xq8X9mazGfblcpmeI/vePjo6Cnu/3w97WbpUBAAAAHekAAAAAAAAJCxSAAAAAAAAEhYpAAAAAAAACYsUAAAAAACAhEUKAAAAAABAolz3AACwLuPxOOyj0Sjss9ks7IPBIOy9Xu/eBuOR1Gg0wt5ut8PebDbTY02n07Bn39vVavy/Ndn3dlEU6bmBezEJ6+6NvbDHP+HrVetuh/1qv36fzrDa56hSqVSmlfh5cuP6ZthbK8+0qnlYD2/uhP243Aj79c3znxQAgK/njhQAAAAAAICERQoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEiU6x4AANZlNpuF/fDwMOz1ej3sW1tbYR8MBmEviuIupoOvabfbYe/3++n7nJ6ehn13dzfsrVYr7MPh8A7TAffHr4b1b337fx72f3Ceo9zB0StfCPtTf+35sP/i9zy90vFHv/Y3w/6R//jPhf2XB0+kx9qqjML+SuU7wv7j//vfDft3vTN+jszF5/2//uwfCfsn9t8T9rce/1rYn/+PPh72v/fRZ9OJ4isSAADuljtSAAAAAAAAEhYpAAAAAAAACYsUAAAAAACAhEUKAAAAAABAwiIFAAAAAAAgUa57AAA4b8vlMuzT6TTsk8kk7K1WK+ybm5th7/f7YS+KIuwQabfbYd/e3k7fZ2dnJ+y7u7thHwwGYc9+dnwPw/32rWH9wc9/Pu7nOcq/dvCZMP+pd/3ZsL/1/U+vdvzRz4b5+7/lR8P+lv/j+bD/9HdcS09Rr8zD/to/+1Nhf+/v+/Nhf+Nv/tWwf1v81FmpfOZ/CPPf/Oa/F/af+a43JAeK5//lP/fhsP/Ul34mOU6l8j0rfnkAAPh67kgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAASFikAAAAAAAAJixQAAAAAAIBEue4BAOB+WSwWYT8+Pg77ycnJSsdvNBph73Q6YS9Lv2Z5/bLvr83NzfR9Dg4Owr67uxv28Xgc9tPT07D73obLZB7W3/if/uuw/+M//hNh/8tPr3bW3/m5vxX2n/ro3w/74XdcC3v9tmeJH732Hf9d2P/H3xuf46//3J8M+7f94cfC/upXvxj2p554Q9hzyfxP7Yf9Z37nNoda8esDAMDXc0cKAAAAAABAwiIFAAAAAAAgYZECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkynUPAAD3y2QyCftoNAr7yclJ2BuNRtjb7XbY6/X6XUwH96bVaoV9Y2MjfZ9XX3017IvFIuzT6TTss9ks7GXpEhIujdE/CfOP/sV3h/2/f/HZsOe/CQ/C+mv/5OfC/uEP/+SKx78Xg7D+B9/x+8P+6c/8Rtjnf/g7wv7Y+74z7Ac/+o/D/tr7fl/Yr51+Luz/5z97b9g/+OEwAwBwH7gjBQAAAAAAIGGRAgAAAAAAkLBIAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEuW6BwCA+2UymYR9Z2cn7NPpNOz9fj/svV4v7NWq/0vg/BRFEfZWq5W+T/ZYWcaXfrPZLOz7+/srzdRut9OZgIvpcz/xZ8P+2T//E2H/u1urnuFmWG98+W1hf/ZNg1VPcN88du2p+IFffynMX0mO8/Qb/nDYP/5H/07Y/+T73h72X974g2H/xN/5y2H/tvV96gAALj1/+QEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgES57gEA4H6ZTqdh39vbC3tRFGG/cuVK2AeDwUrHgfNUreb/D9NqtcLe6XTCvlgswr6zsxP2sowvIdvtdjoTsGbzXw7z//rDT4b9v/21Z8NeX/nEXwnrv/ql+HftN3dXPsH986ZvDvPvvk+H33rP94T9f/5/4g4AwMXhjhQAAAAAAICERQoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEiU6x4AAO6XyWQS9pOTk7D3er2wb2xshL3f74e9KIo7DwcPULvdDnv2vX18fBz23d3dsGc/O1evXr3zcMBaHPz83w373/xPvi/sL7/hPKd5yBzE1xHTBzwGAADr444UAAAAAACAhEUKAAAAAABAwiIFAAAAAAAgYZECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkynUPAACR5XIZ9ul0mr5P9thisQh7vV4P+3A4DHun00nPDRdJ9r26vb0d9uxnZ39/P+wnJyf3Nhhwzg7SRz7zv/1E2D/8R/5a2Af3ZZ5KpVLphnXj6n07wf1zvBfmW4ONsDfPbxIAAC4Yd6QAAAAAAAAkLFIAAAAAAAASFikAAAAAAAAJixQAAAAAAICERQoAAAAAAECiXPcAABCZTqdh39vbS9/n5OQk7GUZ/7prtVphbzabtx8OLrhOpxP2ra2tsO/s7IQ9+zkcj8crvb2fKXhADj6TPvRT/+DDYf/wjw3Oa5r/33ZY3/DWXwr7v/pKcpin79M4t7PzO2H+wtU3hr13nrMAAHChuCMFAAAAAAAgYZECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAAS5boHAIDIZDIJ+61bt9L3GY/HYe90Oiv1oijuMB1cbGUZX+INh8Owt9vtlY4/nU7Dfnx8HPZqNf7fnXq9vtJ5gTv47GfSh37q/e8P+18cnNcw/9rTYX32O66G/VNf+lJ8mPfHx7mffuP//bmwv+13fyTsj53nMAAAXCjuSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgES57gEAIDKdTsO+u7ubvs98Pg/7cDgMe7/fD3u16v8MuJyKogh7q9VaqWc/a9nPZ61WC3v2swncmy8993/nD773g2F+6nxGuaP3/N7/IuzP/Zc/E/bf+M9+IOzP1u/h5PNfDvNP/dVG2P+rX3j2Hk4CAMBl4i9FAAAAAAAACYsUAAAAAACAhEUKAAAAAABAwiIFAAAAAAAgYZECAAAAAACQKNc9AABEZrNZ2A8PD9P3aTabYd/a2gr7cDgMe1EUd5gOLpfsZ2cwGIR9Pp+HfWdnZ6XjZz+DwL35nef+RfrYe9/6hgc4yZ3Vv+W/Cfvf/w+fCvsH/9ONsP/Uj3wwPcdTk8/H7/OxPxr2/+W7/n7YP/vO9BQAADwi3JECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAASFikAAAAAAACJct0DAPBoWywWYR+Px2GfzWbpsbrdbtg3NjbC3uv1wl4URXoOuIw6nU7YNzc3w37r1q2w7+3thT37GQTur3L4VPrYm3q1BzfIXdkK6+//8efD/o9+6ofD/oO/70fTM7w0fGfY/+Af/0dh/xcffm/Y40kBAHiUuCMFAAAAAAAgYZECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAASxXK5XK57iMtu1U9xURTnNAnA+szn87AfHR2F/Stf+UrYX3jhhfQc169fD/t73vOesDebzfRY8CiZTCZh39vbC/uXv/zlsL/66qthf/rpp8P+zDPPhN21EAAAABeJO1IAAAAAAAASFikAAAAAAAAJixQAAAAAAICERQoAAAAAAEDCIgUAAAAAACBRrnsAAB4N0+k07KPRKOwnJydhbzab6Tna7XbYa7XaHaaDR1v2czUYDMLearXCfnZ2FvbJZBL24+PjsHe73bAXRRF2AAAAOE/uSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgES57gEAeDSMx+Ow37p1K+yTySTs/X4/PUe32119MKBSFEXYO53OSr1er4d9Op2GfXd3d6V5/IwDAACwDu5IAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEhYpAAAAAAAACYsUAAAAAACARLnuAQB4NMxms7AfHByEvSiKsF+7di09x2AwWOlYwL1ptVph73a7YV8sFmHf2dkJe6PRWOn4AAAAcJ7ckQIAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgES57gEAeDTMZrOwj8fjsPd6vbBvbm6m5xgMBmGvVv3fANxP7XY77BsbG2Hf398P+2g0Cnu/3w/7Y489dufhAAAA4D7zlyUAAAAAAICERQoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEiU6x4AgIfT2dlZ2CeTSdhPTk5WOk69Xg97r9dLZ2q1WuljwP3T6XTCvr29Hfbs539vby/s4/E47NnzRbXqf4MAAAA4P151AgAAAAAAJCxSAAAAAAAAEhYpAAAAAAAACYsUAAAAAACAhEUKAAAAAABAolz3AAA8nKbTadhHo1HYT05Owl6W8a+idrsd9lardRfTAeep0+ms9Pa3bt0K+2uvvRb27PllPp+HvdlsrjQPAAAArMIdKQAAAAAAAAmLFAAAAAAAgIRFCgAAAAAAQMIiBQAAAAAAIGGRAgAAAAAAkCjXPQAAD6fJZBL20WgU9vF4HPZOpxP2brcb9mrV/wDAutVqtbC32+2wN5vNsGc/z9PpNOwHBwdhHw6HYa9UKpVGo5E+BgAAAHfDX6MAAAAAAAASFikAAAAAAAAJixQAAAAAAICERQoAAAAAAEDCIgUAAAAAACBRrnsAAB5O0+k07Lu7u2FfLBZh39jYCHu/3w97URR3Hg5Yi7KMLy1brVbYm81m2GezWdhHo9FK561UKpVGo5E+BgAAAHfDHSkAAAAAAAAJixQAAAAAAICERQoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJAo1z0AAA+n6XQa9uPj47A3m82wb21thX0wGIS9KIq7mA64SNrtdtiHw2HYs+eXnZ2dsHc6nfTcm5ubd5gOAAAAbs8dKQAAAAAAAAmLFAAAAAAAgIRFCgAAAAAAQMIiBQAAAAAAIGGRAgAAAAAAkCjXPQAAF9t8Pg/7ZDIJ+2w2C3u32w375uZm2AeDwV1MBzwMsp//7e3tsN+4cSPse3t7Yd/a2rqnuQAAAOBuuCMFAAAAAAAgYZECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAAS5boHAOBimM1mYT84OAj7ycnJSsdvNBphbzabKx0HePh0Op2wb29vh313dzfso9Eo7JPJJD33fD4Pe71eT98HAAAA/m3uSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgES57gEAuBgmk0nYd3Z2wn58fBz2ZrMZ9na7HfZarXYX0wEPs+x5YTgchj17vlgul2GfTqfpucfjcdiz555q1f8ZAQAA8PW8UgQAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgES57gEAuBhms1nYd3d3V3r7wWAQ9n6/H/Zq1U4fHlWNRiPszWYz7PV6PezT6TQ9R/YcVhRF2LPnKgAAAB5d/noFAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAASFikAAAAAAACJct0DAHAxTKfTsO/v74e9Wo138VtbW2EfDodhL4riLqYDHiWtVivsvV4v7IvFIj3WrVu3wt5oNMLe7/fvMB0AAACPGnekAAAAAAAAJCxSAAAAAAAAEhYpAAAAAAAACYsUAAAAAACAhEUKAAAAAABAwiIFAAAAAAAgUa57AAAerOVyGfbJZLJS7/V6Yd/Y2Ah7v98Pe7Vqpw98vW63G/atra2w7+7upsfa29sL++bm5spzAQAA8Gjy1ysAAAAAAICERQoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEiU6x4AgPNxenoa9vF4vFI/OzsLe6PRCPtgMAh7s9kMO8C/q9vthv3KlSthPz4+To+1s7MT9slksvpgAAAAPJLckQIAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAIly3QMAcD6m02nYR6NR2I+Pj8NelvGvilarFfZ6vX4X0wHk2u122JfLZdhv3LiRHms+n4f95OQk7OPxeKWZAAAAuPzckQIAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAIly3QMAcD4mk0nYb926FfaTk5Owd7vdlXpRFHcxHUCuWo3/1yd73mm1Wumxsuek7Dlyf39/pePc7twAAABcDu5IAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEhYpAAAAAAAACYsUAAAAAACARLnuAQA4H7PZLOz7+/thPz09Dfv29nbYh8Nh2KtVO3rgfBRFEfZWq5W+T6fTCft8Pg/7aDQKe71eX/ncAAAAXA7+2gUAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAIly3QMAcD5ms1nYT05Owt5sNsO+tbUV9uFwGPaiKO5iOoD7p91up49tbGyEPXsu3NnZCXu32w379vb27YcDAADgoeeOFAAAAAAAgIRFCgAAAAAAQMIiBQAAAAAAIGGRAgAAAAAAkLBIAQAAAAAASJTrHgCAO1sul+ljs9ks7OPxOOzz+Tzs3W437IPBYKW3L4oi7ADnJXs+qlQqle3t7bBnz52Hh4dhn0wmqw8GAADApeCOFAAAAAAAgIRFCgAAAAAAQMIiBQAAAAAAIGGRAgAAAAAAkLBIAQAAAAAASJTrHgCAO5vNZulj+/v7YT8+Pg57URRhbzabYe90OisdB+BB63a76WOnp6dh39nZCftkMgn7dDoN+9nZWdirVf+vBAAAcFl4hQcAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAIly3QMAcGfT6TR9bGdnJ+wnJydhb7fbYe92u2GvVu3cgYutXq+nj/V6vbA3m82wL5fLsI/H47AfHBysdN6ydPkNAADwsPHXMQAAAAAAgIRFCgAAAAAAQMIiBQAAAAAAIGGRAgAAAAAAkLBIAQAAAAAASJTrHgCAO5tMJuljOzs7K73PYDAIe7/fD3tRFHeYDuDiajabYW+322FvNBphz55Ts+fg7LlzOByGHQAAgIvLHSkAAAAAAAAJixQAAAAAAICERQoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJAo1z0AAHc2m83Sxw4PD8Neq9XCvrm5GfbhcBj2oijuMB3Aw6fdbod9MBiE/ezsLOyj0SjsnU4n7NlzLQAAABeXO1IAAAAAAAASFikAAAAAAAAJixQAAAAAAICERQoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJAo1z0AAP/GcrkM+2w2S99nOp2GvdfrhX1jYyPs/X4/7NWqnTtw+XQ6nbBvbm6GfTQahX1/fz/sW1tb9zYYAAAAF46/jgEAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgIRFCgAAAAAAQKJc9wAAj6LFYhH24+PjsB8dHaXHWi6XYW80GmHvdDphr9fr6TkALptutxv27e3tsB8eHoZ9f38/7OPxOOxnZ2dhr1b9fxMAAMBF5RUbAAAAAABAwiIFAAAAAAAgYZECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkynUPAPAomk6nYd/Z2Qn78fFxeqxGoxH2Tqez0tsDPEra7XbYl8tl2LPnzvl8HvbseT7r2TwAAACsnztSAAAAAAAAEhYpAAAAAAAACYsUAAAAAACAhEUKAAAAAABAwiIFAAAAAAAgUa57AIBH0XQ6DftoNAr7ZDJJj9Xr9Vbq1aodOkBRFGFvtVor9bKML6ez5/m9vb07D/dvabfbK709AAAA95+/pgEAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgIRFCgAAAAAAQKJc9wAAj6LpdBr2/f39sJ+dnaXHunbtWtiHw2HYi6K4w3QAj65arRb2drsd9k6nE/b5fB720WgU9nq9vtJ5AQAAeHDckQIAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAIly3QMAPIpms1nYT05Owt5qtdJjbW1thX04HIa9WrVDB1hVt9sN++bmZtiPj4/DPhqNwt7v9+9tMAAAAM6dv6YBAAAAAAAkLFIAAAAAAAASFikAAAAAAAAJixQAAAAAAICERQoAAAAAAECiXPcAAJfBcrkM+3Q6Dft4PA77YrEIe71eT889GAzC3ul00vcBYDXdbjfs29vbYc+e5w8ODsJ+cnJyb4MBAABw7tyRAgAAAAAAkLBIAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEhYpAAAAAAAAiXLdAwBcBtPpNOy7u7thPz4+DnutVgt7q9VKz91oNO4wHQCvV6fTCfvm5mbYX3vttbBnvy8mk0nYZ7NZ2D33AwAAPDjuSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgES57gEALoPpdBr2nZ2dsB8fH4e93W6HvdPppOeu1Wp3mA6A16ss48vmwWAQ9lartdLxs98j2e+LoijSY9Xr9ZXODQAAwO25IwUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABLlugcAuAxms1nYd3d3V3r7jY2NsA+Hw/Tc1aqdOMC61Gq1sLdarZX6dDoN+87OTthv99x/u98ZAAAArM5f3wAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgIRFCgAAAAAAQMIiBQAAAAAAIGGRAgAAAAAAkCjXPQDAZTCdTsN+eHgY9lqtFvaNjY2wD4fD9NzVqp04wEXTbrfD3u/3w75YLMK+s7MT9k6nk577dr8zAAAAWJ2/vgEAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgIRFCgAAAAAAQKJc9wAAD5PFYhH2yWQS9tlsFvZ+vx/2jY2Nld6+UqlUiqJIHwNgPbrdbti3trbCfvPmzbDv7++H/erVq/c2GAAAACtzRwoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACTKdQ8AcBHN5/OwHx0dhf3k5GSl4zebzbD3er2w12q1lY4PwHp1u92wb21thX13dzfse3t7YZ9MJvc0FwAAAKtzRwoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACTKdQ8AcBFNp9Ow7+zshP3o6CjsjUYj7O12O+y1Wu0upgPgosue55fLZdhbrVbYT09Pwz4ej9NzHx8fh73T6YS9KIr0WAAAALgjBQAAAAAAIGWRAgAAAAAAkLBIAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEuW6BwC4iKbTadhHo1HYx+Nx2Hu9Xti73e69DQbAQ63T6YS91WqFvSzjy/XJZJKeY29vL+xFUaw0EwAAAF/jjhQAAAAAAICERQoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEiU6x4A4CKaz+dhPzg4CPvZ2VnYr127FvbNzc2w12q1u5gOgMum3W6Hvdvthj37PVWpVCo7OzthbzQaYe90OneYDgAA4NHmjhQAAAAAAICERQoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEiU6x4A4CKazWZhPzk5CXu73Q775uZm2AeDQdirVfttgEdRp9MJ+8bGRtgPDw/TY41Go7Bnv3uuXr16++EAAAAecf5iBwAAAAAAkLBIAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEhYpAAAAAAAAiXLdAwA8CGdnZ2GfTCZhPz4+Dvvp6WnYyzJ+Ou31emFvt9thB+DRlP2+uHLlSthPTk7SY+3v74d9Op2uPhgAAADuSAEAAAAAAMhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgES57gEAHoTZbBb2vb29sB8fH4e9VquFvd1uh73Vat15OAAeeZ1OJ+xnZ2dhv3HjRnqs7HfeZDIJ+2KxCHtZeqkAAABQqbgjBQAAAAAAIGWRAgAAAAAAkLBIAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEuW6BwB4EKbTadh3dnbCPh6Pw97r9Vbq1ap9NQB3VqvVwt7pdMLebDbTY2W/eyaTSdj39/fD3u/3w95oNNJzAwAAXEb+wgcAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAIly3QMAPAjT6TTse3t7K7395uZm2AeDQdirVftqAO5dvV4Pe7vdTt+n1WqFfTabhX00GoW9VquFvdFopOcGAAC4jPyFDwAAAAAAIGGRAgAAAAAAkLBIAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEhYpAAAAAAAAiXLdAwA8CPP5POxHR0dhL8v46XFrayvsm5ubYa9W7asBuP+63W762HA4DPt0Og37rVu3VjrHxsbG7YcDAAC4ZPyFDwAAAAAAIGGRAgAAAAAAkLBIAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEuW6BwC4n87OzsI+nU7DPpvNwt5sNsM+HA7D3u/372I6ALg/ut1u+tjW1lbYb9y4Efb9/f2wn5ycrD4YAADAJeSOFAAAAAAAgIRFCgAAAAAAQMIiBQAAAAAAIGGRAgAAAAAAkLBIAQAAAAAASJTrHgBgVfP5PH3s4OAg7EdHR2EviiLsjUYj7M1m8w7TAcD563a76WPb29thH41GYd/d3Q37ZDIJ++npadhrtVo6EwAAwMPMHSkAAAAAAAAJixQAAAAAAICERQoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJAo1z0AwKqm02n62Gg0CvvR0VHYG41G2DudTtjL0tMmAOvXbDbTx4bD4Urvc3Z2Fvbs9+14PA579ruzWvW/WwAAwMPNqxoAAAAAAICERQoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEiU6x4AYFWz2Sx9bDQahX0ymYR9MBis1KtV+2cALrayjC/xm81m2Ov1etiz3527u7thL4oi7N1uN+wAAAAPC38RBAAAAAAASFikAAAAAAAAJCxSAAAAAAAAEhYpAAAAAAAACYsUAAAAAACARLnuAQBWNZ1O08cODg7Cvlwuw76xsRH24XAY9mrV/hmAiy37XdVqtcLe7XbDPp/Pw76zsxP2ZrO50vEBAAAeFv4iCAAAAAAAkLBIAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEhYpAAAAAAAAiXLdAwBkzs7Owj6ZTNL3GY/HYW+322Hf2NgI+2AwCHu1av8MwMOp1+uFfWtrK+x7e3thH41GYd/c3LynuQAAAC46fxEEAAAAAABIWKQAAAAAAAAkLFIAAAAAAAASFikAAAAAAAAJixQAAAAAAIBEue4BAE5PT8M+Ho9X6pVKpXJ2dhb2RqMR9n6/H/Zms5meAwAeRr1eL+zb29thPzw8DPve3l7Yb/f7GQAA4GHmjhQAAAAAAICERQoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEiU6x4AYDabhX13dzfsx8fH6bHq9XrYW61W2MvS0yAAj4Zut7vS29+4cSPsi8Ui7JPJZKWe/W4GAAC4aNyRAgAAAAAAkLBIAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEhYpAAAAAAAAiXLdAwDMZrOw7+7uhn08HqfH6nQ6Ye92u2GvVu2TAXg0FEUR9ux3ZKvVCnutVgv7dDoN+8HBwUrzNJvNsAMAAKyLvyACAAAAAAAkLFIAAAAAAAASFikAAAAAAAAJixQAAAAAAICERQoAAAAAAECiXPcAAPP5POx7e3thn81m6bG2t7fDvrm5GfZarXb74QDgkiuKIuzNZjPsrVYr7NPpNOyj0Sjs9Xp9pfMCAACsiztSAAAAAAAAEhYpAAAAAAAACYsUAAAAAACAhEUKAAAAAABAwiIFAAAAAAAgYZECAAAAAACQKNc9AMB0Og370dFR2Msyf+ra3NwM+3A4DHu1ap8MwKNtuVyGvd1uh73f74c9+30+Go1WOk72uxwAAGBd/AURAAAAAAAgYZECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAAS5boHAC6f5XIZ9tlsFvaTk5Owz+fzsLdarfTc/X4/7N1uN+xFUaTHAoBHQfa7MPudevXq1bC/8sorYT84OAj7ZDK5i+kAAADWzx0pAAAAAAAACYsUAAAAAACAhEUKAAAAAABAwiIFAAAAAAAgYZECAAAAAACQKNc9AHD5zOfzsB8cHIT95OQk7NVqvOttNpvpuTudTtiLokjfBwD49/V6vbCfnZ2F/ebNm2EfjUZhn06nYV8ul2H3uxwAAFgXd6QAAAAAAAAkLFIAAAAAAAASFikAAAAAAAAJixQAAAAAAICERQoAAAAAAECiXPcAwOUznU7DvrOzE/ajo6Owt1qtsHe73fTc1ar9MADcD/V6Pey9Xi/szWYz7MvlMuwnJydhPzg4CHv2+78svaQBAADOl784AgAAAAAAJCxSAAAAAAAAEhYpAAAAAAAACYsUAAAAAACAhEUKAAAAAABAolz3AMDlM5vNwr67uxv2yWQS9l6vF/Z+v5+euyiKO0wHALwezWYz7K1WK+yNRiPs0+k07Ht7e2Gv1Wphz64XAAAA7hd3pAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgIRFCgAAAAAAQKJc9wDA5TOfz8N+eHi40nE2NzfDvrGxkb5PrVZb6RwAwP3R6XTC3u/3w55dL9y8eTPsrVYr7L1e7y6mAwAAuHfuSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgES57gGAh9dyuQz7dDpdqbdarbAPh8OwDwaDdKZq1X4YAM5T9vu/0+mEfXNzM+w7Ozth39vbC/v29vadhwMAADgH/uIIAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAASFikAAAAAAACJct0DABffYrEI+8nJSdiPj4/Dvlwuw16v18Pe6XRWensA4PwVRRH2fr8f9uw6Ym9vL+wHBwdhn06ndx4OAADgHLgjBQAAAAAAIGGRAgAAAAAAkLBIAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEuW6BwAuvvl8Hva9vb2wHx8fh70s46ecTqcT9kajcefhAIALod1uh/3s7Czs2e/5xWIR9ul0ulKvVCqVZrOZPgYAAHC33JECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAASFikAAAAAAACJct0DABffbDYL+87OTtiPj4/D3uv1wt7v98Neq9XuYjoA4CIoiiLszWZzpV6txv/rNR6Pw767u5vOtLGxEfZWq5W+DwAAwL/LHSkAAAAAAAAJixQAAAAAAICERQoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEiU6x4AuPim02nY9/b2wj6fz8N+7dq1sA+Hw7AXRXHn4QCAC61er4e93W6v1LPrkdFolJ670WiEvdVqpe8DAADw73JHCgAAAAAAQMIiBQAAAAAAIGGRAgAAAAAAkLBIAQAAAAAASFikAAAAAAAAJMp1DwBcfLPZLOzj8TjsZRk/tWxtbYV9Y2Mj7LVa7c7DAQAPpV6vF/bNzc2wHx8fh31nZyc9x2AwCHt2TQIAABBxRwoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACTKdQ8APHjL5TLs8/k87JPJJOyLxSLsrVYr7P1+P+ydTifsAMDDL7vu6PV6Yd/a2gr7eDwO+8HBQXru7BoGAABgFe5IAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEhYpAAAAAAAACYsUAAAAAACARLnuAYAHbzabhX13dzfsR0dHYa9W411sq9UKe71ev4vpAIDLpCiKsPd6vbAvl8uw37x5M+yj0Sg992QyCfvp6WnYa7VaeiwAAODR5Y4UAAAAAACAhEUKAAAAAABAwiIFAAAAAAAgYZECAAAAAACQsEgBAAAAAABIlOseAHjwZrNZ2Hd3d8N+fHwc9larFfZutxv2svSUAwB8TXZd0O/3w95sNlc+x3Q6DXt2bZNdw9RqtZXPDQAAXB7uSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgES57gGAB28+n4d9d3c37JPJJOyDwSDsw+Ew7LVa7S6mAwAeZdVq/L9erVZrpV6pVCrj8Tjst27dWmmm7JoHAAB4NLgjBQAAAAAAIGGRAgAAAAAAkLBIAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEuW6BwAevNlsFvajo6OwL5fLsA+Hw7APBoOwV6t2twDA7RVFEfZOpxP2Xq+XHms+n4d9Z2dnpXNk1zYAAMCjwV81AQAAAAAAEhYpAAAAAAAACYsUAAAAAACAhEUKAAAAAABAwiIFAAAAAAAgUa57AOD8nJ6ehn0ymYR9Op2GvdVqhX04HIZ9MBiEvVq1uwUA7k2v1wv79vZ2+j43b94M+/7+ftivXbu2+mAAAMCl56+aAAAAAAAACYsUAAAAAACAhEUKAAAAAABAwiIFAAAAAAAgYZECAAAAAACQKNc9APD6LRaLsB8fH4f95OQk7MvlMuyNRiPs3W437GXpqQUAuDdFUYS91+uFfT6fp8cajUZhPzg4CPtkMrnDdAAAwKPIHSkAAAAAAAAJixQAAAAAAICERQoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJAo1z0A8PrNZrOw37p1K+yHh4dhbzQaYe90OmGv1Wp3MR0AwOvXbrfDvlwu0/fJrm3m83nYT05OVurZTEVRpDMBAAAPH3ekAAAAAAAAJCxSAAAAAAAAEhYpAAAAAAAACYsUAAAAAACAhEUKAAAAAABAolz3AMDrN5vNwr67uxv2k5OTsHe73bD3+/2w12q1u5gOAOD8tNvt9LFmsxn27BpmMpmEfX9/P+xFUaw8EwAA8PBxRwoAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABLlugcAXr/FYhH2g4ODld7+ypUrYd/c3Ax7rVa7i+kAANaj0+mEvdfrhX02m4X95s2bYW80GmFvt9t3MR0AAPCwcEcKAAAAAABAwiIFAAAAAAAgYZECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkynUPALx+s9ks7OPxOOxlGf/oD4fDsA8Gg7BXq3axAMDF1e12w76xsRH2g4ODsO/u7oZ9c3Mz7Nvb23ceDgAAeGj4KygAAAAAAEDCIgUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACTKdQ8AfL2zs7OwT6fT9H2Oj4/Dfnp6GvZ2ux32fr+/0tsDAFxk2bXNfD4P+9HRUdgPDw/DPpvN7m0wAADgoeKOFAAAAAAAgIRFCgAAAAAAQMIiBQAAAAAAIGGRAgAAAAAAkLBIAQAAAAAASJTrHgD4evP5POz7+/vp+xwdHYW9VquFvdVqrdQBAC6qoijSx7rdbthPT0/DXq/Xwz6bzcI+mUxWOn52bQYAAFxs7kgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAASFikAAAAAAAAJixQAAAAAAIBEue4BgK83m83CvrOzk77P0dFR2Nvtdth7vV7Yi6K4w3QAAA+PWq0W9m63G/Zmsxn27Brp5OQk7Ht7e2Hv9/thbzQaYQcAAC4Gd6QAAAAAAAAkLFIAAAAAAAASFikAAAAAAAAJixQAAAAAAICERQoAAAAAAECiXPcAwNebzWZh39vbS99nMpmEfTgchn0wGIS9WrVbBQAuv3q9HvZ2ux32ZrMZ9ul0Gvbd3d2VzttoNMIOAABcDP5qCgAAAAAAkLBIAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEhYpAAAAAAAAiXLdAwBfb7FYhP3o6Ch9n+VyGfatra2wb25uhr1Wq91hOgCAy6vb7YZ9OByGfTabhf3mzZsrHX8wGNzFdAAAwLq4IwUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABLlugeAR9XZ2VnYJ5NJ2GezWXqsZrMZ9sFgEPZ+vx/2atVuFQB4dPV6vbBvbW2F/atf/WrY9/f3wz4ej+9tMAAAYK381RQAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABLlugeAy24+n4f98PBwpb5cLtNzNBqNsLdarbBXq3aoAMCjqyiKsPf7/bCfnZ2F/ebNm2Hf29sL+3Q6Xen4rtkAAOBicGUOAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAASFikAAAAAAACJct0DwGU3n8/Dvru7G/ajo6OwNxqN9Bzdbjfs9Xr9DtMBAPCvNZvNsPf7/bBn12dnZ2dhn0wmYT85OQl7p9MJe7Xq/+EAAOBBcgUOAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAASFikAAAAAAACJct0DwGU3m83CPhqNwn5ychL2fr+fnmM4HIa9WrUrBQB4ver1ethbrVbYG41G2LPrvJ2dnZXm6fV6K709AADw+vgrKwAAAAAAQMIiBQAAAAAAIGGRAgAAAAAAkLBIAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEuW6B4DLbjabhf3g4CDsi8Ui7NeuXUvPMRwOw16r1e4wHQAAd5JdU3U6nbB3u92wZ9eFo9FopeP3er2wAwAA58MdKQAAAAAAAAmLFAAAAAAAgIRFCgAAAAAAQMIiBQAAAAAAIGGRAgAAAAAAkCjXPQBcdtPpNOyTySTsZRn/WA6Hw/Qc2WO1Wu0O0wEAcK/6/X7Yt7a2wr67u7tSv3Llyr0NBgAA3FfuSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABIWKQAAAAAAAAmLFAAAAAAAgES57gG4P5bLZdiLoljLebOeqVYfnp3e2dlZ2Mfj8Uo9O05Zxj+W3W43nanVaqWPAQBwPnq9Xti3trbCvr+/H/bDw8OwTyaTexuM28peq2TX5/frtU322ux+vWa73Zzn/boQAOCye3j+eg0AAAAAAPCAWaQAAAAAAAAkLFIAAAAAAAASFikAAAAAAAAJixQAAAAAAIBEue4BuHvL5TJ97PT0NOzVarwry/qqFotF2KfTadjLMv6Wa7Va92WeB2E2m4V9d3c37EdHR2HPPhftdjvs9Xr9LqYDAOB+K4oi7N1uN+zZdfvLL78c9uzaeTwer/T2zWYz7Hy97DVM9vnO3j6TXbdnr3nu13X+2dlZ+lj2+i/73gYA4Ou5IwUAAAAAACBhkQIAAAAAAJCwSAEAAAAAAEhYpAAAAAAAACQsUgAAAAAAABLlugfg/lgul2E/Pj4O+9HRUdhns1nYz87OVjpvURRhL8v4W67RaIS92WyGvVKpVFqtVtjr9XrYq9V4b5jNmpnP52Hf29sLe/Y1aLfbYe/3+2HPPi4AANYju77sdDphz65fs+NMJpOwHxwchH0wGIS9Urn9dfVFkr2+OD09Dft0Ok2PlT02Ho/Dnr0Wys696muhWq22Us9eI3W73bBnry8AAHj93JECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAASFikAAAAAAACJct0DPMqKojj3c7z22mth/+f//J+H/caNG2Evy/hbZTgchv3xxx8P+3K5DPurr74a9l6vF/ZKpVJ5xzvesdK5s2PVarX0HJHFYhH2vb29sE8mk7Bvb2+HfWNjI+zVqr0nAMDDILtua7fbYe92u2GfTqdh39nZCXu9Xk9najab6WMXSXatvbu7G/YvfelL6bGy1xjZ5yL7+mSvhU5PT8N+cHAQ9uz1QjZno9EI+/ve976wP/vss2GvVB7Ma08AgMvMX2YBAAAAAAASFikAAAAAAAAJixQAAAAAAICERQoAAAAAAEDCIgUAAAAAACBRrnsA7l5RFOlj9Xo97CcnJ2H/rd/6rbC/+OKLYd/a2gr7m9/85rA//vjjYV8sFmF/5ZVXwn56ehr2SqVSmUwmYT86Ogr7O97xjrB3u930HJHZbBb24+PjlY4zGAzCPhwOw16r1VY6PgAA65Fdt2fXndl1YXa9OxqNwp5dR1YqlcrGxkb62DqMx+Ow//Zv/3bYX3755bC/+uqr6Tmyz9/29nbYe71e2LPXWtnXeblchj17vfDCCy+sdJx3vetdYfd6AQDg/LgjBQAAAAAAIGGRAgAAAAAAkLBIAQAAAAAASFikAAAAAAAAJCxSAAAAAAAAEuW6B3iULZfLsBdFcd/OUZbxl/jg4CDs4/E47Jubm2F/y1veEvZ3vvOdYZ/P52Hf398P++c+97mwVyqVyj/9p/807C+99FLY3/CGN4S92+2GPfv6TCaTsGcfW6vVCvvGxkbYB4NB2AEAeLj1+/2wb21thf13fud3wp5dO0+n03sb7Bxlry9efvnlsP/8z/982J977rmwv/3tb0/P/cwzz4T9iSeeCHt2fZ69pprNZmE/OTkJ+9WrV8OefT13d3fD3m63w34/X0cCAPD13JECAAAAAACQsEgBAAAAAABIWKQAAAAAAAAkLFIAAAAAAAASFikAAAAAAACJct0DcL4Wi0XYj4+PVzrOG97whrB/4zd+40pvn5233W6H/eTkJJ3py1/+cthbrVbYZ7NZeqzI4eHhSjNVq/FeMpsn+5gBAHi4FUUR9l6vF/bsmv3VV18N+8HBQdgnk0k603K5DHs266rm83nYs2v2f/kv/2XYv/jFL4Y9uzYfDAbpTE899VTYH3vssbCX5f15eby5uRn2RqMR9uzrfOvWrbBvbGzc01wAANw7d6QAAAAAAAAkLFIAAAAAAAASFikAAAAAAAAJixQAAAAAAICERQoAAAAAAECiXPcAj7KiKO7bsU5PT8O+v78f9pOTk7C3Wq2wv/Wtbw372972truY7t+Yz+dh393dDfvR0VF6rGzWXq8X9rJc7dt9Z2cn7IeHh2HvdDph7/f7Ya/VaivNAwDAw63RaIR9OByGPbu+zK6dJ5NJeu7sGrbb7YZ91WvV7Nyf+cxnwv6Lv/iLYb9+/XrYv+3bvi3sv+t3/a50pmvXroV91dcFq8pe52WvU5555pmwZ5/Txx577N4GAwDgnrkjBQAAAAAAIGGRAgAAAAAAkLBIAQAAAAAASFikAAAAAAAAJCxSAAAAAACA/699e9tt6kwDMLyW7djxLiBKEOCIAEqL2qOqPeoF9MIr9Qbag6a0FKkRgZA4cYjBjjex53A0M9/XxlVnDMPzHL7erN8xSP+vz4uEQQoAAAAAAECitu4FcH3z+Tx97Pz8POxnZ2dhH4/HYW+322FvtVp/vLh/8/bt27A/f/487IPBIOybm5vpNT7//POwP3nyJOzNZjPsk8kk7P1+P+zZZ8v+RllfLpdhzywWi5WeDwDAf1e2nyvLMuyVSvw7tlotPpbV6/WwV6vVsI9Go7AXRX4uyK6d7WGzM8nh4WHYf/rpp7A/e/Ys7Nke/+uvvw77w4cPw14URbGxsZE+tg6NRiPsvV4v7Nm/r/ftcwEAfAzckQIAAAAAAJAwSAEAAAAAAEgYpAAAAAAAACQMUgAAAAAAABIGKQAAAAAAAInauhfA9U2n0/Sxk5OTsB8fH4d9PB6HvSzLsB8dHYX9hx9+CPvTp0/Dfnh4GPY3b96EfXd3N+xFURRffvll2Pf29sK+tbUV9sFgEPZ+vx/2yWQS9ps3b4Z9c3Mz7H/0fUYWi8VKzwcA4P2ysbER9mxfmO3Ns/cZDofptV+9ehX2brcb9mazGfbff/897Nm54PT0NOytVivs2f7/s88+C3u9Xg/7OmXfW7VaDXulstrvG7P3BwDgv8cdKQAAAAAAAAmDFAAAAAAAgIRBCgAAAAAAQMIgBQAAAAAAIGGQAgAAAAAAkKitewFc32QySR97+fJl2E9OTsK+sbER9m63u9Kazs/Pw/7s2bOwHx0dhb1er4f94cOH6bW/+OKLsN+9ezd9TWQ6nYY9+3tnfTweh/3i4iLsl5eXYa9U4vnmcrkMOwAAH4ZaLT5+zefzsA+Hw5Wef3V1lV4726tme8zFYhH2Fy9ehP3p06dhz/bO29vbYc/28tl54UNSluVKHQCA94c7UgAAAAAAABIGKQAAAAAAAAmDFAAAAAAAgIRBCgAAAAAAQMIgBQAAAAAAIFFb9wK4vvF4nD72/PnzsB8fH4f9zp07YX/06FHYe71e2MuyDHu32w376elp2Ofz+Uq9KIqiUvl75oDVajXszWYz7Nn38PLly7C/fv067LVa/N8v+5sul8uwAwDwYcj2r9k+bzQahT3bI3c6nfTam5ubYW80GmFfLBZhPzo6CvvBwUHY6/V62LPzxR99BgAAWBd3pAAAAAAAACQMUgAAAAAAABIGKQAAAAAAAAmDFAAAAAAAgIRBCgAAAAAAQKK27gVwfZPJJH3s8PAw7IPBIOw7Ozth39vbC/v29nbYq9Vq2J88eRL26XQa9v39/bBnn6soiuLs7Czsd+7cSV8T2dzcXOl9arX4v0322a6ursJeqaw2x1wulys9HwCA90tZlis9v9VqhT3bg9+4cSN9r08++STszWYz7IvFIuwXFxdhz84dnU4n7Nn5IlsPAACskztSAAAAAAAAEgYpAAAAAAAACYMUAAAAAACAhEEKAAAAAABAwiAFAAAAAAAgUVv3Ari+2WyWPnZ8fBz20WgU9vv374f90aNHYd/a2lqp37p1K+zVajXs3333Xdj7/X7Yi6Iovvrqq7DfuHEj7Ldv317p+Z9++mnYp9Np2BeLRdiXy2XYy7IMOwAAFMXq+8haLT/e1ev1lV5zeXkZ9mwvPJ/Pw76xsRH2dru90vMBAGCd3JECAAAAAACQMEgBAAAAAABIGKQAAAAAAAAkDFIAAAAAAAASBikAAAAAAACJ2roX8DEoy/JveZ/xeJw+dnFxEfbFYhH2Xq8X9gcPHoS90+n8yer+VaPRCHuz2Qz7cDgM+3w+T68xGo3CPpvNwr5cLsOefT+rfmYAAPh/ke2R2+122G/evBn27DyS7f+zvfyHJDvDXF1dhb1Wi4/llUr8u8e/63wJAMD1uSMFAAAAAAAgYZACAAAAAACQMEgBAAAAAABIGKQAAAAAAAAkDFIAAAAAAAAStXUvgP+0XC7D/vbt2/Q10+k07I1GI+y9Xi/sd+/e/ZPVXc/x8XHYDw4Owj6bzcLe7XbTa2xvb4f91q1bYa/V/HMHAIDrqFTi39zt7OyE/fHjx2Hf398P+88//xz2b7755hqre78Nh8Owj8fjsHc6nZV6WZZ/bWEAAPxl7kgBAAAAAABIGKQAAAAAAAAkDFIAAAAAAAASBikAAAAAAAAJgxQAAAAAAIBEbd0L+Bgsl8uwTyaTsA8Gg7D3+/2Vr91qtcLe6XRWep/FYhH2o6OjsP/yyy9hPzk5Cfvu7m7Ye71euqZ79+6Fvd1uh70sy/S9AACAf6pU4t/cZfv2i4uLsJ+enob97Ows7NmZZzgchr3ZbIa9KPIzTPbZsnNbZjabhX08Hod9Op2GPVsnAADvD3ekAAAAAAAAJAxSAAAAAAAAEgYpAAAAAAAACYMUAAAAAACAhEEKAAAAAABAorbuBXwMptNp2M/Pz8P+66+/hv3g4CC9Rr1eD/vW1lbYZ7NZ2N+9exf2169fh/23334L+48//hj28Xgc9m+//Tbse3t7YS+KotjZ2Ql7WZbpawAAgD9XqcS/uXv8+HHYO51O2C8vL8O+v78f9uzc8f3334f9wYMHYS+Korh9+3bYs7PTYrEIe3aGyc5UtVp8zG6322FvNBphz74DAAD+9+zMAAAAAAAAEgYpAAAAAAAACYMUAAAAAACAhEEKAAAAAABAwiAFAAAAAAAgUVv3Aj4GV1dXYb+8vAz7YDAI+3A4TK9RrVbD3mg0VlrTaDQK+5s3b8Le7/fDfnR0FPZWqxX23d3dsO/t7YW9KIqi0+mkjwEAAH9dWZZhz84d9+7dC/v9+/fD/urVq7C/e/cu7C9evAh7u90Oe1Gsfl7IzkjZmmazWdi73W7Ya7X4+J39TQEAeH+4IwUAAAAAACBhkAIAAAAAAJAwSAEAAAAAAEgYpAAAAAAAACQMUgAAAAAAABIGKQAAAAAAAIlyuVwu170IAAAAAACA95E7UgAAAAAAABIGKQAAAAAAAAmDFAAAAAAAgIRBCgAAAAAAQMIgBQAAAAAAIGGQAgAAAAAAkDBIAQAAAAAASBikAAAAAAAAJAxSAAAAAAAAEgYpAAAAAAAACYMUAAAAAACAhEEKAAAAAABAwiAFAAAAAAAg8Q8QqUugCtZFIQAAAABJRU5ErkJggg==",
"path": "images_version_6/image_38.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, AB = AC, AD parallel BC. then the size of angle BAC is ()
Choices:
A:40°
B:30°
C:.70°
D:50°
|
||
191
|
39
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIcAAAA/CAAAAADvFYTOAAAFaElEQVR4nMWabWxTVRjH/7ctzClQXjbtTEeH7MPMEhIa42Zs2rmYAG6JjGCmcSokJFOROAkf5gf7gkERJWAgEbSyLmqCYUMMAzZdutsBcUIiRhdH4ggdRRjjrVLCWm3v44cyuH05tOf0qs+H5pz7P+fJr+c857nnnFaigB8AJIKYqTs+YsISQTcGHBipAaBIgg6IJAAkARe8a72Ll8BN9Q4EaIEFAVRYkqW7puhYflo/IW3MsfYhqTRITqdM5LD7SHE4fEQORwcR4CQCXLdLDkcnUVK1+4iczkEyYLJYcCTSbEv4YqOvfvcmDwDIACQZAAYgAQSoPzxUAXgw9QEoAK3s1mQ0Ts160xZ/vdkUFeqtGJRokRajEXvhpe6f9O9VPtn1okBvF3S6yAwtONoe7N5fCmPj5Z2ZWl5LkawnNJiVvrmVXxER/apfkOZOBtYncnWXZVD1cOEYEyW1bclSlW1NihJanwhhR24PIEuwcI6lVns8WeqxlYTTVd/SXP0VRafE7uOLBDovjaQ92j18tVufLDaM273pPSpy+nS7dbpJTo7B8vQnpzfcOFAyVXmjZ0e6HmzIwy2BdxL+WjSSUo8umrf3bi1yv6k3rf2KnC5lGZPT+Tl+U1cT7XPb1QvitacbU9eH52YeThE2KoVxyMWOuLoeLCtLiXzf4Xyc6sKz+cIj3a6sMO7Tqx9YauZsV1UDkWUIHMnhxOXSxaeJvvEBAMrLk/2lqY/aLnpjdyqddeskqcWe049QWleRf9rvrU5THaairjuVV4gUCj2Qw2F9PY7ZOMNjKj4SFB/oWofVmQ18T9US5czlqSb1b/6ebzBC84HDyxD74tDBJ+bJhiuZLa5X/P3oTKli/uP55I3bprvBOy/lRLSMvJWHVl49Oi12NkuLOYunxzzuGsVZtulSfj7dLnzZwjsvRBSsth4nIh8Gs8rjszBBRDS8ZsY78awt0szpgm8Vb/4gOmXaSUR0Tt/OaNBSvTlZCC+1XcjDoTyA7W3cGKMl3xARxcuqWS1OVFriya+XaC8Zy8entDn8PoDkzp9hJJ26oa5f21IEAKevbZjO6rLnpuk5DwIDcMOvpzqMnZUc94gPRWe49YMLAPDLNTXInz+ntLMZ1Hu70iIAmIi0ZMUgCaCGjmKQBAIQ2iPJkDvg17k2guDaCEJnB2R0dlAAAT88CLgckuwHAMx6TOVKooXmTOepdvKZoYXM73epZltTWrc7ByhFB4wFJTvGxpQ6BPxwSwF/Pfdb/7ZNmI+wxYj1o/w9JeNI8FybqGtoZ4rK8od38ToU46B1411s9a3fv9Wz1exmEMHA58ePssWPA4PcGBCKj6HyM2yxpzwk4FKE45ylly2eMAmdhwQ4orYP2WLQ3C+CIcCRaG1mi5GqXUIYxB2nCe+PQ2yx6dlW/hAFBNbt8ZUnzUxx9c19Yhjc6+WMWWaLzlqxWxjijo+odStb3Fs5IYrBy7Fq1S2mJpePCmPwcUR3WtkDP2q6x4xpy/GdmZ0qL1d+XQAGF0fI5Gdq0dp3C8Hgee/Hal9lJ4em2R2iKxYAV/54fuZnTO3tk30C71iV5Z9Pt/7Rz9R2HxwqDCP/PNZvOc/UeswF3/Wxrv8zLHF9mCUNr9lvYWmajwf1GhkXOyFLT6GjwbVue41Ztz+R6m2FY3Dlj6wg8cY2zquOgjmygrQu14CC9z2XGSMfWCP/A0fGiOy3jGuCwb0/TQUZMo0wW/67HHREBTJaJrY514JDFSPhKp9WGCLnl6mpidpdmmEIned6jX1ERM33OMf8JxzJEXE6hDfnWnFQr/FwZ1XG71+FmOA9TF9z8TH2tZSAif7PoW92jZYY+AckOLTanGVLUgAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_39.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
Fold a rectangular piece of paper with equal width as shown in the figure. If angle 1 = 140.0, then the degree of angle 2 is ()
Choices:
A:100°
B:110°
C:120°
D:140°
|
Gập một miếng giấy hình chữ nhật có chiều rộng bằng nhau như trong hình vẽ. Nếu góc 1 = 140°, thì số đo của góc 2 là ()
Lựa chọn:
A: 100°
B: 110°
C: 120°
D: 140°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: Fold a rectangular piece of paper with equal width as shown in the figure. If angle 1 = 140.0, then the degree of angle 2 is ()
Choices:
A:100°
B:110°
C:120°
D:140°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: Fold a rectangular piece of paper with equal width as shown in the figure. If angle 1 = 140.0, then the degree of angle 2 is ()
Choices:
A:100°
B:110°
C:120°
D:140°
|
Fold a rectangular piece of paper with equal width as shown in the figure. If angle 1 = 140.0, then the degree of angle 2 is ()
Choices:
A:100°
B:110°
C:120°
D:140°
|
192
|
39
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIcAAAA/CAAAAADvFYTOAAAFaElEQVR4nMWabWxTVRjH/7ctzClQXjbtTEeH7MPMEhIa42Zs2rmYAG6JjGCmcSokJFOROAkf5gf7gkERJWAgEbSyLmqCYUMMAzZdutsBcUIiRhdH4ggdRRjjrVLCWm3v44cyuH05tOf0qs+H5pz7P+fJr+c857nnnFaigB8AJIKYqTs+YsISQTcGHBipAaBIgg6IJAAkARe8a72Ll8BN9Q4EaIEFAVRYkqW7puhYflo/IW3MsfYhqTRITqdM5LD7SHE4fEQORwcR4CQCXLdLDkcnUVK1+4iczkEyYLJYcCTSbEv4YqOvfvcmDwDIACQZAAYgAQSoPzxUAXgw9QEoAK3s1mQ0Ts160xZ/vdkUFeqtGJRokRajEXvhpe6f9O9VPtn1okBvF3S6yAwtONoe7N5fCmPj5Z2ZWl5LkawnNJiVvrmVXxER/apfkOZOBtYncnWXZVD1cOEYEyW1bclSlW1NihJanwhhR24PIEuwcI6lVns8WeqxlYTTVd/SXP0VRafE7uOLBDovjaQ92j18tVufLDaM273pPSpy+nS7dbpJTo7B8vQnpzfcOFAyVXmjZ0e6HmzIwy2BdxL+WjSSUo8umrf3bi1yv6k3rf2KnC5lGZPT+Tl+U1cT7XPb1QvitacbU9eH52YeThE2KoVxyMWOuLoeLCtLiXzf4Xyc6sKz+cIj3a6sMO7Tqx9YauZsV1UDkWUIHMnhxOXSxaeJvvEBAMrLk/2lqY/aLnpjdyqddeskqcWe049QWleRf9rvrU5THaairjuVV4gUCj2Qw2F9PY7ZOMNjKj4SFB/oWofVmQ18T9US5czlqSb1b/6ebzBC84HDyxD74tDBJ+bJhiuZLa5X/P3oTKli/uP55I3bprvBOy/lRLSMvJWHVl49Oi12NkuLOYunxzzuGsVZtulSfj7dLnzZwjsvRBSsth4nIh8Gs8rjszBBRDS8ZsY78awt0szpgm8Vb/4gOmXaSUR0Tt/OaNBSvTlZCC+1XcjDoTyA7W3cGKMl3xARxcuqWS1OVFriya+XaC8Zy8entDn8PoDkzp9hJJ26oa5f21IEAKevbZjO6rLnpuk5DwIDcMOvpzqMnZUc94gPRWe49YMLAPDLNTXInz+ntLMZ1Hu70iIAmIi0ZMUgCaCGjmKQBAIQ2iPJkDvg17k2guDaCEJnB2R0dlAAAT88CLgckuwHAMx6TOVKooXmTOepdvKZoYXM73epZltTWrc7ByhFB4wFJTvGxpQ6BPxwSwF/Pfdb/7ZNmI+wxYj1o/w9JeNI8FybqGtoZ4rK8od38ToU46B1411s9a3fv9Wz1exmEMHA58ePssWPA4PcGBCKj6HyM2yxpzwk4FKE45ylly2eMAmdhwQ4orYP2WLQ3C+CIcCRaG1mi5GqXUIYxB2nCe+PQ2yx6dlW/hAFBNbt8ZUnzUxx9c19Yhjc6+WMWWaLzlqxWxjijo+odStb3Fs5IYrBy7Fq1S2mJpePCmPwcUR3WtkDP2q6x4xpy/GdmZ0qL1d+XQAGF0fI5Gdq0dp3C8Hgee/Hal9lJ4em2R2iKxYAV/54fuZnTO3tk30C71iV5Z9Pt/7Rz9R2HxwqDCP/PNZvOc/UeswF3/Wxrv8zLHF9mCUNr9lvYWmajwf1GhkXOyFLT6GjwbVue41Ztz+R6m2FY3Dlj6wg8cY2zquOgjmygrQu14CC9z2XGSMfWCP/A0fGiOy3jGuCwb0/TQUZMo0wW/67HHREBTJaJrY514JDFSPhKp9WGCLnl6mpidpdmmEIned6jX1ERM33OMf8JxzJEXE6hDfnWnFQr/FwZ1XG71+FmOA9TF9z8TH2tZSAif7PoW92jZYY+AckOLTanGVLUgAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_39.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
If angle 1 = 140.0, then the degree of angle 2 is ()
Choices:
A:100°
B:110°
C:120°
D:140°
|
Nếu góc 1 = 140°, thì số đo của góc 2 là ()
Lựa chọn:
A: 100°
B: 110°
C: 120°
D: 140°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: If angle 1 = 140.0, then the degree of angle 2 is ()
Choices:
A:100°
B:110°
C:120°
D:140°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: If angle 1 = 140.0, then the degree of angle 2 is ()
Choices:
A:100°
B:110°
C:120°
D:140°
|
If angle 1 = 140.0, then the degree of angle 2 is ()
Choices:
A:100°
B:110°
C:120°
D:140°
|
193
|
39
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIcAAAA/CAAAAADvFYTOAAAFaElEQVR4nMWabWxTVRjH/7ctzClQXjbtTEeH7MPMEhIa42Zs2rmYAG6JjGCmcSokJFOROAkf5gf7gkERJWAgEbSyLmqCYUMMAzZdutsBcUIiRhdH4ggdRRjjrVLCWm3v44cyuH05tOf0qs+H5pz7P+fJr+c857nnnFaigB8AJIKYqTs+YsISQTcGHBipAaBIgg6IJAAkARe8a72Ll8BN9Q4EaIEFAVRYkqW7puhYflo/IW3MsfYhqTRITqdM5LD7SHE4fEQORwcR4CQCXLdLDkcnUVK1+4iczkEyYLJYcCTSbEv4YqOvfvcmDwDIACQZAAYgAQSoPzxUAXgw9QEoAK3s1mQ0Ts160xZ/vdkUFeqtGJRokRajEXvhpe6f9O9VPtn1okBvF3S6yAwtONoe7N5fCmPj5Z2ZWl5LkawnNJiVvrmVXxER/apfkOZOBtYncnWXZVD1cOEYEyW1bclSlW1NihJanwhhR24PIEuwcI6lVns8WeqxlYTTVd/SXP0VRafE7uOLBDovjaQ92j18tVufLDaM273pPSpy+nS7dbpJTo7B8vQnpzfcOFAyVXmjZ0e6HmzIwy2BdxL+WjSSUo8umrf3bi1yv6k3rf2KnC5lGZPT+Tl+U1cT7XPb1QvitacbU9eH52YeThE2KoVxyMWOuLoeLCtLiXzf4Xyc6sKz+cIj3a6sMO7Tqx9YauZsV1UDkWUIHMnhxOXSxaeJvvEBAMrLk/2lqY/aLnpjdyqddeskqcWe049QWleRf9rvrU5THaairjuVV4gUCj2Qw2F9PY7ZOMNjKj4SFB/oWofVmQ18T9US5czlqSb1b/6ebzBC84HDyxD74tDBJ+bJhiuZLa5X/P3oTKli/uP55I3bprvBOy/lRLSMvJWHVl49Oi12NkuLOYunxzzuGsVZtulSfj7dLnzZwjsvRBSsth4nIh8Gs8rjszBBRDS8ZsY78awt0szpgm8Vb/4gOmXaSUR0Tt/OaNBSvTlZCC+1XcjDoTyA7W3cGKMl3xARxcuqWS1OVFriya+XaC8Zy8entDn8PoDkzp9hJJ26oa5f21IEAKevbZjO6rLnpuk5DwIDcMOvpzqMnZUc94gPRWe49YMLAPDLNTXInz+ntLMZ1Hu70iIAmIi0ZMUgCaCGjmKQBAIQ2iPJkDvg17k2guDaCEJnB2R0dlAAAT88CLgckuwHAMx6TOVKooXmTOepdvKZoYXM73epZltTWrc7ByhFB4wFJTvGxpQ6BPxwSwF/Pfdb/7ZNmI+wxYj1o/w9JeNI8FybqGtoZ4rK8od38ToU46B1411s9a3fv9Wz1exmEMHA58ePssWPA4PcGBCKj6HyM2yxpzwk4FKE45ylly2eMAmdhwQ4orYP2WLQ3C+CIcCRaG1mi5GqXUIYxB2nCe+PQ2yx6dlW/hAFBNbt8ZUnzUxx9c19Yhjc6+WMWWaLzlqxWxjijo+odStb3Fs5IYrBy7Fq1S2mJpePCmPwcUR3WtkDP2q6x4xpy/GdmZ0qL1d+XQAGF0fI5Gdq0dp3C8Hgee/Hal9lJ4em2R2iKxYAV/54fuZnTO3tk30C71iV5Z9Pt/7Rz9R2HxwqDCP/PNZvOc/UeswF3/Wxrv8zLHF9mCUNr9lvYWmajwf1GhkXOyFLT6GjwbVue41Ztz+R6m2FY3Dlj6wg8cY2zquOgjmygrQu14CC9z2XGSMfWCP/A0fGiOy3jGuCwb0/TQUZMo0wW/67HHREBTJaJrY514JDFSPhKp9WGCLnl6mpidpdmmEIned6jX1ERM33OMf8JxzJEXE6hDfnWnFQr/FwZ1XG71+FmOA9TF9z8TH2tZSAif7PoW92jZYY+AckOLTanGVLUgAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_39.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
If angle 1 = 140.0, then the degree of angle 2 is ()
Choices:
A:100°
B:110°
C:120°
D:140°
|
Nếu góc 1 = 140°, thì số đo của góc 2 là ()
Lựa chọn:
A: 100°
B: 110°
C: 120°
D: 140°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: If angle 1 = 140.0, then the degree of angle 2 is ()
Choices:
A:100°
B:110°
C:120°
D:140°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: If angle 1 = 140.0, then the degree of angle 2 is ()
Choices:
A:100°
B:110°
C:120°
D:140°
|
If angle 1 = 140.0, then the degree of angle 2 is ()
Choices:
A:100°
B:110°
C:120°
D:140°
|
194
|
39
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAS4AAACtCAYAAAAOE5KBAAA51UlEQVR4nO29eVRVZ57v/TkDHA6cwzwPMiODgIgyKAYs0WhpEmNcMakMb1Uq/XaqKnVX1Vvpd1W/1X37Vnet23Xv7X5TfXuodCddSd4kndWppKIpLTUBFXAElFFBkUlFBhkOHM48vX/YezcYNRoBOfh81mIthX32fvbZe3/37/k9v0Hh8Xg8CAQCgRehfNADEAgEgntFCJdAIPA6hHAJBAKvQwiXQCDwOoRwCQQCr0MIl0Ag8DqEcAkEAq9DCJdAIPA6hHAJBAKvQwiXQCDwOoRwCQQCr0MIl0Ag8DqEcAkEAq9DCJdAIPA6hHAJBAKvQwiXQCDwOoRwCQQCr0MIl0Ag8DqEcAkEAq9DCJdAIPA6hHAJBAKvQwiXQCDwOoRwCQQCr0MIl0Ag8DqEcAkEAq9DCJdAIPA6hHAJBAKvQwiXQCDwOoRwCQQCr0MIl0Ag8DrU832A6elp+vr6uHTpEhcvXsRoNKJU3l4vFQqF/G+PxzPfwxPMEdJ1m6trplQqUSqV+Pr6EhgYSHBwMOHh4QQEBGC329FqtWRkZBASEnJX+/N4PLPuLYF3M+/C5XA4uH79OteuXeP69evY7XYCAgJQKpW3vMmFcHkncylcCoUCh8PB2NgYVquVxMREFAoFY2NjOBwOFAoF0dHRxMfHy8Jlt9vl7RUKBT4+Pmi1WrRaLX5+fvL4HA4Hdrsdt9uNQqFApVKhVqtRqVTyC9Xj8WC323E4HPJ4pG1UKpW8L5fLhc1mw+VyoVAoUCqVs7a7W+ZSVB8WgV4Qi+v8+fM0NTUxPDyMn58fy5YtQ6PR4HK5vrT9zBv/YbgASw3p+t3p2t3NNZ6enqa+vp7u7m7Ky8ux2+2cOXOGS5cuERgYSHFxMdnZ2cTFxQEwOTlJTU0N/f39qNVqwsLCSE5OJjExkfj4eNTqG7f61NQUg4OD2O121Go1AQEB6PV6AgMD8fPzA8DtdjM8PMz4+DgejwdfX1/0er38I+3LYrEwMDCAyWRCqVSi1WoJDAxEr9cTEBBwV/evx+O5K7G5m+/1brnbfd3Ldgv9rM67cNntdkZHRzEajWi1WuLi4sjJySEgIEB+o81ECJd3cz8Pha+vLx6Ph+7ubvr7+3G5XGi1WkZHR2lra6OtrY3h4WEUCgXBwcGMj4/Ln7Xb7QwMDHDp0iV8fHwwm83o9XoiIiJm3VMDAwPU1tYyNTWFVqslNjaWlJQUkpKSZOFyOBycO3eOtrY23G43wcHBJCYmkpiYiEajkYVrYmKCkydPcu3aNXx9fYmIiCAlJYXExET8/f3lc+vs7OT8+fPYbDb8/PwIDw8nKiqKmJgY9Ho9CoUCs9lMU1MTV65cQaFQoNPpiIqKIjo6msjISHx9feXxNzU1MTk5iUajISQkhOjoaKKioggPD0ehUODxeOjr6+Pq1au4XC40Gg1BQUGEhIQQEhIin6fZbKarq4uJiQlZeENDQwkJCSEoKEi2GoeHh+np6cFqteLj44Ner5e30+l0KBQK3G43169fx2Aw4PF48PHxISAggICAALRarfydzRXzLlxutxun04ler2fZsmXk5+dTWlpKUFAQNpttvg8v8AKkN7Zer8fpdPL+++9z+PBhEhMTKSgooLu7mzNnzshC5fF4MBgMjI+P43K55GmeWq3G19cXHx8ffHx8UKvVX/Kn9vb2sm/fPoaGhggJCWHFihU4nU5CQkKIiIgAkK27ffv24XK5iImJYc2aNSiVSqKjo/H39wdgdHSUqqoqzp07R0BAAKmpqZjNZvz9/WVLEOCzzz7jF7/4BUajkZCQENauXcumTZvYsmULy5cvB2B8fJy//du/5dNPPwUgJSWFTZs2UVlZycaNG2XhOnv2LD/60Y/o6elBq9WycuVKNm/ezObNmwkPDwduPHPV1dV88sknmM1mIiIiyM/Pp7CwkMLCQlm4rl+/znvvvUdDQwO+vr4kJCSwZs0aVq1aRX5+vixcLS0tvPnmmwwODhIcHExmZiZr1qyhsLCQtLQ0AJxOJ01NTTQ1NeFyuQgODiY5OVm2er1OuDweD06nE6VSSXBwMBEREURGRgKg0Wjm+/ACL2NiYoLR0VEmJyfRarXo9Xp0Op38sAEEBgYSGBjIwMAAnZ2dLF++HL1eT05ODiEhIajVaoKCgoiJiSEoKGiWeEVGRrJq1SomJibQ6XQkJSURExMjixGAWq0mOTmZ4uJiXC4XYWFhpKSkEBYWho+Pj7ydXq9nxYoV6PV6/Pz8iI2NJSEhgcDAwFmWZGxsLKtXr8ZgMBAWFsby5cuJjo6edU6+vr6kp6ezevVqlEol8fHxJCcnExoaOuuhDw4OZuXKlfJ3kJGRQXx8PHq9ftb3qNFo0Ol0qFQqAgIC8PPzw8fHZ9Z3oVQq8ff3R6/XyxaSZFHOHL/0t8DAQHQ6Hf7+/vj6+s7y47ndbsbGxrh8+TJOp5Pp6Wn0ej2RkZG3dAndLwrPPHvAL1y4wJtvvsnExAR5eXkUFhayZs0aIVqCL9HV1UVNTQ1Hjx6ltbWVoKAg4uLi0Gg0GI1GTp48yfDwMPn5+eTk5BAZGUl2djZbt24lLi5OdrwrFArZ8X6zo9xut2OxWGTnvFqtlq0zaTuPx4PFYsFut+PxeGQHvrSt9FA7nU7MZjNOp1M+3kxrT8JsNmMymXC73SiVSnx8fPD19UWj0cjHdLvdGI1GeRaiUqnw9fWVf6Rj2mw2pqenZWNAsjIlS1Ma//nz57l06RIOhwOtVkt4eDiRkZFERUXJIm00GmlpaWF4eBilUolerycqKoqIiAgiIiLksV2+fJn29nbMZrM8PZX2FRQUJI9r7969nDx5EpfLRWhoKBkZGWRkZMgvlrlkQaaKDocDt9stX1SB4GYcDgctLS3s37+fqakpEhISmJ6e5vr165SXl7Ns2TKUSiXNzc1ER0ejUqloa2vDaDRSWlpKXFzcHe8v6f0sPeS3Q5q2+vv7z7LCbrUvtVpNYGDgfe/L4/GgVCplEbjTMTUazVe+9BUKBbGxseh0OtxuNyqVCj8/P7Ra7axz9/PzIz09nfj4eHklVtpupmUWGhpKbm4uTqcTlUqFRqORt5NQqVSkpqaiVCpxuVzodDpiY2OJiYkhICDgjuP9OizIVFESLumtIJzugplIjvXGxkZqa2tJTU0lNzeXrq4uJicnyc3NZfPmzSiVSvmhnZycpKOjA5PJhMFg+Mpj3O09dzfbzfW+5vKYEsHBwbNEVTrOzVPAmYsX0t9u3i4gIAB/f/9Z2908HrVaTX5+Prm5ubIQ3zzlnEsWzDkvKf9cO+kE3s+lS5fYv38/PT09JCcn43a76ejoIDY2lvLycnJzcwkICGDt2rU4HA6qqqro7u5GqVQSEBAghy7MXAl72JGmrl/FnYLBZ+7rq8JbpGn3THp6ehgZGZEFr7S09CuPdbcsmHDNXP0RCGbS3NzMhx9+iE6no7i4mJaWFs6dO0dZWRkvvfSSvFqWlpaGx+Ph0KFDXL58mZSUFGJjY+nv76elpYVVq1bdcbolmB9uJWqTk5OcPHmS9vZ2fHx8UKlU3iVcUhSyy+WSfRBiqiiAGzd3a2sr7e3tuFwurl+/zrlz5wgJCSE3N5fS0lJZtCTCw8OJjY2VncxTU1M0NjbicrnIzMwUwrVIcLvdmEwmJicnv7RYMRfMu/njdrux2Ww4nU55NUUIlwBuTBH37t3LuXPnCA0NxWaz0dHRwbJly3j55ZcpKir60mfUajXLly8nLy8PHx8frl69ytmzZ2ltbcVoND6As7iB5GSXftxu90OdsiYFtErZBjqdbk73vyBTRZvNJs+BhY9LADdSbzo7Ozl16hRXr15Fp9MRGRlJYmIi69atIz09/ZYrdhqNhlWrVjE9Pc2ePXvo6uoCYGxsjOHhYdLS0hbMHeF2u5mcnKSxsZGDBw8yODiIv78/ycnJFBQUsGLFCpYtW7YgY1lsqFQqIiMjSU5OvufczbthwaaKt4qD+To4jNcZc+qJDvH7ii2tTAwZIDiaW21qnRjCYAPNnf7uDCAsQo8I4JhbJiYmOHfuHC0tLfT19TE6OkpMTAyrVq3im9/8JkVFRbcNM1Cr1eTk5GA0GtmzZw+Tk5P4+flhtVrp7+8nISGB2NjYO4Y8zBVms5krV65w/Phx3n33XcbGxgBITU2lt7cXp9NJVFTUQxmz6OPjQ3x8PBqNRq70MZcsiHBJjvn7s7is9B78rzy143/R9L3DeF7fcMetx7/4CZmb/4nnDnuYtel4E//7O4/yZycDiQ2F8Wuw6def8a/PZfMfmWpcfPtZfliTRkHARZrUf8Rv/m4rcbc+jOBr0NPTw3vvvcfZs2fRarUkJiYSGxtLXl4excXFJCQk3PazSqUSnU5HfHw8QUFBKBQKQkNDAWhvbycoKIjQ0NB5FS6Px4PNZqO7u5va2loAXnvtNdxuN2azmbNnz3Lw4EHsdjtBQUHk5OR8yVe31FGr1cTFxREWFnbXIR/3tP853dstkFYVZ0Yo3/NJjDfx1vde4ON17/AvvzrBmgtfsf1ULb/8Xh3Ry7+0I/b9qJS/Sfk9lz7eRKQPOEa+4P9evYX/mtDO/3wkEPre58+7f8K+d0rxAQY+eJK/OVLJ6xuE3XW/eDweOVq7qqqKkZERMjIySEhIID09nZUrV5KcnHxX+woJCSE5OZm0tDT0ej1ut5v29nb0ej2rV6++Y2Do/SK5PyYnJxkZGSExMZEXX3wRX19f7HY7v/rVr6ipqaGxsZHs7Gx0Ot1DJ1wqlYrg4OB52/+CWFw2m01eUfxab8K+HrR/0cjBbD+63/qqjR20/stPaPzZ3/Ff/vUbnJv5p4ED/NNH3+Nd4w3RAvCJ3MTP/3kzka8f4CeP7CZq5DL2pEfk6WFcbBItfQNA0r2PWzCr5Mn169f5/e9/z9GjR+VcOovFwrJly3jyySfJycm56/36+/uzfv16lEolfX19cmUIvV6P2Wyer9MBblh9UtS5VqslKChIvq99fX0pLi7mueee49q1a5w7d46MjAwKCwvndUyLiYUoc7Mgq4oOh0MOh/haFteqp3gu+6t8WjdwXPxXvr/nu7zx/JedolNNhzjw9EYKbzKeAldtYuueWlodQMFWVn7xB85bAccIBz+7xguPJN3beBcRLpeL8fFxRkZGMJvNuN3uBT3+zGvd3d3NoUOHOHv2LD4+PsTGxhIXF0d2djYlJSX3FMqg0WgoKirikUceITAwEKPRKCdoDw8Pz+uqnkKhQKPRyFUjMjIyZv09LS2N7du3k5KSwuDgIKOjo/MyjsWKVObGYrEwNTWF0Wic8xXfBZsqzkxWnT+6ef+Vv2HT/9tBhs9lam/66/WhHpbnLeNLk4ioSJJoof8ykFrE//M3k/zFE5n8zlDKa2/8mpdT53HI88zk5CSvv/46XV1dPPfcc5SXl6PT6RY0ENhms9HX10dTUxNXr15lYGAApVJJaWkpzz//PCUlJfc8Hl9fX1JSUjAYDHISc1paGtHR0XR2dhIQEMDy5ctnVWBYKKSk5oCAAJxOJ06nc8HH8KCxWCw0NDTIhR2VSiXPPvvsnO1/QVN+blUfaS4Z3/dz/iL/TdqLbu2PunzuOOE5t0r4XEbOuv/8n0/CJv77oU7++/wMc96RnMQGg4HTp0/zwQcf0NvbS2FhIcXFxfj7+y+ocI2OjnL8+HFOnDjB4OAgcCOQND8/n8rKSrkO1tchMjKSoKAgdDodwcHB2Gw2GhsbUavVs4oDLiSSVevn50dwcPCsZOSHBYfDQXd3Ny0tLfJMy6uEC5iVqzhvjH/Bn38f/ql5w5ctqrtiCvMSqGvo8XjkcIMPPviA/fv3MzAwINdaehD09fWxb98+jhw5gsFgYMWKFTz//PNs2LDhviPdtVota9asYWpqinPnztHZ2UlQUBABAQFs3759js7g3rBarUxMTODv7y/X3noYuTkody5ZsDguaWVxfnBQ//ff49r/qmF76O23Cgi+3ZvdhGE0kOAlEm7jdrux2+0YjUZMJhNww8KZ2TRiIbBarfT09HDy5EnOnDkjF9JbvXo1jz76KCtWrLjve8LPz4/Vq1czNjZGY2Mjw8PDjIyM0N/fz9jYmBwqsZBMTEzQ3d2NWq1m1apVJCYmLvgYHjRKpZLAwEDCw8PlXMW5ZN6Fy+VyYbFYcDqd8/bGd7T+HS9/+h3e2KdiaGjoP35rYNIBpskhhoY0BEeHEBaXwfFzl4GbnVZjDFyIIGFGVoLBYJjX5dz5QqrHLj0wu3bt4p//+Z8ZGRlBrVYvqHN+YmKCjz76iP379zMyMkJ8fDzbtm1j8+bNc1bO19/fn/z8fEZGRmallUxNTdHd3U1oaCjBwcELWjVicHCQU6dOUVBQQHl5uVzx92FCiuOSfNteF4DqdrtxuVx4PJ55s7gGzp/Fbj3LS5Xvzfitk/E+sL5aQa3uBX7T+TPW5m0i4p1uutkwW7paz3Bg+Tq+E3Xjv9PT08TExMiWwTPPPCPX1vYGfHx8CA0NJTQ0lMTERA4fPszU1NSc9z68HR6PB6vVyrlz5zh+/DgdHR3o9XoKCgrYtGkTRUVFc/ZSUCgU+Pn5kZiYSEJCAn19feh0Oux2u1xFddWqVQsiXE6nU24YERERQVJS0kM7TZRWjaVWhF4XgDozan6+SHrm3+h85ubfdvNWWRrn/qrzPyPnCzbzf178Yz5t/T94LU9y4Ds4+dH/xPf7R8n7j990dnYSHh7OsWPHOHbsGH/+539OWloau3btYtu2bZSVlc3bucw1RqNR7iMIC9Or0mKxcOLECb744gv6+/vRarXk5+dTVlZGQUEB8fHxc35MvV5Pbm4uNptNLsvc0NAg14VfCP9eX18f1dXV+Pv7893vfndeztNbUKvVchWPedn/vOx1BpKldT9vPCmvEMBwY/4nTwlvl2t4S3xK+b/eLSJp+/MEf/Q/2J5kpfOjv+DF/+853m3OljdbvXo1V65c4dSpU+zfv589e/bQ3t7OL3/5S375y18SHR3N9u3beeKJJ6isrHwgK1d3i7QwAgvXYHdoaEgWfYPBQExMDOvXr6esrGzeHubAwECKiorweDy0t7czODjI8PAwSUlJcquy+cLtdjM1NcXly5cZGxsjMjKS3Nzch7YKihSAOp8viwWZKt6vxXX2nyp4acYscDk/paLixr9f+E0nP1t7q0+p0C1bTvhN313o1l9z6Xcf8YufbeFv+oPI3vlf+F3j06y+hQ+3pKSEkpIS/uqv/opLly6xZ88e9u7dy6lTp3jrrbd466230Ol0bNmyhSeeeILt27d7pV9srpCqJVy4cIFjx47R1NREYGAgOTk5bN26lTVr1szbsQMDAykrK8Nms3H8+HG6urrQaDSMjIxgMBjm7c0PyAsDo6OjJCUlER8fP/+r6A858ypcUsT8zZ1K7pW1P+uk82f3+qkknvm3zlv83ofI1c/xvw89d097S0tL47XXXuO1115jdHSUPXv2sH//fg4ePMjHH3/Mxx9/jFqtpqKigm3btrFr166HbqpgtVo5deoUf/jDH2htbcXtdlNcXMymTZu+FF0+10g+lcTERAICAlCpVCgUCiYmJujo6CAgIICYmJg5FxPJrzUyMoKfnx85OTkkJibKx5mensZiscgNJOa6LtViRKFQ4HA4GB4exmg0yknWUg/JuWBehctkMuFwOOSuIEvFdA4PD+fll1/m5Zdfxmq1cvDgQfbu3cu+ffuoqqqiqqqKH//4x6xcuZInnniCHTt2sHLlygc97Hnn+vXrfPLJJ3zyyScYDAZyc3N5/vnn2bx587xO1WYSEhJCUlISIyMjciJ0XV0dvr6+REZGzqlw2e12+vv7uXLlCna7nfj4eHJycuT7fHp6mu7ubkZHR3G73aSlpT0UwgU3/JynTp2is7NTdhX9yZ/8yZztf16F6+ZUn6UiXDPx8/Njx44d7NixA6fTybFjx2QRa25uprm5mZ///OckJSWxY8cOtm3bRkVFxT1PnZ1OJ0NDQ4vSivN4PPT09HD06FFOnDiBwWAgPz+fxx57jMLCwgUtpxwaGkpBQQFGo5G2tjb6+vqw2+3ExsayYcOdSyHdLQ6Hg7GxMdrb26mpqaGnpwez2UxcXBw9PT34+/tjsVi4fv06k5OTJCcnk5+fPy9tuhYrUo7stWvX5qV087wKlxQxe6vWSEsRaapYUVHB66+/TnNzM/v27WPv3r00Njbyq1/9il/96leEh4ezZcsWnnrqKSorK+/qLfzjH/+YN954g9/+9rfs2LFj/k/mHrBarXzxxRd8/PHH9PT0EBUVxYsvvsiOHTuIjY1d0LEEBQVRWlqKwWCgqamJy5cvMzg4yMqVK7HZbHOSfmMymTh//jwHDhzg/fffZ2RkBEBuySXh8XiIiIjg+9//PllZWQ9VPXyFQoGvry9ardb7hMtms+Fyueak8qk3snLlSlauXMmf/dmfcfXqVdm5f/ToUd5//33ef/99/Pz8qKyslKeUt6vbtHHjRt544w1eeOEFDhw48LVCMubj+3c4HJw/f566ujpaW1uJj4+ntLSUkpISUlJS5vx4X4WUXH3x4kV5tVfyt/T29pKTk3Pf96KPj4+cazk9Pc3Y2BharXZW82OpPVhYWBgrV66c1/pgixG1Wk14eDgJCQneV7rZarWKJhn/QXx8PK+++iqvvvqqXC99//797Nu3T/75oz/6I8rKymTn/syg1x07dvD666/zwx/+kK1bt9LQ0EBmZuY9j2Our0FHRwd1dXU0NzdjNpt57LHHePLJJ0lPT5/T49wtCoVCrpAaHh6OVqtFoVBgNBppbm7G39+f9PT0+/oe/P39WbFiBVlZWTz99NOzwkxu1Vx1qbpJ7oRarSY+Ph4fHx/vK90sWVxCuGaj0+l4/vnnef7557FarRw9epRPPvmEgwcPyvFPf/qnf0pmZia7du3i0UcfpaysjFdffZXR0VF+/vOfs2HDBurq6r4yol+v1+Pr64tKpcLf35+AgIDbtqm/E263m7GxMex2O3a7HavVyuDgIIcPH+bkyZMYjUbS09NZu3YtRUVFhIWFfd2vZ06IiIigsLBQ9rWYzWZOnz5NVFTUfa9uSW4PpVJ5T9/lQhTYWyxIAajBwcHeV7pZitiWqp8Kvoyfnx9btmxhy5YtABw7doxDhw7x8ccf09nZyS9+8Qt+8YtfEB8fz5YtW9i9ezevvPIKb7zxBo899hhHjhy5Y1rJ9PS0HJZisVgwm834+fnd0edwqwdsYGCA3t5eufbVwMAAnZ2dHDp0iL6+PlasWEFlZSVFRUWLIjcvODiYsrIyNBoNTU1NDAwM0NDQQHp6Ops3b34g3aYeFtGCG8IVGRk5b2I973FcMwNQH6YL93UpKyujrKxMDnr9+OOP2b9/P8eOHZODXiXfTWdnJ1u3bqWurm6Wg9/j8TA8PExVVRWff/45R44cYWxsjF//+te0tbWxefNm8vLyCAsL+1IpbbvdTk9PD9euXWN4eJirV68yODiIzWZDpVLJU6/+/n46Ozvp6emRx71r1y5SUxdH1cXg4GDy8vK4du0aX3zxBZcvX8bHx4eamhq0Wi0BAQFyRVilUom/vz96vR4/Pz90Oh2hoaFERETMa+DqUmWmWM3XM79gwiUFBArunrS0NH7605/y05/+VA563bt3L1VVVfI2zc3NbN26lS+++AI/Pz/ZxzI+Ps6nn37K7373O3nb+vp6BgYGCA8PJyYmZlatdLixhN3f38+ZM2fo6Ojg4sWLtLa2cunSJSIiIkhLSyMkJAS4UYb58uXLAGRkZLB582aKi4sX4mu5K/z8/EhOTiYkJITR0VEMBgMajUauyjlzyqxUKuXuQIGBgYSGhhIbGys37pDE62Ga6t0PM5P5Z/r85vK7W1DnvODrYTAYaGxspL+/H6vV+qVpjhRq8dOf/hSFQiEvwz/99NNkZWWh1Wrx9fVlenqa4OBgioqKiI+Px9/fH7iRHNza2kpjYyNDQ0M4HA7UajXR0dGygzUhIYGIiAguXbpEY2Mjg4ODTE9P8+ijj7J79+5ZXacXywOuUCgIDAwkMDBQLq1itVoxmUwkJSXJK4x2ux2Hw4HD4cDj8TAyMkJ3dzdHjhzB39+f6OhosrKyyMzMZPny5Q9VPNbXRaoOMjg4KDvnJXfIXLBgwvUwhkPcL0NDQ2zdupXm5uZZvw8ODmbHjh0UFxdTVlbG6tWrZyV6KxQKIiIi2L17N7t3777t/j0eD1euXKGhoYEjR45QXV2N0+kkKyuLrKws8vPzyc3NJT09XRa5Tz75hNOnT6NQKIiMjGTnzp185zvfmbXfxXSdw8LCyM7OxmQyyRHsSqWS9PR0tm/fjl6vx2g0yk02pO2uXbtGd3c3w8PD6HQ61q5dy+TkJG63m6SkJHQ6HRqNZlGd62LCarXS3t5OW1ubHDnvNcIlVhXvD4PBQGdnJ5mZmZSUlLBu3TrKysq+VhjEzQwMDPDpp59y5swZuchgZWWl3KswNjaWsLAwYmJiZNG6dOkSdXV11NfXy07ukpKS+x7LfJKamsoLL7yAXq/nt7/9LVNTU9jtdjweD8nJyYSGhjI9Pc2yZcswmUzY7XYsFgtlZWVcv36doaEhOQK+rq6OP/zhD0RFRbF27VrWrFlDbm7ugz7FRYlU+dhiseDr6+tdAaiSj0vqYC2E697IzMzEYrHM6T5tNhsTExOcPn2a3//+93R0dBAUFERJSQk7d+6koKDgluWOz507x+HDhzlx4gTj4+M89dRTPPvssyQlJc3p+OaaiIgIHn30UYaHhzl06BATExNYrVbMZjMejweNRnPH8ismk4muri5qamo4duwYzc3NKBQKTCYTTqcTnU7HsmXL5qVYnjejVCoJCAggODjY+yLn58sxJ/h6eDweurq6eOedd2hra0Ov1/P0009TUFDA8uXLSUpKkp3vN3Pq1CneeecdDAYDFRUVrFu3jpSUlAfWgONeUCqVREdHk5GRgdVqlQNSz5w5A3DHtKSAgABSU1PlYohPPfUUXV1dNDU1sXfvXpqbm1m3bh2PPfbYQxcdfyfUajUxMTHY7Xbvi5y/ORxC8OAwm81cvnyZU6dOUVdXh8lkYvfu3V+5GmixWLh06RLHjh3j7NmzFBYWsn37dgoLC71CtCSioqIoKCjA7XYzMjLC0NAQx48fJyQk5CvzKfV6PcuXL5cDVy9duoTJZOLkyZOcOHECi8VCdHQ0K1asIDQ0VMQsciMtKi4uDj8/P+8r3Ww2m2eVtVnIXn6C/8Tj8dDb28u//Mu/cO7cOQoLCyksLKSiouIr467Onj3Lr3/9a+rq6ggLC2Pz5s0888wziyLI9F5ISUlh8+bNOJ1ODh06xIULF7BYLBQUFNxy+zutjKalpfHSSy+Rm5vL0aNH6enp4b/9t/9GRUUFL7/88kPZ1edmpGYZUs9MrxIuq9UqFxLUaDSiIuQMpCYi89l1R6VS4XA4sNlsDAwMUF9fT29vL8XFxaSlpeHr6yv7fFwu16ygQV9fX2w2G9XV1Xz22WfYbDYKCgpIS0sjKCgIp9PJ1NTUvI19rpBelhaLRY7TcjgcjIyMYLfbaWtro7S0lKCgIFwul9x/UgorkcIkpOwDuDF9zMjIIDIyEqVSic1mo7a2lq6uLsbHxwkPD0elUuHr6zvrZe12u+UfKcZJqiix1F7qko9rvkJH5n2q6PF45PIWi7k2+0JjtVoZHR3FbrfPEo25RKlU4nK5sNvtTE1NERkZycTEBG1tbYyOjqLValGpVHIXJukzCoUCi8XC2NgYLS0tch5ifn4+ExMT/Pa3v0WhUGC32+d8zPfDrboYSb+TBKa/vx+z2YxKpcLpdHLw4EGuXLlCUlIS6enplJaWylaoy+ViaGiIgYEBrl69ysTEBG63m8TERMrLywkODmbTpk3Ex8dTVFSEXq/H7XZz+fJlFAoFYWFhhIeHy2Ow2WyYTCamp6exWq243W40Gg1RUVF3XWBQqjzxVfeLFPZxJ25OCL/Tdndzfy5k/N68C5fVamV6eprR0VH6+/uJiorCarXetnGD9KaTknkXog+gx+ORH3CHwzEvX750vtIDMz4+Li/NS2/yuUb6LhUKhRzy4O/vz8DAAAMDA7LFN9PSkm720dFRBgYGcLvdBAYGkpSURGRkJEajkcHBQXn7xcStHkTpd1I4js1mIywsDIfDwfT0NB0dHQwODpKZmYnL5SIrK0v+rNvtls/34sWLDA0N4XQ6sdvtFBQU4O/vT3h4OIWFhfj5+TE4OEhnZydmsxmlUklubu6sMkVGo5GBgQGuXLkiv7RCQkIoKSmRhUuyZCcnJ5mcnMRms+HxeAgNDSUpKUkO5LZarRgMBiYnJ5mensZut8t+pZiYGJRKJR6PB4vFgslkwmQyyR2Q/Pz8iIqKksNcnE6nnIMqVS1WKBQEBQXNqhrrdDqx2WzYbDb52VSpVOj1evz9/WdZqWazGYPBgN1ul2tyzWWrtnmP45qcnKS/v5/JyUngRmndO72plUolTqdT7khsNptxOp3A3D8oM0Vyenqaa9euMTExIY9jPpCmztHR0XJjjfloUS7tV6lUotPpcLvdXL9+fZZISseUxE06Z6fTicViwe12ExISQn5+PnFxcdjt9lnfy0J1Dbpb7jQep9OJQqEgKioKjUbDmTNnGB4elis8qFSq216HmW3kpWneTKanpxkcHKSxsZHW1lauX7+Ov78/LpeLwsJC+cEfHR2lra2N+vp6urq6mJqaIjk5mfj4eNkvZjKZOHbsGDU1NdTU1NDX14fb7eaxxx7jr//6r+WFhKtXr3L48GGOHj1KQ0MDw8PDhIWF8ZOf/IRXX30VuCG8vb29tLS00NzcTH9/PxaLhfT0dL773e+SnZ0tH7O1tZWWlhba2toYGRlBqVTyjW98g29/+9vydG9ycpLLly/LxRktFoscnJuTkwPcuL9HR0fp6OigurqaoaEhUlNTCQsL45VXXrmfyzuLeRWu4OBg7HY7arWa6elpenp65IJrt7vJ1Go1Ho+H6elppqamZAf/fIdUSP0fpZWy+TqW1NE7KCiIiIgI+c04X8KlUqnQ6XT4+PgQExMjvwQkZp6ny+XiypUrdHZ2EhAQQGJiIpmZmeTl5cndoCWxX4zcaeqjUqlwu90MDAwwOjpKYGAg2dnZcg5mXFwcqamps6qUKpVK9Ho90dHROBwOwsLCcLlcLFu2bNaK6sx281FRUajVarRaLYGBgbPG4uPjg06nIywsDKPRiE6nIyIi4kurs5LfS/INSxVWZu5LKlQoBXdLPzf7kZ1OJ1arFaPRiMFgwGw2YzQaZ90Hbrcbu92O2WxmamqKiYkJlEolJpNp1rW22WyMj49z+fJlent7MRqNhISEyAIoXYPp6WlGRkbo6elhaGgIvV7vXeEQy5cvJyQkBKfTidFonCUKtxMGKVM/NTWVkJAQeRo31ygUClmsgoKCCAoKwt/fH19f33l9MCUryNfXV142n2/fwEzBufncpAfAbrczMTHBp59+yqlTp8jKyuJHP/oROTk5cjL2TAvNW5DuNR8fH2w2G++//z4NDQ3Ex8fz3e9+l5UrV5KSkiL7+2b6mlQqFdHR0YSGhpKZmSk/7BqNZtZ2wcHBFBYWkpWVhcViwel0olQq5VpUEgkJCYSHh1NcXDwrq2TmdFKn01FWVkZ+fj7f/va35alicHDwrO3i4+N5/PHHqaiokINhfXx8ZlWzkCzMlStXEhERwcTEBA6H40tVL6SEdI1GQ3JystyZR1rAufn7lHIPb1cg0O124+vrS3JyMlFRUeTl5c15R+95Fa7U1FQiIiIIDAzEaDTe1Wek0ikxMTGyRTIffi5JuKTKAFKE78PK9PQ058+fx2QykZmZSVlZGY888oi8nO3tSBHwQ0ND6HQ6VqxYwcaNG8nOzr7ldZdeJpIlcyvnuSTgarUavV5/205G0r78/Pzw8/O7ZZDvTB9ocHDwbftzSj5JjUZDRETEHa+PlGSuVqsJCwuT/VJ+fn6zgmV9fX0JDw/H399fdgnAjfr9My0lrVZLZGQkdrsdvV6PxWIhICBgVtFIqQJtQkKC/IwlJSXNeb19hWceX5+S43lmN+W7QTKVFyp8QqlUPvRld6qqqvjLv/xLFAoFO3fuZO3ateTn5y+Zqh6ff/45//iP/4jNZpNFa8OGDUt+pVtyy8x0z0hWtmQt3ey/m7nCPDNwXHqWpdAQSUS1Wq08m/J4PDidTvnH4/HIPsS5vJfm1eJaKjf9UsZkMtHS0sKxY8eYnp4mMzOT0tJScnJylsT1k1YOjx07xtWrV8nKyqKiooKVK1cuedGC/1xkupMRMLMU9a2QLEYpded2GRPSdgtR8Vjk4TzkXLlyhd/85jf09/fLZXIyMjLkpXJvp6uri7fffpuenh5SUlKoqKigvLx8wRrULgXudiaykDOWpRWuK7hrXC4Xvb29nDhxgq6uLnx8fFi/fj2lpaW39a94Ew6Hg0uXLnHixAnOnz+PVqulsrKS0tLSWaLlTQsNgv9EWFwPKaOjo+zbt4/6+np8fX1ZuXIl5eXlxMXFPeihzQkDAwPs3buXhoYGFAoFBQUFPPXUU1/qW/kw+zW9GSFcDyEGg4Hm5mbq6uowGAysX7+e9evXz1qyXizll+8VqfrDqVOnqK2txe12U1lZSXl5+SzR8tbzE9xATBUfMqanp2lububkyZP09vai1+t5/PHH2bBhwywHrrc+1GNjYxw/fpy6ujr6+/uJjo7m2Wef/VLnb289P8ENhMX1kHH58mU+++wzLly4QGFhISUlJXI3G2/HbDbT2trKp59+yujoKBs2bKC8vJz4+PgHPTTBHCOE6yFBKuXS2trK8ePH8Xg8vPLKK2zYsGFJrCCaTCYuXLhAfX09DQ0NpKSk8Mwzz8zKFRQsHYRwPSRI5Wjq6+tZtmwZOTk5ZGdn33U5lcWMVJL63Xffpaenh/Xr11NSUkJaWpqovLtEEVd1ieN2u7HZbFy8eJEDBw5w5coVXn75ZR599NGvLFnsDdhsNgYHBzlz5gzV1dXo9Xq+//3vs27duiUhyoJbI4RrieNyuTh48CC1tbWo1WqKi4tZvXo16enpSyIyfnh4mLfffpuWlhby8vJYtWoVOTk5onHFEkesKi5xrl27RnV1NSdOnCAlJYVt27aRnZ3t9aLlcrkwGAy0tbVRVVVFb28vGzduZNeuXcTExDzo4QnmGWFxLWHOnj3L8ePH6evrIzg4mLVr11JeXn7Lvonehtls5r333uP48eOEh4ezbt06Vq9eLfc4FCxtxBVeooyPj3P8+HFqamrw8fGRO/tIpYK8GafTSWdnJ9XV1bS3t5OXl8f27dtJS0vz+nMT3B3C4lqCDA4O0tLSwvHjx+nv7+fpp59m27ZtXts2a2aUu9vtZu/evRw5cgS73c6aNWuoqKhg1apV89ZRRrD4EK+nJYbJZKK5uZna2lomJiaIi4ujpKSE7Oxsr2rgOpOZUe6XLl3iyJEjnDlzhoSEBDZu3Eh+fr5YQXzIEBbXEsLpdHLt2jX279/P0aNHqaysZPv27XIjA2/j5nzC2tpajhw5QldXF2FhYWzatIlvfOMbt6woKljaCOFaIrhcLi5evMjp06fp7e2V/VobN2702ry8meO+cuUKdXV1nDx5Ep1OR0FBAatXr5YXGkTS9MOFEK4lwvT0NJ999hl79uwhLS2NJ598kpKSkiXxMLe3t3Ps2DGOHz/O5OQkTzzxBNu3b58V9rAUzlNw9wjhWgJIzviWlhYmJibIzMxk8+bNSyIyfnx8fFaJmry8PEpKSkhISHjQQxM8QIRwLQHq6up4//33cbvdbN++nbKyMuLi4rw+uXh0dJSWlhaqq6tpbm7mmWeeYdeuXUummoXg6yNWFb0Yq9VKR0cHZ8+epbe3l+joaL7xjW+QlZXl9aJlMploaGjg888/x2g0kpWVRUlJCTk5OUuimoXg/hAWlxfT1tbG3r17uXjxIikpKZSWllJSUuL1kfEWi4Wenh5+//vfU1VVxfbt29m9ezcZGRkPemiCRYIQLi/E7XYzNjZGY2MjJ0+eJDw8nIqKCtasWTOrOac34na7aWpq4siRI1y9epVly5axevVqCgsLRYkagYyYKnohV65coba2ltOnTzM8PExWVhbPPPMMeXl5D3po943BYODQoUO89dZb6HQ6fvjDH7J+/XohWoJZiLvBy5iamqK5uZn9+/czOTlJWVkZJSUlREZGPuih3TednZ3U1dVx8eJFYmNjKSwspKioiKioqAc9NMEiQ1hcXsT09LTcC7G6uprg4GB+8IMfUF5e/qCHdt84HA4OHz7MP/zDP2CxWPjOd77D1q1biY6OFonTgi8hLC4voquri08++YSuri45nikjI8NrcxAlrl69yvHjxzlz5gwajYacnBzWrVtHSkqKCCwV3BIhXF6CxWKhsbGRDz/8kNTUVF555RUKCwvx8fF50EO7bxobG3nzzTdRKpVUVlZSWVnJ8uXLhaUluC1CuLyAa9eu8fnnn1NfX098fDxr1qxh1apVJCQkePXDPTExQUNDA7W1tUxNTVFQUEBlZSW5ublefV6C+UcIlxfQ3t7Ou+++i0KhYNu2baxfv564uDivf7jPnz/PBx98wNWrV0lNTaW8vJxHHnlErCAKvhJxhywyZlY5MBqNNDQ0UFNTg9VqJSsri/Xr15OTk+PVU0SLxcKFCxeora3l4sWLLFu2jB07dlBcXCxES3BXiLtkkTHTGd3X18fvfvc7uru7SUlJYd26deTn53t9ykt/fz8HDhyQnfGFhYU8/vjjaLXaBz00gZcghGsR4nQ66e/v5+TJk7S3txMUFMS2bdsoLi72atFyOp1cvXqVuro6qqurCQgIYPfu3axbt06IluCeEMK1CBkZGaG2tpbGxkbcbjcZGRlUVlZ6fZDp8PAwJ06coL6+npGRESoqKnjqqae8/rwEC48QrkWE0+lkYmKCs2fP8vnnn2O1WuWCgN6cOO3xeDAYDDQ0NPDhhx9it9vZtWsX69ev9/rcSsGDwbuXpZYYDoeD4eFhLly4wJkzZ5iammLdunWUlpZ6tdN6YmKC5uZmTp8+zcWLF9Hr9ezcuZMNGzZ4ffkdwYPBe5+GJYjH48HpdGIymRgdHUWj0TA5OYnNZvPq6PiLFy/y1ltvMTg4yLZt21i3bh3Lli170MMSeDHC4lpEKJVK/P39CQ8PJyEhAR8fH1paWmhubsZoND7o4d0zUthDY2Mjra2tAHzzm99k8+bN6PX6Bzw6gTej8Hg8ngc9CMEN3G43NpuN7u5u6urqOH36NG1tbaxYsYI//uM/Jj8/36uannZ1dfH3f//3XLhwgaSkJIqLi9myZcuSqIUveLCIqeIiQqlUotVqycrKIjAwEID6+npaW1upqanB7XaTn5+/6K0Vp9PJ4OAg9fX1NDQ0APDII49QXl5OdHT0Ax6dYCkghGsRolKpiIuLY8OGDSgUCmpra3nvvffo6OjgBz/4Abm5uYs6nstgMPCb3/yGU6dOERcXJ/dAjI+Pf9BDEywRhHAtUlQqFenp6QQEBOB0OmltbeXChQtUV1djs9koKChYlJaXwWDg7Nmz1NfXMzw8zM6dO9m4cSOJiYkPemiCJYQQrkWMSqUiNjaWyspK/Pz8OHz4MG+//TYXL17k1VdfJTs7+4FbXjNzK+12O3v27KGmpgaA0tJSNm7cSEFBgVevigoWH0K4FjkzLS+TyUR7ezuXLl3iwIEDGI1GVq9e/UAtL0m0zGYz586d48SJE3R3d1NYWMgjjzxCdna2EC3BnCOEywuQLK+tW7cSFBTEgQMHeOutt+jr6yMwMJDMzMwFX22caWl5PB5qamo4cuQIvb29REZGsnXrVsrLy4VoCeYFIVxegkqlIi0tDa1Wy/j4OF1dXfT09LB3714MBgNFRUULanlJouVwOOju7qa2tpampiaioqIoKioiLy9PFq2ZIicQzAVCuLwIpVJJXFwcjz32GFFRUXz66ae89dZbXLt2jcDAQLKystDpdAs6pvb2durq6qivr8dkMvHCCy+wfft2goOD5W2EaAnmGiFcXoZSqSQ1NRWNRsPg4CBXrlyht7eXjz/+mMrKSkpLSxdMvK5du0ZtbS21tbXo9Xq5cas3J4QLvAMhXF6IUqkkPj6eHTt2EB8fz4cffsjbb7/N1NQUoaGhLF++fN7Fa3BwkKamJqqqqujs7OR73/seu3fvFiVqBAuCEC4vRalUkpKSgq+vL1euXGF8fJzu7m4+/PBDHn300Xm1vKampqipqeHw4cPAjaj4oqIi4uLi5uV4AsHNCOHyYiTL66mnniIpKYm3336bd955B7vdPm+Wl8lkoru7m/3793PkyBFeeOEFXnzxRVHtQbCgCOHycpRKJUlJSahUKnp7e7HZbFy4cIF3332X7du3s3bt2jkTL6fTybFjx/j8888xGAyUlJTITWlFXS3BQiKEawmgVCpJSEjg6aefJjk5mTfeeIN/+7d/Q61WExYWRkZGxn2HSrjdbgYHBzl48CAfffQRW7Zs4bnnniM3N1eIlmDBEcK1RFAqlfJ0ra+vD41GQ3t7O2+++SZPPvkka9euvS/xOnPmDAcPHqS/v5+8vDxKS0vJz88XpZcFDwRRSHAJIYnX7t27eemll7BarXzyySdUV1fT0dHB1NTU19qvxWKhtraWDz/8EKVSybe+9S0qKiqEaAkeGMLiWmJIDnuXy8Xjjz9OaGgoZ86cYXR0lGeeeeaefV5dXV1UVVXR3NxMdHQ0a9asYe3atSQkJMzjWQgEd0ZYXEsQpVJJYmIiu3fv5lvf+hZms5kDBw5QW1vL+fPn79rycrlcnD59mn//939nbGyMDRs2UFFRQWpqKr6+vvN8FgLB7RGlm5cwbrebvr4+9u7dy4kTJ7h+/TqJiYm8+OKLlJSUzErMlm4DKT1ncHCQmpoaqquraWtro6ysjGeffXZBglsFgq9CWFxLGClUYteuXezcuROTycSRI0eoq6ujvb19luWlUChm5RS2t7fz2Wef0dPTQ1paGqWlpRQWFgrREiwKhMX1EOB2u+nt7WX//v2cOnWKy5cvk5SUxEsvvURRUdEsMZqamqKlpYUDBw5QVVVFdnY2u3fvpqCgQNSLFywahMX1EKBUKklOTmbnzp1s27YNs9nMyZMnOXbsGK2trUxOTsrbdnd3U1VVRUdHByEhIaxZs4ZNmzYJ0RIsKoTF9RDhdrvp6enh0KFDnDp1igsXLpCens4rr7xCeno6BoOBqqoqPvjgA+Li4nj66adZs2YNycnJD3roAsEsRDjEQ4SUmL1jxw50Oh1tbW20tLRw4sQJOVG7ra0Np9NJRkYGW7ZskdukCQSLCWFxPYRIlld1dTX19fV0dHQwNjaGQqEgKyuLTZs2UVpaSl5enkjnESxKhMX1ECJZXlqtFj8/P86dO8fg4CCBgYFER0ezefNm0tLSHvQwBYLbIoTrIUWpVBITE0NpaSl2u52RkRG58UZMTMyDHp5AcEfEVPEhx2w209nZiclkQq/XExERQWxsrKgTL1jUCOESCAReh4jjEggEXocQLoFA4HUI4RIIBF6HEC6BQOB1COESCARehxAugUDgdQjhEggEXocQLoFA4HUI4RIIBF6HEC6BQOB1COESCARehxAugUDgdQjhEggEXocQLoFA4HUI4RIIBF6HEC6BQOB1COESCARehxAugUDgdQjhEggEXocQLoFA4HX8//o4cw/A0tMOAAAAAElFTkSuQmCC",
"path": "images_version_5/image_39.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
then the degree of angle 2 is ()
Choices:
A:100°
B:110°
C:120°
D:140°
|
độ của góc 2 là ()
Lựa chọn:
A: 100°
B: 110°
C: 120°
D: 140°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: then the degree of angle 2 is ()
Choices:
A:100°
B:110°
C:120°
D:140°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: then the degree of angle 2 is ()
Choices:
A:100°
B:110°
C:120°
D:140°
|
then the degree of angle 2 is ()
Choices:
A:100°
B:110°
C:120°
D:140°
|
195
|
39
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAABgoAAAPlCAYAAACzfbY0AAEAAElEQVR4nOzdd3xN9/8H8NfN3okkEiMSJEbsvXftvQVVVGtTrRotLWqUUptSau8QxIqZ2FuQECGRBBFC9p6f3x9+fEXO5+aOc1fu+/l43MeDz+ee93nfkXPPOZ8lYYwxEEIIIYQQQgghhBBCCCFELxloOgFCCCGEEEIIIYQQQgghhGgONRQQQgghhBBCCCGEEEIIIXqMGgoIIYQQQgghhBBCCCGEED1GDQWEEEIIIYQQQgghhBBCiB6jhgJCCCGEEEIIIYQQQgghRI9RQwEhhBBCCCGEEEIIIYQQoseooYAQQgghhBBCCCGEEEII0WPUUEAIIYQQQgghhBBCCCGE6DFqKCCEEEIIIYQQQgghhBBC9Bg1FBBCCCGEEEIIIYQQQggheowaCgghhBBCCCGEEEIIIYQQPUYNBYQQQgghhBBCCCGEEEKIHqOGAkIIIYQQQgghhBBCCCFEj1FDASGEEEIIIYQQQgghhBCix6ihgBBCCCGEEEIIIYQQQgjRY9RQQAghhBBCCCGEEEIIIYToMWooIIQQQgghhBBCCCGEEEL0GDUUEEIIIYQQQgghhBBCCCF6jBoKCCGEEEIIIYQQQgghhBA9phMNBeXLl4dEIin0iIyM1HRqhBQyd+5cwe/r3LlzNZ0aUYPIyEjBz798+fKaTo0QoqOSkpKwY8cOTJgwAU2aNEH58uVRokQJGBoaCh5v7t+/r+mUSTE1YsQIwe/ctm3bNJ0a0QH0/RHP/v37C72P7u7uyMnJkWn7tLQ0lCpVqlCMkydPqjhzQgghhGgzI00nQAghhBBCCouPj8fs2bOxY8cOpKWlaTodQogapaenIzExESkpKbCyskKJEiVgYWGh6bSIFkhLS8PPP/9cqHzBggUwNjaWKYalpSVmz56NSZMmFSj/8ccf0aFDB5njEEIIIaR4oYYCQgghhBAtc/PmTQwYMAAvX77UdCqEEBXKy8vDvXv3cPnyZQQFBSE4OBiPHz9Genp6oeeamprCzc0NTZs2RbNmzfDVV1/B3d1dA1kTTVq0aBFevXpVoKxu3brw8vKSK86YMWOwfPlyREREfCp7+vQpVq5ciWnTpomSKyGEEEJ0CzUUEEIIIYRokaioKHTr1g1xcXGaToUQogLv3r2Dj48P/Pz8EBAQgMTERJm2y8rKwtOnT/H06VNs374dEokEnTp1wuTJk9G5c2dIJBLVJk40Ljw8HH///Xeh8sWLF8v9+RsbG+OPP/7AsGHDCpTPnz8fw4YNQ6lSpZTKlRBCCCG6R6mGgpUrVwqe2E6ZMgV2dnbKhCZEdAEBAQgICChU3qZNG7Rp00bt+RBCCCFChg8fTo0EhBQzmZmZ2LNnD/bt24cLFy4gLy9P6ZiMMfj5+cHPzw8tWrTAjh07UKFCBRGyJdpq1qxZyMrKKlDWqFEjdOzYUaF4gwcPxty5cxEeHv6pLCUlBQsWLMDatWuVypUQQgghukfphoKoqKhC5SNGjKCGAqJ1AgICMG/ePME6aigghBCiDW7evImLFy8K1tna2mLYsGFo2bIlypUrBysrK8EepB4eHqpOkxAip7CwMIwaNUpl8a9cuYLatWtj3bp1hXqIk+IhKCgIBw4cKFQ+Y8YMhWMaGhpi6tSpGD9+fIHyTZs2Yfr06XB1dVU4NiGEEEJ0D009RAghhBCiJbZs2SJY7u7ujosXL6Js2bJqzogQoitSUlLwzTffIDY2FlOnTtV0OkRkv/32GxhjBcoqV66M3r17KxV35MiRmDt3LmJjYz+VZWdnY/78+di0aZNSsQkhhBCiWww0nQAhhBBCCPngypUrguXLly+nRgJCijFTU1O0b98e8+bNw/Hjx/HkyRMkJSUhJycHCQkJePbsGfbu3YvvvvsOFhYWUmP9/PPP2L9/v5oyJ+pw9+5dHD16tFD51KlTYWCg3CW9mZkZJk6cWKh827ZteP78uVKxCSGEEKJbqKGAEEIIIUQLpKamIiQkpFC5qakpunbtqoGMCCGqZGBggM6dO2P37t2Ii4vD2bNn8fvvv6Nbt26oUqUKbGxsYGRkBDs7O3h4eMDLywubNm1CVFQUJkyYIDX26NGj8fLlSzW9Etls27YNjLFCjxEjRmg6Na33119/FSqztrbG0KFDRYk/atQoGBoaFijLzc3FypUrRYlPCCGEEN1ADQWEEEIIIVogNja20LQSAFCpUiUYGdFskYQUF+bm5pg0aRKePn2KU6dOYciQIbC0tJR5e0dHR6xduxbe3t4wNjYWfE5ycjJ+/fVXsVImGvTy5Uv4+PgUKh88eLBc3xtpypQpI9ggvW3bNiQnJ4uyD0IIIYRoP2ooIIQQQgjRAgkJCYLldnZ26k2EEKISJiYm+OGHHxAREYHVq1fD3d1dqXj9+/fHv//+y63fu3ev1o0qIPJbs2YNcnNzC5V///33ou7nu+++K1SWkpKC//77T9T9EEIIIUR7UUMBIYQQQogWSE1NFSz/cjoIQojuKV26NB4/foyVK1fC2dlZtLgjRoxAjx49BOvy8vKwb98+0fZF1C8jIwObN28uVF6jRg00aNBA1H1169YNTk5OhcrXrl0rONqNEEIIIcUPNRQQQgghhGgBuhFDSPHl4OCg9AgCnvnz53Przp49q5J9EvXw9fUVHG3Wr18/0fdlaGiIXr16FSp//vw5Ll++LPr+CCGEEKJ9aMJbQgghKpeUlIT4+HhkZ2fDysoKjo6OMDU11XRahGhMcHBwobKIiAjB56alpQk+/0slSpRA2bJllc6NaK+0tDS8f/8eGRkZsLKygr29PSwsLDSdFtGw2rVro0KFCoLHkMDAQA1kRMSyc+dOwfK+ffuqZH99+/bFpk2bBPNo1aqVSvZJCCGEEO0hc0NBWlpaoZPPnJwcwec+ffqUO3xeiJOTk+AwR0Wlpqbi5MmT8PPzw8OHDxEZGYmUlBSYmpqiZMmScHZ2RqNGjdC1a1e0bt1arTer4uPjcfr0aVy5cgWPHj1CREQEEhISkJ6eDhMTE9jY2MDNzQ3Vq1dHq1at0L17dzg6Oqotvy9p83tZlKdPnyI7O/vT/2NjYwWfFxsbK9MNmI9MTExQuXJlpfP73I0bN+Dr64vbt2/jyZMniI+PR25uLhwdHeHk5IRKlSqhS5cu6NKlC0qVKiXqvqXJy8vDlStXcPHiRdy5cwfh4eF48+YN0tLSkJ+fD0tLS5QuXRqVKlVC06ZN0blzZ9SpU0dt+anCnTt3cPToUVy7dg2hoaGfPgtra2uUKlUK1atXR5s2bdCrVy+tuCEXHByM8+fP4/r163j27BlevnyJ1NRUZGdnw8LCAo6OjnB3d0eDBg3Qrl07tGvXTi3TmGRkZMDb2xu+vr64evUq3rx5U6DewMAA7u7uaN68Ofr06YNu3boJ5hUQECAYv02bNirI+n9iYmJw6tQpBAQE4MmTJ4iKikJKSgpyc3NRokQJVK5cGStWrFBo2L+2fmafu3XrFvz9/XHr1i2EhYUhOjoaaWlpyMnJgaWlJZydneHh4YHGjRujffv2aNasGSQSiVpzFNu9e/dw7tw53LhxA8+ePcPr168LHOucnJzg7u6Ohg0bol27dmjZsiUMDBQfmFmzZk2Zn3vnzh2Znj98+HBs27ZN4ZzEkJeXh8DAQNy6dQuPHz9GSEgIXrx4geTkZCQlJSEvLw/m5uawt7dHuXLlUKNGDTRu3BhdunQRdToWRYWHh+Pw4cO4cuUKgoOD8e7dO6Snp6NEiRIoWbIkypUrh/bt26Nr166oVq2ayvPJzc2Fr68vDh8+jEuXLuHFixcF6iUSCdzc3NC4cWP06tULffv2FTwXu3HjBjIzMwuVN2nSBGZmZirLXxn6eA6ijKZNmwo2FLx//x5paWmiLXqrrRhjuHz5Mm7cuIHAwEA8fvwYCQkJSE5ORmpqKkxMTGBhYQFLS0uUKVMGbm5uqFChAurVq4emTZvCxcVF0y+hkPfv3+P06dOFyj08PFCrVi2V7POrr76CnZ0dEhMTC5QfPHgQa9eu1aprPUIIIYSoAJORv78/A6CSx5w5c6Tu283NTXC7iIiIAs9LSUlhs2bNYra2tjLv29nZmW3atInl5eXJ+lYo5NKlS6xHjx7M2NhYrvfGyMiI9evXjwUGBoqSR3F4L2XFe63KPtzc3KTud86cOTJ/zw8fPsxq164t874NDAzYd999x968eaOaN+3/xcTEsOnTpzNnZ2e5359q1aqxbdu2sdzcXJXmKLazZ8+yhg0byvw6DQ0NmZeXF3v27FmBOBEREQp9b+SRkZHB1q5dy6pVqyb35+Pk5MTmzZvHEhMTRcvnc9nZ2ezvv/9m9vb2cuXl7u7O9u7dWyge7/nykjXOw4cPWf/+/ZmhoWGROR8+fFjm/WvzZ/ZRYmIiW7hwIStfvrxCx8WVK1eyjIwMleYotqysLPbPP/+wKlWqyP2ay5Qpw+bPn8+SkpIU2re8+5PlMXz4cHHfIBm9f/+ebdy4kfXs2VOu84bPHxKJhHXq1ImdPn1atLx4566tW7cu9Nz79++zHj16MIlEInPObdq0Ee387Ev5+fls27ZtzMXFRa73sVSpUmzNmjUsPz+/QDxZz/+KMnz4cME4W7duFe216+M5iBh++ukn7vvy+vVrTafHGFPN9yc+Pp7Nnj2bubq6KnX8dHV1ZVOmTGE3btwQ7wUracOGDYK5Tpo0SaX7HTBggOB+jxw5otL9EkIIIUTzik1DweXLl5W6Mdy4cWP2/v17Rd9HrufPn7POnTsr/R4ZGBiwiRMnsrS0NKXy0eX3Ul7a3FCQmJjI+vbtq3AO1tbW7OTJk6K/Z1lZWWz+/PnM3Nxc6fepXr167MGDB6LnKLa0tDQ2YsQIhV+nhYUF27Bhw6d4qm4o8Pb2ZmXKlFH683F2dmYHDx4UJaePnj9/Lldji9Cjf//+LD09/VNM3vPkVVScvLw8NmvWLGZkZCRzrrI2FGjzZ8bYhxuS//zzD7Ozs1M6R3d3dxYQECB6jqrg7+/PPDw8lH7Njo6ObPfu3XLvX9n9Cj3U3VAQEhLCunbtKncniKIenTt3FuXGpiwNBfn5+WzOnDly/e1//jAwMGDz5s1TOtfPvXv3jnXp0kWp97B169bs3bt3n2LqQkOBPp6DiOmXX37hvh/R0dGaTo8xJv73Z9euXczJyUn0Y+n9+/fFfeEK6tWrl2B+hw4dUul+165dK7jfMWPGqHS/hBBCCNG8YtFQsGfPHmZiYqJ0HjVq1BC1p7a3tzezsrIS9b2qW7cue/nypcI56ep7KeZrVfahbEPBixcvFOpV/OXDxMSE+fj4iPZ+vXjxgjVo0EDU98rCwoJ5e3uLlqPY3r9/L9prnjVrFmNMdQ0FGRkZ3AtsZR7Tp08v1PNUEQ8fPmSlSpUSJadmzZqx1NRUxph6Ggqys7O5F+PSHkU1FGj7Z8bYh56YYjRmf/4wNDRkq1atEiU/VVm8eDEzMDAQ9XWPHj2aZWdny5yD2N8LQP0NBd7e3ip5HcCHkTT37t1TKr+iGgqysrJYv379RMl32rRpIryjjL18+VKhES5CjypVqrCYmBjGmPY3FOjjOYjYRo4cyX0vPv6mapqY35/ffvtNZccfVY0Ukkd2djaztrYulJtEIinQCKgKwcHBgu+LmKNjCSGEEKKdFJ9cV0scPXoUw4YNKzAXvaKCg4MxZMgQEbICVq1ahQEDBsi1VoMsAgMD0bZtW7x+/VrUuID2vpfFyfv379GxY0c8fvxY6VjZ2dkYMmQInj17pnSsJ0+eoHHjxrhz547SsT6Xnp4OLy8v7Nu3T9S4YkhLS0PHjh1Fe80LFy7EunXrRIn1pdTUVHTs2BHbt28XPfZff/2FiRMnKhUjKioKHTt2LLQOgaKuXbuGr7/+GowxUeIV5dtvv8XRo0dFjantnxkAvHnzBs2bN4efn58IWf1PXl4efvjhByxdulTUuGKZOXMmZs6cifz8fFHj/vvvv/Dy8kJubq6ocfVVbGws2rVrhydPnqgkfn5+PoYNG4ZDhw6JEm/p0qXYsWOHUjESExPRqVMnhIaGipJTaGgoevfuLbg2gTbRx3MQVeAtWlyyZMlitz7B0qVLMX/+fE2noVJXr15FSkpKofJq1aqpfP266tWro2TJkoXKo6KiEBISotJ9E0IIIUSzZF7MWBuFhIRgyJAhyMvLK1Berlw5dO3aFS1btoSzszMcHByQmJiIFy9ewM/PD76+vkhPTxeMeeHCBWzbtg0jRoxQOK9///0XU6ZMkfqcSpUqoV27dmjWrBlKlSoFBwcHZGZm4u3bt7hz5w5OnDiBhw8fCm4bFhaG3r174/Lly6ItKKWt72Vxkp+fDy8vr0I3PSwsLNC2bVt06tQJFSpUgLOzM3JzcxEbG4urV6/i0KFDeP78uWDMzMxMjB49Gv7+/grn9eLFC7Rt21bqTV4bGxu0bdsWbdq0gbu7OxwcHGBqaorY2FiEh4fDz88P58+fF7wZkZeXh+HDh6NChQpo3LixwnmKbcSIEbh37x633sjICB06dEDPnj3h6uoKZ2dnJCQkIDo6GufPn8fhw4cLNQROmTJF9MXwcnJy0L17d1y+fFlqrs2bN0ebNm1Qq1YtODg4wMbGBnFxcZ/yPXnyJOLi4gS3X79+PTw8PPDjjz8qlF/fvn2lfn9cXFwwcOBA9OzZE25ubihdujRSUlLw+vVr3L59G/v378f58+cL3Lg9cuQINm7cKHc+8tq0aRN27dpVqNzNzQ09evRA06ZNPx37MjIyEBERgWvXruHgwYPcmNr+mQFAUlIS2rVrJ/WC39zcHK1atULbtm1RpUoVODo6wsLCAu/fv0dUVBTOnDmD06dPC97IAIDp06fD3d0dffv2VShHVVi7di2WLFki9Tlubm7w8vJCnTp1ULZsWZiYmCA6OhpPnjzBvn37EBQUxN3Wx8cHkyZNwj///FNkLkINYQEBAWjbtm2h8tatW3MX9tZG1tbWqFu3Lho0aICaNWvCwcEBJUqUgJWVFZKTkxEfH4+HDx/i2rVruHDhAnJycgTjJCYmok+fPggMDBR9wd358+fjwIEDBcoMDAzQqFEjdOvWDdWqVYOTkxPMzMwQGxuLoKAgHD16FNevX+fGnDp1Krp27arwTbxhw4ZJ7Ujg4OCA/v37o2/fvnB3d0fp0qWRlZWFmJgYPHjwAAcOHMCpU6eQlZX1aZubN29i7ty5CuWjDvp6DiK26OhoPHjwQLCubt26as5GtcLDw/H7779z642NjdGiRQu0bt0alStXRpkyZWBpaQlDQ8NPi6q/evUKDx48wMOHD3H37l3uMUiTLl26JFhev359tey/fv36gh0JAgIC4OnpqZYcCCGEEKIBygxHEGsYs6L7+XLO53LlyrHt27cXOSXDixcvWNeuXbnDTZ2dnVlOTo5CuV6+fFnqXL1NmzZlp06dkinWyZMnmaenJzfW1KlT5c5Pl95LscmzyLAq9vPle2xkZMQmTpxY5PDhnJwc9vfff0udP9nX11ehXDMyMljdunW5cR0dHdlff/3FkpOTi4z18uVLNmzYMG4sNzc3rRn6vnXrVqlDznv06FHkfL5paWnsp59+KjR9Sbly5UQdrj1u3Dhunh+/Q5GRkUXGSUtLY3PnzuXO/WxkZKTQNB+zZ8+Wmt+sWbNYZmZmkXFu3rzJqlevXmB7Gxsbbmx58eJ8uQ9XV1eZpqpIT09nsbGxgnXa/pnl5+dLPW5bWlqyWbNmcV/f5+Li4tgPP/zAXfzZxsaGvXr1Su4cVeHOnTtSf59LlizJ9u/fX+Tv3qVLl4pc20BoYW5ZyLP4rjb4fOohOzs7NmLECHbq1Cm5fvejo6PZtGnTpC4g/vvvvyuUH+/9dHZ2LrS/Ll26sODg4CJjHj9+nJUuXZqb608//aRQrps3b+bGlEgkbPTo0TItnB0aGspatGhR6FhhYWEhGFuTUw/p6zmIKsydO5f72pcsWaLp9D4R4/szdOhQ7msdO3as3OsxJCUlsX379jEvL69P069qw9RDPXr0EHyNS5cuVcv+p0+fLrj/b7/9Vi37J4QQQohm6HRDweeP5s2bs/j4eJlj5uTkSF1M9siRI3LnmZaWxipUqCAYz8DAgP3+++8sLy9PrpgpKSnc+aMNDQ3lXqhNV95LVdB0Q8HnD2tra3bu3Dm54h48eJA7p3bv3r0VypV3EfDxe6DIDb6NGzdyb/j8/PPPCuUppsTERObo6Mh93cuWLZMr3tmzZ5mZmVmRn7kiDQUnT57kxitbtiy7cuWK3DFv3LjBff0NGzaUK1ZERAQzNTUVjGVsbCz3gtsZGRmsbdu2Rb6XgHgNBZ8/WrduzVJSUuSO/Tlt/8wYY2z9+vXcHD09PdmjR4/kjunr68tt0Ojfv7/c8cSWl5fH6tWrx33ddevWZW/fvpU5XlpaGvcmDvBhfn15fkc/0sWGAmdnZ7Z06VKWlpamVKzr168zZ2dn7m+mmO/nl4/FixfLFffJkyfcBVSdnJzk7iCRlJQkdUHWTZs2yRUvLy+PDRkyRKbXrsmGAn08B1GFpKQk7m+ERCIR/bpMGcp+f7KysridCNasWaN0fjExMWz27Nns6dOnSsdS1pcdjD4+/Pz81LL/nTt3Cu6/Vq1aatk/IYQQQjSjWDQUNG7cmKWnp8sdNyEhgXthpsiN119//ZWb4/r16+WO91FOTg5r1qyZYNw+ffrIFUtX3ktV0JaGAmNjY3bjxg2FYn///ffcmPIubPb48WPuKIWWLVvK1AucZ926dYJxzc3NNb7ItbTF73755ReFYh46dKjIhVHlbSjIysriNjw6OzsrdZy9d+8e9wb/0aNHZY4zZswY7uvdvXu3QrklJyezWrVqSX0vAfEbCpo2bar0jU5d+Mzev3/PvclStWpVhW7GfnT8+HEmkUgKxZVIJOz+/fsKxxXDrl27uJ+9u7u7XI0EH6Wnp3N/mwGwGTNmyB1T1xoK3rx5o/Tfzefu3r3LrKysBN8DRRbIlqWhYPny5Qrlunv3bm5MeTtI/Pnnn9xYCxcuVCi/nJwc1rFjxyJfv6YaCvT1HEQVpk6dyv18e/Xqpen0ClD2+8P7m27Tpo1qE1ezN2/ecD/Tly9fqiWH+/fvC+7fyMhIoWtFQgghhOgGnW8osLa2ZmFhYQrHXr58uWBcW1vbIqcf+Ny7d++4F7cTJkxQOL+PoqKiBG/uyNtTSBfeS1XRloYCZYaAv337lnth7ePjI1esQYMGCcZxdXVl79+/VzjHj3r37i0Yf968eUrHVlR6ejpzcHAQzKthw4ZKfU8nTJgg9XOXt6Hgn3/+EYxjaGiocEPT51auXCkYv23btjJtn5CQwO1B3rNnT6Vyu3HjhuAN588f8pIWy9TUlIWGhiqVM2Pa/5kxxtiMGTMEY9jY2LDw8HClc5wyZYpg/JEjRyodWxk1atQQzEsikbBbt24pHPf169fc334bGxuZpor5nK41FKjCkiVLBN+DJk2ayB2rqIaCrl27KpUrr1Fz8uTJMsfIy8tjZcuWFYxTt25duUeifi4yMpJ7nP740FRDgT6eg6jCzZs3uSMoDAwM2N27dzWdYgHKfn+2bdsmuP2GDRtUm7iaXbp0SfB1GhkZKXVMkEd8fDz3uKHIyENCCCGE6AYD6LipU6fC3d1d4e29vLxgYFD4bUhKSkJERITMcTZv3lxoYVMAcHR0xKJFixTO7yNXV1eMGzeuUDljDDt37lQ6PqA972VxVrFiRfz8888Kb+/k5IQOHToI1gUGBsocJzo6mrsY6+LFi+Hg4KBQfp9btGgRJBJJofLt27crHVtRvr6+3MVhV65cKZivrObNm4cSJUoovP2XVq1aJVg+atQoURZkHD9+vODCywEBAYiKiipy+8OHDyMjI6NQuZGREVasWKFUbo0bN8bXX3+tVAx5/Pjjj6hcubLScbT9M8vMzOQuED1z5kxUrFhR6Rxnz54NCwuLQuXe3t7che9V7datWwgODhasGzlyJBo2bKhw7NKlS2P27NmCdcnJyfD29lY4tr6aPHmy4GLAt2/fRlJSkmj7MTAwwJo1a5SKMXToUMFyeX6PL168iOjoaMG6lStXCp5XycrNzU2pcw5V0ddzELElJydjyJAhyMvLE6wfOXIk6tWrp+asVOvt27eC5eXLl1dvIirG+00vVaqUUscEeZQoUQLm5uaCdbKccxBCCCFEN+l0Q4GJiQnGjh2rVIzSpUujVq1agnXyXOht3bpVsHz69OmwsbFRKLcvTZ48WfCi58SJE0rH1qb3sjibNGmS0if4nTp1EiyX5z3esWOH4IVl9erV4eXlpXBun/P09ETHjh0LlT9//hxPnjwRZR/y4t20a926NZo1a6ZUbAcHB8HGPEVcv35d8D0yNDTE3LlzRdmHsbExJkyYUKicMYZTp04Vuf3Ro0cFy9u3by/KDWdlj0eykkgkGD16tNJxdOEzO3z4MBITEwuVOzg4YMqUKSJk+CHWsGHDCpWnpqbi0qVLouxDXgcOHBAsl0gk+P3335WOP2XKFG4j4b59+5SOr2/MzMwEfzvy8vJw+/Zt0fbTo0cPpY9VvN/jBw8egDEmUwzesbRq1apo1aqVwrl9NHr0aKUawVVBX89BxMQYw8iRIxEeHi5YX6ZMGSxdulTNWake77uckpKi5kxUi3cjvmzZsmrNg7e/yMhIteZBCCGEEPXR6YaCtm3bwtnZWek4NWvWFCyX9SToyZMnePr0aaFyiUQi2gUP8OGkv3r16oXK79y5IziaQR7a8l4Wd4MGDVI6hhjvMe/GhJeXl6g3FHijH/z9/UXbh6zy8/Nx4cIFwTqx/k4HDx4sShze59OmTRuULl1alH0Ain8++fn53Ju+vB628mrWrBkqVKggSixpWrRoIcp+tP0zA/g59u7dm9trUBHa9HcPAGfOnBEsb9GiBdzc3JSOb2pqigEDBgjWXblyBZmZmUrvQ980b95csJw3MkQRYhz3PT09YWRkVKg8OTkZ8fHxMsXg/V2IdSx1cXFB69atRYklFn08BxHbvHnz4OPjI1gnkUjw33//iTrKUVvwRpuI0WlKm7x69UqwXIxrNXmUKlVKsPzly5dqzYMQQggh6qPTDQW8C0l5eXh4CJYnJyfLtD3vJkT9+vVRrlw5hfMS0qJFi0JleXl5ePjwoVJxteW9LM4qVqwoyg1DZd/jxMREbq/MPn36KJyXEKHvK6CZESaPHj1CQkKCYF2/fv1E2UeNGjXg6empdBzeMUXsz6dOnTqwtLQsVF7U5xMWFsZ9L4V6cCpKzFg8LVu2FCWOtn9mjDGcPXtWsK44/90nJSVxby6L0XD7Ea+RMDMzE3fv3hVtP/qCdzNMzE4HYpz3mJiYcM/zZPlNzsjI4H4/xTz+8UY+aIK+noOIaf/+/fjjjz+49dOnT0fnzp3VmJH61KhRQ7B8x44dOH36tJqzUR3e8UNoaj9V4u2vuI3gIIQQQsj/6HRDQd26dUWJw5saSNYbr3fu3BEsr127tsI58fCGgCo7jFpb3sviTFve43v37iE/P79QuampKapWrapUbl9S1fdVEUFBQYLlbm5uKFmypGj7adCggVLbZ2VlcW8ciX1MMTQ0FOwtFh4ejtzcXO52jx49EiwvVaoUnJycRMtPFcfQL4kxf7MufGYRERHcHs5i5+js7CzYy1oTf/fBwcHcKWAaNWok2n4aNmzInVaOd+whfPb29oLlb968ESW+g4ODaB05lPlNfvLkieDvsYGBAfeGqCLUcSyVlb6eg4glICAAw4cP5x7X2rdvj4ULF6o5K/WpX78+7OzsCpXn5+ejR48emDlzJt69e6f+xETGW9NHzNF/suDtT1NrDhFCCCFE9XS6oUBosTtFWFtbC5bLeuOVdxNA7AsegD/klrcQnqy05b0szrTlPeZ9Xz08PGBoaKhwXkJU9X1VRGhoqGC52DdQlI335MkT5OTkCNap65iSn5+PmJgY7ja8uXN5a5QoSh03t6pVq6Z0DF34zHh/91ZWVoILJCtL6EZvTEyMzPO2i0VoWkDgw6LbvGncFGFpaYlKlSoJ1vGOPcVZdnY2/P39sXLlSowaNQpNmzZFlSpVUKZMGVhZWUEikUh9tGvXTjCuWL1Yxfo9BpT7TeYdSz08PETtOaxNDQX6eg4ihsDAQPTq1QtZWVmC9fXq1YOPj4/o76M2MTQ0xJgxYwTrcnJysGTJEri4uKBfv37YtWuXzjYaaHtDQVpamlrzIIQQQoj6FO7yp0PEmnuTd0IttNCaEN6F3rRp0zBt2jSF85JHXFycUttry3tZnKn6PRbqoSeE93199OiR2hY8VPb7qojXr18LllepUkXU/Sh7Y5j3+QAQdeRDUeLi4rg9bt++fStYzpvLVlHqmItXqGeivHThM+PlmJqaqra/+9zcXCQlJYnynsuK93dfvnx5mJmZibqv6tWrCzYK8HIoji5fvozt27fj0KFDggtnK0us9R7EnLtdmfOe4nQslZW+noMo6+nTp+jcuTO3AapKlSrw8/PjNlwVJz///DN27NjBbRzPzs6Gj48PfHx8IJFIUK1aNbRs2RLNmjUTbV0iVeONEFR3I5DQ6ECAnx8hhBBCdJ9ONxSYmppqOgVkZmZy5+pWp4yMDKW214b3srjTlvdYG25aKft9VcT79+8Fy8W+aWlra6vU9trw+QDSPyPejQreFByKUva9lIUYOevCZ6ZNOaqzoYDXm1QVOfBi6mqPVnlERkZiypQp3EVqxSJWpwNt+T1W17HU0NAQlpaWWtELWBuORZo4B1HGy5cv0aFDB8TGxgrWlytXDmfPnlVrw7QmOTo6wsfHB+3bty/yO80Yw6NHj/Do0SNs2LABAFChQgW0a9cOXbp0Qffu3bXmePA53ogisRpLZcX7W1H3WgmEEEIIUR+dnnpIG2jLYk7Z2dmaToHoCG34zmri+8obxi127ztlb/Bow+cDSP+MeNMeiH1zS+x4QoQWBpaXLnxmupCjKvBucqjiu8WLqWs3JeV14MABVKtWTeWNBMWRuo6lqoqpCG04FunSOXNsbCzat2+PFy9eCNY7Ozvj3Llzoq25oSuaNGmC69evw8PDQ+5tIyIi8N9//6F///4oVaoURo8ezZ2mTlN4N+LV/XvC258Y506EEEII0U7UUKAk3kWeuql73meiu7TlO6tuvDnkxe4VpezFk7Z8PoocU2Sd/kpWujJlmS58ZrqQoyqo6+8e4P/t69JNSXnt378fXl5exb4xRN3EPpYC2nM81ZZjkS5ISEhAhw4duDexS5QogTNnzqBy5cpqzkw71KxZE8HBwVi2bJnC644kJiZi06ZNqFatGkaNGqUVo8QB/u+JtjQU0IgCQgghpPjS6amHtIGBAbW1EN2ir99ZY2NjwXLeSANFKTu1gy58Pry53cVetFxXFkHXhc9MF3JUBXX93QP8v30TExPR96UNnj59im+//VZq44+BgQFq166NevXqoVKlSnBxcYGjoyOsra1hbm4OIyMjwXnpb9++jW+//VaV6WsFdR1LVRVTEfp6LJJXSkoKOnfujIcPHwrWW1lZ4eTJk6hVq5aaM9MupqammDp1KiZNmgRfX1/s3r0bFy5ckPv7npeXhy1btuD8+fPw8fFBvXr1VJSxbHjTSKm7IYO3PycnJ7XmQQghhBD1oYYCJUnrUfH7779jwIABaslDzIX5SPHG+87WqlULu3fvVnM26mNubi5YLvY0CMrejJF2TLl7967abjpKW+yPNxe7vjYU6MJnxsvR0dER/v7+qkqpkLJly6ptXwD/716dN2J5Oei6qVOnchtcSpcujZkzZ2LIkCEK9fTlzcVe3KjrWJqTk6P2uc159PUcRB4ZGRno3r07bt26JVhvZmYGX19fNGnSRM2ZaS8TExP0798f/fv3R15eHm7fvg1/f39cvnwZ165dQ1JSkkxxoqKi0KlTJ9y8eRMVK1ZUcdZ8bm5uguXR0dFqzYO3P15+hBBCCNF91FCgJBsbGxgbGwtOb2Bubo4aNWpoICtC+BwcHATLs7KyivX3ldc7KzExUdT9yHoxysP7fACgTJkyKFWqlFLxxcDL4eXLl6LuR+x4qqILnxkvx9TUVPq7FwkvZnFcYDQ0NBTHjx8XrGvRogUOHTqkVI9TbZn+Q9X08Viqr+cgssrOzkbfvn1x6dIlwXpjY2McPHgQbdu2VXNmusPQ0BBNmjRBkyZN8MsvvyA/Px/379/HpUuXcPz4cVy6dIk7LR0AvH//HkOHDsX169fVmHVB2tBQkJ2djffv3wvWUUMBIYQQUnzR+F8lGRgYcHtIxsfHqzkbQorm6uoqWF7cv69lypQRLA8NDRV1P0+ePFFqe97nA2jPZ8TrZcebIkFRDx48EDWequjCZ8bLMTMzUyXT8GgL3t99ZGSk6D2sHz9+LFcOuszb21uw3NnZGT4+PkpPS6EtfzeqxjuWRkVFidqYpU3HUn09B5FFXl4eBg8eDD8/P8F6Q0ND7NmzB926dVNzZrrNwMAA9erVw5QpU3Du3DnExsZi1apVUkcM3LhxAydOnFBjlgXxRgimpqaqbbTl69evuVPLlS9fXi05EEIIIUT9qKFABJ6enoLlz549U3MmhBSN9319//59se7FWaVKFcFybbu5zft8AO05plSvXl2wPCEhAVFRUaLt5/79+6LFUiVd+Mx0IUdV4C3ymZubi+DgYNH2k56ezl1wlHfs0WWXL18WLJ8wYYIoIyieP3+udAxdUKlSJe46GmLe3NemY6m+noMUJT8/HyNGjICPj49gvUQiwebNm9G/f381Z1b82NnZYfLkyXj8+DHGjx/Pfd6+ffvUmFVBlStX5q5hwvutERuvI42TkxNKly6tlhwIIYQQon7UUCCCRo0aCZZfvnxZ6iJ/hGgC7/vKGOPe/CkOatasKVgeGRmJd+/eibafO3fuKLW9k5MTd0j3xYsXlYotFjc3N+6UGceOHRNlH7m5uTh16pQosVRNFz6z2rVrc9dK0JYcVaFGjRqCi+UC4M7/rYg7d+4gPz9fsI537NFlvBtIPXv2FCV+cf4t+pyxsTHq168vWCfWsRQAfH19RYulLH09BynK+PHjsWvXLm79mjVrMGLECPUlpAdMTU2xbt06dOrUSbD+woULas7of4yMjLgLVQcFBaklB95+eMcsQgghhBQPSjUUGBoaCpZnZ2crE1bnfPXVV4LlcXFxCAwMVHM2hIe+rx+UL1+eO9z63Llzas5GfapXr85dOPLQoUOi7OPRo0cICQlROg7vmKJNn0+7du0Ey8VajPLMmTOiNuComrZ/ZqampmjRooVgnbbkqAq2trbcG/UHDhwQbT+8nqdmZmbF8qYKb7FhMeatTklJUbrBVZfwjqX79u3jNj7J4/Hjx1o1okBfz0GkmTZtGjZu3MitX7JkCSZMmKDGjPTLzz//LFj++vVrqWsZqBrvt0PTDQUNGjRQy/4JIYQQohlKNRTwhkRmZGQoE1bnNGvWjDvUftWqVWrOhvDQ9/V/+vTpI1i+fft2lSzyqQ0MDAyk3pARw549e0SJw/t8goKC4O/vL8o+lMXL8caNG7h586bS8VeuXKl0DHXS5c/s5MmTCAsLU3M26tOhQwfB8kuXLomyyGtOTg630aFly5bc3x5dxmtgNzc3Vzr25s2bkZWVpXQcXcH7u4yOjsbBgweVjq+Nx1J9PAfh+eOPP7Bs2TJu/W+//Ybp06erMSP9I+3Gd1xcnBozKahx48aC5WJPmcnD2w8vL0IIIYQUD0o1FNjb2wuWR0dHKxNW5xgaGmLkyJGCdXv27NGbuXa1HX1f/2fUqFGC5cnJyVi9erWas1GfAQMGCJZfvHgR165dUyp2fHw8NmzYoFSMjzp37sxdJH3+/Pmi7ENZ3bt35/5NTZ48Walp144cOYKzZ88qvL0m6MJnNmTIEMEbuXl5eVi0aJEGMlKPQYMGCZYzxrBw4UKl469Zs4Z7M8nLy0vp+NqI97f/+vVrpeJmZWUV698gIQ0aNODO2z9t2jSlOjPcu3cP//33n8Lbq4q+noN8aeXKlZgzZw63/scff8Qff/yhxoz0E29aPgCwtLRUYyYF8Rq5b968idzcXJXuOykpSXBEgYmJCdq0aaPSfRNCCCFEs5RqKHBxcREsF2PqDV0zYcIEwRPN3NxcDBo0CJmZmRrIinyOvq//4+npic6dOwvWLVy4UOmb5tqqZ8+e3BtcU6ZMUerm9u+//474+HiFt/+ckZERJk2aJFjn7+8vtfehupiZmWHs2LGCdbdu3VL45viLFy8wceJEZVLTCF34zOzt7TF8+HDBuq1bt4rSe1kbNWzYEDVq1BCs27Rpk1LTssTGxnJv5NnY2BTbhUd5oyjPnz+vVNzp06cjMjJSqRi66McffxQsV+Z4mJiYiBEjRogyfZHY9PUc5HNbtmzBTz/9xK0fM2YMli9frsaM9BdvcWArKytYW1urOZv/KVOmjODUeampqbh7965K933lyhXk5eUVKm/RooVGG08IIYQQonpKNRTwekCJuQCbrnB1deVezN25cwcjRoxQyTyX169fx4sXL0SPWxzxvq/BwcGIiIhQczaat3jxYhgYFD4EZGdno1+/ftwLJ2W8e/dOo9OwWFhYYNy4cYJ1t2/fxqxZsxSK6+Pjg3/++UeZ1AqZPHkyt3Fr5syZOHz4sKj7Az705j169KjMz//pp59QokQJwbo5c+bIPfVaTEwMOnbsqLOjfHThM5szZw73In/EiBG4fv26WKl9kpKSovGFqWfOnClYnp+fj8GDBys0vURWVhYGDhyIpKQkwfrx48fDxsZG7ri6oG7duoLlK1asULin6759+7BmzRpl0tJZw4cPh4eHh2Ddli1bMHXqVLkaspOTk9G9e3e1zWWuCH08B/nI29sbo0eP5n6mX3/9tejnFMXF9u3b8erVK1FjbtmyRbCc18CsTrwGtYsXL6p0vwEBAYLlvHwIIYQQUnwo1VDQrFkzwfKLFy9i27ZtyoTWSXPnzuUu0LZ//360atVKlPmQGWM4fvw4WrVqhWbNmlFDgYxcXV25U4NMmDBB79YqqF27Nrc325s3b9CwYUPRFvkNDw/H+PHj4ebmJtpit4r6+eef4eDgIFj3559/yt2D79y5cxg6dKjovTbNzc25Nwry8vLQr18//Pbbb6LsNzExEYsXL0b58uUxdepUmbdzcHCQOnXLlClT0KdPnyJv/DPGsGPHDtSoUQOhoaGfysuVKydzLtpAFz6zUqVKYcmSJYJ1aWlpaNOmDdatW6d0fsCHhp9ffvkF5cqVw99//y1KTEUNHjyYuzDkkydP0K1bN7lGBGVkZGDw4MHcmzVOTk7Fel7xTp06CZY/fvyYO7JGmvXr12Po0KFKjerSZSYmJlIbVpcvX47WrVsXOD7ynDhxAjVq1MDVq1c/lVlbW8PW1laUXMWir+cgfn5+GDp0qGBvbQDo168ftm3bBolEoubMdMPWrVtRsWJFjBgxQpSGsCNHjnB/8wYOHKh0fGX17t1bsPzChQsq3S8vfs+ePVW6X0IIIYRoAaaErKwsZmdnxwAIPtq0acOWL1/OTp8+zW7dusWCgoIEH2/fvpW6Hzc3N8H4ERERyqT/ydatWwXjDx8+XO5Y169fZ6amptz3xMrKiv3000/s5cuXcsXNzc1lFy5cYBMmTGClS5cuEPPy5csyx9Gl91IVxo0bx/1sypUrx2bMmMG8vb3ZtWvX2IMHDwS/r6GhoVL3MWfOHMH4c+bMEe118F6DvLKyslijRo248QCwjh07svPnz8sdOzw8nP3111+scePGTCKRfIo3atQouWOJbfPmzVJfc8+ePVl0dLTUGGlpaWzq1KnMwMCg0PdIKKabm5tCuf7www9Sc/X09GRbt25l2dnZcsWNj49nW7duZd27dy9wzHJ3d5c7x65du0rN0cjIiHXu3JmtW7eOnThxgt25c4ddvHiR7d27l/3444/MxcVFcLtjx46J9l0XK44sdOEz6927t9QcGzduzHx8fFheXp5ccV+/fs3WrVvH2rZtywwNDT/F++qrr+TOUWy3b99mxsbG3NdcqlQpdvjw4SLjXL16lVWpUkXq+7dnzx6FcvT39xeM17p1a4XiqUpCQgKztbXlvv7evXuz169fFxnn0aNHrHPnzoK/x2K8D+p4P1u3bi24D39/f7ljSTtHAcAkEglr2bIlW758OTt69Ci7desWu3LlCvP29mazZ89mlStXFtxuzZo1op3/DR8+XDDO1q1b5X69+nYOcv36dWZhYcF9rTVq1GB3797lXi8p80hISNDY6/6cst+fL//eatWqxRYsWMCePn0qVx7v379n06ZNK3QO9/FhaWnJYmJiFHiF4qtQoUKh/ExMTFhiYqJK9hcVFSX4njRo0EAl+yOEEEKIdjGCEkxMTPDdd99x514OCAjgDl383Jw5czB37lxlUtEaTZo0wc6dO+Hl5SXYazQ1NRXLly/HqlWrULduXbRu3Rp169aFg4MD7O3tYWRkhMTERCQmJuLdu3cICgpCYGAgHjx4gLS0NA28ouJl3Lhx2LBhg2CvxZcvX3J72n7Ozc2t2MyhbGJigmPHjqF58+YICwsTfM6ZM2dw5swZlCtXDq1atULz5s1RtmxZ2Nvbw9raGikpKZ++s8+ePcO9e/cQGBio1dPHjBo1CidOnOBOBePr64uTJ0+iY8eO6NGjB9zc3ODs7IyEhAS8evUKFy5cgI+PD1JTUwtsZ2RkhNWrV6NPnz6i5fr3338jKioKR44cEawPCQnByJEj8eOPP6JFixZo1aoVKlasCHt7e5QoUQKZmZmfPp+XL18iMDAQgYGBePr0qWijIPbs2YPmzZvj0aNHgvW5ubnw8/ODn5+fzDGnTp2K7t27C9YJTVehTXThM9u9eze++uor3LhxQ7D+5s2b6Nu3L5ycnNCqVSu0bNkS5cqVg729PWxtbZGenv4px4iIiE85Pn/+XJT8VKFBgwb4+++/MXnyZMH6N2/eoE+fPqhYsSK8vLxQu3ZtlC1bFsbGxnj9+jWePHmCffv24cGDB1L3M2bMGAwePFgVL0Fr2NnZYerUqfj9998F648cOYKTJ0+iV69eaNeuHapWrQpbW1ukpaUhNjYWjx49wvHjx3H79u1Cv8clS5bEsmXLuItQF2crV67EkydPuNPjMMZw+fJlXL58WeaY/fv3x4QJE7jn6oaGhgrlKgZ9Owfx8/NDeno6tz44OJg78klZW7duxYgRI1QSW5MePnyIhw8fYvbs2ShVqhQaNmyIBg0awN3dHfb29rC3t4eZmRnS0tLw7t07PHnyBJcvX8b58+elrh+3ZMkSlCpVSo2vhG/o0KFYsGBBgbLs7GwcO3YMX3/9tej78/HxESwfNmyY6PsihBBCiBZStqUhPj6elSlTRmpvoKIeRfW01sVe8AcPHpQ6skDMB40okE9RPfaKehTVM1yXRhR8FB0dzWrWrKmW76s2jChgjLGUlBRWp04dUV/bqlWrWEREhELfG2mys7OZl5eXWj4fRXqnM8ZYTEyMaN+hYcOGsby8PJabmytYb25uLnd+Yv/NFEUXPrPk5GTWtm1bteSoDSMKPpo+fbrKXmefPn1YTk6OwrnpyogCxj6MqhL7GGpqasouXrwo2vugayMKGPvwd9muXTtR3s/27duz9PR0xhjjjtwqalTvl8QcUfCRvpyD8M4P1fFQ5vMRk9gjClTx6N+/P8vPz1ftGyGH0NBQwTz79Omjkv21bNmy0L6MjIzkPlYQQgghRDcp3S2zRIkSOHHiBJydnZUNVaz069cPly5d4q5ZQDRn5cqV6NGjh6bT0CplypTBlStXMGTIEE2nojZWVlY4e/Ys6tWrJ0q86dOnc3sqK8vY2Bh79uzB4sWLYWxsrJJ9KKtUqVK4cuWKUj2pjYyMMGfOHGzfvh0GBgbcRWLNzc0V3oe66MJnZm1tDT8/P/z44496NR/2kiVL8Oeff4o+MuX777/H/v37YWSk1GBNnWFhYYFjx45x1/5RJJ63tzdatWolSjxdZW1tjVOnTmHKlClK/V2OHTsWJ06c+HS81ObjqT6egxDtNHLkSOzbt0+rfhMrV66MNm3aFCr38/NDYmKiqPt69epVgfVNPurVqxecnJxE3RchhBBCtJMoV8l16tTBw4cPMXr0aJiamooRslho1KgRHjx4gBkzZqjkfalTpw5WrlyJOnXqiB67ODMxMcGRI0ewceNGuLm5aTodrWFjY4Pdu3fj8OHDcHd3Fz2+g4MDJk6cyF28UBMcHR1x6dIlpYZum5mZYc2aNTJNW6UMiUSCGTNm4M6dO2jbtq3o8U1NTdG/f3+sX79e4Rg2NjbYs2cPTp48Kff0CV27dsWtW7cwd+7cTxfovAvgkiVLKpyjOunCZ2ZiYoLly5cjICAAdevWFTG7D6ysrDBixAipi15rwsyZM3Hu3DlRjnWOjo7YtWsX/v33X61tFFIVFxcX3Lx5E82bN1cqTtWqVXH58mVqxP9/JiYmWLFiBa5fv4527drJtW3z5s1x4cIF/PPPPzAxMQHwYTH1L6fKAz4cQ6ytrUXJWVn6eA5C5FezZk2VHGdLly6NXbt2YcuWLRqdjotnypQphcoyMjJEX5x7y5YtglMcCu2fEEIIIcWTaN3enJycsHHjRvz11184deoUrly5gkePHiEqKgpxcXFIT09Hbm6uWLvTGVZWVli8eDF++OEHbNiwAdu3b0dUVJRCsQwNDdGwYUN06NAB/fr1Q+3atUXOVn8YGBhg9OjR+O6773Dt2jWcO3cOgYGBCA8Px9u3b5GSkoLs7GzBtQyKu969e6N79+44ePAgNmzYgMuXLys8L7qrqys6dOiAbt26oVu3bp9uWmgTS0tL7Ny5E8OGDcOvv/6Ku3fvyrSdgYEB+vbtiwULFqBKlSoqzvJ/atWqhQsXLuDy5ctYt24djh07JnXOY2ns7OzQtm1bdO7cGf3794e9vb0oOXbp0gVdunTBnTt34Ovri6tXryI0NBRxcXHIycmBlZUVnJycUK1aNbRo0QK9e/eGh4dHoTgxMTGC8bVl3mBZ6cJn1qpVK9y9excnT57E+vXrcfbsWeTk5CgUy9nZGV999RW6dOmCPn36wNLSUpQcxda2bVs8evQIW7ZswapVqxAaGirX9mXKlMHYsWMxefJk2NraipJTyZIl0a9fv0Ll1atXFyW+KpQtWxYBAQFYv349/v77b7x48ULmbcuVK4fJkydj8uTJWvn7oGmNGzfG+fPnERISgsOHD+Py5csICQnBu3fvkJWVBQsLCzg6OsLT0xNNmjRBr169UKtWrUJx3rx5I3g+o43HUn07ByHyWbNmDRYuXIjTp0/jxIkTuHjxolLrhtWsWRPffPMNxowZozWNZkJ69OgBd3d3hIeHFyjfvHkzJkyYIMo+GGPYunVrofL69eujRYsWouyDEEIIIdpPwvTxTqiG3bt3DxcvXsSdO3cQFhaGly9fIjk5GZmZmTAxMYG1tTWsra3h5OSEqlWromrVqqhevTpatGgh2s0IQmT19u1bnDt3Djdv3vzU+Pf+/Xukp6eDMfbp+2pnZwd3d3d4enrC09MTjRo1QuXKlTWdvtxu3bqFo0eP4tq1a3j69Cni4+ORm5sLKysrlC5dGtWrV0erVq3Qq1cvuLq6ajpdpKen48KFC7h+/ToePHiAyMhIxMTEIC0tDbm5ubC0tIS1tTVsbGzg6uoKT09PVK1aFXXr1kX9+vW1sufcRytWrBDs/fndd99h06ZNGshIHLrwmSUmJuLcuXO4ceMGgoKCEBUVhbdv3yI9PR15eXmwsrKCjY0NbGxsUKFChU85NmjQADVr1tSqaRtkdffu3U+v+dmzZ4iOjkZaWhoYY7CwsICzszM8PDzQoEEDtGvXDq1atdL6hbXVLScnB2fOnMGFCxdw7do1xMTEIC4uDhkZGbC0tISDgwMqV66MunXromPHjmjZsqXgVE35+fnIzs4uVG5gYEA3exVw+PBh9O3bt1B5+/btcfbsWQ1kJDt9Owch8nvz5g2uXbuGhw8fIiwsDOHh4YiJiUFKSgpSUlIgkUg+/V45OTmhVq1aqFu3Lpo3b46aNWtqOn2ZrVmzRnCKy9u3b6NBgwZKxz9z5gw6depUqHznzp0qWTSZEEIIIdqJGgoIIYRopUGDBuHAgQOFypcvX44ff/xRAxkRQojumTFjBv76669C5ZMnT8aqVas0kBEhRF4ZGRlwd3cvNNry66+/xs6dO5WO361bN5w8ebJAmYeHB0JCQvRm7R1CCCGEiLRGASGEECKmpKQknDhxQrBO2fnQCSFEX+Tl5WH//v2CdXQsJUR3mJub49dffy1Uvm/fPrmmfBMSHBxcqJEAAObMmUONBIQQQoieoYYCQgghWmfLli1IS0srVG5ra4t69eppICNCCNE9vr6+gmtjGRgYoHXr1hrIiBCiqO+//x7lypUrUJabm4vly5crFVdoxFG1atUwZMgQpeISQgghRPdQQwEhhBCtEh0djUWLFgnW9e7dm3q3EUKIDFJTUzFjxgzBupYtW8LZ2VnNGRFClGFqaoo5c+YUKt+8eTPi4uIUivnixQvs3bu3UPm8efNoHR5CCCFED9GvPyGEEK2RlZWFIUOG4P3794L13377rZozIoQQ3ZOfn4/Ro0fj2bNngvV0LCVEN40cORJ169YtUJaWloY///xToXhz585Fbm5ugbJWrVqhf//+CudICCGEEN1FDQWEEEKUcvXqVUycOBGRkZFKxXnz5g3atGmDS5cuCdY3bdoUrVq1UmofhBCirSIjIzFs2DAEBwcrFSclJQW9e/cW7CUMAK6urhg8eLBS+yCEaIaBgQHWrFlTqHzdunV4+fKlXLEeP36MHTt2FCgzNDTE6tWrlcqREEIIIbqLGgoIIYQoJSMjA+vWrUOlSpUwYMAAHDx4EBkZGTJvn5SUhEWLFqFmzZq4ceOG4HMMDAywYsUKsVImhBCtk5ubi127dqFWrVro3LkzduzYgaSkJJm3z8zMxLp161CjRg0cO3aM+7xly5bB2NhYjJQJIRrQvHlzfP311wXKMjMzBaclkmbWrFnIy8srUDZ69GjUrl1b6RwJIYQQoptoomdCCCGiyM3NxcGDB3Hw4EFYWlqiSZMmqFu3LmrXro2SJUvCzs4OJiYmSEhIQHx8PEJCQnDp0iVcu3YN6enpUmNPmzYNjRs3VtMrIYQQzWGM4fTp0zh9+jRMTEzQqFEj1KtXD3Xq1EGpUqVgZ2cHc3NzJCYmIj4+HuHh4bh06RIuX75cZMPCoEGDMGDAADW9EkKIqvz1119wd3cvUGZkZIScnByZGgLT0tJQp06dQo0CkydPFjVPQgghhOgWCWOMaToJQgghuuvcuXPo0KGDyuL36tULhw4dgqGhocr2QQghmhYWFoZKlSqpLH6TJk1w7tw5WFpaqmwfhBBCCCGEEN1FUw8RQgjRWsOGDYO3tzc1EhBCiBI6duyIM2fOUCMBIYQQQgghhIsaCgghhGidkiVLYtu2bdixYwfNpU0IIQqytrbG0qVLcerUKVhbW2s6HUIIIYQQQogWo6mHCCGEKCUvLw8XL16Et7c3jhw5gjdv3igcq2LFihgzZgzGjBkDW1tbEbMkhBDtd/PmTXh7e8PHxwcREREKxyldujS+/fZbTJo0Cc7OziJmSAghhBBCCCmuqKGAEEKIqMLCwnDt2jXcv38fERERiIyMRGxsLNLS0pCeno78/HyYmZnB1tYWLi4uqFSpEurXr4927doVWlSPEEL01atXr3Dt2jXcvXsXz58/R2RkJGJiYj4dS3Nzc2FqagobGxuULVsWHh4eqFevHlq3bo3GjRtDIpFo+iUQQgghhBBCdAg1FBBCCCGEEEIIIYQQQggheozWKCCEEEIIIYQQQgghhBBC9Bg1FBBCCCGEEEIIIYQQQggheowaCgghhBBCCCGEEEIIIYQQPUYNBYQQQgghhBBCCCGEEEKIHqOGAkIIIYQQQgghhBBCCCFEj1FDASGEEEIIIYQQQgghhBCix6ihgBBCCCGEEEIIIYQQQgjRY9RQQAghhBBCCCGEEEIIIYToMWooIIQQQgghhBBCCCGEEEL0GDUUEEIIIYQQQgghhBBCCCF6TC8bCubOnQuJRFLoMXfuXE2npnO2bdsm+F6OGDFC06kRQgghhBBCCCGEEEIIkYGRphMAgKysLCQmJiI9PR2ZmZkwMTGBhYUFHB0dYWxsrOn0CCGE6KD8/Hy8f/8eycnJYIzB2toajo6OMDLSip++ApKTk5GQkICMjAxYWlrC3t4elpaWmk6LEKKHEhISkJSUhKysLFhZWcHBwQFmZmaaTovoiLy8PCQkJCA9PR3p6ekwNDSEubk5HBwcYG5urun09F5qaioSExORlpYGGxsblChRQqv/vnXpXI4Qop/S0tIQHx+PtLQ0mJubo0SJErCxsdF0WoQoTO2/sG/fvoW/vz+uXbuGu3fvIiIiAm/evAFjrNBzJRIJSpYsiSpVqqBmzZpo3rw5WrdujbJly6o7bUKInps7dy7mzZvHrT948CD69eunxozULyYmBnfu3EFQUBCys7MFn6PpkVlXrlzBkSNH4O/vj5CQEGRkZBSoNzExQeXKldGqVSv07NkTHTp0gIGB+gfXvXr1CgcPHsSpU6dw//59xMbGFnqOi4sL6tevj65du6J///6wt7dXW35nz57FkSNHcPnyZbx+/RqpqalwdnZGpUqV0L17dwwcOBBlypRRWz7FVU5ODkJDQ5WKIZFIYGlpCVtbW9jY2MDQ0FCk7LRbVFQUbt++jZCQEOTl5RWqt7Ozw5QpU9Sf2BdSUlJw9+5d3L17FykpKYLPGTFiBMqXL6/exD7z7NkzHDx4EKdPn8bDhw+RkJBQoF4ikaB8+fJo1KgRunfvjj59+qitITMvLw++vr7w9fXFzZs3ERMTg8zMTJQuXRrVqlVDz5491X58JP+Tnp6OgIAAXL9+HTdv3kRYWBhevnyJ3Nxcwefb2trC3d0dNWrUQOPGjdG6dWtUr15dzVmLLy8vDyEhIbh9+zZevHgheF1bp04d9O7dW205ZWdn4+bNm7h69SqCg4MRFBSE0NBQZGVlFXquubk53N3d0axZMzRr1gwdOnTQ6G+8Np/LJSYmwtvbG8ePH0dwcDDevHkDIyMjlClTBg0bNkTv3r3Ro0cP6uwogtjYWMHzY2kkEgmMjIxgamoKU1NTWFhYwNbWVkUZ6hZduI6TJj09HTVq1EBERAT3OcOHD8e2bdtUnktcXBwOHTqEkydP4u7du3j16lWh5zg7O6NOnTro0qUL+vfvr9Z7mNevX4ePjw8uXLiAV69eITExESVLlkSFChXQpUsXDBw4EB4eHmrLh+ggpgYZGRls06ZNrHXr1szAwIABUOrRoEEDtmTJEvbmzRuF8pkzZ45g3Dlz5oj7wvXA1q1bBd/L4cOHazo1QkSTn5/PKlSoIPW41L17d02nKar4+Hh25swZtnDhQta7d2/m4uIi0/FZU44cOcJq164t9++Ju7s727JlC8vPz1dLnpGRkWzIkCHMyMhIrjwtLCzY+PHj2fv371Wa361bt1iTJk2KzMfMzIzNnDmTpaamqjSf4i4iIkLpc6IvH46Ojuyrr75iU6dOZYcOHWKZmZmafplKe/v2LTt+/DibM2cO69q1KytZsmSR74Obm5va88zIyGA3btxga9asYd988w3z9PSU6bzX399f7bkyxtjDhw9Zt27dmEQikes7Zmdnx2bNmqXyv//Tp08zT0/PIvOxtbVlS5YsYTk5OSrNh/zPyZMn2YABA5iFhYXSxyw3Nzf2008/saCgIE2/LJmFhYWxvXv3sp9++om1bNmSWVpaFvk61XFt9OLFC7Z8+XLWuXNnmXLiPYyMjNjAgQPZlStXVJ7z57T5XC4/P5+tWrWKOTg4FJmPh4cHO3z4sMpy0Re8ezbyPkxMTJiLiwtr2LAhGzJkCJs/fz7z8fFhb9++1fRLVBldu46TxdSpUzV+nH337h0bP348Mzc3l+s7aGxszIYOHcqioqJUml9oaCjr0qVLkfkYGhqy0aNHs9jYWJXmQ3SXSo8GmZmZbPHixczJyUmUgzzvDy4kJESuvKihQDzUUED0gb+/v0wXVYo2XmpadnY2u3LlClu+fDkbPHgw8/DwUPi4rG4JCQmsd+/eSv+etGzZkkVHR6s013Xr1il9U8XBwUFlF587duxgJiYmcuVTr1499vr1a5Xkow9U0VDw5cPOzo6NHj2ahYaGavrlyiQtLY2dP3+eLV68mPXr14+5uroq9LrV0VDw8OFDtnnzZjZmzBhWr149ZmxsrFCu6m4oyMvLY7/99pvcDZZfPlxdXVV2I3Hx4sVyN2B07NiRJScnqyQf8oG3tzerUaOGyo5XrVq1YmfOnNH0yywgNjaWHTlyhM2aNYt17NiRlShRQqHXpqpro8TERLZ69WrWrFkzuf9mZHn07t2bvXv3TiW5f6Tt53Lp6emsX79+cufzyy+/qK0jSnEkVkOBtEeVKlXYxIkT2eXLl3X2s9Ll6zhZ3bt3jxkaGmrsOMsYYwcPHmT29vZKfd8sLS3Zhg0bVJLfmTNnmK2trVz5VKhQQe57qUQ/qOxocP78eVapUiWVH9wBMAMDAzZq1CiZT2KooUA81FBA9MHw4cNlOhYtW7ZM06kqJDAwULTjsTpFRESI+jtTunRpFhgYKHqe+fn5bMyYMaLlKZFI2J9//ilqjrt27VI4Hw8PDxYXFydqPvpCHQ0FHx8mJiZs9uzZLD09XdMvW6rDhw+L8nrV0VAg7wUZ76HOhoLMzEzWo0cPUb9XO3fuFDXHBQsWKJxP06ZNi8UoGm0THh7OOnTooLbjVevWrdnDhw81/bIZY4z98MMPorwmVV0bHTt2TOWfh7OzM/Pz81NJ/tp+LpeXl8c6deqkcD4//fSTaLnoG3U0FHz+cHV1ZUuXLmVJSUmafuly0dXrOFnl5uay+vXra/Q4u2DBAlEbYsePHy9qw1RAQIDCnT8cHR3Z8+fPRcuFFA+iT+aXn5+PP/74Ax06dMCzZ8/EDs/d53///Yd69eqpZX+EEP2RmpqKgwcPyvTc7du3qzgb8tGbN2/Qvn17UX9nYmJi0LFjR6XnjP/SxIkTsXHjRtHiMcbwyy+/YMWKFaLEu3//Pr7//vtC5V27dsXx48fx7t07ZGZmIiwsDKtWrULp0qULPC8sLAyDBg0SnJOZaI/s7GwsWLAAzZs3R0xMjKbTIRqQm5uLgQMH4tixY6LFzM7OxogRI2T+nSzKqVOn8Pvvvxcok0gkGDp0KC5cuID4+Hikp6fj0aNHWLBgAezs7Ao89/r16xg/frwouZAPfH19Ub9+fZw9e1Zt+7x48SLq1auHp0+fqm2fhO/t27fo3r079u/fL2pcXTiXmzVrFk6fPl2gzMLCAr/88gsCAwORmpqKpKQkXL16FaNHjy60TtDy5cuxc+dOUXIhqvXixQtMmzYNrq6u+Pvvv7lrrRD1WrVqFe7evaux/S9duhSzZ88W9Tpn/fr1oq2j9erVK/Tv37/Q97Vp06Y4cOAAYmJikJWVhRcvXuC///5D5cqVCzzv/fv36NmzZ6G1YIieE7PVIScnhw0cOFCmlqsSJUowLy8vtmbNGnbhwgUWERHBkpKSWG5uLsvIyGDv3r1j9+/fZ97e3mzGjBmscePGRc7zamtrK1OeNKJAPDSigBR3vO8473H37l1Npyw3XeuJkpuby1q0aCE1j4YNG7J///2XhYaGsvT0dJaRkcHCw8PZzp07Wbt27aRu6+npKdrc2xs2bJC6LwcHBzZz5kx29epVlpCQwHJycti7d+/Y+fPn2YQJE6ROVWRgYMDOnTundI5t27YtENfIyIht3ryZ+/ykpCT21VdfFcpn3759Sueib9Q5ouDzR40aNbS2xxyNKFCdmTNnSs2jXLlybOHChezOnTssKSmJZWdns5iYGHbixAn2zTffSO2tZm5uzoKDg5XKLycnp1DPYktLS3b8+HHuNtHR0YJzmt+4cUOpXMgHK1eulKkXpYmJCevUqRNbsGABO3nyJAsJCWEJCQksKyuLZWdns7i4OBYaGsqOHz/O/vzzT9apUyeZpuJTxSg/een6iAJLS0vWo0cP9ueff7IzZ86wsLAwlpKSwnJzc9n79+/Z48eP2datW9ngwYOLnD7NxMSEXbp0SZS8deFcLiwsrNBxz8PDgz179oy7zaVLlwpNT1WyZEmWkpKiVC76SN0jCr581KhRQyfWTtG16zh5REZGyrXeitjH2VOnTkn9DbS0tGQTJ05kFy5cYO/evWM5OTksPj6eXblyhc2YMaPIqYr+++8/pXMcOXJkobjz5s3jPj8rK4sNHTq00DaLFy9WOhdSfIh2NMjJyZFpbsHGjRuzQ4cOsaysLLn38erVK/bXX38xNzc3wdjUUEAIEVvr1q3lOsGaNGmSplOWmzwnmK6urszd3V2jJ5h//PEHd//m5uYynXQdO3ZM6snb6NGjlc4zNDSUmZmZcfcxaNAglpCQIDVGdHR0oRv5nz+cnZ2LjCHNlStXCsX8+++/i9wuLS2N1axZs8B2np6eCuehr6Q1FMh6TvLxoiQsLIz5+vqy3377jVWuXLnIv+Vhw4ap9sUpSNaGAolEwipVqsTKli0rWK9NDQX29vZSF+hUR0PBxYsXpV7s/vDDD0VOSxUSEsJq1arFjVGjRg2WnZ2tcI5CU6AdOnSoyO3evHnDypQpU2C7Ll26KJwH+WDp0qUynROsXr2axcfHyx0/JSWFbd++nTVt2pQbX5caCoyNjVm9evW4DSDqbCgwNjZm/fv3Z0eOHJHrmjsqKqrITn+urq6irAWiC+dy3333XYF4dnZ2LDw8vMjt/P39C82nvmTJEqVy0UfSGgoiIiKkbpubm8tSUlLY27dv2cOHD9np06fZqlWr2HfffSfTOdLHh6WlJTtw4IB6XrCCdO06Th5CC/M2a9aMu36VmMfZuLg4VrJkSe571bZt2yLXRElISGCDBg3ixrCwsGBhYWEK5xgVFVXoWCPLvYi8vDzWsWPHAtvZ29uzjIwMhXMhxYtoR4Px48dLPSiVKlWKeXt7i7KvnJwctmXLFla6dOkC+6CGAkKImJ4/f869sdKkSRPBckdHR6VulGgC7wTT2dmZdevWjc2dO5edOHGCxcbGMsakn7irWmRkJDM3Nxfct5mZGbtw4YLMsYKDg5mDg4NgLAMDA3bnzh2lcu3atSv3fRo7dqzMcbKzs6XOKT558mSFc5w6dWqBWDVr1pR5zkyhRgZaEEs+YjQU8Pj4+DAXFxep52ba2Oua11BQrlw51rdvX/bnn3+ys2fPfmog460ho6mGAmtra9aqVSs2depUtm/fvk8XgP7+/tzPQdUNBbm5uYUa9j5/yLPmSXJyMmvYsCE31vLlyxXO88vFQrt16ybztl82MhgbG9PCxko4cOCA1IYlU1NT9scffyjU8UvIhQsXWIMGDQrtR1sbCgwMDFi1atXY8OHD2dq1a9nNmzc/rY3B69CmjoYCOzs7Nnv2bPb69WulYq5YsULqb8fs2bOViq8L53L5+fnMycmpQLylS5fKvP2XjQyNGzdWKA99pkxDQVFevHjBlixZIlOjgYGBAdu1a5c4L0oFdOk6Th579uwplJ+RkRF7+PChWo6z48aN475P3bt3l+t6f+zYsdxYPXv2VDjHNWvWFIjl5OTE0tLSZNr2+fPnhUaRnTp1SuFcSPEiytHgv//+k3pwbdasGXvz5o0YuyogKSmJTZw48dN+qKGAECIm3rHC2dmZPXr0iHvM8/Hx0XTqcgkMDGR2dnasffv27JdffmGHDh1iL1684D5fkyeYQsMrPz42bNggdzxpQ0o7dOigcJ4XL17k5tmiRQuWm5srV7yUlBTuYn9GRkYsKipKoTzr1atXINbKlSvl2v7Lm4/r1q1TKA99pcqGAsY+XAhXqFCBu4+vv/5a+RchssOHDzMnJyfWtWtXNmfOHHb8+HH29u1b7vM12VBQqlQp1rhxYzZhwgS2bds29ujRI5aXlyf4XE02FGzfvp27by8vL7njRUdHc2/MlShRQuEpNr7sGXzkyBGZt83NzWV2dnYFtj9x4oRCeei7oKAgqdMClS5dmt28eVP0/ebl5bH169cXmGZCGxoKpkyZwtzd3ZmXlxdbtmwZu3jxotTvuCYaCqysrNicOXNYYmKiaHGlnevZ2toWOQJJGl04l3v48GGBOAYGBiwuLk7m7e/evVtoe2q8lI8qGwo+ysvLY3v27OH+3X58GBoaau1vii5dx8kqPj6+UEMdAPbzzz8zxlR/nA0PDy/UU//jo1KlSnKf5xQ11drVq1cVyrNv374F4kyZMkWu7b/siDZt2jSF8iDFj9JHg6ioKGZtbc390rdr107lQ1h8fX2Zvb09NRQQQkSTn5/PvcH2ww8/MMYYa9y4sWC9Mj0DNCEvL0/mXuSMae4EMzo6mpmYmAjut0WLFgrHHTJkCPf1KHqTolu3boLxjIyMFO51f+bMGW6eH7+T8vryJFzeHuajR48usP3MmTMVykNfqbqhgDHpjVZ2dnbcG9uaIm8jmiYbCuTJVZMNBTVq1OB+/u/evVMo5r///st9PStWrJA7Xnp6eqE48nYy+nIYvSI3HPVdTk5OoQbkzx9ly5Zlz58/V2kOjx8//tQIrQ0NBfIek9TdUBAVFcViYmJEj5uXlyd1yjRFp2PRlXO5kydPFohRtWpVubbPz88vNP3kkydP5M5Dn6mjoeCj5ORk7vnEx4eDgwN7+fKlqPsVg65cx8nj22+/LZSbq6vrp3VHVH2cnTBhAvc9Onv2rEIxHz9+zF3rqVevXgrFbNSoUYE48q4Xt2jRogLbK9J5hBRPBlDS+PHjkZKSIlhXrVo1HD16FGZmZsruRqoePXrg+vXrqFixokr3QwjRHxcvXkRERIRg3bBhwwAA33zzjWD9qVOn8O7dO5XlJjYDAwNIJBJNp1GkLVu2IDs7W7BuwYIFCsf9448/YGAg/HP4zz//yB3vxYsXOHnypGDd119/japVq8odEwA6dOiA1q1bC9Zt3boVmZmZcsdMSEgo8H97e3u5tndwcCjw//j4eLlzIKrVqlUrtGzZUrAuMTERT548UXNG0hkaGmo6BZnpQq5XrlxBcHCwYN2UKVPg6OioUNxRo0ahQoUKgnUbNmyQO96XxyKAjkeasHLlSty7d0+wzsLCAn5+ftzPXSyenp64du0aOnXqpNL9yErb/85dXV1RqlQp0eMaGBhg3rx53PqzZ88qFFdXzuWUPT+SSCQoUaJEgTI6Jmkva2trbNu2Tep3Pi4uDt99950as5KNrlzHyerixYvYunVrofLVq1fD0tJS5fvPyMjAjh07BOvatGmD9u3bKxTX09MTQ4cOFaw7duwYoqOj5Y5J13FEVZRqKLhy5QpOnDghWGdmZgZvb29YWVkpswuZVa5cGefPn1fLvgghxd+2bdsEyz09PVG/fn0AwKBBg2BsbFzoOTk5Odi1a5cq09NLu3fvFiyvVasW9wa6LNzd3dGlSxfBuoMHDyInJ0eueHv37gVjTLBu8uTJcuf3uYkTJwqWJycnc3+PpbGxsSnw/6SkJLm2T0xMLPB/W1tbuXMgqsf7fgPA8+fP1ZgJUTfecdPIyAjjxo1TOK6BgQHGjx8vWBcaGoq7d+/KFe/LYxFAxyN1S05Oxp9//smtX7t2LWrUqKGWXKysrHD8+HF4eHioZX9EWKdOnWBhYSFYFxgYqFBMXTmXU/b8SGgbOiZpv99//x1Tpkzh1p8+fRqnTp1SX0J6JisrC6NHjy50HdWzZ0/06tVLLTn4+vpyO0Kr6jouPz8f+/btkzseXccRVVGqoWDOnDncumnTpqFatWrKhJfbl632Yrpx4wZ+/fVXdOjQAeXKlYOlpSVMTU1RtmxZ1K1bFwMHDsTWrVvx5s0bleXwJcYYrly5gj/++APdu3eHp6cnSpQoARMTE5iamsLe3h41atRA79698eeff+L27dtqy01VoqKisGXLFnz//fdo2bIlXF1dYWNjAyMjI1hYWKBUqVLw9PRE7969MWvWLPj4+Ch0YierrKws+Pn54ddff0Xnzp1RpUqVAp+Bg4MDateujQEDBmDlypV4+vSpynL5KCMjA0ePHsVvv/326XtRpkwZWFlZwcjICNbW1nB2doaHhwfatm2LESNGYP78+Th9+nShHwt9lZaWhkOHDgnWff3115/+7eDggK5duwo+b/v27SrJTV+FhIRwez4PGTJE6fi8Hh7x8fHw9/eXK5aPj49gedWqVVG3bl25c/tc9+7dBW+oAeB+Z6VxdnYu8P9bt27Jtf2Xzy9TpozcORDVc3d359ap8jeSaBZjDIcPHxasa9++PZycnJSKP3jwYG4vRnmPR1ZWVoV6CspzPGKM4c6dOwXK6Hgkn1WrVnF7E7Zq1QojR45Uaz5GRkZq63BGhJmZmaFOnTqCdZGRkXLH06VzuS/Pj0JDQ5GcnCzz9sHBwUhPTy9QRsck3bBs2TI0bNiQWz979mw1ZqNfFixYUOh+iaWlJdasWaO2HHjXcba2ttzrflk1aNAAlStXFqyj6ziiVRSds+jJkydS52/7OH+YNpJnjYLDhw9LnZ/xy4eBgQH77rvvVLJ480cpKSls8eLFrFy5cjLn9fHh4eHB1qxZI9q6EVu3blX5PJxZWVls69atrGHDhnK/XuDDnOAtWrRgGzduVHiBvS+Fh4ezsWPHFlo4T5ZHkyZN5FqgT1YhISFs1KhRzMbGRqH3CQCTSCSsTp06bNGiRSw8PFz0HHXFtm3buO9PZGRkgecePHiQ+35qw9y6qqCJuS1XrVrF3eejR4+Ujp+YmMhdtOrjwlmySEhIYAYGBoJxxFogql+/foLxnZyc5JqjlDHGvv/++wIxGjZsKPO29+/fL7R44L179+R9OXpNHWsUMCZ9fQtF55nWFppco0Aemlij4MGDB9x9irXweP369QXjN2jQQO5YHTp0KBCjf//+Mm979OjRAtsaGBgovP6CPsrNzWUuLi7c78v169c1naLOUPcaBar25WKZHx8mJiZyx9KVcznGPlx/WllZFYixdu1ambf/8ccfC2xbq1YteV+O3lPnGgVfevDgAXeBbADs2rVrKt2/KmnrGgXBwcGC65f89ddfhZ6rquNsfn4+c3BwEIw9YMAApWJ/NHXqVMH4hoaGLCkpSa5YCxcuLBCjbNmyLDMzU6ZtY2JimIWFRYHtfXx8FHlJpBhSeETBf//9x60bN26cWuYPU6WkpCT069cPffr0wYMHD2TeLj8/H5s3b0alSpVUMizt4MGD8PDwwMyZM/Hy5Uu5tw8LC8OkSZPg6emp8NyS6nT48GFUqVIFI0eOVHhERG5uLq5cuYIxY8agTJkyuHbtmsL5pKamYsqUKahcuTI2bNigUA/8GzduoHfv3ujQoQOioqIUzuWjrKwszJ49G7Vr18Z///0nV2+XLzHGcP/+ffz666+fptfRR7xph1q2bAk3N7cCZd27d4ednZ1ccYj8AgICBMudnZ1FGb1ma2uLevXqCdbJ0wvt0qVLyM/PF6xr27atQrl9qV27doLlsbGxePTokVyxunfvXuD/t2/fxr///lvkdjk5ORg/fnyBocGurq7cnodEs6T9VvGOX0T38Y6bgOqPR/fu3ZP7fOTL49GhQ4fg5+dX5HZJSUmYOnVqgbLmzZsrvP6CPjp9+jRevXolWNeiRQs0adJEzRkRbWFqaipYzjhTLEqjK+dyAGBiYoIOHToUKJs3bx737+Rz9+7dw/r16wuUqWvaFCKOWrVqYcCAAdx6Wc6ViewYYxg9enSh9Utq1qyJH3/8UW15BAUFIS4uTrBO1edNeXl5uHTpklyxvjxvio6OlrrOxucmT55cYNSThYWFwusvkOJH4YYCaUNjvv32W0XDaoWXL1+iWbNm3GFHskhJSUHv3r25Q77llZeXhx9++AEDBgzA27dvlY4XGRmJTp06Yd68eQqd6Klaeno6hg8fjr59+yo0tJUnJSUFsbGxCm0bHByMunXrYtWqVcjLy1M6l3PnzqFBgwZy/yB8LiMjAz179sTChQu5C4MpSpHvRWRkJCQSieCjTZs2ouanKpGRkbh48aJg3cdFjD9namqKgQMHCj5/z549cs+JWlRuuv7+Koo337W0ocHy4sUKCgqS+XOUNi93o0aNFMrrS9JeM28RSp6P05N9btKkSdizZw93m4yMDHh5eRVqdJ09e3axWkytOAkPD+fWSZuWSJqAgADu8WjEiBEKZkrExDseWVtbK7yo+pd4x6P8/Hzcv39frlgjR44ssLAeYwxeXl64cOECd5u4uDh069YNYWFhBcp/++03ufat74rDdd3cuXO5xyTquKE43rS6isxlrSvnch9NmzatwP/fvXuHzp0748WLF9xtAgMD0b17d2RlZX0qs7GxUXpuc6J+0j6zEydOcDsG8ejzdVxR/vnnn0LXFRKJBBs2bICRkZHa8tC167hatWqhY8eOBcoWL16MZcuWcbfJy8vDxIkT4e3tXaB8ypQpsLa2lmv/pPhSqKEgNDSUu/hdgwYNUKFCBaWS0qT379+jY8eOePz4sdKxsrOzMWTIEDx79kypOPn5+fjmm2+wevVqpXP6HGMMc+fOlbpgjyYkJCSgbdu23NXmNeHKlSto1qxZoQtRZb1//x5dunTh3pguyoABA3DmzBlRc9J327dvF2wkMTMz4/YsEWpAAD5cUJw8eVLU/PRRQkIC96JMzB7svPUDsrOzZf5N4N0Yc3FxKXADTBm1atWCgYHwz7e8iwsaGBhg6dKlBW7wZ2dnY+jQoejduzf8/PwQHx+P7OxsREZGYsOGDahWrVqhhvQGDRqoff5qIjter2x7e3tUrFhRzdkQdeEdj2rXri1ao560dVfkPR5ZW1vjjz/+KFCWlJSEDh06YOTIkbh06RKSkpKQlZWFp0+fYunSpfD09MTVq1cLbPNx1CaRHe8YYWxsjD59+qg5G6It8vPzuSPr5b3e16VzuY+aNm1a6Nz/0aNHqFmzJubMmYOgoCBkZGQgNTUVt27dwg8//IAmTZogJiamwDZ//PEHjXDSQc2bN+cuqP7u3Tu554Mnwl6/fo1ffvmlUPmoUaPQrFkztebCO28yNDREjRo1RNlHyZIlUbZsWcE6RRaJX7x4MUxMTD79nzGGadOmoXXr1vDx8UFsbCxycnIQHR2NnTt3ol69eli3bl2BGOXLl8f06dPl3jcpvhRqnpM2dE+XT8zz8/Ph5eVVaJElCwsLtG3bFp06dUKFChXg7OyM3NxcxMbG4urVqzh06BC34SQzMxOjR4+We7jj56ZPny61dycAeHp6wsvLC9WqVUPZsmXBGMOrV68QFBSEPXv2cPMDgNWrV6NMmTKYMWOGwjmKJT09HR06dJDamgt8uLnRsWNHtG7dGqVLl4aTkxNMTEwQFxeHuLg4PHjwALdu3cKtW7eQlpamVE737t1Dly5dkJqayn1OyZIl0a5dO7Ru3Rqurq5wcHCAoaEh3r59iydPnuDkyZO4dOmS4EiE9PR09OnTB3fu3JHrhs3u3btx4sQJbr2trS3at2+PJk2awMPDA46OjrC0tEReXh6SkpKQlJSEsLAwPHz4EPfv35d7ypLiiDHGbaDq3r07t/dU8+bNUaFCBURERBSq27ZtGw03VhJv4TsAqFSpkmj74V0MAB8ayGvXrl1kDF6uYuZpamqKcuXKCU5dFhoaKne8bt26Yfbs2Zg/f36B8qNHj+Lo0aNFbl+6dGkcOXJErT1+iOyuXr3KbYzu27evmrMh6sIYK7Qg4EdiHo/Kly8PIyMj5ObmFqpT5Hg0fvx43LhxAzt37vxUlp+fj23btsnUK7x69epa1dFEFzx58gSvX78WrGvQoAFNT6bHbty4wV3gWlojoRBdOpf73H///YdHjx4VaGRITk7GH3/8UahhU8g333yDH374Qa59Eu3RpUsX7kK6V69epWnZRDBx4sRCUxWWLFkSS5YsUXsuvOOUq6srdxo2RXh4eCA6OrpQuSLnTXXr1sU///yDUaNGFSi/dOmSTDNXWFpa4ujRowqNEiPFl0JX9dJu4rZq1UrhZDTtv//+K3CibGRkhLFjx2LOnDncXgC9evXCokWLsHr1asyYMUPwQikgIADHjh1Djx495M7J19cXf//9N7e+QoUK2LRpE7766ivB+oEDB2L+/Pk4evQoxowZw522aNasWWjevDlatGghd45i+uabb6R+v8qXL4/Fixejf//+MDQ05D5v8ODBAD7chD927Bj27NmD48ePyz1E8P379+jduze3kcDV1RWzZs3C8OHDuT8e3bt3x88//4yQkBBMnTpVcO2KhIQEDB48GNevX+f2FP4cY0yw5R0AzM3NsXDhQowZMwYWFhZFxvro1atX8PX1hbe3t9R5jYuzS5cucRvVeKMGgA9DI4cNGyZ4wXDixAm8f/+eehIpQdr0Y4pOmyJEWkOdLFOgMca4veXEzBP4kKtQQ4GiU7XNmzcP+fn5WLhwoVzbValSBceOHeP2jCGa9fr1a+40QBKJBOPGjVNvQkRt3rx5g8zMTME6MY9HRkZGKFeunGBDuaLHo82bN8PIyAhbt26Va7umTZvi8OHDNHReTsX1uo4ob9OmTdw63rUnj66cy33J2toa586dQ69eveReL2/MmDFYu3at3Psk2qNdu3bchgJ5p4khhR09elRwqu6lS5fC3t5e7fnwjhGquI4T6sSj6PqV3377LbKzszFp0iTB+5E8Hzt71apVS6H9kuJLoamHpM05qstfss8bCaytreHn54c1a9YUeYPPyMgIP/30E/bt28e9ybtlyxa580lNTcWECRO49Z07d8bDhw9lOlHr1asXgoODuXOr5eXlYcyYMaLOpy6vbdu2SZ0jdcKECXjy5AkGDRoktZHgcxYWFhg0aBCOHj2Kx48f4+uvv5ar1+uECRO4i0b36tULDx48wOjRo2VqYfb09MTJkycxe/Zswfpbt27hn3/+kSmvmzdvCuZlZmaGixcv4scff5SrkQD4MDXK+PHj4e/vjwcPHmD48OFybV8c8HorOjg4oEuXLlK3/frrrwXLc3JysHv3bmVT02vS5oItXbq0aPspVaoUdzoOWS4uY2NjuTfmxMxTWjxFb8xJJBIsWLAAR44ckdob7yNjY2OMGzcON27cELUnIBHPsWPH0LRpU+6UeWPHjuUu+kh0n7qOm9LiKXo8MjExwZYtW7Bp0yaZcrWwsMCsWbPg7+8PZ2dnhfapz4rrdR1RTmRkJPbu3StYZ2VlVWgRzaLoyrmckNKlS+PixYuYNm0azMzMiny+i4sLduzYofb51Yn4pE2LxZuWi8gmJSUFEydOLFTeunVrjd2H4B2n1HXelJ6ervB6mmPHjsWFCxdkOreXSCTw8vLC7du3RVt7gRQvCjUU8C46bWxsUKZMGaUS0gbGxsY4e/as3D0l+vXrV2jIz0cfexXLY9WqVXj16pVgXePGjXHo0CFYWVnJHM/R0REnTpxA5cqVBesfP36M//77T64cxZKcnIyff/6ZWz9nzhysXbtWqSFfVapUwc6dO2U+sT179iwOHDggWDdo0CAcPnxYoeHY8+fPL7Q41keLFi0qsPgVD28u2ZkzZ4qyIFitWrWwatUqpePokrS0NBw8eFCwbtCgQTA2Npa6faVKlbjDT7dv3650fvrs3bt33DoxbwqZmJigRIkScucgy3PEvnlVqlQpwfKMjAylplvr1asXQkJCcODAAXzzzTeoUqUKbG1tYWJiAhcXF7Rq1QqLFi3CkydPsH79epqSQgvk5eUhMTEREREROHHiBObOnQtPT0/07NmTe8HTrl07qaMVie7ThuORLMdNab777juEhYVh69at6N+/Pzw8PGBtbQ0zMzO4urqiQ4cOWLFiBcLDw7FgwQJRpwXQJ9LW3xJr0Wuie37++WfuNcmoUaPk7pCkK+dyPObm5vjrr78QFhaGZcuWoX379ihXrhzMzMxgbW0NDw8PDBo0CDt37sSzZ8+kjkQmusPNzY17v0Va4xcp2i+//FLoXpeJiYnMHSfFlpqayu3wpa7zJkC541TLli1x584dnDx5EmPGjEH16tVhb28PY2NjlC5dGk2aNMFvv/2GBw8eYO/evTQinHDJ3cSdnp6OxMREwToXFxdl89EKCxYsQOPGjRXeduvWrYWG/OTk5ODy5csyLwiWmZmJlStXCtZZWFjA29tb7hM04ENjwYEDB1CvXj3BaXj++usvjB49Wqbpb8S0YsUKxMXFCdYNHjwYc+fOVWs+APDbb78JltevXx/bt29XaiHARYsWISAgoNAQ1tevX2P//v345ptvpG7PG5bm5eWlcE767uDBg9wppmQ92R82bBhu3LhRqDwwMBBBQUGoWbOmUjnqK96xwdDQEJaWlqLuy9bWVnA+Xt4cvZ/j5fkxrpikxYuPj1fqfTEyMsKAAQO4i3cT9Zg3bx7mzZsnetwxY8Zg+fLlMDc3Fz020R7acDziXS/Iw8LCAiNGjOBOoUWUJzRP8kflypVTYyZEWxw6dIg7ytvCwoLb4UkaXTmXK0rZsmUxdepUTJ06VelYRPtJJBK4uLgIzl2fkpKC5ORk2NjYaCAz3Xbjxg3BBoGff/4Znp6eGshIO86bAOWPUxKJBF26dClyNgRCpJH7bnBMTAy3TlrLmK6oWLGi1J7tRXFycuIu6CzPKua+vr7cEQgzZ85U6sS9du3aGD16tGBdRESEUgsvKyInJwcbNmwQrCtdurRG5na8ceMGbt68KVi3evVqpXutGRkZcRfAkqX3OW+tifLlyyuTll7jTTvk4eEh80JV0kYeyDvXMvmfpKQkwXJVzEPNiynLDS9entLiKkpaPDFuzpHixdbWFsOGDcOtW7ewYcMGhToaEN2iDcej3NxcpKSkiLovIj7etZ2RkRGtr6SHXrx4wb1OBD70AlakF6qunMsR8iVp087wrskJX05ODr7//vtCnVYrVqzInaJZHbThvAmg4xTRDnI3FPB63AIoFlMQTJo0Sene9J06dRIsl6ehgDfljZWVlSg9GObMmcOd53/fvn1Kx5eHn58f3rx5I1g3a9YsjSxkw7up27VrVzRr1kyUfXTu3BlVqlQpVH7p0qUiL6x5oxk0fUFevnx5MMYEH9q8QHJkZKTggkIAf+0BIQ4ODujatatg3e7du+VaXEiIrr6/yuINfZdlnlh58WLKMiWYtOeInau0eLLkSvRHnTp1sHHjRqxbt06Uqek+atOmDfd4xGt4JepDxyMiK961nY2NjVKjZ9Vt7ty53GMSjUiRTXZ2NgYNGsTt0VqrVi1Mnz5dodi6ci5HyJek9f5OT0+XOY6+Xsd96a+//kJwcHCh8rVr12p0tCudNxHyP3LfEc/IyODWFYe5QQcNGqR0DN70IrIuoJSfn4/z588L1vXp00eUnoClSpXirsFw7tw5pePL49ixY4LllpaWGpnfkTEGX19fwbrBgweLui+h0Se5ubm4cuWK1O0cHBwEy0+cOCFKXvpmx44dYIwJ1snTUADwpymKjY3FqVOn5M6NfLhwFaKKBeJ4I0J4Ocj6HLFzlbZmhiy5Ev1x//59eHl5oWzZspg5c6bS88YT3UDHIyIr3rVdcbiuI/IZM2aM4BSawIfvw44dO2BiYqJQbF05lyPkS9Ju6vLmtCfCnj17hgULFhQq79+/v8anyqHzJkL+R+6GAmlf3KIW+9R2FStWFGVFcw8PD8Hy5ORkmbYPDg7mDjkSoyHjI95N78jISKnzlYqN1yjSv39/jcz5FxQUJDjCwdDQED179hR1Xy1atBAsL2r0SY0aNQTLf/31V+76BUQYYww7duwQrGvWrBnc3d3lite9e3fuImrUy1YxeXl5guW8UVHK4MWUZTQIL09pcRUlLZ6yI1dI8ZSSkoIlS5bA09OT20BPig86HhFZ8a7tdP26jsjnr7/+knqeunLlStSuXVvh+LpyLkfIl+imrnjGjBlTqHHF2toaq1at0lBG/0PnTYT8j9xNY9J6l+j6gbJu3bqixOHd3Ja1oSAoKIhb16hRI4VyEiJt3vWgoCC1rIKemJiI58+fC9bxbqKr2p07dwTLy5cvL3rDBe89Flow6XPt27cXLH/9+jUaNmyIBQsW4JtvvlHJcN7i5vLlywgPDxesk3c0AfDhGDlw4EBs3LixUN3x48cRFxfHHRFChPF6cajiRIoXU5YbJtJ6m4idq7R4dHOneBg3bhzGjx8v03OzsrKQlJSE9+/f48GDB7h58yYCAgIEL3ri4uLQs2dPLF26VKk1mYh2o+MRkZWpqalgr1hdv64jstuzZw9mzpzJrR8xYgTGjh2r1D505VyOkC+pc0qa4mzr1q2Ca2HOnz8fZcqU0UBGBdF5EyH/I3dDgbR5w3R9Pi2xFuziLU4ia0PB06dPBcvLli2LkiVLKpzXlypXrgwLCwvBufVCQ0PRuXNn0fbF8/jxY26dmI0i8uA11FStWlX0ffFuGBc1oqNevXpo0qSJ4PDgd+/eYcyYMfj111/Rv39/9OrVC61bt6bFKzl4vadMTEwUHsEzbNgwwYaC7Oxs7NmzB5MmTVIorr7inTCp8+JSlqH20k7s1HmCqei0AES7ODk5cUePSTNw4EAAwKtXr7BixQqsXLmy0IJxADBt2jSUKFECo0aNUjpXon3oeERkZW5uLthQoOvXdUQ2fn5+GDFiBHcKzi5duuDff/9Vej+6ci5HyJekTS+kyTn1dUlsbKxg55R69eph4sSJGsioMDpvIuR/5J56SNoK3byFj3QFb7oQefGGEgldqAt5/fq1YLmnp6fCOQkxMDDg3vzm5SC2ly9fCpYbGBigevXqasnhS7ype06cOAGJRCLqo1q1aoL7iouLKzLPJUuWSB22FhcXh40bN6Jr166ws7ND8+bNMXPmTPj6+ur836pY0tPTcfDgQcG6Ll26KLyQdvPmzVGxYkXBuu3btysUU5/xeutIWzNHUbxFyWTpMSTtOWLnKm3xNOrdRADAxcUFf//9Ny5dusQdDTdp0iSEhYWpOTOiDnQ8IrLiXdslJSVJnYqB6L5r166hX79+yMnJEaxv3rw5Dh48KEoPV105lyPkS9Kuyy0tLdWYie6aMmVKofsPBgYG2LBhg0qmH1MEnTcR8j9yNxRIGxYkNK+7LtGWRbt4Cw3a2dmJvi9eTHUtdvj27VvBchsbG439aKirkUQaWX6MWrVqhRUrVsgULycnB9euXcOSJUvQq1cvlCxZEvXq1cO0adNw+fJlbi+i4u7gwYNISUkRrFN2IW3etEV3795FcHCwUrH1Da8RNzU1VfR98b4PsjQkS3sOL66ipMUTq9GbFA8fb/RIJJJCdRkZGZgwYYIGsiKqpg3HI2NjY7qJogN413b5+fm0+Hkx9uDBA3Tr1o17w6p27do4ceKEaCOSdeVcjpAvxcTEcOu0Ycocbefn54e9e/cWKh87diwaNmyogYyEacN5U1F5EKIucjcUmJqacqfoefnypd7ecBQT7yaxKhb25cVURe8OIbyTU1U0ishK7B8CRcg6L+ykSZNw4MABqSN9hOTn5yMwMBDLli1Dq1atULFiRcydOxcJCQmKpKuzeNMO2dnZoXv37krFlra+AS1qLB/eyI78/HyZp3STFW8heVlGl0h7Di+uoqTFU3QkDCm+OnTogL59+wrWnTlzBo8ePVJzRkTVtOF4RMci3eDi4sKt442yJbrt6dOn6NixI/dvt0qVKjhz5gxsbW1F26eunMsR8rnc3Fy8evVKsM7R0VFrOppqq/T0dIwbN65QealSpbBo0SINZMSnDedNReVBiLrI3VAAfJjbXkh6ejoiIyOVyYcA3OGfqphjntfTS10LmPH2Y2VlpZb9C9GGOVnlaXAbMGAAnj17hnHjxil8shIZGYl58+ahQoUKWLx4sczTZOmyqKgoBAQECNa1bNkSz549Q3BwsMKPrKws7tReu3fvVsmcrMWVk5MTt07MkWyZmZlISkqSOwdZniP2iDtePGtraxqySgT99NNP3LrNmzerMROiDtpwPJLluEk0j3ddB0hfS4zopqioKHz11VeIjY0VrHdzc8PZs2dF//vVlXM5Qj739OlT7v2KChUqqDkb3TNnzhzB+4PLly8XtSFSDBYWFtx7Y+o6bwLoOEW0g9yLGQNA3bp1ce3aNcG6+/fv00FTSbx5IKXNZaaotLQ0wXJ1LaLCu7GtimGosjIwUKj9TKOcnZ2xfv16LFiwAHv27MGBAwdw48YNbqMTT1JSEn755RecOXMGBw4cEG2Bb220fft2boPMsWPHcOzYMZXt+82bN/Dz81N61IK+KF++PLfu9evXUm9yyEPatGPScvjI0dERlpaWgsdVsac048WTJU+inxo1agQrKyvB31deoynRXUUdN8VExyPdVrduXW7d/fv31ZcIUbmYmBh89dVX3B7SpUqVwrlz51CuXDnR960r53KEfO7u3bvcOmnHTvLB2bNnC5XVrFkTNWvWVGoqXt49jsTERG7cEiVKoGzZslLjli9fXnCUrbrOm2xsbGhEAdEKCjUU1K9fn1sXEBCAPn36KJwQAczNzQXLxR6WKS0mLwex8UZJiD28Sx68nLp06YK//vpLLTko2lBjb2+PiRMnYuLEiUhLS8OlS5dw8eJFXL58GXfu3JF5pIi/vz969uwJf3//YjmkkjGGHTt2aDSH7du3U0OBjKQ1PoeHh6NNmzai7Cc8PFyhHL58ntAJqrTYiuDFo4Z6wmNkZIRatWoJdvQICgpCenq6SkYuEs1wdHTkNgyJeTzKyspCdHS0YB0dj3RDUdd1pHh4//492rdvz/37d3BwwLlz5+Dh4aGS/evSuRwhH507d45bV69ePTVmUnwEBQWhZs2aKol99OhRHD16VLBu+PDhRU7/W6FCBcGGAnVdx1FjJtEWCjUUdOjQgVt3+vRphZMhH5QsWVKwXBU3z3kxeTmIjTe0Kjk5GXl5eRpZ0NjBwUGwPD8/HzVq1FBzNoqztLREly5d0KVLFwAf1p24ceMG/P39cezYsSJ7iV2/fh1z5szB4sWL1ZCtel2+fFn0H3x5HTt2DPHx8dRrQAZVqlSBRCIRHAESGhoq2n6ePn3KrfP09JQphqenp2BDgZh5pqamchdWkzVPop94v295eXl48+YNKlasqOaMiCp5enri9u3bhcrFPB6FhYVxpyuk45FuqFChAtzd3QXPi4KCgvD69WtasFPHJSUloWPHjtyppGxsbODn54fq1aurLAddOpcjBPiwPsGpU6e49WI1bhHt4enpiePHjxcqj46ORmpqqmjTY/OOU3SMItpCoTlWXFxcuDdMQ0ND8eDBA6WS0ne8k/GQkBBR95Ofn889MVPXBYGrq6tgeX5+vsbmReXlFB8fr+ZMxGVubo62bdvijz/+QGBgIMLDwzF9+nSpi2SvWbOGO4epLtOGxYSzsrKwd+9eTaehE6ysrFCpUiXBusDAQNH2c+/ePcFyS0tLmYfE84Yhv3v3jtvrVl6BgYHcabNoGDSRRtrxXtd/40hhvONBcHAw8vLyRNkH77gpbf9E+3zsVPIlxhi8vb3VnA0RU1paGrp27co9X7KwsMCJEyfQoEEDleahS+dyhADAyZMn8e7dO8E6Dw8PVKlSRc0ZEVXjnbcwxkS7x/ny5Uu8f/9erv0Tom4KT8Y+aNAgbt3GjRsVDUvAX1QsOjqae1BRxLNnz7hrFKjrh69atWqQSCSCdTdv3lRLDl/iteSGh4fLtciwtqtYsSKWLFmCJ0+eoHnz5oLPSU9PV+lc/ZqQnp6OgwcPajoNANrRYKEreBewd+7cEW3xbd4xp27dujKvXSLtQlusY5q0OKq+0Ce6jbfAI/Ch8ZIUL7zjQUZGhmgXvLzjkYmJCWrVqiXKPojqSbuu27RpU7E6/9UnmZmZ6NmzJ3dtQVNTUxw5cgQtWrRQSz66ci5HCAD8/fff3Lq+ffuqMROiLnQdR8gHCv9ajhw5kjstzLZt24plL2R1kXZhdevWLdH2I+0gpap5475ka2sLd3d3wborV66oJYcvNWrUSLA8Pj4eQUFBas5G9UqXLo3jx4/D2dlZsP7ChQtqzki1Dh06hJSUFG4dY0z0x8qVKwX3d+fOHY2NnNE17dq1EyxPTEyUutCYrN6+fSs4JyUAfPXVVzLHad68OXddj/PnzyuUm6xx3NzcuMdTQgBI7Wwg1nBqoj14x01A9cejpk2bqm29K6K8Fi1aoGrVqoJ1jx49EpyKgWi3nJwcDBgwgHseb2RkhP3790udUlhsunIuR8jp06dx6dIlwToDAwOMGTNGzRkRdahUqRJ3MXdVnzeZmZlxO28Som4KNxSULVuWu2hxRkYGfv31V4WT0nfVq1dHiRIlBOsOHDgg2n727dsnWF6+fPkiV4QXU/v27QXLDx48qJIFnIvSpEkTWFpaCtZJW9BIl9nZ2eG7774TrIuKilJzNqrF68Vva2uLbt26qWSfXl5eUhtWSdGkXcgeOXJE6fjSYshzEW1hYYFmzZoJ1vn6+irdKzM5ORn+/v6Cdeq82Ce6Jzs7W2ovchcXFzVmQ9TB3d2du3inGMfN0NBQPHnyRLCOjke6Z+LEidy6GTNmICcnR43ZEGXk5+fj66+/5jbwGBgYYMeOHejVq5da89KVczmi31JTUzF27FhufdeuXWlNJxndv39fJZ3w3NzcBPc3fPhw7jayXnPz7k1duHCB29lQVvn5+dzZGlq0aAEzMzOl4hMiFqXG382dO5c7hG/r1q1q74ksbfEiXWJgYMDtceHj44OMjAyl9xEbG4uzZ88K1qn7RKpHjx6C5Wlpadi5c6dacwE+tOZ27txZsG7dunWizeurbXhD3cSc7krTXrx4wb3J2q9fP25PcGU5Oztz/6Z37dpVbL9TYnJ1deWO9tm7d6/SQ9Z37dolWO7i4oKmTZvKFWvAgAGC5a9evUJAQIC8qRXg7e3NnSJm4MCBSsUmxdvVq1e55w/Ozs7chY6JbuMdj65fv47nz58rFZt33AToeKSLvv/+e+46XSEhIVi4cKFa80lISChW56DqwhjD999/z+1cJpFI8O+//2Lw4MFqzky3zuWIfsrLy8PgwYMRGRkpWG9oaIhFixapNymiVrzzpszMTKWnL/b39+euWUfnTUSbKNVQUL16dYwYMUKwLj8/H0OGDMGrV6+U2YXMzp07V6x6CvDmCk1JScGqVauUjr9gwQLk5uYK1nl5eSkdXx6dOnXiLp68aNEiJCQkqDUfABg1apRg+fPnz7F79241Z6MeJiYmguW80RW6aPv27dwe3UOHDlXpvnnxY2JicPr0aZXuu7jgvYcRERFK9US7e/cud6qzwYMHyz2n7cCBA2FsbCxYt2LFCrnz+4gxhtWrVwvWlSpVSuo0I4RIm2u3devWasyEqBPvuCltWjxZZGRk4N9//xWsa9iwIXfRUqK9TExMsGDBAm79/Pnz1Xa+EhUVhebNm6vtOrI4+emnn7BlyxZu/cqVK7nXOeqgK+dyRP9kZ2dj2LBhUqda+/7779U2RTPRjA4dOsDJyUmwbuXKlUqNDuedd5mYmKB///4KxyVEbEr/Yi5btgylS5cWrHv79i3at2+Pt2/fKrsbLsYYlixZgi5dukhdpE/X9OjRA46OjoJ1CxcuRExMjMKxHz16hH/++UewrmLFimjTpo3CsRVhaGiI8ePHC9a9fv1a6lBoVencuTOqVasmWDdlyhSEhYWpOSPV443I4TXi6KLt27cLlpcpU0bl3/u+fftyhxPy8iIFDR8+HNbW1oJ1s2fP5jZ+FmXmzJmC5YaGhhg3bpzc8RwcHLgNrseOHcPVq1fljgkAe/bswcOHDwXrxo0bx53eihBfX1+cOHGCW8/rPUV0X61atdCyZUvBun///VfhUQXLly/nrkemifM2Io5hw4ZxR9Xm5+ejX79+Kl9D7OTJk2jQoAFCQkJUup/iaM6cOVIbABctWoTJkyerLyEBunIuR/RLeHg42rZti71793Kf4+npiWXLlqkxK6IJRkZG3DUoHj58iD179igU98qVK9xGqKFDh3KnHidEE5RuKChRogS2bNnCbaUPDQ1Fo0aNcP/+fWV3VcjTp0/Rvn17zJw5U+GTCm1lZmaGKVOmCNalpqZi0KBByMzMlDtufHw8Bg4cyH2/pk+frpEeF5MnT0bJkiUF6/bs2YN58+apNR+JRILFixcL1iUkJKBnz5548+aN6PuNioqSusj0RytXrkRaWppo+83Ly+PerK5Ro4bMcSIjIyGRSAQf6m6A+tLly5cRHh4uWOfl5aXy7721tTV3mq2jR48iMTGxyBja/P6qg62tLUaPHi1YFxISgrlz58odc/Pmzdy1RwYMGMCd37so06ZNg0QiEawbNWqU3H+/MTEx3N8ES0tLTJgwQd4UiZ7w9/fHkCFDuPVubm4KzVMdEBDAPR7xRpsSzZg+fbpgeVZWFkaOHCn39HdBQUHcnuflypXTyJQmRDybNm3i9qZMS0tDhw4dFL5RIk1SUhImTJiA7t27KzTl0Ny5c7nHJH1YD2r58uX4448/uPW//vorfvnlFzVmJEyXzuVI8ZeQkIDffvsNtWrVwrVr17jPs7Ozg7e3t1Ij7fX9Ok6XTJw4ERYWFoJ1P/74o9yddtPS0rgjuQwMDDBt2jS5cyRElUS5M9a5c2csWbKEW//ixQs0btwYc+fOFWV+/Tdv3mDatGmoWbOm2tdBUKcffviBu7jg5cuXMWjQIKSnp8scLyEhAT169MDjx48F66tVq4Zvv/1WoVyVZW1tjeXLl3Pr586di0mTJnHn5pbFs2fPMGLECKnDCT/Xo0cP7hCwkJAQ1KtXD5cuXVI4n8/dv38fQ4cOhYeHB3ftiM/9+OOPcHV1xe+//y7KiJ0ZM2ZwG/OKy3x50i4Spd1EExNvP1lZWVJ7sJD/+fXXX7lzqS9atEiumwFnzpzh9nw1NTVVaj7mmjVrYvjw4YJ1oaGh6N+/v8zHs4SEBHTr1o1740Tae0L014sXLzBlyhS0b99easPUn3/+yZ0qixQP3bt3R9u2bQXrLl26hNGjR8s8N/iLFy/Qo0cPbmeVxYsX0/dJx7m4uMDHx4c7JWVmZiaGDh0KLy8vvH79Wun9ZWRkYO3atahSpQrWr1+v1LQO+uq///7D1KlTufU//PCD2teYkEZXzuVI8ZSeng4/Pz8MHz4c5cqVw4IFC6TeU7GxscHp06dRvXp1NWZJNMnJyYnbyeLdu3fo1q2bzNNjZ2VloX///tzZG0aNGgVPT0+FcyVEFYzECvTzzz/jzZs33Dlws7OzMW/ePPzzzz+YOHEivv76a7la9/Py8hAQEICdO3di//79CvWm1zVWVlZYu3YtevfuLVjv6+uLOnXqYPPmzWjVqpXUWMePH8eYMWO4J/SGhobYuHGjRi/uvv76a/j6+sLb21uwfu3atThx4gQWL16Mfv36yTTNRmZmJk6cOIHdu3fD19cXeXl53PdTyMaNG3H37l1EREQUqouJiUHbtm3Rr18/TJ8+nbsYME9wcDAOHTqEgwcPIjg4WK5tgQ+jQ+bPn49FixahTZs2GDhwIPr27cudskrIkydPMH36dBw7dkywvn79+qhbt67cuWmb9PR07veqSpUqqF+/vlry6Nq1K0qUKCF4YrFt2zaNDo1OS0sT/J4L4U03AUDm77KlpaVCPbzs7e2xZMkSfPfdd4XqGGP49ttv8ejRI8ydO5fb6ycnJwcrVqzA7NmzkZOTI/icX3/9FRUrVpQ7v88tXrwYx48fF7zB7+fnhxYtWmD79u3cac6ADwvQjhgxgjvdWdWqVaXeHCC6KzY2Vua/p6ysLCQnJ+P9+/e4f/8+bty4gYCAgCJv/np5eWll7+/ExESZ5ybnjcbKycmR+f0rUaIEypYtK2t6Bci6D2nH14iICJl/u+UZ5fe5NWvWoH79+oINlFu2bEF0dDT+/fdf7mK2wIep07777jvub0C7du3U1vBOVKt58+bYu3cvvLy8uL+T+/fvx5EjRzBixAh8++233EVqeYKDg7Fr1y5s27ZNpdPUiiE6Olrmm0K89ysxMVHm44WLiwvs7Oxkeu6RI0e402QAH/4uR40apdC1RlEqVKigUA9rXTqXI9rp6dOnSE1N5dbn5eUhKysL6enpePv2LV6/fo3Q0FAEBQXh7t27MnfWqVixInx8fFC7dm2xUlcJXbmO0yXTp0/H7t278ezZs0J1gYGBaNSoEbZv345mzZpxYzx69AgjRozAnTt3BOudnJyoMZNoJdEaCoAP6xWYm5tLXQgrNjYWv//+O37//XfUqFEDzZs3R40aNVChQgXY29vDwsICubm5SE1NRXR0NJ49e4Y7d+7g8uXLxWoNAln16tULP/30E7e3/bNnz9C6dWvUqFEDgwYNgqenJ8qWLQvGGKKjoxEUFIS9e/cKHuA+t2DBArRo0UIVL0Eu27ZtQ3h4OO7duydYHxERgUGDBsHBwQGdOnVC69atUapUKTg5OcHY2BgJCQmIi4tDUFAQbt++jevXryMlJUXhfOzt7eHn54fmzZsL3uzLz8+Ht7c3vL29UalSJbRq1QpNmzaFs7Pzp+9zcnIyEhMTkZCQgJCQEAQGBiIwMBDv3r1TOK/P5eXl4fz58zh//jzGjh2LSpUqoUGDBqhfvz5cXFxQokQJ2NvbQyKRIC0tDa9evcLjx49x9uxZ3Lp1i9tzy8jICJs3bxYlR007dOgQ93ug6kWMP/dxoaJNmzYVqrt16xaePHmCqlWrqi2fz92+fZvb41Qesi7w1bp1awQEBCi0j1GjRuHMmTM4cOBAoTrGGJYtW4YdO3ZgyJAhaNWqFcqVKweJRIKYmBhcu3YNu3fvxosXL7jxW7VqhVmzZimU2+ecnZ2xbds29OjRQ/Dv7M6dO6hVqxa6d++O7t27w9PTE1ZWVkhMTMTDhw9x5MgRqaPmzMzMsH//fpiamiqdK9E+//zzD3c9ITG0a9cOW7duVVl8ZRw5cgQjR45UKsbr169lPh4NHz5c4alJxFjUUJ7RnIr2tq5evTpWrFjBXRPq9OnTqFKlCvr164dOnTqhUqVKMDMzQ1xcHAIDA3HgwAHcvn2bG9/R0RE7d+5UKDeinfr27QsfHx8MHDiQOyI8KysLGzduxMaNG+Hi4oKWLVuibt26qFixIpydnWFpaQmJRILU1FS8e/cOz549Q1BQEAICAnRqoeJZs2YpvZ7U0aNHcfToUZmeu3XrVpmncDty5IjU6cMuXLiAWrVqyRRLXv7+/gpPmaIr53JEO3Xq1Enl+/Dy8sL69et1Yu54XbqO0xXm5ubYv38/mjZtKtiwFBYWhubNm6Ndu3bo06cPatWqBVtbW6SkpCAkJATHjx/HiRMnuMdniUSCHTt2cKffJkSjmArs27ePWVlZMQBqfbRr106m/ObMmSO4/Zw5c0R7D3g5KiIvL48NHjxYZe/bpEmTFH6dW7duFYw5fPhwhWPGxcWxevXqqez1Hj58WO6cHj9+zFxcXNTyPZ4/f36R+agjj1WrVsn9PkVERHDjtW7dWu54YmnXrh03r7CwMLXm4u/vz81lxowZUrdV5fsrLS9VPJTNNzU1lTVr1kz0vKpWrcpiY2OVyu1Ly5cvFz1PIyMjhY5lRLtI+5tW1UMikbDRo0ezzMxMpXKXdsxQ5hyAMf65haoeyuSr7s9PWT/88IPoOVlZWbHr168rnRvRTvfv32ceHh5q/66XK1eOvXr1SuY8edd3ANjWrVuVeg+GDx+u1tcuT77qzu3zh7+/v1Lvqy6dyxH1k/Y3rcpH3bp12fnz50V/PXQdJx43NzfBvJQ9/xTi7e3NDA0NRX8PV69eLXquhIhFJat3Dho0CIGBgWpp6QU+DM/cunUrdxEjXWdgYICdO3dy519UlEQiwZw5c7Bq1SpR4yrL3t4eFy9exIABAzSdyieenp64ffs22rdvr+lUVM7AwACbNm3C5MmTNZ2KKF68eAF/f3/BusaNG8Pd3V2t+bRq1Yq79sjOnTvlXlRSX1laWuLkyZNo166daDHr1q2L8+fPi96z48cff8SKFStkmi5NFhYWFti3b59c06gRAgDu7u44f/48Nm7cSCNR9NSKFStEna7MwcEBJ0+eRJMmTUSLSbRL7dq1cffuXUyaNEm03zFpLCws8OuvvyIkJEThKcGIbtClczlSvBkZGaFbt244c+YM7t27J+p3kui2/v37Y8+ePTA3NxclnqGhIVavXo1JkyaJEo8QVVBJQwEAeHh4wM/PD0ePHkXjxo1Vso/KlStj7dq1CAsLw4gRIyCRSFSyH21gaGiINWvWwNvbG87OzkrHc3Nzg5+fH+bOnauV75uVlRUOHDiAHTt2wMnJSbS4JUuWVPiio1SpUjhz5gw2b94symfwpbJly2LmzJn45ptvinyuqtYNaNCgAa5fvy44Z6iu2r59O3eqBk3MpWxgYAAvLy/ButevX8u0mDX5wNbWFqdPn8bMmTNhZKT4THoSiQTff/89rly5gjJlyoiY4f9MmTIFp06dkjr/tyxq1qyJq1evol+/fiJlRoo7Q0NDdO3aFT4+PggJCRFlaDrRXRKJBMuWLcPu3buVXgS9ZcuWuHPnDlq2bClSdkRb2djYYPXq1bh37x769+8PAwPxLyEdHBwwY8YMREREYOHChQrNfU90jy6dy5HixcnJCf369cOmTZvw5s0bHD9+HB06dNB0WkQLDRw4EFeuXFF4naiPypcvj9OnT1MjAdF6oq5RIKRnz57o2bMnrl27hl27dsHHx0epBaucnJzQq1cveHl5oW3btlp5k1uV+vfvj06dOmHdunVYv349Xr58Kdf2Hh4emDRpEkaPHg0zMzMVZSmeYcOGoW/fvti8eTM2bNiAJ0+eyB3DxMQErVq1wvDhwzFgwAClelFKJBKMGjUKQ4YMwc6dO/Hvv//i7t27CserUqUK2rdvj549e6J9+/YyX3jdu3cPr169wvHjx3Hq1ClcvXoVcXFxCuVgYGCAdu3aYeTIkfDy8lLJxZ8mlS1bFnPmzBGs09QinmPHjqULYJEYGRnhzz//xLBhwzB//nwcPHgQubm5Mm0rkUjQtWtXzJ49Wy29YTt06ICQkBCsWLECa9euxZs3b2Te1t3dHT/99BNGjx6t1IU0KZ4MDQ1hY2MDW1tb2Nraoly5cqhfvz4aNGiAxo0bU89KUsiQIUPQqVMnLFmyBJs2beIuCi2kdu3amD59Oi1crIdq1aoFb29vPH/+HNu3b4e3tzdCQkIUjmdhYYGOHTti4MCB6NOnj05cmxDx6dK5HNF+BgYGMDU1hampKSwsLODk5ARnZ2eULl0alSpVQtWqVVGzZk1UqlRJ06kSBU2ZMkXwvKVOnToq22e9evUQGBiIjRs3Yvny5Xj+/LnM25YuXRoTJ07ElClTYGFhobIcCRGLhPG62qpIfn4+goKCcP36ddy7dw/Pnz9HVFQU4uPjkZ6ejqysLJiYmHw6qLu4uKBKlSqoVasWmjdvjurVq+td4wAPYwxXrlzBhQsXcPv2bYSFheHNmzdIS0sD8GE4Z5kyZVCpUiU0btwY7du3R6NGjTSctXIePHiACxcu4ObNm3j27BlevnyJlJQUZGdnw9LSEtbW1nBwcECVKlXg6emJRo0aoW3btiq9KRsVFYVz587h9u3bCAkJwYsXLxAXF4eMjAwYGBjA2toa1tbWKFGiBCpVqgRPT094enqiWbNmKFeunGh5PHnyBDdu3EBISAjCwsLw/PlzvHv3DqmpqUhNTYWJicmnG0kuLi6oU6cO6tati3bt2lHPG1JsvH37FidOnIC/vz8ePXqEly9fIjk5GYwxWFtbo2zZsqhWrRpatmyJ7t27w83NTSN5ZmdnIyAgAH5+fggMDMSzZ8+QmJiIzMxMWFhYwN7eHlWqVEH9+vXRtWtXNGvWrNg14hFCtEN6ejrOnDmDM2fO4OHDh3j+/DmSkpKQlZUFKysrODo6omrVqmjcuDG6deuGevXqaTplokUiIyNx7do13Lp1C2FhYYiMjMS7d++QlpaGjIwMGBoawtzcHA4ODihbtizc3d1Rs2ZNNG7cGI0aNYKJiYmmXwLRMrpyLkcI0U/5+fm4evUqTp06hbt37yI0NPTT/UwzM7NP933q1KmDzp07o23btjA2NtZ02oTITO0NBYQQQgghhBBCCCGEEEII0R7UPZEQQgghhBBCCCGEEEII0WPUUEAIIYQQQgghhBBCCCGE6DFqKCCEEEIIIYQQQgghhBBC9Bg1FBBCCCGEEEIIIYQQQggheowaCgghhBBCCCGEEEIIIYQQPUYNBYQQQgghhBBCCCGEEEKIHqOGAkIIIYQQQgghhBBCCCFEj1FDASGEEEIIIYQQQgghhBCix6ihgBBCCCGEEEIIIYQQQgjRY9RQQAghhBBCCCGEEEIIIYToMWooIIQQQgghhBBCCCGEEEL0GDUUEEIIIYQQQgghhBBCCCF6jBoKCCGEEEIIIYQQQgghhBA9Rg0FhBBCCCGEEEIIIYQQQogeo4YCQgghhBBCCCGEEEIIIUSPUUMBIYQQQgghhBBCCCGEEKLHqKGAEEIIIYQQQgghhBBCCNFj1FBACCGEEEIIIYQQQgghhOgxaigghBBCCCGEEEIIIYQQQvQYNRQQQgghhBBCCCGEEEIIIXqMGgoIIYQQQgghhBBCCCGEED1GDQWEEEIIIYQQQgghhBBCiB6jhgJCCCGEEEIIIYQQQgghRI9RQwEhhBBCCCGEEEIIIYQQoseooYAQQgghhBBCCCGEEEII0WPUUEAIIYQQQgghhBBCCCGE6DFqKCCEEEIIIYQQQgghhBBC9Bg1FBBCCCGEEEIIIYQQQggheowaCgghhBBCCCGEEEIIIYQQPUYNBYQQQgghhBBCCCGEEEKIHqOGAkIIIYQQQgghhBBCCCFEj1FDASGEEEIIIYQQQgghhBCix6ihgBBCCCGEEEIIIYQQQgjRY9RQQAghhBBCCCGEEEIIIYToMWooIIQQQgghhBBCCCGEEEL0GDUUEEIIIYQQQgghhBBCCCF6jBoKCCGEEEIIIYQQQgghhBA9Rg0FhBBCCCGEkP9j70+j5Dyv+9D3bXQDjaEb8zwRM0CAJAiCJAAOAimCk0lJlMQlStFwbEm5kW0ly75x7kquk5M49rrJPSeOnGQlliPFsiI5OtFgkTJpkRInAJwBkgBHkJgJgiBAEPM8dN8Pvjkr0d4vUM0mpn5+v4//tZ+up6reeuut2l1rAwAABdMoAAAAAACAgmkUAAAAAABAwTQKAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBNAoAAAAAAKBgGgUAAAAAAFAwjQIAAAAAACiYRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIJpFAAAAAAAQME0CgAAAAAAoGAaBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABdMoAAAAAACAgmkUAAAAAABAwTQKAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBNAoAAAAAAKBgGgUAAAAAAFAwjQIAAAAAACiYRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIJpFAAAAAAAQME0CgAAAAAAoGAaBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABdMoAAAAAACAgmkUAAAAAABAwTQKAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBNAoAAAAAAKBgGgUAAAAAAFAwjQIAAAAAACiYRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIJpFAAAAAAAQME0CgAAAAAAoGAaBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABdMoAAAAAACAgmkUAAAAAABAwTQKAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBNAoAAAAAAKBgGgUAAAAAAFAwjQIAAAAAACiYRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIJpFAAAAAAAQME0CgAAAAAAoGAaBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABdMoAAAAAACAgmkUAAAAAABAwTQKAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBNAoAAAAAAKBgGgUAAAAAAFAwjQIAAAAAACiYRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIJpFAAAAAAAQME0CgAAAAAAoGAaBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABdMoAAAAAACAgmkUAAAAAABAwTQKAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBNAoAAAAAAKBgGgUAAAAAAFAwjQIAAAAAACiYRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIJpFAAAAAAAQME0CgAAAAAAoGAaBQAAAAAAUDCNAgAAAAAAKFjLud4AF44DBw6EbNOmTSFbt25duv7NN98M2f79+9PaXr3Ovx5WU1NTt/9GZ2fnh7ATAIALS1euo1wvnXt11+JZ3qdPn7R24MCBIRs8eHDIhg8fnq4fMGBAyI4dO5bW9uvXL2QzZsxIa4cMGZLmF7rsdfNhfH4BAMpx/n0bCwAAAAAAnDUaBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFMwwYxp2/PjxkL333nshe+edd9L1WW3dQLJseFk2PO1sDrszzBgA4IMxzPj8lT032XV/VVXV+++/H7IjR46ktRdddFFDt5X9zbo91B1Ho0ePDtn48ePT2kaHGdd9TunKY5Dtt3fv3iHLhjHX5X379m34tjJ1z212fzs6Ohq+rebm5pC1tORfN2S1dQO0M9k5ou75qru/mex+Zfch239d3pVz38mTJ0N29OjRhmvrbit7bLt7v3qquvcfg8HPPQPb4ezwiwIAAAAAACiYRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAUzzJiGHThwIGSvvfZayF588cV0/fbt20NWN4xr4sSJIWttbQ1ZNsTpTPkwBusZtgMAcGpdueY6X6+tunvdeK7vV3bdX1VV9dxzz4Vs/fr1ae3ixYtDlg2cff7559P169atC9nAgQPT2gULFoRs9uzZae24cePS/Fft3bs3zZcuXRqyzZs3p7XZwNhhw4aFbPLkyen6bCB03ZDmusHBv2rfvn1pvm3btpDVDQjObmvAgAEha29vT9dnz2Pd58JMNmQ5+6xZVVW1a9eukNW9Pvv06ROy7D7U3a8sb/R5qaqqOnz4cMi2bt2a1h48eDBkdQOhs6HY2XNQd7+y5/Zcn6M+DNlx0BOGGfeE99CeqKc+L6XdrwvpPnxQflEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBNAoAAAAAAKBgGgUAAAAAAFCwlnO9AS4cx44dC9nOnTtDtn///nR9v379QjZu3Li0ds6cOSEbMGBAyI4fP56uPxO6Ms29TgkT0gEAuqMr11wX0rXV2bxfffr0aXgP69evD9nmzZvT9SdPngxZdo1fVfnnhJdffrmhrKqqavv27SGre1wGDx4csl27dqW1jco++1RVVW3dujVk69atS2t79+4dskOHDoWsvb09XT9ixIiQdfczSbb/qqqqZcuWhWzfvn1pbfacjx07NmRTpkxJ10+aNClkffv2TWsz2WfAV199Na3Njq+Ojo60NjuOLrroooayqqqq1tbWkLW0NP6Vy+7du0P29NNPp7XvvPNOyOpe99lxlD03dferf//+IevKOWrNmjUhe+2119Lao0ePhqzu2Bg+fHjIRo0aFbIxY8ak67PXXd39yl63L774Ysi2bNmSrs/+bltbW1qb3YfRo0eHbOTIken6uuMgk50Psvu1d+/edH12zA8ZMiStze5Ddl+z57Wq8sew7ny4adOmkL399tshy97Tqiq/X4MGDUprs/ubZV05x2XHW1VV1dq1a0OWnTd69cr/Jzw7dw8dOjStze5D9hg0Nzen6zPZ+3pVVdWGDRtCduTIkZBl76lVlb+Wu3K/stdi3bkge/9477330to9e/aELDtm6+5X9h1ollVV/tx25f3nf+YXBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACmaYMQ3LhnacOHEiZHXDuCZOnBiyuXPnprWLFi0KWTY4JRt2BAAAPU3d0MZs4F7d9Xh27f79738/ZI8++mi6Pht2Om/evLQ2G5L8/PPPh6wrQ4frHoNsYGDd382GV2bDGOuGQWbDAeuGh2YDCrOsbuBg3R66Y+PGjWl+//33h+zdd99Na7NhkJdccknIsuOtbn02cLdONmg6O7aqKr9fdQNMs6G3V111VcjqnpdsWGs2CLhONgD84YcfTmuz4c11Qy6nTp0asmxYat1ex40bl+aN+tnPfhayP/qjP0pr9+/fH7K64bjXXHNNyG6++eaQ3Xbbben6mTNnpnkmO5/88R//cch++tOfNvw364Z9Z/dhyZIlIbvpppvS9V0ZZvzCCy+E7Hd+53dClg2brap8gOrll1+e1t5yyy0NZXXDjDN1g8kfeeSRkP3kJz8JWd3Q4Ox8VPfd1fz58xvKujLMuG447ve+972QrVixImR1x8CECRNClp3jqqqqrrjiipBlj0FXhhmvXr06zb/1rW+FbNu2bSHLBs5XVVXNmjUrZHX3K3tupk2bltZmsve1bAB4XZ69/9Tdr8mTJzeUVVV+fWaYMQAAAAAA0GUaBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACvbBRiBTpM7OzpBlE7979cr7T9kk72yafFVV1ciRIxvaU2tra0N1AABQut27d4ds586dIdu7d2+6vl+/fiFrb29Pa9va2kLWt2/f023xlAYOHNhwvnXr1rR2zZo1IZs5c2bI6u7XnDlzQjZkyJC0tqUlftweNGhQyMaMGZOuz2rrPms1qu5z1hVXXBGy7Hipqvy5nTRpUsjq7lf//v1PscPTyx7XyZMnp7ULFiwI2cmTJ9PaYcOGhWzKlCkN1VVVVfXu3TvNG5Udc5dccknDtXWvr7Fjx4ZswoQJIat7fTU1NaV5o7Lbv/LKK9PaPXv2hKzu8c5et6NHjw5Zd887VVVVffr0Cdn06dNDVne/stft+PHj09rsWB46dGjIstdBV2Xf0Vx++eUh68q5d8aMGWltdn/rzrPdlX1PlJ23mpub0/UDBgwIWd1xlL3uu3uerlufnTuzx7DuXJTdr7rv1LLjq7vngq7sKzu2suewqvLHJXvNVlX9c96ojo6OkL3//vtp7VtvvRWy7DvUAwcOpOuz57buPbzufe2D8IsCAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAKplEAAAAAAAAFa+rMJtRC4o033gjZt771rZDVDb267LLLQjZ//vy09qqrrgqZwcUAAHB6a9euTfOlS5eG7PHHHw/ZSy+9lK7PhuuOGzcurc2u3ffv3x+yp59+Ol2/ffv2kM2dOzetzQYM1w38mz17dshuv/32kNXdr+PHj4fs2LFjaW02+DHL6oYrZnl3BzHW7fXw4cMhy4Y2VlV+H7LBl3WDK7Partyv7CuMbP9Vld/fuq9Asj1ke60bIpvd364M/8yGXB46dKjh2rrbyu5XtteuPF9dkd2HgwcPprXZMVc32DXbbzbAtO57hK4cc9m+svPZ0aNHG/6bdbef3YdGs6rq2jGX7TcbrJodb1WVPzd1x0uj96ErQ8HrXsuvvfZayNatWxey7HxeVVXVr1+/kA0fPjytzd5rRo0aFbKuDHHPjq2qqqrVq1eHLHuvrHvNZMNxs71WVVWNGDGioawrr6NsuG9VVdUrr7wSsuy8UfdaHjJkSMjqrgGy+5td29TJXjP33XdfWptd32RDh7Nh5VWVDwavGxaeDXf/oMPC/aIAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBujeVhqJkA3yy4S91Q6+6MjAJAAA4vex6PBt4WFVV9cADD4Rs3759IZswYUK6Phty+d5776W1ixcvDtnEiRNDVjd0cdWqVSEbPXp0WpsNU3z55ZfT2mxI5KJFi0JWN8z4fP1MUzfU81fVDUCty8+17H5lw1rrBoV2ZYDomdDo81JV+RDYgQMHfpjb+dDU3a9Gn5tz/bxUVX4f6u5Xdp7qygDUs6krx1w2HLZuYOz5qG5w89ixY0PW1tYWsrrvrrL3lL59+6a12eDj7p5P625r+vTpIRs/fnzI6h6X7L2qK/er7v26UXVDey+99NKQZQO06wYnZ8dsV+5XV2R7mDp1alqbPV7ZMOPs2Kyq/DgeM2ZMWjtgwIA0/yD8ogAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIJpFAAAAAAAQME0CgAAAAAAoGAt53oDXDg6OztDdvz48ZDVTY7PJr9nU9erqn5KOwAAlOjYsWNpvnXr1pCtXLkyrV22bFnIpk6dGrJLL700Xb927dqQ7d27N63N/sYtt9wSsl698v9da21tTfNMtofXX389rT148GDI9uzZ0/Btna966uenC/1+Xej7r9MT7ld2H3rq/SrN4MGDQzZw4MBu/c26x/VMHEd135ONGDEiZNn3dHW6sq8zcb8GDBiQ5v379w9Zd+/XmXodtLTEr9Hnzp2b1mbXQdn9qrsOym7rbLy+/aIAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBDDOmYdmQ4hMnTjRUV1VV1dzcHLJsOAcAAPC/WrduXZo/8MADIduwYUNaO3ny5JBl1+51g4DHjh0bssWLF6e12RC/bJDhNddck64/fvx4yB5++OG0dv369SGrGw6Y7WH79u0h27VrV7p+0KBBIcs+5wBwbmQDX3vCebrufe1C0ZWB0Oda3TDlbK9n6nvN7Fpux44daW2jw58XLVp02poL+ygDAAAAAAC6RaMAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBzsxoZnqkjo6OkJ04cSJkJ0+eTNdnU+Yv9KntAABwNqxatSrNf/CDH4Ssra0trV2wYEHIVq9eHbJXX301XX/dddeF7Mtf/nJaO3z48DT/VdOmTUvzzs7OkD300ENp7VtvvRWyKVOmpLVjx44N2ebNm0OWPS5VVVVXXHFFyAYNGpTWAgAXnqamprN2W3v37k3zp59+OmSvvPJKWtu7d++QZd/BLlq06LT78S0tAAAAAAAUTKMAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCGWZMw7KBYseOHQtZ3TDjbLhGllXV2R0cAgAA50o2xO6ll14KWd0Au+za+7333ktrsyHFQ4YMCdmll16ars+G4DU6tLirsr+bDSKuqqoaNWpUyPr375/W7tu3L2QrV64MWd1nmlmzZoXMMGMA4IPo6OhI84MHD4asbvBx9t1qS8sH+8rfLwoAAAAAAKBgGgUAAAAAAFAwjQIAAAAAACiYRgEAAAAAABTMMGMalg3YOHr0aEN1VZUP1+jTp09aa5gxAAAlWLduXcjuu+++kK1duzZdP3To0JBt3rw5rX399ddDdvfdd4fsy1/+crp++vTpaX4mZEP4Zs6cmda+/fbbIdu5c2fDtQcOHAhZc3Nzuv7jH/94yMaMGZPWwtnU2dl51v5u3ed1n+MBuqZXr/x/+Pv16xey9vb2tDb7vrXuOua0+/lAqwAAAAAAgB5BowAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIJpFAAAAAAAQMFazvUGuHB0dHSE7OjRoyFrampK17e0xMMtywAAoKfZt29fmq9ZsyZkzzzzTMjefvvtdH1bW1vIRo4cmdZedNFFIbv22mtDNn369HT9wIED0/xMaG1tDdkVV1yR1h44cCBk9957b1q7du3ahm7//fffT/Pt27eHbNq0aWltr17+L4/GZZ+39+7dm9auXLkyZA8++GBau23btpD1798/ZJMnT07Xz5s3L2SXXHJJWjtx4sQ0ByDX3Nyc5tm1XN15OvsbdX/3dFy5AAAAAABAwTQKAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomEmyNKyzszNkx44dC1ndgOIs7927d1pbNxCZxh3f/17I3j/RHrLRQ/qeje18iI6EZPe7e2LZ4NHp6rN5d4/sfjdke+L876qqqqo12e853+uJAWntsBHxOMpfyQBQpt27d4fs1VdfTWtXr14dsk2bNoVs586d6foxY8aErG7o76/92q+F7Oqrrw7Z2RxaXCf77DBnzpy0dv/+/SGrG2acDYft2zdedB05Eq85q6qqNm/eHLIJEyaktWPHjg1Znz590lo4dOhQyLZs2ZLWPvnkkyH77ne/m9bWDeb+VVOnTk3zjRs3huzEiRNp7ahRo0KWDSYH4G/VfS86fvz4kNWdT3v1ir8DyLJG+EUBAAAAAAAUTKMAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBWs71BrhwdHZ2huzkyZMha25uTte3tMTDLcs4lSMh2fjg/55Wfvqu/zNkL/7moyHr/MaN3d/WWbTrl/8wZLNu+U8h+/yj8Xitqqrq9t3d9WKI/v1v3JqW/tOnB4Zs7NCaP/tOzG7+05+F7L98fna6vm+aHk/TN7/zuZD9/aXTQjZvwJvp+hdb/m7I/vzf3Z7WjktTAOjZNmzYELLvfe97ae0LL7wQsn79+oXsoosuStePHTs2ZJdddllau2DBgpBNmDAhrT3XevWK/9PW1taW1o4fPz5kgwYNSmubmppCNnRozQVa4pVXXmn4trK/26dPn4Zviwtf9hm6qqrq6NGjIVu/fn3Ili1b1vBt/d7v/V6ad3R0hOzQoUMhy85FVVVVDz74YMiOHTuW1mavhTlz5oRs+PDh6XqA0tR9LzpuXPw2ZdiwYWltdm2TZY3wiwIAAAAAACiYRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAUzSZaGZUOQTpw4EbK6QRy9e/duuPaDDt3oMZKBuVVVVd/+zS+G7MfX/kVa+5//5KmQXfVGt3Z1du3LB3f9699cHrLRM8/UJnaF5P7fWRSyfzPlr9PV6358c8hGxpdBVVVVdXzHL0P2/7rytpD97xPiAL2qqqr/4yNxcHK16ftp7T9bHwdC3/8X8X7VbLXa+pefDNm/eWxJWvuNG+v+CgBcWLKhpPv3709rV69eHbKHH344rd2xY0fIZsyYEbK6ocPTp08P2eWXX57WTp48Oc0vdEOGDAlZ3X2dNm1ayNrb20OWffapqnyYcba+qqrqyiuvDNnAgck1Gz1W3XGUDTPeu3dvyLLzQ1Xlw82/9KUvpbXZAO1sGPGf/MmfpOuXLl0aspUrV6a1s2fPDlk2hNwwY4C/1dzcnOaDBw8+uxv5//OLAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABTPMmIZlA9yyIUzZ0OK6PBusRFVVmzakcb9/HodGPTi7b1q7/tsf6o7OsOMheek/x4G7VVVVK3//34XsH/yXj4bs1e5vqqq2/jxE/+mHvxmy7+6PQ4urqn5wcab3yPg3/uDPbol/8xtxT1VVVf/wI/eEbNSOt9LaY5M+Em//dBv8n4wbOylkqzdtramOtQBwLmTXsk1NTQ2vf++990L213/912nt448/HrLW1ta0Nhv0efjw4ZBNnDgxXf/JT34yZHPmzElre6r+/fuH7Prrr09re/WK/yu3adOmkG3dml/brFu3LmR1w4wPHTqU5pQjO96qqqr69o2f4bLB5P369UvXDxo0KGRd+Wyd1S5YsCCt/fznPx+yd955J6199dX4KSwbzj5//vzTbRGgx+nutejZ4BcFAAAAAABQMI0CAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAKplEAAAAAAAAFaznXG+DC0dHREbLjx4+H7OTJk+n63r17h6ylJT8Ez7ep32fdFZ9O48+f5W2cLcff/C8h+617v5LW/vljE0O2LC7/UOx78aGQ/fwznwnZ/xUP7Q/FwCtuDtnt9y5La186fk/Ibp53e1p7+R//Tche+8LfD9ns5h3p+gd/9k7Ivvj1SWkt0HNl7/d79+5Na0+cOBGytra2tLZv374h69XL/7bQfd29vly/fn3IHnooXitUVVW9+uqrIcuuhauqqsaOHRuyoUOHhmz27Nnp+oULF4astNdMa2tryK6++uq0trm5OWS7du0K2Zo1a9L1u3fvDtnOnTvT2u3bt4ds8uTJIas7Nov/TNQD1D2H2TE7ZsyYhrIzZdq0aWl+5513huzhhx9Oa1977bWQ1b0+AEqTvSdk37VWVVUdPXo0ZNl3sHV/N9Pe3n7amrKuIAEAAAAAgP+FRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAUzzJiGZQM2suGEnZ2d6fpscFjdMGN6qjgEsKqq6vtf+zchu/nfvp7Wzuj9Vsjy8b7d9967G0I287I4THngGbr9atTIEE2qVqelm+PDUlVT8yF+/+9/E4eN/vNPzArZX+1ZlK7/vW/+aci+OjUtBXqwbHDxN77xjbR27dq1Ifv85z+f1i5evDhk2eDj0oa1cmZkg+Kqqqo2bdoUshdffDFkb7/9drp+69atIas7Zhctiu+3X/jCF0KWDS0+1d8tSZ8+fUI2ZcqUtHbPnj0hO3ToUMgOHjyYrs8Gvo4ePTqtzQYiDxgwIGQzZ85M12fD3eFM6devX5oPHz48ZNlxXFX59wNZBsDfOnz4cJqvWLEiZJs3b05rs+9Ws+vDz33uc6fdj6tKAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCxbHIUKOjoyNkJ06caKiuqhqfwk3Ptev+P0jzfz73WyF75ereZ3o7p/XWq0+GbPicAWdxBxNDMufa7v/V3hNuDtn/56E1Mev+TQHnsez9+tChQ2ntnj17Qvbss8+G7C//8i/T9Rs3bgzZ/Pnz09oFCxaErH///iFzDcGHYefOnWn+5JPxGuCpp54K2bZt2xq+reHDh6f53LlzQ7ZkyZKQjRgxouHbot7IkSNDNmjQoJC1tbWl6wcPHhyyo0ePprUrV64MWfaZaNKkSen6vn37pjmcCXWf4zN1x2b2+ujXr98H3RJAj3f8+PE0X79+fchWr16d1vbuHb8/y643Pve5z512Pz5hAQAAAABAwTQKAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomGHGdEtXhhk3Nzef6e1wPtn1yxD9s9/KS//TqhtDNvDD3k+PsS9ND+Uz9ACqzs7ONN+9e3fIXn311bQ2G1L8wAMPhGzr1q3p+gED4iD41tbWtBbOpk2bNqX5/fffH7LHHnssZNmg76qqqksuuSRkX/jCF9LaG2+M10HZcF0+HNlg1auuuipk+/bl11zZeXLNmjVpbfY8ZufDO++8M10PZ9ORI0fSPLte6N+/f1o7c+bMkI0ePbp7GwMoUPYZru5zXVdqT8cvCgAAAAAAoGAaBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFMwwYxqWDcI4duxYyLIBx1VVVS0tDree63hInvsPvxmyd/7PpenqO4d+6Bv6UAwYPOIc7+BgSPbszMc8DzYTFOiijo6OkGXv61VVVfv37w/ZwYPxHFVn+PDhIevbt29a29TU1PDfhUzdQM4NGzaE7Omnn05rn3/++ZBlg4uHDRuWrr/yyitDduutt6a12eBj181nTnbuyZ6v999/P12/cuXKkG3fvj2t3bFjR8g2b97c8G0NHXqeXiTTI2VDi6uqqtavXx+yunPUFVdcEbKLLrqoexsD6MF69cr/h3/gwPjdT/aZqqqqqnfv3iFrbm7+YPv5QKsAAAAAAIAeQaMAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDB8lH1kDh58mTIDh8+HLITJ06k61tbWz/0PXF+OP7SvwvZV3/6GyH75v351PV33323C7e2JyR7j8eqg3vzv/nuu/E4HDx6SFo7bNyMkD356ltJ5dR0ffe9H5Ktb4xIKye0de+W9uzZE7LBgwd3748C54WmpqY0z17jV1xxRVp70UUXhezuu+8O2Z/92Z+l63fs2BGylpb8MrSjoyPNoVG7d+9O8x/+8Iche+CBB9La7JgdP358yO644450/S233BKy7HVUVfWvBc6M/v37h2zu3Lkhy46BqqqqtrbuXXTt27cvZOvXr09rhw4dGrK667Pm5vw6Gxq1bdu2NH/mmWdCNm/evLR28eLFIRs5cmT3NgbQg9VdB44bNy5knZ2daW12DdCr1wf7bYBfFAAAAAAAQME0CgAAAAAAoGAaBQAAAAAAUDCNAgAAAAAAKJjJWTQsGy6YDTiuG65hUFvPtfW1F0J27EjMvrzkex/CrcVh2bs2xaojX78hXb2s7Ysh+/M1v5/WXnPZzSEb8Rdx2Nz66sZ0fbdHHL/0fIh+PvPatPQ3RjX+Zw8cOBCyMWPGhOzKK69M1996660h++xnP5vWTps2rfGNAWdV7969Q5YNzqzLs8Gsjz76aLo+G95ZN2Q5U3dtQVmy4+DIkSMhe/XVV9P1Tz75ZMhef/31tLa9vT1k2fDOm2+O1wpVVVVXX311yOqG0HJ2Zeeevn37hqxu+PSECRNCtmnTprQ2G3x87NixkL300kvp+kGDBoWsbui8YcbUOXEifn567733QrZnz550/YgRI0I2adKktHb06NFd2htA6bLPZFVVVWPHjg3ZgAED0tpscHFXPmv9L3/rA60CAAAAAAB6BI0CAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAKplEAAAAAAAAFaznXG+DCcfLkyZA1NzeHrKXFYVWaSZ/9byFb89kzdWvrQ/Lt66aF7NU/XJOu/saNXbipebeE6P/x5t8L2U9f+t/S5b93WT69Pnc8JE//8P8IWZ/fejxdfVkXbmnNmvjYDB8+PGRPPPFEuj7L/9k/+2dp7bRp8bm5++67Q3bHHXek66+77ro0B869/fv3h+zYsWNpbUdHR8N/t7Oz8wPviZ7t8OHDIXvqqadC9stf/jJdv3nz5pD169cvrZ07d27IsvekefPmpevHjx+f5lw42tvb0/zSSy8N2dGjR9Pa7NzX1NQUshUrVjS8h0suuSStbW1tTXPYtGlTyB555JGQ9e/fP13/la98JWTOcQAfjrrvUMeOHRuyUaNGnent+EUBAAAAAACUTKMAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCmTpLw7LhgtnQjWzAMV1zZPe7ab4nn5OW1+6Nw3Grg3tD9O67+W1lWgePTvMhfRv+ExeW3otC9P/87tUhm3TnF9Llg3/4/w3ZnZOOpLVrfvjPQ/al//r5kH131ex0fVdceeWVIduyZUvInnnmmXT9Aw88ELJ77703rX3llVdC9q//9b9uKKuqqho9Oh5zd955Z1r7iU98ImRLliwJWd++PfWAhbPrxIkTITO0mDMpu2Z54oknGsqqqqr27NkTsjFjxqS1119/fciyYcYGevZcAwcOTPOrr47XgnXns+w6aNu2bSHbvn17un7SpEkhO3ToUFpbN3yZnil7v923b19a+9Zbb4Xs/fffD9nIkSPT9dkA72woNwCnll0v1J1PW1tbz/R2Un5RAAAAAAAABdMoAAAAAACAgmkUAAAAAABAwTQKAAAAAACgYIYZ07BsYFI2uDgbcEzXvPCfbkjzL3+ve393ZvWPQ3ZDflOpL/75mjT//Ws+4IY+kHjMtU2cGbLhZ2juy9Db/zRk6/7qh2ntH/3+bSH7N5sHpbWzP/UPQvZXKz8TsiuHnm6HH56FCxc2nP/hH/5hWrtu3bqQZYOP77vvvnR9NlD529/+dlqb5W1tbSG77bb4vFRVPgy5bnDy4MGD0xyArsmuL/fu3ZvWvvHGGyHLBhe/+OKL6fpsOO2cOXPS2ttvvz1kV111VVpLz1Q3zDgban306NG09sknnwzZ2rVrQ1Y3sHDHjh0hy4ZyV1VVjRo1Ks3pmbJhxCtXrkxrd+7cGbJsUHbdcPZGvwcA4MLnFwUAAAAAAFAwjQIAAAAAACiYRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAVrOdcb4Pxz/PjxND958mTI+vTp01BWVVXV1NTUvY0V5JrfX5Pma37/LG/kvDQpJJ/9b/njdWb0DsnIKz+fVv77h/K8JNOmTQvZ7/3e7zWUVVVV7dy5M2T33ntvWvvAAw+E7MEHHwzZj3/843R9lre05G+TN9xwQ8juuOOOkN19993p+vHjx6c5QGmOHDkSsmeeeSat/Zu/+ZuQvfTSSyHr6OhI1y9YsCBkN998c1o7Y8aMNKccvXvHa76qqqqxY8eG7KKLLkprBwwYELLm5uaQ1X1O2r17d8hef/31hm9rzJgxDd0+568TJ06k+XvvvReyHTt2pLV9+/YN2Zw5c0JWdxx35Zg5cOBAyA4fPhyy7LuFqqqqtra2hjKAC1H2fl/3Hez27dtDtn///ob/bpbNnDnzdFv0iwIAAAAAACiZRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAUzzJjg4MGDaZ4N2GhtbQ1ZNiypqgwzBrpu+PDhIfvqV7+a1mZ5NiQzG3BcVVV13333hez+++9Pax9++OGGst/93d9N119++eUh+8QnPpHW3nXXXQ2tB7gQZQM5f/KTn6S1Wb5nz56QXXrppen6L3zhCyG75ZZb0tr29vY0h8yQIUPSfNKkSSHLBs4ePXo0Xb93796QLV++PK3t06dPyEaOHBkyw4zPX8eOHQvZ5s2b09otW7Y0tL6qqmr8+PEhy4YZd+Xzeja0uKqqav369SHbuXNnyOqGzk+bNi1khhkDPVk28L2qquqZZ54J2Zo1a9Lalpb49X72fv+P/tE/Ou1+/KIAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBNAoAAAAAAKBgcSwyxTtx4kSad3Z2hiybop1N266qqmpqaurexgC6qG/fviG766670tosrzsfPvHEEyG77777Qnb//fen61etWtVQVlVV9Qd/8AchmzRpUsjq7tcdd9wRshtuuCGtrTt/l6Lu+X733XdDNn78+DO9HbhgZdeMGzZsSGsff/zxkD311FNp7Z49e0I2d+7ckH3sYx9L18+fPz9kgwYNSmuhK4YOHZrm8+bNC9n+/ftD9vLLL6frN23aFLJjx46ltWPHjg3ZjTfemNZy9hw/fjzN33///ZC98sorIVu6dGm6PjunHjp0KK0dN25cQ+v79++frj98+HDI3nvvvbR27969IZs8eXLIsnN3VVXVgAED0hygpzp58mSa79q1K2TvvPNOWtu7d++QfdDP9n5RAAAAAAAABdMoAAAAAACAgmkUAAAAAABAwTQKAAAAAACgYGVPLSSVDaCry7MBxXVDiw0zBi40dQOAsmHAWfaNb3wjXZ8NLq4bfJwNSV65cmXI/uRP/iRdn+XDhw9Pa2+77baQffrTnw7ZkiVL0vVtbW1pfqH43d/93TT/5je/GbIf/ehHaW3dUGkoyZEjR0L2y1/+Mq398Y9/HLK6wcejRo0K2Ze+9KWQ1b0Os2Gv8GGoG4q9aNGikGVDuV988cV0/VtvvRWybdu2pbWXX355yI4ePRqyfv36pes5Mw4ePJjmr732Wsh+/vOfh+z73/9+un7Hjh0N76FXr/j/oR90yOX/UPedwYgRI0L2W7/1WyG7+OKL0/UGzAOlqfuutE+fPiGrew83zBgAAAAAAPhQaBQAAAAAAEDBNAoAAAAAAKBgGgUAAAAAAFAww4wJsqFXVVVVJ0+eDFk2HCMbolFVhhkD/A/ZwMEsq6qq+qf/9J+G7O233w7Zvffem67PhiE//vjjaW02MC/L+vbtm67Phhx/4hOfSGuzYaN1Q5bPlptuuinNs2HGX/ziF9PabBDhdddd172N9VCuC3qG48ePhywb0rl8+fJ0/UsvvRSy8ePHp7XZYNiFCxeGbMqUKel6OFMGDBiQ5jNnzgzZm2++GbK699VM9pqrqqravn17yDZu3BiyOXPmpOuzz3DO091X99k4u+aZO3duyA4cOJCuf//990NWN+Syo6MjZNlxlNVVVX4cNDc3p7XDhg0LWXaNO3DgwHQ9QGnqhg5n7xMTJkxIa7Nzct15+nT8ogAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIJpFAAAAAAAQME0CgAAAAAAoGD5aGWKduTIkTQ/ceJEyHr37h2yPn36pOubmpq6tzEAqqqqqvHjx4fs61//elqb5QcOHEhr77333pA98MADIbv//vvT9VleV/t3/+7fDdl1110XsjvuuCNdf/fdd4ds2rRpaW2j7rrrrjT/xje+EbK///f/flp7++23h2zFihUhmzVrVtc2VxDXCxeW119/PWTLly8P2apVq9L1hw4dCtnHPvaxtPaTn/xkyKZPn36aHcKZV3feamtrC1n2Hj58+PB0fb9+/Rq+rf3794cse931798/XZ+9lpyPu6/u8b7kkktCdvHFF4fsM5/5TLq+s7OzW/vqyvquHAdZbUtL/NrJsQXwt7JzZFXl1wvZd7BVVVW9esXfAWRZI/yiAAAAAAAACqZRAAAAAAAABdMoAAAAAACAgmkUAAAAAABAwQwzJjh69Gianzx5MmSGGQNceLLhilVVVV/4whcayuqG3j/++OMh+8lPfpLWPvjggyF74oknGsqqqqr+yT/5JyGrGxCcDT6+9dZbQ5YNU66qfCD0zp0709o/+IM/CNmNN94YsmzYa1V1fyDz2dTe3h6yumuA5ubmkNUNeBwwYEDI6gZ3la6joyPN33///ZAdO3asoayq8tf4tm3b0tpHH300ZE8//XTIskGrVZUPUL3mmmvS2quvvjpkw4YNS2vhfDVixIiQzZ8/P63NPn/t2rUrrc0Ggz/77LMhGzVqVLp+5syZaU731H0GzvJs8GRp73/ZkGXfIwA9Wd0w47Fjx4Zs8ODBaW12nvyg506/KAAAAAAAgIJpFAAAAAAAQME0CgAAAAAAoGAaBQAAAAAAUDCNAgAAAAAAKFg+WpmiHTt2LM07OjpC1rt374YyAHqOvn37pvltt93WUFbniSeeCNlDDz2U1v74xz8O2Zo1a9LaP/qjP2ooGz9+fLo+uw/33HNPWvu1r30tZN/85jdD9rGPfSxd/9hjj4Vs9OjRae25duDAgZAdP348rT158mTIDh8+nNYeOnQoZNkx19Jyfl7GdnZ2pnlTU9OHfltbt25N840bN4Yse1wPHjzY8N+te31lr9FNmzaF7JJLLknXL1myJGRXX311Wjty5Mg0hwvJ4MGDQ3bdddelta2trSF78cUX09rsdbtixYqQTZ8+PV1/yy23hOx8Pc/Sc52J90qA81nde2123Xs2Pmf4RQEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIKZTkRQN4gwG2bc3NwcsrpBHAYTAXAq2TDHugGPf/iHfxiydevWpbXZ4OMHHnggZNkw5aqqqm9/+9sNZVVVP+j5V9UNhr399ttDtnz58rS2ra2toduqkw3D2r59e1r78MMPh+wXv/hFyLJhzFVVVe+//37I/vRP/zStffnll0OWDdm87LLL0vXDhg0LWZ8+fdLa7jp27FjINmzYkNa+8847Icse77fffjtdv23btpAdPXo0rc2uz/r16xeyumuzzZs3h6zumK27v7+q7rV89913h2zq1KkN/U24EGXDjOvOZ9l545e//GVa+9Zbb4Wsd+/eIVu6dGm6PjtHDBgwIK3NhqNnnxV79cr/L7F///4ha29vT2uz99Xs/W/o0KHp+hEjRoRs1KhRaS0AnEnZ56+ufFd6Nr5X9YsCAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCtZzrDXD+OX78eJp3dHSErLm5uaGsqs7OdG4AyjVt2rQ0/8f/+B83lO3cuTNdf++994bsvvvuS2sffvjhU+zw9FatWhWy22+/Pa395S9/GbK+ffuGrLOzs+Hb37VrV5r/9Kc/Ddlf/dVfNfx3M88991yab926NWTDhw8P2ZgxY9L1gwYNClmfPn26uLv/1cmTJ9N88+bNIXv++efT2tdffz1kb775ZsheeumldP26detCNmLEiLQ2ey0MGTIkrc2sX78+ZG+99VbD62fMmBGyW265Ja1dsGBBw38XeoLsPD158uS0Nnvd1r1X7dmzJ2Stra0hW7FiRbo+O58NGDAgre3du3ea/6pevfL/S8zO00OHDk1rBw4c2FDt2LFj0/V1j21m1KhRDdXVva/6vAvAqXTlfSJ7r+nK57rsthq5fb8oAAAAAACAgmkUAAAAAABAwTQKAAAAAACgYBoFAAAAAABQMMOMCY4cOZLmJ06cCFk2yKq7AwMB4EzLhj6uXLkyrc0GPNa9V7a0fPiXVnX7+pM/+ZOQZUOa64ZWZcOw6objfuYznwnZxRdfHLJ+/fql67NrgwMHDqS1gwcPDtnVV18dsvHjx6fr+/fvn+aZTZs2hSwbJlz3HLz77rshO378eFqbHRujR48OWd39yq65JkyYkNZmz2M2DLnufm3bti1kdc/XrbfeGrJ77rknZNlz2FXZMWt4KD1B3XGcDfLNsqqqqubm5pBlw4Tr3r8OHjwYskmTJqW1c+bMCVl2jjp27Fi6PjtP1p07s9f9jh07QpYNYa+qqnrsscdCVvc+kZ2Ts/e6WbNmpetnzpwZsrqB0ABQVfXvy6+++mrIsmv0qsrf77PstttuO+1+/KIAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBDDMm6O4w4yyrKsPmADizssGyVVVVt99+e8hWrVp1RvaQDeK96667QrZgwYJ0/XXXXReyK6+8Mq3t27dvl/b2q7L35bphxtlw2iw7H2SDL7ds2ZLWrlixImTZ4MtHHnkkXZ9dG2WDL+vyuXPnhuzSSy9N10+fPj1kXRnc/JOf/CRkzz77bFqbHRsjR45Maz/1qU+F7Dd+4zca3ldXuJakNMOGDQvZ7Nmz09psGPHOnTtD1tHRka7Phh5m552qqqo777wzZO3t7SHbv39/uj7b1/bt29PaRu/XO++8k67PhhzX3VZbW1vIrrnmmpDt3bs3XZ89tnUDobPbam1tDZnzHkDPVvcd7CuvvBKyl19+Oa1taYlf7zc3N4fMMGMAAAAAAOCUNAoAAAAAAKBgGgUAAAAAAFAwjQIAAAAAACiYRgEAAAAAABQsjkWmeEePHk3zkydPhqx3794h69OnT7q+qampexsDgFPYs2dPmq9ZsyZks2bNCtnChQvT9ddee23IrrvuurQ2+7ucGVu3bk3zn/70pyF7/vnn09odO3aErKUlXh4vWbIkXT958uSQTZs2La0dO3ZsyIYNGxayMWPGpOv79++f5pl169aFbPny5SF77rnn0vXTp08P2S233JLW1r1ugO6bOnVqyL74xS+mte3t7SH70Y9+FLJ9+/al648dOxayzs7OtDY79w0dOjRkBw4cSNdPnDgxZAcPHmx4X4cPHw5Z3fvye++9F7J333234dq9e/eGLDufVlVV/c3f/E3IRo0aldZec801IbvqqqtCdumll6brAegZ6t5rG33/q6r8e9jsM00j/KIAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBDDMmOH78eJp3dHSELBuOUTcwwzBjAM6kukHCdUOfOD8dPXo0ZLt37w7Zs88+m67/67/+65C9/vrrae2gQYNClg3n/dSnPpWunzdvXsiygZ5nyquvvprmjz76aMieeuqpkO3atStd/+lPfzpkn/vc59LaSZMmnWKHQHeMGDEiZLfeemtau3379pA99NBDIcvOp1VVVUeOHAnZoUOH0tps8GJra2tD2fmgbnDy2rVrQ7Z06dKQPfHEE+n6VatWhazuM3C2hxMnToSsra0tXZ8NhO7VK/8/UJ/DAc5fdefuAQMGhGzw4MFpbe/evUNmmDEAAAAAANBlGgUAAAAAAFAwjQIAAAAAACiYRgEAAAAAABRMowAAAAAAAAr2wUYg06N1dnY2XNvU1NRQBgDwP6u73li7dm3I/uIv/iJkL7/8crq+vb09ZJ/5zGfS2nnz5oVs5syZIZs0aVK6fsiQIWl+tjzzzDNpnj1ee/bsCdkNN9yQrr/22mtDNmXKlLS2tbW1dn/Ah69Xr/x//UaPHh2yGTNmhOzIkSPp+uwz3P79+9Pa559//lRb/L+NHTu2obqzbcCAAWk+derUkPXr1y9kc+fOTdd/+tOfDln2nlZVVfXiiy+G7L777gvZqlWr0vXZefpjH/tYWjtw4MA0B+Dca2nJv5ofM2ZMyI4dO5bWNjc3N5Q1wi8KAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomEYBAAAAAAAUzDBjguPHj6d5R0dHyLLhGHWDOACAMh06dChkb731VlqbDehdvnx5yA4ePJiuv+eee0J2yy23pLULFixI83Pp8OHDab5u3bqQPfHEE2ntCy+8ELL58+eH7M4770zXZ7WGFsP5bdSoUSHLBrZnn+mqqqp27NgRsnfffTetffLJJ0OWDXc/X4cZ12lvbw9ZNuA+y+pk5+6qyt/Dnn766ZA99dRT6frsvSIbaF1VVXXJJZeEbOjQoSHr3bt3uh6AM6fu3Dtu3LiQ9e3bN63t1Sv+DqCpqekD7ccvCgAAAAAAoGAaBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFMzUWYJs4GBV5UOOs8F2XRmuAQD0HJ2dnWm+cePGkP3n//yf09pXX301ZNlw3Syrqqq64YYbQjZ16tS09nyUDSKuqqr60z/905BlQ56rqqqGDRsWsmyg82c/+9l0/ciRI0+1ReA8NGXKlJBlr/sTJ06k6x966KGQvfHGG2ltNkg3G5x8NtW9/3zQYY4flmnTpqX5l7/85ZBdeumlIXv88cfT9Rs2bAjZv/gX/yKtzd4Xv/rVr4bsoosuStcDcOa0tORfzWfDjEeMGNHw3zXMGAAAAAAA6DKNAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABctHK1O0I0eOpPnJkydD1qdPn5C1tram65ubm7u3MQDOqI6OjpBl5/6sjp4tew8/fvx4yI4ePZqu37p1a8iee+65tHbjxo0hW7BgQcimTZuWrs+uTXbv3p3WZtc82THf1NSUrs/U1Wb7yh6vRx55JF3/s5/9rKH1VVVV8+bNC1n2eA0aNChdf+LEiZDt27cvrQXOnF69Gv+/vsOHD4ds6NChIRs4cGC6Pjun79ixI609duxYyF5++eWQLVq0KF2fnXuyc29VVdWAAQNCln3erDv3dnZ2hiy7r3V5ltXtNZPtv6qqasaMGSEbOXJkyOqOgez8v2zZsrR27dq1Idu1a1fIhg8fnq7PrgGy97Sq6toxm8muMeuuO7M8e76zrKryvba05F+Rdfd+AdSpO79k7x917ykfJmc7AAAAAAAomEYBAAAAAAAUTKMAAAAAAAAKplEAAAAAAAAFM8yYoG64UzYEKBti1K9fv3R93759u7cxAM6obLDrzp07Q5YNMayq7g+B5fyVDdnKnu+6YyMbhJsNbayqfPBwNiQzOzarKr8OyQYxVlV+H+qGHmayx6XumM8Gjb7//vshW716dbp+//79IZs+fXpaO3fu3JBlj+uPfvSjdH12H+qeWyhNV97XunI+6e5tZeejbODt5s2b0/WHDh0KWd25Mxt4/uCDD4Zsy5Yt6fpJkyaFrO58lg1Enjp1alqbyc7z7777blq7devWkL399tshy86nVZUP173ooovS2sWLF4ds8ODBIbv55pvT9ePHjw/Z1Vdfnda2t7eHLNvrW2+9la7PjsNhw4altdlA5K4cx9kxe/DgwbT2wIEDIcuuZeuGIWdDsUeNGpXWtrW1pfmFLntssufrQruez+7XhTSQuivvHRfSc1N3vy6k+5DpaffrwnmlAAAAAAAAHzqNAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABWs51xvg/HP8+PE0P3LkSMgOHDgQsp07d6brN2/eHLJRo0Y1fFtdmfx+JtRNLM/2dezYsbQ2yzs6Orq3MXqs7Ng6efJkWpsdW3Wv5bpjmQtHV86Hzc3NITtx4kRau2vXrpDt27cvZHXnuLrjkwtfdt7IjsO688uOHTtC1tKSX4b2798/ZFu3bm0oq6r8OKx7r230fFhX16tX4/9zk10fZfehbq8DBw4M2aRJk9LakSNHhmz//v0h27ZtW7o+470D/lZX3oO7+7rpym316dOnods/evRoun7YsGEhq7uWzD4Dvv766yGrO8fMmjUrZHXXEBdffHGaNyo7p2bnw6rK9/vmm2+G7N13303XZ9dXdddM8+bNC1n2/jd8+PB0/fz580PWt2/ftDa7X2vWrAnZoUOH0vXZe92ll16a1tbtt1HZc1P3fr9ly5aQZe+1dc/BkCFDQrZw4cK0tq2tLc1/Vd01dnY9vXfv3rQ2y7PXbd35YejQoSGru17IzhuZ7PuZqqqqPXv2hKzufmXnjey56d27d7p+3LhxIRszZkxamx2z2eN1+PDhdP3Bgwcbyqoqf26y807d6zP7Tiw7F9TJjrm613JX7ld2/s/eUwYNGpSuz65Fs8+ldbL7Vff+leV1r/vsucn21d7enq7PnpuufFeYPa51z1f2+qq7X/369QtZ9loaPXp0uv5/5hcFAAAAAABQMI0CAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAKZpgxQd2AkGwoTTaguG54TSYbIFRV9QM6zqW6gYXZkJXt27entdkwx2xwSd0QpIzhgheW7g7FzoZAVVVVvfPOOyHbvXt3w/vqykBOLizZcMC6wWXZcKPBgwc3fFvZcXyuB9Hz4ciex+y8UTfsLxsc9t5776W13R2K3ZVjrtGBzF05R9a9h2cD87LHpe7aaO7cuSHLBvtVVf7+0d3zvNcy/K3z9bWQnXuy81k2OLOqqqq1tTVkzz//fFqbfdbJzjF1Q0mzwZF1j+vZfLwbvY6p21N2Tj9T+88+E9QNj165cmXIXnrppZDVvS9nwzvr3quzIctdGWCaDSN++eWX09rnnnsuZGvXrg1ZNki4qqpq8uTJIRs/fnxae9FFF6X5r6obDPvEE0+EbOnSpWltlm/atClk2fFWVVX1sY99LGT/6l/9q7R27Nixaf6r3n777TR/9NFHQ/b444+ntStWrAhZdi7JBqtXVVX9w3/4D0P29a9/Pa3NZI/Xxo0b09rVq1eHbNWqVWlt9p1Yds03ffr0dP1XvvKVkM2ePTutzWTHXPb6rqr8ftW9vrLvrrLz/Ec/+tF0/a//+q+HbMCAAWltJvte8a233kprs7zufJg9N9nnl2uuuSZdP2fOnDTPZOfJ7Bz3+uuvp+sfeeSRkL377rtp7dSpU0OWvZa+9rWvpev/Z74ZAgAAAACAgmkUAAAAAABAwTQKAAAAAACgYBoFAAAAAABQMMOMCeoGV2aD8Vpa4iFUN2x1w4YNIevXr19aezYHQTUqu69Vle+r7jHIBillw4yPHz+ers8GkhlmXJa6wWHZkLBsKF0dx1HPlQ03rDs2Bg0aFLIRI0aErG4oqmHGPVf2PGbnnbphxtlAyzFjxqS1dcOAu6O757i6c++WLVtCtmbNmrQ2G+CWDUecNWtWuv6yyy4LWd01W/bcZI+B1yd0XVdeN2fz+ip73WefqbZu3ZquzwYsDhw4MK3NBm1m1wvTpk1L12eD2LNBjFWVX5t0RXbN0t7entaOHj06ZNnnsrphq9l7xcSJE9ParlynZ7L7Vfd8DR8+PGTZUOu6z7vZZ/a62+ruMZ9dL9RdW2TPw/79+xtenx2z3X1e6mTPV93j3adPn5Bl+6obZpw9ht19XurWZ+eduiHm2f1qNKu7re6qu+Y8cuRIyLJjq6qqas+ePSHLvuOpW9/d697sOMi+u6vbV92w7927d4csO47rBnh39xrz6NGjIdu1a1damw0zrhtUnT0PQ4YMCVlXBkrXafS7wmxwdFXl36HWDTPO3tc+6GvGLwoAAAAAAKBgGgUAAAAAAFAwjQIAAAAAACiYRgEAAAAAABRMowAAAAAAAAqWj1mnaDNnzkzzbBJ4NqG9bpp7a2trw3toampqKDubsgnvVVVV/fv3D9nUqVPT2uwxzCahnzx5sou743yUHbN1z202kX7QoEENZVWVH4d9+vRJa7Njjp4re77rzmfZMdO7d+9u3da5PndzdmXnsqrKj4O6c9GZOEfVHYfZfo8dOxay3bt3p+t/+tOfhuyZZ55Jay+++OKQ/c7v/E7I5syZk67Pzv/dPc97P4DzW1c+E2Xv10ePHg3Z97///XT9ihUrQjZ+/Pi09itf+UrILr/88pBNmTIlXd+vX7+Q1b1/tLW1pXmjsr87evTotHbo0KEhmzVrVsiyz8B16j4Dd/d+DR48OGTz589Pa7P3n8OHD4es7n5l143Z7VdV96/7JkyYELLhw4entQsWLAhZdszXff7KXjN1t9Wouuf1uuuuC9ncuXPT2l//9V8PWXa/6t7Ds+emu/er7lzw8Y9/PGQ33HBDWnvw4MGQZcdc3WePUaNGnWKHp5cdm3V/MzufjRgxIq3NrhGPHz/e8Pru3q++ffuGbPLkyWltdj6qq82+18sew2nTpqXr665Ru6Pu/JKdo+o+73al9kzo6OgIWd1jlT03dcfLZZddFrK697rT8YsCAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAKplEAAAAAAAAFM8yYoG4QbzZ8ZeDAgSGrG2Z8oasbsJUN4xozZkxamz2G2eCUbMAJF56uDDPOjoNscGXd4LCuDJwFoN6BAwdC9tprr6W12WC+bPBlVeWDDD/ykY+ErG7YHcCpZOejtWvXhuzdd99N12dDWC+55JK09qabbgrZ7NmzQ3Y2r0/rBrtm1+N1gyOzvLtDh7uiKwPmW1riVznt7e1pbV1+tmT3q24oaTaYNcuqqqqGDBnSvY11QaPPTd13BtlnuLrPdWdT9r1D9tzUDeXOrlnO1+uY7H5l32dVVf76GjZsWFp77NixkGWPa91xXLeHRmXnrbrh1f379w/ZuHHj0trsfmWy7yyqqv610Kjse7aRI0emtdle68572SD3AQMGhKzu+e6K7JjL3lOyIe516+u+T5o0aVLI6p6b0/GLAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABdMoAAAAAACAgjV1Njq+nWLUTTfPpmufOHEiZNmE956sV6/Yb2tpaUlruzv5nbJkx1bdMdTU1HSmtwNQhIcffjhk//Jf/su0Njv3fupTn0prr7nmmpDNnTs3ZH369DndFgGCX/ziFyH7j//xP4bs6NGj6fpLLrkkZDfddFNae+ONN4asb9++p9siwHml7rur7GvSrtRm6j6vZ5/vs+8B6mS3X7en7D7U1TZ6v+r2WvedWKMa/f6xqqrq+PHjDa2vqvwxyJ6bfv36petbW1vTPJM9htl9qLtfWV73vPTu3Ttk2bHVyOcMvygAAAAAAICCaRQAAAAAAEDBNAoAAAAAAKBgGgUAAAAAAFCw7k2XoEcyRA8A6EkOHjyY5qtXrw7ZE088EbIDBw6k62fNmhWyRYsWpbVz5swJmWsu4FSyc8/rr7+e1mbnrrfffjtkF198cbr+hhtuCNnll1+e1hpcDPQEXRkanA2GPR9kg3jrBid35f6eCXWDeLP9Zo933XPQlQHDZ0JX7lc2dDjLziW/KAAAAAAAgIJpFAAAAAAAQME0CgAAAAAAoGAaBQAAAAAAUDDDjAEA6NG2bNmS5n/+538ess2bN4dswYIF6frrrrsuZDNmzEhr+/fvf6otAgRr164N2Xe+8520dsOGDSGbMmVKyLKhxVVVVYsXLw5Ze3v7aXYIAI2pG7J8oetp98svCgAAAAAAoGAaBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACtZyrjcAAABddfLkyTR/6623QvbUU0+ltWvXrg3ZgAEDQnb99den6xcuXBiywYMHp7UAVVVVx48fD9nmzZvT2uzc9dprr6W1Q4YMCdmSJUtCtmjRonR9e3t7mjeqs7MzZE1NTd36mwDA2eUXBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACmaYMQAAF5ydO3em+f333x+y5557Lq3t06dPyC6//PKQLV68OF0/bty4U+wQINq6dWvI7rvvvrR2xYoVIasbEDxv3ryQffrTnw7Z8OHDT7fFD8TgYgC48PlFAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABdMoAAAAAACAgmkUAAAAAABAwVrO9QYAAOBU9uzZE7JVq1altcuXL29ofVVV1fXXX99QNnr06FPurxGdnZ0ha2pq6vbfBc69jo6ONN+xY0fInnnmmZAtW7as4b+7ZMmStHbx4sUhGz58eFrbqOy8VVXOXQDQU/lFAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABdMoAAAAAACAghlmDADAeePAgQMhywYXP/300+n6jRs3hmzixIlp7cc//vGQXX755afe4Adk+Cf0XO+//36aP/nkkyHLBq5v3rw5XX/VVVeF7HOf+1xaO2XKlFNt8QNx3gKAsvhFAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABdMoAAAAAACAghlmDADAeeOtt94K2c9+9rOQvfHGG+n6+fPnh2zhwoVp7eTJk7u4O6B0hw4dCtlLL72U1v70pz8N2c6dO0N24403pusXL14csvHjx59uiwAAH4hfFAAAAAAAQME0CgAAAAAAoGAaBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFKzlXG8AAICe7fjx4yHbsWNHWvvSSy+F7MknnwxZZ2dnuv5rX/tayG688ca0tn///mkOcPDgwTR/4403Qvbcc8+ltStWrAjZlClTQvbZz342XT9//vyQNTc3p7UAAN3lFwUAAAAAAFAwjQIAAAAAACiYRgEAAAAAABRMowAAAAAAAApmmDEAAGfU7t27Q/ajH/0orc2Ggk6cODFkc+bMSdfPnj07ZG1tbafbIlCwbDj62rVr09rvfve7IduwYUNae/3114ds4cKFIZs2bVq6vqXFx3UA4OzxiwIAAAAAACiYRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIK1nOsNAABw4eno6AjZ0aNH09o333wzZD//+c/T2i1btoTsq1/9ashuvfXWdP3YsWPTHKCq8vPUtm3bQvb888+n6x955JGQtbe3p7W/9Vu/FbJrr702ZG1tbel6AICzyS8KAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomEYBAAAAAAAUzDBjAAC67OTJkyF78MEH09ply5aFrKUlvwxdsGBByK688sqQTZ8+PV3fp0+fNAeoqqravn17yL7zne+EbPXq1en6yy67LGRXXHFFWjtnzpyQDRw48HRbBAA4J/yiAAAAAAAACqZRAAAAAAAABdMoAAAAAACAgmkUAAAAAABAwQwzBgCgy955552QPfLII2ntihUrQnb11VentYsXLw7Z7NmzQ2ZoMfA/ZMPV9+/fn9a+/PLLIXv44YdDduDAgXT9P/gH/yBkN910U1o7ZsyYNAcAOB/5RQEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIJpFAAAAAAAQMFazvUGAAA4v73wwgshe/LJJ0O2adOmdP3gwYNDds0116S1ixcvDtnQoUNPvUGgaIcOHQrZ9773vbQ2O3cNHz48ZNdee226/sorrwzZxIkT09pevfxfHgBw4XDlAgAAAAAABdMoAAAAAACAgmkUAAAAAABAwTQKAAAAAACgYIYZAwBQVVVV7dq1K82z4Z9Lly4NWe/evdP1l112Wcjmz5+f1o4YMeJUWwQKduLEiTRfs2ZNyB555JG0dt26dSH75Cc/GbKbb745XT9t2rSQGVoMAPQErmgAAAAAAKBgGgUAAAAAAFAwjQIAAAAAACiYRgEAAAAAABRMowAAAAAAAArWcq43AADA2bdt27aQrV69Oq198sknQ7Z58+aQfeYzn0nX33HHHSG76KKLTrdF4ALW2dkZsqampobXd3R0hOy+++5Lax977LGQHTt2LK296qqrQnbDDTeE7IorrkjXDxgwIM0BAC50flEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBNAoAAAAAAKBghhkDAPRgBw8eTPNVq1aFbPny5Wnt7t27QzZu3LiQLVy4MF0/e/bsU+wQ6Im6Mrg4s27dupBlQ4urqqqef/75kF122WVp7fXXXx+yuXPnhqytre10WwQA6FH8ogAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIJpFAAAAAAAQMEMMwYA6CFOnDgRsnfeeSetfeCBB0L2+OOPp7VLliwJ2Z133hmyOXPmnGaHwIWss7MzZN0dWrxs2bI0zwYXr127Nq0dNmxYyG6++ea09qMf/WjIhgwZcqotAgAUwS8KAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAK1nKuNwAAQNedPHkyZG+++WbInn322XT9xo0bQ9a7d++0dv78+SG76aabQtbU1JSuB3qG7r7Gt2zZErLly5entU8//XTI2tra0tp58+aF7Morr0xrhw4deqot/t86OzvT3HkOAOip/KIAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBDDMGALgAHThwIGQ/+9nPQnbvvfem66dNmxayT37yk2ntwoULQ2agJ3Aqr7zySsieeOKJkD355JPp+r1794bsE5/4RFp75513hmzMmDGn2+IpOccBAKXxiwIAAAAAACiYRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIK1nOsNAABQb9u2bWm+evXqhrLdu3en62fNmhWyW265Ja0dO3bsqbYIFGzXrl1p/swzz4Rs2bJlIevo6EjXX3bZZSFbuHBhWjthwoRTbREAgAb4RQEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIIZZgwAcB5bvnx5mn//+98PWTYU9M4770zXX3fddSEbN25cWtvc3HyqLQKF2LlzZ8iyIepVVVWPPPJIyFatWhWyz372s+n6u+++O2STJ08+zQ4BAPig/KIAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBDDMGADjLjhw5kuYbN24M2QsvvNBw7YIFC0L20Y9+NF1/8cUXh8zQYqCqqurgwYNpvmLFipA9/vjjae3+/ftDlp13Fi5cmK6fM2fOKXYIAMCHzS8KAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAK1nKuNwAAUJqXX345ze+7776Qvfnmm2ntlClTQrZo0aKQLVy4MF0/dOjQU20RKMThw4dDtmHDhrT2r//6r0P28MMPp7V33nlnyO65556QzZgx43RbBADgLPCLAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABTPMGADgQ9LR0RGy999/P2QrV65M1z/99NMhGz58eFp7ww03hOyqq64K2bBhw9L1QHmyc9SLL74Yssceeyxd//bbb4ds4sSJae2VV14Zsvnz54espcVHUgCA84FfFAAAAAAAQME0CgAAAAAAoGAaBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFKzlXG8AAKCn2LJlS8hWrlwZsmeffTZdv3379pBdf/31ae1nP/vZkI0cOfJ0WwQKtmfPnpA99NBDIfuv//W/pusXLVoUsq985Stp7RVXXBGylhYfPwEAzld+UQAAAAAAAAXTKAAAAAAAgIJpFAAAAAAAQME0CgAAAAAAoGCmSQEAdNG+ffvSfNWqVSF74IEHQrZ37950/XXXXReyhQsXprUGFwN11qxZk+bLly8P2ZtvvhmysWPHpuvnz58fsquvvjqtHTVq1Km2CADAecYvCgAAAAAAoGAaBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFMwwYwCAUzhw4EDINm7cmNY+9dRTIXvkkUdC9tGPfjRd/9u//dshmzZt2um2CBTs+PHjIXv00UfT2j/7sz8L2eTJk0P2G7/xG+n6a665JmSjR49Oa5uamtIcAIDzk18UAAAAAABAwTQKAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomEYBAAAAAAAUrOVcbwAA4Hy2du3akP3kJz9puPayyy4L2cKFC9P1M2bMCFlra+vptggU4O23307zJ598MmTPP/98WpudT+bMmROya6+9Nl0/ZcqUkDU1NaW1AABcWPyiAAAAAAAACqZRAAAAAAAABdMoAAAAAACAgmkUAAAAAABAwQwzBgCoqurw4cNpvnLlypD94Ac/SGunTp0asq997Wshmz9/frq+d+/ep9oiULDsXFRVVfWtb30rZL165f8PtmTJkoaymTNnpuvr/i4AABc+V3oAAAAAAFAwjQIAAAAAACiYRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAVrOdcbAAA42955552Q/eIXv0hrn3vuuZCNHz8+rb3qqqtCdsUVV4RswoQJ6fpevfwPB5Rm9+7dIVuxYkXIli1blq7ft29fyObNm5fWLlmyJGSXXnppyJyLAADK4woQAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBDDMGAIrzyiuvhOy73/1uWtvU1BSyO+64I629/vrrQzZu3LiQGRQK/A+vvfZayP7yL/8yZG+//Xa6furUqSFbvHhxWvuRj3wkZC0tPhICAOAXBQAAAAAAUDSNAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABWs51xsAAKiqqurs7AxZU1NTw+v379+f5itWrAjZ0qVLQ3bkyJF0/cUXXxyy66+/Pq2dM2dOyHr37p3WAj3X4cOHQ/bGG2+ktcuWLQvZm2++GbKJEyem6++6666QLViwIK1tafHxDwCAnF8UAAAAAABAwTQKAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomGlWAMB5oSuDizObNm1K87/6q78K2fr160M2ZcqUdP21114bsrlz56a1/fv3P8UOgVJs3rw5ZD//+c/T2ueffz5kra2tIZs/f366/uMf/3jI+vXrd7otAgDA/8IvCgAAAAAAoGAaBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFMwwYwDgvHXixIk0zwaFPv3002ntK6+8ErJBgwaF7I477kjXL1iwIGSGFkN5svPR22+/ndYuX748ZI888khaO2DAgJDdc889IcsGq1eVwcUAAHw4/KIAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBNAoAAAAAAKBgLed6AwAAdXbs2JHmy5YtC9nKlSvT2o6OjpDNmDEjZEuWLEnXjxw58lRbBAqxffv2kD311FNp7XPPPReyuvPZDTfcELJPf/rTIXMuAgDgTPKLAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABTPMGAA4606cOBGy3bt3h+yFF15I1//iF78I2ZEjR9LaT37ykyFbuHBhyIYOHZquB3quzs7ONN+zZ0/IVqxYEbIf/OAH6fpjx46F7O67705rr7/++pANGzYsrQUAgDPFLwoAAAAAAKBgGgUAAAAAAFAwjQIAAAAAACiYRgEAAAAAABRMowAAAAAAAArWcq43AACU5/jx4yHbvn17yN544410/fPPPx+yCRMmpLXXXnttyK6++urTbREowO7du9N89erVIXv22WdD9uabb6brL7300pB96lOfSmsvueSSU20RAADOCr8oAAAAAACAgmkUAAAAAABAwTQKAAAAAACgYBoFAAAAAABQMMOMAYCzrrOzM2QnTpwI2cGDB9P1O3fuDFlra2tau3fv3pAdPXq04fVAz1U3jPjb3/52yLZt2xayO+64I12fDVGfOHFiF3cHAABnj18UAAAAAABAwTQKAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomGHGAMBZ16tX/F+F/v37h2z48OHp+gkTJoSsubk5rV29enXIBg4cGLLZs2en69vb29McOD8dPnw4zd96662QrVy5Mq196aWXQjZixIiQ/dqv/Vq6fsGCBSFra2tLawEA4HzgFwUAAAAAAFAwjQIAAAAAACiYRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAVr6uzs7DzXmwAAytLR0RGyo0ePhmz9+vXp+uXLl4fs2WefTWtffvnlkF1yySUh+3t/7++l6+fOnRuyAQMGpLXAubd27do0/w//4T+E7I033khrJ02aFLIFCxaE7LbbbkvXjx079hQ7BACA849fFAAAAAAAQME0CgAAAAAAoGAaBQAAAAAAUDCNAgAAAAAAKFjLud4AAFCeXr3i/yr069cvZBdffHG6fuDAgQ3f1nPPPReyl156KWRLly5N12eDl7MBx1VVVe3t7Q3vC+iaEydOhGzbtm0hy17zVVVVK1asaPi2PvKRj4Rs8eLFIRs9enTDfxMAAM5nflEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBNAoAAAAAAKBgGgUAAAAAAFCwlnO9AQCAOs3NzWk+bty4kN14441pbVNTU8iWLVsWsu9973vp+tdffz1kv/3bv53WXnrppSHr379/Wgt0zZ49e0L253/+5yF75pln0vXZeWPevHlp7ZVXXhmy8ePHn2aHAABw4fKLAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABTPMGAC44GRDjqdPn57WDhgwIGQnTpwI2UsvvZSuf+ONN0L2yCOPpLVHjx4NWTYstb29PV0P5EOLq6qqXnjhhZA999xzIdu+fXu6/lOf+lTIbrrpprT2oosuOsUOAQCg5/GLAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABTPMGADoEbIBx1VVVWPHjg3ZkiVLQta3b990/aOPPhqy73znO2ntm2++GbKvf/3rIZs9e3a6vn///mkO56vOzs6QNTU1Nbz+2LFjIbv33nvT2qVLlzb0NxctWpTm2eDibNh4VVVVa2trQ7cFAAA9hV8UAAAAAABAwTQKAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomEYBAAAAAAAUrOVcbwAA4Exqbm4O2fTp00M2YMCAdP3BgwdD9sorr6S169atC9nPf/7zkO3fvz9df+WVV4asvb09rYXzQVNTU0N1hw4dSvNXX301ZE899VRau379+pDNnz8/ZB/5yEfS9bNnzw5Za2trWgsAAKXxiwIAAAAAACiYRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAUzzBgAKE424Hjs2LFp7e233x6yQYMGpbXZ4OJvf/vbIdu0aVO6fuDAgSGbNWtWWls3fBm6q7OzM2SNDi2uW7906dK09rHHHgvZxo0b09qRI0eGLHt9Ll68OF1vcDEAANTziwIAAAAAACiYRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIK1nOsNAACcD5qbm9N82rRpIevXr19au2vXrpCtXbs2ZBs2bEjX33fffSHbs2dPWnv11VeHrL29Pa2Frmhqamq49vjx4yFbv359yJYtW5auf/HFF0M2atSotDY75i+77LKQtba2pusznZ2dad6VxwAAAHoCvygAAAAAAICCaRQAAAAAAEDBNAoAAAAAAKBgGgUAAAAAAFAww4wBAE6hV6/4fxXjxo1Laz/2sY+FLBvM+tOf/jRd/+1vfztk77zzTlo7cODAkF188cUha2trS9fDh+GVV14J2fLly0P23HPPpesPHjwYsi9+8Ytp7Z133hmywYMHn2aHp2ZoMQAA/C2/KAAAAAAAgIJpFAAAAAAAQME0CgAAAAAAoGAaBQAAAAAAUDDDjAEAuigbcFxVVTV16tSQtba2hmzbtm3p+i1btoRs48aNae2Pf/zjkC1ZsiRkixYtStcbckxX1A3VXrZsWUNZe3t7uv7KK68M2fz589PaoUOHnmqLAABAN/hFAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABdMoAAAAAACAgmkUAAAAAABAwVrO9QYAAHqKXr3i/2CMHz8+ZHfddVe6Pqv9wQ9+kNZ+5zvfCdm+fftCNnTo0HT9zJkzQ9bW1pbWUpZt27aF7MUXX0xrH3744ZCtWbMmZL/5m7+Zrr/nnntCNnLkyNNtEQAA+JD5RQEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIIZZgwAcAZlA46nTJmS1vbp0ydkW7ZsSWt37doVsvXr14esbhjyrbfeGrJFixaltYYc90zZ8OuqqqqlS5eG7NFHH234737kIx8J2dVXX53Wjhs3ruG/CwAAnDl+UQAAAAAAAAXTKAAAAAAAgIJpFAAAAAAAQME0CgAAAAAAoGAaBQAAAAAAULCWc70BAIDS9OqV/6/G+PHjQ/bpT386rZ00aVLIvvOd74TsL/7iL9L1x44dC9nQoUPT2pkzZ4asra0treX8dPDgwZCtX78+rX3ggQdC9thjj6W1X/ziF0P2pS99KWQTJ0483RYBAIBzyC8KAAAAAACgYBoFAAAAdKTfpAAACJhJREFUAABQMI0CAAAAAAAomEYBAAAAAAAUzDBjAIDzRDbkOBtaXFVV1dzcHLKNGzeG7OjRo+n6N954I2Tf/e5309o777wzZNdcc03IDDg+P5w4cSJkTzzxRMh+8YtfpOv37NkTsoULF6a1WT5jxoyQZccrAABw/vCLAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABTPMGADgPJYNOK6qqpowYULIPvOZz4Rs8uTJ6fpvfvObIftv/+2/pbUtLfGScdiwYSHLhthWVVW1t7enOd3T0dGR5tu2bQvZgw8+GLIf/vCH6frbbrstZJ///OfT2ksvvTRkBhcDAMCFxy8KAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAK1nKuNwAAQNf16hX/32PixIkNr9+0aVPIWltb09pXXnklZN/61rdC9slPfjJdf80114Ssvb39NDvkdJ5//vk0f/DBB0O2efPmkF122WXp+kWLFoVs7ty5ae2wYcNOtUUAAOAC4RcFAAAAAABQMI0CAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAKZpgxAEAP0ZUBx/fcc0/IJk+enNb++3//70P2k5/8JGQDBw5M1w8ZMiRks2bNSmvr/kbpDh8+HLJly5altT/4wQ9CNnv27JD9nb/zd9L12TBjQ4sBAKBn84sCAAAAAAAomEYBAAAAAAAUTKMAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCtZzrDQAAcOb06pX/X8j48eNDdvLkybT24x//eMiGDh0asueffz5dv3PnzpB99rOfTWuvueaakLW1taW1PdHatWvT/OGHHw7ZqlWr0trRo0eH7KqrrgpZ9lhXVVVNmDDhFDsEAAB6Ir8oAAAAAACAgmkUAAAAAABAwTQKAAAAAACgYBoFAAAAAABQMMOMAQAKlA05vuiii9Lae+65J2QTJ04M2Te+8Y10/c9//vOQjR07Nq0dPHhwyGbNmhWygQMHpusvJNnw6GeffTat/e///b+HrH///mntjTfeGLIbbrghZFOnTj3NDgEAgFL4RQEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgII1dXZ2dp7rTQAAcP7q6OgI2aZNm0J23333peufeuqpkL333ntpbTZQ+Utf+lLIFi5cmK4fMGBAmjeqK5fGTU1NDddu27YtZEuXLg3ZI488kq5/+eWXQ3bdddeltZ/73OdCNnPmzJC1tbWl6wEAgPL4RQEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIJpFAAAAAAAQMFazvUGAAA4v/XqFf+3ZNKkSSG7++670/WjR48O2b/9t/82rX3sscdCNnny5JC1tbWl6y+++OKQDRw4MK3NNDU1NVzbFa+88krIfvazn4Vs+/bt6fpp06aFbNGiRWnt/Pnzu7g7AACgdH5RAAAAAAAABdMoAAAAAACAgmkUAAAAAABAwTQKAAAAAACgYE2dnZ2d53oTAABc+Do6OtJ848aNIXvggQfS2meeeSZkb731VsiyYcpVVVVf/vKXQ3b11VentXUDkRu1b9++kK1evTqt/fnPfx6yhx9+OGSzZ89O199zzz0hmzdvXlqbDY8GAAA4Fb8oAAAAAACAgmkUAAAAAABAwTQKAAAAAACgYBoFAAAAAABQMI0CAAAAAAAoWMu53gAAAD1Dr175/6BMnjw5ZJ/61KfS2mHDhoXsj//4j0P29NNPp+tnzJgRsr59+6a1c+bMCdmgQYPS2sz69etD9vDDD6e1r7/+esiGDBkSsquuuipdf/PNN4espcWlPAAA8OHwiwIAAAAAACiYRgEAAAAAABRMowAAAAAAAAqmUQAAAAAAAAVr6uzs7DzXmwAAoCwdHR1pvmHDhpA99NBDIXvmmWfS9W+88UbIpk+fntZ+7Wtfa6h2z5496fpscPFf/uVfprXjxo0L2Wc+85mQ1Q0zzgZCAwAAfFj8ogAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIJpFAAAAAAAQMFazvUGAAAoT69e+f+rTJkyJWR33XVXyNra2tL1L7/8cshWr16d1j711FMh27JlS8h27drV8G2dOHEirZ0xY0bIbrvttpANHDgwXQ8AAHAm+UUBAAAAAAAUTKMAAAAAAAAKplEAAAAAAAAF0ygAAAAAAICCaRQAAAAAAEDBmjo7OzvP9SYAAKBOR0dHyDZs2JDWPvLIIyF77rnn0trXX389ZO+//37Impqa0vUXX3xxyG6++ea0dtGiRSG77LLLQtbc3JyuBwAAOJP8ogAAAAAAAAqmUQAAAAAAAAXTKAAAAAAAgIJpFAAAAAAAQMFazvUGAADgVHr1iv/bMmXKlLS2X79+Ievbt29a++qrr4Zs27ZtIRs4cGC6fvTo0SG75ZZb0tpp06alOQAAwPnALwoAAAAAAKBgGgUAAAAAAFAwjQIAAAAAACiYRgEAAAAAABRMowAAAAAAAArWcq43AAAAXdWrV/7/LmPGjAnZokWL0tpjx46FbMeOHSEbOHBgun7WrFkN3T4AAMD5zi8KAAAAAACgYBoFAAAAAABQMI0CAAAAAAAomEYBAAAAAAAUrKmzs7PzXG8CAADOlEOHDqX5mjVrQnbw4MGQtbe3p+tHjBgRsrFjx6a1TU1Np9oiAADAOeUXBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACmaYMQAAAAAAFMwvCgAAAAAAoGAaBQAAAAAAUDCNAgAAAAAAKJhGAQAAAAAAFEyjAAAAAAAACqZRAAAAAAAABdMoAAAAAACAgmkUAAAAAABAwTQKAAAAAACgYBoFAAAA/7/27EAAAAAAQJC/9SCXRgAAMCYKAAAAAABgTBQAAAAAAMCYKAAAAAAAgLEAVJD4MRXaaXMAAAAASUVORK5CYII=",
"path": "images_version_6/image_39.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
then the degree of angle 2 is ()
Choices:
A:100°
B:110°
C:120°
D:140°
|
||
196
|
40
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ8AAABjCAAAAACgII1eAAAa90lEQVR4nMV7e7BlaVXfb631fXufc8999e3HdM9MzwAqAspDjEQJIUpEB1Si0QQ1kRhfiQaTGI3xGSsV1Cq1KmpMhJSWKCSYYGI0EomYogiCUOKAwPBwZBgdZnr6dvft+zrn7L2/b61f/tinZ7CVqqmeRr+6d//u/s4++679Pdbjt9YW4i+pdRNU89S3WE4PNz/RVfoXKdKfal0tHeJKx4Pph9O7PtFVyr+ktkTKfsST1m1c/I07XvKq6z9fyZcEAAHI6vhn2yenn9Nh2JTDdv1Kfvkdv/rzH7peDo7XJjzyrT/vnp+8/klclPX6nub8NF38iud9xonr5eD4RwJAgjCSEJG47q76SeqP4+3Z8Csf/bLbhi/9yi+SoxPXy8FRzBQgSEBW/fW6+6ZPWv8s3njPU59xZbLZrx1O5Ho5VgOYdDWasjqk65/7k9Sv2X/1zV/yYpzE0i/85PO/8MR1clS59jUAEClAAISoUlSpAlWI3ux+PXC9PFe/JK//f1/7YscuXn1w19kvmyAcoAgiRNyRhAQgBEgRlIxqEkqBq8CNVITITe+Phc4wx+yNf3jur29cvR3d5PCBOzYOtiIUIQYXZQ1ViIzDHUFRCUQIxlVAY6iTCLGb3a9H0xalHV5/38mvSPefQf/QzvaTFcstESERvWlIgrvatWVBMmiAmEJVRFVEZUS52f282uCBSO99285LU3mCRLl1++C+fWxDVNRUNSdSxGK1HK/t95XW+QTK6+b19xVDNPf+1m1fF1d2DHvbir7bwsFWQFdKuTBLrSkBFJVVA9wBB8IBkIgAInCz+2XW8+Q7X3P2xdCl8cM7undRtvqr6h7j5XQKkJIQlFE/A4JgVfOq4oQ6VRxEALjJ/Q3W+YG7z9+VuuPzuHgWWF8CtV0LEYCIGpqUQIqAAgmsQVFJoMKoMBqMCoFAIbjZ/fc96eGffvK/QFw5jUunbTftNPul8ZJFAA00oUCp1opDBHBGJZ10unPgQNZC+s1Gj8WCw8H8Ij/w9a8bDivrLi/ssjBqkAxnLI97MsKDJA+X1WsZ9QxAsLBWCNwBOvVm4+J4cTyHHJ956PV3PbduDId2eu/s6cNdiAHRL5zSzhoOAnp1YmNiakoFwJUKVIXCSLPgTcf1bus0y8aZ3/r+refMph/LLS5Mugf+yW8TEGhuJUIAOEQYQQQBqGogggzCYIpAZsUnA3HU43DAB1/33s99YhO3p/7SOTv4n6/dDQKApiQ+VKIFNJkpuq53AEoQoqZ0EKgFrAF4vel4Rxzeun3Pmz9l9vC8LHiw6XF04qufVU1Yh6EG1DSqqBNiAkzabACTQgExREAEKSGbIgdvNu7tLBXv/43pt/p7P38Hh+vLE3rqj++89SSCUFVQVOGUkhJIyrgtVuuPDjOQMIQYCLWbjSdw5tSfvOvMlzcv/cC7ee/mlWk3v3TLonw0CEsKwAkgqDp6BH0lCFUiImqtUJSeFYcVZTngpqNcwsVfuPjFd+pTPu9/fOg25LJ1tF3XtFUTAbsDqcvBw6PR0S2wJACBSrJWshYnSVbS/SYgYzw8xHt3GVe4zyuv+J6HeJlH/KFXXOTlq3sk+dwfGY6Ch8HFx4Vuh3T2POT9B1yqATADaIroCoyuCjxuBB1w4ty9Tzx9sZ9e1Adec+ofTqvXNX7lh9+Cne2tergcbt+yJBAgDwF4JehICDS7GSfSpaRgdQA+DisDy7mjmw+PG0F3AuWkLna4vKX+7/mznrw9nIFeevodv7cvu4NtTA+ajx4OgDjcOboRQbRw4MxebEYboA/FwwvLspI+0CsZzseN4e4evMT9B3gU/PHvfyfZfexwwfv4vq96S/T0gw/++Ea67+HKrnI+BFlLkJVkN/Do4frAR7mboEKEKNQUkFQyGCZ4vDjOMv3U5e2tq0l+6f5v/lTE5Q3rp1tXP/PqHzy/ot/c3Pi8k83UkAytgVAwTEpGds7Wl6/+uW//LAVERUWpWXzpMg90y4rh8aIHIxgeSMMa3/D+b3rGbO/Czubadlmb4PxeWWvCF7NnPOXEBkp1GOgORAUqQk128R0PvtX+ZgICCtYEACbYUExD0djjxKoImHL/VH91+r67X/j0h27b6KdDmaWa/Zm7x2vtxLhdF1lQJQIZCkAs1DBMFLd8x5WfPvf2f6rwoQR8QH/YW2PVSGg4Hy8mEUAk7fTd2Te/4ZkvPL5tns9d7GcPixXbPooGDY6R5gXIkxyFoiqwRGQMCHxd/dlzDzWfo8MytZz3znbWFnSOeoArWo+q90edxn6UYxxpXTjnXGrpH+s5Ytcl9oij5nff+oyXHG1hBtyyzrN7B9Oj+bm97njenYZvrAUIbycy9BHDgMPjYZiGwuUUXvmmSbr0M7+8PDdbHtZcpstJp23H6fFadOuDa6L7pA7rx+tDTVhOh7WFTB/jue7Y1UFms6NTe/fJqR/ZeCh1s+P1ZR42QvAnw+sGERFGRMndWpdr2zOhSju84KXPm8XVfvPk8K9f83e/VPjHu2mY23SRylo36SwNDYNNv7ZkK300WnyynHqZoW9rM/CxnmeZXmi4vvcpr9190Wdcnp9YtEc7eztHk8XZxeX1jRr7aoygrI/ylenAhCrN8a23TRZlrf3yd03+8Ude+6PyJyfWEaVFaE01VaOMgT8IgcMQUDfUhFCA1Md6HuqiON591flv0/m0a9LQDE1NQJmvNVhOr4WcNfVtySU7DS5WvZI6sd0H58/r/+gzhLUUnzUlgxIKlFxyNynZDQxDqBsIcbsWwD7G873p1PbWFrs/+VWfj/maHuxQ3NwoSxldgAhVoCZKTaFxjWiOHlPgaLl+9bbhypkDOV6263XI6TgNa9202PH21RN7O3vbxxPp2GJo+0mV2vZrnoZmSI7HeN5atxF805vv/IbJlbRREvvZ/vb+Rodhaou2OTgRFUlqyXWc38SRNG3Kgskmct/5fh1dKzyUdQFLg/Eh3NyAoXkk5HcD3ChuJQ9N6GM952Lm97ztYz88P2g3S6yjpr4dGjcK9ieTow2QiojkNjQ1VVsRGB2bxEXkCS5qmk6U65PDqyEdQFRUENKP66KMHICjosAfIV8f4/n8eFbf/Z/zK8rszIncBGho0cBwtaLvsUaIApogqwh51RojpJlMBsjpE5cHYYQJZTQjAFwFQR0JakJCEYpxeblDcu+tFdfmelxiiiEa2c07l7bzQX8m3vWG275ZQgQjhVdyyQH1yAAQ7HIzLDe0m2BIWnJNoCeAEIZckzdBEhAhiaPvNZiB4ZJW+2nIzuw1F1VFUqANRc78cxBoQuen9i9s5CpnusP/tvktIwUDEXG6gVUUDoWoYqpoVEk3Zx5yKdmFYYJQA0mKrpgHMBymqmZiqpZSMpGRHTMzUzNrTCDwgpHy8j+DqgEoFjaJ9bo/w94PnfvGQ+yq0D0IQ4PsOUNzGj0bhUeiJENOmmGqKUsdohwvgWNwNX5wQhoBFWJAM7r/WK0LZBigWQyghDsSizSsvA4TpEYC17rJSRy0dv+/efbXZxwpREGGKNXhCcUMsIjqEyzapiQFEtCMTDjrDCoGTFWv0dUSooIy2nMqg6ICBokQ8RSRWJMEFdo4RVQgJtchIApAZgeTfr6V/ug/PvsfbOxv6GTVDxYrVkx9pSfzKpodrMJADVc41BBIcLlGoyc3VYAuigDCWwYQAlUqIFLFqeECIFQoIMYw43oEhK6CFkOdfewX1r79cG9t91y34pERE20xNU7gVbIAGWgVoqmGRUkCj6GVSXQyiYXOPCCqq/yM0huBUgCIicBjDHYAM1ChBgGchFZRVDG/DsMlRZFmPivrw/t+d/oDb3/ucN9TFqIkRQSeIWGgwKCCUBZNNRpDqqIwgUpOcFuj2AYwZrugiugH1+wABDAPCOgDOAYrBlOoyUjXpGzANdH/FKooVASGwzR9y3tfzs/da568t5ZFxUt1HLHGEbp5ACaoR+BQ4R0CBESFEG0Q+6MPjWo5mYDico0qrq6GSKt8A/qky5TmG0OWiAQMtUmkrkiHZasoahgaoKiBuJA3FzIrdTMOX3n8igdvWUWZ87VrtPJoXpU9GgXAEBGGuefxU18pPYcBnLcZWOWPSMIcSRFSOK5ok0BjMgWH5GBYMiEFyySMFEpCGBAKhRS5dE48TbJd8fj35bs+8LSVPDIdtb6bhFsCirYCRCQYACkmhqiS6xgxi5ISIpgaIkzSKB2AQELQdMyGOLJHBhKUKjo+XFGFqDFCsoYkOpIAiaGSnXUDi+708MPz74qn7Z4BAiIweCRBbcZB1GUrgFPRtzKYBRTgOCCoIaqjnYIBQUoiSagIBEBQMDpKFNEKDM2oCeCqCAo4AcQIQTALafDIAk/b+7FZl7YT/+X+f3s22IFBioiGk2IZkshQNIqoSAovaWhtEiJQGYn6BCBGUaVr7FrX2CxACoIQvZZLDscQlKpqOspYmqAIgzmqmkTN7moSrpMJLqUNvOrdPzk7nszPBwRCBsU8FLkkkaiaMj2gCuQskwQtoKiG5xWX1qX8cd4CksiYTjdRDyiKiIaoVaWSGY2LD402YIUBjEoziCKpIhmQ1KCKpWE5W3vw19/7fSdw0KKbQMaMrkI8FOEJRhUSpkCULEgoSAiKRM0RkQDkkTGVVlFpqoCoCtBDIpJSU1aGQIqkigSYWEoo8DABTTQloaprEkKk6jgFVi8Oa7u/fc/ffwIfOk0eizACOv4DARsJIAk4qiMUjQJfqoglhWWYiROSTckoPQEVgQYBUbOeIASRFOKlwEIQBMOBBnV/XMRMMIMPBceOuuiJo4q6GAidrG+VX/vQy/7a/fVs3wynQa8+Js/EBJDoCqL0qgIAavAFYNYDiJWdLf1I9ltq2mWBJoEQUdDImJ01HG3ULrdgqACVSZYiOt4zqALsb3u3JpSSESLg1Z0raWtuE9z3pPLae77ms/FoY82xv4O+NtmPtkPhKhSgWi2pGfWcGysBxnTZqkf247WMR9VhiCsQYICGmnTRqKGWnI6b5pE035goDqiQIqgJCAkoSPBwww7XmiX67dfc/dVP3rq2tFlMIQjF6ncl37IJNAh1GIDaz1ba25eTNMYXQAjCwk0pGuNOZcpm2WQm4UitsEkAY5whAekxZiakltrRD8WLSC3gIos3OJxu/df3fNZfPTEHotYAhA4PMALKSmV1esBzSjqqRnd3nTDGDIO0CTUwGOBeSwHBIJMhXBJsEVl6TXVWC5NGPwFrSNJRQBkPogRTHsRaJAdyaJlVmR3XW/CGt931/BAZ08kiSSEYlBqWYkjN+JyQBFWAIaCHNgiADkIziot3DSgmjDJu8yRwGuBrABoge0ox0BrQYQnwkekXyqruIwSkZKhWE+Mkjrf58Dbe+d+/5MX1wc2NgBgIomYkE6BiXOhmMIWVHDQkWeZkGHOUYAi6CSInCCkKiPZJAWgCEgTRr/ViFVqnqG4WwwQmAGoanxshY7q4sMK75MyIaICqCfKEeN37v+BvEGnTIeMGXVl7XyW5XB3q0KgaNHpqFCAUIQJRgSktAanSBKQkgzNBCZEgEprGmpSnqEMksTLOaenH3DUQUDMBmknStam0ChgqZUA7EPe84/zLJpfTSSkqK8ctK/rqXYh6hUTEWFXVmAm9FBMfBgI1xv3XAopYQkDWviLIICGuqENqUEqTFj5NB7OEIgr1qkngqzAEw6pSptoCMy6bREF0OeM42/C2tz/xayDp8il0E4RzrDeIoZUiCe5ZQkNBAdwYhpI4JohiZe8RWiSVbgMAomY5niRSIa7OkdsZHbugIYrma3Pkg7Te6RqlGzax8PVrrtzBxiDN4YbTp3f/8qd97QxwgxvQtyVXIjSttJ0AWJWb9MvtioQqNlYZiIX2debLNhWmUdRxTZZ8ZUd4VQi4xWBiHH36lWAxqmxYjIsklJ5WvqIKMG8Pt+VotrTM3/nNZ760n2p4Dk8SQxatdXKtRKKousmQa1gCKHXIGV5bUhCi3SQ8o2QQQhcbAEJEiizb3c1tddSAmiUhCRaEE8KIIEyiQIVQgbukQkAYJOhqSUDyKP3+m572RfGoH+QpxkA+AK9jmUiQkpPEmOtlQAKipGk4NAMKiCA80DRN2zY5TY8x2d5RHb1TUwAirAUMp6KaQKDJAJZK71IFSo8BagrCJvPNxfHsaHLmHf/39q87/ZGsUIWqMFJggNHDa/WAmqiKAaZeHHPNqR9kGhgjnEyQHs4g1AwDATpxdOpEzHBZk2QFa0V1UckTmKrAVIQBSAagKpYkATmPhVVCQXUvLsn2f33npe6f3l8bvhpQDGGSzFJu0kq9p94BVQMBERXUVYDW0MMpVaKGJEWtZK01Zns//fmvxkYay0vUIGrjihMCIFZFRT5utAS4Zax2mwBl42A9LycXfub2l5ycqy1ajbAINUF+tEgNiDAEFK4mQmAtyAkQcBEBFC7KBEAdQGCiQAawe+aphw+CqSanwUaftYZCGDAGFBE0gUtm0USUyCwJrGISnhUZ/f3v6f/WbcsZdh/hC1XdMKljNLDacQyN1jDSAO4JiEiEIaiIZrUuoQyOeXwROYHnfJ7XSUrQQBRjWBrdSRNADFBxhhlEUCXRnIjSoPZmiH59f23Z1N+5+2frlfV5PVMVSigFZb5dUx+NEPw4lbAK/UE08M4mY81OWEDAmsKooJsCI7kmD59d+7H3viDBrZNo97dX81FNNELT0DASegvRwrXuqKlrMnCGpa0DRdYjtUv7+b0fRjqJFkgIdRsaSt4egBlKNoqhZI4BvJbsKm6lQehsjLxgNjRtTcyRa3JTs5qowPEgm2eRnn3XBeFBSu3BTOvKz6MICJGSyRTFUm1Ykog4U0EeUkEjDgvthlde/rH9LYAAUcJqqso1sCIJjlstyNG3JWlRqzY0VXNvrkIxxHI2ENLMW+va5bSkoRkaDM3Q26ShN8Dy39lzvuC700O/8JZh+1jTsJoE5VhjKZ60itTUTaWXtQ55oUo7PDn3SSpFZlef+ZE3vegLZVUHB9NIJRWxSgElDVkrUpSmmhZNJQ+5Su6SOlUotlwbADSLxvq2m5bU55JRcmme9cLnrMfu8tbpWz/lu7Gebn3eKWJf22G0s2IeouKRuzYtrVmuL6ZRtX3/7I4eqebj7Y6N9kXOP/ifnvuqcnT66JpazsNsPlnqpGdGkXaREFDUXJIUTaXpmyK5s7aPhKptNxkU0XTJ+ulyWlKfhwZDU/on7AyD7qDOb53MX7krcYx1CFZutKzsHz0NDYppTTUNmuIXz79AgZIfMRPd/3nH1z794+rmayp5aHpLq3pOrhhsqQmuElqTixZThqGqllwNnoppySWH1lQySq4m8JISdn/t7u+942+fV1nj0VVgrqorT0oVkIQMJEWCowb6931oEQUdUGI4Xnp3+T+89fuevtysl645TgkZDbIxIiKCMnrdsjJdgpWBgdjqxiqiSAqDQpGggCJd7iAJRxemn338L5/6lB9P+7NNXLxsLVeEb6z2R5hHijAhWkUu8yyAIpIo1e9//5VvXmws732GPxLqU0JDKYZrVaMCisChTvNUmqoWQkXAEKvMACGhHBMmAMHT4CG2NjaOP/1l9d1f3KTt/e7sKaM8Un+uozckUIqE+HHjpWaheskc+nWIyOKDb/yuOycHOzu7t7hg5SHC1VXc4DC4CQUUwBSmMJgkQRIfGR5Z/az+L7n6U/Y3dS3o87z2wksvGpCwtUkDKzIhcNOVF6ffuHv4lssnr5445X3S1jxfnqH92BNxuDm99Jt/8M+eLNgCzsC6CUq0lIoMdbOCDIehICNgcM/qMLBkOD7+cwPcUGDJRVgzXOHbQBO0LQCn0TzCxEge7e6YryD4LdMv+poXFBk6+HLa9ifm/Q64f4dz84q9857vfLquhju8ggK6KCOIG8VaK2MlwUjdkBx5hZWIURPDwqHO5M+660n9937k3MnUNduDtrJ+eDpJbweytvP63/3y8+NTALAsSAKJBIZq8AYxiwmdwzQIFXLkv0RXNJOOLDAgqioK/bYnfbT9VMUcc22WjpnqoWECmZbff9Oznr9/RAYjItAYVOACVJrUG0WYwMwSGau3BAiOjitICKEZmiBJkRT64e7E5cvkVuxgsdVefup76NJv7m/6H776rpftrW2aJUspZcALWVxYK8ByoxgVMMWjCvbR3QoSMtAdqIQTTvB82f6Blz9F9qQiBSaf9uEHT8hB0+KNr3/2S+D5Wnk3BiBEtFGRJkMeBwLVUURUAIqMlG5a6S4II9QjxKGO5On46v/60PF8JoutdLw5Pfu033kmWsqb7974BvzxnQfcIglR8fERZeW65hvGkacqWUFSZHVXXZl3tJpNLJmmpCkh5Z1ffNH0XI1uC5dmeHj9S95+GVuHB6+5/V8Bd16dbouqqgkCcK9D9J2jHve4URy6Qm3SGlavIK2K2kHOD3sy6iPldwM5kHz5j/IbP1KWPL7akcG9f/59F/mO73n9WCboZXCyzLux0M+DlRwtncdYAXjD2HVBct+5mJMyJAFQlxsAQxmqfYu+ja/8/Wes/crF2dWdKVAW0eTmO5sX/OanflODCKii6ujMjumDR0zjsGINa7pBHOuxI0wQIiPFFNAZADL4iD39K58jzfkdmy6AXibIGt/xEz93199pxqS/Ak4jwjAeJIQUeJRcO5vG8ewGccMAOEXGZLoQ6LzJCGWIoiaUjJIB3z1XuXcLh4VuAWVouh+79VtHvg0E1aFSKZmj/hxMBSBtLBEo+YaREWKCygxAa7BZy6gY/eZH3ZHu3IVlrgvxyUZ4fzzrfvCOf7Q4QnAsTBJTlWRaRIRUgajQYXCaOPMNIz3UBJ3mcEBNAIH3uqLRAgEEYmnhVm/LQ0z10mG7+cAPTf/e/uH0ala6U3PUACBWOcZljQEIol/28EV3w+gu2QQuOr6vQnjVjJoQocohr/aH4uqsuffOfnK0g/tvmX7ozR/8wdMP3nYQJ1YZpkIxBMxNAjrWNzFgoIyM+A1iVR3zOlABqYTlBBgjYjQoCij0oG4/jNtjmgmsTy/90vwnTu/eergVgJopkHNWBZAkHChz1K6IGShj1H2jmBTse6guFwBCPuH7v4u1kZS8eMuFc+Wn7n0VQlZP+hfSugnCTa9/ze/RFqMXjUv53MM/deJVq175hNff5DaGLX/mNcRHm4MiwIXPxAO/d/ar/iJFAzDKp4L/D/gCv6G8X472AAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_40.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, it is known that the straight lines a and b are intercepted by the straight line c, a parallel b, angle 1 = 50.0, then angle 2 = ()
Choices:
A:50°
B:130°
C:40°
D:60°
|
Như hình vẽ cho thấy, biết rằng hai đường thẳng a và b bị đường thẳng c cắt, a song song với b, góc 1 = 50°, thì góc 2 = ()
Các lựa chọn:
A: 50°
B: 130°
C: 40°
D: 60°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, it is known that the straight lines a and b are intercepted by the straight line c, a parallel b, angle 1 = 50.0, then angle 2 = ()
Choices:
A:50°
B:130°
C:40°
D:60°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, it is known that the straight lines a and b are intercepted by the straight line c, a parallel b, angle 1 = 50.0, then angle 2 = ()
Choices:
A:50°
B:130°
C:40°
D:60°
|
As shown in the figure, it is known that the straight lines a and b are intercepted by the straight line c, a parallel b, angle 1 = 50.0, then angle 2 = ()
Choices:
A:50°
B:130°
C:40°
D:60°
|
197
|
40
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ8AAABjCAAAAACgII1eAAAa90lEQVR4nMV7e7BlaVXfb631fXufc8999e3HdM9MzwAqAspDjEQJIUpEB1Si0QQ1kRhfiQaTGI3xGSsV1Cq1KmpMhJSWKCSYYGI0EomYogiCUOKAwPBwZBgdZnr6dvft+zrn7L2/b61f/tinZ7CVqqmeRr+6d//u/s4++679Pdbjt9YW4i+pdRNU89S3WE4PNz/RVfoXKdKfal0tHeJKx4Pph9O7PtFVyr+ktkTKfsST1m1c/I07XvKq6z9fyZcEAAHI6vhn2yenn9Nh2JTDdv1Kfvkdv/rzH7peDo7XJjzyrT/vnp+8/klclPX6nub8NF38iud9xonr5eD4RwJAgjCSEJG47q76SeqP4+3Z8Csf/bLbhi/9yi+SoxPXy8FRzBQgSEBW/fW6+6ZPWv8s3njPU59xZbLZrx1O5Ho5VgOYdDWasjqk65/7k9Sv2X/1zV/yYpzE0i/85PO/8MR1clS59jUAEClAAISoUlSpAlWI3ux+PXC9PFe/JK//f1/7YscuXn1w19kvmyAcoAgiRNyRhAQgBEgRlIxqEkqBq8CNVITITe+Phc4wx+yNf3jur29cvR3d5PCBOzYOtiIUIQYXZQ1ViIzDHUFRCUQIxlVAY6iTCLGb3a9H0xalHV5/38mvSPefQf/QzvaTFcstESERvWlIgrvatWVBMmiAmEJVRFVEZUS52f282uCBSO99285LU3mCRLl1++C+fWxDVNRUNSdSxGK1HK/t95XW+QTK6+b19xVDNPf+1m1fF1d2DHvbir7bwsFWQFdKuTBLrSkBFJVVA9wBB8IBkIgAInCz+2XW8+Q7X3P2xdCl8cM7undRtvqr6h7j5XQKkJIQlFE/A4JgVfOq4oQ6VRxEALjJ/Q3W+YG7z9+VuuPzuHgWWF8CtV0LEYCIGpqUQIqAAgmsQVFJoMKoMBqMCoFAIbjZ/fc96eGffvK/QFw5jUunbTftNPul8ZJFAA00oUCp1opDBHBGJZ10unPgQNZC+s1Gj8WCw8H8Ij/w9a8bDivrLi/ssjBqkAxnLI97MsKDJA+X1WsZ9QxAsLBWCNwBOvVm4+J4cTyHHJ956PV3PbduDId2eu/s6cNdiAHRL5zSzhoOAnp1YmNiakoFwJUKVIXCSLPgTcf1bus0y8aZ3/r+refMph/LLS5Mugf+yW8TEGhuJUIAOEQYQQQBqGogggzCYIpAZsUnA3HU43DAB1/33s99YhO3p/7SOTv4n6/dDQKApiQ+VKIFNJkpuq53AEoQoqZ0EKgFrAF4vel4Rxzeun3Pmz9l9vC8LHiw6XF04qufVU1Yh6EG1DSqqBNiAkzabACTQgExREAEKSGbIgdvNu7tLBXv/43pt/p7P38Hh+vLE3rqj++89SSCUFVQVOGUkhJIyrgtVuuPDjOQMIQYCLWbjSdw5tSfvOvMlzcv/cC7ee/mlWk3v3TLonw0CEsKwAkgqDp6BH0lCFUiImqtUJSeFYcVZTngpqNcwsVfuPjFd+pTPu9/fOg25LJ1tF3XtFUTAbsDqcvBw6PR0S2wJACBSrJWshYnSVbS/SYgYzw8xHt3GVe4zyuv+J6HeJlH/KFXXOTlq3sk+dwfGY6Ch8HFx4Vuh3T2POT9B1yqATADaIroCoyuCjxuBB1w4ty9Tzx9sZ9e1Adec+ofTqvXNX7lh9+Cne2tergcbt+yJBAgDwF4JehICDS7GSfSpaRgdQA+DisDy7mjmw+PG0F3AuWkLna4vKX+7/mznrw9nIFeevodv7cvu4NtTA+ajx4OgDjcOboRQbRw4MxebEYboA/FwwvLspI+0CsZzseN4e4evMT9B3gU/PHvfyfZfexwwfv4vq96S/T0gw/++Ea67+HKrnI+BFlLkJVkN/Do4frAR7mboEKEKNQUkFQyGCZ4vDjOMv3U5e2tq0l+6f5v/lTE5Q3rp1tXP/PqHzy/ot/c3Pi8k83UkAytgVAwTEpGds7Wl6/+uW//LAVERUWpWXzpMg90y4rh8aIHIxgeSMMa3/D+b3rGbO/Czubadlmb4PxeWWvCF7NnPOXEBkp1GOgORAUqQk128R0PvtX+ZgICCtYEACbYUExD0djjxKoImHL/VH91+r67X/j0h27b6KdDmaWa/Zm7x2vtxLhdF1lQJQIZCkAs1DBMFLd8x5WfPvf2f6rwoQR8QH/YW2PVSGg4Hy8mEUAk7fTd2Te/4ZkvPL5tns9d7GcPixXbPooGDY6R5gXIkxyFoiqwRGQMCHxd/dlzDzWfo8MytZz3znbWFnSOeoArWo+q90edxn6UYxxpXTjnXGrpH+s5Ytcl9oij5nff+oyXHG1hBtyyzrN7B9Oj+bm97njenYZvrAUIbycy9BHDgMPjYZiGwuUUXvmmSbr0M7+8PDdbHtZcpstJp23H6fFadOuDa6L7pA7rx+tDTVhOh7WFTB/jue7Y1UFms6NTe/fJqR/ZeCh1s+P1ZR42QvAnw+sGERFGRMndWpdr2zOhSju84KXPm8XVfvPk8K9f83e/VPjHu2mY23SRylo36SwNDYNNv7ZkK300WnyynHqZoW9rM/CxnmeZXmi4vvcpr9190Wdcnp9YtEc7eztHk8XZxeX1jRr7aoygrI/ylenAhCrN8a23TRZlrf3yd03+8Ude+6PyJyfWEaVFaE01VaOMgT8IgcMQUDfUhFCA1Md6HuqiON591flv0/m0a9LQDE1NQJmvNVhOr4WcNfVtySU7DS5WvZI6sd0H58/r/+gzhLUUnzUlgxIKlFxyNynZDQxDqBsIcbsWwD7G873p1PbWFrs/+VWfj/maHuxQ3NwoSxldgAhVoCZKTaFxjWiOHlPgaLl+9bbhypkDOV6263XI6TgNa9202PH21RN7O3vbxxPp2GJo+0mV2vZrnoZmSI7HeN5atxF805vv/IbJlbRREvvZ/vb+Rodhaou2OTgRFUlqyXWc38SRNG3Kgskmct/5fh1dKzyUdQFLg/Eh3NyAoXkk5HcD3ChuJQ9N6GM952Lm97ztYz88P2g3S6yjpr4dGjcK9ieTow2QiojkNjQ1VVsRGB2bxEXkCS5qmk6U65PDqyEdQFRUENKP66KMHICjosAfIV8f4/n8eFbf/Z/zK8rszIncBGho0cBwtaLvsUaIApogqwh51RojpJlMBsjpE5cHYYQJZTQjAFwFQR0JakJCEYpxeblDcu+tFdfmelxiiiEa2c07l7bzQX8m3vWG275ZQgQjhVdyyQH1yAAQ7HIzLDe0m2BIWnJNoCeAEIZckzdBEhAhiaPvNZiB4ZJW+2nIzuw1F1VFUqANRc78cxBoQuen9i9s5CpnusP/tvktIwUDEXG6gVUUDoWoYqpoVEk3Zx5yKdmFYYJQA0mKrpgHMBymqmZiqpZSMpGRHTMzUzNrTCDwgpHy8j+DqgEoFjaJ9bo/w94PnfvGQ+yq0D0IQ4PsOUNzGj0bhUeiJENOmmGqKUsdohwvgWNwNX5wQhoBFWJAM7r/WK0LZBigWQyghDsSizSsvA4TpEYC17rJSRy0dv+/efbXZxwpREGGKNXhCcUMsIjqEyzapiQFEtCMTDjrDCoGTFWv0dUSooIy2nMqg6ICBokQ8RSRWJMEFdo4RVQgJtchIApAZgeTfr6V/ug/PvsfbOxv6GTVDxYrVkx9pSfzKpodrMJADVc41BBIcLlGoyc3VYAuigDCWwYQAlUqIFLFqeECIFQoIMYw43oEhK6CFkOdfewX1r79cG9t91y34pERE20xNU7gVbIAGWgVoqmGRUkCj6GVSXQyiYXOPCCqq/yM0huBUgCIicBjDHYAM1ChBgGchFZRVDG/DsMlRZFmPivrw/t+d/oDb3/ucN9TFqIkRQSeIWGgwKCCUBZNNRpDqqIwgUpOcFuj2AYwZrugiugH1+wABDAPCOgDOAYrBlOoyUjXpGzANdH/FKooVASGwzR9y3tfzs/da568t5ZFxUt1HLHGEbp5ACaoR+BQ4R0CBESFEG0Q+6MPjWo5mYDico0qrq6GSKt8A/qky5TmG0OWiAQMtUmkrkiHZasoahgaoKiBuJA3FzIrdTMOX3n8igdvWUWZ87VrtPJoXpU9GgXAEBGGuefxU18pPYcBnLcZWOWPSMIcSRFSOK5ok0BjMgWH5GBYMiEFyySMFEpCGBAKhRS5dE48TbJd8fj35bs+8LSVPDIdtb6bhFsCirYCRCQYACkmhqiS6xgxi5ISIpgaIkzSKB2AQELQdMyGOLJHBhKUKjo+XFGFqDFCsoYkOpIAiaGSnXUDi+708MPz74qn7Z4BAiIweCRBbcZB1GUrgFPRtzKYBRTgOCCoIaqjnYIBQUoiSagIBEBQMDpKFNEKDM2oCeCqCAo4AcQIQTALafDIAk/b+7FZl7YT/+X+f3s22IFBioiGk2IZkshQNIqoSAovaWhtEiJQGYn6BCBGUaVr7FrX2CxACoIQvZZLDscQlKpqOspYmqAIgzmqmkTN7moSrpMJLqUNvOrdPzk7nszPBwRCBsU8FLkkkaiaMj2gCuQskwQtoKiG5xWX1qX8cd4CksiYTjdRDyiKiIaoVaWSGY2LD402YIUBjEoziCKpIhmQ1KCKpWE5W3vw19/7fSdw0KKbQMaMrkI8FOEJRhUSpkCULEgoSAiKRM0RkQDkkTGVVlFpqoCoCtBDIpJSU1aGQIqkigSYWEoo8DABTTQloaprEkKk6jgFVi8Oa7u/fc/ffwIfOk0eizACOv4DARsJIAk4qiMUjQJfqoglhWWYiROSTckoPQEVgQYBUbOeIASRFOKlwEIQBMOBBnV/XMRMMIMPBceOuuiJo4q6GAidrG+VX/vQy/7a/fVs3wynQa8+Js/EBJDoCqL0qgIAavAFYNYDiJWdLf1I9ltq2mWBJoEQUdDImJ01HG3ULrdgqACVSZYiOt4zqALsb3u3JpSSESLg1Z0raWtuE9z3pPLae77ms/FoY82xv4O+NtmPtkPhKhSgWi2pGfWcGysBxnTZqkf247WMR9VhiCsQYICGmnTRqKGWnI6b5pE035goDqiQIqgJCAkoSPBwww7XmiX67dfc/dVP3rq2tFlMIQjF6ncl37IJNAh1GIDaz1ba25eTNMYXQAjCwk0pGuNOZcpm2WQm4UitsEkAY5whAekxZiakltrRD8WLSC3gIos3OJxu/df3fNZfPTEHotYAhA4PMALKSmV1esBzSjqqRnd3nTDGDIO0CTUwGOBeSwHBIJMhXBJsEVl6TXVWC5NGPwFrSNJRQBkPogRTHsRaJAdyaJlVmR3XW/CGt931/BAZ08kiSSEYlBqWYkjN+JyQBFWAIaCHNgiADkIziot3DSgmjDJu8yRwGuBrABoge0ox0BrQYQnwkekXyqruIwSkZKhWE+Mkjrf58Dbe+d+/5MX1wc2NgBgIomYkE6BiXOhmMIWVHDQkWeZkGHOUYAi6CSInCCkKiPZJAWgCEgTRr/ViFVqnqG4WwwQmAGoanxshY7q4sMK75MyIaICqCfKEeN37v+BvEGnTIeMGXVl7XyW5XB3q0KgaNHpqFCAUIQJRgSktAanSBKQkgzNBCZEgEprGmpSnqEMksTLOaenH3DUQUDMBmknStam0ChgqZUA7EPe84/zLJpfTSSkqK8ctK/rqXYh6hUTEWFXVmAm9FBMfBgI1xv3XAopYQkDWviLIICGuqENqUEqTFj5NB7OEIgr1qkngqzAEw6pSptoCMy6bREF0OeM42/C2tz/xayDp8il0E4RzrDeIoZUiCe5ZQkNBAdwYhpI4JohiZe8RWiSVbgMAomY5niRSIa7OkdsZHbugIYrma3Pkg7Te6RqlGzax8PVrrtzBxiDN4YbTp3f/8qd97QxwgxvQtyVXIjSttJ0AWJWb9MvtioQqNlYZiIX2debLNhWmUdRxTZZ8ZUd4VQi4xWBiHH36lWAxqmxYjIsklJ5WvqIKMG8Pt+VotrTM3/nNZ760n2p4Dk8SQxatdXKtRKKousmQa1gCKHXIGV5bUhCi3SQ8o2QQQhcbAEJEiizb3c1tddSAmiUhCRaEE8KIIEyiQIVQgbukQkAYJOhqSUDyKP3+m572RfGoH+QpxkA+AK9jmUiQkpPEmOtlQAKipGk4NAMKiCA80DRN2zY5TY8x2d5RHb1TUwAirAUMp6KaQKDJAJZK71IFSo8BagrCJvPNxfHsaHLmHf/39q87/ZGsUIWqMFJggNHDa/WAmqiKAaZeHHPNqR9kGhgjnEyQHs4g1AwDATpxdOpEzHBZk2QFa0V1UckTmKrAVIQBSAagKpYkATmPhVVCQXUvLsn2f33npe6f3l8bvhpQDGGSzFJu0kq9p94BVQMBERXUVYDW0MMpVaKGJEWtZK01Zns//fmvxkYay0vUIGrjihMCIFZFRT5utAS4Zax2mwBl42A9LycXfub2l5ycqy1ajbAINUF+tEgNiDAEFK4mQmAtyAkQcBEBFC7KBEAdQGCiQAawe+aphw+CqSanwUaftYZCGDAGFBE0gUtm0USUyCwJrGISnhUZ/f3v6f/WbcsZdh/hC1XdMKljNLDacQyN1jDSAO4JiEiEIaiIZrUuoQyOeXwROYHnfJ7XSUrQQBRjWBrdSRNADFBxhhlEUCXRnIjSoPZmiH59f23Z1N+5+2frlfV5PVMVSigFZb5dUx+NEPw4lbAK/UE08M4mY81OWEDAmsKooJsCI7kmD59d+7H3viDBrZNo97dX81FNNELT0DASegvRwrXuqKlrMnCGpa0DRdYjtUv7+b0fRjqJFkgIdRsaSt4egBlKNoqhZI4BvJbsKm6lQehsjLxgNjRtTcyRa3JTs5qowPEgm2eRnn3XBeFBSu3BTOvKz6MICJGSyRTFUm1Ykog4U0EeUkEjDgvthlde/rH9LYAAUcJqqso1sCIJjlstyNG3JWlRqzY0VXNvrkIxxHI2ENLMW+va5bSkoRkaDM3Q26ShN8Dy39lzvuC700O/8JZh+1jTsJoE5VhjKZ60itTUTaWXtQ55oUo7PDn3SSpFZlef+ZE3vegLZVUHB9NIJRWxSgElDVkrUpSmmhZNJQ+5Su6SOlUotlwbADSLxvq2m5bU55JRcmme9cLnrMfu8tbpWz/lu7Gebn3eKWJf22G0s2IeouKRuzYtrVmuL6ZRtX3/7I4eqebj7Y6N9kXOP/ifnvuqcnT66JpazsNsPlnqpGdGkXaREFDUXJIUTaXpmyK5s7aPhKptNxkU0XTJ+ulyWlKfhwZDU/on7AyD7qDOb53MX7krcYx1CFZutKzsHz0NDYppTTUNmuIXz79AgZIfMRPd/3nH1z794+rmayp5aHpLq3pOrhhsqQmuElqTixZThqGqllwNnoppySWH1lQySq4m8JISdn/t7u+942+fV1nj0VVgrqorT0oVkIQMJEWCowb6931oEQUdUGI4Xnp3+T+89fuevtysl645TgkZDbIxIiKCMnrdsjJdgpWBgdjqxiqiSAqDQpGggCJd7iAJRxemn338L5/6lB9P+7NNXLxsLVeEb6z2R5hHijAhWkUu8yyAIpIo1e9//5VvXmws732GPxLqU0JDKYZrVaMCisChTvNUmqoWQkXAEKvMACGhHBMmAMHT4CG2NjaOP/1l9d1f3KTt/e7sKaM8Un+uozckUIqE+HHjpWaheskc+nWIyOKDb/yuOycHOzu7t7hg5SHC1VXc4DC4CQUUwBSmMJgkQRIfGR5Z/az+L7n6U/Y3dS3o87z2wksvGpCwtUkDKzIhcNOVF6ffuHv4lssnr5445X3S1jxfnqH92BNxuDm99Jt/8M+eLNgCzsC6CUq0lIoMdbOCDIehICNgcM/qMLBkOD7+cwPcUGDJRVgzXOHbQBO0LQCn0TzCxEge7e6YryD4LdMv+poXFBk6+HLa9ifm/Q64f4dz84q9857vfLquhju8ggK6KCOIG8VaK2MlwUjdkBx5hZWIURPDwqHO5M+660n9937k3MnUNduDtrJ+eDpJbweytvP63/3y8+NTALAsSAKJBIZq8AYxiwmdwzQIFXLkv0RXNJOOLDAgqioK/bYnfbT9VMUcc22WjpnqoWECmZbff9Oznr9/RAYjItAYVOACVJrUG0WYwMwSGau3BAiOjitICKEZmiBJkRT64e7E5cvkVuxgsdVefup76NJv7m/6H776rpftrW2aJUspZcALWVxYK8ByoxgVMMWjCvbR3QoSMtAdqIQTTvB82f6Blz9F9qQiBSaf9uEHT8hB0+KNr3/2S+D5Wnk3BiBEtFGRJkMeBwLVUURUAIqMlG5a6S4II9QjxKGO5On46v/60PF8JoutdLw5Pfu033kmWsqb7974BvzxnQfcIglR8fERZeW65hvGkacqWUFSZHVXXZl3tJpNLJmmpCkh5Z1ffNH0XI1uC5dmeHj9S95+GVuHB6+5/V8Bd16dbouqqgkCcK9D9J2jHve4URy6Qm3SGlavIK2K2kHOD3sy6iPldwM5kHz5j/IbP1KWPL7akcG9f/59F/mO73n9WCboZXCyzLux0M+DlRwtncdYAXjD2HVBct+5mJMyJAFQlxsAQxmqfYu+ja/8/Wes/crF2dWdKVAW0eTmO5sX/OanflODCKii6ujMjumDR0zjsGINa7pBHOuxI0wQIiPFFNAZADL4iD39K58jzfkdmy6AXibIGt/xEz93199pxqS/Ak4jwjAeJIQUeJRcO5vG8ewGccMAOEXGZLoQ6LzJCGWIoiaUjJIB3z1XuXcLh4VuAWVouh+79VtHvg0E1aFSKZmj/hxMBSBtLBEo+YaREWKCygxAa7BZy6gY/eZH3ZHu3IVlrgvxyUZ4fzzrfvCOf7Q4QnAsTBJTlWRaRIRUgajQYXCaOPMNIz3UBJ3mcEBNAIH3uqLRAgEEYmnhVm/LQ0z10mG7+cAPTf/e/uH0ala6U3PUACBWOcZljQEIol/28EV3w+gu2QQuOr6vQnjVjJoQocohr/aH4uqsuffOfnK0g/tvmX7ozR/8wdMP3nYQJ1YZpkIxBMxNAjrWNzFgoIyM+A1iVR3zOlABqYTlBBgjYjQoCij0oG4/jNtjmgmsTy/90vwnTu/eergVgJopkHNWBZAkHChz1K6IGShj1H2jmBTse6guFwBCPuH7v4u1kZS8eMuFc+Wn7n0VQlZP+hfSugnCTa9/ze/RFqMXjUv53MM/deJVq175hNff5DaGLX/mNcRHm4MiwIXPxAO/d/ar/iJFAzDKp4L/D/gCv6G8X472AAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_40.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, a parallel b, angle 1 = 50.0, then angle 2 = ()
Choices:
A:50°
B:130°
C:40°
D:60°
|
Như hình vẽ, đường song song b, góc 1 = 50°, thì góc 2 = ()
Lựa chọn:
A: 50°
B: 130°
C: 40°
D: 60°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, a parallel b, angle 1 = 50.0, then angle 2 = ()
Choices:
A:50°
B:130°
C:40°
D:60°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, a parallel b, angle 1 = 50.0, then angle 2 = ()
Choices:
A:50°
B:130°
C:40°
D:60°
|
As shown in the figure, a parallel b, angle 1 = 50.0, then angle 2 = ()
Choices:
A:50°
B:130°
C:40°
D:60°
|
198
|
40
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ8AAABjCAAAAACgII1eAAAa90lEQVR4nMV7e7BlaVXfb631fXufc8999e3HdM9MzwAqAspDjEQJIUpEB1Si0QQ1kRhfiQaTGI3xGSsV1Cq1KmpMhJSWKCSYYGI0EomYogiCUOKAwPBwZBgdZnr6dvft+zrn7L2/b61f/tinZ7CVqqmeRr+6d//u/s4++679Pdbjt9YW4i+pdRNU89S3WE4PNz/RVfoXKdKfal0tHeJKx4Pph9O7PtFVyr+ktkTKfsST1m1c/I07XvKq6z9fyZcEAAHI6vhn2yenn9Nh2JTDdv1Kfvkdv/rzH7peDo7XJjzyrT/vnp+8/klclPX6nub8NF38iud9xonr5eD4RwJAgjCSEJG47q76SeqP4+3Z8Csf/bLbhi/9yi+SoxPXy8FRzBQgSEBW/fW6+6ZPWv8s3njPU59xZbLZrx1O5Ho5VgOYdDWasjqk65/7k9Sv2X/1zV/yYpzE0i/85PO/8MR1clS59jUAEClAAISoUlSpAlWI3ux+PXC9PFe/JK//f1/7YscuXn1w19kvmyAcoAgiRNyRhAQgBEgRlIxqEkqBq8CNVITITe+Phc4wx+yNf3jur29cvR3d5PCBOzYOtiIUIQYXZQ1ViIzDHUFRCUQIxlVAY6iTCLGb3a9H0xalHV5/38mvSPefQf/QzvaTFcstESERvWlIgrvatWVBMmiAmEJVRFVEZUS52f282uCBSO99285LU3mCRLl1++C+fWxDVNRUNSdSxGK1HK/t95XW+QTK6+b19xVDNPf+1m1fF1d2DHvbir7bwsFWQFdKuTBLrSkBFJVVA9wBB8IBkIgAInCz+2XW8+Q7X3P2xdCl8cM7undRtvqr6h7j5XQKkJIQlFE/A4JgVfOq4oQ6VRxEALjJ/Q3W+YG7z9+VuuPzuHgWWF8CtV0LEYCIGpqUQIqAAgmsQVFJoMKoMBqMCoFAIbjZ/fc96eGffvK/QFw5jUunbTftNPul8ZJFAA00oUCp1opDBHBGJZ10unPgQNZC+s1Gj8WCw8H8Ij/w9a8bDivrLi/ssjBqkAxnLI97MsKDJA+X1WsZ9QxAsLBWCNwBOvVm4+J4cTyHHJ956PV3PbduDId2eu/s6cNdiAHRL5zSzhoOAnp1YmNiakoFwJUKVIXCSLPgTcf1bus0y8aZ3/r+refMph/LLS5Mugf+yW8TEGhuJUIAOEQYQQQBqGogggzCYIpAZsUnA3HU43DAB1/33s99YhO3p/7SOTv4n6/dDQKApiQ+VKIFNJkpuq53AEoQoqZ0EKgFrAF4vel4Rxzeun3Pmz9l9vC8LHiw6XF04qufVU1Yh6EG1DSqqBNiAkzabACTQgExREAEKSGbIgdvNu7tLBXv/43pt/p7P38Hh+vLE3rqj++89SSCUFVQVOGUkhJIyrgtVuuPDjOQMIQYCLWbjSdw5tSfvOvMlzcv/cC7ee/mlWk3v3TLonw0CEsKwAkgqDp6BH0lCFUiImqtUJSeFYcVZTngpqNcwsVfuPjFd+pTPu9/fOg25LJ1tF3XtFUTAbsDqcvBw6PR0S2wJACBSrJWshYnSVbS/SYgYzw8xHt3GVe4zyuv+J6HeJlH/KFXXOTlq3sk+dwfGY6Ch8HFx4Vuh3T2POT9B1yqATADaIroCoyuCjxuBB1w4ty9Tzx9sZ9e1Adec+ofTqvXNX7lh9+Cne2tergcbt+yJBAgDwF4JehICDS7GSfSpaRgdQA+DisDy7mjmw+PG0F3AuWkLna4vKX+7/mznrw9nIFeevodv7cvu4NtTA+ajx4OgDjcOboRQbRw4MxebEYboA/FwwvLspI+0CsZzseN4e4evMT9B3gU/PHvfyfZfexwwfv4vq96S/T0gw/++Ea67+HKrnI+BFlLkJVkN/Do4frAR7mboEKEKNQUkFQyGCZ4vDjOMv3U5e2tq0l+6f5v/lTE5Q3rp1tXP/PqHzy/ot/c3Pi8k83UkAytgVAwTEpGds7Wl6/+uW//LAVERUWpWXzpMg90y4rh8aIHIxgeSMMa3/D+b3rGbO/Czubadlmb4PxeWWvCF7NnPOXEBkp1GOgORAUqQk128R0PvtX+ZgICCtYEACbYUExD0djjxKoImHL/VH91+r67X/j0h27b6KdDmaWa/Zm7x2vtxLhdF1lQJQIZCkAs1DBMFLd8x5WfPvf2f6rwoQR8QH/YW2PVSGg4Hy8mEUAk7fTd2Te/4ZkvPL5tns9d7GcPixXbPooGDY6R5gXIkxyFoiqwRGQMCHxd/dlzDzWfo8MytZz3znbWFnSOeoArWo+q90edxn6UYxxpXTjnXGrpH+s5Ytcl9oij5nff+oyXHG1hBtyyzrN7B9Oj+bm97njenYZvrAUIbycy9BHDgMPjYZiGwuUUXvmmSbr0M7+8PDdbHtZcpstJp23H6fFadOuDa6L7pA7rx+tDTVhOh7WFTB/jue7Y1UFms6NTe/fJqR/ZeCh1s+P1ZR42QvAnw+sGERFGRMndWpdr2zOhSju84KXPm8XVfvPk8K9f83e/VPjHu2mY23SRylo36SwNDYNNv7ZkK300WnyynHqZoW9rM/CxnmeZXmi4vvcpr9190Wdcnp9YtEc7eztHk8XZxeX1jRr7aoygrI/ylenAhCrN8a23TRZlrf3yd03+8Ude+6PyJyfWEaVFaE01VaOMgT8IgcMQUDfUhFCA1Md6HuqiON591flv0/m0a9LQDE1NQJmvNVhOr4WcNfVtySU7DS5WvZI6sd0H58/r/+gzhLUUnzUlgxIKlFxyNynZDQxDqBsIcbsWwD7G873p1PbWFrs/+VWfj/maHuxQ3NwoSxldgAhVoCZKTaFxjWiOHlPgaLl+9bbhypkDOV6263XI6TgNa9202PH21RN7O3vbxxPp2GJo+0mV2vZrnoZmSI7HeN5atxF805vv/IbJlbRREvvZ/vb+Rodhaou2OTgRFUlqyXWc38SRNG3Kgskmct/5fh1dKzyUdQFLg/Eh3NyAoXkk5HcD3ChuJQ9N6GM952Lm97ztYz88P2g3S6yjpr4dGjcK9ieTow2QiojkNjQ1VVsRGB2bxEXkCS5qmk6U65PDqyEdQFRUENKP66KMHICjosAfIV8f4/n8eFbf/Z/zK8rszIncBGho0cBwtaLvsUaIApogqwh51RojpJlMBsjpE5cHYYQJZTQjAFwFQR0JakJCEYpxeblDcu+tFdfmelxiiiEa2c07l7bzQX8m3vWG275ZQgQjhVdyyQH1yAAQ7HIzLDe0m2BIWnJNoCeAEIZckzdBEhAhiaPvNZiB4ZJW+2nIzuw1F1VFUqANRc78cxBoQuen9i9s5CpnusP/tvktIwUDEXG6gVUUDoWoYqpoVEk3Zx5yKdmFYYJQA0mKrpgHMBymqmZiqpZSMpGRHTMzUzNrTCDwgpHy8j+DqgEoFjaJ9bo/w94PnfvGQ+yq0D0IQ4PsOUNzGj0bhUeiJENOmmGqKUsdohwvgWNwNX5wQhoBFWJAM7r/WK0LZBigWQyghDsSizSsvA4TpEYC17rJSRy0dv+/efbXZxwpREGGKNXhCcUMsIjqEyzapiQFEtCMTDjrDCoGTFWv0dUSooIy2nMqg6ICBokQ8RSRWJMEFdo4RVQgJtchIApAZgeTfr6V/ug/PvsfbOxv6GTVDxYrVkx9pSfzKpodrMJADVc41BBIcLlGoyc3VYAuigDCWwYQAlUqIFLFqeECIFQoIMYw43oEhK6CFkOdfewX1r79cG9t91y34pERE20xNU7gVbIAGWgVoqmGRUkCj6GVSXQyiYXOPCCqq/yM0huBUgCIicBjDHYAM1ChBgGchFZRVDG/DsMlRZFmPivrw/t+d/oDb3/ucN9TFqIkRQSeIWGgwKCCUBZNNRpDqqIwgUpOcFuj2AYwZrugiugH1+wABDAPCOgDOAYrBlOoyUjXpGzANdH/FKooVASGwzR9y3tfzs/da568t5ZFxUt1HLHGEbp5ACaoR+BQ4R0CBESFEG0Q+6MPjWo5mYDico0qrq6GSKt8A/qky5TmG0OWiAQMtUmkrkiHZasoahgaoKiBuJA3FzIrdTMOX3n8igdvWUWZ87VrtPJoXpU9GgXAEBGGuefxU18pPYcBnLcZWOWPSMIcSRFSOK5ok0BjMgWH5GBYMiEFyySMFEpCGBAKhRS5dE48TbJd8fj35bs+8LSVPDIdtb6bhFsCirYCRCQYACkmhqiS6xgxi5ISIpgaIkzSKB2AQELQdMyGOLJHBhKUKjo+XFGFqDFCsoYkOpIAiaGSnXUDi+708MPz74qn7Z4BAiIweCRBbcZB1GUrgFPRtzKYBRTgOCCoIaqjnYIBQUoiSagIBEBQMDpKFNEKDM2oCeCqCAo4AcQIQTALafDIAk/b+7FZl7YT/+X+f3s22IFBioiGk2IZkshQNIqoSAovaWhtEiJQGYn6BCBGUaVr7FrX2CxACoIQvZZLDscQlKpqOspYmqAIgzmqmkTN7moSrpMJLqUNvOrdPzk7nszPBwRCBsU8FLkkkaiaMj2gCuQskwQtoKiG5xWX1qX8cd4CksiYTjdRDyiKiIaoVaWSGY2LD402YIUBjEoziCKpIhmQ1KCKpWE5W3vw19/7fSdw0KKbQMaMrkI8FOEJRhUSpkCULEgoSAiKRM0RkQDkkTGVVlFpqoCoCtBDIpJSU1aGQIqkigSYWEoo8DABTTQloaprEkKk6jgFVi8Oa7u/fc/ffwIfOk0eizACOv4DARsJIAk4qiMUjQJfqoglhWWYiROSTckoPQEVgQYBUbOeIASRFOKlwEIQBMOBBnV/XMRMMIMPBceOuuiJo4q6GAidrG+VX/vQy/7a/fVs3wynQa8+Js/EBJDoCqL0qgIAavAFYNYDiJWdLf1I9ltq2mWBJoEQUdDImJ01HG3ULrdgqACVSZYiOt4zqALsb3u3JpSSESLg1Z0raWtuE9z3pPLae77ms/FoY82xv4O+NtmPtkPhKhSgWi2pGfWcGysBxnTZqkf247WMR9VhiCsQYICGmnTRqKGWnI6b5pE035goDqiQIqgJCAkoSPBwww7XmiX67dfc/dVP3rq2tFlMIQjF6ncl37IJNAh1GIDaz1ba25eTNMYXQAjCwk0pGuNOZcpm2WQm4UitsEkAY5whAekxZiakltrRD8WLSC3gIos3OJxu/df3fNZfPTEHotYAhA4PMALKSmV1esBzSjqqRnd3nTDGDIO0CTUwGOBeSwHBIJMhXBJsEVl6TXVWC5NGPwFrSNJRQBkPogRTHsRaJAdyaJlVmR3XW/CGt931/BAZ08kiSSEYlBqWYkjN+JyQBFWAIaCHNgiADkIziot3DSgmjDJu8yRwGuBrABoge0ox0BrQYQnwkekXyqruIwSkZKhWE+Mkjrf58Dbe+d+/5MX1wc2NgBgIomYkE6BiXOhmMIWVHDQkWeZkGHOUYAi6CSInCCkKiPZJAWgCEgTRr/ViFVqnqG4WwwQmAGoanxshY7q4sMK75MyIaICqCfKEeN37v+BvEGnTIeMGXVl7XyW5XB3q0KgaNHpqFCAUIQJRgSktAanSBKQkgzNBCZEgEprGmpSnqEMksTLOaenH3DUQUDMBmknStam0ChgqZUA7EPe84/zLJpfTSSkqK8ctK/rqXYh6hUTEWFXVmAm9FBMfBgI1xv3XAopYQkDWviLIICGuqENqUEqTFj5NB7OEIgr1qkngqzAEw6pSptoCMy6bREF0OeM42/C2tz/xayDp8il0E4RzrDeIoZUiCe5ZQkNBAdwYhpI4JohiZe8RWiSVbgMAomY5niRSIa7OkdsZHbugIYrma3Pkg7Te6RqlGzax8PVrrtzBxiDN4YbTp3f/8qd97QxwgxvQtyVXIjSttJ0AWJWb9MvtioQqNlYZiIX2debLNhWmUdRxTZZ8ZUd4VQi4xWBiHH36lWAxqmxYjIsklJ5WvqIKMG8Pt+VotrTM3/nNZ760n2p4Dk8SQxatdXKtRKKousmQa1gCKHXIGV5bUhCi3SQ8o2QQQhcbAEJEiizb3c1tddSAmiUhCRaEE8KIIEyiQIVQgbukQkAYJOhqSUDyKP3+m572RfGoH+QpxkA+AK9jmUiQkpPEmOtlQAKipGk4NAMKiCA80DRN2zY5TY8x2d5RHb1TUwAirAUMp6KaQKDJAJZK71IFSo8BagrCJvPNxfHsaHLmHf/39q87/ZGsUIWqMFJggNHDa/WAmqiKAaZeHHPNqR9kGhgjnEyQHs4g1AwDATpxdOpEzHBZk2QFa0V1UckTmKrAVIQBSAagKpYkATmPhVVCQXUvLsn2f33npe6f3l8bvhpQDGGSzFJu0kq9p94BVQMBERXUVYDW0MMpVaKGJEWtZK01Zns//fmvxkYay0vUIGrjihMCIFZFRT5utAS4Zax2mwBl42A9LycXfub2l5ycqy1ajbAINUF+tEgNiDAEFK4mQmAtyAkQcBEBFC7KBEAdQGCiQAawe+aphw+CqSanwUaftYZCGDAGFBE0gUtm0USUyCwJrGISnhUZ/f3v6f/WbcsZdh/hC1XdMKljNLDacQyN1jDSAO4JiEiEIaiIZrUuoQyOeXwROYHnfJ7XSUrQQBRjWBrdSRNADFBxhhlEUCXRnIjSoPZmiH59f23Z1N+5+2frlfV5PVMVSigFZb5dUx+NEPw4lbAK/UE08M4mY81OWEDAmsKooJsCI7kmD59d+7H3viDBrZNo97dX81FNNELT0DASegvRwrXuqKlrMnCGpa0DRdYjtUv7+b0fRjqJFkgIdRsaSt4egBlKNoqhZI4BvJbsKm6lQehsjLxgNjRtTcyRa3JTs5qowPEgm2eRnn3XBeFBSu3BTOvKz6MICJGSyRTFUm1Ykog4U0EeUkEjDgvthlde/rH9LYAAUcJqqso1sCIJjlstyNG3JWlRqzY0VXNvrkIxxHI2ENLMW+va5bSkoRkaDM3Q26ShN8Dy39lzvuC700O/8JZh+1jTsJoE5VhjKZ60itTUTaWXtQ55oUo7PDn3SSpFZlef+ZE3vegLZVUHB9NIJRWxSgElDVkrUpSmmhZNJQ+5Su6SOlUotlwbADSLxvq2m5bU55JRcmme9cLnrMfu8tbpWz/lu7Gebn3eKWJf22G0s2IeouKRuzYtrVmuL6ZRtX3/7I4eqebj7Y6N9kXOP/ifnvuqcnT66JpazsNsPlnqpGdGkXaREFDUXJIUTaXpmyK5s7aPhKptNxkU0XTJ+ulyWlKfhwZDU/on7AyD7qDOb53MX7krcYx1CFZutKzsHz0NDYppTTUNmuIXz79AgZIfMRPd/3nH1z794+rmayp5aHpLq3pOrhhsqQmuElqTixZThqGqllwNnoppySWH1lQySq4m8JISdn/t7u+942+fV1nj0VVgrqorT0oVkIQMJEWCowb6931oEQUdUGI4Xnp3+T+89fuevtysl645TgkZDbIxIiKCMnrdsjJdgpWBgdjqxiqiSAqDQpGggCJd7iAJRxemn338L5/6lB9P+7NNXLxsLVeEb6z2R5hHijAhWkUu8yyAIpIo1e9//5VvXmws732GPxLqU0JDKYZrVaMCisChTvNUmqoWQkXAEKvMACGhHBMmAMHT4CG2NjaOP/1l9d1f3KTt/e7sKaM8Un+uozckUIqE+HHjpWaheskc+nWIyOKDb/yuOycHOzu7t7hg5SHC1VXc4DC4CQUUwBSmMJgkQRIfGR5Z/az+L7n6U/Y3dS3o87z2wksvGpCwtUkDKzIhcNOVF6ffuHv4lssnr5445X3S1jxfnqH92BNxuDm99Jt/8M+eLNgCzsC6CUq0lIoMdbOCDIehICNgcM/qMLBkOD7+cwPcUGDJRVgzXOHbQBO0LQCn0TzCxEge7e6YryD4LdMv+poXFBk6+HLa9ifm/Q64f4dz84q9857vfLquhju8ggK6KCOIG8VaK2MlwUjdkBx5hZWIURPDwqHO5M+660n9937k3MnUNduDtrJ+eDpJbweytvP63/3y8+NTALAsSAKJBIZq8AYxiwmdwzQIFXLkv0RXNJOOLDAgqioK/bYnfbT9VMUcc22WjpnqoWECmZbff9Oznr9/RAYjItAYVOACVJrUG0WYwMwSGau3BAiOjitICKEZmiBJkRT64e7E5cvkVuxgsdVefup76NJv7m/6H776rpftrW2aJUspZcALWVxYK8ByoxgVMMWjCvbR3QoSMtAdqIQTTvB82f6Blz9F9qQiBSaf9uEHT8hB0+KNr3/2S+D5Wnk3BiBEtFGRJkMeBwLVUURUAIqMlG5a6S4II9QjxKGO5On46v/60PF8JoutdLw5Pfu033kmWsqb7974BvzxnQfcIglR8fERZeW65hvGkacqWUFSZHVXXZl3tJpNLJmmpCkh5Z1ffNH0XI1uC5dmeHj9S95+GVuHB6+5/V8Bd16dbouqqgkCcK9D9J2jHve4URy6Qm3SGlavIK2K2kHOD3sy6iPldwM5kHz5j/IbP1KWPL7akcG9f/59F/mO73n9WCboZXCyzLux0M+DlRwtncdYAXjD2HVBct+5mJMyJAFQlxsAQxmqfYu+ja/8/Wes/crF2dWdKVAW0eTmO5sX/OanflODCKii6ujMjumDR0zjsGINa7pBHOuxI0wQIiPFFNAZADL4iD39K58jzfkdmy6AXibIGt/xEz93199pxqS/Ak4jwjAeJIQUeJRcO5vG8ewGccMAOEXGZLoQ6LzJCGWIoiaUjJIB3z1XuXcLh4VuAWVouh+79VtHvg0E1aFSKZmj/hxMBSBtLBEo+YaREWKCygxAa7BZy6gY/eZH3ZHu3IVlrgvxyUZ4fzzrfvCOf7Q4QnAsTBJTlWRaRIRUgajQYXCaOPMNIz3UBJ3mcEBNAIH3uqLRAgEEYmnhVm/LQ0z10mG7+cAPTf/e/uH0ala6U3PUACBWOcZljQEIol/28EV3w+gu2QQuOr6vQnjVjJoQocohr/aH4uqsuffOfnK0g/tvmX7ozR/8wdMP3nYQJ1YZpkIxBMxNAjrWNzFgoIyM+A1iVR3zOlABqYTlBBgjYjQoCij0oG4/jNtjmgmsTy/90vwnTu/eergVgJopkHNWBZAkHChz1K6IGShj1H2jmBTse6guFwBCPuH7v4u1kZS8eMuFc+Wn7n0VQlZP+hfSugnCTa9/ze/RFqMXjUv53MM/deJVq175hNff5DaGLX/mNcRHm4MiwIXPxAO/d/ar/iJFAzDKp4L/D/gCv6G8X472AAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_40.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, angle 1 = 50.0, then angle 2 = ()
Choices:
A:50°
B:130°
C:40°
D:60°
|
Như hình vẽ, góc 1 = 50°, thì góc 2 = ()
Lựa chọn:
A: 50°
B: 130°
C: 40°
D: 60°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, angle 1 = 50.0, then angle 2 = ()
Choices:
A:50°
B:130°
C:40°
D:60°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, angle 1 = 50.0, then angle 2 = ()
Choices:
A:50°
B:130°
C:40°
D:60°
|
As shown in the figure, angle 1 = 50.0, then angle 2 = ()
Choices:
A:50°
B:130°
C:40°
D:60°
|
199
|
40
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAATkAAADECAYAAADkmlaCAAByJklEQVR4nO29eXBd130m+L0dDw94AAiCpLhTpLjvpEhqsSzZlmI77o7jOONekthdFTu2k9jp6W1quqZSNZmu6qmeThw7ziSVjGfSScVx4rYdOy1FtlyyJEuWSIoiKe47KQLcQQAPb8Vb5g/4O/jej+c+gJL4SMDvV4UCcO/vnnvW77eec0O1Wq2GFrWoRS2aoRS+2xVoUYta1KI7SS2Qa1GLWjSjqQVyLWpRi2Y0tUCuRS1q0YymFsi1qEUtmtHUArkWtahFM5paINeiFrVoRlML5FrUohbNaGqBXIta1KIZTS2Qa1GLWjSjqQVyLWpRi2Y0tUCuRS1q0YymFsi1qEUtmtHUArkWtahFM5paINeiFrVoRlML5FrUohbNaGqBXIta1KIZTS2Qa1GLWjSjqQVyLWpRi2Y0tUCuRS1q0YymFsi1qEUtmtHUArkWtahFM5paINeiFrVoRlML5FrUordB1WoVxWIRlUql7lqlUkGtVkOlUnH3yuUySqWS46vVasjn86hWqwCAkZERjI2NNbcBP0MUvdsVaFGLpisRmEKhkAO2Wq2GRCKBUCiEcrmMYrGIarWKSCTinqlUKojH48jn86jVakin0ygUCigWi+jo6LibTZqR1AK5FrXobVC1WkW5XEY4HEY0GkWtVkO5XEatVkM0Or6sKpUKisUiarUa4vG4e6ZSqaCtrQ2Dg4O4du0aOjs7MTAwgLGxMWzbtg3d3d0IhUJ3r3FXXsQf/cHTuHjLje341f/8caxz/xcwcOAZ/N3XX8Ml3Iedv/rP8ZF1cxCTJ8au7sXf/tk38WbH4/iN3/gglrU1of6GmgJytVqtGa9pUYuaQpVKBaVSCbVaDZFIpE5LK5VKqFQqiMViiEaj6OrqQrFYdCZrLBZDPB5HsVjExYsX8cwzz+Db3/42bty4gQceeAC/8iu/gieffBJLly4FcGfWzqQAOnwEf/mdDH7ry7+AuXU35qDb/T2I5//9DvzCt3bi//i/Pon34Rj+4hdW4Pd++8d47Ysbx4Fu8Hn8x3/9Oj72n34H7y/8BP/7J76Mz37zC9gYQ1Oppcm1qEVTJIJDtVpFtVpFLBZDOBx2pmo4HHamKikcDiOZTKJYLKJYLCIej2N4eBjf//73cebMGWQyGWzatAknTpzA8PAw3njjDaxfv96B3J2gWq3WGOj6j2P37C14+KmnsDyIZ9+f4JN/80/w9/v/AE/MAoCn8NRja/Cbq38F//eTB/GFtcDIK/8vsp/6f7BraQzAL+J3PvRhfP2NL2Djjne9SQ2pKSAX1KFBUkr5p8LTTGrVpzH9rNSHGly1WkU+n8fY2BiSySSSySQAYHR0FLlcDqlUCrFYDKFQCGNjYwiHw7h58ya++c1volqtYteuXfjUpz6FAwcOYM+ePWhvb6+rm62nrz23y1Or1ep4vH3x4PJggAOw+3tfQvsXnvspwP2UZj2J3/j3JfxPTx/EF9ZuRDLVi2I2D/zUgC2MhpGaqeZqEE1lot1V34SHWvVpTD8L9YlGo85EzWQyyGazAOBMUQAYHBzEwMAAYrEYuru70dHRgXB4PJkhkUhgaGgI8+fPx6pVq7B8+XIsXLgQjzzyCDo6OtDV1fWO2jMVHoIcgyb6zFi5FPTYT+kcDr9wDR/63zbecmfNpvfj+B8fxZV/uxFzH/0cdn3qc/hy+ZNYnXsOX7n6b/AXtz5yx+mugty7pcndaZ/fdK/Pna7TVNverD660/UJhUKoVqsYGxtzQYV4PI5kMomxsTGcPXsWR48exfDwMJYuXYrZs2ejs7MToVAI+/btw6uvvoqlS5di69atWLNmDTo6OpBIJBCPx9HZ2Rn43nc69yyfD+AA4ML5AwA+iquHn8V3v/M8TmXuw85//sv40Kb5GFfERnBj4BGsW3zrO2Jdc9B3LYNRAHNjK/Hr/98f4PBP9qP/vs/h7/7FMtwFRe7ugBwHwvc7FAohHA67AbCqNVAvfZTvThAngK8+tg73an2q1eodBZWg8dI6aP2nc300XaRYLCISiSCVSjkN7tKlS3jttddw/vx5dHZ2YuPGjZg1axba29sBAD/84Q/x7LPP4qmnnsKOHTuwZMkSAOMaYT6fR3t7u9MSleyc0v/D4bDzDfray3pr/Sejvu/9a3zw1L/Av/3t9+F91/fiK790P774T57B/j94ArNwA/3HIUEIod4FWDlWhssejM3Buseekohs86kpIMekRwCBA6XX7AT1gRwHTfOT7gSFQiFEIhHvBNL6Nqs+wLg/yILp3awPgNuqDx3307U+Coxqop4/fx6vv/46Tp06hWg0ioULF2LFihWIRqPIZDJoa2tDKpVyEVdqgZVKBdFoFMlk0pm0t7tmFKiDgM5qbbrW2C4A6Hvv/4m/2rIYT2xb9FNv2lN46oMP4jdXfwJf+edX8buTBQ5iUdwK03eP7mrgIUiqWEnrA7mg30GRo0kjSh6eRpLQ5xxuVn10kU7X+liN892qj5av79Q55KsPwcXXtiBLAwCSySRqtRrOnz+PV155BSdPnkRnZydWrVqFDRs2oKOjA9VqFaFQCLFYDOVyGfl8HuVyGZFIBMPDw/jxj3+McDiM+fPnIx6P3xJ8UApaD43WjG0vATGo/9MPPIKn7ItnPYlPfGoE/+vB0/jdHQuwasd1DGU9Few/gb1Y6a373aKmg1zQ4DUaFL3ve56a1p0iu5Bb9Xln9VGQaHZ9fHVSU0+fVzCwz0QiEZcEPDAwgFdffRWHDh0CAOzatQvbt29Hb2+vKy+RSAAAuru70dPTg1qthv7+fly/fh3PPPMM5s+fj0Qigfvuuw9tbW0uodhXX9umRuvF97yCYLlcxtNPP40XX3wRf/AHf+Dv0J/SvPs3/fSvLvTMP443r4wBqE96Gxm5jOKmJ+Fx1901umf2rupEKpfLt6jr1pzwSTP6JlRC6XU+Z6WxfdZe032I76Q+jeo5lfrwelB9rFnTrPpwz6avPj4T6p3WB8At9dFnubOgUf9oHxHQRkdHUSwW3bVcLoebN28il8uhWq06MMxkMshkMgCA06dP47nnnsOePXswd+5cfOQjH8HDDz/sAA4YTye5efMmAOCjH/0oPv/5z6NareIP//AP8bu/+7sIh8PYsWMHdu7ciVQqdUu9g+aaD8gtMLNtlUrFlRMOh5HJZPDlL38Zq1evxsc+9jF86Utfwk9+8hMAIzj4jT/E06dhaAQnXtmNvs4OAHOx/ecfwd+9sBdjhufl7/wtPvrYRjQ537ch3RPRVZ+q3WjB6nWfFFPylX27WsRUTarJ6uPTCG6HgiR1EE2lrbdbHwtIk9Xl7ZR/OzxWoE21Pj4hEIvFUKvVUCqVEA6HEYlE0NbWhlgshmq1ilKphGq16qKo/f39OHHiBK5du4aOjg4sW7YM999/Pzo7O1EoFFAqldDZ2Yl4PI5QKIRKpYJ0Oo0tW7Y4kBwdHcXjjz+OdevWIZVKIZfLBfrWSLzuAznf2CjAnzx5En/yJ3+CP//zP8fo6CgA4Od+7ufwxS9+Ebt27QJQRvbN/4RPvbgWx776JJgGVzjyF/jPf/ur+F++NL4HYvmHfhuPrPmP+Itfexa/vnIc0sZO/DX+01/9Cv7j79fvk7jbdNeiq0F+tkaANhUnqpYRtBjfjr8nqC5Bztup1Od23t3o2anU5+2008cz1bbci/Wx9VJ+7lYoFosuabetrc1FOnmdYDgyMoL9+/fjwoULSCaTeOCBB/DAAw8gmUwik8kgl8sBgEsPicViyOfzLtXk/e9/P7Zu3YpSqYTe3l4kk0kHpOFwGLFYrK7uui6okYVCIVc/35rSdr/wwgv4yle+gqeffhrlchltbW34jd/4DXzhC1/A6tWrBTBjeOh//nv85geewNL1H8avfmQlcOIf8JdPx/Fvnn8OHyHqLfgE/ugbL+C929fg73/141iXfRVf+9ZFfOqZ3fhQuuHwNZ1CtTvprPGQz3SwPhROMvo8qGrbqCKf8ZkhPjOHqj/L9flcfM8G1UfLZh1o0txOfThRfaYG62nro5oHzZGg+uj/tj4s19aHmkej+vDZe60+3CjPqCfN+6D60AWQz+cRCoUQjUbdli0ArjzS6dOnceTIEVy4cAHFYhGLFy/GBz7wAcyePRvFYhFXr15FIpFAOp12OyCy2SyuX7/urre3tzuzOhqNunrfuHEDqVQKHR0drm3ab2q+sr22ffwpFAr427/9W3z5y1/G/v37AQALFy7EZz/7WXzmM59BT09PnSunngq4eewA9lwYBroW48FNq9HjSXIby5zEvp+cxXDbXKzZshaLOu8lQ3Wcmq7JcUJb1VonN6+R317T63bRTCbRJ7vuw/xGz/hA93br4wPqRtqMz0yx13Xh+0z/ILN6qv3WyDSfSn20327nvbdbH58wZX2Ut1KpIJPJIJVKOb9YoVDA2NgY4vE4EokEqtUqrl+/jkOHDuHQoUOIx+NYtmwZNmzYgL6+PgDjAYmOjo5bNu5XKhUkEgkkEgmEw2GUSiVXfiKRcOkjiUTCBR24JoLa4Jt/4XAYly9fxp/+6Z/iz/7sz3D58mUA48GQL37xi/jYxz6GUGgquYFt6Fm9E0+tbsACINb5AHY+9UBjprtMd32Dvs/kpOTmfdVigkAlCCjswrLPAPXRPjqulTfIwW2TTu37GtVH3+/7bd93u/Wxz1iT9t2uj6+dtj56T+sQVB/fWFg+e98HDLZOPkBkci+Tdmu1mgtEzJo1bqONjo7i1KlTOHPmDEZHR7Fu3Tps3boVK1eudBp+KBTCrFmzUC6X3U+lUkEkEkFPT4/TLhmMKJVK7no8Hr8lsmr73zcO7P9Dhw7hy1/+Mv7mb/4GhUIB0WgUn/jEJ/A7v/M7P/W3jbfLaqaWpupamC7UFHPVZ755K2MG0D4TpL2807pN5V33Un2m8tzdnqjTqT48OqlUKjnTkccmhUIhpFIpZLNZnDlzBq+99hqy2awzUXt7e1GpVDA6OopEIoG2trY603JkZMSBlwqDYrHoggzpdNq5QkZHR53m6BPmWndgHJy/973v4ctf/jJ+9KMfARhPU/nMZz6Dz372s1i4cCGi0WgdmBPkqG36cgTZNzOBmq7J2QGbjIIAMQgM+I53UrZP+7iX6jOVZyYrfyp1alT/mVQf+ldTqRSKxSIKhQKq1Sra29tRq9Vw+fJlHDt2DGfOnEE2m8XSpUuxadMmZ6KWy2Xkcrk6wMhms+5oJUZX9bj0aDTqkn7pj2P0luCmPlq71Wt0dBR//ud/jj/+4z/GqVOnAACrV6/GF7/4Rfzar/2a84/avvFps1Pt4+lKd3XHw2QUNNDqbLbX+L4g6cT76he0DmnfdZLWR80xX32sr2Sq9VH+ycrx1QeAM52C6hMEyHeqPrxOU0zLAXDLIn636qNjE1Qf9lM0GnVAEwqF0NbWhtHRUZw8eRK7d+/G8PAwNm7ciPXr12PZsmXunSxL6zQ0NIRisYilS5fWBTaKxSLC4TDS6bQDvytXriCZTLrtXTTTrd8QAM6dO4cvfelL+Iu/+AsMDQ0BAD74wQ/iC1/4An7u537Otc1n5gP1AQyd89ZtMJPorvvkfKQTl5JP/SwavbNRJyu1LFCqT4iTSJ/RhacTl/+zPrqgWB9bvkYDWdZU6qOam71u+4nv0L5gtO126kO6U/Upl8t1PjRbH44x+1MXnAL37daH80J9uvrBGebD8VkCTzgcxujoKM6dO4eTJ0+iVCph8eLF2L59O+bOnesiyjz1t6+vzwUnBgcHEYlEMGvWLNcm5txZMNmzZw8ee+wxfP7zn8fv/d7vucCEghAA/PjHP8Z//a//Ff/wD/9wSwrIypUr3ako7Ee2yQdY1pccZLXMFGoqyGmn+jrX9zfJd/92/p/Kdf6tiyZo0H3Z/xZU3q36TNYv+juoPpO914Lu7dZzKvXx/T1ZP2t/qpmlz9jrvueD5gd/GF3lwZeVSgV79uzBvn37cPPmTaxevRobN27E0qVLEYvFMDY25lJOkskkEomE+3BNLBZzp4kwXy4SiSAWiyESibiARCaTwS//8i+jUChg+fLltwTAcrkcvvWtb+H3f//361JAPv/5z+Mzn/mM+xYE+0Y1VqvV29w63ptMw58J1HRNTjUunxRXDYADwr9J5PFtPbKD1eh6kPRqdF3royaSlZz2vdqmyepj392oPj4Tg/XxXX+n9Zmsnu+0Pva6BWJffXzX9Z7NBdM2k0qlEoaGhpwzfmBgAHv37sWRI0ewdu1a7Nq1CytWrNDud0cjtbWNJ5DlcjmUSiV0dXUhFos54KxWq2hra0M8Hnflj46O4rOf/SzOnz+Pf/pP/yl+/dd/3Wm3165dw9e+9jV89atfrUsB+cIXvoCPf/zjLkjB+nMdqIlKojaruaZAvXtA+2EmmqxNia5q5yvA+ZIzVXIr6YACcOZPJBJxppn6RHz+Ob6X5svb5bfmlI9fAXEq5Tebv5F/63b8i+r/uVfqowudOWqhUMgl+NLJX6uN++T4acCOjg6MjY3hzTffxLe+9S0kEgmsX78eDz/8MHp6em5JEi6VSsjn8wCArq4ujIyMIJPJuITfeDzuIrR2/vzpn/4pfvM3fxNLly7Fvn370N3djf379+OP//iP8Vd/9VcuBeTjH/84fvu3fxvbt2935jqBMgioSFZb47VSqYSxsTF3wrHPj6nm/XSnpgceKEF9/i7tVAIJT9BQv5FqIQBu8T+xPJ+J4/OJ3S6/Xrdmj173BTTeKT/7xvLr9anwB9X/dvg5BpqVP9X6WP5G9VFBM5X68ICHUGh8dwh9VdVq1UUda7WaSxPRPapHjx7FwYMHUS6X3XFJ8+fPd+DA9ItwOIx4PO7KKRQKiEQi6OzsrNNc+U79//Dhw/gP/+E/IBqN4i//8i/x8ssv40tf+hJ++MMfAhhPAfniF7+I3/qt38LChQtRq9Xc5w9tv1nfnc4bn6UETJxKoxaRPq/rcSbQPRFdtZKG1xhcsEBj+fisquMcZB+I6PXJ+BWUlV9pKvyqnVp+Xptq/X382peN+G8n+mj5JwPlt8uvYzrZeE2Fv1qtOk2NZprOHUYwCYI8E+7cuXPYu3cvLl26hF27dmHlypWYM2cOCoWC239KLSgUGt/+xUBBJpNBe3u72y0xMjKCkZERlMtlzJo1C+n0+IbOXC6Hf/kv/yVGR0exfv16/Kt/9a9cCsiqVavwuc99Dp/85CfrvgnBd9l1VK1W3bl09jgtVQqACWBkWTbhWMfMF5CbznRPRFcVqEh2UfgkNn/Uv6ImDAfMgsft8AP12ue7xe/zOzWD3/atj59ObMtPQHk3+fWaBbO3y8+z25igy88Ejo2NOWDgSbwAMDAwgAMHDuAnP/kJyuUylixZggceeACzZ89GLBZDW1sbRkZGUCqV0N3d7SKwoVDIHVvObVnU6p5++uk6fx5B7t/9u3/nzp3jb6aAPPnkk3WamdVWfaSpQnZe6Hj4lIigMq0gnO7UlNYogOnE18HQ/4H6hWi1Hkv0K1iNz2f+vRN+YPI8sKnya5/cTX7r/wLqgz9T5VdzzKepBvFPZq6z/rfDT9ITeKPRKKrVic8Hsrx8Po8333wTP/zhD/HKK68gFAph9erVWLx4MdLptGsDjzmnRsUTfmu1mtPyqtXx9JEDBw7ge9/7Hr73ve/h3Llzzm/3N3/zN/iTP/mTujru2rULO3fuRH9/P55//nmcOnXKHQih7VWNVMn61LTfrV+NvyuVijPjue3MV/ZMoaZoclai2Anpu6ZSRiW39UXoIGuo3Ebz9Pqd4Ffz9J3y12q1uk3ad5LfjgEwYdrQtxVUvvLXajXHr+D2bvBz/KfKz//L5bJbzPF43P3N6GShUMDZs2dx8OBBHD58GFevXkU6ncbSpUvR09PjfHaVSqXuMEuaw8ViEV1dXWhra3P5cplMBqdOncLhw4fdHlfmCb788st4/PHHce7cOVy8eBHlchmvvvoqXn311bqx6OjowFtvvYV0On2LBmuFv8+MtZqutYKozVoFwueKmQnUNJDTgbBgxgHxaUY+zYS+Fv7NBUgtArjVqW01g3uRX9ul/q3J+Nl3KtGtZhnEH6SJ8n3vtPxm83M+JBIJzJkzB9Vq1WksbW1t6OzsRCQSwcjICM6fP++CDHPnzsX169eRz+cxNDSEvr4+B2bA+LccQqEQstmsOzUkn8+7xGteX7BgAR5//HG8/PLLKBQKTthEo1F85Stfce2oVqu4dOkSzp07h/7+fpw/fx4DAwO4ePGiM5GtNqfzgMLL+iWtO8eaqexPnxJhwbKRSTud6K4EHqz67PMpcFD1DDkdOF8ZVrpr2epM1ev3Er/Pj+bjV/PRCgfth6nwA3hX+Hnd1r/Z/MD45vdQKIT29nZks1mXtNvd3e1y1I4fP45jx47h8uXLWLZsGebOnYtCoYBCoYD+/n4sXbrUAU00Gr3lTEMA7sSQUGjcDzg2NoZYLIalS5fi/vvvx8mTJ9HR0VGnNStQzZ07F3PmzLlFQ9M5o232WTxAfZDIjpU+x/91biqfks6D6U5NAzm7CH2mqU9rCyqDk02BjWaIj9cXDFBTbjrx2+st/kjdnOIug3g87vxZnBv5fB5nz57Fm2++iYsXL6K7uxubNm1Ce3s7hoaGcOnSJZw9exZbt25FOp12IJHP51Gtjif1ssz29nYXqU2lUrh+/TqKxaI7k66jowPJZNKbP8i6q+lpNX2rlZHUigmFJrapWV72h11PVrsLAriZQvdMdNU6qyfraCvt7USxZNV3vdbinzn8AOo+6ZdKpeoin5cvX8bJkyeRy+WwcOFCbNy4EX19fYhEInjPe96Db3/72zh69CjOnTuHrq4uJBIJvPXWW+ju7kZ7eztGRkbQ3t6OeDyObDbroptM3uUnCJkofOnSJfc9B22LT2vTtvhMUCVfv/hMTjX7eZ8+Qg3oWGBs1NfTjZoGcqpys+M1gmePbw6HJ/biqaRSqc3yeLJDLBare4cvyhcKhZw583b5tc5aJ+UHJjZ7W3518r4Tfs2+t/zal3eanzlpll/HeSr8QeUz9UP5rX9OzS9qbblczpmUtVoNp06dwqFDh9Df3485c+Zg1apVWLlypUsQZlT1jTfewOuvv+4+TqP7TvXo+3g87gIONGs1B69Wq7lTTTh2JAsi7C8NFukBBj6frl7X99p1Z9+tdfDdmylmKumuBh44WHYDsS9ypoEIAh8HVb+uRKe5fraPfhMLim+Xn9Ep/Qyf8nMrD7fNsHx+Js86jencngo/AMevgO/jJ90u/9jYGGq1WkN+XaRcyHeKn+ew2QCEChn9zTbwjLdoNIorV65gz549OHr0KHp7e3H//fdj7dq1SKVSrn/a29uxYcMGDA4O4vDhw+ju7kZHRwf6+vrch2aYKkLTtVgsolqtIp1O3xJND4VCtxxnbtcD1wK1v7GxMbS1tblDM60g5ZzRNRQEbqoIaH+GQhMmvgqZmUpNBzkufvVHUQpaSaVSiF8v4mBpQIIOYtV2dFLYSUB+BdMg/lAo5CJrU+Xnhm0FDtU03wk/6w/UL+p3k5/JtHeKn0m4dk74AjUAnGYZjUZx/fp1ZLNZpFIpdHZ2OjDIZsc/597R0eG0q56eHkQiEbz11lt49tlncezYMXR3d+MDH/gAVqxY4ZJ89Wta27ZtQyqVwje+8Q0cP34ciUQCTzzxhEshIZARfOLxuPumg87hQqGAXC5XN6b5fN7tf2W7KpVK3ZHnauHEYrFbAFLnIclnotJ8pl+SPMwR5J5dWg/Xrl1DJBJxfkSCLsd2OlPTo6s6WOpzsKq7AqMOqpqVLEfNSJLVBvX9t8MPwJuLdLf57b3pxK8amc8HpFoKhUypVMLw8LADhXg87jQ/TdDN5XLOfKxWq3jrrbdw6NAhXLlyxZmoS5YsQTqdRrlcrgMDYFwgrFixAhs2bMAbb7yBgwcPukhrKpVyAoPzl+BM7Z0AFo1GXQCC16yPWVOM2C/kVUtFyRew03u85tPMCJA8tEDLUqsqn8/fAqTTmZoCckEd5rvu8zfoPf38Gs1HHVibLKrPAvWL6V7lp6Y4FX5en078es2aUhqBZJ/x4zL9/f3o6+tDd3c3AGBoaAi5XM6laVSrVWQyGbS1taFSqWBgYACvvfYazp07h76+Pqxfvx7333+/AyX2NetBrSUWi2HXrl04d+4cTp06hTfffBOzZ8+u+5KXAjQTg1UDS6VS6O3tdXtb2R4r8H3Cje4Q66ZQULTrQ/2f1IzVFOX1SCSCfD7vjoliOdx2Boxvh2tra3P9Pt2p6Ydm+nxver9RpFQXipq0lOLMTucWHDpv9VQKSkt+vIT7GDkZb5efyabN5q9Wq84sm4yf7gHyRyIRZ7K/E34Aztlu+ROJhPNf+vita8I3B5RCoRA6OzudJkVTisBUKBQAwB2JdPnyZezduxdnz55FOBzG4sWLsXTpUsybN8+BSCgUQk9Pj3tvJBJBNptFtVrFkiVLsGjRIpw7dw6nT5/G2rVrsXTpUgDj328olUpIJpPOpNRIJXdVxGIxDA8Pu4367BttE3DrUeQW5G3fsK6+6wQ6Bmk0Skuidjk8PIxqtYrOzk6kUimMjY2hWCw6gLSa53SlpumkHACNuvkmt0od+j7UfOVksg5TgqZG5Xjd/pDsM7fDr+Tj598+k+Pd4Nf6TMav75hK/RvxK4+vr2+nP/V+kOkKjANYpVJBV1cXwuHxE3MzmQzC4bDzyYXDYSSTScTjcVy6dAn79u3D8ePHEY1GsWLFCqxatQqzZ88GMA4eehacvjufz7tjk1avXo37778fV65cwYULF3Dz5s06IaxtrVbH98VevnwZ+/btw4EDB7Bv3z784z/+I44fP45CoVD3IRvtL10H9gPatq+C/vdphBY4rTbN4FmtVnN/U6vjiSszge5anlwQyAETmpqaphoi14icmoM830sHmFLNTpx3wq9aaBB/KBSakfyhUOhd4ee9IFJempYdHR3OoV8oFJwmxUgn37N371689tpriEQiWLVqFbZu3eq0MGqW3LxPt4f6whhdXr16NW7cuIF9+/bhzJkzuHjxIjo7O917+QyPPR8dHcVbb72F119/HUeOHMHJkydRqVTQ399ftxle+0jnnxXmPgHGZ7hGVHgE+etUYYhGo3UaG49yv3LlCjKZDKLRKBYvXoxyuYzR0dEZYbI2DeTY6ep05u8gE9VOAktMt9D8NqWgwIY9Sfhe5Q/SbBqZM3eL35pQjfit39VHan7RlBoeHkYsFkM6nUY6ncbY2JjT6BgdfeWVV7Bnzx6MjY3hPe95D1auXOk+HQiMA9LQ0BBCoZBLEuZBmPF43EV+R0ZG0NXVhfnz5yObzeL8+fPo7+/H6tWrXTn6m9+GaGtrQ1tbG+bMmYOPf/zjSKVSWLVqlfs8oZrqKrTZTxTmVhPTfmy0dij8baaBWk8MihCs8/k8Xn31Vfz93/89BgYG8Eu/9EvYtGkTent7MW/ePO/4TCdqqianA6GDpdqAkg6+mjRq0oZCIef0pX9GzVxqgXyeviz6jRrxA3C+sqmUH8RPc6AZ/LpQlD8UCrlz1e4UP8dkMn6Ou46vLzBB14b6IOlvZVl878jICE6dOoXXX38d0WgUq1atwubNm9Hb24tIJOJMRR54STAKhUIOqPRdrA8jqtlsFjdu3KjzXYZCIdceltXR0YFFixaht7cXwPgpv3pAQNAnGdl2G2n38di1YINvqhjwb5YFTORBJhIJXL16Fa+++ir27t0LAFi8eDGGhobw/e9/H4ODg/ijP/ojTHe6K+ZqkJnik1zWwUqVX083Ze4Pc37U2U21n1ofj9+h5G7ETwc1v6xOfq3HVPg1eZgTks565aezuBE/QYUmluWnFqAmPc8n89VnKvzWZ+Pjp7k6FX6OrQo71U70mrol1Lmvgq1YLOL48eM4cOAAbty4gZ07d2Lnzp2YO3eu09RyuZxLjeB2LS5+mrkMRtDPB4wD8dy5c1EqlZDL5TA2NoZEIuGANhwO1+XOEfA7OjoQi8WQTCZdyoZPaJBsAjT7QgHXZxlQEGqfslz2n/pVqRQwcPPSSy/hm9/8Jtrb2/GJT3wC27dvxw9+8AN87WtfwwsvvNACubdDQX4DHRw72JasY5uRPzWJ+Q1MHWCaNap1KH+Qv8ryc3FZM/l2+UOhiZw9W04QP0+0DeJne5SfWsZU+DXpWt/biF/bOZXyFeiCxp7vr9XGt2fVajV0dXUhFAohl8thdHQUqVQKlUoFFy9exKFDh3D9+nWsX78eGzduxOzZs3H9+nUHaMy1A1AXoSX4qKACJnL/4vE4li1bhoGBARQKBeTzefe8buMi2DESzXbpbhZtr/rmFPzZX0HWjZKOkc8XSp+2zQvt7OxEoVDAf/tv/w3PPfccKpUKfumXfglPPPEEisUiDh8+jHQ6jY985COB755O1PQUEh1cHUxgwpShZKV0VNDwbSjmwiSRzyadspwgfq3nZPx2gjWTnw7+O1E+NbKplk8gtaTCxfIrGCqRR98J1G/bYhAimUxiZGQE/f39OH78OAYHB9HX14ft27dj3rx5bkyZYsOdCUwA1rYVCgWEw2G0tbW5Z9j+eDyOvr4+XL161SUa8zlgYp9sKBRyGhv9egxwqGtE28a+oDauWpuCog/otB9tv5Of6VB2/Jles2fPHqTTabznPe/Bzp07kUwmMTw8jOHhYdx3331YuXLlLeVPR2rqBn1KFlWh1ZdgQY4nuXKh6gZtPlOtVuv8HIA/4dQX3PBplVPhv9PlT4WfGoDl12fuhfJ9/EHBBt+iDofDaG9vd1oR/XLJZBInT57E3r17cf78eSxduhRbtmzBmjVrUCqVUCqV0Nvb6/5OJpNIpVIol8sYHBxENBp130wdHh52ZijrqHtGqeUTYK35x7+ZC6dtpWtEgYaCwQbUNF3K14/an9rvXAe6F5jXVakg/ehHP8LXv/519Pb24hd+4Rfw4Q9/2EVZBwYGUKlUMGvWLCxatMg7TtONmgJyuvE96CtBqnkBE2YoVX8f6WTjM5Z0MvjuzTR+IHiHyd0ovxE/qVa79Th2X9mRSATpdBq1Wg39/f04fPgwbty4gdWrV+O9732vSxOJx+POZ8bfpGg0ijlz5tRd6+rqqquLal0Eot7e3ro8O1+btRy+i89YspFoO/8bke1nX//Sv2jbD0woHJp6AwDnzp3DM888gxdffBEPPvggdu7cOaX63OvUFJDL5XK4fPkyzp8/j+vXr9dFB0OhiS9GUd3XjckqORkVZbSM0ovmFSU9M+GHhoYQi8XcR4Ppg2HqADVLTYGgtlipVFwGfyqVQjgcdmXE43EkEglks1lEIhHnXNYjgRjooCmUSCTq2q1H9NBhz3wrHn+dzWadJvNulc+gBU/NDYVCgeUDcKfqtrW1Oae6ftOAWjYd/Fo+fWnUoKgJMULKLUZqUnEBs5zOzs66E0qYqX/8+HEcOnQIxWIRa9asQaVSwZw5czA6OlqnuajTnsKWfkFN6dHx5pwBgEuXLmH37t24efMmenp6MDo66nZV2ER0PUVGgYRAyUAMMLErgv2mZqvy2GgugxZsUzwedwd69vX1Yf78+Zg7dy56enrcrhMATsOked3R0YHOzk4HzKdPn8Z3vvMd/PCHP3T7d5kuM92pKSBXLBZx4sQJ/MM//ANefPFFXL16FbFYDL29vUilUs7XwmxzjcrRpxKNRl1ELRqNujPJdFuURk0jkYg7akc/Alwul12Co243ouNZQZf3KA0ZmeUiZbSura3NmSpqNjDtgZNRo8DaToI9y2ewgKdYBJWvIMfyfSDH8hn9Y/nM+E8mk4Hl8wQQHu8dBKIEEfLwGwi+8lkeI5DMd9NFzWAB+zkUCiGdTiOXy2FwcBDXrl0DMB5EOHnyJL7//e+7XLWbN28il8vVZe0nk0kUCgVUq1W0t7fXbQFkdJj7UjVgUigU3Lcfkskk9u/f7+aSmqxBLgz+MKJN0KGwpMDW4AXBj3OcdSHI6bl7bGMymcSmTZvw8MMPY8eOHS4Pjs9QAeA8SCaTbkyvXbuG//7f/zu+853v4OLFi3jkkUewc+dOrFmz5l1EgbtHTQG5WbNmYcOGDYjH49i+fbvLtiagqGSiI5jSkZI1Fou57TYW5HgGPwGRk0/9f9Fo1KU16FEyvM8IFOujElTTT7Q+BLlEIlG355UObL6D5evhitRa+Q6WzwgdgZALXtM+eEYZQYhmydspH4A70ttXPkGC5YdCIdcW/m/LZ58Elc86EmxLpRJu3LjhxrxWq7nN4/l8HnPnzkU+n8f+/ftx6dIlrFq1CsuXL8fixYuRSqUwOjrq5kY6nUY+n3cgQqBNp9Puy1ldXV0oFAool8uunpFIBLNmzUK1WkUul0M2m3V7giORSN3RStxxYXclEMysn5NgRiEXCoXqkoMV5PhlMQp+DUTwHRbkKOgWLVqEJUuWYMGCBejo6EClUnHtpEXAuXTixAncuHEDL7zwgvvO7MaNGxGNRvHcc885LftjH/vYHceHO01N0+R6enqwbds2bN682U0MfoiX2osOLgA36FwQNGGUR7Um9e3oRAPgzAuaS5TGfA+fI1gpgLI8m69FANMctmq16lISuPDpaFbQIS9Qv43Nlk9Q0fvsJ1u+aiCNylcgBFBXPkHuTpRPoKMgYlsqlQpGRkbq/FK8nslkMHfuXPT39+Ott95CKBTCsmXL8MEPfhCLFi1CJBLBzZs33Vjw/DS+l0CbSqWcWceDMiuVSp0GTNM4m81iZGQE8Xgc7e3tTvOnps1nOY/ZfjvnSBwvq8nRLcC6q+VCfmuuahTWCjQGUmh5qAuCgg0AVqxYgUcffRTnz5/HjRs3EIvFsG3bNnR2dmLDhg34wQ9+gCVLljiTfbpTqGZH5A7QhQsXkEwm3YF8JC4MG31Sn4r6TYL+ttEjkvLcDqkJq2Sjq77/OaF8bfGRz38U9D+Aui07U6F7ufxGzwLj45DP55HNZnH48GH84Ac/QCKRwLZt2/ChD33IacuFQsGZzPTbUjPn/KKQUb8UgUKJvmHdXaH15fXb6SNf2+k2ILARxPRvzicbkVZNTvmsj5l1JhjSd1ooFDA8PIzBwUF3aOj69evdQZr9/f3o7u4ODJpMN2oKyNGkonajJqFqcED990anSnax8G916E4GNu8W3en3zITymW/GKKgGOahJAuPjl8lk8Mwzz+D8+fNYvnw51qxZg2XLltVtl+ICrlQqblO5L6o4GdGnC9T7aCdrDxAcWW4kgG93njci3bVD7Z/vpdVULBZdqkw4HMbg4CDi8TjS6bQz7QuFQp3mOhO0uaaYq/ThqI8BmNDk6JPTa8DE6QkESOtjItHHF41Gna+Epgr9KvSfxePxum8wAPUfEbGmK4GY9VJfIusLTBwmoBnmViPlpGab+DzLu1fK1/PEbrd8dR/omGouGcGEC1PdDCx3cHAQly9fdsm+sVgMGzduxJo1a5zGoUEdvp/voanNcqmBUdtTk5D118AW5xvrrv2jbaTWxDmq79dggy9yaqOr1DxVIdA+UdJ7NuihGQkKdNR8i8UiarWaO+2Yfjr1T9ttZ9OZmgJyhULBHQjJRE46svkDTGR504/CCBMd/TRFgIk8IJZP6UTThVErLqB8Pu/MDGqWnJy68Ohv4nX6bThhqWWQhxNdedSkpi+LbefiU82V5VG70cmu5dOPqOWr7+ztlK/ACcD50dgPWj4Bw1c+AWsq5etpHEwr4XY11vXKlSvYt28fjh49is7OTmzZsgUrVqxwPqhcLuc0FhWAjJBqIjnniP6tW7sA1PUh689N/dQ4q9UqRkdH3WkjJPXDqVCg+ajlUzvkOLKuaq4qqJIskOl1giVBW9vOcmOxmNPQbty4gUwm404YyWazLlmaJjmDODOBmgJyupdPf1OaWqnPvZbkUamkEU/yMw0lEom4nLZoNIp0Ou2ebW9vd9e5EDjpaTID9VtuNHdL/W38H7j1mCEFHkpktkVzqFSjalS+9fOpP0hBiHV4N8v31blR+QQcXaBB5ZOHoEoql8u4cuUK+vv7ceXKFeRyOTz55JN46KGHAIwfeU5NPJlMuoAU+8Lu0+Tf9NmFQhNf0KIznuNt9/gSAHnfakeaQqJ8/JvzTc1e9oPOa8ujGuFUiKlBnAO6H7pWq7ldHwRZHuPOXMxcLleXg6oZCjOBmvaNB4IIFwkHhQMMoO5IGh1wO2l1Ium1UGhi3yWjqK6hso3GbgOjxPPVm0TQsk5zahG8rs5g3leTW//WegeVzzr6ylewsKbJOy1f+0DL1wWv/wP1Jq3PN6omk0aw1Rl/8eJFHDx4EJcuXUIqlcLDDz+MDRs2uK9wsS7qz9N8xyAAIi/niM4F9oNqVGwDgYEArj5EfY/1vbF87SftT00/sX8r0E6FNG2Fc1nHWQMSbIO6HjTiXauN515aZWM6U9M+SRiJRFy+VKlUcomZbW1tLmlRJ79dODQhOIiaMKw8wIQvTY/+YT1INhSvk4I/Otmsz4e+K9ZZ6xgUeWsU4+FkfDvl+8q1i47lc8GxnKDyg8wj7Uvl0cXSqHyaU3RRUBsrl8sYGBjAgQMH8Oqrr6KrqwsPPvggPvCBD7jn+OlAOzbqx1XSOaHbxrT/dM6Mjo66JGTOK4KcpmGo0LDlKCm4NRor+4yvf4NI/WjqIlBSTZFRZia102Lh0fLlchlXr151889u7p+O1JToKjABHhreBuq/lu4z/YBbT0S1k0ydtfouO+A66awfJWhR+8pQqenzx/gmp7ZfHfeceAR/vWa1Ht5T35vmUSkosv0si5qKanSW35avuYg2eVuFA32nzHWjzyqbzaJcLjsfbLVarUukTafTLk+sv78fe/bswalTp1Cr1fDYY49hy5YtLro3mfBQgWW1S84pO7+0zfQpsm8oSFWw+uYOtUgGvgjIeqyTmuYs29ZZAzP8X3PxbFt9133Cmfxspw1oUCEgmHHcaUa3NLm3QaqSk2yECqifSJZs1EcHWM0UBdRGEtK+x4KpgqiaBgpUmv2v0WH7bntd/9agh+86cOtpyfxbr+uCtjxWIFh+NZO0D205unA0Ml0uTxxlRN+Z+hCpGanJNDg4iL179+LQoUOIxWJ4+OGHsWnTJgdwVmDZsbRmuI6P9psFPHUdqDakUfygnEefxmTJasBaLp9X7Vd52F8aKbVKgvp+fVqjjqPvt7oLtG9nwgellZp+/Ln1NaiGQx41LexEUV4Ovm4L85VtNTFqNkHgav1mOvG4OFgWr1ECA6jTdLQc7QNbV2pQXAAW5KwvDcDb4repGkH8rI9qnbb/+D99ZV1dXe4EXh4umUwmHahQM2lvb3fpPpVKBWfPnsVrr72GcrmMHTt24H3ve1+gNuybE7b9VmvWZ3hfQU4tBd4jwNi223fpx5BI6t/SeaXzS60AnV92sz55dc4qSOlcVbJt0/7SuvismZmgvSk1/UM2lqwZy8FXjUEHS53bPgnVaFB99fE9Y+saBEz6P+/rhGzUD7r4fD6iII1TI5VT5bemzVT5fYEX+15gItmbH0YpFosuL405WLlczu0b1vzEp59+Gm+88QYSiQR27dqFTZs2oVgsug9EZzIZl9yrQku1NStIrNbG62omqjBlOxWYbNstBZmG2j/aR2ra6/uskCKPLUPv6zt9Ji+jrWyj5lXyEE+6JH4W6K4ef65kJR+AWyav8vE+MHE6q/XHkMe+k9cs0Ol9va4T0WplrJNOPn2nT1KqJsH7Wq5Pm+R1u6XnTvD7NKMgzYCkAMxDJvXDz9x3zCj71atXsX//fuzfvx+lUgkPPfQQtm7dinnz5rkcL24w95lPtn+DAEbHg9c0oZfP8j4FiPaJfa8KZQVRmrrUjEOh+uOVLHhaYAYmckVZF5/AUUGpWuBkFKS5zXRqOsjZwAPg99NZIFNeey3IIa3PNLrue0dQ+b736+II4tFFZheK9bdx8vLddmcG6U7zsy3WRWD9VDyFhfsx9cvyviPAM5kM9u3bh2984xuYO3cuHnvsMTzxxBMu+s7jj3RXgParmntaD2u66hxSX6paA9puq1XpO1V7tOasBhaYcK1aVSMBbOeJump8zyhx7qgbQsv1CWUmzeucDVprM4XuSuBBJYpGV0mcGEEDrBOP/wO3+uCmonkon5bBuvGanez2PsuyAOCbQDQj1IGvPD4zhX8HaZLWT+jr26nyWwqqD//ngZ3cLsUyeBYdj/gBxoMMP/rRj7B//34HcA8++KD7uAqjsaw3E3eV1J/lqysw4Sfl/3owJ324bJeeqDJZ+k+QxsexUS2O48yAi2+8ramr9beuBt/ctvdJNhrsu/6zQk3LkwtawBaEfNoEy+Az/J8/Gq2yEVX74zM/SApiFnQ5sW39+IyaeVbyB0lvTlCfg9v6HckfJHV9/EHlTHY9SLBon9nn7KLXs/e4w+T69evYv38/9uzZg0qlgve///3uI8ZMxajVam5rnn6xLAjQfNp/kGDRvtJ5pH3RSFBawav9CEwAiN29oEEOKyStj9Ga0Mpvo60qLGu1Wh14q3augTBNFdHfvn6aKdQUkLP+H5+0VICy4DcVv4jes7z2b+totsBj66D+KAU5Nf+Ux9c24FagIPnaGTTZFOjeLr8FKctvy2b5FrjtgrffddW9o9lsFseOHcPzzz+PbDaL7du346mnnnJnyVWrVbf9b2RkBD09Pc5s1Xr5hKWvH7U+oVCozvmuOx5qtfrvS3As1YWgfjIlO4/Vh2brRQ2PZdt5qYdB2HnCOhGsdNuWPauPYMZ66JYv5vJpO7WOqh3OJLorH5cm2cVG0LKTKkhCc0GRrIZiJ4tvgfq0Evsen/OX1/W9lsdOdjVrfRqkanTadqslsq9sX/j4VZOYjJ9tshqxLlwtiwuXi0iPN+IHUsbGxtDf349z587hyJEjGBsbw8///M9j1apVOHr0KBYsWICuri7k83kMDg4CAPr6+hAKhdz2Im1HIxNV+9kKvyBNzpJvjBtpN+paUc2cY2n9fOqr0zHS3EpbB15jdNhniobDE5+q1DIUNHXOtzS5d5ks4NhF5zMXfKaGHQAb5vdpGPpOTsigyR90TR3APhDjAqQEDTIpG00sBTmfH0YlNJ/RxF6fsNB6T5Xf1kn/D1ogqtkyZ47flRgcHMTx48exf/9+ZLNZbNq0CTt37kR3dzfefPNNp6nR92aDAlbDUC3e8vA5PVFGx8J3EjIDDnY/qm/O0bfG3SgsQ7fChcPhW46GD+rLoDZaQWuDLGpB0A+qBytYc9vmnXKsG2nmM4maopdarYyThUcZsZMZ6dNBmqxc1VSCnuGi4ITURWqf813T+vtAwgdMjfpBHdR6cICVuEGTznfvTvDbv4PqpuDLHDney2QyOHr0KE6fPo1UKoUPf/jD6O7uBgCsW7cO8XgcmUwGkUgE8+bNQ29vLzKZDGq18Q3iPk0EqD/KiONP4GMQRAGxWq2668BELhk/yOMTPFYQcDeH7pO184o/nOM+UA7SRoNMXf62YFypVJDP5+tOclFz2+e6UTOc5QWZ2VNZg9OBmrJ31TrWraSxE0o1OQUwK7FVKvkWq22amlmcCLpAqQFwAhCI6SvSNAN9v68ONs1AJ5KVno36RftDNQmrxfry2HjdahNB/KRQaPyct6GhIYTD4x+laWtrq9tYz9M4VJMhD8vcu3cvdu/ejf7+fjz22GNYv3492tra0NnZ6U64UD8T66apI9XqxMGa9KVpv/vmkJapPFz49psc2p8UvHbMdEx5XctQP5gKSjtf7HUrGH1A45sr2ld2x4pq5tb05TPcgK/5gjOV7koKyWSAZCeFL5rJ+0H+BZ8mZgMU1k8VlFJCsom1viCEAjTfMdkk8qVzBJmuU00tYBnK6wNnX34iP9ZiFy5BX89C44kW1WrVnRKSz+dx/PhxvPzyy7h27RpWrFiBdevWYdGiRc7vxvra9JBQqP6DyL50kaDxIZ89Sot9Yc1Q3ZkS5EpQ8oGG1a5UELPPCCS+yL8dO1+9G5mTeoSZ9kGQ2dkIVIOAdrpT086T85EdGJJuv+HzqsEB9cDgU815zzdxrBQloNA0suF5dQxrcqdOWp9Wp2flWYDR96sPyVdf9clYn422lc/5cu98fWPrw+ujo6MIhca/Gs/rqsHQf8Y28APR1BrPnz+P733ve7h58yY2bNiAj370oxgeHsb58+fdV+5vh7iQfVqJ/q2grkLHBgJ8wk41eN/pG0EaUiNAoKanc8qngdtIrh1D5bWk4GfXEXDrx5woBGw/sG0+wTfd6a5EV4PAzacFAfVZ9gomqqH5FredALyv5ojWwUpqK/kVXHTC8m+bSqLpKLpIfGaqlmP5LcBpXWwf+ASGzxxVp7yV4HYh0iSliUrnOk+bTSQS7mjtV155BS+//DKuXLmChx56CNu3b0c4HMbs2bNRrVYxMjLiNuj75oTWUcdB+ez46wJXF4Rv0VsKh8NOE+XBmLa/dBz0fdZU9IGsjVJrXwdpp1o3q937tMEgwcc6W3C0YEteG/mfKUDXVJALAjcg2IzlPV85wK1motVKgp5VDc2n4vsGWieVApg+oxqDfd5nDgP1p/L6NAS7oH1mDn+sZjBZBNpqKKFQyG3TUuc9BY2aqHwPAe7ChQt48cUXcfbsWaxduxYPPvggli9fjmw2i46ODoyNjeHq1at1+VpsQ5D26etf9Wtpf+m46/O2TxuZc0oWJBRQtJ95ncJAtVxfkEr/DtLydIxIOtdtm23Z2gb7DIWBFYCN1uB0pqbteOBvC3B28SoFDZoPlKY6QFywJIKVlXb6UWV9r91LactulAbia1etVgs8fdVOal9bqDnYxFTbT9ac8/HT3GQAIZvNur2R7e3tqNXGP3LCEy64KwEA+vv78fzzz+P06dOYP38+PvrRj2LBggWIRCLuXDgCo28++ECbf/tMT33earM+IadalBVgmrrCazZCqf5JkvWl6iGb/KGpbc1GHWMLzkHuHRWevrGzz5HfChD9eJTu0pip1DRNbjKzwZKae0FlKYjYd/hMwqnWQaNowER+lC3DamZB0lt5rSljo58+DdKCgJrnenqsBVbdhM92qEntA2LVVGOxmEvqjUQiGB0ddZ/t0/2oR48exUsvvYQDBw7gkUcewY4dO9DX1+cio+Fw2CX2zp49u+7YJCWfJm0FmjUDLagRsOypuhbotZ0+81J/fABHYNC9qtQsVRBSw7MZBnbe6LvtuNi+scSIsKaDKPlM09tdj9OZmnqenE5In/9AeX1akjUdSL68tqC/fZPFB4j23b77NufITnDyNvLF6VE81t8SZGpqnX392UgTsH3i49fUCgKZmmf6/dJr167h5ZdfxokTJzBv3jw8/PDDWLlyJarVKrLZLGq1Gtrb210ul572q+3Q+luhpdqUT3hYzU81at/4B2l0vus2Ms37FE4KKnrkl5Zj32HHUcvVZGPrz5vMsvFZOT7TnPO10ZyfSWZr03Y88Lf1DQC3Ti5fRNKXSkJNb7JTS8iv3w31mbvAhMalYKURLwUk/cYqy7PZ5T6TxxInpt0iFARqvKZRYjWhrTRn/Xz8+gypWCy6Rcy6MbOe32vIZDI4efIkdu/ejTfffBMLFy7EJz7xCSxcuNC1lWDJdlSr1brv4jZa7L6FatttAzMWSHwAqAvcp8nqu3zzSc1YG4VVfj3ZZLLAmWrxQRF71Sgt2fZYgWEFCudHkBvA50+eznTX8uQ4yD7VWY+AtmaGTwpNZib6FrUuPqtJcSLYd1jzh/9bc1P9fDpxfJPGF8G1bdd7gF+zsWX7pHSQNuCrE0E3n8+7fmdUNJ/P4/Tp09i3bx+OHDmCxYsXY+fOnViyZInby5rJZNDW1uZMU46rRiSDtPqg9gbd1/YSzG1ASvmC0npsuUF9RZDjRnlrZtJMZ0R6suADf9u5bSPEFvz1ORVyPpDUfrRCzaeEzCRqauCh0UDrQHAhaFKoDrA143wg59P+rJ9EI2FAcPTTV2eapsprvxtr86os8Ng6q2mkdbIJvXq0tbbXJitrvQDUfXhZTX/fIlSgq1bHP+8Yi8VQKBRw6tQpHDx4EAMDA+jt7cWOHTuwbt06539jnbmnkjl0qk1qP0yW4uBbfD5tV8eG5dodCXxWfXN2bBsJAhVm/Js+Wx5eqf2mQDWZkNE5xXfpPPLNhaC5GmSKA/VfMNM1YTXMmUJNBTkgWOPQRc3Ijz7vm8y8HpQLpukG5FOTzZpEPolppaFOVJtMye/JxuPxug/G+CaNNUtt2SxTI3b01fBzd5T8XFT6CUEFNP0osy5Cgp/uoWWd2U/8Ji63tl2+fBmvvfYazpw5g1mzZuHRRx/F+vXrEYvFcOnSJcyaNQsdHR3o7e11mpt+E5T7VtkHNvfLp4EFaReTLUadSyqQFPx4L8iP6XunRiy171VDJKhyeyDz8CzAc1xIQfXQfrJHrNvyJtPcGSHnPPX5HWcSNWXvqp2wnGSqoivR16UT3ueX4BHZXIh24QaFxa101fdqnhv5mCxqpaedRAQkOuZ9iZvaD/w7l8s5QKnVai5apmegsd6hUMhtMtcPHfuc1Lw3PDyMcDiMdDqNXC7nNGWeFKLf2SQ45/N5DA0NIZ1Ou0Mvjx8/jt27d+PQoUNYsmQJNm/ejA0bNqCzsxO1Wg3ZbNZt7QLqI8q6/9TODfVHKcCOjY2hUCi4CC/7WM9Ns4dGFotFV4cgX60KL+0vJdXy1A+nWjnHWMfdJmWrENOxYtt9fcH5w3GxycYa9KjVxr+TqsnaPu3Uts2X++ery1TB/16mpgYeSEE+A1epn6YBWPNR+a1EVlCxg6zlczFYkwiol6K2jCBtTO8pSLA8C0C2LJ+Wak1JS75DHBtNVv3osR4v5Osb9iUBg6B08eJF7N69G6dOnUJ3dzfWrl2L1atXo7Oz072fkVNff9pcQOt+8Gn7vr7T5331t+X4ti7ZsVczUP+3vlYdb62z3QqmGqP9TkVQe2zbqIVqkEBNS1/QRN/dqGw+r2bwVP2105GaegqJT1qS7ETSCUTSM7qoHdAcUunK91Dq0z+kWgow8R1SCzDA1CJLjcwo3vdFhPVZ3+S0i8z2kdVEbN/6BEepVEI+n3fR0VAo5FI8qCnVarW6o4jK5TK6u7tx+fJlPPfcczh48CC6u7vxxBNPYPHixejp6XFfiL9dsomzFrBte4P6odF1O++C8tBKpZIzJ7XvFJxUs5lKagdBamxszPkzWY6S71nVSvWsuCDtSn1sthwrQBXQ1AS2bpyguk1Hatrx577JoB0K+H1s2vG6gR6Y+LiyDbvzWZozNhHTB4hKU5WMPknK//W3LccCuibrsr9sNBmAOx2EH3rxnd2v2q2afpXK+Of92tvb6/x4odDE0eBjY2MYHR1FR0eH08rOnj3roqixWMydKJJKpVxKSCKR8KZIaLuDxl6jz7qI7YILKs8CmzUxVQPygZN1T1g+O6Zad9/YK3FcLFDq/SCiZWAjxRa4dR+2kk2v0ef14Ahf+ywwTne66xv0SWoC6OD4BtiapPqc+k508uqCsmBpJ6zVEhoNeiNTStsWBJb6bhvts+CsviHlaUQqse172UdsM80j/bLWvn37cPjwYQdw69evRzqddmUwqmhBzka1tf3627cIVVtRl4UPAC2YWUCxoOATqvZZ3gvSEtkm1s8HxBROCqa+9weRAiTbqsESCvdSqVQHpFpXn+Zvf3Q8fPWbCWDXFJCzOVE26dUOkJ6+qo5lPZJINTiaTOpz8h1zpKdpWPC0PkBV3yfzo0xF2/OZY/q3groGVrRs+xFtX9Km1VD4dzgcRjKZBDCxMLkRP5fLObCaNWsWAODGjRt47bXXsG/fPoRCIezatQsbN27EfffdV7dwrOnn+01tw9e3vj70JVnrOFhnPPMqG+0r9vU9/7cafZCG5TP/FGzVj+rTRi1Zd42tk85RPX04HJ5IgWLaju9cPjv3VIjol73sGgxq63SlpgceVBr5wKFWq9UlkCqPqtjqG+Fg6Nn7wMTOBi3H+llsGXaCks9OQtsuvTeZhFTNbjKzx5o31sGtuzG03CCnPwUF/XClUgnDw8OIxWIOBLPZLN544w08//zzSCaT2LRpE3bs2IFZs2ahUqngxo0biMViboO+atJ2zILMPi5cBRgLgEH9p/3o8+nZe+qwt8CsdbdaoNZB54QGb6y1YNuo9dHf2i7bNs27UxDlu6z/zBdEChKurL9P+7X9N1Porhy1pAvRB4A+J60PEH1ROZ9k5T39bSnITxek1ttyg+77TBldUNRQbL6YmnyckL6y+L914us9XRzcYK9jwJNHyuUyRkZGcPLkSRw5cgSjo6NYt24dNm/ejDlz5gAYD9pks1mkUqk6X5w1tRuZQEH96gPooP7UPlfhp9pH0HjZMbPHpSvo+UCCY+Prb/aFHafJQCNIEdBy1AQG6i0kjRw3ep8VhD5hNNlamW7UVJCzE9IuBI2E0gzRwbD7QDmwjBYCuEWt5w/L90lyWxeSOv8nAzilIFXf+kh0gnJS6wLREL+CiZrstv+YzqCkgQg146vVKpLJJNrb2xEKhTAwMICXXnoJJ06cQLVaxY4dO7B9+3bcd9997h2h0PgRS6lUygGj7RMfkPj61SdU9D0KJuT1AYgKAPIr8JPPBh60Llart5qd+sI0rcNXd+0Hfd4HPr5+UuBUQPJpXewTBbmgKKvWy86fRs9Pd2rajgefdNDrPvMgKPeI99UMAVD3vYFQKFTnkOWiYcrJZNJV00+YNHs77fVJVZ1s2na7X5H39TuafE7NcZICgG9BaZIz2647AYDxLPjTp0/jwIEDKJfLWLduHd73vvchnU6jXC5jaGgIHR0dLmGZdbMRzKn0k2prChQKxmwPx0uDRQo6WqZe179t/1shZM1ZC3Ya8CH4qYloI5kW/FRY+iwF2290Qejct1qX3T+rpPODdWe9fFqv7ZcgoT5dqannydnBtXstrW8D8KdekDT1QieuddqyHF+Q43ZMittpq6/+ClZKKj1Vq1ONTHdy2L5U0KAGbH03rJcGJsLhsDsc8+zZszh58iTGxsawYsUKbNmyBYsWLUK1WsXo6GidgGAaivqmrIZhAca2V7UzkgaNWF8FEW3LZNqg1YQa1UUDOFbokhQElKz5HaS93w41mvO8plZPUBvZd0FRet92tpkEbqSma3LARCerNmE/2Kv7/TjpS6WSizhqgmUul0M4HK77TqdKOy4ENTWshA7yd6gZBEzug1OazDwhKdgXi8W6LW9qeqk5YU1eLnSCkWp+8XjcfTOU/U3+a9eu4ciRIzh48CCy2SzWrVuHxx9/HEuXLq07Ay4UCmF4eBilUgldXV23tNGaZmoa2kUY5Mey7bP3g1wd2nbtE6ux+4BAn1PSOqoA4ly0wTOfiWe1ah+Pbz6oRqUgpfVQ1w2AQBNTgy2aM8morCoYPq1yJlDT8+R0MvvMRruIVdJo3pHyqE9Of6sJQz+WmlU+E0snpUbebI4SU1gIyKFQqA6sWS6Pmq7Vai4SCUycWAJMJDUTvH3+GwI628+MeKbPEJDC4fEjt3kmHM1Ltl8n/MjICE6dOoXdu3cjn89j2bJleOSRR7BgwQLXTq0D9wgDqBtDq43xWf1bNSFetya9Lw1CPxsYdApyo9/WdaD15Nhwo7rOTWtGWzPOaphBQQDOIb2nApzzSDUz9qc9vUXXAXMZg0CS93zRapYVjUbdx4iYYE7iYRPMiZzOdFeSgYF6M0H9J6pJkXSR+tTrRCIRKI0bmQtWunLx6X3V5nzlqKT1aS4+zUbbZBeg72ABW08ChUpk9a/YBcX36Akk2WwWx44dw7Fjx5DJZLB8+XJs3rwZy5Ytc2BjnfNcWLzG+tr+AFAHTj7nuPanChXbz1ZYaSCikWloBZzPaa+ASw1HAzS2jmxfUFSS/1stj9cI9hSOOtZ6TevP/rNttYez+uaWT8smqbDlHmXOqUgk4nzbM4GasnfVkpVOarpaSa1gEDS5p/IuHfAgf1HQoKomwud04tjrqolZTbKR5LWTNcgBzL230WjUmeqpVArhcNhJYB6NpCdZMPJ6/fp1HD58GK+88gqy2SxWrVqFxx9/HAsWLEA+n3eajQUXXlO/odVgqFGqr4jPWA3mdswj+qF0bqhgZF15woqCFusZtBdYXQIUCnZLFdtMX5ZvTpBsvfTj29qfWr76I32gpNfUvREOTyQG2/7SZ1W71UMt9ASTbDaLXC6H9vZ2dHR01Fke05matndVJ7tGwKy08QGZ1Xq0XAVLn2bkmzAW1/Xd+i47WVW66rM+jYKTmFqY+md82qi+V7Uy2waV7rogtEx1NFer4/tLk8kkEokEhoaGcPToUezduxfFYhFLly7F5s2b0dfX59V2fP3Fa3aMNH3DjgOBVp+z5qTWf7L+1WdZvv1f36Ht0PfbvzVK7QMZn6/Rgp0Nblkt1tfP1kTWd/rKIk2WyuIrJxIZP+Mum826b0pEo1HnKmEO5EwAOKDJG/T5t4326EAFhdh9ZaqvhNd0cfnMEwt2dlIRiK125QNdH5DqD1V/W66aKbZsW54FaQV1akWUznpftR76fbLZLE6cOIEjR47g+vXrWL16NTZv3ozly5e7E13a2tq85nKQYNA+UVNOxzxocVvzVctRsLLRTwuStl5WYNqxtL5Y6yqxaSr63qBIrg9gtY2T9Z3+3Uiz9a0HOw+nSqHQuE81kUi4s+ji8bjz4zKaPt2p6T65IBNlMlPUmogKcjoQFoB00dkPkARJO62LBWSgHqgVrHRvLM0r68BWHxF5CFQ2fUb7i0SA1AMlAaBQKDhzp62tzZm0yWQSHR0dGBkZweHDh/H666/j6tWrWLBgAd7znvfg/vvvR61Ww7lz5xAKhbB48eK6ReoTFva+9ruaX7yuZ6pZYUceBRwFF5+WpIvaajI+DYnlsO9Vo2bQplqt1gE8TW9NxwmHw3Ump4K4FaC8rnxB42o1R62zT9PU/9nX1tS1ddBni8UixsbG0NnZWVc3tg+Y2NnS19d3S92nGzUF5HQS+nwx1jRUSRpkMtr9ehYkLGCqKWIB0we8uqB8kttqFPYZ227937c4ggDed5+ASj8mgYQLSrVHOqivXr2Kn/zkJxgeHsb8+fOxbds2t1ULAGbNmuXKbSRsfEQB4tN86IuzmpACou1D+7dPY7Njwb81Wmk1R5/1wPpbYeabPwrEtv4+jZ9k/Zb6jP4GUKf9+wDKF1Vme/kuNd1tYEzdHKVSCefPn8fhw4dx7NgxzJkzB1u2bMGGDRvc4Q0zgZoGciQdPCU74Cp5LdgoYOr/CnRBkzTIVND32Gd89fNpFTa/y0pwn9nlA1Ctm5XowERKA81Sght/NBVhbGwM165dw+HDh3Hp0iUsWLAA69atw7p165zjORKJoKurC5XK+Ne5FBy1zb5+s31C0r6xfixf3waB3O1SKBS6RbPxlWfrqvXQugYFLHymdlB91ZqYrN9sUMxnBvveY+sX9Lf9/8aNG3jjjTfw3e9+F0uXLkUikcCqVavQ0dFxy1H105Xuirka5Few6jgBy+eotc5p33uC3m/rotd8PpcgR7QPSH0pFWyLL2EzKIKqZO9TS2FEDBg3S5nrxTPGqtUqrl27hu9+97u4cOECFixYgJ07d2L16tVIJBLOxFUTs1gs1iVgq0ZgfZ+8z3arMFKQbPShmEY+JuVRjSRIC7eWQZCWbN+pB0LoT9BODj6v2l8QkCqAarqKluuzSrRNPg1R267mtO1HX79nMhmUSiX09vZiyZIlWL58Odra2lAoFJDJZNzamikpJE0BOU3i9C0QBYcgrYzkM2OtqcHy7VE+VpLyHeqr8WmOeo/v9JXpAyyaf2pi87q2l2SDJ+SxC4sTm7z2OKV8Po/h4WGcO3cOp0+fRltbGx588EGsXLkSnZ2ddX6yUGj8KPRisThlgRGkfdl74XC4DkQsn8+PpeMzmQCwZqIKRV/KjoK2CtYg94iSb2z4v8901TbwmvoQbdtte62GaecBn9H62X70gbAmcM+ePRurV6/GypUrnanMI7f4e7pTU2LEjSYy/7cali8q5eOd6jt9pJNcJ5QPDIMkNB3U6pPSCUYJbjUAHvBpAZNZ+LqNi2XyHp/h3+rnZP0vX76MQ4cO4eDBg5g9eza2bdvmPjyj/jyad3rcUJDzfir/s456T7frBWnS+mP7S8vykS2TfRIUCfUJxKD2sD46vj6tXDV73xyyZqdPGw3Sai2/7tW2/eD7sWXzHMCxsTEkEgksXrwYy5YtQ7VaxdGjR7Fnzx4MDAzg6tWr3v6ebtQUTU5NF2uSAvUnJdBxrJJPJbJ9PmgS+yaMT3W3ktb+6CRT7YTPWlNKJ7/6yOyEtwDHa3r6sa0vwai9vd2d6EtQopnJ/jx//jxef/11XLlyBZ/73OewceNGjI2NIZPJABiX0tT4qtUq2tvbEY1GXd6UHS/rHrBjSBDO5/NOe9OUGQVu3c4XBARWG/Jp9UHUiEfBSElNPxV45XK57mPeeupHkNZr667l+96rOx2YX8l7Ps1X55qdIzpvgzRhCrahoSH09vaivb0dyWQSR48exf/4H/8DR48exfbt27F06VJ8+tOfDuzL6UJNPzQzHA7XSXsOAvfR8UMt6ouwgQufGWHNO11AFqxsxIoTw6aDAPW7HfQdqmlxAzx/tJxIJFIHPlz4+l0EBg8A1O3DVTOKZdmDA/QjNJFIBDdu3MALL7yAAwcOIJFI4Bd/8RexfPly18c0QQhCuo+RC9maYvybZAGafR6JRFxKCzVD8uhxSTaFQ8vQ9yoA6HxQfl8EXMfImoY+0OG4qDBV0OOYWJdLkKaoEU49iirIbPf55+gDtWav+qlZF9/60D7k/lT2O+deZ2enSzmijzedTmPevHkAgEuXLmEmUNNAThcqtTM1szgJFGymSkFO7SApNhXzixPJd5/vVB6NdOqR5HbTOcvTOmt6gK8tvsVEDU5Pxcjn8zh69Cj279+PRCKBbdu24QMf+EBdO3T/aZBma/8O6jNfPRmRswm2du9to3L0vapB2voG9ZWWE6R1BYGlrw63M7/su5k+o/w65311Vh5fve2cUkCz7VZzm/e5La29vR1jY2M4f/48arUaVq1ahfXr1+NDH/qQO7xhJlDTQK5Sqbion2o3wPj+SiZiTubstAvEp2X5+K3a77vm0xCDANe36G12uO/ZoAir5jY1WpB6TSOg5XIZzz77LN544w2Uy2V88pOfxPLly91exNslTVNREwm41cHtA/IgYOAzlUrFm8RtHfiaLE0tWRcwNRmtm0aLOU56fBVJtSXb941MY+0b/R+YGCu9B0y4bPSIf90Qz7bw9Bbl4d/aJ1QW+G1Xto8AphphNBqtO6pe2//KK6/glVdeQa1Ww3vf+16sXr0au3btwgsvvICDBw8GjuF0oqaA3MjICE6fPo1Dhw5hYGAAhUIB0WgUqVTKZe6rOaOn+yo1km6Wx5LPtxHkt7B+FU0w5faXWm3i3DZqMFbzAMYBHLj1exTU/IrFIlKpFEKhkEvpoBBQh71uyqbvrFKpYMGCBYhEInjrrbfw9NNPY2RkBGvXrsXXv/51dHR0IJPJeH03vv6yfRckNNRk48JS36P1San5HQqF6j7mrGad+mCBiSCGgpz6aHWjuT7DvxlBJq/2H+dYkIZp666/i8UiarUakslkXRBHnyOoFQoFZ6WEwxO7K+LxeN1OCzWZ9SADzfljHyvY6+nVc+bMweLFi7FkyRLcd999SCaTrn10BY2NjSGZTLoDHQYGBrBnzx7Mnz8fGzZswM6dOxGLxdzx9jOBmpZCMjg4iGPHjuHw4cMYHh5GJBKpAzmNiOmhj5Z8AOfL3+I9lcxqJuik4oThCRr0qxBcONkYjaI5qrsM+L2DXC6HUGjiUE/NRVMfYCQScSeGdHV1IRwOI5/PO8luwZSTmb6UcrmMTCaD7u5uAMDNmzdx5swZdHV1oVqt4sc//rH7ejsBMUgzsX2taQ4UNgQGAHUgodFd9cPZaDWvcRGr60L9jtpP7H8Cle5isCDHMWHghOOpgKh+TWo/ev6fjaD6zEuOW602/sUzPU9QSY+VZ/10bk8GcjrvCHgcD9XkWF5HRwfuv/9+VCoVpFIpdHd3u7nK9heLRZf8ze96lEol3Lx50x3gEI/HMTo6imvXrjXUxqcTNQXkenp6nOk0f/58B2pc2IzIccIpyDXyA1lnrM2sV5DTHKhoNOomp2qQlNDUpKhJMJpJszocnjjehvxtbW24efMmBgYGEI/H0dPTg+7ubneUDYFCfXU8y4t7CHnQZSQScX1BcFWQmzt3LiKRCAYGBvDMM88gl8thw4YN+OAHP4iuri6MjY1hdHQUsVgM6XQa+Xzenag8FdLoHYGFycNcoGwX7wFwi1+1LS5K9ns0Gq1rJ10OmvfFH0bdCRi6uFWLsSBH044gR7OOY8UgFwWKBm9YD62bBqFisVgdUHEeaIBDzUtGZhVca7WaS+GoVCqBmhznaSOQozUQjUYxb948LFy4EB0dHahWq2486Ivlvlvtm0QigXnz5jmXxvDwML773e+6cwZnAjXNJzdr1iysW7cOy5Ytq4s0aaTVRq9IQc5jXlMgU1NUJ56CoIKcz/zkQvBtuGdwRJN5qXmdPn0ab775JtLpNJYsWYIlS5bckmCqC1d9U2pS2bprXlQ4HEZXVxeGhoZw8OBBLFu2DPF4HE8++SQ2btyI9vZ2DA8POxNaF9NUQY6aCRccNdNisQgA7nutCsiqLfFZYML/xjYp4Fj/m/Wtaps1Uml9YVab599q1tkz2FRoWPMXQB1IK8ipJqqalrZXAZzCxYKt1dK0rWqiTgXk+By/vJZMJt0H1FXbZr+MjY3hxo0bOHnyJM6ePYu+vj68//3vxyOPPIJoNIqDBw/iwoUL6OjomNJ8udepaSDX3t6O+fPnA0DdF+xnEvGLV11dXVi0aBFWrlx5R96TzWZx7do1lMtl7Nq1CwsXLsTOnTtd/9pctxb97BGFsiaoUyjwex+XLl3CzZs3EQqFkE6ncfXqVfT39+PatWvo7u6+Y/O32dS0lUBtqVAoOGd8pVJBMpmsO8WWjtFmgKCNoE0WUaNWR/8GzRfW9erVqzhx4gT6+vrQ29vrNjz7TFR1Cqsma3dDUFOiFprJZPD8889j//79KJVK+OVf/mVs2rTJ+YoY5a3Vas4VwFNe1STkb5/GPNW+U81LTU6WpdfVDL2d9yjZnLCgQJTeD4qW2hSX2yWW56uD1tM3x8jviyj73mN5bJ7i6OgoCoXCLYddKg/nXT6fRyKRQFdXF9auXYuLFy/ilVdewde+9jUMDAxgdHQUGzduxEc/+lG8733ve1t9c69RU0Aum806fwxTRBhwUMdt0ISYjIIWaqPrvsWpEVB1NutzNqJoJ3c+n0cmk6n7Ur0GPXx1t4tfgQEYn9Sjo6MYHh7GpUuXcOzYMYTDYezYsQN9fX11pgs3X8+dOxfhcNj5ZWwfNHIB2Lr5/vY9y/6z7/HlG9p+DgIC/lazX312Gqxgv/nMVRtQ0LG042DHK2gO6P9qrgaVbfn1PUF9auui/ORlgEGTrTXglUgknLlLAVitVnHfffdh/fr1zk0TjUYxMjKC7du3Y9WqVXU5ldOZmhZdJdEfF4lEHMjRb8GBUpoK0PlAyve8TjRdeJqUzPs2hYW+GfU5WWmsUUFOGpYX5HPSjHi2gffVfzQ4OIhTp07h9OnTAIC1a9c6H0o2m3WO40ql4jbbx2KxWz6w/XbIgofmptkFHSRMfOMRBP5Bws6+y/atLd/WM6hsq11pOT7QmYy0npNpyrZtvi1dvjmt9+gr1PGhNcA5qMn33AGRTqexdu1a9PT0oFqtYs2aNcjn81i7di16e3snbed0oaaAXDqdRqFQQDabRalUQkdHBzo6OtDZ2ekkvW9B3I5pE8TbSIuxz+vfCnKcGPl83gE0gYwaRiqVumWxqyamya8ENx45bs1zq9mVSiX38ZmjR4/iIx/5CLZv346uri4kEgmUy2WMjo46v+ecOXMwMjKCSqWCWbNmuTrYdk/WJ9qHFuS0jqpRKT/LtdcJPEHmXpDbgIJF+9jmAKrwUX6ChwoQHWv7zkZJ4JORrWMQ+cAraB34yub/dAF1dHS4/mB6C3kppHliNLMKFi5ciL6+PgwNDWHlypVob2+viw7PBGqaTy4WiyGZTDrtArh14741SYL8GrxGviC/SyOz6uzZs/jRj36EXC6H4eFhdHR04NOf/jSSySRGR0fdJCkWiy78Ts1KE0B1ouqx6qwX0zfYZvrYhoaGEIlEkE6nXXIv8/AUDK9cuYKTJ0/i9ddfRzabxSOPPIINGzZg3rx5ro+4/5D9GY1GnWZnc858uWnUOrXuClSst71vTTyrsZO0HNVUNQHYp13ZBa0au5qoQfz2GXtNAU+jqDr3LL/Vwi1QBZn0Pn47DrYPNL8wqF84dtqHtIqshULTVS0RYNzc7enpmTGHZFpqauCB/jif2UGA46Co2s7flj9Im1Dp5TOXMpkMXnnlFXz3u99FqVTCyMgI0uk0Nm3ahA0bNqBaHf8oM5N7efoEAwAEJBslZiBCFwxTAOzi4/dSrXbHtJZ4PO7C/Pv27cONGzewcuVKPPXUUy5PjqS5aiSbrV6rTXxzAsAtwBS0yKgRWU3TB3K+MVCwtGOj420XsroF7HXlZx+zXpPxB5UfCoXqQHcyfrZBNVjy814jfu1vBTntSxVKWhfbj75vO1gBAPi/6UuaqQAH3IVTSIK0K72mUsYuqMnKD7rOZ7PZLL761a/i2LFjmDt3LubPn+/M6T/8wz/Eww8/jE9/+tMuWslkS0Y6a7XxfLpSqYT29naX7wSMT6yOjg6Mjo4in8+jVhvPRGfiKc3e0dFRzJo1y30CLhSaOBliZGTEZcFfuHABhw4dwqVLl/DBD34QW7ZsQXd3921HBNl/XDhWU/GBG69bs1K1bb2mi9TyWz/XZPxW05pq+Qqst1O+ak3vlN/2XxC/HRfLbzfVq9bn01iDxtyWazVNH03FJJ9O1DSQawRuloI0Ct6zoEcea5r4JDD5li5diq1bt2Lp0qWYNWsWLly4gL/+679GPB7Hxz72MReOT6VSTsoxCqxnilmTjkm4tVoNuVwOqVTKRbRo6pZKJXR1dTl/CgCnLabTaQwPD+P48eN49dVXMTQ0hNWrV2PVqlXOv6b9GfS/7U8LbLzu83PpwmpkRupY3Ev8Po2yWfw+8LtdfqthWmBUIcOcSDVNdS741pv2qZ0PvD+TgK5pIKeLZyp8PmlnVXAtz3dNs9dJkUgEmzdvRkdHBzZt2uTApqOjA7FYDCMjIxgaGsL8+fPR1tbmfGTU6Nra2ur2LGq2O0GOJz6USiXny/NtBK9Wqy63DZjYPH758mW89NJLOHv2LJYsWYKHHnrIRbv0y1e2vKD+1UVgo7fscyX2v/VLBZmd04FfweF2+fVeI34VxO+EX+eLTzjpXLeasgVmlmHv+4DQrruZAnRNNVct0NlF2ahTrTSz5EvB8EnBtrY2PPnkk27R9/f3Y/bs2S7S1NPT48pgNIpbeQqFQp3jlpEq+sO4F7BUKrkyeOIKtUFqelpH5jmVy2VcvnwZ+/fvx8GDB7F48WJs3rzZhfYZrNBDAhr1p16nBtqov2km2Xv2ui7IIL+nb3HfLn+QefZ2+H1bwCzwBfHbLVuT8Wvaytvlt35Q9j3rYoNyPgCz4xsKTfiurWVkwW2mABxwF77WNVWg800A1UCspNJrvG7TBniPx4YzIslctJGREecnq9UmNt6zrPb29jq/HAMPfD4ajWLOnDk4ePAgBgcH6/Z+coKFw+N7DLljghFnfjrwRz/6Ec6ePYv7778fjz76KFavXu1O/4jH404rU/MmqC+1zcrDH5vrRhDSBQRMRGZ1kQET+Vj2Y92a4G012Nvhv93yya8R5Kny2/a+E36dwz5+lhPEr8cq+VKL+DdQn6HwdmgmaWxBdFc2kAZpZNaE0OtBg22f1+sW9PjOoaEhDA0NYWxsDF1dXcjlcjh+/DjC4fHN721tbbdMIu7WCIVC7lABHqcUDo+fptLW1ob58+fj6tWruHjxojvpgZPcHtFTq42fZJHL5XDx4kV3FBUAPProo9i5cydmz56NkZERhEIht/FaQY4gq3/zRxe7mjQMQFjT3pcqEXRd+1OpEb/PF3Qn+G39VWvx1f92+XlvMn6fVmXN4CABZE1R5bdz/J3QTAc44C5ocko+vwAw8V1R1TIs0GmUUFV9lYw+H0woFEJfX5/TTlKpFPbt24e/+7u/w5YtW7Br1y7Mnz/fmZ3ZbBadnZ1OK6OUpUanYDhr1izMnTsXg4ODuHDhAm7evIlFixbVBSKY08Y0EQA4duwYDhw4gLfeegvd3d3YsmULHnzwQcRiMe+xREETM2ix0dS0OzC071UTtgJFQVPLpQ/RRsPfLr+mbryb/KHQxDY82zZfjlkQ/+2W7+Pn+E2F346zmvussz1jj3XyUdDc8YHmTNLw7vpRIEFAp9JMw+n0Z2ielZpaek//1jLpE+PRQYcPH8ZLL72EBx98EDt27EClUnF7/6ip6TUm9PIQwlBo/Ciizs5O9Pb2Yvbs2e5EEpqabB/bGIvFkMvlcObMGRw+fBinT59GoVDAjh07sGPHDiQSCYyMjCCXyyGdTqNarSKXyyGXy9XltrF92hcWxCbTxrR+QX4gC1jAxKK0wPF2+e273w1+gm0jfptzGMSv4HQn+dl3QdFYnd96Bp7V7PU5KwDtD+9pXWYK3XWQA26NDloJx3u+Bex73ndP/+dkqtVquHDhAk6dOoVsNou1a9di8eLFqFarToMiIKp5R6DVo2zoP+nq6nJfqD906BBGRkYA1AcYyHv58mW89tprOH/+POLxONasWYOtW7eip6fHaX6VSgWJRMKlnth6NOoXks+ksiZso/91IehCo1/vXua35ui7wW/7aDJ+7e+plm+Flm9e2+sKWr73+vhmOsABd9lcVdLB1yggtSg7ORqZVuRRicj7BDdK2KeffhrXr1/Hrl273FHivb29yGazzhRgkKCzsxMA3Ekj6XQabW1tqNVqGBwcRHt7O1KpFLZu3YpMJoMjR47g2rVruO+++wDAfR0pl8shHo/jzJkz+OEPf4j58+fj0UcfxXvf+14XqQ2FQpg7dy6KxSKGh4cRj8fd3kS2Txeo7Rfbt/Z/NX3UEU5A1+CLnm7B/bbc3aEHkLLPqaWwXN3dcS/xMzfx7fDrqdBTLb8RP+e98nPHg/p1rRvApzEHrS2lmQZkjajpOx44eMCExmajoNZZqyDF/+3AWQc7wY0L2oLhlStX8NJLL+Gtt97CY489hrVr12Lfvn3o7+/HmjVrnAZH8wiA06TK5bLTylge8+xisRg2bdqEgYEBPP/883jxxRdRq9WwceNGV98rV67gxIkTOHnyJBYvXoxdu3Zhy5Ytt2zNohmsoMz2WGlsTXnWm4tfide039UPpMLCatQ26MHyKDysb4j3FHybyW8Fo/pSffWfKj/naSP+27lu57cdD53jfLc+w2tWa/f56nicPnM4uS7VyplJINgUkFNAohQE6j+YAtSbVRaULCkg6iDaLzrZ3KxqtYpsNotnn30W3/nOd7BgwQJs374dixYtwle/+lUsXLgQixcvrjv3jvtROTkYaeUErdVqLvJarVaxYMECbN68GZcvX8axY8cQCoWQSqWwYMECDA4O4siRI9i9ezfa29vx3ve+F9u3b0cqlaqrp/ZDMpl077H5Ydp23tfADRcwie9Q4KtW6/c/2sWs/ew7CovjaBce+e1+ybvJH+Sbmyr/ZO19N/jV4lB+/k0XiV7js+p/DQIr3SOt16gMzLRTpZvSGo0A+bQVAHU+J35JSMlqMED96RA+3w1JJ8Xo6Cj+y3/5L/jHf/xHXL16FSMjI8hkMqhUKvjGN76Bf/bP/hk6OztRq437xLgHta2tre77pTTr+Kk3TmYuum3btmHZsmX4sz/7Mxw6dAiZTAY7duzA4OCgA7iNGzdix44dDlBVU7NtU6luUwtIqtVYv6aV8tbsteXYvufiU6FC5zcXapD010Wop9pOR34Cwd3kV02Sa4JE94KWS17yx2KxusMlVOg1eu90paaAnFW7LenC8y0WH3jpog3atxf0f6lUQk9PjzumPB6PI5/P44EHHsD999/vvkmpjmlqOyT70RMLcuFwGLNnz8Zjjz2GV199FWfOnHE7Fjo6OrBt2zZs2rTplo9pc+GxvapV2T4MipgG9bX2oc9PY3kJavqcXWD2eCXWX5Nd2W88uopmPcufjJ++LS1fPy7TLP5qtep2sLwTfmrb7xZ/JBKpc6/4xtJnxuqcCFp3MwHwmgJyvg70RfxUmjQinxZjtQy9rtfi8Ti2b9/uTFJ+gDgSiWDDhg3YunWrm1yJRAJtbW3uU3zq92ImO08zVrNETccdO3agWCzizJkzOHXqFJYtW4ZHHnkEO3fu9J6+6gNlX3t5TyW/8tl8Ku0PLVf/5301iRuNgQVCrRPzGC0oU6vXXQxT4bfl+/bwTsav7ec9lmNNeh+/vjeIH0AdCN0O/1TqA9Sf7aeuiakCnNUca7XajDNRlUK1oBV0B4n5PTR1bMKk9U1ZTUJNXGpyvMbIFv001Lh0UeXzebewBgcH0dbW5r6RSimayWRc7psulGKx6OqdSqW825Y0uhaNRvGTn/wE3/72txGPx/HQQw/hqaeeusUnNlWy2iVQrymrJsj+0kVhy9LfLEM/cxekheu4WNPYl7TK6xQOdrvU7fCzjfc6f61Wu2XXy1T4rV/s7fArgHH8rMBTa2SmBRuUmgLfPrNKtR47kUh2UdpBCIfDt/gkfJqc/Z++tVqt5o57DoVC7iPP5XLZfVc0mUzWmTcA6swJbSPPn+NuhrGxMbz44os4dOgQZs+eje3bt2P9+vXuVBOWpVqRD1R00mrbec8+o/5J1k1NFFuulqHXdcyswPEtHF63moVe1+TYt8tPs/Ze56dGdqf5rbY52TgFCRUd85lETQM57TgbVSVRslip51O1SVx8dgLo8776MFKaSqWQzWZx8+ZNpFIpdHR0OBADJjRD1kM3yfsShKnlFYtFnDt3Ds8++yyKxSIeffRRbN++Hel0GplMxpWlphXbo9RI0Sav9gsn7lRATsu3ZQDBSdk0ke3CoRO/0XWWNxk/F/ad5J9KfdSE9PHb6434KaTeKb/NTtBxtADnM2U5TzWNyGY2zCSgawrI2RC/j2gKECSmsth9PimfD0s1IGpcCqYcYAWcWbNmueuaLMqJUauNH6NOzS2VSiGVSjln9u7du/GDH/wAN27cwM6dO/HEE08gHA7jxo0bKJfL6OrqAgBkMhmkUqlbjk5S7Ze/tR81Hy5oUvK6Oq192rBdBL7onPa5XUg00QkSDCxwAfNkZUb1JuPX78e+XX7+UPtiviHHR/npPvHxs/5vhz8ajbrdKpPxc2414gdwCz+vW79bUJKwTUHSeRAUtZ/u1LToKnCrr0ClpnZ6EMBZdZplEeCUxz6r/6v/giki6XQa7e3tKBQKGBoacufK0U/HCanlMCDBI5tqtfETTs6cOYM33ngD/f39ePjhh/Hwww+jq6sLg4ODqFQq6OjocKCuAKxAre+xGpbuSPD1idUMg8DKjo+vjy35ylMzzo4jQUn9pJPx0wSbCr/uyPDtCtDrQeUrKNzL/NoXymN9b43G3ArzoLGdSabrXTk0U/1LOii+RE3fovXds2arj1/fx4HO5XIAxj/8EovFkM1mkclk0N7e7vaZsmzf8USRSMTl/g0ODuLYsWM4cuSI+8Tb+973PqxYscKZCNT6dKO9r752kvkmm96z5or2kdWkVTj4zBgb+QRuPZRU3+Eza0k2qPRu8/vSjn7W+IH6dWTnkE/o+cxeKyh9c2c6UtN3PNjFooNlB0i1vkYdrhMiSNPQ+9lsFuHweGJyZ2cnhoeHce3aNcydO9ftD+VC0+PPbZnU4GjCHD9+HM899xzGxsawefNmvP/970dXVxcKhQJGR0eRTqcBwIFoKDR+gOdUNC8lTnSV3iTtL163Pk76e3Ria2Iz8wRpNgFwkWJf/YK0SR9Aq3/2Z/06r70b/D7lIGiPLZ+jJRKJROrOUOTzM8V0vSvJMbpAlWwnq8bF56zE00FXFT6IB0DdZwMjkUjdjgOCH/+3ABEOj0dfs9ksksmki9QePHgQL7/8Mi5cuIAPfehDeOSRR9DT0+PKoabIcpjAyTJvl4LAUCf8ZDy273S3BOtN075RHRuNY9C91vV37/pk88Dyce7rB5asn3Uqwna6UFN9cpNd891vxOdbePaaT1tMJBLuNA06hwlsmrluHf3FYtE5tIvFogs0XLp0Cbt378alS5ewaNEiPPbYY5gzZw4A1G2jIemR6tzz+m7RZJMz6D4B3p4A83YAmO9pXb9714Hg8aOGp9/mpXZvfeUzgWZumvMkNJk6bge4WCxicHAQ4XAY3d3d6OvrQ6lUwu7du/H888+jWCzikUcewVNPPeWOZNJ3+cpsUYvuBqmFpMrEVBSL6Ug/0yCnIfMgNb1Wq7mvcvX19TnzdGRkBAMDAzh//jzGxsawdu1abN682QGcz1/WohbdC+SblzN5rv7Mghxw6+4K3yAzHy6RSLi9pvl8HtevX8fZs2cxOjqK++67D1u3bsXChQvdczN1wrRo+lOQz82n1c0Euit7V1vUoha1qFl0T3zjoUUtalGL7hS1QK5FLWrRjKYWyLWoRS2a0dQCuRa1qEUzmlog16IWtWhGUwvkWtSiFs1oaoFci1rUohlNLZBrUYtaNKOpBXItalGLZjS1QK5FLWrRjKYWyLWoRS2a0dQCuRa1qEUzmlog16IWtWhGUwvkWtSiFs1oaoFci1rUohlNLZBrUYtaNKOpBXItalGLZjS1QK5FLWrRjKYWyLWoRS2a0dQCuRa1qEUzmlog16IWtWhGUwvkWtSiFs1o+v8BZv4P8YqTOIEAAAAASUVORK5CYII=",
"path": "images_version_5/image_40.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, a parallel b, then angle 2 = ()
Choices:
A:50°
B:130°
C:40°
D:60°
|
Như hình vẽ, đường thẳng song song a và b, thì góc 2 = ()
Lựa chọn:
A: 50°
B: 130°
C: 40°
D: 60°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, a parallel b, then angle 2 = ()
Choices:
A:50°
B:130°
C:40°
D:60°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, a parallel b, then angle 2 = ()
Choices:
A:50°
B:130°
C:40°
D:60°
|
As shown in the figure, a parallel b, then angle 2 = ()
Choices:
A:50°
B:130°
C:40°
D:60°
|
200
|
40
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAvYAAAH8CAYAAAC6kuvbAADwWUlEQVR4nOydd7wVxfn/P5fee+8ovaooggWwoaLG3hsajRq/sSbGmFgSS2KJMRbsgL1XVIiAoPSuVBEUUAQFpXeQ+f1xf8/eOXOeMzt77rmU4+f9et0Xh53ZaTu7Z89TC4wxBoQQQgghhJC9mlK7ewCEEEIIIYSQ4sMXe0IIIYQQQvIAvtgTQgghhBCSB/DFnhBCCCGEkDyAL/aEEEIIIYTkAXyxJ4QQQgghJA/giz0hhBBCCCF5AF/sCSGEEEIIyQP4Yk8IIYQQQkgewBd7QgghhBBC8gC+2BNCCCGEEJIH8MWeEEIIIYSQPIAv9oQQQgghhOQBfLEnhBBCCCEkD+CLPSGEEEIIIXkAX+wJIYQQQgjJA/hiTwghhBBCSB7AF3tCCCGEEELyAL7YE0IIIYQQkgfwxV6hf//+KCgoQIsWLXb3UPKCPn36oKCgAH369NndQwlmbxzzL7/8gv/+97/o3r07qlWrhoKCAhQUFOCUU04BAIwePTo6Nnr06N06VkKKQ4sWLVBQUID+/funlS1evDja54MHDy6R/nNxL+2NzxgAuOOOO6K5k70X3z1ESpbt27ejbdu2KCgowGuvvZZW3q9fPxQUFOD222/Pqv2cvNiPHTs2utELCgrw2Wef5aJZQkgCzj33XFx33XWYMmUK1q9fv7uHQwghhHj59ttv8fjjj+Pss89G27ZtUblyZVSoUAFNmjTBySefjFdeeQU7duzY3cPMKY888gi++uortG/fHmeeeWZa+W233QYAuP/++/Hdd98lbj8nL/bPP/+89/+E7Anks6Rp/PjxeOONNwAAJ5xwAoYPH46ZM2di1qxZePjhh3fz6AghezLU5pHdwW233YYWLVrg97//PV5//XV89dVX2LRpE7Zu3Yrvv/8e77//Ps477zz07NkT33777e4ebk7YsGED/vnPfwIonH+pUumv4T169MAxxxyDzZs346677krcR7Ff7Ldu3Rq9UFSpUgUA8MYbb2Dz5s3FbZrkCaNHj4Yxhl8YJciIESMAAKVLl8bLL7+Mo48+Gp07d0anTp3QrFkzAIWqf2MMjDF7nfqfEEJIfrFs2TIYY1C5cmVccMEFGDRoEMaOHYupU6fihRdewEEHHQQAmDp1Ko4++mhs2LBhN4+4+Dz++OP46aef0LRpU5x11lkZ6914440AgEGDBuH7779P1EexX+zfe+89rFmzBgDw3//+FwCwbt06vPfee8VtmhASiNz49evXR7Vq1XbzaAghhBA/tWvXxr333ovly5fjhRdeQP/+/XHooYeiW7duuOCCCzBhwoTo5XfBggX4z3/+s5tHXDx++eUXPProowAKTWc1ab1w9NFHo169eti+fTsef/zxRP0U+8X+ueeeAwB06NABl156KTp06ACA5jiE7Eq2bt0KAChbtuxuHgkhhBASz7333oubbroJVatWVctLly6NAQMGoFy5cgCAN998c1cOL+cMHz48Mim64IILvHVLly6Ns88+GwAwePBg7Ny5M7ifYr3Yr1ixAh9//DGAokGef/75AICPP/4YP/74Y2wby5Ytw80334wDDjgA1atXR7ly5dCgQQN07twZ5557LgYPHox169ZlNb5ffvkFgwcPxrHHHosGDRqgXLlyqFGjBlq3bo2jjjoK99xzD+bOnRvbzpo1a3DbbbehY8eOqFy5MmrUqIFevXrhpZdeChrHrFmz8Lvf/Q6tW7dGpUqVULVqVXTs2BHXX389Fi9erJ7zxhtvRDaP8+fPV+u0atUqqvPWW2+pdU455RQUFBREKi1h8ODB0bmLFy/Gzp078dRTT+GQQw5BzZo1UblyZXTp0gV33303Nm3aFDTPTPiiP2gRLIYPH46TTjoJDRo0QPny5dGyZUtcddVVWLp0aVb9y1z//ve/R8dsZ297HTLx/fff44YbbkCrVq1QsWJF1K5dG8ceeyyGDh0aNIbVq1fjrrvuQs+ePVGnTh2UL18ejRo1wsknn4y33347q3nZ85Af2EuWLEmblxBqR7tkyRJceeWVaNGiBSpUqIBGjRrhlFNOwahRowD4fRWSRCTxRWVw9+fWrVvx0EMPoUePHqhTpw4KCgpwxx13pJ23Y8cOPPvss+jXrx8aNWqE8uXLo06dOujVqxceeughbNmyxTumXLBx40a89tpruOyyy7DffvuhevXqKFu2LOrWrYvevXvjgQceKLZKWVvnN954I5LyVKxYEe3atcPNN9+M1atXe9uaPXs27rrrLhx77LFo0qQJypcvjypVqqB169a4+OKLMXHiRO/57n5Yu3Yt7rzzTuy///6oUaNG2l7YFesTyuTJk3H55ZejTZs2qFKlCipXrox27drh6quvxoIFC3bJGIT58+fjd7/7HVq2bIkKFSqgYcOGOPPMMzFhwoQS61P20RFHHBEdO+KII9KeIb57ecuWLbj//vtxwAEHoGrVqqhatSq6d++ORx99NMjpsTj3rPvdUtzntI/ly5djwIABOOOMM9C6dWtUrlwZ5cuXR+PGjXHyySfjtdde8758ac/f119/HUcddRTq1q2LihUrom3btrjpppuwatWq2PEU5zmdhKVLl+Ivf/kLDjjgANSsWRMVKlRAs2bNcPbZZ0d9lSS1a9dGly5dAABff/11ifdXkrz++usAgNatW6Nz586x9U8//XQAhft67Nix4R2ZYvDggw8aAKagoMAsWbLEGGPM4sWLTUFBgQFg/v3vf3vP/+yzz0y1atUMAO/fkCFDEo9t/fr15vDDD49t+/TTT0879+KLLzYATPPmzc28efNMixYtMp5/9dVXe8dxzz33mFKlSmU8v3z58ua5555LO2/FihVRnccffzytfOnSpbHj2Llzp6lVq5YBYG688caUskGDBkXnzp492xx55JEZx9i9e3ezYcOGuCXPSO/evQ0A07t377SyRYsWRf0MGjTI/PnPf844jrp165q5c+cm7t+eq+9v0aJF6pjHjBljateunfG8+++/39v/hx9+aGrUqOHt+4QTTjDr169PPLeQeQmjRo2Kjo0aNUpt7+OPPzaVK1dW2ykoKDB33323uf3229PaFtzr6aN58+YGgLn44ovTyuxrNmXKFLPffvuljef2229POWfhwoWmQ4cO3rVo3bq1+eqrr+KWtVjI3vH9tWzZ0sybNy/rPtx1vvTSSzP21bBhQzNnzhy1HXtP+P5uvvnmjGOx98NXX32lPi/tvZCL9fHtnZA9uH37dnPVVVd5x1C2bFnz1FNPxa5bpnspDvsZ89FHH2W870qVKhX7XZot9lr5/ux1tK/3Dz/8YLp27ZrxvJNOOsn88ssvGfsv7j2by+e0jx07dni/x+XvmGOOyfgct/fMiBEjzHnnnZexnVatWpnly5dnHE9xn9PG+O8h4ZlnnjEVK1b0zvm3v/2t2b59e6L1TErnzp0NAFO1atUS7aekkWfjhRdeGFR/48aNpnTp0gaA+fvf/x7cT7Fe7OWG7tWrV8pxeaHu2rVrxnO3bNliGjVqFF2sm266yQwdOtRMmzbNTJw40bz22mvmuuuuM02bNs3qxf7GG2+MNt6JJ55oXnnlFTNu3Dgzbdo0M2zYMHPvvfeaww8/3Jxxxhlp58qLfd26dU3r1q1N1apVzd/+9jczevRoM3XqVPP000+bJk2aRO0PGzZMHcNjjz0W1albt6554IEHzIQJE8zYsWPNHXfcEd2YBQUF5sMPP0w7v3379gaAOfvss9PKXnjhhZSbq2PHjml1ZsyYEZW7a2i/OB1yyCGmVKlS5uKLLzYffvihmTZtmnnnnXdMz549g77Y4wh9sT/kkEOiei+//LKZOnWqGTFihLnooouiOj169Ejc/+rVq82sWbNSvshnzZqV9rdt27a0Mbdp08bUqVPH1KtXz/zrX/8yY8eONZMnTzYPPvhg9LJepkwZM3v2bLXvjz/+OLoxW7RoYe69914zevRoM336dDNkyBBzwQUXRGM67bTTEs9Nxn7yyScbAKZRo0Zp8xLiXkYWLFhgKlWqZACY0qVLm6uvvtqMHDnSTJkyxQwaNCj6Au7evXvGL4ySeLHv0qWLKSgoMBdddFHK/vzoo4+i+suWLTP169ePnic33nijGTp0qJk+fboZNWqU+ctf/hLNbZ999jFr1qwJXuOkHHrooaZz587mr3/9q3nnnXfMpEmTomfaOeecE70gtG3b1mzevDmrPux1Puigg6Lr8sorr5ipU6eajz76yJx99tlRnSZNmpi1a9emtTN8+HBTuXJlc9ZZZ5knnngi2pvDhg0z//73v6NrBMAMHDhQHYv9AtGlSxdTtmxZ84c//MEMHz7cTJ061bzyyitm/PjxOV2f4r7Y28+U448/3rz44otm8uTJZsqUKebpp582HTt2jMrff//9tPNz+WLfunVrU6NGDVO9enVzzz33mPHjx5vx48ebu+++O0Xw9dZbb2XVj49t27aZWbNmmYEDB6ZcZ/cZsnr16ugc+3ofcsghply5cuaaa64xw4cPN9OmTTMvv/xy9N0FwDzxxBNq37m4Z3P1nI5j+/btplSpUubII480999/vxk2bJiZNm2aGT16tBk4cGDKd+VFF12ktmHvGfmuO+WUU8zbb79tpk2bZj766CNzwgknRHXOOecctZ1cPKeNiX+xf/bZZ6PzO3XqZB555BEzduxYM336dPPWW2+Zfv36ReU33HBDVusawo8//mjKlCkTPev2Vr777rtovR5++OHg87p06WIAmKOPPjr4nKxf7GfOnBkN0pVqPPnkk1HZzJkz1fNHjhyZ8aXTZvv27eoXUhxNmzY1ANQXd5uff/457Zi82AMwNWrUUB8GCxYsMBUqVDAAzG9+85u08hUrVkQ3X6NGjcy3336bVmf69OnRy33jxo1TXiyNMdGLaIMGDdLO/e1vfxv1LT8OVqxYkVLnP//5jwEKJT72g9mYdCn2Cy+8kNbHli1bTKdOnQwAU7t27ax/lYe+2AMwl19+udm5c2davcsuuyyqM3369KzGESfB0MYMFGpuli5dmlZnzJgxkXbqmmuuSSvfsGFD9MXVt29fs3HjRrWvp556KuprxIgRySdmUrVMmYh7GZG9BMC88cYbaeUbN25M+bLYVS/2AMyzzz7rbevEE080AEzTpk3N119/rdax77e//e1v3vaKQ5xGYPjw4dHL6zPPPJNVH+59069fP/X+/Mc//hHV+eMf/5hWvnLlyrRng83WrVvNMcccE+2tHTt2pNWx76tSpUqZjz/+2Dv2XKxPcV7s33zzzaj86aefVtvfvHlzpMVs0aJF2trm8sUegKlevbqqjZw9e3b0ct+oUSOzdevWrPqKI8l87OtdtmxZtf7PP/8cPfu6dOmitpOLezYXz+kQdu7caRYsWOCtc9ttt0Xfxdoed7Vjd911l9pP3759ox8i7ne6Mbl5Thvjv4e+/fbb6P3l4osvzvjdf8stt0T3/fz589U6xeWPf/xjNI/iaF1CtZNxf7ZmPwmvvfZa1MaYMWOCz7vkkksMAFO5cmX13Ugj6xd7kYiXL18+7Yth9erVpnz58gZINwERXnrppWiS2by4x1G2bFkDwPz3v/9NfK79Yu/7ZXXOOecYAKZmzZppZffee2/UxiuvvJKxjbvuuiuq9/rrr6eUvfrqq1GZq5Zu1apVdGPvs88+6k1+yimnGADmgAMOSOvXfnHySYqfeOKJqN4XX3yRsZ6P0Bf7hg0bmi1btqhtfPnll1G9bK6pMdm/2GsSO6FHjx4GgNl///3Tyh555BEDwFSoUMH8+OOP3v7kQXz++efHT0ShuC/2S5cujV6mTj311IxtfP7557v8xf7II4/0tjNr1qyo7nvvveete9NNN0UvSbsTuTdPPPHErM6317l8+fLm+++/V+v98ssv0Y/zmjVrZry/fNjXfOrUqWnl9n116aWXJm5fI259ivNi361bt9h9bowxc+fOjdoZPnx4SlmuX+wfeOCBjPXs7xL3OyJXZPti75PU3nzzzVE9V9qeq3s2F8/pXLFjxw5Tp06djNfTXuNu3bplfEkbNmxYxrXJ1XPaGP89JO93jRo18moVt2/fbho3bmwAmL/+9a8Z62XLxIkTI2l9kyZNMgrHQtjdL/b//ve/ozaS/AiyzZNXrVoVdE5WzrO//PILXn75ZQCFyXBq1KiRUl6jRg3069cPAPDyyy/jl19+SWujYcOG0edBgwZlMwwv0v5rr72WtfNnQUEBzjvvvIzl3bp1A1DoGCkhPwWJK16jRo3IAULjsssuSztHsJ1NbWfH77//HgsXLkRBQQF69+4d1bPrGGOiDMC9e/fO2D9Q5PCsIXMEgG+++cbbTnE544wzUL58ebWsbdu2UZ6Ekh6HTY0aNXDCCSdkLJf10cYkIV979+6NevXqefvp1asXAJSoo5yP0aNHR45fF198ccZ6Xbt2RdeuXXfVsAD49ydQtM6VKlXyXiugaJ2XLVuWVUa/bFi5ciUWLFiA2bNnR39169YFAHzxxRfFbr9v375o1KiRWlaqVKnoeq5evRrTp0/3trV161Z8++23mDt3bjRWY0xUHjfeuGulUdLrY/P9999j2rRpAOCNIQ0A7du3R506dQCU7H1ZUFDgvecuueSSyAHS/Y7Y3YR+dyxatCilLNf3bHGe09mwc+dOLFu2DPPnz4/27Lx589CkSRMA8fv2vPPOy+jU6vvO3VXPabk+J510EipUqJCxXpkyZdCzZ08Aub9HfvzxR5xxxhnYsWNHFCCiUqVKWbd30EEHYdasWcX+a9y4cVb9r1y5Mvpcs2bN4PNq1aqltuGjTPiwivj444+xfPlyAJlD9lxwwQV45513sHz5cowYMQLHHntsSvlhhx2GffbZB9988w2uu+46vPTSSzj11FPRu3dvHHjggVF4o2y5+OKLceedd2L8+PFo2bIlzjzzTBx11FE47LDDoi+NOOrUqYPatWtnLLcXfP369Sk/cGbPng0A2H///b0hCOvXr48WLVpg8eLF0Tl2Wdu2bTF//nyMHj0aV155JYCiF/gOHTqgbt266NOnDwYOHJjyYj9z5szIsz4uGVG7du2C51iS+MYBFN4MGzZsKPFx2LRu3doba1bWRxvT1KlTAQD/+9//giMT/PDDD1mMsvjYe8/+YtE48MADc/7C5UMiImRC1nnTpk0oUyb8kfbDDz+gadOmxRpbJsaNG4eHH34YI0aM8Ea4+Omnn4rdlxvxyqV79+7R59mzZ0dfxMLGjRvx8MMP49VXX8WcOXNUQYwQN964ayXsyvWxkb0CFMaRPvfcc4POK8n7smXLltEPCI26deuiRYsWWLRoUdp3xO4m2++OXN+zxXlOh2KMwUsvvYRnn30WkyZN8ibhjNu32a7brnhOr127FgsXLgQAPPnkk3jyySeDzsvlPbJ+/XqccMIJUSS8e+65B0ceeWSx2qxcuTI6deqUi+Flhf2cS/Jib9f9+eefg87JSmIvMep9v5JtSb4W075s2bIYMmQI2rdvDwCYMmUKbrnlFhx66KGoUaMGjj/++IzS/hBuvfVWXHrppSgoKMCKFSvw2GOP4bTTTkP9+vXRuXNn3H777bHhOON+HdoPEnecchHr168fO9YGDRqknGMjL+WffvppdExe4KVMQpXNnTs3+kUndUqVKoXDDz/c279vnr455prQ9S7pcdiEjskNc7Z9+/Y0LU4IxQ0tmi12SMQ47ULoD+NcEfcQXLFiRVbtltRa33HHHTjssMPw+uuvx4aty0WG7rjrZT+D3PEsXrwYnTt3xi233IKZM2fG3ltx4w35wtrV62Ozp+0VIP76AUXXMCQM4q4k2++OXF+HbJ/ToWzZsgUnnHACLrzwQowePTp2X8aVZ7tuu+I5vbvvkS1btuDkk0+ONGs33HADbr755py0vTuxNR9Jnmt23YoVKwadk1hib2eVXbNmTUbTCZt3330X69evT0tC0KFDB8yaNQtDhgzBkCFD8Omnn+Lrr7/G5s2bMWzYMAwbNgwPPvggPvroo6CHn03ZsmXx7LPP4sYbb8Qrr7yCTz75BFOnTsW2bdsi1dmDDz6IF198ESeffHKitpMQIqm1Vd0uvXv3xpNPPokffvgBX375Jdq1axe95MuLfZMmTSLtx6effoozzjgjqtOlS5dEvw5JbrAfyGeddRZuvfXW3TiavZvSpUt7y2WtW7Zsiffffz+43ZYtWxZrXBojR46M8iXss88++OMf/4jDDjsMzZo1Q5UqVaK53Hbbbbjzzjtz0mfcM8b3fLnwwguxaNEiFBQU4JJLLsE555yD9u3bo27dutGzfefOndG4fW0B8ddqd6yPjX1fvvTSS8EahpJ8hhb3O2JvZE+6Z0O4++67o1j4vXv3xtVXX40DDjgADRo0QMWKFaOX8V69emHMmDF79fWy75HrrrsOv/3tb4POK66VBVCY0+Css86K4uNfdtll+Pe//13sdoFCzaRrEpYNbdu2zSoRpP1Da9WqVRmTcrnYP+ZDf6wlfrF//fXXE0tRNm3ahDfffBOXXHJJWlnp0qVxyimn4JRTTgFQmARi6NChGDBgAKZNm4Zp06bhiiuuwDvvvJN0qAAKfzzceeeduPPOO7F582aMGzcOL7/8Mp5//nls2LAB5557Lr7++usUm/9cUKtWLSxfvjxIPSWaA1sFJ7h29tWqVcOCBQsi+3q73jfffIPRo0fj9NNPD7avJyVDhQoVUKlSJWzatAlr1qzZrSrAEOwXlxUrVkS2oho+Oz9b2hQnHdu4cWOCEWZGzOV+/PFHtGvXLpFqP9c8/fTTAAq1mRMmTMgokIhLGpWEOM2jLYGznzFffvlllPTkL3/5C+6++271/FyOdXesj41tWllQULBH3JchiRzlGmrfEXsje9I9G4cxBs888wyAQhPiTz75JKPZT0ntWyFXz2kf9j2yadOmXXaP7Ny5ExdeeCGGDBkCADj77LODzYBCmDJlSkoitmxZtGgRWrRokfg8+6V89erVaN68edB59p7ymezZJDbFEbOahg0b4pVXXon9a9asWcp5cTRs2BCXXnopJkyYgAMOOAAA8MEHH+REJVuxYkUcffTRGDhwIO6//34AhWqODz74oNhtu8jNMGPGDGzfvj1jvRUrVmDJkiUp59g0bNgQrVu3BlD4Yu/a1wu2A+2sWbMiW6w4+/pfE8XNwJeU/fffH0ChPfHuMrEJpWPHjtFn2w5Zw1duSyF8X3I///xzzuynZZ03bdqEcePG5aTNbJkzZw4A4Mgjj/RqGePWOAlTpkwJLrefMTJWADjnnHMynp/Lse6O9bGRvQIgypq+u1m0aJHXdnblypVRVuySesnaXc/GPeGejWPVqlWRgO6ss87K+FK/YcOGjFnic0WuntM+6tatGzmIjhgxYpdpH6644gq8+uqrAIATTzwRL7zwgtdvYm/DzjT71VdfBZ8nddu0aRNkIQMkfLFftGhRJOE5/fTTcc4558T+nXnmmQAKbcS//fbb4L7Kli0bSZt37NiRlb2yj6OOOir6nGsHLQA4+uijARSaK7311lsZ6z377LPRjSPnuNh29q59vWDb2b/xxhsACh/Wcfb1vyZsG7etW7eWeH+/+c1vABRKph977LES7684HHHEEdFD1Pcj/IsvvvA6ZNWsWTPyrfF9sbzyyivZDVTBNqW77777ctZuNuzYsQOA3970888/x8SJE3PWpx3MwGXnzp147rnnABReGxGW2GMF/ON94okncjTS3bM+Nq1atUKHDh0AAK+++mqi76SSwhjjvecGDx4c+x1RXHb1s3FPumfjCL1Pnn32Wa8QLxfk6jkdh3x3ffPNN3jzzTezbieUG264IdKKHHXUUXjzzTezMnfx0adPH5jCEO/F+stGWg8UOjOLjXycMMZGvkeTvMslerF/4YUXogfMGWecEXSO1DPG4IUXXoiOjxkzJvK81ti2bVtkJ16lSpVEjiCrVq3C+++/7/2laUtrSsJu75JLLokcZG688UY1TNcXX3yBe+65BwDQuHHjyBzJRX7g/PDDD3j99dcBpL/Yi529MQaPPPIIgMJfiL6oPr82bHOrr7/+usT7u/LKKyPV2a233hrZaGZi3LhxkQnVrqZx48aRI/w777yjPsw3b96M3/3ud7FtSXi69957T13nefPm4bbbbivmiIs46KCD0LdvXwDARx99hNtvv91bf/HixRl/WBQUFKCgoCDrh7do18aOHauG1lu5cmXGSGLZsnXrVlxxxRWq4+u//vUvzJo1CwBw6aWXpkh8ZKwAopd/l8cffxzvvvtuzsa6O9bH5W9/+xuAQie90047zWuysHXrVgwYMABbtmwp0THdeeedqrR33rx5kYlUw4YNVX+wwYMHR/v2jjvuyKr/Xf1szOU9W9LUrVs3Ela8+uqr2LZtW1qdKVOmRPuqJMnlc9rHn/70p+hZceWVV8ZK/z/66CPMnDkzq77uuOMO/Oc//wEAHHLIIXjvvfeCJdN7E+XKlYsilE2ePDnonG+++SYSPJfoiz1Q6I0d2snBBx8c2YHZL/YjR45E27Zt0adPH9x///343//+h+nTp2PcuHEYNGgQDj/88Cjm8mWXXZbIBm/dunU4+eSTsc8+++DGG2/E66+/jkmTJmHatGn44IMPcMUVV+DPf/4zgMIX4pNOOim47VDq1q0bmfssW7YMBx54IP7zn/9g0qRJGD9+PP7xj3/gsMMOw4YNG1BQUICnnnoq4y9U+yV+7dq1afb1br21a9cCoH29yyGHHBJ9vv766/HZZ59hwYIFWLhwIRYuXJgimckF1apVwyuvvIIyZcpg69atOPHEE3HWWWfhtddew9SpUzF16lQMGTIEd9xxB7p27YrDDjss64djLnjwwQejH6PnnHMO/vCHP2DUqFGYNm0annvuORx44IGYPHlybHjF3//+9wAKv2D69OmDZ599FtOnT8dnn32G2267DT169EDt2rVzGl1n0KBB0cvJP/7xD/To0QNPPfUUJkyYgBkzZmDEiBF48MEH0bdvX7Rq1cqrRSsOF110EYBCtXzv3r3x6KOPYsKECRg/fjweeOABdO3aFXPnzk0LOVkcDjzwQAwZMgSHHnooXnvtNUyfPh3Dhg3Dueeei7/+9a8ACp9zrgP3/vvvH5l2PP744zjvvPPw4YcfYvr06Xjvvfdw5pln4ve//z0OPfTQnI11d6yPy7nnnhvFAJ82bRo6dOiAv/3tbxg+fDg+//xzjBs3Ds8//zwuv/xyNGrUCFdffXXOnw02rVu3xs6dO9GjRw/861//wsSJEzFx4kT861//Qs+ePaPn+SOPPJITB0WNZs2aRd/TDzzwAN577z18+eWX0bOxJEIM7yn3bBylSpWK4vV//vnnOPzww/Hqq69i6tSpGDlyJG688Ub06tULFSpUQJs2bUp8PLl6Tvto2bJlpKlbtWoVDj30UFx22WV49913MX36dEyePBlvv/02br75ZrRq1QonnHBCVtqvRx55JHKmb9y4Me67774orGumv5LWipQk8qNs8uTJQffUyJEjART6oroh472EZr8aO3ZslP3qiiuuCD3NGGPMNddcE507ceJEY0xq9jrf32mnnebNfKbhplvP9Ne4cWMzffr0tPNDsngak5odM1M2srvvvjvKFKf9lS9f3jz33HOxc9p3332jczp27KjWef7551Pafuutt4o1dmOSZRLNRGjm2eJkKg3lrLPOCsoo5xuzTUg225EjR5oGDRoE7cmQvaBR3MyzwscffxylcNf+br/9dnPrrbcaoDCjbibse979a9q0qZkzZ05w5tnQTH+LFy82Bx10UNA6X3LJJWnnb9q0KSrXsjWHIinAtb/SpUubhx56KFEWZA33vunfv3/GPhs2bGjmzJmjtjNjxgxTs2bNjOd27tzZLFu2LOX6uySdSy7WpziZZ40pzBJ60003mdKlS8fulcqVK5tNmzalnJ/LzLO9e/c2H3zwgalUqZLaf6lSpbyZaQcMGBDV9WVKj8Nux/2z1zH0eoesUXHv2Vw+p32sWbPG7LfffhnHVqtWLfPpp596x5Nkz/juN2Ny85wO+T599dVXTbVq1WKvTalSpcwnn3zinZOGnTk49C/bzK97AkuXLo2eOSHf9X369DEAzLHHHpuon2CJvW3P5cukqmHXl3ZuuukmfPTRR7j++uvRo0cPNGvWDBUqVECFChXQokULnH322fjwww/x1ltveTOfaTRv3hyff/457r//fhx//PFo27YtatSogTJlyqBOnTro3bs3HnjgAcybNy/FmaokuOWWWzBjxgxcfvnl2HfffVGxYkVUrlwZ7du3x7XXXosvv/wykmL5sKX2mRxibY/vgoKCyCSCFPHiiy/ivvvuQ/fu3VG9evVd4pxz5JFH4uuvv8ajjz6K4447Dg0bNkS5cuVQoUIFNG3aFH379sXdd98dvBdKkmOOOQazZ8/GFVdcgebNm6NcuXKoX78+TjjhBAwbNgx33HEH1q1bBwCoXr16xnb++9//4uWXX0avXr1QrVo1VKxYEW3btsXNN9+MGTNmRHbOuaR58+aYNGkS3nnnHZxzzjlo2bIlKlWqhLJly6Ju3bo45JBDcOONN+LTTz/Fs88+m3a+nTnx+uuvz3ocAwcOxAsvvIDDDz8cVatWRfny5dG8eXNceOGFGD9+PK699tqs287EoEGD8PLLL6NPnz6oXbs2ypcvjzZt2uCmm27CnDlzMq73fvvth88//xxXXnklmjdvjrJly6JWrVro3r07HnjgAUyePDnnEcN2x/q4lC5dGvfeey/mzp2LG2+8Efvvvz9q1qyJ0qVLo2rVqujYsSPOP/98PPfcc1i+fHlw/OhsOeGEEzB16lRccskl0X1Xr149nH766Rg7dixuvPHGjOfKvq1Zsyb69++f9RiuuuoqvPXWW+jbty/q1au3SyLVFPee3VVUr14d48aNw5133onOnTujQoUKqFKlCtq3b48//vGP+OKLL3bp922untNxnH322Vi8eDH+9a9/oU+fPqhXrx7Kli2LSpUqYZ999sFJJ52EBx98EIsXL85JxJl8p3HjxpE53UsvveSt+/3330emuaIFD6XAmL044CohZJdz9NFHY+TIkTjssMMwZsyY3T2cnHHHHXfg73//O1q3bo158+bFxmTfnSxevDjyDRo0aFCxXujI3k2LFi2wZMkS/P3vf8+p7wrZu8nX5/TezsSJE9GzZ0+ULl0aCxcuzOjPddddd+HWW29F27ZtMXfu3ERCyPyJJUQIKXGWLVsWSRF69Oixm0eTW8RZ/5ZbbtmjX+oJEb799lssWbIE1atX3yWaDrJ3kM/P6b2dHj164Pjjj8cvv/yCf/7zn2qdDRs24KGHHgIA3H777YktC/hiTwiJ8EWq2rx5M/r37x85L+1us6Fcsm3bNkyaNAktW7Ys8agshOQK+TF6zTXXFMvkguxd/Fqf0/nCvffei9KlS2PQoEGq0/Fjjz2Gn3/+GQcddJA3x0gm9tx0b4SQXc5ll12GjRs34qyzzkK3bt1Qq1YtrF+/HlOnTsWAAQOiL5Tf/va3KQk39nbKlSu3xycRI8TlwgsvxIUXXri7h0F2Mb/W53S+0LlzZwwePBgLFy7Et99+GyVyFapWrYrbb78dp512WlbJ4/hiTwhJQUJxZuLUU0+NciUQQgjZ9fA5vXfj0wwndZZ14Ys9ISTiwQcfxDvvvINPPvkES5cuxcqVK2GMQb169dCjRw9cdNFFUSxeQgghux4+p4kPRsUhhBBCCCEkD6DzLCGEEEIIIXkAX+wJIYQQQgjJA/hiTwghhBBCSB7AF3tCCCGEEELygN36Yr948WIUFBSgoKAAgwcP3p1DwR133BGNhRBCCCGEkL2NYr/Yb9++Ha+++iouvvhitG/fHrVr10bZsmVRp04ddOvWDVdddRVGjBiBnTt35mK8ZA/jrrvuin4QVa1aNedJflq0aBG17/tr0aJFUHsTJkzAhRdeiBYtWqBChQpo2LAhjjvuOLz66qtB52/duhW33XYbWrZsiQoVKqBTp04YMGAA9oTgUqNHj/auUZUqVdCmTRtcfPHFGD16dE763LFjB2bMmIEnn3wSl112Gbp06YIyZcpEfS5evDi2ja1bt+Kdd97BX/7yFxx99NFo06YNatWqhbJly6J27do45JBDcNttt2Hp0qXB45ozZw6uvPJKtGrVChUrVkTdunXRq1cvPPnkk9ixY0fs+cYYPPTQQ2jXrh3Kly+PVq1a4a677oqyOe5JGGMwZMgQXHnllejcuTPq1auHsmXLolatWujcuTMuvfRSvPvuuyU29rPOOitln4VccwB49dVXceyxx6Jhw4aoUKECWrRogQsvvBATJ04MOn/ZsmXo378/6tati0qVKqF3794YOXJkMWaSO2xBkf1Xvnx51KtXD61bt0a/fv1w22234bPPPivRsYwYMQL9+/dHq1atULlyZVSvXh1t2rTBGWecgccffxwbNmzwnr9p0ybcf//96N69O2rVqoUqVaqgffv2+OMf/6hmzdSYPHky+vbtiypVqqBmzZo455xzvNlTCSHFwBSDd9991+yzzz4GQOxfmzZtzAcffJBy/qJFi6LyQYMGFWcoxeb222+PxkLCadOmTcp1fuGFF3LafvPmzYP2V/PmzWPb+vvf/25KlSqVsY2TTjrJbN68OeP5O3bsMH379lXPvfzyy3M46+wYNWpU0FrJ36WXXmp27NhRrD7vuOMObx+LFi2KbWPBggVB461cubJ57rnnYtt75plnTPny5TO206NHD/PTTz9527j00kvVc48//vhir1kuGTNmjOnatWvQ+jVq1Cjnz9kPPvgg8TXfvHmzOfHEEzOOs1SpUuYf//iHt43vv//eNGnSRD0318+gbLC/T0L+2rdvb15//fWcjmHVqlXm5JNPju17xowZGdtYuHChadu2bcZzq1evbj788EPvOIYPH27KlSuXdm7NmjXN7NmzczpnQogxWb/F3nPPPaagoCC6SY8++mjzyCOPmJEjR5pp06aZ4cOHm0cffdQce+yx0ctU165dU9rYk17sSXImTJgQXb8qVaoYAOaYY47JaR/yYn/yySebWbNmZfybP3++t52nn346Guu+++5rnn32WTN58mTz7rvvmiOOOCIqO//88zO2MWDAAAPANG7c2AwaNMhMnDjRPPTQQ6Z69eoGgBk6dGhO554U+8X+qquuSlmfmTNnmtGjR5t//vOfpl69elG92267rVh92i8wFSpUMD169DD77rtv4hf7evXqmbPPPts88MAD5o033jBjx441kyZNMm+//bb57W9/aypUqGAAmIKCAvPRRx9lbGvYsGHR86Z+/frm4YcfNpMmTTJDhw41p512WjSuXr16mV9++UVt46OPPopePB5++GEzceJEM3DgQNOoUSMDwDz++OPZLldOef75503ZsmWjOR188MHmvvvuMx9//LGZNm2a+eSTT8zTTz9tTj311OjFqnr16jnrf/369aZZs2YGQMqeirvm5513XlT3iCOOMO+++66ZPHmyefbZZ1P2ztNPP52xjbPOOssAMD179jRDhgwxY8eONddff70pKCgwlStXjv3hVtLY98XAgQNT7sMxY8aYt99+2/zlL38xnTt3TvuxnWlfJmHNmjWmW7duUbsnnHCCeeGFF8yECRPM2LFjzUsvvWSuu+4606RJk4wv9uvXrzft2rWL2rj88svNyJEjzfjx483dd98dPfMrVapkvvjiC7WNrVu3mqZNmxoApn///mb06NHm448/Nscff3y0ZwkhuSWrF/vnn38+utnr1q1rPvnkE2/9mTNnmiOPPJIv9nnGVVddZQCYOnXqmHvvvTeSmC1dujRnfciL/cUXX5x1G6tXrzY1atQwAEyzZs3MypUrU8p37NhhTjrppGgvfvrpp2o7ffr0MQDSvsTeeecdA8BccsklWY8xF9gv9rfffnvGenPmzDEVK1Y0AEy1atXMtm3bsu5z2LBh5oknnjDTpk0z27dvN8YYc/HFFyd6sf/ll1/Mzp07vXUmTZoUvcQecMABap3t27ebVq1aRfNauHBhWp3f//730dgySf/79+9vAJj33nsv5fiMGTOil9HdzahRo0zp0qWjF6vXXnvNW3/RokXmrLPOyumL/bXXXmsAmKOOOir4mo8ePTqqd9JJJ6VpP1auXBn9WKhZs6ZZvXp1Whtbtmwx5cuXN02bNjUbNmxQxxSi2SlJ7Bf7UaNGeeu+//77pk6dOlH9P/3pT8Xu/8ILLzQATJkyZcyrr76asd7OnTuj+9bFnsN9992XVj5+/HhTpkwZ7z0h1/vUU09NOb5jx47oh8eSJUsSzIwQEkfiF/vvv//eVK5cOfpCmTNnTtB5v/zyS5qKlC/2ey9bt241tWrVMgDM73//e7N8+fLoRePee+/NWT+5eLG/7777on32yiuvqHW+++67aPwnnniiWqd169amdu3aacfXrVtnAJi+fftmPcZcEPpib4wxZ5xxRlQ3k7QtW5K+2Idy3HHHRe2uX78+rfz111+Pyv/5z3+qbWzcuNHUrFnTADCdOnVS6xxzzDEZ+6hVq5Zp06ZN8SZSTDZt2hRpD0qVKmVGjhwZfO7gwYNzMoYpU6aY0qVLm/Lly5v58+cHX/N+/foZAKZ06dLmu+++U+u88sorUVsPPPBAWvn3339vAJjTTz89rez99983AMw999yT9dxyQZIXe2OM+eqrr0y1atWic6ZPn55132PGjInaueOOO7JqY9u2bZEwpH379hm1CFdccUXU19SpU9PKX3rpJQPAPPLII2llN9xwgwFgxo8fn9UYCSE6iZ1n//Of/2Djxo0AgL///e/o0KFD0HmlSpXCBRdcEFtv+PDhOOmkk9CgQQOUL18eLVu2xFVXXRXkOLdt2zYMGDAARxxxBOrWrYty5cqhQYMG6NevH1588UWvA29oVJxt27bhqaeewgknnIDGjRtHzlDdunXD//3f/2HMmDFeR8rhw4fjggsuQMuWLVGxYkVUq1YNXbt2xU033YTly5d7+162bBluvvlmHHDAAahevXo0v86dO+Pcc8/F4MGDsW7dOv8i5YghQ4Zg1apVAIALLrgADRo0wJFHHgkAeP7553fJGEJ59913AQDVqlXDaaedptZp0qQJjj76aACF10hzKKtXrx5+/vlnzJkzJ+W4OKI2aNAgd4MuYWxn4y1btuy+gSSgcuXK0eetW7emlct1BoD+/furbVSqVAlnnXUWAGD27NlYsGBBWp169eoBAD799NOU47NmzcKqVat2+3UeOHAgli1bBgC46qqrovsuhIsvvrjY/e/YsQOXX345fvnlF9x8881o06ZN0HkbNmyInFuPOeYYNGnSRK132mmnoVq1agCAt99+O628Zs2aKFOmDKZOnZrmrL833osA0Lp1a/zzn/+M/v+vf/0r67YeffRRAECVKlVw4403ZtXG6NGjsWbNGgCFe6ZUKf1Vwb7PtGuV6V7auXMnxo4dC2Dvu1aE7PEk+RWwc+dOU7duXQMUOrKtXbu2WL8qXIn9n//85xR7Q/uvbt26Zu7cuRnbWrx4sWnfvn3G8wGYww47zPz888/q+SHOszNmzDAtW7b09oEMEqsNGzaYU0891XtelSpVzJAhQ9S+P/vssxSJTqY/7XxbklscybfNb37zGwMU2qsLzz33XNTPtGnTYtuQuj7H1+JK7Ldu3Rqpi4899lhv3XvuuScak2Zedv/99xsApmnTpmbw4MFm0qRJ5pFHHokkwJmu3a4iW4n98uXL1Tq2FDZE6qidlyuJ/Y8//hitc506ddQ6Ysvbtm1bb1svv/xyNL6BAwemlb/xxhsGgKlVq5Z59NFHzaRJk8zgwYMjZ01N+rgrEROGgoICs2DBgmK3l/T5IGZ3rVu3Nlu2bDHGhF3zkSNHxmpUBHFSL1OmjGoqdsIJJxgA5tBDDzUffPCBGTdunPnTn/5kSpUqZSpVqmR++OGH2HmUJEkl9sYUapNESl6pUiV13nH35NatWyN/lDPPPDM6vn37drN48WKzZMkSs3Xr1tix3HrrrVE/EyZMyFhv+/btkQa/V69eaeWbNm2KzIx++9vfmk8//dQMHz48cp7u1q1b7FgIIclI9GI/e/bs6GY/7rjjit25/WJ/yCGHGACmd+/e5uWXXzZTp041I0aMMBdddFFUp0ePHmo769evT4nOc8opp5j333/fTJ061bzxxhumd+/eUVnPnj3VqBZxL/Zz5syJnIWAQpvB1157zUyZMsVMnDjRPPfcc+aCCy4wlStXTvti27FjR+SgWVBQYM4991zzxhtvmKlTp5oJEyaY//73v5Fdably5dJUmlu2bIlU71WrVjU33XSTGTp0qJk2bZqZOHGiee2118x1111nmjZtukte7FeuXBnZO9vOl+vXrzeVKlUyAMy1114b206SF/uWLVuazp07m0qVKpmKFSuaFi1amLPOOsu88847Xvtse8/Gjentt9+O6j722GNp5Zs3bzYHH3yw+oPqoosuip1vSRP6Yj9v3rzIxv6ggw7KWG93v9hv2bLFfPPNN+app55Kcaq888470+quX78+cuY/+eSTve1Onz49akuzZ965c6c55ZRT1Ot81FFHZbRJ3hWsXbs2Mhlr165dTtpM8nz45ptvont8+PDh0fGQa/7oo49Gdd555x1vP9dcc01UVzP3XLBggaldu3ba9SkoKDDPPPNM3JRLnGxe7I0pMlUCYCZOnJhWHndPTp48OSp/8MEHzfLly03//v2jl2+g0Mn9+OOPN+PGjcs4DvuHv+bnYNOlSxcDFArfNN58881oz9p/1apV80bkIYRkR6IXe7GXA2BuueWWYnduv9gDhV732kvaZZddFtXRbA//+Mc/RuV/+9vf0sp37txpzj///KjOgAED0urEvdjvv//+Bii0ac1kp22MMT/99JPZtGlTyrEHHnjAADBly5bNGNFj1apVpmPHjgYo1CzY2JIun1R4+/btqhYl1y/2//3vf6P2vvrqq5Syc8891wCFUTLiXoCSvNj7/g499NCMDrtDhw6N6t1///3e8UyZMiWqe/PNN6t11q9fb2688UbTuHFjU7ZsWdOmTRvz4IMP5iSSRXGJi4rz2WefmXvvvdc0aNAg+mL1fbnvjhf7uJCd559/fiQltpk3b15U5+qrr/b2sXLlyqjuOeeco9bZvn27ueuuu8w+++xjypYta5o3b27+9re/qX3vSsaNGxeN/bzzzstJm0meDyJJP/fcc1OOh1xzWyM7ZcoUbz+iHQNghg0bptb5+uuvzVlnnWVq1KhhKlSoYHr27BkbenFXke2L/d/+9rfovOeffz6tPO6eHDx4cFR+zz33pDjlun+lSpUy//nPf9RxiACjcuXKsWMW7QmAjPfHJ598Ynr16mUqVqxoqlWrZk499VQzb9682LYJIclJZGP/008/RZ/r16+f5NRYGjZsiEceeUS1cf/jH/8YfR4zZkxK2datW/HMM88AADp06IA77rgj7fyCggIMGDAAtWvXBlBkgxjK//73P8yYMQMA8Ic//AHnnHNOxrq1a9dGxYoVo/9v374d//73vwEA//d//4fjjz9ePa9mzZq4//77AQBjx45NSd7xww8/RJ979eqVse8yZcpEtqklidjQd+/eHa1bt04pEz+KFStWYNiwYcXuq1y5cvjNb36DRx99FKNHj8aMGTMwatQo3HPPPWjatCkAYNy4cTjmmGOwdu3atPPXr18ffa5SpYq3L9uGO1PSlipVquCBBx7A0qVLsW3bNsyfPx/XX399RhvU3cXjjz+Ozp07R39dunRBr1698Oc//xkrVqzAFVdcgUmTJuGQQw7Z3UMNokWLFhg2bBhefPFFlC9fPq0819e5TJky+Otf/4qvv/4a27Ztw+LFi3HnnXeqfe9KSvIZHMeLL76Ijz/+GNWrV8eDDz6Y+PxcX6N99tkHr732GlavXo3Nmzdj/Pjx6NevX+Jx7UnIdxQArF69OvH54vcEFPrA/fTTTzjxxBMxdepUbNmyBT/++CMGDBiAatWqYefOnbjhhhswdOjQtHbkWsVdJyDsWh1xxBH49NNPsWnTJqxduxZvv/022rVrl3R6hJAAEr2N2A9m+2bOBWeccUbGL822bdtGD5hvvvkmpWzatGmRk0///v1RunRptY1q1apFTnNz586NdVS1+fDDD6PP119/ffB5QGHGPelL+s+E/dI+YcKE6HPDhg2jz4MGDUrUPwD06dMHplA7g8GDByc+32bu3LmYNm0aAKjO0H379o0cpl544QVvWzImX6bKyZMn47333sPVV1+N3r17Y7/99kOfPn3wl7/8BXPmzEHfvn0BAPPmzcPf//73tPNtx9By5cp5x2Pvv82bN3vr7s3s3LkTr7/+Op555hls27YtY73BgwdH16hPnz67ZGwHHXQQZs2ahVmzZmHq1Kl4++230b9/f3z33Xe45JJL8Oyzz6rn/Vquc0k8g0OeD6tWrcINN9wAALjnnnuycnj8tVyj4mC/SNvXWoi7JyWwBVAo9DrppJPw3nvvoVu3blGgh6uuugoffvghSpUqBWMMbrrpprSAD3Kt4q4T8Ou9VoTsqSR6sa9atWr02X6A5IK4X+81a9YEkP6wmz17dvT54IMP9rZhl9vnxSHS+mbNmqF58+bB5wHA1KlTo889e/ZU04zLn/1Qt6X0hx12GPbZZx8AwHXXXYfu3bvjn//8J8aPH+99MSsJnnvuOQCFEk1Nc1GmTBmcffbZAID3339flaInoUaNGhnLqlatitdffz2Scj311FNp61GhQoXoc9xa2ZFWbK3L3sjtt98evQDI36ZNmzBz5kz86U9/wvr16/Hvf/8bffv23aO+jCtXroxOnTqhU6dO6NatG0499VQMGjQI//vf/7Bq1Spcdtll+Mc//pF23q/lOpfkM9jHDTfcgJUrV+Kggw7ClVdemVUbv5ZrVBzs77dstK/2GgPA/fffr2oTDzvssChC2OzZs9O+D6WdkO+XX+u1ImRPJdGLfZ06daLPP/74Y04HUqlSJW+5PJx++eWXlOO26jFONW1Lmezz4hD1ty05D2XFihWJzwGQEsatbNmyGDJkCNq3bw8AmDJlCm655RYceuihqFGjBo4//ni8/PLLaWuTa3bu3ImXXnoJQKFkvm7dumo9keRv2bIFr7/+eomOqXr16tEPjI0bN6b8kAJSX4QyqYkF+0UpRAW9t1GxYkV07twZ9913HwYMGACgMAydHWZvT+Woo47CtddeC6DQxODLL79MKf+1XOeSfAZn4pNPPsFzzz2H0qVL48knn8za7OzXco2Kg21qVatWrcTn22vcsmVLtG3bNmPdY489Nvo8ZcoUtZ246wT8eq8VIXsqZZJU7tq1a/R5+vTpOR9McYmLQe+qG3Pdvob9sj169OgUG0ofYs4idOjQAbNmzcKQIUMwZMgQfPrpp/j666+xefNmDBs2DMOGDcODDz6Ijz76KO3cXDFy5Eh8//33AICPPvooaD2ef/55XH755SUyHsHOpSDjE+xY2XG5EL777rvos9jv5yu//e1vcfPNN2PVqlV49tlnVSn4nsbJJ5+M++67Dzt37sTbb7+NW265JSr7tVznTp06oXTp0vjll1922TP43nvvBQAceOCBmD9/PubPn59WZ9GiRdHnIUOGRD/6ba2ee40OPPDAjH3uzdeoOIh2GID3pTwT9lplyhOg1XUFUE2aNMGkSZOwceNGrFmzxqs5lWtVt27d3e6DQghJ+GLfoUMH1KlTBz/99BPGjBmDdevW7RJnTR+2VOOHH37wJkuxJVxJpCEiJZOkMEmwX+TLlSuHTp06JW5DKF26NE455RSccsopAIDly5dj6NChGDBgAKZNm4Zp06bhiiuuwDvvvJN1Hz7EDCcJ48aNwzfffBOZEpUEvh9sbdq0iV6EXCmvi10u2pF8pVSpUmjdujUmTZqEZcuWYdWqVVlJCHcltoZoyZIlKWVVqlRB06ZN8d133+X1da5WrRr2228/TJs2DfPnz8fChQvRqlWrEu1TTC0mTZqEc889N7b+NddcE322X+ztH+Ch16hMmTIlPr89hU2bNmH8+PEACk3S9ttvv8RtdOzYMfocp8G1y8uUSX0V6NChA9566y0AhdeiR48eahs7duzA119/DWDvu5cIyVcS6VQLCgqiTHMbN26MotHsTuwX5UmTJnnrTp48WT0vjgMOOAAA8O2336a9UMSx//77R58//vjjROfG0bBhQ1x66aWYMGFCNMYPPvigRGymN2zYEP1gOOqoo/DKK694/2RvGGNinWiLy9y5c6PPjRo1SikrV64cunfvDqDQIdlnMyrZEcuXL++VJuYLO3bsiD5v3759N44kDFsbo6n8DzvsMADA/PnzU3xUXOwsmIceemgOR7hruOSSSwAU3lsPP/zwbh5NOAcddFDkjOlmIrXZtm0bJk6cmHZOvjNo0KDIJ+mkk05Ke9kOoXnz5mjWrBkARC/cmbDLGzdunFIm9xLgv1ZTp06NTHH2xnuJkLwkaXzMpUuXRglKKleuHByL9pdffjEvvPBCyjE386yPTBlIt2zZEmXr69ixo5p8yhhj1q1bF8X07dChQ1q5L4798OHDo7KQxEs2mzdvNrVq1TIATIMGDYqdrTcT119/fTTGZcuW5bz9QYMGRe2/+eabQedIhkw7O22uWbNmTZSoplKlSmocZcmUCSBjDoLvvvsuSqLSr1+/EhtvSZIk8+zGjRujJFUVKlTIeN9kQ0lknjXGmN///vfe58Vrr70WlWfKbLpx48Yog632HNgb2LhxY5SLoFSpUmb06NHB5z733HMlMqbQa3788ccboDCj7HfffafWeeWVV6K27rvvvhIZb0mTNI79V199ZapWrRqd8/nnn2fdt/1d4MtT0adPn6ieey22bt1qqlevbgCY9u3bZ0wCeMUVV0RtTJ48OesxE0JyR+IXe2OMGThwYHQz16tXL/aLZc6cOeboo482Xbt2TTmeixd7Y1ITVN16661p5Tt37kzJYJtNgip5SY1LUPXzzz+nJai65557oraPP/54s2HDhoznr1u3Li1l/WeffeZNHb9161ZzwAEHGACmSpUqaYmhcpGgSjLnVqpUyWzcuDHonH/+859Rv2PHjk0rl7JMCaqGDh2atpY269atixLmADB/+MMf1Ho///xz9CXVvHlz89NPP6WU79ixw5x00klRO5988knQ/PY0krzY2/dMpkytuypB1csvv2zWrFnjrfPaa69FP7yqV69ufv7557Q627ZtizLUVqtWzSxcuDCtTtyPg72FESNGmFKlSkUClrgf20uWLDFnn322qV69elpZLp4PodfcTrb3m9/8Ju0H5cqVK6Ms3DVq1DCrVq3Kajy7myQv9kOGDElJJPWXv/wlY92Qe3LJkiWmQoUKBoDp1q2b+n3zwgsvRO2ccMIJaju33nqr9wfW+PHjTZkyZQxQmDGeELJnkNWLvTHG/OMf/0jJYte3b1/z2GOPmU8++cRMnz7djBgxwgwYMMCccMIJ0RdySb3Yr1u3zuyzzz5RW6eeeqoZMmSImTZtmnnzzTdTJBM9e/ZUpZNxL/Zz5841VapUieqcdtpp5vXXXzdTp041kyZNMi+99JLp37+/qVKlStoX244dO8xRRx0VndusWTNzzz33mFGjRpkZM2aYzz77zDz99NPm/PPPN5UrVza1a9dOG1upUqVM7969zX333WeGDRtmpk2bZsaOHWsGDhxounfvHrV93XXXpY29uF/cS5YsMQUFBQaAOf3004PP++qrr6J+f/e736WVx73Y9+7d29SqVctcdtllZvDgwWbMmDFmxowZZtSoUeaee+4xTZs2jdpo27at+rInPPHEE1Hdfffd1wwcONBMmTLFvPfee9GPFiA9o+behC/z7KxZs8yUKVPMyy+/bI477rioXoUKFczMmTPV9kJeItavX28GDRqU8nfooYdG591///0pZVoK+d69e5sqVaqYCy64wDz11FPm008/NZ9//rkZN26cGThwoOnXr1/UXkFBgRk8eHDGNfjwww+jF9769eubRx55xEyaNMkMGzbMnH766VE7hx12WE61FLuDgQMHmrJly0Zz6tGjh3nggQfMiBEjzPTp082oUaPMs88+a84880xTvnz56EeRy658sTfGmHPOOSeqe8QRR5j33nvPTJkyxQwcODD6YQbAPPHEE1mNZU/A/j4ZOHBgSgbosWPHmnfeecfccsstpnPnzinfo5myrwuhP7bvu+++qF6HDh3M4MGDzdSpU83IkSPN1VdfHX0nV6tWLS17uLBu3TrTpk2blGf4J598YiZMmGDuueee6PuwYsWK6n1NCNk9ZP1ib4wxb731lmnRokXKgynTX8eOHc3//ve/lPNz9WIvbbVr1847hkMPPTTjy1/ci70xxkydOjXlZTLTn/bFtmnTphStge+vZcuWGcfm+zvttNPM5s2b0/ou7hf3XXfdFZ3v01ZodOnSxQCF0jfXTCbkxT5k3r169TJLly6NHcttt90W/UDR/vr166eu396CfZ1D/urWrZt2T9qEvETY93DIn6ZJCL3ONWvWNC+++GLsOjz11FOmXLlyGdvp3r27WblyZeiy7tGMHj3adOrUKWj9mjVrZl5++eW0Nnb1i/2mTZtSfqy5f6VKlYrVOO3phD6z5a9Dhw7mrbfeim03iRbt5ptv9j7v6tWrZ8aPH+9tY8GCBaZ169YZ26hWrZoZMmRIkqUhhJQwyb1zLE477TSceOKJePPNNzF06FBMmTIFK1aswPr161GtWjW0aNECPXr0wOmnn44jjjgiq3CRobRo0QJffPEFnn76abzxxhuYPXs21q1bh1q1amH//ffH+eefj/POOy/rGMwA0K1bN8yfPx/PPPMM3n33XcyePRurV69G7dq10bhxYxx22GE455xz0KJFi7RzK1asiOeeew7XXHMNnn32WXz22WdYunQpNm7ciCpVqqBFixbo1q0bjj/+eJx44okp59500004+OCDMXz4cEyYMAHLli2LwpM1aNAABx98MC666KISS6cuzq/ly5fHCSeckOjc008/HTNnzsSaNWvw/vvv48wzzww+94EHHsDIkSMxYcIEzJ8/Hz/99BPWrFmDSpUqoVGjRjj44INx7rnnom/fvkF76+9//zuOPfZYPPbYYxgzZgx+/PFH1KhRA127dsUll1wSFPFjb6ZcuXKoVasWOnbsiH79+uGSSy6JEr/tTl566SWMGDECo0aNwsyZM/Hjjz9i5cqVKFeuHOrUqYPOnTvjuOOOw3nnnRc03ssvvxw9e/bEww8/jJEjR2LZsmWoXLky2rdvj/PPPx+XXXZZVo6JeyK9e/fGF198gQ8++AAffPABxo8fjx9//BFr1qxBlSpV0KRJE3Tv3h0nn3wy+vXrt0fMu2LFivjwww/x8ssvY/Dgwfjiiy+wZs0a1K9fH4cffjj+7//+Dz179tzdwywRypYti2rVqqF69epo27YtDjzwQPTt2zfFWTVX/POf/8RvfvMbPP744xgzZgyWL1+OChUqoE2bNvjNb36DP/zhD6hevbq3jVatWmHGjBl47LHH8MYbb2DhwoXYtm0bmjZtin79+uHaa69NnLSREFKyFBhTzODuhBBCCCGEkN1O9uJrQgghhBBCyB4DX+wJIYQQQgjJA/hiTwghhBBCSB7AF3tCCCGEEELyAL7YE0IIIYQQkgfwxZ4QQgghhJA8gC/2hBBCCCGE5AF8sSeEEEIIISQP4Is9IYQQQggheQBf7AkhhBBCCMkD+GJPCCGEEEJIHsAXe0IIIYQQQvIAvtgTQgghhBCSB/DFnhBCCCGEkDyAL/aEEEIIIYTkAXyxJ4QQQgghJA/giz0hhBBCCCF5AF/sCSGEEEIIyQP4Yk8IIYQQQkgewBd7QgghhBBC8gC+2BNCCCGEEJIH8MWeEEIIIYSQPIAv9oQQQgghhOQBfLEnhBBCCCEkD+CLPSGEEEIIIXkAX+wJIYQQQgjJA/hiTwghhBBCSB7AF3tCCCGEEELyAL7YE0IIIYQQkgfwxZ4QQgghhJA8gC/2hBBCCCGE5AF8sSeEEEIIISQP4Is9IYQQQggheQBf7AkhhBBCCMkD+GJPCCGEEEJIHsAXe0IIIYQQQvIAvtgTQgghhBCSB/DFnhBCCCGEkDyAL/aEEEIIIYTkAXyxJ4QQQgghJA/giz0hhBBCCCF5AF/sCSGEEEIIyQP4Yk8IIYQQQkgewBd7QgghhBBC8gC+2BNCCCGEEJIH8MWeEEIIIYSQPIAv9oQQQgghhOQBfLEnhBBCCCEkD+CLPSGEEEIIIXkAX+wJIYQQQgjJA/hiTwghhBBCSB7AF3tCCCGEEELyAL7YE0IIIYQQkgfwxZ4QQgghhJA8gC/2hBBCCCGE5AF8sSeEEEIIISQP4Is9IYQQQggheQBf7AkhhBBCCMkD+GJPCCGEEEJIHsAXe0IIIYQQQvIAvtgTQgghhBCSB5TZ3QMghBBCSG7ZuXMnAGD79u3RsTJlCr/yS5cunbG+MSY6VqpUqZQyG2ljx44daW2UK1curb60u2XLluhY+fLlU/pZt25dVFaxYkUAQNmyZbXpEUIyQIk9IYQQQggheQBf7AkhhBBCCMkDaIpDCCGE5Cm2KY5QUFAQfRYTmV9++SXl/0CRqYzUt81utm7dCiDVTMc18bH7lvZtM53Nmzen9FmtWrWoTEx2pB8AqFKlijpHQkgRlNgTQgghhBCSB1BiTwghhOQZIkm3pezipCpOtECRtFzq2RJ7ux5QJHUHiiTpdn2Rxmt9y7kVKlSIjq1atQoAsHLlSgBA1apVo7Jly5YBSJX6d+vWDQBQo0YNAKmaBxLDj58BAB79z0cAgKXBJx4IALjwX2dERzqm1SlyiF72xVAAwBuvTIqOLUdDAMDBF54LADixY72ozOcavX3FVADA60+/GR2bVaUPAOCKK46LjrWsAGJBiT0hhBBCCCF5AF/sCSGEEEIIyQNoipMBW71ICCGE7A2Iycu2bdsApH6XiXOrFsdeTF7kPLstiSVvm+ZUr14dQKpzq5jeSBt2DHox07HrL11aaBAydGih+cY777wTlf38888AgNatW0fHLrjgAgDAMcccAwBo0aJF2jzy5bs752ZGa+cCAF54dz0A4P8ePjkqqu89sdBspoZaVmhKNeqm7tGRk98+GABw1wMXR8eOxJcAgOdObgUAuPMPY6OySdd2AeCY5KwaBQD46/XTAACn3X1dVHTUlgkAgH+c/XB07Mo3rwEAdGHKAwCU2BNCCCGEEJIXUGJPCCGE7IVoUl1xXJV/bam5OM/aUm2RykuZhLjM1L7blmSIBYqk8fKvHdpy7dq1AICPP/44OvbNN98AANavL5Qid+3aNSr76quvUs4DgBkzZgAAOnXqBECX2OcL9jXKifT++/kAgMl19gcAHNK3b1S0b7ZtTn8CAHDxqydFh977/D8AgCNq2RUL++rbqz0A4Op2F0Qljx8zEwBwTYei2uvGDwIAbOz/LACgRwtbFH8qAOC64/tFR16Z8f8l9t1BQIk9IYQQQggheQEl9hnI9hdycez7fH1m2y7DgfnhupYMXNeSoaSeL7928nFdNXt6keJLYiigyLZeJO+2BF7YsGEDAGDTpk3RscqVKwNI1QjIWkibItUHgNWrVwMA3nyzKHShjKdHjx4AgP79+0dlX3zxBQBgypQp0bFKlSql9KMRej2SXvOQdnPZpt2Wr93E+++gQvl81lJ6i8lDHgIAVLpmRHQsVVLvUKvQN+KKm4r8OM76SCT2XaJjFSvXBgBs3Sj7NN14fsuGor1VmeEuU6DEnhBCCCGEkDyAL/aEEEIIIYTkATTFyTElpZbdU9W9eztc15KB61oycF1LhnxaVwlJqYW0FCfVjRs3ppWJSY3t8CpIhljJBmvXlyywAFClShUAqSY4gjjlrlmzJjrWqFEjAEDbtm0BAPvuW2Qg0qRJEwDAoYcemta+hNosDiVxzUtqH2mmONKXlMX1vX3HNm95MhYDAOZ8Wpgx+Phbu3jqptO+61HR5/kD5gEAfvxjURv1D7sKANCjf+G/D+8oCp3ZblOh2c8jK26Mjj2XrPu8hxJ7QgghhBBC8gBK7HPM3uQ8my+JPOLgupYMu9PZO5/XuKT31q917/5a1lXGIY6p4shqj8OWystncZq16y9atAgAMG9eoVTVDj0poSbr1KkTHatatWrKGKZPnx6VTZw4MeU8ADjggAMAAO3bF4ZBFIk8UCTht8cq7WfLnvb9nLR9u06opF74dskX///TKQCAFXP+F5W9/25hQqiF6xtGxw4+90wAwPFdC7Uqqf6p6wAAPy8r1KZ0bBY0hIiy1etFn+uuLNQibbDK65dtAwC4bHBh6Mw5Ez6Pyr5vWCjFf+O8ltEx+s6mQok9IYQQQggheQBf7AkhhBBCCMkDaIpTDDT1W9JjthpNHI5cpxj7c6jKz+dY42s/X9DUk0nXNXTt5NivfV2B9PWMux98a+eWAUXmBfm2rjbucwDQ19Ndg7i1c/m1riuQvt/29nXV9opklJUssECRQ63EoAfSnWWXL18efZ40aRIAYMmSJQBSTWG6dCn0WKxVqyhwucSZF0aOHBl9/t//Ck0/+loZT7t3L0wV2rx587Q5iaOvHXNf2tccg32Efn/66sn+0bL3Jv0eEUK/p3JJ3SHXAwCOW3hedOyPfzgSAHDkT1OjY4+cvg8A4NqThgIAPv/PEVFZLfwMIEpmixpJB1G7cfSxzfYdAIBftHplC012OvYq2jMdk/b1K4QSe0IIIYQQQvIASuwzIJIWDd8v6aTSWk0a5JMiJZXYaxIBV6KTpN29BXveIt0Jkc5px0Ildr+GdbWRdY2TLLtl2rGQdQWK1jaf11XI5bq6n93z5Hnne+7lE75nrbC3rqvrPGuPxxfSUqTy06ZNi44tXLgQQFEITQlBCQCtWrVKKQOKpOwVKhS6M9qaAQlRaWsQXGde+9kp7dqZcN0wmnHrGvJdHfoskXo+LUxSzY9WHuqk65Psa23U7X0vAODF/Qs9XY/o1jQqK8rrWiQZ73vcQQCAq9udDQB45NwVUdnt3TMOMTll/3941hw2+WuHEntCCCGEEELyAErsM5BtoglNypaLPpPa3bltFce+L+laJA3DlaTNuHZzYc8Yaj+b6VioHfrevq4+KXtJrKt2bE9d19B2fdqgXOyjpOuq9V3cdc3m3JB2k4Yf9EnZ4zRFvrZCjmkJmzRC/Xp89TUfDUGk33ZbIqkfP348AGDBggVRmdjUSwKpzp07R2USmtKWmkufohnYsWNHVCa28vYx0fpJGM2xY8emzUOSWAFFkn2xtS/Ovsr2OzX0fivu/rHXNRfhLqu1LgxN2TemXkStYwAAZ/cvDG15y8yvo6LbuxfayLft/hMAYE16vjM/338VfZyKNglPJnFQYk8IIYQQQkgewBd7QgghhBBC8gCa4mQgqXo7hDiVX4h62Nde0nHZIcPy2RkxxMTBhusahraexTGPCMF1hM5Hdse6+sw38oVQMzIhqSmFhi80om9cPjOM0L7lXrGdW6WtZcuWRcckI+zs2bPT2ujRowcA4MADDwQA1K5dO62OPR7JFivUqFEj+lyzZs2UMQDA999/DwD46adCk46hQ4dGZWKCY7fZsGFhZlRxzrXnppHL7+rifj8nHVecWY+YNH300UcAgM8++ywq+89//hPbfigN9umqHC10hK7ZqDDe5awft1tlZZX6qaxb90P0eWvXQpOfhMlriQdK7AkhhBBCCMkDKLHfhcQ5aMkvcDcRRqb6ItXxOWaFOtiEhBu0pUhun9p5mtQpNPlOyHhC68u6SpmW3CTbdc3UZ8i4tHUNkdbGjdUXyi/bddX+764rkL622lhD51bcddX63FPX1T5mh/wTfHtWW1etnxBNVEmsqzZW37pqY417FoZIwbUwtJrE17eu2TqY231v3FjoaSgOpiJ9tutv2rQpOrZly5aUenb4Rxm/3f6GDRtS2qpWrVpU9vXXhQ6Q48aNi47NnDkTANCsWaHM9KCDDorKxFnWTkzlIv0BRc8Ekc6fcsopUdm+++4LIFUq/9///hdA0ZqIZgAoSl518MEHZ+zbxhe+MumzPESiru2/0L2ihcx0Ha3tMYtz8eDBg6NjDz/8MABg8eLFae2fddZZAICePYvSOc18bRAAYOmB1wIA+u2bcXj/n0Kn2a/GTwYA1D2hilVWHwBw4AmFDrl/+LQosdVDx/QEkEluX9jmuHdfj46ccsz9nvokGyixJ4QQQgghJA/giz0hhBBCCCF5AE1xckxSR7Y4k5SQ9pOOKzQGcwhJ57Y7nPNKOr550tj5PpI6yO0qsnUyLA4lsWd2x7r64mUnjZ+etM9dRUn1l+3zZVeua0i79nligiPnbdu2LSoT8wvb9EpMcOQ823RPzrWPianO9u2FDo3ioAoAX31VGD985cqV0TGJR9+yZUsAwD777BOViQmOmAPZY5UyO4uta3pkmwHtv//+AIqy09qIOU+fPn2iYx07FpqR2NlrxUTJF9M/NIuwVpbEUdlnCqadq5myaedJHoEnnngiOvbMM88ASDV7Eo499lgAwLXXXhsdE6dnoChnwMZZdwMA+n/WAQDw5WPHRGW10loFtsx9DgDwr9cvBADc/FD9tDr7Hv8HAMCh7f8aHXvuov8BAC5rk25cs/2rlwEAd794QXTsrw+mt0uKByX2hBBCCCGE5AGU2BeDuF/sLrmWIrkSCl/7xZE6h0hAkp6Xawlfcdv1SW00bUdS6Wu265rp3GxJuk7FDf0Z52DmW+ts+wwdz65a15K+zqFZKYt7LUPGUFLt7s51jRtPyLrajpASvnHr1q0AiiTrdj3bodZ1nJbz7HM1jcC6dYWOip9//nlU9u233wJIdcBt3bp1yr92mUjXbWdeQST9djhK6VuyzNrSfGn3qKOOio4dcMABAIo0AXY4TamvaShknaS/TIRowe32hZBAC0m/u7X6n376afT5kUceAVAUvtLO0Cv74YorroiOXXPNNQCAdu3apYw59XPR+vS84T0AwNVHHwEAaNGpX1R24Yn/P/vrVx9Ex174qPDa3ThqBADgRE2s3/hsAMCjrxXNo/eB7QEA7114RnSs48bCkKoD314KAOg/dHJUdnyRUofkCErsCSGEEEIIyQMKTD5neikhtDCFIcko4kJhifRFpBFaYhE7rJn0L1IFn72+1nfopfeF6/MltrHXRz7LnOLsDbMNH6iNJ9t19c3NF1Itl+uq9a+tqyZZCllXbc9o4Td96+qzH7bbkjX2zS00VF0ubGbdduPW1bUfjtuv7n0WF9ZUxhOyrnZ7IevqnuvWz1QnU1mSdbXHGrKuce1rzy9f+E0Zjy0BlXNtibIg48jFuspne24izZa27OeRXGdtDWX8cc8XCWk5d+5cAEVSeqBI2i+hLQHg6KOPBgDUqVMnpQ4ArFixAkCRVN62mbcl+4KErZSEU7Y0X86tVKlSdEyum8zNXgvtuv38888AiuzuRWsA6PeZ25aNuydttOdwyL7Q9qn4J7z+elGIRwlVaWtThCZNmgAArrzyyujY7373OwBFYUTt/n2hPHUKx7P6yy+iI1O+LQyniepF++KgroWagJpFyqMgtq8v9BGYPmFRdGxthUI7+vb7F9r3N63K4JYlCSX2hBBCCCGE5AF8sSeEEEIIISQPoPNsFmgmFD6HmlB1tVtf6zO0vu+8EBV8rp0YcxlOM6n1WHH7jgtJmjTEXi6dGH1jDDmvOCQNCaf17TMzSjq3kD0bOu9c7leNXIRI9e0jn2mcb101M5dcPgv21HUNfb7GmRxmqmOb4ohDqpiT2OEcBTHfAIpMs8RsyDZvkb7F9AUAZs+enfKvbW4kIS0loywA1K1bN6Vv20xKTF3kmGbyZzv/yjxljPZY5XvHDpkp85Q27Ppi6qM5HmsZgzXzmaQmsr4yn3mr9PnDDz9Ex5588kkAwNNPP51WJhSFpSwKV3naaaelte8Lj5mcQtuamu2KMvr2bZeDZv8/ZasWOmEf3Ld17holiaDEnhBCCCGEkDyAEvsSJERCZNfRnGDdtjQpQVLpgq/9UIlAiBOm1meoJM3nuCplPumub51887Hra+eFSOzj6vsIcbQOXcPQfeQ7ryTX1S4P3TNu/aShSPfUdbU/hzrDuW341lUbW5xDapKyuOeLe88mfTZo9UPv/6SSXF/fmoN8yD6yJfbinGo7kbrjshMRSf1atdLjDUq9hQsXRse++eablDJJ9AQUhZds06ZNWp8yRnv80qc4sNqOrPLZnpt8h4mTp+acbM9t9erVAIqk+LZzqJxrtyFhHzWJvUbS7x3fee59KRoRoMgZ9tVXX42OiTZCxnr22WdHZddddx2AVIm9INdDc/YuDiUZ7pbsWVBiTwghhBBCSB7AcJcZCFmW4ixdqGQvpP/i2DjvSSRNchNaP9ukTFzX3M4p39Z1TyF0f1Nil4xcrKtIs227cvksklxbEiy25nZ9aU9s8SWkJFAknZ80aVJ0TMolpKWEswSKEkDZUnaRoIv9up0cyxcSVhJgaRJ1n9bJDqcpia9kDe1wmlpoZBmr5m+Q1P/JPU/DXqchQ4YAKJLOjx49Oq1+jRo1os8SolLCVkoYS6Bobj7tjiaxt30c5HOoho/3/68HSuwJIYQQQgjJA/hiTwghhBBCSB5A59ksCFHv5ZpszX6yNUOxKel5Zju3OIddrV6u+i6OeUuS84pDSa9rSfSdlLh+SmKNc3Etua5hfe7t6+pmsQaKTGrEJMUObSn1bcdaGZuES/zyyy+jMjHFsc1zWrRoAQDo2rUrgPRwlkCqmYeYw/hMO6R924xGc26VdZd6timLYDu+yjw1B2cZo22W5IZ9DM1groXp1BBTn2eeeQYAMGDAgKjMdlAGgHbtimJESqjKiy66KDqmZYsWQr6vNGfvXOxrmuDkP5TYE0IIIYQQkgdQYp+BPeFXbXGkEVJPCy8XUt8maRi+kKQgccm9fKEUfQnCQkIw2vjW1RfuUgu151tXbawlsa5an765ldRYQ9bVHTeQKuEr7rpq7WvsCeua6VwXe9/5ro02b/eaaCEDfWO1CZGAZruu9ueQddXaSLqu2rM2F+uq7WEpF0m09iyxHVhFirxgwQIAwOTJk6OytWvXAgC6dOkSHevUqROAomRU2j7V9pFvjdesWQMgVWIvmgH7PLl/N2/enFZf6tkOsiLtl3H9+OOPUZkkqLKfCa7DsT0P33eXxuLFiwEADz30UHTsueeeA1A0X5vjjjsOAHDNNdcAAI499ti0Otp4QkPCCtp10L7HBW3PU1L/64YSe0IIIYQQQvIAvtgTQgghhBCSB9AUZw/Cp+rXnJC0LIiCqO7kPFu951P1+UwobFyTGp+JgP1ZM8XRVKg+ZyFtfdwyn/o9bl196n93Xe36msrVzepoH9PWQrum7jWJy9oZYlblU98mVWnbuPPV5qatq9T3ras2ft+62sd866pR3HXVjuVyXe1jIesKFDkj+jK3hq6r4LtHfOYAcdlZM40r0zF3bZOuq2ZCoZniaWvn7nV7TXzZxF0zFPtcOzurmIyIKY7tTCqx6g888MDoWP369QEUxcS32xfTGNt5VpxrJSa8PbdVq1alzMPOfqtde6knpkSh5iFTpkwBAPTq1Ssq+/3vfw8AuPPOO6NjMkZf9nGNsWPHAgD+/e9/R8c++OADAKlrIeO+4oorABSZ3QBF2XqlT1lfG9+1T2oKE5dJ2md+5p5Hfl1QYk8IIYQQQkgeQIl9AnwSdZ9DnfZ/36/r0F/Zvvo+KbJvPKHj8s0t2/bj+nTLfBLQ4kgqfA64vrXwSXmzXVftWEmvay73ZtwxX/u7at+FakJC+szFWH1ku65x4ymJsfrG49Oq2MdC7xFXI1OcdS3us1Mrs7UR69evB1DkHCr/2vVEgg0A06dPBwCsXr0aQGqYRXGaFUdWoCjMokiUxZHVHo/dp0jBRXJtO7xKWxKW0nYCljCZNlIu59n1pX1bQi5rceaZZwJIDf257777AvA7L9tlMp633347Ovbggw8CAD7//PO0sUomWNEMAEXZYiWDrG+fatoCTTPu0075vsPstdPaCHHmp8T+1wkl9oQQQgghhOQBlNhngWuPDoRJ7DWbRJ/tu32+Fl7O92vctbuNC9nmShxCf/1rkooQqVlSKbVGLs7zrasvdJ4mTcl2fbR9ofUZKo0MkdYkLUsqqU8abk1b1yTn2X1qa6e1tavWNVR6FtJutusKpK9tLtdVOzfpMyQ0PKZ2LOm5vr59Pgtamz5fJ8G2i5dQinI97OuybNkyAMDUqVOjY3PnzgUAdOjQAQDQo0ePqKxVq1YZ+xRsib1I3u1wmoJIvO2xVq9eHUCRBF7TPNjfg9Ku+A/Yc5PPtv/AlVdeCQBYsmQJAOA3v/lNVHbZZZcB0H2iVq5cCQAYOHBgVPbYY48BKErkZSNrZtvMn3HGGQBSw5P6/LdcCbwmsfftNc0nxF5POaY9A33hZX37jmEvf51QYk8IIYQQQkgewBd7QgghhBBC8oAC49Pj/IrRMr25Kjhf5lP3XLe+VidEJe1rT1MduyHugCK1nhZa0Jd9MGlWWm193FByJdWnpvb0qdg1syq3v9A+k2aljQuD6PbpW9dc9Jl0XX2mTXHhJYvbp2+OWhslva5Js6fauCZ+cSZjJXktc7muWv1crmumPgXfs1ywQxfKc1HqiBmK3Y/tACqmKzIu27RDzGDs8VepUiWlz1mzZkVl4vgpDq1AUSbZQw45BABQs2bNqEz60sbojs8ej42Y26xbtw5AkYmNPQ7JFismNna72nXwPWOffPLJ6NjVV18NoMj5VxyFgSIHVtvxdcCAAQCAF198EUCqs62shZjYAMAf/vAHAEXhQLWQqpq5ULamLxohjq9affu6yV6x95aMMWnmcl8YV5IfUGJPCCGEEEJIHkDn2QyEOJbFSexdQp3JNI2A/DoPTbDjcxoUQpMsaeP3Jf7xhbTzJcAKlWyE9JnLBE9x9d0+48Kg+TQ5IWP0jVXrM3RdfXPz7VNNYue7f3xOZ3FSJLfPOKfwJNfS15/WZ9w94vYZ6pyr3dfFXddMx7Rz7f4y1c/2HnHPt9sIvUdC+3TLbCm724YtsXcTD9lrI5Jx7Z6V82xJq5uwyW5j3rx5AICZM2dGZTLGtm3bRsc6d+4MAGjUqFHaHKUve27us9mWsrtjBYqk3jLWqlWrRmU+p3ZZF1tb4Naz127OnDkAgD//+c/RMZFAv/DCCwCAcePGRWUPPfQQAGDkyJFpfYs0/9prr42O/d///R+AojCWQNF8ZX3iAli4+yc0AZbveeoLeex7X7DXUnu/CHHy1jQCvvGQ/IASe0IIIYQQQvIAvtgTQgghhBCSB9AUJwO5VFOFOMpo9W1TGc38xGdiEtK+Nh5fLF3NBCSp+YnPcS8kpnxon1ocbu08n5OUhs/8xGei5eszLh63z/zE56RWEusaZ8bh61PDZ9IR0qfdd4gTmc+kI878xO0zrr9cmmiF9JlLEy1tXX3PlzhTGbeNuH1X3D61dbXbdx1etXjivueq7cTojtU2c5EMr/ZYFy9eDKAoVv3y5cujMom33qZNm+hYvXr1ABSZzNiOtWIGozlaynjsscq59vqIs6zEuK9cuXLafMWxVv4FisxbatWqFR0TJ1vBzk57/vnnA0iNYy+OwZdccgkAYOHChWl922ZJV111FQDg4osvBlDkiOzOSXDXIPR7XfaAbeLkOtbGOdH6TGUFbZ9q183+nAR7vu54NLMhkh9QYk8IIYQQQkgeQIn9LsAnIdcIlSCGOP/5HNk0qbb2/xApWJwU3G3D59Sj1dckD6GSd7fP0NB5mqQvRCLt0xZofcZJF11pbXEcj5Oua9LsrCFhEH19Js1gHKcFC7mWvnW1x6M5fvvqu5Jo37pqbfhCsGr1NQl26LV0+wy9R3wauNBsyyF9xt1TIdfSlnQLIj22y+SzJoHXJLkiTRXpvI1kkv3iiy+iYxMmTEhpo3nz5lFZ69atAQB16tSJjolUXhxwbam5SOrFmRQocpbVng0inbfDXsq4Ze00x9qPPvoIQFEWXEDPhOtK7P/0pz9Fn2fPng0X99hxxx0XfZYsscccc0x0TNMGCT4tVbYSaS3AhDz745znQzT1SbX4xZGsh4bFJHs/vNKEEEIIIYTkAZTYZ8D3C1mTDCStHyJ9jZPYF/cXuC11dqVmcfauPpt5n6RY+tTWztenz75fO2bX1/p05+2zdQy1Q3fnGNqnb10zzdfF12cu1tXXZ7brqvUZp9XKRZ+CSONCNBsaofeI219on7mwmff1mUsbeO16+CTw9n4N6TNOq5Vpju48XURybY9HbM2lz61bt6bVt0NIupoAWxouyafskI2ScOnggw8GALRr1y4qa9asGYDUEJLudbbLBNsGWzQB8q+2BzQ7fVnPtWvXRmULFiwAAAwZMgRAqsRe1qlr165p43n11VcBAE888URamYZI/WVNAOD7778HAIwaNSo61rhxYwBFCa3sMKIhzy/t/vTtD3tfhPi3hCaE82nXBfu6uUnTtPEnnRvJXyixJ4QQQgghJA/giz0hhBBCCCF5AE1xMhDi8BJqspC0vk995nNg84Xo00xTNLWhqPw0NXdcCEy3T+3cXdWnT4Wqhbbz9RnnJOU61PrmGDfWkD41p+HQdZU2tPBpIX3GqabdPu11CukzLgxqyLWM69PFZwakmYCIiUMu1tXXp12m9enLPFncPrUsrb4wq6GOhFp9acvXZy7mqNWTPrXMs2Juo5XZ11naEkfTRYsWRWWSVVayrgLAihUrABQ5mopZCQDUrFkzrU9xkJW9roWjtJG1k/NsU6Lq1asDSDVhkXJZC3GwBYrCT8r4v/nmm6hMHI/te1DakAyyffr0icokzOfSpUvT6k+cODHl3zgkzOV3330XHZP11O5LnyN+aMjJELOWUAdzn/mMYM9D1sk3fnseScM4k/yCEntCCCGEEELyAErsMxASXipOKuQLRxeSfCfO2SZES2BLU9wyTbqohclzx6yNJ9TZU5MkhPRZnNBibp9ayMOkffqkkb45an3GOUmHOJhqffr2gC/hUXGupduntudDHVJD+rTrhPQZer9p/blroTklxiUPS9qn276vzzhn+iR9Jl1XX39an745an0WZ1215504j0ryJ3usIi0XKakt3a5atWra+CX85JIlSwAUSentNurXrx8d++mnnwAUOdmuWbMmKqtbt27aeOzkU0BqWE3Zzxs3bkybm9SznXllXe19JOfKeeKgChRJ3EUCL1oJQNcgyho/8sgjcNHqS3IukeaLwyxQtJ4SMhQokva7IUAB/7PMty/sY64G1OfAHhf61xeEwXeeO5a4eqHBNlxCHczJ3gcl9oQQQgghhOQBfLEnhBBCCCEkD6ApTgaSOsqEHItTrfnUhlq2O9dcyFcWOsZQJzW3LC52u895LtR5NEmfPrVntv3Z54bMcXf3mTRTbdJ19cVD10woku67kD61jKShKumQPn1x5kNN60L6y9Sne27otQzp02dOljQDcNI+4xyVfc+2pH0KthOptCex2G1TFjFdkTp2Vle5N8RxFADmz58PAPjyyy8BAD/88ENU1rJlSwCppjhiziL/2uYnWnx2mZuYuWgO477vFrstacOuIyY4YoJkx8mX8eyzzz4AiuLaA0UOrD4H9TjTF1kXMYkKdW7N9H+3vruPQs0MNXxZskPuf1/+Dq1e3Hekr30foXH1yd4LJfaEEEIIIYTkAZTYZyBEsqlJBnxtxR0LlRwkGaMm6fdJ5UX6UhwpryZd9IUd84VszLZPn5Q3LmSjTyqkjdXn3BrSZ9z+cPuMkzq5fZbUuoaMNWmfvnUNHauvz6TrGjrWTP3FjTU0JOSuvpYlfY8k7bM494iwadOmtGMS0tLWTIlEXHsWijTfDmkp2WXFsdOW8EtWVtEMAEXOsuI4ard1wAEHACgK3WjPU8ZhO8PKuG2pvByTedh9y5zs9ZXwmeLUa2s2pEz+FSk9UOSc63OE1rSMNu53qSaxDw1iEOLAquELMGGf565raD/aXgz5rg91ti2OpJ7kJ5TYE0IIIYQQkgdQYr8L0KQXmtQ/RKKWlFAbW1fiUBybO5/Nf2j94vYZqkHJtk+tjV3V5566rrno89e6rrujz1/LPSLYkmu33E76JJJoeXbayaLEft62NRdNQJMmTQAAXbp0icokfKUt1T788MMBAO+88w4AYN68eVGZhH2URFJAkQ28JGOyNQIyJwm5aR8TbYTtPyDSZnv+Yusv0nxbKu8mu7K1BaJxsBNaCb7rnNRmXkPbT6FhKH0kuQeThpeMC+Xrai20xF/2PkqaSNGtR7v6/IUSe0IIIYQQQvIAvtgTQgghhBCSB9AUJwbNXEUzrdFC7Qma043PWUjKNNMdzclL8DnKaSp/20lK6kuoM62+lj3VZ1JkI/WkT7v9kD5DzZjcOlqfdjg3TR3pc5IKcWK011UQtbjWp++a2n35Qmb6+kw6R3tuPnWv1qesbeh94Papqbd9fdrXsrh9avditnPU+owLjyefxezBfvaE9Bn3PHL7tPt2+8zlump92uYt0pavz9BMuL6wgHZYRjlXzGi0kJBSZ+HChVHZ7NmzAaSGqJRQjW3btgUAtGnTJiqTOdljbdeuHQCgWbNmAIAZM2ZEZdOmTQOQag4jITNlbvY6yTEtBKasif3skf0sph12PZm3vU7unrHnIXtGc5D1mXmEmspo+9oN72nvE21f+JxzhdBwunJMc0AOMWtJmnlWIxfOszTByX8osSeEEEIIISQPoMQ+AyG/buPCWMlnkSTESTZCQrxpzkK+BDJaMg1XMmiXiyTElny583A/A6lSHp9joEiMNKmwr09NMujr014nt0/NAcm+NiLN0vp0+9P6tNfVlfLYfWrrakvS3Pqa1EnrU5A+fevq6y9Tn4LWpy/sYEifcYmG3D7jQkgWt09bsizt+sI5+q6llkTIt672ngzpM+5aJukzF+vqk8zamhBpyxc20ffs0c6NS+gj11Uk9nZ9uW9+/PFHAMCUKVOiMnF0rV27dnRMkjd16NABQKojrnaPiHNr586dAQCrVq2KyubMmQMg1UFWpPfiiCvOvYCu7XAl3bY2Qtbd3lsSWtP3PaVdU3Hq1RJU+b67Qp08XcddoOi6yZxkDHYboZpW7bvCHUfSJHTauT6tue8esf+vjd99bsWFFiW/HiixJ4QQQgghJA/giz0hhBBCCCF5AE1xMuBTG2rmFb6Mp65zUqZ2fRlMtfNs9atbJp81Faq0a6toQxw0fSYaoY5E0meos61PhRoaD1lU19p5Wn2f6YtPHSvH7HV1z9OwyzRH4pLsU3MkTnotbXwmECF9xqm53T7jTC58TuEhfdqq/pA+fdcydF2z7bM419I278hU1z6mmXmF9CNoTsn281GyoEoMdtu8pWrVqgB0Mww7Zrsgpix2n2JCVLNmzbR5SLz4//3vfwCAL7/8MioTE5mjjz46OtaqVSsARXvTjikvY7SvjcSC79atW9rcXnvtNQDA/Pnz09o44ogj0uoLmvOsZpIijrS2c67MXdZfu34S697O3ut7vsgc7Wvqfl8BRddExqo5Mdv4glRI+6GmQb7vA42kserd/AC2E7MWc18QcyPNPMzOI+AGR1i5cmVUJudqmYI1EyftmUP2XiixJ4QQQgghJA+gxD4DoeG63GNaWMbQTG8+Z1jBJ13whaPUxhoX9jGk71BHIrfP0POK06fgk0SF9Jltf6Hn5nKOu6vPkDZKos+483N5LUPa2FvX1ZW8+xwK7fZDHSHdZ5qtIRDJ4dq1a6NjrgTXlnZqDrvuPW7XESmzFuJRnpMipQeKQlqK86yEswSKQlo2b948OibOp9K+SGrtcdnjF2RuIvEHihxq7RCYM2fOBAC0aNEi5TygSHqvac+07yRN0yLrr30vuOfZ2gL5rNUPzZquhbR0scfq9mWfl61zq0bS8JVa/aTOrK4GwXbc10J5+sajORKLtD9UQ0H2XniFCSGEEEIIyQMosc9Atr9qk56XNDmGrw0tJJwvxKNPyqBJQkLnllTCVxJ9+sKIaZqNOJv/uP7sfuKkN26fu3JdNX+JJH361tXuSxtrSJ9xfiW+a1kSfZbEHPeUPkOeKfZn33XQwvDauHtcQj7a2EmfJLSjHfZRWLNmDYBUe2+xJRbJsj2G9evXA0iVasvzcdmyZQCASZMmRWWLFy9OGUOnTp2iMgltqUm8NS2p5i/l2jPbUugePXqkjAEoSpA1a9YsAECdOnWiMpGaa3b3Pl8t275aC0Hsjk3at8N8yjy080Kl56HabLddWWtbC+PzxxK057A2Ht/4tXtRq68lsnLb0MYq87Dt6eWzfd+4YxXNUSY2bNgAoOg+0O5Bkh9QYk8IIYQQQkgewBd7QgghhBBC8gCa4iRAVG8hKrzQtjQHnKTqSZ9a3xeG025fVJqiorXNekQdazuAyTy1DJSaSlrUi9KW3b70abchakxN3RvSp+ZwJefZamhpw3ZYdPu0r7c4NPnMW2zVekiftmo+pE/fump9hq6rtG87bYWsqz1WUeuHrKvWZ5zZkLTnZjK2+7Tru+FVk66rFtLWnaNdXwsh61tXG+nLnWNcn7Ku9rxD+rTn5nMw95l0uHXsz0kd6yWMJZDuDKqF5tNC9NmOq4KEtLTn+8MPPwAApk6dCgBYtGhRVCbXrVmzZgCKnFYBoEGDBgD0TNUyD+nPxl4fuU4SmtNuS5xymzZtGh0Ts5yvv/4aQFGGW3dsgrQra2Y7KmshIbXM34LsH6lvP2fE2dkO7ylrod2LGj5TGd9eDDH30tD2qXZtfOeGhLYGitZKy9zsC24h2OZV0pbtYC5tyH1j15frZj8fXdOgUAdnsvdBiT0hhBBCCCF5ACX2MWi/yn3SAl8IrLi2XGmB5hioObBpkk1XYq+1q9X3zcMXOtM3rkznZurb/pxtn6HhSpM6sIbO11eWNCybb24hfYY6YWt1kmqRQpzPfOeF7iPtfijutYzr2+fc7usz6dy0ezeX90im/8eN3yYkVKCvfVuyLhqm6tWrR8dkbuIgazsSiqOsLT2W9uQ8W5ovmkbbOVfCSUoiKFsbKQ6yEtrSdlZ1xweka8bspEC+dZI52XVE+tquXbvomIxbJPbffvttVNamTRsAqU7Gvvtf26euhs+WCi9ZsgQA8MUXXwAApk+fHpXJ2u27777RMQnXKZLiuARVvu8dDTfsY3GebdnW83232rj3Z9z3v1tfG4OtsXPXwhc8AyhyrtW0yFqIXbL3Qok9IYQQQggheQBf7AkhhBBCCMkDqH/JEdk6mNm4Krs41ZrrDKOZJWht+WK3i0o6LkavW2arWUPiXtt9l0SfvvNstbvPpEP7v/SZ1FTJ16cvDrTWZ6gpjrauIX0mXVf7mNunb121PnO5rlqfu2NdpSzpPeJb11z0GWquli2+udlmAPI8sk1YxLRGTHFs0x1xBrXnJm2I0602b3GUBYri1os5opjdAMABBxwAQHdM1ZySxaRGzCTs66E5t/vakrHapjg///wzgCIzmG+++SYqW7p0KYBUx2N3fbS+bZMOMZuROOd2Ft5p06YBAObOnQsAWLBgQVQm3ym2iZPMRdq3v3d896fPtMZnkmqbkyY1//OZnYaYvsaZ4oTcX/bcZK3ke93eFz7TJqknmZKBotwNdn1xBpdrI9cbYEz7fIMSe0IIIYQQQvIASuxj0H51ayGxtF/vrhQ/1OFSsKUX2ToLaWPWHHd80j8NN1xXqKOsSCXiJLmZ+stFn9nOMVPfmfrbG/pMmulVG6tNSWTt9fVZUll7M/VXnD6TrmtoGL5M/SXp0/esyjYLty+0oBaaz3baFGmkOPzZWTWlvkgl7THKebaz7fjx4wEAU6ZMSWvj8MMPB1DkhAoUZZzVEGmnZL8FitZKJOX2ekl9ey1E+2KHoRQkdKTtSNyoUSMARWEsxaEVKJKW2xJ+t++4YzIO+dcONSqf69WrBwA444wzojK5hra2QyTLMkdbYuzTooZon+z2NEf5ECdvnyO+dl5oOGpNM+7es3Z9KdO0EfKvvXay1lroUtnrEydOjMree+89AEWZlQHg9NNPBwB07doVQGoWYQnjSvIDSuwJIYQQQgjJAyixT0BIOLo4qZnvmEuc9MLtU0uAodkdymc7eYUWJs5ty2enr0lmtPFIn7Y0I6RPLSyYTxqkJcAKmaPWp+bXoF0/LYyYr09ZHy3R1q7qM5frqvVp7wGtT2nflcTF9Snn2f1p+87t0yf90/q019XtU5PY+ZKm2esa0qcmNff16VtXrU/N/tk3Pq1vrUxDxib/avbx9vNIS4rnjltbH5F4L1y4MCoTO3F7LUTKvN9++wFIlV7Ks0nGY6+TSPrtvkWqLf/aZZqE3F0DTWprI9JaaV8k90CR/b0vsZs9HjdEojZu29dBEmXZ6yNIiE3bFlzmK21qYRTjkkS5aPdsiPYptF1tX/vCUWt9a1o2X7hL7f5yx6r5XtjPuxUrVgAoktTbPiSC2NUDRVqmjz/+GACwatWqqOzRRx9NO5fsvVBiTwghhBBCSB7AF3tCCCGEEELyAJriFIPihIRL6ujjc57TzADc0FmaStRW9Un7ovq2+9bCsrnZa7UQb5pJhLShOZP5+tRUolqfUs9eCzFtkDWw1fs+8w1ZQy2kmn3M7VPL6Kf1qY1V69M1q9DGqvUpqn57ndw+NWcvTfWtOYdJn/ZY3T7t66b16TrBaQ7jmimEFrpUCyHn9qmFeNXC3kl9e8+7fcaZ4rh9an37+tTCXfr69K2r1qddXwg1M3SfVaH1feF37X3kPu/izAalXLKhSqZUoMhc5eCDD46Oyef69euntAkUraeW9Vbq2c6tMg7NvEIL4yrta+ZkmumItCtjte91GaO9T6U9zYxJ2tLW32d+pmX7FUdOu29pI6m5mob2PAoxwfGZNiUNYqCZKmpj8WWl18yNfFmyNVNZuSb2XhkzZgwA4M033wSQGrLy7LPPBgAceOCB0bHhw4cDAAYOHAgA+PTTT6MymuLkF5TYE0IIIYQQkgdQYp8FoY4+vvO0X/ahIf9C8CXrkGN2WDNffZGc2NIC18kzNMmSFtYspM/iJFly6/vCrtl9ag6XIX3GOT26Zdq6+vq0y7Q+Q9bHnWPceZozpkjsfGP1rauNppHS+nQd/eL2XZI+tXXVyn3ro13LTP1l6jNuf7rHsl1Xe46u9D5Oo+j2FRee1dUWiKTZPmZLweVcqWcn0xFnUnvMkqhp9uzZAICffvopKuvUqRMAoEuXLtGxOnXqpNTTJPCyv20JtmA/OwWpZ49Lk+ZroQ4FTbMqkveWLVsCSA1hKIm7bK2COza7Tc1h3JXi23vGbcveA9q6+JxbNW2NG15V02Bp+BxZc/H96bvXQ0PCSrnMw56P714X7KRjcp2ff/756NiIESNS2pVwlgBwxBFHAEiV+s+ZMwdAUejYE088MWPfZO+GEntCCCGEEELyAErsE+BKHDQpsmYbraG14dpjaiEYfdLgOImgOw9NKqmhte/2pdnTamMtTp8uvj41bUFIf5nacPvxaRCSzjFO8hOSPCjbPuPCrvnWVSSJoRqs4q4rULLXUjvPtlNOGjrP7TPuHtE0FCH4tGa+PkM1LT60eQg+22jtvraPiTRYnoF2Yh4JaSnJmYAi23oJ4WcnmRI7YzsJj/t8se2+Xb8YO/yj1BMJqoY9V6lnr6dIwbW+tT0m45A5SZhDoEijoYXV1K6J5qcj9cRW3pYsu0m0bHt60RLEhS52+/Hdn5o/kM9mPi4BVlLpve954cOnmZX1tK9RyHPshx9+iD5LKEs7yZpI3iXJmu1DItfNTvomnxs2bAggNSkbyS8osSeEEEIIISQP4Is9IYQQQggheQBNcWLQnHk0MxpNleiq5TTTGp8pjq32dMP82fW1sIYudt/yOS4rYKZ5aPVDzQxCwnzG9R3Sp88MINs5Zurb7TOXc9T63NPWVQv7Ftqnr+9sr6Wvz+Ksq+bgF9dfXN8ldS1D+owzAQshqfmD9GOH5pNx2c6Y4vQnzzbbJGTBggUAUjNtLlmyBADQokULAMD+++8flbVv3z6tffksGVW1MulTnHWBInMKO2unPEdlTrbDqZg/aOEoteugOYz6Agm4JktAWChFrUzmppkGaWPVQhf7TEw0UzOfCYughebM9n7QiHvmuH1r4Vm18LXueT6nYY3Ro0dHn1955RUAqRmATz75ZABAv379AKSuvVwb29Fa+q9VqxaAoqzCJP+gxJ4QQgghhJA8gBL7DGiSE1+ypxB8zqc28ivelvxo4dWSoIU38/Udik/CkbSNXdVntv39WvrclddSyKXEOLT+rlpXIds57q4+XWxpZLbPQA3NUV4cA6VP21FWwvZJ4ikAaNeuHQCgd+/eAIok9za2I7SbvElL5qQh865Xr15QfTuMpovMzedwCqRLtW2prYTt1Opr+PaRb6yCfd21vkPwffdp9ULrZ0vovZX0XnITkYXuMUGzFrA1M/JOoGlJFi9eDAAYOnRodOyzzz4DABx00EEAUp1tSX5BiT0hhBBCCCF5AF/sCSGEEEIIyQNoipMBiQ9sx5IVBy3JVmg7XGlZREUFp8Xj1WIGi0pNU3O7mV7tz+Joppn6SJndt5RpMbplTnbGOpmTPbc1a9akjNmO9Sxzs9dH5ikOafY8tMx8rpOUPTfNWVjOlXHbDmDi/Cb1bUc2GaO9FjLPjRs3pvUt49ccm2XMtmpUzrXVqm5sa3tdZTxa9lRtblLPHr/sO6lnX0sZm6hxZY52W7Zjo8zNnaPdlr0+Mk8tfrfMw3ff2GOV8Wux89052u3a45G5yDxttbuUuXO056ldS8HO9qmZz8l4tDLftdT2t9Sz107GI/PQsrlqjp+aw6X0Ketrz1Xm6YvDrZkzaGOVbJr2va7FYJf2xflU4tQDRdll7b0iDrLSrm0qI1lrNSdJQXN6dDOyauOzy7Ws0fLZbsO99nZb9nNUWL58OQBg8uTJAIDVq1dHZTVr1kyZo31Mvkd8Wc7teUp97X7WssZq30nufDXzFfs+czPhaveDFtve166WTVvLVCtz0vaf9lyV+0Dat3MlNGrUCABQv3796JhcB3m2aSZFmqOylmtA9oWdjdY1nfr666+jz++++y4AYOTIkdExef60atUKQJH5Gsk/KLEnhBBCCCEkD6DEPgMiVfnqq6+iYx988AGAIicUOwOgSF1sxyaRlskvdVuCJb/+7QyGrpRDk9jZ0nz5LGO160uZ9Gn/+pfxaFInLYSZJsUT6aBP+m9LZmT8tjRY0CQtgsxJy+irhfDU2nCdlmwpifRtr4XUl2ukZY2025DPvjBo9rjc62WPT8ZjtyHlsldsqZlPUyTj0iRkMg9byitt2ZJlNwSepvmx18cnsZd52ONJKrF3QwXaayF73b5HZC62dF0Q7YsW5i8kpJ09Vnd89jy1axSifdE0UtrayTx8c9Tmqd0rMkZbciz3ht33+vXrU45pUlJ7vjIO996y64vDLFC0LyWs5MqVK9PGau9TCYH58ccfp81bPtuSbmlf5mY/m93z7Ge0zNN+jsm5co20sIO2pNjWotht2tj7TvoXTbG9djLGzz//PDrmPn99YS/dzy6uxD4u9K/MRfaYJqW219r9brHvKe17UNbYlfTb7WraF5/EXtPIaBm93TCoXbt2jcoOOeQQAED37t2jY3Kdpb7WtxbiVXu2SRva80XujbfeeisqE4n90qVLo2OHHnoogCKnWdFykfyDEntCCCGEEELyAErsMyBJHDp37hwdE+nCgQceCCBVuiASBPtXuSu9sNESc4hkRksiotljymc5z5aOhEjsbcmmSAc0zYAm8XETbGnaAnvero29LaXSxuhKTOLW1bVv1fwNNJtK37pqEnuRmGg2wjIGW5IofWvz1aRCmpRa1lPzy9Dm687Tru9qWGxppCZpddfabkvq2XvFlWbb10361KTU7hztvuw2fNdS6vu0HTZynbT9JG3Za+HavmpSXlv74oa7066z3ad7Le37QVt/VxPgm6M2T60tLaSvtGHPV0JNas8qGbct1ZZ6ck/ZtshyzJY6i11527ZtAQD77rtvVNasWTMAqZJvsTHXnoWiCbAl3a5vjabtkPNs+3VZM9u+WfqUdbX3jDYe+W6R62FrzcQXxF5/10ZbkzDb+07a0/r2JYSS62Y/q3wSey2Mo/SlaR6lvv29Kee62md7rPbeknY1LbJPYu9LxhgqsXe1kHaCp+bNmwMAGjduHB0TrZe0b9+f2nNe7he53vZ1EMsBO8Trp59+mtJ369ato7IuXbqkzXvEiBEAitbM3vOnnXYaSP5AiT0hhBBCCCF5AF/sCSGEEEIIyQNoipMBUQlKyCoA6NatGwBgv/32A6CH+bJNCUT1JsdstZhPlShoKkjNeVYL86c57LplWhgxN+SWTZzjlDsuzblVVJv2efaaCa5pgI1rNmS3p5kZuXW0kG2+tdPMYnxZAW1VvOtwaY9b9oxmEqWZn2jZBwWfU5jm8KrtD81kxNeWtoddExl7XL7we5qZgW+eoeH3NBMfwd2LdluaKY7PDEi7lu747XUKuZZxmSd9ZkzuHO32NNMj1xlRu872+qxbty5lTpqTpG2iIeeK061tiiNZZb/77rvomKxBy5YtAQDHHXdcVCYmEHaf4hir3bMyDm2tXXNGGzH1sU0WpA3bDMh1ntWc4e3xuCE/7ZCzsq52G2KioQUe0Bzk3fFo31Pa88LnIOtDM8UJdZ51Q+ZqoXB9QSTs9jWncF+4Sy3ggmtaat/PrimkfT3EXE3LLusLp6uZDQoSlhIADjvsMABFIbeBIrMcWUN5PwGK9phtSjx8+HAARaY7WmhVkh9QYk8IIYQQQkgeUGBCfpL/Cvn2228BpIZNk1+49jEXTcomx9ykLpnO1RybfMlPsi3zJWyJw2036fm5wBce04e25X3OZKH1NCmMr/9crJmvrZDxh85R0BxxS5qkiYWKcy0FzRG3pNmTrmXcs8HtK24vy70h0m9bSj1nzhwARRJFoEhTIlLI448/Pm2s9v0vEnctVKiWwM91yrfXwtVa+srsY1ogAR8yfluSK2PVwu9qe1ELvaoljtvV+O4fWyrvS1ClSdldTYCmedAk9r5r4nOe9bWvafg06b/2f00j4Cams7VIkqhNwr8CRdoduVc6deoUlUm7trZJNGM1atQAANSpU8edNskTKLEnhBBCCCEkD+CLPSGEEEIIIXkATXEyoMXhdh0hbbWb5rgj6jCfKlVzhttVhJo4aGp2Nw6vFsd6d5jn7E5+DfMujvnW3sSv7VpK7HO5r21HPt/zS1T9Wn4DG2lXnGeHDh0alYlDoB2rXrJiivOsmA8ARaYrmvOvmDPY45E49Lazo+bkuKvQsnsLvkzbuSCpuVZIW9macQK7/jsvF2gmVJrJq5aDRdCCbcg7hxzTgjDYpjiyhyXfgr2ntcz2rvO1ff/QkTa/2PvuKkIIIYQQQkgaDHeZAfm1bf+q9WW2EzTnWS3zrK++oIXm0jQIIRk6NbTMufKv/Utf2tKy8El9W7qgZWwVaYKsoRYG0cYNReYL82ejOTG5ISrtdfZlDBZ8kjWtXXudQhyV4yRY2rV3+9bGL+Ox18l1qtbasnG1VPbaaRKpEAfwbOeojT+X11K7F7UMzCFztOtrZSHX0q6vOSNqoSkztamNx34uuVJku01Nwuzee9p8bOniDz/8AKDIgW/+/PlRmewjyZYJFEnsNSdAeW75QlpqWXVt3JCl2rNEc2SVtrRnpxvqEdCvpTt+bY9pDrs+7ajmCK3tDzessT1GrX23H01L7duTWlu2lNrnPKs5sLrfddpa2CTVJvicwn1taevjrqdPcg+kO4Xbe0zatzNJS8hVLVOt5sjtvtP4nhtk74YSe0IIIYQQQvIASuwzIBJpOzSX/NKVX7522EuRGNkSB/msSew16aKbJMX+tS3jsKVH8lkL5+aOQZMW2P3Jr34t1JZmYyt9auHfRLpmj1XO1XwXNAmom3jFlqRoyYzkXDnPLnOlefb10OyBXamQJvGy7Rnddn1hR4H0RE32eLQEXr5kL5rUxdUU2WN1w/vFJWyRc2U8trRNC3XqhvzU5qElTSruHO2x+iR8mlReC0OrJXty950vMReQLgXWQvnZuPPUpOah19KnYXHbtNvVnkvy7NH2sBb6V/r88ccfo2PTp08HAMybNw9AUQIdANh///0BpCbkcZNuiQ+APTZNkq6thZ1MSnCTBmmSZXkG+sqAVCkqoCcF9N0H2n61pbVu4ivt2SN+BEDRNXHHlWk8IaFLfSEetXa1+1mzK3f7sst84S592guNEGl73HmudkFLjmWP391b2lrYe9i1gZcEVECRb0qDBg3SxiihY+17Ufa8PTf3PUFs80n+QYk9IYQQQggheQBf7AkhhBBCCMkDaIqTAU2N6cskJ9jqdy1Doq9N6VNTG7pqQPuzZhIhffuyFdoqare+XaY5eYkaT1OJikrRPibnampxTdXthgq10earqTbdMs3ByZfBUNCcknymFJqJhub0rF1nzYTFNXeKc6r2ZcLVTFIynafNUzOvsnHNVLR5aOujmXRpZkzFvZb2/32ZgkOyd/rmYc/FV+a7lnZ9Nyul/TmX11JrUzNLcrHNjMQERxxl7WNiUnPMMcdEZT179kxrb82aNQB0Z3sxObD3itTTzKR8YQcFrUzLYiv1bBM+13lWM5ey23ef89rzTzPn0drSnr/uXLT2fY6cvjLtme4LzandP5qzsPYdo93Pmc7bFcje0oJoaAEm3PW060sbmqmv9h0sn+33EjHBkXvKNt/Svv+1dwiSn/AKE0IIIYQQkgdQYp8B+VWrSYw1CZz2K16TaAhakhWfxN4n5RV8obniQm250gV73pr0T5OMC5pkQNrVwsqFJmoJwSeN0KTnPo2GJqXSJIJu33GOwW5IOF+ZNg7fddP6DJmjfczGPVe7pprkSpP8hoR909rX5pvttQyZY9xY3Tp2u77xx2ltfBJTX/hAX/hNX/hAe96uI7d2TbV1kufe0qVLo2MzZ84EACxfvjw6JhLHQw45BADQuXPnqEyS42jh/bTnsObML89TTTvqe5766mj9aM9Hd101rZOmAfFJpH3O85rTsD0e3zMz6f5xzwvdw1p/msbOtye19t0125XSZzdUqPZss8fvXgfNcd92QHbvcW2PaePRQrZqz19x+NZCZyYNC0r2bCixJ4QQQgghJA/giz0hhBBCCCF5AE1xMqCpDUV1JSow2/FF1Fy2Kljqi7OX5ihnq8qTZu1041jbZW7Mbc3pTsuSp/WtZXN1Y4b7HPg04rIh+kxxNFWoz3zG7ScuK6WbdVTLtui7DknNh2x8a5a0De3aC1pmVW1PuvtCy3AZMpakY7f79NXTchloccE1R3b3WvrOCx1PaFmI+YM2Vs3MQxtryLXUMs9qOTc0Z1Wpt2zZMgDAF198EZVNnDgRAFC9evXo2EEHHQQAOProo1PGYLdlO6S6+Rw0ExAbbT+E4HvuaWaDgm/v+56hQFHMeZmvHX9ceza7pjiaQ7TmsBuyx0LKM9UNOS8Xz7NM/bvtl4Q5ifadJHtTe/aEztfneCxldvtyf2rOuXLMvt+0TL4rVqxIadfe3z7TWrL3QYk9IYQQQggheUCByfVP6jxDkwprEmYNNySXJrHXnNTcOjY+R0Ktnk9qo0kcfNIwTToSmrXPJ2nxjT9bKWmcU6hbTxuP5oDkG2um/8fh22P2Z5/TqSZ594XM0yRGPi2Sez7gz5KrjVn68mkJtD1mt+GGkLRDMfocan3aF9811bLkauuqzc0N16mtq6Zlk2N2P+vWrUupA6RnGJXwd3ZfWnZsGY+dzVU0jlpWSjlmj0dCWU6ZMgUAsHDhwrS59erVKzom2WXFUdYml5oun/bP9zzyhbQNDXfr20daFmHNYVTLqu1q3uK0SNrz2u1byyKshWCVfaTtedl3moOs6yBsf9ZCzmr3g/Zd5Ms8q2koQ74/QjXX7nk+jbE2fm3eNu53cNx3jatJ16TuWoAPLbQonWfzC0rsCSGEEEIIyQNoY58FmqQlxFZWk0aGSsiT4kuK5faj9RmX1MSntfBJkUIlAyFzD9FUAEWSDW3NtXn4xqrZJ7v7QbPzjQs3GjIn7f++drXx+DQh2r525xK3L3xj9Z3rk46Ghsd0r7PWpybN90l5NTQpbNKx+iR2UqZJEu19J1J2wZaqatdSkHWy23JttbX5r1q1Kvo8depUAMDs2bMBpEoLJaRl165do2OupD5U+xf6LPHNN0TCqt2zmr27JrF3r5e2/+z1dG20tfvTFzZRm5tv3+VSKR/Xluvr4AtVadf3+ZD4nuU2mi+Yu/4+bYGNpl1wn53FkXKHfB/EfT+4YWjj7h/bh4XkN5TYE0IIIYQQkgfwxZ4QQgghhJA8gKY4CUia7c5VAcc5w/rCq4WE0/M552hOSVpou2znFqeidZ0241SiIaZKodlZfepbzezBbVOrr4URFOKcJH1j1frW1Pk+XMdPzWQs1BTHlz1Ra8PtM6nZUJxTotuGbQKi3T8+9XZIn9r4pU9t/2loDs4+tblkYLXrSCg72+F18+bNKf/amSTFaVYzGdGcDCtVqpQyRtvMR+ovWrQoOjZp0iQARXu9e/fuUdmRRx6ZMp9QkobMjXO0dst8Tura/R9q6uczxdHG5fte0MxJQvZWqDmcmFqFmp25WcTjznPXTFsnzdnWF77Wxuc86zNh833v+ExefN8xcbjtxz0L3b7j7gdfYINQ00+Sn1BiTwghhBBCSB5AiX0MxfmV65PMaJJcV0qoSSN80iBNUuGbh+9YLqQLPuLGE+KgFHpt3PUMlbj46mkaEC2MWLaOaz5tgY0v/J6vrWydmbXkOLuyz5BwdNn2GSddDJHYxWk0QspEYm/XEQm8raGQevKvXSaOcvbaibRfpKJ2KExX22Gf99FHHwEAZsyYkdZ+jx49AKQ6ysp4bA2C9Ll+/XoARRoCQJci+zSCPm2Kb3/4nOZ9gRDsMp8kV9MYaXvFlX7HhXh0+w5FW7sQTahGqMOoG5Izbm5u/bjvHa3dkDH62vI52/u+s32J/4AiZ3Ztf8i9qmlyRANn7zsttDAhmaDEnhBCCCGEkDyAL/aEEEIIIYTkATTFyYJs1WGa2U1IvGy7nk8VqrWvtSVoJiMhWRq1dkPXRKsfahKUqU7cea7KNXRdfep8TXWvtRXiEBi31j5HP61935zctkLXQnNuc8/Tzo1zVitun3Gxnt0+Q8eqOVz7nBJ9JhqhZgwh87D3nZjDSD0tTrXtBCumAW7MepsVK1YAAD7//PPomHy24+T37NkTAHDAAQcAABo0aBCVSdZRLceAjCdpTO1Qx9oQcxL3sztW9xmlXTd7T/rMQ3zmMJopW9x+zoTPMViLfe6bkzY37TzNCVsINXsMNZ0S3Oy42nM+qfmcz+wxzpk3l/jMWrN9hpBfJ5TYE0IIIYQQkgdQYp8Fvox1GpqEJsQhVWsjpJ/Q+j7nx6QUR5KQbWiu0D5DnDyTOuKGOo4mddr0Sex8TthxknRBk0QJMifNCdAXFtDXpxbKL5d9+uao9WlfN5/DaEjm5jiJvTvGuPvNlbxrjnj2mF2HWrtMpObiiGf3r0nLxal1+vTpAIDXXnstKqtfvz4AoFevXtGxI444AkCRg6w9bxmPjMH+7IZPtNHuG1+IRA2fhDxUGu727ZOGZ5qLoO1hnwZRw63nczK2+/KFztTWU66RHa7Xl4lY2tdCYGY7tzh8IaGTapt9aM9V7T5z8QWA8GkL7WNyf2r148IB+9onvx4osSeEEEIIISQPoMQ+C3ySExvXzjDuV7QrASmO5MEn5fG16Qsv52s/F/bDvvbjxij47Fy1NrNtSxuzTyIbmlhEww2XpoXt852nHUuqJUkqdRLixhriM+LrM8421+0z1EclNCSq22622ie7nkjsbJt2CSFpSwvdMUodGzuspCupX7VqVfR59OjRAIrs6UVKDxRJ6g866KDoWNWqVQEU2czbUl7RJGjXTcbgk3raaImRchFa1000p9WRMjuMqFum9aPZoSd9XviI8y1IasPv3ttagjptbnINbam2m0AqTvPls4EP+c7StGyhfjQh32uhbWn4/Bl85/rOIyQESuwJIYQQQgjJA/hiTwghhBBCSB5AU5wM+EKdhardQ8xUkjrsaWPU+nbraCpIzZnX56Cp9aXN0WfykmQ+Wn92vdAsn27oQnveIQ6aWt9aGLRQU5+QbKhJQ/NpDnK+duOcF100k4iQ87Q2Qs/Ndqx2WUgGZt952ZrAaSTNShtqSiHmD7Z5iJiPVK5cOa3+Tz/9BCA1pOWUKVMAFO3ro446KiqTrLK1a9eOjomjpeZgKuY5djhNNxNu0meDTchzNTQUZuh+cAk10fDt3VyYPYaYbfruBxvNBMRnFqKZ27jXN9Rc1bcWvvWMq+/2aT+3NdMd977XTN+kTZ85lnuu3Z99rjY3zfQraWhXbTzk1wMl9oQQQgghhOQBlNhnICSZTlLnJ81h1BeWLanTjVbPJ4EPdfYM6Se0zJfMJDREXUh9+zz3WmplvjCFNlr9XDgQu22F1vedl7R+CHFhB3d1n6GOhMXp09eXi09bE7e/fZJWkX5re1ekf3Z4SW38GzduBAB8+eWXAIBRo0allR144IEAgL59+0ZlIuVct25dWt8S7tJG6tWsWTM6poXA9I3VtxYh1zTufpBybV3ls4xZu6a2NsL9XrD78TkJa88SX9haNzmT+zkTod9TvgRPPjQJv/yrzS30O0NzPNbWwNeGu8a2lF3q2RJy9760y9zvUq0tn/RfC1+r7ZVsQ//Gac2TBgQgey+80oQQQgghhOQBfLEnhBBCCCEkD6ApTo4JNQPQTHFcNWOoeUWISYemwtcIdVgMUYX6HEa1tpI6F4aasrgq0VCVpG8NNHW1r91QkxBfnPykzsWaOZlvPEkdg4XQ+PQhfWr7QotLn22fmqo/1NzLl3Ha52zrG7MWM1xT09umHy5iDmObDYjJy/fffx8dW7x4MQBg7ty5KXUA4IQTTgAAtG3bFgAwb968qKxx48YAgOrVq0fHJKOtHQtfqFu3LoDUtRCHWs3ZU3PCzEWsepe4AAJJ2kxqrhLXRki9XDhCauYw7n3mM1WMc6z1Ofq7Y7Dra/e6ZpaU9Bnu1revty+IhFvHRtqy70nfvhZsExvfsyrU8ZjOsyQTlNgTQgghhBCSB1Bin4EQh8i4UJUh0u/ihEH0HXOJk3C4UvY4Rxwfsha2xKW4ErLi1HclUaEORaEh3twMqcUJCZkLyYxPYu+T/vk0LVoWWK1vVwoeKtnUpOHaWN1rqEn/su0z7h7xaYq0/tz6odfW58htZ5eVcyWUpN23SNLnz58fHZPwluIoK2EsAeDggw8GANSoUQMAMGvWrKhMc3h1M8hq94OGT2OnOUn7NFi+drUx2PNwn0e+e1abv+ZUqTl7us6kGkmzOdtIn7Yjp1wTbW5S375vXMm7PR43lGqcxD7k3gj9fvM9r0O1tr5nslvHRq6hfb/Jusq1166pT8puj8vnVO0L8+kL71mc72ySX1BiTwghhBBCSB5AiX0GQuzcbamHL0yZJgnRQou5EsRc/tqOs2n11Q9Bs0XWJPba3ELDAWZbP6QsLoyjr77PLjMXWoiQ8duE2Nb7ykLtm33SV1/94hBi85/LPpNKF331Qq+fT+KtSey1kJPr168HkGor//XXXwMA9t13XwBAv379ojKR1AsdO3aMPm/YsCGlTQCoVq0aAKBBgwZp45J6VapUiY7JGDXJr+C71+Ps732aKCkT3wW7PdE8+DSn9nlaiER5zkk9+7kndtihWqSQ/aolOhIfBgCoWLEiAF2irD2bBU3Cr33XuWXasz/bcLE2STVwvjpyLDT0p8xXfEkA3ZdF0DSOriYwbuzuWmuhM7X6SdfVPT9kbGTvghJ7QgghhBBC8gC+2BNCCCGEEJIHFJhs9Th5js+cQYgLR5XUbMBngqOFzPOFkHRVdz4VYcjYMo3Vhy+8n5aR0Kd61BzfNNMm19kLSDdV0JzbsnUmzXSu25etynb3lq0e1tS2IU5SGj5VbYipk13uc9LzmY5oavpQJy/NDMO9XnEOqb6sw0nV+mJqsWbNGgCp8xaTDnuvyZ6110wQEw372ruOjXaZtGvfB+6cpk6dGpVNnjwZQGq4y169egEAOnXqlDbWqlWrphyz5y3jt9fVNUewy2SMtoOga/6n3c9aNlffPWgT8qz1ZR31tamZFNpz8znP+u4RGY/mAB73TBC054tr5qk5z/qc/32O+HZbIc/OuIznoc8ht76P0DDLIW3Y+9TnCO2bry/wQGjfct3sfaeZ8xICUGJPCCGEEEJIXkDn2SzINpRUnJTb54TpS3Kjne/25QuTFTrGpGH+fI5K2twytRdSx7d2Lj5HZ7st35r7nJnipE8+B7NsCU3Y5Nb3hZKz0SRS2jx81yGp5kBbf1/oUl+fPmmhhiY1E4m9JoHTNAiu9kiTYGsJeaRPe96iEbAl5eLYJyEtx40bF5WtXLkSANCqVavomDjENm3aFICeXEq7Rr7QfIK9lr5kWr6wfb52QyW6WpkmZQ9pI2R/28ek/dDnai6U5UmlwSHhN7XnqnbdZF9r2gVfMjet/RDtok3IdbPrZaux0/ay71rmwiE1F9qLbLUdJD+gxJ4QQgghhJA8gBL7DGQrTQ39Na/hhhuLkxRr4cBcfJJczXY0lGwlaSFpyIF0ibKWjltbC82mVT5rknotxXqI1MknFfaNC0iXloVKnX1r7ku+k/Qa+UJ/xkmpfYRqAkLOCyVEg+CTwkqoR/tY7dq1M57ns3UWqTtQtB+0+0Ak8bZNuKyPvXeWLFkCABgyZAgAYPXq1VFZ586dAQCnnHJKdGzt2rUp57Vo0SJt/LsKTRKa1AbZVxanWfL5ILmaIvsahUi8tba054u0oT3bfIS2H5dMLhs0e32f1i80MaIvDKfdhqsViUtclqmfUHz+QKFaJ8HuO+T7U/vO8O07TVMR6hNB8gtK7AkhhBBCCMkD+GJPCCGEEEJIHkBTnGIQaqLhOzepeYIW4tHXty9Eon1+UpMIX3g5X1ua+taX8VCIy8LnlvnMK3xOxna5T5WtZQz2hXPUzFs0la6mWg9x1g6dh9tnnPpW0NbVt55ame86h5hvue1lIq5Pt29f26GhPN1QlUB6SEu7LTGzsbOayjEx2alUqVJan+PHj48+i7Psjz/+CADo2bNnVHbggQem9VmnTh0ARdd83bp1UZn0FeIoC4SZHviuVaiJhs8pMdQJ0xdON9RMMgl2P5ojtDhAh2YkFXzZTX1rERqy0eesrl0vn6mi5mzrji9TuVsvdH1C1lMz0Qp16nfbD90z2h4LMQnS+g7pJ1P7Ic87kh9QYk8IIYQQQkgeQIl9AkJCSPpIGmorrg0foc6Rbn1NGhEq/U4ynjjnVp/GIaR9X/04iborbQrt2+dsFzo2n7Oz7zytn2yd6HzSUZ9k0P2cqb59LMRpLlRq7pNehmhHNM2G7fAqY9y6dWvGvjWNmra/RYqqzVuT1H/77bcAgM8++yw6tmjRIgBAhw4dAAAHHXRQVLbvvvsCADZu3Bgdq1KlSkrfK1asiMpEUh8aEjJbZ+fQfedKjzUnQN++9j2z4sblthvnfF4Skk9tb/meDb5wvdoe0+araZ1cJ2+fBFsjbm3cdpMGh4h7vrj4vvt844rrO4TQkKfas0pLWhcyNkrlf51QYk8IIYQQQkgewBd7QgghhBBC8gCa4mQgJB59nPlNiBlDyPmhhDrPhow112imCi6ag2lo3GFxPJTx+0wK7HXS4t4LSc2Mss3mGrqPfH3bGUmTEKqaDsVdC5+zt+98+7Nm9hAarzxJn3Zbcl6FChWiY2LCIuYttsmCrL9tRiPtiumO7Sgr87DjudtmPwDw/fffR59HjRoFAPj666+jY40aNQJQFKu+cePGaeMX8xsbzQwoxMww1Ok5xBwmbt/5sj6HONRqgQGSmhT6HEDjnEIFeb74sifbaOYzIWaM2Zr32WimOK45nN23lovAfQbmwvE1qVO7jzgzSR++Z1tIn3Z/IaZsdh4L+7PgxqVPOh+Sv1BiTwghhBBCSB5AiX0MuQyDFoovRGIoIc6koZIorY0QKXJJr50t9dCci9wykXqEOj2HOrKGOID5iAtr6kqGNCm15lQVIlXVCJXMaqEkXYljnDOcOw7NYUzrU6ujSXndPkM1Jz6napHO29J8OWaPT7LWisTebksk+66UHgDmzZsHABgzZkx07IsvvgAAHHroodGx7t27AwDq1q2bNm+Rytt9btmyJWWeEv4SKJK+Jr13Q/eReyzO+dS350PasP+vSc3d/emTFMdpEty9ou2Z0HCRPu2I1laIA6W9J7Vwl249LdOrNn7NKVzTWvrwabXdNoH0tQj9XsuFJlq+P7TvGp9Dt0bS8JW74z2E7L1QYk8IIYQQQkgeQIl9DPYvfZ+tZsgv6qQ2+aHthYRD09AkIb5xFacsqcQkZC2SJghJ2pYvBKMtrZFjPumW1lcuklFpknEhJAFL0kRBcTawvvEnDcEaQtKwhkn71KSRcp01absmFRZsPwjpW6T5ALBy5UoARYmnvvrqq6isQYMGAIBDDjkkOtamTZuUPu3QlrLWts2/nagI0O3vQ23mfdcyRBOo1SmOpivErl+TvCcNa6i1JYRKikPWwuenE7c27vMlVLIs+9oej1svqT9QXDjaTOdlakOk5jJWzW7dt7dy6bcW6g+ktRUyDs1XKBffhwyBmf9QYk8IIYQQQkgewBd7QgghhBBC8gCa4mQgVKUbUhZ6zHUMjFPj+kLCuW1ojrhaSLVchL30hZzUHFiTmvpo8/WZwbgqZi30nNa+G0LT/qyNX5uvoJnP+FTGSU1TNLWw1o+7H+KuQ9KQra7KWDMp0NoPdT5z119zAozrM1PfGrapjGvaoK25XV/2Q8WKFQGkhgdcv349AGDBggXRscmTJwMAZs2aBQBo0qRJVHb22WenHRN8Toza9ZUycaa1x6bNLVvTiaRmCSH7yR6/z7kw7tnpPgt8+1rbT9q+C3Xo9Jm3hd5nLpoJmLRvP5dCnrVaHWkzztHfvZdCzVV85l7ad16oY7Z7zBeUIA53L2qmY6EmaiEmb5q5py9MrBZUQRu/2x/JPyixJ4QQQgghJA+gxD4LfNKFOImDD5EQ+8Ka+ST2SZ1tNKlQUicjX1ImX5+a466vjbj6SeYb56TnWwutH59UKESaokn/QgkJ16etq3ZeqOOkr37SRDNJ67h9JnW4TIpP07V58+aoTLsHxXFVJKZ2fUk0NX369OjY3LlzAQDNmjUDABx88MFRWfPmzQGk7hVJeCXSfzv8phu+0kaeM7YzrRsGMdsAATY+qXMu28pUz+1Lk4Bq4wlpX9Py+PpOem8VZy+7Envbadv3/NXuXamnJTWTPZY0/GZomfa89u1PTQvpc1QOCarge3Zq9ZJqEjKNze3bp1VMal1A8h9K7AkhhBBCCMkD+GJPCCGEEEJIHkBTnAwkzV4XUhanfhN1p6jdbGc73xhDTFm085Ka4iR13A3NViiffU5ecTH6k6iu4+q6cenj+pHrJiYOtklEiOo7VJXtu84+1XScc56gXVNfDG0xBbGPaWvmjt+XHyB0rQXNzEDr0+f0l1QVr81D2rfvWRmbOKkuXLgwKps5cyYAYNmyZdGx2rVrAyjKKNuxY8eoTMsk614v+/6RvmVP2vV8jscavjXU0EwoMtWx2w9p0263OHHB3Tlp1zLE9MKu78u6mu13Ryg+00CtzJ6v7BHZM/Y+cutrzwbNxCTbuPEaWibcUNNDd89rJpHa8zdbJ2abpA7dLtp3hs+cTNvfoU7qJL+gxJ4QQgghhJA8gBL7DPh+SYf+4vWFTRPsX+W2dC1kXCHOP77zkjpt+qRUce37wiD65uFzPvOtRVyYNcEnWfI5LNnXTSTXIpm1pbZaCEyfVMiHT2KfdG6CFibPlua52gvNeVPrUwubKO1q50n9OAm8hJPUHJW1zJnSpyvpt/v0hUr1OU5LGEv7mK2tEX744QcAwKRJk6Jj33zzDQCgVq1a0bHDDjsMANCpUycAqWuxfPnytPqSOVYk/fbzQ+ZrtyFrIWOtUaNG2liFOO2cz4lZq1Nc51mbXEoe3dC2Nj6NnXbfJA3Dm0u0faqNR5PYy/3ocwjWtBdSX9MKyb4LdYbX7meNbNfRt4fttQhxInfPtz9n+xzWsEPnyjXSvltCtZ3k1wMl9oQQQgghhOQBBYbxkFRCpMia1EaTpvokvzZuQqQ4KViS5Bu2xFI+axLHEAmn+zkJIXaZGppUSJNSae3LXHzJaJL6G9i4km5bSipt+KSdoTbwvj25adOmtDbk+tr9yTpqY/X5gmhrYUuUBJEoaW35ksv4pE52/bVr16bUr1atWlQma6CFcSxfvnxa+yIFc7US7mdBwlWuWbMmre/KlSun1Z8/fz6AosRTs2fPjsokfOV+++0XHevcuTMAoGrVqgBS571x48aUeQCp1w6ITx4k6yLtxvnwCL5wfb570T4mfYtWy9ZsuPMAivanltBOu17ufW8/L2SfamvnS+IWahefS2mtz05f8wfwPfu17xGtDfdZYD/b3blp18Hnj6bd/zYhrx/avpOx2nNz72d3Lu4YNCm+K7G3+5b2Zb3s+8cn4c9Weh6XcCrp95Tgu5YkP+DVJIQQQgghJA/giz0hhBBCCCF5AJ1nM5DUIVU75lPRaohq2RdK0meq4HMmjXP2ck1G4kLJJXWGc1XkoaE5Q+uEOCpn66wa14ZcN818Q/CF2otbuxDznNDQfyHhH0MJDQfqliXNFmvPze3TNrnQ9rWrivettWY2YI9V+hLTDs2UZenSpdFnMcGRMJe2s2qHDh0AAO3atYuOiQmOYK+NOMr6iLt+msmLi28/aXtYI8R8MakFaEimzkxlIWMNdZRPGlrYF0JWa18+a4ENfM95G/d6aXXs9pOEkLTHKuZVmkmUNrdcWv1qzzG5P7WQkL7QpT4zJq3P0O+FbPGZV2nr6QvbSX6dUGJPCCGEEEJIHkDn2Qz4HC1DztMIlebHSVhcNCm460yqOc9qTp6hUlXXuc2et0+CLQ6INlpilNAwYyH1syXbWyMuEYlvj4Q6TvuO+aRHrgQxaZIiTZLrkyCG3j9JtVviyGbvJ3EWtiXp0qc4n9rtiwOn7D+7THMMdve8LYGXkJYjRoyIjkkSKql3xBFHRGXNmjUDANSsWTNtPLvTkc0X8jRUIhgi7SzOvgiRjvq0l/bnkOe8L7mcVl9zuLTbcPebtud9UvC4wANJndRD0MKCyveIlpRNG6uPpOPxOUlrido0Z9jQEJuCL8FbyFhDtao+Cbym3dHG4wsrHTIGsndDiT0hhBBCCCF5AF/sCSGEEEIIyQPoPJuBbB1SfKovG009FxILV2tfc35y1Yu2ilTLTOiONU5t6MaSttvyrZOmCs5WPZwLExAfSR2oMo0lrn7cWH2xpAVNLWybUwiuKY7m1Ke1JWp3O2usmL5oDqaamltz3nTjamv7SFMxS32Jiw4AlSpVSqsv49DyTLjZMW1ztQ0bNgBIdVp1HVgXLVoUfZ4+fToAYO7cuWntt2rVCgDQsWPHqEzi3tvzlblIvHXtOoSa8/nyM/gIjT/umjZoMbHjchK48/CNP868zTW3iZu3u+98OUDiHEDd+cbt4eI6mIY62/vWOlszQ+1+9pkNxvVTXLMzLYiBb621fe3bK/YzNMTR2sY1lQkNMCHn2SZFIX2Gtk8TnPyHEntCCCGEEELyAErsi0FxJLO+DKw+qZDWlyZ58P0694WvcyWc9jFNe+E66WrjsgnRLthtaP9P6lBXXElFLkLzaWQrVY3ry7cv3H5CNS2+rJdx7RYXe1y+ULAa7t7V7hHNEc/NWGuzatUqAEVSegCYM2cOgFSthEjqO3XqBCA1U607Brt/LQOoVt93nwnaPRsSvjap5jHOwVTwhfD1Sf218WghfDVH3xCJsnYfxGkJ4tpMMh63jeI4Bvv68TnW+u5nTZun3VPu9Q2VImdLnAbB3Vv288uniZIyW0Pp01AIvu+p0MADWv0Q7VzceHxllOLnF5TYE0IIIYQQkgdQYp8Bn727T6qtSaJDf+GLja1mGy2Sbk0yLrbBmr2+z55ewuvZ7YrUUJNs+Gz+fCEx7c8SGi1OSu+zBdf6dK+XJkUqrnQoU/vZtpHp/3H148rcefqkhbZduW9ucu3jbKlD9oU2Np8GQbuWcp7Y+dtoe10k7/ae3LRpE4B0STkA1KpVK63dn3/+GQAwadIkAKkSexljjx49omNdunQBADRs2DBlLHb9uPV05+E7ptXRbIS1//vuHw1fPS38rjtfX+hJu57P70NLTuT6/tjHtPEnJamfVYj/UHHszJOGUvT5UPiS1iX1mwglNDy0i6Z19n2naGFcNc2SW89+Pmp7y0cSDZk9Hu37ytYmum2EvGdo/VBin79QYk8IIYQQQkgewBd7QgghhBBC8gCa4mTAp5rSQvNp54Wot2x1mJiphIavE3yhsEQ9p6m5NVWcFjJMG48b1jBurJopkdu+b4xxJk4hDm+hjs2+Yz58qulsHZzsc32OhFp7uXT61dTQvjXTTHd84eU01bqGFjJT0EzS3OyytjPc2rVrU8o0sx7JWAsAM2bMAACMGjUqrX7Xrl0BAN27d4+OiTmPPC/ElMfu087aKeZCPsd6m2ydPH11NDNDnzmJFgIwqVN40n3qM8MIvWd9ZgzuHtTMH31hkH1BCbT245xhfe1ra+1+P2nXRnOCzdbcyyapmaHbbuhecLNAA+nha+32tGePa65ql2vPcvd7Ntdr4fatmbJq+zSpKRfNbvIfSuwJIYQQQgjJAyixT4D7C12TqoQmtNKk/q40Mqkk14cmRQptU5Oo+5yeciH9FrJNaOWTdmYric+23CVECqatv88JULs2IaHttOuoSWuThsfT6vikTqHSZ1fiaEvRtm7dmta+TyMg54pU35b+rVu3DgCwYMGC6Jgkn5LkVXbCqf322w8AUK9evbTxb968GUCq9F8SVNnhNF2JYFwo0pD7PzTcnXssVOukjaG4SYcy9e8bj09r6QsJme2zINShXdNsynPeF9Yw9Hsk5Hkdp9nwtR8SvjKpljqUbLXmNr5AAlqoZrdMG4P2XE2qpfLha8u3L0pKm0L2PiixJ4QQQgghJA/giz0hhBBCCCF5AE1xEqA5HmWqo6HFpbVVieJwKMds0wCfKk7Ukpoqzuc8azvuuePWHHd8GRU1Ux97/K6KWVunXMSb1mIyJ3Wsy7ZvITQzpO9cX8xzn3rY/az9325L2xf2MZ95iNS364SYRGgZXkNjQ7sqeM1B2xfz3HZ4rVSpUkoby5Yti8rGjBkDAPjqq6/S2hAH2QMPPDAqk1j1Nu71su83McWxc0losapdfI7HcfV9uPdNUtM3G22f+sxDtGdbUhMQn8mY1qfrJBxq5uZ7xmpj18w23GNxpjhumS9jqv3ZF2TAR3Ectd39k9SZObTMZ1LkM2EJzQCs1fGZOIa8G9iEmLzFOfq6aPs01FyN5BeU2BNCCCGEEJIHUGKfgWwdrnzZ3OKcbYSkoQU1yZLbliad0I5pGfc0KZ44gPkkXfZ8pT0tJFkunHjc8Gf2WoiD4q5yFgoNX+eTfvkcG7XztJBtgk/6Z0uRfZJWrZ+kDo4+7ZEvFKaNe321Pak5LwqaZkCcbr/++uvo2BdffJF2vjjLHnnkkQCAatWqpfWzZs2a6FiVKlUAFGkJ4kLbutLjXGZMjUOTmgs+ib3mxOiTwLvPAaDomvgk8HFOkm7fmhTZxteu77ntk7KHaiF9c/O1L/W07KmaNlWT0Ib26bYV6mDrakdCtQVJQwRr4XR935GhWZ1d7bS9T7PVdgj2OmnZ5X3XTWvf3etx+zRbzTXZ+6DEnhBCCCGEkDyAEvsY4iQCbj3fL3HN3q04YSjd83zna1IAn+RHk575JL/aWEPtGZPaG+7pFCdMqSZxDMFnS+mzv4+zbbc1N27bIf4DcWEQXX8SzVbYJ8WPk0i5EkR7PhJ+ctGiRQBSQ1tKvVatWkXH9t9/fwBA06ZNU9oGikJg+rRUYtNvz82+B92EQqFhI0OkznH4JJu+cWgSe21Pufd4nD2wO35tDxfHD8C9B319F8c3R3vuhjzLQ6XbIc/+TOdmaqM4/kC7ilCb/5Cx+XzfNK15tlr8uD3sokn47fGEPB/2pu9NkjsosSeEEEIIISQP4Is9IYQQQggheQBNcTIQopbUVGVayDpRn9lqNFHRao47mgOoqPM1Nfe2bdsApJoZuCH23Ky2ALBp06bos6j1JPyepoL0ORlpanFfCDbNuU0zDdLaCskU6At7Z5OLUIEhJHUWTtq3zwRMnEPtej5zqdDrrJnKhDgSavVl72rXzb72sp/lHtmyZUtafU1dLX2uXLkyKpNMsjNnzgSQmhlWHGX79OkTHWvRokXKWG3EUdae29q1awEU3Z/Vq1dPO8/GZx4iaPeNL8NwqIlJSAZgG7fPuH0R8hzNNowwkD7+UOfWEGf+pKYX2v4ONVfxhXH0hXHVvhd8z7tswyD6QlvGjdVH0uedzznUZ/LiW0PAHzpayDZspGZ2q2XClbHaz3R55viyCMcFNqBZzq8HSuwJIYQQQgjJAyixzwJfggotPFaodMcndfY5ymjOdu6veE2K5EtQFSelcscYl7jIHX+cc16IhE8bjyZ1dh2bQxO8aJoEkRTbfbsaGZ/DnN2G/GuPVUJzamsiUhtNK2TvO/ea29c5aQIZV9Oj7TF7PKIdEM2PXV+TdEu5jNHWLmhJpVxJnSal0qRg69atAwAsXLgwKps8eTIAYPPmzQCAli1bRmWHHnooAKBx48ZpY9buKQ0Zd6iTpC+ErKBpZjRHXLfM7lOTdrrnxoXmlc+hicXc+ppE0R6DK42MC5uYrZQ9RMIfd51dTat9P8i+ttfJp+0ICS0aGsIw1FHZt59DxuoLMGH37dNEu8/cTPVlHbV7RKuvPSdc7DJ5/maaTxw+SbkWktinKdLGbO8j0QTKvO3npO8ZIufZ2k47dC/Z+6HEnhBCCCGEkDyAL/aEEEIIIYTkATTFyRE+5xxflkOfI6iGpjJOGvdaxmqrHbN18spFLOMQhyvNzMDXlmZ6lOn/ccTFH3bbi3MadPeDpjrWCM166VPphjh+hTrWabkb3MzFmsNYqLOtG+Peri//2qppbTziEPvll1+m/AsA69evBwDsu+++AID99tsvKhOzHM3UxBePX8t4rBFnDpbkPJ95i5b91WdKKIQ64obmtnDP0/aAL4NpUufzuFjmIaaEvvwdvj61Z5U9ZtckUDPr09rV2hLs8YdmWc2E5iCr9a2ZMbmO0HFBEqSez6lVq6+Nx7f/Q01qfKZlId91oSZdSa+NzzRTzBdtk0tZM23t5LzQbM5k74MSe0IIIYQQQvKAArM70sblCaFOOr5QmJpTmC8soCYRyFaqlQt80j9tPNlmySyOdMGVHiUNCxgq/dPmGCKhtNsMdcx0CckoqRHnlOhDnE5tROIloVTt9itXrpx2zHXkEqdbG6ljn6tJ+qTvn376KTo2Z84cAMD48eMBpIa0bNu2LYCikJa2o6zMzZaCSfs+SaXm6KftC5/E3ieR1RyQ3X7sz/YxVwPic2LcleHypC/7+eh7Fvo0n9q1kTXTnBdDHOq183zz0JxbfWGN7TLNAd+V1mr7yJbMum2EPr803HXRnhf2npT6oq2Ku0d82mZfVuOkEm9ffV+oYHtcmhTcR1LNlVumZaXWnp1Sz35WyXPODmktma8lNK+tUQzVSpG9A15NQgghhBBC8gDa2GfAF1JRkzwIPsm19utck4CESIXsz0mTafm0C5rUKUS6kGmMScp87Wq22tpahEjz4uwyfWNJat+rJd9xfQrikr6ESFN82h2f3WeoBM8n/bfH55Oo+eahzdstA4ok+xLazZY6rVmzBgAwb9686NjUqVMBFNmhSpIpoMimvm7dumnjSyrBSqr4DLlntX3huw/i9qmr7fDZ2MdpC5NIebV2Q6X/Pr8M316Mk1L7wu+G+OT4noVxz0lXG6E9m5NKn31+OnF28b76vvvA5xvhC4+Z1BcsVKuY7bPZt199CaGS9OUS0ob9nSHaHVvjKMe0BJgivbfnJhpTX0hlkh/wyhJCCCGEEJIH8MWeEEIIIYSQPICmOBnQVN9umeYkqaGpIJOqGbP1cdacq1ynW61+nClOiBovTh3uloWqWTVnRJ/6PKnZg69+iJmK1pYWdszn4Kg51PpMp0LVwz7H4BCzKm1cNjJ+ccbUwvxp7UlbPgdKu570Y6umv/rqKwDA3Llzo2PiSNuuXTsAqSEtJcylOP/ZToDixBsSgtIea7amZhpxpjjufRAXetJdzxDTKLuNpGZDPhOYuOzMIWYtSdfaZ54Uaorje3bGmci4fWr/95kU+oISJHWCT2rapOG7znF9ZiKuraTPu+L05eIzV9tV2H3KM1ZMa2znWbm/7GNivijztp93boZxsndDiT0hhBBCCCF5ACX2WZBtKLikjrJx+NpwJT+axN73Kz1Ugu0LR6f1qTlXZutk5FvPUG2KO2b7s+vkaqOFr9PCjmmh/HxOWFqIN1dKaPct7drX0pXihUqmQuppya5syY8vbKWUaeHrpL4WQlMkTUBRqLZ169YBKApnCQDTpk0DAKxYsSI6JiEsDz/8cADAPvvsE5XJfBcvXgwg9Xo0a9YMgF9imVSDFVfHp03xSYp9mhD72sha+yT2SQMDuOdlOteVssc9Q333iCal9tVP6nzujlW7F7Xni7auWjIgnzZIC2sq97imuZO+tGSDoZqcEIdd7Txf+6FtuIQ6EvsCIYQ6Nvu0LiHPZttZNVsNnG884vAPFO2HqlWresfvlmlJ8uQZa2s7JYAAyQ8osSeEEEIIISQPoMQ+Az4JUNIkLiGhGO3PvjBivjFq0os4abM7bp+UNzTsoyZRcyUUcfbcvhBsIX0mDVGZ1L43tG8h1AZWa8OVzMRJ27LVBiVtS/MfcJOw2W1p0kvX5lq7Dlqad5HKT5gwITq2du1aAECjRo2iY926dQMA1KtXL60NoVatWmljlTkl3Ue5QNN4hdhca1ozzWfBZ5ft0wxofWv/D5GYhmrsQsfgG4/rlwEUrUuIv0HcdU+qAQl5dib1N9L6DL2WvrCpIfgSeMUlFgwJLWoj94T2vAjRptiEaIVstHtK0BJtuevq0wrb9aQNTSNgJ+tbsmQJgCKt5ZdffhmVyfNu//33j4517twZQJEUPzTRFtn7oMSeEEIIIYSQPIAv9oQQQgghhOQBNMXJQIhqVnOG8aGpGf9fe2fSM1d1df/1DknAuMHGDrZplEAwmMY0pgsoEFCQMkgiRcosIwb5AvkSGWXAKFKGiaIMEiGFBIUIAglBINrQGDDmxWCMMQZjTJPR+x/8tW7tOrVq332r6jH4sn4Tl++59+xzz22qnnV2k23LAijjOCpLiX3p5dptaklxqCvOUDeGbC6GVh/sc/XJtlVca9RSfyWtXh/ZdVp0XrN9lNtNtcIol3JVCkwuVyu3G+V+pgLS2BYDCY8ePQpgsvx8+PDhro2Bspdddlm3jZ/ZV1zK5ljPPvvsqfMBJgFm8fyVSxAZ6k5SSf8aGeq+RaoVSdttfc/Poq44XwS0rVybVDB/dm5Z/4oscFU9b6rPNmi2bzzt90f1eV70GmUpWKvpK6tjaL9nh7p0VtOUZlTfp0PaYnu1j2PHjgEAnnnmGQDAfffd17WxwnYMnr3kkksATBIQxCQPZlxYsTfGGGOMMWYEWLFfgCHpwSJKFcoUBKWaK7UzI1tJWDS4chEqKkSmtEQyhVLRqkd955Ep5Nn+1WJGbeCUKsBUZehcVKj21QYgAhMVKKZSI0xbGZVvzgWV9Ji2k21U6YGJKnXw4EEAE5UeAPbu3QtgUowKmChWKtVm+/xERZep5uJ4WsVe3a9Z/5l6Hrep+ykLCs9WEtQKyFCWLeTT12cWYJopstU0iJnNRYPPq3OiUgq3NtV9pK59RnZv9QXuDlmhyIL6o20VmJl955GhyR7UNhWQWn2nZfdWu3JSfZ4q5634+OOPu898P27atKnbdv755wOYFNqLKYb5vot9tL8FKl4G5vTEir0xxhhjjDEjwD/sjTHGGGOMGQF2xZkDlxKHBgZlS7qrDmDNbGcVJNuAxSH9knZ+hgbuRdT5tnO8TCBxFkxGsuDcvvMY6g7T5khXwafZcZGKTTX+auB1ZVlfVaNV92tW6ZgBsrHyLPPSszIsALz++usAJsvO1113Xdd28cUXA5iuzsh+26qrcWx0G4qVHtfaTW1olcyhffA8M1eQ6jM/tCKponpOQ1BjzJ5/5cZYDUht+8qqiCp3laHv5kXdDOeNox1/n0tNu//Q6q/ZnGfvF0U1WUAlULnPdiU4d96+82xnfWXb4rOrzu2cc84BMHE95PsPmM33D0xX8Fb/N+PBir0xxhhjjDEjwIr9HIaqVBX1q2//RYNy1XiWCXSt9L/WwZpZFd4sULGigPYFY2W2VcAoqVYkVv1m59FWPFQqeLZiEisltkpaX5BeGwzXN+dZRU+lFrZz8e6773ZtVOcPHDjQbaNKxdRtMVCWSr2qhKvmiftxn3jdGAQ8NECuus/QtIMcm6p6qVR5tZrSpiDNxrOMYq/6ryjRy7xTKsH5arVmaEDj0MDgykpF332RvS8yBb5dYa7Yb2lXF6pj7VsVrRyXva8z1BiHzqvqa97xi7Src2ttxXSUHGNM/cvEADt37gQAXHjhhV3bq6++CgB4+eWXu21PPvkkgEkqzBhYn1XmNqcfVuyNMcYYY4wZAVbs55ClkKukqozwr23lIx0VtSwFm1JYszRl7diqamG2/1DlZBk1rLWpFMRsW6ZgZSsEajzV1HyZf3xWlKmq/GRxH9n+UeVp0+lVr1GrbgPA1772tak2APj0008BTFTk2L9KIUk4F2+++Wa37amnngIAHDlypNv285//HABwxRVXzJxbTO1G6EeqfPhpk+cRn3meZ+U9AOi4lcr+89qB6fuC44njb/3o1aqWUuxVYbF2RaPqB50ptJnq3+eHvsoVwVX2qeZnqIpPsmdQXXumPIz2eH/GZ2pI+sq+sVZ87OcdO8S2SpOp3qe8x7O0mENjR7J3efX9WEmbOvQ6qNXF48ePd9uY+pLvr+gzT6X+z3/+88y2a6+9FsBEuQeAe+65Z9DYzJcbK/bGGGOMMcaMAP+wN8YYY4wxZgTYFWcAbRBWdEtQQW3t0ltc1ueyKv8FJktpWWBNtjQ4dHm4WumxsjzfN9Y2kKvPLaFd2uyrSNi6OcX9Mzcddb6tq0LchwFN6trz376xsj1zSVFuFdxf9R/H07qDxCCs9nxVcGvm0qFcwdQyvQpWpTtM7OPYsWMAgH/84x8AgOeee65rY3DYj370o24bqyyS+Eyp9G2tm4qaO/ahXByqKQPbNkW8R4cGk3LcsbokUcG/ql/OhTq3rBpy9Z1DsiBplYavEkiobFbT3WZ9Zu5tq3A/Uc9zlmIzc9nhc9wXlNy6+PW57rWo+065S6m5WzbNap/rS/v8qmD+ampOtX8WeFx5DtQ9r+4nfu+r9zb3j3PI846pfPkc852gKoCvW7eu27Z169apMR8+fHju+ZjTGyv2xhhjjDHGjAAr9j1k6mX8C1kpmq1yEPfnX+NKyT1VDA1ujSwaCFQNJBqqwCl1akhfkVbJyVJbArNpBKOKrFTwLCBTUVmtUW0q5WSFoQqfKqSizpFzEANAGdD17LPPApio9ABwzTXXAAC+973vybG144vHtqwyrWF1VWuVqR05/rj6QrK0qZHs/VJJzVclm58suLh6jZa5n+eNKxtzH4uuLlT7qjz/i45vaB+xL5V+N7NZSYHZd45ZgHlmO+ur+j7OFHhlOxsrVzviKl7bXxwXn10GygKTFVAmHIjHMx3w5Zdf3m27++67AQAnTpwAAOzfv39m/GYcWLE3xhhjjDFmBPiHvTHGGGOMMSPArjg9xKUyBryoIEYVLNQeFwPfeKwK+FuU6nJ6JefuMjareYSH7F8dVxYkWWWoG1B27cnQ8QzdXwWwVSsetyzjetEua6t83A888EC37Zlnnplq+9nPfta1MVCWufGB6aXoU00bVK3c7lRAOumrAMo+hrpqLeNS19rmOfbd0+291TeGtnKuyrseAwkrAabVytPcT42R56tcKFRbdp7KTlZzY2hgdpXsPm33acc2z3ZfH6S9d+M+nJ947VuXlL5niu2qEjb77bPZ9q/uO5Ugg64v6r7gecfxZ4G+3D+6D1be+bGPxx57bOrfeB1vu+02ANOVuW+44QYAk0QFzz//fK89c3pixd4YY4wxxpgRYMV+Dgwwef3117ttL7zwAgDgnXfeAQB8/vnnXRv/Av/617/ebeNf+NwvqgYq5Rz3VykhMxYNIBqqrFep9Nu3WlAZf7VCIpUQzmtUYRiMqJQiXg+VDk2lkOxTZElMcRr7nDf+9jzi+FnNNd53HA/vO6V4qVUnVf2xVeXiWHkPx/Fw//POO2+m/7feegsAcP/993fb+Jzt2rULAPC73/2uazvzzDMBTFeUHVoRsqVSRbWPRVe1spSEsZ3zGs9R7V+pCqrGqtRt3pNK4cxSHSrFPkvHWlXs20rbcaxKrVWVuVvbqo3PeFSaW8U+ooLD2/d2n/Jauc+yd2FfsCrfCbQTV4VVBenKONQqEt8vKikEt8XK0Jyf+O5s5y6uamepQtuEBdG2UuyzZypbKVLpKKmyb9mypWvbuXMnAOD888/vtm3btg3AZP7VfRG/C/iZcxKvG9/vcfz8HfLkk08CAL7xjW90bbt37wYA7N27t9vG+WFfKnWuGQdW7I0xxhhjjBkBVuznwL/6P/jgg27bvn37AAAvvvgiAOCjjz7q2vjXeKbYK1UrblMK8RCGpvlSqqdSBrM+Mj/RLL1ZVFqU0tUqJ1H5accQ91dpxFolJ/ZF9UWlqGzVpDj+qHZQ1aEveBwX1amoULZKel8xoNZXNqo87Ovss8+e6YNpJeNctMVuspWKeG7qGrFYSlS1qK6vX79+5jw+/PBDAMCBAwe6bRw3+//nP//ZtXEcUeGjLeXnOpTKc6aujVqhUcpme89mKm/sn3Os4hOqResyn3+lbrf9xzal2GdFkDJfdv6rFHKl2KvVhUyxZ79q7pRNVTStVexVSuK4f+t7rdIURtT42/MYmi4y2uH7gfvHd5VS7CvPkFLsuTKgVvGUYs/xrFKxz97z8VhVMC9T7LPxcyXxoosu6tpoM37/8x2ovmPUqhDnk9cvXlPGFqlVNr5Xo8JPm3GuT548CQA4evTo1Dma8eEra4wxxhhjzAjwD3tjjDHGGGNGgF1x5rBhwwYAk5R7wMTVgkEqMXhWVfmkKwT/VUuWakl3aDDs0EBZtYTfLt1Xq+pl6eXUUjPPOy5BqoC6NriYy5RxbCrdaBukB0yWMWkzurJw6TfORes2oJbi45Ixl0IZzBSXP3kfRdcU2s/Spim3B7bF5WHOC91i4rmwTS1lq/tPuSplrjjnnnvuzDbOwV/+8hcA06kqGdD1/e9/v9tGVxza5HIxMLmm69at67bxWeL+q6iqmaFcWVQQM+c8pq/j+0G5ILT3wLw+2v1VILcKMFVuBoTXProGtPeKck1R92S7T/ysxqPcVUjmEqEqng51xVEpD5UrTpvqUD3/cfzttVTvpSxJQkRdSxXU3u4fz639Hon3nXJVbOdYXWc1dzxv5RLJf5UrS7y/WzemZYJn1XfLsq44KlEB7WzdurVr2759O4CJm07sXz27HEecC35W373qPuX+HIdKBRzdhe+77z4AE5fimJTAjAsr9sYYY4wxxowAK/Y9bNy4sft82WWXAQAuvPBCADrNV0Spx0QpUZXA1b5UZxUqantfQZVM5VGBe23xHaXYR2WpDSBUyk9UL9p+Y//sVxUk4XVTqfyIUqTiWJkS9T//+Q+AaYWZ6c9iGrRsRUMFF7cqpxqrSh+oFL52taZPGcwKEVFtP378eLeNRU/4jMR5uvPOOwEAV1xxRbeNKhOVpdg/j80UvrVW7FWQoVLs2RbPN64yAdPXqE0vGftVqXDV6lE7noi6lu21j3PdqtPVglPq3VAJqFerhUpFzoJPq4HEWYEqlQqzku5SzV0lCUDst6rYt6sdav8sEFoVhFL3HVGKvRqXWjXLFO/KeGKbSsLAftV5rLVi3967MViV77G4je8C9U5X93d7f8bvvGPHjgEAXnvttW7bG2+8AQDYvHkzAOCOO+7o2m6++WYA0ytLfDcfPHgQwPTqghkXVuyNMcYYY4wZAf5hb4wxxhhjzAiwK04PMSAlVnYDppfdnRP2qwtdLuiSE3PK79ixAwBw8cUXn/qBrTGffPIJgEleZGCydH3DDTcAmASVAZMqiO1zFI9TQZXGGHO60bp+KterrJpzdANiIP7hw4e7bUzaQPei6AL63nvvAQAOHTrUbeN7mokcxvidZP4//jVqjDHGGGPMCLA81oOqzMm/nmPaRBIDdxhIE1N4ER4bA2S4/1dN/VcBePP26dsvIwusVRUAVSo5dW2ojrz66qsAJsFMALBp0yYAwAUXXNBta9OaqQAwldKS94cKKMwCtGP/bcVGVQ05quZtMHVMkfbQQw8BAJ599tluG+/rn/zkJwCAK6+8cqb/+NzwWqog5jZdLDAJ+OIcKhUsCzAfGpi+VqjAwDaoPUsvGVHB8FnlWbX/qTz3eajgQsXQdMAZ2bun8l4CZq/Nl+X9rcY/dO6ywOOh721lLwuqXhSVyCHrN0v9GWEqXn7/xyqzfB8pO1mf6j3P911MGsBV4F27dnXb3n77bQDAY489BgD4zW9+07Ux7XBMH8ykBT/84Q8BALfffvvMeMw4+HK8gYwxxhhjjDFLYcV+DvQfjuolP8eUVoR/eceiVVQCqJIqpWKo2rFKllEvFz02S4+XKZQqPV42nqrip8bD65wpLRGOlUpLVLWpwsTxtOe7zHXO5jNTITlmtU9UsKj4MB1l9PFkoZN4btdffz2AyapFVvgHmMwVVXwWvYr7R4W/nau+a9O2r0KZrqi8qn0ZpZlzUV25ytI/Vu6Pvm3LqLTt/7P0r1mxK5UGUc3Toukus3S0mepcvS+yVMGKZd5p88YK5OkuFz23rC+1Cr6K+y6z2bdfu03ZoYKuCrype4a/BdT9x75UmmK1esk+tm3b1m27/PLLAejClhzbiRMnum3XXnstAOCSSy6ZGoMZH1bsjTHGGGOMGQH+YW+MMcYYY8wIsCvOHFSVP8IltbiMxuVF5YqjKvSp5byMtXDLyZaaq/aGuuRkwUyqgmF1KTVzLWn3UZVVle1sqTyOvz0X1b+6zmoZulLJU6VIy8aj3IBUm3KV+eCDDwAA+/fvBzBJ6RmJAV1txUO6tAHTqWPb8XO/WK2Vz1cWvPxlCPoEdLBqO1bVNtSlY2iA+aKuflV3huzYobar7iTZ/lWXDqLcJLJA60XHFan0r/bPWCu3zeyeXGUgejYXVbehqmtZtk/2rm2r/GZVjoHZRAXqO0BVKabN6ILIvmJKS753N2zYMGP70ksvBTCdeID7M6GDGS9W7I0xxhhjjBkBVuznwL+MowJPVZF/STP1Xvx81llnddvaALahitqpTEdXGY9iqMI0tP9qX5li3yogUcWgGhyVk7ZQSFRC+DmmOqsorFmQalT4ozrd9t+uAMXPMaA7C7LLUh6SqBS9//77AIAXX3wRAPDyyy93bT/4wQ8ATIKygElaNgZmRfWfgbiq6NuWLVsATAd78Xw3btw4M0a2Ve+nVd6TiqGKfZZyMgsO7bPZ9lU9rl1BWCZFYjVNZIsKYM2eKRWYnfWrzkm1qf7btki2iqSuZTYvymaFtfp+qFyHZRiqqLf31tDgedVWfTe0aa7j979S8ZnmOntXxWeQ+8XvJ8Lvhaj6s/gfExUcP368a2PxqfiupS31HWPGhRV7Y4wxxhhjRoB/2BtjjDHGGDMC7IrTQ1y2oruDCuojWTDs0NzN2TJ62988smX0ZaotDs0nTnhOb7zxRrft4YcfBgB8+umn3TbmTedy5z333NO18TrEqnrtsmcMwqRbiKoOyM/RHaat4tq3XMxrroLi1FxzqZVuNOo+ikvy7J9LrbGNLmPxvuP42X/MV9zaimM9cuQIAOC1117rtj311FMAJm5oDI4FgN27dwMAtm7dOnO+nNc4Ll4j9YxwmwqwVc+BcmNSy+Gt24la1m+vX2xT27IqsMqdJOurmt+8EsyvyMaaBVWrAPBs/0jl3KpjbfPTx8/VfOuVd1Nmu7p/5qajXC7UcYvazN7l6lpmVINQKzb77LXXMp7j0EBl5Y7ZzucyiQoq9U1UgoxKIojYL9/XWUKHCPdnEC0wqahuvppYsTfGGGOMMWYEWLHvISpwbcXZoenZVBCm+iteBVAtmnpNqRiVao596lzbb1XhZ6XRxx57rGu77777AEwHbTKIkor0lVde2bVRKY7zyWtDtTqq/1ROVAAS+4gqPZVuqh6ZigZMrhf7z9S5uK2SojPCccXxVIJt47nxnPjvsWPHujYq9U8//XS3je0Mxrrrrru6NlaJzQL+VLXFDKr6ffAc47llKVSVetn2Vb2H1bObpcBrxxKPrSr2WUBtppxWq6e2dpRyqvpQ+2Tnlr3bsjSRfc9gpoJXbFbOsW+s1aDbVs3OUtX2jTWzSdS1rFaxbfvom9d2f3W/ZqvOfYp9+2yod20WVK2uW/ZdF/tXK3sZ7fn2pUFt02kOxSq9IVbsjTHGGGOMGQFW7AeQqTurSOOY+dEpFW/RtHIZixY66fP9p4/2vffeCwDYt29f10bll6kPgdl0o7/61a+6tptuugnAtN89546qf1Ry6W9PBSUqIhx3TCHJPujvHVVxpfiyX8YDRN9/+tPH+eF+tKN8YOPqBftj2seozCglrU3hGVNIcn8q4wcPHuzaXnjhBQDA4cOHu23f//73AQBXX301AGD9+vUz530qaZ9BpdhVfZYrvrtVv2b1fJIsnibbv89HvWKzWgSp3b9vha/tQ61GRhZVZivnqNr7/MSztImLXsvqykmWcnYtbA69lmqlqGJP2eyLdcie58px8d2Z+fWr1YJsflbB0N8L2ff5ot/LfTbNOLFib4wxxhhjzAjwD3tjjDHGGGNGgF1xeliF202Voa4B2fJzlv5NHZ8t91YCuvqCqtr+L7jggq5tz549M9vodkJXkd/+9rddG11RfvzjH3fbWAmWAZqxMmwbVBTddDju6G6TuQ0o2sDJaI/zE4N5OTbaVAFmcYmZbjms6qqqIUbaYGG6NQGTNKKvvPIKAODxxx/v2phO89vf/na37ZJLLgGgq7+259jHKpeTs5Sw2XFDq5tmy/rVYNuh7i2L2qym8svc+lp7VZtD3Yb6glWXtdmXprQNnFyreR0a9Fyx2ec2NDQRQmtnqNvQovOq+qg+I9VA5ewZz9x/VHB+JX1l9o4b+ruhL9g2Y6irjxkXVuyNMcYYY4wZAVbse+gLbFqL/itBRsBEaagUbOkb+9D9W5WjL0UX26+66ioAkwBSYJLKkoo0MJkD7hcVdQaDUmEGJoG3DApVRZmovsTiVdw/plls00TGc1Xn2Sr20XYb1BvbVTCvIgtUZL/qnlFFot59910AwKOPPgpgulDY+eefDwC48cYbu22bNm2a6lOtdlSVx2xblUw1y1TCLBVmhlKFq0WE2mekmkJWvQcqNvtW24YEsPathFRsVs6xarMvOHctbGaK7qLzuozNbMzLXMtKkGdmc9F5VTb75qn9zutT7Csretn3ZrZCnh0Xx5GtCKr+VF9DVwIqvyWs3I8XK/bGGGOMMcaMAP+wN8YYY4wxZgTYFWcAWUAdqboZrGIZrBIYVKVdsuxzG8iCqtQY6Opy5513AtC55A8dOtRtO+eccwBMXC+2b9/etW3YsGHuGOlGw/zx0RbdSGLAKd1iVPBv7KPdP8L92RbdbpSLAO3z3FTFwHhubM+uQxwX++X50v0GAJ599lkAwPPPPw8A2LlzZ9dGN6lLL72028Y5oNtTvG60GV19Kq5cy7jitMvIqvKuYqjbjapXUHE5yo7rc6FYtJrzUJcI5UYz1K1qqNtQJUgysznUvWWZfOXttazOa9V1Z95xfTazCrqrtKnmNQvSHWpT1e1Q81qxmVWZVfQlecjuoywAvOLOVB2bep6zfqsJMqrvFXP6Y8XeGGOMMcaYEWDFfgEqyn2lPfaljsuUk3n7zdu/L4An218d26odff3zM9M+RqWVan5Ufjkeqs6xeioVbKXicVwxGLYdMyvKxm3xWrEKLe1EFacdVxz3li1bAEzUcAD44IMPpuzEY9Vct8FhAHDGGWcAmAT9xr7YFueT4z969CgA4OGHH+7aGCx70UUXAQBuueWWro1pLmMVXsK5iNdIVUpe5apW22f7eV6/SunKnh+leqrrkI2fKmRUIzOltbUDTO4LznFf4H4b5N2nRrZ9qXs4u37x3FqbfQHgPM/2HKs2VdD20HlV6u4q57U9x3n7tzazeV2FzWWuZfu8xb7UvGY21Vhbm32qc3v/xOcze2bV+VSCWuN9+mXDQbBmHlbsjTHGGGOMGQFf3j9HTwMy9W/IsaTiY1tVLxf9K77qh9e2V/2B6asdFWamVIzpLqnss5BSVGG4X1TlK0pLW7gpElVqqkJUw9V1PnnyZLeN42DKzQcffLBre/vtt2f6p32ldEX//LZ/zonyv//kk0+6bUeOHAEAvP766wCAF198sWvjagWV+r17986M6/333++2sZgWxzDUXzQyVGGqxI6oazPUbz1L3Zg9b30pGIf6tFbeHZnNZVY2KjaXOcdTbVOt2lSvZXaPDY3VqNx3fX7ZQ21mx1VsDp3XzGafT/6iNtX9VImlGPq92Ldq9kVipd7Mw4q9McYYY4wxI8A/7I0xxhhjjBkBdsVZMUMrxEXoAlIJ9IvtWbAQg6SqgbhczswCqOJ+bZ/z9ue2zZs3T40rfqbbBwA8/fTTAIA//OEPAICrr766a7vhhhsATFxfgNlUk9E15ayzzpo6JxU0GMffBtSq84muPhs3bgQAnHvuuQAmAbMAcPDgQQDAhx9+2G3bsWMHgIkbTbymdLeJ/dMNhvur9Jj79u3rPj/33HMAgLfeegsAsH79+q6N83jdddcBmHZLYnCuqrSrAhwXXQpe1A0AmE0nqVyuhlZsVM9D5dlSz5S6j7Jzivu3VXWrAe+qCmfFZl8gdNuXCiJX512x2TfW1mZmO7NXtamuvXo3VO4HlQQgO8fYNtTmotcys7nKeVXvCzU/i9oc6rKUuelFW9wWvyvasVaCb4ewaDDsUJdcB92OHyv2xhhjjDHGjAAr9mtI9pdxluItCwyqFpVp9+9TNrJgNaWmqJUAolJI8jPV5lgkikpxVOwZ8Pnoo48CAH7xi190bddff/3UGNr+gGklmuPn/nFfBpOqQFaVXlKp5vzMIGAW14p9MJAVALZu3TrTB8muKc+Jqj4AvPfeewCmA2Rpi9fyO9/5TtdGxZ4rHDGNKOdn3bp13Tb2QZuq6JgqNpbd11UqK0Vq/2UDx4HVFLupjEOpkdVVgkrK2cymUk4zm4ueo7LZN7/L2hw6r9mK41rN6yqUX6WCV1ZrFrWplP7qitQqbap5zc6N9AXbtqikB9kK3zxbQ9oWVeyrq6lW6sePFXtjjDHGGGNGgBX7U4BS7tVf7BXFQfW7qDq6ClW1un87B1Fhol88/dEBYP/+/QAmvvK7du3q2nbu3AlgUoAJmCjjVFWiGk6bqly7Oo+sQA2JyjHPhWk4WegJAN58800AwAsvvNBt2717N4DJCkXsn0p63NYWXnn33Xe7tieffHLKDjA59wsvvBAAsGfPnq6N/vY836j+8zw4hthO5SoqZdXVpmz/oepRprIpxb4ynlUU01o0vaRaJThVNvuu5SL2qjZXeY6qv7HM6zI2F1WFh87rvGMXsVl9RkiWprRqW42jQl+frZLe1/cqU3Mu0m7GgxV7Y4wxxhhjRoB/2BtjjDHGGDMC7IpzCumrSKgqopI2ADT2lwUNqrZKoFxf0FObbkz1qYKeOGYVYHb//fd321j9lKktY8pGwmBVYOKy06YMBWaDYJn+MvLZZ591nz/++GMAkyDSWOGW448pLRmAS9ea6PrCvl566aVuG12Itm3bNjMO9hWDtugOQxebAwcOdG1///vfAUyn/mRV2dtuuw3AtGsN4bVhik5gMk8fffRRt402zzzzTAD9aQpbt4e+gK6hAa9DXcyyIHJuUy5XrftW3J/9x7lQgYTcn9cyXlMeG5959tG6gkWiTX7mnEe3BB4bbXI/2ozPYMVmtN3ajMcpt63WZpzXis3YV8VmNq/K5irmVVW2XnZelU0VGKxsKtfDZa9lvGdoU82rekYq1zLOK5+leG6tzThWblM2VRB2JU1sNYXsUFZRhduYeVixN8YYY4wxZgRYsR8A/8qmStAWywF0YZFqyrYsUEn1X9mvqgxkSquy0+4fFabKisCRI0e6bUxpyYJKAHDrrbcCmATNsmAVABw6dAgAcOmll3bbqCwrBbidfwbrAlr5ocKtih+xXyrYwERF4r9XXnll1/bOO+8AAB566KFu2yOPPAJgMndXXHHFTP8RztWrr74KAHjttde6NgYSc2UDmE1pmRHtqYJZbXq5vnRx7fz3BbJy/lVfSuHLVrWI2j97BrNiN1nxmkpKzL7+s7R98f7jnFXTMqo+stWRdv94jSopEpWKnKUDVPuv0mbfu7O1mY1V3ZPVQoHZtaystCqbfauv7ba+leK2TaWvXcVYKzarAfaZ2l697yoB/kNTZ1YDnCupP+PqBb+f4ju9fSfH7zA1/5X0pGYcWLE3xhhjjDFmBPiHvTHGGGOMMSPArjhzyFxY2uCkiHLFyfKgZ/nsFavIbVupiBuX9bJlz2pFXLYzyPWBBx7o2v70pz8BAM4777xu27XXXgsA2LFjBwDg3nvv7dq2b98OYOKGAgBnnHHG1HmoioFtMGM8z7hUzr6yCrrRXjsX8TyuuuoqANO55/ft2zd1XKy4y2NjcC4Db5944gkAkwBbYBIgy/mK/WWuMtl9F8+tdZ9ReaMzd5WIst0Gz6nlauVCoVDnm7nucP9sibri6hBRbg/ZmNWx7L/PbSBzGaFN5YKkaG1WXSLUOVZsqvfkl9Vmn3tYxWZ2LavuLdX7btlrqQJrM5uruJbVec3qoQytk9G+t/to++qrDE8WdYFRQcmqWrnav619Esdhxo8Ve2OMMcYYY0aA/4Sbg1IQ+bkSlAjM/oUe/6JmAGfcRiV2aOq/TJklSknIgmH7Kkm29KkeJ0+eBAD88pe/BAD89a9/7dree+89AMCJEye6bUwTyfn5/e9/37X99Kc/BTCdtrKtpBrTV7KNaSuj4q1oUx3GYFt+VgqZUkmvueYaAJMqsADw61//GsCkGi3PFQCuv/56ANOKfavUx2Bb7t+uWMRxVZWlLMgrW4UZWq04C3pUz5siW0GIqMDVSv9D9om2lWKfrZDF8bfp+vqC7SpkK3bx3dOutCwTYFexmd1jq7CpArRXaXPReV0rmyp5wVrPq1KF13Jelc1VzGtWQVetRCv4zGYJFxTqe5Y242ojlfoseYZanVzF/JjTDyv2xhhjjDHGjAAr9nOopM6qkimJQ1U59Rd+pphmyqZKa5aNuW88lf2oeG/YsKFr27x5M4DpglNUKKi8f+tb3+raLrroIgDTvumtOq18Wluf6nm0KRgjyu8+U+zZds4553TbmMrz8ccfBzBdcOr48eMzfTC1JtX/mE5TKfUtSr1U907mT15V4to5qz4/iyp9fStLQwvBVGypWIHsWawqgipmp+1DXUtVYCtTEHkcC5IBsylbY19KiW5tqmJdmU1V6Eg9s1k8U2Yz7l+xqeY1s1mdV1VAqrUZ7Qy1yfvn888/n2szm1dlM5vXeL/SZnVeVQGsIeeobGbzugqbcV65f5tauf1cobLi2JfWtH3nLPNbwmr+uLBib4wxxhhjzAjwD3tjjDHGGGNGgF1x5pCl7VNUKs/1peFb5XLY0IDGSqBfdlzf/ly+ZFpGlaoypqFs3Vp2797dte3ZsweAXmJmYDMDZYHJcmoWGKzcDNRSbVYlU90zasmVAa9cso+uOPv37wcwHWx78803AwD27t0LYNplqcJQd6mh947qIwusy/pXwWrVJeYs8C67r7Nnti+956JUgm37KmNybLx3q64Byj2hdSfru4dbm1UXLZWUIDtPNdaKzTjWis2q+0YlEFKNtZKmdRGb2fwsY5NkrjjKBaxic4g9YPratDb73CorNlUaZ3Utlw1KHlqpthpIzG1OZ2mIFXtjjDHGGGNGwP/83zLy3FecqPJSbY7bWsVXKQORNm2lUs2yYMFM2YzjUsGz7f5RPVcFqtp+o5KTqX4MhlXqX0zxSMV9/fr1AKZTTqrAKaaM5MqASoWp1Buq5uq6MTi3r/hNq+6ouVOq/7///W8AwB//+MeujeO/8cYbu2133XXXzPm2VIusLItaqVAqElEqchaY2Rd82qavXCbIOwtW4+d4r7RBan3nVhmPep5VUSNFm7pUBdtl75l4bpzX7F6P17a12beq0tqMdjKbakWtYlMpy4vaXOt5VYG7X6TNbF7jcXzPrfJa9qnUtKneqxWb1XnlcX3v8mys7feOWp2rjoeoIlQkjsvBsF9trNgbY4wxxhgzAvzD3hhjjDHGmBHgaIs5ZJU5syqWahmzspSqqLoZVJbd4rjU0v0ifS6yn6r6yvOMbe0Yo2sNzyUuP9NVh8fF/O5Zjmu1j8r/3BKvG21zPHSniZ/jku4jjzwCYFJ5Nua4Z3Dx5ZdfPjMeFQCmgnnbIM+hLiPZcrIiy7Fcta3cetT9n7mAZGSuL9VgtYrrTuY+t8xSvJrPSjCfsqlcCtp5zI6r2lRjpc3snlH997kxtjZVdeOh92lWtXjReVU2Vf2BRedV2ey774bYVIGyi86rstk31lN1LVVwbiWIOattocZVdScb6m6XBeWa8WPF3hhjjDHGmBFgxX4OFVU7/rU9ND2mCjqtBB4NTY+lUIGHFeUkG1cVnm9UsKlEx0qyn3zyCQDgww8/nGljJValshMV9KTmkIp67IvXIQvozCpVxuvI4Nz//d//7bY98MADU2233HJL10bFft26dd02BgbTZlwRUEp3y9CAzmVobSmVSrWvtWKf9Zk9P9XVuYrN+KxnK3xEBZhX3zltKkxlU42/clx1rEoVXtRm32pna1NVf85sLjOv7b2Y2VM2+wKP2+B8pdpW51U9N5nC39rMjos21QpfNtYsVWhmU6naQ22qFdzKcWpbtiJYXfEiqjpw/J5rfy9kVWyjfSv348eKvTHGGGOMMSPAiv0c+lIcLoJKwabSLK6FwqpSEmbFg/qU05a+dItsb33hAT3Xrc9iX0GbjRs3yuOAyRwrH3UqIHEMPJZKeTyOanlcQeBn2qESDwBPPPEEAOBvf/tbt+3YsWMAJgWnvvvd73ZtPE/uE+2fffbZM+PnGON4Wr/7TPmOZIp19jyoFGzVNIgZSmFqr2Gf7/W8PuP+2XEqtd3Q88ieKbUyptKmKmWZ9y7/VUprvBd5LPePKz+tTaWeR7WwtaniXeI8tTbj/hWb0XbFZtxf2eRnVbyK15zHqXdJnNfWZpxX7q9WKJV/vLLZXstsXpXNrBCZsqnSASufcxYDVGmfK/OqbMZ5bc9R2czmdZ7Ndv/MpjquUlwKGP59nvVfWaFUcXTOZv7VxIq9McYYY4wxI8A/7I0xxhhjjBkBdsWZQxbEpILhlMtIlo5OLalVluwqFTRVX8oVR6Xmy/qsjifbL6vax6q0cX8GkcZUmJ9//jkA4Pjx4922DRs2AJjMq6pUq5aas7HSTjxHVsSN58F2jufAgQNd2zPPPAMAOHToULftpptumvo3utiw+m5c3mawsKoymblAqSDp7HqptGxtXxEVAF4J8lY2q8G/i7rB9PVbOW7RoLOhwe1ZCsPsHaLaohtDVkE6S0eZuQFk6SWVW4Ia+6I2Y5+tzewcY3uW/rG1F/tQaRCVzSzFY+U4ZTMbq+q3L+Vk25Zdy76xDplXZXOV8zrvWFKxGftq3VvUvK7iXVV1P83I3jlOhTl+rNgbY4wxxhgzAqzYDyALMK0UtKqmf1MMVTbnHT+vj/bchqbOrO6nVCHa/PTTT2eOo0IelUemwmTgKDBR9Km+xOvRnltUw7P5ZB9R9WHwVoQq+759+wAAL730UtdGFf/iiy/utt1+++0AgG9+85sz4+HnGLTFwFjOj0rPlrGMajNUycnSXVbTxM3bB6gFtWerU0PTyyk1LyvapZ5npbZn5zs0naaC464GFy9rU6WLrdhbxqZKaXmqbFaDwldxLVubfc/ksja/qvPaZ7Pdp0+xJ9VV9qyvoak5K6ujQ9+r5vTBir0xxhhjjDEjwD/sjTHGGGOMGQF2xZlD5pJSXW7PlvUqS3fKpUC51Cy6jJYtYw4NAupbEmUfdKOJ+9O95ayzzuq2ffTRRwCAo0ePAgDOPffcro3BpPG82+X/6DJDN56+oNn2XFSgLF1k4pLoK6+8AgB48MEHAUznVr7qqqsAAHfccUe3jcGyDM49efJk1xYrzhK6HNHdKF4PuuesVfBphlrKbp+bPnvtfd1X8bhSnVlVo8xcCngtY8A1P8f6AOxD5dAm8V5pAw+XqU9ReU8MdaVS7mqV4+Kxi9pc5VjX2ubpNFa135f5Wrb7r/VYh9pU8zrUfbatTB7b1HdYVtGX3xmqD35fxbFm43KO+/Fixd4YY4wxxpgRYMV+CTKlso/KX9Qq5Zn6K3togFOmVGRpxLJ+q6ow1fOohFDJiDbPOOOMuePnZxXImqX0I3EOuX9U87mqwDHEVJvk+eef7z7/61//AgAcPHgQAHD33Xd3bTfffDOASTpONdaotMQg4Xa8PCdVuXGZILJlWWZFIFPBhirdagxZytl2fxUom63OqdStq7gOq3iHDAkCXIXtZcZ8qse61jZPp7Gq/TxWvc8q322V/tV3pKrArH4bZCugi75XzemDFXtjjDHGGGNGgBX7OSyjEq6F7WX7H6okVvev/vXf+r5H/2R+jgoo91OqvEr5RTU7U+p53H//+99uG5X6qNiznf7V0d7hw4cBAE888cTMth07dgAAbr311q5ty5YtM+OgEkP1JSrwiqjoA3pl43RVX1apHi3al0oXp1ZOsv2/SBadu2Xm/FTb9FjHY/OrMlay6PtCpd9tvwsiKrZIrU5X06aa05cvxzeTMcYYY4wxZin8w94YY4wxxpgRYFcc84XQVwl3KJVlRbrYsFIsMFmWXL9+fbdt8+bNACYpD6PbzUMPPTTVFzAJkL3rrrsATKftzKimNTTGGPPVoi95RhZIvBbuvOb0wYq9McYYY4wxI8CKvflC6Cu+1e6n1IhKylAA+Oyzz6baqMgDOpXliRMnAADvvPMOAODNN9/s2hjou2vXrm4bi1AppT4bvzHGGKMY+p3h7xhDrNgbY4wxxhgzAvzD3hhjjDHGmBFgVxzzhRPz77YMrejbHgcAH3/8MYBJTvxNmzbN7B/ddd5//30AwBtvvAEAOHnyZNe2bds2AMCePXu6bdu3b587Di+JGmOMGcpQ99N5xy7ahzl9sWJvjDHGGGPMCPif/1tFrkFjjDHGGGPMF4oVe2OMMcYYY0aAf9gbY4wxxhgzAvzD3hhjjDHGmBHgH/bGGGOMMcaMAP+wN8YYY4wxZgT4h70xxhhjjDEjwD/sjTHGGGOMGQH+YW+MMcYYY8wI8A97Y4wxxhhjRoB/2BtjjDHGGDMC/MPeGGOMMcaYEeAf9sYYY4wxxowA/7A3xhhjjDFmBPw/54LbsEyYXCEAAAAASUVORK5CYII=",
"path": "images_version_6/image_40.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, a parallel b, then angle 2 = ()
Choices:
A:50°
B:130°
C:40°
D:60°
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.