sample_index
stringlengths 1
4
| problem_index
stringclasses 788
values | problem_version
stringclasses 5
values | image
dict | question_type
stringclasses 2
values | metadata
dict | answer
stringclasses 340
values | question_en
stringlengths 0
1.31k
| question_vi
stringlengths 0
3.35k
| query_wo
stringlengths 101
1.41k
| query_cot
stringlengths 138
1.45k
| question_for_eval
stringlengths 7
1.31k
|
|---|---|---|---|---|---|---|---|---|---|---|---|
201
|
41
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIcAAAB2CAAAAADHQt9qAAARU0lEQVR4nL1baZRdVZXe+5x777tvrjlJJYEQQsJoAwGJSFA0EdQGNAwOK9Ig0NEGBBWnJd22Nu1C2+VCaVvQiLYCBkxjowKigKYFloIMRjOYkAErSaVeVb16w313ONPuH5WqwHu5ee/GxO9Hst495+z7nX322efufXahgWRQJgWPXaZuvQFDyIG0ad9zwxAMMdSlfrIJpdWpQAJAMB13n0KUe+WpezaFX2U8A5UM06ypXRcs6ensNL8OgUn1USv++aLvnVGzHaJMucdUu/Y9NwzBAGBkqRQaUevvVOAh6iNM7zplgdVLqLQpAGWmniMBIhFFqSgQPDeQUB+JeeSdPy3vD0DlLarnx1jPq9+HRFSENEsT1HPJxDYvb1tkdrNfv7Tp3Uxr6bJuK9zfQgQIpjbEQEfgJBSb2D6qXXvfZFV/fAaCcDbPc6fVQQCIpHT6pHtOtMrdvON1OUT7SMHMdXYvqDAnSre9felg0/vo3q2LkGWhkTnw8Dgk1scUQu5sOJkCTE0J+sscJpCrGy5ZNtHFwWCngib1kdg+ppC2wvsvFWk19VsNjMKuFTPv2dTLesFrJJV7yDzA1/fcGAGf+ll33eevuG7ns4PHATArsdi/gse26BzmTe+LFOQ+edEFzD0vYwQ4SbfLX8Ej/Z3L4FXGmAkeOvkaGHv8tDIzWpL8m/FQ9187irlo6ifpX5+ThdvVmRYobnN1sKGHk4f8Td+JdgTT220sBD91x/99QHb5iAz/ZnYaPfL3oqtupu0013fTlZg995aHhciaWpA62NgDILH/wJA5ni7WohMf/zsvJwFsIVwC7QJoZCrIA5GUdiqhP02sD+OgNgWd/v7yQUhp23AIcmbcrisVCWmsfK0aYCpnJhKKTb4uDAlR23dd2q/sCAwpA463td9CbjNNkC5mTK3Ku480D2bIStXYy+UzIQANFkenLsc+rYHAspkBkkKmi84R3y8GQDmgV6/olQi2sQMEbc/880allCKGZFuWYwPpI80jYuhDYfiBD1uYBluBYLII81Y8yF2HFKEJQ8MA5BHnYYBAwfrMacriYBCyYCnPf9tDJcE4Aah02oLGSJjw2E/OgwNlgnDzOSBAhxEaEunATb+xb8OwImBIHjS+ffr8z1eTyjVtQPWIahFF42SIIq10FGgt8xun2qUxmkxp/elUMkShJLPrs55/8nfaydWaiLQyJRITdQra6iPI7QGLhnuroTIAAJ6lGN5/St+0fhCUhPwgPNsf1EZTgRh2b8nA0q52ctFEkQKO/bC1y6ZqWx7pcLaffnSJ50lgAIgckfDuS6f9gwEEbdzuS1ZrVQjJdmb2upV7cEVbHgwRGUCdTqjQ8Iz260I7SHjjhT/6RBQaTY1Ab5+9TU21h4ZUJJXYu3irRxMR0XCj9JHsVaKdXKmN1kZL8khIn9rqQ8ujG2HWm8s4gAFkIIn9z8L50/sSjUGLkZ5x+hPZsQKPIieDn9vy4B3t5EoCLZUhMdpffKD4m7Y8VEQ2QO+QMWA0AKiUFf7s8v3xiQNaA7NS8K61EWPGr/bUu3oGr9/cTq7F0RCz+Mh7f7rjVzed2paHg75DJQ4ERMjAINrP1C581SmNyBAA4Qx8vAcCp7/EMAhObRveWgDc4aL6npWLBoSXb78uWdcr9IWzOEPGGSjuwy8GZtN0HKfI4qilrA9c/EMdqIwaQHTpwbe1kyu1YYwqQ6dcn8XKSmBIILCBmmIQgp4A5ku/AUOa+wqy5vsfHZVsqp2hMQY5N/51P6mkc9Ku3NnLBq96kzaEiIhxchkPjcDMmiUQ/PvYArAAyAbLYNwBmaNwroBGhO76k9jumXzrho2F0/vrdnP/oild/42P/neuf8l1V3XXchM5IAIAivvOMhYSgJeydzz4o6U9oxA0fGO00HH7a2MYbq9tO5ZZPyZda3z79QtX9H6mMry5pb+i4Y3z99z6mQuPWvZAicibmnecXJ9CTdR4eGDOJ97XdfM4GKFJ6WpDxYACQXto4pVS1S+tnnXxi7Xh7s1E1NKvUVXmHevKm+ov3v3Oo75SoiAMoygMgzi5HtUaRDRSGaGgQgT1qgkl6VbB+zBmIiE1UZW2nfLWl4j8n5+qI0+XW/gOk7x3BZEXET2y8h3rzT59xMmVFIYkFVEUaWXKLJfGsbGq52MMCiUnksxvFNZc9E8/P9Ybcx653HNQ5Zv7BUWonz28ZRwdf+KCrx17Wa1W9xq+HyvXkJMCo6DGFfq+QVW21vjCkiJugynVQ+W5O9yjN0Xdc/2KvO0WlqlabnP/vSeM2+6988/ySsWBwPUrPYCIQBAX2AlwmVSUvkWTLREsbvHxKCrKuO/8nJctZfJ/XlTZVdQztgSDm3sHtzbsdK05gu3muxb6Z61ZZA3SBJGVFoAARPsD8Wa5oWWE4YaEYbZwOo5fsGpl/drM8E3/fHYPNXJetqm9Xmhwd/yLx1yR9lOOgdj3tyBh/BLkEewBsSUY7PG125rfy/qOrbve/HBhqMhNaCXNM3XMgxgqS/P7T5kHIbPIbm7nYAPnS8afTxmNRAnTlp3zcAVZapTuv6LHMEayRe0mAwqi/OW3za4F3A1izf6v5cEkgyCzTp0LIm2U1RIXSACMNF7xuzHXAFcdm0dSHjplSd21egVXrhUgazFvbIA1nk4NnHef64JKHTH7MBbTqT0vvl8xUA4TLfNFRtpBo/7x8d1ZbVJHLK7kQDzzTOakDPOFjbWWcSYdhn2qBmfVfw/AoXakeARQs+DL1ztE6RxBb8t+cMjNES9y6+avE68kjs867p8OC5VXxOva9henbR/Vjuw6UjyAgfvDRQvbdsO+i/8rKoZJ4+yO/XojVy0ef+vFvF2+GivhGzaBOzyzUwYJ/ToC2zxyHrb3k+kZC58dT3zv0TGPbOh+9/yi1TZ9L1K1q2+fPdF7pHiAHH/sahRt+5uosPSVXUndeuc8QmdHeSlvnwZ0J3Bg+X/OSOo/UCMgEFCcwjVjQIQI9RsHbts7E9oZSL3Q8ODcp/sAvAwLOG870f12etBDGhHIGEOheeltlG8nFCCrnO7uZasBjANk252ed2yfHmLtjyEQARB/BpeG2fbHBp+wHWfFWil9Dtpqq77p18Dk531sBwQCZIzZd15m29BoL1cDRIu7X2RCI4Lq9P6j7boQETKGsPOZ9worsNrLzRhFxUu/xdNAGP+ZfAAeB1XHPjsi89Drjibwsu314Wp06e3rdqUdoqhz+2jXgQAASEU/+pBBsDuYn2Gc1FFvXBsAmhA6/Q7pSB+kpXzhQhAmX2/7naUEh4aEVWtLwECB1ykPZIwxBDKAYDThJKepf41hETM4kbnlpjLnDLKk0SgkBdoQ4AFMi+eJshlaArX1QBw6zStPr8ukUl6TJ9DGECkLfNljnlhcABsiSdporbVue0xf+7mTtbYS2OnkjBCIDMH+/U5EAIhIDEDwp8pn58DS6rX6Ohje82QthJzs9NzY34+IAIjYPiDu+1/rHJm7L5kFhiR3kCHiZGru4HAvudNBFB37sal5474N2txBoUA+8ugqilArm3Ucp/kfu88AYKfX/NP6QARAxOn88pSlSIci67nCKUKjAUupyfyKacvHOqHv9zJqr7cpHlPmgZMp7+kGRAQgIg5WwO5dCRwAHAz3zbD9PB193V2i8yoQ1EAAyACMQYZkEBAACHDScwAyXc9nXlrIfcc4MNGlLW1soy09mZSMPSCVhfbQTC/TlvC+cx+RMYZEBhgDQF5hw4KwRoRgmBzn1OD2XctPQEpzm6gLODGL0ALOEOggerEb8LnPxh/jzWjZV3ZlsGFGuoQ2SMLqFjrr8bXv7vj8nkaN0dvX7xhNvm/3rURelXs88uo2M0xx2zDQO/50UdJwBMDPBKcf9+S8SlIekxomCorZ3Y+cd/LN46B4GiLLKhfXLu1PWkYBMGN7SnzoB2Odlm+16C1tB8GOH3/ziR8IR4L2LJBq7QdV5+muaczlZsnIrsTn/rQ+ajB68/FvvfkeD0IPEGThmeisxGUUALinmpYf+kmQlMeUfZhC1xkI6jSXAVc8TcC+t6LIk9vH2DvHQK36Rqf1Bi0T1TKiCtW2LMuJdApssuqPvseCxHER3LFBNIruW55IymPqnMnZZPrIfuJfSxZmwlGGa04/PlDFTvULWCIPke5fOGeUG+/GLxrUCo0fP2DvmXwoag1zyp7jsvoPb48GK4KCWaCePjvFfOi0vgW9gZF8I9qw6d3RMa7ILD7uybplQeDEfq9g/9eXHbW7dV36LAa7f2BmhJSvB0Vf7tnwVrB153kBN8jqbPTkJwLYOFFnlWV3WxqJ7FgDU/a2i7fObOURchB/8lexx35l9wYsM/bzuccbnuk8L2vcAq/+cma1CwZ4/97CR/4wYbROxw/X/lNbLsj9tuUeOaSRrxVtG3tLelMoiJZ8y0iiRux9VRNIBcNR+c2wqB/61/hlM3T1V0gHJGPHU2XRLaVP/aKFhxfRxHZRNbvJl2qktKH7FTKky7H3W81iqUY0FkRDQ/Nf8Mnb8tALi8sUChk7Xj149UT0pTUtcYBddtgx9cLorEZ13R/nNn65fC5EboJjbtfsPYPdle5+rLvBfQ9sXHrf4NprU14utv6SP31lV7TzzS320ZjJM5Ad6bv9/ON+ynaN/eYqBA9Y5+nhOeXBarnH4wZ+ueInyzavjt5/rwKKd0B7t70Btv1uAegmKLMloOp/zLnmsbBK4rEFze3tQI3dmkYjGvvUkjvqpISemLV9iMi0vKdBFIjIPHxrFC56JIDm+10/IrFu+dXP7SBJJvrwDXH3wHGQEYXkkVz5wRdIUGW0Rl/6OE2QbOlYaRgiQY23QP8QTWCzwiyovrxq5buOkfZfjgrHln//1I5XZBJ21IAu9vK/pD49LwV7iulA1c/9o+zymy9s7LqFnAsXopC6QLbow4ueP+dnw+Qb8hT97+tj79vj0DAVorFPLqsKqtfJGHqZLrtTt4rRRNpQIwyIRHlctCQ0stVj7pxbMI6m1Hj/r86PvW+MRehKWv/S1wpeoF3wbQZw7Vf/YWyw2aEabZElRZceyVZmV2r4+aZ2hXNS6+0U0sgcbb5w3bxGQhqZMOTjj86+fOeJO3h+V76nzoz5t09Rd/NBmfY4V97893bX87D5eGjRB4qNfTYpJ5Nxne8es6CctB5zbz6d2mhftLP3hVPljp5w2M1W7RUPrAyb38MYCiEMk9IXC709Lf60TqM+GdLU0MHZa2iiQz86jWicSJmyIDFuKCBqKGpMLBgLm/sJ0j7pURIUyIiC2Dx/c336oaJeqOfpY/aXSTpEoJwWz9wmz99cn36oyEFK4wW/9esMSMenweK/K5rq0w8ZkR3AudnHU0wqOz5vchAer61PP1RIhVK4H1idQk8DxabP43k01acfKqwMpCg8f+dGkzFELeU87Xk01acfKhDCTCqdu3BNLYV1wjh5sTya69MPmYdHAMBWPr0HGMaHQbE8muvTD5lHlAZv2J7fGKmynIaW+oSpbs0Tbq5PT/yHOjF49po/RE6tq9VRxPiP5vr0w0QDTrKecwAx7p6qdV2a6tMPF4/M++4ClqvE7cAWHs316YeLR23Vr0c9y4s7JlrXpak+/XDxyObf8JCJBuPi5BYezfXphwv26E3fzEsWt3MPoI/X1qcfLlD+NP5crhyXp2rh0Vyffrh4BJn6VXfFN7e4OMTx3npw4lPtKxuSgdUsd94LwdzmiWkeub4btuhDRNlS/rdHzzjMNEAXZO3Kb84db36OQITMavWnUapUvHLxzYkTt21goJ7ZfvaQLDY9JwzcKH2AexpfFzY8cWnS+/m2YJHrzH3dy800Jm+HoeXPmgGMdMWZ85In5tpAZ2yPfae/ZQMSISCJ1oIOx6UFH4eew7djJyEsaVLHRgfM/COJ/wcCYPPUFvqZ4QAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_41.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
The positions of straight lines a, b, c, and d are shown in the figure. If angle 1 = 100.0, angle 2 = 100.0, angle 3 = 125.0, then angle 4 is equal to ()
Choices:
A:80°
B:65°
C:60°
D:55°
|
Vị trí của các đường thẳng a, b, c và d được hiển thị trên hình vẽ. Nếu góc 1 = 100,0, góc 2 = 100,0, góc 3 = 125,0 thì góc 4 bằng ()
Các lựa chọn:
A: 80°
B: 65°
C: 60°
D: 55°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: The positions of straight lines a, b, c, and d are shown in the figure. If angle 1 = 100.0, angle 2 = 100.0, angle 3 = 125.0, then angle 4 is equal to ()
Choices:
A:80°
B:65°
C:60°
D:55°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: The positions of straight lines a, b, c, and d are shown in the figure. If angle 1 = 100.0, angle 2 = 100.0, angle 3 = 125.0, then angle 4 is equal to ()
Choices:
A:80°
B:65°
C:60°
D:55°
|
The positions of straight lines a, b, c, and d are shown in the figure. If angle 1 = 100.0, angle 2 = 100.0, angle 3 = 125.0, then angle 4 is equal to ()
Choices:
A:80°
B:65°
C:60°
D:55°
|
202
|
41
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIcAAAB2CAAAAADHQt9qAAARU0lEQVR4nL1baZRdVZXe+5x777tvrjlJJYEQQsJoAwGJSFA0EdQGNAwOK9Ig0NEGBBWnJd22Nu1C2+VCaVvQiLYCBkxjowKigKYFloIMRjOYkAErSaVeVb16w313ONPuH5WqwHu5ee/GxO9Hst495+z7nX322efufXahgWRQJgWPXaZuvQFDyIG0ad9zwxAMMdSlfrIJpdWpQAJAMB13n0KUe+WpezaFX2U8A5UM06ypXRcs6ensNL8OgUn1USv++aLvnVGzHaJMucdUu/Y9NwzBAGBkqRQaUevvVOAh6iNM7zplgdVLqLQpAGWmniMBIhFFqSgQPDeQUB+JeeSdPy3vD0DlLarnx1jPq9+HRFSENEsT1HPJxDYvb1tkdrNfv7Tp3Uxr6bJuK9zfQgQIpjbEQEfgJBSb2D6qXXvfZFV/fAaCcDbPc6fVQQCIpHT6pHtOtMrdvON1OUT7SMHMdXYvqDAnSre9felg0/vo3q2LkGWhkTnw8Dgk1scUQu5sOJkCTE0J+sscJpCrGy5ZNtHFwWCngib1kdg+ppC2wvsvFWk19VsNjMKuFTPv2dTLesFrJJV7yDzA1/fcGAGf+ll33eevuG7ns4PHATArsdi/gse26BzmTe+LFOQ+edEFzD0vYwQ4SbfLX8Ej/Z3L4FXGmAkeOvkaGHv8tDIzWpL8m/FQ9187irlo6ifpX5+ThdvVmRYobnN1sKGHk4f8Td+JdgTT220sBD91x/99QHb5iAz/ZnYaPfL3oqtupu0013fTlZg995aHhciaWpA62NgDILH/wJA5ni7WohMf/zsvJwFsIVwC7QJoZCrIA5GUdiqhP02sD+OgNgWd/v7yQUhp23AIcmbcrisVCWmsfK0aYCpnJhKKTb4uDAlR23dd2q/sCAwpA463td9CbjNNkC5mTK3Ku480D2bIStXYy+UzIQANFkenLsc+rYHAspkBkkKmi84R3y8GQDmgV6/olQi2sQMEbc/880allCKGZFuWYwPpI80jYuhDYfiBD1uYBluBYLII81Y8yF2HFKEJQ8MA5BHnYYBAwfrMacriYBCyYCnPf9tDJcE4Aah02oLGSJjw2E/OgwNlgnDzOSBAhxEaEunATb+xb8OwImBIHjS+ffr8z1eTyjVtQPWIahFF42SIIq10FGgt8xun2qUxmkxp/elUMkShJLPrs55/8nfaydWaiLQyJRITdQra6iPI7QGLhnuroTIAAJ6lGN5/St+0fhCUhPwgPNsf1EZTgRh2b8nA0q52ctFEkQKO/bC1y6ZqWx7pcLaffnSJ50lgAIgckfDuS6f9gwEEbdzuS1ZrVQjJdmb2upV7cEVbHgwRGUCdTqjQ8Iz260I7SHjjhT/6RBQaTY1Ab5+9TU21h4ZUJJXYu3irRxMR0XCj9JHsVaKdXKmN1kZL8khIn9rqQ8ujG2HWm8s4gAFkIIn9z8L50/sSjUGLkZ5x+hPZsQKPIieDn9vy4B3t5EoCLZUhMdpffKD4m7Y8VEQ2QO+QMWA0AKiUFf7s8v3xiQNaA7NS8K61EWPGr/bUu3oGr9/cTq7F0RCz+Mh7f7rjVzed2paHg75DJQ4ERMjAINrP1C581SmNyBAA4Qx8vAcCp7/EMAhObRveWgDc4aL6npWLBoSXb78uWdcr9IWzOEPGGSjuwy8GZtN0HKfI4qilrA9c/EMdqIwaQHTpwbe1kyu1YYwqQ6dcn8XKSmBIILCBmmIQgp4A5ku/AUOa+wqy5vsfHZVsqp2hMQY5N/51P6mkc9Ku3NnLBq96kzaEiIhxchkPjcDMmiUQ/PvYArAAyAbLYNwBmaNwroBGhO76k9jumXzrho2F0/vrdnP/oild/42P/neuf8l1V3XXchM5IAIAivvOMhYSgJeydzz4o6U9oxA0fGO00HH7a2MYbq9tO5ZZPyZda3z79QtX9H6mMry5pb+i4Y3z99z6mQuPWvZAicibmnecXJ9CTdR4eGDOJ97XdfM4GKFJ6WpDxYACQXto4pVS1S+tnnXxi7Xh7s1E1NKvUVXmHevKm+ov3v3Oo75SoiAMoygMgzi5HtUaRDRSGaGgQgT1qgkl6VbB+zBmIiE1UZW2nfLWl4j8n5+qI0+XW/gOk7x3BZEXET2y8h3rzT59xMmVFIYkFVEUaWXKLJfGsbGq52MMCiUnksxvFNZc9E8/P9Ybcx653HNQ5Zv7BUWonz28ZRwdf+KCrx17Wa1W9xq+HyvXkJMCo6DGFfq+QVW21vjCkiJugynVQ+W5O9yjN0Xdc/2KvO0WlqlabnP/vSeM2+6988/ySsWBwPUrPYCIQBAX2AlwmVSUvkWTLREsbvHxKCrKuO/8nJctZfJ/XlTZVdQztgSDm3sHtzbsdK05gu3muxb6Z61ZZA3SBJGVFoAARPsD8Wa5oWWE4YaEYbZwOo5fsGpl/drM8E3/fHYPNXJetqm9Xmhwd/yLx1yR9lOOgdj3tyBh/BLkEewBsSUY7PG125rfy/qOrbve/HBhqMhNaCXNM3XMgxgqS/P7T5kHIbPIbm7nYAPnS8afTxmNRAnTlp3zcAVZapTuv6LHMEayRe0mAwqi/OW3za4F3A1izf6v5cEkgyCzTp0LIm2U1RIXSACMNF7xuzHXAFcdm0dSHjplSd21egVXrhUgazFvbIA1nk4NnHef64JKHTH7MBbTqT0vvl8xUA4TLfNFRtpBo/7x8d1ZbVJHLK7kQDzzTOakDPOFjbWWcSYdhn2qBmfVfw/AoXakeARQs+DL1ztE6RxBb8t+cMjNES9y6+avE68kjs867p8OC5VXxOva9henbR/Vjuw6UjyAgfvDRQvbdsO+i/8rKoZJ4+yO/XojVy0ef+vFvF2+GivhGzaBOzyzUwYJ/ToC2zxyHrb3k+kZC58dT3zv0TGPbOh+9/yi1TZ9L1K1q2+fPdF7pHiAHH/sahRt+5uosPSVXUndeuc8QmdHeSlvnwZ0J3Bg+X/OSOo/UCMgEFCcwjVjQIQI9RsHbts7E9oZSL3Q8ODcp/sAvAwLOG870f12etBDGhHIGEOheeltlG8nFCCrnO7uZasBjANk252ed2yfHmLtjyEQARB/BpeG2fbHBp+wHWfFWil9Dtpqq77p18Dk531sBwQCZIzZd15m29BoL1cDRIu7X2RCI4Lq9P6j7boQETKGsPOZ9worsNrLzRhFxUu/xdNAGP+ZfAAeB1XHPjsi89Drjibwsu314Wp06e3rdqUdoqhz+2jXgQAASEU/+pBBsDuYn2Gc1FFvXBsAmhA6/Q7pSB+kpXzhQhAmX2/7naUEh4aEVWtLwECB1ykPZIwxBDKAYDThJKepf41hETM4kbnlpjLnDLKk0SgkBdoQ4AFMi+eJshlaArX1QBw6zStPr8ukUl6TJ9DGECkLfNljnlhcABsiSdporbVue0xf+7mTtbYS2OnkjBCIDMH+/U5EAIhIDEDwp8pn58DS6rX6Ohje82QthJzs9NzY34+IAIjYPiDu+1/rHJm7L5kFhiR3kCHiZGru4HAvudNBFB37sal5474N2txBoUA+8ugqilArm3Ucp/kfu88AYKfX/NP6QARAxOn88pSlSIci67nCKUKjAUupyfyKacvHOqHv9zJqr7cpHlPmgZMp7+kGRAQgIg5WwO5dCRwAHAz3zbD9PB193V2i8yoQ1EAAyACMQYZkEBAACHDScwAyXc9nXlrIfcc4MNGlLW1soy09mZSMPSCVhfbQTC/TlvC+cx+RMYZEBhgDQF5hw4KwRoRgmBzn1OD2XctPQEpzm6gLODGL0ALOEOggerEb8LnPxh/jzWjZV3ZlsGFGuoQ2SMLqFjrr8bXv7vj8nkaN0dvX7xhNvm/3rURelXs88uo2M0xx2zDQO/50UdJwBMDPBKcf9+S8SlIekxomCorZ3Y+cd/LN46B4GiLLKhfXLu1PWkYBMGN7SnzoB2Odlm+16C1tB8GOH3/ziR8IR4L2LJBq7QdV5+muaczlZsnIrsTn/rQ+ajB68/FvvfkeD0IPEGThmeisxGUUALinmpYf+kmQlMeUfZhC1xkI6jSXAVc8TcC+t6LIk9vH2DvHQK36Rqf1Bi0T1TKiCtW2LMuJdApssuqPvseCxHER3LFBNIruW55IymPqnMnZZPrIfuJfSxZmwlGGa04/PlDFTvULWCIPke5fOGeUG+/GLxrUCo0fP2DvmXwoag1zyp7jsvoPb48GK4KCWaCePjvFfOi0vgW9gZF8I9qw6d3RMa7ILD7uybplQeDEfq9g/9eXHbW7dV36LAa7f2BmhJSvB0Vf7tnwVrB153kBN8jqbPTkJwLYOFFnlWV3WxqJ7FgDU/a2i7fObOURchB/8lexx35l9wYsM/bzuccbnuk8L2vcAq/+cma1CwZ4/97CR/4wYbROxw/X/lNbLsj9tuUeOaSRrxVtG3tLelMoiJZ8y0iiRux9VRNIBcNR+c2wqB/61/hlM3T1V0gHJGPHU2XRLaVP/aKFhxfRxHZRNbvJl2qktKH7FTKky7H3W81iqUY0FkRDQ/Nf8Mnb8tALi8sUChk7Xj149UT0pTUtcYBddtgx9cLorEZ13R/nNn65fC5EboJjbtfsPYPdle5+rLvBfQ9sXHrf4NprU14utv6SP31lV7TzzS320ZjJM5Ad6bv9/ON+ynaN/eYqBA9Y5+nhOeXBarnH4wZ+ueInyzavjt5/rwKKd0B7t70Btv1uAegmKLMloOp/zLnmsbBK4rEFze3tQI3dmkYjGvvUkjvqpISemLV9iMi0vKdBFIjIPHxrFC56JIDm+10/IrFu+dXP7SBJJvrwDXH3wHGQEYXkkVz5wRdIUGW0Rl/6OE2QbOlYaRgiQY23QP8QTWCzwiyovrxq5buOkfZfjgrHln//1I5XZBJ21IAu9vK/pD49LwV7iulA1c/9o+zymy9s7LqFnAsXopC6QLbow4ueP+dnw+Qb8hT97+tj79vj0DAVorFPLqsKqtfJGHqZLrtTt4rRRNpQIwyIRHlctCQ0stVj7pxbMI6m1Hj/r86PvW+MRehKWv/S1wpeoF3wbQZw7Vf/YWyw2aEabZElRZceyVZmV2r4+aZ2hXNS6+0U0sgcbb5w3bxGQhqZMOTjj86+fOeJO3h+V76nzoz5t09Rd/NBmfY4V97893bX87D5eGjRB4qNfTYpJ5Nxne8es6CctB5zbz6d2mhftLP3hVPljp5w2M1W7RUPrAyb38MYCiEMk9IXC709Lf60TqM+GdLU0MHZa2iiQz86jWicSJmyIDFuKCBqKGpMLBgLm/sJ0j7pURIUyIiC2Dx/c336oaJeqOfpY/aXSTpEoJwWz9wmz99cn36oyEFK4wW/9esMSMenweK/K5rq0w8ZkR3AudnHU0wqOz5vchAer61PP1RIhVK4H1idQk8DxabP43k01acfKqwMpCg8f+dGkzFELeU87Xk01acfKhDCTCqdu3BNLYV1wjh5sTya69MPmYdHAMBWPr0HGMaHQbE8muvTD5lHlAZv2J7fGKmynIaW+oSpbs0Tbq5PT/yHOjF49po/RE6tq9VRxPiP5vr0w0QDTrKecwAx7p6qdV2a6tMPF4/M++4ClqvE7cAWHs316YeLR23Vr0c9y4s7JlrXpak+/XDxyObf8JCJBuPi5BYezfXphwv26E3fzEsWt3MPoI/X1qcfLlD+NP5crhyXp2rh0Vyffrh4BJn6VXfFN7e4OMTx3npw4lPtKxuSgdUsd94LwdzmiWkeub4btuhDRNlS/rdHzzjMNEAXZO3Kb84db36OQITMavWnUapUvHLxzYkTt21goJ7ZfvaQLDY9JwzcKH2AexpfFzY8cWnS+/m2YJHrzH3dy800Jm+HoeXPmgGMdMWZ85In5tpAZ2yPfae/ZQMSISCJ1oIOx6UFH4eew7djJyEsaVLHRgfM/COJ/wcCYPPUFvqZ4QAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_41.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
If angle 1 = 100.0, angle 2 = 100.0, angle 3 = 125.0, then angle 4 is equal to ()
Choices:
A:80°
B:65°
C:60°
D:55°
|
Nếu góc 1 = 100.0, góc 2 = 100.0, góc 3 = 125.0, thì góc 4 bằng ()
Các lựa chọn:
A: 80°
B: 65°
C: 60°
D: 55°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: If angle 1 = 100.0, angle 2 = 100.0, angle 3 = 125.0, then angle 4 is equal to ()
Choices:
A:80°
B:65°
C:60°
D:55°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: If angle 1 = 100.0, angle 2 = 100.0, angle 3 = 125.0, then angle 4 is equal to ()
Choices:
A:80°
B:65°
C:60°
D:55°
|
If angle 1 = 100.0, angle 2 = 100.0, angle 3 = 125.0, then angle 4 is equal to ()
Choices:
A:80°
B:65°
C:60°
D:55°
|
203
|
41
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIcAAAB2CAAAAADHQt9qAAARU0lEQVR4nL1baZRdVZXe+5x777tvrjlJJYEQQsJoAwGJSFA0EdQGNAwOK9Ig0NEGBBWnJd22Nu1C2+VCaVvQiLYCBkxjowKigKYFloIMRjOYkAErSaVeVb16w313ONPuH5WqwHu5ee/GxO9Hst495+z7nX322efufXahgWRQJgWPXaZuvQFDyIG0ad9zwxAMMdSlfrIJpdWpQAJAMB13n0KUe+WpezaFX2U8A5UM06ypXRcs6ensNL8OgUn1USv++aLvnVGzHaJMucdUu/Y9NwzBAGBkqRQaUevvVOAh6iNM7zplgdVLqLQpAGWmniMBIhFFqSgQPDeQUB+JeeSdPy3vD0DlLarnx1jPq9+HRFSENEsT1HPJxDYvb1tkdrNfv7Tp3Uxr6bJuK9zfQgQIpjbEQEfgJBSb2D6qXXvfZFV/fAaCcDbPc6fVQQCIpHT6pHtOtMrdvON1OUT7SMHMdXYvqDAnSre9felg0/vo3q2LkGWhkTnw8Dgk1scUQu5sOJkCTE0J+sscJpCrGy5ZNtHFwWCngib1kdg+ppC2wvsvFWk19VsNjMKuFTPv2dTLesFrJJV7yDzA1/fcGAGf+ll33eevuG7ns4PHATArsdi/gse26BzmTe+LFOQ+edEFzD0vYwQ4SbfLX8Ej/Z3L4FXGmAkeOvkaGHv8tDIzWpL8m/FQ9187irlo6ifpX5+ThdvVmRYobnN1sKGHk4f8Td+JdgTT220sBD91x/99QHb5iAz/ZnYaPfL3oqtupu0013fTlZg995aHhciaWpA62NgDILH/wJA5ni7WohMf/zsvJwFsIVwC7QJoZCrIA5GUdiqhP02sD+OgNgWd/v7yQUhp23AIcmbcrisVCWmsfK0aYCpnJhKKTb4uDAlR23dd2q/sCAwpA463td9CbjNNkC5mTK3Ku480D2bIStXYy+UzIQANFkenLsc+rYHAspkBkkKmi84R3y8GQDmgV6/olQi2sQMEbc/880allCKGZFuWYwPpI80jYuhDYfiBD1uYBluBYLII81Y8yF2HFKEJQ8MA5BHnYYBAwfrMacriYBCyYCnPf9tDJcE4Aah02oLGSJjw2E/OgwNlgnDzOSBAhxEaEunATb+xb8OwImBIHjS+ffr8z1eTyjVtQPWIahFF42SIIq10FGgt8xun2qUxmkxp/elUMkShJLPrs55/8nfaydWaiLQyJRITdQra6iPI7QGLhnuroTIAAJ6lGN5/St+0fhCUhPwgPNsf1EZTgRh2b8nA0q52ctFEkQKO/bC1y6ZqWx7pcLaffnSJ50lgAIgckfDuS6f9gwEEbdzuS1ZrVQjJdmb2upV7cEVbHgwRGUCdTqjQ8Iz260I7SHjjhT/6RBQaTY1Ab5+9TU21h4ZUJJXYu3irRxMR0XCj9JHsVaKdXKmN1kZL8khIn9rqQ8ujG2HWm8s4gAFkIIn9z8L50/sSjUGLkZ5x+hPZsQKPIieDn9vy4B3t5EoCLZUhMdpffKD4m7Y8VEQ2QO+QMWA0AKiUFf7s8v3xiQNaA7NS8K61EWPGr/bUu3oGr9/cTq7F0RCz+Mh7f7rjVzed2paHg75DJQ4ERMjAINrP1C581SmNyBAA4Qx8vAcCp7/EMAhObRveWgDc4aL6npWLBoSXb78uWdcr9IWzOEPGGSjuwy8GZtN0HKfI4qilrA9c/EMdqIwaQHTpwbe1kyu1YYwqQ6dcn8XKSmBIILCBmmIQgp4A5ku/AUOa+wqy5vsfHZVsqp2hMQY5N/51P6mkc9Ku3NnLBq96kzaEiIhxchkPjcDMmiUQ/PvYArAAyAbLYNwBmaNwroBGhO76k9jumXzrho2F0/vrdnP/oild/42P/neuf8l1V3XXchM5IAIAivvOMhYSgJeydzz4o6U9oxA0fGO00HH7a2MYbq9tO5ZZPyZda3z79QtX9H6mMry5pb+i4Y3z99z6mQuPWvZAicibmnecXJ9CTdR4eGDOJ97XdfM4GKFJ6WpDxYACQXto4pVS1S+tnnXxi7Xh7s1E1NKvUVXmHevKm+ov3v3Oo75SoiAMoygMgzi5HtUaRDRSGaGgQgT1qgkl6VbB+zBmIiE1UZW2nfLWl4j8n5+qI0+XW/gOk7x3BZEXET2y8h3rzT59xMmVFIYkFVEUaWXKLJfGsbGq52MMCiUnksxvFNZc9E8/P9Ybcx653HNQ5Zv7BUWonz28ZRwdf+KCrx17Wa1W9xq+HyvXkJMCo6DGFfq+QVW21vjCkiJugynVQ+W5O9yjN0Xdc/2KvO0WlqlabnP/vSeM2+6988/ySsWBwPUrPYCIQBAX2AlwmVSUvkWTLREsbvHxKCrKuO/8nJctZfJ/XlTZVdQztgSDm3sHtzbsdK05gu3muxb6Z61ZZA3SBJGVFoAARPsD8Wa5oWWE4YaEYbZwOo5fsGpl/drM8E3/fHYPNXJetqm9Xmhwd/yLx1yR9lOOgdj3tyBh/BLkEewBsSUY7PG125rfy/qOrbve/HBhqMhNaCXNM3XMgxgqS/P7T5kHIbPIbm7nYAPnS8afTxmNRAnTlp3zcAVZapTuv6LHMEayRe0mAwqi/OW3za4F3A1izf6v5cEkgyCzTp0LIm2U1RIXSACMNF7xuzHXAFcdm0dSHjplSd21egVXrhUgazFvbIA1nk4NnHef64JKHTH7MBbTqT0vvl8xUA4TLfNFRtpBo/7x8d1ZbVJHLK7kQDzzTOakDPOFjbWWcSYdhn2qBmfVfw/AoXakeARQs+DL1ztE6RxBb8t+cMjNES9y6+avE68kjs867p8OC5VXxOva9henbR/Vjuw6UjyAgfvDRQvbdsO+i/8rKoZJ4+yO/XojVy0ef+vFvF2+GivhGzaBOzyzUwYJ/ToC2zxyHrb3k+kZC58dT3zv0TGPbOh+9/yi1TZ9L1K1q2+fPdF7pHiAHH/sahRt+5uosPSVXUndeuc8QmdHeSlvnwZ0J3Bg+X/OSOo/UCMgEFCcwjVjQIQI9RsHbts7E9oZSL3Q8ODcp/sAvAwLOG870f12etBDGhHIGEOheeltlG8nFCCrnO7uZasBjANk252ed2yfHmLtjyEQARB/BpeG2fbHBp+wHWfFWil9Dtpqq77p18Dk531sBwQCZIzZd15m29BoL1cDRIu7X2RCI4Lq9P6j7boQETKGsPOZ9worsNrLzRhFxUu/xdNAGP+ZfAAeB1XHPjsi89Drjibwsu314Wp06e3rdqUdoqhz+2jXgQAASEU/+pBBsDuYn2Gc1FFvXBsAmhA6/Q7pSB+kpXzhQhAmX2/7naUEh4aEVWtLwECB1ykPZIwxBDKAYDThJKepf41hETM4kbnlpjLnDLKk0SgkBdoQ4AFMi+eJshlaArX1QBw6zStPr8ukUl6TJ9DGECkLfNljnlhcABsiSdporbVue0xf+7mTtbYS2OnkjBCIDMH+/U5EAIhIDEDwp8pn58DS6rX6Ohje82QthJzs9NzY34+IAIjYPiDu+1/rHJm7L5kFhiR3kCHiZGru4HAvudNBFB37sal5474N2txBoUA+8ugqilArm3Ucp/kfu88AYKfX/NP6QARAxOn88pSlSIci67nCKUKjAUupyfyKacvHOqHv9zJqr7cpHlPmgZMp7+kGRAQgIg5WwO5dCRwAHAz3zbD9PB193V2i8yoQ1EAAyACMQYZkEBAACHDScwAyXc9nXlrIfcc4MNGlLW1soy09mZSMPSCVhfbQTC/TlvC+cx+RMYZEBhgDQF5hw4KwRoRgmBzn1OD2XctPQEpzm6gLODGL0ALOEOggerEb8LnPxh/jzWjZV3ZlsGFGuoQ2SMLqFjrr8bXv7vj8nkaN0dvX7xhNvm/3rURelXs88uo2M0xx2zDQO/50UdJwBMDPBKcf9+S8SlIekxomCorZ3Y+cd/LN46B4GiLLKhfXLu1PWkYBMGN7SnzoB2Odlm+16C1tB8GOH3/ziR8IR4L2LJBq7QdV5+muaczlZsnIrsTn/rQ+ajB68/FvvfkeD0IPEGThmeisxGUUALinmpYf+kmQlMeUfZhC1xkI6jSXAVc8TcC+t6LIk9vH2DvHQK36Rqf1Bi0T1TKiCtW2LMuJdApssuqPvseCxHER3LFBNIruW55IymPqnMnZZPrIfuJfSxZmwlGGa04/PlDFTvULWCIPke5fOGeUG+/GLxrUCo0fP2DvmXwoag1zyp7jsvoPb48GK4KCWaCePjvFfOi0vgW9gZF8I9qw6d3RMa7ILD7uybplQeDEfq9g/9eXHbW7dV36LAa7f2BmhJSvB0Vf7tnwVrB153kBN8jqbPTkJwLYOFFnlWV3WxqJ7FgDU/a2i7fObOURchB/8lexx35l9wYsM/bzuccbnuk8L2vcAq/+cma1CwZ4/97CR/4wYbROxw/X/lNbLsj9tuUeOaSRrxVtG3tLelMoiJZ8y0iiRux9VRNIBcNR+c2wqB/61/hlM3T1V0gHJGPHU2XRLaVP/aKFhxfRxHZRNbvJl2qktKH7FTKky7H3W81iqUY0FkRDQ/Nf8Mnb8tALi8sUChk7Xj149UT0pTUtcYBddtgx9cLorEZ13R/nNn65fC5EboJjbtfsPYPdle5+rLvBfQ9sXHrf4NprU14utv6SP31lV7TzzS320ZjJM5Ad6bv9/ON+ynaN/eYqBA9Y5+nhOeXBarnH4wZ+ueInyzavjt5/rwKKd0B7t70Btv1uAegmKLMloOp/zLnmsbBK4rEFze3tQI3dmkYjGvvUkjvqpISemLV9iMi0vKdBFIjIPHxrFC56JIDm+10/IrFu+dXP7SBJJvrwDXH3wHGQEYXkkVz5wRdIUGW0Rl/6OE2QbOlYaRgiQY23QP8QTWCzwiyovrxq5buOkfZfjgrHln//1I5XZBJ21IAu9vK/pD49LwV7iulA1c/9o+zymy9s7LqFnAsXopC6QLbow4ueP+dnw+Qb8hT97+tj79vj0DAVorFPLqsKqtfJGHqZLrtTt4rRRNpQIwyIRHlctCQ0stVj7pxbMI6m1Hj/r86PvW+MRehKWv/S1wpeoF3wbQZw7Vf/YWyw2aEabZElRZceyVZmV2r4+aZ2hXNS6+0U0sgcbb5w3bxGQhqZMOTjj86+fOeJO3h+V76nzoz5t09Rd/NBmfY4V97893bX87D5eGjRB4qNfTYpJ5Nxne8es6CctB5zbz6d2mhftLP3hVPljp5w2M1W7RUPrAyb38MYCiEMk9IXC709Lf60TqM+GdLU0MHZa2iiQz86jWicSJmyIDFuKCBqKGpMLBgLm/sJ0j7pURIUyIiC2Dx/c336oaJeqOfpY/aXSTpEoJwWz9wmz99cn36oyEFK4wW/9esMSMenweK/K5rq0w8ZkR3AudnHU0wqOz5vchAer61PP1RIhVK4H1idQk8DxabP43k01acfKqwMpCg8f+dGkzFELeU87Xk01acfKhDCTCqdu3BNLYV1wjh5sTya69MPmYdHAMBWPr0HGMaHQbE8muvTD5lHlAZv2J7fGKmynIaW+oSpbs0Tbq5PT/yHOjF49po/RE6tq9VRxPiP5vr0w0QDTrKecwAx7p6qdV2a6tMPF4/M++4ClqvE7cAWHs316YeLR23Vr0c9y4s7JlrXpak+/XDxyObf8JCJBuPi5BYezfXphwv26E3fzEsWt3MPoI/X1qcfLlD+NP5crhyXp2rh0Vyffrh4BJn6VXfFN7e4OMTx3npw4lPtKxuSgdUsd94LwdzmiWkeub4btuhDRNlS/rdHzzjMNEAXZO3Kb84db36OQITMavWnUapUvHLxzYkTt21goJ7ZfvaQLDY9JwzcKH2AexpfFzY8cWnS+/m2YJHrzH3dy800Jm+HoeXPmgGMdMWZ85In5tpAZ2yPfae/ZQMSISCJ1oIOx6UFH4eew7djJyEsaVLHRgfM/COJ/wcCYPPUFvqZ4QAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_41.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
If angle 1 = 100.0, angle 2 = 100.0, angle 3 = 125.0, then angle 4 is equal to ()
Choices:
A:80°
B:65°
C:60°
D:55°
|
Nếu góc 1 = 100.0, góc 2 = 100.0, góc 3 = 125.0, thì góc 4 bằng ()
Các lựa chọn:
A: 80°
B: 65°
C: 60°
D: 55°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: If angle 1 = 100.0, angle 2 = 100.0, angle 3 = 125.0, then angle 4 is equal to ()
Choices:
A:80°
B:65°
C:60°
D:55°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: If angle 1 = 100.0, angle 2 = 100.0, angle 3 = 125.0, then angle 4 is equal to ()
Choices:
A:80°
B:65°
C:60°
D:55°
|
If angle 1 = 100.0, angle 2 = 100.0, angle 3 = 125.0, then angle 4 is equal to ()
Choices:
A:80°
B:65°
C:60°
D:55°
|
204
|
41
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAQ4AAADbCAYAAACcNX+NAABmQklEQVR4nO29eZhcZZn3/6muvXrft/Te2TqdpLOHkEBYEiBEBlERwRFGHUedGXQY3xlG5yfCqKOOOg7yoq8voubFnUUFIUgghOxk3zpJJ52kt/S+VHft2/n90dxPTlU6kISku9M53+uqK+lTp876PN/n3m+TpmkaBgwYMHABSBrrCzBgwMCVB4M4DBgwcMEwiMOAAQMXDIM4DBgwcMEwiMOAAQMXDIM4DBgwcMEwiMOAAQMXDIM4DBgwcMEwiMOAAQMXDIM4DBgwcMEwiMOAAQMXDIM4DBgwcMEwiMOAAQMXDIM4DBgwcMEwiMOAAQMXDIM4DBgwcMEwiMOAAQMXDIM4DBgwcMEwiMOAAQMXDIM4DBgwcMEwiMOAAQMXDIM4DBgwcMEwiMOAAQMXDIM4DBgwcMGwjNWJjT5Q54dYLEY0GiUWi2Gz2UhKGub6/v5+/vKXv/Cv//qvNDU1YTab+dSnPsXHPvYxli5disViIRQKEQqFiMViWCwWXC6XOm44HCYpKQmz2XzB70LTNDRNIykpCZPJdNZ2OZ7++1gsxsDAAKFQiMzMTMxmMwAWS/wQlPs1m81xx77akPhORnrO8gzHAmNGHAbOD9FoFE3TFBEEAgE8Hg/bt29n9+7dfPCDHyQSiRCLxdA0jba2NjXIzGYzVqtVDcJAIIDZbFbkM5oQ8jKZTOrfSCSiiA3AarWSlJR0FpkYGH8w3tA4hxCH3W7H7/fT0tLC7t272bhxIz6fj6985SvU1NTQ0tLCmjVr8Pl8ijiSkpKwWq1qknq9XiwWC3a7HZPJhKZpRCKRsySHS4HEFTIWi2G1WpXUJGQWiUSIRCLqN0IqV7O0cSXAII5xDlmNYVis7+7uZs2aNZSXl3P//fczadIkotEoTqeTu+++G7vdTjgcxmQyKSlEiCIWiyky0TSNQCBAKBQiOTkZi8VyydRHmfRyPL1obTKZlJpktVrVtcRiMWKxGD6fj1AoREpKCna73VBpxykM4hinEIlAJI5YLEYgEGBwcJCBgQFyc3OZM2cOKSkpACQnJ5OTk6MmppCG3h5hs9mwWq3q+Pp/LwYyqd/rGLFYjHA4rKSNYDCopA49MYjEIddrYPzCII5xDjEWRqNR+vr68Hg8TJ06laqqKlJTUzGZTCQlJeFyudREtFqtcUZVmZwOh0NNWLE5iM3jQlf2RKlCr17oJQ39PWiapvaRawuHw8qG43Q61SeRVAyMLxjEMU4hk8ZqtWK327FarXR1ddHT08Ps2bOZMWMGTqczTpUJhUIA2O32uBU7GAwC4HQ6CQQCBINBTCYTDocDh8NxSSeo3ouil3ZSUlKUF8Bms6l99RJQUlKSMpjabLZLqj4ZuLQwiGOcQyZ2KBTC7XYzODioJlgsFiMYDNLY2Ehrays1NTUUFhbGrewyeWViyuQVKSYWi10SQ6T+nHBG1YrFYpjNZnVekXQEiSqL/MYgjPENgzjGOcxmM5FIhP7+fqUOHDhwgJSUFHJyckhKSmLt2rW8+eabfPWrX6W0tJRoNIrJZCIajRKJRDCbzWqyip0hEAigaRrhcFh5Xi4WQhryr/xfEAqFCIfDeDweAPLz8+OIREhQrk3csgZ5jF8YxDHOEQgEiMVipKenM2fOHHw+H3/84x85cuQIr7/+OgMDA1RWVvLhD3+Y0tJSADUpxZNhs9mUjURsCPrAr8vl+tQ0DZvNxq5du/i3f/s3/H4/Cxcu5L777mPKlCm4XC5FcMFgUMWdiCpjYPziEhJHmKHuXiKpBWQ6zrXLEN29XqLmZLJyUrCOuFOA/o4BgtjJKMjk7EMNn8dryaDgnCe68qGPswBwuVw4HA5qa2uZO3cura2taqLV1NRw2223kZOTAxAXeSmif39/P3v37iUtLY2SkhIyMzOVLeRiV/aRDKQjIRAI0NTURE9PD1lZWfj9fqWO6K8z0QtkYPzCpF0KeTBwkrVf/RB3/tcePveGxn/fkLhDmJaXvsRt9/6MgaIiUjynOV3yr7z0h//Fsrwz9NG353E+eev/x9a0IrLo4zQrePKPT3FfjRBEH+u/ci9PuOcwxbuH4wu/w08/N4u0930D4xehUAhN03A4hp9BOBymu7ubaDSK3W4nNTU1Lk4jEokQDodxOp2YTCZ8Ph+apnHo0CHWrFlDbm4uCxcuZPr06RQWFuJ0OoELSwEYad/EoC196Hh7ezubNm3iyJEjpKWlce+995Kfn08kEsFisahrFm9QOBzGbrdf1cbR8R5y/r5pvW/PU3x0/udouPsn/ODakfcJ7/8fbv/wAf5hWxetR45wpLWLrZ94ndUfe4ZGdaCX+Kcl36PymWO0HjvM4WOtHHsyjy/f9ghvDb6zz1vf5oc1P+W5J/6T//zZizx0+mv8rnHkc04UWCyWuLBxq9VKUVERJSUl5OXl4XQ6VeSn/CuRokI4VquVzs5OXnrpJYLBIAsXLiQjI0NJNBc6OUVK6evrw+v1qvOKdCP7iK0iFovR1tZGamoq06dPJzU1lXA4jM/nUzYYIQq530Q7iYHxhfdNHKdOOHlk51oenJ95Dr0nzM7ffYe0J/4vn1WSg4Oaz/6Q/+h5mGfeHt7S9sqP+N3nfs63V+S9o8JYyVvxNX688nF+8EonAJ3txygvKn7nGFbyytwca3u/dzC+kZSUpMT2kWIb9OK9yWRShlAhEIvFwsDAAC0tLfT29pKVlUVubi6ZmZlxwWIXaucQw2owGCQcDgPDq2IwGOTEiRPs2rWL7du309HRQVtbG3v27CESiVBUVKQkCYkW1cd7wJmcFQPjF+/77cz90H3UvKup4TCbn83izoVVCdtrWHwXvLK7ARhkz19e4e4b5yXYPdKYe/Nt/GHjfsJA/tKPMvjiWrrCQKCel9fN5/a693sHVx4Ss1D12/URoklJSYTDYXbv3s2xY8dYunSpMqAKyUSj0Qs+v0xwyXIdGBhQ19Ld3c0vfvELPvOZz3DXXXfxxBNPsGvXLlpaWohGo7hcLnWN6enpWCwWJX34fD4VLm/kqoxvjIJXpZe2owu5qfzsb7KLp/B2fRtgpuPEVGaWnm2tyM8rh31NNANVxR/lO3/9FF9aNp2tGXfx+P/9OtdNZAPHRUAmnD55bdeuXRw5coQbb7yRyZMnK9vDxSS3mUwmQqEQkUgEh8Oh7Cper5c9e/bwyiuvEIlEuP3223E4HESjUQ4ePIjZbCY3N5fc3Fylm+vD3g3V5MrC5SeOxkZ2kM0dI0zwqqoFUA/QTP3mHGqSR/h9aQ1600nWnE/z9LZPX55rnUAIhUIkJSURjUY5evQonZ2dLF26lMrKSoLBoDK26r0a5wsxZrpcLlwuF6FQiPr6el599VU2btzIJz7xCT74wQ+Sk5PDz3/+cw4cOEBRURHFxcWkp6er4+jVK8ObcmVh7OM4hgL4RnC6xmHQR3B0rmbCIBKJEAwG8Xq9DA4OYrfbmTx5MpmZmXg8Hvx+f5wh8nwheSV6WCwWfvWrX9HY2MgNN9zAsmXLyMnJUYbXvLw8SktLKSwsVMfQ1xkRQ6pk7xoY/7j8byklldxzfDXo7YVUBy6SST/XTt4BetJc2C/X9U1Q2O123G4327Ztw2KxKG8GDE90MUxejC1BanpomobX6+XYsWMMDAxQUlLCihUrKCsrA4Zdx83NzfT09FBeXk5KSorKpwHUNcgHjJDzKwWXnzjy8yhnB40juE27O06Qm54MZFM8ZTP1zSP8vvc0R3NTSbnc1znBYLfb6evrY926dWRmZrJkyRI1OW0220WpKALx3GiapjwoeXl5LF68mPnz5+N0OolEIrS2tnLo0CE6OjooLS0lOTkZr9cLxOeySMwHcNEuYgOji1GQC2tYfOdODjWHE7YPcnjjZm6dNw2oYtbNuewYgV3273qFqUumk3/5L3TCobu7mw0bNlBQUMCyZcuU1yIpKUnFf1ysOxaGJ//p06c5cuQIxcXFVFVVKTWmu7ubP/7xjzQ0NJCcnMzkyZNVZCucCRCTxDtJ8QfOSsE3MP4wCsSRz9IP38iPfvYqffrNbS/yo999invecYvMWfkZGn74Avv1/BLeyu//y8bnVs26/Jc5gRCLxRgcHOT06dMMDg5SVFTE5MmTgTOp9+LJuBh3rLhPw+EwQ0ND9Pf343Q6yc/Px2q10tvby/r169m0aROZmZnMnz+f9PR0VSJAku8Ss3ZHqulhYHzifRpHJa8EYAB3GLzuDjo6AF2uSfHd3+I7P1jKzf/yO371UB2Ozq08+TefJ/DDHdz8jrfFes0/8fOFFXzgrzP47bdWUx44wu++dj9r7vs5e2re31VebYhEIjQ0NNDS0kJBQQGFhYVYLBblPpV6FxdTLEeCvPx+v0qYS0tLo7e3l9bWVnJzc9myZQubN2+mvb2d6upqKioq8Hg8ZGRkYLfbCQaDKt1eoJcw9JGoBsYn3idx7ObJ5Z/k/6m/p8LDy1kOwF/z9JGvsATAOosHN+5jyvf/mfuX1+MuW8xnv7GXP99aoQv4yuK2J4/x3O++wb/f9j2a0mu46x+fY8fd88l6fxc5YZGYvyB/h8Nh6uvr6ezspK6ujqys4SeYkpKCx+PB6/WqFX4kL8a5Vn3ZLtW6XC4XixcvRtM0HnnkER599FEqKyu58847qaiowO1288Ybb3DgwAHS09O55ppryMnJUXkpDodDRa+K+9hisRjZsVcA3idxLOErR47wlfPZ1VHBrV9+nlu/PPzniKuJNY/59/0Pa+97f1c1kaCvPQrxq7HUsZBCOZL3EY1G2b17Ny0tLdxxxx1MmjQJIG6VF0OpPoYC4l2liQFi8hvJKUlKSiI7O5t58+Zx3XXX4XA4yMjIYPr06VRXV1NaWordbicWi5GRkaFC4aVIsb5miCS8yT3LtRgYn7g02bEXgUt12s9//vOsWrWK1atXX5LjjTdI1qvYJiSVPhQKEQwGiUajqgSgtEYYGBjg/vvvx+128+STT1JbW4vdbsfj8WCz2bDZbGd5LsTOIMFd0WgUq9UaV7dDX6v0fHqfSKYrDHt5BIm1SPUEaLVar+qsWMGEz44dS2zatIkf//jH3HHHHaxcuZIjR46M9SVdcsgA0nsd9MlhTqdTBU85nU56enrYvHkzLpeLGTNmkJOTo0R/fWUtvTtWr7JIgySHw4HZbCYUCjE0NKSCtXw+nyoupJcWRkJSUhJ2u13ZNbxeL16vl0AgoDwqVqtV2UqkAvrQ0BCRSMTwqoxjXNHEsXTpUtasWcOkSZNYt24ds2bN4sEHH2RgYGCsL+2SQYhD34FNVn6TyaRiMuTv9vZ2XnvtNbKzs1m4cCHp6elxtglRRfRFhfX/F0lEpApN0/D5fPj9fqUKJWbrRqNRAoGAKoQsEoRAJA/ZNlLdjitawgh3sfPx20hPWsZTI5V5CLfw2jc/xLz8YXJ05s/jk0/tifcyNj7FsncyoUX6G/48xJvqOA389pOLqampYcZt/8nGrsQQh9HDFU0cAB//+MdpaGjgkUcewWKx8MQTT1BZWckTTzxxzpXwSoS4Kkeq7amPtDx9+jRvvvkmOTk5LFiwgLS0YbeVJLZJOrxe/dATQOIETkpKIhQK0d7eTmdnJykpKSrDVa5B4jDE7pF4TSaTCbvdjsvlIjk5WUkz0WgUv9+vDLYi6aSmpl4x6krg5Av8/dw7+f2Uj3DPiHsM8ta/L+XT+2/jf+/pH67Gtud7lP1oOR/5mY5lettouPYnHNMFxA1/vv+OswF2/9cXaPniRurr6zn0y1n84p/+ROdlv8ORccUTBwxXAn/kkUdoaGjg4x//OAMDAzz44IPMnTuXdevWjfXlvS/oCUIvfYjqEggEVCo6QGdnJ52dneTl5VFRURHXcgDOGD/l2LLC6et3aJqmihlHIhEGBwd5/fXX+dOf/hQXMq6/xjMrZLxEooecW9QbITOHw4HT6cRmsymbzpWBRp59qoW/eX0D3761gpFyNOl5jSf/q5Zvfu/TLC4azslyFC3ny088yMHvvMB+2c/rpvtdI6Rbqd84nXmz3vFDZk1jcdOm4RzRMcCEIA7BpEmTWLNmDVu2bGHx4sUcPHiQlStXcscdd3D8+PGxvryLwkjEAWdsHqJaxGIxGhsbaW9vJycnh+LiYrKyspSEoZ+Mcjx9uwR9piqgDK9CKvv27WPDhg309fWp/fV5JnpbyUjXnFhXVF+0x263K5ULuIJUlyo+/o0HmZ83cvVcAHI+xG9if+a+4vjN1rwyphw9Ta9+Y3neu0RIT2Lube3skgjJviNsK1vKWIU4TSjiECxevJgtW7awZs0aCgoKeOmll6ipqeFf/uVfrjj7h36Syd8iMYh7U4yYGzZsoK2tjaVLl6pEM32EphhFRWWR34bD4ThjpL6imNPpJDs7m1gsRkdHB01NTXi9XnVdZ0Tq6IgEItBLSeI9Ea9NosfgakhyCzfXs/PaGkrf+buz69R7/qbmc49S8oNlwzaO+/bzqR9+aMxSMSYkcQjE/vHv//7vWCwWvvvd71JTU8NTTz11xdg/RKSXyahpmiqkIzknUoVrw4YN9Pb2csstt1BSUqKOoS8nKFKGfnKK+1XiKoQwRO3Iy8tTzZ4OHjxIW1tbXKWxkbw9EN/VTYK89NLPSHEiQkITOlcl3MAvvv5TbvuH25C6eJ6hbnJtTfzyk/PIdyZhNmcw60P/yboWnQHUOoWPPr1t2Mbxyr9xzRhGRk5o4oDhaMnHHnuM+vp67rnnHjo6OvjMZz7DwoULefPNN8f68t4TMpH0eRwiIQCqSnhHRwdHjx5F0zSWLFlCbm6uIhdZ3SFe9UlUX8S+IN4aIQCbzUZdXR1Tp05lz549NL6TjCg2ESGlkaSFxNqi8t1IEauyz8VUJrty0Mf6f13Bf8z+A099NF5/6f71WvyfeZEmf4yot56fLFnHHcv+/Uyx7nGECU8cgvLycn71q1/x1ltvMX/+fPbu3cuNN97Ivffey6lTp8b68t4ViR6QxIk/MDBAc3MzmqaRm5tLSUmJSibTGz8TjyEfqYQOZyqCiYtV4jZKS0spKSlh3759HDlyRLld9SrPSPklIj3Y7XYcDofqCatHYsVzfXPs8YRIJMJvfvMbDh48eHEHCHfx2r8u4p7DX+O1b98Ql0pR9emNxJp+w6cXFw2XtXIUsfif1/DUjO/y043jjzmuGuIQLF26lLfffpunn36agoICfvOb31BTU8NXv/pV1aLwQjFScd1323YxdT71/5dJLh4Ot9tNT08P2dnZFBUVqZKBem+LxGiImiPQE5GEfUsglthEkpKSqKioYMqUKUQiEfr6+ujt7aWvrw+fz/eez0QiX0Wa0TSNzs5ONm7cyLe//W3+8R//kYceeohnnnmGI0eOjDs1paenh29961uUlpZy77338tWvfvXCDxJu4aXPL+DTTV9n45/+hinnsKfGj49iam+cysmOHvXdeMFVRxyCBx54gPr6eh5++GEAvv71rzNlyhSeeeaZCz6WvoLVubbJSxcj4rmQuMrKxNVLGNJjVYykHR0dNDQ0UFFRwbRp09R59McU+8FIqoRenRADpj4EXOwYpaWl1NbWEgwG2bdvH4ODgypEXR/cleiO1efVwDDhNTY2sn79el599VVefvll/vznP/Pss8+yYcMGOjs744LUxgoHDx7k85//PKWlpXz5y1+mp6eHO++8kwcffPACj9TH+n9dyt8PfYfX/t9Hz0kacEY1FQS8fWha7KzxNNbS2FVLHAAZGRl885vfZP/+/Xz4wx+mo6ODT3ziEyxZsoRt27a95+9lYEvEpKyo0WgUn88Xt8oKZLt+ZdHbHfSTOzGBTe+mtFqtuFwuAA4dOsRvf/tbZsyYwfXXX6++dzqdcTYFcX3a7faz6l9IZqrYLSSuQtScQCCA3W7nb//2bwmFQvzsZz/D6XSSnp7O4OCgIh19MyXJU7HZbDidTlWy0Ofz0dTURDAY5LHHHmPz5s08++yzWK1WXn75ZTZu3Ehvb5yjclSxdu1aVq1axaxZs/jxj3+Mw+Hgi1/8IvX19Tz//PMsX778vI+laRqtv/0Uq3b8G+ueuYeptnipc/g9N/ObO9P59CtuhoaGVJOrpKQjbH1ukNlFWXi93hFjccYKVzVxCKqrq/nd737HG2+8QV1dHdu2bWPJkiV84hOfoLW1dcTfBAIBbr75ZtasWaMMlAMDA8ogCWcCowBefvllfvSjH9HV1RUnASTGZySuJPpcEH2ouUgFfX19NDc3q2ZH+fn5Z8VkyLXoA7X0ZCZ2EL3BMjEOIxaL4XK5qKmpwWw2c/z4cXp6eojFYqr+qDRo8vv9BINB1cVNrj8QCDA4OEg4HKasrIxly5axcOFCSkpKWLRoESUlJVgsFrXPaCIQCPDjH/+YmpoaVq1axdq1a6murub73/8+J06c4Pvf/z7V1dUXfuDBtXztgUYee+JvqEo623UNYDKVsOxjN/HLz36Jtc0hTDYb4aFjPPvgx/hq+rf5+5uS4zKHxSY0ptDGCLFYbFx+QqGQ9pOf/EQrKCjQAM3hcGiPPfaY5vP54vY7ffq0ZrFYtPT0dK29vV0bHBzUTp06pfbz+/2az+fT3G631tjYqK1YsUIrKCjQtmzZovn9fi0QCGjBYFALh8NaNBrVNE3TotGoFgwGtUgkokWjUS0SiWgej0cbGhrSotGo5vf7NY/Ho8ViMU3TNM3r9Wp/+MMftE9/+tPaLbfcor311lvq2V7MMxZEIhEtGAyq64vFYlo4HNZCoZAWCAS0r3/969qyZcu0X/3qV9rp06c1TdO0QCCgDQ0NaW63W+vs7NT6+/s1TdM0v9+vDQ0NacFgUOvr69NOnz6t9fT0qOck6Ojo0L7+9a9rDz/8sPbnP/9Z6+7uHpVx0tzcrD388MNaRkaGBmiAtnz5cu3555/XQqHQu//+2E+0a9/5zVmfa3+iHYvFtNjrXxz5e9BgifaThug7T8CvHXruH7WVxanD36UWa8se+LH26uETaiwEg0EtGo1qg4ODWkdHx2Wbm+cDgzjO8enr69MefvhhzWKxaIBWXl6u/epXv4rb50tf+pIGaJ/85CcVUfh8PjXZjh49qj355JPasmXLNEArLS3V1q9frw0MDGher1eRhEBPHLFYTItGo5rX69W8Xq8Wi8W0QCCgeTweRTQDAwPaF7/4Re2uu+7SHn30Ue348eMX9Wyj0WjcJJbrEIKT6xG88MIL2mc+8xntC1/4grZ27VpN0zR1/5FIRGtvb9c6Ozu1WCymjhONRrVwOHzWPWuapjU1NWkvvPCC9k//9E/aE088obnd7ss+TrZs2aLdc8896v06HA7tgQce0Hbv3n1JzyP3IPc+0oKhh8/n0/x+v6ZpmhYMBrWhoSFtcHBQ8/l8msfj0To7OzW3262Fw+H3Nf/eLwxV5RwQ+0d9fT2rV6/m1KlT3HvvvVx33XXs3LkTgK985SsUFBSwZs0adu7cqXRQEfmtVis5OTlMnz6d3NxcJbpruuhKvXqgjWDwkvoU+uI6ArfbzYEDB4jFYixevJjs7OyLutfYCIbcRD1cj9raWhYtWsTx48epr68nFArFFR4WO0dMZ2AVA6++mvng4CBbt27lmWee4ec//zmnT58mIyNDJebF3sWIfDEQd+qSJUtYsmQJv/nNb8jJyeGRRx7hxIkTPP3009TV1V3Sc2o6G5M8H31Yvn6/mK6vTCQSwWazkZKSQkpKirJNyd/nUw/lcsIgjvdAdXU1f/rTn/jLX/5CbW0tmzZtYsmSJXzmM5/B7/fzH//xH0QikbhwdkksKyws5IMf/CCPP/44t9xyS5wtYSRbA5w9SYU4xNAqvwkGg7S0tNDV1UV6ejqzZ88mJeXCm0ho2tnNn+Ue9PEfMV39jaqqKhYsWIDf76epqYmOjg51bdo7MRsSR6K3tfh8PgYHBwkEAoRCIXp6enjrrbd46aWXWL9+PR0dHXi9XoLBoLqGS4GBgQG+9a1vUVlZyb333su2bduoq6vj6aef5sSJEzzyyCMUFBRcknPpoemM3UBcEqDehiTPP/aOvchisRAIBPD7/fj9fmUYFXe6uMrHEgZxnCduvvlmdu/ezZNPPklGRgZPPfUUNTU1dHd3U1tby9atW1Ukqt/vJxQKqUkfCARITk6O65uaGB2pafEJYYkrvnhV5Pvm5mb27NmD3W6npKSE/Px85X25GMj59degrz4OZ2JBTCYTubm5VFRUEIlEOHz4sFotBwcHsVgsKvVefqOv8yFFkx0OBytXruSb3/wmP/jBD3C73fz617/m5Zdfpqen56LuQ48jR47w4IMPUlRUxJe//GU6Ojq48847eeONN9i9ezcPPPCAaoV5qaGPjdFLTkIU8j71hlL5TiTM//iP/2Dx4sUsX76cn/70p7z88svceeedfPe73+Xo0aOX5brPFwZxXAAsFguf/exnaWho4Etf+hIej4cvf/nLqvLY1772NbUyiOgOxA0QODuQJ3HSCvTEkajanDhxgr1791JSUqJaH1xM3IP+uInSx0hp93L+5ORkZs+ejclk4u2338bn86nAMXHpmkwmIpGIWj3NZjMul0vda0pKCrW1tSxfvpwPf/jDVFVV0d/fz86dO1UWrh6PPvooc+fOfc9AvbVr13LHHXdQU1PDE0888b7cqZcK+ncpY0E/HvTPt6mpiZdeeokTJ06QlJSEw+GgqamJ7du3c/To0XGRqGkQx3kiEomwadMm3nzzTfbu3cuqVav4n//5H/Lz89Uqf+rUKb73ve+pSSMSQlpaGoFAgO7ubrXy6olCJuxI4qdsl0AsPXE0NDQwc+ZMFfQFXJTuO1JZQv31yICWOA0YVqHmz5+P3W7n7bffVhKCRJ7KscLhsApdF2kjEAgAw+Qjx7PZbNxyyy3Mnz+f3t5e/H5/3DWuXbuWRx99lFOnTo0oVYk7ddasWaxatYqXXnrp0rhTLxJCvHqVdKRSA4lqq8/nY8OGDfzwhz9kyZIlPP/887zwwgtUVlbS1tbGRz7yEW655RYqKytH7V5Gwtg3nb5C8MQTT/DQQw+9537/9V//xSc/+UkyMzMZGhrC6XSqQr0j1ZlIHEjn+k4CuKS1YlNTE6FQiNmzZ1NVVcX7hX7Vk0E/kgQj22w2G1VVVeTm5rJz506OHj1KQUEBmZmZKtArFAopm4fVaiUcDuN2u9VEgeE8Fdm/qqqKnp4eOjo64s7d2trKJz7xCQCefvppMjIy1HcdHR08/vjjPPXUU4q8li9fzoMPPsjq1avH1IgoxJEYH6NvTSFG5KSkJIaGhnjqqafYs2cPc+bMYebMmZSVlalMZLF3SBLiWMIgjvPE8uXLeeCBB87anigtJCUlsX37dj7wgQ+oaNJYLKaiJ/XBYYLE/+ttCvJ3OBzGZrMRDoc5cuQIp0+fxuFwUFlZqepljHS888G57Cvn8qrI/rm5uZSXl5OTk8Phw4cpLi7mmmuuAYYJQUhBiEOMq7INUARiMplwu90AlJWVkZw8XE8rEonwyU9+kp6eHv7hH/6BO++8E4CdO3fy/e9/n2effZZIJILD4eCBBx7gwQcfvOSekfeLxGerV/+0d8okyP2Ld+7jH/84U6ZMifOyAGRnZ1+UEfxSwyCO84RY4fUQ0pDBL3kbopc6nU5MJhN+vx+Hw6FW48SJqRdhZbUXXVhE+WAwiMvlwu/3c+DAAfr7+8nJyVGrrxji9Elw54tEm8ZIbkI9uUhUp8vlYtq0acybN4/6+npyc3O55ppr1GSIxWLKQBwOh1UTJ/lOvxKHQiG2bduG3+/ngx/8oGoi9Y1vfIN169ZRV1fHN7/5TZ599lm+//3vq5SAgoIC/u7v/o6/+7u/uyyekfcDeSeJ7tfExUG8J319fRQXFzNp0iTlhRMMDQ1htVpZvnz5JZEw3y/GjDj0k0XENbEoi24syVWJ9SjGC/R1M+V+PB6P0uXleiXOQcT3QCCg8kGCwSCDg4OkpaWpVVjvhZCJJ6tMKBTijTfewGKxsHLlSvV89B6XC4V+QMO5e3okennC4TBTp04lEonwwgsvqNBzk8mkjKCiKgiZ9fT0sHv3brZu3apiQDRNIzk5mbKyMm666SZmz55NamoqGzdu5Bvf+AYA8+fPZ9asWaoEQl1dHV/4whe45557cDgcY+6ePBf0BmVZVMRdL2qMy+XixIkTbN++nYyMDCZPnqx+09fXx759+9i/fz+RSITi4mIyMzPH8paAcSZx6I2F+s5eeoIZrxAXm0B/vZLiLt+L4VRWGqk6LseQQC/xdITDYbxeLy6Xi8bGRg4dOsT111+vuqf5/X4lyci1XAxG8uzoIcfXV0t3uVxMmTIFh8NBT08PJ0+epLS0lFgsphLV9Ml14XAYj8dDU1MTe/bsUSpNYWEhq1ev5tprryUrK4vu7m4+9rGPqWf21FNPYbFYVHaq3jNyLq/UWEOvouiD3+T9i73DYrHQ19fH8ePHKSsrIzc3l1gshtfrZd++ffzhD3+gpaWFyspKcnJylK1rLO0344I4ZJLpxfjEIrqJ0Y3jAWazWRmppCxeVlaWiqeQiS8ShEhULpcLk8nEqVOnSE5Opri4GLPZjNfrxe12k5WVpaQPr9dLW1sbLS0t9PT0cODAASwWCyUlJZSUlJCcnKxcnvpndjkhRADDpDgwMMAtt9xCe3s7L774In/1V3+FyWRi3bp1mEwm0tPTSU9Pp7q6muLiYlavXs11112H1+slOTlZlRXMzs7GYrGoTnRtbW3qnA6Hg3/+53/mxhtvpKioCJ/Pp2IwxjNxaJoW51WR7XpDtN/vV0mEEjjX09PDnj17eO2119iyZQvZ2dnU1NSQlZU13GKhv5/c3Nwxu7cxIw5ZZeVl6y3tej1dDISXKorwUsFkMuHxePD5fGRkZKjrHxwcVB3MYLimwy9/+UveeOMN2tvb+drXvsZdd93FjTfeSHp6OpmZmeq+XS4XVquVtrY2jhw5wv79+2lvbycYDGK322ltbaWzs5OKigqqq6tVZzWPx0MwGFSEczknUKLHRd7jsmXLeO2113j55ZeZP38+ubm5tLS0KIlhcHCQaDSKy+WiqKiImpoaZs6cSU5OTtzxI5EIr7/+OvX18YX/A4EA3/jGN5TqAsP2jW9+85s88MAD45I49BKk3igqY1nfVS8vL4/CwkLefPNNXnzxRYqKikhLS8PtdmO1Wjlx4gQvv/wy6enpLFq0iKKiojG9tzEjDjG4JRKD/iGLXSCRsccaetvF0NAQLpdLTfqhoaG4e+rp6WHnzp1YLBby8/PZu3cvVVVVzJs3j6qqKrXCDAwM4PP5GBgYYO/evezYsYP9+/fj9XpJT0+nvLyc+vp6+vv7uf/++5k2bRqapqkOamIYHY2SezIhJLXf4XAwe/Zs9uzZw7Fjx+js7CQ3N5ecnBy8Xq+qMdHQ0EBvby85OTmcOHGC9vZ2KioqKCkpITc3l+TkZEwmE7fffjt33nknZrOZlpYWTp06RWtrK6dOneL06dPq/wMDAyoYajyNDzijniRCP75lP5vNRlFREVVVVbz66qscPHiQlpYWli9fzrRp08jMzOTtt99mYGCAw4cPM3ny5FGNSRkJY9p0WtQPvW9br47IhJDAI30D5PECyeHQryhSdyIjI4NoNEpLS4uqlmWz2cjIyCAzM1MlL+l12RdffJH09HQWL17MrbfeSnFxMWlpaWiaxsMPP8y2bdt48sknWbp0Kenp6Up3FrvIuQbspYJEg4qkoW8U/cILL/CDH/yABx54gOuvvx6z2Yzb7SYSiZCZmUlvby/Nzc2cPn2aw4cPc/ToUU6fPk1tbS133nkn119/PcXFwwV89ZXX5bzyr94WJv/qe8SMB4gdIxQKYbfbSUpKUjU0xB2tJzqPx6NKMUozrPz8fFwuFz6fT/Xvzc7OjjOkjxXGVFURqUPsBPK3TACJQjxXIdyxht4TJH+L3cPlcinPyfTp08+5/9atW1m3bh1tbW14vV6uvfZapkyZwrx581iwYAHp6enAcKCT3W4nMzOT6upq0tPT1fHk+ciAu5zBQUIWmqYxNDSE3W7H6XQCUFJSwvz582loaCArK4s77rhDJWa5XC4KCwspKyujr6+PqVOncuTIEXbt2oXX62Xjxo20tLSwYMECrrnmGtXV7b2kiPE2JgR6FTxRNdFD3NIOh4O8vLw4u43cuz7gTRAIBC5bns35YMyJA4ajEMVVKaHNspLB2dWoxgNMpuEM1WAwSEpKSpynwWQykZKScpZdxmQyKddsJBJRDaJ/+9vfkp2dzW233cZ9992nmikJuru72bdvH9FolMrKSuWOE6OrtCiQc+sNb5cD55JsCgoKuOaaa/j9738PwO23364kRclVycnJITc3l6lTp7JixQoOHz7M5s2b2bp1K3/5y19obm7GarUya9YsRZrng/E2PuAMaejLLCRKhrJYyjuEM1KskIpe0hbJ5aolDqfTqR6adCKTRCmbzaZWTb0aM550WBg2ZjqdTnw+n4qOBJT+L9C75Vwul2oM/fvf/x6LxcKnP/1pbrzxRioqKpRxU4KoJJN03759ZGVlUV5ergaYNESSY6empsZd3+V8XklJSWRkZMQZsTMzM5k5cybPP/883d3d9PT0qEAuqXMqEGlp+vTplJWVsWjRIp577jm2bNnCV7/6VR577DGWLVsW58JOVFsS73W8jY9EJAbmiVStRyAQUOn1Ep8ji4LEgSRm3I4Fxow45AHIKtnd3c2JEycUyyZG243XJj3RaFQVlxU3K5zRcYUIvV4v4XCYlJQU+vv76ejoYGhoSE0+n89He3u7yq6VjNLMzEwaGhp4+eWXmTRpEtOmTWP37t1kZWWRlJSkurzrE9Au56AymYYTscLhMOnp6areqgS1+f1+fD4fvb29vPrqq0yaNEktEnqXuuTeSFHkQCBARkYGGRkZtLW1cejQIRUpK+dNjLzUSxjjzfMm718fr6GXPsRNr+9a53K5KCkpUapJYvi/fPSJhGOFMTOOxt6pdu33+3E6nRw5coTNmzcTCATichrgjEg+1pWdE6EP8BK3W2pqqlK9JKErNzeX/v5+3G43NpuN/Px8kpOTaW1tVW5Kp9NJZmYmGRkZhEIhFRxmNps5fPgwzz77LMuXL+fmm2/G5/MpFUCIQ9+t7XIV+pWB29/fTyQSoaKigmg0yuDgoKq6rmkaGzZsoKuri4KCAmpqasjJyWFoaIiBgQFCoRDJycmkp6crYhC1VJpASYi+iPb6c+ufu37oJrYVGGuIoV8f0CeNtfWkIVJ3NBolKyuLv/7rv6asrCzOjSv1OcSRIMcfS2PwmEoc+mpYwWCQzs7OOBuAlNTXG1LHg9QhA1a6kslENZvNKlpSWgsEAgEaGhrIyMggOzsbr9dLb28vbrdb5aKYzWbS0tIIh8McP35cpaCnpqYyODioalOkpqbidDppb29XIflyLokh0efOXM77l9SAvr4+2tvbKSwsVPdbUFCA2+3m7bffxuVykZycTCAQUN4XITyv16sWCLkHmVA+n+9dVRO5jpGIZTxA7+nR9/+V/8sCCfGRxCKRyZgXSVv+FTV4rD1IYxo5KiuKxWIhLy+POXPmxBU5kTJq47VBtEx6yW6UCRGNRuNSyQcHB8nOziY1NRWfz6dEfamvIQVuvF4vXV1dyl7hcrlYv3490WiUlStXsnTpUmpra1UNEJkoDocDu92Ox+NB07TL7qoToszOzqa/v5/u7m5yc3NxOp0qCjQnJ4fBwUGSk5PJyclh8uTJKjtYFgc4s3KKKC95Somp6IlIdMmON1UFzvSqEZuEEL2kIOgL+WiahsvlUjlJerKQv+WYwJgvomNGHImW5MmTJ6tKVhMd4o0xm82KHMU4HAqFyMzMVKSzceNGzGYzf/u3f8ucOXMoLCxUjZgkXFlWbCmQc7mt7cFgUNlrotGo6qGiT0qsrKxUrunCwkJuuukmFdcSCATU/ueyy4xXm9blhkhRiS51vXtXvDFjKXWMOUVfbYNDMl5TUlLURAPUtqysLDWZ+vv7GRgYIBqNkp2dTXZ2trIjwPCzk0bOcowLTam/GEjshkgNIvHIvZjNZoqLi5kxYwbd3d0cPnxYxZ243W6Sk5NV9S+9W1Ikj5GKOF8tGI/xSiNhzJPcEkXOiQrRY4PBYFzLAxie8HpvEgynn0vIeUZGhjImwnDim6zmMtD0UbejJbLrJQ2IbwWQmZnJtGnT+Mtf/kJDQwNutxuTyYTX61UuWlG3JHNYH/050cfDu+FKII8xlziuVogxT4J99DUbAHp7e9m0aROapjF16lTy8vKUt0ZvONMHE+mJ53Jfu95opxeZ5fwpKSlUVVWRkpJCX18fR48eVaUU5Z4T66xcLYvIRIBBHKMEkQpEPNe722TiSY4LDBdw2bBhA1lZWapGBRBnUJMJp29bMBp6b6JXCeLrqYoHLDk5mVmzZpGTk8Of//xnTp8+TW5uLqFQSMW1wBkVS3I75NkYGL8wiGMUoY8U1Pv3RY2Rps3RaJS2tjYaGhooLi5m/vz5Kh9EbAF66/poRxHqbRKSf6EPn5a4G7PZzIIFC5gyZQobNmygublZSVmingjZieqmd70bGL8wiGOUoVdP9FKDuHQdDgcnT57k+PHjmEwmysrKKCoqiosBkJVejgPx1vbLDVEzEmMoJFdHHxBXV1dHbW0tra2ttLS0AGe60yXGYehTEK5W4+iVAoM4Rhl69UQmiITe22w2kpOT2bVrF8eOHWPGjBmqYItEDcqkk6RAva1jtIhDSEIfjyHxCkNDQ8AZNcZmszFp0iRKS0vp7Oxk7969Krw6sdyhPsHRII7xDYM4RhkyQfT1RfTeFZPJxJ49e2hvb2fp0qWqcrd+YkmglD4EeTRFeznnSHVUA4FAHDEC5OTksGTJErxeL1u3bsXv92O1WpVXSIL+JN/GII3xD4M4RhF6iSDRPiDGwd7eXhobG4lGoyxdupT8/Py4dHk448YUEhG7wmhGTyZGNuolIr39BYbrSaxcuRKbzcaePXvo7OxUlcMSU8ul8pth4xjfMIhjFCGTLTGcWmwbwWCQ5uZm+vr6cDgcTJ48WWXByoSSqE04E/IeDofx+/3K2Hq5IZNaSEI6qCclJZGamqoyn6WCe0pKCrNnz8Zut9Pc3ExLS8tZ/V+FSCVnQ1/9y8D4g0EcYwhZWWWl7e3tZc+ePVgsFsrKysjJyYnT+cXtqu/wBmdStEd7lRa1QoyhZrMZp9OpErvEUGqxWMjKyqKoqAir1Up9fb2qYJ4onQg5jnW9CQPvjjGPHL1aoI8clUxQyYKViNCGhgaee+45qquruemmm84qBmQ2m1Ueij66UBLqRqNQMRBnjJWK7vooVjhTZEgvNSxdupRgMMj69evJyclRJRUjkYiqFn+15qhcaTAkjlGC3psiBlH5fzAYBIZLBLa2tlJcXBzXN1Tvshwpl0OMpqM14RJT2PV1YfX7JMabVFZWUl1dzbFjx2hqalL7ip1HImilnIKB8QuDOEYRJtOZLuP6eiOSTt/X14fL5SI/P5/s7OwR7RUj1dYc63qb5zq/PjAsEomQlpZGbm4uJpOJvr4+BgYGlIoj4fSAUncMA+n4hUEcYwRZnUXE3717N6dOnaKgoIDS0lKys7PH+AovPZKSkigoKGDBggV4PB5effVV+vr6sNvtJCcnq5BzA+MfBnGMIsSICShviLhVt2zZQktLC7Nnz1YtIeU3Vzr0buK0tDRuv/12AF555RUVMCbqViwWw+PxxBUqMjD+YBDHKEEMh2LPkHKJMBwDsWPHDvr7+7nmmmvIz88HJgZpwBl7h9QSvfXWW0lNTWXHjh14vV4A1eYyKSmJoaGhy1Y31cClgUEcYwRZhUOhEF1dXbS2tmK1Wpk9e7YqejPWtotLDfEKuVwu8vLySE1NpaOjg87Ozrh6qYZnZfzDII5Rgj6tHlA1Vbu6uti/fz9ms5mioiIKCgouaye2sYA+m1buv7y8nBkzZnDgwAGOHj2q+ohI7c2xLsZr4N1hEMcowmQyqZ6hUqz45MmTbNy4kbKyMmbOnKkmVmJfmSsZ+pB4AJ/PR3V1NYsXL2br1q0cOnSI9PR01XQoNTU1rjWCgfEHgzhGEYmRnpFIhMbGRg4cOMDMmTOZN2+e2lefwHYlQ19TVJLZbDYb5eXlTJkyhZ6eHtra2lRw3HitaG8gHgZxjCL0CV2apuHxeGhubqa1tZXp06czY8YMYLgSWDAYnBAShz7wTXJaLBYL6enpTJo0iczMTPr7+zl48CChUAibzWZUALsCYBDHKEIK3YhhtLe3l56eHiKRCGVlZWRmZmIymVSHu4kCKSMQDofxeDwq0CszM5OFCxcSiUT485//TDgcxuVy4fP5DHfsOMeYEcdIK8q5VtjxuvroJQiI7/WZCNku9TU9Hg9vvfUWbrebBQsWKBes2+3GarWSnJw8qvdyuaCv02Gz2UhJSSEcDqvmyrfeeivZ2dmsW7eOrq4uYLjdghhHxR4UCoXimhCJPUTfRtHA6GFMJY5zvewrhTxE5TjXtSV+pw+EkqI2oVCIpUuXkpGRgaZpBAIB7Ha76sY2Hu/7QiGSlvSXjcVi+P1+TCYTdXV1TJo0iZ6eHhobG/F4PKp9pkDfg1W/zSCMscO4UlXebSKOR7H1XBKGvjO7foDHYjEV9BWNRmlpacFisVBbW4vT6VQl9cZbK8P3A8mglfaPkmbvcrlITU3FZDJRXl5OXV0d+/fvZ/v27Wf9Xty4+uxbqRYmZQcm0jO7EjCmT/t8yWA8koYgkTzO1RtE36xoaGiI1tZW+vr6yMrKora2VhkFZYJNpJVUwupDoRB+v191bhfXc0VFBXPnzuXw4cPs3r1b/S4SiajcFX0IfmJPGQOjjzEjjonwws8lcZxr0ouRsLW1lQMHDuBwOCgtLSUnJwez2azqbopoLue40qGv5C41SfXPrbCwkFmzZtHX18fJkydVD1xJekusrapvK2GoLGODMZfv9OrJuT7jGfqJnVjuX18qUL/foUOH2LRpEzU1NaqYjb4jWjAYVMbAiYSRqrBHIhFSUlKoqKggLy+PUChEU1OTakwtBZH1Vc/0dU6l+pgUfDYwOrgkxBEe6qajP/AuewTo7+igo6Ofd92rv4P29nbOdahAfwcd3UOMx/Snc5HGSFLJ4cOHOXz4MHV1dUybNi3uN2IETPTYTARI4yV9mcBIJILFYiEnJ4dZs2Zht9vZtGkTvb29yoYBZz/fc20zMDp4n8QR4OTaf2FRbh6Fj20dcY++PY/zV3l5TF26nOVLp5JXfR+/rA8k7sQP7yygYPp13HTT9UwvmMLHf1WvI5kwDT/7CHc+9D/8z6MP8IEvvkLb+7vwS4ZEyUhPFImEEY1GOX36NKdOncLr9TJjxgzKyspUJqhkz0rAlLgaJwqkJQKcMSDL83E4HCxatIiMjAzeeOMN2tvbgfg2k3okVkUziGN0cfHE0beHpz46n8813M1PfnDtOfZ5iS9e810qf3mctuNHOHK8jeM/yuPfbv0qbw2qnXjpn67le5X/jyNNRzh48AhNR54g78ureER2OvUMXz3xEC/+7D/5zyee46cL/i/fWz9+5I7z9QJ5PB527tyJx+OhoqKCwsJCZduAYbE9EAhgsViw2+0TRtpI9IQIaeg73SclJTFz5kyysrLYu3cvzc3NAMo1LRXB5BMOh1WhZ8OrMvq4+Kd96gTOR3ay9sH5ZJ6jPGTbK0/yu8/9gu+syGN4eFjJW/Eo/2fl4/zglc53dlrLj37/WX72rZvJG94Ja97NPPKjFfzwB2vpBOhqJlQmx4DionL2nRovMse7Q6/Xu91utm7ditls5pprriEtLQ04W/SeqB4DvQQ2UquIvLw8Jk2ahN1up6mpiVOnTqlnlxjXIT1mE71ZBkYHF08ccz/EfTWOd9lhkD2vvsLdN81TE34YacxdcRt/2LifMDC491XWfuRG5ljiX3zanJu59Y9vcSAMzLmN2etepj4AhLtY++JpPn5d+UVf+qXEew1YKcILw8Sxfft2UlJSuPnmm1UjaYF+BZa/JxJ56NUTuTdJ+JNnJK7ZlpYWduzYgc/nU7/XG0UlahRQxlMDo4fLKN9103FiKrNK0876Jj+vHPY10Qx0d5xkyswS0kjwsOTlUs4+mpoB60K+/F/T+OWd05m+7GFa//pJ/qbq8l35pYDewCk2jHA4zMGDB3E6nSxevBiXy0UoFFITx2Kx4HQ6VUj2RBLBpRN9JBKJI41AIEAgEFDu59LSUlauXElnZyebN29mYGBAHUP/O323N0kKNDB6uIyjsplDm3PIGCnlonQGYhVpObSZnHd2ijcollKz5MxPLJNu5uuv1HN429N8ek5W3OFG23WbeC4xYiZKB9J1zWKx0N7ezuHDh8nPz6e4uFiVydMfL7HNgUwS/bnOp8r5eHVln6uNgt4VnZuby4IFC4hEIrS1tREMBhkYGMDj8cTlqhgYW4xd84pBPyGTCZPp3MltJtMQvuDIrk44OwZEtsuE1Iuv5xpwibkk77VP4v7iQtUX25XtIjU4nU42bNjAG2+8wcqVK5k2bRr9/f2kp6cr74m+j6w+T0Wv4+tdtDLZ9Ntk8slv9ASk/3ekHJrLDWncJJDzJ24zm82qyntfXx9DQ0Mq3b6iokLdo16Nk+JIBkYPl1HiSCYj9xxfeQfoSXNhB5IzcoGRiMPHQE8arjPj6j0Dw0YKHtPXvzjXR59Lkrj93X6v9w4IWUnNiWg0isPhICUlBYDGxkaOHTvGpEmTKCoqUm0R9O5E8RaIzp54DSPlwCTmw4w3KeNiIMbj/Px8nnvuOfr7+ykrK1MkLc9cv1AYxDG6uIzEkU3xlM0cah7hq942juamkgJkF09h86HmEQZ8L21Hc0hNid96PpMjkVzOJzL1vfY5l4ogg1hWQr0uLythIBCgubmZ3t5eSktLKSoqUt9JHoekn0tlMJEa3ovA9NvPR8K6EhCLxbjmmmsoLS1l7dq1dHV1KTeu2EKk4bZImlfy/V6JuIzEUcWsFbnsaGw865v9u15h6rXTyQcqZ95M7s5GTiS++AO7WDv1WqblnzvN/nKssu8m0ZwrsCvx/+IpENI4dOgQbW1tWK1WqqurKSwsVEFNouMnEsT5Tob3Sq670iD3Xl1dTUVFBY2NjapBteStJCUl4XA4SEpKmlA5PVcSLqvJfs7Kz9Dw+Avs18dqhbfyu+/Y+PyqWbITf9vwQ/4QvxPbfv9dbJ+7jVkJxzwfKUBv8xiNj37C22w2bDabuq6+vj42bNgAQF1dHQUFBSPaaPQGVn2H+pFIKnH7uQjtSkdBQQE1NTW0tbWxY8cONE1T6fVCtkaZwbHBRRtHA/0dDLzjARtwh8HrpqOjAwB7RgGZDrBe8xC/WFjO6o9n8Ltvr6Y8cITfPfIJ1tz3C/bWvLM6Wq/hn36+gMo7/pr03/wnt5cFOPr7R3ng/93Lz3fXnFPaeLcJMtKKfT4T6r0MhiNtE8KQmAJRO2Ql7OjoYMOGDWRkZLB8+XIV9KU3YOongDSVFpvJSAZO/f1PRMIQ5OXlceutt9LU1MT69euZNm0aVqtVuV71UqeB0cVFSxy7n1zO8uXDn/v+r5upbz2s/n5SlVTI4rYfHef5O/bzyK3LWX7/43Tc8Tw7v3MDmTrROvOW/83RZz/Aga/dzk03/Q0/7PwAz779bW7IPvfkSBwsYzF5JDtTrkcmvxg8o9Eora2t7Nmzh6KiIpYvX67K/uurectxNG04hDqxS70e57vtSkckEiE7O5sPfOAD+P1+tm7dOmJ3t4lMnOMZFy1xLPnKEY585Tx2tOYx/77HefW++M0y1qVUXt68e/nBK/eq7xMHgn6lHYk0EnG+k0m/34VOwGg0SjQaVXklYhQViaG3t5fTp0/j9/spLCykvLxcFafR30uiixWI86TItSUacvXXrFfPJgJisRipqalMmTKF1NRUOjs7aW9vV5XShKQNj8rYYEzDEj0eD7Nnz+axxx47r34a76Y+nEsquZCPHuezv37Ci5QgORRms5kTJ07Q0tJCcXExxcXF6tj6qEc5l+jtYjPRu2RHIrf3IpIrHRIX43K5qKqqIicnh0OHDtHa2nqWTcggjtHHmFY537NnDx0dHTz22GPcfvvtykaix7sNChk056p7caEYyfCZeM2JxlchDJEW9EVndu/ezYkTJ1i2bBllZWXqHIlh5GIQ1dtH9ET6bvclRDHRRHbxOkWjURYvXsycOXPYsGED9fX16hlOtBKLVxLGVOJYunQpmzdvZsaMGbz++uvMnz+f119/fcR932tijOR50BOKPuNU/xlp27t99PtLEV3ZJgNZDJy7d+/m2LFjLFmyhJKSEiA+30K8MYD6DaASuEa6Zv259J/E53OlTyi9W3revHlMmTKFdevW0dDQgMPhiOvBayS4jT7GPIOqtraWzZs3c//999PR0cHtt99+TtUl0cMw0vf6yaMXZUU9SCSCkVbsd/uMNNlFAhGpIxqN4vF4aGpqwu/3M3v2bPLy8tR59CqJ3pg6Eknpu7ePRBby/5FyQK5k6A3PLpeL0tJSent7VZFned4TKWL2SsKYFiuWT1paGj/72c9Ys2YNDocjTnVJtCnIb89Vs0K+i8ViqmtYLBajt7eXoaGhswjE5/Op4riJJCLn1JOPx+NhaGgIOJM/EggECIfDKi+lvb2dV199FafTyYIFCygpKVF5LCKRSHEavaQh9+l0OlXKvV6SkXPqQ9RlW6IkNNLz0U+w8a7aiNom7yY3N5f777+foaEh1qxZg8fjifNAGRhdjKun/vGPf5zdu3dTV1fHunXrmDt3LuvWrQMuTvSWPiaRSASHY7h2SDAYVB4Qn8+nJq4Y2xLjAhJjBfRShj5XBVDk0d3drWI35s2bh8vliruH97LL6MlkJLybkXiiQEL3RepIT09n+fLlxGIxtm3bRm9vL6FQSNXrmGj3P94xrogDoLq6mi1btvDZz36Wjo4OVq1axaOPPnrBXcyld0coFCIcDpOenq76l0onMY/Hg91ux2azqe2JqzKcKaqblJSEy+UiOTk5rs6GpMjL6tjT08OePXvIy8tj9uzZI17fuxHh1Sx6yzOXGhtC0k6nk+nTp5Oamkp3dzdtbW309vaqVpIGRhfjjjhguHDtk08+ya9+9SscDgePPvooK1eupLW1Ve0zksdDD7PZrLqiBQIB3G43ZrOZtLQ05S5NTU2NsyHoPRt6u4Xo26ImyGBOvI5oNIrP56OlpYXjx49TUlKiiONqJYKLhRT3cblcRKNRTCYTFRUVVFZW4nQ6aWhowOPxUFhYSDgcnlBNuq8EjF09jvPAPffcw/z587n77rvZsGED8+bNY82aNdx6660j7q8PgJKJqi/HH4vF8Pl8dHZ20tDQQHNzMxaLheTkZPLy8qirqyMrK0vZM+BMFe2Rji2EI5KHxWLh5MmTtLS0kJyczKRJk0hPT1eFdQ1x+vxht9sJh8MMDQ3F2YRmzJhBW1sb+/bto7CwkMmTJxvPdQwwrokDzqguDz30ED/+8Y9ZtWoVDz/8MI899tg5y+aLxyIUCmG1WrHb7cRiMQKBAJ2dnRw+fJg//elPvPHGGwSDQXJzc5k3bx7JycnMnz8/zlMi7lYhCynzJwFKAENDQ7hcLhwOB3v27KG1tZW5c+eqoK/E/Q2cG/KcU1JS8Hq9dHZ2kpWVhcvlIhwOM2PGDNxuN//n//wf8vPzWbZsmSIVA6OHcamqJEKvumRkZPCtb32LG2+8MU510WPPnj28/fbbyn6RlJSkbB0ej4ejR48ybdo0vvKVr/DQQw9RVlbGm2++yeuvv87hw4dV/U8xmurDw4PBoOoyJiudPodix44ddHV1ccMNN1BYWKi2J1b0NvDesNvt5OXlqWJI0WiUoqIiqqqq6Ovro729HY/HM669QxMVV9QSeM8997B48WLuvvtuNm3axNy5c0dUXe6++256enpobGwkIyNDWee9Xi+hUIiioiKqq6upqalhaGiIpKQkWltb2bVrF4WFhVRVVamciFAoFOfalPwUfayI1WolEongdrs5fvw40WiU+fPnk5WVZYRFvw+YzWblDdMXOc7KyqKsrIxYLMaJEydITk5W5GJgdHDFLIEy+SoqKtiyZQtf/OIX6enpYdWqVXz5y19WXhdN07jlllsYGBjgpz/9KT6fT6VhC0l84AMfYOHChaSmplJUVMSNN97IXXfdxenTp9m1a1dc2rZUHJdteklDXLLJycl4PB7q6+vxeDxkZmZSVlZGampqXMyIgQtDMBiko6ODvr4+pXbCcHe3VatWkZGRwZYtW+jt7R3jK736cMUQhx5Wq5X//u//5vnnn49TXVpaWgD4+7//ewCeeuoprFarcqEWFRVRXl5OcnJy3ETOzc1l+vTp2O12FecBZ8hKL2Xo2xjKflarlba2NjZt2kRubi4zZ84kNTVVHeNqdq++Hxw+fJjvfOc7bN68WT3/SCSC0+lk1apVALzwwgt0dnaO8ZVefbgiiUNw5513snv3bubPn8+mTZuYN28er776KtOmTeOWW26hoaGB1157TblZMzMzycrKUm0L9FGfok/n5OTEEYPUtpSgLWljKBC7RVNTE1u2bKGsrIz58+fHHcNoGHQG7yV5CVn39vayceNGfv3rXyu7kximXS4XxcXFpKam0traSltbG16vd0JJdokpBuPtvq5o4gAoLy9ny5YtfOELX1Cqy0MPPcQDDzwAwJNPPkk4HFZkEQ6Hla0DhutYdnZ20tbWRnl5OdOnT8fhcKjUbSkFKB4RvZFTXi5AS0sLBw8epLKyktmzZ8cV4zGI48KxefNm1q1bR09Pj7JR6fvqwnDzpjlz5tDc3EzjCLVtDVw+XDHG0XcT9S0WC//93//N9ddfzyc/+Ul+8IMfMHv2bFJSUnjllVdobm6muLg4LmlK2hO4XC7a29vZtWsXq1atoq6uDrfbTXJystrHZrOpIDCfz0c0GiU1NVUVy62vr6e1tZW8vDwqKyvJy8tTjZhMJhNOp1PZS65Gl6yslj6fj0gkQmpqqpIgEnuiDA0N0dDQwNDQEOnp6aSlpREKhXC73eTm5sbZl6ZNm8ayZct46623sFgszJp1pkKtPoFQ32dHCi3p43vGEySUYGBggBdffJHt27cTCAT40Ic+xE033RRXj3YsccVLHC+99BIvvfQSe/fuZenSpezfv5+lS5eyb98+PB4PAD/60Y/Ug05KSiI5OVmFn/f39zM0NITdbmfOnDmUlZUpySQx6zUUCqmWjYJQKMSuXbvo7u5mxowZFBcXK11cKn2JSzixgM/VAnmOkUgkTvoT25HeBtTc3MyOHTvIyMhgxowZqmmVpmlxbSQCgQBVVVUsXryYlpYWDh06pKTIxKJGYmcSshrvdUpNJhPBYJD6+nr+8Ic/8LOf/Yz9+/cDZ8h3rInjil7+WltbueOOO+K2paSkUFBQELftqaee4tFHH8XlcsU98MHBQdatW4fT6eTBBx8kKysLTdPIycnB6/WqwC6r1Uo0GiUYDKrMVX0Mx/Hjx/H7/UyfPl0VI05KSlL5L2JjGY+66uWGfqI7nU4cDgcDAwM4nU5SUlJUaLnJZKK/v1+1Q7jxxhuBYWIW75eokJFIBJvNhtPppKKigilTpgCwb98+KioqVF6SPm5GyjrKexjPkbwmk4nMzEw+8YlPkJuby7PPPsu0adNwOBx0dHSQnp5OZmbmmF7jFS1xTJo0iccff5zPfvazrF69mrq6OhwOB8ePH4/bz+12s2bNGjVQgsEgJ06c4O2336apqQmbzUZVVZUamBLiDKi0+1gshs1mw2w2x61Yg4ODNDY2Eo1GmTlzpiIO2U9fEexqDQDTh+3r41r0XqpIJMKhQ4fw+/1cd911caUW3W43vb29+P1+5V6XSFGTycSUKVOIRqNs2LCB/v5+VRBabyyVdyZSy3iVOsQWZrfbsVgs5Ofns3TpUnJzh9siFhQUkJ6ePpaXCFzhEgfAP/zDP5y1LRAI0NbWRmtrK42NjbS2tqo4jGg0Sn9/P4cPH+bw4cOkpaVRWFiIyWTC6/USDoeVKuNwONRAlRVOVBBRXU6fPk1XVxeTJk1i6tSpJCcPN9CW5LnEbNvxOFgvN4QghESdTqfqzGaxWAiHwwwMDNDU1ER2djY33HADFotFvTOPx0NfXx9Op1MRkBwrGo0yb948BgYG2Lx5M9dddx1AXJvIxLolieUQxhP019XU1ERPTw9lZWV0dXWxbds2UlNTyc/PJyMjY0ztZVc8cYwEh8NBRUUFJSUlXHPNNcoYBsPE0dXVRX9/P6mpqXzgAx+gqKgIgFOnTnH69GnS0tKYPn06WVlZ2O12hoaGCAaDqmSdyWRiaGiIpqYmDh48iM1mY9KkSRQWFipXraT1T7QiwhcLydeR56cP4W9paeHEiROkpaWRk5NDKBTCYrGQnZ1NUlIS2dnZFBYWYrfbcTqdxGIxle2cnZ3N7bffTktLC6+99hp9fX0AZ3mx9JNsPL8LIbVgMEhTUxPHjx/H5XLx6quvcuTIEdxuN5/97Ge5//77qa6uHrPrnJDEobe8i2jq9/vp7OzkwIEDvPLKKzQ0NGAymTh16hQZGRnKml9ZWcndd9+Nw+FQ1m1AkYCk36elpdHS0sLWrVspKChQ9g1Z0WSS6HumXM2JWPpgOiEGeTeNjY08//zzdHZ2kpGRQXV1Nenp6ezdu5fBwUFef/11HA4HS5YsYfr06aSnp6tQfwlJz8jIIDU1lZMnT3Ly5EnKysqU10vKKCRWUhuPNg79dR4/fpxDhw5RU1NDTU0N2dnZbN68Gb/fT29vr0Eclxp61UBE20AgQFNTE9u3b+cvf/kLnZ2dWCwWtm3bFtdU6b777qOyshKXy4XH46Gnp4esrCylpujL/bW1tbFr1y7uuusuZs6cGVcCEM6UFgyHwyqQ7GqEvAcxMHu9XhwOhzJWDw4OcvToUQ4cOIDJZKKwsBCfz0d/f79qxhQMBsnJyaGoqIjU1FSVwBiNRhkYGFBesYaGBvLy8qioqFDnF+IQ4hrP9iYZI16vl/b2dvr7+8nLy+OjH/0oaWlp/OIXvyAzM1OVrxwrTEji0LvfJHYiPT2d2tpaMjMzWbRoEXa7nfT0dHw+HxaLBZvNRl9fH/n5+aSlpRGNRrFarZSXl6soUCkWIy/31KlTtLe3M3nyZKqqqtT59YNSKoXpCwRdjZAMZYCsrCxVg9Xj8bBw4UKmTJmC3+9XeUEOh4PNmzerUgof+chHmDx5slIHxZ3e19fHyZMnyczM5NZbb+Xpp5/GbDazevVqVZkN4lUXvao0HtHX18fBgwdxOBxce+21fPjDH2bKlCl0d3eTmpoaJwmPFSYkccCZwREIBDCZTNjtdpKTk6murmbq1KnKa/Ju8Pv99Pf3q5VPX9aus7OTkydPUlBQQHl5ucpN0RdUlr/HqwV/tCDuWFHzwuGwio2xWq3k5+ervjMw7PWy2+34/X4sFgtTp07l2muvxeFwMDQ0xLFjx2hqaqKpqYmuri7C4TBLlixh7ty5PPPMM7S0tNDQ0MDkyZNxOBxYLBZVU1YIfDyjr6+P+vp6iouLmTp1KlOnTlU9e3w+HykpKaqO7VhhQhKHvuWA3+9XgVti3Xe5XGpbcnIygUAAr9dLamqq8q4EAgE6Ojqor6+nsbGRQCBAQUEBSUlJdHV1sWPHDnw+H0uWLImruxEOh1W0KRhFdGE4JX5gYID09HRsNhs9PT24XC7S0tJwuVxKLUlJSYmLioxEIiqexu12MzQ0xOHDh9m8eTPbt2/n6NGjBAIBJk+ezOzZsykqKmLy5Mk0NDSwadMm0tLSKCsrw2KxqDwXeS/iFh6PkPIM8+bNY8GCBcqw6/P5aGtrY+rUqUyaNGlMr3FCEodEbvr9fqVLS10NGThi3ff7/bhcLpxOJzt27GDz5s3s3buXo0ePAjB58mRSUlKw2Wy0trZit9vp7OxU1dhvuOEGMjIyAJQtJZE4xqshbrRgs9mUt8Tn86k6JUNDQyqYS0LLI5GI8kxpmqZyidavX8+mTZvo6upSQXo33HADtbW1OJ1OysvLCYVCzJkzh4GBATZs2KAigQX6EpJyntF4L4klJ8+1j3zf2dlJS0sLt912W5wK3NXVxe7du5k0aRKlpaWX96LfAxOSOPTGSQnqGhwcjNN5ZUKfOnWKrq4u+vr6OHz4MKdOnWJoaIjk5GQyMjKoqqqiuLiYlJQUFSYdiUQIBoMUFBSwaNEiFbsh55RBIOeQkPOrEfIc7Ha7Mo6eK49EvFGyLT09nWnTptHW1sYbb7xBa2sr+fn5TJkyhaqqKhYtWnSWilNXV8fRo0d5/fXXaW9vB1AtFPREMVpEru8HpDee61Va8bjFYjE6Ozvp6+sjLS0tLgJ68+bNvPrqq+Tn51NaWqoCDccKY0Ycl1vn11c59/v9DA4OkpqaGqcbdnd3s3v3bl544QW2b9/O7Nmzueaaa7j77ruZPXs2mZmZ+P3+uICllpYWNE2jqKiIyspKxfwyEIREJPDLZDIpl+HVnCGrDwLr6+sjOTlZRUD6/X7cbjcul0uRuwTi3XTTTWzbtg2v18uKFSu4+eabmTVrlkpSE9uFuL+F6N1ut5qEXq9XxeTAyMF5lwviVYN4F7DkO+nbhmqaRltbG36/n6qqqjhS/e1vf8vmzZv5X//rf7FkyZIxD2AbM+K43DetD/c2m80UFhYq9aGzs5ONGzeyceNGPB4PkyZNYvHixUyaNInq6mqqq6tVLkBi7Q0xvFVWVlJeXq6+m0i1IC41ZIIDcXVgo9GomsQSei7j4pVXXuGtt97C7XZz7bXXUltbS11dHUVFRXHBXJKtLMdwOp1MmzaNm2++mebmZrZv386yZcuwWq0EAgFFHqNVmU2kCyEKccvrx5WQn9lsZurUqTQ1NfHHP/6RV155haSkJFJTU6mrq+PRRx9l/vz5pKam4vP5xlTqmLAShz5i02w2K9I4ffo0r7/+Ohs3bqS1tZXq6mquu+46NbgkESsUChGNRlUrRhkAhw4dor6+nlmzZsXpn6NxT1cq9M9FPCui7onXw+FwqIjcEydOsH79ek6cOEFtbS3XX389CxYsUJ4rMXTKv4mTs6SkhFWrVrF27Vo2b97MypUrgWGSsdvtKmT9codsJ+bKCMHpc3X04zQpKYm0tDSqq6spKyujp6eH3t5egsEgCxcuZPXq1er+vV7vZb3298KYEceFdma7UIiBUoJ+hoaG8Pl87N27l5/+9KdkZGSwevVqFi5cSFVVFZmZmXHpyv39/WiapmwkoVAIv9/P8ePHaW1t5f7771fJVUZpwHeHkAWgDKR6KUEyWd1uNxs2bOC5555jcHCQWbNm8eEPf5iysjJF4IL+/n7MZjPJycmq/UUwGMTj8ZCWlsbixYv59a9/TXd3N0NDQ6SkpChpRkhHru1yQd/nV99oXNzR+m1wxgZSW1vLt771LVV+wGQyxSW2SY2XscSYEcfljKIUspDktHA4THd3Ny+//DK7du2irq6OmTNnMm/ePCorK0lJSVEDWQaXEAagwshbW1vp7e3FbrczefJk8vLyjFyU84AQr+QMBQIBFS4uhOLxeHj77bdZv349jY2NfPCDH+SWW26hvLyclJQUTCaTqm+iaZrqwieiv4yn3t5enE4nhYWFTJo0iZMnT7Jjxw5mz55NTk6OctOPRvSoSBQ2m00ZZvVRzfoqcfroZavVSmpqqpKwANXaA4bVnbEuCDVhbRz6oB8pGCNl6FavXq2iSEXn1VfRBhSZiNsuGo1y7NgxIpEI5eXlyuI92lb6KxFiIBTiEDuHPvGwu7ub7du309raqmrGzpw5U8VbyEot+Ud6T5ZAjK/RaBS73c68efMIhUJs3ryZ/Px88vLy4iqAjda9n88iKYSoJ1kxnIraHIlE4spQjmUKw4R0xwrsdrsSSfPz87nnnnvw+/2UlZWRmZkZN9nFBiIQK7fH4yEjI4NAIMChQ4dwuVxUV1efV+SpgTMQdyOg7BmCoaEhmpubOXr0KIWFhXzqU59i2rRpAHGV2BLtVfK9TDKIX5CuvfZaPB4Pb7zxBosWLWLWrFkMDAyQnJw8aqK+SBP6vCmIb2guDcAkkVK8TJJo6fF4yMrKIi0tjcHBQVWhbizH4JgRx6uvvjoq5xF9Mj09naSkJILBIJs2bQJQNhA9pFOb6MR+v5/s7GxOnTrFn/70J7KzsykpKWHr1q04nU58Pp8hbbwL9KUX9Z4uOKNSnjhxgr1799LY2EhtbS19fX288cYbwHAsh9vtxuPxYDabcTqdWCwWvF6vypCVZDlJoLNYLLhcLgKBAKdPn+btt99m8uTJOJ1OOjs7VQOnUCh02SJIE0tOCjnoDaay3eFwUFJSQlVVlWpnKVKRfLxer4pu1mf5jhXGjDjWr19/WY8vTK9pGna7naysLFJTUwmFQjQ2Nir7h7gARef0er243W6ys7NVUd1YLMbRo0fZuXMn8+bNw+PxsH379rgcDAMjQy8liLohUoKmaQwMDHDo0CGOHz+uurPt3LmT7u5uAIqKivB4PHi9XhVMF4vF6O3txWQaLjadkpKionZFBZE4kNbWVtxuN1u3blUqgJSDlMpul4s4RC2T8oh6yUgKX8diMfLz89E0jUmTJqkqc2IXETf14OAgoVCIzMxMlbcylhgz4hBj0OWExApIvkNqaqqSMsSeoRcj9R4Uu92uAsj27NlDfX09WVlZlJaWkpWVhdvtVsY6A++OSCSCx+PBZrNht9vVJxKJMDg4yNDQEDabjbq6OgoLC2lra8PlchGNRjl69ChFRUWUlJQQCoXo7e1VXhJxq/b39ysPjbh6w+Ewfr+fjIwMlixZQmdnJzt27GDx4sVxUsDlJA4gToUSW43YK0QN05dT1JOryWRStVKl4lcoFGJwcBCPx3N11uMQ3/rlggwqqQMxNDSk8lb07lO9tGGz2QiFQng8HpKTk5VVu7GxEbvdzooVK1ixYgV1dXUqZ0JvUDVwNvTFe2QVdjqdqpbGzJkzuf766wmFQlRXV+N0OvF6vaSkpKj08dTUVNLS0jCbzXi9Xnw+n/JS6LOP9VG6Mimj0ShLly7lqaeeoqenh2XLlpGXl6fC0Efj/vV2F30NWrFvWK1WSkpKVIyJpErAGZVHX8/FZrOp78cKY0YcK1asuOznkAI6MFwYRYoQv9cKIxGNMPzinnvuOdLS0rjrrrtYvnw5eXl5yqV4tRbnuRhInsq5DJPSfjNxUohKoU8XGKlKuf596xGLxdiyZQv79+9n6tSpTJ8+fUzVy8RrF/uNkKmoOPoq+SKp2Gw20tPTx7zJ9oT2quhdbtLS4N0GjKwG+hWis7OTvXv30tbWxqJFi8jLy1Mp+gYuDImeq/P9XlZiPRKfv0SiyjsPBALKXpCUlERtbS29vb384Q9/IBgMMmfOHPVb/UKRCDHkXsrwgcRrF0IU6UIkYn2QmH4h0/89VpiwIecQn6qsD7Y532vq7+9n3759BINBCgsLycrKUvvpQ4gNnB/eK738XN+fT8UufbzESMWTpkyZwqlTp9i5cydTp05lzpw5KuZDP0ETM1cTSw1ejnGbeGx9drVgvC1UE3rU61/y+YSFJyZatbe389Zbb5Gbm8vSpUtVlqNY9sdzMZjxiPd6B+f6/nzenYj3QjLSW0VQUVFBVVUVPT09dHZ2Ko+Ynvz18SKJNrDLiSsxZWFCE8fFQELVYTjt/vXXX6ewsJCVK1fGRYkm9uwwMPaQAk5iF9C/y7KyMqZNm4bdbqetrY2jR48Si8UU2egjjCX+AkYmEwMGcZyFWCymVqKenh5OnjxJUVER8+bNw2w2EwwGiUQicYPLwNhDPChiUBRXvLhdYbjzX21tLf39/WzZsiXOthEOh+MCwvRqk0EYZ8MgjgRIXkVHRwddXV1YrVaKiopIS0vDarUSCoVUC0KDOMYP9EV99ImH+kzYjIwMbrzxRiKRCG+99RaBQED9XmrQJv5eb3cw1NIzMIgjARKtt2vXLo4fP86cOXNUpzcJBzZWoPEHfSyOuGSF3GUxsNlszJ07l+TkZNXcWn4rwWOJdjE5hti0DAzDII4ESO2It99+mxMnTrB8+XJVxVwGpjGQxickzV7KIEjimJCH1WqlsLCQoqIi7HY7R48epampSTUUF4OqRGvCGY9HJBIxFgwdJnQcx8UiHA6zd+9e+vr6WL58OTk5ObjdbtLS0rBYLCpZDi5/eQAD5wcxVIs7VYLBEgPCNE1TBZD3799PWloaubm5KpZCDKpJSUlx2afiUTMkzmEYoz4BHo+HxsZGVUmqsrKSjIyMuNJ0+lBnQ+8dXwiHwypCdSRomkZNTQ0LFiygubmZI0eOMDg4qNQSvVFUjmEQxdkwiCMB3d3dHDhwQHW8T0lJwW63qwQjfVai4Y4dPxDjpXi99CQg3hbJXyktLWXq1Kn09vZy+vRpPB6PIhtRVUUdlUAswzgaj6uWOM4VldfR0cHevXspLCyktrZW9Tt1Op2qr6mEAxsDafxBbBHSZkECvfr7+xkYGFCGUJEivV6vytCVpl0Oh0MF+QlxXO29fxMxoYlDQoalkZIgHA7j8/mUO04GFwxXQd+wYQOFhYUsWrRIVWWKRqOqjoOUsjfsG+MPUqVeIESRnJysCv4A5OTkcPfdd2M2m3nmmWdU9rSoJ6Ka6ssuGO/7DCb8k9DnlehrOgqZyLZwOMzAwACtra10dXWphr/SFV1aJYjl3RBdxxdEEnA4HCopTt6TzWYjOTk5rk5pamoqf/VXf0VaWhpr166lp6cn7lj6fBf525A2zmBCE4dIBuKi0w8Am82mLOlSnm3r1q20tLSwcOFCysrK4jp/SQiz7G9EFI5PjPReRgoZN5vN5Obmkpubi8Vioampif7+fjVWBDJuvF6vKq5jYIITB5ydVyLEIRmR+rTpt956i5MnT7J48WIqKyuVnivh5fp6mUYcx5ULfQJbZWUlU6dO5cCBA+zfv18ZVSVpTtyzhqoSjwn/JBKNoIkp0jKIwuEwu3fvpru7m3nz5lFcXAycKXEo9hKDLCYWpkyZwrXXXkt9fT27du2KIxW73U4oFFKtIxMjS69mTGjiSFRPZCWx2WxEIpG4CuVdXV309PSoxsVSNjAYDCryEJuIYSy7siGLgMfjoaKigptuuonOzk7q6+vx+XxxLl3JTZLAPwPDuKqehKwW4lqTwdHW1sbOnTtJTU2lurqa7Oxs1TFdTzr6gWMQx8RAcnIyJSUlZGZm4vV6OXr0KG63WxnU7XY7TqfTMI4mYEKPfJEQBPqqXRLkYzKZaGhoYMOGDVRWVrJw4UJV7VyMqyKVCOGI3cMgjisTiQWBk5KSmDNnDikpKWzevFn1pZUWCykpKSp/xTCODmPCjnzxw+uDtSQcWbwqDodDdWjbunUrtbW1XHvttcpoKklt8nt9y0Jj9bnyIdHAPp+PFStWkJeXx4svvojb7VbtJGX8GO88HhOSOMSDordJwBmJQ+9J6e7upqWlhf7+fiZPnszkyZPVABE3rCFZTFxIVfG6ujoKCgo4deoUnZ2dAKpHSygUUuPAII9hTOgZca6it2LsjEQitLS0MDQ0RHZ2NkVFRaoPC8TXm0w0shq48qFpw31eUlJSSElJoaCggPT0dJqammhpacHhcBCJROK8KgaGMaGJIzGfRNKsxegZDAbp7u7GbDZTVVWlAsKkEhSgUrSDwWDcdiMA7MqFSKRSGkEiTfPz87n22ms5duwYW7duBc602BgPi8V4uAbBhCQOvetV7BXSC0VyTaQL+NatW/H7/Vx33XVkZGQAZ4ygciyBPpgs8TsDVw4S2xBEo1H8fj/l5eXccssttLa2qt7Aot6O5rXJ9emDDPU2u9G+ppEwYfuq6DMaI5EIfr9feVNEV+3t7eXFF19k+vTprF69muzsbOBMgxxJs363+qIGeVy5sNvtBINBfD4fSUlJlJaWkpeXxw9/+EMaGhro6+sjKSlJTdjRyI7V29+EHMTDI+5hqaP6Xg2uLicmpMQBZ3rH6tOsg8EgXq8Xp9OJx+OhubkZk8lEZmYmWVlZcQlsBiY+xMYhblkZL3V1deTk5LBhwwa8Xi9ZWVmqZsdojo2RWjOI1DvWBvsJSRx6VUJY2263q9YHSUlJnD59mvr6ekpKSlSzY0MFubogLndZMAKBAOFwmKVLl1JUVMSf/vQn2tvbVXX70VAPzpV1rVeTx0NrjjFTVS43c8vDlVqR0iBaRMHDhw+za9cuamtrmTt3blxtSkPiuDqQmDJvMplwuVwsXLiQI0eO8JOf/IQVK1awaNEiFSk8GmPjvc4xHko6TEiJA848fPHDi7pisVjo7u5mz549HDx4kBkzZjB16lRVVm6sX4iB0YMYzsPhsJI8bDYbOTk5FBQU4HA46OvrY3BwUFUFGw1pVK+WyL9CWon9bccKE5Y4BJFIRIULSwn83t5e2tvb8fv9TJ48mcLCQrxeb1w9UQNXB2SSikQqf5eWlnLTTTeRkZHB0NBQXE/h0bgegb7eaWIg41jiqohoEVeWDI5IJEJOTg7Tpk2joKAgLrzYwNUDyUWSdPlIJKIyYadMmcIXvvAFXC4XNptt1I2igsSyECJtjPUiNyFtHPoHL7YOCeQxm82kp6czf/58SkpKVOyG0+lUBidDXZn4EKKQsZHYdDojI4P09HQV/6PH5Rof77Zw6V3BUkd3LDEhJQ79i5XYDTF+mkwm0tPTmTFjBqWlpcoVpy9ka+DqgBQilv/rizZJvI+Qit7ecLlwPkZRGB/V50yaIZ8bMGDgAjHhjaMGDBi49DCIw4ABAxcMgzgMGDBwwTCIw4ABAxcMgzgMGDBwwTCIw4ABAxcMgzgMGDBwwTCIw4ABAxcMgzgMGDBwwTCIw4ABAxcMgzgMGDBwwfj/AZWS0TVyp01BAAAAAElFTkSuQmCC",
"path": "images_version_5/image_41.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
then angle 4 is equal to ()
Choices:
A:80°
B:65°
C:60°
D:55°
|
sau đó góc 4 bằng ()
Lựa chọn:
A: 80°
B: 65°
C: 60°
D: 55°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: then angle 4 is equal to ()
Choices:
A:80°
B:65°
C:60°
D:55°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: then angle 4 is equal to ()
Choices:
A:80°
B:65°
C:60°
D:55°
|
then angle 4 is equal to ()
Choices:
A:80°
B:65°
C:60°
D:55°
|
205
|
41
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAJqCAYAAACitd0kAADB2ElEQVR4nOydd5gVxdLG3yUsOcOSYcmw5CCCIEEQQRTBgAnFrKjfVa/3mhUwXjMm9CoooKJiQEyA5AySlChJcmbJGaG/P86tnjp7+oSN7LDv73n2oamZ6e6Z6ZnTU9VVFWeMMSCEEEIIIb4l19nuACGEEEIISR+c0BFCCCGE+BxO6AghhBBCfA4ndIQQQgghPocTOkIIIYQQn8MJHSGEEEKIz+GEjhBCCCHE53BCRwghhBDiczihI4QQQgjxOZzQEUIIIYT4HE7oCCGEEEJ8Did0hBBCCCE+hxM6QgghhBCfwwkdIYQQQojP4YSOEEIIIcTncEJHCCGEEOJzOKEjhBBCCPE5nNARQgghhPgcTugIIYQQQnxOpk7obrnlFsTFxSExMTEzmyGZTFxcHOLi4jBgwICz3ZUsoUOHDoiLi0OHDh3OdlcIgKlTp9oxOHXq1LPdnUxh4MCBiIuLQ7du3UK2jRo1CnFxcahduzZOnjx5FnpHCPED1NAR3zN48GD7gx8XF4dhw4ad7S4REjNbtmzByy+/DADo379/yParr74aSUlJWLNmDd55552s7h4hxCekekI3bNgw+8O5YcOGTOgSIbGzbds2PP7442e7GySbk52tBc899xyOHTuGSy65BK1atQrZnitXLjz55JMAgJdeegmHDh3K6i4SQnwANXTE19x///04ePAgEhISMqzOqVOnwhhzzpr3SPZh69at+OSTTwAADz/8cNj9rr32WlSsWBHJycn44IMPsqp7hBAfwQkd8S1jxozB6NGjUaZMGTz66KNnuzuEpJrBgwfj1KlTKF++PDp16hR2v9y5c+Paa68FALz33ns4ffp0VnWREOITOKEjvuTQoUO4//77AQCvvfYaSpYseZZ7REjqOHPmjF3vef311yNXrsiv4xtvvBEAsHHjRkycODGzu0cI8RkxT+jE0+zWW2+1smrVqgUtRo/mhbZ//34888wzqF+/PgoVKoTixYujXbt2+Pzzz2Pqw9GjRzFo0CB07NgRZcuWRXx8PBISEtClSxd88sknEb9aExMTERcXh1tuuQUA8Oeff+LOO+9EYmIi8uXLh7Jly6JXr16YO3duTH2JxF9//YXXX38dl19+ORITE1GgQAEUKFAAVatWxbXXXotx48ZFPD7lOsUzZ87gww8/xAUXXIASJUqgUKFCaNSoEV544QUcPXo0an+WLFmCm266CRUrVkT+/PlRpUoV9OnTB4sWLQKQceuLVq1ahX/84x+oX78+ihUrhgIFCqB69eq49dZbbVsZxeOPP44tW7agQ4cOuPnmmzO07mherqdPn8awYcNwySWXoFy5coiPj0fx4sVRq1YtdOrUCS+++CJWrFiRrj4YY/DNN9/gqquuQuXKlZE/f36UKFECLVu2xHPPPYf9+/dHrWPLli247777UL16deTPnx8VKlRAjx497GRgwIABdpylZMOGDTE7maR8tlKS3uchPcg5Dh8+HEBgMpTyneU6fyBwDR566CHUr18fRYoUQcGCBVGrVi3cfffdWLp0abr7NnPmTGzbtg0AcNVVV0Xdv1mzZqhWrRoA4Kuvvkp3+4SQcwwTI1OmTDEAov5NmTLFHtO3b18DwFStWtWsXLnSJCYmhj3uvvvui9j+b7/9ZipWrBix7ZYtW5odO3Y4j69ataoBYPr27Wu+/fZbU7BgQWcduXPnNl9++WWslyWEv/76K6br1KdPH3Pq1ClnHZ988ondb9myZeaiiy6KeM6HDx8O259hw4aZvHnzOo/NmzevGTZsWNB9ciH79+/fP2w7zz77rMmTJ0/YfsbFxZlnnnkmNZcyLHPnzjW5cuUy8fHxZuXKlcaY4Gv2ySefpKv+9u3bGwCmffv2IdsOHTpkLrzwwqj396qrrkpz+7t27TJt2rSJWH/ZsmXN3Llzw9YxdepUU7Ro0bDHDxw40PTv39/+PyXr16+P+XrqZyslGfE86HePfr/Egj7HSH8pGT58uMmXL1/Y/XPnzm1efPHFVPUlJQMGDLDP4bFjx2I65rrrrjMATLVq1dLVNiHk3CPmCd3hw4fN0qVLzfPPP29fauPHjzdLly4N+tOTC5kolClTxtSqVcsUKVLEPPXUU2bq1KlmwYIF5qOPPjKVKlWy9Y0bN87Z9pIlS0yhQoUMAJOQkGD69+9vJk6caBYvXmzGjx9v7rvvPjuZOP/8883JkydD6pAfnaZNm5r8+fObatWqmXfffdfMnTvXzJkzxwwYMMDkz5/fADBFixY1u3btSsPlNGbNmjUmPj7eXH755ebtt982EydONIsWLTITJ040gwcPNvXr17fnG26CoycnF1xwgcmVK5fp27ev+fnnn83ChQvN6NGjTevWre0+jz32mLOeGTNmmFy5chkApkCBAuaJJ54w06dPN/PmzTPvvfeeqVSpkomPjzdNmzZN14Tu6aefDurvkCFDzJw5c8yCBQvM559/HtTXt99+Oy2X1XLy5EnTsGFDA8A8+eSTzmuWmRO6hx9+2LZz2WWXmS+++MLMmjXLLFy40IwbN868/PLL5sILLzRXX311mto+fPiwqVevngFg4uPjzd13323GjBljFi1aZGbMmGFeeOEFU6pUKQPAlChRwmzYsCGkjvXr15siRYoYACZXrlzmnnvuMRMnTjTz5883Q4cONbVq1TIATIsWLTJ9QpcRz0N6JnQ7d+40S5cuNVdccYUBYCpUqBDyzlq6dGnQMT/99JOJi4szAEzhwoVN//79zYwZM8ycOXPM66+/bkqXLm37M3jw4FT1R9OpUycDwDRr1izmY9544w3b9pYtW9LcNiHk3CPmCZ2gfzjXr18fcV+Z0AEwxYsXN8uWLQvZZ82aNXYi1aNHj5DtZ86cMY0aNTIATOPGjc3u3budbY0dO9ZOXoYMGRKyXX50AJjmzZub/fv3h+zz2Wef2X3eeOONiOcWjsOHD5tt27aF3X7mzBlzyy23GACmUKFCzn7oawzAfPrppyH7HD9+3DRo0MAAMKVKlXJqNxo3bmwnBrNmzQrZvnPnTlO9enXbTlomdL/99pu97k899ZTz+NOnT5s+ffoYAKZIkSJm3759zv1i4YUXXjAATPXq1c3Ro0etPKsmdJUrVzYAok7YkpOT09T2/fffbwCYYsWKmfnz5zv32bBhgylfvrzVbKXkyiuvtNdi5MiRIdsPHjxox0ZmT+gy4nlIz4ROiKaFFk6ePGktAYULFzaLFy8O2Udf/4IFC4Z9J0XizJkz9iP19ttvj/m4adOm2WsxatSoVLdLCDl3yTKniGeffRb169cPkdesWRM9e/YEAMyYMSNk+88//4wlS5YAAEaMGIHSpUs76+/atSuuvvpqALBhAMLx8ccfo1ixYiHyG264ARUqVAjbl1goVKgQypcvH3Z7XFwcXn/9deTOnRtHjhyJurj5yiuvRJ8+fULk+fLls04BycnJIWu25s6diz/++AMAcN999+GCCy4IqSMhIQFvvvlm1HOKxMsvv4wzZ86gefPmePbZZ5375MqVC++88w7y5cuHQ4cO4ZtvvklTW2vXrsVzzz0HIODpV6BAgTT3O63s2LEDAHDhhRdG3C8tThp79uzBkCFDAASelxYtWjj3q1q1Kp5++mkAgbVUeh3l9u3bMWbMGADAZZddhuuvvz7k+CJFiuDDDz9Mdf/SQkY/D5nN6NGjsXXrVgDAk08+iSZNmoTsU7VqVbz66qsAAut6o71vXOzbtw9HjhwBgFSF3NH7btmyJdXtEkLOXbJkQhcXF4cbbrgh7PbmzZsDCLzkUi72lh+nOnXqoFGjRhHbadeuHQBg/vz5YR0kGjZsGLaeuLg4NG3aFEBgIXdGcOrUKWzZsgUrV67EsmXLsGzZMmzbtg2lSpUCADvpCod4trmQ6+bq76RJk2y5b9++Yevo3r277UtqOXXqFMaOHQsgEM0+3OJyAChevDgaNmwIAJgzZ06a2rvnnntw/PhxXHPNNejatWua6kgvMjlJOZHKCMaPH4/jx48DAHr37h1xXxnrp06dwsKFC618ypQpduxrB6aUtGzZ0vmBldmk93nIbGRCGRcXh9tuuy3sftdcc439KEzLJHT37t22XKJEiZiP0x8Kug5CCMmTFY2ULl064qRBv6QOHTqE4sWL2/8vWLAAQMCDMtKEQXPy5Ens3bsXZcqUCdlWt27diMdKX9ITjf3UqVP48MMP8emnn2Lx4sUR8y/u2bMnYl2R+pvyummWLVsGIKDJa9CgQdg6cufOjSZNmgRNAGNlxYoVdlLz+OOPx5yxQbRcqWHYsGGYNGkSihYtikGDBqX6+Iyib9++eO655zB79mxUq1YN11xzDTp16oS2bds6x1tqkLEOIKJWKyX6emrvy/POOy/icS1btsTy5ctT0cO0kZHPQ2Yjz01iYmJEzVl8fDyaNm2KqVOn2mNSw969e205NRM6vW9ycnKq2yWEnLtkyYSuYMGCEbfr+EspNWu7du1KU5vhtCex9iWtgTv37t2LLl26BGlNInHs2LGI2yP1N9J127dvH4DApC937twR20jrRCSj7004du/ejX/9618AAmmSxCx+Nnj66adtdP9du3bhvffew3vvvYe4uDjUr18fV155Je69916ULVs21XVnxPWU+w5EN+WlpY+pJaOfh8xGJlqxXJty5coFHZMa8ufPb8upOWe979lYckAIyb5kyYQuPchEpU2bNqlKeXO2fvQfeOAB++PVs2dP3HbbbWjUqBESEhKQP39+q2WsUqUKNm/eDGPMWelnRqAnka+++mrMZtBChQqlqp0hQ4YgOTkZxYsXR6lSpfDll1+G7DNv3rygsvxgXnTRRRmaFixv3rwYOnQoHn74YXzxxReYPHkyFixYgJMnT1oT4htvvIHPPvsMV1xxRarqlusZHx8f8wQIACpVqmTLejxF02hnxdjz6/MQizUgPX3VH1GpmRDqfdOrESaEnFtk+wldqVKlsHPnTuzevTui6TA7cPDgQRvw84YbbogYMFlrUjIDMc3s3bsXp0+fjqilS+taHG1GP3XqVKbdnxMnTgAIBKZ2OYik5IMPPrCT/ylTpmTohE5ISkrCc889ZxOrz5o1CyNHjsSIESNw+PBhXH/99Vi3bl2qTKdyPU+ePIlSpUql6lhBm+F37tyJypUrh903kkZQa3/PnDkTsU1Z3J+S7PQ8xIpcv1iWBezcuTPomNSgJ2OpOXe9Lyd0hBBNqp0iYl3HllGIk8Lq1auxcePGLG07taxZswanTp0CAFx33XVh91u1ahUOHz6cqX2RBe8nTpyIGNX+9OnT+P3339PcRnx8PADg119/TVMd5wIFChRA586d8fHHH1vvx2PHjuGnn35KVT0y1oG0X09xPAECzkGRiLS9SJEithxpwpGcnBx23Vt2eh5ifW/JR8mGDRsiTnhPnTqFxYsXBx2TGvLly4datWoBCLzbYkXvq+81IYSkekKn136I5iQz6dGjhy2/8sormd5eevj7779tOdI6sdSYjtOKTvQ9YsSIsPv9/PPPaV5cXbBgQdvO1KlT8dtvv6WpnmgMGDAAJhAzMeyfDh3xySefWHm49F2Zhb7uqV3g361bN+TNmxcA8OabbwaNp1jp2LGj1cZKuisXCxYsiLiYv0SJEtY5STtrpOSLL74Iuy07PQ/y3or2zurcuTOAgDn1448/DrvfN998gwMHDgQdk1ok9E20ibdG9i1QoECQlzshhKR6QqfNQOvWrcvQzri46qqrUK9ePQDA+++/j6FDh0bcf9myZfjxxx8zvV8uatasaTUB4SZRP/30E955551M70vr1q1teJb33nsPs2fPDtln9+7deOihh9LVzpNPPmnP+brrros4Jk6fPo2RI0f6Nn7W3r178cMPP0RcO6U1a5J3M1YqVqxoQ4388ccfuPvuuyNO6nbt2mXj1gnly5e3a/d++OEHjBo1KuS4w4cP46677oraHwmNMmbMGOd9XblyJZ555pmwx2en50HeW7t27Yrowd6rVy+7/vbFF190hlHZvHmzddIpWLBgxPAwkZAJ3Z49e7B+/fqYjpGPpvPPP99qxwkhBEjDhK5p06b2a/fpp5/Gr7/+itWrV2Pt2rVYu3Zthnup5c6dG1999RUKFy4MYwzuuOMOdO3aFSNGjMC8efOwaNEijBs3Di+99BLatGmDhg0bYtq0aRnah1gpVaoULr30UgDAL7/8gq5du2L06NFYuHAhxo4dizvuuAM9e/ZE9erVs2T9y3vvvYdcuXLh5MmT6Ny5M5566inMnDkT8+fPx/vvv4/mzZtj8+bNNnhqWszpbdq0sT/q69evR5MmTfDggw/il19+weLFizF37lx8+eWXeOCBB1ClShXceOONMSWWz44cPHgQV1xxBapXr46HH34Yo0aNwrx587Bw4UL89NNPuPvuu/Hoo48CCDgqXH755alu4/XXX7cmvI8//hiNGzfGW2+9hZkzZ+L333/H1KlT8d5776FXr16oXLmyU7v1+uuvW5PpDTfcgPvuuw9TpkzBwoUL8cknn6B58+ZYvHhx2MDFwr333gsgYD7u0KEDhg4dikWLFmH69Ol45pln0KpVK5QqVSrsWM5Oz4ME1j5z5gzuuecezJ07F2vWrLHvLSFv3rz48MMPERcXh0OHDqFt27Z49tlnMWvWLMybNw9vvvkmWrRogW3btgEAXnvttbDBzqPRtWtXq02NJWzQoUOHrIaue/fuaWqTEHIOk5b0Eo888kjYpNU6NU+s6XZiSSf2xx9/2ByU0f4GDhwYcnyk9ESaWPscjk2bNpkqVaqE7VuVKlXM8uXLI/Yn1vRqsaRnGjZsmMmbN6+zL3ny5DEfffSRuemmmwwAU7duXWcdsn+4XK7GGPPmm29GTGYuf/Hx8WbNmjURrmDayIrUX/p6R/qrWLGiWbRoUZrbT05ONl27do2prY4dOzrrmDJlis3n6vrr379/UOL6cPzjH/8IW0flypWjjuWMeB4yIvXX6dOnTatWrcL2IyXDhg2LOJ5z585tXnzxxTT1RXPJJZdEvI8p+yRtM48rISQlacoU8Z///AcfffQRLrzwwpjinGUEjRo1wooVKzB8+HD07NkTlStXRv78+REfH4/y5cujQ4cOeOqpp7Bw4cKIZqDMpnLlyli0aBH+/e9/o3bt2siXLx+KFSuGxo0bo3///vj999+RlJSUZf3p27cvFixYgBtvvBEVKlRAfHw8KlasiN69e2PmzJm44447cPDgQQBwpkOLlQcffBDr1q3D008/jVatWqF06dLIkycPChUqhNq1a+Oqq67CBx98gK1bt6JmzZoZdXpZStWqVfH777/j1VdfRbdu3VCnTh0UL14cefLkQenSpdG+fXu89tprWLlyZZCDQ2opWbIkxo4di0mTJuHWW29FrVq1ULhwYeTJkwclS5bEeeedh/vuuw+//PILJkyY4KyjQ4cOWL58Ofr164eqVasiPj4eZcuWRffu3TFu3DgMGDAgpr689dZbGDlyJNq1a4eiRYuiQIECqFOnDh577DEsXrw46ljOLs9Drly58Ouvv+Kpp55C48aNUbhw4Yga6b59++LPP//EAw88gHr16qFQoUIoUKAAatSogTvvvBOLFy+OOZB2JO677z4AwLRp02zKsXCMHDkSQGBdccWKFdPdNiHk3CLOmGwS+ImcNWrWrIl169ahT58++PTTT892d0gWMWDAAAwcOBBA1sSkI6GcOXMGDRo0wMqVK/Hcc8/hqaeecu63ceNG1KhRA6dPn8bMmTPRpk2bLO4pISS7kyW5XEn2Zf78+XbBe6tWrc5ybwjJWeTKlctqSwcNGhQ2fMuLL76I06dPo0uXLpzMEUKccEJ3jqMXfKckOTkZd955J4BAXKxrr702q7pFCPkf11xzDVq1aoXk5GS8++67Idu3bNmCYcOGIVeuXNk+dBMh5OyR7TNFkPRx8cUXo1q1aujVqxcaNWqEYsWKYd++fZg1axYGDx6M7du3AwCeeuqpNHvrEULSTlxcHD766CN88803KFy4cMj2TZs24fHHH0f16tXRuHHjs9BDQogf4Bq6c5zExMSoGTbuvfdevPPOO0Hpnsi5D9fQEULIuQM1dOc4w4cPx48//ohp06Zh+/bt2LNnD/LkyYNy5cqhbdu2uOuuu2yMLkIIIYT4E2roCCGEEEJ8Dm1shBBCCCE+hxM6QgghhBCfwwkdIYQQQojP4YSOEEIIIcTnnNUJ3YYNGxAXF4e4uDgMGzbsbHYFAwYMsH0hhBBCCPET6Z7QnTp1Cl9++SX69u2LevXqoVSpUsibNy9Kly6N5s2bo1+/fpg4cSLOnDmTEf0l2Yznn3/eToSLFCmCo0ePZngbxhh8/fXX6NmzJypXroz8+fOjYMGCqF69Oq677jqMHz8+5rrmzJmDm266CYmJicifPz/Kly+Prl274ssvv4zp+BMnTuCZZ55BtWrVkD9/fjRo0ACDBw/OFnHcpk6dau+F669w4cKoXbs2+vbti6lTp2ZKHyZOnIhbbrkFNWvWRKFChVCsWDHUrl0bV199Nd5///2wqa06dOgQse/6Lxrjxo3DBRdcgIIFC6Js2bK46667sGPHjow+1Qxh4cKFeOKJJ9CqVStUrFgR+fLlQ9GiRVGjRg1cffXV+O9//4v9+/dnWHtHjhzBe++9h06dOtn2ypYti2bNmuH//u//8Ouvv0atY/ny5bjnnntQs2ZNFChQAGXKlEG7du3w3//+F3///XfU440xGDRoEOrWrYt8+fKhZs2aeP7553Hq1KmMOMV0oZUM+i937twoXrw4qlatilatWuG+++7Dp59+GnY8Z2Tbrr9bbrklbD1aORHtL9p7YNWqVbjqqqtQvHhxFClSBN27d8eiRYsy7JxJBmPSwffff2+qV69uAET9q127tvnpp5+Cjl+/fr3d/sknn6SnK+mmf//+ti8kdmrXrh10nz/99NMMrX///v2mQ4cOUcfXtddea06cOBGxroEDB5pcuXKFrePyyy83x44dC3v833//bbp06eI89s4778zQ804LU6ZMielZlL/bbrvN/P333xnS9t69e80VV1wRtc3Fixc7j2/fvn3M/Y7EsGHDTFxcXMgxVapUMdu2bcuQc80INm3aFNP1AmAKFChgnnjiCXP06NF0tTl58mRTtWrViG01btw4Yh1Dhgwx+fLlC3t8q1atzJ49eyLWcdtttzmP7datW4aNx7Sif5Ni+StSpIh56KGHzOHDh7O07b59+4atR/+WRfubMmVK2HqWLFliihUrFnJM/vz5zaRJk9J9viTjSfPs5cUXXwx6cXbu3Nm88847ZtKkSWbhwoVmwoQJ5t133zWXXHKJ/RFN+bLIThM6knrmzJlj71/hwoUNAHPxxRdnaBvdunWzbVSrVs0MHjzYzJgxw0yePNm8+uqrpnTp0nb7vffeG7aejz76yO5Xo0YNM3ToUPPbb7+Z77//3nTs2NFuu/HGG8PWMXjwYAPAVKxY0XzyySdm7ty5ZtCgQfalN3bs2Aw999SiJ3T9+vUzS5cutX9LliwxU6dONS+99JJJSEiw+z3zzDPpbnf//v2mefPmts7u3bubTz/91MyZM8fMnDnTfP755+bBBx80lSpVijqha9GiRVC/XX/h2L17tylUqJDJlSuXefjhh83MmTPNDz/8YM4//3wDBCb92YFFixaZ8uXL2+tVtWpV89hjj5kff/zR/Pbbb2bmzJnmyy+/NHfccYcpVapU1MlwLEyYMMHkz5/fTkIefvhh88svv5iFCxeacePGmQ8++MBcccUVplWrVmHrGDdunH2Xly1b1rz99ttm3rx5ZuzYsebKK6+0/WzXrp05ffq0s45ffvnFADAlSpQwb7/9tpk7d675+OOPTYUKFQwA8/7776f5HDMC/Zt0xRVXBI27efPmmfHjx5s333zT9OzZ0+TJk8fuW7t2bbN69eoMa/v555+P+Axs2bIlbD16QhftWYo0EW3ZsqV9nn/99VczdepUc/PNNxsApnLlyubkyZPpOl+S8aRpQjdixAg7YMqUKWMmT54ccf8lS5aYiy66iBO6c4x+/foZAKZ06dLm5ZdfNgBMrly5Ir5sUsOCBQvs+Khevbo5ePBgyD4bN240xYsXt23v2rUrZJ99+/bZfapUqWJ2794dtP3vv/82l19+uW1r2rRpzv6IpvCPP/4Iko8ePdoAMLfeems6zjb96Ald//79w+63fPlyU6BAAQPAFC1aNN0v5ptuuskAMHny5DFffvll2P3OnDljTp065dwmE7r27dunuR/Dhg0zAMxDDz0UJD906JCpVKmSyZ8/f1Qtbmazc+fOoMncE088YY4fPx52/4MHD5pnnnnG5MmTJ80Tul27dtmJYb169czmzZvD7hvu+pw6dcrUrFnTjpm1a9eG7HPvvffa8xo+fLiznltuucUAMGPGjAmSL1682AAwHTt2TMWZZTz6NymSFsyYwLvn4osvDprU7du3L0PaTs/vYUZYmzZs2GA/sFJqTUWzHO49Sc4eqV5Dt23bNvTr1w8AULBgQUydOhUdO3aMeEzDhg0xYcIE/Otf/0ptcySbcvLkSXz11VcAgN69e+Pmm29G7ty5cebMGXz++ecZ0sasWbNs+cEHH0SRIkVC9qlSpQpuvfVWAMCZM2cwb968kH0++ugjuw7p5ZdfRunSpYO2586dG4MHD0bu3LkBAK+++qqzP1u3bkWpUqXQqFGjIHmnTp3sdj+QlJSE7t27AwAOHjyIlStXprmumTNn4tNPPwUAPPXUU7j22mvD7hsXF4c8eTIv26Bc/4suuihIXrhwYbRs2RLHjx9HcnJyprUfC3fffTe2b98OILDW6YUXXkC+fPnC7l+kSBEMHDgQkyZNQrFixdLU5uOPP47k5GTky5cPo0ePRqVKlcLuGx8f75SPHj0aa9eutfXVqFEjZJ9XX30VJUqUsGUX4e5RkyZNULJkSd88Q0Dg3TN27Fj7LK1evRoDBgw4u53KIOQ+tG/f3r4XBb+973ISqZ7Qvfnmmzhy5AgAYODAgUhKSoqtoVy50KdPn6j7TZgwAZdffjnKlSuHfPnyoVq1aujXrx+2bNkS9diTJ09i8ODB6NixI8qUKYP4+HiUK1cOl156KT777LOIjhmxermePHkSH374Ibp3724XFSckJKB58+a4//77MWPGjIgL5CdMmIA+ffqgWrVqKFCgAIoWLYrGjRvjkUcesS/6cGzbtg2PPfYYmjVrhmLFitnza9iwIa6//noMGzYMBw8ejHyRMogff/wRe/fuBQD06dMH5cqVsy/pESNGZEgbJ0+etOXq1auH3U//uJw4cSJk+/fffw8AKFq0KK688kpnHZUqVULnzp0BBO6Ra7FzQkICkpOTsXz58iC5LCwuV65c2D5mNxITE235+PHjaa7n3XffBRCYND388MPp7Va6SEhIAABMmzYtSH7kyBEsWLAA8fHxKFmy5NnoGoCAM8GYMWMAAI0bN8ZTTz0V87Ht2rVDtWrVUt3m/v37MXLkSADA9ddfjzp16qS6DsB7hgCEXZBfsGBB9O7dGwCwbNkyrFmzJmSfcPdo6dKl2Lt3r6+eISDwMThs2DAULFgQQODjcc+ePWe5V+lH7tPMmTNDfjfl3vntXuUIUqPOO3PmjClTpowBYAoVKmQOHDiQLvVgShXzo48+GnbxZpkyZcyKFSvC1rVhwwZTr169iAtA27Zta5KTk53Hx6KmXrx4salWrVrUhabr168POfbw4cOmV69eEY8rXLiw+fHHH51tT58+3RQtWjRq267jtSkumhkhVnr06GHXownDhw+37SxcuDBqHbJv1apVndvHjBlj93n77bfD1vPQQw/Z/ZYsWRK07cSJE3atyyWXXBKxPy+++KKtx7WM4NVXX7XrR4YNG2bmzZtn3nnnHVOiRImw1z4ridXkaowxV199td13+/btzn369u1r93Etnj5x4oRdl3XNNddY+alTp8yGDRvMxo0bYzZxZoTJdcuWLSY+Pt7kypXLPPLII2bWrFnmp59+MhdccIEBYK666qo0150RPPzww/Z6DhkyJEPqjPYM6eUxP//8s5UfPHjQrF692uzcuTOmdipXrmwAmDp16kTcb+TIkba9jz/+OGT7119/bQCYkiVLmnfffdfMmzfPDBs2zFSqVMkAMO+8805M/cksUmNy1dx11132uM8//zxkeyzv4OxkcjXGmPr16xsApkePHmbChAlm2rRp5tZbbzUATIUKFSIuFSBnh1Td8WXLltmB0rVr13Q3rgewvHTbt29vRo4caRYsWGAmTpxoF2ECCLtg99ChQ0Hetj179jQ//PCDWbBggfn666+DPOhat27t9KSK9hAsX77cLvwHYHr16mW++uorM3/+fDN37lwzfPhw06dPH1OoUKGQCd3ff/9tF97HxcWZ66+/3nz99ddmwYIFZs6cOeatt94yVapUMQBMfHy8WbBgQdDxx48ft4uGixQpYh555BEzduxYs3DhQjN37lzz1VdfmQcffNBUrlw5SyZ0u3fvNnnz5jVA8KL6Q4cOmYIFCxoA5oEHHohaT7Qfo+PHj5vExEQ7cXQt4N28ebOdULVu3Tpkux6z0fr03Xff2X3fe++9kO3Hjh2zC+xT/t18881RzzeziXVCt3LlSruG7rzzzgu7X7QJ3W+//Wa3v/HGG2b79u3mlltuMYUKFbLy/Pnzm27duplZs2ZF7Ls8o2XLljUtWrQwhQsXNvny5TMVK1Y0PXr0MMOHD49prd+bb77pvD8VKlSIuHYsK2jRooXtz44dOzKkzmjPkF7XtnfvXjN27Fj7rpW/8uXLm4ceeihkbalw6NAh6wB3xRVXROzPokWLbL3//ve/Q7afOXPG9OzZ03mPOnXqFHaNZVaR1gndqFGj7HH33HNPyPbUTuiaNWtmEhMTTXx8vClatKhJSkoyd999d0wfyvq3rHPnzqZkyZImb968pkyZMqZ9+/bmpZdeMnv37o1az6xZs+x7Qv/Fx8efdQcw4iZVE7rPP//c3tQnnngi3Y2ndNO+8847zZkzZ0L2u+OOO+w+ixYtCtn+r3/9y25/6qmnQrafOXPG3HjjjXafwYMHh+wTbULXtGlTAwQW3n/xxRdhz2nPnj0h4QVee+01A8DkzZvX/PLLL87j9u7da7+I2rZtG7Rt0qRJtm+RtECnTp1yak0zekL31ltv2fpSenZdf/31BoBJSEiI+nKO9mNkTOClUrJkSTup++CDD8zMmTPNlClTzGuvvWY9NhMTE82ff/4ZcvzYsWNtO6+++mrE/syfP9/u+9hjjzn3OXTokHn44YdNxYoVTd68eU3t2rXNG2+8EdarLyuJ5uU6ffp08/LLL5ty5coZILC4PdJEK9qETpwQAJgXX3wxyOM45V+uXLnMm2++GbatWMKWJCUlRdTSC19//bVp3ry5yZcvnylVqpS5+eabM8xRJz3IR1CFChUyrM5oz5A48hQrVsy88sorEa9vpUqVzPLly0PqWLlypd3nvvvui9if3bt3232vu+465z6nTp0yzz//vKlevbrJmzevqVq1qnnqqaeyhcYnrRO6tWvX2uMuuuiikO2pndBF+rv77rsjXqtYwpYUL17cfP/991HPa9GiRebSSy81hQsXNgULFjSdO3c2c+bMifm6kKwlVRM6/UP+1ltvpbtxPYDLly8fdpD++eefYds9fvy49WBMSkoKG8fowIED1tMrKSkpZHukCd24cePstlg0T5qTJ09ar7aU3ncpEZd+AGbNmjVWrifSaTFzZ/SETkJUtGzZMmTbzz//HNPk05jYJnTGBLzJHn74YfuDqP8KFy5sBg4cGFa7oL+co4VEWLFihd33/vvvj7hvdiTWOHS5cuUyd999t1m5cmXE+qJN6N544w27XWKTXXbZZWbBggXm+PHjZufOnWbw4MF2qUBcXFzYD5qOHTuaTp06mddff91MnDjRLF682EyfPt0MGjQoaClF2bJlzcaNGzPicmUpBw4csOfQtGnTDKs32jPUqFEjAwS0KnFxcSZfvnzmP//5j9myZYs5ceKEWbZsWZAVpGbNmubQoUNBdWhN7KOPPhqxP0ePHrX7XnbZZRl1mllGWid0+/bti3h/Y53QFS9e3Nx6661m+PDhZvbs2WbRokXm559/Ng888ECQheiGG24I25f+/fubhg0bmqefftr8+OOP1pIzfPjwoDiauXPnDvs8En+Sqgnd888/bwdDRqwB0Q/P//3f/0XcVwZzygnVrFmzbB2vvPJKxDokzAaAkCCjkSZ0//d//2e3bdiwIbaT+x8zZ860x0b7sjl8+LDdd8SIEVY+efJkKx80aFCq2s9oli9fbvviWtd26tQpqzXr3bt3uts7c+aMef311yMGRK1Xr54ZNmyY83i9hmjo0KER21q3bp3d9/bbb09337Oa1AQWLlGihHn44YfTFcbjueeeC6rz8ssvd2oqZ8yYYeOXNWjQwKmFjxTu4eTJk0GTy169eqW5z2eLLVu22P6n1MBnJjVq1Ai6R6NGjXLup9eApdRkT58+3W57+umnI7Z3+vRpu2+nTp0y7DyyirRO6E6dOhU0KU4LJ06cMEeOHAm7ffXq1XZpDhAa+kWIFjrlgw8+sHVUqFAh3QGrSfYhVV6uOmyEeLpmFHXr1o24XdzhDx06FCRftmyZLZ9//vkR69Db9XHRWLx4MYCAm3rVqlVjPg4AFixYYMutW7eOmppJ0KmK2rZta708H3zwQbRs2RIvvfQSZs+eHeQJmhUMHz4cAJAnTx5cd911Idvz5MljQ1f88MMPOHDgQJrbOnPmDK699lo8/PDD2LhxI26//XYsWrQIx44dw+HDhzFz5kz06NEDK1euxC233OL0ssyfP78tR7tW2kO2QIECae53dqB///4wgQ82+3f06FEsWbIE//73v3Ho0CG8/vrr6NKlC44dO5amNvS1BQKhKnLlCn2ltG3b1noXL1u2zPnsFS9ePGw7efPmxZAhQ+w7YvTo0b4LmZCZ785I6HvUqlUrXHPNNc79XnzxRRs+5YsvvghbR056hlKD/l0qWrRomuqIj4+33rIuatWqFRQS6p133nHuF+lZAgKhc+644w4AgcgJ3333Xeo7S7IlqZrQ6fhdO3fuzNCORBrIAOwPxenTp4PkEjoDAMqWLRuxDu1mrY+Lhrihly9fPuZjhF27dqX6GABBOVHz5s2LH3/8EfXq1QMAzJ8/H0888QTatGmD4sWLo1u3bhg5cmTItclodIy5Ll26oEyZMs79JDzN8ePHMWrUqDS3N3jwYHz99dcAAmFlhgwZgqZNmyJ//vwoVKgQ2rRpgzFjxuCmm24CALzxxhv4+eefg+rQP6TR8i7qH1o9uT5XKFCgABo2bIhXXnkFgwcPBhAIQfDSSy+lqT59batVqxYxJMYll1xiy/Pnz091W3ny5MHtt99u/58y7EV2p2jRosibNy+AjH93RkLfo27duoXdr1SpUmjRogUA4I8//gjKq8pnKDo6VElmhsZp27Yt6tevD8AdUiRW7r77blv227NEwpOqCV3jxo1tOTsm6I0WQ86kM4F6LInBU6InWVOnTsXSpUtj+pPgzUJSUhKWLl2K0aNH47bbbrOx144dO4Zx48bhxhtvxPnnn5/mCWQsTJo0yWpGfvnll7CaRq0JTU9MuqFDhwII/KA89thjYfd78cUXbXnIkCFB23QQ1WixDDdv3mzLlStXTlVf/cbtt99uf3jkOqcWfY0iBatNuW9ax6iOeek3DR3gvT+3bduWZZO6tNyj06dPBwVg5jMUHbHiAEhzrL9YkecgPYGy/f4sETepmtAlJSVZLd2MGTOyLIhtJPTXkDZTutAv0dR8Rck5b9u2LZW9C3z5CvHx8WjQoEFMfxLYUZM7d2707NkTQ4cOxdq1a7Ft2zYMHToUzZs3BwAsXLgw6MsroxFza2qYNWsW/vrrrzS1JxkMkpKSIkbTr1SpktXO/vnnn0HbateubSOdp9yWEr1dtKHnKrly5UKtWrUABMZ1ajTWgmgKgFDNeUr09rRmi0jvB9nZpn379racUpOcWWTEPSpcuLCdnPEZcjNhwgRbbtu2baa2lRHPgd+fJeImVRO6uLg4GyX8yJEjIdqQs0GDBg1s2ZX2SfPbb785j4tGs2bNAACbNm3Cxo0bU9W/pk2b2vKvv/6aqmOjUb58edx2222YM2eO7eNPP/2U5jVRkTh8+DBGjx4NIJD65Ysvvoj4J2PDGGNTQ6UW+VH5+++/o+4rJqKUk4X4+Hi0bNkSADBnzpyIa4DE9JAvXz5rfjqX0ddVm9hipWrVqqhSpQoAYN26dRH31dsrVqyY6rYAYMWKFbZcoUKFNNVxNtEZFt55551MXyIBBDJMCLHeowIFCoR88MokZdWqVRE/nLX5rk2bNqnurx/ZvXu3zcZRqFAhdOnSJVPbk+cgX758QQqDtNQB+PNZImFIrRfFli1bbPDYQoUKRQ19IJw+fdp8+umnQbLURMYWL8eUnkc6bEn9+vXDhi05ePCgjZOV2rAlEyZMsNtSG7bk2LFjNo5auXLl0p1dIxw6W0JKD96M4JNPPrH1f/PNNzEdI+FNdDaJ1NCgQQMbEiOS59bSpUuDPC1T8vLLL9vt4WIIbt682eTOndsAMJdeemma+nu2SU2miCNHjtigofnz5w/73ERDj7tIMe0kHhqANAX4PXXqlKlbt66tY9OmTWnq79lGMqwAMM8991zMx02fPt389ddfqW7v77//ttl96tSp4/QwNsaYv/76y3oiu7xTv/rqK9vvl156yVnHkSNHbJBv1zvWD6TWy/X06dPm0ksvtcdEC02VXmbMmJEhXsS33367rSfl7zLxL2nKDfLxxx/bwZCQkGCmTp0acf/ly5ebzp07m8aNGwfJM2JCZ0xwYGGXW/2ZM2eCYi2lJbCwTE6iBRZOTk4OcQPXKaW6devmzHggHDx4MCT9zfTp04Pi0qXkxIkTplmzZgYIxGVLGdA3I+LQSaaLggULRnSt17z00ku23ZkzZ4Zsl23hYmg9/vjjdp9bb73V+WN07Ngx2zcA5r///W/IPsnJyaZYsWK2rT179gRt//vvv83ll19u63Cl/fIDqZnQ6WcmXPT/aHHojAnECJT0X82bN3eO7U8//dTW071795DtkydPTlXYEtek3S9s377dlC1bNuh9FSl0zOHDh82AAQNM3rx5zeLFi0O2R3uGjAn+oHFNxk6ePGm6du1q9/n666+d+0gIlKJFi5q1a9eG7KOzUqQnddXZJDUTuo0bN5qLL77Y7l+3bl2zf/9+576xvINHjx4ddsJtjDFr1qwJClvy7bffhuyzZMmSiL8VxgSHLSlXrlzE3yPiL9Kc7O3ZZ5+1gwKA6dKli3nvvffM5MmTzaJFi8zEiRPN4MGDTffu3a3mI7MmdAcPHgxK/dWrVy8bUPGbb74J0g6kNfXXihUrggI7XnnllWbUqFFmwYIFZt68eebzzz83t9xyiylcuLAz9VenTp3ssVWqVDEvvviimTJlig2g+tFHH5kbb7zRFCpUyJQqVSqkb7ly5TLt27c3r7zyihk3bpxZuHChmTlzpvn4449Ny5Ytbd0PPvhgSN/TO6HbuHGjTf2TmnyYq1evtu3eddddIduj/Rjt3r3bxrQDAvG7PvvsM3vNP/jgA5OUlGS316tXL+yPo36J1ahRw3z88cdm/vz5ZsyYMUETwuuvvz7m88tuRMoUsXTpUjN//nwzcuTIoB/v/Pnzh+S/FWKZ0BljgjIQJCUlmWHDhpkFCxaYSZMmmfvuu88+/0WLFg3JLCLtFC5c2Nxwww3mww8/NNOmTTOLFy82M2bMCAksnJCQkCZNVXZi/vz5QZO6xMRE88QTT5iff/7ZzJ8/38yaNcuMGjXK3HPPPVa7BiDNE7pjx47ZDz4Apk+fPvYd8tVXXwWls7v00kvDTip+/vlnq8UrW7aseeedd8y8efPMuHHjzFVXXRX0nKZV43u20b9JV1xxRdDz89tvv5lff/3VDBo0yPTs2dPmiAYC2k/XJFeI5R0MBGLYPfLII+abb74xc+fONYsXL7aBhXVKvXAxPj/55BOTO3du07lzZ/P666+bX3/91SxcuNDMmzfPDB8+PGgCmjt37rCx7Ig/SVf23m+//dbm2oz2V79+fTN+/Pig4zNqQid1aZOM669NmzYmOTnZeXwsCY0XLFhgk1RH+ks5oTMmEEFdawkj/VWrVi1s3yL9XXnllebYsWMhbad3QqcDSkfSTrqQSPXFixcPyQQSy4/R4sWLTbVq1aKee5MmTaIGfX7mmWfsxNT1d+mllzqvn19ITWBhAKZMmTIhz6Qm1gmdMcY89thjEa9tQkKCmT17dtR2Iv01bNjQmZrKj2zYsMF07949pvMuVKiQGTBggDOTTizPkDHGbNu2zVoZIo3/gwcPRqznww8/NPHx8WHraNmyZdisLX4g1vRb8le0aFHzz3/+M6rVItYJXSx//fr1C5tVSS+NifRXqlSpmFJ/EX+RrgmdMQFz3+eff2769Olj6tSpY0qUKGHy5MljSpYsaZo1a2buvfdeM2nSJOdXX0ZO6KQv7777rmnfvr0pVaqUyZs3rylbtqzp2rWr+fTTTyPm24xlQmdMYGL29ttvm4suusgkJCSYvHnzmnLlypnmzZubBx54IGo2iAULFph+/fqZ+vXrm2LFipk8efKY4sWLmyZNmpjbb7/dfPPNNyEP65EjR8wvv/xiHnroIdOqVStTpUoVkz9/fpM/f36TmJhorr32WvPzzz+HbTO9E7o6deoYILCWLdoLPyUDBw60baeMUh/rj9Hhw4fNe++9Z7p06WLKlStn4uPjTb58+UzlypVNjx49zKeffhpT4nZjAplFbrjhBlO5cmUTHx9vEhISzMUXX2xGjhyZqvPKjkSb0MXHx5ty5crZFFvREnSnZkJnjDGzZ882N910k0lMTDT58uUzxYoVM+edd5557rnnwpqijAlov998803Tu3dv06BBA1O2bFmTN29eU7hwYVOjRg1z7bXXmq+//tq3Wp9I/Pbbb+bRRx81LVu2NOXLlzfx8fGmcOHCpnr16ubqq682H374YcR1t7E+Q8YE1iF+8MEHpn379qZMmTL23dWjRw/z3XffxdznpUuXmjvvvNNUr17d5M+f35QqVcq0bdvWvP/++1HzN2d3wk3o4uLiTNGiRU2lSpXM+eefb/r162c+/fTTmM2VsbyDf/jhB/P444+biy66yNSoUcP+PpQsWdK0aNHCPPTQQ2bp0qUR29m5c6cZOnSoueOOO0zz5s1NpUqVTIECBUz+/PlNhQoVTLdu3cxbb72VaWu5ydklzhj6LxNCCCGE+JlUhS0hhBBCCCHZD07oCCGEEEJ8Did0hBBCCCE+hxM6QgghhBCfwwkdIYQQQojP4YSOEEIIIcTncEJHCCGEEOJzOKEjhBBCCPE5nNARQgghhPgcTugIIYQQQnwOJ3SEEEIIIT6HEzpCCCGEEJ/DCR0hhBBCiM/hhI4QQgghxOdwQkcIIYQQ4nM4oSOEEEII8Tmc0BFCCCGE+BxO6AghhBBCfA4ndIQQQgghPocTOkIIIYQQn8MJHSGEEEKIz+GEjhBCCCHE53BCRwghhBDiczihI4QQQgjxOZzQEUIIIYT4HE7oCCGEEEJ8Did0hBBCCCE+hxM6QgghhBCfwwkdIYQQQojP4YSOEEIIIcTncEJHCCGEEOJzOKEjhBBCCPE5nNARQgghhPgcTugIIYQQQnwOJ3SEEEIIIT6HEzpCCCGEEJ/DCR0hhBBCiM/hhI4QQgghxOdwQkcIIYQQ4nM4oSOEEEII8Tmc0BFCCCGE+BxO6AghhBBCfA4ndIQQQgghPocTOkIIIYQQn8MJHSGEEEKIz+GEjhBCCCHE53BCRwghhBDiczihI4QQQgjxOZzQEUIIIYT4HE7oCCGEEEJ8Did0hBBCCCE+hxM6QgghhBCfwwkdIYQQQojP4YSOEEIIIcTncEJHCCGEEOJzOKEjhBBCCPE5nNARQgghhPgcTugIIYQQQnwOJ3SEEEIIIT6HEzpCCCGEEJ/DCR0hhBBCiM/hhI4QQgghxOdwQkcIIYQQ4nM4oSOEEEII8Tmc0BFCCCGE+BxO6AghhBBCfA4ndIQQQgghPifP2e7AuYox5mx3gZAs4cyZMwCA06dPh8ji4+OtLFeu0O/Hffv2AQB+/fVXK3v00UcBABs3brSy3LlzAwBuv/12K7v++uttuW3btgCAPHm8V9rJkyeD/tX90vsVLFgw7LmdOnUqpP/SF+DsPee6XSnr6xsXF5eqY13nEa0+uZYAsH//fgDB17pEiRIAgq+XoK9/JHQbMr50fZHOk5DMJNZnP9oYdT2DrmcmFqihI4QQQgjxOZzQEUIIIYT4HJpcCSHpQkxh2mQgJjVtgjt+/DgA4PDhw1Y2b948AMCiRYusrFevXgCAv//+28rE9Kbb2Lp1qy27zBpitsibN6+Vucwk0i9t5nCZh0kw2hwq91vfB5dM7qnLDK6Re6bvQ6xmWkJyKnxrEUIIIYT4HH7yEELShUtDly9fPgDAsWPHrGzz5s0AgrVxM2bMAAAcPXrUyp588kkAQFJSUsixI0aMsDJ9jEtDJ9odraGT/bT278iRIwCCNUDSf12vnJ8+Vto4lxbnx+pQoTVrco1dTjAurai+hrqcsg/6nojsXLrWhGQk1NARQgghhPgcTugIIYQQQnwOTa6EkHThWtQuaJPZ7t27AQSbTRMTEwEAffv2tbJKlSoBCI5rV6BAAQBA7969rUzMooAXL06b41yOFC5TquynF+CLCVEfK84TekF/oUKFQs7TjzEoXWZM13m4YtgBnkOJrkfuieu6uhxV9DiSsjary3UvXLiwlcn99OM1JySjoYaOEEIIIcTnUENHCIkZ0cBojYjLKUI0LKLVAoCDBw8C8LIKAECZMmUAAE2bNrUyrYERRBNWunTpkL4AnjZIa3lcEdhdWRVkIb/WGrnaiCTLDri0VBndV319dRYNuYb6up44cSJEFikzhcblFOG6d4QQDz4ZhBBCCCE+hxM6QgghhBCfQ5MrISRdiBlOOzFIee/evVYmGSLq1KljZTVq1AAAFClSxMrE3KZNawULFgQQflG+mEtdydxdZlhN/vz5Q9pzLdQX858ro8TZXJQfq0NDpDhu0RwgBNf11fu66tb7yfHaXCvHavOqOMHIv7ocbgwQktOhho4QQgghxOdQQ0cIiRmXRkS0YzqMiMh27dplZXv27AEANG7c2Mrq168PIFgTEykMig4ZopG2oy2Yl4X6GmlbO3DIflrjJJo8+Rfwv4bIpVFzhXtxOSRo5xWttRR01oiU7UVzQJF2dBYJufe6XtHq+f0+EJIRUENHCCGEEOJzOKEjhBBCCPE5NLkSQtKFmCC12UvMYwcOHLAyiUOnzXZiUtNmVjF3rlu3zsq2bNkCAEhKSrKy8uXL23KkRfku06HLvOcyG7ocPXRfs2tMOheRrpHGFWtQzllfI9f1cjmRuIg1Np2rDzSvEuKGGjpCCCGEEJ9DDR0hJF2IpkYvYN+3bx+AYG2QlJcuXWplsrBeZ4AQ7c24ceOsbOrUqQCAZ555xsqqVKliy6I90+2JTPdL+urSHunF9tIH7SghmiEdckMW92dXTZ3WZrk0b65QJpE0YNopRV8HCUmjKVu2LIDomjyXltaVeUKutUu7Rwihho4QQgghxPdwQkcIIYQQ4nNociWEpAsxS2qTWbFixQAATZs2tbKjR48CAMaMGWNlf/75JwBg0qRJVrZ//34AQPXq1a3s6quvBhBsZtW4zHpijtPbxJSnnR0km4UrK4E+NlL2hXMRfb5y3RYuXGhljz/+uC0fO3YMANCyZUsru/HGGwEAtWvXtjLJ+OEyjesYgXLddbw6V1w7QogHNXSEEEIIIT6HEzpCCCGEEJ9zjptcPS+sQ7uTbfnvIuUAACXyhxyQiqoP2eLu5CMAgNO5C1lZydIB773QBDexEDBh7dux30pOwEurVLxcCQBA7N0PvQ5H8hS3snLpuhAkJ+HylNRepIKY1nSarAYNGgAAmjVrZmUSX06bNsXMpmPOdevWDUCwN6xGzHa6nkjx1MQLFwB+//13AEDRokWtrHLlygCAEiVKWJkrvVh28rKMFoMv0n6xor1+N27caMuS1q1kyZJWJmZYbYp3mcFd98kVm86VfowQ4sEngxBCCCHE58SZ7PSJmVEcXw8AGPfMVVbU89XFttxvcuCU3+wYa4WehmvzT/8CAHS74RMr21+hAgCg8OFtVrat8qMAgJ++/7eVXZgQXl+3d/Hbtnxb16cBAHOKVrCyktjr1Y2LAQCDxwyxshuTXFq2wDFTnrzBSt49EFikXvuIdz3WtnwFADC0XyMr83QVhERGYpPpV4nWzAkSt2z37t1WJpo10X4BQJEiRUJkosVxxS/TdWvHBjlGnDF0H5cvX25lI0aMAACUKVPGymRxf7169axMMlPoNlLWm1WkpT1XzDkXco2144ho1LZv325lM2fOtGVxbtFazhtuCLx3JB4d4N0zHQdQZK74fvp+y3Y9LqSec/FnjGRvYh1z0Z43lzba5eQVC9TQEUIIIYT4HE7oCCGEEEJ8zjnjFLF3sWd+7HfTNwCANsM+tLJBs8+z5VWprPvUkrdsufvVgbRF9y/aZWX3WHOnt2B4+fuXAgBaX+8lEF806VYAQI2gjv8EAHjogtetqPoPawAAX1+cYGV5ldl314SAOfe8bv2trPLSlwEA7bStdHpA9k7SUCv67saKclZWNufpawEAo9Z9Z2V3BHWSkPC40mi5EsGLGa1ChQoh+8eKXhDvSiumzbDSL23+le07d+60sp9+CjyDYiIEPJOrKw6dK5VYVqOvg5hGtaOHmCXFfK2J5mggZZfzgTaBbt261ZalHW2iFpk2pYqjhDjNAN41dPVBtyfEmqaMkJwGNXSEEEIIIT7nnNHQbfjLW6jcf0EgqXdS/nVWNiTkiFgIfFkuGPWKlRR9dw4ArZXTeLKke94BADz3vud58dlvAQ1dfy+YOraOfR8AMKrfMCs7+D/NXLALhfe/hIsHAAA+6OItNh409p8AgHbXerKd2wOavsQKFRGKqq/qAQDA91vVZmroSIxECiORlrAZkbQu+liX9syltdP7SXiNzZs3W1lyciCUjw65IQ4Sui8SskNrnFxtnC0HCd0vQWsnRUOqr5Gck3Z2EE2f1kRWrVoVQLBWbvFiz7GqYcOGAIK1ry6HBdG4ac1bNE1gyv4TQtxQQ0cIIYQQ4nM4oSOEEEII8TnnjMm12VU3ZkKtKwEAs77xTDE9R8VqiwxEuW91pSf5x6LVAID+LctZ2eJfxwIAel/zhZVFNywEPB+ade5mJd/PWAIAOHXtxVZWtm3A2eHg6+OsbFfbrgCAhNMrrOyXiS0AAN17R22YkHSTHpOkPlab6lyJ28W0qE2RixYtAgCsWbPGytq2bQsAqFKlStg6AM+sKnH3ziYuk6TOaiHOB/v377cyybKhz0liAg4fPtzKxElkx44dVnbrrYHlIhKLDwg2W0tWD+3sIPdHO82I2VTfR7k/LpOxNrPq+HMCnSII8aCGjhBCCCHE55wzGrrMIbBYeusqz4uhU2LqaihVsbYt/7ZCFhR7C6h3/FUHANCwSupzM5RNUJ35I5BXcZPaXqNiQEP3yk2eS8i/LgyEFZhT3FMdvv3R8wBShDwhJJvjcq7QC/lFQ6T3W7hwIQAvswEAXHTRRQCAWrVqWZkrN6yrvqxG2tZaQjln7QAhGjx9PY4cCeSc1s4MY8eODdmve/fuIfXJ9Vi2bJmV6WsjTiQ624YrpIvr2rkyWFDzRkjqoYaOEEIIIcTncEJHCCGEEOJzaHKNxLpAHLv5KGVFPVJplqxRw8tQAeuH4BlGV8wKLFROKpSG/lVJssU2EXYr2fQOW/547h0R9iTE32hTpJhIdZL5VasCeWJ0pghxiqhevbqVnThxAkCw2VHQpkQxE2a1iVCbSMWZQDskSFlfjxUrAi+g8ePHW9mMGTMAADfffLOV9erVC4DnRAEAw4YNAwAsXbrUynTMuYoVA7EuixUrFrHfrniBcj2jZbAghESGTwshhBBCiM+hhi4rORSIyn4UriwT6eTgUQDAiYyvmRDfoDVXomUTZwAAOHjwIIDgEBjiDKHDfhw+fBiAF/4D8MJv6FAaWe0gIZorV/5cF3q/kSNHAgDWrfMy6HTsGMhkc+GFF1qZaOb0tZR2ExK8/NI6zIsOZ5LyGK0hdfVftHD6uopTBzV0hMQOnxZCCCGEEJ/DCR0hhBBCiM+hyTUShYsAAMpE2S0SB48ke/8pEjC1FoTnAVEsPZUf2W+Le4oWBwCExlInJOegTam7du0CACxYsMDKxNRXr149KytSpEhIPbKfzl4gZsCzGYdO0CZLl1PB0aOBJRg6I4ZkjahcubKVXXxxILNM1apVQ9rQ575pU8CRa8+ePVbWrl07Wy5cuDCAYCcMbUIV5Bq6Ml24HEu0LDtdf0KyI9TQEUIIIYT4HGroIlE2sAA4EfOtSNYTd4wxpevuHX/ZcpliopnzwqBUrD0LALAiKMVDjP1L3maLq8oEvroLx3goIeciWkO3d+9eAMDEiROtTBwfzj//fCtzaYskN6ze5gpRcra0Ra4sDNr54K+/Au8dyYwBeA4NDRo0sLIWLQJ5nAsUKGBl4gyxZcsWK1u+fDkAT+sJBDtFFCoUeLdpB5TixYsDcGeAcF1zLXNpHeX8tHaS2jpCPKihI4QQQgjxOZzQEUIIIYT4HJpcIxLIxNCqp7eoeu6m/y0UrhG64DeYQLyrlTNmWUnXa+r+r+Slm2jUOeAVMVzFhorVnrtk4VhbrnPBLQCAsjEdSci5z+7duwEA06ZNs7LevXsDCI67Jg4EYmYFvAX92hQpTgLaWUD20ybQs5VYXpsft20LLMf4888/rUycIWrU8N4vrnh2ct3GjBljZatXrwbgZYQAvPh9AFC0aOCdJvH7NNqUKmZTVyw/HXPOleVDyvpay35n65oTkp2gho4QQgghxOdQQxeRgL6r7dUXWUnfTwJ5EJ/ueJmVlXQduvVHAMD7o263ovvfCU0E27TLXQCA1feMtrIlff8FAGgUTgl4ag4A4OtXPY1CvymNwuxMyLmPaIG0hki0VJIdAvDyj2rt0r59+wC4Q25orZeUtdbIFZojK9BaQilrzdWhQ4cAeOcGALVr1wYAlC3r6fGl/8nJXnilKVOmAABmzpxpZeJMIk4UQHDeVtH0aacUuU6ujBP6ukbKBuFyeqA2jhA31NARQgghhPgcTugIIYQQQnzOOWByDSS837djv5V4Ceo92QHPQoEjB3YAAHbs0PUETAXFy3kJuvP/79+Kvf9jZa8MagsA6PzIKCsb+c8mgf13zrGywbfeG+jdO14Mu86hFlfkbf0QAGBYy2pWdvlNxQEAX/3HM+smHvcWN48a0BcAMOLGYVa2OCm0bkJyCmLWk8X7ALB582YAQLly5axMkshrZ4D8+QNPul68L+ZX7Sghpr6zafITE+SJE95b7tixYwCCHTikLM4KgGdW1fHlypQJOGXNnj3bymbNCjhybd++3cpq1qwJAKhWzXtPafO2xJzTJlfpoyu+nIto8f3ENOuKa0cIoYaOEEIIIcT3nAMaukUAgMEdbrOST5371fGKj3UAAHQI2n4TAODjP5+0kgukkNdzOPjHjD8AALXfeNjK+nZYAQA4ULWVld3zwu8AgJ+7el+07uXTAZeKboO9nIvfjnoBAPBUt9etbGMxTwV35f99CwCY39tboOx0zCDEJ0SL+O9aTK8Rx4AVK1ZY2c6dOwEATZo0sbKSJUOfFMlDqjVOkvFAa5Rc4TViJT2L+13Hag2jaOMKFixoZa1atQppo3///gCAgQMHWln16tUBAD179rQy0cIdOHDAyiZPngwAWLp0qZVpp4jWrVsDAEqXLm1lck+044hoQ/U5yX7aKUWusT5PrS0lhIRCDR0hhBBCiM/hhI4QQgghxOecAybXgGH0SRUR/clwu2YE+QPmiK5PfGdFXZ8I3S3Vi3XzJthiixvfAgCMuzH13SMkq3Elrdex2oRIi9p1rDJZRK/NnVLW++nt0t6iRYusTJwievToYWWVKlUK6ZervZTbNK6sEK7n3XU9tEybbiOZnF190KZIKev6SpUqBQBo3ry5lbVr1w6AZ/YEPGeGevXqWZk4QFSpUsXKxNlB90WO1X3Q5yGmVldWCD0+5J7qe+vKYMGYdIREhho6QgghhBCfE2f4iZMp+PGy3nvvvbZ86aWXAgAuu+yycLsTAsDTnLjCfmhEs6U1NrKfDsMh2hutSZKy5F3V7QLA/v37AQB9+/a1MlnUP3jwYCtr0KABgODwGuIMoRfdS9mV5cCF1o65tImy8D9clgk5JpqmT66xS0OX0ej7qTNTCPoaunCdi9Tp0tC5wpvoayTn6cd3Kzn3SI9Tk6seXV+k8D6RoIaOEEIIIcTncEJHCCGEEOJzzgGnCJJeJAn3Bx98YGVS7ty5s5W9/fbbAIC6detmYe9IdsdleohkHtOmNSnr/SSumjYlyn46G4LOeDBv3jwAwbHYxAFCx0ZzxTITs542m0p/XI4Xuv9yjCs2nTY7S33ajOza9/jx41Ym8fH0dRDTsj4POWd9DSPdk1jR5+Qyr2ozuTYvpzzeZVrWdct2fV2lPldGDH0N5ViaYQmhho4QQgghxPdwQkcIIYQQ4nNociVo27YtAGDEiBFW9sQTgeB6EydOtLJGjQIp0O655x4re/bZZwEEx6QiOQuXuUtMa9HMqyLTnmBiTtQyMcFps6FOHj9hwgQAXvw1ADjvvPMABKeoipRGS/dVzKsuM2W0ZPOyXZshXamsNGJa1F68Urc2M7tMloLL5OoyY2rkeujziGRGDuf5Ku2lJbYezaU5gFO7AAAL3ve80Ds9GPAuf33NDCu7o0as9W22xQmvPggAeOytX6xs8e7A85SvTFMru/6FIQCA1+7wZM6UmesC+11Y6y4rmhVjt4AHbGnS6TcAAB2D+r0aAPDV3Tdb0YA5/0uxV6WPlX302aOBPiS4E4aGgxo6QgghhBCfQw0dsfTp430hXH311QCAl19+2cqk/O6771rZZ599BsDT1AGeBi+z4mOR7I9oZ7SWxpVRwrWfKy6TS4uzbds2W546dSqA4CTzoqErWrRoyLE6Dppop1yx0VwaOFe/omWFiIZotrQjhWggCxUqZGUVKlSIqV9CtHhWrv67tKau+6QdJaT/0fol10Y7f8i1dmlptQOEK1YftXvZl+PrR9vywz1eBQAUfvUOK7sOn6Sh1oMAgOlPtbWSOzY+DQD4avHnVtaqQmDcHN821cpevrwDAOCa3F42mUm3OlSCyVsBAKvbfGhFa2YE+q33TsvYW/RqQIO3+UFPK7li6P8cyJJ/srK7H/wBAFD786usrGwM9VNDRwghhBDiczihI4QQQgjxObSJESdi6ujfv7+V3X777QA8hwnAM7n+4x//sLIPPwyoqt944w0r0/HsyLlFpKTp0cyAru1ijtP7uUx5O3fuDCknJCRYWbVq1QAEL9QX855e0C9OBy7ToEbOU9cnZZd50hVHT5satclS+nXw4EErmzUrdCn2bbfdFtTnaOh+RXKkiGZGjjV9kb5ukcy5+n7KdXKlT9PtukzBJDuyDgDwzRDPceHWSdMAAC0SZlrZP9NS9Z6A89PgVxtY0YubA+bQVhVCd89foYMtP/Fu4Ddq8G2eKXjJrf8CADTSBx0JOCnsLuPFWy2clr5avHiZK2bUAwA0f0I5O8jzUdJrr9XG9wP7gyZXQgghhJAcBTV0JGYk8r4Ob3LvvfcCAP75T+97a+7cuQCALl26WNlll10GIFhrV7NmzczrLMkyXBoTV4gSF66MEqLF0hobqW/dunVWpsOWSDaIihUrWlnJkiVD6hbNnA6b4cLlwBHrwn9XKBBpT2c+0Bo8l6bvjz/+AOBlhwA8pw99nq4QJSJzaQ5doUVc1yOa84HLkcV1vKtuV/aISOMI8LR/+rpSW5cdCbgO9HnhH1H2SwOlAxqrL89cFWXHUPImVAUA1F61wsqSIx2Q6Gn7Y9GOhaeSLTXrFnhn/bLEsxB0aPi/98DeP61sbtWA08flqWyJGjpCCCGEEJ/DCR0hhBBCiM+hyZWki1atWgEAZs+ebWXiKPHII49Y2U8/BWLsjBs3zsoefPBBWxZHC2ac8B+RHCBc+7liwGnzo8tkKabKadOmWdnWrVttWbKdVK1aNaRdnSHBZYoUmctZI5rJVeLG6fpc8RejORqIk4POdCHmxh07dljZxo0bAQQ/J3KsKytHNJNkrPECXcQa4861n6u9SHUA3jnFmo2CEM2pTQFT64I2SVZWxbHfzl0bMq0PSf0GAgCW3n2hJ3Nkivjky6cApN7USw0dIYQQQojPoYaOZDiScUJH7X/llVcAAK+99pqV6bIr48Qtt9wCgBknsjuuHKGuUBSukCGyOF4vkheNkz5WHAO0hu7QoUO2fM011wAAKleuHLGvrgX4LmcBVy5aV9gPORethZJz0ZpIacOVl1Wjw64kJQU0Cfo8ly1bBsBzAgGA2rVrA/CyK+i2XVo2fU6RNHSxOinodlxhUlxhXqIh7eg2IjlFMGMEcfK/3KkAMPz5oQCAbvd7ThGu1LGHD+0GAJSJ32hln9/WHADwzy8WW9nuE0UAAPV7Pmplbwz6ly13ruzIw5o38Kxe+/FcK+rt0N5HUX6HhRo6QgghhBCfwwkdIYQQQojPoS2LZBqFC3vxtcWUKpHugeCME19++SUA4K677rKywYMHAwiOXdehQ4dM6StJO66sCtqEmhJtchWTmd5fzLU6Ub04BqxatcrKypcvb8sXXHABAKBMmTJWJibeaBkIUvZFl12OBi6zYbRjRabNoi4HCb29SZMmAILj0C1eHDD5aNOymFxdjhmu7Beu+HLRHA1cMeWixfITYjWzalxxDF2x+ghxsxcAMOXRi63kucbfAwAWX1vRdUAIu7/wHPiOffUjAGDjx146inzHAk5Zc9+7ycouunC/LY9b8jIAoH2xVHQ7nVBDRwghhBDic6ihI1lKYmKiLY8cOdKWXRknFixYAAC46KKLrOy6664DALz44ovOOsnZI1K2AF12hQxxOR9ozdSmTZtC6tPaONFYaW2QhDrRWq9YQ2REyrSgZZLz2FWvKwyK1mZqTaVLU1alSpWgcwOAiRMnAvC0coD3fLhy3+p+iUz3IVYtm0u7p3PRupwTYtWkyXXQ10Oug3aIcmkd6QyRdYjG+5tvvrGyBg0aBP17Vjm1yxYnPNUGANBn5QArm/FDRwBAySjV1LhjBgDgzB2R9zP5A9q6Vg97mZOGTPYCoQyd8SQAoP1lWaeio4aOEEIIIcTncEJHCCGEEOJzaHIl2QKJ9P/bb79Z2bBhwwC4nSe+//57K/vXvwKxf3RmCu2QcbaItLg8I/YPd0ysx2Y0sWYl0A4Q0kftACFmzAMHDljZnj17AARnUqhQwVugLCY6l0lTmwYF1+J+V0aJSFkf9DlpmdSjj5V+iRlYHwu4TaTVqlUDEJwRQ+reu3evlSUnJ4e0V6hQoaB/U0Ok+6ivm75nck+1yViuya5dnils9epAXDCdWWb9+vUh7bRo0QKAl4kGAOrXrx/SP5pcMwd53oYMGWJlb7/9NoDgzCUSa/S7777Lus6l5NRmAMBP97a1ovsOBeKezvjhWiurHd5PKyqR382ek0WDi+rY8gc79vyv5JlcMztuIjV0hBBCCCE+hxo6km2RTBGujBODBg2ysueffx5A8Nek7CdZK84GrgXnsWo/Iu3vkrmyEqQ3vIPLMcCFaJdci9Vd56SdFESL5gp9ojUBotkRrRUA1K1bN+QYVz0aV7/kmFgdBGI9T5d2T2sB9XUQDZfLCUOcIwBv8bnW9P3xxx8AgFq1almZaCVdjgYaV5YMIZqTiysnr65HNHjr1q2zsilTpgAApk6damVr164NqXvDhg0Ags9TsmNoZxjX2COpQ7KPSJgowLOOHD9+3MpkPOv38T/+8Y/M76ATT0M95dGAZk60cgAw4dOAZi49WjmN673iei8eP+L1yxQLvBOiZWax+2fAGKaGjhBCCCHE53BCRwghhBDic+IMddWZAi9r5iJmGsBzmtDxkQS9qFoyTmhZRuFa7Hrs2LGgbYBnZtMxw8QM5zJvaAcCVzJ3QSdwl2PEuUATLU6YyxTpyiIQzTFA6onVFOlq44MPPrCyF154AQDw+OOPW1mvXr1sWbJGuPqQFnNiyr6kLAsuU4wro4HLNOtKMq+R8aAdIDZuDCQM/+qrr6xs27ZtAIA333zTyipWDCzUFocJAChatCiAyFk8dF9dGT3CZZQQuT4/cWoZN86LuC/mvW7dullZ1apVg84D8JZR6PpkCUb79u2tLCEhIajPJDJyL8TBQcs0xYsXB+Bdc8CLFVqzZs109GCKLf0z1zMAgKQ1M6zsjhqRj5b7vHXUlVZW691LAABLpvSzskimVteSCWM2W9moKxsCACbevcnKXg8kogka//I8ASus7M2GzWx5zUtbAAD/aectrZD3v3bUcjlluRy5YoEaOkIIIYQQn0OnCOJL9FfiqFGjAAQvtJaME3PnzrUyyfepHSUk40SlSpVS3QetUbv88ssBADfd5OX1u/766wEEL+w+evQoAKBYMc+VPdJidZdW7pdffrFl0dh06dLFyiSch9ZuRHNwSM8iXfmydOXdjJZ9wRVuRDQ7kh1Ct6FDlZQtWzZi3ZEWzLvON1ZNXrRjXOfuajfadrl/BQsWtLKkpCQAweNCtNUSagLwNJb6S9+leXNpUqUPrrArej+t6ZNnQT8T0o5o4ACgRIkSAICWLVtamWgtdEYMKeuQLQcPHgzpPwlGX39xbNDauD///DPkGHmXigYO8DRzoqnLNhwMaBMH3OI52jw791YAQI1c3jvE5RsVybkrLs4bexde3wkAcOs9/7Kyi38K/E50r13Uyk4dWgMAGPPk9Vb2TLGXbXlup0DIoDxRnnMZz2LRAaihI4QQQgjJsXBCRwghhBDic2hyJecMHTp0sGXJOCFmBwB45pnAItzPPvvMysSRQmejkMwTLqcCjU4eP23aNADAggULrOySSwKLdXW0/sOHDwMINqNJO9rEJaYtMTMBnklNx+BbunQpAKBJkyZWJgvioy1qD7fAPbVIO9qEKOfnSgTvakubpWfMCCyS3r17t5U1btwYQHCmCFdWAk1qF8qnZWF9ZDNOqPk0XJw8ORdtShVTpDZtSj0lS3opxiUryooV3uJscRYQ0yvgXWOd4UHq06Y6aVeb28TkrRdu6/MTc5GrnqZNm1qZjHXXddu5c6ctyxjWSxNcZuSczJYtgUX3On6cdiTS7ydB3pE6ftxll10GwO2slCbWBeKBXljrLiuaFWn/Wt5zfJeWt/kQALBmxh1WVGPRBADAxyeWefs1LQAAeDTmDl5gSx+uDrxr7lR9qHTdFwCARfFe5qGHLg2Ypa/f6jmfoUhgjF541dNW9O0Qb+lLvf+NU1fsRr10Qd6f+rlMK9TQEUIIIYT4HIYtySR4WbMf8sUqWSQA4LXXXgMQrHlITEwE4DlMAMB1110XsW7JIyv1AcBtt90GAHjvvfeszDUuRAOjtTNr1gQW3E6aNMnKvvgi8OUoGizAyyIwfPhwKxONiNbsyNe3bsPlcKG/HOWa6P1cC/61VkYoUCDw1ay/OqU+2abr03lbBwwYACDYKUI0dDfeeKOV1ajhxTg4W8+byxkjUjgYPc6iOSK4wp8IOpfx2LFjAQRfVwkLIlpiwLtP+lqJFk1rQ6VdnZFBtAi6zzrThcu5QsZNpHA7gHefFy1aZGXTp08HEHyPxeHICxfhca6/b8W5Szs4iHVBjyltVZB3ltbGaU2+H3GFSHJpvSI5YIWzUkTCFYJKrrV+x+myKx+09PHIkSMh9WirTVq1pdTQEUIIIYT4HE7oCCGEEEJ8Dp0iSI5BFnlrU6qYRSVuHQD89NNPAIAbbrjBymThsWSbAIAWLVrY8pNPPgkg2OFixIgRAIBbb73Vyho2DEQh1+Yql9pfzKWSkBwA6tWrByA4lpQrQn+s5gYXaTFdSV9dZhBXbDoX2uQqjh5FihSxMsnuoZ0isgMuRw+XidGVlDs9sf8aNGhgy5JJ4rvvvrMycZDo2LGjlck90eYc6avL8SKa+VTfT6lbO3244gBKRpPly5db2ZQpgewB4sgEeGao5s2bW5nL1BrJ0cZPaLOpmFK1eVXH0xTKlSsHALj77rutTJdl+7mE6/mI1WzqegYjtREtrqbcM/0u12VXPa7xKmM91vOIBDV0hBBCCCE+hxo6kqORKOk//PCDlU2cOBFAsNZu5syZALxsE0BwnsNnn30WAPDcc89Z2Z133gnAc5gAPMcGCSsBeF9mOsyIhGjQ+Up79OgBwMs2AQCzZ88OqkOXXQ4QqdFkxKotEu2O1ui4HCVEM6T7IKE0Nm/2cinu2rULQHD2DnGKkBAdZ5NoX9yRnBnCfYW7rrUrD67sp50FZMH2559/bmWSQWTHjh1WJlka9LiQ+ly5JbW2Te5duP7LmNT3Xe6V1ghK6B1xegA8jbjW2oljj148LmNF9zVSVo7sig4nImFGdOgRCUeiEWcG7eAgTg/Rwiv5nWjPW6SsOrGGM3Lnd/VkMua0JlXGejinH5dGXNDOE9J/fR/TqnGmho4QQgghxOdwQkcIIYQQ4nNociUkBZ07dwYQHBdryJBA9HPJNqFlgLeQWZtXZeH6nDlzrGzq1KkAgN69e1uZmMy0iU3U71qdL+YnnXlCYoW51P6pyQThMjO4jo1Uj2vBsN7fZXKVGGSLFy+2MjFv6GTtZcuWDdsGED3WWWbjMtm4cJlmo6HHhcuMI2OgWrVqVibXZuXKlVYmjiW6XclEos2YLhORy1FC44q55YrTJbIuXbyI+ueffz4AYP369VYmDgGyREGf54UXXmhl2mkoO6IdmMSsqt8bYrbT161nz54Ags2rOgtOTkGelWixMSOZWvWxkcy1LlymXn2f5FnUTnY///yzLctSFO0UJ0tptMNLp06dAADXXHONldWtWzdsvyJBDR0hhBBCiM/hhI4QQgghxOfQ5EpIGLR6/Z577gEQnAJMq9oHDRoEAHjiiSecxwuS1krMKoDbU89ljnPF+nKZwGL1kIrm2RWJaDHUZHu0NDt//fUXAOD333+3MjG11qpVK6Z2s5poZtNYr2WsMemitScmePEEBoDVq1cDCI7t1qhRIwDBCe/Fc1R72Mm41eNMPLC1mVufn5i9tOnWdR3E81WnFRPTlI45J6artWvXWtmCBQsAAPXr17eyWE2uAwcOBACMGTPGyrSnbUZ4T48bN86WxbwqHrwaiYcJeO+Ve++918rE857ERqRnR49h1/MUq/e/PHfiPQ54kQ/kHab3A7xnSh8jS0xWrVplZXrcpxdq6AghhBBCfA41dISkQLQQOjq71kwIl156qS3LgnSJRwcAO3fuDDlmw4YNAIDXX3/dyh5//PGQNlyL3yVSvo71JUnVXZoTlwZOf4m6Fv2mJZ6X61jRusSqoRONEuBlN4i2MFhfm7MVh0z64LqW4RwIBJfTiktrp/dznadca525RLQCWkMnWmFZmK3777o3uv+ioRONHhCs/ZCxqTV94sSj6xZtomshu46yf8kllwAI1mYlJycD8JyIoqE1ZqKh0/W5nuloyLM3bNgwKxNt3LJly0L219o20cLp+JW6PySYSBo1PX4iaeiiOXlFyqCjx7fEWZw2bZqVyX3XGYVeeuklWxat77fffmtlotXTDhAy1qtXrx7Sh9RCDR0hhBBCiM/hhI4QQgghxOfQ5EpICt59910Awam/MppXX33Vlm+77TYAXmomwEtiXqBAASvTC84FMQvEanKMFi8tPQ4VGjFh6KTvYuLSqY3ENKhjlcnifp3eKrvjMpW6zNuxxsCKpR1BTJX6eonTgTgSAN5CbJ20XcacNl+LqVXfE1eKMH1vxSR74MABK3OZx1Lur9vWJl45F0kVBnhpzKJdNxlfN998c8i2jz/+2JajmTulPR0zTGLI6X4JOlacxJC77LLLrMzlJEWi4zK5Rovh6EoH5lrC4Ip1J9vlHQx4913Hy5T0dA0bNrSyqlWrhtSjlxLIcgGd0k76oPdLK9TQEUIIIYT4HH4yEJIC+dLWi5djJVZHA/2VOG/ePADA5ZdfbmWy+NwV6Vx/yYkGz/XFGk2TEet21366X679RAOj+yoyHT1/27ZtAIIX08vi4FKlSjnbi9TXrCa1GTZiDVUSa7u6rEOBJCYmAggO6yFZIypWrGhlrVu3Dqlb7pNLixZOQyeaYu1o4DpGcGnt9PXQmj5BtB86U4qg2xWNt9ai3X///QCCwwVpRJP5xhtvWJlkf9F1yzjV7wbRxjVp0sRZN8l4Yn3eXE5ZLs251kbLdj0GZXzo/fr06QMAqF27dkgbGpfzjX63ZUTIHNt+htVECCGEEELOCpzQEUIIIYT4HJpcCUmBmE70AupouJJBu8xKon7X5ixR02uzo5hStXlAFtTq/VyL2mM177lMD7HGrtMxmrTpTRCTccGCBUP6v3TpUivbt28fgGDToGuxurSrzRe6X64+ZAUus3qkxdfhcI2fSOZcPX4Efa0lhp+OQr9ixQoAwaZZMbnqNsSspPsi11ePM90HGa+6D656Ii1m1+YsiQGpY8716tULAFCyZMmQY1944QVbnjhxIoBgE6hkdREzKhBsXtUxJwVxHrn77rutTMrasYRkLnpsyvMfLYZjym3htsvY1ONMynv37rUyWaZQqVIlK5P4cdEcNLRzhTxH2oEmI52/qKEjhBBCCPE51NBlEvI1EE3j4Yoq73Lj11/DMsvXGiDRmKQ3LAJJG/LlqDVXrjyBMgYOHz5sZXK/tebNde9Eg+HK5aq1GxLNXmtTRIOiI/0fPHjQliXSv2sBu9aKSdmVFUK351roK32cPHmylckxXbp0sTK5bvo8dVnIDuM7mlZASE+O3Gj1ubS+derUCdoGAKNHjwbgzreq2xAtm27DFXLDpRXVjgiLFi0CAMyZM8fKREvoCominR3EAaJTp05WJuFsihQpYmUzZswAEKyhE3TmDMljK5laUiLavAceeMDKJG+zfi7PVkYSEsCl/RZcVg+9nzwL+ndTtmvNsmSvEWc1wLMa6PzSrj5ord4ff/wBAFiyZElIH7Rjkg5XlV6ooSOEEEII8Tmc0BFCCCGE+ByaXLMJLlW+y6wCuM0frgXU2cEkRYJN55ESgke7d2J21KYFV31yrDZTykJfvfhX1+NalO8yr7pMGbJd1yeR0LUpY926dQCA5cuXW1n79u0BAO3atbMyMXHpvsqYDzemo8Wpy0oiOTOkBdc5a7OR6/rLddcxsuS6arPo+vXrAQBVqlSxMrmWycnJIe1qM6s23UpZ90GWFUg2EMCLtK/3k3L58uWtTDIstGnTxsrEGWL37t1Wdv311wNwPwcS3R/wxo+OQyfx44DgReopcS2boek164gWc87lqOXaz7UsSZ4j/ZsqZtO1a9damSwB0A5F8pzorA9iZgWA77//HgCwefNmK5MYm9oJTJ6paL/xsUANHSGEEEKIz6GG7izg0sRECzvhCoHhqseVWYBkPnJ/XPn49AJw0Ubo0AtyrP5CEw2YS0ur95N7rMePaGf0+JHF4HrhuV6YK33QX5sSKV331eU0Icds3brVyuSrVGuDJFyJ7mvlypWD/tV91Ocpjh6u5wDIeRqTcJoyQbQR+/fvtzIJs7B9+3Yr+/HHHwEAV1xxhZXJuJHwH1pWrFgxK9PlmjVrAggeU6Jl09pXGSt6HMozoZ8TiaSvx4qcS9++fa1Mj7mUaGeGhx9+GABw0UUXWVmFChVs+ejRoyHHCNTQnV1c19+VozWa81CkHMvaGiDvVG1dkGdMawHl3abzu06YMMGWZ8+eDSA4K0RSUhKA4HeqtCchnIBgTWBqoIaOEEIIIcTncEJHCCGEEOJzaHLNJMSM4FIXa0R1HC1ZtSvmkytBerSo1STj0PdHFoCL6QbwYhfpeytlHQNO7pnLdLZs2TJb/vzzzwEEx3ET89mAAQOs7MorrwQQbF4S85iOeeQac9rMIGNOm7X+/PNPAMGxlaQPOsadnMuWLVusbOfOnQCAatWqWZmY6rRpTa6hjtUndYcz/+YUE5grbpzL1OR6/1x44YUAgs1Cv/zyC4DgmG1i7tGLuV1OB3oMiylKjx8xaYqZCQAaNmwIIHhReCR0u5MmTQLgxbKLhpjpAS9OnStenUZngJDsErfccouV0eSa9URz1HL99rmct1Ju0/Xod2FCQgKAYCedqVOnAvCWKADe+JYYnoC3TAXw3p8S1w7wnje9XOH8888Pqi898NefEEIIIcTnUEOXSbhyPIpMf1G7viBcX+F6P/kaduUNZaaIzCXcNZUF3Tpvn2grXFovvV+kcaGdChYsWAAgWJtVtmxZAMDvv/9uZZIbUOfxFJnWaukFvrLgXGsYRabrnj9/PoBgDZ0sdNdfnYmJiQCCtSmy6Fcvapeco/o5Ec2K1rDIl3m4ZyKnaUxcWgutZZDtepG/ZFrQi7jXrFkDwNOeAp6GTmvR5B7rcasdaFavXg0gONSJHK81FKLN1VpacYjRC8HFaULf7+7duwMIDj0i56y1ieIApLXDItu2bZuVubZrJxJdFiItwCcZiyvbUqxE+w1N2YZ2ZhNNmc6xOn78eADBFhMZczrkjbzPAM8a8ttvv1mZjKmVK1damWSfEGtFeqCGjhBCCCHE53BCRwghhBDic+JMTrNVZBGuyPsu05rLVBotfpyYolyRpbXzhNTNW5x16HvnikzuWqwr91MvMheHCm0WFRW/3k/GgDYZyLHaAaJw4cIAgk2urgjnEt0c8BYAa1Nqq1atAABdu3a1Mok9phcHy5h77LHHrGzu3LkAgMGDB1tZ27ZtQ9pwRX4Xmb5urnhS5zpyzvrZdzlAyLOv3wfyjhg9erSVDRo0CEDwwn/J3qFNuLLYW7erx5eYWjdt2mRlYt7U5qVVq1YFbQOABg0aAAg2pUofdFy7lOcLuJ8xIZosWnYel0zGX7h4iCTjcGW8kaUt+j0m90QvFxH08hQ5Jpq5XJyxJGOErlsvA5FxIctegODlNXKMXqYgx+jYdPLedDnFpRZq6AghhBBCfA6dIjIJ+YrUGhuZnbuyCbj2C6eNkK8Ovd2l6cspWovsgNw/fR9d+fhku/7Cl/Ggv+7k2AIFClhZvXr10t3unDlzrExnApDQJFprJ3k0dT5QcbQ477zzrExr14QdO3YACP7qFI2OXvwrx7o02a5o8K4vZMD9TJ2LuMIsiExrAuS66/Ej6KwcEq5EnBoALzRMjx49rEw0czqbgx6vEuJBcl4CnoajTp06ViZhbxYuXGhlMuZmzJhhZaKN1uOsdevWAILvdWY6KfD9eXaJFOYr1nAk0ZB3jT5WHIkkfImWufoXbuyJpSRW9LvN1V4sUENHCCGEEOJzOKEjhBBCCPE5NLlmEi6Tq6BNBrJdmzJE/atNZ9rE4soa4YrZQ5NB5qJV7ZLJQGdLEEcEl3lML+yWemR/IPaMH3KsHj+yiFgvYJf4XzpLwFdffWXLski3W7duVnbjjTcCCDajRWL37t22LE4WekFz9erVAQQvphd0X6Wsx7+UXddNl3PKkgPXcoxYz1dnQxAz5tdffx2yn8R9A7x3jh7LOqG5yHXsOokrp02uF198MYBgR4lZs2YBCF4O8OuvvwIIdrKQPjRq1MjKXOb+zISZIrIePeYiZYDQv4uRli25YsNqmbxrIi1dAdzxYF3LoFxjRe/ncrigyZUQQgghJIdCDV0mIYuRXc4O+otDNCva5Vpm71qT51r0HS38CaOZZx2yQFwvQpd7qh0DXNpVV6R/F64vPbnHeoG6hISQ/IOAp4HRX5133HGHLUveVx3BX/rt0vpqjaB8TeqxLho6nXtVske4vnz1+I6kgS5SpEjItnDklPEv7wu9CDtS7metIZXcqt99952ViaZVZynR91HQ4zrS2HU5vGgHH9EAS05LAPj2228BALNnz7ayZ555BgDw7LPPWpnkp3Xlmo32LkzL+GCmiOyLa8y7cDkYRkO0Z3osy/jXVghddlkVpKw1dDJ2o4UriwVq6AghhBBCfA4ndIQQQgghPocm10xCVKquiO5a5SvmDZ3A2hUbx7W406X2Dxe7jmQNWuUu8bX0PRHTaDQTkNSjjxWzpI4VJ2NKO1Ts27cPgBcLDvBilIUzy4l5WJwnAM+sqsewmB70gngx4elYZr/88gsAoFKlSlYmiasXLVpkZWLK0+cp5+eKrRfOrJIR5go/IGNEL9GQMaAdBOR6ue6dNjPJfdT1SdYHSUgOePdRLylwmVJd90HfW7l/uh4Z13pRuIxTPV4lVuLy5cutTJ4nPR6F1JhcY3Uskf1idVoiaceVKcKVGcQVm851f+Te6mdC6tP33bWMRWI3umLLhRtnrt9pl8wVVzatcFQSQgghhPgc5nLNJORLVX/5ylek/jqVyOniug94X6r6y8SVt1Uj211fHyTzcWkAXOFD5HHTi/tFQ6G1G5I7Uy82lzAQooHT+2mnAsktWKhQISvbsmULgOA8sHp8yJjUC+bla1Q7QMgYdoWs0KEovvnmGwBAhw4drKxz584Agp8JVzgMl4ZO9gunodMLj881XF/4egzI+NIOLXJv9f2Wa6c1DzIep02bZmW7du0CEBzeJCkpCUBwWBKdmWL//v0AgseKjD+tOXRp1Fx5Z6X/Wmsnx+iQDnJMJIehlOVIsmg/h9IvvlszH7k/+j0gY92VX1e/A10hQ+RYfe9cYUtku3YEuummmwAEh3By9cWleXO1F208pjVXMDV0hBBCCCE+hxM6QgghhBCfQ6eITMIV0VrKWp0qmQV27txpZWK2CGdyFfOYNr26MlNESx5MUk84k4yo+133RCP3Xhaeu+oAvLGiTU7idKAX5kqGB+0oIXWLORbwxpI2a+lxWLRo0ZA+r127FkCwiVTOT5uMxawnydg1ej8Zt9rxQtpzmVJdJhRtQtRjPa0mCr/iimyvr4fcC32ty5cvDyD4nSTjS5tXZdz89ttvViamUm3G12NT7p8ru40em1J2LSFx3W/XEhI9HjMqvpwQLdMO49BlHa5sD5HGhb4nLvOqaymT4HJI08sCXM4+rt9cl1OiS6b7L+eUEe8waugIIYQQQnwOJ3SEEEIIIT6HJtdMxpUwWJslEhISAABNmza1MlfSX1fKEV2PK/UNyTpc3ppiOnd5L2kzlNxvV4owbQIVc6OYWQHPpKnNUFLWx0p9LvMF4JnUdL/E21H3X9rTnpJTpkwJOg8A6NKlCwCgbdu2VtagQQMAnhcu4I1blwlLezPKtTl8+LCVaZOYvnY5AZc5X48L8YKVOJeA5yWtveylHu2dKp6s2rwtplbt5VqrVi1bljr1+HItHRFcz4QrCbt+77nSJrlIiznUZV6NZHJlHLqsQ19rV3xFGSOuZRt67LlMpIIeM3Lf9TtOx/lMeUy02K/R4sWmbDfcMbHAUUkIIYQQ4nOoocskXNo4V/w4+crVX7uEpAdxtJF/AU/7oTVZejyKNkVr+kSmY9O5NIczZswIagMA7rzzTgDBmmdZlK+/fAX9dSqLkXX/XNkENFqblxPQ99aVLUQ0E3o/0Qq4HGO0JqN69epB2wDv+ss9BIBOnTrZsjjquBahuzJFuLQpsWb7YDYcktXI+0m/p7QTTyzHavSzJdszwsmLGjpCCCGEEJ/DCR0hhBBCiM+hyTULiTUBNCGpRY8pl1lLFhGHU+XLvq7Fv66lAjr1lKR90uY2WaCvF+qLqdW1+FebzsR86lo4HC71V07DZTp3OR9oU3SkGGp6XFSsWBEAUL9+fSubPXs2gOD0bldeeaUti7lIxz6U1En6PrpiY8qxrlRvhGQHXGnIsiPU0BFCCCGE+Bxq6LKQWF3jCYmEK6q5Xvzuitrv0t5oLYh8eboym2j27NkDAFiyZImVSagTncFCErK7HCB0aBTRDOkFxi5NdrQvZIaRiO4AIbjeOfr6iRNM3bp1rezXX38F4GUrAYK1cXJ/9L3Vyc0FV5gacerQoShcWXUi9Z+QrMAV3iQ7wbcgIYQQQojP4YSOEEIIIcTn0ORKyDmKNg+4TJbaDCumLW1GEFOYNtslJycDAGbOnGllckydOnWsTDKgaFOqtK1j2MUabd2VqDsno6+RXBOXTJssXeZq1/UUx5gaNWqEyDZv3mxlq1atsmVxpNBZKKQ9PaZkzOkxFel+R5MRQjz4diSEEEII8TnU0BHiM1zOAi6Nh15k7tJwuRac60wMkrFBhx7Zu3cvAGDatGlWVrt2bQBAmzZtrMy1ID5SDkWXlsalTXTl+wRynvbGdb4uxxKNXEOXVk5fazlW8rcCQKNGjQB4YwIAfv75Z1u+7LLLAADnn3++lcm+ehy6xmukHJyufukxwEwRhHhQQ0cIIYQQ4nM4oSOEEEII8Tk0uRLiY8Tk5Io5F83kqs1Vsq92WJC4Ztp5YuvWrQCC45F17NgRANCiRQsr04vjBTGfhTObpuxrdo/KfjbRJlcpR4vZ5rqucv1dZlFd33nnnQcgOEPI+PHjbVlMsq1atbIylxNMJAcO3deTJ0+GyGSMR3OgISSnQg0dIYQQQojPoYaOkHMAV25MrVlzaUY0ohFx5VRdv369la1duzZkv6pVqwIAKlSoEFKv1vxIf/TifdG6aK2RSzPnCqviWjCfU9D3NpL21RW6xhWaxpVJRNfXpEkTAMC2bdusbOjQobasw5kI4uyg65ayy6nDNYY1MgZy2r0mJFaooSOEEEII8Tmc0BFCCCGE+ByaXAk5B3DFpnM5H7gcIQDP9JYvXz4rk/KECROsbM2aNQCA+vXrW5nL1ComM92eK96Y7OdKzK4dPVyL9/U5uxwCzmVc5kkxmwPetdPXRWQ6lpyUCxYsaGXaJC5IPZUqVbKyKlWq2PLOnTsBAL///ruVJSUlhdQt7UWLOyj3O1rcREKIBzV0hBBCCCE+hxo6Qs4Bomk3BFdeTY3Wosn2xYsXW9n27dsBAG3btrWycuXKhe2PK6q/7qto3LQsWvgN4tZw6fAgguv66/sumUF0VohImrDSpUvb8gUXXGDLBw8eBADMmTPHyqpVqwYAKFasmJVJ27r/rqwQLg2jy6mDEOJBDR0hhBBCiM/hhI4QQgghxOfQ5EqIj4kU/V+bq2S/cE4FrphhycnJAIB169ZZmWzXJteyZcsCiJ4RQHBlJXA5QLjMw8wSEIpch2jXJpKjSjTzvBxTvHhxK+vSpYst//DDDwCCzfOdOnUCABQpUsTKJLahK+6gazy6TLOu2HqEEGroCCGEEEJ8DzV0hPgYl3bGpW1JuX/KsmhOjhw5YmWbNm0CAOzdu9fKChcuDACoVauWlZUsWTKkPumD1viJZk5r6EQzp50xpB5ZsA94ITl0CAyXBjKn4Dpf1zXUoUxcWk7RnmmZ3B99rNQt9x8AGjdubMuS13XlypVWJtkjtNNM0aJFw56TK8yOHisyHnRoHelXTrv/hLigho4QQgghxOdwQkcIIYQQ4nNociUkB+BKiu5yRBBHCMBb4K73q1q1KoDgeGR6e0qixZxzJZEXdF/lWJrWwuOKIegyeetMEGK+1Nf1xIkTANxOLmKaBzxTO+BlC1m+fLmVrVixImgb4JlctYnXNTZTbtP9cmUcIYRQQ0cIIYQQ4nuooSPEZ7hCOYj2AvA0MHqR+dGjRwEEa9O0g4GwevVqW/72228BADVr1rQyCUURLa+maFv0flq7k/JcXNoZ1+J3rdnJydo6lxOMvh4i09dQxoUeP65rKPu5nCzCIWFs9DicMmUKgGBtbr169UKOFc2hjFHAC4/CMDWExA41dIQQQgghPocTOkIIIYQQn0OTKyE+wxXB3xWTTS8ol+2uxe+AZ5rbvXu3lW3ZsgUA0L59eyurXbs2gOiZBVL2LzXHuPZ3mRVzMrGaH1N7zXXdkeIZpqynevXqAICNGzda2YgRI0JkkepxZQbR47pAgQIAIjvhEJKToYaOEEIIIcTn8FOHEB8j2hQdisKVkUG0GzoUhc4KceDAAQDBWSHEaUJytQJAqVKlAETX3rhIrXaN2rj0k55r6DrWpUUDvHAkZcqUsTIZm3pM7d+/H0BwxgnRwukxLKFtXBq6aH0kJKdCDR0hhBBCiM/hhI4QQgghxOfQ5ErIOYpr4bw2a+m4X4sWLQIAbNiwwcokqXqVKlWsTEyuhGjEBC9jBgDOO+88AMDhw4etbPz48QCAjh07WllCQgKAYGeH48ePAwg2qbpMroQQD2roCCGEEEJ8Did0hBBCCCE+hyZXQnyMK+acoD0ExbtVp4LSJq7Zs2cDADZv3mxljRs3BgBUrFgxpE5tCqOnYc4hWlxB8XYFgO7duwMAJk6caGVjx44FALRo0cLKxOSq65OxqT21xXSrU8jJfhyDhFBDRwghhBDie6ihI8RnaC2JxOtyZX3QGjpxgNAaOjkWAObPnw8gWCPSunVrAMFx6ARXtgpy7qPvtR5fx44dAxCsPevatSsAYN68eVY2bdo0AMExEAU9hqUePUYlhp1ul1kjCPGgho4QQgghxOdwQkcIIYQQ4nOorybkHMW1gP3kyZNWtmvXLlvesmULAKBy5cpWJk4RxYoVszIxgbkWodP0mnMRM6g2h0rMQ3F6AIAiRYoAAHbs2GFlYtLX40eO1fXJGOY4I8QNNXSEEEIIIT6HGjpCfIbLISFv3rwh++kF5eIMsXPnTitbsmSJLYsmpEKFClYmUf9dSdNJziRcuBoZP65QJomJibZcv359AMDSpUutTBwgRCMMeGF4dBsFCxYMaosQEgw1dIQQQgghPocTOkIIIYQQn0OTKyE+RkyuOr6cxJKT7BB6+/r1661sxowZtly1alUAQMOGDa3MZcYVk5o2vXKRes5Bm0B1zEJXPDiJfVizZk0ra9WqFQBg/PjxViam1Hbt2oUcq8eZOFSE6w8hOR1q6AghhBBCfA41dIT4GJd2TLQWWoMiC8nXrVtnZXphumSFaN68ecT2RGNCrVzOQu631pjpsjgxaKcIcabRThGS7eHzzz+3sq1btwbVAXhZIzjOCIkdaugIIYQQQnwOJ3SEEEIIIT6HJldCfIyYV13xwbTs8OHDAIBNmzZZmWSHAIB69eoB8OKEaY4fPx5Sd4ECBcL2hZx7yL3VJlAdD04ykOjt4uygM41UqlQJAFCiRAkr27dvHwBg2bJlViYxELUjhCwhYBw6QtxQQ0cIIYQQ4nOooSPEx4jmRIcokYXpeoF6cnIyAGDPnj1Wpp0mJGyJ1pwIEkJC49LQkXMfPaZ0+ciRIwCCcwVLBgi9n4yvli1bWtmGDRsAAD///LOV3XzzzQA8LR8AHDx4EEDw2JPQOtQOE0INHSGEEEKI7+GEjhBCCCHE59Dkmkm4FhFHIlI8scxoj2QsLkcEuRf6nkS6P7Heb1cdOquDmLhksTkATJ8+HQBw4MABKzvvvPNsuWzZsiF1yr66boktRnIWMuZ0rDht5pdxoceHbNfjWmLXde3a1cq+/vprAMDEiROtTLaLEwXgmXBdThH6mRCzr25XxrA2/+rt+lwE2df1/PI9S7Ij1NARQgghhPgcaugyGZfGJlb0/rFqb9LTHkk7Lg2dkJb7EGs9kTQGslAdAObMmQMgeNF627Ztbbl48eIh7Uq4Eu0o4dLQcUF6ziGcVku0Z1qbe+zYMQDBYW9knDZp0sTKZGxqhx3JaFK7dm0rK1y4cEx9FC2g1ia6cs26jtFQG0f8BjV0hBBCCCE+hxM6QgghhBCfQ5NrNiGjzFY0D5wdIplDoyHmHle2B1d9roXd2vyVL18+AMEmp82bNwMASpcubWUNGjSwZYnt5Yr0r9sjORMZZ3os6HhwLqcJMXPqWHIuM2ZiYiKAYDPskiVLAAAlS5a0sk6dOkXtH+A5Tei+Snvh3rPSV90vl1OEqz1Csgt8UxNCCCGE+Bxq6DKZrNKYUTOXPYg1xIHrCz8tji+C1kYcOnQIQHCu1r179wIIXmSuNXTi7KCzR4gGxqUR5HjLmej7rh0NxAFCa+hk/ERzSKhWrRoAoFmzZlY2c+ZMAEDRokWtzKWhk/Gq25Xx6gpvEk4LHilECSF+gRo6QgghhBCfwwkdIYQQQojPock1k6C6PmeRHqeI9CywFlORNouuXbsWALB06VIrkzhhVapUsTLtICEmK226cplhpa863li0Befk3CHcmJb4hto5R5whoj0H5cuXBwA0atTIyn744QcAwPr1661M4tnJWAa88arjK8q4TY3J1bVvpNh0hGRHqKEjhBBCCPE51NBlIZmpweCXY/Yg2n1IbUaJtCzSXr58OQBvYTkAJCUlAQDq1avnPCZSaJITJ06EyPRCd449IuPZpdVyobW+kgFCnCMAICEhAUCw5m3jxo0AgKpVq1qZaNa0ZtDlFOHSwLnQ/Rftn8t5Itb6CMlKqKEjhBBCCPE5nNARQgghhPicc9LkeurQbgBA8t9FrKxcifzhdo8BL7n0vh37AQAnkM/KipcLJC9PVwv7dnhtHA+o+POXKG9laem+1Ln/70JWVqpM4JrkdR5BMoNYM0CkReZi5cqVQf8CwH333QcAqFu3rvMYV8w8MYu5+qxNU8wkQcQEqU3xrnEjZkxtchUnB+2kIw4SW7dutTJZQiAmWgCoWLFiSLuu9mN97tJyDCHZBb6JCSGEEEJ8zjmgoQtoz9aPe8ZKrur5KgBgcb/JVmbe7JjqmvcufhsAcOslT1nZnKIVAAAlsdfKtuFiAMD7Pwy1shvqeRo8R8W2+M5t3QAAT8/1IqJX+F/6wr3bvEM6D/7elofcEFjgHqy0CywKXv3JDVbyj+k1AQBNC622ssV57gAADB3Uzcoqhu8pSSWxZoCI9qUfqyZANB47d+60sg0bNgAAjhw5YmX169cHELygXC8klzAkuq/iDOHKb6nDm6TcRnIeMn5c41Zrc6Xs2k+HIzn//PMBAJMne+9wKTdu3NjKREMnoUrC1R2NWHMnU0NHsjN8AxNCCCGE+BxO6AghhBBCfI4/Ta7KZDmk300AgG/aDLOyDwfNBgCctyotdf9kiw+2fg0AUP3HtVb2zcWB+Eh54Zmrdk14BADQoqtn9q209GUAQDvPkgr8z0z700NtrOT16mMAAH9+5SWeTvifx8KpXROt7PFWl9py/0pLAAAv68o3fAYAeOavf1rRj5+0/l9fPbZ+fmWg3SmdreyNjnSRyAxSG3cwLeacw4cPAwAWLFgQItNxvSQav46fpRemu2QSmV8vQhfTmjbXkpyDHtN6vIpTgpa5zKuR4rhp02bDhg0BAL///ruVff/99wCATZs2WVmLFi0AAPnyeUtcpD1t6o32LMq4131wnVOs9RFyNqCGjhBCCCHE53BCRwghhBDic/xpct3wly0W6B8wNY1L8jyk1g1Je9Vbxw625VH9hgMADv3PzApo86VXSrh4IADgv128/QaNDZg+211bVlU+DgDw/tf3WNEn+wOmz4Q8oSr8vAmeWbT/+xfbcvlBgXr+2a63lZXbFTBDnKzaztFDj4oVEgEAf2zYqqSJjj1JdsAVF0ubhQ4cOAAAmDNnjpWJOat169ZWVrRokO0fQOxxuHR7Uqa3H9G44him3AbEPn4k9VelSpWsTMyqkgIM8Dy6K1eubGUy/vW4dXlla5OsLCGQJQVA9Nh2hGQ3qKEjhBBCCPE5/tTQNbvKFm/MsEoPAgAWjx9rJb17fwkglqwKAe1Hs4u92G7fTw84Lpy61tOsHf19PABg3DXXWNnnDs2cs4Wmnrau65jpAIClp5SGrmmg7cZv/GJlK/r8HwAgKfcuKxv3YyC4XZ/7EmNql6SOjP6C1/WJlsGloZs3b56V1awZiD/YubM3ZgoUKBBTe7pura2ItB+1dUS0XVrrJRou11hxjWt9rGjZtGNPs2bNAACbN2+2svnz5wMASpUqZWVFingZgiK169LQuWIpakchV2w6QrILHJWEEEIIIT6HEzpCCCGEEJ/jT5NrprAbALDjrzpW0qhK6ELySJRNSPT+80dg4e4mtd3sWA8AqN3QW8ArLUQ11SWUscVE/AEA2Kgrr9kSAPDEqwesaEDPegCA7/Z7i+Mffj/g9HFHjcjNkazHNQaiLdwW2bJly6xMYni1atXKyuSYkydPWpk2JbmSq4uZVsecE/OYK+4XF4znLLSjgYwRPV4lHZc2ycsYkRiHuh5txpRjq1SpYmVdunQBAIwZM8bKZs2aBSB4rLtMrlJ3uNh00gfXGNZ9lXpiXcJASFZCDR0hhBBCiM+hhs4SUHctn1XaSuoXSmUVVerbYhuEfultXh74miydFFpx9IXl3pdq0gXh98pTyVsI//zYFQCAFzIoWbWQkxfBh7surmsiX/16mytCvosTJ06EtCfas+3bt1vZypUrAQBly3rhcSRhudaiuXCFKNH9k/ZcIR9cWpdwWQRc7UXaLy37c7yeXVzhSCJd91izR5Qp41kmzjvvPADAt99+a2VbtwbCL8nzAgD79+8HEKxtLlSoUNQ+EeJ3qKEjhBBCCPE5nNARQgghhPgcmlwzi4PHAAAng0wQ8m9sZolwxMUdAgAc9awMTrOXq41IpjCXCS6aGc0Vj0kvPI7Ul7SQWaa1aAv6o213RcqPlPBbXyPXsbIQW5uhZCH2tGnTrGzy5MkAvAXjAFC3bl0AwL59+6ysWLFiIfVpU6r00TUGXKbbcPG8ItUn+2mZy9wm210L2MOZrF19iJa1IJIs0vMU7dicgh7Xkcz7rmsY63IAfb/FQULHnNu7dy8A4NChQ1Ymjj/iWAF48ezCjZ9IGSxcDkCEZEeooSOEEEII8TnU0FkCi2aLl4myWySO7LfFPUWLAwD0d2ghW3moxix6yIejtrR/TyDYSfHIH7kxaxlixVVPJFk07V56+uCqO9b20nI9oh0TSUvl0mLq8CGCDkeSP38gN7FLk7Fu3TpbXrNmDQCgV69eVlahQgUAwRoK1/XQ2grXNXRFz3edU6Rz19tcGjpX/yJp6BihP+fiylG8YEEgl7d2lOjWLZA1p2XLllYm40uH6tHjK5KGjmOO+AWOVEIIIYQQn8MJHSGEEEKIz6HJ1RJYaFux9iwrWS6ZGGLNqpC81RZXlQlkgyist1esDQCYtcxL8WBMNcRGsi1tXRWIlVe5cLh9g0lt/K/UkFozbFa1l9o60ovLFBwpvpZ2SBDTj74nYmp1OUps2uSNn+TkwLjQEfXF5BptMbeO0+UySUVy6tAy17m7zKuxOt9EOtZlJtNw0fq5i9x7bXLdtWsXAOCLL76wsubNmwMIXsIgY1mPb43s63LO4ZgifoEaOkIIIYQQn0MNnSWghmt0secVMUwWn3eMTUW3ZOFYW67T5lYAQFm1PaFhIItDmWHeova/4joAAKpH0xotXWiL4+q0AQDcoipPbT5Nl/Yj3HY/khH9T82XeWq1oC4nAK09EO2aziO5fPlyAF50fMDTLNSsWdPKypcvH7b9cCFsXBowl+bQFWIlo4k1y4TfxyiJjsvRSY91CUeiHYX08yG4nJBcuWN1e/I8upyHCMmOUENHCCGEEOJzOKEjhBBCCPE5NLmmoGmXu2x59d2jAQBL+v7LyhrlDTkEODUHADDqFS/u171TG7kqBwDcufoeK/p+yc0AgH82dN2KU7Y09+vXbDm+XyA7gKMFJ+nNgpDa/WM1NWZ30tvXSNkLdIw4Mf24FmxLJHwgOEOE0KRJEwBAuXLlQtrQRLtn4qThymChnSfE/JSWbCeRTMAu8280U6/rGJKzkHGflJRkZWJynT9/vpXJdv3cuRxsojkF+en9RXIe1NARQgghhPgcX2roju/bYcv7T4Ru33/gf5qtIwesbMeOHSH75SvuaTVKBALzI2/rf1rZ8JaJAIDL+hS3slEvXwYASDz+pyfrH9CyjbhxuJX9/r8PxiDNQd6Au/1Dw86zouo9bgIAFPvyJSvrXjWwEH7V1wOt7JZPb7DlYYsClaflazGjXfEjaVNcZOYXbkbn3UxLX13ZDXSIEiFayBBBj1vR0BUvXtzKOnToAAAoWrRoxL6kbEv3T7etZaKN04vCYw0VEkkWLaNHNG0cIUJCQgIAoGvXrla2ceNGAMCUKVOsTPIb61AmJ06E/nhEC59DSHaGGjpCCCGEEJ/DCR0hhBBCiM/xpcl10eAOtnzbp+H3q4PHbLlDh9DtN33smU2fvEBKJa2s2/trAQDfjXre269rwDlhYzFvEe6V//gOALCgdwsrKxEhblaJS96zslXffA0AePGp7lb2xqaA+axer/+zsm9+623L55WKzUyVst1oMhdpWWCfExHzjDavukyMkWJbaZnUs2XLFitbvHgxAOC6666zMjG5alOSK66dNvGm7HPKfgtSp8vMmpYxkB0yehD/o8d1qVKBDD+XX365lb366qsAgDlz5ljZHXfckep2Ipn+OTZJdoQaOkIIIYQQn+NLDd0FT3qatT+fzMSG8gYW3La48W0rGn9jbIe6PuAk6r/OsZnQPODsMGjsDaEHKNISGsLlsJAezVwksuqLNVI7Z/OrWTRcWtMl91n369SpgMOO1jKIZk5rwiRH67Zt26zs2LFjALxMEACQmJgYUp9ExXc5H7gWfWu57oMrB61robjL+cKVozXltli2R6qPjhI5Ez3eihQpAgCoXbt2iGznzp1Wtn37dgBAgQIFrEyPH5dTkDwLHGfEL1BDRwghhBDiczihI4QQQgjxOb40ufqJw4cP23KzZs0AADfc4JlXn3jiCQDuRevpJbULeGONJ6bJ6qTp6ak7M/vlMkWKycbVrpheAbdTxF9//QUA2Lx5s5VVrFgx6N9wiNk3NfdO9nVFxdcmLimnxYwfqynVtX9WjzOSfdFjVN6b+v1Zo0YNAMD+/futbPny5QCCM0VUqlTJluWZcT0TNLkSv0ANHSGEEEKIz6GGLpOQLz0JNQF4Uf+fffZZK5s1axYAYPhwL8uEzssZiYz6ckxPZP7spCVJT+aM1G4L17YrxIfL0UBHqRftgtbQLVq0CICnqQOACy+8EABQtWrVsO3r9lKTOcPVB1cGC9HQ6TAprvrSE97BdQxzuRLBZc3QzkitWrUCEKxZliwr2iGtcuXKtux6ZlzOPoRkZ6ihI4QQQgjxOZzQEUIIIYT4HJpcM5m2bdvasphXtVPEpEmTAAAtWnhZJsT82qlTp1S3lxYnhljri2QKc8lc+7tMkqnpV6S6M3PxcjQTYqyJ7F2mHdexYnJds2aNlfXo0QNAsKnI1VYkZ4bU9F/QDhyCNl25cJlIpY+6XyILNy4ElzOGa2wyTt25jx4/rnHWvHlzAMCePXus7OOPPwbgxW0EgCuuuCKkbonhqNvR7bmeD0KyC9TQEUIIIYT4HE7oCCGEEEJ8Dk2uWUiDBg0AeKZXAHjggQcABHu5du/eHYAXow4AnnzSy3Hm8jB04TITpsf7MJIJy+Ud5jKjaW80l5kwGi7Ps6yIFxUpzhzgNsVEMjnr/eWaSGovANi4cWOIrHHjxgCAhISEkHqjmTYjXTfdn1hjEbruXbS4di5c6ZVcx8R6j2lmPfdxjWU9ZgoWLAgAqFKlipVJKr0tW7ZY2d69e225RIkSIfW4nnl6U5PsDDV0hBBCCCE+J87wkyNTSO1l/eyzz2z53nvvBRCcZaJz5862PGLECADR49WlJ0NELNs0euH8kSNHAACFCxcO2U++lAEgf/78tlyoUCEAwV/ILk3NoUOHQrbphNsp++3qv0tz5dKw6fhrck762GLFitmyHK81kLLAWtctker1fqI1WLBggZWJxrZkyZJW9s477wDwko/r/qQ3Jluk+xxNI5Ja0uK4IMdQA0f0GJDnSMd1FA3dpk2brOytt94CAOzbt8/KGjVqZMu33347gOBn6+jRowCCs0vQKYIIGfH7qutxOcqlFmroCCGEEEJ8Did0hBBCCCE+h04R2YQ+ffrYsqSu6d27t5VNnDjRlps1awbAM70Cnkk2O1jQxUSnzSCiQtZmVo3sq7eLGVebc6UebfJzJaOPlGxeI9fLFdtK43IacDmCuGKsaeRctGPL7t27AXjpiQCgePHiALyYWoBnSnL133XuGZUaK1aHj1hJi9mUplYi6OUK8jxpmaCXRHTo0AEA8O2331rZ3Llzbblnz54AguMrukyu6XEqIySzoYaOEEIIIcTnUEOXDalZsyYAYPbs2Vb2z3/+05Y/+OADAMCll15qZRLWRIc6cSWxziy0Nkq+aHXUdemL/mqWL2C9r/4alpAdx48ft7JSpUoBCNbYyHZ9vq6MDJEcJVxf+FozJdqxcMm75Xh9HeRrXztXyDlpDZ1EtF+8eLGVnX/++QC8UCVpIaO0CNRGkLOFS8us3wfybOnnSfbTzlL16tUDEOz0sHnzZlveunUrgGANnTzTLqcgQrIj1NARQgghhPgcTugIIYQQQnwOTa7ZGO0gMHjwYFtu164dAOCuu+6ysoEDBwIApk6damXiNFGpUqWQulMb/yvaMS7zpMSMAzwziTZf6PMrWrQoALcDhDaTuBboS7+imVxd8X5kP92ubNdmHNdiaJeZNtp1lWO0uVlMP2vXrrWyq6++GoDb5EoTKMnJaJOroJdyiBlWP4vVqlUDAFSvXt3K1q9fb8urV68GEJyFRfbV7cnzG865i5CzCTV0hBBCCCE+hxo6H3LdddcBAFq0aGFlEuJEh76QkBc6vEnXrl3T3G6kaP0urZHWmLm2a22daKx27txpZfLVrCO+S52SWQLwvqqbNGliZZJhwRVVXiPbteYvtecJuHOSaq1fyv5r7YBo6PQ5iVZVax6kvrRkWiDkXEE7Lsgzoa0B8izr/URWv359KxNHCAD4448/AADly5e3slq1agHgM0b8AzV0hBBCCCE+hxM6QgghhBCfQ5Orj5F4dYAXsy5avLrHHnsMAPDss89aWWrj1blMftp8KjHltFOBmD/0fnqxsZhaV65caWU//PADAGDy5MlWJhklypQpY2ViWtYmSzFHu0ypuv/SRx0/zmVWlYXW2myrj3FdQzED6QwPsphax5zbsmULAC8DCABUrFgxpD5XrLusjDVISFbjehYLFy5sy0eOHAEQvFRDllvo505Ms9rkeuDAAVv+73//CwAoW7aslV144YUA3KZbQrIj1NARQgghhPgcft6fI4jmxxXe5N5777Wy//znPwCAmTNnWtnIkSMBuMObREM0TVrbJlkOtCZJNHN6P+00cPjwYQDAqlWrrKxu3boAgNatW1vZ/v37AQDTp0+3MgnVUqNGDSsTbZ1EiAc8bVa0DA+uECWiGdRZH7SmwHWMyylCmD9/vi3v2rULANC9e3cr04uzU6L76grPQkhOQbRnOtyIK6SIPOcVKlSwMv2+2Lt3LwBg+/btVibvJF0fc7mS7Aw1dIQQQgghPocTOkIIIYQQn0OT6zmMxKtr1aqVlUm8Om1ylcX4aYlXJ/VJgnkAWLduHQCgePHiVibmR+1UIAuaAc+RQptExOkjKSnJysTRQJsdxalg4cKFViYmS21WkWTdOq6UtOsyY7pi2On+u+JTaXOuOFxoM60sxNZZIaROHVdQFnbr+qQ9xsUiJIA4KbjMrPq5cz3T8owBQNWqVQEEP29//fUXgGBnK73MgpDsBjV0hBBCCCE+hxq6cwyX9kbyGAJeeJNHHnnEygYNGgQg9vAmekHwJZdcAgB47733rGzo0KEAgH79+lmZ/vIVdHR3+YK+/PLLrUxyuOpzEtlFF11kZZJl4qeffrIy0db16tXLykRD53Jc0DLXV7/rC18jx+vzlC/7ffv2WdmKFSsAeAuuAU8rKVoCfZ4ujSA1dIQEEGclbSGIj48HEKxNk2dfI/sB3rtv48aNVibvSm01oIaOZGeooSOEEEII8Tmc0BFCCCGE+ByaXHMYslD/zTfftDKJV3fbbbdZmSte3eeffw4gOF7dfffdByDY5DpkyBAAwD/+8Q8rc0VY16YMWcCsFyBHMi3qTBESa27ChAlWJqYYV7woXa+U9QJq135y3aKZXDVyjE4CLtdT979hw4YAPDNruD64Ml0QkpORzDKffPKJlXXs2BEA0LlzZytzPefaDCsm1/fff9/KRo8eDcDLGAEEL4sgJLtBDR0hhBBCiM+hho6gZ8+eAIAmTZpYmSu8ieRMdYU3EecIABg/fjyAYI3ZZZddFtJuiRIlbFkW/4tmDfA0XDpfqWzXWRhc0eJLly4NIHjhs+DK5eoKD+LKmRrNIUEfI7gWWjdo0MDKJFxJtL6KdkG3wdySJDvh0ihnVH1CcnKyLc+YMQMA8MUXX1hZuXLlAHiaOsCdi1nnepV3kdaSSzgkrWGXUEvakiBQc56zSIuTWmaPEWroCCGEEEJ8Did0hBBCCCE+hyZXYklMTLRlMQ3++9//trK33noLQHC8ugcffBAAcMstt1iZmFwHDx5sZWKS1aZNbToUU4jOHiEmEW1ylcwOO3futDIxiej+i6OEjiUn6m5tdhEzp1aFu9Ti0tdwKvNI6vfNmzfb8rJlywAAPXr0sLLGjRsHtaFxmVz19SAkpzFr1ixbnjhxIoDgOHSurDTHjx8HEOwI4VquUKVKFVtu2rQpAGDTpk1WJllwGjVqlPYTICSToIaOEEIIIcTn8FP/HCOjFl2KFkiHN2nfvj2A4PAmkmVCtEyAF0197NixViZfuRUrVrQy/QUt6IXKoj3TWi/Zvn37diuTrBBacygOHpI7FfAWMmvnA6lby0SLqPsn2Si0TC+gFu2aDosgWSFkcTXgOW5Ur149RKYdPVxOGJEyXVBrR7KCcAvA5fnQ49+V7US2iyNTpDqB4Gwyq1evDpEVK1YMAFC0aFErEy2+fvYlTFC0sEN169a1MglXMn36dCuT5yyahk7eIfpZdTlbpdwf8K6R1iC6svSQrEPunb5P+/fvBwD8+OOPVjZv3jxbFq3wVVddZWWdOnUCEPy+lvucERmAqKEjhBBCCPE5nNARQgghhPgc2mmIRSe3F3RWiLZt2wIAlixZYmU33HADgOB4dS4kAvsLL7xgZdp8IGYI7cQgaFOkqLm12UXMN7KIGfAWN2vnCalHYs9ptBlEVN+iMgc8M040k4fsB3im4N27d1tZ/fr1AQSbnl1R7EW1r1XzYhbW10PMWdo8kxGqe0JchBv/Mnb12HRla3EtZ3A5J8gY1g4J8+fPBwBUrlzZyuR5mjZtWkh9ul3XEgbdB3lua9SoYWXHjh0DAHz55ZdWtnz58qD9AbdjleAyueo+uK6HXMuMjulH0o++JzK+ZWkNAHz//fe2LMuCatWqZWVicpUlCoC3lMb1u5RaqKEjhBBCCPE51NARu2hfh9KIhDg9AF5U9mhIfteBAwdamXaAiKRVOnjwoC1LmAIdfkByxpYsWdLK5ItWMkYAXkgUrd2TPuivI1fWCmlPt+vqs9ZQrF27FoD3pQ944VT0Im5BawmlHr0IV7QMWmsnx1ArRzITGV+uUCCA91xoDbto0/UzI+8OfaxLI7Vv3z4AXpgQwAtPdNFFF4X0T2vMxBlD54qWfrnCAAGelk33tVq1agCA2rVrh7T3xx9/hOwnDhqA9z5xOUBo5DnXfZHnWx8r/eZzfnbR11+yi9x8881WpnN0f/PNNwCCHW1kHO7YscPKZNzozElphRo6QgghhBCfwwkdIYQQQojPocmVWMeHt99+28pcMdSkrGViVoyGxIQaMWKElfXr1y9kP23mFBPLqlWrrEwS3ctiaMBbyKzNQWKi0AuuxXlCm3tkcaqOiyWmDh2bTuoJl+lCVPHaPCzmIn1Mw4YNAbhNrrqvkRaU63ajmXQIyUi0yUmPVxmneqy7nACkrJc4yBjWSxPE+UDL2rVrByDYoWjNmjUhfZR3TXJyspXJcgzdP13Wz3/KvmqTq7yTtBNG8eLFAQQv74jVROqKV+eKKel69ml+zTpc11/GjL5fZcuWtWVxItRmWEEvVdK/M+mFvwaEEEIIIT6HEzpCCCGEEJ9Dkyux3H///ak+RsyXYooAPJOs9lATmTapasRcKt5tALBy5cqgfwHPVFm+fHkrE9ODeLECnveYpPsCPDOP9sQTk6vul8vjTbzQtDedNjmJfNu2bVa2a9cuAMGx/OrUqRPSL1d9otrXphhXLCo5d8apIlmBNvNps6k8H9qM6Yqv5YqvKM+qeMUC3tKKUqVKWVnHjh1DjnW9Tw4fPgwA2Lt3b0hfXGbicP2Xd1Lz5s2tTPo4a9YsKxNTsCaSidT1rLqWUbjMw1xicXaIdP1lrALAnj17bLlq1aoAvN8BAJg7dy6A4LSRYqYV0z2Q9lSOHB2EEEIIIT6HGjqSLkTbJbGYAC+Se+vWra1MvozDfXnI17D+mhFtnf6aufzyywEEx5gSNmzYYMuiKdPOBxIDTserk4WtOjadfPVrTZ5oGbSGQh8jX2nLli2zMtH0aQ2daBajZauINfo8IWcL7YQkY1ePa5dThIxdrVnbvHkzAOCvv/6yMnlutaOBaMH1O0Q0ePrZEZnW4stzrrXuWgMmjhRagyf1dO/ePaSvEyZMsDKtCXTVHYlImhg+59kHuZ/6vsoY1ho67SQoMU7Hjx9vZX/++ScAb7wBwD333AMA6Nu3r5XVrFkzTf2kho4QQgghxOdwQkcIIYQQ4nNociXpwhULSUwF2pwg++m4Ujt37rTlpUuXAgDGjh1rZatXrw5pQ8yqegGpmD5lfwCoXr06AKB3795WJiZUrTbXC7EFl7lT+qDPSZtzxRQzZ84cK5NYQ2Lq1cdoE5Frwa2YrlyLtHW/XInNCckKXPHlXAnv9TMjZX2sOE999913VibvBv2cixlKp9j6/fffAQTHf5w0aRKA4CUTF1xwAYDgZ1HXI8+ZNhnr4wXpj14Gsn79+qB/AW9BvH6mXY4X8vy60nxpmOLv7BLpPmkzq8RPBICkpKSgfwHPjK+dauQ3UcdNpMmVEEIIISSHQg0dSReRQmm4QgToLA16Mem8efMAAL/++quVyVe6/sIXt2+tCXD15cYbbwTgaeoAb5GqhDUAPDdz7SghC6d1wmw5F31OuixhWxYuXGhlV155JQAvO0TKY1z9FlxhSyS8g9YiUENHspJwmSLkedTODhJGSGu65BnU9Yh2TWeEEY293k+cHCTUEOA5TmnNv2jJdV/EuUI7U2ktmzhN6Kj9ck5aiy/7NW3a1MrEMpCQkGBl2kksJS4NnT5PaVfLGK7k7OJ6z8r43r59u5XpsFsyHq699lorEwvN8OHDraxEiRIAgp3s0gpHCSGEEEKIz+GEjhBCCCHE59DkStKFK/q5mAzERAh4ZlO9ELlBgwa2LGrn888/38rEvKGPEXOLNsOKmUTHg5Lo29pxQfqlTZaJiYlBdWi0GUcIZ+IUZw2tfq9VqxYAoEaNGs5jhEjmFG2ekevpcjZhzCqS1ehxqzOoCLKMQY9XGc962UPLli0BALVr17Yyefb0Eg1XfEhZXP7BBx9Y2aWXXgoAuOaaa6xMnkUdm06/B6Ss31nyPtHODvKe6tq1q5V9/PHHAILfDZdddhkA7x0GuJ/zSPHqXE4nfM7PLvo3RmKO6vHYpk0bW7766qsBBI/r3bt3Awg298sYcDnopRZq6AghhBBCfA41dCRDcH1N6q9rkekvVp3PVNy0Jddpyn0zEq15k0WsejGrbHeFCNDnpMOuyFe8hCoBPO2f/hoTXF/mrvZc+Rz5lU7OFtoZyfV8u3K0as2UaLG0dky06RLqIxyiodPvBXlWdbvyDtHaEtGi6IXna9assWVx0NKOWpK1RmvtJPxJs2bNrOyzzz4D4IUuAjxHCdEM6j7ovsr11M+5K7QLyR5oDd2KFSsAABUrVrQy/fslZa25FUc77dhTuHBhAJ7DUHqgho4QQgghxOdwQkcIIYQQ4nNociXpQsx/rvhU2rQpi6b14ml9jJhgtNrZdYyYabW5R+IBadOm1C3b9DE7duywMlGbS7R6vZ82n4rZSMwwADB//nxbFhW6mGSA4AXYKdFmHOmryzGDZheSndCxGfUibnFc0mNYYjzqZ1qclLRMnh297EHMUNpc5XoWpD/6ORezqk6ALrKVK1damY7WL3EwdSw8eQ9os2njxo0BBMezk+06U83MmTODzhfwTMra5Cr916Zs13tATLJ8H5xd9JiSDBHNmze3svPOO8+W9X0WZKxL3FLAM81WqlQp3f2jho4QQgghxOdQQ0fShXwx6i930cy5IsRrbZteLO36KhWtnf4qlbr1F75kdtAaM/n6llyPQPDXtyBf16IR0H3ZsmWLlclCbO0IsWjRIltu0qQJAKBjx45WpvNQCq6MGbFq6JjPkZxt9BiV7AuA91zrxd4StkQv+BdNmX5fSJ1amyX16f20I4Ugz5N+r8gzOmXKFCsTjZnWsGvnIjkX/fxKWCV5vwCeo5NuT7JGaI3ltGnTgrYBkZ0+XI5O+rrJddDXICe/ByLlEM+oul316fe/OMF069bNyqKFqJLxp387RDNXpUqVNPbYgxo6QgghhBCfwwkdIYQQQojPocmVpItIieW1yVX2k0TcQPQo6qL61tskI4M2nUhsIL3gWfbTcafEoUKbQkVFrmMJiflVOy7IomVtAtLJv8WBQme60HH2UqLPyaXid527mKaYqJtkNS7nJ/38yvOhnwlX3ETXuE65vy7r/VzHiDNG3bp1rUwWnE+ePNnKZPmExLwDgiP4y3tAP7+RTKT6PGW5hV7SMWnSJADBmWMEbZYWoplSc7J5VSNjyRXH05XFR4+9SLE/9X5Sj95fTK06Dp0sEdDOcy6088348eMBBI9DMbXqJQdphb8MhBBCCCE+hxq6TCKnRfPXX0fisKC/qMWZQWvodJiRSFGyJf8d4C0mHT16tJVJyAEJKQAArVu3BgD07t3bymS75GPU/dILn+VrWX+hyQJYfV916ILq1asDcC9sdX0ZurR3um6XRkRrPCPVTUhW4Ao7pDXYos3QY13nZRbkGdQhIeR94NLia8251N2pUycrmzt3LoDgUCYXX3wxAKBz585W1qhRI1uWEBOunNT6GZM+aI2aS8sv56IX0cv10P0SxxFXVhz9TpV2Xe+InIScsx4DgsvqodFjM+UxLg2dlonWV4fikvsezmIi4+arr76yMtHW/fvf/7YyCXXlGmephRo6QgghhBCfwwkdIYQQQojPock1k8hpC9ddMZO0TNTYOnuCK+6aNlHMmDEj6F8AOHz4MIDgqNqtWrUKkdWsWTPoXyDY1Cq4YlsJ+h6KyVVHgxczK+DFp3Kh1f9c3Ez8jMskqdGmQ5cTjxzjMifqZzGSA9DYsWNtefr06QCCzbVt2rQB4MWRAzzHBb1MwhXJXyPOC/o8XX2V5RraMUNMu5s2bbIyWRpy4YUXWpnUo+NSusyvriUYOfFd4nKKcJlS5brqcRbpXa/vsdStj5VsDhs3brSyMWPGAAgej3q8ypIiGXsAMHDgQABAixYtQvbTzjJpdZDIWbMOQgghhJBzEGroMomctmDVdb6uhaYurRwAbNu2DYDn7g94mjmdsUE0bu3atbMy+eJ1fTVrRwKJ7q6/xrQzRMp+66/A5cuXA/ByvwLBi6qjRQhPWTchfiTa+NVaI9GAuUL96OdS9tMyqUeHHfrrr78ABGeAEJnWxrVv3x5AcF5N7YAl6H65whKJzBX6wqUVqly5si1feumlAIBx48ZZmSyI79KlS8ixWjsjGjrdrrQXTat4LhJNKyn3xKVJdR2rZZF+t7S2TTRm2uIjYW0kZzEAJCcn27KM9ZYtW1rZZZddFtKeKx9xWqGGjhBCCCHE53BCRwghhBDic3Ke/jaLcKnkz2W0GlvMqlom6nBtQtFmht9//x0AMHToUCuTjA5aTS3qa23iFGcHfc1dqvl9+/YBCFazi5lHy8Q0q2MOrV27FkCw+bdv3762LFHntdpf6qSZlZwruEyqGp20PlanAilrE5c4OUiSewD49ttvAQTHspRlD1dffbWViSnMtZwiHPJu0AvhJcaddlIQ857OFCGOWnohuzhqffHFF1Ym8TT1O1Cy0ricP/R1c/2e5BSnCH1t5P7oc3eZV+U+6Xh1sp8rXl2smSe0af8///kPgOCxoNuTul2xFzWyX2rGaziooSOEEEII8TnU0GUSrtn9uYh8XeivSfli0Q4Q8uWisz788ssvtrxw4UIAwS7eDRs2BAA0b97cyiRUiHzZ6raj5X10aeNc+8vXmtbGyWJX/bVeq1YtW05ISAhbNzV05FzBpckGvPed1tpJKA6tjZNn0KXdE00XAPz2228Agh0g1q1bBwDo1auXlV1yySUAgsMGybtBa2ykr+EyLYjThCvMhZa53uvybtAaFgnPpEMprV+/HgAwf/58K5PsNaVLl7Yy6bduK1IO3HMdlxOD/m2R+xTN2SHSNYwWjke267EsY8blcKPRWjs9xlP2PyMcXnLe6CCEEEIIOcfghI4QQgghxOfQ5JpJ5DTVuFYXu5Jai0yrs3X8HlFLawcIWYCqMzy4oqiLOSVSJHDAM8W4FhvrY2X7mjVrQvbTpp1y5cqFtOFaqJxTFi+Tcx9tmtKmJJfJVZ5VbR5zmZXkedPLMSSrgl72IJkYxMwKeMsy9LvGtdBd+qr7r/siDhCxot8X8m7Q7xU5d71cRN5TEo8OAMqWLQvAW7Kh69Mm15wYf86F3L/MXNLkcmaTsmuZgf6tdy1JcP3eaCeXWB0yYiFnzToIIYQQQs5BOO0nGY58nbpc7eWLFACuu+46W5YQIRJyAPA0c9E0XOGyT6REvnr0V5QsUpUQKYC3mFuyQwBAwYIFAQRHCndpCwnJKWgtgkvLIA4Q0Z5fCeOh856uWrUKQHDu59tvvx1AcM5UQWsLI2lYdJ+jvTekTlfeWU0ka4zklQW8d83kyZOt7PzzzwcQnHVm//79AIK1hhkR0uJcQO6j1nq5nEgiOUVoXJYj0Ybq8SH16VBWElpHZzjRz4Hc75IlS1qZhLbRoXdknOkxnNbfFmroCCGEEEJ8Did0hBBCCCE+hybXTGL8+PFnuwtnHVeUbh01W5sqJHbdzJkzQ+rRqu9YHQykPjGfAu6o7KJCL1WqlJVt2LABAPDDDz9YmWzXCbjnzJljy2IS0dkv6AxBzhVcCctdJtdoi71dcSv/+usvAF62GMCLOacj8+/duxdAsMlS0O8VMYXpmF/SV2261I4Gkhhd91kcH2S5he6/zg4gx+r65Bj9/tm2bRsAL8Ye4MWy1P3auXMngGCTq7y79KJ86eu5+p6JNOb0dZCxpK+/XBPXtXEdq82m8o7X2YjEBOqKSajbdZVlfOiyjl0n55cR8UqpoSOEEEII8Tmc0BFCCCGE+ByaXDMJnbImJ+BKnaJlorLWHj9a7SxqcDG1AO4UYlJ2JVjWMlFti/kF8Mymul1XzDzxsFuwYIGVSTwpbcaRWFm6Hm1iOVdNISTnEc1L1JUM3eUlKvWIJyfgeZOvXbvWysTbXT+X8jzqeHVChQoVbFmeUW3qkneDq8+Al75LP7NiNtVpBqX/+jl3xYiTc9dmU4mpp99JsmzDFd9Mm3rF/KvbzSkmV1dsQ30dXHH7XJ7H8o7Wy2LkGuroC9KuTtsm48Y1/nVMQl2W7dqjVe6zjq0qdbqiQqQWaugIIYQQQnwONXSZhCvBb05Bvo70NZCvZYk5BQRryuRrRn9tujI/SJ16P/nC0QtbXZG95etOf/lKXxcvXmxlK1asABCsTaxSpUqITH9pu5J/E3KuobUIWlstz6+OnyVlLZPjtdZC3glae9akSRMAwXHotm7dCiD4+ZX3gWjVAU9bpx2Y5PkUTZxuF/C0cPr5lb7u27fPyuR9od9NokHS10Y0dDpumcS6vOCCC6xMHCDmz59vZa1atQIQrA1yZR3IKRo6TaQ4gPo6yLVxZWlwxSx0ZRpx1efSQOv99HZpT8c4lbGif5fkWdDPk453mhqooSOEEEII8Tmc0BFCCCGE+ByaXDOJLl26nO0uZCkuU4U2GYjqW5s5tIlUzCiudD0al3rdteBZVNpajS0LlLWpV9DOGGIiuvjii61MymIKAoD/b+9eeqSstjCOP2ei3IRGEAERRO6KiYB2m4hAJOgAE40kxonfwMQP48wwMXFKYsTEkSYQwEtUFAQBL4AoII0Qrk2cnDM4eXatoldXddNV2rvq/xu9WVX1VjVN73rftfZe+9KlS6M+a1YmBmqX9Y+LZaNsArt7q8W/S7/+qaeeKrGtW7eOOp9LTrE/m6dtxEUKLoXFRRb++/Y2S1JjLIoLJeLkeP/dZmW2WI7zzxmfF8cxc+ktWyy2efPmEtu9e7ck6fLlyyX2wgsvSJIWLFiQftZ+li2Ay/g7KCulxv/DPo7jtkv1capA1hMv+73H33dWno/fiea/j+x8E0WGDgAAoHJk6LokZnf6je9Os2xVvEOOdyu+G+r0BN94N5bdHfmOas+ePSXmO/vXX3+9xLZt2yap+a45Lp33z5q9B9Dr3GIoZkQms6G8zxczHuPNYPjvMn6WuJAik2XeWomT3yealY+f69ChQ5KkI0eOlNiaNWskSevWrSuxXl340G3x/0+rf8NsV5Ess5y1UIn/F+Lv1s+NMZ8nntu7nMTM870iQwcAAFA5LugAAAAqR8kVHZd1TrdYhokp8E6UFLKNwdtNnnUfqLgxuPtdDQ0NlZhLrXHiNmUQ4P9iCenfPp9LYRPpCTnev2WPMS4JS/l457Jv/Dlcyotj0vr16yU198f78MMPR73Hhg0bxvxM7aaVjFcsDVq78XOqG+/vNSvJZwscskV78d8o28Go1VSfds+bqLp/WwAAACBD1y39vGOA7zjG2+l7rOdO1HjPETu/f//995Ka74bdnT7uCpG9RzbZtfY7WuBeZJmQyfxNT+Z8Waf/To3H2Z62FscDH7d739WrV0uSzpw5U2Les9aLI6RGhi5WIbIxJ8sQjTVm3f28mOlr1R6kF7/bxvtzZv+n2mUB/8lKDt8+AAAAleOCDgAAoHKUXNFxrVLy3UzXZ/2gshLDhQsXyvH+/fslSQ899FCJuUt97C9kcZJz7N7ezTIPMNV1+v/6ZM7Xzb87L4CIJdfsb99jUbvPsnz5cknSihUrSuzAgQOSGgu2pEY5NPa+dJlwrEVofu92u++Md/eFXtYrY3X//gYBAAB6BBk69CTf0cY2I26ZMjw8XGKffvqpJGlwcLDEvA9vNpk120M2xnvlTg/A2OI4EBcqmLNmcfxxtSDuEbps2TJJ0tq1a0vMj7t9kiSdPHlSkrRkyZIS83iW7T8r5Rk6ZxazSkI2djGe1YUMHQAAQOW4oAMAAKgcJVf0JJce4iRiL2i4fPlyiZ0+fVqS9Nprr5XYpk2bRp3PferiZOhYcu1El28AU5tLkLG06cVTcQxwyTX2dvNr4iIGvyaWUr17ROyXeejQIUnSrl27Rr02+ywxnn2u8ZZcURcydAAAAJUjQ4ee5LvNeMd68eJFSdKlS5dKzO0FFi9eXGKzZ8+WJI2MjJSYJzfHrFyc3EyGDuh9HleyzFu73Qb8mriIwuPGwMBAib344ouSpL1795aY2yvt3Lmz5edrtwgj290gy9BlrViynwlTCxk6AACAynFBBwAAUDlKruhJLqXG3SO++OILSdLPP/9cYt70OpZcLStVZDtPAOgP2a4KXmyVTbuIsay06SkhcQeajRs3SpI+++yzEjt27Jik5t50ixYtavpMUvN45xJvuxKpH892v8jGu39ys3lMDBk6AACAypGhQ0/yXWRsEfDVV19Jkn799dcS27Ztm6TG3W6U3YVnbQHi+/XzfohAvxirfZFlLUr8vPh8Z8diZs1jUawauFrgHSOkxv7TseVJzPR58UVchJG1WMl+Dn+ubAEHGbqpi28fAACAynFBBwAAUDlKruhpsUT63XffSZKuXLlSYi65zp8/v8SuXbsmqdGPTmqUTmJZwrtHRJRcgd7lcmNcaNBq94hYSo3Hrfh8a9euLTEvhjhy5EiJeXxy6VWSZsyYMep8sWeex6yx+mneLY6fli30wNTAtw8AAEDlyNChJ928eVOS9Msvv4yKxczb448/Lqn5zvb27duSmicE++46TgjOFkVkHdgB9C5nseJ4MRkeN5544okSu379uiTp448/LrETJ05Ikp599tkSmz59ejlutYghjk1ZaxLGrjqRoQMAAKgcF3QAAACVo+SKnjQ8PCxJOnr0aIlNmzZNkrR8+fISmzVrlqTmCcve4DpudO2yRda/KT5OqQLoXVn50gsN4t++Fxpkz4+LFLJypxcsLF26tMSuXr0qSXr//fdL7Pz585IaU0kkaWBgoBy7J138DLEv3t2fIX7+bAoJ/eemPjJ0AAAAlSNDhymrVdar3eKDixcvSmq0KpEaHdjXr19fYs7CxQydJxa7fUkUJx3Hpf/cvQL9yYsh2rUCcWbuzp07JXbr1i1JzePHvHnzJDWPSc68xYyeX+sFE5J048aNcvzAAw+M+lzO2sXzZBlGvyZm9KhCTH1k6AAAACrHBR0AAEDlKLmi45yaj32ZnOKP6f9sgUHsTO7Xx3KEFzbEicUum8ZyqCcM79u3r8R27twpSRoaGioxlyBiGcHnjr3p/FljqaLdBt0Aep/HnXbTLvx4LKXOnDlzzOdF3snmjTfeKLHDhw9Lkj744IMSe/vtt8uxd5CIJV6L45jH2TimemyLYxzTSqY+voUAAAAqxwUdAABA5Si5omuy7WWylVRR7P3mEkC2GXQ8j8u0Xq0lSb///rsk6dKlSyX2yCOPSJLWrFlTYi5/ZO8bS65+v1hGpkcT0F+yFZ6eBtLueR4jPM3j7uNWr/WK1VdffbXEvK3h3r17S+zNN98sx97WMDt3LLlmY3P2PI/XjHVTFxk6AACAypGhQ8f5ri5bNBDv+LI7whjz3WvW0yn2R/JxXABx7tw5SdLg4GCJLVu2bMzzZQs04iThrC9TXMBBbyagP030b/9exgqPT17oEI/jmHT27NlyvGrVKknS7NmzS6zV4q34mD+je91JjUxkzEgy7k0tZOgAAAAqxwUdAABA5Si5omuyRQNZmVVqvWgilgKybXZ8vH///hI7ffq0JOm5554rMU8SjhORs/54d7+X1ChrxOdlG2tnpVsAmKg4Fnr8jOOPx7O4yOvo0aPleMGCBZKkrVu3jjp3LNN6CkqcYuKxj16bdeE3BAAAUDkydOiamKFrtYw/Hmd3gWNl9cyLE7799tsSGxkZkSRt2rSpxNy2JPJdabYJdbYogrtUAFPB6tWrJUnPP/98iR04cKAcDwwMSJK2bNlSYtk46wxdXADhsS/uZOExkoUQUxffTgAAAJXjgg4AAKBylFzRcU7nT2SniCyd71JqXJyQ9ZDzbhCXL18uMZcbVqxYUWLuth55d4lY/vXniiVXf774PDauBtAtcUzxWOSpJJK0fPlySdL27dtLbM+ePeX4+PHjkqTbt2+XWDaOeZFY3C3HY+6cOXNKLBvXMbWQoQMAAKgcGTr8a7Jl+XFxgu8S444M3l/1jz/+KLGvv/5aUnMGbuXKlZKkefPmlZjvMOP5ssxhqwUaES1KAPxbvGDh0UcfLbG5c+eWYy9yOHnyZIktWbJEUvPuEc7+xeqH97iOrZmoQkx9ZOgAAAAqxwUdAABA5Si5ouOcwm+Xoo/pfJc8Y8nVx1na/9SpUyW2b98+SY3O6ZI0ODgoKd9IOp7PZdPss2a96eJr2/XMA4B7lS0gi+PZ3Y9J0oYNG8rx+fPnJUkHDx4ssZdeeklSc2nWU1Bizzm/d1wo4ZjLsXd/Rvz7yNABAABUjgwdOiJmrryYIWa4siXv2d1fXGjg5fTxDvTOnTuSpGPHjpXY559/Lkl66623Sszd07O9V2Mse49sgYZfG1uZZDtdAEC3xDHJ42dsS7Jjx45y/Mknn0iS9u7dW2JDQ0OSmrNsbt0UY1nrJhaBTX1k6AAAACrHBR0AAEDlKLliUlxqjKVUp+nb7aQQy7Q+zhYsxHLo8PCwJOncuXMldvXqVUnSqlWrSszHcZeJu88bPxclUwA18Tgby7BPP/10OT58+LAk6cyZMyX2559/jjqPX5+Nle2mzWBqIUMHAABQOTJ06Ljx3sFliwqySbjxztGZuRs3bpSYd4NYvHjxqNd6wq/UuNtstwNE1t7EsXavBYBuiWOrx7NZs2aVWGxrsnDhQknN+7GePXtWUnOFwztNeGcJqTHmxh0lsmoMpha+nQAAACrHBR0AAEDlKLmi41yWbLfQIPY9cnnTXculRkkhlk29KCIubFixYoUkacaMGaPeI/a68/vF12b95XyclX9jyZXSA4BuieOnx6k4nnlMuv/++0ssjkkPP/ywpEZPTkn66aefJDV6d0qNkmtcAOGSK4vFOqvbZWsydAAAAJUjQ4dJ8Z1GvJPLFh9kd5gxQ+fjmKHza27evFlivrMcGRkpsS1btkiSBgYGRn2+bD/W7PNn4vPbZR2zfwcAuFfZ2BTHFz8eKwlxfH3sscckSS+//HKJ7d69W5L05ZdfltiuXbskNS8Ci+dE6++J+O8W+Tuj3eK6Vi27JooMHQAAQOW4oAMAAKgcJdcu6bcJ81nJNcY8yTaWSmPaOSvT+t/wr7/+KjFvNL1u3boSe+WVVyQ1+tFF2UKJmNr2Z4wp7slsQt1vv3cA/5y4AMKLxW7fvl1icfxcunSpJGnBggUl9u6770qSTp06VWJXrlwZ9VqP13E86+c+dFlZ1f9eY5Wn/T0SpxH5ufH36Fjst3rffffd0+ckQwcAAFA5MnToiGwv12wCb3aHKTXuTmJG7dq1a5Kk3377rcR8zrlz55bYgw8+KKl5kUW2SKEf7ywB9I5sp4g4xsVFER5TY+bHe71euHChxPbt2ydJGhwcLLFFixZJal6Q5qxRzB4xpo79b+B4u8UtzvR1YhciMnQAAACV44IOAACgcpRcMSnZRNlsc3s/L5ZcYzrfE0fjRtPnz5+XJB0/frzE3NV85cqVJTZ9+vSm94ifgZIAgF4Rx9SsVBensdy5c0dS86T8zZs3S5IOHjxYYh999JGkxtgqNRZUXL9+vcQms1isdpPpL9qun6ljnfj3JUMHAABQOTJ0XdJvOwbEu8RsubbFhQvZnqrRjz/+KEn65ptvSmz9+vWSpI0bN6bnvFu//R4A9K52lZCszUhcaOaFDydOnCix9957T5K0Y8eOEhsaGpLUPEaPd4/uXtaNn93n7MS5ydABAABUjgs6AACAylFyRUdk6eLY/8hlAfdOkpoXSLhUMDw8XGKHDx+WJP3www8l5o2m16xZU2Iu7cZz93NXcwC9KU5tcb/POLUlPu6pKLFv3Pz58yVJCxcuLLFp06ZJauwYITUWQ/ixeJ5+HlOzkvZYvU4dj78Tfw/G1ziWTTuaKDJ0AAAAleOCDgAAoHKUXNE1seTabgNiPx63pPHxyMhIia1atUpSY2saSbp165YkaebMmSXWauUrANQuK31mXQSyMqD7zEnS9u3bJUkDAwMlduPGDUnN46xLh/1Ycs22kszEx7OSbPZ6l1r9HTgZZOgAAAAqR4YO/wjfhcQMXXY3GR/3BN61a9eWmCfzxtf6Nf145wigf8SJ8x4z42KwOAZ6XIy7R/i5q1evLrF33nlHUnO/OldP+rnnXKbdd8x4M3jxPNl3470iQwcAAFA5LugAAAAqR8m1S/olVd0qBZ1tBxbLA5EfnzNnTok988wzkpo3jY4Td2369OlN54j65fcAoHd5nI1luWxMjSVZT7KPk+09Jsdx1GPu33//XWLjHTd7eXzt1BSesfrUWdZP8F6RoQMAAKgcGTpMSqs7tJih813kWO1EfJ6YoXvyySclNS+xj53LzZN5e/luEQBiti0b7+LjWRsMvyZm9TxOZ5m+7D36ZZztxs/Zqm0JO0UAAACACzoAAIDa/ee/NO8CAACoGhk6AACAynFBBwAAUDku6AAAACrHBR0AAEDluKADAACoHBd0AAAAleOCDgAAoHJc0AEAAFSOCzoAAIDKcUEHAABQOS7oAAAAKscFHQAAQOW4oAMAAKjc/wALroTROPYCFAAAAABJRU5ErkJggg==",
"path": "images_version_6/image_41.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
then angle 4 is equal to ()
Choices:
A:80°
B:65°
C:60°
D:55°
|
||
206
|
42
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAFsAAACDCAAAAADHMDgHAAAIDUlEQVR4nLVaXUwc1xk9dzddrHRbogQiIjYhwqnsiLoiQFQ/2PWDiYrkJY5gEUZyEktW7cR1f+RGaitVbSNZsqW2ilvvVjjUEg+gkAKxQ8nWaYiKFFt1s6i2ldo81FZooVEskwgHcHfWy5w+zMzuLMzPvePlgHbn55sz5577+82sIJRBgXN32/3jQurUELzzc5k4ZW4CEK9saFoPbgHgeM1dmdAgnkx9viu6YX24tdSP+dBD68P9Wn/V0+vkydTnZPoxmcj7lKl/OgRckesVVMMBVI9l40CHRKxQ6JcUakVU8VuROkBdrmjrxz0yLhup4reB7Y/8UTJSuQ1enbm8FJWrVmVPTvyk+W3ZalVq3ToXqhZe3yUZrer3b/7VOx+7WSkXrKSafGKajPdT1yXiFfvOO49vBhIDEFKGK+gm2TZCciF6SypYrZ3cmH4OQGXrm1LRatzJl8MEsGe4/GPsYo1hxmLlbNk9GWytAgBEnxmVEq6iuyFjbpzZKhOuwj1ZYMxGZyTiVTxJHracqOgcAow1Vnk8mY1laXXH8cby6j61rwLCFNv28Q2JK6RlZ2P2hrf/F+XUPbI1ZtvrGSmn7q2T5oZOkvmaS+XTPbW4w9wSABDuHC2f7ud7S/cnn/C9RJb7Vs1icUcnyVjGLdaClCckTu+NFvcFACT8B1o52fm66yWiSWZiZdENnH1yY4loAC3hCz4XSXL3Hl57rOcNAABxXIhvzb7gcJVbgbJxAEgZO9NOjeJSTZ4kM/Ud5FT9kbUB7n5n4ymmq8dIkgd/7RSxeZLkclOCJA+kVPxemd+N6gcBALdH9ztFdA8Q+N3CCQDY+KiCJ0x3MBs3Uo/kQceIf1bludz0Q1cG93XslbdE9el2AODJnb90DBEvDF5b+Jorg6sn2t/GeGT/nwDgL9XVzlPMlmuuvADcPcm0fmYVOD7kEjNTmTVDMq87nHblPnaEzNSnSM7U5d2Cms/wOFJkevu8DLeuUyf5v2fHuNxUP0fyR0fdqPmrbjINt2zTRXcaALB9nmS26lPnGJ2cjS46n/PitqGv2+PkthHzLsG4my+6Xkwmn/O40oG7lOh8s1eKcNPLFIf2bQ2iRpM++ZJ7ikA83Ow1bXqIIslPa7Ke5/vi7uf88rRXs8c8z8/H5qoC6s7X+i1Yd/WRLpXtM++MPFXnHYCuNwG3PNlb1bYJH9lciLp0LT/dl+d3+shGZavrytCbO+UwBa/GniHXU57lrVnws4T8IuqWtHnq/kOnxEOBr7S5dh8PRfm6aX/Z5JlmlxNe3OOtMtTuSZuXJ8nv+jsCoCIxoOzJdfe5bFX5XJK2EIBcLud019deDkvpRtvHVx2P3wcgkos4nFka/UiOGuGu4Qan4+5+D8bdBzg7COxxWeaTpEZqmkZN00hNI0lN0xoyxlEDxpb5SU2jVvRVd0naLN0R8y/3pUgOyEUiHzzQglwkEjGqIheJGJ+RHHLIRZCLFOtIhDsdhds9yUUA3DWv6f2OVeLC3W0yUFpDXW94eUIaxdRI6tQ4G7vDwgH7p2b7J61ZwTFpCwGrG2BOAEjtC5XKXhNmGQIQSAw667bqy9SmkeQXsRu2GqStiq1qL1xG0iVps/VLe+yA12LKCXV/XTtpFuuypAMlv+fsgEO5ja+eERQertg8YbH0Fi42kPRYqq2FmbQ56o5ESmR/36onWTQ+MLnmmK19s/A1/96L8qwmuodY5DC+i9zWY34BnHq+Qpm7a1iHVdJ/bAyJTgAOpuZrr6855o/GcWvrQP0cl5s6GHIw9exTG9cc80fCWkscnP6wlvcfvfzfknnHLELruQCyORPNkjqtPD1dPxeyN0mjCFdnvh1ANuo2/RkQ0H6/vR0ArgCGJ1q7ECLUaQSdfCkINdAzCAArn+wEAO1CY63lyYGUlalKLaacYCRtmU2GJdVjVt/R5nfj/pb/AET/bsk3LKsRa3wbIO7OArjzsx3tVvv+aGEDtE8eBYTCULLGlBFAtDwz9Bmmtjw+XHifNvGNB/GDa70A3s0NDwfkXk7frgR+m6gCUodg9UvtwomQuPZhLYDk1qCyxZcfOQug4tVz5CEA5jiYaZ03m7f0YsoJfW0k0xAdZLZjzpwb0gnr9CtHVUbWUui3Km7pmW4eA1A9Zs472WfHzNPZmGv24k9NxnvNDZIGd6Ye5vM09u0NTE2S/Tvse6vWsQ0X74n7dvSmbc++9iEubPhm0FYCAPhqq30RFGJxsBI4GbjfmNgzAthmHxv8Hgz4Y9Gen5SskZP71OeyUkTb7Jls4S46V2Iyb7LcobM0abN7MpRYHa2ObLQ419o9ORFwUrCjImFLwYu3zGy+d9nk+NeddJ867P9mzx9ts4Wkrch9+50XlX+94oBwojD8F7l7O6LKv15xAHuKy3zLnHzddPDR1Y5i0lbQfe7JzeWQDYQ7C8Kt27WNO8tQhc7JOnPT4p5+7B7mslWInTe+LU+Sh8JAOdoggIQ1phj1txR0MeWETMzwIGTUX3884GLKCS3h8wAK7Tt5sHzUhTdtRl1ObCufIyQvVeVJMkTA+TVfUBBorJoEgJAA8O+LifJxCwDdA4Dpd+8+ySdTsuh6awUASGZrbvoYqAadbDxDMgRiaMfDZekzFgSQGAUInWz+QCl1l8FMdFFnSODvK9vUf3fog7pN7wqEgJTco1ElsGcIgH7viyknzFUsMiRO760oz/BXgtqnJyDyG98Pkr37YimK0MSWdaFGFBBcivoHBsP/AaTz9ArvN34+AAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_42.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
B
|
The figure is a schematic diagram of a kite stand made by Xiao Liu. It is known that BC parallel PQ, AB:AP = 2.0:5.0, AQ = 20.0, then the length of CQ is ()
Choices:
A:8cm
B:12cm
C:30cm
D:50cm
|
Hình vẽ là sơ đồ của chiếc cắm gió do Tiểu Lâu làm. Biết rằng BC song song với PQ, tỉ số AB : AP = 2,0 : 5,0, AQ = 20,0, thì độ dài đoạn CQ bằng ()
Các lựa chọn:
A: 8 cm
B: 12 cm
C: 30 cm
D: 50 cm
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: The figure is a schematic diagram of a kite stand made by Xiao Liu. It is known that BC parallel PQ, AB:AP = 2.0:5.0, AQ = 20.0, then the length of CQ is ()
Choices:
A:8cm
B:12cm
C:30cm
D:50cm
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: The figure is a schematic diagram of a kite stand made by Xiao Liu. It is known that BC parallel PQ, AB:AP = 2.0:5.0, AQ = 20.0, then the length of CQ is ()
Choices:
A:8cm
B:12cm
C:30cm
D:50cm
|
The figure is a schematic diagram of a kite stand made by Xiao Liu. It is known that BC parallel PQ, AB:AP = 2.0:5.0, AQ = 20.0, then the length of CQ is ()
Choices:
A:8cm
B:12cm
C:30cm
D:50cm
|
207
|
42
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAFsAAACDCAAAAADHMDgHAAAIDUlEQVR4nLVaXUwc1xk9dzddrHRbogQiIjYhwqnsiLoiQFQ/2PWDiYrkJY5gEUZyEktW7cR1f+RGaitVbSNZsqW2ilvvVjjUEg+gkAKxQ8nWaYiKFFt1s6i2ldo81FZooVEskwgHcHfWy5w+zMzuLMzPvePlgHbn55sz5577+82sIJRBgXN32/3jQurUELzzc5k4ZW4CEK9saFoPbgHgeM1dmdAgnkx9viu6YX24tdSP+dBD68P9Wn/V0+vkydTnZPoxmcj7lKl/OgRckesVVMMBVI9l40CHRKxQ6JcUakVU8VuROkBdrmjrxz0yLhup4reB7Y/8UTJSuQ1enbm8FJWrVmVPTvyk+W3ZalVq3ToXqhZe3yUZrer3b/7VOx+7WSkXrKSafGKajPdT1yXiFfvOO49vBhIDEFKGK+gm2TZCciF6SypYrZ3cmH4OQGXrm1LRatzJl8MEsGe4/GPsYo1hxmLlbNk9GWytAgBEnxmVEq6iuyFjbpzZKhOuwj1ZYMxGZyTiVTxJHracqOgcAow1Vnk8mY1laXXH8cby6j61rwLCFNv28Q2JK6RlZ2P2hrf/F+XUPbI1ZtvrGSmn7q2T5oZOkvmaS+XTPbW4w9wSABDuHC2f7ud7S/cnn/C9RJb7Vs1icUcnyVjGLdaClCckTu+NFvcFACT8B1o52fm66yWiSWZiZdENnH1yY4loAC3hCz4XSXL3Hl57rOcNAABxXIhvzb7gcJVbgbJxAEgZO9NOjeJSTZ4kM/Ud5FT9kbUB7n5n4ymmq8dIkgd/7RSxeZLkclOCJA+kVPxemd+N6gcBALdH9ztFdA8Q+N3CCQDY+KiCJ0x3MBs3Uo/kQceIf1bludz0Q1cG93XslbdE9el2AODJnb90DBEvDF5b+Jorg6sn2t/GeGT/nwDgL9XVzlPMlmuuvADcPcm0fmYVOD7kEjNTmTVDMq87nHblPnaEzNSnSM7U5d2Cms/wOFJkevu8DLeuUyf5v2fHuNxUP0fyR0fdqPmrbjINt2zTRXcaALB9nmS26lPnGJ2cjS46n/PitqGv2+PkthHzLsG4my+6Xkwmn/O40oG7lOh8s1eKcNPLFIf2bQ2iRpM++ZJ7ikA83Ow1bXqIIslPa7Ke5/vi7uf88rRXs8c8z8/H5qoC6s7X+i1Yd/WRLpXtM++MPFXnHYCuNwG3PNlb1bYJH9lciLp0LT/dl+d3+shGZavrytCbO+UwBa/GniHXU57lrVnws4T8IuqWtHnq/kOnxEOBr7S5dh8PRfm6aX/Z5JlmlxNe3OOtMtTuSZuXJ8nv+jsCoCIxoOzJdfe5bFX5XJK2EIBcLud019deDkvpRtvHVx2P3wcgkos4nFka/UiOGuGu4Qan4+5+D8bdBzg7COxxWeaTpEZqmkZN00hNI0lN0xoyxlEDxpb5SU2jVvRVd0naLN0R8y/3pUgOyEUiHzzQglwkEjGqIheJGJ+RHHLIRZCLFOtIhDsdhds9yUUA3DWv6f2OVeLC3W0yUFpDXW94eUIaxdRI6tQ4G7vDwgH7p2b7J61ZwTFpCwGrG2BOAEjtC5XKXhNmGQIQSAw667bqy9SmkeQXsRu2GqStiq1qL1xG0iVps/VLe+yA12LKCXV/XTtpFuuypAMlv+fsgEO5ja+eERQertg8YbH0Fi42kPRYqq2FmbQ56o5ESmR/36onWTQ+MLnmmK19s/A1/96L8qwmuodY5DC+i9zWY34BnHq+Qpm7a1iHVdJ/bAyJTgAOpuZrr6855o/GcWvrQP0cl5s6GHIw9exTG9cc80fCWkscnP6wlvcfvfzfknnHLELruQCyORPNkjqtPD1dPxeyN0mjCFdnvh1ANuo2/RkQ0H6/vR0ArgCGJ1q7ECLUaQSdfCkINdAzCAArn+wEAO1CY63lyYGUlalKLaacYCRtmU2GJdVjVt/R5nfj/pb/AET/bsk3LKsRa3wbIO7OArjzsx3tVvv+aGEDtE8eBYTCULLGlBFAtDwz9Bmmtjw+XHifNvGNB/GDa70A3s0NDwfkXk7frgR+m6gCUodg9UvtwomQuPZhLYDk1qCyxZcfOQug4tVz5CEA5jiYaZ03m7f0YsoJfW0k0xAdZLZjzpwb0gnr9CtHVUbWUui3Km7pmW4eA1A9Zs472WfHzNPZmGv24k9NxnvNDZIGd6Ye5vM09u0NTE2S/Tvse6vWsQ0X74n7dvSmbc++9iEubPhm0FYCAPhqq30RFGJxsBI4GbjfmNgzAthmHxv8Hgz4Y9Gen5SskZP71OeyUkTb7Jls4S46V2Iyb7LcobM0abN7MpRYHa2ObLQ419o9ORFwUrCjImFLwYu3zGy+d9nk+NeddJ867P9mzx9ts4Wkrch9+50XlX+94oBwojD8F7l7O6LKv15xAHuKy3zLnHzddPDR1Y5i0lbQfe7JzeWQDYQ7C8Kt27WNO8tQhc7JOnPT4p5+7B7mslWInTe+LU+Sh8JAOdoggIQ1phj1txR0MeWETMzwIGTUX3884GLKCS3h8wAK7Tt5sHzUhTdtRl1ObCufIyQvVeVJMkTA+TVfUBBorJoEgJAA8O+LifJxCwDdA4Dpd+8+ySdTsuh6awUASGZrbvoYqAadbDxDMgRiaMfDZekzFgSQGAUInWz+QCl1l8FMdFFnSODvK9vUf3fog7pN7wqEgJTco1ElsGcIgH7viyknzFUsMiRO760oz/BXgtqnJyDyG98Pkr37YimK0MSWdaFGFBBcivoHBsP/AaTz9ArvN34+AAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_42.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
B
|
It is known that BC parallel PQ, AB:AP = 2.0:5.0, AQ = 20.0, then the length of CQ is ()
Choices:
A:8cm
B:12cm
C:30cm
D:50cm
|
Biết rằng BC song song với PQ, tỉ số AB : AP = 2.0 : 5.0, AQ = 20.0, thì độ dài đoạn CQ bằng ()
Các lựa chọn:
A: 8 cm
B: 12 cm
C: 30 cm
D: 50 cm
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: It is known that BC parallel PQ, AB:AP = 2.0:5.0, AQ = 20.0, then the length of CQ is ()
Choices:
A:8cm
B:12cm
C:30cm
D:50cm
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: It is known that BC parallel PQ, AB:AP = 2.0:5.0, AQ = 20.0, then the length of CQ is ()
Choices:
A:8cm
B:12cm
C:30cm
D:50cm
|
It is known that BC parallel PQ, AB:AP = 2.0:5.0, AQ = 20.0, then the length of CQ is ()
Choices:
A:8cm
B:12cm
C:30cm
D:50cm
|
208
|
42
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAFsAAACDCAAAAADHMDgHAAAIDUlEQVR4nLVaXUwc1xk9dzddrHRbogQiIjYhwqnsiLoiQFQ/2PWDiYrkJY5gEUZyEktW7cR1f+RGaitVbSNZsqW2ilvvVjjUEg+gkAKxQ8nWaYiKFFt1s6i2ldo81FZooVEskwgHcHfWy5w+zMzuLMzPvePlgHbn55sz5577+82sIJRBgXN32/3jQurUELzzc5k4ZW4CEK9saFoPbgHgeM1dmdAgnkx9viu6YX24tdSP+dBD68P9Wn/V0+vkydTnZPoxmcj7lKl/OgRckesVVMMBVI9l40CHRKxQ6JcUakVU8VuROkBdrmjrxz0yLhup4reB7Y/8UTJSuQ1enbm8FJWrVmVPTvyk+W3ZalVq3ToXqhZe3yUZrer3b/7VOx+7WSkXrKSafGKajPdT1yXiFfvOO49vBhIDEFKGK+gm2TZCciF6SypYrZ3cmH4OQGXrm1LRatzJl8MEsGe4/GPsYo1hxmLlbNk9GWytAgBEnxmVEq6iuyFjbpzZKhOuwj1ZYMxGZyTiVTxJHracqOgcAow1Vnk8mY1laXXH8cby6j61rwLCFNv28Q2JK6RlZ2P2hrf/F+XUPbI1ZtvrGSmn7q2T5oZOkvmaS+XTPbW4w9wSABDuHC2f7ud7S/cnn/C9RJb7Vs1icUcnyVjGLdaClCckTu+NFvcFACT8B1o52fm66yWiSWZiZdENnH1yY4loAC3hCz4XSXL3Hl57rOcNAABxXIhvzb7gcJVbgbJxAEgZO9NOjeJSTZ4kM/Ud5FT9kbUB7n5n4ymmq8dIkgd/7RSxeZLkclOCJA+kVPxemd+N6gcBALdH9ztFdA8Q+N3CCQDY+KiCJ0x3MBs3Uo/kQceIf1bludz0Q1cG93XslbdE9el2AODJnb90DBEvDF5b+Jorg6sn2t/GeGT/nwDgL9XVzlPMlmuuvADcPcm0fmYVOD7kEjNTmTVDMq87nHblPnaEzNSnSM7U5d2Cms/wOFJkevu8DLeuUyf5v2fHuNxUP0fyR0fdqPmrbjINt2zTRXcaALB9nmS26lPnGJ2cjS46n/PitqGv2+PkthHzLsG4my+6Xkwmn/O40oG7lOh8s1eKcNPLFIf2bQ2iRpM++ZJ7ikA83Ow1bXqIIslPa7Ke5/vi7uf88rRXs8c8z8/H5qoC6s7X+i1Yd/WRLpXtM++MPFXnHYCuNwG3PNlb1bYJH9lciLp0LT/dl+d3+shGZavrytCbO+UwBa/GniHXU57lrVnws4T8IuqWtHnq/kOnxEOBr7S5dh8PRfm6aX/Z5JlmlxNe3OOtMtTuSZuXJ8nv+jsCoCIxoOzJdfe5bFX5XJK2EIBcLud019deDkvpRtvHVx2P3wcgkos4nFka/UiOGuGu4Qan4+5+D8bdBzg7COxxWeaTpEZqmkZN00hNI0lN0xoyxlEDxpb5SU2jVvRVd0naLN0R8y/3pUgOyEUiHzzQglwkEjGqIheJGJ+RHHLIRZCLFOtIhDsdhds9yUUA3DWv6f2OVeLC3W0yUFpDXW94eUIaxdRI6tQ4G7vDwgH7p2b7J61ZwTFpCwGrG2BOAEjtC5XKXhNmGQIQSAw667bqy9SmkeQXsRu2GqStiq1qL1xG0iVps/VLe+yA12LKCXV/XTtpFuuypAMlv+fsgEO5ja+eERQertg8YbH0Fi42kPRYqq2FmbQ56o5ESmR/36onWTQ+MLnmmK19s/A1/96L8qwmuodY5DC+i9zWY34BnHq+Qpm7a1iHVdJ/bAyJTgAOpuZrr6855o/GcWvrQP0cl5s6GHIw9exTG9cc80fCWkscnP6wlvcfvfzfknnHLELruQCyORPNkjqtPD1dPxeyN0mjCFdnvh1ANuo2/RkQ0H6/vR0ArgCGJ1q7ECLUaQSdfCkINdAzCAArn+wEAO1CY63lyYGUlalKLaacYCRtmU2GJdVjVt/R5nfj/pb/AET/bsk3LKsRa3wbIO7OArjzsx3tVvv+aGEDtE8eBYTCULLGlBFAtDwz9Bmmtjw+XHifNvGNB/GDa70A3s0NDwfkXk7frgR+m6gCUodg9UvtwomQuPZhLYDk1qCyxZcfOQug4tVz5CEA5jiYaZ03m7f0YsoJfW0k0xAdZLZjzpwb0gnr9CtHVUbWUui3Km7pmW4eA1A9Zs472WfHzNPZmGv24k9NxnvNDZIGd6Ye5vM09u0NTE2S/Tvse6vWsQ0X74n7dvSmbc++9iEubPhm0FYCAPhqq30RFGJxsBI4GbjfmNgzAthmHxv8Hgz4Y9Gen5SskZP71OeyUkTb7Jls4S46V2Iyb7LcobM0abN7MpRYHa2ObLQ419o9ORFwUrCjImFLwYu3zGy+d9nk+NeddJ867P9mzx9ts4Wkrch9+50XlX+94oBwojD8F7l7O6LKv15xAHuKy3zLnHzddPDR1Y5i0lbQfe7JzeWQDYQ7C8Kt27WNO8tQhc7JOnPT4p5+7B7mslWInTe+LU+Sh8JAOdoggIQ1phj1txR0MeWETMzwIGTUX3884GLKCS3h8wAK7Tt5sHzUhTdtRl1ObCufIyQvVeVJMkTA+TVfUBBorJoEgJAA8O+LifJxCwDdA4Dpd+8+ySdTsuh6awUASGZrbvoYqAadbDxDMgRiaMfDZekzFgSQGAUInWz+QCl1l8FMdFFnSODvK9vUf3fog7pN7wqEgJTco1ElsGcIgH7viyknzFUsMiRO760oz/BXgtqnJyDyG98Pkr37YimK0MSWdaFGFBBcivoHBsP/AaTz9ArvN34+AAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_42.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
B
|
AB:AP = 2.0:5.0, AQ = 20.0, then the length of CQ is ()
Choices:
A:8cm
B:12cm
C:30cm
D:50cm
|
AB:AP = 2.0:5.0, AQ = 20.0, thì độ dài CQ là ()
Lựa chọn:
A: 8cm
B: 12cm
C: 30cm
D: 50cm
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: AB:AP = 2.0:5.0, AQ = 20.0, then the length of CQ is ()
Choices:
A:8cm
B:12cm
C:30cm
D:50cm
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: AB:AP = 2.0:5.0, AQ = 20.0, then the length of CQ is ()
Choices:
A:8cm
B:12cm
C:30cm
D:50cm
|
AB:AP = 2.0:5.0, AQ = 20.0, then the length of CQ is ()
Choices:
A:8cm
B:12cm
C:30cm
D:50cm
|
209
|
42
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAASoAAAD2CAYAAABhscrPAABEdUlEQVR4nO3de1Sb54Hn8a8QAgEyd4QAIe5YXA0YG5xgGztOEzdJx7PjtsnUs3aatJNOOu3MaXfbnW5POnNmZic73Zl2p2eS3cQdp8cz8UzSNNO4jRPfbWwDxtyNsQyYqxD3OwhJSPtHVhrAXIwtgSQ/n3N8koNePe/zgvjxvM/7XCQ2m82GIAiCG/PZ6AoIgiCsRgSVIAhuTwSVIAhuTwSVIAhuTwSVIAhuz3ejKyCsH/sDXolE4vhaT08POp2O0dFRQkJC2LZtG5s2bdqoKgrCkkSL6hFiD6j5I1L0ej2VlZX09/fj4+OzIMQEwV2IoHrESCSSBWFUV1fHr371Kzo6OvDz88PHR3wkBPcjbv28mM1mW7aFNDExwaVLlygvL2dubg6lUklsbCwymWydaykIqxN/Pr3UahMO2tvbOXfuHC0tLSgUCmJiYlAqlfj6ir9dgvsRn0ovtVxLam5ujqtXr1JfX4+fnx9BQUGMj48zNze3argJwkYRLapHzPDwMPX19XR3d6PRaIiNjQVWvk0UhI0mguoRMjo6Snt7O8PDwwQGBpKbm0tKSgr+/v7IZDJ8fX1FWAluSdz6PULu3LlDXV0dmzdvRq1WExcXR3BwMAqFgqCgIPz8/Da6ioKwJNGiekSYTCaqq6u5du0aarWazMxMxsbGmJycJDAwEIVCsdFVFIRliRbVI2BkZITy8nJ+85vfcPr0aRoaGoiMjGRiYgKbzYZarRbDEgS3JoLqEdDV1UVlZSVTU1NERETQ2dlJa2srJpOJmJgYEhMTkUqlG11NQViWCCovNzg4yN27dxkZGeHQoUMUFRU5vn7nzh10Oh0zMzNiRLrg1kRQeTGDwUBZWRl6vZ7s7Gx2795NcnKy43VfX1/GxsYYHBxELpc7vi6GKgjuRvwZ9VLDw8PU1NTwr//6r/T09PD5z3+epKQkx+sGg4GGhga6urqwWCxYrVbHayKkBHcjWlRepqWlhStXrlBZWUlNTQ1NTU3s3r2bnp4eIiMjsVgsXLp0iTNnznDx4kX0ej0KhYKJiQmefvppSktLCQkJ2ejLEIQFRFB5md7eXq5cucLZs2fp7OwkNDQUPz8/9Ho9qampAFy/fp0LFy7Q2trKxMQEk5OTVFRUEBwczLZt20RQCW5HIrbL8kzL9SMNDQ3R1dXF4OAgRqMRPz8/IiMjiY2NJSIiAoC2tjYMBgMzMzPMzc0hlUoJCAggMjKSlJQUR3/V5OQktbW11NbWcvv2bRobGzEajRgMBtRqNcXFxbz22mtiDJbgciKoPNRSQfWwneCDg4OcOXOGiooKLly4QGNjIxaLZcX3lJSUcP78ebHqguBS4tPloZYKpLWGlMVioaqqilOnTvHJJ59QXl6+4PXExESKi4vZsmULWq0WrVZLaGgoKpWK9vZ2XnzxRS5cuMCpU6d49tlnH+p6BGElokX1CCorK+OXv/wl77//Pt3d3Y6va7Va9u3bx+OPP05paSkqlWrFct5//32++MUvcvDgQd577z1XV1t4hImg8mI2mw2r1crc3By1tbX8+7//O7/4xS8c4SSXy3n22Wd56qmn2LdvH4mJiWsq32g0Eh8fz+joKL29vURGRrrgKgRB3Pp5taamJt544w3+/d//3RFOvr6+7Nu3j8OHD3PgwIGH6giXy+UcOnSIn/zkJxw7dozvfve7zqq6ICwgWlReyn5bZpeamsqXvvQl/vRP/9SpLZ/a2lry8/PJzs6moaHBaeUKwnwiqLyU0Whk9+7dSCQSZDIZGRkZvPDCC+zZs8fp59q2bRtVVVVcu3aN4uJip5cvCGIKjZeSy+X8/Oc/JyQkhFu3blFVVUVvb69LznX48GEA3nnnHZeULwgiqLyQzWZjamqK7u5uxsfHGRoaorm5ecmgstlsD72pw6FDh5DL5Rw/fhyj0fhQZQnCUkRQeam6ujoaGxvRarUUFBQQFhbG0NCQYx0qO2dMQA4NDeXAgQNMTk7y/vvvP3R5grCYCCovNDc3R0VFBbW1tWzfvp3f+Z3fITs7m7GxMW7cuMHo6OiC450RVi+99BIAR48efeiyBGExEVReYPHtm9lspra2lqamJrRaLZ/73OfYsWMHMzMzVFRU3BNUzmAfh3XhwgXa29udXr7waBNB5SXsrSKz2UxHRwcjIyNIpVJiY2PZsmUL27dvd2zwMDIy4pI62DvVRatKcDYRVF5g/q1ba2srly5dIiwsjOLiYhQKBQEBARQUFGC1WmloaGBwcNAl9Thy5AgAx44dW3UysyCshQgqL9Pa2sq5c+eIioqitLSUTZs2AaBUKlGpVAQFBdHb28vQ0NCCVT2dMZwuMTGRffv20d3dzZkzZx66PEGwE0HloZYbVtDW1saNGzeIjY2lpKSEoKAgAHx8fEhPTyc7O5uuri7q6uowm82Osub/92GITnXBFURQeSiJRLLgls9isaDX6xkYGEAulxMbG4tSqVywDVZycjKZmZm0t7dTW1vruD2zl+OMp38HDhwgNDSUkydPuuwWU3j0iKDyEqOjo1RWVjI2NoZWqyU2NvaeY5KTk8nKykKv19PQ0LBgcKazNnSwT1Q2Go2cOHHCKWUKgggqLzE0NMTp06eZmZlh7969xMXF3XNMUlISOTk5jIyMoNPpmJycdEldxNM/wdlEUHmJvr4+ampqAHjssceWXPTOPlwhNDQUs9lMe3u7S8KqsLCQvLw8amtrqaqqcnr5wqNHBJWHs9lsGI1Gent76e/vZ9OmTWRnZzs60RcLCAggJycHlUpFTU0Nd+7ccUm9xERlwZlEUHk4s9lMTU0NbW1tpKenk5aW5uhAX+opnp+fH7m5ucTFxVFfX09ra6tL6iUmKgvOJILKw83OznLlyhXa2trYtWsXubm5Kx7v6+tLTk4OGo2G5uZm2traXFKvyMhInn32WUZHR/nwww9dcg7h0SGCysMZjUauXbtGW1sbRUVFZGVlOV5b6kmeTCYjKyuL+Ph4Ojs7aW9vZ2ZmxiV1E2OqBGcRQeXBrFYrPT09DA4O4uPjQ2pq6qq7HEskEgICAoiJicHPz4/R0VE6OjqYnZ11ev327duHWq3mzJkzC3a7EYS1EkHlwW7fvk11dTVKpZKcnJw1bdQQFhZGXl4eUqmUqqoq+vr6nF4/X19fx/y/t99+2+nlC48OEVQerLGxkbKyMhISEtixYwcBAQH3/d7w8HAKCwuRyWRUVlYyMDDgkjrab//E0z/hYYig8mBNTU3cuHGDtLQ0duzYgUwmu+/3hoSEsH37duRyOdXV1fT397ukjomJiZSWltLe3i4mKgsPTASVB7JarY5xUzabDY1Gg1qtXjCvbzUhISHk5eWhUCjQ6XTo9XqX1Vd0qgsPSwSVBxocHKSmpgaTyURycjIxMTFrLsPHx4fIyEgiIiKYm5ujr6+P/v5+5ubmnF7fgwcPolAo+PDDD12yuqjg/URQeaDu7m5Onz6Nv78/TzzxBBEREQ9cVkJCAgUFBQwNDVFVVcXU1NSyxz7ojjXzJyofP378gesqPLpEUHmgnp4erl+/TlBQEDt37iQ8PPyBy9JoNGzdutURVKuNqXrQVRbElBrhYYig8jBms5menh46OjoIDQ1ly5Ytjnl9D9LiUavV5OfnMzw8THV1NdPT08se+zBLwRQXF5OdnU1VVRWNjY0PXI7waBJB5UFmZmaoqanBYDCQkpKCRqO5JzzWGiaxsbHk5uZiNptpbW1leHjYmVVeQCz/IjwoEVQeZGJigosXLzIwMMCePXtITU1d8PpSIbVaK8vX15eUlBQUCgVTU1P09PQwNTXllGWJFzty5Ai+vr5iorKwZiKoPMjk5CQXLlygr6+P3bt3k5aWtup7Fi9ZvBSpVIpWqyUpKYlbt25x8+ZNlwRVZGQkBw4cYHBwkJMnTzq9fMF7iaDyIAaDAb1ej1QqJSsr66E60RfLyspCq9XS3NxMQ0OD08pdTNz+CQ9CBJUHsFqt3L59m1u3bhETE0NaWhrBwcFOK18ikZCVlcXmzZu5c+cOzc3NTit7saeffhqVSiUmKgtrIoLKA0gkEqqrq6mtrUWr1ZKXl4efn59Ty09JSSE1NZWRkRHHTsuuYJ+obLFYOHbsmEvOIXgfEVQeYG5ujurqam7evEleXh5bt25dcxkrdapLJBICAwPRaDT4+fkxMjLC3bt3Vxyq8DDEmCphrXw3ugLC6gwGA93d3UxNTZGamkpSUtKay7ifYQvBwcFkZGQwMzNDQ0MDoaGh9zxZdAatVktJSQllZWVcuHCB0tJSp5/DJcwTDLQ2UdM5BsiJTs9hc2IY8lXeZhxppu56J2NAiGYbW7Srv2eZkhhpruN65xgQgmbbFrRhD1aSpxEtKjc3MDBAU1MTJpMJpVK55H59ziKXy9m2bRuRkZFUV1fT1dXlsnN51vIvZrpO/xk7IoJRZjzJV7/1Lb71RwcpSgonNPUrvF2zzNiz4Rre/koqoeEZPPnVb/Gtb/0Rz+Wt8p5lDNe8zVdSQwl3nP858sJDSf3K26yxKI8kgsrN6XQ6zp07R3R0NHv37l3T4nhrFRgYSH5+PiEhIVRUVLg0qOwTlU+cOOGy/QWdZfj8f+Xxz/0ds985T8/MON3NzTS39DMxXs/RrZf52o6D/NPiPTLMOt4+uIOvXS7l3bYZxrubaW5uoX+0jXdLl3nPMsy6tzm442tcLn2XtnnnH217l9LLX2PHwX/CNVt0uBGb4Nbeeecd2+7du21//ud/brt+/bptenraZeeyWCy2/v5+2+uvv26LiYmx/fVf/7XLzmWz2Wwvv/yyDbC98cYbLj3Pw7lp+2kONvYft3Uv9fLYb20v+WOL+lHFoi+/ZPMnx/a3daZ732Oqs/1tDjb/l35rG1v1/GO2377kbyPnb21LF/W3thz8bS/9dvWSPJloUbmxubk5Ojs70el0qFQqCgoK1rSK53Jsy3SsS6VSoqKiiIuLQyKR0NfXR3t7O2az+aHPuRSP6FSflpP7rb/kH76/j3v3ngaCC3hyPwycrp/Xqunj4/97lNn93+OF3CUWM5Tl8sL39jN79F0uja9y/r6P+b9HZ9n/vRdYuqgX+N7+WY6+e4nVivJkIqjcxOLwmJqaor6+nvHxcZKSkoiLi8PHZ31+XNHR0aSnpzM9PU19fT1jY2MuOU9JSQlarZby8nL3nagcmEzpyz/gm7ui1/CmJso/hO1f2LZ0uAFxOXvZzL9xqXa1osr5kO18YduyJZGzdzP82yVWK8qTiaByU4ODg5w/f57Z2Vn27t1LfHy808pebVpNVFQUxcXFmM1mKisrXbrYnUe0qlZibqL8Y4h6MpcU+9daW7kOFKas8HQ2Uct2ZrmqW7l3qbX1OlDIykVth9mrrFKURxNB5SYWB8fQ0BCnTp1iamqKJ554ArVa/UDlLnebtxKVSsWOHTswGo1cvXqV8XHX3VTYJyofO3YMi8XisvO4hhnd0R/yk9kc/uvv5v/Hl4d60AF+viusYR8cRAQwOLr8QoWfFaUD/Fi5qAhgkFWK8mgiqNzI/LDq7e2lvb3dsQW7M+f1rSYiIoKcnBx8fX1pbW112Q418FkoPv300x45UXn4/H9l3zeuEP9ffsbX53cgTY1yv9+x2z1DK74+NXrfJbFKUR5NBJWbsVgs6HQ67t69i1KpRKPRPFRI3c/qCYv5+vqSkJBAREQEVquVzs5OBgcHsVqt9/X+tbbgPHHzh+Frf86+/T+hf89bnPmrXThv5qWwFDEy3c2YzWauX79Oa2srOTk5aLXaDamHj48PGo2G+Ph4urq6aG5uZtu2bfj7+6/6Xnsw3r17F51OR3t7O3Nzc8jlcoKDg9m8eTNZWVl0dnZiMBgoKSlBpVJx6tQpDAYDKpXK1Ze3KqPRiFy+1KhvM10nv82eg2/QX/pz6j96kfTFt2VSGat/lz6zOW7l9e6lsvsuiVWK8miiReVmZmdnqaiooKOjg8cff5zs7OwNq0t6ejqFhYV0d3dTU1OzpmEK/f39nD17lh//+Me88sorvPrqq7z66qu89tprfPjhh/T29nLmzBmOHTuGwWDg0KFDGz5ReXJykmPHjrFz507+4A/+YIkjjDS9/RxZz72B6dBH3FwqpADi0ikETJYVvl/jUwwBkaFBK9YpLr0QMLFyUUNAJKsU5dFEi+oBdXR08Omnn9LW1sb4+Dhzc3NYrVbMZjNmsxl/f3+Ki4spKSkhNTX1vjcHHR4eprW1FbPZTG5uLsnJyS6+kuWlpaVhMBh49913AfjP//k/r3j83Nwcer2e06dPU1NTw+DgICkpKezcuROJROK4dTQajfyv//W/6OvrIzQ0FKlUyuHDh/nxj3/MO++8w/e//32XX9t85eXlHD16dMEoea1Wi8ViwdfX/itipOnNz1Pwjatk/ugqZ17bwbI35JoEtgBVrXfhyfSlj2lvphJ/vpCesvTrjqK2AFWsXFQl+H+BVYryaCKoHtDY2BiVlZWcPn2ajo4O4LPbJX9/f0wmE1arlfb2dkwmEwEBASQmJq5a5sjICK2trRiNRiIiIkhISFi3sVNL0Wg0ZGRkMD4+TltbGxMTE4SEhCx7vMFgoLy8nH/6p3/i7t27FBYW8sILL/CFL3zBcczQ0BDHjx/npz/9KbGxsWRnZzu+P8XFxZSXl1NWVkZJSYlLr627u5vjx4/zzjvvONbfksvlHDlyhMOHDy+aKG1G9/ZnIaX+Lx+vHFIAslx2HYB//KSGvlfSWWoEVk/DOW6zn62bV66nLHcXB/hHPqnp45X0JUui4dxt2L+VVYryaCKoHlBKSgp/8id/QlxcHL/+9a+Jiopiy5YtPPbYYwA0NjZSVlbG8ePHkclkPPnkk8THx8/7C32v+vp6ysrKSEpKIisra8Vj10NAQAAajYbQ0FCmpqa4e/cu4eHhBAYGLnn8xYsX+Zd/+RfGx8fZvXs33/jGNygoKFhwTEREBFqtli1bthAcHEx4eLijtXn48GFH68YVQWUwGDhx4gS//OUvKSsrc3y9uLiYw4cPc+jQoSXnUpp1R/nq184T/EefUvk/96wcUgBEU3JwPxx6hzM9X+Yri8dqmut59/WP8X/pt+xfbRxpdAmfFXWGni9/5Z4BpOb6d3n9Y39e+u3+JQPRa2zg9B2v8Mtf/tL2zDPP2H70ox/ZKisrHV+vr6+3ffGLX7SFh4fbvve979muX79um52dXbGsf/iHf7A99dRTtv/xP/6Hrby8fNXj18PY2Jjt61//uu1zn/uc7f/8n/9ja2pquucYs9lsa29vt33zm9+0aTQa28GDB23/8i//suAYq9Xq+P+amhrbd77zHduf/dmf2d59912bwWCw2Ww228TEhE0ul9sUCoVtYmLCKfUfGBiwvfXWW7Z9+/bZfH19bYANsEVGRtq++93v2hoaGlYpodt24oC/jag/sn06tIYT2+fz7XnDdnNm/gtDtuq/3WPz999je+v2wsl7Y7oy2yeffGKrWTSp0D6fb88bN20Li6q2/e0ef5v/nrdst5eYB+hNRIvqIQ0ODjI8PExMTIxj7SaLxYJUKiUkJISIiAgCAgJWHSJgNpu5ffs2TU1NvPTSSxQWFm7obZ+dVColPz8fq9VKTU0NSqWSjIyMBcf09PTwySefcPPmTQIDA/nCF77A/v37sdlsjuuef/1SqZTQ0FACAgIIDg52tBwVCgXPP/88x44d4/333+fIkSMPVOfR0VFOnjzJL3/5S06ePLlgIGlpaSl/+Id/yIEDB5Z5qrdI5dv88YezhDw2zdn/+X3OLnugms//6TdxzLSR5fLt33xE256DZCn/ks/9p0PkqwzUHP+ATwdT+dH5M7y8qCd+4OL3eOprV/iTczby5jWdZLnf5jcftbHnYBbKv/wc/+lQPipDDcc/+JTB1B9x/szLS3fqexERVA/IYrHQ39/v6LdJSUkhLCwM+OwW4+zZs/T09KBUKklPTychIWHZW7mpqSlaWlowm80kJSWRlJSEVCpdz8tZVlBQEEVFRYyMjPDRRx+Rnn5vj65er+fq1atMT0+j1WrJyMggNDR02TKVSiW7du1CJpMRFRW14Fby8OHDHDt2jKNHj64pqKqqqjh16hSffPIJ5eXlC8JJLpfz8ssv8+qrr659uEdQFl/93vfW9p7/Txb/LP94a4A/rf6I3/6qnl7S+OLPTvOzJwpI23RvsijSn+d73yuhUHlPScQ/+4/cGvhTqj/6Lb+q74W0L/Kz0z/jiYI0lijK64igekCTk5PodDqGhoYIDAxcMMjx5s2bnDt3jsnJSbKyssjLyyMyMnLZsvR6PZcvX0YqlbJt2zbHzsdWq9Ul21bdL6lUitlsRqPREBERQVtbG21tbVit1gWtvd7eXhobG9m0aRP5+flERKw8oCc6Opro6KV7VEpLS0lNTaWsrIzm5uYlg2VyctLRB3jlyhUuXLiw5HxElUrFq6++yje/+c0Vg3NFWQf5m785+GDvBZBtIq3o9/l20e+vemj0rm/yN7tWKiqNot//NvdRlNcRQfWAzGYzfX193L59m7Nnz3Lnzh0SExORy+XExMSwd+9eEhMTHf9W0tvby6lTp5BIJKSnp3Pt2jXu3LnjsuVV1srHx4e2tjbm5uaoqanh6NGj7N+/H7VazfDwMHq9nomJCVQqFTExMfd3S7WCw4cP88Mf/pA/+IM/WDCObHBwkMbGRtrb21d8f2pqKj/4wQ94/vnnH7ougnsQQfWAZmZm6OrqYmJiAplMRk9PDwaDgdnZWbZu3UpOTg6ZmZmkpKw+uKW3txedTkdMTAxWq9XxuNzemlrrFBhnsfcxBQQEYDAYCAoKoquri9/85jfk5OSgVqsZHx9nfHwci8WCv78/CoXioW9bv//979PR0cHbb79NVVXVPa9nZ2ej1WpJTEzk5MmTju+XPaAOHTq04U9MBecSP80HNDo6yq1bt4iPj+e5556joKAAiUTCJ598QkVFBf/7f/9v2tvb+fKXv0xKSsqSj/RNJhPd3d3o9Xo2bdpEcHCwYxss+22fRCLZ0Ns/+Kw/TiaTER0dzdDQEIODg8zMzLjsfL6+vrz11lv84Ac/WNB6Cg0NRavV4uvry1/+5V/y+uuvYzQaUalUvPbaa7z88ssioLyU+Kmukc1mw2q1MjAwQH9/PxkZGezbt8/xJEyhUDA5OenYhy8jIwOlUrlkUE1PT1NRUYFer3e0EjIyMrBarczNzS14araRfH19mZiYID4+ngsXLtDV1eUYwR0aGup4cmcymZienl6xzrOzs4yOjjI2NkZkZOSKE66Xum0uLy/nxRdfpLm5GYVCwWuvvcZ3v/tdl64lL2w8EVRrZLVaHVurm0wmQkJCiImJcbyem5vL448/zuXLlx1P83bs2LFkWRMTE1y8eNGx5tRjjz1Genq6IwzdhY+PDxaLheHhYUZGRqitrWV4+LOtT0JDQ4mNjWXTpk1MTk7S29u77H6AZrOZrq4udDodPT09bNu2bU0rQ/z4xz/mv/23/4bFYmHfvn289dZb9zXiX/B8IqjWaG5ujrt376LX6wkNDSU6OnrB9uo2mw2TycTs7CzBwcEEBgYu22czMjLCzZs3UalUFBUVOcZhSSQStxmeYGe/9YuNjSUwMJC+vj4GBweJjIwkPj6erKwsKisr+eCDD1Cr1Tz33HMLnv7Nzs5SW1vLr3/9a2QyGTt37rzvVRIsFgsvvvgix48fR6FQ8Pd///e8/PLLrrpUwQ1t/IhCD2OxWGhtbaWvr4/4+PgFa5nPzs7S2NhIU1MTExMThIeHk5SUdM9tn81mY2Jigq6uLqanpwkJCSEtLc0tBniuRqVSodFoMBgM1NfXO4YvlJSUEBYWhk6n49NPP+XTTz91XF9/fz81NTVcv36dmpoaTCYT+fn59x1UP/zhDzl+/DiJiYlcvnxZhNQj6JFvUc3vqLb3razUNySXy9Hr9UxOTrJr164Fj8+np6d59913+fWvf83IyAgajcaxT97ic1ZVVVFTU0NWVhb5+fkeEVIA8fHxbN26leHhYaqqqsjNzSU6OppnnnkGpVLJ+fPnOXXqFKdOnUKtViOVSpFIJERFRZGZmcmrr75Kbm7uglboSkZHR/mbv/kbVCoV165dc4u1qoT198gH1f2wWCyMj4/T19dHXV0dZWVljI6OolQqkUgkxMTE4O/vz61btzh//jwzMzPs3LmToqIi4uPjHU/y7Gw2G9evX6e2tpYdO3ZQWFi4QVe2dhqNhm3btvHBBx9w48YNDh48SGRkJLGxsTz11FNERkbS399PZWUlFouFmZkZ/P39kcvlJCUlsXfv3jVt+dXS0gLAvn37REg9wiS2jX727QFGR0epqanhzTff5L333nO0wqRSKTKZDKlUytzcHDKZjIiICJ555hleeeUVUlJSlvylnJ2d5cUXX6S2tpa///u/p7S0FD8/P7d4wjffUuO4zGYzOp2Ob3/72/T09PDuu++Sl5fnON5kMjE+Po7JZHIMrZBIJPj6+iKXy9m0adOartNoNBIVFYXFYqG3t/fBR5gLHk20qO6DTCZDqVRSXFyMVColMDAQmUyG2WzGYrFgtVqxWCwEBQWh0Wh47LHHll2Zc2ZmBp1Ox8zMDOHh4cTFxd3X8r4bYakxXDKZDLVaTXh4ON3d3XR3d5OWlkZgYCASiQR/f3+ioqJWLHctwy7kcjmHDh3izTff5MSJE7zyyisPfD2C5xJBdR+CgoLIysoiKyvrocu6e/cuV65cITg4mMTERMdEZne1VKAEBQWRmprK4OAgra2tqNVqcnNzlzx2qVbZWluOhw8f5s033+To0aMiqB5RntGD60VaWlo4d+4cKpWKJ5544p6hDZ5wJ+7j40NGRgapqancunWLmzdvLnvsg+yCs1hxcTHZ2dlUVVW5747KgkuJoFpnHR0dNDc3Exsby/bt25ddLdPdZWZmsnnzZu7cuUNTUxNzc3MuPZ99R2VP2lJLcB4RVPO4skVjH5VtMBiAz8YjKZXKBQM7ndH6WA8SiYSMjAy0Wi0dHR3odDqXr/Rgn2h8/PhxjEajS88luB8RVIu4KihGR0epqKhgbGwMrVZLbGysS86zHiQSCYGBgcTGxiKXyxkfH6e9vd2lYaVSqXj22Wc9ckdl4eGJoJrnQULqflthAwMDnD17FpPJxJNPPklc3OJl+t3f4msNCQlBq9Xi7+9PVVUVXV1dLj2/fUfld955x6XnEdyPCKqHdL/hNjAwwPXr17HZbOzatctjW1Tzr1ehUJCfn09YWBi1tbX09PS49NxPP/20Y0fl7u5ul55LcC8iqJxgpbCy2WwYjUb0ej3Dw8OEhISQkZHhkStPLr7OgIAAtm3bhlKppK6uzuUtKl9fX44cOYLFYuH48eMuPZfgXkRQuZjJZKKiooK2tjby8vLu2cHFkwUGBpKfn094eDi1tbXcvXvX5ecUT/8eTSKoXMxsNnPlyhXu3Lmz4oh1TySVSomKikKpVDoWEzQYDC4dqqDVaikpKaGlpYULFy647DyCexFB5WImk4ny8nLa2tooKipyyuh2dxMXF0d+fj6zs7PcuHFjyR1h7JwxBMTeqhKd6o8OEVQuZDabuXv3LpOTkygUChISErxyydzo6Gjy8/MxGo1UVVUxNja24vEPOwTk+eefR6FQcOLECceSyIJ3E0HlQjqdjurqaiIiIsjMzLxnXSpvERUVxdatWzGbzVRXV6/YonLGODWFQsHBgwcxGo2cOHHiocsT3J8IKhdqaGigrKyMlJQUSkpK3HaVhIelVCoda2o1NjYyODjo8nPax1SJTvVHgwgqF7HZbOh0OpqamkhNTWXbtm3IZN6597afnx/JyckEBwc7NniYmppy6QTrkpIStFot5eXljn39BO8lgsoFrFYrer0evV7P9PQ0Go2GuLg4t9uwwZl8fX1JTk4mLS2Nzs5OGhoaXD7/TwxVeHSIoHKBgYEBqqurMZvNpKWlPTJL6KakpJCVlUVnZyd1dXVYLBaXnu/IkSOOicquPpewsURQuUBXVxdnzpwhKCiIp59+ek1713my1NRUcnNz6enpob6+HpPJ5NLzqVQqnn76aQwGg5io7OVEULmAXq/nypUrBAQEsHPnzgX723mzpKQksrKyGBoa4vbt20xMTLj8nOL279EggsrJLBYLer3esRFBVlbWmnZd8WQKhYKkpCR8fHwYGhqit7fX5f1UBw4cIDIyklOnTjnW+hK8jwgqJ5qamqKiogKDwUBOTg5JSUkbXaV1p1Ao0Gq1RERE0NTURHt7u0vPN3+i8rFjx1x6LmHjiKByosnJSc6fP09vby8lJSWOLdofJf7+/mzZsgW1Wk1tba1jXz5XElNqvJ8IKieamJjg3LlzGAwG9uzZQ1pa2kZXad3JZDLy8/OJj4+npqYGnU7n8nNmZ2dTXFxMc3Mz5eXlLj+fsP5EUDnJ3NwcPT09jI2NERgYSFpamtdOmVmJr68vWVlZaDQa7t69S3t7u8s3fgDRqe7tRFA5gdVqRafTodPpUCqVpKamPjJDEhaTSqVERkaiVquZnZ2lr6+Pvr4+l28DdujQIeRyuZio7KVEUDmBRCKhqqqKmpoasrOzKSgo8OpR6PcjMjLSsfZWVVUV/f39Lj2ffaLy5OQk77//vkvPJaw/EVROYDKZqK+vR6fTkZubS15e3kZXacOFhYVRXFyMv78/165dW5ehA2KisvcSQeUEw8PDtLe3Mzw8THp6OklJSR6xP58rhYSEUFBQgK+vL1VVVeuyokJpaSmJiYmUlZWJicpexiOCymazYbVaF/xzl63P+/v7qaurw2azodFoHpl5fasJDg5my5YtKBQK7ty5Q29v77qcV2yp5Z3cPqhsNhtzc3NYLJYF/9wlqJqbmzl9+jQqlYp9+/YRFBS00VVyC/7+/qSmphIREcHIyAhdXV0MDw9jtVpdel4xUdk7uX1QSSQSfHx8HLdSEokEqVTqNrdWLS0tlJWVER0dza5du7xyqeGHERcXR3JyMkNDQ9y8eZOZmRmXnk+tVrNv3z66u7s5deqUS88lrB+3DyoAHx8fx1M0dwoqs9lMd3c3XV1dxMTEkJub65H79bmSRqOhuLiY0dFRbty4wfT0tMvPKW7/vI9HBBU4Z61tZ5qYmODGjRtMTU2RlZWFWq3e6Cq5hcW35BqNhsLCQgYHB6msrMRoNLq8Ds8++yyRkZF8+OGH69KJL7iexwTVcn1S9u2X5v+7n9eWen21888/ZmhoiAsXLjA9Pc3jjz9+T1Ctdu77cb9lrPW4pd633DFrre9iMTEx5OTkMDs7y507dxgZGXmgstdCLpfz/PPPi4nKXsRjgmopNpsNi8WC2Wxe8F/7L9tyr9lZrVbMZjNms3nFaR5Wq3VBGQB9fX18+umnTE1NsWfPHuLi4pY8/n7KX+3a5pexVBjMzc0tOM5isSzZaW2v11LfH3u5Fovlgae8SCSSe1q+CoWC9PR0AgMDGR0dpauri5mZGZc/DBG3f97Fo4MKcHS02z/4839RfHw+uzyr1XpPp7x9iIOPj4/juKWCwH6cvW/MZrNhNpvp7e2lv78fhUJBZmYmYWFhwH+0SOznW638pdiHYMwvw/71+exPRO3Xav9n/37Yj58/vMP+Hnv588uZm5u75/vzMOzvDw4OJiEhgYiICNra2mhra3N5UOXl5VFYWEhjY6OYqOwFPDqo7OFh72iXSqX4+vo6/rLbX1t8nL1lMf89Pj4+jl9WO/svsM1mw9fX1/H+1tZWurq6CA0NRa1WExUV5Tje3jrx9fVd8G+p8pcyP0jsdbO/f3FrxV6ej4/PPeebX/f59bJf//w62suyn9PHx2fZVtlafz72a8rKyiIjI4Pbt2/T2Ni4LsNLxPIv3sOjg2ol81sb9vBa7hj7v6V+eRb32czNzVFZWUlLSwtbtmxBq9Xec7yzLG4drvVpp70ui987v5VmNz/UnU0ikZCRkUFqaio3b96ksbHxnvO7wvyJyuvRiS+4jtcE1eJfsPktiqVaI/ZjrFar47il+lgWf216epqqqiq6u7spKioiIyNjxXo8jPmht1S4rGZ+XeaHkL3VNP8cD1L+WuqRlpZGSkoKer2e1tZWl4+nAggNDeXAgQOMjo6KicoeziuCyn7rM/8W534Cw8fHB5lMtuCfj4/Piq2i0dFRbt26xfDwMPn5+R65iqcrbrtWKlMikRAVFUVqaioymcwxUn09Ro6Licrewa2Dan6H8GrBM78T+H7ZW0tLtaTm18He0hgYGOD27dsAREdHo1KplmzJOcv8sud/L+6Xu0wzsouKiiIhIQGJREJjY+O6rKiwb98+EhMTuXDhgsvXbxdcx62Dav5tmavZn+bNf/JlZw+q+vp6ysrKSE1N5fHHH7+vW6WlnkY+iJX60dbKVf1Qiy3u3/P396ewsJCIiAgqKyvp6Ohwej2WIlb/9HxuHVTz+5DmP5Fajr3T2P4ofrnj7U8B4T8CwGq1LtvJbNfQ0MC1a9dITEykqKiIwMDAe8q29wXZJ1LPL39xfeY/4Vtct/lPCecPQVjqehc/FLCHrb0u8/vr7Ne8uHW21Nec8YdifoAFBgaybds2wsPDqayspKur64HLXYsjR44AcOzYMTFR2UO5dVDZb8nsvyyuCqr5QwrmHz//uMnJSVpbW+no6CAhIWHJeX3zw8H+iz//l32p+tiPWXwdPj4+jmEU9iEIi5/K3U9QAfcE1fxzzr9lXhxKS9VtLRa3sgICAsjLyyMqKorbt2/T09PzwGWvRWJiomOi8pkzZ9blnIJzuXVQ2TvJ7Z3cG1X++Pg4N2/exGw2k5iYiFqtRi6XL3sLJZFIlhxHtdRxq4WpTCZbdnjF4uuY/2/+8SvVx/6aTCZzBOH874szl1SWyWSo1WpiYmIWbNS6eGyZK271xUh1z+bWQbXU6O7VLDfM4GHKNxgMXLt2DalUyvbt24mJiVlTuSuVfz+vLTe8Yqnjljp+pfos9z2433M/CJVKRVxcHKOjozQ2NjI+Pu7U8pdy4MABQkNDxURlD+XWQbVW9ts4e4vAWXp6ejh9+jRyuZwnn3ySiIgIp5XtLdbSClIqlezYsQOr1Up1dTVjY2MLXl+uY/5hyOVyDh06hNFo5MSJEw9VlrD+PD6ollqi2NktgK6uLlpbWwkODiYvL4/g4GCnlv+oiY6OpqioCJPJREVFxT1B5Sri6Z/n8uigWrxMsf2vrrP6OEwmE21tbfT09ODj44NSqSQ8PHzF28SHWSbFk63lj0NUVBQFBQVYrVYaGhoYHh52avnLKSwsJC8vj9raWqqqqh66PGH9eHRQzZ9sbP+3WsfzWkxPT3PlyhUMBgNFRUUkJyffV53cbZE/dxMQEEBycjJhYWHMzs7S09PD1NSUmKgsLMujgwr+4xG9/Z8zO3/Hxsa4fPkyIyMj7Nu3j7S0NKeUK0BQUBDx8fFERkbS2dmJTqfDbDa7/Lz2icrHjx8XE5U9iMcH1VLWevu13PGjo6NUV1czOTnJ448/TlJSkjOr+chLSUkhNzeX7u5u6urqVgwqZ7W2IiMjefbZZxkdHeXDDz90SpmC6znv0ZgXsdlsjI6OOuaGRUVFER8fL27pnCw1NZXc3FzOnTuHTCbjd3/3dx+6TKvVSm9vLy0tLUxNTTkesAQEBBAREUF8fDwvvfQS77//Pu+88w7PP/+8E65EcDWvCqoHnVe31MTiqqoqamtrycvLY+vWrY9kB7mrJScnMzg4yC9+8Qump6cxmUzLHnu/P9Ph4WE+/vhjfvazn9HW1sbs7CxmsxmVSkVxcTFHjhzh85//PGq1mlOnTtHd3S025vAAbhtUDzLMYP6SxA9DIpFQUVFBVVUV+/bto7Cw0KkjtIXPhIaGkpiYiEKhYGpqis7OTsLDwx/oe93S0kJNTQ21tbWMjIxQUlLCjh07HHP7BgYGaG1t5de//jUymYwvfelL/N3f/R1vv/02P/rRj5x8ZYKzuW1QwYOH1cOanp7m5s2btLW1kZmZSXZ29kOXKSwtKiqK5ORkuru7aWxsJDQ0lJSUlDWVYTQauXDhAr/61a9obGxk3759/MVf/MWCDTcqKir47//9v3PlyhWGh4d54YUXgM+e/omgcn9uG1Qb1R80MTFBc3Mzc3NzxMXFERsbi5+f34bU5VEgk8nIysrCYrHQ0NBATEzMmoKqra2Nc+fO8fHHHzM7O8s3vvENSktLUalUC45LSkri937v9zh58iQtLS3Mzs6SkJAgnvx5CK986vcwOjs7qaioYNOmTeTn54vpMi7m6+tLXl4eGo2GhoYGWlpa7vu99r7EX/3qV+j1etLS0njhhRcoLi6+5/ZRoVCwfft24uPjmZiY4NixY3R0dJCXl+fkKxJc4ZEIqrX0W7W0tHDhwgVUKhV79uwhKCjIhTUTZDIZBQUFJCYm0tDQwJ07d5Y8bvHP0Gg0cuvWLa5du0ZdXR2bN2/mmWeecWxbtph9D8eZmRn6+/s5e/Ys0dHRvPXWW06/JsH5HomggvsPq46ODnQ6HSqViq1bty65OJ7gPFKplKioKEd/0tDQEAaDYdWf19DQEFevXuXOnTvI5XLy8/PZtm0bCoViyePNZjOnTp3ivffeY3p6GqVSyUcffSSe+HkIt+2jctYSvvdbhtlspq+vD71ez8zMDCqVyrFfn+B69k51s9lMbW0tW7duXfD9X/wz7Ovr49KlS4yMjJCXl0d+fj7R0dFLlj04OMirr77Kv/3bvwGf3Qa+9tprpKenu+6CBKdy26CC5QNmdnaW8+fPU1VVxdDQkKND1D45eW5ujvDwcLRaLbt27SIzMxNY+SniyMgIZWVlTE5OUlhYSGxsrGsuSlhSWFgYBQUFDA8PU1lZSXx8/Ip/KGZnZzEYDPj5+ZGZmYlSqbznGKPRyE9+8hNef/11RkdH2bRpE3FxcYSFhREXF0dISIgrL0lwIrcNqpVaQRaLhTt37vDxxx9z48YNZmdnARyrYVosFoKDgx1/MZOTk1dckRM+G2dz7tw5JBIJTz755IJH24LrhYSEUFRUxPnz57l+/TolJSVkZWUte/zMzAzT09OEh4eTnJy84BbdYrFw/PhxfvjDH9Ld3Y2vry9f/vKXmZ6eZmhoiPT09FUXPxTci9sG1Urkcjlf+tKXSE5O5p//+Z/p6+tDo9GwdetWMjIykEgk1NTU8N577/HJJ58glUp58sknSUxMXLbMgYEBrl27RnFxMaWlpSKo1llYWBhFRUWUl5dz48aNZbfSslqtjIyMoNfrmZ6eJjY2lsjISORyuSOg/uqv/srx9PArX/kKf/zHf0xjYyOvv/46arWaxx9//J7hC4J788igkkqlREdHs3PnTiorK4mJiWHnzp3s3LnTMZxApVJx8eJFenp6KC8vZ8uWLUsGldVqZXJyku7ubsxmMxEREfe1nIvgXP7+/iQlJREREcHMzAwGg4GpqSkCAwMXtITtP6/x8XGMRiNzc3OYzWZ+/vOfc/ToUUdAHThwgNdee42srCxOnz5NRUUFMzMzJCQksH37diIjIzfqUoUH4JFBZTc8PExfXx+hoaFkZWWxadMmx2u+vr6kpKRgMpmYnJy8Zx6Zvb/KZDJRWVlJW1sbeXl5aLXa9b4M4f+TSqWo1WqSk5MxGAyOuZaLh4jYl/IxmUzU1NRw6tQppqengf8IKPv4qLGxMT7++GOuXLniCKns7GyXbV8vuIbHBpXFYqG/v5+RkREUCgXBwcELRpDbt5ECVlxMz2q1UlZWRltbG7t27WLbtm3rUn9haampqRQWFjI2NkZtbS2bN29eEFQ+Pj40NTVx4sQJ2traHNucffGLX+Qv/uIvHH9oZmZmqKqq4uLFi9TU1BAdHc3v/d7vsWfPHhFSHsgjg8pms9Hf3093d7fjL+li9vE4Pj4+qNXqe8bX2INramqKGzduMDY2xte+9jU0Gg1Wq9VpE5yF+2MPj8jISLKzs7l8+TJ1dXU899xzwGdDDI4dO8bRo0dpbm4GPlt8Lzo6GpVKxcGDB0lISHDcGt6+fZtf/OIXnDp1iri4OD7/+c9z5MgRMYDXQ3lsUHV0dNDZ2YlKpUKr1S4YQ1NWVsYHH3xAVVUV27dvZ//+/Wg0mnvKMRqNtLS0MDo6ysjICPX19QwPD2OxWERQrTP7Es5jY2MMDQ1x69YtFAoFk5OTVFVVsXPnTscwlJKSEr7+9a+TmZnJxx9/zMmTJ/npT3/K0aNH8fHxYXp6msnJSUJCQti/fz979uxh+/btIqQ8mMcGVXd3Ny0tLUxOTtLf309DQwNhYWHo9Xo++ugjampqiIiIoKCggMLCwiVHLLe1tVFdXe24fWhpacFgMDiGOwjrTyaTMTU1xeDgIJOTk/T29rJr1y5SU1MpLS3lD//wDxesZjE1NUVLSwtXr16lvr6ewMBAxy7ZW7du5Utf+hI7d+7E399/A69KeFgeGVQWi4WBgQHq6+upra3lgw8+4Gc/+xnw2S2EXC6nqKiIw4cPL9kZa3fz5k0uXryITCYjPj7eUbZoSW0M++24VColJCQEi8VCU1MT8fHx1NXVLdm3lJmZycsvv8xTTz2Fj48PmZmZyOVypqenCQ0NJTw8XKx+4QU8MqiGhoYcW4Fv374diUSC1WrFYrEgl8uJj493DFcICAhYsoy5uTlu376NTqdj79695OTkEBgYuKATXlh/fn5+GI1GJiYmHJs+aDQaUlNT7zl2YmKC+vp6ysvLmZqaQqlUkpSUxObNm+8Jp8nJSerr6wkODiYlJWXVAcCCe/G4oBobG6O7u5u+vj5iY2P5zne+w5YtWxx9HPZhB/bdaZZitVoxGAx0dHRgNBrZv38/Tz75JHNzcyKkNpivry8mkwmlUsmlS5eorKzk5s2bPPPMMwtaVNPT09y6dYt//ud/5uc//znw2ej2goICfv/3f5+XX355QbktLS288cYbZGdnc+TIEfz8/MSqrR7E44LKYrEwMzPjaD2p1eplW03LMRgMlJeXA5CXl+eYQS8+uO7Bz8+PLVu20N/fz4kTJxz7//n6+mK1WhkfH6ehoYFPP/2U8PBwfvCDH3Dr1i1u3bpFZWUler2e8vJy/P39sVgs+Pn5IZFIiIyMJC0tDYVCIX7WHsbjgsreeS6XywkNDX2gMTE9PT2cP3+ewMBAioqKFmzR7oot4YW1sdlshIeHo9FomJmZobe3l4GBAYKCgrDZbExMTKDX6+nu7uaZZ57h4MGD1NbW8q//+q+899573Llzh/b2dkenulQqpbi4mFdeeYXi4mLx9M8DeVxQdXZ2cvnyZdRqNVu3biU8PHzNZej1ei5dusT+/fspLS1dMJ1ChNTGWby0T0REBJmZmUilUmpra/H39ycmJgalUsnOnTvZvHmzY3Jxeno6X/3qV3nqqaccuy7b/+hIJBLH5OXlFtYT3JvbB5XNZsNsNjM6OkpnZycnT57kwoULbN26FY1Gg16vR61W39eTHZvNhtFopLe3l6mpKSIjI5fspBXcQ3BwMPn5+XR0dHDjxg1UKhUxMTH4+/sTGxu7YCmewMBA0tLSxG7WXsrtg8pqtTI0NMTZs2d58803uXHjBkajkcbGRhoaGpiammLv3r2kpKSsehs4NTXF9evX0ev1ZGdnr7iagrD+Frdm5XI5eXl5jI2NUVVVRW5uLsXFxRtUO2EjuX1QSSQSx5CD3bt3k5mZiY+PD3Nzc6hUKlJSUggKCrqvW7apqSnOnj2LXq/nscceE60pNxcYGEh+fj5NTU2cPHmSnp6eja6SsEHcPqh8fHwICwtj9+7d7N69+6HKGhsb49q1a2zatImdO3eK5VzcnJ+fH6mpqahUKoaHhx1Lv4jO8EePV08jt3fO2vu5enp6GB8fR6FQkJaWJpai9RD2lvPY2Bg1NTWMj49vdJWEdebVQTXfnTt30Ol0hIWFkZSUJBZO8yDR0dEUFBQwMzNDRUUFo6OjG10lYZ25XVDZHysv/v8HYe+3stlsVFZWUl1dzdatW9m+fbsYge5BoqOj2b59OxaLxbEkz3Ie9jMjuCe3Cyr4j4Bx1pgmk8lEfX09Op2O3Nxc8vLyxHgpDxIZGUlBQQHw2UTywcHBDa6RsN7cLqgWB4gzAmV0dJS7d+8yNDTE5s2biY+PF0HlQTZt2kRWVhZyuZyenh56e3sxm81LtpzsAzwF7+J2QeVsPT09VFRUOPZ/s2/+IHiWwMBA4uLiiI6Opru7G51Oh8Vi2ehqCevE64Pqzp07nD9/nujoaEpLS8WjbQ+WlpZGTk4OXV1d1NXVYTabN7pKwjrxuqBa3Jna2trK+fPnUSqVlJaWLtipRnBPy3WGp6WlsWXLFjo6OqipqWFubm6dayZsFK8KqsWTWk0mEwaDgbGxMWJiYti8ebNYktaDJScnk5OTw+DgIM3NzUxOTm50lYR14lVBNb8jdXx8nMrKSsbHx8nMzBQd6B5kuZ9TVFQUWq0Ws9lMd3c3/f3961wzYaN4VVDNZ5/IPDExwY4dOxyL4wmeLTw8nISEBAIDA7l9+zbd3d0bXSVhHXhtUA0MDHDp0iVmZ2fZvXu3Y90iwbPJZDK2bt1KYmIitbW16HS6ja6SsA68LqhsNhsWi4Xu7m70ej1BQUHk5OSIBdO8hEwmIycnh5iYGGpqamhpadnoKgnrwOuCymKx0NLSQmdnJwqFgtjYWBFSXsTX15fMzEzUajWtra3cvXt3o6skrAOvCyqz2cy1a9e4e/cuJSUl5ObmLnhdzAXzbL6+viQnJ5OYmOjYkchgMGx0tQQX87qgmp2d5fr163R2dvLYY4+RlZW10VUSXCA6OhqVSoXRaKS5uZmRkZGNrpLgQl4XVOPj49y6dYvh4WHy8vJISEhwvDZ/sX/Bs4WEhLBjxw4CAgK4fv06fX19G10lwYW8Kqh6e3upq6sjICCApKQkMa/Pi4WGhlJUVISvry9XrlwRY6q8nFcFVUNDA1evXiUhIYGioqJ7RqGLlpT3CAkJIT8/H7lcTkNDg+in8nJeFVR1dXVcvHiR1NRUSkpKHFtoic5z7xMUFERGRgaRkZGMjY3R29vLzMyM+Fl7Ka8JqqmpKbq6uhgcHCQxMZHMzEx8fd1+7wrhIdj39wsPD6evrw+dTsfs7OxGV0twAa8IqrGxMRoaGjCbzSQlJREXF4dUKnX6SqGC+4mPj6ewsJChoSEqKyuZmpra6CoJLuAVQWUwGLh8+TI+Pj4UFxejVCo3ukrCOomPj6egoICBgQGuX7+O0Wjc6CoJLuAVQdXd3c3FixcJDAxk7969hIeHb3SVBBea3w8VFxfHli1bGB8fp7GxUSz94qW8Iqg6Oztpbm5GoVCQn58v9uvzcvNv5SMiIsjMzCQwMJChoSG6urqwWCyiU93LeHRQmUwm2tra0Ov1SKVSlEolISEhok/qERMTE0NMTAx+fn60trbS3t6+0VUSnMyjg2pycpLz58/T19fHnj17SEtLW/U9Yq6fd8rIyCA9PZ2Wlhaam5uxWq0bXSXBiTw6qCYmJrh8+TJDQ0Ps3bv3voJK8D42m42srCy0Wi06nY6mpqaNrpLgZG4XVGtp8YyNjVFbW8v09DSPP/74gnl9yxFz/byPj48PmZmZaLVaWltbaW5uFhs/eBm3CypYfdyTzWZzDPDbtGkT8fHxREVFrVPtBHcjkUiIi4sjKSkJi8VCX18fPT09G10twYncLqjup7Vjs9morq6mvr4erVZLbm4uUql0HWonuLPo6GiioqIwmUw0NzeLicpexO2C6n74+PhQUVFBZWUlOTk5FBYW4uPjkZciOFFQUBAFBQWEhYVx48YNurq6NrpKgpN45G/36OgobW1t9Pf3s3nzZjZv3rzRVRLcQEBAANu3bycyMpKqqio6Ozs3ukqCk3hcUI2Pj9Pc3IzRaESpVKLRaAgICBAd5AKBgYGiReWlPG55gY6ODsrLy9m0aROpqaliuozg4O/vT0pKCiqViunpafr6+piamiIoKGijqyY8JLdrUa02PKGlpYUrV64QFxfHnj17CAwMXMfaCe5kqc+Kn58farWa6OhoRkZGaGpqEvP/vIDbBRWs/OTv7t27NDY2Eh0dzbZt28Rfy0fYcmPilEoleXl5zMzMcP36dUZHR9e/coJTuV1QLRdSZrOZzs5ODAYDFosFlUpFaGioeNon3EOpVFJUVITJZKKiokLsUOMFPOa3fGhoiAsXLjAzM0NJSQmxsbEbXSXBTdlb20ajkYqKCsbHxze6SsJD8pjO9MHBQc6dO4efnx9PPPEEarV6o6skuKng4GDS09PZtGkTIyMj9Pb2bnSVhIfkMS2qgYEBrl69itVq5YknniAuLm6jqyS4kcUd65GRkSQkJBAVFUVbWxs3b97EbDZvYA2Fh+G2QWX/0FmtVoaGhujs7EQul6NSqYiJiRF9U8ICS/VtJiUlkZqaSnd3N01NTVgslgWvi+V+PIfb/7abTCaqqqpoa2sjOzub9PR0x2vigybMtziskpOT2bJlC729vTQ0NGAymRyvic+OZ3G7Pir7B8j+oZubm+PSpUu0tLRQUlJCbm7uiscLgp1Wq2V0dJRPPvmEmZkZx1ZaNptNfF48jFu2qOZ/iMbGxmhqamJ4eJj8/HxSU1OXPE4QFlMqlaSlpWGxWOjt7aWvrw8QnxtP5HZBNf9DND09TXt7OxMTEwQFBZGcnIxCobjnePHBE5YTERGBRqNBLpdz+/ZtsU6Vh3K7W7/5WlpaqKmpISIigpSUFLG7jLBmAQEBZGRkYLPZaGxsRKVSiSfGHsjtWlTz1dfXU15ejlarZefOnWJxPGHNpFIpeXl5JCQk0NDQQEtLy0ZXSXgAbhtUVquV5uZm6uvrSUlJYfv27fj5+W10tQQPI5PJKCgoQKPRUFdXx+3btze6SsIDcMugmpubQ6/X09vbi9FoRKPREBERIcZOCWsmk8lISUlBrVYzODhIT08PY2NjG10tYY3c8je/t7eXsrIyZDIZO3bsIDIycsHrYgyMsFZKpRK1Ws3U1BTV1dViorKHccvO9J6eHs6dO0dAQADFxcVERERsdJUEDxcXF8czzzxDcHAwUqlUbFDqYdwyqLq7u7l48SK/8zu/Q2lp6T1BJYYjCGul0Wj49re/jZ+fH8HBwchkso2ukrAGbhdUer2enp4e5ubmiIqKIiEhQQST8ND8/f3F0kAezO36qHQ6HRaLhZycHJKTk0VICYKAxOZmPdO9vb0MDQ1hMBhITU0lMTFxo6skCMIGc7ugshOTjQVBsHO7Pio7EVCCINi5XR+VIAjCYiKoBEFweyKoBEFweyKoBEFweyKoBEFweyKoBEFweyKoBEFweyKoBEFweyKoBEFweyKoBEFweyKoBEFweyKoBEFweyKoBEFweyKoBEFwe/8PBi35cNYWZm8AAAAASUVORK5CYII=",
"path": "images_version_5/image_42.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
B
|
It is known that BC parallel PQ, AB:AP = 2.0:5.0, then the length of CQ is ()
Choices:
A:8cm
B:12cm
C:30cm
D:50cm
|
Biết rằng BC song song với PQ, tỉ số AB : AP = 2.0 : 5.0, thì độ dài đoạn CQ bằng ()
Các lựa chọn:
A: 8 cm
B: 12 cm
C: 30 cm
D: 50 cm
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: It is known that BC parallel PQ, AB:AP = 2.0:5.0, then the length of CQ is ()
Choices:
A:8cm
B:12cm
C:30cm
D:50cm
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: It is known that BC parallel PQ, AB:AP = 2.0:5.0, then the length of CQ is ()
Choices:
A:8cm
B:12cm
C:30cm
D:50cm
|
It is known that BC parallel PQ, AB:AP = 2.0:5.0, then the length of CQ is ()
Choices:
A:8cm
B:12cm
C:30cm
D:50cm
|
210
|
42
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAvkAAAKxCAYAAADJt7N5AADLlklEQVR4nOzdd3xN9//A8dcVmSJCxIoRau9VMRurNqWovUpbWm110OpAW91T+Sm1VY2atRUVakusqL232ESISM7vj/s9n5wr997cm9wEt+/n45GH43PW59x77rmf+/4sk6ZpGkIIIYQQQgi3keVRZ0AIIYQQQgjhWlLIF0IIIYQQws1IIV8IIYQQQgg3I4V8IYQQQggh3IwU8oUQQgghhHAzUsgXQgghhBDCzUghXwghhBBCCDcjhXwhhBBCCCHcjBTyhRBCCCGEcDNSyBdCCCGEEMLNSCFfCCGEEEIINyOFfCGEEEIIIdyMFPKFEEIIIYRwM1LIF0IIIYQQws1IIV8IIYQQQgg3I4V8IYQQQggh3IwU8oUQQgghhHAzUsgXQgghhBDCzUghXwghhBBCCDfz2Bfyp06dislkwmQycfLkyf/MuUX61K9fH5PJRP369R91VoQAUr8n9WfNiBEjMuT8J0+eVOeYOnVqhpxDCCGeBBEREep5GBER8aizk2GcLuQbX5iM+jISQlhnLKhZ+8uWLRvFihXjhRdeYPHixU4fPyIigrfeeotq1aqRP39+vLy8CAwMpHTp0nTr1o0ZM2YQFxeXAVcmngTGwIe1e69o0aK0b9+eOXPmkJiY6NAxjx07xqeffkqdOnUICQnB29ub4OBgKlWqxJtvvsmmTZsy+Krsu3v3Ljly5FDX+emnnzq8r73Pqq+vL4UKFaJ169b89ttvDr9ezho5cqQ6Z/bs2R3+/I4YMcJm3rNnz07JkiXp1q0bK1asyJB8Z5YHDx6wevVqBg8eTL169QgODsbT05PAwECqVq3Ku+++y7Fjx1x6zri4OL799ltq1KhBrly58Pf3p0yZMrz77rucPn3aJefo3bu33fvP+OeqIOa///5L//79KV68OL6+vgQHB/PMM88wfvx4Hjx44JJzCCdpTlq3bp0GaIA2fPjwFOtPnDih1k+ZMsXZw6cwZcoUdbwTJ06k+3hPyrlFSsOHD1fvR2rCw8M1QAsPD8/4jKXC3ufFWcbPlyN/zZs31+7cuZPqcaOjo7VnnnnGoWPmzJlT++6777TExMR0X89/SWr3pCvvE2tc8Ww2PhNT+6tZs6Z28eJFm8e6d++eNmjQIM3T0zPVY7Vp00Y7d+5cGq88fX7//XeLvBQvXtzhfZ35rFavXl2LiYlxef5LlixpcZ7ffvvNof2Mz9vU/lq2bOnQc+ZxExMTowUFBaV6fV5eXtpPP/3kknMePXpUK1WqlM1z5ciRQ1u2bFm6z9OrVy+H3z9XlG8mTpyoeXt7230eXLlyJd3nSY2jz1FjWXbdunUZnq9HJSuPud69e9O7d+9HnQ0hHjvPPfccI0eOtEi7efMmUVFR/PTTT5w4cYIVK1YwYMAApk2bZvM4f/31Fx07duTWrVsAlCtXjhdeeIEaNWoQHBzMnTt3OHXqFCtXrmTx4sVcv36dd999l759+xIYGJiRlygeYyNHjuS5555T/799+zbbtm3jhx9+4MyZM2zdupV27dqxadMmTCaTxb63b9/mueeeY926dQDkypWL3r1706hRI/LmzcvNmzeJjIxkypQpHDx4kMWLF7N3717++usvSpQokanXOX36dAD8/f2JjY3l6NGjbN68mdq1azt8jOrVqzNlyhSLtNjYWPbt28eYMWPYs2cPkZGRdOjQgfXr17ss71u3buXw4cMW+Z8+fTrdu3d36jiTJ0/m6aefVv+/fv06GzZs4IcffuDatWssW7aMF198kdmzZ7ss75khPj6eq1evAlC5cmWee+45wsLC1D24YsUKRo8ezb179xg0aBC+vr68/PLLaT5fbGwsrVq14tChQwC89NJLdO7cGV9fX9atW8eXX37JzZs36dixI1u2bKFixYrpvsYCBQqwatUqu9uEhISk6xyrVq3i5ZdfJikpibx58/Lhhx8SFhbGtWvXmDBhAgsWLGDr1q08//zzrFu3jixZHvuW4u7D2V8FmR3Jf5Qkkv94kUi+5eerV69eNre7ePGilidPHg3QTCaTdv78eavb7d+/X8uWLZsGaB4eHtrPP/9sN0IfExOjvfrqqxqgXb9+PZ1X89/ibpF8W8e4fPmyVrRoUbXdkiVLUmzTsWNHtb5Ro0Y2I9j379/X3n33XbVt6dKlMzVifP78ec3Dw0MDtG+++UZFfV955RWH9tfzbe85dOfOHa106dJq261bt7oo95o2YMAADdBy586tff311xqgZcmSRTt79myq+xqft7YinUeOHNFy5syptouOjnZZ3jPD2bNntWeffVbbsmWLzW22bt2q+fr6qij7rVu30nw+42v6zTffpFi/efNmLWvWrBqgNWjQIM3n0bTkSH6RIkXSdZzUJCQkaMWLF9cALSAgQDt69GiKbfTvDECbNm1ahubH0efofyWSLz+nhHBDefPmpWfPngBomsaOHTtSbKNpGt26dePOnTsATJo0iddff91ulCU4OJj/+7//Y968eXh6emZM5sUTLXfu3HzwwQfq/w+32f7jjz+YO3cuAFWqVGHJkiUEBwdbPZanpyfffvstr7zyCgAHDx7k448/zqCcpzRjxgwSExPx8PCgR48evPDCC4D5GuLj411yDj8/PwYOHKj+v23bNpcc9/79+8yZMweAF154gZ49e+Lh4UFSUhK///67S85RvHhxXn31VfX/J619fkhICH/99Rc1a9a0uU1YWJi6xps3b7JmzZo0nSshIYFRo0YBUKZMGd55550U29SqVYu+ffsCsG7dOqKiotJ0rsy0cOFCjh49CsDQoUN56qmnUmzz7bffkjNnTrUsMo9LC/kmk4miRYuq//fp0ydFBw9nO+s6MsJNVFQUffv2pWTJkmTLlg0fHx8KFSpEtWrVeO2111i8eDGapqXjymw7c+YMpUuXxmQy4e/vz+rVq23mPSkpiV9//ZXatWuTM2dOsmXLRsWKFfn8888d6gx1+fJlPvroI6pUqUJgYCA+Pj6EhobSo0cPNm7caHMfPQ/jx4+3uk2/fv3UNq+//rrVbX766SdMJhNZs2ZVzTrA+ogdq1evpnXr1uTLlw9vb2+KFi3KgAEDOHv2bKrXaI3+On7yyScqzdnOQ+fOnePtt99WHYKCgoJo2rRpql9K169fZ8qUKXTv3p2yZcvi7++Pl5cX+fLlo2nTpvz666/cv3/f6r6hoaEWzRQ++eSTFHnOyKZooaGhavnevXsp1i9fvpxdu3YB0LJlS3r16uXwsdu3b0+2bNmcztPDz4E1a9bQpk0b8ufPj4+PD8WKFWPgwIGp3ivHjx/n+++/p3Xr1oSGhuLr64uvry9FihShU6dOrFy50u7+D3824+Pj+emnn6hZsya5c+dO8ay6f/8+S5YsYeDAgTz99NPkzJkTT09PgoKCCAsLY8SIEVy5csXp1yMtDh06xBtvvEG5cuXIkSMHvr6+FCtWjD59+rBz585MyUNqjIWmU6dOWaz76quv1PKvv/6Kr69vqsf79ttvyZcvHwDjx4/n+vXrLsqpfb/99hsAjRo1Il++fKqZy/Xr11myZInLzpPaZzUtlixZwrVr1wDo3r07+fLlo2HDhkByEyRXsPdeu4sGDRqo5bR2wo2IiODGjRsA9OrVy2YwxfidsGDBgjSdKzMtWrRILdv6PvPz81M/kPft28eRI0dcng9XfN/+8ccfNGrUiODgYHx9fSlVqhRDhgxRn6PUrF69mu7du1O0aFF8fX0JCAigUqVKDBkyhAsXLtjcz9jJHczPgG+//ZaqVauSPXt2smfPTo0aNRgzZozzHZidDf3ba66jp9v7c7YqOrUmMz/88IOWJUuWVM97+/ZtZy811XMfPHhQK1SokAbmzogPV/kZ99+3b5/WsGFDm/mrUaOGFhsbazMvq1at0gICAuxe42uvvWa1qUXZsmU1QOvUqZPVYz/11FPqGOXKlbO6zXPPPacBWrVq1SzSH24C8N5779nMX3BwsLZ//36b12iLo539jO+RsWnEP//8Y7dz1bfffmvz3EWKFEn1vFWqVNEuXLiQpn3tNbmxxtHmOpqmWTRzsFYd3b59e7V+zZo1TuUjrYzPgREjRth8XQICArT169dbPcbx48cduh+6d++uJSQkWD2G8Z7asWOHVrlyZbvPKkc6sQUFBWkbN260ee2uaK7z6aefqup8a38mk0kbNmyY1X0zq7mOpmnagQMH1HbNmjVT6Xv27FHptWvXdurcQ4cOVfv+8ssvacq/M3bu3KnON336dJVerFgxDdBat26d6jH0/VNrNjhmzBi17axZs6xuY3ztHfkebdOmjQZoTz31lEqbNm2aOkZUVJTd/R1prqNpmrZixQq1Xf/+/VPN15No/vz56hq///77NB3j448/tvs81iUkJKgmlM8884zVbfRnycPfe0aZ1VxHLwOVKlXK7nYzZ85UeZ48ebLL8+Hs962xLLtmzRqta9euNvcrXry41e94XWxsrNauXTu75/b397fadFHTLD9rFy9e1CpVqmTzOK1bt3Zq0AuXRvKjo6MtOniMHDmS6Ohoiz9j1V567d27l3fffZekpCSKFi3K999/z9q1a9m1axf//PMPkydPpkePHvj7+7vsnLqoqCjq1q3LmTNnyJ8/Pxs2bLBb5ffyyy8TERFBr169WLZsGVFRUSxcuJBatWoBsH379hSdKHW7d++mdevW3Lp1C09PTwYNGsS6devYvn0748ePV7Un//d//8fQoUNT7B8eHg5gtUPXuXPnLCIT+/fv5/LlyxbbaJrGP//8A2B33PkJEybw9ddfEx4ezsyZM4mMjGTNmjWq2cjly5d58cUXbe5vS9u2bYmOjmbAgAEq7eH7Kjo62mrnoQsXLtCuXTs8PDz46quv2LhxI9u3b+eHH35QnUaHDh3Kv//+a/XciYmJhIWF8dlnn7F06VJ27NjBpk2bmDFjBs2aNQNg165ddO7cOcW+f/31F9HR0er/AwYMSJHnzz//3OnXwxExMTEqClmwYEGqVq2aYhv9Pc2WLVumzyewbNkyRowYQalSpZg0aRI7duxgzZo1vPLKK2TJkoVbt27RqlUrq5HBxMREvLy8aN26NT///DNr1qxh586drFmzhrFjx1KuXDnA3NTis88+SzUvffv2Zc+ePfTs2dPisxkWFqa2efDgAcWKFeOdd95hzpw5bNmyhR07djBv3jz69++Pl5cXV69epV27dsTExLjuhTIYNmwYw4YN48GDB9SuXZuJEyeyZcsWIiMj+f3336lVqxaapvHpp58yevToDMmDo/bu3auWCxQooJY3bNigllu3bu3UMdu0aaOW9Xs3I+md1f38/GjXrp1K79atGwArV65M8axMi7t37zJ27Fh1rkaNGqX7mFeuXFG1lHp+AZ5//nn8/PwA10Xzbb3X7sT43Vm6dOk0HePAgQMOHSNr1qyqyYtxn7S6evUq9erVIzAwEG9vb/Lnz0/Tpk0ZM2ZMuodDjo2NVbWuqb0uxvWuuK6Hpef7dtiwYcycOZO2bduyYMECoqKiWL58OS1btgTg6NGjvPXWW1b3TUxMpHXr1ixcuBCTyUSXLl2YO3cukZGRbNmyhVGjRlG4cGFiY2Np3759qk2wnn/+eQ4cOMAbb7zB6tWriYqKYubMmZQpUwYw19BNmDDB8RfG4Z8D//M4DaGp/zLOli2b3aHabty4kabh/myde926dVr27NlVlOT48eOp7g/Why67d++eVr58eRUJtBZ5fPrppzUwd4xctWpVivXXrl1T0fosWbJo+/bts1g/Z84clYcDBw5YrPvtt980MEfw9QjV3LlzLbbZtWuX2n/x4sUW6x4e0vGll17SkpKSUuSxX79+apudO3dafb1Sk5aOt/wvkmGto9k///yjmUwmDdDeeOMNq8c5fPiw3fNMnjzZIhpgjb3Pi7OMr/dzzz2nRUdHW/xt2rRJGz16tOoI5enpqc2fPz/Fcc6dO5fmiGp6GO+VqlWrWq1hmz59utqmQ4cOKdbHxsba7EisaZqWlJSk9e7dWz0bbty4kWKbhz+bkyZNspvvo0ePWr2vdXv37tX8/f01QPvoo4+sbpOeSP727dtVjaWt4ycmJmrdu3fXAC179uwpOkZnViQ/Pj5ePbN4KApufA5Ye5bZExcXp16D0qVLpyn/jkpISFAd17t27Wqx7tChQ+oaRo0aZfc4+nbVq1dP8Vndtm2bNmnSJK1KlSoamGthfv75Z5vHciaSP2rUKLXtw8+wLl26aICWJ08emzVdmuZYJP/69esWEdQNGzbYzVdq50nrX0ZGq8+fP6++73Pnzq3FxcWl6ThhYWHqmZSali1bqmu7d+9eivXORPLt/YWEhGibNm1K0/VommWN3WuvvWZ328uXL6ttO3funOZzpsbRz4ixLAtoI0eOTLFNUlKS1qRJEw3QsmbNanWAgO+++0591y5fvtzqua5du6aVK1dOA7S6deumWG/8DHh6elr9vF29elXLmzevBmgVK1a0e21GT3TH24sXLwJQsmRJ8ubNa3O7HDlyuGzIpj///JPmzZtz+/ZtKlSowMaNGy36Idjy/PPPWx22zNvbW3W6unr1Kvv377dYv337dtVpsl+/fjRp0iTFMXLmzMmvv/4KQFJSkooK6fRIPpBiZjc9QlG/fn0VzbW1TZYsWahXr57Na8yfPz+jR49OMVwewLvvvquWMyMKZzR69GirUf66deuqaK2tPKU2XF+fPn2oUqUKYNk2MTP8+eefVKhQweKvTp06vP766xw9epQXXniBTZs28fzzz6fY19h+3N5nJyP9+uuvVmvZevToQfPmzQHza/pwW8Zs2bKRP39+m8c1mUx8//33eHh4cOfOnVQ7yjVs2DDVGqannnrK6n2tq1ChAv369VN5drWvv/6apKQkqlWrZnMypixZsjB69Gi8vb25ffs28+bNc3k+7ImNjWXt2rU0bNhQPbOKFCmi2uKC5X2nt7F3lN7G9eHjZISVK1eqGpmHn9slS5ZUw0k6Gg2PjIxM8VkNCwujb9++7Nq1i2effZa//vrLZp8oZ+n5qlGjRopnmH49MTExqfZdseXGjRv8+eef1K1bV9W21apVy+73w5NI0zT69+/P7du3Afj4448d6kNijX4MR1oWGPs7xcbGpul8JpOJmjVr8vnnn7NixQp27tzJ5s2bGT9+PDVq1ADMNflNmjRRfbOcpV8TpH5drrimjFKtWjWLwQJ0JpOJt99+GzDX5m7ZssVifUJCAt9//z0AAwcOVN9bD8uZM6fqcLxx40bVUdma119/3WrNeq5cuejTpw9grj27efNm6hcGPPbj5Nujf9Hv37+f7du3qxs3o0ybNo2+ffuSmJhIrVq1WLZsmeoxnhpjlenDqlWrppaPHz9uMTausYCi97q3pk6dOpQpU4YDBw6kKNTkzZuX0qVLc/DgQSIiIujfv79apxfo69evz927d5k8eXKKQr7+/0qVKtkdF71Dhw54e3tbXVeqVCk1TvPx48dtHsPVAgMDVZWbNdWqVWPr1q0O5UnTNC5dusStW7csOtsWKFCAXbt2sWfPHpfk2VWWLl2Kv78/JUuWJEeOHBbrjA/ntHSgTa8KFSpY3PcPe/HFF1mxYgUPHjwgIiKCLl262Nw2ISGBS5cucfv2bYtZQ4OCgoiJiWHPnj20b9/e5v72Ppu2XL9+nWvXrnHv3j3VqV//bOzfv5+EhASXjT6UkJCgml506NDB7o+NwMBAKlSooKqK9R8eGaFPnz7qS8eavHnzsnjxYotngvHLPS33XbZs2bhx44bqwJhR9EJynjx5ePbZZ1Os7969Ozt27CAqKooDBw6oqvS0ioiIICAggDJlytgcs9zROWP279+vmgRYCyw1adKEPHnyqCZ9rVq1SvWYxo6n1pQoUYI//vgj1eNY8+qrr9KhQ4c07avz8vJK1/62fPHFF2rm8AYNGliMguQsvUO1I3k1fmbu3r2bYv3D39HW/Pjjj1a/r2vVqsVLL73ERx99xBdffMGdO3fo168fkZGRdp8t1hg7iad2Xald06PUtWtXm9f+cPnMaPv27SoIZQxmWPPMM8+o5S1btlC8eHGr2zlaVjxx4gSVK1e2e054wgv5Xbp04csvvyQ+Pp46derQrFkzWrZsSb169ShbtqzTN6w9o0aNYtSoUWiaRtOmTVmwYIFq2+gIe+3VcuXKpZaNhS8w90QH8wdIjxjbEhYWxoEDBzhy5Aj379+3+NCFh4dz8OBBi7aF58+f5+jRo5hMJsLDw9WQcHq7/ODgYIfb46d2jWD+NRsbG5viGjNSiRIl7Nbi6K+9vTwtW7aMX375hQ0bNtjdLrNGV9H16tVLjWiki4+P59SpU8yfP5/PP/+cyZMns337dtauXUuePHnUdtmzZ1fL+hCamck4sY41xh/s+mfAKCEhgV9//ZXffvuNXbt22RzhCFJ/XxydcCY6Opoff/yRFStWqFpEa5KSkrh+/brF650e+/fvV21nhw4darXfjTX28piRihcvTseOHXnnnXcICgqyWGe879ISzdP3sRVMcIUbN26ogl3nzp3JmjXl12Tnzp155513ePDgAdOnT+fLL7+0e8zw8PAUBbOEhATOnTvH8uXLGT58OPPnz2fbtm2sXbuWkiVLpjn/el+CrFmzWu0rlDVrVjp16sTo0aNZvHgxN2/eTBEEcESWLFkoW7Ys3bp144033nDq+9AoT548LvusuNLvv/+uhmsNDQ1l5syZ6WoR4OPjA2D3WaUzDs+a1poDewE5k8nE559/zvbt21Wfps2bN1OnTh2nzqFfE6R+Xa64poyS1vJZZGSkWtb7VzrC3rM5rXmx5YlurlO6dGlmzZpFzpw5efDgAUuXLmXAgAGUL1+ePHny0KNHD5c1Dfnpp5/QNI3g4GDmz5/v9APN3vbGB4cxEgmooZty5cpl9cvGSK/+1jQtxRBzegH94sWLHDx4EEDNNlm2bFmCg4MpWLAgxYoVQ9M09WNg7969akZAY7MfZ68Rkq/z4WvMSI7mKSkpKcU6TdPo168frVq1YtmyZal+qB6H6IS3tzclS5Zk6NChLFy4EDAXko3NpcA8lrnu0qVLmZpHINUvdWMTooeHL7t27Rq1atVi4MCBbNu2LdUvl9TeF0dq4yZNmkTVqlWZMmWKQ4VnV94Lae3Im95OdakxDqywb98+jh07xq1btzhy5AhffPFFigI+WN53zv4IuXv3rvoMGo/janPmzFEFElszwxoj/DNmzLD6/EiNp6cnoaGhvPrqq0RERODp6cnZs2fTVftiHAO/SZMmNucf0K/r3r17DkXgJ0+ebPFenzhxgtu3bxMdHc3777+f5gL+42rZsmX06dMHTdPImzcvq1evdrp52cP0H7iO/Lg1Bl4yYuAQnT7/BFgfmCM1zvxoz6xrSou0ls8y4tmc1rzY8kRH8sE8Xnfjxo2ZM2cOq1at4p9//uHy5ctcuXKFGTNmMGPGDHr16sXkyZPT9Su8ffv2zJ8/n8uXL9O9e3fmzp2baqHblRypldCbDVjzcLv80qVLW7TH19WvX5/jx48TERFhMcW6yWSyqG76L5g8eTKTJk0CzFOeDxo0iLCwMEJCQvDz88PDwwOAnj178ttvv2XYXAxp9eyzz1KpUiX27NnD7Nmz+eWXX1QTiQIFChAcHMzly5fZs2ePmvAns6Snlu3NN99UzRHatm3Liy++SMWKFcmTJw8+Pj7q2IULF+bMmTOpvi+pXffBgwfp378/Dx48IE+ePAwePJiGDRsSGhpK9uzZVbOcyZMnqyZ1rrwXjA/zb7/9Vo3qlJqMboYVEhJC+fLlndrHWGuya9cumjZt6vC+u3fvVoXp9DaPscfYzt6RJqBnz55l3bp16RoVp1y5crRo0YI///yTf/75hyNHjqTaH8iatWvXcu7cOcA8D4Yjn7Pp06fz0ksv2d2maNGiTr/XjoqJiUn3iFReXl7pqv0w0r/7EhISyJkzJ3/99ZfNphXOKFiwINu2bePOnTvcuHHDbqT9zJkzgHnywYystSpbtqxa1u8bZxQsWFAtpza3iX5NAIUKFXL6XI8j47M5IiLCamDDmsysuXriC/lg7lj78ssv8/LLLwPm6u3FixczevRozp8/z7Rp06hSpQpvvvlmms/x3XffkT9/fsaMGcOiRYvo0qULs2bNyvCCvl49c/XqVR48eGD3fHpE1mQypYhO5s+fn5IlS3L48GHVLt/YHl9Xv359i3b5+r8VK1Z0uP+Bu9CHqXrqqafYvHmzzSrGzJqYJy1Kly7Nnj17SEhI4NChQxZDaT7zzDPMnz+fO3fusH79ejVRTmZIrfbAuN5YRXnr1i01i2fXrl3tztzpqvdl6tSpPHjwAA8PDyIiImwWMDPqPjB+cSQkJGRYYSszGAMFixcv5v3333d4X70JDZBhHTyPHj3K5s2bnd5v+vTp6R76snTp0vz555+AuWlYWgr5elMdZ2zatInjx49TrFgxp/d1hbFjx1pMdJgWRYoUsTsZoqO2b99O69atuXfvHv7+/qxYscLh5nypKVu2LPPnzwfMgQNbQ24/ePBADWudkT9mIf3BCH9/fwoVKsSZM2dUCwFbjOsz+royi/HZ7OXl9Vg+m11eQnVlO/i0Klu2rGorWKZMGe7cucMff/yRrkI+mEdpSUxM5JdffmHevHl4eHjw+++/Z2gEVL9p7t+/z65du+y2Zd6+fTtgbodurRNMeHg4hw8fZv369Zw/f54jR46o9vg6vYPV/v37iYmJUeNaZ/Y46tZk9r2lj53/3HPP2Szga5r22Mwyao1xdryEhASLdX369FFfOj/99FOmFvL10VccWW98cB45ckRdh7X2xrpDhw65bAQH/T6oVKmS3S8nY/tMVypXrhxeXl7cv3+fv/76y+E2+Y+jihUrUrVqVXbu3KnG+K9evXqq+92+fVv1PzGZTOnuqGmLMYr/yy+/2I22grlQvXLlShYsWMDYsWPTVXti77PqiNjYWNVEr1GjRqk2+9E7XGqaxm+//cbw4cOdPqc72bt3L82aNSM2NhYfHx+WLFliMVdGetWtW1ctr1+/3mYhPzIyUjVtcbaNvLOMo/mldY6DunXrMmvWLA4dOsTFixdtNmsyNgfK6OvKLMZ+kn/99ZdT7fIzi8vb5Bs7Yhg7WjwKhQoVUlV4ruoU+X//93+qxmDOnDn07NkzTe0xHdW4cWO1rDcdsWbLli3qA2vcx8jYLn/cuHFAcnt8nbFd/pgxYxxuj58ZMvve0r907bWfW7x4MefPn7d7HD3fmf150DTNYuINY9UqQIsWLVTv/CVLljBjxgyHj71gwYJ0ddiNjo62O2zb5MmTAXNTGuMPTGNByN77ot/fruDIfXDx4kUVhXU14wRJERER6sf8k8oYvX/55Zcd6r8wePBg1Ya/TZs2LmuaYaRpmvoMlC9fnv79+9O5c2e7f6+99hpgLmAvWLAgXec3/rBNS3OGefPmqXt0wIABqea9b9++arQOfeK8R2HEiBFompauv/RG8Q8fPkyTJk24fv06np6ezJ8/3+WBrfr166sOztOmTbMZRTcOpmCchC0jjB8/Xi2n9Tu+bdu2avnhgSB0cXFxqu9H2bJlM+Tzq8vM79u6deuqmuZx48Zx69atDD+ns1xeyA8KClJRZONMqhlh0aJFdodSM1YhOTKWvSNMJhPjxo1TbW9nzpxJ7969M6ygX6NGDRW9nzhxIqtXr06xzc2bN1UHmixZsljMDGtkfGj9/PPPKdIe3k7f5nFpj28cGz2j7y1IHiN/yZIlVptiHDt2zKEZnPV8Z0aejcaOHau+/CpVqpRiaD6TycSMGTNUR58+ffowduxYu/fylStXeP3112nfvn2aoo1GL7/8stUfCjNnzmT58uWA+QvE+L4XL15c1ejYGqN86dKlLp3xVb8PDh8+zNatW1Osj4uLo2vXrhna8frDDz9U1925c2e791JiYiIzZ85MtY3so9KxY0c13NyuXbto06aNzZljExISGDJkiCqM+Pv789NPP1ndNiIiApPJhMlkcmioyYf9888/nDhxAsDhmoImTZqosfvTM4PssmXLVK1p7ty5rfYFmDp1qrq+ESNGpFivn9/Pz8/meN0P06/z2LFjbNq0KY25f7KdPn2axo0bc+nSJTw8PJg5cyYtWrRw+ji9e/dW74+1IS69vLx44403APOMr999912KbbZs2aKCeeHh4TZr7uvXr6/OZe0HztatW1PML2KkaRofffQRa9euBczfD7ai6/p5QkNDra5v166dmqH3yy+/tPpsGjx4sPoOHTx4sNXjnDx5Up0rPT+wMvP71sfHRw1qcfHiRTp37mw3+HX79m3GjBmT4fkycnlznaxZs/L000+zadMmJk+eTJUqVahcubLqnJYrVy6LNrbp8dNPP9GtWzdatmxJw4YNKVOmDDly5OD69etERkYyevRo9cVrq+CbFiaTiQkTJpCUlMSUKVP47bffyJo1K5MmTcqQJiW//vorYWFh3L9/n5YtW/L666/TunVr/P392bVrF1999ZUav/Xdd9+12S6sQIECFC9enKNHj6qJFGwV8idPnqy2KV++vMMdSjJS7dq11fJbb73Fhx9+SP78+dVrHhoa6tI+Ej179mTw4MGcO3eO2rVrM2TIEMqVK8e9e/f4+++/+emnn4iPj1fND+zl+8SJEyxevJjx48dTp04dFW0ICAhIcyecGzdupBhe8v79+5w8eZJ58+Yxa9YswPzD7+uvv7Z6jHLlyjFv3jxeeOEFYmNjee211/jll1/o1KkTTz/9NMHBwdy5c4fTp0/z119/sWjRIpdEK6pXr66aarz33ntUqFCBmzdvMm/ePFWgy549e4ovwqCgIFq0aMGyZctYvnw5zZo145VXXqFw4cLExMQwf/58pk6dSrFixbhx44bNwqMzevTowejRo0lKSqJFixYMGTKE2rVr4+PjQ1RUFD/++CNHjhyhTp06GVZQqlOnDsOGDeOTTz5R4yP37duXJk2akD9/fuLj4zl58iRbtmxh3rx5nD9/nujo6BS1N4+LiRMnEhMTQ0REBGvWrKF06dK8+OKLNGzYkLx583Lr1i0iIyOZNGmSCtR4enoyZ84cm4WN9DK2Z7c3r4KRl5cXrVq1YubMmfz999+cO3fO6jj3d+7cSfFZ1YfQXLZsGRMnTlTpX3zxhdPPsdOnT6uCZfPmzR0e7aZ9+/aq+df06dPdphmFo65evUrjxo1Vp9B33nmH0qVLWx22V5czZ06bcxmkZvDgwcyZM4fDhw8zZMgQjh49SufOnfH19WXdunV88cUXPHjwAF9fX5s/Zh2xcuVKvvrqK5o1a8azzz5L2bJlCQwMJD4+nr179zJp0iRVI+jn58eECRPSXHbx9PTk559/pnXr1ty6dYs6derw0UcfUaNGDa5fv86ECRNUs9C6devSo0ePNF+XIzLq+9aWIUOGsHbtWtauXcuKFSsoW7Ys/fv3p1atWgQGBnL79m0OHTpEREQEixYtwsfHJ13zLTjN4blx/8c4FbCtaYOXLl2qmUwmq9MopzbV8MOMU3k/PH2zcWpnW38eHh7aF1984exlpnpuTTNPI9+zZ0+1Tb9+/bSkpCSH99c5Mt38qlWrtICAALvX+tprr2mJiYl2r6lv375qe5PJZHWa5jNnzlgc9/XXX09X3nX69Oe9evWyu509L7zwgs3rN77G+r0RHh5u93jG6aQfdv/+fTWltbU/X19f7Y8//lDTh9uaWn3Xrl2at7e31WM4+1oYX29H/vz9/bXffvst1ePu2bNHq1OnjkPHDAoK0n7++edU7zVrjM8Be9PZBwQEaBEREVaPcfr0aa1w4cI29y1cuLD277//2r3fHP1s6j755BO7r8k777yT6jFTuycdeUb++OOPNu8l45+Xl5d25MgRi32d+azaYrzGtB5Dd+/ePe3NN9/UPD09U72ekJAQbcOGDXaPt3z5crX922+/7VRe4uLi1PO1VKlSTu27YMECdd6vvvrKYp0zn1VPT0/t66+/tnke42v/8D0ycuRItW7WrFlO5b9ixYoaoAUGBmr37t1T6cbP57p165w65pPCWJ5x9M/WM1v/Hkjt9Tpy5IhWokQJu8++JUuW2M23sexj7Vlj79n68LNy48aNds+lb2vr+03366+/al5eXjbPVaNGDe3y5cs299+/f7/a9vnnn7d7Lnsc/b41vvep3d+pPZvj4uIsyoL2/ooWLZpif3vlECNn8qzLkHHyW7Zsydq1a3nuuecoUKCAy2Z+fNgff/zB77//Tu/evalcuTL58uUja9as+Pv7U758eV599VV27dqVYR3VsmTJwpQpU9QMZRMnTmTAgAEZMpRikyZNOHr0KB988AGVK1cmICAAb29vChcuTLdu3fjnn38YM2ZMqsOEGiP3D7fH1xUsWFBVv8Hj0R5fN2PGDL755htq1KhBjhw50jUsamo8PT1ZtmwZP//8M9WrV8fPzw9fX1+KFy9O//792blzJx07dkz1OJUrV2bLli106dKFwoULZ+iQaJ6enuTOnZt69erx6aefcujQIZtjfRtVrFiRjRs3snbtWt544w0qV65Mnjx5yJo1KwEBAZQqVYpu3bqpZiCvv/56ul/7ESNGsHLlSlq2bEnevHnx8vJS44b/+++/Nu+7QoUKsXPnTgYPHkzJkiXx9vYmR44cVKpUieHDh7N7926LoeFcYdiwYSxbtowmTZqQM2dOvLy8KFiwIM8//zx//fWX1ar3jDBo0CCOHTvGxx9/TM2aNcmdOzdZs2YlW7ZslCxZkvbt2zNu3DjOnTvnkmH/MpK3tzc//fQTBw4cYMSIEdSqVUs9w43CwsI4dOhQqiPq6FPOZ82a1elImbGGytEovq5Zs2aqw60zbds9PDzIlSsXNWrU4L333mP//v0MGTLEqXPr9PN6e3vbneHbGv16jZOAiYxTvHhxdu3axddff0316tUJDAzEz8+PUqVK8dZbb7F3716HZiG2R2962aNHDypVqkT+/Pnx8vLCz8+PwoUL07ZtWyZNmsShQ4dcVnvz0ksvERUVxUsvvUSxYsXw8fEhKCiIunXr8ssvv7Bp0ya781von18w19SnVWZ+3+p8fX2ZNm0akZGRDBgwgHLlypEjRw6yZs1KYGCgqnmdN28eBw4cyPD8GJm0jCiRCiGEFXqV8PDhw622KxYCzJ3mGjduzMaNGwFzAEXvB2VL/fr1Wb9+PX369FEdt4UQT4bevXszbdo0GjRowN9///2os+M2nugZb4UQQrgfb29vFi1apGojXnnlFZYsWWJz+/j4eLZt24aHhwcffPBBZmVTCOEi+hCbw4YNe8Q5cS9SyBdCCPHYCQoKYtmyZeTKlYvExEQ6depkc6Kq7du3c+/ePbp27frYN1MSQlg6e/YsJ0+epF69eo/FnDzuxC1mvBVCCOF+SpYsyfLly1mxYgUAUVFR1KpVK8VIIPXq1cuQvlBCiIxXsGBB+fxmECnkCyGEeGyFhYW5dOZRIYT4r5DmOkIIIYQQQrgZieQLITKNVMkKIYQQmUMi+UIIIYQQQrgZKeQLIYQQQgjhZqSQL4QQQgghhJuRQr4QQgghhBBuJkML+b1798ZkMhEaGpqRp3GZ0NBQTCYTvXv3ftRZeeyYTCZMJhMjRox41Flx2L59++jevTuFChXCy8tLXcPu3bsfddYy3eNyb69fvx6TyURwcDCxsbEW686ePYu3tzdeXl4cPnz4EeVQCCGEcA8SyRduKSoqiho1avD7779z9uxZEhISXHLcgwcP8umnnxIeHk7hwoXx9fXF39+fIkWK0Lp1a3744QcuXrzo0LEuXLjAd999R8OGDSlUqBA+Pj7kypWLsmXL8vLLL7Ny5UqX5PlxkZSUxJtvvgnAO++8g7+/v8X6ggUL0qdPHxISEnjnnXceRRaFEEIIt+F0IX/q1KkqInry5MkMyJLILPXr18dkMrnlNNJDhw7l7t27BAQEMHbsWLZv3050dDTR0dGULl3a6ePduHGDPn36UL58eYYPH86GDRs4c+YM9+7d486dO5w+fZqlS5fyzjvvUKhQIQYMGMC1a9esHkvTNL744gtKlCjB4MGDWbduHWfPniU+Pp7r169z4MABJkyYQPPmzalXrx4HDx5M78vxWJgzZw579uwhKCiIgQMHWt1m6NCheHp6snTpUrZs2ZLJORRCCCHch4yTL9xOQkIC69evB+Dll19mwIAB6TreyZMnad68uSpsBwcH07VrV8LDw8mfPz8mk4nz588TERHB/PnzOXfuHOPGjaNp06a0bds2Rd569uzJ7NmzAfDz86Nnz540a9aMkJAQ7ty5Q3R0NNOnT2fHjh1s3LiROnXqsGzZMmrWrJmua3jUPv/8cwBeeeWVFFF8XZEiRWjfvj2zZ89m5MiRLFu2LDOzKIQQQrgNKeQLt3PlyhXu378PQMmSJdN1rLt379K6dWtVwO/Tpw+jRo0ie/bsKbZt164d3377Lb/88gsffvih1eN98MEHqoBfqVIlFi5cSNGiRS22CQ8P57XXXmPUqFG8/fbbXLt2jTZt2hAdHU3evHnTdT2PyurVq/n3338B6N69u91tu3btyuzZs1mxYgWHDx9O93sohBBC/BdJm3zhduLj49Wyp6dnuo71wQcfsG/fPsDckXzy5MlWC/g6Ly8v3nzzTbZt20ahQoUs1m3dupXvv/8eMLc/X7NmTYoCvs5kMjFo0CC++OILAC5fvsyrr76armt5lCZNmgRA1apVKVOmjN1tmzVrRlBQEJqmMWXKlMzInhBCCOF2HC7kR0REYDKZ6NOnj0orWrSoap+v/0VERNg8xo0bNxg2bBjlypUjW7ZsBAYG8swzz/D77787lIe4uDh++uknGjRoQN68efHy8iJPnjw0adKEKVOmkJiY6OjlpMvZs2cZOnQoVatWJWfOnPj4+FC4cGE6derEunXrbO538uRJ9TpNnToVMEc4W7duTb58+fD29qZo0aIMGDCAs2fPppqPK1euMHjwYEqWLImvry958+bl2WefZeHChYDt/hP6qEd6kxZ9xBPjX2ojIu3YsYMuXbpQsGBBvL29CQkJoUePHhw4cCDVfDvi/v37jB07lgYNGhAcHIyXlxf58uWjRYsWzJgxg6SkpBT7jBgxApPJZFFw7tOnj8V1OTM60JUrV/j1118ByJcvHz///LPD+5YrV45q1apZpH399ddomgbAjz/+SO7cuVM9zuDBg6lYsSIACxcu5NChQw7nwSi10XXu3bvHzz//TP369cmdOzeenp7kypWL0qVL06JFC3788cc0N/m5d+8eixcvBqB9+/apbu/p6Unr1q0Bczt+IYQQQqSB5qB169ZpQKp/69atU/v06tVLA7QiRYpoBw4c0EJDQ23u99prr9k9//bt27WQkBC7565Ro4Z28eJFRy8phSJFimiA1qtXL5vbTJw4UfP19bWbj759+2oJCQkp9j1x4oTaZsqUKdp7771n8xjBwcHa/v37beZj9+7dWnBwsM39X375ZW3KlCnq/ydOnFD76u+Lvb8iRYpYnE9PHz58uDZ69Ggta9asVvfz8/PT1q9f7+xLb+HkyZNamTJl7Oavbt262tWrVy32Gz58eKrXNXz4cIfzMXr0aLXfRx99lK5runbtmpYlSxYN0AoWLKglJiY6vO/48eNVPt577700nd/evX3+/HmtbNmyqb5277zzTprOHRERoY6xdu1ah/YZN26c2ufUqVNpOq8QQgjxX+ZwIT82NlaLjo7WRo4cqb58V61apUVHR1v8xcbGqn30wmRwcLBWokQJLXv27NpHH32kRUREaJGRkdqECRO0ggULquOtXLnS6rn37t2rZcuWTQO0PHnyaMOHD9fWrFmj7dq1S1u1apX22muvqUJnWFiYdv/+/TS9GKkV8idNmqTyWr58eW306NHaxo0btZ07d2rz58/XWrRooda//fbbKfY3FvJr166tAVp4eLg2c+ZMLTIyUluzZo3Ws2dPtU3NmjWt5uPatWtavnz51HbdunXTVqxYoUVGRmqzZ8/WatWqpV4La4X8s2fPatHR0Vr16tU1QKtevXqK9/HQoUMW5zTmyWQyaZUqVdImT56s7dixQ9uwYYP21ltvqUJs4cKFtfj4+DS9B7dv39aKFSumzte2bVtt8eLFWmRkpDZ37lwtPDxcratVq5b24MEDte+lS5e06OhobdWqVWqbkSNHWlzXpUuXHM5Lhw4d1HG2bt2apuvRLVmyRB3rlVdecWrfCxcuWNw3aWHv3m7fvr06fvfu3bUFCxZoW7du1Xbs2KEtXbpU++STT7QqVaqkuZD/2WefaYBmMpm0GzduOLTPzp07VZ5mzJiRpvMKIYQQ/2UOF/J1tqLD1hgjxoGBgdq+fftSbHPkyBHNx8dHA7Q2bdqkWJ+UlKRVrFhRA7RKlSpply9ftnquFStWqELmxIkTnb0sTdPsF4ROnz6t+fn5qfXWIvWapmkffPCBBmhZsmRJUVA2FvIB7aWXXtKSkpJSHKNfv35qm507d6ZY/8Ybb6j13333XYr1Dx480J577jmLc1l7r/QCc3h4uPUXxMB4rBYtWlgtxBt/AC5YsCDVY1rz7rvv2o2eJyUlad26dVPbjB07NsU2D9eYpFWJEiXUe3nv3r00H0fTLF+b8ePHO71//vz5NUDz8fFJ0/lt3dt3797VPD09HYrUP1xz4qjmzZtrgPbUU085vE9CQoLK16uvvpqm8wohhBD/ZZnW8fbTTz+lXLlyKdKLFy+uhhn8559/UqxftmwZe/fuBWD69Ok22zE3a9aMDh06AGRIZ71Ro0YRFxdHgQIFGDduHFmzWh+Y6JNPPiEkJISkpCSmT59u83j58+dn9OjRmEymFOveffddtfzwa3Lv3j2mTZsGmDsxvv322yn29/DwYPz48fj4+Dh0bc7w8fFhypQpeHl5pVj3xhtvqHRr72Vq4uPjmThxIgBly5a12n7eZDIxduxYgoKCABgzZozT53HUlStXAMiRIwfe3t4uORaY2/c7Sx9VRx+X31WuXbumJgp75pln7G6bK1euNJ1D71+SJ08eh/fJmjWrOp8j/VOEEEIIYSlTCvkmk4muXbvaXK93ULx+/To3btywWPfnn38CUKpUKdUB0Ra9kLJjxw6Xd8LV89G6dWu7heesWbNSq1YtALuT+XTo0MFmwbFUqVJqHPHjx49brIuKiuLmzZsA9OzZ0+qPBDAXCps2bWrz/Gn17LPP2iysZc+enRIlSgAp8+2IqKgo9f737t0bDw8Pq9sFBATwwgsvALB//34uXLjg9Lkccfv2bQCyZcuW7mPFxsaq5bQcz7jPw5+R9AgKClI/zH777TcePHjgsmPrLl++DEDOnDmd2k8v5Ov7CyGEEMJxmVLIz507t4q8WmOMEOoFK11kZCQAhw4dSjECzMN/+iya9+/ftznbaFrcvHmTo0ePAjB+/PhU8zFv3jwALl68aPOYqc26qheIHn499OEcgRSjtzysevXqdtenRWr51t/Lh/PtCOO1hYWF2d3WuN64nyvpQ2W6InJuHHbTWOB3lHGf9NYqGHl7e9OpUycA5s2bR/HixRkyZAjLly9XPybTS/8sOlvI17e/evWqS/IhhBBC/JdkSiHfz8/PfiayJGfj4Qh8TExMms4ZFxeXpv2syYg8OPqaPPx6XL9+XS2n1vwhODg4tSw6La35doTxh1lqkz4Zm7y48gedkd407ObNmxZj76fnWGD/x58tly5dAsw1RYGBgenKy8PGjBmjhqw8deoU3377LS1btiQoKIgaNWrw3XffcevWrTQfX6/5unv3rlP76dv7+vqm+dxCCCHEf9VjP+OtXlisU6cO48aNc3i/AgUKuDwPAIMGDaJv374O7Wet3bpwjK1mSDrtf+PNZ6RKlSpx5MgRkpKS2L17d6q1C/YYm5rt2rXLqX0vXLigfhgUL17cZn+QtAoICGDx4sVs376dP/74g3Xr1rFnzx4SExPZsWMHO3bs4Ntvv2XRokWqKZozgoODuXXrltM/xvTtM+LHqhBCCOHuHvtCflBQEJcuXeLy5cuUL1/+keVBFxcX98jyAZZNHmJiYihZsqTNbZ+0tszGZlsXL160e216ZPvh/VwpPDxcNb1atmxZugr5derUIUuWLCQlJbFs2TKSkpIsarDs0SeSAqhXr16a85CaGjVqUKNGDcDc3CoiIoIpU6awcOFCYmJiaN++PceOHXM6sh4cHMyxY8csaqEcoW8vhXwhhBDCeU4310ktwupqVapUAeDw4cOcOnUqU8+tCw4OJiQkBIA1a9ZkShTZFuMIRXp/BVtSW5/Z72VqjD+etm3bZnfb7du3W93PlTp37qwKtBMnTkxX2/ycOXPy3HPPAebRYhYsWODQfomJiYwdO1b9v2PHjmnOgzOyZ89O69atWbBgAW+88QZgrlHYuHGj08eqUKECAMeOHbM6U7E1MTExqomQvr8QQgghHOd0Id84skx62yk7ok2bNmr5m2++yfDzpZaP48ePq+juo1C9enVy5MgBmEdDsfWD49KlS6xatcrusfT3MjPeR0dUq1ZNtTefNm2azXb9t2/f5o8//gDMQ23mz58/Q/KTO3duXnrpJcBcwB00aJDD+/77779ERUVZpL333nvqh9Vbb71lMaymLd9++60aQrZy5co8++yzDufBVRo1aqSWHcnzw/Tah9jYWA4cOODQPsYfcRlZeyGEEEK4K6cL+cYC1bFjx1yaGWvat29PmTJlAPjll1+YNGmS3e337dvHkiVLXJ6PwYMHq1FN+vfvn2qUfPny5apw5ko+Pj707NkTgJ07d/LDDz+k2CYpKYlXXnmFe/fu2T2W/l4eP378kdZO6Ly9venXrx9gLiR/8sknKbbRNI2BAweqwqY+olJG+fLLLylbtixgjua/9NJLdkfHSUhIYPTo0dSsWZMzZ85YrAsLC2Pw4MGAOZrfuHFjTp48afU4mqYxatQoPvjgA8A894EzfVIcdfz4cdavX293m7/++kstFy1a1OlzGAvpxsK7Pfp23t7ePP30006fUwghhPivc7pNfpUqVfDx8eHevXt8/PHHZM2aldDQUNW+OCQkxKWjYXh4eDBnzhxq165NbGws/fr1Y+7cuXTt2pVSpUrh6elJTEwMu3btYunSpWzevJl33nlHjRbiKkWLFmXcuHH06dOHa9euUadOHXr06EGrVq0oXLgwDx484OzZs2zfvp158+Zx7NgxlixZkurY/mkxYsQI5s6dy8WLF3n33XfZtWsXPXr0IDg4mKNHjzJq1Cg2b95MjRo1VGHJWtOc2rVrM2XKFGJiYnj77bfp3r27qiXw9PSkSJEiLs97aoYNG8aCBQs4fvw4n332Gfv27ePFF1+kQIECnDhxgjFjxhAREQFArVq1ePnllzM0P35+fixZsoTmzZtz+PBhJk6cyOLFi+nWrRvh4eHkz58fTdO4cOECGzZsYP78+Zw+fdrm8UaOHMmpU6eYM2cOe/bsoVy5cvTq1YtmzZoREhJCXFwce/fuZdq0aezYsUPt98svv6SrT4Atp0+fpkGDBpQtW5Z27dpRvXp11TTtzJkzzJkzR9WaVKlSJU15CA0NpWzZsuzfv5+1a9fSp0+fVPdZu3YtAI0bN3bpkKFCCCHEf0ZapskdMmSIBlj9W7dundquV69eGqAVKVLE7vGmTJmi9j9x4oTVbfbs2aOVKFHC5nmNf5988klaLksrUqSIBmi9evWyuc3s2bO1gICAVPOQJUsW7e+//7bY98SJE2r9lClT0pWX3bt3a8HBwTbP37t3b23SpEnq/xcvXkxxjNu3b2vFihWzuv/D75mePnz4cLv5Dg8P1wAtPDzc7nb2nDhxQitdurTd17dOnTra1atXbe7v6OvsqKtXr2o9evTQsmTJkup77+npqb3xxhvajRs3rB4rKSlJGzlypJYtW7ZUjxUYGKjNmzcv3fm3dT+tW7fOoc9UmTJlbH42HfHll19qgObv76/duXPH7rYnT57UTCaTBmizZs1K8zmFEEKI/7I0jZP/1VdfMWHCBOrVq0euXLlszkzqShUrVmT//v1MmzaNtm3bUqhQIXx8fPDy8iJ//vzUr1+fjz76iKioKIYNG5Zh+ejUqRMnT57kq6++on79+uTJkwdPT0/8/PwoVqwYrVu35ocffuDkyZM0aNAgw/JRqVIl9u/fzzvvvEOJEiXw9vYmd+7cNGjQgJkzZzJlyhSLsc31CL2Rv78/mzdv5s0336RMmTKpjoGfWUJDQ9mzZw9jxowhPDycoKAgPD09yZs3L82aNeO3335jw4YNGTaqjjW5cuVi+vTp7Nu3j+HDh1O3bl1CQkLw9vbGz8+PwoUL07p1a3788UfOnj3LqFGjrL7mYK5V+fDDDzly5Ahff/019evXJyQkJMWQq6GhoRw9epT27dtn2HXVq1ePLVu28Omnn9KwYUOKFy9O9uzZ1evdpEkTxo8fz+7duwkNDU3zefr27YuPjw+xsbFq9mhbZs6ciaZp5M2bl+effz7N5xRCCCH+y0ya9hg0xhYZol+/fkyaNImCBQumaB8uHk+aptG5c2fVRObjjz/m008/fcS5co3+/fszfvx4GjVqxJo1a6xuk5SURJkyZTh8+DCff/656pMghBBCCOdIId9N3b17l8KFC3PlyhU6dOjA3LlzH3WWhIPu3btHw4YN2bJlCwBjx45lwIABjzhX6XfmzBmKFy/O/fv32bx5s9WJtWbNmkXXrl0JCgrixIkTZM+e/RHkVAghhHjypam5jnj0jh07ZnNEnMTERAYMGKBGoOnVq1dmZk2kk4+PD3/++acayWbgwIHMnz//Eecq/QoVKqSGIbU1ctLnn38OmDuXSwFfCCGESLvHfsZbYd1nn33G9u3b6dy5M2FhYeTJk4e7d++yd+9eJkyYwM6dOwHzGOctW7Z8xLkVzgoODmbFihXMmjULgCNHjnD//v0U7fafNB999JHq+xEbG4u/v79ad+HCBTp06EDXrl3douZCCCGEeJSkuc4Tqnfv3kybNs3uNnXq1OHPP/8kKCgok3IlhBBCCCEeB1LIf0IdOnSI+fPns3r1ak6dOsXly5dJSEggKCiI6tWr06lTJzp37qzmLxBCCCGEEP8dUsgXQgghhBDCzUiYVwghhBBCCDcjhXwhhBBCCCHcjBTyhRBCCCGEcDOPtJB/8uRJTCYTJpOJqVOnPsqsMGLECJUXIYQQQgghnmTpLuQnJCQwe/ZsevXqRZkyZQgKCsLT05PcuXNTrVo1BgwYwJo1a0hKSnJFfsVjZuTIkerHUfbs2YmLi3P5OTRNY+7cubRt25ZChQrh4+ODn58fxYoVo3Pnzqxatcrl53R3xh+1D/95eHgQGBhItWrVeOeddzhy5IhLzhkbG8uGDRv47rvveOGFFyhatKg6Z2hoqEPH0DSNjRs3MmzYMBo1akT+/Pnx8vIiICCAcuXK8eqrr7Jnzx6X5Pe/7uDBg3z66aeEh4dTuHBhfH198ff3p0iRIrRu3ZoffviBixcvpuscy5YtY8SIEbRs2ZIyZcqQO3duPD09yZkzp7r/Dh065PDxTp8+zbvvvkuZMmXIli0buXLlokaNGnz33XcZ8mxyd7aeE97e3uTJk4cSJUrQokULhg0bxoYNGzLl3Nb+IiIiUj3e1atXGT58OJUqVSJHjhwEBARQqVIlhg8fztWrV12adyEeG1o6LFq0SCtWrJgGpPpXsmRJbenSpRb7nzhxQq2fMmVKerKSbsOHD1d5EY4rWbKkxfv822+/ufT4N27c0OrXr5/q/dWpUyctPj7eped2Z8b7PbU/Ly8vbdy4cek+p733sUiRIg4do3Dhwqnm12QyaUOGDNGSkpLSnef/ouvXr2u9e/fWPDw8Un2ts2bNqvXv31+7evWq0+dJSEhw6P7z9PTUvvzyy1SPt3TpUi1Hjhw2j1OqVCnt2LFjaXlJ/rOceU4AWpkyZbQ//vgj08+9bt06u8favn27lj9/fpv7FyhQQNuxY4dL8i3E4yTNM95++eWXfPjhh2j/G4GzcePGPPfcc5QtW5bAwECuXbvGoUOHWLJkCatXr+bw4cN8+OGHj+3sqyNGjGDEiBGPOhtPlK1bt3L48GEA/P39iY2NZfr06XTv3t1l5+jSpYuK0hQtWpTBgwdToUIFEhISiIqK4uuvv+bKlSvMmTOHoKAg/u///s9l5/6vmDx5Mk8//bT6f2JiIhcuXGDFihX88ssv3L9/nwEDBlCiRAkaNmyY5vNohtF6c+bMSfXq1dmyZQuxsbEOH+PcuXMAFC9enPbt21OnTh0KFCjA3bt3WbduHT/++CPXr1/nm2++wcPDgy+++CLN+f0vOnnyJM2bN+fgwYOAeeblrl27Eh4eTv78+TGZTJw/f56IiAjmz5/PuXPnGDduHE2bNqVt27ZOny9HjhzUr1+fsLAwihUrRv78+fHz81PnmDx5Mjdv3mTo0KEEBgbSv39/q8fZs2cPL7zwAnFxcfj7+zN06FAaNGjA3bt3mT17NhMmTODQoUO0bNmSHTt2WMy0LBxjfE5omsbNmze5fPkyO3bsYOnSpURHR3PgwAFeeOEFXnzxRSZMmOCyeVqio6Ptri9atKjNdefOnaN169ZcunSJrFmz8vbbb9OqVSsAli5dyg8//MD58+dp1aoVUVFRhISEuCTPQjwW0vLLYPr06eoXcHBwsPb333/b3X7v3r1aw4YNtUqVKlmkP06RfOG8AQMGaICWO3du7euvv9YALUuWLNrZs2ddcvzIyEh1fxQrVky7detWim1OnTqlBQYGqnPHxMS45NzuzhglsxcFmzx5stquWbNm6Trn+PHjtd9//107cuSISitSpIhTkfxatWppK1eutBmlP3r0qBYcHKyizBK5dVxcXJxWvnx59X736dPH6mdOFx8fr/30009atmzZtIULF6bpnA8ePLC7/vjx41rOnDnVd42t7fVaoqxZs2qbN29Osf6bb75R1/XJJ5+kKa//RY4+JzRN0xYvXqzlzp1bbT948GCXnTs9evXqpY5jrZbhjz/+sLjnhXAnTn96zp07p2XLlk0DND8/P+3ff/91aL/ExMQUTTmkkP/kio+P13LlyqUB2quvvqpduHBBVe9//fXXLjnHqFGj1P3x888/29zurbfeUtstWbLEJed2d858eetf3Dlz5nR5Ppwt5Dti9OjR6tp++OEHlx3X3Q0aNEi9br1793Z4v3379mmRkZEZlq/+/furfO3bty/F+u3bt6v1r7zyitVjJCYmamXKlFH38f379zMsv+7EmeeEpmna4cOHtYCAALXPzp07XXLutLp48aL6XmratKnN7Zo2baoBmoeHh3bx4sU0n0+Ix43TdWk//vgjd+7cAeCTTz6hbNmyDu2XJUsWh5pxrF69mtatW5MvXz68vb0pWrQoAwYM4OzZs6nue//+fcaOHUuDBg0IDg7Gy8uLfPny0aJFC2bMmGG386+jo+vcv3+fX3/9lZYtWxISEqI6IFWrVo2BAwfyzz//WDRLsHZ93bt3p2jRovj6+qrOP0OGDOHChQt2z33+/Hnef/99qlatSo4cOdT1VahQgS5dujB16lRu3bpl/0VykSVLlnDt2jUAunfvTr58+VRTjunTp7vkHPfv31fLxYoVs7ndU089pZbj4+NtbpeUlMSsWbNo37696kgYFBREpUqVePHFF1m5ciUPHjyw2Ofh++LWrVuMGDGCChUq4O/vT968eWnRogWbN2+22C8mJoaPPvqIcuXKkS1bNoKCgnjuuefYtWuXU6/B40DvFHvv3r1HmxEHNWjQQC0fO3bM7ra3b9/m+++/p2HDhuqZU6BAAcLCwnjvvffYuXNnin3q16+PyWSifv36ABw9epT+/ftTrFgxfH19CQ0NpW/fvpw6dcpiv3379tGnTx+KFSuGj48PhQoVYsCAAcTExKT/otPpypUr/PrrrwDky5ePn3/+2eF9y5UrR7Vq1TIqa2TLlk0tW7sHFy1apJb79Olj9RhZsmShZ8+eAFy/ft1uR015TqRdiRIl+PLLL9X/v/rqq0eYG1i8eDGJiYmA7XsDoHfv3oC5qeLixYvtHnP58uV0796dYsWKkS1bNnLkyEG5cuXo3Lkz8+fP5+7duxbbT506Vd0bJ0+e5P79+/zwww9Ur16dHDlykCtXLurXr8+yZcss9rt9+zbffPMNVapUISAggMDAQJ599lnWrl2bhldC/Gc584sgKSlJVYVny5ZNu3nzZrp+YTwcyX/vvfdsdowJDg7W9u/fb/NYJ0+eVJEaW39169a12UHMkajBrl27tKJFi6baCejEiRMp9o2NjdXatWtndz9/f3+bkegNGzZYREhs/Vnbf926dWp9r169bF6fM9q0aaMB2lNPPaXSpk2bps4TFRWV6jH0bW1Fcf/880+nI/l79+61us2JEye0ypUrp/r6PRytMt4Xp0+fTtHRWP/z8PBQVcF79uzRQkJCrG7n7e2trV27NtXXJqOlJZJfqlQpm9voEXknHykZEsmPiopSeXn99ddtbrd69WqL5gW2/h4WHh6uAVp4eLi2evVqLXv27Fb3y5Mnj3bgwAFN0zRt5syZmre3t9XtihQpop07d85l158WxtqPjz76yCXHTOs9YRQXF6cVL15cA3NzPGvNh+rVq6e+kxISEmwea/PmzSo/w4YNs7qNPCcsORvJ1zRNu3PnjmpC6efnZ7XWxNiExtZxXRHJ79GjhzrGhQsXbG53/vx5tV3Pnj2tbnPlyhWtUaNGqd4bD7dKmDJlilq3Z88eLSwszOa+33//vaZp5mao5cqVs7qNyWRy+QAXwn05Fcnfv38/ly9fBqBevXoEBAQ4s7tdEyZM4OuvvyY8PJyZM2cSGRnJmjVrVPTl8uXLvPjii1b3jY2NpWHDhhw4cACAtm3bsnjxYiIjI5k7dy7h4eEAbNy4kVatWqlf9s7Yv38/9erV48SJEwC0a9eOOXPmsGPHDrZu3cq0adPo3r27RdRJl5iYSOvWrVm4cCEmk4kuXbowd+5cIiMj2bJlC6NGjaJw4cLExsbSvn17oqKiLPaPj4+nc+fO3Lp1i+zZszNkyBBWrFhBVFQUW7duZc6cOQwaNIhChQo5fV1pceXKFVasWAFAt27dVPrzzz+Pn58f4JpoftOmTVUUedSoUaoGyejs2bNqjoVatWpRoUKFFNtcunSJOnXqsHv3bgAaNmzItGnT2LZtG9u3b2fOnDm88sor5MqVy25+OnbsyNmzZxk6dCjr169nx44d/PjjjwQEBJCYmEjfvn05ceIErVq14u7du3z++eds3LiRbdu28cknn+Dl5UV8fDx9+vSxqKV4nE2bNo0rV64A0KZNm0ecG8esX79eLZcuXdrqNuvWraN58+ZcuXIFDw8PevfuzcKFC4mKimLTpk1MmDCB559/Hk9PT5vnOX/+PC+88AKBgYGMHj2abdu28c8//zBo0CBMJhMxMTH069ePHTt20LNnT4oVK8bEiRPZvn0769ato0ePHgCcOnWKt99+27UvgpOMr5neKfFRSUhI4PTp08yePZvatWtz9OhRwByJzZ49e4rt9ed+8eLFyZrV9lgSxntB38dInhOu4efnR+3atQGIi4uzWhvmrGeffZagoCC8vLzIkycP9evX56uvvuL69et299Pf5xw5cpAvXz6b2+XPn1+VZ6zdG3FxcTRo0EBF0atVq8b48ePZtGkTkZGRLFy4kLfeeosCBQrYzc/LL79MVFQUr776KqtXryYyMpKJEyeSP39+AAYPHsy+fft4/vnnOX78OO+//z4RERHs2LGDn376iRw5cqBpGq+++upjUQMongDO/CL4/fff1a/JDz74IN2/MIyRfEB76aWXrHao69evn9rGWhu/d999124UKikpSevWrZvaZuzYsSm2SS1qUKVKFRVNmjVrls1runLlihYXF2eR9t1332lgHgpu+fLlVve7du2a+uVet25di3Vr165VebPX5jwhIcFq7YqrI/nGtvKHDx+2WNelSxcVxbQXVdO01CP5mqZpmzZtUm3/n3rqKW3cuHHaxo0btXXr1mnfffedlidPHg3QQkNDtYMHD1o9Rtu2bdW57PUXiI2N1a5du2aRZrwvvL29ta1bt6bYb9myZWqb4OBgLXfu3NrRo0dTbPd///d/arsFCxbYzEdmMF7X5MmTtejoaPW3e/dubdWqVdqgQYM0Ly8vDdBKly5tt1Pz4xLJv3Pnjhpm08vLy2on8Li4ODWcnp+fn90I5enTp1Ok6ZF8QCtRooTV12Xw4MEW90SdOnW0O3fupNiuY8eOGpg7jD7KTuMlSpRQz7d79+655JjO3BMPfxc8/Ne4cWPtxo0bKfa7e/eu2qZly5apnkfvT1azZs0U6+Q5kVJaIvmapmkfffSR2m/69Okp1jsbybf1FxgYqC1atMhmPvLmzasBWrly5VLNs/79my9fvhTrjP1VXnvtNZsd/+Pj41O06TdG8k0mk9VO6nv37lV9B4KDgx26h6S/kXCEU9/IxsLdqFGj0n1y44M9f/78Nr9cDh48aPO89+7dU1WDZcuWtTn6ws2bN7WgoCC13cPsFfJXrlyp1r355ptOXeP9+/dVgeKtt96yu+3y5cvVeYwjkBh/XKWliZSrC/nVqlXTAK1GjRop1hkfQql1gnWkkK9p5qrLd955R/P09EzxkPf399c++eQT7fLly1b3PXDggGYymTRAe+655xy9RMV4X7z33ns2tzMWaGyNKR8XF6f5+Pg4dC9kNEfHoM6RI4f22WefpSjUPOxxKeQPHDhQ5cPWazxu3Di1zY8//uj0OYyF/BUrVljdxvhsM5lMNpsa/v3332q7P//80+m8uIo+go0rO1e7opAfFBSkzZo1y+ZzPSYmRm3bqVOnVM+jBwXKly9vkS7PCevSWsj/8ccf7ZYVHC3kV6hQQfv444+1JUuWaFFRUdrWrVu1adOmaU2aNFH7e3h42Aye+fn5aYAWFhaWap5r1KihvlOMrl27po5TtWrVVEeEepixkG/vHjU+V95//32b2+n3ULt27ZzKh/hvcqq5zu3bt9WytWYp6dGhQwe8vb2tritVqpQa1/j48eMW66Kiorhx4wZg7jzj4eFh9RgBAQG88MILgLnpTWqdXI2MHWLeeusth/cD2L59uzqXfn5bnnnmGbW8ZcsWtaxX5QFMmTLFqfODuaOgZv5Bp5q2pNX+/ftVcyJrHambNGlCnjx5APjtt9/sHkvP08mTJ+1uM2/ePObNm0dCQkKK9bGxscyePTtFpyXd8uXLVUdoZ9+7h3Xu3NnmuooVKwJgMplsvs++vr6UKFECSHkfP65u3rzJlClTmDdvnt3tTp48qd7PR+X3339nzJgxAJQpU4bPP//c6nb6veLn58fLL7+c5vMFBgbStGlTq+tCQ0NV9X/FihUpU6aM1e0qVaqklh/lPaE/2135XHfmnggJCSE6Opro6Gh27drF0qVLGThwIHFxcbz66qt8/fXXVo9j7Ijr5eWV6nn075iHO0fKc8K1jPMQGMsNuqlTp6p7Q+/A/rBBgwaxd+9ePv30U1q1akXVqlUJCwujZ8+erFq1inHjxgHm5rD9+vVL8Z5C8v2Rnntj3bp1arbkN954w2YZwxGO3BsAnTp1SnW7J/XeEJnLqUK+sT2ktfbR6WGr7awuZ86cQMoHxr59+9RyWFiY3WMY1xv3S40+0kHhwoUpUqSIw/sBREZGquVatWrZnZrb+GA0Thdft25dNbrMoEGDqFGjBl9++SWbN2/O9Dab06ZNAyBr1qxWH1hZs2ZVD6jFixdz8+bNNJ8rKSmJTp068c4773Dq1Cn69u3Lzp07uXv3LrGxsWzcuJE2bdpw4MABevfuzTvvvJPiGPp75+npSc2aNdOcF4CSJUvaXBcYGAhA7ty51b1qbztrX3yPyrp169QXrqZpJCUlcePGDdavX0+7du04fvw4L7/8MkOGDHnUWbUpIiKCvn37AuZnxbx58/D19bW6rX5PVK9eXfUhSYsSJUrYHY0rR44cgGP3DTzae0J/trv6ue4oT09PypcvT/ny5alcuTItW7Zk9OjRbN26FZPJxIcffqjeXyMfHx+17MizUB996+F7Q54TrmXMd1r77hk/G9a88sor9OvXDzD3j1mwYEGKbfT7wxX3BlgG4tLC0WeBI9s9qfeGyFxOFfJz586tli9duuTSjKT2ZavPnPdwp1l9GEeAvHnz2j2GseONcb/U6B0PjRF1R6W1c4weOQDzF8+SJUtUNHDHjh188MEH1KlTh8DAQJo3b87MmTPT1KHYGUlJSfz++++AOWIfHBxsdTs9wn/v3j3++OOPNJ9v7NixzJ07FzAPUTdx4kSqVKmCj48P2bJlo06dOvz555+qA+MPP/yQIqKvv3e5cuWyWVPkKHv3qH5/pvU+fpyYTCZy5MjBM888w4IFC+jatSsA3377LX///fcjzl1KkZGRtGnThvj4eLJly8by5cvtDu2bns+zkaPvtSP3DTzae0J/tt+8edPuMLSZrWLFiowcORIw12L+9ddfFuuNgSdHZk7Wf8Q8POOtPCdcS389gVQ7KqfHK6+8opaNncd1+v3hinsDMvaZYXwWOLLdk3pviMzlVCHfWLXsih7zrpbaGPfpbUqQ2vGtMX4QIyIiVJV0an8DBgywOE7ZsmWJjo5m4cKFvPjii2ps+Lt377Jy5Uq6detGWFhYhva4X7t2LefOnQPM1du2aiSMNSbpGWVn0qRJgPlB/f7779vc7osvvlDLEydOtLpNWt47YTZ48GC1rL8nj4t///2XZs2acfv2bby9vVm0aJHDkVi5J5Lpz/akpCQ1uszj4rnnnlPLDzcb8/HxUT9QUptL5fr166ogZ2skMrknXMMY/S5VqlSGncf4Y17/bjIqWLAgkPq9AXDmzBnA9r0hxJPIqUJ+2bJl1QP1n3/+ybSJl+wxRgmMTVysMdY+OBNd0K/5/PnzTuYOgoKC1LKXl5eqkk7tT2/XbuTh4UHbtm2ZNGkSR48e5fz580yaNElNRBMVFWUR2XA1vamOMzZt2pTmtoP6UGZly5a1G10rWLCgqsU5ePCgxTr9vbt69eoTORzd48DYlC46OvoR5sTSsWPHePbZZ7l69SpZs2Zlzpw5NG7cONX90vN5dlf6MMOAzf4tj4qxxvDhCcYAVcN59OjRFJNUGRmfDQ/3kZDnhOvExcWpSb+yZctG5cqVM+xcqQXu9B8BN2/etFs+uHDhgirP2Lo39O2EeJI4Vcg3mUxqZrg7d+7YjJpmpvLly6vlbdu22d12+/btVvdLTdWqVQE4ffq01S8Ze6pUqaKWH65qTq/8+fPz4osvsmXLFpXHpUuXWu2AlF6xsbEsXLgQgEaNGjFr1iy7f/q9oWlaqh1wbdHHvLb3xa3TO+U+PE62/rokJCRYdGYWjjO+/tY6Pz8KZ8+epVGjRly4cIEsWbIwbdo0i4ivPfo9ERkZadEs7r+sc+fOqi3yxIkTH1nbfGuMEdqHm1KAuc8SmL+THp5jxMjYnKNOnToW6+Q54TpTpkxRfbFat25td+6C9Nq/f79atjZGvX5vgPXmPNbW2bo3ADZs2JCmfArxqDhVyAdzx0+9vdiwYcNSRE5tSUpKYsaMGc6eLlXVqlVTHVGmTZtms53a7du3VfvwsmXLOtW2rnXr1mr5xx9/dCp/devWVbUG48aNy5DaD09PTxWJe/DggRptyJXmzZunCkQDBgygc+fOdv/69u2rahjSWsgvWrQoYO4kbe+a9u3bp/pY6PvoWrZsqargnX3vhNmOHTvU8uNQlR0TE0Pjxo3VD+5x48apfgOO0D/PcXFx/PrrrxmSxydN7ty5eemllwBztHLQoEEO7/vvv//aLVynl94vB7A62V3btm3Vsq3Rx5KSklTTwcDAQBo0aGCxXp4TrnHkyBGGDh2q/m+vmaUrjB8/Xi0ba6N0bdq0UW3Y7Y1Mp486lyVLlhST/jVo0ECNOjV69GhpCy+eKE4X8kNCQtQwdXfu3CE8PNzuL2Qw/9pu2rQp3333XdpyaYe3t7fqYf/vv//yySefpNhG0zQGDhyoOtAMHDjQqXM0btxYFVhHjx7N7NmzbW577do1i0i6j48P7777LmBuTtS5c2e7UbLbt2+r11f3zz//qFkfrbl//756D/z9/VN0iI2IiFDt5fWaGGfpX5B+fn40b97coX06dOgAmJtVbNq0KcV6PU/6rLYP0wtj8fHxvP322zaH0HvjjTfU/x+erbNkyZK0a9cOgD///JNvv/3WZn7v3LmT6gyK/zXx8fEMGzZM/b9FixZWtwsNDVXvZ0a6ceMGTZs25dChQ4C5QKYXTh3VvXt3QkJCAPjwww/tPr8cacvrLr788kvVvGHixIm89NJLdjssJiQkMHr0aGrWrKnaMxuldk8sWrQo1eYPGzZs4NNPPwXMtXRdunRJsU2NGjWoV68eYO4zYi0S//3336vmf2+++WaKmYzlOZF+S5cupXbt2mrUl6FDh1r04zPq3bu3ujciIiJSrI+Ojrb7nQfmAr7eRyhfvnzq/TPKly+fmpV91apVVocCnjt3LqtWrQKgR48eKWbGDQwMVM1go6KiGDRokM1mQgkJCTITrXispKkerU+fPpw9e5Zhw4YRExND/fr1adKkCc899xxlypQhMDCQa9eucfjwYZYtW8bKlStJTEy0+YFPr2HDhrFgwQKOHz/OZ599xr59+3jxxRcpUKAAJ06cYMyYMepBUqtWrTSNjf3bb79Ro0YNYmNj6dKlC3PnzqVz584UK1aMxMREjh49yurVq5k3bx7R0dEWBdchQ4awdu1a1q5dy4oVKyhbtiz9+/enVq1aBAYGcvv2bQ4dOkRERASLFi3Cx8fH4ofI2rVr+eyzz6hXrx4tW7akYsWKBAcHc/fuXQ4fPsy4ceNUR+h+/fq5vHr09OnT6vVr3ry5w8MOtm/fXkV1pk+fnqIaNDVvv/02kyZNIiYmhilTpnDkyBH69+9P6dKlSUxMZNeuXfz888+qyrZMmTJWf8SMHTuWrVu3cv78eYYMGcLKlSvp3bs3pUuXxmQycfLkSSIiIpg9ezbz5s2zOW6zuzpx4oRFu1OAW7dusXv3bsaOHcu///4LQPHixdPV5+Po0aNs3LjRIk0vRMbGxqaYw6FZs2YWX7jx8fG0bNlSdQzt1q0bjRs3tjscbrZs2VLU7vj4+PDbb7/RpEkT4uLiaNSoET169KBdu3YULFiQ+Ph4Dh06xPLly/nzzz8fq9FmMpKfnx9LliyhefPmHD58mIkTJ7J48WK6detGeHg4+fPnR9M0Lly4wIYNG5g/fz6nT59O8/kWLVpEp06daNmyJY0aNaJcuXIEBgYSHx/PsWPHWLJkCX/88QdJSUkAfPzxxzY7cY4aNYo6depw9+5dmjRpwgcffECDBg24e/cus2fPVjU2JUuWtDrULshzIjXG54Smady6dYvLly+zY8cOlixZYtFf56WXXrI5T4UjoqKi6NevHw0aNKB58+ZUqFCBoKAgHjx4wMGDB5kxYwarV68GzH3Vxo8fb3OOh88//5yVK1dy+fJlunTpQmRkpAoGLV26lO+//x4w9/3QR3J62Geffcbq1auJjo5mzJgxbNmyhVdeeYUKFSrg5eXF2bNn2bhxIzNnzmTkyJFpDqYJ4XLpmUlr/vz5WmhoqEMzZ5YrV05btWqVxf7GWQ6nTJli91z6LG+2Zmw9ceKEVrp0abt5qFOnjnb16lWr+9ub8VYXGRmpFSpUKNVrPXHiRIp94+LitJ49ezr0WhUtWtRm3uz9Pf/889rdu3dTnDu9M96OHDlS7T9r1iyn9q1YsaIG5unHH57RWD+mvdlOd+3apRUtWjTVa69cubJ28uRJm8c5duyYVr58+VSP8/Dsi47cF5qWPINjajO36rMahoeH290uozl6T+l/lSpVsnpf6xyZ3dQ486Mjfw+/F7ZmRbX3Z+91XrlypZrp1d7fwxx9D1N7Zun08wwfPtzudpnl6tWrWo8ePbQsWbKk+tp4enpqb7zxhnbjxo0Ux0ntnjDOemrvz9fXV/vuu+9SzffixYu1gIAAm8cpWbKkxUzi1shzwpKzz4myZctq8+fPT/W4qc146+izIigoSFu0aFGq59u6dauWL18+m8fJly+ftnXrVrvHuHz5svbMM8+kmqeHyzLGa7H3DHX1PSSEpmlaukK+zz//PK1atWLevHmsWLGCHTt2EBMTw+3btwkICCA0NJSaNWvSvn17GjRokKFV+aGhoezZs4cJEyYwd+5c9u3bx61bt8iVKxdVqlShW7dudO3a1WIsWmdVq1aNQ4cOMXHiRBYtWsS+ffu4fv06QUFBhISEULduXTp37my1+Ymvry/Tpk3jjTfeYNKkSWzYsIGzZ89y584d/P39CQ0NpVq1ajRv3jxFk5MhQ4YQFhbG6tWr2bJlC+fPn1dVgvny5VOzANpqSpFeept6b29vWrZs6dS+7du3Z+/evdy4cYPFixfTsWNHp/avXLky0dHRTJs2jT///JO9e/dy7do1TCYTefLkoUqVKnTs2JFOnTqlqII3KlasGLt372bGjBnMnTuXnTt3cvXqVQICAggJCaFGjRp06tQp3ZOduAs/Pz/y5MlD1apV6dChAx07dszQDnSPQtOmTTl+/Di//PILS5cu5dChQ9y6dYs8efJQsGBBGjVqZLV5iLvLlSsX06dPZ+jQocyZM4e1a9dy4sQJrly5goeHB7lz56ZSpUo0bNiQrl27Wh0JzBHfffcdLVq04O+//2bnzp1cvHiRmJgYsmTJQq5cuShXrhwNGzakZ8+eDvWhat26NXv37mXUqFEsW7aMs2fP4uXlRfHixenYsSMDBw5MtRZSnhOO8fT0JCAggBw5clCqVCmqV69OkyZNLDq6pkeLFi1U06tdu3Zx6dIlrl69iqZp5MqVi0qVKtGsWTN69+7t0GRbYWFhREdHM2rUKBYtWqRmWS9atCjPPfccgwYNshgJz5rcuXOzfv16Fi5cyMyZM9m6dSuXL1/Gz8+PkJAQKlWqxAsvvECzZs1c8RII4RImTXuE89ALIYQQQgghXC7tYW0hhBBCCCHEY0kK+UIIIYQQQrgZKeQLIYQQQgjhZqSQL4QQQgghhJuRQr4QQgghhBBuRgr5QgghhBBCuBkp5AshhBBCCOFmpJAvhBBCCCGEm5FCvhBCCCGEEG5GCvlCCCGEEEK4GSnkCyGEEEII4WakkC+EEEIIIYSbkUK+EEIIIYQQbkYK+UIIIYQQQrgZKeQLIYQQQgjhZqSQL4QQQgghhJuRQr4QQgghhBBuRgr5QgghhBBCuBkp5AshhBBCCOFmpJAvhBBCCCGEm8n6qDMghBCupmlaijSTyWRz+3PnzgFw+PBhlXbjxg0AcuTIodKefvppALJnz+6KbAohhBAZRiL5QgghhBBCuBmJ5Ash3I4etTdG9PVlaxH98+fPA7B9+3aVFhgYCEDOnDlTHFcIIYR43EkkXwghhBBCCDcjkXwhhNtyNPK+Z88eABYuXKjSGjZsCECFChVUWpYsEhcRQgjxZJBvLCGEEEIIIdyMFPKFEEIIIYRwM9JcRwjxxLDXedZRt2/fBmDDhg0qbevWrQAkJiaqtDx58gBQoEABlebp6Znm8wohhBCZSSL5QgghhBBCuBmJ5AshHmvWJrZKj5MnTwLw999/q7SjR48C4O/vr9Ly588PJEf0AbJmlUemEEKIJ4NE8oUQQgghhHAzUsgXQgghhBDCzUjdsxDisZaeTrbGjrSbN28GYO/evQB4eXmpddmyZQPg1q1bKfZ1dXMhIYQQIjNIJF8IIYQQQgg3I5F8IYTbunbtmlrWI/hnz54FoHDhwmrdlStXAMtIviuG6xRCCCEeFYnkCyGEEEII4WakkC+EEEIIIYSbkeY6Qgi3c+PGDSB5THxIbrrj5+cHQMWKFdW6mzdvAnDixAmVps9uaxwbX5ruCCGEeFJIJF8IIYQQQgg3I5F8IYTbOXLkCAB79uxRaaVKlQKgYMGCAISEhKh1AQEBgOWMt/qwmsahNoUQQognhUTyhRBCCCGEcDNSyBdCCCGEEMLNSHMdIYRbuH//vlreuXMnANu3b1dpffv2BaBs2bIAnD59Wq2LjY0FkjvlgmXTHSGEEOJJI5F8IYQQQggh3IxE8oUQT7Tr168DsHXrVpW2bNkyAFavXq3SoqOjAcidOzcAt2/fVuv02W31TrmQPISmEEII8SSSSL4QQgghhBBuRiL5Qogn2pkzZwDL9vd37twBICgoSKXpbfCPHTsGWLbhz58/PwChoaEqzcPDI2MyLIQQQmQCieQLIYQQQgjhZqSQL4QQQgghhJuR5jpCiCfOlStX1PKJEyeA5A64AN27dwcgLCzM5r76rLgAhw8fBuDu3bsqLUsWiYEIIYR4csm3mBBCCCGEEG5GIvlCiCfGxYsXAdi4caNKO3/+PADly5dXaeHh4QAUK1bM5rGyZk1+/N28eROwrCHw8fGxua8+5KbJZHI470IIIURmkki+EEIIIYQQbkYK+UIIIYQQQrgZaa4jhHisXbt2TS3v2rULgDlz5qg0vUnOm2++qdL0ce+t0Zv86DPgQvJY+8ZZbpOSkmweQ5rpCCGEeNxJJF8IIYQQQgg3I5F8IcRj5ejRowBs2rQJsJzJVo/k79+/X6XpnWzPnTun0nLnzg3AgwcPVNqGDRsAWLNmDQDr169X6/TOu/7+/irt9u3bADRr1kyl1a9fH4AcOXI4f2FCCCFEJpJIvhBCCCGEEG5GCvlCCCGEEEK4GWmuI4R4rFy4cAFIbq6zdu1ate706dMABAYGqjQvLy8guckNQPHixVMcd8eOHQBEREQAcOzYMbVOb5oTGxur0rZt2wZAQECASnv66acBaa4jhBDi8SeRfCGEEEIIIdyMSdOnbhRCCBdJz4ywV69eBZKHtTTOQnvv3j0gOXoPyZ1sCxQooNKCgoJSHPf48eNA8hCad+/eVesSExMB8PDwUGm+vr4Wxwd46qmnAOuz4eq1ALt371Zp+vKhQ4dU2r59+yyuxZinggULAlCzZk21bvjw4YBlp2AhhBAiNRLJF0IIIYQQws1IJF8I4XLORvKNj6HHbaIpY02CPvym3l5fb98PyRF647CdrlC3bl0A1q1bp9KyZpXuVEIIIeyTSL4QQgghhBBuRgr5QgghhBBCuBmp8xVCuJyzTW4eRRMdY7OayMhIAFauXKnSVq1aBcDWrVsdOl5oaChg2Wm2UqVKAJQuXVql6cvGYUDz5csHwMmTJwHo06ePWqc3CTLmrVWrVg7lSQghxH+XRPKFEEIIIYRwM9LxVgjxn7Bx40YA5s+fD8C8efPUurNnz9rczxiFb9y4MQB16tQBoH79+mqdHo13BWPeOnbsCECHDh1U2ty5c112LiGEEO5JIvlCCCGEEEK4GSnkCyGEEEII4WakuY4Q4omhP66SkpJUmj5brXGm2T///BOA6dOnq7SHm+QYZ63VO7I2bdpUpelNc/QOtZnJOBtuoUKFALhx44ZKu3DhAmA5G68QQghhJJF8IYQQQggh3IwMoSmEeGLs378fgF9++UWl6VF7a51njTPD6pH5Xr16AdC2bVu1zt/f3+V5TQ9jLUP37t0B+Omnn1Ta1KlTAXj33XczM1tCCCGeIBLJF0IIIYQQws1IIV8IIYQQQgg3Ix1vhRCPNWtjxltTvHhxtfzCCy8A8NZbb6m0J7WTqt6huEqVKiqtfPnyAERHRz+KLAkhhHgCSCRfCCGEEEIINyORfCHEY804nGR4eDgAJpNJpXl6egJQpkwZldalSxcAGjRokBlZzBRPP/20Wo6MjARgy5YtKq1mzZqZnichhBCPL4nkCyGEEEII4WZkCE0hxGPNOJzk5MmTAXj77bdVWlRUFAB37txRafXr18+czGUifehPSI7kT5s2TaVJJF8IIYSRRPKFEEIIIYRwM1LIF0IIIYQQws1Icx0hxGNJHxMgLi5Opemz2t66dUulXb16NcV2Fy5cSNO5jIydex8H+sy3AIMHDwZgxowZKu3HH38ELJs3CSGE+O+SSL4QQgghhBBuRiL5QojH2p49e9Tyvn37AChdurRKu3//PgAXL15UaXp0/9ixYyqtUKFCAHh5eaU4hx61f5xHFA4MDFTLbdu2BWD27NkqTZ80zBjxF0II8d8lkXwhhBBCCCHcjBTyhRBCCCGEcDPSXEcI8VhKTEwEYNu2bSpt9+7dANSuXVulFS1aFIBNmzaptJs3bwLJY+gDZM+eHYA8efLYPOfj1tnWlr59+wKWzXUmTZoESHMdIYQQZhLJF0IIIYQQws1IJF8IkakcHa4yISEBSI7eA+zfvx+AF198UaVVqVIFgKSkJJV2+vRpwLIWoHLlyoD9SP6TonHjxgCEhoaqtIiICABOnjyZYp0QQoj/HonkCyGEEEII4WakkC+EEEIIIYSbkeY6QohHxl4znVOnTgFw/fp1tc7DwwOAAgUKqLTChQsDcO3aNZV29OhRAHbu3KnSjMdxF7169VLLn3zyCZDcAfezzz57JHkSQgjxeJBIvhBCCCGEEG5GIvlCiEyV2jCV+iy1GzZsACBnzpxqnd6Z1N/fX6X5+voCULVqVZU2Y8YMAKKjo1XalStX0pHrx1Pv3r3Vsh7Jnzp1KgDDhw9X67JmlUe9EEL810gkXwghhBBCCDcjhXwhhBBCCCHcjNThCiEeK3pznb///huAggULqnX6TLf67LVGxvHv8+XLB0C2bNlU2oULFwC4evUqYNkMKEuWlPEOfTz/x3kWXONY+PrY+WvWrLH4F6BZs2aZmi8hhBCPnkTyhRBCCCGEcDMSyRdCuJyjs9pac/z4cQCioqIAqFGjhlpXt25dwDJCrzNG40uWLAlA+fLlVdqZM2cA2LNnDwB16tRR67y9vW3m25j2OEf1+/btCyRH8PWhNEEi+UII8V8kkXwhhBBCCCHcjETyhRAu52jE+8GDBwDExMSotMuXLwPg4+MDWE58ZWx3b0+xYsUAKFu2rEo7efIkADly5AAgLCxMrdMj+cZ8Pwlt8o3atm0LQGBgIABLly5V6/ThQ3Pnzp3Z2RJCCPGISCRfCCGEEEIINyOFfCGEEEIIIdyMNNcRQjwyN27cAGD79u0q7ebNmwCULl0asGyu4yi9uU65cuVU2u7du4HkDrr37t1T66x15H1Smuno9OZN3bt3B2DMmDFq3ezZswEYOHBg5mdMCCHEIyGRfCGEEEIIIdyMRPKFEI+MPjHV6tWrVVpCQgIADRs2BCAkJMTp4xYtWhRIrhUAuH79OgBxcXEAxMbGqnVBQUFOn+Nx1atXL8Aykq8PpymRfCGE+O+QSL4QQgghhBBuRgr5QgghhBBCuBlpriOEeGQuXboEwK5du1SaPktt7dq1AciXL5/Tx/Xw8AAsO+3q48ffunULSB43H5Kb6/j7+zt9rsdN9erVAahcubJK0zsdR0ZGpthOCCGEe5JIvhBCCCGEEG5GIvlCiEyhzyAbHx+v0i5cuABYznibPXt2IDmir0fl08LX11ctV6hQAYBjx44BlrUHAQEBAFSpUiXN53rc6B1wITmSP23aNJUmkXwhhHBvEskXQgghhBDCzUghXwghhBBCCDdj0vQ6dCGEyED3798HICoqSqVFREQA8M8//6i0Nm3aANC/f/8Ux9AfV47ORquPiQ8wZ84cIHl2XWOzoRYtWgDQoUMHh477JLhy5YpaLlSoEJA8Ky4kN5UypgkhhHAfEskXQgghhBDCzUjHWyFEptAj55s2bVJpx48fB+CZZ55RaRUrVnTZObNmTX7E6R1vL168CMCSJUvUutKlS7vsnI+L3Llzq+VWrVoBMG/ePJW2aNEiADp37pyp+RJCCJE5JJIvhBBCCCGEm5FIvhAiU9y7dw+ALVu2qLQbN24A0LVrV5VWrlw5m8dwtC2+ztPTM8VxDx48CMDp06fVOn1irLt376o04/CbT7q+ffsClpH8SZMmARLJF0IIdyWRfCGEEEIIIdyMFPKFEEIIIYRwM9JcRwiRYZKSktTyuXPnAMuhHb28vAAoXry4SsuRI4fLzm9s3qM3v8mfP7/FuSG52dCpU6dUWtGiRQHw9vZ2WX4elcaNGwNQsGBBlbZmzRoAzp49q9KM64UQQjzZJJIvhBBCCCGEm5FIvhAiwxw6dEgt79y5E4A8efKoNH2SJn9//0zLU86cOQGoXLmySvPw8AAgMjJSpfn5+QFQuHDhTMtbRtGHEu3du7dKGzlyJAATJ05UaSNGjMjMbAkhhMhAEskXQgghhBDCzUghXwghhBBCCDdj0jRNe9SZEEK4p7lz56rlFStWAJArVy6VFhYWBkDr1q1Vmo+PT4bmSR8Tf+bMmSrt6NGjgGWzoV69egFQrVq1DM1PZtKvHZI7FoeGhqq0EydOZHKOhBBCZBSJ5AshhBBCCOFmpOOtECLD7N+/Xy1HRUUB8Oqrr6q0WrVqAZYz02Y0fYjOGjVqqDR9GEm9czBA8+bNMy1PmcUYta9fvz4AERERKk0fVlMfclMIIcSTSyL5QgghhBBCuBkp5AshhBBCCOFmpLmOEMJl9BluL126BEBMTIxap/fxN447/yhmWNWb6xjHyf/rr78AOHz4sEo7f/58puYrs/Xt2xewbK4zadIkQJrrCCGEO5BIvhBCCCGEEG5GIvlCCJe5cuUKALt27QLg/v37al2xYsUAyJ8/f+ZnzCBLFnNsI3fu3CotKCgIgMTERJVmrTZC306fIfdJ1qFDBwAGDBig0hYtWgTAjRs3AAgMDMzkXAkhhHAVieQLIYQQQgjhZiSSL4RwGX0oytWrVwPg7e2t1jVq1AhIjoY/TooUKQJA1apVVdrVq1cBiIyMVGl169YFICAgIM3nsjb/oMlkSvPx0kqfdKx79+4qbdy4cQDMmDEDgIEDB2Z6voQQQriGRPKFEEIIIYRwM1LIF0IIIYQQws1Icx0hhMucO3cOgB07dgBQp04dta5evXoA5MqVK/Mzlgp9WM9q1aqptIsXLwKWzXX09elprqN7FE10rOnVq5da1pvrTJs2DZDmOkII8SSTSL4QQgghhBBuRiL5Qoh0SUhIUMt6JP/UqVMAtGzZUq2rVKkSYD2C/ag7o+qTclWpUkWl/f7770DycJIAcXFx6T7X4xLB19WsWVMtly9fHkiuvdi3b1+KdUIIIZ4MEskXQgghhBDCzUghXwghhBBCCDcjzXWEEGly9+5dAKKjo1Wa3ln1qaeeApI7tILjzVQeRXOWAgUKAFCxYkWVNnXqVCB57H+Aa9euAVC0aNHMy1wm0jvhDh48GIBJkyapdT/++OMjyZMQQoi0kUi+EEIIIYQQbsakWevxJoQQqYiJiQGSh1sEOHnyJAB58uQBoFmzZmpdWFiYy86dUR1179+/r5a7desGQFRUlEr76aefgOTZe/38/Fx6/kftypUrAOTPnx+AwMBAte7MmTNA8ky5QgghHm8SyRdCCCGEEMLNSCFfCCGEEEIINyMdb4UQaRIbGwtARESESvP19QWgY8eOAJQoUSJDzp1RTWM8PDzUcunSpYHkzrYABw4cACBfvnwAVK9ePcPzlJly584NQNu2bQGYN2+eWrd06VIAOnTokOn5EkII4TyJ5AshhBBCCOFmJJIvhEgTfbjM8+fPq7SSJUsCUK5cOQBy5cqV+RlzEf0ajJH8gwcPAskRb2Mk353oQ2kaI/n6cJoSyRdCiCeDRPKFEEIIIYRwM1LIF0IIIYQQws1Icx0hRKqSkpIAOHLkiErTO6HqY6pDckfbgICATMyd6xg7z+rNdfT5AAD++OMPILm5jrvS5zfQOxgDrFmzBrCcAbhgwYKZmzEhhBAOk0i+EEIIIYQQbkYi+UKIVOkR7p07d6q03bt3A8lDTQJUrlwZAC8vr0zLmysZI/lPPfUUkDzTK8D169cBOHXqlMX/AYKCgjIji5kia1bzV0Pv3r1V2ldffQXA1KlTVdpHH32UmdkSQgjhBInkCyGEEEII4WYkki+ESFViYiJgGcn/999/Actob7Vq1TI1X0aapqVIc3aCKuP2fn5+ABQuXFil6TUUegT/xIkTap0+EZi+nzvQh9KE5Ej+tGnTVJpE8oUQ4vElkXwhhBBCCCHcjBTyhRBCCCGEcDPSXEcIkSp9dlvj8Il37twBoHjx4iqtaNGimZsxA2eb5jjKOBxomTJlALh79y4A0dHRal1gYCBg+Xo86YydquvWrQvAxo0bVVpERAQA9evXz8xsCWck3Abg8rH9AOw6fdOw0geAvCUrqJRSoTkNa1zn3nXzbNF7dpxWaXpOchR+GoBKpXM+lLNH6R4A1w/uAWCHxeuWA4DCT1dSKaVzPvocC/EwieQLIYQQQgjhZiSSL4Sw6vLly2p5/35zFPD+/fsqLU+ePAAUKFAgczOWyXx8kiN0Tz9tjjjqr4exI3JoaCjgXpF8o759+wKWkXy9E65E8h8XCQCcWT1cpbzQ/ksAtt7ODkBIqeTPq/+DawCcPJb8WeeprgCMmTtaJfWrksu5bFzbBcDE1zuqpIEzjwHgFVJKpRXwf2De/KR53a2CXdU6/fxOnzsdru2aqJZf7zgQgJnHzJ3trb9ut1Rawa5jAJg7up9Ky8SsC2GVRPKFEEIIIYRwM1LIF0IIIYQQws1Icx0hhFWHDx9Wy3///TcAefPmVWklSpQAwN/fP3MzlsmM495XqVIFgHPnzgGwYcMGtU5vyuOuOnToAMDrr7+u0mbPng3A6NHJTTvc/X54nF1bNwSAOk1+UWm5R6wD4Nx79QEoYKV/aMLt5A7kf/RrCUD3Wh1Umse/5s9/n6fsnDwh+XkxsUMtAF462l2lLTi+D4B2Ra1k4J55vomFA8NV0vP/O79+7lTPnw4Jh83NdDrUekmlHe2+AIDj+9oBYD3bC9XywPDnAajVwUOl/ft3HwAyKNtCpEoi+UIIIYQQQrgZieQLIaw6duyYWt66dSsADRs2VGn16tUDIFu2bJmbsUymz2QLUK5cOQC2b98OWA4pqkf33ZUeoe/cubNKmzjRHAGdMWOGSuvfv3/mZuw/b79amvHmTwCcaZ78fmwZXh8Ae93jPbMnD6HZbcJ4ANb92UKlvTfDfL/3GV7D5jFurflGLQ9cVxKAb/ck1yi0K+ppOwM+5qF32/2yVCV9u908POWAL1eotPYTmwMQgCskd5pd8425k+26kt+qtD2//C+Cbzfb7dTyL0vN+26vNEClfbmiPQATm7smx0I4SyL5QgghhBBCuBkp5AshhBBCCOFmpLmOEMJCYmIiAKdPJ89MqXfC7do1eRzrqlWrApAly5MRK9A0zeL/js6Q6+GR3JEuODgYgJCQkBTHuHTpEgAnT55Uafp2np526vyfML169VLLenMdfbx8kOY6mS4uuUdoxTdGAjC6ZGOVFuLs8QLMn+tnmycnTVq9F4Bj/2uuY9mR1Hzfr/h1kkqJ/19zoS4VnbzvPSuqxS7vmTMwuPsslbbhB3NaK1e0frmU3Azo10nxADSf0UWlOZ91877vNR+s0rrPMnfM/6F5K8BVzYyEcNyT8e0shBBCCCGEcJhE8oVwcw9HsCFlFPvOnTtqWY/a37qV3DGtaFFzxzg9Mg1PTgQ/I+hDiZYsWVKlxcXFAbB3716VpndWzZ07dybmLmPVrVtXLZcuXRpI7pgNsG+feajE8uXLZ27G/qv8iqnF+v0+NP+bqRkwd/zduig5pcYv5uFkna5FMAipYO7kX4qPVNqG3dMBaPVMOg6s2598zy7CXEPxy9PpyjEAFRomz+jLR+ZI/u7p5ki+K7IthDP+u9/SQgghhBBCuCmJ5AshuHLlilpet848eU58fLxK04fOLFSoUOZmzIUcbYPvCL1tfs2aNVXaxYsXgeThNQHKli0LuFck30hvnz906FCVprfP//bbb63uIx5zCf+LzCc3WSd4qLmtvNVJnf431O4OQ1L1p4qmPx+h5lqiGiQ/hzYf/t+wvs+kf3qpY8cscgyAa7JtGGY0fjMALsy2EE6RSL4QQgghhBBuRgr5QgghhBBCuBlpriOEm9ObqVjrgKu7evWqWl65ciUAhQsXVmnt2plndixYsGBGZNFpjnQmzkj58uUDoFatWipt1izzUH+bN29Wac8//3ym5elR6N27NwAff/yxSps6dSoAX375pUrLmlW+ah5vCWrp8CTze/lTfPIsuN+2q2J716vmmZ4PG5KezuqCIWMDzDNpBxmStt+4Y33bNLh6ziLHALgm2xY5BsCF2RbCKRLJF0IIIYQQws1IeEWI/wh7ke4LFy6oZX0yp+LFi6u0ihXNHe9y5cqVMZl7wgQFmaN1FSokRzvnzp0LwLH/dUQEuHz5cuZmLJPpNRrNmjVTaUuXLrX4F6Bt27aZmi/hnGvrhqjlxgM2AVBo8HqV9rK9maHu3AAgM+70Q+eupr6Rg+7cyJQcA+DCbAvhFInkCyGEEEII4WakkC+EEEIIIYSbkeY6QvwHPXjwAIDjx48DcOLECbUuT548gGXH28etmU5mdrK1Ru9IWqRIEZWmN+FJSkpSaadPnwYs5yHQX8uMmjFY75Scma9R37591bLeTGfSpEkqTZrrPJ6ubfkEgMbNf1JpMQ0mALD38+T5WQMyNVdCCFeRSL4QQgghhBBuRiL5QvwHJSSYh8zbscM866Oxs6jembR06dKZn7EnjDEar9d8GGcFPnPmDAAHDx5UaU8/bR6uz9vbO0PyZC2Cr9fUHD6cPGyg3sE6MTFRpfn4+AAQEGCO3ZYqVUqtK1euHJBcOwHJs/zWrVtXpemdcfWhWI3b6etE2ty7d08t6++V48yf+TNL31QpDTr8AkBM/ckqbe+SPgCUdHQ4SQ/zhhlzN1sqFRKU+kYO8vDMlBwD4MJsC+EUieQLIYQQQgjhZqSQL4QQQgghhJuR5jpC/AfFx8cDsG3bNgDOnj2r1umztJYvXz7zM/YEK1myJADVq1dXafrrumvXLpVWuXJlIOOa6+hiYmLU8tq1awGYM2eOSluzZk2KffQmIMWKFQOgc+fOap3eYdi4X2RkJAADBw5Uad27dwfgu+++U2n6LLjvv/9+Gq7kvyU2NhaAefPmqTS9E7OxuZM+L0PqzE189k9sC0DNl1apNYF9lwDw7y+tVFohZ2d9DfnffW9Iuv9An0E3HVPI3jJPE2scYj53YLa0H+8hISUtcgzAgwRDUhqzfuuORY4BcGG2hXCKRPKFEEIIIYRwMxLJF8KOU6dOAfDXX3+pNH3YyVu3bqk0vfOicfhEvXOr/i8kR29r1qwJWHZY1GeY9fRMR/TLQdeuXQOSO9wa86jPbqtHc4VjSpQoASR3MgWYNWtWiu169uzpsnMaO82eP38egNWrVwOWtQf6EJ5PPfWUSqtXrx5g2VHXeP+CZUfP77//HoBLly6ptMDAQAA8PDxUWq9evQDLSP60adMAieQ/bOvWrWpZj9bPnj0bSI7oGxk7w+vD4OrDuVpKft/2j2sBQNUBmwEoO2KzWrdmeC0A0jVAbmHzMLKVDEmRx/43JO+zJdN+3JPmzurbDV1625R8ytbWTitcxCLHABxLHkk4zVk/eXB78n+82wDgwmwL4RSJ5AshhBBCCOFmJJIvhB03b94EYPv25OiMHinVo/xGxiEV9aj9/fv3VZoeKdWHLzSu8/X1BSA0NNQFOU/p+vXralmP4OuRWn0iJ0ie4CmjJmtyV/oQmmXKlFFpem2PXvsDcPv2bQBy5MiR7nMaaw30qPCUKVMAywnO9H4CXbp0UWlt2rSxedyrV83timfMmKHSRo0aBUCBAgVUmt5vQ793Ifn+1WurjHnbuHEjYFmD5e70fhnG11Kv2TAOrarT+0X07t1bpem1I/Xr10/lbOYaucMTW6gUPYJfcPAKIDl6D+mM4Os8zTV/z7RNThq7ylyLdKl/cjg8r5OHPRf9NwCHaK7SqpWytbXzPCsmT/bVlrEArNqVXEvVv6TTOQYg+u9DyUnNqwH6QJpCZD75FhdCCCGEEMLNSCFfCCGEEEIINyPNdYSwQ++oOGjQIJUWEhICwOLFi1VacHAwAJUqJXfmql27dorj7du3D0hutmCswtc73D777LMqTZ891XrnOufs3btXLevnL1q0KJA8m6mrzvVfpDdZ0ZvtQHLH1Dt37qg0vRmNPiQlgJ+fX5rOuX79erU8c+ZMILmJUHh4uFo3YMAAAKpWrerQcfXmW8aOnvq9rc+GC8nXYK2zuN7EBJKb6+idS92tuY7ebErvNDt//ny1Tv+sWWNs0qS/XvoQpP7+/k7nI+Gw+fV98aV1Ki3gVfOgAdu/aQC4qImOBXOzlrodkpvV0N3cHGnNuU4qqVuIA4dKSH5Gzfra3LzIu+9yldbc2RY09uRNvgf1rHefljw87LlO3QBwJNsACXvNney/XpHcUbjvcvOBXZltIZwhkXwhhBBCCCHcjITshLAjWzbzLCbGSPehQ+aOVfpEQABPP/00AC1atEiRZqTXDOhR9R07dqh1eudMvdMjJNcauEJ0dLRa1ifB0jvyGWsdMmMIT3dm7FCrD0Oqd7QGOHDgAAC5c+dWacbOurboQyYCnDtn7uS3ZcsWlaa/vzVq1ACgVavkCY7sRc41TVPLxuE0AfLmTY5B6veucRIv/Vqt1f7oEWmAt956C0ie4Gn06NFqXVoi1plNH4IUYNGiRYDlxGIRERGA5Xuk099nax1pXTPh3Dm1tOC9QQBsCn5Vpf31mblm0PURfEshL3yllr/92lzr07fHOJVWZXl/AMr6WNvbPKTvrlGDVMpHh801D2PmNVZpAdh268gmALaeSK41y1OuCQCVrT5GkxNf+OpbAL6u1Fel9RhXBYDl/csCYD3bycPUjhr0EQCHG4xRafMa28uxEBlPIvlCCCGEEEK4GSnkCyGEEEII4WakuY4QTtKr7vVZYwHy588PJM9aa2SswtdnBtWbORjHp9c7bj7cZCK99Nls9WZGAPv37wegb19z9bQ+jjrI+PjpZZz9tUoVc5W/cSZZfSbaPHnyqDRHmuvoTXQAVq1aBcC///6r0vTOu/r4982bJ3eE1JvkWLu37N1vxmvROxEbx8TXO+Faa65jbIbTuXNnAKZOnQokN9sBy2Ysj9KNGzcAWLp0qUrTO9Aa06w1ydHpzd9eeeUVlda2bVsgefx7l9s+US2+vigegBy141Ta2m/MswyvTddJCgLQ4q2BADxjrSfp/8bLB3hz2RIAjjfooNLK5RkJQJPnk5txVcln7rC8a8YCAP66kvz8HLHO3Am2X0nHmg9eXv8eAE1f2qTSBv1tvu+tN9cxZv1NAJYtSZ7PokEHcxPNPCPNTX6e715Frct30fwZnrEgeSb0K8VHALBuTT+V5mDWhcgw8m0uhBBCCCGEm5FIvhB26FG7mJgYlWZtxlK9U2LOnDlTHMM4K+nateZ4mh6VNUZzS5Y0zw6pzzgLaR/O0jhk49GjR4HkiD4kD52p/2uM2Ir00TtrA4SFhQGWsw0vWWKOcurvt6POnz+vljdvNs9iGheXHLHVh7vUawX0yHt6GO/PZ54xzxBq7JitDx2b2hCgekdTPZKvD6UJmRvJ1zvLr1y5UqXptSL6MJ/2IvWQHJHv1y85Yvvaa68BlkOOZppsyYMCvPjee5l/fis8C5k7fY89cFmlvbXTfN8vX5g8TOYFSgDQcYx5FvExjZKHeC2R3bkwuH9Jc23Re+8ldzKvnsfW1ilyDEChVmNVyoHL5s7iO5eYh/BcuPdC8uYlOprzuzq5k22jquZrcTLbQmQoieQLIYQQQgjhZqSQL4QQQgghhJuR5jpC2BEbGwvA4cOHVZo+jr2xiYJxrPGHGTtH/v333xbHNY6/X7lyZcBy/PS0Mjbt+OeffwDLJjn6GP7GpiU6vZOovWsSKemvr7FZlD77rbGDtT4fgv4vJL/m9jo9X7iQ3FxAnzk5e/bsKk3v5Gs8V3oZx8k3LjtL75Cqd0w3zgJ78OBBwPmmLvpnCFLOJA2waZO5A6Y+hj0kd651VL58+YDk5jgAAweaO5+6ojmUS5RL7tz61Vcd7Gz4CHgm358lwroC8Ob//nW1vM+Y35evnnHN8Tyzm5vfhHV983//uua4QmQmieQLIYQQQgjhZiSSL4QdelT20qVLKk0filLvRAtw5MgRAEJDQ1Wa3kFPH14ToGHDhhbbGbc3LqeXMeqrdzI0DpWod/rUZ0zV8w+WkWiRPnpk3hi1T0xMBJKH0oTkjqj6sJcFCxZU6/ShWo21M3rnbz3SDMn3WYYN1egCegfcjz/+WKX16NEDSH32V33oWj1qb5xF2BX0WoYPP/xQpelDfz7Or6kQQtgikXwhhBBCCCHcjBTyhRBCCCGEcDPSXEcIO+7evQvAmTNnVJreVMI4Xrg+7r1xTPz4ePPsk9WqVVNpFSpUAKBs2bJA8vj6rmZsrqN3GjY2G9I7euqdHo2sdbh19Sy87sjarLL67LDG+0Lv7Gy8p5YtWwYk3x/G5jq3bt2y+BeSx3L39vZWafoMs4/znAfvv2+effXUqVMqbeJE84yt+hj2jjI279E77RqbvOmz1Fq7x40zU+vNc7p3N8/Emta5KYQQ4nEjkXwhhBBCCCHcjIQshLBDH3LvwIEDKq1QoUIAtG7dWqVVrWqeqdEYxdVn0ty2bZtK+/nnn4HkToOdOnVS6/Sofmqzhz7s/v37avns2bOAZSdNfZjFgIAAlebl5WVxDD2yD9Yj0jKcZtroEXdjrY8+FKU+FCskdyrVa47clR4lnzBhgkrTI+mpdaTVh6zUo/bGiPvIkSMB+Prrr1XavXv3AMvOycOHDwcsZ6uVyL0Qwl1JJF8IIYQQQgg3IyEMIf7HGK3WI9uXL18GICYmRq0rU6YMAI0bN06RZqS3kTZO2rNz504Adu/enWK/PHnyAM5H8uPi4tSyXmtgjOTrbZeNkw3p59WvUx/WEaxH8kXa6FFivR8HJNcEGSdp0tvnG+8VnR7BNtbE6Mc11uLo94Er3je9P4lx8qibN28ClpO15cqVK93nsjacrD1bt24FoE+fPipNb3evf+YgOWr/7rvvqjTjeiGEcHcSyRdCCCGEEMLNSCFfCCGEEEIINyPNdYT4H2PnU33IQ73Zi7FZRI4cOQDLISmtqVixIgB16tRRaf/88w8Ad+7cAeDo0aNqXa1atdKUb2NTkPXr11scH6BRo0YA1K5dW6XpM97qTXOM1y5cR5/xVu+AC8kz2F6/fl2l6c239HVGenOdAgUKqDS9M7WxeY8+bKqx+Zaz9NmO9eZD+vCrkDxM7NNPP63SXNFcx1HfffcdAEOHDgUsX1O96ZyxQ68rZ5AWQognkUTyhRBCCCGEcDMSyRfif4ydT0+cOAEkR/L1aCokD4Fo7AhpjR4lN9YC6B0a9X2NnWzTOomRMSL877//ApbDBoaFhQGWEwDp9E6aj/MESu7A2hCaxsi8fh9cunQJSB5SE5I7uuoddgHKlSsHwPbt21XaggULgOSJtIxDvAYFBdnMm35PQnKNwuLFi1Pku169eoDlvZVR9Ci9sXPtjBkzgOTOsz/++KNaZxwSUwghhJlE8oUQQgghhHAzUsgXQgghhBDCzUhzHSH+x9iR79ixY0By8wljU4mQkBAguVOlkbHpg95pcf/+/SpN7yRbqlQpAIoWLarWOTo+vt4MSO90qXeShOROl3rnYIASJUrYzK94dIzNXgoXLgwkd/jeu3evWqc3k9G3Aahbty4AR44cUWn6Pn/99RcA3t7eKbY3NtvR75/jx4+rtMjISAB27doFQOXKldW6KlWqAJnT2fbjjz8GkpvoQHJH2oULF6bImxBCiJTkW18IIYQQQgg3I5F88Vgyzj77MGszehq3T+uMnz4+PmpZ73CrRzufeeYZtU6fQdYa4/CFs2bNApI7MUJyJ1k9KqtHR8Ey+m6Pfq0PR10huUOm8bgSwX88GWuHqlWrBiQPoam/t5A8FKveYRegZcuWQPIsyQDr1q0DYOXKlRb/QnJnXGMHa/1zEhwcrNLKli0LwGuvvWZxbki9o3l6GWfX/eqrrwDL2o4tW7akSBNCCGGbfPsLIYQQQgjhZqSQL4QQQgghhJuR5jriP0XvXHvr1i2Vpneu3bNnj0rbuHEjkNyEwNgsQm/mYJzxVu/keODAAZWmN5+4e/euStM7Uepj1xubbHh5eTl0DXpznR07dgDJY5tD8qy51atXd+hY4tExdqTVZ5HVx7qPiopS6zp06AAkj5cPyWPsN23aVKXp62NiYgDLMfT1+954L+r3rLGZmt4RvGHDhgD4+vqm4crSxjj7s06fyRakmY4QQjhLIvlCCCGEEEK4GZNmr4ejEG5Gj8wbO6uOGzcOgLlz56q0hz8Wxg6L+iygxjR9tlzjDKH6cIV6J0mA/v37A/DUU08BaYuU6sN06rOBGiP5+iyg9f+/vTuPsas8Dz/+BeN993jfd4xtvG8EQxwSAiGJQhWHpimprZKmrdoqqtpIidooTaIqrVI1rYSUSK0jQERyG9TQQBNnA4IxXjC2sQ0Y4w1je7wS78Yrvz/ye95zrn0Zj8czd+498/38w8lz7tz7zp2Z65PnPM/zLliQYnGHoKkNyWqcch+lDb3n58+fT8cxbvVLX/oSAHv37k3nooG73MjI/GvGzspxlyq/03Kso1yD+k03ZTd0I6vfvXv3q66/ub377rvpOJqB82Nt6+vrgdLdpyVJ789MviRJklQw1uSrTYlMe77Gft68eUBpZj42porH57OukV28dOnSFbGuXbumWNRcf+ADH0ixhsZvNiRfSx1Z34jlNyeKjbryGyGpMsplyxuSv+sTIy7jZ7lnz550Lo5jUzPIfj/zmfb4medHYl6v5hhN21j53oAHH3wQyO6yASxduhTI7oZJkhpmJl+SJEkqGC/yJUmSpIKxXEdtSpTTxM6wlx9Xq507d6bjFStWANkOpCNHjkznevfuXdF16UpNKWuJ38uxY8cCcPjw4XRu+/btQFbSA9lOtNf6WtfaHNxazdqLFi0CSst1lixZAliuI0mNZSZfkiRJKhgz+VINyG8U9MwzzwDZGM7YYAuy7H4515rFVeXceOPv8i233HILUJrJjw3W8pthRSb/WtXKzzua4fON6mvXrgVg8+bNV5yTJF3JTL4kSZJUMF7kS5IkSQVjuY5UA9566610vGXLFiAr05kzZ046F/PTVZsmTpwIwMGDB1Pspz/9KZDtoAzZDstR5lNU0YAL8OUvfxnIGnBjd2dJUnnF/hdCkiRJaoPM5KvmFL2BNL+77v79+0v+mzdw4ECgdPfehhTpPSqa+NlE423+5/29730PKN3ZOH5H8rvmFlHsfAvw1a9+FYDHH38cgG9/+9vpXH63XEnS75jJlyRJkgrGi3xJkiSpYCzXUU0rYgnK0aNH0/Hq1asBOHbsWIpNmDABgMGDB1d0XWo58XscjdP5n22Uohw/fjzFdu3aBcC4ceNSrIilO1GSBvCJT3wCgCeffBKAp59+Op1buHBhRdclSbXATL4kSZJUMGbyVXNaO3vf0o2/hw4dSse//vWvgWxkIsDdd98NwJAhQ5rtNVU5jfn96dmzZzqOOzfnzp1Lsdj9Nd9wOnr06GZdZ7V56KGHgCyT/+ijj6ZzZvIl6Upm8iVJkqSCMZMvXaPIupbLyDaHfCb/pZdeAmD69OkpdueddwLW5Ne6hu7+dOvWLR3Hz37r1q0ptmHDBgBGjRqVYkXP5N97771AVqe/bNmydG7Pnj0ADB06tPILk6QqZSZfkiRJKhgv8iVJkqSCsVxHaqLmaLbNl/ycPXsWgH379qXYO++8A5Q2YsauqKpNjfm96dy5czqePXs2UDpadd26dQDMmjWreRdXxW666Xf/XC1evBiAf/qnf0rnYhfcr3zlKxVflyRVKzP5kiRJUsGYyZdaUX4sYmx8tWPHjhSbNm0aYPa+rYlNsSBrvH355ZdTLBpvd+7cWdF1VYNFixYBpZn8JUuWAGbyJSnPTL4kSZJUMF7kS5IkSQVjuY7Uis6fP5+OV6xYAcCbb76ZYh/4wAcAmDx5cmUXplbVrl27dNyvXz8A+vfvn2KXLl0CSvdU2L9/f8nj889RJLED8Pz581PshRdeAOC5555LsQULFlRyWZJUdczkS5IkSQVjJl9qRfnG21WrVgGloxIfeughACZNmlTRdan6DBkyJB1HM26MXYWsMXfevHkA1NXVNfm1yu3m3BwjY5tTNOBClsl/9NFHU8xMvqS2zky+JEmSVDBe5EuSJEkFc8N75e7LSmpR0XC7cePGFPvyl78MQKdOnVLs+9//PgDDhw+v4OpUjdavX5+OY4fX2BEZYOTIkQB8/vOfB2D06NFNfq34Z6HaSnTyTp48mY4HDRoEwIULF1IsmpK7detW2YVJUpUwky9JkiQVjI23UivYunUrAOvWrUuxaJQcMWJEivXs2bOyC1PVitGYADNnzgTgpz/9aYrF79InP/nJ636tas7gh3yGfuHChQA88sgjKbZ06VIAvvCFL1R0XZJULczkS5IkSQXjRb4kSZJUMJbrSK1g06ZNQDbfG2DMmDFANuccoGPHjpVdmKpWfsfbWbNmAaXlOps3bwbg8OHDlV1YFYj9JPLlOkuWLAEs15HUdpnJlyRJkgrGTL5UQTGaMBpvX3vttXTujjvuAGD27Nkp1r59+wquTtWsQ4cO6TjGY/bo0SPFYqRkfX09AKdOnUrnunTpAtRGQ21TzJ8/H4AJEyakWOwgvWXLlhTLn5ekojOTL0mSJBWMmXyphV26dCkdR5Z13759AJw+fTqdiw2vhgwZUsHVqRbddNPvPrrzG16NGzcOgN27dwNZ3wfAjBkzgNK7AUW0aNGidPzVr34VyGrzAb7zne9UfE2S1FrM5EuSJEkF40W+JEmSVDA3vBedgJJaxIEDB9LxmjVrAHjyyScBOHLkSDr3zW9+E4ApU6ZUbnGqaT/+8Y/T8bJly4CsPCzGbAJ8/vOfB7IG3KLav39/Oh42bBgAffv2TbG3334byMqdJKnIzORLkiRJBWM6Q2phkT0E+NWvfgVA165dgdJxmX369KnswlTzxo4dm47jDtD//d//AaVNtufOnQOKn8kfOHBgOr733nsBePrpp1Msju+///6KrkuSWoOZfEmSJKlgvMiXJEmSCsZyHamFxUx8gBUrVgDw4Q9/GMh2uQWoq6ur7MJU80aNGpWOo4n7scceA7ISHYATJ04A0KtXr8otrpXFzPx8uU7MzLdcR1JbYCZfkiRJKhgz+VILuXDhAlCayY8dbyOjOmnSpIqvS8XRrVu3dBxZ/Rtv/F3uJj+eNX7v8o2p7du3r8QSW01k6/MjNGPMaH7UZv49kaQiMZMvSZIkFYwX+ZIkSVLBWK4jNaNTp06l4w0bNgClpQG33norUNowKTWHKN2ZMGECULo/w2uvvQZA7969U2zcuHEVXF3lxa62ixcvTrF/+Zd/AeCRRx5Jsa985SuVXJYkVYyZfEmSJKlgzORLzejkyZPp+NlnnwWypkeA+fPnA6U7lUrNoWPHjgBMnToVgPfeey+di7tKAwYMSLGiZ/JDjNKELJP/6KOPppiZfElFZSZfkiRJKhgz+VIzik2HAJ555hkAunfvnmJ/9Ed/BLSdLKoqJ0ZiTp8+HSgdofn8888Dpb0gH/vYxyq4utYzefLkdDxv3jwAVq1alWJxHOckqSjM5EuSJEkF40W+JEmSVDCW60jN4OLFiwDs3bs3xY4dOwaUb3bs2bNnBVentiBGRsYuylu3bk3ndu7cCcCuXbtSLH5n27VrV6EVtr5ows2X6yxZsgSwXEdS8ZjJlyRJkgrGTL7URJcuXUrHkTXNZ0/79+8PlI7L7NOnT4VWp7YmMvJ9+/YFYOjQoenc2bNnAThw4ECKxfGgQYNS7IYbbmjxdbamBx98EIC//uu/TrGlS5cC8N3vfhfINhWTpFpnJl+SJEkqGC/yJUmSpIKxXEdqonxpw9q1awFYv359isV87hkzZqRYW2pyVOuKsh0onRUf4nd27ty5KZZvEi+iKMVZuHBhij3++OMAPPHEEwAsXry44uuSpJZgJl+SJEkqGDP5UhOdO3cuHW/cuBEobbyNcX3Tpk2r6LokgN69e6fjGA+5b9++FFu5ciUAI0aMSLGiZ/LDQw89lI4jkx+jNM3kSyoKM/mSJElSwXiRL0mSJBWM5TpSE73zzjvpOHYSzcfGjx8PwKhRoyq6LglKd1WO5u+DBw+mWDTefuQjH6nswqrAggUL0vHIkSMBeOGFFwDYsmVLOjdhwoRKLkuSmpWZfEmSJKlgzOTXqPfee6/kv1cT4x6LvqNlJUQ29JVXXkmx+DkMHz48xQYOHFjZhUk5PXr0SMdTp04Fsmw1wJtvvglAfX19ZRdWZaIJ92tf+xoAjz76aDr37W9/u1XWJEnNwUy+JEmSVDBm8mtIPmt/8eJFAC5dutSor73ppt/9qM3kX7+o2f3lL3+ZYpG1z9fwdu3atbILk3I6duyYjseOHQtAXV1div32t78F4O23306x6Cnp1asXADfeWPw8UIzM/MY3vgFkIzUBvvWtbwHZ56ck1ZLif4JLkiRJbYwX+ZIkSVLBeA+yhuRLbeI2er6EJ47LPc4yneazbds2oLSJ8ROf+AQAd955Z4p169atsguTrmLIkCHpePTo0QAcOXIkxV599VUgG7nZFkrOhg4dCmSjRJctW5bOxXH8fUtSLTGTL0mSJBWMmfwaVa4h7sKFC0Bp1r5du3YVW1ORnT9/Ph3v2bMHKG1YHDRoEABTpkyp7MKka5Af8Tpv3jwAjh49mmIvv/wykDWQt4VMfohRmvlMfozTNJMvqRaZyZckSZIKxot8SZIkqWAs16lxNtS2rBMnTgBZQyLAqVOnAJg0aVKKRfOe1FrKNd5fLl+uM2vWLACeeuqpFFuzZg0An/70p1tiiVUtSnL69u2bYk8++SQAhw8fTrH8eUmqZmbyJUmSpIIxk1/j8iM0W/pry2UIm+M5rvW5muPuRbnXKve8MV7wueeeS7HTp08DcPvtt6dYYzP5zfl+tZSWXmMl3oPG/Hyvto7G/L639p20a30vo0Ec4NZbbwXgiSeeSLG9e/cC2W64w4YNu94l1oxOnToB8NnPfjbFHn74YQAeeeSRFPvbv/3biq5LkprKTL4kSZJUMF7kS5IkSQVjuU4bk7+9H3P187EoPygXu+mmK39druc5Li91uHTpUjq+ePHiFa8VewOUW0djxWvknz/Wmd97IF7jwIEDAPziF79I50aOHAnAwoULUyy/k+j7vWb+dRsqsyi3jpZ2td+LcmKd+b0YGlO+kn/v8+/N5eK58s9fbn+IcuJ5889/+XsZ3yeUb1qNx+djl+9FUamfz/u51nKh/C7M48ePB6BLly4pFjPzYw+IcePGpXNRztLaJUotLeblQ1auE/PywXIdSbXDTL4kSZJUMGby27DIiuaznY1tSL38OcplZ/NZ1zgu91zx+PxrN5Sxzb9WQ897+fPnXyP/+HLvQ+xwW19fD8DBgwfTucmTJwMwceLEFOvdu/cVrxuvVe6ORmOzofG95t+P5syklnvvG1pj/j2K44Z2Vc4/b7msfWMy8+WeI/915d7nct9XvJflvr9yz3H54y8/vvx7utafbSWV+73v0aMHACNGjEixaLzdsWMHkN21ArjllluueI4imjZtWjqOMaNr165NsVWrVgHZjsGSVK3M5EuSJEkF40W+JEmSVDCW67Qx+VvtUWZRrrEwX4LRUDlGuXNR5nC1hskodYjXzD+m3NoufzxkZQjlGiDjXL68p6GGyXzpxfbt24GsAbFXr17pXMzE79ev3/u+Zn6d5Zo5G5JfR7km2OZo9iz33lz+/OXKMsq99w0pV8aVX39jynXyrxnPUa7UJv+4ci4v9cmvo9zvVrlSqfiacq8Zv7MN/b20loZm/ud3bo75+G+88QYA/fv3T+cmTJjQkkusSosWLQJKy3WiCddyHUnVzky+JEmSVDBm8tUkkQUs10zZUCa4Mc8J5ZseyzVTXuvzNiSfdV6zZg0A27ZtA2Dq1KnpXGMzmuWaHWtBYxqtG/v45lbuZ1lulGdDzdyNHcMZz1eu6fl6dpquFvG9REMtwP79+wH41a9+BZQ2lD/wwAMVXF11ePDBBwH48pe/nGJLly4F4Lvf/W6KxXhRSaomZvIlSZKkgjGTrxKNzcpeXtNdrp7+WuWzow1lShsaaXg9jz99+nQ6jhrcGCn4qU99Kp3LZz4b+7q1pKE7EI3NgreUht7T/O9duZGY5fo8Ln983rVm/mtNvA/5Da92794NwGOPPQZkvSkAZ86cAUo3zyq66MW5//77Uywy+U888USKRcZfkqpJMf/1kiRJktowL/IlSZKkgrFcR2UbC/NNqOXGarZEKcr1lPyU27H1Wh09ejQdv/7660D2vU+fPj2dGzt2bJOeX62rVhuhy2mO7yW+Nj8KNn6327dvD2QjNSEbJztmzJgUa45xrrXgoYceSsdRrrNkyZIUs1xHUjUyky9JkiQVTNtIw9S4ck2EkfVu7qxkueeLcYQtvclPYxtkr2eEZrnv4dChQ0C2AVDegAEDABg4cGCj1lbudWstc9zY9z6OK9mYWoTRldUssvojRowASt/vzZs3A9C1a9cUi43hiu4jH/lIOh45ciQAzz33XIrt2rWr5JwkVQMz+ZIkSVLBeJEvSZIkFYzlOjUgymXyu8vWWglIc4jSgfPnz6dYlIo0tgGwXGnJxo0bAXjhhRdSLBoQJ06c+L5f1xzKNQxX888235BdrhypmtdezWu7Vtezm3RDz9GxY0cAZs2aBcCOHTvSudgFOl+61lbKdfIWLVoEwDe+8Y0Uiybcb33rW62yJkkqx0y+JEmSVDBm8mtAZOHymfzIqOazcQ3t6Hmtyo3VzL9+c7xmfE25Zth8xrihtTUmw361huFNmzYBsHLlyhS75557AJg7dy7QtF0+G/q+GptZbcz7m3+u+BnlH1/uPbr8vc8/R0PvfV5j3vtyv0fX+lpX+x0v9/dR7v29fHfmq62/3Noa+ppyfx8t1SDfVFdbR/yez549GygdKxuZ/Pw42bZo8eLFQGkm/5FHHgHg61//OtB2RotKqm5m8iVJkqSC8SJfkiRJKhjvKdaAcg2ZUUqQLwlpzlvE5coS8g2vIXbGbIrLS0by5RHlylricY39PhsqBzp58mQ63r59OwBvvfVWisWc8ClTpgBZQ2JjXzP/uvkyjthBtyH59/5af6aNLde5/Fz+fY41lmv0zq/nWst1Ln/+y1/j/VztNWPtVyv9ufy1ypUSNfT493tcQ4+v5B4CDWlsuVDnzp0BmDZtGgAbNmxI52Ifib179zbr2mpNzMLPz87/1a9+VfLfe++9t+LrkqTLVce/QJIkSZKajZn8GlBtzXst5WqZ1eZw/PhxAF5//fUUizsU+d0qYzRgp06drvs1899LSzTklbt70BzPUe65mrupuzGZ7qu9Zrm7DNeqsc9x+V21ojVYxp25+P0fNGhQOhd3YPbt25di9fX1APTv3z/FGvodrNVdoMt56KGH0nFk8B999FHATL6k6mAmX5IkSSqYYqWhCqq1N0mqVPatEpsq7d+/HygdlxmZxzlz5qRYPoN5vSq5WVRz1IC3dB15cz9/c/x9NPU5qqXmvqXkN74aMmQIUDpWc/PmzUC2eRZA7969K7O4Vnb//fen4169egHw5JNPAnD48OF0rm/fvhVclSRliv0vlCRJktQGeZEvSZIkFYzlOiorP44wRgPmG+pqtUwhxv/98pe/TLEJEyYAcPfdd6dYXV1dZRcmXYNKldDlG2pvu+02AM6cOZNi69atA2DcuHEp1lC5zrWuNz/atdqadfNN+Q8++CAADz/8MABLly5N5/7yL/+ysguTpP+vNq/UJEmSJL0vM/ltWEMbEeXPFWns3dtvvw1kG2BB1nAbGwAB9OjRo6LrkqrRgAED0vHcuXMB+MUvfpFiq1evBhwZuWjRIiDL5C9ZsiSdM5MvqbWYyZckSZIKxot8SZIkqWAs12lj8o1s0VybjzX2a2uhdOfcuXMA7NmzJ8Wi8TbfOBzNhX369GnW1y/3vtbC+6bqV6nfo379+qXjGTNmALBs2bIU27RpEwDvvPNOi7x+rfy9xD4BUfK3YcOGdG7t2rUlj5GkSjGTL0mSJBWMmfw2Jp8Zi5GYV8vkt/aOu011+vRpAFasWJFiseNtNBECjB49ukVev9beL+lynTt3Tsfxd5IfkXn27Fkgu0MGcOrUKQC6dOmSYm3lbyEacPOZ/EcffRQwky+p8szkS5IkSQXjRb4kSZJUMJbrtGG1umttYx07dgyA5cuXp9i7774LwD333JNi+d06JZXXtWtXAIYNG5Ziffv2BWD37t0ptnXrVgAmTZqUYh06dKjEEltd7Hz71a9+NcUef/xxAL7zne+kWH63XElqKcW+ypMkSZLaIDP5arTWGAl5Pa959OhRANatW5diw4cPB+D2229PsREjRlzHCqW2ZcyYMel4ypQpQOmY2ldeeQWA8ePHp1hTM/m1NrY37mx84hOfSLEnnngCgCeffDLFPvvZz1Z0XZLaJjP5kiRJUsGYyVch5DN+kcHftWvXFY+LzX3ydcW1kCGUqsXYsWPTcWTyn3nmmRRr3749AL/3e79X2YU10aVLlwCor68HYNu2belcjAONx0D2WZMfL1pXVwdknysPPfRQOheZ/BilCWbyJVWGmXxJkiSpYLzIlyRJkgrGch2V1RpNtuU09jXz6127di2Q7To5bdq0dG7mzJlXPF5S4+V3iD58+DAAjz32WIrFTtPnzp277teqxGfOO++8A8DPfvYzAB5++OF0bseOHUC2sy/A+fPnARg4cGCKzZs3D4DFixcDcN9996VzQ4cOBWDZsmUpFo3KcU6SWoKZfEmSJKlgzORXscg2t3YGvRay3vn1rl69Gsgy+h/5yEfSuVmzZgHQrl27Cq5OKo5evXql45EjRwLQrVu3FItm1fwGWX369AFa/+8ummrXr1+fYnHH77e//S0A8+fPT+duu+02AC5cuHDFcx06dCgdb9++HYCf/OQnQNZ8DPDAAw8A8K//+q8p9p//+Z8A/MM//EPTvhFJagQz+ZIkSVLBeJEvSZIkFYzlOjWgNct2WvN1r0U0+wG8+uqrQNY0N3HixHRu8uTJlV2YVGCx70S+GTeaSjdv3pxiUeKT3y23Ut599910/NxzzwHw4x//OMVinVHW981vfjOdGzJkyPs+b5QFAvz93/89ACtWrACyZl6AP/iDP7jia2NmvuU6klqSmXxJkiSpYMzkV7FayKC3thMnTgCwZcuWFLt48SKQZeEGDx6cznXo0KGCq5OKLRpMJ02alGLRpLpp06YUGzRoEFDZTH7cycvvxhtjMvMjMf/8z/8cgAULFgClozEbMmrUqHT86U9/GoCnn34aKN01N15rxIgRKZa/uyBJLcVMviRJklQwXuRLkiRJBWO5jmpazOLON8F1794dyG6n19XVVX5hUhtw002/+yckv6t0zJvPz6KPxtyPfvSjLbqecjtf55tsoyE2v95ojM2X0zRGfm+AOXPmAPDKK68AWfM/wCOPPALAW2+9lWL33nvvNb2WJDWFmXxJkiSpYMzkq9lVcuRnNLjFaDyAm2++GYA77rgDgK5du7b4OqS2KBpvZ8yYkWI7d+4E4LHHHkux/Bjba5HPzDf0eRKNrNFsC7By5Uogy65DNibz4x//eIr17t27SWu7dOlSOj5//jwAZ86cAeDgwYPp3K5duwAYMGBAiv3Hf/xHk15Tkq6FmXxJkiSpYLzIlyRJkgrGch21mMbear8e0cy2devWFPvgBz8IwMyZMwHo0qVLi7y21Na1a9cOyHa+hfK7xB45cgSA/fv3A6WlK83x2RDP/+KLL6bYm2++CUCnTp1SbPr06QDMnj07xfINtNciSnQAli1bBsCPfvQjoHQH7v79+wPw1FNPpdjQoUOb9JqSdC3M5EuSJEkFYya/iuUz4VA7O+C21Dojc3bgwIEU27dvH5A1vEG2Y2U+uyipMuLvLsZmQva3u2HDBiC7y5Z/fDmN/SyJz4Tnn38+xWKUZ35cZmTy83cSrtXhw4cB+Iu/+IsU++///u+Sx+TvDnz9618HYPz48U1+TUlqCjP5kiRJUsGYya8B15MZP3v2LADPPvsskG0QA1kda4yfy7tw4cIVxxcvXkyxPn36ADBhwgQA7rzzznSu3Li85hirGZm5F154IcVOnjwJwKxZs1Js8ODBTX4NSdcnRlLmx2rGJlRr1qwBYNiwYelcc9xxi8+5qPkH6NChA1D6eRT18Y0Vn43/9m//lmL//M//DMDRo0dTLDbgi36E/FjOiPXs2fOaXluSrpeZfEmSJKlgvMiXJEmSCsZynSrWHA2sUWoT4+R+9rOfpXMvv/wykN3qzoudLAFuuummkucC6NGjB1C+mSwa7vKj65rjezl06BAAzzzzzBXPe/fdd6dYuRF+kiojylLmzp2bYlEu+NJLLwEwf/78dG7SpEnX/ZrReJ8fXRklhfkG4IbG6cbn2+OPP55iX/va1wDYs2dPisXn4e///u+nWLxulEDmPxcHDRp0Ld+KJDUbM/mSJElSwZjJL7jIpj/wwANAaVbrhz/8IVA6knL48OFA6Yi7W265BSjNxq9fvx7INn/5+c9/ns7FBjn57PrIkSOv8zvJMvkrV65MsXnz5gGwYMGCFDOTL7WeaDrNZ/JXrVoFZHcP8w2y1+rSpUtA1ogP2SjdfCY/GvD79u2bYvF5mL8rGZn7f/zHfwRg27ZtV7zmH/7hH6bjv/qrvwJg8+bNKRbNuLHJ1e23357OxUhfSao0M/mSJElSwXiRL0mSJBWM5ToFF6UzscPjHXfckc7FzOp8Y1iczz+urq7uiueNW9C/+c1vANi7d286F7fmp06dmmLXWq4Tt+RjDj5kzW+xe2Z+bfkyJEmtp2PHjgCMGjUqxeLvNBpk8+U6p06dAkqbYhtq1C/32XD8+HGgdM+P2Ncj/3nxgx/8AIAlS5ak2OXlOffff386jt1q883Bv/zlLwFYvXp1isX3NWLECADmzJmTzuXLhSSpkszkS5IkSQVjJr+NiZ0nIWu47dWrV4pFxip2cHw/MUZuzJgxAJw7dy6diwxbPtaQcrvhxtfG3QaAHTt2ADBt2rQUix13JVWXuIsIWUNq3HHLZ/I3bNgAlP5dd+3a9arPf+ONWY4qPjvynzkxHGDZsmUplm/MDZG5j6x9fh3h2LFj6TjGEK9YsSLFLs/gT548uew6JamS/PSRJEmSCsaLfEmSJKlgLNdpI2Iu9MGDB1Ms5kx369YtxWIn2w4dOjT4fHErPkpt8qKU53p2uY3muhdeeCHFolznzjvvTLHZs2c3+TUkVcbYsWMBmDVrFlBa/hLlOjfffHOKNVSuE+Uvr732WootXboUyD4jIPtsis8jgM985jMAfPOb30yxy0v+ookWYO3atUA2YACyMqAYZgDw6U9/GoAPfehDJWuUpNbkJ5EkSZJUMGbyCy6yWZHBjzGUUL4JrbGOHDkCZA10+cxVNNnl7xA0pFzGP8bqxQ6ZkGX//uRP/iTFYofeyPznn6/cXQZJLatcFjvGSEZD6vLly9O5V155BYBPfvKTV3zd4cOH0/EjjzwCZOMvt2zZcsXj83cAItOe33F24cKFQNYoC1eO5HzjjTfSucceewwobd6NHbXvu+++FFu8ePEVry9Jrc1MviRJklQwZvILLrLZb731FgC7d+9O5yLDla9JzdeZXi5fH/8///M/QFazmt/85WMf+xiQZdkbK7+RTWxQc/To0RSLHoKNGzemWIwEjZ4DMJMvtab4+8vfoYu7cHEH8PXXX0/n4o5ffnOr+FzJb8qX/3wAmD9/fjr+4he/CMDEiRNTLEZdPv300yn27//+70DpZlhx5yHubObX0bNnTyD7TIOs7j7/mWcGX1I1MpMvSZIkFYwX+ZIkSVLBWK5TcFGyEg23UQYD2W3p/FjNTZs2AdC7d+8U27dvHwBPPfVUisUYubq6OgBmzJiRzsWYvMY23ob8+Lt169aVrB+yUXj57yEaf8+ePXtNryWpctq3bw9kDfX5htr4HKqvr0+xGJMbozcBFixYAMCf/umfAqW7ypYTr5X/vHjxxReB0pK/Ll26AFkDbn6n3pkzZwLwwAMPpFiUEHXs2LHB15ek1mYmX5IkSSoYM/kFFw2phw4dAkozWLEJTTTRAjz88MNXPEc0pnXq1CnF5s6dC8CiRYsAmDZtWjrX1Ca0V199NR3H5jORAQQYNmzYFV8T359NtlJ1KTcaN7Lk0dAK2d9wfnOr+FuP8Zpw7RtMRRPuF77whRS75557rniueFx8vuVHC/fq1QuAPn36pNjVNgqUpGphJl+SJEkqGC/yJUmSpIKxXKfgYi51NLVdvHgxnYs5z/nb6tF8lp87H7ex8+Uy0XwW/+3cuXOT1xhryu80uXXrVgDuuuuuFLv11luBrFEOstv/lutI1StKXGLW/YkTJ9K52Lsj/uYh22Mj33jbGPnnjdLEVatWpVg04/bv3z/FRo0aBcDNN99cstaryc/Tj9fq0aMHAGPGjEnn4vOzXPmSJLUkM/mSJElSwZjJL6DYXRKy0ZkHDhwAYPDgwenc3/zN3wAwderUFCu3W2VkyfOxaFzLj5u7VnHXIMZgxq68kGX88jtN3n333UDp3Qgz+FL1i/G3586dA0oz6c8//zwAa9asSbFowv/4xz+eYg013kazbH4n3R/+8IcA/OAHP7ji8fnG3xj/+7nPfQ4obdRtSH405/e+9z0gG+u5ePHidC7uDFzPZ6UkNYWZfEmSJKlgvMiXJEmSCsZynQLKN82eOXOmJJafdT906FDg+ppmr0eU6eQb40LM3Y815nnbW6pNUbqSLxGMHbeXLl2aYrHjdn4n6yj5iTK/48ePp3OxU/cvfvGLFIvZ9n/3d3+XYlHOky/riTKh2Nk7/3kUu9rmP1Pje8iXL/bt2xeAcePGAaW7fft5Jam1mMmXJEmSCsZMfgHlR7tFliwy+LGDI1z7DpLNbe/evQA8++yzQOlozNhRN0bSvZ9yTcGSqlP8veZ3kI1xmXHXEbKRv7FTN2Q7acdz5MdlRhY+Bg1A1rS7cOHCFItdvv/rv/4rxX70ox8B8OabbwKwa9eudC7uGuSz8XE8b968FPuzP/uzklhTd/2WpOZkJl+SJEkqGC/yJUmSpIKxXKeAYgdJgOXLlwNZA+vMmTPTufwt89YQt9hjTnZ+Jv6CBQuArKHt/VimI1WncntYlPt7raurA2DixIkpFiUxUV4DWRPsoEGDgNJZ+7Hzduxam39c3vjx4wH44z/+4xS75557gGw33Py6y5UDxnH+83P06NFA1jAsSdXATL4kSZJUMGbya0g+w3T+/HkAjh49mmKRwX/66adT7LnnngOyDH40uUGWSc+PqYzxcM0t1h472ULWXBcZtHzWfuzYsS2yDknVJZrrp0+fnmKx+/XLL7+cYgMHDgSyDH1k9iHbyTu/o3c50dwfoy4vP5akIjGTL0mSJBWMmfwaEuPcAI4cOQLAr3/96xT7/ve/D5RmvyJzvnnzZiDbNAayDPpdd92VYmPGjAGaf7xmvNZLL72UYnEnYfLkyQCMHDmyWV9TUutpbL9MjPeNDfAAjh07BsDatWtTbMqUKUDp6EpJ0vszky9JkiQVjBf5kiRJUsFYrlND8re/4xb3sGHDUuyDH/wgUDqKLspuLl68CGTNa5CV5uR3Z2ypkZRRrpMvL4pynQ984AOAzbZSWxTNsPnG29deew0oHSIQO2RLkhrHTL4kSZJUMGbya0i+GTY2XYns/eXH1SYa6VauXJli3bt3B7KNbGJDGUltR4ztzd/JizuO77zzTort378fyO4K5u9ASpKuZCZfkiRJKhgv8iVJkqSCsVxH1yV2ss037EbswoULKRZNc8ePH0+x2Lkydpzs2bNnyy5WUk2Icp0YDgBZyd/69euBbG4+ZLvmSpIyZvIlSZKkgjGTrxbz5ptvpuOtW7cCWcMwwKhRowDo27dvZRcmqaoNGDAAgBkzZqTYmTNnAFi9ejUAw4cPT+fM5EvSlczkS5IkSQXjRb4kSZJUMJbrVIloVs2LZtaGzrW2cuuI9a5ZsybF1q1bB8DMmTNTbM6cOSWPr5bvSVLrinKd+IwAWL58OQAvv/wyAB/96Eeb5bUu/3z1c0hSUZjJlyRJkgrGTH6VKZdFaiijX43OnTsHwMaNG1MsGm+/+MUvpti0adMAM2eSSkUzfr7xNjL5r776KgCHDx+u/MIkqYaYyZckSZIKxkx+lWhMNrtWMt5Hjx4FYOfOnSl25MgRAG6++eYUGzZsWEXXJak2dO/eHYBJkyalWKdOnYBsY736+vp07vz58wDcdFP2T1pjPy9r5XNVkq6VmXxJkiSpYLzIlyRJkgrGch01i7iFDrB27VoAOnTokGITJ04EoK6urrILk1SzunTpko6HDBkCZOM19+zZk85FY//48eNTrH379pVYoiRVLTP5kiRJUsGYyVezePPNN9Pxs88+C2QZN8gy+V27dq3swiQVwrhx4wC49dZbAXj77bfTuVdeeQWAUaNGpZiZfEltnZl8SZIkqWC8yJckSZIKxnIdXVW5nXYvny29ffv2dBzlOp/5zGdSbMGCBUA2/1pS2xOfJU2ZTR/lOlOnTgVg5cqV6VzM0P/kJz95vUuUpMIwky9JkiQVjJl8ldWY7D3AuXPnANi/f3+KHTt2DIBBgwalWOx06+6Skppi9OjRABw6dAiAp556Kp2Lz6uTJ0+mmHcNJbV1ZvIlSZKkgvEiX5IkSSoYy3VU1tXKao4fPw7Axo0bS/43ZDPxhw0b1ujnk1R81/M50K9fPwAmTJgAwPnz59O52P324MGDKZYvF5SktshMviRJklQwZvLVJEeOHAHg17/+NQAnTpxI52677TYAhg4dWvmFSSq0Pn36ADBixIgUq6+vB+CNN95Isbq6OsDPIUltl5l8SZIkqWDM5KtJYozd888/D8DIkSPTuQ9+8IOANbGSml/79u0BmDlzZopt3rwZgA0bNqRY3759ATP5ktouM/mSJElSwXiRL0mSJBWM5Tq6qthN8uLFiykWI+v27dsHwKRJk9K5W2+9FYDevXtXaomS2ogo14nPGcgGAaxfvz7FooTwrrvuqtziJKmKmMmXJEmSCsZMvq7qwoULAGzfvj3Fdu/eDUC3bt0AGDx4cDpnBl9SS7nppt/9sxWb7gFs27YNgJ/85CcptnPnzsouTJKqjJl8SZIkqWC8yJckSZIKxnIdXdX58+cBWLlyZYrFrfD58+cDMGXKlEY9VzTx5t1www3Xu0RJbUSU64wePTrFosn22LFjKRbDAfbv359iAwcOrMAKJak6mMmXJEmSCsZMvq7q7NmzALz00kspVl9fD8DnPvc5oHSEpiRV0oABA4DSTP27774LwJYtW1KsY8eOgMMBJLUNZvIlSZKkgvEiX5IkSSoYy3V0VcePHwfg9ddfT7FLly4BMG3aNABGjBjR4HNEw61NtpKaW8+ePQG47bbbUuz06dNAaZlhlPNYriOpLTCTL0mSJBWMmXyVFY21AK+88goAnTt3TrH+/fsDUFdXV9mFSdJlevXqBcDcuXNTbPny5QCsWLEixeL8hAkTKrc4SWolZvIlSZKkgvEiX5IkSSoYy3VU1qZNm9Lxiy++CJQ218YOtzF3+mpsuJXUUqLxdvr06SkWDbf5z7L87reSVHRm8iVJkqSCMZOvsqLZFuA3v/kNAAsXLkyx+fPnA9ChQ4crvtZxmZIqqWvXrgDccsstKda3b18Ajh07lmIxUODMmTMp1qlTJ8DPK0nFYyZfkiRJKhgz+Spx6tQpAN5+++0UO3z4MAAjR45MsYkTJwJw443+/0RJ1SHfIzR48GAA+vTpk2IHDhwAYOvWrSl28803A1lGX5KKwis0SZIkqWC8yJckSZIKxnIdlTSmvf766wCcP38+xUaNGgXAkCFDUqxdu3bv+3w2sElqbcOGDQNg1qxZKXbkyBEA1qxZk2JDhw4FLNeRVDxm8iVJkqSCMZOvkg1ili9fDpQ21M6bNw+A/v37V3ZhktREkcmfMWNGisXGfrFRFsB9991X2YVJUoWYyZckSZIKxot8SZIkqWAs1xF79uxJx7G7bX7nyLvuugsonTctSa0pdtaG8s3+MShg6tSpKbZs2TKgtETx5MmTLbVESWpVZvIlSZKkgjGTL3bv3p2Ot2zZAsDs2bNTbPr06QD06NGjsguTpPdxtVG9dXV1QLY7N0CXLl2A0h2943jMmDFA6XhgxwFLqmVm8iVJkqSC8SJfkiRJKhjLddqYc+fOpeNouN23b1+Kxa3q/Ez8nj17Vmh1ktS8Bg0adMXxzp07U2z79u0AjBw5EsjKdiSp1pnJlyRJkgrGTH4bkx8X9+yzzwJw4MCBFPvQhz4EwLhx41rk9fNj74LNbZIqIUYDHz58OMW2bdsGZCM3R40alc7lm3AlqdaYyZckSZIKxkx+G3PixIl0vHz5cgDOnz+fYp/61KeAlsvkS1Il5e8eTpo0CYBDhw6l2ObNmwHo168fAB/72McquDpJajlm8iVJkqSC8SJfkiRJKhjLdapEpRpSjx07lo43bNgAlDaa3X777UDWhNbcbLKVVEk33pjlsmL32/3796fY//7v/wLZDrkXL15M52y8lVTLzORLkiRJBWMmv8o0d6Y77hAcPHgQgK1bt6Zz3bt3B2DYsGEpFs1nklQE+c/UcmMyL1y4AGSjhPfu3ZvO5R8nSbXGTL4kSZJUMF7kS5IkSQVjuU6VaKmG1CjXWbduHQAbN25M5yZMmADAlClTUsxGM0lFN2DAgHQcJYrnzp0DYMuWLelc165dAejfv38FVydJzcNMviRJklQwZvILLsbHrV69GoA1a9akc/fddx8As2bNuuLxklRUkaEHmDFjBgD19fUAvPzyy+lcZPDN5EuqRV7RSZIkSQXjRb4kSZJUMJbrFNzRo0cB2LFjB5DNywe4+eabS/4rSW1B586d0/GcOXMAWLFiBQBr165N5yZNmgTAzJkzK7g6SWoeZvIlSZKkgjGTX0DHjx9PxzEO7t133wVKG8iGDx8OlGa1JKnounTpko6j8fa1114D4Kmnnkrn7rrrrsouTJKakZl8SZIkqWDM5BfQW2+9lY5XrVoFQPfu3QEYO3ZsOtenT5/KLkySqkDHjh3T8ZgxYwAYOHAgAKdPn07nDhw4AMCpU6dSLD9+U5KqmZl8SZIkqWC8yJckSZIKxnKdKvHee+9dEbvhhhua9Fzbtm1LxzEW7pZbbgHgjjvuSOfyzWeSVOua8jnaoUMHAIYOHQrAgAED0rnf/va3QNaUC9lnabdu3a5vsZLUwszkS5IkSQVjJr/KNDV7n7dz5850vHnzZgAWLFgAwOzZs9M5G8gkFcn1fH7GeOFp06al2JkzZwB46aWXUmzQoEGAmXxJ1c9MviRJklQwXuRLkiRJBWO5TpVo6m3m8+fPp+P6+noA9u/fn2IXLlwAshnQvXr1auIKJam4olxn7ty5KbZmzRoAVq9enWIxvCAadSWpWpnJlyRJkgrGTH6NO3LkSDp+7rnngKxZDGD+/PkADB48uKLrkqRaEqMz88MJnn/+eQBeffXVFDt+/HhlFyZJTWQmX5IkSSoYL/IlSZKkgrFcp8YdPnw4HT/zzDNAtoMjwIc//GHAJjFJakiPHj0AGD9+fIp1794dyHa+hWzAgSRVOzP5kiRJUsGYya9xhw4dSscvvvgiAHfeeWeKRSY/msokqa167733rohdPr64b9++6XjEiBEA9OvXL8V27NgBlDbjRva/ffv2zbdYSbpOZvIlSZKkgvEiX5IkSSoYy3WqWNxajtvJly5dSueiEWz37t0p1qlTJyDb3RZg0KBBLb5OSaoF8VlarmynnFGjRgEwduzYFNuzZw8Ar732WoqNHj0aaLhcJ/+aTd3hXJKuhZl8SZIkqWDM5NeQc+fOpeO1a9cCWRMYwOTJk4HSEXCXM5skqa1r7GdfZOinTp2aYpHB37RpU4p99KMfBaBz585XPEdj7xpIUnMzky9JkiQVjJn8KtGY0W4XL15Mx88//zwA27ZtS7H58+cDMGXKlGZ7TUlqqyZMmADA0aNHU+znP/85AGfOnEmxs2fPlnydd0wlVQMz+ZIkSVLBeJEvSZIkFYzlOlWmoVu7x44dS8fR/HXy5MkUmz59OlA67q2h57chTJLeX//+/QEYN25cil24cAGA+vr6FDtw4EDJ4y3RkVQNzORLkiRJBWMmv0o0lPk5ffo0ALt27UqxEydOANCtW7cUi3Fv+VhTX1OS9Dt1dXXpePjw4UCWvQd44403AOjTpw8AQ4YMqeDqJKk8M/mSJElSwXiRL0mSJBWM5To1IGbhr1+/PsXi9vGYMWNSrGfPnpVdmCS1AfmdbG+55RagdHDB5s2bARg4cCBguY6k6mAmX5IkSSoYM/k1YOPGjQCsWrUqxWInxnnz5qVYu3btKrswSWoD8p+t06ZNA+DUqVMptmnTJgBGjhwJZLuPS1JrMpMvSZIkFYwX+ZIkSVLBWK5TxS5dugTAli1bgKxsB+Duu+8GYM6cOSnWoUOHCq5OktqG9u3bp+MZM2YA8Pbbb6fY008/DcD48eMruzBJaoCZfEmSJKlgzORXmYsXL6bj+vr6kv++++676VzsupjfiVGS1PzymfwYWzx06NAUO3z4MAB79+4F4NixY+mco40ltRYz+ZIkSVLBmMmvMpG1B3jhhReALIt02223pXN9+/Zt1PPFhi033HBDcy1Rktq8/v37p+PI6sdYzXXr1qVzMXKzd+/elVucJGEmX5IkSSocL/IlSZKkgrFcp8pE4xbAM888A0Dnzp2B0t1tbbiVpNYzZMiQdPzxj38cgB49egClO+TGKGRJqjQz+ZIkSVLBmMmvMnv27EnHv/nNbwD41Kc+BcCCBQvSucZm8m24laTmF2OMAb70pS8B2YaEkdGH0vGbklRJZvIlSZKkgvEiX5IkSSoYy3WqxL59+4DSxtvY/bZfv34AjBgxIp2zDEeSWk/Hjh3T8eDBg1txJZJUnpl8SZIkqWDM5FeJrVu3AnDhwoUUu/XWWwEYPXo0YPZekiRJjWMmX5IkSSoYL/IlSZKkgrnhvffee6+1FyGor68H4MiRIym2f/9+AMaOHQvAyJEjK74uSZIk1R4z+ZIkSVLBmMmvYpf/aGy8lSRJUmOYyZckSZIKxhGaVczMvSRJkprCTL4kSZJUMF7kS5IkSQXjRb4kSZJUMF7kS5IkSQXjRb4kSZJUMF7kS5IkSQXjRb4kSZJUMF7kS5IkSQXjRb4kSZJUMF7kS5IkSQXjRb4kSZJUMF7kS5IkSQXjRb4kSZJUMP8P1ViMvnWs9h0AAAAASUVORK5CYII=",
"path": "images_version_6/image_42.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
B
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
It is known that BC parallel PQ, AB:AP = 2.0:5.0, then the length of CQ is ()
Choices:
A:8cm
B:12cm
C:30cm
D:50cm
|
||
211
|
43
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIcAAABjCAAAAACUWUxCAAAIIElEQVR4nM2ae2xT1x3HvxfCKC3OklQ4woV5JIWkwswh4KShNNvcgLoFCagimmjAiAYtZRopoDKtGcLNMqmPqGqQGhDV0kq0japssrdVUwmPNG2JKbSz0yQjpU5Q1bAutCY0No9mW377w7FzH+f4nnttYN8/knt/55GPz/n9zuMXSwQAwCfzs3E7NW3yd610WzHiHC/lZ5lqvkqSJCkdHyHG4Sv6wlzzYxVjRJ40gEwDgGjEZTPbgQXYX/FMejhe3DSx2Fzz/pUAsPKDtHB490uZJpv/sQoAnCljYBoQiRIFF5pr7lkMAD0rU+bIQHSzFxgiwH/q4RkFxlpHPbGffalzPP9rXMn6RStCDX1/6Bj7cLr7zpXfLbtrgVjr404AWF9h0rtkkijxGKzrAtD39UdfBb7sy16e65zrtOXotI7MRtRScSxlDDkHZl2XFfR9fu7CZ4ND9kX35i3ML5jBatvviNVMfTSUHPl+q6Y88nnfcM9IzyXHXIet2OpI5U/VvgaJTpfqc2yqWsvt5OKo/5sPrr1/w5X1wF0/nmmOp/bx+3uKRrN0OQ5catTt69N/v4OO/56Ee/rq77hnFMCfIx5iZX5ELQIcZ39zXLjPvsipq6eunJ0lTez53oqseSJNev7UgNr5DexCOQcyx4Q5JnXotRVvbBgYHrA6c53zHHZLsrreRwDOaAAZ8hfLZZ041ajh7D13+48B10MXzne29v8zL3/hgvvsbPf5y2iWN5sHohiPDVtXG8NoOn8YqLE2JwyXLgX/9XHYH3XMXWp15Sh4opu8wLK6zQIcz/2n3hhH7meZAH5Y/YS6IHTj/WjX+DGUZpbnbouZfJFNiFp4cQuSqbOSDGlXfex3XievRu/TcwYnH7eMEhXn8SoqOK5ZDWGMxauHrSFOFd/8kdhDEACwjtuXgoOs14xwPNoSfwrY2Q1bC0U7VHKs6TSAEZo79dzuYNV4tki4s2kKZyn70ICTbj849VxVvUZbYfffAsKdKTmWfySO8e5X8t2o3rJTXWHrUJd4b8p5CdvEp8XZqXx/sEX5XrVRvC+1f5BFuKFvldqijF73TiMYag73GdGG8zShqohel8cQhspPUeYXnM4DP8pXm3KOPhQ/0F1fUrvfgG9o/IN8opNqHWMY49EbtrcbGw3NvIxwF16l6vcyzY2VRERf2I4axVBzCDrqGG8DqN5J1GsTdjI+R3lApNW2F3gl5S3dtgHjGKTY9wHsKtiu71MXSy5yy3IpcI9BFwXU6ynwgMjK/vhz3KLXZ07cMIGhjhcaYm5YSgUKuUXNjvGA/YaJeVFz0HT9Nq4TvJK9pUT0lsBH0Ug9Lyj+VG8EfbPcnJLHAqcBbGDtvXrScNzfrddkz8ucgppIBwCg3lKXOkeJ3tb/qotzq1yd0zb51BY8yK6SROqJGnTqzGTuCNvuki+xCzoN+oeGg+5I3qBxB9M8vqRZ/so/OQtzOJL3kM20hvOOKA28k7M4x7a2ZPV3NLKsw/a31ab2xSlyHN6VpPoIc4M7Z+vWGhsNXcq0HL2lSapXtTKM3dZeVt2aX6XEkcxRe1kr+lHbMLt2eQvbLshRyOmWiEo1bkD0pj3Mq86/94pwbPTxKp9waW3NDn5gGIheBkcL+8xHRIUBjcnDQJuSePQyOM64OXWP/FRj2sGrOyn2vVeMg3tG1frjxiq9/n8vGL2afQ7A3ZeZO1FTpfrAtyajXW/7etrypLl9joiq/8pEzlVfWUqTrXgJiUUvazyWfcwCfmqrKiu5ZP2LIh+0q+ldk+Ph11yhiWhsnuq94LDI5yTB6GVxjLP21OqDitdh+58FMcSil8VBtlGNKaTMjJy3cc/KDAlEL5Nj7XGNaZVikT2TFzCAQdSoXXlUYvkpSk6rLe9dkSehTq7pKBLxvYTqM3VPziy4E2vVFmeX7KXdxjmiJpFe9DI5xtRpMu9q2cvLwklRuXT2XiYH5Ywr322yyPM4TVAQhRMJbqaY/oFlykvMAfdUEqruZNCQa8SV0/HQt0b9gzzK/IYsCbV5ranRINKJXvZ4LP+7/O23WxIr+roJn6nRADg55+TjEbbLXiLWifhjeZ3p0SCKZa04YnMojiBTSSinwaSoRvzo5XA8OJVqG44H8dVCA+dvjrjRy+HYO/UnKydvjCM2w0lRrcJzOHsvh6N9S/wpnoQKWY0nRRkKcvZeDsdw4sI0mYQKmEmKssSJXg5HIk3mKyciohOmkqJMse+9PI7Svtjv/F4iIh/v6mhGzOhlr2PAitg/HmJJqFd2D5jJzXLUFnxFdB0jattGRETWESJqdIxzapkUI2vF4wg5iCaTULuSJSJMKWwdEuWgWUSxJNTPWaf3FKU9OfP8A4sGgV/uAdZ/25E+14irqKlM0D/oiSM0MofIzU4Ppix19HLHo+Qstj+PkuW85HGKqrfsFhuPAVdv4TeFzbzi1FWuuA8yOIKShH1EGSWH1EnR9EoRver/RwEvHBoEllU2zP9y5rqlN2dSQBIg9b517vsJi8Y/mroHAbS+gXtRsxQA0vzFZSn+gxy/k1/X1JOCy0REwTx6k5kUTbO8QAV5SBsvL+3LBoALQE1KX+ITUlTqIfJKP4B2Xj75CQDg7Z/ddAgAFs9+YLZnEaCelwhGZbNzk+WL/XFvhLRxW3yaiKh43y3AIHinntXzUv0sEJUqOd8CTKuikH0pOkNV+FStlORbgDdPmvXjVSK6NRizEQKAq/8AwN9fboF86Cfqj6VWbicH9QN4Jvao3V9uj7jnj1us/xeO/wHLAxROhmB3ggAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_43.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, triangle ODC is the figure obtained by rotating triangle OAB clockwise around point O by 30.0. If point D happens to fall on AB, and the degree of angle AOC is 100.0, then the degree of angle DOB is ()
Choices:
A:40°
B:30°
C:38°
D:15°
|
Như hình vẽ, tam giác ODC là hình được tạo thành bằng cách quay tam giác OAB quanh điểm O ngược chiều kim đồng hồ góc 30°. Nếu điểm D rơi trên AB, và số đo góc AOC là 100°, thì số đo góc DOB là ()
Các lựa chọn:
A: 40°
B: 30°
C: 38°
D: 15°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, triangle ODC is the figure obtained by rotating triangle OAB clockwise around point O by 30.0. If point D happens to fall on AB, and the degree of angle AOC is 100.0, then the degree of angle DOB is ()
Choices:
A:40°
B:30°
C:38°
D:15°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, triangle ODC is the figure obtained by rotating triangle OAB clockwise around point O by 30.0. If point D happens to fall on AB, and the degree of angle AOC is 100.0, then the degree of angle DOB is ()
Choices:
A:40°
B:30°
C:38°
D:15°
|
As shown in the figure, triangle ODC is the figure obtained by rotating triangle OAB clockwise around point O by 30.0. If point D happens to fall on AB, and the degree of angle AOC is 100.0, then the degree of angle DOB is ()
Choices:
A:40°
B:30°
C:38°
D:15°
|
212
|
43
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIcAAABjCAAAAACUWUxCAAAIIElEQVR4nM2ae2xT1x3HvxfCKC3OklQ4woV5JIWkwswh4KShNNvcgLoFCagimmjAiAYtZRopoDKtGcLNMqmPqGqQGhDV0kq0japssrdVUwmPNG2JKbSz0yQjpU5Q1bAutCY0No9mW377w7FzH+f4nnttYN8/knt/55GPz/n9zuMXSwQAwCfzs3E7NW3yd610WzHiHC/lZ5lqvkqSJCkdHyHG4Sv6wlzzYxVjRJ40gEwDgGjEZTPbgQXYX/FMejhe3DSx2Fzz/pUAsPKDtHB490uZJpv/sQoAnCljYBoQiRIFF5pr7lkMAD0rU+bIQHSzFxgiwH/q4RkFxlpHPbGffalzPP9rXMn6RStCDX1/6Bj7cLr7zpXfLbtrgVjr404AWF9h0rtkkijxGKzrAtD39UdfBb7sy16e65zrtOXotI7MRtRScSxlDDkHZl2XFfR9fu7CZ4ND9kX35i3ML5jBatvviNVMfTSUHPl+q6Y88nnfcM9IzyXHXIet2OpI5U/VvgaJTpfqc2yqWsvt5OKo/5sPrr1/w5X1wF0/nmmOp/bx+3uKRrN0OQ5catTt69N/v4OO/56Ee/rq77hnFMCfIx5iZX5ELQIcZ39zXLjPvsipq6eunJ0lTez53oqseSJNev7UgNr5DexCOQcyx4Q5JnXotRVvbBgYHrA6c53zHHZLsrreRwDOaAAZ8hfLZZ041ajh7D13+48B10MXzne29v8zL3/hgvvsbPf5y2iWN5sHohiPDVtXG8NoOn8YqLE2JwyXLgX/9XHYH3XMXWp15Sh4opu8wLK6zQIcz/2n3hhH7meZAH5Y/YS6IHTj/WjX+DGUZpbnbouZfJFNiFp4cQuSqbOSDGlXfex3XievRu/TcwYnH7eMEhXn8SoqOK5ZDWGMxauHrSFOFd/8kdhDEACwjtuXgoOs14xwPNoSfwrY2Q1bC0U7VHKs6TSAEZo79dzuYNV4tki4s2kKZyn70ICTbj849VxVvUZbYfffAsKdKTmWfySO8e5X8t2o3rJTXWHrUJd4b8p5CdvEp8XZqXx/sEX5XrVRvC+1f5BFuKFvldqijF73TiMYag73GdGG8zShqohel8cQhspPUeYXnM4DP8pXm3KOPhQ/0F1fUrvfgG9o/IN8opNqHWMY49EbtrcbGw3NvIxwF16l6vcyzY2VRERf2I4axVBzCDrqGG8DqN5J1GsTdjI+R3lApNW2F3gl5S3dtgHjGKTY9wHsKtiu71MXSy5yy3IpcI9BFwXU6ynwgMjK/vhz3KLXZ07cMIGhjhcaYm5YSgUKuUXNjvGA/YaJeVFz0HT9Nq4TvJK9pUT0lsBH0Ug9Lyj+VG8EfbPcnJLHAqcBbGDtvXrScNzfrddkz8ucgppIBwCg3lKXOkeJ3tb/qotzq1yd0zb51BY8yK6SROqJGnTqzGTuCNvuki+xCzoN+oeGg+5I3qBxB9M8vqRZ/so/OQtzOJL3kM20hvOOKA28k7M4x7a2ZPV3NLKsw/a31ab2xSlyHN6VpPoIc4M7Z+vWGhsNXcq0HL2lSapXtTKM3dZeVt2aX6XEkcxRe1kr+lHbMLt2eQvbLshRyOmWiEo1bkD0pj3Mq86/94pwbPTxKp9waW3NDn5gGIheBkcL+8xHRIUBjcnDQJuSePQyOM64OXWP/FRj2sGrOyn2vVeMg3tG1frjxiq9/n8vGL2afQ7A3ZeZO1FTpfrAtyajXW/7etrypLl9joiq/8pEzlVfWUqTrXgJiUUvazyWfcwCfmqrKiu5ZP2LIh+0q+ldk+Ph11yhiWhsnuq94LDI5yTB6GVxjLP21OqDitdh+58FMcSil8VBtlGNKaTMjJy3cc/KDAlEL5Nj7XGNaZVikT2TFzCAQdSoXXlUYvkpSk6rLe9dkSehTq7pKBLxvYTqM3VPziy4E2vVFmeX7KXdxjmiJpFe9DI5xtRpMu9q2cvLwklRuXT2XiYH5Ywr322yyPM4TVAQhRMJbqaY/oFlykvMAfdUEqruZNCQa8SV0/HQt0b9gzzK/IYsCbV5ranRINKJXvZ4LP+7/O23WxIr+roJn6nRADg55+TjEbbLXiLWifhjeZ3p0SCKZa04YnMojiBTSSinwaSoRvzo5XA8OJVqG44H8dVCA+dvjrjRy+HYO/UnKydvjCM2w0lRrcJzOHsvh6N9S/wpnoQKWY0nRRkKcvZeDsdw4sI0mYQKmEmKssSJXg5HIk3mKyciohOmkqJMse+9PI7Svtjv/F4iIh/v6mhGzOhlr2PAitg/HmJJqFd2D5jJzXLUFnxFdB0jattGRETWESJqdIxzapkUI2vF4wg5iCaTULuSJSJMKWwdEuWgWUSxJNTPWaf3FKU9OfP8A4sGgV/uAdZ/25E+14irqKlM0D/oiSM0MofIzU4Ppix19HLHo+Qstj+PkuW85HGKqrfsFhuPAVdv4TeFzbzi1FWuuA8yOIKShH1EGSWH1EnR9EoRver/RwEvHBoEllU2zP9y5rqlN2dSQBIg9b517vsJi8Y/mroHAbS+gXtRsxQA0vzFZSn+gxy/k1/X1JOCy0REwTx6k5kUTbO8QAV5SBsvL+3LBoALQE1KX+ITUlTqIfJKP4B2Xj75CQDg7Z/ddAgAFs9+YLZnEaCelwhGZbNzk+WL/XFvhLRxW3yaiKh43y3AIHinntXzUv0sEJUqOd8CTKuikH0pOkNV+FStlORbgDdPmvXjVSK6NRizEQKAq/8AwN9fboF86Cfqj6VWbicH9QN4Jvao3V9uj7jnj1us/xeO/wHLAxROhmB3ggAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_43.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, triangle ODC is the figure obtained by rotating triangle OAB clockwise around point O by 30.0. If point D happens to fall on AB, and the degree of angle AOC is 100.0, then the degree of angle DOB is ()
Choices:
A:40°
B:30°
C:38°
D:15°
|
Như hình vẽ, tam giác ODC là hình được tạo thành bằng cách quay tam giác OAB quanh điểm O ngược chiều kim đồng hồ góc 30°. Nếu điểm D rơi trên AB, và số đo góc AOC là 100°, thì số đo góc DOB là ()
Các lựa chọn:
A: 40°
B: 30°
C: 38°
D: 15°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, triangle ODC is the figure obtained by rotating triangle OAB clockwise around point O by 30.0. If point D happens to fall on AB, and the degree of angle AOC is 100.0, then the degree of angle DOB is ()
Choices:
A:40°
B:30°
C:38°
D:15°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, triangle ODC is the figure obtained by rotating triangle OAB clockwise around point O by 30.0. If point D happens to fall on AB, and the degree of angle AOC is 100.0, then the degree of angle DOB is ()
Choices:
A:40°
B:30°
C:38°
D:15°
|
As shown in the figure, triangle ODC is the figure obtained by rotating triangle OAB clockwise around point O by 30.0. If point D happens to fall on AB, and the degree of angle AOC is 100.0, then the degree of angle DOB is ()
Choices:
A:40°
B:30°
C:38°
D:15°
|
213
|
43
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIcAAABjCAAAAACUWUxCAAAIIElEQVR4nM2ae2xT1x3HvxfCKC3OklQ4woV5JIWkwswh4KShNNvcgLoFCagimmjAiAYtZRopoDKtGcLNMqmPqGqQGhDV0kq0japssrdVUwmPNG2JKbSz0yQjpU5Q1bAutCY0No9mW377w7FzH+f4nnttYN8/knt/55GPz/n9zuMXSwQAwCfzs3E7NW3yd610WzHiHC/lZ5lqvkqSJCkdHyHG4Sv6wlzzYxVjRJ40gEwDgGjEZTPbgQXYX/FMejhe3DSx2Fzz/pUAsPKDtHB490uZJpv/sQoAnCljYBoQiRIFF5pr7lkMAD0rU+bIQHSzFxgiwH/q4RkFxlpHPbGffalzPP9rXMn6RStCDX1/6Bj7cLr7zpXfLbtrgVjr404AWF9h0rtkkijxGKzrAtD39UdfBb7sy16e65zrtOXotI7MRtRScSxlDDkHZl2XFfR9fu7CZ4ND9kX35i3ML5jBatvviNVMfTSUHPl+q6Y88nnfcM9IzyXHXIet2OpI5U/VvgaJTpfqc2yqWsvt5OKo/5sPrr1/w5X1wF0/nmmOp/bx+3uKRrN0OQ5catTt69N/v4OO/56Ee/rq77hnFMCfIx5iZX5ELQIcZ39zXLjPvsipq6eunJ0lTez53oqseSJNev7UgNr5DexCOQcyx4Q5JnXotRVvbBgYHrA6c53zHHZLsrreRwDOaAAZ8hfLZZ041ajh7D13+48B10MXzne29v8zL3/hgvvsbPf5y2iWN5sHohiPDVtXG8NoOn8YqLE2JwyXLgX/9XHYH3XMXWp15Sh4opu8wLK6zQIcz/2n3hhH7meZAH5Y/YS6IHTj/WjX+DGUZpbnbouZfJFNiFp4cQuSqbOSDGlXfex3XievRu/TcwYnH7eMEhXn8SoqOK5ZDWGMxauHrSFOFd/8kdhDEACwjtuXgoOs14xwPNoSfwrY2Q1bC0U7VHKs6TSAEZo79dzuYNV4tki4s2kKZyn70ICTbj849VxVvUZbYfffAsKdKTmWfySO8e5X8t2o3rJTXWHrUJd4b8p5CdvEp8XZqXx/sEX5XrVRvC+1f5BFuKFvldqijF73TiMYag73GdGG8zShqohel8cQhspPUeYXnM4DP8pXm3KOPhQ/0F1fUrvfgG9o/IN8opNqHWMY49EbtrcbGw3NvIxwF16l6vcyzY2VRERf2I4axVBzCDrqGG8DqN5J1GsTdjI+R3lApNW2F3gl5S3dtgHjGKTY9wHsKtiu71MXSy5yy3IpcI9BFwXU6ynwgMjK/vhz3KLXZ07cMIGhjhcaYm5YSgUKuUXNjvGA/YaJeVFz0HT9Nq4TvJK9pUT0lsBH0Ug9Lyj+VG8EfbPcnJLHAqcBbGDtvXrScNzfrddkz8ucgppIBwCg3lKXOkeJ3tb/qotzq1yd0zb51BY8yK6SROqJGnTqzGTuCNvuki+xCzoN+oeGg+5I3qBxB9M8vqRZ/so/OQtzOJL3kM20hvOOKA28k7M4x7a2ZPV3NLKsw/a31ab2xSlyHN6VpPoIc4M7Z+vWGhsNXcq0HL2lSapXtTKM3dZeVt2aX6XEkcxRe1kr+lHbMLt2eQvbLshRyOmWiEo1bkD0pj3Mq86/94pwbPTxKp9waW3NDn5gGIheBkcL+8xHRIUBjcnDQJuSePQyOM64OXWP/FRj2sGrOyn2vVeMg3tG1frjxiq9/n8vGL2afQ7A3ZeZO1FTpfrAtyajXW/7etrypLl9joiq/8pEzlVfWUqTrXgJiUUvazyWfcwCfmqrKiu5ZP2LIh+0q+ldk+Ph11yhiWhsnuq94LDI5yTB6GVxjLP21OqDitdh+58FMcSil8VBtlGNKaTMjJy3cc/KDAlEL5Nj7XGNaZVikT2TFzCAQdSoXXlUYvkpSk6rLe9dkSehTq7pKBLxvYTqM3VPziy4E2vVFmeX7KXdxjmiJpFe9DI5xtRpMu9q2cvLwklRuXT2XiYH5Ywr322yyPM4TVAQhRMJbqaY/oFlykvMAfdUEqruZNCQa8SV0/HQt0b9gzzK/IYsCbV5ranRINKJXvZ4LP+7/O23WxIr+roJn6nRADg55+TjEbbLXiLWifhjeZ3p0SCKZa04YnMojiBTSSinwaSoRvzo5XA8OJVqG44H8dVCA+dvjrjRy+HYO/UnKydvjCM2w0lRrcJzOHsvh6N9S/wpnoQKWY0nRRkKcvZeDsdw4sI0mYQKmEmKssSJXg5HIk3mKyciohOmkqJMse+9PI7Svtjv/F4iIh/v6mhGzOhlr2PAitg/HmJJqFd2D5jJzXLUFnxFdB0jattGRETWESJqdIxzapkUI2vF4wg5iCaTULuSJSJMKWwdEuWgWUSxJNTPWaf3FKU9OfP8A4sGgV/uAdZ/25E+14irqKlM0D/oiSM0MofIzU4Ppix19HLHo+Qstj+PkuW85HGKqrfsFhuPAVdv4TeFzbzi1FWuuA8yOIKShH1EGSWH1EnR9EoRver/RwEvHBoEllU2zP9y5rqlN2dSQBIg9b517vsJi8Y/mroHAbS+gXtRsxQA0vzFZSn+gxy/k1/X1JOCy0REwTx6k5kUTbO8QAV5SBsvL+3LBoALQE1KX+ITUlTqIfJKP4B2Xj75CQDg7Z/ddAgAFs9+YLZnEaCelwhGZbNzk+WL/XFvhLRxW3yaiKh43y3AIHinntXzUv0sEJUqOd8CTKuikH0pOkNV+FStlORbgDdPmvXjVSK6NRizEQKAq/8AwN9fboF86Cfqj6VWbicH9QN4Jvao3V9uj7jnj1us/xeO/wHLAxROhmB3ggAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_43.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, angle AOD is 30.0. and the degree of angle AOC is 100.0, then the degree of angle DOB is ()
Choices:
A:40°
B:30°
C:38°
D:15°
|
Như hình vẽ, góc AOD bằng 30,0 và góc AOC bằng 100,0 thì số đo góc DOB là ()
Lựa chọn:
A: 40°
B: 30°
C: 38°
D: 15°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, angle AOD is 30.0. and the degree of angle AOC is 100.0, then the degree of angle DOB is ()
Choices:
A:40°
B:30°
C:38°
D:15°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, angle AOD is 30.0. and the degree of angle AOC is 100.0, then the degree of angle DOB is ()
Choices:
A:40°
B:30°
C:38°
D:15°
|
As shown in the figure, angle AOD is 30.0. and the degree of angle AOC is 100.0, then the degree of angle DOB is ()
Choices:
A:40°
B:30°
C:38°
D:15°
|
214
|
43
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAARQAAADRCAYAAAANIk3KAABSMElEQVR4nO29eVxU5/n3/x4Yhm0Y9n0HRQXBFRHEXVTcjSbRRFPT2P7SJmmSPkm/adq0abM+WZqkT5a2MWn61bglaYwaN1REwQU3BFFR2bdh32GY7fz+sHMKrogsA5736+VLmDnLPcw5n3Pd130tMkEQBCQkJCR6AIv+HoCEhMTgQRIUCQmJHkMSFAkJiR5DEhQJCYkeQxIUCQmJHkMSFAkJiR5DEhQJCYkeQxIUCQmJHkMSFAkJiR5D3lcnqq6upr6+Hnt7e5RKJXZ2dlhaWvbV6SUkJPqAPrNQcnNzSU1NpbKyErlcjkwm66tTS9wDUmaGxN3QZxbKkSNH2LFjB46OjkRGRmJhIc22JCQGG70uKC0tLVy6dImCggJkMhk2NjaSmPQTWq2WtLQ0Lly4QEtLCxqNBp1OJ1ohpv/1ej1RUVE8+uijoiUpCIJkVUrckV4XlKKiItLS0mhsbCQgIAAXF5fePqXELdDpdKSlpbF582auXLmCVqu95bZxcXFMmjSJoKAgAElMJLpErwlKa2srRUVFVFRU4ObmhqWlJVVVVbe9iCV6F2traxYvXoy9vT1fffUVVlZWLFy4EFdXV4xGIwqFgrq6OtLS0qiurua5555j2bJlrF69ur+HLjFA6DVBaW5uJicnBysrK4YMGUJ6ejr5+fmSoPQTgiAgl8uJjIzEzc2NM2fO4OHhwQsvvIC9vX2nbQ8ePMj69ev56quvMBqNzJ8/X7IsJbpErzkz9Ho9TU1NWFlZERwcjK+vLyqVCrm8z/zAErdAr9ej0+nQ6/U39WdNnjyZBx54gAkTJqDRaNi+fTu5ubn9MFKJgUaPC4rRaKS8vJzKykp8fX0JDQ3F3d0dT09P3N3dsba27ulTSnSBjj6QlpYW7OzsUCqVnZaFTT9bWVkxcuRIxo0bh1wu59ixY+Tn5/f5mCUGHj1uLrS3t5OSkgLA4sWLsbW1BcDBwQEfHx/xd4m+x2g00tTURH19PX5+fvj6+nYSmo4/W1paEhQURGVlJYWFhdTW1vbHkCUGGD0qKO3t7WRnZ7Nz504qKyspLS1FpVLR0NAgRslKFkr/YTQayc/Pp6ysjODgYIKCgm4ZrWxjY0NQUBBXrlxBrVbT1tbWx6OVGIj0mKAIgkBxcTGnTp3i5MmTXL58maSkJPH9SZMmsWjRIsmH0o/o9Xqys7MpKSkhJiaGYcOG3fL7UCgUuLu74+rqirW1tRQ7JNEleuzulslkVFVVYTAYWLNmDe3t7aKJ3dzcjJOTE05OTpKg9CM6nY79+/dTWFjIjBkz8Pb2vuW2er2ehoYGLCws8PX1xdHRsQ9HKjFQ6ZG7u729nbq6OhobG/Hx8WHVqlXiBdje3k5BQQGXL1+mtbW105NOEASMRqP4z9LSUnxfJpNJwVQ9jF6vJy8vj4KCAhQKxW23bWpqIjs7m+bmZoYPH46Xl1cfjVJiINMjgpKRkUFycjKjR49mypQpnZ5mcrmctrY2ZDIZ9vb2nWIe2traqKiooLy8nIaGBgIDA8Wnpp2dneRv6WEsLCyIi4tj6NChd7Q4qqur+e677/D09CQxMZHAwMA+GqXEQKbbglJdXY1Go0GtVrN161YOHz7M0KFDcXV1Ba6Z13V1dZw/f57Tp09TV1eHg4MDLi4uREVFoVQqaW9vp7i4mLNnz1JUVMTQoUMJDg4WozZNUyRBELC2tsba2hqZTIalpSU2NjaiRaNQKFAoFFhYWGBhYSFZNjdBp9PR1NREeHg4Op3uhmC2jtTX13PmzBlycnJwd3dn2LBheHh49OFoJQYq3RaUHTt2kJmZyQ8//CDGKJSUlIjvl5eXs2nTJvbu3cvp06dpbGzExcWF8+fPs3jxYubPn48gCJSVlZGdnc3Zs2fJyMjA0dERrVZLXV0dpaWltLW1YW1t3WlVwtHRkSFDhuDi4oKVlRV+fn4EBASgUCiwtbW97c1yv1JRUUF+fj5yuRwnJyesrKzE9zom/gmCwL/+9S+2b9+Ol5cXo0aNwtvbWxJpiS7RbUFRqVS4ubkREhKCs7MzPj4+BAcH//fA/7lwQ0NDsbCwoLW1FUdHRwIDA7G3txetCVtbWwwGAy0tLQQEBDB06FC0Wi3V1dVYW1vT1taGQqHA1dUVKysrjEYjbW1tlJaWUl1djUwmo6SkhAsXLojntra2Ri6XY2lpia2tLUqlEisrKxQKBXZ2dtja2mJlZYWNjY04tRrsxZ4yMjJISUlhwoQJjBo1CicnJ/E9k1hkZ2eTkpLCzp07aWlpYfHixSQkJEixQxJdRtbd3sbt7e0YDAa0Wi1Go1EUB5Pfw2g00t7ejl6vx2AwiE9BuVwuTlFaW1vJzc1l69atHDlyhCeffJKHHnoInU4nrhLJZDIEQaC6uprKyko0Gg11dXUUFxdTV1fXyQ/T3NxMfX29aNkolUp8fHwIDAxEpVKhUqnw8/PD09MTpVKJh4cHfn5+uLi4oFKpsLGx6dE/rjnx/PPP889//pNPPvmERx999Ib3tVotv/jFL/jyyy/x9fVlyZIlvPDCC2K2sYREV+i2hWISDjs7uxveEwRBFJjbYWdnR2BgIHK5nPLyctEnYvKXdMTJyQk3Nze0Wi3Nzc34+vrS3NyMVqultraWmpoaNBoNLS0t1NTUoNPpsLGxQaFQiH4YAI1GQ0lJCQaDgUuXLqFQKJDJZBgMBnQ6nTgue3t7HBwcUCqVKJVK0aHc8XelUmm2y+BGo5Hm5maysrJISkpi69atNDQ08K9//UtM0jQajcC176u9vZ2WlhaWLVvGyJEjiY+P7yQmUj0Uia7QK3fD3Vx4KpUKQRAoKiqisrLyttuazHQPDw9CQkK6dPzm5mZKSkqora2ltrYWtVpNZWUltbW1otVTXV1NdXU1arUajUaDq6sr7u7ueHh44ObmhpubGy4uLuLPbm5uuLq64uHhgYeHhyh+13/uW4W198WNaRKUpKQkXn/9dQwGA3K5nAMHDnQKODQhl8v5wx/+wM9//nM8PDxu+1nuR0whDrcz6E3T+PsZs3i8Wltbi76UnkapVBIYGIiHhwcajYbm5mZaW1tpa2ujra2NlpaWTj/rdDqx5q3BYECj0aDRaDAYDKKjWKvVIpPJ0Ol0tLa20trail6vx8XFBWdnZ2xtbXF0dMTd3V20ZkziZG1tjYODw00tu57EwsICR0dH5s6di6urKzKZDDs7O7FKW0dM1tzkyZPx9PTs9J5kmVwjPT2dw4cPk5eXR21trRg7JQgCGo0GpVLJo48+yuzZs+9rn5NZCIpSqcTLywuDwUB9fT0qlapHld7W1vauv+T29nbRoikvL6e+vp66ujpKSkpoaGigpaVFzFeqqalBq9Xi7u6Ou7s79vb2ODk54e7ujkqlQqlUitnWdnZ2qFQq0bIxGAxYWlqKImZhYYGVlZW4/C2Xy8UVGdOSeVewsLDA3t6eiRMnMnHixLv+m5mQxOQaNTU1ZGZmsn//ftRqtRi6IJfLaW5uxsbGBjc3N5ydnYmKiurk9L6fMAtBcXV1JTg4GI1GQ35+PmFhYf2+9GttbY2bmxsODg4EBASg0+nQ6XRoNBq0Wi0Gg4H29nY0Go3oeNZqtaJvoqmpiYqKCtG5nJmZSW1tLTKZjLa2NsrLy2lsbEQQBDw8PPD19UWhUKBSqQgJCcHFxQWZTCaWgLCyssLKygo3N7d+/bvcr0yePFl8QOTm5jJu3Dgxgri9vZ38/Hx27tzJK6+8wp///GemTp3a30PuF8xGUIKCgtBoNBQUFODn59fvggKIN7FSqezyPq2treKyd0FBAU1NTWi1WmxtbbG0tMRoNIo5Mia0Wi1NTU0oFAr0ej0ymYyKigrkcjmVlZWUlJSIy+BKpRJra2uMRiPW1tYolUoxTcHU70gQBBQKRSencce4E9M5jUYjcrncbB3L5oBpyufg4EB0dDQHDx5Er9czf/58Jk6cKH6ParWaLVu2kJaWhlqt7udR9x9mcSU5Ozvj7+9PfX09xcXFAzpV3tbWFhsbG+zt7fHx8RHn2Xq9Hr1eD1xzmOp0OnGVpaGhgbq6OiwsLMQuAfX19SgUCgoKCjhw4IC4T25uLhUVFQB4e3szYsQIMUo4PDycwMBAjEYjbm5uhIeH4+DgAFxzZHcUjrKyMjQaDSqVChcXl0G9ZH4vdJzytbW1UVRURHl5OU5OTp0eCiqVCgcHB1H471fMQlBcXFwIDAxErVZTWFg4oAXFZC2YfCFdpampCbhm4Tg4ONDQ0IBcLqeiogJPT09RUPz8/KipqRFzo5ydnQHEgL+ioiKxal5BQQEWFhYYDIZOKQs6nY6Kigra2tqwsbFhxIgRREVFiUvszs7O2NvbY2lpeV/fHNdTW1uLg4MDgYGBnZIla2pqOHr0KFZWVowfPx53d/d+HGX/YhaC4urqSmBgICkpKVRVVQ1oQekupmmVUqm84YK8vkyjSbBMQXwajYa2tjby8vIoLS3FaDRSU1PDyZMnaWhooL29ncLCQioqKrCyshKXuU1WUmxsLDNnzsTZ2RlnZ2eGDBmCh4cHCoUCR0dH0cq5n6mpqaGsrAx3d3dxAcHEyZMn+fbbb3F2dr4hfud+wywExdnZmeDgYNra2sjNzb0vBaU7cSrOzs5YW1uLBafd3d2pr68HrsXfmCKL9Xo9jY2NYtxNQUEB58+fRy6X4+3tTX19Pbt27SIiIoKAgAAuXbqEVqsVI5Z1Op3oS+oYVaxSqXB1dRV9N87Ozjg5OfX6knh/oNPpqKys5Pjx4+Tk5HDixAkxY3vIkCGsWLECBwcHMQDzfsUsBAXA09NT/NLuR0HpLh1vXlOm9+04dOgQycnJ2NnZYWNjQ0REBBkZGaSnp+Pk5ISNjQ3V1dXU1NRQX1+PWq2mqqoKhUKBi4sLPj4+uLm5YWtri5ubGz4+Pjg6OqJSqfD09MTDwwMnJyfs7e2xsrLC0tJSnAaaLKuOP1//u7nS1NREeXk5JSUlZGVlcfHiRdEn9uSTT/LYY49JGdmYkaAAYuj99YFXEj3Hvn37OHnyJEuXLmXcuHG4uLgQFBSElZUVDQ0NtLa2snLlSoKCgqiqqqK5uZn29nbg2nRLp9PR1tZGa2srGo1GLEHR2toqWjSNjY00NzeLPhpXV1ccHR1xdnYWg/9M1o2bm5soSF0RxP7i8uXLXL58mQcffJCnn34ahUJBVVWV2Gb3Zz/7GU899RSzZ8/u76H2K2YjKIIgiCsOra2ttLe3i3k2Ej1DQUGBGA8THR1NdHQ08N8l5aSkJFpbW/H09GT06NE3PUZDQwPV1dXU1dVRU1Mjpi7U1NRQW1tLa2ur+HtjYyMKhYL6+nqcnJxEf4xpRcTR0REnJyfxNRcXF+zt7UUnskKhEB3DCoVCDPiTy+ViRvndOr+7S0lJCaWlpSxZsoS4uDjx9ezsbF577TW2bNlCZGQkMTExqFSq+/a6NRtBAfD19SUgIID6+npKSkoICAjok4vlfuDChQscP35cbGfS0RoICgpi/vz5lJSUkJaWxtatW6msrGThwoU3TEMcHBywsbHB29tb9N2Y/jf9M/1uNBrRarViMGBrayuVlZXU19ej1Wqpqqri/PnzoqVTXl5OdXU1bW1t2NnZ4efnh6OjI0qlEl9fX7y9vbGzsxOtKpMPydPT844lLe8Fg8EgWmXXp4eEh4cTExNDRkYGtbW1nDp1inHjxkmRsv2NTCbDy8sLHx8fMWfGx8dHEpQeIiMjg3379hEQEEBMTMwN0wsPDw+mTp2KTqfj3Llz6HQ6goKCCA8P7/QdmLLB75a2tjYaGxupqKigpqaG1tZWampqcHV1paWlhdbWVjF+R6vVYmVlhUqlEuvVtLS0UFpairW1NZWVlRQXF2NrayuWwjBllMvlclH0LC0tRUtIEAQsLS3x8PC4K6exVquloqICS0tLfHx8btjXtHxvipzumMV9P2I2ggKIHQZNgjJmzJj+HtKgISsri7S0NGbPns2iRYtuKtRTpkzB39+fV199lQsXLnDw4EGMRuM9fw+CIGBjY4O1tbXYmF0QhE4ZvB0LlpsKclVVVYlpDoWFhRQXF2MwGGhoaCArK4umpiZkMhn5+fnk5uai0+lQKpWEhobi5uaGQqEgMDCQsLAwsaTo5MmTCQgI6PLYq6qquHDhAnZ2dkRHR9/Uz1NSUkJubi6zZs0iMDBQSg40B2QyGZ6ennh7e3P+/HmKi4tFL7pE96mvr+fixYvU1NQQFBREYGDgDWLSMaM4KCiIhx9+mJSUFA4ePEhrayu+vr73tIJhOvbdrOSYnLSm6ZOLiwt+fn5iWYaQkBBaW1uBa+Ut1Wo1BoNBXN7W6/XU1NRw9epVsrKyiI2NJSEh4a6XtFtaWsjOzsbf35/o6OhOMSam5fbk5GTg2pRdEhQzwsvLC29vbw4fPoylpaUkKD3AxYsX2bJlCzKZjPnz5+Pn53fDNtfHwMybNw83NzcOHjzIsWPHGD9+PKNHj76htEFvY8qlgmsCM2TIkC7tV15ezqVLl0hPT0etVnP58mWmTZvGqFGjcHFxuasx5OXlce7cOXFFypQdDnD69Gk+++wzsrOzGT58OCNGjDCLHLT+xGwERSaT4ePj02mOLQnKvVNYWEhSUhLz5s1j+fLl+Pv733LbjpbK8OHDefHFF0lOTub9999n1apVrF69ekCsXsjlckpKSti9ezc2Njb89re/ZcqUKbi4uNzRQjJZQCdPnmTTpk0cPXqUsrIyzp49y7Zt2zpZW3V1ddTX17NkyRIWLVp0T2UiBgtmIyhw7UJwc3MTiyBJgtJ9BEGgoaGBwsJCmpub8ff3v+MTvqNYqFQqHnroIVpaWti7dy/Hjh0jMjLSLEpL3I6amhoyMjLIzs6moaGB6Ohofv7zn3d5zIIgoNVqKSkp4dChQxQWFuLq6kpZWRlFRUWir0ev1+Pj40NMTAwPP/wwc+bMEfcfCKLbW5iVoABiRqzBYLivveX3SmlpKd9++y0FBQUsXLiQkSNHdus406ZNA2Dv3r38/ve/55VXXhGfxOZ285SWlpKWlsb69esB+N3vfkdMTMxdCaCFhQUqlYpZs2aJNXoUCgWCIIhLxiYnsq2tLc7Ozvj6+or7m9Pfoz8wO0GxtLTEyckJjUZDfX291LGum5SVlbFnzx6cnZ1ZvXo1I0aM6NZxgoODcXBw4OrVq+zZs4fDhw+LCYTmkolsMBgoLy8nOTmZEydOYDQaGT16NImJiXdtTZkC6nx9fTsJRVcwN4HtD8xOUORyOQEBAdTU1FBSUoKnpyeenp73/Rd1NxiNRkpLS8nJySE+Pp74+HhUKlW3j+fi4sKSJUtwdnZm3759ZGZm8s477+Dj4wP0z43U8Zz5+fkkJSWxbds2NBoNL730EjNnzuzVYLebIV2jZiooJsdhWVkZvr6+fb66MJBpb2/n6NGjnDt3jhEjRjBmzJh7EhO4Ng2IiIgArsWzlJaWsmvXLqZNm8aQIUP69EYyCYlMJkOr1ZKTk0NycjLHjh3Dw8ODqKgoJkyYIIqJZDX0LWaX3mkSFFdXV8rLy1Gr1bdtXSDRmcbGRr777jsyMjJ44IEHmDNnTo/8/ezs7Bg5ciQLFy5kxIgRfPfdd2zcuLHPM8M7ikN+fj7ffvstP/74I2VlZSxbtowXX3yxU/CZJCZ9i1laKL6+vlRUVFBQUHDHXj0S/8VoNFJcXMzly5cBGD16NMOHD++xm8rW1pbJkydjYWEhJhpu376duLi42y5H9wQdLQ2DwcDRo0dJSUnh7NmzBAUFMXXqVGJjY2+6vUTfYZYWiq+vL87OzpSXl1NRUSFZKF1AEARyc3PJyspCEAS8vb0JDAzsccepp6cnkyZNYuzYsRiNRn788UeOHj3a60v8HcUhNzeXnTt3cvToUeRyOTNnzuSRRx7pNDWWxKR/MEsLxd/fH2dnZ4qKiu7rcnp3g0wmE7sCjho1iri4uLuq1n83uLu78/jjj7Nr1y42btzIoUOH8PHxISoqSqxi1lNcb2ns2rWLAwcOkJOTQ0hICA888MAtSy1I9D1mZ6FYWFiI3faqq6upra3t7yENCBobG8nMzOTq1atERUUxZcqUXlnlMPWtNk0zwsPDqampYc+ePVy8eLHHz2cSk/b2ds6fP8/Bgwc5f/48Xl5eTJkyhRkzZojh9JIl2/+YnYViQqFQiHVNzSXewVypq6vjwoULNDU14ebmJmbb9gYdrYXw8HD+9Kc/8emnn7J161aUSiX+/v54eXn1yHfW0TrZvXs3mzdvpqWlhcjISB5++GEiIyNvOTaJ/sHsLBQT1tbWODk5YWlpKVkpd+DixYvs3LkTW1tbZsyYcVfp+d3FdLN7e3sTHx/PqFGjuHTpEt988w3FxcU9cg6ZTEZjYyMpKSmkpKRQXV3N8OHDmTlzJmPGjBF7CUmWiflgtoJiZ2dHSEgItra25Ofni31rJG7k9OnTbN26FV9fX1atWtUncTsdrYGEhATeeust2tra+OSTTzhz5kyP1QU+evQor776KpcuXWLKlCmsWrWKxMTETk3LJMvEfDDbKY+trS1BQUFYWlqKCVpSf5jOtLe3U1paSnFxMQqFAn9//35JVbCwsCA0NJTZs2cjk8nYs2cPDQ0NPPLII92q7gbXao3s2bOHo0ePolKpGD9+PAkJCQwbNkzcRloaNj/M1kIxCYqNjQ0FBQXStOcmlJWVsXfvXhobG4mNjSU0NLRfx/PQQw+xdu1azp8/z8aNGyksLOz2sTIyMvj444/Jzs5m7ty5PPTQQ0ycOLFTy1RJTMwPsxaUgIAAbGxsKC4upq6urr+HZBZ09BeUlZXxzTffoNfrWb16dbczinsKlUpFREQEixYtwsPDg7/85S9s27btro7R1NTEe++9x9///nfCwsJ44IEHmDlzJsHBwb0zaIkexewFxdramqKiIslC+Q8dn8qFhYVcvXoVR0dHpk+fbhZ9bTw9PVmyZAnR0dEcO3aMvXv3is3db4fRaKShoYH09HR27dpFYWEhs2bNYvHixWJNWAnzx2x9KHZ2doSGhnLs2DFyc3Oprq7u7yGZDY2NjRw9epQLFy4wduxYMXHPHLC0tGTYsGE0NzdTUFCAWq3mnXfe4cEHH7xtHRWNRsOHH37I/v37GTVqFJMmTWLy5MliRrPEwMBsBUUul+Ph4YGVlRVqtVpa5elAfX09u3fvpra2ltmzZzNu3Lj+HlInZDIZw4YNIzExkT179pCeni6mAnh6enYqw2g0GsnPz+f06dNkZmZiYWFBfHw8CQkJZmFxSdwdZisoJiwsLGhpaUGr1fb3UMyGuro6UlNT8fb2ZuHChb2emNcdHBwcSEhIoK2tjdzcXE6ePAnAsmXLOvlDamtr+frrr9mwYQNz587l2WefJTw8XBKTAYrZC4qdnR1OTk5iI6XuLkMOBoxGIwUFBZw9exalUklISIhZTglMUxoLCwvGjRtHTU0NKSkpHDlyhMDAQLEbYE5ODrt27SInJ4dRo0YxdepUoqOj7+s2FAMds3XKmnB0dCQ4OBij0UhhYeHd1d/Q5LPnzQeI8VP9pyiPDR5D5vCrr09ReZu4K13lKb7+1Rz8VNcK+chUfsz51decusVOuuIkXp7mgY1p25eTKO6Ffu/t7e1iGcbY2FhmzJhhloW8O/pH/P39eeKJJxgzZgzV1dUcP36cgwcPio3EPv30U2xsbHj99deZP3++JCYDHLMXFAcHB/z8/NDpdBQWFtLS0tK1HWuTeT4shCVf2vLoF0fILy+nvDyDrS+FkPpENAFz1nH5Jje97vI65gRE84uT43gn6SLl5eXkH/l/jDv5C6ID5rDu+p1qd/JExP9g/WoG9YKAtjSZJyufYNLvDtN47x+/E21tbaSnp3Pp0iUmTJhAfHy8Wbdq7bjEvWjRIn7+859TX1/PF198wXvvvcelS5dYuXIlDz74ICEhIZ1iTCQGKIKZc+LECeF//ud/hBdffFH4+9//LuTl5XVhrwZh1xPWAu6/FPbV3PhuzcHnBH8QEjeUXPdOtvBRJIL19M+FHO11b2lzhM+nWwtM+ly42uHl/C+nC8PePXfdtvuEX/KccLALI+0qbW1twqlTp4TZs2cLcXFxQk5OTg8evW9oamoSHn30UQEQAGHp0qVd/D4lBgpmb6E4OTkREhKCIAhij5k7c54jW9sZ9pv/j4SbNIpzmf44vxoGu/ee7WRF6I5t5PUsd1544yeEXf/gtwrjJ2+8gHvay2xI/+/LtnY9W//jVqSmprJlyxb8/f1ZtGgRzs7OfXLenkKj0XDmzBnKy8vF1+53n9hgxOwF5XofStcEJY43GwUuvRB1i/ftcXID8tRUdXj17L5/UOX+FItibz6NsIqdzRrrKjYdzhRf80x4ggl/XsOfDpWhAXRNV/j+F0+w48Wl9NRirtFo5PTp0xw5coQhQ4Ywd+7cXiue1Bs0NDSQkpJCUlISrq6uxMXFERERgUql4vjx45SUlPT3ECV6CLMXFJVKhb+/PwaDgaKioq77UG6LAb0OGBXIfxP9K8jPqIJJw7l1el0AI+IgJ+0iYuynywK+yP6/tL81AQ+ZDIXvUtZHfs2pN6Zwb7Xmr2E0GlGr1RQVFVFXV0dISAijRo0ya+el0MF3Ul1dzYEDB/jqq6/Yt28f8+fP56uvvuKvf/0rQ4YM4e233+bbb7/tx9FK9CRmv2xsa2uLl5cXOp2O4uJiWltb7/mYtcmf8Wa6Py++G8N/bZEG6sqAOA9unfwfRNAo4GQTzSBuZ+WfwJt7S3jznkd2I0VFRSQnJ9PW1sbYsWM7JQAKZpptK5PJEASBkpISjh49SnJyMjqdjtjYWOLi4hg6dChDhw6lvr6ew4cPk5mZyd69e4mOju5Ufc0cP5vE7TF7CwWu+VF0Oh0VFRVoNJpuH0fXVMy573/DrMQvCP98D3+e0tGGKCUn/Za7diYtm6Juj+LuyMzM5F//+hf29vY8/vjjnWrsmvMNV1lZyQ8//MDmzZs5deoUM2bM4N1332Xo0KHiNhMmTODJJ5+kvb2dP/7xj6SmpvbjiCV6ggEhKHBt6uPo6Eh7e/td7pnLuvhr8SQKVQDTX2vhuaO57FgbjjkvUgr/aXael5dHeXk57u7ujB8/XnyCmxPCdRXTsrOz+f777zl06BDW1tY8/PDDzJgx44YlblO1t9GjR2NjY8ORI0c4cOAAra2tolhef2wJ88bspzwm3N3dCQoKQqPRUFFRgaura6eqXbcmgIe/L2eBAagv5Hjq1/zfaf68MP0d9v7zV4zpzv1pbUVvV7mtr6/n9OnTlJSU4O3tTXBwsNmu7HS0lGpqavjxxx85fPgwTU1NLF68mF//+tc33c/S0hJ/f39mzJiBVqslPT2d0tJS3NzcGDVq1A3HljB/BpSg+Pv709jYSGFhIUqlsouCYoWDuxcOAF5eLBkew5IHHuGVabHEPuFJ7vcPc60lti/DJnRxMOPDuLs22ndPVVUVGzduRKPR8OCDD5pdAiD813ow3fQnT57kwIEDpKen4+TkxMqVKzs137oVERERWFlZUVlZSVZWFj/++CNtbW3ExMRIgjLAGDBTHg8PD/z9/WlqaqKwsLAbU58OuEzkxTdX077t7+wrML3oiLMPcK6AglvumEvuSSDEC/fun71LFBcXk56ejiAIJCYmdip9aC6YegwDqNVqDh48SEpKChYWFsTExIgRsHD7qYuNjQ1RUVHExcURGBjI6dOn2bdvH6WlpX3yOSR6jgEjKG5ubvj6+tLc3ExJSck9Zx+r7F0BLQaD6RVPRkwaBkczyb9VHo4uj7NpMCEurEeWhG+GqQH45cuXxZYY3t7eZtdKpKNAHDt2jNdff52jR4/i6+vL448/zsqVKzsVReqKpbFgwQJ++tOfIpPJOHbsGIcOHSI/P79Xxi/ROwwYQXF3dycgIICmpiaKiopuLyhHX0YlG857mbfepKKyAFDQ8T6NmrIS9/avOXDq5orSuH8LXxDJo1PCuvUZuoJWq+XgwYNkZmYyfvx4JkyYYJYxJzKZDK1Wy4ULFzhw4ABZWVm4uLgwZcoUJk+eLPYF6opT1bSNvb09EydOJD4+HhcXFw4dOsSRI0ekWjgDif6I9+8OTU1NwokTJ4QVK1YIixcvFi5fvnzrjRt2CU9YI7j/cp9wk1QeQWg7I7wViUDiBqFzNs9V4cvp1rfI5TknvBuJYL1ks3B9BlBPUlVVJcybN0+Ii4sTkpOThebm5l48291jNBrFn8+cOSMsXbpUmDZtmvDLX/5SSEpKEjQazT2fw2AwCDt27BCioqKE5cuXC6dOnTK7v4PEzRkwFopSqcTT05PGxkZKS0tv3/dFlcg7u5/D5tPZBMW+zMbD5yhQq1GrCzi39688OjKW3xbM4csPH7rOuRrKqr99xrRTP2P8lJfZeOISarWaSyc28puYCbxY/xy7v3i4VxyygiDQ1NREZmYmLS0tuLi4EBoair29fS+crfvIZDJ0Oh0pKSls27aNlpYWRowYwZw5cxgzZoyYmyN0Y7nXtI+pjsq8efOwtLTkf//3fzl27FiPfg6JXqKfBe2uqK2tFWbMmCGEhIQIGRkZd9y+LW+38OFPZguh7tZihquD7wRh6Rv/Fs5XXG+C/BdtxUlhwzOzBV+Ha/tYu4cKs5/ZIJy5qbnTMxgMBmHPnj3C73//e2HNmjXC22+/LdTW1vbeCe+BS5cuCQsWLBAmTpwovPbaa8KxY8d65TwajUZ4//33BQ8PD+GFF14QKioqBIPB0CvnkugZZIIwcCKHmpqaWLVqFbm5ufzjH/8gLi6uv4fUo/zxj39k//79PPLIIyQkJBASEtLFpfG+Qa/X891333H48GGqq6sZOnQoCxcuJCIioteSFdPT09m4cSOVlZX4+vqydu1accVLkMLzzY4BM+Ux4eHhgZubG3V1dTQ0NGA0Gvt7SD1CU1MTV65coby8nDFjxhAWFmZWYqLT6bh48SJbtmzh8OHDTJgwgYcffpiYmJhezXweM2YMzzzzDA4ODvzwww+kp6eL011JTMwP87liu4CFhQW+vr40NjZSXV1NeXk59vb2naqoD0RycnJITU3FysqK6dOniysk5oIgCKxfv55t27bh7OzMT3/6UxISEjrl5fQWVlZW+Pv7M2/ePKysrNi5cye5ubk8//zzODo6iuOTxMU8GFB3oklQPD09qaqqoqysbFBYKOfOnWP79u24ubmxaNEis8rXqaqqIiUlhdTUVEpKShg7dixLly4lIiKiz4ojKRQK4uLimD9/Ps3NzRw6dIiTJ0+KwY2SmJgPA05QvLy8cHNzo7KykvLy8kEhKFeuXOHkyZP4+fkxb948s7FQ2tvb2b59O7/+9a/R6/W8/PLLLF68GH9//z6/iU3JkYmJiQQEBPCvf/2L9evX9+kYJO7MgJzylJaWkpubS2lp6YAWlIaGBs6fP09FRQUBAQGEhoaKGbn9bcbn5+dz+PBhjh07hpOTExMmTOj3dqfu7u5Mnz4dmUzGtm3bSEtLIzIykpEjR5rd8vr9yoASFEtLS3HKU1FRIfbrGajk5uayfv16jEYjq1ev7pSv019iIggCVVVVHDx4kLfffpvhw4fzpz/9iYiICLPIdo6IiEChUHDx4kUKCgrYtGkTCxYsYNasWf09NAkG4JTH09MTNzc3Kioqeix5zNnZmTFjxvTIse6GoqIiTp06hZWVFTNnziQgIODOO/UiBoOBy5cvs27dOg4cOEBsbCxLlixh1KhRuLi49KvF1DG6ITAwkGXLljF69GjOnz/P4cOHycnJkbpLmgEDykIxoVKpaGxspK6u7p4tlPr6eurr6/u06LOp+lxRUREajQZPT0+GDx/eZ+e/GaauhEePHmXr1q04Ozvzl7/8pV+E9mZ0FDOFQsH06dOxsrLizJkzYj7RrFmzCAvrvTwriTszIAXFysoKlUqFQqGgubkZJyenbh+roKAAAD8/v54ZXBdoaGhg06ZNXLp0iYSEBGJiYvrs3CY6+mg0Gg0XL15k48aNZGVlMXv2bOLj4/tkWfhu6TjuUaNG8X/+z/9h27ZtbNq0CYVCgaenp7icLNH3DKgpjwlLS0s8PT1RKpXU1tbeU20UUwuHjrVaexu1Ws3+/ftRq9XMnTu3X6wA003Z3t5OdnY2hw4d4vTp02g0Gh544AEWLVpklq06OpaGdHBwYObMmYwfP57m5mbOnDnDsWPHqKmp6edR3r8MSEFRKBT4+fmhVCopLS29pwvIZKH4+vZ2DbZr04rGxkYKCgqor6/HwcGBiIgIPDw8ev3cJjr6Ipqbm0lNTeWrr75iy5YtTJkyhb/85S9ERd2qn5H50HEKNG/ePN544w0qKip48803ycrK6seR3d8MSEGxtrYmMDAQlUpFUVERlZWV3T5WYWEh0DcWitFo5MSJE5w6dYrAwEDGjh2Lp+etm3b0BqYbsaGhgfT0dPbu3UtJSQnBwcHMmjWLsWPHYmdn16djulfc3d2ZO3cuw4cPR6PRkJKSwrFjx26fkS7RKwxIH4q1tTVBQUG0t7dTVFREcHBwt49lmvL0hQ9Fr9ezfft2MjMzeeyxx5gyZUqfpQ109D20trayf/9+9u7dy6lTp1i4cCFPPfVUn1pKPY1MJuOnP/0pw4YN4x//+AfZ2dl8/PHHA/ozDUQGpIWiUCjw9/fHwcGB0tJSqqqq7rzTLTBNeXrbQjEYDOTl5YnV5kaMGMHQoUP7rLSjSUxKSkrYu3cv+/bto66ujpkzZ5KQkDDgbzyZTEZoaCixsbGEh4fT2trK5s2bycy8Tdk+iR5nQFooJh9KdnZ2j/hQlErlPa0UdYWcnByOHTuGQqFg+PDheHl59er5boZWqyUpKYl9+/ZRUFDA1KlT+e1vfzuoVkX8/PxYs2YNe/fu5csvv6SsrIzIyEgp36ePGJCCYpryODg4UFhY2G0fikajQa1WM3LkyB4e4Y2kp6ezbds2wsPDmTJlCu7uvV03v/M0Jzc3l5SUFJKTk9FqtSxfvpypU6d2EpP+DvfvCWxtbRk1ahSNjY1cuHCBoqIi1q1bx8yZMztV4B/on9NcGZCCAiCXy7G3t6empob6+vpuHaOv/CcGg4HMzEzOnTvH8uXLSUxM7BPfiemmaWtrIyUlhe3bt9Pe3s64ceN47LHHbhC1wXKT2dvbM3bsWCorK0lJSWHLli1YWVkRHBzcqfWHRM8zYAUFrsWj2NjYiHVOr291eSf6wn9SWVnJuXPnaG5uZvjw4fj7+/e6mHR8Al+9epXNmzdz7tw5LC0tWb58OdOmTesTC6k/cXd3JzExEY1GQ0FBAWlpadjZ2TFjxoxOFfklcelZBqRT1oS1tTUeHh5YWlpSXV1915nHfRGDkp+fz48//oilpSWzZ8/uk3wdmUyGIAhUVFRw6NAhUlJS0Ol0REdHk5CQQGhoKDB4+wabhMLd3Z2JEycyYcIE6uvr2bNnD1lZWWK6hiQmPc+AtlAcHBwICQnBwsKC3NxcrK2t76o4UW9FyXZ88uXn57Nz506WLVvGypUrezXupON5S0pKePPNN7l69Sqenp7MmzeP2bNndyo/MFhvqI6fKzIyEjc3Nz777DOSkpI4dOgQNjY2jBkzBhsbm34c5eBkQAuKUqkkMDAQS0tLCgoK8PX1vStBMQW19bQPRSaTodfrqaqqoqCgQCxj2NvRuKYb6cKFCxw8eJCrV6/i5OTEjBkzmDRp0n1n6ps+p4+PD9OnT6exsZHLly+j1+txcXExy/auA50BLSj29vb4+flRUVFBSUkJjY2Nd7V/b/pQysvL+e677ygqKiIhIYERI0b0+DluRkNDA++//z7nzp0jLi6OWbNmMWvWrE7Rr/eDmEDnzzljxgyGDx/Oc889x48//khERASOjo54enreN3+PvmBA+1CUSqXYaiI/P/+uV3t6U1BqampISkqiqamJRYsWERkZ2ePnuJ6jR4/y8ccfU1tbS2RkJAkJCUyYMGHAhdL3JB39RD4+PjzwwAPExMSwc+dONm/efNcPIYnbM6AFxeRDsbS0JC8v764FpaSkpNeWjMvLy8nNzcXW1pYZM2b0eiRqdXU1X3/9NevXr2fIkCE89thjJCQk9EsAnTlxvfWxYsUK1qxZw4ULF9i+fTuXL19Go9H00+gGHwNaUJRKJcHBwVhYWJCXl0dDQ0OX9y0pKUGv1/e4ddLW1sauXbs4evQoY8aMYfz48b2+TLx7927+53/+h7q6OpYuXcqCBQskp+NtCAsL4+c//znBwcG8//77bN++vb+HNGgY0IIC16wUCwsLampqaGlp6fJ+vVVYqaGhgV27dpGVlcW0adOYOHFiry3PNjc3k52dTVJSEocPHyYwMJBHHnmE2NjYXk8lGMi4uLiwatUqYmNjycjI4PDhwxQXFw/ogufmwoAXFLgWNSuXy29bDlKtVqNWq8Xfe2vJuLa2lszMTKqrq4mJiSEqKqrXnH4pKSk899xz5OXl8dRTT/Hggw8SFhaGQqHolfMNFmQyGSqVitjYWNasWUNtbS2/+c1vOH78uLjNYI3R6W0GhaDY29vj4uKCTqejsbHxphdDYmIikZGR4nz5ZkFtBQUF6PX6bo8jNzeX06dPY21tzZAhQ3otAre6upoDBw5w5MgRGhoaGDZsGAsWLGDUqFF91nxrMBAaGsqCBQvw8/Pj4sWLpKamipaKtPLTPQaFoLi6uor1UQoLC2lra7thm9GjR1NdXc3mzZuBGwsr7d+/n6FDh/Liiy92exx79uzhhx9+IC4ujpUrV/bKzd3S0sKpU6d4/fXXycjI4MUXX+TJJ58U43Ekuo6NjQ3h4eEkJCQwbdo0Tpw4wfvvv09RUZG4jWSp3B2DQlCcnZ0JCAhAo9FQWFhIa2vrDds8++yzAHz00UdA58RAtVrN6tWr0ev13S4YXV1dLWa3hoeHExMT0+OCUl5ezpYtW9i2bRuurq5MmTKFuLg4goOD7zqPSeIaFhYWjB49mjlz5mBvb09WVhYpKSkUFxcD90/MTk8xKATFxcWFwMBA2traKCgouKWFEh8fT0ZGBocOHerklF29ejVqtZonn3ySFStW3PX5a2pquHDhAnV1deLKk5OTU4+u7lRWVnL69Gm++OILUlNTeeyxx/jVr36Ft7d3j53jfsXd3V3sPmBvb09SUhI7duyQYlS6waASFFNJyJsJCnS2UkyFlT7++GP279/P+PHj+eCDD7p1/szMTLZu3YpSqWTevHn3HGLf0cw2VXpbv34969atY9iwYfziF79g3LhxKJXKPishOdiRy+XMnTuXZcuW0dTUxOHDhzlx4gS1tbX9PbQBxaC4GrsqKEuWLMHPz49t27bR3NyMXq/njTfewMnJiW+++abbcRtZWVkkJyfj4+PDokWL7rn/b0cz25R6v3//fi5fvsz8+fN56qmn+qRK//1GaGgoS5YsISQkhPr6erG1iFTsuusMCkFxdXUlMDAQjUZDfn7+LQVFLpfz1FNPib9rNBr0ej3//Oc/u7Ui097eTm5uLmq1GisrKwICAhg6dGi3hamjZaLX6zlz5gxff/0169atIzQ0lHfffZcpU6Z069gSXcPR0ZGnn36axYsXc/DgQb7//nuKiooGdA/tvmRQCIqFhQXu7u5otVqqqqpu2+N27dq1nW74l156iSVLlnTrvKaGXfX19YwfP56wsLB7cuJ1bL51/vx5kpKSyMzMRC6XM3XqVObPnz/oCyP1JyZBDw0NZebMmXh6elJSUkJSUhI5OTn9PLqBwaAQFEAM5tLpdLd9mri5ubFq1SoA4uPjee211+7qPB2tiLy8PL744gtaW1tZs2ZNt2vTdjymIAikpaXx9ddfs3XrVtzc3PjrX//KokWLunVsia7T8WEQFBTEW2+9RWRkJO+//z47duy4pw6V9wuDRlAsLCxwcHDAwcHhjiH4Tz31FF5eXnzzzTfI5XdXwcFUDa2lpYXc3Fyqq6txcXFh7Nix3Q53N13I9fX1pKWlsWfPHq5evUp4eDgzZ84kIiJCCljrYxQKBSNGjCA2NpaAgAAuXrzId999R0VFRX8PzawZ0PVQrsfLywtfX19qa2spLi7G29v7poIxevRokpOTu52J29DQwJEjR7h69SpRUVFERET0SImA1NRUdu7cyblz5xgxYgS/+93vxHKNEv1DfHw8zs7OfPbZZ7z99tu4uLgwd+7c/h6W2TJoBEUmk+Ht7Y2vry81NTUUFRXh5uZ2Swtk+PDhd3X86zvv7dy5k/r6ehYsWEBsbOxdj7fj8SorKzlx4gR79+6lrKyMKVOmMHXq1E5icr9UWTM3nJycGD16NLGxsTQ0NLB3717a2tpITEwUfXHSd/NfBo2gADcISsem33q9nqtXr4pJgjY2Nnh5eeHn59eljOOOF0x1dTUnTpzAx8eHefPm4ePjc9dj7Xi89PR0Nm3ahFqtJjQ0VGypeavt7xlNHep6Pfau7jh0KcBWQ526nnbA2skL5y4tYuloqqqhxQCW9q643+lEmjrU9e1d27aPsbe3JzExEZVKxZdffsmFCxcYNmwY4eHhgBRN25FB40ORyWR4eHjg7e1NQ0MD5eXl6PV6du7cyerVq/H29mbEiBFMnz6dlStXsnTpUmJjY/H39yc4OJjnn3+e/fv33/YcBoOBCxcucOzYMby8vIiIiLhrv0lHB2xVVRXr1q3j3//+Nw0NDcyaNYuf/exnYkOq67e/d3RUnvorcz1c8PZeypaiO21eyal1jzNSZYuLtzfe3t642KoY+fg6TlXeKjZDQ/6el5nm4YDK49o+HioHPKa9zJ78mxUy0nDh60cZ4jGM+GnTGOPrwJBHt3DZzEI/AgMDiY2NZeLEidjY2LBhwwaSkpI6bSPl/QwyC8XT0xMvLy+OHz9OY2MjiYmJnDhxArhWjGn58uUolUr8/PzEroFXr17l1KlTfPjhh3z44YeMHj2aDz74gGnTpt1wfK1WS3JyMqdPn2bcuHHExMR0y6kL15aG09PT+fHHH2lpaWHkyJHMnz+fUaNGAf81o3vs6Vd7lnXPPMjTG3OhSw7eWpJ/M54Zn7nx4raLHJk2HGcbHU1XDvDaw0uIHp/NwYwPmN6pJriOy+vmEfWzqyz+/BBFD4/D38EKTdlxNjz/EIkjjvN55l7Whv3XAmlM/i1zvxjDDwVfM8YF0FWS9JvxzHozmNw/TsBcbBVLS0tCQ0OZM2cOVlZWpKWl0dbWRnh4uBhkKFkqgDCI0Gg0wvHjx4WEhATB1tZWAISJEycKO3bsENra2m65X1VVlfD5558Lo0ePFgABEObOnSuUl5d32q6xsVFYsWKFMG7cOGHv3r2CRqMRjEZjl8bWcbumpibhjTfeEJYuXSosW7ZM+OCDD4QrV64IWq22ex/8Tpz/uzDRAcE6dIHwxu48oe3gcwJMEj6/eutdtEd/J7jjLvxyX82Nb9bsE37pjuD/6gmh04hLNgiJIEz6LEe44ZNoc4TPJiFYL9kslHR4+eBzCL/cd93WVz8XJk36XLjN8PqN9vZ2IS0tTVi5cqWwYMEC4Z133hHOnj3b38MyGwbNlAcQ+/I0NzczZMgQ3nrrLY4dO8aCBQtuG73q5ubG2rVrOXv2LN9//z0jR45kz549REZGsmfPHuBadbSsrCwaGxtxcnIiLCwMa2trcRn5TpieXmq1mr1793LixAna2tqYMGECM2bMYMiQIVhZWfWO2dxuy8Ktl6m6uIOX5wZzZxdII/u/eI+qyN/zVMJN2pK4JPDU7yMpfmsTqR2mJhe++7/stn6C3z0SdqNlYRXGI797Arb9P3bn/vdlV99h5F/Xm1rXWE21whJzKsZg+l4UCgWRkZHMmDEDT09P0tLSSE1Npaampp9HaB4MKkGBa1+4VqvFxsaG1atX3/X+S5Ys4ezZs6xdu5bq6moSExP529/+RmpqKv/+978JCAhg/vz53W5L8cknn/Dee+/h4ODAAw88wGOPPdbJedwrZvPY1bw8d2gXHbAAGSRvaGfYY9MIv8UW4ROX4d7+NYfPml4p4MS2LHhoCZNUN99HNTaBRNL48dR/YzmiVr6Bw/NT+eXGcxSo1Vw69FdWLf6UxFcWE9TV4fYBHb8XBwcHHn/8cRYsWEBdXR3Hjh0jOTmZ8vLyfhyheTDoBMXKygonJyesra2pq6vr1jHkcjmff/45//znP5HL5TzzzDN8/fXXpKWlERwczOzZs1GpbnHX3ILLly/zxRdfkJOTg4eHB1OnTmXKlCmdYmF6xTrpDgW5nGqHCcODbr1N4HAmUUVKdsF/Xiji4lEYFhXALf8ynsGMdofdpzuEsfsuY8P5zUw6/ycenjaNn/y1mRV7M/hg+k0sIzPA9B1ZWloSHR3N0qVLkcvlfP/995w8efK2aR/3A4NOUCwtLfH398fFxYWSkhKqqqq6faOuWbOG9evXo9fr2bJlC8XFxYSFhREREXFXCYAGg4HNmzfz7rvv4uDgwGOPPcayZct6d2n4XmisoQxwtb+NaHp6EAS0tP/nBmpsRN0Obk72tzmwK75h0N7STsdFHCuP8Tz65r85cekSJ/79MktHmKeYQOfvyNfXl+eee47Ro0dz9OhRUlNTycnJuWVy6v3AoFrlgWvWhZ+fHzKZDLVaTUVFhdiCszuMGzeOhx56iMrKSkJCQjplJQtdCGg6ffo0W7dupbCwkPj4eObOnUtsbOxdtUztc2pKyQESu7Bpek4pEAZVavK6evxzhRQBAzkGuON3P2vWLNra2sjIyODDDz/kmWeeYfTo0f07wH5i0Fkocrkcf39/XF1dUavVVFZW3tNU4sKFC9TW1jJy5EgefPDBTnVIbicmer2eyspKkpKS2LhxI9bW1qxevZrZs2d3KxBOwry4viH7M888g1KpJDk5mZMnT6JWq+/LkgeD0kLx9fWlqqqK8vLye0rmMtWozcvLIz4+nri4uC77Ts6ePcsHH3xAQ0MDq1atYtq0aYwePfqufS/mjvttpzi32skBZc8PpV9xcHBg9erV+Pn5sX37dq5evcorr7yCUnntk3bFmh0MDEoLxc/PDxcXF8rKylCr1d2yUBobGzlx4gQlJSX4+voSGhraJTFoaWkhIyOD5ORksrKycHJyYvny5UydOhVHR8fufKQu0dzczIcffnjX7VhvSkAEk+60jU6PFgjz/U91utBQou94YAN6HRDkgec9DtEcmTp1KkuWLMFgMHDq1CmOHTsmdrO8H8QEBqGgmCqnubq6ioLSHcrKyvjyyy8pKyvjJz/5CdHRd75djEYjly5d4k9/+hPbt29n7dq1PP/884wYMaLX2oIWFBTw/PPP4+/vz/PPP8+HH3547wd19yIEOJmbe+tt8nM5BYwKDPjPC674DoO07NvE8+sKyUqHCcMGZ/lKCwsLgoODWbNmDREREbzzzjv885//7O9h9SmDTlAsLCxwdnZGqVRSXl5OVVVVt54O+fn5nD9/HgsLCyZPntwpv+Zm1NfXs2/fPn744Qfa2tqIiIhg5syZjB8/vkdKG1xPamoqS5cuZejQoXz44YdoNBrWrl3L8uXL7/3gqhFMmQRphy9yq7rvjZePks50xg81BbeMYFyiNew+TeatjnvxHAewZmp42L2P0UxxdnZmypQpREdHo9FoOHv2LGlpafdNBf1BJygmFAoF9fX1d/1FarVasrOzuXz5MjY2Nvj5+REYGHjbvjeNjY1kZ2fzt7/9jS1btrB06VJeeeUVwsJ69sbRaDRs2LCBMWPGMHnyZLZt24abmxuvvfYaxcXFfP75592uGteZUOIeioSt20i76Z+vlB2frofEJ5gdZHrNinGzV2Gd878cunCzfXQc2/oOOe4vsPTuqz0MKLy8vIiLi2PhwoXo9Xo++OADUlJS+ntYfcKgFRQbGxtcXFyQy+V31QpBq9Wye/duzpw5w6RJk4iPj+9ULe16f0xVVRU7duzg888/x9rammXLlhEfH4+fn1+P9RhWq9W8/vrrBAcHs3r1ajIyMhg/fjzr16+nuLiY3//+9/e0NH4zwle9zy9VX/D//TGZzn89HZV73uT53f68+NJCOk5eVLN+w4eTsvjN0+tuyBbWXPgbL77RyPT/+zix5pLx14v4+/szd+5cRowYgVqtJjU1lRMnTty0Cd1gYtCt8piwsbEhNDQUpVJJSUkJtra22NvfeUWivr6egwcP0tjYyE9+8hMmTJjQyUPfcfpUVVXF6dOn2blzJ6mpqbzwwgv87Gc/67EpTkZGBp988gkbNmxAo9Egl8tZvnw5zz77LPHx8V08SiNX0o6T37EqZsYVoJqzR/exz+QmsQ9m4qSh/41ydUngtR9e5dj0GQQd/wmvPfMII9yqubjx//HKv7KJ+/IUb0y5zkltFcYTX24medYKokb8wK9feoJpAVB06Ave/ksSvLib9McHcvRJ11EoFERFRVFXV8fly5e5fPky3333Hba2tp1SLQYbg1ZQ7OzsxBadhYWFuLi43FZQBEGgpqaG8+fPIwgCPj4+BAcHi8t+15Obm8v+/fvZvn07Li4uvPLKK0yfPr1HxGTnzp189NFHYn0WJycnnn76aZ566qlutPuo5fQnv+LVM51fHTYMDrzxKw6YXhj7Kns6CgrgEvtHThQtZ+emd/nbn3/FZzgSPvMR/nV+JQsiPG5aWsAq7GG2XJ7AoQ2f89fPX+LfDRA4cTUv7fkrq6Z1JTFxcDFmzBh+9rOfsWXLFtLT0wkMDESpVBIUFDQom7TJBLNJIOlZCgoK2Lx5MzU1Nfj5+TF16tTbRi8KgkBSUhKpqamUl5czYsQI1q5de9Ol4sLCQg4ePMjBgwfJyspi1apVvPDCC/c03ubmZr766is++ugjrl69CsCQIUN49tlnWbNmzS2FTcJ86WjZrl+/nq1bt+Lt7U1MTAzz5s0blG1kB62FYmNjQ0BAAC0tLRQXF9/RjyKTyTh48CBJSUn8/Oc/Z86cOTe1Ns6ePStaJt7e3rz99tuMHTu22+MsKCjgk08+Yd26dWIMyaxZs3j22WdZsGBBt48r0f90nB4vXbqU4OBg3n//fdavX4+vry8qlapL0/CBxOCzuf6DnZ0dgYGBWFtbU1BQcEdBKSoqorCwkLa2NsLCwggKCupUja29vZ0LFy6QlJTEyZMnUalUxMbGMnfuXDw8PO56fKmpqTz44IMMHTqU9957T1z2zcrKIikpSRKTQYJpAqBUKomPj2fMmDEoFAqSk5M5dOjQoEskHLQWiq2tLQEBAaKg3K4Azvnz5zl8+DDW1tZMnjz5pgJx5swZtm/fTkpKCq6urrz88stMnDhRfP/BBx9Eo9GwY8eOW55Hr9ezefNmPvroI06dOgVcW2J86qmnePLJJ3t8pUai/7k+BurZZ58lMjKSV199lZycHMLDwwkODu6n0fU8g1ZQrKys8Pb2xsrKitLSUgoLC3nxxRfFG9nNzY3FixezZMkSLl68yI4dO4iMjGTmzJmdkveam5vJzMxk165dZGVlMWzYMCZNmsS4ceOwtLxWU+ytt97i22+/7SQwHamuruZvf/sbn3zyiRi5O378eJ599llWrFhx13VpJQYujo6OREdHEx8fT2lpKRs2bGD27NnExMT099B6hr6tONn3fPzxx4Ktra0wduxYsV5sx382NjZCXFyc4OjoKHz66ac37H/06FFh7dq1wqRJk4SFCxcKKSkpnd4/cuSIIJfLBaVSKWRlZXV6LysrS3jyyScFGxsbARDkcrmwfPly4ciRI736mSXMm/b2dqGgoEB45513hJCQEOGll14S9Hp9fw+rRxi0PhQTtra2ODo6Mm/ePD777DPy8/PJz89nx44drF69GrlcztGjR2lqaiI5ORm9Xg9cS/L74Ycf2Lp1K8XFxYwfP561a9eKVekB6urqWL16NXq9nnfffVeMUt25cyeJiYlERkbyt7/9DRsbG1544QWuXLnCN998cxcxJBKDEYVCQWBgIBMnTmTatGkUFxfz7rvvcuXKFXEbYYAuvg56W1upVOLv74+FhQWJiYl4e3ujUCgICgrCy8sLS0tLMjMzuXjxIt988w1Xrlxh06ZNNDY28s0331BSUkJQUBALFy5k5syZnY7905/+lIKCAlasWMGaNWv4+OOP+eSTT7h06RIgLftK3J7IyEhWr17Npk2b2LhxI97e3gwdOhQYuNnJg15QnJycCA4OxmAwkJ+fj4ODg1gtraSkhLS0NKZNm8ann37KSy+9xKFDh4iKiiImJgYnJycmTZrEokWLiIiI6HTcjz/+mG3btqFUKlEqlXh7e0vLvhJ3hZOTE2PHjqW0tJSGhgZSUlJoampixYoVooNeGGB1VAb9lMfR0VEUlIKCAnGZrrS0lLy8PCwsLAgJCSEmJobk5GSefvpp9Ho9qampVFdXM2vWLGJiYjpZGBkZGbz44ovANaftunXrpGVfiW6hUqmYOHEiCQkJNDQ0sGfPHjIyMtDpriVDDSQxgftEUAICAjAajRQXF2M0GmlsbGTDhg1cuHCBBx54gLlz5wLwv//7v1y5coXY2Fjs7Ow4fvw4H3/8sehXgWsCYloiNuHl5cVbb73Fo48+Kk1tJO6a0NBQFi5cSFRUFFqtlp07d/Ljjz8OyAr694WgBAcHYzQayc/Pp76+npqaGo4dO0ZjYyNz585FLpeze/duUlNT0el0zJkzh88//5zhw4fz73//m5UrV4pPjK+++orm5uZO51Cr1Tz//PNMnz6d4OBgZDIZwcHBHDp0qB8+scRAxMPDg+nTpzNx4kQKCgpITk4mJydHvO4GCoPeh+Lo6EhQUBCCIJCXl0d+fj4uLi5UVVURFhZGVFQUO3fu5L333mPo0KE8+OCDzJkzh+DgYGbMmMH06dP59ttvAdi0aRNPP/20OC0qKSmhoKCAgoICSkpKKC0tFX9ubm7uZNlISNyJKVOm4O/vz6uvvkp2djaHDh3CaDR2Wlk0dwa0oJw5c4Zdu3ZRX1+PjY0NOp0OBwcHoqKiGDlyJCEhIdjZ2eHr64sgCOTk5LB9+3aGDRtGZGQktra2bNiwgfz8fMLCwpg1axYJCQli5KKXlxfJyck3iIpcLkculxMUFNSN7F8JiVsTHBzMY489xuHDh0lNTaW9vR0fHx/c3d37e2hdYkAKilarpaKiggMHDvDOO+/Q1NQk9hhWKpXMmTOHxYsX4+rqiqOjIyqVCktLS9RqNdu2bSMmJoaEhATKysr44IMPiIqKYsWKFUyaNAk/Pz/gWn1YuGaKHjhwgJkzZ/Ltt9/i6OjIP/7xj/78+BKDGAsLC2bOnIm9vT3bt2+nsbGRyMhIxowZ062csb5mwAnK1atXOX78OPv370cQBF599VVsbGzQ6/UoFArq6uo4fPgw27ZtQyaTMWvWLLy8vHBwcEAul1NXV8eZM2eora3FysoKFxcXscF6ZmYmV65cQa/XYzAYOnnY//jHP/LMM8/wxRdfIJfLWbp0aT/+FSQGMh2D1jpeY4IgYGlpiaOjI1evXsXf35/CwkLeeust1qxZw4oVK3qt2HlPMaAEpaamhpMnT5KcnMyZM2eYMWMGv/71rztt09bWRnl5Oenp6ezduxdHR0cWLlyIk5MTLi4uVFZWig3AQkNDmTBhAp6entTU1FBVVXVbv8eKFSv4xz/+weeff05bW5sYhCQh0VPIZDIsLCzQarWEhIRQWVlJeno6Y8eOZfr06fj4+Ny2vnF/M2AEJS8vj/T0dJKSktDpdPzhD3+4aUKVtbU1jzzyCK6urvz4449kZmaycOFCVCoVjo6OVFZWAhAeHk54eDg+Pj7Y2NjQ3t6OIAjiVMdExyeIq6sry5Yt48iRI7i6ukpOV4mbYrpmuhs+b5q+Ozg4MH78eMLCwnB2diY7OxsbGxs8Pe++q1FfBcgNCEHRarUcPXqUXbt2ARAdHc28efPEAkjX/7FGjhxJXl4edXV1VFRUIAgC7u7uhIeH4+DggEqlIj4+npCQEOzt7ZHJZBgMhi790YcPH86iRYt678NK3PeYrkMLCwssLS3FbHQbGxtxytPW1kZZWRlFRUW0t7cjl8uxtrbG1dWVYcOGYWlpSUlJCQqFAnd39z4LkDN7QTEYDJSVlbFr1y527NjBn//8Z3760592qqZ2/TxUo9Gg1WqRy+VYWFggCAJ+fn4kJCTg6upKQEAAwcHBqFQq8SkyUJOxJAYv14uAXC4XBSU/P5+tW7fy97//HbVajaOjI97e3kyfPp0///nPqFQqtm/fjo+PD4sWLZIExURZWRnHjx+noaGBwMBAhg8fftuWnoIg0NraSktLCzqdDp1OhyAIBAYGIggCbm5uuLu791iLCwmJvuTAgQNkZWVhZWWFwWAgPj6elpYWrK2t8fT0xMPDg02bNgHXOjgEBgb26fjMXlAKCgo4cOAArq6uxMbG3rG6lcFgoKamRiz5aKos7ujoKLYvGGj5ERIScC0i++233yYlJYWHH36YBx54gJdeegl7e3v0ej1yuZzz58/z6KOPUlFRwe9//3uGDh3ap9e72QtKQ0MDhYWFDB06lFGjRomZwrfCaDSSl5dHdXU1Q4YM6RR4JgmJxEBl7969fPfdd9TU1DB58mRmz57NhAkTxCLXJj+Ll5cXI0eOxNPTE19f3z4vgm32gtLU1ERFRQVRUVFi467b0dzczLlz5ygvL2fcuHFERkZKQiIx4Pn2229Zt24d8+fPZ82aNcydO/em94JCoWDWrFk0NTXh7+/f53ErZp8cWFlZKfap8ff3v2MjrdLSUpKSksjJySEuLo7o6GhJUCQGLHq9nitXrlBQUADApEmTSExMvOWD1dLSEldXV7y9vXF3dxdXMfsKs7dQ9Hq9mMZ9p4Ce3Nxcjh8/jlqtxtvbm+HDh+Ps7NwXw5SQ6BXy8vLYvXs3ra2tDBs2jOjoaHEac7MwB0tLS3x8fDAYDDg5OXXqy90XmL2guLm5ERgYiIWFBZWVlWIl+5uxZ88etmzZQlhYGFOnTpXERGLAk56ezgcffEBYWBhr1qxh2LBh4ns3szwUCgUjRowArsWt9LV1bvZTHk9PTyIiImhqauL48eM0NjbesE1hYSFff/01hw8fRiaTMXPmTGbPni0VO5IY8KjVagoLC8XGcnfq3WRhYYG9vT329vZim5e+xOwFxdvbm+joaOrq6ti9ezclJSU3bPP111+zZs0a8vLySExMZOnSpYwfP16KNZEYNDg4OGBnZ9cvInE3mP2UJzAwkISEBNra2khPT+fTTz/Fy8sLo9GIwWBAr9dTW1vLypUriY6OJjY2tlMwz0Ar8ish0RGj0YhMJkMul6NQKCRBuVecnJyIiYmhsrKS3Nxctm/fLnbfM/Hss8/y9ttv33SJTBITiYGM6fo1GAzodDqMRuMdRcWURtIf177ZC4qJcePGYW9vz+zZs6mvr8fS0hK9Xo9MJiM2Ntbs60RISHQXQRBoampCo9F0KeessrISo9GIu7t7n7e5HTCC4uPj06nnsITE/YCbmxtubm40NjZy5swZsXHd9ej1eurq6mhoaECr1fZ5hKwJs3fKSkjcz0yYMIHnnnuOmpoa/vCHP5CamnrT7crLy/nyyy/54IMPaGtrIzAwsM+tExhAFoqExP1IcHAwixcvprS0lP3795OWlgaAs7Mz1tbWGAwGrKysaG9vp6mpCRsbm9tm4/c2MkEqBCIhYdZotVrUajUnT57ko48+4siRI52Ki0VHRzN37lymTZtGREQESqVSzLLvayQLRULCzFEoFAQEBGBra8ulS5ews7NDoVCIDtrhw4czfPhwwsLCUKlUQP+FS0gWioTEAMFU8/j6W1Ymk3X6159IgiIhIdFjSKs8EhISPYYkKBISEj2GJCgSEhI9hiQoEhISPYYkKBISEj2GJCgSEhI9hiQoEhISPYYkKBISEj2GJCgSEhI9hiQoEhISPYYkKBISEj2GJCgSEhI9hiQoEhISPYYkKBISEj2GJCgSEhI9hiQoEhISPYYkKBISEj2GJCgSEhI9hiQoEhISPYYkKBISEj2GJCgSEhI9hiQoEhISPYYkKBISEj2GJCgSEhI9hiQoEhISPYYkKBISEj3G/w8FnlQ6nigHfwAAAABJRU5ErkJggg==",
"path": "images_version_5/image_43.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, If point D happens to fall on AB, then the degree of angle DOB is ()
Choices:
A:40°
B:30°
C:38°
D:15°
|
Như hình vẽ, nếu điểm D rơi trên AB thì số đo góc DOB là ()
Các lựa chọn:
A: 40°
B: 30°
C: 38°
D: 15°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, If point D happens to fall on AB, then the degree of angle DOB is ()
Choices:
A:40°
B:30°
C:38°
D:15°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, If point D happens to fall on AB, then the degree of angle DOB is ()
Choices:
A:40°
B:30°
C:38°
D:15°
|
As shown in the figure, If point D happens to fall on AB, then the degree of angle DOB is ()
Choices:
A:40°
B:30°
C:38°
D:15°
|
215
|
43
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAJGCAYAAACHljlyAADYEklEQVR4nOzdd1zV1f8H8BfKXiJTwIFbwb33qnDlxEzTXJlpml9NM/dIrdRKTTPL3Ctn5h6gODGGAxC3oiIiDlBAFITz+4PfOZzL3Rcuy/fz8eDhx/NZ537WPff9OcOEMcZACCGEEEIIMZoSBZ0BQgghhBBCijsqdBNCCCGEEGJkVOgmhBBCCCHEyKjQTQghhBBCiJFRoZsQQgghhBAjo0I3IYQQQgghRkaFbkIIIYQQQoyMCt2EEEIIIYQYGRW6CSGEEEIIMTIqdBNCCCGEEGJkVOgmhBBCCCHEyKjQTQghhBBCiJFRoZsQQgghhBAjo0I3IYQQQgghRkaFbkIIIYQQQoyMCt2EEEIIIYQYGRW6CSGEEEIIMTIqdBNCCCGEEGJkVOgmhBBCCCHEyKjQrcKQIUNgYmICLy+vgs5KsdCuXTuYmJigXbt2BZ0VnRXFPGdkZGDp0qVo0qQJ7O3tYWJiAhMTE/Ts2RMAEBgYKNICAwMLNK8EOHv2LHr16oUyZcrA1NRUnJvExMSCzpreZs+eLfJPNKP7kBRWkZGRGDhwIMqVKwdzc3NxnV66dCnP9qHtu5Xvc/bs2Xm2z8LENC82cubMGbRu3Vr8/+TJk2jTpk1ebJoQoqP+/ftjx44dBZ2Nd167du1w8uRJAABjTOUy+/btQ69evZCRkZGfWSOSwMBAtG/fXim9ZMmSsLe3R6lSpVCuXDk0bNgQrVq1Qrdu3WBubl4AOSXE+MLCwtC6dWukpqYWdFaKtTyJdG/YsEHj/wkpDIpzNO7cuXOiwN21a1ccO3YM4eHhiIiIwK+//lrAuSM5TZgwARkZGfDw8MCGDRsQFhaGiIgIREREwN7evqCzVyhFR0eL+3fdunVG209GRgYSEhIQHR2N06dPY8mSJejTpw/Kli2LefPm4e3bt0bbNyn+8us61teUKVOQmpoKe3t7rFixAsHBweKZVKNGjYLOXrGR60j3mzdvxJe9ra0tkpOTsWPHDixbtgxWVla5ziAp+ugVqvH5+/sDyIrSbdmyRWXBrV27dmojryT/3L9/Hzdv3gQATJ06FZ9++mkB5yj3Zs+eXaRfB48aNQpffvml+H9ycjISEhIQHh6OgIAA+Pv748mTJ5gxYwb27duH/fv3w8XFpQBzTEjeSU9PF2/nRowYgVGjRhVwjoqvXEe6//33X1EHcenSpQCAly9f4t9//83tpgkhOnr48CEAwM3NjSKlhRw/VwBQrVq1AswJ4VxdXVGrVi3x16xZM3Tu3Bnffvstjh49ioiICNSvXx8AEBwcjN69eyMtLa2Ac01I3nj69Km4numZZFy5LnSvX78eAODt7Y1hw4bB29sbAFUxISQ/vXnzBgBgZmZWwDkh2vBzBdD5Kip8fHxw9uxZUfA+c+YMVqxYUcC5IiRv0DMp/+Sq0B0fH4+jR48CAAYOHAgAGDBgAADg6NGjePz4sdZtxMbGYvLkyWjQoAFKlSoFc3NzlClTBrVr10b//v2xbt06vHz50qD8ZWRkYN26dejYsSPKlCkDc3NzODg4oGrVqnjvvffw/fffIyoqSut2EhMTMXPmTPj4+MDGxgYODg5o06YNNm/erFM+IiIiMGLECFStWhXW1taws7ODj48Pxo8fj+joaJXr7NixQ9T7un79usplqlSpIpbZtWuXymV69uwJExMTNG7cWCF93bp1Yt3o6GhkZmbizz//RIsWLVC6dGnY2NigTp06mD9/Pl69eqXT51RHU2tlVfXbjh07hm7duqFMmTKwsLBAxYoVMWrUKMTExBi0f/5Z58yZI9L4PuU/decCyIpOfv3116hSpQqsrKzg5OSEjh074tChQzrlISEhAfPmzUPz5s3h7OwMCwsLeHh4oEePHti9e7dBn0v+HPzH771795Q+F6drrwn37t3DyJEj4eXlBUtLS3h4eKBnz544ceIEAM114/Wpr+jl5QUTExMMGTJEaV7O6/PNmzdYsmQJmjVrBmdnZ7Wt29++fYvVq1ejS5cu8PDwgIWFBZydndGmTRssWbIEr1+/1pgnY+K9IsmN99q3b69wrvSp46nqWO/YsQPvv/8+XF1dYWVlhRo1amDy5MlISEjQur20tDSsWLEC7du3h4uLi3gWd+nSBZs2bUJmZqbadbW1l8h5rq9du4bPP/8cXl5esLCwgJubG3r16oXz58+rXN/ExAQVK1YU/x86dKjSdW7s6i1WVlbYuHGj+Iw//fQT0tPT82Tb27dvx3vvvQcXFxdYWVmhevXqmDRpEp4/f65xvfPnz2P69Olo166d+I6zt7eHt7c3Ro0apfX7LWdPXfw5V61aNVhbW8PFxQVdunTR+pzLeQ78/f3RvXt3uLu7w9LSEpUqVcKYMWN0foZfv34dY8eOhY+PD0qVKgUrKytUqlQJQ4cOxYULF9Sup+oZZ+ixvXHjBr766ivUqlULtra2MDc3h4eHB+rVq4dhw4Zh27ZtCoVVXRh6HWdmZmLTpk3o0qWLOM8uLi5o3749VqxYYfBbF37fasqTnJ+0tDTs27cPY8aMQePGjVG6dGmYmZnByckJTZs2xezZs/H06VOD8pLXcvM8y3lf5LYMqIDlwi+//MIAMBMTE3bv3j3GGGPR0dHMxMSEAWA///yzxvVPnTrF7O3tGQCNf/v27dM7b0lJSax169Zat+3n56e07uDBgxkAVqFCBXb16lXm5eWldv3Ro0drzMf333/PSpQooXZ9CwsLtn79eqX14uPjxTK///670vyYmBit+cjMzGSOjo4MAJswYYLCvLVr14p1IyMjWYcOHdTmsUmTJiw5OVnbIVerbdu2DABr27at0ry7d++K/axdu5Z9++23avPh4uLCoqKi9N6//Fk1/d29e1dlnk+fPs2cnJzUrrdo0SKN+z9w4ABzcHDQuO+uXbuypKQkvT+bLp+LO3HihEg7ceKEyu0dPXqU2djYqNyOiYkJmz9/Pps1a5bStrmc51OTChUqMABs8ODBSvPkcxYSEsLq1aunlJ9Zs2YprHPr1i3m7e2t8VhUrVqV3bhxQ9thzRV+7eQ8Pvy5oulP2zGT5TzWw4YNU7tdd3d3duXKFbXbio6OZjVr1tSYt1atWrFnz56pXF/TNcGY4rnetWsXs7a2VrmPkiVLsr///ltpfV2u85zXgzby/aDPur6+vmK9s2fP6rXPnPv19/dnn3zyidrPVKVKFfbo0SOV29HluVayZEn222+/qc2L/F0XEhLCXF1d1W7rf//7n9rtyMdx9uzZardhb2/PTp48qfH4fPfdd8zU1FTtNkxMTNjMmTONemy3b9/OzM3NtR7fiIgIjZ9F3XHS5zp+9uwZa9mypcZ1atasyaKjo/XKC2OK960u+dHlGebk5MTOnDmjdp+aygPyMdL3fpbl9nmWl2VApc9n8KdijNWtW5cBYG3atFFI54XdunXrql339evXzMPDgwFgdnZ2bNKkSezQoUMsLCyMnT9/nm3bto2NGzeOlStXzqBC94QJE8RB+fDDD9nWrVvZ2bNnWVhYGDt8+DBbsGABa926NevTp4/SuvyAu7i4sKpVqzI7Ozs2ffp0FhgYyEJDQ9mqVatY2bJlxfYPHz6sMg+//fabWMbFxYX99NNPLCgoiJ05c4bNnj1bFG5MTEzYgQMHlNbnF83HH3+sNG/jxo0KJ97Hx0dpmYsXL4r5OY+h/MBu0aIFK1GiBBs8eDA7cOAACwsLY//88w9r3ry5WGby5Mm6Hnoluha6W7RoIZbbsmULCw0NZf7+/mzQoEFimWbNmum9/4SEBBYREcFGjRql8LDM+ZeWlqaU52rVqjFnZ2fm6urKfvzxR3bmzBkWHBzMfvnlF1GQNjU1ZZGRkSr3ffToUVayZEkGgHl5ebEFCxawwMBAduHCBbZv3z42cOBAkafevXvr/dl43nv06MEAMA8PD6XPxWkrdN+8eVMUhkqWLMlGjx7NAgICWEhICFu7dq0o0DZp0kRsJydjFLrr1KnDTExM2KBBgxSuz4MHD4rlY2NjmZubm3ieTJgwgR06dIhduHCBnThxgk2ZMkV8tkqVKrHExESdj7G+1BW6Y2JiWEREBFuzZo2Yv2bNGoVzlZCQoPN+5GPduHFjcW62bt3KQkND2cGDB9nHH38slilbtix78eKF0naSkpJYpUqVxHI9e/Zke/fuZaGhoWzHjh0Kn6d58+bs7du3StvQtdBdv359ZmlpySpWrMiWL1/Ozp8/z4KCgtjs2bOZpaUlA7IKZvHx8QrrR0REsCNHjoh9zJs3T+k6f/z4sc7HjjHDC90LFy4U6/3444967TPnfvkzr2fPnmz37t0sLCyMHTx4kHXt2lUs069fP5XbWbVqFStdujQbPHgwW7NmDTt9+jS7cOEC279/P/vuu++Ys7Oz+H4JCAhQuQ35u87Ly4tZWFiwyZMns1OnTrH//vuP/frrr8zd3V3kRV0gjc9v1KgRA8CqV6/OVq9ezUJCQpi/vz/74osvRPDJzs5ObQFxxowZCsfmr7/+YkFBQSw0NJRt3rxZ4Tvp119/NcqxjYuLE9/Nrq6u7LvvvmNHjx5lFy5cYOfOnWObNm1iI0aMYM7OznoXuvW9jt++favwmdu2bct27NjBQkND2d69e1nPnj3FvMqVK+sduHn8+LHWPMn5GTBgAKtUqRKbMGEC27ZtGwsKCmIhISFs586dbOTIkeKHiouLi9r70diF7rx4nuVVGVDl5zPoUzHGwsPDxQ7//PNPhXl//PGHmBceHq5y/YCAALUFQll6errKLwptypUrxwCoLFTLVP3SkX/NOTg4qCxQ3bx5U3xJdO/eXWl+fHy8+JL38PBg9+/fV1rmwoUL4ub29PRUKPQxxkQhsUyZMkrrfvbZZ2Lf/MGa84tq8eLFDAArUaKE0pd5zijJxo0blfbx+vVrVqtWLQZk/XpNT09XWkYXuha6AbDPP/+cZWZmKi03fPhwscyFCxcMyoe2goGqPANZv3ZjYmKUljl9+rR4qzN27Fil+cnJyaIg6Ovry1JSUlTu688//xT78vf31/+DMcVf5upoK3TzawkA27Fjh9L8lJQUhQJ3fhW6AbDVq1dr3NaHH37IALBy5cqx27dvq1xGvt+mT5+ucXu5oa7QzenyxkEXOe+dLl26qLxHv/vuO7HMxIkTleZPnDhRzFd1XDIzM9mAAQPEMitWrFBaRtdCNwDWsGFDlT96Nm3aJJb55ZdfNH5efd4IqGNoodvf31+sN2zYsFztlxdycsrMzBQRdVNTU6VnO2NZP+LUPVMYYywxMZHVqVOHAVlRPVXk7zozMzOVUeiHDx+KAoa1tbXKwpT8eRo0aKCy8LdhwwaxjKrv5eDgYFEwV3d/ZmRkiECFnZ2d0vdaXhzb1atXi/U1FapTU1PZq1ev1M5XR5/rePny5WLZQYMGqfxunDp1qlhm0qRJeudHnzzdunVLZR648PBwZmtrq/EcGrvQnRfPs7woA6pjcKGbR5ItLCyULvyEhARmYWHBAOVqDdzmzZvFhzKkUK2NmZkZA8CWLl2q97ryAVf1a5rr168fA8BKly6tNG/BggViG1u3blW7jXnz5onltm/frjDv77//FvOuXr2qMK9KlSqicMR/1eUsKPFfwQ0aNFDar1yo0RRhXblypVju8uXLapfTRNdCt7u7O3v9+rXKbVy7dk0sZ8g5ZczwQvfevXvVLtesWTMGZEXwclq2bBkDwCwtLbVG4XhhdsCAAdo/iAq5LXTHxMSIL7xevXqp3calS5fyvdDdoUMHjduJiIgQy/77778al500aRIDsn4IG0tBFLotLCzYw4cPVS6XkZEhfjyXLl1a4R57/fq1eGPj7e2tMurDGGMvXrwQVay8vb2V5utT6Fb3HMnMzBRvP1Vdg4Wl0C2/QdR0r+iy34YNG6otxBw+fFjn61qdPXv2iG08ffpUab78XTdmzBi129m2bZtYbuHChUrz5WdCaGio2u107txZFHZjY2MV5vn5+Wk9Jowpli9WrVqlMC8vju38+fPVfq/nBX2uY/6229nZmb18+VLlMm/fvmU1atRQeX8bI0/ajBs3jgFgtWrVUjnfmIXuvHqe5UUZUB2DGlJmZGRgy5YtALIG4nBwcFCY7+DggC5dugAAtmzZonLUNXd3dzG9du1aQ7KhEd/+tm3bDG4IaGJigk8++UTt/IYNGwLIaiSXc+hm3m+yg4MD/Pz81G5j+PDhSutwcsNDueHbw4cPcevWLZiYmKBt27ZiOXkZxhhOnToFAGjbtq3a/QPZjV9V4Z8RAO7cuaNxO7nVp08fWFhYqJxXvXp12Nra5ks+ZA4ODujatava+fz4qMoT7zazbdu2cHV11bgfPoJrUFCQoVnNlcDAQNGwZPDgwWqXq1u3LurWrZtf2QKg+foEso+ztbW1xnMFZB/n2NhYPHjwIG8yWAj4+vrCw8ND5bwSJUqIc5qQkKDQEC0sLEw8u4YMGYKSJUuq3Ia9vT369u0LAIiKisKjR48Mymft2rVRp04dlfNMTExE7yD5eY/riz+HACApKSlX2/rkk0/UNj7V99mbkpKC6OhoXLlyBZGRkYiMjFToieLy5csa1x86dKjaeb169RLf8zm/p2S1a9dWyHdOw4YNA5DV4Fn+vkpPTxeNNfv06aNxADMHBwfUrl0bgObnpaHHlpcdEhISCrTr49jYWFy9ehUA0LdvX9jZ2alcrmTJkuLc5by/jS0hIQG3b99WuOb4dRIVFZVnDY11ldfPs9yUAdUxqNB99OhRkUnea0lOPP3Ro0cqb9JWrVqhUqVKAIBx48ahSZMm+OGHH3Du3Lk86f+Uf8mcO3cOFStWxJgxY/DPP//gyZMnOm/D2dkZTk5Oauc7OjqK6ZwP38jISABA/fr1NXbB4+bmJlrI8nXkedWrVwegWKDm097e3nBxcVFZ6A4PDxets1X1GiLTNNqUps+Y17SNelW6dOl8yYesatWqKFFC/W3Cj4+qPIWGhgIAjhw5orK3FPnvp59+AgDExcUZ4VNoJ197mr40AaBRo0bGzo4CdYU0jh/nV69ewdTUVONx/vDDD8V6BXWsjSFn70Q5NWnSREzL51qebtq0qcZtyPNzPqt0pe0e13Q/FRZy3nLbJ35un71Pnz7F1KlTUb16ddjZ2aFixYqoVasWateujdq1ayv8CNXUq4S5ubnG+8zMzEz8INJ07g29DqOiokRwbMqUKVqfl/ye13QPG3psu3fvLgqOvXr1QocOHbB48WKEhYWpDCAaS37fm7qKiIjAsGHD4O7uDkdHR1SpUkXhmuO9nWRmZurUa1JeyutjlpsyoDoGFbp5H9yaooByBFxVn91mZmbYt28fatasCQAICQnB1KlT0bJlSzg4OKBz585qo+S6mDFjBoYNGwYTExPEx8fjt99+Q+/eveHm5obatWtj1qxZWrs0tLa21jhfLozlzCcv8Lq5uWnNa5kyZRTWkfECMx8tCsguXPN5vAuyqKgo8aOCL1OiRAm0bt1a4/41fU5NnzGv6Xq88/PBp2uecnY/lJ6ervMvX1luu2c0lPxw1BaVz++R+PiPLXXi4+MN2m5BHWtj0HbO5OeQ/JyRp7U9q/hzKud6+iiM97i+5MKr/KVriNw8e8PCwlCjRg388MMPuHHjhtbRZlNTU9XOc3R0hKmp5gGq+fWh6dwbeh0a4x429Ng6OTlh79698PT0BGMMJ06cwNdff41GjRrB0dERfn5+2L9/v0H51Ud+35u6WL16NRo0aIC1a9fqFLTQdM0ZQ14fs9yUAdXRexh4ebTJxMREtdUBZHv27EFSUpLS6xFvb29ERERg37592LdvH06ePInbt28jNTUVhw8fxuHDh/HLL7/g4MGDWm/mnMzMzLB69WpMmDABW7duxfHjxxEaGoq0tDTxGuSXX37Bpk2b0KNHD722rQ9Nr8k4TQ/Ltm3b4o8//kBcXByuXbuGGjVqiAI4L3SXLVsWlSpVwp07d3Dy5En06dNHLFOnTh2thRaS9+QbsG/fvpgxY0YB5qZoU/eKkOPHumLFiti7d6/O25X7pi3qtD1ntBXI8mob74KLFy+Kaf4mMr+lpaWhb9++ePbsGczMzPDVV1+hR48eqFatGkqXLi2+l+/cuYPKlSsD0Hz+cvs9pc92VJGfl4sWLUKnTp10Ws/Gxsag/WnTunVr3Lp1C7t27cLBgwdx6tQpxMTE4OXLl9i9ezd2796Njh07Yvfu3VoLZnmhMNyb165dw8iRI/H27Vu4urrim2++QYcOHeDl5QU7OzvxRn/NmjX47LPP8i1f6hSGY6aK3oXu7du36/3r5dWrV9i5c6fKOmMlS5ZEz5490bNnTwBZ1VEOHTqEFStWICwsDGFhYfjiiy/wzz//6JtVAFkF+7lz52Lu3LlITU3F2bNnsWXLFmzYsAHJycno378/bt++rVDHPC84Ojri0aNHOv0a5BF3VVGTnPW67e3tcfPmTVGfW17uzp07CAwMhJ+fn871uYlxWFpawtraGq9evUJiYiJq1apV0FnSSP5hFh8fj7Jly6pdVlMVLfmXv6bBB4CsOqh5gb/+e/z4MWrUqKE1YlccaXtrJ0cS5eeMPB0XF6dxCGh5H7mN8BZlx44dE9OtWrUqkDwcP35c1EX+7bff8Pnnn6tcTtfX+8+ePUNGRobGH7j8GtJ07rVdh+quIfkVfnp6eqF4XlpaWmLAgAGiTcmdO3dw4MABLF++HDdu3MCRI0cwbdo0LF682Cj7z3lvapIf9+a6devw9u1blCxZEoGBgaKWQk75XaVEVhSeZ3pXL+FVRdzd3bF161atf+XLl1dYTxt3d3cMGzYMQUFBaNCgAQBg//79efKawsrKCu+//z7WrFmDRYsWAch6/WGMV0X8oXHx4kWNjQni4+Nx7949hXVk7u7uqFq1KoCsQnfO+tycXK87IiICz549U0gnhkdhDMXrQJ49e7bQV2Xw8fER07y+pDqa5stvszQ9fJ89e5ZnI5fx4/zq1SucPXs2T7ZZ1ISEhOg8X37OyNP//fefxm0EBwerXC+/5Pf9q0pkZCQCAgIAAOXKlcv39g3clStXxHS/fv3ULqftXubS0tI0NrR8+/YtLl26BEDzuTf0OvTx8YG5uTkAiFGuC5tKlSrhq6++QkhIiAhKbN++Xe/t6HodF7Z7k19zdevWVVvgBnS/5oyhsB0zVfQqdN+9exdnzpwBAPj5+aFfv35a/z766CMAWXWS79+/r/O+zMzMRJT27du3BtWP1eS9994T08YYtvT9998HkFUFR90Q7UBWHSn+moOvk5NcrztnfW5Orte9Y8cOAFk3t7b63O8SS0tLMa3v8L2G6N69O4CsiO5vv/1m9P3lRvv27UWUWtMP5MuXL2v8ci5durRoy6Hp4bt161bDMqqCXD1s4cKFebbdokRu3J5TZmYm1q9fDyDr/PBgBpDVaJafr/Xr16utl5iUlCQKGN7e3nn+ZlAX+X3/5pSamopBgwaJ5/XEiRML7K3K27dvxbS6H/SZmZn4888/dd4mv0ZU+eeff8SPaHXfU0BWIzu5+k1Oa9asAZD1hlv+DrO2thbfyYGBgQoFosLG3t5eNBg1pOyg63Xs4eEhCrc7duxQ21AvIyMD69atA6B8f+clfs1pCiDFxcUVaI8vReF5plehe+PGjeKB06dPH53W4csxxrBx40aRfvr0ady6dUvtemlpaaJesq2trV6Nt54/f469e/dqrLMj/5o2Rt3OoUOHirpeEyZMUNk92eXLl/H9998DADw9PUUVm5z4j4+4uDhxoeQsdPN63YwxLFu2DEBW902aWt6+a+Qb6/bt20bf38iRI+Hs7Awgq2Ev7xJLnbNnz4pqQfnN09NTNIr+559/sHPnTqVlUlNTMWLECK3b4t3y/fvvvyqP89WrVzFz5sxc5jhb48aN4evrCwA4ePAgZs2apXH56OhotYV+3jsC71GoqHjz5g2++OILlV8yP/74IyIiIgBkddkmt8OxsLAQ3ZZeuXIFc+bMUVqfMYYxY8aIAsaYMWOM8RG0cnJyEtHQ/Lh/ZVFRUWjVqpUoULZt2xajRo3K1zzI+NtPQH1hecqUKXp1H/f777+LoJosLi4OEydOBJBVONbUpSgAjBgxQmXVsS1btuDgwYMAgJ49eyoVdKZNmyaiwP369dN4jnm3xTExMZo/lAGOHDmisUvMFy9eiB8FhpQd9LmOR48eDSCrSt9XX32lskwzZ84cREVFAQA+//xzndrZGYJfczdu3MD58+eV5r969QqffPJJvjeelBWF55leP9N5odnV1VXnCGrTpk1RtmxZxMTEYOPGjZg2bRoAICAgAHPnzkXr1q3RtWtX1KlTBy4uLkhNTcWNGzewcuVK8cAYPny4XhGFly9fokePHvDy8kLv3r3RtGlTVKhQAaampnj06BH27duHv/76C0BWYbVbt276HAaduLi4YNGiRRg9ejRiY2PRqFEjTJ48GS1atEBGRgb8/f2xaNEiJCcnw8TEBH/++afargXlAvaLFy+U6nPLy925cwcvXrwAQPW5c2rRooWYHj9+PKZNmwZ3d3fxoPfy8srTyJW9vT22bt2Kzp07482bN/jwww/h5+cHPz8/0bjp0aNHCAsLwz///IPw8HAsW7ZMFFrz2y+//IKAgAC8evUK/fr1w6hRo9C7d2/Y29sjMjISCxcuRFRUFBo3bqzxNfKXX36JvXv3IjU1Fe3atcPs2bNRv359JCcnw9/fH0uXLoWrqytMTU316sJTk7Vr16JRo0Z49OgRvvvuOxw5cgTDhg1D7dq1YWlpiWfPniE8PByHDx/G8ePH0bNnT/Tv3z9P9l0YNGrUCPv27UPLli0xfvx4VK1aFfHx8Vi/fj3+/vtvAFnPOlUNemfOnIndu3fjzp07mDt3LiIjIzFs2DB4eHjg7t27WL58uXjD1rx5c51+eBmDqakpGjdujLNnz2LNmjWoX78+6tWrJ56bjo6OBtfNjI+PV+g2LCUlBQkJCQgPD0dAQACOHTsmCjzNmjXDzp07NXYFa2wdO3aEq6sr4uPjMW3aNNy7dw/du3eHs7Mzbt26hVWrViEgIAAtW7bUqcqVi4sLrK2t8cEHH2D8+PHo0qULLCwsEBwcjO+//x6xsbEAgLlz52rs1KBRo0YIDQ1Fo0aN8O2336J27dp48eIFdu7ciT/++ANAVhU03kWqrGXLlpg5cybmzJmDu3fvol69evjss8/g6+sLd3d3vHnzBtHR0QgKCsLOnTsRGxuLiIgIje1PDLF161Z069YNH3zwAXx9fVGrVi04OjoiKSkJkZGRWL58OR4+fAgABv3w0uc6HjlyJDZv3oygoCCsX78e9+7dw+jRo1GpUiU8evQIa9aswe7duwEAlStXNmqD/U8//RTLli1DZmYmunTpgkmTJqFFixawtLREWFgYFi9ejJs3b+p8zRlLoX+e6TqKzpkzZ8QIPV988YXOo+8wxtjYsWPFuufPn2eMKY5gpumvd+/eLDU1Va/95RweWd2fp6enyiHFdRndjzHFUfPu3r2rcpn58+eLkf5U/VlYWLD169dr/UyVK1cW6/j4+KhcRh5mFwDbtWtXrvLOWN6MVKXriJS5GcFQV3379lV7LuTjoG3ULE6XUS4DAgJYmTJldLomdbkWVMmLYeAZY+zo0aNiqHRVf7NmzWIzZsxgQNZIm+rI93zOv3LlyrErV67oPCKlputTFh0dzRo3bqzTcR46dKjS+q9evRLzVY3iqquCGJFy7dq1bMiQIWo/r7u7O7ty5YrGbfFR7dT9tWzZkj179kzl+rqOSKnt3tV2He/fv5+ZmJiovTb1kXPIcG1/Li4ubP78+Sw9PV2v/Wjar7bzr+mzHT58WAxDreqvXbt2LDIyUuPzVT7eISEhzNnZWe32xo4dq1M+NX2329vbs8DAQI2fefHixWLESU1/5ubm7ObNm3l+bOXRCDX9jR49mmVkZGjchzr6XMfPnj1jLVu21JiXmjVrsujoaIPywpju38Nz5szRmI8JEyZofXYbexh4/nly8zzLyzJgTjpXL5HreWoaYVEVeXm+nUmTJuHgwYMYP348mjVrhvLly8PS0hKWlpbw8vLCxx9/jAMHDmDXrl0KdaB0UaFCBVy6dAmLFi1C586dUb16dTg4OMDU1BTOzs5o27YtfvrpJ1y9elU0wjKWqVOn4uLFi/j8889RuXJlWFlZwcbGBjVr1sT//vc/XLt2DYMGDdK6HTnara5xJK/XDWS9Ji+oiGlhtmnTJixcuBBNmjRBqVKlNA58k1c6dOiA27dvY/ny5ejUqRPc3d1hbm4OS0tLlCtXDr6+vpg/f77O14IxffDBB4iMjMQXX3yBChUqwNzcHG5ubujatSsOHz6M2bNn4+XLlwCAUqVKqd3O0qVLsWXLFrRp0wb29vawsrJC9erVMXnyZFy8eBHe3t55nvcKFSrgv//+wz///IN+/fqhYsWKsLa2hpmZGVxcXNCiRQtMmDABJ0+exOrVq5XWl0e3Gz9+fJ7nz9jWrl2LLVu2oF27dnBycoKFhQWqVauGSZMm4cqVKxqPuZeXFy5fvozly5ejbdu2cHJygpmZGdzc3NCpUyds3LgRp06dKvBeS7p27YqAgAD06NEDHh4eRok2lyhRAqVKlUL58uXRunVrjBs3Drt27UJMTAymTp1aaHrH6dixI0JDQzFw4EBxLFxcXNC2bVv8+eefCAgI0KtLvUaNGuHChQsYO3YsKleuDEtLSzg5OaFTp044ePAgli5dqtN2Zs+ejcOHD6Nr165wc3ODubk5vLy88OWXX+LKlSta38COGzcOt2/fxowZM9CsWTM4OzvD1NQUNjY2qFatGvz8/LBy5Uo8fPgQVapU0fnz6WrJkiXYtWsXRo4ciUaNGsHT0xPm5uawsrJCtWrVMGTIEJw5cwbLly83+PtDn+vY0dERp06dwsaNG9GpUye4ubnBzMwMTk5OaNeuHZYvX45Lly6hQoUKhn5knc2cORMHDhyAr68vSpcuDXNzc5QtWxa9e/fG0aNHVb7BKAiF+Xlmwhh1vkoI0d3777+PgIAAtGrVCqdPny7o7OSZ2bNnY86cOahatSquXr2qtX/wghYdHS3qlK5duxZDhgwp2AyRImfIkCFYv349KlSogOjoaIO3w6vozZo1S4xISAhRZvwwHyGk2IiNjRWNPZs1a1bAuclbvOH21KlTC32BmxBCSNFDhW5CiKCpR6HU1FQMGTJE9Dtf0FVh8lJaWhr+++8/VKxYEQMHDizo7BBCCCmGCkflNEJIoTB8+HCkpKSgb9++aNiwoWi1HxoaihUrVohC+WeffYbatWsXcG7zjrm5eaEfwIgQQkjRRoVuQoiC0NBQjQPb9OrVS/QFTwghhBDdUKGbECL88ssv+Oeff3D8+HHExMTgyZMnYIzB1dUVzZo1w6BBg8QgOoQQQgjRHfVeQgghhBBCiJFRQ0pCCCGEEEKMjArdhBBCCCGEGBkVugkhhBBCCDEyKnTnQrt27WBiYqJ2WPZ33ZAhQ2BiYgIvL6+Czkqe8vLygomJCY0AWAxkZGRg6dKlaNKkCezt7WFiYgITExP07NmzoLNWYKKjo8VxWLduXUFnh6gQGBgozlFgYGCB5mXo0KEwMTHBqFGjlOYtXLiQviMJkeRJofvMmTPiAWBiYiJGrNNGfnCo+rO1tUW1atUwePDgAn+wEEKKn/79+2PcuHEICQlBUlJSQWeHSNR9P5iamsLR0REVK1ZEmzZtMH78eOzatQtpaWkG7efQoUMYMWIEvL294ejoCEtLS5QrVw7t27fHwoULERsbq3Ub8g8VVX82NjaoVKkS+vbti7179xqUz8IoNDQU69evh7m5OaZMmaI0f/To0XB2dsbJkyexa9euAsghIYVLnhS6N2zYoPH/hkpJScHNmzexYcMGtG/fHp999hkyMjLyZNvqzJ49WzwoibJ169aJ4xMdHV3Q2SHEYOfOncOOHTsAAF27dsWxY8cQHh6OiIgI/PrrrwWcO6JORkYGEhISEB0djdOnT2PJkiXo06cPypYti3nz5uHt27c6befKlSto0aIFunTpglWrVuHq1atISEjAmzdvEBMTg8DAQHz77beoVq0a5s+fj9x09PXq1SvcvXsXO3bsQI8ePdClS5diMRjTtGnTwBjD0KFDUb58eaX5NjY2GD9+PABgxowZyMzMzO8sElKo5Lqf7jdv3ogvLltbWyQnJ2PHjh1YtmwZrKysdN7OqFGj8OWXX4r/M8bw/PlzBAUFYfHixYiPj8eaNWtQtmxZzJkzJ7fZJoS84/z9/QEAJUuWxJYtW2Bvb1/AOSLq5Px+SE5ORkJCAsLDwxEQEAB/f388efIEM2bMwL59+7B//364uLio3d7p06fRvXt3JCYmAgAaNmyIwYMHo06dOrC1tcXDhw9x+PBhrF+/HikpKZg+fToiIyOxYcMGmJmZacxrjx49MG/ePIW0Fy9eICwsDEuWLMHdu3dx6NAhjBo1CuvXrzfoeLRr1y5XPwLyQkhICI4ePQoAmDBhgtrlRo8ejblz5+Lq1avYtWsXPvroo/zKIiGFD8ulbdu2MQAMAFu9erWY3rp1q9Z1T5w4IZafNWuW2uWuXLnCrKysGABmb2/P0tLScptttWbNmiXypE3btm0ZANa2bVuj5aewWbt2rTg+d+/e1bjs4MGDGQBWoUKFfMlbfqlQoQIDwAYPHlzQWSG5MGLECAaAeXh4FHRWCpW7d++Ke3zt2rUFlg9dvx8YYywyMpLVr19fLN+qVSv25s0blcs+ePCAOTo6MgDMxMSE/fzzzywzM1Plsnfv3mV169YV2500aZLa5fgymp4LcXFxzNXVVew7NjZW4+cqzD755BMGgDVp0kTrsr1792YAWMuWLfMhZ4QUXrmuXsJ/qXt7e2PYsGHw9vYGkHdVTPi2+Sh4L1++xNWrV/Ns24SQd9ObN28AQGvkkhR+Pj4+OHv2LOrXrw8gq53RihUrVC47YsQIPH/+HADw/fff4+uvv1ZbndDLywv+/v4oW7YsAGDRokX477//DM6nm5sbBg0aBCDrbW5ISIjB2ypIL168EHW0Bw4cqHX5AQMGAADOnj2L69evGzVvhBRmuSp0x8fHi9dL/MbjN9fRo0fx+PHjXGYvm9wDxuvXr/NsuxyvqyxXXVHVIEZTPeaHDx/i66+/RpUqVWBlZQUnJyd07NgRhw4d0ikPCQkJmDdvHpo3bw5nZ2dYWFjAw8MDPXr0wO7duzWuy/M3e/ZsAFmv/vr374+yZcvCwsICnp6e+PTTTw3+wcIbNQ0dOlSkVaxYUen4aGrwmpiYiJkzZ8LHxwc2NjZwcHBAmzZtsHnzZp3y8OrVKyxZsgTt27eHm5sbzM3N4erqCl9fX6xduzbP6vsfPHgQnTt3houLC6ytrVGtWjV8/fXXOjWokl2/fh1jx46Fj48PSpUqBSsrK1SqVAlDhw7FhQsXtK6fnp6OpUuXonHjxrCzs4ODgwMaNWqExYsXIy0tTWsvEzl7j3n06BG+/fZb+Pj4wM7OTu35ys11yOXXuYqIiMCIESNQtWpVWFtbw87ODj4+Phg/frzae5UfMx4wuHfvntJ1rK/IyEjMmzcPHTt2FPecra0tqlatisGDB+P8+fMa18/ZluT169dYtGgRGjRoADs7O9jZ2aFJkyZYvny5TnWWT58+jd69e8PNzQ2WlpaoVKkSRo4ciVu3bgHIu56XgoOD8fnnn6NatWqwtbWFjY0NatSogdGjR+PmzZu52ra+rKyssHHjRnEMf/rpJ6Snpyssc/nyZfE8rlOnDr755hut23V2dsbixYsBZBWUFy5cmKt85sV3mS69l9y4cQNfffUVatWqBVtbW5ibm8PDwwP16tXDsGHDsG3bNvHDU1///vuvWNfPz0/r8l27doWlpSUAYNu2bQbtk5BiITdh8l9++UW8Jrt37x5jjLHo6GhmYmLCALCff/5Z4/r6vD7s06ePWPbRo0e5ybZKcrUJTX9ylQq5esnp06eZk5OT2vUWLVqkcf8HDhxgDg4OGvfdtWtXlpSUpHJ9+TguW7aMmZqaqtyGtbU1O3nypN7HRz5Xmv5OnDgh1pGrl1y9epV5eXmpXW/06NEa9x8cHMw8PT017rtJkyYsLi5O788m+9///qd2+66uriw0NFSn6iXfffed2nPA75mZM2eqXT8hIYE1adJE42e9ePGixmoA8vEPCgpizs7OGs8XY7m/DhnLv3P1/fffsxIlSqjdh4WFBVu/fr3Serpcx/rQ9d6YPHmy2m3I1dri4uIUqjTk/OvWrRvLyMhQu6158+aJZ3DOPzs7O3bkyBGNVeN0qV6Snp7ORo0apfHzmpmZsT///FOvYynT5/tB5uvrK9Y7e/aswrzx48eLefrkLSMjg5UtW5YBYCVKlGDPnz9XmK9r9RLGGJs4caJYNigoSOc8yORjk/MeZoyx7du3M3Nzc63XZEREhEH7HzJkCAPAypUrp/M6zZo1YwBY+/btDdonIcVBrgrd/IuhTZs2CumtW7dmAFjdunU1rq/rQ/Xq1auiTnfjxo1zk2W1EhISWEREhMIXSUREhNKfXJ+cf3FVq1aNOTs7M1dXV/bjjz+yM2fOsODgYPbLL7+IAoypqSmLjIxUue+jR4+ykiVLMgDMy8uLLViwgAUGBrILFy6wffv2sYEDB4o89e7dW+U2+PxmzZoxExMTVrduXbZmzRoWEhLCTp06xcaPHy8KKOXLl1db31Gd5ORkFhERwebNmyf2deTIEaXjk5ycLNbhhT4XFxdWtWpVZmdnx6ZPn84CAwNZaGgoW7VqlfgiA8AOHz6sct/h4eHMxsZGFHxnzZrF/P392cWLF9mRI0fY6NGjRQG3adOmBtf5/+mnn0RePDw82LJly9h///3HTp48ySZNmsTMzc2Zl5cXc3Fx0fjlOmPGDLGdFi1asL/++osFBQWx0NBQtnnzZta8eXMx/9dff1W5jY4dO4plmjdvzrZu3cpCQ0PZoUOH2IABA8Rn1aXQ7eTkxDw8PJitrS2bNm0aCwwMZMHBwWz16tXs2rVrYvm8uA7z61z99ttvIi8uLi7sp59+YkFBQezMmTNs9uzZIg8mJibswIEDCuvya7VHjx7iXOe8jvVx7NgxZmNjw/r27ctWrlwpjtnhw4fZzz//LH6kAWBr1qxRuQ250N2iRQtmbm7Oxo4dy44dO8bCwsLYli1bWM2aNcUyK1euVLmdLVu2iGVKly7NfvzxR3bu3Dl27tw5tmDBAla6dGlWunRpVq1atVwVugcNGiSW6dy5M9u0aRMLDg5mISEhbNWqVczHx0fM37t3r17HkzO00L1w4UKx3o8//qgwr2HDhmKevsGbL774Qqy7f/9+hXm6FrofP37M3NzcGABWtmxZvZ/DnKZCd1xcnMI9+N1337GjR4+yCxcusHPnzrFNmzaxESNGMGdnZ4ML3ZUrV9b4HFBl7NixDACzsrIyarssQgozgwvd4eHhaiMGf/zxh5gXHh6udhvyg2PUqFEKX3rh4eHs1KlTbMGCBaxMmTIMyGpEmTNykdcMaUgJZEUTY2JilJY5ffq0iDqNHTtWaX5ycrJ4CPv6+rKUlBSV+/rzzz/Fvvz9/ZXmy9GLLl26qHyYywXm3bt3a/18qhjSkBIAc3BwUPmj4+bNm8zS0pIBYN27d1ean5mZyerUqSN+xD158kTlvg4dOiR+VPz11196f664uDhmbW0tzqWqL+SAgACF6LWqL9fg4GCRj+nTp6vcV0ZGhijA2tnZsYSEBIX5u3fvFvvo0aMHe/v2rdI25B8I2grdAJitrS27dOmS2s+fF9dhfp2r+Ph4ca48PDzY/fv3lZa5cOGCKHh4enqq/JLPq4a+T548UTqHsjdv3rAPPvhA7EvV+ZSfO2ZmZiqjl8+ePRPnqE6dOkrzX79+LRrpOTo6suvXrystc/36ddGI0NBC986dO8X8VatWqfzMqamprEOHDuIHXHp6usrlNDG00O3v7y/WGzZsmMI8MzMzBoC5u7vrnR/5e23+/PkK8+Rj1qNHD6UfcWfPnmXLli1jVapUEed4165deueB01Toljs00FSoTk1NZa9evdJ7348fPxbbnzt3rs7rrV+/XqwXHBys934JKQ4MLnRPmDCBAVmvcHN+4SQkJDALCwsGgE2YMEHtNnR9LVuiRAn2xRdfsKtXrxqaXZ0ZWujWFM3hr9Xq16+vNG/ZsmUMALO0tGSPHz/WuD9e3WDAgAFK83g+NG3n5cuX4pXj+PHjtXw61QwtdKuL6DLGWL9+/URkLqd9+/aJbVy+fFnj/vr27csAw1rIL1iwQOxn586dapeT34SoKnT7+fkxAKxhw4Zqe0RgTPEeyVlw4VFuS0tLtVUwMjMzWYMGDXQudH/33Xdq88JY3lyHBXGuNPWSJP/I3L59u9L8/Oxd59KlSyIvoaGhSvPl587XX3+tdjuTJ08WyyUmJirM27p1q5i3dOlStdtYunRprgrdPFrcq1cv9R+YMRYVFSW2c+zYMY3LqmJooVuudiXnMTExUaSrehZrs2fPHrXnSD5m2v769u2b60KnpkL3/Pnz1T5P80JYWJjY9x9//KHzeocOHRLrGRr0IaSoM6ghZUZGBrZs2QIgq4GEg4ODwnwHBwd06dIFALBly5ZcN5rKzMzE9u3b8ddffxk86pgxOTg4iN5VVGnYsCEA4M6dO0rz/v33XwBA27Zt4erqqnE/bdq0AQAEBQWpXeaDDz5Qux07OztUrVpVbV6MxcTEBJ988ona+fz4JCQkiH5zOX58qlevjjp16mjcDz8+ISEhel9zvM/m0qVLo0ePHmqXGzZsmNp56enpopFWnz59NDbIc3BwQO3atQEons+3b9+KEV07deoENzc3leubmJjg008/Vbv9nHgDZ3Xy4jrM73Pl4OCgsRHX8OHDldbJD2/evMH9+/cRFRWFyMhIREZGKvSpfPnyZY3razpX/F4BgLt37yrMCwgIAACUKFFC47UxcOBAgwf/evjwIcLCwgAAffv21bhszZo14ezsDEDzMyuv2draiml5lFF52sbGRu/tyuu8fPnSwNwB+/fvx8qVK/HixQuDt6GJu7s7gKznKb8n89KTJ0/EdOnSpXVez9HRUeU2CHmXGFToPnr0KB49egRAfXdBPP3Ro0c6feHNmjULLCvyLv5evXqF8PBwfPPNN0hKSsLPP/8MX19fpKamGpJto6latSpKlFB/KPnDRtUw06GhoQCAI0eOaBxG2MTEBD/99BMAIC4uTu2+atSooTGvmvJiLM7OznByclI7X34Y58wXPz7Xr1/XenzGjBkDAEhLSxNdgukqIiICAFC/fn2YmqofM6pevXowNzdXOS8qKkqMMjdlyhSt+eWfTT6ft2/fFte3XMBSpVGjRjp9NltbW1SqVEnjMnlxHebXuYqMjASQda40dffn5uYmeorg6xhLSkoKfvjhB9StWxc2NjaoUKECfHx8ULt2bdSuXVt0ZQcAT58+1bgtTfewpnuFf8aKFStqLAw5OjpqvR7U4ecYAPr376/1PPPPqumZldfk4yIPeGRnZyemk5OT9d6uvI6mgZQGDx6s9F32+vVrXL9+Hd9//z1MTEywZs0atGrVCvHx8XrnQ5vu3buLQFivXr3QoUMHLF68GGFhYXnSa5B8v+pT6JaXffbsWa7zQUhRZFChm/fBrSnCK0fADe2z28rKCrVr18bChQtFn6snT57EDz/8YND2jMXa2lrjfF4gzzkEbnp6ulJkVxeahg/WNS951WWbLnTNE6CcL0O/lPQdYjkhIQEAtEZ5TU1NFQo+srzIK8+HLnnRNOKeLOebqJzy6jrMr3PFv/TVvQWQlSlTRmEdY4iOjkbt2rUxdepUhIeHa723tAUNNN0vmu4VXa9hQPdrJ6f8Ose5If+oke/VUqVKiR/UhvwIkLvA1RREUMXCwgLVqlXDlClT8M8//wDI+pE0ceJEvfOhjZOTE/bu3QtPT08wxnDixAl8/fXXaNSoERwdHeHn54f9+/cbvH3e9R+g/VqWycvqM1o1IcWJ3sPAv3z5UryySkxMhIWFhdZ19uzZg6SkJIVIg74+++wzTJ48Gc+fP8fq1avx3XffGbytwkL+0uzbty9mzJhRgLkpnPgxatmyJVauXKnzeh4eHgbtT5fX7nJVAZl8PhctWoROnTrptE9DXnXro2TJkhrn59V1WJTOVV769NNPcffuXdGPfb9+/VCzZk24uLiI52NmZqY4D/mRJ2ORr5XNmzdrrUbE6RMRza2LFy+K6erVqyvMq1OnDi5cuIC4uDjExcWJH2W6kPvWr1u3rsH5++CDD1C3bl1cvnwZf//9N37//fc8fwa0bt0at27dwq5du3Dw4EGcOnUKMTExePnyJXbv3o3du3ejY8eO2L17t9agSE7yDzZ9fszKyxr6o4+Qok7vQvf27dv1rt7x6tUr7Ny5U2FgFX2VKFECVatWxX///YfY2Fg8f/5cbcSxqLC0tIS1tTVevXqFxMRE1KpVq6CzVOg4OTnh8ePHePLkiVGPT+nSpREXF6d1QKe3b98qRKNlcvQrPT3doPzKhRNtUcW8qheZV9dhfp0rR0dHPHr0SKdoJT+fxnpWXLt2DWfOnAGQVaVo/vz5KpdTd83kJX7t6BKNNvTaka9xExOTQvnMOnbsmJhu1aqVwrw2bdqIwvPevXsxYsQInbaZmZmJgwcPAsj6LmrRokWu8lijRg1cvnwZ6enpuH79Oho0aJCr7aliaWmJAQMGiDYCd+7cwYEDB7B8+XLcuHEDR44cwbRp08TAP7qSC8z6XNfyslToJu8qvauX8Koi7u7u2Lp1q9a/8uXLK6yXG/JIbDlHGssrhjYwMhSv63n27Nl8fQVrqII6Pjdu3MC9e/eMth/eqPHSpUsaR/y7fPmy2sa8Pj4+or43H6lVX5UrVxavb+X6s6pom6+PvLgO8+tc8YLexYsXNT4H4uPjRT6MVTi8cuWKmO7Xr5/a5fLyXKnj4+MDIKuBpaYI5PPnzw1uSC3XTTf0GjemyMhI0aC0XLlySu0eBg8eLKZ/++03navZ7dq1CzExMQCAHj165Dpynx/fZTlVqlQJX331FUJCQsSw9tu3b9d7O5UrVxbR8Rs3bui8nrwsf94S8q7Rq9B99+5dEdXx8/NDv379tP599NFHALLqYt+/f9/gjL569QpRUVEAsn7B81bxeU2ur2boELn66N69O4Cshli//fab0feXWwV1fADkevhlTd5//30AWQWSffv2qV1uzZo1audZW1vjvffeA5A1THNwcLDe+TA1NRU9exw5ckRt5J0xho0bN+q9fXXy4jrM73OVmJiIXbt2qV1u9erVoioHXyevyYUnTT9W9KluYyh+7WVmZmLTpk1ql9u0aZPBVVyqVKkCb29vAMDff/+dq2d6XktNTcWgQYPEZ5s4caJSo+h69erB19cXABAeHo5FixZp3e7Tp0/x9ddfA8gKOkyaNClX+WSMiR5gAIgCcH6xt7dH48aNAWhv1KuKqakpmjVrBiCr9yFd8WUrV64selgh5F2jV6F748aN4oHWp08fndbhy+W2kDBr1ixRraVjx44q66kOGTJEtJoPDAw0aD/yw+D27dsGbUMfI0eOFD8gZsyYIbqcU+fs2bOiS7mCkN/Hx8/PDzVr1gQA/P7771i9erXG5SMjIzUWmtUZPHiwaNzz9ddfqyzsnjx5En/++afG7UybNk28DejXr5/GY8S73uQRNO6LL74AALx+/RpffPGFymjcL7/8olDHNLfy4jrMr3M1dOhQEWmbMGECHjx4oLTM5cuX8f333wMAPD090bNnT733owveBScArF+/XuUyv//+O/bs2WOU/ct69eolGlHOmTMHN2/eVFrm5s2bmDNnTq72M336dABZ12fv3r01VlV58+YNVqxYgdevX+dqn9pERUWhVatWoj5327ZtMWrUKJXLrlq1SjQunjp1KpYsWaL2R8i9e/fw/vvvi3v066+/FgVOQ61YsQLR0dEAsuqGe3p65mp7OR05ckT0LqbKixcvRECgYsWKBu2jdevWALJ+uOgafOH75OsS8i7Sq043LzS7urrqfOM0bdoUZcuWRUxMDDZu3Ihp06apXC4+Pl6pW6/Xr1/j5s2b2LBhAw4fPgwgK9I6d+5cfbKtF7mu3vjx4zFt2jS4u7uLgpSXl5fGLuX0ZW9vj61bt6Jz58548+YNPvzwQ/j5+cHPzw+VK1cGkNXtYlhYGP755x+Eh4dj2bJlIhqa3+rXrw9LS0u8fv0aM2bMgKmpKby8vESvCp6ennnaMr1kyZLYtm0bWrRogeTkZAwfPhw7duzAJ598gurVq8PMzAzx8fG4ePEi9u/fj3PnzmHChAno1q2bXvtxc3PD3LlzMXHiRERHR6Nhw4aYMmUKmjRpgtevX+PgwYNYvHgxPD098erVK7UFjZYtW2LmzJmYM2cO7t69i3r16uGzzz6Dr68v3N3d8ebNG0RHRyMoKAg7d+5EbGwsIiIiFKJdvXv3hq+vL44ePYp///0XrVu3xrhx41ClShU8efIEmzZtwqZNm9CkSRPxRZbbaj95cR3m17lycXHBokWLMHr0aMTGxqJRo0aYPHkyWrRogYyMDPj7+2PRokVITk6GiYkJ/vzzT41dC+ZG/fr1UatWLURGRuL3339HYmIiBgwYAHd3dzx48ACbNm3Czp070bJlS5w9e9YoeeAsLS2xZMkSfPLJJ3j+/DmaNm2KyZMni3N06tQpLFiwAJmZmahatSpu3rxp0HXTv39/HDlyBOvXr0dYWBi8vb3xxRdfoG3btnBxcUFKSgpu376N06dPY/fu3Xj+/DkGDRqUq8+W8/shJSUFCQkJCA8PR0BAAI4dOyYKzs2aNcPOnTvVnvPy5ctjz5496N69O16+fInx48dj8+bNGDx4MOrUqQMbGxvExsbi8OHDWL9+PVJSUgBkBZD4DzlNEhMTlb7L0tLSEB0djZ07d2Lr1q0AsuqGL1iwwKDjocnWrVvRrVs3fPDBB/D19UWtWrXg6OiIpKQkREZGYvny5Xj48CEAqP1hok3Xrl0xZ84cpKWl4fTp01rfJN28eVP8ONY0pgUhxZ6uo+icOXNGjCb1xRdf6DUCz9ixY8W658+fF+m6jkjJ/1xcXNiRI0fU7oePcgdoHn5eG3k7Of/kURj5iJSqRnWT6TLKZUBAgBjuXtvf+vXrldbn87SN3KZrnjWZNGmS2rzJo6PpOuKfLqNcXr58mVWtWlWn4zNnzhyDP5t8reb8c3Z2ZiEhIaxChQoMakak5BYvXixGnNT0Z25uzm7evKm0fkJCghj5UdVf/fr1WWhoqPj/33//rbQNQ0ZczO11yFj+nav58+eL4eRV/VlYWKjNI2N5NyLlxYsXWenSpdXmo3bt2iw2NlbjParrSLiaRiLk5s2bx0xMTFTmxdramh04cIC1bt2aAWCdOnVSWl/biJSMMfb27Vs2adIkVrJkSa3n2MbGxqDhxg35fpg/f77OQ86Hh4ezpk2bat2utbU1mz17NsvIyFC7LX1GpATAbG1t2caNG/U+JqqOTc7rQB6JVtPf6NGjNX4mbWrUqMEAsKFDh2pddvbs2QwAK1WqFEtNTTV4n4QUdToXukeMGCFu1qNHj+q1k5MnT4p1v/zyS5Gu7aFqbm7OypQpw9577z32888/s+fPn2vcT/ny5RkA9t577+mVv5zS0tLYwoULWZMmTVipUqUUvtiNVehmjLGUlBS2fPly1qlTJ+bu7s7Mzc2ZpaUlK1euHPP19WXz589n165dU7mupi90WV4UujMzM9mqVatY69atmaOjo8IXr7EK3Ywxlp6eztavX8969uzJypUrxywtLZm5uTlzd3dn7dq1Y9OnT2dhYWEGfy7uwIEDrGPHjszR0ZFZWlqyKlWqsLFjx7IHDx4wxphOhW7GGIuJiWEzZsxgzZo1Y87OzszU1JTZ2NiwatWqMT8/P7Zy5Ur25MkTteunpaWxJUuWsIYNGzJbW1tmZ2fH6tWrx3744QeWmpqqMNz1oUOHlNY3tFCZm+uQy69zdfnyZfb555+zypUrMysrK2ZjY8Nq1qzJ/ve//2m8lhjL22Hg7927x0aOHMkqVKjAzMzMmKOjI2vSpAn76aefRCEjvwrdjDF26tQp1rNnT+bq6sosLCxYhQoV2LBhw1hUVBRjjLG6desyAOzjjz9WWleXQjd3/fp1NmHCBFa/fn1WunRpVrJkSWZnZ8d8fHzYgAED2Pr169nLly81bkOXzyr/lShRgpUqVYqVL1+etW7dmo0bN47t2rWLvXnzxqD97N+/n3322WesRo0arFSpUszc3Jx5eHiwNm3asB9++IHFxMRo3Ya2QreZmRlzdnZmrVu3Zt999x17+PChQXnlNF0HCQkJbNeuXWzkyJGsUaNGzNPTk5mbmzMrKytWrVo1NmTIEHbmzJlc7Z8xxn799VcGgNnb22stSFevXp0BYOPHj8/1fgkpykwYK8Kdxkqio6NF/bSTJ08WWPULQvLLpk2bxHDft27dEtVACNEkPT0dpUqVQmpqKqZPn27U6nqk+EpOToaXlxeePXuGjRs3qh2d+syZM2jdujXMzMxw48YNMUosIe8ig0akLIxOnjwJIKsBDRW4ybuA1w11cXExeFhv8u7Zs2ePaJSe20aB5N1la2srenKZP3++0ojLHP9RN3ToUCpwk3desSl0854UZs6cWcA5IST3Hj58qHEQqtWrV4vBOgYNGpTv/aeTwuvWrVtq50VHR4vu79zc3NCxY8f8yhYphsaOHYsKFSrg2rVrKvv8Dg4OxtGjR2Fra4vZs2fnfwYJKWSKTfUSQoqTdevWYdKkSejXrx/atWuHChUqIDMzE7dv38a2bdtEF3Rubm6IjIw0Wr/1pOgxNTVFly5d8OGHH8LHxwc2NjaIj4/HiRMnsHLlSiQmJgKAxioBhOjqzJkz8Pf3R5UqVZSup4MHDyI4OBgNGjRQ6MefkHcVFboJKYTWrVuHoUOHalzG3d0dBw4cUBglkBBtbz1KlCiBefPmYcqUKfmUI0IIIQAVugkplJ4+fYqdO3fi8OHDuHr1Kp48eYKkpCQ4ODigZs2a6NatG0aOHAk7O7uCziopZPbv349Dhw7h3LlzePz4MZ49ewYLCwt4enqiXbt2GD16NGrVqlXQ2SSEkHcOFboJIYQQQggxsmLTkJIQQgghhJDCigrdhBBCCCGEGBkVugkhhBBCCDGyAi10R0dHw8TEBCYmJli3bl1BZgWzZ88WeSGEEEIIISQv5brQnZ6ejr///huDBw9GzZo14eTkBDMzMzg7O6Nhw4YYNWoU/P391Y5WRYq2efPmiR8rdnZ2ePXqVb7sd8WKFWK/+vxoCwoKwqeffgovLy9YWlrC3d0dnTp1wt9//63T+m/evMHMmTNRsWJFWFpaolatWlixYgWKSnvkdevWKRw3+a9EiRKwt7dHrVq1MHLkSFy4cCFP9nny5En88MMP6NWrF3x8fODm5gZzc3OUKlUKtWvXxqhRoxAWFqbz9p49e4ZZs2ahbt26KFWqFOzt7VG3bl3MmjULz54902kbhw8fRosWLWBtbQ03NzeMGDECcXFxhn7EAhcYGIjx48ejYcOGcHd3h7m5ORwcHFCjRg0MGDAAmzZtytW9+fLlS/z999+YMGEC2rZtiypVqqBUqVIwNzeHq6sr2rVrh4ULF+p8/J88eYJ58+ahRYsWcHR0hJmZGRwcHNCwYUN8++23uHfvntZtvHjxAv/73//g4eEBS0tLNGrUSOUALYWVHOiR/ywsLODq6oqqVauiS5cumDlzphj8La+8ffsWFy9exB9//IHhw4ejTp06MDU1FXmIjo7WaTteXl5qnyfyny4jUW7atAn16tWDpaUlypUrh2+++QZJSUm5+6CEFDYsF/bs2cMqVarEAGj9q1atGtu/f7/C+nfv3hXz165dm5us5NqsWbNEXojuqlWrpnCeN27caPR9Pnz4kNnb2yvsV5frZ86cOaxEiRJqr9Fu3bqx1NRUteu/ffuW+fr6qlz3888/z8NPaDxr167V6X4FwEqUKMFmzJiR6316enpq3ZeJiQn76quvWEZGhsZtBQcHM3d3d7Xb8fDwYCEhIRq3sW7dOmZiYqK0bvny5VlsbGyuP29+ioiIYG3atNHpfJYuXZr99NNPWo+xKseOHdNpH87Ozuzw4cMat+Xv78+cnJw0bsfa2ppt2bJF7TaSkpJYnTp1VK47f/58vT9fQZC/c3T5q1mzJtu+fXue7Hv27Nka93X37l2dtlOhQgWd8l6hQgWN25kzZ47K9erXr8+Sk5Nz/4EJKSQMLmF+//33Cl9c77//Plu2bBkLCAhgYWFh7NixY2z58uWsY8eOoqBTt25dhW0UpkI30V9QUJA4f7a2tgwA++CDD4y+3169ejEAzNXVVefrZ9WqVWLZypUrs9WrV7Pg4GC2Z88e1r59ezFvwIABarexYsUKBoB5enqytWvXsvPnz7MlS5awUqVKMQDs0KFDefxJ855c6J43bx6LiIgQf5cvX2b+/v5s+vTp4nwCYGvWrMnVPqtVq8Y6duzIZs+ezTZv3syOHz/OQkND2f79+9nMmTOZm5ub2Ne3336rdjsxMTFiWVNTUzZp0iR26tQpdurUKTZp0iRmamrKADA3NzcWExOjchtPnjxhNjY2rESJEmzChAnszJkzbO/evaxp06YMAPv4449z9Vnz05EjRxR+fPr4+LA5c+awQ4cOsdDQUHby5Em2YcMG9sknnyicz4SEBL33dezYMVauXDk2aNAgtnTpUrZ7924WFBTEzp49y7Zt28Y++ugjVrJkSQaAmZubs8uXL6vczp07d5i1tbXIS48ePdjOnTvFvThkyBDxvVKyZEl27tw5lduZNGmSQkE0KCiIfffdd8zCwoKVKFGCXblyRe/PmN/kQveaNWvEfRgeHs5Onz7Ndu/ezaZMmcJq166tUBAdNmyYQT+c1O3b0tKSNWvWjFWuXNngQnePHj0UniU5/65fv652G1euXGElSpRglpaWbO7cuSwoKIht27aNVa9eXeszgZCixqBC94YNG8TN6eLiwo4fP65x+fDwcNahQwcqdBczo0aNEtGtBQsWMCArOqquwJMX9uzZI667n3/+WafrJyEhgTk4OIho5pMnTxTmv337lnXr1k1s6+TJkyq3065dOwZAqUDxzz//MABs6NChuf58xiYXujUdM39/f1H4qVGjRq72mZ6ernH+06dPxRszMzMz9uzZM5XLDR48WORdVcRv+/btYr66c7Fu3ToGgI0fP14hPSkpiZUtW5ZZWlqyN2/e6PjJCk5UVBSzsbERhdNff/1VY0EsPj6effnllwYXut++fat1GX4fAGC9e/dWucyYMWPEMt98843KZX799VexTLdu3VQu4+XlxWxsbJTeTCxevJgBYHPmzNGa34ImF3xPnDihcdm9e/cyZ2dnrcdOV4cPH2YrV65kYWFh4v6U7y99C92DBw82OC886r506VKF9JiYGGZtbc0qVqxo8LYJKWz0LnQ/fPhQPOytra11jihkZGQoVT2gQnfR9ebNG+bo6MgAsC+//JI9evRIRLoWLFhglH2+fPmSlS1blgFg69ev17kAuXDhQrHc1q1bVS7z4MEDkf8PP/xQ5TJVq1ZlTk5OKvMFgPn6+hr0ufKTrseMMcYaNWokln3x4oVR8/Xjjz+KfeWshsYYY3FxceL8dOzYUe12OnbsKAqicXFxSvPnz5/PALB9+/YpzevduzcDUOirmGRmZrL69euL47Vu3Tqd1925c6dRX9fXqFFD/BBXhefbxMRE7TWVmZkpni2q7jfGGDMzM2MNGzZUSg8PD2cA2IgRIwz/EPlEn0I3Y4zduHFD4c3GhQsX8jQ/BVXo/vzzzxkAFhERoTSvQYMGzNzc3OBtE1LY6N2QcvHixUhJSQEAzJkzB97e3jqtV6JECQwcOFDrcseOHUO3bt1QpkwZWFhYoGLFihg1ahRiYmK0rpuWloYVK1agffv2cHFxgbm5OcqUKYMuXbpg06ZNGhtz6tp7SVpaGv7880907doVnp6eotFLw4YNMWbMGJw+fVpjo7pjx45h4MCBqFixIqysrEQjsEmTJuHRo0ca9x0bG4vJkyejQYMGohFTmTJlULt2bfTv3x/r1q3Dy5cvNR+kPLJv3z48f/4cADBw4ECUKVMGHTp0AABs2LDBKPucMmUKYmJi0K5dOwwaNEjn9fbs2QMAsLe3R+/evVUuU7ZsWbz//vsAss5RcnKy0jKurq549uwZrly5opAeGBgIAChTpozOeSoK5MZPr1+/Nuq+bGxsNO5r7969yMjIAAAMHTpU7XaGDBkCAMjIyMDevXuV5ru6ugLIatwpS0lJQWhoKMzNzeHo6Kh3/vPTwYMHcfHiRQBA165dMXjwYJ3X9fPzUzjWeY1vW931kpaWBgBwcnKCvb29ymVMTExQqVIlAFkNl1VxdXXF9evX8fjxY4X04novAkDVqlXxww8/iP//+OOPBZibvKPunoyLi8P169eL5bkk7zB9SuiZmZnMxcWFAWA2Nja5jn7ljHR/++23CnXX5D8XFxcWFRWldlvR0dGsZs2aatcHwFq1aqX21bUuDSkvXrzIKlasqHEfUBMlSE5OFnWR1f3Z2tqqjMAxxtipU6eUGg+q+lO1/okTJ8T83EQkZN27d2dAVv1obv369WI/YWFhWrfBl9XWyIYxxs6fP89KlCjBzM3N2dWrVxljukVt37x5I+r6aoqQMpbVToFvT1WVqUWLFjEArFy5cmzdunXsv//+Y8uWLWOlS5dWe+wLG0Mi3ZaWliwzM1PlMm3bttU7OpZTRkYGa926tdhOZGSk0jKffvqpmP/o0SO124qNjRXLDRo0SGl+TEwMMzc3ZyVKlGCTJk1iZ8+eZfv372ctWrRgAJifn59BnyE/+fn5ic/o7++f6+3Jz+G2bdsavJ2oqCjxNqJRo0Yql+HPQE2RbsaYiHQ3aNBA5fzRo0czIKse+44dO1hQUBCbP38+s7S0ZCYmJmrrlBcm+ka6GWMsJSVFVJWztrZmaWlpSsvIEWtdt5tzvfyMdIeEhDAAzMrKin3//fcsKCiI7dixg3l7ezMAbMKECQZvm5DCRq9Cd2RkpLgpO3XqlOudyw97/qXXtm1btmXLFhYaGsr8/f3ZoEGDxDLNmjVTuZ2kpCSFXlR69uzJ9u7dy0JDQ9mOHTsUCgbNmzdXWT9RW6H7ypUrCo2RevXqxbZt28ZCQkLY+fPn2fr169nAgQOZjY2N0gPr7du3orGeiYkJ69+/P9uxYwcLDQ1lQUFBbOnSpax8+fIMyGqEFBoaqrD+69evmYeHBwPA7Ozs2KRJk9ihQ4dYWFgYO3/+PNu2bRsbN24cK1euXL4Uup88ecLMzMwYADZz5kyRnpSUJBpJ/e9//9O6HV0L3WlpaaIx0bRp00S6LgVI+ZrVlqfdu3eLZX/77Tel+ampqaLBXc4/VQW8wkjXQvfx48dFA+iPPvpI7XKGFrrfvn3LYmJi2L59+xS28d5776lcnv8AKFWqlNZt8x+njRs3Vjmf1/vN+efh4cEePHig82coKLwBsY2NjU51rbXJTaE7JSWF3bhxg/38888KDWLV9WJ0+PBhsYy6BnLLly8Xy/zxxx8ql3n69KlCwz/5T34mFWaGFLoZY6xLly5ivfPnzyvNL4hCd8WKFVnt2rWZtbU1s7KyYl5eXqxv377sn3/+UfuDXfa///1P5bmsVauW0au2EZKf9Cp0b968WdwMU6dOzfXO5Yc9kNXtmqobdPjw4WIZVfXYJk6cKOZPnz5daX5mZiYbMGCAWGbFihVKy2grdPO6iCVKlFBbL5ixrC+DV69eKaT99NNPDMhqJHbw4EGV6z1//pz5+PgwICsiLwsICBB50xRNTU9PV/mAyutC99KlS8X2bty4oTCvf//+DMjqWURbAzpdC928Hm6lSpUUjq0uBchDhw6JZRYtWqRxPzziAoBNnjxZ5TJJSUlswoQJzNPTk5mZmbFq1aqxX375Jde9CeQXbb2XBAQEsJkzZ4qCq7u7u8aeB/QtdKv6YuV/9erVU1vo5QU6Hx8frfvg91GZMmXULrNjxw7WsGFDZmFhwZycnNigQYOM2gA4rzx8+FAhUJEX9C10a+t2cuLEiRoLWvIbzd69e7Ndu3axkJAQtnfvXjZs2DDxY2/AgAEaf1Q8fvyYDR8+nLm6ujJzc3NWt25dtn79ekMOQYEwtNA9ffp0sd6GDRuU5hdEoVvTX8uWLXW6t1asWMG8vb2ZmZkZK1OmDPvqq68MavRLSGGmV6FbLmzlbGlsCPlh7+7uzl6/fq1yuWvXrqnd7+vXr8XrNm9vb7UP6RcvXoi+Yb29vZXmayp0y9EZXSK4srS0NNGvcM4eE3I6ePCg2M/NmzdFuvxjx5Bf/Xld6G7YsCEDwJo0aaI078CBAzr9QGBMt0L3zZs3maWlJQOUu+TTpdAt92jx+++/a8xPVFSUWHbMmDEaly2qdO2n28LCgk2aNElr5DcvCt3W1tZsxYoVGvtI529QmjZtqnUfTZo0YUBWda3i5vLly+K49erVK0+2mVeF7nr16qmMvKpy5MgR0RtQzr/69euzbdu25fJTFX6GFrrlNzWqvofzs9BdtWpV1r17d7Z8+XIWGBjILl68yE6cOMG+//57Vq5cObG9mjVrssTERJ3zQkhxpVdDSnl0qLxujNOnTx9YWFionFe9enXY2toCAO7cuaMwLywsDImJiQCyGlGVLFlS5Tbs7e3Rt29fAEBUVJTWRouyAwcOiOnx48frvB4ABAcHi33x/avTpk0bMR0UFCSm3d3dxfTatWv12j8AtGvXDizrB5bOIzeqExUVJUYPVNUw1tfXVzSM2bhxo8Zt8TxpGv1s5MiReP36NT766CN06tRJ7/zKDbrMzc01Litff6mpqXrvqzh58+YNNm7ciI0bN2psGBwYGCjOoy6jzkVERCAiIgKXLl3CkSNHMHnyZJibm+Obb77BlClTkJ6ernI9fh61nUMg+zwWx3NojGewl5eXOIe8IaImPXv2FOcxODgYW7duRa9evXDp0iUMGDAA+/fv17j+o0ePsGHDBpw/f17l/IiICGzevBnXrl0z5OMUe/y7EIDKERvXrVsnzme7du2Mmpfg4GD8+++/GD16NNq2bYt69eqhXbt2mDJlCq5cuQJfX18AwNWrVzFnzhyj5oWQokCvQrednZ2Y5j2Y5JUaNWponF+6dGkAyg+ZyMhIMd20aVON25Dny+tpw3sKKF++PCpUqKDzegAQGhoqpps3b65xqFz5YSoPSd2qVSvRmn/cuHFo0qQJfvjhB5w7d070BpBf1q9fDwAwNTVFv379lOabmpri448/BpDV48SLFy8M3te6desQEBAAe3t7LFmyxKBtWFpaimltx0ruKcHKysqg/RUla9euFV/O/C8pKQnBwcEYPnw4Hj16hKlTp6J///55Nsx9rVq1UKtWLdStWxe+vr744YcfEB4eDldXVyxZsgRdu3YVvZTI+HnU5Xrn57E4nkNjPoN15eDgIM5j48aN0a9fP+zevRsbNmzAnTt30KNHD7U/7q9evYomTZpg8+bNsLGxwYoVK/DgwQOkpaUhLi4OGzZsgIeHB/bu3YvmzZvj9OnT+fvhigD5O1BdDzD5xcHBQe08Ozs7bN++HU5OTgCAP//8M9+/rwgpbPQqdDs7O4vpnF015Za1tbXG+SVKZGU15xcy77YOANzc3DRuQ+56SF5Pm6dPnwJQjDjrKj4+Xu91AODVq1di2szMDPv27UPNmjUBACEhIZg6dSpatmwJBwcHdO7cGVu2bFFZWMlLmZmZ2Lx5M4CsiLaLi4vK5XgE/PXr19i+fbtB+3ry5AkmTpwIAJg7dy48PDwM2o5cSFHVDaBMLsTIP4DeJba2tmjcuDFWrVqFqVOnAgC2bdtm0BsWXZUrVw6//fYbgKzuGlevXq20DD+P2s4hkH0ei+M5NOYzOLc+/fRTfPTRR8jMzMSYMWOQkJCgcpmYmBhYW1vj9OnTGDVqFMqWLQszMzO4ubnh008/RVBQENzc3JCYmIj+/fur7TbwXcW/jwAU+u4tS5UqJYIzvFtOQt5lpvosXLduXTF94cKFPM9MbmnrYzu30Tpt21dFLggHBgaKX/3a8CoanLe3NyIiIrBv3z7s27cPJ0+exO3bt5GamorDhw/j8OHD+OWXX3Dw4EGldfNKQEAAHj58CCCrr2BdjseGDRvw+eef672vv/76C8+ePYODgwOcnJzw999/Ky3z33//KUzzaGiHDh3EMShbtqxYRltf7w8ePBDT5cqV0zvPxc2ECRPw448/IjMzE6tXr8awYcOMti9fX19YWVkhNTUVO3fuxIgRIxTmly1bFo8fP9apv35+HovjOfTw8ICLiwuePHmCy5cvIyMjQ22VuoLQo0cPbN++HSkpKTh06BA++eQTMe/y5cuiatqAAQNEECEnDw8PfPXVV5g+fToePnyIw4cPo0ePHvmS/6KAv3kFsqpeFnbyWB78+4OQd5VehW5vb284Ozvj6dOnOH36NF6+fFngr7fkX/pxcXGoVq2a2mXlyJA+EQIeXYqNjdU7f3Ih29zcHLVq1dJ7G1zJkiXRs2dP9OzZE0BW3chDhw5hxYoVCAsLQ1hYGL744gv8888/Bu9DE161RB9nz57FnTt3RPUYXfHoVmJiok6DKq1cuRIrV64EAJw4cUIUuqtVq4aSJUsiIyNDax1Reb66AsG7xNHRES4uLnj8+DEiIiKMuq+SJUuidOnSSE1Nxb1795Tme3t7IywsDC9evEBcXJzaATMePXokBogqruewTZs22LVrF1JSUnDy5EkxKFVhIL/9ynker169KqYbNGigcTsNGzYU09euXaNC9/979eoVzp07ByCrTn+9evUKNkM6yKuqaYQUB3pVLzExMREjvqWkpOCvv/4yRp70Ihdi5cinKsHBwSrX04Z/Qdy/f19lgUCT+vXri+mjR4/qta427u7uGDZsGIKCgkQe9+/fb5QGZMnJyaIw/95772Hr1q0a//i1wRjT2qDSmMzNzdGkSRMAWY1TNdUp5COiWVhYoFGjRvmSv8Lu7du3AKC2gWNeSUtLE6/NVVULadWqlZjOOXKdTJ7XsmXLPMxh4SGPyGloWwdjkSOZOc+jqWl2jIdfV+rI15u83rtu7dq1op1Mt27disSxiYqKEtOGVhMkpNjQt7uTmJgY0X2XjY2NGB1Qm4yMDKUBE3KOSKmJupGv5C4DfXx81HYZ+PLlS+bs7GxQl4HHjh0zuMvA1NRUMbpamTJljNbR//jx40UeY2Nj83z7cjdhO3fu1Gkd3rWgPGqlsfKk6fpZsGCBWE5dH+sPHjwQo+l16dLFKPktDPQZkfLOnTti2apVqxo1X3LXjqq6tXz06JHov1nTyKIdO3ZkQFZ/+ppGrizKMjMzWb169cTxUjcQjSq7du1iycnJRsubPHBLzu7qQkNDxby+fftq3M6ECRPEsrt27TJafguSvl0G3rhxg9nZ2Yl1Ll26lKf5MaTLQG0SExNFV73W1tZquwUm5F2hV6QbADw9PbF8+XIAWdHutm3baow8AVm/dDt27IiffvpJ391pZWFhgeHDhwMArly5orJbIsYYxowZIyJpY8aM0Wsf77//vnjduWzZMpX1i7nnz58rRJotLS1Fg8C4uDj069dPY68DSUlJ4vhyp0+fxq1bt9Suk5aWJs6Bra2tUgPHwMBA0UMKf1Ohrw0bNgDIavDauXNnndbp06cPAOD27ds4e/as0nyeJ126msuN4cOHo1SpUgCAyZMn49mzZwrzMzIy8OWXX4r69/x8vcsyMzMxefJk8f8uXbqoXK5du3biPKrq+tHf31/jtQtkPR/Gjh0r/v/pp58qLVOmTBkMGDAAAHDkyBHs3LlTaZkdO3bgyJEjYhvqqqAUdSYmJti0aZNofD506FCsWLECmZmZatd5+vQpvvrqK/j5+Sm9tYiOjhbnUF0Xc+vWrVPoflOVxYsX4+DBgwCyuiGU304AWW/9PD09AQC7du1CQECAyu1cuHBBVBWztrYuVNVnCsr+/fvRokUL0XPJlClTFNpYyYYMGSLOpy5dQBrq8OHDGt+qJiUloW/fvuJ5+9lnn6ntFpiQd4VB76aGDh2KmJgYzJw5E/Hx8WjXrh18fX3Ro0cP1KxZEw4ODnj+/Dlu3LiBAwcO4PDhw8jIyFD7kMitmTNnYvfu3bhz5w7mzp2LyMhIDBs2DB4eHrh79y6WL18uHj7NmzdXaqSli40bN6JJkyZITk5G//79sWPHDvTr1w+VKlVCRkYGbt26hWPHjmHnzp2IiIhQKEhOmjQJAQEBCAgIwKFDh+Dt7Y2RI0eiefPmcHBwQFJSEq5fv47AwEDs2bMHlpaWCj8MAgICMHfuXLRu3Rpdu3ZFnTp14OLigtTUVNy4cQMrV64UDVuHDx+e568c79+/L45f586dtfY0w/n5+WHKlCkAsgrtBfW639HREQsWLMDIkSNx7949NG3aFNOmTUPt2rURGxuLJUuW4MSJEwCA/v37o3379gWSz/z28OFDpa4zU1JSEBUVhVWrVom+4p2cnBQK4Po4c+YMOnXqhPfeew8dO3ZEnTp14OTkhLdv3+LevXs4evQoNm7cKAp0Q4cOxXvvvadyW/Pnz8fhw4fx5MkT9O/fH6Ghofjwww8BZBVKfv75ZwBZ9YrnzZtnUH6LCh8fH+zcuRN9+/ZFcnIyRo8ejd9//x0ff/wxGjduDBcXF6SkpOD+/fs4evQo9uzZI+q6G2L27NmYMGEC/Pz80KpVK1SuXBm2trZISkoS/WrzH9bm5uZYtWqV0nOoRIkS+OGHHzBo0CBkZGSgc+fO+OKLL9CtWze4urri+fPnOHr0KJYtWyZ6b5oyZYrGbumKi7t374q2Q4wxvHz5Ek+ePEFISAj27dun0Kbi888/x/z583O1v+TkZKUfrvKP4507dyr0lFOvXj2l+uM//vgjBgwYgN69eytcE4mJiQgKCsLvv/8uGjVXr14ds2fPzlWeCSkWchMm37VrF/Py8tJphDsfHx925MgRhfXzonqJvK0aNWpozEPLli3Zs2fPVK6vbRh4xrJej8qjbKn7U/Vq7tWrV2zQoEE6HauKFSuqzZumv969e6sc1S+3I1LOmzdPa/UMderUqcMAMAcHB6VXi3yb2oaBV0efqhKMMTZz5kxmYmKi9vh16dJF46iIxYGuI1LK12JYWJja7WkbkVLXa7dkyZLsm2++0TjsN2OMnT9/npUpU0btdsqUKaPzqIjFweXLl1nLli11OsZOTk7s119/ZRkZGQrb0GVESl2G+wbAypYty44ePaoxz4sWLWJmZmYat2NiYsLGjRuncTj5ok7Xe4P/eXt761TVRpcRKeVzrsvfrFmzlLYh3/ua/tq0aaPTMPCEvAtyFRLt3bs3PvzwQ+zcuROHDh1CSEgI4uPjkZSUBHt7e3h5eaFZs2bw8/ND+/btDepyT1deXl64fPkyVq1ahR07diAyMhIvX76Eo6Mj6tevjwEDBuCTTz4R/X0bomHDhrh+/Tr++usv7NmzB5GRkUhISICTkxM8PT3RqlUr9OvXT2V1CSsrK6xfvx5jx47F6tWrcerUKcTExCAlJQW2trbw8vJCw4YN0blzZxG94yZNmoSmTZvi2LFjCAoKQmxsrOj/u0yZMmjatCkGDRqktgpAbvGGkBYWFujatate6/r5+SE8PByJiYnYu3cvPvroI2NkUSdz5sxBx44d8dtvv+H06dN4/PgxHBwcULduXQwdOhT9+/cvsLwVFpaWlnB2dkbdunXRvXt3DBw4UOc3G6p8/fXXaNCgAY4fPy5GZ338+DEyMzPh4OCAGjVqoG3bthg0aBAqV66sdXtNmzZFREQEli5dij179ogqLRUrVkSPHj0wbtw4nbvlLA7q1KmDM2fO4Pjx4/j3339x6tQpxMbG4vnz57C2toa7uzsaNWqErl27olevXgqDRekjICAA/v7+OHHiBK5evYrHjx/j2bNnsLS0hJubG+rVq4cPP/wQffv21Xq9TJw4Ed26dcOff/6JkydP4tatW0hOToa1tTUqVKiAVq1aYfjw4Qo9mLxLzMzMYG9vj1KlSqF69epo1KgRfH19larrFLSffvoJAQEBCAoKwvXr1/H06VMkJibC2toaHh4eaNq0Kfr37w9fX1+jfvcTUpSYMEb9+RBCCCGEEGJMhod9CSGEEEIIITqhQjchhBBCCCFGRoVuQgghhBBCjIwK3YQQQgghhBgZFboJIYQQQggxMip0E0IIIYQQYmRU6CaEEEIIIcTIqNBNCCGEEEKIkVGhmxBCCCGEECOjQjchhBBCCCFGRoVuQgghhBBCjIwK3YQQQgghhBgZFboJIYQQQggxMip0E0IIIYQQYmRU6CaEEEIIIcTIqNBNCCGEEEKIkVGhmxBCCCGEECOjQjchhBBCCCFGRoVuQgghhBBCjIwK3YQQQgghhBgZFboJIYQQQggxMip0E0IIIYQQYmRU6CaEEEIIIcTIqNBNCCGEEEKIkVGhmxBCCCGEECOjQjchhBBCCCFGRoVuQgghhBBCjIwK3YQQQgghhBgZFboJIYQQQggxMip0E0IIIYQQYmSmBZ2BouTp06diOjExEQBgY2Mj0mxtbQEA1tbWIq1kyZL5kzlCCCGEEFJoUaSbEEIIIYQQI6NCNyGEEEIIIUZG1Uv0cPv2bTF99epVAED9+vVFmoODAwDAxMQkX/NFCCl6GGMA6HlBCCHvCop0E0IIIYQQYmQU6dbD6dOnxfS+ffsAAKVKlRJptWvXBgCUKEG/ZQghhBBCSDYqHRJCCCGEEGJkVOgmhBBCCCHEyKh6iRopKSli+tq1awCA6OhokcYbP1laWoo0qlZCSNGQlpYmps+ePQsAiIqKEmn8/n/9+rVIS09PB5DdAFKmKu3t27diuk6dOgCAAQMGiDRVDSjl7VADS0IIKV6olEgIIYQQQoiRUaRbjfv374tpHgl7+fKlSCtfvjwAwNHRMX8zRgjJNR61BrLv77///luk3bx5E4BiRDw3WrRoAQBo2bKlSPPy8lJajqLbhBBSfFGkmxBCCCGEECOjQjchhBBCCCFGRtVLALx69UpM82oljx8/FmnOzs4AgJIlS4q0J0+eAMi718+EkPxjYWEhpnv06AEAsLGxEWnr1q0DAJiZmYm0bt26AQCcnJxEWmZmJgDA3NxcpCUkJADIrrYCAE+fPgUAjBs3TqT5+fkBAD799FPDPwghhJAigyLdhBBCCCGEGBlFugEkJyeL6evXrwNQjHBVqVIFABAcHCzS7t69C4Ai3YQUJbxLPlPT7EcfH0mWv9ECgAsXLgAAXF1dRdrEiRMBKEbENTl+/LiY3rhxI4DsCDqQHSXv2rWrSKOG2YQQUnxRpJsQQgghhBAjo0I3IYQQQgghRkbVS6A4clxSUhIAwM3NTaRVrFgRAODp6SnS7ty5A0DxNTUhpOiSnwO8H285Td8RZ1u3bi2m+QiX8qiXfLTLvXv3qlyncuXKeu2PEEJI4UaRbkIIIYQQQozsnQvT8sZLQHa3gPHx8SKNR7MrVKgg0lxcXAAoRr95mtz1GCGkcNM04iOPRgOAtbU1AMDW1lak8UaYqsjz+D7kxti1atUCADRs2FCkRUdHAwCCgoJEWtmyZcU0RboJIaR4oUg3IYQQQgghRkaFbkIIIYQQQozsnate8ubNGzF98uRJpfl8dDorKyuleXZ2dmLaw8ND7XKEkMJNrmbGG08nJiaKNF7NQ248ralqiqZ5QPZotl5eXiKNV2u7d++eSHv+/LmWnBNCCCmqKNJNCCGEEEKIkb0zkW4e4b5y5YpI279/PwDFhpQPHz4EANjb24u0Fy9eAFCMhPFR6aghJSFFjxzp5qPLxsbGijTeTagcmebRakNYWloqbe/mzZsAgLi4OJGWmppq8D4IIYQUbhTpJoQQQgghxMio0E0IIYQQQoiRFevqJXLfuQ8ePAAAhIaGirSQkBAAwI0bN0TasWPH1G6vZcuWYrp79+4AaERKQooieaRJXuUsJiZGpDVt2hQAUL16dZGWm3vd3NwcQHb//gDg5OQEQLGKmr6jXhJCCCk66AlPCCGEEEKIkRXrMK3cjdeTJ08AABkZGSJtyJAhABS7EeQNrHg3YgCQnJwMAHBwcBBpfJoi3YQUPenp6WLa398fgGLXfR06dAAAuLu758n+eGSdN8oGsqPacreEpUqVypP9EUIIKXwo0k0IIYQQQoiRUaGbEEIIIYQQIyuWdSN4dZGEhASR9vLlSwDZI0kCwMCBAwGofqUrVzmJjo4GoNjg8tWrVwC0N3zijTnlfoH5tJzG+wBWtT25moy2ke8IIdrJDSnv3LkDIPs+B7IbPuYVXl1NHieAV1urUaOGSCtTpkye7pcQQkjhQZFuQgghhBBCjKxYRrovXboEADhx4oRIq1evHgCgTZs2Ik1ToyW5gSQfJU6OMvMRKfm/6vB1Hz9+LNIePXoEQLFRVYUKFQCobrhlbW0tpmkETEJyT36j1KJFCwBA1apVRVpeN2h8+vQpAGDXrl0izc3NDQDQuXNnkcafA4QQQoofinQTQgghhBBiZFToJoQQQgghxMiKZPUS/qoWAF6/fg0AiIuLE2nbt28HAJw6dUqk8VfHfBQ4mdxnL298GRkZKdLCwsIU5gGAnZ0dAMDR0VGk1alTBwBga2sr0niDTD4iJgBcvHgRAHD//n2l/FWsWFGk8YaWcqMuVf2D88aactUTPi1XieGNNS0tLZXS5NftfH/yfvl8eTlq1EmKGn6vy/3we3t7K8wDtFcb00ViYqKYvnDhAgDg+vXrIo2PTimPeunq6prr/RJCCCmcKNJNCCGEEEKIkRXJSPe+ffvEdHh4OADg33//FWl3795VWicmJkbt9njDRgDYunUrAODIkSMijUe6ebeDQHaEW46I9+jRAwDQtWtXkcaj0LGxsSKNdxvGI95AduNPuQFXWloaAMUI+8OHDwFkN9AEsqPacpTcy8sLQHYkW952lSpVlD6HmZmZSCtbtiwAoHz58iKNR72trKxEWl5EAwnJT7xBs/yM4G+N5BFn5fshJ35PA6rf9vD569evF2l79+4FoNglYN26dQEoNp6mt0eEEFJ8UaSbEEIIIYQQI6NCNyGEEEIIIUZWJKuX2Nvbi2lnZ2cAQKVKlURa6dKlASiOPilXvchJbpTIXzFXrlxZpPHGg3wUSiC7qobcry6vbiE3NuTTcrWMjIwMAEBKSopI41U55L6CefUSueEor0oiVy/hVT/kRqL89bg86iVfh1dRkbctv9bmVXGioqKgCc+LfPx4dRb58/KGpfIre55nuQ9yvo68HG/0qaqvcrnqDCG64NW4Tp48KdKaNGkCILu6B6BY1SQnVVVA5JEm+bb3798v0vi9zqugAcAHH3wAQPFeIYQQUnxRpJsQQgghhBAjM2Fyq6AignfDB2RHjXlUGMiO7soRZx5NUjWioxwN5tt++/at0j5UNaCSo7yqutrj0fHbt2+LNN6l4enTp0XayJEjAQB9+/YVabwLM/nz8rzK0TaeLzkiHh8fDyC7S0Ugu0Gm3H0hT5Mj57yxmdzANDk5GYBiN2iqGnXyqLb8loG/DZDfUPBp3mgTyB6hT+5ykXehJi/HG3/K25O7QSREnfHjxwMA1q5dK9J+++03AMCAAQP03h5/7owaNUqkrVmzBgDg6ekp0nr27AkAmDhxokjjjZ0JIYS8GyjSTQghhBBCiJFRoZsQQgghhBAjK5INKVVVEZEb2umKV8tQVQ0lr/B8yQ0ueZUUufqGqpEh+edU9XlVkRt/8QamcrUbXkVEfu3N0+Tlnj9/DgB49uyZSOPVVOTGn3y+PJIfr+YhV7Hhn1dVTSa5+gtvwMmr8wDAtWvXlLbHq9bIy8l54ORrgjdy5SOJAtnVWOTqLHw5uQ9yTcvJaXJVI5K/eLUrfj0DQEREBADg2LFjIo1X7Xrx4oVI4/1py3138/tBrnrGydcxr/ol3xd+fn4AgFq1aom0Vq1aAdBepURbH+CEEEKKLop0E0IIIYQQYmTvdGguPyNJcqM/Hs26f/++SOMNH/OKqi7PeKNEuXtFY5EjjjyCzSPo8nRcXJxI48dAXo43DpWPD0+TG47y7ciRc7kLRRcXFwDZxwDIfhvA/wWyG2nKaaqW49uWt8enVb2Z0PVa07acpvnvcmRUVaSbR7jnzZsn0vjbEfmtREBAgMLy+uDbmTlzpkgbMWIEAMVrI6/OPyHGJL9p4fdUXvW1oKorXULeNXTlE0IIIYQQYmRU6CaEEEIIIcTI3unqJQWFVz9QNUplcSE3MOSNSOXX7bwaiFwdgPdpLvf7zaflhmo8TV6Oz5cbVMpVCFQ1vuR5kKuk8Pm8/3Iguz9yubEp3568P55/eeRS3t87r7YCZI+YKp9/PsIprwYDZB9DuVEnP4ZyVRd+PcmNRA1pWFyU8dfV/DgCQKdOnQAoVjPi500+Pvz8q2qMq4qqhsOtW7cWaby/eW34a3uqUkIKi+DgYDF96tQpAMCdO3dEGq/6Jzcwlqf5NS0/U/lzTO4H39fXFwCNxkrePRTpJoQQQgghxMgo0l0A+C//MmXKiDQeYZVHfOSNL4t6oxMezSjIqAbv2k1upMkbX8pdN/LjL0e6eUNQuZs5HlmXG3jyiLjc1SKPjssRbD4tR7B5w1d5OX7+5bcGPIoqL8ejtnJjXVWNOvk1xrunBLLfBsjRVn69mZmZKaXJy/F15eU4eTl5f8bC8ycf02bNmin8W9hQhJsUNvKzKzw8HADg7+8v0vgzU76n5dGA+TNBfoPJ58tv5/jbvjp16og0VY3/CSluinZpjhBCCCGEkCKACt2EEEIIIYQYGVUvKQC8YVfFihVFGm94Io+KV61aNQCKr8yJYXg1C/kVJ294WL58eZHGG8nJjeX4uZEbUvKqGrzairwcbzwpLyevq2q0w6SkJADA48ePRRrftrwcf+UrV5Ph1RTkhqW8yszLly9FGm/kJDdo5aOTyiN+8moqcn/uvCGoXCWCr1u5cmWRxquayFVO5GNOCCm85AbBvAqbXG3t9u3bAICGDRuKtBo1aohpXmVSfi7y77T9+/eLtBkzZgAAvvvuO5HWtm3b3H8AQgo5inQTQgghhBBiZBTpLgA80u3l5SXSeJQ0OjpapJUtWxYARbrzkhyB5dNyQ8X8wLsUlKPffHRN+fzz6Le8HG+MKjdk4pFwuaGnpsa38vb4PuRIN4/Uy1FtHoGXu2HkjUh5Q1N5vpw/fnzlRp08z3IaX07eL5+WzxFvOCqPlMfzLy8n55VT1ehTFVVvI/j2VG2XkKJGvn/4fSZ3O9q4cWMAwPHjx0UafzZ07dpVpMkNlVU9d3jjy23btom0s2fPKswj5F1BkW5CCCGEEEKMjArdhBBCCCGEGBm9Jy0AvI/ScuXKiTTeP/SDBw9EmtwwjhQfvIqI3L8tr0Lk4eEh0njVBvk1MH+9KzfWzLk8kN0QVE7j5GoovD9y+bUw74P82rVrIo1fn3I1FF4VJiAgQCkPckNU3vhKbiTKubu7i+maNWsq7YPny9vbW6TxEU7lz8Yba8rLya/KOd6IVFsVkdjYWACKI+vxBmXy6KLyOSSkKNHWTzz//rl//75I4w205T61tY0jwe8b+X5UVQ2NkHcBRboJIYQQQggxMop0FwAeKeMROyC7Qcm9e/dEGkW6iyceYdI2CmR+4A0pZbyhpxyZ4tFxOULMI9d8lExAdaSbNwiWR7vjn11uJMzfAMn49uR7gUfe5Eg3j8DJDVH5MeXdNsr7VTWinpxn/tnk/fLleEQeyB5RT47O82Mkfx7+OeX9UpSPFGa8W1L5OcC/s+TRlFWR7/Vz584BUHy2NWrUCIDiyLqEvAso0k0IIYQQQoiRUaGbEEIIIYQQI6PqJQWA99MtVy85efIkAODJkycijaqXEGNT1Uc5T9P11a/c0FPTfFXVaXgDTQB4+PAhAMXGi/weuHPnjtJycvUS/jo7JCREpPEqMfLoeLz6ltyok7/2lvsM5+QqJ3x/zZs3F2nvvfceAMWqJHy6SpUqIo034JSroZQqVQqA6gafhBQEuVoIb0wsPwd4tRK5ypYq8n24c+dOAIr3SKtWrQAojlVByLuAIt2EEEIIIYQYGUW6CwD/xV+xYkWRxiN6vHs1OY0QY9HUbZi2LsXyghz94pFmObrMu0aUo21ydJxLTk4GkD1KJpAdMZe7V3z58iWA7BFA5XXkRpiRkZEAFBuO8u4N5f0fPHgQAODj4yPSypcvD0Cxy0U+wqX82XgEXk6TG5vxNw5yF4W8+zW5q0Kext+gyevy0TuB7GMtd/cmzydEvhb5fXH+/HmRdv36dQDAf//9J9L4GxuZ/JanX79+ABTf6PBrkHf1Sci7giLdhBBCCCGEGBkVugkhhBBCCDEyql5SgOT+jflrPfn1OFUvIe8STVUd5KoTeS0wMBAAcOLECaW8yNU4eBWSS5cuibTg4GAAilU2+DpyFRbeQE2umsL75pcbT8sNLXm1EnmUUv46no9qKqfJy/FX/rzqCZD9vOGNOuV8y/2l8youcj/iqvqW59PyiISa+qDXdTlScOR++3nf9zExMSItIiICAHD16lWRpmp03JEjR4rpQYMGAVC87gh5V9FTjhBCCCGEECOjSHchwaNKcrRHbtRCCDGOo0ePAlDs5qxXr14AgIYNG4o0HnmWuznjUWHePSGQPaJn//79RRpfR45q88afcpeGMt7Vovwc4G+/+D6A7Aaj8nYePHigtBzfjrwcb1jK8yLvQ47y8zcNcqM53jBTbujJ0+QIO19XbjSnKhJvzLcZRDc3btxQmv7oo49E2pgxYwAovpGRr2neeFhulPz5558DAEaPHi3SfH198zDXhBQdFOkmhBBCCCHEyKjQTQghhBBCiJFR9ZICJI/kx1+zyq9q+ath+XUwf62XH30oE1Jcya+/w8PDAQDPnz8XaY0bN1b4Vyb3pc0dO3ZMTPP7Vm4oXa9ePYPzKldd4Y0zExISRBpvpCk3wubLySMM8s8nVzlRtRyvciJXIeANQOUGo6pG1OTPMTmNLyevy+fL1Uv4s09u1MlHPpSfdzxfckNPPi3nmZ8nucoe73ddHn2Up8nLqTrH7wK50SQf+bVnz54irUWLFhrXv3LlCgBg7ty5Im3btm0AgNq1a4u0pk2bAlA8//SdRt4FFOkmhBBCCCHEyCjSXUh4enoCyB7NDsiOLsnRBz7/XY3EEJIbUVFRABRH2eNRV7nLPU2N+uSGlF27dgWgeI+ePXsWALB9+3aRxqPQ3bp1E2m6dpEnR41540Y+OiaQ3UBS7rpNVRqf1rZcZmYmgOxRNIHsxppyGo+YyxF2/sySl+MN7fgon/L25Ld4vIs6uatF3qhT7k6ybNmyABQbdfIROPlzFMg+RvK6qhrD8safcvSbv6WQI+fFGX+jIHdTy88vn6cLb29vANmRbCC7i035TVJoaCgAxYbK8psQQoorinQTQgghhBBiZFToJoQQQgghxMioekkBkhuOlClTBoDiK27eWIo3aJHnU/USQvTHX3XzvrmB7Cpb8itxXfuM5qPstW3bVqTxKhuXL19WSpOrNfBX8druZbkailwFoiDI1Q94g8vHjx+LNN4gU26sydPkY5qSkqK0HK86Izek5NVU5GPEG9/J1Ub4ceHbBbKfm/Ix41VheD/mQPbonnJVEj7NG1kC2Q3f5TRe9Ufu05w36lTVmFRuPM+Xk0dq1DQqa16TqwDxcyg3TuXfNfrkiX+nqWoMK1cl4vvmVZkIeVdQpJsQQgghhBAjo0h3IeHi4gJAsZsxVZHu+vXr52/GCClGIiIiAGQ3dgSyR8fr3r27SNP3TVKbNm3EdLly5QAAs2fPFmm8Aefx48dFGo/yFYV7mkdo5YgujyDLEWz+meSILp+Wo5o8TV6Oz5eX41F+OSLOG2bKkVoeTb13755I49FsuSEg736RXwcAkJSUBEDxzePdu3cBALdv3xZp/G0Fb7QJAJUrVwagONomj5JXqFBBpFWrVk1hHpDdcLB169YiTW5Ib2zySJL8+pSj2ry7TENGCpUbFvNj+P7774s0fmz4WwZC3hUU6SaEEEIIIcTIqNBNCCGEEEKIkVH1kgIkv87k1Urk/nd5v7Zyox+5P11CiHq8z+irV6+KNN6oT27QyF9161qlRK4SoWoUPb7tjz/+WKSdPHkSgGL1El5lQu5bWm5UV5io+pw8Tdf+xnNDHrmQV3fg1T2A7OeiPKIv789brq6SnJwMAKhUqZJIk6uucLxhYVxcnEjj1VTk64RXNZGfy/wau3Xrlkjj1VmaN28u0j744AMA+dt4UiY3OuUjSfKqUUB29RL5XlGF32cAcPDgQQDAiRMnlJaTr3OqXkLeVRTpJoQQQgghxMgo0l1I8C4D5Uj3qVOnACh240SRbkJ0wyPc27ZtE2k8OstHkgSyI6K6UhX1VTW/S5cuIo03tJMj3UFBQQCARo0aibR69eqJablRNcnGI82q3kzIEfEqVaoYPS98FM1r166JtODgYACKUfIbN24AANq1ayfS6tatC0AxOp+f7ty5I6Z595Zyo0l+zcoNUeXvIi4sLExM//777wCyI+cAUKNGDQBAzZo1RZrcpSAh7xKKdBNCCCGEEGJkVOgmhBBCCCHEyKh6SQGSX1Pz0b+0je5G1UsI0Q3vs/nYsWMijVf56NOnj0iTG48ZSlvjSv6K/ZtvvhFpvLHZzz//LNIGDhwopj/99FO12yOFAx+dUu6X+tChQwAU+zSfMmUKAMX+3Hm1krxuiKqq4WhISIhI27p1KwDg3LlzIi02NhYAcPHiRZG2Z88eAJob0QLZ40kA2Y0qe/bsKdJ4//fNmjXT63MQUhxRpJsQQgghhBAjo0h3IcEjJvLIZjxKQZFuQjTjkWY+4iCQHenm9xGQHdXO60Z22qLRvIFf3759RRrvsu3IkSMijTeuBIDatWsDyB7NEKAGaIUBfwMJAJcuXQKg2HCQX4O8yz0AGDFiBID8OX/yWxc+aqcciQ8MDASgOHonb0DJI94AcP/+faXt8Si6/D3E39ICQNOmTQEodpfZsWNHtXmktzjkXUORbkIIIYQQQoyMCt2EEEIIIYQYGVUvKWR4NROZ3E+q3EiGEJLl4cOHAICdO3eKtOjoaABAt27dRFqtWrXyNV+ayH02c3JVk+nTpwMAZsyYIdJUNUajV/X5g19jZ8+eFWkbN25UWm7atGkAsqtaAPlbLUhumMmrNb3//vsirWLFigCA169fizRzc3MAilVJ5O8djs+Xl5NHlSxdujQAxdEnVaFrlbyrKNJNCCGEEEKIkVGku5CRR/xycHAAoBiR4F0yVahQIT+zRUihxhuAHT58WKTxqBvveg9QHBWvoPGIo52dnUi7deuWmOafhY9MC2R/JrkhqKpRAknu8CgvH3ESyO7i8b///hNp/M2jPJJo586dARRco1c5iswj2HLkWVsU2li0datJyLuAIt2EEEIIIYQYGRW6CSGEEEIIMTKqXlLIyA0py5cvD0CxX1je36qbm5tI49P0yo68S+RGxbyR2/Xr10Vaq1atFP4FshuWFSZ8ZEJAcSQ/XpXk6NGjIi08PBwAsHDhQpEm95PMUeNKzbRVdbh79y4AxdFM+QiNcnW/yZMnAwDee+89kcardBBFdC0SQpFuQgghhBBCjI4i3YWMHOnmo+fJeIMxuTGMHPUmpLh78+YNAODcuXMi7fLlywAUG0rWr18fQOGMbsvkLt58fHyU5kdERIhpHtE/ePCgSONdD8qNKymqmE1VVFs+PnzURvktCW80KY8Q6urqCgCoU6eOSGvSpAkA1dFtajhICMmJIt2EEEIIIYQYGRW6CSGEEEIIMTKqXlLIqKpe8urVK5HG+42Ni4sTafx1J73CJO+Cly9fAgB27dol0ngD4969e4u05s2bAyhar/mtra3FNB89Ux5R8+TJkwAUPzuvcvbNN9+INHmUwHedtnPOG03Ko5meP38egGKjyfHjxwNQbOyam/0SQt49FOkmhBBCCCHEyCjSXcjIkW7eWPLx48ciLTo6GgAQHx+fr/kipCDJ3QM+ePAAAHDjxg2l5eSRAWvUqAGg6EYcebS6devWIo03uuTPASC7G8G9e/eKtBYtWgBQ3Ri7ONP2VoOPNCk3wuVvDy5evCjSvLy8AABt27YVafzNiSH7JYQQgCLdhBBCCCGEGB0VugkhhBBCCDEyql5SyKiqXsIb+gDZ/cbKVU7kV5uEFCf82r59+7ZI4/1Wy9c9H5WxQoUKIq1kyZL5kUWjk/vhb9myJYDsfsmB7ONx4MABpXX9/PzEtPxsKa60Ve3g19H+/ftFGj9+lpaWIo2PMNm3b9882S8hhAAU6SaEEEIIIcToin/oo4hR1WVg6dKlRdr9+/cBZDf0IaQ44xHEgIAAkXbs2DEAQN26dUUabzhoa2ubj7nLfy4uLgCAoUOHijQ+OuWWLVtEWmBgIIDsNwBAdteipUqVMnY284WujRfl0Tv5dSSPPlmpUiUAit1Nyg1yCSEkr1CkmxBCCCGEECOjQjchhBBCCCFGRtVLChneDy+Q/arcxsZGpD19+hQA8Pz58/zNGCEFgI8+yfuiBoBbt24BAHr06CHS2rRpAwAwNzfPx9zlD7kaBX8+yNXLeF/Sly5dEmnPnj0DABw+fFikmZmZAQCaNWtmrKzmK1VVSt68eSOmb968CQA4fvy4SIuMjASg2H85v3Y6dOigcX/8PFCjSUKIoSjSTQghhBBCiJFRpLsIkKN3aWlpAID09HSRVly6RiMEABISEsR0VFQUACApKUmkOTs7AwAqV66slFYcaYusent7AwDmzJkj0lasWAEA2L59u0jjb87kKG+ZMmUAFK1niKaI86FDh8T033//DQBISUkRabVr1wYAfPzxx0pp2lCEmxCSWxTpJoQQQgghxMio0E0IIYQQQoiRUfWSIsDCwkJMOzg4AFB8HcwbVTo6OuZrvggxhqtXr4ppPnKglZWVSOMN3sqXL5+/GStEVPVR7e7uLtJatWoFQLE/6mvXrgEAduzYIdJ69uwJoGj1+88/L29kCwAXL14EAJw8eVKk8Ubn9evXF2n82pHTVI3USY0mCSHGQJFuQgghhBBCjIwi3UWAtbW1mOajp8mRv7t37wLI7hIMAOzs7PIpd4TkrbCwMDHNGwIOGjRIpA0cOBAA4Obmlr8ZK0S0RWA/+OADAECVKlVE2pQpUwAAv/32m0jjbws8PT1FmvwcKczOnTsnphcsWAAAsLS0FGm8K0C5a0l5FFNNKMJNCDEGinQTQgghhBBiZFToJoQQQgghxMioekkRIFcl4Q2e5IaU9+7dAwA4OTmJNKpeQooCeQTBhw8fAgAePHgg0ngf9XLf0hUqVMin3BVdfORKuS9zX19fAIpVJ/iIlS9evBBpn3zyCQDFBtwFLTExUUzzPMvVS+zt7QEAjRo1Emm8ik316tU1bpsaTRJC8gtFugkhhBBCCDEyinQXAaoi3U+ePBFp0dHRCvNyThNSWMXGxorpI0eOAFDsCq558+YAFCO2xDB9+/YFoPimYNasWQCyG2MDQMuWLQEA1apVy8fcaXbp0iUxvXz5cgCKkfg+ffoAyO4SENAe4eYowk0IyS8U6SaEEEIIIcTIqNBNCCGEEEKIkVH1kiJArl7C+9VNSkoSabzhWUJCQv5mjBAdaGqoJlcv4SMl8r7oAeDTTz8FANSqVcuYWXwn8MaGPj4+Iq179+4AgIiICJH2yy+/AAA6deok0vjIlflBfrb98ccfABT7bufVXho2bCjS3nvvPQBUrY4QUrhRpJsQQgghhBAjo0h3EaAq0n3r1i2RduXKFQDA8+fP8zdjhOhAU0M13t0lkH1N169fX6S1b9/eeBl7R8kjefIItjyS49q1awEonjfeoDWvRwHNzMwU0zzCHRoaKtIOHjwIAHj9+rVIGzNmDIDsEScBoGzZsnmaL0IIMQaKdBNCCCGEEGJkVOgmhBBCCCHEyKh6SRFgbW0tpnl/xUFBQSLt9u3bAICnT5/mb8YI0YPc/zYfTTAqKkqkNWjQAIBiQz+S9+TRbHlf1snJySKN9/sfFxcn0hYuXAgA+Oijj0Ras2bNlLat7+iOcrWRJUuWAAD8/f1FWt26dQFk9x0OAK1btwYAeHh46LQPQggpLCjSTQghhBBCiJFRpLsIMDXNPk2urq4AADMzM5HGI1JyV1uEFDaJiYli+tChQwAUG//6+voCUOwKjhgXj0jLozd27twZAHD48GGRFhwcDABwd3cXaXxkS7lxZYkS6uM4cqNJPgKm3BVgeHi40jZatWoFAPjggw9EmpOTk+YPRQghhRRFugkhhBBCCDEyKnQTQgghhBBiZFS9pIiSX8GmpKQAANLS0goqO4RoJY+YeubMGQCK1RW6desGAChXrlz+ZozAzs5OTPOqHKmpqSKNN9YOCQlRWtfPz09MV6xYUe0+5KpEmzdvBgBs2rRJpPERMP/3v/+JNG9vbwBUpYQQUjxQpJsQQgghhBAjo0h3ESV3I+jg4AAAyMjIEGlv3rwBAFhYWORrvggBFBvN8S7oLl68KNJsbW0BAJUqVRJp1AVc/lPVxR9/iyY3aH327BkA4OTJkyLt9OnTALIbVAJAqVKlAGSfXwC4fv06gOzRJeU03iUgALRt2xYA0LhxY5Emj8ZLCCFFHUW6CSGEEEIIMTIqdBNCCCGEEGJkVL2kiOKvcYHsxkvyK/179+4BUGyUli+val9n9b97+JcJImnWiqwR5oIfyv2IZ1V7cancVqT0mzMfADC9byOR5moGg6XHh4rp7fOmAQC+XXdUpIns2HmKNN8hCwAA86f3FWmN9MxE+oNjYnrWpwMAAL+cfCLS3vz//nzHrBVpf83JarxWLheftzDh1ZuA7P6eQ0Ozz0fz5s0BKI5q+PbtWwCKIyYS49I0cqT87Pjss88AKI4qunPnTgDA+fPnlbZXpUoVkcarpKxYsUKkvf/++wCAmTNnijReTcXS0lLPT0EIIUUDRboJIYQQQggxMop0F1FyF19ly5YFAKSnp4s0Hul2dHQUaUaLdD8/ISbH1+sAAPjd/BORtnB1VoOrbXWzR66zRCIA4Nr+pSLt68+yGlCVX71KpIUfGQ4AqKZjBDj9xl9iumOdz8V0aP0pAICVx7L316GCAwDg9eMgkfbnyMEAgMblV4u0VeFHAADDtWXi+X4AwGc+2dG7ynsvAQAS22U3EiyZdBMAsH/8eyKt5bSsrtMiF7YRafaa91aoyd3N8dEMb9y4IdI+/PBDANkjDgKKo6ySgqOqcSXXvXt3Mc2fLadOnRJpq1dn3TdyF3/8WdW/f3+R1q5dOwCKDWnp/BNCijuKdBNCCCGEEGJkVOgmhBBCCCHEyEwYf5dIihT+yh4Adu/eDUCxISVvyMRHlwM0jxZnmKxGVYeGu4qULnuzGlwdvfabSPvAETp5fmI8AKBehyUirdamGADAwQGeqlaRRAEAfq3jI1ImORtQTSU9qwrEXx3riKTP05YDAG6dGS7SKqtYNXptVtWaTs+WiLRrE+uoWJLvK7vB5WjzrD6M+7DFIq29lqwWRq9fvwYAXLlyRaRNnToVAJCcnCzS1q7NakRarVq1fMwdyUv8fI4cOVKk8ZEmZb169QIA/PzzzyIt759FhBBS+FGkmxBCCCGEECOjQjchhBBCCCFGRr2XFFF86HcguweAmzdvijTee4n8Sj/vRQIATm/P7pO5+swvAOhepUTm2H4oAGBs9SUi7ZsjWUOHv5Sql6jq1SM9aAsAYF6Ei0ibeG6wmNa19xOYZVV3GDx/okia2iKresSm4OzqJbOaKK9qZf3/fac/03FfxdCZM2cAAEePZveHzvt7rlq1qkgrXbp0/maM5AlefQgALly4AAB49OiRxnV4n+0WFhbGyxghhBQBFOkmhBBCCCHEyCjSXUSpGpHy+vXrIi1/It0tAADfv8xui/t9rrZnAwBwcJaS7sQBAJ5ISaoi3ReP/pm1nMtokda9ueH9/po19xXTQyyyRsrceipcpM1qotxA0u2DrEakTbyGiLQ5jbL67v5WZT/dn4m0fd9k9dP9g8E5LjhyA96wsDAAwOnTp0Vajx49AACdOnUSaba2tvmUO5IXXrx4AUBx9En+VkPuk7tFixYKywOAvb290rpNmmS9KuJjDBBCyLuAIt2EEEIIIYQYGRW6CSGEEEIIMTKqXlJE8Ve2QHZDtYyMDJF2//59AEBKSkr+ZixXsvL/Nl1KalQBAFBe5fKPxdTdS/9fAaVlDZFWIVd5yd5jzaw35lh09mr2nv+//203eRXHrKHNV1/JbjA2a3jWa3TX9g9FWpJdVl/iveZm92kc+mVrAEVr6HderSQuLk6k8esuISFBpPGGvnXr1s3H3BFdaBry/enTp2KaD/W+Y8cOkXbnzh0AwJdffinSePWSBw8eiLQTJ04AAH788UeR9sknnwAAxo0bl6v8E0JIUUKRbkIIIYQQQoyMIt1FlJWVlZguU6YMACA9PTtEzCNNr169yt+M5cLzE78DAL4PLifSvlnUFACguklkdmOthNj/n2iRPTqmG3LDK3uKB2hDkkQab56qah9m5bJHAf3+SNaImrlrYFo48ag2j2QCQGpqKgCgQYMGIq1yZVXjd2aRB8RVFW0lxsWPuXweYmKyrtlz586JNH6O5WdM8+bNAWRHt4HsbiHl7iETExMBZEfLASA8PKtR8pEjR0Ra48aNAQCOjsr9jdJ1QggpDijSTQghhBBCiJFRoZsQQgghhBAjo+olxQAfnVJ+9fv4cVYjQ3kEucIkPSmr+kuU/zKRNrT/agCA96rs/ny/a6OpaWF248Trwf8/0UL1knni7BUxef///1VfcaL441UE1q9fL9Jq164NAOjfv79I8/LyUrsNqipQOMTHx4vpf//9FwAQEBAg0nh1tWHDhom0zz//HABgZqa5P3zeJ/fIkSNF2v79Wf3Xz5o1S6RNnZo18mv37t31/wCEEFIEUKSbEEIIIYQQI6NIdzEidyPIR6x88+ZNAeXmtpj6q1UVAMDnZ5WXKl0/u7uxJeey1unfwEWkGT6mJMlLvCHby5cvRRrvMu7Ro0cirUOHDgCARo0aiTT+JobkH01dAcquXMl6eyOPIBoYGAgAsLDI7vry448/BpB9fgHtEW7O3d0dANCqVSuRxhtrPnyY/baK58HGxkak8caa1tbWStulxpWEkKKGIt2EEEIIIYQYGRW6CSGEEEIIMTKqXlKMuLhkV8vgjdfkhpS8caWTk5NIMzU11iWQPaLjx/9kVT/4MEOanXgPAHD+TPaojAvaZfXPPbH9QpF2ZO1YAEB95a57859F9uv0kgWYjYLA+1oOCwsTabyKAK8+AAAVK1YEAJQuXTr/MkeUaKpu8ezZMzF94MABAIp9aCclZfVH36NHD5H29ddfG5yXkiWz7hY+ci6QXU0lLS1NpAUHZ7WGlqucODs7A1A9milVKSGEFDUU6SaEEEIIIcTIKNJdjMiRbh5Vkhu+3buXFV22tbUVacaLdGdHhe1cskbMtJNn//8omj1rNBVJPXt/AgCY0a65SGv+WdaYj7f/+VikeaqYqt4k9znWqlE1FXt+Nzx58gQAsGXLFpHG36J89NFHIq1hw4b5mzGi0KCQUxUFDgkJAaDYFSCPLsuNXXl3j7wRozH4+PgAUGyMybstjIiIEGk8Es9HOgWApk2znhkU6SaEFDUU6SaEEEIIIcTIqNBNCCGEEEKIkVH1kmLE1dVVTPPqJbxRFJBdvaRKlSoiTe4Tt8A5NgMAfPP9pyJpXrc/AABHo7Orlwz14lOlRFppj/+fuBwt0rKnAC/oK7uf8dsh/z9RqYxIc8G7hY9IyKsjANmjT3bu3FmkVahQIX8zRjRWs4iLixPTx48fBwCcPHlSpPH7n1fZALKrC5mbmyttL6/6xra0tAQA1KlTR6S1aJE1nKxcJY433H379q1IK1u2rMK/hBBSVFCkmxBCCCGEECOjSHcxwrvXAgBPz6ymfrGxsSKNd/Emd9NVGNnbOEn/yxr1MCND1ZJuYqpmy+pZE9PDRdrd9OwlvfQd2jL9jpi8+P8jaTYZmN2Q0j7n8sUIvz7u3r0r0m7cuAFA8RqrXLkyAMUuA3n3cMS4tEWcg4KCAACbN2d3ycnfVvBnAwD06tULgGKkW1WEW9O+8sqHH34IAPDw8BBpS5cuBZD9eQCgUqVKAICWLVuKNN5VJSGEFGYU6SaEEEIIIcTIqNBNCCGEEEKIkVH1kmJE7qe7fPmsESGvX78u0u7fvw8gD6uXnJsKALBvuVskzbx8DQAwsY7KNXTyOD5a+l/Wq25ttRbqtMnqW9jlzW8iLSA0e2TL9s31q1/y0n+bmF6NrAaDC9tUU7d4scKvD97wDgDCw7Oq7TRq1EikNWmS1Tm6lZVVPuaOAIrVPPj5unXrlkjjfXHLfV7zahlt2rQRaa1btwYA2NsrV5jKq0aTqvBty9vljTqbNWsm0nhDSt7HOAAEBgYCADIzM0Uar/ZkZ6cwGgAhhBQqFOkmhBBCCCHEyCjSXYy4uWU3LOSRbrn7rcePHwMA3rx5kzc7rJUVJetr8YNIWvjHMQDAsN8+EGmOum7v9UUAwNr5e7LTOm8CAPh6aVm3yUAAwIL22XkZNW29mB50ZDgAoJq2gHd6VkT3z29XZ6f1/BsA4OetZd1igo80uX//fpGWmJgIAJg/f75Ia9y4cb7m612lLeJ85coVAMDcuXNFWkJCAgCgVq1aIo03muTRbQCwsLBQu19jNprUtG15lMqxY8cCAA4ePCjSpk2bBgB48eKFSOMjXNaoUUOkFaruUAkhBBTpJoQQQgghxOio0E0IIYQQQoiRUfWSYsTW1lZM86omcvWS+Ph4AEB6ejryhH3WSIQLD40TSUc7+AIAvC5MEWkrF2SNJtmiWnb1F0tkVWF4fHmvSFs4ehIAYEt8R5G2ZmdfAEB2z8LqZPUZPXDl7yJlW6NhYrpRm6x+t1cuGSTSOlRwAAAk3stuMLhmVNY6ixKzP9Px1R/rmIeih1ddSE5OFmm80WRKSopIc3TMqiTE++YG6PV9fpGrYvB799y5/2vvvgOsKq+9j38FgUjvIEgT6b0KgnQQEGxY0KCiF3PNRV+N9+o1xWgSo8arUXM15iqWKBEhEglRQQFRpImIogKiFEEp0kGQTt4/DmvtZ2cOMwMze5jy+/zD42LmnD3DlOPaq8z1mDW8hv9ezZo1A+C886LvpXbt2gHpS0qSbJrMrnTNlcWKpfJCHTp08NjgwYOB+Bz5F154AYChQ4d6rF+/fsldrIjICVCmW0REREQkYcp0F1I2Asya4gC2bdsG5GKm+6jKvR/x8xerUpm1//tVFPvlpb8HYOXmjA2c5Wp39nO//xgHwGejhnisRfXjG/VXovF1fv7HilZ+nnBvqvnqjv5Ro+W671J/lqoWZW97Dk81UC6654cea5ftTtCCx7KLYeZ09uzZQHzLnzWohXdTJO+tWpW6Y/PQQw95bMuWLQCcf/75HrMsbzh+LzMnK7ud3WsIt57ec889ADzxRDQe9He/+x0Q36bZunVqbmm4RdUy5yIiJ4N+AomIiIiIJEwvukVEREREEnbKP8MOGik0vvsuVTsxYsQIj61cuRKAp556ymPnnHNO3l6Y5Et33323n6dPnw7AVVdd5bH+/VNz122rIcCpp6o6LUmHDh0CYOLEiR6bNWsWEJWUADRq1AiINxHa3OrCXA60YMECP7/00ktA1CwOULt2qvV51KhRHmvSpEmGx0nXwCkikgRlukVEREREEqZUVSFXvXp1P9sGN9tWF8bKlSvnMTUbFR12R+TLL7/02IYNG4BoxBxA48aN8/bCiqiwyfnzzz8HYPz48R6zf6eRI0d6bMCA1JjOVq2ixuGiIPz6rFKlCgAPPvigx/7+978DUUMlRHdqwq2XynCLSF7RqysRERERkYTpRbeIiIiISMJUXlJIWYmINRNBtJ0ybMKyUoJwu6DKSwq35cuX+9lmcoe323v37g3E5xtLcsJe9hdffNHPkyZNAqBSpUoeu/761MZUa2yFqJGyqAm/ZuvUqQNE2yrDv3/ttdc8Zs3kP/nJTzxWoUKFDI+t5koRSYJeXYmIiIiIJEyZ7kIqXabbNlJu3rzZY+vXrwfio+CkcFu8eLGfJ0+eDMBZZ53lsR49egBQuXIhXsWZD9j34ZIlSzxmdx4AvvnmGwD69u3rsQsvvBCAevXqeUzZ2GgTZTgC1WKPP/64x9555x0Aunfv7rFzzz0XgFKlSnlMn1MRSYIy3SIiIiIiCdOLbhERERGRhKm8pJCy8pKaNWt6zJomw61tFjty5EgeXp2cTOFM7g8++ACAXr16ecya0cJGNckd+/fv97OV9jzxxBMea9mypZ9/9rOfAdCxY0ePWcOgyh/Sq1atmp/t8zZo0CCP2RbLP//5zx776quvgPjmShGRJCjTLSIiIiKSMGW6C6l0jZTr1q0DorFZYUyZ7sLJNo4CfPbZZwB8++23Hqtbty4ADRs29Fi6DLdGqOXM6tWrAZg1a5bH5s2bB0DFihU91rlzZz/b6EbbtijHx7Le9nmE6OvXxjECzJkzB4hv9LQ7DuEoVRGRnFKmW0REREQkYXrRLSIiIiKSMJWXFFLFixcH4uUlNWrUAOLlBXZr+/Dhw3l3cZJnwlIi23YYlhJdffXVADRp0iTTx1FZSfZZKU44D//tt98G4IEHHvBY06ZNAfjVr37lsRYtWvg53EQpJy78nNrs7mXLlnnMGinHjRvnsSFDhgDQr1+/PLhCESkqlOkWEREREUmYMt2FlDVSWnYboGrVqkA80122bNm8vbBcYBnA+vXre+yjjz46SVeTv61du9bPCxcuBODss8/2mG07tIZKOTHhnaIVK1YAMHHiRI9ZE2vXrl091rNnTwDatGnjsfLlyyd6nYWd3WWA9HdnbJPnsGHDPDZjxgwA5s+f7zH7d7ARjQANGjQAomy5iMjxUqZbRERERCRhetEtIiIiIpIwlZcUIXbLdNeuXR7bvn07kP8bKXfs2JHhXBBLY5J08OBBP1sJUVhesm/fPiBecmTNfHJirCnVmvEA5s6dC8CECRM8ZiVRv//97z3Wrl27PLjCoiWrhl8rDQlnd9tc+kWLFnls6dKlQFR6AlFTZePGjXPnYkWkyFGmW0REREQkYcp0FyGW0QmbtSzzs3v3bo+FG/LyizCTaM4444y8v5B8LNw+aePPPv/8c4/1798fiDdSSnqZbeC0OwYQjZ576aWXPPbpp58CMGDAAI91794dgEaNGuX+xUqmsmqutEbW//zP//SYbawMxwjaz8rwTlGFChVy9VpFpHBTpltEREREJGF60S0iIiIikjCVlxQhtqUyvD1qzYjbtm3zWLVq1QAoVapUHl5d5r755psMsXBOt8DGjRv9PH36dABOPTX6Fr/88ssBNfBlR7oyhP379wOwZMkSj82aNQuADz/80GPWXHnJJZd4rEuXLolcp2Qt3b9lWHJSrlw5IJpZD9HPm9mzZ3vMGi3DsrZOnToBUKVKlVy8YhEprJTpFhERERFJmDLdRYg1AoWZGhsVuG7dOo/Z5spatWrl4dVlLl0jZe3atfP+QvIJy6ZC1AQbfo5srKJt0QNo0aIFANWrV0/+AguQzJomwwbj999/H4ia7AA++OADAAYOHOixCy64ANA4xvwsq9GCgwcPBqK7fgDPPPMMAPfdd5/Hfv3rXwPQq1evXL5CESmMlOkWEREREUmYXnSLiIiIiCRM5SVFiDVG1qtXz2NbtmwB4psLTz/9dCB/lZesWbMmQ6woN1KG5SVW9rBw4UKP2b9x+/btPRY20EokXamBzTwPGyTffPNNIN7Ua+U7tq0Q4p9zKZisrCQsG5ozZw4AX3/9tcfeffddIN503rFjRyDaiyAiYpTpFhERERFJmDLdRYhlY8IMsY1BCzPdYfNdfpFuZGBR3kh56NAhP0+ePBmATz75xGPXXHMNAD169PBYsWL6f+zMmia///57P9vIRctuQ3QnYejQoR4bPXo0oObUwir8Orn++usBaNKkiceeeuopID5G8vHHHwf0NSEiGem3sIiIiIhIwvSiW0REREQkYSovKUJsTnedOnU8tn79egCWLVvmsc2bN+fthWVDujndRbGR0uaqr1q1ymNWGnTgwAGPNWvWDIBGjRrl4dXlf+nKSqx0yWZuA7z11lsAbN++3WO2sbB///4eUwlB4RZ+vTRs2BCINzHbxkr7OQrw8ssvA/HZ3a1bt07yMkWkgFCmW0REREQkYcp0FyHpNlJaA1C4kXLr1q15e2HZEGa6y5YtC0DFihVPzsWcRMuXLwdg3rx5HrN/13ADYs2aNfP2wgqY8K7AtGnTgCi7DdHXW8+ePT3205/+FIAKFSrkwRVKfhX+/Bw5ciQQb7h99tlngXj2u1WrVkDWmzBFpHBTpltEREREJGF60S0iIiIikjCVlxQh6eZ0lytXDohvfNy0aVOeXldm9u3bB8DGjRs91rJly5N1OSfdggULAJg0aZLHmjdvDsRncttGvaLG5nBD+lv5K1euBKJNggAzZ84E4iUnl156KRAvL8msrCSr55XC47TTTvNzmzZtANi1a5fHli5dCsR3H4wZMwaImnEBzjzzzAyPndkceREp+JTpFhERERFJmDLdRdCpp0b/7GXKlAHizZM7duzI60s6Jm2ijMYEQrR1cvHixR6zrOygQYM8VlS3T6bLEO7du9fPluG2LZ4QbWXt0KGDx2yjZ3bvGCgzWTTZz8/27dt7zO4UhndTxo8fD0CJEiU8Zpt/w68dfR2JFG5F8zeziIiIiEge0otuEREREZGEqbykiCtevDgAP/jBDzxmtzgPHjzosfC2aF4qypso7TZ1WEqye/duID6T2zaMFrWSkqyaF1esWAFEGwIh+lza1z1E5TnhBsGi2ogqJyb8erEyL2sCh+jn2Jw5czxWunRpAPr06eOxqlWrZnhsNVeKFB5F67e0iIiIiMhJoEx3EWdjBKtXr+4xywJu2bLFYzVq1ADyPpuaLtNdu3btPL2Gk2X16tUAvP766x6zf5sBAwZ4rG7dunl7YflEmPmzbGA47vKdd94B4g1t1vjWpUsXj/Xv3x9I/3nUKEDJTLostGW9w68x+162uy8AU6dOjb09RGM/wzsx+roTKTyU6RYRERERSZhedIuIiIiIJEzlJUWcbaQMt6NZCYlt74OoDKVy5cp5eHXp53QXlkbKrEoX7Jb0a6+95rFhw4YBcOWVV3rMSn8Ks6w+V/Z1ct9993nMbuWHn5/BgwcD8fKcKlWqHPN5dWtfMpPZ10erVq38bA2STz75pMemTZsGRGVQEDW0t2vXLkNMRAo+ZbpFRERERBKmTHcRV7ZsWQDq1avnMWviCZsYrXkxrzPda9asyRArLBspwyzZoUOHANi8ebPH7PMfjmu08YBFpZnUpMsoLl261M9vv/02EG9Uq1ixIhAfydatWzcg89Fsx3o+kexI11xZq1YtAHr37u2xXbt2AfDFF194zH4OhD9nmzRpktzFikieUqZbRERERCRhetEtIiIiIpIwlZcUcTa3OCzZ+Pbbb4F4E6PdCs1rRWUj5YYNGwCYOHGix9auXQtEc6QBmjVrlrcXlg/t3LkTgIcffthjtmnynHPO8Vi/fv1if0K0BTAdlZRIbsjs6ygsdbKtsrfeeqvHbCZ/ixYtPFahQgUg3hCsr1WRgkmZbhERERGRhCnTXcRZI2U4MnDr1q1ANLIOYMeOHXl6XaaoZLrtc25jxCBqprr22ms9Fo4hK0rmzp3r55kzZwKwbds2j9nnJbwr0KlTJyDz7LZIUrJqzLXmyksuucRj9rUdjgm1LavXXXedxyz7LSIFizLdIiIiIiIJ04tuEREREZGEqbykiEu3kXLRokUArFq1ymMnq7zEmjkLy2zuY7FGynALqM3iDpuvbFtoUbFlyxYA/vKXv3hsxowZAAwdOtRjtmmya9euHtMmPzmZstvsOHz4cD/bvoQf//jHHtu4cSMQzZiHqJxKX+MiBUvR+g0uIiIiInISKNNdxFkjZYMGDTxm2dQw021j2vJCOKrQNrQVpubJvXv3AlHTFMC8efMAaNeuncc6duwIFL3s9pQpU/z8yiuvANHnDODiiy8GYODAgR5r06YNoMyfFGyNGzcG4Ec/+pHHPvzwQyA+ItOaLy+//PI8vDoRyami9dtcREREROQk0ItuEREREZGEqbxEgKihEqJyBpsdDbBnz548u5Z0s7kLUyOlleq88cYbHrOSmkGDBnmsS5cuQNbzfguy3bt3+3nNmjVAfFb5rFmzALj00ks9dtVVVwHQpEkTj5UsWTLR6xTJCzabf8SIER6zr+2HHnrIY1WrVgXijcPWeF3UytFEChJ9d4qIiIiIJEyZbsng1FNPjf0JcPjw4Rw/ro2+CtWsWTNDLGykNIWpkdI2KX7yySceO3LkCABnn322x1q3bp23F3YSvPvuu35+9NFHAShTpozHRo8eDUCPHj08Zs1mym5LYWN3ssqXL+8xy2aPHDnSY/az44477vDYzTffDMA555yT4XEL890ykYJEmW4RERERkYTpRbeIiIiISMJUXiIZ2O19a+oBOHjwIAC7du3ymDVfZvd2ZdgkaCUkX3/9tcdsxnK6RkprEjoWe5+w4TIsjznZwk2TNne3VKlSHrOPrzCV0fwr2y4JsHjxYgDee+89j1mDafv27T02ZMgQID5Hvnjx4olep0h+0rBhQyD6XoCoRO2tt97y2OzZswGoU6eOx9RcKZK/6DtRRERERCRh+ScVKPlGlSpVgHjWdf/+/UA01g2iDEzp0qWz9bht27b188cffwzAyy+/7DFrFAqfw6TLAE+fPt3PlkW/6aabPPbII49k67rywtSpU/1smyjDhic7h9nvwsLGTS5cuNBjv/vd74D4x3v77bcD0SZOiO5cKLstRZXdAWzevLnH+vfvD8CBAwc89v777wOwfv16j916661A+p+faq4UyXvKdIuIiIiIJEwvukVEREREEqbyEsmgUqVKANStW9dj+/btA+KlH6effjqQ/fKSW265xc/PP/88AI899pjHrLwk3ZzusEHS5n1fffXVHjt06BAQn3OdH1jz4NKlSz22du1aAC677DKP2XUXlvKSDRs2+HnKlCkALFiwwGNWwhQ2TVqJTVZNsyJFUdgMaaV69nMPYNy4cQB8+umnHrM5+GF5ljVaqqREJO8p0y0iIiIikjBluiUDGxVYr149j+3evRuIj/Nr06bNcT1u2EjZvXt3IBpzBfDOO+9keA4TZrqvvPJKIL7h8sYbbwRg+PDhx3VNSdi6daufLcO9fft2j5UtWxaIj8GrWLFi3lxcwjZt2gREYxEBnnnmGSAaCQhw3333AdCnTx+PZfeOiUhRV61aNSBqqARYtWoVAG+++abHpk2bBkTNzAAjRowA4lsvRSRvKNMtIiIiIpIwvegWEREREUmYykskg3TlJYsWLQKiJkCAvXv3nvBzWFNlWF5iTZVheYmVYjz++OMes/nc4Tzn/DST+5NPPvHzxIkTgejjABg8eDCQ/xsGs5rje/jwYSDeXPvqq68C8U2TTZo0AaBDhw4es3P4eRGR4xNu3R04cCAQ/57629/+BsCsWbM81qhRIyD+/RhuHxaR5CjTLSIiIiKSMGW6JYN0me558+YB8ebFnGS6L7roIiDeIDlp0qQMb2fb2H772996zJoO//rXv2Z4u/wgHNll2yfD8YAXXHABEI3Ny6+yGilmdyTmzp3rMbsLEWa/f/Ob3wAwbNiwXL5CETG2Ibhq1aoes82/y5Yt85g1rId69eoFQIkSJRK7PhFRpltEREREJHF60S0iIiIikjCVl0gGVvYQlpfYRsrVq1d7LCflJdYANHr0aI/99Kc/zfB29ryh5557DoD69euf8PPnlv379/vZNmmGJTh2uzbc7mmNTPlpI1xWTZO2+S5sEn3ttdcAmDFjhsdatWoFwE033eSxzp075+7FisgxVahQwc/2ffjWW2957IUXXgDiuwPOPPNMIP4zNdxiKSK5Q5luEREREZGEKdMtGRQrlvp/Mdt6BnDgwAEANm/enCGWE6NGjfLzr371KyB9dvvOO+/0szVh5gdhVtuaCHfs2OExG2vYuHFjj+WnDLdJd01hFt8asWzDHURZ73BsWc+ePQE4//zzE7lOEUnP7laF38vWXNm3b1+P2cZKuzMH0fd1jx49PNa8efPkLlakiFKmW0REREQkYXrRLSIiIiKSMJWXyDGVLFkyQ+zgwYN+to2EORHOlB0xYgQAY8aM8Vj37t2BaNbzyZDutq1ZtWqVn5955hkgflvWymdatmyZ5CUel6yaJu3v58yZ47EpU6YA8Pbbb3usU6dOQFQWBHDWWWfl7sWKSLZkVrYWNkjef//9AIwdO9ZjDz/8MAA7d+70mJWmlCpVKjcvU6RIU6ZbRERERCRhynTLMVlDJUC5cuVifwLs2bMnV5/PxgfaKDqItk6GzXp5zTJIYYb4+++/B2DlypUe27JlCxBt9ARo3749AKVLl078OrMrXUYsbP787LPPAJg6darHVqxYAcSz+Nac1aJFiyQuU0RySXjXslmzZgB07drVY/PnzwfimysnTpwIxJswa9Sokeh1ihR2ynSLiIiIiCRML7pFRERERBKm8hLJlpo1awJQu3Ztj23btg2Ar7/+2mOnn346cGLlIG3btgVg5syZGZ43PwibjN577z0gKrsAaN26NRAvt8hPZSWZmT17tp+tvGfx4sUes1vSP//5zz1mjVYiUvBYkzpApUqVAHjyySc99sADDwDxcrmBAwfm0dWJFE7KdIuIiIiIJEyZbjmmsOHOMthhpnvr1q0ArF271mM2AjAnjY9NmzY94ffNqczGA1rzJETZ4LABcciQIUC8Qelkyezj2LRpk5/ff/99INpSB7B+/Xogvp3ONk1mld3O7HlFJP+oWLGin+0uY/izy+7shT8b9u7dC8CgQYM89oMf/CDDY2c1llSkqFKmW0REREQkYXrRLSIiIiKSMJWXSLZkt7zEmgnTOXTokJ+tAXHjxo0es3N4u9IaKc844wyPhefcltmtUJvDDVFZRq1atTw2ePDgDLGTJbOPY8GCBX4eN24cEP93sBKS66+/3mNNmjTJ8fPme/u2+3HjjtTXapkq1TxWrkRiT+yn7Rt3+Hn/0T9LVYyaiStlvJOfS6JNs99tTn1f7wkWzhYvUwWAarn9SYh9zvfHniuR55O0ypQpA8TLRsqXLw/As88+67GlS5cC8Z8H4ex+U6B/DogkSJluEREREZGEKdMtxxRmK6pXrw5EGW+A5cuXA7BhwwaPWTY73Co5fvx4IL7hMMwaH6/69esDcNFFF3ns/PPPB6Bfv34n/Lihw4ejNJ99nPPmzfOYZeDD8YBhY1Jeyqx5cfPmzX7++9//DsDcuXM9Zs1S4efNzmeeeeYJP2/+F2V2Ny1MjUm7ps8tHnvzu24APL0iGqU4KjcmJB6MmlgX/vm/ARh52/MeW/JduneKtsC2GPl7AJ7/3bUe61j9eLPBUWZ99dRfA3DdNb/32Lub92d4DygFQLWet3nkhed+CcDABtlNv0fPu/Qv/wbABT+eFv11rdRoun3rv/LQD4b+GYA3nr/CY42V/E5MvXr1/HzkyBEgym6H57Fjx3qsd+/efu7fv/8xH1vNlSLKdIuIiIiIJE4vukVEREREEqbyEsmWGjVqAPENkfPnzwdg165dHrNGHGs0DJUtW9bPl156aYaYNUju2xfdhrYGv3Dz48KFCwF49NFHPWZnmzcL8Mgjj/i5V69ex/rQ0jpw4ICfbUPmhx9+6LEOHToAcPbZZ3ssJ7PJcyLdrdr9+1MlAmHT5Ouvvw7Anj17PNayZUsgKs8BaNOmTYbHS1dKUiBvEW/7CIAxN1/moZteWpk6lCqV5BMDMPOOjh7p82Rqpv3tk5Z57L1e0Yz6Sj9IlcB89+UMj/3miosA6NRxicfe/jj1dd47Whx4DKnH+2LMYI+0viH1fXXh0+94bO0Vqa/tOkET4771qe/1sT+53GODmqViT38SzXEelUntx66ZP/XzwGfaAfD3r/7isXZ2/UEJzrSjn69+9zXw2Mq7OwOgKpPcV7x4cT9bQ/V5553nsRIlUp/1OXPmeMxmd0PUVBk23JsC+fNCJJcp0y0iIiIikrBT/hl2N4gcg2VOP/74Y4/dddddAMyeHTWbWdajS5cuHvv5z38OxJv10m0xyy5rwpw0aZLHnnjiiQzXFxo4cCAAzz33nMfCrP2/+u67qKPtRz/6EQBffvmlx+677z4g2tQIULJkSSDZjE5mzYu7d+/28x/+8AcguisAUKxY6v+xu3fv7jHbohk2UFk2q9BY8pQfu3b9dwA+qj7EY798PPW5uq3UHzx2Wp8PgNxrpDw47xcA1D4nupbL3vocgCf6Z5mijmxLNR6ObjrAQ/8YnbqrZBlgOEYWeF0qqzz4jBEe2vVkqkl45o2NM39fc/ALP/6pd2ps3K3VXvbYyldTDY8Z85ww8yfR1+wrg1N3kp7on8XX2soxAHSP+kb58+xRAORGX6tkLbzrZz9PHn/8cY+FPytti23YUBnefRQp6pTpFhERERFJmF50i4iIiIgkTI2Uki2ljjaZVa4c3Qq3coazzjrLY1dddRUAd955Z2LXUrVqqgFt1KhRHrNzWHJi5S8QzQhv1aqVx1588UUgKj2B6GP69NNPPWaNouEc7saNU7fjS6VpvktyHm26x7Nm07C5yRpZw1vDNk+3T58+Hgv/7UzBnr+dxv7T/Dh0Qqo84q2+jTzm/YIzc/uJowbj6c88BMDmVg96bPTxlJWYyqnb9qN/EX0d//GO1FbR2T+Lykt6p6naWDrxdwBMKfVvHnvjqtTXcbYLikpEZShX/Tz1OLcO/l+PTVmZKi9JV4pTpXa0xXD1JmuWTFeIEjm4K1VKtqVkDY8VP9YbS46l+9llZXMQ/fwMf4ZYQz1EP4NOOy36nqtTpw4AVapEm0ZFiiplukVEREREEqZMtxyXMOthWdSwKfLqq6/O82sKhVsqrUkQ4Mc//jEAY8aM8ZiNN3zyySc9Ztsup0+f7rG6desCUXYboHTp0se8hrzOEFsTaXjNNu4rbPQcOnQokHkDKRSiDLdpH31N/ixPn/hjP80cm2pEbnJvL481z8EjN+8yzM/V9qf+/Wd9FI3I7O1J76889v6ko3dvLr/PY93Kn/g1lG+fyroP4hmPvb7wWwBGNayR4e1bX/lbP5drl/q6/I9TJnrsjj6p99n3+QSP3X3NH1PP8eePPVb/xC9ZspDV9365cqntqNddd53H7M4jRGNa023v7datm8fCzcYiRYky3SIiIiIiCdOLbhERERGRhKm8RI5LOMPZGgtthjfA9u3bgfQbyfJauCHy6aefBuK3OG+44QYAbr75Zo8NHz4ciG/AvPjiiwEYMCCajVy+fA7uy+fAF1+kGgHfe+89jy1fnpq1XL16dY9ZWYnNzYXMy0qSbP4ssr5a6ceFR79FOjetnzuPXS/aXNmNzQC8u+Sr6O872/Os9dCyuak/m9xb12M5+iqukdoS2bZaFLr/w9TXIldkLC+hdlQSM/az1Fz4CY/+ymNX/Hpp6tD8Go/d+ebHAFzc7ASaTiVXpPvZEG6u7NSpk5/tZ+VHH33ksVdffRWIlyZa83oYEykKlOkWEREREUmYMt1yXMIMh42C2rZtm8e++eYbAGrUiDJd1miTHzKoI0eO9LM1gF555ZUeGz9+PBDPGlsDZYsWLfLgCjM6fPiwn19+ObX976WXXvKYZe+vuOIKj9l4wHDEY2byw79NobNrqx/XH/2zTZlcukNSI/r6rH/0z7n7D2R8u13R2MKNR7PtVSuWyZ1rIDUCrnbUX8z+PaknORi8VbpxhCWqdwTgh/f9zWM/vC/NG8pJl9XPhvCu5q233gpEDZUQbccN365Bg9RdknBkaThmUKSwUqZbRERERCRhetEtIiIiIpIwlZfIcQmbE8844wwgfvvRtiN+++23HgvnuOYnHTp0AODyyy/32Kajm/LOPPNMj9ns7nSSbED88MMPAZgwIZpbvGbNGgC6d+/uMWtK6tq1q8eyW1YiCdq6zo9H2wsZlODTLVi+LvivozUfmzd6ZFWCz+0Wp74+1wahNMsppYDL6udev379/Lx3714APv74Y489+uijQLyJvW3btrl7kSL5kDLdIiIiIiIJU6ZbjkuY6bZGyn379nnMMt2WMQZo3jy1ey+/NestXZoaURY2grZs2RKA888/32OZjT/MrY/p0KFDGa5l2rRpQLxpsk+fPkB882e7du2AkzfGUESKlqx+7rVq1crPdqfwlltu8djMmTMB6NKli8dspGm1atEMyrBxX6QwUKZbRERERCRhetEtIiIiIpIwlZfIcQnLS6zsYvPmzR7bsGEDEG+kzE/CUhhrSly1KmoxswbFc845x2N5UbZhG9zC+bY7d+4EYMSIER7r1asXEG86UlmJAFTLtfnbObmIcgCUPcmXIflHuXKpr4mwJM6a8CdPnuwx2wJ81113eaxs2YxfSdbEmd/KFUWyQ5luEREREZGEKdMtxyXdyMC1a6MBYTYWyhoqIT5e6mTZdXQzn2WUIdqeGTZKNmyYGnCWZPZ4z549AHz55Zces8aiTz/91GOtW7cG4NJLL/WYbcW0bZqF3e7duwEYM2aMx2yraMWKFU/CFR2HutEG0265/dgHD/nR9lA2rl0l49s1jAb2dTr65we5dhGpTamHwvWT9VObMmukeWsp2nr27OnnChUqALBw4UKP2XnevHke69y5c+ztQRluKdiU6RYRERERSZhedIuIiIiIJEzlJXJcSpQo4ee6desCsHz5co+tX78eiJeX5Ad2Xc8++6zHDh9O3R6/9tprPdapUyeScOTIET9//vnnANx7770es2bUUaNGeaxbt1RRQrNmzTxWmMtKvvrqKwAee+wxjz3//PMA7Nixw2N2vueee/Lmwk5UtZp+tP2mH6xcGf197xzsalwdPY7doO9Yr26aN4xKTmo3Sf356JJc2hd5MNWI/OmCKNT5umPPtJeirVixKMfXoEEDICoVA5g9ezYADz74oMdsX8Ktt96a/AWK5AFlukVEREREEqZMtxyXMFtRqVIlID7WyUYGhmME80Pjy+rVqwH47LPPPGZNieeee67HLAOTWywrO3/+fI/NnTsXgL1792a4lr59+3rMtmMWRpbVevjhhz322muvAdF2Togy++EdgLCxNF8rH92h6HG0k/LFWcs8tmvU0abdE3joXV/M9fMCegNwY6MSad4yuoYOg0qlDlM+9Ngnj6Tet/UJXAPLFgMwg1IeuqB54xN5JCli7HdHjx49PLZ//34g3uxu5zlz5njMtl1qVKoURMp0i4iIiIgkTC+6RUREREQSpvISybGSJUv62copbC52Xjtw4ICfwznYX3zxBRBvRLQ54/Xq1fNY2Ch6osKPfcmSJQD86U9/8tiyZakSg9tuu81j1jBUvXr1HD9/fhBu/nzllVeAeCmJzXMP1ayZajwcPXq0x2688UYAqlatmsRlJixqUjzn8tQtce6Y5LE5jw8BYNBx3SVfB8A//vhiFBo0FoAB9dO9ffT13GFAarNpqUdf8Ng7S/8LgNbNs/v80VDueRNSDW/Lq/2Xxy7umt3HEYm+5yHaAmwligCLF6dKmMJNvdb4PnTo0Ly4RJFcpUy3iIiIiEjC9KJbRERERCRhKi+RHAtLNipXrgzE18Vv27YNyJsSgbC8ZMqUKX629eo2+xqge/fuAJQqFU1fSMfW2Gc1hcUmtrz11lsemzZtWobnGDZsWOz5ISp1KYjCmey2rv2JJ55I+/emY8eOANxyyy0eGz58OBD/2iksmo9Ildb8x70DPPbvd/8QgI+PThABqJz2vaOSjk1T7wPgJ1PqeOz2d1O32bOakF2+3x0APNqticduvSn17zXwzWg6TONMKqz2LY3KpG7/baqMqvez13msa86rs6SIqlMn9TU9cOBAj9nP86lTp3rMJh+FpXg20aR06dKJX6dITijTLSIiIiKSsMKXUpI8F2a6GzZMNY+Fs7u/+eYbAE477TSPlSlTJpFrCTcXvv3223625sZw+2Tnzp2BKJMN6bPZmWW4w3nkH36Ymn9s86Yhysr8139FzWY33HADUDCzMmEDpGWzx44d6zFroAyz1TZXO8xqh1n+5KT+zb+cE81IX70nkzf/+MvgP7YA8NHc6K7FWyvJqExqrnuXbo08lLYvsnJ/AH7z93s8NK93HwDqz4++Jn9z81V+blY1dQ3LXvpfj93151Rj7jnPLvTYb3tksxOzRGqG9r89+7KHZvZL3V1o3ezvHrvtzn8DoFew4HLtO88A8MDvp0XB21N3khZcl4OtliJHWUN+69bR1Pjt27cDUSN8eJ44caLH7HdL+L4i+ZEy3SIiIiIiCdOLbhERERGRhKm8RHIsLJOwNerhvOs1a9YAUZMl5E55SVgWsnXrViC+5j38+1q1asWuD+IlMMdr5cpUrcH06dM9NnnyZCD+cd51110A9O4dNcsVlLKSsEzmscceA+Ifr6lYsaKfb7rpJiA+a7t+/frJXGCWUg28Hz7x/zxyz6LsvWeTo72GM34bve+MdG/Y/h4ApmZVXnJU5a53+/n9tamym9fG/Y/H/vTr6PmepAIAzftGJSd//uxKAIa0iJrIjrd3sUTjK/w8/otUidU7Y5/22B+evhOAv+2M3qdel6sBuHPqHzw2olfqeykqLhPJXe3atQOikjyA8ePHA7BgwQKP2a6F8Ge6/dwpVky5Rck/9NUoIiIiIpKwU/4ZpgNFTsBXX33l55dfTjVpWeYZonF4PXv29Fjbtm1z/Lzhl66N5rPGRYhvNmvWrBkAo0ZFo9HKlz+uVYCesYeoSTNs1rSxhCNGjPBY2ECZH+3evRuA559/3mOW1V6xYkWGtz/rrLP8bI2RI0eO9FhO7h6IiGTV2P7ii6ltrBMmTPDY6aefDsDZZ5/tscGDB8f+TiQ/UKZbRERERCRhetEtIiIiIpIwNVJKjoVzuuvWTQ333bMnGoj89ddfA9FmytwS3nq0Mg8rMwH40Y9+5OfzzjsPOLEmxo8++ghI3zQZ3rp84IEHAGjfvv1xP0desDKgcFukbZAM55ubfv36+dlKSYYMGZLcBYpIkZfV5t+LL74YiDfFP/xwauOrlZ4A1K6d2tEalhEmtR9CJLuU6RYRERERSZgy3ZJjYfbYRjetWrXKY8uWLQNyP9O9du1aP1uT4969ez3WuHFjP2d3bN3+/fuBaCQgRNnzhQujLYCWPenatavHBg4cmN1LT5w1lFpTJMCkSZMAOHTokMfsLkXYYGpZ7ZYtWyZ9mSIix2RNlWH225q1w622dqczbKSfOXMmAIcPH/ZYnz6pLbDhdmSRvKRMt4iIiIhIwvSiW0REREQkYSovkRwLb9VZI2WpUqU8Zg184ezunLCtk7NmzfKYPd+5557rserVq3O8Fi1KrSy0RkmAd999F4AqVap47Gc/+xkAXbp0yfTxLrvsMgD27dvnsX/84x/HfV3/KiwRsdnoYSlJWApjatasCcS3Rd54440AVK1aNcfXJCKSm7JqqjRWEteqVSuP3XPPPQAsX77cY82bNwfiTZgieUmZbhERERGRhCnTLTlWokQJP9sIvTC2bt06IL7R8fbbbwfSZ2TDrOuFF14IwEUXXeQxa8wMM8aW4ejbt6/HatWqlel12zbGTz75xGNvvPEGEG2XBGjSpAkA3bp181iHDh0AKF68eIbHvf/++/38yiuvAFlnxDOzZcsWP//pT38C4mP/Nm7cmOF9OnbsCEQZIIDhw4cDcOqp+rYXkcKjQoUKAHTq1Mlj1mhpv38Axo4dC8CAAQM8Fm6xFEmaMt0iIiIiIgnTi24RERERkYTpPrPkKitdCMtLdu7cCcCbb77pMWtYzIqVZ4RbL23j45IlSzx2wQUXANHmyeywEpLnnnvOY1a6UrlyZY9dd911APTo0SPTx7MZsb/85S89ZjNln3766WxdkzWJQlRC8vzzz3vMGjLDEpFLL70UiJeShDNsRUSKgrB5/o477gBgwoQJHrPyvO+//95jVoqXrlRQJLcp0y0iIiIikjBluiUR4RhBa3IZPHiwx2644QYg/RbHMNtrWYpXX33VY3PnzgWgWLHo/xlt+5g9LsSzwXv27AFg+vTpHnvnnXcA+Prrrz1mWQ/bXAbQpk2bdB8iANu3b/fz1VdfDcTH+f3P//wPkH6742uvveZny2pPnTo1w9tVrFjRzzfddBMQH/uX3W2bIiKFWcmSJf1s25HDJvbPP/8ciP/Mt5/Rw4YN81ijRo0yPHa67Zgix0uZbhERERGRhOlFt4iIiIhIwlReIomwBkKAOnXqAPFykEGDBgHRXG+Ibg2G5RK2RTFscrG52tb0CPDXv/4VgC+//NJj48aN8/OuXbtibwfwzTffZHi+oUOHAvF535m5/vrr/WybN20eNsDIkSMBePzxxz1mpSR2qzN01lln+dkaI+0xIP55FRGRzIVbKq0EMPzd8NJLLwHx30XpyktUViK5QZluEREREZGEKdMtiQib/xo0aADA4cOHPbZ69WoAypUr57FwTJ+xbPScOXM81qtXLwD++Mc/euzOO+8EouZIgNatW/vZto6F12UbJm3cIECLFi0y+agilrmeNGmSxywLHWajLXuyY8eODI/Rr18/P1tWe8iQIdl6fhERyVr4M9/GzYZbKm2k7bvvvuux7777DojftQw3JRs1V8rxUqZbRERERCRhetEtIiIiIpIwlZdIImw2N6QvL7Gmw3QNK+Gtv1WrVgHxJswzzzwTiEpGIJrTffPNN3vMGhYh2hYZzmy18o7wcTLz8ccf+/n222/P8Pe7d+8GYMyYMR6zTZqjRo3ymJWSpJvdLSIiyShfvjwQ/z1gW37feOMNj9m+hKZNm3qsZ8+eQHzbsspK5Hgp0y0iIiIikjBluiURYaa7bt26AKxZs8ZjthHsyJEjHrOxfmPHjvWYjQC85JJLPJZui+ULL7wQe3uArl27+tmy1PPnz/eYNUOee+65Hgu3WBrLYF922WUes+xIOjbmEOC///u/AWjbtq3HNPZPROTkadiwoZ+tmd+a9iFq3A+3BtvvgXCzcrgBUyQ7lOkWEREREUmYXnSLiIiIiCRM5SWSiHSNlDabOzyH86sPHToEwLx58zxmt++uueYaj1kJyJQpUzxmjZIHDx702Hnnnefn0aNHA/Cb3/zGY3/7298AuPLKKz1m28nCZpnnn38eiG4vZmXjxo1+/slPfpKt97GtmM8995zHbB65iIgko3r16gD07t3bY9b0b9uPIWrWD0tTrNEy/H0hkhllukVEREREEqZMtyQizHRbFte2d0E0CjDMfttGys2bN3uscePGQHy7pDW3PPTQQx6z0YNhs2OY6bZse58+fTxmmY1XXnklw/WPGzfOzzfddFPsT4iy8mHzjY1BtD/Dvw/HINrfh+9rWXR7XBERyTs9evTwc506dQC45557PLZkyRIgvvXYBgG0adMm+QuUQkGZbhERERGRhOlFt4iIiIhIwlReUsQtWrQIiG/jsuZG26YIUYOizTSFqOQj3Kxo2yJLly7tsdq1awPx8pLly5cDMHnyZI81adIEgFatWnnstNNOA+Kzu60kxUpPINou2b9/f49ZSUkonKFtjTFhA01mpSbhDG87W+nMv55FRKRgst8dYQP/rFmzgKhpH2D//v0A1KpVy2PVqlXLi0uUAkqZbhERERGRhCnTXYQcOHAAgG+//dZjM2bMAODBBx/02HfffQfAKaec4jHLUofbFK1R8cILL/RYlSpVgHgjZfny5QEoXry4x2ys3qRJkzx29tlnA/Fs9fr16wF45JFHPGYZ9uHDh3usW7duAJxxxhn/+mED8c2XxkZF2ecAoG/fvkA8420fy1NPPZX2sUVEpPAoViyVj7TfBwBlypQB4ndnbYtyeHe2Xbt2QPT7RSSkTLeIiIiISML0oltEREREJGEqLynkVqxY4ef58+cDMH36dI9Z2Ug4j9QaKMOZ0bYZcvv27R6zxpKwRMRKUqyxEaLmxbAJ0xoRw8ezps5t27Z5zDZ92Qzv8BxuiLTNYV9++aXHwuu3DWNhyUw6d999NwA333yzx5555pnYNQNcfPHFmT6OiIjkrbBZP53Mfv6H72ulkGGZpP0utRneAGvWrAHg/vvv99jIkSOBePljOJRAijZlukVEREREEqZMdyG1detWAD744AOP2Yg8yyhDtKHxtttuy9bj7t27188bNmwAYMGCBR578803gXiGYOjQoQBUrFjRY5at3rRpk8esuTKMNWzYEIDOnTt7rEaNGkD0MUK0xTK3NjqGWQproHz66ac9Zp8H24QpIiKFg2XEraESokEENhYXot9V4e/A9u3bA/FRtDZS0O7cStGlTLeIiIiISML0oltEREREJGEqLylEVq1a5We73TVt2jSP2VbJX/7ylx6z2djZVapUKT9fddVVQDSbG+D1118HosZGiMpLbF43ROUnYSmJad68eYZzuPHLmlJsGxhETTDp5nEfS2ZNNeHHNGzYMADee++9DH+fW+UsIiJFTbqfwVk1Q+aldLsqwoEAHTt2BOLbkStVqgTAkiVLPGa/s6w08mSyjyOroQKSDGW6RUREREQSpkx3IWANHnPnzvXYG2+8keHtOnXqBMDgwYM9Vrp06Qxvl93/E27ZsiUQz7DbCMBw66U9XrVq1TxmGewwa2CZ8O7du3vMmlZsG1h4XTYG8Hiu+UQ0bdoUgAsuuCDXH1tERPKnMOuerrnSRguG42RNOCYw3chAa8a3rcsAa9euBeJ3ce2xw7vMdqe1SZMmGa7lm2++8ZiN+g1/9yrDfXIp0y0iIiIikjC96BYRERERSZjKSwqosLTCbk+FJSX/+Mc/APj1r3/tseuvvx5IX1ISyu7Wrn379gFReQtEt8LCW3D2PmeccYbH+vfvD8QbFuvWrQtAgwYNPGYlJ+maa/JTw42IiBR+2S3PCEtO0pWXrF69GoAJEyZ47P/+7/+AaGcFREMHTj/9dI/ZDPDw97v9rpw8ebLHbABBWBqp8pKTS5luEREREZGEKdNdQIXNF/Pnzwdg586dHqtXrx4QNQFCfEvkiQqzy99//z0Ae/bs8ZiNJbQ/w/exawpjVatW9Zg1e1jzh4iISEE3Y8YMAD799FOP2XbK8K61DREIf6daA2U4brB69eoAjBs3LsNz7dixw8/h71zJH5TpFhERERFJmF50i4iIiIgkTOUlBdRXX33lZ7t1FTYldu3aFYg3JeaG8FbY1q1bAdi2bVuGtwsbKU1Y3tK6desMf68GDxERKQzCZsgHHngAgHfffddjV1xxBQCXXHKJx+68804gvpfCth6HjZmfffYZAD/84Q89ZrsxfvGLX3isUaNGgH635ifKdIuIiIiIJEyZ7gIqbJpcs2YNEP1fLUCbNm0AqFy5cq4+75EjR/xsmyi3bNnisbPOOguA+vXrZ/o4+j9vEREpbN58800AJk6c6DG7K3zuued6bMCAAQB07tzZY2GG26TbdlmzZk0g2goNUaNl7dq1M308ObmU6RYRERERSZhedIuIiIiIJEzlJQXUd99952droAibExs2bAhA2bJlc/V5d+/e7efFixcDsGHDBo916NABgFatWnlMpSQiIlIUvPLKKwCMGTPGY+effz4AI0eO9NjAgQOBE/sdbbss+vXr5zF7TVCnTh2PpduEKSeXMt0iIiIiIglTpruA2rRpk59XrFgBQP/+/T1m/7dbunTpXH3edevW+XnatGlAtJkS4NprrwWgU6dOHlOmW0REChsb57d69WqPheN8Tbdu3QAYNGiQx3LS5Fi8eHEgPibYMua22Tl8Dv0Ozj+U6RYRERERSZhedIuIiIiIJEzlJQWU3dYCOHDgQIa/L1GiRK4+38qVKwGYP3++x2zj1umnn+6xpk2bAlCpUqVcfX4REZH8xHZVTJkyxWNWbtmkSROPWbllupKSf/7zn37ObhmIlZfUqlXLY7YtumLFih4rVapUth5P8o4y3SIiIiIiCVOmu4CqWrWqn+vVqwdAsWLR/0NZo2WYhc5J9nvq1KkAjB8/3mONGzcGoGfPnh5ThltERIqCBQsWAPDII494zH4vhuMBw6z3vzqRJkcbGdisWbMMfxeOCVQDZf6jTLeIiIiISML0oltEREREJGEqLymgatSo4ecWLVoA8S2V1vDYt29fj4UzPTOzZs0aAGbPnu2xWbNmAfHbVfbYffr08Vhub8AUERHJj2yYgP3OBOjYsSMAXbt29VhYDpobrJQ0J7O+5eRQpltEREREJGHKdBdQYYOkjSP67LPPPGYjjMIGjuxmuv/yl78AcPfdd3usbdu2AAwbNsxjF198MQCNGjU6nksXEREplMqVKwfEt0HbiD8RZbpFRERERBKmF90iIiIiIglTeUkBZbO5Afr37w/A3r17PWbzQ//4xz96rGbNmgAcOXLEY7bFKtxwuW3bNgCuvPJKj1kJS9gcEl7DvzqRLVsiIiIFhf0uDX/HnXpq6mWVzdIGlZdIRJluEREREZGEKdNdQFWsWNHPZ599NhBtoQRYuXIlAJMnT/aYjTfKyi233ALAAw884LFwy1V2KLstIiKFWbrfc3b3+ODBgx6zjHhuZ7zDO8qZXZPkH8p0i4iIiIgkTC+6RUREREQSpvKSQqRDhw5+tk1VAwYM8NiOHTuA+C0ua6AMb0lZs+TxlpSIiIgUNWGZh22G3rdvX9q/z01hSamVsFSrVs1j1tQp+Ycy3SIiIiIiCdP/BhUitWrVSnsWERGR3FW1atXYnwC7du0CYNGiRR4rW7YsAHXq1Dnu57C70du3b/fYzp07AThw4IDH7O625G/KdIuIiIiIJEwvukVEREREEnbKP5Oq8BcREREppJYsWQLApEmTPPbqq68C8XKQe++9F4hvec6ur7/+GoCXXnrJY2vXrgXg+uuv91g4SEHyL2W6RUREREQSpkZKERERkePUoEEDAC688EKPrVu3DoDp06d7bM6cORnet1KlSgCUKlXKY7bNskSJEh7bv38/EI0ihGicb4UKFXL2AUieU6ZbRERERCRhetEtIiIiIpIwNVKKiIiInKBwXvbGjRsB+OCDDzz22GOPAfDee+95rHTp0hkex16OderUyWMDBw4EoFevXh5r0aIFEM3/BihWTDnUgkD/SiIiIiIiCVMjpYiIiMgJKlmypJ/r1q0LwGmnneaxzz//HIhnt+190hUbNG3aNMO5cePGHitfvnyG97HHOeWUU47/A5A8o0y3iIiIiEjC9KJbRERERCRhaqQUERERyUXhS6sjR45kiGUmLBGxc7qYFDzKdIuIiIiIJEyZbhERERGRhCnTLSIiIiKSML3oFhERERFJmF50i4iIiIgkTC+6RUREREQSphfdIiIiIiIJ04tuEREREZGE6UW3iIiIiEjC9KJbRERERCRhetEtIiIiIpIwvegWEREREUmYXnSLiIiIiCRML7pFRERERBKmF90iIiIiIgn7/9NJ5e9Vf2rvAAAAAElFTkSuQmCC",
"path": "images_version_6/image_43.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, If point D happens to fall on AB, then the degree of angle DOB is ()
Choices:
A:40°
B:30°
C:38°
D:15°
|
||
216
|
44
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKAAAAB1CAAAAADsV7VtAAAI/0lEQVR4nO2ce1QU1x3HvzO77LI8XFgVwpsqCPgAiScak2iIJjSiIcRyqAe0kWhbzyHnNFZPAwlKTKNSpcQgauIx1RNrSnxERSvRogVpVI45bUXFvDBEUVAqL2Vhl925/QPQfczM7p3dAf7I96/lPuZ+5ve7c+/v3jsDw2FkSwlmuBHExQ43gAORkQ444i34E6DLGvGASoclevUc46mR80bI6isx0VNCdTq+TAeApParmit9hplFoXKQDcpLvxVeJCT3VR4accCqT8p6Il4OaPdVy4QGAGD+WPD1ohmGMyturOPJ5YigzL8ZDa+w8IwG4SLu0WWfQkIIyWE/tsvixPoWKWt773L1tvq0FrlsN6D7xlgAiOWu82SKWNAYkk0IITVjy2Sy3KDaZsRXNjV+HuZ9wS6LE+2DRA8Aht5ds4NksNsj+X/4Rkp0X1OUgieP4YSjGXPU7ax03ZfbfO5EbH5WPjwAaKv6Wvl4e/6uWbYZRMyCnHb0xWpW//Sm9pxL09QeMvJBtxBAZR+xzxEDJIb5a891xsUg8jS7+v5Ged0MwMTwRM/iM4RZ/VxaDACNetrJ1DPyYD0SAx4LigEyFne09ATZbnY/kw0LpYvBWFRIPNZ74mReiLuhrJqjtaAVIIJ+ZjiacrbPzVBWzYG2DzLWd5R+xPu1Jrci2TRHb0GbO5p26APDn264k8mGhdKCDGN7R0HzjTtSquVyM++UQeNiAJh0SJv6TzcB2TVH3wftKyimlef6n/zRbVBWzdEPM3yJo/P0c/QlSW5BshZ1H+SzIACot2pf2eUWJJvm+BLFAfmTFU8cz+Ju3XKdyK45HoM4PZNYSVuK358pme0GKKvmXJmL7ZQx+hdbTC4z2bBQRzNCFgTw5OcZX3Y+cBHJWvR9kBUBhHbrJ+fnujUEox8HxSwIsJoQdWpxp0tMVqKfi1kH+8OJR14rduPU7N4+CADQfXBatfSUdCRrSXiKHQGCifFuSi+65wKV5cXowy0nrhp6cHlehUQiu+ao52Jnzij8ipPD94ydLxHKUvR9UHSYeaQXY04tfr9bEpOV6F3s8CEZvEjp8rVrJBDZsdC62FlARrc5ka1rS6Jnctye6FPsaBy0UOaiY2lFLs7NvH1QWjTDp2UdBf/Z6U3JZN2ca+tiR3ps8w7v9m8omWxYZAUEfrXz8nObXFjyyWxBAEjIys/6gbKORXOu7iw4VvDm3Y13JQeJ9HOxs8OMhbKqH0t/x0BdbYBFdhcD0Ginrl9ylb4e5IgHeeVXuK/2hIR6UlZ1ElwMABkzPNeb3qLf06Z3sZPBgp0iArk/L/6eurJ8wYK91vzlwh+o39agjwcl9cF+pUe3V9X9lu4MUsKqzgUlJH2Xu+g61R0OzTDzSK/uuZBxh6aChJDfJUBVRnRVd8UsH6crSBgHXQIEElfey87kO2Ll1xDMxXaaXPrVghpnC0vog/RENvJO/2L20fUdzhUeehcDQPyHyvwVDU4VHYJ4kFdsQHXq350pSN8H3TNI9oUcHnepx4lIW8JholQma/VNPWQu+Ob9cY7KDZeLQXpVmunXfn7c6KCcBBe7BxAA0ssjtjua9ySEWy4Q2Sp2f2lN9reiRYbNxf3SjVNUv1jeI1pm6AdqK82piMr5Xqw5PoMMVR8EAMQc2OlRKLKgon7rw60uBgDtPM/dL5ULDon0FpQe8wsprDwu87BQJjWg2y0IKGIOrAs7LbTHRL0mIRzf+16uyWsVeaFxywL+9njSxK4lg4sBACWTlmzhSZay7JQFkJm4f4WyuZEHZqRYEOqNr++cwxOC0e/NyAQIYGFC+lq9bXv0M4l8gFP2rbzUaXu4Qj/MyAcIrw376p+yHhJHwkBtKZ+wyMy371okSJjqZAXEhM9y91ispyQEC/JaEPAsqAxctv/hnxKmOpkBgTj/9uy1rQ/bsy8wbE/xoPw/zSv5bPAP+rlYfkB45s8M3qv6JcC/HzncLgaAuXHnf72mC5BgwSFwMQBgU3BR024o+JYYDvYHhwjQJz+hs64lWU17DKGEO8JBlnH8XRJewkerVj7gObrgrWsaeKXbaHrg6QrawFXM3c6cmSy4XWSc3n+IRliPh97m/Rpi014FA4C50T7Rw2UnKxo6JjtzFRX3bZdvNAcAPY+XjBlIJbyAB8+wDACwjFvejhf7JMRCrAdn7u+EhqgVo0QBR5AEvyfpNhKG8egjhFH6DimRrYQASw8HKXpuhmm45mcLJV6aMylsBwFCGIcOM1tXEgLUL3wDDW+tj8Jf64jETnDn0+QpAABTlwkA663BvYNPTuUvfPELhgUYlTEgXesUoNJXBX8fPxVGSf5UqLtqRv+Ppo2sBua2xcmk62SkQGGVl5kFoz5SU+xlAyJ0+X2XFR3n3vTjrsVLfYoU/gNtdTfmhHL67XfOVywM0goUTkgAgLrj25bbZAgCxqcpbt18PpT4SnvPpJkLAQHp9FECCl13kPl4gKazxUN87qx98xVbPmHAJ5JxvypNC0O1lD7Yu3LCuywU5sL4TIBR/OvimCYlUWkVonzX1sz7nV2iECAp+5Ftqy3QkX9HSnFxc8cz4GBWjil7YSw4dXZpZXE15yA2up731Cr7VKF4kBsVFhnkHRQRrpO0eK/3nQiAYAn3DwCG6KcR7Gg3tCl3Qi7F57tJKdNx+8riEMxvFSghqvPj+r/CC5xb8bI3PFrr758zi3ui9e2gdzwBwMSpLNOFLJg0HTCYDEDAJAkubvzvrIHhdt6tWrDcjpurD1z36O0SNqJ+o2pd/0Nfv8HquymxkH9w7qZWd5Fm8EOE8RPOgukNfH1ZKmOMzRCOak79sMGv/1fDYauXisViSZNZYjCjmB0+CvBkCeCRa4RZtTQAOS368ePvckK33NxSGaYgxt7OlqPPxDoLGP5emDRAzwwAbVdbGQCRgLlHj84r12Jw+2yL0Hsgac1/Mxo5pUrtk7LEqowYoCZOGh8AgBwrnhw80EawElfzQmfixN7nYwWKB73bxxEwDMPaBBjyxYM3vksc+L8Evf8LUBnbAhnozdSh28gPWEf8f6r4CdBFMcqh2t2Qqv8DsTIBzNkDn6wAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_44.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, the two street lamps A and B are separated by 30.0. One night, when Xiaogang went straight 25.0 from the bottom of street lamp A to the bottom of street lamp B, he found that the top of his figure just touched the bottom of street lamp B. It is known that Xiaogang's height is 1.5, then the height of the street lamp is ()
Choices:
A:9米
B:8米
C:7米
D:6米
|
Như hình vẽ, hai bóng đèn đường A và B cách nhau 30,0. Một đêm, khi Xiao Gang đi thẳng khoảng 25,0 từ chân bóng đèn A đến chân bóng đèn B, ông phát hiện đầu của mình vừa chạm vào chân bóng đèn B. Biết chiều cao của Xiao Gang là 1,5 mét, thì chiều cao của bóng đèn bằng ()
Lựa chọn:
A: 9 mét
B: 8 mét
C: 7 mét
D: 6 mét
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the two street lamps A and B are separated by 30.0. One night, when Xiaogang went straight 25.0 from the bottom of street lamp A to the bottom of street lamp B, he found that the top of his figure just touched the bottom of street lamp B. It is known that Xiaogang's height is 1.5, then the height of the street lamp is ()
Choices:
A:9米
B:8米
C:7米
D:6米
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the two street lamps A and B are separated by 30.0. One night, when Xiaogang went straight 25.0 from the bottom of street lamp A to the bottom of street lamp B, he found that the top of his figure just touched the bottom of street lamp B. It is known that Xiaogang's height is 1.5, then the height of the street lamp is ()
Choices:
A:9米
B:8米
C:7米
D:6米
|
As shown in the figure, the two street lamps A and B are separated by 30.0. One night, when Xiaogang went straight 25.0 from the bottom of street lamp A to the bottom of street lamp B, he found that the top of his figure just touched the bottom of street lamp B. It is known that Xiaogang's height is 1.5, then the height of the street lamp is ()
Choices:
A:9米
B:8米
C:7米
D:6米
|
217
|
44
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKAAAAB1CAAAAADsV7VtAAAI/0lEQVR4nO2ce1QU1x3HvzO77LI8XFgVwpsqCPgAiScak2iIJjSiIcRyqAe0kWhbzyHnNFZPAwlKTKNSpcQgauIx1RNrSnxERSvRogVpVI45bUXFvDBEUVAqL2Vhl925/QPQfczM7p3dAf7I96/lPuZ+5ve7c+/v3jsDw2FkSwlmuBHExQ43gAORkQ444i34E6DLGvGASoclevUc46mR80bI6isx0VNCdTq+TAeApParmit9hplFoXKQDcpLvxVeJCT3VR4accCqT8p6Il4OaPdVy4QGAGD+WPD1ohmGMyturOPJ5YigzL8ZDa+w8IwG4SLu0WWfQkIIyWE/tsvixPoWKWt773L1tvq0FrlsN6D7xlgAiOWu82SKWNAYkk0IITVjy2Sy3KDaZsRXNjV+HuZ9wS6LE+2DRA8Aht5ds4NksNsj+X/4Rkp0X1OUgieP4YSjGXPU7ax03ZfbfO5EbH5WPjwAaKv6Wvl4e/6uWbYZRMyCnHb0xWpW//Sm9pxL09QeMvJBtxBAZR+xzxEDJIb5a891xsUg8jS7+v5Ged0MwMTwRM/iM4RZ/VxaDACNetrJ1DPyYD0SAx4LigEyFne09ATZbnY/kw0LpYvBWFRIPNZ74mReiLuhrJqjtaAVIIJ+ZjiacrbPzVBWzYG2DzLWd5R+xPu1Jrci2TRHb0GbO5p26APDn264k8mGhdKCDGN7R0HzjTtSquVyM++UQeNiAJh0SJv6TzcB2TVH3wftKyimlef6n/zRbVBWzdEPM3yJo/P0c/QlSW5BshZ1H+SzIACot2pf2eUWJJvm+BLFAfmTFU8cz+Ju3XKdyK45HoM4PZNYSVuK358pme0GKKvmXJmL7ZQx+hdbTC4z2bBQRzNCFgTw5OcZX3Y+cBHJWvR9kBUBhHbrJ+fnujUEox8HxSwIsJoQdWpxp0tMVqKfi1kH+8OJR14rduPU7N4+CADQfXBatfSUdCRrSXiKHQGCifFuSi+65wKV5cXowy0nrhp6cHlehUQiu+ao52Jnzij8ipPD94ydLxHKUvR9UHSYeaQXY04tfr9bEpOV6F3s8CEZvEjp8rVrJBDZsdC62FlARrc5ka1rS6Jnctye6FPsaBy0UOaiY2lFLs7NvH1QWjTDp2UdBf/Z6U3JZN2ca+tiR3ps8w7v9m8omWxYZAUEfrXz8nObXFjyyWxBAEjIys/6gbKORXOu7iw4VvDm3Y13JQeJ9HOxs8OMhbKqH0t/x0BdbYBFdhcD0Ginrl9ylb4e5IgHeeVXuK/2hIR6UlZ1ElwMABkzPNeb3qLf06Z3sZPBgp0iArk/L/6eurJ8wYK91vzlwh+o39agjwcl9cF+pUe3V9X9lu4MUsKqzgUlJH2Xu+g61R0OzTDzSK/uuZBxh6aChJDfJUBVRnRVd8UsH6crSBgHXQIEElfey87kO2Ll1xDMxXaaXPrVghpnC0vog/RENvJO/2L20fUdzhUeehcDQPyHyvwVDU4VHYJ4kFdsQHXq350pSN8H3TNI9oUcHnepx4lIW8JholQma/VNPWQu+Ob9cY7KDZeLQXpVmunXfn7c6KCcBBe7BxAA0ssjtjua9ySEWy4Q2Sp2f2lN9reiRYbNxf3SjVNUv1jeI1pm6AdqK82piMr5Xqw5PoMMVR8EAMQc2OlRKLKgon7rw60uBgDtPM/dL5ULDon0FpQe8wsprDwu87BQJjWg2y0IKGIOrAs7LbTHRL0mIRzf+16uyWsVeaFxywL+9njSxK4lg4sBACWTlmzhSZay7JQFkJm4f4WyuZEHZqRYEOqNr++cwxOC0e/NyAQIYGFC+lq9bXv0M4l8gFP2rbzUaXu4Qj/MyAcIrw376p+yHhJHwkBtKZ+wyMy371okSJjqZAXEhM9y91ispyQEC/JaEPAsqAxctv/hnxKmOpkBgTj/9uy1rQ/bsy8wbE/xoPw/zSv5bPAP+rlYfkB45s8M3qv6JcC/HzncLgaAuXHnf72mC5BgwSFwMQBgU3BR024o+JYYDvYHhwjQJz+hs64lWU17DKGEO8JBlnH8XRJewkerVj7gObrgrWsaeKXbaHrg6QrawFXM3c6cmSy4XWSc3n+IRliPh97m/Rpi014FA4C50T7Rw2UnKxo6JjtzFRX3bZdvNAcAPY+XjBlIJbyAB8+wDACwjFvejhf7JMRCrAdn7u+EhqgVo0QBR5AEvyfpNhKG8egjhFH6DimRrYQASw8HKXpuhmm45mcLJV6aMylsBwFCGIcOM1tXEgLUL3wDDW+tj8Jf64jETnDn0+QpAABTlwkA663BvYNPTuUvfPELhgUYlTEgXesUoNJXBX8fPxVGSf5UqLtqRv+Ppo2sBua2xcmk62SkQGGVl5kFoz5SU+xlAyJ0+X2XFR3n3vTjrsVLfYoU/gNtdTfmhHL67XfOVywM0goUTkgAgLrj25bbZAgCxqcpbt18PpT4SnvPpJkLAQHp9FECCl13kPl4gKazxUN87qx98xVbPmHAJ5JxvypNC0O1lD7Yu3LCuywU5sL4TIBR/OvimCYlUWkVonzX1sz7nV2iECAp+5Ftqy3QkX9HSnFxc8cz4GBWjil7YSw4dXZpZXE15yA2up731Cr7VKF4kBsVFhnkHRQRrpO0eK/3nQiAYAn3DwCG6KcR7Gg3tCl3Qi7F57tJKdNx+8riEMxvFSghqvPj+r/CC5xb8bI3PFrr758zi3ui9e2gdzwBwMSpLNOFLJg0HTCYDEDAJAkubvzvrIHhdt6tWrDcjpurD1z36O0SNqJ+o2pd/0Nfv8HquymxkH9w7qZWd5Fm8EOE8RPOgukNfH1ZKmOMzRCOak79sMGv/1fDYauXisViSZNZYjCjmB0+CvBkCeCRa4RZtTQAOS368ePvckK33NxSGaYgxt7OlqPPxDoLGP5emDRAzwwAbVdbGQCRgLlHj84r12Jw+2yL0Hsgac1/Mxo5pUrtk7LEqowYoCZOGh8AgBwrnhw80EawElfzQmfixN7nYwWKB73bxxEwDMPaBBjyxYM3vksc+L8Evf8LUBnbAhnozdSh28gPWEf8f6r4CdBFMcqh2t2Qqv8DsTIBzNkDn6wAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_44.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, the two street lamps A and B are separated by 30.0. when Xiaogang went straight 25.0 from the bottom of street lamp A to the bottom of street lamp B, It is known that Xiaogang's height is 1.5, then the height of the street lamp is ()
Choices:
A:9米
B:8米
C:7米
D:6米
|
Như hình vẽ, hai bóng đèn đường A và B cách nhau 30,0. Khi Xiao Gang đi thẳng khoảng 25,0 từ chân bóng đèn A đến chân bóng đèn B, biết chiều cao của Xiao Gang là 1,5 mét, thì chiều cao của bóng đèn là ()
Các lựa chọn:
A: 9 mét
B: 8 mét
C: 7 mét
D: 6 mét
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the two street lamps A and B are separated by 30.0. when Xiaogang went straight 25.0 from the bottom of street lamp A to the bottom of street lamp B, It is known that Xiaogang's height is 1.5, then the height of the street lamp is ()
Choices:
A:9米
B:8米
C:7米
D:6米
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the two street lamps A and B are separated by 30.0. when Xiaogang went straight 25.0 from the bottom of street lamp A to the bottom of street lamp B, It is known that Xiaogang's height is 1.5, then the height of the street lamp is ()
Choices:
A:9米
B:8米
C:7米
D:6米
|
As shown in the figure, the two street lamps A and B are separated by 30.0. when Xiaogang went straight 25.0 from the bottom of street lamp A to the bottom of street lamp B, It is known that Xiaogang's height is 1.5, then the height of the street lamp is ()
Choices:
A:9米
B:8米
C:7米
D:6米
|
218
|
44
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKAAAAB1CAAAAADsV7VtAAAI/0lEQVR4nO2ce1QU1x3HvzO77LI8XFgVwpsqCPgAiScak2iIJjSiIcRyqAe0kWhbzyHnNFZPAwlKTKNSpcQgauIx1RNrSnxERSvRogVpVI45bUXFvDBEUVAqL2Vhl925/QPQfczM7p3dAf7I96/lPuZ+5ve7c+/v3jsDw2FkSwlmuBHExQ43gAORkQ444i34E6DLGvGASoclevUc46mR80bI6isx0VNCdTq+TAeApParmit9hplFoXKQDcpLvxVeJCT3VR4accCqT8p6Il4OaPdVy4QGAGD+WPD1ohmGMyturOPJ5YigzL8ZDa+w8IwG4SLu0WWfQkIIyWE/tsvixPoWKWt773L1tvq0FrlsN6D7xlgAiOWu82SKWNAYkk0IITVjy2Sy3KDaZsRXNjV+HuZ9wS6LE+2DRA8Aht5ds4NksNsj+X/4Rkp0X1OUgieP4YSjGXPU7ax03ZfbfO5EbH5WPjwAaKv6Wvl4e/6uWbYZRMyCnHb0xWpW//Sm9pxL09QeMvJBtxBAZR+xzxEDJIb5a891xsUg8jS7+v5Ged0MwMTwRM/iM4RZ/VxaDACNetrJ1DPyYD0SAx4LigEyFne09ATZbnY/kw0LpYvBWFRIPNZ74mReiLuhrJqjtaAVIIJ+ZjiacrbPzVBWzYG2DzLWd5R+xPu1Jrci2TRHb0GbO5p26APDn264k8mGhdKCDGN7R0HzjTtSquVyM++UQeNiAJh0SJv6TzcB2TVH3wftKyimlef6n/zRbVBWzdEPM3yJo/P0c/QlSW5BshZ1H+SzIACot2pf2eUWJJvm+BLFAfmTFU8cz+Ju3XKdyK45HoM4PZNYSVuK358pme0GKKvmXJmL7ZQx+hdbTC4z2bBQRzNCFgTw5OcZX3Y+cBHJWvR9kBUBhHbrJ+fnujUEox8HxSwIsJoQdWpxp0tMVqKfi1kH+8OJR14rduPU7N4+CADQfXBatfSUdCRrSXiKHQGCifFuSi+65wKV5cXowy0nrhp6cHlehUQiu+ao52Jnzij8ipPD94ydLxHKUvR9UHSYeaQXY04tfr9bEpOV6F3s8CEZvEjp8rVrJBDZsdC62FlARrc5ka1rS6Jnctye6FPsaBy0UOaiY2lFLs7NvH1QWjTDp2UdBf/Z6U3JZN2ca+tiR3ps8w7v9m8omWxYZAUEfrXz8nObXFjyyWxBAEjIys/6gbKORXOu7iw4VvDm3Y13JQeJ9HOxs8OMhbKqH0t/x0BdbYBFdhcD0Ginrl9ylb4e5IgHeeVXuK/2hIR6UlZ1ElwMABkzPNeb3qLf06Z3sZPBgp0iArk/L/6eurJ8wYK91vzlwh+o39agjwcl9cF+pUe3V9X9lu4MUsKqzgUlJH2Xu+g61R0OzTDzSK/uuZBxh6aChJDfJUBVRnRVd8UsH6crSBgHXQIEElfey87kO2Ll1xDMxXaaXPrVghpnC0vog/RENvJO/2L20fUdzhUeehcDQPyHyvwVDU4VHYJ4kFdsQHXq350pSN8H3TNI9oUcHnepx4lIW8JholQma/VNPWQu+Ob9cY7KDZeLQXpVmunXfn7c6KCcBBe7BxAA0ssjtjua9ySEWy4Q2Sp2f2lN9reiRYbNxf3SjVNUv1jeI1pm6AdqK82piMr5Xqw5PoMMVR8EAMQc2OlRKLKgon7rw60uBgDtPM/dL5ULDon0FpQe8wsprDwu87BQJjWg2y0IKGIOrAs7LbTHRL0mIRzf+16uyWsVeaFxywL+9njSxK4lg4sBACWTlmzhSZay7JQFkJm4f4WyuZEHZqRYEOqNr++cwxOC0e/NyAQIYGFC+lq9bXv0M4l8gFP2rbzUaXu4Qj/MyAcIrw376p+yHhJHwkBtKZ+wyMy371okSJjqZAXEhM9y91ispyQEC/JaEPAsqAxctv/hnxKmOpkBgTj/9uy1rQ/bsy8wbE/xoPw/zSv5bPAP+rlYfkB45s8M3qv6JcC/HzncLgaAuXHnf72mC5BgwSFwMQBgU3BR024o+JYYDvYHhwjQJz+hs64lWU17DKGEO8JBlnH8XRJewkerVj7gObrgrWsaeKXbaHrg6QrawFXM3c6cmSy4XWSc3n+IRliPh97m/Rpi014FA4C50T7Rw2UnKxo6JjtzFRX3bZdvNAcAPY+XjBlIJbyAB8+wDACwjFvejhf7JMRCrAdn7u+EhqgVo0QBR5AEvyfpNhKG8egjhFH6DimRrYQASw8HKXpuhmm45mcLJV6aMylsBwFCGIcOM1tXEgLUL3wDDW+tj8Jf64jETnDn0+QpAABTlwkA663BvYNPTuUvfPELhgUYlTEgXesUoNJXBX8fPxVGSf5UqLtqRv+Ppo2sBua2xcmk62SkQGGVl5kFoz5SU+xlAyJ0+X2XFR3n3vTjrsVLfYoU/gNtdTfmhHL67XfOVywM0goUTkgAgLrj25bbZAgCxqcpbt18PpT4SnvPpJkLAQHp9FECCl13kPl4gKazxUN87qx98xVbPmHAJ5JxvypNC0O1lD7Yu3LCuywU5sL4TIBR/OvimCYlUWkVonzX1sz7nV2iECAp+5Ftqy3QkX9HSnFxc8cz4GBWjil7YSw4dXZpZXE15yA2up731Cr7VKF4kBsVFhnkHRQRrpO0eK/3nQiAYAn3DwCG6KcR7Gg3tCl3Qi7F57tJKdNx+8riEMxvFSghqvPj+r/CC5xb8bI3PFrr758zi3ui9e2gdzwBwMSpLNOFLJg0HTCYDEDAJAkubvzvrIHhdt6tWrDcjpurD1z36O0SNqJ+o2pd/0Nfv8HquymxkH9w7qZWd5Fm8EOE8RPOgukNfH1ZKmOMzRCOak79sMGv/1fDYauXisViSZNZYjCjmB0+CvBkCeCRa4RZtTQAOS368ePvckK33NxSGaYgxt7OlqPPxDoLGP5emDRAzwwAbVdbGQCRgLlHj84r12Jw+2yL0Hsgac1/Mxo5pUrtk7LEqowYoCZOGh8AgBwrnhw80EawElfzQmfixN7nYwWKB73bxxEwDMPaBBjyxYM3vksc+L8Evf8LUBnbAhnozdSh28gPWEf8f6r4CdBFMcqh2t2Qqv8DsTIBzNkDn6wAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_44.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, the two street lamps A and B are separated by 30.0. It is known that Xiaogang's height is 1.5, then the height of the street lamp is ()
Choices:
A:9米
B:8米
C:7米
D:6米
|
Như hình vẽ, hai bóng đèn đường A và B cách nhau 30,0. Biết chiều cao của Tiểu Gang là 1,5, thì chiều cao của bóng đèn là ()
Các lựa chọn:
A: 9 mét
B: 8 mét
C: 7 mét
D: 6 mét
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the two street lamps A and B are separated by 30.0. It is known that Xiaogang's height is 1.5, then the height of the street lamp is ()
Choices:
A:9米
B:8米
C:7米
D:6米
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the two street lamps A and B are separated by 30.0. It is known that Xiaogang's height is 1.5, then the height of the street lamp is ()
Choices:
A:9米
B:8米
C:7米
D:6米
|
As shown in the figure, the two street lamps A and B are separated by 30.0. It is known that Xiaogang's height is 1.5, then the height of the street lamp is ()
Choices:
A:9米
B:8米
C:7米
D:6米
|
219
|
44
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAMQAAADfCAYAAACpt3wzAAAzGElEQVR4nO2deXxU1fn/35OZyUySSZisZCUJCZAVQtgCQSCKEBb9okYWlZr+XNuqhRasVi202rpWi1iwjSItICgqiwgiqxBIIEF2CJCEbJBA9n0y2/39gTNNIASSTDKTcN+vFy9f3rlz73Mn53PP85znOedIBEEQEBERAcDO2gaIiNgSoiBERJohCkJEpBmiIEREmiEKQkSkGaIgRESaIQpCRKQZoiBERJohCkJEpBmiIEREmiEKQkSkGaIgRESaIQpCRKQZMrHYVeRORSKR3HBM1tpBEZE7FdFlEhFphigIkTuSm4UKoiBERJohCkJEpBmiIEREmiEKQkSkGaIgRESaIQpCRKQZMmsbIHJncOzYMXJzczEajXh6etKnTx9cXV1Rq9U4OTkhk9lGU+wyKzQaDRqNhpqaGiorK6mtrUUQBIxGI0qlEnd3d/z9/VEoFK2m0EV6FwcOHGDz5s1UVVXRt29fvLy86NevH35+fri5uaFWq83/r1QqrWZnlwiisrKSkydPcu7cOY4fP86ZM2e4fPkyRqORhoYGPDw8uOeee/jtb3+Lv7+/KIg7ALVajYeHByUlJWzZsgVBEJDL5cjlcgRBwMXFhWnTpjF37lzGjx9vtTbRaUEIgmA2vrCwkLS0NHbs2MH+/fupqalBJpMRGBjI2LFjkclkVFdXYzQa6dOnj810kyJdz0MPPYS3tzf/+c9/yMrKYvDgwQwbNoy+fftSX1/P2bNn2bFjB6dOnWL+/PkkJSUhk8latK/uoNMtUiKRUFFRwf79+9m7dy8HDx7k5MmTNDY2XruBTIa7uzuenp4kJiZib2+PTqdDpVKhVqvF3uEOQalUcuXKFXJzc0lMTGTWrFnExMTg4OCAVqvl6tWrrF69mh07drBs2TLc3NyIj4/HycmpW+20yCs6Pz+f999/n7S0NCQSCX5+fvj7++Ps7IxGo6GpqYns7Gzq6upISEjA0dHRErcV6UFcuXKFH3/8kePHj/P+++/z0EMPoVAozJ8PGjQIuVzOpUuX+O6779i+fTvBwcEMGDCgW+20iCAqKipIS0tDp9Pxf//3fyQnJzNq1CiMRiOlpaVs2rSJ1atXM2/ePP7+978zffp07OzEEd87Cb1ejyAIODg44OrqSlNTUwtBwP+8CYlEQk1NDU1NTd1up0UEYQqKoqOjefrpp5kyZYr5uI+PD66urri7u/PGG29w/PhxYmNj8ff3t8StRXoIffv2JTw8nK1bt/LPf/4ThULBmDFjcHJyoqmpicuXL/P555/z3Xff4ezszF133YWfn1+322mxqFYmk6FWqwkMDDTHBab/BgYG0r9/f3Q6Hfv27RMFcQcik8lISEjg0qVLbN68mTfffJOBAwfi7e1NQ0MDOTk55OTkoNfrzS/Q63uQbrHTEhexs7PDaDRy8eJF0tPT8fT0xMHBAZlMhlarJSsri4MHDyKRSDh27BibNm3C3d2dsLAwXFxcRPfpDiE6Oprk5GSMRiN79uwhLS0NlUqFwWBAp9Ph7++Pn58fxcXF6HQ69Hp9t9toEUHI5XJkMhknTpxg2bJl5OTkEBcXh4uLCxcvXmT79u2kpqYSEhJCeXk5W7dupaCggN/97ndWGUkQsQ5SqZSoqChef/11Tpw4QVZWFmVlZSiVSiIjI1EoFOzZs4c1a9ag0+kwGo3dbqNFBCGRSHBxccHFxYW6ujq+/vprNm3ahFwup6qqCplMRnx8PC+88AJyuZwvvviCPXv2cOrUKQYPHiwK4g7DycmJYcOGMXjwYAwGAxKJBEdHRy5duoRMJrOaGMBCgjAYDMC1LnHcuHE4Ojpy9uxZNBoNLi4uhISEMGTIEAYPHoxcLsfR0ZG77rqLwMBA9u7dS0VFBf369WPq1Kmi+3SHYG9vj729fYtjUqnUPLXTWqvBWEwQBoMBT09Ppk6dSkhICNnZ2TQ2NuLh4YGPj0+L86OiooiKigIgNTWVDRs2oFQq0Wq1jBo1ir59+4pZ7DsQg8GA0WhEIpEgCIJVRGGR17FEIkEikaDVaqmtrQUgNDSU6OjoG8RwPcOGDSMwMJCffvqJxYsXs3nzZq5cuWIJs0R6GKZ2BD28hzA9hNFobPeDxMXFERAQwKhRo1iyZAlffvklwcHBVhmDFrEuEonE6i6zxfySjtYk2dnZERAQwH333YdarcZgMKBUKvnxxx+5dOkSU6dORa1WW8pMkR6CtVwmiwqiMw/g5+fHww8/jCAInDp1ik2bNrFz506Ki4uZMmUKAwYMQC6XW8pcERvEFlwmi/dPnXkQqVRqzng7ODhw5coVPvjgAz799FNOnjxplUSNSPdierF2xP22BBYNqi31AEFBQTz99NN89NFHhIWFsXr1apYuXUpVVZVFri8icjMs7jJZShRqtZr4+HheeeUVMjIycHV1paKigvT0dCIjIwkODrbIfURsh+ZBtbV6CIuNMlmyhzDh5OREQkICUVFR1NbWcuXKFT777DMCAgKYNm0aY8eOxcHBwaL3FLEetjBZzKLZr64aGfD09MTNzY3S0lLKy8vZv3+/OfEXHx+Pm5ubTfyYIp2jeVBtLSwaQ3QlUqmUIUOG8OGHHzJjxgwOHz7M/PnzOXDgAPX19V16b5HuozM5LUtg0Riiqx9CqVQSERHBggULiIyM5Pjx4zg5OZGdnY27uzve3t7i0GwvoUdnqrsTmUzGwIEDUavVjBo1Cl9fX9avX09BQQGDBw/m/vvvx9PT09pminSA6/MQPb6H6E68vLzw8vICrs3p3rp1K/v27UOr1TJp0iQCAwPFAsEeRq9JzJkexBp+nyAIPPPMMzz99NNoNBpefvll/vWvf3HhwoVutUOk89hCUN1je4jm9/X39+eXv/wlgwYN4t///jd2dnZUVlai1WoxGAzi0GwPote4TNbEzs4ODw8PJk2ahEqlwsXFhcrKSj799FMqKyt58MEHCQsLs7aZIu2gRwfVzRNz1tz3WqlUcvfddwOQlpZGamoq6enp1NfXc//99xMVFSVOV7VhbCGotlhxX1dkqjvDwIEDmTFjBsHBwSxfvpy//vWv7Nmzx6ZsFGlJ8xerteZUW0wQJkXbSoNzdXUlMTHRvGxidXU1hw4dQqvVWts0kZvQa4JqU1GWrYgBrsUVzs7ODB48mF/96lcUFBQgl8s5evQoqampxMbGEh8fb5XFsERujrVdph4/ynQ7xMbGEhsbS11dHdu3b2f16tWkpaVRXl7OhAkTUKvVYobbBmjehnp0HsKELblMrSGTyejXrx8RERHs3r2bRYsWsW7dOsrKymza7jsJa/cQFp8gZMsNS6lUMnjwYN5++21efvllHBwcWL58Obm5uTbdw90p2EKm2uLl37aOQqEgICCARx99lJCQEHJycnBycmLjxo3IZDJGjhxpLgkR6V5sYdjVZhYZ6G78/PzMo0+1tbX85z//4dy5c5w5c4YHH3yQgIAAMeC2Ar2ih7CFYKij9OnTB0EQcHd358KFC2RkZFBaWsqsWbOIjo4WRdGN2ILbekeMMt2KPn368MILLxAdHU1KSgpLlizBaDSiVqsJDQ21tnl3FL3CZeqqOdXdhWn18okTJ+Lu7s6AAQOIjY3l6tWrlJeX4+rqysCBA61tZq+nVwXVPWGU6VY4OTkxduxYAgICcHJyIjMzk61btyKRSEhKSmL48OFi5WwX0lwQvWIKaU8WQ3MCAwOBa8O0OTk5HDx4kNLSUh599FHGjx+PSqWysoW9F2u73uJmDG0wZswY3njjDR555BF27drF4sWL+eKLL6xtVq+lVw27gu1nqtuLvb090dHRzJ8/Hy8vLyorK5HL5Vy+fBmtVkvfvn1FF6qL6NExRE8PqttCJpMRGhpKcnIy1dXVNDY2sn//ftLT04mNjWXKlCl4eHhY28xegS1UPPSqCUJdiSmuqKysZN++fXz11VekpaVRV1fHQw89hLu7O1Kp1MpW9mxswWXqtROEugoXFxdmz57Nb37zG2pqali0aBGLFi2iuLjY2qb1CnrNsKuJ3i4KqVSKr68vTz75JL6+vvzwww9UVlZSV1dHXV0dcrlczG53kOsnCPXYoLo3xxCtIZVK8fDw4P7772fAgAFcvnyZuro6Vq5ciVarZfr06WIirwP0usTcnYZarWb06NEAHD16lB9++IHTp09TXFzM448/Tv/+/XFwcLgjf5vO0uMnCPX2oLotBEEgKCiIWbNmERwczJIlS3jxxRfZvXs3jY2N1javx9CrMtXQ++OHmyGRSOjTpw8zZswgMDCQL7/8kh07dpCdnc2oUaNwdHS0tok9Bmv3phYv/75TsbOzw8nJiTFjxuDq6kp4eDjh4eGcOnWK7OxswsLCxFqoW2ALw65iHsLC2NnZERkZSWRkJHq9nnXr1vHZZ5/h4+PD448/Tnx8PH369BEXYm4FWwiqLb7IgMj/sLOzIzQ0lIiICL777jsWLVrEf//7X0pKSqxtmshNsNhryrQukyiK/2FnZ8ewYcPw8vIiIiKCTz75hI0bNxIQEEBSUpK1zbM5xKD6DkAul9O/f3/mzJmDk5MTer0eV1dXdu7cCUBERAS+vr5WttJ2sLbLJMYQ3YSPjw9PPPEEEomEoqIiPv74Y86ePcu4ceN4+OGHxe3AuLEd9egewrRhisjNMQXSzs7OuLq6cuLECY4dO0ZhYSHPPPMMISEhd7Qoes3aribE3uH2cHV1NQtgxYoVfPnll1RUVPDOO+/Qt29fa5tnE4gu0x2EKZE3efJk7O3tSU9Px8XFheLiYkpKSlAoFHfkBi+9Jg8B1g+GeiIqlYrExERGjBhBbW0tubm57NixA71ez9y5c4mIiLjjEnnWbkdidsjKyOVyvL298fb2Jjc3l+PHj3Po0CFycnKYP38+I0aMwNnZ2dpmdhu9qocQe4fOMWHCBFQqFWvWrGHt2rXk5+fzyiuvMHPmTKsHm91Fr+ohREF0DoVCwciRI3FwcMDX15esrCxkMhklJSVoNBqCg4OtbWKX0ysEYdpBCERRdBa5XE5sbCwBAQGcPXsWZ2dnMjIy2LdvH+PGjWPUqFF3xEiUOKdapAWenp6MGzeOoKAgsrOzWbVqFa+//jqbN2+muLi41+Z8ekUPAWIJeFfh4uLCfffdh0Qi4YMPPuBPf/oTx48fJzk5GZlMRkxMjLVNtCjWDqottoOQSNcglUoJDg5m5syZPP/886hUKlauXMmIESMYOnQo5eXl1jbRoli7LVnMZRKrXbuW9evX85e//IXs7GwaGxvx8vLCy8uL1atXc+HCBWubZzGs7TJZNIYQsTx5eXncddddzJ8/H71ez5tvvsmBAweYMmUKV69e5cMPP2TVqlWcOnWKhoaGXvNC6vEukxhUWx69Xs8DDzxAeno6iYmJnD17lpdeeglHR0fs7e3x9vamoqKCTz75hAULFrB3717q6+utbXan6FXVriAOu1qS1157jWPHjjF9+nS+/fZb83GDwYDRaMTd3Z0HHniAiooKMjMzOXr0KMOHD+/Ry/Vbux1ZVBCi22Q5UlNTee+99/Dw8OCzzz5r8ZkgCBiNRuzs7Bg/fjx9+/YlPT0dX19fjh07RkNDA3369OGuu+7qcXO3e4UgRDFYnr///e/o9XqWL19+w+ript9ap9MhlUqJjo4mOjoagOXLl7NhwwYcHR0RBIGYmBjUarU5cWrr9IphVxATc5akrq6O77//HpVKxfTp09s8t6mpqcX/DxkyBH9/f9LT0/n1r3/NV199xeXLl7vS3C6hV4wyicOulqGsrAyNRkNMTAxKpbLNc6//vYcOHcrvf/97FixYgFQqZe3atRw7dqwLrbUs1u4hLF7LJNJ58vLyAAgKCrrlude7qg4ODkRGRuLs7IxKpaKiogKZTMbJkycpKioiLi4OV1fXLrDaMvSKGALEPIQlMa3b5O3t3eFr9OvXj6effhqNRkNeXh7bt29n69atzJ49m4SEBPr162eTAbe125FYumGDZGVlAeDu7t6p69jZ2eHo6IharUYikXDu3Dn++Mc/snz5ck6fPo1Op7OEuV1Cj3aZoGeJQlNZQpXeCXdPZ9q3xoWO2tJy6g1tnKJQ4+3att9/K3bt2gVAYmJip65jwtvbm1mzZhEQEMDSpUtZs2YNZWVlvPHGG/j5+VnkHpbC2kneO2vjdt1VMpf/grt/u53a+BSyU58kpF0XKOCLB0J56kAbp8zbjfBBQodN3LhxI6mpqURFRVmsktXOzg4fHx8SExORy+Xs3r0bd3d3ampqyMvLo1+/fvj5+dlUHNije4ieEFRXHP2E5x9+js9zoOM7XhnQ68Bz8SGuLhppSfMAKCoq4qmnnkImk5GSkmLx6zs5OXH//fczbNgwamtr0Wg0rFq1Cj8/P+6++26GDRt2y1Gt7sCaPcQdsdjx6X+PJij2OQ6F/4ltuVVs+1VHr3SJc4dhoF/nfPvWKCoqYs6cOZSVlfHKK68QFxdn8XuY8PPzY9CgQUgkEo4fP87f//533nnnHVJTU61eC2Vtl8mi5d+2mpxrcriPL8+XcvbbP5IYbP03YHP0ej0fffQR0dHRpKamMmHCBF599dUuv69EIiE0NJQPPviAhx56iCNHjvDCCy/w3XffUVdX1+X3v5VtIG662GXEzv2jZS5UU085MCKk7cijqqrqlsmwoqIizp07x7p168jOzkapVPLmm2+yYMGCbhsOdXJyYsSIESiVSvz9/Tl69ChSqZTCwkI8PT1xcXHB3t6+W2y5nl4RVIPtuk0WobSEXMDkMOlqSymvN4C05YjVsWPHSEi4/cA6KCiIbdu2WWW1PqlUSkxMDH379uXEiRP079+f9PR0rly5QnBwMAkJCbi5uXW7XT06qIb/BUK9dfL7/wik4dDfePD5t9hwutZ8VOE5nt+tWcWf7w3A29ub5OTkm15Br9dTVFTEsWPHqKqqIi8vj9dee40PPvgAf3//bniGG/Hx8cHHxweA//73v6xZswa1Wk1jYyOTJk3Cy8urW+yw9gCNRUeZelIuokOUX+I8+Rx4+WNmpvxAwaxhBDjL0VRmsffNR5gxaQDpKSfY/mTYDSXbraHX69m5cyfz58/nq6++YufOnSxfvpzZs2d3w8PcnOTkZJycnFi7di0vvvgip06d4he/+AURERHdcn9rDt9bfJSpV7tMehlug0by8g+ZrH4yjgDna06S0jWMxHd28u2vXdjz3DvsrLm9y8lkMhITEzl58iSvv/46Go2GuXPnkpmZ2YUPcWuCg4N57LHHWLBgAeHh4dTV1ZkXM9BqtV16b2uv8SXGEO1hzCtkZb1ykw/duPeZFxm0bCFr973PlOkut31ZmUzGq6++SlhYGA8//DBz584lIyPDajPf7Ozs8Pf3Z+bMmTg7OyOXy9Hr9Xz33XdcvnyZe+65h/79+3epDT26hxAnCP1M+BDuAXJLSjv09aSkJJKTk8nKyuLll1+2rG0dQKFQMGPGDKZNm4ZKpWL9+vX8+c9/Zs2aNZw5c6bL4sVek4e4M4LqNpDL6Owg5dKlS/H29uaTTz6xej6gOSEhIUyfPp2wsDDeffddfv/737Np0yaLFwhae2tecRmadqGhslJz84/z8jgOeDp33NUxzZLTaDRs3Lixw9exNGq1moSEBF577TWmTZtGZWUlhw4dumHGnqXo0T2EtWc5dQ9X+OIBB9zG/5szNznj0oH17CGeacM7txjxqFGjAMjOzu7UdSyJnZ0d7u7ujB8/nueff565c+cycOBA8vLyWLduHYcPH0ajaeNl0Q6s+XK1eA/ROwShobKkhJLSWv7nEPRlytNPoDj5Iq9+Xsj1joKucAMvz99GwMK/MbN9JbQ3YJopl5+f37kLdRFjxozhN7/5DUlJSeTn5/P222/z4Ycfsm/fPhoaGjAY2qqPvz16fGLOZqtday5wIP0izUvWjl0Ayo5y8IcfyPn5mFNwHPEDTCNDafzF527+cV2JuMuUd9i2cC9THo1k6FfPMe8XE+jn2EDB3k956/0tXJ2QQvpfxnH740utY4sz2VpDqVTi5+dHVFQU27Zt46effuKZZ57hwQcf7FQ5uWlH2x4riOZdnM31EBVH+OcLi/mpxcFBDGIXf31hl/lI7OLvmwlCgcegQQzqp0La4ntuJLxzloLHt7B22SpSXvqGaiAwbi4vff8hj00IxrZKB7sWuVzOgAED+OMf/0hoaCibN2/m008/JSoqqsMZd2uPWFq8h7A5QQTN5vOs9mZ+x/BKVhatZxzkeEU+wG//+QC/7bx1PRqJRIKTkxPh4eH88pe/xMfHh6NHj+Lg4EBqaipyuZz+/fu3q+zD2q63xRcqszlBiHQL/fr146mnnuLq1asAfPTRR1y4cIHx48fzwAMP4OnpiVQqvcVVrtHjy7+hh0whFelSJBIJXl5eaDQanJycOHLkCLt27aKgoIA5c+YQERFxW/FRr5hTLSIC1xqzUqkkOTmZgIAAPv/8c1asWIFWq+Wpp5667RL3Hi8Im40heiCmtVyLioqsbEnHkEgkeHt7M2PGDFxdXVmzZg3+/v6UlZVx/vx5ZDLZTWuhmk8267Euk7UfordhEoQtJeY6gpOTE1OnTqV///44Oztz4cIFvvzyS/R6PTNmzCAyMhK5/MaFgKzZlsTEnA3i7e1NTEwMeXl5nDp1ytrmdJqwsDD8/PyQSqVkZGSYFzXYt2/fTZN4Pb50486oZeo+Hn/8cQDmz59vZUssx7Bhw1i4cCGzZ89m//79vPrqqzdMpDK53tZqT+J8CBvlueee44svvmDnzp384x//YN68ea2e15N+b0dHR+Li4nByckKlUnH16lXq6+spKytDp9Ph4+ODSqVCLpf3/BjCZks3eigymYy1a9cSHR3Nyy+/jLe3d6tTS3va7y6TyRg6dChqtZri4mK0Wi0nTpwgMzOT0aNHo9FozNORrdFLWOzXNCVdRNfJcgQFBbF8+XL0ej1z5sxhypQp5OXltZjD3tMEYSI4OJgxY8YwZMgQzp07xz/+8Q/+8pe/8M0336DRaJBKpVZ5Nov0EHK53KbXZerJPPbYY0RFRfHUU0/x/fffEx4ezpgxY2hqaqK6urrHv4BcXV2ZNm0a1dXVbN68mVWrViGVSgkPD7fKmlASoY1WfPToUQ4dOkRBQYG50V+PXC7nypUrHDx4kHPnzjFu3DhGjBghCsTCGI1G0tPT2b9/f4t5BzNnziQyMrLHDnmbKlsLCwvZt28fOTnX6o8DAwO55557CA0NvekkpKamJhwcHAgLCyMxMREXl9uvMxYEodX23KYgNm7cyNq1azly5AgODg6tXsDOzg69Xk99fT1NTU04OTnh6OhovqmIZbGzs6Oqqorq6mp0Oh2+vr44ODgAPfP3lkgk2NvbY29vT0NDAzU1NTQ1NSGRSFCpVCiVylaHZiUSCfX19bi4uHD33Xfz4osv4unpeds95s0E0abL5Ofnx5gxY/Dx8cHe3v6mNzP5snZ2dqxdu5YTJ07wxBNPdHrDD5HWuXjxIuvXr2fYsGHcc889N/3j9iQkEglyudw8N99gMGAwGNoUuamHiIyMRKlUWuQ3aFMQQ4YMITw8HL1eb75ZWzc1PdTixYtxcXHhlVeuFVD3xDeXLfPCCy8A13IVv/jFL6xsjeW4vm3dqt2YXgRyudxiy/i36TJ1hLKyMsLDw6mqqmLevHnMmjXrhn2Wu5O2Ni4sKipCr9d3nzGdpKSkhH/961+sXLmSoKAgTp48abW1m3o6HYohricnJ4fc3FyqqqpauFCbN2+mrq6OOXPmmPcceO+996ipuc0l7LoQlUpFXFwc7777LjExMZSVlTF//ny2bNlCVVWVtc3rEP7+/qxfv75L95CwBTZu3MixY8dITk42v9gs5R5aRBCrVq1i48aNXLp0iaCgIKRSKXq9ni1bttDQ0MC9996Lm5sbMpmMmpoafvrp2sRNtVqNp6dnpx+iI5w6dYqysjJkMhnLly/ntddeo6SkBJVKRVRUlE3smGPCtK6VIAjmmKw53t7eDBkyhGeffRa1Wt3iezfj+j+60WhEq9UiCAJyudxq87cNBgM6nQ6DwXDTBp6YmMj+/fs5efIkoaGh2NnZIZPJLJKf6FBQfT2NjY0EBgYyadIkkpKSkEql1NTUcOLECbKyskhKSmLatGk4OztTW1vL999/z/Hjxxk5ciSPPfZYpx+io3z00Uc8//zzPPXUU8C1xXyXLl1qc+5GTU0NqamplJWVMXr0aIKDg9tssKbGrdPpblggzjTQIZfLzcEqXPsbHjx4kOrqagYPHkxISMhtz2SzJPn5+WRmZpKbm9vCvuaYdmPduXMnmZmZxMXFmYXRVbRLEBKJBBcXFwIDA80jSGq1muDgYLKyslAoFOZdLV1cXAgODjaPK1uT5557jiNHjrBy5UpCQ0NJSUmxyZUtdDodZ86cIT8/n4iIiDZXQTQajVRWVrJ7924uXrxobvwm9Ho9RqOR4cOHm0sl4NpixceOHaOkpARfX1+Cg4OtIgiDwUBDQ4N5Y/nmO1CZthOuqKhAKpWybNkyZs+eTVxcXJf/3dp1dZlMRkVFhXkhXqlU2iJp8vXXXxMUFIRCoaChoYHDhw9TXV1tlR/8esaPH8/KlSuZPn26TYoBrnXjjY2NNDQ03NJPFgSBmpoaDh48SElJCeHh4eZckUQioby8nDNnzqBSqfDy8qKhoYHi4mLUajX19fUWW1Sso7i5uREdHY2Xl1eLrRRMPVtOTg4GgwEHBwe8vLwYOnRot+xR0W5BFBcXc+LECUpKSpDJZDQ1NdHQ0ADAjz/+iL+/P3K5HI1GQ3Z2Nm5ubjYhCBN9+vSxtglmTNllUyM2rWLRp08fFApFm6IQBAG9Xk9tbS3u7u4kJCTg4eGBRCJBq9Vy9uxZ8vLy0Ol0FBcXc+bMGQ4dOkRSUpL5N3BycrJa/sLd3f2meSpBEFi/fj0A4eHhLF68mIkTJ3aLXe0ShMFgwN3dncDAQBISEpDJZNTX1+Pp6cnhw4epqakx+6X19fUcOnSI8vLyO3sB5DaoqalBo9Fgb2+Pq6sr0DKwhmsujsFguCHxZHqT9unTB4PBQGNjI25ubsjlcs6cOUNBQQHu7u44OzsjCAJ1dXXU1dUhlUqRSCQYDAab/Ls0NTVx9OhR1qxZA8Czzz7bbWKAdgpCr9ebRzruvfde7OzsMBqNqNVqNm/ezIkTJ/jpp594+umnaWhowN7engMHDtjkD29tDAYD69ato7CwkNjYWB588MEWFcNSqRSpVGqOEWJiYoiNjW3R20okEhQKBQUFBfz444+cP38eDw8PioqKzMGqqeeRy+U4ODiY3UVbTJYKgsCRI0f405/+RH19Pf3792fu3LndakO7BGFnZ0dNTQ25ubmcPHkSOzs7DAYDOTk5+Pj4kJOTw4oVK5g6dSp9+/YlOzub2traHl9W0BXU1dWRmZlJXV0dQ4cObfUcOzs7c8x29epVBgwY0GK4Fa6Jwt3dnT59+pCZmUlDQwP+/v4EBARQWVlpbvgymQx7e3ubLhdPT09n06ZNZGRkAPD66693+7B4uwVRVFTE2bNnzaMDGo2G3Nxc8vPziYqK4tChQ/zhD39gxowZnDp1ylx41lXU1dWRl5dHXl4e2dnZ5OfnM2vWLJtOWun1eq5cuYJGoyE4OJjBgwcDmHtSUy0PXMu0q1QqDh8+zH333YdKpUImk5ldK4PBwMCBAxkzZgz5+fmkp6fTv39/4uPj2bVrlzlOud4VsyUMBgPnz59n8+bN7Ny5k5qaGu6++24eeeSRbrelXYIwGo3Y29vj5eVFcHCwuUKxvr6e/Px8EhISKCws5Pz585w/fx5vb28aGxstshp0XV0dq1evJj8/v4UAysrKWpynVCpZtGhRp+/XlTQ1NXHx4kUAfH19zbt/Xo/BYGD48OHmPa0PHz6Ml5cX3t7ewLXeoampCblcTmBgILGxsWRmZuLg4GAuhbZFATTHaDRSUlLCsmXLOHfuHKdPn0Ymk7FkyRKr2NMuQQQHBzN58mS8vLzM/qxGo8HNzY2rV68yadIkpk6dypQpU9iyZQtvvfUWkZGR5txEZ/j4449ZuHBhi2MqlQpvb29KSkrMxx577LEb3ApbQ6vVcurUKfPq2aYE4fWN12g0mhcUHjRoEBkZGQwdOhRvb2/zmL0ppqirq6OoqIiysjIKCgrMM+uaD2fa4mIQeXl5fPrppxQUFHD48GGamppYvnw5UVFRVrGnXYIIDw9nwIABuLi4tHgDubu74+DggIeHB9HR0WzcuJEpU6awePFiVqxYYZEN+pKTk/Hw8EClUhEUFERQUBBZWVnMmTOnxXnPPPPMTb/f1t7R3UlFRQWnT5/G19eXfv363fJ8X19fRowYwapVqzh37hwRERHmYVl7e3sKCgrYtWsX58+fJzo6Gp1Ox86dO5FIJAQHByMIAg0NDdTV1bVZKtHd5Obmsm3bNjIzMzlx4gTV1dU899xzPPvss62eX1dXR2FhIVVVVURERODs7GzxmKhdV/P29sbf37/FzCRTIkmn09HQ0EBTUxMTJ05k6dKlaDQaZs6cyVtvvdXpqlIPDw+Sk5NJSkpi+PDhrFy5koSEBIqKipgwYQIAw4cPZ/jw4Z26T1dTVlbGTz/9xOXLlxk4cCABAQG3/I5arWbw4MFIpVKysrLIzc011zrZ2dmRn5/PkSNHcHR0ZNasWQwYMMDsTpp6GaVSiZOTk3m+gbVpbGzkwIEDfPPNN6SmplJSUkJSUhIffPDBTb9TVVVFamoq69at4/LlyxZxxa/HIvIyBYHNf+hnn32Wbdu24eHhwRtvvMGUKVM4duxYp+9VVVXFAw88wMKFC1Eqlaxfv95cCfnEE090+vpdzZEjR9i0aRNOTk7mTO2tkEql+Pr6MnDgQEpLS83xR/MYIiIigkceeYT777+fadOmMXr0aLNL6+zszNChQ5k8eTLOzs42EVzv3r2b999/n71799LQ0MCiRYtYu3Ztm1UElZWVnDlzhszMTKqrq7tkOL/TNQwGgwGNRkN9fT1arbaFkRMnTiQjI4OHH36YnTt3MnToUGbMmMGiRYuIiYlp970yMzN5+OGHycvLIyYmhvXr16NWq5k7dy4qlcqqBYS3i6urKyNHjsTPz4/AwMAWnzk4OJjL6q9vsCqVijlz5lBbW2t2s0zJtUGDBjFjxgzUajWOjo7ExsaiUChYtWoVWq0WpVJJeHg4gYGBCIKATCbDaDRaJT9UVlbGRx99xNtvv41Go0Eul/O3v/2N++67zyx0UxZep9OZ21ZNTQ27du0iKyuL6OhogoODUSgUFrev04KQy+WEhIQwbdo0fHx8blB4UFAQaWlprF69mtdee42NGzeyceNGwsLCSEpKYvLkyURFRd0yEP7444+ZP38+Go2G5ORkli9fjlKp5L333kOj0fDcc8/ZXPVqa4SEhODq6oqrq2uLMhKdTkdNTQ3V1dU0NjbeIAi5XG6OD+zt7c1i0Gq1yOVy3NzcUCqV5iFWvV5PVVUV7u7u5qI/qVRKQUEBxcXF1NfXd0tOQqPRkJeXx/fff893333H3r170ev1KBQK4uPj6dOnD3l5eXzyySctttIyPb9paFmn01FbW0tsbCyTJ0/usunJnZ4xZypIq6+vx9nZuc0aHI1Gw8cff8ynn356w5qlMpms1W2YjEYj5eXl5j+gm5tbi4Z/6dIl82T7jixb4u/vj4eHB97e3vTt25fhw4czYcKEbhFXXV0dO3fu5MiRI1y4cMGcR2lqasLFxQWZTHbT39LU6GtqapDJZOYA0yQSjUaDVqvFwcEBR0dH7Ozs0Gq1NDU10dTUZP5OVxY6lpWV3bDXtmlV8D/84Q+Ul5dz4MABcnNz0Wq16PV6c6wplUqRyWTI5XLs7e1RKpUEBAQwbNgwhg4d2un6OItMELIkzd8aZWVllJSUkJeXZw1TbkCpVDJ27FgeeughkpOTLZot1Wg0rF69mq+//pq9e/daveq0K/H29ja/bOLj40lMTGw1YXp9r2Ci+VCxpUfGbE4Qt2LlypU8//zz1NXVMXv2bFJSUlp9a69bt46xY8d2eJO/oqIiqqqqKCsrIzs7mwMHDrBlyxZzws/b25vXX3+d5OTkTr1N9Xq92W007fvg4eHB9OnTGTlyJEqlktLSUgIDAxk7diw+Pj5tujSCIFBfX09hYSFKpdJcZdzY2EhRURG1tbX4+Pjg6uqKUqlEq9VSWlpKdXU1zs7OuLm54eTk1OHn6encdCqqYGM0NjYKycnJAiDIZDJh6dKlVrFj//79ZjsAITQ0VMjIyOjQtTIyMoTQ0FDztWbMmCHs379f0Ol0giAIgsFgEBoaGoTS0lKhvr7+tq9rNBoFrVYr6HQ6wWg0tjgu0jY3+41sShAXLlwQYmJiBEAICgrqcAO0JEePHhWmT59uFmhKSkq7vv/ZZ58JSqVSAIQJEybYxDOJ9ABBrF27VlCpVAIgJCYmCpWVldY2qQXNG3ZycrL57d4WCxYssHpPJ9I6NisInU4nzJs3z9xw3nzzTWubdFOOHj0qBAUFCYDw0ksvtXnuokWLBEDw9/cX0tLSuslCkdvFJgVx8eJFYfjw4QIgeHt7C3v27LGmObdFYWGh4O3tLQA3dZ8+++wzARDUarVw9uzZbrZQpDNYTRDbtm0T1Gq1AAgTJ04UiouLrWVKu0lLSxNUKpUgk8luiAkyMjIEmUwmyGSyHiFwkZZgNBqF7vyn1WqFl156yTzismjRIkGr1XarDZb4t2LFCgEQ4uLiWhyfMGGCAAjLli2zuo3iv7b/tSqI7lRfcXGxMHbsWAEQPDw8hG3btnXn7S1OXFycAAirVq0SBEEQNmzYIABCTEzMbQXdIrZHtwlix44dZt87Li5OKCws7K5bdxn79+83B846nU4ICwsTAGGP6Cr1WLpcEDqdTli0aJEgk8kEQJg3b16ventOnDhRAIR3333XHA+J9Fy6XBAmN0KlUgkbNmzo6tt1OykpKQJgzlG0N3EnYlt0Sy3TW2+9RVJSEqGhoV19q26nrKwMHx8fc5VmYWFhh+uqRKyPzRb39SRGjx5Neno6w4cPN68pJNIzsd1Vq3oQYWFhAGLP0AsQBWEBTFuGiYLo+YiCsACmeQWWWH9KxLp0cMaLhsvHD7N371ZOFAPOocRNHM89sQNwlrdy+umveGlVZhvX82fq/OcY17dj1tgKphX1RHou7e8hKtL422gv/GKm8+LWayvm1R5ZxtPjB+IZ/ihfnNfd+J2rB3j77RUcruysuSIiXUs7e4gcPktK4JVLj/FtwXKmB5i6g7f4Z8VR3ksazeyJAwnOWcTIZj3Flat5wMO8/NFb3NtaDyIiYiO0r4c4vJo/7IEn/vV+MzH8jNtQfvvXBXgWvsna1Ja9RF1tKWCPTBSDiI3Trh5CF/7/2PHjRBxjXFr9XB4ZRyJNZOQUQEJIyw891dy5U9pFegrtEoTcOYAh49pYi7SilCLA/ro1cy6dz4SByXTN0lIiIpbDoqtUVRzdzh4G8e6woBbHDbqfdyrVXOb44b3s3XqCYsBn8ANMvS+WAa0OTYmIdD+Wy0NU7OH1336BYsafmTO4lc8L3mKy2o+7HvkPRwFqz/OfeeMZ6BnOr7cU0srYVI8hOTmZPXv2kJiYaG1TRDqLRUoEteeElASFgCJBSDmnve7DbCElHgGchckpp4XGFt+7IvwwL0CAAGHxoeu/JyLS/XReENpzworJzgKKEGHh7vJWTqgWzqduF7ZnFgitNnntQeEVTwTFE1uF6k4bIyLSOToniPKDwuKhCgHFUGHxwdbEcHv8uFAhoFgo/NgpY0REOk+HYwhd4RaejBnD4uwJpPx0kEWj3TrstvkNHA5NOiy/H4zl0F09zYYlv+HBUWGEhYURNjmZv36yl4ttrlWs4+rpDSxJnnztO2GTSV6ygdNXe3LE1MvpiIq0Bd8KTwQgEPCE8G1B533/c8tHCjBP2N3pK3UN5bsXCiEKBOe4x4V/rNkubN++XdiQ8rww3lMh4DxZWHFD3CQIglAu7F4YIihwFuIe/4ewZvt2YfuGFOH5uLbcSxFr035BlO8W5gUgEDBTWNdqQ7iOoqPChpR/C7uKbnZCtfDtXATiU4TsdhvTDRStE2YoEALm7RZuaMKm3yJ6iXD6hq/NEBQECPNuaPjlwu55AQKKucK3oiZsjnYKolr4cWGAANHCu8dvs2coWi1MASH63eOtB9XZKUI8CPEpNikHoWTdDAGmCKtvIuhrn48Ulp9rfvS0sCS6jYGC6q3CEwqE6CXXy0jE2rRLENrj7wrRbTXuVvlZRIoQYeG2Sy2GXRtzvxF+FaIQFMOXCLerr26nsUIoLq5oOVzcnN3X1qWd19zfO/6uMAiFMG/3zR5KK/zwaxvuFe9g2pWpTlv9KidR4PnxTKI/aePE2MV8//lsggBwYdxfD/CDbCYPTfHjXWc/BvmqoO4y5y5pCXnkI9KWPslgW01WK1259TSHQfg1q0upKTjBOcbwh+CbPZSc/kPjYdk+ztY8SUjrpWEiVqBdggh5ZDPbJ97GiU7BtBhzkgdw79/SKH+5lJwzRymoBpR9GRg9iCBXy21X1f1UsOOrNRDwG8aF/+9oaUkuMIKfdwtulZCQEUAGJaWAKAiboV2C8IuZRGcmScqdPQkbNYmwTlzDZtBcJv2jx7jv0yiWHJ7fYv5HwekDwIjbuEgm5y8BIbc8UaSb6LotKHsjB/9K2P9bBdRx+Zwdg199myMFSUR6ddTfa0Jny8mXOxBREO0hcBoffjgCaKAgYyOrl/yS0TvTWPnpOzwY0ZNdPxEToiDag18Mk0w+46QZPPniO+z/80TGxU5lxend/PJn18fdb9BtXjCeyH5dYahIRxGXoekMci/uWvQvXnHZwx9WHzYfdnH3BfK4euXmX83LOw544tz1+8OLtANREJ1F7kXQQCitqjcfCoocjycHyMq/+dcKzh6EQfGE9/Cld3oboiDa5Ao//G4UYYv3tTGBqZ6qsusODR3Ho4pS1u470fpXdGn8sLIJz6R4wls/Q8RKiIJoEzecHS9y7q1P2F7R+hm6wxv48JyCJyYN+99B+VjmvBzAuXf+xY5Wvnfpm3d4rzSaVx8Zja3mI+9YrJ0qt3l+LuBThDwipKRdFCpMNRyNFcLZbQuFoQoERUKKcEOdY/WPwsIABMXQhcK2sz+XfjRWCGe/+ZUQolAICSnn2lH+ItJdiIK4DbRXMoSU5KGCpwLzZpGAgHOk8MBffxBuWgFf/pOQkhwpOF/3neTVp29eGyViVcT9IdqFhsqSKpoApE64ezrfnsujqaSkqql93xGxCqIgRESaIQbVIiLNEAUhItIMURAiIs0QBSEi0gxRECIizRAFISLSDFEQIiLNEAUhItIMURAiIs0QBSEi0gxRECIizRAFISLSDFEQIiLNEAUhItIMURAiIs0QBSEi0oz/D7m7AtxoZFsrAAAAAElFTkSuQmCC",
"path": "images_version_5/image_44.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, then the height of the street lamp is ()
Choices:
A:9米
B:8米
C:7米
D:6米
|
Như hình vẽ, chiều cao của bóng đèn đường là ()
Lựa chọn:
A: 9 mét
B: 8 mét
C: 7 mét
D: 6 mét
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, then the height of the street lamp is ()
Choices:
A:9米
B:8米
C:7米
D:6米
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, then the height of the street lamp is ()
Choices:
A:9米
B:8米
C:7米
D:6米
|
As shown in the figure, then the height of the street lamp is ()
Choices:
A:9米
B:8米
C:7米
D:6米
|
220
|
44
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAlcAAALTCAYAAAA7GidKAACaD0lEQVR4nO3dd3wUxf8/8FcgvZFAAgkQEnrvvQZQkKr0rnQB9Ysgih1QsSBKEQU/CALSVFB6E5DQA4SO9N4JLZDQEsj+/shv35mQu8tdsimXvJ6PBw9f7u3tzl2uzM3szDhomqaBiIiIiAyRK7MLQERERJSdsHJFREREZCBWroiIiIgMxMoVERERkYFYuSIiIiIyECtXRERERAZi5YqIiIjIQKxcERERERmIlSsiIiIiA7FyRURERGQgVq6IiIiIDMTKFREREZGBWLkiIiIiMhArV0REREQGYuWKiIiIyECsXBEREREZiJUrIiIiIgOxckVERERkIFauiIiIiAzEypUJffr0gYODA0JCQjK7KNlC48aN4eDggMaNG2d2Uaxmj2V+9uwZJk+ejFq1asHb2xsODg5wcHBAu3btAABhYWGyLSwsLFPLSsD58+fl7zF79uzMLk6WpD8/Y8aMyeyipGj27NlS3vPnz2dqWcaMGSNlSS854fNk7ty5aNSoEXx9fZErVy44ODigSpUqVt3X0YgCbNu2DQ0bNpT/37x5Mxo1amTEoYnISt27d8eiRYsyuxhERHZv5MiRGD9+fKrvb0jL1W+//Wbx/4mygoz4NZdZduzYIRWr1q1bY/369Th06BAOHz6MH374IZNLl7OEhITAwcEBffr0yeyiZEn22CpM6Scrfi5funQJEyZMAADUqVMHK1euxMGDB3H48GH89ddfVh0jzS1XT548kQ91T09PxMTEYNGiRZgyZQrc3NzSenjKBrJrk3FWsmHDBgBA7ty5sWDBAnh7eyfbp3HjxtA0LaOLRkQZbMyYMXbRlZpVbdq0Cc+ePQMAzJgxA+XLl7f5GGluuVq2bBmioqIAAJMnTwYA3L9/H8uWLUvroYnISleuXAEAFChQwGTFioiIrKN/ngJAqVKlUnWMNFeu5syZAwAoV64c+vXrh3LlygFg1yBRRnry5AkAwMnJKZNLQkRk3/TPUyD1n6lpqlxFRkbin3/+AQD06tULANCzZ08AwD///IMbN26keIyrV6/igw8+QLVq1ZAnTx44OzsjICAAFStWRPfu3TF79mzcv38/VeV79uwZZs+ejZdeegkBAQFwdnaGj48PSpYsiRdeeAFfffUVjh49muJxoqKiMGrUKJQvXx4eHh7w8fFBo0aNMH/+fKvKcfjwYbz++usoWbIk3N3d4eXlhfLly2P48OFmR5UsWrRI+qFPnDhhcp8SJUrIPub6gdu1awcHBwfUrFkzyfbnR7bEx8dj+vTpqFevHnx9feHh4YFKlSrhyy+/xMOHD616nOZYusbC1Iip9evXo23btggICICLiwuKFi2KIUOG4PLly6k6v/5YP/vsM9mmn1P9Z2mEz5UrV/DOO++gRIkScHNzQ758+fDSSy9hzZo1VpXh7t27GDt2LOrWrQs/Pz+4uLigYMGCeOWVV/D333+n6nGpj0P/kXPhwoVkj0tn7eieCxcuYPDgwQgJCYGrqysKFiyIdu3aYdOmTQAsXyNhywg4S9cmPf/6fPLkCSZNmoQ6derAz8/P7Aiyp0+fYubMmWjVqhUKFiwIFxcX+Pn5oVGjRpg0aRIeP35ssUxpob/OL1y4ACDhh+fzf4uUrjNK62t/9+7dGDhwIEqVKgVPT094eHigTJkyePPNN3Hq1Cmz98uIzwN9FPbmzZsBJAx8ev75SWmE9p49e9C9e3cULlwYLi4uKFSoEF599VUcO3bMqjKcOHECQ4cORfny5ZEnTx64ubmhWLFi6Nu3L/bt25eqx2VOWp9DTdOwePFidOzYEUFBQXB1dYWvry9q1aqFL774QnqMTLH2OqatW7eiQ4cOKFCgAFxdXVGsWDEMHjwYp0+fBmD79XF//vknXnjhBfj7+8PNzQ2lS5fGyJEjcefOnWT7GvG5bMn58+cxfPhwlC9fHl5eXnB3d0fJkiUxaNAgHD582OR99M8kS2WyujxaGkyYMEEDoDk4OGgXLlzQNE3Tzp8/rzk4OGgAtO+//97i/bds2aJ5e3trACz+W7Fihc1li46O1ho2bJjisTt27Jjsvr1799YAaMHBwdqxY8e0kJAQs/d/8803LZbjq6++0nLlymX2/i4uLtqcOXOS3S8yMlL2mTZtWrLbL1++nGI54uPjtbx582oAtBEjRiS5bdasWXLfI0eOaE2bNjVbxlq1amkxMTEpPeVmhYaGagC00NDQZLedO3dOzjNr1izt/fffN1sOf39/7ejRozafX32slv6dO3fOZJm3bt2q5cuXz+z9xo8fb/H8q1at0nx8fCyeu3Xr1lp0dLTNj82ax6XbtGmTbNu0aZPJ4/3zzz+ah4eHyeM4ODhoX375pTZ69Ohkx9Y9//e0JDg4WAOg9e7dO9lt6t9sz549WpUqVZKVZ/To0Unuc/r0aa1cuXIWn4uSJUtqJ0+eTOlpTRX9NWPpn/oeMPK1HxcXpw0ZMsTiuZ2cnLTp06ebvH9GfB7on6uW/gUHBye5j/q3njJliubo6Gjyfu7u7trmzZstnv/zzz83e3/99T1q1CibH5fOyOcwMjJSq1+/vsXnqkCBAlp4eLjJ+1t6j+rGjh0r39XP//Py8tLWrVtn8bNb/TzZsGGD1qNHD7NlLVGihHbt2jWzz5elf+rnsrXmzJmjubi4mD1m7ty5ta+++irZ/fTPJCPKk6bKVeXKlTUAWqNGjZJs1ys1lStXNnvfx48fawULFpQ/5MiRI7U1a9Zoe/fu1cLDw7U//vhDGzZsmBYUFJSqytWIESPkyWjTpo22cOFCbfv27drevXu1tWvXauPGjdMaNmyoderUKdl99Q8Bf39/rWTJkpqXl5f2ySefaGFhYVpERIT2yy+/aIULF5bjr1271mQZfvrppyQfjt999522c+dObdu2bdqYMWPkS8zBwUFbtWpVsvuXLVtWA6B17do12W1z585N8gcvX758sn32798vtz//HKov7Hr16mm5cuXSevfura1atUrbu3evtmTJEq1u3bqyzwcffGDtU5+MtZWrevXqyX4LFizQIiIitA0bNmivvfaa7FOnTh2bz3/37l3t8OHDSb58Dh8+nOxfbGxssjKXKlVK8/Pz0/Lnz69988032rZt27Tdu3drEyZMkAqTo6OjduTIEZPn/ueff7TcuXNrALSQkBBt3LhxWlhYmLZv3z5txYoVWq9evaRMHTp0sPmx6WV/5ZVXNABawYIFkz0uXUqVq1OnTmnu7u7y4fPmm29qGzdu1Pbs2aPNmjVLKi61atUy+8GdHpWrSpUqaQ4ODtprr72W5PW5evVq2f/q1atagQIF5PNkxIgR2po1a7R9+/ZpmzZt0j788EN5bMWKFdOioqKsfo6tdfbsWe3w4cPyufbKK68k+1ucPXtW9jfyta/u17JlS23evHna7t27tT179mi//PKLVr58ebl9+fLlye6fEZ8Hly9f1g4fPqzVqFFDA6DVqFEj2fNz4sSJJPdRH7uDg4NWuXJl7ddff9X27NmjbdmyRRs+fLj8eC1SpIj25MkTk+f+9NNPkzy+GTNmaDt37tQiIiK0+fPnJ3lsP/zwg82PzcjnMCYmRj77nZ2dtUGDBmnLli3T9u3bp23dulX78ssv5ceer6+vdv78+WTHSKlytWDBArnd19dX++abb7QdO3ZoO3bs0MaNG6f5+vpqvr6+WqlSpayqXOmv33bt2ml///23tnfvXm316tVa69atZZ9u3boluX9qPpetsXLlSqk0enp6aqNHj9a2bt2q7dy5U/v+++81Pz8/Od/UqVOT3PfEiRMplsna8qS6cnXo0CE5+fO/hv73v//JbYcOHTJ5/40bN5r94lfFxcVp9+7ds7l8QUFBGgCTlSfV7du3k21Tf2H5+PiY/OI8deqU5urqqgHQXn755WS3R0ZGyod5wYIFtYsXLybbZ9++fVLBKlSoULI/mv4HDggISHbf/v37y7n1ClpkZGSSfSZOnKgB0HLlyqXdvXs3yW3P/2qYO3dusnM8fvxYq1ChggZAy5cvnxYXF5dsH2tYW7kCoA0cOFCLj49Ptt+AAQNkn3379qWqHNb8mnu+zEDCr+nLly8n22fr1q3yJh46dGiy22NiYuQLv3nz5tqDBw9Mnmv69Olyrg0bNtj+wLSkra3mpFS50l9LALRFixYlu/3BgwdJKlYZVbkCoM2cOdPisdq0aaMB0IKCgrQzZ86Y3Ed9v33yyScWj5cWlh6XyqjX/uLFi+X2X375xeS5Hj16JC0pISEhyd7LWeXz4HlqmVq1amWy8jR27FjZ5++//052++7du6UCZu7v/uzZM/mh4+Xllezz0hpGPYdvvfWWBkDLkyePtmfPHpPnOn/+vBYYGKgB0Hr16pXsdkufdY8fP9by58+vAdDy5s2brEKraQmVDL3Xw5rKFQBt7NixyfaJj4/XmjdvrgEJP0Kf/45Kqay2io2N1QoVKiQVq/379yfbR33u3N3dtZs3b6ZLmVJ9T71lyMXFJdkL8e7du9Ik93x3lG7+/PlS+NRUnlLi5OSkAdAmT55s833VypWlXzHdunWTmv/zxo0bJ8dYuHCh2WOoHwx//vlnktt+//13ue3YsWNJbitRooR8CRYrVszkF2K7du00AFq1atWSnVf9ILDUYvLzzz/LfgcPHjS7nyXWVq4CAwO1x48fmzzG8ePHZb/U/E01LfWVK1O/9HV16tTRAGhVq1ZNdtuUKVM0AJqrq6t248YNi+fTKy09e/ZM+YGYkNbK1eXLl+ULqH379maPceDAgQyvXDVt2tTicQ4fPiz7Llu2zOK+I0eO1ICEHzzpJTWVq7S89qtXr57i303TNO3o0aNynPXr1ye5Lat8HjxPP5el99D9+/c1Z2dnDYA2fPjwZLd37NhRA6BVr17dZOVVp35vmaukWmLEc3jz5k350Z7S59zUqVM1IKG79/kfbpY+6xYuXGjVZ+nkyZOtrlxZem7Xrl1r8f1pZOXqjz/+kGN9/fXXZvebN2+e7Pftt9+mS5lSdUH7s2fPsGDBAgAJExb6+Pgkud3HxwetWrUCACxYsEDmi1AFBgZKnjVrVmqKYZF+/D/++CPVF2A6ODigR48eZm+vXr06gISLlZ+/uFCfd8jHxwcdO3Y0e4wBAwYku49OvYhQvQD5ypUrOH36NBwcHBAaGir7qftomoYtW7YAAEJDQ82eH0gchGCK/hgB4OzZsxaPk1adOnWCi4uLydtKly4NT0/PDCmHysfHB61btzZ7u/78mCqTPh1JaGgo8ufPb/E8+ooGO3fuTG1R0yQsLAzx8fEAgN69e5vdr3LlyqhcuXJGFQuA5dcnkPg8u7u7W/xbAYnP89WrV3Hp0iVjCmiA1L72r1y5gr179wIAunTpYvEcZcuWhZ+fHwDLr7Os8nmgatasmdn3kJeXF0qWLGmyTHFxcTLopFOnThYv8Pbx8UHFihUBpP19mNrncN26dTLoIqW/p/5ajouLk9eANTZu3AgAyJUrF1599VWz+/Xq1cvqiT179Ohhdt+MfM3o36EODg7o16+f2f06d+6MPHnyJLmP0VJVufrnn39w7do1AImjBJ+nb7927ZrJwjdo0ADFihUDAAwbNgy1atXC119/jR07diA2NjY1xUpC/4LYsWMHihYtirfeegtLlizBzZs3rT6Gn58f8uXLZ/b2vHnzSo6Ojk5y25EjRwAAVatWtTiUs0CBAjJCRr+Pelvp0qUBJK046blcuXLw9/c3Wbk6dOiQjNBIaaRHmTJlzN5m6TEazVI5AMDX1zdDyqEqWbIkcuUy/zbRnx9TZYqIiACQ8IFpahSM+u+7774DAFy/fj0dHkXK1Nee+mFoSo0aNdK7OElUqlTJ4u368/zw4UM4OjpafJ7btGkj98us59qU1L729ccOJCx/lNLr7NatWwAsP/as8nmgSun5Mfc+PHr0qPy4/vDDD1N8fvTnM62vjdQ+h+rfMzAw0GJZK1SoIPvaUl79vV60aFF5XZkrp/4dnZKs8prRH1tISIjFH7TOzs6oWrVqkvsYLVWVK30OK0u/6tUWLVNzXjk5OWHFihUoW7YsgIQhth999BHq168PHx8ftGzZ0myrlzU+/fRT9OvXDw4ODoiMjMRPP/0kQ04rVqyI0aNHpzhVhLu7u8Xb1S/d58upV2wKFCiQYlkDAgKS3EelV4z04ctAYiVKv61JkyYAEj5I9Mqjvk+uXLmSrPtoiqXHaekxGs3a5zu9y6Gytkx6q48uLi7O4lBpc9I67UVq3b17V3JKrWz+/v7pXZwkLH0BAAlTwqRGZj3XpqT2tZ8ejz2rfB6ostLzY43UPocZUV79vZ7S+xyw/r2eVV4zRn3vGsHm5W/U2dejoqLMNmWrli5diujoaHh5eSXZXq5cORw+fBgrVqzAihUrsHnzZpw5cwaPHj3C2rVrsXbtWkyYMAGrV6+26oWgcnJywsyZMzFixAgsXLgQ//77LyIiIhAbG4sjR47gyJEjmDBhAubNm4dXXnnFpmPbwppmVc3CkiShoaH43//+h+vXr+P48eMoU6aMVLT0ylXhwoVRrFgxnD17Fps3b0anTp1kn0qVKqX45UTGUz9EunTpgk8//TQTS2PfcufObfF2/bkuWrQoli9fbvVxixYtmqZyZQXq62z+/PkptvLpcspngvr8jB8/Hi1atLDqfh4eHulVJIv08jo7O9vU1Ve4cOH0KpJdSuv3rhFsrlz9+eefePTokU33efjwIRYvXoy+ffsmuy137txo164d2rVrByChG3HNmjWYOnUq9u7di71792LQoEFYsmSJrUUFkFCB++KLL/DFF1/g0aNH2L59OxYsWIDffvsNMTEx6N69O86cOZPkGjAj5M2bF9euXbOquVZvQVObT3XPX3fl7e2NU6dOyfVW6n5nz55FWFgYOnbsaPX1VpQ+XF1d4e7ujocPHyIqKipJE35WpH7ZRkZGWvywttS1rv5Kfb4173kPHjywoYTm6V33N27cQJkyZeDomOYlU+2GetnC811FlPT5iYuLy/LPj17e2NhY5MuXz/DvJSDxvW5NK5ktl9FkBfp3aFq/d41gc7eg3sUXGBiIhQsXpvivSJEiSe6XksDAQPTr1w87d+5EtWrVAAArV660uUJnipubG1588UX8+uuvGD9+PADg0aNHWLlyZZqP/Tz9Tbx//37ExcWZ3S8yMlJmdDb1xg8MDJSLNcPCwpJdb6VTr7s6fPgwbt++nWQ7Wfdrxkh6n/727duzVBeUKerCpOp1H6ZYul1tnVa7Gp93+/Ztuf4nrfTn+eHDh9i+fbshx0yLjHyd6Y8dgKyWkdVl5PNTvnx5ODs7A7CP5ycj/p76e/3cuXMWu8Tu3LmTIYMWjHw96N+h58+ft1h5jIuLw/79+5Pcx2g2Va7OnTuHbdu2AQA6duyIbt26pfivc+fOABKuGbp48aLV53JycpJWl6dPn6bq+hVLXnjhBclGfcirXnzxRQAJXafmlqYBgJkzZ0rzpH6f56nXXT1/vZVOve5q0aJFABJetCldb5WTuLq6SlbXjkovL7/8MoCEFpqffvop3c+XFk2aNJFWJ0s/hA4ePIiDBw+avd3X11eutbRUCVu4cGHqCmqC2q3/7bffGnbc1NJfZxnxGitRooSs5/r777/b9BmbWTLy+XF3d5fP+rCwMOzevTvdz5kWLVu2lAFQEydOxNOnTw0/h/58xMfHY968eWb3mzdvXrp3nQHGfi7r36GapuHXX381u9/ixYtx7969JPcxmk2Vq7lz58qT3alTJ6vuo++naRrmzp0r27du3SrrF5kSGxsr1w15enradBHtnTt3sHz5cosvDPVXQXpce9G3b1+5yG/EiBEmh30fPHgQX331FQCgUKFC0jX6PL2Sef36dfz5558Akleu9OuuNE3DlClTAAAVK1a0ONoxp1Gb2M+cOZPu5xs8eLAMff/0009TXIdw+/bt0p2b0QoVKiSDU5YsWYLFixcn2+fRo0d4/fXXUzyWPkR82bJlJp/nY8eOYdSoUWkscaKaNWuiefPmAIDVq1dj9OjRFvc/f/682cqdtWvcWaK/zjLiNQYAn3zyCQDg8ePH6NChg8WunCdPnmDq1KnpusZiSvTn5+zZsxny5f3xxx9L60i3bt0s/l30aYZSu45pWhUqVEgunzl48CAGDRpksYIVGRmJGTNm2HSO9u3byzXMn332mck1J0+dOpVkfb30ZOTncvv27VGwYEEAwFdffWXyh+ClS5fw7rvvAkiofJu6XMkINleugIRRBta2iNSuXVuu31ArVxs3bkTp0qXRuHFjjB8/HuvWrcO+ffuwfft2zJo1Cw0bNpSFNAcMGGDTdRT379/HK6+8gmLFimHEiBH4888/sWvXLuzduxcrV67EoEGD8P777wNIqJS0bdvW6mNby9/fX7oer169iho1amDixInYtWsXduzYgc8//xwNGjRATEwMHBwcMH36dLNTNqgVqXv37iW73ur5/fQaOa+3SqpevXqShw8fji1btuDUqVM4ffo0Tp8+bfivRG9vbyxcuBCOjo548uQJ2rRpgy5duuCPP/5AREQEIiIisGLFCowZMwaVK1dGgwYNcOjQIUPLYIsJEybID4Ju3brh//7v/7Bp0ybs3bsXc+bMQY0aNbB79+5ki4A/74033gCQUBlr3LgxZs6ciX379mHLli0YNWoU6tSpg3z58hk66nDWrFnyIf3555+jTp06mD59Onbu3In9+/djw4YNmDBhApo3b44SJUpYbE1OK/11tmfPHnzzzTc4ePCgvMauXLli+Pm6d+8uU8/s3bsX5cqVwyeffIL169fjwIED2L59O3777TcMHDgQBQsWxJtvvpkuLSLW0p+fyMhIvPPOO9i7d688P/olEkaqX7++VObPnTuHKlWqYNiwYVi9ejX279+P8PBw/P7773j77bdRpEgR9OzZ0/CeElt8//330lX166+/onLlypg8eTK2bduGAwcOICwsDD/99BPat2+PoKAg/PzzzzYd39XVFZMmTQKQ0BBRu3ZtfPvttwgPD0d4eDi+/fZb1KlTB/Hx8XJJSnp25Rr5uezk5ITp06fDwcEB0dHRaNCgAT7//HNs374du3btwsSJE1GjRg1cvXoVAPDdd9/JD2DDWTvb6LZt22TG0kGDBtk0U+nQoUPlvvpCk+oMqJb+dejQQXv06JFN53t+WQlz/woVKmRyOQlrZrvWtKQz8ppbzPHLL79M1cLNzytevLjcx9Q6gpqmab/99luSY//1119pKrum2Tbjtjm2LNxsibUzX1vSpUsXs38Lcws3W2LNTL4bN27UAgICrHpNWvNaMMWI5W80zfLCzUDCArr6Om2urq5mz6W+55//FxQUpP33339Wz9Bu7UKp58+f12rWrGnV89y3b99k93/48KHcbmpVA2tdvnw5ydIh6j9LCzdbktJr/+nTp9rIkSNlHUtL/zw8PLSHDx8muX9Gfh5ER0fLqhLP/7O0cLMl1rxfJ06caHExX/2fs7OzdurUKZsfl5HP4e3bt7UWLVpY9Vpu0qRJsvundeFmd3d3bdWqVbJOcIsWLZLd35rPE11Kf0drP5etNXv27FQt3KzL0Bna1eswLM04boq6v36ckSNHYvXq1Rg+fDjq1KmDIkWKwNXVFa6urggJCUHXrl2xatUq/PXXX0n6ZK0RHByMAwcOYPz48WjZsiVKly4NHx8fODo6ws/PD6Ghofjuu+9w7NixJBcQpoePPvoI+/fvx8CBA1G8eHG4ubnBw8MDZcuWxdtvv43jx4/jtddeS/E4auuVuYvU9euugIRfGnr3DCWaN28evv32W9SqVQt58uSxOEGoUZo2bYozZ87gxx9/RIsWLRAYGAhnZ2e4uroiKCgIzZs3x5dffmn1ayE9NWvWDEeOHMGgQYMQHBwMZ2dnFChQAK1bt8batWsxZswY3L9/HwBkhmNTJk+ejAULFqBRo0bw9vaGm5sbSpcujQ8++AD79++X64SMFBwcjF27dmHJkiXo1q0bihYtCnd3dzg5OcHf3x/16tXDiBEjsHnzZsycOTPZ/dVZuYcPH57qchQqVAi7d+9G//79UaJECZs/v1Ijd+7cGDduHI4ePYoRI0agatWq8PX1Re7cueHl5YXy5cujZ8+emDNnDq5duwY3N7d0L5M5np6e2LFjB95++22ULVs2xTmsjDJs2DCcOXMGn376KerUqQM/Pz84OjrCw8MDpUqVQseOHfHzzz/jypUrKFGiRIaUyZy8efNizZo12LhxI/r27YuSJUvC09MTjo6OyJs3L2rWrIk333wTq1evxvr161N1jo8//hibN29Gu3btkD9/fri4uCA4OBj9+vVDREQEWrVqZdV73QhGfy737t0bx48fl9eYh4cH3NzcULx4cQwcOBD79+/Hhx9+aFDpTXPQtAzo9CaibOPFF1/Exo0b0aBBA2zdujWzi2OYMWPG4LPPPkPJkiVx7NixFOfXIsrO4uLikCdPHjx69AiffPIJvvjii8wukl1J/5/tRJRtXL16VS66r1OnTiaXxlj6AJqPPvqIFSvK8ZYuXSpTIGW393pGYMsVEYnTp0+b7RJ59OgRXnnlFemGOHTokCx0a+9iY2Ph4+ODgIAAnDx5MkdNREo5k6X3+vnz59GwYUNcvnwZBQoUwOXLl/mesBGfLSISAwYMwIMHD9ClSxdUr14defPmRXR0NCIiIjB16lSZPqV///7ZpmIFJCw3ktUneiUyUpkyZdCqVSu0adMG5cuXh4eHByIjI7Fp0yb8/PPPMmLyu+++Y8UqFdhyRUSicePGSRYJN6V9+/aYP39+pl4UTURpk9L0Crly5cLYsWPT/cLv7IqVKyIS+/btw5IlS/Dvv//i8uXLuHnzJjRNQ/78+VGnTh289tprMtkoEdmvlStXYs2aNdixYwdu3LiB27dvw8XFBYUKFULjxo3x5ptvZvm1GLMyVq6IiIiIDMTRgkREREQGYuWKiIiIyECsXBEREREZKF0rV3369EnzCvOUPTk4OMDBwQFjxozJ7KLYlazynrpz5w78/Pzg4OCA8PDwJLdpmoaKFSvCwcEBs2bNyqQSEhFlHrZcEZHNxowZg9u3b+Oll15KNnuzg4MDPv74YwAJs53HxMRkRhGJiDKNzZWr2bNnS6vD+fPn06FI9icnPCeNGzeGg4OD2UWjKee4ePEi/ve//wGA2ZbHLl26oEyZMrh+/TqmTJmSgaUjIsp8bLkisiOzZ8+GpmmZWokfN24cYmNjUa9ePbNrjuXKlQvDhg0DAHz//feyRhkRUU7AyhURWS0qKgpz5swBAPTq1cvivp07d4aTkxNu376N+fPnZ0TxiIiyBFauiMhqv//+Ox48eAAnJyd06dLF4r558+ZFixYtAAAzZ87MiOIREWUJVleuwsLC4ODggL59+8q2okWLyrVG+r+wsDCzx4iKisKoUaNkkUgfHx80atTI6l+1Dx8+xKRJk9CkSRMUKFAAzs7OyJ8/P5o3b45Zs2bh2bNn1j4cs5YsWYJ27dqhcOHCcHFxgZeXF4oVK4aGDRvi008/xe7du2Xf1Dwnz4/2unbtGt5//32UL18eXl5eZp/Du3fvYuzYsahbty78/Pzg4uKCggUL4pVXXsHff/9t1WNLzfOnl1dfb27z5s3JHl96jFw7e/Ysvv/+e7Rt2xYhISFwc3ODm5sbgoOD0bVrV6xdu9bi/Z+/Di42NhYTJkxAjRo1kCdPHuTNmxeNGzfGqlWrktwvOjoa3377LapWrQpvb2/4+PigWbNm2Lhxo9lz6a8D/W8XHx+PX375BfXq1UPevHnh4eGBypUr46uvvkpz95g1owVteQ3b6s8//wSQcA1evnz5Uty/Y8eOAIDw8HBcuHAh1eclIrIrmpU2bdqkAUjx36ZNm+Q+vXv31gBowcHB2rFjx7SQkBCz93vzzTctnn/37t1aoUKFLJ67Vq1a2vXr1619SEk8ffpU69y5c4qPr3r16oY9Jzt37tT8/Pws7q9pmrZq1SrNx8fH4jlat26tRUdHG/786eW19C84ONjm51u/7+jRo5PddvbsWaue1169emlxcXEmjz9r1izZ7+DBg1rt2rXNHuf777/XNE3TLly4oJUvX97kPg4ODtrcuXNNnkt9Haxbt05r0aKF2XOVLVtWu3r1qs3Pl059/TwvNa9hWzx+/FhzdXXVAGiffvqpVfc5fvy4nHfOnDmpOi8Rkb2xunIVExOjHT58WBs7dmySL5LDhw8n+RcTEyP30b8I/P39tZIlS2peXl7aJ598ooWFhWkRERHaL7/8ohUuXFiOt3btWpPnPnTokObh4aEB0PLnz6+NHj1a27Bhg7Z//35t3bp12ptvvqk5OjpqALTatWtrsbGxNj8RU6ZMkXI0aNBAmz17trZ161Zt//792saNG7XJkydrLVq00GrVqmXIc5IvXz6tYMGCmqenp/bxxx9rYWFh2u7du7WZM2dqx48fl/3/+ecfLXfu3BoALSQkRBs3bpwWFham7du3T1uxYoXWq1cvOXeHDh0Mf/4uX76sHT58WKtRo4YGQKtRo0ayx3fixAmbn29LlatTp05pzs7OWtu2bbUffvhB27Bhg7Zv3z5tw4YN2tSpU5NUgEaNGmXy+Grlqnbt2pqjo6P2xhtvaOvXr9ciIiK0GTNmaIGBgRoALVeuXNrhw4e16tWra25ubtoHH3yghYWFaXv27NEmTZqk5cmTRwOgeXl5aTdu3Eh2LrVyVbNmTQ2A1rx5c23JkiVaRESEtmTJEq1Zs2ayT9WqVc1WClNiqXKVmtewLbZu3SrHX758uVX3iY+Plx8GAwYMSNV5iYjsjdWVK536pXXu3DmL+6qtHj4+PtqRI0eS7XPq1Cn5Nfzyyy8nuz0+Pl6rVKmSBkCrXLmydvPmTZPnWrNmjZYrVy4NgDZjxgxbH5bWsGFD+SK29MV3+/btZNtS+5x4enpqBw4cMLtvTEyMVqBAAfmyfvDggcn9pk+fLsfcsGFDktuMev5CQ0M1AFpoaKjFx2ctS5WrmJgYi6078fHxWp8+fTQAmoeHhxYVFZVsH/Vv4uDgoC1ZsiTZPocOHZKKq7+/v+bi4qKFh4cn22/VqlVyrAkTJiS7/fkWzNdff91kufv37y/7/Pjjj2YfnyWWKldpeQ1bY9y4cVL+S5cuWX2/Jk2aaAC0cuXKpeq8RET2JsMuaP/8889Rvnz5ZNtLlCiBdu3aAQC2bt2a7PZVq1bh0KFDAIDffvsNfn5+Jo/fokULdOrUCQBSNSv09evXAQD16tWDo6Oj2f3y5s1r87HNGTlyJCpXrmz29lmzZuHGjRtwdXXF3Llz4e7ubnK/gQMHolatWnIfVUY9f0by8PBAYGCg2dsdHBzw/fffI3fu3Hjw4AE2bNhg8XhdunSR15iqYsWKaNCgAQDg5s2bGD58OGrXrp1sv1atWiE4OBiA6deoqkCBApg4caLJ2yZNmgR/f38AwNSpUy0eJzXS+zV8+fJlyfnz57f6fvq+6v2JiLKzDKlcOTg4oEePHmZvr169OoCEi7ajoqKS3LZs2TIAQOnSpVGpUiWL52nUqBEAYM+ePTZf3K5/ma9YsQK3bt2y6b6p1bNnT4u36489NDQ0xS8z/bHv3LnT5DHS+/lLT3Fxcbh8+TKOHTuGI0eO4MiRI7h69apcUH3w4EGL9+/WrZvZ29TnpGvXrinud/bsWYvn6tKli9lKsKenp4ywO3r0KK5du2bxWLZK79fwzZs3AQDu7u5wdna2+n56Ze7+/fuIjY01vFxERFmN+Z+3BvLz87M4skj9JR0dHQ0fHx/5/4iICADAiRMn4ODgYNX5YmNjcefOHWklsEbv3r2xZcsWnD59GiVKlECHDh3QrFkzNGzYEIULF7b6ONby9PREsWLFLO6jP/Z169ZZ/dj11ovnj5Hez5/R4uLiMH36dMydOxf79++3+KWcUkWiVKlSZm9TX2vW7BcdHW3xXDVr1rR4e61atfDTTz8BAI4cOWKxhc5W6f0avnPnDgDA19fXpvup+9++fdvQx0xElBVlSMuVuV/yUohcicV4vsUkMjIyVed8+PChTfv369cPH330ERwdHXHv3j3MmjULPXr0QFBQEEqUKIF33303xVYLW6hf6qbExcUla8WzxvOPO6OePyPduXMHdevWxVtvvYVdu3al2NqR0vQGll5/6mvPmv1SatFLqYWxQIECkvXKilHS+zXs6uoKIOXn+3nq/m5ubqk+PxGRvciQlqu00L/M6tevj59//tnq+xUsWNDmc3355Zd4/fXXMX/+fGzcuBHh4eF4+PAhzpw5g++//x4//PADfvjhBwwePNjmYz8vd+7cFm9Xv8S7dOmCTz/9NFXnycjnzyhvv/029u7dCwBo164d+vXrh0qVKiF//vxwdXWVFrgiRYrg0qVL0DQt08r6vJRaB9O7rOn5GtZbMqOioqBpmtUtoXol0snJKcUfFURE2UGWr1zly5cPN27cwM2bN1GhQoV0P19wcDA++ugjfPTRR4iLi8Pu3buxaNEi/O9//8Pjx4/xxhtvoHbt2qhatWq6lsPV1RXu7u54+PAhoqKiUv3YM/r5S6v79+/jjz/+AAD06NHD4gSzd+/ezahiWe3GjRsWb1dbEo0cHKFKr9ewXrmKj4/HvXv3rK4o6X8nc4MpiIiyG5u7Ba39tWoU/Qvg5MmTGT7Ds5OTE+rXr49JkyZhwYIFABJaHhYvXpxkv/R6TvTHvn379lR30xn1/GXU3/3UqVOIi4sDYPlC9BMnTiAmJiZDymSLPXv2WH17RlR2rX0NW6NixYqST548afX99H3V+xMRZWc2V6706y4A4MmTJ4YWxpSXX35Z8rfffpvu5zPnhRdekPz8BdTp9Zzoj/3BgwdyEXRqjwGk7fnTH2N6/82fPn0q2VKF0pYuzoy0aNEis9ckPXjwQJaPKVeuXIZf2G3pNWyNhg0bSk6pEqm7f/8+Tpw4kez+RETZmc2VK/UL4cyZM4YWxpSOHTuibNmyAIBp06aluADskSNHsGLFCpvPM2/evCRf7M/7559/JBctWjTJben1nAwePFi6Uj799FOsWbPG4v7bt2/Hli1bkmwz6vnTH+PZs2fT9bqhEiVKSCvZb7/9ZnKflStXYsqUKelWhrS4fv06RowYYfK2d955R7oFhwwZYvi50/IatkZQUJDM92Xt+oQRERHyemHliohyCpuvuapatSpcXV3x+PFjfPrpp3B0dERISIiMpipUqJChI4Jy586NP/74A/Xq1UNMTAwGDBiARYsWoUePHihdujScnJwQGRmJ/fv3Y+XKldixYwdGjBiBtm3b2nSeV199Fe+++y46dOiAevXqoXjx4nB1dcWNGzewfv16TJs2DUDCFAq9evVKct/0ek68vb2xcOFCtGzZEk+ePEGbNm3QsWNHdOzYEcWLFweQsPDz3r17sWTJEhw6dAhTpkyR+aqMfP7q1auHWbNmITIyEu+88w569eqFPHnyAEjoetK/dNMqX758aNWqFVatWoXVq1ejRYsWGDRoEIoUKYLIyEj89ddfmD17NooVK4aoqCiZeymrqFGjBqZNm4Zz585h8ODBCAoKwqVLlzBt2jSsW7cOQMLrxYhBEc9Ly2vYWq1bt8bUqVPx77//WnVRu77gta+vL+rWrZuqcxIR2Z3UTOs+cuRIs4vCmluk2BJrlo85ePCgVrJkyRQXpQWgffbZZzY/JmuO6+Pjo61bty5DnhPVxo0btYCAAKvKaG5x3LQ+f9HR0VqxYsVM7m/0ws0XL17UihQpYrZ8RYoU0f777z8tODhYA6D17t072TGsXZJo9OjRsp8llv5uzy/c3Lx5c7NlL1OmjHblypUUnp3UlSOtr2Fr7Ny5U461efPmFPcvWrSoBkAbNGhQqs9JRGRvUjVa8JtvvkHJkiXx22+/4b///sO9e/fSfUbvSpUq4ejRo1iwYAGWLFmCvXv34ubNm4iPj0e+fPlQunRpNGjQAO3bt0e1atVsPv7x48exfv16bNy4ESdPnsSNGzdw7949eHl5oXTp0mjRogWGDBlidh6j9HxOmjZtijNnzmDWrFlYuXIlDh48iNu3byNXrlzw9/dH2bJlERoaio4dO6J06dImj5HW58/T0xM7duzA119/jX/++QcXLlxIt7mwgoKCsG/fPowbNw7Lli3DhQsX4OrqipCQELRr1w5vv/22zRNZZhRnZ2esWbMG//vf//Dbb7/h+PHjiI2NRfHixdG1a1e888476TbXU1pfw9aoU6cOqlWrhn379mH+/PlJWkmft3PnTpw7dw4A8MYbb6T6nERE9sZB07LQJEFEdigsLAxNmjQBAGzatAmNGzfO3AKls99//x3du3eHj48PLl68CC8vL5P7DRgwADNnzkSzZs2SXO9FRJTdZdjCzUSUPXTp0gXly5dHVFQUfvzxR5P7XLx4UQYkfPbZZxlZPCKiTMfKFRHZJFeuXBg/fjwA4Pvvvzc539jXX3+NuLg4dOzYkReyE1GOk+VnaCeirKdly5aYMmUKbt26hfPnzyeZEFXTNAQHB2P06NHo169fJpaSiChzsHJFRKny1ltvmdzu4OCADz74IINLQ0SUdbBbkIiIiMhAHC1IREREZCC2XBEREREZiJUrIiIiIgOxckVERERkIFauiIiIiAyUqZWr8+fPw8HBAQ4ODpg9e3ZmFgVjxoyRshARERGlVporV3Fxcfj999/Ru3dvlC1bFvny5YOTkxP8/PxQvXp1DBkyBBs2bEB8fLwR5aUsZuzYsVIp9fLySpfFnJ89e4b58+ejdevWCAgIgLOzMwICAtCkSRNMnz4dT58+Nfyc9qBPnz7y3D//z9HREXnz5kXdunUxatQoXL161bDzapqGRYsWoV27dggKCoKrqyvc3d1RrFgxdOvWDevWrTPsXPbs+PHj+PzzzxEaGooiRYrAzc0Nnp6eCA4ORtu2bTFhwgRcv3491cdXfxBa+2/MmDHGPcAsztz7w9XVFQUKFEDp0qXRvn17fPnll9i3b1+6lUPTNPz111/o3LkzihYtCjc3N+TNmxdly5ZFr169MGvWLDx79izdzk+ZREuDpUuXasWKFdMApPivVKlS2sqVK5Pc/9y5c3L7rFmz0lKUNBs9erSUhaxXqlSpJH/nuXPnGnr8q1evanXq1LH42qpRo4Z2/fp1Q89rD3r37m3Vew+A5uXlpS1btizN54yKitIaN26c4vm6du2qPXnyxIBHaX/u3r2r9enTR8udO3eKz5Ojo6M2ePBg7fbt2zafR/3MsvbfggUL0uERZ022vD8AaDVr1tT+/fdfQ8tw4cIFrUGDBime++7du4aelzJfque5+vrrr/Hxxx9Dv/uLL76IV155BeXKlYOPjw/u3LmDEydOYMWKFVi/fj3i4+NRuXJlHDhwQI5x/vx5FC1aFAAwa9Ys9OnTJzVFoUwSHh4u68Z5enoiJiYGzZo1wz///GPI8R89eoT69etj//79ABJeY4MHD0bRokVx+/ZtLF68GDNmzEB8fDxq1KiBbdu2wcXFxZBz24M+ffpgzpw5AIB169ahYMGCcltcXBwuX76MxYsXY+7cudA0Dc7Ozjh48CDKlCmT6nO2atUKa9asAQAULVoU7733HipWrIi4uDjs3bsX48aNw61btwAAb7zxBn766ac0PEL7c/78ebRs2RLHjx8HAPj7+6NHjx4IDQ1FYGAgHBwccPXqVYSFheGvv/7ClStXAABLlixBu3btbDpXZGQkIiMjLe7z7NkzNGrUCPfv34e3tzeuX78ONze3VD02e2Pu/REfH4+oqChcv34du3btwtKlS3H27FkACetmfvLJJ4YsNn7p0iWEhobi3LlzyJUrF7p164Z27dohJCQEDx8+xIULF7Bt2zYsWbIEp06dgo+PT5rPSVlIampkv/32m9S4/f39U6ztHzp0SGvatKlWuXLlJNuzUssV2W7IkCEaAM3Pz08bN26cBkDLlSuXdvnyZUOOP378eHl99O3bV4uPj0+2z6+//ir7fP/994ac116ov8zPnTtndr9Ro0bJfoMHD071+SIiIuQ4xYoV0+7fv59snwsXLmg+Pj7yWoiMjEz1+ezNw4cPtQoVKiR5zZp6jnRPnjzRJk2apHl4eGhLlixJlzKtXr1aytO/f/90OUdWZe3749mzZ9qvv/6qubu7y/4//fRTms4dHx+vNWrUSFqNN23aZHbfuLg4k59tZN9srlxduXJF8/Dw0ABo7u7u2n///WfV/Z49e5asy4iVK/v15MkTLW/evBoA7Y033tCuXbsm3SDjxo0z5Bz6F5WHh4cWFRVldr/69etrALQCBQpoz549M+Tc9sDaL4/o6GjNwcFBA6BVrVo11eebPHmynO+HH34wu9/w4cNlvxUrVqT6fPZm2LBh8rj79Olj9f2OHDmiRUREpEuZunXrJmXavHlzupwjq7L2/aHbunWr5ujoqAHQXF1dtWvXrqX63HPnzpVzz549O9XHIftl8wXtEydOxIMHDwAAn332GcqVK2fV/XLlyoVevXqluN/69evRtm1bBAQEwMXFBUWLFsWQIUNw+fLlFO8bGxuLqVOnokmTJvD395cLn1u1aoV58+ZZvKje2tGCsbGxmD59Olq3bo1ChQrBxcUF+fPnR/Xq1fHWW29h69at0lVq7vH16tVLLmz09vZG5cqVMXLkSFy7ds3iua9evYoPPvgA1apVQ548eeTxVaxYEd27d8fs2bNx//59y0+SQVasWIE7d+4AAHr16oWAgAA0bdoUAPDbb7+l+fiPHj3CkSNHAAB169ZFnjx5zO7bokULAMCNGzewdevWZLfrF7aGhIQAAK5fv453330XpUqVgru7OwoVKoQuXbrgv//+S3K/8+fPY+jQoShVqhTc3NxQoEAB9OzZE2fOnEnz48tInp6eyJcvHwDg8ePHqT5ObGys5GLFipndr3jx4pKfPHmS7PbGjRvDwcEBjRs3BgCcPn0agwcPRrFixeDm5oaQkBD0798fFy5cSHK/I0eOoG/fvihWrBhcXV0RFBSEIUOGpNg1lhFu3bqF6dOnAwACAgLwww8/WH3f8uXLo3r16oaX6f79+1i2bBmAhC7chg0bmtwvp78/dA0aNMDw4cMBJLxPJk6cmOpj/fjjjwASnvfXXnstVceYPXu2fCedP38esbGxmDBhAmrUqIE8efIgb968aNy4MVatWpXkftHR0fj2229RtWpVeHt7w8fHB82aNcPGjRtT/XgoFWypicXHx2v+/v7SmnDv3r001eyeb7l6//33zV7w5+/vrx09etTssc6fP6+VLVvW4kWDDRo0MHvhqDUXtO/fv18rWrRoihcnmvqVFBMTo7Vv397i/Tw9Pc3+0t+yZYvm7e2d4rlN3X/Tpk1ye+/evc0+Plu8/PLLGgCtePHism3OnDlynr1796Z4DH3f4ODgZLdduXJFbu/Zs6fF40yfPl32/eyzz5Ldrv+CDQ4O1g4cOKAFBASYfO7c3d21rVu3apqmaRs3btTy5Mljcj9fX1/tyJEjKT6+9JaalquXXnrJ7H6W/h6apmnLli2zueXq0KFDyW4PDQ3VAGihoaHa+vXrNS8vL5PPc/78+bVjx45pmqZpCxYs0FxcXEzuFxwcrF25csVseTLClClTpDyffPKJIccMDg5O8TPJkhkzZsj9R40aZXa/nP7+UF26dEnLlSuXBkArWbKkyX3016+54164cEFuf++992T748ePtTNnzmiXLl3S4uLiUizLrFmz5DgHDx7UateubfZzX78k4sKFC1r58uVN7uPg4GD4gCMyz6Z37ZEjR+QP1aJFizSfXK1c1atXTz5wFyxYoEVERGgbNmzQXnvtNdmnTp06Jo8THR2dZNRiu3bttOXLl2sRERHaokWLkrwZ6tatqz19+jTZMVKqXP3333+ap6en7NO+fXvtjz/+0Pbs2aOFh4drc+bM0Xr16qV5eHgke8M9ffpUa9KkibzAu3fvri1atEiLiIjQdu7cqU2ePFkrUqSIBkBzdnZO1kXw+PFjrWDBghqQ0H8/cuRIbc2aNdrevXu18PBw7Y8//tCGDRumBQUFZUjl6ubNm5qTk1OyD+3o6Gi5buHtt99O8TiWvsyjoqLk9jZt2lg8jnptVteuXZPdrn/I+vv7a0WLFtXy5s2rffXVV9r27du18PBwbcyYMZqzs7MGQAsJCdFOnTqleXt7a4ULF9YmT56shYeHa9u2bdOGDx8ulZTatWun+PjSm7VfHmPGjJH9LF1LklLl6vHjx1pISIhUqmNiYpLtc+nSJc3X11fea6bo78eSJUtqvr6+WlBQkDZlyhRt165d2tatW7Vhw4bJ81y/fn1t9+7dmqOjo1a2bFltxowZ2u7du7VNmzZpr776qsW/e0bq1KmTlCU8PNyQY6a1cqVf8wNAO336tNn9cvr743nlypWT+5nqGkypcvXnn3/K7X///bd24sQJrWPHjvIcAgk/pDt37myxEqpWrmrXrq05Ojpqb7zxhrZ+/XotIiJCmzFjhhYYGKgBCdc3Hj58WKtevbrm5uamffDBB1pYWJi2Z88ebdKkSVIR9vLy0m7cuGH1c0GpZ9O7dv78+fLH/uijj9J8crVyBUAbOHCgyQv7BgwYIPvs27cv2e3vvvuuxV+N8fHxWs+ePWWfqVOnJtsnpcpV1apV5UW8cOFCs4/p1q1b2sOHD5Ns++677zQAmpOTk7Z69WqT97tz54784mjQoEGS2zZu3Chls3QNS1xcnMnWRKMrV+q1NydPnkxyW/fu3TUgodUhpV9nKX2Z6x8cfn5+Fof1t23bNknl+Xnqh6yfn5/JL5qffvpJ9vH399dKlixp8mLs9957z+JrMSOpj2vdunXa4cOH5d/+/fu1FStWaP369ZNf4vXr19ceP35s9ngp/T00TdO2b98u19oVL15c+/nnn7Vt27ZpmzZt0r777jstf/788iV8/Phxk8dQv5yseZ79/f21+vXraw8ePEi2X+fOnTUgYUqDzLx4vmTJkvL5YOk5tkVaKlfnz59PUkG1JCe8P2ypXPXq1Uvut2XLlmS3p1S5Un/MTJo0KcmF8s//c3Fx0f7880+T5VArVw4ODiYHPRw6dEiudfX399dcXFxMVu5XrVolx5owYYLVzwWlnk3vWvVLdfLkyWk+uVq5CgwMNPuhdPz4cbPnffz4sYxOKleunMlWKU3TtHv37mn58uWT/Z5nqXK1du1auc2aFhlVbGysVBKGDx9ucV91ZM+pU6dku1qpTU1XrNGVq+rVq2sAtFq1aiW7TX0Tp3Qxc0pf5oMHD5Z9vvrqK5P7bN26VSoPALQKFSok20f9kJ02bZrJ4zx8+FBzdXWV/dauXWtyv7Nnzxr6HkgLa+fxKViwoDZx4kTt0aNHFo9nTeVK0xK6HkaMGCGtl+o/T09P7bPPPtNu3rxp9v7ql9OaNWtM7qN+Njg4OJi9JODff/+V/YyYxyu19NY6X19fw46ZlsrV559/LvedPn26xX1zwvvDlsrV22+/bfE1lVLlaujQoUkqT0DCyNH//vtPe/LkiXbp0iXtq6++kpYsFxcX7cCBA8mOo1auLLXMquX54IMPzO6nv57at29v3RNBaWLTBe3R0dGSPTw8bLlrijp16mR2jqLSpUvD09MTAGQ+Et3evXsRFRUFIOHCzNy5c5s8hre3N7p06QIAOHr0aIoXj6vUCwb1Cx6ttXv3bjmXfn5zGjVqJHnnzp2SAwMDJc+aNcum8wMJFxBrCRXpNC8zdPToUezduxcATA5QaN68OfLnzw8AmDt3rsVj6WU6f/68yds/+OADeHt7AwA+/vhjDB8+HKdOnUJcXByuX7+On376Ca1atYKmaXB0dASQcCG8OQ4ODmb/Bm5ubihZsiQAwNfXF82bNze5X9GiReHl5QUg+Wsxq7p69SpmzZqFtWvXWtwvpb+Hvs/ixYuxePFixMXFJbs9JiYGv//+e7KLbE3x8fHBSy+9ZPK2kJAQ+dtXqlQJZcuWNblf5cqVJWfm30P/bDTyc/H8+fPyN7HVvHnzAACurq4pfu7ocur743n6dw2Q9DtPFxYWJn8XfRCASh/wBSQM6HjzzTfx66+/oly5cnB2dkbhwoXx4YcfymfxkydP8PHHH1ssU7du3czeVqlSJcldu3ZNcT97/bvYG5sqV/qbBkj6AjJCShMb+vr6Akj+YtdHlAFA7dq1LR5DvV29X0r0SSyLFCmC4OBgq+8HABEREZLr1q1rcWkK9U2tLovRoEEDGZ01bNgw1KpVC19//TV27NiRZARXRtAn5XN0dDT5hnd0dJQ3+PLly3Hv3r1Unys4OBiLFi2Cl5cXNE3DpEmTUKpUKTg7OyMwMBBvvfUWoqOj8c0338DV1RVA0tfo8/z8/JA3b16zt+uT+JUoUcLiqFF9P1MfvJnl3Llz8oGvaRri4+Nx+/ZtrFmzBqGhoTh06BA6dOggo5hSIz4+Hl27dsWIESNw4cIF9O/fH/v27cOjR48QExODbdu24eWXX8axY8fQp08fjBgxwuLxSpYsafF51keIlipVyuw+6sSLmfn30F93Rn8upkZ4eDhOnjwJAHjllVcsjrRVZef3hy3UcusVfFvon0VAQqV07NixJvfr3r07atSoAQBYs2aNxc9Ka98D1uxnr38Xe2NT5crPz0/yjRs3DC2Iu7u7xdtz5Uoo6vNrMOnTAQBAgQIFLB4jICDA5P1Sos84rbYgWSu1w8TVNfqcnJywYsUK+fW+Z88efPTRR6hfvz58fHzQsmVLLFiwIN3Xp4qPj8f8+fMBJLRQ+fv7m9xPb9F6/Pgx/vzzzzSds3nz5jhw4AD69+8v0wno6tSpg9WrV+PNN99ETEwMgMRKuCnWvsZS+1rMShwcHJA3b160aNECGzduRMOGDaFpGoYPH44TJ06k6phTp07FokWLACRMXTJjxgxUrVoVrq6u8PDwQP369bFs2TK8+uqrAIAJEyZYbMEy4u+h7wNk7t9D/2y8d++eyeknMpI6FYot0wDkpPeHJfrnPQCLlU1z1B94derUsTjzut5yGx8fLz0Cplj7HrBmP3v9u9gbmypXahN8ei50mVopzVGVmuZ1W45vivpCDgsLw+HDh636N2TIkCTHKVeuHA4fPowlS5agX79+MpfQo0ePsHbtWvTs2RO1a9dO1zl/Nm7cKMt1rF692mwLnNpCaMScV8WKFcOMGTNw8+ZNXL16FSdOnMC9e/ewc+dOtGzZEgcPHpR9rZ13LSfJnTs33nnnHQDA06dPU/03mTlzJoCEL48PPvjA7H5fffWV5BkzZqTqXPZG/2yMj49PssRXRouNjcUff/wBIOHHprluVzJP76kALLcEmRMUFCS5cOHCVu+bFeZrI+M42rJzuXLl4Ofnh1u3bmHr1q2yXlVmUn9ZXL9+3eKbQW1ts+UXif6r9OrVqzaXT21tcXZ2RoUKFWw+hi537txo166drEF27do1rFmzBlOnTsXevXuxd+9eDBo0CEuWLEn1OSzRuwRtsX37dpw9e9bipJPWcnBwQGBgYLIWxG3btklOqWs4p1K73Q8fPpyqYxw7dgxAwueApTUcCxcujAIFCuDGjRuyxl52FxoaisWLFwNIuEYzs16HK1eulFb5nj17mr0GlUy7dOmStOyWLl3abOu8JeXLl5ecUiuRert+3ShlDza1XDk4OMjiyg8ePMgSv0rVysquXbss7rt7926T90tJtWrVAAAXL15MNmt0SqpWrSrZqAWNdYGBgejXrx927twpZVy5cqXFi7pTKyYmRiptL7zwAhYuXGjxn/7a0DQtxQvb02rBggUAEq5vaNu2bbqey149ffpUsqkL0a2hf/irxzJHP0dO+cLo1q2bLIg8Y8aMTLv2KrVdgpTghx9+kJU82rdvn6pj1KxZU14LKc1Wr95eqFChVJ2Psiabl78ZNmyY9OuOGjXK6l+m8fHxMoLFSNWrV5c+7Tlz5pj9pRAdHS3X/5QrV86m66fUL2xbl0Ro0KCBtJL9/PPP6bI8jZOTE0JDQwEkfPHpoyeNtHjxYrkObMiQIejWrZvFf/3795clPdKzcrVo0SLpFuzRowdXljdjz549ktWuCFsULVoUQMJgEEuvsSNHjkjriX6f7M7Pzw8DBw4EkNCiPGzYMKvv+99//1m83sZat2/fxurVqwEkdFOql3FQyrZt24ZJkyYBSLgo3Za/ocrd3V2W5IqIiMClS5dM7hcfHy/LE7m7u6fLEkiUeWyuXBUqVEhGHD148AChoaHYvHmzxfscPXoUL730Er777rvUldICFxcXDBgwAEDCh9Rnn32WbB9N0/DWW2/JhYpvvfWWTed48cUX5YU/ZcoU/P7772b3vXPnTpKWI1dXV7z77rsAErotu3XrZvFXbXR0dLIRXVu3bsXp06fN3ic2Nlb+Bp6ensmassPCwuR6KL3l0Vb6L2J3d3e0bNnSqvt06tQJQMKvs+3btye7XS+TqeHMuosXL5q9bdeuXfK3z5s3b5JrfSjR3bt38fXXX8v/t2rVyuR+Kf099B8ZT548wTvvvGPyGsbHjx9j6NCh8v9t2rRJQ8nty9dffy3X/M2YMQMDBw6UgRamxMXFYcqUKahTp47JL+CQkBCr1jvVLVy4UFoM2Wplvfj4eMyePRsvvfSStMpOnjzZ7AApfW1Mfc0/U/RrEp89e4Y33njDZGvvl19+KS1Xffv2hbOzswGPhrKKVLXZ9+3bF5cvX8aoUaMQGRmJxo0bo3nz5njllVdQtmxZ+Pj44M6dOzh58iRWrVqFtWvX4tmzZ+n2S2rUqFH4+++/cfbsWXzxxRc4cuQI+vXrh4IFC+LcuXP48ccfERYWBiBhOoTXX3/d5nPMnTsXtWrVQkxMDLp3745FixahW7duKFasGJ49e4bTp09j/fr1WLx4MQ4fPpzkC2rkyJHYuHEjNm7ciDVr1qBcuXIYPHgw6tatCx8fH0RHR+PEiRMICwvD0qVL4erqmqQCuHHjRnzxxRdo2LAhWrdujUqVKsHf3x+PHj3CyZMn8fPPP8sAgwEDBhjeFXPx4kV5/lq2bJniaCFdx44d8eGHHwJIqJzVr1/f5nO3bt0aXl5e6NGjBypXrgwPDw9cuXIFy5cvx+zZs/H06VO4uLhgwYIFMr9WTnTy5MkkX+SapiEqKgq7du3ClClTpJLaoEEDvPLKK6k6xzvvvIOZM2ciMjISs2bNwqlTpzB48GCUKVMGz549w/79+/HDDz/g6NGjAICyZcumujJvj9zd3bFixQq0bNkSJ0+exIwZM7B8+XL07NkToaGhCAwMhKZpuHbtGrZs2YK//vrL4o8HW+k/gHLnzo2ePXsadtzsQH1/xMfH4969e7h+/Tp27dqFJUuWyNxPuXLlwujRo1P1HaGqVasW3njjDUydOhUrV65EaGgohg0bhuLFiyMyMhJz586VyxmCgoIwZsyYNJ2PsqC0zED6119/yVpjKf0rX768tm7duiT3f37hZkv02WXNzTB+7tw5rUyZMhbLUL9+/TQt3BwREaEFBQWl+FhNzdr78OHDJOskWvpXtGhRs2Wz9K9Dhw4mZ+FO6wztY8eOlftbWvrHlEqVKmkANB8fn2Qz8OvHtDQjuLlFSPV/hQsX1jZs2GCxDOrCtJaoCwpbktJrMaNYO0O7/q9JkyZmX/+aZt3fw9rFy6tUqaKdP3/e5DGMfp71c44ePdrifhnl9u3b2quvvppk5QBz/5ycnLShQ4dqUVFRyY5jywzt6ioWrVq1sqm8fH8k/KtVq5YWFhaW4nFTmqFd9/Tp0xQ/80uUKGF2mSh1hnZL57Hmu0t9PlL6O5Mx0tTE0aFDB7Rp0waLFy/GmjVrsGfPHkRGRiI6Ohre3t4ICQlBnTp10LFjRzRp0iRVUxlYKyQkBAcPHsQvv/yCRYsW4ciRI7h//z7y5s2LqlWromfPnujRo0eSOUFsVb16dZw4cQIzZszA0qVLceTIEdy9exf58uVDoUKF0KBBA3Tr1s1kt4qbmxvmzJmDoUOHYubMmdiyZQsuX76MBw8ewNPTEyEhIahevTpatmyZrCtl5MiRqF27NtavX4+dO3fi6tWrMmw3ICAAtWvXxmuvvWa2uyet9GumXFxc0Lp1a5vu27FjRxw6dAhRUVFYvnw5OnfubNP9v/vuO6xYsQLbt2/H1atXERUVhXz58qFMmTJo3749+vXrl2TyVUrk6emJwMBA1KxZE927d0fr1q3T/B6sUqUKDh8+jDlz5mDZsmU4dOgQ7ty5AwcHB+TPnx9Vq1ZF586d0bVrVzg5ORn0SOxL3rx58dtvv+HDDz/EH3/8gY0bN+LcuXO4desWcufODT8/P1SuXBlNmzZFjx49DGlx5YXs1nN2dkaePHng4+ODcuXKoWbNmmjdujWqVKli6Hly586NOXPmoHv37pgxYwbCw8Nx8+ZNeHp6onz58ujYsSMGDRqUZNJRyj4cNC2Nkz8RERERkUh9Mw4RERERJcPKFREREZGBWLkiIiIiMhArV0REREQGYuWKiIiIyECsXBEREREZiJUrIiIiIgOxckVERERkIFauiIiIiAzEyhURERGRgVi5IiIiIjIQK1dEREREBmLlioiIiMhArFwRERERGYiVKyIiIiIDsXJFREREZCBWroiIiIgMxMoVERERkYFYuSIiIiIyECtXRERERAZi5YqIiIjIQKxcERERERmIlSsiIiIiA7FyRURERGQgVq6IiIiIDMTKFREREZGBWLkiIiIiMhArV0REREQGYuWKiIiIyECsXBEREREZiJUrIiIiIgOxckVERERkIFauiIiIiAzEyhURERGRgVi5IiIiIjIQK1dEREREBmLlioiIiMhArFwRERERGYiVKyIiIiIDsXJFREREZCBWroiIiIgMxMoVERERkYFYuSIiIiIyECtXRERERAZi5YqIiIjIQI7W7qhpWnqWg4iIiCjVHBwcMrsIgi1XRERERAayuuUqK9UIiYiIiLIqtlwRERERGYiVKyIiIiIDsXJFREREZCBWroiIiIgMxMoVERERkYGsHi1IRERElJWoc3BmpVkN2HJFREREZCBWroiIiIgMxMoVERERkYFYuSIiIiIyECtXRERERAZi5YqIiIjIQKxcERERERmIlSsiIiIiA7FyRURERGQgVq6IiIiIDMTKFREREZGBWLkiIiIiMhArV0REREQGYuWKiIiIyECsXBEREREZiJUrIiIiIgOxckVERERkIFauiIiIiAzEyhURERGRgVi5IiIiIjKQY2YXgIiIKCs6cOCA5LNnz0qOj4+X7O/vLzlPnjySfX19Jfv4+Ej28PAAADg68us3O2PLFREREZGBWHW20uPHj03m+/fvAwDu3r0r26KjoyVrmiZZ/bXj6uoqOV++fJILFy4s2cXFRbKDg0Oqy05ERLbbvn275OXLl0uOioqSXKBAAcn58+eXXKRIEcmFChWSnDdvXgBJW7PM7at+T5B9YcsVERERkYFYuSIiIiIyELsFLVC7+g4fPiz5xIkTkg8ePAgAOHr0qGy7evWqZLUr8OHDh5L9/Pwkv/DCC5LffvttyWoXIbsFiYgyltp1p35mX79+XfLKlSslq5eBODk5mcz6Pt7e3rKtdevWkl999VXJoaGhkvkdYF/YckVERERkIFauiIiIiAyU7bsF1WZac82qly5dkrxz507J69evl7x161bJ+ghBIHGukuDgYNnWoEGDZLcDwL179ySr3YXq3Cic+4SIKGvo2LGj5ICAAMlz5syRfPz4ccmVKlWSXL16dcnqiMIHDx4AAI4dOybb1O+aI0eOSB4+fLjkTp06SVa/J6z5jqOMx5YrIiIiIgOxckVERERkoGzfB6U2k965c0ey2s0XFhYmeceOHZLVEYKPHj0yeXy9eVadCFRdDqFFixaSnZ2dJcfFxUn29PSUrI5OYRMvEVHmUSfxvHHjhmR1KRz1M75r166Sq1SpItnNzU1ybGwsACAyMlK2zZs3T7LaRTh16lTJ+uSjAFC/fn3J+nI6lLWw5YqIiIjIQKxcERERERko23cLqi5cuCB5woQJktURgmpXnLrGkzqhp5eXl2R9ncEnT57IttOnT0uOiYmR3KRJE8nu7u62PwAiIsowalfg5s2bJeuTRwNJv0vU0YXq2rCmlC5dWrI6yeiVK1ckr1q1SvK6deskFy1aVHLJkiUtnocyB1uuiIiIiAzEyhURERGRgXJUt6A6WlDtClRH7r3yyiuS+/TpI7l27dqS1QlAb968CQBYtmyZbFNHfgwbNkzy999/L7lNmzaSc+ViHZeIKKt5+vSpZHWyTnX0n6+vr2T18pCUugVV6qSg6shz9TIVdfJq9TyUNfFbnYiIiMhArFwRERERGShHdQuqzbre3t6SK1asKPn111+X3LJlyxSPExgYCCBp07DarDt27FjJ6giTatWqSVZHIhIRUdagrglYtmxZyatXr5b8008/SVa7AuvVqydZnehT79K7evWqbFuwYIFkdYSgOjK9YcOGktWR7JQ1seWKiIiIyECsXBEREREZKEd1C6rU0Rnqen7BwcGSza3tZ2q7er9ixYpJVkcibtmyRTK7BYmIsjb1e0KdBFqd6HP58uWSv/76a8mlSpWSHBAQIPnhw4cAgDNnzsg2NasjFM1dbmLLSETKHGy5IiIiIjIQK1dEREREBspR3YLqZJ3qRKDnzp2THB4eLtnf31+yOmmc2lQcGxsLADh+/Lhs27Fjh2S1C/HAgQOS1UlH1ebeMmXKSFZHNHKiUSKizKOOKlcnmFa/SzZt2iRZnaja09NT8rNnzwAkvWREvTREHQl47do1yer+atchZU38xiYiIiIyUI5quVJXHldbnw4dOiR56tSpktWLDOvUqSNZbVHSW73UFcu3bdsmuXjx4pJv374tWZ0n5eLFi5LfeecdyfXr15eszpNCREQZK3fu3JIrVKgg+YsvvpCsfpeovRm3bt2S7OrqCgAoX768bFMvUFdbv+bPny9ZbblSW8soa2LLFREREZGBWLkiIiIiMlCO6hZULy5Xu/bUHBMTI/mvv/6SrF6ArnYvRkVFAUjazah25w0dOtTk/f744w/JajPwkSNHJFeqVEkyuwWJiLIe9bO5evXqktXPb/0idiDxe8jd3V22qfNmqd8l7Aq0X2y5IiIiIjIQK1dEREREBspR3YJq06xKnb+kUaNGktVm22PHjkl+/PixZL1LUR0VWLlyZclq07DaLageW13tXF1GJywsTPKdO3ckFylSBADQqlUr2cZ5sIiIMpezs7PJnBJ1JKKmaSb3MbedsiZ+IxMREREZiJUrIiIiIgPl2G5BNavL3KhdbWpX3+nTpyU/evRIsp+fHwAgMDDQprKok9CpWaVORrpkyRLJ+iR0+tI7AFC7dm3JBQoUkKyOPCEioqxH/T5SRwWqI9zVbkF2EWZ9bLkiIiIiMhArV0REREQGylF9RmoTq5rV7rXo6GiT9y1RokT6FcwMdUK6ffv2SV6zZg0AYMyYMbJtyJAhkl9++WXJ6grrRESU9Zj7blKxK9C+sOWKiIiIyECsXBEREREZKMd2C6rU0RlZqem1Tp06koOCgiTrIwMnT54s2/7880/JRYsWlcxuQSKirE39buKE0NkD/4pEREREBmLlioiIiMhAOapbUGWuizArUZuH1W7Btm3bAgB8fHxkmzoJnT7JKABs3rxZ8pUrVySrk6WqxyEioqyHk4jaF7ZcERERERmIlSsiIiIiA7FbEPbXxKqPAOzcubNsUx/DkSNHJC9btkzyhg0bJF+7dk1yy5YtJZcsWVKyk5OTQSUmIiJzOIlo9sOWKyIiIiIDsXJFREREZKAc2y1ojj01vebOndvkdnX0n5ubm+QbN25InjhxouSrV69K7tmzp+RKlSpJdnTkS4WIKL2Zu2Qlq052Taax5YqIiIjIQKxcERERERkoR/X1mBuRkd2aWENCQiS//vrrkqtUqSL522+/lTxv3jzJd+7ckTx+/HjJfn5+BpeSiIgoe2LLFREREZGBclTLlcpcy1V2a8VSL26vX7++5I8//ljynj17JPv6+kpWW7HCw8MBAOXLl5dtRYsWNbSsREQ5kfp9pC57puIF7faFLVdEREREBmLlioiIiMhAOapbMKdc0G6Oh4eH5CZNmkiuUKGC5OjoaMnqvFizZs0CAAQFBcm21q1bS27QoIFkdW4tIiKyzNySN2S/2HJFREREZCBWroiIiIgMlKO6Bc3JzqMFreHv7y85b968km/evCn59u3bAICtW7fKttOnT0t+9OiRZHVUono8Nn0TESVn7pIVsl9suSIiIiIyECtXRERERAbKUd2CbHpNWe7cuSVXrlxZ8g8//AAA+PHHH2Xb0qVLJR87dkzyxIkTJTdt2lSyp6enoWUlIspuzH03cRJR+8KWKyIiIiIDsXJFREREZKAc1S2oUpte2dxqmqurq+Ry5coBAN59913Zpq4zePDgQcnqZKXqiMJ8+fJJDggIkOzk5GRQiYmIsid+N9kXtlwRERERGYiVKyIiIiID5dhuQbKNo2PCS6VUqVKyzcfHR3Lt2rUlFyxYUPKiRYskX7x4UXKlSpUkv/zyy5LVCU2JiHICa0ay5/TJru0NW66IiIiIDMTKFREREZGBcmy3ICcRTbv8+fObzKo7d+5IXr16teQtW7ZIjo2Nldy8eXMAQHBwsGzTuySJiLIjW7sFKetjyxURERGRgVi5IiIiIjJQjupvMdf0yklEjaU+h4MGDZKsji789ddfJX/44YeSz507BwDo27evbCtbtmx6FJOIKEvgurfZD1uuiIiIiAzEyhURERGRgXJUt6CKTa/pR31uCxcuLFnt6itdurTk6dOnS86VK6G+f/fuXdmmjiZ89uyZZDc3N4NKTESUNXAS0eyBLVdEREREBmLlioiIiMhAObZbkDKG3s0HAH5+fpL1yUIBwNPTU7K3tzeApN2CM2fOlKxu79Chg+QyZcoYVGIioqyHXYH2hS1XRERERAbKUS1X5uYS4YWCGc/V1VVy06ZNk92+c+dOydu2bZMcHh4u+cGDB5JffvllyRUqVJDs4eGR9sISEaUjW5e/4fdU1seWKyIiIiIDsXJFREREZKAc1S2oMtctSFlDqVKlJLdr107yjRs3JE+bNk3y4cOHJb/++uuSW7duLZlzmxFRVmTNJSvqMm2U9bHlioiIiMhArFwRERERGSjHdguaG3nBLsKswdfXV3KLFi0kq8vmTJkyRfLJkycl79q1S3KzZs0ku7i4GF5OIqK0sma0INkXtlwRERERGYiVKyIiIiID5ahuQbW5VV2WhV2BWY/69/Hy8pJcqVIlyUOGDJF88eJFyU5OTpL3798vWZ2MtFq1apLr168PgN2GRJT5OIlo9sCWKyIiIiIDsXJFREREZKAc1S2o4ogM+6d27ak5JiZG8rp16yTPmzdPsrp24e3btwEAjRs3lm0+Pj6S1W5GIiKjWfN9xK5A+8KWKyIiIiIDsXJFREREZKAc2y2o4iiM7MXRMfFlXaRIEcnlypWTvGbNGsnHjh0DkHT0YadOnSQHBARIZncyEaUnjhbMHthyRURERGQgVq6IiIiIDJSjugXNrd/E5tbsxdXVVbI66ei4ceMkV6lSRfIff/wBAJg2bZpsU0cfBgYGpkcxiYgAWLe2IL+b7AtbroiIiIgMxMoVERERkYFyVLegOWxuzb7U9QKDgoIk9+zZU3Lx4sUBAGfOnJFtHh4ekpcuXSpZHYlYq1Ytyfnz5zemwESU49jaLcjvrKyPLVdEREREBmLlioiIiMhAObZb0NxoQcoZChUqJLljx44AgHv37sm26OhoyXPmzJF84sQJyUePHpXcoUMHyWr3o9otSUSUEo4WzB7YckVERERkoBzVcsWVx8mSPHnySFZfB/ny5ZN86tQpyXv27JF88+ZNyV27dpVcsWJFyWzFIiJTuKxW9sOWKyIiIiIDsXJFREREZKAc1S2oYjMsWaJ2EQ4dOlSy2s33yy+/SJ48ebLk+Ph4yT4+PpJLlChhdDGJKJvhPFfZA1uuiIiIiAzEyhURERGRgXJUt6C5JQbYxErPU18f3t7ekl988UXJ6ijCkiVLSq5WrZrkyMhIybdv35bs6+sLAChVqpRBJSYie2Xr8jeU9bHlioiIiMhArFwRERERGShHdQuqzHULsumVLPHw8JDcoEEDyeqSN+o+ERERklevXi1Zf/116tRJttWoUUOym5ubQSUmoqzOmm5BdRQyv6eyPrZcERERERmIlSsiIiIiA7FbEGxipbQLDg42ud3V1VXymTNnJO/YsQNA0jUJe/bsKTk0NFSyp6enYeUkoqyNE1xnD2y5IiIiIjIQK1dEREREBsqx3YJEGaFevXqSx44dK3nGjBkAgMWLF8u2U6dOSR48eLDk/v37p2cRiSiT2TqJKC9lyfrYckVERERkIFauiIiIiAzEbkGwuZXSj7Ozs+SKFStKHj58OAAgf/78su3u3buSnZycJF+9elVybGys5AIFCkjmpKNE2Ru/m+wLW66IiIiIDMTKFREREZGBclS3oLkRGWxupYzg6Jj4ditRogQAoE+fPrLt3r17kh89eiR569atksPDwyVXq1ZNcsuWLSX7+fkZU2AiyhDWfDfxe8q+sOWKiIiIyECsXBEREREZiN2CYNMrZR5zaxKqIwe3bNkiWZ10dOfOnZJjYmIkd+zYUXK+fPkk586dO22FJaJ0wUlEsx+2XBEREREZiJUrIiIiIgPlqG5BFUcLUlbm7e0tuVu3bpKfPXsm+bfffpM8evRoyYcOHZL88ccfSy5cuLDh5SQiY1nTLUhZH1uuiIiIiAyUY1uuzOGvA8oK1IvPCxYsKHnAgAEmt//zzz+S1Yvh1Qvd9awurePi4mJQiYkotay5oF3F76msjy1XRERERAZi5YqIiIjIQDmqW5DL35A9UrsI1aVtXn75ZcklS5aUfPXqVclqt+Ds2bMBALGxsbKtTZs2kkuVKmVMgYnIJrbOc0VZH1uuiIiIiAzEyhURERGRgXJUt6DKmhEZRFmZj4+P5Lp165rcZ//+/ZL1EYX//fefbLt27Zrk3r17Sy5WrJhkNzc3yXzfEGUOdgvaF7ZcERERERmIlSsiIiIiA7FbEFxtnLIX9TUcEhIiuWvXrgCAWbNmybbJkydLVrsL33jjDclNmzaV7O7ubmhZici60YLx8fGS+T2V9bHlioiIiMhArFwRERERGSjHdguq2MRK2YnarZAnTx7J7dq1AwAEBwfLtj///FPy+vXrJZ8+fVpy7dq1JbNbkCh9cURu9sCWKyIiIiIDsXJFREREZKAc1S3I5lbKaXLlSvz95OHhAQCoV6+ebPP19ZVctmxZk/nIkSOS1e7CMmXKSK5Ro4ZkddJRIkqZrWsL8lKWrI8tV0REREQGYuWKiIiIyEA5tluQk4hSTqV2FZYvX95kfvr0qeTff/9dsjoBaWBgoGR1XcL69etL1kcrOjrmqI8aIpvY2i1IWR9broiIiIgMxMoVERERkYHYVg82txI9T+06LFGihORy5cpJnjdvnuSzZ89Kfu211yR37twZAFC4cOF0KScRUVbElisiIiIiA7FyRURERGSgHNstqHZ7cLQgUVLq+6N69eqS8+fPL1ntIpwxY4bkpUuXSg4KCgIAdOrUKT2KSZQtWDNaMD4+XjK/p7I+tlwRERERGYiVKyIiIiID5dhuQRWbWInMc3JyklysWDHJ3bt3l6yvWwgknYBUX7tww4YNJo+tdi0WLFgw7YUlsnOcRDR7YMsVERERkYFyVMsVl78hMo66/E3//v0lq++ty5cvAwB+/vln2Xbs2DHJjRo1kqzPiQUAAQEBktWWM6LsyNbvJn5PZX1suSIiIiIyECtXRERERAbKUd2CKrXpVZ0/hIhs5+ho+qPEy8sLQOKF7QBw6NAhyQcOHJB86dIlyYMGDZJcvHhxyewipOzImnmuyL6w5YqIiIjIQKxcERERERkox3YLqjjygih96N2B5rr5fv31V8l//vmn5Dt37kj+9ttvJRcoUCBdykmU1fF7yr6w5YqIiIjIQKxcERERERkoR3ULchJRooylv8/y5Mkj21566SXJzs7OksPDwyV7e3tLvnbtmuTr169LdnFxkVymTBmDSkyU8awZLcjvKfvClisiIiIiA7FyRURERGSgHNUtqOLK40SZw9PTU3KLFi0k16xZU3J0dLTks2fPSl6/fr3kp0+fSn711VcBAOXKlZNtbm5uBpWYKOPwuyl7YMsVERERkYFYuSIiIiIyUI7tFiSizKeuFRgQEGAyq92CBw8elLxr1y7JZ86cAQAMHz5ctqndjPoah0RZHUcLZg9suSIiIiIyECtXRERERAbKsd2C5iYRJaKspXHjxpLVkYbz58+XvHDhQgDAhQsXZNvHH38suUuXLpLNdbsQZQUcLZg9sOWKiIiIyECsXBEREREZKMd2C6rY3EqUdalrCNaqVUuyOklowYIFAQDHjx+XbY6OiR9v6pqEjx8/lly0aFFjC0uURuwWzB7YckVERERkIFauiIiIiAyUo7oF1ebWXLlM1yvZ9EqUdamTjlarVk1yUFAQAODYsWOyTZ04dM+ePZK3bNkiuVGjRpJr164tuUCBAgaVmMgYnETUvrDlioiIiMhArFwRERERGShHdQuqOIkoUfbh7++f5L8AcPfuXcmbNm2SPHfuXMmbN2+W/Prrr0tu06aNZLWL0NzlBERG4WjB7IGfFEREREQGYssVEWVL3t7ektu2bStZfe9PnDhR8qhRoyQfPHhQcp8+fSSrc2dVqVLFqKISCWtartiKlfWx5YqIiIjIQKxcERERERkoR3ULsiuQKOfInTu3ZHWZmy5dukh++vSp5OnTp0uePXu25J9++snk8W/dugUAyJcvX5rLSqTj91T2wJYrIiIiIgOxckVERERkoBzVLahS56vhKAyinGPRokWSP//8c8kxMTGS1c+H/PnzmzzOvHnzAACtWrWSbSVLljSsnJQzcZ6r7IEtV0REREQGYuWKiIiIyEA5tluQIzKIsrfz589L7t69u+Tw8HDJrq6ukr/++mvJjRs3lvzzzz9LnjNnjuQffvgBAHD79m3Zpo5ELFasmGQ3NzfJ/Oyh1ODlK/aFLVdEREREBmLlioiIiMhAOapbUG2OVzObWImyB3VS0Pbt20s+cOCA5BYtWkieNm2a5JCQEMmHDh2S7OzsLDkgIEDynTt3AAAzZsyQbbt375Y8dOhQyY0aNZLs6emZ8gOhHMvcdxO7Be0LW66IiIiIDMTKFREREZGBclS3oIoTtRFlP59++qlktSuwTZs2klesWJHicZ49eyY5Pj5esrqOoN7tqHcPAkBERITk/fv3S65Ro4ZkdguSJfxuyh7YckVERERkIFauiIiIiAzEbkFwUj8ie7dt2zYAwHfffSfb/Pz8JM+aNcum46ldMGq3oLrmYGhoKACgQIECsk2doLRgwYKS1S7Khw8fSs6TJ4/khg0bSnZ0zLEfzTkeuwWzB7ZcERERERmIlSsiIiIiA+Wotmd2BRJlT99//z2ApJOIqhOEql2E1jD3+RAXFyc5d+7cAICKFSvKNjWr1LIsWbJEsru7u2S126dKlSqSfXx8JKvdkpQ9WdMtyC7CrI/vVCIiIiIDsXJFREREZKAc1S2o4tqCRPYtJiZG8tq1awEknaBTnTg0PTx58sTqfStXrix5z549klevXi35+PHjkt955x3JrVq1kly4cGGby0nZA7+n7AtbroiIiIgMxJYr8EJBInt069YtyY8fPwYANGjQQLa5urqm6/lt+ayoWrWq5BEjRkguV66cZHUuroULF0pW58tiy1X2xwvaswe2XBEREREZiJUrIiIiIgPlqG5BtbmV88UQ2bfz588n2xYSEpJh57dlrjw3NzfJ5cuXl+zl5SVZvRj/zp07ktWlcA4fPgwAuHz5smyrU6eOZF9fX6vLRFkTl7/JHljDICIiIjIQK1dEREREBspR3YIqLn9DZN+uX7+ebFtAQEAmlCT1ihQpIvn111+XrI9+BJJ2f65btw5A0vmxunXrJrlJkyYmj612LVLWxu+m7IEtV0REREQGYuWKiIiIyEA5qq2Yza1E2Ye6XIwuX758mVASY6gjmN3d3SX7+PhI1j/DTpw4Ids++ugjya+99prkXr16SVYnK3VycjKmwJShOImofWHLFREREZGBWLkiIiIiMlCO6hZUsYsw53l8N3F0WdRTD8n5/BMmcsz8zpI4SdE3b0t+8Mzg07j4SAzwTd/199LTxo0bk21r0aJFJpQkfakjILt27QoACAoKkm1TpkyRPH/+fMnq2otjx46VXKhQoXQpJxlD/W4ytwYuZX1suSIiIiIyECtXRERERAZityA4CiPbiYuUGDEtcfRU07fXSY6u/4vk09sGAACKZ0DRLLso6Y/2JSQP3G7waYb9K1Gb2MTCjlnP0qVLJW/btk1yhQoVAABVqlTJ4BKlP3UUYWBgIICk3Z/q6L9//03826ojJ+/fvy9ZnZRUnWhU7S7k2qtZD7+n7AvfQUREREQGYuWKiIiIyEA5qltQ7Qpks3f2cmf/DMn/1/ktyQvOJO7j4pKRJUqNxGGBTxMHDsJ/zC7JkaNrZWSBsoTLly9LHjhwoGR1vbxffvkFOYmHR+Jo15dfflly9erVJUdHR0tW1yqcO3euZLUrsGnTpiaP4+pqvyNK7R1HC9ov1jCIiIiIDMTKFREREZGBclS3oDlsbrVP/02vK7nuoP2S87cZJXnN+ncku/zgJrnpnnQuXKpckXRid+LWUgPtd7281FK7Art37y5ZnRhz9OjRkuvUqZMxBcvi1G4+9XPt0KFDkg8ePCj5999/lxwRESH5//7v/yTXrZvwPlO7Iin9cBLR7IEtV0REREQGYuWKiIiIyEA5tltQHS3Iplf79MStreQ/T/4j+YWSXpLV9QI3ZUShyCZPnz6V/PPPP0v+9NNPJUdFRUlu3Lix5E8++SRdy2bv1M+1EiUSJ6WdOHGiZHWU5bp1iZPsDh06VPKYMWMAAK1atZJtnp6ehpaVTDO3Bi6/p7I+tlwRERERGYiVKyIiIiID5ahuQY7CyF6qvfpRZhfBWPcfSLytbK5ZPP1WPVS73A4cOJBu51FH/504cUKyOlrt9OnTktWJK7/++mvJ7777rmR1ElGyTB3pV7NmTcnq81y4cGHJ+/cnjr7NnTs3AODSpUuyzd/fX7K3t7dkZ2dng0pMz+P3lH1hyxURERGRgXLsTz9eKEhZzs3rEs8qm83NchUXfVPy7QeJS+cgd2IrRT5/0xf369TWqiZNmlhZ0PQREhIiec2aNZLLlCmTCaXJvvSWKACoUqWK5AIFCkhW58UqVqwYACA8PFy23bhxQ3LRokUlq6+hvHnzGlNgApD0u4nfU1kfW66IiIiIDMTKFREREZGB2C2IpE2s8fHxmVEcoucES3q46yvJHf7vG8lL/otO8Sgu/qGS35k/FwDwWbMg2RYQECC5T58+qSqpJfo8VuoF7WpXpHpB/fnz5yWr81yp8zKpF12TsQIDA01m3W+//SZ5/vz5kn18fCQ/evRIcvPmzSXnz5/fqGJme+p3kzofI9kX/uWIiIiIDMTKFREREZGBclS3oLnmVnMjB4ky1O0rEk/iguTtHyYuC9Pll8Rlfi52rS45yCtxLODju8clh33dQ3K75iUBAOG/JI4EWzcgcSTerFmzUl10W6hL3mzYsEHy8OHDJS9evNjkPtOmTZPcrVu39CoimaB2G6vzZi1cuFDyyJEjJR85ckTya6+9JrlcuXLpVMLshyME7RdbroiIiIgMxMoVERERkYFyVLegOWx6pSzhaeLbMW/pWpIHTFkh+bNmiaOuTE0KCgCuvoldfS2+TexSW/EgYXvzt76VbRu6zJDcMnEVk3SlLlvTokULyS+++KLkb75JHBX55ZdfSn711VcllyhRQnKNGjUMLyclpU4W2qtXL8mFChWSPHv2bMkxMTGSb99WF3RKFBsbK5lL5ySwZrQgv6eyPrZcERERERmIlSsiIiIiA+XYbkGuLUhZTr2PJR4//rGFHW2RuL5bs0EJI7lKT31Pti3cMkFyyzYZ1C9ohtpd+Mknn0hW1xbs3LmzZLWLcM+ePQAAT0/P9CxijqZ2UamTuXbp0kWyl5eylqVTYse1OkJ01apVkq9evSr5hRdekKyvZ0iJ+N1kX9hyRURERGQgVq6IiIiIDJSjugXVrkBOHEo5TtnKAIAXlE0Hr99U/i9zuwXN6dSpk2R1Ikt1ZNqHH34IAJgyZUpGFYv+PxcXF8nt2rUzuY/ebQsAc+bMkaxOEHv9+nXJHTt2BJC0SzgnrrNnbg1cyvpy3quViIiIKB2xckVERERkoBzVLahSm5jV5tb4+PjMKA5R+nNKeLvb81SNarff2rVrJc+YkTAZ6tdffy3bOHIw6yhevLjkNm3aSL58+bLk8ePHS96xYwcA4PXXXzd5P3UkYnZjzeUr7CLM+thyRURERGQgVq6IiIiIDJRjuwU5WpCynseS7t5N3Orr62rM4c+fBwAcVDb5e9lX15na1ad2E+ndgkuXLpVt6vp3lLl8fHwkN2nSRLK/v7/kn3/+WfK5c+cAALt27ZJtzZo1k5yduwXNYVegfWHLFREREZGBWLkiIiIiMlCO6ha0ZuQFm14pY92Q9Ef7AMndzkyW/N+hoZLLpeFMV7YvAgBsQn3Z9kuNAmk4YuaqXbu2ZL1b8PTp05lVHLJAHZ2dL18+yaGhoZLVrr79+/cDANzc3GTb+f/frQ0AR44ckayuQ1ipUiXJrq4GdadnIl6+Yr/YckVERERkIFauiIiIiAyUo7oFVZycjYyljPS7HiX5SW4Pyfn8vSQndoAkdsu1fL2/ZJdWIyV/sqC95D96BJk4hnlxl5ZI/nD4GgBA0HubZVuX4snuYjdCQkKSbbtw4ULGF4QMUa9evWT5/v37sm3r1q2Sx40bJ7l8+fKSX3vtNckNGjSQrK5/mDt3boNKnLF4+Yp9YcsVERERkYFybMtVTlxhPVu4f0ri9vBzkh9YcdcDp5T/ubVf4o5//gEAnDFzP4+idSTXL+ltZq+dkj4PbCp5Uv1fJJ/eNkCyqQYj75bfSl7zXpjklj0Tf5lXXfyW5GGvNZZcxP2h5IthMyV/M2Gl5MjGCWUJ/7xR4jlNlMNeODrm2I+vHEO9KL1QoUKSK1SoIHnNmjWS9+3bJ3nQoEGSO3ToYPI4Wf17QO1hUZdmY8tV1pe1X1lEREREdoaVKyIiIiID5ah2dWvmDGFzaxZ3Z6/En4aOkbzPxK7JlVbSRslfDt1oamdRbcxayea7BRMvmPUrrZynSOJyLSlfRptXUpNvj0m+2Duxa2/h1LmSf/ngb8n3lKME13lV8gdrf5Dcq3FRAID9z/5DOYU691XJkiUlf/TRR5JLlCghefny5ZJnzkzsHle7EQsXLmx4OY2kfk9xniv7xZYrIiIiIgOxckVERERkoBzVLagyN0qE3YJZXEg3iQuOd7OwY0ZLnKPn4+PHE3Oqj5fYHZK/fOI8V2//pORUH5vIPqjdYh4eiXPGlS1bVnLfvn0lBwYGStaX0AGSLqOzbds2yXq3o7qETv78+dNa7DThHIzZA1uuiIiIiAzEyhURERGRgXJUt6A1ozDY9EpEZD+KFCkieeDAgZIjIyNN7v/jjz9KPnUqYWbh0NBQ2da+fWLXu7+/v+TMWDaH31P2iy1XRERERAZi5YqIiIjIQDmqW1ClNrdytXEiIvunfq6ro/4eP34sWR11uHdvwqTEGzcmTiR88eJFyd27d5dcrlw5yRm1rqW57ynK+thyRURERGQgVq6IiIiIDJRjuwWJiCj7UrvUXF0TV9Ts06eP5KCgIADAggULZNuvv/4qOTY2VrI6ErFMmTKGltUa7Ba0L2y5IiIiIjIQK1dEREREBsqx3YJcW5DIvvn5+SXbdvny5UwoCWV1ahdhQECA5Hbt2gEAfH19Zdv8+fMlFy5cWPKtW7cknzx5UrI6clBdo9CIsnJUu/1iyxURERGRgVi5IiIiIjJQjuoWZHMrUfZhqlvw9OnTmVASslf6hKKtWrWSbWrXnpeXl2R9HUIA+PPPPyU/ffpUst7NCADly5eX7OTklKry8XvKfrHlioiIiMhArFwRERERGShHdQuq1OZWFZtbieyDOuqrSpUqAIADBw7ItiNHjkiuUKFCRhWL7Jy5CULPnj0rec+ePZL//fdfyeoowv79+0tu3Lix5Ny5c6eqXPxusi9suSIiIiIyUI5quTJ3QTsR2bfevXsDSNpyNXz4cMnr16/P6CJRNlO9enXJ7733nuT8+fNLXrt2reRz585JVluxBgwYYPE85uZg5HeWfWHLFREREZGBWLkiIiIiMlCO6hZU8YJ2ouzjrbfeAgD88ccfsm3Dhg2SJ02aJHnYsGGGnJOfFTmLu7u75Dp16kjW58oCAE9PT8mRkZGSHzx4IFlfRicuLk62BQYGmjyGOj8W57myL2y5IiIiIjIQK1dEREREBspR3YJqV6C5ERlEZH8cHRM+yhYuXCjbKlasKPnDDz+UrM6P1a1bt1Sfk58hOZf+egOAqlWrSvbx8ZF87do1ybGxsZIPHToEAIiIiJBtdevWlfz48WPJ6muMo93tCz8diIiIiAzEyhURERGRgXJUt6DK3BIEbG4lsl8hISGSp02bJrlv376Su3fvLnnOnDkm9zd3CQEvLSBLihYtajLfvXtX8u+//w4g6QhWdZLbEiVKSFa7CNXvLL72sj7+hYiIiIgMxMoVERERkYFyVLegOiGb2rzPCdmIsp9evXpJrlChguSBAwdKVteCK1u2rOR69epJfvLkieR79+5J5iUEZC1fX1/JrVu3BpD0tbR8+XLJc+fOlax2BaqvT2dn53QpJxmHLVdEREREBmLlioiIiMhADlom9Ynt379f8q5duyRfvHhRsrluPFuox7hx44bkHTt2SD5x4oTkRo0aSa5Zs6bJ87Mbkch+xcfHSw4PD5e8detWyeooLXO6dOkCAChfvrxs4/pvZIr6/aG//i5duiTbtmzZIvnMmTMmjxEcHCz5hRdekKyOLlS7sFNLPYabm5vkMmXKSG7RooVkb2/vNJ8zLdT3WVbqqmfLFREREZGBWLkiIiIiMlCmdQsuXbpUsroe2N69eyWrTZKpbe5TJ1t7+vSp5AcPHkhWm0E9PDwku7u7mzwmm/uJsh/1syIqKkqyOqorLi5OcsGCBQEk/ZxS8XOCdOr3lz7STx3x9/DhQ8n379+XrH43qcfw9PSU7OrqKvnZs2dpLp/63ah2+TVt2lTyyJEjJfv7+5s8TkZhtyARERFRDsDKFREREZGBMm0S0UKFCklWJ+wLDAyUrDabGtHcZ25dMDWrXZSHDh2S3L9/f8n58uVLc1mIKOs6d+6c5EWLFkmuXr26ZH3EVlbtlqCsTX2tqKPa1e8j9bWldvmp2ejuZ3OjBdVRsWpXJF/zprHlioiIiMhArFwRERERGSjTugUrV64sWV0zSR3RZ6650ehmSHPNs2PGjJGsjpr4+OOPkx2DI4OIso+hQ4ea3N67d2/Jr732WkYVh7I5W7/T0vP7xlw3t/rdqHYLkmlsuSIiIiIyECtXRERERAbKtElEs6pbt25JVrsr1UkFhw0bJrlr164AAD8/v3QvGwEhISGGH/Py5csAknZJU85w/fp1yf/73/8kz549W7L6mjt8+LBkdSJHIsocWXW0LluuiIiIiAxkNy1X6krhZ8+elay2KOnzYpmrvS5fvlxyTEyM5O7du0tW73vw4EHJ3333nWR1eQLKWGprQZ06dSSPHz9ecpUqVSSrLZHDhw+XvHLlSsnqa4gIAAoXLixZnedKfc0RZRZ1+bgDBw5I7tOnj2RTrfxZtZUnLbLqY2LLFREREZGBWLkiIiIiMpDddAvOnTtXstokeuXKFcl6M2ju3Lllm3qRstoVpK5C3qxZM8l58+aV7OiYOA2Y2hW4b9++ZOXz8fGRrK4STsY6cuSIZLXLT/1bTZs2TfKnn34qWb14We1erFChAgDO3ZJVqR9R8fHxJrfrS4aoS4dYIyAgQLI6997gwYMlq+/tlMpnFFu6N9TnJDY2VrJaLnWOIvW9QsZSl6WJi4szud2IrqsWLVpI3rp1q2R1wEWJEiUk6+8L9W9v63slq2K3IBEREVEOwMoVERERkYHspn340aNHkoODgyU3b95ccqdOnQAk7RZUu/MOHTok+fjx48nuBwCtW7eW7OXlJTk6Olry2rVrJesjCmvVqiXbevXqleLjobT78ccfJf/f//2f5IEDB5rcXx1JM2XKFMmcryhrU9/D27Ztk6x2C9etWxcAULRoUdmWHt1fprrg1O4f9XZrqN0YajeN2o2nZlNdOepn444dOyTfu3dPcqVKlSQXL15csvpZSWl34cIFyREREZLVEe763zMt3XLq95dqw4YNJs+vj3I11VVI6YPPLhEREZGBWLkiIiIiMpDddAuqzefe3t6S1S7CfPnyJbufOtJH7TJQm1VdXFwkFypUyOT51XOqx1EnN6WM9dZbb0neu3evZHXpErUZ/JdffpHMEVP2Q+12O3r0qGS1C6ZcuXIAbO+Ws4Z6zLt370r+999/AQDnzp2Tbea69sxRRzOr56lRo4bkqlWrSjY1clEdIahOKKmOji1YsKBk9fOL3YLGUkcFqiPS79y5I1n/7FFfK+r3m6lRsADg7u5u8njq33Dq1KmSu3XrJlnvFuTnXsZhyxURERGRgVi5IiIiIjKQ3bQRqs2ZapPonj17JOujvtRm0idPnqR47L/++kuyuh6T2l2oNvHu3r1bsj4ih83rmSs0NFSy2i3Ypk0byWwSt09qN4k6Mk59T6bn5IHq+dWRi/rIPLX7rWzZspLd3NxMlk/Nt2/flqx2eaojWPPnzy9Zf8zXrl2TbWpX4YMHDyQ/fvzY7GOi9KFOQl2xYkXJ6t9Q7+oz95o1N4JUvQRF7X5UX2fqedTuZHU7ZQy2XBEREREZiJUrIiIiIgPZTT+J2qWjNomrE4PqzfPqvmq3oNqNoNq8ebPkwoULS1ZH+6hN7KdPn5asNwOzWzBrypMnT2YXgZ6jdrOZWxfMXPbw8JCs/m31Lvz06B5Uy6iO7tMnFlZHKTdp0kSyn5+fZLVc6ui+Y8eOST5//rxkdYSk+nmndx3u2rVLtqmTIJt7vavPW1Zafy27UV8Lpkav20p97S1atMjkPmpX9JgxYyS/+OKLaT4/pR5broiIiIgMxMoVERERkYHspltQHR2hNreqk4jqTfJqt6A6esbf31+yOuJPHQFkbg0u9Thqk7w+2ic9Ji8kyo7U95va3e7s7CzZ19fX5H3VbhL1Padu16ndb+rnh6urq2RrusjMjd7Su+DUY6ujGdWRY+olBuqowIsXL0pWP9fUdU3VxxYTE5Pkv0DSSxLUsqrl4ueT/VAvZdm/f7/k+fPnm9x/8ODBktkVmHWw5YqIiIjIQKxcERERERnIbroF1VE6AQEBkitXriy5WbNmAJI23avN4epke8uXL5esjjjct2+f5Ndff12yOtJQ7b7Yvn17svMQUVJqF9Xvv/8u+dKlS5KrVasmuUOHDpLNjcRVu8D0fdR99bX/gKTr/1WpUsXkOa0Z8aueUx+hqHbtqSOPT548KVkdOXj58mXJZ8+elax2HZobLanvo04caW5yXFNdpZQ1qX8rdZ3UUaNGSVYvTSlWrJjkV199NZ1LR6nBlisiIiIiA7FyRURERGQgu+kWVLv61NFGarP64cOHk+2rdkeoazMFBgaa3P7rr79KbtWqleQCBQpIVicR1ScS5MR8ROapo9siIiJMblfXQkst9b1vbg3SyMhIySVLlpSsXjZgDf09r47yUyfxVB+nelmBOlFxUFCQ5Lt370o216WndwGqlyaoj5nsU3h4uORly5ZJVl+3qi+++EKyOvqVsg6+K4mIiIgMxMoVERERkYHssltQHW2jrs2ldwOoo2fUSQrVLsQLFy5IrlChgmR1gtD3339fcrt27SQfOXJEsjpqhxKoXT3qemlqVrtW1b9F165dAQB16tRJvwJShtFH+d64cUO2qe/JokWLSlYn8FWZG4mrdp2p3f+6kJAQyZ6enpLVCYTbtm1rch/1M8TcxKX6OUuVKiXb6tWrJ1l9XavdPupIr/r160veuHGjyXOayilNoEpZl/66UUeTqqPXN2zYIFm9BKZp06aSe/TokZ5FJAOw5YqIiIjIQHbTcqX+UlMv5syfP79k/Vewert6Iak6T4j6q1JdyV6dd0f9ZaFmdZ4tfbkLU7+c7ZHa6jRv3jzJ+vNlTUvUrVu3bDqnekHm6NGjbbovZW36Uh7qPFOqggULSlYHmaSW+j6sUaOGZLW1+8SJE5LVViz1s0R9j6vUgSv6Y1Pnp1KX41Ln0FIvbldbu729vU2eh61R2Yv6/XX9+nUAwNSpU2Wb+pr877//JKstqJMnT07PIpLB2HJFREREZCBWroiIiIgMZDfdguqFry+99JJktSlfb4ZXl7FQL55VV6lX57pp3ry5ZHVuq5YtW0peuXKl5G+++UZy+fLlAQCFChWy9qFkaT///LPk9957z+r7qRcDq10qehO4Jb169ZJs61xDlLXFxsYCSDoIRO0GVt836mtIZUsXmdr9onbXqfNZlS5dWrI6j5A6z5b6Gla7AtWymFouR+1WV7si1a5ydbkctWvd3JI3Kn27NftS1qH+nWfOnAkg6etA7Z7Wu5sBYNq0aZLVgVeU9bHlioiIiMhArFwRERERGchuugXLli0rWW3iV0fbmBp5ozbjq8tUqCN21BXrK1asKHnp0qWS1S7CMWPGSNaXy1HnrrFnffr0kaw+L3qXjTp3kJqPHz8uuXv37jadc9CgQbYV0gS13GqmzKXPPaeOgFJHCBYpUiRDyqGes2bNmpLnzp0rWR2xVa5cOckuLi6S1S44fVSy2r2jzlWljjBWP1fi4uIkq3MaqcdWL4NQP8P00c9q96M6QpJdhFmHOq/imjVrJOsjRw8dOiTb7t27J/mtt96SPHjwYEPKor9e1NHwUVFRktXXu5eXl2QurZR6fOaIiIiIDMTKFREREZGB7KZb0NykfinRJ/kEkk4oqjbNq9vVkRovvvii5ClTpkj+v//7P8ldunQBAHzyySeyTZ0IU50Ezh6oXYEpda999913kj/88EPJ+pInANC4cWPJYWFhktUJHtVM9k8dGbdv3z4AwNWrV2Wb+poICgrKkDKpo1DVZXbUEX9q17bapaOPCAaSdpPoWZ2QWO1qcXd3l9ymTRvJ6oS727Ztk+zr6yvZ3KhHfaSlh4eHyTJx8tHMpX7fbN++XfLff/8tWV8KSf3e6dSpk+SJEycaXi79dam+3tQRvGr3Y4kSJSSzWzD1+MwRERERGYiVKyIiIiID2VefVRqpTebqCBtrmtLNNZvqI+PGjh0r2/RmXwAYP3685CpVqthW4CxEb1bu27evbFNHU6oTQM6aNUvyqlWrTB6vf//+xhaQsoy9e/dKXrZsGYCk3VjqyDl1EuD0pHb/qSMHS5UqJfnmzZuS1bUQ1W7BlNYWVEddqSOca9WqJVkdlah+Dp06dUqyOvmxOnpLvzxCfd7U29XuRHYRZrx///1X8oQJEySrIwP1v5F6+Yh6WUl6XEpy9+5dAMDRo0dlm7repTpaUX0NUeqx5YqIiIjIQKxcERERERko23cLqs3ualP7gwcPJOvrnwHWNYmqowj1tck6d+4s29SJAdX1ytq1aydZbRLOqt2FarOx/vjUNbLUci9atEiyOjLr1Vdflax2HarrCVL2oo5607vD1DUEg4ODbTqeOuGvPnEnYH7Nv5Sor0N1wtvo6GjJ5iY3VT9P9M8Kda1C9T2uvg/UkYP6GqhA0glK1QlN1c8kdS1GvatRfQ7Vx652KamfZezqMZY6IvbHH3+UPG7cOMnq943adfzVV18BANq2bSvb1G5olfq3VUdhq6PdzX2v3b9/X7I+ua06IlbtnlcnrVVfk5R6bLkiIiIiMhArV0REREQGyvbdgmpzbPHixSW3bt1acmBgoGRbR2ro6+vt3LlTts2bN0/yp59+KlkdXafmMmXKSFYnk3vppZckV6hQQbLa3WC0n3/+WfLw4cMl603P6sSi06ZNk6x2XaiTi6pN1uqaWWrXDGUv6vtM7yJUuwrz5MmT4jHUbg+1e0Md1aRO2GhLt6D6mWBuzT+1+9FUVyCQ2HWnHi9v3ryS1feEWj5zXT3qBKTqOqjq8XXq6Ed1bcNr165JVruIOBmkZernlHrpw9q1ayWrI5/VCZHVv6HapVa/fn3J6mteP/6MGTNkm9rFbW7Ep7nXuLq/+lpVX896l7faJa1+v6ivNzIG33FEREREBmLlioiIiMhADlo2n2lOfXhqN4LaZK5Owqc266pNtamlNjerXW4zZ86UrK7xZA2967Jw4cKpLpfalHz79m3J5roS9O4Oa7rzrly5IlltmlYnb1S7XbIK9flU11hU17UsUKCAZHVNRHW9PHZ5WhYTEyNZHVmrTj6qTqiprsWnruOnrgPq7e0NIGm3vhHvX8B8N57eXameU/0sUd8/proTgaSfD+p2dYSkOtJQP6a6r/o8qNlcuextvdP0pI/6U1+T1lA/E9QRou+//75k9XNVXWdQX7dS/Ruqrys1q9SuYPVvqHYbq5+rare0voZn9erVZZs6kl09tr1R359GveeNwJYrIiIiIgOxckVERERkoGzfLWgPrBmdok5ad/369WT3o8ylNsE3aNBAcseOHSWrIy3V/bMbtatLHzn7119/yTZ1pJW6L1FG07v3zF0GoI74a9GiheQ6deqk+px6F7E1IwHNUbu/rMnZGbsFiYiIiHIAtlxlc7Nnz5b8f//3f5LVCzi7desm+ZdffpGc2guzf//9d8lqK05aLsDPCJcvX5aszjmkthqqF1erF6muXLnS5P4q9RfxF198ASBpa5a9XWisXnhrbm439TnVqa0Ebdq0kawvlQMkbdm7efOmZHXZF/W1pc9Vlx7zOakfkeqAj0uXLiUrq/oaVy80VgfTqM+JuuSOOt+eOi+Yenz9Imj1OVHn/lIvXFfn3PLw8DDxyIjsH1uuiIiIiHIAVq6IiIiIDMRuwWxCvTB4yJAhktVuQbXbaeLEiZLVZWko7bZt2yZZnc9M/VvoSpQoIXnhwoWS1Tm0spKIiAjJ3bt3l6x2l6r0OYBGjBgh29SLgdXXpDoXlDpfk9oVp875pOaMYmrOK7UrQp0vyFwXRVbtxiCyR1n1/cSWKyIiIiIDsXJFREREZCB2C9oxtSumc+fOkg8cOCA5JCRE8qJFiyRn1W6n7Ez9u+gj6tRRhmoX2bRp0yQPGDAg/QtngdqdqXY5q13R6vI/48ePl8zXGRGlJ3YLEhEREeUArFwRERERGYjdgnZIn6Rz4MCBsk2dFFRdpkEdgebj45P+hSObWNPlpk40qk7ymp6Tjr733nuSv/vuO5Pn5IhTIsps7BYkIiIiygFYuSIiIiIyELsFszB17Ta1m2bSpEkAknbR6GvVAcAHH3yQ/oUjw6mjCdu3by/5/PnzktW/7ddff23o+ceMGSP5s88+k6yul6eOOFUnAyUiygzsFiQiIiLKAVi5IiIiIjIQuwWzGLULSJ0YVF3TLSAgAEDSkYDqJI5k/y5fviy5Zs2akq9fvy5ZHTmY2olG1dGKffv2layOLN25c6fkMmXKpOo8REQ5CVuuiIiIiAzEyhURERGRgdgtmAWsXbtWcvfu3SVHRUVJfvHFFyXPnTsXQGL3IGVv4eHhkps1ayZZnWhU7bpLaT0/tYu5bt26JvdZv369ZHY5ExHZhi1XRERERAZi5YqIiIjIQFZ3C7L3MO3USUFHjRol+ZtvvjG5/+jRoyV//PHHktNzTTnK2tTRff369ZOsTui5Y8cOi8do2rSp5LCwMMlTp06VPHjw4DSUkogo43ESUSIiIqJsipUrIiIiIgNxtGA6Uyd9VCcF3bZtm2Q/Pz/J+khAAGjRokU6l47smTrSTx1RqL6GevXqJXnp0qUAkq5bWKVKFcl79uyRzK5nIqLUY8sVERERkYFYuSIiIiIyELsF08GGDRskv/rqq5LVLkJ1dNeiRYskFy5cOJ1LR9mF2rXcsGFDyepr6Ny5c5IrVqwIADh+/Lhs27Rpk2ROFkpEZAy2XBEREREZiFetppE+d9XYsWNl25dffpnsdgAYNmyY5PHjx0vmxcOUGg0aNJCsLo+ktpxOmjRJst5ipe7L1ioiIuOx5YqIiIjIQKxcERERERmI/VFptHLlSgDAZ599Jts8PT0lq3MOtWvXLsPKRTlL165dJavdgp9++qnFfYmIyHhsuSIiIiIyECtXRERERAbiPFcG+eabbyR36tRJcokSJTKjOJTD3Lp1S3JgYKBkdbSq7tKlS5I5rxoRkfHYckVERERkIFauiIiIiAzEbkGibKZu3bqSw8PDJdeoUQMAsGfPngwvExFRTsKWKyIiIiIDsXJFREREZCBOIkqUzZQpU0ay2i3IkYFERBmDLVdEREREBmLlioiIiMhA7BYkymb8/PxMbme3IBFRxmDLFREREZGBWLkiIiIiMhC7BYmyGQ8PD5PbCxUqlMElISLKmdhyRURERGQgVq6IiIiIDJQNugUfS7p6cDcAICxstWw7dE3Z1auExDovhkp+oVrJxF2cUlmM/xZL/GBuRCoPYkniSK9Ww98CADQqkA6noWwrICAgs4tARJQjsOWKiIiIyECsXBEREREZyD67Be/slPhV65ckf/z/l1Er1LyDbOtVNbErJHrvVMmvfzFQ8v3CPSTPWT1bctdSNvQRRm6XOG7cfMlNXu8nuZav9YcjIiIi+8SWKyIiIiIDsXJFREREZCA76hY8I2lWpyaSP77SS/KKi9MAAG2CzHXnfSPppzv7JX/Xqa7kbi+Wklz0zGjJtVLoIbwReV75v86SPvwx8ZzNUjsSkYiIiOwGW66IiIiIDGQ/LVe750l8f1Pi5v6rJ0g232JlQt6qEt/+8l3J39b7WvLCbR9JrtXE8rFjom8q/xciyZGtVURERDkKW66IiIiIDMTKFREREZGB7KZbMK5s4nxR6ze/KNm9ineaj+1Uvo7kFngiec+Zi4k7NSlu/QH9fSR6pKVgREREZHfYckVERERkIFauiIiIiAxkN92CTl5Bkis3CrKwZyrcSRzpd1nZ7Jw7t9WHuHIyIvF/SvWRmC8NxSIiIiL7w5YrIiIiIgOxckVERERkILvpFkxPd/avk7wJpSWPrx5i9TGexT0xfcPjqxIP7g6THLb6kORryu6BldpLbtW2muSSXpyNlIiIyB6w5YqIiIjIQKxcERERERnIQdM0LbMLkSnuJC5QOLxKU8nTqv8u+cySrpILpXC4TcMdJDf9K3HC0eKRZyRH+jWX3KFX4tqGAdEnJf+zaLXk/fcLSx6yOLG8k9skjJZkRyGZcv78eZO5TJkyAICAgIAMLhERUc7ClisiIiIiA7FyRURERGSgnNUtGJfY/TbjpUqSB+6oJ/mXQ4kjBweUsqbjLaHbb0aDEonH2+4l+aVfwiUvHVBOsqvZMkZKXD+yhuTmkxJ3GbMr4Zyja7FjkIiIKKthyxURERGRgVi5IiIiIjJQ9u8WVLoCZ7VN7GbrF5Zf8ntrdkv+tkleG09wHwBwanti998517KSm1RPXAfR5k68uJ0SPymU2HX53csJIwojZ7SUbd62HpuIiIjSBVuuiIiIiAzEyhURERGRgbJnt+CdxO60z15sInnM0cTRemM2bZA8uq6tXYEZb8vIxPGFoT8MBQBsfvytbGuU4SUiIiIiU9hyRURERGQgVq6IiIiIDOSY2QUwUtyllQCAIfXbyraZUS9J/mXfUskDypmdxjNLKlQqcaQjnsQBAJ5lUlnIOHGR/0leuXCq5LkLNko+ek+5Q3Adia927iO5R6/Gkosa8tKOkxT530rJC8f/LHla+AW1YJLqDBks+b3ubQAA5fNzwlsiyjnYckVERERkIFauiIiIiAxk992CelcgkNgdOBP9ZduK/6ZJbhNkv10Tz57GpbwT2Y07m0YCAGq1HC/bIqv2lvzF2z9IHuyXeL+HFxNf75M+aiH5k3caS/41YoXkvlatjymlkrRpZC3JLccnrndZtfcXkkf9kDhZrt/Di5JXjkt8HBXeT5isN20T9RIR2Re2XBEREREZyD7nubqzSeLwKk0lT0IXAMDvG+bJtq42/XJPhSsHAABL1+yRTd4tB0puWigtB78vaeVreSS3PfsLAOD0tgGyrXhaTkMZ48ofEtsX7wYA2DvkX9l2YGLinGxWte2Yex/4TJb836GhkhNneTNXvPaSi3fbK3nIvwckT7Sq1UlpARteBQDQdFpj2bbi6m+S27ARi4iyIbZcERERERmIlSsiIiIiA9lRt2BiF9mWkRUkh473kTz+YEJXxruVMvDC9SvzAQCtCveSTZfHH5S8991Kkm0u1ZkZEhuUSOxqxC+nAQDbBrAz0J7cULrdAro9AQDMu7xatvVMQxdy0mNflTztxC7Jg0uZuudRST9UKi95ZK3EckXOaCnZ29aC3V8DABiQv5Vs2v1t4txeh4am1FlJRGR/2HJFREREZCBWroiIiIgMZDfzXMUdmi75rfGXJFccnzjvz9sZ2R2oK5Qwt9YH7wXJptBPOkj+uMIWyZ+3KCjZ3Aolj88tkfzOS29JjqiROAJsd292B9qjAq/8KvnatYT/+gQYdOz8Icr/LZV04oqy2VS34KHE7r+ph10kD5n8omSbuwJV3gnH6Zo49Rxm/rlD8hmlW5CvaiLKLthyRURERGQgVq6IiIiIDGQ33YI7530i+TASuy/8f+4iueIMGKvaGIlrF3STHJJkp4ROk0Zfbpct/zgmlqljy8QhYOO9EnPpgp6Jh4hJHN114kqs5OI9fpS8c0rihKGZ0ftJBnD1lRhgUHegaaUlFcpnec/7Fw9JPoF6kt8vatSLLOE4xarWT9w0NbGr/Nh9ZSLcNPU/EhFlHWy5IiIiIjIQK1dEREREBrKbbsHiPZZLXveihR2N5FFUYopLoDkljhZs9tVOybc/vCn5zNH9ki/eU+7rWkBiqYqJXTohvubGFBIB6hp+6xfPT9wc9KbERmUtH+Hm9bPK/9WUFBKSxqI9p3jxmsr/Ja7Def2mspndgkSUTbDlioiIiMhArFwRERERGchuugULVWmemDOxHLZy8vKXXKZ24mMokxmFIfv3OHFkafiPietZtp2ZuN7m5N3DJddKYdDfxf+2K/9X0+x+xoqQdFKd5JSziBJRNsGWKyIiIiIDsXJFREREZCC76RYkyvZ2fCmxTL+5yg0xkq6eSPw9VOmTcZL3XuwkuXz+rD7L7BNJcc8ysRhEROmELVdEREREBmLlioiIiMhA7BYkyiqCW0v84Qd15N5DSRf3LJU8b3JfyXU3JE5cO3vmt5I7lONEtEREGY0tV0REREQGYuWKiIiIyEDsFiTKKgpVkdjc3Ey5zdtJHDAysftv62eJC242qtZK8q///Su5r4lJOvMVKp18Y7qrL6l8kUw4PRFROmPLFREREZGB2HJFZK+c8ktsOPp/kj+eXk/y+/N2S+47ulayQ3jnK6j833lJkTeUzQXSVMqEI58/qPxf4pJQXp5pPzYRUVbDlisiIiIiA7FyRURERGQgdgsSZQdKF2FIqcTNN6MeWLxbSPlQyf74SfLxC8pOBnQLXjy2I/F/So+VWNaAYxMRZTVsuSIiIiIyECtXRERERAZityBRukocdvfPOy9LHuo9HgBweEwj2eaUpvMkdv9F3bLhblUTz9/TZYzkhVsOSR5dq1LqixWXsCzPP7OfyCb/1xPnuSqb+iMTEWVZbLkiIiIiMhArV0REREQGYrcgUbrKK8nL/ZzkE9/MAACsG5rYLdcmcVebxe1eIvmHEy6S+0+sbvmOTg0kdv8wSPKkbxMnJV3fL3EUYTMby3jl74Qler67WVG2fdujbuLpbTscEZFdYMsVERERkYFYuSIiIiIykIOmaVpmF4IoR7izSeLwKk0BANOce8i2H+d9KbljlRDJvq7KMR7flXg87GvJPdqNl3y03i+SD60bILlUSn1w97dIHFkhcXLRH/zek7x0wYeSG5fxleyqlmvNx5LbdP8VAFDkx8TRh+sGJM5yym5BIsqO2HJFREREZCBWroiIiIgMxG5BokwQFxkBAJjz/uuy7aOF+yXffJLsLsl5lZfY/oOJkie/10xyUGr73e4klmXGiFclvzP7P8nRVpSrz7Q/AQDTepaTba7J7kBElL2w5YqIiIjIQKxcERERERmI3YJEWcZjSXevR0lO0kOY20NiPn8vyRk26k4ZFXg9SilZZpeLiCgLYcsVERERkYFYuSIiIiIyELsFiYiIiAzElisiIiIiA7FyRURERGQgVq6IiIiIDMTKFREREZGBWLkiIiIiMhArV0REREQGYuWKiIiIyECsXBEREREZiJUrIiIiIgOxckVERERkIFauiIiIiAzEyhURERGRgVi5IiIiIjLQ/wNdF/+po3glyQAAAABJRU5ErkJggg==",
"path": "images_version_6/image_44.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Applied",
"subject": "Plane Geometry"
}
|
A
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, then the height of the street lamp is ()
Choices:
A:9米
B:8米
C:7米
D:6米
|
||
221
|
45
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAG0AAABrCAAAAABYylOXAAAV2klEQVR4nK16ebyWVbX/d+29n+cdDqMgk4iAAsosAaLigAIpRA6YkpqWUKk5pOXV1LSrlZpmZXmtnHLopnlT8YpXhsIMJRO94QjIrALKdM55h+d59rDW74/DOXgmD/6664/3/Xye6bv3mtfaixjNSJKcAYCgkElOWZcXpRCysGXb+nfXb0/8Bkv5zt26Fg8dfMjg/fM5BQRoiICkko+sUYI2ibwiIm51mQMRmCNQ2UQGyCofvb1sRdZj0CED9otpcC4klVI5W79+9ebc8MljevfsBCYKFVMAPOm2sdpDI3ilAAjKcRTqa5INi5/fNmLKiIPzOs5rQlAEIDgL5z5e+beV8cTpY7pFGhxIkdf0GdG8UhCQJa2c3bXw8fKYOUMKqpNpYDQTQQSABrMKSbrt2ec7zTzhwE6AqxYNB60+E5oQgqMIELfhN68cMu2YHrHrDKSItIDZSBDSBIYSIsDbyso/vT7q3LHdEJTNiuYzyU0UHBuNTDY9tHTceUM7RV6zczlD8Kz3iIW9KFLCZEgIUv/eooUD545HDi7SnwnNG7JaI6194Lkxc4eYQpkKJDZSHpog7Jkig8YvilDQyhuUNy/5w6jvDKx0Vtg3TgoBADlDLsLW1346dM7nukAE5H2kySoCiPZggOChNSBMCKQJqGx5eMlpX+kbCG0rSjM04vrOooWERWn88743rjyiL4KYPd/es5ZPcrzpq0IASKjy4j36oilRJVbqk7c/iQZuoGB9ljJn2y1nfunkC9cmLBJYAu8jVXzqd9w64XepVOtdtWxb3hcXWPZy0isV0mIoFfHww+d/qRsAJoJX7VpQi72WVZGyl388+uq8KbbiREu5BR9XC5S6Ltt/s/yCGcUsJs9aI9A+olmlyZnqm3fh+iFEiloCNkMTH2Fnd4fcqp/u+OEwlyMBCNKehrWxNwmkCLT5yu13Hl6hYssXm8mN2dngt7m/f/7sVUFCqHciIrYV+9uXmwtekp1Odt1w9G8rUs6kDbk1ofnAXHJPHP29rcycVZ2wiFjX4p32qWzZ+uCdlcpvRv+k1Eq9GtAar3qRjFeN/nl9CK4aAotNXXBhn9G4WvbBS6j4avr8xHulJVwDWjmIsAinzLJm5vV1EjgEZuYQ9ln7mZk5+IZ/65z8bswCyTxzcJn/JJopKHhWJDEy96Pel3eRRmewj7q4Vw32vBYi4LTtd/WYmIW8puYqrZR4ZbTSAfjZxut6tuNT951sRNp1ueiAu9/LU5AWBqQkKKUg0PLE4lsHo8SfdU8tiVzQruaG2od3FE1ZUtfse8IiIc1YlkyaL+I+m6zapLKTaiL/nPKrMgfrmmvJHquSlcffXyu88zMoYdsk1on1nMnzU54UKdnG7zVoiTfCMWHH3SNPN6xiH/2LjAya4I2mdOqW3x80SjcP5XsSsl0vv/ftmrznhvTuXyJVquYl1Tk9J/9kueCbRWvlhSOPuju/c6DR8Gaf/WK7YFKTg4mJJL78pX8AFDIJaQgikkLlmVJjHxo5ISIoTf+yBQBagQgBPOGEpzdGu2zsKbc7A1U0lKhM07sLztmf4JVGq2T2s1PDgnUQzN30N+mWWJ9R90Ip1ERQTkIufWT8KBIXBPseYTokUuV+Jy5cbbpJlPcudMlxCkWqiLXLLu3kAxniNoLu/ydWIqboz9++AhIDpqDLdTYPZYSTR8YclEAZrYL/P5AbAEByCop7Tl6yTlcZll8+e/z0lS8YJcn2V35UCBoA/q+wAKiKEY3zLl5+cFHt7vy1ukv6uRt7G7HRor4jyJDniBT2USk75rjLBWPDQQe/u7N71vWyV++aCsyqUyFOHj+zK5EoA9Ht5dUAcYDnVKgcQKHWdwSndJzpOJy2doWKV8y/aCoSDDlcaVqjR3ux0kFy5RNKFOIQipUK6y5V1wGcDpUoJ+qYXe9D/WrcdLbg8UcrSp8f15skdLBU6ALFquqNLuWKpUDt1jKNxNpouDoz+39fTz4a2IeMQZRTqCyZWmPEdMQZrgS3PUepVTnVyUtHzpuqPud2qc4Y/tq2XBVMJfYChQ92DmfOOvbGRZPvvmr62FE31aYSK9uB05HY7Ag1Ef3uwtfXqYGb6tHVpf/crfj1EZ2UtFsuN5EyfsdjZ897/PFF15Y569gJxLZLjXnr67+vHV2tPW/T3Tv8h1d81NnYv08xxHGHmm9zMn/+7Z9XuPaG06b5fcgnDOGxByYPOlxt3nLCXdcdqSd99XMGu09cWhHuOJsL5Y2j75LEy+r+fxGfdhjjRTZcMuWx+vMfWP2FZ0Q2vL5iXTWI2VAeknc6KXS0Oc49OOTziJjWZwUgatUWIQ6GbWQamhhCePiXx98xdnP5wKHZJoSBA4EAmK3d84qJOuSkLi09a5CDoSXT+8DFre57J1rliBWlyJHfcsvui2f0xv0jxqJHImAQE0FtPJhgqONsJOzY0tOwpoULTu2HNh6XKO+tSyyVkCNZNLdy1fm9Aq88tCcOqexqbKOY1YdGTKI7dHy6T5ylBdT/x8CxMXRoxQqlSBEZcgVP79+y+kuzDkhVPL/nCGDY6x/1aOiMQK0fFAu4Y2dclz/1wQ+r1TPdTwcxWoNB+yppxSEO+Re+Wf7xBf3K3uDBUYcBA+t3NgYX81GvCLQPEbsTrpp7cufk618YCoB1aPWOxCp1+QjpD5acfXYfcMHT2zQmEupTLjehlQsKvA9olZpuv/wwKR9XUy0QtLItRcdsKOQiv/jX8W1HFTzKNTH9YewwYV1IXROaiwAfdVxd12jXtx8AFMjrgFzL+xRcLo62//ovJ325n/U61KTF6htz+oaglWviu6mtgQSteR98V4AK/t1f1M+bkuemEEBJrBMdhySOEP3PL2tuOKLIkYJSSj/TfZRyQE+boCE1gLGmqfT6VNL1hdimRXP3wyiNGBh84+qySLlIOSoksvsXL86efRCEIgE5gyVjhnkDRBwacznDCqzba5h+klN5g0hn8SvA0hITN2pJhDrV2dd2jWte+1V681Exq4b0xsia6tjYCwECmIbcwiiGjxH2ycuyz//CjHE7VxxcaGI8+6J2qrvZ9eizR8wZErvGhRM9MnSk6NQ0qG+DIppiCt6XrAasskrXp569sz/evPeoAVxs5LBSqJLeePOubx3XjetMofF5ef2s/SnRBtVck59T3UrYJxMImkLXVT8/44ShQ2fSAp9vvJ4iqXQqPnVul1tP6Qabzzct+5neowiiCPX5PEgpAaC6l9ggdIymLBfKV598HiTJX/7k+03JWazyNf97wYNX3TgCtS5KGwMf4clxI0MoKJHaYq6Rd6pT1evWjfM29hap0vW9v1KsSixTOi+vNq7Pwt13XY9bZvdg6URcaNK3TfWHxKQyJqnmI4QGBDVgo4BNUNKCGlHIiRVkojTuWXtZf+SqIPWd+9ciE6oPiRTWXfanL1833jmC0SpWQcj6KuPRzx3GyioStbZmf6iGxalB6z1Df5rFBcOJAWWLX503GlYpiB43eHEphit6o54+jW47e78Sx4BACTRYqXxWfXfAgRAyIthQ6I49KqwOXWUDof0c2RkSjk2F3v/h7FmE4Ao6QdezF36oyhTpuot/du0PBhPnpdGGSILSOr8Mw7QNMQuwvmsPoKF6UsM2ZwosnyI5XVWmvrD96pOPi20pUiRe9FHFBZUa5hdPT2+b0zsOZaUbHa8oQ5Kqpw8dJUxsSeHDHjHQkByo3rRN06dkysaKUdXI3Nz3jN4iORA4Iu52wYJVtOXGH37pR5PqnErzew8dLBNLvGHz+GJZa68UdtgeaPQ8pjjkjZFG2jdvjoKmnP7lmjsHBYqDIlCeRZ08/69rnoyumm64mOSLaY4bO8IC9rH6/eAxkotciIHXevYH79ELE0189dRO7R+/wOeEgvnzf18yHC7L+xhBQYFx7hWFudMOQhJqiqTzqok7OWFSdf/4ch8fEUeasezggU2+SpnD3rFBQdpTkzhRkdp805kzUDG5HeSZkYFk+e07Jsw6CDbKW63SgKY6giwMlheHkOEKmYTxdv/9WcBMAJQ6NNsKYkMtSDhzIM+pcVR/5bFnmDQ2mTIG2ka0+ZbbTrtn4zZAlDFAtJc3VFHa47lxw8AUmTLpj7mXIqKGMlSh5/A/e7Su3gLF5CxUHBncYed1S0yUoru2cJF66ZI1V5x7cq9n64JWogC1NxRLjhBt/mBsZ2ZElM/RC/sNABQ19DsVijP+p9qWvEhpaEMM/difrzkIhkKUt/Va59KfXHPkv0+NzXmLV5HilhIw1qlnugwGCZMYwnMHHwpSaHhOiT0iXSWqlb3FgVWkybIsv+dbR0mmrddeF6P0pfPeuuayQUHhyAH/Xdeq7Y+QA5ZNPAgkAq5g45YRXQSN6YEC9jv2T0lrv6ytFbEeuborzzkzYSVkQBFt+88bBn9/Zt5LQHTpy++2zg2dil6046IAo0EK8/uPhAizapCbjaJZf32/dRdZRJNnHW+9/Lgz47iktCN4rPvWc+dfOxQlEgqYMOTJna2WGRM9MnoUyJIqh3zdoiMGApBGCwC5Qw9bXN865SINxLT7t8nFncQX/O5YkL/j/MN/cG63kNUkpBVwwZtvtlqmok0fTqoJCgwvtLAwwTjipsYI24xfOvYdaVmPieVgpe73M/8uwTtxKcs/vvLFx+tFxPok44xLPsy7YkfL9zK57+L1Yh1XvWc34+dpqPrEBcc+sChyBqN7LkvYkwO5vZxUBLP7rXsvPMIhUZAcPXh1jx+e2TmwaGUiEAyrS15+C+XgmDJhAGTZKzw1/kDxQhQ0LSgemUNMkaIGucFXWPiZyR+Jr01Y0qaDGxdKTjZ98Va/OwuVTGTdnBPn73DcUJQKs2dOWb592RZXTYK4LIi33rOTl2a/Kpx6Tlwis+5OGs9mxAUWhZg8Hdv73tRRTN7ovXszKr158FxdqHIxrrvvmwNvm9EDScMaBVCBIsY3Xn1HRzGxadiZhsYfJh4GiTSlnHuk66R881SVhZNUVn5umQ8inpta3OFjlu+dsU5SSYKsmjvn/lqpBHFl37jWchB2csm/rRcJFc8cOPWS8NZTFkng4LIsbJ7xeJI165krKxRrjD7lnkyxV+ybttY5/HHF5YNh0jw9dnHNN77aFeKs21twGyvkcOELH8BLrIhYYi2gZ/sPAYhFxerX/SfkWyQF3iUiIWz94p1WAmfZ3p7AXyY8w+XgZfOlM+7+SKRUciH4Jt0VSUs+1PMVl21hFueFHbNjPuM/nLCkTmTh1AVOXLNTI0hWTSXj5OljXqpK04kSh1Lp5Js8Z1V5YtrlL/ggPrNB5BNPCO+ysitsm/hfIpJ4kcR7J8tnL5cQQsaVD069tSJStc20JIScyVQlOvn0W1fDNIUOlb94yLc04uy7D0y9+jgKKcfEyGqbGs9SlRxJZ/Q+9YWtYEHGDNF4avwIAUtE9nv95xXTqmnWfVMUkTI61vHXht1Sp9JqIMo4IdxpL9oP9OyXsosu7Ws5YhJSogtN/TCKkNcwJBesWg7SFPnYgra9MbazSCAK38cVPULELSJZgxZKyOT9L161M/iMay1nyR+O/3uQ7Nopv1gdRBIvrpF9e51No/x+MPcD2W2d95blV99cJ+U0iPx01hLxQVLXTCebzk2DlTeOucXuslItOXnj+HtFnj5lzqJUxLNLfbuNpiBrjn2KM1cNmfdh5kM2SYO3T0x9IhXPnIU20ULJiSwd+2giibeybuodtnzTkdetEZGkwmztp7W1bvvaWkkyTkPy6pnLxXmRNybdXhFrQ/BZYwOt+d6sWCePH75IkkzsvEtr/zr93AUlKQfvvEiwWXttN6kLu8f90VkJTviaO7amLLLqpGt3i7PsWVLXJprwx07Cv096KBW56Rvv3D75ltUi26shEwk2sGsHjCULcsNX14r1HKrTnw6eZcW0s7YIB5bMim1ub42cTDn1tbzt18f/XJ477vavz57vQoWrPqQ+ZEloFZCaKIir3zHlMZ8G4ae/8pawPH/0dzdKJRMRm1rfjJNNsZeZdIZctujReAvU5DNGliOV1QBCAlCrAY69VIkovmXdjf2zWM36wtdiufu/vjCvW73JC2uSLG50Xc0nB8RXnHjv5cWp6pwnt4uURGozsdZ5EQm+na2x2KqXrVMeTry8d/RfpfbSUx/ORNLUs+eGCYG25ObFZ9amQWTVOQNWinClLnMh+BBY+FM6rSWfuCB3n/OehGt+vH3TWbOf85JaCS1faS63RMSmPkjYIFvuOPERlpCVvE9YRNg6bhfOsvdB6o/5nVRnvvSPU7+9hoUT1/pwuYXcoCAKnqtdVHj6oe7fHhEHJVkukBYQWrqgJkq4mBmJ7196/fZ7Kzzx6z3hRWlO4qh5rGk+zUKpjsRrX+2GSk322oJXZp3fTSCeFFgr2PaOJzznnBEbzp795OoTpp5UYAqiiELLmZsWM0+VvMlCgbZXeruYcvWLH09On9kLaR6SUUy+/QE7VlUT4+Y/fnDh5X0ki5UAQbXucjef1Ek6URrp7d8972hDmhXeWLa89rgvH2CNchxTuwcAZMv7ofTKzzpPO2BCD+vyDjkCM7fkBXlF1BRBdExQurxwc++ci5EU1OgRk1csWTry3MNUJARudxop3m/Nwuc6nThxMuB8Drpx1KstakQTHzkofiVFVxJWKjDp0aMnLd98Y6ejZxyIYIJoQDhExEykAGmownYtXbyh30kTjgJsHEWAIhHR7WhV095CpLNC3bujYiCiQMSRuHj48PffXvnCM10HTzpqPwCstBYoBUgwRKh/ffk7O3oOP2n4UEhSvP9Zb/HdaTEZkLRdW++1AG1N7Yujutx+ZSedh4tYs1UxhJI1mz94/8OPda9Dhg7oYXgQAFsuZ2+vX/dB2m1An/4Hj8wjpdiX111lTtu2+PvTNcmekqZ9ualqjJeuOYDHFmIi57WGikMGzYUxY/yuje9vqZZfrE9sqLAYE0Wqb+e+h/XqN7i3RvBitDc0fuDMM/DommlCoT3r/ESeYarbr1LvdUGc2CjSzEqRZ8QQr3v1moh0147dVc+7A3Q+jkyPnr1rAIAB7TOlpcuqeBweGDHRALo9ldrDSQqlbvV3njkcy9eeXmMRoxozIgJTYK3Bntqy7sBKW4ZSDKPC8it1l5lHjiiCoVrPuH2Sk6LMb+/beIr/yf1251l9Q6UQaSUeikRLEDApAhgE8mIIwp6glSJiRVBahJx5c9oBqxdMLoI9EYU21WSvvY2+MN/HHtmPhtUwRcQ+AnmA2AjEKBGCAkQMxEOpiCWIVhAFgAlQbtlFk+2EhwZ1J02EtnWykUFiJk0C3BQAYBVDE6AigFTj5FTDb0PXg4gUGAQoBpgUSL/ZrzvirhUF0gBamXcg+KgplY0EJJEAAhISI7JnkKCxN4em/4amOwgN0CAC0vyLx4/A9X+b16Wd8QPFYZ8nBTok/+OHBvT16869/FM71P8PUaz9G8c49DcAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_45.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, C is a point on circle O, O is the center of the circle, if angle C = 35.0, then the degree of angle AOB is ()
Choices:
A:35°
B:70°
C:105°
D:150°
|
Như hình vẽ, điểm C nằm trên đường tròn tâm O, O là tâm của đường tròn, nếu góc C bằng 35°, thì số đo góc AOB là ()
Các lựa chọn:
A: 35°
B: 70°
C: 105°
D: 150°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, C is a point on circle O, O is the center of the circle, if angle C = 35.0, then the degree of angle AOB is ()
Choices:
A:35°
B:70°
C:105°
D:150°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, C is a point on circle O, O is the center of the circle, if angle C = 35.0, then the degree of angle AOB is ()
Choices:
A:35°
B:70°
C:105°
D:150°
|
As shown in the figure, C is a point on circle O, O is the center of the circle, if angle C = 35.0, then the degree of angle AOB is ()
Choices:
A:35°
B:70°
C:105°
D:150°
|
222
|
45
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAG0AAABrCAAAAABYylOXAAAV2klEQVR4nK16ebyWVbX/d+29n+cdDqMgk4iAAsosAaLigAIpRA6YkpqWUKk5pOXV1LSrlZpmZXmtnHLopnlT8YpXhsIMJRO94QjIrALKdM55h+d59rDW74/DOXgmD/6664/3/Xye6bv3mtfaixjNSJKcAYCgkElOWZcXpRCysGXb+nfXb0/8Bkv5zt26Fg8dfMjg/fM5BQRoiICkko+sUYI2ibwiIm51mQMRmCNQ2UQGyCofvb1sRdZj0CED9otpcC4klVI5W79+9ebc8MljevfsBCYKFVMAPOm2sdpDI3ilAAjKcRTqa5INi5/fNmLKiIPzOs5rQlAEIDgL5z5e+beV8cTpY7pFGhxIkdf0GdG8UhCQJa2c3bXw8fKYOUMKqpNpYDQTQQSABrMKSbrt2ec7zTzhwE6AqxYNB60+E5oQgqMIELfhN68cMu2YHrHrDKSItIDZSBDSBIYSIsDbyso/vT7q3LHdEJTNiuYzyU0UHBuNTDY9tHTceUM7RV6zczlD8Kz3iIW9KFLCZEgIUv/eooUD545HDi7SnwnNG7JaI6194Lkxc4eYQpkKJDZSHpog7Jkig8YvilDQyhuUNy/5w6jvDKx0Vtg3TgoBADlDLsLW1346dM7nukAE5H2kySoCiPZggOChNSBMCKQJqGx5eMlpX+kbCG0rSjM04vrOooWERWn88743rjyiL4KYPd/es5ZPcrzpq0IASKjy4j36oilRJVbqk7c/iQZuoGB9ljJn2y1nfunkC9cmLBJYAu8jVXzqd9w64XepVOtdtWxb3hcXWPZy0isV0mIoFfHww+d/qRsAJoJX7VpQi72WVZGyl388+uq8KbbiREu5BR9XC5S6Ltt/s/yCGcUsJs9aI9A+olmlyZnqm3fh+iFEiloCNkMTH2Fnd4fcqp/u+OEwlyMBCNKehrWxNwmkCLT5yu13Hl6hYssXm8mN2dngt7m/f/7sVUFCqHciIrYV+9uXmwtekp1Odt1w9G8rUs6kDbk1ofnAXHJPHP29rcycVZ2wiFjX4p32qWzZ+uCdlcpvRv+k1Eq9GtAar3qRjFeN/nl9CK4aAotNXXBhn9G4WvbBS6j4avr8xHulJVwDWjmIsAinzLJm5vV1EjgEZuYQ9ln7mZk5+IZ/65z8bswCyTxzcJn/JJopKHhWJDEy96Pel3eRRmewj7q4Vw32vBYi4LTtd/WYmIW8puYqrZR4ZbTSAfjZxut6tuNT951sRNp1ueiAu9/LU5AWBqQkKKUg0PLE4lsHo8SfdU8tiVzQruaG2od3FE1ZUtfse8IiIc1YlkyaL+I+m6zapLKTaiL/nPKrMgfrmmvJHquSlcffXyu88zMoYdsk1on1nMnzU54UKdnG7zVoiTfCMWHH3SNPN6xiH/2LjAya4I2mdOqW3x80SjcP5XsSsl0vv/ftmrznhvTuXyJVquYl1Tk9J/9kueCbRWvlhSOPuju/c6DR8Gaf/WK7YFKTg4mJJL78pX8AFDIJaQgikkLlmVJjHxo5ISIoTf+yBQBagQgBPOGEpzdGu2zsKbc7A1U0lKhM07sLztmf4JVGq2T2s1PDgnUQzN30N+mWWJ9R90Ip1ERQTkIufWT8KBIXBPseYTokUuV+Jy5cbbpJlPcudMlxCkWqiLXLLu3kAxniNoLu/ydWIqboz9++AhIDpqDLdTYPZYSTR8YclEAZrYL/P5AbAEByCop7Tl6yTlcZll8+e/z0lS8YJcn2V35UCBoA/q+wAKiKEY3zLl5+cFHt7vy1ukv6uRt7G7HRor4jyJDniBT2USk75rjLBWPDQQe/u7N71vWyV++aCsyqUyFOHj+zK5EoA9Ht5dUAcYDnVKgcQKHWdwSndJzpOJy2doWKV8y/aCoSDDlcaVqjR3ux0kFy5RNKFOIQipUK6y5V1wGcDpUoJ+qYXe9D/WrcdLbg8UcrSp8f15skdLBU6ALFquqNLuWKpUDt1jKNxNpouDoz+39fTz4a2IeMQZRTqCyZWmPEdMQZrgS3PUepVTnVyUtHzpuqPud2qc4Y/tq2XBVMJfYChQ92DmfOOvbGRZPvvmr62FE31aYSK9uB05HY7Ag1Ef3uwtfXqYGb6tHVpf/crfj1EZ2UtFsuN5EyfsdjZ897/PFF15Y569gJxLZLjXnr67+vHV2tPW/T3Tv8h1d81NnYv08xxHGHmm9zMn/+7Z9XuPaG06b5fcgnDOGxByYPOlxt3nLCXdcdqSd99XMGu09cWhHuOJsL5Y2j75LEy+r+fxGfdhjjRTZcMuWx+vMfWP2FZ0Q2vL5iXTWI2VAeknc6KXS0Oc49OOTziJjWZwUgatUWIQ6GbWQamhhCePiXx98xdnP5wKHZJoSBA4EAmK3d84qJOuSkLi09a5CDoSXT+8DFre57J1rliBWlyJHfcsvui2f0xv0jxqJHImAQE0FtPJhgqONsJOzY0tOwpoULTu2HNh6XKO+tSyyVkCNZNLdy1fm9Aq88tCcOqexqbKOY1YdGTKI7dHy6T5ylBdT/x8CxMXRoxQqlSBEZcgVP79+y+kuzDkhVPL/nCGDY6x/1aOiMQK0fFAu4Y2dclz/1wQ+r1TPdTwcxWoNB+yppxSEO+Re+Wf7xBf3K3uDBUYcBA+t3NgYX81GvCLQPEbsTrpp7cufk618YCoB1aPWOxCp1+QjpD5acfXYfcMHT2zQmEupTLjehlQsKvA9olZpuv/wwKR9XUy0QtLItRcdsKOQiv/jX8W1HFTzKNTH9YewwYV1IXROaiwAfdVxd12jXtx8AFMjrgFzL+xRcLo62//ovJ325n/U61KTF6htz+oaglWviu6mtgQSteR98V4AK/t1f1M+bkuemEEBJrBMdhySOEP3PL2tuOKLIkYJSSj/TfZRyQE+boCE1gLGmqfT6VNL1hdimRXP3wyiNGBh84+qySLlIOSoksvsXL86efRCEIgE5gyVjhnkDRBwacznDCqzba5h+klN5g0hn8SvA0hITN2pJhDrV2dd2jWte+1V681Exq4b0xsia6tjYCwECmIbcwiiGjxH2ycuyz//CjHE7VxxcaGI8+6J2qrvZ9eizR8wZErvGhRM9MnSk6NQ0qG+DIppiCt6XrAasskrXp569sz/evPeoAVxs5LBSqJLeePOubx3XjetMofF5ef2s/SnRBtVck59T3UrYJxMImkLXVT8/44ShQ2fSAp9vvJ4iqXQqPnVul1tP6Qabzzct+5neowiiCPX5PEgpAaC6l9ggdIymLBfKV598HiTJX/7k+03JWazyNf97wYNX3TgCtS5KGwMf4clxI0MoKJHaYq6Rd6pT1evWjfM29hap0vW9v1KsSixTOi+vNq7Pwt13XY9bZvdg6URcaNK3TfWHxKQyJqnmI4QGBDVgo4BNUNKCGlHIiRVkojTuWXtZf+SqIPWd+9ciE6oPiRTWXfanL1833jmC0SpWQcj6KuPRzx3GyioStbZmf6iGxalB6z1Df5rFBcOJAWWLX503GlYpiB43eHEphit6o54+jW47e78Sx4BACTRYqXxWfXfAgRAyIthQ6I49KqwOXWUDof0c2RkSjk2F3v/h7FmE4Ao6QdezF36oyhTpuot/du0PBhPnpdGGSILSOr8Mw7QNMQuwvmsPoKF6UsM2ZwosnyI5XVWmvrD96pOPi20pUiRe9FHFBZUa5hdPT2+b0zsOZaUbHa8oQ5Kqpw8dJUxsSeHDHjHQkByo3rRN06dkysaKUdXI3Nz3jN4iORA4Iu52wYJVtOXGH37pR5PqnErzew8dLBNLvGHz+GJZa68UdtgeaPQ8pjjkjZFG2jdvjoKmnP7lmjsHBYqDIlCeRZ08/69rnoyumm64mOSLaY4bO8IC9rH6/eAxkotciIHXevYH79ELE0189dRO7R+/wOeEgvnzf18yHC7L+xhBQYFx7hWFudMOQhJqiqTzqok7OWFSdf/4ch8fEUeasezggU2+SpnD3rFBQdpTkzhRkdp805kzUDG5HeSZkYFk+e07Jsw6CDbKW63SgKY6giwMlheHkOEKmYTxdv/9WcBMAJQ6NNsKYkMtSDhzIM+pcVR/5bFnmDQ2mTIG2ka0+ZbbTrtn4zZAlDFAtJc3VFHa47lxw8AUmTLpj7mXIqKGMlSh5/A/e7Su3gLF5CxUHBncYed1S0yUoru2cJF66ZI1V5x7cq9n64JWogC1NxRLjhBt/mBsZ2ZElM/RC/sNABQ19DsVijP+p9qWvEhpaEMM/difrzkIhkKUt/Va59KfXHPkv0+NzXmLV5HilhIw1qlnugwGCZMYwnMHHwpSaHhOiT0iXSWqlb3FgVWkybIsv+dbR0mmrddeF6P0pfPeuuayQUHhyAH/Xdeq7Y+QA5ZNPAgkAq5g45YRXQSN6YEC9jv2T0lrv6ytFbEeuborzzkzYSVkQBFt+88bBn9/Zt5LQHTpy++2zg2dil6046IAo0EK8/uPhAizapCbjaJZf32/dRdZRJNnHW+9/Lgz47iktCN4rPvWc+dfOxQlEgqYMOTJna2WGRM9MnoUyJIqh3zdoiMGApBGCwC5Qw9bXN865SINxLT7t8nFncQX/O5YkL/j/MN/cG63kNUkpBVwwZtvtlqmok0fTqoJCgwvtLAwwTjipsYI24xfOvYdaVmPieVgpe73M/8uwTtxKcs/vvLFx+tFxPok44xLPsy7YkfL9zK57+L1Yh1XvWc34+dpqPrEBcc+sChyBqN7LkvYkwO5vZxUBLP7rXsvPMIhUZAcPXh1jx+e2TmwaGUiEAyrS15+C+XgmDJhAGTZKzw1/kDxQhQ0LSgemUNMkaIGucFXWPiZyR+Jr01Y0qaDGxdKTjZ98Va/OwuVTGTdnBPn73DcUJQKs2dOWb592RZXTYK4LIi33rOTl2a/Kpx6Tlwis+5OGs9mxAUWhZg8Hdv73tRRTN7ovXszKr158FxdqHIxrrvvmwNvm9EDScMaBVCBIsY3Xn1HRzGxadiZhsYfJh4GiTSlnHuk66R881SVhZNUVn5umQ8inpta3OFjlu+dsU5SSYKsmjvn/lqpBHFl37jWchB2csm/rRcJFc8cOPWS8NZTFkng4LIsbJ7xeJI165krKxRrjD7lnkyxV+ybttY5/HHF5YNh0jw9dnHNN77aFeKs21twGyvkcOELH8BLrIhYYi2gZ/sPAYhFxerX/SfkWyQF3iUiIWz94p1WAmfZ3p7AXyY8w+XgZfOlM+7+SKRUciH4Jt0VSUs+1PMVl21hFueFHbNjPuM/nLCkTmTh1AVOXLNTI0hWTSXj5OljXqpK04kSh1Lp5Js8Z1V5YtrlL/ggPrNB5BNPCO+ysitsm/hfIpJ4kcR7J8tnL5cQQsaVD069tSJStc20JIScyVQlOvn0W1fDNIUOlb94yLc04uy7D0y9+jgKKcfEyGqbGs9SlRxJZ/Q+9YWtYEHGDNF4avwIAUtE9nv95xXTqmnWfVMUkTI61vHXht1Sp9JqIMo4IdxpL9oP9OyXsosu7Ws5YhJSogtN/TCKkNcwJBesWg7SFPnYgra9MbazSCAK38cVPULELSJZgxZKyOT9L161M/iMay1nyR+O/3uQ7Nopv1gdRBIvrpF9e51No/x+MPcD2W2d95blV99cJ+U0iPx01hLxQVLXTCebzk2DlTeOucXuslItOXnj+HtFnj5lzqJUxLNLfbuNpiBrjn2KM1cNmfdh5kM2SYO3T0x9IhXPnIU20ULJiSwd+2giibeybuodtnzTkdetEZGkwmztp7W1bvvaWkkyTkPy6pnLxXmRNybdXhFrQ/BZYwOt+d6sWCePH75IkkzsvEtr/zr93AUlKQfvvEiwWXttN6kLu8f90VkJTviaO7amLLLqpGt3i7PsWVLXJprwx07Cv096KBW56Rvv3D75ltUi26shEwk2sGsHjCULcsNX14r1HKrTnw6eZcW0s7YIB5bMim1ub42cTDn1tbzt18f/XJ477vavz57vQoWrPqQ+ZEloFZCaKIir3zHlMZ8G4ae/8pawPH/0dzdKJRMRm1rfjJNNsZeZdIZctujReAvU5DNGliOV1QBCAlCrAY69VIkovmXdjf2zWM36wtdiufu/vjCvW73JC2uSLG50Xc0nB8RXnHjv5cWp6pwnt4uURGozsdZ5EQm+na2x2KqXrVMeTry8d/RfpfbSUx/ORNLUs+eGCYG25ObFZ9amQWTVOQNWinClLnMh+BBY+FM6rSWfuCB3n/OehGt+vH3TWbOf85JaCS1faS63RMSmPkjYIFvuOPERlpCVvE9YRNg6bhfOsvdB6o/5nVRnvvSPU7+9hoUT1/pwuYXcoCAKnqtdVHj6oe7fHhEHJVkukBYQWrqgJkq4mBmJ7196/fZ7Kzzx6z3hRWlO4qh5rGk+zUKpjsRrX+2GSk322oJXZp3fTSCeFFgr2PaOJzznnBEbzp795OoTpp5UYAqiiELLmZsWM0+VvMlCgbZXeruYcvWLH09On9kLaR6SUUy+/QE7VlUT4+Y/fnDh5X0ki5UAQbXucjef1Ek6URrp7d8972hDmhXeWLa89rgvH2CNchxTuwcAZMv7ofTKzzpPO2BCD+vyDjkCM7fkBXlF1BRBdExQurxwc++ci5EU1OgRk1csWTry3MNUJARudxop3m/Nwuc6nThxMuB8Drpx1KstakQTHzkofiVFVxJWKjDp0aMnLd98Y6ejZxyIYIJoQDhExEykAGmownYtXbyh30kTjgJsHEWAIhHR7WhV095CpLNC3bujYiCiQMSRuHj48PffXvnCM10HTzpqPwCstBYoBUgwRKh/ffk7O3oOP2n4UEhSvP9Zb/HdaTEZkLRdW++1AG1N7Yujutx+ZSedh4tYs1UxhJI1mz94/8OPda9Dhg7oYXgQAFsuZ2+vX/dB2m1An/4Hj8wjpdiX111lTtu2+PvTNcmekqZ9ualqjJeuOYDHFmIi57WGikMGzYUxY/yuje9vqZZfrE9sqLAYE0Wqb+e+h/XqN7i3RvBitDc0fuDMM/DommlCoT3r/ESeYarbr1LvdUGc2CjSzEqRZ8QQr3v1moh0147dVc+7A3Q+jkyPnr1rAIAB7TOlpcuqeBweGDHRALo9ldrDSQqlbvV3njkcy9eeXmMRoxozIgJTYK3Bntqy7sBKW4ZSDKPC8it1l5lHjiiCoVrPuH2Sk6LMb+/beIr/yf1251l9Q6UQaSUeikRLEDApAhgE8mIIwp6glSJiRVBahJx5c9oBqxdMLoI9EYU21WSvvY2+MN/HHtmPhtUwRcQ+AnmA2AjEKBGCAkQMxEOpiCWIVhAFgAlQbtlFk+2EhwZ1J02EtnWykUFiJk0C3BQAYBVDE6AigFTj5FTDb0PXg4gUGAQoBpgUSL/ZrzvirhUF0gBamXcg+KgplY0EJJEAAhISI7JnkKCxN4em/4amOwgN0CAC0vyLx4/A9X+b16Wd8QPFYZ8nBTok/+OHBvT16869/FM71P8PUaz9G8c49DcAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_45.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, O is the center of the circle, if angle C = 35.0, then the degree of angle AOB is ()
Choices:
A:35°
B:70°
C:105°
D:150°
|
Như hình vẽ, O là tâm của đường tròn, nếu góc C = 35°, thì số đo góc AOB là ()
Các lựa chọn:
A: 35°
B: 70°
C: 105°
D: 150°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, O is the center of the circle, if angle C = 35.0, then the degree of angle AOB is ()
Choices:
A:35°
B:70°
C:105°
D:150°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, O is the center of the circle, if angle C = 35.0, then the degree of angle AOB is ()
Choices:
A:35°
B:70°
C:105°
D:150°
|
As shown in the figure, O is the center of the circle, if angle C = 35.0, then the degree of angle AOB is ()
Choices:
A:35°
B:70°
C:105°
D:150°
|
223
|
45
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAG0AAABrCAAAAABYylOXAAAV2klEQVR4nK16ebyWVbX/d+29n+cdDqMgk4iAAsosAaLigAIpRA6YkpqWUKk5pOXV1LSrlZpmZXmtnHLopnlT8YpXhsIMJRO94QjIrALKdM55h+d59rDW74/DOXgmD/6664/3/Xye6bv3mtfaixjNSJKcAYCgkElOWZcXpRCysGXb+nfXb0/8Bkv5zt26Fg8dfMjg/fM5BQRoiICkko+sUYI2ibwiIm51mQMRmCNQ2UQGyCofvb1sRdZj0CED9otpcC4klVI5W79+9ebc8MljevfsBCYKFVMAPOm2sdpDI3ilAAjKcRTqa5INi5/fNmLKiIPzOs5rQlAEIDgL5z5e+beV8cTpY7pFGhxIkdf0GdG8UhCQJa2c3bXw8fKYOUMKqpNpYDQTQQSABrMKSbrt2ec7zTzhwE6AqxYNB60+E5oQgqMIELfhN68cMu2YHrHrDKSItIDZSBDSBIYSIsDbyso/vT7q3LHdEJTNiuYzyU0UHBuNTDY9tHTceUM7RV6zczlD8Kz3iIW9KFLCZEgIUv/eooUD545HDi7SnwnNG7JaI6194Lkxc4eYQpkKJDZSHpog7Jkig8YvilDQyhuUNy/5w6jvDKx0Vtg3TgoBADlDLsLW1346dM7nukAE5H2kySoCiPZggOChNSBMCKQJqGx5eMlpX+kbCG0rSjM04vrOooWERWn88743rjyiL4KYPd/es5ZPcrzpq0IASKjy4j36oilRJVbqk7c/iQZuoGB9ljJn2y1nfunkC9cmLBJYAu8jVXzqd9w64XepVOtdtWxb3hcXWPZy0isV0mIoFfHww+d/qRsAJoJX7VpQi72WVZGyl388+uq8KbbiREu5BR9XC5S6Ltt/s/yCGcUsJs9aI9A+olmlyZnqm3fh+iFEiloCNkMTH2Fnd4fcqp/u+OEwlyMBCNKehrWxNwmkCLT5yu13Hl6hYssXm8mN2dngt7m/f/7sVUFCqHciIrYV+9uXmwtekp1Odt1w9G8rUs6kDbk1ofnAXHJPHP29rcycVZ2wiFjX4p32qWzZ+uCdlcpvRv+k1Eq9GtAar3qRjFeN/nl9CK4aAotNXXBhn9G4WvbBS6j4avr8xHulJVwDWjmIsAinzLJm5vV1EjgEZuYQ9ln7mZk5+IZ/65z8bswCyTxzcJn/JJopKHhWJDEy96Pel3eRRmewj7q4Vw32vBYi4LTtd/WYmIW8puYqrZR4ZbTSAfjZxut6tuNT951sRNp1ueiAu9/LU5AWBqQkKKUg0PLE4lsHo8SfdU8tiVzQruaG2od3FE1ZUtfse8IiIc1YlkyaL+I+m6zapLKTaiL/nPKrMgfrmmvJHquSlcffXyu88zMoYdsk1on1nMnzU54UKdnG7zVoiTfCMWHH3SNPN6xiH/2LjAya4I2mdOqW3x80SjcP5XsSsl0vv/ftmrznhvTuXyJVquYl1Tk9J/9kueCbRWvlhSOPuju/c6DR8Gaf/WK7YFKTg4mJJL78pX8AFDIJaQgikkLlmVJjHxo5ISIoTf+yBQBagQgBPOGEpzdGu2zsKbc7A1U0lKhM07sLztmf4JVGq2T2s1PDgnUQzN30N+mWWJ9R90Ip1ERQTkIufWT8KBIXBPseYTokUuV+Jy5cbbpJlPcudMlxCkWqiLXLLu3kAxniNoLu/ydWIqboz9++AhIDpqDLdTYPZYSTR8YclEAZrYL/P5AbAEByCop7Tl6yTlcZll8+e/z0lS8YJcn2V35UCBoA/q+wAKiKEY3zLl5+cFHt7vy1ukv6uRt7G7HRor4jyJDniBT2USk75rjLBWPDQQe/u7N71vWyV++aCsyqUyFOHj+zK5EoA9Ht5dUAcYDnVKgcQKHWdwSndJzpOJy2doWKV8y/aCoSDDlcaVqjR3ux0kFy5RNKFOIQipUK6y5V1wGcDpUoJ+qYXe9D/WrcdLbg8UcrSp8f15skdLBU6ALFquqNLuWKpUDt1jKNxNpouDoz+39fTz4a2IeMQZRTqCyZWmPEdMQZrgS3PUepVTnVyUtHzpuqPud2qc4Y/tq2XBVMJfYChQ92DmfOOvbGRZPvvmr62FE31aYSK9uB05HY7Ag1Ef3uwtfXqYGb6tHVpf/crfj1EZ2UtFsuN5EyfsdjZ897/PFF15Y569gJxLZLjXnr67+vHV2tPW/T3Tv8h1d81NnYv08xxHGHmm9zMn/+7Z9XuPaG06b5fcgnDOGxByYPOlxt3nLCXdcdqSd99XMGu09cWhHuOJsL5Y2j75LEy+r+fxGfdhjjRTZcMuWx+vMfWP2FZ0Q2vL5iXTWI2VAeknc6KXS0Oc49OOTziJjWZwUgatUWIQ6GbWQamhhCePiXx98xdnP5wKHZJoSBA4EAmK3d84qJOuSkLi09a5CDoSXT+8DFre57J1rliBWlyJHfcsvui2f0xv0jxqJHImAQE0FtPJhgqONsJOzY0tOwpoULTu2HNh6XKO+tSyyVkCNZNLdy1fm9Aq88tCcOqexqbKOY1YdGTKI7dHy6T5ylBdT/x8CxMXRoxQqlSBEZcgVP79+y+kuzDkhVPL/nCGDY6x/1aOiMQK0fFAu4Y2dclz/1wQ+r1TPdTwcxWoNB+yppxSEO+Re+Wf7xBf3K3uDBUYcBA+t3NgYX81GvCLQPEbsTrpp7cufk618YCoB1aPWOxCp1+QjpD5acfXYfcMHT2zQmEupTLjehlQsKvA9olZpuv/wwKR9XUy0QtLItRcdsKOQiv/jX8W1HFTzKNTH9YewwYV1IXROaiwAfdVxd12jXtx8AFMjrgFzL+xRcLo62//ovJ325n/U61KTF6htz+oaglWviu6mtgQSteR98V4AK/t1f1M+bkuemEEBJrBMdhySOEP3PL2tuOKLIkYJSSj/TfZRyQE+boCE1gLGmqfT6VNL1hdimRXP3wyiNGBh84+qySLlIOSoksvsXL86efRCEIgE5gyVjhnkDRBwacznDCqzba5h+klN5g0hn8SvA0hITN2pJhDrV2dd2jWte+1V681Exq4b0xsia6tjYCwECmIbcwiiGjxH2ycuyz//CjHE7VxxcaGI8+6J2qrvZ9eizR8wZErvGhRM9MnSk6NQ0qG+DIppiCt6XrAasskrXp569sz/evPeoAVxs5LBSqJLeePOubx3XjetMofF5ef2s/SnRBtVck59T3UrYJxMImkLXVT8/44ShQ2fSAp9vvJ4iqXQqPnVul1tP6Qabzzct+5neowiiCPX5PEgpAaC6l9ggdIymLBfKV598HiTJX/7k+03JWazyNf97wYNX3TgCtS5KGwMf4clxI0MoKJHaYq6Rd6pT1evWjfM29hap0vW9v1KsSixTOi+vNq7Pwt13XY9bZvdg6URcaNK3TfWHxKQyJqnmI4QGBDVgo4BNUNKCGlHIiRVkojTuWXtZf+SqIPWd+9ciE6oPiRTWXfanL1833jmC0SpWQcj6KuPRzx3GyioStbZmf6iGxalB6z1Df5rFBcOJAWWLX503GlYpiB43eHEphit6o54+jW47e78Sx4BACTRYqXxWfXfAgRAyIthQ6I49KqwOXWUDof0c2RkSjk2F3v/h7FmE4Ao6QdezF36oyhTpuot/du0PBhPnpdGGSILSOr8Mw7QNMQuwvmsPoKF6UsM2ZwosnyI5XVWmvrD96pOPi20pUiRe9FHFBZUa5hdPT2+b0zsOZaUbHa8oQ5Kqpw8dJUxsSeHDHjHQkByo3rRN06dkysaKUdXI3Nz3jN4iORA4Iu52wYJVtOXGH37pR5PqnErzew8dLBNLvGHz+GJZa68UdtgeaPQ8pjjkjZFG2jdvjoKmnP7lmjsHBYqDIlCeRZ08/69rnoyumm64mOSLaY4bO8IC9rH6/eAxkotciIHXevYH79ELE0189dRO7R+/wOeEgvnzf18yHC7L+xhBQYFx7hWFudMOQhJqiqTzqok7OWFSdf/4ch8fEUeasezggU2+SpnD3rFBQdpTkzhRkdp805kzUDG5HeSZkYFk+e07Jsw6CDbKW63SgKY6giwMlheHkOEKmYTxdv/9WcBMAJQ6NNsKYkMtSDhzIM+pcVR/5bFnmDQ2mTIG2ka0+ZbbTrtn4zZAlDFAtJc3VFHa47lxw8AUmTLpj7mXIqKGMlSh5/A/e7Su3gLF5CxUHBncYed1S0yUoru2cJF66ZI1V5x7cq9n64JWogC1NxRLjhBt/mBsZ2ZElM/RC/sNABQ19DsVijP+p9qWvEhpaEMM/difrzkIhkKUt/Va59KfXHPkv0+NzXmLV5HilhIw1qlnugwGCZMYwnMHHwpSaHhOiT0iXSWqlb3FgVWkybIsv+dbR0mmrddeF6P0pfPeuuayQUHhyAH/Xdeq7Y+QA5ZNPAgkAq5g45YRXQSN6YEC9jv2T0lrv6ytFbEeuborzzkzYSVkQBFt+88bBn9/Zt5LQHTpy++2zg2dil6046IAo0EK8/uPhAizapCbjaJZf32/dRdZRJNnHW+9/Lgz47iktCN4rPvWc+dfOxQlEgqYMOTJna2WGRM9MnoUyJIqh3zdoiMGApBGCwC5Qw9bXN865SINxLT7t8nFncQX/O5YkL/j/MN/cG63kNUkpBVwwZtvtlqmok0fTqoJCgwvtLAwwTjipsYI24xfOvYdaVmPieVgpe73M/8uwTtxKcs/vvLFx+tFxPok44xLPsy7YkfL9zK57+L1Yh1XvWc34+dpqPrEBcc+sChyBqN7LkvYkwO5vZxUBLP7rXsvPMIhUZAcPXh1jx+e2TmwaGUiEAyrS15+C+XgmDJhAGTZKzw1/kDxQhQ0LSgemUNMkaIGucFXWPiZyR+Jr01Y0qaDGxdKTjZ98Va/OwuVTGTdnBPn73DcUJQKs2dOWb592RZXTYK4LIi33rOTl2a/Kpx6Tlwis+5OGs9mxAUWhZg8Hdv73tRRTN7ovXszKr158FxdqHIxrrvvmwNvm9EDScMaBVCBIsY3Xn1HRzGxadiZhsYfJh4GiTSlnHuk66R881SVhZNUVn5umQ8inpta3OFjlu+dsU5SSYKsmjvn/lqpBHFl37jWchB2csm/rRcJFc8cOPWS8NZTFkng4LIsbJ7xeJI165krKxRrjD7lnkyxV+ybttY5/HHF5YNh0jw9dnHNN77aFeKs21twGyvkcOELH8BLrIhYYi2gZ/sPAYhFxerX/SfkWyQF3iUiIWz94p1WAmfZ3p7AXyY8w+XgZfOlM+7+SKRUciH4Jt0VSUs+1PMVl21hFueFHbNjPuM/nLCkTmTh1AVOXLNTI0hWTSXj5OljXqpK04kSh1Lp5Js8Z1V5YtrlL/ggPrNB5BNPCO+ysitsm/hfIpJ4kcR7J8tnL5cQQsaVD069tSJStc20JIScyVQlOvn0W1fDNIUOlb94yLc04uy7D0y9+jgKKcfEyGqbGs9SlRxJZ/Q+9YWtYEHGDNF4avwIAUtE9nv95xXTqmnWfVMUkTI61vHXht1Sp9JqIMo4IdxpL9oP9OyXsosu7Ws5YhJSogtN/TCKkNcwJBesWg7SFPnYgra9MbazSCAK38cVPULELSJZgxZKyOT9L161M/iMay1nyR+O/3uQ7Nopv1gdRBIvrpF9e51No/x+MPcD2W2d95blV99cJ+U0iPx01hLxQVLXTCebzk2DlTeOucXuslItOXnj+HtFnj5lzqJUxLNLfbuNpiBrjn2KM1cNmfdh5kM2SYO3T0x9IhXPnIU20ULJiSwd+2giibeybuodtnzTkdetEZGkwmztp7W1bvvaWkkyTkPy6pnLxXmRNybdXhFrQ/BZYwOt+d6sWCePH75IkkzsvEtr/zr93AUlKQfvvEiwWXttN6kLu8f90VkJTviaO7amLLLqpGt3i7PsWVLXJprwx07Cv096KBW56Rvv3D75ltUi26shEwk2sGsHjCULcsNX14r1HKrTnw6eZcW0s7YIB5bMim1ub42cTDn1tbzt18f/XJ477vavz57vQoWrPqQ+ZEloFZCaKIir3zHlMZ8G4ae/8pawPH/0dzdKJRMRm1rfjJNNsZeZdIZctujReAvU5DNGliOV1QBCAlCrAY69VIkovmXdjf2zWM36wtdiufu/vjCvW73JC2uSLG50Xc0nB8RXnHjv5cWp6pwnt4uURGozsdZ5EQm+na2x2KqXrVMeTry8d/RfpfbSUx/ORNLUs+eGCYG25ObFZ9amQWTVOQNWinClLnMh+BBY+FM6rSWfuCB3n/OehGt+vH3TWbOf85JaCS1faS63RMSmPkjYIFvuOPERlpCVvE9YRNg6bhfOsvdB6o/5nVRnvvSPU7+9hoUT1/pwuYXcoCAKnqtdVHj6oe7fHhEHJVkukBYQWrqgJkq4mBmJ7196/fZ7Kzzx6z3hRWlO4qh5rGk+zUKpjsRrX+2GSk322oJXZp3fTSCeFFgr2PaOJzznnBEbzp795OoTpp5UYAqiiELLmZsWM0+VvMlCgbZXeruYcvWLH09On9kLaR6SUUy+/QE7VlUT4+Y/fnDh5X0ki5UAQbXucjef1Ek6URrp7d8972hDmhXeWLa89rgvH2CNchxTuwcAZMv7ofTKzzpPO2BCD+vyDjkCM7fkBXlF1BRBdExQurxwc++ci5EU1OgRk1csWTry3MNUJARudxop3m/Nwuc6nThxMuB8Drpx1KstakQTHzkofiVFVxJWKjDp0aMnLd98Y6ejZxyIYIJoQDhExEykAGmownYtXbyh30kTjgJsHEWAIhHR7WhV095CpLNC3bujYiCiQMSRuHj48PffXvnCM10HTzpqPwCstBYoBUgwRKh/ffk7O3oOP2n4UEhSvP9Zb/HdaTEZkLRdW++1AG1N7Yujutx+ZSedh4tYs1UxhJI1mz94/8OPda9Dhg7oYXgQAFsuZ2+vX/dB2m1An/4Hj8wjpdiX111lTtu2+PvTNcmekqZ9ualqjJeuOYDHFmIi57WGikMGzYUxY/yuje9vqZZfrE9sqLAYE0Wqb+e+h/XqN7i3RvBitDc0fuDMM/DommlCoT3r/ESeYarbr1LvdUGc2CjSzEqRZ8QQr3v1moh0147dVc+7A3Q+jkyPnr1rAIAB7TOlpcuqeBweGDHRALo9ldrDSQqlbvV3njkcy9eeXmMRoxozIgJTYK3Bntqy7sBKW4ZSDKPC8it1l5lHjiiCoVrPuH2Sk6LMb+/beIr/yf1251l9Q6UQaSUeikRLEDApAhgE8mIIwp6glSJiRVBahJx5c9oBqxdMLoI9EYU21WSvvY2+MN/HHtmPhtUwRcQ+AnmA2AjEKBGCAkQMxEOpiCWIVhAFgAlQbtlFk+2EhwZ1J02EtnWykUFiJk0C3BQAYBVDE6AigFTj5FTDb0PXg4gUGAQoBpgUSL/ZrzvirhUF0gBamXcg+KgplY0EJJEAAhISI7JnkKCxN4em/4amOwgN0CAC0vyLx4/A9X+b16Wd8QPFYZ8nBTok/+OHBvT16869/FM71P8PUaz9G8c49DcAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_45.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, if angle C = 35.0, then the degree of angle AOB is ()
Choices:
A:35°
B:70°
C:105°
D:150°
|
Như hình vẽ, nếu góc C bằng 35°, thì số đo góc AOB là ()
Các lựa chọn:
A: 35°
B: 70°
C: 105°
D: 150°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, if angle C = 35.0, then the degree of angle AOB is ()
Choices:
A:35°
B:70°
C:105°
D:150°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, if angle C = 35.0, then the degree of angle AOB is ()
Choices:
A:35°
B:70°
C:105°
D:150°
|
As shown in the figure, if angle C = 35.0, then the degree of angle AOB is ()
Choices:
A:35°
B:70°
C:105°
D:150°
|
224
|
45
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAQAAAADvCAYAAAAdFwqFAAB+q0lEQVR4nO39eXDjad4fhn1AAsRJnAQIguB932STffccPbOzu/OuV3ol2XplySpJlitORUm5EpcrilyuVBSn/Mp/uOSjrCSV2E7KyvqV9O7u7M6xc/X0TN/N5n3f900ABECCOIn8wf0+/cXDH3u6e4bdTRKfKhZJHL/j+T3f+1Kl0+k0ssgii3OJnNd9AVlkkcXrg/okDvoqlYp0Oo14PI5kMgmNRgO1Wo2cnByoVKpnfi+VSkGlUomfdDqNRCKBVCqFdDqN3NxcaDQa5OTkiM8nk0kkk0moVCrk5eWJ79Ex6LNK16hSqZBKpRAMBrGzs4NgMAi/34+NjQ2srq5ibW0NGxsb8Pl8CIfDiEQiSCaTODg4QCqVwtbWFnw+35Fjq9Vq6HQ66HQ6GI1GGAwG6PV6aLVaaDQaFBQUoLi4GC6XCy6XC4WFhSgsLITL5YLNZoPRaIRGo/ne9Uqn0zg4OBD3kpube+R9eu50LPp9cHCAWCyGRCIBjUYjnhOtOR2PP4s3HXSdqVQKADL23Pet5ZsE1UmYAK+aAaRSKaRSKeTm5oqNxK9DfiC0WTnxEoEeHBxkfJYeLH3+4OAAKpUKarX62AeeSqUQi8Wwt7cnCH53dxe7u7uCuBOJBOLxOGKxGPb39xGJRBCNRhGPx5FIJATx0znpdaXro/tWq9UZv3NycqDVamEwGKDVaqHVapGXlwetVgudTge9Xg+DwQCj0Yj8/HxYrVZYLBYYjUbodDpxLH5//NkqvX5wcCCum9YuJydHMFf+jPh60mezDODV4tQzAH5OvoFoIwIQr3PQJqWNyiUaMYNoNAoAYtMSUSk94IODAySTSUH4fr8fq6urmJubw8zMDObm5rC+vo5YLIacnBwYjUaYzWbY7XbxY7VakZ+fD71ej7y8POTk5Ijrs9lssFqtgiDpfIlEQjATYiikER0cHCAcDsPn8yEQCMDv92Nrawt+vx+BQADJZBJarRYOhwNerxdVVVWorKyE1+uFw+GA0WiE0WgUGoW83nzN6TVifkTsJPH5M5K1iWdpT28qsgzgGXjVDECJuJ9F/MBRlZVrALm5uRkPl95TqVTQ6XQZG35vbw9bW1tYXV3F8vIy1tfXEQgEEI1GMyQ4/a/T6YSabjKZYDabYbVaYbVaYTabYTKZoNPpoNFoBFNSqVQwmUwwGo1H7oObJpwZ0Gu7u7vY2dlBOBxGKBTCzs6O+D8ajSKZTGYwQfrRaDQwGo3ChPB6vXC73bBYLEeYgXw9pKmQak9Mi69bMpkEgAzJf5pwVhjAifgAXic4YT/P5iIpRBI1mUxCrVZDrVYjLy8PwFOVntRYUmnD4TC2trYwMzOD8fFxjIyMYH5+HsFgEFqtVkjV2tpaeDweYYfn5+dnaBOc6GRi4dcp+y2Ap9oJJ0r6LN0TbVIAwqdAdnkoFMLm5iYWFxcxOzuL2dlZLC4uIhwOQ6PRwOl0oqKiAnV1daipqUFJSQkcDkeGlkI/dD05OTkZTJiYAdfQOLGcJoI5azhTGgBJXHrteYhfJg5yAMrMI5lMIhQKYX19HXNzcxgbG8P6+jrC4bBgGhaLBWazGVqtFiaTCRaLBQ6HAw6HA3a7HRaLBSaT6ZkS9Fk4zqdxHI7TgohJkrQmLWF7exvb29sIBALY3d1FLBZDOBzGzs4OQqEQUqkUrFYriouLUVtbi4qKChQXF8NisUCtPipLuClGJglpNkrX8zzP7E3BWdEAzhQDIA++kuRXUvlpY9JrJMl4VCAajSISiSASicDn82Fqagqjo6MYGhqCz+eDWq2G0+lEVVUVurq60NjYiIKCAhiNRiEV0+l0hi38vODOSn7d/H3+WwlKPgvZ+UYgZyo5HcPhMObm5jAwMIDBwUHMzc3h4OAANpsNtbW1qKqqQkVFBVwulzBh9Hr9EUdsKpXKiNTw6Irsizkt/oAsA3gGXhcDUHJMAZlqL4AMp9+zNIZQKITR0VF0d3djcnISW1tbwoFnt9vhdrtRXFyMgoICWK1WFBQUwGw2C3Vep9MduVYiMjonaRsyeNSBiIMzFK7tEI4zeZQ890rrxHFwcCDMHHIa+nw++Hw+bGxsYHl5GT6fD5FIBDabDVVVVejo6EBjYyOcTif0en3G8UgDIObATS4euTgtxHNWGMCZ8AFwm5ITk0xE/HMETvgHBweIRCIIBoPY2trCysoKxsbGMDIygq2tLQCA2+1GZWUl6uvrUV1djZKSEhiNRrF5Sa3m10XSlqvEnBD5+zKed1MdF6rjGgStj8ww+Trwz1HosKCgAAAQj8exvb2N2dlZDAwMIJlMYmdnB+vr60gkEojFYtje3obX64XH40FhYSFMJpMgcPJh8HMrqf+nIQx4VnAmNAA6p1JISikmzdVPClepVCpEo1EsLS3h4cOH6O3txfj4ONLpNIqLi9Hc3IzGxka43W7YbDYRriN7/uDgQJyDx8J5joKcpMR9F7L/gl8nQSYOpXWmcyppQ1y9ViI++Zwyw6RjR6NRhEIhbG9vY21tDQsLC5idncXMzAyCwSCcTieamprw1ltvoa6uDk6nE8AhA+EaD0UwcnJyMtbmNDCAs6IBnAkGINuQQKbaT5tbScVMJBLw+XxYXV3F/Pw85ufnsbCwgEAggHQ6jcLCQtTW1qKpqQnV1dWw2WzIy8s7IlkBZEgw2txE2FzF5dfANYPjzBGZWAFldZ9rGEqSnf8+zr8gn5fOpYREIoFQKISVlRVMT09jZGQECwsLSCQS0Ov1cLlcKC0tRVVVFUpLS+F2u6HX65GTk4N4PJ7xbE5bODDLAJ6BV80AaNNz255sTHmDESg8tr+/j76+Pty/fx9PnjyBz+dDUVERmpubcf36dZSXl8NqtSIvLy8j3BaNRkVIkIfvCMQAVCpVRmiPpDPwVCIr2ezcfOEmDJCZ/SdL7JeB7EzkTEnWDOQNT85SMp3W1tYwPT2NwcFBdHd3I51Oo7a2Fu+++y7eeustOJ1OqNVq7O3tAYBwGnKcBkaQZQDPwKtkAERUz2IAMnFGIhHs7OxgcnISfX19WFlZQSgUgkqlgs1mQ3V1Nerq6lBfXw+73Z5xTMrO48kusurKfQpEPEqOO1niKtnxMvHT52SJqeToo9dl7UHJ4cnPwX8raSIAFLWpVCqFcDiMtbU1zM7OYmRkBMvLywiHw9Dr9XC73WhoaEB1dTWKi4ths9lEZISHY7NRgFeHN5IBcEJ6Fuh9zgC4HU4Smgg4mUwiGAxic3MTy8vLePDgAb799ltotVrU1taiq6sLLS0tKCkpgcVieWbBCz8/SWmS7mTP8k1BvgAl4pOP9yIb6DhThMATcgAcSdxROh7PH+DH4RrIs+6DUqJ3d3cxPj4utKu1tTXU1dXh4sWLuHLlCiorK4WTkDtGle7jTUOWATwDL3NITijRaBQqlQparVYstOwh5ptPaZPLfyeTSaytraGnpweDg4OYnp4GAHi9XpSVlaGyshKVlZVwu90wGAxHpJ4sCZWIg4cZZa82V6mftUFeZvM8iwHw6+LX9jzHO05DULoHpWMeHBwgEAhgcXERo6OjGB0dxfz8POLxuHCsXr58GeXl5cjPzxfnicfjGYxUPr6s9TyvwPgxcVYYwBsRBuQPlCSp7KjiefGyfay04bmUi8VimJubw8jICLq7uzEzM4NQKITGxkbcvHkTNTU1KCgogMlkyrgubq8f94A5M1BSi7/P3v8x8H0MhTPE5zn/y2gnfB24aeRwOGCz2eDxeFBSUoLbt29jeHgYExMTCAaDSCQS2NvbQ319PSwWS8Yx5PUnU+p1Ev5ZwxujAXAbWSnURV50eo3y8+PxOPLy8qDT6cQGSaVSwu6PxWKYmZnBRx99hAcPHiAnJwdlZWW4cuUK6urqUFxcLNJ3ZbWYS05ZA8niKMj0ojwI6jNA5g9lU87OzqK7uxujo6PY2NhAS0sL/uRP/gQdHR0i54CcqNysIlOBM35ubr3qe81qACcALrFkW1RmENxsSCQSGfXw8XgcoVAIk5OT6O/vx/j4OBKJhLBB33rrLXg8nmNVcvkczzIJsjiEzLiJERwcHCAvLw82mw02mw2FhYXQarVQq9V4/PgxVldXcefOHUQiEbS0tMDj8UCn0wlHK88gJBznPM3ixfDGaAD8u7xWnHvYeZYd+QfI4ZRIJETmmlqtxsbGBh4/foxvvvkG/f39KC8vx8WLF3Hx4kVUVlbCbDYrFrDQNchec4Jcb5CFMui5kDmm0WhEFyXy82xsbGBiYgJ37txBd3c3nE4nLly4gA8//BC1tbWIxWLiOeTl5UGj0Tzz2bxKZDWAE4LsTKNFJo5Ptfo8046X00ajUaytrWFwcBD379/H6uoqPB4Purq6cO3aNVRVVR2x9fm5lZx5x30WOF0P+1WB1lEudwaehlKNRiNKS0uh1WoRiUSwt7eHtbU1DAwMQK1WY2trCzU1NbDZbCLfQfan0LmyeHm8URoAD6dRemgymUQ8HhdVZCRBeNssnU6HvLw8JBIJLCws4Ntvv0VPTw/m5+dRWVmJd999F+3t7SgrKxNZfNSLjucIcMcT1z64fcm1EyDLAGSk02nRZITWjjNSeo96Asbjcfj9fszPz+Obb75Bb28vEokEamtr8ad/+qdoaGhAfn4+1Gp1hsNXZs5yZOakkdUAfmTIHn9eXBOPx4UayePRPANvZ2cHAwMD6O3txcDAAADg7bffRktLi6hQ41KEmxbHJb4Q5GKd0/igXxW4lkZrJvtyiKHm5ORAp9PB5XKJFGGbzYZvv/0Wg4ODiEajuHbtGm7evAm32w2NRiM6HtF5SChkn8XL4Y1hAMBTAuQprjKBktRXqVTi4W9vb2Nqagq3b9/G0NAQ4vE42tra8Cd/8ieorq6GwWAQLbOIwcixZILSZpJj+NnN9mwoMVB6Xa7XAA4Zud1ux6VLl+B0OrGzs4N79+6hu7sbsVgMBQUFODg4EL95VeFxNR5ZPB/eKBNAKQRIZgE5gMLhMFQqFaxWK1KpFDY3N3H79m18++23WFlZgclkwvXr19HV1YWGhgZYLBZxLDIt5FCVkq0vmwX0Wtb592xwE0BmtNycIoZMTUKo12I0GsXc3Bz6+/tx584drK+vQ6/Xo729HdeuXUNdXV0GI6B0b14b8Sr8AlkT4ARA0pWH+0jNo40FHBLl7u4u1tfXMTQ0hIcPH2JqagoOhwOtra14++23UVdXd6T1FtcqiBnw8z4LWWfT94MTBXcCygk8BJ74RbkbOp0ODQ0NcDgc0Gg0uHv3LgYHBxGLxUS34ZaWFlgsFmg0GsFsss/n5fBGMQD+IOUUUJIWZrMZe3t7mJ6exnfffYdbt24hlUqhoaEBb7/9Ni5cuICioqIjxC93BaLedM+rPnL1P5sQ9P2Q8yV4ujYxBRpewh2EJM0dDgdu3rwpBpk8fPgQH3/8sehXeOnSJRQUFECn0ylmB2bxfHijGABBJjSe9ZWbm4vt7W1888036Onpwf7+Purq6nD9+nVcunQJ5eXl4jhck5AdfHIDCtlRpWQSnCbV7nWAiI8P/qCGH/Jn5LAu1xw4E2hsbIRKpUIikcDjx48xMzOD3NxcGI1GtLW1wWq1ZhnyD8CJjQb7IcTCiY0kN5kBe3t7GB8fxyeffIJUKoX33nsPN27cQHt7O0wmU4Yk4FKfmAevKeD2KU8vlROQZOmfxfEg5yz5Wchso1brsk9ANvvINKNQrclkwoULF1BQUICamhr8+te/xsOHD2GxWJCXl4eLFy+K48pJQll8P06EASQSiSPeWdnrfpynnWxHAjcF/H4/Hjx4gHv37kGlUqG+vh7Xrl1DU1MTbDZbxvHpO88qXZXj+c+qPMuq/s8PWkteTs2fgxKRktTnjJ+0Pq1Wi8rKSmg0GiwtLeHRo0fo6ekRbcqrq6szckTkZymbB/IeOc8M48QYwMsUaZAaLj+g3NxchEIhTE1N4dNPP8Xc3JzoOdfZ2Qmr1Sq+J6v6XOIrQfZOc5xGr+6bAG4K8JwApfXkz5o+zwe0khmRl5eHiooKvP/++8jJycFvf/tb3L9/HxUVFdBoNKiqqhKaBEV6lCICPNvzOKZ/nnAiDIByvmXb77hedfS+XPJLqj8ADAwM4Pbt21hdXYXT6cQ777yDzs5OmM3mjHMrSe/nwXndACeJF2WgsknGfQnAoRZRVVWFSCSC1dVVLCws4LvvvkMymYTBYIDL5UJeXp5oN07aJG/JxplEFifEAIho+YNXappBkLPzuD0Xi8Xg8/nw+PFjPHnyBCaTCR0dHejq6kJJScmRY2RxuiGH9GTT0Wq1oqGhAaFQSCQL5eXlobi4GC0tLXC73QCOTinm5gUPS2ZNgBOAEuHT60oqOX/I9MBycnKQl5eHqakp3L9/H48ePUIoFMIHH3yAmzdvilbTWZwdyF2ceR4BEbRarYbNZsPVq1dxcHCA+fl5rK6u4tatWwAAg8GA/Px86HQ67O/vC6HDW8U9y+w7bzixFeAqv1wYIjvmZC5MDyoQCGBoaAj37t1DLBZDXV0dOjs7UV9fL6buyMMvszi9kIlTju9z08But6O5uRldXV0wmUwYGxvDwMAAZmZmsLu7mxE2Bp42GOGaqNyk9TzixMKAsqPlOC/8cZ74YDCIvr4+3Lt3D2NjY7hx4wZ+/vOfo66uTjxUmt1HnuKsp/50g0cIyAfEXyNNgPxFRUVF+OUvf4mcnBx89tlnGB4ehtFohF6vh9FoFJGBg4MDMZuQmAJ3NPLw8HnbOyeaCCSH0AhKDkEeMYhGoxgfH8fXX3+NtbU1MXiTEj84Xkc7qCxOBnL+BU/Oove4xqfT6VBRUYGuri5sbm5ibm4OT548EePLi4uLBROQy5L5cc8zTswHwCWxEvHLWV8EauD5+PFj3LlzBxUVFfgrf+Wv4NKlSxnhPrLraAil7CzK4vSBh+R42ja9xjUDKhBTq9VobW2FXq/Hr371K/T09KC7uxs6nU5EBoCnqd+8xoQLj/O6b16JBgAclfpcavNuMYuLi/jss88wMjKC0tJSdHZ2orm5OcPpRw1BqZ48S/xnAzwJiDuDeY9Isu3p8+l0GmazGTU1Nbhy5QoSiQRWVlZw584d2Gw2qNVq2O12AIf7LB6Piy5S/Jznde+8sloAXsfNs75o4am0d2RkBN999x0A4MMPP0RXVxc8Hg/y8vLEsdLptBg0SSO7sjg7IAbAk8n4/uF7J5FIIC8vD2azGVevXkVeXh7+9b/+1xgfH0dZWRmMRiNMJpPYP7zjVBYnxADkdEzZnlOqnd7d3UV3dzcePXoEAMLur6ioEBuAc20+Zz5ry50NyLF5uXlIMpkUz52bC9Tezel0oq2tDSsrKxgcHMTw8DBycnJgt9vh8Xgy/AGvsnfAm4wTYYPHhVeU4q8HBweIxWLY2tpCf38/pqamUFJSggsXLqCyslLY/dwmpOwubtNlcfpxXAkxf10O4dFrlC7s9Xpx9epVtLS0wOfzYWRkBJOTk9jc3MwYFZcVGId4reXANJ03EAhgfn4e09PT2N/fx7Vr13DlyhUR61caIEl2YPZhnj3k5OSI1uHksFOr1Rk9IUnqy2G83NxcNDY2Yn9/H0+ePMH29jb6+/thNBrhdDqh0+kyKg/lXBQlYfIioeXTthdPVAPgSRyySUCIx+OYmJhAd3c3AKCmpgaNjY0oKSkRKhuP0crpndkWXWcLx9UP0D6QbXeu0hPy8vJQVlaG5uZm5OfnY2xsDJOTk/D7/Rn2P9+HPLogJx/xEWXPgjzO7DTgRBgAV9d5ei8f7QQcPrx4PI7e3l7cvn0bZWVl+MUvfgGPxyNUfCVbkM/+y9r/ZweyFNZqtdDpdKJvIw8b8/4CcrQJAMxmM9577z3U19djeXlZDCbd3d0V5+K/idB5tiCZFpRExMeS0fuc2KldPQ9fvuk4EROAN2gAnqb2ypqA3+/H6OgoVldXkZOTg/LyctTV1YkKv+Mq++T04dPEcbN4Psia33FJZfS+/L9Op0NNTQ0WFxfR09ODnZ0dDA8Pw2q1wmQyCeFBk6iPCwvyJqbUnl6pupDPQjhNOBENgCddEHgHV1qkhYUF3L9/H5FIBPX19aisrBTNIGUo1RIAWeI/y1CqE1GCnGNCar7RaERNTQ06OjqQm5srxsIHAgFBrNFoFPv7+2Jv0sAS3tiUfA/7+/sij4ALN5pdoTTD8E3HiQVDZe5I4TritNTYs7u7G7m5ubh48SLKy8thNBqP7SMgmwNKalgWZwvP82y5VikX+Xg8Hly/fh1OpxNLS0uYmprC8vKyyCOhqdI0X5LMVz6dGDj0K+j1emi1WpFQFI1GBbPJy8sTOSnnngEohWg48UejUSwtLWFmZgZra2uw2Wxob29HYWHhkWM9K4eA3s/ibOJFPO+yRkh7xmKxoLW1FSUlJUgmk1haWsL09DSCwSAAQK/Xi3FxRPBKFYPUspwYABdspCUQ8Z8mBnBiiUA8g4vquEm19/v96O7uxvLyMtxuNyoqKuDxeGAwGMQx+AOgRVbK+DttC57FyYH2Ae27/f19aLVamM1mlJeXo6qqCsFgEENDQygrKxN9A0gL4PkGnJjlfUgtzUkgcYdhOp0WTsvTgBNPBFIK02xsbKC3txfhcBhtbW2ora3NaO31rHpt/n+W+LMAlLs6c8IFgPLycrS3t0OlUmFmZgYLCwvw+XzCzufqOxG5UtgRgPAVKEWp6P3TghNhAPwhUK0+OQV3d3exsrKCsbExqNVqvPfee2hsbMzwtsoTepVmBSpVGmZx/sCdcNxxRyo7aQOlpaW4du0abDYbfD4flpaWsLm5KRgEV+VlYqbpVFqt9tjaE2IipBmcFpyICSB3/KFFjsVimJ6exszMDOLxOAoKClBdXQ2Hw5Fh6wNH47Q8D4CHaE7TYmdxMlAKEQMQtnoqlYJer0dJSQk8Hg9mZ2exsrKC2dlZlJeXw+FwHNEYCLx8GDg0b7e3tzE7O4utrS3RdsxoNKK2thZlZWVi7iG1qn+TcSIMgMdvee1+OBxGb28vJicn4Xa7UV5ejvz8fAAQ5b28D5xSvFf2+p8WWyuLkwFpirLklj8DHCYWVVRUYGlpCRsbGxgdHUV9fT30ej30er0oM6dEI/ouFSEBgM/nw+DgID799FP09fVhe3sbyWQSLpcLf/Nv/k38/Oc/RyQSwe7uLq5du/ZqFuEH4EQbggBPs6NUKhXC4TDGx8extbWF1tZWNDY2Qq/XZ0j5ZxG07OnNRgCyADKTdXgDUFlYqNVq1NfXY2dnB19//TWWlpYwPz8Pm80Gr9cLtVothpQCh9EqUuuXlpYwODiI+fl5bG5uQq1Wo6WlBfF4HCqVCjqdDtvb2/jd734nrudcMwDgqcROJBKi4m9lZQXJZBKtra2oq6sTWVXPM6hTri3IIgsOGkdGmiT3I9Heqaqqwv7+Ph48eAC/34+FhQUUFxejuLg4wxlImX/0/Z6eHvzFX/wFtre3UVhYiA8++ACNjY0wGo3Q6XSIRCL45JNP8PXXX8NsNh+ZV/Gm4sSqAeUGDqurq5idnUU8HofVaoXX6xW2FwDFsAtwdLwXvXYe0oF5OjV/DTib9/uy4H4heRwZ8LQ2hcJ3hYWFKCgoQCgUwtbWFra3txGNRoU2SvMMLRYLVldX8eTJE3zyyScYHR1FY2Mjbty4ga6uLpSXl4umNNFoFLW1tVhbWxMmyWnAiXYFpgQKlUqF+fl5jI+Pw2AwoKysDAUFBdBqtRnefK628SIiDm4mnHUtgDPBZ73GIUdIzvoaAZk9IsnxJ/cP4MjPz0dJSQmCwSACgQDW1tYQCAREgRFfv6WlJfz+979Hf38/NBoNOjo6cPPmTTGrkGAwGFBZWYmdnR1EIpFTUxB0oh2BiPiTySRGRkYwNDSEhoYGXLhwARaLBYBy+acSkXPPP39Ap00S8vuRtRwe/uT16tQaK51Oi5xzpbRT+k40GgVw2DVXnsh7FsG1QZ6ARpV53MQEDn0BjY2NiEQiGBkZwfz8PObn56HVakUtSjweRyAQwOjoqGgy+u677+L69euoqqoSfoJEIiEYgV6vR0FBARKJxGtbixfFidYC0KYNh8NYXV3F9vY2PB4PqqurRbMPQNm7/6xCkNMs2Yjw5bJTIn65Rl1pbcgzTeO3lUJXdA7KTjurxA8cbScuJwbJ/iWNRoOamhqUlZVhb28Pa2tr2NjYQCQSEceMxWIYGRnB2NgYdnd34fV6cfnyZVRXVwvip/Ulk8FkMsHj8aCsrAwVFRWvfiFeAieWB0ASfG9vD5ubm4hGo6JNs8PhEJ/lD+s81PcTsVNpaV5eHlKplOhUK29UuRiK0kxjsVhGFhtvnmIwGJBIJERxC4Az3QNP9h2R5KdwnhyWplmCRUVFiMViCAQCCAaDiMfj4pjhcBjffvstJiYmUFZWJjJWjUYjAIhnBjwtQLJarSL56LSEp0+MARC2trYwMzODVCoFl8sFp9OJ/Px88cDoN2/PdNbBc83pf66+JhKJjOQTnhPBNx59hybfEAOhTDiqyThP6wpkmotcMyBnIDGGgoIClJWVIRwOY2NjA2tra3C73TAajaJgLRQKobCwEF6vFy6XCzqd7kivADovMeLjUojfRJzoVaZSKaysrGB0dBS5ubmi3l+r1Sqm9p6H8B5PLSX7XG5yytV7IHMjx+NxkaxChSzAYcyaJB+to5y6ehalP5DpTyFHoNwujoQM1f8Dh17+rq4uFBYWYnl5GVNTU1haWhLrH4vFoFKpYLFYYLFYoNfrM56Z3JuCruU04USbghIDGB8fR1FREerq6mC324/U9B+X+XdWQWoq8LS5KWWhkYQiBx6HSqWCXq/PUG3JSUjaFJf652FNycmcTCYF8dO6kWbEtUuS0ABgs9lEy7CJiQm43W6EQiFhWkWjUcTjcREd4EJLbgBCDOg0SX/ghBlAPB7H+vo65ufnUVVVhZqamox2X9w5dZrsph8Ckla8qy3wtD16KpWC0WhEMplEJBI5MjKb0lLJjAION51Wq834LI+knDap9LzgQoTWhScBEQMgTz3vLwhAREv29vawtLSEkpIS7O3tAUDGYFHyp5BGBjwtWpNDtFQOLDPvNxUndpXJZBLhcBh+vx/BYBAmkwlFRUXQarXiM9R15XmyAM8SeO46b2dNDsGDgwOMjo7i008/xeLiotjEBoMB1dXVaGtrw9WrV2GxWMSmpGNxqS+3YDtr60vaI907qefU4ovWg7r18Lj9zMwMenp6cPfuXdy9exdzc3OoqKiAz+fLmDaUm5uLnZ0dwRgAiNRfnnqcm5uLra0tBINBWK1WGAwG4TB8k3FiDIBSf3d3d6FWq2E2m2G1WkWihez9P6seaiVwBsClWCqVws7ODhYWFvDo0SM8fvwYKysrQsLl5eVheXkZgUAAZrMZdXV10Ol0YuyVLPW5WnrWiJ9ATID7UEhaE1PgztV4PI61tTV0d3fjzp07uHXrFmZnZ6FSqRCJRBAKhbC/vy9ai6+ursLv92NxcRHLy8tQq9UwGo1CaO3t7cHn8yEcDsPn8yEejyMvLy8jzP0m48QYwO7urnCoeDweQfx8g8rx2/MAnt9ARA8A+/v7WF1dRV9fH37zm98gFAqhs7MTH374ISwWCwwGA/x+P37zm9/g1q1biMViePvtt/HWW29Bp9NlNKrklXFnlfA5iMApQkIFPFwVTyQSWF9fx927d9Hb2ytM052dHRiNRjgcDuTn5yMejyMcDsNqtaKzsxPb29v48ssv8ejRI1itVnzwwQeor68X504mk+jt7cWdO3dgt9vR3NwsmMRpwIkxgFAohPn5eRwcHKCiogIOh+NIs0/g9DlNfijkNF2VSoVQKITV1VX09/ejr68PgUAAbrcbV65cQX19PfLz82E2m7G+vo6pqSkEAgH09fWJ1tfUrJL3szsvoT/gKJPjERYAon5/bGwMQ0NDWFxcRCqVgsFgQHFxMVQqFex2O/R6vTBbLRYLamtr4ff7Rarww4cPEY/HMTMzIxp/xGIxzMzMIBKJwOPxwGazwWAwnJo9fWIMIBgMYm5uDgBQV1eXkfwDIMOxddadVRxks3O1fWNjA319ffjuu+8QCATwwQcf4NKlS2hra4PFYhHeZrfbjZ///OfQaDT4+OOPMTIygrm5OdjtdhQVFQHILHw5b6B75n6QQCCAJ0+e4JtvvsHg4CAKCwtRXV2NvLw8JJNJhEIhkYRFZuvm5iY8Hg+Kiorw7rvvwuFw4Msvv8S3336LgYEBcWyLxYLS0lI0Njbi/fffR1VVFTweD0wm02tbgxfFiTGAvb09rK+vw2azobi4GGazWbGRx1nPU5dBvo5EIgG1Wo1kMomJiQncvn0bgUAAXq8XFy9eRHt7O8xmc4ajUK/Xo6amBgsLC0gmkwgGgyJ0yFNeyf7nWsZZ1ga4OUn7KhgMYnZ2FkNDQ+jv78fm5ibcbjcuX74Mt9uNsbExxONxFBcXC+k/ODiIra0trK+vIxQKoaCgAG63G2q1WuRebG5uYn9/HwcHB8jPz4fX60VDQwMaGhrgcrnE0JHTghNhAMlkEnt7e/D7/bDb7XC5XMIm4g+L/j9P/f2oWo0cUuFwGMPDw3j8+DHa29tx+fJlNDY2wmKxIB6Pi4pKIuz8/HzYbDbBFLRarbBziQmQX0FOVDkPTJZqT8bHx/GHP/wBAwMD8Pv9aG5uxs2bN3Ht2jWkUin09vZiY2MDHo8HdXV1cLvdWF5exvj4ODY3N+H3+1FcXCwyBt966y00NjZib29P5ACQrU/1/6TVnSacCAPw+/3Y2dnB7u6uqL+mkAqXTOS04V2Dz7pDkGfpkd2/vLwMk8mE6urqjNFovK06rV00GsXu7i729vZEUhCvgecaw+sifn5OnuEpZ+UByAhdKnWTVsJxAmNnZwdjY2N4+PAhpqenEYlEUFhYiAsXLqCtrQ2tra1wuVxYXl7G7u4u4vE4TCYT3G43vF4vDAYDIpEI/H4/AoFAxjRqs9kMg8FwpGktMefTmnJ9Igxge3tb2FZ6vV44RojoKdOKKtb4oMezDrp3lUoFn8+HR48eYWdnB1VVVWhoaEBpaamQ6LJvJJVKYWNjA+vr6wAOa9C5BkCQN+PrYKhyqJdCkfx1ulaeAq70t5wiLieRAUAkEsHo6Cju3buHr7/+GqFQCBcuXEBXVxc6OztRWVkJo9GIcDiMpaUl0QDEbrfDbrfDYDAICb63t4fd3V1xjSSkNBrNsY0+5KnAp2UvnwgDINtUnu4KIOOBKoWqzrL0BzKl8vb2NiYmJgAAjY2NqKiogNVqzegNACAjWWhxcRErKyvwer2ora2F1WoVG5cSq143MyWi51OieciXah/kkCj/HOU+8ExRuYAKOAzvDQ8P4/79+yJCUlpaitLSUnR2dqKmpgZFRUXCBB0cHER3dzc0Gg1KSkpQVlYmuvdqNBro9Xrho5FLsJXWVK5hOW1awImZAIlEAmazGUaj8Qj35n+fNxuVx//9fj+Wl5dRXFwMr9eLgoICMYiSt1Mj5knTlJeWllBeXo7GxkbY7XbBAGj9Xvc68hJm+TV61kTksg+ITAFag+NqRfb398X6PXz4EA8fPkQymYTb7UZ7ezuam5tRXV0Nm82W0RpsenoaY2NjsNlsKC0tRWFhoWCwOp0OFosFOTk5IvuSrgt42o2JXlO69tOGEzMB4vE47Hb7keaI3K6Tufp5AEm2vb097OzsIBgMoqioKEMFJeKRiX9oaAiPHz/G4uIifvGLX6ClpQV2u12opW9KqzQiWt7nkSc98c9xU4ASxWKxmNBkyMchD+NYXV3Fw4cP8eWXX2J9fR1GoxFdXV24fPkyampq4HQ6M/L5ySHq8/mwubmJkpISFBYWirb0wGGrsIKCApFOvLe3l+GzOouNVU6EAayvryMWi8HpdMJisSjacYTzULHGIavApGry7D0ezybMzs7iwYMHWFxcRG5urlBz+TxFObpCr70OENHQ85WJn3+OfsvNT8hfQsSfSCSwsbGBubk5DA8PY2JiAsFgEC6XCw0NDbh8+TLa2tpgt9uPaJWpVApra2sIBoPIycmBw+GA0+nM8NybzWYUFBSIvn7hcFj4Co679tPOEE6EAaytrUGn06GgoECErOSFkpsqnIdeAITc3FyYTCZYLBbRGDUWi4mYvlwZSXbugwcPcHBwgKqqKni93oxwIJCpQnMietXgjIwTONdQ5Guj606lUqITEveDHBwcYHNzE1988QXu37+PhYUF5Ofno6urC62trWhoaBDNPPg4evI/LS0tYWBgAHt7e3A6nfB4PBmMAjhkAE6nE6FQCLu7uwiFQohEItDpdEf2ppIJcBpxIgxgY2MDbrcbdrsdFosloyGFvHDcFgRO70J+H2iDUyswjUYjRqPFYjH09PSguLgYpaWlGd9bXFzE119/jVu3bon6gKtXrwqvtrxeb4Kayp8pJ2IenZAlPpDpAKTqyHQ6Db/fj+HhYfT29mJoaAiBQABVVVWoq6sTHn6XyyX8J+Q85M7QhYUFPHjwAJFIBF6vFyUlJXA4HBkMND8/Hw6HA7Ozs2K6D5UMn1WcmA/AZrPBarWK+D8RgFK45zyBhk1oNBq43W5cvHgRjx49Qnd3N6qqqlBaWgqTyQS9Xo+cnBw8efIEf/EXf4FAIICysjK8//77eOutt2Cz2cSGB5Ah+V/32tK5KSpBYUCl8CTXVohgqYlHbm4ufD4fRkdHRUEONfR8//330draisLCQtGmKx6Pi75+st9gcXERAwMD8Hq9KCsrE34XDqPRKLpVRyIRRCIR0XuRrves4UQYwM7ODhKJBEwmEwwGQ4YzCHh2x9+zDm5zejwe/OxnP0M0GsVXX32F3/zmN3jw4AFMJpNIE45GoyguLsbly5fR0NCAzs5OuFwuxbCT7Gnnf9NnXyW4M5ALAZ4IpNRaKy8vDzs7O7h37x56enowNDSEaDSKyspKNDY2orm5GXV1dULq073xngrcjAqFQggEAkgkErDb7fB4PEeIHzhMtSan9f7+Pvb39zNafJ9FLfVEGMDu7i6SyST0er3okko4rfHSHwpODMAhcZrNZrS3t2NtbQ0LCwuYmJjAwsICdDodDg4OEIlE0Nraip/+9Kdoa2tDRUUFbDbb9xI1rffrrAzkmgh35FH7Lp4BypOEotEoIpEIxsfH8c0336C/vx9bW1tobGzE9evXcfHiRVRWVmYwUt4CnCIJdM/hcBgzMzMIhUKwWCwoKipCYWFhRuiU1kar1QrGEIvFMkaO8/s6SzgRBkCtreQMP+74USoNPsvgPgAa7JGXl4ecnBy0t7fDaDRidXVV9KSLxWKIRCKorKwUjSv1er04Bu+twM9BqjaXsq+6PZWcAsx7PtAPNevg+yMQCGBiYgL37t3D6Ogotre34XA4cPPmTbS0tKCurg4FBQXCN0D7hmL2arVaNEGltdna2sLjx4+FCVVaWgqHw5Ex/ZfOr1arhVlFLdV57P8sMoIT2Rm8L7vspeYx7vMMHhp1u92w2WzY29sTaid1/3U4HPB6vRlqPYXHnuccSn+/KnCC54RGTlAiwv39fWxuborpUYODgwiHwyKp5/r16ygrKxMhZSBzHiBPOab8AYLf78fY2BgSiQSqq6tRVFQEq9WqWDVJZoM8uEW+p7OEE2EAPLmDbzzu9JFDRPz3WQQRAEkv2oCU8afT6URIUJaUfF2eRfg8sYbUYfr7VUImUroWeW4BAFEOfffuXTx+/BgbGxvwer3o7OxEV1cXKioqYLfboVarEY1GM1p80f3Sa9TOm5taoVAIa2trsFqtcDqdcDgcMBgMYu15xiWBmIkSsZ+1PXoiDICaMip1R6WF5ZOAgLPpYFEClzZ8gz2LsGmj7u3tYXV1VVSqmUwmFBYWipZhdHylHIuXvVZuX/Pr5sNJ+OsyYckOPtoPe3t7WFlZwcTEBIaHhzE1NYVkMimantL4eMrTp2lKcu4A/XDfilqtRjweh8/nw8rKChKJBPLz8+F2u4WTj4co6ZhqtVrE/MlXoWQCnKU9eiIMIBKJiCaWnAHI0k1+/Swt7LMg5z1QejBBduKlUikEg0HMz8/jq6++wvDwMPb391FZWYl33nkHTU1N8Hq9yMvLE0T7Y15rIpHIkNrA085DsplHPgqKwyt1fI7H45iensb9+/fx9ddfw+/3w2Yzo72qFEZ3OfKL61HReAHWfA1bhyDmHz/Ewv7RzFFX00/R4T0MrabjGxi7O4TJhBua1DoWFhZgNBpFhx9ilMdJeKPRKBqIyq3AeRers4IT9wGcpcX6MUAEH4vFABythyf7k6QapQgvLi7iu+++w61btzA6OiqGrpAmRXkBZFrIIcEXBX2fe+u52s2lO5BZKEO9C2T1mvrpjYyMoKenBysrK9BqtWivd2Dk33yM/2r4Cv7GhzmYvvM/4D/8d/Pxjz//BP/kqv2P5/Lh7n/69/H/a/wHuGzPvKdOzwdoLTqAKjmF//Ef/l8R+Xf+Htzr/0/8Z/9zEhfb1XA6nSgtLYXb7c4YSc97UBD4UBHZCUifVcpkPK04MR/AsyT6eQsBcpCTiVeaceLifgHajGq1GouLi7h37x4GBgbg8/kAQBSreDwe0T+QQMeR04pfBEqDRXkrd3qOnNgpyYk0AQr5JZNJrK+v486dO3j06BGmp6dhtVpx/XonUrf/cwT+42+w8n+4BMMf4/r/+Zf/CPV/9i/ws4V/ggsAcnKWMXqvFn/7f/pz/AdVmdcpcgtu/zf47t/9F/j//ltmzM5W48KvPsDQ4g38rbdbROo0+QrkvBT+fGj9jvMBnKW9e6LxIaU0VW4zyvb/eQFXp7l6zCviiEmQlPL7/ZiZmUEwGBTHoSYYy8vLGbXzBO4UfBkmwImcVGJyTNJ8R5poFI/HodFoRLdcCvGlUilsbW2hv78fT548weTkJGKxGK5evYrGxka0thrRu/xP8ed/5ynxA4D9g38bf2fpP0PvzD/BhSraI20oKz16nbSfIvFdmP7YHdnv9yOaSuAAang8HsWu1McRMid+vqb8WZ0Vf8CJMQB5gZXiwvT6eQOX7koFM1yyHhwcCE/2zs6OUK9JkkWjUfh8PoRCIcRisSMDRwgv6mPhti5pEyQ5ZUKSGQ1dezQaxdraGiYnJ/H48WOMjY0BAMrLy/Huu++ipaXlMNT33+RmHOPw+gEgD5nR4jyoFRry0P1a3vkPYP4P/zl+Z3gPgb5/g+H1Mly7fJj5x7Ujft3yWsn7USmUSt87C3v3xBiAvEC8NRTfWN9nLpxVHFe7Tw5BkqBra2u4f/8+JicnoVKpRCbgwcGBKFel2XZOp1P0pP+h68kJmxgOSX2S/PR8aewW7/zk9/vR39+P7u5uDA0N4eDgAG63G83NzWhsbER5eTkKCgoyvPecIH1f/Bv85c1/D/+o/I8XNDODbgC/TISxNNqHsY0oLBVXcaEmHxpaR/Pb+Cf/LBf/l//0n+Hxth6Xf34B7RVlKC4uzqj7JyefHI6m+6bnchwjPUs4EQagVANOm0lWo36Io+qsgIiNF84cHBxgf38fw8PDuHv3Lg4ODnDlyhXRYu3g4ADBYBB+vx9arRZDQ0NwuVyiQxAxiZf1WssMXB68SY5eOZ13f38fi4uLGB0dRW9vLxYXF5FMJlFWVibCe+Xl5WK8FoUM0+k01oe+xrgvhsVP/mv8s8EP8L/85T9AhrlfNoH/9p1GBOr+PVxxr+Ph3/2r6L3w36P7d/8AdX/MDNY4L6Ck8wZ8/f0oMhuF+k+tvoDMCIBM5OT1f9a8yrOi/gMnxAC0Wi1yc3OFA4h7prM4hKwdkToPHA6cCIVCGBkZwf379zEyMoKOjg688847sNlsYsBqKBTC0tISuru78fjxY3i9XlRUVMBkMon1p/TYl1FZeQ8/2Wzj+fz0WiqVwtLSEn7/+9/jyZMn2NnZQWlpKW7evInGxkaRzUd+gkQigWg0KvwKgelvcKsvBxuzOzBp9xAMRgH7H2fsmWrxZ3/rT9H2v/8t3nL90Q74p/8n/L9+3oZ/519cxuB/1AQAwufg8/lE6jD1A6Rz0ihxHt0gUCIRaWBnPWP1RBgAtasmL7BcDchxFrjoi0C2PYkwKYEFgCCkr776ClNTU3C5XGhpaUFXV5eQnCrVYdlsaWkpFhcX0dvbi9nZWczNzaGqqkr0YXhZX4ts1/NSYwBi3HZubi52d3exsrKC0dFRjIyMYHJyEul0Gs3NzWhpacHFixfh9Xoz2sPxBCMixOZ/+7/An/9ZLoA/R3T0/45ftP9tBEd/jT8rBlD4Nv63/8XbmRepqcXf+8f/EP+rP3+M+f+oCUWxGBYWFrC7uwudTofCwkI4HI6MTr5c+iuZSrFYDCqVSpg1SvUW9N2zINBOhAEYjUYxTSUejwvbkW/Gs6RGvQiUnE/0Gg353N7exsjICO7duweDwYCf/OQnuHDhAlwuV8axtFotTCYTSkpKYDKZsLy8jOHhYTgcDhHyepn1JfOBO/14frxKpRJaHnDYAObJkyf4wx/+gMnJSZSUlODChQt49913UVtbC4fDccTOpqgFEZl8rbrGf4h//Hf/N/jzL+bxZ/+g/Nhr1VS243o8hRSA+fl5DA4OitAoTf057h75bwBCIwEgfBpyLYv8N3dcnkacOAPg8e5npf6eBW76PCCJL3f9pSq23d1dfP7553j8+DGsVitaWlpw7do1lJWVZRyHTCuVSoX6+npcu3YN4+PjePz4MWpqauDxeKDX6zN8Ac8LYlBcc5MLeCKRCBYXFzE4OIjR0VHMz88jJydHTNBpbGxETU2NmAlJ4UKey39wcICEfxyPhw/QfLMFTlY1CGigzgPif/QjJTZH0OsrwuWGTIJOzPbjXl4XcgFMzc1hYGAAubm5qKioyGj5TdfAbXs6F61NPB5HNBoVDI4YgLx2p5XYlXAiaXp6vV7kY1P5K99Q59n7T6DkGbJ/c3NzkUgkMDc3hzt37mBubg5NTU24ceMGGhsbYTQaBZNMpVIZaaqVlZV46623oNFoMDk5iaWlJQSDwWMbcT4vuGSm8t10Oo1gMIjp6Wk8ePAAn332Ge7fv4/t7W3U19fjT//0T/Hhhx+is7MzYyAs9Tzk3vdDJjCN/88v/y7+x8HMPH/4v8Rf/ssSfHjh0A243/PP8e7f+h8wmOBX6McX//P/G9f/9tsoS6exvLyM2dlZ6PV60fKbugXxgTRKRJ1OpwUDIIYsl1yfRSF1IhoA1bnzllA8I+28OQS5A47uXW6PlUwmce/ePdy9exeBQAAlJSW4fPky6uvrRQUhxfnlTVxQUID6+noUFBRgdnYWa2trWF1dhdlszhjAcVxmG10X/58nInEimJ2dRV9fHx4/foyVlRWoVCq0t7ejsbERbW1tqK6uFgKAQHUBPCJBqrPG/gH+k//2/4Fr776H0X/6v8PfaXQivdWN/+7//M8w9vd/i0cXDo9h/sl/gv/ecxFvvbOE/+r/+G+hJL2AT/7L/xj/k+Vf4Mnfq0IoFEQwGEQ0GoXJZILD4ciYwEy/+fRk2ezgo+p4YxEC91mcFcF1IgwgPz8farUakUhEeHmPw2lnBHJRD/3N31f6DCes2B+dVw8ePMDAwADsdjs6OjrQ0NCAwsJCAE9HT/FWWlyFLSgoQG1tLVZXV4UvwOVyid6CwNMNzImeV+2RZsalPpkQu7u7WF1dxePHjzEwMID5+XlotVo0NDSI8F5RUVFGpx1+33xyMfeDaDQGNPz7n2H9vcf4/NbX+PrrQajyq/GPfjuF95pc0NAaq2vw9z9awrXe3+Oz336NWyjClX/eg//bhRqk90OYnpnB3t4ezGazCIfK8yZ5XoMSQ6ScinQ6Da1WK8wA/izPCuETToQBUNcWv9+PcDic8R73wALI4MavQzN42QdKhMEJiKv0PCOOwk7c9uTnnZubw+3btzEwMIB4PI5Lly7h2rVrcDqd4jMklahMlbQsTswXL15EKpXCF198gVAohLq6OtjtdhiNRnEd3AZOpVLY398XoULS1sjWp2dE/fnu3LkjPPwNDQ1oaWlBS0sLPB4P8vPzRVyfpLs8yosTorwP9JVX8FfKL+GXUrYod0Yix4Cy9r+B/3X738jwR4xOHU4H2t/fR3V1NcrKymC32zOSrbjJxbUv7pANh8PY2tpCKpWCwWBAfn6+8KPwezhLTODEGIBGo0EgEEA4HFasqZYJ/rQ6A5VyxoHMvgfA0YQT2nx7e3sYHx/HwMAA0uk0qqur0dzcjMrKSuh0OnEskqKUgKOUslpeXo5QKIRbt25hc3MT8/PzcLlcKC0tPWJy8LWXbWQirHA4jOnpafT392NoaAgrKyswmUwoKyvDxYsX0djYiJKSElFhR8SvpCYred35/8dJV3mPcCcqXafP58PU1BRyc3NRVlYGt9stuv7Ix+FmiLz3dnd34fP5RK8Fo9GYMRPgLKn+hBNhAE6nE/F4HIFAAKFQSBAB37Rc5Tzt4BmNtLl4UwylYZ3pdBo+n0+Ux25ubqKhoQFXr15FVVVVBvGT5JYr+2QVm5peVlRUYGlpCTMzMygoKIDT6RSdhrkTFoAgXs5kgEN1eHR0FJ9++ik+/fRT6PV6tLS04MaNG2hvbxdSPycnR7QvI0chrx6Ur5WgxPCfpSXwaARlIiYSCWg0GoRCIfh8PrhcLthsNjGNWtYo6fs8r4E/l93dXdFshRqE8uajZ7G0/UQYQFFREdbXD5sx0ILyTcalwWldVN7a7Dgthtu+XHUn9Xt2dhYff/wxtra2UFVVJabc8NCVzCTlWXlkXtC5HA4HWltbxSBMq9WKpqamjEYXvEyYD23Jzc0V6cfDw8NC6ldUVKC6uhodHR1obGyE1+s9klvPj6Pk83geyNqJLPm53wM4DNttb29jc3MTsVgMRqMRTqdTZP7J9QU8CsXXlxAOh+H3+3FwcACDwQCTyXRkKtBxjOy04kQYgMfjwc7ODra3tzMYgJwAAxx96KcBSs4z+QdAhieZIiIajQapVAo+n08k+1RUVODKlSu4cOECSkpKjpyLMwFum1M4kBqHAIc5GG1tbQgGg/jkk08wMzODra0t0TaMGBEv7CGJGo/Hsbi4iM8//xyPHj3C1tYWampq8Mtf/hJNTU0oLi4WsXFiPAD+6MzTZJg9SgT7omvMNQC5alKtViMUCmFqagrr6+vIy8tDQUEBXC6XSJUmk0TOPTjOLNvd3YXf74fVahUzLZQE1FlyBp4YA5ifnz9iAiiFo7jKd1pBREQ5D1wVTiaTovsPhfDW19fxu9/9DoODg/B6vWhtbRUZc0Bmrj2Q2blGDksRIyJotVqUlZWhrKwMarUam5ubGB8fh8lkQkVFhbgGrn0lk0ksLS3h7t276OnpwcbGBgwGA9577z10dHSgq6tLOHbpnPQ9Mk+U2my/7DPljJX+p+PxBKq9vT0MDAxgfX0dBQUFKC0tFQlQtD6yNsJDfbJNH4lEsLOzA4fDAaPRmKH+y9d3VnBiPgC9Xi/mq9F4JS4RZDXstHFV2XnFPdbc1iYpTXnzOzs7GBsbw/379xGLxXDlyhV0dHSguLhY2P2kLcjEJYM78bi0tFgsYv5dIBDA0NAQHA4HCgsLxaQmSnuNx+NYWlrC4OAgbt++jampKZSWlqKtrQ1vvfUWamtrM9Jp6X6JkISHHj/cSy5riUqMhPsqdnZ2MDk5ib29PTQ0NKC4uFiUS1OqsexX4HkA8rXSODC1Wi2yWeW15s9fyYl92nAiDMBsNsNgMEClUiEajWJ3dzejig04GpM+TaANSATAHXTcAUbZejSyKp1Oi2SfZDKJiooKXLhwAdXV1aKCj6vQfGQ4nZfAC3W4bUufcbvduH79Oh4+fIiBgQG4XC7U1NRk5AUsLCygp6cHfX19IoPu3XffRWdnpyAonU4niIITBKV4H1d6/DLPVU7Skc0rUv2J0W5vb2NrawsmkwmlpaUoKCiASqUS5oz8PPiaKUn/aDQqHIB8nWRfxFnCiVUDkhOFHpTD4chgAKdZ5SfI/gvuaAKetqgmibu4uCj64VVUVKCjowNVVVUZjTF4qEp2mCr5T7hPgBOhzWZDZ2cn1tfXMTIygtXVVSwtLYnrWVhYwMjICHp7e7G6ugoAaGhowJUrV9DY2Ai32y0IOxqNZjg9+b3T35z5/BANQK5bkJ3HOTmHnZAWFxexuLiIVCoFm82GkpIS0fWHXytfG7lrEZ0nkUhge3sb+/v7yMvLEyHA48KFZwknwgDUajXy8/NRWFiIdPowR7uoqOiId5vjtC0yXS/vaANkEipPVqHGHiMjI8jNzcXVq1fR2dkpiF+Owx8XNeHg0QDZrNLpdKitrcXMzAx6e3sRjUYxMTGBUCiE3d1d3L9/H4uLi0in00ITaW9vR2VlpajX58ciqUqaAPkDyAnJfQCEF32WSnuCfA48ph+NRtHX14fx8XFYLBaUl5dnDPykwiVyjJK5IhcDEUKhEBYWFhCNRmGxWGC328VUa3q2MpM7KzgRBqBSqZCfn4+SkhLs7+9jaWlJjL6WJdpphOyMUnI2kXROp9MIBALo6+tDd3c3dDod6urq0NDQAK/Xm+GZ5g5EOg8dU8keVnKqApnZldXV1bh06RLm5+fx8OFD4dkOhUIoLCxEUVERmpqa0NraKpJ6AGSU/tJ98G66POuPq9Py/y8C2TmpFMcHDtX1yclJrK+vw+PxoKysTOT+K5kQXCNQylHY2dnB3NycGMXmdDpFP4WzjhPrCWg2m1FeXo6pqSksLCzA7/dnzG2T0zFPG/hGpw0lEwFw2BuPVO2VlRW8/fbbeOeddwTx0+fljUqvc4IAMouJ6H/gKJOg63E4HLhw4QJmZ2fx4MEDHBwcoLS0FNevX0d7e7uYl2c2m8Wz4B2ASeLz2nied8DP/UOTurg2I98HZyqhUAgrKyuIRCIoKSmB1+uF0WgUzj+57yQ3B5RCkzs7O5idnUUikUBhYSFcLhfMZvOREOBp01KfByfGAIxGI4qKijA9PY3l5WUEg0HF5A7CaVpcLhWphZQSQQDA6Ogofve738Hn86GhoQFdXV1oaGiAyWQCgCO99dLptCigote4KSCnVXNNRDYV/H4/RkdHcefOHfT19WF9fR1er1f052tpaRGNRAk89Mg9/jIjktuQy4zwZZ4jfYeP5OZrm04fliKvrq5if38fWq0WTqcTVqtVXBvPkZDtflpLmbGGw2EsLy9DrVbDbrfDZrMJhsKzWGUt7CyYBCeWhmcwGOByuZCbmwufz4fd3d2MiavHqbWnRRvgMXS5tVVOTg5isRhWVlZE6azBYMDbb7+N1tZWEVZLJpNijBap/hQ5oc40wFMNgTNQHtaS14/64lGDkIcPH2J7exs2mw3FxcUoKytDZWVlht0s34tGo8ko6+aSGMi0qzmx/tB8eW730zpzab68vCyaj/A0Z/m5kH9CZl68RJ0QiUTg8/mQTqdhtVqRn59/RJvi13fa81Y4TkwD0Ov1cLvdMBqNIhQYiURE1hpfYM7hf6gn+WVAD5QzJzlUxCUHgAynHREdl8IrKyv46KOPMDw8jNLSUnR1daGjo0Mk+/CGqXwYCCdC7uQj8I1MjIOXrO7s7Igx26Ojo4jH46ivr0dbWxtSqRQWFhawsrKCUCgkcunldeDm2bMckMdl1L0ouDeeEz7tCe4EnJubw9TUFEwmk3D+8bRkJWbEQ7ZcsyLw8J/JZMpYE35/3HSgv0+7FnBiDECr1Qp1SqvVIhQKYWNjA3l5ecLRJC/g6/C0ylKVEzm/Ds4c+Oe4WqnRaJBOpxEKhTA8PIw7d+4gNzcX165dE2m+9Hna6HJqLw8d8vRVpesmUwQ43MTr6+uYnp5GT08Ppqam4PP5UFlZicuXL6O0tBTRaBT/6l/9K2xvb2NpaQlutxter1dcN92zTPxyVZ0s6X+s58U9/kqaRCwWw9LSElZWVlBeXo7y8vKM8LLMwIkhU+iQzzmkLE2/349QKAS1Wg2TySR6WRDkPXlafVbH4UQHg+j1ejidThQWFiIQCGBiYgJWqzWjOywtpuxIexWQQ23cQ0ySh3+WEwbvcMM3RTwex507d/Ddd98hFAqhvb0db731FqqqqjKKgri5QOoq+QIoW4+YBW9jzSUkbdRYLIbZ2Vl88cUX6Onpwf7+PhwOB95//300NTWhrq4OTqcTfr8fbrcbW1tbmJiYgNlshs1mg9Vqzbg/+Z6UngmXiD/0mfGQqnwsbrtTfcn+/j4KCgpQVFSUkfbLnaiyX4QzA2Joe3t7mJ6extbWFgwGg1iL59EA+OunGSc6G1Cr1cLj8aCyshKBQACjo6Oor69HcXGx4udfNXfl6qWSuq/0sLkkkJ1/VOF37949zM7Oory8XHjaeZIKcDQZhb/GK/1kG5tv5Hg8js3NTUxNTYnqvXA4jOLiYjQ1NeHSpUuoqKiA3X44Yddut6Ompgbb29uYn5+H0WhEbW0tDAaD0ERedP1/TALgjUpkM8jn82Fubk6MR3M4HEdafhNkZs2jAHzNqRfD5uYmLBYL3G73kYQ1JWd1VgN4TqhUKni9XjQ1NeHLL7/EyMgI3n333WM9xa96YUkDkLPbZOkm28TcEcQ94zTzvq+vD1qtFh988AEuXbqUofHIm1CewAs8LbIhlZVCcHJYanV1FV9//TXu37+P2dlZFBcX4+rVq7h48SJqamrgdDqh1WpFfkFOTg7a2tqwt7eH3/zmNwCAS5cuwWq1ZowcOy7+ftKgtSZfAPk46F4HBgYQDodhsVjgcDhE6JJfIzfnuPNQab+Fw2GMjo5ie3sbZWWHI8R4NSE/LuEs2P0cJ8oA0uk0HA4Hqqurcfv2bSwvL4uIAKVaKkUCXhW4d1i2gTlTUNIOOOMAgK2tLdy7dw8PHjxAfn4+mpqa0N7ejpKSkgwbnx9HtlfpdX5eisHT92KxGDY3NzExMYGxsTGMj48jFouhuroa7e3tQuNwOp1HQmM5OTkoLS0VKm8gEMDk5KTwfNN5+CZ/HRud7p3vic3NTTEf0ev1wu12fy8DoN/E6IFMM2NnZwdra2sAgMLCQtFL4KwQ9/PgRBgALXoymYTRaBRVWnNzc9jc3MTGxgZKS0szRla9Dq5KtrzsC1DKwydwBx69vr29jdHRUTx48ABzc3N477338M4774iSXFoLcvCpVKoMjzSdj6u+Sj6Gvb09rK+vY2BgAH/4wx9E59/GxkZcvHgRDQ0NGY05ub+ArtdgMKC0tBQVFRWYm5vD6OgoHA4HvF4vLBbL99r+JwliikrZetvb21heXkZJSQmqqqrgdDqPLdeVQeufSqXEjMDd3V1sbm5id3cXDocDRUVFsFqtGYzkON8H/33azYETSwWmh5mXlwez2YySkhIsLy+LwZFUX84ZAH33VYGIXGn0NdcMuBeeEyh95smTJ/joo48QiUTQ2dmJ69evo6GhIcN7zhnKs+LmMhMCDgl5Y2MDU1NTePToESYnJ8XcvY6ODjQ1NaGqqkoMBuXn4GYOHc9ms+HatWtQqVSYmJgQo8f0er1oFPI6WrVxzYokdTweh9/vx/r6OmKxmMhloK4/8lrK+QpKfpZYLIapqSnMz89Do9HA6XSiqKgoI5/gWYR9ljSEE9MAgKeLr9VqUVlZifX1daysrECv16O9vR1WqzXjO69DA6Bzc/Wct68miS/7Acgj7/P50Nvbi56eHly7dg3vvfce2traYLPZRHyZvPXy/SkxADo/cEgQ4XA4w9H3+PFj7O7uor6+Hl1dXbh69Sq8Xm9GDr8MWcMyGAzo6upCIBBAT0+PqKzLz88XnYhfxybnzIoIOBgMip6Jer0eRUVFKCoqygj9KTlSZYcyN9ei0SjGxsYwPz8Pi8WCkpISuN3ujKQo+boIXAN4XYLrx8SJMADahLToarUa1dXV8Pl8GBwcRDweh8/ng8fjyUiCeV04TiIT8fNQJc80Gx4exldffYXp6WnU1dXhypUraGtrE04/jUaDeDyO/f39jMw63smHNwyVJ/kkEgn09vbiiy++wOrqKlKpFNxut6jeq6qqynBa0SxGnU6Xsaa0WYm41Go1PB4PKioq4HK5sLOzg97eXhEWpGvi338V4LUVhK2tLTx48ADb29ti+rHb7c4Y+iEnJPHQKjcpePhvdHQUy8vLqKmpQUVFRYb3X5b+Zy30x3EiqcA8S47gdrtRXl6O3Nxc+P1+rK6uihbMwOtpuSyndSpl/wGZ3WSBpwkpfX19ePDgAQDg6tWrYjgGrwmg48gahZKKSSZRKBTC3NwcHjx4gEePHmF8fByhUAg2mw0XLlzAO++8g87OTpSWlh7pHkzajMzU+P0SPB4PGhsbodFoMD4+joWFhYwWbvSdVwWu+hMoZyGRSKC8vFyo6rItzucREKioiUdB4vE41tbWsLa2hng8juLiYlFMBCin/p5lnGgiEHFn6rPudrtRWlqK1dVVzMzMiN5rJpPpiDf+VYKr9jITIsLn9vzm5ibu3r2Lvr4+xGIx1NbW4t1334XX6xWqNhGkSqUSkp9y/ylrUKnVV25uLnp6enDnzh08efIEOTk5qKysRENDAxoaGlBeXi78J0BmVIKOyQd80PUrqaoOhwPXr1/H7u6umPbT0NAAg8FwpBvuqwA/Xzp9WBS1vb2NYDCIsrIyVFRUHBn2KTtsZd8HN3/S6TQWFxcxOTmJeDwOm80mOgnxSA13vL6OcOirxIkwAN6iint2HQ4HOjo6kJubi4mJCRiNRpSVlUGv17+22muuNiqFJVWqp4k5iURCDMbs6emB3+8XefYVFRXQ6/UZ1WMAMgiQaxS8JuLg4AB7e3vY3t7G9PQ07t27h4mJCRwcHKCiogJXr15FfX09SktLRUIRnUNOFOL3xDUQ2czIzc1Ffn4+GhoaMDIygr6+PiwvL2NqagpWqxVutzvjWK+CMfNIDGlZW1tbUKvVIvOPHHUyccumFd0jkGn/T0xMYGBgAHl5eSgvL0dJSQlsNluGdiavlcxguD/ltDOFE+sIRAvKN5/JZMLVq1eRSCTw61//GhqNBlevXoXVahUpna9qs9G5gMwwGXC0Dp1eC4fDmJqawuDgIGZnZ1FUVISf/vSnwoNO4MRPxE7ET5Kb2/67u7uYnp7GrVu30NfXh0AggIKCAnz44Ydob29HfX29GPTJIV8n73rDU2h5tiNpIFqtFmq1WkwOcrlc2NrawuDgoJCKSn30TxJE1BqNBvv7+5icnMTm5iacTieKi4szNB/O/OR7pfWgzkb0DBOJhCiUqq+vR2NjI4qLi2EwGMR3+Z7luQPymr8Ok/UkcGJhQLJFgacLqNFoUFpaipKSEqhUKgQCASwvL8NqtQqVk8fkueTkUo1LUzk77kXAk124A1CWKmRLbm5u4t69exgbG4PX68WFCxfQ1NSUMcOPYs5AZqEPgQp9gMMNPzs7i/7+fvT392NhYQGpVArNzc1obGxER0cHysrKMqIl/LppreV74P4KpWdD5yZUVVXh8uXLuH//PoaGhtDa2orS0lJxXt5gU47wcDPvWeYGPz/fG7J/gr6zv7+PgYEBrK6uoqioCCUlJRlhTtnPpKTxcH9CNBrFwsICNjc3cXBwAI/Hg9LSUmH70zHoO0o//HNngfiBE+wHoPSQqdClsLBQ2MuTk5NYW1sTXWa55gAc9cQTlJw+L3udwFH7kzYDJeBsbGyI/npbW1vo6urCjRs34Ha7RdNP3i9fThZSOs/CwgLu37+PL7/8Evfu3UM8HkdTUxM+/PBDfPjhh2hpaRFESOsgD1nhpgsnfnnDEpSyDsvKynDjxg2YzWasrKxgfn4e6+vrwosej8eFX4FLSron+TXZdlYCr7fgz5v2SigUwsTEBAKBAIqLi1FcXCycf9zvcZyHXj4/9WaIRCIoLCxEeXk53G53hlZFa8M1Nzn8KzOE57nXNxknlgegZJsSXC4XLl++jN7eXty7dw9OpxNtbW0AMhtt7O/vZ2TLyZBj9C9znVzqcI8xbQyy03t6enD37l0AQEtLCy5cuACv1ytm4nHthEs5Ikxe27+8vIw7d+5gYGAACwsL0Ol0ePvtt1FbW6s43ZaHVeX7lIlbhrxhqa02H5BhMBhQXl6OqqoqrKysYGFhAUNDQ7BarXA6naLghq5Dtn9lP4esrSnFy5UIia5tb28Pq6urYtyXnKWndA2yZkLPkzSG+fl53LlzB6lUCg0NDaIbs7xOx63ts147zTgRBiBXvMmgltXElWdmZrC5uQmXy5URg+aq53HcXSbiFwU3AzhREPb29sTgjOnpabS0tIgBngaDAcFgEDk5OcLTDyBDVSakUinh6BsYGMDXX3+Nubk56HQ6NDQ04P3330dVVRUcDoe4Xy5xj/N2cxz3nswk6Ng8N8BsNqOhoQHr6+tYX1/H0NAQamtrYTabodPpkE6nhZampGHwJqFyKI8LBFlrkRkCmUW0NpT4w5t+8M8r1Wnw9SOTbH5+HjMzM2hsbER9fb3ohsQbmx63rmcZJxoG5C2YOVMwGAyorKxEeXk5TCYT5ubmcPfuXVy7dg1erzdDvafEFZ6AI1fw/RDi5w47pZ5+k5OT+P3vf4/FxUV4vV7Rzpucfnl5eUgkEmL6EYXi5IjC/Pw8BgYG8OjRI9Gfn0ZsNzU1ZQwHoRCiUqXgszbocUyB+024eiurr83Nzdjf38evfvUrjI+PY2VlBUVFRRnDNmWi40Qta378/NwZKdvntP7AoZYxODiI8fFxFBQUoKamBh6PJyNNl9ZE1iJSqRTi8Tjy8vKQm5sLrVYrytAXFxdhMBjg9XozbP9nMdTzgBNzAnIODWTOacvJORxfVVtbiwsXLmBlZQV3794VFVn0PepIe1x47oc6Y2TJDyAjlr6+vo6enh4MDQ3Bbrejo6MDzc3NKCoqEpuduumQvSzfs9/vx+LiIkZGRjA2NoaZmRnk5OSgpaUFra2taGxsFCO7+HXxe5XTXV8G3LvNCZYzAa/Xi3A4jPz8fGxsbGBxcVG03NLr9UfGnMsOWyW1/jithRMt/0w0GhU+iKamJuEElTsGy8/+uH2xurqKBw8ewO/3CzPH7XYLs+asqfQvihNjAMBRD6/c8qq+vh5/9a/+VfzLf/kv8eTJE9TX16O8vByFhYXQ6XRHNgc/vqyGvigH58eNRCKIxWIZ8+A3Nzfx+9//Ht3d3YjH42hpacH7778vmplQkg+FPJWk2s7ODh49eoRbt25hbW0NOTk5qKqqEtV7Xq9XaBKULkzH4FWDsg+AJPqLPAuemHScjZ6bm4vCwkLU1NQgHo9jbm4OVqsVdrtdPBO+3hQhIWZN1630TGQHG78m7h8JBoMIBAIZLbp50pPSdfPQHIU3gUNmMjc3h8ePH8Nut+PSpUuoq6sTDVLo3C+ynmcNJ8IAZMeckmQADn0BjY2NqK6uxtTUFKamptDb24t3331XDNPkn+e2/o/1wPi1kVTY29vDyMgIuru7sbe3h+bmZrS2tqKsrCyjBJXb56R2Ak8HTQwPD2N4eFgUQJWWlqK9vR2NjY0oKyvLGAZKxAAgQzrza/wxwO1kOja33fPz89HR0YH9/X1MTExAr9ejqakpw2HGk51khsKfD79+zry4YCCBABym/dKADposZbPZjg1p8nAwzwfIyclBNBrFyMgIxsfHsb+/D7vdjurqalE7cVw69nnDiTEAWf3jnJZvZqvVira2NmxubmJubg737t1Dc3PzkTFicgKGHDp6UQLh16fVaoXnPxwOY3BwEE+ePMHKygrq6+vx05/+FI2NjRnET06vRCKRMThzf38fIyMjuHPnDu7cuYODgwNUVVWJ6Tv19fWiMzCBb2IeTiOJRxrTD2F+3FMvlz7TeckT39nZiWAwiLt370Kr1cLv92eU4B6n9svPgD8zOdmKQJoTcOipHxkZAQAUFRXB5XIdcf7Rd/jz5/dH59nZ2cG9e/cwNTUFp9Mp2qDLtv/LrudZwYn6AJS4Mydmegh1dXWIRCLY2NjA/Pw8njx5ArVajdLS0ozGmXRsOqZcBfayIPWVmkR+8sknWFhYQENDA65evYqGhgaYzeaMCAERC2kNsVgM4+PjGBoawtDQENbX12Gz2TIq9zweT8ZMAF79R9fAVVz6Ww4zvgzoGFQwRKo7zxokL7/L5UJFRQU8Hg/i8TiGh4dhNptF1yAukWWJL/t/ZEcr/yyZHYSlpSWMjY1Bo9GIzD/eoYevwXFRBeBQg6OMzb29PbS3t6OmpuZIvz+6Fn4f5w0nVgsAHJUsXGJwp6DH40E6ncaTJ0/Q39+P7u5uaDQa0aUVOMqxfwyuLavYy8vL6O3tRXd3N/R6Pf7aX/truHz5MlwuF1KpFKLRqFD1uRNrd3cXS0tLuH37Np48eQK/34+CggJcvnwZFy5cQGNjY0Ycm7zVvCRYHgVO18cl9cveI2ckpAEQA+AMhqYA5+Xlobi4GB0dHZiYmMDg4CDsdjuKi4tht9uPNOLk0phrBsS45foIrt3wBqirq6tYXl5GU1MTiouLMyb+KN0X1whp7eLxOCYnJzE4OCjSiJubm1FZWZmR9aeUm3AecWIMQM704n3wgaNqZH5+Pi5cuIBYLIbh4WGoVCrU19eLOQK8866S7fkyIAcbOeIePHiA27dvw2w2o62tDR0dHRkdjCnfnqRmIpHA+Pg4uru7MTAwgJ2dHeh0Oly5cgV1dXVoaWkRISyZgfGNqxTS4p+VnXcvCq5tEROIxWIZDlkiVvJDOBwO/OxnP0MqlcJnn30mOgobDIYjDIAYvUyMSu/Ra8BTxhuPx7GysgK/3w/gUAPhTT+4dqHkW0in0yL8Fw6Hcf/+fXR3d8Nut6O1tRUNDQ0oLCzMuC65biKbB3AC4KofMQKe4ksPhJxoFIeenJzEysoK+vv7kU6nRb4Af4CcebzsQ+Npp0tLSxgaGsLm5iYuXbqEq1evioaetPko5EeNN+bm5tDd3Y1Hjx5hYWEBpaWlohlobW0tPB6PWAce0gOQ4YQ7bt34mvH7fRlwf8lxx6HXE4kE9Ho9WlpaMDExAZVKhfX1dczMzKCwsPCIXS6HE7m3nv8vPydaf5/Ph4mJCezu7gpNo7Cw8MiUZNkZzM+RSqWwvr6OiYkJjIyMIBgM4sqVK+jo6IDH40FeXl7G9SmFJM8jTiwTkGfV8QfJ00kpjEQqcGlpKVKpFFZXVzEyMoI//OEPCAaDMJvN0Gq1Qv3mXmw61vMwAflzubm50Ov1ePjwIT799FOsrq6irq4ON2/eRHt7e4ak41LC5/Phiy++QF9fH5aWlqDRaNDR0YHLly+jpaUlw3nFHXv8WLxiktaMazmkphPjUWoL/rygdae8Bbp3eU2UzlNaWorOzk6EQiGMj48f6cgjEz9dP/C0KlRJgvNzrK+vo7+/H8lkElVVVWLij1yFxyFrTbm5uXj48CFu3bolJiLduHEDTU1N0Gq1Qkvg2gNPVDtvkp9wIsVAsoqmJHW49CZnkFqthtfrxZUrV1BbW4twOIyRkRE8fvwY6+vrGcfkTEZpmixwtOCEHGD0mVQqJTr7jI6OwmazoaurC/X19SJWTMekasC+vj7cunULvb29WFtbg06nQ319Pd566y10dnaiqqpKJK7I9u9x1ymvnawt/RDJr3Rs4JDYZYeeki+iuLgYV65cgclkEim629vbR3oPHqf6c2LnjJB/dmNjQ7T8Lisrg8vlgl6vF9oXHY87/vj5QqEQBgYG0Nvbi4WFBXg8Hly8eBG1tbXC90Lfpf3CNaqsBvAjgzuu+AZT+puInx6CTqdDW1sbksmkmGDz6aefwmw2o7S0VBxfHh6hlKVGtnNubq6QgDyUt7y8jC+++AJjY2OiUeb169eFp55jc3MTPT09+Oyzz7CwsACn04nq6mrU1dWJrrzU2YgzGvKwy8VRsgNKZo7kNOW1ED/G81DyO/DPydKwsLAQV69exeTkJIaGhjAzM4Py8nJYLJaMyIXs0+DajVqtFlqNnAxE0Z/19XVRJSoP++RMUalxzMTEBP7yL/8Ss7OzsNvtuHHjBq5cuSIcyFwjkR2W55n4gRPOBFTauPKGo03E1USDwYCamhpcv34d0WgUo6OjePz4MWw2m2iOwaUDcXge5z5OehKB7uzsoKenB/fv30dOTg4uXbqElpaWjA67wGFm2tjYGPr7+zE2Nga/3y88y/X19aiurkZxcXHG9B8idn7/x2lCSgyAq6fyey8LORb/fcekZ6FWq+F2u1FcXAyLxYK1tTWMj48f6aNHptxxTIX/0HVQIxQaGltQUCCkP5A5rpzugX8/kUhgfn4e3d3dmJycRH5+vsi18Hg8itfxLLPiPOLEewICyjng9DePFfN8fJfLhRs3bsDn82F+fh5DQ0PivaamJuTm5iIvLy9DzaefaDQKAKLHPZd46XQaPp8PfX19ePz4Mebn53H9+nV88MEHqKysPBInHhkZwccff4yhoSFEo1G0t7ejo6MDDQ0Nop2UUscYGVyqKzEApbVTWr+XxcsWEwGHjLysrAx1dXVYXl7GyMgIGhsb4XA4MioFufTn56S/+XMADpN1+vr6sLm5KZgMDzNSebY8LZmwvr6Ob775Bn19fUgmk6irqxNt0rnar8R8zrvkJ5xoFAB4sc3Li2hycnJE/nY8Hsd3332HR48eiek1xASi0ahwlHEuz+fB80y9RCKB5eVlfPXVV1hYWEBdXR0uXLiAmpoaIdE2NjYwPT2N0dFRjI+PY3l5GW63G5WVlejs7ERNTQ3sdruo3qP75JKKq8B8878u8Ot7me/QvS8uLmJmZkbY2sXFxaIiktv6/H7lHH4C2e67u7uoqanJ6EJESUmyyQBAmIe9vb148OABYrEY2tvb0dnZierq6mNLh3+s8PFZwisJAz7PZ7i0452EamtrodPpsLKygnv37qG3txdarRYulwtOpxOJROKI40rONaBzxONxLC0tYXR0VDQlvX79Otrb2wXxb25uor+/H48fP0ZPTw9isRiKiopw8eJFXLp0CVVVVUc2GHd2cSelXIH3ot7mH1tFfdHjcQZQVFSEpqYm3L59G5ubm5ifn4fX64XD4YBerz8y5YlMIH5eroWoVCrs7OxgaWkJ+fn5KCsrE+O++WBU7gMhhhoMBkXC1traGqqqqnDlyhU0NzeLmgVZE5PvPcsADnHiGsDzgsI0vDgEOKy393q9+NnPfgaDwYBvvvkGn3/+OVwuFzo7O+FyuYQayps7aDQaMZWHNuLGxgZ+/etfY2BgAC6XCxcvXsTNmzfh9XoBAP39/bh37x4ePnwIn88n+vBfuHABdXV1ooEkv2ZSU9Pp9JEwmlJc/EWZwOsEJxCNRgO3242mpiZEIhEsLCzAYrHA4/GIAS9yQZPs2yEijkajiEaj2NragkqlgsViEYM56bucmXLNLplMYnl5GZ999hlmZmZQUlKCixcvorW1FS6XC0BmBIJLfu6YpWf2Y0VYTiveGAYAHO3uQ3/rdDq0trYCOGzQsbi4iPv370OlUuHGjRsZPezlEA8xExov3dfXh2AwiA8//BCXLl1CQUEBAoEApqen8eDBAwwMDGB7exsWiwUdHR3o7OxES0tLRosuAvc/EGQzgIexTgvhc9A9qtVqmEwmMV784cOHGBkZQXNzMywWS0aqM5fastqtVquxt7eHmZkZrK2twWKxoKioCAUFBcL/ws0HTqCxWAzT09N48uQJZmdnkZOTg46ODnR0dIiBLFwQcMKWNU3uH+Cvnze8MQyANgfZ7EBm51qz2Yympib89b/+1/Hdd9/h4cOHCIVCKCwshFarRX5+vihokfPMgcMBnp9//jlSqRTa29vxk5/8BB6PB/Pz87h16xa+++47UTb63nvvobGxEXV1dSgsLITRaBT5+6RR0Ibinnq5SIZLGq6dnAb1k64vmUwiGo2KOvv29nbE43F8/fXXmJqawtLSEoqKioRvhjs75XwQfsyhoSEsLi6iuLgYlZWVsNvtUKvVSCQSGVoUFwYbGxv45JNPhC+ora0N7777LioqKhRTxWX/DNfA5Oaq5xVvDAMAMokpmUwiFotBpVKJ2L3NZsPFixdFrfry8jK+/PJLhEIhMZBTq9VmmBH7+/uYmZnB8PAwAoEAGhoa0NLSglQqhaGhIXR3d2NoaAjhcBherxdNTU3o6upCdXW1mBiTSCRESEqOccuhOi7xAWRUMspS6LSAVHfSxkpKSlBYWIi1tTVMT0+LTk4Gg+FIWBc42qw0kUhgZmYG6+vraG9vh8fjgcViycjR4GsUjUYxMTGB7u5uPHnyBKFQCDdv3sS1a9dQXl4uwoZyfF+W9pz5ytrBaXsmPxbeKAbANwp1BaahmgS3241Lly5hZWUFDx48wOeff46NjQ3s7+/j4sWLKC4uzjjOxMQEPv/8c8zPz6OgoAA3btyAy+VCT0+PIH6Xy4Xr16+jo6MD9fX1cLvdGZ16IpEI1Gq1CCsCTyMV/Fw8YYXuhySRrHK+6eD2Mjn4CCaTCR0dHcjJycHU1BQcDgcqKiqg0WhEsw0lbYdei0QiWF9fRzgchtVqFSPiKHrDQf38v/zyS3z55ZeIxWKoq6vDjRs30NHRIZqqyMyG+xyOa2DCP3de8cYwAFmq5ubmZszPi8fjAA6dgpSdplKp8OTJE2xsbOCLL77A7u4uLl26hNraWgCHOftDQ0MYGBiA0WiE0+nE8vIyZmZmMDg4iGAwiLq6OrS2tuLixYsirs8ZDtmzct44J3a52El2+hEhnSYGAGRWLQJP6xW0Wi2uXbuGZDKJr776CjMzM1hdXRU1G/Rd4GhqdjAYxNLSEhKJBIxGIxwOB8xms6LNv7Ozg4GBAXz33XcYGxtDXl4e2tracPnyZdTV1cFkMolwL/+u0hrT9fCeDqfpWZwU3hgGAGTOYqNCHXqglPqbk3PY962pqQlGoxF2ux137tzB+Pi4kLIOhwMajQb9/f0YHh7G8vIyGhsbodPpRJ14JBJBZWUl3n77bbS1taGsrExcAzc9cnNzxbhtpQIkzrh4vrqM0xYBADK1AGJsNAehra0NPp8PX331lWjkQi28jrvHdDqNmZkZTExMIC8vD06nEy6X60jHX+Aw1DcyMoJvv/0WX331FcxmMzo7O/Hee++JEewUOSK/0XEefW6ecXOA3jvPjOCNYgBKCTT0oHgzC7VaDaPRiIqKChgMBuj1evT392N1dRV37tyBz+dDTk4OFhYWsLCwgIODAzH6WqfTiVHlNHHXZrMJ5sMlOs0l4ElGBKU0XWJcXNUETm/KqUqlEhJW9uRTinBNTQ0CgQDGxsZQXFwsSm/pu7zmHgAGBgbQ09MDs9mMurq6jIGfdM6pqSk8efIE9+/fx8bGBsrLy9HR0YFr166huroaZrNZ5ArIx5drLvgzkSME5z0ECLxBDICrydz7T9yaO5fooZtMJphMJuj1ethsNqEJfPvttwiHwwgEAtBoNKKdVzQaRUlJCVpaWsTcPZPJhIODw2k0tLHJFiWvPzEApXAff12OBPB7kL93GkD3lkwmM0whMsto2nNPTw9mZmZQWVmJyspK0clXrhikMN7s7CzeeecdlJeXw263Z3QFWl9fx+PHj/Hw4UNMTEzA6XTi2rVruHr1KpqamjIyOnlzFp57IftguPbF08bpHul75xFvDAMAnmoAAI70E6DNR5KaPzBqWW0wGGC323H79m3Mzs5iZWUFpaWlqKqqQkVFBcrKylBbWyum4VLiidyai45PJcekdXCpBhxVH5UkihwVoO+96aBrJF8MmQDcDCooKMD169exvr6O4eFhTE5OorKyEnq9XtTzc+L0+/0IBAKIxWKw2WxwOp0ZPoMHDx7gzp07mJiYQDweR3t7O9rb23H16lUUFRVlJIjR85CzC/lr8jqTNiB/7zzjjWIABGIEFKvlTjVujwJPH6rdbkdzczNyc3MRDAYRDocRCoUQjUYRDAbhdDrR1dWFioqKI9N2eVMO7r2WO/Ee51z6PjvyNEoZpVCnnFyj1WpRUVEhyoO3trYwPj6OwsJCWCyWDOJfX1/H+Pg4UqkUioqKUFxcLLoj7+zsYGJiAt9++y36+/uRk5ODsrIyXL16Fe3t7aioqBDXRL+JuTwrmec4f8DrrMl40/BGMQCuuvEkDmIGXN1WCsOZzWa0tLTAZrMJ9ZIcgdeuXYPT6cwo26XjEwHH43FRW0DORi4t+PUBR+1/ObYsM4fTIPmBp3kY8XhcOEO5Gs2jH7m5uaiqqsKlS5dEvkV1dTXcbndGzcTk5CTu378Po9GI6upqVFVVwWw2Y39/H/fu3cNHH30k5id0dnbi4sWLGbn9cpqxvD+ed41PyzN4VXhjGAAROZDpvCE1XO4zJ8dzKS9fpVKhvLxcEKnNZhNJQ7du3UJzczMqKirE3AFS/cnW5dfBm4wcl2RC4Nchp/2eRocg17iepVYDQHl5OS5fvoyVlRXRNYjm79H3VldXMTMzg/r6erS2tsJisYj07O7ubmxtbcHj8aCxsRGdnZ2oq6sTuf1A5mgzfh2nLbT6puGNYQDAsyfOEFHJjh1OoH6/H4lEAm63GxUVFbBYLCgpKRGVfb/61a9w/fp13LhxA5cuXRKFPSrV0757NOwDyBxmQhtQbqMlgzuaTusmpetV6vij9LmCggJcuHAB3377LQYGBjA3NyfmCtCcxZ2dHfj9flitVrjdbuzt7WF4eBi//e1vsbe3h7KyMvFceFMQOo9SXoFsHtJrWTw/3igGIGfVKW0+zgD4BuAOKtIenE4n2tvbYbPZkJ+fj+HhYczOzsLv92NiYgKNjY1oaGgQhT6ySSFXtCn9yEyKzk+/5Y15WpgBZ2Tc26409UmtVsNisYiGIdvb2xgZGUFlZSXcbjf8fj/S6TT0ej1mZmYQiUQQj8dFuLalpQWXL19GU1MTPB7PEUcsgTsV6T3e9o2/l8Xz4Y1hAHK8lidrKHl6Cbzpp5wWChyaADabDSaTCQ6HA7dv38b4+Djm5uawsrIiOtFSXTulvsp2pUzMsrkiF78c5xPg9/umgmtV/D65A1au9QeApqYmhMNhPHz4EFNTU1heXkY0GsXKygpCoRByc3MxPT2NqakpkbDV0NCAy5cv4+LFixn+Ge4EpvNzYcC1Mm6iZPFieGMYAPC0cIZXaslSmTviaANQoY5WqxUxe3qd/vd6vcjJyYFOp8P4+DgWFhZEqJDGlLe1tcHlcina+Nwc4FKQXxdtVqWUVB5heNNB98aJnGtIPEJC65FKpVBZWYlkMon+/n74fD5sbm5iY2MDPT09YkiqzWYTnYRqa2tFFqbSDMDjro1AIWL6m2thWTwf3igGADzNPuPEBGTG5elzXPLyoZrA0/FbxBioik2v16OwsBCjo6MYGhrC1NQUotGoGPZRV1cHq9UKo9GYMQaMVExiNpwY6Pq4lJdtZqXkkzcdsukFPJ36RCBmCwD5+fmoqqpCYWGhyA7c3t7GkydPEAgExDNobW1FdXU1amtrUVlZmaHyf59HXynp6rSs55uIN44BcLtPlqC8VRSQOfE2nU4jHA4jnU6L9tzcRqRjFRQUID8/HyUlJaipqcHQ0JAY6jkyMoKioiK0t7ejubkZtbW1GWoplzBKnX/kTLNnRS3edCg5/rhZxnPweXYg+QJWVlbw9ddfY25uDj6fDxUVFbh48SJ+8pOfoL29HXa7HUajUSQZUR8AuZMyJ3g5BClrKVm8ON4oBiDbdbLdLTvdgEPGsLi4iOXlZWi1WlHNp9PpjrQlJ5VRo9GINGKz2QyDwYCBgQGsrq5idXUVOTk5CAaDWFlZQVFREZxOJwoKCmAymTIqBQlKoSklaXYa1H8OzuD4XAWqjwCe5gxEIhH4/X4sLCxgbW0NwGHlpsvlgtvtRnt7O95++210dHSgsrJSnIPMB0A51CqvmZxZeVqcqm8qVOkTYJ0ve0jaaFSEQ1V4QGbuN5e+4XAYH330Ee7du4e2tjZ0dXWhsrISFovlCCORJQrwNP98fn4es7OzmJ+fx9LSEgKBAFKpFDwej2gS0tDQIGxVbtPTtfApRRRG40R02jYrqfepVAr7+/tIpVIwmUwZI9MODg6wtbWFqakpfPXVV+jr60M6nYbT6RQjuU0mE8rLy0X+BfUM4Bod9XDkPh6+fgRZy+L+iVe5ttz/Qdf7LNPlTcUbpQEQkR73QPn7wGHJ6OzsrHDq1dfXQ6fTiVg9ERw/FiX7kHNQrVaLbrROpxNerxdTU1NYWFjA5uYmwuGw6BM4OjoqJJrH4xFtrAhy99rT7gMAnppZRKDpdBqhUAhbW1tYW1sTYb9AIIDl5WVRbVlbW4uOjg5RGGS1Wo+YZrx/I3C8za+UVMXXOYuXxxvFAICnnF+J+Plmicfj2NjYwMTEBFZXVxGPx2E0GmG1WkUKL7cVgacaBkkN7uBzOBxwOBwoKytDRUUFVlZWsLS0hImJCUxNTeHRo0fo7u6Gy+VCXV0drly5gurqajgcDjF8UmY28j2cljCgDK65+P1+LC4uYmxsDMPDwxgdHUUsFoPVahWDREtLS1FRUYHq6uojJhNpSaSd8Zbu3KaXw30E2TEp1ydk8WJ4YxiAUvxf5vD08GOxGFZWVrC6uoq9vT0kEgmk02lotVro9fojeeKyLc6dSbJPQafTiR51JSUl8Hq9KC0txfz8PHw+H4DDtNbPPvsM+fn5sNvtKCwsRHFxMUpLS4/MoZev/bgkInktlK5fDnUdp1V83zH557+PeEKhEJaXl7GysiLW3O/3IxKJIBaLwel0CuJvaGhAZWUl8vPzkZ+fr+gv4SPPlPA82hP9KO2ZLDN4MbwxDADIHOJI/yuF1fb29rC4uIjt7W2o1WoRrpMn3nLJL3vjOQOg1+kcWq0WWq0WdrsdbrcbJSUlwtHo9/uxvr6Oubk57O3tQavVitTjnZ0dlJeXw2aziaQkOm5eXl6GucCvRYYSkcsELjOHZzEUvhZK//OyZ5LOiUQCe3t7WF1dxdTUlDCLiAk6HA4UFxejrKxMMMqKiooj8fx4PI5IJJKx1jIz0mg00Ol0x9r8StecdQL+OHhjGADf0FxFp03JJQcxgIODA7hcLhGqk52PRHCyKilHEWQzgb+m1WpRVFQEm82G6upq+P1+rK2toaKiAuvr6/D7/QgGg+jp6cHQ0BAMBgPy8/NhsVhgs9nExNvS0lI4nc7nDgUqecFlYuDvHWc/P4vwCeFwGKurq0LCb21tIRAIIBwOIxaLiXBfQUEBysvL4XA4UFRUBK/Xi+LiYiHtqbaCp+dub2+ju7sbs7Oz2NzcFA48yrtQqVRobm7GjRs3UF5efqRak44jMzg5TyTLBF4ObwwDkCW0LNWAw421t7cnWnuZTCZ4vV4UFhZiaWkJGo1GeGb5pgGOEo+sHXDHEtmpJJFII7BYLHA4HHA6nSguLsbm5iZWV1exsLCA5eVlBAIB7OzsICcnB3q9Hvn5+XA6nWL8tcvlgsFgEKE0CknSD8XTlSTh901a5iApTs62ZDIpWpvTb/p7f38fPp8P6+vrWFtbw8bGBvx+P3Z3dxGPxzOco7TWTqcTDodDxPI55Pz8aDQKv9+PkZERDA8Pi3JrvV4vNI3d3V0AEB1/qUMwf1ZyPgD9/X1MMItn441iADytkwiZHEUHBwcIh8OYnZ3F/v4+WlpaxDSZ8vJybGxsID8/X0gX2hicoHgqrrxxZLWaHIYyMWo0GjgcDmH3RiIRbG5uYm1tDX6/Hzs7OwiHwwiHw9jb28PW1haWlpYQi8UEYyLmZbVaUVBQIPIMqGiJshDpmgEcmUKsBC5ZaUAKaSx+vx9+vx8+n08wqkgkIiofiSgNBgOKiopgMBhgMplgt9vhcrng9XpFu3RiViqVSvhfaK3pOaZSKWEi1dbWimGr6XQaFosFra2tMJlM8Pv9WF1dxccff4zd3V2oVCpUV1cfadqipMXxvZLFy+GNYQBAJuGTqkgbLRQKYW5uDt988w0CgQDq6upEB9rl5WXo9Xro9XrBRMiMkImbd7lR8trTa/Q5Oe+fNjjNCaBkIqfTib29Pezu7iIcDiMYDCIQCGB7extbW1vw+XwIBoPY398Xs/EikQjC4TC2t7eRn58Pg8EAnU4nfBrA0xoDk8kEg8GgGBaj+yLJTkk7BwcHiEQiCIVCGde2t7cn4vrUYNVqtQrpbrPZYDabhTMvPz8fNpstYy4ivzZaa66Wk3Q3Go2oqqpCUVERzGYzXC4Xamtrcf36dbjdboTDYXz88cf49NNP4XK5UFNTA4/HA6vVemwWIJ1Dduxm8eJ4oxgAqeA0A4BLbr/fj7GxMdy6dQszMzMoLi4WKr/FYkF1dbUYIsLNB56IwxNN5G6yBK4h0AanTjT8eKRNqNVqQbROp1Ns0lgshr29PQQCASF1A4EAgsEgIpGIUMHj8Th2d3fh8/kypDcfb07ERNJWVoHph+6Hmwvkk6D8CIpa6HQ6GI1GwcBIG7Hb7bBYLGIICleruVOWEzt9jswn3kfAYDAI5uJyuVBdXS0mLVNLsLm5OXz00UeiZyBpJRy0Dsf1Y8zi5fBGMQDgaCtwem1nZwfBYBAejwc6nQ5ms1kQj06nE9KfO41IEiqFyJRCakpqpZx1xr/PmQf/myISRHwFBQWIRqPY39/H/v6+IPT9/X3s7e0hHA5jd3cXu7u74n1iArTxI5EI9vf3FRkAaST8h+7PZDKJcmgieKPRKDQm8m9QU1WuRcmgrD2+HvSavJbkO0mn08KfYDQaUVNTg7a2NkH8Kysr2NraQn5+PlwuFwoKCkQEhUN2imaJ/8fBG8cAgEz1nDLPQqEQ8vLy8NZbb4lQXyAQwMbGBpLJpJguw9VR2qB0TF5somTzc2egbB4oEZ4cliKC5VLZYDAcUZ2BpwNI9vb2xA+ZB/F4XEh/YgD0nlJuBDkT+T3S+clMIZueTA2eznsc+Lm4ik3ryx2m/J5pDXQ6nQgl+v1+HBwcCCZNKdjfffcdNjY2UF1dLdq1kWNRyeGnlPeQxcvjtTMAbsNSWIhLgPn5eQwMDECtVqOpqQkFBQUwm83QaDSi+GRzcxM5OTkZAyZlIqaqNQBCpQaOjvHmfgM5OsCZBF2zrBXwcwPKzUGBQ4ZEEYH8/HwR7uT1BPR9AOJ9gqyx8HuVmRhpBRRtOC5kqPRMjmvTRp/j0RalNG6qI6AuTMFgEI8ePRLFWAaDAY2NjWIuY1FRkWgVzq+F/8/XVi5NzuLF8NoZAIEkKA9RBQIB3L59G93d3bh27Rra2trg9XqFBAkGg0gkEgiHw0gkEtja2soYNCkTBPB0A/E8dFl95dECTkic6Ig45M0vE75st8p+ByLO1wHOxDiBK2VS0v98zWQtSDaLgMNEoFAoJMyf6elpLCwsADgc9Nra2orm5mY0NDSIDEwe7Tguf4O/T+9l8eJ47QyAbyqtVovd3V2MjY1hYGAAvb296O/vRygUgsfjEfHlnZ0dfPvtt7h79y56enqwsbEBo9GIxcVFvP3222hqaoLb7RY1AdyhRhJQHhAhMwG58Qi/XuCpzc/75sl5B99nNiitw/etlZI2oQSZ8fDr4N/nGpBsGslqN78P7lyViZAnUkUiEayuriIvLw+tra2COW9tbSEcDmNoaAj5+flobm4WJdz8fuX7UEra4s8jywheDK+dARBITQeA3d1dbG1tCfvebrdnVJJFIhFsb2/D5/Nhd3dXEGs0GhXZa3Kev5LKLmsFSo6/ZxHusySSEsE9i/iVCImfh18ToDyFiJ+XE47SNSuFP+Xr4e8r3TP/LTM/AlVs0kDR4uJi6HQ6+Hw+DA4O4v79+6JBK/VmOO6essT94+ONYQAARMMJj8eDjo4OOJ1O7O/vw2Qyoa2tDXq9HolEAmq1GlVVVdBoNGhubkY8HodOpxMFOaRGyp1juMTnDIGbC+TA4u3FOLiU4zawTACcOGQpKkv745iDkuotvy7bwJzAZY89fef7tJLjiF/p2pTA78fn82FqagplZWVobW1FbW0tHA4HcnJyYLPZcP/+fYyOjqKgoECMC+c+IG6SyOska3BZBvHieKMYQDp9WNHn8XhgMplQWVmJdDoNnU6XkXaq0+lQUVEBl8sl+v6RU4083dyu5ra3LK1kKG2y4yQhf/84ZiFLSfk4z8Jx35Ffl7UN4Klqz1V6WuNnES8/l9Ln5NeUtBVivrFYDOFwGAcHB9Dr9bDb7bBarSICUVxcDIPBgO3tbayvr4vPKh37uGcg+xxOGnw95X1Erz3L1HvTcCIM4IfcfF5eHtxuN4qKihQ906lUSsTXn3VuWdIpbdRnqebPUvufdd7jPvOyaqxskyud83l/03U8a134549jFM8yDwjxeFyUa1OCETUV4Z/Jy8uDVqvNSGKSr+VZa/Y6CI2bZPwaZBPzNOBEGMD3SZjjwL32gLJ0kT/zsiDVnaDEbOTXlSBL4uN8Asf9/yJ4lkly3Oe+j4kdd8zv05KUjs2LgABgcXERiUQCzc3NaGpqQlVVldDMJiYm8OWXX6K/v1+UFjudziM9BI7zLTzvvfzYUNK+lEKlpwVvlAkg27jAUWmk9BnCceqp0iZ6lur+vMT/Q7/zKvAy1/M82spxjCeZTCI3Nxdra2sYGRnB/v4+KisrYTKZRJrw0tISvvjiC9y+fRvb29uoqalBc3MzPB6PIkE/6x5e9XorrY3sMD5NOJGmoK8L32ef/tDj/RjHPOsIh8MYHBzEgwcPcPv2bcTjcZSVlcHtdsNutyM3Nxc+nw8DAwMIh8NwOp24efMmfvGLX8Dtdr+2nIiXheyoBU7XHjldq/09+LEX/jQ9yDcFqVQKs7Oz6Ovrw/j4uEgEWlhYEAM/I5EI1tbW4PF4xChwr9f7mq/85XAaiZ7jTGkAWWSRxYvhdBksWWSRxY+KLAPIIotzjCwDyCKLc4wsA8gii3OMLAPIIotzjCwDyCKLc4wsA8gii3OMLAPIIotzjCwDyCKLc4wsA8gii3OMLAPIIotzjCwDyCKLc4wsA8gii3OMLAPIIotzjCwDyCKLc4wsA8gii3OMLAPIIotzjCwDyCKLc4wsA8gii3OMLAPIIotzjCwDyCKLc4wsA8gii3OMLAPIIotzjCwDyCKLc4wsA8gii3OMLAPIIotzjCwDyCKLc4wsA8gii3OMLAPIIotzjCwDyCKLc4wsA8gii3OMLAPIIotzjCwDyCKLc4wsA8gii3OMLAPIIotzjCwDyCKLc4wsA8gii3OMLAPIIotzjCwDyCKLc4wsA8gii3OMLAPIIotzjCwDyCKLc4wsA8gii3OMLAPIIotzjCwDyCKLc4z/P9pBBLhbIlKkAAAAAElFTkSuQmCC",
"path": "images_version_5/image_45.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, O is the center of the circle, then the degree of angle AOB is ()
Choices:
A:35°
B:70°
C:105°
D:150°
|
Như hình vẽ, O là tâm của đường tròn, thì số đo góc AOB là ()
Các lựa chọn:
A: 35°
B: 70°
C: 105°
D: 150°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, O is the center of the circle, then the degree of angle AOB is ()
Choices:
A:35°
B:70°
C:105°
D:150°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, O is the center of the circle, then the degree of angle AOB is ()
Choices:
A:35°
B:70°
C:105°
D:150°
|
As shown in the figure, O is the center of the circle, then the degree of angle AOB is ()
Choices:
A:35°
B:70°
C:105°
D:150°
|
225
|
45
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAoIAAAJxCAYAAADW9tOiAAEAAElEQVR4nOydd3hVRfrHvwmkEEIICUlIaKFDKJHeq4o0leIqCIIoyLrqqsuKigrYF3VVBFksCIiCAoJ0BOklQAol9F5CCRBagNDC+/sjv5k7N3fOOffe3ITgfT/Pc59M5pyZM6fMnDnvO+/7+hARgWEYhmEYhvE6fO92AxiGYRiGYZi7A08EGYZhGIZhvBSeCDIMwzAMw3gpPBFkGIZhGIbxUngiyDAMwzAM46XwRJBhGIZhGMZL4YkgwzAMwzCMl8ITQYZhGIZhGC+FJ4IMwzAMwzBeCk8EGYZhGIZhvBSeCDIMwzAMw3gpPBFkGIZhGIbxUngiyDAMwzAM46XwRJBhGIZhGMZL4YkgwzAMwzCMl8ITQYZhGIZhGC+FJ4IMwzAMwzBeCk8EGYZhGIZhvBSeCDIMwzAMw3gpPBHU8PTTT8PHxwexsbF3uyl/Cdq1awcfHx+0a9fubjfFae7FNmdnZ2PMmDFo0qQJQkJC4OPjAx8fH3Tv3h0AsGrVKpm3atWqu9pWxvPcK/d38uTJsp1Hjhy5281hvJBjx45hyJAhqFKlCgIDA+Xz+Pvvv+fL8UT9o0aNypf680pRT1Sybt06tG7dWv6/evVqtGnTxhNVMwzjJH369MHMmTPvdjOYXKxbtw4zZ87EqlWrcPLkSVy+fBnh4eGIjY3FQw89hCeffBLVqlW7281kGK/g2LFjaNiwIc6dO3e3m1Jo8IhE8McffzT9n2EKA6NGjZJfZn81NmzYICeBXbt2xbJly7B9+3akpqbiq6++usut807S0tLQrVs3tG7dGl999RW2b9+Oc+fO4ebNmzh16hQSEhIwatQo1K5dG6+88gpu3Lhxt5vsNkeOHJF9a/LkyXe7OYwG1nTl8MEHH+DcuXMoWrQoRo8ejYSEBKSmpiI1NRX333+/0/Xci1ojI/IsEbxx44Z8AQUHB+PKlSuYOXMmxo4di2LFiuW5gcy9T2FWU/1V+PPPPwEARYoUwbRp0xASEuKwT7t27UBEBd00r2T37t3o2LEj0tLSAAA1atTAwIED0ahRI5QqVQrp6elYsWIFJk2ahIyMDIwZMwbbtm3DvHnzUKJECbeOyfeXYawRY2X37t0xbNiwu9yawkGeJYJz587FxYsXAQBjxowBAFy+fBlz587Na9UMwzjJiRMnAABRUVHaSSBTcGRmZqJbt25yEjh06FCkpqbi9ddfx/33348GDRqgc+fO+PTTT7F7924phVi1ahUGDRp0N5vOMH95xFhZvXr1u9ySwkOeJ4JTpkwBAMTFxeGZZ55BXFwcAFYPM0xBItSKfn5+d7klzOuvv45Dhw4BAIYMGYLPPvvM8L5ERERg/vz5qF+/PgBgxowZvM6TYfKRmzdvAuCx0g7KA+np6VS0aFECQB999BEREX344YcEgIoUKUKnT5+2rOPEiRP0+uuvU/369SkkJIT8/PwoKiqK6tSpQ71796ZJkybRpUuX3Grf7du3adKkSdSxY0eKiooiPz8/KlmyJFWtWpU6dOhAH374Ie3cudOh3IABAwgAVaxYkYiILly4QO+88w7FxcVRUFAQlSxZklq3bk0//fSTU+3Yvn07DR48mKpWrUrFihWj4OBgiouLo1deeYUOHz6sLTNjxgwCQABoz5492n2qVKki95k1a5Z2n0cffZQAUKNGjezyJ02aJMsePnyYsrOz6ZtvvqHmzZtTaGgoBQUFUd26demDDz6gq1evOnWeRrRt25YAUNu2bR22HT58WLZj0qRJRES0dOlS6tatG0VFRZG/vz/FxsbS3//+dzp+/Lhbx1fP1eyn3ovcbU5LS6NXX32VqlSpQoGBgRQWFkYdO3akRYsWOdWG8+fP0/vvv0/NmjWj8PBw8vf3p+joaHrkkUfot99+c+u8iMip8xKsXLlS5q1cudKwziNHjtCQIUOoYsWKFBAQQNHR0fToo4/SihUriIho5MiRDnULdPfTiIoVKxIAGjBggMO23M/n9evX6YsvvqCmTZtSeHg4AaCRI0c6lLt16xZ9//331LlzZ4qOjiZ/f38KDw+n1q1b0xdffEFZWVmmbcor6enpFBAQQACoTJkylJmZ6VS5zZs3y/Nt0KCBW8d25v7u3buXXnzxRapduzYVL16c/Pz8KDo6muLj42ngwIH0yy+/0PXr1106rjPPoHqvPD323Llzh2bOnEk9e/akcuXKUUBAAIWGhlLjxo3pvffeowsXLrh0PkZkZ2fTtGnTqGfPnlS+fHk5DtSrV48GDhxIixcvplu3bhmW37RpEw0aNIiqVatGxYsXp6CgIKpRowb94x//oH379hmWy+v1UvurM+OESl76U+4xdN++ffTCCy/I92DuMddZsrOzaerUqdS5c2f5Xi9dujS1a9eOvv76a7px44bpNTT66cYhHWJ+YPYTcwdB7n6wefNm6t27N5UtW5b8/f0pJiaG+vXrR7t27XKqDXv27KGXXnqJ4uLiKCQkhAIDA6lSpUr09NNPU3JyslN12LXP5RIKn3/+OQEgHx8fOnr0KBHlvER8fHwIAP33v/81Lb9mzRoKCQmxvKjz5893uW2ZmZnUunVry7p79erlUFadCO7evZtiY2MNy7/wwgum7fjoo4/I19fXsHxAQABNmTLFodyZM2fkPv/73/8ctqelpVm2486dOxQWFkYAaOjQoXbb1I6xY8cO6tChg2EbmzRpQleuXLG65Ia4MhF8/fXXDdsRERHhdEcxOlezn9FEcO3atXLyoft9+umnpsdfuHAhhYaGmh67a9euTk8aVFwZ4J2ZKCxdupSKFy+urcfHx4c+/PDDAp8IJiYm0n333efQntwTwQMHDlBcXJzptahWrZrpSzevjBkzRh5r+PDhLpVt3ry5LLtt2zaXj211f2fMmEH+/v6Wz0tqaqpLx3XmGTSaCOZ17Dlz5gy1bNnS9NhRUVG0ceNGl84pN4cPH9Y+g7l/uut+69Ytev75503L+fn50bfffqs9dl6vl7sTwbz2J3UM/f3337XjiqsTwYyMDMv7XatWLTpy5IjhNTT6FdREcOzYsVKAlvsXFBREq1evNj3+e++9Z1geyBmnR4wY4cplzdtEMD4+ngBQmzZt7PLFBCw+Pt6w7PXr1ykmJoYAUIkSJWjYsGG0ePFiSk5Opo0bN9Kvv/5Kr7zyCpUvX96tieDQoUPlhenWrRtNnz6d1q9fT8nJybRkyRIaPXo0tW7dmh577DGHsuJGR0REULVq1ahEiRL09ttv06pVqygpKYm+++47KleunKx/yZIl2jZ8/fXXcp+IiAj67LPPKCEhgdatW0ejRo2SHcPHx4cWLlzoUL5WrVoEgJ544gmHbVOnTrW7+bVr13bYZ8uWLXJ77muodowWLVqQr68vDRgwgBYuXEjJyck0Z84cuxfTG2+84eyld8DZiWCLFi3kftOmTaOkpCT6888/qX///nKfZs2auXz8CxcuUGpqqt1gnJqa6vC7efOmQ5urV69OpUuXpsjISPrPf/5D69ato82bN9Pnn38uJ3dFixalHTt2aI+9dOlSKlKkCAGg2NhYGj16NK1atYpSUlJo/vz51K9fP9mmnj17unxuou1C8hsTE+NwXgKricL+/fspKCiIgByJ/gsvvEDLly+nxMREmjRpknwpNGnSxPDlkR8TwXr16pGPjw/179/f7vlUpbEnT56kqKgoOZ4MHTqUFi9eTCkpKbRy5Up688035blVrlyZLl686PQ1doVevXrJdickJLhU9uOPP5Zlx40b5/Kxze7v6dOn5XgTGRlJ7733Hi1dupRSUlJow4YN9NNPP9Fzzz1HpUuXdnkimJqaSn/88Yc89gcffODwDKanp8v9PTX2XLlyRY6R/v7+NGTIEJo7dy6lpKTQ2rVr6cMPP5QfcKVKlXKYHDjL6dOn5bsKAHXo0IGmTJlCmzZtos2bN9Ovv/5KQ4YMobCwMG2/Usevzp07008//USbN2+mxMRE+u6776h27dpy+7x58xzK5/V6paenW44Rue+5J/qTGEMrVapEwcHBFBERQf/5z39o/fr1tHHjRho7diydPXvW6ftw+/Ztu/Ns27YtzZw5k5KSkmjevHnUvXt3ua1KlSp2H9biHZCamir3ef755+3OPy0tzal2pKWlUWpqKjVq1IiAHG1b7mu5d+9euzLq+8vHx4fi4+Pphx9+oMTERFqzZg29+uqrUmBUoUIFrVSTiOidd96xexa+//57SkhIoKSkJPr555/trs9XX33l9LV1eyK4fft2ecDcXzLffPON3LZ9+3Zt+eXLlxtOUlRu3brllmq4fPnyBEA70VPJyMhwyFNn/KGhodqX/P79+ykwMJAA0COPPOKw/cyZM7KjxMTE0LFjxxz2SUlJkYNz2bJl7SYiRCQnLmXKlHEo++yzz8pji8nkmTNn7Pb54osvCAD5+vo6qEdyfyFNnTrV4RjXr1+nOnXqEAAKDw83VXuY4exEEAANHjyY7ty547DfoEGD5D4pKSlutcNMkmXUZiDn6043SKxdu1ZKv//5z386bL9y5YocTDt27Gio5vr222/lsf7880/XT4wclzPosJoIimcJAM2cOdNh+9WrV+0mgQU1EQRAEydONK2rW7duBIDKly9PBw8e1O6j9re3337btD53qVq1quxzrqqh1cnU4MGDXT622f2dOHGi3UeQEVlZWXTt2jWXj+3KfffU2PPiiy8SACpZsiQlJiZqj3XkyBGKjo4mANSvXz+Xz4uI7CYYo0ePNtzvypUrdP78ebu8WbNmybLfffedtlxWVpaU8sXGxjqcq6eulzNjhMAT/UkdQ2NiYqTW0F3GjRsn6+vfv7/2PTF8+HC5z7Bhw7T1iO26pSWuYPZeMzomAOrSpYt2ovfBBx/IfWbPnu2wffPmzXKyaDR+ZWdnS+FCiRIlnF4W4fZEUEjcAgICHA524cIFuU4mt0pS8PPPP8uTdncNoBl+fn4EgMaMGeNyWXUiaDar7t27NwE5X5u5GT16tKxj+vTphnWoN3/GjBl223755Re5bffu3XbbxAtn5syZVLlyZe3LWwxgujVH6uBiJomaMGGC3M8ddRWR8xPB6Ohow/VJe/bskfu5c0+J3J8I6r7SBc2aNSMAVL9+fYdtY8eOJQAUGBhoJxHRISZYffv2tT4RDXmdCKalpclBpkePHoZ1bN26tcAngh06dDCtR/3Knzt3rum+w4YNky+m/EBIiXVjghXqtXVHOmx2f8XabXfa5QzuTgTdHXvOnj0rP8StxoPx48cTkKN+dXW98+7du+XH3qOPPupSWSKihg0bWvYpIqJdu3bJc122bJndNk+N1c5OBD3Vn9Qx9McffzStxxmE9Ld06dJ0+fJl7T63b9+mmjVrymdd9z65mxNBs3fB5cuX5dKNV1991WG70DY0bNhQOwkWqPMvo4+P3LhlNZydnY1p06YByHFeGxoaarc9NDQUXbp0AQBMmzYN2dnZDnVER0fL9KRJk9xphimi/l9//RXXrl1zqw4fHx88+eSThtsbNmwIALhw4YJ0oSMQvopCQ0PRq1cvwzpUdxGijEB1VKn64jtx4gQOHDgAHx8ftG3bVu6n7kNEWLNmDQCgbdu2hscHgL59+xpuE+cIQFpC5hePPfYYAgICtNtq1KiB4ODgAmmHSmhoKLp27Wq4XVwfXZuEC6W2bdsiMjLS9DgiEk9CQoK7Tc0Tq1atwp07dwAAAwYMMNwvPj4e8fHxBdUsAObPJ2C7zkFBQab3CrBd55MnT+L48eOeaaBCZmYmAKB48eIul1XLXL582WNtAmzj4YULFwqVay93x54//vgD169fBwA8/vjjpscQ9/zWrVtITk52qX2LFi2SvhlfffVVl8qeOHFCHs+qjbVq1ULp0qUBmI8BBTFWe7o/+fv7429/+5vb7RH17969G0DOtTTytVmkSBEMHDgQQM6znpKSkqfjepoHH3zQ8F1QokQJGWEo9/27desWFi9eDCDnPWkWFCE0NBR169YF4Pz7xK2J4NKlS3Hq1CkAQL9+/bT7iPxTp045THAAoFWrVqhcuTIA4JVXXkGTJk3w8ccfY8OGDdK8Oy+Il9mGDRtQqVIlvPjii5gzZw7Onj3rdB2lS5dGeHi44fawsDCZFi8AwY4dOwAA9evXNzVTj4qKkp7eRRl1W40aNQDYT/JEOi4uDhEREdqJ4Pbt23H+/HkAsPR8XrNmTcNtZufoaczaAQClSpUqkHaoVKtWDb6+xt1EXB9dm5KSkgDkvLRE1AWj32effQYAOH36dD6chTXqs6e+UHQ0atQov5tjR7169Uy3i+t87do1FC1a1PQ6d+vWTZbLj2stXlBXrlxxuaxaxtO+IB955BH5wd6jRw906NABX3zxBZKTk7Uf6gWFu2OPuOdAziTX7J7XqVNH7uvqPd+yZQuAHFcjzZo1c6ms2sY+ffpYjgEi5JlZGwtirPZ0f6pWrRoCAwPdbg9gPz41bdrUdF91e+536t3G6h1n9D7ZtWuXFGi9+eabls+SuIfOPu9uTQSFj0AzaYkqKdT5FPTz88P8+fNRq1YtAEBiYiKGDx+Oli1bIjQ0FJ07dzaUJjrDO++8g2eeeQY+Pj44c+YMvv76a/Ts2RNRUVGoW7cuRo4cifT0dNM6goKCTLerE4Tc7RSTsKioKMu2lilTxq6MipjErV69WuaJCZ/Y1r59ewA5D4uY6Ip9fH197eJA6zA7T7Nz9DTOXu+CfHE52yYhTRPcunXLQUrsDO5Kr/PKhQsXZNpKehkREZHfzbFDfAAYcebMGbfqzY9rLT4cL1++jKysLJfKquOR2Qeou+2aN28eypYtCyLCypUr8a9//QuNGjVCWFgYevXqhQULFnj0mM7g7thTUPdcTM7CwsIMtRVG5EcbC2Ks9nS7rfqvM6jvRqt3qnif5i5XGHD3HZffz7vLIebUqCEXL150qnP8/vvvyMzMdBDnxsXFITU1FfPnz8f8+fOxevVqHDx4EFlZWViyZAmWLFmCzz//HIsWLbJ8OeXGz88PEydOxNChQzF9+nSsWLECSUlJuHnzJnbs2IEdO3bg888/x08//YRHH33UpbpdwZm4tkL1oKNt27b45ptvcPr0aezZswc1a9aUk0IxESxXrhwqV66MQ4cOYfXq1XjsscfkPvXq1fNIR2RcQ+3Ijz/+ON5555272Jp7myJFiphuF9e6UqVKmDdvntP1VqpUKU/t0hEfH4+DBw/izp072LZtm0tSJFWNlR/q99atW+PAgQP47bffsGjRIqxZswZpaWm4fPkyZs+ejdmzZ+Ohhx7C7NmzLV9Ydxtxz/39/V1S95YrV86t47kTn1wdA37++WdLybbgbo/Xnu5PVv3XVazuhdn79F5FfZY+/fRTdOrUyalyzi5RcXkiOGPGDJe/dK9du4ZZs2ZJ3b1KkSJF0L17d3Tv3h1Ajip58eLFGD9+PJKTk5GcnIwhQ4Zgzpw5rjYVQM5k8/3338f777+PrKwsrF+/HtOmTcOPP/6IK1euoE+fPjh48KDdmkVPEBYWhlOnTjklmhWSAFW0L8i9TjAkJAT79++X6wPV/Q4dOoRVq1ahV69eTq8PZPKHwMBABAUF4dq1a7h48aKdeqowor58zpw5Y/rCNFteoUolcktJc3P16lUXWmiMkJ6lp6ejZs2aKFo0zyHU3aZNmzaYPXs2AGDevHkuTQTVl66VFN9dAgMD0bdvX7nW7NChQ1i4cCHGjRuHffv24Y8//sBbb72FL774Il+O7ynEPb958ybCw8M9Pn4LxLq9jIwM3Lx5E/7+/i63EYCDirowU5j6k0B9N1q9U1XJuu6dei+iPku3bt3y+LPksmpYqHmjo6Mxffp0y1+FChXsylkRHR2NZ555BgkJCWjQoAEAYMGCBS5PPnUUK1YMDzzwAH744Qd8+umnAICsrKx8UYmIG7VlyxbcunXLcL8zZ87g6NGjdmVUoqOj5QLSVatWOawPFKjrBFNTU5GRkWGXz7j3VZ8XRNiw9evX3zWVr7PUrl1bptW1TTrMtqtSf1XdnJuMjAypdssr4jpfu3YN69ev90id7tK7d2+pJZk0aZLTawUTExOxceNGADnn46z0KK9UrlwZL730EhITE+Xkf8aMGS7Xc7f6FpCzZj2/EO+gW7duuWzIVVBtdBZn71Fh6k8C9d24adMm0303b96sLedpCvKZr127tvwIyY9nyaWJ4OHDh7Fu3ToAQK9evdC7d2/Ln7AWWr16NY4dO+b0sfz8/KQ06/bt226ttzJDBHoH4LEXksoDDzwAIEd9/ttvvxnuN3HiRCnKFmVyo64TzL0+UKCuExSxSn18fPJNsnAvoi5YFrF585NHHnkEQI7k6+uvv8734+WF9u3bS2me2Ufbtm3bsG3bNsPtpUqVkmuDzSaM06dPd6+hGtSlHZ988onH6nWHqKgoaah2+vRpvPbaa5ZlsrKyMGTIEPn/66+/nm/tMyIkJASNGzcG4N54WNB9q3PnztII74svvsDt27fz5Thdu3aVL3xXpaRVq1ZFXFwcAOCXX35x6f2XH4h7ZHV/ClN/EsTExEh7gpkzZxoaw2RnZ2Py5MkAcsYiMZHPD5y9np4gKChIzllWrVplN9n1BC5NBKdOnSonLY899phTZcR+RISpU6fK/LVr1+LAgQOG5W7evCnXuQUHB7u0QP38+fOYN2+e6VoBdVadH2uFBg4cKNfZDB06VGtav23bNnz00UcAgLJly0r1eG7EhPj06dPyaz33RFCsEyQijB07FgBQt25djy86v5dR1UcHDx7M9+P9/e9/l6qld955R5r/G7F+/Xqp0i9oypYtKw2/5syZg1mzZjnsk5WVheeee86yLuFSYu7cudrrvHv3bowYMSKPLbbRuHFjdOzYEUCOu4+RI0ea7n/kyBHDiaiwuhOW/O7wySefyDFlwoQJeO211wy1AufOncMjjzwirVN79eqFJ554wu1jG/HHH39ITw86Ll26JF8u7oyH4eHhUmJREH2rbNmycqnRtm3bMGTIENPJ4JkzZ/D999+7fJzq1aujR48eAHKeZ6FJ0nH16lUHKfjbb78NALh+/Tp69uxpuqzixo0bGD9+vHSL42nE+HfmzBlTq2JP9idP8sILLwDIWZry0ksvad/v7777Lnbt2gUAGDx4sMsGPq4gruehQ4cKZF3iW2+9JT9KevfubdrPhIu/tLQ05yp3ytvg/yOcGEdGRlJ2drZTZe7cuSPDsdWoUUPmjxw5knx9falt27b0ySef0JIlSyg5OZnWrVtHP/zwg10Eg1deecWVZkrnprGxsfSvf/2Lfv31V9q4cSMlJSXR/Pnz6bnnnpPOc8uVK+cQm9FZx5u5g4HnRg0xFxkZSZ9//jlt3LiR1q9fT++++y4FBwcTYBxiTpA7rrAuiggR0TPPPGO330svveR22wWuOIo1wpVYw2aYOSB2hv3798tjdezYkVavXk379u2j/fv30/79++288TvrLNTKSfWyZctkXEhfX1/629/+Rr/88gslJiZSYmIizZs3j0aOHEn16tUjADR27Fi3zs0TkUVyh5h78cUXacWKFZSUlESTJ0+WIeYaN25ses5LliyR28uVK0fff/89JScn0+rVq+mdd96hkJAQqlq1KkVERDjlUNqZeKQnTpyQESQAUNOmTembb76hDRs2UEpKCi1btoz++9//0oMPPkhFihTRxhgnsjl+dSb6ghmpqal2Yclq1KhBo0ePphUrVlBycjItXryYXnvtNbsY1m3atMlT6Duz+ztgwADy8/OjLl260Jdffkl//vknpaSk0OrVq+nrr7+WznoB0JdffunW8UUM2PDwcJo2bRrt2rVL9i01gpOnxp7MzEwZTQMAxcXF0Zdffklr166lLVu20MqVK2ncuHHUvXt38vf3p4YNG7p1XroQcz/++KMMEzdz5kx64YUXKDw8XNuv1AAFpUuXprfeeouWLl1KW7ZsoXXr1tGUKVNo0KBBMi587pjjnrpey5Ytk9uffPJJSkhIsBv/VDzRn1xxuOwMuUPMtWvXjmbOnEnJycm0YMEC6tmzp9yWO8Scitgnrw6lv/vuO7s5SlJSkryWucMZOntMq2umvm+Cg4Pp5ZdfpoULF1JKSgolJCTQ9OnT6Z///Kd8Xp0NF+n0RHDdunWyAUOGDHG2GBER/fOf/5RlRfBvZwNh9+zZ0+VQTbnDlhn9ypYtqw1X5qmJIFGOR38x6dT9AgICaMqUKZbnVKVKFVlGF1eYiOjHH3+0q/u3337LU9uJ/loTQSKixx9/3PBeqNfBUxNBopxwimXKlHHqmXTmWdDhiYkgUU5sZF1weHUgE/EuAwMDDY+l9vncv/Lly9POnTudjizibGD6I0eO2E1SzX4DBw50KH/t2jW5XReNx1WOHj1KnTp1smxL0aJF6cUXX3R5nMuN1UTQmevywgsvOP2Rn5sFCxbIKBy650bgybEnIyPDqWsMgNq3b+/WeRERHTx40G7SafTT9avbt2/TsGHDZMxxs1/x4sUdQvx56nplZ2fLSEi6X27y2p88PREkyrnf4oPD6FerVi3TuNK6Z9IdMjMzZVSv3L/c47Czx3Tmmn3xxRcycojZz9/f32GCb4TTqmF13ZBZpAwd6v6inmHDhmHRokV49dVX0axZM1SoUAGBgYEIDAxEbGwsnnjiCSxcuBC//faby84oK1asiK1bt+LTTz9F586dUaNGDYSGhqJo0aIoXbo02rZti88++wy7d++2W9CbHwwfPhxbtmzB4MGDUaVKFRQrVgzFixdHrVq18PLLL2PPnj3o37+/ZT2qKtjIAESsEwRyVFxCRcfY+Omnn/DJJ5+gSZMmKFmypKmzaE/RoUMHHDx4EOPGjUOnTp0QHR0Nf39/BAYGonz58ujYsSM+/PBDp5+F/OTBBx/Ejh07MGTIEFSsWBH+/v6IiopC165dsWTJEowaNUpGvShZsqRhPWPGjMG0adPQpk0bhISEoFixYqhRowbeeOMNbNmyRa6d8iQVK1bEpk2bMGfOHPTu3RuVKlVCUFAQ/Pz8EBERgRYtWmDo0KFYvXo1Jk6c6FBeNQZwNYqEjgoVKmDx4sVYs2YNXnzxRdSpUwdhYWHw8/NDVFQUmjZtihEjRmDnzp0YO3Zsnp3umvHll1/it99+w9///nc0atQIZcuWhb+/P4oVK4bq1avj6aefxrp16zBu3Di3+0TXrl2xfPlyPProo4iJiTF1pO8pwsLCsHjxYixfvhwDBw5EtWrVEBwcjKJFiyIsLAyNGzfGCy+8gEWLFmHZsmVuH6dy5crYunUrJk+ejK5du8o+XLp0acTHx2Pw4MH4888/tWNukSJFMHr0aOzatQtDhw5F/fr1UapUKRQpUgQlSpRA7dq10bdvX0yZMgWnTp1CsWLF8nJJDPH19cXSpUvx9ttvIz4+HsHBwaYGD3ntT/lBWFgY1qxZg6lTp6JTp06IioqCn58fwsPD0a5dO4wbNw5bt25FxYoV870twcHB2LBhA15++WXUqlWrwFwuvfLKKzh48CDeeecdNGvWDKVLl0bRokVRvHhxVK9eHb169cKECRNw4sQJVK1a1ak6ff5/tsowDOMUDzzwAJYvX45WrVph7dq1d7s5HmPUqFF49913Ua1aNezevdvj/s8YhmEKI/kvDmEY5i/DyZMnpUGLqyG3CjvCOG348OE8CWQYxmtgiSDDMJIDBw4YqhOysrLw6KOPShXb9u3bZXDze52bN28iNDQUZcqUwb59+wqFE12GYZiCgEc7hmEkgwYNwtWrV/H444+jYcOGCAsLQ2ZmJpKSkjB+/Hjp8unZZ5/9y0wCgZxQZYXd6TfDMEx+wBNBhmHsSEpKMnUG3aNHD+mrkmEYhrm3YdUwwzCSlJQUzJkzBytWrEBaWhrOnj0LIkJkZCSaNWuG/v37S8fTDMMwzL0PTwQZhmEYhmG8FLYaZhiGYRiG8VJ4IsgwDMMwDOOl8ESQYRiGYRjGS+GJIMMwDMMwjJdSoBPBI0eOwMfHBz4+Ppg8eXJBHtqBp59+Gj4+PoiNjb2r7fAkq1atktd31apVd7s5hY7C9Px5ksmTJ8vzOnLkyN1uDpNHduzYgX79+qF8+fLw9/eX93br1q13u2l3jb/ieP1XoDCNqe+++y58fHzQuXNnh20zZsyAj48Pqlevjps3b96F1hVuWCLIMAxTSEhOTkaTJk3w888/Iy0tDbdu3brbTWIseOCBB+RkqEOHDm7Xs27dOrz88suIj49HREQEAgICEBMTgxYtWuDdd9/F/v37napHtEX3K1asGMqXL4+HH34YU6dORXZ2ttvtLUykpaVh9OjRAICRI0c6bH/ssccQFxeH/fv3sw9UDTwRvAcQnXjUqFF3uymFktjYWPj4+ODpp5++201hmDzx5ptvIisrCyEhIRg/fjw2b96M1NRUpKamombNmne7eUwu0tLSsHLlSvn/qlWrcOzYMZfr6NatG1q3bo2vvvoK27dvx7lz53Dz5k2cOnUKCQkJGDVqFGrXro1XXnkFN27ccLu9169fR1paGhYsWID+/fujWbNmOHv2rNv1FRbef/99ZGVl4aGHHtLGQPf19cVbb70FAPj444+RmZlZ0E0s1BRoZJHY2Fiw20KGYRhHbt26hdWrVwMAnnvuOTz//PN3uUWMFT/99BPu3LkDf39/EBFu3bqFn376CcOHD3eq/O7du9GxY0ekpaUBAGrUqIGBAweiUaNGKFWqFNLT07FixQpMmjQJGRkZGDNmDLZt24Z58+ahRIkSpnU3atQIkyZNssu7cuUKduzYgXHjxmHbtm1ISkrCY489Jp87VykM7/QTJ07I8xw6dKjhfk888QSGDRuGEydOYMKECXjttdcKqomFHpYIMgzDFAKEFAgAqlevfpdbwzjD1KlTAQCdO3eWa9NEnhWZmZno1q2bnAQOHToUqampeP3113H//fejQYMG6Ny5Mz799FPs3r0b999/P4AcqeOgQYMs6y9evDjq1Klj92vWrBkGDRqEDRs2SAnzmjVrsGnTJpfPvbAwfvx43Lp1C9HR0fIa6ShSpAieeOIJAMDXX3/9l1GLewKeCDIMwxQCVJWfn5/fXWwJ4wyJiYnYtWsXAKBv377o27cvAGDPnj3YvHmzZfnXX38dhw4dAgAMGTIEn332meF9j4iIwPz581G/fn0AOcYPM2fOdLvtQUFBePHFF+X/9+pE8M6dO9JIpU+fPvD1NZ/SiHt09OhR/Pnnn/ndvHuGPE0E169fj0GDBqFGjRoICQlBcHAwatasie7du+PHH3/E5cuX7fa3sjAaNWqU3A4Aly5dwvvvv4/69esjNDTUsFxmZib++9//okOHDihTpoxcZNu0aVO8/vrrSElJcfscr127hi+//BLt27dHVFQU/P39ERkZiY4dO2LSpEn5+lUh1r4JhFWU+rNaFzdjxgzcf//9iIiIQLFixVCjRg0MGzYM58+fd6oNy5YtQ79+/VCpUiUUK1YMISEhiI+Px7Bhw3Dq1CnDcrnv5fXr1/Hpp5+iQYMGKFGiBEqUKIEmTZpg3LhxuH37tlNtyU27du3g4+ODo0ePAgCmTJnicH3atWtneX4PP/ywfG4qVaqE559/Xn6lW7F582YMHjwY1atXR3BwMIoXL46aNWvihRdecHpxtxUXLlzAG2+8gZo1a6JYsWKIjIzEAw884PKL4Pbt25g4cSK6dOmCmJgYBAQEoHTp0mjTpg2+/PJLXL9+3bKO7du346mnnkLZsmURGBiIChUqoF+/frKPmVl36vr/7NmzZXuKFi1qeL/cfQ5VCuJe3bx5E+PHj0f79u0REREBf39/lClTBl26dJFqxNyIvlKpUiWZN3DgQLvn2NX1wVevXsWvv/6KQYMG4b777kPJkiXh5+eHiIgItG3bFp999hmuXLliWkfuYycmJqJPnz4oV64cAgICULZsWTz11FPYvXu3U+157733ULduXRQvXhzh4eFo1aoVfvjhBxCRxzweFOR4/eOPPwIASpYsiYcffhiPPPIIQkJC7LYZcebMGfzwww8AgDJlyuCzzz6zPF6xYsXwzTffyP//85//uNt0ALDro870fR3OWA2fPHkSb7zxBho0aICSJUvKPlG3bl306dMHkydPdpgrOMu6detw8uRJAECvXr0s92/QoIHsZ7/++qtbx/xLQm5w7do16tOnDwEw/Y0cOdKu3OHDh+W2SZMmOdQ7cuRIuX3fvn0UGxvrUGfucsuWLaPSpUtbtiU3AwYMIABUsWJFw/PcvHkzlS1b1rTeJk2a0OnTp924itZUrFjR8rwGDBgg91+5cqXM//PPP+nJJ580LFe1alU6deqU4bGvXLlCPXr0MD12cHAwzZ8/X1tevZenT5+m+Ph4w3oefvhhys7Odvn6tG3b1vL6tG3bVu6f+/l7/fXXDctFRETQrl27DI9969Ytev75502P7efnR99++63L56Wyc+dOio6ONjzGM888Q5MmTZL/Hz58WFvPgQMHKC4uzrS91apVo3379hm2ZfLkyeTn52d4rpMnTzbtV+r1/+GHH+ipp54yvV9EeX8OiQruXh05coRq1aplepxWrVpRRkaGXTm1rxj9co+lVjjTNypVqkS7d+82rEM99tixY6lo0aLaeoKCgmj16tWG9Rw7doyqVq1q2I5u3brR0qVL5f8rV650qKOwjdc3b96U751nnnlG5g8cOJAAUHh4ON28edOw/JgxY2Sbhg8f7tKxmzdvLstu27bNYbtRX8rNuHHj5L7Tp093qQ0Cq3f6mjVrKCQkxPJZNOu/ZowaNUr236ysLKfK9O7dWz7/TA4uTwSzs7PpwQcftHt5fPHFF7R27VpKTk6mBQsW0PDhw6lq1ap5mgjWq1eP/Pz86KWXXqJly5ZRUlISTZ8+nTZs2CD3X7FihRycihQpQk8//TTNmTOHkpOTaf369fTdd99Rz549yc/Pz+FYVgPL9u3bqXjx4gSAIiMjaeTIkfTnn3/Sli1b6I8//qAXXnhBHrtp06amnd5d9u7dS6mpqfKaPP/885Sammr3S0tLk/urE8EWLVoQAOrevTvNnj2bkpOTadGiRdS1a1e5T+/evbXHvX37NrVv354AkI+PD/Xp04dmzpxJSUlJlJCQQGPGjKEKFSoQAPL396ekpCSHOtR72aJFC/L396d//vOftGzZMkpOTqZp06bZvTQnTJjg8vU5dOgQpaamUkxMDAGgRx991OH6HDp0SO6vPn/i+rRt25amTZtGSUlJ9Oeff1L//v3lPs2aNTM8trpf586d6aeffqLNmzdTYmIifffdd1S7dm25fd68eS6fGxHRxYsXqVy5crKeJ554ghYtWkRJSUk0bdo0atSoEQGgxo0by310E8GTJ09SVFQUAaASJUrQ0KFDafHixZSSkkIrV66kN998k4KCgggAVa5cmS5evOhQx9q1a8nX15cAULFixWj48OG0Zs0a2rRpE3399ddUrlw58vf3p/r16xv2K/X616tXjwBQ69at7a7/999/L/f3xHNYUPcqMzOTKleuLOvp3r07zZs3j5KSkmjmzJl2E7PmzZvT7du3Zdn09HRKTU2lP/74Q+7zwQcf2D3H6enpLrWnZcuWVLduXXrrrbdozpw5tGnTJtq4cSP9+uuv1Lt3b3kva9SoYfgCVfuBj48PxcfH0w8//ECJiYm0Zs0aevXVV2U9FSpUoBs3bjjUcePGDapTp47d9Z8zZw4lJSXR77//Tl26dJFjaF4mggU9Xs+ZM0e2d8WKFTJ/+fLlMn/OnDmG5Xv16iX3S0hIcOnYH3/8sSw7btw4h+3OTASvXbsmPwyDgoLozJkzLrVBYPZOv379uhybS5QoQcOGDaPFixdTcnKyfBZfeeUVKl++vNsTwfvvv58AUIMGDZwu8/nnn8s2q+9Pb8blieCXX34pL2KPHj3o+vXr2v2ys7PpxIkTdnmuTAR9fX1p6dKlhu24du2alJQEBQVpBw/BsWPHHPLMBpY7d+7IF1V8fDydPXtWW+/ixYvlQKi+wDyNuCZWUgF1IiheJrm5c+cOdezYkQBQ0aJFtQPAZ599Jr+yFi1apD3W+fPn5Qu0VatWDtvVe+nn56e9PxkZGXKCUq9ePdNzM0NITlXpqA71+QNAgwcPpjt37jjsN2jQILlPSkqKw/ZZs2bJ7d999532WFlZWdShQwcCQLGxsXTr1i2Xz+tf//qXPM5HH33ksP3mzZvyXppNBLt160YAqHz58nTw4EHtsVJSUuSL9O2333bYLiS6/v7+tH79eoft6enpdhMhq4kgAOrfv7/2+gs88RwW1L3697//LY+ju3537tyhvn37yn3Gjx/vsI/V+OgKZpJdohxNitXYpd6rLl26aCd6H3zwgdxn9uzZDtvVl+6LL76oPc6LL75odyxXJ4J3Y7wWUupy5crZaTOys7Plx1uPHj0MywsJqa+vr9OSLIH6wTB48GCH7WJbo0aNHD6MN23aRBMnTpQfbD4+PvTVV1+5dHwVs2dWnRRbSewvXbrk8rHv3Lkjx6xnn33W6XKrV6+W7ZoxY4bLx/0r4tJEMDs7W4rey5YtS5mZmS4dzJWJoCpu1zFhwgS57xdffOFSO4jMB5b58+fLunWid5XHH3+cAFDLli1dboOzuDMRbNiwoeFLdsmSJXK/uXPn2m27efOmnGC/+uqrpsdbtGiRrGf//v1229R7+a9//cuwjjfeeEPup5NEOYM7E8Ho6GjDj5g9e/bI/caMGeOwvWHDhpYDPRHRrl27ZD3Lli1z+nyIcr6mS5UqJSfJRqrz48eP26lrc08EVYly7nudm2HDhhEAiomJsctPSEiQdZg9E3PnznV6IhgaGkqXL182rMtTz2FB3avQ0FACQHFxcXbSPpVLly5ReHi43C83npwIOkP37t0JyFHN6hBtCQwMNJRIXr58mfz9/Q3vU40aNeQzZTThycrKkpIjdyaCBT1eZ2RkyHMeNmyYw/bXXntNfjTlXgYgEM9LqVKlXD7+1q1b5fn27NnTYbs6qTb7Pfjggy4/67kxe2Z//vlnuc2diZ4VGRkZsv4333zT6XK7d++W5T7//HOPt+texCVjka1bt+LEiRMAgMGDByM4ONiV4i4hrHuMWLhwIYAc66fnnnvOo8eeO3cugByfTvXq1TPdt02bNgByFlIXJnP0J5980s7QRKVhw4YyLazWBJs3b5aL7x9//HHTY4hzB4CEhATD/czupdqWw4cPmx7Pkzz22GMICAjQbqtRo4Z8tnNfnxMnTiA5ORmA9fWpVasWSpcuDcD8+uhITk7GhQsXAAADBgwwtIYrV64cOnbsaFiPeJaDgoLQtWtX02OK+3ny5EkcP35c5i9fvlymBwwYYFi+a9euCA8PNz2G4OGHHzb1g+aJ57Ag79XFixcB5BjLFClSRLtfSEiIbMeuXbucNnLxBGfPnsX+/fuxY8cO+YuIiAAAbNu2zbTsgw8+iMjISO22EiVKoFq1agD0fWXv3r0Acq5/YGCgto7AwED87W9/c+l8VAp6vP7ll1+km59+/fo5bBd5N2/eNDRIEA6Nixcv7vLx1TLuGlkAOW5oJkyYIN/pniY6Olqmc/sz9ASqI+xSpUo5XS4sLExbhzfj0kRwy5YtMq0OvvmBVYcWbWnUqBGCgoI8euykpCQAwN69e03D9fj4+EgT/Js3bzptiVsQmEUhUDtCbg/r4twBoHnz5qbnrn4InD592uNtyU+sojSIgcXs+vTp08fy+Th37hwA8+ujIzU1VaYbN25sum+TJk0Mt4n2Xrt2DUWLFjVta7du3WQ5tb07duwAAAQEBKBOnTqGxypSpAjuu+8+07YKrPq3J57DgrpX4voAQNOmTU33Vber5fKD9evX44knnkB4eDgiIyNRvXp11K1bV/6+++47AJDnbYRVXxF9OHdfUc9P/eDT0ahRI9PtZhT0eD1lyhQAOc9w3bp1Hbar+UbWw+IjyMpyW4daRlgp62jbti0oR+snfzdv3sThw4fx9ddfo2TJkvjtt9/QrFkz7Nu3z+V2WNGqVStUrlwZAPDKK6+gSZMm+Pjjj7FhwwaPxPtV758rE0F134yMjDy346+ASxNBdcBQZ/v5gdWNFW3Jj3acOXPGrXLXrl3zcEvcx2xyrEqXcn8V58e5u9uW/MTq40G0qyCujw4hDQRgKI0RREVFGW7zRHtFW8LCwgylXQIhZbLCqn97ot0Fda/UF5LZvQByXIXoynmaUaNGoVWrVpgxY4blcbKysky3u9tXXHmGnX1udBTkeL1v3z7pI1AnDRSIbRs3btS6JhKS88uXL1te/9ykp6c71OMsfn5+iI2NxT/+8Q+sWrUKfn5+SEtLc8pBtav4+flh/vz5qFWrFoAcKezw4cPRsmVLhIaGonPnzpg2bZrb474qYXblGqr7FitWzK1j/9VwO8SckdrRU1i9cPKzHeLBbNmyJSZMmOB0uZiYGI+3paBRO+WqVaucHmisBvq/Cur1+fnnny0lWwJXvlgB2IVtsnrG1X1zI9pbqVIlzJs3z+njqz7t8gOr/u2J57Cg7pVKXu6Vp1i+fDneffddAEDlypXx73//G61atUKFChUQHBwsr/2IESPw/vvv53t78puCHK+FNBAAhg0bhmHDhlmW+fHHHx2uc3x8PA4ePIg7d+5g27Zt2vi4Rqh+cePj450ul5vatWujS5cumDt3LtauXYv9+/dLNb+niIuLQ2pqKubPn4/58+dj9erVOHjwILKysrBkyRIsWbIEn3/+ORYtWuTyO0T9eHDlo0rdNy8fIH8lXJoIijU0QM46oho1ani8Qa60JS0tTTqT9CTh4eFIT0/H2bNnTVVhf0XUF66/v7/Xnb8V6vXx8fHJt+ujqszT09NNQ46ZSUREe9PT01GzZk0ULer6t5+YGJ0/fx7Z2dmmkzhPrbnxxHN4N+7V6dOnTe+VKs1Ry3kSofINDQ1FQkKC4QtWldjlB+qE2kpql5fnpqDGayLCTz/95HK5n376Ce+9957dR0KbNm0we/ZsAMC8efNcmgiqH3StW7d2uT0qNWvWlGssU1NTPT4RBHI++rp3747u3bsDAE6dOoXFixdj/PjxSE5ORnJyMoYMGYI5c+a4VK86iXPlWVb35YlgDi6phhs0aCDTa9as8XhjXEG0JSkpyeMqWRHGZ9++fTJqhbcgzh0Ali5dehdb4jz5LZ1WKajro649SkxMNN3XbLto77Vr17B+/Xq32lK7dm0AOSHQ1LWLucnOzsbWrVvdOkZuPHGdC+peqZMPq1Bdauix/Jq07Ny5EwDQoUMHUymLuoYyPxDPjTPHyktbCmq8XrlyJY4dOwYAeOmllzB9+nTT37/+9S8AOdE3cr8ve/fuLY3VJk2a5PRawcTERGzcuBFAznk7K+U2Qo3qdOvWrTzV5SzR0dF45plnkJCQIN/jCxYscFlFHhAQICeurqxxVPfVrfH0RlyaCMbHx6N8+fIAgO+//96tha6e4uGHHwaQ84L79ttvPVr3I488ItOffPKJR+t2B7EWQo1Fml+0atVKSiomTJiQJ6u0gqIgr0/VqlURFxcHIMd6ULwYPE3Dhg2lRGXq1KmGKsUTJ06YTnIeffRRmXb3WVYDuZuFzlq4cKHHFl974jksyHsVGhoKIEd1aLTmKTMzEzNmzACQozLLr3XW4uVu9oG8detWOaHIL8qVKyelozNnzjQMY3b9+vU8xc0tqPFaPPtFihTB22+/jd69e5v+3n77bRk7OHe/iYqKkhb4p0+fxmuvvWZ5/KysLAwZMkT+//rrr+f5nNSPSPFuLyj8/PzQtm1bADnPrLC8dwUhEbX6WFYR+xYrVszSiMlbcGki6OvrKx/YtLQ09O/f39D6586dO/mithX069cPZcuWBQC89dZbWL16teG+zsaNFfTq1UsucP3f//6HiRMnmu6/Y8cOzJ8/3yFfjcNoFfPWDPHCOHjwoNt1OEtgYCD+/e9/A8gZoHr37o2rV68a7p+ZmYlx48ble7vMKMjrAwBvv/02gJwXWM+ePU3VWjdu3MD48eNdjuUZEBCAgQMHAsh5aX/66acO+9y+fRuDBw82tcBr3LixdC+zaNEijBw50vS4R44cwfTp0+3ymjdvLiUPX3/9NTZs2OBQ7uzZs3j11VfNT8oFPPUcFtS9Eovtd+7cKdfnqRARXnzxRWnkJqxX8wMhJVm3bp2DSxcg516ZGTp4EjFxOXnypOFk57XXXsvTu8JT47UZ165dw2+//QYgZ/LhzHq2UqVKoUOHDgCAWbNmOUi8PvnkE7kWd8KECXjttdcMpXLnzp3DI488Ir1l9OrVC0888YRL55CbhQsXSkll6dKlTb0PuMPatWtx4MABw+03b96U7+3g4GC31LRiInju3Dmn3Y8JqXzTpk3h7+/v8jH/krjqeDB3iLnq1avTl19+SevWraOUlBRatGgRjRgxgqpVq5anEHPOoAsxN3fuXEpOTqYNGzbQpEmT6G9/+xv5+/s7lHUmZFFwcLBsz0MPPURTpkyhjRs3UnJyMi1evJg++ugjGaps6NChDnWo52sV99EMEZEgICCAJkyYQKmpqbR//37av3+/naNX1aG0WaQVInMn1bdv35ahe4Cc8FEfffQRrVy5krZs2UJr1qyh7777jvr27UvFixen8PBwhzqcvZeutNmIt956S9bx8ccf09atW+X1UUMIueKw18pJtXh+AFDp0qXprbfeoqVLl9KWLVto3bp1NGXKFBo0aBCFhYURAJedrxM5hpjr06ePDNE0ffp0GVrOKsTciRMn7OIVN23alL755hvasGEDpaSk0LJly+i///0vPfjgg1SkSBHq1auXQx25Q8y99dZbtHbtWtq8eTONHz+eypcvT35+fnTfffcRkBOhIzeuOkz2xHNIVDD36vLly3aRVXr06EHz58+n5ORkmjVrFrVr105uyx1izt3rY8TMmTNlPeXKlaOxY8fShg0baP369fTpp59SdHQ0+fj42MWs1WE2RqiI8Hm6MS53iLkuXbrIMXru3Lky5GWTJk3kPqtWrXKopyDGazN+/PFHWffYsWOdLvftt9/KctOmTXPYrobIBHJC/o0ePZpWrFgh2/3aa69JR+QAqE2bNqbO98V+usgiKSkpNH/+fPr73/9uFzva3TjbZs/syJEjydfXl9q2bUuffPIJLVmyhJKTk2ndunX0ww8/2N3zV155xa3jnzp1iooUKUKAceQglcuXL1NgYCABoE8//dStY/4VcXkiSER09epVeuyxxyw9l+f3RJAoJ0qGiMBg9suNM0HMt23bRtWqVbOsGwC9++67DuXVaAU6D/DOsmXLFgoICNAeV52oeGoiSJQTwk+N0Wr20wXvLsiJYFpamnyJ5/6pLydPTgRv375Nw4YNk4OQ2a948eJ07do1t85tx44dVKZMGcO6Bw4cSJMmTZL/6yaCRERHjhyxmzCa/QYOHKitY/LkyXZRTNRf0aJF6bvvvqOnnnqKAFDNmjUdyrsz0cnrc0hUcPfq8OHDVLNmTdP6W7ZsaRhtwpORRQYOHGjYhiJFitCXX35p2UetxgiB2USQiOjo0aNUpUoVw/Z07NiRFi9eLP/fuHGjQx0FMV6b8cADDxCQE5Itd+hUM86ePSufu06dOmn3OXr0KHXq1MmyzUWLFqUXX3zRMiSdM+cvfn5+fjR69GiXroWK1UTQmTb07NnT5TB7Kg899BABoPbt21vuO3nyZNkHOM6wDbcmgoIVK1bQU089RZUqVaJixYpRiRIlqGbNmtSzZ0+aNm0aXblyxW7//JgIEhFduHBBfu2Fh4eTn58flS1blpo2bUrDhw+n1NRUhzLODCxEOXEQp0yZQt27d6fy5ctTYGAg+fv7U3R0NLVr147efvttSk5O1padOHGiPJ+1a9e6dE65SUlJoT59+lCFChXsJoX5NREUJCUl0fPPP0+1a9emkiVLUtGiRSk0NJTuu+8+evbZZ2nWrFnaUG0FOREkIjpw4AA9++yzVLVqVfnFl/vl5MmJoGDv3r00dOhQql+/PpUqVYqKFClCJUqUoNq1a1Pfvn1pypQppqHUnCEjI4OGDRtG1apVo4CAACpdujS1b99eShicmQgS5cTmnDNnDvXu3ZsqVapEQUFB5OfnRxEREdSiRQsaOnQorV692jT+77Zt26hv374UExND/v7+VLZsWXr88cfly/vRRx8lIEfqmJu8THTcfQ5VCuJe3bhxg8aNG0dt27aVY1FUVBR16tSJpk6dahgqkMjzIeamTp1KrVu3phIlSlBAQABVrFiRnnrqKdq0aRMRWfdRT00EiYiuXLlC7777LtWpU4eKFStGoaGh1KxZMxo/fjxlZ2fTnDlz5PF2797tUL4gxmsj0tLSpDS8RYsWLpUlImrfvr2cfJw6dcpwvzVr1tCLL75IderUobCwMPnsNG3alEaMGEF79+516nhmk64iRYpQWFgYNWnShF5//XWHkIyuYvbMXr16lRYtWkSvvvoqNWvWjCpUqECBgYEUGBhIsbGx9MQTT9DChQvzdHwionnz5hGQE7fZanInYrNbhZz0NnyICsCxlZfy9NNPY8qUKWjfvj1WrFhxt5vDMPlO1apVcfDgQfTr1w9Tp069281h7hE++OADvPPOOyhatCgyMzMNw9ExTG7u3LmDOnXqYPfu3Xj//ffluuDcHD16FFWqVEF2djbWrVuHli1bFnBLCy8uGYswriEWwo4YMeIut4Rh8p/ExERpsOOKXzTGuyEiGZP3vvvu40kg4xK+vr4YNWoUAODLL7809Gby0UcfITs7Gx07duRJYC54IphPpKWl4ciRI2jdunWeLIYZprBgZgGYkZGBwYMHA8ixos2rRSPz1+HIkSN2/upyM2LECBmXWLhUYRhX+Nvf/oZmzZohIyND6z0gLS0NkydPhq+vb6FwCVfYcDvEHGNOuXLlCiScFMMUFA8++CAqVaqEHj16oF69eihZsiQuXLiA9evXY/z48Th16hSAHJctahQixruZPHkyJk2ahCeffBItW7ZETEwMbt26hd27d2PKlClYtWoVgBzfiuJjgmFcwcfHB9999x1mzZqF4OBgh+3Hjh3Dm2++icqVK+cpLN9fFV4jyDCMU8TGxlpGbvjHP/6BsWPHwteXlQ1MDqNGjdL6VlSpWbMmFi9ejNjY2IJpFMMwEp4IMgzjFKtXr5aB40+dOoVz586haNGiKFOmDFq1aoXnnnsOLVq0uNvNZAoZx48fx6xZs/DHH3/gwIEDOHv2LLKyshAWFob4+Hj06NEDzzzzDDv3ZZi7BE8EGYZhGIZhvBTW3zAMwzAMw3gpPBFkGIZhGIbxUngiyDAMwzAM46Xc1YngkSNH4OPjAx8fH0yePPluNgWjRo2SbWEYhmEYhvEG8jwRvHXrFn755RcMGDAAtWrVQnh4OPz8/FC6dGk0bNgQzz//PP7880/cuXPHE+1lChkffPCBnECXKFEC165d81jdN27cwJw5c/Dmm2/igQceQPXq1REWFgY/Pz+Eh4ejRYsWGDFiBNLS0kzrUT84rH5PP/20ZZtGjBiBSpUqITAwEHXq1MH48eMLhc/IVatWmZ5bcHAwqlevjgEDBkjfbfl5PN3Pyrl6RkYGRo4cifj4eJQsWRIhISGIj4/HyJEjkZGR4VS7lixZghYtWiAoKAhRUVF47rnncPr06Tyfb36QnJyM4cOHo1mzZihbtiwCAgIQEhKCKlWq4LHHHsM333yDixcv5ukYFy9exLJly/Dhhx+ie/fuiImJcfp+6EhISMBTTz2F2NhYBAYGIjo6Gp06dcIvv/xiWVb94Lb6WT2je/fuRa9evRAaGooSJUqga9euSElJcfl88oOnn35ae06BgYGIiopCjRo10KNHD3z44Yceb/ONGzewceNGjB07Fk899RRq1KgBX19flwUdnurTgiVLlqBnz54oV64cAgICUK5cOfTs2RNLlixxqvylS5fw8ssvIyYmBoGBgWjUqBFmzJjh9PkwJuQlUPHvv/9OlStXNg1yLX7Vq1enBQsW2JX3dJD1vGAVgJ3RU716dbv7PHXqVI/VvX//fqeereLFi9OUKVMM61GfM6vfgAEDDOu5ffu2DFqe+zd48GCPnbe7rFy50unzBEDPPPMM3b59u8COB4Cee+45w/o2b95M0dHRhmVjYmIoMTHRtE2TJ08mHx8fh7IVKlSgkydPun2unubYsWP06KOPOnXNihUrRsOHD6dr1665dazY2FjDutu2betSXe+++y75+voa1vfwww9TVlaWYXl1nLX6rVy50rCe7du3U8mSJR3KBAYG0vLly106p/xgwIABLvWLxo0b04oVKzxy7Kefftr0WM7ibNutnqE7d+7Qc889Zzku3Llzx7COzMxMqlevnrbshx9+6PQ5MXrcnvV89NFHdgPuAw88QGPHjqXly5dTcnIyLVu2jMaNG0cPPfSQHDji4+Pt6ihME0HGdRISEuT9Cw4OJgD04IMPeqz+/fv3U2RkJD3xxBP02Wef0cyZM2ndunW0adMmmj17Nj377LMUGBhIAMjHx4cWLVqkrUd9zj744ANKTU01/KWlpRm2Z/z48QSAypYtS5MmTaKNGzfSl19+KV9Iixcv9ti5u4M6MXv++eftzmv79u20atUq+vjjjykyMlLuN2LECLePd+XKFdNrKX5t27aVx1u/fr22rrS0NIqKiiIAVLRoURo2bBitWbOG1qxZQ8OGDaOiRYsSAIqKijK8R2fPnqXixYuTr68vDR06lNatW0fz5s2jpk2bEgB64okn3D5XT5KSkmI34a1YsSK98cYbNH/+fNq8eTOtW7eOfvnlFxo0aBCFh4fL/bZs2eLW8SpWrCjriIqKom7durk1Efzuu+9kuSpVqtDEiRNp8+bN9Pvvv1P79u3ltr59+xrWoU4ErZ6bK1euGNbTpEkTAkBdu3alpUuX0qpVq6h///4EgMqXL083b9505RJ5HHUi+Mcff8hz2rZtG61evZp+/fVX+te//mUnSPH19c1Tf9Qdu0SJEtS2bVsqU6aM2xPB3GNJ7t+hQ4dM6xk+fLisq379+jR9+nTavHkzTZ8+nerXry+3vfXWW4Z1DBs2jABQrVq1aMaMGZSQkEDvvfceBQQEkK+vL+3cudPp82IccWsi+OOPP8qbFxERYfkls337durQoQNPBP9iPP/88wSASpcuTaNHj5aDmdlkyhWys7NNvxKJiDZt2kR+fn4EgBo0aKDdx1PPWbt27QgAbdu2zS5/zpw5BIAGDhzodt2eQJ0Ijhw50nC/nTt3UrFixQgAhYSE5OtL88KFCxQQEEAAqGrVqob7qS+vGTNmOGyfMWOG3G50nSdPnkwA6NVXX7XLz8zMpHLlylFgYCDduHEjbyeUR9LT0+0mgcOHD6fr168b7n/58mUaMWIEFS1a1O2J4KeffkqzZs2io0ePyjxXJ4IXLlyg0NBQAnKkq2fPnrXbfvv2bXr44YdlvatXr9bW4wnNy5EjRwgANWrUyEGiLaSsRscvKNTn+fDhw4b7ZWdn0w8//EBBQUFy/6+//jpPx/7ll19o0qRJtGPHDsrOziYisvsYcxZnxhIr9u/fLz/iGjVq5CDVvnr1KjVq1Eh+AB44cEBbT2xsLBUvXtxBqv/FF18QAHr33XfdbiPjxkTwxIkTVLx4cQJAQUFBTs/Es7OzHdSGPBG8d7lx4waFhYURAPrHP/5Bp06doiJFihAAGj16dIG2pVOnTvI5yszMdNjuqeesWrVqFB4e7pB/+fJlAkAdO3Z0u25P4OxEkIjosccek/vmnth6kgkTJsjjGA3Wp0+fls/OQw89ZFjXQw89RACoSJEidPr0aYftH374IQGg+fPnO2zr2bMnAbjr6uHu3bvL6zFq1Ciny61evdpS8uIKrk4EP/nkE1lm+vTp2n2OHz8u72O3bt20+3hiIrh+/XoCQEOHDnXY9tVXXxEAmjZtmtv1ewJnJ4KCtWvXyglTYGAgnTp1yqPtuVsTwX/84x+ynoSEBO0+qmbpxRdf1O7j5+dHDRs2dMjfvn07AeZLThhrXDYW+eKLL3D16lUAwLvvvou4uDinyvn6+qJfv36W+y1btgwPP/wwypQpg4CAAFSqVAnPP/+8pUEAANy8eRPjx49H+/btERERAX9/f5QpUwZdunTBTz/9ZGqw4qzV8M2bN/Htt9+ia9eucnF3ZGQkGjZsiBdffBFr1641NRxYtmwZ+vXrh0qVKqFYsWJyMfywYcNw6tQp02OfPHkSb7zxBho0aICSJUvK86tbty769OmDyZMn4/Lly+YXyUPMnz8f58+fBwD069cPZcqUQYcOHQAAP/74Y4G0QVC8eHGZvnHjRr4dJzIyEhkZGdi5c6ddvljUXqZMmXw7tqdRY7pev349344jngUfHx889dRT2n3mzZuH7OxsAMDAgQMN6xKGPNnZ2Zg3b57D9sjISAA5ofBUrl69iqSkJPj7+yMsLMzlc/AUO3fuxNy5cwEA8fHxePvtt50u26ZNG1SqVCm/mmbJ77//DgAICQlBz549tfuUK1cODzzwAICcce7KlSv50hZxn9etW+cwpot7fy/1RQBo1aoVXn31VQA5/fGLL764yy3KO0Qkn/eaNWuiWbNm2v2aNWuGGjVqAMh5znTvz8jISOzduxfp6el2+ffi2FsocWXWeOfOHYqIiCAgZ4H+pUuX8jQLzS2pef311+X/uX8RERG0a9cuw7qOHDlCtWrVMiwPgFq1akUZGRna8s58qW7ZsoUqVapkegwYfAFeuXKFevToYVouODhYK80gIlqzZg2FhIRYHltXXpUUmRlDuMIjjzxCQM5aIcGUKVPkcZKTky3rEPtWrFjR7Xakp6dTqVKlCMhRUevwlETw008/JSBnDdLkyZNp06ZNNHbsWHl8o3tXULgrETSSPqhSDbOF+0YcOHBAlm/Tpo3hfk899ZRlW4iITp48Kffr37+/w/a0tDTy9/cnX19fGjZsGK1fv54WLFhALVq0IADUq1cvl8/BkwwdOlS2//vvv/dIne72IVHOGYngjRs3pLTKTGJLlLN2XNStWzLkKaO82rVrEwB65JFHaNmyZbR69WoaOHAgATlGRWbq9oLAVYkgUY5EVaynr1atmnYfVbLnbL25yzmLs2OJEQcPHpR1DBkyxHRf1ZhEJ/l+4YUXCADVrl2bZs6cSQkJCfThhx9SYGAg+fj45KtWwxtwqTfu2LFD3qxOnTrl+eDqC1oM1m3btqVp06ZRUlIS/fnnn3IBMABq1qyZtp7MzEy7Rbfdu3enefPmUVJSEs2cOdOuEzRv3lxrKWk1QO3cuVMaRACgHj160K+//kqJiYm0ceNGmjJlCvXr14+KFy/u0EFv374tF1P7+PhQnz59aObMmZSUlEQJCQk0ZswYqlChAgEgf39/SkpKsit//fp1iomJISBn8e+wYcNo8eLFlJycTBs3bqRff/2VXnnlFSpfvnyBTATPnj0r1+Wpi5szMzPlWpeXX37Zsh53X2LXr1+nQ4cO0bfffktVqlSR9bz//vva/dXnrEGDBhQbG0v+/v4UEhJCcXFxNGTIEKcmrllZWdLwIPdPNzEpaJydCO7evVuuEWzcuLHhfnmdCI4YMUKWnzhxouF+Yo1QyZIlLesUH0NG7RZrhnL/YmJi6Pjx4y6fgycR5wlAq9p2h4KYCKrjvlW/nj17ttxXt9ZNHWcfeOABCgsLIz8/P4qIiKC2bdvSxx9/TOfPn7ds0/r16+UzrP78/f3vutEWkXsTQSKiuLg404+iuzERjIuLo+rVq1NgYCAFBwdT1apVqX///pa2AQsWLJB1fPHFF6b7fv7553LfhQsXOmw/d+6c3Viv/jxhYOPtuDQR/Pnnn+XFHz58eJ4Pntutx+DBg7XGAYMGDZL7pKSkOGz/97//Lbe//fbbDtvv3LlDffv2lfuMHz/eYR+riaCwbvL19TVcI0OU88DmXhD72WefEQDy8/MztGw9f/68/Mpt1aqV3bbly5fLtplJnW7duqWV0np6IjhmzBhZ3759++y29enThwBQZGQk3bp1y7QeV15iVq5K+vbtaygFcNZ9zJAhQywlCZmZmTR06FAqW7Ys+fn5UfXq1enzzz+Xi7LvJlZWw2vWrKHRo0dLC8KQkBBDK16ivE8ExcdZsWLFTLUHwlq4du3alnWKPlKmTBnDfWbOnEkNGzakgIAACg8Pp/79+3vMgCkviI+nmJgYj9VZEBPBxYsXy/0//fRT030TExPlvm+88YbDdmfcx4SGhtLvv/9u2a6UlBTq0qULBQcHU1BQED3wwAOG69AKGncngv369ZPl1qxZ47D9bkwEzX7du3enixcvasv/73//k/vNnDnT9FgzZ86U+06YMEG7T3p6Og0aNIgiIyPJ39+f4uPjTd2GMc7j0kRQnQCMGTMmzwdXX9DR0dGGL+E9e/YYHvf69evSmi0uLs7QL9qlS5ekK4a4uDiH7WYTwSVLljj9RZybmzdvSivB3NaMuVm0aJE8zv79+2W+OgF3Rx3v6Ylgw4YNCQA1adLEYdvChQudmrQSeWYiGBsbS0uWLDEte/jwYQoNDaWBAwfSlClTaMOGDZSSkkILFy6kl19+2U7S++STT1q2pbDirF8/X19fGjJkCO3evdu0vrxMBNesWeP0NRVS5KZNm1rWK9yGBAcHu9Seu82lS5fk9ahfv77H6i2IiaBqsf2///3PdN9du3bJfXUL/0eOHEl169ald955h+bPny+1GlOmTLHz0VmkSBHDj+Z7AXcngi+//LIsN3fuXIftBTkRDAoKot69e9N3331Ha9eupS1bttDSpUvprbfesnNr1LZtW63nAdXAyEpKq777PvvsM6fbyHgGlyaCH3zwgbxZnljjok4EX3rpJdN9xcs690RMWJABoE8++cS0DuHuBHC0HjSbCL700kty25EjR5w7uf9n3bp1sqzV1+qVK1fkvj/++KPMX7Fihcz/8ssvXTq+p9m5c6dsy1dffeWw/datW9JP3eOPP+6x46o+65KSkmj27Nn09NNPU5EiRSg6Otr0ebxx4wZdvXrVcPu+ffukat5oAL4XcMXBc6lSpWjo0KH55k5l8ODB8lhWE3WxLqp169aW9bZu3VpOFO4l0tLS5PXILfG/G7gyEVTdhZmp+Ins14U9++yzDtsvXLhgWl61Mo+JiXHbifbdxt2J4FtvvSXL/fTTTx5rjzsTQbN7dfr0aTsfgDrB0HvvvSe3Wzn5VrVeRkt8mPzDJavhEiVKyLSwHPYUNWvWNN1eqlQpAEBmZqZd/o4dO2S6adOmpnWo29VyVmzZsgUAUKFCBVSsWNHpcgCQlJQk082bN7cMASZQQ2K1atUKlStXBgC88soraNKkCT7++GNs2LABN2/edKk9eWXKlCkAgKJFi6J3794O24sWLYonnngCQI416KVLlzxy3OLFi6NOnTqoU6cOGjZsiB49emDSpEn4448/cP78eQwaNAjvvfeetqy/vz+CgoIM665WrRp+/vln+f/YsWM90ua7yciRI0E5H3ryd+3aNWzfvh2vvfYaMjMz8d///hcdO3ZEVlaWR49948YNzJw5EwAQExMjLUmNCAwMBACnnmVhFV6sWLE8trJgyc+xM78R9wewvkeq1b7uHoWGhpqWHzJkCAYNGgQgx0vC7NmzXWjpvY/6fgsJCbmLLTG/V1FRUZg1axb8/f0B6MdMTz43TP7i0kSwdOnSMp3bjDuvmL2ogRz3MwCkmwmBcGEC5DycZqgm5mo5K86dOwcAiI6OdrqM4MyZMy6XAWAXs9fPzw/z589HrVq1AACJiYkYPnw4WrZsidDQUHTu3BnTpk1zuDae5s6dO3LC1LFjR0RERGj3E26Crl+/nu+xIO+//368/PLLAHLcGe3Zs8etelq1aoXatWsD0Lul+CtQrFgx1K1bF5988gnGjx8PIMfdxscff+zR48ydO1fGx+3bty+KFCliur+YJDnjbkRMotSPpnuBkJAQ+Pn5AfD82JnfqJNYq3ukTnLdvUdDhgyR6dyugP7qiHcNgLvq6sgZKleujAcffBAAcODAAZw8edJue0E/N4z7uDQRjI+Pl+nCEtxbxcoHIJn49/NE/TrUydmqVauQmprq1O/555+3qycuLg6pqamYM2cOnnnmGVSpUgUAkJWVhSVLlqBv375o2rSp2xNPZ1i+fDlOnDgBAFi0aJGhZFOVvBaET8FHH30UQM5ENS8SBOET8/r168jIyPBI2worzz77rHzRTJw40aN1q/e8f//+lvuXK1cOAJzyFXr8+HEAQPny5d1s3d1DjJ8nT568pyaD4v4A1vdI3B/A/Xuk+qYV4423ILRPAFC9evW72BLnMLtXBf3cMO7j0kQwLi5OSgXXrl1bYM6LzVC/mlR1qg518HXla0ucc+4vHmcIDw+XaX9/f6netPoJp6kqRYoUQffu3TFx4kT5BTZx4kQ0bNgQAJCcnGz3Ne1phFrYFdavX49Dhw7lQ2tsqJLJo0ePul1PXj8U7iV8fX1RrVo1ADnPtSsScjPOnDmDP/74AwDQoEED1KlTx7KMeJlcunTJtA+fOnVKjjlCOn4v0bZtW5leuHDhXWyJa1SvXl1Kda0k7up2d++RN/VDlePHj2Pv3r0AgBo1ahhqXAoTZvdKnSQWxHPDuI9LE0EfHx/p3f/q1av4/vvv86NNLqG+aDZt2mS67+bNm7XlrGjQoAEA4NixYy5PNOrXry/TS5cudamsFdHR0XjmmWeQkJAg27hgwQKPr/kCckT7c+bMAZCjjp0+fbrpTzwbRISpU6d6vD0q6pdoXtQKu3btAgAEBATYTeD/qty+fVumb9265ZE6p02bJut1RhoI5KjlBWaqQHVby5Yt3Wzh3UOMnUDOmqr8XsrhKfz9/dGkSRMAQEJCgul6L3GPAgIC0KhRI7eOJ/ohkLPG1Fv46quv5JKUHj163OXWOIfZvapUqZLMs1Lxr1mzBgBQtmxZu6hHTAHhqnVJWlqadPdQvHhxSxcUgrzGGq5YsSJB4/5EdR9Tu3ZtQ/cxly9fptKlSxPguvuYZcuWyW2uuo/JysqSMXnLlCmT52gsRrz66quGFtGeYNKkSbL+WbNmOVVGuJlRo4/kB2o8S3cjh6xdu1bWcf/993u2gQWEK5FFrl69Kh3yBgYGGvYbVxGWhEWLFqUzZ844VebUqVPSctiZWMO+vr4ej8VaUIiIPHDROnLNmjV3Ndbw6NGjZRlnYg136dLF7bY9++yz8li53xn3CnmNNewph+MCd6yGrTh48KD0jVm5cmXtPqqnDmdiDf/jH//wWPsY53Hrqfjhhx/kjYuMjKRVq1aZ7r9z50564IEHKD4+3i7fExNBInuH0u+8847D9jt37thFKHHHobSY1Fg5lM7IyHBweaCGXercuTNduXLFsPzly5dp7Nixdnlr1qyx8yuYmxs3blCDBg0IyPGvltuRsyf8CIrIKEFBQaauWFQ+/vhjedx169Y5bBfbjHygTZs2zdBZqeDXX3+VL5+SJUtqQwjOmTNH66hcsH//fjv3Mb/99pv5iRVSXJkIqn3m0Ucf1e7jqh9BNQLFww8/7FLb1TBzOuezqi87T4VJvBucOnVKOtAW45WZC58rV67QqFGjyM/Pj7Zs2eKw3aoPGeHqRDAjI4NKliwpj3Xu3Dm77bdv36aHH35Y1quLOrF9+3bTcYzI3n1MmTJlTMfKwoyzE8Hs7GyaNGmSFK4AoG+++cZw/4LyIzhv3jzTgAC53cf897//1e63d+9eOcFt1KiRw7vx2rVrMuJO0aJFHQIUMAVDUUNRoQkDBw5EWloaRowYgTNnzqBdu3bo2LEjHn30UdSqVQuhoaE4f/489u3bh4ULF2LJkiXIzs62MzbxJCNGjMDs2bNx6NAhvP/++9ixYweeeeYZxMTE4PDhwxg3bpwMTt28eXM899xzLh9j6tSpaNKkCa5cuYI+ffpg5syZ6N27NypXrozs7GwcOHAAy5Ytw6xZs5Cammon3h42bBiWL1+O5cuXY/HixYiLi8Pf//53NG/eHKGhocjMzMTevXuxatUq/P777wgMDMSLL74oyy9fvhzvv/8+Wrduja5du6JevXqIiIhAVlYW9u3bhwkTJkjjnUGDBqFoUbduqyHHjh2T169z586WFt6CXr164c033wSQY0Dgqjrvm2++wXPPPYfu3bujTZs2qFGjBkqWLImrV69i7969mDVrFhYtWgQgZ9nCmDFjtGs/e/TogapVq6Jnz55o0qQJypUrh4CAAJw8eRJLly7F999/L63WHn/8cfTs2dOldhZGzpw54+Ai6fr169i/fz9+/PFHLFmyBECOi4f333/fI8dU15AOGDDApbIffvghlixZgrNnz6JPnz5ISkpCt27dAOQsd/jvf/8LIGc96AcffOCR9t4NypQpgwULFqBbt25IT0/H+++/j6lTp+LJJ59Ey5YtERkZiZs3b+LEiRNYsWIFfvvtN5w9ezZPx9y6dSu2bt2q3Xb69GlMnjzZLu+xxx5zWGIRFhaG0aNH4+9//zuOHj2Kpk2b4q233kLdunVx8uRJfPnll1i5ciUAoE+fPmjfvr3DsZKTkzFo0CC0b98enTt3Rt26dREeHo7bt29jz549+Omnn7Bs2TIAOeuhv/nmGxQvXjxP514Y2Ldvn7SavXPnjlwLu2nTJsyZM0euofb19cXIkSPdej+pnD59WvZvNU+Q+363atUKVatWtct76aWXcOvWLfTq1QvNmzdHbGwsihUrhnPnzmHVqlWYMGGCNKhr1aoVXnjhBW1bqlevjn//+9/4z3/+g6SkJLRs2RKvv/46qlSpgoMHD2L06NHSQOa1116T65aZAiYvs8jffvuNYmNj5VeB2a927dr0xx9/2JX3lERQ1FWzZk3TNrRs2VIrMSJyLhh6UlISlS9f3vJcdV9q165ds5NKmv0qVapk2DazX8+ePSkrK8vh2HmVCKqOxM2koTrq1atHQE7YqNyRY0SdRtIM9SvW7FeqVClT56vO1AHkhGW728Hq84IrDqUBUEREhEOfVHFFIpidnU1ly5aV98Od67hx40YZ/k73K1OmDG3cuNHlegsjR44coa5duzp1n4oXL06jRo3SXlOrPkTk/PhhNn4JRowYQT4+PoZlu3Tpoh2DiOyXl5j9wsPDnQoxV5hR+44zvyZNmlhq1oickwi6Og7o3r3ifWv169Wrl6WT8OzsbHrmmWdM63n22WcLRZhObyVPoqOePXuiW7dumDVrFhYvXozExEScOXMGmZmZCAkJQWxsLJo1a4ZevXqhffv2brlfcZbY2Fhs27YN3333HWbOnIkdO3bg8uXLCAsLQ/369dG3b188+eST0h+hOzRs2BB79+7F999/j99//x07duzAhQsXEB4ejrJly6JVq1bo3bu3drFrsWLFMGXKFPzzn//ExIkTsWbNGqSlpeHq1asIDg5GbGwsGjZsiM6dO0tJiGDYsGFo2rQpli1bhoSEBJw8eVK6iSlTpgyaNm2K/v37o0uXLm6fmxnC2CMgIABdu3Z1qWyvXr2wfft2XLx4EfPmzcPf/vY3p8v+/PPP+PPPP7Fy5Ups374d6enpOHv2LPz9/VG6dGnUrVsXnTp1wpNPPikdjuuYN28eEhISsGnTJhw9ehTnzp3D1atXERISgsqVK6N169Z45plnXDIguhfx9/dHWFgYateujS5dumDgwIGm180VVNdCTzzxBAICAlyuo2nTpkhNTcWYMWPw+++/48iRIwByFp0/+uijeOWVV/4yRjwVK1bEggULkJiYiN9++w0rV67E8ePHkZGRAX9/f0RGRqJBgwbo2LEjnnjiibvuXFjw7rvv4qGHHsLXX3+NtWvXIj09HaGhoYiPj8fAgQPRp08fw7JdunTBxIkTkZCQgC1btiA9PR0ZGRkgIoSFhSE+Ph6dOnXC008/XWjO19P4+/ujZMmSCA0NRVxcHBo3boyuXbvivvvuu9tNs2PKlClYvXo1EhIScOjQIZw7dw6XL19GcHAwypcvjxYtWmDAgAFo3ry5ZV2+vr6YOHEievXqhW+//RaJiYk4d+4cSpcujcaNG2PIkCHo3LlzAZwVY4QPkZfa6jMMwzAMw3g57ovHGIZhGIZhmHsanggyDMMwDMN4KTwRZBiGYRiG8VJ4IsgwDMMwDOOl8ESQYRiGYRjGS+GJIMMwDMMwjJfCE0GGYRiGYRgvhSeCDMMwDMMwXgpPBBmGYRiGYbwUnggyDMMwDMN4KXmKNfxXgaPs6VGvy82bNwEAt2/flnl+fn4AgKJFbY+RiOWcH3Gls7OzZVrUrx5HpNV237p1y6G8ur1IkSIAbOcCQBuPWj22uAbqtRDH9vf3d8hTj6lrb17iXxvVrbb30qVLAICLFy865J0/f17mpaenAwBOnjwp806dOuWwPSMjQ+ZlZmYCAK5duybz1Oty584dh/acPXvWoR5nUZ+1wMBAu78AULx4cZkOCgoCkBPnWyBiIKv3u3Tp0gCAsmXLyrzIyEiHdFRUlMwTaXU/EbdZbYN6HE/3CfU5FtdZzVOPJ55zV+rUjYu6c9DlifYAwI0bNwDY90VxXdTro95bcWy1jDiOei66cYDH83sD3XitjhMCdXx09vljXIMlggzDMAzDMF4KTwQZhmEYhmG8FB9iOTqrEgzQiexV0b1Q0ehUNUb1mO1n1QZdWqdqNVKRquoqM3Tqbd2x1frEvqp6Ky9qDLXdQrUGAFevXgVgU+0CNpXvlStXZJ6a1qlvhcpNqPzV42RlZck8tcz169cdyoh6dOpgQH+tRHlV7efqvQH0z596/UW+Lk+tR6iLhSpZzVPTqtpf5KlqaaGCVutR1cQlSpQAAISGhsq8kiVLOuyn1qk7B7NnyGoss3r+dOXVe6NTQev6i3p9xX12Zeww62M6VSGrhu89WDVceGCJIMMwDMMwjJfCEkHwF6Qr6BajW33J66Q9OkmeFTpJk04yYbUwXicxFNIuFbUeXdrqS9UKcT6qNE1I5YTkD7A36BCGHIcPH5Z5Bw8edMg7ffq0Q51qe4UEKiQkROaFhYXZ/c2dFpIsIdkCbFIwVVqmHkfcHzVPGFWokjEh8VKvo3q/xTVSpYg6qaZOwqnmiXrUuoXEVDVeuXDhgkyL6y+MXNQ8dT9RtypNDA8Pl+ly5coBAKpUqSLzKleubLctdxlxn1SJobjm6nGs0PUXXf/VldFJp3XSPdXwQ03nrk89ps7gRc3PD+MqpnDAEsHCA/cohmEYhmEYL4UnggzDMAzDMF4Kq4bBqmFncFV9a7T430odZYazPs6sjEVUNa9O/ZW7vtzbRb66qN/KSEaoelX1olDzpqWlyTyh0lVVjqraWrdYX+Tp9lPbqRoxCPVicHCwzBNqYlVlq6bFdrWMqFtVBepU8+r1EeVVdaezWPlztFId68oIwxrVz6JQFwPA5cuXHbaLtLqfuP5q3VZLF3RGE+q1FNdI+DoEbP4OVXVymTJlANiMTwDXVMdmqNdcXFOdEYeR0Y5Zn1evj3rdBFaGIcy9C6uGCw8sEWQYhmEYhvFSOLIIk2esJHX5+VWvW4CuMzJQ06q0QqRVYweBkQsXnTsMcY6qREqVFglJoDDsAIA9e/YAAHbu3Cnzjhw5AsDePYwq2dEZHFSvXh0AEBMTI/N0kTFUIw8zgxcjIxldJBl37qdOCmsWKUZF1zYryZdO4qB7RnTSCBW1jK4e8YwICSIAnDlzRqaPHTsGADh06JDME2mxDbB/bsQ1j4iIkHmVKlUCANSoUUPmVatWDQBQvnx5macanZgZ9ajPgM4QQ73mYruVMZhOYmgVBchK2sOSH4bJH1giyDAMwzAM46XwRJBhGIZhGMZLYWMRsLGIM5gFlreKHJIf6h0zIw8VnW8ynarLqo2qilmo/lRffcKH3+7du2Weul2o+9R6hIpVXeAvDDJUdadqnCH2VdV+Iq36/FPrFOU9ZTzgKfIScSav5NW3pc4vn3gW1eUBaoQXYWBy7tw5mSfSqnGQWkaom1V1sahHVUGLY6vGPcKoBLAtHxBqZXW7+qyoan9nsfIdqvPdKFTeVlGJdMex8oXIKuR7AzYWKTywRJBhGIZhGMZL4YkgwzAMwzCMl8KqYbBq2Bl04nchxrcKQO+OykdXVhd+TOd7TN1PZxGpC4mnqvOEP7hr167JPDUtQpHt379f5u3atQsAkJqa6rAfYFO5qdafwvK3UaNGMi8uLg6Avd841d+ezqpTnINViK+CQmdF7sq9tarTLM8ddM+FFTp1qLMh0FT1l876WPV7KFTCavjAbdu2AQC2b98u88R2tR4Ryg+wqYZVa3OhJlYtzHV+I4XFMWBT5Vr5BFTPUZyP2lfF86k+p7rr5mxYSaM+zxReWDVceOAewzAMwzAM46WwRBAsEXQGMwmAK4HsBVY+2QTq16AuYoWnDFXUhfdCupeYmCjz9u3bJ9PCJ6DaNiG1Uw02RLQHwLYwX5X0CemLmiekMEaRJtRoJs4irq9V9BSdb0FnMfIlqTMo0vmvMyubO9+MvPistDqGlRTMUz4y1fMWkmrVWOT8+fMA7A1MhPRZlUKnp6fLtIheo24XUm5VcqhKDOvXrw/AJqUGbBJtVUpohc5YRCdZ1BmYqFJEUUY1aDGTUDKFG5YIFh5YIsgwDMMwDOOl8ESQYRiGYRjGS+EQc4xTCPG9TgxvpUrUqQ2tFoE7K+7XqX6N1E1CFaaGbxNq3hMnTsg84QtQDf0m9lNRVb+VK1cGANSsWVPmVa1aVaZF6C/V8EOn1tL5olPR3QdxjjojGHW7zrBBV7fRfu4soSgIVY47hia67Vb7WamorOpxVnWsHkf4flR9QKpLCQTCIEP1UaiGshMGJqqqVfgjVP1dqs+d8GGo1ilCHKrhDKOiogDY+7tUlzYIVa4upKCKlZGR7tnXXVNe6sMwrsESQYZhGIZhGC+FjUXAX5Cu4OzieKMFwGbGAzoXEEbSRlGPWrdOwiZcwQDA8ePHAQAbN26UeSkpKQCAPXv2OLRdjcxQp04dmRaL51WJoFhwX6JECZmnLqjXRfUQ56CTNBlFadBFVBFpnRRGrd9Z6ZzVsXXldW56rHBFiuNOH9VdK3cMnMzcwlhJsXTSK1eulZkkXrefeq7qsy+MoVTp3qlTpwAAR48elXmqFPHgwYMA7CXowlikdu3aMq9169YAgBo1ajjsp6K6xbEyTBLnoUowxb5WzzaP5/cGbCxSeGCJIMMwDMMwjJfCE0GGYRiGYRgvhVXDYFWCMzjr1V+g8xOo5uvUwK4EoBeoi9uFj7STJ0/KvCNHjjikVVWY8MWmnpdY/C6iMQD2qjBhBKL6X/P393eox9nnSqc+NFKX6HyyiX11/tXUOq2uqe7YzqqGrfw1uqJCFbjjE9DKSMbZc9Bt1+U5G0XF6DhWx9bVlZfIGWp/Eepi1VDqwIEDMi2MpdT+Isqryx5EZJIKFSrIPNUfochXl1KI8uq5qKpjs3EiL74imcIDq4YLDywRZBiGYRiG8VJ4IsgwDMMwDOOlsGoYrBp2Bp2aTafSzb0/YG/5Z2Y5aSXiV+sRKoSsrCyZt2XLFgDAhg0bZF5SUpJMC9VxdHS0zBPWwC1btpR5sbGxAGwh4ACb6hewna/OEli11FTVHOIc1XBxQpVrdd461bBaRlePzjehVTg+Z++Dipm/N8BcPWul9lSfK2fD3xW2vqxrj9V90F0/Zy3qdao1dV/dcVR1sfC1CdishYV1MWBTHW/fvl3miVCMarvVZRXt2rUDYLMuBmxWxepyhqtXrzq0W1VB68YZHc6GlWTuLqwaLjywRJBhGIZhGMZLYYkgCp8UobCgkyp5SiKoSgLMvuhUCYWIhAAA+/btA2CTAgK2Re9iEXzuuoVxhxrxQ/g+UyOChIWFGZ4XoPf/p5Ou6CJ06L5urSREuigiOomqK0YeZsdxxWjC6hg6v5HOtsdZowCr/uusgYlRG82kEK5In8wkoUbnYBZNw9m6Ab2PTStEn8/MzJR5Qjqo+hsURiVpaWkyTy0jpHqqsUitWrUA2PdF1W+n6KuqBD13u4zIizENU3CwRLDwwD2GYRiGYRjGS+GJIMMwDMMwjJfCqmHcO6phKxWiJzCqz0w1bBUiTWc0oVO7qipksVD9zJkzMk9VPSUkJAAAVq9eLfOE8Ya6UL1Ro0YyXbduXQBA+fLlZV7JkiUN22OElRpO4Gz4Nl0INF0YLTWtq1sXdk7dN6+L6AuDWiavfhp16AxadOjuQ17VkOIcjI5t1nYr9b+Vat2deyf66I0bN2TelStXANiHadQZbKlGJ2JJRuPGjWVes2bNZLpy5coAgODgYJkn+qhuyYUVrD4sfLBquPDAEkGGYRiGYRgvhSWCKDwSQSspj3BNou4npGA6txBGX//uRFdwR2ri7HYhZVAlBsnJyQDs3VSoUQ8E5cqVk+mKFSsCsEkTcqfFYvWgoCCZ5+zCe2cX6zsrfVLL6K6p0Vew7j7p2quTmnjqy7mwfIF7SiJoJZUTWEkm8oJVNBKrMq4YHJnhznmJ6yai9ADAsWPHZHrXrl12fwFblB81mohqLCLcOjVt2lTmCbdOJUqUcGiDev5qnVYSdoGzUXeMjmmWV1j6S2GDJYKFB5YIMgzDMAzDeCk8EWQYhmEYhvFSilrvwuQnVioHndGFlVpQpI0MIHQieZ16zNlF2br26hbWq6iLzQ8fPgzA5o8MsEUrOHjwoMxT/QPGxcUBANq3by/zqlWrBgAoXbq0zFMXm5uhM9hQyat6wkx1rN4nZ9UczkYJcaXOew1Pq7qtljXk53UsLMY7Vv4TzSKdhIeHyzzhBxAAYmJiANgbaa1atQoAsGPHDpm3d+9emRbGYqpfThF5RPX5KYy9rJa0uNK/dX45WQ3M/JVhiSDDMAzDMIyXwsYiKDzGIjqpnLPuMnTb1AXSOumgbpGuKqlTF12LWLuBgYEyT/flLOoxihwi6lclfXPnzgVgcwmj1i0MQAB79xLC/YS6wDwkJASAfQxgZ917WBkK6BbeF5bnhmHyA50rKFVCJxDRP3SRiNS0GiVIxP1WI5QILQBgMyxJT0+XecL9U5cuXWRe/fr1AdhrAVTEsXVxytX+qxsrddoRnZbEytUTo4eNRQoP/KQyDMMwDMN4KTwRZBiGYRiG8VLYWKSQY2QAINCpNK0iWphFxrCKLKKqhoRKRFU7izxVrawaeezbtw8AsHXrVpknIhKodesiD7Ru3VqmxQL0vEZKcPYaWBn1WPluZJh7DWeXoujUxep4I5aVqAYkIh0VFSXz1CUdYhzZvHmzzDt58iQAYO3atTJPqJuF2hiwjQ2AbSmL2kadmtdZgy2r/s19nrkXYYkgwzAMwzCMl8ITQYZhGIZhGC+FrYZRuK0/dT76dL6+dJZVRtZYOlWOLlSdamknrH3VsqKMTqWjWvup6p2VK1cCsFcNi9BRqhpYpNUQccIqWD2OO1ipdAVWah6dbzJv8N/HMLqxQVW1qv1AWBULFTFg6xu6EJqAbfxQfQsKlbBqXRwREQEAaNCggczr3LmzTFevXt2ujYC+z6ttE+311DjB6GGr4cIDSwQZhmEYhmG8FDYWKeQYRRkRmPnyM1rYLBZGW0kb1a8zUUZdVC2+nNUv+VOnTgEAtm/fLvM2bNgg02LBt7qgu1GjRgCAFi1ayLwqVaoAcD4yiBFW0VMEnpLkGUmX+auV+SugMzQTfUc3xuROC3QRiIoXLy7TFSpUAGCvbRCGISLCCGAbb7Zt2ybzVG3B2bNnAdiiDgE2QxW1XWo7zAzIdAZ7hVmjxDDOwBJBhmEYhmEYL4UnggzDMAzDMF4KG4ug8In2daGNAJuqVlVPCDWIunhb+PATqtvcad1CbWEEotajHlv441IXVYsyR48elXmrV68GACQnJ8u8I0eOyLQw/mjXrp3Mu++++wDYh5MTxzHyV6YL72TlP1EXWsrM2MYqRJTON6ORCphVw8y9itpfxPhg1Yesllro6lH7sshX/ZGeP38egP14IozPUlJSZJ46Tghjke7du8u8WrVqAQBKlCihPbbo17p2u7KExGpM8HbYWKTwwBJBhmEYhmEYL4WNRQoRuoXYalpnsKGT7omvaJ0LB0BvGKLbTydtu3jxoswTC7TVr3F10bagTZs2Mi0iAMTFxck84QLCasG2lYscXRmd5MLZL0hdgHmj4/CXKvNXxcrQTNcXnY14ZCR1F/lCEwEAkZGRAIBixYo57KdGLRFaCcBmtKYatAmjtPbt28u8MmXKyLQYA1XJohhTdddCp23JnWaYwgxLBBmGYRiGYbwUnggyDMMwDMN4KawaLoTo1C6ATRVh5cvKSkUqFmrrVJ9Gao5z584BAPbv3y/zVq1aBQBITU2VeUKFEh8fL/O6dOki01WrVgUABAUFObRHVcWI9loFg3fF0MdV1bCRqktXD6uBGG/AnWUVurI634NW5cXYFBYWJvOaNGkCwLa8BLBfvrJ+/XoA9tFIRJSR0qVLa48n8nWGZlbqbavximEKIywRZBiGYRiG8VJ4IsgwDMMwDOOlsB9BFD4/glZqXt2+Ot+DqppXrSczMxOAveoiNDQUgL318ZkzZ2RaqIFVi7wTJ04AsA8D17JlSwC2sHGAzW8XAJQsWdLwHNRjC3WLel6q6lignqOVukmHme9BnU8rtYynwtIxTGHGyo+gUIca9QGdPz3d8hbVh6nOr6no66olsahTtQo+fPiwTG/duhUAsHbtWpl3+vRpAPbWx8KXKWCzKq5Ro4bMM1MXq23ULeXRhbIrbO+cuwH7ESw8sESQYRiGYRjGS2FjkUKIkRGCzv+fzqhCfDnrvuRV1K/bK1euALB9LQP2RiAbN24EYG8sEh4eDgCoV6+ezBM+A9WvaTVwvBlWRjA6iaGKq8YgrsBf8Iy3YSaxUfN0knidT1BX+pBO0yGOrY4DwtepKiVUNRBijFI1B+vWrQNg8zEI2AxI1LR6HOH/VNVoiDrVsdUVbQ7DFBZYIsgwDMMwDOOl8ESQYRiGYRjGS2HVcCHESr1gphZVUY0rVPVFSEgIAODq1asy78CBAwCANWvWyLwVK1bItFCTqGoXoQZu0KCBzIuOjgbgvDoY0BtnmPkRA8zD7eUHOnW9Lo/VQYw3oBujrJa0OOtbELCNH0Z+TQViXNMZaQA21bAaTi4qKsruL2Bb+gIACxYsAABcuHBB5omlM8JvIWAzIFHV0q74c2WYwgJLBBmGYRiGYbwUlgjeQzgriRJf3up+YlE1YPtiFtFCAGDlypUAgOTkZJmXlZUl08L4Q7iHAWxfx7GxsabtViUBuoXjVhIF3TnoFqjrFpir5MX1AEcRYbwNnfRK5ypG7KdqHXRaC6u6dX1Mle7pxg6d8YpOOigkgwAQFxfnsJ+qPdm8eTMA4ODBgw71FC9eXOaJ6EnC9VbuOln6x9wrsESQYRiGYRjGS+GJIMMwDMMwjJfCqmEYqxUKG2Z+8nT+towiiwgjkT179si8hQsX2pUFgA4dOsh0q1atANh74BcRRawWRevapuYJla+qBlLTAiv1rFmUFbWMboG6TqVjdLz89FfIMIUN9TkXY4ou4o/OVylg69/q0g6z/qtu1/U73VITIx+jYruq+hXjlmrkJgw/AKBatWoAgNmzZ8s8YUyi+hH09/cHADRu3NjhXNX2Wi2DYZi7DUsEGYZhGIZhvBSWCML+a1F8TVq5JbH6ojXbzwidREvnwV+HlUuZ8+fPy3RCQgIAYP369Q771qxZU+aJmJsAULt2bQBAqVKlDNtthJUEzh0Jm9mXtVVMU6vjWNXJrmIYb0UXZ1snvVcx6/PuaGN0xiBGZc0M51QXV5UrV5ZpIfU8fvy4zNu0aRMAe2M6IYVUjUWqVq3qUI96bFHGlTHKWTc0zo7DLI1kcsMSQYZhGIZhGC+FJ4IMwzAMwzBeCquGYa8aFmoDVVxv5RPL0xj5wTMT/evUJZcvX5Z5+/fvl+lFixYBAA4fPizzhOq3devWMq9hw4Yyrao/crfHapG3ipURiKvoju3O/cqLj0GG8RbMfAvqfP4B5mOCVR+zUnfqjq0ajojyurapxi3C8AMAKlWqBAC4//77ZZ4YU37//XeZt2HDBrv9AXsDvSpVqgDQR1lRxyh1vBf5zi47MYpkolOJu7NMhvEOWCLIMAzDMAzjpfBEkGEYhmEYxkth1TDs1QLOqhd1YnhnwyZZ1WlkhaeztNP5DBRs27ZNpletWiXTJ0+eBABERETIvLZt2wKwVweHhISYtjd3u9zd7mlY3cEwBcfdXFZh5b1BjM06LxBG6lcx9gvVLgBcu3YNgG3sBICjR48CANasWSPzVHVzUFAQACAyMlLmiXeNup+aFm1S3z9iuZKVpwWdiplhnIGfFoZhGIZhGC+FJYLQS9Osvmh1vv50Rh7uBF9Xy1j53hLpGzduyLyMjAwAtuDpAJCUlCTTwrN+/fr1ZV6jRo0AAOXLl3e5vQzDMHcTI6MJHc76gFUN5GrVqgXA3gBP+GFNTEyUeap2qWzZsgCAunXryrwyZco4HEcXCUnnP9bKt60uooorhnyM98ISQYZhGIZhGC+FJ4IMwzAMwzBeCquG4Z4aWFfeHR95VmoKnYpAVQEIVYTqJ1D4txJhkQB7lcaDDz4IAGjfvr3MUw1HGIZh7gWEsZw6Rut85+mW2xj58hNpYaQB2EJrNm/e3GG/I0eOyDzVmGTFihUO7RUGJCVKlJB5gYGBMp2VlQVAb/CiOwejd1NefKoy3gc/JQzDMAzDMF4KSwRzoVtkq0sbGXR4sg250X0FXrp0CQCQmpoq88QiZtWApEaNGjItXMTUrFlT5umkmapbA/7CZBimsGFmXKGmrVx76cZ4dZwV42NYWJjMq1OnDgCboR0AbNmyRaZ3794NAAgPD5d5pUuXBgBUrVpV5qluuoQUUtdeNWKKUfSp3Odg5XKGYQCWCDIMwzAMw3gtPBFkGIZhGIbxUlg1DGu1gG7xsSsRQ8yOY+WVX6eKFepgwKaKEOpgwKaSaNWqlczr1KmTTAs1sU4dfOvWLZm+fv26TAuVRUBAgEM7jVQsDMMw+YnOt6puPFLVqlZlxJirM8RQx8zo6GgAwMMPP+xQFgAWL14MANixY4fMK168OACgWLFiDnmAzaetLmLIzZs3ZZ5YtqMatKhtE+ernqPYru6newfwGO59sESQYRiGYRjGS+GJIMMwDMMwjJfCqmEDjNS9zlpe6VTMVpZrOp9XKkJVu2fPHpm3fPlyAMCpU6dkngiWrlqzxcfHy7QaOskMnfUdwzBMYUHnzUCnGtZZ2Rot7xF1qV4TVNWyQPj/q1SpksxTx9wzZ84AAA4fPizzRKhP1ZJYVROLsHRq2FPdOeqWKOlwZwkT433w251hGIZhGMZLYYkg9F9NVr78dOi8watfkrrFybrFuiqqL0DxZbl582aZt3btWgD2X6WPPPIIAKBJkyYyTycFtPJer36p5m63UT0MwzAFhU5ToY5RusgjOqzeAbp6hNRONdioV6+eTIvxc/r06TIvOTkZAJCYmCjz1MgiIvJIZGSkQxtVKaF4bxj5uxXbrbQ6PHYzAEsEGYZhGIZhvBaeCDIMwzAMw3gprBo2wFljEEAf5khgZWShUw2r6odjx47JtPBLtXPnTplXoUIFALawcYAt9FFERITpsVW1tVBBq+1VVRasEmYYprChG5d0Bno6FanR2CzKq3Wr6t/cx1bHQTVcXLVq1QAAzZo1k3nCT+uJEydknljeAwClSpVyOJ4a1k4g3huqb0F1PNe9V3gMZ4xgiSDDMAzDMIyXwhJBN1G/OsWXmG7BsfplZhWBQ9Qj3A4A9tK/NWvWOJTp3LkzAHu3BTExMQAAf39/03NQ2yC+LNX2quWtjFoYhmEKAzqJoCph00kErcZzMf7pxnA1GpM6ZgrpYPPmzR22z5w5U+ap7sAqVqwIwD7aSHBwsEPdZu3OfW4MYwU/LQzDMAzDMF4KTwQZhmEYhmG8FFYNQx+Q3Ei07qyneivP77r8K1euALD3MbVp0yaH/UTkEMCmElb9COqCplstHtapPtTyzkZUYRiGKSjEeKzz0aqmjSKPCNSxTkQU0S3rsfJbqKqJRb5qtCciPKnGItu3b5fpHTt2OBxHGIuIJT+Azaeg7p2jtl3NY8MQxgiWCDIMwzAMw3gpLBGE/degO4tsxZeW0deZ2THVL8izZ88CALZu3Srz9u/fL9Ply5cHADRo0EDmVa5cGQBQsmRJmSdiEusknWrb1Dbq3CPovNazRJBhmMKClURQYKXd0JXXuQjT1W2kRRHjr+qGq1y5cgDsDUjU46xYsQKAvZFg1apVAdiP0WXKlAFg/J7hcZpxBZYIMgzDMAzDeCk8EWQYhmEYhvFSWDVcgKiq2qysLADAhQsXZN6RI0cAAAcOHHDYDwBatGgBwN5Tvap2EKjByXXH1qFTDRv5QGQYhimsqOpSMe6J5TKATRWrjm/q+CfGT50/Qp0xiFqPUTp3XlxcnMxTx/ikpCQAwLlz52SeWCqk+hYUBijq+K9rr255kM6YxsrHrRV5LZ+X4zF5hyWCDMMwDMMwXgpPBBmGYRiGYbwUVg1Db1FmZIXmrIWwlZWtCOm2d+9emaf6DxSIwOWATZ0grIdVdD4BVbWAlQWczu8hhyliGOZewBV/rVb76VS6ZktrdKpWq2Or4eJEWDkAqFOnDgB7q+Hdu3cDsPdHKLxFREVFadst2mtlTW3mF1ctY6X6LSifs7p2WvmIZKzhNz3DMAzDMIyXwhJB6BfUql9XOn96OmmZ7qvRyOBCSARTUlJk3qpVqwAATZo0kXlt2rSRaeFZXl3YrJM8irRu8bCabxVZxOwLkmEY5m7j7BgVEBBgWo8uAoeVlNDM+MIIXd0hISEy3aFDBwD275I//vgDALBr1y6ZV7NmTQD2BiSqL1krf4e522OkPTKLUKKWUdOijO6aqYg6de9Xo/aK46jvNtU40uqYjB6WCDIMwzAMw3gpPBFkGIZhGIbxUlg1DHtVq85YRMVM7WplaHH+/HmZFmL+kydPOpSJjY2VeTVq1JBpVYWQuz1mbXVmu9UCX1YJMwxzr6Fb6iOwUkO6ovLV1ensfqovQGEceOzYMZmXnJwMALh48aLM27FjBwAgNDRU5gUHB8u0zvhP+FJ0VuVt1N7cx8jN7du3AdiWP6n76t61RtdZvGNFfWo72CjEs7BEkGEYhmEYxkthiSDsF5s6G8RcXRwrvlxUlwC6MkePHpXpDRs2AACuXbsm88QCYOEaAADCw8O17XQGKwmlldk9SwEZhvkrUFASJJ3hg07ipb4/1HFYGH+obsPq168PADh06JDM2759OwCgTJkyMi8yMlKmw8LCHI6tRlcRCGmkkcGFzjhDtFdtt1pGSALViCmiflcMFMWx1WguoozVu5ZxDZYIMgzDMAzDeCk8EWQYhmEYhvFSWDWcC52YWRWLi7TOk7pu4e3Vq1dl+sCBAzItoogI34AA0LhxYwD2xiKqnygzdCoJI/W2mWGIkU8nXT0MwzD3Gvm55EU3zup8uOreHyrqe6Fly5YAgMzMTJmXmpoKANi/f7/Mq1ChgkwLwxHVEEWkVSOOGzdumJ6Prr0irb7vVCMQVW0r0PkWVNuRez/ApnpW69PVw++kvMMSQYZhGIZhGC+FJYKwjpOoftEJU3ajhbICsTD3+PHjMu/gwYMyferUKQBA7dq1Zd59990HwD5+pLNYRQ5xJ4awlcEMwzDMvUBBGb65o2VR3z/iXaJGCalXrx4A+/jDW7ZsAWD/flE1TtHR0QDsJYLFihVzOLZ4T6kuWnRRRKyMYNTtQjqo1qOLIiKMQIyko7qoJu5Ec2GsYYkgwzAMwzCMl8ITQYZhGIZhGC+FVcPQ+3RSxdG6hbLq4lidfz8RRUQYhQBAWlqaTAv/T5UqVZJ5YoFwUFCQaXutFh+LtJX62goWvzMMw+QN3dhp9H4RvvcCAgJknogopRoRVqlSBQBw6dIlmScMSACgYsWKAIASJUrIPKEmVtXFOpWtbkmQzjhDFwVETVv5HhTnaLRsSaeWFipsNU99/zq77Imxh68awzAMwzCMl8ITQYZhGIZhGC+FVcOw9umkE11bqVrT09MBACkpKTJP9QMVHx8PAKhevbrMEyoAI4Q4XCeGd8UqzixwN6uAGYZh3MMVf666PDO1qqoaFh4m1q1bJ/NUrxQinKkagk4sPVLfXcJHn2o1bKXS1alf1TJm6KyCrfa1qpvfWXmHJYIMwzAMwzBeCksEYR11QzUM0Xk2F198ahSREydOAAB2794t84RvJwDo0KEDACAuLk7m6b601C81s7a7It0zkx4aGYgUlB8uhmGYewl1nFTHa53PWZ1GSbddJyVUI4eI8Vj1Lbhr1y6ZFv4FVWNEIR1Uj21lWGgmjTOS7ukkfXmR2qlt00UtYfIOSwQZhmEYhmG8FJ4IMgzDMAzDeCmsGoZrIWx0onIRuFsN8SMW7qqBtUuXLi3TVatWBQCEh4fLPJ0xiA5n1cBG4ngzAxPdtWAYhmGssRozzZbyADa1qvoOEH5u1RBx5cuXB2AzAAGAQ4cOybRYmqTmCWMT9Z2jM8hw1vDDyPegTjUszuHcuXMO7T179qzME34U1TqLFy8u84RxpfCTCNir40XYulKlSjl1DkwOLBFkGIZhGIbxUlgiCP0XjNHXjm5xrXALo7qK2bdvHwB7833V/F/1+C4QkkUjU33x9eaO1M7KrYEO9tLOMAxjjpF7GBHxIq+aFd04LaJyqMYgwkAEsLkvUw1IatasCcBesijSanQt8R4CbO9G1WBS1y5VKqd7n2ZkZAAAtm/fLvMWLVoEANiyZYvMUyWGos7IyEiZ9/jjjwMAOnXqJPOuXbsm01euXAEAtGjRwqENjDH8pmcYhmEYhvFSeCLIMAzDMAzjpbBqGMaGIQJVbC4Wo6r7CdXwnj17ZJ5YAFuvXj2Zp/oMFCJ5ZyOZ5BXdcXQqB/YXyDAM4x5WvmB1S4t0/lqtxmGhqhXqXgC4ePGiTC9fvhyAvbr4yJEjAOwNKcqVK2dXH2D/vtOphK9fvw7A3qefUFWrx1TVwOLYZ86ccai7bt26Mk81rhTXJTAwUOYJ1fG8efNknu6as2rYNVgiyDAMwzAM46XwRJBhGIZhGMZLYdUwrNWmalqohlXLKqEGFr6bAJs6QFUN16hRQ6aFWFwXpke1uvKULz8rNTD7DGQYhvE8ql8+8f4w8gwhxmTd8iDdGF6lShWZVn3wJSQkAADOnz8v844ePQoAKFu2rMwTaaMwbuJdpKq3hfrWaAlTcnIyAODXX3+VeUKlGxUVJfMefPBBAPZLplSfgUIlrFoFL1y4EIBN9Q0AISEh2jTjPCwRZBiGYRiG8VJYIpgL8fWmLpjVSe1Onjwp84SHdHWha2hoKADbYlxA79FdRdRtFdVE5/ld93VmZQSj225Vho1JGCt0i99dKeNqWYYpLKhjs+751fnYU9EZPoh3kVq32E810lClbSKK1eXLl2We0FypvvqE4YfqW1Dti6okUFCyZEkA9u/ApKQkmRZSO9WHoZD6tWrVSuY1atQIgL1/XfX6CMmkaCNgiyxy6tQpbXuF70bGNVgiyDAMwzAM46XwRJBhGIZhGMZLYdUwrMOvqb6UhBha+EUCbP4Dg4KCZJ4Iii1E9IC9GF+nNtCpZ63aJtKu+BvUharLvY1h3MVq6YKnylhh5pPNagkEw7iDVThSofo0UiGLZ1FXjxVq2NLy5csDAC5duiTzLly4AMBerSry1HecmjbrO6qPwvnz58v01q1bAdiraevXrw8AaN++vcyrXLmyw3461PeqKKP6TFSNSZy9Vow9LBFkGIZhGIbxUlgiCL1hiE4KCNgWz+7cuVPmpaamAgBq1aol8xo0aADAtrA2N1bGG2ZlnJXkGS22N3NH4M5Cf6ZwY/ZsOGt4BNj6iZUEw6o/6Z4/YWiltkfnxsKqj+jaoS42F6jRCnSunIzqZBgzrAzwxLOv9iudexk1T5RXDSl0RidqHxPGGaq0TLyzVG2WSKvaKtWoUUjrVENIIUVUjUESExNlWvStdu3aybyWLVsCsHd3o4taIs5fPbaKMGpRNW1qGcY9WCLIMAzDMAzjpfBEkGEYhmEYxkth1XAudOpXVTWUmZkJwN6HkvDLFBMTI/OqVq0KwF4FpcMdtZM7amVn62H+euiMJlT1rUD3PKj76epxdkmCUaQes/1UH2a6hfc6NZtVnSKt84+mU1UxjCsYLasQ6J59VQ0s0u5EnFJVqdWqVQNg8x0IAJs3bwZgbyySnp4OwGZcAtirhgVqJC2hYt69e7fMu3LlikyLd1/Tpk0d8nR9TO2Lalq3rCQ4OBiA/btWxRWjScYGXzWGYRiGYRgvhT+BYRz3UXD16lWZPnPmDAD7BejCvD0yMlLm6b6qVHSL9XVSD3ZzweQV8ayp0j2x+FsXY1TdT027I5nQPee6eKqijNoeVQqhc5Mk2qseTydJUd1PiIXl6gJznXRUPUcz4yqGUdGN17oxXn3+1O3iuVOlYDrDEJ10XjWuEjGEo6OjZZ7oT8LYA7C5l1GNQXQITRgArF69GgCwd+9emSfcpQFAfHw8AFsUEMA+hrBA9Dtd/wP0kbRExC5V02b1/mas4avGMAzDMAzjpfBEkGEYhmEYxkth1TCsxcnqgtuDBw8CsBdnC5VwRESEzBNe3lVVgc43lJon6mR1MJMf6NSmVoZHVj7QhIpLVVHpVFlGyx0EVmoinRGX6DuqWkvna00tI1Ru6nHEdu53TH7gjo9XXX/RGXvp1MqA7TlX/e0J9a2q5hXGIqoBSZkyZWRaqHTVpVAiosjly5dlXlRUlEyXK1cOgP1SKaHK1Z230ftXd910y0F0yzgY1+CrxjAMwzAM46XwRJBhGIZhGMZLYdWwAarq6MSJEzItwuqo4mgRCFu1FBYhe4yCYOusvpz108YwrqALUWWmEjZS44ryOl9/OqtgwKaislJ1CfWuak2pWkEKVZB6DqKMqrZSy5idoxpSS3d9VNhamHEW3XiuW16hPmtqGd0yBYFuGZFqWa/2MbE0SQ1x2qhRIwD2oeHS0tIAAPv375d5qjpZ+P9T+6U4ptpG9TgiLcLBAXr/gVZqXLN3H/dJz8ISQYZhGIZhGC+FJYIGGEkE9+zZA8DeP1ONGjUAAGFhYTLP7MsOMP9aZCkgkx/ogtur6L7a1X4gJAG6BeqqXy9nI3Soz7mQHugWvKv5ahmxXWeEpbZdJ420Ml5hGGdRnx9dlAz1WdP5CVTRGUCZGREaGU0ISpUqJdM1a9YEYJMCAjZfgKqBiGoEovPfKSTwahvV89FpAXLXp5Y3MnjRGVTq9mMDkbzDV5BhGIZhGMZL4YkgwzAMwzCMl8KqYQNUsffp06dl+siRIwCAKlWqyDwR4DskJMShHlWcr1tIrKLzIcUweUUX5k2ohnXGICpqGaEaVtXFws+YqhK7du2aTOv8nenUs6K82gax4D13O3O3VzX8UNsmjqlTqVmprRjGCiv/gLpnWjfGq2V0qmHRV1U1sFiKoebpnmnVkEqghkwVPgHLly+v3S7QhXE0Wmoi0uqYoENsV/us1TINcUz1mqltc3ZZCmMPzzgYhmEYhmG8FJ4+50J8paje18+fPy/TIkh3cHCwzBOGI6pkQof65aP7WjSL9sAweUV9rsRXtJVEUM0Trll0UjfVJcWiRYtk+tixYwD0Eo6goCCZJ9xUiID1ANC8eXOZFi4pdFIGo3MwM75S6xHbjfod90dGh87gT/csqlIqsT0rK0vmqc+iLhqO6Hc6d0pGiAhYycnJMm/dunV2fwHg8OHDAIBKlSrJvIyMDJkWfVU9ttB8qX3t4sWLMq2TKArU6yOkmur5q1JGnasdEeVLvIcBIDQ0VKbFmCI0FYxzsESQYRiGYRjGS+GJIMMwDMMwjJfCquFciAXxQgQNAFeuXJFpIeZXDUOEaFpVAeiihKhib5FWVQAizYvWmfzASjVstfhdqIRVNdDRo0cBAJs2bZJ5mzdvlmnhg1O3iF5VNwnfZhcuXJB5ah8TvjpVf4Vqed05mBmEWPkmY3Uw4yxGkaDE+0AXRUQ1rtCphtV3ic7ARJRXl1ycOnVKphMTEwEAa9eulXkrVqwAABw6dMihvaqBl+pHUKiw1b5WsWJFAMDJkydlnrp8SiwHUf0VivNRVbbiXNXro6qVhYpaXaYl8tTzVtumjg+M87BEkGEYhmEYxkvhiSDDMAzDMIyXwqrhXAg1sPCvBNiL7mNiYgDYWyo5G1LHKpwcq4SZ/EBnFSvSOtWvimrdKFRBW7ZskXlz5swBYK9OatiwoUx37twZgH1QemHZp6qTRD1CfQXYlmkAQJs2bQAArVu3lnlCDaS2W9eHdD7QVFgNzHgK3VIf9fkUaVWdqXqbEM+qzh+eqk4Wvm1VC+CUlBSH7cLvLWBb0qGqZ8PDwwHY++xU1a5CLau+70T/PnfunMxbtmyZTItlImqZBx98EIAtzJ0R6rtWnI+q3hZhXOvUqSPz1GvF1sLuwRJBhmEYhmEYL4UlgrkQkg31S0pdWC78LYkvKcA8EoiRlE/nL4ph8gPdM2gmJVSle+qC8K1btwKwlwgK4w41aH2zZs1kWkgAVImDMAJRI/bs37/frr7cxxHSPxHFBwCKFSsGwDqyiE4qz1JAJj9w9rkyioahKy8kb6qRx+7duwEAqampMk8YaQC2fqD66ixbtqzDMYSETfQlQO9DV5XoV69e3W4bYG+oIvrwxo0bZZ6QMgr/hoCt36rtUbUAYl/VkEVo5EqVKiXz1HPk96l78FVjGIZhGIbxUngiyDAMwzAM46WwajgXInSNCL2TG+HPTFUNm6GqlXXGIlYGJgyTV3Rh2cx88KWnp8s8VT27Zs0aAPbqW7EIvEmTJjJPDRMnVEpqPxDLIlR1cqdOnQDYq8wWLFgg0zt37gRg3y+FWkuEeMyNUI/pwlYxTEGhe+bUPJ06WO1jSUlJAICVK1fKvO3btwMAoqKiZJ4I0wjY+rfa98WSD3X5hOiLqkpW9aF75swZADaVLGDrb+3atZN56vtQGI6sXr1a5m3bts3wXFW1c4UKFWQ6Li4OAHD//ffLvCpVqji0Rw33yrgHj4oMwzAMwzBeCksEcyE8m6sL2dWFqWLBrRr1wEyCZySBsIriwDCeQhexRriiUBeqC+nB3r17Zd6qVatkWkgpypUrJ/MaN24MALjvvvtknto3xHOuRg8QqAvUhRGIiFSitgewSepVyYWQ9Kl9ST2OSOui++iMZKyirDCMFTrDJJ1LGRXxbAM2gxDVCEQYaQnpHGCTpjdt2tQhD7AZk6iuYMS7S0jSAVsfFBJGwF4iKN6DqgFZ6dKlHY6njiOij6p9UbRddUcl+qJqSKaOLbVq1bL7CwCRkZEA7KWALOXPO3wFGYZhGIZhvBSeCDIMwzAMw3gprBqGvQpKqIZVH0mqKF2IpnUezK3UArp9zXy8MYwnECoa1WhCF7Re+A/bsWOHzNu8ebNMC/Wvqo4SC7rVBd9qneL5VlVHOpWtUA+pyzB06mTVZ6Au+oJOTayLmKJT1xn1O16ywXgK8Sypvvr27Nkj00uWLAFgM64AbO8iNZpG+/btAQAtWrSQeepzLqJyqIZfwsBCGDwCNvVuWlqatj1Cpau+D4WKWe1/Ql0M2KL/iLEBsL1X1bFBjEdGkUHEEhN1qYnOyI3JOywRZBiGYRiG8VJYIgj7rx0Rj1HEHAbspRDCXF/9StFJXHQL0HUxJ1XJhE4CwrGImbwinhv1WRLPtC5yiCodUBdlC/cUqkRB7QcC9ZkWfULnPkbNu379OgD7fiekCIBtUbvOGMQIM0MVK/cd3Nf0mF0r9Zo5G81FfQZ0klv13ukkt7roMbr25tWgIC+aG/FOAWxGHGrUjQMHDsi0iKKhuoVp0KABAHu3TPXq1QNg01AB9v1W9CNVAif6smrkIYwz1OgcaiQP8W5U3dno7pOKGBPUOoXWTRcXXL2OOs2Brq+y1syzsESQYRiGYRjGS+GJIMMwDMMwjJfCqmHYgnoDeu/rqr8zsZhdFXsLMbVO7K1TkwE2UbkqChdpFnsznkT3LIpnLCMjQ+Zt2rQJgL0qS3jyB2z+vFTv/zqDDWej5aj9RSxqV/13qoj+ZmUsosNZ1RKrg51HpwZWxzfdUgDdMhedj0cV9d7pVIm69ji73aqMiq6M1fMiVKy7du2SeevXrwcALF++XOapPvqEGrhRo0Yyr2HDhgCAypUryzxhVKEanRw/flymxVIL9d0ljB5V40fRr4yMMMTyDHXJhu4+qX1Z3DM1SpCadhXde9UIfne6B0sEGYZhGIZhvBSeCDIMwzAMw3gprBqGfYgfER5HVUEFBgbKtBBx69RfOtWHVdgqK1E2q6uYvGLmJ09dFqGGlhOovsAqVaoEAAgNDXWo20p9o7PcVfOOHTsGADhx4oTMU8NNVa9e3eHYOnWW2g7d8gtWHeUNnRW4uOY6lSGgt9zV5enuk278tLLg1amTVV+xuvI67w3OjtfCJydg74Nzw4YNAID9+/fLPGF9qy6vUNNCDSxCLgJAdHQ0AL3vWjU0XGJiokyL91T58uVlXsWKFQHY++rMvT9gr04W10o9R6t3kpkK3wqd6t3qPnCfzjssEWQYhmEYhvFSWCIIez+C4stH9Y+mfomZfX04u+AYMJfSsBSQ8SQ6SYqQ4qjPvvBDJiIHAPZSORE9QJUeCCmQKonTRffQSdDVY4sF9eqC99jYWJkWkkl1obtOIqjrO9yfPIfOMMRZCZHOz6qKTpJnZZyhkxzqjFas/NdZ+ZUUZGVlybR4flX/fap/QJFWpZHCh5+I0gPYRwwRvjpVqZ2u74jzUX0QCh+FanlV2ih8E+qk86rWS40SJI6t+iNUpYMCKx+ROpw1wGHpX/7DEkGGYRiGYRgvhSeCDMMwDMMwXgqrhmG/YF6IwFUVlC6Mlg6rMEbOLkhmGE+iWzAv/IOpPgOF0ZRYnA7Y+8vUqWJ1Ib50YcFUhEotNTVV5m3evBmAzWgEALp27SrTdevWBWDfL3W+yayMuJi8oVOr6sYyneGcVWgy3XGsfAsKAxM1Txj8AXqDIdFeV8IVCtSQjEL1u2zZMpmn+sEUS4pUn4BNmzYFYG8MEhERIdPimdaputVzFGnVD+iZM2dkWhiJqKHqSpQoYXhe6jaxBERth6oSF2OHkarfHZ+LzN2FJYIMwzAMwzBeCksEYf8VJ74m1a80dfGsO17pdZgZizCMJzFz1aE+f2IRuPpsq1I3qwX+Znkqhw4dAgAkJCTIPCEJVCUzOhcbqoRSh5EBgMBqMTrjHDoJkJHBhSuSQLPj6PKsjFd047Vop5EUUPQDEe0GAA4fPgzA3j2McLekuh+LjIyUaRGJR0gBASA+Ph6AvWTbWYNB9TqeOnXK4djq9Q8PDwdg/x4zih4C2Gu9VImg0BiIKCmALZqJiF4C2LuccRXd/WQKFpYIMgzDMAzDeCk8EWQYhmEYhvFSWDUMm5gdsPlTUsXjqk8noU5wVoRttJ+Z2opVVUx+oKrCgoODAdgvexDRdNRnVl14L9KqGk48x1bqYF30BVU1LOqsUqWKzFN9GIo+aLWoX6ey1KkNWR3lHmbLA4zGLZ3qWFefs/dEZ0ihqk3V5Qw6QxVd3eozIowuli5dKvNElJCjR4/KPGFgoRqD1KtXT6aFalj4DgRsBiSq4ZbO6EI9B3HdVB+b27ZtA2Az3ADs1cAxMTEArFXQAlU1rNZz+fJlAMCVK1cc8lR1seqH0Nn3lzt+BJn8gSWCDMMwDMMwXgpPBBmGYRiGYbwUVg3D3jpMiPFVkbqqPtOppszUTVaqYRaLM57CKMyW8I2pquaE6kldAiHCW6nq4OTkZJkWoedUa14rhDXw8uXLZd6KFSsA2FRMANCwYUMAQPPmzWVe5cqVZVqo1FzpD1Z9kHEds3HLSv2qsyq2Ug1bhbLTqZ11Pi1Vi1mxXQ1xqFoDp6SkALD3c3nhwgUA9ksXatSoAcD27AL2z6ywINaFZFRVw2p7ddb8AlUtLZZVqOpZdSmF8CMorIcB82UVqh9BtYyw8FePI9TEqtUwc2/DEkGGYRiGYRgvhSWCsI8sIhalh4aGyjx1Ia3Oi774yrPyB8XSPeZuICSC6vMnpBTqQvbGjRsDADZt2iTzEhMTZVpIQ1SJoDA6Uf2IqdKZpKQkAMCvv/4q84R0pWLFijLv/vvvBwC0bt1a5qlGWqK9ukgTRpJQnUSQ+2De0F0/IQk0MoAQY6aVRFDFTCKoltFJ0MTzrrZNlYaJaBy7du2SeWp0EPH8q5I8EQlEPKeAzTBEjd6hGk2I9qrtUdMCZyOcqFF3hLGIKgVU+5OIDmTld1MgJO6AvQZMoEoERVrVHOiktSyJv3dgiSDDMAzDMIyXwhNBhmEYhmEYL4VVw7CF0QFs/s6EyguwF69bBVjPnWe1H8PkN2ahpYS/MQB46KGHANgvAv/zzz9les6cOQDs/f+JfiJUdIC9ilDUJQxNAFvILeFnDbAtuFdDdFmFF7NaimG2ZEPnu80I7rfm6FS2OnWnToWv3gddKDpVnazzWam7N+rzLsb29evXyzxhAKUag6jPvDD4iIuLk3l16tQBYDMQAfTGICqibeq1EG1Tz1V3jirCqEosqQBs7ynVqFHty86qhAXq0g51KZQgKyvLIa36BtXBxo/3DiwRZBiGYRiG8VJYIgh7r+lCmqF+IakLgM0iKLgjwWAYT2FkFKFbgC4kMerX/3333QfAPtKO6rJi7969Dnmib6iSHXVhuVhQ37FjR5kXHx8PAKhUqZLME4Yh+SGd0/VZKyME7qvm6NzHqNdMvea650+Ms6r0WCcls5IsimOrEj31+duzZw8AYOXKlTJv69atAICzZ8/KPFX617JlSwA24ynAJiU0k64D9s+VTiItJOdGUk2RzszMlHkHDx4EYO9uSRh0CKMQwN5oRddOs8hVIqoQoJcmqoYhwuDFyl2Q7thM4YQlggzDMAzDMF4KTwQZhmEYhmG8FFYNw17sLcTd6uJ3NW2m/rXypq+DReaMp7CKLKLmCdWRqkISz6pQEQP2/sVOnjwJwF5FJZ5ftQ+pqjmhUmvUqJHMEyosdfmFaJvqZ03td1b9SKBTiatlxXF0hgnq8Rg9Ot+MVqph3fioq0dVA4t7YTX2CgMKsWwBsDcMEb4CVV+xInJG+/btZV7dunVlWhiEqFF3RD+xigSlPr/CmEI9B1GPeq66Z1tVW2/evBmAvbGI8Bmo+vRUI4LonmUz1bC6vy4SimoYIvqOzqen7njubmcKDpYIMgzDMAzDeCn8CQz7rx3xleOst3fA9oWlW4BuVZZh7gY6KY3IU6ONqNE9rl69CsDelYToO6okRJUOCimFGgHBzJ2L2h5npYDuwC5jPIeZlFBN666pLv41oJdoiefuzJkzMm/nzp0A7F3BbN++XaaF0YX6TAuJtzAKAeyjcghDDCu3Q1bRNHQucoRxjJX0WY2DvHv3bgD27ykRF1w1FlGjYYn3jpU7JV2sZp0EXRc1xhWJHkv/CjcsEWQYhmEYhvFSeCLIMAzDMAzjpbBqGPpFr1be61XMAqRb1eNsHsNYYeRHULfQXac6EovA1bKqD03ha8xq0b/uOFbPtKfUwDpVmIpoh041x/3OGmfV+jrfebrlNup9190TVSUpDELWrVsn84QhRXp6usxTlyGIiDWqsZLwX6lG5VCPLXwS6oyV1Pbqxn1dGfUchHrXys+napAl/Hqqqt+IiAgA9gYiqv8/0TbVKErXv62WLunU2+6oeblvFW5YIsgwDMMwDOOl8ESQYRiGYRjGS2HVMOytIIUY38qCTYdOfK7mWamJOUg3kx+IZ0jn581KzeMpla1ORSWskAGbj0LVV5paJjg4GIB9GC1h3akLiQW47t+zMFo26jwSOGv9qVP76+o28v+nU/uLetT6rCxPrfzWCdTn4cSJEwDs/QPu2LEDALB//36ZJ8ZrYUUL2EIYArYQh8I3IGBvCZ/7vACbBbzV86C7fs6GdlTPX7W4z8jIAGA7f8CmTi5RooTME1bQaohIFZ1qWHc/BWp71OUg4nxU9bZIu+NHkN9nhROWCDIMwzAMw3gpLBGEfSQE8bWjRlywkgiaLZh3xbu6mb8thskrVlERdBI0VRKgQydZ00nGVcnEpUuXAABHjhyReX/++ScAm9QHsJfUiwglbdu2lXm1a9cGYG8coPZbnTTtXkW9J0JCZGVooaKLBiEkVs4aDAB6aZmZMQhgPp6p0rADBw7I9IYNGwAAy5cvl3nCt16pUjYp2H1VciJrFC8TK/NKlK0p05XiGgAAQkvYNDy68yK6JNNHNm8EABzNct5gUBBZu6NM1y+XU0bVLtHNHKOW3etsfg/33bL5OPTLPp1z7KNHZZ6I7hMTEyPzhP9AI2m4O77+ch8PsD1jqg9DkbYaG9Trq5MaM4UHvisMwzAMwzBeCk8EGYZhGIZhvBRWDcM6xByLs5l7GZ3KVw0DJ9D5dlNVYmYhs4wWyQu1mLr92LFjAIA1a9bIvBUrVgAAdu3aJfNUdbJYPK8zvlIX/6tqOJ2vRJ0RV2FbiqHzhaheC3HeujHKyI+ilUGHrowOcUx1P2f906lq4IMHDwKwhYgDgOTkZJkW91v4rgSA+2rm+MzbOWuBzPt8RzMAQK/OtnM5sPYHmR7SJ8fA4o0/Fsq84c3DHNrr65sh0+veehoAMC1uoMxrGubcM9Iw5kGZrhf9/0Y9t23GLZOefR8AcO1vA2RemdPfyvQ7P+X0p8b32V7NwmdghQoVbGX+31hEvT46NbDuPlg977plBrr77cqSCzPDmsJopOVt8AyHYRiGYRjGS2GJIPSL2/MqJdB9ATHM3UBIftTnXJWCC8SzaiQNN3MnooskoaLmCYng+vXrZd62bdsA2Nxn5Ea4FlHPQSyeV92FCJcyRuiMV3RRIwoLOrcvOsmtTtKpk57qJDI6aY+6XS0jJK46AxLVeECtR+SfPn1a5q1duxYAsGnTJpmnGouIKBotWza01bnqAwDAhaErZd6JfzUBAAT5ORqDAMAHy14AANR84n8y76GjwwEADZT9fH3TZHrX+uoAgCcn/0fmDaqird4B3fXPXvWVzFvTJ6cdP3azGbwcOmRzfdNgeo5EMfVYK5nXu01dAPZGUUIKrj4D6vU3e/+4E+XHytDMCn4fFm4K38jHMAzDMAzDFAg8EWQYhmEYhvFSWDVsgCsibJ06Wbc429loIgyTH1j5nRMqR6NnX5RXy1qpnXWL1YU/OGEwANh8CxohfH2qxiRpaTnqPFUl5mx/MjKqEBQWNbGZSlfn2009L/XaC6MC9bzEeauGQ6pBh1ADqwYJ4tjqMyDSqjr47NmzMr1161YAQFJSkszbt2+fw7GbN28u03FxcQCAevVsPu1S0t4DAPynbxOZZ6QSFoQ9+BgAoO/xd2z1HPx/1bCi7rV/bnKWGlSsAJfRRWm5dvOKzAv+/2upXivRHwDgenbOfbyjvJrFEojw8HCHuo3w1BInM3+4Vn3NypckRx4pPBSO0Y5hGIZhGIYpcHgiyDAMwzAM46WwajgXzorUrULD6VQ6RuUZpiCwsuy1embNljvo/A2q6cuXL8u8U6dOAQAuXrwo83T+6XQWkdevX5d5wsJYrVtVNep8GDqrelL7Z0Grq3TjiIrO8lnnz9FZ9aEranKdpbG4J+K+AjbVLwBs3rwZALB7926HumNjY2W6Xbt2Ml23bo6lrPCXBwD3feXoF1LXXvv7LVK20IMWEfXkvkXNtc5adM9aybaDZF7IkC8BAPOCOsi8C1tmyfSO0xUBAC2ahsk8oRq2sohX0d1bZy13nX03WdVjpQ5mP4KFB5YIMgzDMAzDeCksEcyFs18pOqmHVTQS3Zfs3ZQ8MN6L7vl0R1omJFE64wHAJiXasGGDzBPSIvV4wi+akWQxMzMTgL1EUPgWPH78uMwTURgAICgoCIC1wVZhwyoSikir56UzBtEZhujGNX9/m7RMjcwi0rpnRTVwEMYgiYmJMi81NdXh2Kp0r06dOgBsRiGAvXSwdOnSAPTGRlZ+X9V0xtIcadtv7fvJvBdsh7GhGC6Js3j4VqbMO75rCwBgd7rt+StZKce4pUG1EjJPFSLKdoS0kXnDR+ecz7tvjZZ5m88Vk+mmnXK8G95XqaLMK1u2LACgRAnbcXSo90lnPGQl8RdYGXG44xOQpX6FG5YIMgzDMAzDeCk8EWQYhmEYhvFSWDUMvepIF9pJRafmdcVvkihzL6iqGO/CKJyUUAOrqjmdkUdWVpZM79ixAwCwbt06mSf2bdasmcwLDAwEYK+aVOsUfgZVlaRQh6pqyMjISJkOC8tZcK+qPnXGDjojmLuJOiaYqdR0S1F0YecAm6pQZ4yj1qMbw9T7KcIDqv4cU1JS7LYB9r4dK1bMUXOqoQDr1asHwF4dXLy4zWegaIc6Dou0el6nU5cDAPZk2IyEji0cI9Ojt+eEbPvlt4EyzzJaXMW9AICxbW1q6ws1clTLzcrYwuRtfOpRAEBKg/EyL3Ge7Tg1bI+dxC8iR/VbvqEthFzG/6vWASA6JOcaCAMRwOY/sFgxmwpZ91zoVOYqzqp01Xsn0D0j7ry72Hdg4aRwjHwMwzAMwzBMgcMSQdh7zhdfO0YB1MX2vAbhZpi7idkzq0oW1H6gGmoIhEsL1YXLzp07ZVoYiah59evXBwC0bdtW5gljEbUvqoj6VcMQYZwg3JMAQLly5WS6UqVKAIDg4GCZp+vfwrhFJzkE7m7/1i3w10n/rDQQ4nzVsczKoE3sq17z+fPnA7CPEiLcAFWoYAvF0b59e5kWBiFCMgjYnhtd1BLAJsFUnznRNlU6deHASgDAii22c0k/dFGmgwNyDIouXVKe3bBAOBBcXSaf6N0dABD/6u8yr3WkxpfMe28CAP6vvTeNueu8svRWB+2yJWuyBlPUxHmexUkiNVu226h2F8rdjQI6CHoIEDQ6CQIkKaT+NRAg6Ep+BA0kSCdAAiRACgYKKJfl0khJNC2KkySK8yCRojiIkziTIim1kK78oNd71rnffs977v043I9nPX/44v3uOffMvGevvfb+P/9eFen8x/9ueRpv/6/mjFiEx1Q7r7AMEgDMmDEDQGWWAeqRUhJ1l9FrOrpGeNxKkW9dZ1MnmcjIY8YmjggaY4wxxnQU/xA0xhhjjOkoloZRT8JluFubr2vIPUqUHSTZ1Qmy5mbRtstAVENTZeKoG0kkH77zzjtpvG/fPgB1Ewe7RixZsiTNUf7KGa54P6r8SHMCzQoAcODAgTT+/PPPAQBTplT2AEqS/Ri7bjZtO31E5oDcdtOEQ1MOUB2Dr776Ks0dPXo0jWkIUVmfNSD1e1gTkOcVAJYuXZrGlOvvueeecNtIVCsxksT13M39R/8GAPDnf6Iy5Z+n0de7/3cAwB8u/Cdp7sLuXwEA/uRRWWRcVevvv/g3z6EV37kmJ//TP/tP09R/9udVmsLB30vD46XbzaFDhwDUj7mek3HjxgGoDCJA3UDVS8kgMkgNTe3Ow2WiWpP9mKui7+byTq269TgiaIwxxhjTURwRRD0Zl1EPfSvS6GBUwb8popB723FE0Nws+u07mjNCMXKhhoPTp08DqEeN1q1bl8bs7vHyyy+nuSefvFZCQ6OEJXjfqfHj8ccfHzH3xRdfpDFL12h0haaUYes2kuuo0tRDOPpcVBYHqI5flOB/8uTJNFYTyJtvvgmg3jeYx5znEKh6BE+fXhku9Jg3Hd/I0KLzGg1ra5JRvjf7WrTuz/6Tf5Xm/nzVQQDAn/zziY3LtuU7kxem8cp/L+Vufv/vwYMH09z27dsB1M+TlophFxGWPhqU6Lg0HSs1iESmsKjjTMksMkgv4lLvaHNjcETQGGOMMaaj+IegMcYYY0xHsTSMsjSsYXMSSTX9JJ0PW4K6uX2JTCCUd/U6jOqMaZJ4ZC546623ANRr+d13331pTAPBihUr0pzWk2siqt+p2ztz5swR6967d28ac5umTZuW5ijDqUGsqdvIzSKS7YFmc5qeJ8p1kaEHAK5cuQKg3v2DMqV2CVEZk+t/9tln0xxrAvJfoDq+KgcrPK76TOV26j7omMt8e1bO585rc3NfrEwpDwXP3vpz9PfHRbp8/Puga9S3X1apDR+fGQ8AWD6rnTz77YGtabzuDyoDFIXTfb83LQHAtm3brv1NZFXWuwSqe4MpDDmiblaRASo6LtG1relPKg3zs1rvMZKG294vlnmHE0cEjTHGGGM6in8IGmOMMcZ0FEvDqMtElCw0VK5jhuSj1j1RGD4nN7mGkrmVNNWnU8lHr0+mSHwuUtfatWsBAMeOHUtzTz31VBo/88wzAOpSIuXmSA5VOVhTMvhZlT4nT54MoC5dfvbZZ2lMt6vWOKSMqZJ3Tk4dBqK0E44j16YeU237x/p1mzdvTnPvvfcegHrtQD0uK1euBFA/vqzJqC3QmurcAZUkrNIwt1O/L5KJ/8N/2J/m/p+f/2sAwOz1VRrCny685mTPSo5n3wYA/NVfPJ6mfvbGlBEfu7r536bxC392rc3bpo/+2zQ3P9zFswCAVf/v/5VmVv6T/zqNJ/x+H98RJzvrXGptS62NyTqCWluQ98T/F0jaOQd12/9X+LmcNMz1R/dLqY5gLt3BDB+OCBpjjDHGdJThfRW+iURvpfr2pfWtoohgU/N2R/zMjSYygyjRtdgUaVL02md9wPfffz/NnTt3DkBVXw4Ali9fnsY0dOg9xu3QCFHUraCUjM6oFL9D54Aq+nL8+PE0x8ildrlghCN3LPq9h3PRj2g9pVpqjIrqsWiKxGhnlS1btqQxjTMa/eN3L1y4MM1p5HbBggUAgKlTp6Y5qielKKrua3R8o32IotTfuf/Hafyn/8v/AQBY8cJLaW73f/9fAgD+49kPVd996sM0/l//9f8IANjzz36d5jZVJRAT97z8p2n8vz1yrSvKs89XkeT/+b/7+wCAx//2UJp77X/6bwAA//e9/y7NffRPq0jfxYsXAAAXLlxIc4y2ae1LNdnofUKaagLq/1N6/Pqtuajr0TGX1/PdZI5UIjVs2Op3mms4ImiMMcYY01H8Q9AYY4wxpqNYGgZw9913pzFD4Ky7BdSTZ6+X1GvJuFs0yYJtJcPc+krLR3+PagYSlWxpMgCADRs2AKhqoQFVK6xFixaluVmzZqUxk98VSk9RXUMlkpGiBHSVg7XNGWXgqO2ctrej3JmTXClxlWR0bpvuS8kgFqWalOoIchmt58h91XqOep5YH1DrwfE8UQIGgPnz56fx+PHX6ulFcmU/1x/3ITIh5dbD5b/znTur7f0XbwAATrxU7eNbq98FALz77vZq2bsrKfs///U+AMBLc6rzTd9Hbbv/blVr8p+9ck0SXvHx36S5N3597XtWY3yae+rfXjPe/A9PVsv+7dXKoLP/98aly5cvpzmmJOj1p+3kIgNQdO1HZsRIim37/4z+H6fby+X1uuG4ZBKyWWTs4IigMcYYY0xHcUQQ9YgC337Pnj2b5i5dutRqPdHbVynKEJlOSm/bpmLY3jSjyA0Qd/KIjEk83zlzQNQFg4aOktGiFNEiWh5mzZo1acwIk5aaWLZsGYB6d4+HHqoS9yOiBHTug5pTIhNXqSPP0qVL05jHddWqVWmOJVVmzJiR5hiR0Q5D0fGNujjo9vD7rl69muZ0H7k/kflMoytRYr5y/vx5AJV5B6jK+LBkDlA/Loz+sdOLjtltBairI9zHnCGh93O5a6qpy0XpWRft/x2Tq/JE/2Ditevv55noU3TdcB/0PNS2/T+6FoWcsPAfpql/+ftx7jyR3fuq6PPGjRsB1K8HGm+0u45GBKP9je75KKoePSdKnUU41v/jTp06NeJ77ryziszyGom680TbndseMzw4ImiMMcYY01H8Q9AYY4wxpqNYGkZcJZ/10YB62DySRkhJ2ugnwbrpc2bsEZ3HtudWr7koSZy0lX7177oNTBLfu3dvmlPDAT+rdeXmzp0LoOryAdS7IkT7EHXGYL28aF9L6L5OnDgxjSkDr169Os19+eWXACrzBFAl7muHh5LMFm1j6Rw3yXm5unx89uzfX3XY2Lp1KwBgx44daY71AbU+ncqPlMy1TiBrP6oRINre0daDK8mG/S47WhNCqcZrk6yqMnl0zs6cOZPG+/ZdM6rodc5z8vDDD6e5++67L40js0jvNui4VJux7f8zajzSfeD+6nXFFAq9z6N1umbg2MERQWOMMcaYjuKIIOrJ7UyE14ig9uyMIjFNkYtcRLApsmhuX6JroPRWH1X912Wizg1tt0Pf/tmnd9euXWmOETSgMhw8/fTTaY49U6MoIBAn5kela/rpW0qiyOK9996bxix/MmnSpDTHvsPak5iKgD4HNAISHd+myGwuwhad7ygCpKU8du/eDQB4/fXX0xzHmqxP4wd7OwP1jiE0hKgZhMdczT9aOojbppGv6NyVIreDRHbbLtsUvdNxSa2JounRPmr/a47VQKL/V/De0lIxP/jBD2r/AnUjRtuOVNE26pjXWtvoqUYE9f8+Pm/0mub2RmWFlNI9bYYHnyljjDHGmI7iH4LGGGOMMR3F0jAqCQkATpw4AaDeUSEKlZckn1KCtMPmtyc5s0NUI5L0I4lFcijHKr9G9fiimncHDhxIc6+++iqAeh0xSr8AsGTJEgD17hMqcUU0SahK1H0ikk11v6IacbrMAw88MGJ7ud9qvmCy/pw5c9Kc1hTk96gsyPVE0lwu4T+qEckac+x40jumIYRmEKCSutW0w84uagZ57LHH0lgl4V5y9Sd7t7t3TPrtYnE9aWvgKd13pdqD0fKU1E+fPp3mNJWCMrteS0w/0DmlSdItdZwZjUSvhkitocvtUfmaaRMls0jb71ZsKrk1+NeIMcYYY0xH8Q9BY4wxxpiOYmkY9RZLbN+k4f6SNNzUuidHk6Th2oFjj6jOWCQ3lWSr0jVAB2fkeNTvVgmVrkb9Ox2N6hBmyzJ12T71VNXO68knnwRQ1Z9rQ7Q/kUwc7ZfCbVd5lvKYujYVym8LFixIcxcuXAAAvPbaa2mODmKVxNV9TFkskt7VTcltzzlque3q0j18+DAA4K233kpzmzZtSmNu07Rp09Lcz3/+cwB1KfvRRx8FUD8WKvNGbQiJXqe6fCRTNjnd+5EpbxZtXcOlmnecUwc1HcKsFwhUqUVAlZKhdWrpINbrRolqN0b3Bsf6udHUFlXXsErDTJtQFz3vh0HSm0ZbA9LcGBwRNMYYY4zpKI4Ioh4RZMeBfuoIlmpZRUQJ1sPyFm1uHFG0SCNEvL40mhPVcdPolNZ+IxrZ4XdqtOI3v/kNAGD79u1pjuYCNVdMnz49jWm+ULgPuj0aeezdbqWfCDqPSy7iGsGoi3bY4FiPKRP8taOKRkAYIY2OackApseFNQzff//9NLd582YAwMmTJ9OcJua/9NJLACozCFCZdjTSxOiTPp+i8xBFNXPXGilFcYbtuVWKxEefU5qi+3qs2IlHu+/oPcbzox1r+H+N1oBUoihstL3RNuo4ik433S9XrlxJY6piQHXPq7mlVD+wCUcBhxNHBI0xxhhjOop/CBpjjDHGdBRLw6i3lmLIXkPlmkhLGS6qEReF7vup7RSZTszYoiQ3RXKoynmU61SiK0lCNCFoXS+VsCj17NmzJ82tX78eQF1WpjFEZUiaEHrXT7gduRqGUZuyQYjuo9I9xvtSjR+Uv9XwwjQQ1uwD6jL4uHHjANQlW+6XmlfYGk6lfsrBQCXDr1mzJs3RaKDyoZpbnn32WQB1if7+++8fubO/Jyfj8jxFhqLcNRulvAzbsym6BqLtHUTS1vsykoZ5X3366adpjnIxULVk1HuIdTd1e/R+aXpORP9X6PnU7Y3+T2orDeuY961Kw6V7ud+agW3rVJobhyOCxhhjjDEdxRFBAPfcc08a861f30K0CTyjg9pRIVcKAIjfKnvHZuwTRQyi6Iv+PUro5t9LJUiiqJsmcesyLAujJgUur6ViWB5GO1aoaYLfUyonoqaKpuu8rUFEiY5VzqQVrf/hhx8GAKxcuTLNbdy4EUA96Z9lPoCqdIsm+EfGEHYjogEEALZs2ZLG7OKi63nhhRcAAIsXL05zjCQBVTRJo7GM2GhkphSl0cgliTrORM+rUsmZW0lUbiUqsxLdT7lIVFQqhuvX+44lxrTskN4vjPKqqYfr1vOhEeSoO01keCndG1FEMILXkv4fp88t/t9Wuvb76dxihg9HBI0xxhhjOop/CBpjjDHGdBRLw6iHvSkNa4g/kgM0mbxJGh62Glvm5lFKUI8SwyO5U6EkFNUWVLmJHSuAqlPF/v370xwlYTWGTJkyBUBdyorq/0UyWq5eWVOXhkE68eh+RxJVSdpkSodKsaz9pl1Wjh07lsY0fETHnHKwLv/xxx+H6yEq/dKgM3v27DRH+Vr3QfeLMp7O8Zzkuj20lehL0vqwSXzc3lwKziDLRNcN/w/Q+4pjlVI1ZYiGJDUrkejc6XeWru2SNNxkktHnBP8/u3r1aprTFBP+P6hmkUGkYTPcOCJojDHGGNNR/EPQGGOMMaajWBpGXfK5++67AVS1w4B62PuLL74AAIwfPz7NqRzQSz/SsMPrY5/c+Y4k1rbtCiNHbuQS3blzZxqrQ5iSpW7D008/DaAukVISzjmfI/mR25FzNDZJVP1c29ymklRdut/ovtW6fJ999hmAuqSrLspPPvkEQL3VJKsHsB4jUEmFug2RK3vhwoVpbvLkyQDq6SWl48J9iJynOSdx1IKOy/fTYi7iVj6j2j5fo+tTr+3oulJ4PagLnC0JVfqdOHFiGrOdnNafJHoPqctexySqARm1otRx0znR65ipDXq96/6wZqVW1ig9y6L6gP5/bLhxRNAYY4wxpqM4Ioj62wojgtp5QBNpmTjOxHqgqhdVinr4rej2palRPVC9ReeSxHuXyb1NRxE4dsbQaMWHH36YxowgzZgxI83RsMBOG0AVpcglpUdRiLYRpNJ90DbqlDM2NBHVmNOIDOsmLlu2LM0dPHgwjVlnUCM7XF6jK1QRVC2YM2dOGs+fPx9A/dkSGc3UnBbVaYyugahLSHT9RVGlnNGn93P62WF5lkXbUzIzDBLhZL097SJCkxEjfwAwYcKENKahUM0X0TGPxlEEMzKVRPUGez/bCzuiAMDnn38OoN5hSI2Q7LqlUcJS9NSMPRwRNMYYY4zpKP4haIwxxhjTUSwN98CkWE36ZWN4oEquPXv2bJqjLBPJZKX6aq4zeHuRa3UV1SaL6giW1kP0+ovq1x09ejSNn3vuOQDA888/n+YoCZfqlbWVqHLLN7UpU6K2X9erlVWpdiOlMJo5gKodHABs2LABQH2/mA6irepoAtEWfSoT89kSydtq/NAx/x6ZQNRYEMl10fUXfS53/CIz07BRMg9Fc9E1UJLHmQKg9xXlYpX6NdWCtfd0fU2tJkvbW2qd1zZtQqVhXud6zalRkq0W1SxSupebtmFYUgpMHUcEjTHGGGM6iiOCPfAtTt/ktSMDy8dcuHAhzUXRDNKPWcRvUGOXqPOFnk++cUfXQz9RGrJ79+40/s1vfgMAOHPmTJrT7hVLliwZMaedc3q3MReN5HbqfrHsRC6SF5lkIuNHKfrUZMYplc2I5jSiymO5du3aNKfGG5oCNNpDU8CCBQvS3Lx58wBUCfZAXDpE0f0huj9R9IrLlAwSCiNR/RglIuNCUzmgW0G0HVHJo2iZyEyjy+gznh1i1DhIo4+e7/vuuy+No3MSzUUGnlLnkOi+ahuJv3TpUhrz/zN9brFkDFCVRtPOIlG3G6VJ6ShFa4fluuoajggaY4wxxnQU/xA0xhhjjOkoloZ7oJTDJFmgLhtQfmNnAaCSXUrmgEHqpzlsPrbQ862ST5QkTjmmJANrjS82iVfp8oMPPgAAzJ49O83RIAJU9etU8undLqDqTpGrE8h902UiaTiSQ0vml0hOihLm++kGwWX0uykJqwGMx4/1AoHqOAOVPPboo4+mOUrD7AwCVPXkou4QSqlOYLS87gOPQWQ4yMntXCZ6nuRk5WGTgZvIdbaJal+2NS5RNgWqupK6LK8LlYajlAulqU4gUDdtEN6DJVm57b1BkwtQ/X+m/9+pvM26um1NWG0+a4YPRwSNMcYYYzqKI4I93HHHHQCAhx9+OM1poiwjIBoR5BuWvoXxrT73Nh1FQKJk/NH2aO0SkWknKoUSJcT3010hiuKQXKJ6FAmIIjvROrVkxSuvvAKg3leYpUxoCgGARYsWpbF2CiCMSkVRhCgKCFT7XYpo5fqfNlGKdvC4RfdYDpbJYHkdANixYweAutmGkdCZM2emOTWBcDtYOgqozol2FmE0p7RdpdIgUYT4evVqbupv3e86bzbRtvGYR6YbIO7A0Ta6zK4bQBVB1ogfS4xpZxFG0HKUDIFRZDfqChOZfyIzSYT2FeY6tcON7mPpWo72oW0XoKiEmhWwW4MjgsYYY4wxHcU/BI0xxhhjOoql4R4YIo9qKenfVRI6efIkgHpz8aiZfKm6PcmF1B0qH0mpmXwkEw8is5Uk5siYEMk7kcSs8gvXo9eXysCsdafSz4oVKwDUO2Not4PouyMprSkpXZfR9XCZXDI+x4N0qYiu/ah7j0pdrPkHVPU/N2/enOYo8WnNRRo+li9fnuYot+v6//Iv/zLN0Uxy5MiRNMd0Eq03GJ1bJZLRSlJtk+yXe15EkmPTd4wVeF3lZN6m/c5Bc5aeW6YCaMcpjjX1Inrut01P0W2P/q4pGdzfnBzMsS5Do5Q+W3g/qRys8nZ0v5F+/p9yJ63hxhFBY4wxxpiO4h+CxhhjjDEdxdJwDwxh0z0M1OtEsSH3uXPn0twnn3wCoF5/SZt0R0Qh8qaWTqZOkxSbc7BGxzdyEDZ9X+57IumyJM1F1wAdrNru7L333ktjyjoLFy5Mc88++ywAYMqUKWlO95vykMpEkZsyknG1rhnnVY5izcCcUzhyGkdO7ej4698jiYoS3oEDB9LcqlWr0piSsLYFo4z3ox/9KM3NmTMHADBjxow0p/c8JTWtJHDq1CkA1b0PVPe8ppLoMyGSBUv1Rq9X28kmJ+dYecZExyKSUktE175e83Sbay1JXkMPPvhgmmMbUv2/QonaxZVc4k37E1UXKDmFL1++nMZMleC1C1T3b+6avZGu4aZlzc3FEUFjjDHGmI7iiGAGTfrVOlFMLNeIIGuSaR0y7ULQL23fpLpMUy2wQWoClo7zILXdonH01q77wOjWunXrRswBVYK6RgSnTp0KALj33nvDbW9qYN/P23hTjTMlqjNYimw1JckDVaT0yy+/THM0fqiZhnUCAeDSpUsA6vcio3/Lli1Lc5MmTQJQN4jpdnB+2rRpaY7RInacAKp6o9OnT09z2mUlMuPcyvv7doi+RNeN3k9NdS6jjlFAVT+QkUH9rBpDOG4bNVNyqk9TNC0yYZXuX40I7t27F0D9HuIzQ6PdJfNL03bniGq8muHBEUFjjDHGmI7iH4LGGGOMMR3F0nAGDXVrXTBKS2+//XaaYwurF154Ic01JYaXcPi8TGQWierftZVvI6mmn7ZfkfSRa//UC5O4AWD9+vUAgC1btqQ5lWd+/OMfA6hLmyVjUlsZKTJs5OoDksiIouvhMiqfRRJ+iWPHjgEA3n333TTHY6XSucrATz/9NABg6dKlaY7yrppBeHz1Wor2W9vOUXL767/+6xHbqudGE++ZkK/HPpLO+0lT6DrRvaoGJ16LekyjdAZeXwCwbds2AFVqAVBJqCqb8r7LnY9ovlTrNLonRvN/ie4DU5jUBDNhwgQA9fvmhz/8YRq3lYZLRM9HX8fDgyOCxhhjjDEdxRHBDPrmom+BTMxfs2ZNmvviiy8A1BOOv/rqKwBVAjlQNjE4EtieKBJAcscxiuQ1RREHMZ2UIpQKyzioMWTDhg0A6tX9GYUGKpOIdg6Jvkejck3bXoqERtGTyHySO6Y0SGhEMNoeloLRRHYtzbJnzx4AVcK7LsN7EqibaDjWvzMSGB2z3PnivHYb4blTMwgNZJ9++mma04ggz2l0LHIRwSZjkomJrsXSs1WvO56/SBVSU8WNiAhGc5H6QaKSMooaXo4fPz7i7yyHphFy/T/L1103cETQGGOMMaaj+IegMcYYY0xHsTSMOAyvye8aKmdSrVZiZ90plRdOnjwJoC4n/cEf/EEaN0lCDseXiTp5NHUb0XEk+ZZMJRH6PZHRIlpeE7WZvE05GKiupZdeeinNPf/882nM5O5ov6P6ffpZ3R5+NkpUz0ni3Mfo+A7SUUVrnJ04cQJAlagPAG+++WYaM5lfjTGzZ88GUDeDzJo1K43Z+UHvu959UXLSMLddZWDe16xBCFTnjucVqKeVUF7Ueo/RcyD6bhMTpTiUuglF6H3JVB9Nv2DXHpVQo+vqRhDd37x+tauJ7iNTk/T/JM7pNcl7RFMYSpL2aDrblOacHnVrcETQGGOMMaaj+IegMcYYY0xHsTSMcl0vlQAoTalsQCnh8OHDaY7ykDYpbysN57bNVESSLuUSlVBKDuEm13Hk0lNKEmm07o8++iiNX3nlFQDAlStX0tzixYsBACtXrkxzKndGLt7ebegdk9L1Fcm4bb+n5LBWKZZpE2wRBwCbNm0CUHfcquORUuyiRYvSHN3UlO2Aepu4SLprcmjmHN/R/jA1ZMWKFSM+p25nrck2b948AHU5j3Xa9PtK152pKLn1oxZ0bFd49uzZNMfUBKByo2v6D1OCNE2IlGT9qKVg28oFveNedFluN1DdW9oCkW51lbcpDd91113Z79DtHi3+/2w4cUTQGGOMMaajOCKIcqREx3yDnzx5cprj2+TRo0fTHN/6ta6ZJuQ2bYffmso0RbxKNfQ0qhZVvGd0IeqQoessRcZ0edaY/Pjjj9Pc5s2bAdSjSjSJaBcLjUx8/fXXI9atUcje7SkxSERQKdUZZGcDTVpntGLnzp1p7oMPPgBQJbQDwMyZM9N4yZIlAKpuIUBlvsh1P9DIcBtKtfwUGke4XUBVR5DnFairBBxrjUiNzjR9n4kpRXOjaNuFCxcAVB2hgPr1yWc3o2U6jq61nDktotTlpynyVqpLymcDUNXd1IggTUqqZrEuohqhBmGQbjhWxYYHRwSNMcYYYzqKfwgaY4wxxnQUS8OIJaRcGJ4ynLatouy3ffv2NMeEZG0798gjj4xYj5PErx+jMUNENQFzckdUby9aj0qf77zzDgBg//79aW7GjBkAgKeeeirNURLWenkKE755fQHA1atXa38D6kYJbme0j3osonqDSlR7L+Lbb79NY0rhq1atSnOsCajro0SldfmefPLJNKYhRM0XkUynCfM8Rt/73vfSXHQsSE6i42ej1nl6T3PbdRvV8MJjoeeWsn+uDmNpO7tOdE+3be2o9Tu1jiBTDvRa5PUZGZD6OV9RCokuw3snqotYav2odTlpVqSREQCmTZs2Yr9YUzCXXtHWJNJWGva1O5w4ImiMMcYY01EcEURsCmgq0wHUm49PnDhxxDIsTcDoB1CPHrCsTFQF329NZdo2b48Sx6PIT+lNvpSAzkiUlqHYsmVLGjP6oNEgGh/mz5+f5jRBPaIpmplLuo7ML4MYkxgN0YjfxYsXAdQj34cOHUpjloXZu3fviPUx8gJUZWH0WEyfPj2NcxFSoH7uNLrf1jzUVOZDxyUDCe9vdjwB6iVyeAw0IsNnhxrJmkoa5b67q5SifxGMCGqZH42m85zovdhUXqUUQS9F8pQoIsj1R9FIVQaOHz8+Yqx/Zwkcve9K5XCaIn3uAnL74IigMcYYY0xH8Q9BY4wxxpiOYmm4hyipNUqyV6mAMjG7HwCVJPzZZ5+lOW32zZC8rqckCZlmmur79Y6biMwgJUmHdcjef//9NKfSMKVjlTtfeOEFAHWpJpJsI+lT/07JSLdXJVLKQ7oeSmFRDcISeixYM2/t2rVpTruncJu07iY7pWjHFMpxuU48RPch6iqhEh/3TY8FP6ufi873IPXMeH9rVxiti7ht2zYA9dpuPAZax03NLZaBmykdH55HrbFHYwjrCQLAhAkT0pjSvdbvjIhMRIN094nSOCJ5Nkpp0TqV2pWH97zuA/9/0nss+j8nSpWKvnuQ2oFmOHFE0BhjjDGmozgiiHqEI6p2rhEHzusyjARoH1T+XROSNTGXb6Dad7QUdTIjKZVmKPWMbYr85M4HE7o1osCyMNpVQnuZskuGdgxh5EGvgci00tYEk7tmie4/900jY/y7LqslKRhJ0RI469atA1C/znV57qN2BOGx0Ag6ux7kiEw9baN20TVSKiFU6pdM9BphxxCNdGr3CkaItaQHzSRqFlEjWtM+WC2ozlkuEsdI/JEjR9IczSIaDdcoWVP/3ej6yxl52pZtUqJnTpMhRu87RpyBKprOSDtQdRTRKGF0X5XMVdF90DYSWjI9OYp4a3BE0BhjjDGmo/iHoDHGGGNMR7E0jLpEEIXKS5IRJQSVvygf/upXv0pzKsPxsyoJqUQYfZ+loIroPEQSSkkOjhKxS6adS5cuAajXiGNXmQMHDqQ5rUP2k5/8BAAwb968NBed7+j7lCh5m3JSrjNNZLpo6iKiBgeVgVevXg2gboI5d+4cgLq09rOf/SyNFy5cCKCSg4GqJmA/RpUmaUnPl8pWPB5RrU6di+osRstoTTYuox0ZuD/aWUTlb85TmgSq60Y/p8eS2+HnQExkrtDnLLvuqJGCxq6HHnoozbHGHlAd/+i+KRk7IoNZSRrWZXg9lZ5H/P9FUw927NiRxrzftKYl91GNSdG1H/3fV+qeUkpriu5f180dHhwRNMYYY4zpKP4haIwxxhjTUSwNI5ZdImcUEIfAKUWovEOHlq6bMhpQOQdVGmb9sJwMFIXpmxyjpXp6JZfpIO2bbhaRpBs5QiPXcEle5LHQVmo6prRExywA7NmzB0C9JuCTTz6ZxnPmzAFQl6Oa9ktr3ymUH/s5N1wmunb1vFPW3rp1a5rTMVvH6b0xd+5cAHUJSt3zdMfrdd5EP67CUt3IqD7gaK7pktM4YsqUKWm8fPlyAMD69evTHOU8ba2nz5HouFGijmTInGzcdKxyjtHrVV+xaXt0fdEzt5SmUWqVSGlYHbWs8aqpG3xeA8D9998PIJaGozaNuWtqEId6lApAtBYi70U+i3rXyXaHei1F7eSatiG3D6Op1zpIXVdz4xne/+mNMcYYY8wNxRHBHqKIYJQ4rnBOk3DHjRsHoB4hYk0roEpe1m4jUZJy24hg9FYfvdnlKCUxDyuDRChKEUFG/7SGnkZz2S3m448/TnM0WPziF79IcytWrEhj1oaLvic6zhoR1P1pMnmUokERjCwAVaRKI52aZE+zA6OAAPDMM88AqEcENeoZ7VuUZF/a1ug8lQxDUcSmbbQionQ/RJ0mtGMFj9XOnTvTHCOC2m1k6tSpacwojhogGBFUs00UYYsS86NjkYsI9n6ud53R30dDqfZlU0eL3Lm5ePEigHq9PT6HFy9enObULELzX2SQiOoIlvZ/kG4jEUePHk1jGrauXLmS5vh/DlDVD9SalE3mrFJUU4mUhUEifaVrtt/1mcEZ/v/pjTHGGGPMDcE/BI0xxhhjOoqlYZRrQyltw9SU0ZggDtSlRMpvKqNp+zFSkg2ZDF2SgdpSShwfljB925ZFavKI6spFcgllOF2fto57//33RyzD+oBqEInSAkqJ2E0N5oFmCV/XHck32tps7dq1AOpJ9JSJaVoCgOeeey6Np0+fDqAuXVL6ZIK9bo8SmV/aSrbKaOXbpnWW5C29VqL6axzrNmi6COU6NZBQ7lOJXuvB0SyizwmViUl0fNu28MqZaaKaqk3HKifxXe9WgLo+npNcW0QaQzQth3K7mkXUlNNv+kDu8037nVuGz6vIqKLpA7x/9frT1oa8xrQmZURpe5qW6Ydh+X/DxDgiaIwxxhjTURwRRLl0yiBvM2zsrQnJUbIvjQdAVQpAOxNECeG6vU2lJEabpNxPmYZbRRQR1G0sRWwiGFHQRvXsAAFU3Ta0Swg7xWi0R6NBFy5cGPHdfOuPtkcjem2TyXVfNSpy+vRpAPXo37vvvgsA+Pzzz9McI4EaWfjRj36Uxtw3NThF11rUmaAUXR5NEr0ymvX0E22M7sUogqbLsKOKHt8TJ07U/gXqEUFGYbksUJ0n3S+NfDdtb0SudAjPme5PU3kTpaSyROafaHvbRg6jMkhAdX1rlJuRQI0I3n333Y370/TdpeMc3Q85I190rBjt1Ygg/99Qk5Z272H5GH0GReezVJ7HdANHBI0xxhhjOop/CBpjjDHGdBRLwz0wTJ9LvI+kCBIliU+ePDnNMVkcqGpVqTRHE4LWn1PDQRTaj7671H0iqokVfXaYq8C3rSk2SM0r1s77m7/5mzR3+PDhNOY5oRwMVCkAd9xxR7i9lIFVwmMCu+4DjQCaElCSnri8SkcqA2/atAlAXerm+pcuXZrmKDOxCwpQN4bwmtVjymtIzQpRLbpSLc7rJUeNRk4udfSJzkMk4Ze2Qesw0uz1y1/+Ms3t3bs3jZlOojJm1CGiqcZo73zv9uaWiaTupn3L3VdRekAkMbete1oyI2kaB4+lmiamTZsGoJJPgeraLtG264ai+81UHjWD6Dq/+93vAqjXLd29ezeA+jOI/7/o/w+lLiLXK/3C3H44ImiMMcYY01H8Q9AYY4wxpqNYGka5flVTmyygWZ6899570xwdgEBVb06dxJSGtVWQ1g+LXGqU+CIpcbT1rYZNDlaaHMKRNAnEsislJXVtsmaguje1Tt6iRYsA1CU+SneRpKjfHTk9S25Khes8e/ZsmqNktGvXrjS3Z8+eNKbDUNdJx/P8+fPTHKVhvf7UdRjRVm6KatENM5HTs+QYjaTh6FionHfp0iUAddfqyZMn05jnVmVMflbTEJpaDyptW1bqfFt392hd4CVZtclJ/PXXX6expkjwvtZ0B9a+1NqBUQpJqf5hP8e6d5nSelj/EAA2bNgAoH7PRzUptZ1cVGtyLNx35tbgiKAxxhhjTEdxRBDlavtK9NYfmTj4hq5vmlrn6Y/+6I8AAH/xF3+R5j766KMRn1ODCSM1WhMr6jQxSJeGtp1DbmVycWkf2YBduwhoRCuq1s/ajWoM+fDDDwFUid1AvWYga+tpo3qiSeu6jbweouhf2yR5ADh//jyAygACAKtXrwYAHD9+PM3p9cuogdYco0lEo1OR0YVmBqCKMkTbG9W7BKrj0bazSM6wcSMp1X7jtpeUg7YdNvT48Z6mgQGoX3c0k2n0itFpjdzqMyEiMn4wIh0pDLo/UfedaN05os43pedNZELi8lH0jnU6gbrRgvuox4p1WqPngX5323NbOt96fGkGyR1TRjbVRPjBBx8AqKsSy5YtAwDMmDEjzenfub3R8bsV95gZbhwRNMYYY4zpKP4haIwxxhjTUSwNo9z+Suk3gVph2zmgkum0Ttu+fftq/wLAxx9/nMYvvPACgLoM1DbJOZIkS8uMBUpyXZQ0re3XaLCgHKx/VzOImiqYbJ6TlojKcFF7Oy4fnUNKwEBdJtq5c2ftX6AyHKm0qzXFFi5cCKAuDXMfIklR74dIIlW4PyWDxFgxITVRahVGci0Oo2Vo/KABCajL8Z988gmA+rml8UFr45W2l5RaMpbup2g9pfPd1FKwlIITpdsop06dAlC/RzQ1hMdXpWE+h0utJktE2xj9PaprqnNqdOHzSGtJ8npQ6Zf/b2g7UsrOQHXdjdXnurm5OCJojDHGGNNRHBFE/a29bSmEKGG+FHVTmPy9YMGCNEfjgr7drlu3Lo0ZodLIYkQpiTl6Q4+6jShtzSQ3klI0g2/Eem40isBSHdp5gAYdLeNDs85PfvKTNKfRtKZIoH63XldMWtftiSIcfPvXUjBr164dMdbzRDOIlsjQCCb354EHHshut1KKcERRrlzZnMhwECWt937HrUYjNlHUMzKQlDqmRFEaHhd2pgHqxgeWlNJoD8uIqFmpqduIbmc/5WHa3uvR8yY6fsoghrYo+spSMXq/KCzrpJEzLdXTlqijVO4+Idzv0rHQ6D+f96oKsYSYdqliOaHovOv2RgzLPWaGB0cEjTHGGGM6in8IGmOMMcZ0FEvDiOWQQRKASzWmonC91oFiHTztLKBV8iljqsxGU0BUoyu3D02SXGmZYU70j7orqDFk//79AIDXXnstzR06dAgAMGvWrDT39NNPj5i755570jgyfpBI9gNi0wqT2jUxnN1MtKuJdj1hWsCkSZPSHLvUaJcB7UShSeaE0mauC0u0D21r50V/j1IphrmeWbS9apbh9lLyB5rr5em8LkNUutRzy/OotQVpFNJrknKnXmclM0RbE0jbzkslA0npfinVXIw4cuQIgHonHT0GlM/VWEM5tR9DYPR8jI5PJANH36PPJZWBmbaif6fZS2tNMs1DUwZKlEw9prs4ImiMMcYY01EcEUS5BEtkJin19o0ii9EbmUZu+HdG/gBg69atacwSJ/rGywiRdh7o3YYcpTf4YaZtH88vvvgijVmKR0vFsCzHH//xH6e55cuXA6hHafQaYLkHNY00GSB0+a+++irNMZqxZs2aNMdzr31FNZrBbWMUEKiMLHoNlPq2MsIU9XLNRTL7NQ/oMqMt1XEjKRnEoog/o4NRRDBncOC8lgvh80GvJTWBsKwMy8gAVdRII71cRueiKHREyQBRKgUTKRCl0jXRXGRuiZ7NGpllT169z9U0xeOi98ZorsVS55CS2Yb33aeffprm1LxGw6D2mKdJUM0iOZNI77Y5CmjaMLxPZ2OMMcYYc0PxD0FjjDHGmI5iaRh1+SGqpxfJF1GSfVQXLpI7gFhiYcK3yn5aJZ9J4roMa8SptBTV01OiembXq6bYzYLykMpE2n2BbNiwIY0pwWqSPes4amcHleYieO70Gog6BqhsSEOIytLbtm0DUK8jxk4fTz31VJpTQ9G8efMA1FMK7rrrLgD9pQI0pTNEcqaO+7kW+J16ntp257nZlIxdelz4Wb0/ea9HNROBWEKNurVovcef/vSnAOrX2htvvAGgLgPTSHDnnXemubbScC4NpukaGe16omWU6BqhrKo1PzWFgmhKB+sIRqaKXGpMZIBqklj1ntfPcXv12cxapuvXr09z+kzgOdU6oDStaXeU0v3C46/XWvSMKhl4TDdwRNAYY4wxpqP4h6AxxhhjTEexNJwhFx6PamY1tWfLScO96wMqCYEuMaDegJ5OM5VG6CrW7Zk4cSKASjLMfbfS1IKqd/3DQCRpXLx4EUDlxgXq9fjoyFu2bFmaY83Axx9/fMS6c1IhJTf9OyVCrfemrQIp/2zatCnNsYYha0ECleORtcMAYPr06WmskjBpcggC8XUZpQ0MIs+2dYK2bXc2LETHrG2NuBLRfmsagaY4MBVAXcNcRutLfvbZZwDq8mHbVmqlWn4Kj0tJLo7Odz/PkOj+PnPmDID6saALP3JQA9XxiNJ2ctvTdE33kypBeVbPE7ddW+JpS0GmhGiqCu95lZibzk3u773bbQxxRNAYY4wxpqM4Ioj6mxTf4qJkZ6D5zTJK/Na3L/0eRgCimm0aIdLtYM0sfZt88803AdTfKmmG0ATpqOZdlEicY5C3+n7pJwLJ7dXoycaNGwEAr7/+eprjMQMq08WLL76Y5hh5KyXWlxKsGa1YtWpVmtuyZUsaM0qp38O3ftYGBKoIkCa8R5GdKDE/1xUm2m5ed7k6btFcdI3wu/Xa1+gWz6nud5S0PgxEdQKB6hhE10gpshpdx4McC30mLF68GEAVAQcqM5J2JXn44YfTWO//3m3rp55ok0muFFmMjktkYMrByJrWVuV50q46VESAynhTer61fa6VOuRENST5XAKA1atXA6ieF0C9PuAzzzwDoF4Lkc/xyIhSMtvo9ka1TodN6TG3huF6EhtjjDHGmJuGfwgaY4wxxnQUS8Mot+EpyYJNklyuxlQkjUSh+8ceeyyNmUis0tu6desA1OViyooqOaq0FCXrcx9KUkHbZOmS5NhWJsrJRZSoVPqlFLt79+40N2HChDResmQJgKr2IlBPMm/aRj3m586dA1A37bDpPdvYAfUkcdYH1MbxrBdJORioTCs5KavpPOWOeXQMR5MwHl3HufZikfQ51pLVo+szkrxJSeLUdJC20pwaIPgc0Fp0Bw4cAFA3KKkBis+EKLVFGU3NwJLMG8nK/dSSPHnyJIB6eza22NT7XNMqotqipXsnkrLb1lRUuZ7GEH0m0CCmcvDSpUvTmMawqGVo1Oo0OqZAdV1G952lYdOLI4LGGGOMMR3FEUHko39Nc23/nvsb38RyXRwII0lA1QVDE9lPnz4NADh48GCao1lCO2hoRDD6Pka8ordO3U6NKLSNGERdJXS/+XeNJEXJ7QqbzKs5g1E57a7AKCAArFy5EkBzFDAHS88AwObNmwFUHR6A6k1fm8VPnTo1jWlU0SRwJrhrmR9eL3rMokiUXleR+acU5W7bjL4UpeF26HURRdBL1/kwUHoOtO3C0rZUk45LkRktC8OSRxoZY5kklpEB6qaJe++9F0B8/+b2O/o797cU8dfviQxFbSPFV65cSWNGBDXSzuOiykmpbE7JJMP9KRlMIrS0zV/91V8BqKK1QPXsoSkEqHcRKkUCCY9vLhJPhq17jxlOHBE0xhhjjOko/iFojDHGGNNRLA2j3GC+bUi9H0mIof2SaUL/TslTDQeUO7/++us0R7PEBx98kOaYVA1UZgmVjqNuGtG2RyaESAbOGWjadmSIJNLz58+nMeVZTZjnMto5RI0YlI+iBvQKazJSagbqtcs4rw3vKQlrVxg1pVAm1qR/Pf695GTeyFBEcqamtsd8EGm4qV5ZP+sZNkoGsbYy8CBE979KrawPqNcSpd/jx4+nOdYWBKpr//vf/37j96kpKnpGNe1v7nNN9fZyqTPsGLJ///40R2lY00YefPBBAGWDSFQXMrcv0f0SbSePlablsIMQUEn3KlXPnz8fQP3ZoN2C+j2+16s+ouk2jggaY4wxxnQURwR7KL3pj6aHY/SGGSUsl0oC6Nsvk461Uj3fULXPbrQeNS7wzVLftqNE5FIJHI1MEo3ARW/bTRXvdb+0Uwejnfo2zujoj3/84zSnZRpKkUDCUjyvvvpqmtNjyX3UfsDsEjJr1qw0p+U7GJFt+wY/yJt8rgPOaCKCJUrdFchYi0xEEaDrtQ+jXQ+vIS2ZQjMSTVRAvaTU7NmzAVSdNoDKiJaLCEZRp2jb25rpSve8wui/3vM0bGnHFEZF1QAWlfTR/eKzTO8R3cdS6SpC08pvf/vbNKfbyygkzw1QGX3U3BJ1n4qiwv1EVMdaBN7cWhwRNMYYY4zpKP4haIwxxhjTUSwNt+Bmy1q5cD9lA/07JRE1SLAh+XvvvZfmNm3alMZMLFf5gDKxSiQq80adFJrqjKm8HdXEU1km6nZAKUelrnfeeSeNWbdPZRd26lAzTZQcz6RzoEpG124kTLLX71Y5inLz4sWL0xy/UyUqrQ8YScJRBwOS60gTmXCapDczGDnD1q3ajmgbNO2B1+Lhw4fTnNYU5P2ixgTKqpoOohJqU3eQ0rWm1+kgHS3YoWPbtm1pjgYSvb9ZHzWqvwfU96d3e/vpdsNnGOu2AlXHkA0bNqS5b775Jo2ZOqLPCZrGSrUOlabj149Bx5gcjggaY4wxxnQU/xA0xhhjjOkoloYz3Gg5uG2Lr6i5u0J5g83KgcoNePTo0TS3bt26NKakoS5aOpG1RZrKKpSES1JDJPNGMlG0/5S0AeDIkSMA6pKttm+i5EunMFBJMZEcDFSuQ60JSPcx6xIClbwzfvz4NKeN4SnDs0Uc0F7qiVr4RRKVzkXu7ZL0disby481h3CJW7k/TdKwXp9M7VizZk2a07aIdNerW5UOYq27pzJxdK9GrvamtAel5MTWfaRrmM8BoLrH1C3NY6D7oKkovN/6aXsYpV+wtiifnUBVM1BrN+ozga3jtLYo6x4quVZ3TZ8rYWnY9IMjgsYYY4wxHcURwSGCb3waGdO30yjaRvRNnm/9P/3pT9Mcu5IAVd2rt956K80xIqiJzVqvMKo5xrftqNuImko0CsZ9iKIIauL41a9+BaCeLK7bwwjdiy++mOY02kE0+seo6MaNG9Mc6xRq5xWaTvgvUDelMMlej2lEVJ8t6hiixypKZM+tk0SdEqLx7Rap6wJNER29bmhm0tqgV65cSWOaRWgUAyrjiBpI9BnD60ojbCSKYuciW1F0iutWQ5qOT506NWIZbruqFlH0v9RVJ5qLzC+63zSOvfHGG2mOZhytF6rKAbuI6HOL5JSeKALcdi5SEfR72tYTNd3DEUFjjDHGmI7iH4LGGGOMMR3F0vAQUpJYos/q3yjjUprohc3QtebY+vXrR6yH7et0ndE2qLQRmR10mUjePnbsGIC6DMxWTUzSBoCf/exnaUzDhiZfnzt3DkC9Ub3W+OL6tRYY5Sa2iAMqeXzevHlpTusDllpPkVKLvoi2NQWj9bRNOjdjj+ha0nuJNSsXLFiQ5i5fvpzGTIfQtnM0MahcrPX4mq7FyGiRe1ZF0jC3XbdR6x7SgKHbRmOI3vNR28hSjcOSREqzmD5HPvroIwDAgQMHRqxHnx065vZGLfr0mRkZvyLaGgx1naX/PywTG8ARQWOMMcaYzuKI4BDBtzN909c3ulJpll7uueeeNNYk8l/84hcA6p1HGDFgRX8AGDduXBrzzVvLpPBNN2ro3k+XC75tq3mFb8wsCQMAL7/8chozwZ1lMQBg9erVI/br6tWracyo3ksvvZTmZs+eDaBuBuF+ayK6vsHTzBM1rc9F4qJjUGoc3/s5/WxkOslFGUrJ8Wa4iM6NGhdoqtBoGK9FvV/UdPbuu+8CAPbt25fmWJpFy9BoBC66Pvk9uc430T40ReB0v3bs2JHGVCtozAKqTioanef26DNI77Xo3iqV6aJp7bXXXktz7Mykx4fR1xdeeCHNTZo0KdwOwns0F6lr24Go1K0l+p6mUkSm2zgiaIwxxhjTUfxD0BhjjDGmo1gaHkJyUipD+iqnMLFZw/1aU5BonTzWulLZlF07WC8LAN5+++00pmSsyehcp0pUUSK7wu/UxPCdO3cCqMweADBr1iwAdcOGSp+UkVjdX+cuXbqU5rS2IOXxJUuWpDk2gdcEdMpJKjfpMec+RkngOam+SRpWSiaQ3m3MfWc/ieVmbMHzGJkMaOoC6vXtmO6gXTBohtAUEK3RxzqZei+XagaStoYqvcf0mXDixAkAdamb6SAqz0bPOqXpmte6hdq1iM8UpqwA1fNP65auWLECADBx4sQ0px1OSHR/lmp+RsuXagK2Tf0oGUhM93BE0BhjjDGmo/iHoDHGGGNMR7E0PISUZBWVKSm1arupklzCdlSsxQcAR48eBVCvu6cuXjrpVE6mxKzOvtK2U4LRddP5q/Isaxhqe6bNmzenMeUbdRrysytXrkxzWtdr5syZAKr9B2Iph/uoLbpUHqMUHu1r5NbNfZZEMltOYo4kIcrOkZO497Nm+InOnV4/vL9L55W1BYHqPtD10EH8wAMPpDl1vfKZoqkfTW0l20qcuozeY5SDgSq9Q+sacjvVzc9rX9NGSlASZts9oJ4GwzHTboCqqoDWVuUxVTleaSuZR8ctqhsZrbsfaThyGhsDOCJojDHGGNNZHBEcItoaDtR4wLf2yJyhdcQURhQ0Sfzpp58GUH9b1GRpRgRXrVqV5r766isA9cji9OnTR3zfmTNn0pgRPO0iwjd8TVSnaUUTyLdv357G7Dii9f/YSUUbv2vCPM0tpYhp1D0hGkc1vHJJ9DynUf216O0/120gequPokaOCN4e8DzmOvWQyMCkkTwaG1RNeOeddwDU7zF2+QGqOqRR946SGakUEeT9y1qGQN04wmeCRiu5PU3dQnLfff78+TTms0frje7ZsyeN+XxQY9zy5csB1J83jLhqNFKPb9O2DXJPRsdcv7ttzURjenFE0BhjjDGmo/iHoDHGGGNMR7E0PITkEp8Z5ldphGaHSJZRqSWSEFTyYY09TcTWVk5r164FAOzduzfNRfWtKOWoeWXr1q1pzJqBWq+Qbd406Zoy8JdffpnmNLGc7aaee+65NEcpZ8KECYjgMdAkcB4rlYt5fHV7VHZpapmXa/nUJPtHEnKuVV0TOWlukHWZ4SAyBURtBjnWa1uvU94bmqZBaZhpH0C9ZSNTR7QG6WiuJV2WcrTW79N7kGkiahZT80tbKEHv2rUrzf3ud78DUO0/UG/HuXjxYgD1VpQ8fvo57o+m4EQtQUuydYmmeqM5g1iTTGy52PTiiKAxxhhjTEdxRHAIySX9R9EkfjZ6A4w6XwBVQrMaTBgJ1PIR7CwAVJFHje4xsZzRQqCKOOj2aJkGjnVfOMfq/UAVjdNSL1rBn51H+C9QRS5yEdUmw4a+1fPvGtVsW7W/1BWm9DcunzN7tO1GYm4PeL4jQ0LJRKT3N8d6P02bNg1AvaOPmiZYFoodPYC4dE1UUkbvg+jZRMOGloTSaBtNGePHj09zTRFB3R6WxQEqw9v69evTHCOg+jzRMlM01rDrkG6bmkEG2e9SxD86j9EzgWO9LiKD2WijkaYbOCJojDHGGNNR/EPQGGOMMaajWBoeIkr14HL1BXs/x+WjZvH62UjSUPlFx5SGNXE8MpAwEZudAYC69ES5VWUgyhvaBJ71/+bNm5fmVL6hIUS3kftz+fLlNBfJYyrf8LtVGubnctJwkxSbk184X6q/VurMElGShi0JjV2i64byZGRg0ms7qi2qdfl4P6k8qzUFacjiv0Bl3lBjR1Q7L0KNLPv37wcAHDhwIM09//zzaUzZVg1rUdoFv1u7knzwwQdpvHHjRgB1UwqNKJSAgaqOKlAZ56LjFxnwcnJwdC8P0jkokotLZpHSc6bpc6Z7OCJojDHGGNNRHBEcQnIRQaIJwhzrMlHkK4qCKaU3Q5aS0JIqNJPoW/uaNWsA1N/02ccYAJ544gkAwJQpU9IcDSpa9oUdSvh5oF5KQsvcEO5XLmFeI3wkerPmejTSEUVXc4navZ/rHfcySEJ3dL4cGbw9iM5T1E0oKh/TVNoIqPfzZk9ujaaxvBMAfPrppwDqEUEqAxpZ5HeWomFnz55NY6oEGiVUtYFRu1JXE/ZGV8OaRv8Y6V+4cGGa41ijgGpKiSKB0d8iBSfazlIXIKXtPRqVEispC47+mRyOCBpjjDHGdBT/EDTGGGOM6SiWhscQDPdriJ/yZGQqyUmTTZ0JlKiWlcrAc+fOrf0NqCr5q1lE6wPSEMLPAZUMtGTJkjRHufi+++4bsV05on2I9jGSYnMSC8nV9WtLk0w0WpwEfntRMohF8m90z0eo1Mp7TOvp3XvvvWl86tQpAHUzGFNE9HNNtUyBSnrW9fC5pZIs6xYCdemZnD9/HkBd+qU5Teub6nYw3URlYErDWjNVaUq7iIwhpWdDP/d5v8+E6BltTL84ImiMMcYY01H8Q9AYY4wxpqNYGh5CSjWmIgmg1H6oVAcvkk1LNe1YC1Br/dH5p3KTysmUcNSdyHpelIh13SUiWUb3VesDsgaYuoe5jyqZlZx9Ta3+lJLM07YJfHRuSxKzHcJjCz1f6lbn9at/j9q8RfUGI4k5qj2oDv5ly5alMWsK6r3Ktmvaqu7uu+9u3De6j7XNG13/2sZNt4P3/9WrV9PcunXrAACvvPJKmmNFArqZAWDx4sVpvHTpUgBVGgtQd04Tvaejuoj9PnuBm3Nf+j431wNHBI0xxhhjOoojgkNEFMlTmhqSR3XwoibkveOmdZdMCIyw6ecYCcxF0xgx1ITvL774AgCwevXqNMc3eE3o1jpj0TayxlfUhUHno+Ob68JC2tYJHG1iOLex1CUgWk/uu20cGVuU6s41RawHiRBp9H758uVpzGib1gT9/PPPAdTrezK6l7vnjx07BqDetWTmzJkAgPnz56c5NaBwmW3btqW5Dz/8EEBlYgGARx55BAAwe/bsNKcRwRkzZgCo1yCNiExlbSN6ozWSGXOrcUTQGGOMMaaj+IegMcYYY0xHsTQ8hOTMIk1GgX4Sx9s2Ni9JpGwZpY3YmUSukq5KPo8//jiAemN4Nr3/5S9/mebY/uqZZ55Jc5rIzvZ2CrdXzSBRaz3d3uhz0fGLpKPIdDJaSs3km6Qpy1Jjl9w5ZspCW7l4kO9R88STTz6ZxqzRp/IspWG9vynPanqFpmSw/p+2mGN9UDWdXL58OY1pUPn1r3894u/aipLPB302qAysJpJeSukXbdNk+knBcZqGGUYcETTGGGOM6SiOCA4hpehSqWRKFPGL1l+KIkZvujoXlVKIOnVoWRhW9VfjB8tPaJkKJqhrFEENJkwOnzVrVppjmZpcCZym4xpFV3IRgyZDR6mUROmY9/4tN99PtMERw7FFdA9G3YSiLhdqhCpdf0QjeRq9p9GCZi4AOH36NABg165daW7y5MkA6tE9vW+5HRqdo3HkypUraU5LPZ05c6a2X0BVpkoNLXPmzAFQRSWBeqS+dxuAvOJCeFyjZ0e0Ho1+Rka+0nqMudU4ImiMMcYY01H8Q9AYY4wxpqNYGh4iIlm1JD9Gcmc011YmUiLDgs5973vfa/yeCErCKg3fddddAOqN5tesWQOg3qieiepAVeNMZRl2JtD1qBzF48LODLq9pZphbZPA+6kB2SQT9fPdvduQW2du/ebWkzsfvN+i6yq6liJTE1DuiBFB2fXSpUtpbuPGjQCAffv2pTlKx19//XWa4/0JABcvXhyxDfv37x+xHt0e3sOa+kFJmN1CgHIHoui+bHu/ldJFeHxzZpHrZSAz5kbjK9UYY4wxpqP4h6AxxhhjTEexNDyEqKQQtY6LJMC27tjedfYuk5OWKMHq3He/+10AdZde5C5W+ZafVQnlscceG7HdlJ1VGj506FAa01WsEtT06dMB1GuhLViwII1ZX6yt1KqU6gxG56at9B5JVbkacU3rzJ07S1TDT+66aZJ0o3s+d91wPToXyaY6phtY79+tW7cCqFy9APDll18CAE6ePJnmWBsUqKoB6L3K1BB1+z766KNpzHtZ71/WD2SVgRtNSTrnsVbXdfT36JgbM0z4fwhjjDHGmI7iiOCQo2+TUdSJlAwiUWQx+p5csnMUPWiKaOnntD4Yl2E0Eaiif+w6AlQmj3HjxqW53bt3p/GOHTsA1JPNmaz+zTffhN/NumjsagAA3//+9wHUDSRR9CSq2aaREu5XLjLbZDApmTzadpDop1OCGRs01QSN7nm9Tkv18qLovcLIG01YQHU/njt3Ls3t2bMHQFVjEAA++uijNOZn1VzGe33+/PlpburUqWnMiCCjkkBzfcBSJH6Qa790D0XH3/eYGYs4ImiMMcYY01H8Q9AYY4wxpqNYGh5ySq2R2poHVMakbFuqQRhJw7o9rC+mc6wJmDO8cDtKBogHH3wQQD0xXKXjadOmAagkYqAyluictsIaP348gKrNHQDMnTsXQCVFAeXaZE2t4SIJWYmWKbUUa1sDcpDag2b46KddJIkMJApTJPRaoslBr9nI+BC1nVPjx7vvvgugXudTzSSTJk0CUK//9/LLLwOo34tsEQlUKRsqB/Pe+Pbbb9Mctz0ycynRs0yJDB3RfRmlaUSGntz3GDOMOCJojDHGGNNRHBEcQnJRQI6jaE+TGaF3HC0TLa/fffjwYQD1BvQ0fGiXEJouNDG89LZO9G2bkQmNCDDaqGON3t15550AgG3btqW5Y8eOjRjr91y4cAFAPcLByOFDDz2U5hih1O9Wg0lb2iay585d204oLhlze9AUVY7MSnpN6rKR0YLXi67nypUraXz27FkA9bJNx48fH7EefifLMwHAww8/nMaM+j333HNpbtGiRQDqZpCIXGkbUlJJSia4JkrR+2jO0XczFvH/FsYYY4wxHcU/BI0xxhhjOsrf+VtntA5dUq9uj8o2TPiOOnBEcocmVausEiVYR8trs/lXXnkFALBu3bo0x6r/S5YsSXOUejTBPGrKXmry3rYOnh6fEydOAAAOHjyY5tiBROePHDmS5ljjTI8Pux3MmTMnzek+zpo1C0Dc4aDU3SM6zpH8lZObKJmXjCiWq24Polp/vEauXr06Yk7TJyI5WOE6T506lea0Luc777wDANiyZUua43WlaRM0bj3wwANpTrdj4sSJACrTCFClk2g9Ub0PeF/rHK953S/+PVcLMer+MYg03GTi0rnIbOf7L6apQ5NSqqPq4zt6HBE0xhhjjOkoNosMIbnE5lI/0X7XGb0Z0zwB1KNpLM2iieMzZ84EUDeG8G09F92Lon9NkT5dNupprG/6NHmwKwlQj1ywp7FGPbg/7JcKVJFQNZ1o1wR2OImS47V3qpbDyPUjBWIzTS7C4c4i3SR6DkSRMT3vFy9eTGNG/dTsQeOXXtvaMYR/1/ub17mWW6LxQ+8HNa2wk49GCaPe5lGJqxvRySOK5EWUTCelzi3GjBUcETTGGGOM6Sj+IWiMMcYY01EsDQ85UW29QeTgksRCI8rJkyfT3CeffJLGrMHHzwFV9X9KP0CV/J2TUJoSqCOTTC4Rm3KqrodzmrSu4wkTJgCoJ62zfqAaSLjfKiFv2rQpjT/88EMAdSmMHReeeuqpNDd16tQR26HJ8VFNwFKCedtz34/sZcYWTbUkWfsPqGp/AsCePXsAADt37kxzTHH45ptv0pzey0888QQAYPHixSPm9B7idd5PXU1Kv2oOiExlUTqIUuruEd1PPH4labeUvhLJ276vzFjEEUFjjDHGmI7iH4LGGGOMMR3F0vAQEbnZctIoaetci2QOlYQokWpLtsuXL6cxaxLq9lDmVJduJNGUam81ST65Y9Fvuz2gcj+qs5f1Dh9//PE0R3cxZTCgXpvwzJkzI9bN4/bGG2+kOa0zSAfxuHHj0tyjjz464nv490EkppyU1XRd9XP8Ikott5rOd7S9OUm7yelZ2t5SK8Wm7yvN3ay6ZuoApptX2yJG96/KxGwdp/c8HfWRHAxU9TK1DRyvab22B2m1GNUyHQ032mUf3RuDPK8tHZthxBFBY4wxxpiO4ojgEBJVVwfiWnRR/TBSSnbWiB8Ty7WmmH4f3/r1DZ6J3JrQ3fYtuG1EMHoDB+KIYLS+6BioYYNjrfnHWmkaJdTEe0ZkNOLCriaff/55mtPjy+/huoEq4f78+fNpjl0Y2HkBqNdxa9pHjcw01S3MrWeQaMUgkbym78md76b15NY9SISzzTb287moI0hUL08/px2BeA1ppI8mpqgeZhStBiqzEqPQQGWeiqLhQHV9Rh10ItRIxggk0Hyvlq4bhc8ZvR+aOu3kGI2RqhQpdsTPjEUcETTGGGOM6Sj+IWiMMcYY01EsDQ8RpeRjjqN6epHcpDJulJQdScMqUWmdvHvuuSe7vSUimbJtXa+SdNm2RmHue6JlKOOyZR1Ql2pZN02lYbbu0vpqlIv1s9rCb/PmzQCAHTt2pLk777wTQF2Oo6FFt0NNJ5G5RVvrjUYibUs/NStJPxJd03pG02asn+UH+R62KwQqeVdNHpxjCzig3uaNy6vJg9uu99WDDz4IoEotAOo1NHktq/RLmThn/OC1qPA5E9Xv1LQS1toEqlaV2saR96CeB91Hysz6PXPnzgUAPPPMM2mO+xs9n3JEtQej6yG6pkspONH3GDPsOCJojDHGGNNRHBEcIkrGhyYDRSlyphFDRgK1JAUTsLUxvEYPGIHSDhxM3ta35CgaWYq+NEWGSvvV9k0eqKIQasbhWKMrfMOPTCVAFaHTiAsjcJqMrxEQRn6Y1A9UphONANE4olEGLc/D6I1G/NgNRiOQGs1lZEejPVy/7ndk/tExz6kuM0iyftQVpsRooitR9wqNCvPe0HtEDRucj+aiZa5evZrm1LzB88PoMVCdO40uf/XVV2nMyJheAzz3en9yrJFivUZ4raopip2BSkTHKooIfv3112lO92fXrl0A6l1NeKz0+tJ95HfqMdfjQhhFZGcfoL5fkRJSMqL1fq7099K178igGXYcETTGGGOM6Sj+IWiMMcYY01EsDQ8RlBByNeAoQURSrMoPlFtU0tGkdSZvq4Q1b948AFXSOVCXQ5mUTSkLqGTKKOE7J5dw3yIpNjJxKG0lmH5q0XGsEl9buVNlLUpvuS4NrKumcjElQpXRKA3r+dIxZX01F1Cu12R7lUMpj2n9NaYA6Pby3KukqNcDjSpqLqAMF8nOQGwA4nquV1cJJboWtb4dpUbdLh5/lWz1nHCsMi/lfK0ByXOscqbC60UlUMr2akxSkwbPk0q6lP1VGmZ9Sl13JOvrvRF1C1J4H+gynNPri9ekPi+mT5+exvv37wcA7N69O83xO9UINX/+/DTmfut5YHrFq6++muYoF+s20swF1K/vJgYxrxG93tsa6IwZJhwRNMYYY4zpKP4haIwxxhjTUSwNDyE5qSFqR8W/q8xG+UJdwdr67Le//S2AuluVrjutl6ffTYerSk8cR1J2rvl62+btkSwT7WOpjV7kIC5Jl1HbvtK6I8lbpTJKXVrvjBKs1nOk1KVysNYe5DnTmm2UiVW61GWYAqCuTo61FRi/U9etMjAlS5WYo9aDSlQvjsdCJdDoGogoSXgq8UfO3sg1zGOg90vpnPDvml4ROdDVwUqZMnL26n2n1wiPv54HjnWZqOZfRPTsyN2rTTXzopZ4uq9TpkxJY8reul+Ut1VCXrlyZRpT6tZjTkn49ddfH7GeadOmpblHHnkkjXnM+3EFN0nD/TxvLBObsYIjgsYYY4wxHcURwSEkqn0H1JPeSWRs4DKaaL1nz540Xr16NQDgs88+S3Osf6cJ5vpGy6RuTcTmZ9UoEFXgL3WI4Gejem+KzjEC1U/9uiYDShQp0UiS0lQ/LGd44XmKomlqzoiiEWoCYSRKo7mMBOqcjhkd1OhfVBuP15fWa9MoY5P5Qs+dHrdof7iMfncpIhgdc46jTjs6H0WSlaibi54nXudq2GBUTz/HiJjW4tQoGKNTasDhOtU0oZHkUrccEkWxlaboXi7KFdXdjAwkHGtUUk0aPFZa25LPkaVLl6a5ZcuWpbHW6CRUNV555ZU0x2ecXu85s04TkRoxSKcjY8YijggaY4wxxnQU/xA0xhhjjOkoloaHnEgKU6IkfX5Oa5ypeYDJ1CprUcJS2U8lQn5WzSKRTMTtUaklStYvySqRqSSSsCLJq2TyKCXERwaHaFwyopRk66a/63lVuT6SMSk1qhlETQwcq8TM86yfo+ysCfp6DXCsy3CdKseplBhJw5SodT2DSMORw7jqgwAACWdJREFUQScaRzUr9dxRylXzhcq7keTLucg8lWtNyHtIJdQmw1U/8Jjnru3o+EbLlMwOnNNluI/6+ahNnppJaO5YsGBBmovk4KNHj6YxTVF67VNuVrldn2ttKd3L0eeMuV1wRNAYY4wxpqM4IjiGiLoDRN1GWAZDy2GooePZZ58FUI80cT2adK1dRBjV0+T3KPoXbU8UhYj2S6Ng0b6WSs5Ec9Hypbf/6K0/tz/9ridaZxRBy0UWOdaoUtvSIQq/MzKiaOkUHUdlaBjtiQwiOtaIYLSeKDE/IooIRh00dBwZSKKIlkb8ou4eUSkd/e4bQdNxKZUniaKDuj5eA3r9lcw40fXJCJxeK+wCAlSGDv3uSE3Qa+jEiRMAgPfeey/N8XmkhrW5c+cCACZNmpTmNPJISpHO0jM1+pwxtwuOCBpjjDHGdBT/EDTGGGOM6SiWhm8RkdmB0okaNlSKaEqCPnjwYBpv27YNQD0Bfc6cOWnMxGqVeSlxae3BQ4cOpfGXX34JoC4JsfaZys7RdkeyS9SVIzK+RPXnlEi2yklm0Xc3ycW5eo5NZpFcd5S2BpPev/WOe9dXWncOHmuVQHkeVQJVuS6SEgepX8d1RmkCuWWbTD8lQ1Hp3HKZnOmE94bKwINIhE1Sbk66bKppFx2f0jVQMnZFxyWSi6N16/lUIxCfKZ988kmao3lt06ZNaU6l+aj7zOzZswEAixYtSnMzZ84EUHUvAeoGnYgmo1n0ud4xaepAkluPMcOII4LGGGOMMR3FEcEhIjIPRL1TNTJGc8eaNWvS3IcffggAWLFiRZrTMg2PPfYYgDhRW8vM6PewpIjOsZyDln1gonaUoK/f2TZyoX/T49JkzihFp3LdP5q+O4o8Rtut6y5FBEudHXqXze1DqQNC2y4sUbkV057o3LSN3OZ6NTeZoqLPlaKj/ZiZouuzCVUy1KjG6KBGCffv3w+grjoo7DU8f/78NEdjyKxZs9IcS2FpZ5bcsSSlSF50/7dZX249xgw7jggaY4wxxnQU/xA0xhhjjOko1oBuEU1SjiY7a4X+PXv2AKjMIADw8ccfAwC2bt2a5ijLUDYB6hIzv1M7j/zud78DALz//vtpbvPmzWnMGl5ao+vw4cMAgOeeey7N0ZRCaad3f/jdkfytEgsT8yOJU+dLRotS55HIsNBWGorWnZPRom4lkdGirTTcthZabp1tKW3baBit4WUQmswX/dSaa7pGSt09Siaj6JiXuuFE21jqctO2m4vC4xZdX+wYA9TrCNKEpDJvlELCVBOgSkXZsWNHmqOJiRIxUBno2srBug8labhtykZuPe5MYsYKjggaY4wxxnQU/xA0xhhjjOkoloaHCMoGOdcmZWKVUCjZqvR7//33A6jX5VKZglKGSjmnT58GAJw5c2bE9wGxhMoWYZRxgKplmcolJUmtyW2ZkwrbOo0j2Sv6npIcN4ikM4jMWZKym9Z9vWTVnEw5mpZbUU3G0rpHe/ybzn3blnbKIK0J256TkjScW2e/31ea6ydNoRetOHDgwIE0pmyrlQseffRRAPXaqPrs2b59OwBg/fr1aY51CFlPEKhqoQ7SZtFuX2Ou4YigMcYYY0xHcURwCNFohXbtoPlDK+s/9NBDAOo1uhgJ1DfwO+64I41ZC1Ajj1OmTAFQ756gSdmsEaZv8Hyrf+KJJ9Ic63lp8nZUty8ygeQS3UmU8K1zUb28KNoRRUdLXQYiSnUES10cmuoR9hMV4v6U9qGt8WO0kcVSVLPJ6NNPDciItl1ESh1pSvvQFB0dJJI5mihgv+sfDU0mGY3o7du3L40nTJgAoG4WmT59OoB6DVI9bj/4wQ8A1COCu3fvBlB1RgIq04mup6kDk257zmDS1izWdB33sx5jbjWOCBpjjDHGdBT/EDTGGGOM6SiWhocQlXG0Bh+lYTWBTJ48ecQylEZoGgHq9f96PwcAkyZNAgD88Ic/THPaMoqSnMopTNDW7WGtr1KbslILtKi+2mglln4ln9zn2sqqpXWORo7uJ+m/tG3Xm9FsRz/LtjXRKJGMXqrlF81dL6m1dxuavrMN/Xx+EKMP71WV6GkQU9OY/p1pKfo8uu+++wDUU1EUpp2oCYSGthMnTqQ5fmc/KQNt/z5aadhUNN1j/Tzjo2WuV83ULuMr2BhjjDGmozgiiOF+i1CzCLt1jB8/Ps217TIQdbTQt21G8gahbTeM3DKDRCauV8mUyLzSlusVobxe6x7GchhNkYB+tmuQUijXY05pe01fz2tpNJHH0RpQmv6uagG7iFy+fDnNqaGDkUCN/kXlqKL16/OP6oiqErx/S51FlOtt4hjm/z+GjVIZqdxnm5a5XmWzuowjgsYYY4wxHcU/BI0xxhhjOoqlYVz/xO/Rkkt+HU19saiW2lgLqav803TOSuezZDi4EddDk5Q4iCGmn20ctuubXK/ajaP9nuudFjDa/bpeBqnR1iNkt6LILKIcPnwYQFWfFKjXIJ0zZw6AqlYpEJvJ2DkEAN5++20AwNatW9McawXSSAJUdVRVQi5RSk3o9/z1k1LQVaJnXe/fev8eGYBKHafMYDgiaIwxxhjTURwRHEJy5QjaGkNKn++no0MTbZcZpHNGW4PJ9druW/HWPizb0XWG4ZjfaKPPaCKp2secEcHjx4+nuV27dgGodzdiWSugKi+lBhFGBI8cOZLmVq1alcZr1qwBUJWMAYBp06YBqEcbWVJrkKjc9Trvw3D9DDuDlLNq2wfejB4fTWOMMcaYjuIfgsYYY4wxHeXv/K3j2mZARiMNDxs3y7hgzFhDO4Zs374dALBhw4Y0RxlXawtOmDAhjVn/VDuLUGI+c+ZMmtu2bduI76QZBABefPFFAMAf/uEfjlh3qZORGRuUJPzRGqBMjCOCxhhjjDEdxT8EjTHGGGM6iuPpZmBup5D87bQvxlxP1O174MABAMCWLVvS3N69ewHUpeGLFy+m8aFDhwAAd9xxx4h1X7lyJY3ViUw38OLFi9Pc0qVLAQCPPfbYAHthxgKWfm8NjggaY4wxxnQUm0WMMcYYYzqKI4LGGGOMMR3FPwSNMcYYYzqKfwgaY4wxxnQU/xA0xhhjjOko/iFojDHGGNNR/EPQGGOMMaaj+IegMcYYY0xH8Q9BY4wxxpiO4h+CxhhjjDEdxT8EjTHGGGM6in8IGmOMMcZ0FP8QNMYYY4zpKP4haIwxxhjTUf5/cgkRmXS+lLYAAAAASUVORK5CYII=",
"path": "images_version_6/image_45.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, O is the center of the circle, then the degree of angle AOB is ()
Choices:
A:35°
B:70°
C:105°
D:150°
|
||
226
|
46
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAABSCAAAAABGLWSUAAADsklEQVR4nL2YMWgcRxSG/z1EAgYbBAkIE1DuhOQrXCQohYUcVRJxsapkgwMpUp1MQhQwe8ZOYSODCyMhkMBBKxDYOKTSVXJj9pLCjd2ksVRYCdkhbUQKS6Cga34Xe3e2T7M72n0z+ps9lt379s2bf2be84gC2v24yFuJSkVean22fcLEpbHzxYlegVHdPfdH+WSJX3+yUByIvvyvvHj2SgAsksfgzumTJTYOahJg/jy2yo0LImLuGO9NyIC5Y1SjEmcAhhiVp3pv/fSDEAgwXREQ99x6fvYw44VjKYtIHiF+/lgKZL6Zs3bqG+mY5ltz9ucbYmA+d9yVOgPIF6Na35EDc8VYvyHY+rs6Xozq79cv8eXzXy0AM2NUHipN7K5d9C4tvwRurHxgg5jtR5LL/Vc3DkkyHBdbkaRpBSBnxreSH3tnt+wQDXms7/3eHsq7vuA0dWRUQ8BnoPmeuH+v/Wur/19RZH4XVgKU9xe54g1rPufhlc4B45bQGZt+TAZegkVAkkGk+bKrnYU7GpHuGT5J+gFZwhoWAGB4SPNl/w0k19b3D4TOaFYBoPoKKGE2BADUdDvth6+T6+rgpAyIp18BwDAAL65E3X+70/vc5kdjAHCwfmVAgpvvnG7qWDCsctPJ5bdPRUAAKgAAtRgBIEKSjHUTp62trkcKKwxJ0vdJgiEiMvIzHp9algKJmIzhkyTICIDO/h1tiJ0RJUObDKNxJefhSMaAF5B5R14akTrjfRnP5LLytAhx9oykPNXIdOrYfiIqTzUy5fGarDzNT2wcfGsZaMhjq/zI7kSFKcalMevA7BitO8NIlDVuUpTlDmHjJkVZeQzu23aGgfjLgbw81Sg9j+LGTYrSYxQ3blKUGqO8cZOXePmLm06AqcQXM8pOtXhEKXlsfWepPD028eGpGUfAlFHdr7pxRjqxvhe6AuqJanTHRh9FL20e56w0blKk2zuaf1pov6VLdwjfsHoIN5/JVwedOQPQzZz96lNbfZRjEmfhzhla4vaEQ2cAGndcd+kMHbH5z3W3wF532C5Pze5YEjdujHp/5uyee+bUGUeJrp0B9Kyr9stTjbp5bCoX5em7mvY8z2u+HVUvLjcu33YInMf0j5PNqbgTY90v43+XQABPJjGEjh/DyNxKkioKSD9od+YVhny38QGIFxcRl9sz5+caqs6JmzHDikqIa4texTlQoYwaIvQBUCCasWtiNA0oVFAC1FwNcA7E5hRQwSTAAIjpZ7dYLUxUAIBP8g2cMJ9TsQpnUgAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_46.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, if AB parallel CD, angle A = 70.0, then the degree of angle 1 is ()
Choices:
A:20°
B:30°
C:70°
D:110°
|
Như hình vẽ, nếu AB song song với CD, góc A = 70°, thì số đo của góc 1 là ()
Lựa chọn:
A: 20°
B: 30°
C: 70°
D: 110°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, if AB parallel CD, angle A = 70.0, then the degree of angle 1 is ()
Choices:
A:20°
B:30°
C:70°
D:110°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, if AB parallel CD, angle A = 70.0, then the degree of angle 1 is ()
Choices:
A:20°
B:30°
C:70°
D:110°
|
As shown in the figure, if AB parallel CD, angle A = 70.0, then the degree of angle 1 is ()
Choices:
A:20°
B:30°
C:70°
D:110°
|
227
|
46
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAABSCAAAAABGLWSUAAADsklEQVR4nL2YMWgcRxSG/z1EAgYbBAkIE1DuhOQrXCQohYUcVRJxsapkgwMpUp1MQhQwe8ZOYSODCyMhkMBBKxDYOKTSVXJj9pLCjd2ksVRYCdkhbUQKS6Cga34Xe3e2T7M72n0z+ps9lt379s2bf2be84gC2v24yFuJSkVean22fcLEpbHzxYlegVHdPfdH+WSJX3+yUByIvvyvvHj2SgAsksfgzumTJTYOahJg/jy2yo0LImLuGO9NyIC5Y1SjEmcAhhiVp3pv/fSDEAgwXREQ99x6fvYw44VjKYtIHiF+/lgKZL6Zs3bqG+mY5ltz9ucbYmA+d9yVOgPIF6Na35EDc8VYvyHY+rs6Xozq79cv8eXzXy0AM2NUHipN7K5d9C4tvwRurHxgg5jtR5LL/Vc3DkkyHBdbkaRpBSBnxreSH3tnt+wQDXms7/3eHsq7vuA0dWRUQ8BnoPmeuH+v/Wur/19RZH4XVgKU9xe54g1rPufhlc4B45bQGZt+TAZegkVAkkGk+bKrnYU7GpHuGT5J+gFZwhoWAGB4SPNl/w0k19b3D4TOaFYBoPoKKGE2BADUdDvth6+T6+rgpAyIp18BwDAAL65E3X+70/vc5kdjAHCwfmVAgpvvnG7qWDCsctPJ5bdPRUAAKgAAtRgBIEKSjHUTp62trkcKKwxJ0vdJgiEiMvIzHp9algKJmIzhkyTICIDO/h1tiJ0RJUObDKNxJefhSMaAF5B5R14akTrjfRnP5LLytAhx9oykPNXIdOrYfiIqTzUy5fGarDzNT2wcfGsZaMhjq/zI7kSFKcalMevA7BitO8NIlDVuUpTlDmHjJkVZeQzu23aGgfjLgbw81Sg9j+LGTYrSYxQ3blKUGqO8cZOXePmLm06AqcQXM8pOtXhEKXlsfWepPD028eGpGUfAlFHdr7pxRjqxvhe6AuqJanTHRh9FL20e56w0blKk2zuaf1pov6VLdwjfsHoIN5/JVwedOQPQzZz96lNbfZRjEmfhzhla4vaEQ2cAGndcd+kMHbH5z3W3wF532C5Pze5YEjdujHp/5uyee+bUGUeJrp0B9Kyr9stTjbp5bCoX5em7mvY8z2u+HVUvLjcu33YInMf0j5PNqbgTY90v43+XQABPJjGEjh/DyNxKkioKSD9od+YVhny38QGIFxcRl9sz5+caqs6JmzHDikqIa4texTlQoYwaIvQBUCCasWtiNA0oVFAC1FwNcA7E5hRQwSTAAIjpZ7dYLUxUAIBP8g2cMJ9TsQpnUgAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_46.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
if AB parallel CD, angle A = 70.0, then the degree of angle 1 is ()
Choices:
A:20°
B:30°
C:70°
D:110°
|
Nếu AB song song với CD, góc A bằng 70°, thì số đo của góc 1 là ()
Lựa chọn:
A: 20°
B: 30°
C: 70°
D: 110°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: if AB parallel CD, angle A = 70.0, then the degree of angle 1 is ()
Choices:
A:20°
B:30°
C:70°
D:110°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: if AB parallel CD, angle A = 70.0, then the degree of angle 1 is ()
Choices:
A:20°
B:30°
C:70°
D:110°
|
if AB parallel CD, angle A = 70.0, then the degree of angle 1 is ()
Choices:
A:20°
B:30°
C:70°
D:110°
|
228
|
46
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAABSCAAAAABGLWSUAAADsklEQVR4nL2YMWgcRxSG/z1EAgYbBAkIE1DuhOQrXCQohYUcVRJxsapkgwMpUp1MQhQwe8ZOYSODCyMhkMBBKxDYOKTSVXJj9pLCjd2ksVRYCdkhbUQKS6Cga34Xe3e2T7M72n0z+ps9lt379s2bf2be84gC2v24yFuJSkVean22fcLEpbHzxYlegVHdPfdH+WSJX3+yUByIvvyvvHj2SgAsksfgzumTJTYOahJg/jy2yo0LImLuGO9NyIC5Y1SjEmcAhhiVp3pv/fSDEAgwXREQ99x6fvYw44VjKYtIHiF+/lgKZL6Zs3bqG+mY5ltz9ucbYmA+d9yVOgPIF6Na35EDc8VYvyHY+rs6Xozq79cv8eXzXy0AM2NUHipN7K5d9C4tvwRurHxgg5jtR5LL/Vc3DkkyHBdbkaRpBSBnxreSH3tnt+wQDXms7/3eHsq7vuA0dWRUQ8BnoPmeuH+v/Wur/19RZH4XVgKU9xe54g1rPufhlc4B45bQGZt+TAZegkVAkkGk+bKrnYU7GpHuGT5J+gFZwhoWAGB4SPNl/w0k19b3D4TOaFYBoPoKKGE2BADUdDvth6+T6+rgpAyIp18BwDAAL65E3X+70/vc5kdjAHCwfmVAgpvvnG7qWDCsctPJ5bdPRUAAKgAAtRgBIEKSjHUTp62trkcKKwxJ0vdJgiEiMvIzHp9algKJmIzhkyTICIDO/h1tiJ0RJUObDKNxJefhSMaAF5B5R14akTrjfRnP5LLytAhx9oykPNXIdOrYfiIqTzUy5fGarDzNT2wcfGsZaMhjq/zI7kSFKcalMevA7BitO8NIlDVuUpTlDmHjJkVZeQzu23aGgfjLgbw81Sg9j+LGTYrSYxQ3blKUGqO8cZOXePmLm06AqcQXM8pOtXhEKXlsfWepPD028eGpGUfAlFHdr7pxRjqxvhe6AuqJanTHRh9FL20e56w0blKk2zuaf1pov6VLdwjfsHoIN5/JVwedOQPQzZz96lNbfZRjEmfhzhla4vaEQ2cAGndcd+kMHbH5z3W3wF532C5Pze5YEjdujHp/5uyee+bUGUeJrp0B9Kyr9stTjbp5bCoX5em7mvY8z2u+HVUvLjcu33YInMf0j5PNqbgTY90v43+XQABPJjGEjh/DyNxKkioKSD9od+YVhny38QGIFxcRl9sz5+caqs6JmzHDikqIa4texTlQoYwaIvQBUCCasWtiNA0oVFAC1FwNcA7E5hRQwSTAAIjpZ7dYLUxUAIBP8g2cMJ9TsQpnUgAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_46.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, angle A = 70.0, then the degree of angle 1 is ()
Choices:
A:20°
B:30°
C:70°
D:110°
|
Như hình vẽ, góc A = 70°, thì số đo của góc 1 là ()
Lựa chọn:
A: 20°
B: 30°
C: 70°
D: 110°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, angle A = 70.0, then the degree of angle 1 is ()
Choices:
A:20°
B:30°
C:70°
D:110°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, angle A = 70.0, then the degree of angle 1 is ()
Choices:
A:20°
B:30°
C:70°
D:110°
|
As shown in the figure, angle A = 70.0, then the degree of angle 1 is ()
Choices:
A:20°
B:30°
C:70°
D:110°
|
229
|
46
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAU8AAAD9CAYAAAA8uPU4AAAwCklEQVR4nO3deXDb6X3n+TcIkABJEDxEULxBgodI8RJJnZRa3ZJlt2W72+61E9d4piaZ2KlMeZxJdmvHNZWZrZmd3UkqmYlnvEnWW6nxluN24kxi107aR3e7D50UdVEkRfG+QIAHeIAEifv87R9twqKObjVECSD4fVWpupr6AfqSID54nt9zqRRFURBCCPGxpCW6ACGE2I0kPIUQIg4SnkIIEQcJTyGEiIOEpxBCxEHCUwgh4iDhKYQQcZDwFEKIOEh4CiFEHCQ8hRAiDhKeQggRBwlPIYSIg4SnEELEQcJTCCHiIOEphBBxkPAUQog4SHgKIUQcJDyFECIOEp5CCBEHCU8hhIiDhKcQQsRBwlMIIeIg4SmEEHGQ8BRCiDhIeAohRBwkPIUQIg4SnkIIEQcJTyGEiIOEpxBCxEHCUwgh4iDhKYQQcZDwFEKIOEh4CiFEHCQ8hRAiDhKeQggRBwlPIYSIg4SnSGrRaJRgMEg4HE50KUJso0l0AUJ8mLW1NRYWFtBoNJSWlpKTk4NarU50WUJIeIrkNjQ0xN/+7d+SlZXFK6+8QktLCwaDgfT09ESXJvY46baLpBUMBhkZGeGdd97hypUrLCwsEAwGURQl0aUJIS1PkZwcDgdTU1PYbDYyMjIoLCykqKiIgoICMjIyEl2eEBKeIvlEIhEmJye5du0ay8vL1NTU0NLSgslkQqvVJro8IQAJT5GEIpEIo6OjXLhwAbVaTWdnJ52dnRQUFCS6NCFi5J6nSDoul4vR0VFu3rxJIBCgq6uLEydOkJubm+jShIiRlqdIGpFIBLvdzvDwMHa7naysLEpKSqiqqqKwsDDR5QmxjYSnSBqBQIAbN25w9epV3G43hw8fpr29nfz8/ESXJsRDpNsuksb6+jqDg4P09vaSlpbGsWPHaG1tRa/XJ7o0IR4i4SkSTlEU/H4/8/PzjI2NMTMzQ35+Pi+++CJtbW0ywi6SknTbRcL5fD4sFgtjY2Osr6+j1WopLy/nwIED5OTkJLo8IR5JwlMknMvl4urVq9y+fZvMzExOnTpFY2MjmZmZiS5NiMeSbrtIuNXVVW7fvs3du3cxGo2cPXuWhoYGVCpVoksT4rGk5SkSJhqN4na7sVgsWK1WPB4PlZWVHDlyhIqKCtk9SSQ1CU+RME6nk4mJCSYmJvD5fOTm5mI2m2loaEh0aUJ8JAlPkTB2u50LFy4wOjpKcXExFRUVmM3mbdcoiiLdd5GUJDxFwlitVt5++202Njb4whe+wEsvvUR1dfW2ayQ4RbKS8BTPXSQSYXV1FYvFwurqKlqtFrPZTHNzM3l5eYkuT4gnIuEpnrvZ2Vnu3LnD5OQk+/bto7y8HJPJJLsmiV1FwlM8V9FolKmpKa5evYrdbsdsNtPU1ERpaWmiSxPiY5F5nuK58nq9jI2NcenSJZaXl+ns7OTFF1/EaDQmujQhPhZpeaaIaDRKIBAgFAqh0WjQarVJNU8yGo3i9/ux2WxYLBYWFxcxGo00NTXR2toqR2uIXUfCM0X4fD5++tOfcvv2bRoaGnj55ZcpLi5GrVYnzYj11gbHq6ur1NXV0dzcTGlpqQSn2JWk277LKYpCKBRienqaH//4x/zpn/4pb7zxBna7nUgkkjQnTfr9fgYHB7l8+TI+n4/jx49z7NgxGSQSu5a0PHepUCiE2+2OjVz39PTw/vvvoygKwWCQSCSS6BK3cTgcjI2NMTQ0xMGDBzl+/Ditra2ya5LYtSQ8d6lgMMjKygr9/f28/vrrXLx4MfZ3+/btQ6NJjpc2HA7jcrmwWq1YLBaWl5fp6uri8OHDmEymRJcnRNyk275LpaWlodVqMRqNtLW1cfjwYdLT0wGSqtUZCAQYGBjg2rVreL1eamtrqa2tpaioKNGlCfFUkqN5Ij42rVZLcXEx+fn5HD9+nLGxMf74j/+YN954A6/XmzT3Oj0eD5cuXeLKlSsUFhZy/vx5Ojs7SUuTz22xu0l47lJbLc+tIyq6urowmUyoVCrC4XCCq/uVubk5xsfHmZubo6GhgRMnTlBfX580txWEiJf8BqeIYDCYVKHp8XiwWq0MDg6ytraGTqejqqqK5uZmmRAvUoL0nVKE3+8nFAoBybET0draGnfu3GFwcJC0tDRqamqoqamR4BQpQ1qe4plYWVnhwoULTE5OUl9fT2dnJ/X19YkuS4gdIy1PseOi0Sjz8/MMDQ2xsLBAVVUVL7zwApWVlYkuTYgdIy1PsaPW19eZmJhgZGSEaDRKUVERVVVVmEwmsrOzE12eEDtGwlPsKJvNxuXLlxkdHcVoNFJZWUlVVZUEp0g5Ep5ixyiKgsViobu7G7fbTXt7O52dnVRUVCS6NCF2nISn2DEbGxvMzMwwMDBAYWEhhw8f5uzZs3K0hkhJEp5iR9jtdsbGxpibm0Or1VJaWkp1dTWFhYWJLk2IZ0LCU+yI4eFh3nnnHex2O4cPH6a1tVWCU6Q0Cc8UodFoYuvFVSoVarUatVod9xrySCRCJBIhGo0SjUZRFIVIJEI4HCYajcb+zby8PNxuN+Pj49y6dQuDwcALL7xAe3s7+fn5O/b9CZFsJDxTRFZWVmyde3p6Ojk5OU+1ftzn87G5uYnb7SYQCBAMBtnc3GRtbQ2fz4eiKOj1eurr61Gr1UxNTTE+Ps6RI0fo6Oigvb1dRthFSpPw3MW2dk5SqVRYLBbW19dRFAWXy8Xs7Cx5eXlkZ2ej0+m2LdlUFIVoNBprXW61MBVFIRAIsLm5yebmJk6nE5fLRTgcJhwOs7a2xtLSEh6PJxaePp8PnU7HysoKarWaoqIiamtrMRgMifqxCPFcqJRk2btMfCz3H7/x/vvvc+HCBS5cuIDD4SAzM5Ouri66urp46aWXOHjwIPv3798WoKurq9hsNmw2G1arlcXFRVZXV/H7/Wg0GtLT00lLS0Oj0aDX68nOziYUCsXCND09HZVKRSgUIhgM4nK5UKvVnD59mi996UsSniLlSctzFwuHwywsLPDTn/6UN998M/Z1n8/He++9h8vloqysjOLiYnJycsjOziYcDuNwOJiZmWFkZITh4WHu3bvH5OQkNpuNYDDIvn37MBqN5OfnU1BQQHFxcWwLvJycHFQqFRqNho2NDUZGRlhdXaWjo4OzZ8/S0tIiB7qJPUHCcxfTaDQUFxdz9uxZCgoKyMjIIDc3N3afsrGxkY6ODvLz83E4HIyMjDA0NMTk5CQej4dwOIzP54sF5ZEjR9BqtRgMBnJyctDr9ej1evLy8jAYDLHufyAQwOl0MjMzQyAQwO12k5eXR2trK9XV1RKeYk+Q8NylVCoV6enp1NXV8Tu/8zvbtqPbuhOTlZWFTqfD5XLR19fH9evXeeuttxgaGqKgoIDGxkaqq6sxm82xLeP27dsXO654609aWlqstalWq1lZWeHevXvY7XaysrLIy8ujtLSUqqoqsrKyEvljEeK5kfDcxbYCdOvsokexWq0MDQ3R29vL2NgYKpWKhoYGKioqaGxspKqqKrZxR3l5+RP9uxqNhqmpKSYmJsjPz6euro6GhgYZXRd7ioRnCrNYLPz4xz/m1q1b2Gw2dDodXV1dHDt2jIqKCvbt20d2djYajSY2zelJzM/P89577zE0NMTLL7/M5z73ORoaGlAUJSk2YhbieZDwTEHRaJSNjQ0GBgbo7e3FYrFgMBior6/n6NGjdHV1UVBQ8LGfNxwOs7GxwdTUFEtLS4TDYSoqKmhpaZHVRGLPkfD8GHZLy8pisdDb28v169ex2Wzs27ePV199la6uLkpLS+OeRrSyssKtW7cYGBhAr9fT1NREVVWVrCQS2+zE++T+OczJas+FZyAQwO/34/F4CAaDwK+WM2ZkZJCdnR27d+d2u4lEImRmZpKRkZHUL+SWaDTK9PQ0ly9fxmKxkJubS0tLCy+88AIHDx58queen5+np6cHi8VCcXExtbW1mEwm1Gr1DlUvUsHW+yQQCODxeAgEArGFGFsenF6+9f86nS42cyTZ7bnwtFgs9PX1cfXqVSYmJohEImRlZZGfn4/JZOLMmTOcOXMGgOvXr+N0Omlvb6empibBlT8Zj8fD2NgY165dw2Aw8Nprr3HixImnPgLD7/czPT1Nd3c3fr+fL37xi5w9exaTybRDlYtUMz09zYULF5iYmMDpdOL1egmFQrH9EuBXoRmJRFAUhfb2dr72ta9hNptjz5OsPb6UD8+tH3wkEsFmszE6Okpvby/vvfceo6OjAKjVaoqLi2lsbKSoqIjm5ma8Xi99fX1sbm5SWVmZ9OGpKArBYJDl5WWsVis2m42Ojg5OnTpFR0fHUz23x+Nhfn6emZkZ5ubmMBgM1NbW0t7eLuevi8dyOp0MDQ1x9epVJicn8Xq9wK9apvcH4laYzs7OcuTIkW3hmYzBCXsgPAGuXbvGu+++y+rqKjqdjrS0ND772c9y/vx5FEUhLS0ttgRxY2ODb33rWwSDQRRFoaKiYlfMXdz6cLh37x6bm5uUl5dTXV0d18DQg6xWK1euXGF6epqKigqqq6spLy+X4BQfqqKigpdffjl2G2x5eZkDBw5QU1NDdnZ2bJqdoihYrVYGBweJRqP84Ac/YGJigvPnz9PS0hJ7vmRrgabsb//WD9put/POO+/w7W9/m0gkwic+8QnOnDnDuXPnaGxsBD64N6MoCisrK/zgBz/gu9/9Loqi8Gu/9mtUVVWRm5ub4O/mo0UiEWZnZxkcHCQUCtHc3MyBAwd25N7R5OQkly5dwuVy0d7eTltbG/v379+BqkUqKy8vp7y8nMrKStxuN3a7nc9+9rOcPXuWwsJCMjIyYlPkhoeHefvtt7lw4QJvv/02V65cQa/XbwvPZApOSOHwVKlU3Lx5k4sXL9LT04NGo6G6upqOjg46Ojq2dQu2XsCysjJKS0vZv38/oVCI/Px8cnJyPnQSerJQFIX19XXsdjvwwad+WVnZx5q/+Shra2vMzMwwNjaG0WikpaWFw4cPy9Qk8VgPjpTn5+ej1WrR6XSUlJRQXV390GMOHDhAIBAgHA4zMTHB0tISExMT9PX1YTabycnJiXtv2mclZcMzGAzy1ltv8Z3vfAe1Ws3Jkyc5ffo0n/nMZ6ivr3/kp1haWhq1tbW8/PLL+Hy+2HLD3TCarCgKXq8Xl8tFVlYWJSUlGI3GuLvW0WgUp9PJ1NQUs7OzOJ1OqqqqaGlp2dYaEOJBD763vF5vbMT9cQGoVqtpb29HrVYzNzdHX18fCwsLvPXWW5w6dYrjx48nXXgmVzU7yGazMTg4iN1uj4Xniy++SE1NTezFVRTloSkTubm5sa6G0WhEr9fvint7iqLg9/txu92oVCry8vLIzc2NO/ij0ShjY2NcvXqV1dVVzGYzBw8epKysbIcrF6ksHA7jdDpRq9VkZ2c/1BN68D1YWlqKyWTCaDTicrmYmJjAbrdvm+aULJI/FT6mQCDA4uIifX19zM/PAx90Cc6dO8ehQ4e2Xfu41qdOpyMjIyMWQLthzhl80Nre2uU9MzMzNjgWj1AoxK1bt3jjjTcoKCjg05/+NB0dHeTk5Oxw1SJVuVwu7HY7drs91m3X6XTbrnnwPRiJRNDr9eTm5uLxeNjY2Ij9TieblAtPn89Hf38/3d3deDweioqKaGtro66uLnbNh43aZWVlxTbI2Gp57oZ7nmlpabEd4uGDbtDWLkjxWFxcjHXZy8vLOXr0KE1NTej1+p0sW6SwrRMNVldXycnJwWAwfOTmMSqVCoPBQF5eHsvLy/j9/tjMl2STcuHp9Xq5dOkSP//5zzEYDHz+85/n+PHj27reHzZqZzQaaW9vB0Cv15OZmbkruu1arRatVhtbCbV1rEY8wT8zM8Pdu3dxOp0UFBRgNptpaGiQZZjiQz3YKHG5XFitVtbX1yksLKSsrOwjlwZvHSpYWFiI1WrF6/UmZZcdUjA83W43w8PDjI+Pc/r0abq6umhoaHjix9+/PPNxwuEwoVAoKdbfbu3wvra2Fpty5ff7WV1dZXl5mfz8fPLz8x9aHvegrZbq0tISd+7ciS0QMBqNFBQUxL7HYDBIOBxOumkj4vna+t1PS0sjPT09tgfs/ZxOJ+Pj4wQCAY4cOUJ1dfVHTvvber6tbn4kEnnkcyeDlApPRVHY2NjA7/cDHwThvn370Ov1OzpSNz8/z8TEBG63e9uRv4mgUqnQ6XQ4nU4mJiZwOBx4vV40Gg0Oh4PFxUXy8vKeODwXFha4dOkSY2NjsZ3qXS4X165dQ6/Xx0ZNk/GXWTw/W79P+fn5NDQ0UFRU9NA1CwsLXLx4kczMTM6cOUNtbe1HNkwURcHn8+Hz+UhPTyc3NzdpF6mkVHg6nU48Hk9sB/StDT00Gs2OvtmXl5fp7e1ldXUVrVab8PBMT0/H6/UyPz9PMBgkEAgwOTmJy+VibW2NnJycbeuJH3z8lmg0yuLiIj09Pdjtdg4cOIDBYMDlcnHz5k3UavUjZyiIvWer91VVVUVxcfEjw3N9fZ2JiQmMRuMT9ejggz0UlpaWWFpaQq1Ws2/fPnJzc5NumhKkWHhuHZEbjUZjOyU9zaDJ42wdz7u+vo5Op0v4PFC1Wk0oFIpNQo5Go2RkZKBWq2NnFT0u9NLS0khLS8Pv9+N0OllcXGR9fZ1IJBI7RTMSibC5uZmA70wkq1AoFDtNdesImPuFw2F0Oh319fUYjcYnXqW3vr5Ob28vvb291NfXYzKZKCoqSsqeTkqFp1qtjt0fuf9s8p2+4Zyenk5WVhZ6vR6tVpvw8IQPtvLKzs6OzcO8/wyiD/vF22qV+/1+VlZWcDgcZGVlsW/fPoqKisjJySEjI+ORbxCxd4VCIcLh8CMHVIPBIOvr6+Tk5HDy5EkKCgqeaA/ZYDCIzWbjzp07DAwMUFdXR01NTez01mSTUuGZk5MTuz+yNXASDAY/dGXD/cLhMF6vF6/Xi1qtfuwcz8LCQpqbm3G5XAm/53m/rQ8PIDbavvXfD3tMJBLh3r179PT0sLm5GVtFtHVUh0ajkfAU20QiESKRCEajcVswKorC5uYmdrsdv99PYWEhRqPxofmdD/J6vdy9e5fbt2+ztraGXq+noqICs9lMYWFh0rzH7pdS4Zmeno7BYIhNz3G73bFJth8lHA7jcrlYXl5meXmZrKwsamtrHxmeZWVlFBQUxAZOkqlLcX8tHxaaW/NCI5EILpeL9fV1vF4vkUiE06dP86UvfYnc3NzYrlPJOl1EJMbW75ZGo3loQGd9fZ3Z2VnW1tbIyMh4olV6y8vLvPvuu1y7dg2dTsehQ4dobm7GZDIl7SKVlApP+KD1WVtby+joKB6Ph5s3b6LVasnPz8doND50vaIouFwubDYb8/PzhMPh2JG9D37abc1je9RKid3K4/EwOzvL5uYmBoOB/fv3c/DgQaqqqhJdmtiFVCoVc3Nz9PT0xE5qraqqemS3XVEU1tbWsFqtXL9+nd7eXlwuF01NTbS1tXHw4MGkDU5IwfDMzs7mxRdfJBwOc+3aNX74wx+yvr4eO7vnwbW1Ho+HqakpLl++zN27dzlw4ABf+MIXMJvND31aJlMLc6dMTk7yxhtvMDU1RX19PbW1tbJ+XTyViYkJ/uEf/oH6+no+9alPcejQoUfu7hUKhXjrrbf47ne/y/T0NNnZ2TQ3N/Pqq69y8uTJpN/2MOXCMzMzk0OHDhGJRFhcXGRubo7JyUlu3LiB1+ulrKyMnJwcVCoVXq8Xh8PB3Nwcdrsdj8dDeno6hYWFu2JV0dOKRCJMTExw48YNQqEQL730EseOHUv6X1qRPLZu/QSDQdRqNTabjVu3bjEyMgJ8MCfaarXGxgZUKhXhcJhIJILdbufmzZsMDAwQCoWoqamhra2NY8eObTs2Jtk2Qd6ScgmRkZFBZWVlbNVDXV0d4+PjfP/73wegoKAArVYbm0pRUlJCeXk5ZrOZU6dOxfYOTHVb80InJiawWq0UFRXR2NhIe3u7LMMUTywUCuFwOJicnOTy5ctcvnyZnp4eAEZGRvjWt761barR1tLhrfvrOTk5vPrqq7Fdu+rr6ykpKUnkt/TEUi4809LSyM7Opra2loKCAqqqqvj7v/97bt26xerq6rZr9Xo9HR0dGI1GGhoaeOGFFxJU9fMVjUaZn59nYGAAq9WKWq2mqKgIs9n8yPvCQjxONBrF5/Nht9vp6enhnXfeie3qpSgKd+/efeQc46252K+88gqf//znOXLkCCUlJY8cVU/GViekYHjeLz8/n7q6Os6fP09BQQEOhyPWHd8aGKqoqKCmpmbbzvKQvF2FnZCWlsbo6Chvv/02DoeDI0eO0NHRId118bFtbeRRX1/Pa6+9RmNjI2lpaRgMBiKRCH6/P3Yy5v2CwSBarZbW1lba2toemsuZDPtGfBSVkuJr7bbmOj5uqs3WVKOt+zF7gc/n4y/+4i/43ve+R2VlJV/+8pfp7OykqqpKtpwTH9tWy/Kj5hQ/yv3vvd32/kvplicQW6b5pKuAUrnFGY1GcblcTE5OYrPZCAaDFBQUxE40TJXpV+L5ur8BspekfHh+XKkanPBBV2l4eJje3l4cDgclJSWYzWbKy8vJzMxMdHlC7CoSnnuIz+fj7t27dHd3E4lE6OzspK2tTUbXhYjD3mpn73Gbm5vcuXOH7u5utFot58+f58SJE099PLEQe5G0PPeAcDjM5uYmU1NTLC0tEQ6H2b9/P01NTZSWlia6PCF2JQnPPcDlcnH9+nXu3LmDRqOhs7OThoaGJ95jUQjxMAnPPWBtbY3e3l4GBgYwGAzU1dXR0NAgo+tCPAW557kHLC0tMTAwwPj4OMXFxZw5c4aGhoak2MRZiN1KWp4pLBAIsLq6yuzsLIuLiwQCAcrLy2lvb5dBIiGekoRnClteXubixYv09/eTl5dHZWUlZrNZglOIHSDhmcJsNhvvvPMOc3NzNDU10dHRQXV1daLLEiIlSHimKLfbjdVqZWZmhmAwiNlsprOzk+Li4kSXJkRKkPBMQQ6Hg5mZGWZmZvD5fOTl5VFbW0tjY2PsfCchxNOR8ExBVquVK1euMDU1RVFREbW1tVRUVEhwCrGDJDxT0NjYGG+88QaKovDCCy9w5MgR6a4LscNknmeKWVtbY2ZmhunpaSKRCE1NTXK0hhDPgLQ8U0Q0GmVubo6RkRHsdjsFBQVUV1dTW1tLeXl5Sm+1J0QiSMszRYRCIcbGxujp6WF9fZ36+npaW1spLS2V4BTiGZDwTBGhUIi7d+/y7rvv4vF4OHXqFCdOnCAvLy/RpQmRkiQ8U8Tq6ipjY2OMjIyg0Wg4ceIEHR0dsvmHEM+I3PPc5QKBAFNTU/T39+N0OikpKaG6upqysjI5WkOIZ0jCc5dzu910d3dz7do1otEoXV1dtLW1ySmYQjxj0m3f5VZWVhgcHOTevXvo9XpOnDhBU1OTtDqFeMYkPHepSCTCxsYGNpuNyclJ7HY7xcXFnD59WvbqFOI5kG77LuV2uxkeHmZ4eJhQKERxcTHV1dWYTCY0GnlZhXjW5F22S62trfH+++8zODhIcXExx48f5+DBgxKcQjwn0m3fpebn5+nv78disVBZWcmLL76I2WxOdFlC7BnSTNll/H4/y8vLTExMsLi4SDgcxmQy0dbWxr59+xJdnhB7hoTnLrO8vExfXx/j4+MoisL+/fsxmUwYjcZElybEniLhucvMzc3xi1/8grm5Oerr62lqasJkMiW6LCH2HAnPXcZisXD16lU0Gg3nzp3jzJkzlJaWJrosIfYcCc9dwuv1YrPZsFgshEIhCgsLMZvN1NTUyIR4IRJAwnOXmJiY4MaNG1itVsrLy2loaKCiokKCU4gEkfDcBQKBAGNjY1y5cgWv10tjYyPt7e0UFRUlujQh9iyZ57kLuFwuhoeH6e7uxu12c+LECU6dOiV7dQqRQNLyTGKRSIT19XXGx8eZn58nEAiQn59PQ0MDtbW1iS5PiD1NwjOJhcNh+vr66Onpwev1cvToUQ4fPizddSGSgHTbk5jb7WZgYIDr16+jUqk4efIkhw8fJjc3N9GlCbHnSXgmseXlZUZHRxkbGyMzM5Pjx4/T3NwsI+xCJAHptiehQCDA6uoq09PT2O12AoEARUVFNDc3yyCREElCwjMJuVwuuru76e3tJSMjg2PHjnHw4EEMBkOiSxNC/JKEZxJaXV3l4sWL9Pf309LSwsmTJ2lra0NRlESXJoT4JQnPJBKNRvF4PFgsFiwWC06nk9LSUjo7O6msrCQtTW5RC5EsJDyTiNPpZHx8nJGREXw+H3l5eZhMJmpra9FqtYkuTwhxHwnPJLKyssLNmzcZHh7GYDBQVFREVVWVBKcQSUjCM4ksLCzw3nvvsbS0xMmTJzl58iTV1dWJLksI8QgSnklic3MTq9XK7OwsiqJQV1cnq4mESGISnklgfn6ewcFBJicnycvLi+3VWVpaKqdhCpGk5J2ZBGZmZrhy5Qpzc3NUVVVx4MABKisrJTiFSGIy9yXBgsEgU1NTXL16lcXFRVpbW3nhhRcoLi5OdGlCiA8h4ZkgiqIQjUZZWVlhenqasbExQqEQbW1tHD16VJZhCpHkpF+YQJOTk/T397O4uEhJSQm1tbWUlZWRkZGR6NKEEB9BwjNBtvbqfPPNN/F4PHR1dXH48GFpcQqxS0i3PUEcDgfj4+MMDQ0BcPjwYQ4dOiSbfwixS0h4PmeRSISNjQ1mZ2eZnZ3F4XCQl5fHkSNHZK9OIXYR6bY/Z36/n9HRUe7cuYPT6aSwsBCTyURlZSXp6emJLk8I8YQkPJ8zr9fLpUuXuHLlCjqdjnPnztHR0SHr14XYZaTb/pwtLS0xODgY2/zj1KlTHDx4ELVanejShBAfg7Q8nxO/34/dbmdkZIT19XV0Oh0mk4mmpibKysokPIXYZSQ8nxOn00l/fz+Dg4OoVCrMZjN1dXVUVlaiUqkSXZ4Q4mOS8HxO1tfXuXbtGiMjIxiNRpqamjhw4IAEpxC7lNzzfE6Wlpbo7e1lYmKC6upqPvnJT1JTU5PosoQQcZKW5zPm8XiYn59ndHQUn8+HwWCgsrISs9mMXq9PdHlCiDhJeD5jVquV9957j8HBQQoKCigtLcVkMklwCrHLSXg+Y7Ozs/T09LC6ukpdXR2HDh2ivLz8oev863acgSd4QnU2+4w5PHI6vX8duzMAaMkrzkf3oU8UwrXiwBN5kmuFEA+Se57P0MbGBtPT09y5cweHw0FraytnzpyhtLT0oWt7/kMJJSVP8Oe1/471gceGlm/z3/5ZM4bMgl9eV0CmoZl/9t9usxx6uK7Q8hX+8MQ+ytpf4qVTB8gznOAPe9aeyc9AiFQl4fmMOBwOxsbGmJ2dxefzkZOTQ11dHTU1NWRlZT10/Zn/oqAoH/Jn4xL/qgIquuox3v/AtQt88/ARvjHwGf5uZA2foqAENxn/u88w8I0jHP7mBbbH4hR/9T/9Y6b/zRCOuVFGJ5dxXv8N3n35q/z3+Wf7MxEilUh4PiNjY2O89dZb2Gw2GhsbOXLkCPv374/z2ULc/C//hP/k/zrf/denMdz39Z5vfZn/6v86P3n3T/h0wy+73+k51H36T3j3J1/H/19/gz+7eV/zc+oC3wv9Ad/8XEWs6687+M/53776P7g+Hmd5QuxBEp7PQDAYZHx8nO7ubpxOJ52dnZw4cYJ9+/bF94RTf8X/8u+X+cKf/QGfLLjv65vv8t3/vELLv/0X27/+SwWf/Bf82xYbf/TDq8Ti01iMeWYOx7bu/BrORS3psshJiCcm4bnDFEVhaWmJmZkZLBYLGo2Gzs5OOjs749zoeI2f/u/foLvlT/iPXy7b/lf9F/hB4AD/9KWDj3nsQY5/0Ujgry/Tt/Ulw8t84/f/ls+/8kdcHLVjtwzw/33zHL+x/Od87UQc5QmxR0l47qBwOMzCwgJjY2MsLi4SjUYpKiqiubmZysrKuHZOCt38M77+uoHf//Zv8mBEWqZuE+AoDVWPf7yp4SSsXGLIsvWVdI7+wT1u/H4W3/u9l3jp09/kQv3/xdDbX6NedsQT4onJVKUdFA6H6e/vp7u7G5fLRUdHB+3t7RiNxo9+8COt8faf/xG2k3/ON848vMP8pmMBaCP7Qzaf319UBVwjELz/qzqqP/17fO/TvxdnXUIIaXnuIK/Xy/Xr13n77bcB+MxnPsOpU6fi36tz+Af8wevw1X/z6zxqIadjfuwJn+gmYzKSLsSOkvDcAYqi4PP5mJqawmKxxI7WaGtro7a2Ns7wDNHzN/8ng8b/la+ek3ONhEg20m3fAW63m+HhYXp7e9nc3MRoNGIymaioqCA7Ozu+Jw3d5md/ucKBb/46J576XqSRvDjLEEI8mrQ8d8DGxga9vb3cvn0blUpFc3MzdXV15Ofnx/2cods/4y9XDvC1T7U+9prKppMf/TzhIFBPWZyzpIQQjybhuQPW1tbo6enhxo0bFBYWcv78eVpbW59qr86+X/wlK8Z/xOnHZyfGYjNwi6mpx18zM3UbaMNUGXcpQohHkPB8Coqi4Ha7sdlszMzMsL6+TllZGceOHaOqquopnnmcOz9fgU930vAhVxkaT3OSbi6PbD7mik3Gr92EM4epk2lIQuwoCc+nsLq6Sk9PD319faSnp1NbW4vZbGb//v2kp6fH3/LcHOfaTTh5upEPHSqq6eLXW+Dv/kc3j4zP+Z/wf78O57/6Kariq0QI8RgSnk/BbrfT3d3N0NAQRUVFHDt2DLPZjE73lBu82ecYA4585E7zB/knf/p1DN/9Hf7dhQd2RQot89Yf/s+8WfGv+NevlD364UKIuEl4xklRFObm5ujt7cVqtVJfX8+5c+d25miN+TFuPuEIecEn/w/+4d8X8p2zVZz4zW/zN7/4Bb/4m2/zm6drOf96B//vu/+R0zLTSSQJRVESXcKOkalKcQiFQjgcDqxWKxaLhYyMDJqamnjxxRefvtUJoC3kwIFzHCh6kosLOPHvbmD90k/54X/6f/gP//I7kHuQT3zlr7j3jz5HU5Hc7BTJI5UOPFQpqfRRsANCoRB+v59oNEpaWhoajYb09HQ0ml99zlgsFnp7e7lx4wa3b9+moqKC3/3d3+Xw4cMJrFyI3SESiTA7O4vFYmFzc5NgMEgoFEJRFKLRaGwP20gkglarpaamhvr6enJzc7e9DxMteSpJEm63m8XFRUKhENnZ2ej1+odetPHxcX7yk5+wublJR0cHhw4deuTu8EKIh4XDYe7cucNPfvITxsbGcDgceDweAKLRaOyPz+cjPz+f1157ja985Ss0NDSQm5tLWlpy3G2U8HyA3W7n0qVLRKNR2traMJvN27oaTqeT0dFRbt++jU6no6WlhdzcXNbX12MvajgcTlT5QiSdrZakVqtl//79pKWlodfr0ev1BINBbDYbgUAAg8EQ+7pKpSItLY1wOMz4+Djvv/8+Ho+HQ4cOUVhYmOhvCZDwRFGUbeE4NTXF97//fbRaLUajkYaGBnQ6HYqisLa2xsjICENDQ0xPT5OXl8fa2ho2m43l5WXUanXsF0UI8YFoNEooFKKwsJCjR49iMpk4ffo0paWlVFVV8eabb6IoCi0tLdTW1mIymcjMzGR5eZmZmRlu3rzJX//1XzM7O0tBQQE6nS4pTp/d8+F5f3D6fD4mJycZHR2loKCASCQSO28oGo2yvr7O/Pw8LpcLnU6HVqslEAjgcDgIBAIEg8HH/TNC7FnhcJhgMEhZWVksHLOysmhtbWVubo6enh6ys7N56aWXOHr0aOx02WAwSF9fH4ODg4yMjJCdnc3a2hqBQEDCM5EebHFufcKNjY1hMpmoq6ujoqIiFp6KouDxePB6vRQVFXH8+HHUajXp6em43W7C4TCRSOSh5xVirwuHwwQCAUKhENFodNvfLS0t0d/fT1VVFYWFhduO5c7IyKCkpCQWlMFgMPYeSwZ7NjzvD7hgMMjMzAx3795lZWUltivSg2cOqVQqsrKyqK2tpbS0VFqaQjyBSCRCMBiMdbnvt7q6ysrKCsXFxRgMv5qQrCgKwWAQj8dDeno6Wq029vhkGXFPjioSJBqNYrfbsdlsuN1uSktLmZ2dZWBgAL1ej9frjV2blpYWu9kdCASIRqOEw2HC4XDSfBIKkYy2Rs/1ej3FxcXAB4E6NzdHRkYGx44do6WlhbKyX62EU6lU9PX1cenSJex2OwcPHqS1tZWioqJtIZtIezo8A4EAU1NTjI6OUlhYSGNjI5OTk8zPz5OdnY3b7Y5dm5aWRlFR0SOP1JCuuhCPt9W4SEtLQ6VSEYlEmJ+fZ2ZmBrVazaFDh6itrd3WpXe73dy5c4crV64QjUY5fvw4R44coaioSKYqJQOfz8fGxkZsA+PCwkKKi4spLi4mPz+f9PTtq3NUKpWEpBA7IBAI4HQ6mZ+fZ2hoiKmpKRYWFigqKooFrM/n49SpU+Tl5VFSUkJNTU1SDBRt2ZPhufXCOJ1OQqEQWq2WrKws9Ho9ZWVlNDU1UVxcHP8u8EKIx9paPeR2u7FYLLEDE3/2s5+hVqvx+/1UV1fz27/923z5y19m//79wAcDSMlyvxP2aHiGQiGsVitLS0tkZ2fT3NxMWVkZBoOB/Px8SkpKKCwsjP/gNiHEh1pZWWF2dhaVSkVLS0tsYMjn88WO7bZYLAwMDHDo0CGqq6sTXfJD9mR4+v1+7t27x/LyMidOnKCzsxP44D5LRkYG+fn5GAyGpPqUEyJVKIrC7OwsIyMjFBUV8corr1BeXo5er8fpdDI4OMi9e/fo7++np6eHL37xi/zWb/0WFRUViS59mz2XDuFwmJmZmdhWcjqdjqysLMLhMAsLC0xPT6MoCtnZ2ajV6kSXK0TK8fv9sSlKZrOZkydPUln5q3NiqqurMRgMXL9+ncHBQcrLy/nEJz4RW76ZLO/LPRWeLpeL6elprl69ysWLFxkYGOD69euUl5cTCoUIhULk5+djMpmoqalJmhdJiFTicrnw+XxEo1HS09NjC1G2VFVV0dnZiclkYnBwEIfDwcTEBPn5+ZjNZjIzMxNU+XZ7Kjw3NjaYmZnBZrMRDodRqVTMz89jt9vx+/2oVCrq6uqorKxEq9UmzZQIIVJBJBLB5XKxsrJCJBIhJyeHnJych2a1AJSWlsYWqQSDQdbX13G5XA+tUEqkPROeWy+c0+kkPz+fr3zlK2g0GqLRKMFgEIfDgdPpJD09ncLCQjIzMyU8hdhBoVCIxcVF5ubmSE9Pp6amhpKSkkeOLWxNrAfQarXo9XoyMzOTaqrgnghPj8fD2toaDocDRVEwm810dXVtuwE9NzfH9PQ0CwsLOJ1OaXkKscNCoRDz8/NYLBY0Gg11dXWUlZVte59Fo1ECgQCTk5M4HA4AcnNzY3Ovk2kQN3kq2QGPWumjKArT09P09/cTjUaprKyksrJy21IwILbh8dY9mOzs7IfuxQgh4qfT6VheXsZisVBdXc2hQ4eoqanZdg/T7/fzxhtv8POf/5zLly8DH7w3q6qqHttKTZSUalo9KjhXVlbo6+vjzTffZHx8PLZj0oOtyrm5OWZmZlhcXMTr9cbWrQshdobH48FqtTI9PU04HGb//v3k5uZuu2ZhYYEf/ehHvP7667Hl0WVlZZhMpqc7zvsZSJ4Y3yGhUIjl5WUWFxdZWFjAYrFw9epV+vv70Wg0BAKBbdcuLi4yPT3NwMAAw8PDbGxskJGRwfz8PNFolIaGBvbv359Uy8KE2A1CoRAej4fV1VVsNhtDQ0N0d3czOztLVlYWGo2GvLw8VCpVbLek0dFRZmZm0Ol0lJeXc+zYMU6fPp2U77+UC0+fz8fg4CDXrl3j1q1bDA8PY7PZUBSFqqoqFhcXOXDgQCxIr1+/zptvvsng4CA2mw2Xy4VarcZkMrG4uEhXVxenT5+mtrY20d+aELuK3+9ncXGR7u5ufvSjH9Hb2xs7q2h+fp5Lly7FuuFbJzBoNBp0Oh2f+tSnePXVVzl37hzFxcVJOW0w5cIzHA6zvr6OzWZjdHQUq9Ua+zuv14vP5yMYDKLRaIhEIqysrDAxMcHU1BROpzN27ezsLKWlpZjN5m1b0wkhnkwkEsHr9WK32xkcHGR1dTX2dz6fj7W1tUc+rr6+nuLiYlpbWzGZTLGvJ9vuZXL0sBBCxCGlBoyEEOJ5kfAUQog4SHgKIUQcJDyFECIOEp5CCBEHCU8hhIiDhKcQQsRBwlMIIeIg4SmEEHGQ8BRCiDhIeAohRBwkPIUQIg4SnkIIEQcJTyGEiIOEpxBCxEHCUwgh4iDhKYQQcZDwFEKIOEh4CiFEHCQ8hRAiDhKeQggRBwlPIYSIg4SnEELEQcJTCCHiIOEphBBxkPAUQog4SHgKIUQcJDyFECIOEp5CCBEHCU8hhIiDhKcQQsRBwlMIIeIg4SmEEHH4/wE45G0sA+bn3AAAAABJRU5ErkJggg==",
"path": "images_version_5/image_46.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
if AB parallel CD, then the degree of angle 1 is ()
Choices:
A:20°
B:30°
C:70°
D:110°
|
Nếu AB song song với CD, thì số đo góc 1 là ()
Lựa chọn:
A: 20°
B: 30°
C: 70°
D: 110°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: if AB parallel CD, then the degree of angle 1 is ()
Choices:
A:20°
B:30°
C:70°
D:110°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: if AB parallel CD, then the degree of angle 1 is ()
Choices:
A:20°
B:30°
C:70°
D:110°
|
if AB parallel CD, then the degree of angle 1 is ()
Choices:
A:20°
B:30°
C:70°
D:110°
|
230
|
46
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAtQAAAJdCAYAAAASkuDgAACNLklEQVR4nO3dd3wVVf7/8VcIJKEFEnoooffemzQVBEVULNjBteDqd9fdVXbXda24rrvr2svaQLBjpQgISJMeeu+9E1pCSYDM74/8zrlzyc3NTeYmBHg/H488GObMnTm3zpnPnPM5EY7jOIiIiIiISJ4UudAVEBERERG5mKlBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuKBGtQiIiIiIh6oQS0iIiIi4oEa1CIiIiIiHqhBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuKBGtQiIiIiIh6oQS0iIiIi4oEa1CIiIiIiHqhBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuKBGtQiIiIiIh6oQS0iIiIi4oEa1CIiIiIiHuSqQT1y5EgiIiKIiIhg27Zt2W43Z84cbrzxRipXrkzRokXtY44ePeqxulLY1axZk4iICAYPHpylbNu2bfazMHLkyHw5/owZM+wxZsyYkS/HuByF+t2/XF2qn7tnn33WPi+5+OncnFWPHj2IiIigR48eF7oqBaKwfKfPnDlDgwYNiIiI4KuvvspS3q9fPyIiInjmmWcuQO3yJuwR6nHjxtG9e3d++OEH9u/fz7lz58K27/r169sPwn333Rfy40wjL9BfdHQ0VapUoXfv3rz77rucOnUqbPWVS0NycjJvvfUW119/PXXq1CE2Npbo6GgqV65Mjx49+Nvf/saqVasCPtZ9EeH+i4yMpGzZsiQmJtKxY0ceeeQRRo8eTWpqagE/OxG5HOTnuVm8S0tLY/78+bz55pvcfffdNGjQgCJFihSKxm9+ePPNN9mwYQONGjXilltuyVL+9NNPA/Dvf/+bnTt3FnT18iTsDeo//elPnDt3joSEBEaNGsXixYtZuXIlK1euJDY2Ns/7nTt3Lhs3brT//+abb8LS+E1PT2ffvn1MmTKF3/72tzRv3tzvOHL5ysjI4KWXXqJ27dr83//9H+PGjWPLli2kpKSQnp7O/v37mTlzJv/4xz9o1qwZvXv3Zs2aNSHv+9ixY+zYsYMFCxbwzjvvcM8995CQkMAf//hHTpw4kc/PrmDuGFzszOvz7LPPXuiqiHiSX+dmCY+hQ4fSqVMnfve73/Hpp5+yYcMGHMe50NXKF6mpqbz00ktAZsO5SJGsTdGOHTty9dVXc+rUKYYPH17QVcyTXDWoBw8ejOM4OI5DzZo1s5Tv2LHDNkaffPJJ7r77blq3bk3Tpk1p2rRpwBctVKNGjQKgZMmSAKSkpPD999/nah8JCQn2B8T8LVy4kNGjR9OtWzcANm3axLXXXktaWlqe6yoXv9OnTzNw4ECefPJJjh8/TlRUFHfddRejRo1i1qxZJCUlMWHCBJ577jlatmwJwJQpU3j//fez3eeAAQP8PnsLFixg8uTJvPrqq9xwww0ULVqUlJQUXn31VVq3bq0LOxEJi/w8N0t4uBvPpUuXpnv37lSuXDnsx3n22WdtO+5Ceffddzl06BDVq1fn1ltvzXa7P/3pTwCMGDGC3bt3F1T18qxoOHfmfsL169cP237T0tL4+uuvAbj//vuZPn06K1asYNSoUdxxxx0h76dYsWI0bdo0y/p27dpxxx13cOWVVzJjxgw2btzIDz/8wG233Ra25yAXl9/+9rf88MMPQObn46uvvqJWrVpZtuvXrx9PP/0048aN47HHHgu6z7Jlywb8/PXu3ZvHHnuMHTt2cP/99zNlyhQ2bNjAddddx4IFCyhbtmwYnpGIXK7y69ws4dO3b1969OhBu3btaNSoEUWKFKFHjx7s27fvQlctrM6dO8dbb70FwO233x70Yu6qq66iYsWKHDhwgHfffbfQR6rDelnqjuoWK1YsbPsdO3YsR44cAeDOO+/kzjvvBGDq1Kns3bs3LMcoUqQIjz/+uP3/ggULwrJfufj8+OOPjBgxAoCmTZvyyy+/BGxMu/Xv35+kpCR69eqV5+PWqFGDiRMncu211wKwYcMGdTUQEc/y69ws4XPbbbcxePBgmjRpcknfMZgyZQo7duwA4K677gq6bWRkpA1sjhw5koyMjHyvnxdhyfIxePBgIiIi6Nmzp13Xs2dPv0FYXvpomu4eDRo0oF27dtx5550UKVKEc+fO8dlnn+V5v+dzd2M5ffp0nvYRqF/qmDFj7JVW8eLFadiwIX/5y1/sRUJ2Vq1axfDhw+nTpw/VqlUjOjqaUqVKUa9ePe69917mz58f9PHnj+Y9duwYL7zwAq1ataJs2bJZ3pcTJ07w1Vdfcf/999OyZUvKlClDsWLFqFChAt27d+c///lPgQ2aW7hwIQ888AD169enVKlSlCxZkoYNG/LII4/ke1eIF1980S6PGDGCUqVKhfS4uLg4rr/+ek/HjoyMZOTIkZQoUQKADz74gEOHDnnaZyARERF+FwlDhgzJMnAyWGM+IyOD999/n86dOxMXF0fJkiVp3rw5L774IidPnszx+I7j8M033zBw4ECqV69OTEwMcXFxtG/fnhdeeCFo1gHze2O+r0ePHuXpp5+mSZMmlCxZkrJly9KtWzdPvw1mILPx3HPPZXl9AmWycfv666+58sorqVChAsWLF6dBgwYMGzaMw4cPh1SHKVOmcNddd1GrVi2KFy9ObGwsLVq0YNiwYWELJOzatYtHHnmE2rVrExMTQ0JCAtdffz1Tp07N1X5OnjzJa6+9Rs+ePalUqRJRUVFUrFiR3r17M2LEiJAGwM2ePZubbrqJSpUqERMTQ+3atRk6dCibNm0CgmdjOD/LSkZGBh9//LGtT5EiRQK+X14+h24F8V6lpqbyz3/+k06dOhEfH090dDTVqlXj5ptvZvz48QEfkx/n5iNHjjBixAjuuusuGjduTKlSpYiKiqJy5cr06dOH999/n/T09GwfH+gcOWXKFPr370/lypWJjo6mVq1aPPzww+zatSvH+hw6dIgnnniC+vXrU7x4cSpVqsTVV19tu4SGK0PRkSNHGD58OJ06daJ8+fJER0eTkJDAgAED+O677/K834IWSpaPX375hdtvv91+nkuUKEHNmjXp2LEjjz/+OL/88kuej296G9SrV49mzZrluP3AgQOBzLssv/76a56PWyCcXBgxYoQDOICzdetWu/7ee++167P7GzFiRG4OZR04cMApWrSoAzjPP/+8Xd+zZ08HcJo1a5bjPhITEx3ASUxMDLrd+PHjbX1feumlPNV369atfs/5vvvuy/Y1qVKlirN69eqA+5k+fXqOryng/OUvf8m2Ls8884zdbsOGDU7NmjWDvi/du3fP8Xi1atVy1q5dm+0xzWt977335vjaBHLmzBnn4YcfDlqHYsWKOe+//36Or9v06dOzrWd2Vq5caR/ftWvXXD/+fO7nHOg1yc6DDz5oH/fZZ595rsf5QvlsPfPMM3Z793d/1apVTq9evbJ9XPv27Z3U1NRsj33gwAGnS5cuQY9dqVIlZ/78+QEfb35vEhMTnbVr1wb8XJu/Rx55JE+vj/kcB/tzv5/uz93UqVOdO+64I9vH1a1b19m7d2+2x05NTXVuvPHGoMcuVaqUM27cuDw9N2PGjBlObGxstsd47rnn/H5DsrNw4UKnatWqQevbvn17Z9++fdnuY/jw4U5ERETAx5YuXdqZPHmy/X3q3r17lse7X/+JEyc6V111VdD3y3G8fw4dp+DeqyVLljgJCQlBj3PTTTc5p06d8ntcfpybQ/lutGrVKtvP+PnngT//+c/Z7qdChQrOmjVrsq3LsmXLnAoVKmT7+AcffDDbdosR7HNlTJgwwSlbtmzQ53zttdc6KSkpuXotc+I+J4dLTt/pP/zhDzm+v+XKlcvz8c3v9d133x3S9idOnHAiIyPtb1JhFpYG9a5du5yVK1c6H3/8sS3/+OOPnZUrV9q/I0eO5KmCr776qt3n5s2b7fqPPvrIrl+6dGnQfYTSoM7IyLCNhIiICGflypV5qq/7x6Jdu3b2ZPLFF184SUlJzk8//eTcdtttdptq1ao5x44dy7KfKVOmOCVLlnRuvfVW57333nNmzJjhLFmyxJk0aZLzyiuv+P2offzxxwHr4v7iNG/e3ClWrJjzf//3f86UKVOcpKQk54svvnDmzp1rt+/SpYvTrFkz529/+5vz/fffOwsWLHDmz5/vfPXVV86gQYOcIkWKOIDToEGDLD/chtcG9T333GO36du3r/Ppp586CxcudBYtWuR88MEHTpMmTWz52LFjszzea4P6rbfeso//5z//mevHny+vDeqvv/7aPm7o0KGe63G+lStXOpMnT7bHGD58uN/3deXKlc7+/fvt9u7vfufOnZ0iRYo49957rzNhwgRn8eLFzvfff+906tTJbpPdhV5qaqrTqFEjB3CioqKchx56yPnxxx+dJUuWOLNnz3ZefPFFp1y5cg7gxMXFOdu2bcuyD9NIqFChglOvXj2ndOnSzlNPPeXMmDHDSUpKcj744AOnWrVqti6TJk3K9euzfv16v4urhx9+OMvrs2vXLru9+3PXuXNnB3BuuOEG57vvvnMWL17s/PTTT861115rtxk0aFDA4549e9YGCyIiIpzbb7/dGTNmjJOUlOTMmzfPef31150aNWrY1y8pKSnXz81xMj+XpUuXdgCnSJEiztChQ52pU6c6ixYtcj766COnXr16DuC0bds26Ml3xYoVTsmSJR3AqVixovPMM884U6dOdZYuXepMnjzZeeSRR2xApEOHDk56enqWfXz++ef2GHFxcc4///lPZ+7cuc7cuXOdl19+2YmLi3Pi4uKc+vXrZ9vwcb/+zZs3dwDn+uuv93v9v/zyS7t9OD6HBfVe7dq1y4mLi7PHGTJkiDN58mQnKSnJGTVqlNOiRQv73G+99dYsjw33ublatWpOhw4dnBdeeMEZP368s2jRImfOnDnOp59+6lxzzTX2ONk1UN2/iea70r17d+fzzz93kpKSnKlTp/qdBzp27BhwP4cPH3YqV65st7vzzjudiRMnOklJSc6XX35pf486dOjgqUH9888/2wZdzZo1nZdfftmej8eNG+fcdddddv833XRTrl7LnBR0g3rcuHF+36N3333XmTFjhrN06VJnxowZznvvvecMHDjQSUhIyNOxd+7caff/xhtvhPw4852+6qqr8nTcghKWBrXhtTETSKtWrewXz+3YsWNOTEyMAzh/+MMfgu7DNPISEhKynBQXLVrkfPbZZ/aHEXD+9Kc/5bm+7h8LwOnXr59z5syZLNs9//zzdpvHH388S/nBgweD/tClpaU5V199tb1QOHv2bJZt3F+cIkWKOD///HPQum/YsCFo+ZQpU2yj+sMPPwy4jZcG9TfffGPLP/jgg4D7P3XqlL3wqVmzZpbX1utn8IEHHrCPz+n1CkVeG9SbNm2yj+vVq5fneuRUt5yiVO7vPuCMHj06yzanT592mjZt6kBmBCPQ5/7RRx91AKdMmTLOokWLAh5r27ZtTpUqVRzAueuuu7KUu6NuZcuWdVatWpVlm40bN9rfh+uvvz7ocwvGHMcdrQ/k/DtKw4cPz7JNRkaG07t3bwdwihYt6hw4cCDLNv/5z38cyLwL89NPPwU81uHDh+2FZV7votx00022rp9//nmW8uPHj/s11AKdfDMyMuyJrkWLFs7BgwcDHmvixInZ/m6cPn3aqVixogM48fHxzvr167M8fv369U58fHzQhtr5r//f//73oM8/HJ/Dgnqvbr75Zvu8Av3unj592u/8Fagu4Tw353SecDfep06dmqX8/HPkAw884GRkZGTZ7v7777fbLFmyJEv57373O1v+n//8J0v52bNnnQEDBvgdK7cN6tTUVKdSpUoO4PTu3ds5ceJEwOf8/vvvB33OeVXQDeq7777btimCRduTk5PzdOyvvvrKHnv27NkhP27IkCEO4JQsWTLgZ6WwKNQN6lWrVtn9vfPOO1nKb7nlFgcyb8sFalAaodyigsyI8pgxYzzV2f1jER0d7ezevTvgdufOnbONj7i4OOf06dO5PtayZcvssQJFP9xfnPvuuy/X+w/khhtucADnuuuuC1jupUHdpk0bB3BuvPHGoHVYs2aN3c+UKVP8yrx+Bt23b5cvX57rx58vrw3qI0eO2Me1atXKcz1yqltuGtTBojDvvfdetq/fwYMHbSP39ddfD3q8d955xzZWzj+JuRvUwaIcgwYNst+vvMpLg7pNmzbZ/uhPmjTJbvfjjz/6laWnp9sGXE5Bgp9++snuZ+PGjbl6Tnv27LERt+y+x47jOAsWLAjaoHZHs3L6rtx6660O4HTp0sVv/RdffGH3Eewz8frrr4fcoK5fv37Q80E4PocX4r3q06dPtttt3brV3gno169flvL8CHYFYwJhjz76aMC6mrpUqVIl23PfunXrsv1snDp1yilTpowDOK1bt872+7Zv3z77XuelQf3mm286gBMTE+N3xy6Q9u3bO5AZKQ+Xgm5QmyBdTufgvHrllVfssQNdPGfH3S3o8OHD+VK3cCjUQ0k/+eQTIHNUcqBchWaE6P79+/n55589H2/x4sV88MEHrF692vO+IDMdWkJCQsCyIkWKcO+99wKZgx2WLFkSdF9paWns2LGDNWvWsGrVKlatWuWXR3L58uVBH28yo+TGwYMH2bhxoz3eqlWrqFChQkjHy63du3ezePFigKB5KQEaNWpE+fLlAZg3b15Y65GSkmKXTc7zC8E9ENJdp8Ig2GepTZs2dnnLli1+ZZMnT7aDfXN6j01e+DNnztjPxfkiIiKCps00dTly5EiBTq18xx13ZDvgJ9jrs3DhQjuALdTXB3L/HZg+fbodJDhkyJBst2vfvj1NmjTJtvzHH38EMgeLN2/ePOgxTX0XLVrkN0Bx2rRpQObv4d13353t4++6666QZ4u77bbbiIyMzLY8HJ/DC/Fe/eY3v8l2u5o1a3L11VcDmQM0C2oWRMdx2LdvHxs2bPA7T5jzXk7niZtvvpno6OiAZQ0aNLC/g+d/VxYvXsyxY8cAuOeee7L9bFSqVIk+ffrk6jm5mc949+7dqVixYtBtzfsc7nNSQapSpQoAs2bNYvPmzWHf/8GDB+1yXFxcyI+Lj48PuI/CJqx5qMMpIyPDjtLv27cv5cqVy7KNWZ+cnMyoUaPo27dv0H0mJiZmGeV79uxZ9u/fzy+//MLTTz/Nzz//TNeuXZkwYQKdO3f29BzatWsXtLx9+/Z2edWqVXTq1Mmv/MSJE7zxxht8+eWXrF69OuiPZE6ZIHI64Rlz5szhjTfeYOrUqUGzEYQ780RSUpJdvv3227n99ttDely4c3SWLl3aLhfEbIXZcTeiC9ssZg0bNsy2zP3Dd/6FgPs9Nj/cocjuPS5fvnzA34Xs6lJQ+bzD8fqc/1sQTG6/AytXrrTLofxGZRdgMPVdv359yI3d9PR0Dh8+bC/MV61aBUCtWrWCnmDj4+OpXbt2SCf5nH7rwvE5LKj3yrw+AB06dAi6bYcOHZg4cSInT55ky5Yt1KtXL1fHyo0JEybw7rvvMmvWrKAX/DmdJ4J9VyCz0ZWamprlGO7XxX2RGkjbtm1twzi3zPs8efLkkD/jF3Pe6HvuuYdRo0aRnJxM06ZNGTBgAH369OGKK66gbt26nvfvblPkpkHt3jY5OdlzPfJLoY1QT5kyhT179gDZ5yp0R65//PFHjh8/nuvjFC1alKpVq3L33Xczd+5c4uPjOXr0KHfddRdnz57N+xOAHK9oK1WqZJfPb7xu27aNZs2a8eSTT7JixYocIw45TcMeyof32WefpWvXrnz99dc5pvYKx7TvbgcOHMjT40JJ0ZYbJvINmXc+LhT3icjdCCsMTEq/QNz5U8//zIb7PQ5Wj5zqkp8Ky+uTHXe6ztz8Rp0vHPU1dcmpHoBthOckp9+6cNS7oN4r9+9wsPcC8JtVL9TUjLnlOA73338/1113HRMmTMjx7llO54lQv8Pnf1dy8xkO9XNzvjNnzuTpzla4z0kF6corr+Stt96iePHinD59mq+++or77ruPevXqUa1aNYYOHerp7nRMTIxdzk0bwr1t8eLF83z8/FZoI9Qm9zTkfEsNMl/wMWPGBL0tlpMqVapw99138/rrr7N161amT59ub6PlRU5XtO4uG+e7++672bp1KxEREQwZMoRBgwbRqFEjKlSoYG+RZWRk2FubwfYFBL0FCpm3Xp977jkAateuzeOPP07Xrl2pUaMGpUqVso9/+umneeGFF4LuKy/cP5ifffZZyBH13FzlhqJFixZ2ecmSJZ7efy+WLl1qlxs0aHBB6hBu5j2OiorKthtHINWqVcuvKhUq7u/AjBkzgkbf3UJpjLq5fyu8/EaZ+nbp0oX33nsv5ONn1w0uXHL6rQvH57Cg3qvcyOkcEA4ff/wxH330EQAtW7bkscceo0OHDlStWpUSJUrY1/6ee+5h9OjRF3R6a6/c7/Gtt97K3//+9wtYm4LzyCOPcMstt/D5558zZcoU5syZw7Fjx9i9ezf/+9//eP/993nyySfzNGuh++Lm8OHDfneEg3FfIOb1AqkgFMoGdUpKip32OTdGjRrlqUEN/regVq5c6alBlVOE0x3lcEch161bZxOY//Wvf/WbaMQtp4lhcuODDz4AMqfHnjdvXrY//OE8ppv7hBQRERFwiu6C0L17d7s8YcIE/vznP1+QekyZMsUud+3a9YLUIdzMe5yenk65cuVydbv9cuD+DkRFReXbd8D9W7N//36qV6+e7bbBIrHlypVj//79HDx4MM91NRfEoUR8w9V3Mhyfwwv1XtWoUSPbbd3nm/y6q2XOE3Xq1GHu3LnZRgvz6zxhuAMpBw4cCDqdel4/NzExMZQoUYKTJ09y9OjRC3ZOuhAqVqzIY489xmOPPUZGRgbLli3ju+++4+233+bo0aO8+OKLtGvXjgEDBuRqv+7G8JEjR0hMTAzpce7Pk/sucmFTKLt8jBkzxt42ef755/niiy+C/pnBLLNnz/Y0ExLg183jzJkznva1aNGikMvdX1Z3n8VBgwZl+3h3Pz6vzDF79eoVNIoSzmO6tWrVyi6HY4BpXjVt2pS2bdsCmZ+n3ESwwuXgwYN8/vnnQObAyN69e+fLcULtExguheU9LqwK6vVxz06Wm9+o85n6btiwge3bt+epLmbQ49atW4N2Uzh8+HCWgWl5FY7XuaDeK/d5YcGCBUG3XbhwIZDZjcI9C2o4mfPEgAEDsm1MO46T4yB7r9yDZXM6J3k5Z5n3ec6cORd1Vw4vihQpQuvWrRk+fLgdRAy+GQ9zw/3bs2HDhpAfZ7atX79+toNYC4NC2aA23T3i4uL4y1/+wqBBg4L+DRs2DMj8Io8ePdrTsd0nkGCRm1D8/PPP2U47m5GRYbOYxMXF0bp1a1vmbtQH+xLn5jZrTswxgx1v2bJlOU53nld169alcePGAHz55Zfs2LEjX44TiieffNIu33fffSEPTjx69Cjjxo3zdOyMjAwGDx5s34cHH3ww36JN7v5saWlp+XIMt759+1KsWDEAXn31Vc9jFAqCeY0K4vXp2rWrfa/fe++9PI0JCUXPnj3trXnzGxRIUlKS3+Cv811//fV2+V//+lee6nLllVcCmZ/7Tz/9NNvtPv3007B1HwjH57Cg3qsePXrY98p0tQhkx44d9q5Wjx49KFo0f24+h3KeGDt2rB3/lF/atm1LmTJlAIJ2Ldm/fz+TJ0/O83HMZ/zEiRO8/fbbed7PpaJ169b27kBeEhO0bdvWXojldDHvZi6KrrjiilwfsyAVugb19u3bmTVrFpB5FWx++IJp2rSp7WfqpUG9ZMkSvvrqKyDzNt5VV12V531B5kn4oYceCjgg6p///KcdbX/ffff5XXW5R2dnd8J7991389QtJjvmmL/++mvASNDBgwezHRwaLk899RQAp0+f5qabbgp6qy4tLY133nnHpr8KpxtvvNGmNFyxYgVXXnlljhG4n376ibZt2/pdwefWjh07uOaaa/jpp5+AzO5HzzzzTMBtZ8yYQUREBBEREQwePDhPxytXrhxRUVEA+ZIi6XxVq1a1adqWL1/OQw89FLQxc+DAAT788MN8r1cwpjtAQbw+MTExPP7440BmpoBBgwYFvZhLSUnhrbfeyvVxqlSpYm/Vjh07NmCkKTU1lQcffDDofgYOHEijRo2AzN+jYA0+yMzMcP4F54033mjviD333HNs3Lgxy+M2btxox3eEQzg+hwX1XiUkJHDjjTcCmZkmPv744yzbpKenc99999k7qo8++miujxMqc54YN25cwG4dmzdv5re//W2+Hd+IiYnhnnvuATLP2//973+zbJORkcFDDz3k6RwxdOhQ28Xg73//OxMnTgy6/Zw5c2z75WL01VdfBR0smJSUZN/3vNwFiYqKstnNzB2VnGzZssU23gt7g7rQ9aEeNWqUvdocOHBgyI8bOHAg//jHP9i4cSPz5s0LmMrozJkzWSIu586dY//+/UydOpW3337bRqKeeOIJzwNI2rZty7hx4+jSpQt/+MMfqFevHgcOHOCTTz7hyy+/BDIHupw/2KFVq1Y0bdqUVatW8e6773L06FHuvPNOqlSpws6dO/n000/55ptv6NKlC3PmzPFUR+Oee+5h3LhxpKam0r17d/785z/Tpk0bHMdh7ty5/Pe//2Xfvn106tQp3/Js3n777UyePJlPPvmExYsX07hxYx566CG6d+9OhQoVOHHiBJs3b2b27Nl89913HD582P6ohts777zD4cOHGTduHAsWLKBBgwbceuut9OnTh5o1a1K8eHH279/PkiVL+P7770PqGnL06FG/z9+pU6c4evQoa9asYcaMGYwfP96e2Bs0aMD48eNtFCY/FC1alHbt2jFnzhw+/vhjWrVqRcuWLe1FbHx8fNij46+88gpz585l1apVfPzxx8yfP58HH3yQNm3aUKpUKY4ePcrq1auZOnUqP/30E82aNeP+++8Pax1yo3PnzmzdupWxY8fyv//9jy5dutiodWxsbNgHmQ0bNoxp06Yxbdo0Jk6cSOPGjRk6dCidOnWibNmypKSksH79embMmMEPP/xATExMnhpQr7zyClOmTCElJYU77riDmTNncvPNNxMbG8uKFSv45z//yYYNG2jbtm22t8wjIyP56quv6Ny5M6mpqdx///2MGTOGO+64gwYNGlCsWDEOHDjA0qVLGT9+PHPnzuVPf/oT/fv3t/uIiYnhtdde44477uDw4cN06NCBv/zlLzan76xZs3j55ZfJyMigXr16bNy4MSxdlcLxOSyo9+rVV19l2rRpHDlyhPvvv585c+YwaNAg4uPjWbduHf/5z39YtmwZkDl4Lqf0sV7cc889PPHEE+zevZvOnTszbNgwmjRpwunTp/nll1947bXXSEtLo3Xr1vne7ePZZ59lzJgx7Nu3j8cff5ylS5dy9913U6FCBTZt2sTrr7/O3Llzad++vW285fazExsbyxdffEHfvn1JS0vjuuuuY+DAgQwcOJA6deoAsHfvXhYvXsz333/PihUrePPNN/1yj4dq3759TJo0Kcs6Y+TIkX5lXbt2DUsqO7c///nPDB06lAEDBtCtWzfq169PyZIlSU5O5tdff+XNN98EMr/7DzzwQJ6Oce211zJz5kwWLlxISkpKjgMTTZAqMjLSU07xApGbWWAKYqbEevXqOYATGxubq9kDlyxZYo89dOhQv7JQZ0oEnIiICOf3v/99nqe3PH/2ucGDB2d7rCpVqjirV68OuJ+lS5c6cXFx2T62WbNmzp49e4LO5BZsRqRAzPSegf4iIyOd1157Lcd9epkp0XEyp4sdNmyYnR0s2F/JkiWdkydP+j0+nDOCnTt3znn++eed0qVLh/TZufbaa7PM/nT+NLs5/cXGxjp//OMfs53i1nDPvvbHP/4xz89x/PjxTkRERMC6uD9TOX33Az3f7N7j5ORk55prrgnp9ejZs2eWx5uZEhMTE4M+t1DrHMzSpUud6OjogHVzf8Zz87kL9p11HMc5efKkc88994T0+tSqVStPz8vUOdhn+5lnngnpN2T58uX2dzunv+eeey7gPoYPH57t57BEiRLOhAkTnCuuuMIBnGuuuSbgc8nt997r59BxCu69WrJkiZOQkBB0/zfddJNz6tSpgI8P1+9ienq607t372zrULx4cefrr78O+h3NzQytwc4njpM5W3CFChWyrc/gwYOdjz76yP5/3759WfYRbKZEY9q0aU7lypVDep8/+eSToM8pO+73KJS/nF677AT7TofSVoqJicnzc3Qcx9m1a5c9v4eynx49ejgQfKbQwqJQdfmYN2+eveV33XXX5arzeatWrahduzaQedsiPT09pMcVKVKEMmXK0KpVKx599FGWLFnCa6+9FrYBWyNGjODzzz+nR48elCtXjujoaOrXr8+wYcNYvXq17Td8vpYtW7Js2TKGDh1KYmIixYoVIz4+nvbt2/Of//yHhQsXhj1Lwscff8zo0aO54oorKF26NNHR0SQmJtoc3b///e/DerxAIiMjefnll1mzZg1/+tOfaNWqFXFxcURGRlK6dGmaNGnCnXfeySeffMLevXvzNSdlkSJF+Pvf/86WLVt44403uO6666hZsyalSpUiKiqKSpUq0b17d/72t7+xZs0axo8fH3S0uVtERASxsbFUq1aNDh068PDDDzN69Gj27NnDK6+8kmN+VnOXoGjRop5u8V577bVMmzaNAQMGkJCQEFIXK6/i4+OZOHEi06ZNY8iQIdSrV49SpUpRtGhR4uPjadeuHY888gg//fSTX7aTC6Fly5bMmzeP22+/nRo1ahTIgJjixYvzySefkJSUxMMPP0yTJk0oU6YMRYsWpWzZsrRs2ZLf/OY3fPPNN6xduzbPx+nRowerV6/m4YcfJjEx0X6mr732WiZNmsSzzz4b0n6aN2/OmjVr+OSTT7jhhhuoXr06MTExREVFUaVKFXr06MFTTz3F4sWLefrppwPu429/+xszZ87khhtuoGLFiva357777iMpKYl+/frZfsrhumsTjs9hQb1XrVq1Yv369bz00kt06NCBsmXLEhUVRUJCAjfddBNjx47l22+/9RsXkR+KFSvGhAkTeOONN2jbti0lSpSgePHi1K1bl6FDh7JkyRJuueWWfK2DW4sWLey5ol69ekRHR1O+fHl69uzJ559/zogRI/z6t+f1s9OrVy82b97MW2+9xTXXXEOVKlWIiooiJiaG6tWr07t3b1588UXWrVuXb3dNC8KsWbP48MMPue2222jWrBkVKlSgaNGixMbG0rp1a5544gnWrFnj6TlWrVrVdjkzk/dlZ/fu3bYLTUF0JfIqwnEu4kSRhdC2bdts36IRI0bkuX+rSDA9evRg5syZDBkyJGC/SpFLyZkzZyhTpgynTp3iqaeeypdc+HJpuv/++/noo4+oVq0aO3fuvNDVEWD+/Pl06tSJyMhINm3aRM2aNQNuN3z4cP7+97/ToEED1qxZ4zcxVmFUuGsnIlmkpaWxYMECIiMj/TKSiFyqfvjhBztYqmPHjhe4NnKxOHXqlJ12XJ+bwqNjx4707duXc+fO8dJLLwXcJjU1lddeew2AZ555ptA3pkENapGLzsKFCzl9+jR33HFH2AeliFwImzZtyrZs27Zt/PGPfwQyp98u9AOTpMBs3rw525R5586d4+GHH7YZIkzmJikcXn75ZSIjIxkxYkTANLlvv/02ycnJtGvXLuh8HIVJocvyISLBXXHFFRf1lL4i52vYsCH9+vXjuuuuo0mTJpQsWZIDBw4wffp03nvvPY4ePQrAf/7zn3zLsSwXnxdeeIGFCxcyaNAgOnToQMWKFTl16hQrVqzggw8+sJlGrrzySq699toLXFtxa9asGSNHjmTTpk3s2LEjyyygpUuX5plnnuGmm24q8EnI8kp9qMNMfahFRHInpxNmkSJFGD58OH/9618LqEZyMRg8eHDQyYkAunTpwo8//ug3XbxIftClvoiIXFDjxo1j4sSJzJ07l/3795OcnEx0dDRVq1alR48ePPLII37TcIsA/PWvf6V+/fpMmTKF7du3c/DgQc6cOUO5cuVo27Ytt912G4MGDboo+t/KxU8RahERERERD3TZJiIiIiLigRrUIiIiIiIeqEEtIiIiIuLBBWtQb9u2jYiICCIiIhg5cuSFqgYAzz77rK2LiIiIiEhueGpQnzlzhi+//JJ7772XRo0aUa5cOYoVK0b58uVp06YNDz/8MFOnTiUjIyNc9ZVCZPjw4fZCpHTp0pw8eTKs+1+/fj2vvvoqN9xwA7Vq1aJ48eKUKFGCWrVqcdtttzFhwoRc5WOeN28ed999NzVr1iQmJoYqVapwzTXX8OWXX4b0+LS0NJ5++mlq1apFTEwMTZs25Z133ikUOaFnzJhh34tAf6VKlaJ+/frce++9zJgxIyzHTEpK4pVXXmHQoEE0b96cKlWqEB0dTenSpWnQoAH33nsv06dPD3l/J0+e5N///jft27cnPj6eUqVK0ahRIx5//PGAif8DWbhwIb1796ZUqVLExcUxaNCgoJOGXEjr1q3j+eefp3v37tSoUYPixYtTqlQpEhMT6d+/P//973/Zt29fnvfvDhSE+vfss88G3efq1asZOnQodevWpXjx4lSoUIFu3brxv//9j7Nnz+ZYJ8dxeO2112jYsCHR0dHUrVuX4cOHc+bMmTw/z3BxB3ncf5GRkZQtW5bExEQ6duzII488wujRo0lNTQ3r8Xfu3Mm3337LX/7yF3r16kVsbGzI74tx9uxZli5dyv/+9z/uv/9+mjdvTtGiRe1+tm3blqs6JScn88wzz9CiRQvKlClDbGwsLVq04JlnniE5OTmkfUyaNInOnTtTokQJKlWqxIMPPujpcy1SaDl59MMPPzi1a9d2gBz/6tev74wfP97v8Vu3brXlI0aMyGs1wuKZZ56xdZHQ1a9f3+99Hj16dNj2fc8994T02erTp49z5MiRHPf33HPPOUWKFMl2P/3793dOnTqV7ePPnj3r9O7dO+BjH3jggbA977yaPn16SK+X+bvvvvucs2fPejpmly5dQjrWLbfcEvS1dRzH2bRpk9OgQYNs91GmTBlnwoQJQfcxZcoUJyoqKstj4+LinFWrVnl6ruF05MgRZ/DgwU5kZGSOr13RokWdoUOHOsnJybk+jvt3LdS/zz//PNv9ffjhh050dHS2j+3YsaNz6NChoHW67777Aj62b9++nj+PXrnPSaH8lS5d2vnDH/7gpKamej72tm3bgh7rmWeeCWk/zz77bND9bN26NeQ6LVy40KlSpUq2+0pISHAWLVoUdB8jR450IiIisjy2Ro0azp49e0Kui8jFIE8tyH/84x9+X5KrrrrKefPNN51p06Y5ixcvdqZMmeK89dZbTp8+fWwjpkWLFn77KEwNasm9efPm2fevVKlSDuBcffXVYdv/lVde6QBOfHy88+CDDzqff/65M3fuXGfhwoXO//73P7/GV9euXZ1z585lu68PPvjAblunTh3no48+chYuXOj88MMPTs+ePW3ZnXfeme0+3nnnHQdwqlat6owYMcKZP3++89prrzllypRxAGfixIlhe+554W5QP/zww87KlSvt34oVK5wZM2Y4L730klOxYkW73dNPP+3pmL169XK6d+/u/PWvf3VGjRrl/Pzzz87ixYudSZMmOS+//LJTq1Yte6zbbrst2/2kpKQ4DRs29LtAmTZtmjN37lznxRdftJ+vEiVKOMuXLw+4j7S0NKd69eoO4AwePNiZMWOG8/PPPzt9+/Z1AKdDhw6enmu4bN261e+5VqhQwfn973/vfPfdd868efOc+fPnO999953zu9/9zqlatard7vvvv8/1sfbv3+/3OQj0t2zZMic2NtYBnNjYWOfkyZMB9zVp0iT7W16pUiXnjTfecBYsWOBMnDjRuemmm2w9u3Xrlu138aeffrIXOG+88YYzf/585+OPP3YSEhIcwHn33Xdz/RzDyX1OGjBggN/rtGDBAmfy5MnOq6++6txwww1O0aJF7bb169d3NmzYELZjR0REOHXr1nW6deuW6wa1+yIqJibG6dixo1OnTp1cN6h37drlVKpUyV7UDRs2zJk1a5Yza9YsZ9iwYfb5V6pUydm1a1fAfRw8eNApWbKkU6RIEedPf/qT8+uvvzpjx451OnTokONvgsjFKNcN6lGjRvmdDH755Zeg269YscLp1auXGtSXmIcfftgBnPLlyzsvv/yyAzhFihTJ9sc1t+69917nf//7n3P69OmA5SdOnHC6du1qP0OjRo0KuN2RI0ecsmXL2qjIwYMH/crPnj3r9O/f3+5n5syZAffTo0cPB8jSoPv+++8dwBkyZEgenmX4uBvUwU6+q1evdooXL24bUOnp6Xk+5pkzZ4KWnzx50unUqZOt14oVKwJu524E/Otf/8pSPnfuXHsC79mzZ8B9zJgxwwGcG2+80W/92bNnnTZt2jiAs3379hCfWf44efKk07RpU/tchwwZ4hw/fjzb7dPS0pzXXnvNKVmyZJ4a1KEwjVzA+c1vfhNwmzNnzjh169a1n5lNmzZl2ea3v/2t3c8nn3wScD+DBw92AOfHH3/0W7906dKg721BcZ+T7r333qDbbt++3bn66qv9GtWh3CnLzqFDh5zhw4c7kydPdg4fPuw4TujfabdJkyY57733nrN48WL7/bz33ntz3aB2P+brr7/OUv7111/7fY4DGTlypAM4f/jDH/zWp6SkONWqVXNiYmKctLS0kOojcjHIVYN69+7dTsmSJW20aPXq1SE97ty5c1m6A6hBffFKS0tz4uPjHcD57W9/6+zdu9fevn755ZcLrB4rV660n6Hrr78+4Db/+te/7DZffPFFwG127txp63/dddcF3KZevXpOuXLlsqw/fvy4Azi9e/fO+xMJg9ycfG+++Wa7bXYR33D58ssv7bHeeuutLOXp6en2gqdRo0bZRjcfeughu5+kpKQs5Z999pkDOG+++WaWsj/+8Y8O4MydO9f7E/Lgscces89h8ODBIT9u1apVAZ9zOAwaNCjHi0l34+mll14KuM2JEyecuLg4B3CaNm0acBvTAE1JSclSFh8f79SvXz/vTyQMctOgdpzMi7Vrr73WPub3v/99WOuTlwZ1ILltUO/bt8/+Hvbp0yfb7fr06eMATmRkpLNv374s5S+++KIDOOPGjctSZu5qqNuHXEpyNSjx1Vdf5cSJEwA899xzNG7cOKTHFSlShLvuuivH7aZMmUL//v2pXLky0dHR1KpVi4cffphdu3bl+Nj09HTeeecdevbsSYUKFYiKiqJy5cr069ePTz/9NOjAyFCzfKSnp/P+++9z7bXXUrVqVaKjo6lYsSJt2rTh0UcfZfbs2UEHqE2ZMoW77rrLDrAzAzyGDRvG3r17gx57z549/OUvf6F169aUKVPGPr9mzZpx++23M3LkSI4fPx78RQqTcePGcfjwYQDuuusuKleuTK9evQAYNWpUgdQBoGnTppQvXx6AzZs3B9zmhx9+ACA2Npabbrop4DbVqlXjqquuAjLfo0CDjSpWrEhycjKrV6/2W28G+FWuXDkvT+GCqFmzpl0+ffp0vh6rZMmSQY81Y8YMjh49CsC9996b7RTBgwcPtsvfffddlvKKFSsCMHPmTL/1GRkZ/Prrr8CFfY8OHTrE+++/b+vxxhtvhPzYJk2a0KZNm7DX6fjx4/z4448A1KpViyuuuCLgduY7BP7vg1uJEiW49dZbAVi1ahUbN27Msk1279HKlSs5fPjwRfUdAoiMjGTkyJGUKFECgA8++IBDhw5d4Fp5N3bsWM6dOwfAkCFDst3OfBbOnTvH2LFjs5Rn936fOHGCpKQkoqKiiI+PD1OtRQqBUFveGRkZToUKFRzAKVmypHPs2DFPLfnzI9R//vOf7f/P/6tQoYKzZs2abPe1bds2p1GjRtk+HjL72WY3sCeUQYlLly716xOa3V+gCEBqaqpz4403Bn1cqVKlAl7JO47jzJo1y/ZzDPYX6PHuKEcoUZdQXH/99Q5k9kc2PvnkE3ucxYsX57gPs21iYqKnupjXpVmzZlnK0tLSbFeBYJEWx8kcF2DqFKgb07///W8HcKpXr+6MHDnSWbBggfPmm2/aqFx2711ByWuEeu/evQG3cUe1pk+fnud63XHHHXY/5w9MdhzH+fvf/27L582bl+1+zpw5Y++OdevWLUv5yZMnnfLly9uuCzNnznSmTJniXHfddQ7gtGnTJs/PIRzefPNN+zyfeuqpsOwzMTExx9+tYD788EP7+GD96U3f9AYNGgTd3+eff2739/HHH2cpHzNmjAOZ4yLeeustZ8GCBc7IkSOdatWqZXt3oSDlNkJtPPjgg/Zxn332WZbyvP4GX6gI9d13353j74PjOM6ePXvsdvfcc0+W8l27djlRUVFOkSJFnGHDhjlz5sxxxo8f73Tu3NkBnIEDB+b5OYkURiH/Eq9atcp+ea655hrPB3b/eJkvWPfu3Z3PP//cSUpKcqZOneqX6aFjx44B95OSkuKXbeSGG25wxo4d6yQlJTljxoxxunfvbss6deoUcCR5Tg3q1atX24FRkNlP86uvvnIWLVrkzJ8/3/nkk0+cu+66yylZsmSWH6yzZ8/agW8RERHO7bff7owZM8ZJSkpy5s2b57z++utOjRo1HMCJiorKcmv39OnTdtBO6dKlnWHDhjkTJ050Fi9e7MyfP9/56quvnMcee8ypXr16gTSoDx486BQrVizLSTglJcUpUaJEyLc+w9GgXrJkid3PLbfckqXc/ZnNqU7fffed3fbtt9/OUn7q1Ck7mOb8v0Ank4IW6sl37dq1tg91u3btst0urw3qc+fOOfv27XOmTZvm3HDDDXYfDRo0CNjn2t24z6kPavPmzR3IvMAO5JtvvgmYOSM2NtZZunRpyM8hP7if5/z588OyT68Navegt0D9oh0n83ttBqAPGDAg6P7c38cnnngiS3lGRobfZ8L9d+WVV+bYJz+/5bVB7e4SM3To0CzlF1uDum3btg5kZtbJiQloZPdb8uqrrwZ8vxMSEpydO3fm8pmIFG4h/xKbPoqA8+STT3o+8Pkpih544AEnIyMjy3b333+/3WbJkiVZyh9//PGgkZ+MjAznzjvvtNu88847WbbJqUHdqlUrBzIH3WXXD9dxMgeWnD9K/j//+Y8DOMWKFXN++umngI87fPiw06RJEwcyI+lu06ZNs3ULFgU9c+ZMwLsG4W5Qv/7663Z/549sv/322x3AqVixYo4nx3A0qN2NlDFjxmQpnzhxoi3/97//HXRfixYtstv+5S9/CbhNSkqK86c//cmpWrWqU6xYMad+/frOf//736AZRgpKTlk+Zs2a5bz88stO5cqVbSNzzpw52e4vtw1qd+Pu/L/ExMRs09aZi5SSJUvmeAx3f9XsBqv+8ssvTrdu3ZzixYs7sbGxzo033uisXbs2x33nt3r16tnfkOzqnlteGtTbtm2zDeUuXbpku93atWvtMR555JGg+zx48KDddtCgQQG3OXPmjDN8+HCndu3aTrFixZzExETnqaeeCttr4kVeG9SbNm2yj+vVq1eW8outQW2yezRp0iTHbc15q3LlytluM2bMGKdNmzZOdHS0U65cOeeee+4J2+B1kcIk5F9id0Pq9ddf93xg949XlSpVsv1BXbduXbbHPX36tB3Q1Lhx42zzmB47dswpV66c3e58wRrUkyZNsmW5HXSSnp5u83ieP9L5fO7R9hs3brTr3RcyeelmE+4GtcmY0L59+yxlEyZMCKnx7zjeG9TffPON3UebNm0CXoy5I0c5peRas2aN3fbRRx/NU50upFDzUBcpUsR56KGHcmxkhqNBXbRoUef5558P+rlt3LixA5npt3Jy66232n3nlO+4sDFdg+Li4sK2Ty8N6ueff94+9v333892u4ULF9rt/vznPwfd58mTJ+222Q3uLczy2qA+cuSIfVyrVq2ylF9sDWpzpzGUVJPt27d3ILPLosjlLuRBiSkpKXbZPdAoHG6++Waio6MDljVo0IBSpUoBsGXLFr+yxYsX2wFNgwcPJjIyMuA+YmNj7YCZNWvW5DgA0G3ChAl2+Q9/+EPIj4PMWdvMsczxs9OtWze7PG/ePLtcpUoVuzxixIhcHR+gR48eOJkXTp6neF+zZg2LFy8GCDjItHfv3nYgyujRo4Puy9QptzN3QeYMc2awTPHixRk1alTAAaXuQXBRUVFB9+n+/J06dSrXdbpYZGRk8PXXX/Phhx+Snp6e7XYjR46071GPHj1y3O/PP//MypUrWb58Ob/88gsvvPACFStWZPjw4Tz66KPZzipn3qOc3h+4uN8j8/sZzt/Obdu22fcotz799FMAYmJigv426TuUM3N+Av/zpBHO3+CCkJfv5OX0fotkJ+QGdenSpe2yyfQRLg0bNgxaHhcXB2T9sVq1apVd7tChQ9B9uMvdj8vJ0qVLAahRowaJiYkhPw4yp2Y2OnXqlOPU0IZ7WtauXbtSu3ZtAB577DHat2/PSy+9xNy5c4M2iPLDJ598AkDRokUZNGhQlvKiRYty2223AZkjxY8dOxb2OuzZs4e+ffuSkpJCREQEH330UbbZZmJiYuxyTq9VWlqaXS5evHh4KnuBPPPMM/YEbv5OnjzJihUreOKJJ0hJSeGVV16hd+/eYTsR1q9fn6ZNm9K8eXN69uzJU089xapVq2jRogWjR4+mS5cuARsb5j0K5bN8Mb9H5vcz3L+deTF//nw2bNgAwIABAyhTpky2216u36HccH+uY2NjL2BNwiMv38nL6f0WyU7IDWqTngxg//79Ya2ESTuUHZNKy6TyMUzqNoBKlSoF3Yc7JZP7cTkxaZDckeJQHThwINePATh58qRdLlasGOPGjaNRo0YALFq0iCeffJIuXbpQtmxZ+vbty+eff57ltQm3jIwMPvvsMyAzEl2hQoWA25nI9enTp/n666/DWofDhw/Tu3dvG9V+/fXXuf3227Pd3n0RmF2E1HA3dNwXN5eK4sWL06xZM/71r3/xzjvvAJnprF566aV8O2ZcXJy9CFuxYkXAY5n3KKf3By7u98j8fh47dsyv4XkhuFNb3nPPPUG31XcoZ+5UeZdCGri8fCcvp/dbJDshN6hbtGhhl5csWZIvlfEipxzSebktmpv9B+Ju5M6YMYOVK1eG9Pfwww/77adx48asXLmS77//nvvuu486deoAmbfZJk2axJ133kmHDh3y3IAPxbRp09i9ezcAP/30U7aRdvedgHDmpE5JSeGaa66xeaBfeOEF/u///i/oY6pVq2aXc8plvnPnTrtcvXp1DzUt/H7zm9/YE/9HH32Ur8dq1KgR9erVA+Cbb77JUm7eoxMnTtjuW9kx71GFChWy7SJWWJnfz4yMDJYtW3bB6pGens5XX30FZAYh+vTpE3R7fYdyZu5iQmYXxYudec9Dmf/BvOeX0/stkp2QG9SNGze2UZbZs2cX2CQiwbijAe5uEoG4o+q5iSKY57xnz55c1g7KlStnl6OiomjatGlIf6YfsltkZCQ33HADH330EZs2bWLPnj189NFHdsKHxYsX89BDD+W6jqEykcbcmDNnTpZ+73lx6tQp+vfvz6JFiwB44okneOqpp3J8XP369W2/+nXr1gXd1l1u7gZcqooUKWIbuXv27MnVHZu8MHcztm/fnqXM3V0n2Ht09uxZO3nPxfj+dO/e3S67x2UUtPHjx9v3+84778x23IlRqlQp21jSdyiwKVOm2OWuXbtewJqEh/lOHjt2LOh5de/evbYdcDm93yLZCblBHRERYWdGOnHiBB9++GF+1SlkTZs2tcsLFiwIuu3ChQsDPi4nrVu3BmDHjh0BGwTBtGrVyi7//PPPuXpsTqpUqcJ9993HvHnzbB3Hjx+fL4NDUlNT+f777wG48sor+eKLL4L+mc+G4zg5Dk7MyZkzZxg4cKCdbWvo0KH861//CumxUVFRtG/fHsgc6BmsT6DZf3R0NG3btvVU54vB2bNn7fKZM2fy9Vjmzkag28LuBsj5M6q5JSUl2dvLXbp0CXMN89+gQYNsP9MPP/zwgvWlzk13D8O8R+vXrw/awHK/fxfje5QXBw8e5PPPPwcyB5z27t37AtfIu1C/k5fj+y0SVG5Sguzatcum1ClZsmTI+V3PnTvnjB492m/d+TMlBmPSQ52fcsidNq9JkybZps07fvy4nUUtt2nzpkyZkue0eadOnXLi4+Ntnk6vs0tm5w9/+IOt4549e8K+/xEjRtj9f/PNNyE9xqTXc8+mmFtnz571yzV99913B0yPF8zLL79sH59dDvGdO3faCUH69euX5/peSLlJsXXixAk7uUtMTEy235twcKdd6969e5bytLQ0p0yZMg7gNGrUKNv396GHHrL7WbhwYb7VNz/97ne/s8/h/vvvD/lxq1atyjLhU14cOnTITsrUokWLkB/31Vdf2Xq/9NJLAbc5ceKETQ0Y6Df2YpDbtHnnzp1z+vXrZx+TU2rU3LpQafP27t3rFClSxIHgM8z26dPHpuIMNqOiyOUi1wlMP/74Y/vlrFixojNjxoyg269evdq56qqrsvyAh6NB7Tj+E7v8/e9/z1KekZHhN+NiXiZ2MY3DnCZ2SU5OzjKxi3tK6759+zqpqanZPv748eNZpt+dNWuWX17q86WlpTmtW7e2uUDPn1AlHHmozUyPJUqUcE6cOBHSY1566SV73F9//TVLuSnLLg91RkaGM2TIELvdwIED89TwS05Otg22xMTELPmLz5496/Tv398eJ9C04xeD3Jx83d+Z7Ga/yykP9YIFC3KcYn7Xrl1Oo0aN7H4+/PDDgNu5px//17/+laV87ty5dgr5QI3yi8WJEyds3m3TqE5JScl2+/T0dOeNN95wSpUq5Xz//fdZynObh9o9/fkrr7wScr3T09OdOnXqOJA5IVCgWRV/+9vfhvx7XljlpkG9fft25+qrr7bbN2zY0Dl69GjAbS+2PNSO4z/9eKBJs9w5/sMxv4HIpaBodpHr7AwZMoRdu3bx9NNPc+DAAXr06EHv3r0ZMGAAjRo1omzZshw+fJgNGzYwYcIEJk2axLlz5/wGNYbT008/zXfffceWLVt44YUXWLVqFffddx8JCQls3bqVt956ixkzZgCZqesefPDBXB9j9OjRtG/fntTUVG6//XbGjBnDoEGDqF27NufOnWPTpk1MmTKFb775hpUrV1KzZk372GHDhjFt2jSmTZvGxIkTady4MUOHDqVTp06ULVuWlJQU1q9fz4wZM/jhhx+IiYnh0UcftY+fNm0aL7zwAldccQXXXnstzZs3p0KFCpw6dYoNGzbw3nvv2UGi999/P0WL5votDWrHjh329evbt2+OGVmMgQMH8te//hXIvM2c21uCjz/+uM273bRpU5588knWrl0b9DGBuvLEx8fz8ssvM3ToULZv306HDh3429/+RrNmzdizZw+vvfYa06dPB+D222+nZ8+euapnYXTgwIEsqSFPnz7Nxo0bGTVqFJMmTQIy02O98MILeTrGmjVrGDJkCJ07d6Z///60bNnS9pXevXs306dPZ8SIETZ14lVXXWVzh5/viSee4KuvvmLDhg0MGzaMTZs22S4S06dP5x//+Adnz56lePHivPbaa3mqb2FQokQJxo0bR9++fdmwYQMffvghY8eO5c4776R79+5UqVIFx3HYu3cvs2bN4ttvv2XHjh1hO77p7hEZGcmdd94Z8uOKFSvGG2+8Qf/+/Tl+/DhdunThqaeeon379hw5coQPPviAb7/9FsjsLnD33XeHrc4XytGjR/2+Q6dOneLo0aOsWbOGGTNmMH78eNttqkGDBowfPz5o+sFQTJo0ya9LjbtP+rJly/xyWJcqVYqbb745yz5SU1OzDP7dtGmTXf7mm2/8Mna1bNmSli1bZtnPiy++yKRJkzh48CC33347SUlJXHfddUBm18JXXnkFyBwfMXz48Nw9UZFLVV5b4t9++61Ts2ZNe5Ua7K9JkybO5MmT/R4frgi12VfDhg2D1qFLly5OcnJywMfnFKF2HMdJSkpyqlevnuNzDRQBOHnypF+UPNhfrVq1sq1bsL+bbrrJOXXqVJZje41QDx8+3D4+WHQ+kObNmzuAU7Zs2SwzYZp9ZhehDjaVdXZ/wTz99NN2quVAf/369Qv4+l0sQp0p0fxVqFAhy3fSLacItbsbUE5/gwcPzvHOxsaNG+303IH+YmNjc5x982KRnJzs3H333fa2erC/YsWKOb/73e8CRj9zE6F2zzib125N77//vhMVFZVtXdu3b+8cPHgwT/suDNznpFD+YmNjnT/+8Y85frZD/Q3u3r17yMfO7nczt88hWOR7/vz5TuXKlbN9bOXKlZ358+eH8MqKXB7yHM686aabuO666/jmm2+YOHEiixYt4sCBA6SkpBAbG0vNmjXp2LEjAwcOpGfPnnlKOxeqmjVrsnz5cj744APGjBnDqlWrOH78OPHx8bRq1Yo777yTO+64w+azzos2bdqwfv16PvzwQ3744QdWrVrFkSNHKFeuHFWrVqVr164MGjTILzptFC9enE8++YTf/e53fPTRR8yaNYtdu3Zx4sQJSpUqRc2aNWnTpg19+/a1UQBj2LBhdOjQgSlTpjBv3jz27Nlj0+NVrlyZDh06cM8999CvX788P7dgzKDC6Ohorr322lw9duDAgaxYsYKjR48yduxYbrnllvyoYkiee+45+vTpw9tvv83s2bPZv38/ZcuWpUWLFgwZMiRoPutLQVRUFPHx8TRp0oR+/foxZMgQO2FSXtx2220kJCTwyy+/MHfuXHbv3s2BAwdIT08nNjaWevXq0aVLF+6++26aN2+e4/7q1q3L0qVLefvttxkzZgybNm0iPT2d6tWr069fP37/+9/nemKlwio+Pp5Ro0bx17/+la+++opp06axdetWDh06RGRkJOXLl6dFixb06tWLO+64I2DWn9zKy2DE8z3wwAN06tSJN954g2nTprFnzx5KlixJo0aNuPPOO/PlDllhEBERQenSpYmNjaVq1aq0bt2azp07c+ONN4Z91uDCpEOHDqxcuZLXX3+dH374web/r1WrFgMGDOCxxx7zy2QlcrmLcByPCZpFRERERC5jeQ/ZioiIiIiIGtQiIiIiIl6oQS0iIiIi4oEa1CIiIiIiHqhBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuKBGtQiIiIiIh6oQS0iIiIi4oEa1CIiIiIiHqhBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuKBGtQiIiIiIh6oQS0iIiIi4oEa1CIiIiIiHqhBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuKBGtQiIiIiIh6oQS0iIiIi4oEa1CIiIiIiHqhBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuKBGtQiIiIiIh6oQS0iIiIi4oEa1CIiIiIiHqhBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuKBGtQiIiIiIh6oQS0iIiIi4oEa1CIiIiIiHqhBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuKBGtQiIiIiIh6oQS0iIiIi4oEa1CIiIiIiHqhBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuKBGtQiIiIiIh6oQS0iIiIi4oEa1CIiIiIiHqhBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuKBGtQiIiIiIh6oQS0iIiIi4oEa1CIiIiIiHqhBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuKBGtQiIiIiIh6oQS0iIiIi4oEa1CIiIiIiHqhBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuKBGtQiIiIiIh6oQS0iIiIi4oEa1CIiIiIiHqhBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuKBGtQiIiIiIh6oQS0iIiIi4oEa1CIiIiIiHqhBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuKBGtQiIiIiIh6oQS0iIiIi4oEa1CIiIiIiHqhBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuKBGtQiIiIiIh6oQS0iIiIi4oEa1CIiIiIiHqhBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuKBGtQiIiIiIh6oQS0iIiIi4oEa1CIiIiIiHqhBLSIiIiLigRrUIiIiIiIeqEEtIiIiIuJB0QtdARERubhlZGQAcPbsWQCKFPHFaooW1WlGRC59ilCLiIiIiHig0IGIiHhy+PBhAPbs2QP4R6UTEhIAKF26NACRkZEFXDsRkfynCLWIiIiIiAeKUIuIiCerV68G4MsvvwSgRIkStqx///4ANGvWDIDY2FhbVqxYsYKqoohIvlKEWkRERETEAzWoRUREREQ8UJcPERHJtfT0dLu8du1aAKZMmQJAfHy8LWvTpg0ADRo0AMBxnIKqoohIgVGEWkRERETEA0WoRUQkZMnJyQBs3rzZrtu5cycAUVFRAJQvX96WVaxYEfBFrc02IiKXEkWoRUREREQ8UIRaRERydO7cOQA2bdoEwNy5c23ZgQMHAKhTpw7gS5EHkJiYCEB0dHSB1FNE5EJQhFpERERExAM1qEVEREREPFCXDxERyZHp8rFu3ToApk+fbssiIyMBX4o88y/4p9ATEblUKUItIiIiIuKBItQiIpKjlJQUwBehXrhwoS1r3bo1AJ07d/b7P0CZMmUKqooiIheMItQiIiIiIh4oQi0iIn5Mf+l9+/bZdWvWrPFbV6JECVtWpUoVAGrWrAn4T+wiInI5UIRaRERERMQDNahFRERERDxQlw8REfGTlpYGwIIFC+y6X3/9FYDU1FQA2rZta8tatWoFQFxcXEFVUUSkUFGEWkRERETEA0WoRUTEz5EjRwBYuXKlXbd48WIAKleuDED79u1tWfPmzQEoVapUQVVRRKRQUYRaRERERMQDRahFRC5jjuPYZdN3evfu3QCsX7/elm3duhWARo0aAdC9e3dbVq9ePQCio6Pzt7IiIoWUItQiIiIiIh6oQS0iIiIi4oG6fIiIXMZOnTpll7dt2wb4unqYwYng685RrVo1ABo0aGDLSpcund/VFBEp1BShFhERERHxQBFqEZHLWEpKil02k7ckJSUBULx4cVvWtWtXwDco0V0mInK5U4RaRERERMQDRahFRC5jhw4dsssmMr1ixQoAWrRoYctMhLphw4YAREREFFQVRUQKPUWoRUREREQ8UINaRERERMQDdfkQEbmMZGRkAJCamgr4UuUB7NixA4ATJ04AUKNGDVvWrl07AKpXrw5AZGRkvtdVRORioQi1iIiIiIgHilCLiFxGjh49CsDGjRv9/gXfJC9lypQBoHbt2rbMDEYUEZGsFKEWEREREfFAEWoRkcvIvn37AJg+fToA69ats2WVK1cGfP2k3RHqYBzHAZRKT0QuX4pQi4iIiIh4oAa1iIiIiIgH6vIhInIZManxJk+eDMCxY8ds2Q033ABAjx49AKhVq1ZI+1RXDxG53ClCLSIiIiLigSLUIiKXqHPnzgFw6NAhu85M5GLWRUdH2zIzCLFp06YAlC1btgBqKSJy8VOEWkRERETEA0WoRUQuUdu3bwdgyZIldt2mTZsAKFeuHADVqlWzZYmJiQDEx8cXVBVFRC4JilCLiIiIiHigBrWIiIiIiAfq8iEiconJyMgAYPPmzQD8+uuvtszMlGgGIDZp0sSWJSQkFFQVRUQuKYpQi4iIiIh4oAi1iMgl5uTJkwCsX78egJkzZ9qyuLg4AAYOHAhAhw4dbFmFChUKqooiIpcURahFRERERDxQhFpEwsL02wVIS0sD4MyZMwAULer7qTETiURGRhZg7S5d5nU/ffq0Xbdz507AN4nL3r17bZmJQpu+082bN7dlUVFR+VpXEZFLlSLUIiIiIiIeqEEtIiIiIuKBunyISFicOnXKLo8fPx6ApKQkABo2bGjL+vTpA0DlypUB/64fERER+V7PS9W6devs8sKFCwE4dOgQAPXq1bNlTZs2BXwp8tTNQ0TEO0WoRUREREQ8UIRaRPLEcRwAzp49C8CWLVts2bfffgvAN998A0D//v1tWYsWLQDf4LgiRXzX9YpQ554ZjLhy5Uq7btasWQCcO3cOgI4dO9qytm3bAhAfH19QVRQRueQpQi0iIiIi4oEi1CKSI5P+LjU11a7bvn07AEuWLAFg3rx5tuyXX34BfFHs9PR0W2aiphIeycnJgG8SF4DVq1cD0LhxY8A/Qm3S5JUuXbqgqigicslThFpERERExAM1qEVEREREPFCXDxHJkemycfDgQbtu2bJlAIwePRqAGTNmZPv4cuXK2WX3rImSO2YAKEBKSgoAO3bsAHyzIgIcOHAAgM6dOwO+gYgAiYmJ+V1NEZHLjiLUIiIiIiIeKFQkIjkyqe2io6PtOpP2zqTBcw9YXL58OeAbzKiBiOGRlpZml81rvGjRIgBOnjxpy+rWrev3b8WKFQuqiiIilyVFqEVEREREPFCEWkRyZCLTZrpwgLi4OMCXks2dtu3ll18GYOzYsYB/9NSk0pPcO3HihF2eOXMmALNnzwagfPnytqxv374AtGnTBvCfPEdERMJPv7IiIiIiIh6oQS0iIiIi4oG6fIhIjgINSnQvgy9FG/hSs0VERAD+6d4k73bt2mWXN2zY4LeuYcOGtqxTp04A1K9fH1CqQhGR/KYItYiIiIiIBwpbiEhYmMlfQBHpcDGDEM3kLStXrrRlhw8fBiAmJgaAmjVr2rKmTZsCvtSGIiKSvxShFhERERHxQBFqEQmL06dP22UzoYth+lJL7pgo9JIlSwD/CLXp116nTh2/f0GRaRGRgqYItYiIiIiIB2pQi4iIiIh4oC4fIiKF1MGDBwGYPn06AJs2bbJlJiWemQ3R/F9ERAqeItQiIiIiIh4oQi0iUohkZGTY5d27dwOwevVqAJKTk21Z7969AbjiiisAqF69ekFVUUREzqMItYiIiIiIB4pQi4gUAkeOHAFg48aNdt3atWsBX9S6YsWKtsxM5GKmeS9ZsmRBVFNERAJQhFpERERExAM1qEVEREREPFCXDxGRQmDnzp0AzJo1y65bt24d4Jv5sEaNGrbMdPlQVw8RkQtPEWoREREREQ8UoRYRuYAcxwFg27ZtAMyZM8eWpaamAtCqVSvAN4kLKE2eiEhhogi1iIiIiIgHilCLiFxAx44dA2Dr1q0ALF++3JaVL18egLZt2wLQq1cvW1a2bNkCqqGIiOREEWoREREREQ/UoBYRERER8UBdPkRECti+ffvs8vr16wHYtWsXANHR0bYsISEBgFq1agG+LiAiIlK4KEItIiIiIuKBItQiIgVszZo1dnnKlCmAL2ptBiACNG/eHFBkWkSksFOEWkRERETEAzWoRUREREQ8UJcPEQmLokV9PydFivhfq0dERNjlyMhIv3/P3/ZCOHfuXJbljIwMv3/BN6uh2ebs2bO2zL0d+L8eJme0mflww4YNtmzRokUAxMbGAnDFFVfYMjNDYlxcXK6fk4iIFJwLfyYTEREREbmIKUItImFRokQJu+xO/QZQrFgxu1y6dGnAP4J7oZ06dcouHz9+HPBFk9PS0mxZenq63zaHDx/Osg8TxS5VqpQtq1+/PuCLym/evNmWmWh1u3btAGjdurUtMxHqkiVL5vGZiYhIQVCEWkRERETEg8ITIhKRQs9EX91M/+ht27bZdUeOHPHbPiUlxZZt374d8PUrdkdfY2Ji/PYZrA7uPsumT3OwvtDuupuos4k0m38Bjh496ldndz9ps2wi0/v377dlJ06c8DuOO0Jtotfm+R08eNCWmah1xYoVAahbt64tM/2qRUSkcFOEWkRERETEAzWoRUREREQ8iHAC3cMVEXExPxNnzpyx67Zs2QLAL7/8AsD06dNtmVlOTk4GoHjx4rasc+fOfv/26NHDljVu3BiASpUqAcG7fhw6dMgu79y50+9fgB07dgCwd+/eLNufPn0a8A2MdA+aNGn8TJm764bpnmJeB3dXFtMdxOzLXXezvRnU6H6c6fLRrVs3AG6++WZbpi4fIiIXB0WoRUREREQ80KBEEQmZe4Denj17ABg/fjwAEydOzPZx7rR006ZNA3xR2qpVq9qyypUrA77Ueu4Bi+bYJuq9detWW7Z27VoA1qxZY9etWrUKgE2bNgH+0WsTKS5XrhwAFSpUsGVmEpX4+Hi/OoEvem3SApp6gi8ibSLbx44dy1I/EyV3p8br1asXAM2aNQMgKioKERG5uChCLSIiIiLigSLUIhIy92QsJnJrIqwmogu+KGuZMmUA3yQp4EtZ16hRI8A/WmuiwyYKbSK7AKtXrwZ8EWeTpg580Wt3JNxEnc0+zcQp4Iswmz7K7kiz6TNt/jXp/dzbB0rvZ56XSbvnjqCbMvM6uPfZvHlzAGrVqgUoQi0icjFShFpERERExAM1qEVEREREPFCXDxHJkena4E4vV69ePQAeeughwD+l3vmPC5Sds0SJEoCv+wT4BiouXboUgPnz59uySZMmAb6uH+4uJqb7iOk2AVC7dm0A6tSp4/cv+AYjmpR17q4bZtn8awYiuteZri/m8eCb/dAMhty3b1+W52q6eiQkJNiymjVr+m0jIiIXH0WoRUREREQ8UIRaRELmjuSaaLU7ap0XZgIW8EWfFy9eDMD69euzHLthw4YAVK9e3ZaZCLWJ9rqXExMTAahWrZqneubERK03b94MwMaNG22ZGRhpovrmOYB/akAREbk4KUItIiIiIuKBItQickFs27YNgG+//dauW7RoEeCbhMXdv9pMVd6hQwfAP0Jt+kS7o70mYmxS5OW33bt3A76Ja0y0HaBPnz4AXHfddYB/hNr0Lw82zbqIiBRuilCLiIiIiHigBrWIiIiIiAfq8iEi+S4jI8MuHzt2DIDly5cDvgGI4OsGYmYkrF+/vi1r37494Ov64U6bV9DMzIzmuYBvMOL+/fv9tgFf95RmzZoBUL58+QKpp4iIFAxFqEVEREREPFCEWi5p7glFNOjrwjGRZ/BFpM2kLWYAIvgGF15//fWALxoNvslQTPT6QjKTuJhBlOCLuJcqVQqAJk2a2DKTws+kzxMRudgV9vNroAnF8rOeilCLiIiIiHigCLWEXVpaml0+ffo0ACdOnAAgPT09y/bmitE9jXNUVBTgS4MWaPKL1NRUAM6dO2fXFS9e3O/xhfGq+XJi+k5v2bLFrps1axbgi1qXKVPGlpk+xldccQUAjRs3Lohq5ppJkTdv3jy7zjyfypUrA1C3bl1bZiaXcX/GRUQuZoHOr+b8b8757nXmXO0eU3O+QFHlULZzp1g142tMO6CgKEItIiIiIuKBGtQiIiIiIh6oy4eEnXsA2tKlSwH49ddfAdi4caMtM7d/SpQoAfgP2DK3yHv27On3r5sZ1Hb06FG7rlWrVgDUqVPH03OQ8DC3/davX2/XzZ07F/ANLrzxxhttWadOnQCoUaNGQVUxV0wXJtOFZc6cOVnKBg4cCECvXr1smfk8i4hcysxv4/Tp0+06c9435+qTJ0/asjNnzgC+biCBuoME6gZi2g+mzJz7Ae6//34AateunW0982NApSLUIiIiIiIeKEItuWKu6txXdOZK0aQ/W7dunS0zKdKmTZuWpcwwA7XMYC6ARo0aAVCxYkUAmjZtasvM1a2Jfh8/ftyWmcimItQFz33FbwafHjhwAIAdO3bYMvM5ad26NQBdu3a1ZWZdYeIeXGMGI27duhWAXbt22TITcTeDEd0Rk6JF9VMrIpc+E4VevXq1XWfuUG/atAnwj1AbgaLEwSLH50eyt2/fbpfbtWsHBI9Q50fCAkWoRUREREQ8UNhE8sT0gwWYOnUqAIcOHQL809cUKZJ5zXbttdcC0LdvX1tmIppmGzMhBvjS5Jmpnf/73//aMhP9NI830zqDrz+2FDx3+kIThV61ahXgfxehWrVqANSqVQu4sFOIh8IdXZ89ezbg6yfo/uyZ52Oen6LSInK5Mb+Jffr0sevOT3tr7lwCNGjQAPDdVXZvW6xYMb9/3XdBze/yypUrAf+I9aeffgr4j9kybQ+TmjWQQHfgc0MRahERERERD9SgFhERERHxQPckJVuB0srs27cPgClTptiy119/HfDd8r/yyittmUl3d9VVVwG+wYZuZhYl9/EOHjwI+G7dfPTRR1nqdcsttwBQs2ZNW+aedU8KlrvLhxkgYm7HmdRI4Btgam71FfRsVrllBtIAzJw5E4CUlBTAf+BhixYtAKhUqVIB1k5EpPAwXd7Mv+BLFmBmNzbtCPB1BzVpRsuXL2/LzLkhOjo6y3HWrFkDwOTJkwH/NH1mnemiB74upcG6fHgdqKgItYiIiIiIB4pQS7bcV2sLFy4EYMaMGQDMmzfPlpnBV2ZQljv1mVkOlr4m0NVn1apVAUhISAD8o34m2mkmgildurQtM4MXpOC57zAcOXIE8I9EGGbQinmPA73/hcHhw4cBX4o88E1QU6FCBcA/2tG2bVvAP8IiInKpCjThSqAorzlXm996d+KCKlWqAL72Q6jMHU5zh/vs2bO2zAxG3L9/f5Z1Jt2uu01i2hAmQUJeKUItIiIiIuKBItSSLZOeDmDSpEkAvPvuu4BvMhaALl26ANCtWzcA+vXrZ8vq168P5L5vkrlSNJNkuFPwnDp1CvD1nXanynPXSwqWO1phEvebvsbu98hEJEyUtzCkl3OnXDITE2zevBnwnzDAlJnPnjtCHaxvnojIpSbU87o5H5hosnu8TV6jwuZcb8axuM/9ZsItE40G2LNnD+Bry7gnFOvYsaOnuhiKUIuIiIiIeKAGtYiIiIiIBxf+XqsUWma2O/ClPzODzEwaHPB1+ejevTvgm/EIst4SCnUQg2HS4LlT8JjbRqbLgHuGxcLQfeBy5X5vT58+DfjSJLlnvypbtizge28LQzcdd5cPM/Bw/vz5gG8GUPANZGncuDHgG1gpIiI+7kGCpquc+a13nw9CGZQeSrvBJDAASExMBHxdP8DX/dAMTjTdScH/998LRahFRERERDxQOE8sE/ndu3cv4N+hf/fu3X7bmpQ14Ju0pWXLljkeI6+DE91pdkyy9/Mjne4yubDMgFYzgNQdYShevDjge0+9DgQJB/fEM4sWLQJg7NixAMTHx9uya665BvClg3SnbBQRudyZSLA7ZapZDpQ2z72cnVDaDe6BjuautbttcOLECQCOHTsG+M5NEDgCnhcX/kwmIiIiInIRU4RaLHPFtmzZMgDmzJljy8zVXcWKFQHfNMsA9erVy3af5sovr1N6mnRr7j7URqA+1JrY5cJxR5rN+x6ob5rpR2f6uxeGPtTmrgxkTZfn/uy1b98egCZNmgD+nz0RkcudiVC7042acSjmjl5sbKwtc/en9sLdxjD7N3exAQ4cOAD4xve40wIrQi0iIiIiUgioQS0iIiIi4oG6fIhlZjOaOXMmAD/99JMtM7dQBgwYAPhmFoLgqery2tXDMN06zGxIbuZ2uxnkllNdJH+50x+ZZTNI1P05MN1AzG22C9lNZ+vWrQCsWLHCrjMpnsxgRJMqD6Bhw4YAxMXFFVANRUQKh1C6cJouHzt27LDrjhw5AkD58uUB/3Sj7u4fXrjP/aarhzmeuz6mnROuVHluilCLiIiIiHigcJ5YZhKONWvWALBhwwZb1q1bNwA6d+4M+CJ1+c0MWAjXwAXwJZx3p0o7f1CC18j65cAMQjTR6MOHD9syk4LRvK5mIAj4BqiYQSLuaK9ZNimQwhFFOH8QJMD+/fsBWLJkCeCfIvL48eOA7+6IO23e+Z8L98AW87nSZ0dELgaBBuOZ33Vz59A9aDyU3zZzh8/dfjDng3bt2gFQq1YtW+ZObeeFe1C8qbv7rqlJz2fOLbl9XiHVISx7ERERERG5TClCfZlzX6GahOfuaKJhIsTlypUD/NOFFYaJOXLDTFJjpiAFX3TeRDEvtud0IZirenPlbyIT4Httk5OTAV+/NfC9xqbMnbLO9H3L7wj1nj17AN94ATPduHu7ypUrA74+gQBz584FfJ9/E3lx11kRahG5GAT6nTV3Cc1daJMqN1Tmt3XGjBl2nRnn1LNnT8B/2u9w3X12t2VMCmD35C0mam0i4iYlbzip1SAiIiIi4oEa1CIiIiIiHqjLx2XOfZvezIZoblm7b12bWzYmDZr79vnFdovbDIZbvHixXWcGyplBDOrykTPzvptbae5uHaZbjRm05+4asWnTJsDXlcI9mNHMpGVuQea2y0ewz6J7X6abybx58wDYt2+fLWvQoAHgS+fk7vKxcOFCwNeNxH2bMVyzbYmIFIRAA/Rr1qwJ+Lq85bbLh0mR5+5SaQZ450eSAcPdVdUMOjf/gu8323RbdQ+GDNf5Xq0GEREREREPFKG+zJkrVPeyieS5o33nD+xyp5y52JhoqUmPBr6rajPA7mJ+fgXNvFbuKId5HatUqQL4R4fNXQ7zOHNnBHyfQRPtzW3U1x1pMMsmcuG+G2Mi1OZ9N4NzwPcZN5F3d5n7MyMicjEzv9nu325zR869LhTmt9v89tevX9+WmQh1uFLkBWJ+y8F399l9F9rUJzExEfCPvCttnoiIiIhIIaAI9WXOHYk1y+ZqzR0dNBHGcKYzu1BM5NGdNsekQTN9qBWhzj0TmQBfHzn3FLPG+X303dEBr5GCQH37TYT64MGDtsyk7DOfAdOvDnyRC9Of20TUIfdRGxGRwsr8nrnvVJvxUu7f0uy4J7YyEWLzu9mlSxdbZibHCtc044HqsHPnTrvOTNi1fPlyu65evXoA1KlTB/D1EQf1oRYRERERKRTUoBYRERER8UBdPi5z5vYMZJ05yN3lw9w2N7dX3AO18iPFnLkFZVKxuVOyme4YZoCD+5Z8KMqXLw9A06ZN7TozEEMzJYaHeY8CdZ0x3YXM58vdfchr6jn38cxndNWqVYAvRR74Bhc2a9bM71+A6tWrA75uIO5bn+ryISKXCvMb6T6fmwGEwbpnmN9p9yBtk3rUtBXMeda9T3e3QK9Mm2DFihUAJCUl2TKTitU9o7P5Xa9du3aW+qnLh4iIiIhIIaAI9WXODNAD3xWpe52RmpoKwLFjxwA4depU2OviHhhhIsZmEhbzL/gi6XXr1gVyH6E2A+XMQAnwXaEHGigneRfsdfQajXZHFcy+3JEW8xkyg2XcdznMdt26dQPg5ptvtmXmzofZp/s4F/NgXBERt0C/weaO3Pl3rANxp6rbvn074IsOu8/LJlIcykDHUJk2wdSpUwGYO3euLTOR8JYtW9p15o60SZuX23ZDKBShFhERERHxQBFqsUx/ahP5XbdunS0zk2+YqZdNejmAuLg4wNdPKlTm6thEEt1pb8zU1SZq7b5aNlefofR7cl+Bm2ipeXw4+3NJ4eCeJMZETEw/P3efwEqVKgHQuHFjwDfdroiIBGfOpbt27bLrzBgVU9awYUNbZn5fc5s2z5y/TdR7x44dtmz+/PmAb/IW044AaNKkCQAtWrSw68xvfX5Epg1FqEVEREREPFCDWkRERETEA3X5EMvMbte9e3fAf5Cg6fD/xRdfAP6DERISEgDf7Rx3d5BgzO35zZs3AzBr1ixbZlLhNGjQAIAbbrjBlpm0N6EMcNDgwsvLpk2b7PLYsWMB3+erfv36tsx0awo0k6OIiORs48aNdvnHH38EfL+zvXv3tmVmcGCobQPDpCmdNGkSAB999JEt27JlC+Brt7jT4F5//fWA/2yNpptfflKEWkRERETEA0WoxSpevDjgu5p0pyDbu3cv4BuE4I4ELliwAPClJXNH/cxARxMpdqcuS05O9tunSQwPvui1SeHnTsIeztQ7cmkwn1V3xMR8Lk2Uo0ePHrasQ4cOQMFELURELhbnpyA1k7mBb+Isk0Bg0aJFtmzt2rV++zGJBcA3mDDQxGmmbWDuiLvbHaZNYJIhLF++3JaZ3/U6deoA/gMQze97jRo1cnye7jp4pQi1iIiIiIgHCvWJZdLJmKs69wQv5sq0Xr16AGzYsMGWjRo1ym8/7glTTJ8pc/XpTlVXpUoVAKpVqwb4+kYDdO3a1W+de4p0EfC/22GiIe4ItYmKVKxYEYBGjRrZslatWgG+lI8iIuKL/Jo7yO670Wack/nXpMpzM5Hq//73v3ad+Q0OFAk268ykWYEm4DLnf9M3GnxtA5MOzz1GxrQtCpoi1CIiIiIiHqhBLSIiIiLigbp8iGUGCpg0NCa1GPi6cZgZj8aMGWPLzMCEQ4cO5XiMUqVK2eXWrVsDvhkW3TMrXXHFFbmuv1wezK1B96AXM1jFPZOW6aZkbje6uxTldlZPEZHLgfl9PXXqFOCfLMB08ZgyZQrgP7DPJDUw60zqW/c69/Y5HR983UH69+8PwIABA2xZu3btAF/3jlBmTnbLj5S6ilCLiIiIiHigCLWExAzeMoMS+/bta8tM9NoMYgiU1s4MSixRooRdV716dcCX9sYdQQzGXOVq0pbLk4lErFu3zq6bPHky4PsMgi+CYe6EKEWeiEhw5vxdtmxZwH+w34033gj4Bni7o8JmYjczkPD06dO2zKwLJULtTtNnkho0b94c8E+NV7ly5Sx1OF+g4+Vnu0ERahERERERDyKcUC4ZRP4/83Fx93NyL+eGuVI0/wZK9i5yPtO37+2337brRo4cCfgn8r/tttsAaNOmDeDr/w/+fflFRMRfoH7P5lxf0M3GYG2EwtRWUIRaRERERMQDNahFRERERDzQoETJFXN7xaQkO3853DQA8fLm7k6UkpIC+Gbu2rlzpy0zA1ncs3Q2aNAA8A16dc/SKSIi2QvUpSK3qekuN3p1REREREQ8UIRaCjVFpi9v7hRKa9asAWDx4sWAf4o8k9zfnXqxWrVqgG/CARERkfyiCLWIiIiIiAeKUItIoWVS5IFvKts5c+YAvskCwJcaz53430xGJCIikt8UoRYRERER8UANahERERERD9TlQ0QKrePHj9vlJUuWAL4uH927d7dlffv2BaBJkyZ2XXR0dEFUUURERBFqEREREREvFKEWkULj7NmzgC8yvXnzZlu2f/9+v20qVapky0xkOiEhoUDqKSIi4qYItYiIiIiIB4pQi0ihYaYXnz9/PuDrNw1QtGjmz5VJkdewYUNbVqZMmYKqooiISBaKUIuIiIiIeKAGtYiIiIiIB+ryISKFxuHDhwFYvHgxAMuXL7dlsbGxANSrVw/w7/IRExNTUFUUERHJQhFqEREREREPFKEWkULDpMYzkekNGzbYsuuuuw6Anj17AlC3bl1bFhkZWVBVFBERyUIRahERERERDxShFpELIi0tDYBDhw7Zddu3bwdg7969ftsAVKtWDYBWrVoBmlpcREQKD0WoRUREREQ8UINaRERERMQDdfkQkQviwIEDAMyYMcOuW7ZsGQBly5YFoEaNGrasdu3agLp6iIhI4aMItYiIiIiIB4pQi8gFsXPnTgCmTJli1+3atQuAJk2aANC6dWtbVqtWrQKsnYiISOgUoRYRERER8UARahEpUKmpqQDs2LEDgK1bt9qy9PR0wNdfuk2bNrascuXKBVVFERGRXFGEWkRERETEAzWoRUREREQ8UJcPEcl3ycnJdtl08TD/njp1ypaZdHl169YFoFGjRrasWLFi+V1NERGRPFGEWkRERETEA0WoRSTfmQGIALNnzwZg8+bNAFSsWNGWmch09erVAUWlRUTk4qAItYiIiIiIB2pQi4iIiIh4oC4fIpLv1q9fb5fHjh0LgOM4AFxxxRW2rF27doByTouIyMVFEWoREREREQ8UoRaRfHP48GHAfzbELVu2AFCjRg0AmjRpYstatWoFQFxcXEFVUURExDNFqEVEREREPFCEWkTCIiMjwy7v2rULgLVr1wKwb98+WxYfHw9ArVq1AF+qPIBq1aoBEBERkb+VFRERCSNFqEVEREREPFCDWkRERETEA3X5EJGwOHPmjF02afLmzZsHwJEjR2xZ/fr1AWjevDkACQkJtkxdPURE5GKkCLWIiIiIiAeKUItIWLgj1CtWrABg6tSpAFSqVMmW9ejRA4DWrVsDULZs2YKpoIiISD5RhFpERERExANFqEUkLA4dOmSXTR9qkzavatWqtqxTp06Ab0KX6OjogqqiiIhIvlCEWkRERETEAzWoRUREREQ8UJcPEcmTtLQ0ADZv3gzAsmXLbNnRo0cBqFKlCuCbFRF83T+KFy9eALUUERHJf4pQi4iIiIh4oAi1iORJamoqAHPmzAFg7ty5tiwjIwOAzp07A9CiRQtbVqpUqYKqooiISIFQhFpERERExANFqEUkTw4ePAjAypUrAVi1apUtMynxzk+RB+o7LSIilx5FqEVEREREPFCDWkRERETEA3X5EJEcnTt3DvANRATYuXMnAJs2bQJg3759tuzKK68EoFu3bgBUr17dlkVGRuZvZUVERAqYItQiIiIiIh4oQi0iOTKR6TVr1th1ZvnMmTMAVK5c2ZaZiVwSExMBKFpUPzUiInLpUoRaRERERMQDhY1EJEeHDx8G4JdffrHrTLo8E5nu2LGjLWvcuDGgyLSIiFweFKEWEREREfFADWoREREREQ90P1ZEcrR7924Ali1bZteZtHkmRV737t1tWe3atQuuciIiIheYItQiIiIiIh4oQi0ifk6fPm2XDxw4AMDGjRsB2Lt3ry07e/Ys4EuN16JFC1tWrly5fK+niIhIYaEItYiIiIiIB4pQi4gfE5UGWLp0KQAbNmwAwHEcW1apUiXAF6GuUKFCQVVRRESkUFGEWkRERETEAzWoRUREREQ8UJcPEfGza9cuu/zzzz/7ratfv74ta9KkCeDr8iEiInK5UoRaRERERMQDRahFxM+2bdvs8q+//gpA0aKZPxVXXXWVLevZsycACQkJBVc5ERGRQkgRahERERERDxShFrnMnTx5EvBNJe6OUJ85cwaA8uXLA/5TitepUweA4sWLF0Q1RURECi1FqEVEREREPFCDWkRERETEA3X5ELnMbdy4EYAFCxYAsGPHDltWrVo1ABo2bAhA9erVbZm6eoiIiGRShFpERERExANFqEUuQ2lpaXZ5/fr1AMyePRvwDVIEaNSoEQCtWrUCoGLFigVVRRERkYuGItQiIiIiIh4oQi1yGUpJSbHLa9asAWDOnDkA1KtXz5Z16tQJgLZt2wJQtmzZAqqhiIjIxUMRahERERERD9SgFhERERHxQF0+RC4D586dA+DIkSMAbNiwwZbt3r0b8A1UjIuLs2UmXV7dunULpJ4iIiIXI0WoRUREREQ8UIRa5DJw9uxZAJYuXQrAvHnzbJlJk9e+fXvANwARlCZPREQkFIpQi4iIiIh4oAi1yGUgNTUVgOXLlwMwf/58WxYfHw9Aly5dAP8IdZkyZQqqiiIiIhctRahFRERERDxQg1pERERExAN1+RC5DBw4cACAdevWAbB+/Xpb1qtXLwA6duwI+FLlARQvXrygqigiInLRUoRaRERERMQDRahFLjFmgpZDhw7ZdVu2bAFg3759ftuALzVe06ZNAShbtmxBVFNEROSSoQi1iIiIiIgHilCLXGJSUlIAmDNnjl23ePFiAKKiogDo0KGDLWvcuDEAsbGxBVVFERGRS4oi1CIiIiIiHqhBLSIiIiLigbp8iFxizGDEGTNm2HXLli0DoFmzZoBvVkSAFi1aAOA4TsFUUERE5BKjCLWIiIiIiAeKUItcxDIyMuzyiRMnANi2bZvfvwBHjx4FICEhAYA2bdrYsho1agBQpIiur0VERPJCZ1AREREREQ8UoRa5iJnIM8CGDRsAWLt2LQCnTp2yZWaylsTERADq1q1ry6Kjo/O5liIiIpc2RahFRERERDxQg1pERERExAN1+RC5iB08eNAuL1y4EIA1a9YA/jMfVqxYEYCaNWsC6uYhIiISTopQi4iIiIh4oAi1yEVsz549dnnatGkA7N+/H/CfvMUs16pVqwBrJyIicnlQhFpERERExANFqEUuQsePHwdgx44ddt327dsB3xTi9erVs2Vt27YFfH2pRUREJHwUoRYRERER8UANahERERERD9TlQ+Qisnv3bgBWrlwJwKZNm2yZmQ2xfPnyANSuXduWJSQkAFC0qL7yIiIi4aYItYiIiIiIBwpXiVxEtm7dCsDs2bMB2LVrly0zk7Y0aNAAgBo1atgyRaZFRETyjyLUIiIiIiIeKGwlUsilp6fb5c2bNwPw66+/Av5TiF9zzTUAtG/fHoDKlSsXVBVFREQua4pQi4iIiIh4oAa1iIiIiIgH6vIhUsiYmQ7NvwcPHrRlW7ZsAWD9+vUANGrUyJa1aNEC8HX5iIqKyv/KioiIiCLUIiIiIiJeKEItUkiZSVuWLVtm1+3duxeAKlWqAFC3bl1bVrVqVUCRaRERkYKmCLWIiIiIiAeKUIsUMmfPngVg6dKlAEycONGWnThxAoDOnTsD0LZtW1tmph4XERGRgqUItYiIiIiIB2pQi4iIiIh4oC4fIoVMcnIyABs2bABg9erVtqxmzZqAr6tHy5YtbVlsbGzBVFBERET8KEItIiIiIuKBItQiF9C5c+cASE1Nteu2b9/u96+JWIMvIt2uXTsAGjRoYMuKFtXXWURE5EJQhFpERERExAOFtEQuoNOnTwOwbt06u27JkiUAHD16FIDy5cvbssTERABq1KgBQLFixQqimiIiIhKEItQiIiIiIh6oQS0iIiIi4oG6fIhcQCdPngRg5syZdt3s2bMBiImJAeCqq66yZa1btwYgOjq6oKooIiIiOVCEWkRERETEA0WoRS6g/fv3A7By5Uq7bs2aNQD06NEDgK5du9qyxo0bAxAZGVlANRQREZGcKEItIiIiIuKBItQiBcSkyAPYt28fAGvXrgXgyJEjtsz0nTYp8po0aWLLqlatCihCLSIiUpgoQi0iIiIi4oEa1CIiIiIiHqjLh0gBMTMfAixbtgzwDUaMiIiwZbVr1wagXr16gG9WxPO3ExERkcJBEWoREREREQ8UoRYpIO6Bh3PnzgV8gxIrVKhgy8wgxAYNGgCKSouIiBR2ilCLiIiIiHigCLVIATGTuAAsXrwYgN27dwPQvn17W3b11VcDvrR5IiIiUrgpQi0iIiIi4oEa1CIiIiIiHqjLh0g+OXHiBODr1rFu3TpbdurUKQBiY2MB/9R4Jm1eqVKlCqSeIiIi4o0i1CIiIiIiHihCLZJPduzYAcC0adMA3yQuAPHx8QAkJCQA/gMQFZkWERG5uChCLSIiIiLigRrUIiIiIiIeqMuHSD7Zvn07APPmzQPg0KFDtqxevXoAtGzZEoBq1arlat+nj+wD4Gia11oGEFnSLparUBqAYrndx+nMWSH32QpG26KyleMAiMlr/awzdinlYDIAJ87lx3FERESCU4RaRERERMQDRahFwujYsWN2ecuWLQAsWbIEgJIlfZHfgQMHAtCzZ08AqlSpkqvjzHs+c/ter+W5qtnr8oFd3PTr/QDUCbL5mQNJAHzy58F23R9HrgYgJdADSjcBYPB/RwLw8r1tbVHFEELhZw7MBuDfA6616/65M3NwZ0LMYbtu24HMWj89eQIAT3aKz3nnIiIieaAItYiIiIiIB4pQi4RBcnJmH97NmzfbdaYPtZnEpXLlyrbM9KGuUydY7Dd7PV91AHBezdPD/R2fBcCwpt0B+LJzfVtUIdjjDk/PfFzbXgC8W/4JW/TD2swoco+G/78f8xlfrHrjtBcAuO2GdgC0Xf2LLVv2ambEPnAsOfO1/eSmOwHY8rfVtiT5uuqAf1/v02veA6Bfx98AUGft97bstqrBnpiIiEjuKEItIiIiIuKBGtQiIiIiIh5EOI7jXOhKiFzs5s6dC8DUqVPtunXr1gFw5EhmCrlmzZrZssGDBwPQuHHjAqrh+Xwp5xY+l9ntpMPb/QH4ed3btuzqLH0vfI+b91Rmv4nO798SwuOyOjzlEQAa9h5n1z2yILNbxzPtA4xO3PwhAF3vOAvAxwuG2qL6Wbe2pv8hAoCx1/t+6v5/zxIREZGwUIRaRERERMQDDUoU8SA9PR2ADRs2ADBnzhxbFhkZCUCbNm38/gUoV65cQVUxsM2f2MU/PnsAgBu+fBLIIbp83BeB/+g/BwFo9q9Hcn5cAPFXZz7uqWbv2HXDvvgVgCfbZ4aQ/eLUFTIHddbeOh+A5DOusoDp9jJT6B3dmznZS7HI3NVPREQkVIpQi4iIiIh4oAi1SC65hx3s378fgK1btwKwbds2W9agQQMgcIS6bNmy+VzL7GRGbcc/96hdM6fZvwBYHUouuWXT7eKnaZnPb3iPvPYDz3xcx4G+5Hxpb2em8Fv6/zs5t3dvHtsHgEcfewyA6/r7Jsr5+rUhADSM2W/XzXsnc929B94CIKlTHqspIiKSA0WoRUREREQ8UINaRERERMQDdfkQCdHZs5np2kw3D4D169cDsHfvXgAyMjJsWcWKFQFo2rQpADVq1CiQegZzZuGbAPx2dKxd99gvgwHTASO4bZuT7HLa/++Q0bCmtzolNuzi+8/BmQCs3pb53/Z++84cedj+yVUALGj9P1vy3O97ADB/e6Jd1/vxNzL39WJXAKoHHLgoIiLinSLUIiIiIiIeKEItEiIToV62bJldZ9LkpaSkANC6dWtb1qpVKwAqVPANurtwMgcjTn7rJQB2dnnLljzaMzbgIwI5nrzH9b8WAJQM/eEBVapY0/W/zAly0tKDPSIGgFrX/N6uGelaFhERKWiKUIuIiIiIeKAItUiITp48CcD8+fPtusmTJwNQv37m5Nf9+vWzZS1btgQgOjq6gGoYxJpPAXhydOZ/f/PTrbaoTi52k7x7vet/fb3XK4uFAKzf/f//G2xOcRERkUJCEWoREREREQ/UoBYRERER8UBdPkQCcM+GePr0aQA2b94M+M+GmJycDPhmPmzRooUtq1u3LnAhu3ycsUvzPh8OwMoKjwPwv6s8jiQUERERSxFqEREREREPFKEWCSA1NdUur1mzBoDFixcDcPz4cVtmUuIlJmZOKFK9enVbVrJkyXyvZ1BnfJOwTHj/IAANhmUORuxUaCc5yXw9y17gl05ERCQ3FKEWEREREfFAEWqRAI4dO2aXTWQ6KSkz4hsREWHLzLTi9erVAyAuLq6gqpijM0kT7PL7BxsAMKx3c0/7rNGkS84b5dKZs+5ZXDLz5FUtF/bDiIiI5BtFqEVEREREPFCDWkRERETEA3X5EAng8OHDdnnevHkALFmyBIBOnTrZst69ewPQvHlmVwp3d5ALbenP79vlgxUeAaCbtx4fVKhc2/W/RQD8/2yC9MzNlIsuWzcnuf7XFoDEGnnbl4iIyIWgCLWIiIiIiAeKUIvgm8jlxIkTAOzcudOWbd26FYAjR44AULVqVVvWoUMHABISEgqknqHZAMCSnw76Vl3TBoCGHvcc26ibXe7CaABmrc1MI3h/ndxOFpP5uA1zF/pW9RwKQL1Cm9ZPREQkK0WoRUREREQ8UIRaBDh06BAAy5YtA2Dp0qW2rFixzHCpmUq8dm1fP+JKlSr5bVMoHM+MULsDv10eaASA5wnH63S2i7c2y/x32A9zAHjrur62LKTj7B4HwDujfav6fprZJ72mlzqKiIgUMEWoRUREREQ8UINaRERERMQDdfkQAfbt2wfAnDmZ3RfWr19vyypWrAhAjRqZudzcXT5iYmIKqoqh27cLgPWuVZ3r5DGnXRaN7dJdr/wWgOG9HwLgmTuX2bJXe8Znv4szBwCY9I8/ADCx+hO2aGb/qgEfIiIiUpgpQi0iIiIi4oEi1HLZMqnyAHbtyozqLl68GPCf2KVXr14AdO3aFYA6YYv25pPdmbHphVSwq/qVDP9h4q9+AYAfn82c+KZnr5q2bP69mWX/d0fmYMjyh9bass/f/DsAn6zOHOD4cdKLtqyb51GTIiJysTDn4cI0KVpeKUItIiIiIuKBItRy2Tlz5gwAycnJdt2OHTsA2LZtGwBRUVG2rEmTJgB0794dKKT9pt2iywPQoMFVdlWDivlxoMx+0p2eWQDAjpvH25Iv/v0eAM//7t3MFWV8fa+vvOMTAFbdfh0ATSoWopSDIiJSYC6FyLShCLWIiIiIiAdqUIuIiIiIeBDhuEdmiRQypnvG6dOn7bqMjAwAihTJvB4sWtTXc8nMWOhedz7TrcMMQARYsCCz20JSUhIA1atXt2X/93//B0Dbtm3z9iREREQkW+fOnQNg+/btdp05Vx8/fhyA9PR0W2baBqYJa9oF7nXu5q3Zf3R0NOCfXKB+/foAlClTBgjefghGEWoREREREQ80KFEKtdTUVAD27t1r15kr05IlM3PBlSpVypaFcoW5YcMGAMaNG2fXmSvg1q1bA9CyZUtblpCQkOf6i4iISHBnz54FYMmSJXadOUebidbciQROnDjh93h3hNosu9edOnUKgLi4OABuvPFGW3bHHXcA0LBhQ8DXjgDfnfBQKEItIiIiIuKBItRSqJkpwWfOnGnXmavOFi1aAP5TgQdLwXP06FEA1q1bB/j6S4MvFV6zZs0A/yvUI0eOAIGvVM1VtYiIiGR1fp9m048ZoFKlSoDv/Oq+42yWTd/pnTt32rK0tDQAYmNjs32cuz1g9m/O2eZONcAvv/wC+KLe7jvU5cuXD/l5KkItIiIiIuKBGtQiIiIiIh6oy4dcMOb2T7BuGps3bwZg1KhRdp25XVShQgXAN5AAfF03zL4PHz5sy9auXQvA6tWrAdiyZYstK1u2rN/27ltLBw4cACAyMtJv3+cvi4iIiD/TTdMkFHB3o2jfvj0AiYmJAHTr1s2WmYQANWvWBGDixIm2zJx7TTfNunXr2jKzr+LFi9t15jy+detWABYuXGjLPvvsM8CXsi8+Pt6WmTaFu0tJdhShFhERERHxQBFquWCCRaZNiptNmzYBvoGE4Lt6NInaS5QokeXx5orYDCgE2L17NwApKSmA78oTfFFvM9DBnZ7HrHMnlRcREZGcmYGA5hxatWpVW2Yiyyaq7D6fN2/eHIBdu3YBMG/ePFtm0ub26NED8EW6AapVq5alDubYS5cuBWDlypW2zNy9Nvt039k2539FqEVERERE8pki1FIgQukvbfo2ga9/k0nobq5eAerVqwf4pgcPFKE2x3Mnfz958iQAFStWBKBjx462zPSPNlOXmwllwHd1bSLi7n7TwZ6PiIjI5c6cQ0201/SlBv/JV7Kzf/9+AJYtW2bXmX7Vpj92oKi0W1RUFABVqlQBAkecTRTbnOshd+OkFKEWEREREfFADWoREREREQ/U5UMKRLCuEeY2i7vLx4oVKwA4ePAg4EuRB77uH+XKlcvVcU3XEDMIwqTkcddBREREwsd0oTDn2UBp6YI5dOgQ4GsPAFSuXBnwzZQYiLu7hjm26QZquneCLymBqZe7TkWLht5MVoRaRERERMQDRailQLkHIOzbtw/wTaLiHghooscm0fry5cttmRlMYAYZBlKkSOa1YqVKlbKsMwMj3HUxgybMv5qwRURExDtzrjX/ugcEmkiz4R4QaNLlmQGFHTp0sGVmQhd3Cr7zue9Qm3R5M2fOBHztD4DGjRsDvjR9JnEBBI+An08RahERERERDxShlgJlosPgm1bcTNrino60UaNGgG9iFzMpC/iSr7sj2ucz0Wj3laa7H3ZOlBpPRETEu/Pv+JrzM/jOryYy7T7Xm3FVJq1ty5YtbZkZCxUs7Z67jbBkyRIAZs+eneVxJoVuu3btAP92g7uuOVGEWkRERETEAzWoRUREREQ8UJcPKVCnTp2yy8eOHQPg+PHjgH+XDNP9wwxYcA9ciIuLA/zT3mTH3V1DXTdEREQKL3e30KNHjwK+biCrV6+2ZabL6J49ewD/bhrndyMBX9uja9euAJQtW9aWmdkT69SpAwSeRTEUilCLiIiIiHigCLXkK3OFaK4OzRUnwJkzZwBfUnUz8Qr4rhBNSpwmTZrYMhOtNoMTRURE5OJlBi66o8pmUOG2bdsAmDNnji1LSUkBYMKECYBv4CLA6dOnAahVq5Zd98ADDwBw2223Af4pdQ2Tni83k7m4KUItIiIiIuKBItSSr0wUeseOHQDs37/flpkIc9OmTQH/BO0mmbrpL236OIGvf7WJbIuIiMjFzz29uJnYzfSJNpO5QNYpxN3js/bu3Qv4p8YzUW4zSZw7BZ87ku2FItQiIiIiIh6oQS0iIiIi4oG6fEi+MoMDVq1aBcCBAwdsWadOnQBo06ZNlseZwQhmkIDp+gG+7iB5HTggIiIihYcZlGi6eQCsXbsW8KXE69+/vy2rVq0a4Etg4E54sHLlSsDX7gBYtmwZAPPmzQNg4MCBtuy+++4DoHr16p6egyLUIiIiIiIeKMQnYXf27Fm7vHXrVgAWL14M+AYnAsTExAC+dHnux5lk7Vu2bAF8V6/gG8zoTpMjIiIiFydzN/vQoUN2nRmgWLt2bQC6dOliy2rUqJHtvswgQ3M3G2D+/PmAL3ptItwAV155pd/27oldctPOUIRaRERERMQDRaglbEyidRNVBvj1118BmDFjBuBLWQO+K0ZzpWhS7LmXTd/pxMREW2amB1WEWkRE5OJn2g/u9Hcm7Z1Jjeee/C2YmjVrAv7js0wbwkSok5OTbdnGjRsBX3vDRMQBihcvHvJzUIRaRERERMQDNahFRERERDxQlw8Jm2PHjgG+gYgAO3fuBHwDDs2MRwC7d+8GYN++fYBvUIJ7u3r16gH+AxDMDIlFiuh6UERE5GJy7tw5u2y6epgBiO6y0qVL+/1run6EKiEhwS6XK1fOryw9Pd0uHzlyxK8u7hkWc0MtEhERERERDxShFs/MFaW5unMnWDed/O+44w7AfzIWcxVorhTdgwTMPswVafny5W2ZGSSgCLWIiMjFxZ2AYO/evQDs2rUL8I9CmwQEVapUAXI/mZs70nx+1Nnc6QZfmjzTtnDfSc8NtUhERERERDxQhFry5MSJE3b58OHDgC/C7J6ExaSf6dy5MxB8ak9zhQq+1Htmghd31Ft9qEVERC5O7gi1GUu1bds2wD8KbcZQVa1aFQh+zndHoNPS0gDYtGmTXee+Aw5QpkwZu1y5cmXAd0c9t5FwQy0SEREREREP1KAWEREREfFAXT4uc+7uGaF0xDfbu2dDXLZsGeC75eJOcWeWzS2bYNy3YMwtl0AzJJUsWTLLOhERESn8YmJi7PKBAwcAX5ePWrVq2bKWLVsCvsGJwWYtdKfdHTt2LAA//fSTXTdr1iy/7d3tDTOzYl4HPxqKUIuIiIiIeKAI9WUu1PQwJjJtkq8vXbrUlk2aNAnwXVl26dLFltWtWzfkurgHJZrJYUzCdfcVo5kkxvwrIiIiFwd3UoMdO3YAvrve7sQFlSpVAvyjydkxCQwAvvnmGwC+/fbbbLd33zVPTEwEcj9xzPkUoRYRERER8UARarFMKhvTp8kkXAff1Z/p5/Trr7/aMtOH2kSRTcqaYMdw799cmS5fvtyWrVmzBvBNZx4VFWXLTJod02e7YcOGtsxc0ZpE7SIiIlIwzDneHYU+dOgQADt37gRg9erVtmzOnDkAbN++HfAfG2XaFGXLlgX876ibfthmm3Xr1tkyc4fb3Ve7WrVqAHTo0AGAbt262bJwtRcUoRYRERER8UANahERERERD9TlQ6xTp04BsHLlSgDmzp1ryxYtWgT4umKYWzfgG7BoUs+4u4o0aNAACNwdZP78+QBMnDjR77ju/aekpAAQGRlpy8wAAnMcMwsj+G7j5GYwpIiIiHhn0te52wGmW4cZLLh48WJb5u4aAr4unQAzZ84EAqexM+0O8697G9PVo3fv3nbd9ddfD8BVV10F+GZHBP/2hReKUIuIiIiIeKAItVgmDZ1JVeeOQpsO/ybFTSAnT54EfJFugPT0dMB39Xju3DlbZlLwbdy4EYDNmzfbsqNHj2Z7HDN4ISEhAYDatWtnqYOIiIgULHOOd5+L9+3bB/juQptBioG42w+HDx/OUx3q168P+EehmzdvDvjucAdiot2hphM+nyLUIiIiIiIeRDjuuadFRERERCRXFKEWEREREfFADWoREREREQ/UoBYRERER8UANahERERERD9SgFhERERHxQA1qEREREREP1KAWEREREfFADWoREREREQ/UoBYRERER8UANahERERERD9SgFhERERHxQA1qEREREREP1KAWEREREfHg/wHS0o1Uw2NiXAAAAABJRU5ErkJggg==",
"path": "images_version_6/image_46.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
if AB parallel CD, then the degree of angle 1 is ()
Choices:
A:20°
B:30°
C:70°
D:110°
|
||
231
|
47
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAI4AAABwCAAAAADtDhe9AAAKLElEQVR4nMWbeXxU1RXHf++92TKTZSaBkTUkAUXCJgEEVBTR0oIWEcWqgFqXWrGIUDYXxAAiS0QsigX8hAi1LBa0NvBRUFq0IiJVwVAhJkghezL79uZtp3+MIGSZeZl5E37/JLmT9973nnfuuefec4chtJRUcRXbSnMHqLXHKo7pnwFQOpoFreEokjvz6QWfEbnly8BDzSQ7eInEkpsOy1LzjzpALazDphs5YOLYwsrL4T5Ma64MwL+i7PVuHQ/UFg5cz4nL0lM6lAWtjywAgG0OUxjqSBIAUXDQ5xn3K65WbCd6xMuBg9xlX77ha9EaODk6iUEpmrf22nBwmb9547F7ygmQkxWUooaBoyOKw82awif6nJLCLrGD4s4lGrhuxweBS5sM9jQPZ0jXJcc40XEMw6ZtONTMTRjeDzDJoYmBA+be+2eXXcJDZEohcibJdWIFXt3U2U99dXEDEzKkCEwGd3lwYJh66+LjAC6MbaMoGJEk14mNA9PMGwvP8YDsUBAEZI+3LBDzojjFRx/oETXMnXyWiCRZccny2QJrv72B5AxzcrQ5hV6Q5LM5FvCvZgWMjk56QGpwWdPSBYPGdpE5APDGxoGkQ+PTmQu3d+lpybJxFmKDZnJpHHjkoEkPREkwLlXdH21XBL5jaof9to/OivOd0UqiHuRPZYhRi6NUzhgxg9E3fLrT/fspNi1RAJAnRVdjYCmQLatxZSIi+nbsRiKZrzpw++/KtfZgnpzP9sjLG7TZoRqHyoaVyEREJ/9w0xeK1kBy1YRNFfv67lGPI301YpdIRHR203WfyFrzhCbV0NGCfeoHCFfw4vJOg6xAz7s963v01naWoGOpPnHv8N4qXRmgQ9yA0uKFN4iyCY1zr3kkVSsSPo0DlNdXZ4QKJxpVW6f22aLUSY45N/URBb1D2lDXWaP0VJfyUAZkf+Xb9q+X5w1Xi1O3PSMdpgc+2nLnAKe1S+oVFhWznSr5JBHgykP5XXJeO5CvEid8wiilKs5OJWvLRvfRizpOq9ydgBQA3xZk4kRDF1blyKp85/jUH0kicj7xYJPWo4r81Q/urqoebT8tqzI5uTYOFgeYwQG256mwRhvD/KyD0/bOvXGsdW8uq2pk+f9SBOHWP0UG06nns1ZYtcUJuhlFYQx2lVPosfKROKJMsET+OvP4iHlp2vIAQZ0BUJMNwnNy9YieNs9ptwJZApCz9pONQa1xzD8lUDH9LPBW765H+fm9uq8KkNMlExF9ef0WQXN/JiIiFS/L6+VsgiAyKRmQ5Ugn/rF26nS91gYCoGZJkK4zwxT5lQ/ZOAAYr6xLvSsJa5ugmjBovvCbxRRh0P1SXm+aqDkNhduZ8p63iOkO98rsa7TGYUzq851mEraO+peWThxR3AsC/ZSq5dm5WtoGUBV32pDxqVEzqzUkAZAIDsyP9ZtzVjsSAIngSOg+L3Wd86IWtYllFKlOTptLacrUofLhIfO6n2/wOjJYP8TsROJj3K7MZnHgK5r+nXtXj0hD0/pi1iDT8KIeCWyNxb/U5iBv3vxS9wX6+60AgKyHT90z3PfNYWMiG3Xx41Bg/zuPjrEWzUob3wkAWGvnWyzVt6VaEqBRMaO3JUfJDX8TiWhf5IfkPLy6cuuOpvqE6k7x4/ww8mkPERF9MPKgj4iEzb1zexxIcHka/0DvOaOsVAAAn4P0APg9b+25pm+iy534exJ8a8hOhfhdg3cIRERf3OdWtgUciW3HJ4BDwp78bYF3h+6JvKCta3iihtfcCeEksqemv/HlZR+fmj2eASBWH5rYZBYWX5nYpmECOAqbOmrIB0W3MwACx2dU7Vc42Tw5sQJh3JMEFFeWvOXNmVMieavfxck+CwJ5psuEA3i2vvviSG3LpQm8LHHjrlXDNC7exo/je3vv6tEakgBIAMe1/r0NQzTeX44//fJv+7Aon5WdGleN43TlyvfeXzsMgKRxJSm+27n+um/tsPgvb1tx3c9fdGTNUI1BIooHx7f02xeGa04CIC4c/9Lv1uRrTwIgHhznoop1VyarcN0uHEkHnF5/7tVE1gra4ZAvxVTz5zNFVyULpn04jNFUs/zckiTStDMMnl1V+UZeslCAdllHYb0rHW/mJA0FaA+O7KIVNS/kJA8FaA8Ox84KFA5KIgrQHpwzr+CFZNOoxzmzRFyak0SQiNTi/LBIfiU7qSQAVKdfFUtQ1AE0Kq1TsUQp6pFkEgAqrVM7y7S6Q2jUWCfonJU1p1vyUQBVOJ7Hshdqvp/dhmK+LPrvQ72W5vIddNI8Kk4IwKkncwrtJPg02DRWoWgzuuLNYL5Y0ellOyCxHXOUOmqCIek+X5XzrD1puV9LRc93ymaMWpAJKB12yjzag+jrxwfOT/XKsl+mAA8g6KxKsktHwVGOLB+9LPib0yyXwlXffQzwLbp2yrnLhnPi8b6zbbs+r5JkvVDyIQ/h44J9W0tbnu/WUm2HwU9nT37KekRv78w4rGU9BzFgBHM3IZTcAd+WdeizZ8bNsXoqbjFL4czAgWvNYejG/bP/hPGanWpq47mtSi69/mUf1ZaUOfofV/wldY6CI0SB+vLvknSoPPq+Mv19xa9nWsIVlq41xsbgUaOpAX5vmllnT65p2rCOtC1vbiNR05O5V+eh/7Yn+ubloe+OxKof6o4aRnAuLfoo7w8ed5+XSPrf8YrPB5W4606eONy/2BsnR6QXUoOgpjsgIlmsv/jrB8L+6zYcuauYJyKipoFHA0SKp99/4qXxRPoalp0q/I4FZK/OflElQTi4YNJDw6cVewmAIJtDJiDsS/EL8TkDy3IAILuUDDWJsEzE13sDivunF6bsHlzsJ7HpV7vDRERSnUsiIvFcKE7rEJGkkIfOv7XoQhP5Ng3oPf379+qJiIjfXlDSSETitmmJlYIuojnt9LrctXK9iiNIOtuPk25+x8TfO3ksAEilS5+7k6u3MehV4baQpINMeoWCjJklYhSFI/X72lLQYGYB8Ft2+zniSnNVXKrz3D1wQVeExww0A5D3LjKVr4PVBUgNK68UGIYTGaOfsQVEg8BwioHlOZXZj2ziQ33GdgWQMv3rB/LZTXeW9oydp+hKa7d3BWhk/7AOqHP/Ig1+JiyBEdPO2UmnSCwTUtCkKGECA179wQZZ5PmQDABst5wxWZh/tnh2Rsyu6OYvzANguD2FA2C/bYKRAGIAh5J5X1pASOeASEM7RYwYNNkAQD5qZojplH/gCWvMq3Suvo12RnF2BgDosy58kD7XaEF6uyku1k83Ew+PYBVOHPyRFPsSVt+YxdYJWS2/wpOZ2HGBC5IC+3PTOeD7oebY/8xaqnh0MVQfCmvz8Jbi6q/uygI1b49RgzNv5y5v7Z6XcrX+WsgF8acKJARcK3sPVVMmFbYOvrrf4mqNQl5LKQ237vSFvhl6cwVR7HmdIV85p7NktwxRfMCsQaEzdPyRE3kCY370jhw9EBSM0e/5f5JlZZTnzFCxAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_47.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, the straight line AB parallel CD, angle C = 44.0, angle E is a right angle, then angle 1 is equal to ()
Choices:
A:132°
B:134°
C:136°
D:138°
|
Như hình vẽ, đường thẳng AB song song với CD, góc C bằng 44°, góc E là góc vuông, thì góc 1 bằng ()
Các lựa chọn:
A: 132°
B: 134°
C: 136°
D: 138°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the straight line AB parallel CD, angle C = 44.0, angle E is a right angle, then angle 1 is equal to ()
Choices:
A:132°
B:134°
C:136°
D:138°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the straight line AB parallel CD, angle C = 44.0, angle E is a right angle, then angle 1 is equal to ()
Choices:
A:132°
B:134°
C:136°
D:138°
|
As shown in the figure, the straight line AB parallel CD, angle C = 44.0, angle E is a right angle, then angle 1 is equal to ()
Choices:
A:132°
B:134°
C:136°
D:138°
|
232
|
47
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAI4AAABwCAAAAADtDhe9AAAKLElEQVR4nMWbeXxU1RXHf++92TKTZSaBkTUkAUXCJgEEVBTR0oIWEcWqgFqXWrGIUDYXxAAiS0QsigX8hAi1LBa0NvBRUFq0IiJVwVAhJkghezL79uZtp3+MIGSZeZl5E37/JLmT9973nnfuuefec4chtJRUcRXbSnMHqLXHKo7pnwFQOpoFreEokjvz6QWfEbnly8BDzSQ7eInEkpsOy1LzjzpALazDphs5YOLYwsrL4T5Ma64MwL+i7PVuHQ/UFg5cz4nL0lM6lAWtjywAgG0OUxjqSBIAUXDQ5xn3K65WbCd6xMuBg9xlX77ha9EaODk6iUEpmrf22nBwmb9547F7ygmQkxWUooaBoyOKw82awif6nJLCLrGD4s4lGrhuxweBS5sM9jQPZ0jXJcc40XEMw6ZtONTMTRjeDzDJoYmBA+be+2eXXcJDZEohcibJdWIFXt3U2U99dXEDEzKkCEwGd3lwYJh66+LjAC6MbaMoGJEk14mNA9PMGwvP8YDsUBAEZI+3LBDzojjFRx/oETXMnXyWiCRZccny2QJrv72B5AxzcrQ5hV6Q5LM5FvCvZgWMjk56QGpwWdPSBYPGdpE5APDGxoGkQ+PTmQu3d+lpybJxFmKDZnJpHHjkoEkPREkwLlXdH21XBL5jaof9to/OivOd0UqiHuRPZYhRi6NUzhgxg9E3fLrT/fspNi1RAJAnRVdjYCmQLatxZSIi+nbsRiKZrzpw++/KtfZgnpzP9sjLG7TZoRqHyoaVyEREJ/9w0xeK1kBy1YRNFfv67lGPI301YpdIRHR203WfyFrzhCbV0NGCfeoHCFfw4vJOg6xAz7s963v01naWoGOpPnHv8N4qXRmgQ9yA0uKFN4iyCY1zr3kkVSsSPo0DlNdXZ4QKJxpVW6f22aLUSY45N/URBb1D2lDXWaP0VJfyUAZkf+Xb9q+X5w1Xi1O3PSMdpgc+2nLnAKe1S+oVFhWznSr5JBHgykP5XXJeO5CvEid8wiilKs5OJWvLRvfRizpOq9ydgBQA3xZk4kRDF1blyKp85/jUH0kicj7xYJPWo4r81Q/urqoebT8tqzI5uTYOFgeYwQG256mwRhvD/KyD0/bOvXGsdW8uq2pk+f9SBOHWP0UG06nns1ZYtcUJuhlFYQx2lVPosfKROKJMsET+OvP4iHlp2vIAQZ0BUJMNwnNy9YieNs9ptwJZApCz9pONQa1xzD8lUDH9LPBW765H+fm9uq8KkNMlExF9ef0WQXN/JiIiFS/L6+VsgiAyKRmQ5Ugn/rF26nS91gYCoGZJkK4zwxT5lQ/ZOAAYr6xLvSsJa5ugmjBovvCbxRRh0P1SXm+aqDkNhduZ8p63iOkO98rsa7TGYUzq851mEraO+peWThxR3AsC/ZSq5dm5WtoGUBV32pDxqVEzqzUkAZAIDsyP9ZtzVjsSAIngSOg+L3Wd86IWtYllFKlOTptLacrUofLhIfO6n2/wOjJYP8TsROJj3K7MZnHgK5r+nXtXj0hD0/pi1iDT8KIeCWyNxb/U5iBv3vxS9wX6+60AgKyHT90z3PfNYWMiG3Xx41Bg/zuPjrEWzUob3wkAWGvnWyzVt6VaEqBRMaO3JUfJDX8TiWhf5IfkPLy6cuuOpvqE6k7x4/ww8mkPERF9MPKgj4iEzb1zexxIcHka/0DvOaOsVAAAn4P0APg9b+25pm+iy534exJ8a8hOhfhdg3cIRERf3OdWtgUciW3HJ4BDwp78bYF3h+6JvKCta3iihtfcCeEksqemv/HlZR+fmj2eASBWH5rYZBYWX5nYpmECOAqbOmrIB0W3MwACx2dU7Vc42Tw5sQJh3JMEFFeWvOXNmVMieavfxck+CwJ5psuEA3i2vvviSG3LpQm8LHHjrlXDNC7exo/je3vv6tEakgBIAMe1/r0NQzTeX44//fJv+7Aon5WdGleN43TlyvfeXzsMgKRxJSm+27n+um/tsPgvb1tx3c9fdGTNUI1BIooHx7f02xeGa04CIC4c/9Lv1uRrTwIgHhznoop1VyarcN0uHEkHnF5/7tVE1gra4ZAvxVTz5zNFVyULpn04jNFUs/zckiTStDMMnl1V+UZeslCAdllHYb0rHW/mJA0FaA+O7KIVNS/kJA8FaA8Ox84KFA5KIgrQHpwzr+CFZNOoxzmzRFyak0SQiNTi/LBIfiU7qSQAVKdfFUtQ1AE0Kq1TsUQp6pFkEgAqrVM7y7S6Q2jUWCfonJU1p1vyUQBVOJ7Hshdqvp/dhmK+LPrvQ72W5vIddNI8Kk4IwKkncwrtJPg02DRWoWgzuuLNYL5Y0ellOyCxHXOUOmqCIek+X5XzrD1puV9LRc93ymaMWpAJKB12yjzag+jrxwfOT/XKsl+mAA8g6KxKsktHwVGOLB+9LPib0yyXwlXffQzwLbp2yrnLhnPi8b6zbbs+r5JkvVDyIQ/h44J9W0tbnu/WUm2HwU9nT37KekRv78w4rGU9BzFgBHM3IZTcAd+WdeizZ8bNsXoqbjFL4czAgWvNYejG/bP/hPGanWpq47mtSi69/mUf1ZaUOfofV/wldY6CI0SB+vLvknSoPPq+Mv19xa9nWsIVlq41xsbgUaOpAX5vmllnT65p2rCOtC1vbiNR05O5V+eh/7Yn+ubloe+OxKof6o4aRnAuLfoo7w8ed5+XSPrf8YrPB5W4606eONy/2BsnR6QXUoOgpjsgIlmsv/jrB8L+6zYcuauYJyKipoFHA0SKp99/4qXxRPoalp0q/I4FZK/OflElQTi4YNJDw6cVewmAIJtDJiDsS/EL8TkDy3IAILuUDDWJsEzE13sDivunF6bsHlzsJ7HpV7vDRERSnUsiIvFcKE7rEJGkkIfOv7XoQhP5Ng3oPf379+qJiIjfXlDSSETitmmJlYIuojnt9LrctXK9iiNIOtuPk25+x8TfO3ksAEilS5+7k6u3MehV4baQpINMeoWCjJklYhSFI/X72lLQYGYB8Ft2+zniSnNVXKrz3D1wQVeExww0A5D3LjKVr4PVBUgNK68UGIYTGaOfsQVEg8BwioHlOZXZj2ziQ33GdgWQMv3rB/LZTXeW9oydp+hKa7d3BWhk/7AOqHP/Ig1+JiyBEdPO2UmnSCwTUtCkKGECA179wQZZ5PmQDABst5wxWZh/tnh2Rsyu6OYvzANguD2FA2C/bYKRAGIAh5J5X1pASOeASEM7RYwYNNkAQD5qZojplH/gCWvMq3Suvo12RnF2BgDosy58kD7XaEF6uyku1k83Ew+PYBVOHPyRFPsSVt+YxdYJWS2/wpOZ2HGBC5IC+3PTOeD7oebY/8xaqnh0MVQfCmvz8Jbi6q/uygI1b49RgzNv5y5v7Z6XcrX+WsgF8acKJARcK3sPVVMmFbYOvrrf4mqNQl5LKQ237vSFvhl6cwVR7HmdIV85p7NktwxRfMCsQaEzdPyRE3kCY370jhw9EBSM0e/5f5JlZZTnzFCxAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_47.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, the straight line AB parallel CD, then angle 1 is equal to ()
Choices:
A:132°
B:134°
C:136°
D:138°
|
Như hình vẽ, đường thẳng AB song song với CD, thì góc 1 bằng ()
Các lựa chọn:
A: 132°
B: 134°
C: 136°
D: 138°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the straight line AB parallel CD, then angle 1 is equal to ()
Choices:
A:132°
B:134°
C:136°
D:138°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the straight line AB parallel CD, then angle 1 is equal to ()
Choices:
A:132°
B:134°
C:136°
D:138°
|
As shown in the figure, the straight line AB parallel CD, then angle 1 is equal to ()
Choices:
A:132°
B:134°
C:136°
D:138°
|
233
|
47
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAI4AAABwCAAAAADtDhe9AAAKLElEQVR4nMWbeXxU1RXHf++92TKTZSaBkTUkAUXCJgEEVBTR0oIWEcWqgFqXWrGIUDYXxAAiS0QsigX8hAi1LBa0NvBRUFq0IiJVwVAhJkghezL79uZtp3+MIGSZeZl5E37/JLmT9973nnfuuefec4chtJRUcRXbSnMHqLXHKo7pnwFQOpoFreEokjvz6QWfEbnly8BDzSQ7eInEkpsOy1LzjzpALazDphs5YOLYwsrL4T5Ma64MwL+i7PVuHQ/UFg5cz4nL0lM6lAWtjywAgG0OUxjqSBIAUXDQ5xn3K65WbCd6xMuBg9xlX77ha9EaODk6iUEpmrf22nBwmb9547F7ygmQkxWUooaBoyOKw82awif6nJLCLrGD4s4lGrhuxweBS5sM9jQPZ0jXJcc40XEMw6ZtONTMTRjeDzDJoYmBA+be+2eXXcJDZEohcibJdWIFXt3U2U99dXEDEzKkCEwGd3lwYJh66+LjAC6MbaMoGJEk14mNA9PMGwvP8YDsUBAEZI+3LBDzojjFRx/oETXMnXyWiCRZccny2QJrv72B5AxzcrQ5hV6Q5LM5FvCvZgWMjk56QGpwWdPSBYPGdpE5APDGxoGkQ+PTmQu3d+lpybJxFmKDZnJpHHjkoEkPREkwLlXdH21XBL5jaof9to/OivOd0UqiHuRPZYhRi6NUzhgxg9E3fLrT/fspNi1RAJAnRVdjYCmQLatxZSIi+nbsRiKZrzpw++/KtfZgnpzP9sjLG7TZoRqHyoaVyEREJ/9w0xeK1kBy1YRNFfv67lGPI301YpdIRHR203WfyFrzhCbV0NGCfeoHCFfw4vJOg6xAz7s963v01naWoGOpPnHv8N4qXRmgQ9yA0uKFN4iyCY1zr3kkVSsSPo0DlNdXZ4QKJxpVW6f22aLUSY45N/URBb1D2lDXWaP0VJfyUAZkf+Xb9q+X5w1Xi1O3PSMdpgc+2nLnAKe1S+oVFhWznSr5JBHgykP5XXJeO5CvEid8wiilKs5OJWvLRvfRizpOq9ydgBQA3xZk4kRDF1blyKp85/jUH0kicj7xYJPWo4r81Q/urqoebT8tqzI5uTYOFgeYwQG256mwRhvD/KyD0/bOvXGsdW8uq2pk+f9SBOHWP0UG06nns1ZYtcUJuhlFYQx2lVPosfKROKJMsET+OvP4iHlp2vIAQZ0BUJMNwnNy9YieNs9ptwJZApCz9pONQa1xzD8lUDH9LPBW765H+fm9uq8KkNMlExF9ef0WQXN/JiIiFS/L6+VsgiAyKRmQ5Ugn/rF26nS91gYCoGZJkK4zwxT5lQ/ZOAAYr6xLvSsJa5ugmjBovvCbxRRh0P1SXm+aqDkNhduZ8p63iOkO98rsa7TGYUzq851mEraO+peWThxR3AsC/ZSq5dm5WtoGUBV32pDxqVEzqzUkAZAIDsyP9ZtzVjsSAIngSOg+L3Wd86IWtYllFKlOTptLacrUofLhIfO6n2/wOjJYP8TsROJj3K7MZnHgK5r+nXtXj0hD0/pi1iDT8KIeCWyNxb/U5iBv3vxS9wX6+60AgKyHT90z3PfNYWMiG3Xx41Bg/zuPjrEWzUob3wkAWGvnWyzVt6VaEqBRMaO3JUfJDX8TiWhf5IfkPLy6cuuOpvqE6k7x4/ww8mkPERF9MPKgj4iEzb1zexxIcHka/0DvOaOsVAAAn4P0APg9b+25pm+iy534exJ8a8hOhfhdg3cIRERf3OdWtgUciW3HJ4BDwp78bYF3h+6JvKCta3iihtfcCeEksqemv/HlZR+fmj2eASBWH5rYZBYWX5nYpmECOAqbOmrIB0W3MwACx2dU7Vc42Tw5sQJh3JMEFFeWvOXNmVMieavfxck+CwJ5psuEA3i2vvviSG3LpQm8LHHjrlXDNC7exo/je3vv6tEakgBIAMe1/r0NQzTeX44//fJv+7Aon5WdGleN43TlyvfeXzsMgKRxJSm+27n+um/tsPgvb1tx3c9fdGTNUI1BIooHx7f02xeGa04CIC4c/9Lv1uRrTwIgHhznoop1VyarcN0uHEkHnF5/7tVE1gra4ZAvxVTz5zNFVyULpn04jNFUs/zckiTStDMMnl1V+UZeslCAdllHYb0rHW/mJA0FaA+O7KIVNS/kJA8FaA8Ox84KFA5KIgrQHpwzr+CFZNOoxzmzRFyak0SQiNTi/LBIfiU7qSQAVKdfFUtQ1AE0Kq1TsUQp6pFkEgAqrVM7y7S6Q2jUWCfonJU1p1vyUQBVOJ7Hshdqvp/dhmK+LPrvQ72W5vIddNI8Kk4IwKkncwrtJPg02DRWoWgzuuLNYL5Y0ellOyCxHXOUOmqCIek+X5XzrD1puV9LRc93ymaMWpAJKB12yjzag+jrxwfOT/XKsl+mAA8g6KxKsktHwVGOLB+9LPib0yyXwlXffQzwLbp2yrnLhnPi8b6zbbs+r5JkvVDyIQ/h44J9W0tbnu/WUm2HwU9nT37KekRv78w4rGU9BzFgBHM3IZTcAd+WdeizZ8bNsXoqbjFL4czAgWvNYejG/bP/hPGanWpq47mtSi69/mUf1ZaUOfofV/wldY6CI0SB+vLvknSoPPq+Mv19xa9nWsIVlq41xsbgUaOpAX5vmllnT65p2rCOtC1vbiNR05O5V+eh/7Yn+ubloe+OxKof6o4aRnAuLfoo7w8ed5+XSPrf8YrPB5W4606eONy/2BsnR6QXUoOgpjsgIlmsv/jrB8L+6zYcuauYJyKipoFHA0SKp99/4qXxRPoalp0q/I4FZK/OflElQTi4YNJDw6cVewmAIJtDJiDsS/EL8TkDy3IAILuUDDWJsEzE13sDivunF6bsHlzsJ7HpV7vDRERSnUsiIvFcKE7rEJGkkIfOv7XoQhP5Ng3oPf379+qJiIjfXlDSSETitmmJlYIuojnt9LrctXK9iiNIOtuPk25+x8TfO3ksAEilS5+7k6u3MehV4baQpINMeoWCjJklYhSFI/X72lLQYGYB8Ft2+zniSnNVXKrz3D1wQVeExww0A5D3LjKVr4PVBUgNK68UGIYTGaOfsQVEg8BwioHlOZXZj2ziQ33GdgWQMv3rB/LZTXeW9oydp+hKa7d3BWhk/7AOqHP/Ig1+JiyBEdPO2UmnSCwTUtCkKGECA179wQZZ5PmQDABst5wxWZh/tnh2Rsyu6OYvzANguD2FA2C/bYKRAGIAh5J5X1pASOeASEM7RYwYNNkAQD5qZojplH/gCWvMq3Suvo12RnF2BgDosy58kD7XaEF6uyku1k83Ew+PYBVOHPyRFPsSVt+YxdYJWS2/wpOZ2HGBC5IC+3PTOeD7oebY/8xaqnh0MVQfCmvz8Jbi6q/uygI1b49RgzNv5y5v7Z6XcrX+WsgF8acKJARcK3sPVVMmFbYOvrrf4mqNQl5LKQ237vSFvhl6cwVR7HmdIV85p7NktwxRfMCsQaEzdPyRE3kCY370jhw9EBSM0e/5f5JlZZTnzFCxAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_47.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, then angle 1 is equal to ()
Choices:
A:132°
B:134°
C:136°
D:138°
|
Như hình vẽ, góc 1 bằng ()
Lựa chọn:
A: 132°
B: 134°
C: 136°
D: 138°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, then angle 1 is equal to ()
Choices:
A:132°
B:134°
C:136°
D:138°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, then angle 1 is equal to ()
Choices:
A:132°
B:134°
C:136°
D:138°
|
As shown in the figure, then angle 1 is equal to ()
Choices:
A:132°
B:134°
C:136°
D:138°
|
234
|
47
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAQAAAADFCAYAAAC7ICzVAAAxqUlEQVR4nO2d529cZ3aHn+kznBl2ctiLSInqjeqFpnqxLBc59tpZ28k6cXb3S7L5AwIEQYAAQT4sAiNZwAtbNhzbstfqhaIkUpWSJZOiJKpRlFhEUmximV7uvfmgvXdJ9UKxvg8gGJZmOHd47/m95z3nvOfoFEVREAgE4xL9cF+AQCAYPoQACATjGCEAAsE4RgiAQDCOEQIgEIxjhAAIBOMYIQACwThGCIBAMI4RAiAQjGOEAAgE4xghAALBOEYIgEAwjhECIBCMY4QACATjmFEtAJIk0dLSQnt7+3BfikAwKhnVAtDX18ePP/7Ijz/+SEdHx3BfjkAw6jAO9wU8D7IsoygKgUCAM2fO0NfXh8vlYunSpSQnJw94nSzLGAwGdDrdMF6xQDAyGVUegKIoSJKEx+MhEAgQGxvLO++8Q1paGv/93//NkSNH6Orq0l4fCoVwu92Ew2FE4yOB4EFGhQegrvaKomA0GjEajRgMBkwmE4sXLyYUCuH3+zly5AjBYJDNmzcTFxeHyWRCkiT0er3wAASChzAqPABFUYhEIoTDYQAsFgtmsxm9Xk9iYiJFRUW89tprtLe3c/jwYX766Sfu3r2LwWAgKioKo3FU6JxAMOSMCgHQ6/XYbDaioqIwmUwD9vSKohATE8PChQtZuXIl4XCYzz//nJqaGkKhkFj5BYLHMCoEAMBgMGA0Gh9q0GazGZfLxdq1a1m6dCmSJLF7927Ky8uRJGkYrlYgGB2MGt/4USu5+vcmk4nJkyej0+nw+XwcO3YMgIyMDHJzc7HZbCiKIjwCgaAfo8YDeFry8vL4q7/6K2bPnk1DQwNbt26loaEBSZIIhUIiGyAQ9GPMCYDRaCQzM5M1a9ZQUFBAfX09e/bsobKy8pFbCIFgvDJqtgDPgtFoZMGCBUiShM/n4+zZs+h0OlJSUkhJScFkMg33JQoEI4Ix5wGo2Gw2FixYwC9+8Qvi4+P5+eef+eGHH2htbR2W65EkiXA4TCQSQZblYbkGgeB+dGN9NqDH4+HkyZOUlJRw48YNNm/ezIoVK8jLyxuSz1cUBVmW8Xq9bN++nZ6eHtauXUtOTg42m21IrkEgeBRjcgvQH4fDwcqVK/F6vTQ1NXHy5En0ej0Wi4WUlJSXXiQUCAS4c+cOly5d4rPPPiMUCjFp0iRSU1MHCIAsy0iShMFgQK8fs46ZYIQxLp40o9HIqlWr+N3vfofP52PHjh189913Q3KMuLu7myNHjvAv//IvnDhx4pFGHgqF8Hg8IlMhGFLGhQDodDpiYmKYMWMGr7/+OrGxsZSWlnL69Gk6Oztf6mc7nU5mzpzJO++8w+TJk4mKiiIhIUELREYiEXw+H5FIBLPZLDIVgiFlzG8B+uN0OtmwYQMej4edO3dSUVGB3W5n6dKlREVFvRTX2+l0UlhYSHZ2NhcvXqSnpwe73a59lnrCUS13Fu6/YCgZVwIAEB0dzaZNm0hLS+OLL75g3759WCwWZs2aRVxc3Ev5TL1ej8lkwmaz0dfXh9vt1kqU1bMN6usEgqFk3AmAwWAgLS0NnU5HTU0NNTU1bN++HavVysyZM4mKinopn6vX61EUhWAwiM/nG3BGQRi+YLgYt0+ey+VizZo15OXlcevWLQ4fPsylS5deagBO7VAkSdKAz4lEIkQiERH8Eww5484DUNHr9cyZMweDwYDZbOb777/H7XaTmZlJcnKy5pYPFmozE4vFgtVqHRAD8Hq9wL2U5WB/rkDwOMatAMC97MCkSZOIRCJ0dnZy+/Zt/vCHP/Duu+8yadKkQTNGWZYJBoPodDosFgsWi0Vb7XU6HWazGRBbAcHQM64FAO6VDM+aNQtJkti2bRunTp0iKSkJQDtePBioBq/X6zVhUY8nW61WcVRZMCyMewGAe4VChYWFuN1uIpEIu3fvxu/3Ex0dTWpq6iNX5v6r+OPQ6/WYzWYURSEcDhMOhwd0NdLpdML4BcOC8Dn/jMFgYPbs2bz66qvk5+dTU1PDtm3buHv3LsADnYUURcHn8+F2u7XDPYqiEAqFHnrYx2AwIEkSbrebjo4O/H7/y/9SglGDLMtaz8uhRAhAPxISEli0aBFr1qzBZrNx+vRpTpw4QVNT00ONWo3qq56ALMuEQiEikYj2GkVRuHPnDseOHaOhoYHm5mZOnjzJtWvX8Hg8omWZALi3wASDwSH/XLEFuA+73U5xcTGhUIiSkhK2bt1KT08Pb7/99oAyXZ1Oh91uH7B3V7sXqweMVI+gqqqKf//3f+fq1atIksSf/vQnnE4n0dHRTJgw4aXVHghGD5FIhGAwiMPhGNLPFQLwZ9TVW5ZloqOjWbZsGQaDgW+++Yby8nIA3nrrLaKjo4F7xq0W97jdbqxWK2azeUAqT6fTYTQamThxIp988ok2tCQmJoapU6eSmJiI2WzWvAuRBRi7PCnIO1xxoDHfD+BpkWWZQCBAJBLRjLyjo4PvvvuOkydPYjAY+NWvfsWcOXOIioqiqakJo9GI2WwmGAxit9txOp1YLJYBOX71v5FIBL/fjyzLWCwWDAaD1uk4GAyiKAoWi0UEA8cgkiQhSRJGo/GRIh8OhwmFQtjt9iG9NuEB/Bm9Xo/VatX29DqdjoSEBD744AOMRiMlJSVs27aNSCRCQUEBBw8e1NqMJSYmYrPZsNlsREdH43A4tNy+xWLRphlFR0drzUlV41fLg9VCITHHcGyhBvfU8XQmk+mhImAymYalVZ3wAO7jYa7arVu3OHbsGPv27SMzM5OJEyfS2dlJKBQiEAjQ29uLTqfTRpilpaUxY8YMFixYQEZGBhaLZUBs4P5xZWrwx2w2C+MfA8iyPMClV4PFavpXXRxGAsIDuI+HGWBubi5ms5nm5mZqampoaWkhPz+fhIQEwuEwHo9Hy/F3d3cTCAS0Bh8JCQkkJCSQmppKeno6drv9gQpD9YEQxj/6UZ8DQFvt1cXh/rVW9TbvLwwbSoQH8JSEQiHa2tr44x//yNGjR5k7dy4bNmxg9uzZBAIBjEYjsizT3d3NjRs3qKys5NSpU9y5c4fMzExef/11iouLycvLE7MKxzBq/0dFUbBarRiNRrxeL319fZhMJi2TpG79ZFnWzp6oTWGGEvEkPiVms5n09HQ2bdqE1Wrl+PHjxMfHk5qayrRp04B7Cp6QkEBiYiKZmZlMmzaNO3fu0NTURFlZGXV1dSxZsoSVK1dqgUbB2ELN/Oh0Oq346/r165SVlXH16lU8Hg96vZ5IJIIkSSQlJbF582ZmzZpFQkLCkF+vEIBnQD1BaDQaaW5u5vr16+zfv5+YmBgyMjK0wz4ulwuXy8W0adPweDycP3+enTt3Ul9fj9/vJxwOs2DBArKysoTbP8bQ6XSa66+midVxdRUVFfT29pKamorT6USv1xMIBNi3bx+BQECLGQ0lQgCeEYPBwLRp0/inf/onfv/737Nz506cTifr1q0jJydnwGvVk39Lly4lMzOT/fv3c/z4cT799FO6u7vZuHHjkN9wwcun/xbPaDQyY8YMoqKiqKurA2D16tXaQnL+/Hn+8z//k2AwSFxcnBCA0YDJZCIrK4u3336bmJgYdu3aRTgc5vXXXyczM/OB11utVnJycli9ejUJCQlUVVVRVlZGa2sr77//Pjk5OWJa0RjGZDKRlJSEyWQiNTWVZcuWkZWVRSgUoqWlBZ1ON2wDY4QAPCcmk4mlS5diNpu5ceMGP//8M1FRUWzatImEhIQBaT64F0OYMmUK8fHxuFwuvv76a6qrq0lLS2P16tXk5uYO47cRvGy8Xi8Gg0GLGxkMBnp7e2lrayMuLg6Xy0VMTMyQX5eoPX0B1O3AP/zDPwCwa9cuqquraW1tJRAIPPB6vV5PSkoKCxYsYPPmzWRlZVFSUkJ1dTXd3d3iYNAY5e7du9TV1WlTotrb22lvb6e6upqLFy+SmZlJQUEBqampQ35tIg34HEQiEVpbW/H7/RiNRux2O0ePHuXEiRO43W7Wrl3LqlWrSE5OBnhorX9XVxeHDh3i+++/Z86cOaxcuZJ58+aJrcAoJBKJaB7fw4K69fX17N+/n88//5xwOEx+fj7BYJBJkyYxf/58srKySE9PJz4+XhwGGg10dXVx8OBB7HY706ZNIzMzk6KiIgCtq1AkEmHWrFnYbDZtMKha/qvT6ZAkCVmW0ev1VFZWakeIo6OjtTyxYGSj0+k0cc/IyHjAhVczAF1dXdy+fZuUlBSterS9vV0bZb9kyRLS09OH5Z4LAXhGJEmirq6Ob7/9lqKiIhYuXIjBYCAlJYVly5bhdrvZsWMHZ86cYcGCBWRmZmK32wmFQlqFmNFoxOfz0dnZiaIoXL58maamJnp7e4mLi8NoNIrtwChAXfWdTidr167VxBv+MhRWURTa2trweDx89NFH5OXlodfrqa+v54cffmDr1q2kp6dTVFREYmLikH8HIQDPgN/v58qVK5w+fRq418W3/wm+lJQUVq9erc0b2LVrF3PmzGHatGk4HA56enoIhUI4HA5MJpP2wKgtwdXyYbWqUDCyCYVCSJJEIBDQZj2o2zz1mejs7KStrU07IzJx4kRMJhO5ublcvnyZqqoqLly4QGZmJjExMVgsliH9DkIAnpJwOEx7ezv19fW0trZqZ//Vhp6qwWZnZ7NmzRp6enqoqKigu7sbn8/H1KlTSUtLIxKJYLfbtWPD4XBYa0qqzgYUfQFGPmopryRJREVFDVj9VXQ6HS0tLbjdbuLj44mPj9eO+5rNZqxWK5Ik0dvbi9frJRKJCAEYqajjxcPhMNHR0ciyjMFg0G6YOuAzLi6O9evXk52dzY8//sj58+eJRCLk5+eTk5ODw+HQVn1AmxTc/+SYYORz/37dbDY/INyRSIT6+nrC4TCTJk0iNjYWuLeNvHnzJnV1dfh8PpKSkoiLixsW4RcC8BSEw2F6e3u5c+cOcXFxTJ8+nYsXL2qNPgAt2Af3lD8vL48tW7YQDoe5evUqe/fu5Z133iElJUX7uaIV+NhEDe4GAgFqa2sJBoPMmjVLO+jT19fHV199xf79+wkEAkyZMoWcnJxhOSYsBOApaGhooK6uDqfTSXp6Ol6vl7S0NBwOh2bEajMPFYvFwpQpUygqKiIYDFJTU8PJkyex2Wzk5uaKxh9jFEVRaG9vp6mpiZqaGo4ePYper0eWZW7cuEF0dDQ9PT0cP34ch8PB8uXLmT59+ksbTPskhAA8BrVN2NmzZ6mpqWHz5s0YDAY8Hg8pKSnEx8cPyNs/zKCXL1+OxWLh888/59ixY3g8Ht59911SU1PFseAxiCzLtLS0UFpayr59+2hoaECSJK5du6Zt76xWKy6Xi1/+8pe88cYbD5whGUpEIdBj6O3t5ezZs3z99decOHFCq/NXJwy/9957rF279ol7t7t373L27Fl27NhBW1sbCxcu5K233mLixIlD8TUEQ4iiKHR1ddHU1KTFjFQTU4fCGo1GnE4nEyZMIDc3d1gXArEEPQJJkujp6aG5uZn4+HjmzZuHoih0d3cDEBcXh91uf6rATXx8PIsWLaK7u5sjR45w4sQJkpOTsdls4jTgGEPtJRkbG8v06dMxGAzIsqzFivpXDI4ED3D4r2CE0tHRQXNzM3a7nXfffZcJEyYgyzI3b96ksbERWZaJj48f0OvvccTExPDGG28QHR3Np59+ypEjR9DpdLz55pvDcghE8PK437jVnoBqJ+iRNAFaJJz7oRbj+P1+KioqKC0tJSsri4KCAhITE0lOTsbhcGhZATV32z91p9YEPCydZ7VamT9/Pp988gnBYJBdu3ZRWlpKR0fHUH5NwRBjNBq1uREjyfhBeAAaiqLQ0dFBbW0tNTU17N+/n76+PtatW6cZ/cWLFzl69CiVlZX4fD68Xi9Wq5WJEydis9kG9HlTu7/eHxhMSkqiuLiYW7duUVFRwYEDB7Db7SxZskR4AmOYkVrcJQTgz8iyzJ07dzh16hTfffcdN27cID8/n97eXkKhEH19fZSUlFBaWsq1a9eAe8qemppKVlYWNptNyxrIsqz1eX9YZiAmJob33nsPp9PJ1q1bKS8vJyoqikWLFg15JZhgfCOyAP3o7u6mubmZhoYG/H4/MTExTJ8+nZiYGPx+P01NTXR2duL1etHpdMTHx5Oenk5GRgYmk0lrCa0WgjxKAFRqa2vZs2cPFRUVJCQksGXLFhYuXIjT6RzCby0YzwgB6IeiKEiSRCQS0Y7uwr1KQHW0k1rA0/8oaP9RYJFIhHA4jE6nw2q1PlYAwuEwtbW1bNu2jWvXrpGWlsbrr79OYWHhkI+IEgwvatxoqDMDYgvQD7WVs3psVzXeR5Vo3r+vUz2AQCCgdYd93A01mUxMnjyZLVu2sH//fkpLS4mOjsZsNjNv3rwRkSYSDA3qyDghAMOM2tr7ecp01fmC6k18moivXq9n4sSJWsOQM2fO4Ha7sVgsTJs2bUSNkRK8PFQBEMNBRwAvErHV6/WYzeZnOuhjtVqZMmUKRqNRO3K8fft27e8F44PhOBsyMnMTY4BnvZk2m40ZM2ZozULLyso4ffo0zc3Noj3YOMBoNA5LBkh4ACMInU7H3LlzMRgMOJ1Odu/eTV1dHX/zN39DTk6OiAmMYdS+EEON8ABGGDabjVmzZrFu3TpiY2Opqalh9+7dtLS0DPelCV4iOp1OCIDgHjabjTlz5rB582aSk5MpKSmhqqqKnp6e4b40wRhD1AGMYPr6+jh+/Di7d++mt7eXlStX8tFHH4nMgGDQEB7ACCY6Opq5c+fyyiuvAPDTTz+xd+9e2tvbh/nKBGMFIQAjHJfLRXFxMcXFxYRCIb799luqq6txu93DfWmCMYAQgBFI/zbjer2epKQkXnvtNV555RUkSaK0tJQzZ86I9KDghRF5pRFIOBwmGAxitVq1cuK0tDSWLl2K1+vlzJkzHDp0CLPZzIwZM16ooaTaqeb+Bhbqf9WGJyIFOTYRd3UEok6bUQ1PLSrKz89HlmVOnjzJsWPH8Pl8mEwmZsyY8UxDJdXGJ729vXR1deH3+3E4HNpEIr/fr4mAoiikpqaSmJg44ppZCF4cIQAjELPZTHR09APHif1+P21tbXR2dnLz5k0URSEjIwOj0cjkyZO1oSNPQpIkmpubKS0t5ejRo9TW1g6YSKR2OXI4HOTn57NlyxaWL1+OzWYbsY0tBM+HEIARyMP6xjU1NfHTTz9x6tQpsrKymDBhAjabjYsXLyJJEgaDgYKCgqc6TKIeVXa5XMC9dOOECRNwuVw4HA4ikQhdXV243W7a29txu91iiMkYRQjAKMDtdnPy5En27NnDrVu3+NWvfsWSJUsIBAL8/ve/p6qqCqfTid1uJycn54k15QaDAZfLxYoVK2hubsZms7F582ZmzZpFXFwcvb29tLS0cPXqVS5evEh0dPSArYhg7CAEYITT1dXF+fPn2bFjBx6Ph9dee4358+drXYp//etfs337dnbu3InNZgPuDSh90pFmg8GA3W4nKiqK+Ph4Zs6cSU5ODqFQiMbGRlJSUoiLi8NkMuFyucT+f4wiBGAEoigKgUCAzs5Ozp49y7FjxzCbzRQVFbFhwwZyc3O1Vb6wsJCuri66u7s5fvw4oVCIdevWkZ2d/VCjVbseBYNBPB4PZrOZjIwM4uLi6Ovro7GxkZaWFvLy8khOTmbq1KlCAMYwQgBGILIs09fXx9mzZykpKeHKlSv84he/YP369UyYMGHAa00mE8uWLcNkMvE///M/nD59mqSkJJxOJ0lJSQ/s3VUB8Hg8NDY24vF4CIVCXLlyhZaWFpqbm0lMTCQ9PR2j0UhOTg42m024/2MUIQAjEFmW6e7uZs+ePdy4cYO5c+eydOlScnNzH/r6mJgYFi5cSDgc5sCBA3z99ddYrVYKCwuJj48f0J5cr9djsViwWCx0dXVx6tQpTpw4wddff43X6yU7O5vf/va3JCYm4nQ6kWVZ64EoGHsIARiBGAwGHA4HWVlZdHZ20t3dTVtbG263m+jo6Ie+JyYmhqysLEKhEDU1NbS3txMMBh9puIFAgMrKSiwWCytXrsRsNnPu3DkikQgul0ubUSDSfmMbIQAjEL1eT3JyMhs3bsRoNFJRUcHRo0cxGo0sXrxYC/b1p6+vj9raWjweD4mJicTExGC1Wh85hryrq4uLFy8yd+5c3nzzTaKjo/nyyy+pq6sjPT1dzCcYJwgBGKGYTCZmzpypDZM8ePAgra2tWCwW5s2bN8BAOzo6OH36NH/4wx+w2+188sknLF68GJfL9VDj7+7u5vbt2yiKQlJSEllZWZjNZubMmUNycjIxMTFEIhEkScJsNmvXIBh7CAEYoajFOpMnT9ayAteuXWPr1q2Ew2EWLlyIzWajvb2dQ4cOUVpaSmJiIsuXL2f16tWPNH6Anp4e7t69S0pKCi6XS+svMGPGDHJzc7Hb7dy4cYPe3l6mT5/+TGXGgtGFEIARjsPhYN68ecTFxfHNN9+wY8cO4uPj0el05OXlce7cOY4cOcLNmzf57W9/y8qVK0lKSnrsz+zs7KSrq0tL9akkJyeTlJREU1MTP//8M36/n/z8fCEAYxghAKMAnU5Heno6mzdvJj4+ngMHDnDjxg0mTpxIdXU1cXFxfPDBBxQVFT3W+GVZJhgMcuvWLW7fvs2SJUuIi4sjEAhgMpkwGAw0Njby5Zdf4na7mTp16hPHmwlGN0IARgk2m42CggL0ej2XLl3i9OnT1NbWkp+fz+LFiykqKtJq++8nEong8/m4desWJSUllJeXc+fOHVpbWykvL9eGmej1etrb26msrGTevHmkpqaKYOAYRwjACCYSiWjjyuBeYNDhcOByubBarfT19bFy5UrWrl1LTk7OQ1N2anMRn8/H7du3OX78OPX19QBcunQJWZa1w0TqEWCbzUZ2dvaAikPB2EQ0BR2hqNWA6owAgLa2Ng4dOsQXX3yB2Wxm06ZNjy377U8gEKCnp4fW1lZCoRAGgwFFUfD7/UQiEe2obyQSIRgMkpWVRXp6+hMHnApGN0IARiiKohAMBrWBEU1NTRw5coTy8nLsdjuFhYWsWLGCrKwsTCbTU/28/m3G1OnG6jhzda+v/p3ZbBZdgMYBQgBGOJFIhKamJg4ePMiJEyfo7e3lb//2b1m2bBmJiYlidRa8EKLOc4Rz+/Zt9uzZw7Zt2wD4zW9+w8KFC4mLixPGL3hhhI83QlEUhYaGBkpLSykvL2fChAmsWLGCRYsWER0dLY7nCgYFIQAjkFAoRGtrKyUlJVRUVADw2muvUVRURGxs7PBenGBMIWIAIwxFUbh69Sr79+9n586dZGVl8cknnzB9+nSt/bd6y8QWQPCiCA9ghFFXV0dZWRllZWWa29/f+CVJwu/3o9PpRJdewQsjBGAEoKb82tvbOXr0KOfOncNoNLJ582aWLVum1QGorw2Hw+j1etGsQ/DCiC3ACKCvr48bN25w5swZdu3aRVJSEh9//DGzZs16YM+vKIpWISjy9IIXRTxBw4wsy1y7do3Dhw9z+vRpze0vLCx86Ck81fDFqi8YDIQADCPBYJDGxkZOnjzJ+fPnAdi4cSMrVqwgKirqke8Txi8YLIQADCMNDQ18//33nDhxgtTUVH79618za9asxxq/QDCYCAEYJqqqqjh48CAVFRXk5uZqbn//gJ9A8LIRAjDEhMNhGhsbOXDgAOfOnSM2Npa1a9dSVFQkjF8w5AgBGGLq6+v5v//7P06fPk1mZiYff/wxkydP1tpwCwRDiRCAIeTMmTMcPHiQM2fOMHPmTFatWsX06dOfaqKvQPAyEAIwBPh8PhobG9m/fz/nzp0jMTFRc/uf5iy/QPCyEAIwSMiyjKIoD5zS8/l8XLx4kb1791JVVUVGRgYff/zxAzP+BILhQAjAIBEKhYhEIpjNZq3PfjgcpqqqirKyMi5dusTMmTNZsWIF06ZNe+h0H4FgqBECMEhIkkQkEtFceq/XS21tLeXl5dTU1JCcnMzq1atZvny5KOEVjBjEkzhIqG21LRYLkUiE69ev8+2333Lp0iUyMjL48MMPmT59ujB+wYhCPI2DhNlsRlEUQqEQZ86cobS0lKqqKgoLC1mzZg3Tp09/5GRfgWC4EAIwSOh0OgKBADU1NRw+fJiamhoyMzNZu3YtxcXFon5fMCIRAvAC3N+Zp6mpie+//56rV6+Sm5vL3/3d35Gfny+MXzBiEQLwnKhDNRRFwW63U1lZSWlpKZcvX2by5MmsXr2a/Px8rFbrcF+qQPBIhAC8AHq9nt7eXq5du8aBAweorq4mLS2N4uJilixZIoxfMOIRAvCc6HQ6rFYrdXV1fPbZZ9TV1ZGTk8NHH33E9OnTxcEewahACMBzEgqFOHfuHGVlZdy+fZsZM2awcuVKpk2bJqL9glGD6An4HLjdbmpqajhw4ADXrl0jMzOTNWvWsGjRIrHyC0YVwgN4RoLBINeuXeObb76hvr6evLw8PvzwQxHwE4xKhAA8A4FAgPLyckpKSrh+/Trz589nw4YN5OXlCeMXjEqEADwlfX19VFdXc+jQIa5cucKkSZNYtWoVixYtEnl+wahFCMBT4Pf7uXLliub25+fn8/d///dMmjRJGL9gVCME4AmEQiFOnDhBSUkJDQ0NzJs3jw0bNpCfn4/FYhnuyxMIXgghAI/B6/Vy5swZDh8+zM2bN5k2bRpr1qxh8eLFw31pAsGgIATgEciyrBX53L17lzlz5vDRRx+Rl5c33JcmEAwaQgD6IUkSsixjNBopLy9n586d3L17l9mzZ/Pqq6+SnZ0tevgJxhRCAPphMBhwu91cuHCBAwcOcP36dWbNmsWaNWuYO3euaOMlGHMIAeiHLMs0NTXxv//7v3R1dTFnzhzee+89CgoKRJ5fMCYRAvBnAoEApaWl7Nmzh76+PpYtW8Zrr73GxIkTsVgsSJKEXq8XaT/BmGLcCICiKCiKgl6vf+Dfent7OXXqFPv376e2tpbly5ezbt06Zs+eDdzr7hsKhTAajRiNxgdafwsEo5VxIwCSJBEOh7FYLANEwOfzcfnyZT777DO6u7tZsGAB77//Pvn5+QPeG4lECIfD2Gw2IQCCMcO4EYBIJEIoFMJkMmkC0NXVRXl5OQcPHsTj8VBUVMRbb71Fdnb2ACNXO/nqdDrR1Vcwphg3T7NOp8NgMGiG3dnZybFjx7Tz/AsXLmTdunXMnDnzgfcaDAZt/y9iAIKxxLgRAJPJhNFoRKfT0dnZyU8//cT27dvp6+ujsLCQv/7rv35kkY8wfMFYZdwIgOr2B4NBysrK2LZtGzqdjuLiYtavX09ubu4D7r2iKMLwBWOaB0PiY5ju7m5KSko4dOgQHR0dzJs3j7Vr1zJlyhRtsIf6Rw36ybL8wM95miZKD3ufQDDSGDceQE9PD+fPn+ePf/wjvb29LF26lDfffJOcnBz8fj+hUAiz2ayd8AuHw0QiEW3vL8syXq8XnU6nDQDt7x0Eg0ECgQDBYBC/34/JZCI5OVkEDQUjmnHxdPb09HD06FH279+P2Wxm48aNbNq0iZSUFI4cOcJPP/3EunXrmDx5slbuq876MxgM6HQ6Ghoa2Lp1K3l5eaxYsYK0tLQBmYKKigoOHjzIhQsXCAQCLFiwgH/8x3/E5XIN19cWCJ7ImN8C9Pb2snfvXkpKSrh79y6LFi1i48aNTJ06ldbWVkpLS9m1axc3b97E7/dr7zMajdoq39bWxokTJ/j22285e/YsXq9Xe10wGKShoYHGxkZ6e3ux2WzExcWhKApXr16ls7NzOL62QPBUjGkPwO12c/HiRb788ksCgYC28hcUFBAIBKisrOTChQu0tbXR3d2tTfqRZXlA2e/169c5fvw4tbW1LFq0aMBnqK3CFEXR0ohRUVE0NjZSUVGBw+EgLi5OFA8JRiRjVgDu3r3L3r17+eGHH3A6naxfv55NmzaRm5uLz+ejrq4Ov9+P1WolJiaGuLg4oqKikGWZvr4+LBYLRqORjo4OgsEgycnJ5ObmEhsbOyAIKMsyPp8PnU5HQkICOTk5wL0KQ6/XSyAQGKbfgEDwZMakAHR2dlJSUkJpaSnd3d28/fbbrFu3jokTJwLQ3NxMfX09ycnJZGZm0tHRgdlsBtBWf71ej8/no7q6GoBJkyaRkpKCxWIhEoloImCz2cjOzub69etUVlZy69YtzGYzsiyTlpZGQkLCQ88fCAQjgTEnAB0dHZw9e5bvv/8en8/Hhg0beP3118nOztYGera3t+Pz+SgsLKSmpobz588jy7KW9nM4HEiSxN27d6mrq6OgoIC8vDzMZjOSJCFJkvZ5TqeT2bNn09jYyL59+6iqqkKWZZYvX84///M/k5OTI2oJBCOWMSUAzc3NHDhwgD179mC321m7di0bNmwgIyMDuFf7X1VVRSgUIj8/n5SUFIxGI4FAAJvNhsPh0NKAV65coa6ujsWLF5Obm0tTUxOSJGEymbDb7QNWdZ1Ox/z580lJSaGtrY1AIEBKSgrZ2dmicahgRDMmBEBRFJqbm9m3bx/Hjx8nFAqxdu1aVq9eTW5uLgAej4fOzk66u7tJTk4mLy9PM0611l/N2Xd1ddHW1kY4HKagoACn00lzczPwl+yAulVQ35+enk5aWprmSej1ejEmTDDiGRMCcPv2bcrKyvjxxx9RFIWNGzfy6quvkpWVBdzb13d1ddHU1KQZZyAQoKOjg66uLhRFobW1lfb2dmJjY7ly5Qrt7e0YDAa6u7sJBAI0NzcTCoVwu920tbVp6T6TyYTJZEKSJBRFEYU/glHFqH9ab968yc6dO/nhhx9ISkpixYoVvPrqq6SkpGiviUQi2uuqqqqQJInY2FhCoRC3bt2ira2NTz/9lKamJubOncu5c+eorq6mubkZh8OB0Wikp6eHy5cvc/v2bVpaWnj77bdZtmwZ6enpwD0vQMxZFYw2Rq0AyLJMc3Mzu3fv5sCBA7S0tJCUlERycjITJkwYsEfX6/VER0eTlZWFz+fD7/djNpsJh8PcvXuXnp4ebDYbNptNe10oFMLpdGoeg+r6WywW7HY7DodDyxyoiGDfy0NRFMLhMJIkYTabRXu2QeKlC4DqGqsltYPFnTt3OHbsGAcPHqSjo4OZM2cSiUS4c+cOPp8Ph8OhvdZoNDJ58mRSU1Px+Xxaa69AIMDWrVvZt28fW7ZsYc2aNeTn5zN79mz8fj+BQEC79kuXLtHV1cW0adN4//33WbBgATExMYP2fcYz6sGpJ6VLg8EgwWBQE2T1mLYQgufnpQmAeqrO6/USiUSw2+0PHKB5Xtrb2zl06BDfffcdGRkZbNiwgZSUFHbv3k1tbS1nzpxh7ty5xMXFae+JiorCYrEM6AsYDoc1ocjMzNRy9k6nE6fTqT2YRqORzs5OZFkmPj6e3Nxc7Hb7C38PwT3jDwQC6HS6B9q19Uen02G1WrW+DqFQSGvRpoqB4NkZdAFQXTVFUbQAmdqN50WRZZn29nb27NnD8ePHMRqNFBUVsXz5ckwmE62trVy4cIGSkhLS09MHCMD97bzU61OvV11V1IwADFyRFEUhFAohyzI6nU7s9weRp+24rGZY7j+oJXh+Br1ETTWoYDAI3KuUczqdA1T6eYxHlmVaW1s5ffo0O3fupKWlhfXr11NcXExWVhapqam88soruFwuKioquH379oCCnft/VjgcJhwO43Q6tYCh6u73/y6hUIhgMEgkEsHlchEVFaX9v+DFUQ35cau46k2GQiECgYBWjxEVFSVW/xdEp7yEpUw9UCPL8kNHaQWDQe2mPy1NTU3s2bOHbdu2aUdyX3nlFa2YR5IkAoEA27Zt4/PPP+eDDz5gzZo1ZGVlPdStVK+xqamJ1tZWUlNTSUhIwOFwDHig1IdPzQLExcWRlZX1QDGQ4PlRvaqHGbLakj0qKkp7rQgADh6DIgBer1c7PAP3zt9fvXqVyspKfD4fUVFRJCUlUVhYSEpKCo2NjcTExBAfH//ESjlJkmhpaWHHjh1UVFTg9/vZvHkzq1at0vL88JcH48SJE3z33Xc4nU6WLVvGmjVrnjjPT+0ApG5VHvZwKYqiuarC8F8OajxAzbiohMPhB+6hGgOwWCxiK/ACDEoMIBAIaDehp6eHCxcucPToUQ4cOEB7eztOp5PJkycTCAQoKCigvr6evLw8LZX2qJsnyzKNjY2UlZWxb98+zGYzH374IfPmzSMlJWVAzz7VKHNycli2bBl79uzh8uXLFBcXP1EAdDrdI1+j6qNoCf589P/9PYlIJEJrayvhcJioqCjtPaqHEAqF0Ol0ZGRkEIlE8Pv9YlDLCzIoT3RMTAxGo5Hr16/zb//2b3g8HqZMmcLvfvc77HY7BoMBk8nE/v37+eabb5g3bx5ZWVlYrdbHPhhNTU2UlJTw7bffMnPmTNatW0dRURFOpxNJkvB4PA+44rGxsaSkpNDX10dHR8cj4wBPSygU0mIDYjLws6MGhNWW7I+7316vl1OnTnH69Glu3bqFz+fT7p8aA8jJyeFf//VfmTx5slj9B4FBEQCj0UhlZSU7duzg0qVLzJw5k8WLF7No0SJiYmK0oNvx48fxer3YbDaioqIeaVDhcJjbt2+zd+9e9u/fT2NjI4WFheh0Ourq6gYUhfTfDxoMBoLBIK2trfT09FBXV8fRo0e13nyRSERbTVRXXpblAWW8BoNBM3q451n0r2VQH7j+wqLX67VYgfqz4cHo9ljOHqjfTf09qdsqte5CFebY2NhH3nej0UhycjKyLNPQ0EBqaiqpqamayDc2NtLc3MxXX33Fpk2bWLx4sTD+F2RQBMDj8bB3716+/vpr5s+fz5YtW1i3bt2AfZzVamXq1KkEg0EKCgoGpOjup6enh+rqakpLS6mpqcHlcuHz+Th//jyVlZUoiqJV5Hk8HoLBoBZEMhgM+P1+PB4PbrebXbt2kZmZiclk0lxI9U9/AVC3ATqdDr/fr0Wao6OjiUQiWvRZTROqK5sqJKrxqykqdcXqLwhjGbVxqizLWlxHbZCq9kyYM2cONpvtkQJgt9tZsmQJLS0tdHR0sHnzZmbPnk1CQgJms5mqqir27dvHn/70J2RZJjc3V/s3wfMxKAJQWVlJTU0NkiTx7rvvsmzZsgduiiRJJCUlMWnSJLKzszGbzVon3v54vV7a29vp6ekhIyMDm81GbGwsDocDj8ejrbyBQACv1zugdXd/ATAajfj9ftra2nA4HERFRWk5ZPVhVVf2/oKgXqtqwKqhS5KkeQ8wMJXZfxXqb+z9r2s8cL8AhEIh/H4/sizj9/s1D+xRqEVYycnJpKSkMHXqVCZNmqSV/i5evBi73U5rayutra0cOnSINWvW4HK5xs3veLAZFAH44osvcLvdFBcXU1hYSHx8/AOv0el05OTkEB8fT1pa2iPTaHq9HofDwYQJE4iJiUGSJGw2m5a2e1xQSXVDe3p6aG9vp6urC5fLxdSpU3G5XNoDqhpzf5f+/tRf/5/5sL+//3Mfx1h1+/uj/u5lWdaCpaoAmM1mkpKSnrhay7KMx+PB7/djt9txOp1YrVbt351OJwUFBUyaNImLFy9y5swZFi5cKDovvwCDIgDffPMN69ev54033nio8at7Q7Uxh+pqPwyLxUJqaqq2RVDr9u83oocZqbo37+zsJBgMcufOHdLS0igqKiIzMxOdTqf17lcUBbvd/sRCkmeJYgv+Mk1JjQGov2uTyfRY9x/uxX5qa2vp7OzUSrTVbZeKxWIhKyuL6urqBzo5C56dQUsDOhwOXC4XfX19GI3GAcodDodxu91ERUVpffcfhV6vHzDHDx5tfI8a3ZWSksL69esJBoPY7fYB9QYmk0l7uJ6moESMB3s+1DhNVFTUgG3W436X4XCYGzduEA6HtRkNanymv7eo7v2bmpq0bYVIBT4fg5bYVt0/1XjVSTqqm22xWJ46WPO0J7we9RqTyaR5G/e/5lkDcsL4n48niXd/VIHw+/1UV1djNptZsGABTqfzgTSfoigEg0FsNhvJyclYLBZxj16AQQlPqwE39Vy96rL7/X4tQm+z2bRo+lDsicUx0dGDGmT1er00NDTg8/lISkrSakj638dAIMDly5eRZZkpU6Y8ULoteDYGRQDUyHtvb692SMZgMJCQkKC1zfJ6vdTW1nL16lXRK18wAL1er7Vbc7lcZGZmEhcX99DKy46ODg4cOEBPTw8zZ87E6XQKAXgBBkUAVqxYgSzLlJeXc/HiRW10lsFg0IZybt++nfr6emw227jIiwueDbfbTXd3N+np6aSmpgJ/2T6oqcP6+nrKysro6OggMTGRiRMnir4ML8igxAB++ctfUl5ezuXLlzl8+DChUIjc3Fw8Hg/t7e3U1dVx6dIlVq9eTWZmpijcEAxAURTtOYmPjyc5OVmLC6iTmrxeL4cOHaK8vJy8vDzmzp1Lenq6aLv+ggzKaUC328358+c5ePAgZWVl2ulASZKYOHEiixYtYsmSJeTl5T22AlAwftm1axdfffUVq1evpri4mIKCAuDe6n/hwgX+67/+i4sXL5KWlsZvfvMbFi1aRFJS0jBf9ehnUDwAp9PJzJkzgXv7ua6uLi3FlpWVxbRp05g8efKAPn0vG0mSBqSI1BJdwchAlmWCwSBtbW2cOnWKHTt2cPr0aXQ6HU1NTcTFxaHT6QgGg3R3dxMMBpk/fz7z5s1j3rx5Dxi/Gki8/9yGuOePZ9AagqhVXK2trUiSpB2sMRgM2Gw2EhMThzRXq3aPCYVCWCwWrZ+cYGQQiUTo7u7mwoUL/Md//Afl5eVEIhGSkpK0oDLciwO4XC62bNnCqlWrmDFjBjExMQ9sIxVF0e63WnjUv0eF4OG8lI5AAoFgdCD8I4FgHCMEQCAYxwgBEAjGMUIABIJxjBAAgWAcIwRAIBjHCAEQCMYxQgAEgnGMEACBYBwjBEAgGMcIARAIxjFCAASCcYwQAIFgHCMEQCAYx/w/a8ZM8TDvMTsAAAAASUVORK5CYII=",
"path": "images_version_5/image_47.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, the straight line AB parallel CD, then angle 1 is equal to ()
Choices:
A:132°
B:134°
C:136°
D:138°
|
Như hình vẽ, đường thẳng AB song song với CD, thì góc 1 bằng ()
Các lựa chọn:
A: 132°
B: 134°
C: 136°
D: 138°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the straight line AB parallel CD, then angle 1 is equal to ()
Choices:
A:132°
B:134°
C:136°
D:138°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the straight line AB parallel CD, then angle 1 is equal to ()
Choices:
A:132°
B:134°
C:136°
D:138°
|
As shown in the figure, the straight line AB parallel CD, then angle 1 is equal to ()
Choices:
A:132°
B:134°
C:136°
D:138°
|
235
|
47
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAmYAAAJUCAYAAAC/nuosAACm60lEQVR4nOzddXiUx/428DuEeAIBkqAhCe4Up1hwdyjSIoW2yOk5NXrqpfRH6SmlRilUKQ5tcdfg7u4SHIITIiQk8/6RdyazWcnuZkMe4P5cVy6G2Udm7dl5vmNuQggBIiIiIspxuXK6AERERESUhhUzIiIiIoNgxYyIiIjIIFgxIyIiIjIIVsyIiIiIDIIVMyIiIiKDYMWMiIiIyCBYMSMiIiIyCFbMiIiIiAyCFTMiIiIig2DFjIiIiMggWDEjIiIiMghWzIiIiIgMghUzIiIiIoNgxYyIiIjIIFgxIyIiIjIIVsyIiIiIDIIVMyIiIiKDYMWMiIiIyCBYMbPg5ZdfhpubG8LDw3O6KE+Fxo0bw83NDY0bN87potjtSSxzSkoKxo4di9q1ayNPnjxwc3ODm5sbOnfuDABYv369ylu/fn2OlpWA6Oho9X5Mnjw5p4vzzBoxYoR6H7KLUb97mV3nZJlHjBjxWMv1rHNJxWzz5s3qDXRzc8PGjRtdcVgickDv3r3x1ltvYdeuXYiNjc3p4hARGdoXX3yh6i0BAQGIj4+3az+9Mp/xz93dHYGBgahRowaGDRuGU6dOOVwul1TMpk6davP/REbwOO6Mc8rWrVsxe/ZsAEC7du2wevVqHDx4EIcOHcKPP/6Yw6V7toSHh8PNzQ0vv/xyThfFMPiauMbTfA3LCdOmTVPpBw8eYN68eVk+ZmpqKu7du4e9e/fiu+++Q6VKlfDrr786dIzcWS3Ew4cP1Q+Cv78/Hjx4gNmzZ2PcuHHw8fHJ6uHpKWCk0P3Tas2aNQAAd3d3zJw5E3ny5DHbpnHjxhBCPO6iERnaiBEj2FRnxdN8vdi+fTtOnjwJIL3uMnXqVPTp08eh4/z555+oVauW+n9KSgquXr2K5cuX4+eff0ZSUhKGDh2K0qVLo2nTpnYdM8sRs4ULF+Lu3bsAgLFjxwIA7t+/j4ULF2b10ERkp8uXLwMAChYsaLFSRkRE6WTLXlBQED799FMAQFRUlLqW2isiIgKVKlVSf1WrVkXr1q0xduxYFSkTQmDMmDF2HzPLFbMpU6YAACpUqICBAweiQoUKANicSfQ4PXz4EADg4eGRwyUhIjK2pKQk/P333wCAHj16oF+/fnB3d0dqaipmzJjhsvMMGDAAQUFBAIAdO3bYvV+WKmYxMTFYtWoVAKjw30svvQQAWLVqFa5fv57pMa5cuYIPPvgA1atXR968eeHp6YlChQqhcuXK6N27NyZPnoz79+87Vb6UlBRMnjwZrVq1QqFCheDp6YnAwECULl0azZo1w5dffomjR49mepy7d+9i+PDhqFixIvz8/BAYGIhGjRrZ/QYeOnQIgwYNQunSpeHr64uAgABUrFgRb7/9NqKjoy3uM3v2bNWX4MSJExa3KVWqlNpm7ty5Frfp3Lkz3NzcTEKtADB58mS1b3R0NFJTU/Hbb7+hXr16yJcvH/z8/FClShWMGjXK7g6R1tga+WNpZNrq1avRoUMHFCpUCF5eXoiIiMDQoUNx6dIlp84vn+vnn3+u8ix12rT2XgBpEal33nkHpUqVgo+PDwoUKIBWrVph+fLldpXhzp07+OKLL/D8888jKCgIXl5eKFKkCDp16pSlfg2y7PIG6fz582bPS7J3ZNj58+cxZMgQhIeHw9vbG0WKFEHnzp2xbt06ALb7uTgy0tBWv6OMn8+HDx/ihx9+QN26dREUFGR1pNijR48wceJEtG3bFkWKFIGXlxeCgoLQqFEj/PDDD0hMTLRZpqyQn/Pz588DSLtpzfheZDbKN6uf/Z07d+K1115DmTJl4O/vDz8/P5QrVw6vv/66U52QM3L0eu3oa2Lp8zNv3jz1fubOndvsNdy+fTs++eQTNG7cWF3n8+TJgwoVKmDo0KGZXuPt7be1adMmdO3aFQULFoS3tzdKlCiBIUOG4PTp0ybP1d6R3P/88w+aNWuG4OBg+Pj4oGzZsnjvvfdw+/Zts21dcQ1zhq1Rma7+DRFCYM6cOejWrRtCQ0Ph7e2NfPnyoXbt2hg5cqRqmXOFxYsXq9e5T58+KFSokGpmdHVQSc7u4NC1R2TBd999JwAINzc3cf78eSGEENHR0cLNzU0AEN9++63N/Tdu3Cjy5MkjANj8W7x4scNli42NFQ0bNsz02N26dTPbt3///gKACAsLE8eOHRPh4eFW93/99ddtluPLL78UuXLlsrq/l5eXmDJlitl+MTExapuff/7Z7PFLly5lWo7U1FSRP39+AUAMGzbM5LFJkyapfQ8fPiyaNm1qtYy1a9cWDx48yOwltyoyMlIAEJGRkWaPnTt3Tp1n0qRJ4v3337dajuDgYHH06FGHz68/V1t/586ds1jmTZs2iQIFCljdb8yYMTbPv3TpUhEYGGjz3O3atROxsbEOPzd7npe0bt06lbdu3TqLx1u1apXw8/OzeBw3NzcxatQo8dlnn5kdW8r4ftoSFhYmAIj+/fubPaa/Z7t27RLPPfecWXk+++wzk31Onz4tKlSoYPO1KF26tDh58mRmL6tT5GfG1p/+HXDlZz85OVkMHTrU5rk9PDzEb7/95vTzc+Z6nZXX5M8//xR9+/a1ub093213d3cxfvx4q8/L1udZ+uKLL9TvWsa/gIAAsXLlSpvXOf27t2bNGvHiiy9aLW+pUqXE1atXTfZ35hpmD1tlFiL9+pLxu5axTFn9DYmJiRH169e3+dwKFiwotm/f7tDzs6Zjx44CgChZsqTKmzJlijrXnj17bO6vf2asXUuloKAgAUCULVvW7vJlqWJWtWpVAUA0atTIJF9WiKpWrWp138TERFGkSBH1wX7vvffE8uXLxZ49e8T27dvF33//Ld566y0RGhrqVMVs2LBh6oVr3769mDVrltiyZYvYs2ePWLFihRg9erRo2LCh6N69u9m+smIWHBwsSpcuLQICAsQnn3wi1q9fL3bv3i1+//13UaxYMXX8FStWWCzD+PHjTS6s33zzjdi2bZvYvHmzGDFihPoBdHNzE0uXLjXbv3z58gKA6Nmzp9lj06ZNM/nQVqxY0Wybffv2WbxYCmH6papXr57IlSuX6N+/v1i6dKnYs2ePmD9/vnj++efVNh988IG9L70Zeytm9erVU9vNnDlT7N69W6xZs0b069dPbVO3bl2Hz3/nzh1x6NAhkx+uQ4cOmf0lJSWZlblMmTIiKChIhISEiK+++kps3rxZ7Ny5U3z33XeqspU7d25x+PBhi+detWqVcHd3FwBEeHi4GD16tFi/fr3Yu3evWLx4sejTp48qU9euXR1+brLsnTp1EgBEkSJFzJ6XlFnF7NSpU8LX11f9mL3++usiKipK7Nq1S0yaNElVemrXrm31hyw7KmZVqlQRbm5uol+/fiafz2XLlqntr1y5IgoWLKiuJ8OGDRPLly8Xe/fuFevWrRMffvihem4lSpQQd+/etfs1ttfZs2fFoUOH1HWtU6dOZu/F2bNn1fau/Ozr27Vp00ZMnz5d7Ny5U+zatUv8/vvvomLFiurxRYsWOfzcnL1eZ+U1qVKligAgGjZsaPKa/PHHH2r733//XeTLl0/0799f/Pnnn2LTpk1i7969YsmSJeL//u//1I+im5ubiIqKsvjcMquYzZw5Uz2eL18+8dVXX4mtW7eKrVu3itGjR4t8+fKJfPnyiTJlythVMZPvdefOncW8efPEnj17xLJly0S7du3UNr169TLZ35lrmD1cVTHLym/IgwcP1G+dp6enGDx4sFi4cKHYu3ev2LRpkxg1apS6Mc6XL5+Ijo526DlmdOPGDeHh4SEAiOHDh6v82NhYdY148803bR7D3orZ5MmT1Xb//e9/7S6j0xWzgwcPqhNmvAv79ddf1WMHDx60uH9UVJTVSoMuOTlZ3Lt3z+HyhYaGCgAWK166W7dumeXJihkAERgYaPFH99SpU8Lb21sAEB07djR7PCYmRr3JRYoUERcuXDDbZu/evapyVrRoUbMvlfwSFipUyGzfV155RZ1bXnhiYmJMtvn+++8FAJErVy5x584dk8cy3oFNmzbN7ByJiYmiUqVKAoAoUKCASE5ONtvGHvZWzACI1157TaSmpppt9+qrr6pt9u7d61Q57LkzzlhmIC1yeunSJbNtNm3apO6i33jjDbPHHzx4oCoLLVu2FHFxcRbP9dtvv6lzrVmzxvEnJkyjvNZkVjGTnyUAYvbs2WaPx8XFmVTKHlfFDICYOHGizWO1b99eABChoaHizJkzFrfRv2+ffPKJzeNlha3npXPVZ3/OnDnq8d9//93iuRISElREIzw83OHvclav186+Jv369bP4mkiXLl2y+r0SQoi7d++qCl6DBg0sbmPrupCYmChCQkIEAJE/f35x4sQJs21OnDihWibsqZgBEF988YXZNqmpqaJly5YCSLvZy3g9z6ysznBVxSwrvyH//ve/BQCRN29esWvXLovliI6OFoULFxYARJ8+fRx6jhmNHTtWlTlj9Lx3794CgAgJCbH5HdHfhz///NOkcrx//36xcuVK8dZbbwlPT08BQJQrV87i+2mN0++ujEh5eXmZ/ejfuXNHeHl5CcC8CU2aMWOGemLOVLwyI2vEY8eOdXhfvWL2448/Wt2uV69eqhaf0ejRo9UxZs2aZfUYX3zxhdrun3/+MXnsr7/+Uo8dO3bM5LFSpUqpH9ASJUpY/DHt3LmzACCqV69udl79S2UrUvPLL7+o7Q4cOGB1O1vsrZgVLlxYJCYmWjzG8ePH1XbOvKdCOF8xsxVhqFu3rgAgqlWrZvbYuHHjBADh7e0trl+/bvN8ssLz0ksvZf5ELMhqxezSpUuqyb1Lly5Wj7F///7HXjFr2rSpzeMcOnRIbbtw4UKb27733nsCSLtZyi7OVEKy8tmvUaNGpu+bEEIcPXpUHWf16tV2Px8hsn69duY1CQwMFPfv33f4XBktWLBAHfPmzZtmj9u6LsyaNcuu647+Y59ZxaxGjRpWK5srVqyw+Vk2asXM2d+QGzduqABHZtf1CRMmCCCtSd5WZTwz8vtSu3Zts8eWLl1q1w2I/j7Y+subN68YOXKkuH37tkNldKrzf0pKCmbOnAkgbTLLwMBAk8cDAwPRtm1bAMDMmTORkpJidozChQur9KRJk5wphk3y+H///bfTndfd3Nzw4osvWn28Ro0aANI6dmfsmCjnlQoMDES3bt2sHuPVV18120fSO5HqnbUvX76M06dPw83NDZGRkWo7fRshhFqBITIy0ur5gfQBG5bI5wgAZ8+etXmcrOrevTu8vLwsPla2bFn4+/s/lnLoAgMD0a5dO6uPy9fHUpnklDGRkZEICQmxeZ5GjRoBALZt2+ZsUbNk/fr1SE1NBQD079/f6nZVq1ZF1apVH1exANj+fALpr7Ovr6/N9wpIf52vXLmCixcvuqaALuDsZ//y5cvYs2cPgLTRZbaUL19ejRBz9HOW3ddrSzp06ICAgACH9omLi0N0dDSOHDmCw4cP4/DhwyYjlQ8cOODQ8aKiogAAuXLlQt++fa1u16dPH7snfX3xxRetbvs4r7eu5OxvyMqVK1Wn+Mw+v/K7m5ycrD7zjjp69Kja19J8ZS1btlTXan3yWWfdu3cPkyZNwpw5cxzaz6mK2apVq3D16lUAlp+cnn/16lWzCgcANGjQACVKlAAAvPXWW6hduzb+97//YevWrUhKSnKmWCbkj8vWrVsRERGBf//735g/fz5u3Lhh9zGCgoJQoEABq4/nz59fpTMugXP48GEAQLVq1WxOYVCwYEE1akPuoz9WtmxZAKaVLpmuUKECgoODLVbMDh48qEadZDZKqFy5clYfs/UcXc1WOQAgX758j6UcutKlSyNXLutfE/n6WCrT7t27AaRdfKwt3yH/vvnmGwDAtWvXsuFZZE7/7OkXUktq1qyZ3cUxUaVKFZuPy9c5Pj4euXPntvk6t2/fXu2XU6+1Jc5+9uVzB9KW5Mrsc3bz5k0Ajj/37L5eW5LZ+y7dvHkTH330EcqWLYuAgAA1r1TlypVRuXJlk8q6fP72kt+LiIgI9R5Ykj9/fvX6ZMYo11tXcvY56Z/fwoUL2/zsVqpUSW3r7HdXjl7PnTs3evXqZfZ47ty50bNnTwDAokWLcO/evUyPuW7dOoi01kcIIZCamoq7d+9iw4YN6NKlC86ePYtBgwbhvffes7ucTlXM5HBSW9EEPZJmafiph4cHFi9ejPLlywMAdu3ahY8++gj169dHYGAg2rRpYzXaZo9PP/0UAwcOhJubG2JiYjB+/Hg11Lly5cr47LPPMp3Ow9fX1+bj+g92xnLKSlHBggUzLWuhQoVM9tHJStWGDRtUnqyAyceaNGkCIO1uQFY85Ta5cuVCw4YNbZ7f1vO09Rxdzd7XO7vLobO3TDLaJCUnJzs1vDurU5M4686dOyqdWXQvODg4u4tjwtYPIpA2bY8zcuq1tsTZz/7jeu7Zfb22JLP3HQD27NmDcuXK4X//+x9OnjyZ6Uz1CQkJDpVBfi8y+04A9n8vjHK9dSVnn9Pj/O7qc5S1bNnS6vslg0qJiYn4559/HD6Pm5sb8ubNi0aNGmHevHmq1W3MmDFYu3atXcdweEkmfVb/u3fvWg2/6xYsWIDY2FizsHSFChVw6NAhLF68GIsXL8aGDRtw5swZJCQkYMWKFVixYgW+++47LFu2zK4vhs7DwwMTJ07EsGHDMGvWLKxduxa7d+9GUlKSCnF/9913mD59Ojp16uTQsR1hT3jb1sUkMjISv/76K65du4bjx4+jXLlyqpImK2bFihVDiRIlcPbsWWzYsAHdu3dX21SpUsWuCxy5ln4B6tGjh5pZmhzn7u5u83H5WkdERGDRokV2HzciIiJL5TIC/XM2Y8YMu6NMzlwTsvN6bUlm73tSUhJ69OiBW7duwcPDA//5z3/QqVMnlClTBvny5VO/TWfPnkXJkiUB2L7W0uMnP7+enp4ONU8WK1bM4XPps/ovW7bMrt/mqVOn4rXXXnP4XLr//ve/quvXxIkT7VqWyeGK2T///OPwXUd8fDzmzJmDAQMGmD3m7u6Ozp07o3PnzgCg1piaMGEC9uzZgz179mDw4MGYP3++o0UFkHYxGTlyJEaOHImEhARs2bIFM2fOxNSpU/HgwQP07t0bZ86cMelD4Qr58+fH1atX7Qq5ysidHvKVMvYzy5MnD06dOqX6l+nbnT17FuvXr0e3bt3s7l9G2cPb2xu+vr6Ij4/H3bt3TcLwRqT/UMfExNi88NnqDqDfHWeMImYUFxfnQAmtk90Nrl+/jnLlyiF37iwvAfzE0LtaZGzuyQ7Zfb12xNq1a1WfpfHjx1v9AdWjwY6S3wt7IjuOdJOhNPLzm5SUhAIFCrj8d1gnmzEdsWXLFpw9e9buZmpL9GbeQ4cO2bWPw1cw2SxZuHBhfPfdd5lu//777+PChQuYOnWqxYpZRoULF8bAgQPRt29f1K1bF3v37sWSJUuQkJCQ5UXRfXx80Lx5czRv3hyVK1fGO++8g4SEBCxZsiTLteKMKlWqhKtXr2Lfvn1ITk622s8sJiZGzYpt6aJauHBhlC5dGqdOnVIVMyC9f5nUuHFj/Pnnn1i/fj0OHTqEW7duqXxKY2/nXFepVq0atmzZgi1btiA+Pj7T5qqcVLFiRZXevXu3zYqZ3i8kIz0qbusH8datWw7397GmWrVqWLZsGeLj47Fly5Ycvxl5nJ+zatWqqfSqVavQu3fvx3ZuwP7rdXa8JkeOHFFpS/2FJFuf18xUrFgR27dvx7lz53D79m2LN89AWjeUx9FZ/3Ffw7Jbxs+vrYFHWfHgwQN1s9CsWTOTQXeWxMXF4dVXX4UQAtOmTcNnn33m9LkfPXqk0snJyXbt41Afs3PnzmHz5s0AgG7duqFXr16Z/r3wwgsA0vpIXbhwwe5zeXh4qAvso0ePXLocA5D25kiu+oHQNW/eHEBac6+15ZKAtNCmDK/LfTLS+5ll7F8m6f3MZs+eDSDtS5xZ/7Jnibe3t0rLtSWzU8eOHQGkfcnHjx+f7efLiiZNmqhol60lSQ4cOGBzZFu+fPlU31JbP4izZs1yrqAW6F0Rvv76a5cd11nyc/Y4PmOlSpVS6xP/9ddfDl1jXSmz63V2vCb6D561PkdymSBnyd+J1NRUTJ8+3ep206dPfyzNpI/7Gpbd2rRpo4IW33//vcl76kpz5sxRn5GhQ4dmWm955ZVX1CCorI7O3LVrl0qHhobatY9DFbNp06apD1/37t3t2kduJ2ue0qZNm9QaY5YkJSWpflL+/v4OdTi+ffs2Fi1aZPOLItf4BLKnr8mAAQNUhGTYsGEWh+YfOHAAX375JQCgaNGiqnkgI3nBu3btmuqMmLFiJvuZCSEwbtw4AEDlypVtjip91uhh8jNnzmT7+YYMGaKmJ/j0008zXVdzy5Ytqgn6cStatKgayDN//nyLw7sTEhIwaNCgTI8lh7UvXLjQ4ut87NgxDB8+PIslTlerVi20bNkSQFrfkczubqOjo61WDOUIMDlS2hnyc/Y4PmMA8MknnwBI66zctWtXm01qDx8+xIQJExxeMzSr1+vseE1Kly6t0taaqT788EPs3bvX6XN06dJF9Zf7/PPPLa43eurUKZM1LLPT476GZbeiRYuqlrQDBw5g8ODBNitnMTEx+OOPPxw+j7zZ9PX1RZs2bezaR9Zdzpw5gy1btjh8TiDt+6Zf6+Q0YplxqClTVqxCQkLsjsTUqVMHxYoVw6VLlzBt2jR8/PHHANI64o0cORINGzZEu3btUKVKFQQHByMhIQEnT57EL7/8or5Qr776qkP9Ru7fv49OnTohPDwcXbt2RZ06dRAWFobcuXPj6tWrWLx4sXpzixUrhg4dOjjyMtglODgYY8aMweuvv44rV66gZs2a+OCDD1CvXj2kpKRgzZo1GDNmDB48eAA3Nzf89ttvVps79UrYvXv3zPqX6dudPXtWDfHN6SYdo6lXr55Kv/322/j444/VEG0gbbFZV/ZPypMnD2bNmoU2bdrg4cOHaN++Pbp164Zu3bqpzshXr17Fnj17MH/+fBw8eBDjxo1TFZvH7bvvvkNUVBTi4+PRq1cvDB06FF27dkWePHlw+PBhfP311zh69Chq1aplcheY0b/+9S8sWrQICQkJaNy4MUaMGIFq1arhwYMHWLNmDcaOHYuQkBDkzp3bZf1yJk2ahJo1a+Lq1av4v//7P6xcuRIDBw5E5cqV4e3tjVu3buHgwYNYsWIF1q5di86dO2dbs1+9evWwbt067Nq1C1999RXatGkDPz8/AGndKYoWLerS8/Xu3RsrV67ElClTsGfPHlSoUAGDBw9GZGQkgoODERcXhzNnzmDTpk2YN28ebt++jX79+jl0jqxer7PjNWnVqhVCQkIQExODjz/+GOfPn0fHjh0RFBSE06dP4/fff0dUVBTq16/v9A+rt7c3fvjhB7z44ou4ffs26tSpgw8++EB9Rzdu3IjRo0cjNTVVdTnJzubGx30Nexy+/fZbbN26FYcPH8aff/6J7du3Y9CgQahRowb8/f1x9+5dHDlyBGvWrMGyZctQuXLlTJsidRcuXFAtTW3atLG7S0m3bt3w4YcfAkir2NWvX9/idufOnVM34NL9+/exf/9+TJgwQTW5lypVCoMHD7av0PbORLt582Y1m+3gwYMdmsX2jTfeUPvKRUjtnTm3a9euIiEhwaHzZVzWw9pf0aJFLS5xYs8s6kKYznxsbfHYUaNGObWIeUYlS5ZU+1haF1MIIaZOnWpy7Llz52ap7EI4NpO7NY4sYm6LvbOH29KjRw+r74W1RcxtsWcm7qioKFGoUCG7PpP2fBYsccWSTELYXsQc/38G8E8//VQAaSsaWKN/5zP+hYaGiiNHjtg987+9CzNHR0eLWrVq2fU6DxgwwGz/+Ph49bil1TLsdenSJZMlevQ/W4uY25LZZ//Ro0fivffeU+uy2vrz8/MT8fHxDj2nrF6vs+M1ESJtpnw5c7ylv8aNG4vDhw/bPGZWFzH39fUVS5cuVWtEt27d2mx/e757kv5ds8Tea5g9XDXzf1Z/Q27duiVat25t12esSZMmDj1HfXUdW6vwWCKX8woMDDRZmcPe74P8q1q1qkPvjd1NmXq/E1sz2Vuiby+P895772HZsmV4++23UbduXRQvXhze3t7w9vZGeHg4evbsiaVLl2Lu3Lkm7er2CAsLw/79+zFmzBi0adMGZcuWRWBgIHLnzo2goCBERkbim2++wbFjx0w6H2aHjz76CPv27cNrr72GkiVLwsfHB35+fihfvjzefPNNHD9+3K67Vz1qZq1Dv+xnBqQ1yeRU5MXIpk+fjq+//hq1a9dG3rx5bU4e6ypNmzbFmTNn8NNPP6F169YoXLgwPD094e3tjdDQULRs2RKjRo2y+7OQnVq0aIHDhw9j8ODBCAsLg6enJwoWLIh27dphxYoVGDFiBO7fvw8AyJs3r9XjjB07FjNnzkSjRo2QJ08e+Pj4oGzZsvjggw+wb98+1S/KlcLCwrBjxw7Mnz8fvXr1QkREBHx9feHh4YHg4GDUq1cPw4YNw4YNGzBx4kSz/fXZ8N9++22ny1G0aFHs3LkTr7zyCkqVKuXw9csZ7u7uGD16NI4ePYphw4ahWrVqyJcvH9zd3REQEICKFSvipZdewpQpU3D16lWHB1Jl9XqdXa9Jq1atsHv3bvTp0wdFihRR73VkZCR+++03REVFqchcVnz88cfYsGEDOnfujJCQEHh5eSEsLAwDBw7E7t270bZtW7u+F66QE9ew7JY/f34sX74cUVFRGDBgAEqXLg1/f3/kzp0b+fPnR61atfD6669j2bJlWL16tUPHli19Xl5ema4MkpGsu9y9e9ehqXh8fX1Vi93MmTOxe/duh7pHuAnBiV2IyH7NmzdHVFQUGjRogE2bNuV0cVxmxIgR+Pzzz1G6dGkcO3Ys03m0iKTk5GTkzZsXCQkJ+OSTTzBy5MicLhI9wZ78qjYRPTZXrlxRAxTq1q2bw6VxLdl5/aOPPmKljByyYMECNb/n0/a9oMePETMiUk6fPo1SpUpZfCwhIQGdOnVSTQkHDx5E5cqVH2fxsk1SUhICAwNRqFAhnDx58onrQE3Zy9b3Ijo6Gg0bNsSlS5dQsGBBXLp0iZ8fyhJ+eohIefXVVxEXF4cePXqgRo0ayJ8/P2JjY7F7925MmDBBTZnwyiuvPDWVMiBtSRgjrZ1JxlKuXDm0bdsW7du3R8WKFeHn54eYmBisW7cOv/zyi5q37ZtvvmGljLKMETMiUho3bqya9Kzp0qULZsyYkeWVOIieFJlNgZErVy588cUXanoFoqxgxYyIlL1792L+/PlYu3YtLl26hBs3bkAIgZCQENStWxf9+vVzeGQT0ZNuyZIlWL58ObZu3Yrr16/j1q1b8PLyQtGiRdG4cWO8/vrrhl8Pl54crJgRERERGQRHZRIREREZBCtmRERERAbBihkRERGRQbBiRkRERGQQrJg5YP369XBzc4Obm5tarV43YsQI9Xh2efnll+Hm5ubQuluUucaNG8PNzc3qOqRkfNHR0er7N3ny5JwuzmMRHh4ONzc3vPzyyzldFAIwefJk9RmMjo7O6eJkiwEDBsDNzQ1Dhw41e+zrr7/mddQFWDEj7NmzBx999BHq1q2LokWLwsvLC3ny5EHJkiXRvXt3/Prrr2oCxYz0yqj+5+XlhZCQEJQuXRpt27bF8OHD1VI+RE+7mJgYLFmyBMOHD0ebNm0QFBSkvhusRNGTavfu3ZgyZQo8PT0tztn2+uuvIygoCBs2bMDcuXNzoIRPB1bMnmEXL15E586dUbNmTfzvf//Djh07cOXKFSQlJSE2NhZnz57F3LlzMWTIEBQpUgQff/yxWg8uM0lJSbhx4wZOnz6N5cuXY+TIkYiMjESFChUwe/bsbH5maR5HBJPIkoIFC6JDhw4YOXIkVqxYgVu3buV0kegJYeTo/ccffwwhBAYMGIDixYubPe7n54e3334bAPDpp58iNTX1cRfxqcC1I55R+/btQ7t27XD16lUAQFhYGHr37o369eujYMGCSEpKwqVLl7BmzRrMnz8ft27dwpdffokXXngBzz33nMVj/vnnn6hVqxYAQAiBe/fu4caNG9i1axeWLFmCQ4cO4dixY+jRowcGDhyI33//Hbly8d6Anm6hoaEoX748Vq1a5fJjP63NZWQ8u3btUp/hYcOGWd3u9ddfx8iRI3Hs2DHMnTsXL7zwwuMq4lODFbNnUExMjEml7KOPPsLw4cPh5eVltm3Pnj3x3Xff4ZtvvsGXX35p87gREREWZ7/u0qULvvzySyxevBgDBw7EzZs38eeff6JAgQL4+uuvXfOkiAxk+PDhqFWrFmrVqoWCBQsiOjoaEREROV0sIqf98MMPAIDatWujdOnSVrfLmzcv2rZti3nz5mHs2LGsmDmB4Ypn0ODBg1WlbMSIERg1apTFSpkUEBCAzz//HFFRUcibN6/T5+3QoQO2bt2KPHnyAADGjBmDffv2OX08IqP6/PPP0b59exQsWDCni0KUZffu3VN9xvr06ZPp9i+99BIAYMuWLThx4kS2lu1p5HDFLGO/nbt37+Kzzz5DxYoV4e/vj/z586Nx48aYMWOGzeMkJSVh8eLF+Pe//41atWohX7588PDwQIECBVCnTh2MGDECN2/etHmMjCOS9uzZg5dffhkRERHw8vIy61t09uxZfPvtt+jQoQPCw8Ph4+MDHx8fhIWFoWfPnlixYoWjL4dTHj16hIkTJ6Jt27YoUqQIvLy8EBQUhEaNGuGHH35AYmJitp37yJEjWLhwIQCgatWq+OSTT+zet1GjRlm+6y9dujT+97//qf9/9dVXWTqeJXJk1Oeff67yLA1QsNUMdPnyZbzzzjsoVaoUfHx8UKBAAbRq1QrLly+3qwx37tzBF198geeffx5BQUHw8vJCkSJF0KlTJ8ybN8/mvrJ8I0aMAJDWhNC7d28UK1ZMrc/Xt29fHDt2zK6y2HL48GF88cUXaNWqlTq+v78/Spcujf79+2P79u029894PUhMTMSYMWNQvXp1BAQEICAgALVr18ZPP/2ER48eZVqeTZs2oWvXrihYsCC8vb1RokQJDBkyBKdPnwbguv43O3fuxGuvvYYyZcrA398ffn5+KFeuHF5//XWcOnUqS8d+nDIblZmYmIgff/wRjRs3RlBQEDw8PJA/f36UK1cObdu2xffff5/l5lBXXM+OHj2K/v37IzQ0FN7e3ggNDcWLL76IXbt2AbA9Gj2z0fK6jN+tjLL6fcgK+Rw3bNgAANiwYYPZNcvaaPxDhw5h0KBBKF26NHx9fREQEICKFSvi7bffdklz98KFC/Hw4UMAQLdu3TLdvl27dvD29gYA/P3331k+/zNHOOizzz4TAAQAcfbsWVGyZEn1/4x/3bt3F8nJyRaP079/f6v7yb8CBQqIzZs3Wy1LWFiYACD69+8vfv75Z5E7d26zY0hnz57N9HwARJ8+fayWed26dWq7devW2XxtrDl9+rSoUKGCzTKULl1anDx50ubrFhYWZvUctgwbNkyd548//nDqGDr9OVt6TSyJi4sTgYGBAoDw9fUVSUlJWS6HbtKkSXa91+fOnVP7REZGCgAiMjJSbNq0SRQoUMDqfmPGjLF5/qVLl6rnZ+2vXbt2IjY21uL+cpvPPvtMjBs3zuLnWr52GzZscPp10j/Ptv4++OADq8fQ3/9r166JqlWrWj1Ohw4dREpKitVjffHFF8LNzc3ivgEBAWLlypUm71NG586dU9tPmjTJ4jmSk5PF0KFDbT5fDw8P8dtvvzn6ctqkl61///4uO65+DczoypUrmV5rAIhhw4Y5ff6sXs+EEGLWrFnC09PT4r65c+cWEydOtHndy+y6rNO/W7aO4+z3Qb/26NcXe9jzm2jp+X/55ZciV65cVvfx8vISU6ZMcagsGb388ssCgAgNDbV7n7p16woAokmTJlk697MoS33MevbsiXPnzmHIkCHo3r078ubNi4MHD2L06NE4efIk5syZg8KFC+PHH3802/fRo0coUaIEunTpgtq1a6N48eLInTs3zp8/jzVr1uDPP//ErVu30KVLFxw+fBghISFWy7Fr1y5Mnz4doaGhePfdd1GjRg2kpKRg06ZNapuUlBR4enqiVatWaNGiBSpUqID8+fPj9u3bOHnyJMaPH48jR45g+vTpKFGihEm0xVWuXr2K+vXr4/r16wgICMCgQYPQvHlzFCxYEPfu3cOqVaswduxYnDp1Cq1bt8bevXuz1HRoibwbA4D27du79Nj28vX1Rb169bBs2TLEx8dj7969qFOnjsuOL0eaTpgwAT///DOAtDvKjIoWLWqWd/XqVXTp0gXu7u746quv0KBBA3h6emLz5s34v//7P9y9excffvgh2rRpg4oVK5rtv3r1anTs2BEpKSkIDw/H0KFDUadOHeTJkweXL1/G33//jenTp2Pp0qXo37+/zSHlK1euxI4dO1ClShW8+eabqFy5MhISEjB//nyMHTsW8fHx6Nu3L06dOgVPT0+HX6dHjx7Bz88P7dq1Q9OmTVGuXDnkyZMHMTExOHLkCH788UecP38eX331FcqUKYMBAwbYPF7Xrl1x7NgxvPHGG+jQoQPy58+PEydOqI7Aixcvxu+//47Bgweb7Ttr1iwVvc2XLx/ef/99NGrUCEBaFO2rr75Cr169EBwc7PDz1L3yyiuYOnUqAKBNmzZ46aWXUKZMGbi5uWH//v344YcfcOTIEQwaNAiFChVChw4dsnS+nPSf//wHR48eBZDW/NS1a1cUKVIE7u7uuH79Ovbs2YMFCxY4fXxXXM927NiBvn374tGjR/Dy8sLbb7+Ntm3bwsvLCzt27MCXX36JIUOGoEKFCll5Kezi6u+Do0aNGoV3330XAwYMwO7du1GzZk1MmjTJZJuM3/MJEybgo48+AgAEBwfj/fffR/369ZGSkoI1a9ZgzJgxiIuLw8svv4ygoCC0bdvWqbLJ31I5uMsetWvXxvbt27F9+3YkJyfDw8PDqXM/kxytyel3yADEzJkzzba5f/++unPOlSuXOHjwoNk2p0+fFqmpqVbPc/DgQeHv7y8AiE8++cTiNvJuEYCoXLmyuHPnjtXjPXjwQFy5csXq46mpqequwM/PT9y9e9dsm6xGzNq3b6/uOs6cOWNxm7179wo/Pz+rzzurETMPDw8BQBQpUsSp/TNyJmImhBCffPKJ2m/q1KkuKYutsmVGRmLka3vp0iWzbTZt2qQiOm+88YbZ4w8ePBAFCxYUAETLli1FXFycxXP99ttv6lxr1qwxe1z/frVt21Y8fPjQbJsvvvhCbTNv3rxMn58lN27csPmdefjwoWjRooV6TR49emS2jf4ae3h4WPwM3Lp1S70uVapUMXs8MTFRhISECAAif/784sSJE2bbnDhxQuTPn1+dy5mI2Zw5c9Tjv//+u8XnnJCQIJo2bSoAiPDwcKvRc0c97ohZQkKC+q5nFhG7deuWU+d2xfWsRo0a6rNjKfp76dIlUaxYMZsRI1dFzFzxfchKxEyyFRXWxcTECF9fX3U9v3Dhgtk2+utftGhRp1onrl+/rp7TyJEj7d5vypQpar+dO3c6fN5nWZY6/7dv3x69e/c2yw8ICMBvv/0GAEhNTcUvv/xitk3JkiVtzi9VuXJlvPrqqwBg113d+PHjERgYaPVxPz8/FC5c2Orjbm5u+Pbbb+Hu7o64uDisWbMm03M64vDhw1iyZAkA4KeffkKJEiUsbletWjW8/vrrANKmn3Cl+/fvIzk5GQByvFNygQIFVPrOnTs5WBJz48aNsxhNa9CggYrs6dFYadKkSbh+/Tq8vb0xbdo0+Pr6Wjz+a6+9htq1a6t9rPH29sakSZMsRsPeeOMNlW+pLPYICgqy+Z3x9PTEmDFjAADnz5/H/v37bR7vP//5j8W+X/nz51fRhYMHD+LevXsmj8+fPx8xMTEAgM8++wxlypQxO0aZMmXw2Wef2Tx/ZmTfxi5duqhrS0be3t746aefAKRNRZFZnyWjun37tvquy8ijNfnz53f4+K64nu3cuRN79uwBkDYgyVI5ixYtim+//dbh8jnD1d+H7DZp0iTEx8cDAL799luEhoaabVOtWjU1Eezly5edipBeunRJpW21XGWkb6sfgzKXpYqZrVBu7dq1VVOPPZWcO3fu4MyZMzhy5AgOHz6Mw4cPqy/J0aNH1UXGktDQUDRs2NChsicnJ+PSpUs4duyYOt+VK1dUheHAgQMOHS8zssO9r68v2rVrZ3NbeYG6cuUKLl686LIyxMbGqrSfn5/LjusMf39/ldbLldMCAwNtvj81atQAkDaQJCP5HkdGRmZ6AZPv8bZt26xu06JFC6vHCQgIUEPWLZXFGQ8fPsSFCxdw9OhR9Z0QQqjHM/tOyJFYlsjXDQDOnTtn8lhUVBQAIFeuXOjbt6/VY/Tp08fpyYIvX76sKgE9evSwuW358uURFBQEwPb7Y2QFChRQFfdp06bZNfDCEa64num/C7Z+S7p06WKzwpRdsvp9yG7y9QsMDLTZIV+/CXEm4HDjxg2Vzpcvn9376RV+/RiUuSz1Mcusvbl27do4cuQITp06haSkJLM7/0OHDuH777/H8uXLce3aNavHSU1NxZ07d6z+SFWpUsWu8iYnJ+O3337DtGnTsG/fPiQlJVndNrMRoY7avXs3ACA+Ph65c9v/sl+7ds3inZAzAgICVDouLs4lx3SWXhmT02cYQenSpW1OeisvNpYqk/I9Xrlypd0VCFuf+3Llytnc11ZZ7BUXF4cff/wRf/31F44cOYKUlBSr22b2nbBVXv0inbG8hw8fBpA2D56tC3/+/PlRokQJnDlzxmY5LJHvDQD07t3bYqTfElvvj5F5eXmhZ8+emDZtGubMmYNdu3ahR48eaNy4MerXr5/lvquuuJ7Jfp+enp42r+EeHh6oVq0a1q1bl4US28eV34fsJr831apVs9l/q2DBgggPD0d0dLTaxxG3b99WaUcqZvq2XPnCMVmqmGUWFZDNZUII3Llzx6T5bOLEiRgyZIjdd3K2lgKy58Ny+/ZttGzZUt01Z+V8zpBNNY6SoWpXyJMnDzw8PJCcnIzr16+77LjO0C9qzjSlZBdrzY+SrLRlXGokOTnZ6nqitth6f+0ti60fD1uio6PRtGlTswiWNZl9J2yVV6/sZiyvbMq2p5kkODjYqYqZEb5/j9tPP/2Eu3fvYvHixTh//jzGjBmDMWPGwN3dHdWrV0ePHj0waNAgp26MXPF6yvc9f/78mVbuHkfXC1d/H7KbrDDZ89oUKlQI0dHRJpUse8lpLwDHnrO+rY+Pj8PnfZZlqWKWWVRAD/vqjh8/riplISEh+O9//4umTZsiPDwcAQEBqvb/559/4pVXXrF5LABwd3fPtKxvvvmmqpR17twZAwcORJUqVRASEgJvb2/1XIoXL46LFy/aPJ8z5I9RREQEFi1aZPd+rp4tvGrVqti9ezeuXLmC69ev51hfM31i2bJly+ZIGVxJr2z06NEDn376aQ6Wxj59+/bFuXPn4ObmhgEDBqBXr14oX748goOD1YTDqamp6vvl6u/E46S/PzNmzLA7yu5IhMBo8uTJg0WLFmHnzp34559/sG7dOhw4cAApKSnYtWsXdu3ahTFjxmDBggV4/vnnHTq2K65n8vNkT3T5cXz2ntTvQ3a/fvpIaEcqdvq2WR1N/azJUsXs+vXrNpvZ5F2Vm5ubyQVu8uTJePToEdzd3bF+/XqUL1/e4v6u6hR+//59Ncndiy++aHPy2+zqiC77rl2/fh3lypVzKPzvSpGRkaoZYunSpRg4cOBjL0N8fDy2bt0KIK2vm7W1N58k3t7e8PX1RXx8PO7evWtxaSojOX78ODZv3gwA+PDDDzFq1CiL2z2OgRny2mBPFMbZvir6YBM3NzfDvz+uVLt2bTXYJDY2FuvXr8ekSZPUoItu3brhzJkzDkU1XHE9k5HyW7duISUlxeYNtq3Phh6NtbVotq3uG0b6Ptgrf/78uHr1ql3N7bKFxJnWCb1S5cjz17dlxcwxWer8L2dlzuzx0qVLm/QvO3LkCIC06I21Shlg2i8kK06dOqUGD/Tq1cvqdidOnMCDBw9ccs6MqlWrBiCtUrJly5ZsOYc99BnCx40b53QzWFZMmjRJjczr0KFDtlVSne0o7iz5Hm/ZssXwTWDyOwjY/k646jtoixwkdO7cOZt35Ldv33Z6oIN8bwBky2LiT4qAgAB06NAB8+bNwxtvvAEgbT4yWSmxlyuuZ5UrVwaQtgqMrY70jx49sjkCUu87a6viYGtpICN9H+y9bsmbi3379tkcHBcTE4Pz58+b7OOIkiVLqm4KJ0+etHs/fVv5XpN9slQxmzJlitXHdu/erToaNm/e3OQx2a/M1o/XtWvX1MifrNL7sdk6p6VpPVylU6dOKp2TC3dXqlQJHTt2BADs37/fZHmkzGzatMnu/hfWnDp1Sg3fBoAPPvggS8ezRe8bIZcTyU7ydY2Li8P48eOz/XxZYYTvhNSsWTMAadGO6dOnW91u+vTpTjfJlCpVSk1S+tdff+HChQtOHedpIl93wPGO7K64num/C7Z+S+bPn2+zwqU3j9qqOM2cOdPqY0b6PsjrVmbXLPn63b171+ZE1RMnTlTfm4y/xfbInTs36tatCyDzYIxObluyZEmbU1WRuSxVzBYtWoR//vnHLP/BgwcYNGhQ2gly5TKb6VsO8z958qTFtcfi4+Px4osvuqxzZalSpdRdiJz1O6MlS5Zg3LhxLjmfJbVq1ULLli0BAMuWLct0Tqbo6GjMmjUrW8ry66+/qr5ln376KYYPH25zhGpcXBw+//xzNGvWzGwOKkcsWbIE9erVU6PyPvzwQ1StWtXitnLdOHvWv7NGvxg402HcUUOGDFHTLHz66aeZrqu5ZcsWbNy4MdvLZYn8DgLWfxR//vnnLM0Mb68uXbqojv+ff/65xbUqT506leXVOOTKAomJiejatavNZtGHDx9iwoQJ2bpubXY6e/asySofluiRQ0f7srriela7dm1Ur14dQNpnzVLU7urVq3j33XdtHjswMFD1GZw0aZLFqOvGjRstrkAjGen7IK9bZ8+etXkjMmDAABXJGjZsmMWplQ4cOIAvv/wSQNqccJ07d3aqTHI6qoMHD9p9k7tz506Tfcl+WWpDqlmzJl588UVs2LAB3bt3R548edSSTDJs/Prrr5t1tO3bty/GjRuH1NRUtG3bFu+99x7q1asHb29v7NmzB99//z1OnTqF+vXru6TZr0CBAmjbti2WLl2KZcuWoXXr1hg8eDCKFy+OmJgYzJ07F5MnT0aJEiVw9+7dbJtzZdKkSahZsyauXr2K//u//8PKlSsxcOBAVK5cGd7e3rh16xYOHjyIFStWYO3atejcubPdw/odUahQISxZsgTt27fH9evXMXLkSEybNg0vvvgi6tevj5CQECQlJeHy5ctYu3Yt5s6da9drcu7cOVUxEULg/v37uHHjBnbt2oXFixebLIv02muvWe3H4Sr16tVT6bfffhsff/wxChcurCrp4eHhLm1GzZMnD2bNmoU2bdrg4cOHaN++Pbp164Zu3bqhZMmSANJ+aPbs2YP58+fj4MGDGDduXKYTgGaHatWqoVKlSjh8+DB+/vln3L17Fy+99BIKFy6MixcvYvr06ZgzZ47LvoO2eHt744cffsCLL76I27dvo06dOvjggw/U67Jx40aMHj0aqampKF26NE6dOuVUM3Xv3r2xcuVKTJkyBXv27EGFChUwePBgREZGIjg4GHFxcThz5gw2bdqEefPm4fbt2+jXr59Tz2nz5s1q4XXANCJ1+vRpTJ482WR7a4uQO+vChQto0qQJKlSogC5duqBmzZpq0uSLFy/i77//VjfV1apVc2pJNFdczyZMmIAGDRogOTkZLVq0sLgk082bN1G1alWbzZ3/+te/MGTIEFy/fh0NGzbEp59+irJly+L27dtYsmQJfv75Z9SsWdPqvHRG+j7Uq1cPkyZNQkxMDN555x306dNHTW/i4eGBsLAwAGn9tsaMGYPXX38dV65cQc2aNfHBBx+gXr16JksyPXjwAG5ubvjtt9+cXhapXbt2+Pzzz5GUlIRNmzZlGnk7deqUqihmNs8dWeDoUgEZFzGPiIiwunhqt27drC5p8vnnn1vdD/9/GZHMlrewtYBvRhcuXBDFixe3er7ixYuLI0eO2DymKxYxj46OFrVq1bL53OXfgAEDzPbP6pJMGcvSrl07u8ri5+cnRowYIRITE60+Z3v+KlSoIObOnZtp2Xr06KH2sbSkl73042T8s7aIuS32vMdRUVGiUKFCdr0elhYXlo9ZWjZGZ2+Zrdm3b5/Ily+f1bJVrlxZXLlyxWZ57F32yp5lc2wtYu7r6yuWLl0qGjZsKACI1q1bm+1vzyLmjx49Eu+9955wd3e36zMfHx+f2ctokT0LUut/zrJ2vbJ3Qe7y5cs7vXSQEFm/ngkhxMyZM20uYv77779net1LSUkRnTt3tnruSpUqZfpZdsX3wRVLMsXGxooSJUpYLIOl5z9q1KhsX8RcCCHKlStn833UjRgxQgAQefPmFQkJCVk+97MmS02ZERER2LNnDz766COUL18evr6+yJs3Lxo1aqTuMKxFJIYPH46lS5eiZcuWyJcvHzw9PVGsWDF07doVq1atwjfffJOVopkJDQ3F3r178d///hdlypSBl5cX8ubNi6pVq+Kzzz7D/v37H8tCuWFhYdixYwfmz5+PXr16ISIiAr6+vvDw8EBwcDDq1auHYcOGYcOGDZg4cWK2l2XJkiXYuXMn3n//fdSuXRuFCxeGp6cn/P39UaJECXTv3h2//fYbrly5gs8++0wNG8+Mh4cHChQogBIlSqBNmzb49NNPsWnTJhw5cgRdu3bNdH/ZxN2sWbMsdRydPn06vv76a9SuXRt58+a1OXmsqzRt2hRnzpzBTz/9hNatW6vX1NvbG6GhoWjZsiVGjRqF48ePOx2RcYXnnnsO+/fvx5AhQxAWFgYPDw/kz58ftWvXxjfffIOdO3c+1r4hH3/8MTZs2IDOnTsjJCQEXl5eCAsLw8CBA7F79260bdsW9+/fBwCnJ0h1d3fH6NGjcfToUQwbNgzVqlVDvnz54O7ujoCAAFSsWBEvvfQSpkyZgqtXrz6x8y81bNgQ27Ztw//93/+hadOmKFWqlJqKqGDBgmjZsiV+/fVX7N+/H+Hh4U6fxxXXs969e2Pfvn3o27cvihQpAk9PTxQtWhQ9evTA5s2brS6fpcuVKxfmzJmD8ePHo1atWvDz84Ofnx+qVKmCUaNGYceOHZl+lo3yffD398fWrVvx5ptvqt9VWz766CPs27cPr732GkqWLAkfHx/4+fmhfPnyePPNN112nfnXv/4FAJg7d26mTfyy2XrgwIEmfX3JPm5CONabdsSIEaqvh4O7EtklOjpa9XnZsGFDjjT1kfEkJycjb968SEhIwCeffIKRI0fmdJHoMXn55ZcxZcoUhIWFITo6OqeL80x68OABwsPDcevWLUybNg19+vSxuN3mzZvRsGFDeHh44OTJk1mq+D+rsj98QOQg2Wk5MjKSlTJSFixYoAYEyVFiRPR4+Pv747333gMAjBo1yuqccfKGacCAAayUOYkVMzIcOVJx+PDhOVwSepz0zvIZRUdH45133gGQtgRNq1atHlexiOj/e+ONNxAWFobjx49bnJFh586dWLVqFfz9/TFixIjHX8CnRM5MP09kw8SJE7O9fx0ZT7ly5dC2bVu0b98eFStWhJ+fH2JiYrBu3Tr88ssvai3Sb775JsdWziB6lnl7e2P69OlYs2aNxXWub968ic8++wzVq1fn3GVZwKsbERlCSkoKFi9ejMWLF1t8PFeuXPjiiy+s9m0houzXoEEDNGjQwOJjbdu2Rdu2bR9ziZ4+rJgRkSEsXrwYy5cvx9atW3H9+nXcunULXl5eKFq0KBo3bozXX3/9mVrjkoieTQ6PyiQiIiKi7MHO/0REREQGwYoZERERkUGwYkZERERkEDlaMYuOjoabmxvc3NzMFvV93EaMGKHKQkRERJQTslwxS05Oxl9//YX+/fujfPnyKFCgADw8PBAUFIQaNWpg6NChWLNmjdVZgunJ9sUXX6gKbUBAAOLj4116/Lt372L16tUYNWoUOnfujCJFiqjzNW7c2K5jnD9/Hr///jtee+011K5dG2FhYfD19YWPjw9CQ0PRsWNHTJs2DcnJyTaPc//+ffz111947bXXUL16dQQGBsLT0xPBwcFo3LgxvvnmGzXXVmZOnDiBbt26ITAwEAEBAWjXrh327t1r177Z7eWXX1avcca/3LlzI3/+/Hj++ecxfPhwXLlyxSXnNNL7bM3Vq1cRGBjoULmM/D5ndPHiRYwZMwYtW7ZEREQE/P394ePjg6JFi6JVq1b44osvcO7cuSyd4+HDh9i+fTvGjRuHvn37omzZssiVK5dDN8Xyezhs2DBERkaiVKlSyJs3Lzw9PRESEoLGjRvj66+/xq1btxwq27Fjx/Df//4XVapUQb58+eDj44Pw8HA0b94cX375pc2loB4+fIjhw4cjIiIC3t7eqFSpEiZMmGCIZQvXr19v87scERGBRo0a4e2338bcuXORlJTk0vOfPn0as2bNwttvv4369evD19fX4YDMhg0b8L///Q9dunRBxYoVUbBgQXh6eiJv3ryoXLkyhg4dij179th1LCEEZs+ejc6dOyM0NBTe3t7w9fVFiRIl0KtXL6xcudKu40yfPh3PPfecWgP5v//9L2JjY+3a155COm3BggWiRIkSVle11//KlCkjlixZYrL/uXPn1OOTJk3KSlGy7LPPPlNlIfuVKVPG5H2eNm2aS48fHh5u9TMVGRlp1zE+/vhjuz6jlStXFmfPnrV4jGXLlgkvL69Mj1GwYEGxdu1am+U5ePCgyJs3r9m+3t7eIioqytGXyOX69+9v1+sFQAQEBIiFCxdm+ZxGeZ9t6datm0PlMvr7LCUmJop33nnHrs+3m5ub6NGjh7hw4YJT53r55ZdtHt8eq1evtut9DgoKEitWrMj0eKmpqeLjjz8WuXPntnm877//3uL+jx49Ei1btrS4z2uvvebIy5Mt1q1bZ/f3GYAIDg4WI0eOFMnJyVk+9/r1622ey97f/aJFi9r12fzPf/4jUlJSrB7n7t27onHjxpkeq2fPnuLhw4dWj/P5559b3K9atWriwYMHjr5MZpyuhXz55ZfCzc1NFah58+Zi3LhxIioqSuzZs0esXr1a/PTTT6JVq1YiV65cAoCoWrWqyTGMVDEjx23btk29f/7+/gKAaNGihUvPERYWZlLpad++vcM/2J9++qmoWrWqeP3118Xvv/8ulixZInbt2iXWrl0rfv/9d1GvXj11zJIlS4q4uDizY0ybNk0AELly5RKtWrUS33//vVi7dq3Yu3evWLRokejZs6c6hq+vr9i3b5/V8tSuXVsAEO3atROrVq0S69evF/369RMARGhoqEhKSnLy1XINvWK2cuVKcejQIfUnn2+/fv3U99/T01McO3YsS+c0yvtszaJFiwQAERISYne5jP4+CyHEzZs3TV6XgIAAMWjQIPH333+LLVu2iJ07d4pFixaJ999/X5QuXTrTSkpm9M9WQECAiIyMFIUKFXK4YhYaGir69esnxo4dK+bNmye2bdsmtmzZIv7++2/xwgsvCHd3d/XZPHDggM3jvfrqq+r8VatWFT/++KPYsGGD2Llzp5g7d64YOXKkqFq1qvjhhx8s7j9hwgQBQBQtWlRMmjRJbN++Xfzwww+qUr58+XKHXydX0itmQ4cONfk+b9u2TSxbtkx89dVXokWLFia/6bVr1xYxMTEuO3euXLlExYoV1ffCkd/9MmXKiFatWokRI0aIGTNmiLVr14rdu3eLJUuWiOHDh4uCBQuqY77//vtWj9OmTRu1XUREhJgwYYLYtGmTWLt2rRgzZowICgpSj//rX/+yeIwjR46IXLlyCW9vbzFy5Eixbds28ffff4uyZctmen57OVUxmzp1qknt2p4IQdOmTVkxe8oMHTpU3ZmOHj1affkuXbrksnOMGTNGzJkzR5w/f17lOfqDbc+d35tvvqmO++OPP5o9/tdff4nBgweblCOjH3/8UR2jadOmFreJjo4WAETNmjXFo0ePTB7r1KmTACA2bNiQaXmzk/7jee7cOavbDR8+XG03ZMiQLJ3TKO+zJbGxsSI0NFQAMLn22SrXk/A+p6SkiObNm6vn07ZtW3H9+nWb20+ZMkWEhIQ4XTH766+/xKRJk8Thw4dVZCMyMtKhilnG19OS+fPnq2N27drV6nYTJ05U27311ls2oy3WIigyApOxAijLMGDAgEzLm530ytFnn31mc9vDhw+LatWqqe0bNGhgM3KUmZMnT4oxY8aI9evXi9jYWCGEEJMmTXL4dz+z7/bNmzdV652Hh4e4deuW2Ta7d+9W5y1RooS4f/++2Tbnz58XgYGB6rfMUsV0xIgRAoAYO3asSf6lS5eEr6+viIiIsOs52eJwxezy5cvCz89PRQaOHDli134pKSlmzVysmD25Hj58KPLnz6/uLK5evaruUkePHp2t53b0B9se165dU8ft3r2708epWbOm+lLfvHnT7PEtW7YIAGLYsGFmj8mK3cyZM50+vyvYWzGLjY1Vd9jVqlVzeTmM8j7/5z//EQBEkyZN7C7Xk/A+//DDD+q5NG/e3O6mq4sXL7q0KdbRipm9ypUrp24cLbl//77Ily+fACAaN27s9HlKly4tChQoYPH4AETLli2dPrYrOFIxE0KI+Ph4k8qZs5Vwa5ypmNnjq6++UsfN2G1KCCHGjh1r103Z22+/rbZbvHix2eOvvfaaACAOHTpk9lj16tWFp6dn1p6IEMLhzv/ff/894uLiAACff/45KlSoYNd+uXLlsmuNu9WrV6NDhw4oVKgQvLy8EBERgaFDh+LSpUuZ7puUlIQJEyagSZMmCA4OhqenJwoVKoS2bdti+vTpNgcg2DsqMykpCb/99hvatWuHokWLwsvLCyEhIahRowb+/e9/Y9OmTTY7fK5evRp9+vRBREQEfHx8kCdPHlStWhXvvfcerl69avPcV65cwQcffIDq1aurzq6FChVC5cqV0bt3b0yePBn379+3/SK5yOLFi3H79m0AQJ8+fVCoUCE0bdoUADB16tTHUgZX8vPzU+nExESnjyM7hKemplrsKB0SEgIA2Lx5s9nnccOGDQCAQoUKOX3+x8nf3x8FChQAkLXX7HFy9H3euXMnxo8fD09PT/z88892n8fo73NycjLGjBkDIG1h6kmTJtm9MHyxYsXUd93I5Htt7X2eMWMG7ty5AyDt+u+skJAQ3Lp1C0eOHDHJX79+PYAn5/ss+fj4YNq0aeq38JtvvnF6wMzjlNl3Wx/UUKJECavHKVmypEo/fPjQ7HH53ZbfY+natWs4ceKEa95vR2pxqampIjg4WAAQfn5+4t69e1mqFWaMmL3//vvq/xn/goODxdGjR60eKzo6WpQvX97q/vj/YVlLIU4h7Ov8v2/fPhEREWHzHLASZXjw4IHo0qWLzf38/f0t1tCFEGLjxo0iT548mZ7b0v76HVP//v2tPj9HdOzYUQBpfXWkKVOmqPPs2bMn02PIbcPCwhw6t9zPlZGU3377TR333Xffdfo4Mrpi6zWoWLGiACA6duwoVq9eLTZs2CAGDBggAIgiRYqIxMREp8/vCs5EzFq1amV1uyf1fU5OThZVq1YVAMSnn37qcLmM/D4vXrxYPY8+ffq45Jh65MvW58bWfq5y9OhRFcGvWbOmxW2aNm0qgLR+g1Jqaqq4evWqOH36tGp6y8yYMWMEkNZvcPLkyWLHjh1i3LhxKhpn7Zr+uDgaMZP0AQ1btmwxe1yPfDly3OyImKWkpIiGDRuq4x4+fNhsm4ULFzocMTt48KDZ47t27RIAhI+Pj/jyyy/Ftm3bxOzZs0WFChWsRskd5dA34fDhw6rArVu3zvLJ9YqZ7IAaGRkpZs6cKXbv3i3WrFmjOssCEHXr1rV4nNjYWJPRoZ07dxaLFi0Su3fvFrNnzzb54j///PMW+yhkVjE7cuSI6uAOQHTp0kX8/fffYteuXWL79u1iypQpok+fPsLPz8/sovTo0SPRpEkTAaSNHOndu7eYPXu22L17t9i2bZsYO3asKF68uADSOqvu3r3bZP/ExERRpEgRAaR1mH3vvffE8uXLxZ49e8T27dvF33//Ld566y0RGhr6WCpmN27cEB4eHgKAGD58uMqPjY0Vvr6+AoB48803Mz1OTv9g3759W+zdu1e8/fbb6vl4enqK06dPO33MKlWqCAAid+7cVm9ctmzZInx8fMwq1Z6enjneUVgI+ytmsq8FADF+/Hir2z2p7/P//vc/dfORkJDgcLmM/D6/++67qjx//fWXS46Z0xWzuLg4cfLkSfHtt9+adAa3NFI8JSVFBAQEqIrzw4cPxYgRI0ThwoXVfm5ubqJGjRpi6tSpIjU11ep5ExISRJ06dSzeKPfr1y9Lz8kVnK2Yff3112q/r776yuzxnK6YPXr0SFy6dEksXrzY5DPUrFkzi9snJiaq0d8lS5a0OHry4sWLqkL9/PPPWz233ldV/6tUqVKWA1ZCOFgxmzFjhirARx99lOWT6xUzIG1osaUvgD5qZu/evWaP6xeZTz75xOzx1NRU8dJLL6ltJkyYYLZNZhUz2eaeK1cuMWvWLKvP6ebNmyI+Pt4k75tvvhFAWqfEZcuWWdzv9u3b6g67QYMGJo9FRUWpstm6+0pOTrb4oXB1xUxvqz958qTJY71791Z3oZn1WcmJH2xbU0H4+PiIf/75x+FjSkuWLFHHateunc1t9+7dK9q2bSv8/f2Fr6+vaN68udi2bZvT53YlW6My9+3bJxYvXiwGDhyoRlvXr1/fZvTnSXyfz5w5oypVK1eudLpcRn2fW7RoYfU77KycqJjpP/KW/t59912LvylycAYA8eqrr1qtWMm/Hj162LyexcbGimHDhomiRYsKDw8PUaZMGfHdd9/ZHEzwuDhbMVuzZo3ab+DAgWaP51TFzNb79Nxzz4mLFy9a3XfLli2qb3TJkiXFL7/8IjZv3izWrVsnvvnmGzXqOjw8XBw/ftxmOSZMmCAqVKggPDw8RKFChcR//vMfcefOHYefj8Xn6MjG+g9yxhEJztArZoULF7Z6cT9+/LjV8yYmJqpRFBUqVLA6YufevXuiQIECaruMbFXMVqxYoR6zJxKkS0pKUndhb7/9ts1tly1bps5z6tQpla9XiJ2pjbu6YlajRg0BpA2nzmjp0qV2VSKFMNYPds+ePUV0dLTDx5Nu3bqlpnxwd3e3eAPxpLB3HrMiRYqI77//3iSaZMmT+D7L0Yo9e/Z0abmMQu/c7Yo7fCGMVTF77rnnxPbt263ut3fvXrWtnL+tfPnyYsmSJSI2NlbExsaKxYsXqykQANdMg5ATnK2Y7du3T+3XpUsXs8eNVDHz9fUVEyZMyPRaJETayMthw4ap6Ln+5+/vLz7//HNx48YNh8vlSg59E7744gv1BP74448sn1yvmP3nP/+xua1sRsxYMZKjnwCIr7/+2uYx5PQOAMSVK1dMHrNVMdP7DTn6471582a1b2Z3yg8ePFDbTp06VeWvXbtW5VubS+dxOXLkiCqLpXb65ORkddfRo0ePbClDVn4YL126pKI/W7ZsET///LOoXr26ANIilc5EDx49eiRat27t1EXKiByZYLZKlSpi/vz52VKOnHqfZV/JPHnymF0nslouoyhVqpR6HvZMP5GdslIxu3Pnjnqfd+7cKWbNmqX68pYsWdLqzeGmTZtMPsehoaEW+x/fuHFDdSPx9PR06VRAj4uzFbNTp06p/Zo3b+6y8mS1Yibf7/3794uVK1eKDz74QAQGBgo/Pz/x1ltv2ZwfMDU1VXz77bcm8yZm/CtfvryYPHlyFp5h1hkmYmarj4oQQs0jlDGk+uuvv6pjZDYv0OTJk9W2q1atMnnMVsWsQYMGAoAoXry4nc8snT4k3ZE/vZKZlJRk0oeuVq1a4ssvvxRbtmzJ0hwzznjvvfcEkNaHytrkg7Ii6+3tLe7evevyMrj6h/HRo0di8ODBAoDIly+f2L9/v0P7Dxo0SJWpXbt2Of5Dl1W2+pilpqaKW7duieXLl6sfVDc3NzFu3DiXlyMn3ucbN26oSSatPaenoWKWHREzZ2VH5/+pU6cKNzc3kStXLos//rIDt/z75ZdfrB7rp59+snkzanTOVsz0qKKtueAclR2d/y9cuKAG5rVo0cLiNTglJUW88MIL6tyvvPKK2Lt3r0hISBAPHjwQmzdvVoPaAIh33nnHJWVzhkPTZQQFBan09evXHdk1U76+vjYfz5UrragpKSkm+XLKBgAoWLCgzWPow1j1/TJz8+ZNAEDhwoXt3keKiYlxeB8AJmtOenh4YPHixShfvjwAYNeuXfjoo49Qv359BAYGok2bNpg5c6bZa+NqqampmDFjBgCgZcuWCA4OtridnBYlMTER//zzT7aWyRXc3d3x448/IjQ0FHfu3MHQoUPt3vfDDz/Eb7/9BgBo0KABZs+eDXd39+wqao5zc3ND/vz50bp1a0RFRaFhw4YQQuDtt9/GiRMncrp4NtnzPr/zzju4efMmatasiX/96185UMrHIzuv5UbQt29fvPDCC0hNTcW///1vNS2GFBAQYPL/Nm3aWD1Wq1atVHrXrl2uLaiByd89AMifP38OliRzoaGhGD9+PIC0KakmTpxots2ECRMwe/ZsAGnTo/zxxx+oVq0avL294efnh/r162PhwoXo27cvAOC7777D0qVLH9+T0DhUMatatapKG3Eh3szmIBM25hdzxfEt0StL69evx6FDh+z6y/ijUaFCBRw6dAjz58/HwIED1VwrCQkJWLFiBV566SXUqVPH6YqgPaKionD58mUAwLJly6wudF2nTh21z5Myp5mnpydat24NANi2bZtdi3OPHj0aX331FQCgevXqWLJkCXx8fLK1nEbi7u6Od955BwDw6NGjJ+K9tvU+X7lyBdOmTQMANG3aFP/88w/++usvsz8pJiZG5e3YsePxPpEsMvq13BU6deoEAIiLi8Py5ctNHitWrJjJ9bxo0aJWjxMaGqrS2Xl9NZp9+/apdNmyZXOwJPZp2bKluv7OmTPH7HFZWQsICMAHH3xg9ThffvmlSv/xxx8uLqV97JtR8P+rUKECgoKCcPPmTWzatAn3799Hnjx5sqtsdtFr8teuXUOZMmWsbqvfGTpyByDvLu35sc5ITsAJpP0oVKpUyeFjSO7u7ujcuTM6d+4MALh69SqWL1+OCRMmYM+ePdizZw8GDx6M+fPnO30OW6ZMmeLwPlu2bMHZs2dtTuhnFHoE8Pz58yhSpIjVbSdMmKC+3OXLl8fKlSuRN2/ebC+j0ZQrV06lDx06lIMlsZ+191mfgPLrr7/O9DjHjh1D7969AQD9+/c3uSExusjISHzzzTcAgKVLl6Jnz545XCLXy/g+6/z8/BAWFobo6GgAaa0B1iLd+s21vZPwPg1Wr16t0g0aNMjBktjH3d0d+fLlQ0JCgtn7DaR9X4G0eoyXl5fV4xQrVgwFCxbE9evXcfz48Wwrry0ORczc3Nzw8ssvA0i7C8mp2qROr+hkdte6c+dOi/tlpnr16gCACxcuWHzDbalWrZpKr1q1yqF9M1O4cGEMHDgQ27ZtU2VcsmQJEhISXHoeAHjw4IGq8DVr1gyzZs2y+Sc/G0IIFYUwOhkNBNJmtbdm2rRp+Pe//w0gbQbpNWvWmDQNPUsePXqk0k/C7OCA/e/z06xly5aqQjp79myT1+Rpkdn73KhRI5U+c+aM1ePoj9mKrD1NDh8+jKioKABpEcOaNWvmcIkyl5SUpJpfLb3fslKtX7OskdeynKqIO7wk01tvvaX6gw0fPtzuGmVqaiqmT5/u6OkyVaNGDQQGBgJIi+hY62cVGxur+jtVqFDBof5iHTp0UOnvv//eofI1aNBARed++eWXbFkyycPDA5GRkQDSPnR37951+TnmzJmj+r0NHToUvXr1svn3yiuvoEaNGgDwRFTM9OYOHx8fk2U5dPPmzcOAAQMghECxYsUQFRVlM7L2tNP73OhNPkZl630ODw+HSBsQZfNPioyMVHmTJ09+3E8lSzw9PfHuu+8CSOsL+sorr9jdR/XSpUtYu3ZtdhbPJWR/IgCoXLmy2ePdunVT6Xnz5lk9jv5Yw4YNXVQ640pISEC/fv3UZ/3dd999IiKFCxcuVFFvS+93REQEgLRKp63fyMOHD6s+6HKfx83hilnRokXx008/AUi7yEVGRpqtGZXR0aNH0apVKxU6dyUvLy+8+uqrAIAjR47g888/N9tGCIF///vfqjYtox32at68uapkjBs3zqSfSUa3b982iVh5e3urC+C1a9fQq1cvtdaoJbGxser1lTZt2oTTp09b3ScpKUm9B/7+/mad8tevX6/6f8mIp6Nk/yFfX1+bHWV13bt3B5B2x7llyxazx2WZwsPDnSqTPW7evIm5c+fa3CYxMREDBw5U/Ue6detmcTDKqlWr0Lt3b6SkpCAkJARr1qzJ1rIb3Z07d/C///1P/b9t27YWt3vS3udnxZtvvokmTZoAAFauXIkuXbrgxo0bVrcXQmDGjBmoUaMGDh48aPZ448aN1Xstmwizw+TJkzNd5/T777/HsmXLAKRVuC01xbVv3161nIwePdri4JVjx46p363g4GB07do1q8U3tKNHj6JBgwaqf1lkZKTVwVCTJ09W73dW1hrNzJo1a2z+/gFp5X7jjTfU/2UHfp0MsDx8+BDvvPOOxT7niYmJJsdp3769s8XOEqeqwQMGDMClS5cwfPhwxMTEoHHjxmjZsiU6deqE8uXLIzAwELdv38bJkyexdOlSrFixAikpKSYdTl1p+PDhmDdvHs6ePYuRI0fi8OHDGDhwIIoUKYJz587hp59+UgvKPv/88xg0aJDD55g2bRpq166NBw8eoHfv3pg9ezZ69eqFEiVKICUlBadPn8bq1asxZ84cHDp0yORH6L333kNUVBSioqKwfPlyVKhQAUOGDMHzzz+PwMBAxMbG4sSJE1i/fj0WLFgAb29vk8pjVFQURo4ciYYNG6Jdu3aoUqUKgoODkZCQgJMnT+KXX35RHXhfffVVl9/dXLhwQb1+bdq0sfvHrFu3bvjwww8BpFXs6tev7/C59+/fj/3791t87Nq1a2aRiu7du5uEsR88eIDu3bujVKlS6NatG2rXrq0Wn7958yZ27tyJiRMn4uzZswDSbjxGjx5tdq7t27ejS5cuSEpKgoeHB77//nskJyfj8OHDVsterFgxFc19Up08eRIPHjxQ/xdC4O7du9ixYwfGjRuHCxcuAEiLDMvO1s4wyvv8LMmVKxf++ecftG/fHjt27MDixYtRsmRJvPTSS2jatCmKFSsGDw8PXLt2Ddu3b8fcuXOz3Ofm2rVrWLFihVmelPF9btCgAUqVKmWSN2LECAwbNgzdunVDgwYNULJkSfj7+yM2NhaHDh3CjBkz1I2gp6cnfv/9d4vXxFy5cuHnn39Gs2bNcP/+fdSrVw/vv/++ioRu2LABo0ePVp//cePGPfEV+ZiYGJNrVlxcHO7cuYODBw8iKioKq1evVhWWunXrYs6cOfDw8MjSOefMmWNyDdm8ebPFNJA2c4IcnKNv07p1azRr1gytWrVClSpVUKBAATx69Ajnz5/HqlWrMG3aNFVZHzBgAJo1a2ZWjnfeeQcTJ05ETEwMJk2ahFOnTmHIkCEoV64cUlJSsG/fPvz44484evQogLS+w84GMrIsK3NtzJ07V609ldlfxYoVzZY2ybiIuS1yQjhrM9efO3dOlCtXzmYZ6tevn6VFzHfv3q3mU7P1Z2nW6/j4eJN1P239RUREWC2brb+uXbtanPk4qzP/6xML21qOyhK5dmRgYKDZyg7ymLZmhLf3uVt77TMu+2Xr7/nnnxdnzpxxSTns+UwblSMTzAIQTZo0sfq9EuLJep/tIY/zJM9jpktISBBvvvmm8PT0zPS1c3NzE3369BGXL182O449M//r1yJnv0O2JgfV/4oVK2Y2X6Ulc+bMUetmWvrz8PAQP//8s6Mvq2E4+poHBweLUaNGZbqknr0z/9v7fln7Ttl7bXB3dxf//e9/bc4juW/fPjXfma2/5557LksrwWRVlkIrXbt2Rfv27TFnzhwsX74cu3btQkxMDGJjY5EnTx6Eh4ejbt266NatG5o0aeLUdBP2Cg8Px4EDB/D7779j9uzZOHz4MO7fv4/8+fOjWrVqeOmll/Diiy+q+dCcUaNGDZw4cQJ//PEHFixYgMOHD+POnTsoUKAAihYtigYNGqBXr14Wm2x8fHwwZcoUvPHGG5g4cSI2btyIS5cuIS4uDv7+/ggPD0eNGjXQpk0bs/Dpe++9hzp16mD16tVqiL9sjilUqBDq1KmDfv36WW1KyirZR8zLywvt2rVzaN9u3brh4MGDuHv3LhYtWoQXXnghO4poVfHixbFjxw6sW7cOGzZswLlz53D9+nXExsbC398fxYsXR82aNfHCCy+gVatW2foZfVr4+/ujcOHCqFWrFnr37o127drl+OvG99l53t7e+OGHH/DOO+9g1qxZWLNmDU6ePIkbN25ACIH8+fOjUqVKiIyMxEsvvYSwsLAcLW9UVBTWrFmDdevW4dixY7h+/Tpu3boFb29vFCxYEM899xzat2+PHj162BXh6tatG2rVqoVx48Zh6dKluHjxIlJTUxEaGormzZvjrbfeMovaPQ1y5cqFgIAA5M2bF2FhYahRowYaNmyI9u3bw9PTM6eLp7zzzjuoXr061q5di507d+Lq1au4fv06UlNTERgYiHLlyiEyMhL9+vWz2jdYeu6553Do0CFMmTIFCxcuxMGDB3H79m24ubkhJCQE1apVwwsvvICePXtmOVKYFW5CZHFyLyIiIiJyCefDR0RERETkUqyYERERERkEK2ZEREREBsGKGREREZFBsGJGREREZBCsmBEREREZBCtmRERERAbBihkRERGRQbBiRkRERGQQrJgRERERGQQrZkREREQGwYoZERERkUGwYkZERERkEKyYERERERkEK2ZEREREBsGKGREREZFBsGJGREREZBCsmBEREREZBCtmRERERAbBihkRERGRQbBiRkRERGQQrJgRERERGQQrZkREREQGwYoZERERkUGwYkZERERkEKyYERERERkEK2ZEREREBsGKGREREZFBsGJGREREZBCsmBEREREZBCtmRERERAbBihkRERGRQbBiRkRERGQQrJgRERERGQQrZkREREQGwYoZERERkUGwYkZERERkEKyYERERERkEK2ZEREREBsGKGREREZFBsGJGREREZBCsmBEREREZBCtmRERERAaRO6cLQMaSkpKi0tevX1fp3LnTPiohISGPvUxERETPCkbMiIiIiAyCETMycf/+fZWeN2+eSsuIWbdu3VRecHDw4ysYERHRM4ARMyIiIiKDYMWMiIiIyCDYlPkMS01NVWkhBAAgMTFR5e3YsUOlZRNnwYIFVV79+vUBZD4gQD+PTLu7u6s8Nzc3h8tORET0NGLEjIiIiMggWDEjIiIiMgg3Iduw6Kmmv82yOTEuLk7lyabFXLnS6+pr1qxR6WXLlgEATpw4ofIGDRoEAGjRooXKK1CggNm59ebRhIQEAICfn5/K8/DwAMAmTSIiIkbMiIiIiAyCnf+fQpY68usRMzknmfwXSI+YyegVADz//PMqnZSUBCA94gUAa9euBQA8fPhQ5XXs2BEAkC9fPpWnH1OuLKBH5hgpIyIiSsOIGREREZFBsGJGREREZBBsynwKyWbLR48eqTx9LjHZhOnl5aXyZNOi3qwYFBSk0o0aNTI7z7Rp0wAAUVFRKq9QoUIAgFq1aqm8/Pnzq7Svr6/ZeYiIiCgNI2ZEREREBsGI2VNIRr98fHxUnqXO/5lFrfR98ubNCwCoU6eOyrt8+TIAYNu2bSpv0qRJANIjYxn38fT0tPNZEBERPXsYMSMiIiIyCFbMiIiIiAyCTZlPMX2hcJ0zHe9lE6S+iHnLli0BmM5JtmHDBgDA4sWLVZ4+91mzZs1slo2IiOhZxogZERERkUEwYvYUy+qUFJb212fxL1eunNl28fHxAICNGzdaPGaxYsUAABERESpPDlLQBxtwOg0iInoWMWJGREREZBCsmBEREREZhJvQ24+InKCvMHDx4kUAwMSJE1XeqVOnVDo8PBwAMGDAAJVXunRps+PIwQZs0iQiomcJI2ZEREREBsGKGREREZFBcFQmZZlc4gkAQkNDAQAtWrRQefo8ZydOnAAALFmyROVFRkYCAKpXr67y2IRJRETPIkbMiIiIiAyCETNyKRk9q127tspLSUlRaTnP2a5du1SejI4VKlRI5cm0Pm8aERHR044RMyIiIiKDYMWMiIiIyCA4jxlluwcPHqj08ePHAZjOc3bv3j0AQK1atVRet27dAADFixd/HEV8KuhNxqmpqSotm4r1QRh6moiIjINXZyIiIiKDYMSMHisZPduyZYvKW7lyJQDg9OnTKq9jx44AgCZNmqi8kiVLPo4iPhH0r62MjsXFxam8+fPnq/Tdu3cBAC1btlR5cgUGuYA8EREZAyNmRERERAbBihkRERGRQXAeM3qs/P39AQBNmzZVebIJTi6ADqQ3deqd1L28vFRaznOmrzrwLElMTFTpa9euAQAOHz6s8v744w+VTkpKAgCUKVNG5RUuXBhA5k2Z+iACObjA3d1d5XEQARGRa/GqSkRERGQQrJgRERERGcSz2Q5EOU5vgmzWrBkA0yWZxo4dCwBYsGCByrtz545K9+7dGwBQpEiR7CymYemvxdq1awEAP/30k8rbv3+/SteoUQOAc02QshkUABISEgCYNn/K5mUuOk9E5BqMmBEREREZBCNmlCP0CEvevHkBAJUrV1Z5nTp1AgCsWLFC5a1evVqlIyIiAACNGjVSeUFBQdlTWAMKCAhQ6SpVqgAAevToofL0wQG+vr4AgAIFCqg8S4vDP3r0CIBplEzv/O/p6QnANNrJSBkRkWsxYkZERERkEKyYERERERkEmzLJMPTmuTZt2gAwXQB94cKFKr1t2zYAgJ+fn8qrX78+gPSmO+DpnWdLf61k5/6wsDCVd+jQIZWWSzLpr5Wl10Uu86Qvhq5vJzv9P62vKRGREfAKS0RERGQQjJiRIeXJkwcA0L59e5WnT40xefJkAMCyZctUnpy6oWrVqiovX7582VlMQ5ARLL1Dvz6lxf379wEAsbGxKk+Piklyf31aDUvnISKi7MMrLREREZFBsGJGREREZBBsyiRDks1pevOlPmfWkSNHTP4FgPnz5wMAvL29VZ6c4wswHRTwNNKbGmVHfgB4+PAhACA+Pl7lWWrKtHQcIiJ6vHgFJiIiIjIIRszoiVGwYEGVbtGiBQDTGe737NkDAIiKilJ5evSnVq1aAJ6N2er1GftlWo+S6RG1jOQKABnJKOaz8PoREeUURsyIiIiIDIIVMyIiIiKDYFMmPTH0Zslq1aoBMJ1zSy6yPXv2bJWnz90VGhoKAAgJCVF51ubsehLpzZP6QuNyfjd9UIStmf/j4uIsHt/f3x/A0/WaEREZDSNmRERERAbBihkRERGRQbApk55IcmRgmTJlVJ4cTXjz5k2Vd+nSJZX+9ddfAQA9e/ZUeXL/J7l5To66lPOVAaYjJ2VTpvwXsDwqU+4jm4Qz4vxmRETZj1daIiIiIoNgxIyeaPpi3XLxcn2+rn/++Uelt27dCgAIDg42O065cuVU+kmdp8va3GQy0mUpKqjvI5+3PkjA0uNERJR9GDEjIiIiMghWzIiIiIgMgk2Z9NSQc3fVqFFD5enzmMnBAYsXL1Z5CQkJAIA8efKovMKFCwPIemd3Wx3sXUmWU++0r587OTnZ5F/A9vJKeh6bL4mIHi9GzIiIiIgMghEzeurondyfe+45lZbTSuiLdB85cgSA6SCBvn37AgCCgoJUnj6gwNbUGnqkKj4+3mx/OXs+kB7pshTd0mfutzdyp5dLL6+MGt64cUPlyUihr6+vXccmIiLr5O+Lfu318PBw6liMmBEREREZBCtmRERERAbBpkx6qhUoUECl69atC8C0iXHlypUAgO3bt6u8iIgIAKaDCAoVKqTS9q4SIEPbetrSgAB9u6SkJLPHLc3Erx/n+vXrAIBdu3apvPPnz6v05cuXAQBbtmxReYGBgQCAKlWqqDw5J9yTvAoCEVFOkE2Y+gosbMokIiIiesKxYkZERERkEGzKpGeGn58fAKBx48YqTzYdyiZNAJgyZQoA4O7duyqve/fuKi1HTGY2B5g8H5De9GhpH71ZUo4Y1UdlWtpWb/Lct28fAGDUqFEq7/jx4yotQ+xz585VeQEBAQBM528rUaIEAI7UJCJylLx2602Z+ih8RzBiRkRERGQQjJjRU8daZ3qZr0eJGjRoAMC0w/usWbMAAOvXr7d4/K5du5odR9KjX/r8YzJfX4lALhaud+6Xd1jWOuDLiJseUStdujQAYNCgQSrv1q1bZvvmzZtXpStUqADAdK42WQ799dNldSUEIiIjsNWC4Sx5LFcck1daIiIiIoNgxYyIiIjIINyEpYmViJ5gelNcYmKiSsvOmZaaIPXliv7++28ApvN+6U2LAwcOBABUq1ZN5ckO8xcvXlR5enOjbCbUO4bKwQGyIz4AeHl5AbDebGjp6yrz9KWm5JJLQPrrIY+tPx/9ecny6mXUzyf358LmRPSk0ZdKkmlnlr6zRi6np3ef0QeAOYIRMyIiIiKDYOd/eurodz6ygz1gefZ9Gf3RVwiQi5jrd1P6dBpywXM9QlW2bFkAwKpVq8yODaSvHKB3tpcz7ct/gfRonj7M2tLM/3r0S5ZTL68eFZR3h/qdnIyU6fvI18VaxExuq0fZGD0jIiOT130Z0dLT+vVNn6XfmeiZ3N/Z2f51jJgRERERGQQrZkREREQGwc7/9MxwdO6ac+fOqfTGjRtVetmyZQCA0NBQlSfnErt586bK05sO5SCEe/fuqTxZDv0rKLcrUqSIyqtcubJK165dGwBQrFgxlSebNfWmVUsrB+idX2Wo3tJroTdl6mSTKpsvicgo9MFetuYS07ez1Lypd9Gw1H3kcWLEjIiIiMgg2PmfnhmORnoiIiJUWr+Dunz5MgDgyJEjKu/KlSsAgFKlSqk8fUCBvDN78OCBypORMv2u7c6dOwBMp/nQI29yf/3YMl24cGGVV7RoUZWWQ7atrSaQkbW7RUbKiMgI9FYG/fopWerIr1+/5P6ONBhaGjxm6ZpqaXCZoxgxIyIiIjIIVsyIiIiIDIKd/4nsoDcnXr9+HQAwceJElbdhwwYAQPXq1VVemzZtVPq5554DYNpEKTvo651SZVPm6dOnVd7evXtVeuvWrQCAa9euqTw5CKFTp04qr3HjxipdsmRJk/MRET3J9GtmXFycSsvqjD5/pbzu6dvdv38fgGmTp359tDQwSw6K0s8dEhKi0rJZUx+E5ewgAkbMiIiIiAyCFTMiIiIig2DbBpEd9JC0HPHYvn17lSdD55s2bVJ5+fPnV2k5YrJixYpmx9bD5XKEpb50kz5fmtxfb8qUC6evW7dO5Z05c0al69WrBwBo2rSpyrO0kDsR0ZNAH+1oqQlSHy0p5288efKkypPXyuPHj6s8fcS8HMmpN0vK4wQHB6u8jh07qnTVqlUBmI6YdxYjZkREREQGwYgZkYPk3VS1atVUnrxrk3OcAaZ3aMuXLwcA5M2bV+XJ2fv1uz85i3/BggVVnp6WETP97m7//v0AgIULF6q86OholU5ISABgOt+PXEGgePHiKo/zlBHRk0C/Vlmas0xfhNzSii/x8fEAgG3btqk8fVUW2cIREBBgdmx9AJdcBUbPl9dWwHSFFkcwYkZERERkEKyYERERERkEmzKJnKR3MJVNjG+99ZbKGzt2rErLZkY9NN6qVSsAQHh4uN3nlE2d8l8AqF+/PgDTQQKy6RRIH5Awfvx4lSfnS2vbtq3KczbsTkSUUzKbn1E+XrlyZZXn6+sLwHSQlK558+YALHdXkV1HAGDMmDEqLec5y5cvn8pjUyYRERHRE44RMyIXkB1Q9c703bt3V2nZ6X/RokUqT3bG12fs16Ne9pJTdeiRN3nHB6QP3963b5/Kk8PFr169qvJefPFFs+PoHWuJiJ5U+rVMTnmh58kO/wDQoEEDAKbXc7n6y5UrV1SePqBATq2hrwzgLEbMiIiIiAyCFTMiIiIig2BTJpEL6aFx2SkfSF85QF+cfM+ePQDSO6IC6asJ6LNH63Py2JprTF+doHz58iotVyDQ50ObMWMGAODAgQMqr0iRIgBMm0EjIiKsno+I6EkkFzTXB3BZWqlFf1zOc3b9+nWVp3f0l9dXfa5KZzFiRkRERGQQrJgRERERGQSbMomyiaV5zgYPHqzypkyZAsB0pKYclak3RerNmj4+PnadW2/+LFSoEADTJtPY2FgAwMaNG1XeypUrAZgu0hsYGKjScuFz/XkRET0Jbt++rdJy/jK5XBNgOpoyJiYGQPqIdyC928ehQ4dUnj6KvmzZsgBMR3c6ixEzIiIiIoNwE3qVkYicIuew0ecFk4uHA+mzRvv5+am8DRs2AAA2b96s8mQkq2XLliqvWbNmKh0SEmJ2bkvz5ugRM0tu3boFAFizZo3Kmz17NgDT2a6bNm2q0jVr1gTAuc2IKPvJa6qlwU+2BkFZEx0drdJyZZRJkyapPDmvJACUKlUKQPps/gBQpkwZAECtWrVUnj7PWdGiRQGYDiLw9/d3uJwAI2ZEREREhsGKGREREZFBsPM/kQvIpsFVq1apPL3ZUnb+1zuLNmrUyOw4//zzDwBg69atKk+G9AGgatWqAEwHAaSkpAAwDcXrHfRlM6oe/pf76M2gsslg7969Fs8tyUEA+jHZI4KInKFflyx1y9AXArd3jjD9eiSPL6/RAHDp0iUA6QOjgPQllwAgMTERQPogACD9Oqpfw+vVq6fSsinTFddCRsyIiIiIDIIRMyInyagTkD78+q+//lJ5ekSsTp06AEwjWfJuTS6YC6R3/l+wYIHK27Fjh0rXrl0bgOldm4zM6Xd8evRMknd8ABAfHw8AuHnzpsqTd3pHjx5VeRcvXlRpOfO1Ptu1PKb+WhAR2cvayiYBAQEATAdCyWi9tc7/8hqmR95knj5j/4MHDwAA/fv3V3klS5Y0K5M+YGDOnDkA0qc5AtKjZED69T4oKMhi2RzBiBkRERGRQbBiRkRERGQQbMokcpCcn+zYsWMqb/v27Wbb6XPYeHl5AbAcgtc7oMoFxI8cOaLy9LRcJUCfa0wOLNDPd/fuXZWWTZz643IuMksd+fUO/3pHVnkc2QwApDdlWuq0S0SUGb0Lht4lQnbAl90u9MetzdNo6foqu2voTZny2EWKFFF5pUuXVml5fYyIiFB5sovHvn37VN7BgwdVWnYv0QcoyOu+oxgxIyIiIjIIRsyI7KB3ppdDqPWOoXLGf09PT5WnR6jkmmvW1maTwsLCAAAtWrRQeXr0a9u2bQCAO3fuqDx5R1mhQgWVp98JygiYPn2HvJPT7zzlc5RTcgCmd7DyuemDCDJbYYCIyBJ5LdRn19evN3JtX0tR/czo2125cgVA+sAqIH12fn2Wfv36KOnXc3kN18soB0QBQFxcHADTFgdGzIiIiIiecKyYERERERkEmzKJ7CDD1ED63F5686YMt+vNk/qcZZZC2rIJUg99yznCWrdurfJk8yYAzJs3DwCwf/9+lSf3lwvvAkB4eLhKyyZVPbxvaUZ/WV5r8wpJ7OhPRFll7wz5enOivV0n9Oub7HKiX6/lguSBgYEW95fNlWfPnlV5cq5KfTBCcHCwSstrtyu6dzBiRkRERGQQrJgRERERGQSbMoms0EPf+uiba9euATBdmqhSpUoAgEOHDqk8PVRvqelQLkRuaTkjvQlRXyqkW7duZmU7fvw4AGDp0qUqr0ePHiqtz5OWkaXFfomInhR61wrZjCjnKQOAU6dOATAd/SlHnuvNpLr79+8DAKZNm6byli9fbnbs8uXLq7TsPmLtmI5gxIyIiIjIIBgxI7Li/PnzKi07fgLpi+vqC9jKwQH6/GH6PGYyMqVHpeR8YPogAUv0gQPyDk1fIF3eCeorBGzZskWlZWROn8VanpNRMiJ60uiRfjmvJJA+MEu/Fm7YsAGAaad8GWU7ffq0ytPnS5NzR27atEnlyet5w4YNVZ5sKQFMW1CyihEzIiIiIoNgxYyIiIjIINiUSQTTDqSyc+euXbtUnh4a79ixIwDTJki5sLfe0V5f7kMuimuJM82JejhdNnVOmjRJ5W3cuNGsbD179lR5hQsXBmC6vBIR0ZNAv17LJZcAYPXq1QCAZcuWqTzZJUUfZHXixAmz4+jk8ksFCxZUeX369AEAdO7cWeXp80W6EiNmRERERAbhJuydfpfoKaZPhyEjZTNmzFB5mzdvVunQ0FCz/WX0TO/837t3b5Vu2bIlgOxZ9Pv27dsATCN8CxYsUOnr168DAOrUqaPyunbtCgAoXbq0y8tDRJSd9GrLrVu3VFp2/pf/AulTC1mq6uhRNP1x2ZIgB3oBQIkSJQCYDqLKrhYHRsyIiIiIDIIVMyIiIiKDYM9feqbJULactwYALl++DMC0837NmjVVWoa879y5Y3Y8fS4bPz8/lc6OJkxJlrNu3boqTy/b2rVrAZg2x4aEhABIn+MMAIoVK5ZtZSQichV9wFSBAgVUWi5Krs8vJruZ6B39La3Eol+j5fEtzTv5ODBiRkRERGQQrJgRERERGQSbMumZduPGDQDpzZdAehOkPu+XHJEDpIfEz549q/IuXLhg8hhg2hQqQ+fZGQ7PmzevSutz7cilRsaPH6/yZPOmHqrv0qWL2XGIiIzM3uZG/dos0/pclNbSOYERMyIiIiKDYMSMnmr63DRyPht97ppt27YBAA4ePKjy2rRpAwAoW7asyrMURdIXz5XHlrPsA+kLmwPpETO9g6mlAQGyvNamF7R3EIGcuRoAatWqBQAYNGiQypNztC1atEjlyUV6IyMjVV5wcLBd5yMiMjI9miavo3q0zZkVWLILI2ZEREREBsGKGREREZFBsCmTnjp6M6Ds3A8Ap06dAmC6IPny5csBAPfv31d5rVq1ApDetAekN1UCwKFDhwAAGzZsUHl79+4FAMTHx6s8vSlTNi3qSyDJOcT08j58+BCAaUdVvSOqp6cnAMfC7rI5snHjxirv3LlzANKbcgFgxYoVAEznX6tXr55Kc1AAET0NsnNeSVcwdumIiIiIniGMmNFTR482Xbt2TaW3bt0KAPj7779V3unTpwEApUqVUnlyQfOkpCSVp0fUVq5cCQBYvXq1yjtx4oRZOfTOpoULFwYAFC9eXOXJiJle3sTERLM8Dw8Ps7QzHVX1iJdcYF1fpHfKlCkAgPXr16s8X19flZYrC3h5eTl8biIisg8jZkREREQGwYoZERERkUG4CWsTJhE9BfTFvOXs/ufPn1d5CQkJAEyb+eQCuHqe3A4ALl68CAC4efOmypMd/fUmRn3m/6JFiwIwXShcNktammtNb8rUO6pmpSnTEjkgAgCWLFkCwHRAgL5AcLdu3QAAderUUXl6UygREWUdI2ZEREREBsGIGT3V9I+3nPFfzsIPpE9FYWmNNX2KDH21ALmtPo2FjGDpkSw96iXZmu1fL5t+bv2YctoNV0XM9PPI6Nk///yj8vRBDUWKFAEAdOrUSeXVqFEDgOkUG0REzxp5vdev+86ujcyIGREREZFBsGJGREREZBCcx4yeanqTn2x61JvvLG0nyVn2nWXv7NKWOv/L+cwylk12/nc2RJ6RPkdauXLlAKR38gfSV0YA0udty5Mnj8qTr1HNmjVVnqvKRkT0pJDdXfT5L9mUSURERPSEY8WMiIiIyCDY5kDPDNkkqC8p5KrRjVmhN3nKUZfWQuD6SNDsKoe+0Lre7CvPvWPHDpUXGxsLwPQ1rVixokpntTmYiOhJYKkp09nR6oyYERERERkEI2b0zLG3U35OkGXTI0364IDHEeGTUTsAKF++vErLKF5MTIzKi46OBgDMnz8/0/2JiJ52rrhGG/cXioiIiOgZw4oZERERkUGwKZPI4HJygIKPj49KV65cGQDQsWNHlbdgwQIAwLp161ReRESESss5z+RyToAxBlwQEbmS7OqhD4RyFiNmRERERAbBiBkR2UVGuqpXr67y5BQaAQEBKm/x4sUqfebMGQDAyy+/rPLCw8MBcIUAInp6yGuhKwaXMWJGREREZBCsmBEREREZBNsSiMgh+oCAqlWrAjDt0C/nNgOAI0eOADBt3pSLpBcvXjw7i0lE9NjIayDnMSMiIiJ6irBiRkRERGQQbMokIqfJZs1q1aqpPH2es+XLlwMAVq5cqfJKlCgBIH2OMwAIDAzMzmISET0xGDEjIiIiMgg3oa+QTESURffv31fpTZs2ATDt/H/v3j0AQNOmTVVe//79AZgu3k5E9CxixIyIiIjIIFgxIyIiIjIIdv4nIpfSO/XL5Zv05s1FixYBAHbu3KnygoKCAAD169dXeSEhIdlaTiIiI2LEjIiIiMggGDEjomxTsGBBAEDjxo1Vnoyebd26VeX99ddfAAB/f3+VV7duXZXWF0knInqaMWJGREREZBCsmBEREREZBJsyichpchpEfTrEXLlymaWDg4NVXocOHQAAHh4eKm/ZsmUAgNWrV6s8fTHgZs2ameURET2NGDEjIiIiMghGzIjIacnJyQCAhw8fqjxvb2+VllGx3LnTLzVFihQBYDo1RlxcHABgx44dKm/NmjUqLVcEqFy5ssrLly9f1p9ANnj06JHFfP01yCg1NdVmvn5MeRxbxyOiJxcjZkREREQGwYoZERERkUEwFk5ETktJSQEAJCYmqjy9iU2mLXXaL1WqlErLJrstW7aovI0bN6p0fHw8ANMBA7JZU5/77HGRgx2SkpJUnlyc/datWyovISFBpWU59ddHPm99O0vNmvrgisKFCwNIXy0BANzd3Z14FkRkRIyYERERERkEK2ZEREREBsGmTCJymhwtqS9crjc32pp3TG++u379OgDg5s2bKu/s2bMqLZvyihUrpvJkk2C5cuVUnt6smZ1znskm3MuXL6s8OQfbhg0bVN6pU6dUWpZXn+dN0kdd6k2Z8vnozb7dunUDADRs2FDl+fj4WD02ET1Z+C0mIiIiMghGzIjIabLTuSOdzy9evAgA2Llzp8qTC5oXL15c5ZUoUUKlZUTo0KFDKk9GrfRzly1bVqX9/PzsLpOjZDROn7NNLtiukwu2A+nPR99ORsT0iJk+eCA2NhYAEBMTY5anDwjgighETw9GzIiIiIgMghUzIiIiIoNgUyYRZTvZ/Aakz1W2ZMkSlXfu3DkAwMCBA1VevXr1VFrOkzZ27FiVt2/fPgBAQECAytObL8PDwwEAXl5eWS5/RrL5VG+WbNKkCQDTAQGyCRYAOnbsCACoWrWqypPLSsk50ADgypUrKn38+HEApk24cqCFPh8amzKJnh6MmBEREREZBCNmRJRtZEf2/fv3q7wFCxYAAB48eKDyOnToAACoVauWytM7/8spJIYMGaLy5s+fDwBYuHChytMjVFJYWJhKy+iZqyJM+sADGa3z9fVVefnz51fpKlWqAEiP5AHpKwdcuHBB5RUqVEilZURNn4JERuk42z/R04kRMyIiIiKDYMWMiIiIyCDYlElETpNzaemLmOuz9+/atQuA6YLkcrWARo0aqbw2bdoAACIiIlSepU77NWrUUGnZTHrnzh2Vt2nTJpWWzYStWrVSebJZ05lmQH3eMDmH2sOHD1WebJqVzw8wXalANkvqc5vJJky9w3/JkiVVOiQkBABQoUIFlcemTKKnGyNmRERERAbBihkRERGRQbApk4icJkdL6s1zsvkSAFauXAkAOHbsmMrr1asXAKB169YqTx+BaYs+OrFBgwZmeT///LNKb9++HQAQHBys8uScZ3qebKLMbKSmpaZMfWSpbJbU82RzKpD+GujNlnLOs6CgIJVXtGhRlZZzlekjOeXIU85dRvR0YsSMiIiIyCAYMSMip8mImd4BX5/R//Tp0wCA6tWrq7z69esDMO3o74y8efMCAOrUqaPykpOTVXrFihUAgBkzZqg8uei4PohAzjWmd9q3FI3KlSv9PlYOTNAHKMjBCHJBdgDYvHmzSstyxMXFqTw5GOFf//qXytOjZzLCJ19nvWyMmBE9nRgxIyIiIjIIVsyIiIiIDIJNmUTkNDmXlr+/v8orXry4Sss5zfSmzuvXrwMwXdhcLsztDNmkmfHcsuP9kSNHVF5MTAwA0/nHstIkqM/ftnfvXgCmzZtNmzZVadlUunv3bpX36NEjAKaLoevPR9KbUYno6cZvOxEREZFBMGJGRE6TkRw5Qz0AtG3bVqXldA/btm1TeRs2bDB5DACef/55AJYXIc+MPlXHqVOnVFpOW6F3ppfRKDkIAEiP+jkTOZMd/gHg0KFDAEwHOnTp0kWlZVRw6tSpKu/MmTMATKfIsLTiARE9OxgxIyIiIjIIVsyIiIiIDIJNmUSUZfrs+1WqVFFp2dSpNxOuWrUKAHD16lWVJ5vvatasaZZnzY0bNwCkz/APAL/++qtK+/n5AQAGDRqk8mSTqd7Z3pkmTDmY4dKlSypPrgygryqgD0aQnf+rVaum8mQTsN7hXw4IANJXGNDnWLP0mhLR04MRMyIiIiKDYMSMiLJMj97oHevLlSsHwHSdSTnFxIkTJ1TelClTAJjO3K/P6C8HBcjpLgBgzZo1AIDVq1erPL2jf8OGDQEAzZs3V3kyUpbVaNPdu3cBALdv31Z5hQoVMjkHYBrpkipXrqzScvUDGd0D0ldLAIB79+4BACpVqqTy9KlJiOjpw4gZERERkUGwYkZERERkEGzKJKJsI5vd9E79+fLlAwDMmjVL5S1YsABA+oLigGlzY8mSJQGYzpq/du1aAMDZs2dVnr4YuJx1X++M7ypyRQN9HjNZRn1ON0v0x2XZLl68qPL27Nmj0gkJCQCAUqVKqTw2ZRI93RgxIyIiIjIIVsyIiIiIDIJNmUSU7fRmSbn8UMeOHVWebMJcsWKFytNHJ5YuXRoAcODAAZUnm0T79u2r8ho1aqTSrmrCTE1NBWC68Pm5c+cAmM5jVq9ePZNyAaaLnMu53uQSUABw4cIFAKbLNOmLu1eoUMFkX4DzlxE97RgxIyIiIjIIRsyI6LGSc5KVLVtW5cnZ7A8fPqzy9Bn95eLkeid4OYu/HiXT5xBzlD7jfnx8vErL6NjKlStV3vr16wEA165dU3lyJQP5GGA6p5tctF0+VyB9Xra9e/eqPH2gROHChQFwYXOiZwkjZkREREQGwYoZERERkUGwKZOIXEpvEpQd1fUO75LeoV3OzaU3RerNgPfv3weQPjcZALRs2RIAEB4ervL0ZkJ7yeWiZCd/wLQpU3bw37Rpk8qLjo42O45shtWPIxchB9JfA/1xSTbvAkBYWJhKyyWb2JRJ9OxgxIyIiIjIINyEvrowEZET9CiQjG4B6VGigIAAs32uX7+u0nJB8smTJ6s8fQHw9u3bAwBatWql8mRkyVI0Lqv0aS7kguWycz8AJCUlmZ1bXkrlbP2AafRQRsX0qJ58XJ+Ko3jx4iotpxbRo4ecLoPo6caIGREREZFBsGJGREREZBBsyiSiLNMvI3qznGzq05vv5ILdchFyIH3uLz8/P5VXo0YNlW7SpAkA02Y+ffCAq+nPx1Jnffl89GZFuV1ycrLFfWV5M9tHb8KVc58R0bODETMiIiIig2DFjIiIiMgg2JRJRNlGjjqUzZcAsGrVKgDA5s2bVd69e/cAAAMGDFB5DRo0UOmgoCAAHJFIRE8/RsyIiIiIDIIRMyLKNnKG/MWLF6u8BQsWAACKFCmi8l588UUAQNWqVVVeSEiISrMTPBE9KxgxIyIiIjIIVsyIiIiIDILtA0SUZXqPiPPnz6v06tWrAaTPUwYAJUqUAJA+NxkA1K1bFwCQJ08elZcdSy0RERkdI2ZEREREBsGIGRE5TS7mrS/wvXLlSpXetm2b2T4dOnQAADRq1EjlBQYGZlMJiYieLIyYERERERkEK2ZEREREBsF5zIjIIfol4/jx4wCA5cuXq7yFCxeqtFx0fNCgQSqvUqVKAIB8+fLZPLaOM/4T0bOCETMiIiIig2DnfyJyyJkzZ1R63bp1Jv8C6dNhAOlTYsgoGWA5UpaSkgIASEhIUHl6lMzHxwcAkCsX7yWJ6OnGqxwRERGRQbBiRkRERGQQbMokIhN6B/yHDx+qdExMDABgw4YNKm/37t0ATBcZ79ixo0o3aNAAABAQEGDXOZOTk1We3myZmpoKwLR5kwMCiOhpxIgZERERkUGwYkZERERkEJzHjIhM3L9/X6VPnz6t0jt27AAALFq0SOUFBwcDAF555RWVV7VqVZW2d6kleRl69OiRytObKvWmUiKipxkjZkREREQGwdtQIgKQ3sH+xIkTKi8qKkqlt2/fDsDyPGU1atRQef7+/g6fW0bH9MgYO/cT0bOIETMiIiIig2DFjIiIiMgg2JRJ9AzT5ym7cOECAGDLli0qb//+/Wb7tG3bVqVlU6avr69LysPmSyJ61jFiRkRERGQQjJgRPcPOnz+v0rNnzwYAbN68WeUVLlxYpYcMGQLAdDoMV0XKiIgoDSNmRERERAbBihkRERGRQbApk+gZtG/fPgDAqlWrVN62bdsAABERESpPdu4H0ucqy2xBciIich4jZkREREQGwYoZERERkUGwKZPoKZecnAwgfZ4yAFixYgUAYPfu3SpPLjjesmVLldeoUSOVZhMmEVH2Y8SMiIiIyCAYMSN6ykVHRwMAZs6cqfLkguShoaEq75VXXgEAlCtXTuXlzZv3MZSQiIgkRsyIiIiIDIIVMyIiIiKDYFMm0VNox44dKi3nKtPzqlSpAgBo1qyZyqtUqRIAwM/P73EUkYiILGDEjIiIiMggGDEjesLFx8cDMJ0OY/ny5Sotp8QICgpSeXJKDH06DA8Pj2wtJxERZY4RMyIiIiKDYMWMiIiIyCDYlEmUQ1JTUwEAQgiV5+7ubte+svkSAA4dOgQAWLp0qcqTi5QDQLFixQCkz1MGACVKlHCixERElN0YMSMiIiIyCEbMiHJIUlISAODRo0cqz9PT0+TfjOS6l3pEbN26dQCAw4cPqzw5HQYANGnSBABQsWJFlefj45OlshMRUfZgxIyIiIjIIFgxIyIiIjIINmUS5ZCUlBQApk2ZluYSi4uLU+lTp04BANavX6/yjhw5AgAICQlRec2bN1fphg0bAgBy5+bXnYjI6BgxIyIiIjIIVsyIiIiIDIJtG0Q5RDYt5sqVfn/k5eUFwLR58+TJkyr9119/ATAdgSnnKevXr5/KkwuS6+chIiLjY8SMiIiIyCB4K02UQ+RcZfrM/3Jusx07dqi81atXq7Scv6xGjRoqr0WLFgBMo2R58uTJhhITEVF2Y8SMiIiIyCBYMSMiIiIyCDZlEuUQNzc3AEBiYqLKk3OSRUVFmeUBQGhoKACgZcuWKq9x48YmxyMioicXI2ZEREREBsGIGVE20Tv1S5aiWhcvXlTp2bNnAwCOHz+u8iIiIlT61VdfBQCUKlXK5jGJiOjJxIgZERERkUGwYkZERERkEGzKJHIhvfkyISHBLN/Pz0/l7d27F4DpPGVHjx4FAJQrV07l6QuSyyZMb29vVxabiIgMghEzIiIiIoNgxYyIiIjIINiUSZRN9MXJ7927BwA4ceKEyluxYgUA4MCBAyqvSJEiANLnJgOAevXqqTSbMImInm6MmBEREREZBCNmRC6kzymmR7fOnDkDAPjjjz/M8sLDw1Ve//79AZguSB4QEJAtZSUiIuNhxIyIiIjIIFgxIyIiIjIINmUSuVBSUpJK7969W6XXrVsHALh06ZLKq1y5MgCgadOmKq9ixYoAgDx58mRrOYmIyJgYMSMiIiIyCDdhaaVlInJIbGwsAODIkSMqT06HAaRPkxEaGqryWrRoAQCoW7euymNHfyKiZxsjZkREREQGwYoZERERkUGw8z+Rkx4+fKjSsqly1qxZKi86OlqlS5YsCQDo16+fyuOC5ERElBEjZkREREQGwYgZkYMSExMBAOvXr1d5K1euBACcPHlS5dWqVUul27RpAyA9cgYwUkZEROYYMSMiIiIyCFbMiIiIiAyCTZlEdrh//75KHzhwAACwZs0alXfs2DEAQJkyZVRes2bNVFrOVaYvck5ERJQRI2ZEREREBsGKGREREZFBsCmTyIqEhASVlk2VQPpcZfo8ZXJOstdee03l6c2abMIkIiJ7MGJGREREZBCMmBFlkJSUBADYvHmzypPzlAHA+fPnAQA1a9ZUeXKeMhk5AwAvL69sLScRET19GDEjIiIiMghWzIiIiIgMgk2ZRADi4uJUeseOHQCAqKgolXf27FmVrlixIgCgRYsWKu/555/P7iISEdEzgBEzIiIiIoNgxIyeaampqQCAM2fOqLw//vgDAHD79m2VV61aNZXu378/ANMFyYmIiFyBETMiIiIig2DFjIiIiMgg2JRJT7WUlBSVls2WuXOnf+zXr18PAFi4cKHKk02Yzz33nMpr166dSoeFhQEAPDw8XF5eIiJ6tjFiRkRERGQQrJgRERERGQSbMump5u7urtKxsbEAgIMHD6q8FStWAABOnjyp8qpWrQrAdJ6y6tWrq7SPj0/2FJaIiJ55jJgRERERGQQjZvRUkx3+AeDixYsAgF9++UXl3bp1C4DpPGW9e/cGAJQtW1bleXt7Z2s5iYiIAEbMiIiIiAyDFTMiIiIig2BTJj11EhMTVXr16tUqvWTJEgDA/fv3VV6DBg0AAB06dFB5pUuXBgB4eXmpPH0+tFy50u5n3NzcXFlsIiIiRsyIiIiIjIIRM8pxQgiTf4H0qJQj7t27BwDYunWrylu+fLlKnzp1CgDQsGFDldeqVSsAprP8S8nJySqdlJSk0nLlAH0FAX1aDiIiImcxYkZERERkEKyYERERERkEmzIpx8mO9XrToex4n1mTZnx8vEofPXoUAPDHH3+ovDt37qh07dq1AQAvvviiyitVqlSm5QKAR48eqbQsp74CAJsyiYjIFRgxIyIiIjIIRswox8lolN7B3sPDA4D1iJmcsX/9+vUqb9WqVQCABw8eqLxGjRqpdNeuXQEAYWFhKs9WpEvv3K+T02RYe5yIiMhZjJgRERERGQQrZkREREQGwbYYynGyaVBvVrTUxHjz5k2V3rhxIwBg3bp1Ku/SpUsAgDp16qg8OU8ZAFSpUsWhcull0JtUZXk58z8REbkaI2ZEREREBsGKGREREZFBsCmTcpwcgamPcpTNhHrz5c6dO1V6/vz5AEwXJK9RowYA4KWXXlJ5JUuWdLpcelMlmy2JiOhxYMSMiIiIyCAYMaMcZ2musocPHwIw7dz/zz//qLSMYDVu3FjltW7dGgAQERGh8uyda0xfQJ3RMSIiyimMmBEREREZBCtmRERERAbBpkwyDH3B8U2bNgEA1qxZo/Ju3Lih0m3btgUAtGzZUuWVL1/e7Jh6E6UlcqHy1NRUlSebPzNbQN3SebKjGVQvmyNlIiKiJw+v8kREREQGwYgZ5bi7d+8CAPbv36/yJk6cCAC4d++eyqtfv75Kd+nSBQAQHh6u8hISEgCYLobu6emp0l5eXmbnTk5OBpC+kDqQHpXSo1961CouLs7scXke/XyZRc/kAIfExESzPPlcgPTpRAAgJCQEABdQJyJ6WjFiRkRERGQQrJgRERERGQTbQyhHyOZLANiwYQMAYPny5SpPNgnKTv4A0L59e5UuVKgQAGDt2rUqT64MoC9cXq5cOZX28fExK4eljv5y8XK9KfL8+fMqPWXKFACmqwo0adIEAFCkSBGz41izbds2AMCqVatU3sGDBwGYNm/Wrl1bpd98800AQMGCBW0em4iInkyMmBEREREZBCtmRERERAbBpkx6rOQoy6VLl6q8LVu2AABu376t8urWrQvAtFmyQoUKKn3y5EkAwOrVq1WebBItXbq0ygsLC1PpPHnymJXH0uhG2YR5/fp1lbd582aV/uuvvwCYzqGmNzdaIkdbXrt2TeVduHABgOnIU9ncqje76nOxHT9+HIBpM2lQUJDNcxMR0ZODETMiIiIig2DEjLJdbGysSh86dAgAMHXqVJUnO7pb6uhftmxZs+0AYO/evQDSO8sD6REufQUBfT4wGXmyNJO+pTnHZFQOSF+JAABOnToFID2qZ4/79+8DAA4cOGBWHj0qWKVKFQCAr6+vypORNSB9wIC/v7/Ky5cvH4DMBxsQEZHxMWJGREREZBCsmBEREREZBJsyKVvoHfn1jv5z5swBAAQEBKi81q1bAzCdpywiIgIAEB8fr/LOnDmj0rKJ0tvbW+XlzZsXQHrTHmDaJCibMGWzIpC+TJM+CEAuli477APpSyHpZQsMDFR5mS2WLs+tPx/ZfFqgQAGVpy8xJen7yOWg9GZdIiJ6ejBiRkRERGQQjJiRS928eRMAsHLlSpWnT2khO+Z3795d5cnO7/o0F9Lly5dVOjo6WqVlBCs0NFTlyUiXvpC4Tkat9Fn+ZVqPSukd9KUyZcqotFx1QF8UXS6Cbi1yJqe/0KfvkIML5EAGADh37pzZc9AHK8iVBfQom/58iIjoycYrOhEREZFBsGJGREREZBBsyqQsk02IALBr1y4AwOzZs1We3kzYpk0bAECnTp1Unmze05sBZef+mJgYi8epUaMGAODIkSMqb//+/QBMm/6Sk5NVWubrc4ClpKQAMB2sIAcZ6HOo6QuWy2ZGuW/GtCVysMNzzz2n8uT8ZMuWLVN5+/btM3sODRs2VOl33nkHgOkgAUtzsBER0ZOJETMiIiIig2DEjJwmO+avWLFC5S1ZsgQA4Ofnp/L0NSVlxKxYsWJmx7t165ZKy8hRUlKSyitVqpRKyw74+jQXcgoJfZ1JPTqmd9aXjh07BsB0Ko7nn38eQPq0GABw8eJFlZbRMQ8PD5Unn29mHfH16FatWrVMnguQvnqBPh2G/riMLlp6LkRE9ORjxIyIiIjIIFgxIyIiIjIINmWSXWTHfH1eMdlpXV/gWzY96s2XzZs3V2m9eVB68OABgPQ50ID0+c70Gff1DviWmvLkIt56c6Le1CnpTaay6VAfJCA7/eurE+jP29Kx5YAASwukWyojABQtWhRA+txk+v56efTj6GUiIqKnDyNmRERERAbBihkRERGRQbApk+xy6dIlAMC6detU3rx58wCYzj/Wtm1bAEC7du1UXvHixc2Opzf5yaZFfeSjbMrTm/H0kYpy7jS9WVKW4+rVqypPnwdNLjouR2Lqj+tNjLIZVT+f3pQpm2tjY2NVnmwS1UeE6oupyxGc+khOObpTf/0sNb0SEdGzgxEzIiIiIoPg7TlZdfbsWZVeuHAhAGDOnDkqLzg4GADQpEkTlScjZfrcW5bIRb/188hzAOnzmOkz6suIF5AetZKLfgPpUavx48erPD0KV716dQDA7t27VZ5csFyPiMm5z/To1d27d1X66NGjANKjiABw5coVAKaLszdo0EClZUd/nYzSWVv4nIiInj2MmBEREREZBCtmRERERAbBpkwCkN4ZX2/SW7x4sUrLZZdkkx2Q3pSpzzVWokQJAJkvTaQ/nidPHgCmgwTkguVyMXMgfa4wIH1wgL74uGxu1Dvg62lL55FNovr8YJYGHlias0yfS00uyaQvAaWX1xYuQk6Us/TuBPL7r3ejkN9l/ZrA7y1lF0bMiIiIiAyCETM76HdO8s5Kn17habhzunbtGgBg48aNKm/VqlUqLaenqFKlisqTHfjlvkB6pEuPHP2/9u7txcrqj+P453cRDF1kjJVoagexxiSxUjPpoJiVEBHNRRDVfZf9CdFNN/0NFRIdIBDpYDVhYZgSlKlJZOZhOplJNBlkN/0u4rP252nWuOewxx73vF83PqyZfRz32s/z/a71/dZkBGpoaEiStHDhwnH3k79Xa1j+0ksvlTF3IhgeHi5jW7ZsKcdugr569eoy5ohclsao/Y0PHTpUjl2iY+XKlWXssccekyStW7eujM2bN08AeiNL7Fi3yPx0nDt3rvFvPk7OQZ73c/7vh+8C/PeImAEAALQEJ2YAAAAtQSrzX5zGysWgf/zxRzl2+s6LvaXOwtCLLYydVfFHRkYkSa+99loZW7x4cTneunWrpGZ9Mm8OOHLkSBnbt2+fpE7NMKlZAb/m0ksvldRcTO/3f6JUhRfo1lKmS5YsKcfz588vx76vXOjv41qaJNMW2WDdvzs4OFjG3Jw9/18AmJn8XHq5Qc6znjNmmtLM+xwYGJDU7NLhucCbhaTOHJQbjGqpTmCqiJgBAAC0BCdmAAAALTGnU5lOlzkknWMZxs5jh6dzx97FIFMCTmG++eabZWz37t2SmqH4u+++uxzfddddkprvhZuFHzhwoIy9++67kpotiLqlMv2edmvgnellP49a/aGJ6o/5b1ZLe3RLheTjOJ2R76lfA+2VgNnh3fGzXUvMn+v8XvA8ko/t+YSUJXqNiBkAAEBLEDFT88rIV2UZGcrFnVO97//yaiojOo5uSdKnn34qqdk03AtrH3nkkTK2cePGclxrwn3PPfdI6jQPl6SPPvpIknTfffeVseXLl5fjqUYa8zVk43OP50L+WuP0jGCd77Frkbccy8desGCBpM6mBalT8yh/L/8PAZi6WoSqVzUkJ4puOyKetQ29wSs/0xfrpi+0HxEzAACAluDEDAAAoCX+9zerlRshbafIMoU2nZSUU1sZdu+2uL3XRkdHy3Eu9H/99dclScuWLStjmzZtktRJT0rN1KCfe7ancqjf9ydJL7zwgiTpiSeeKGPZFskNxKdTd6j2d8rX6HRttnbKOmauedYt9VCrZecG6ZJ0+PBhSc1NDX5dWcdsNtrFAHOVP/MzbYHkpQpZkyyXJfz78aTOZ5m0JS4EvjkAAABaoq8jZq7YnxXla1GrjIZ89dVXkqTPPvusjLmhttS5srryyivL2G233SapGWE6efKkpGYj66wUn8+pFzKS9cMPP0iStm/fXsY++eSTcuzG3Q899FAZ27x5s6RO5GcitavIjz/+uIy5c0Auyr/zzjvLsaNns7Ew3v+VcwF+XuHOZHt7fkxq2/aJjgEXnuejXKifc7wX6Nfkpq/Jzke1yv85l/dqYwLmNr5NAAAAWoITMwAAgJbo6zpmDm9PFF52CjMr17sO186dO8tYNvt2im5oaGjc49x4441l7Pjx45KaC+yz4XavauA4lO/UqSTt2rVLkvT222+PezxJevLJJyVJa9asKWNOw2bKrvbcaim7a6+9thw7bZmbDbxYXurURpuNVKaf70zvu5bdz/fiQm/iAC4GE62Kmc2UnpctZJ3GTFF66UntOdQ6d0iddGWOLV68uPF4UmdJSK27CDATRMwAAABaoq8v/b3wPq9ovv7663L87LPPSpLOnj1bxlasWCFJevrpp8tYlkDwFVFGZd555x1J0iuvvFLGHI3KxfQDAwPluFdXkS4X4R6VkvTqq69KklatWlXG7r///nLsHpi5QN8L2vO9mGzph8svv7wcO/I2NjZWxk6fPj3ucdrMV8wTdQ2goj8wXq3nsNT7iv3JG7z27NlTxvbu3VuOjx07Jqm5gas2B9V64WYm4JlnnpHUzJR40T8L/tFrRMwAAABaghMzAACAlujrVKZTmFmTLGt7HTp0SFIz5XfHHXdIktavX1/GshaZF4xm2H737t2SOmF1qdP4PCtKzzQF5sf87rvvythbb70lqZNOlTobAVxfTWqG2I8ePSqp3rg7w/yZvqyF6B3Cd5cDqbMIN2vD+fGkzuaKq666qoz571RrUp6PW6sblgt4/dzzddUW5mYtotqCZd93vheTTc10S9Xma6h1GPD9TJQ6rtVQq/1tcqyPSxWix2r/b2r/93PMn9tMF+bnzksdss6jx2Y6J/pxcj7JOeHEiROSmt1AfDzRUg3Pn99//30Z27ZtmyTpwQcfLGP+riB9iV4jYgYAANASnJgBAAC0RF+nMr3D0Ok+SXr55ZfL8dq1ayVJw8PDZcy7F8/XykNq7rC86aabJDVTeq5plo2uZ8rpwS+++KKMvf/++5KkL7/8sowtWLBAUjO1sH///nLs1G6mI7zDKMP7uUPTr63WQDhTeq7tk7f9/fffy/GOHTskSUuWLCljTmdkitH3PVHD4vOlMvP3MlXicT/HvE3+3mWXXSapmVrNli++Tb5uP5+Jdqb557VUZq1GWu33pHqNJdpBoVfy/5U/W/kZq7WS89yQnysv5ZCka665RpJ0yy23jPv5TFOZnq82bNhQxtySTursCM/2c6tXr5YkzZ8/v4zlfP/5559LataBfOONNyQ134vrrrvuvPcDTBczOgAAQEv0dcTMkaGMJuXi7EcffVRSs8n2ZK948n7c0PyGG24oY75KzPvLiNBkHyc3FLgDQS6sd0XqvEL1wtrsNJARrNoCdUeE8vEy+pNXina+iFku/s0r6VOnTo17bt4gkY/n29eu4PM11BbOd4sm1Rb115oT1xqX5/OoLfrtttC+20LhbtGv8/0dgF6abMTMn538nOdtPF7b3DNT/rxkTcbcCOANB85qSJ15Oufg/Nx5UX9mD7ypKTsMjIyMSJK2bNlSxpytkPhcYvqImAEAALQEJ2YAAAAt0depzBdffFFSc/G5m2hLnTpfg4ODU77vDFO7dUfez6JFiyRNvq3RRPI2Tv9df/31Zcw11jLV5rRmptUyddCtSfdk+TZ5f06zZuP3M2fOlGOH+jO14LF8jj6upRCl89cS6/ZaZppunEldsNlIb1CnDL1Sq2OWn7tcomC1VGamCb3UYzYWyfu55VKNfB6efzPVmRu3avy73sAlddKfBw8eLGP79u2TJN1+++1lLFOZwHQRMQMAAGiJvo6Yuan4Aw88UMYefvjhcjydSFmtGrYX4CdvA59phCQX27pida0ER17J+ngqkZTpRJFq1e5/+eUXSc3SIT/99FM5diTRjdSlTumMfAxvRsj7yefoK+F83b2KRvUqogj0g9oGm1rl/4k+q54Lc4PSTMtkmDfqHDlypIx5DpKam4ysVu6mJufepUuXSmqWKvr2228lNSN0QC8QMQMAAGgJTswAAABaoq9TmU6HZTg7F2eOjY1JaqbDui0Mdeg8NxS4DleG6nslF/87/N8tfTeTtFstbTEVrhuU6eNMcTgFmWnkWm0kv9ZaKkLqvC+zuZie9CVQV+sa4nnw3z/v1sVjJjwff/PNN+PGJGloaEhSc26udQjptjGrVuV/dHRU0sT12bqlSoGJEDEDAABoCU7MAAAAWqKvU5k2UT2vWmrQP8/WRBmS9nGm3y5U49rJ1unqxWNMl9/T2k7Vqdz/f9mYmxQmcH69XkIxGbUlBt4Rmbslcz5et26dpGYdM8/hU6lX6OUYmRJ166f8LmDuQC8QMQMAAGiJvo6YORKWdWayAbivfjJi5oWheZusuePF63nl5MWfuejUV1Fz9Qpqrr5uALOj1onAmY0TJ06Usauvvrocu+tAdmCZ7KJ8bx6TpMOHD4977BUrVkhqblBi3kMvEDEDAABoCU7MAAAAWqKvU5kOWWda8rfffivHWX/m37fJejUZ+nY4PeuYnTx5ctz9uQHubNQ2A4C5xhuCcj73PJz1Kd3iTeq0r6s1X+/m9OnT5Xjnzp2SOqlRSdq6dauk5sYCUpnoBSJmAAAALdHXEbNNmzZJai7Y/PDDD8uxr6xuvfXWMuZFohklyw0Dx44dkyQdOHCgjDm6tnz58jL2X5Z7AIB+ldmKX3/9VVJzwf/ChQvH3aYWycrvhZyvjx8/LknatWtXGXP0zAv+pc58nxsLgF7g7AEAAKAlODEDAABoib5OZT7++OOSmulL16ORpA8++ECS9Ndff5UxN6s9e/ZsGfv555/L8dGjRyVJhw4dKmP33nuvpOai0wvVDQAA5gJvvKrNx4ODg2XMFfnzNpnKdApzbGysjGWnl5GREUnN741ly5ZJai57cfo0K/8DvUDEDAAAoCX+93c2BOszXiS6f//+Mvbee++VYy/uzKslX/24A4DUXNS/fv16SdKGDRvKmK+mvDUbADA7duzYUY63bdsmqZO1kKSNGzeWY5ctSo6Y5Qau559/vhwfPHhQkrRo0aIy9tRTT0nqzP9Ss3QG0EtEzAAAAFqCEzMAAICW6OvF/67IvGrVqurPXbvmzJkz48ZysejSpUvL8cqVKyVJQ0NDZSyb2OIfmQrOjghOI2SdOFflpvYbMHdlXbFz585Jkk6dOlXG9uzZI0navn17Gdu7d6+k5nw9Ojpajr28JH/u+3YNtByTpLVr10qS1qxZU8Z8PJX0pVcJ5Vzo41xBlHOhj5kL5zb++gAAAC3BiRkAAEBL9PWuTMsQedYn+/HHHyU1Q81Oq9XCy1KnKfkVV1xR/Tn+kbXh/vzzz3HjWftnYGBAknTJJZdcoGcHoG1yyYPTjLlz8rnnnpPUrC/m22SKMefjbHhuTmtm4/Ph4eFyvHnzZknSzTffXMbmzZsnaWr1Kf3VWpv/8ms35z3Pi9Npuo7+QcQMAACgJeZExAwAAOBiQMQMAACgJTgxAwAAaAlOzAAAAFqCEzMAAICW4MQMAACgJTgxAwAAaAlOzAAAAFqCEzMAAICW4MQMAACgJTgxAwAAaAlOzAAAAFqCEzMAAICW4MQMAACgJf4Pnr644NPtBJgAAAAASUVORK5CYII=",
"path": "images_version_6/image_47.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, the straight line AB parallel CD, then angle 1 is equal to ()
Choices:
A:132°
B:134°
C:136°
D:138°
|
||
236
|
48
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGwAAABvCAAAAAAsmXq/AAATDElEQVR4nK1aeZhU1ZU/9773aunFbnZEFBCjgAiCohCSiMpi0LhEjV/UScboBJO4RU0UV8aon4nL56jRzMREYxxJMInG3WgILmhGQXEFaUA2oWl6rapX79137zm/+aO62bqru9Cc/r7u+qrfOb971nveuVeBeiZLPolHCaWIiCQx7Ws/btjaXtxUiMkfOLQ+GDb20JED075WRKKhQIrgyNNl5BGRUeXACCbOeORpSqKOTas+eTEYNvyA/QbWDKrJKmnZ1hHm1qzYUH/0lMn96qrJSWDI90moF6xewBBlyAWq6BdW/v2N4kETjqmrrgo8r1MaLCVW4nXLPmiomjRzcm1AIEUc6az6PGAuSqUl4txfnm2adcqI6kyWiIgECkKeJgJrTTBR25Z//CN7yswBVQFBMXmfSzPhgDrWPPPHo86aXOOnKV+jSFTJM0QsCBRJnmvSRFHb4qdzY3/YvzpNoVT1glYWDIXaeNkTH0w+Z7+qtCL2RBGIiJQiZuUTmCkF0uwp9rjwwZInZ539pQyJ+lxmNG33PnvWqTX7E0HBaQ+KiAgkHoiU4YyCFZ0i9kgRcbj+0eVTvz1G9xYhu4BB7fop/8z9Y64Ylg2sL/Cpa8UC8ZVAaRArpYiUKFYeiSYK3/vt9lNP6d8pCD1ouBMMhRolKkmBBAHeuSs89bS6xNfO38O8Zc3EXuGFh/tdcnhQqNLWj9PdVTSETjJFASR0nGPYp2Ze+ZkDO0iBURmJALx6wYw/xYBrSnpii3eAOZGY4eAErffNeLQJEkZORCrFChmW0fjY7AXtiKyEPaDtBAOSgoABu/na6c85FCIWKcaVgkEsEDkkLx7zo01wUe+aAU4giZW3v33SShHjRESYXaVgsA4s0sxbZp+4Too9LXInmHUMa2Ge/tZ3NwMi1sWFqGK9ABMzh7G4dmz/wcxXbNID6y6aieMQ8rvJP2uFSCQiLGxsxWDirIgpCgMd8494sCfGnWACK4LnjnqsDZJ34iSJBNZUHIxGpChIGCw2fPCrf+sU2iOYxLaN0TDp7qTrGZFuT/eK1sUWiSB331HvAyLhbuaMu1JP+blq9+mtc04PiEgRESnV9akiUl1sGkpq58z6+TYylOnYTcKOPNd12tzeePnwiqX3gso0+t/j+7dniOppt9rbpaND+MuZH+xF+JWjRJAI8O7kh7jgdpO3SzQWXjj8dUTJF8XiROBMwnj6mJfaebcKtAvYBzMeceixpu0ViQjgGIj+d8YK2F2Lwo4AoaZ7Zpzh5XprjiojUYrJ0wjTc47/ZYuSXf+nQQCB5Kn272UpS2WbrYrBQETElA0HXLj6ZQlARDukFjnMcYLVU16GAyT8oiGyg79o8eyM1UhYwBFbAWKdjjI1zot+e+zhpBBTb61YRdTFD+XR9On3tfuaHae1IyLSSikVRKuWfGuAaDLlN+K9Jg2qO3PVKkfK9xOkFBFpl4kteY8dPZYckf+vw1JBxMnYmb/PUQLFrhR47ISLm6d8CJtArNh/QVp3koPDx0d8gCTqTLdYq4g07jn2QNKBGE/11vftFQlr0TTyuD82BToiZUtRaRhrD1vrGDDmX6YVYAXFSNzHX3lBpJgIA4g1eZI8M36IR0ReilwveSZEAFWaiUIuxcL7j2pqjtNeyWAa7OWePD1Lmsgj8spaMeF2R8YAESCE3lZFRESB8rwqL6g++/FiRhVYQERaBe6TqsN2bGvleGGi2gipQHFGiooS3ZdvVelHjbVbrKqJlCIizarw4hH7SV8LVdVVOguOyNesQUGfmnXR0PFL8qRL8aE1uZePq9bSFxNUgdpVtLlpcyobswoqjdr0zOcjQl3JZ4q2dhxC6GuhsPD87FPHH3PMNc2UVUnlBfvI7a3ozGlN9p+HVxP39sZIRKTSlNpyyw2/euWJFZe2KesX+zRFF1Uf9n7Bhy6BRa8fm6W+c1mp5HdvLJo2fN9r17/vUshWvPH5x70ZqZLlNBXWjfOlL8WIyLzxPz8Yp6hm8Kb9fOtVvvH541aaBBZEpGmbHEi6Al48dvgsSshtcEy+qrjJczShuRBQoIhIU9OgVEVc4Run11M72afnDCUyFVtRUap/s5TSUvO6A32qoBu1W5MB5AbQn5edXUeqz+jdBUyP3piUxGvX8CW/j+eJiMgbVNNMvtfwwHFTGSplKkXT5B28zpTcpN2mEX4F65Rc3fG/XtP24RkjFtSKsypV+VbkjdpkSp98aRvgKfTZDuga3HDe7Hpz61H72oCVqiB8u0gN3u5KbvLJZj0i7suUsDTg4UKEQ5TT5JErvz3sQaJVTdhZAXyBRwTpSzWVsbZ/fyKYVH7VITUVubm0StpZtTW1pcnpoE+voUNzQg7Byyed8ON1IDgHgCsByxjXCQabIo+kL6sgqodm8cKtN76WX3TWokhpElPs25iKKOjEIk2UIkV9llWVBVMqRPWmBpIxZ999fWPR16kqcX0x6t3M6BGAvmu4DtChq1reuOr82Ydcf8ldDSe+a2Imr8+oVKWupQTXdmSDFdfTJGHPNlA4Nu/O+X1ja2OSYNttY6/YBu5pkNONVn15LUrdld6nTSn0vfEKKSUbrpxx+pB+Q9qIBl/2yOrvvOYqaKFB7XWd+mtV36xJ+rajFim2/uSEi7KJxPWOw/SRD04+/5ZCBRGC1jqvlNRaV+eEUH6LQdfvQG++7LDv1VCgUyblZQmDr7/9re8vkZ2P9SwDKNR07hFa79seUoqpjL3FiDBJUZg+vWH4j/szCKpKQ4mS7Cn3fekHv/qMyAoiIemxMRFlNhyUIgYR6WDwp4qULhdVKh03E5lMguYfDZrfXzp7CSIH7Wj0NXc9dOVKDoqSTRJKEboDalLr6zOdn/2RHzrqZbIr2QHiMl4md/nwawfnWneUNU+RFJPary8afso97TUxUn6RVKGth5opawZVde6XWD6pEQ6QMsQCOIet539nI8COu753TkQ4Nig8+dVzVzrXZhjsuHsKSfvkpYATINY0tGojqfLRyFRg5bXdES7Y3xTVzmmC52JSKghQffLddO4f4zo4sFbdWzxZXT2kczilqfbQ5YkqG41gZFp0eHvzz0dS4EfFnc8FPlxslZJo8r0X3Xnxu0HKeJLPdHMI3hjXr7Pt0OQf/WZcvlnSQZsa1PHQOxcPVyhqpG0XmqNAeZkUiNPFqjMfs/MWRRmla7rLca9Pqe3qcRAtndoE6eazLuc466JbT1kuHIvLOet2PADnAEkSMZYRtz4w7vuNbLlxx1SzaybYMeFVlIparEEjsxtdt4MLFIUBR6Q995ulV0x2FJCu0jt9pkhrIuX7KvA1pfqd90h4+l8tDxRhByJCLJQ4Ar1bP4wUMRGRNunUkS9E3cyoM+1MRW2h5A+LLvkK+UrtmSClgWTJA4rSR/zXzBuvavJSsfKtsCVPkeeRss9/ZTBZlPI4h+i5mY3dQp9NwmHoXM48PvV5TordUmLPAO9gRK/PPeK5BOB8yJJ0mrHxa4uBSARATM7isxOWxLynMM47jp2xf5i+NGYpuD7A4FqagMZfTLxqK3ckYoQhQAT89aTPIKURZEySg7n10vZuAQLXHnOMF2c/UYQTsX2BWeckj8Lzc09eblqdFAWxIER83j0RC+AAxAR2eHvae91LSOw4h+Wz7o07mFu7Kd7NjDHAhoH18w++dXubCCQUMJZN/0gEiS2ZkcUh/8Ob83uAsXGxmLUT7w1jJx2J5Pe0Y7eqBMModgDh4hlz344BxMII51/ewYKYASAmyXOCf077qKRalwYsEgErjn8gYpdnjqWbaj3sRoBwEgGrrpxxWzPgJMQnRyyDKZ0nCWKC4xxy370lDweRgqAoDlIQMfjo2BuLjsF7Nd43AuQXzjj1AwsrdsH5jSgKcs5JzkbkIBbyt2lrIDZihuQFCTMXsP6E21pR+cFPF5rLmcR9euGk/y4Ay6Yv4w5bOo1giQiSwBVzF16WD9lBxLCwg7Riw8k/3bq3SIB0OCtikPvLUd9+ufnqC9rRjHh9Y76wPkGOJLKQPNZMeRpIxHIohYIwsOGMec3o2PthuGEkwh0wK44bcc3xnxQYTY9MOfC01Q9tR0hOOGaO3T1zm1EUgUgHI0LLhaduAczeD+okSorCHeCFE38467d5SdZMPGfFp28deVE7Yu2R80MVuHNqbs9nxRFxrXaZjdcn9+4LqysfG+2o4CmblsI+yR13XzZk5Ixq1XjBl2+cOHLclMPTJARrpVAQwdI5jzqOnRU43nznGZ+go8hc8ZnnLnYUboS5fsI/Hjr6bUGycOhLKCB57L0YeTIx55iNZX501t8gMUuM4jUnroZxYlz73oOxRBL/57TFi+csFGDbpIs6IithaCwiSsDtIh1WsPWBmeuZjaDl56d9CGsBESfinJMKMs2yCNgKuID8dTNe23jM3QbOfjj0/tDBJgAQk1g4G1kTARuuOOszSJz8atqyknSXWNd5uNLnsS5zrpVFwHk0XzLnjbZzftJmLWTNqAesCJcOEchuYESIAQP56ISrC2j7zaxXSwhgEXE2SWyP5Wl3koJ1XEwkh/Dir7+WXPbNBkTs0D7m6mKS2I9eCIGYjJF8R2NLTpIQeHXunU1PnfQU4IoCcBLFhkXYVlBHJCex4UKC1nmz35SHjlyGZosIfMeI+1vaFn5rLQMxOQnPHT78kEMfjsSIPDH5p4fctX1bPnQl+cJFIxB2fWc3c9ElBWw5c/baZOHEZ4A8xwwbPT5+9NjL1wiAWDX3o7U/nTr7ndt/P0Wi6vjm34zyWwceMPngCZkg8DtfLHu/wFIigcnYsP/y23BX/ZMPnDPPpRXbjPNNGDpVX6eJyPj7MNXHpx9kWnMmHQhdddC9E+blGz567ePa/UePGTOqWlLZiiYs4nlAfctNdM+QmxdfdFrgqdjLEFEqPYCIwqwmItVWJ0seuzl1beq6gVqICKuvyd42rFiMw42rP9m43UwcPf7goVlf9TW6SwKKM/9cMPxncqm+fpzvPObAJVVWpZxLKygiMqpQHS26Ll09f+4+xlc2IE0bfrblhqlExCY2hW1rPvt4ZTxq/Mjx+w7xfXRBsviKoCz5UIrIKW1SSr1168AFW+aPWHBAIetSRArQIIWuPtEo1q3/8f0DFj3+y6kpIvZEUxw9+uubTvQ8sgGRSSiK2zc3fPq+zQ4+5LCDBtYqP+jqpX2fRHmUaI8ISebdmyZc8P6d3zhnMEmS6uElzPjFqm3J1LqT/vLe2MEEjzisSWfnjZq//jy/xk+Un0pTLR0wIR/Z/KcbGp9saJ683+ixB/bzJI1UFYVURUQ+KbIqs3T+10/+9SuXzU2DtO3R6n51Yfn0gHRrXTWRI9+v5gD4xrBfLJk3oypFCYFSiqi2lmiMSeK4uLxt0/Pr0uPHjz14iFU1gSLRWuJUQP/3k+kjb8Qt0xRRobqmp2s1pDqaF/zbUU2nNf19vBKwrxRrJL6/7sXnhl48NhAFpYil1OM7rcnF7Va2r2z4cLMbeeiog0YP8HxfEckrl57YuOqCbwwOMzrhrDI9DCSNeuma9bWBPfCeg7VJKfZIubBGI6qO1/zp7Ylnjg8gTvlKOVIeoLq8nURFk1+3acvKlQPGHDz60BHFdy7LZE4+fWScUTpJKZtke0gXo3IN/RKTrR4GitNKNCkn+Vr2tZeYjx9eNnve4LSixNesiZ3nAUopgLQiIsm3OdrctOrDDaFN4tPOGVevuBhXZ1SitfQwjjEqThNRkkqQYvJcQE6HGZ8UnK9s2PDn56fN+do+ARGsr4jQ6QjQzhF2km9/6Q8Nw+6YtA8hkiy0tVkN9KgZayISDVJdt7NK44fSWKCtcfEz22efe0CgA9qBs3PNIs6tfvaVYO6cfvVBkqI4rPcIKDN76OV+YydF7Q2Ll4STv3ZEbU3G89hlStfLQMYp3vTmW0v3mz513IAqVoUq8TW7XibVvdwCVIqotMrthdYVS5dnhx0wctjAmgE1GVItm1u5ZeWKz/odPvHofv3qKeasjl4dObQW6nPd3OTOd8oSqMnl2zat39RcMJuKRKrfwFo1fNyI/jX1NRki64M0tX7zlmnFnoJwJ1jZybLq9I62HKiYBg2iScYklllA5Kc85by6DJGDglKKKFlIKV1lesrlHVQeDKUgsdonygCsdTa751KR1hSl/MSl7VNJPIRc4HqbXJZdiFKdg0GtKE7Yai3MnYfHACQxRlJpWDhFlPG2hBP6afJNr/P+8gN6BQIp8lmCDBEp0ijdQIKQ0ioopUCg0gom2ProWYVJPqlsrwcEvZwGlJRW3o7Fdv5Vese9J1KKfEaVee7BhWZGFRHKH1c5vzew3SHKfSPN/YOWYstzmRf9FFFPhaOLS6IvemcHYb1nWi8/Zfzw+ngLlCs/a9Za+RWfypYBS/vR7b9rvZGvflwarhuSknLyrOcH6guCkRJpac8MdvmIgqH5TNlrOSAd91kb+6TcPrtei+Vylw6cpJyKvihYEugkyeZrPIqUTpWNfJBu/H+aBRUqu4OD7QAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_48.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, A, B, C are any three points on circle O, if angle BOC = 100.0, then the degree of angle BAC is ()
Choices:
A:50°
B:80°
C:100°
D:130°
|
Như hình vẽ, A, B, C là ba điểm bất kỳ trên đường tròn O, nếu góc BOC = 100° thì số đo của góc BAC là ()
Các lựa chọn:
A: 50°
B: 80°
C: 100°
D: 130°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, A, B, C are any three points on circle O, if angle BOC = 100.0, then the degree of angle BAC is ()
Choices:
A:50°
B:80°
C:100°
D:130°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, A, B, C are any three points on circle O, if angle BOC = 100.0, then the degree of angle BAC is ()
Choices:
A:50°
B:80°
C:100°
D:130°
|
As shown in the figure, A, B, C are any three points on circle O, if angle BOC = 100.0, then the degree of angle BAC is ()
Choices:
A:50°
B:80°
C:100°
D:130°
|
237
|
48
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGwAAABvCAAAAAAsmXq/AAATDElEQVR4nK1aeZhU1ZU/9773aunFbnZEFBCjgAiCohCSiMpi0LhEjV/UScboBJO4RU0UV8aon4nL56jRzMREYxxJMInG3WgILmhGQXEFaUA2oWl6rapX79137zm/+aO62bqru9Cc/r7u+qrfOb971nveuVeBeiZLPolHCaWIiCQx7Ws/btjaXtxUiMkfOLQ+GDb20JED075WRKKhQIrgyNNl5BGRUeXACCbOeORpSqKOTas+eTEYNvyA/QbWDKrJKmnZ1hHm1qzYUH/0lMn96qrJSWDI90moF6xewBBlyAWq6BdW/v2N4kETjqmrrgo8r1MaLCVW4nXLPmiomjRzcm1AIEUc6az6PGAuSqUl4txfnm2adcqI6kyWiIgECkKeJgJrTTBR25Z//CN7yswBVQFBMXmfSzPhgDrWPPPHo86aXOOnKV+jSFTJM0QsCBRJnmvSRFHb4qdzY3/YvzpNoVT1glYWDIXaeNkTH0w+Z7+qtCL2RBGIiJQiZuUTmCkF0uwp9rjwwZInZ539pQyJ+lxmNG33PnvWqTX7E0HBaQ+KiAgkHoiU4YyCFZ0i9kgRcbj+0eVTvz1G9xYhu4BB7fop/8z9Y64Ylg2sL/Cpa8UC8ZVAaRArpYiUKFYeiSYK3/vt9lNP6d8pCD1ouBMMhRolKkmBBAHeuSs89bS6xNfO38O8Zc3EXuGFh/tdcnhQqNLWj9PdVTSETjJFASR0nGPYp2Ze+ZkDO0iBURmJALx6wYw/xYBrSnpii3eAOZGY4eAErffNeLQJEkZORCrFChmW0fjY7AXtiKyEPaDtBAOSgoABu/na6c85FCIWKcaVgkEsEDkkLx7zo01wUe+aAU4giZW3v33SShHjRESYXaVgsA4s0sxbZp+4Too9LXInmHUMa2Ge/tZ3NwMi1sWFqGK9ABMzh7G4dmz/wcxXbNID6y6aieMQ8rvJP2uFSCQiLGxsxWDirIgpCgMd8494sCfGnWACK4LnjnqsDZJ34iSJBNZUHIxGpChIGCw2fPCrf+sU2iOYxLaN0TDp7qTrGZFuT/eK1sUWiSB331HvAyLhbuaMu1JP+blq9+mtc04PiEgRESnV9akiUl1sGkpq58z6+TYylOnYTcKOPNd12tzeePnwiqX3gso0+t/j+7dniOppt9rbpaND+MuZH+xF+JWjRJAI8O7kh7jgdpO3SzQWXjj8dUTJF8XiROBMwnj6mJfaebcKtAvYBzMeceixpu0ViQjgGIj+d8YK2F2Lwo4AoaZ7Zpzh5XprjiojUYrJ0wjTc47/ZYuSXf+nQQCB5Kn272UpS2WbrYrBQETElA0HXLj6ZQlARDukFjnMcYLVU16GAyT8oiGyg79o8eyM1UhYwBFbAWKdjjI1zot+e+zhpBBTb61YRdTFD+XR9On3tfuaHae1IyLSSikVRKuWfGuAaDLlN+K9Jg2qO3PVKkfK9xOkFBFpl4kteY8dPZYckf+vw1JBxMnYmb/PUQLFrhR47ISLm6d8CJtArNh/QVp3koPDx0d8gCTqTLdYq4g07jn2QNKBGE/11vftFQlr0TTyuD82BToiZUtRaRhrD1vrGDDmX6YVYAXFSNzHX3lBpJgIA4g1eZI8M36IR0ReilwveSZEAFWaiUIuxcL7j2pqjtNeyWAa7OWePD1Lmsgj8spaMeF2R8YAESCE3lZFRESB8rwqL6g++/FiRhVYQERaBe6TqsN2bGvleGGi2gipQHFGiooS3ZdvVelHjbVbrKqJlCIizarw4hH7SV8LVdVVOguOyNesQUGfmnXR0PFL8qRL8aE1uZePq9bSFxNUgdpVtLlpcyobswoqjdr0zOcjQl3JZ4q2dhxC6GuhsPD87FPHH3PMNc2UVUnlBfvI7a3ozGlN9p+HVxP39sZIRKTSlNpyyw2/euWJFZe2KesX+zRFF1Uf9n7Bhy6BRa8fm6W+c1mp5HdvLJo2fN9r17/vUshWvPH5x70ZqZLlNBXWjfOlL8WIyLzxPz8Yp6hm8Kb9fOtVvvH541aaBBZEpGmbHEi6Al48dvgsSshtcEy+qrjJczShuRBQoIhIU9OgVEVc4Run11M72afnDCUyFVtRUap/s5TSUvO6A32qoBu1W5MB5AbQn5edXUeqz+jdBUyP3piUxGvX8CW/j+eJiMgbVNNMvtfwwHFTGSplKkXT5B28zpTcpN2mEX4F65Rc3fG/XtP24RkjFtSKsypV+VbkjdpkSp98aRvgKfTZDuga3HDe7Hpz61H72oCVqiB8u0gN3u5KbvLJZj0i7suUsDTg4UKEQ5TT5JErvz3sQaJVTdhZAXyBRwTpSzWVsbZ/fyKYVH7VITUVubm0StpZtTW1pcnpoE+voUNzQg7Byyed8ON1IDgHgCsByxjXCQabIo+kL6sgqodm8cKtN76WX3TWokhpElPs25iKKOjEIk2UIkV9llWVBVMqRPWmBpIxZ999fWPR16kqcX0x6t3M6BGAvmu4DtChq1reuOr82Ydcf8ldDSe+a2Imr8+oVKWupQTXdmSDFdfTJGHPNlA4Nu/O+X1ja2OSYNttY6/YBu5pkNONVn15LUrdld6nTSn0vfEKKSUbrpxx+pB+Q9qIBl/2yOrvvOYqaKFB7XWd+mtV36xJ+rajFim2/uSEi7KJxPWOw/SRD04+/5ZCBRGC1jqvlNRaV+eEUH6LQdfvQG++7LDv1VCgUyblZQmDr7/9re8vkZ2P9SwDKNR07hFa79seUoqpjL3FiDBJUZg+vWH4j/szCKpKQ4mS7Cn3fekHv/qMyAoiIemxMRFlNhyUIgYR6WDwp4qULhdVKh03E5lMguYfDZrfXzp7CSIH7Wj0NXc9dOVKDoqSTRJKEboDalLr6zOdn/2RHzrqZbIr2QHiMl4md/nwawfnWneUNU+RFJPary8afso97TUxUn6RVKGth5opawZVde6XWD6pEQ6QMsQCOIet539nI8COu753TkQ4Nig8+dVzVzrXZhjsuHsKSfvkpYATINY0tGojqfLRyFRg5bXdES7Y3xTVzmmC52JSKghQffLddO4f4zo4sFbdWzxZXT2kczilqfbQ5YkqG41gZFp0eHvzz0dS4EfFnc8FPlxslZJo8r0X3Xnxu0HKeJLPdHMI3hjXr7Pt0OQf/WZcvlnSQZsa1PHQOxcPVyhqpG0XmqNAeZkUiNPFqjMfs/MWRRmla7rLca9Pqe3qcRAtndoE6eazLuc466JbT1kuHIvLOet2PADnAEkSMZYRtz4w7vuNbLlxx1SzaybYMeFVlIparEEjsxtdt4MLFIUBR6Q995ulV0x2FJCu0jt9pkhrIuX7KvA1pfqd90h4+l8tDxRhByJCLJQ4Ar1bP4wUMRGRNunUkS9E3cyoM+1MRW2h5A+LLvkK+UrtmSClgWTJA4rSR/zXzBuvavJSsfKtsCVPkeeRss9/ZTBZlPI4h+i5mY3dQp9NwmHoXM48PvV5TordUmLPAO9gRK/PPeK5BOB8yJJ0mrHxa4uBSARATM7isxOWxLynMM47jp2xf5i+NGYpuD7A4FqagMZfTLxqK3ckYoQhQAT89aTPIKURZEySg7n10vZuAQLXHnOMF2c/UYQTsX2BWeckj8Lzc09eblqdFAWxIER83j0RC+AAxAR2eHvae91LSOw4h+Wz7o07mFu7Kd7NjDHAhoH18w++dXubCCQUMJZN/0gEiS2ZkcUh/8Ob83uAsXGxmLUT7w1jJx2J5Pe0Y7eqBMModgDh4hlz344BxMII51/ewYKYASAmyXOCf077qKRalwYsEgErjn8gYpdnjqWbaj3sRoBwEgGrrpxxWzPgJMQnRyyDKZ0nCWKC4xxy370lDweRgqAoDlIQMfjo2BuLjsF7Nd43AuQXzjj1AwsrdsH5jSgKcs5JzkbkIBbyt2lrIDZihuQFCTMXsP6E21pR+cFPF5rLmcR9euGk/y4Ay6Yv4w5bOo1giQiSwBVzF16WD9lBxLCwg7Riw8k/3bq3SIB0OCtikPvLUd9+ufnqC9rRjHh9Y76wPkGOJLKQPNZMeRpIxHIohYIwsOGMec3o2PthuGEkwh0wK44bcc3xnxQYTY9MOfC01Q9tR0hOOGaO3T1zm1EUgUgHI0LLhaduAczeD+okSorCHeCFE38467d5SdZMPGfFp28deVE7Yu2R80MVuHNqbs9nxRFxrXaZjdcn9+4LqysfG+2o4CmblsI+yR13XzZk5Ixq1XjBl2+cOHLclMPTJARrpVAQwdI5jzqOnRU43nznGZ+go8hc8ZnnLnYUboS5fsI/Hjr6bUGycOhLKCB57L0YeTIx55iNZX501t8gMUuM4jUnroZxYlz73oOxRBL/57TFi+csFGDbpIs6IithaCwiSsDtIh1WsPWBmeuZjaDl56d9CGsBESfinJMKMs2yCNgKuID8dTNe23jM3QbOfjj0/tDBJgAQk1g4G1kTARuuOOszSJz8atqyknSXWNd5uNLnsS5zrpVFwHk0XzLnjbZzftJmLWTNqAesCJcOEchuYESIAQP56ISrC2j7zaxXSwhgEXE2SWyP5Wl3koJ1XEwkh/Dir7+WXPbNBkTs0D7m6mKS2I9eCIGYjJF8R2NLTpIQeHXunU1PnfQU4IoCcBLFhkXYVlBHJCex4UKC1nmz35SHjlyGZosIfMeI+1vaFn5rLQMxOQnPHT78kEMfjsSIPDH5p4fctX1bPnQl+cJFIxB2fWc3c9ElBWw5c/baZOHEZ4A8xwwbPT5+9NjL1wiAWDX3o7U/nTr7ndt/P0Wi6vjm34zyWwceMPngCZkg8DtfLHu/wFIigcnYsP/y23BX/ZMPnDPPpRXbjPNNGDpVX6eJyPj7MNXHpx9kWnMmHQhdddC9E+blGz567ePa/UePGTOqWlLZiiYs4nlAfctNdM+QmxdfdFrgqdjLEFEqPYCIwqwmItVWJ0seuzl1beq6gVqICKuvyd42rFiMw42rP9m43UwcPf7goVlf9TW6SwKKM/9cMPxncqm+fpzvPObAJVVWpZxLKygiMqpQHS26Ll09f+4+xlc2IE0bfrblhqlExCY2hW1rPvt4ZTxq/Mjx+w7xfXRBsviKoCz5UIrIKW1SSr1168AFW+aPWHBAIetSRArQIIWuPtEo1q3/8f0DFj3+y6kpIvZEUxw9+uubTvQ8sgGRSSiK2zc3fPq+zQ4+5LCDBtYqP+jqpX2fRHmUaI8ISebdmyZc8P6d3zhnMEmS6uElzPjFqm3J1LqT/vLe2MEEjzisSWfnjZq//jy/xk+Un0pTLR0wIR/Z/KcbGp9saJ683+ixB/bzJI1UFYVURUQ+KbIqs3T+10/+9SuXzU2DtO3R6n51Yfn0gHRrXTWRI9+v5gD4xrBfLJk3oypFCYFSiqi2lmiMSeK4uLxt0/Pr0uPHjz14iFU1gSLRWuJUQP/3k+kjb8Qt0xRRobqmp2s1pDqaF/zbUU2nNf19vBKwrxRrJL6/7sXnhl48NhAFpYil1OM7rcnF7Va2r2z4cLMbeeiog0YP8HxfEckrl57YuOqCbwwOMzrhrDI9DCSNeuma9bWBPfCeg7VJKfZIubBGI6qO1/zp7Ylnjg8gTvlKOVIeoLq8nURFk1+3acvKlQPGHDz60BHFdy7LZE4+fWScUTpJKZtke0gXo3IN/RKTrR4GitNKNCkn+Vr2tZeYjx9eNnve4LSixNesiZ3nAUopgLQiIsm3OdrctOrDDaFN4tPOGVevuBhXZ1SitfQwjjEqThNRkkqQYvJcQE6HGZ8UnK9s2PDn56fN+do+ARGsr4jQ6QjQzhF2km9/6Q8Nw+6YtA8hkiy0tVkN9KgZayISDVJdt7NK44fSWKCtcfEz22efe0CgA9qBs3PNIs6tfvaVYO6cfvVBkqI4rPcIKDN76OV+YydF7Q2Ll4STv3ZEbU3G89hlStfLQMYp3vTmW0v3mz513IAqVoUq8TW7XibVvdwCVIqotMrthdYVS5dnhx0wctjAmgE1GVItm1u5ZeWKz/odPvHofv3qKeasjl4dObQW6nPd3OTOd8oSqMnl2zat39RcMJuKRKrfwFo1fNyI/jX1NRki64M0tX7zlmnFnoJwJ1jZybLq9I62HKiYBg2iScYklllA5Kc85by6DJGDglKKKFlIKV1lesrlHVQeDKUgsdonygCsdTa751KR1hSl/MSl7VNJPIRc4HqbXJZdiFKdg0GtKE7Yai3MnYfHACQxRlJpWDhFlPG2hBP6afJNr/P+8gN6BQIp8lmCDBEp0ijdQIKQ0ioopUCg0gom2ProWYVJPqlsrwcEvZwGlJRW3o7Fdv5Vese9J1KKfEaVee7BhWZGFRHKH1c5vzew3SHKfSPN/YOWYstzmRf9FFFPhaOLS6IvemcHYb1nWi8/Zfzw+ngLlCs/a9Za+RWfypYBS/vR7b9rvZGvflwarhuSknLyrOcH6guCkRJpac8MdvmIgqH5TNlrOSAd91kb+6TcPrtei+Vylw6cpJyKvihYEugkyeZrPIqUTpWNfJBu/H+aBRUqu4OD7QAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_48.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, if angle BOC = 100.0, then the degree of angle BAC is ()
Choices:
A:50°
B:80°
C:100°
D:130°
|
Như hình vẽ, nếu góc BOC = 100° thì số đo của góc BAC là ()
Lựa chọn:
A: 50°
B: 80°
C: 100°
D: 130°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, if angle BOC = 100.0, then the degree of angle BAC is ()
Choices:
A:50°
B:80°
C:100°
D:130°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, if angle BOC = 100.0, then the degree of angle BAC is ()
Choices:
A:50°
B:80°
C:100°
D:130°
|
As shown in the figure, if angle BOC = 100.0, then the degree of angle BAC is ()
Choices:
A:50°
B:80°
C:100°
D:130°
|
238
|
48
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGwAAABvCAAAAAAsmXq/AAATDElEQVR4nK1aeZhU1ZU/9773aunFbnZEFBCjgAiCohCSiMpi0LhEjV/UScboBJO4RU0UV8aon4nL56jRzMREYxxJMInG3WgILmhGQXEFaUA2oWl6rapX79137zm/+aO62bqru9Cc/r7u+qrfOb971nveuVeBeiZLPolHCaWIiCQx7Ws/btjaXtxUiMkfOLQ+GDb20JED075WRKKhQIrgyNNl5BGRUeXACCbOeORpSqKOTas+eTEYNvyA/QbWDKrJKmnZ1hHm1qzYUH/0lMn96qrJSWDI90moF6xewBBlyAWq6BdW/v2N4kETjqmrrgo8r1MaLCVW4nXLPmiomjRzcm1AIEUc6az6PGAuSqUl4txfnm2adcqI6kyWiIgECkKeJgJrTTBR25Z//CN7yswBVQFBMXmfSzPhgDrWPPPHo86aXOOnKV+jSFTJM0QsCBRJnmvSRFHb4qdzY3/YvzpNoVT1glYWDIXaeNkTH0w+Z7+qtCL2RBGIiJQiZuUTmCkF0uwp9rjwwZInZ539pQyJ+lxmNG33PnvWqTX7E0HBaQ+KiAgkHoiU4YyCFZ0i9kgRcbj+0eVTvz1G9xYhu4BB7fop/8z9Y64Ylg2sL/Cpa8UC8ZVAaRArpYiUKFYeiSYK3/vt9lNP6d8pCD1ouBMMhRolKkmBBAHeuSs89bS6xNfO38O8Zc3EXuGFh/tdcnhQqNLWj9PdVTSETjJFASR0nGPYp2Ze+ZkDO0iBURmJALx6wYw/xYBrSnpii3eAOZGY4eAErffNeLQJEkZORCrFChmW0fjY7AXtiKyEPaDtBAOSgoABu/na6c85FCIWKcaVgkEsEDkkLx7zo01wUe+aAU4giZW3v33SShHjRESYXaVgsA4s0sxbZp+4Too9LXInmHUMa2Ge/tZ3NwMi1sWFqGK9ABMzh7G4dmz/wcxXbNID6y6aieMQ8rvJP2uFSCQiLGxsxWDirIgpCgMd8494sCfGnWACK4LnjnqsDZJ34iSJBNZUHIxGpChIGCw2fPCrf+sU2iOYxLaN0TDp7qTrGZFuT/eK1sUWiSB331HvAyLhbuaMu1JP+blq9+mtc04PiEgRESnV9akiUl1sGkpq58z6+TYylOnYTcKOPNd12tzeePnwiqX3gso0+t/j+7dniOppt9rbpaND+MuZH+xF+JWjRJAI8O7kh7jgdpO3SzQWXjj8dUTJF8XiROBMwnj6mJfaebcKtAvYBzMeceixpu0ViQjgGIj+d8YK2F2Lwo4AoaZ7Zpzh5XprjiojUYrJ0wjTc47/ZYuSXf+nQQCB5Kn272UpS2WbrYrBQETElA0HXLj6ZQlARDukFjnMcYLVU16GAyT8oiGyg79o8eyM1UhYwBFbAWKdjjI1zot+e+zhpBBTb61YRdTFD+XR9On3tfuaHae1IyLSSikVRKuWfGuAaDLlN+K9Jg2qO3PVKkfK9xOkFBFpl4kteY8dPZYckf+vw1JBxMnYmb/PUQLFrhR47ISLm6d8CJtArNh/QVp3koPDx0d8gCTqTLdYq4g07jn2QNKBGE/11vftFQlr0TTyuD82BToiZUtRaRhrD1vrGDDmX6YVYAXFSNzHX3lBpJgIA4g1eZI8M36IR0ReilwveSZEAFWaiUIuxcL7j2pqjtNeyWAa7OWePD1Lmsgj8spaMeF2R8YAESCE3lZFRESB8rwqL6g++/FiRhVYQERaBe6TqsN2bGvleGGi2gipQHFGiooS3ZdvVelHjbVbrKqJlCIizarw4hH7SV8LVdVVOguOyNesQUGfmnXR0PFL8qRL8aE1uZePq9bSFxNUgdpVtLlpcyobswoqjdr0zOcjQl3JZ4q2dhxC6GuhsPD87FPHH3PMNc2UVUnlBfvI7a3ozGlN9p+HVxP39sZIRKTSlNpyyw2/euWJFZe2KesX+zRFF1Uf9n7Bhy6BRa8fm6W+c1mp5HdvLJo2fN9r17/vUshWvPH5x70ZqZLlNBXWjfOlL8WIyLzxPz8Yp6hm8Kb9fOtVvvH541aaBBZEpGmbHEi6Al48dvgsSshtcEy+qrjJczShuRBQoIhIU9OgVEVc4Run11M72afnDCUyFVtRUap/s5TSUvO6A32qoBu1W5MB5AbQn5edXUeqz+jdBUyP3piUxGvX8CW/j+eJiMgbVNNMvtfwwHFTGSplKkXT5B28zpTcpN2mEX4F65Rc3fG/XtP24RkjFtSKsypV+VbkjdpkSp98aRvgKfTZDuga3HDe7Hpz61H72oCVqiB8u0gN3u5KbvLJZj0i7suUsDTg4UKEQ5TT5JErvz3sQaJVTdhZAXyBRwTpSzWVsbZ/fyKYVH7VITUVubm0StpZtTW1pcnpoE+voUNzQg7Byyed8ON1IDgHgCsByxjXCQabIo+kL6sgqodm8cKtN76WX3TWokhpElPs25iKKOjEIk2UIkV9llWVBVMqRPWmBpIxZ999fWPR16kqcX0x6t3M6BGAvmu4DtChq1reuOr82Ydcf8ldDSe+a2Imr8+oVKWupQTXdmSDFdfTJGHPNlA4Nu/O+X1ja2OSYNttY6/YBu5pkNONVn15LUrdld6nTSn0vfEKKSUbrpxx+pB+Q9qIBl/2yOrvvOYqaKFB7XWd+mtV36xJ+rajFim2/uSEi7KJxPWOw/SRD04+/5ZCBRGC1jqvlNRaV+eEUH6LQdfvQG++7LDv1VCgUyblZQmDr7/9re8vkZ2P9SwDKNR07hFa79seUoqpjL3FiDBJUZg+vWH4j/szCKpKQ4mS7Cn3fekHv/qMyAoiIemxMRFlNhyUIgYR6WDwp4qULhdVKh03E5lMguYfDZrfXzp7CSIH7Wj0NXc9dOVKDoqSTRJKEboDalLr6zOdn/2RHzrqZbIr2QHiMl4md/nwawfnWneUNU+RFJPary8afso97TUxUn6RVKGth5opawZVde6XWD6pEQ6QMsQCOIet539nI8COu753TkQ4Nig8+dVzVzrXZhjsuHsKSfvkpYATINY0tGojqfLRyFRg5bXdES7Y3xTVzmmC52JSKghQffLddO4f4zo4sFbdWzxZXT2kczilqfbQ5YkqG41gZFp0eHvzz0dS4EfFnc8FPlxslZJo8r0X3Xnxu0HKeJLPdHMI3hjXr7Pt0OQf/WZcvlnSQZsa1PHQOxcPVyhqpG0XmqNAeZkUiNPFqjMfs/MWRRmla7rLca9Pqe3qcRAtndoE6eazLuc466JbT1kuHIvLOet2PADnAEkSMZYRtz4w7vuNbLlxx1SzaybYMeFVlIparEEjsxtdt4MLFIUBR6Q995ulV0x2FJCu0jt9pkhrIuX7KvA1pfqd90h4+l8tDxRhByJCLJQ4Ar1bP4wUMRGRNunUkS9E3cyoM+1MRW2h5A+LLvkK+UrtmSClgWTJA4rSR/zXzBuvavJSsfKtsCVPkeeRss9/ZTBZlPI4h+i5mY3dQp9NwmHoXM48PvV5TordUmLPAO9gRK/PPeK5BOB8yJJ0mrHxa4uBSARATM7isxOWxLynMM47jp2xf5i+NGYpuD7A4FqagMZfTLxqK3ckYoQhQAT89aTPIKURZEySg7n10vZuAQLXHnOMF2c/UYQTsX2BWeckj8Lzc09eblqdFAWxIER83j0RC+AAxAR2eHvae91LSOw4h+Wz7o07mFu7Kd7NjDHAhoH18w++dXubCCQUMJZN/0gEiS2ZkcUh/8Ob83uAsXGxmLUT7w1jJx2J5Pe0Y7eqBMModgDh4hlz344BxMII51/ewYKYASAmyXOCf077qKRalwYsEgErjn8gYpdnjqWbaj3sRoBwEgGrrpxxWzPgJMQnRyyDKZ0nCWKC4xxy370lDweRgqAoDlIQMfjo2BuLjsF7Nd43AuQXzjj1AwsrdsH5jSgKcs5JzkbkIBbyt2lrIDZihuQFCTMXsP6E21pR+cFPF5rLmcR9euGk/y4Ay6Yv4w5bOo1giQiSwBVzF16WD9lBxLCwg7Riw8k/3bq3SIB0OCtikPvLUd9+ufnqC9rRjHh9Y76wPkGOJLKQPNZMeRpIxHIohYIwsOGMec3o2PthuGEkwh0wK44bcc3xnxQYTY9MOfC01Q9tR0hOOGaO3T1zm1EUgUgHI0LLhaduAczeD+okSorCHeCFE38467d5SdZMPGfFp28deVE7Yu2R80MVuHNqbs9nxRFxrXaZjdcn9+4LqysfG+2o4CmblsI+yR13XzZk5Ixq1XjBl2+cOHLclMPTJARrpVAQwdI5jzqOnRU43nznGZ+go8hc8ZnnLnYUboS5fsI/Hjr6bUGycOhLKCB57L0YeTIx55iNZX501t8gMUuM4jUnroZxYlz73oOxRBL/57TFi+csFGDbpIs6IithaCwiSsDtIh1WsPWBmeuZjaDl56d9CGsBESfinJMKMs2yCNgKuID8dTNe23jM3QbOfjj0/tDBJgAQk1g4G1kTARuuOOszSJz8atqyknSXWNd5uNLnsS5zrpVFwHk0XzLnjbZzftJmLWTNqAesCJcOEchuYESIAQP56ISrC2j7zaxXSwhgEXE2SWyP5Wl3koJ1XEwkh/Dir7+WXPbNBkTs0D7m6mKS2I9eCIGYjJF8R2NLTpIQeHXunU1PnfQU4IoCcBLFhkXYVlBHJCex4UKC1nmz35SHjlyGZosIfMeI+1vaFn5rLQMxOQnPHT78kEMfjsSIPDH5p4fctX1bPnQl+cJFIxB2fWc3c9ElBWw5c/baZOHEZ4A8xwwbPT5+9NjL1wiAWDX3o7U/nTr7ndt/P0Wi6vjm34zyWwceMPngCZkg8DtfLHu/wFIigcnYsP/y23BX/ZMPnDPPpRXbjPNNGDpVX6eJyPj7MNXHpx9kWnMmHQhdddC9E+blGz567ePa/UePGTOqWlLZiiYs4nlAfctNdM+QmxdfdFrgqdjLEFEqPYCIwqwmItVWJ0seuzl1beq6gVqICKuvyd42rFiMw42rP9m43UwcPf7goVlf9TW6SwKKM/9cMPxncqm+fpzvPObAJVVWpZxLKygiMqpQHS26Ll09f+4+xlc2IE0bfrblhqlExCY2hW1rPvt4ZTxq/Mjx+w7xfXRBsviKoCz5UIrIKW1SSr1168AFW+aPWHBAIetSRArQIIWuPtEo1q3/8f0DFj3+y6kpIvZEUxw9+uubTvQ8sgGRSSiK2zc3fPq+zQ4+5LCDBtYqP+jqpX2fRHmUaI8ISebdmyZc8P6d3zhnMEmS6uElzPjFqm3J1LqT/vLe2MEEjzisSWfnjZq//jy/xk+Un0pTLR0wIR/Z/KcbGp9saJ683+ixB/bzJI1UFYVURUQ+KbIqs3T+10/+9SuXzU2DtO3R6n51Yfn0gHRrXTWRI9+v5gD4xrBfLJk3oypFCYFSiqi2lmiMSeK4uLxt0/Pr0uPHjz14iFU1gSLRWuJUQP/3k+kjb8Qt0xRRobqmp2s1pDqaF/zbUU2nNf19vBKwrxRrJL6/7sXnhl48NhAFpYil1OM7rcnF7Va2r2z4cLMbeeiog0YP8HxfEckrl57YuOqCbwwOMzrhrDI9DCSNeuma9bWBPfCeg7VJKfZIubBGI6qO1/zp7Ylnjg8gTvlKOVIeoLq8nURFk1+3acvKlQPGHDz60BHFdy7LZE4+fWScUTpJKZtke0gXo3IN/RKTrR4GitNKNCkn+Vr2tZeYjx9eNnve4LSixNesiZ3nAUopgLQiIsm3OdrctOrDDaFN4tPOGVevuBhXZ1SitfQwjjEqThNRkkqQYvJcQE6HGZ8UnK9s2PDn56fN+do+ARGsr4jQ6QjQzhF2km9/6Q8Nw+6YtA8hkiy0tVkN9KgZayISDVJdt7NK44fSWKCtcfEz22efe0CgA9qBs3PNIs6tfvaVYO6cfvVBkqI4rPcIKDN76OV+YydF7Q2Ll4STv3ZEbU3G89hlStfLQMYp3vTmW0v3mz513IAqVoUq8TW7XibVvdwCVIqotMrthdYVS5dnhx0wctjAmgE1GVItm1u5ZeWKz/odPvHofv3qKeasjl4dObQW6nPd3OTOd8oSqMnl2zat39RcMJuKRKrfwFo1fNyI/jX1NRki64M0tX7zlmnFnoJwJ1jZybLq9I62HKiYBg2iScYklllA5Kc85by6DJGDglKKKFlIKV1lesrlHVQeDKUgsdonygCsdTa751KR1hSl/MSl7VNJPIRc4HqbXJZdiFKdg0GtKE7Yai3MnYfHACQxRlJpWDhFlPG2hBP6afJNr/P+8gN6BQIp8lmCDBEp0ijdQIKQ0ioopUCg0gom2ProWYVJPqlsrwcEvZwGlJRW3o7Fdv5Vese9J1KKfEaVee7BhWZGFRHKH1c5vzew3SHKfSPN/YOWYstzmRf9FFFPhaOLS6IvemcHYb1nWi8/Zfzw+ngLlCs/a9Za+RWfypYBS/vR7b9rvZGvflwarhuSknLyrOcH6guCkRJpac8MdvmIgqH5TNlrOSAd91kb+6TcPrtei+Vylw6cpJyKvihYEugkyeZrPIqUTpWNfJBu/H+aBRUqu4OD7QAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_48.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, if angle BOC = 100.0, then the degree of angle BAC is ()
Choices:
A:50°
B:80°
C:100°
D:130°
|
Như hình vẽ, nếu góc BOC = 100° thì số đo của góc BAC là ()
Lựa chọn:
A: 50°
B: 80°
C: 100°
D: 130°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, if angle BOC = 100.0, then the degree of angle BAC is ()
Choices:
A:50°
B:80°
C:100°
D:130°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, if angle BOC = 100.0, then the degree of angle BAC is ()
Choices:
A:50°
B:80°
C:100°
D:130°
|
As shown in the figure, if angle BOC = 100.0, then the degree of angle BAC is ()
Choices:
A:50°
B:80°
C:100°
D:130°
|
239
|
48
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAPoAAADgCAYAAAAqoXvAAABZtklEQVR4nO29eVRc15nu/aOgqiigqGKeQSAkEJLQPE8gyZKlyLI8JLaTTtKJO1mdvn07ub36dt/OvZ3uTq+ekr49OP19+XrFzmjHsWPFsiVriDVasoTQiGZAA0KAoJgpCmqu7w+yt3YdQJYTSypR51nLS67i1Klz6uxnv/P7xoRCoRA6dOiY0DA87AvQoUPH/YdOdB06ogA60XXoiALoRNehIwqgE12HjiiATnQdOqIAOtF16IgC6ETXoSMKoBNdh44ogE50HTqiADrRdeiIAuhE16EjCqATXYeOKIBOdB06ogA60XXoiALoRNehIwqgE12HjiiATnQdOqIAOtF16IgC6ETXoSMKoBNdh44ogE50HTqiADrRdeiIAsQ97AuIdAQCAQKBADExMcTGxmIwjOyNwWAQIOy13+8nFAoRGxtLXNxH/7ShUIhgMMjw8DA9PT20tLRw8+ZNmpubaW1tpauri76+PlwuF16vl76+PhwOB8PDw3g8HnkNAHFxcdhsNlJTU0lJSSEpKQmj0YjZbCY9PZ2CggKKi4spLi4mNzeX9PR0kpKS7uk6g8EgMTExxMTEEAqFiImJkdcPyNfqfQUCAfk5g8GAwWAYdVwkIRAI4Pf7MZvND/tS7gti9AEOd0coFJILOhgMSuIL0guiq9AuarHwh4eHGRgYoLu7m56eHtra2rh27RrDw8Nhx6kEiY2NDdtgBNHU/9TvCQaD8noDgYDceMRrr9eL3+/HaDRit9vJzc0lLy+P7OxssrOzSU5Oxmg0ys9of4dgMCjvT2xsY5FZvQ7x90jGRCe6LtE/AoJMYuEGAgF8Pp/8m7pPqsQPhUK43W4GBwfp7++nt7eX7u5uurq66OzspLe3l7a2Nurr6wkEAiQnJ5ORkUF6err8Ny0tDbvdjtVqxWw2k5SURHJyMvHx8ZjNZoxGoySW3+9nYGCA/v5+BgYGcLlceDwe3G43Q0NDdHZ2cuvWLdra2mhra2NoaAiLxUJubi4FBQXk5eVRUFBAamoqiYmJ2O127HY7ycnJmEymsN9AkFu81m44Anf7m44HC12i3wOEJIyLiyM2NlYSPiYmhri4OGJiYuQGYDKZABgaGqKtrY1Lly5x9uxZLl68SFdXFwaDgezsbHJzc5k0aRJlZWWSvBaLBYvFgslkwmg0yu+LjY0dJTXHI5bQOoS0DQaD+Hw+vF4vPp8Pv9+Pz+fD6XTS0dEhTYXbt29z+/ZtvF4vycnJFBcXM3PmTGbNmsXkyZOx2WyjpLJKevV6gsEgHo+HQCCAwWDAZDLdk4nwMDHRJbpO9I9AKBTC5/Ph8XgwGo1SrVWlm1jELpeLhoYGLl26RH19Pa2trYRCIZKTk6XdbLVaSU1NJS0tjezsbPLy8oiPj5ckvlcVVzUpPkpqBgIBINyk8Pv9OJ1OHA4HDoeDrq4uOjo6GBgYwO12S60gFAqRkZHB1KlTmT59OiUlJSQnJ2MwGMLsdfW6xPmFCRIXF6er7g8ZOtE/AsLJJiS6ar96vV5cLhcDAwNSFb948SKNjY1SOhYVFTF//nwWLFhAfn4+VqtVagH3aruqKrKAkNbAXaW8+Lz6XVpJLDQUj8eDy+Wiu7ubS5cuUVdXR319PS6Xi4yMDMrLy5k2bRrZ2dmkpqaSnZ1NQkKCJD0QZqOLDUb1MUQqdKJHOVR1WJVMfr+fvr4+WlpaOH36NPv37+fs2bMUFxczf/58Fi5cSElJCXa7XdrTZrNZSn+3243f75dEUb9Pqw6rj2is9wSCwWCYpiHUfu39CK99KBSS9n5cXFyY09Hj8TA0NER3dzcXLlzg1KlTXL58Gbfbjd1uZ+bMmWzZsoW8vDy5Aaq/j8fjwefzEQqFMJlM0s6PVOhEj3KohIARErS1tVFXV8eFCxe4efMmAElJSWRmZlJUVERxcTEFBQWkpaWNa5sK1dZoNIa9r30cakhLK9FVqS6OVR2EKnHF32NjY/H7/dIjr2ooY0ndQCBAV1cXLS0tNDc309LSQkdHB319fQwNDVFYWMjcuXOZO3cuOTk58lyhUEjeo+pniFToRI9yeDweAMxmM52dndTX13Pu3Dmampro6uoiGAxSWFjI4sWLWbJkSVhsWruwhcTVSlmBuz0K9VyCzOJ84j1xXjW0pW4G6jFqWAyQzkVhBqixc4FAIMDt27e5du0a586d49ChQwCUlJQwY8YMSktLyc/PJyMjA4vFMuqedKI/POhE/wiIBTA4OMju3bvZuXMnFy9eZOHChaxatYo5c+YQHx+P3W4nNTU17LPa5BJBTNV7PpZDSwuVtKFQKOyzKlTvfzAYlCq1gPA3qLa9GknQJgGJc2p/D5/Ph8vlorOzk5qaGo4ePcr169fJzs5mwYIFVFVVUVJSgtVqDdtkdKI/POhE/wi0tLRw/PhxDh48SFdXF2lpaVRWVlJWVkZRURGZmZmSLCoBVVtb6wTTvj8e1ONV9V04v7TSUnWsad/XnlP8Tb029V8YO/FH3bj8fj8dHR1cv36dK1eucPHiRTo7O0lNTZV+iqlTp0Z8aA10oj8y8Pv9AGGLSizMsbzM6vsQTohQKERPTw+NjY1cuHCBuro6rl27RmlpKVVVVaxZs4bExMRR3m6fzydtUVWSjRV/FriblNNm5WlV77GIrkLrrb+bVFXPpfXmq38f6/OBQACHw8GJEyc4ceIEzc3NWCwWJk+ezLx58ygvLycrKyvMtFCzC8X5xblVb/2Dgk70RwDCkwxgsVhGkVukrYpMMq0qLDzUYtG1t7dz/PhxfvWrX+FwOMjJyWHFihUsX76c4uJi4uLiwvLaDQZDmP19P1TUuxHtYULdFEKhkCT8nj17qK+vJz09nccff5wVK1aQl5eHyWTC7/fjdrtlNAJGNmqxKXo8HgwGQ1jm3/2GTvQIh1AhfT4fBoMBs9k8anH4fD6ZtSaSXcRiEmEfIYUbGhrYvn07J06cID4+nsWLF7NgwQLy8vLIyMiQC1MrdcR3mM3mByqJHja0G1AoFKKvr4/GxkbOnTtHXV0dHR0dFBcX89RTTzFr1iwsFkuYsy8QCOB0OjEYDCQkJADh6cQPAhOd6JFvPN0j1Biu1gGkepMFtNVoAwMD1NfXs3//fi5dukRSUhKLFi1izZo1lJaWys9pCznU80V6UsgnCTUNWKt+p6SksGDBAlkkc+jQIZqbm9m1axd9fX3MmjWLnJycMc+jNal0fDKYEBJdragSKatwh/ziGNW7rIaRBgcHOXHiBPv27aOmpoYFCxbw+OOPM3PmTFJSUuTnvF6vzN8W59ZqD5GmWt8vjKUVaaMKwWCQvr4+GhoaOHz4MPv27SMnJ4fq6mo2bdpESkqK/F3V5B7teR8EJrpEf+SJDuFON1GAoqrxalhKi46ODvbt28fu3btxOBysWbOG6upqKioqsFgs+P1+/H7/qIISg8EgF4fQDh4F7/InBbFhit9edbQJp6S6QTY1NfHBBx+wa9cufD4fq1evZvPmzVJbEg469Xy66v7JYUKsTG0ISA11ifdUSQ4j1WWNjY2cOHGCI0eOEAgEWL58OY8//jhlZWWYTKZRXnnt4lNNAyDs/BMd4vcQUlzVktTfQGy4hYWFrF27lpiYGI4dO8b+/ftxu92sXbuW+fPnS83L6/ViNpuj5nd8UJgQRFch1OqxSC5IOTw8TGNjI7t27eLIkSMAPPPMMzz11FPY7XbgTnLJeOeDkcWuJqSonv5og3rvqjMyFArhdDqBkQy6kpISiouL+Y//+A927NjBwMAAdrudgoICqapPACUz4vDIq+6qM0cQTLXLtYuvu7ubs2fPsnv3bhoaGkhNTeWFF15gzpw5ZGRkhJ1Xm6wi1Eu1/FK7CUQLydVcdlXbCQaDeL1e+fvExsbKbLpAIEBiYiJDQ0NcunSJN954gytXrpCens5nP/tZFi1ahM1mG7Os9n5DV90fAYyVkCJsRbHYAG7fvs2BAwc4ePAgg4ODTJs2TeaoW61W+XltCyYgzDbXqutaFT4aMF6UQZBebMDidzQajXLTTExMZP78+fh8Pvbs2cOJEyd46623aG1tZdWqVeTn50vTSccng0ee6FrSqZlkKlkHBgakM+jatWusWbOGJ554goULF8pzCdKqC1SrKYj/xGaihoaiKX4OdySu1gdiMpmkhBTOSnXDhZHntnTpUmw2G7Gxsezdu5f29na8Xi9PPPEEubm5UbVx3m888qq7CtUWFzAYDAwMDFBbW8v3vvc9zGYz69evZ8mSJUyaNEkmaHg8Hqm6qXFhQWpVZRcZWw/bU/wwoW5yatJQMBiU0Q7VzyE2Te1y83g8OBwO9u/fz4EDB+js7OSrX/0qK1euHFUkdD+hq+4RDjX1VHRJURs8AJw8eZLXX38dg8HAkiVLWLduHdnZ2WGONDU2PlbijXhPK+EhctNT7yfGSkTS2tTiN1WhZhSGQiN1/oWFhVRXVxMIBNi/fz/bt2/H6/Xy5JNPjkk8sYGofoFIbyf9sPHIE12VtkJVFAT2+Xy0tLTw4YcfcvbsWZ555hkee+wxCgoKRp1H2wACwm3/8XqTR4sE10JIcvX3GCuPQNs9R9UC1M8WFRWxatUqfD4fr7/+OmazmcmTJzN9+vSwph9q4YuW4NFmOn0cPPKrVEgNt9uNz+fDYrFgMBjwer20t7fzi1/8gqtXr1JVVUVVVRWTJk36rb4n2pxt94KP+3to01zFv0JzysrKYv78+axevRqn08nrr79Oa2ur/Lzw3MfExGA2m2Vd/HjJUDru4JGX6GLxCIksMrJu3LjBnj17+PDDDykqKuKpp56ioqKCpKSkh3zF0Y2x7HQhmZOSkpg8eTJr1qxheHiYixcvcujQIUKhECUlJaMSoYxG45hlrjpG45EnuoCq3g0ODlJXV8e+ffswGo3MnTuXpUuX6rt+hECbyajmKqSkpDB37lw6Ojro6Ojg0KFDGAwGOeBCREViYmJkD321b56OsfHIE10tWIGRFsw1NTUcOnSI3t5e/uAP/oDq6mqd5BEGrfRVJXJCQgLV1dWYzWa+853vEAqFyMvLY+XKlZhMJjweDyaTSUr3aKox+G3xyK9+obqHQiGGhoa4ceMGW7du5datWzz55JMsWbKEzMxM6ajTd/+Hh7EiuWovANGdFiA1NZV58+bxxBNP4Pf7efvtt7l8+TIDAwNhCUq6un5veOSJDiOLxe/309TUxIEDB2hqaqKgoIDNmzdTVFQk/66T/OFirDCkulGLUKkge05ODk899RTTp0+nra2Nffv2UV9fH5aNqPay1zE+JozO43Q6OXnyJFu3bmXp0qVs3LhRhtGEaq/HWh8utAUvAtpJL6qZVVxczKZNm7BYLOzcuZNAIEBeXp5sJz1WW2odozEhJLrb7ebAgQOcPn2awsJCVq1axaxZs2T/MdHYQCf6w8NYjThVSaydPef3+/F4PMTGxjJ58mQWLVrE1KlTaWpqYu/evbIiTnseHWPjkSe61+vlxo0b1NTU0NfXx+rVq5k1axaJiYlAeOsnneQPF1rTaSzyq154YbcnJSVRXl7O+vXrCQaDHDx4kKamJtxud8RPgIkURCTR1d1ZffDqa4Guri6OHj1Ke3s7eXl5rFmzhrS0NPl30WlU70P28KF9BmN53sVmEBcXJz3sPp+PtLQ01q1bR0FBAS0tLZw6dYrbt2/LY1X1f7zvjmZEpI0uRhSLDDdRGGE2m+UDE7nSly9f5u2332b69OmsXbuW7Oxs+TcRehELTLSYGivdVcf9h1b6jtVvT5s7L3LZYaSVd1VVFUNDQ+zatYvk5GTy8/PlRi76+Wm1N1GwInoHiEy6aNIEIlKii6QIVe2G0QMJrl69yvnz52VteWVlZdiAA/EZcU4dDw9aEov3xiL7WK/Fc5w+fTpLly7F4/Fw/vx5zp07h9frDTtWbTqiVh0KkouKw2hCRBJdNB3w+XwYjUYSEhIwm81hc749Hg9Hjx6loaGBJUuWMH36dGw2GxDeLFL0Wxfn1aX5owPxHFUnnd1uZ9q0aSxZsoS2tjb27NlDX18fcGcOu9orQC0tVqsSdaJHALSljuLfuLg4gsEgLpcLh8PByZMn6ejoYOXKlZSUlITN+FaJLsY16VL90cNYUj8rK4uVK1cSFxfH5cuXuX37tpzUo35GHdesaofqDIBoQUTerShy0M7yFmR3Op2cPn1aDj2sqKiQTQrUAYM6Hm2obalEUwsYqWuYNm0akydPJiYmhtOnT9PW1jaqu5AakxeZkTDaVxANiEiiq0MShK2udnLp7e3l0KFDJCUlMX/+fDIzM8fMklJ3dR2PHsYiupDMIkW2qKiII0eO0NjYKImsHiegbRYabYhIoqueU6PRKO1q4XTp7Ozk5MmTlJSUUF1dHVa5BuEqutqrTNhs0WafPeoQzSWFDS6kdEVFBVOmTOHSpUs0Nzfj8XgApHfd6/VK7VCEWaNNZReIyLsWU1DE4ES159iVK1e4cOECFouFqVOnUlxcHFbjrB3NqzZtjOa+648i1OclyKva7BkZGZSUlJCSkkJrayuXLl3C7XaP0gS0I5qjcbOPSKKr1UzaQoijR49y+vRpFi9ezJQpU8JKFFU1Xaj84rNjhXd0RC7U7DgBbVjMYDCQn5/P8uXL6erq4siRI3R2dhIMBqUmJ2xzNeFKD69FELSzzEKhEIODg9LxsnHjRoqLi4HRKrs2dirwoEfx6vjtoXb0Fc/M5/Ph9Xrx+XySqBkZGTz++OMEAgGOHz9OY2MjLpcLuGO2qeSO1g0/Yle9ULnFAx0aGuLy5cv09fVhs9koLi4OG7ow1ue101SjbRd/lKFNexa2thofF62lS0pKsNvteDwe+vr6GBgYkBqdEBjaDT/aiB6RKbACqu3d09PD0aNHMRqNTJs2TZYpjgU19g6jRytHEtTkHuFTUK9bW/QBdzSYaNBO1EIXkSch7l9I/MTEREpKShgYGKC9vZ2uri5sNpt05KrraKyeddGAiFwpahMCYXM7HA6OHDmC3W5n8eLF0tMOY/cT1049jcThCqHQnfllPp8Pp9OJx+ORC9Hv90tVVSxukbMvsv3Ee6otq573UV3UqgNWfX4mkwmz2Sz9McIjv2jRIkpLSzl06BDNzc3ExsZiMpmknT40NCR/k0f5d/ltEVkr/zfQpj26XC46OzsZHBwkKytLdgT9OOeLNEkOd2aJu91uAoEARqNRDimE8BpttTWyWuwhin5UaS9eR+p93wtU21y9D+37AgUFBeTk5NDd3U1PT09YppxQ39V59tGGiCQ63NnRA4EAra2ttLW1kZKSQn5+PmlpaRPmYanSOD4+Xhb0iExAIdVUbcRoNMp0YCHttQUd0Ybk5GQyMzNJTEykr6+Pjo4OuWHGxsYSHx8flh03UdbPvSIiiS7SWIWaWl9fT2NjI5MmTaKwsJCkpKRRdeqPIgwGA/Hx8VgsFjkb3GQyhbUxFp1W1PHEqk2vVmWJcwrpFU2ENxqNZGVlUVxcTHt7O5cuXWJ4eDjsN1D70UUbIpLoqpoWExPD1atXuXbtGhUVFRQUFIya4vmoQo3vA5LQonAHRhpnmEymMLvS6/USCASkvaq+B+H2bTQhIyODyspK2tvbw8pXYeS3Fr9lNCIive6qGirmp3V2dlJaWkpmZqY85lGXWNqwkc/nCxscODQ0RE9PDzdu3GB4eFhK/Li4OAoKCiguLg7LAFM3vkiMMNxv2Gw2Zs6cyXvvvcfVq1dlSiyMSHNB8kdZOPy2iGiiBwIBenp66O/vB0ba/4oxxxPhYQnVXMR5hRdZJApduXKFHTt28MYbbzA4OAiMDDcoLi7m6aefJicnh/j4+LCyS2Hfa2PH0QCLxcLkyZMxGo309/fjdDrx+/1yXns0D3qI6Dt3u91cu3aNUChEfn4+iYmJo2LJj/JiFva0uAdRvNPW1kZNTQ3bt2/H6XTyzDPPkJycjMlkwul0sn37dt588018Ph+bNm0iOzsbg8EgQ24xMTF4PB7i4uKijvCJiYlkZ2dLTTAjI4P09PQxPfXRhIgm+uDgIJcuXcJkMlFSUhIWOxde6UiLjX8cqD3tYMQ77HA4OH78ODt27KC5uZn58+fzxS9+kczMTIxGI7dv36apqYmTJ0+ye/duKioqSElJkba6avZMBK3n4yI2NpaSkhKGh4dpbGyksLCQ1NTUsN6B0Uj2iCa60+nk0qVLWCwWZsyYEZYN9yjHiLUQ9+Hz+Th58iS//vWvuXHjBl/+8pfZsGGDDCcGg0ESEhJ49tlnMZlMnD17lhs3blBUVERubq6Mw4vU0Gi002NiYigrK6Orq4srV64wZ86cUXXp4rhoQkSLw8HBQVpaWjCbzRQUFEjVdqJ18QyFQrhcLpqamtixYwcXL16kurqahQsXkp6eLu/TYDCQkJBAdnY2cXFxdHZ2kpCQgNVqDWuXpKbQRhtiY2PJzc3FarXS3NyM0+kMazQq/CKPuiP34yJiie71enE6nQwMDJCUlCTtUIGJQnIYuZe+vj5OnDjB5cuXiY+PZ+3atRQVFQHhhBVJRENDQwwODmI2m8NMGoiOHHgt1N8oJyeHlJQUHA6HJLr2mGhDxK6IoaEh+vv7CYVC2Gy2sGy4iWiH9vT0cOjQIcxmMwsXLqSiooL4+Piw0BmMqPft7e309vYSGxsrVXUgIvP5HxTUZJj09HTS09MZGhrC5XKFRTbUqsZoQsTe7fDwMC6Xi8TERBISEiZ8AkhPTw/nz58nLy+PRYsWkZycDCCLXUTqJsCZM2fo6+tj9uzZZGdnS0ccIDvzaNNmJzq0ayM+Pp6EhAQ8Hg8ulyvM3JvI62g8ROxKGBgYoL+/n5SUFJKSksZ8OBPhgYk0356eHjo7O0lLS6OoqCjMzlbTWq9fv05tbS1+v58VK1aQk5MT9juI1NhohPo7xMfHk56ejtvtpr+/f0KEY38XRCzR+/r66OnpISMjA5vNNu4DetQfnEh3HRwclM0wte2xxP23tLRw4MABLl++jM1mY9myZWFz5rSEnyhmzb1AK6kTEhLIyclhaGiIrq6uMI0oGhGxRO/u7qa7u5usrCzsdvvDvpz7BoPBQGJiIlarFaPRKNslCaj2ZF1dHe+++y42m4358+dTVlY2avKMSJIRTRGjBVqiJyYmkpuby9DQEJ2dnaPq96MNEUn0UChEX18fvb29pKenk5ycPCE7g4h6cqPRSEZGBoWFhdy6dYszZ86ELUyXy8XWrVt5++23GRgYoKqqilWrVklJL/req51nHnVN53eFyJAbGhqiu7t7VJ/3aEPEEt3pdOJ0OkfZ6BNJJQ0EArjdboLBINnZ2SxdupTOzk727dtHXV0dzc3N3Lhxg9OnT/Pqq69y9uxZ5s6dy9NPP82CBQuA8G6p2llj0Ty4wmKxkJGRgdvtpre3N+qJHpGZcaFQCLfbjdvtJjExUcaJVak+EVIZ4+LiZLZfbm4un//853E6nezfv58//MM/lM0vfT4fy5cv53Of+xxTpkyhtLSUuLg42fxQZM2pHU4f9d/md4XJZMJms+HxeMJi6fDo+3V+G0Qk0QE5BTU+Pj6shlhbhz4RHpqosCotLeVTn/oUKSkpdHR0yG4zcXFxrF+/njlz5mC1WmX8XG0Xpf4OY7W6nujQroe4uDgSExPx+XwMDw9HtTSHCCa62vlTq4JGclfXjwO1CaYoU121ahVLlizB4/Hg8Xjw+/0YDAYyMzOlN15IJ2Gfq8U92qaa0QIt0UVzSJFXoBM9AqGdhjlW2Ejtk/aoQnQ1FeQUqnhCQgIWiyVMcxFSXEh/QJZixsfHk5mZGdZMMtohNk61h140kz0iiR4TMzIgz+12h41ZUlVStXfao0x4g8Egu8AKX4TaJUaF2Ph6e3u5cuUKJ06coL6+noyMDBYtWsSCBQtIT08P+4zWeak950QxgbQkNhgMGI3GsPlr0YyIJDqMFLUMDw+PIrqQWBPF+y5US3FvqgddDB8Qi1Q44Orq6nj77bfZvn07zc3NZGdn09jYyPDwMPPmzRuVFqtWamkdmuK9R53oWgiiR2u1mhYRSXSRximG5QkppErxiaC6BwIBPB6PHDSg5mMLdV74KNxuN16vl66uLt566y3ee+89bt68SUxMDF1dXezZs4cLFy7w+OOPs2XLFubMmSPbRwu1X91ExO8retA96tDmWahNPaKd5BChcXQVKtG1trr2vUcNYjGqITK408VVZMnFxMRgsViIi4tjYGCAixcv0tTUFDZTLj4+nvz8fG7cuMGPfvQjfvnLX9LU1ATccd6p88Xj4uKkxjARppdotRLVRo92tR0iVKILjNe2eCL0dIdw9VJIWOFF104WiY2N5fbt25w5c4ZAIEBycjJerxePx0NOTg5Lly5l/fr1NDY2UltbK2v5ly9fTk5ODqmpqaPi7aLbrCD5o+yp164RrTPuUV8rvysiluhqmaU6iFBtDjkRvMtiQQKyxXNsbKxMFPJ6vfT399Pf38+ePXt48803KS8vp7i4mIaGBm7dusXixYv5/Oc/z+LFixkaGmLWrFm89dZbvPzyy7z//vt8/etfZ968eXJzUJ2Z6vc/ytoRjL5+tUecVht81O/14yJiia4WZ4jGARD+8CYKxP2I5ghiSKJ47XK5ePvtt7ly5Qrz589n5cqV2Gw2enp66Ovro7CwkFmzZmGz2bDb7axYsYKkpCQOHz7MpUuX+N73vsfs2bNZsWJF2IBK4ZEGJly3WNEnX2iFKiba+rkXRCzRxWgi4YTSEv1RT5ZRoSYHqTPVAoEAHR0d1NTUcOjQIQoLC9myZQvTpk0jJSVFquJCLRWe+uzsbDZs2EBBQQH79+9n586dHDlyRNZlT58+nYyMDKnaTkS1NhAIMDw8TFxcHGazecKsld8WEUn0mJiR8TlmsxmXy4XX6yUxMRG4E0t/lO1JFWpykArRMPLYsWP8+Z//Oc3Nzfyf//N/WLBgQVjoLDY2FpfLxdDQEFarNUwyV1RUkJ+fz4oVK3jrrbf48MMPuXDhAlu2bGH9+vUUFhbKjWWiEEH8ln6/H5fLhdFoJCEhYUKYeb8LIvbu4+PjiY+Px+l0htVnq86ViSCNVJ+DUNnFPf7qV79i7969zJ49m9jYWH74wx9y/vz5MAeayKYTmXSiZNXj8RATE4PdbqeiooIXXniBz3/+82RmZvKTn/yEv/3bv2Xr1q04HA7pfZ8IUFtnO51OWTg0URuL3isiUqLDHdV9aGgojOhwJ7Q2UUJsatPLYDBIZ2cnly5d4ujRo/j9fn7/93+f8vJyvvOd77BkyRL+8i//kj/5kz8hNTU1rCxV3fSEJ1+ortnZ2XR2dnL48GFu3rxJT08PMTExDA8Ps3DhQjmldqLA7/dL1V3kE0QzIpLoIgfcaDRKG10g0iX4vWw+WlVdlTZDQ0OcPHmSV199FZvNxurVq6murpa2+de+9jX+7u/+ju9+97s8//zzzJ07l3nz5mGz2SgsLMRsNtPa2sr169e5du0atbW11NTUcPbsWfkdFRUVLFq0iPb2dl599VXOnTvHk08+yezZs7HZbL/1PUbCxquq7sPDwxiNRmmjRzPZI5LoMNIhJDk5GbfbjcvlIhAIyAGEaotjiBzyC9VZSFjxnjpUIRgMhs1FU/82NDTEjh07OHjwICaTibVr10oPe0xMDF/84hdZtmwZL730Ei+//DI//vGP+fGPf3xP11ZeXs6mTZv44he/yNSpU2lra6Ouro5jx45x+fJl/uEf/oEnn3yS6upqSkpKRnWWBaRfRJgHJpMpLAT6MAc8ajeZwcFBurq6sFqtYZV/cCc0G03Ej0iiGwwGkpKSSEpKYmBgAJfLJUsvRXw9EAhE5C4twmNiXrlIioE701PF/4t7gDt93Q8dOoTL5aKqqoqlS5eSm5srjwcoLS3lpZde4tvf/jYHDx7k9OnTnD17FqfTSUdHB263m+zsbPLz8ykqKmLu3LmsXr2arKyssJjypEmTyMjIICUlhYSEBI4dO8ahQ4dwOBwsWrSI+fPnk5GRAYw8D0FulcSC2B/1DNSMvweF4eFhHA4H8fHx2O32sNDlRAzRfhQikugASUlJJCQk4HA4GBwcDPOyazupRIpEF5Lc7/fjdrsZGhoiPj5eEl3kmIs6aaGl+P1+zp8/z8svv4zZbKa6uppnnnlGdngdyytut9vZsmULW7ZsGfNaDh48SDAYZMWKFWHONrH5iKaUy5Yto6ysjCVLlvCDH/yA7du309jYSCAQYOHChXJAISCTbURasggBitRa9RmpfhS1fv5+kUt7Xo/Hg8PhIDs7m8TEREwmU0StlQeNiCW63W4nOTmZCxcu0NvbO+rvkRouEaQUc8tF9ZlQ0YW6q5LinXfeYdeuXZhMJjZu3Mhjjz1GamoqPp9PlrCKxQofbar4/X7+9E//FJ/Px6lTp0Z1nxFahTAfsrKyWLx4MTabjdraWk6cOMH//b//lylTprBlyxaWL19OcnIycXFxuN1uQqEQRqMxTFPxeDxh74n0XL/fT3x8/AOPZQ8NDdHW1kZeXh42my3MFIkmSS4Q0UQX87PEaCaBSFe7RJxfrZ4aq5HGwMAAZ86cYf/+/XR1dVFdXc2qVavkzDVxLm0q8Efhxz/+sXS+vfLKK3zta1+TnxOlsOJ8QiJbrVYWLlxIZmYmNpuNPXv20NzczLZt2+ju7mbhwoWUlpaGFcKIvHwhqcfLN38Yo6Lcbjfd3d2yd1ykCoYHhYglutVqJTU1VQ4TFIsKeCRaJanOITEYUbwvwloXLlzg1Vdfpaenhzlz5vDMM8+Qk5Mjj9MOc7gXtbOvr49vfetb8vX//t//m+eee05m0qn1/YLowoFoMpmYNGkS2dnZVFZWsnPnTnbv3s2tW7doa2tj8+bNFBQUkJiYKDvYxsbGyuQm7fNJSEiQ5H9Qm7P6+7pcLjltVotIFhT3AxFL9ISEBFJSUmR2XE9PD9nZ2RFnl2uh2tMej4fY2FgpBVWpd+zYMXbt2kV7eztr165l48aNZGVlyc8Joo9l994N3/nOd2hvb5ev+/r6+Ku/+iv+9V//VToG1UUupK1aNBQfH8/06dNJSkpi0qRJ/PrXv2bXrl3U1tby6U9/mhUrVkiVWDjpVG+76gdQ70f10t8vhEIhent76enpwWw2Y7fbZValQLSRHCKY6EajkeTkZLKzsxkeHqalpYW0tDTpVIHIiNuqUJtWCvJ4vV58Ph8Wi4WYmBjcbjdnz56VHu5Vq1ZRVVXFlClTgDsearX5hlptdjeyX716lX/5l3/BbrfT19dHeno6cXFx/OAHP+DFF19kxowZ8vNqiHKsPnNxcXFMmjRJOkWPHj1KQ0MDO3bsoKmpicWLFzNjxgzprBPXqnr2hbagRkweBG7dukVnZycZGRmkpqaOGisNkbNmHhQi2nCxWq2UlJTgdru5evUqHo8HGLsBRaRA7exqMpkIhUZ61Iu/3bx5k3fffZerV69SXFzMc889R2VlZdg5hHodCATwer0yVPdR9/qnf/qn+P1+qbonJSXx7W9/G7/fz1/8xV+ElcMKG1ud8CIgCkICgQBZWVls3ryZr371q2zevJnu7m527NjBz3/+cw4fPsytW7eknS/OLTY5kYo7liZxvxAKhbh+/ToOh4Pi4mLS09NHtQuPNpJDhBPdYrFQXl6Ox+PhypUrkjAqIumhiQXt8/kYGBiQ3nK73U5MTAwXL15k165dnDp1ismTJ/Pkk0+SmZkZpqEIYqtddcSGcTey7927lx07dlBeXs4f//Efy/e/9KUvMX/+fPbt28e2bdukc0/Y1mobK3ENwWBQes/dbjd+v5+cnBzWr1/Pt7/9bZ544glu3brFv/7rv/Lyyy9TV1cny2pV73pcXBwJCQkPNJc+GAxy9epVOjs7mTJlCunp6WM6CaMNEau6A5jNZoqKiqipqeHmzZth88ggch+Y8LgDMrnn9OnT7N+/X9aUr169mmnTpsl2zyL8JrziYsa5VmUf655FOA3gpZdeCnPgxcTE8NJLL7F06VL+8i//ko0bN44q8tBmGqqeeQGLxYLFYpESMikpiZqaGs6dOydNkOXLl1NYWBi2ccXGxsoBCtrvvR8IhUK0tLTIOn0xZz7SIzX3GxFLdOHcycnJwWAw0NPTIxeMWgQijr1f+KisLvV6xHWIeLLIKGtububXv/41586dIzU1lWeffZaKigrMZnNYXFtVcT0eD2azWTZ2vFvK5smTJ2X56dq1a8P+Fhsby5IlS/jc5z7Ha6+9Rk1NDdXV1Xe9TzXzUHUkivNVVlZSXFzMlClT2Lp1K6dOnaKzsxO3283q1atJT08nPj5ebhjC9BD+lY/jiddOnRmva4yAcNz6/X6ysrJISEi45++ayIhYoosOqBkZGdjtdlpbW+UYZTF08X7b52KRiuaLqlQVsWSto0lbjXb16lXef/99jh07RkVFBU888QTl5eWYzeaw/nAqYmNjJVGEVL8b5s+fz89//vNRJFfx/e9/n0996lOsWLFi3Hi3ev3jtZcS15SUlMSyZcsoLCzk9OnT7Nq1i5/97GccPHiQ5557jkWLFpGeni7NF0FQsWndbUiHgJg2q26Aakahtrf/8PAw169fx+/3k5qaSkpKivxt1Y1Cz3WPEIgWQMLmy8nJoaWlhcuXL5OamsrkyZMfSJhNpHv6fD5cLldY51Qx5kedg6ZdPDdu3GDPnj0cOXKEqVOnUl1dzezZs+VgRa1mon7vx8kTiIuL4/nnn7/rMVarlRdeeGHc+7xXO1ZNvElMTKSsrAy73Y7VapWmyU9+8hMuXLjAihUrmDt3rvR6qw5AEdZTiQdjS2z1WsZKzhH/39fXx9mzZ4mPj6eoqEjmuANhDsNoIzlEMNFFv3GDwUBRURGtra2cPXuWoqIiSkpKwhbB/SK7muzidrvDEkKEDa1W0wlzA6C9vZ3333+fkydPYjAYWLduHYsWLZLSDSI3jfdeIQianZ3NE088QUZGBrt37+bQoUPs3buXrq4uvF4v06ZNIyMjI6xnveqZ9/l8YdlzKvHVOD/ceSZjkbWrq4vTp0+TkpLCjBkzsFqt8vuEKRLpiVb3CxG50kTsVXicS0tLKSws5PLly7S1tT2whvxigYhqOiGZRH28uhjVMNrt27c5ePAgb775Jmazma985Ssyl9zn8+HxeMIq1x5FBAIBXC5XWCRk3rx5fPWrX+Vb3/oW06dP5/Dhw3zzm9/k9ddf58aNGwBh9eFwR8p7vV6ZoaeVwuMVNGnhcDi4cuUKmZmZVFRUSM1J24ko0kKyDwIRKdFFBpWQkHl5eRQWFspJJT09PWH21/2CWFTCLhSOKqPRGEZUEY4yGAzcvHmTPXv2cPDgQebOncuKFSuYM2eO9P4CE0K6iAIdv9+P0+kkFAqRmJhIbm4uycnJxMfHU1hYyIkTJzhw4ADXr1+nurqapUuXhmUAioaW2vTZ8QgtNDjtFFmHw0FLSwuBQIDs7GxZ3is+I7TDsfwq0YCIJbrIqjIajdjtdvLy8sjOzqa7u5urV68ye/bsBzJKSEhrv98vY8Wqyi3syVAoRH9/P4cPH6ampgaPx8OmTZuYN28eiYmJYRluWhX2UYTQttTZcSImn5SUxJIlSyguLqawsJB3332Xuro6nE4nQ0NDLFq0iIKCgjDNTBQAqdmAamqu2qBDhB/VDeLq1avcvHmT3Nxc8vLywvLbVS0hWuvRI3KVCSkqcqQBMjIymD17Nl1dXdTW1uJ2ux9YlpNwCvr9foaGhsKqtoR62d/fT21tLe+++y5xcXF8+ctfZtq0aTLPWl2s8fHxYUkqjyoEuZOTk7Hb7ZjNZqnSi/DW+vXr+cY3vsFTTz1Fe3s7r7zyCj/60Y+4fv26JODw8HBY3oDo5S+erZpKK6BVxc+dO0dTUxPz5s2joKAgbN6cirup/hMZESnR4c7MNbHz2u125syZw+XLl6mrq6O3txebzXZPOeC/K9RsMbFQvF6vzC7zer3U1NTwy1/+ksTERJYuXcrChQuxWCxhkkeoqg8iceR+Q0jfscKDalaf1Wpl+vTpWK1WsrOzOXbsGBcuXOCv//qvWb16NcuXL2fq1KnSVhcVeyoR1UaX4rziuFAoREdHB/X19QwMDDB79mxpGqiRGW3zC53oEQLtJMyEhATKy8ux2Ww0NTVx9epVUlJSSE1Nva/XoXrU1VlwQgJ5vV4OHjzI/v376evr4/HHH2fp0qVkZGQwPDwsP6+O71ULSx5l6TJWIgsg02eFVDabzUyZMoXc3FwyMjJkXsHevXvluKmCggLS09NHleaO973iGKfTycWLF+np6cFms1FSUjKqLFUQXTWdog0RSXRt6yQRr87MzGTGjBk4nU5qa2vJysqSRL8fUl2VBCLMprZQ9nq9NDc38/3vf5/BwUE+85nPsGHDBnJycmTHFaGii1nvIhFGSHeR/faoQZBN/O7q+COxEYqMOIvFgtFoJDExkVWrVlFRUcHq1av52c9+xtatWzl+/Dhf+MIXWLx48ZhjnLXNMsT3A3R2dnLkyBHMZjMVFRXY7fZRZpFqNj2qm+rviogkulgoIm1SPDSz2czChQvp7e3lwIEDlJeXU15ePmYZ4r18x0dtDEICqGE2tX/ahx9+yNatW7HZbKxdu5b169eTlZUlPyOcVGJjEBqKyIV/1KWLNratTZVVn50YTGE0GsnJySEhIYG4uDiOHj3K+fPneeONNzh9+jRLly5l6dKlYVEK1RQQWpFIH25tbeXIkSMsXryYFStWSGkunpcwtdQwnTatNhoQsURX/1/kgouY+o0bN9i+fTtXr16lqamJKVOmhM0Y1z5ANaQipIPaRVbNxFKrxFQPu7AfYaSi68MPP2TPnj1cv36dp59+mscee4zCwkKAMA+xuAfhoRamiDBNJgq0Woka+hKakDBVYmNjsdlsrFy5kqysLDIzMzl69Cjnzp2ju7ubvr4+5s+fT3FxcdhmqPWWt7a2Ul9fj8vlIi8vj9LSUuLi4uRmoH5O+1o4UsW60MbaJxoikuiAlHiAfCAmk4mEhASKioooKyvj1q1bnDx5MiycoiWtmn2lSn6haooJJ+rmIBaKqkIK6eDxeGhsbOS1116jtbWVqqoq1q5dS3FxcdjmIRx1quRQG1JA5FbffdIYzzSJi4tj+vTpFBYWUlZWJtOFr1y5ws2bN3nmmWfIy8uTzkttePPs2bOcP3+eadOmUVRUFJZqqz5TEcER3ykg3v9tNMJHDRFJdDU5RUhWdbfNy8ujurqat99+m5qaGtatWyeJLj6jklVIBXVH15JS7dSqLgaxQEQX0bNnz/LDH/4Qv9/PunXr2LhxI3l5efJ4LbFVRAuxx4KqTfl8Pnw+n+xCa7FYmDt3LllZWcyZM4fdu3ezb98+6urqeOKJJ1i5ciV5eXnyuQSDQTll9tatW3z2s5+lsrISo9HI0NCQfIbi9xa+Eq1EF1EUYWpNZESkgTiWI04lu9VqZd68eaSlpXH79m1OnjxJT08PwKh4KxDmJBIq2t3sY7FIRBxftEqqra3l17/+Nbdu3WLmzJmsXbuWadOmyU0g2uy+jwPVZ6GqycLUslqtlJeXs27dOp544glmzJjB4OAgu3fv5q233uL48eM4HA5gpJVzXV0dzc3NxMfHM2vWLNlUU+RXqGm02sQkUbsgNhu1uGaiIiIlupoOqVY6qR1Li4qKWLBgAYcPH+a9994jLS2NefPmyYIYVYqrBFfNAGHTq9+rfvfw8DBJSUmEQiGam5t54403ZOOINWvWUFFRMeZ16xgNQS6z2SzzClQzRphSNpuNzZs3M3v2bI4ePcrPfvYz3njjDerq6li3bh0LFy6UjlCDwcDMmTNJS0uTqj3ccbQODQ3hcDikem6xWGTUo7u7m/j4eNlXT2iBExURSXS4M99LXQwiVxlGOp6sW7cOj8fDz372MyoqKsjLyyM/Px+4Y6eJ/1froEWITNjuwhssHrhQ68TMs3PnzvHTn/6Ua9euMXPmTJ5//nmKi4sxGAy4XC7MZvMDScf9OIg0x5LIjRealfj91fwEUfCTkJBAfn4+q1evJi8vj927d3P48GHOnTvH8uXLyc/Pp7a2lurqajZt2iRrD2JjY2Vb6+7ubk6ePMm2bdu4ePEiANnZ2WzatIlPfepTNDQ0kJSURGJiIklJSWGb/EREZK3O30Db7UR9LTykwWCQgoICZs2axf79+zl37hw5OTmS6BAeYhH/qaEaQXQ1Z1o4fMSxFy5cYM+ePZw5c4Z58+bx+OOPU15eLjUMcS3C5p/Ii+V3gXB8qqFK9TdT7XfhW8nOzsbr9WIymejp6cFoNFJfX093dzcZGRnMmDFDds+FOxGa/fv3c+bMGfr6+oiNjWXKlCmEQiGsVis3b97ktddeo6enh1mzZjFz5kz52Ucxn+FeEZGrUnWKCfVa2N5C8or+cSUlJWzcuBGHw8EHH3wQVsaq2oKC8GrzCPE9aoNENYuto6ODffv2cfz4cbKysti4cSOrVq0K2yxEh1FhVtwvSeq+9BpfWlRO+d8fvfuBPgcX3/4P/tvTi0byDNb/Pv+x+waj22qKE9/g4Mt/z++vH8lJWPT0N3ntpAPfGIf6br3Pf/z+esrLF/H0N1/jTM+9X78gtFogpNW6INxD39PTw6lTp2hubsZms8k4ucvlorq6mrKyMoxGo6x2HBwc5PLly/zoRz/ipz/9KQ6HgyeffJJ//Md/5J/+6Z/48z//c6xWKy+//DKXLl2SZp5WCExEROSdaWOw4iGIjqTCORcIBLDb7axZs4bi4mJu3rzJm2++ya1btzAYDDK8JeK4KoT6brFYwgogRGJLQ0MDr7zyCrW1tRQVFfH1r3+d+fPnh4Vs1CQaNZnjE4XPwcmXn6P6b6+SQD31XZ67HNvAj54oZcYXf4Fr1dd56aWX+NZG+MVnSpj63Bs0aNnbc4A/nzGNx/+phtxP/xMvvfRPfKX8PH+9vJBFf3uMMB63vsFnpv8jvj/8Lw4efId/WHCAT69/iXNj7QjjQDg2xWBJ1ckq0oUTExMxGAxcu3aN1157jf/6r/8C4IUXXiA/P1/2+p85cybZ2dlhlYDnzp3ju9/9Lk6nk40bN/KlL32JBQsWkJmZSXp6Ojk5OUyePJmKigrKysrCxinrzriHACFtVZVdvFarnILBIBaLhfz8fJYvX47b7ebo0aMUFRXJkU6C6OLzqgNurA6rgUCAmzdvUltby8mTJ5k0aRJr165l7ty5GI1GOVFUlQDasM0nBZ/jMN998hn2PrOH995I5lfL/+aux1/7yZf58sEt/Kr5FZ7KHEnuYd06Pr1hOesrv8hf/Go5bz8nQoEDHPi75/huwt9wuvZ/MUeEktdt4enH/gezVz/H9zZc468Xjpzn3Ot/jfknR/mzxSMpx9lPfZ+fnZrMq8f+hO+svLf7UX97lfBut1u2hga4fPky7777LocPH6awsJBZs2Zht9s5ffo0NptNlsAmJSXJc/f09HDhwgU++OADVq1aRXV1NXPmzJHNJ8Qzys7OZvr06UyePJnMzEz5eW0n3ImGiJTocOeHV4kj1GvhQFM7vCxfvpwlS5bgdrupra3l7NmzozrBCPtQzXtWs6ZEx9aamhrq6uqwWq1UVVVRVVWFyWTC4/HICaFwJ5wmtIVPeuRQ83v/Hy3/+xR7/mwOH126U8ur3/yQmd/5X3dI/hsYp/4B//mdqWz769c5J97s2MVL/z7Ai//8R3dI/hukVv8t//Wig7/5zz0M/Oa9PkcTOXb1Koyk5efQPjDAvUJNYhIqs3DAiRBlS0sL27ZtY9++fXg8Hp5++mmmTZtGU1MTN27cID8/n6qqqrB+7X6/n/r6ei5cuEAoFKKiooLKykoSExPlRiLvLTWVWbNmUV5eTlpa2rilrxMNEUl0UY8sCOn1enG73ZhMJjlvXKjOIlyWmZnJkiVLeOyxx6ivr2f79u1cvHhRzj8Tvd3UDcLv98t+ZTAy3fS9995j27Zt9PT08OKLL7Jy5UoSEhLkcRaLRar3YtMYHh4ec7jE74rC3/sx/++mAowffSg0nGZnZxlfqKoY888VVV+grH4btddGXvvOfcA2PsOWZcljHJ3Msi2fgTf3ceo3qvnsDV9j69+9fEf97znA9/8ll0/NGevz40M1y0QcOzU1ldjYWBoaGnj11VfZtWsXRUVFfOMb3yAjI4Pa2lpqa2vZsGEDjz32mJzBJzA8PMzu3bupra1l1apVLF68mMzMTJnsJLIfPR4PGRkZLFu2jClTpsioCujOuIcCbUmoag+L90RlFNxJsMnNzWXRokVMnz6dnp4etm7dSmtrKzA6Ri7eE1pCS0sLBw8epKamhoyMDNavX8/s2bOx2+1h1U8iwUKNAws1VK2wUstTx2qAcC8QufX3At/N89SyhlnTxjlgUjkL+ZCLzSMvb1w7CQuXMnUcniYXVlLmOcG13xyfXP1XvLPlLZbnlVJeXk5+5TdJ/8kP+HTO2Pem/gbq34UZ5vF4ZAlrbGws586d4+233+bo0aPMnDmTzZs3M23aNPbt28eVK1coLi5mzZo1lJWVyfPDyGbd39/PtWvX6OnpoaysjKysLKkxqC2kYCQsm5aWhtVqDZsAO9GTnSKS6GJ3VdvzqiqxdgGJf+Pj45kyZQpr164lJyeH48ePc+LECdrb22XIRiw0QVyDwUBnZycffPABe/fuBWD16tVs3rxZVlCpSTsC6jWZTCZJSrVVkfqfFp+0Tdh8sw4wETfe3pCcSBpw4tqISG+trwVjHOPKsEQ76crGAKnM+ZPdOJpPcPDgYS7fOMZfLLqzCYqog9bpqSW6MJ+EM9Tr9dLY2Mj27dupqakhISGBZ599lrlz59LS0sIHH3yAwTDSRXfGjBlYLBa5iQgPvtCoDAYDqamp0gxQ8+JFNuRYjSbV1xMVEemMU5tOCO+5eLDqQAW4U/4o7GObzcb06dPp7e2lt7eXbdu20d/fz2c/+1mSkpKkRuD3+zGZTAwNDXH8+HHee+89uru7+eM//mMWLVokHT1igWgXgbrYxirX1JJb/bwI3wGf7FyyhWXkffRRdzCriMKP+x3xKWRnj/xvMHjH4y1SSg2GkX7vglDqbxcKhWSKqnC81dXV8ctf/pKzZ89SVlbGpz/9aebNm8fhw4f5xS9+QWZmJuvXr2f58uXSZBPnhTttviwWiyyLVYdPaMOrE5nMd0NESnQYGa3T29sbprJrw1kiCUNrf6elpTF79mxWrlzJ4OAgR44c4eDBgwwODgJ3pHF7eztHjhxh+/btmM1mnnjiCRYsWEBGRsY9XaMgtqrGa1V24UPQ5nhrpcsngrtJ6LFgirs3+38cqElHIh9BqMzC/yG0FpECK/wcAB9++CHbtm3j/PnzTJ8+nc2bNzNnzhxOnTrFvn376OrqYtmyZSxcuJDk5OSwSIz4HePi4rBarXK4pdPpDDtGbTTpdrtpbm7mwoUL9Pf3T2jnmxYRSXQRRhPSG8JHBQn1W/y/iIWKhRUTE0NBQQFLly6VHWnef/99rly5gsfjIRgMMjg4yNmzZzlw4ACdnZ0sWLCAZ599VvYbUz30Hwdjqe0q4cW9qCOFPjGcbKD14xxf10TT7/B1gtCiVl84SrWJR2p402w24/P5uHLlCjt27ODcuXPk5uayefNmFi9ejNPp5J133qGhoYGKigqWLVsmO8aqpFWfTVJSEnl5eSQkJHD58mWuXbsm5/QJZ25nZyenTp3i7NmzOBwOGZGJFkSk6i7mdQlVWyyWmJgYXC5XWK66WoIopIboslpQUMDzzz/P9u3bOXr0KO+99x4+n49p06bR0NDA4cOHaWxsZNOmTVRXV0uSqzH7sXqYaaW2VnVX7b6xiH8/MrCSrBng8REY7wCfHy8wq2hEWU+0Z4A3MP7xAT8+FlJ2j7aAWkeg/g6iAlC0koIRdf2nP/2prCX/vd/7PRYsWEBXVxc7d+7k+PHjVFZW8vnPf56SkhICgQBOpzPMJBDFTbGxsRiNRlasWEFraysHDhyQEn7+/PlYLBba29upqalh165dlJSU8IUvfCHM4x4NiEiiq22JQqEQhw4d4tChQ3R3d8udWkiOkpISHnvsMaZOnYrVag3bFOLi4pg2bZrsJ37ixAlcLhfXr19n3759eL1eFi5cSFVVFUVFRfL7VU/6WBBquurYExALUJgbYx2jSvZParFlFc8mg53UN0D11DEOuHGNk5Tx6awRZb2ofBn8zRmu+2DyGPr7iBe/jL/Kvvv3CoeXarYIv4MwV8Rm7Pf72b17N7t27eLy5ctUVVWxfv16Kisr6ezsZPv27Wzfvp1Zs2axceNGysvLMRqN0kMvNhNtmXEwGGTevHkYDAZSUlJoaGjgH//xH8nJyZENQGw2G3PnzmXOnDlkZWV9rIjGREBEEl3tJBIKhRgYGODKlSvU1NQQCARITU0lNTWV4eFhbt68ydDQEE899ZRsPqDGx00mE7Nnz8btdnPx4kWOHz9OQ0MDFy5cYOrUqcTFxdHY2Ehz84h72Wq1kpiYKDWKhISEMRNhxiKp6qDTHiv+Lv79xKXJnJV8zvw37DnTwR9OzRr159YT71Kb8Sz//pvwW9b8T7GMb3L0zP/DYwu1R/s4eeiXsOHf+KgwuapNwZ3kJLU4JRQK0dPTw8WLF3n33Xe5du0a06ZN48knn6SyshKHw8GePXs4cOAAbreb9evXs2zZMklGg2GkF76a5Sj+Jn7vzMxMli9fjs1m45e//CVnzpzhxo0bBINB2WZq3bp1lJaWTuh4+XiISKI7nU4SEhJISEjAYDCwZs0aWRdut9tZuHAhs2bNoquri3379rF161Y5hic7O1uGbdxuNxaLhaSkJObOnctjjz3G22+/zbFjxygoKMDlcrFt2zZ+8pOfYDabSU1NJSMjg+LiYiZNmkROTg4lJSVyQKDYfIR9rUp2CC9y0UINpd2XhWZczmf+LIOlf/8zzj39Z1SqAst3jtf/eRcF/+1vmC/en7yBr234Ci/+5w7++083hWfe9ezh+/8ywJafVN3Viy/uKRgcGW8sCoZENprBYMBqtcqCo7feeovu7m6WLFnCV77yFbKysmhqauLQoUO88cYbmM1mnnvuOTmnzu12S9NJdbiKjVKV7iKKUVpayte//nW8Xm9Y/YLVasVqtUYlySFCiZ6QkCAfnug+kpKSgs/nY+rUqVRVVVFQUCClRFtbGw6Hg8HBQakNaCd1JCQksGHDBpKTk3n//fepq6vDaDQyY8YMOd5pYGCAgYEBhoaGOHPmDMePH8flcslii5SUFNLS0sjIyCA7O1s2NkxPT5fhovFw/xeYkSV/+gbf+OlqNv2enTf/7fdYnBuPu62GV//HZ/iffd9g/39fqHjZ8/jMv/+AVyqfZW32Nt74qzVMsYKzcR9/99yzvLn0Pzn39N0NdEE4sdmpKcUi3AWwb98+3nnnHdrb29mwYQNPPvkkRUVFHDt2jF27dnH69GkKCgpYtmwZVVVVpKWlhdn5wvaH0X331PCZ2WzGbDbLmnStI1c4eD/RkOYjgogkutYbPTw8zODgIHFxcRQUFFBaWkpMTAx9fX04nU5ycnJkooT64NWYucFgYPLkySQnJ5ORkYHNZqO9vR2TyURubi6TJ0/GbDbT0dFBS0sLra2tdHV1MTg4iNPpxOfz4Xa76e/vp6Ojg6amJmw2GzabTQ4VFIUZiYmJWK1W7Ha7nML68W3CA/yPmNX8u/btD1cTI9/8BvtD/0a1eJlazXc+/DWWzzzDkryv/OZNMxmrvsUHJ/8nKzQJ88apf8Bbx+C/f3oLU78rquKsTP/9Vzj9/c8x9S6XrC0BVlspqxNULl26xKFDh+jr62Pp0qV86lOfIi8vj+PHj7Nz506uXLlCeno669evZ8mSJbL/nqh0gzuVgqoWJfIn1EKZj2oeEU3hNC1iQhF49729vbLtD8D169c5duwY+/fvZ9OmTaxbtw6v18trr71GTU0NqampPPfcc8yfP182kRgvI81gMODz+XA4HGzdupVdu3YRHx/P008/zaZNm0hKSpLee4/HI6WA2+2mu7ubjo4OWltbaW1tpb29ne7ubvr7+3G5XMTExFBcXEx+fj7Z2dkUFhaSn59PVlYWdrsdi8UitQ0hBbXjh+7ATW97H3cpSgXM2LNTGKuHqc/ZSbcrQGxiGhnWj95k3L3t9HnAbM8m5R6aooriIpXkotjIbDbT1tbG/v37ee211zAYDKxcuZLPf/7zJCcn88EHH/CDH/yAoaEhli5dynPPPUdhYaHUilTprUpzob6L2L0Y9iB6E6g1DWr/AnF9qoTXQmT2iay6iYaIJPrAwADx8fGYTCaCwSD19fXs3LmTH/7whyQmJsqYaXl5uewyUlRUJKuVVI1Am0ml7vg3btzg6NGj7Ny5E6/Xy6xZs3j++ecpLS0FwkNjgvwul4vBwUEGBgYYHByUr51Op/TuezwehoeHGRgYoL+/n6GhIWJiRubH5eTkkJeXR3p6OpmZmeTn52O327FarTKR5HeB6hC8m4QT9wSjU0HFe2OdV/yGIktRkEt8JhgM4nA4eOeddzhw4ABOp5PNmzdTVVVFfHw8b7/9NkeOHMHv9/P444+zatUqJk+eLD8vTDa1DkE1ESC8T78q0dVIiHqt96KmT3SiR6TqLjq+ALI+vLW1lZKSEmCk0+ft27cxmUwUFxeTk5NDUlJSWEhOteHUB62+Li4ulqOVjh07xrlz5wgGg6xZs4a5c+disVjkscKDLzK01GQYMWVVqPW9vb309fXR1tZGa2srnZ2dDA8PMzw8jMPhYHh4mNbWVuLj48NUfZvNhsViISEhAavVSlJSknQifZwS2PEWtiD3WH8fi1Dqe2NFElRSiefV3t7O3r17OXXqFLGxsaxfv57FixcTCAR47733qK2tJS4ujpUrV7Ju3Tr5TEUik3r+8cKPqgovXmuvLVqdbuMhYomuhmnOnz9Pe3s7f/RHf8SUKVPo7+9n7969bNu2jfb2dnJzc6msrCQtLW1Ucoua96wtIhGhuueff56ysjJ27tzJ1q1bcTgcBAIB5s6dK9VJbU276oEXWWFiYiggJZ7f78fr9cqUXofDQVtbmzQBbty4wfDwsPTYW61W0tLSyM/Pp7CwkLy8PDIzM0lOTpb2vqr2q6aAuM/xiC6842rkQFzrWLF9UTQivk+70YipKMJ+Fr3W3333XZKTk1mzZg1r166lq6uL999/n507dzJr1izWrl3L0qVLsdvtYc9cnEvt4Tceos2Z9rsiIok+PDwsF/Tg4CD9/f3ExMRQVlZGSUmJVJFra2vp6OigsbGRnJwcWXoooM1CE+QLBoOy7a+w4WbPni3bFL3//vv88z//My+88AKrV68mNzc3rAc4MKqDaUxMjOxfJiA2CaFqFhQU4Ha76evrC1P73W43TqeTnp4eqeq7XC5Onz7NoUOH6O/vZ3BwkJSUFEpLS7Hb7aSlpZGVlUVeXh7Z2dmkpaWNundV1RVSTmgpwWBQZq2JzQpGj8NSTR71fEIzEIUkbW1t/OIXv+Do0aOyOUROTg579+7lyJEjuFwuNm7cyMqVKykvL8dqtY76LmH3j++30PHbIiKJLhbX0NAQLS0txMbGkpeXJyWA1WqloKCA+Ph4PB4Pbrd7lLQeT0qJ/xfqpvguYfMnJyfj9Xo5fvw4R44coaenhxkzZkgnmypt1IINAXWBqh1wBJksFgspKSlhue+BQACXy0VfXx89PT309fXR399Pd3c3nZ2ddHZ20tfXRygUore3l+HhYXp7e2lpaeH8+fMYjUbMZjOJiYkyEiBCkjabTbY11l6f8I6PN8xiPJtX/Ct+u5aWFt555x1OnDhBTEwM5eXl+Hw+Tp48yYkTJ/B4PMycOZMNGzZQWloatiEJj7r4XVWH273a1zo+GhFJ9Pj4eILBIP39/Vy5coWEhAQ5cA9GJH5nZyfd3d34/X5SU1OlHSugdUqJxSwkkLaeXXhuCwsLefHFF5kxYwavv/46O3bs4OzZs2zYsIFAIEBeXp5sWKCaF+q54E4a7XgqqLrJCNU/LS2NkpISqcKKDD/x+vbt21y7dk1qOQ6Hg8bGRlpaWujp6SE2dmS0tPD25+bmkpOTIyV+fHy8VMVNJhOJiYlhdfRCqqqakOrUVGsLBETN+FtvvUVKSgrz5s0jISGBmpoa6uvrSUxMZNOmTVRVVZGfnz/KhyLmnwmNKDY2Vmoa4yUf6fj4iEivu3jw169f55VXXiEvL4+qqipmzpxJbGwsNTU1/P3f/z379u1j5syZ/Nu//RuVlZVhNeRqBZVQQVXpoFZCCaIHg0HpH+jr6+PSpUucP3+ey5cv09bWRkpKCgsXLmT9+vXk5eWF2bLifCrRx2qWAR8d7wXCPOICwtb3eDy4XC6Z3CN62Q0ODtLb2ytNgM7OTnp6emQhkMViITMzk7y8PHJzc8nMzJQbQWZmppxfNx60Ts5bt27x6quvcuDAAcrKyoiJiaGnp4fbt29TWlrKggULmD17NiUlJSQnJ8tkJrVrrvjdRSGSeP53Dz1+8pjoXveIJHpDQwMNDQ2y60teXh6VlZWkpqYSDAZpaGjgwIEDTJo0iU2bNvH888+TmZmJwWCQEkuVGKqtqZVQaoGMaHQhjvF6vbS2tnLx4kXOnDnDrVu3MBqNTJ48mSlTpjBlyhQKCwvDupFCeFhuLKhdTwS0TjSxcYy30AVJxPlCoZHedd3d3TgcDjo7O2lvb5dq/9DQkHSaiRwFVeMQTTvsdnvYfzabjZSUlLB55X6/nxs3brBt2zZ27txJS0uLdIaK7LQFCxYwd+5cGQoFZP8+NTdevX/1vlXT4EFAJ/pDgCgp3bFjh5yOKdIWxfjj4uJiXnzxRVavXi0dTGLxq+ql1rbUqox+v18ueiGRRVNBEdd2u920t7dz/PhxamtruXr1KikpKUyfPp0FCxYwZcoU0tPTZdMFtQZdjWer16BKeDWNVN0gVL+CdlO4G0SJrar2e71e+vv7uX37Ng6Hg+7ubrq6umhtbeXmzZsyXJmeni6lfXp6OhkZGdLhZ7PZ8Hq9dHV1cfLkSb7//e/jcrnIzMzEZDJRWVkpu/Hm5uYSFxfH0NDQqLoA4c3XTsgRSS4iEeZB2uc60R8Curu7aWpqorW1VaqT6qjd+Ph4kpKSKC4uJjX1Tl7neETXOuPgzpRNUYAhuqOoCTZqmalIlnE4HFy9epWjR49y8eJFXC4Xc+bM4bHHHpMdY7VQw1RqkodqC6uJOermoNrN4vq1kn48zUD1G4jNx+v1MjQ0hNPpZGBgQLaA8vl8MhowNDREV1cX7e3tOBwOnE6nvH7hre/v7+fmzZtMmjSJZcuWsWzZspGmkfn5pKamSttfbDJerxefz4fZbJY99kTmm7Z9tvb+HwR0oj8EiIUhiiPgztBFuJO8onqEVUmhShCt6q7NdvP5fAQCASlFxLnGK0v1+/10d3dz8eJFLl68yPXr12WVVWpqKsXFxZSUlDBp0iTy8vJGhfe0ySji+7TXdrdFPl7Ci/Za7waxKaqkEuE+l8tFd3c33d3d3L59mytXrnDhwgUaGhro6uoiEAiQlZXFsmXLWLBgAZWVlUybNi0sxKcSWO02I6rRtJud6tNQ/SoPChOd6BHpdQ+FQiQmJoYtVm39seghJxaTWKwiZKTNiFPPLUJrojBC5KBrj1fTRNVmhJmZmWRkZLBgwQJaW1s5duwYH3zwASdOnKCgoIApU6ZQVlYmWw9brVaSk5PDClu0hBeLfaystHuRalr1/qNUfeEUU2EymUhJScHr9ZKeno7T6SQ3N1d2XgVIT08nNjaW8vJyXnzxRTlFRQuhJQhHm/CgC4ILVV01y8R1ax2ZOn53RKREv1sMVSXGWCqtOEa8N9bnxd+0EmUsfNS5/H4/vb29dHd3097eTkNDA+fPn6ehoQGXy8WkSZNYunQpq1evZtKkSb9zPvtYqaifJIaHh2lqauLUqVOcOnWKxsZGPB6PdIjOnDmTjIwMrFYrmZmZclaaaPShhhxFNCAhIUEmQIl7UDeySCD1RJfoEUn08aTxvf79YSAYDDI8PMytW7e4du0a165do62tTRa0CLs0KSmJ3NxcCgoKKCgoIDc3V4aWHvQ9O51OmY/f1tbGzZs3ZRai2hZKNOOYOnUqkyZNCosyCJNKjXmLzwv7XBS+RNoMeRU60XV8bAQCAenQqq+v58yZM9TV1eFwOGSWX2FhIQUFBWRnZ5OYmIjFYiExMVFKP+EcVJ2KIrFmPHVekEvbedXtdsv/hEqtZteJ+vvr168TCATIz89n2rRpVFRUMGXKFPLy8mTDRa0dLaS2mgWotcPVMtNI26AFdKJHOe7FVla929oYudPppLe3F5fLJQtbbt68ybVr17h69SpNTU0A2Gw22b0mMzOTzMxM0tLSwppXJCYmkpycLLu3aMtDRb58d3c3g4ODcvH29/dLiX39+nU6Ojrwer1YrVby8/OldlFaWirV8eTkZGw2m1TNheNSNJZQQ4m9vb1cvnwZs9ksm3okJiZK56a4xkhQ0ceDTvQoh7Dj1bDWWGr03ZxfQroGAgGGh4fp6uqSKnNHR0eYpBVhKLVvuSCJ6HKjesrF31UiqbawaKwocgVUldxqtZKVlSVbYmVnZ2O1WsNShtX7Uwdfqmr4zZs3+d73vkdpaSmrV68mPz9f1pILLSBSJbnARCd65BpNEQitV1tdvNp0WPV97fggm83GpEmTZIhLNKlQi1jUzjVutxu/3y8ltsfjGZVZFhsbS1JSEsnJybKJhci3T0lJITc3l9zcXLKysmTdu8lkwmw2j9m7Hu6YAtpBGep9Dw8Pc/XqVWpra2UrL/GvCJFGsiSPFuhE/wiMJ7nHk+zifXUCrCCICCkBcgS02WwmKSmJ9PR0Jk2aFCbV1cw2keAjJL02xVZsKNoadTUPX1S4mc1mGYZUw113yx8Y67cAuHTpEh9++CEGg4GkpCQZKlPbS0Fk2+fRAJ3ovyXG84ILIgppqpJEJZ9KKFX1jouLkyE4ldD3amGNRUzV/BDdccWGo6roIsFISHH1eHFfYhMZHh6mvr6exsZGqXWYzWaSk5PDsvnUBo+f+AgqHfcMnegfAW1s/qMg1HaVQKo6r76nbgpj2bH3mizzUdBmmKmecK3fQeTJqxuVNi8/FBoZqlFfX8/Q0BCpqamyBFi7San3ouPhQSf6PWCs3HE1E20sW12biy7STbVOM+1oIZUcKvnHI814G5DYXNRzCvJqJ7mq88rVTUn9HmEWxMSMdP3p6urC5/ORnp4um1yIKkBx7QbDyOy1R8UhN5GhE/0eoarBMD7x1Px7NW9ekEC7KYz1eqxw3t2yBLXZgeLYe9ESVDNCbEJqvFxsUkLt9vl8XLp0SU47TUlJoa2tjalTp5Kamjpqo1LDcJGY6BQt0In+MTEWcVSIiqzxPO/3cu7fhgy/rdovjlHtZ+2QRHH9Pp+P5uZmDh8+zPHjx+nv7ychIYHu7m5gpB2X6r1XbfxIxN3SmycadKJ/DNwreVRJej8XkfY7ftvvGktzUFV+kaHX19fHhQsXOHXqFEeOHKGurg6v14vZbKayslLG7FVzI5LtdKF5ic1pIqeU6ES/T3hQi/qT/h7RriohIUEmj4jmHx6Ph5aWFubOncvGjRsxm800NTXR1tZGWloa6enpY15PJNvnwqzw+/14PB45HWiiQSe6Dgk1zq8N0129epX6+nqsVivz589n1qxZmEwmzp8/LyW76POuqu+RHFZTr0lrbk006ClLOoA7Pe8B2VFX5Ml3dnayd+9efv7zn1NUVERlZSXx8fH4fD7Zraarq4uWlhba29vlZgGM8vxHGtQchkjcjD4pRKREn8g7a6RCNPNQE3uuXLnCe++9xwcffEBtbS1Go5EvfelLmEwmXC4XP/3pT9m5cycXLlwgGAxSWVnJ448/zpYtW8jJyQmLNmhTgx8W1MxFuNOfXpu/P9Ewce9Mx8eCmiAjJJtoFjlp0iQSEhLIysoiNzdX9p5LTk6mvLwcu91OTEwMubm5ciyWaNl9L62tHyTG0yzU/IaJiIisXovAS4oKaHPjRSNJt9stc+VF80s1F1/taW80GklOTpYVeaIZZKRJS228X5ThTlRnXEQSXcfDg+iKa7FYwsYWw/gdZlWoST9jZRBGih2spgGrff0n6hTWyNpmfwPVmaPjwSEmJiZsHJRKapGXL5pyivZRqhNLvC/OJdRhbWvrSIDqIBQtr9xuNykpKQ/5yu4PdKLrCINojy2aTMCd1tCio6vX68Xj8cguMoLoYky0ILnIjxeIBGecgKqJiNZf/f39E5bouuquQ0cUIHJ0KR06dNw36ETXoSMKoBNdh44ogE50HTqiADrRdeiIAuhE16EjCqATXYeOKIBOdB06ogA60XXoiALoRNehIwqgE12HjiiATnQdOqIAOtF16IgC6ETXoSMKoBNdh44ogE50HTqiADrRdeiIAuhE16EjCqATXYeOKIBOdB06ogA60XXoiALoRNehIwqgE12HjiiATnQdOqIAOtF16IgC6ETXoSMKoBNdh44ogE50HTqiADrRdeiIAuhE16EjCqATXYeOKIBOdB06ogA60XXoiALoRNehIwqgE12HjiiATnQdOqIA/z84k/M0x4BXyAAAAABJRU5ErkJggg==",
"path": "images_version_5/image_48.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, then the degree of angle BAC is ()
Choices:
A:50°
B:80°
C:100°
D:130°
|
Như hình vẽ, số đo góc BAC là ()
Lựa chọn:
A: 50°
B: 80°
C: 100°
D: 130°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, then the degree of angle BAC is ()
Choices:
A:50°
B:80°
C:100°
D:130°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, then the degree of angle BAC is ()
Choices:
A:50°
B:80°
C:100°
D:130°
|
As shown in the figure, then the degree of angle BAC is ()
Choices:
A:50°
B:80°
C:100°
D:130°
|
240
|
48
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAArUAAAJmCAYAAABCCnjAAADNeElEQVR4nOzdd3iUxfo38G+AhJCEkAQChBp6771IkY4o9WAXxYp6LMff8Rw9Knhsx15Q7ICiIKCiIE2Q3gm9Kr33Gnqb94+8M3tvdp7dTbIJPOT7uS4ux9mn7dMyO+WeMKWUAhERERGRi+W52gdARERERJRVLNQSERERkeuxUEtERERErsdCLRERERG5Hgu1REREROR6LNQSERERkeuxUEtERERErsdCLRERERG5Hgu1REREROR6LNQSERERkeuxUEtERERErsdCLRERERG5Hgu1REREROR6LNQSERERkeuxUEtERERErsdCLRERERG5Hgu1REREROR6LNQSERERkeuxUEtERERErsdCrcW9996LsLAwJCcnX+1DuS60adMGYWFhaNOmzdU+lKC58ZgvX76MDz/8EI0bN0ZsbCzCwsIQFhaGHj16AABmzZpl8mbNmnVVj5WA7du3m+sxfPjwq3041yR9fgYNGnS1DyVk+BxeX3bu3ImHH34YFSpUQGRkpLm2v/zyy9U+tKtm0KBB5jzktHyh2Mi8efNwww03mP+fPXs2WrVqFYpNE1GQbr/9dowdO/ZqHwYRUa6wc+dONGjQAIcPH77ah0L/X0hqar/99lu//090Lbiavx6z24IFC0yB9qabbsK0adOwevVqrFmzBh999NFVPrrcJTk5GWFhYbj33nuv9qFck9zYCkJk8+qrr+Lw4cPIly8f3nzzTSxcuBBr1qzBmjVr0K5du6t9eLlSlmtqz58/b/6YxsTE4NSpUxg7diwGDx6MAgUKZPkAyf3YxJb9pk+fDgDImzcvRo4cidjYWJ9l2rRpA6VUTh8aEdF1Sb93e/TogWefffYqHw0BIaip/fXXX3H8+HEAwIcffggAOHnyJH799desbpqIgrRnzx4AQLFixawFWiIiCi393q1cufJVPhLSslyo/eabbwAA1atXR//+/VG9enUA7IJAlJPOnz8PAAgPD7/KR0JElDtcuHABAN+715IsFWoPHjyI33//HQBw1113AQDuvPNOAMDvv/+OAwcOBNzG3r178e9//xv169dHoUKFEBERgeLFi6NWrVq4/fbbMXz4cJw8eTJTx3f58mUMHz4cnTp1QvHixREREYG4uDhUqlQJ7dq1w+uvv47169cH3M7x48fx0ksvoUaNGoiOjkZcXBxatWqF77//PqjjWLNmDR566CFUqlQJUVFRKFiwIGrUqIGnn34a27dvt64zduxY0//zzz//tC5TsWJFs8xPP/1kXaZHjx4ICwtDo0aNvPKHDx9u1t2+fTuuXLmCL774As2bN0d8fDyio6NRu3ZtvPbaazhz5kxQ39OJvz50thHg06ZNw80334zixYsjf/78KFeuHAYMGIDdu3dnav/6u7788ssmT+9T/nO6FkDaL/J//OMfqFixIgoUKIDChQujU6dOmDx5clDHcOzYMbz66qto1qwZihQpgvz586NEiRLo3r07fv7550x9L/k99I/LHTt2+HwvLdhR1zt27MAjjzyC5ORkREZGokSJEujRowdmzpwJwH/f5IyM6PfX9zT9/Xn+/Hl88MEHaNq0KYoUKeI4Iv7SpUv4+uuv0bVrV5QoUQL58+dHkSJF0KpVK3zwwQc4d+6c32PKCn2f79ixA0DaD/701yJQP9Ks3vtLlizBgw8+iMqVKyMmJgbR0dGoWrUqHnvsMWzatMlxvZx4H+ioMrNnzwaQNqA4/fkJFHFm6dKluP3221GqVCnkz58fJUuWxN13340NGzYEdQx//vknnnjiCdSoUQOFChVCgQIFUL58edx3331Yvnx5pr5XemfPnsVrr72GOnXqIDo6GoULF0aLFi3w5Zdf4sqVK0FvRymFH3/8Eb1790bp0qURGRmJ+Ph4NG7cGK+88oppIfUnK88y4Bt9YsaMGfjb3/6G0qVLIzw83PF6ZfY+lHLiWl25cgXfffcdunbtasoIiYmJaNu2LYYMGWIKrZJ8VrSXX37Z6z7OaH/6CxcuYMKECXj88cfRqFEjxMfHIzw8HIULF0aTJk0waNCggIPR0r9PN27ciAcffBDJycnInz8/ihUrhp49e2LRokUBj+fixYv48MMP0ahRIxQsWBBxcXFo2LAh3n//fVy4cCFkkVuy5X2tsuC9995TAFRYWJjasWOHUkqp7du3q7CwMAVAvfvuu37XnzNnjoqNjVUA/P6bMGFCho8tNTVV3XDDDQG33bt3b591+/XrpwCosmXLqg0bNqjk5GTH9R977DG/x/H666+rPHnyOK6fP39+9c033/isd/DgQbPMp59+6vP57t27Ax7HlStXVEJCggKgnnnmGa/Phg0bZtZdu3atuvHGGx2PsXHjxurUqVOBTrmj1q1bKwCqdevWPp9t27bN7GfYsGHqX//6l+NxJCYmqvXr12d4//K7+vu3bds26zHPnTtXFS5c2HG9t99+2+/+J06cqOLi4vzu+6abblKpqakZ/m7BfC9t5syZJm/mzJnW7f3+++8qOjraup2wsDD12muvqYEDB/psW0t/Pf0pW7asAqD69evn85m8ZkuXLlV169b1OZ6BAwd6rbN582ZVvXp1v+eiUqVK6q+//gp0WjNF3zP+/slnIJT3/sWLF9WAAQP87js8PFx98cUX1vVz4n2g36v+/pUtW9ZrHXmtBw8erPLly2ddLyoqSs2ePdvv/v/73/86rq/v75deeinD30vas2ePqlq1quM+OnfurKZOnRrwOTx48KBq0aKF33NVrFgxtWjRIsdjyeqzrJT3+X/++ecDXq+s3odaTlyrI0eOBDzH1apVU9u3b/daL5i/J7Z3mj/BPBuFCxdW8+bNc9yGfJ/+9NNPKioqyrqdvHnzqh9++MFxO8eOHVONGzf2+/yvWLHC692VXqD7Sqnse19nqVBbp04dBUC1atXKK18XJuvUqeO47rlz51SJEiUUAFWwYEH17LPPqsmTJ6tly5apRYsWqdGjR6unnnpKlS5dOlOF2meeecacmG7duqlRo0ap+fPnq2XLlqkpU6aoN998U91www2qT58+PuvqGywxMVFVqlRJFSxYUL3wwgtq1qxZKiUlRX355ZeqVKlSZvtTpkyxHsMnn3xilklMTFTvvPOOWrhwoZo3b54aNGiQeeGEhYWpiRMn+qxfrVo1BUDdeuutPp+NGDHC6+LXqFHDZxl546U/h/LBbN68ucqTJ4/q16+fmjhxolq2bJkaN26catasmVnm3//+d7Cn3kewhdrmzZub5UaOHKlSUlLU9OnT1T333GOWadq0aYb3f+zYMbVmzRqvl+2aNWt8/l24cMHnmCtXrqyKFCmiihYtqv73v/+pefPmqSVLlqj33nvPFFTz5cun1q5da93377//rvLmzasAqOTkZPXmm2+qWbNmqeXLl6sJEyaou+66yxxTr169Mvzd9LF3795dAVAlSpTw+V5aoELtpk2bzIswb9686rHHHlN//PGHWrp0qRo2bJh5AckXXnrZUaitXbu2CgsLU/fcc4/X/Tlp0iSz/N69e1WxYsXM++SZZ55RkydPVsuXL1czZ85Uzz33nPlu5cuXV8ePHw/6HAdr69atas2aNea91r17d59rsXXrVrN8KO99uVyXLl3Ud999p5YsWaKWLl2qvvzyS1WjRg3z+fjx433Wz4n3we7du9WaNWtUw4YNFQDVsGFDn/Pz559/eq0jv3tYWJiqU6eOGjp0qFq6dKmaM2eOevrpp02lQZkyZdT58+et+37xxRe9vt9XX32lFi5cqFJSUtT333/v9d0++uijDH83pdIKdPXq1TPb6dixoxo3bpxKSUlRP//8s2rfvr0CoBo1auT3OTx16pR590dERKiHH35Y/frrr2r58uVq7ty56rXXXjM/suPj430KXUqF5lmW57927doKgKpVq5YaOnSoWrJkiZo9e7b68MMPvZbP6n2oVM5cq0uXLnltp3Xr1mrs2LEqJSVFjR8/XvXo0cN8VqFCBa8KB/33ZM2aNWaZAQMGeN3Hu3fvztDx3Hnnnap8+fLqmWeeUaNHj1YLFy5US5cuVT/++KN65JFHVEREhClHHDhwwLoN/T6tV6+eioyMVOXKlVMff/yxWrRokVq4cKEaNGiQioyMVABUbGysOnjwoHU7nTp1Mt+rWbNmatSoUSolJUVNnjxZ3XnnnQqAatKkSZYKtdn5vs50oXb16tXmoNP/6vr888/NZ6tXr7au/8cffzgWuKSLFy+qEydOZPj4SpcurQBYC63SkSNHfPLkr6a4uDhrgWXTpk3mBrnlllt8Pj948KC5KCVKlFA7d+70WWb58uWmYFuyZEmvQpVSyhTCihcv7rPu/fffb/atC8bpb9L3339fAVB58uRRx44d8/os/a/NESNG+Ozj3LlzqmbNmgpI+5V48eJFn2WCEWyhFoB68MEH1ZUrV3yWe+CBB8wyy5cvz9RxBPPrMf0xA2m1EbaX1Ny5c02rxBNPPOHz+alTp8yD27FjR3X69Gnrvr744guzr+nTp2f8iynv1gUngQq1+l4CoMaOHevz+enTp31+waeXHYVaAOrrr7/2u61u3bopAKp06dJqy5Yt1mXk8/bCCy/43V5W+PteUqju/R9//NF8/uWXX1r3dfbsWVP7mpyc7PMsXyvvg/TkMXXt2tVaaH311VfNMj///LPP50uWLDEFX6frfvnyZfMDs2DBgj7vy2B89NFH5jgeeugh6zL9+/f3+k625/Dxxx9XAFShQoXU0qVLrdvZvn27SkpKUgDUXXfd5fN5KJ5lpbzPf7t27dS5c+ccv38o7sOculYff/yxOdZ77rnH+tzJmulnn33Wuh39efpWo4zavHmz9Ri01atXq5iYGL/nRb93AKgGDRpYC4LfffedWea9997z+fznn382n3fv3l1dunTJZ5l33nnH677ITKE2O9/XmS7U6prQ/Pnz+9xUx44dU/nz51eAb7O39v3335svnZlCayDh4eEKgM8vyWDIQq2/X4K33XabAtJ+Laf35ptvmm2MGjXKcRvyhTxmzBivz3744Qfz2YYNG7w+q1ixonlhlS9f3vry0r8269ev77Nf+UfMXw3hZ599ZpZbtWqV43L+BFuoTUpKcnxpbty40SyXmWuqVOYLtU41Ckop1bRpUwWk/TpOb/DgwQqAioyMdPx1rek/MHfeeWfgL2KR1ULt7t27zR+Tnj17Om5j5cqVOV6ovfHGG/1uR9aY/Prrr36XffbZZxWQ9kMzu2SmUJuVe79BgwYBr5tSSq1fv95sZ9q0aV6fXSvvg/T0vvw9QydPnjQ1WU8//bTP57179zZ/6P0VHOTfLadCmT+6drVYsWKOP2BTU1NVYmKi43N46NAhU1kS6D03ZMgQBaQ158v9hepZVspz/vPkyePVPcsmFPdhTl+rIkWKqJMnT1qXuXTpkulKEh8fb30+Q1WoDcZTTz2lAKiaNWtaP5eFWqdn88qVK6YlyXaddC1tZGSk2r9/v+M26tevn+lCbXa/rzM1UOzy5csYOXIkgLRA73FxcV6fx8XFoWvXrgCAkSNH4vLlyz7bSEpKMulhw4Zl5jD80tsfPXp0pgc2hIWF4Y477nD8vEGDBgDSBgGl77Sv49fFxcWhd+/ejtt44IEHfNbR5KASObBnz5492Lx5M8LCwtC6dWuznFxGKYU5c+YAAFq3bu24f8AzuM9Gf0cA2Lp1q9/tZFWfPn2QP39+62dVqlRBTExMjhyHFBcXh5tuusnxc31+bMekw9q1bt0aRYsW9bsfPQPfwoULM3uoWTJr1iwziKVfv36Oy9WpUwd16tTJqcMC4P/+BDznOSoqyu+1Ajznee/evdi1a1doDjAEMnvv79mzB8uWLQMA9O3b1+8+qlWrhiJFigDwf59dK+8DqUOHDo7PUMGCBVGpUiXrMV28eNEM5uzTp4/fiVfi4uJQq1YtABl/Dvfu3WsGq/Xt2xdRUVHW5WJiYvxep6lTp5rBMYGup76XL168aO4BIHue5RYtWvgdxBeK+/BqXauCBQtal8ubNy/uu+8+AGl/40M1OC0Yx44dw5YtW7Bu3TqsXbsWa9euNeWs9evX4+LFi47r1qpVC7Vr17Z+FhYWhnr16gHwfVYuXbpkygydO3dGsWLFHLdx9913Z/QrGdn9vs5Uofb333/Hvn37AHiiHqSn8/ft2+dTWAOAli1bonz58gCAp556Co0bN8Ybb7yBBQsWWEccZpR+mBcsWIBy5crh8ccfx7hx43Do0KGgt1GkSBEULlzY8fOEhASTTk1N9fps7dq1AIB69er5DfdRrFgx87LQ68jPqlSpAsC7wKrT1atXR2JiorVQu3r1ahw9ehSAd+HYpmrVqo6f+fuOoebvOAAgPj4+R45DqlSpEvLkcX5M9PmxHVNKSgqAtD9UtmgL8t8777wDANi/f382fIvA5L0nCy42DRs2zO7D8eL0gtb0eT5z5gzy5cvn9zx369bNrHe1zrVNZu99/d2BtGmSA91negS1v+9+rbwPpEDnx+k5XL9+vanUeO655wKeH30+M3pvrFmzxqTTR5pJr3Hjxo6fyeuZlJTk91hr1qxplpXHmx3PcrDPIJD5+zCnrpU8P02aNPG7rPw8/d/nUFuzZg369++PpKQkJCQkoGLFiqhZsyZq1aqFWrVqmQgUV65cwbFjxxy3k9lnZcuWLTh79iyA7P0bkN3v60wVanUMWn+1WLIG1xazNjw8HBMmTEC1atUApIVqef7559GiRQvExcWhS5cujrW8wXjxxRfRv39/hIWF4eDBg/jkk0/Qq1cvFCtWDLVq1cLAgQMDhhxz+rWtycJO+uPUBUqnXztS8eLFvdaRdIFUh8EBPIVX/Vnbtm0BpL0UdKFdL5MnTx7ccMMNfvfv73v6+46hFuz5zu7jkII9pvShei5evBhUyJ30sho+LbPkSzJQrXJiYmJ2H44XXaBzcvDgwUxt92qda5vM3vvZ8d2vlfeBdC2dH5uMPD/+/iaE4niz41nOiWcwp66V/Dsb6O+z/tucfr1Q+/rrr1G/fn0MGzYsqMKbLnzaZPZZyam/Adl9nTM8Ta6cLez48eOOTWbSL7/8gtTUVJ9q/urVq2PNmjWYMGECJkyYgNmzZ5tfC1OmTMGUKVPw3nvvYdKkSQFPcnrh4eH4+uuv8cwzz2DUqFGYMWMGUlJScOHCBVOd/9577+G7775D9+7dM7TtjPDXhKIpP1OXtm7dGp9//jn279+PjRs3omrVqqaAqwu1pUqVQvny5bF161bMnj0bffr0McvUrl074AuJQk++MPr27YsXX3zxKh6Nu+XNm9fv5/pclytXDuPHjw96u+XKlcvScV0L5H32/fffB6xR03LLO0Gen7fffhudO3cOar3o6OgM7Ue+wwO98/297/XxRkREeHUpCKRUqVJBL5sZwT6DQObvw5y6VlJWrlWobNy4EY888gguXbqEokWL4p///CduvPFGJCcno2DBgqald+jQobj//vtz7LiyS3a/rzNcqB0zZozfXwk2Z86cwY8//mj6p0h58+ZFjx490KNHDwBp3RUmT56MIUOGYNmyZVi2bBkefvhhjBs3LqOHCiCt4PzKK6/glVdewdmzZzF//nyMHDkS3377LU6dOoXbb78dW7Zs8erjGwoJCQnYt29fUL+6dI2xbNrT0verjY2NxaZNm0x/Wrnc1q1bMWvWLPTu3Tvo/rSUPSIjIxEVFYUzZ87g+PHjXk2F1yL5x+XgwYN+/0j668Ija/ICBZo/ffp0Bo7Qme4idODAAVStWhX58mX4teZasntU+iZp8j4/Fy9ezLbzI9/dgVoA/dVU6eO9cOECChcunKm/S6F6ljMiFPfh1bhWgf4+y2tp+/scCsOHD8elS5eQN29ezJo1y7Rep+evy0EopL9v/MnKfZPd7+sMdz/QXQmSkpIwatSogP/KlCnjtV4gSUlJ6N+/PxYuXIj69esDAH777bcMF6RtChQogPbt22Po0KF4++23AaRV4//2229Z3nZ6+oFcsWKF307dBw8eNDMQ2R7ipKQkMwhi1qxZPv1pNdmvds2aNThy5IhXPgVXax5KukP+/Pnzr6mmbpsaNWqYtOwfZ+Pvc9ka4+8lfOTIkYAz5ARLn+czZ85g/vz5IdlmVuTkfaa/OwAzu+O1LifPT40aNRAREQEge8+PHrQEpHWl88ff56G4nqF6ljMiVMedE9dK/p1dvHix32WXLFliXS+U1q1bByBt4J5TgRYI3bVyUqFCBURGRga1r6wcS3a/rzNUqN22bRvmzZsHAOjduzduu+22gP/+9re/AUjrE7pz586g9xUeHm5qGS9dupSp/on+tGvXzqRD9cdVat++PYC0LhpOU9gCaX1pdFOCXic92a82fX9aTfarHTt2LIC0Px6B+tPmJvqBBYDz589n+/5uueUWAGk1kp988km27y8r2rZta2pZ/f0AXbVqFVatWuX4eXx8vOlL7+/FN2rUqMwdqIXsPvTWW2+FbLuZpe+znLjHKlasiOrVqwMAfvjhhwy9Y6+WnDw/UVFR5l0/a9Ysr0JKKJUoUcIUSMaOHetYCXP69GmMGTPGcTtdunQxzc3vv/8+Ll26lOFjCdWznBGhuA+v1rVyGvB4+fJlMwVsfHy8qWQLNX2N/VV87N+/33T7zC758uUz0QamTp3q2OKglMKIESMyvZ/sfl9nqFA7YsQIUwDr06dPUOvo5dKfiLlz52Lz5s2O6124cMH0C42JiclQx+SjR49i/PjxfvudyF+C2dG37r777jMdtp955hlrOIpVq1bh9ddfBwCULFnSdMFITxfu9+/fb16I6Qu1ul+tUgqDBw8GkFZ74C96Q24jm/K2bNmS7ft75JFHTOiaF1980YSrcTJ//nzTbSSnlSxZ0gz6HDduHH788UefZc6ePYuHHnoo4Lb0i/HXX3+1nucNGzbgpZdeyuIRezRq1AgdO3YEAEyaNAkDBw70u/z27dsdC9V61K2/8EWB6PssJ+4xAHjhhRcAAOfOnUOvXr38Ng2eP38eQ4YMydyc6iGiz8/WrVtzpG/gf/7zH1M7fNttt/m9Ljpc5e7duzO8nwEDBgBIe08/88wz1mWefvppv027JUuWNN30Vq1ahYcffthvwfbgwYP46quvfLYRqmc5I0JxH+bUtXrssccApDWj//3vf7fehy+//DLWr18PAHjwwQeDGj+UGbol9q+//sKiRYt8Pj9z5gzuuOOOkLRWB/Lwww8DSLuGDz/8sHUw6HvvvZel8GahfF9bBR3RVnkC/hctWlRdvnw5qHWuXLlippStUqWKyR84cKDKkyePat26tXrrrbfUlClT1LJly9S8efPU0KFDvWY7eeqppzJymCaoeXJysvrHP/6hRo8erRYtWqRSUlLUhAkT1EMPPWSCU5cqVcpnHvNgAtkr5R2w3BaYWk6TW7RoUfXee++pRYsWqfnz56uXX37ZzBDiNE2utnv3bq8g2bbZw5Tyna3m73//e6aPXctIMH0nwU6+kJVg/cHYtGmT2VfHjh3V7Nmz1V9//aU2bdqkNm3a5DW7TbAB4gNN6DBt2jQzh3mePHnU3/72N/XDDz+opUuXqqVLl6rx48ergQMHmmkoBw8enKnvFooZxdJPrfn444+rGTNmqJSUFDV8+HAztaac5tNmypQp5vNSpUqpr776Si1btkzNnj1bvfjiiyo2NlZVrFjRBKEPNPlCoKDvSim1Z88eM8MSkDaN4+eff64WLFigli9frqZNm6beffdd1aFDB5U3b17Vu3dv63b0+oGefX/+85//mO288cYbauXKleYekzPThfLelxPGFClSRP3nP/9Rv//+u1qxYoWaN2+e+uabb9QDDzygEhISFACvaT+Vytn3wZdffun1bk9JSTHnJ/2Ur3q5QMHtAz2v8jmNiYlRTz75pJo4caJavny5WrhwoRo1apR64oknTGB6Ob10sNJPk9u5c2f1yy+/qGXLlqlffvlFdezY0ef5sT2HqampZuY2AKp69erqgw8+UHPnzlUrVqxQM2fOVB9//LHq0aOHioiIUA0aNPDZRqie5WDPv5bV+1CpnLlW6afJbdOmjRo7dqxatmyZ+u2331SvXr3MZ+mnyc3K+bFZsmSJ2U58fLx644031OzZs9XixYvVkCFDVKVKlRQA1aJFC7/PaLB/HwP9rdD3KZA2Te7o0aPVsmXL1JQpU8xMbrJ8Nnz4cJ9tBPq7GKr3tU3Qhdp58+aZA3j44YeD3oFSSj3xxBNm3UWLFimlvL+0v3+9evVSZ8+ezdD+0k8/6fSvZMmS1mknQ1WoVUqp1157zRSgbf/y58+vvvnmm4DfqUKFCmadGjVqWJf59ttvvbb9008/ZenYlbq+CrVKKdW3b1/HayHPQ6gKtUqlTQldvHjxoO7JYO4Fm1AUapVS6vfffzdTE9r+DRw40MzNHhkZ6bgv+cyn/1e6dGm1bt26oGcUC6ZQq1Ta1KHyj7S/f/fdd5/P+mfOnDGf22bhC9bu3bvNH+30/+T9FMp7/9KlS+rZZ59VefPmDfjdo6Oj1ZkzZ7zWz8n3QWpqqpkFMf2/9PevvO/8CeZ5ff/9980sVP7+RUREqE2bNmXqu+3Zs0dVqVLFcdsdO3ZUU6dODfgcHjlyRHXu3Dmoe7lt27bWbYTiWQ72/GtZvQ+1nLhWR44c8Soo2v5Vq1bN54eWlNHz4+Tll1/2exzPPPNMwGc0VIXaY8eO+UyhLP/Vq1dPpaSkmP//4YcffLYRzN/FrL6vnQTd/UD2zfE3Q5aNXF5v59lnn8WkSZPw9NNPo2nTpihTpgwiIyMRGRmJ5ORk3HrrrZg4cSJ++uknr76QwShbtixWrlyJt99+G126dEGVKlUQFxeHfPnyoUiRImjdujXeeecdbNiwwauDe3Z4/vnnsWLFCjz44IOoUKECChQogOjoaFSrVg1PPvkkNm7ciHvuuSfgdmR3A6fBX7pfLZDWjKqbgcnju+++w1tvvYXGjRujUKFCfidWCJUbb7wRW7Zswccff4zOnTsjKSkJERERiIyMROnSpdGxY0e89tprQd8L2alDhw5Yu3YtHn74YZQtWxYREREoVqwYbrrpJkyZMgWDBg3CyZMnAQCFChVy3M6HH36IkSNHolWrVoiNjUWBAgVQpUoV/Pvf/8aKFStM/7tQKlu2LBYvXoxx48bhtttuQ7ly5RAVFYXw8HAkJiaiefPmeOaZZzB79mx8/fXXPuvLmYmefvrpTB9HyZIlsWTJEtx///2oWLFiht9fmZE3b168+eabWL9+PZ555hnUq1cP8fHxyJs3LwoWLIgaNWrgzjvvxDfffIN9+/ahQIEC2X5MTmJiYrBgwQI8+eSTqFatWsC4mqHy1FNPYcuWLXjxxRfRtGlTFClSBPny5UN0dDQqV66M3r1747PPPsOePXtQsWLFTO2jRIkSWLFiBV599VXUrFkTBQoUQFxcHJo2bYohQ4Zg8uTJZjCUPwkJCZg8eTL++OMP3HfffahUqRJiYmKQL18+JCQkoFGjRnjssccwadIkTJs2zbqNUD3LGRGq+zAnrlVCQgLmzJmDESNGmBm0wsPDUbhwYbRp0wYff/wxVq5cibJly2bllATlpZdewsSJE9GxY0fEx8cjIiICpUqVQq9evfD777+byXlyQlxcHObNm4cPPvgADRo0QExMDAoWLIi6deuaCbJkiLfM3jtZfV87CVPKxQHPiCjHtW/fHn/88QdatmyJuXPnXu3DCZlBgwbh5ZdfRqVKlbBhw4aAsTmJ3O56fZYpe3333XdmqtzNmzejQoUKV/mIPLK/moqIrht79+41g9maNm16lY8mtPTA1Oeff54FWrruXc/PMmUvPXArMTER5cuXv8pH442FWiIy/EUkOXv2LO69914Td/lqd5UIpQsXLmDx4sUoV64c7rrrrqt9OERZllufZcqaPXv2+I208PXXX2PSpEkA0u6bnI7/Hgi7HxCR0aZNG5w+fRp9+/ZFgwYNkJCQgNTUVKSkpGDIkCHmD+X999/vE0qIiK4dfJYpM4YPH45nn30Wt912G9q0aYOyZcviypUr2LJlC0aPHo1ffvkFAFCsWDGsXbvWhK28VuSe+SSJKCgpKSl+J07o2bOniYVMRNcuPsuUGYcOHcLgwYMd742kpCRMnDjxmivQAqypJSJh+fLlGDduHGbMmIHdu3fj0KFDUEqhaNGiaNq0Ke655x4T2J2Irl18likzDh8+jB9//BFTpkzBhg0bcOjQIaSmpiIuLg7VqlXDzTffjEceecRrSvRrCQu1REREROR6HChGRERERK7HQi0RERERuR4LtURERETkeizUEhEREZHrsVCbBWFhYQgLC8OgQYOu6nF88803CAsLQ40aNXDlyhWvz5YsWYKwsDAkJCTgyJEjV+kIiYiIiLJXhgu1s2bNMoU527+YmBhUrlwZ/fr1w6xZszJ8QLt27ULevHnN9r799tsMbwMAlFKYMGECHnnkEdSqVQtFixZFeHg4EhISUKtWLfTv3x+//PKLmVHFrU6fPo3nnnsOAPDiiy8iTx7vS9q4cWN06tQJx44du+qFbyIiIqLsEvKa2tOnT2PTpk349ttv0bZtW9x///24fPly0OuPGDHCq7YxM4XaefPmoV69erjlllvw+eefY+3atTh06BAuXbqEY8eOYe3atRg2bBh69uyJ5ORkDB8+PMP7uFZ89NFH2LdvH6pVq4a+fftal3nppZcAAF988QV27NiRk4dHRERElCMyHKd21qxZaNu2LQBgwIABePTRR81nSikcPXoUCxcuxPvvv4+DBw8CSCtUvfzyy0Ftv1q1ati4cSNiYmJw6tQp5MmTBzt27ECpUqWCWn/EiBG4//77TQ1skyZN0Lt3b9StWxeFCxfGiRMnsGXLFkyaNAkTJ07EhQsXUKhQIRw/fjwDZ+HacPbsWZQuXRpHjhzBF198gQcffNBx2WbNmmHRokV49NFH8cknn+TgURIRERHlAJVBM2fOVAAUADVw4EDH5datW6cKFCigAKjY2Fh14cKFgNtevHix2fbnn3+u8uXLpwCoN954I+hjy5s3rwKgoqKi1OjRo/0uv23bNtW3b19VqFChoLZ/rfniiy8UAJU/f3517Ngxv8t+9NFHCoCKjo4OuCwRERGR22TbQLHq1aubKfhOnjyJDRs2BFznm2++AQDEx8fj3nvvRYcOHQAE1wXh7NmzuPPOO3H58mXkyZMHEyZMcGyO15KTkzF69Gh8+OGHAbd/Lfr6668BADfddBPi4uL8LnvrrbciX758OH36NEaPHp0DR0dERESUc7I1+kFycrJJnzt3zu+yFy5cMIWtv/3tb4iIiMBdd90FANiwYQNSUlL8rj906FDs3bsXQFq3iBtvvDHo4+zXr1/Qy0qBoh8cP34cr732Gpo1a4b4+HiEh4cjMTER1atXR8+ePfHpp5+aLhoZtWPHDixevBgA0Lt374DLFy1aFC1btgQAFmqJiIjoupMvOze+fft2ky5TpozfZSdOnGhCTunCbI8ePUzf2m+//RYNGzZ0XH/YsGEA0gqaTz31VNYOPAQ2bNiA9u3bm4K2dvjwYRw+fBgbNmzAL7/8gsuXL+Pxxx/P8PZlZImmTZsGtU7Tpk0xa9YsLFy4EBcuXEBERESG90tERER0Lcq2mtqNGzdi4sSJAIBGjRqhePHifpfXXQ+Sk5NNjWJUVBR69uwJAPjhhx8cw2+dPHkSK1euBABUqVIFFStWDMVXyJK7774be/fuRXh4OB599FFMmDABS5cuxeLFizFu3Dg899xzqFy5cqa3P3fuXABAQkICypcvH9Q6jRs3BpBWa7506dJM75uIiIjoWpOlmtqDBw9i7dq15v+VUjh+/LiJfnD27FnExsbigw8+8LudI0eOYNKkSQCAO+64A2FhYeazu+66CyNGjMChQ4cwefJk3HLLLT7rr1271oQNq1+/fla+Ukhs3boVy5YtAwC899571prYHj164LXXXst01IUFCxYAAOrVqxf0Og0aNPBav0WLFpnaNxEREdG1JkuF2k8//RSffvqp9bM8efLg4YcfxlNPPYWqVav63c6oUaNMLazueqC1a9cOSUlJ2LdvH7799ltrofbw4cMmXaxYsYx+jZDbv3+/Sbdq1cpxubCwMMTHx2dqH7t37waQ1lc2WPLc6PWJiIiIrgfZ1v3gypUrGDNmDL766itcuHDB77I6ukH9+vVRrVo1r8/y5s2L2267DQDw22+/WWs2U1NTTTo6OjqLR551SUlJJp0dEzucP3/efOeMFIrz58+PAgUKAAAOHToU8uMiIiIiulqyVKgdOHAglFJe/86cOYPVq1fjn//8J1JTU/Huu++iY8eOOHv2rHUbGzduNP0709fSajr//Pnz1pH7BQsWNOnTp09n5SuFRLly5XDDDTcAAN5//33UqFEDL730EmbMmIEzZ85keftHjx416YzW9Orl9aA8IiIioutByGtqCxQogFq1auGtt97CkCFDAACzZ8/GG2+8YV1eDxDLmzcvbr/9dusy9evXR/Xq1QHYY9YWKVLEpA8cOJCl4w+VUaNGoVmzZgCA9evX45VXXkG7du0QFxeH1q1b47PPPgsY5sxJZGSkSTv9WHCil9c1tkRERETXg2yNU3v//fcjISEBgGeiAOnKlSv4/vvvAQCXL19GUlKSif2a/t/69esBpA1w2rx5s9d2atasibx58wIAli9fnp1fKWglS5bEggULMH36dDz66KOoUaMGwsLCcPHiRcyZMwcDBgxAzZo18ddff2V423FxcciXL607tKy1DeTKlSs4ceIEACAxMTHD+yUiIiK6VmVroTZPnjyoVKkSAGDv3r0+BbAZM2Zg165dGd7uiBEjvP4/NjYWdevWBQD8+eefPoXeq6ldu3b45JNPsHbtWhw6dAg//PCDmRhiy5YtuPXWWzO8zbCwMFM7fezYsaDXO3HiBK5cuQKAhVoiIiK6vmTr5AsAcOnSJZNOH2dWdyXInz8/hg4dijx5/Jex33nnHSxbtgwjRozAoEGDvEJ/3XfffVi2bBmUUvjoo4/w0UcfhfBbhEbhwoVx66234tZbb0X37t0xfvx4rFy5Eps2bTKF/2DVqlUL+/fvz1BNr1y2Vq1aGdofERER0bUsWwu1Z86cMd0GIiMjvfq+nj59Gj///DMAoEOHDrjjjjsCbu/w4cNYtmwZtm3bhnnz5pnBWEBaofbVV1/F/v378cknn6B3795o3bp1UMf57bff4p577snIV8uydu3aYfz48QDSvldGC7U33HADpk2bhj///BOpqaleg+WcyAkX5LkjIiIicrts7X4wcOBAMzCpU6dOpt8rAPz0008mUkGfPn2C2l6vXr1M7Wz6AWNRUVH47rvvkCdPHly5cgU33XQTfvrpJ7/b27lzJ2677TY88cQTQX+nYKxcudLMcGajlML06dMBpHUlSE5OzvA+dKH0ypUrSElJCWqdJUuWAEibta1UqVIZ3icRERHRtSqkM4oBaVOwbtq0Cd9++y2mTJkCIK2W9pVXXvFaTkc9CA8Pt06oYFOiRAk0a9YMCxYswNixYzF48GCvSADt2rXDV199hYcffhinT59Gnz590LRpU/Tp0wd169ZFQkICTpw4ga1bt2LKlCkYP348zp8/j0KFCmXlNPhYuXIl7rvvPjRq1Ag333wz6tevj+LFi+PixYvYtm0bhg0bhmnTpgEAunfv7hXXNljNmzdHfHw8jh07hj/++ANt27b1u7xSCjNnzgQA3HTTTRn/UkRERETXMpVBM2fOVACC/peYmKimTp3qtY1du3apPHnyKACqU6dOGdr/e++9Z7b9ww8/WJeZNWuWqlmzZlDHV6ZMGTVy5MiMngallDLbGDhwoFf+sGHDgtp3y5Yt1ZEjRzK1b6WUevjhhxUAVb58+YDLzpo1y+x34cKFmd4nERER0bUo5N0PIiIiULx4cbRr1w7vvvsu/vzzT3Ts2NFrmREjRphR+L17987Q9uXytpi1ANC6dWusWrUKv/76Kx588EHUqFEDRYoUQb58+RAXF4eaNWuif//++PXXX7FlyxbH+LiZdccdd2DmzJl4/vnnccMNN6BcuXKIiopCREQESpUqhVtuuQUjR47E7NmzTcizzHjssccAAFu3bsXChQv9Ljty5EgAQL169dC0adNM75OIiIjoWhSmlFJX+yAo8zp37oypU6fi/vvvx1dffWVdJjU1FWXKlMHx48fx/fffBzUoj4iIiMhNsnWgGGW/l19+GUBarfWOHTusy3z88cc4fvw4qlWrhttuuy0nD4+IiIgoR7BQ63JNmjRB3759cfHiRetUxKdPn8Z7770HAHjrrbcCxgImIiIicqNsn3yBst+7776LatWqIX/+/Lhy5YpXwXXHjh147LHHkJCQgG7dul3FoyQiIiLKPuxTS0RERESux7ZoIiIiInI9FmqJiIiIyPVYqCUiIiIi12OhloiIiIhcj4VaIiIiInK9q1qo3b59O8LCwhAWFobhw4dfzUPBoEGDzLEQERERkbtkuVB78eJF/PDDD+jXrx+qVauGwoULIzw8HEWKFEGDBg0wYMAATJ8+HVeuXAnF8dI15tVXXzU/BgoWLIgzZ86EdPvJyclm+/7+JScnB7W9hQsX4u6770ZycjIiIyORlJSEzp0744cffghq/fPnz+Oll15CuXLlEBkZiZo1a2LIkCG4FiLjzZo1y+85iomJQeXKldGvXz/MmjUrpPtev349/v73v6NWrVqIjY1FREQEEhMT0bZtW7z//vtITU0NajtHjhzBwIEDUadOHRQqVAixsbGoU6cOBg4ciCNHjgS1jSlTpqB58+aIiopCsWLF8NBDD2H//v1Z+XrZZtmyZXj++efRtGlTlCxZEvnz50dsbCwqVKiAPn364PPPP8fx48eztI/jx49j2rRpeO2119CjRw+UKFHC3BNt2rTJ8Pay+gxpP/zwAzp16oSkpCRERkYiOTkZd999NxYtWhTU+nv37sW9996LxMREREVFoXXr1vjjjz8y/H2yg6wkkf/y58+PokWLolKlSujatSteeuklzJkzJ6T7vnTpElasWIHPP/8cDzzwAGrXro18+fKZY9i+fXvAbZw/fx7jxo3Dc889h/bt26Ny5cpISEhAeHg4ChcujObNm+Oll17C7t27gz6udevW4ZFHHkHFihVRoEABJCYmolWrVvj8889x6dKlgOsrpfDBBx+gatWqyJ8/PypWrIhXX30VFy9eDPoYKBdQWfDLL7+o8uXLKwAB/1WuXFn99ttvXutv27bNfD5s2LCsHEqWDRw40BwLBa9y5cpe13nEiBEh3X7ZsmWDur/Kli0bcFsvv/yyypMnj+M2br75ZnX27FnH9S9duqQ6duxoXffBBx8M4bfOnJkzZwZ1rvS//v37q0uXLmV5v++8847Kly9fwOuzatUqv9tZsmSJSkpKctxGiRIl1NKlS/1uY/jw4SosLMxn3TJlyqi9e/dm+buGys6dO1X37t2Duk4FChRQzz//vDpz5kym9pWcnOy47datW2doW1l9hpRS6uzZs6pbt26O28iTJ4/673//63cbe/bsUaVKlbKuG+p3UGbIvyfB/KtWrZoaM2ZMSPY9aNAgv/vatm1bwG1s2rQpqOOOjo5W33zzTcDtffXVVyp//vyO22natKk6fPiw323079/fum6XLl1C8h6j60OmS3Cvv/661x+P9u3bq8GDB6s//vhDLVu2TE2bNk19/PHHqlOnTuYlWKdOHa9tXEuFWsq4hQsXmusXExOjAKgOHTqEdB+6UNu9e3e1Zs0ax39//vmn3+18+eWX5lgrVKigvv76a7VkyRL1yy+/qLZt25rP7rzzTsdtDBkyRAFQJUuWVMOGDVOLFi1SH3zwgSpUqJACoCZPnhzS755RslA7YMAAr/OzevVqNWvWLPXGG2+ookWLmuVeeumlLO1z9OjRZlsRERHq6aefVhMnTlSLFy9WI0eOVC1btjSfJyUlqePHj1u3s3v3blWsWDEFQOXLl089++yzas6cOWrOnDnq2WefNYXmYsWKqd27d1u3cejQIRUdHa3y5MmjnnnmGTVv3jw1fvx41aRJEwVA3XrrrVn6rqGyfPlyr8J72bJl1b///W81YcIEtWTJEjVv3jz1ww8/qAceeEAVLlzYLLdixYpM7U/+MCxWrJhXgTIjhdpQPENKKXXHHXeYZdu2bat++eUXtWTJEvX111+rChUqmM++/PJLx2307dtXAVDNmjVTEyZMUPPmzVNPP/20CgsLU9HR0QELSNlNFmqHDh3q9RzOnTtX/fzzz+q5555TtWrV8iqg9e/fX12+fDlk+46MjFRNmzb1Oq/BFmqLFi2qbr31VvXOO++osWPHqnnz5qnFixern3/+Wd1///0qMjJSAVBhYWFq0qRJjtuaMmWKKQMUK1ZMffTRR2rx4sVq8uTJqlevXua4WrVq5fjdJ02apACo+Ph49dFHH6lFixapoUOHqhIlSigA6tNPP83s6aLrTKYKtd9++625ERMTE9WMGTP8Lr969Wp14403slB7nRkwYIACoIoUKaLefPNNU1PiVOjIDP0HuV+/fpnexrFjx1RcXJwC0mrsDh065PX5pUuX1M0332zuxdmzZ1u306ZNGwXAp8Zx3LhxCoC67777Mn2MoSALtQMHDnRcbt26dapAgQIKgIqNjVUXLlzI9D5r1qxp9pm+JUaTf7jeffdd6zL9+vUzy9hqrMaMGWM+dzrPw4cPVwDU008/7ZWfmpqqSpUqpSIjI9X58+cz+A1D68CBA14F2ueff16dO3fOcfmTJ0+ql156SeXLly/Thdq3335b/fjjj2rHjh0mL6OF2lA9Q7NmzTLL3HzzzT41bIcOHVJlypQxBZhjx475bOPcuXMqf/78qnTp0urUqVNenz355JMKQFC1h9lJFixnzpzpd9nx48erIkWKmOX/+c9/ZmnfU6ZMUZ999platmyZunjxolLK+/kKplB7+fJldeXKFb/LLF68WIWHhysAqn79+tZlLl68qCpWrGjeNZs3b/ZZ5tFHHzXH5nTd7r33XgVA/frrr175K1asMD+OiJTKRKF2z549Kjo6WgFQUVFRat26dUGtd/nyZZ9mIRZq3ev8+fMqISFBAVCPPvqo2rdvn8qbN68CoN58882Q7ScUhdq33nrL3GejRo2yLrNr1y5z/N26dbMuU6lSJVW4cGGf/JMnTyoAqmPHjpk+xlAItlCrlFJ9+vQxywbqFuDkxIkTZhtOf9SUUmrVqlVmud69e/t8vn//fnPuO3Xq5LidTp06KQAqb968av/+/T6fv/baawqAmjBhgs9numB9tbsg9OjRw5yLQYMGBb3e7Nmz1datW0N2HBkt1IbqGeratau5hrt27bIuM2rUKLOvd955x+fzPXv2ON5L48ePVwDU66+/HtT3yi4ZKdQqpdRff/2lYmNjzTrLly8P6fFktFAbrM6dO5vtpqam+nwuf4y+8cYb1m2cPn1axcfHKwCqZs2a1mU6dOjguI+EhARVuXLlrH0Rum5keKDY+++/j9OnTwMAXn75ZVSvXj2o9fLkyYO77ror4HLTpk3DzTffjOLFiyN//vwoV64cBgwYEFSH9AsXLmDIkCFo27YtEhMTERERgeLFi6Nr16747rvv/A5WCzb6wYULF/DFF1/gpptuMgM7ihYtigYNGuDxxx/H3Llz/Q4amjZtGu666y6UK1cOBQoUMANhnn32Wezbt8/vvvfu3Yt///vfqF+/PgoVKmS+X61atXD77bdj+PDhOHnypP+TFCITJkzA0aNHAQB33XUXihcvjhtvvBEA8O233+bIMQTrl19+AQDExsaiV69e1mVKlSqF9u3bA0i7RqdOnfJZpmjRojhy5AjWrVvnla8HXRUvXjx0B53N5MC6c+fOZWobFy5cMOny5cs7LlehQgWTPn/+vM/n48ePx+XLlwEA9913n+N27r33XgDA5cuXMX78eJ/PixYtCgCYPXu2V/7p06eRkpKCiIgIJCQkOG4/u61btw6//vorAKBOnTp44YUXgl63VatWKFeuXHYdWkCheIZOnTplBnJ16NABpUqVsm6nV69eiI2NBQD8/PPPPp/Hx8cjX758SElJ8RmY6sZnEQAqVaqEN954w/z///73v6t4NMGLjo42aduzre8bwPP8phcVFYW+ffsCANauXYtNmzb5LOP0bK9ZswZHjx513fWmbJSREvCVK1dUYmKiAtI6iJ84cSJLJer0NbX/+te/vPoXyX+JiYlq/fr1jtvavn27qlatmuP6AFTLli3VkSNHrOsHM1BsxYoVqly5cn73AYdfwqdOnVI9e/b0u15MTIy1lkkppebMmeP1S97pn219WYOXlRpP6ZZbblFAWt867ZtvvjH7WbZsWcBt6GX9DfLKak3t+fPnTX9Mf7WASqX1E9fHZOtS8/bbbysAqnTp0mr48OFq8eLFavDgwaaWwena5ZTM1tTu27fPuoys3XGqbdK19cHW1P7jH//w+fzuu+8OeCxKKbV3716z3D333OPz+e7du1VERITKkyePevbZZ9X8+fPVb7/9ppo3b+5Ys5eTnnnmGXP8X331VUi2Gcwz5G+9YGpqQ/UM/fHHHwFr7TQ9IDNfvnzW7jE33XSTAqBatGihfvvtNzV//nz1z3/+U+XJk0dFRUVZa/JzUkZrapVKq7HUXTyioqKs3zuYZ9ImO2pqDxw4YN59RYoUsS5TunRpBUBVqVLF77ZGjhxpjm/o0KE+n48dO1YBUAkJCerjjz9WixcvVsOHDzeDBQcPHhyS70Tul6FC7dq1a82N17lz5yzvXBZq9R+e1q1bq5EjR6qUlBQ1ffp0dc8995hlmjZtat1OamqqVxSGHj16qPHjx6uUlBQ1duxY1bp1a/NZs2bNrCMlAxVq161bZwZDAVA9e/ZUo0ePVkuXLlWLFi1S33zzjbrrrrtUdHS0z0vj0qVLZiBFWFiYuv3229XYsWNVSkqKWrhwofrwww9NP7KIiAiVkpLitf65c+dMh/iCBQuqZ599Vk2ePFktW7ZMLVq0SI0ePVo99dRTqnTp0jlSqD106JDpSyUHGqWmpqqoqCgFQD355JMBt5ORQm25cuVUrVq1VFRUlCpQoIBKTk5Wffv2VePGjfPb90ves4GO6eeffzbLfvLJJz6fnz171gw6Sv/PVsjKacEWajds2GD61DZq1MhxuWD+gP773/82yzgNFtEF6Lx581p/mDZs2FABUIUKFfL39ZRSyvywczru999/33p9SpQo4djcnVP09wQQskJXThRqQ/UMffzxx+azcePG+d3OE088YZa1dXHbtGmT1yA6/S8sLCxkPxiyIjOFWqU83TMAqEWLFvl8frULtefOnVNbt25VX3zxhdfgs1deecVn2dTUVDOYvHv37n63u3z5crMtW5/iK1eueHXdkf/atWtn+g4TZahQ+/3335sb6fnnn8/yzmWhFkgLi2QroDzwwANmGVtfo//7v/8zn7/wwgs+n1+5ckXdeeedZpkhQ4b4LBOoUFuvXj0FpA2EcupTppRShw8f9gm988477ygAKjw83PEP/9GjR1WNGjUUkFajLMkaDn+1gRcvXrTWnoe6UPvhhx+a7f31119en91+++0KgCpatGjAF01GCrX+/rVo0cJxcNrkyZPNcm+//bbf41m6dKlZ9t///rd1mdTUVPXMM8+okiVLqvDwcFW5cmX13nvvZXnEcigEin4wZ84c9eabb6rixYsrIG3gxvz58x23F8wf0NTUVNW+fXsFQOXPn18988wzatKkSWrJkiXqhx9+MD8o8+bNa/2hoJQyUQ9q1KgR8DvqZ6R48eKOy4wdO1Y1aNBA5c+fXxUuXFjdc889IR28mFn6h2CJEiVCts2cKNSG6hmSLXGBQrPpVhEAasqUKdZltmzZovr27avi4uJUZGSkatasmZo4cWLA75MTMluofeGFF8x63377rc/nV6NQGyhU4J133mkd7LhhwwazzGOPPeZ3H4cOHTLL3nbbbdZlLl68qF599VVVvnx5FR4ersqWLateeOEFvwMtKffJhww4fPiwSRcrViwjqwaUlJSEwYMHW/u0/t///R+++uorAMDcuXNRr14989n58+fNZ9WrV8egQYN81g8LC8OQIUMwZcoUHDlyBB9//DEGDBgQ9LFNnToVK1asAAD8/e9/x2233ea4bOHChb3+/+LFi3j33XcBAI8//ji6dOliXS8+Ph5vv/02unbtinnz5mHz5s2oWLEiAHgFjm/VqpXjvvPly2f6omUn3We2cePGqFSpktdnd911F0aNGoWDBw9iypQp6NatW5b2FRERgVtuuQUdO3ZEzZo1UahQIRw/fhwLFy7Ep59+il27dmH+/Pno0KEDFi5ciEKFCnmtL4P+x8TE+N2X7B9m61Ort/HOO+/gnXfeycK3yn6ffvopPv30U+tnefLkwcMPP4ynnnoKVatWzdJ+YmJiMHnyZAwfPhz/+9//8O6775r7XevVqxeeffZZNGnSxLoNfY0CXR/Ac42crg8A9OnTB3369An2K+SIkydPmiDxoX53ZrdQPUOhfhbLly+P0aNH+92O28i/H8eOHbuKRxJYcnIyPvvsM3Tq1Mn6eaivd758+fCf//wH//nPfzJxtJRbZGigmLxJ5U0YCn369EH+/Pmtn1WpUsU8FFu3bvX6bNmyZWbGnXvvvRd58+a1biM2NtZ0Rl+/fn3AQVnSxIkTTfrpp58Oej0AWLJkidmX3r8TWWBduHChSSclJZn0sGHDMrR/AGjTpg1UWq18lqcjXr9+PZYtWwYA1oF/HTt2NJ36R4wY4Xdb+pj8zXCzZMkS/Prrr3jsscfQunVr1K1bF23atMFzzz2HdevWoWPHjgCADRs24OWXX/ZZXw6CioiI8Hs88v47e/as32Xd7MqVKxgzZgy++uorr8Fe6Q0fPtxcI38zT6WkpGDUqFE+z6Y2ffp0fPPNN46DGPU1CnR9AM81ctv1ya53ZzDPUFaF6hnisxiYLPzZZuEL9pkMpUaNGmHNmjVYs2YNUlJS8PPPP+Pee+/Frl27cN999+Hrr7+2rsfrTVdDhgq1BQsWNGkdASFUAtUYxcfHA/B90NeuXWvSTjVBts/leoHoWtoyZcqgbNmyQa8HpP3B15o1axZwGlNN1s62bNnSjC5/6qmn0LhxY7zxxhtYsGCB30JJdvjmm28ApP1qttVY58uXD7feeiuAtFHtJ06cyNL+4uLiHD8rWLAgxowZY2o3vvjiC5/zERkZadKBzpUcvVugQIFMHO21Y+DAgeaPn/535swZrF69Gv/85z+RmpqKd999Fx07dszSH5Eff/wRbdq0wYwZM1CrVi2MGzcOR44cwYULF7Blyxa8/vrruHjxIj799FM0b97cOl2tvkbB3Mv6Grnt+mTnuzO7heoZyq3PYkbIv2850eoWjOjoaNSsWRM1a9ZEgwYN0LNnTwwbNgxTp07F0aNH8cADD+C///2vz3q83nQ1ZKhQW6RIEZM+cOBASA8kKirK7+d58qQdqg79o+mwUkDgZj0Z9kOuF4judiFrTIN18ODBDK8DwCtUTXh4OCZMmIBq1aoBAJYuXYrnn38eLVq0QFxcHLp06YKRI0f6nJtQu3LlCr7//nsAaTWyiYmJ1uV0De65c+cwZsyYbD2mQoUKmcK1Dt0kycKEvyZrvb4WTFO42xQoUAC1atXCW2+9hSFDhgBIC5EjQwllxIEDB3Dvvffi/PnzqFGjBhYsWIAePXqYOeLLly+P5557DhMmTEBYWBjWrVuHv//97z7b0dco0PUBPNfIbdcnNjYW4eHhAEL/7sxuoXqG+CwGJrv4Xc3wc8Fo164dnnzySQBp4T03btzo9TmvN10NGSrU1qlTx6SXL18e8oPJqkAxZpWf+LGh2L6NLGjOmjXLNOME+pe+z2/16tWxZs0ajBs3Dv379zexP8+ePYspU6bgzjvvRJMmTTJdiA7GH3/8gT179gAAJk2a5FjjLGvEcyJmrYyVrI9Pk7EwA8U63rVrl0mXLl06REd3bbr//vvNH02n5sNAfvjhB/PH6Pnnn3dsVm/Xrh3atWsHIC3uaPq+gvoaBROLWl8jN14f/f7cu3evqwq2oXqG+CwGplsFgbRud9e67t27A0ir8EgfU5jXm66GDBVqq1evbmpr586dm2OB/v2Rv2ZtTZuS/EOSkV/B+jvv3bs3g0fn3fE/IiLCNOME+qf7pUp58+ZFjx498PXXX2Pz5s3Yu3cvvv76azRo0ABAWv/ihx9+OMPHGCzd9SAj5s+f79jXMlT8/VipXLmy6WedviYhPfm5rhW/XuXJk8cM8tu7d2+GWi60DRs2mHT9+vX9Lqvv0StXruCvv/7y+kz/KDlx4oTfZ3jfvn3mnePG69O6dWuTlv30r3Wheobkj89gt5MvXz4zYPZ6d+bMGSxYsABAWpN/3bp1r+4BBUG21u3YscPrs5iYGFNA5buXckqGCrVhYWFmVpDTp0+bqANXU82aNU168eLFfpddsmSJdb1A9B/snTt3+jy4gchIDb///nuG1g0kKSkJ/fv3x8KFC80x/vbbb9nS0f7UqVMYN24cgLSat1GjRvn9p+8NpVTAAWNZtX79epMuUaKE12cRERFo3LgxgLTBd/76dunZavLnz4+GDRtmw5FeWy5dumTSemR+RuTL5wmeIrdlI7cv1wPS+oxr6WcMkuRnLVq0CPo4rxVyRqXBgwdne3ehUAnVM9SoUSMzYMjfdb5w4QIWLVrks871btiwYWYMws033+zznFyLZMuYrduAfrb//PNPvz9Y3f5s0zUkozHAdu/ebQLsR0dHqw0bNgS13uXLl9WIESO88tLPKOaP08xS586dM7Ow1KhRwzqxglJKnTx5UhUpUkQBUNWrV/f53F+c2mnTppnPgplUQDp79qyZdal48eJZnoXNydNPP22OMTvmtx82bJjZ/o8//hjUOg0aNFCA96xjoXb8+HEThD0qKsoas/DNN980xx7MvPVdu3bNtuPNThmZUez06dNmAobIyEjH58YfHX8ZDrGfJT3xQFhYmDp8+LDXZ/v27VN58uRRgP8Zqzp16mRiRfubeexapmfig0PAeidz5sxRW7duDdlx6GMIJk6tUqF7hrp06aKAtJnCnCbDGDVqlNnXW2+9FdTxXWsyGqf2r7/+UgULFjTrrFy5MqTHkx0ziiml1KOPPur3b/jo0aPN506zyJ0+fdrMTGb720yUERku1Cql1NChQ82NWrRoUTVr1iy/y69bt061b99e1alTxys/FIVapbwnX3jxxRd9Pr9y5YrXzGSZmXxBF9ACTb5w5MgRn8kX5NSRXbp0UadOnXJc/+TJkz5T/s2ZM0dt2rTJcZ3z58+r+vXrKyBtqt30kx6EYvIFPSNaVFSUOn36dFDrvPHGG2a/8+bN8/lcf+YUOH7y5Mk+51I6efKkmU4TgPr73/9uXe7IkSOqUKFCZl/pC1WXLl1SN998s9mObYpcN8hIoVY+M06z/QQK9L5hwwYzY1DJkiUdJzj4/PPPzXaaNWtmXUZOlTt27Fifz8eMGZPle/hasG/fPjPZhH5fnT9/3nH5U6dOqUGDBqnw8HC1YsUKn88DPUNOMlqoDdUzJCeSueWWW3x+TB06dMjMrhgXF6eOHj2aoe91rchIoXbChAmmwgWAeu655xyXzanJF0aOHKmOHz/ud5nRo0ebHzGFChWyTkF/4cIFM/NYbGys2rx5s88ygQrGRBmRqUKtUkr997//NTciANWxY0f1ySefqBkzZqjly5er6dOnqyFDhqibbrrJ3PjZVag9efKk1zS5PXv2VBMmTFDLli1TP/74o2rTpo3XH9XMTJO7fv16r2lye/XqpcaMGaNSUlLU4sWL1ffff6/uvfdeFRMTY50mt127dmbdMmXKqNdff13NnDlTrVixQs2ZM0d9+eWX6s4771TR0dGqcOHCPseWJ08e1bp1a/XWW2+pKVOmqGXLlql58+apoUOHqsaNG5ttP/XUUz7HntVC7Y4dO0zhpXfv3kGv99dff5n9PvTQQz6fB/qD3Lp1a5WQkKAeeOABNXz4cDV37ly1YsUKNXPmTPX666+becWBtLnFbS9V7bPPPjPLVqhQQQ0dOlQtXbpU/frrr6bADkDdfvvtQX+/a42/GcXWrFmjli5dqkaOHKk6d+5slouMjFSrV6+2bi+YP6D9+/c3yyQmJqrXXntNzZkzR61YsUKNHz9e3XHHHebzvHnzOm5n586dKjEx0dTi/etf/1Jz585Vc+fOVf/6179Uvnz5zD6u9nS3WbV06VKvgm1ycrJ6/vnn1cSJE9XSpUvV/Pnz1ZgxY9QjjzxizgmATBdqV6xYoYYNG+b1Tz436T9LTU21bidUz9Btt91mlm3btq369ddf1dKlS9XQoUO9pl797LPPMnJaryny78nQoUO9ZvabN2+eGjdunHr++edVrVq1vP6OOs2qqQU7y1/6a9qiRQuz3ttvv+31me2+at26tYqJiVF33XWX+uKLL9Ts2bPVypUr1fz589XQoUO9pvMNCwtTw4cPdzzmiRMnmpaYYsWKqcGDB6vFixerKVOmqN69e5vttGzZMlMtRkRSpgu1Sin1008/qeTkZK+H0ulfjRo11NSpU73WD1WhVm+ratWqfo+hRYsWjgWfQIVapZRKSUnxKkg5/bP9Ej5z5oxXbbG/f+XKlXM8Nn//evXqpc6ePeuz76wWal999VWzvr9aapvatWsrIK3WJX3XgGAKtcF871atWgU1DepLL71kCue2f127drWeP7cINJ1l+n+JiYk+z6QUzB/Qc+fOqVtvvTXgvqKjo9X333/v9/gXLVpkpvC1/StevLhatGhRVk7RNWP79u3qpptuCuo6RUdHq0GDBlm71gR6hpQK/v3h7/2lheIZOnPmjFehKP2/PHnyBGxpuNZl9JxXr15d/fTTTwG3G8wzmX76+UD/bOc62HdvfHy8+u677wIe9xdffKEiIiIct9O4cWN16NChgNshCiRLhVql0pq+v//+e3XXXXepKlWqqPj4eJUvXz6VkJCg6tevrx599FH1xx9/WH99hrJQq4/l448/Vq1bt1aFCxdW4eHhqlixYqpz585qxIgR6vLly47rBlOoVSrthfzRRx+pG2+8URUtWlSFh4er4sWLqwYNGqgnn3xSLVy40O/6KSkpasCAAapGjRqqUKFCKl++fCouLk7VrVtX3X///erHH3/0+eN1+vRpNWnSJPX000+rpk2bqjJlyqjIyEgVGRmpkpOT1a233up3zvOsFmqrVKmiAKj8+fOrkydPZmjdl19+2ex7zJgxXp8F+oO8dOlS9b///U91795dVa1aVRUpUkTly5dPxcbGqqpVq6p+/fqpKVOm+K3ZSG/+/PnqjjvuUKVLl1YRERGqaNGiqkOHDmrkyJEZ+l7XokCF2oiICFW8eHHVrl079e677wZs2s1IU+eMGTPUPffcoypXrqyio6PNO6BZs2bqxRdfDLp29dChQ+qFF15QNWvWVDExMSomJkbVqlVLvfDCCz5N3teDJUuWqH/961+qcePGKikpSUVERKiYmBhVvnx51adPH/XFF1/47Yef04VapUL3DH3//feqQ4cOqmjRoioiIkKVLl1a3XHHHWrBggUZ2s61yOmch4eHq8KFC6vy5curLl26qBdffFHNnTs36O3mVKF29+7davjw4apfv36qXr16qkSJEio8PFxFR0ersmXLqm7duqmPP/44Q91D1qxZox588EFVvnx5FRkZqQoXLqxatmypPv30U58uc0SZFaZUFoO3EhERERFdZRkK6UVEREREdC1ioZaIiIiIXI+FWiIiIiJyPRZqiYiIiMj1WKglIiIiItdjoZaIiIiIXI+FWiIiIiJyPRZqiYiIiMj1WKglIiIiItdjoZaIiIiIXI+FWiIiIiJyPRZqiYiIiMj1WKglIiIiItdjoZaIiIiIXI+FWiIiIiJyPRZqiYiIiMj1WKglIiIiItdjoZaIiIiIXI+FWiIiIiJyPRZqiYiIiMj1WKglIiIiItdjoZaIiIiIXI+FWiIiIiJyPRZqiYiIiMj1WKglIiIiItdjoZaIiIiIXI+FWiIiIiJyPRZqiYiIiMj1WKglIiIiItdjoZaIiIiIXI+FWiIiIiJyPRZqiYiIiMj1WKglIiIiItdjoZaIiIiIXI+FWiIiIiJyPRZqiYiIiMj1WKglIiIiItdjoZaIiIiIXI+FWiIiIiJyPRZqiYiIiMj1WKglIiIiItdjoZaIiIiIXI+FWiIiIiJyPRZqiYiIiMj1WKglIiIiItdjoZaIiIiIXI+FWiIiIiJyPRZqiYiIiMj1WKglIiIiItdjoZaIiIiIXI+FWiIiIiJyPRZqiYiIiMj1WKglIiIiItdjoZaIiIiIXI+FWiIiIiJyPRZqiYiIiMj1WKglIiIiItdjoZaIiIiIXI+FWiIiIiJyPRZqiYiIiMj1WKglIiIiItdjoZaIiIiIXI+FWiIiIiJyPRZqiYiIiMj1WKglIiIiItdjoZaIiIiIXI+FWiIiIiJyvXxX+wCIrjWXL1+2psPCwgAAefPmNXl58vj+Lrxy5YpPnm05ueylS5dMnlLKZz/58mXfo6r3J48HAM6ePQsAOHr0qMnbvXs3AGDHjh0mb+fOnSa9Z88eAMDhw4dN3vHjxwEAp0+fNnkXLlzw+fzgwYM++z5//rz12Gz0OSpUqJDJS0hIMOn4+HgAQExMjMkLDw8HAOTPn9/kFSlSxKRLly4NAChXrpzJ0+kSJUpY19Hbz85rBnjOh74v06f1dZV56T9Lz7asjVxfPyPy+ujtyPtepoPdD+Uc+a7T7yP5XBC5AWtqiYiIiMj1wpTTT3aiXEo+ErbHQ9ZI2Wp1bTW5TjW1/mSkZksfpzweXdsJACdPngQAHDlyxOTpGti9e/eavC1btljX97efQDV0+nwEquGW51pvx6kW0t/5cKp5tl1L/T3kZ/I40y8HeGqZZe26rvEFgLi4OADeNbklS5Y06eLFi3v9FwBiY2N9tmM7Dhun+1V/d9t9ZGsZkJ/balidzrnej+38ynUy8wxQzmFNLV0P+JYhIiIiItdjoZaIiIiIXI8DxYjScWrmtjWzyia7ixcvOm4rUC8fpwE1mlz/3LlzAIBTp06ZvBMnTgAAjh07ZvJkVwM9cOvQoUMmTy8rux/8+eefJq2/m24aB4DExEQA3gOjdJ7ML1y4sMnTzfEFCxY0ebJZUw+skvuJjIz0WU42zduawnWTqe5qAXjOi8yXA9b0QDR9TgHgzJkzJq3P165du0yePl/yvMl1ChQoAMC7+4EecAZ4uiLIPD2gLTo62uTp8ybT8hxFREQAsN+jgOeesXUvcOqWYev2EaxQbYeIKLNYU0tERERErseBYkR+2AYIyVBNcjCPbRCVrqmS68jaK72srOXVNXCSrAnUNYTr1683eStXrgQArFu3zuTJsFq69lcOTtI1icnJySavSpUqJq1rBXWtKeCphdT/TX+8ujbVdo7kubINILINaMpqjaFtUJ9tkJRcTl4Lfc1lnl5f5qWmppr0gQMHADiHPdu3b5/Xf+V+ZE2sDCNWq1YtAECdOnVMXoUKFQB4hzALdjCW0+CyYM+7PF+6tlve9/o45L2R3SHOKGs4UIyuB6ypJSIiIiLXY6GWiIiIiFyP3Q+I0pGPhGxi1s2scsCSLa5ooME6tmZYOXjpr7/+AuDdvUAO4NKzdslt6mZrPWsW4D1zlh6kJWfY0oO5ZJcEGU9VdzuwDWLLqZijgWIGBxu7NiNkM6wWKGaw7NKguyLIGdJkWncL0d0UAM8gNjlgTQ540/eHPAd6gF7lypVNXo0aNUy6fPnyALy7NOjvYetyEIjTnwr93W3xiuW9zji11zZ2P6DrAd8yREREROR6LNQSERERkeux+wFROrIZVTYr26IfBJrWVK8juxfIZmVbrFgdwWDTpk0mzzZSvmzZsiavYcOGAIBGjRqZvFKlSpm07n5gi8KQU1OZBoqNauMUyUALVcQEp+O0TRtrO7ZAEQRssY11dxbAc3/I2MKy+8mqVasAeHdD0evIOMFVq1Y16WrVqgHw7l6iu5/IvKioKJO2dU9I/73S0+fL1m0j0NTIdO1g9wO6HvAtQ0RERESux5paonQCxTkNNPhF1u4eP34cALB7926Tt3z5cpOeMWMGAE+cWcATn1TXvgJA48aNTVoPAJIzTukaFVlzLGtZbIPT9KAkeby2WjubzMQ5DfSqycw6NvKaBRq0Z4uhG4he/+zZsyZP1rrqz2V8X9u1sH03W/xXwBOnWNbkrl27FgCwbNkyk7dhwwaT1tdX3ic63m2PHj1MnhwcqI9N3kc6z+l+0McpB1Xq7ybj1Mo0Zxq79rCmlq4HrKklIiIiItdjoZaIiIiIXI/dD4jSsTUlA97NyZpsLtaDvfSgHsDTRCynTJV0LNmiRYuaPD0ATE6TWrp0aZPW8WWzOu2oLb6obHb2JyOvDd3U7DQ4LNiBYoEGjQXatu2YA3UBsG1Hd1WQ3TZk063eZqBBhJkZOCX3o+Pdyq4tcjpenS/j4eruMHLa5TJlyph0/fr1vf4LAElJSY7fAfB8X3k+9DmU6zhNk0zXBnY/oOsBa2qJiIiIyPVYU0uUjqyplXStxaFDh0yeDLG0evVqAMD27dtNnq5Nk7V/smasadOmAIBmzZqZPF1761QTG2wtl23AVEYGRNmE6nUR6DvYanedBoClX8fpO+p1AtXYBltT67S+vzBggKdGzBZKTebZQosFOm+ytk2HgduyZYvJ0/fo7NmzrevrQYg1a9Y0eRUrVgTgHSJOhhErUKCAz3YyMyiQri7W1NL1gDW1REREROR6LNQSERERkeux+wFROrZmOAA4deoUAGDKlCkmb9KkSSatZwKTMWVbt24NAKhXr57JkwPOdAxRPdNTMPQjGyiuq625XjaJ25q8g53pKzOcXjW2+LGBjs0fuY68ljqOqjwvtrisNrZZ5pwGq+ljl91HZJcF/T0CzZBmk5Fror+7jB+rZyGTXWgWLVpk0gsWLAAAbN261eTp2cfkbHVt2rQxad1lQc9aBwTuwsHuB9cedj+g6wFraomIiIjI9VioJSIiIiLXY/cDonRk3M/Fixeb9KxZswB4IhoAnpixAFC7dm0AQJUqVUyejjkr49DamqVls7Nt5L8tbRs9L9nWycgo/awItO9AU+vqY3Jax8a2HbmObF51Wjd92sb2fWzbcjqvwcbLlWzdMQJt21/3FNmtRsax1d0ONm7caPJ0txrZZUF2l9HTOctuN5UrVwaQ9VjKlHPY/YCuB6ypJSIiIiLXY00tZYis4dEC1cbYao8yUmtnq5kMVIMXKK6nXufo0aMmb9OmTQA8s4AB3rOD6XifOm4n4D1gpl27dgCA6Ohok2erYbMdkxzMo2tvnWKW2rYTbG1rTsUPDXR9bDFYA8V/zUxNbSC22LW29UM5yMnf9wg0+CzQ4EApM8epa+sOHjxo8pYuXer1X8B75jIdp7ZChQomr0GDBgCAqlWrmrxixYqZtO1a6+8uawzlcv5aI5y+q612Pquxmq9XrKml6wFraomIiIjI9VioJSIiIiLXY/cDCoq+Tc6ePevzmZwm09ZFwNa0K5u6ZFrHCw0UnzTQQCTbACxp//79ALwHgv38888AvJtek5KSTPqGG24AALRs2dLklStXzqR1NwzZRUMfk1Mzqm5ylc3Otu4H1xt/XUYoZwWKl6uvla1LAgBMnToVgPeU0UWKFAEAdO7c2eTp5wcASpYsCQCIiIgwefq5OXfunMmTzd+2WMJ6HaeuOHrKa5lne8cQux/Q9YE1tURERETkeqypJUfy1tC/3OWAJl37IX/NB1v7Ibcj07rmRtZs6pokXesi9y3XsQ3mkbVQf/31l0lPmDABgHeNk57pq2nTpiZPzqKka5cSExNNnq32KCODU/R3l+dAn08OaKGcEGytuVzu+PHjJq0HWK5evdrk6QGWMlyYbNXo2bMnAKBOnTomT7f42AYRyrR8vlJTUwF4vw+ioqJ8jt02kx55Y00tXQ/4dBMRERGR67FQS0RERESux+leKENkTFpbM16geKr+Zo9Kn+9vO4HiV548eRKA9+CVGTNmmPT69esBADExMSavSZMmADzxZgHvmLQ2tkFhGYkfm52zehGlp+9R2dQc7Mx0crn4+HiT1l10ihcvbvJiY2MBALNnzzZ5Mrbt5MmTAXh3Y9BdEeTgzGCP3ekdEmj2NyK6vvAvKRERERG5Hgu1REREROR6jH5AjuStobsV2Jr55HJyFL9m67Jg2zbg6VYQ7L7l56dOnTJ5OqrBH3/8YfIWLVpk0rrJVMbRrFWrFgDvplXZzUEf04ULF0yebArVx2f7vhmJicn4mZRdMhNJxBZL2RZNQH6uuxXIiCNz5841af1cyq4Gbdu2BQB069bN5Mln0fb86efTKVKILU6t7TsSox/Q9YE1tURERETkeqyppaDYBovYBm7IWhR/cWxtM4LJdTJCx8KUtbJTpkwB4D0LkhwApmuFqlevbvJ0nEw5+Eum9bE51RjbBq3ocyO3YxvwJmt3ibKLftZkraptxj9bzadcR7bI2GpLbbWq27dvN+k5c+YA8AwYk9u88cYbTd4tt9xi0rZBm/qY5Dso0PfhoEw71tTS9YBPNxERERG5Hgu1REREROR6bPOkoPgbVCGb+2zNfIGm3Aw0KEw7c+aMSeupOQHPoLB58+aZPN2U1rJlS5MnB4VVqVIFgGfQiDwOpx45mWnKtMXltZ0Pp0E4RKFku4flvedvUFhG4i/buh6VKVPGpNu3b++zzYULFwLwjid97tw5n3UaNmzosx/5zMouD3r/fKaIcgc+6URERETkeqyppSyTtSBywJO/GlqnkF62ms2zZ88C8K6dlQNMZA2t1rt3bwBAz549TV5cXJzPcnLfenBEZr5P+nT6dcLDw30+C7QdhhyiqyXQ/egUQiv9OqmpqdbPy5cv7/VfAChXrhwA4MMPPzR5v/32m0nrWQLlc1y6dGkA3i0utsGsRJQ7sKaWiIiIiFyPhVoiIiIicj3GqSVH8tbQA68CDXiSTff+YmIGaso8cuSISa9cuRKAJ/Ys4D1TUUJCAgDg9ttvN3n16tUDACQmJvp+McHWzOrUpUAfs/w+MrajzpffTXdfyEg3BnY7oOyi7zMZN9nW/cc2GFIuJwdj6XXkPa7Xl8+HjG2r86Ojo02eHgi6fv16kzd69GiT3rhxIwCgSJEiJu+OO+4AADRp0sTkFSpUyGc/UmZm+csNGKeWrgesqSUiIiIi12OhloiIiIhcj9EPKCjBxnm0RTWQzY66idJp9PS+ffsAADNnzjR5s2bNAgCcOnXK5FWrVs2kmzZtCgBo1qyZyStYsKDf49RNbU4xdm1skRlsU+YGikNr68LBplDKCbapnDO6LmCfEtc2Va1cTkYAsXX10V0RZBxa+e6YOnUqAE9cagD48ccfAQB79uwxea1btzbpUqVKAbDHoyai6w9raomIiIjI9VhTS46CnQXLqebD9rmtNlTHnwSAOXPmAPCOQ7tlyxYAQLt27UzezTffbNKNGzd2/A5ONaT+amozMhjOlrbVVstaLFtNb6BaYqJQsrUwAP7jSMt1ZM2nvrfl4DOdtg2aBPzf73Kd5s2bm7QeACbXnT59OgBg//79Jk8OYtPviRIlSli3T0TXF9bUEhEREZHrsVBLRERERK7HOLWUabY4tIGa9nQTpuxysGTJEpMePHgwAO/4iJ06dQLgPRAsOTnZpKOionz2c/78eQDeTaJym7aBMvr72GLtAp5mVqfvqwfCyDxb9wNbTFpbXFCiUAvUHcbWLUAP1pL3vXyWbPGbbVNOy23rdTLy50c/0wcPHjR5M2bMAOA9sPTQoUMm/dBDDwEAWrVqZfJ0XGvyxji1dD3gX08iIiIicj0WaomIiIjI9Rj9gBzJ5kSdlk2IurlKNwsC3s1VcrRzeikpKSY9atQok9bNlbKrQceOHQEAxYsXN3ky5qWN3o48BqeoBZr8vppTTFrb54EiJWi2JleOyKacEGysZSnYaWXldvw9+5JtGltbDFwAiIyMBACUKVPG5LVt29ZnO7pLAgBMmDABgHdEhO7duwPIXNO6rYuFPGZ5DuSynJqXKGewppaIiIiIXI81teQo0CApXVMhayxsNahyVqDdu3cDAObPn2/yVq5cadK9e/cGAHTo0MHklS5dOsPHHqgm1ybQAC39eaCarcxsmygn2AYmBrqHg611lQLd77ZZyDJzbGXLlgXgPYuYfN/oViBZK1uhQgUAQI0aNUyergWWAg2Alcdui+VrW4fxqImyF//SEhEREZHrsVBLRERERK7HOLXkyDZV5unTp30+L1CggMmzDZQ4cOCAyfvuu+8AABs3bjR5RYoUMWnd/aB27domLyYmJgvfgoiuVbKrgOYUs9k2ha/+PDU11eT9+eefJj1x4kQAwObNm01esWLFAAADBgwwebpLgiQHwOpjchrEpt+LsitWdHS0SdtiWF9rGKeWrgesqSUiIiIi1+NAMXJkC/tjG4Alay9ketu2bQCAqVOnmjw9QEwP8ACAnj17mnT16tUBsHaWKDeQ75hgGw1tobLk+0LWurZr1w4AcPbsWZO3bt06AMDs2bOt+y5fvjwAe42xU02rfi86DZDT27+Wa2qJrgesqSUiIiIi12OhloiIiIhcj90PKEMCxXM8deqUSa9atQoA8Mcff5g83UxXv359k9e8eXOTZjxXotwpUNO8baCYrVk/Pj7epPV7Rg5W1WnZ/UC+d2JjYwEAiYmJPsdmi6sLABERET7Ha5uhkIiyF0sQREREROR6LNQSERERkeux+wE5ssWptU3zeOHCBZNetGiRSevmvWPHjpm8Bx54AADQtm1bk8cuB0SkZSRCQKCoAlFRUQC83zc69upbb73lsx0AKFmyJACgVatWJk93L5Cxa2WXA1t0hMxML0xEWcPSBBERERG5Hn9KkiNbnFpZo6FjP27fvt3k/fTTTyZ96NAhAED37t1NXrNmzQAARYsWNXlyFp70+0ufJiL3y8xElvp9JN9LugVJDsqSn+uWpYSEBJPXoEEDAMDNN99s8lasWGHS48aNA+A9UKxcuXIAvGtn5X5sx0ZEOY+lBSIiIiJyPRZqiYiIiMj12P2AgqKb1S5evGjydLeDmTNn+uQBQNWqVQEAt9xyi8mT0+NqsvuB7mrALgdE1y9b94NATff6c/lu0HFj5fZs25EDXJOSkgB4T88tB7suXboUgHd87RtuuAEAUKNGDet+dNopNi27JxDlDJYciIiIiMj1WFNLGZKammrSKSkpALwHh8nZwbp27QoAKF26tM92ZI2GrEWxhcYhouuLfr5tIQIDkTW1gWp8/bX46MFfANCtWzeTLlCgAABg0qRJJk/XCOtwX3I5yWnAGt9nRDmDNbVERERE5Hos1BIRERGR67H7AQXl3LlzALwHhS1fvhwAUKZMGZPXunVrk65Tpw4A7yZAPSOPbDa0xX5kcx3R9UU+87aZwGzPvK05P1D3Att25GBU3ZVAzywGABUqVDDpU6dOAQA2b95s8vQA2OnTp5u8Hj16mHShQoV89h3o2Iko9FhTS0RERESux0ItEREREbkeux+QIxm7cdu2bQCARYsWmbzjx48DAG688UaTp7scAEB0dLTPNnUzoGw25ChhotxFN80Hin4QKLqB7X1hW0fm6X3LLgkxMTEmreNrd+rUyeRNnjwZADBr1iyTV7duXZOuUqUKACAyMtLvcRBR9mJNLRERERG5HmtqXSLQjDmBagXkOsHO5nP48GGTXrBgAQBg//79Jk8PEGvXrp3JK1y4sN/jkIMzMno8RHR90M98oPdasO8BW00s4GkRypcvn0+eHvyafn39DuvYsaPJW7t2LQDvmtply5aZdGxsLADv2Ldyn7b9ZOUdF6rtEF1vWFNLRERERK7HQi0RERERuR67H7iEju8KAOHh4Satm9LkoC7bYCzZ7G9r7tcDNuRnGzZsMOlx48YBAGrUqGHy2rdvDwAoXry4z3bktmTzmG6Ss8WslN9DHrv8vkTkfvo9EajpPNimdafYtbb19edyOdllQZPT4LZp0wYAcObMGZOnB48Bnu4HpUqVMnnyvaXfcTpGrtx/RgbK6vXlIDfZzUGvL9+pnHqcchPW1BIRERGR67Gm1iXkr2z5a1/XMAQaOGCribDNxiNn0VmzZo1J61l2qlWrZvJq164NwDksj62mVh8Hw3gR5S6ZeeYz827I6rb1O0q+H3ULlQ5jCHi/H3VaDhSrVauWSeta20CDfG3vcfnuDvT+tNUIczYzyk1YU0tERERErsdCLRERERG5HrsfuERERIRJ2waFyYFgujuAbLaSAwv057J5TQ9E0/FoAeCvv/4y6WbNmgHwHihWqFAhn+O0NZ/JvIsXL3p9BngPqNDfk01lRJQdbN2i5LvQ1i0rLi4OgHf3K/1OBICtW7cCAKZOnWrySpcubdKJiYkA7F21ZFeBQLOh6WO2DQ6T25Lvfs5sRrkJa2qJiIiIyPVYqCUiIiIi12P3A5cI1BxvazKTebK5SjdRyWkijx49CgBISUkxeQcOHDDpm2++GQBQvnx5n206NW/ZRu/q7gdOcWjZ7YCIckJmojEUK1bMpFu1amXSO3fuBOAd23vfvn0mHRMTAwCIioryexySfkfaoiMEilNrmxaYKDfg3U5ERERErseaWpeQtZ22X97yl7ttxhzbLDtHjhwxecuXLwcAHD582OQVLlzYpKtXrw4ASEhI8Nm3HOjgFLOWiOhaoN9/8l1la02Sn+v3Z2RkpMmTg8YqVKgAAFi9erXJ0+9UAIiOjvZaTh6HLYa4/Nw2EEy+7yV9zPLY2fpFuQlraomIiIjI9VioJSIiIiLXY/cDl5BN/LZuBbrJDPA0Z8kmKFtz1LFjx0ze7NmzAXgGNABAw4YNTbpo0aJe68r9OHWNsDWf2WLkEhHlFFv3A/l+1U37tnedJLtiNWjQAABw4sQJkzdv3jyTLl68OACgbNmyJk8PkLVNgyuPL9DUurb3L9+vlFvxziciIiIi12NNrUvYakAlW1gs+QtezkKmZx87dOiQydOhvLp06WLy2rZta9JygIRmq70INChBh5pxWk7XmNjC7XDAAxFlB1tLlswLNCuXHki7a9cukzd9+nST1iG/9MyNgOedLcNvyRY3/c6W73b9d0DOIJmZ0GRE1yvW1BIRERGR67FQS0RERESux+4HLiG7H8gYhboLQEREhMmzNdfLrgIbN24EAKxdu9bkFShQAABQuXJlk1euXDmfbdqa4Zxi0/obSOY0kMG2fQ56IKJQsb1j5LsyUBcpm8TERADeMy7Gx8eb9J49ewAA69evN3m1a9cG4N2VQL5L9XtedknQn8suC5L+bvKdy+5blJuwtEBERERErsdCLRERERG5HrsfuIRTVwLdRGWLfuDU3LRgwQIA3tM4Nm3aFABQqVIlk+fUxKXZ4ijKpj0dyUDGgNTH6XRs7GpARKEm30s6LfNs7yP53gr0TtXvrVKlSpm8li1bmvTu3bsBeMeuTUpKAgCUKFHC5Ml3rj4+GblG5zlNg6s/t01dzu4HlBuwBEFERERErseaWhdyGpiVnqyJOHXqlEnrGtq9e/eavAcffBCA9+AwSdcOB4qJKGsIgl1HYk0tEYWabQYu28yMclk5QMu2nK11TA8YA4DOnTub9Oeffw4AWLx4scmrW7cuAKBQoUImLzY21qR1ra18p/qriZXHESiuOdH1iiUIIiIiInI9FmqJiIiIyPXY/cCFbE30ttiLZ86cMekNGzaY9PHjxwF4N3vpbgcFCxYM1WFaY9LqtG3gBsCYikQUek7vG1uerXuCHpArl7M1+8uYszJmbVxcHADgwIEDJk+/h0+ePGnyoqOjfY7D1t0sI924+C6l3IQ1tURERETkeqypdTl/M30dPXrUpHUYL8AzwKFatWomT88ollW2WuRANcu2GcdYu3B12GrNbWHanAbZ2LYTaAYn27WW94S//RBlllMoQp22hdey3ZcyX25T1rrqWltZK7t//34AwOHDh02ebD3T72nbgDTbMxXM50TXO/6VICIiIiLXY6GWiIiIiFyP3Q9cwqm53tZUph08eNCk5Uw2uilMzyIGAJGRkX73H2zTb7DLyWY6p9lxKGfIe0sPiAE810XmnT59GoD3/SLT+vrJdXSXBXlt5f2q9yOPQ8+iJNeRg3Bsx67TTvegLcanrbsL78Hrj23glNN1ts3AFRERAcD7frPFtnV6rzVp0gSAd7zw2bNnA/Cehaxy5co++5T70c/F+fPnTZ58/mzPErt0UW7CmloiIiIicj0WaomIiIjI9dj9wCVk05Gt2UvSTcSHDh0yebLZq1ixYgC84ygGO/VuqLAp7Nohu7PIqUF1Wl4rPRJbrqObRAFPF4FATbO2keeBomDIz3X3BqcuDbZ1bJEbGBc5dwjUvSTQ9Q90nwRav3Tp0gCApKQkk3fkyBEA3lFqzp49a9K2LmH6PS3vdds0urZngSg3YE0tEREREbkef865kG0gjByYs2fPHgDA3r17TV58fLxJ64EJhQsXNnmsqSLAPvBK1uLr2iNZO2urKQoUuzZQa4OMzWnbj65FljVStns40ExRRDkhNjYWAFC0aFGTp+PY6pnFAO8Zx/TntoFgMk+3zAGeezvQc0F0veLbnYiIiIhcj4VaIiIiInI9dj9wCdn0KpuDdfOqbA7+888/AQCbNm0yecnJySZdpkwZAEBMTIzPdpywCev6JZvjA8Ur1nQMTSe2QV2yi4xtml3bYEXbQC/APnDHNiBN7kc3ycrtaDk9UJJyF92dRg/SBYBy5coB8EyXCwDr1683aT2oTD5rtq4ztrjlRLkVa2qJiIiIyPVYqCUiIiIi12P3A5cIFB9Rfr5582YAwJYtW0xe586dTVrHTLSNQHdqvmL3g+uXUwxPnZbNm3p6Tqc4mOfOnQMAFChQwOTZYtfKbdruYds0ubIZVq8vuxLodeSx2bo5SLyvKSclJiaadO3atQEAc+bMMXmrV6826RtuuMFxO4GmjybKrVhTS0RERESux5pal3CqUdI1q3ImqN27dwPwnlGsYsWKJi1jJabfvqxBo9zBFssV8NRs2mYckwOrbDWwZ86cMXl6xqRt27aZPDlzkr73ZE2srm3VrQqAZ2CN3L88dn1stli7km1GMaKcUKhQIZOuVasWAGDixIkmT7eyAZ5WERv5TNoGbXLAGOVWrKklIiIiItdjoZaIiIiIXI/dD1zCqZlUD5TRTbwAcOLECZ/ldMxDAIiKivL5nM1VuZctpizg6QIg7z3d7C+7H9gGjW3cuNGkf/vtNwDA6NGjTd6pU6d81pH3pe5q0KtXL5Mn72EdT9dpUJhmm8KXU4jS1SIHUFaoUAGA95TQ8t2dmpoKwPuZ1F0N5H3tNGiTKDdiTS0RERERuR5/4rmcDqEkw3fpGqlSpUqZvOjoaJO21U7ZBoixFit3sM26Bdivv6xV0vbu3WvSixYtAgBMmDDB5Okap969e5u82NhYk9a1T3o5uf6YMWNMnhwM2a1bNwBA8eLFfb6HXE7S30cOwNHfl7W3lNP0O1new7YBvzIMWJEiRQDYWyUA3rtErKklIiIiItdjoZaIiIiIXI/dD1xOD7hZv369ydPNueXLlzd5emCNE91lIdAMTHT9kU2WshneNnhQDxA7ePCgyVu8eLFJ60FhO3fuNHkNGzYEAPTr18/kyVjJukvDvn37TN727dsBACkpKSZvypQpJl29enUAQHx8vMmzzaxka44NFMeWKCfoZ0m+p2X85k2bNgEAypQpY/ISEhIAOD+nOs1uCJRbsdRCRERERK7HQi0RERERuR67H7icHjEuux/oWIg1a9b0yXOim6vYbEWa7V7Qo7Nlt4Dff//dpPVUuP379zd5Xbp0AQAULlzYum0deUPGqe3Tpw8A7ylAV65c6bOfsmXLmrwSJUoA8I7QIKN66LTspqC72PC+p5ym77kqVaqYvMOHD5u0jvVcr149kxeou4ztc97blJuwppaIiIiIXI81tS6nB4rpmIaAp4a2dOnSJs8WX1T+qmeNFaWn748zZ86YPD0ATA8IA7xnD2vfvj0AoHHjxiZPx9Z0ou89WVOrY3fKATGHDh0yab1swYIFTZ6+d+UMTPJ+1vvhwBq6FuiBYrqFAfC+n3XLhIzfrGcSs93XgKc1Qt7jej8c+Eu5Ae9yIiIiInI9FmqJiIiIyPXY/cCFLly4YNK6aerkyZMmLyYmBoB9ClEnbH6l9PQ9cfz4cZO3dOlSAMCGDRtMnhyEqLsfyAFcmmwStd1vupkU8DSzyq4PuqsN4BnsFSj+sqSfAb1topzir5tLUlKSScu4yzoWtK37QaB40kS5FWtqiYiIiMj1WFPrQrL26sSJEwC8f60XKlQIgHMIJX95Tr/6WZObex09etSkZ8+eDcA7LJYcFKZn+pI1qPqe0uHAAO+Bi/rekp/v378fAHDs2DGTJ2ty9YAYGbLLthzRtcDffSoHUsq0fs+fPn3a5OlBkNHR0dZt20Iz8t1NuQlraomIiIjI9VioJSIiIiLXY/cDFzp79qxJ66Yp2RylY3jKZlg2QVFmye4Ha9asAQBUq1bN5DVp0sSkY2NjfdbX3QrkgBe5nC2G8ooVKwB4D1KrW7euSetBkLIbhI0cFKa7QcjngrE7KSfo92+gQV2y245+j58/f97k6fe9fH7kPcy4y5Tb8Y1ORERERK7HQi0RERERuR67H7iQjEmrox/I+IY6Tm1mmqDkOox/mPvIa667DcjuB3qq2pYtW5o8GZPW1pyvtyk/k3E2dReBrVu3mrwlS5YA8J7y9oYbbjBpHdsz0D0uv4/eD6Mj0NUS6H6V3Q90JIRz586ZPP2+L1asmMljNzMiD9bUEhEREZHrsabWheTgGV2LlpiYaPJ0nNqs/mrnr/7cR8a81INS5Exe+p6Qg7tkrauNrknS96XcDgDs3r0bADBz5kyTp2cskwPSWrRoYdIyBnN6Gam95cAaygnB3l96cBjgaY2QcckPHz4MAChfvrzJY8sDkQdraomIiIjI9VioJSIiIiLXY/cDFzpy5IhPWg4ciIuLy+lDouuEHMylYx8XLFjQ5OluB3JK2wsXLvjdZqDuCatWrQIAjB8/3uTprgoNGzY0eVWqVPE5jkDkvm3T8erPAx0jUVYE2/1AxhsvUaIEAO/uB3qgpryHbbGaZRcbdq2h3IQ1tURERETkeqyecAn5y1sOFDt27BgAoHLlyiZPzzbjFJ6Lv9xJkoPDZA1QREQEAO9BiGXKlAEA7Nq1y+Tp2b8AoEaNGgDsNal64BkATJkyxaR/++03AN6h6tq1awcAaN26tcmTA830McuQX/q+lve3TOtaaN7/dK2SNbV61rzNmzebPN0yJ+97vtuJPFhTS0RERESux0ItEREREbkeux+4hGxiSk1N9UkHmlHMFptTYrNV7qVn2gK8Zy/Sg6d0MygANG/eHAAwe/Zsk/fHH3+YdK1atQAARYsW9dm+jkcLAN99951Jb9++HQDQtGlTk9erVy8AQN26da3HrO/hQPe1HPim07JrBO97upYUKFDApHW3n7Vr15o83d2M3Q+I7FhTS0RERESux0ItEREREbkeux+4hGxikk3EOi1HzUZGRvqs79QVIX0em69yHxmjVTZ/ajpeJgDcfffdALy7wMyYMcOkH3nkEQDesW01GVmhZcuWJn3nnXcCACpVqmTyKlas6HNssslVTw0q71cdEcEW8UDm8x6na5WOOAJ4on2cP3/e5OnnTnYZsuE9TrkVa2qJiIiIyPVYU+tCssZLp2XtrPy1b6N/xXPwGPmja0bl/aRrUG+66SaTJwcpHjhwAID3vaNrlWSta6dOnUy6Xr16ALxrd3VNrIyha4s/6xST1sZWk8t7nHJCsO9X+Yzo1jf5vj979qzj9oiINbVEREREdB1goZaIiIiIXI/dD1zI1m1ANlvpptuMbEc3zdoG1tD1zXYfyLS8D/S9JaevbdasmUnrQS1ycIvuxiDvLRnHVt67mm0gjDwO2zZl2t/3Cfb5IAqVYLsfyHtTd/uRz4LuisDuB0R2rKklIiIiItdjTa1LyBon2wwyGalhtc3GZKuVo9xB3jtyUJi+J+S9p2tIZY1SVFSUSeuQYIEGIcr19fZlyC7bYEc5YEbPTiYHSOraX6faW1tNLtG1xNYq4tSSorHWlsiDb3kiIiIicj0WaomIiIjI9dj9wCVks9SFCxdMWs8oJptzbQNhbPE+bU1dTjOPsVtC7iCb6PW9JQeq2GarszV/ZqSp39aF5tixYwCAjRs3mrylS5ea9J9//gkASExMNHlNmjQBADRq1MjkFSlSJKhjCNRdQgr2uzlth89S7hNsFwF5b4WHh/usq7vgBJpRjCi3Yk0tEREREbkeC7VERERE5HrsfuBCsvuBnjYxI90PdBOXbOqyRUSg3McWE9N27ziNyNbr66ZTwNPc7tRkquPUyugHq1atAgCMGzfO5E2YMMGkd+7cCQAoXry4ydu0aRMAzzMBAA0aNDBpvWz+/Pmtx2H7Pja2aaalQDFJ2f2AnNi6H9iijwS6R4lyK9bUEhEREZHrsabWJWTtj6zx0r/Y5axMtoEssvbWVtPEOLW5l7yf5ExgOlasvHf0PeMUF9kW21bfm3I7ehAa4Gl5OHz4sMn78ccfAQATJ040eTt27PDZp1xn6tSpAIC1a9eavM6dO5t0jx49AAD16tUzeXrgm23QpPwetmdFnjfbMylj7dpmTaPcI1DtfvrlAM89EyhOLRF5sKaWiIiIiFyPhVoiIiIicj22iV0nAnU/CHbqXA5oyX1sTZ5On+vmT9lEL+83nS+ntLU1x+vpdAFP94OTJ0+avHXr1gEAtm/fbj1m28BG3ZWgVKlSJm/btm0mPWzYMADA5s2bTd4NN9wAAEhOTjZ5siuB/u62wZdOcZxtz1KgONF81q5vwV7fQNPkMj4tkX+sqSUiIiIi12NNrcvpWjLbQLBAbLMoMaRX7mMLIwTYB0TpPBl+S66va3rlOnpZp8FY+/btAwCsWLHC5On1Y2NjTZ4MZacHtCUlJZm85s2bAwA6depk8nSYLwBYsmQJACA1NdXk6drhli1bmjy5zYSEBJ9jtw2qlOdAp2XtrEzrZ8xW+0vXp1DV1NoGLhKRB2tqiYiIiMj1WKglIiIiItdj9wMXcmr21GwDVZwGtWi6Wcu2Pco9nLoIaPo+OXPmjHW56OhoAJ5BW4Cn28CJEydMnkzr+LJjxowxeVWrVgUAlCtXzuT99ddfJr1r1y4AQNOmTU3e3Xff7ZMnj7NOnToAPDFwAeCrr74CAEybNs3kPfnkkyatZySzdYNwOle2gWC2c8nBYblPRq65rUuY7d7yt25G90nkdizBEBEREZHrsVBLRERERK7H7gcuJGOJ6rSMC6pHmztNzemvWYtIs3Vj0feUU9cW272nlz19+rTJGzdunElv3LgRANCwYUOT16pVKwBAoUKFTN7Ro0dN+vjx4wCAMmXKmDzdvUCuExcXZ9I6Jm1MTIzJmzt3LgBg/fr1Jm/w4MEmXbduXa91AU/3BtnFQtLnQz6Tku0cEgHeUTL0/WOLAx0I3+2UW7GmloiIiIhcjzW1LiRnZtLpc+fOmTw9kCUjNbW6NoC/6kmz3Sf6npL3lq12ScapPXDgAABg0aJFJm/27NkmrWtbe/ToYfKqVasGAIiPjzd5tlixtnidct8y7m7x4sUBAF26dDF5pUuXBgDMmDHD5E2aNMmk582bB8B7YJved40aNUxeYmKiSdviizKuKAVD3rtnz54F4P2s5c+fHwDf00ROWFNLRERERK7HQi0RERERuR67H7iEbG7STVAyLQfh6O4HOmZoerZpPjllJwH26VwzE1tT3o8LFy4EADz77LMmb+fOnSb9wgsvAAAaNWpk8uQ9bqPvV7kfHZO2YMGCJs82YE2qXr06AKBUqVImTw4K0zFt58+fb/LWrl0LwLu7hJyaV3encOqiwaZjAuzPl5x+Wt/bsgtNVFQUAMYTJ3LCJ4OIiIiIXI+FWiIiIiJyPXY/cCEZH1OnU1NTTZ7ufuDEX/QDJ2wyzR1s8WdtTedylLYtKsHPP/9s8nT3Ax3zFQD27Nlj0kOHDgUAdO/e3eTVr1/f77Hp/ctuMwUKFPA6bsC7OVff4zJPRw+R8Wx1lwQAuP322wEA5cuXN3mzZs0CAHzzzTcmT0Z26Nq1KwBPrF0ASEpK8vk+lLvZ3qkytrF+p8tuLPoe5/uayI41tURERETkeqypdSFbnFo9SAYIXFOr2WJnOsXT5C//3EFeZ9s113my9vbQoUMmrWfmWrBggcnTNaP33nuvyatatapJv/XWWwCAZs2ambznnnsOAPDEE0+YvISEBJO2DXbUA2oCxYSVx65rfG2xQAFPbFv5HfUsZDt27DB5crYzfUw6zigANG7c2KT1QDI5sxkR4N2KYItTq1vm+D4msmNNLRERERG5Hgu1REREROR67H7gEnJggOx+oJtcbdPkOuGUndc22/UJVXOj3HagbfobjCK7u6SkpJj0d999BwAoVKiQybvxxhsBAG3btjV5tilxBwwYYPJeeeUVAMDbb79t8m677TaT1gPJGjRoYPL0PnXzPuDdlUAPTtu6davJ27JlCwBgyZIlJk8O+lq5ciWcyAFlTZo0Men9+/cD8JwLAFi9erVJ6wFxcuCcPF+hltX7KTvvx9wsUJxa3f1Axqm1TZPLa0HkwZpaIiIiInI91tS6kJwpLDY2FoB3Ta2eiUaGXZKhj/TAAzlgRqZtWLubvWxhqGyDoJzW0Wmn2lV9fc+fP2/y9H0gB6IECvOma2h/++03k6dDXAGeVoT27dubPB3aStZGyu/Wr18/AECLFi1M3kcffQQA+Oqrr0ze8OHDrenspAe0devWzeTp461cubLJ27t3r0mvWrUKgCeUGQBs2LDBpF9//XUA3iHMdC22DB0WaFY1+XxrtpkBZe2fXke29tius7wP9DoyL9BMbeQt2NruU6dOmfThw4cBeM+QV7RoUQDe599Gvs/19eV1otyANbVERERE5Hos1BIRERGR67H7gUvIJkIZ31KnT548afJ09wPZBCWbJXUzlNymbmLkAISrT5932WQpB//payWvn617grz+sgk6/edOs4NpMgbr7Nmzvf4LeO43AGjTpg0AoHnz5iavRIkSfo9Nq1ixoknr7gf//e9/TZ7s5rB8+XIA3gO59AxMBw4cMHmyW46OOVuqVCmTV7ZsWQDeM5jpgW0AUKxYMQD2AXbyXCUnJ5t0YmIiACA+Pt7kRUVFmbTuliDP4cGDBwF4Dzhr2LChzzYl2wxp8lrqJmrbNZXLZWTwYEY5dWsKNCNWbiVjG+t7Qs4gqWe+c+r+YZst0jYgjeh6xTcLEREREbkeC7VERERE5HrsfuBCsvuBbtbUTVWAZwStbSS0JJujbCNkbc1alD1skQ5ks7JsRtcRCGSzpK37gWxito1613lOUTL0/tesWWPydDQCOTJfxp/t3bs3AKBw4cI+xyObooNtCtXNrYB3bFuZzijZjUEf0w033GDy5Ln013Qvm9BlWkcnkdEcqlSpYtJ6OuAvv/zS5E2YMAEAsGnTJp/9AJ5pduVUwbYR8LKbij52uZw+zosXL1r3o6+//D6B3iP+ptu2RWiQx5ZbmsSD/Z4yOol+p+tuM4Dn3pLPMd/TRB6sqSUiIiIi12NNrQvJ2isdp3bt2rUm79ixYxneJgduXDt07aGsgZG1srYBQLZYorZZ6DJSA/frr78CACZPnuyzna5du5q8Dh06mLSuSZQ1gbqWWdbayVjLstZJy44aJ13z/I9//MPk6eNctmyZyQtUq6avj23wHWCP/6sHnAFA06ZNAXjH7dUzmi1dutTkvfvuuyZdqVIlAN411C1btgTgeQek36c+7/Jc6lpoW82+/G6yxjDQOrp2WK6jz428b2Xtfm6poc0oOVOfjn1csmRJk6fvmUAxjHl+KbdiSYaIiIiIXI+FWiIiIiJyPXY/cCHZ/UDHwpQDxU6cOAEgcBNudsanpKyT18Q2zbG8frrZ2Oma+psqU8Y4XrFihUnPmDEDgGe6TsAzKKx169YmT8d6DfQ9nLq45FQcTT21roxtq3399dcmPWDAAJO2HZP+Hk7Pl22QlLx+etpTPfgL8Ex/KrskTJ061aR37twJAPjll19M3pEjR3y2I2P96u4C8jvYuk7I62IbwBXsdbHdr/J7s4tTYHJAqL6+snuOvj94Lons+GQQERERkeuxptaFdE0P4BmYIwcY6JBeTrUxmtOMY3TtsdUK2mrGnEIo2WpD9exFcpDhd999Z9J6JrF69eqZPB2yKykpye9+5KAiW+gp2zrZ4fjx4yb90ksvOS73n//8x6RvvfVWk9YtIYFqISVbTa18FvW2ZA2cnpFMhm+qXbu2SU+aNAkAMGXKFJO3a9cuAJ4BRQBwyy23mHTp0qUBeA/K08ckawTl99ADkORApGDfHXLWNFvtLluGvPl7JgHPTH3yvMp3f7B4rik3YU0tEREREbkeC7VERERE5HrsfuBCsjlKN4/K5kLdbKWbjwHvZk3bYBDORHPtsMWplXQ8UNlsbBsUFGiwz8KFCwF4x6Hdv3+/Sbdv3x6Ad0xaGW81/fEA9u4HmZmRKlTeeustk5bfLT3ZTeHFF1806ffeew+AdxO87VzbOA2S0uvZmuNlXNcaNWqYtJ5FUHdTAIDff/8dgPf10/FuAeBvf/sbAO/Z0nTMUzkgTXaNsMU79hcXWX43WzcF270B2OMm5zb6fMi44vKdrd/pcmCw7EriD7scUG6Ve98oRERERHTdYKGWiIiIiFyP3Q9cSDbt6ikyZfcCPYJ29+7dJq9w4cImrZv+Ao1Qlticlb1sMWdl06yt+VpPTwp4pnstUKCAz3KAZ7S7jNE6e/ZsAN4xjmX82TZt2gDwTNEqydHvtu8hm6dt3Slk07ytOT4rNm/ebNLvvPOOSetmXNnVoEiRIgC8IzR8+eWXJn3//fcDAGrWrGnybMcpz4ft3DhdS3/kMeluB7obAuDphrRgwQKT99dff5n0b7/9BgDYvn27ydNT9MrvoyOoyH3arp9T9AKdtkV7cIqwwveJh45iAQCHDh0y6cTERADe10d2TwkWzzXlJqypJSIiIiLXY02ty+m4heXLlzd5ulZO1lhVrVrVpG01tbbaJ8aVvDr0eZe1XPL86+una2cBz4AcWVMrr9+OHTsAAOPHj/fJkzWxMkZrqVKlgjpeWw1coJpaGaM11DGS//GPf5i0HASl49TKz3XN5/PPP2/yHnroIZP+17/+BcA7PqzmVDur9+n0zPj7vvK8yZp4vY4cqKdj0spa1zlz5pj0mDFjAHhqbAFg69atAIAuXbqYvPr165u0vubyGG21rrK1SH9Pea71/SgHsNrWyc3086mvCeDdalKuXDkAntYEwPu5seF5pdyONbVERERE5Hos1BIRERGR64UpBih1NR17U8aqXLZsGQDvwWGPP/64SesBCJK+DThQ7OqQ51c388opM2VTtG4yl03E+rrJQUjr1q0z6enTpwPwvk+aNGkCAOjZs6fJq169uknLpuP0+5HxR2WztK1rhF5HNp3aurbYBsNlhP6OHTt2NHmy283q1at9jkMPwNq0aZPJa9asmUmnpKQAAMaOHWvy9FTBUkZeo/7iRNum0wU859g28EqeazkIbs+ePQCAGTNmmLxZs2YB8EylDXgGBAKee0FO0Wub5jhQd6VAgx3Jc90++OADkyenrG7UqBEA4KabbjJ5uktCdrAN9LO9A4iuZXzLEBEREZHrcaCYy+lf0mXLljV5ixYtAuAZCAR41+b4wxrZa4esibXVlsmaL13Lsnz5cpMna+g2btwIAGjYsKHJu/HGGwEA1apVM3myFtMWysk2e5T8XN9ntvBdgQYmZubekzWbcgCY9tFHH5m07Rza9i3Xad68OQDgueeeM3l6hjU5KC9QLWSgkF+27QRb+yuPQ6b1ACN5TXUtv35HAJ4abMAzUEmGdmvZsiUAoEyZMiYvUDhAfc1la4P8XB9nbq691edDhl6UNe36fOuwjbZ1Ab6ziaTc+0YhIiIiousGC7VERERE5HrsfuBCsulJN6kmJSWZPN2kd/ToUZNnawa0NVs5NWXlpvGETs3DWWkqDdRcaDu/Mq6nTOvjkE3vO3fuBAD8/vvvJk82K+tZifr06WPy9KAwORjEFm9V0vt2ijlqi0+qm6LltrM6KEzTA7kAzyCbHj16mLz27dsHtR3Z1UMOFLvzzjsBAN9//73J0033bdu2zfgBw/+MY7YuJYDnHNnOe6B4uHLQlx5oJGMT//TTTyatB5nKma103GvdXQXwjp2qZ7mydZ2QAxzl97HFyg70XIS6md0pDrS/4wg0q1pGnD59GoD3e1o+czomsZ45znY8md030fWKNbVERERE5Hos1BIRERGR67H7gQvJZjPd/UDGno2LiwPgiVMJAEeOHDFp3aylR0IDnias3NTNID1bk6k8H7qZNVAs32Dji6Zf1t92bJ/LaZCnTZsGAFi4cKHJkzFnb775ZgDecVt1FwHZ5CmbkP1FC5Dk97E1RevjDfV0uIB3NIeRI0cCCL7LQTA+/fRTAN6xQm+44QYAGWv2tUWDsH0e7HLB0NdArqOf+RYtWpg8GdVAR8+Q8YxHjBgBwBPjFvCeTlnHO5ZdEnRXg+joaJMnnxvbVND6eGVedsQz1tuXz7ncpu7iIbetv4/sQiGvT6AIHzpfdgPT0+PK5093EwKA+Ph4APbnMFA3Mdt5ZTcFyg1YU0tERERErseaWpeQcWZttWlyYI4eNCbjH27YsMGkdW1AhQoVTJ6/WY5yC/3dZc2IPO96YIf83DZwxzablqzVsQ1QyUjt07Zt2wAAU6dONXnz5s0DAFSuXNnkyYFMdevWBeAdxzTQ/oKt2QlUu5id5LW47bbbQr79ggULAgBuv/32LG0nM4OKslqzZltf32eyBrVKlSomrVt59PcGPPGOdaxjAPjmm29MWg/Q0zXYAFC/fn0Anpr79PQzIGspdS2ovIdsg8+cBhymX06mA53/QOfa9n4Mdh1JxqFduXIlAO9zJOON62thq6l1qjHWQjUQk8htWFNLRERERK7HQi0RERERuR67H7iEbNKW017qpinZ3KSbsORAMd3UJT8vX768yQvUJJcbuiLYBjTJZj4dr9MpXq1uFpXXytalwTZlqi32sLR//36T1oPCZIxWfUwdO3Y0eXoAD+BpbrZdx9w8VWlu5dSEX7x4cQCegYWAZxDqlClTTN7s2bNNevr06QCAw4cPmzw9CEtOwSwHs9oGL+ljcmo618+ifL70sxrombR97tTNwd+7MCPr2MhzpAfl6QFhAFCzZk2T1l1AbOfIFsM4/fER5Ub8a0ZERERErseaWpeQAypkTZ5Oy9rbihUrAvAeKDZhwgSTbtSoEYDAAy5yG1stiDwvOhySrA2RNZ8yRJBtfU2ur2uddC2w3M++fftMnqwZGzNmDAAgOTnZ5PXr1w8A0LhxY5MXGxvrsx/53fS9I++n3FAjn5vp63/mzBmTJwc72gZ2NWjQAIB36K/WrVub9K+//goAmDt3rsmbP38+AKBv374mT9b+6kGqct+B+Btc5jR4U+fLd12gAWk2mRkoZnPw4EGT1gPvOnToYPJkGD7boE7bzGY2nHGMciuWZIiIiIjI9VioJSIiIiLXY/cDl5DdC2yxG2XzW8mSJQF4NxfKpnE9WOHo0aMmz9/sNbmFLWasbK7Xafm5bSYip0EcmmwK1evI7ezYsQOAdxxaOZuTjgEq44LWq1cPgHeXAxvbsXFwSe6h7zP5PpHN+ampqQC8m6/1IMMSJUqYPHmf6S4L8n2zdOlSAMDMmTNNnp5BC/DEUG7evLnJ0zMdSufPnzdpfe/K7gW2bgO22fvkc5iZGbZsMy7aZuJz6sagux3ILmH6++jBeYD3OfZ3HPI9LffpbwZDdkOg3IA1tURERETkeizUEhEREZHr5d62ZpeRzYWyCVk3gckmOT29ou6GAHg3cR05cgQAsHnzZpOnp1HNzd0PNKfoBvpcO0Wi8DeC2mk0ss4/ceKEydOjyBctWmTyZDNst27dAHhGpQOeJmLbFLzyO9liazIKRu6hr7nT+0RHyZD3hF5WPhc6QgcANGvWDABQrlw5k6e7IowfP97krVq1yqR1NwcZhUHHVS5durTJk8dho58/+XzJ76PXD9T9wDa1bqApeGW8XFs3Ikm/a3XXIsDT1UC+p+X0xDa27ge24ws0VTDR9Yp/wYiIiIjI9Vgt5xKyBkAO+tK1hvKXu/5FLmfw0TWxgKe2YMmSJSavatWqAICoqCjr/nNr/FLbeT179qzJk9cif/78Puvo8yZrj/RygGewnrwWunZL17gDQP/+/U1az9Kka2clp+uk7x8Zh9Q2mxnlDraa2PRpTdfQ2mbXAzz3sxzo1alTJwDesxbOmTPHpPUgyK+//trkrV+/HgBw1113mTxZ+6uPQ9bu6mdStlTJGmX9fMr3p+072mp3A7XCZCRW7OrVqwEA27dvN3m6pUXWTMtjt9UyB2Ib7MoaWspNWFNLRERERK7HQi0RERERuR67H7iQrVnMNhBJNl/rOKYAsGHDBgDeAzeOHTsGAChUqJDJk01htjiNuYH8vro5UDZ12gagyC4J+hzKLgfycz0YbOzYsSZPdyuQMTzl9Ld6+sxAA1VsMT7l1JscFJb72LrDyPsg2IGitntHPgt6wFONGjV88gDPwNWFCxeavLVr1wIABg4caPJuvPFGk27ZsiUAoHLlyibPNnWubZrcQE3wtml0bedCbse2H/m+OHDggEn/+eefAICTJ0+aPN0lzBafV+7LNqBNXr9A67D7AeUm/KtGRERERK7HmloXsg1EsoW+kYO+9EAwwFMbKwct6JAzemYxAEhISAjNAbuMPJcybQv1Y6vNljWoOk/WzsrZwWbMmAEAOH78uMnr3LkzAO+aWjnoTw9Usx2nzJO1V/4GhTmF9GINz/UrUE2eLSSUJGspNXm/6W3KFopKlSqZtA5nJe/radOmAfCuvZ0+fbpJ67B3MvydHmRVpEgR67GFOkShPFe2betQZQCwbt06k9YDQmVLmB5EFyiMl2SrqQ0Uuo8oN+GdT0RERESux0ItEREREbkeux+4hNNMUTa6iUo2jRctWtSka9asCcC7qUzHSZWDFmzdD5xm4bkeBBqEYYvXKdO6OdI2KGznzp0m79NPPzXpU6dOAQD69u1r8rp06QIASEpKMnly0JduXrXNfCZj6MrPdXxa20Aypxi6cn26PthmpLI907ILjb5nbF1t5LKyi41tYKLsFqAHQ7Zu3drkVa9eHYD34LARI0aY9E8//QQAWLx4scm75557AABNmzY1eTIObWYGvtnea7Y823v40KFDJj1v3jyT1s+V/o6AZyCv0wyGNrYZw9hliMiDNbVERERE5Hos1BIRERGR67H7gUvYmvsATzOfbHKzNWHJZmUd81THpgWAmTNnAvCOkiDTcnrVqyW7uz7o7dumqgQ85zpQXE/ZDDt//nwAnqZTwHsEdPv27QF4phUFPF1AnI5DX3+ZZ+v6YIuxK7ep15F5HDWdOzg1U9ueAVvsU0kvG+gdJKMj6M9llwTd3UZGbZHP14IFCwAAa9asMXmjR48GACxfvtzkyaghOh0bG2s9di1Q3F197PKZk8+azt+zZ4/Jk90PdPeIG264weTZoh7Y4gfbYmHL62PrJmTrrsauCZQb8C8YEREREbkea2pdItCvbFutgiRrUSpWrAgA2LZtm8mbMGECAE+8WsA7jq2OMWmrwcnIIDbNKRasLc5ioNiMttnO/M3GI7cl83StkFNtpT6vthidAHDu3DkAntpZAJg6dSoAYOvWrSavV69eJt2hQwcAQJkyZXy25zQYxEZ/T3md5fmyxTG2zYJEBGRskKC+N233qNOgSn0/2mI+y5aMVq1ambRuwZCDXnXt7erVq03ekSNHTFrHf27YsKHJK1eunNf+nI7dFqvX6f2ma2j1zGEAcPr0aZMuWbIkAM+7F/A8f7Z40oGOKdjl5DE7vQ/0eQgUm5jIDVhTS0RERESux0ItEREREbkeux+4kBw8YWsm1M1MsolJNkvrgRhly5Y1eVWqVAEA7Nq1y+SlpKSYtG4+sw1usDV1yXSgpjA58M3fgDRb7EzA0x3A6ThsbAM/AsW0tA3ckPFjN23aBAD4/vvvTZ5ulmzTpo3J04PDAE9TqK1rhW36S8AzQCXQVKfyHNmO3d+6RKGQ1VjH8pmsUaMGAO+uOvq9pbv5AN4DtDZu3AgA2LFjh8nr3bs3AM87DfCOp6ufFdktIFDXpJUrVwLwHsRWrVo1k9bvWtv7zTYVN2B/LvV7Qr53JH/vMPmOketfC4OAiUKFNbVERERE5Hos1BIRERGR67H7gUvY4hfKtG0Uf6ARrLL5rW3btgCAcePGmbxFixaZdMeOHQHYux84TTHpr4nfaeSxv5G8gaIfyG3aohsEii+rOTXtybiUmm52BIChQ4cC8G621Oeta9euJk+ed5tAcSWDjSXLbgV0LbE98/L51N2LZDcj+ZzqtOwqUL9+fQDe03vXq1fPpKdMmQIA+OOPP0zeqlWrAAA333yzyZNRFvTzaXtHyHfZgQMHTFq/K2X3rTvuuMOka9euDcA7csqZM2cAOL+XbM+vbYrsYKMfyH3bujbZIqQQuQ1raomIiIjI9VhT6xKBat3kL3Pb4AzbL3dZ69qgQQMAwJw5c0zevn37TFoPGtMz4wBAQkICAO+ayWBrB51qG22Dy3Q6lDNf6RoRp8ETmqzd0MsuW7bM5P3+++8mrWtpdK034BkUJgeN2AQa9EXkdrImUL8zbK08Ti1Men35fOh3mJz9UM9MBnieX/le07G4dS0uABw8eNCk9TtOD+IEPLFxde0q4KnxBYCdO3cC8B50VadOHesxaTqudXR0tMmz1Q7bWqgCvf/kOrZzbau1DRTXmsgNWFNLRERERK7HQi0RERERuR67H7iEU3OTbiaSTUe2qWZtzVGyGU/HUWzUqJHJmzt3rklPnDgRAFC4cGGTp7ssyIEdMh6u7Ths8VJtXQ1sTWFy23J9f01lgQahyXXPnj0LAIiJibEem25iHD16tMnTcTABz1Sc7dq1M3nVq1d3PDan4yS6HslnWje9y8GXuknc6Zm1dcvR7x65nJxm95ZbbgEA1K1b1+TpqXVHjBhh8uQzrbsV6EGeANC4cWMAwIULF0yenA5b779WrVomT74rbbFvbd9Lvm90VwfZNUJ3kZLdHOTAOZ0vz4eeNliuU6RIEZO2DSy2HSeRG/AvKRERERG5HmtqXUj+ita1H4FqNOTntppN/Wtf1k7IgVO6VkPWPOrQN6VKlbIep96PbeCHPAaZ1scp8/R3lIMobDOSyf3oWh+5TqAwN7qGR56/1atXm/S3334LANiyZYvJkzUzt912GwDvASb6+5w+fdrkydqpQLOYUegFCnVH2UO+g3Srixz8qZ87p+dcXze5Hb2+bC2S7y09e6J8R914440AvEPryUFjuoVKPvstW7b02c6SJUtMWg8O7datm8mzDTKV3zc+Pt7rewOeWlXAMzj3l19+MXnr1q1DesWLFzdpvf+bbrrJ5P31118AvFug5OA0nR+oVYvIDXjnEhEREZHrsVBLRERERK7Htk+XcBoMpZuJAnUvsDXZyWZYvU7p0qVNnoyzOGPGDADeTXI69qJT9wPNNhuaU1xWf3EY5XK27geyuc+2vuy2oZs45Tb1OmvXrjV5U6dONekVK1YA8AyQA4DOnTubtI6VaRugZzvX8nPbcRBdT2xxUm3PgtMAV9u7wd/MZHL7skuDbq6Xg77kINSjR496HSMA/PnnnwC8uwckJiaadM2aNQEAlSpVgj/yOdfvI/1uBTzvGAA4fvw4AO8uC3r78vvKeOM7duwAAHz//fc+30e+z2W3Kdux2WKdE7kB/3oSERERkeuxUEtERERErsfuBy4hm5tskQ7k57rJTjbtyeY3W9OfbrKTI/PLly9v0l27dgUATJgwweTpqSfl1LlyJK7t2HXaqbndNgLato7tfNhi5DpFWbBFZtBNi3/88YfJW7x4sUkXK1YMgOdcAEDr1q19jl3SefLYJNm8qunrcz1Pl3tuvad5dMB9rwAAFt4y1ORt/E/z0OzooifG57rfRgEAhowYafL+WH8iLVHWcw8PeHqgST/cOS2ShSfCZwac22aSs77z7HP42LRIIot2eBYtVL0XAOCJ558yeX0bFjVpT0O4fxd3TTPpIS++AwD4dNFxk1e91xMAgBf/706TVy8hyI1nke2Zl/e/rfuBLTKKZOtqFajpXDfHy+mudQxqwBMFRXYz0rFiZRQTGWGgSpUqAOzTz0qnTp0y6W3b0u6PYcOGmTzZvUu/V3VUFcC7C4Emu1uMHTsWAPDVV1+ZPN0tSkauscX8Zhcouh7wziUiIiIi12NNrUs4xaG1zcBlG1ChZ/ABPL/SZa2CJrcTFxdn0nqWLDmIStc0jBkzxuT17NnTpPUsZbL213a8kr+4rXIdW82zrKGx1cTK49CDNHQMR8ATD1LGgtTfAQD69u0LAKhRo4bJs9XG2GZDc4oBqZeVtS36e1w3gzX+f21pyjd/N1l/n+apNaqPtEE4fx4+j5C46Lmmw25uaNL9F6Rdt36vPGnyPnokbWalwxs8NamD+3paKN7t8gMAYPp3t5q8yoGqTY/OBAA827iLZz/oYNL/+Pf/0vLKeFbZOetrAMDAlp7Md5+badLTBzYDAFgrVfd4ZsPqW+Nzk27xe1rN96z/eeqZjy98AQDQrZNnwNPPC54w6drBVglnkX4ubTFp5bMg31G2Aa56FkD5HMoYrDpfxpaeNGkSAM8siYBn0CsA3H777QA8M3oBnvenrOGUg610C5VTDaf+brIm9rPPPgMApKammjzZCtS9e3cAnkFogOed7DRwuEKFCgC8a2X14LKiRT01/7b3rNNgViI3YU0tEREREbkeC7VERERE5HrsfuASToOk/MWkdVpON+/Z4hLK5fTUuYAnFq2eLhLwNMktWLDA5Mnmeh0/MSHB02iq92mb/lLuXx5boMEgtsFy6T9Lv08dz1FOdamnpUxOTjZ57du3N+n69esD8G4SlbEugx1wYcuzTeHrZhcPzjXpt7v3BgBM7+2J+TtxdKxJ/9xyUEj3veWb/ibdf1YPz352pjXx9yxqaWMX00P/rYvnHu9Uux8A4F8/e/LG3eqZXtXjpEnNfCWtq8LbUYNM3vIl/zbperZRZx3TjrNXh6dNVt0bPV0eBndJaz4f2Nj32FeP8gxsy/+N51n8v6a+nRWK9/wUADBiWQWT991CT/eDt1pZji0b6Hvc9mzLpnH5nOsuQ7IrlV5WT4eb3oYNGwAA48ePN3l6GtwyZTxdPeQALN3Ev3z5cpOnB481a9bM5MnpsOUUtDZ6cJrsvqUH2srBpnq6XQCoV68eAO/3sObUzUF3g5BdpHSXBNn9wMZpUC2Rm7CmloiIiIhcjzW1LmT7RR2odk/WeOhaQTkgwzYzmW19WVOrw9voMDKAd82nrt2Q6+iBFk6zBvmrIbDVzsrvI9fVy8qa1D179pj0okWLAACrVq0yebpmuU2bNiZPpvWxy5oieQ51rVGgsD62QX1OIb/caufEz0x693/SQidN7eaZrS4cW3zWybq0e++75+ebnFpvfWHS1hpai/DKD5j0x299BACoMXCUyVt96/8BAGrLlQ5MNsmPPkirtb1/0qMmz1o7a5HQ9mWT/vz+T02668dptdxPf9vN5Om67uMHt5u8pAaB4nOlnYPCpTwDo/afPCk+j0VOsLWu6Dz5/NhmCjt/3jOgUA4K03bv3m3SevDnzJmeQXd6m7169TJ58vlbuHAhAM9AWADo1i3tvMv3QZEiRXyOXZIzGOoZyWRNrT4OOairdm3PXaW/m3yH6XdcZKT9htKtYrLmWbeyFS5c2Gc7gH1Aqq3Vi8gNWFNLRERERK7HQi0RERERuR67H7iEbOaWTUe62Us2IenmKtnMLWO0+puFTDaj2dJysIEeNHH8+HGTJ5v5dDN9fHy8ydNNbbbjATxNdrZBbJJs2tPnw9aEf1I0rcq4lLNnzwbgPcDk/vvvB+DdBCg/19dAHo8c1BLsLEk6tqbMdxro4lZl7hpu0kMs8ZCzxV9pA3smHapisu5pU91p6aBUb3MPAKDKk7+YvCVb/n/3A89YK1xcPcekf0FaPOMJLTLTlO9Zp0WPvp7sPmmz3C372tP9oO3/P611uwwweXe94plJakDLtG4UXnF1/38M3U/fKWGybpqdM10ObALNXGXr3iMHnupnUcab/vnnn0168uS0biF6xi8A6NGjBwAgMTHR5E2b5pmJTXeh6tLFE2e4Q4e0OMO2GROdyOd8ypQpXtsGPAPE5IyM8v2qu1nId6HumiHf3bJ7gv5OLVq0MHm2uOT+Zj8ErqMY2ZTrsKaWiIiIiFyPhVoiIiIicj12P3AJ2dxkm3LVFo9VNoPb1pGf66Yu2Zwu07bmqhIl0powmzRpYvIOHjxo0jt37gQA/PTTTyZPR0QoX94zFant2Gyxa2WTmG3aYLmOjnSgoxykT+tmOhmZoW7dugCA2FhPc6zcpk7L4wh25LA8f7bzahsFbtt3IE7dR3KabQrm7HZxxxoAwBK0M3mvVsviRpOrAgAawxNRYd3O/58Q3Q+2bUnx/E/j+wAAlbPYqh9bxtMNpsr5XwAAW3Z6Pm/7//cf2/ZFk/frmjtMumXJtOl4ExI899upU2ldgQaMnmDy/pbk6c6klG+s5UD0vRnovrdt0xYFRUY3kJ/buhfpaWd1NwPAO262nsq2c+fOJq9atbSb4scffzR5/6+9s4+1qjrT+GNSx1pGCwIFW1EqgogKBdEoWltRR6XUWkdb+mEzTcfJTKcd20n7zySdNJk0TWcmsUk78Q9jkzo2amtTtEJ0UKmIWEBEBYELyIcCVQEBQepHbeeP67P2s+9991n33A9gXZ/fP3dlnbP32XvtfTaH932f5123bl0a03+WrcGBevkCib6zWha1b9++NGabXvrV6j5HjRoVniPLCqLnRZNLDD1t9RkWHW9vrpUxJeBIrTHGGGOMKR5HaguhqYg/imxGcxGR323TNpzX46BX4vjx49OcduBi9GTp0qVpjpETFUapOIJRici7tilazfmdO3emOXbr4d+uzJw5E0A9ghN1BdLj4LrnxC25jmE5T9oo8tWbSG2OVt3oSuSFrfQcPjfNva+vAePjO71Ch8vU8nejbilUCmB7RyUAwtE3AgD6LLUZMjQNR7wbKX5OIrVVpLgSTk39lwfS+JV/2AMAeGlvFT0cMrwzQ3HsUdVcdG/pvRF993NCIm4fZVSaPifKMEWRS3YDBIDf/rYz4sxugED92XLdddcBACZMmJDmGDXVZ4M+g/7m3e5yZ511VppjBLSpSyPPUyO1KhSjaFbXg4I3Fc0qfBZGzzo9jqYMVlfaicQ6UmtKpdx/wYwxxhhjjHkX/6g1xhhjjDHF4/KDQlCxQJQC07QT01lRChGo0ng6F7Vd1FQa36vpQH4mxV8AcOaZZ6bxnj17an+Bqm2liii++MVK3MISgKglrh6PHsfBgwcB1Msc6Em7e/fuNPeNb3wjjSlui0oOmlJ7PU3JRdcnEpUoUWo3agWcI3eMek/oepKcl2URnFeJej5yOD5/yikAgJMPx2cr7+8UhUXWqn/+c1wWwPsjagWtzxhtTxuVIkT3sML7WT+H723ybGZLa23L/fTTTwOoC7muv/76ND7nnHMAAI899liau+uuuwDUSw6uuOKKNKZ4VL8LWhJBovPW57SWFbB8QZ9bkfBUiQSjpKmso9jvrDH9hCO1xhhjjDGmeBypLZDXX389jRl1HTp0aJqLoiTamSeyAcuJQRjBibqZadRg+PBKUkOLLD1eRkkWL16c5mgNBgCf/OQnAdQjqNy/fs5LL72UxozgUDQCVFGST3/602nu3HMrAZF2ExpIojXKEQm4omhNFP1tJ2ozaLsGHV091g7LGf5V5+cfelOznhNZAAJV9D6y0mqKDnIbvW95b+k9pp/D55a+HgmmHn+8slKbP38+AGDVqlVpjpmhWbNmpbmpU6em8YoVKwAADz/8cJrbtWsXAOCzn/1smjvvvPPSmHZY+szkdy0SbQHVemik9rjjjktjRn11n/v37wfQbM/VShSm66+CNIpltZPimDFjaufVdXtjBhOO1BpjjDHGmOLxj1pjjDHGGFM8Lj8oBE1RaQorEn2RplR0lHZmClHTZ0rkw8jj0G00Pce014wZM9Lc6tWrAdQ7+CxYsCCNR7+raqGfLVCl7g4cOJDmKBABgN/97ncA6j619Jq89tpr05x27iE5P87DkabLlRpEczkxSVRyUrInbUueXJ+G22V6XPd3DgzPbAEAbJGpsYfqs3tIVD6gYxWORr7XkRiySZjaahsKqIDqeUIfWQC4//7705jPDi1XuvrqqwEA06dPT3NM6wPAvffeCwDYuHFjmps0aRIA4MILL0xzfFY1nU/kUR15WOu6agnVRz7SKVlUEdzatWu7nW/UXUw/k897Fdp2dHSkMTuW6WdHzz1jBiuD9F81Y4wxxhjzXsI/ao0xxhhjTPG4/KAQNNWlHpGRrytTiLqNpsXoRqCvR+1p1aexVfpNvSY1bcltNLU3Z84cAHWngiVLlqQx/WW1xOKMM84AAKxfX6WV1Xdyw4YNAIDZs2enuUsuuQRAc+qNqdCorEPPu6kcIyJKW7ZyjVCi8pBceUCUDm5KEUfq7cHGXx/3rqPFm9W9091dtE3e7vwuvSVTU07p7kA7ZKi4abz1Tv989jtS6oNOdf7ph8h4V+8T3rtNz5Pofn3zzTcB1O9B/V7pM4zQxeT2229Pc+p0wOfAl7/85TRHRxM6GgCVSwJQeVdPnjw5zd1www0AgFNPPTXN6bmxfCHnxatlG1wPfZ+e78c//nEAwPbtVUHMwoULAcQuCUBVUqElGnR9+f3vf5/m2I5cz+krX/lKmqOPuB0PzHuBwfsvnDHGGGOMec/gSG0hNHW2irrOPProo7W/QL2zFn0NoyiKzmkk4/LLLwcATJgwIc0xwqARiyiao9FORltUzMGOYACwfPlyAHVv202bNgGoe01SMAFUHpP0uAWAU045Ba2Ijq2vvq2txFg5UZfC9WwSdUWRsShSGxF5Yh5uYVx/MeqjHwMAjEQVqeuogvu4ZALaZ3OniOdJSMeqUd0daE+ZWImO8P2VAIBNVcAY43phWvv21ipKuezdz/9e0B2sr0RCz6jLmN47Uee5SCgWZXuA6h5/4IEH0hwjjhRQAfXvNLt+adSV4lDN/Oh4ypQpAOo+thMnTux2bIws6/lE0eqmboNRBkTXg53N9H3DhnV2fNMM1A9/+MM0PvHEE7t9Dr18tYvjtGnT0pgevZqh0vM0ZrDjSK0xxhhjjCke/6g1xhhjjDHF4/KDQtAUf5Qu1LQYWySqF6wKC1gicMIJJ6Q5jrXl4tatW9OYJQLaWpJpQE1vRT62mj6j9yJb6AJ1odlzzz0HoBJ4AFV6jj6VQL0MgutBwRgAvPDCC+iKCjIoAolEd+olyeMFei6y6k06P/LwzJUSNH1mtM9oruRSg5CpFwMAvnTM99PUgytfTuN/nNC+X+f25fcBAJaNvC7N/fiM7u8bNf1TaXwh/g0AsGTl/6S5y8/rtkkDVc3Ck4/+qpq+6mYAwNTju76/70RpdC0j6vpaV/g913Q7v5N6v9FDFai+5/fdd1+ao18rS5QA4DOf+Uwa83nzyiuvpLkHH3wQQCW6AurPE5YsqCdtlI7Xc6PYNWol3CR8I01evR/60IcAABdddFGaYwnBr35VXeeVK1em8ebNm7vtk363p512WpqjJ7fOD9oW2MZkcKTWGGOMMcYUjyO1haDCKo0kcqyRhksvvRRAvauMRg2GDh0KoBJYAZWgQq1xVJj161//GkDV8QuoOvvonEaRKebSyAntafTYVOhAQdpvfvObNPfEE08AqFuDqZBs7ty5AICf//znaY6CCo1GjxxZ2S599KMfBQCMHTs2zVGYoQI53YZr3NRBjdGRKPKV6+Slr2t0uF0iIZgyqCM4R3dGwT73neqazfjB/6bxs9d+BwAwOaebefvZNLzzR53ipTH//P00Nz3aftxVafhPV90IAPjaT6tuWN+8vbKbq+7IgFcfTMNb/vu1NL7m558EAPSXo1fTfcJ5FWLyfm/KyPD7rfc1syIaVV20aFEa33PPPQDqAtYLLrgAAHDjjTemORU8bdmyBUBdAHv33XcDqL7vAPD5z38+jc8//3wAdWEVj7fJuo/jKOralOnICcl0vQijqjfddFOa03WP9snz1KyTjgf199uYHuBIrTHGGGOMKR7/qDXGGGOMMcXj8oNC0JKDKK2lqTCmo+iDCNQ7dFFkpR6QTO1HYg4A2LFjB4B6OvHAgQO1YwBi39cm8UR0bldd1ZnGPf74ShGzYMECAFXHIaCeOjzrrLMA1MVnPA6K5rqOKXxTYQbFaVraoMdOUZmu6/Dhw9OYpQpajsH0KYUiADBixIg01nPvD97b6cfOe+KCf707zXzr9plpPPvLQwEAv7y56kh1/oc7RUFv7KiElHd8+3Np/N293wIAPPLNqlQnrl6oCgM+9+NbAQC3Ta7EZZeNnpvGd3+vszxofJU1xv4NnaU+//H5aptfzvhpGj97bf+2EmtKo0cerZEXtn4vWFIUlc1oCdO9996bxuyMxe87UInC1GOapUdA5WP71FNPpTk+t1QIps81fj9zHdD0fFqJ5KJ1UZrEndxOyyQ41ueJ7jPaF1/X9+mzneULkY+wMe8FHKk1xhhjjDHF4x+1xhhjjDGmeFx+UAhNbXIj6DXL8gCgXhbAlJ16HXKfe/fuTXPquEBnAHUTYPosl3KLjl1LFjSlN27cOAD18gOm9VXBzPQlUKU96cag+9F038svV56l27ZtAwBs3749zdH5QddN14BpPnVz2LdvX7f9U6Wtx6zHrudGT0y9PixJUA9dVTjTvUIdJLifw98Ss9Mv9NtHVWn/H/d008erbY4KN/pWGj3yl07f1kuit51Qzf7n4/+Xxsd+7m8BABd85MZumwDVfTLyE/+exoue/C4A4OMtLQvqHD3h7wEA91SZc3zz+mvSeMJ/vYnudF7fM//utjTz1C1fqrbpp8uaa6ccfWdJ5EOr+9Lv15o1awDUnQr02TJjxgwAwKc+Vfn70oNVParnz69aHtN3W8t36ENL5wTdj6Lnq8dOtOSA45yLiT7DuP/IEUHRZ11Pfa9ztONnbcxgx5FaY4wxxhhTPEf9xf/NK4I9e/akMYUZQBWhUzZt2gSgLrJ45JFH0nj27E7PTO1EQ4HBL37xizSnXcgYoVUPyOnTpwOoRwc1+pCLCrVC98MIqYrU6JsLVAISXYtrr70WQHWuQD2yyWiMRl3ffPPN2ucBdd9Ivle9NTU6xaivRn8ZUdZtNLpLUZpGeOihe9JJJ6U5FZ+dfPLJ3V6nII1RXKB+nzA6FUXNda01itU7gUnnGu15aW+aieKSvaOKpg4d3Smu6X7353l7/8403v36u1G5ISL4O25go91v7Om8J/bKwhwztPP6DuvNCbUBv4t6j0deywrfG/mlApWIVJ8xfI7ovi+++OI0vuGGGwDUsxb0sb311lvTHAWdQBXd1WcQvwtNgstWoq+cOEy/C3yvvk/XkNki3UZfJ7q+kR+uRn85r8/X6Pq0EpS1g54bj0OvszEl4EitMcYYY4wpHv+oNcYYY4wxxePyg0JQj1VNszPtpSmsjo4OAHWRxc9+9rM0pgBJBRVM302cODHN0f8VAMaPHw+g7iHJ/WjKLCdoi9J8UUotJ6LYvHlzGi9ZsgRA/XxZNsD2vwAwZ86cNFaRHInKJXQclSyopy0FZnqtOBe9D6iEaCpIY8qV5RBAJf7T/WsZA7fRNddSBAr99JpTcKMeulrSwO1VpKYlDSUQeavqXOQ/2tfPie7xXJvkiJ6mkJv8Y6PP43u1rCZKiUfHofvWUiD6zy5cuDDN8X6++uqr05z6x/IZpu2wFy9eDKD+PLnyyivT+BOf+ASASgQaHWPX8+G+ohKLpu955AVLdA10zH3mhGLRfdDO9RtIz1mXH5jBgCO1xhhjjDGmeGzpVQjarSeKbOr/srdu3QqgLlg69dRTu22jEcc//OEP3T6HgiWgivSp2CqKaDR1Kur6ei7ikNuPHhujCRp9okju2WefTXMaBbn00s6uTtOmTUtzjEI2HRvXXddIhS6tIr1NYhBGWCNrMBUHqh0ShTl6fXfu7BQ/aURXx4ys6Ry318i/Cm4YiddILa3JNGKr2/C9ep9wTveja9hf1kY5+hLliiKxvd1fdJ+0ig7mtmkn2RaJA6NIYfSMURu9hx56KI1XrFjRbRtabZ1//vlpTp9R8+bNAwAsW7YszTFKrIIyFbNGzzBmM6IIpxJ1TevN9Ytsvpr21dPufk1RZmNM+zhSa4wxxhhjisc/ao0xxhhjTPG4/KAQcula9URctWoVgHq68Otf/3oaU/SlKW+mE+fOnZvmdHt265o8eXKaGz6809szEpc0EaXXcuKKCE1l0kNXhWCnn346gLp4TL1tmY7X/bAUocnzMlr3yOtS1yPq0KS+k0z9a2pePWmJpohZZqFlDJxTQZqWL/B8WboAVGUOWsagAjyWKuj14X2ox8v7AKiEZvQPBSpxmgrStGyDpQpaBpHz0G3lu6tEaefeoNeZa93k75rzEm0lIMqVH+g1j9aop6Ucupa6z6ibFu8T9a2+77770pjXkiU9AHDZZZcBqLr0AcCCBQvSmN9LFXJyG/rRAnWxYwTvx+gcgOq7NhAlLgMp2jLG9A5Hao0xxhhjTPH4R60xxhhjjCkelx8UgqrWozStep+yrEDTY0zHA5WKOPJGVTWytoDdsGEDgMoFAahS0Dkvw8gXNPdedTJgulbPW/fDFKOmTD/2sY8BqKe5Na3PVOiPfvSjNPeFL3wBADBz5sw0x7ILoCrxiMoLFE1/8nyaUtW8RlqSoKUmEVF5BNdIU9tjxoxJYzpdqItCzkOX2+h98uqrrwKIPXJ1X0899VSae/TRR7tto58zbFhny1v1DmbaWUsb2AoYqEoa9Jryve3cjzkvUr6u1yxyydBtqMjXz2kqP2l1HNHrOU/n3PlEzg16v/GYtUzlrrvuAlD5QQN1P2P6z+qzgeVM9J4F6vfZrFmzANSdDuiRraUtPV0XXWstxeJ31aUCxrw3cKTWGGOMMcYUjyO1hdDkX8go2bZt27q9V7tHRYILjYgwqqfRUO1oxahdT4VcQOzRSnICnuj1qINP1zGJOqRp1JaR4KVLl6Y5RpUYjQTqXdXojatRKo265YRkJOo4peSiStHncA2aIoKMLjIqqsfRdE35ukbYGOnVNdLoL6Oxu3fvTnP00OXfrtvwPlFhGzMTOqf3OMWQeo6M0NJfF6h8dXWs9z3XQ9+nHru6L5K7PowONkVqeyNaauUv23T9os+JhIsK15hdwgBg+fLltWMA6t8rRkaffPLJbtvoM+Tss89O46uuugpAPTqfi7DzfswJwTSTwrXRbfheR2+NGXw4UmuMMcYYY4rHP2qNMcYYY0zxuPygELQsQNONTPeuW7cuzTH1rq1ko3Sjis+YGta0sXo/0gu2qdVpRJQezQmnOB+JV6L9RJ8H1MUiRL1Tv/a1rwGolxfceeedAID7778/zT399NNpzJSppjK1xIPp05xvqB5b7jyIpkqZXu2r92ZUsqAwtav3HsVY2rI08gjVOZ5vk5coWzQ///zzaY5CMhWX0WsXqISLWpLAkgg9H/XG5fXX8hEKAVXkFInPdA14Hk1iK5YsRIIwIG4VHbXBja5vlDLXtYxS87nWq7qGixYtAgDcc889aY4lGuecc06aU7Ei/Ws7OjrSHNdg9uzZaY6CMqC6BtEaNJUF8Ny0pCESWur5RqK93HPLGFMujtQaY4wxxpji8Y9aY4wxxhhTPEf9Jcp1miOOKOUGAJs2bQIA3HbbbWmOKXFN96nymOk5bXv5gx/8AADw8MMPh9vcfPPNAOptclUlTvR2isoGONZzyLU67bpt1/cxTRuVH+g2UathVeGvWbMGQKWsB4C1a9emMb071UHgvPPOS+MrrrgCQL0kITqfqGVqlIZVovONiNZa6U1L1XaInB1yKvOoxS/vd5177bXX0piuH/q94Fg9cNU9IfLYZdmNujnoZ/J86B4BVCUNep3Vz5ivN5U08HUt5ekvch68fP3FF19Mc3fccUcaL1y4EEDd15r70TViyQhQORice+65aY4+0Vqmou4jLOGIWh/rcUdlLHpfsyykqcSC90TkjmD3gzr63eW65xwpjDnScKTWGGOMMcYUjyO1hbB+/fpwTGEHO/gAVQRJo6oUegFVpEP3wwjN2LFj05yKPObMmQOgLrxh9EOjKTn/2aijURRlaUcQw1tYxSJRlDjXeYkRw+3bt6e55557Lo1XrlwJoB7l0s8cN24cAGD8+PFpjmMVqUUR7ogo6t113C5RdDa3v9w1VaLIc18iYlGkTol8W1UAqcJHCs3UL/ell17qNqfRe0aE9X7j/arRWxWS5YR8nFdvXPpIq590NNZtmDHQCGiEruHmzZsBAHPnzk1z8+fPT2OKxvTZEXVq0zEjtNOmTUtzfAZF3e+AKoIaiURzPs5KTzvCNQlTTYUjtWYw4EitMcYYY4wpHv+oNcYYY4wxxePyg0JYsmRJGs+bNy+N6anKNClQpdo0Na5pOqZxNWVKT1v6twLAzJkz05ip1kjEoWnhJr9IkhMvRcdLND2mAiEeR5QCbhJg6fZE08mE7YGBKlWtrXWXLVuWxhs3bgRQF5KdeeaZAOoiGi1PGDFiBIC6iI3HHAnKgGodIk/TnBBM14P7bGqzyvfmRHk5YVs0107JQ3/B89T7Neehy5IUFZdRJKW+uVrmsGvXLgD1MpatW7d2216vOe+DSHCmr48cOTLNMcWvIjQtT+Cx83iAqpXtLbfckuZUGMfP1GNjKcJFF12U5i644II05jGr6IvPo6b2wK3a/uq1yLWh5nt1m0gcqsdmgViMyw/MYMCRWmOMMcYYUzyO1BaCRoK2bNmSxowGRfZAUUQKqKIWGtmkeEm7kKm4LKIvkdqckCgXqdVoDI9Do6qM0GjEKRKg6DFyHEWPdP8a2dJoHSO1GlWn0Ey3mTp1ahpffvnlAICLL744zTWJa1oRRbkiMV4Uqc11sYqispFQT7ePonLtRHejKHFEX0VuuY5ukeCQEVDNjuzfvz+NaT2m92P0XVRBGm3IdJ8aYWWWQO83fmbTNecxa1aCEWeNHKs49MILL6z9BYCJEycCqHdi02dD1DmN9wfXquuYa6CRQH5Xm6KzPB89X9J0naMOhhw7YlvHkVozGHCk1hhjjDHGFI9/1BpjjDHGmOJx+UEhNKXxmJKLRE5N4heiqXem/ppS7/ycnLAjEoZomq+nPrVRCljn9HyYytS5SCASeda201UrSonrubNERL1tOWbnN6CelmaqVdO5LAHRbkyaIqZAKHfsPe0u1SRIa1WK0FRK0F+p3d5s39NShIFIO0d+uk1lHRxrSQrLD3ROS4441k5e69atAwCsXr06zan3NMsX9HsxatQoAPXyAhUxUhR2xhlnpLnIp1ZpVRbQ1OGO79VSg0jcqdtEpQSR4Cz6/Nzzxrj8wAwOHKk1xhhjjDHF4x+1xhhjjDGmeN6Xf4s5EtBU5pAhQ9K4VSo1UiUDseqdKbkoBaVEaVRN8Udp6b6mknm8mjbUY+N7tQQjSmX29DOb2nRGaUs9d3p8qpcoU7vqWfrEE0+kMdscL1++PM2NGTMGQN3P9vTTT+82ZioZqNwvtGVq0/UnOTeAVunepnWNyhMGMu2vRC4LEQPhkav3gY5boc4c9DbW0iJ60wKV04H62PJ+bzofbq/3LZ0M1I96ypQpaayteXsKyy3U4YHfWXVY0fMlUamBfrd1nPPfJtG9106ZkTGmXPxNN8YYY4wxxWOhWCFo9DCKnLVDFE3rTaeonvp+9pfopzcCkt7Q9JXoy3loxGnPnj1pTAEQfUiBSuyzatWqbnNAJSZS8diMGTMA1LvA6euRkPBIo51H0WDzGP3jH/8IoO5BvWLFim7jDRs2pDn6z1I4CFRCLwA4++yzAdQzB4zoa7cyzfzwO6RR18i/WeF71Q+XY/Vc1qhtT4WLjroeOiwUM4MBPx2MMcYYY0zx+EetMcYYY4wpHpcfFELOc/RI2adpD5ZRMP0MAC+++CIA4Pnnn09zOt6xYweAektVXj8V46ighm2QVWhEQRr/dn2d6WIVGvney0NRF68TUBcKcl5b1bJ9bVOJDcd6TVlWoK2tJ0yYkMYsP+G1byLys45EXUp0nJq+puBN753eiOnMocPlB2Yw4EitMcYYY4wpHkdqjTlC0ciJRmXZKaqjoyPNrVy5EgDwzDPPpLlXXnkljRkxU1HRySefDKAeqR09enQaU0CkIjPONQmAGOHTSF9khaZRSEYfIyFRb6K4uu8o+qRzfPzpNtrxjWOdiyysNNJOIeC2bdvSnI4ZtdUuczymk046Kc1pV69JkyYBqNu88VpS/AXUI7mRoCrqsBUJvKJt9Tr2tBNYkz1ebyz3zMDiSK0ZDDhSa4wxxhhjisc/ao0xxhhjTPG4/MCYLuR8MvuaMo2+cpFncG4bCpKAKuVND9uuY76u4iSKzzZu3Jjm1CeVfPCDH0zj4cOHA6h7n6rnKcd8H1B1qVLBkpYasKRBu6Gx5EHLGCJxUZTy1nV59dVX05iewAcOHEhzTLmqWIqiLSAWdbFs4OWXX05z2gmM5QBaSqAlHhyfdtppaY7rpp6xuh68BpGnrKaNo65eum5cT103vbd4n6xduzbNMQWt11zvCR6Tfo6WcxD9THvNHnm4/MAMBvxkMcYYY4wxxeMftcYYY4wxpnhcfmBMF6IWvEBcfhClcdspT2j19WtnP0wd6v40nUh1Pp0TgCq1rh6qmlKn4l9T2hxrul1fj44jOh9NP3N7dRiIWh9HKevoWjSltlu1ZtVttDSC4yi1Hjk4AFX5wahRo9KcjllqoE4T3EaPQ90GWqXrda21jCI6t5w/LMssfvKTn6Q5lkloC2YtreBx6nFwPfqrdbUZeFx+YAYDjtQaY4wxxpjicVsXY9okl9xop1tWq+hhJLZp2jbygtWoHCMuKvBhxymN7kXeq6+99lqao9hq586daU7HfF3FVhSsaSRWP5PCLhV10S+1yec0gmuggjQVWzEaqr67XENdq2HDhqUxO6xppzVGXXUtdZ8UY2mUK/J1bYfI95Xnm4vE5u5B9dilaHDZsmVpjueh97WeG+c1es/jtSDMGHMo8RPHGGOMMcYUj3/UGmOMMcaY4nH5gTFd6KvQq6/iMb63SfTFcS7trCl+HROmyVUYpWllpvFHjBiR5liyoGUKkWhMX4/a0+o4Sq3z3Js8gyO4blqKoevCsb4erbWWffB1XRf6suqcfk50zXWfXI+cCC6iSaTYai7HmjVr0vjxxx/vdjy8D7SEIlf6otef6BpZNGaMGQgcqTXGGGOMMcXjSK0x/Uw7QrGIyBZL98OIVy5Sl4tI5qKDkYUZt9Gom4qkSBRhbSfq2l/0JrIZWbpF6xpFX5WcJZfuk9c8EoLpe3WuVYQbiCPTFIV1dHSkuQ0bNqRxJOpjRFpFd1E2IvpsJTo3R2yNMf2JI7XGGGOMMaZ4/KPWGGOMMcYUj8sPjOlCU0r0UKXMI3/aXCo7523bapum9HXUoaun6eJc2v9IJhI+RehaR3667XSe475UYJUrOYk6m0Wfr9eUnsNafnDw4ME0PuGEEwDUrzkFhVGZie6/p0I+Y4wZKBypNcYYY4wxxeMftcYYY4wxpnhcfmBMC1q1sW2aj1LNuX3mXs9tw8/R9HWulCDad67MganuXKo5V7LQ11R1X0pBIk/ayPGg6XgiV4FcyULk0Rt52+ZKCSKafHm5zYEDB9Lcrl27ANTvE/UhZithbRVMf9qmNee11mvONsfqbdubMhZjjGkHR2qNMcYYY0zxOFJrTA/JeZqSvkYhGdFq6nLFcdSRSiNjPfXLbUfUFXnXRp/Tm2h0jpz3bbTv3Llx3XrT8a2daHIuQh5dv1biPqCKtkZ+tvq6dgxbv349AGDSpElpTqOyO3bsAABMmDAhzVE81k50nuKypvukN532jDEmhyO1xhhjjDGmePyj1hhjjDHGFI/LD4zpA73xbc3BNG5UcpDbf089VntLb0Rsh4ojzUO3ad+tWsRq+UHkSRuVeug1VwHYCy+8AAB47LHH0tzSpUsBAPv27UtzH/jAB9J49+7d3Y6Jr0etb5VcK2FzeGkqHzlSvr/G9AeO1BpjjDHGmOJxpNaYNjlUkb6cBdJ7LcLS0zU4EtelN8K5nM0YxVgaqd27d28ar169GgCwYsWKNLd48WIAwDPPPJPm3nrrrTQ+5phjAACTJ09Oc7wP3//+97c83kgI1sSReI0GO03C0ygCf6i6JxrT3zhSa4wxxhhjisc/ao0xxhhjTPG4/MCYAnC6ts5gWw+WALz++utpTgVcLAtQDh48CCDu5AUA27ZtAwBMmzYtzc2aNavb/rZs2ZLG9KkdPnx4mmPHsd6subuIHZlE/sF/+tOf0hzvIy05MaYEHKk1xhhjjDHF4x+1xhhjjDGmeFx+YIwxhwFN9+qY5Fw2OLdx48Y019HRkcbHHXccAGD69OlpbsqUKQAq5wQAWLVqVRrTFUEdEaiO12PMeda+8847AJpb+JpDT2792/HFNuZIxZFaY4wxxhhTPI7UGmPMIYTCHI2GEkZXgXo0lFFSFZLRk/ahhx5Kc9o97KabbgJQ95yl8EcFZRScAcD+/ftrf4FKcDZy5Mg0N3r06PA4CSN9TdFmR20PL9G1sKjPDAYcqTXGGGOMMcXjH7XGGGOMMaZ4XH5QCC7cN2ZwwPKDSETVJKxat24dAGDevHlpbtGiRQCAZcuWpbmjjz46jb/61a8CqIvCWL5w++23p7n58+enMVvr6vOG5QtXXnllmrvmmmvS+MQTTwRQT1/zOJpa5/p5NjDwntG1pmhP0WvFe07nckJAY45UHKk1xhhjjDHF4/+OGWPMIYTRNI2Gca5JoMNoK7t7AcDYsWMB1DuPjRo1Ko0//OEPA6hHRSlOO/7449PcxIkT03jo0KHdjoP70S5jeuwUnek2jPpp9M8MPBqhbZfo+hlTGr5zjTHGGGNM8fhHrTHGGGOMKZ6j/tKXfIU5ZPgyGTO40HQvv99aKqCvs2xAPWXfeOONbu875phj0ljLEsjbb79d+wvUO4VF/rI8NhWhafkCj0P3yeNQkZrFR4eH3L8dLDVQQRmvJX2NjSkFR2qNMcYYY0zx+EetMcYYY4wpHpcfGGPMYYYlAEzlA8Cxxx6bxvQSbfJ9JblWtNE2Pf0noGnf3F73E/mlRvtyO9aBhyUlkV8tEHsKcxv1TTamBBypNcYYY4wxxePK/UJQMYcxpnw0Ssnvt0bT9DvfKuqq22i0jVE2fZ1jFXCpJ2n0OdymKdIXRV25TxW+6bHZB/XQwWvQFDXndaUYEagyBsOGDRvgozOmf/GTxRhjjDHGFI9/1BpjjDHGmOJx+UEhuPzAmMELU8BRSQIQp475uvrDarqfHqOaVmZL2yFDhqS5qF2vwu2byiE4VlFRzpNWj9MMLDkhIO899UDet28fAJcfmPJwpNYYY4wxxhSPf9QaY4wxxpjisU+tMcYYY4wpHkdqjTHGGGNM8fhHrTHGGGOMKR7/qDXGGGOMMcXjH7XGGGOMMaZ4/KPWGGOMMcYUj3/UGmOMMcaY4vGPWmOMMcYYUzz+UWuMMcYYY4rHP2qNMcYYY0zx+EetMcYYY4wpHv+oNcYYY4wxxeMftcYYY4wxpnj8o9YYY4wxxhTP/wPr5ER3ieegxgAAAABJRU5ErkJggg==",
"path": "images_version_6/image_48.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, then the degree of angle BAC is ()
Choices:
A:50°
B:80°
C:100°
D:130°
|
||
241
|
49
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHgAAABxCAAAAAA7ADjGAAAJ+0lEQVR4nOVaXWgb2RU+MilVwkKmzXozUBYPcZdMKayn+9BMyINnS8CTp1UCbQXFG6ctjUOXWvtQVvtS231xwEuF81AntOAsi5Gbgq3QBzv0wQ4lSA44kqEgLc1GcstW2ibtKLTpyDjL6cMdzcz9G0mplzzke5Hm/sx3z73nnHvOvRNDeD7oe068+0i8m/zv8yG+/M+emu8b8d2p3tof2Cfe3RtTfz/US4f9kviD93vtgfuCTQD4SU899kfi3Ru4N/rac5AYZnEKYLmXLrEXznM9kzk1KqUm7NQAQD8Kqm4orYKh9PiOXqe6uXG7UFB14zBoGgBUGvBZpdQ8+vBrf/0iiWtLNyvWsGlyoxn815f27LeSyhdC3Fr6XSX5FkcKAKVLRz5RLqo3c9Z5u3vmLrXfmVTHVsVVWbOkzL5jr6ObtbWFbs2pO2JnUpt0xFXueNLNpIqGY5YRsTqmZtz9I85IabFqzSMaRVdxq2YdEbGe0iQz0zNx3kzJaHHVyCOu2ohGEYsmkbVu2/X9IE6ZeWndpO0gYmIFMZVBXEm0h6PNd3xtJ8/VfHMgL9JkUgerCkCjkAAY2gZIDL9LKuzy9qX/U6vL5rq0Lq+TuvQMIpZ1RCI3wbzlRL85mnjdLEvr5i2ykq5WR0RUHEQy6527diSOGLabHPfMZmEMERGtdURE1yy2W5TNSO2OIh4fl1aVjWz7r0Go0jOIiFg3q+0Kx848E7Fry1UzG8xj0SC/bZUum47fLDX5LMTjUl43lQxenvREr2pewboduC75O+TE89J5rluZ0IPWplHbXsNbdERE117vlTg8bqbGCDuUmXT7X6DQk5N+tWNUeyOuGo6kw4wV9oeeLTF0Ywv+37Yf7ZI4ZBU0nESaeva9JPHY7e6hGQ616II4mDYaRYOpsAIGRwmNL+Q9PDvringmLSpFnA+MtD2Q0IMWqvT2SESUSSEilqyLOzbOlge+GQPDYt9R150uiUPzF0LVXGCLHDU8kkwqXBdaW7pCThyyw/CLPNcYBv3GvCmrFHQVEDu6KH5IJxy+UKc2IDdO1wbrQKmCBz4QuG6rXFnjzcMrClea0/XwY1wvUdWZ2znvn6HlgAM7kpBL8JE31gWTwKkr65kDbyAQmSMWaELGFE1+sC20wbn3YI/k9ZUl5gV2kiKlRMaWEEVy+Xsk779YYq5F2cyiEK7qsEVxzv79vSbsXYTESYYma8hCJ8G+KQiEs0nyyzlOhph2CeiOJ6UJicA4uclHf9MiUWgIjDnl7HjoqXZmKBsHMTYUgys7scm3m9q5DgCgx0tMBT0OykJWDX7qxC09cGIhIrqJ1ZDkPmhiSmFIfiJBEPKEoYh6kD1y3aJL6aku6Er7b/MMrCogxdXzojUwC4JCJXuhAWCVmhFTHcxH3ogMx0X+DaWbftF0ubWhiX0HM29Vo3h9K2Egi3NWbc4l0sTeGgX5iQyS1LWuStpnUuGYjCP2wqZQfiKBaJ9DRIGDaiOVYVw7RUy28pUOeR5S8SsNWZSImFiJu4hTAAD9WyxxNomIKdGWT0NsS4jyMBHRtV75DeLe6Oknez96hIh9MB2LxWIfAABA5Tg0Tg4ItnwGSwmZPxPaEwAAxM88fKcGnz8Y+fMffnsEAABbp2b3Rk8/QURMz6xHOSsfqtCWEOngmsFNUFzcBDj+CBERD0CjPvjpnUuHAKB5/eVbq3zcwyFnShspakWXVD147edxuH/8Tu4gecZFACIvzkCf04W8aEf4Fqnaof7TSdwb9e8P+uAvp59c0O4BACS//JLSWV4oNciJZeOVb7a4yqFt2TTpLwN8/sAG+OU9AIC+3T+OHPr6wx0AAO3k67kuiD88T37X/vO3Clcp1a5rFwEgfudcLPYnshibsLw32r+FiIiJX8kcQwiu0ral965E1dIoGszGeOAEnANYfgMAAJSvaLlEJ4GvjrVt6bKgNq5VDFGvuQnYPRwu6ENExLPtx8npTrz+TEsgnuvGRhIalC1Q+/FATRjzU1hTjch6Ufgj2r4pYuUxZN7nNZXCtYuhh7uxmM5coholQafWh+MQJbFWA82+GsnbKCT8/0/ffvvR3reZa2Oj1uR7LVkqAONawppW1qM2AESkI9jF/i3EKc8F+hBl10aRSyZZiUFNRIncyiX9/7u/HtLh6SevHqSbCOZ6QzE4gSniuFoDeG8uYpWXrGChtu+MHIJP7xxjro2Hb3O95iYAoKbJicHa6CDy3ET4aRDg+r8vMk14iWulBADcHqZLqYlfGMPIVaZOG2rHZnFRcIXKBddEL5iUhyYmcZEoBSKgU7pFL4phwIY/xIuyOzWTwmhVjBC5g8Z7YJMVEteykS+TtNlrAKBOSC78rydlIQ+1yMzOSPTi1gjTjB4HyXAkeYKkmAUzqURUri+bmJPAWHgkJs0TWNDBNXEoTDjPE5PsRyyb+MSPB6VdXuzPnjRwxF6KKxJZmj6woDqTIIyPD7jjJjJckcgRFww0wqmwZwi8IByx5yP4lszxSATC2wGxLYEc/Fkm8TB8U7HCCRE4Ke81gr48sae73GmSNBHkEQTX5C2ihRMcG3vxOuNbu7WlgC54iSiVExCXDVfAJE9Aefj6T6xX6GlFJ/TeSQYlsvAkSQbfeMhohWMWEXtLQoks37FE8E4qyGg5pyUlxrzlIlIiC05Mo+ANM5VB+kKmE7F3qBMSWX7TKAS51nBUF9G1xBm35IqPDRpE1xkRIHOcSaHASUcTE5vyRWbPAztCcZAcHEjdjoyYXIO296NebAnR67iSkClWFDE51fcMsruQJ4z0DKKZj7iUjbgxX0n4B5CSI8oIrCSwaFB3m90T44LlEJG7DHnCqGqYzBajVDLqq4i8UcTEivTENBLqtnYj8iA28juQqpktGj3bEiIiJs6NRJ8QRn4sqK1fqGg5DYwugloalUIjmY1sEf2VYjw79fgXxydEVbUa+d0gPx83AACg5R1EaA0YjB5ax2/2fv99+MEgAMBn3tlSgSSTmkYevVRMJ1lknHwJtTT3vfKVOExPAcCyf8DSHfHTH37Uf+UfP4PGsdar330JAFQvvzU7ZhOVS2pGJe84eG16SsIsWfvasdNP9s5vIWIxu6B3+R0eIiI6af/utXVqFmvHxF8hS4j3RsMnDE5K65a6ntZm/Kab/VvYOiUmlnzBdu+jHx8JnpRMfucblxudphig8u7Jw8W0vxb3vzoAjbq4qYT4PqOUaib/+FtnlyJZm1dPnh0opxW/4Ona8BHBkYEH8YyJMn1cSSrJhaq4QzmTUMeZLb91ahkXYVbcQaLVO985fQ2mX2f1sbl2awPso6YS/n5wo1n6eEOxh21W3WMA0L/2hlhgmTndPSGzwNpaY7NZaBturQaWMqRbqqhpFJ75i/IK0bW2H+kZL96n7C8e8f8ACESkCDKDSdQAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_49.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, in the inscribed pentagon ABCDE of circle O, angle CAD = 35.0, angle AED = 115.0, then the degree of angle B is ()
Choices:
A:50°
B:75°
C:80°
D:100°
|
Như hình vẽ, trong ngũ giác nội tiếp ABCDE của đường tròn O, góc CAD = 35,0, góc AED = 115,0, thì số đo góc B là ()
Các lựa chọn:
A: 50°
B: 75°
C: 80°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, in the inscribed pentagon ABCDE of circle O, angle CAD = 35.0, angle AED = 115.0, then the degree of angle B is ()
Choices:
A:50°
B:75°
C:80°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, in the inscribed pentagon ABCDE of circle O, angle CAD = 35.0, angle AED = 115.0, then the degree of angle B is ()
Choices:
A:50°
B:75°
C:80°
D:100°
|
As shown in the figure, in the inscribed pentagon ABCDE of circle O, angle CAD = 35.0, angle AED = 115.0, then the degree of angle B is ()
Choices:
A:50°
B:75°
C:80°
D:100°
|
242
|
49
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHgAAABxCAAAAAA7ADjGAAAJ+0lEQVR4nOVaXWgb2RU+MilVwkKmzXozUBYPcZdMKayn+9BMyINnS8CTp1UCbQXFG6ctjUOXWvtQVvtS231xwEuF81AntOAsi5Gbgq3QBzv0wQ4lSA44kqEgLc1GcstW2ibtKLTpyDjL6cMdzcz9G0mplzzke5Hm/sx3z73nnHvOvRNDeD7oe068+0i8m/zv8yG+/M+emu8b8d2p3tof2Cfe3RtTfz/US4f9kviD93vtgfuCTQD4SU899kfi3Ru4N/rac5AYZnEKYLmXLrEXznM9kzk1KqUm7NQAQD8Kqm4orYKh9PiOXqe6uXG7UFB14zBoGgBUGvBZpdQ8+vBrf/0iiWtLNyvWsGlyoxn815f27LeSyhdC3Fr6XSX5FkcKAKVLRz5RLqo3c9Z5u3vmLrXfmVTHVsVVWbOkzL5jr6ObtbWFbs2pO2JnUpt0xFXueNLNpIqGY5YRsTqmZtz9I85IabFqzSMaRVdxq2YdEbGe0iQz0zNx3kzJaHHVyCOu2ohGEYsmkbVu2/X9IE6ZeWndpO0gYmIFMZVBXEm0h6PNd3xtJ8/VfHMgL9JkUgerCkCjkAAY2gZIDL9LKuzy9qX/U6vL5rq0Lq+TuvQMIpZ1RCI3wbzlRL85mnjdLEvr5i2ykq5WR0RUHEQy6527diSOGLabHPfMZmEMERGtdURE1yy2W5TNSO2OIh4fl1aVjWz7r0Go0jOIiFg3q+0Kx848E7Fry1UzG8xj0SC/bZUum47fLDX5LMTjUl43lQxenvREr2pewboduC75O+TE89J5rluZ0IPWplHbXsNbdERE117vlTg8bqbGCDuUmXT7X6DQk5N+tWNUeyOuGo6kw4wV9oeeLTF0Ywv+37Yf7ZI4ZBU0nESaeva9JPHY7e6hGQ616II4mDYaRYOpsAIGRwmNL+Q9PDvringmLSpFnA+MtD2Q0IMWqvT2SESUSSEilqyLOzbOlge+GQPDYt9R150uiUPzF0LVXGCLHDU8kkwqXBdaW7pCThyyw/CLPNcYBv3GvCmrFHQVEDu6KH5IJxy+UKc2IDdO1wbrQKmCBz4QuG6rXFnjzcMrClea0/XwY1wvUdWZ2znvn6HlgAM7kpBL8JE31gWTwKkr65kDbyAQmSMWaELGFE1+sC20wbn3YI/k9ZUl5gV2kiKlRMaWEEVy+Xsk779YYq5F2cyiEK7qsEVxzv79vSbsXYTESYYma8hCJ8G+KQiEs0nyyzlOhph2CeiOJ6UJicA4uclHf9MiUWgIjDnl7HjoqXZmKBsHMTYUgys7scm3m9q5DgCgx0tMBT0OykJWDX7qxC09cGIhIrqJ1ZDkPmhiSmFIfiJBEPKEoYh6kD1y3aJL6aku6Er7b/MMrCogxdXzojUwC4JCJXuhAWCVmhFTHcxH3ogMx0X+DaWbftF0ubWhiX0HM29Vo3h9K2Egi3NWbc4l0sTeGgX5iQyS1LWuStpnUuGYjCP2wqZQfiKBaJ9DRIGDaiOVYVw7RUy28pUOeR5S8SsNWZSImFiJu4hTAAD9WyxxNomIKdGWT0NsS4jyMBHRtV75DeLe6Oknez96hIh9MB2LxWIfAABA5Tg0Tg4ItnwGSwmZPxPaEwAAxM88fKcGnz8Y+fMffnsEAABbp2b3Rk8/QURMz6xHOSsfqtCWEOngmsFNUFzcBDj+CBERD0CjPvjpnUuHAKB5/eVbq3zcwyFnShspakWXVD147edxuH/8Tu4gecZFACIvzkCf04W8aEf4Fqnaof7TSdwb9e8P+uAvp59c0O4BACS//JLSWV4oNciJZeOVb7a4yqFt2TTpLwN8/sAG+OU9AIC+3T+OHPr6wx0AAO3k67kuiD88T37X/vO3Clcp1a5rFwEgfudcLPYnshibsLw32r+FiIiJX8kcQwiu0ral965E1dIoGszGeOAEnANYfgMAAJSvaLlEJ4GvjrVt6bKgNq5VDFGvuQnYPRwu6ENExLPtx8npTrz+TEsgnuvGRhIalC1Q+/FATRjzU1hTjch6Ufgj2r4pYuUxZN7nNZXCtYuhh7uxmM5coholQafWh+MQJbFWA82+GsnbKCT8/0/ffvvR3reZa2Oj1uR7LVkqAONawppW1qM2AESkI9jF/i3EKc8F+hBl10aRSyZZiUFNRIncyiX9/7u/HtLh6SevHqSbCOZ6QzE4gSniuFoDeG8uYpWXrGChtu+MHIJP7xxjro2Hb3O95iYAoKbJicHa6CDy3ET4aRDg+r8vMk14iWulBADcHqZLqYlfGMPIVaZOG2rHZnFRcIXKBddEL5iUhyYmcZEoBSKgU7pFL4phwIY/xIuyOzWTwmhVjBC5g8Z7YJMVEteykS+TtNlrAKBOSC78rydlIQ+1yMzOSPTi1gjTjB4HyXAkeYKkmAUzqURUri+bmJPAWHgkJs0TWNDBNXEoTDjPE5PsRyyb+MSPB6VdXuzPnjRwxF6KKxJZmj6woDqTIIyPD7jjJjJckcgRFww0wqmwZwi8IByx5yP4lszxSATC2wGxLYEc/Fkm8TB8U7HCCRE4Ke81gr48sae73GmSNBHkEQTX5C2ihRMcG3vxOuNbu7WlgC54iSiVExCXDVfAJE9Aefj6T6xX6GlFJ/TeSQYlsvAkSQbfeMhohWMWEXtLQoks37FE8E4qyGg5pyUlxrzlIlIiC05Mo+ANM5VB+kKmE7F3qBMSWX7TKAS51nBUF9G1xBm35IqPDRpE1xkRIHOcSaHASUcTE5vyRWbPAztCcZAcHEjdjoyYXIO296NebAnR67iSkClWFDE51fcMsruQJ4z0DKKZj7iUjbgxX0n4B5CSI8oIrCSwaFB3m90T44LlEJG7DHnCqGqYzBajVDLqq4i8UcTEivTENBLqtnYj8iA28juQqpktGj3bEiIiJs6NRJ8QRn4sqK1fqGg5DYwugloalUIjmY1sEf2VYjw79fgXxydEVbUa+d0gPx83AACg5R1EaA0YjB5ax2/2fv99+MEgAMBn3tlSgSSTmkYevVRMJ1lknHwJtTT3vfKVOExPAcCyf8DSHfHTH37Uf+UfP4PGsdar330JAFQvvzU7ZhOVS2pGJe84eG16SsIsWfvasdNP9s5vIWIxu6B3+R0eIiI6af/utXVqFmvHxF8hS4j3RsMnDE5K65a6ntZm/Kab/VvYOiUmlnzBdu+jHx8JnpRMfucblxudphig8u7Jw8W0vxb3vzoAjbq4qYT4PqOUaib/+FtnlyJZm1dPnh0opxW/4Ona8BHBkYEH8YyJMn1cSSrJhaq4QzmTUMeZLb91ahkXYVbcQaLVO985fQ2mX2f1sbl2awPso6YS/n5wo1n6eEOxh21W3WMA0L/2hlhgmTndPSGzwNpaY7NZaBturQaWMqRbqqhpFJ75i/IK0bW2H+kZL96n7C8e8f8ACESkCDKDSdQAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_49.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, in the inscribed pentagon ABCDE of circle O, angle CAD = 35.0, angle AED = 115.0, then the degree of angle B is ()
Choices:
A:50°
B:75°
C:80°
D:100°
|
Như hình vẽ, trong ngũ giác nội tiếp ABCDE của đường tròn O, góc CAD = 35,0, góc AED = 115,0, thì số đo góc B là ()
Các lựa chọn:
A: 50°
B: 75°
C: 80°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, in the inscribed pentagon ABCDE of circle O, angle CAD = 35.0, angle AED = 115.0, then the degree of angle B is ()
Choices:
A:50°
B:75°
C:80°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, in the inscribed pentagon ABCDE of circle O, angle CAD = 35.0, angle AED = 115.0, then the degree of angle B is ()
Choices:
A:50°
B:75°
C:80°
D:100°
|
As shown in the figure, in the inscribed pentagon ABCDE of circle O, angle CAD = 35.0, angle AED = 115.0, then the degree of angle B is ()
Choices:
A:50°
B:75°
C:80°
D:100°
|
243
|
49
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHgAAABxCAAAAAA7ADjGAAAJ+0lEQVR4nOVaXWgb2RU+MilVwkKmzXozUBYPcZdMKayn+9BMyINnS8CTp1UCbQXFG6ctjUOXWvtQVvtS231xwEuF81AntOAsi5Gbgq3QBzv0wQ4lSA44kqEgLc1GcstW2ibtKLTpyDjL6cMdzcz9G0mplzzke5Hm/sx3z73nnHvOvRNDeD7oe068+0i8m/zv8yG+/M+emu8b8d2p3tof2Cfe3RtTfz/US4f9kviD93vtgfuCTQD4SU899kfi3Ru4N/rac5AYZnEKYLmXLrEXznM9kzk1KqUm7NQAQD8Kqm4orYKh9PiOXqe6uXG7UFB14zBoGgBUGvBZpdQ8+vBrf/0iiWtLNyvWsGlyoxn815f27LeSyhdC3Fr6XSX5FkcKAKVLRz5RLqo3c9Z5u3vmLrXfmVTHVsVVWbOkzL5jr6ObtbWFbs2pO2JnUpt0xFXueNLNpIqGY5YRsTqmZtz9I85IabFqzSMaRVdxq2YdEbGe0iQz0zNx3kzJaHHVyCOu2ohGEYsmkbVu2/X9IE6ZeWndpO0gYmIFMZVBXEm0h6PNd3xtJ8/VfHMgL9JkUgerCkCjkAAY2gZIDL9LKuzy9qX/U6vL5rq0Lq+TuvQMIpZ1RCI3wbzlRL85mnjdLEvr5i2ykq5WR0RUHEQy6527diSOGLabHPfMZmEMERGtdURE1yy2W5TNSO2OIh4fl1aVjWz7r0Go0jOIiFg3q+0Kx848E7Fry1UzG8xj0SC/bZUum47fLDX5LMTjUl43lQxenvREr2pewboduC75O+TE89J5rluZ0IPWplHbXsNbdERE117vlTg8bqbGCDuUmXT7X6DQk5N+tWNUeyOuGo6kw4wV9oeeLTF0Ywv+37Yf7ZI4ZBU0nESaeva9JPHY7e6hGQ616II4mDYaRYOpsAIGRwmNL+Q9PDvringmLSpFnA+MtD2Q0IMWqvT2SESUSSEilqyLOzbOlge+GQPDYt9R150uiUPzF0LVXGCLHDU8kkwqXBdaW7pCThyyw/CLPNcYBv3GvCmrFHQVEDu6KH5IJxy+UKc2IDdO1wbrQKmCBz4QuG6rXFnjzcMrClea0/XwY1wvUdWZ2znvn6HlgAM7kpBL8JE31gWTwKkr65kDbyAQmSMWaELGFE1+sC20wbn3YI/k9ZUl5gV2kiKlRMaWEEVy+Xsk779YYq5F2cyiEK7qsEVxzv79vSbsXYTESYYma8hCJ8G+KQiEs0nyyzlOhph2CeiOJ6UJicA4uclHf9MiUWgIjDnl7HjoqXZmKBsHMTYUgys7scm3m9q5DgCgx0tMBT0OykJWDX7qxC09cGIhIrqJ1ZDkPmhiSmFIfiJBEPKEoYh6kD1y3aJL6aku6Er7b/MMrCogxdXzojUwC4JCJXuhAWCVmhFTHcxH3ogMx0X+DaWbftF0ubWhiX0HM29Vo3h9K2Egi3NWbc4l0sTeGgX5iQyS1LWuStpnUuGYjCP2wqZQfiKBaJ9DRIGDaiOVYVw7RUy28pUOeR5S8SsNWZSImFiJu4hTAAD9WyxxNomIKdGWT0NsS4jyMBHRtV75DeLe6Oknez96hIh9MB2LxWIfAABA5Tg0Tg4ItnwGSwmZPxPaEwAAxM88fKcGnz8Y+fMffnsEAABbp2b3Rk8/QURMz6xHOSsfqtCWEOngmsFNUFzcBDj+CBERD0CjPvjpnUuHAKB5/eVbq3zcwyFnShspakWXVD147edxuH/8Tu4gecZFACIvzkCf04W8aEf4Fqnaof7TSdwb9e8P+uAvp59c0O4BACS//JLSWV4oNciJZeOVb7a4yqFt2TTpLwN8/sAG+OU9AIC+3T+OHPr6wx0AAO3k67kuiD88T37X/vO3Clcp1a5rFwEgfudcLPYnshibsLw32r+FiIiJX8kcQwiu0ral965E1dIoGszGeOAEnANYfgMAAJSvaLlEJ4GvjrVt6bKgNq5VDFGvuQnYPRwu6ENExLPtx8npTrz+TEsgnuvGRhIalC1Q+/FATRjzU1hTjch6Ufgj2r4pYuUxZN7nNZXCtYuhh7uxmM5coholQafWh+MQJbFWA82+GsnbKCT8/0/ffvvR3reZa2Oj1uR7LVkqAONawppW1qM2AESkI9jF/i3EKc8F+hBl10aRSyZZiUFNRIncyiX9/7u/HtLh6SevHqSbCOZ6QzE4gSniuFoDeG8uYpWXrGChtu+MHIJP7xxjro2Hb3O95iYAoKbJicHa6CDy3ET4aRDg+r8vMk14iWulBADcHqZLqYlfGMPIVaZOG2rHZnFRcIXKBddEL5iUhyYmcZEoBSKgU7pFL4phwIY/xIuyOzWTwmhVjBC5g8Z7YJMVEteykS+TtNlrAKBOSC78rydlIQ+1yMzOSPTi1gjTjB4HyXAkeYKkmAUzqURUri+bmJPAWHgkJs0TWNDBNXEoTDjPE5PsRyyb+MSPB6VdXuzPnjRwxF6KKxJZmj6woDqTIIyPD7jjJjJckcgRFww0wqmwZwi8IByx5yP4lszxSATC2wGxLYEc/Fkm8TB8U7HCCRE4Ke81gr48sae73GmSNBHkEQTX5C2ihRMcG3vxOuNbu7WlgC54iSiVExCXDVfAJE9Aefj6T6xX6GlFJ/TeSQYlsvAkSQbfeMhohWMWEXtLQoks37FE8E4qyGg5pyUlxrzlIlIiC05Mo+ANM5VB+kKmE7F3qBMSWX7TKAS51nBUF9G1xBm35IqPDRpE1xkRIHOcSaHASUcTE5vyRWbPAztCcZAcHEjdjoyYXIO296NebAnR67iSkClWFDE51fcMsruQJ4z0DKKZj7iUjbgxX0n4B5CSI8oIrCSwaFB3m90T44LlEJG7DHnCqGqYzBajVDLqq4i8UcTEivTENBLqtnYj8iA28juQqpktGj3bEiIiJs6NRJ8QRn4sqK1fqGg5DYwugloalUIjmY1sEf2VYjw79fgXxydEVbUa+d0gPx83AACg5R1EaA0YjB5ax2/2fv99+MEgAMBn3tlSgSSTmkYevVRMJ1lknHwJtTT3vfKVOExPAcCyf8DSHfHTH37Uf+UfP4PGsdar330JAFQvvzU7ZhOVS2pGJe84eG16SsIsWfvasdNP9s5vIWIxu6B3+R0eIiI6af/utXVqFmvHxF8hS4j3RsMnDE5K65a6ntZm/Kab/VvYOiUmlnzBdu+jHx8JnpRMfucblxudphig8u7Jw8W0vxb3vzoAjbq4qYT4PqOUaib/+FtnlyJZm1dPnh0opxW/4Ona8BHBkYEH8YyJMn1cSSrJhaq4QzmTUMeZLb91ahkXYVbcQaLVO985fQ2mX2f1sbl2awPso6YS/n5wo1n6eEOxh21W3WMA0L/2hlhgmTndPSGzwNpaY7NZaBturQaWMqRbqqhpFJ75i/IK0bW2H+kZL96n7C8e8f8ACESkCDKDSdQAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_49.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, angle CAD = 35.0, angle AED = 115.0, then the degree of angle B is ()
Choices:
A:50°
B:75°
C:80°
D:100°
|
Như hình vẽ, góc CAD = 35,0, góc AED = 115,0, thì số đo của góc B là ()
Lựa chọn:
A: 50°
B: 75°
C: 80°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, angle CAD = 35.0, angle AED = 115.0, then the degree of angle B is ()
Choices:
A:50°
B:75°
C:80°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, angle CAD = 35.0, angle AED = 115.0, then the degree of angle B is ()
Choices:
A:50°
B:75°
C:80°
D:100°
|
As shown in the figure, angle CAD = 35.0, angle AED = 115.0, then the degree of angle B is ()
Choices:
A:50°
B:75°
C:80°
D:100°
|
244
|
49
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAA4AAAAM8CAYAAAAGPM5ZAAAMbWlDQ1BJQ0MgUHJvZmlsZQAAeJyVVwdYU8kWnluSkJCEEkBASuhNEKkBpITQAkgvgo2QBBJKjAlBxY4uKrh2EcWKrooothUQO3ZlUex9saCgrIu62FB5ExLQdV/53vm+uffPmTP/KXcm9x4AtD7wpNI8VBuAfEmBLCE8mDk6LZ1J6gAIwAAK9ACdx5dL2XFx0QDKwP3v8u4mtIZyzVnJ9c/5/yq6AqGcDwAyFuJMgZyfD/EJAPB1fKmsAACiUm81uUCqxLMh1pPBACFeqcTZKrxDiTNV+Ei/TVICB+IrAGhQeTxZNgD0+1DPLORnQx76Z4hdJQKxBACtYRAH8EU8AcTK2Ifl509U4gqI7aG9FGIYD2BlfseZ/Tf+zEF+Hi97EKvy6heNELFcmseb+n+W5n9Lfp5iwIctHFSRLCJBmT+s4e3ciVFKTIW4S5IZE6usNcQfxAJV3QFAKSJFRLLKHjXhyzmwfsAAYlcBLyQKYhOIwyR5MdFqfWaWOIwLMdwt6BRxATcJYkOIFwjloYlqm02yiQlqX2hdlozDVuvP82T9fpW+Hipyk9lq/jciIVfNj9GLREmpEFMgti4Up8RATIfYRZ6bGKW2GVkk4sQM2MgUCcr4rSFOEErCg1X8WGGWLCxBbV+aLx/IF9skEnNj1Hh/gSgpQlUf7DSf1x8/zAW7IpSwkwd4hPLR0QO5CIQhoarcsQ6hJDlRzfNBWhCcoFqLU6R5cWp73FKYF67UW0LsIS9MVK/FUwrg5lTx41nSgrgkVZx4UQ4vMk4VD74URAMOCAFMoIAjE0wEOUDc0lXfBX+pZsIAD8hANhACZ7VmYEVq/4wEXhNBEfgDIiGQD64L7p8VgkKo/zKoVV2dQVb/bGH/ilzwDOJ8EAXy4G9F/yrJoLcU8BRqxP/wzoODD+PNg0M5/+/1A9pvGjbURKs1igGPTK0BS2IoMYQYQQwjOuDGeADuh0fDaxAcbjgL9xnI45s94RmhlfCYcIPQRrgzQVws+yHKUaAN8oepa5H5fS1wW8jpiQfj/pAdMuMGuDFwxj2gHzYeCD17Qi1HHbeyKswfuP+WwXdPQ21HdiWj5CHkILL9jyvpjnTPQRZlrb+vjyrWzMF6cwZnfvTP+a76AniP+tESW4AdwM5hJ7EL2BGsHjCx41gD1owdVeLB3fW0f3cNeEvojycX8oj/4Y+n9qmspNy1xrXT9bNqrkA4pUB58DgTpVNl4mxRAZMN3w5CJlfCdxnGdHN18wBA+a5R/X29je9/hyAGzd90c38HwP94X1/f4W+6yOMA7POGx//QN509CwAdTQDOH+IrZIUqHa68EOC/hBY8aUbADFgBe5iPG/ACfiAIhIJIEAuSQBoYD6ssgvtcBiaD6WAOKAFlYClYBdaCjWAL2AF2g/2gHhwBJ8FZcAlcATfAPbh72sFL0A3egV4EQUgIDWEgRog5YoM4IW4ICwlAQpFoJAFJQzKQbESCKJDpyFykDFmOrEU2I9XIPuQQchK5gLQid5BHSCfyBvmEYigV1UNNUVt0OMpC2WgUmoSOQ7PRSWgROg9djFagVegutA49iV5Cb6Bt6Eu0BwOYJmaAWWDOGAvjYLFYOpaFybCZWClWjlVhtVgjfM7XsDasC/uIE3EGzsSd4Q6OwJNxPj4Jn4kvwtfiO/A6/DR+DX+Ed+NfCTSCCcGJ4EvgEkYTsgmTCSWEcsI2wkHCGXiW2gnviESiAdGO6A3PYhoxhziNuIi4nriHeILYSnxC7CGRSEYkJ5I/KZbEIxWQSkhrSLtIx0lXSe2kDxqaGuYabhphGukaEo1ijXKNnRrHNK5qPNfoJWuTbci+5FiygDyVvIS8ldxIvkxuJ/dSdCh2FH9KEiWHModSQamlnKHcp7zV1NS01PTRjNcUa87WrNDcq3le85HmR6ou1ZHKoY6lKqiLqdupJ6h3qG9pNJotLYiWTiugLaZV007RHtI+0Bl0FzqXLqDPolfS6+hX6a+0yFo2Wmyt8VpFWuVaB7Qua3Vpk7VttTnaPO2Z2pXah7RvaffoMHRG6MTq5Oss0tmpc0GnQ5eka6sbqivQnae7RfeU7hMGxrBicBh8xlzGVsYZRrseUc9Oj6uXo1emt1uvRa9bX1ffQz9Ff4p+pf5R/TYDzMDWgGuQZ7DEYL/BTYNPQ0yHsIcIhywcUjvk6pD3hkMNgwyFhqWGewxvGH4yYhqFGuUaLTOqN3pgjBs7GscbTzbeYHzGuGuo3lC/ofyhpUP3D71rgpo4miSYTDPZYtJs0mNqZhpuKjVdY3rKtMvMwCzILMdspdkxs05zhnmAudh8pflx8xdMfSabmcesYJ5mdluYWERYKCw2W7RY9FraWSZbFlvusXxgRbFiWWVZrbRqsuq2NrceZT3dusb6rg3ZhmUjslltc87mva2dbartfNt62w47QzuuXZFdjd19e5p9oP0k+yr76w5EB5ZDrsN6hyuOqKOno8ix0vGyE+rk5SR2Wu/UOowwzGeYZFjVsFvOVGe2c6FzjfMjFwOXaJdil3qXV8Oth6cPXzb83PCvrp6uea5bXe+N0B0ROaJ4ROOIN26Obny3Srfr7jT3MPdZ7g3urz2cPIQeGzxuezI8R3nO92zy/OLl7SXzqvXq9Lb2zvBe532LpceKYy1infch+AT7zPI54vPR18u3wHe/759+zn65fjv9OkbajRSO3Dryib+lP89/s39bADMgI2BTQFugRSAvsCrwcZBVkCBoW9BztgM7h72L/SrYNVgWfDD4PceXM4NzIgQLCQ8pDWkJ1Q1NDl0b+jDMMiw7rCasO9wzfFr4iQhCRFTEsohbXFMun1vN7Y70jpwReTqKGpUYtTbqcbRjtCy6cRQ6KnLUilH3Y2xiJDH1sSCWG7si9kGcXdykuMPxxPi4+Mr4ZwkjEqYnnEtkJE5I3Jn4Lik4aUnSvWT7ZEVyU4pWytiU6pT3qSGpy1PbRg8fPWP0pTTjNHFaQzopPSV9W3rPmNAxq8a0j/UcWzL25ji7cVPGXRhvPD5v/NEJWhN4Ew5kEDJSM3ZmfObF8qp4PZnczHWZ3XwOfzX/pSBIsFLQKfQXLhc+z/LPWp7Vke2fvSK7UxQoKhd1iTniteLXORE5G3Pe58bmbs/ty0vN25OvkZ+Rf0iiK8mVnJ5oNnHKxFapk7RE2jbJd9KqSd2yKNk2OSIfJ28o0IMf9c0Ke8VPikeFAYWVhR8mp0w+MEVnimRK81THqQunPi8KK/plGj6NP61pusX0OdMfzWDP2DwTmZk5s2mW1ax5s9pnh8/eMYcyJ3fOb8WuxcuL/5qbOrdxnum82fOe/BT+U00JvURWcmu+3/yNC/AF4gUtC90Xrln4tVRQerHMtay87PMi/qKLP4/4ueLnvsVZi1uWeC3ZsJS4VLL05rLAZTuW6ywvWv5kxagVdSuZK0tX/rVqwqoL5R7lG1dTVitWt1VEVzSssV6zdM3ntaK1NyqDK/esM1m3cN379YL1VzcEbajdaLqxbOOnTeJNtzeHb66rsq0q30LcUrjl2daUred+Yf1Svc14W9m2L9sl29t2JOw4Xe1dXb3TZOeSGrRGUdO5a+yuK7tDdjfUOtdu3mOwp2wv2KvY+2Jfxr6b+6P2Nx1gHaj91ebXdQcZB0vrkLqpdd31ovq2hrSG1kORh5oa/RoPHnY5vP2IxZHKo/pHlxyjHJt3rO940fGeE9ITXSezTz5pmtB079ToU9dPx59uORN15vzZsLOnzrHPHT/vf/7IBd8Lhy6yLtZf8rpU1+zZfPA3z98Otni11F32vtxwxedKY+vI1mNXA6+evBZy7ex17vVLN2JutN5Mvnn71thbbbcFtzvu5N15fbfwbu+92fcJ90sfaD8of2jysOp3h9/3tHm1HX0U8qj5ceLje0/4T14+lT/93D7vGe1Z+XPz59Udbh1HOsM6r7wY86L9pfRlb1fJHzp/rHtl/+rXP4P+bO4e3d3+Wva6782it0Zvt//l8VdTT1zPw3f573rfl34w+rDjI+vjuU+pn573Tv5M+lzxxeFL49eor/f78vv6pDwZr/9TAIMDzcoC4M12AGhpADBg30YZo+oF+wVR9a/9CPwnrOoX+8ULgFr4/R7fBb9ubgGwdytsvyC/FuxV42gAJPkA1N19cKhFnuXupuKiwj6F8LCv7y3s2UgrAPiytK+vt6qv78sWGCzsHU9IVD2oUoiwZ9g08ktmfib4N6LqT7/L8cc7UEbgAX68/wt+NZCI+mpMXAABAABJREFUeJzsvVmMreta1T9m37dVa+19Gk5QQ3cjatQrjV6ghHPwb5SICEQEvEHjnU1CjCR2GEPAhKiJGhWkE8JJEMUQJIgQYoyAiBEJHAL7nLP3Xqtq9nN+s5/zf7HPeNbzvfXNWlW1qpnN+CVzr1prr1U1m695x/s8zxip7Xa7hRBCCCGEEEKIoyf91E9ACCGEEEIIIcTjIAEohBBCCCGEECeCBKAQQgghhBBCnAgSgEIIIYQQQghxIkgACiGEEEIIIcSJIAEohBBCCCGEECeCBKAQQgghhBBCnAgSgEIIIYQQQghxIkgACiGEEEIIIcSJIAEohBBCCCGEECeCBKAQQgghhBBCnAgSgEIIIYQQQghxIkgACiGEEEIIIcSJIAEohBBCCCGEECeCBKAQQgghhBBCnAgSgEIIIYQQQghxIkgACiGEEEIIIcSJIAEohBBCCCGEECeCBKAQQgghhBBCnAgSgEIIIYQQQghxIkgACiGEEEIIIcSJIAEohBBCCCGEECeCBKAQQgghhBBCnAgSgEIIIYQQQghxIkgACiGEEEIIIcSJIAEohBBCCCGEECeCBKAQQgghhBBCnAgSgEIIIYQQQghxIkgACiGEEEIIIcSJIAEohBBCCCGEECdC9qmfgBBCCCFOk+12G3vwz0gqlUIqlUI6nUYqlXqqpymEEEeFBKAQQgghHp3NZoPlcmmP9XqNzWaDzWYDAEin08hkMsjn88jlcshmsyYEJQaFEOLuSAAKIYQQ4tHZbDaYz+cYj8eIogiLxQKr1Qrr9RoAkMlkUCgUUKlUUKlUUCqVTAQCkAgUQog7IgEohBBCiEdnvV5jOp1iMBhgMBhgOp1iPp9jtVoBAHK5HCqVClarFdLptCqAQghxT0gACiGEEOLRWS6XiKIIg8EAnU4H4/EYs9nMBGA+n0ej0UAmk0GpVEKpVEIul0M6nbY5QQlBIYS4PRKAQgghhHhU1us1FosFoijCaDRCr9fDaDTCdDrFcrlEKpVCoVAAAFQqFasMcj5QCCHE3ZEAFEIIIcSjslwuMZ1OMZlMMBwOrQ00iiKsViukUimr+FEUbjabmFuoEEKIuyEBKIQQQogHh+JttVphOp0iiiKMx2MMh0P0+/2YAEyn01gulyiVSpjNZuYSKvEnhBBvjgSgEEIIIR4UxjusVivM53NEUYTJZILxeIzRaGQPCsBMJgMAmM1m5g4aZgVq/k8IIe6GBKAQQgghHoTtdmvCj+JvOp1iNBphOBxiOBxiNBphPB5jMplgNpthvV4jm80in8/H8gGTguKFEELcHglAIYQQQtw7vuq3WCxilb/BYIB+v4/hcIjJZGIREMvlEtvtFplMZqfQU+VPCCHeDAlAIYQQQtwrvvK3WCxs5o+Vv36/j263i8FggMlkYuJvvV5b1l8mk0Emk0E6nbbwdyIRKIQQd0cCUAghhBD3yna7taiH2WyGKIpM+FH8dbtd9Pv9WP7fZrMxwecFIMPfJfyEEOLNkQAUQgghxL3iBaCPe+j1euh0Ouh2u+j1elcEICt/qVTKhCAFoBBCiPtBAlAIIYQQ9wrjHubzuYm/fr+PTqeDi4sLdDodi36gANxut8hms8hmP1iaqOonhBAPgwSgEEIIIe6VzWaD5XKJ2WyG8XiMwWCAbreLi4sLvHjxApeXlxgOhxiPx5jP55b9t91ukcvlLOYhFH+MglAMhBBC3B0JQCGEEELcK+v1GsvlEtPpNCYALy8v8fLlS1xeXmI0GsVaP7PZLNLpNDabjX0fLwIV/yCEEPeDBKAQQggh7g3f/hlFkYW90/yl0+mg0+lgMplgsVgAALLZLAqFAvL5vAk9zf8JIcTDIAEohBBCiDtDwZZKpbDdbrFcLmPun+Px2ELf+/0+er0eer0eoijCZrNBJpNBPp9HJpPBer2OtX9qDlAIIe4fCUAhhBBC3BnO5AEftH7O53PMZjNz/2QFcDAYYDAYmPvndDpFKpVCPp8HAOTzeWv/THIBlQgUQoj7QQJQCCGEEHeC4m+9Xlvwuxd/URSZCKQQ5NeLxcJEXS6Xw3q9BiDxJ4QQD40EoBBCCCFuDcXfZrPBer2Ozf158RdFEabTKWazGebzORaLBZbLZex7AK8MX14XBC8xKIQQb4YEoBBCCCHuzC7Tl9FohMlkgul0isVigfV6jVQqhVwuh0KhgOVyiWw2i3w+j3w+j1wuh1wuZ1mAFH9JlUCJQCGEuDsSgEIIIYS4NTR9YevndDo1o5dut4vBYIDJZIL5fI71eo1MJoNSqYRGo4FMJmPZf/l8HqVSCZVKBcViEfl83gTgdSJQCCHE3ZAAFEIIIcSdofNnFEUYDAbodDpm9DKZTKzdM5/Po9FoIJfLodFoYLVaYbvdIp1OI5fLoVgsolwuSwQKIcQDIwEohBBCiDvB+T+Gvnu3z/F4jNlshvV6jXQ6jVKphGw2i2q1itVqZXODm83GWkNLpRIKhcKVFtBwFhBQG6gQQtwVCUAhhBBC3Bgat9D9c7VaYbFYxOIf5vM5lsulibtsNotUKoVisRj7tzSE2Ww2sTD4bDZ7peqnCqAQQtwPEoBCCCGEuBGc+fOVP4q45XJpFT2GuWcyGeRyOaTTaWv3pHijccx8Prd5QJrAhBW/0AlUCCHE3ZEAFEIIIcS1MKqBws/HPjDagTl+FH2FQsFaO+kAyioeACyXS2QyGaRSKZsTvM79U8JPCCHuBwlAIYQQQuzE5/3R8ZOVP7Z9UgB6Qxcv/jabDQCYoNtut8hkMvZ9+XN866ef9ZMIFEKI+0MCUAghhBDXQuHHeT8v/hjwvtlskMlkYuKPZi9sCyXr9drcQ+n0ybbRXUYvEoBCCHE/SAAKIYQQYifesIUtnxR+rP4tFgsAMAfP5XJpbaJ8+N8DSGzvTBJ/En1CCHG/SAAKIYQQ4lpWqxVmsxkmkwmm0ymm06lV/larlTl9MuoBQMwkZrFYmENoFEXm/OkfrAB6l1EAscqh/1oIIcTdkAAUQgghxE7Yqsmcv8lkgiiKLO5hu92iUCigVquhUqmgWq0ik8lgs9lgsViYYByPx1iv15hOpyYO6RxKAxkvAPmz/fMQQgjx5kgACiGEEGInm80Gy+USURRhNBphOBxiPB4jiiJr/axUKub6ySw/zgSyhZRfL5fL2OzgYrGwtlD+vBCJPyGEuD8kAIUQQgixE8Y9RFGE4XCIXq9nInA+nwMAqtUq0uk0CoWCRUBst1v7d5PJBOPxOPZgO+lisbDAeOYFEs3/CSHE/SMBKIQQQohEfPvneDxGv99Hp9NBr9fDYDBAFEXYbDaoVCqIogjz+Rzj8RiFQgEAbPbPi8d+v4/hcBiLjwBeZQD6eUDFPwghxP0jASiEEEKIRFj94/wfBeDFxQW63S5GoxGWyyWKxSL6/T4GgwHOzs5MAPqw+MlkgtFohNFohCiKbPYvlUohk8mYgygrgEniT62gQgjx5kgACiGEEOIKnP2jAByPxxgMBuj1eiYC+/0+ZrMZcrkcBoMBBoMBLi4ukM/nkUqlLPaBc39RFFnlj1W+TCaDfD6PdDqNfD4fq/75qAghhBD3gwSgEEIIIQy2YLJ65+MbWMUbDocmBqfTKdLptJm6jEYj5PN5+15eBNL0hZW/bDYbE4u++ifxJ4QQD4MEoBBCCCEAfCDY1uu1Bb/TrZOxD14IejMXAJb3Nx6Pkc1mkUqlYt+P0Q90/Mxms9YqmsvlTHgCrwQgHwqFF0KI+0MCUAghhDhxmL23Xq9jLZsUfGH4Ox/8OzSLYVwEIx+2220s7H29XmO73cbaPTn/x/iHJPGnSqAQQtwfEoBCCCHECeOF2mq1wmKxsLk/H/rOvL6wUsfw9tVqhdlsZu2dXvz5nwF8UP0DPqj8URTy+6XTaWQyGXv4CqAQQog3RwJQCCGEOGF89Y9tmrPZzNo8J5MJ5vN5bG6vWCyiUqlguVza/B7/H6t/FJQUd97Bkz8TgFX6KPj4PUIBqCqgEELcDxKAQgghxAnDah1F4GKxsNiH4XCI0Whkge/FYhH1eh0AUCgU0Gw2reoHAJlMxmb/2BLKyiF/TyFZKBRQLpdRKpXsUSwWUSgUUCgUkM/nkcvlkMvlkM1mVQkUQoh7QgJQCCGEOGF8ZW2z2WCxWGAymZjL52g0wmKxQDabRb1eR6FQQLvdNjEXzu4B8fxAzg5GUWQxEJvNBtlsFqVSCbVaDY1GA7VaDdVqFZVKxYRhsVhEPp9HNps1YxkhhBBvhgSgEEIIcWSEgemvE06s/jGqYTweo9/vo9frIYoirNdr5HI5FItFpNNpZLNZq86F7Zrb7RaLxQJRFGE8HmM4HFqGYL/ft4oiq4CVSiVR/BUKBav+sS1UCCHEmyMBKIQQQhwRofh7HWz79MYvo9HIgt0XiwVyuRwKhQJqtRrK5TIqlYoJtmKxaEKN7Z+z2SwmIvv9PjqdjlX1xuMxttstcrmctX+y7dPPAKrtUwgh7h8JQCGEEOKI4Eyf/z2AmBkLTVo4o8cWTS/8RqMRoijCZrNBJpNBLpdDuVxGo9GwBwUhBSDwgaCcTqcolUpWEfSikDmBzAMMDWj4nBgav1gs7M+KxWLs9UgcCiHE7ZEAFEIIIY6MUAQCr4QWDVnCoHcKwH6/j36/j/F4jNlsZlU4Vuuq1ao9arUaSqUS8vl8bP4PAObzuVX0/IyhF3o+VsK7gtINtFgsWktoLpczp1E/tygRKIQQt0MCUAghhDhCvDCiwFqtVhbuPplMrjzG47GJwPF4jMViYeKOM4ClUgnlctkMWnK5nIk//twwV5AVPQrO6XRqzqK5XM6C5UNjGYbEcx4Q+MB91M8dhq9VCCHE9UgACiGEECcABVkURTabx5gHtmYy9D2KIiwWC2y3W+TzeWQyGeTzeRQKBRN+/PNQaPoWToq9UHCOx2PM53NzA83n85jNZtbu6WMlisWizRnyZ+TzeQBx51GJQCGEuBkSgEIIIcQJQHEWRRF6vR5evnyJXq9n834MfGdrJgATeblczkQfHz6fj9+fbaU0k6Gw5MOLQMZB8Pv7CiDn+zh3WC6XrfLnWz/DcHiJQCGEeD0SgEIIIcQJsNlsMJ/PMRwO8eLFC3z605/Gy5cvLZphNpuZ8KPw4gwfIx/CWAaKP37vyWSC4XCIXq+Hy8tLXFxc2OPy8hKdTgfdbhf9ft8EINtL8/m8VSApBhkVwarjLldQZQQKIcTNkQAUQgghTgCGvPf7fbz33nv4rd/6Lbz77rvodruYTCZYLBYmuOr1uok8tn6yGphOp02I0VhmPp/b7GCn00Gn08HLly/x4sULvHjxAi9fvrRHp9PBYDCwFlBW+jhjOJlMMJ1OY8+nWCxaBdC3fPJ5JFUDhRBCJCMBKIQQQhw5FGuLxQLj8RiXl5f47Gc/i09/+tPodrsW9p7NZlGr1WzGLp/P2wweq4G+CkezF1b/ut2uVfwo+C4uLmKVv+FwiCiK7Lltt1szgaFhzHq9RiqVQrFYRKPRQLPZxHg8jhnPhEH0t80/FEKIU0UCUAghhDgBvDPnfD43Yxa2XdIpdLvdIp1Oo1AoWOg7Z/AouEIByO85m81sxm86ncaMXejs6auHHh/8zu/L2IjVamUP/p7/jzESQgghboYEoBBCCHECpFIpM1wplUqo1WpoNBrYbrcolUoAPohYaDabODs7Q7vdRrPZRKPRQLVatbw/P//nDVmY35fL5axts1KpYLFYWKtnNptFqVRCFEUxUcjcPzqClstl1Ot1NJtNC5tnG6r/+b4FVAghxM2QABRCCCFOgHQ6jXw+j1qthmfPnuGjH/0ocrkcRqORzdvlcjnU63W89dZb+PCHP4znz5+j3W6jXq8nVgH54KwghRvNXfyftVoti5qYzWYxAcjvQcMZBs632208f/4c5+fnaDabJkQZCxEKUSGEEK9HAlAIIYQ4AdjW2Ww28eEPfxibzQbtdtuqcazQVSoVtFotnJ2d4ezsDPV6HbVaDZVKJbENNJ1OI5vNolgsolarYbPZxIRfFEX28G2hbONk5ENYQSyXy6jVami1WlcqkaVSKfZcJAKFEOLmSAAKIYQQJwArco1GA2+99RYymQzOzs4wn8+vBK9Xq9WY8GPVrVAoxIxg+MhmsygUCqhUKmbeUqlUMJvNzODFm7xwno9zfr6SyDZQP4NYrVZRLpftOTCLkO2gagMVQoibIwEohBBCnABs8SyVSmg2m0in06jValcMWvL5PEqlUiyAPWn+zgtAZvkVi0X7ORRwy+XSHt7IxRu4sApIR0+2ghYKhZj49AH0SbOIQgghXo8EoBBCCHECeBOW7XaLXC5noowummznZIWNFb8kwRUawORyOfseFINe7FHw8Vcv/nwbKFtB2Q4aRj6wAhkawQghhLgZqa28k4UQQoijg7d3H9mwXq9jFbkwRsHP4lH0UWQluW4ysoHfmwLPxzh4sReKPv5cCkDgVUyEF3kUhP7/hQHwEoFCCHEzJACFEEKIIyO8tYe5ff5X//e9sLtOYIViy3+fUNhd9+sudj2P8P8lPRchhBDXIwEohBBCHBFJt3WJJCGEECT91E9ACCGEEPdHKPYk/oQQQnhkAiOEEEIcGRJ9QgghdqEKoBBCCCGEEEKcCKoACiGEOCj2aXRdlTYhhBCHhgSgEEKIW3Gd4+PrXCBv+zOSvsfrvv+un+XFWuh6edN/F7pRXudIucspc9f3fd2vSc6YST/nPvDvsX+OErxCCHH4SAAKIYS4NUn5brfJfLsJ4b9NijAIv77N9yc+ImHX//cPn0V3XR5dkli6adxC0s+67mc/BGE+oP/5QgghDhcJQCGEEDeGgmu9Xtsj/H34/5Iy566rhvm/EwpMfs/w97ty7XZ9/+ten/81SYgxlJzB5Ekh6UnZef5130To+e+fFIjOr32I+n3hP1MA9vP4tUSgEEIcLhKAQgghbsR2uzVRsFqtsFqtYl/v+r2vCobVQI8XFUmVxV0iMxSFb5KDl/TcQhGWzWaRzWaRyWSQzWaviLWwUuYrjEkCMBSRocjkw/9M/rrdbu3/35coW6/XWC6XWC6XWK/X9jP4c/la1RIqhBCHiQSgEEKIK4QzdaH4Wy6XO3/lgyKQ4u26Kl0oJPj3fIUxFJn+z0IByMdt5+RCgZpU9ctms8jlcsjlcldEkRdHYaUsSQCGos//LArNpEcul7P3JpfLAXglVO+Cr7gul0ssFgssFgusVisTgHzNSdVPCUEhhDgcJACFEEJcIZVKXanCUWxR4C0WiytfUzjw968TgeHPJGHVz1cVQ9FJMRhWG/33vQ8B6MVXPp+/IgLDaiD/bfi9/XMKhZ//Xl5oho/1eo1cLhd7ndnsB7f0u4hAiu3VaoXFYoHZbIb5fI7lcontdotsNmvvM18zf96u91aiUAgh9hMJQCGEEFdImu3z1T0v9BaLBebzeexr/p5thLsEWlilS6VSiXOGSRXGsNqY1G6aNIt3HaFAZYXLV9/y+Xzs4f9fUnXMf+9QWPrqH/89BZYXfOHPXC6XKBQKV8xw+D1uU5WjuOfnOp/PMZ1OMZ1OsVgsTADm83kUCoXY8/DVx9DV9CFmE4UQQrw5EoBCCLGnvM7N8qb/PynygHChDrwy/ggrb6EAC8WfF4AUf14AhhU6ihU+t5sKwOseoQDk90+KU9hlEJM0o5hKpRIrchRCvgq4SwDyZ+4SgGF7aZL4469egBUKBRQKBRSLxdhzCZ/DLnfSpJbP+XyO2WyGyWQSE4CZTMZ+Fn8uH74K6kWvxJ8QQuwnEoBCCLGnhMJhVyTCTf8OcDVDL/y7SZW/JBGY1PqZJA6T2jOT5gDDKt2uFlDf9pkkLr3I9N/3ptEQoVBLp9P2fZPcPfn/kmYBX9cCmmT8smveL0kMeiG4ayZxlzOpf/5s+6Rwn06niKIIURRhsVhYZdGLvmKxiFKphGKxGBOFfH7ZbFYCUAgh9hQJQCGE2GO4iE4SZLvcMK/7s1BYJf2/6x67nkdoysKvk2b/buICGkZAsFLIKAJ+ndRaGn7/pNbEpJ+7K0JilzsnxZavWgKvxGtSxS38ua+LfriJE6ivPu6KpEiKsaA4pbinaJ/NZoiiCNPpFPP5HNvtFul02iqfhUIBpVIJ5XIZ5XIZlUoFtVoN9Xod9XoduVxO4k8IIfYYCUAhhDgAwla9JBOWpBk5/2dJbp38d95Jc5cQ4p+9rpq46/e7vufr8PNl1/3s8HkC99eGmNRKGlYtdzl+vu77Mmtv18/Y9XVSRS+cvfO/UvyxgkjTGhrA+GPCzwBSzLIaSQFI4ddoNHB2dob1eo18Po9KpXLHd1kIIcRjIAEohBB7jndm5IOzWn7mLpy/C2fzwj/jv6eQTHLPTMqoCytK1z12zZ+FX++qjiVVsPyv14mhuxL++6SW2qTYiaR22/C1JYnE17Xv+p9zXXU2/LtJn6Vv5czn81ZRpQhcr9exWUB/XPh/XyqVUK1WUa/X0W63MZvNkM1mTRDSHEYIIcT+IQEohBCPwF0qX9vtFqvVKjaXxcoMhaD/+nXiMPx//Le0+/etlmH8QRgEviurLvyzXa2IJDRg4Z8luWT6R/hnu+bdblt5TBKQSS2wSfETocmNF3NJ7aC7ZjV3hd6H7bXhI2z7DUUgBZw3k/EB8j5vkSLQV4bZdpvP560C2Gw2MZ1OkUqlUK1W0Wq10Gw2USgUrsw/7mqFDY8FIYQQD4sEoBBC3BM3aYlM+jr8+14IJAnAXcIvFIG7hN91AhC4Gn7O1r8kgxJvlsJFfvhvrxNoSe8d/99NgtGT8vd2tYzehPC5JQmysKXWz0AmVeWSjG7Czzn8Gf5nA3FTHP/zfRuwF4K7fn74eYYupWHeIwWg/5xzuRyKxSKiKDKRmM/nrRpYr9eRTqdNBIbtuEmi+CbtrkIIIe4HCUAhhLgHkhb0u9rykr5OEg5ciFO0haLvOnGXFMsQtoeG4oFiI1y07zJWSQpI9w6VXjRe1xbq3z//vXeJUP99X+d8mfTcr8NXH4G48PLCaJfw2mVK47+3f73XVRd9nl+SIA1fY3hcJZni8PnPZrMrFbqk5xJWNCkAeSwxKL5YLKLRaKDVaqFSqWC73aJcLsc++/DzCCu9u1p9b5NpKIQQ4vVIAAohxD2wq5LzOrfNXc6dXggk5etdN9uXFMOQNN9HYbXZbGKiz4uvpFDypIDyMCDc58OFAjAUNXz/kiqAYeXPxx2E0Qeh2LirAPSCI0kAJgno0BX1tgLwJpEb2WzWfs1ms1gsFleE8i5HV/48/j/v0Jq0YbFrLjGVSsUEMKuVxWIR9XodjUYDpVIJq9UK1WoVxWIxdgyEYjKplTes/IbvnRBCiDdDAlAIId6AcG5rV1adn926LjYh/H2SEEj6s9DtM2znzGaz9ntfUQvb/MLqW1h549dJeXShGHydAOTz8e8jSYpcCCuASSHs/meE3/d1IpDP5bYC8D4qgKHo9w/vznndI6kNlREcvn3VG7xc5wIbHudktVohm83az0ulUigWi6jVaqhWq1YhrNVqKJfLthngPxO+z0ltvV7Q00yGx60QQog3RwJQCCHeAC/+/CI9qRrnK0a7HknGHrtcH8Ncv9Ct0Zt+7Pr7FAiva79MCif3QjAMKQ+rc0ltfvx5fB9DoZQ0S7hrFjGpBdR/RvcxA+irc6H4u66idpcW0FAMJs38+ePNP4ek783vMZ1OMRqNMBwOrc3Y/+ybsNlssFgs7NjhvF+5XLZjbTAYmABkULxvaeWxGW4ihL/3bclqBRVCiPtBAlAIId6AdDodE4Cc1fOOnbucOsNHKAKTqnLXhXynUh9ktV0XjxBWucLvsSve4XWh5EkC0Yuy8HneRAAmidFdj9e1l96GJAEYVgK9QLtO+CUZnvjX61siQ4Ge1BIcVo15vHgB59tf+f1Y+RsOh3j58iVevHhhFbXbCkDij/nBYIB0Oo3lcol+v496vW5B8RSAvirMSnGhUECxWESpVEKxWIx9XSqVsN1uTfhL/AkhxP0gASiEEG8AF+7erXM0GmE0GmEymWA8HmMymdgjiqIr4jB04wzFX2jd7ytsSW2RYZUuycUznOWjkEoSaruEohdn1/3+OofH8L0kr/u5u8xD7mtWLEmoJZn17Jqd868ndMH0rzfpkWQedJMqMH8G33/glbhbLpeIogidTgfvvPOOVdeSTF9uw3a7xWKxwHg8xmq1wmg0iok5/whFXqlUQrlcRqVSsV/9Y7VaAYAJQN9GKoQQ4u5IAAohxB3xM1XT6RSTycTa64bDoQlBPnaJwSiKrDLoq0pczDN421dUisUiAJhoo0hktcU/fLXFP/h9OKPlq3VAXASRUMgl/T5JiCWJspsItfB7hM9t15/dJ0mCbtfX/te7fu/rflbS//NVRl8V9e2r8/kco9EIL168AABMp1MMh0OLcmAb6Xw+v9Hz9u/7ZrOxKvZwOLySN+gFX6VSQbVajQk9/p4bIX6eEXg1D8pZQ4lAIYR4MyQAhRAny00X2+Gf+6oKF74UgOPx2ETgeDy233vxF0URJpPJlfZQZqr52SoAV1pB2XbJaqBfYPtKixd5uyoypVIpFgqetLi+zQwdSRJhuyph981DCcCH5iY/Z9dru+41LxYLzGYzbDYbVCqVxOMkn89fEV5J33fXBgAr4f4zDuckfZUyqU03NFTy1c3VaoXZbHbFVTRpw2LX5sBDbRAIIcShIQEohDhZklwYw9iGcDEahoH7GT7O/vkHBR4t88O2Tv/7YrEYW0T70G3fKkfhFi7kk1rvwmqf/3N+nc/nr10U33db5aHxWM/7IYTrYrGIVadHoxFms5m5d/pKHUXacrmMibVQuCfNngKvNiqADyrT4QZFWHHmv1+v11gsFjaT6DdXoijCeDyOzRKG7cy+5fh1c6I+VkIIIU4VCUAhxElC8Rc6LN7EqfMmtvxhWDjNLAqFggk75qWFWX1cVHP2KWyjC0Wc/zWp9TOpBZSLc7bWieNhu93GqtKTyQTD4RD9fh+Xl5fodruIogjr9Tq2ycDNB+YJ7nIxDc15kgyD6OYZbkCEVWcKuO12a+cJq32TycSO/9ApNHSeDaNJdv0KQMe8EOLkkQAUQpwkFH8UbLtcOnc5doZi0bduJj3S6bQteIvFYmJrqV9cs2rBhW6SeLvuES6Qvb2+N9RghUcL4uNgtVpZ1YwVv8FggH6/j16vh16vh263i9FohNVqhVQqZceXnztNipUIxZ+P5giPsXDW1P8Zj8Ew14/xEsvlEgBiVcak1uekn7PLdIbnnEezhEKIU0UCUAhxcoTze4xu8C2cSREO4bxeUvC6F2++QhK6bO56hDELfISVjyQX0DAYfZfzp8/Nu6/2TvH0rNdrc6EdDAZXhF+/38dgMMBoNMJ0Or3SBuqPYbZkhs6godGMr/Rd14Ycbk6ELqVJj9Dl1FfF/c/kz2V7NM2S5vM5yuXylQq7rzzyvBNCiFNCAlAIcVS8zkjDV/7CuT3v0Bm6dCZFNoSmGb5l0885cR7qutgGL9Z2Ze6Fc0/h1/7XMKsv/PtJeXnicAiNeej0OR6PMRwOY9U+Pvr9Psbjccxp04uq0Ek0jCQBEKv++flBCi86evq51DADkBsP4bnI1+Er877SvtlsYg6jXvyFURI+UiVsZ/WPbDZrr0sIIU4FCUAhxFGwS/iFbp5J0Q180K2Tj135fVxAc4HJhTPn+tjyycWuN8JImtfzVZKwMpE0a/W63L3rqou7wtLF4eCdMlkdo9lLv99Ht9vF5eUlOp0OOp2Ozf0NBgOr/PnvxWPUt1lSBFIA+uqgF2H5fN7EX71eR71eR61WMxEYCkCKP876sQLPY5FzgAyY5wYNjZQA2Cwtzx0Kv2q1eiVP0wvA8FEoFAAgJn6FEOIUkAAUQhw0r4tw8Dv/rDjQXZCxDWFcQ5IITHL1DKt/tKj3rXU02GBlgu1pvmXNL5T9IhnYna+XFH5+k1y++wxLF48PNzEoblgto2lKr9cz0UcB2Ol0bO6PlTZW8ADYsRrOnyYJQFYIw+pftVpFrVZDo9FAo9FAtVq147tYLFr1m3N/3qGUz4OicLFYmEikEJxMJpjP57a5wvOqUChcEXw8L2/yKBaL2Gw29vqvi4tQjIQQ4liQABRCHCQUeRR4STv8PuLBO36GApAij1+Hws+3fYZtZQBiC+fQtZOVCf/wQtB/zYXyTdrRbrMI1YL1OKBoSTIviqIIo9HIKoCc9+Ox7I/fXVl+fiaUx7Nvn+S/YQWQx7rfxPAPLwD95kY6nba4Ceb58Xt7gbtcLmNVcbaN+hxOzivOZrPY7G2YT+jP/dlsFntuvjoZVs3DzRb/XIUQ4lCRABRCHCRcLLJqEEY0JP2ZnymiqAt/5dc+C40tcgDMxTPMPGP7Z7VatVa4JOHnBZ9/lEol5HK5J3s/xf5CwePn5XicJlWxh8MhJpMJFosFttutHZsMZw+r4mH7NCuCrIoB8RZr3ypKEci/S2G3WCwSTYj479gy7edTKcRCV89CoYByuYzpdIrVanXlOfpIE99aSqHJ8308HidmYe6KmEgyVAJgvwohxKGS2r7OMUEIIfYY7v5zVsibtXhxF5q3+EredS1jXHyHsQ3eLMO3w4WVvbASErok+oWuqgoixLdFetMiir3BYIBer4fBYGBtksvlMtYm6gWkr35HUWRmMH7Gzx/PYUvyrjgILwaTTGH4qFarKJVKyOfzSKVSsdeW5Mjr53DZes3zkYStq7sC4b1Rkhd5Yc5m6Cbqz1uKXSGEOGR0FRNCHCxs71osFphMJmZxzyoIv2Z1xJtJcCGbZJLiLe69mYvPPQuDp8NssqSvw2BqPxclEwqRhDctYpunz/a7uLjAxcUF+v0+ptOpVfwo3vxsKQBMp1N0u128ePEC0+nUxFc4y0pRVKlUzCAGuDpr6x/e0IUisFaroV6v289gNd23S5dKpVh7Kyv2oSgMN2/8Jo7/917s+o2cpFB7Pp9yuWzPlY9Go2Ffe2MnCUAhxKGjq5gQ4mAJF8b9ft9yz/jrcDjEYDDAcDjEeDw2F0S/APWB0jRyCVvRwpa00MmTs0pJMQ67oh18Fp8QIdzc4IwfIx54bFPIvXjxAt1uF/P5HPl8HtVq1TYaqtUqGo0GKpUKstksJpMJ0uk0xuMxOp2O/QzOBvpWzVKphHq9jmKxaJsUfgbPVxl5LrJCl81mUSqV7PebzcbEZblctkgHbrL4WURv2MTvTaHKFm4KQy8Sw5Zuvnf+34XOoGxFrVQqaDQaaLfbaLVaaLVamM/n5vILIFY9VGyEEOKQkQAUQuwNSY6e/s+94Qtzz6IoMpHnHz74mgKQLoh0/SsWi1Z5464+haEPl06a1/MtYX4GaZdxRPi1/71cOU8bX5UC4lmVFH+MKUk61rm5QbFSLpdNXHEutdFomHgZDocoFAqJVT3gVcwCq2KlUsnm6bzTJmMZKKT4NauJXrhRoPHBjRZfVfdikM/LG76E349iz7e0cr6Q/yaMnPC5gny/stlsrApKfFeAP0c3m409//D9S3IRlXuoEGLfkAAUQuwFPqfvOjfPsMWLArDf72M4HNpiOCmzL3Tu9Dv6PljaB0p74xZa21ME7gq4JreNZxCnR2jGwsqaF3/hzJ8/xlmlAq7O7/lNDJoMrdfrK46cFDqshvFc8DN7qVTKBJh36/Tw5/vZQP93eb4WCgWLg+DP9m2hfF58f14nAvl6vKNo6AzsK38UdOH39u85N3X4PX2GqBew4YbPrvxNneNCiH1CAlAI8eR48eerC2G1wc8HeVMMLo457+fNLQDEcsO4GGOFIxR4oWNnaGDBgGu6B/r2zqRFXigIr/tVnBZhPmUYVbDL5XM0GpkpCqvZhUIBqVTqitOsr1KH7cjevIUbIl408phnpZxVQOZcepHFKjqFHcUc5weZ6RdFUaydlH83n89bNd6bufB9Wq/XyOVyWK1WsZbt8BxMEl9Jr3c2m8UyO1l9ZLWQ2YN8PfxcJpNJLLLFzwf7iqb/Wawyas5XCLEvSAAKIZ6UUPx5R0A/7xP+eZJrIB+LxSIWxk6HzXw+b7NHPqfPC8FQ/HlHT7+wZuUvDGPfxa7/pwXhaeKPe1b8eDyzeh2KP9/qyEgEHsusnDGGhNVqX6niz/VZfvl83sQV5/7C7MpCoWBOoQyS93OAFHJh7IMXXul0Guv1GlEUWVTEarWKVR3ZBuqfI/Fizrt48uckiT5f3WdFlGYynA3kJhHFL9s61+u1ZQvydbN66ed/k0yg/IOVXVX6hRD7hASgEOLJ8BUEP/N0XYyDN37wroD+4Xf1+WupVLKFKismXOz6Wb8wp2+XLTwrKkLchTCg3M+yMbydFT8v+nxLMx0/uRFBM5N6vW6zezxOfYupN2Bh5Y3fK6kSnsvl7HwD4rmEFHLeTZOCNBQ7m83Gnv9sNrN/R1HlBWRSNiGFHauevgWTfycpo7BUKsXePz58azi/v3flZcWSFcHxeGzvt3f49cZQYdyLbzkP28CFEOKpkAAUQjwZXASFVvd+4cvqB7PAwjw/P4fEioF3MwxbwvzC0Ofx8eHNXXa5fnKRKMRdSafT1vbJdkNv8BK2NE+nUxNbvnXSC47wwaoaAPu3/D4AbGOEQooCrtFoWARCtVq11kgGvYeVeu/w2Ww20Wg0Yj+XD4pczhFGUWTtkRSqXrxd99554Ue8gROFrBd8fuPIbyD5vEQfa7Fer23zycPrC8Wf3xyqVquo1WomoL0A9NchIYR4SiQAhRBPzmazwWKxsHk+Zpz5XweDgQlB377l2zy9YNsV4cDqnXfv9Lv6Pp8vDIz2uX1CvCk87mlk1O120el00O12TQRy02OxWNisna+a+eiCSqViBitJjqLT6RSj0Qiz2Qzb7dYE33a7NQFXqVTQarXQbDZRq9VQLpcBAIvFAgDMfIlijlVBCqGzszM8f/4chUIBm83Gzmmet9PpFP1+H8vlEqPRCJvNxjZkfP6mF6+7YKUOgFX6C4WCzQj7eWEvRNlaHkZKhBVCLxrDmAvglYCm8KvX62g2mxYjwSqtzw983WsSQojHQAJQCPGkeMdDWt33+310Oh3LOut0Ouby6RfEXLiWy2XU63Uzd8lms6hUKqjValcevoUzzOfb5eIXzhcJcR+wIsdNj263i4uLC1xeXqLf72M0GlnFjG2KvupUKpXQarXw4Q9/GG+99RZqtZoZm/Cc4oPnFiuKm80G+XzeKlP5fN5aolnFq9VqqFQq1qrJtkiaL3Gejv+vWCyi3W7jQx/6EEqlElarFUajkbV0DodDLBYLO4+ZScjqWbjpwrbS66DY5d9lqLx3Dvbziklh8/wMfGYoXU/9Z8Tn7KuefM8YHD+ZTEysU/wp+1MIsW9IAAohngQaK3Bx5St//tHr9ezBBfFsNrM2Ngo+2rv77LNms2k78vyatvY+tiEMoQ7RYk3cN97khcLDH++DwcCqZjQqoTjiDCvF2vPnz/GhD30I9XodAGxejRW4xWJh5xe/JyuA3AjxlSy2gHLDhCIPiLdrs0KWzWatkletVtFut0045nI5M32hGRNF1WazsWiLfr9v7dV8jczz87N+vn3Sxy+QpPPX54v6+cUwSqZcLtvP5fWJ4pWmMJzHpAGPvx75jgQ+512RFpx5FEKIp0ACUAhxr4QzNKFbIH/P1iufc8ZFKts9vaMn8GrGh4YV6XQahUIBtVoN9XrdHlzAUvTx60ajgWq1ak5/SUjsifsizPhjOybjBELRNxwOY9l+rCCxGkbRx+OZrYac16tUKrGYBoq1KIosRD6KotgMoBeTdP/0369YLAKAnTN8DT6KxYe/8/uVy2U739mCORwO7fv6yuF8Psd4PI7lA/IawedAcfi6+bmk89f/Ga8hfC3L5dKiKvjaeK3i1+v12q5n/Ew4x+jFahghQSMcLzS9kZQ3vvFi0c846nokhHgIJACFEPcKF7q+xcobRvj4hqQIhzDOgW2d1WrVLOu9m2exWEStVouJPS/4aGRBU4zrxJ8Q942vmE2n05jTJ0UZg91HoxHm87kZo7DNk6LFV+harRbOzs7QarVQq9Us49JvsPjWT26szGazWPSCr/yxTZouonQA9VU4H4jOGbrtdmtmKj4TkLmEnJujEJ3NZpbpVygUsF6vMR6PTbT6zgB/Ht93+zVbX72o5WugCKOpDMUxW0HZ5unjNPxnMJ1OkU6nsVwuMZlM0Ov17PPcZdrjMxtZRRRCiIdAVxchxL3hqxw0neDcTJKjpzda8BEOvmrCtrJSqQTglZseF12sXoTue/yaMQ8ybxGPDc+F2WyG4XBo1b7hcGgGL5xp5aYI5+3K5bId5zR84awZzUYoBMvl8pXAcp57XvwNBgMsl8vYrB2/rxd+PHf4fZfLpbVL+zZGikAKQAoonsN+gwaAXRe22y1KpZK1gaZSKUynUxN/fN7NZtPaVWnwct9QrLJqyXZb/jxWXHn9oiMrq7Q+549VvFQqZQKRc47e3MY7h1LQN5tN26zabDYoFouaORZCPBgSgEKIe8HnmoXGCt7enrN93sxluVxaVY+77r49jdbwYbAzF1O0fecuOr/2u+psx+JiTYiHxAuk6XSK4XCIi4sLvHz5Et1u11qcQ2dJGr34qBLmU3Jjwwu1er0eqzwlZQryHBwOh9hsNub8yXnZJAHIjZNUKmWB6N5Z1M/RAYi5bfr2VYo2Xz1MpVIoFosxUyd2BrAdnH++Xq9jLaoPkb/pK32s6rE6Wq1Wd+aQsgLK1+zbR1kF9BETYXwExeX5+bldA72r6a64CyGEeFMkAIUQt8IvUEhYEeAClItPb+jS7XbR6/UwHo8tjNnnmhUKBase0Jo+jHEIM/r4oDD0D28pL/c9cd+EGwpeHIUbIb1eD5eXlyYA/awf8Gp+zgs/H8oeVrYpDCmyaF4SVgF9uDwAc/8MM/P4/Sm2wnMxNDPxs38UOl4E0Z2TYobPzRs2+Rk5xib4jM98Pm8VMs7v8vmHBjB3hRtMfL18bgyRDwWfb2v3ojD8ldVff50L20oZr8HNLb7P3pSK7bfEB8oLIcRdkAAUQtwY76bn/yysdjBvjDNOrP55Ach5J1YQuOvOmb9wF963c3oTBYo7XyH0FUQ+JP7EfcPzgBsYfiOElTjfhtnv99HtdtHtds2MhQLSH6885r25kRdmrGzz4QWBbzv1M4esqDGAPhSArAL68yyfz2O1WsUEoBcmXgD6eAUfVu+rWPw3AOx70hF0MpnYvwdgraIMlx+PxxZzwfgXVgLvSwTSYMoLQJ8fSHHrN7r4Hvv32c8y+s+Cr40bXaxw8vdJGY6M60gyiCG6rgkhbosEoBDitXjhxwfxzoZcDNHQgsLP52t504vQSMEv6Lg4ZZwDF8GcTfIueuHiiL+/btEkxH3ARTofrL75dkbf+uzNWHxFiOLPz/p5YyNGMrDSzY2PUPz450Bhwrm12WxmkQ3cYPECkI9yuWz5e+EGij+HvMupbwn1YonPMaza0eCE7bH8Pf8dN4bK5bJdM6rVqlUSw6D4N62K+SzBTCZjraehg7Hf8PKdDqPRyAScvyaGVVlWP2mawzZZtq3zGuiNaXxuqRfj/pqma5sQ4jZIAAohrsWLPt/65VvAlsvlFfHH6h+/Zn6WN31h9QB41YblF6XVatViHVqtlpkkcLHERWC4+PHZfn7RqkWSuA/CqBNf/WILIFs/R6ORCT+eB2wJBGACKTRk8VEPbH8MNzxCl0g+Hx8CT+HHtkWeA/5nhm6UYfh6uJES5u6FxjDe0ImB6dyQoYBh9Y+tsYPBIDYTyRw+OocOBgOUy2UAH1QbWQXlLKNvUb0LFKYUguF1j5VaVjJ9hdcLND4/b4QVtp/7WJuwXZ4/m/9+Pp+jVCpdEf7+ffSREbrGCSFuggSgEGInoejzu/xhFlg4b8THaDSyhV2YFRYufsvlcizPL8z1Y4YYK4AKUhaPzS7B44XfrqgHBogDsMU7qz++5ZPHuw9k50zedQYo/nz0c2u+LdO3nPp5Qz9PGxKKv6SsuvA98eYnwKvNF1+1nM1mdo4PBgOb+6OQ5WuKogj9ft9iYHxLZqlUsoqg7yK4C7cRUD6uwYswn3/K98O3vbLrgYYwAKxNdDQaWYuuzw2kSE+aeQ6fg3+vhRBiFxKAQoid+HkfvyPNhS4Fn28z8+1m3jGPWWJ08vMLUV/1Y/WDgi9cBHM3XOJPPAVs6fP5fmHlm19zE4SCkOHnlUolNuPKqt+ucHce89eJG7pOhhW/cB7PxxF4IcGq0q7XzMpY+GDenxc/YRuobxkHEBO+jUYD7XbbnEbz+by9V/x3k8kEFxcXWCwWFg/hW2Or1WpMUD0WzBCksPYGWX5Tq1ar2XHgK5w0eMnlcvbaFosFhsOhCXP+yuosg+T9vCbnQNXmLoS4KRKAQojX4u3luailoUW/37fqBlvb/O6/XxTR3CJchLIC4Rc4/uGrfg9hAy/EbfCtllEUYTgcotvtotPpWDsj258ZdQJ8IMDYYsnjnfEObHf2s64+wzKpvdFX55mf51tMQ/HnszPDStLrTJJ8zp03W6Lo4jnpBSDbQLn54+HsW71ex7NnzwDAhA3jIWiiwg6Cfr+PWq2GVquFZ8+emZgCYJEWj413D/UxD5VKBc1mM7Y55sV5WJ1lOyzwah6R73PoCttoNHB2dobz8/PY35X4E0LcFAlAIcS1eEODyWRiMzsXFxd4//338fLlS/T7fXM1pOjjYtGLPG83T1EX5vWxGkGB6B+KchBPDc8HztlNJhP0+307Hy4uLmzmj1EPAKzaxQU8RZ539wxdPr042/U8KLY4K8eKvA8qZ0WK+XthpMpNWie9wVLotgu8EoDcLKK48cHz/mcw75DB57lczt4PL6BpmhNFEdbrNcrlslXKKH7pnFqpVB59c4iij1mMrOo2Go1YTqBvlffdE94hlgKR11GKOx9KX6vV0G63bZ4zdDt+7CqoEOIw0ZVCCHEFP89DIwPv7Mk8s5cvX+L9999Hr9czS3O/aOGiiLv9XLy0221bDFME+sVu6OgZmh3wOUoIiseC5wQX8qHbLSuAl5eX6PV6VhWnAOJCvVar4ezsLOZs6zdDfH7lLvfNpKxBignma3qTJQoTCqWkDZfXtQ/68zrcoGEsA+MPKHj44GvxuX0UL2yH5fUiFL6LxQL9ft9iLCaTiQlGildWDmu12hUDm4fEV/18hbVUKl1xD/XXUn5Ww+EQnU4Hm80GURRhs9nEIiO8CMzn8yiXyzZHyopnWCHWbLQQ4iZIAApxooTRDn6h4s1eQic+2tlzh54LM+Z2ebHG9ijuztPans6GtVot5jyYFHjsZ1vkcicegyTH212Cy0ed+DkvVt94HoQzrqEA9LOt3uFx13MLowi82y7PR282QnMXX3UPHSWvO7d89S+szNPpE0BMALLNkec2n0sYBeE3enj+s5I4Go1M0KxWK2y325j4LpVK9trL5bLNF6bT6Vj7+UPgr0f8eYzZ8JmH/vVQfFPgUvSxtd6Ldz9fmEqlYsfecDhEv99HqVRCKpWyY9MfR15s8xrqr6VCiNNFAlCIE8QHWHNhwrY237ZEw5ew2sHF7nw+t8UfW8y4M+9FX5hpxl9pYOAzrnyFD3jzfC8hbgMX7rvcbtn26as4/X4/dj7Q4IVV7HK5HDv+afDiXW29+AujFvxzC902KR58vmZYQWIGXyaTiRmH8GeG1fUQL9hCAxkKTZ7/vkrKh2/d5vPwv4aVfR+jQGFXLBYxm80AwH4GOxMGg4EJ2u12a++n7x54aLwRjhefhJtj4WvljCM3DoAP5gr5GbKKS5HMCAo6o2azWSyXS0wmk1hGqj+ewsfrPm8hxPEjASjEiRIGV3M2hXMo/le6GIaun1z40XyBu+80uOBMDxe93rmPVQ/uhCe1uhEtVMRjwUW5D3T350EY8UAhyBm1TCZjmxq+zfHs7MxaP73JS2hu9LrqjK9GehE0HA4ta5DigaKDYiCXy9nP9lX3m/xc3+Lo53q5ecTNG59DOJ1Or8QU+Kw9ft8wQsHPWPIaUqvVzFWUVTaK8cFgYIKPP99XVW8jdrxwu8t1h69j18YVBTx/pYjn5gGvpzS+4Wv2nwGrgcPh0CqinB/1FV5WG318hN9Yu83re9P3RQixX0gACnFi+NY2v4hMsq1PcrCjwyBNCLiw8IYvdPP0izfa3IfW9r4lzC8stMgQTwHPCwoYttzx3AjFH88LtkBTIPk52Gq1ina7jfPz8yvnAMUfK2jX4at/4bnrK/PT6dTaJX0IO103kwTgdSHqYQXQO/d6oxcvACmck9pa2Urqobj0r20+n1sUzHg8tu/NawWrZ6PRKJap56ufYWbhbbjrnPGuf+ONsYC4oRDzIWn2QgHIbgwfp8GsQJrhjMfjmIsyxWBouOUzGb1AvclxJ4Q4LiQAhThBfK5fOM/E2T4udhnvQMt1by3PxYzP8uOsEx9chHjHQz+nokgHsS/wvPCzVj7fL8z4Y9uer9DwfPBt0NVq1WZf2frsK383EX98fr5FNakC6GcQAZjwoolIkgC8yVzYdRVAX5lieybFX5Kz7y5BkcvlsF6vY+8dOwho/jKdTq3Ndr1eYz6fYzwe28+mWOK8IV8/5wifcmPJz0AC8XZXPudisYhKpRLLUfWOqvy76/XaNij8ZoM/5uhE6sPo/Sy1sgOFOF0kAIU4MXjj5+KJO+i9Xs9y/dhKxmqCDy9m+xaDnL11vRd+vg0pDDG+qfW8EI8Nq0xsLaSw8hU2X/1brVZ2PvgoB254UHAltX3eNtbEG8AkCcDhcIjZbIbVahWr2oUZcrVaDeVyOea6e5MMQApAn9tJAcjv41tAwwgXCkdvjhL+HB+lsFwuUa/X7X3OZrM2a8nrEWcQ+V7QeZXOw36j6XURCaEwfQhhxNfIz7JcLtvcYLFYtA03ij9+7R+cyWaVer1ex5xUOXvto3m8APSVWF2DhThNJACFOEFY6aCBhI928OHuo9EolkvFRSAFHWeb/FyTF3/c/Q8XgruCrYV4Srwpx3g8Nsfb0PmW1XGadvgZK866ttttq/j5ipuPhAhdb2+CdyVdLpcxI5TBYBDLh6P4KZVKsVlcuu9605nrKoBhHh0rdHQb9RWlUAB6EVYoFKyDYFd7JYUMN5hY9aKZTeg+zFlNX5ldrVYWxk6hexOn08eqhPkZSODV7HS1Wo0ZcfnZbG/Elclk7LrMmU+KQL5vzWbT2pLDnxu24r7udatCKMTxIQEoxAmyK9vPVwGHwyEmkwlms5m1J3ExycUYM83Oz8+vmLskzf4ozkHsK9vt1iJPvM0+zwtWAGmERPHhM/YqlQqazSaePXuG8/NzPHv2DM1mE5VK5Uqbp8/Eu81zfF0FcL1ex3L9uGHDGVwvAG9aAQSQWAFkCyifWygAfdUvn89fmWVLen2+CugrV37G2M/7ecdRGqKkUilru2U2IIXuvmTk8XWybbhUKl1xn+X7yFbk4XBoRi6j0QipVMqq1RR7uVwuVgX1G26+Uut/z4gQIcTpIAEoxBET7rJzbmQ0GsUqG7taPkMLci7+OJvDeId2u41msxmrAPrsLyH2DQopPhaLBaIoss2QpKxLn+9HccXFe7VaNcMSXwFsNpuvbT28DaGBEwUCZxS3263NFgKwTRs+Pz8DGMYz3CYGgtcCzphxkyjMAeSDM2zXCUAAMVFMwcs/92HzfO2swnrzl3BukwKI3+8xw+J38bpNMB/zQQHNquF8Prc2XsZj+OB5vv9+vttXe4G4odB6vbbrtRDiNNDZLsQRw8WAj3oIDV/YOjYej20XmVWDbDZr8ylc6FYqFTQaDatytFotW1T66p9mS8Q+woV1GPOQVPnzeZdsseNC3M9tNZtNPH/+HOfn52i327G2z4dYVFMA+hZQih0KC7ZNcgbQC8BKpXLjDEDig+C9CMzn8yZGfbRBJpOJZYp6A5PrZgD5swDEjFt8VIT/7Hx+KcUlxfxwOES5XAbwarYzjN3YVxMUH41D/PvLDQkAKJfLiKLI5iFZ1UulUpYRmE6nr8T++OxAzmbLnEuI00ACUIgjxc8zDQaDK5U+7/JJK/vNZmOtbOVy+Urlj6YvtVoNrVbLqhxJroJC7COr1SqWa8kwd4q90P2WwiWdTlv7s3ddpLMmW6Hb7Tbq9fqDib/QBTSsAPK5sXrPXEIvAPncfEvg6yqAvgpIEejnGSkuvDgNH9eJv/Dn8bn5PwNg5lV0x+TPYwWSFcPZbIbBYIBsNmvOroyjoeDh7OZNYxCeQij6eAy+f3ww15GtyZzJ5HvBjQo6p/qWYZoVcXabD27mSQAKcdxIAApxpHBBNh6PcXl5iRcvXuDi4iKWFebd9ABYRYOLDh/qzuofxaHPmFLLpzgEOOc3mUys/bnb7aLT6aDb7cZC1H2roo878REFodtnvV6POWze97mQlAPoqzlRFCGXy5kw8mYw/pyl6GGL+E02bMIKYPjgc6IgS6fTMfHnq383yZXzVT//HEMByFZeVmTpykqDFFbB/L8J35/rXr9/rnfNBXwTwplI4JVRDvMl/aaFj+1hviCrsJxxHY1GV7Ja6/U6Wq0WANgxo2u5EMeLBKAQR4TPCfPtYb1eDy9evMD7779vWWG+ZcovcMMsKQo+/koxyDYqtgzdpp1MiKfAx570+310Oh1cXFzg5cuX6HQ6FqzNc8ILHB97QkdNCj4fheKz/Th3dl/ng3f/9G2sXPCzJdALhWw2a6KVla/bQhEWCkC2gFJgMIuP4sq3gNLY5KYCkM+fv7IitVqtUK1Wr1QA+Zr5HqzXa0RRZJ0QfLCS5t1G93n2zVecKXL5mdLoxle0WcUO40r83CRdRdn9wcohAGv1Z3VUCHGc7O9VTwhxY8KBfrY80TnOuxn6rDAAZh3O+aZyuWytUn6BS/HHBS4rfqHLp9o/xVPCTRAKLz835q302RbNc6Pf72M8HmO9XsecPXlesI2S4o8RD3TU9MLvJpEDt4XnNYUfq39Js3VeNISPu3LdDKA3k+Hz5CxxKAJfZwKThK+CsSuhUqnYbKb/vqz+cRaQ10YvPOlizM0ub7CS9LNv+3zvE98Om8/n7WtfjQ7zV5kxCbyaefWGR14Q870DYLPflUoFxWLR/sxXi+XgLMRxIAEoxAHDxQ13uUPDF7/I9fN/3O31phZcTHAOpNlsotlsol6vx+Zl/NyPtxP3LVtCPAW+Au4X/Wwb9BsiPCdogMRKCQBr3/Sh5F788dyg2QvbppM2Qu7jfPDnt3fXpLDi67yuTfNNZnN3uYD6nE9W0dh9sF6vYwKQ7Yg+2uG2+LBzZgRy48tXPVnR8hU//zNTqVSsossNsOtmIJ+i/dP/fO/W6uc8V6tVLJaD1+lMJhMzAfPngv8cQlFMIcnvz+8VxkfoOi/EYSMBKMQB4+eBfDuYD4dm1S80CUjaSfbir9VqodVqxWaauMj1CwHg9ZbmQjwG3iAlzFNj6yerfT7Xj3N/m80mVm3xrdCMeODDV8dZmQHi58KbnBO+ksn2PX9+s+2T1TYKPx++ToHmw97vir9e8JrBnzWfz61SxIoTHUi9UPWVursIqvCz4WsP4yLYippUdaSA8p8t592ue5+e8vrm3VEpRv1mRyjKmTnJY5/dHmzL5fvGThEKfJ/xyHlKn+nqK6USgUIcNhKAQhwoFH/cXecsR9jm1uv1MB6PLSsKwBUXQ1/dSFrketdAtQGJfcTPvvpKGQUTIx58K/RkMrE2QhqC5HI5qwyFBi/+vPAGSA/R9uzbupkHx3Pcz235eTYu3v2cLmfc3mTBfl0F0ItML7woSr3xyk1yAF+Hv3axqufFHecuuSHG9zDMEyyXyzY3x1zAcJNrn/DtzPw9ofD3s9hsgfWuoNy0ozAGXlVs6SY7HA6Rz+ft39PhuVQqWV6gb3MWQhwmEoBCHCB+sTubzayFjcP/DLCmCIyiyCIeuADyLVD1et3C3MPqBvOhJPjEPuMDyL3oC88HH/nATRFWTNgaWK1WY2KPbZ+c+fPnxUMKBW/cQaMP7/hIgcOKFmMB/MyuDxG/rwrgriqjD2kPBeCbzACGz4OCx1f+gFciiS2/rJJ619TZbIZcLmfHBTe3NptNrM39PqqmD0HS8/Gz2HzO/Bwo9Fi1nUwmmM1msZZcALHIIACWpchNEJ8X6COChBCHiQSgEAcKc53o8tntdm2mie1tPuohnU6jWq2agxzFHwUg5/0o/jjbxMWxEPsMWz+5IUKnz8vLS1xeXqLX68UWv5wLy2QyqFQqsVZob4LEBXC4CL7OOOQ+YIseXw8Fi29dpeNlsVhErVbDdrtFrVZDs9m01m0KwzcRgL4CyOD35XKJYrGI+XyeWAFk1SmcV7xpFuB1z4VtoMSLU1a/OAdNkew3zDKZDEajkRn3AMByuUSlUrG5N1853bdq4C74vrBtmMc3jw+fAcv3hgJ5s9mYOdhkMkGv17OMS26AMCqCxmFCiMNFAlCIA8QbW4xGI1xcXODFixfodrvodrvmaLhYLJBKpczB0Ec6+Bw/HwYcVg4k/sS+wzY/n3PW7Xbx8uVLfPazn8W7776Ly8tLC8T2s3I8/r3I8+dG6K7I8+KhN0Z8lAsr+V4AjsfjmACkSKvVami1WiZeKXLeVKyGLaCFQgGLxcLEEt8PX3kKBeBtYyCSCA1RvDClaNtsNlYBns1mtlnG1lDOSFMw+nnB0KTmTZxTH5tQHHvxN5lMrlTA2QLLajIzMinei8Wiib6zszOcnZ1hu90in8+jWq0+8asVQrwJEoBCHBh+JzuKIgwGA3Q6Hbx8+RIXFxcmACeTCTabjdmcF4tFtNvtWIunF32h06cy/cQhwMV9kvnRxcUF3n33Xbzzzju4uLjAYrFANptFpVJBo9GwmblWq4Xz83O02+3E2JNd7rcPCSuAXgBS/A2HQwv8BhCLofACkDOK3qTmLvgoArpDLpfLa2cAufl03y2gfD4UgT7Pjy25y+XSqsAUgABM4DEShJ+ld8b0P8PPzR3KddCb2eTzeVQqlZgJEo9tbib4z823Gq9WK+RyOYxGIzNJYrs0W6RLpdJTv1whxB2RABRij+FCydt307ltMpnEYh76/b7NOtHZMJ1O28KQi95Wq2XtPL7ix3ZPBlgLsa+EmZdcuHqhxHPDV8xomV8ul20OlovZs7MznJ+fmwDkeRNuiDwWvgWU5hz+tcxmMyyXSwAwU5ZSqWQte/51vGkLKPBKdG232ytzgN5plK24bDv3MRD3YQLjCYV4NpvFdrvFbDZDvV63zFMG09M1Ffig5XMymQBALLw+dDnm7/c5LN7jhSthR4efE/THg2+fBl7NA87nc5vl5L2B95FarWaxEd6Z9D4ccIUQD89hXNGEOEG4KOFuu4954GK31+uh0+nYvJ9332M2mZ9n4uKQX7NC4I0PdOMW+4bP9vOxJ6HhC0USN0SiKDIhQqHCuSbOvXqDF+96G7oqPgV+BjCc/2OWJx0xWc3na/ObO2/aAsprAr8H3SCXy2UsB5BCgIYrjB3g9es+WkCvI5zjbDabWK1WJuAoahiDQIHD5+UFHx8+3/GQr42FQiEWBg/EzyvfWbJYLGKfkz8OB4MBLi8vkcvlsFqtLAaF71GYhymE2E8kAIXYU3hDDq3svauhj3lg9haDe4EPbvrNZhNnZ2dotVq2c8vFYeh6d8gLHHG8sALO88FvhHCOieYWnHNilSydTqNcLtvCtFKp2ExTu93G2dmZmaaEGyJcyD4VnGukuKUI5GYPXxMrM36Dx5/j91UBBGCL/DASghVACioKLy/+KD4eSgACH1QBKYhbrRa2263NCI5GI2ud9cKURjGsAPoqGa+NfBwqbA3lJogXfvz/vopHsx++D+v1GrPZDP1+334/Ho9j5w3PHbpGSwAKsb8c7tVMiCOGLTk0teAAv69uDAYDG+BnmxMXKZyLKZfLaDQaePbsWcwYImneT+JP7CNe/FH08ZzgRog3tYiiyILSV6sV8vk8ms3mlYgHtkJzLtYbpuyL+6MXgHydnMnabDbm5usFoI9w8WL2vl4LRZIXgH42klUlmsBQZD1GBRBAbPaNAobP018fN5uNbSZQ/NBAhdfEUOACONhrJYUdK8b+M/Atofx8S6VSLCOT1dzRaGTzgv1+3yrpHCuoVCpXvqcQYv+QABRiT+ANmYsntrf53f9ut4tOp2Ntn1zkbrdba3PjDnipVLJ5jeuqHKr8iX2E1Qhf+WMVnGKIGyIUgBR+bGEDYKKPYoltkj7jj5EJrJbtgwD0m0B83XxwVovnLas6YWabn/26TyMTXwWkEOTP4HNnQD2rgb4C+JAi0G9+sa3TG7lQ7C0WC0wmE5tLBF6101IE+hlHvjYKxafeHLgLbGnlucXPwL9H/DvFYjEWI8TPNIoiywj07cjeQMe3zh6Si6oQp4QEoBB7AHfN2T7lqx1s+ez3++j1epZrNhqNbL6JLp80uPDZZVzkssoh8ScOgevEH01eer0eer0eBoOBVcK5WOWGCOfBWP0OYx74tRd/+1C54KwjXzsrn7Ts53nPdj2e90lRLl6c3QfeFdQLQYosXs/8zBlfj//9Q7TXstWxUCjETEkIj6soiqwSyHnKfD6PyWRi10cf+cH3L6x4Hgo+MiP8s3B+j0KYGw7cWOG5GEWRHXesRvv5Sf+9wsD4pM9ECPH4SAAKsQf4BRPFX7jg7ff7VgGkANxut2b2Ejp9+pZPCj+JP3EoeDMRVsLDyh9zLzkXx0oExV+5XEatVsOzZ89wfn4eMz6i8y0fXijtw3nBawFfP68JrHByDosL8VKpFMsuDMXLfb8u3wrqF/v8GawwJQlBb0TyELCVkwKHlT8+r9VqZTmAACy7kJtuvEZ6sRfOyIXf9xDwIjCM9vCuruwe8ecb8OqYZBUwnU5jOp0CgFWCvZj0IlnuoELsFxKAQjwxfmZmsVjYjj8rf7wBh5EPk8nEbrSMe6jVami323j27BnOzs7QaDSutLb59jbdjMW+wkU5zwUavCSdC2yHZtshF/+FQgH1eh3Pnz/H22+/jWazGdsEoejzxh/7cE6E1wOa3vhMPQDW+k0B6EPrfW7hQ72msILk30MvmLwQZIcD4xge6nmFbbyhABwOh7Z55vMLKQIpaHz1L2yZ9ELwEODz9M+dlU6ODVD8cSMhFMkAMJ/PMR6P7T1jyyjfT98WzPfWHxtP3V4thJAAFOLJCKt+fgc6bHUL8/0Wi4W1UHnXu3q9jlarhXa7jfPzcwu75o1Yzmxi3+Gikm2P3tnTB6HT9MVb+wOvFv/FYhGVSsVccJ8/f45ms2nng7f73zco/MIMvTBI3Ts7cgFPc6eHbGX1QsiLP/+ehlW3pBiPh2oDJawE++dNIeNnJXk9BRAz3+J7yH9Lwe3f232qGt8E/7n4957VP4pBbpIA8Wr0eDwGAPsMM5lM7H7lN1T4b7kh4avFfC8P5X0T4tiQABTiCfAzMb7q5xe8XPRS/EVRZK52rOgVi0U0m01zNPR5ZmwH0xC+2Hd4PoQbIaz8+egTb/hCp0nfvlkoFEz4tdvtK+eEFwT7AoUJf2XLJ9s9Q9EXunCyfc87Vj70HKNv6QvnyFg543MNA8f5OS8WC6vWAngwMZ7L5a50WrBVfjqdmsMl2zu5AcHqFZ8z24uTWl6fMi7kPuC5481gtttt7LNihZTmY7PZDNls1lxBR6ORvQ90WZ1Op9Z2HcYOHUO+ohCHigSgEI8IFyG8qXrh56scg8EgZmvPhSAAa83JZrMol8tot9t4/vw5nj17dsXSXuJPHALr9TqW5Rc+eB74iAcaILHl0WecMerh/PzcZv/27Xzwrr9+Q4gzVhS5FB6+2gcgNsf4VItqVpP8bBlFKJ+nF6Pe2IeiIhSJDyEC+dwYhr5arXB2dobVaoVMJoNqtWq5kZwjZaeF34jgMefNdZ46K/K+8S6hvlLrjV6y2SxKpRKiKMJms0Eul8N6vcZoNMJqtcJ0OsVoNLIqK03IuAnDYxZ4taEhhHhcJACFeAO8lflNFlx+B9qbvIxGo5jJC2f8FouFxTyw0kHLejp9NhqNK1UOLoiFOASWyyXG4zEuLi7s+B+NRib+WHVgG6TPNKtUKtb+GDrgsjpeqVT20vTIt4D76ievC1EU2bwfxRUFV7lcTgyuf4qW1lAAFotFi6rwz8u3YPoMPt9qye93358V592YgceA+HK5jGazaY6y/X4f4/E41lacy+Vs5o0VZm4oUHgfCxRkfK9YfWbnCc2G2u22ZVIyKoIbNYPBIBa7wrl0nrs+fP628+i3vecKIZI5nquWEI9MmGP1OnvrpFwvVvy4+Li4uMDl5SV6vR6m06mZWvBmXCgU0Gq1rNoXhj77ioB2VcUhwIrBcDjE5eUl3nvvPXS7XcsYYyWGIeJ+xq9YLMay/PyD8100QeLc0b4sGimGktrAuSkUCkDO9lG48DWGM39P8Rq9AOQc2Xa7vRKZ4J1dC4WCVQaBq8LvIVxL+TMzmUxsdrpUKiGdTtvmnM+8S6VS1u7IjYVKpRKrAu7rPOld8O8VxV8ul7NNlnq9fmXjst/vx5x46cRarVYxm81iRjD8Gf7zvcsGzT6dz0IcGhKAQtwT192I2EpDN7+kls9+v29fj0YjzOdzAIgNz5dKJWtte/78Oer1ui1w/fxPuKMuxD7gXSH9vNt4PLaNEEY7DIdDy7wLq348J0qlkhkfNZtN1Ot1q4JTGO1Ttp8nbAcPrwt8/Wz99tl2jHzxkQ9eiDw2vmrECuB8Psdms0E+n7/SAuorgF60shL0UPmA/md5sZrL5aztk7OmPiOQFSs/n835ap99yMD4fTrO7kJ4DPm4CMZEsPU6k8nYzORkMjGBzwor22xpysT3CIibA/lK8TG8h0LsOxKAQtyRcOc6JAx25w4/be29yycdPsMFL3fVfcA7zS3Ozs5Qq9XM1XCXOYEQ+wAXeqvVyh6csep2uxboTpOXpGB3zh/59rJ6vW4GSF78cVPEL/r36Zzwjpg+7mI4HFq0xWQyiVUA+R4UCgVrdfVC9ynOe9/G50UV5+3CFtCwAujn6Njx8JCVHS8yuVkGANPp1CrHlUrFrtUUsuv1GvP53Do3WDEMcw59xXOfjrfb4kXgLuOhbDZrlVK2a7Naz7Zmb+g0GAxizqL8e2E+7XVRRf6+K4S4OxKAQrwBu27w4eKOIc7+Rsldfr/gXS6X2G63tmDK5XIWZs1Wt3Cg3udUHVoulTgNQvMPH2w+Go3Q6/XQ6XQwGAyuCD8AtvikyUulUkk8Jzj/6oPd9034Ef+e+OxPdgNQALICyPk/tuKx1ZUC8Ck3fvwMINs/uZHFBT0X7qEA9BVaOkrepwhM+j6+4phOp7Fer62iSmHNGA46zVKgzmYzDIdD5PN5ez18LJdL+zy8u+mh4qumocjnfYezfzTR8fN9/Nobw/Az9kZAi8UiNr7AiiCAnSJQCPFmSAAK8QD4UGGf7eedDWly4XdO2TZTLBZt6J4uaq1WC61WKyb+yuVyLGtLiH0kbH/2zopsg+52u2a+sV6vY1UHzhPxfNhlfhS2fe7zTJZvh6QY9gKQBhvL5TLW+spWOgrASqVilbSnav/c1QJK18ywAshjgUKJr425gPd1LeP3uU5MptNp5PN5Mzep1+v2vrMTw8+PzudzaxGlgPfh9r5zY5+Pv5sQurzydfkRg8ViYd0r3Kzg32P1mn9vPB4jlUrZJoBvBWbMxHq9tvlRb3okhLhfJACFuGe82Yuv+FHwsd2TD7YZsf2JMxZ+p5+LXba50fTloQwThLgPKHAobsINkHAThOYbfl7POxKy+ucrf97whc6Mh7D43lUBZAvoeDw2F0rvruk7AngtoAB8ivZP/ppUAeRn4GcAvekNH4VCIRZyfx8C8DYmXZxt47HF6zErWBQz6XQaq9UKk8kkVv1j+yfFom+RPAa8COQmZZIA5HvE45VVYIrl6XQayxYMMwb5nnN8gjBTUghxfxzH1UmIPcLPivT7fdvN58Nn+7HVbb1eA4DthtPh0O/0NxoNtNttm/vb9wWuOE1CYTOZTNDr9XB5eRmLeAhnXn27p58F4jyZF4C+CkgjJFaTnsoI5bb4gHFuFtFVsdfrIYoiALDXxblHvm6+dgrAxzS58VWZpAogPy+KviQBOJ1O7e+yeuYX/28qAm8zK8aInUqlgmazaY6Vvu2YFa7VaoXRaGRV29lsZtVO/jvGJRxDG2iIN+nZbDb2nnHjhpVUutgyW5EC0M/CcyyiWq3ae+iFIIBY5VEIcX/ojBLiHvEtTqPRCJ1OB5eXlzbTw3BnP18CwCp/3IH28Q40JfBikCHLQuwb2+3WzF2GwyE6nQ7effddvPPOO/jMZz6Dy8tLW0D7nDV/7NPdkg9GnPDBP6Mg5MzfIVnxhy2goQCcTqcxMwx/fWBHQCgAH/O5Ey8AwwogAGvn5UwYr49sA/XVHy7876sFlCLwJiKMx+BmszGHWRoN0ZzI5wSuVivk83nLqaRbKKMPqtXqUccUUJSVSiW0Wi17/5rNpm128p7nzZ0Wi4W13VYqFYzHY4uK4LHgI194XB3zeynEUyABKMQ94p0NB4MBLi8v8f7776Pb7dqOqN8tBmAzf7lcDrVaDc+fP8ezZ8/M1IKtbRyQP6bWInF8eKOMi4sLvPfee/jUpz6FX//1X8dv/dZv4f3337cFNOdc6/U63nrrLTM1OTs7i7l6UhD6c4DVJu8ieSjiD9gtADkDOJvNTIRQAIYVQG4SeWv9xyCsrlGkhjOA3BDjXJzfIGMF0G+G3bcA5HO9CRQz/JVV5nq9jn6/j06ng81mY7OZk8kE6XTasu/Ywl8ul9FoNOw6XygU7u217BusdjKXstFo2NiDn+1Np9O24TOZTLBer5HNZm0emO+h3wjwVWUazui+J8T9obNJiHuAO9uh5bXPNaNLGsUfs6h8plmj0cDZ2RneeusttFotVKtVq254t08h9pHtdhtrf+50Onjx4gU++9nP4p133sFv//Zv4/3334+1N9brdXP8KxQKdg6cn5+j2WyayCmXy3YehLl+h1gdoFOwnwHktYM5oKlUylrrKAC9A6qvfj5FzqE3CUmqAPI6xxb3JBdQCqVQAD62qRVFNp8/2zgZUZBOpzEej839kwKXrqXcyGs0Gjbbyr/rHVqP4RrOz4bCnx0p2+0Ws9nMzlkK6sVigcFggEwmY9mKvtWT85O+tdi3FFP4+fdSCPFmSAAKcQd8gK0fZKeRQ7fbjeX7JQk/v6jzpg7e1p6zTYe2uBXHjQ9zJ5x9Zasc2597vZ4Jmu12a+ZGvmWMVe9nz57h/Pwc5+fnaLfbV6rgu1qfD/H8CKMxwtmo5XJpbog0FglDuDln9pQh97tmAJkDyGPE56IyAD4UgEkGIE8BK1revXSxWMTcZr1DKyu5bHvu9XooFovYbDaoVquxzg2fEXiIxy2w+3xLpVIWDg+8Evzj8Rj9fh+DwcBaQDkvCSD2/jE30m+O8j1Oygo81PdQiKdGAlCIO+CtzGkGwLYgVv9Y9aMVNhcTPsy5VCrZXE+73Ua73Y7t7Ev8iX2E4oVZl2Hr88XFBV68eIHLy0sMBgPLWXv77bfRaDSsVa5er6PVauH8/Bwf/vCH8ZGPfAQf+tCHrpwH14m/Q8W/h2Emmm+JBF5VQ3x1ig+fsfdU14owI87nAPqqnhd3rLhRAHonzaeoACa9Jr7nvE6zOj0ajZBKpTCbzQDAKtjz+RyDwQD5fB7r9RqTySTWqssNPR9Af4ywGsrjutVqWdRRLpezr9nq6UX2ZDKJxU4AsO4anxXoBfVjzr8KcSwc7xVIiAeE4bfD4fCKlb23uZ9Op2YqwDklWoRzUUFjl2azGXP5lPW12Ee4kPetfH6GrdfrxQQgM9POzs7Qbrdj7c7Mtmw2m/Y1qyw+0uEYF3i+Ahg+vPjjhhGra/7hrxG3cb28L8IWUAomPvhafMQDhR4AE4AUvPtSASR8XezUaDQaOD8/x2KxQKFQwGQysc4ORkSMRiNsNhvbDGm32zg7O8PZ2dmVucljPK6BV+8bnaxbrZZFRNAhlA6q3gWb88N+E8BHydAMjdVvOs2qEijE7ZEAFOKWsNWNrZ50+KQY9NbXq9XKLMa5gOPNy9vZ88Gqx2ObOghxU3zbs59b86YPL1++xMXFBfr9vu36s8W5Xq/bZgfNXqrVqs1a8VzxbY3HtrjzlVNGQfg2SAoFP1tHMwwfnB6+L4/5PnnB6XMAfQXQVzS9CQwX90kVwH0RgL5SyYpWvV7Hs2fPsNlsUCwWr7T4s+o3nU7tnsBNQG9URPF3rAKQbcu5XA7lctkEXi6XMwEYRiL5XMCwdXi5XMbiNnxszLG/l0I8FBKAQtwStqPQsc+LQO5seuc7LtaYYxZmmdEynH/G+Sjd0MS+wd34UPwNBgNzr+z1emaXPxqNbO6P7p7Pnj0zk5ezszObdWUb3TEStmeG7Z6h+PPCj6LKh4vvU1WU4i9pBpACL8wBpNgrFAqJr38fWkD52vi6isUiqtWqxT2w2pnL5az7w4sU3yLKaz9bdv1nuC+f433CYyKXy1nHAPDKNZTVO2/qNJlMTOxxbILHDDdMQpMginPdL4W4PRKAQtyCzWYTC22my2ev17OcoySzC9qKh6LPW9z7m6JuZmKf4CJuV+VvOByi3+/bg4JwMpkgk8mgUqmY6QtbP33MwzEf71ysehMUts1SMPiqB02iUqnUlbZPLpb3peUtyQXUVwBns1nMyMO7gGYyGcsD3McKoDdp4euqVCoxUx5vwMPzY71eI4oi+5x5/NdqNbsf+M/zGI9973bK2V2KNV/l90I4nIldLpeYTqexlnM/Iwq8+lwoxPfhnBDiUJAAFOKG0L56NpvZ/J+veAyHQ7vx+1afMOCdIe90k/P5ZrwhJt3IfLuVEI+BFy8+v40bIAx7puCj8y3bu5j1xhY4VkLY7nmsC2Di55j83ORkMrH3xwsg4NWilhmJvDb4ech9ag+nUPILfP/w7bz+PUilUnvrAuph6yqr2N4chqLDtykCsE2S+XyOQqFgmySVSsXeFy8A9+nzvC9CEehnRP1GBh88Nnylj1EirAD66h83SEqlEpbLpfJxhbglOluEeA0+7oFOn1z4+tk/Vv82mw3y+bzN/vmYB5pc+JwkLgiu29nfpwWROA2ShAs3P1j5Yxu0jzwJZ6KAuKOid/Dj4vkYF8CEAtq3zvJ6wfknbyTCRS0rR/4a4QXzPl0TwhgIVgBDkeNNPQBY9XMfXUA9FLe+HZQina+HbtDZbBbb7dZErc92ZCSEF4AUMoceDbELCjxf+QxzERnzwMqfF3/z+Tx2bACvxCXNeZgR6p1DhRDXIwEoxA787AHDmieTCQaDgbV7+iF2P5jOXfxyuYxqtWr5fqwAhtlm1+1chguhQwy9FodB6L7nj322PnMxSwHoK348DwCYwOPMq291ppjZl1bGh8BXT33OmRfPYUYoq37AK8MMisB9rBj56p83gfEVQAqnsAV0s9kkzgDuWwUQeCVwgVfXdoaa+xigKIrs+Kb5C03D2DXiq1/AB3O1x+p4G57bnHnkn/Nz5nHB44AwSmS5XF4Rf5lMxszUyuWy3UP98Xas1xYh7gMJQCECwkUb295Y+WPb52g0wmw2sywj3niy2awFXHt7ez/zxFagu7St6KYmHhI/6+fDyVndCwVMFEWxTRBm/HGRXK1W8dZbb1nECTc+QqfPY8IvbH34OTeQaJhD12AucNlmSPHUbDZtdixsp3zq9y10AfUzgGGVi0LfC0AKo6S8wH0TgCFsX2XMQa1Ws3nOKIown8+RSqWsNXGz2WA6naLf7wNArGoYjgQckwDcBd8TL/b5K2M3vKkaheF8Po+5qNJQhnm56/U6Nl+4L+eKEPuIBKAQAX6RwoVvOOfU6/UwHo8t5oGLHbal1Ot1nJ+f49mzZzg/P0er1brS9nlTsxe/W6obmXhIuIjiQjZsd2a1j9Xv6XRqi3lWv7koZuQJrfPfeustNBoNq2btUyXrIfHzkzSO4sww54YXiwW2223sfSmVSmi322g0GrZhdAgzgPl8HqvVKrbBlVQBXC6XsQogjyEeR/suAn27brVajbWx8vObzWY2/0pDE24E8LxqtVo4Pz+3e8cxu+ESP7/HzQMa67CqVygUrG2Y5xDdVflgWymrscvlMhYW7yvmuncKEUcCUIiAcN5vMBig0+mg0+nYwo2L3/V6bTchGiCUy2UTgM+fP8f5+Tnq9Xqs5fMu1Q/dwMRDw1k1mrxwsyOMOhmPx9a66ONO/PHfbDbRaDRij3q9jlKpdHStbkmEBjqc/et2u+h0Olb9YwUMgIm8QqGAarVqApBVwX2tmnoBSCHr8wqTTGBYYWZeajgDeAiwWlWtVmPxHYVCAbVaLRYPwYqfz8wcDAaIoggATEiyBfjY4fvkZ0c5MkHXYG4Y+PZgbpYAsAgImsgkxYkcY2utEPeBBKAQAb76x5t1r9fD5eUlOp0OJpOJzbD4XUg6HNZqNTQaDZydncWCrn3bm25GYh/x7c50ue12u7i8vIxFndDhkNUNVnvy+Tyq1SrOzs7w/Plzy/nzc2zcLDmFXfnQQZWZiewgoMEFAKuA+LlhmkaxpXbfzEL4HLyZBwDL+Ev6rGn24TMQfQXwUASgj4Mol8sAXoWS88+GwyG63S663a7FfvDfcRNxu92iXC7byAA3SI4djk34rEsfhbTdbjGbzay9nOKP5xMNqdh5w7GN8NjxM6r7cM4IsS8c/1VGiFvgTS9Cx0/u2HK431ues22lVquhVqtZ9cO3ffrMKCGeinDmhiKFbZ9huzMdPr1rJds+feCzn4dqNBpot9tW/ebmBxfIpzCb42eJ/YKV7+9kMrGWNu8wyaxEPqrVqrWN72MLKBC3/Gelj9W/sAU0rAKyauNbQA9BAHrn0ySDEgrf5XJp7dR0B2XVE/igZdpX1rmZyE3CUFwfI14IMhNwOp2iXq/brD0rrOw64DVrPB7bscW/4x1Gw2uOEOIDJACF+Bxh1hkNL0KnQw6is/2ErTtc+Pq8P7ZuKaNI7AOhMyU3PK6bd01qVeSCikYMzLlsNBpWyeC5UKvVrlSuvGA4Rrybqr+usLWWs38+H5HXiXK5bO+jF4B3bR1/aHwVkKKIbaBJ2YU+743HH9s/D60KSPHuf++z7VjFGo/H1jbNFsXwmGBlOJVK2QwthaSvou7TZ3/f8L2kc3C9Xsd4PMZyubR7Lt9DtodGUWRfc37UfwYU6acwWynEbdCKVJw83qmPcyncseWNO8zs4uwCZ56q1WpszomVP9/2KcQ+4LPY2GLFeIJww4MzTGz3ZLWPxzTbtphzSfEXRp1wYecrJf7XY8ULbR8DQXdDADHjj2w2G2sB9deR0FBl3/DPiW3xoQAMq4D+cWgVQOBVFTDc2PDtrqyql8tla2H0VazFYmGz5mwlXSwWMTfY7XZ748/ev3f7eJy8Dh+hxG4abpRQDPucUX7N2UBeo7yxTKFQsO8hhPgACUBx0nAxzAUxs5z8gpizGmx9Y5tJ2PbmK39c/PrAayGektBNj5UJ5lpyvs8f85z1Y7unNzwK515ZAeQmiDcuIRQAp3A+UMxw5m0+n1sbKI1BWKXw88TFYtEEYFL1bx/nmcLnEs53hU6MfG8o/EIReEgCMHz417larTCZTMwQhsKPBmKpVMragweDgcUjsDW2UqnEqqH+5yRxLJmx2WzWzoP5fG7CjqIunU7bPZmbU4vFwv6tNyAqFotWYde9WIhXSACKk8bvzrMawsofF2q80TCsmbu+3KWsVCqoVqvWBhqGvGvXUewDPtydbc40OOp2uxgMBlfm/Lw5Bxde3FEvlUqx45/zr6FwCTmFBVjY/umvMV5Yc7HKBS4rqnRCZCtgKKQOAb9YDwUg3xsK5PBxSCIQiAfFe4G2Wq1i9wYfaM7NREZDjMdjZLPZmDBmSyOAmAA6dryjtncaDo+hME8ylUrZOeTn8ykAWUU8lQ4EIa5DAlCcLFx8hIYvrIhw5s9nnQGItb554xe2a4XiTzcZsS+w/YzVv36/j5cvX+LFixfo9/vmcBvO04QVPy5qKVIoBP2vp7754bsL2KJGJ0jfTeDfZ1Ys+B6Xy2VbsHphcQjXFG+IchsReGhtoJ7Q3IgCsNFomJMl3wsGnKdSKSwWC4xGo5iY8XEG/N75fP7az54Vdv/7Q4TV8HK5bOIvrCRvNhszZON7y9gHCr5CoWBh8XQLpQvrKZjrCHEdEoDiJAnNGTiD4Q0wKAA5dA4kiz+2fYbiT+0mYt/wrc7MpHvx4gU++9nPotfrxVrTaJ7AGT4/6+oNSjijxgUXH6duuuDbP+l4yRljLvAZYA0g9n6Xy2WUy2ULyubfOSQTEO/I6E2DwkW3F4GH2AYawkoVAGtj9GKP5mG5XC7mqMt4FRou+UgDzpvf5D05lOPjdWSzWZRKpZiJi6+Ar1YrjEYjALBuhe12a5VD3ofZAkojKopEbk5JBIpTRQJQnByhFTkXw975kPNQfqeeCxhWOa6r/J364lfsH5xD43yrz7e8uLhAt9u1NioKES5mGXbdbDbRbrdxdnaGVquFWq1mu+u+TfGQWhUfAt9uG2behSKHYptVVlYtisWiLUy5cD3EhSpf3y4R6F1pk6qA/jUf0nuQy+VMjNTr9djGCs8VjhpEUWSbL1EUXXHb5bgB//wU4HXHx4n46t9isUC/30cul7NZynCUg+cSv483IWI19ZCq6kLcJxKA4qTgosLn/dGGu9/vo9/vm/uhD7v2NyPaU3PeT+JP7AM+esAbR7DtczqdmvDjse4r3dPpFKvVyioUu/L9ms0mWq0W2u02arWanRenLPg8fL9Z7aNRBVtrvaEHxQAXufl83h7h+3mIC9QwFy98+HxAbwbjH+H19NBEIM8fjhCE7bzMs2Mr42KxiM2D+pzZarV6ctX1dDptmyG+qj6dTmMdCL6izo1d5iqyG8dvMIR5gcBhnmNC3BUJQHFShOKP1b9+v49ut4t+vx+r/PFGwRYSWt6fnZ2h2WyiVqtdafsU4qngQpqVJi9CaG7kBeBwOLQFZ7FYtPw2tnvShr3dbqPValnrJ4/7Uql0UovRXXjTF85YekdhzhH7KA0AMYdC5gAeU2yMr/5R6LLKyeslq5veoZbHbaFQuJIZeUiLdLYvlkqlK228PiqC5yd/73M5eYzwOGFOYJgNeEjvy12gmPa5pa1Wy9xVGfWQzWYtf9G3i/J+78/DfXXVFeIx0GpVnAxJrZ8Mvu71euh0OjYHFc78+Wyuer2OdrttFRDfAqebiHgqvPhjG5TP9PPZfnT7nEwm2G63sbw+b0Liq34+45KViWMRKm9KGPcQuglzBgyACYJUKhUzzTm264iPRQjFnzfm8NUZv2nhnR0POQidjpasXIavgQIwiiJrE/ZV+9FoFJuBY8WQ5yDbIw/tfbktPA7YVttoNGxWMpvNYjgcxgSedwjlfX40GmGxWJhb6KlVU4XwSACKkyHMQPMtcbTC7/f7lifkw65Z9Ts7O7OFMO3u/YD5sd+ExcMRGjzc9ljypkZRFKHf7+Py8tI2NrgAosmE3+RoNBq2IPLRDn7W1bt+FotFOdw6fOXPiz+K7iiKzAQkn8+jUqkgk8nE3FS9qD6W95XVFT/jSPG3WCxM2LC9L4zL8HNbbBk9NNjO6VsO/ee7Wq0sGoTVeGZDUrywUrXdbu0443lZLpcPVhzfBh+VUi6XbU40k8mgVCrFZvjZxUO343Q6jVKpZBteNOdhB8OpzyyL00QCUBw14RyUX1ywEhJWR7ijyEehUECtVkOr1cL5+TmazabdPMJWJiGeAl994rE9GAzQ6XTw/vvvo9PpYDAYxFxtuSjyoeMUeEnxDqwS8pg/JqHypoQCkNcVmkkxXgMACoUCgA82mMI54mOLzghNT3yGJHMQWb3yAtBXAL1l/yFeY/2cmTe+8S3DbBVmxZPtojymvABkpTSMRziFWTa+3mKxCOBVXATnLJk7yvs8j6HNZoPxeIzFYoFCoWBzzPw3fN80wiFOCR3t4qhJCr8OW+PC8GsAsQULB/B9KxwXa9718FhvuuLx2XUscUPDb2yw3Skpz7Lf71t121eiOOvHTQzO+oWCpFQqxYKUOaN2THNq94EXgGH1L6wAFgoFu7bw/WbmH//fIQqdEN8C6mcAfT4bF/ReAPqNOr4f/nGIUAjn8/kr+YeLxQK1Ws02Z1jlA2BfT6fTmIMlXanZVsv7z7EcO0n4dmLCeVpel5gNyPs63z9eH9PptHVCjMdjm6UEXonyU2inFQKQABRHTpIpg9+dT8r6400ldF/jTBTbPn3or24Y4qHxVQM+vKGRrz75dqgw03K9Xpt4Y9hyvV5Hq9WybD+KP2+h7p0b1e4cx89sebMdf43h7FGhUDDTHd9Kzgor2x6PgVAA+hlAVrt4LCZVAGezmS3wKXwOyQU0hAKGhiUUgKwAcgOS9yOe74wiooslhQrfSz+CcKz3Ix+JQpFGUU0RvFgszNSNf0YRyPeMG2TD4RClUilmQuTFta5x4tiRABRHDYfA/VwOF2Z8eIOGMIzZiz8u0srlsg2OH2pYsdg/XrfY8Hlp3uWTsy5h9Y/Cz1e36WrLhRNdbRuNxhUB6J1t2X73Osc8fz6c0uKJi3RWAFn5owCk8KajMOeYfJyMrwAey3uXVAGkCGQr7K4KIKMzeKwfcjg88VUsisDlcolarYbZbBYLi/ch8cvl0jpZGCfBDUrOsYXn6DHiRSDbPwHYjGUURZbLWyqVEEVRzGSIm8FcBzBeIhSA3PBSZ484ZiQAxdHCyAcO0nNBzKB3zudMp1MbJqfddq1Ws915LtKSbO91cxCPAYVfuECmeQQrCJxr5fHNyhOFHxc1NEHg8d1oNOzhDUlYjeIi6brqwqEvzt+EsALoRTg/AxpYeJdVGkr5PLNjaeO7rgWUFUBedwFcqWh7EXgsAhBArI3R36P4OkMRRxHsxTAAO464IclRBL7fx3pv8iKQ0GWVmym1Wg2j0ShmrkOWy6WtBxgZwetrWGVWFVAcMxKA4mgJrbQZfM38Mx/2nkqlUCqVkM1mzWK61WrFqiK0LRfiMfHxDmyN86JvMpnYg4YjFILz+Ty2o+1d9BqNBtrtdizbj7N/Sa2I1y2EjmFh/iaE4dO+AjiZTLDZbEz87dpgogA8xhbQpCiIQqGA1Wp1JQZiuVzGjvVjFIB+U4WbMWz59O2HFCOs/PE9SqfTGI1GtnFAAehbQH10xrGR9JroYMyNLW688H2dTqcAYBmB/X4fAGLHnK+wshtIiGNFAlAcLRSAk8kEvV4Pl5eX6Ha76PV6GAwGiKII6/Xa5nHY8umzz/io1Wo29yfEY8L2OFayk0xGKPi8oREXMxQerL74RdLZ2RmePXsWq/zdJYuOi1X/+1PCbzaxAtvv99Hv9xFFEQCgVqtZCyivMT5b0VcAj+X9oxjxTqAUgXRf5DXVb3QsFgt7sP2RzpjHQNgKWq1WTbTR0MS3JlIQ870BPqgAco4trPhtNhur4J9KxAEjVujYTaHM93gymdiox2w2Q7fbtfM1iiLbDF6tVtYlcQrvmzhdJADF0cJF82g0QrfbxcuXL00EDgYDcwVjC9zZ2VmsIuIXZpVKBYVC4WgWZuKwWK1WmM1mVyrZftaPQpDzZqxm+6w5Vp6YIcbfh5lYdznOT/ncYAWQDsPD4dA+myiKkMlk7PpRKpVQr9djlVcfK8N5rmPAt4B610pWAEPR4lucvQA8pgog4XtDIcyZXD9m4I1iptOpCeTtdmszgHwfk0yi/M85BXK5HCqVCs7OzmIbu2wJ9Ztkk8kE6XQa5XLZ/oxtydykEeKYkQAUR8l2u7WbJhfNnU7HBOBwOMRyubTd11KphLOzM3zoQx+ytk/fDneoIcTi8KHZy2QywXA4tFgH/uoFoHebpOirVqs4Pz9Hu91Gq9WKRZn4it8pVQvum10xEMPhELPZDPl8Ppa96FtAOV/sIyCOQUwnzQCywsUHBQur3KdSASRsj+V7weMglUrFZgN5XDEg3leb6SoLxJ2COcfG9/4U4KYX295LpZJtgg0GA3S7XcsEHA6HWK1WKBQKMdfVbDaLer2Odrt90I6zQryO07gqiJOANz3uxoezOJyPYosc53Ky2SwqlQqazSba7Tba7Tbq9brZ4Ev4icfCGxCwJc7PlfloB86y+mN7Op1itVpZFYk72e12G+fn5zg7O0Or1bLj21ebvOmBFj03hwtympbQkXU6nVoYNQUO29HYbs62WzqDHtv7/roKIEUfr9ur1eqKEcyxVgCBeNWcrpa1Ws3C4RndQnMh71hNh+vJZHLlHuXFn3e0PGY4P+nzJX27cS6Xw3a7xXg8Rjqdxmq1snxOivBCoYBKpWKbadPpFOVy+alfmhAPggSgOGi4YPYGAox9GAwGuLy8RL/fx2QywXw+Nyt2zliwQuJb4lgRlPgTjwUrHKHZAxeC3L3m/Ko3MPKmBVxYFwoFmzHjHGvSvJmv9mm3+2aE75OvVnnBws+SwsXPI9EMplAo3Gnm8lBIygH0ApDtjTzmgQ/eTwqXYzSBeR08j9m6SDMczqexOpjJZLBarSwk3rd+slpKEeRzAo8VHmveudi/Zo6EMHIln8/bPKVvs2WOar/fR6lUwnq9jrUrH3veojgdJADFwRLmovn2K17AO50O+v2+zU9wh5A3Rbp9+jmoY5vDEfsNNzB8ALZ3+2SsAGf+fLyD3/Xm3FAmk0G5XEa73cazZ8/Qbrdt1owtZknHtxYzr4cbTgDMudK7VXonQf69pBw8ViSOqeUzJGwB5TWXAtgbFXmhzMrVLhfQQxWBt9lg4TldqVTs9VMg53I5e+8AWDeLfy/936XY5jF4jMcaSRJnFMQUy36zl2sIxkH4DbfLy0s7Dr0zctgqf8zvpzhuJADFweJd4xju2u/30e12Tfhx0TyfzwHAFl68wTYaDZyfn6PZbB5lELPYf/xMTxjr4KMdfFsSK388jr2rII0PWq1WTAAeW87cYxPOV3HB6Fs9KVSAeN5bKPx8W94xfxYUc2EOIEWgN30JM9iy2ewVAXioULT6zYPrYEtipVKJVT4zmQzy+bxdGxgez/eRlWfOVdIoxnezHPv9jcccADN04TqB7sfNZtPMmZjRmclksF6vMZvNMBgMkM/nsdlsEEVRLCbH/xz/qxCHhgSgOFhCh7TJZIJ+v4+Liwu8fPnSWj85N+GNCLi72mw2cXZ2hnq9bm0hXCCrJU48BqwiRVGE4XBoc6s0d/Fzq7SC52KYmxkUGGHIOLMsfdvTsS8AHwrvtMgW3dlsdsVC3odI81pC0bOr+nesn4fPAGQLqA+CZ7snq6ms1iQJQF9VPXSuu7fw9TOv04tiX0kFYEYxFID+PeJsO899H7dxCptAvN9TBK5WK3NCbjabmM1mSKfT5prM94P+AZwTpMjm5+LPWY2IiENGAlAcNGHvfr/fx+XlpQlABmH7RTINGLgT2G63Lecvn8/HgniFeEi8eyRbl9m+TJMXij8uQvw8mQ8X95EPfIQuk/74FreHIpALb1ZsoyiKhU77TDcANu/H9ltf/TvW60ySC6jfqKBhDqukbNMDXhl6HOsM4HWfuRd6vi3Wv4/exISVaG5M8D3K5/M2304B6Dcxjrn9mLC1kyKwXC7HQuLT6XTMH4Dn9mQyibXlbzYbmy/0564EoDhkJADFwcJdYx/3wMD3Fy9eYDgc2gB3pVKxGyIrIzTG4Aygb4875pui2B/oWOuP316vh06nY4Yv3vmPixBWkbzo87EC3PVn+9ephUI/NGwV8y26fi6LrXoU64yUCT+HY7/WJJnA+BlA33JPAcgqoBeAfvPjEKHw4tevw7cP+xlKbiKk02nM53MMh0OLhvDtn8ArATgajVAul+199nOU/jg8RryYDo11NpsNcrkcisWi5af6amoURZYP6B18KQJPJVpDHC86gsXBwt06LsR83l+n08FwOLRdz1qtZgHMZ2dnZolP8xcuzo59QSaeFt/6xdZP7zxH8Xd5eWkCcDab2Y49zRzoFFitVmMbGfy6UqnY4trvVuv4fjN8BZBVW7bpspWMLsPeeIPXGBpJnMpnkVQBpAAslUo2hwXA5rQoABljEraAHrIIvOnf47HhW2j5nhWLRQDAZDJBt9s110u+b7zGFAoFOz7L5bKNNfi/51vCj/VY9NX4YrGIer1uxxcFdTabxXA4jM310iGULqulUsnmqPnvDvVYFAKQABQHDFuIoiiyuSn/mE6n1oLFakm9Xker1TIBSGHIRRkFoxD3iV94eVc6Hru+7ZOtn6PRyHKq/GKQu9a+jbnValnQO0PeuUPtZ4gAmRbcB14AMofRzxJxwc5AalZlT0kAJrmAsgLIuJ6kCuBqtbL3ZjabHWUL6Ovw752vzjHjc7VaYTAY2MYCXa4poL0r9mg0MtEYxkT4n3es7YyhQVZo0pTJZGI5lKzkR1Fk1cBCoYB6vR4z0+JGhiqB4lDRkSsOBi5kOX/Dil/Sghl45aTGxTLnIdgqx+qfD2A+5gWZeHySAq59aDiNi1jx48YFj2GKhWw2i1KpFGv1ZMUvKePPL+aOeXf/qaClvDfrCSuA3gDGdxpwDvMUrjkUFtlsFuv12iqAvIazAgW8qgDy2N9utygUCleMj04NLwB5r6KZCbM+mQvISIh0Oo31eo3pdIrBYIB0Om3vbRip4Z1ajxFe/zgPSDFMYciq32KxsA1lttUuFgukUimb9R2PxxiPx7F5Xq4zhDg0JADFweCt8rnz3uv1LCB7OBzaYDfbrarVaqw1zi/EvOmLEA+BbxeczWbW7snWrNFohOFwaHEl4/EY8/kc6XTaxB5bP2lexI0MHs9hxp+O54fFL6752Q2HQ0ynU6te5fN5E3+lUsk+Ky8Aj70CCLwSL2F8BhfXvoLiI334dygA/Wzbsb9nr4OVrHq9jvPzc6tQMR+U7xfwQfviZrOxY9XPqjIr0JsVHTMUuhz14PnnszzZVcRKPbNWufZgqz4rh8AHVdVSqSSDLXFwSACKg2E+n2MwGJjgY9scq3+TyQSr1QqFQgGtVguZTAa1Wg3n5+eW9Vev120+itUVIR4Kv3gYDoe2aXF5eYlOp4PBYGBRJYvFIpbtR8FXqVRQKpVQLpcTH6VS6UrWl3g4uGj0AnA8HlurLiteFO00nmJrbigAj7VCy9fkDU34Z9vtFovFwlpAAVxxXaRzY1gBPMb36jawwlyr1fDs2TMzGRoMBtaOzGgStoH2ej2Uy2VMJhNzDKXTKjcpjp2k2UoAtulA8cf3LIoiE8k8XieTiW2ycR6YGxfcVC4UCk/5MoW4MRKA4iDYbDYW0PrixQtcXFxcscmnBXu5XLY5qXq9jna7jbOzMzSbTZv5U+VPPAZhxEOn08HLly/x3nvv4cWLF+j1erbg9S5z1WrV5lQ5d0KR5109faYc25GUX/mwsKrL3MbBYIAoigDAPg/GzbBd128++RbQY/+ckgQuF85sAfU5gKvVKjbz5/MVT2kG8HUw449tsuwK6Pf7tjm62WwwmUysMyafz1tLIytY3KRgNfbYj0eKPm7AcIOOwo9CkAKaWcM+doOmO8CrLGIKRc66qgooDgEJQHEQsD9/OByi2+3i4uLCWuYo/hiey9ZPzvuxBZQLMAlA8RD4mRrO/U2nUzNiYMW60+ng4uLCsirX6zXy+XwsqqTZbOL8/BzPnz9Hq9WKHbcMgubcDnezT6GlcB/wBhsUgPP5POa4SgHo57TCzadTWiSyMsrqC9s7/QwgzxnOqQEfXPcZA3HoLqD3CdtAeazxuuDbEuleuVwurTU0m81aVdp3GfC4ZHskcH1Y/TFAAezfB18B9MY6mUwGm83G5ra5qcHjMcwaPoWWWnH4SACKvSS0y/eOZlx0cec9NMwol8u26OKD4o8tWHSeE+Ku+Js/W9bW67X9ypYh7/DJNq3RaGSbF1yINJtNPH/+3GJK+LVvHWT+1K4WQh3TD8t2u43NIPOxWq2sTZcZgKFpT7VaNcfhY2//TMK34HGRHIphnjsUgDRPYpVFVcAPoBswHVbDdkRee9gWzqo1N1J5L2VXAata7J45lZxKijaKQM4BsvLMzqPNZoNUKmXz3MRv+vmMy2M21RHHgwSg2Eu4qOZCmosub57BXU2GBvMi7OMeuPNOkwxv/HLMNzbxsPDGz0Vpkssnq3/M92PLMneXWbUuFototVr4yEc+go9+9KM4Pz9Hu92+Yu5CV8lwYabj+HHg3B+rudyIGo1Gdg3yc1WstHh3VpqeHPvCehfekdFvaPj3gtd9LrgpCL0IPHVYUeVx5KunrJpOJhOr7rGdMTQ08U6WNOahKKTj6DEfp3wfuW7w129uQkRRhPl8bsefn1Hl8ci1B+exWdWWCBT7jASg2Du4sOYNzTsnjsdjW0DTHMDbWBcKBVQqFTQaDWv75M4721xU/RNvghd/fsedu+t0+wwrRb5lmYKBc6rPnz/H533e5+HzP//z8ezZM9RqtdisXxjWLPH3eHBxvVgsrAOBD16PWD0BXrkq+vgZXoOSDGBOEQo/VrPDDbmwqh4+GHVw6oQh5/5aNB6PbfOBbbS5XM5aGTnPRpHi229Z1fLXmWM8VrfbbSxb1W/k+UgXuqf6dmRfkc5kMlbxZxWVnOpmj9h/JADF3uAX1n5BzVkbVv3CcGAuJHzbFef/wsofdzu1eBB3wS9MuVDw7nFhXhS/5rHrowK4U3x2dobnz5/jQx/6ED784Q/j7OzMgtzZNieeDgZrcyOKHQh0W5zNZshms1YJ8Nci/2D179RaP3dBt9Tr2g19cLmvBHpH0FN/H0MRWKlUsFgszHxoPB7bGAWvJ5xP5rWFG1m8p/rPxl+DjvG9pkttoVCIbTJQHLJiz+sAj0N/LHK2kpV+CsDtdptY5RZiH5AAFHtBWPVjH34URRb4zqB3tmMAV3v4fU5arVazYXdWUU7FfU88HH6ehjvpFH5hhYiijzEPbCtikHO5XMbz58/x9ttv27xfrVazFqIneoWAH7NK2X9OEi8Avbin+GMXAvDqesSgaLq2cgOKzoMCVvl7nZmRvzf4hbeu46/w98FwY2q1WiGbzWIymWCxWJigpskJ29V5bwWQaCxzjO81xS1D4r3JEN/TXC5nrbOcEWSUBuNJ6Mo6Ho9RrVZjAtB/Px2zYp+QABR7ASsqvGn5tk9v+uJnpyjofKsVhR934tiO4RcWugCLu+Lnbfxsqnf59DmV4YYF3fuYDddqtXB+fo4PfehDaLfbsfmRp2ELbCkAKVQ+d76c6HmTVAH00TOsRnEh6Z0A/UL6mKsod4GLbwrApJbQJHMYvuesuOr9/AAKllKpZO/Pdru1WBmfE8gRiiiKrAWSLpjsTuDMKjdPjxWOkPjfU0xz44YV1PF4bJElNJ9brVbIZDKoVCo2cuIrfhSB3lxHx6zYB473rBYHhc/jYSWFi2reuIbDIabTaaytwtut022PF2HewMKLuxB3xRsTURB4l09GPDCnkuKPdu2sSD9//hwf/vCH8dZbb6HdbltG5ZPbh28B2K71FkDKFQBP89yh8YPflIqiCIvFwipRFDCh+POdByIOxRtFIK/puVzOKuU+ksDPZ7GNWu3Rr+CmaKFQsGOyUCigVquh2Wyi1+vh4uICL168wHw+t2vYYrEAAJRKJSyXSxSLRTSbTTQaDZtbPeZICO9Oy/eQm8rcQOZMZb/fj7mqclMim81a90elUonFcSQ51+p6IPYBCUCxF3BHze+y0zmx3+/bPBVvVlxYceYvjHvwMzdC3BecS/WVv+FwaAHM3W4XnU4HnU4Hg8HAgpe9+Ue5XMb5+Tk++tGP4iMf+QgajUbMHXI/+FwlEJ+TgUe6+AsJF7reOp9tvr76x4U2W8W88JP4u55Q/Pn3jNdt73LJjRcKQFntxwmzFlkNZGdMqVSyGJPhcAgA5hbKmcBsNotms4nBYIBWq2UdCel02oTlseGryGGVvlgsAgAmkwm63S7K5bJVUHlcbrdbq6aORiOUy2Vr9Q5zK/mzdNyKfUCrY7EX0II6DFimCGQrHd3fmLnDWSoKQLpw0TZfiLvAm7Y3JmIVyBu7sPoXmhRxNsTvKPtg8GaziXa7jXa7jVqt9sSv9hpSOLnCHxd1/Mwp/Cj+ptOpzQDRQp7zfpz9o9vwqQW+3wa/GPYCMJ/PmxOlz7gLYw58O50W1PGKKgUIj8t8Po/NZoPxeGyzx5xd5t/lCAbvv/1+38yNmHPpjYyOkfB15XI58xbgaAmzh2kUwyrffD7HeDy2imlSdqU2LcQ+oRWy2AuSKoBeAM5mM2v9LBaLNqPgxR8NNFT5E2+KX3D6cGCfR+kdIWn4QkMQ7pbza1apGfLebDatHXT/SH1u3u9zFvAnpAJ9qyHFH8U9Wz/Z1ssWO1Z1vduwF4DHuli+D1gBDCuo3uGZlRZ/LhYKhSumGpqxfIXfdKDg8PfLZrNpIgb4IOsO+OC9m8/n6Pf7KBQKdk8Os3R9fuCxw3nAarWKZrNpXUissrLLY7lcYjQaWUWQZjEUgPz7T97mL8Tn0CpZPDk++sFnp7H9s9/vY7FY2DA75xrq9XpM/HH2L5z7E+K2sCIdxjj4aAfuoLMqxAp1Pp9HvV43MwFW/prNJlqtFt566y00m00TD3vF52b9Uki7358OFIB+3o9zyKPRyKp/AKzFjtcjtp7vym4UcXwFkAtjVlBZPWH7Yei8S7MSP78FYP/Opz3AzwYyI5eCj+89N6+y2SxWqxX6/T4AWFsjZwIZrVSr1W40g8nK1yGfA2x/rdVqaLfbthHN49XPA/MawU4QVrIB2GfAvFAhnhoJQPHksPrn3T99ZWU0GmG9XqNUKiGVSqFYLMZ2Mn3ge6VSMbt1Ie4Cqw2z2Qyj0QjdbtfaPCkAOQfmMylpCELnvEKhYDM4frOi1Wrth+FLIqlXoi+F8IujxwtAxs9QAHL2xwvASqWCVCpl1x+2n3vHP8U+7MZXACn+CoWCnU+sMvkK4Gw2s5naMERegjsZVp/K5TLq9bpVrShKRqNRTLCMx2MzPmGUzWw2s00uVr994HmIP+4P3USGBl7s8Ahbln2HwGq1Mr8C/l1vLEODIyGeGglA8ej4mwHnbHhj91UVv9DebDbW9sN2DC6qw8D3U2lNEfcHZ/18HInPoOx0OrYZwWNyPp9buyDwKgagVCqhXC6jWq2aAYPfOWe1aL83Kg53sfamrFYrs3znLDJbfDnfCcA+v2w2a5mjnJNiC6gs36/HzwD6CiDPq7AC6O8VPjbCz72Jq1AAcvPUGxjxvffZlmx39/mlPlbCx0Qc+/HtOznYMhvmVVL08b4xnU6tG4TXhGq1avcMehkI8ZRIAIpHhYtsv9gOhR8fvsLCC23obMaqn5+/0dyNuC0+bDqMeOj1eiYAx+NxTPwxA46ViHw+j0qlYpVpCj6KwXK5fBJmCoeKN3+hGQa7EXxbF/CBAOQ1h/PHXBRLAN4M71gZCkBWB3dVAL1jqA/yFsn4DFIa7Pjoklwuh1QqZSY7vC8zPJ6fFUUk2x53zdvTvOfQ8Y6q/L0/rznzl8lksFqtrL0WgAnlcrkc20BiNJAQT4kEoHg0KPo438HFNh32wvY6DlHTcMEvsP3Cmm1XftElxG3w4e5JRkRhsDtbpbiLzsVUsVhEvV7H2dkZzs7OYq2BNE/gYktzqvtHKADZhs72T78YplhhW10oANmJIAG4m10zgKxQ+cpekgCkYQzdFsVuOMsWGpLwfc9ms1iv1xiPx1iv14iiyN53AHaNK5fLaDabdn++znDtGI59VgD98chWY14vxuMxcrkcNpsNZrOZCbxKpRLLDvUjA9e1zwrxGEgAikfBt9jR8IXOitxhT7pIcpHNNhW211UqlSuVP16khbiOcDbFVxco/tj65x+ck2EEAI9L315Ft892u43z83M0Gg2Uy+VYNpy3rxf7hW81ZAswq390/2SuI91dOY9cr9djQl8ZgK/HC8BwBtAbu/i5XG6iFAoFLBaLmGvoMVScHgovZPwMGx90AO31egBgLsje9CSfz6NWq9lGLUPPj/neG27y+Q4jmoVVq1Xk83mkUqkrnga+nZYb2zS1k1u5eEp09IkHx4s/P2Pld9j7/X5soUXxxwskc9Qo/CT+xF0Ij0XerH3Gn6/8efOP6zYlKpVKbC6Vjp/1et3aPZUJt/9QADKPlAKQ2V/AKzc/tsJ5h0S1gN6OpApgsVi0NlvOSoUVwEKhgPl8jmKxaF0iEoDXkyRkvKBhJYsdNZlMxt5b3xLKDbLhcGgVRb/hccwjGPQg8CMs0+nUWvs5gsL4B3/MUgiy44l5xny/dK0Qj40EoHg02C7BbKHhcGgOi/1+H71ez9yzOGxeLpeRSqVQLpdtQR22WWlhLW4KM8W4CcEdWt6UWYnmAmcwGJgJEW/YNP7gDBjFHyt//jjlokDH52Hg55J9JZimDpyBYguoF4DeCMY7gWpRt5tdFUAuoPmeh4tpOux6B161gN4cungC8RgmGlbV63VMp1PbgM1kMlbtGo/H6PV6FtcxnU5jxz03P47VkZUdHzxW2ZXkN6hZbfXHLrudBoMB8vk8NpuNvWesyEoEisdEAlA8Cqy88EYzHo/R6XTw4sWLmMHGdDo1A4ByuWyL7mq1iufPn6PVaqFSqcSCaLW4FrdltVrZQoaVPoo+34rManQmk0G5XLYbdbFYvOL2yYUTYx5Y+dPxeTiEizVuTs1mMwCwHXsAKBQK9nk3m81YDqBmAG/GrhlAGoywFdS35ubz+VjQtheAqgDeHB/BwQ6ber2OdruNyWQCAJYPCMBmBCeTCV6+fGnB581mM7bxRY7Z5CqMLymVSqjVami1WphMJpbxWiwWkU6nTSizagrABDfFsx8pAI5jflLsNxKA4lEILfYnkwm63S7ef/99vHz5Mlb58/lEXGDTWKPdbpuFvip/4i5wJ3s0GuHi4gLvvfceOp2OZf2xDZlOeVyUFovFK63IPurBtyaXSiXFkRwgSbv1g8HAnIjZHucrgK1Wy2Y9OU/lW+u0kNsNF9JhDAQFIACrBC6XS2QyGcxmMxSLRSwWCyyXS7WA3hGawdBcjSLm7OwMy+USuVzO2p/5eWy3W/v9eDxGt9tFu92OdUlw0+N1m7NJn9WhnCveAIwOoVyj8L2heV02mzVzmOFwiHQ6besgHyHkuwV03xCPgQSgeHBY/eNQ+Xw+x3g8Rr/fx+XlJV6+fInpdIrtdmttdQxZ5iwVbfWbzaYttEIr5kO5eYingw6PURRhMBjg8vIS77//Pi4uLtDr9TAajawKzWOQ1T7vPBt+TeHHynRoFiD2H7an+3kntgbT7ZCLOe7u05G4Xq9bK5e6Em5O2AJKEehjVjh360O4aaTBCqCPZBE3x2cB0tSITrccweBsPh2Q6dzNatZsNjOH0VKpFDsHjvFcoHDle0fxzOrparVCsViMmUYxKmI0GlkXFKvbPPZ9R5PWM+IxkAAUD06YscbFFXfYh8Oh5ehQ1PldtVarZe0ltVrNqisyWRAhvDn7Xxk7wipCFEXW2tfv9+0Y9CZE3B1nC7KvRPMR5vtx40LC73DgccKqMGfMuND1IsO3ZoUGQJz1FLdjVwso5wD9ecuNxEwmYy2g/HxUAbw9rE7z/afYrtVqJlz8RhZNs/z7TvFHJ9xarXbF6ZgV86Sff6ifFyucHAngBmGz2cRqtUI2m7UxAm5OsIrKqjU3vNk54o10jk00i/1EAlA8OKz++eiHMPR9uVyaoxh31crlst1YeHPxVRbfYqUFtwijRrjpwBsuj7/JZIJ+v49ut4vhcGg722xx4g2Y7Z6s8tHhkwKQws+70cr2//DgceLt2jlfxqpSuOALxYrE393ws1The8oqCRfLPhM2rABKAN4NHtd+FpDvJf+f38ClAOQ9necNc1NHo9EVAegNUZJ+/iF+Zv564NtnOcbiTV3YMutNjObzOQCgXC6j0WjY9Safzx/k+yEOEwlA8eD46h9dF/nwg/x0S2RLBGetuPhmO56v/qkCKIC4yRAXjb6iE9pwDwYDdLtdjEYjzOdzbDabmDNeLpczZ0//8OIvyfJfHB6+LXgymVwJfOdi1odme7Ei8Xc3wgqUF39sA+Wi2beCptPpWJWW9w8JwNvjN09ZkfKbHt412Qs+uoOysuXzU31njv/eu9riD+3+7Y9bvmelUsk2KADYNcPfjzj3R0OYVCplmYrMPi4UCmplFo+GBKB4UJJaP8Nddl40Kf64uPL5apyx8ruLEn+ChOKPgo+zK5PJBOPxGOPxOJY/GUWRVRW48OTXNPjwOW9s+/RtfzJ7OVx8LA2PEe7YsxrMjFFvBOSFv6q+d8eHkoeimm6fPgeQrYle/PkWUHE3fBUQQEy48f7N95sbabx/b7dbLBYLG+u4bnOWwunQCSunhUIBlUol9v82m00sA5C/5zGdzWZt7IAbGr4Cq3uKeGgkAMW941vx/GLct3zOZrMr4o8LAYo/2uzz12KxGNtBlPgTAKzl07cZM7CYbUkUfMz5m06ntusKwBag/NXbetPl0bd9JmW96Xg8LPz1iccLBSCt73k9YiwNP/swh1TcjetmAP3mihciFIAUgWxN5H1H3A0ex36sgsLbx254Aci/77Mzw+sh1wL8u8dyvoRtoABiopdmOaPRyKqFfP+AD64tvN5wQ5wim11OQjwkOsLEvcOWEd44uLPOxTd3vOiClclkrOpCx0U+/G47dyeFCOEx59uRvMnLYDBAr9dDv983V0c/q0H32TDbz8+fMq8pXPxrp/Zw8K3CFH++IuxdYOlsyEUejwtf/ZXhz5sRVlHYBucDxX2YNjdswgqgWkDvh7B1k46V3myHm2zMRyV0ufRz2FwHeFOZfD5/8OeMj2vYbre2UcH7wWazwXQ6jV0nANg1hy6r7FDxG5I8ntVZIh4aCUBxr/iwd7+zzsUVc4U418FFFp202OoZVlm0GyZ2wcUGxR8tynu9HjqdDnq9HrrdLi4vL9Hr9RBFEbbbrVX5KpWKtXcmtXpywe+FnxxoDxMfR+PFHzcJKAA3mw2y2WzsGuSPk3K5bAtZWbbfHR9DELaA8jwLg+BpqU9h4k1gxJsRmqqt12uUy+WY2Q5FN88RZtmx4sW/46u03Gzjhu6xVAGBV6KZm4mZTAbr9RqTySR2/eA8pa/y+ZEYikB/n+G/AxR1Je4frarFveIFIBdX3F3nAsuHvudyOWy3WxSLxdiCmy2fvs1OiBBW/ry7LBf0FH6dTgedTsey/ryJQb1eR6lUQqPRQLvdxtnZmbV8epMX3oxZ8Ql3ysVhQCERbk5RAA6HQ0ynU6zXa6v6cf6vUqnYBgEFoDK73gyeS6zCh0Y7rIKwAsiNQ85MyQX0YfDVumKxGGuzpcMyRR1Nk2huwgqhr9LSVblarV6pHB4yYXA7u5mWy+UVh+hwM4PHsx+PCUcL+D11rxEPgQSguHfoqsdKDBdYPmuNrTy80TPzLzTZkPgTIb7FKJzhChfz3HTgrAXbbLjwZPgxBeD5+Tna7TYajUasfecYA41PEb9hwNZ0Hif9ft+MgZjlxUepVLIcSF8BpAAUd8PPAK7X6ysmMKy0+1k0mmkkmcDos7g/KAILhUJM9Pmv2fY4Ho+vtDB60Ujxx80TtlUfg6gJXwPFbuhj4LtIWDX116LRaHTFUXqz2difqQtK3Dc6osS9s16vbSDcz2FR/E2nUyyXS2QyGZTLZWSzWVQqFXNcpNlG2D8vTpfNZnNlrsQbDHnDl+FwaIt5HmvAB0P33JEtlUpot9t2zIVOn6z+6dg7LnwrYVgt7vf7GI1G1p3A6AdW/xhH4wWgjo+7450UgVfiPJwBTKVSsc0eVnCTKoDifmF7LuMJKAD5XnNjzLswcxabfyeTyWA4HKJer2M0Gtn38ptrx1bl4nvmN454j1osFrGcwMViYfmJPnZjuVzGNsMlAMV9oyNK3Du8QQ+HQ3S7XfR6vdh8Dc1f2F7CxVWr1bLqixeAqrycNr6tmLOlPlIkNPGYTCY2XE+nukKhYK2dmUwGlUoFZ2dnePvtt/H8+XM77nzbpxb3xwcrSX7+r9/v27zoZDKxxSk3C8rlsok/v0HAyJBjWbQ+Bawy8RrPKmA4A+gt9TOZTCwHUC2gDwcrtGFAuXfAzGQy1qJLMx4KGP57brSUy2VrkfQxOmG806HjjaNqtVqsYs33Y7PZoFAoYLlcYjAY2Hwg7290SgdeuRELcZ9IAIp7hTvs0+kUo9HIFlZ0X+SCnIYv9XrdFuaswngBeCxtIuLuhHb94Wwp2/iGw6E5zLItjHMqhULhyq5ss9lEu91Gu922hT3bjo9hESKuwsVpaADT6/XQ6/UwmUyQyWRQq9ViLcI0CKIjrATg/cD3ju9j2AYauoB6ARi2gCoG4mGgmAHiIeisYqVSKXNopTkMH36zZTAYoFgsIp1O2+fGtkj6AfB+f+jnFO87HG3xVdNCoYDBYGBOqqvVCsPh0LoSvCsoN6MqlcrBvydi/5AAFPeKX2D53fXBYGCzNdxRzOVyqNVq1ornZwA5DC0BKDj7E875+coyq38+w43HGas5foaLX3Nx711nj/2YC5fIx/tKrxK2gLIti3Oj0+nUNgkymUysAsjjRu3pDwPNYPzDVwApMtLpdKyiwpk0tYA+DN7wyrft8kFTHooWfh4Ug8y+Y/sncwP9LCGA2Pc/husvXU9rtZoZRbGtvFQq2X2Lm5Y+I5mmOrlcDvV63d5LbUyK+0QCUNwrvEnT2Yrhypz9444WAOTzeavENJvN2OxV6JwlThMf7O5bPcPZUrZ+cteU7US8CVerVWsxbjabsdkKf7yFQ/jHRlJ9ZIvTEYFJMTVsGebxQ6c+HjvlctnciXncFItFVYofAJ6z/uENMTg+wMoJH2r/fFhY9QsFIKt/NFTiJi+FHT8brglGo9EV46QkcXno5xVbm4vFom1MhNVTzv9xbUTvhNVqhe12a6MKURTZTOWhvy9iv5AAFG+Et0Dn8DdnNXy+DXcHgVftPmxt4GxNtVpNXIhLAJ4GYQtXuFD3cSJ0+WQLqDcXAuLmBeVy2VqNz8/P0Wq1YscaW5nCBeexEq6TT+n08iHwvE75a9RisbANqiQByIgaWrXr+nS/+EWyf1CUczHtXSY1//d48Hjnr8xk5OYIhQxbQIFX5xyN4fhnwFXxx8rvoeMdVPl7zjfymF6v1xgOhwBebXSm02ms12ukUinkcjk0Go1YzIaMYMR9oqNJvDHc7eNFjGLPt4XQsY27f5lMxtz1fBueX4hrvuZ0oPjbNT8Sij9f9ZtOpzZPwWPLiz8aeLRaLZydnaHdbqNSqcQW8Lw5H7v4Ywlwa7XAFFInVAL0AtDnlfmWws1mYwswtoMy08tbuUv8PQxhlcm3IFI4eFdgCcD7J6zQeSjQeS9ne32tVrMODH4e6XT6SlC8F4de/PGafQxmJ2HFNGybTaVSmM1mKJVKVtGez+d2D+T88Xg8NgFIh1wh7gsJQHFnfCYQd/j8brq36eYNwec+0Y7fB7+zAqPZmtOAws8fSz4kN4qixJbP8MYIwI4bxj148w62GfNRKpVirWXAq4XOsS7qt/bYWhUwldpi+zn1d5yvOo4/vryJiL9OAa/m0dgezGsVvz76jYInwleGwipgKLj9ZhHvLxKBj0eSkzcjVPzMG9cBDIrneRYKfX4vX10/VJJaWn3r52azwWg0sjUP3Yl5/cnlcrEOKm5SKZpI3CcSgOLW8CYbLqam06lVZEInRt/7zmytQqFgCyr+/pAv+uJucLaHu6CsInM+i5U/7/TJdk/O+3ExEs78MeePGX/VahXlcjm2kNQxd5z49nTgVYu6f1D4hcIjl8vZdYrXJ7am63h5WMKqCbtB+PCfKysmfiNS3C/heeShcKOz8nK5tL/vBZBfE/gqu5/19Oeaz8kDDntTjvcmn5m4XC4TZ4l5L/TdCb6Tiu8P3w9di8SbIAEoboWv1oQzf2zVG4/H1pLHizxzhNiW51up2Papi9np4R3+uIEQtnpyxs87pHGhwTY9HmNhbhvFH02GisXiQS8m3oRUwm9S7nFMUBj4lkFuKvjuBAoGtnzyGuUfukY9LqF4oBigAN9sNrHPwrf18uHnyLy4F7fnde9bLpezuAOeR/yseP4AsE0XrhvYIsoHr+UUSzRi4v8/9M+PG0vhxjffK15/+Dp5X/Qbojz+r6uMC3FTJADFrfHij7tTPlOLAtDP+rFKQ1vkMOhdF7DThe3DjA25uLjAy5cvcXl5adb8vlLDhUOS6KNNPx90luUM1zEYDLwRKSC1TfnfHpX684LPV4UWi4UZCfmsyHDeL5VKoVQq7dyg0nXqcQgFoK/G0h7fm8OExj6+2sLvJ27Obd6vTCZjs2y+bZrnUC6Xw3q9xmQywWq1QhRF1gbpxV2SAOTm3jGcf2F+Iu9dvrXc52ICr4zQptMpxuMxstksNptNLCbFvzeH/P6Ix0cCUNwK7qz7nakwS2s0GmE2m1mFhot2BqOGQe/aVT9daBHOWb9Op4P33nsPn/nMZ/DixQsMBgPbLfateVycU+Qx1N3HiXCulDMlbCU7ZULBd4zLBW8Q4jsUmCFJAcgNBWZzcWc96djxYkM8HKErZLjRUyqVsFqtYhFBYbQHBSBDyvm9+P3F/ULDErbf+wfF3Gw2Q6/XA4BYm6g3fGPFnZ8b1w3cmDmGGe1wFMb7INAFlOsmZizO53PbYOefMV6C16NjEMji8ZEAFLfCt39SAE4mEwwGg5hJB93AfAsH2z8bjQZqtZoqgCfOdru9Esbd6/XQ7XZxeXmJi4sLDIdDs7/mQoBVGc6dNJtNnJ2d4fz8HO12G/V6PWbVf+qiL4ljPdu8myy7FHxrsa8AetfYfD5vVQgvAHmsqdXq8UhqAfUVwOVyiXw+HxPlnEWnAOSsYFgduW6eTdydcJ7PnzPr9Rqj0Qjlctk+N8588/xk9S9JAPL7Uzzx94dIkgCkE/pisbD3y7uszudzjMdjDAYDAIiZHvF7+k0OIW6KBKC4FbsqgFy89/t9m7PxAtAv2L0A9DcKcZz4eAe/OPc3Ngo/biD47CPglSsjbfl502SGZKPRMKMXzvopM+m04ILIG4NwtpSbDBSA8/ncDKpYfeDxValUYu1riqR5fCjakozDeC2gGPAVQFZ7WR0EXlVHJP4eB27W8RyczWY2k12v12OZd4xAoIcAxR83mcO4CAAHfy76qjbvZbVazWKyWCFluyfHI+gW6h3VvYuquhPEbdEKSdwaP28xnU5tdqvT6aDf72M+n1t/v7/QeVt+5v5xR1AcJ17w+ew1DrVTALKCzA0E7oLS9trvlIbRDjyeuHBnO5I4PXwF0M/PMEfSC0DGh7B1DYBdp8IKsmZsHo+kFlBvnuEFoK8AeufEMOPTRxOIh8dHPVUqFdTrdbTbbUwmEwCwOAh+HsvlEuPx2D5LmjSxRZvn4DFktXqn4VKpZPczbpizOwH44Ho2m80wGAzsveHcMt8TVl3Zwi7ETdEqSdyKsAJIYwUvANmyxwqfr/yxWsM2PX+jFvtHuKt428/JGzRwDssvxv1jMpnY4jydTptbrM/1owCkwyePJ28qpJvgaRO2gPqNhuFwiCiKrAIYtq7RTMgLQN/GLh6HXS2gbAP3AtBXe7m55Cu3XBz7GU7dbx4W7/5dLpdRr9dxdnaGxWKBbDYby3GlURPNvmgsx4qYb8P2j0PGd0Vxhh14JZz9BhXHaeiiyr/HOVi6iKoCKG6LBKC4FaHjWtgCyp0qztD4i5y35fctoBKAx0l4rHCzoNPpoNvtot/vYzwe22KAEQ+r1Sq2KPfVPwpAHk90/uSCXaZCp42v/vk5Zb/pEEURFotFzAGUbWs8ziqVih1PalF/XEIjGD8vRadE35brK4CcAaRooAOlOgIeDwoRihw6f3PThZvDw+EwJgR9ZwhN5OgbwLWEd7485DUDj2u+N7PZzP6cApf3Q58FuFqtrCOG74vPWxbiNuiqKG6Nn+HyERAM6ubFDUCsz91X/6rVql3UD/lCLpIJ27I44zEYDNDtdvHy5Uv0ej1bAPgdT+5usuXLV//48At1Vgq5I3oYJN2sdR68KbtMYFh5ZkRNOFvqo0R8BfCYcsgOAf8ehy6gvB7w/10XA+FzHP38sdpAHx4fUu6rgI1GI+bmzNZcPyLA+Kj5fI5MJmNz3hwX8QLwkCN9uIlRLBZRrVaxXC7tzwkD43kP5Wykd78ul8tWRZUAFLflUFZLYk/gRZuD22F493A4tJY9Ojb6YG7f/qmKzWFx04WTd+Xjrjzb8Pr9Pi4vL/H++++j2+3GDDlYjWFFj5ViL/q84KNRBxd6h3Msbd2DpIJfxV1IqgDy2GMEBGePuJDkJpWvKvvrE4WGZgAfB/9ehy2gpVLJ/t51MRAUi5yZ8o6S4nFgBdevB7jZQvdvPx7ANlDOcHoBWK1WLSPQt//6TYBDOjd5/SmVSqjX6zbryPsXRfFkMrH5SL5X+Xze5gYpHrmhJcRtkAAUtyZ0AZ1MJtbKNx6PLauJ/fus4NAFrF6vx8LhD+nCfWrcZebP7+Z68ednRS8uLtDpdBBFkS3IuSjIZrOoVqs4OztDq9WyBQDD3LmACHeED2suZAtsnQhMUbjqXLgr3gWUAjCsAEZRFMvZSrpGJVUAdZ16XLwJjDcU8flnvg0wdAEtFovWTr5er2O2+eLxoEhjtw8/Q+9wybbPVCqF5XJpQfH5fN7aRMfjsQlAvykTjpAc0jlK92GKVx/+zvtnJpOx94TmMOVyGePx2NzWVQEUd0UCUNyKsF2DO658LBYLa83gBa5UKqFcLsfa9g6jUiNuA29cfnMgrBD7vMjhcGizHt5so1gsmmnA+fm5CUBW/PwiwLfnHc7Nfxs8Uu5X8SaEERDeBIaLJl576DAbdilws4HHmQxgHp+kGUBW9fj5+my/sAV0NpthuVxeqQBqkfy4eDMfCkAa+TDgnI8wAiLcPPTnIz93Omce3gbgq/URZ/742v2mFYPfOUKx2WxQrVYxmUysWsqNDkZmCHFTJADFTpLaKmizPZvN7OvwApQ0uM8Hc5zE4ePz/fymgB/m9zdwmgRFUWQW3xRxNODwrcKMeajX66hUKrFg7oM/hsJ16Hb7Of0nIfgmhAIw7FJgRlwul4uFwHsB6CNqVAF8fJJMYHxQOD9bts0lCUA6Jvrqn8Tf0xCeN+G1nnPgnNHlesJXBOkt4Kv7y+XSxgEAxCqB+05Y4U6n0+b0GUXRlTgjtrOnUinb4PDrL7WBirsgASgS8WYK/D2Du/3uk78R5/N5bDYbm8/iRSxs3RDHga+yeNHHxTZ3dn178HA4xGq1sjmGcE602WzirbfewtnZmc04hG2fh3KT300KSKU+1wLqZv+2rhp48K/x8fFVAb8h4QXgfD63ShKvW3Qa9BXApBB4icDHJawesQpIsygueL0ApPAL2z/9fUw8PX7uttVq2fm63W6Rz+et/TGVSmEymSCTycTmyaMoMldxABaSfkj4TQ4AMeMiv2byc4Fe/PK+SwFIEejXWIc2GykeFwlAcQWKP+bz8ILDnTiaKfjAUi7ic7lczJrft+wdfNVGxGCbDsWed4Ll7Abz/TirwOOFYo8twj7f7+zsDO12G/V6PbYTygXBcZB6NfcXW7dsX/2SAo6tGviQOWz8nl4AcsFIAUi3vdBxNhSAbEc7lvDpQ8MvjkMBuFwuTdDxVz/zyQcXxGEFUIvip8e3+lO00BWzXq+bOdhqtbJMQG4g1ut1jEYjtFoti5Vgh9Eh4Y9B72zKjU4/5+6jaPz1zW968GtGpfhjXse7SEICUMTwN0mavfhefM5xeTt17qJXq1VsNhtz+mTbnnftOrRdOpEMZxX8fF+/30e327VWT7b0TCYTC7D1Ftbe4TP8PWdFaRhwdOLP5v74JYWf/7PUUek/f+4/xCLcV//CCBLOozJjksKBApBRNWz/ZLsZn+fxHHv7jzf0CMPg+QiFHe9VmUwmNpagGcD9hJ0fvguEraHNZtPuJ/1+3+4jXGfwnsIqITdvyuXywXQYJV1Pws2OXUIwlUrZ8U7xx+tcqVSy78Ofc4guqeJxkAAUV/AVQPaks6pD847Qvt+7WdG+389tqQJ4PKzX61hr3XA4RL/fR6/XQ7fbTQx5504tdzlZ6Ws0GrG4B1aNveX38RpxhDfk01qc3veiJGyPCqtBbAn0rnt+VpkmQzzOJPyejiQXUIoE/3myvZMijxECYQVQLqD7BR08KVh4X/AB55x3Gw6HttaguQ/XHZVKBa1Wy+bmfDQEf86hwOtROPPqW0J5XvicXW/CN51OAcActTW/LK5DAlAkwpvmcrm0AW3v3uhbQLkzx4uXN+5gC19o1yz2H79r7hda/pjwGwM8Ntj2GUVRbE6Uxwcz/lqtlsU8cAfXB7rTHe204kKO9zWGHQD3+XnSQMGbVNEMJBR+fsGZFCcing6/cA9bQLkQ9qKe1xaK/+12awYZu1pAxdPDHLwksx/++Xw+x2AwMFdxfpYUeYVCIXYPyuVyFpTO+4YXQftOuCnlnW+5OQUgFhfh5yLppArgirO2qoAiCd3txBV2VQDZ2udbMCgAuZNXKBTQbDbNwCO07ReHQzgHGs5V8Zjo9/s288e8Ii6+fMBtsVi0NjsvAFkt9uKPN62T2cFMpT4398dF6nG1f5L7XIj4zQnOo/p2TwpAmoXw+uMXV2GVWTw9XhQkxUD4oHC2w/lqYNgGSuEAyARmX/DXdgCxVl9uwkRRZPE/vu03jEro9/sWLbVara7kxHohuM8kud6yNb1SqWA6nWKz2cTiMigAJ5OJxdoAr47zsJVdCI8EoIjhqz5eAA4Gg5iNP8UfF/hs32APf7PZjFUA/aJe7D9hmLafM+BuI1s/Oe/nq8LeYj+XyyGXy6FSqcTiHVgp5k3eV4rJIbby3Jkrr/E4X/N9fZah/b+PHvECkKKALVRhNI0XE2I/uC4GgtcJP1fO44D/hhXAcAZQ7Ad+No0VPwrATCaD9XqN0Whk94coirDdbu0zZsV/MplgMBiYq+9isbBRAn7uvqq47+c434dQANZqNVtz8Trm12fj8Th27+R5o64GcR06MoQRGsDsqgDOZjPbVefNmZbOnOkKK4BqAT0swlwtH+pOR8XRaGQPL/7Y3sOKMBfftVoN7XYbrVbLjIJ4s2Y1Zt93aR8enR83he3IYdQDj1G6BwIwp8BMJoNKpWLtxjzuJAD3h7D9M6wAzmYz+8wA2DyUjyRiBTBsAZUI3C8oeFip4n1jtVrFMmFns5nNBNJ4jgHpw+EQ2WzW1ith6y/wqsK471wnALkJy/ZWP47B0HieO35mdrPZaO0lEpEAFIaf0WFbjXd6ZLWHjo5sRchkMiiVStbWt6sFVBehw4EtdUlZfn6RHWZCArCKn1+80ant/PzczF+4EGcVRuJP3AbvUuyPUR89wopBsVi09ilvOBR2KIj9IBSBXgDuqgCy2sv5MbaAygRm/wkz8YrFIqrVKprNJsbjMTabDfL5vHUf0QRmsVhgOBxivV7bJiWFvzd74mzcvhPOJ/uNdb5GxmawCjqdTmPXrkwmY91YfB+IWkGFRwJQXCGpAjgYDNDtdi3IO5vNolQqWXsFjT24uE+a69Iu++HAmw2tuGnywoofZ/2448obSzi/wIw/Ptj62Wg0UC6X5RAr7gwXQFEUYTQamQkRjYgY+0CreB6XrED76rM2IPaHXRmAxWLRcs581da3gHITinPI3gBIAvAwoOCvVCpot9tm7FKr1cyAzm86sjOpWCxiNBphPp/bzGc6nTYhdQhrDx73vFaVy2XU63VMp1Nst1vk8/nY+I03QWLVk9c7Ziz66vchvAfi8ZAAFDFCY4X5fG4VwF6vh+FwiO12a+1U/oLTbDbRbrdtcc/2Koo/LbAOAy6sx+Mxut0uLi4uLNqBJkBcYHHHnS12vFHX63Vr3/GzfjwuuOhmFVmI25KURemdaKMoss2qarWKVCqFUqlkmxA+qkabEPvFdSYwvHZwrstb4rM7JakCCEBC8EDgmqLdbiObzaJSqdj57Tck5/M5hsMhZrMZMpkMRqORGdNxM5LzgPtO2PbsBSA7GfL5vF3beIx7V9z1eo1cLodGoxGrhAqRhASgiOGrfxSA7DFnICt3aMvlMgDEZgC52PeLKlX+Dov5fG5VlV6vh8vLS3Q6HdtpZbA752287TZbgc/OztBqtXB2doazszM0m02rwvhjQceFuCu+AkgByOBo71LMxRQXVKxAM3qEgkLH4tMTXht8GzmrfOHcpm8Bnc1mNhvmBaCE3+HA+wozOdnOyI4inqur1crEX6/Xs4oYRR87UGigUqlUnvqlvRbfssrRCd/a7Gf/eH1jNZCtscViMZbTrPZnsQsJQGF44efDlJmtxQddugDYxYoBrrxQ06lK7C9hvh9vLJPJBL1ezwSfd/lk6w1nMPzAOuf86vU6ms0mWq0W2u22VYV1PIj7JMykTKr+0YiIrcicpwlzSlUB3C/CCiCvVcvl8toWULb/hTEQMoE5HHwbJMU/Zz59tXc6naJQKJghjI8o4oY11yPcfGRcxD6SZHxULBZRq9Vi3gyceQZgm/T8dbPZmGtqaIgjDwYRIgEoDPaR80bKR7iTCsRzeygAaKteKBSe+JWI1+FnZsKYh/F4jF6vh4uLC/R6vdhuIh3GeHPm7izn+7wJEBfZxWJRNx5x73DHnx0KrAKORiPMZjObmWGQsncp9i3JagHdL3xWpM8BpfW9NxYLW0DpEhlWAFUFORy8GQw3GcPcOwq9Wq2GWq1msS/ZbNY2AJgRyM0CzrV774J9604Kq948Znn8r1arWOD7er22dRrPhfF4bBu1moEV1yEBKAC8qv558RfeRP3FiSKArQo+eFXsN37hzNw0H+3AxTQfdB5jOw7nP1n185UVVv0o/rhDK8R9w+OY7cpeAC4Wi5iZSKFQiFX/vEmVKoD7hw8IBxCzvk8SgBQH3Kjy964wCkLsP16U+TlQbjgymqjZbGIymZi4499lJwsz8FarFaIounL+71NVzAtfrqO40c4Ii/l8HmuD9ZVPHt+hSQ7PgUOIwRCPiwTgicOLBnvJfSVoNpvZDRVArDedQ/mcx+COmkJH959wdooRH71ez2ao/JD5arUCANtJ5UyVzyiqVqsx4xeGu/N4kAOZuG8oAFm1pkPteDzGcrm0TQrGQHCjwlf/vEvxdcfndDrF//pf/wv/83/+T/yf//N/zBip1+thuVzi7OwMz549w7Nnz/Cxj30MX/ZlX4Y/9If+0JOKys985jP40R/9Ufzmb/4mPv3pT+Mzn/kMoijCW2+9hQ9/+MP4yEc+gi/5ki/Bn/kzfwbNZvNBn8tyucSP//iP4+d+7ufw6U9/Gp/+9KcxHA7x9ttv42Mf+xh+z+/5Pfjqr/5qfPEXf7H9G18BBGAC8LogeFY92NXgBeAhGIGIZLwIZDs320C52TMej03obLdbTKdTAIiZ2XF+HXiVYbxPGz++4gnA7rcUb9Pp1GKTwuo379OMw0hqgxbCo9X6CeMNX9gKSNMXn6njw73Z7hk+fEuF2G/YRuPdXTudDi4vL9Hr9ayCwpZPb8fOVl+KPy6qGfPAnVXZ64uHxrf9sYo9mUxs/i+fz5tLsReAvvUzFBOe3/iN38CP/uiP4pOf/CR++Zd/2RZYN+Fv/+2/jfPzc3z5l385/sbf+Bv40i/90vt++Ylst1v8wA/8AP7Nv/k3+Jmf+ZlE0fNrv/Zrsd9/y7d8Cz7xiU/gm77pm/CJT3ziXp/PcDjE3/27fxff+73fi4uLiyv////9v/9nX3/bt30b/sgf+SP41m/9VnzFV3wFgKsmUb7zxDtL07WaM0+8b6kCeByEVcByuWybP4z+KBQKsYgEmqdwY4BV4VQqZRuY7FDZt3sUNz62262tqzabDUqlkglArrX4GpfLJdLptG3ccwaQ5wTFsdZogkgAnjA+7oELKQq/KIpsF4kDxKzmhPN+fkhbVZ79wS94eDPxg/I0zuj3++h2u7i8vES3243tpHqBT9HHBxfUXvTRec0vrPft5ioOn7Bl3V+76ATJY963K/vj1F+3uODqdDr4V//qX+H7v//78au/+qtv9BwvLy/x/d///fjBH/xBfPM3fzP+3t/7e3jrrbfu6R24ymc/+1n8pb/0l/Bf/st/udW/m8/n+OQnP4lPfvKT+Jqv+Rr883/+z++lIviLv/iL+PN//s/jU5/61I3/zc///M/j4x//OP76X//r+PZv//YrHSVcwHLR7hfKvJel0+nYwtfPAEoAHi7ecM77FXB9UigUMB6PMZlMMJvNbEOA1wb+WT6ft3sXnUZZUdun9Yt/PplMBqvVytqfwwq4X8f5mX4vAnO5nG2ICQFIAJ40oX22nwmjAOQuGi+wFALciQrnMcR+4PMcufjhcPxkMonNTPV6PXS7XXQ6HXS7XUwmE8tMY1tvoVCItXlS+LGiwuPB35w4V7VvN1Zx+IRdC9z15qJnu93aHI03Kwrn/igofuVXfgXf/d3fjR/4gR/AbDa71+e62WzwL//lv8SP/diP4b/9t/+GL/qiL7rX7w8AP/ZjP4Zv/MZvRK/Xe6Pv80M/9EP4hV/4BfzIj/wI/vAf/sN3/j4//dM/jY9//OPWbndbvuM7vgP/9//+X/zH//gfr1w7QvHH/89rnA/GZgWQQlAcLuxCYmXfG9KxO4XnfNgGnEqlbJadUUXNZtPucfze+3yf4r2V663QxCbJxd2LQEbiaFNWEAnAEyfcJfOtVF4AUgQASNxJ97tR+3wRPQW88PMLIH7OXvz5UF1a6E+nU7vRMOePEQ80evEikE6fflfSP4S4b5J2un3bH69FXByybdm3ULG1+Qd+4Afw9V//9a/9mdlsFl/1VV+FL/3SL8UXfuEXol6v47d/+7fx67/+6/jf//t/46d+6qeu/fcvX77El33Zl+Hnfu7n8Pmf//n39E4AP/uzP4s/9+f+nLXCeTKZDL7lW74F3/AN34Av/uIvxnw+x3//7/8dP/zDP4zv/d7vTfx+77zzDj7xiU/gf/yP/4Hf9bt+162fz3vvvYev/dqvTRR/uVwOX/7lX44v/MIvBAD0ej385E/+JN59990rf/cnfuIn8O3f/u341m/91tif+4gILwSB+MYXr3thFVAcJpyPy+fz9nvfGsp2ztVqZesZumTyVwCoVqt2ryuVSrF71j4Lo9B8L0kE+nlYH+G1WCxMOPrXK04bCcATJqwAevHHWZr5fG5tVGyXoPjzczRy0dsP/O43Wz94M/CtnzR8GQ6HZhvtB8m5cPZGL8z3azabMSc1zvvphiIeEm9Y5U2qfKufjw/wduqhaZVfBDFT6zo+/vGP4zu+4zvwJV/yJTv/zn/9r/8V3/It3xKbawv5zGc+g6/6qq/CL/7iL97pPQj5zd/8TfzZP/tnE8XfRz7yEfzET/wEfu/v/b32Z9VqFZ/4xCfwiU98An/sj/0x/NW/+lcTK56Xl5f403/6T+MXfuEXUK1Wb/WcvvEbvxEvX7688ud/4S/8BXznd34n3n777difr1Yr/PAP/zC++Zu/+cpz+Tt/5+/g4x//OH7f7/t9sT/3n7H/NUkIclNAIvDwoeALz3FuPtLtczweI4oiawdnBSyXy9ns+3A4tIgiXz1mO+i+wSqlv6Z593W/Bgvb42ezmb1HvPapO0doxX7C7GoB3VUBDMPew3kvXUieFj8HwM+SYu/i4gLvv/8+3n33Xbz77rt48eIFOp1OLOYhm82iUqnE4hxarZZl+3nh510UJf7EQxLmvPEaxQ0qmj6wQsDqddKcMhdQt7F//1t/62/hP/2n/3St+AOAP/7H/zh+5Vd+BV/3dV937d/7pV/6JfzkT/7kjV//LmazGb7yK78S3W73yv8rl8v4D//hP8TEX8g3fdM34Ud+5Ed2/v9f/dVfxV/5K3/lVs/p137t1xJf21d/9Vfj3/27f3dF/AEfVDa+9mu/Fp/85CetukPW6zX+6T/9p7E/84t/CgD/CM1h2BbnuyHE4bErKJ3z6Lw30eWXm5O+O8VnBNL8jKMPdMCmU+g+Hif++ua9GPx1ji6ooa8DPR38ppk2Q04bCcATxrcL+IUVB6l9BTCbzV4xAVGO1v4QfpaTyQSDwQCdTgfvv/8+3nnnHXzqU5/Cb/zGb+BTn/oUfud3fgcvXrzAYDDAfD5HJpNBvV7HW2+9hY997GP4/M//fHzsYx/DRz/6Ubz99tt4/vw5zs7O0Gw2UavVYi6fEn/iIQiNXqbTaWz3fjweW/B3KpWyVk9mU3q3Ty6Mbpv79Sf/5J/EP/yH//DGfz+fz+O7v/u78ezZs2v/3j/6R//oxt9zF//sn/0z/Pqv/3ri//vO7/xO/IE/8Ade+z2+8iu/8lrnz+///u+/4hp6Hf/iX/yLK3/2//1//x++7/u+77XmE1/xFV+BH/7hH75i/PLv//2/j1Vpk6o/fkHsr0u+AshuCApBcZgkOVOXSqUrYwp+87Jer6NcLiOXy2G1WmE0GuHi4gLvvvsuPvvZz+K9997Dy5cv0el0MBgMzEl43/BzkHzNFMC83uXzeaRSKcv6Ddd0PiReAvC0UQvoCfO6FtDJZGKtM+w7ZwaPnwGUAHx6uMvNz5Fh7hSBL1++xOXlJfr9PqbTqV38vbMabyRs+fQmL6r6isckKaKGrUwUgZxX9TPKbOcqFApWEWBw8m1dilutFn7wB3/w1te1VquFf/yP/zG+8Ru/ceff+fmf/3kzZbgLo9EI3/7t3574/z7v8z4P3/RN33Tj7/Vd3/Vd+Kmf+qnEmb3NZoN/8A/+Ab7v+77vRt/rx3/8x2O/z+fz+Nf/+l+bOcfr+NN/+k/j677u6/A93/M99mej0Qg/+7M/i49//OMAXrkj7qqG8H6VTqdj1WM+lsultRHyeNB17LDwxwA/u/V6jWq1anEPwKvYkGKxaJtFAMzpmvdJ3zLqcwLpe7ALL6Ae4xiiAPSuxrVazSIg1uu1tbUul0tEUZS4+eU3UOQKerpIAJ4wu1pAx+Ox7a5zceUrgH63yYsBCcCnITTy4QKZ8Q4vX77Ee++9hxcvXqDX61kWEs1dKOzb7TbOz8/RarVsvs+7vbLFJBwmF+IhSGr9ZOA7q4Bc1HFGmRtRxWLRWsEoAH1kwE2O26//+q9Hu92+03P/hm/4Bvy1v/bXMB6PE///arXCO++8g9/9u3/3nb7/d33Xd+Hy8jLx//3Nv/k3byy4AOALvuAL8LVf+7X4t//23yb+/x/6oR/Ct33bt+ELvuALrv0+m80Gn/70p2N/9vGPfxxnZ2c3fi4A8Bf/4l+MCUAA+J3f+Z3Y78MKoM8nXa/XZmDl8wEp/haLRWyOjPctXcsOi/BzoyiiIAqzixkP4efiRqORdTqxOsw5QB5PNxVIj2GAR9HLqicFL42vOOfoBSCvif7hK+fidJEAPGG8AAzn/yaTCebzeazVQi2gT0uY6edn/nyLnHf5pLunb5tj5YGfGYVgs9nE+fk5zs7OrHKSNGjudxO1aBIPgT++fYu6r2z7CiDdAbk5USqVYhElFAS3OWb/8l/+y3d+/qlUCl/4hV+IX/qlX9r5d37rt37rTgJwuVzin/yTf5L4/9LpNL7ma77m1t/zT/2pP7VTAK7Xa3zP93wP/v7f//vXfo/333//ShXx9//+33/r55L0b7ywDFsAQ5Of9Xptgj8UgPP5PLZhGVYCxeFBobfZbFAoFFCpVGJzwV7oUyT5Sh+rgv6YYhv5crncqwpZWAGcTqf2PIEPMj15LC8WC0RRZK/dz8xSQKoF9LSRADxxklpA2S9O62DurCdVAP0s2G3na8TNCXP9QqtnL+AZ8M5FMsU8b3RcLPt5qXq9btlIrVYLlUolFubuBaM+Z/EY8DjnMU5To36/b4YNvgJIG3guAsMK4K6K9Uc+8pEr2Xxf9EVfdK2Byk14nQAcDod3+r4/8zM/szPv7w/+wT+I8/PzW3/PP/En/gTy+fzO3L7//J//82sFYKfTufJnt63+AR+00HKTi4TVzutmAH2L53a7teukf/j7lTYujwN/X/MCEHhVJaQ5Cmf8eE8M3YIZFF8ul2NB8X4Tlr+Gf/aQ+MzDcrlsEQ+cV8xms/aa2OnjDbJ4vpRKJRvvEaeLBOAJ87oZQF5UaAITzon5FkG1gD4cXvyxTYVuXr7t07fvslWOQt47uabT6VgYrn94BzV+pqHNusSfeAx8hdtHmDC/kjM7FIDhnLIXgL4CGMJYhPsmyfHS89Zbb93p+37yk5/c+f++4iu+4k7fs1ar4Y/+0T+Kn/7pn078/7/8y7+MFy9eXPuck8RekkPp6+j3+1cqE17U+vw3fubeAIaLZF8B9Jlo8/ncOhn8Qxw2vjpGYROe75vNxnJu+XvfYcDKGO+hpVLJjiPeA8N1zmPeD3ncsz2Vbc2+ihnmotIky1fMq9WqTGCEBOApEzpHsorEBxdW7In3rlMygXkcwjyrcF4zrNpSCDLGg4YvmUwm9ln5uAc+fLYfq75+aFzCTzwWYQvofD6Pzbb2+30Tfz4MOsytfBMTmDfl/fffv/b/f+T/Z+/NY2xb07Lw51vznocaznTPvbcbum39tYgEAiIBEwQBI9oQI6h0EyQyGAkokJAgEoSABAlRtBFIQFqlUQKaIDREBTREBERFoJu+fe/te++ZatrzsPYaf3/ser7z7q/WrnPqnDo1nfWkV9e5tav2XnvXWt/3Pu/wPLdunfg5syzDf/yP/3Ht45/xGZ9x4uck/uJf/ItrCWCe5/jQhz6E973vfWt///r163AcZ0U98fd+7/dOfB7/9//+3yPfe+mll/S/j/N5ZILLVAFlQEwCKA21yyD4aoDXhTSKl/c7Z4qn06neB1kFM5WGmUCloEqWZbq9/KQ2Mqf9HmULqLQ34XXMKudisdDvDXgoauP7PsIwRBzHZQXwOUdJAJ9jFJEKEgsKwARBAAArEuvSBJ7Vv5IAPhsUkT+2ecpqH1XM+LeTJtl5nusZPrbKsULClk9p78BMekn4SpwnZAuonAFke3MURVrwRQZFvLZZATyvDoWPfexjax/zfR83b9488XP+5m/+5rHE8l3veteJn5P4tE/7tGMf/9Vf/dVjCaBlWbh169aKYMsv/MIvYDQaodlsPvZ5fOADHzjyvbe97W0r/222tDGw5brF/YgBMAN8HiSNpRfa1QGvCRNmB81kMtHWMCSAbBVmqzkJIFVAsyzTCVQAK/HOeVQAudbR15KjIfQ5BLDS8gw8jOEqlUppA1ECQEkAn2uY7TGmaSgArS7FGUBJ/jgjVs7/PTvILDarIMPhEP1+X8/4kQDO53M93C6ze7Zt678Z/4accWClhASQwXL5tyxx3ihSAZUCR0mSrHj8MUHFa1q2gMpq9lng4OAAf/AHf7D28b/0l/7SEynw/fZv//baxyqVykql7KR497vffezjH/3oRx/5HF/4hV+IH/mRH9H/HYYhvu7rvg4f+MAHHouA//Iv//IRAtjtdvHZn/3Z+r9NERhzBhBAYQXQJIBBEJQE8IrBtIYg+QMexjuTyQT1eh3T6VTbJ/FaoSDeZDLR7cQkWbxW+NznkfSm36nv+5q8Sl0AVjiBVREYACsdEjS6L6/95xslAXyOYVaWzIOKWcBq9ohzf1IkpKz+PRtwiJsb03g8Rq/Xw97eHnq9nvZDkx5Gch6AQRHbPUn0ZBuvPLjplShx3jhuBnA4HOrghfOqnFE2CaCsAJ4VCfzhH/5hnUQrwnvf+94net4//MM/XPvYO9/5zqd6f+12Gzdv3sS9e/cKH3/llVce+Rzve9/7VgggAPzbf/tvUa1W8aM/+qPHnt+v/dqv4T3vec8RIZqv/Mqv1MQOWN8Cyo4U+psyqJdiWWEY6kohZ6dYASqTXpcfsu2THpvye2ma6hbP+XyOPM91q6RUCB2NRlBK6Q4EJlR57ZkWImcFWQGULZ8kgExuSLEb/gzVvml7UVYAS5QE8DkFs+tsj5EzElzw2ELDmQoSQGbdy9bPZw85pM4ZqH6/j/39fezv72M4HOrNTJI/2e8fBAE6nQ5u3LiB7e1ttFotTfbo7SctHkqUuAgwVUClzcl4PNZelgCOtICyul00z/qsMZvN8MM//MNrH/+UT/mUJxZrOa6q+CQtpSZeeumltQRwf38fg8EA7XZ77e9/xmd8Bv70n/7T+N//+3+vfP/Hf/zH4bouvu/7vu9IO2ie5/hP/+k/4cu//MuPkOZKpYKv//qvX/leUQVQtoCy80GKwDAwZgVQimeUQfDVg4xJJAFkhYyegHmeYzabaaE0EqfpdLqSPGAcJG2QKB50lokDdmPx3wBW2lspcEMyS5KrlEKlUlnpEioJYImSAD6nMKWxSQRlTzkzXdJjSxKGsvL3bEHFMrZ4svWNIhiDwQCj0WglowdAZ8Y571er1dBut7G1tYXr16+j1WppZcRSAa/ERQTbmoqsTmazGebzOWzb1gp3ckbZ9CnldX4WgVqWZfiKr/iKtSbtnufhX/2rf6WDuJPiuArgk9g/mHiUMM0rr7zyyFnBn/qpn8KnfdqnIQzDle+///3vx0/91E/hr/yVv4J3vetdCIIAd+/exS/+4i+ubS/9F//iX+ATPuETjnyfwXiRDQSvHbMCaLaBlgTwasOs1JEUNZtNLZLGavF8PtdWSVmWaYEpCqxI+wWpICtFZ84CssXV9APmiIjneSvVS54/yZ+0jmDCuMTziZIAPieQbS5pmuo2z6JMqNleIxXTTDPwEqeDIo8/Vv2k8EW/39ekT1b85IYkpfClxUOr1dLKiLKlqkSJiwYGX2aHgkxYAcv7RgZnJAGyTf0sq39f//Vfv9amQSmFf/bP/tkjZ+3W4f79+2v9/4An89wz8SgC+Prrrz+SAL773e/GD/7gDx6p3AHAdDrFv/k3/+axzuVrv/Zr8ZVf+ZVHvl9kBM+/O+f6mAwzlWRZBSwrgM8HJGHK81y3ibdaLe2Tx0SCbdv62pDrj7RQ4jyxaYt0VmsMX4NJWwoZxXF8ZCzHVFIuSvqXBPD5RkkArzBkj7is7MVxvKIYKU1TSfoArMxVUAJZeuGUMxOnBzmALv0YqUbGrzyo9CXl7RkQSTGMVquFra0tdLtdLYl/lhnLEiWeBAxqZAVQBi1MaEk/OLleyfZmy7JWxCCeBfb39/FN3/RN+Nf/+l8XPm5ZFn7sx34MX/VVX/XEr/Hxj3/82MdPowL4qOd4XPP6r/u6r0O73cZXf/VX6zmkx4XnefjH//gf4xu/8RsLH5c+gNyvJPmnqIeU+JdWIdIjjddRiasNJgzYEUN1bCaOmNieTCYAgPl8vtL+yX01CILCbgLGR2cZFzHpa94D7HiQ655JBM2Dvoglni+UBPCKg1Ul+sXIyhLbILgYkkDQN8vzPD1DwwWyNAI/fZCgh2GI4XCIXq+nK300c2fbmxR6kZlLKYTANjip8NnpdFCtVs9FDr9EiUdBinAUZazjOF4J2JnwMKtAvA/YuWBKtT+Ltesnf/In8c3f/M04ODgofHxraws//uM/ji/+4i9+qtcZj8fHPn4Sq4V1aLVaxz5+EjL35V/+5Xj3u9+Nb/3Wb8Uv//IvP5JoKaXweZ/3efie7/kefOqnfuqxP1ukAhoEwYq/Gfc9mdwsSiaUAjDPB5gEqFQqesSFa4XsaKIwDJNQ6wigjIVItJiQPcv3JO1QZMeW+Z6kUijXWN4HJQF8PlESwCsMLkq86Tn7QDW9yWSiK4AANJFghp3tEnKORma4yo3z6SGl7mezGQaDAfb29rC7u4vBYKAVPjmzIq0dJOmTFh2cf6rX6/pg9a+c9ytx0cB1SooZyFYlXvskgNIDzpxNPk7Q6DTXqo9+9KP4mZ/5GXzwgx88di7vS7/0S/H+978fW1tbT/2arE6sw2lU9h9FIikx/7j4k3/yT+KXfumX8Nprr+EnfuIn8Pu///t44403MBqNkCQJNjc38dJLL+GTPumT8L73vQ8vv/zyI59zXQsoK4C8VpjYZJub2QJqGmiXuNogAQyCYKVzgOsErxV2SAHQa44UoJKVPrPiV/S9ZwnTD3PdqI6cFyzqruDPy+ctcfVREsArChlQyfI/F7LJZKKVsDhPw1kabogkFawAmgSwxJOhaN6PYi9U+Tw4OEC/39ckndlqGfSQ+JHsSeInbR5o3UESX6LERYK5TlHwZZ2vpWznMw8Z+JzGOhVFET7+8Y/jtddew6uvvopXX30Vv/qrv4r/83/+z7G/9ymf8in4nu/5HnzBF3zBU58DcRkJIPH2t78d/+gf/aMn+l0Tpg2ESQKZOJBG8Kz4kPyVM4DPJ7gucIxFXiMy4TSdTnXHk6nEzVjIVAE1r8uzwDpPzONIIAsCUhSJcZ8U/itx9VESwCsM2fstAytJAOfz+UoF0Pd9vWCwmiTNls3WhxKPB7PKwb+JVO+iyme/30e/38dgMMB0OtUtn5S95wJfqVRWzNwbjQbq9bquBErLDjmjUKLERcFxaxTbnmX1Wyap2JLFmb9noU78ZV/2Zfj5n//5E/3Ot3/7t+O7vuu7Tn2NPAsC+KjnOOk837OAOQNoEsDFYrESvLPSR7VY2QJazgA+XyhS0aRAEK+LMAy1ETzVQDmjTxJYlAyX1biz8giUBFCSQN4TnuchSZIVoiq7jsIwxHw+h+M4yPN8pXOiTPZffZQE8ArDLPkzuJLCIrIFlFkrLiAkgJwJNAOrcnF4PJgVP9l/T+GXyWSirR2Gw6Ge/5MVWgY1UuWz2Wyi1Wqh3W6j2Wzqv5dJ/Eq7hxIXDTIhQhNjaXtCf0tpWmxZlk5SyUQHCeBpVv+eFN/93d+Nn/7pn8Z73vMefMmXfAn+zJ/5M6fyvI8igOtmEE+CR1UujjO3P0tI0SuTAErlV3MOULYWkxiWRvBXDyT16/6mTCRx1KVareqkABOy0+lUk0JWCheLReEojHxOKcx2VtfUcRVxJj94T5AAyk4LEkAm0XjeJQm82igJ4BWGSQA5Z8ZedraAygqg9LYxvbSk7HGJx4M5fC377pl940xmv98/YuzOORbZ9sa2T6p80uaBBNAMhsu/W4mLBqlQzBYrBl7j8Rij0QiTyeSIxyXFGPI8163OMuFxUarcr776Kn7gB34AP/ADP4Av+qIvwo//+I/jxo0bT/Wcj2q/PI05w0eJQVwEsYhHtYDyOpDteyR4pRH884XjiL1UPa9UKnoujjoJs9lMj2fwGkmSBGEYHhF/4XPJ6w/AmdhlcW+X94ScieUMLNdGtoEy+cyKpvl80tqijB2uJkoCeIVR1F7F9gY5AygrgMxiBUGgAyw5A1guBI8Hs7pB4kfSJ02tWZFl5U+25Rb9TdjySV8/Hmz/lOSvRImLCrMlmmvTaDTSFXD6XUoCWK1WYVnWSsuzDLxOM+B6+eWX8dJLLwFYKio/ePBAV+QfF7/4i7+Id7/73fjhH/5hfPmXf/kTn8uj3hetYZ4Gj1rfa7XaU7/GaaCIAEoxoKIWUKo0mhXAkgBeLZh/z+NIoLROMpXSF4uFVgClHQQTCnxefo+dOWxHl8IyZ9F9UySMRA0HnqMUvGHHBQsCsm3VPMqY7+qiJIBXGEUExPSZ4yLHBYS+OGz/NEVgyhnAxwODD2nqLsmeebDawYCXLW6S/FUqFTSbTXQ6HXS7XXQ6HU3+ZCucbOEoUeIiQ1YAZSs0kyFMUqVpqts/GewzCSLnlE/bi+sHf/AH8YM/+IP6v7Msw927d/H666/r47/+1/+K//7f//uxz9Pr9fDX//pfxy/90i/hp37qp57oXKrV6rGPR1H0RM97kue4CARQinhI9UNTCEgSQLaByupf6QN4NcE2x8f9WVYBJVli1cx13ZX9WSoSSxsFJhckATTP41mRQFkB5D3h+77uFGLLpxStkQQwCAK9bjKpwgQy565LXE2UBPCKoqgCVSQCI/vDaS0glSUlATyrwearAtlqMZvNVjz+KPIyGAwwGo0wm820gTFn/KSvn+nt12q10Gg0VpQ+pVBPiRIXHeb6NJvNtAouBZDYCk0CyHnkSqWi258bjcaKV+mzzFpbloXbt2/j9u3b+OzP/mwAwHd+53fiQx/6EL7t277tkeqgH/jAB/Dpn/7p+Dt/5++c+LUfRb5OgwA+qop4UQigKX9/XAsog3VZzZEVQD5niauDk/w9OfLC35NtlPV6HYPBAL1eD71eT4unMKFApeI0TVe8AtfN0j7rippMGDOGA5ZrA+M8y7I0AaSqKcmfTKBwLrCcj726KAngFYY5fyZ7vqmyx8wVb3jTTJwzZecx2HyZUdRnPxgMsL+/j93dXRwcHKDX6+Hg4ACj0QhhGMK2bdTrdXQ6HdRqNV3do9Jnkb0DKx8y+C1R4qKjaAZwPp9jNBphMBig3+9r8scARAY2TIS02+1nWgF8XHzBF3wB/sJf+Av4mZ/5GXzzN38z7t69u/Znv+VbvgWf+7mfi3e9610neo1HVQBPowX0MhBAAEeqFbICuI4AMkgvK4AlJKSnnyR/XGeq1Sps29ZJqvl8rucFgYf3DDunqtXqCgE0r69ntT5JdVy5TvIcmUQzK4CsDDL2831fJ0fOys6ixPmg/OteYcj5GjmDxhbQ+Xy+0ufN/nFpKk6SwSxRSf4eDSkZzbZPafFA4kcSOB6PEcexbvN0XRf1eh3dbndF4EVWZE3Z+5Kcl7hsYHbZ9MIcDocYDocIw1C3IFGEKggCNBoNtNttPQNrzimf1zqllMKXfdmX4ZM/+ZPxWZ/1WWtVOefzOf7G3/gb+M3f/M0Tiao8inyNx+MTnW8RLksLKPerLMuOVAFlIoDtb3Ecw7KsFQ/AkgCWIHg9yZlAxj6O4yCKIi1ONZvNdNWPKrKu6+rxjlqtBtu2V6yfeEhvvmf1PkhgmcTnGsrrnYkRqWjKuI8trlIdt8TVRUkArzikwbJJSmgAyiCEgZasAJYzgMXgwsjPVw6Ec+aPlT+SP7Z7SpVPtiCZrRus/pkKn2z1NE1eS5S4bDBbQOmxxbnYxWKhvS95nbMtq9Vq6TZoisCcNwEk3vWud+GDH/wgPu/zPm/tz/zu7/4ufuInfgJ/+2//7cd+3kdVAHd3dx/7udbhUVYTp6E0ehrgmseKjed5SNP0SAVQJhgsy1qZ2zID3ed9TyuxBIkgkwhJkuj9mIkpkikmTChiNR6P4fu+TjyQJEqxIVYaTxNyDtCcAWSMQXLHe4KVS66xYRgW2qOUJPDqoiSAVxgywy7VrVgBjKJISwVTrapIBIbBlakK9TxvmEX2Dqa5KmctmTkcDAY6sJWiFvxMWfXrdDorFQ5T7VASv5L8lbiMkFnxIhsIVsUZyLMCSLEG2RYtlW8vShv0n//zfx5f+IVfiF/6pV9a+zM/+7M/eyICuLm5eezjp0EAH/Uc73jHO576NZ4W0qOMgTr3OdkZISXvOV8tyZ8Z6JYoIcH9WSZl2+221k2wbRvz+Vzv5XEcYzKZ6H+TcEm7ESZ6nwUkAZQqoLLSTeN7xi5ZlgFYtq8yKV3eF88PSgJ4hSFJCufRSACpNglAZ4jM9gepLCkNlp9n4kfI1iJ+rtLXT5I/aWxNsRe2s7muq1tDGo0Gtra2sLGxoQkghV6kwmf5dyhxFWAmUaRIFQWqSOwYPJEA0g5Fzv9dlAog8S3f8i3HEsBf+7Vfw2w2e2Rlj/jET/zEYx/f2dk50fkV4cGDB2sf831fW2JcBDAIZ2BrzgCSALIDBliqOpYEsMTjgrNx1WoVzWYT8/lcf991Xa2kzutoMpnoaiD9S/kYE1lBEDyTc5VzjHwd6W9INVxZmeR9MZ/PVxROSVjL++JqoySAVxiyLZFkhUEWB5kdx9EZLWkDwcVDEo+y+reEbCsi8WNbrTxYyaCUvWzB4MyK7L9vNBrodrvY3NzU6oaS/MlWuBIlLjNMD8Ain0xmp2WHglQpZoeC2Q59UZIjn/VZn4V6vb62rTKOY9y7d++RxI5gYmgwGBQ+fhoVwONI5Cd8widcuLVnHQmUlWDZpl8UCPPxEiWKwKR4o9HQSXMSQNd19UwgfZa5htE7EMCKiBXtJk7zXjJbQCUB5NwrD84AUmAryzJUKpWVFlB5z5S4uigJ4BVGUZtiFEWaBKZpiiAI9CIlW0ApZ0ziUZqCPoScqSxq9TQ9/mazmW67AB5mFc15S4pbsPpXr9dXyB/b4UqUuOyQ5M9cm3gA0NU/BvqytYnzySR+Fy054rouPvMzPxO/8iu/svZnHjx48NgEEFhWAX/nd36n8LE33ngDSZI8lXLfcRXAd77znU/8vM8SkgQyKJcdKzIRyr2Q5E9WQ0qUKIJU1WTFjHOCbEFWSmkhK8YFbA1lazqVRReLhZ7lf1owHuAaWVQB5LrKOT8SQFntkxVAKW5TVgGvNkoCeMVhzgAyS8W2BRITaarLxYOH9Ja7KNn184b00RmNRnrGjwbWJIOTyUSrGXIT4IylFLOgyietHlh9ZXtb6e9X4qphXXKKgQgALaggCSCTJgyiLnJXws2bN499fDQanej5jiOAi8UCr7zyCv74H//jJ3pOiY985CNrH/sTf+JPPPHzPkuYEv6mJY5JAE0SKGehSpQwwdZzeuqxwsaDYxxM9LLiz7lTEsAgCHTrehRFmkACD0XlnnQNk+J8sgLINdUcH5Fz10mSaAJYzgA+XygJ4BUFF5KiIIuLAsmhDLCknDbJB1EuBkuwlUjK1tO7jEqfJIAU26GJNauqbPfkzB+9/7hQc9O4SMIWJUqcFtatS7JFjzNc0pzZTE6ZGfCLhmazeezjJ1XVfPe7333s47//+7//xATw3r17a60rAODzP//zn+h5zwLyGuFhzoNKUbSi46JeQyXOF5zd4zXGJK4cy4jjGIPBAGmaYjab6bWNPy/nCDn3y/EP2b75tOfJREhRJ9dxBFCOqJQE8PlBGVVeURTN//HmlkEWh5NlBlVmtiTK6t/yc2ULrfT3GwwGugLIKiBFX8Iw1BUN13VRq9XQarWwsbGBa9eu4ebNm7h16xZu3ryJ7e3tFXNrLtolSlwVSPLHZBTJn6zGFFV2uDb5vr+yFl3UdelRc3m3b98+0fMdZy0BAP/v//2/Ez2fxO/93u+tfazVauHP/tk/+8TPfRaQXm6mUrJJAmVnjDxKlCiCbdu6gkc10G63q49ms4lKpaK9KU3LLakJQGE4GRs8bcvluhnAxyGA8/n8WAJYksCri7ICeEVhzjuYQ++y5UD2qZvVp+cdJNH8PNn2KQkfK37T6RSz2Uxn1UiupbUGW0BarRY6nQ46nY42fC9R4qqDwZEp+GLeM2YySpp8cx72MuC1115b+5jnebh27dqJnu9TP/VTsbGxsbZS9+u//usnej6J//W//tfaxz7/8z//Unzm5mwWiSBnBEkGJQmU3oDcD8tkZ4ki2LaNSqWiEwtUAx+Px3p8g7oKlmVpoiW7hThWE8ex7voxfUyBx09q8XoGcKQCSHVl2VkkCSBnAkkAyxbQ5wsXf0Uv8USQ4gpmVocBFsmJJH/cLJ/3lkOzPc1U+5RVP2b0wjDUg99sDcnzHI7joFKpoNPpYHNzE1tbW+h2u1ro5VnJQpcocREguxGYdZaZ8el0ivl8rts+pak3xV6epRLuD/3QD6HX661872u+5mtw69atp37uV199de1jt2/fPjHJsCwLn/d5n4cPfvCDhY//xm/8Bnq9Hrrd7omeFwB+4Rd+Ye1jX/RFX3Ti5zsvmN0sDLCZ6OT1I8W8pPCQJJElCSxRBNd1kaapViRuNpt6pINzgFmW6dZRfm9/fx9ZlmE+n2uxN8YBAFYSECeFTObLltIoilbsvEgYSQA5v0gVULMiWeLqoiSAVwDMZnLRoOefOVcjyR9tHWS7ZzlvtgSzeqxOyFbP4XB4JHCV8slKKfi+j0qlstKKwbZPWfFrtVq6baREiasM6UNK5VwplEQCyFYrzs6YwkgkgKeJb//2b8d0Ol353nQ6xT/5J//kqZ53OBweO1P3xV/8xU/0vF/0RV+0lgCmaYpf/MVfxN/8m3/zRM95//59/M//+T8LH2u1WnjPe95z4vM8T5iWRkEQrFRHuMdx/mk+n+t5d4p68HnKamAJE6YqcbPZxPb2NuI4huu6GI/HCMNQtxWnaYrJZKKJYL/fR6fTwfb2tk4ay8TDk5wPv8oOLqXUEQLI5IdUK61Wq0e8AEsCePVREsArAOmpxawmM5okgZIAUo1SDjRLI+XnfbNjq+dsNsNoNEK/38f+/j729vbQ6/X04m7OLDHokEqFbPnkVx4yoH3eP+8SVxtMqMgKOmdh2EJN4QTbtrVPVhAEaLVa+v6h599ZJKh+7Md+DN/xHd+BVqv1xM/xEz/xE8c+/tVf/dVP9Lx/9a/+VXzrt37rWsuGn/zJnzwxAfx3/+7frQ32vuEbvuGpPoezhqyEMBm3WCz03iZbiLlXSgJoKjKetCWvxNUH24mp7tlsNnUCuFqtYjgc6jWOxIprn1IKQRBgNBpp2xbO+8uW5ZPCrB7yeg/DUAv6SQLIa5/JbpnILiuAzwdKAnjJwRtUqptJLy1WAGn3IGWCufDI/nCpnPY8qqLlea4zY2z17Pf72Nvbw4MHD3BwcIDJZKJNVGVWmZ9rrVbTFg+dTke3eNC4mhlpelY9b59xiecLXJtkECTJH4OkNE3hOA6q1SoAoFqtFiZMzoIAjsdj/Mt/+S/xrd/6rU/0+71eD9/1Xd+19vHP/MzPfGJbhSAI8Pf//t/Ht3zLtxQ+/l/+y3/Br//6r+NzPudzHuv55vM5vv/7v7/wsUajgW/6pm96ovM8TxQpIUqZfLbnMwgOw3DF71aKx5QVwBJFkMl0qsiyg6FWq6HX661cZ/P5HLPZTJO+JEk0eWw2mysVOpLLJzknCd4D0kvYFIKRM7BFI0MlCby6eL57/a4QKFJiminLwV5TlEQuDLIC+DwYvrNiykWOGTFp7E5/P8778SvtHZg9A7DSDsKZACqFbWxsaKuHZrOpB8VlRq5EiasKBkBRFK0QQN5fJgGsVCpoNBo6MGIF8Fm1gK7Dd37nd+K3fuu3nvh3+/3+2seflFgSX/u1X3vsnN+3fdu3Pba5+T/9p/8U9+7dK3zs7/7dv4tOp/NE53heMNUQ5V7HpJtsAWVrstkxUwbAJdbBtFyoVCqo1+t6zn9zc1Org7JzQSmFNE0RhuFKCzzXQI6VSHXQ07j2ikSRpEem6Y1ZJBpY4mqijDyvAExFM2Y0TWlfafhe5BEjZwCvMgGULbMyAJCLMuf9SPy4QJuKhTLQ4CbQbDbRarXQbrePDHrLXnxm4q7yZ12iBIAjFUCZXCmqAJoE0JwBPIt7Zj6f44u/+Ivx5ptvPvbvpGmKH/iBH8D73//+tT/zzd/8zfjLf/kvP9W51et1fPd3f/fax//H//gf+Pqv//pHPs9//s//Gd/xHd9R+Ninfuqn4h/8g3/wxOd4XpAE0KyAmEm3oqRpkWJ2SQJLSEjbBSZ/OedPawiZ8JXdC1KBkzGHaR9FfQFej09z/fE8pQhSkUemSQJlcrzE1UTZAnrJIQ3fJZmR3i7MaLKlkyp7JIFme8BVr0iZWS+2PXAWhIFpr9c7UvGTrR5y3o9tnwxaSfoYwMosIFGSvxLPA2SrXVEFcDabIcsyPZNcqVRWSOB5VQABYGdnB5/5mZ+J7/iO78BXfdVXHduW9Xu/93v4W3/rb+F3fud31v7M537u5+L7vu/7TuXcvu7rvg6/9Vu/hZ/8yZ8sfPxHf/RHYds2vvd7v7dwhu8//If/gK/4iq9AFEVHHtve3sbP/dzPXVqFYpmYYxWQ6760hZDiRNwHoyjSKo9lBbDEOshZOzn/T//kKIownU4xnU71/LPv+3rWLssybSs1HA71uiatp7Isg+/7APDENiyM+3jdy2S/WQ2UvtGSCD6P40DPA0oCeAXADKWUtGYFUA72smJFlTOzAmi2gF7FG15mukj6SPxms9lKRo7kbzKZaPJH5VS2fdRqNT2nRMIniZ+c+zPP4yp+viVKmJCBtqkAOhqNtBcVlXOr1aq+f8z7iOJVZ4m7d+/ia77ma/D93//9+NIv/VK8/e1vx8svv4wsy/DRj34UH/nIR/CRj3wEv/Ebv4E4jtc+z5/7c38OH/zgB0/1/H/kR34Ef/AHf4Df/u3fLnz8/e9/P372Z38WX/d1X4dP+qRPQqPRwKuvvooPfvCD+G//7b8V/o7v+/j3//7fn9ik/qJgXQsog1tWQwAc2QekanZJAEs8CmacxFbLLMsQhiGazaYmgFQVj6JIX6NpmmI2m2E4HGrdBSaneQB44plAeZ6m3zOPOI71miSrgOZMIImtKZJU4vKiJIBXBHIG0DRYlhVAEhjLsjQBlK0xV30GkAscibKpSsijyKOMojn87Ej+ZNunSf7Y8mniqn6+JUqYKKoAyntusVjoVj3XdY+0gNIKQrZRncf98+qrr64VSzkOlUoF3/u934tv+IZvOPXz9n0fH/rQh/DVX/3V+Pmf//nCn9nb2ztWkEbij/2xP4af+ZmfwZ/6U3/qNE/zzFHUApqm6Yqyp0xMyKOoBbREiccFVT65js1ms5WKGrC0mWESOAxDDIdDPcIjr0UmnVldfNL1gxVA3hOyMs7We2lsb54HPTKvcnHgeURJAK8IzBZQOQMoCSBbAFjBIkGRKqBX9QaXLQ5svRiPx+j1etriYTgc6owdq37sga9UKjqgMC0epM0DJeur1Wpp81CiBLDiO2W2gMZxjCAI0Gg0VmYA5ewsK4BSwv+08Oqrr+KXf/mX8aEPfQi/8iu/cqx330lg2zY+//M/Hz/0Qz+Ed77znafynEXodrv4uZ/7OfzIj/wI/t7f+3uYz+dP9Dzve9/78M//+T9HrVY75TM8W3D/km36nufp4JuJUAArc/OyAsjqSzkDWOJJYB8mixuH9hCyIl2tVjEajbQ+A+f8GI8wAS0VQ6vV6lORP84qyqQIYxRgqSzMdVXOxbKQwMfkDGEZ11x+lATwCsBsAZUzgKZfnawAViqVFUuCq14B5PA1FzYasu7s7ODu3bt48OAB+v0+wjDUrRfS2kESPEn8arWaDlD5mXKepDR5L1HiYVAh26ypfifNkotEYGT757PwKr127Rre+9734r3vfS+yLMNv//Zv40Mf+hA+9KEP4Q//8A8xGo0e+7ksy8LnfM7n4K/9tb+GL/mSL8HW1tapneej8LVf+7V4z3veg5/+6Z/GBz7wAfzu7/7uI3/nhRdewHvf+1585Vd+Jd7xjnecwVk+e5giMCSAVFVkVQXAkaqLKYNfkr8STwIFwPM8NOp1WIe6C3K2meJy/X5fi7/g8HcojDWbzZDnOWq12lMr8Zpt0dKnmB1NUqmUIjUcjWEc4/u+fq4Slx8lAbwieNwWUCkJTMLyPIjAyLZPziGNRiMMBgPs7e3h/v37uHv3Lvr9PqIo0kSZ4i2+76PVamFzcxOdTmfFn4wzfvwcSaavKpEuUeIkkFV3iiHIQwodsAVUJllom3IWJvCWZeHTP/3T8emf/un4h//wHwIAJpMJ7t27h7t37+pjNBrp4OzGjRu4fv06rl+/jpdffvlYe4ZnjWvXruEbv/Eb8Y3f+I145ZVX8NGPflSfs2VZmM/neOGFF3D79m3cvn0bn/zJn3wl13upzmgSQFP5UKqAmhYQZQtoiScFLW3YwknRPcYMrutisVhgMBhgNpthsVjAtu0Viynf99HtdlfGUE6KogqgSQB5jwBYiSNns5lOZHN29kmN6ktcPJQE8AqgqAK4rgXUtC2QLaBXyQdQ+vzJjJaUoaf0sjSknk6nSNN05fMgEWw2m+h0Otrfh62eZhvtZf/sSpQ4TciZEq5Hst2O6xcDkSAI9NokEyvndV/V63W8853vfKZtnM8C73jHO65MVe8kOK4CaFb1zBZQaZt0djOA+eH/ciDPIV8ux+E1rzg3riBvg2dzRyzPA3go+JEvT/HhqyoFBaVPQKknOJc8B8D3m+vnP92PWx3+b3nOh98BHnm+Dz8D5Mtze/gZPHzTy3ZjyO8+fGXjOqxUKgAeztHFcYzBYKBF+bhOMlHved4Rn8BGo7GiFvq44zpyBpCzf9VqVbd78zFZAWTCbj6fr4jGeJ6n76Ey1rncKAngFcFxNhDc0AAcIX+mDcRlr1yZpI+tPfxMpMk7WzCm0yniONYWGcCy1YFtaKanH1vTTPJXZsVKPO8wFeLo/1eksMifldnpIuPuMqlS4iRYpwIqCSC/cs+0bftYFdBnSwIVoBLkcYIsSZBlOdIMyHIgh4VcKSjbgmXbsB0blm1BYWninONZmTmnyNMEyDIkaY40y5DmClmuAGVBWQ4sy4GyFCxLwVKAbQHW496meYY8S5FnGbIsRZ7lyPIcaQ5khyQ4x5MSXP6t5LnaUMpenq8CLAuwH3LCNc+RIE9TIMuQJhkWCZCkQAYLluPA8Ry4vg0Ly7+BfCqlAJVnyISlQg7oRJZSCovFAq1WC41GA6PRSMctSik9Mz2dTjEYDLC/vw/XdRGGIYIgWOnkYmVuHRlcNwPIRBuJpGmNwm4pKRgTBEHpC3iFUBLAKwBT3ES2gHIGkD5bzLKzH50kkK2Ll7kCKDd0k/TxoAKhPChDX6vVtEl7pVLRBLDT6WBjYwPtdltX/uTnxtbZEiWeZzBQZkBBn6vZbKblz2lHAywDEwYwDEpky54UpSpR4nFRVO3wfX+lvZN7hfTH9X3/2ETFs0MO5AnyOEQcLhDHCeIkR5pbSGAjVxYs14ET+PAAOJaCrRQsADaehiitQwZkCyBZIIsTxHGKMM4RpTmS3AIsF7YTwHIBx3Hh2DlcGwAUlP1455JnS3KUJTGyJEaSpkjSdPka2UMS+OhK3ZFnfli5UxaU5cJyPCgngGVbcGzAdQAXCuqQBB7/GYTI4wRxmGEa5pjFCilsOEGAoF5BxbPhqWUgbRm/n8YxwnCO6WyORRRBKQuu6+g5ujAMdUfRfD6HbduIogh5nsNxHOR5jjAMMRgM8ODBA6RpqkWxOHYi9RvWxW3rCCBjQCY52F7KSmQYhvr+YWeGTKKUuPwoCeAVwXEqoKz+cRFgD7hsAb0Ks2tmq6es9tHPj9YOUukziqKVgJPtEbIC2O120W63NfmTVb+rOENTosRJIMkfKydJkug5P/qRMniQFRrbtgtnaEn+ymCjxElRVAEsInb8NwBNAM0K4LOteGQAImSLKcLpBPPpDIswQZTkWCQ2EjjIbRdO4MPPclRsC4HrwFGAiyU54nFqSENk4QTZYobFIsJskWASppgnQJI7UE4Ax8/hBjZcz4HvKeRYVgAfm43mKfJkgXQxQ7yYL/ftOEMY5wjTbFlpy/PD1lJ1TKXOeNo80wRQWRYsJ4Dl1eD4FhzPhufaCKCgkMM+rlyZRcijGbLFDNkiwmyaYDzJMVooxMqFW01Qg0LquqgGFjwFXQlc/n6OKFosPYVHY4SLBRzXRa1aRVCp6DWv0Wig0+kgDEM4jqNn/YDlNRxFkfYIXCyWz9fpdHQyWrZiHhezFbVFMwZk5VF6AbJ7iiTQ8zwdS5ZzsVcHJQG8AuAiYIrASCsDlvfXzdlcdhVQ2bduSs0PBgNt6j6dTlcCUqmMKtsipAgFWz6pSMhgVRLmEiWeV5jkjwE0rVbopcn7DYBORAEPxRLMdvTLuhaVOD8wEJbeaSSAi8VCzwLGcQwAK3YPsgL4bFtAEwApgAh5EiGazzAdjjEejjAdTTEPE8wjhUXsIlE+4ATwmzU0cgup6wGBhyA/bGU8tXNaViHjxRTxdIjFdIjFbIL5PMR4FmMcJksCqHw4QRNeTaHS8BFUA9SQQ1kKrp3DtdVj8b8sTZFGUyTzARazEebzEJMwxSjMMItyhMkhAQRgqZMRwDw7NE+3HTh+HW51A17dRVANUKkAsADHBrwjf9IcQIosmiOdj5DMJ4jmE8znEUbTBINpjklkIYYLN1xgkaVYZBnCehXVwEMaKFSwDKrjJMVkFqI/GGJ/fx+zw1ZKise5rqtFXajy6TiOjk3YtZWmKSaTCdI01XGdFDOS1b11XUhmBdCMdVjxW35++UosxbZTmUApCeDVQUkArwhkBZBtoCQ53MAkAVw3A3jZgi5maBlwsuVTkr9er6cJINvRFouFbovlZyFNp+VRq9WOCL5cZcXUEiVOAkkATbVdVt1JADnjwko7xQ7kWmR2IlyWtajExUDRDGAQBHoWtcj0Ok3Twirh6QW7S3KBLEK6mCCajhDOhphPRpiMJ+gPRhgMZxiOQ8xCYBbaiJIKUlWHEzTQ2mpjK7WRVwM4zXw5w4anDeASIF0gi6ZIFjOEszGmkxGG/SEG/SFGowkmswUm8xCzRYootwC3Br95DfVNC820hqaqI7UUbCdH4Co87ieVpyGSsI9weBezwS7G4zH2xzH2JhkOZgrTxXL2EHl+OF+Xrzz3utfJsxRZmgDIYbsB/MYGahsvorHlorVRR1PZyB3A9RQC/UwRkM6Qx1NE4Qzz6Qyj0QTD/gyjyQzzWYJ5lGCRAHFuIVP2sgp6UIUbVBFUqmg06uh22+h0GqgENqIwxd54hrs7e7h7501MhkPYtq0TysGhIAytb9rtNoIg0F1LUgmUyXwqhbJdkx1IvM6Pg2kEz3uCbZ0UfwGWLaBmxVC2UJczgFcHJQG85CjKvpMAMpvJAIqEh5uiOf93GUnNceRvOBxiMBig3++j3+9jPB7rxZSBKIPQWq2GbreLTqejiaD09mMW+arbZZQo8STgfcjWIZI/KtjNZjOdjGJ1Jssy3Y0gvf4uYyKqxMXBuhlAuX5LArhYLLQX2rNTAV22eiIfI5nsYnj/LRzcfRP7Ow9w0BtiZzDF3jjCwTTHJLQxX1SQxC0oq4NKYwPXXkoxt324m3VUtnJ4wFIw5alujxR5PEA8uo+w9wDDg13s7PVx58EAb+6MsNObYjheYHZIRHLbhV/voH7tbdgIA2zZG9j0c+Qe4KcKNXZfPsY5pfEc8XQPYe9VjHc/joODHt7aD/FWP8PdoUJ/mmIRZcjTDCpfrcLmAKBWyabCoRZCGiONIwA53KCGxtaL6L6Y4lrcxJa9jS3XgxUoVDOgwfNMp8jmD5BNdxCO9rHfm+KtnRnefBDhQS/BLEwBlcH3FHxPwbJsxJGFaGEjSVxYdgXtrU3cevtLeOFtL6Cz1UIUZbjXn+DVO/fw+kc+iv7eDrI0QRBUUG80lke9rsXl2u028jzHdDqF7/t67ZPdE5ZlIQxDANDXtbR0WLdWFs0AyhiQFUVZ+QaOjgwxgSer4uX6fLlREsBLDulpxACMmc4wDFeyOTL4Yvn/MmfdzbZPSf6kzYOcASQpZhaN77/RaGBjYwObm5tHBq0ZlFJtqwxMS5R4CCafpHjAbDZbMXun0q6UOOeMHwWXSgJY4jRQZHq9WCyOJPCAh/6wAI7YJp1eC2gOIAYwRbboY96/g4M3Poy3PvyHePO1j+P+Xg93BiHuTVPshg7GCx/zsI0s3oRjX0ezvcDLoQ2r3UD7bRvoZjlqyJFCIcP6atijESKb7yPcfx3Du69g7+5bePPOHj785gAffnOMj++G6E9ChIsQyFO4vod6Zxvdl1PcsrYR1d+GvJHDrSrUM6B9gsJQnoRIpjsIe69h8uAjOLi/h7v3pvjoTozX9oGdUYYwTJEmKaw8A7JsKQwDAFDI1ywLabxAEi2rZH6tie4LQ9yKW5jV3oaklcBuAI0kx+LwswNy5PEE2fQe4t4rmOzdxd79MT72VozffxN4fU9htgBqVWCzbWGjqeBbCrNhjP5OhGE/R5oG2Lh5C+NZjsSvYx5UEScx3uqN8Oqb9/Dhj/wR9u58HItwDtt2UKvX0Wp3cP36dXziJ34ims0m2u02PM/DbDaD4zi6NZkx3HQ61dcqPZy5XtLPjwl+E+sIICuAJHacPeR1z9/j/J+sAJYtoFcDJQG8AjBnAGUFMEkSfeObBJBHUQXwIgdeRab3ZuWPxG8ymaz01csBa34OtVoNrVZrRe2zVquhUqnogIEwZe5LlHjeYbZ/hmGI6XS6ci9Op1OdeGH7JwAdzDQaDa3CS8P3y5KIKnGxwAqgbF0LgkD7mRVVAKm4KCuApxPs5gBCIBsjC/uI+jvo79zF7lsfx53XPoY3Pvo63trp483BAndnKXYXwDiqIk83lr8HINhzgVoLG58ww2iWYJHnSPA0xC8BMEc+72E62MVw703s33kND974OO68sYfXP97HR98Y47WdOXrzxcpvNtojXLM6UJt9+LdC1BZAK8kRZgpJ/vjnlCYLJOEA8fge5gf3MXzQx96dCe7cmeBjD2LcH+bI0/zwXeba8uJE73k0ReR24N8YojkJ0Y0yzNMcMdSycmphKUYTT5CNdxHuv4XJ/TfQuzfC3bcyvHbHx8f2KlikNrotC7ZjoeorKCvFfDTDYGeE/TtzhKGH2XQBr7uB2u3byDc2EMUh7hyM8ca9Hbz+8Tfw4PWPYT6bAQCqtRq6m5uIoghbW1tQSumuo9lshjRN9ZjKdDoFAB3X5XmOSqWC0WikrajkqArnqk3Iah7vC9kaTSsUxpHy90x/zLIF9OqgJIBXBObwLg/2mNO8U0quy7YY9pNfZALI9yerftLbTwq/jMdj3fKZJIl+3yRzNGalwmen09Eef6z+Ua5Z4iJ+LiVKnCdkCzoJ4GQy0T6bFF+Sc7dMNskEDAWWzE6E8p4r8bgoEoFhlUPa9pgEMMsyPR7AOcCnawHNgDxBFk0Rz4aIpgeYDfYw2L2H+2++iTfv7OPuwQwPJjH25zFGYYb5PEe0yJFjguWEXx3ADOF8jsFogeksQZRmy9bP5SsAeFxStLQ1yJMZ0miCaNrHdLCL/r3XsffmAzy408O9e2O8tTfFwWiOcDFHmkZHnmU86CMYjjCezjFfpAiTHFGmkGY5MqjHZ2h5iiwJkURTxPMQ0SzFdBRj2I/R6yXI4WCpc+rArTuoBMu/mQ0AeQ51KBCjn+7w67ICGCLPcwS1FrobHbRbdTRrHmq+hYqr4DsKLu0q8ghZGCIajjHeHWD4YIDx3gzzqYskr8Ou1OFbASptB/W2QrOdo6YSWGGORXWMOIjgJAu4+RDxYojhZASrN0IYzfFgf4jdgwH2Dw4wOSR/ADCeThFUq7ry7HkearUams2mFl1h7DKZTHRXBEW02GXBJJsU8gOgfQKJouqftHdg/MeRFuoqMF7k/SAtIMoK4NVASQCvCNbNAPJGln5HcgjYNIG/yLNtbIUg0ZNeftLrT/qOxXEMy7K0541sC+Kiu7W1pVs/ZRtaGXiWKHE8ZPeBbAEdj8cYDAY4ODjAeDzWaxG9/+TsSqPRQLvdRqPRQKVS0cmo8v4r8SSQFUAaV0dRtJLsJAHk9ZokCTzP0wSQLaAnD3iTwyNEHk8Qjfvo37+P3TffwoO37mD33gPsHfTwoDfC7tTHgXcN44YPoI+6M4U9yzGb5xikMRIkINVLU2kOf1IshU6SxRDh4B5mu29gvHcXvd0d3N85wFv3+7i7M8fOgYPeuIKJSlFrW7jtz9EcT3FwkOEhfcmQxBmS5LA1FtCm7Xylxz+nFMhTIF9W+5J4SYATdAA0oOwm2rebuHm7ic3NKiq+A1cBdprDSrMVBdQcyxNJ9Qwg4AY1NLdvY/Pld+DaS5u4tuliq6nQrQA1T8EBkGch4tkMg7059t4KsX83xmTiwFVdbF9/EZ53A1alju2Ohxe7Fm41M1TzORbtHVz3XBw0FMajOdK6gtuIsIjG2NnrYzSd4N7OAL3+GDOjihp47pHKHVs6LcvSCuRspaeIlkyI0SReXs9sGWU7vTSMd11XX89xHOvYj/eEjPsYS5oEsGz/vHooCeAVgawAsl2ALQPAw77uIn8kSQAvavUPAOI4XqqF7e+j1+vpNk/OGLFtQvqNyVYgzj3WajXUajVt89BqtfTcH0VhLupnUKLERYPZAsrMdb/fx8HBASaTCbIsg+M4OrkSBIFWxGu1WpoAmhXAEiVOChJAggSwqAJIAhjH8cqskwx4T9TylmeAmgHZEHncRzy+j/03X8XH/vcf4ZXffw1v3dlHLwLGfgNhfQtx9wXkzQlq03toju5CjYdYTDPs9mzciyzMYQM47MqxlhYLJD6Pf3dkABZIFn1Md1/DwSv/F7uvfgQP7u/j4/sxXh14eHNSwcGiC6CGem2Ka90JfDXDdDrB3XsHePNugn6cA3CW/nrWYaVVQR/Lz/7xPypAQVkWlK2WhwKALizcArCN+vVtfML/dxP/36dcx0tv66BV91FRCm6cwIlT2IKH6GbRLEWWpUAO2K63FK3p3kB94xrqbR+NhkK7qtBQgIsp8nyG6TREby/C3r0MB3dthKigsnELL956J1669YmotNrYage4Ubew7ceopmOk/TuYbXoY31IY9gfoo4JeNcVBOkZ/bx8Hgwl2d/oYj+dI04fXT+BY2NjYwNbW1sq4CQkZAJ0UYyKfXUycDaSA1nw+X6lkkzDO53N0u10opVCtVgFAx3xUu5WVP+m5CjwkgIwXpVJuaQJ/tVASwCsCMwjjwSxOkQGzXASO85G5COCCNxqNsL+/j52dHfT7fQyHQ60yyJlH2erK9gi2dzYajZV/U+VTVkP5OZQqVyVKPBqyAihbQKnAO51OdTDCAJzCL5y9bbVahQSwvP9KnAS8ZuQoAz3+jlMBpUjMOhGYx0cK5Avk2QR53EMy3cVw9y3c+direOX/vYKP3xlg6LaQ3uzA37iFyvUteJihOqmgPogR9DNEoxBB7iLas3Evs5DChu0uSZd1SAIf767geWcAYqTxGPP+fQzeegV7r3wE9+8O8ObAwmuLG3gz38TM6qBeTbGxMcGtzhDblTHmkwoCJ0e42Mf0forYcWHbh+2YloKtcGjWflIzerUktJYFZduwHAXL9mHZm7BwGyq4jc0bL+Ptf+Lt+KQ/8zL+xLuvY6tbRR2AFyZwowTOYRtoLg7gYbVWKQuW7cJ2A9ieD9tx4bqAb2ewEQNYIM0WCMMI41GK4X6O0YGDRbWOir+Nzq2X0fzjfwzN7U1sNm1s+wpdC6jEQ1hjH0knxGxjisEBcGdm4ZUwxe5igv7Uxd7eGL2DEeazUJ9P4ADtThubm5vY3t7G1taWJoBSa4DVQcZw0stZJvX5byb+af0Vx7Ges5bPyyS/bAOVJJD3BGNJALr106wAliTwaqAkgFcARW1Yptktb2jZgiVv/osQaGmZZyG0Qn8aqgpyrqjf76PX62mhFy580uuQ7a7VahXNZhOdTgftdltX/NhyRtLHoIFHiRIlHo11IjCcx53NZlp8AICuBPK+ZDKGIjBcj7gmXYS1qcTlAa8XSQC518mKB4DCpOnT2UDky7bGLAKyEHkSIY1jRFGC+QIIYweJV4KW5goAAQAASURBVIVT66K2eQOtGzfgqwlqwzHq6i6CuIcwTjHxFGp2DicDUrWkV092H+RYEsAUeZ4gSWNE4QLhPEIUJojTAJndgO1uIwi20Ggm2Nga4MaGwvUAmAYpBv0AjYoNx04RH56L7PVU4v+fBGrp9o7c9pDbDSivC7e6jVr7Bjauv4hbL74dt2+1sakUmgqo1J74pQCkeDhBuTyyLEMSp0jiFGmcIUsB27Lh+j78ag2Vuo1qXaFiK1QVEHg1ZFkFauqiXrURzwB/kUKlc0ThBNOJjel4gnA6RRgukKcpFADX9fSaxzikXq+vzO/JtVGqudOrj3Y6jPXk/DWvWdu2NYkMgkDHM0xoF80DyrZ7WQEEsEIA5fdLXH6UBPCSQ2ZseONyMaAFhNzEpLknb/qLQHaK3gO/x373fr+vDd1l26eUJza9a7gQstogyR9bPpn9Ah6SzjLoLFHi0ZBtQ5IAzufzlfmVSqWivTdlkMN7s16va7/Ni7ImlbickGs39zvueabStUycMnnKfz8RAcyXXaBIFfLMgbIDePUu6tdeQvdtPsJ6iKS5ido73onOO2+jeX0DburC9Wpw5z7yoQNlK3gKsA/VL/VT54c+eyc5mUPyB+SA5cLymrAa1+F1R6hmE2zGHSTuJ6JV+0SkQRed6gwvNx3cri3QUTP0ExtVT8G1FSy1JH4P7RieBkzucM8FlGMDQQCrVoWqNeDWG/BrDVSrNVQVUFNA5VReVwFaZMaFZSm4XgI/COEFE8SOi0UyRDIeY3EwROgEQOLArwNVF1DxGGo0xLw3xOhBHwc7PeyPcgxChVlYRzJ3kMVzZEmIPIuBQ8KkW99FFxJnnuV653keKpWKTkYwvuHaaaqamzETba0mkwmCINCvLSt7UiRJEkAAK88HoHAGsKwAXg2UBPAKwDSDlwPslmUdIYDMAMlM6HnDnGGUix9FJXq9nq76MRMmWz5ZxWNwaZI+WWmg2IvneSvBAFBWHEqUOAm49sj5YzmPEoYhbNteEYHhPVqr1bQQAts/mYkuEzElTgPcF8x9z1Q95L75dARQAZmFPPWAvALH76K5rXDjj3cRNWbYmGSwmy20XryO7u1t1FoO8nGCKKsg7LmY2BYWuYLK86Xii3zqE7/zQ6EVHBp7u1U4zZuo3AjRTLrItyNU7C5u1V9E0rgJBAGqqo9NlaKbDGDPHERDwLegWz2RPwkRPQq2jQLLr5ajoHwbVtWDk1VgNQO4VR+OZ8FWOWwonE6kQvK3/LdSU7ieg1o9Q7MTIpxNsMhzDKIdjHfvAk4HtUGEyVYNWVdBVSM00gHinXsYvnoXex+7h737D7ATWti1LMzdNqAqcLCAo2JYh0I+CoDtOAgqVTTqDR2LVCqVIzGYXB+lHQljHMYqvGYlOVNKIQgCjEYjNBoN+L6vK+CMBeU6LNVA5XPLCqPjOCsVwJL8XR2UBPCSQ1bOig7+DHDUEFT62503ZB877R1YRaDyJ2eKaOhOgiurmcyeUeSl3W7rdguSP+nvJ8UmymCzRImTw2w/Z9KGLUxUYJSiTFTipfpdtVpd8f8rRWBKnBZkclAesupidp/wOHkLqAVkLpB7ABpwAhfN6128EFiovGhhltrwaz46W1V0N1wE7gKL/RH6Yw97VQeJY8HKAaSruppPFnKzApgBsGC7NXitW6jdqiEO3o5KDKigBbezhaDdhu0CzuIevMkQ6AWY7VjoW4Cd57Dzo02ep8ID+CRKQXkWVNWFa3mw6i7sigWlMuTxAoCvTe+fblWQv+1CqQBe4KHethFuAVGcYzqfI8p72D+4j8mijeBgjmhYgXvdhteKMM1HmN+9h73Xd/DglT3s3uthkLoY1OpYdOawqyE8FcG1Ejjq8KwV4DiHvsP1mrabolKnvMYYxwRBsFLZY0JMrrd8TBJAqqSPx2O97srWesaFUiBPjgLJQgLFu6QNRNkCenVwcRhAiROBCwI3qCLyZ5bqGVjJDfEigIsNZ4eKfP04U8S2T9lORvJH0Zeitk+2mVEeuZSaL1Hi6VFE/ormqeT8iWlETAEmJqRK8aUSpw2558kKoCSBsovGJIGPH/QqADaQ+1BWBssPUG372GjUUMlrSJWHatVCp22h5UZwMMA8DeA2XCw8Gz2lYAFQS1+D0/wEoJwK3JqDykYbWZAhz21UGg00NtpothUcBWA6R7pfwzz2cdC34ds5HOQr6p6nw/sO45QkQ5osbS4yWFCeAxsO7IoD21NQKoNK42VFVCmkeKiCaunYRj08L3VCgqh8uL6PSquCxlYNi6SKwSiHF2ZI4ylmowNEUbpU+bQttJMEUTbBvDfE3mCBvWGO3kRhkltYuApIUzh5DA8xXBXDUsmS5CoFS3QnsQtJis7pUxJWXYzhZEcE/VbNWUDOCVKFeTQaaf9n87WkUB7bQOVjfF6u2WYFsKwCXg2UBPASw5z/k6Sv6AYtUki7CGD7GFU+h8OhFnvhzB+NpOM41psxN3IuYHLmjwSw0WhooQlJ/uTcX4kSJZ4MjyJ+smVIzudKESqpVAeUlfgSpw/Z/VJEAnnNFZFA/vdjvhCgHMDyAXtpk+C7FTSsBnzbR24BlYpC0wIceAAc+IEN37Hg2BZsEsDTe+dYUiYXlmXD9T0EjWW1DcpBrVFBq6Pg8cerHpTvwHcsuLZang/JB3/mibwIJSLk2QJpFCOep4hmKRZhijiykGYOYHuwXQ+268BxFBwrh4MEFlwAOdI8RhImsHIgh4VcLQ9lWbAtC44DPO7OrpQD268jaF1D/dqLiC0L3XqKrVETo9ABohAZRnAXIRYDhX6SIswXiKbATDWQtW7Czurw4ALVNuxKAGWliBHCyRawMno5ApZlw3Fd+H6glceLCCDwsDpHyPZPqVwrRf9kHEUCSMuIJElWXo/XvVyHi1pAeS6lD+DVREkALzGOq/wRJH1ma9VFIT98D4vFAtPpFIPBAHt7ezg4OMD+/j4ODg4wGAwwn8+R57kWd+FRqVRWvP2kqASzbKbNQ0n+SpQ4OcwZWQYcJgE8Cfm7SHPIJa4u5D5ozgSaCVGTBMprWSYnDgs7BizA8qCcHFAuLCi4ygcsD64NwFbwLRl45ciz/FTm6o7CAvTkXAZlAa4HVGDB9WxA2ahUl1IoGtly9pDm7g/tFU4Tc2TpAvEiwnwSYzZKMB+lWMwVksRBbrlQ1pKwOraCa6dwVQIbOXIkWMwXiKYxskwhh43MdgDbhe048D0F5ajHJoBQFpyghWDjJcDKgNomkuEc8UDBGnhoTVOE0RR2OkM+AvozhTEyIPGQ1m4geGkT1vUU1SzDQlmY54AdxYhnEdw8hJ1Fy+rloeehY69aMKzzPKV4ERP2XC8B6FEZkwDyeo2iCLPZDKPRSPv48ec4/sLXZqWR/82uMmkGX6QCWpLAq4GSAF5iyI1KtqnIdoEi8neRxBW4YEmhl93dXezt7WFnZwd7e3sYDAZYLBbwPA+NRkMHkbVaTVf3OFQthV6oKig3+YtW/SxR4jKBaw6zxMxEy3k/BiPAQ1NuqTxskr8yGVPiLFBUBeQ1yEMKbEhBGB4Mwh8GwMY+oiwo20GuFNShU7kDG0pZyA8FKB8GXUtLgjjOESUZ0izTCpunE16z+ndoi6FyuA5gKQuZtzwZ11Ur7yBbxMjjFGmaIc3yw/M57CoynvnxISf3YiwJYIgojBDOkiUBHCcIpznixELuW4cfQAaVx0C6QJ5MkbkW0kWE2WiO2ThCmiikykXm+IAbwPF8VCsALAe2+3gkUCkLdtCCpV6CXWnAaQ1gjUZwe1PU6xNs90OMpxHG0wSzOTA9fE2vUkWt20S90YDjLmfkprMRhoMD5Ad7mKsF3CyCnSeHsrD0JVxWAU3/vaPnpVbGdDinByxVOSmuZfr08ZplNxWAwnZmEkyZlCtqAeXPyvm/kvxdHZQE8JKiqFVFtn7KzU5+NVtezuO8ZVtNHMc6W8W2z16vh4ODA32MRiMkSaLFImzbRqVSQb1eR7vd1v5+kgiy3VNWF0qVzxIlnhymVYu0fKAJMdu05YwJAD3zx2yzDH7K+7HEWaBIBM20RJLVbVkBZIBtXq9Hrt3DFlBl2dT+ALBKRpSWMzkkgGmGJMuR5tCPnNI7xsMK4HKOz7aXBx9fPf0c2aEfXpLmyFgFNE/oiW5XitEsACyQZRHSOEE0TxHOEixmGeIwQ5rFyKwF0mSONJpgMXcwG2cYDebIXGAxCTHuzTAdRogThVR5yJwK4AVwgwrqtQBRVEPSCFCr2HDwiHZQZcHy6oDnw6514NZncKpD+P4O6u4uuk4PAzfFgyzFgyjDPLYQKQdus4Vg4xa6N6+j0qgiCicY7d1Hni0QDvfg5jGcLILKEihkSwpsHRJAw5Jk3foniSEJW5qmWhxvPp+v2JbQMguArgICWCFuPEziJ69rUwTGtu0VZdySAF4dlATwEmJdhtLMupttLkXtLmd1riR+JH1SLXA6nWrSNxwOtXeYaex+nK+fafNQqRx1DCoDzRIlng5UnKPVw2Qy0cJN8/lctyUBD32vLMvSyRuzFbsUYipxVjBF0CT5M6vRprgRD5lAlebaBa+2QpSOvcLzw+TkM42rH/ruHYtndg6sax4SwTxFlmZIkxxpnCOJEmTRHFk6Qqr2EU9dTHoz7N/t4616Be7MQ2BniKYRRv05puMISaKQKBeZE0B5VXh+BbV6Hc1GE61WA416FbVKgGrFReDb8D0bjvWQED40sHeWh1WBFdRQUS6sLIWTJPCyDK7lIskXiFWKzHEQqgD1TgfdjU1sbG+h0qhiPvGQzUcYeQ5slcFKE+RpDGQkTKqwG+Kk8Zj0T6UYnrR2mM/nWhRmsViseP8BD2Mgtn5KBVIZoxURwNMif5KIPkrF3vxZ8/XNz00+bv7sOl2Mov+WHXNm8cScHT42IXTBURLASwiT/JkDuuuynKbH1rOG9KqhSTQDx/l8rtU+x+PxiujLfD5HlmVwXReNRkP7gzUaDWxtbWFrawsbGxsrlT8qfMpWiRIlSpwuTKEB3rtU6A3DUFdKgiDQ97G8RylGUFYAS5wVimYAuS8eZ4ZtzriyErMS/BUPA5YoxJIILttKgTzLkaUZ8iRHHo+A6C6i2EGc7GMXVXw08YADF3fbFhzkiMII03GE+TxBkilksJE7PpRbgRvUUKl1UatvoNXaQrvdxcZGC9eutXBtu46NjcrS1B4mCZRwodwavGoHSDMoywOCEFk1ht1OUZ/biOCh2t1A9/oG2htNuL6NUepi7iq4CsjTDGmaIKNlQp4vW4MFAZTtxydZ/+hzXK/Xteonr0nP8zCdTjGbzXQnhhSIkUSPCXXbto+o3sqWUhJAs/3zSWPIovla6fksv5rFDdOCQo4zyfcmX6eIOJpJm6KRKbk+MGEpPRPlemHG1JdpPysJ4CWDWf2TwgusAPLipWjKaczcmMIyj/s7pr8fSd9oNMJgMMBwONQqn7KtwbIsLeTCRa/RaKDb7WJjYwPdbvdIyyfJ32W6AUuUuExgm5Fs25b3cBiG2p+T3n6e56HdbuvqvFSjK+/VEmeFogCPQV2RGTaTl9xjF4uFJogUzFBq6ZBeXsWPA7V6KCZ/lsIzVhLCWtxFki2QTivYGdtIDiwMXs3R8AGFHHGcYrFIEMU5slwtLdYtB8rx4PpNuJUtBNWbqLVuobN5Ay/cvoF3/LEYsW3BrldguUuuztbQwr+b5UF5Dbh1C3AbUPUYTidDbZFjO1ZIlYOgVke900a17iAFgHGGgUqhskMSlWSIkwxpmiHLAds6bAEV116RFckjP0Gl4HkearWaNmmXtjrj8VjHVWEY6mtX6kMA0BY8tm2vGMpL8nccAZTPdRKYsetisVjxe6b/M+NFzpVHUbQiQiOr+bxf11UV11UQef6yoi/Fynzf1wKDTF5KcUHuY2ypledyWfa1kgBeIpgzODI7Ke0RmBECoFsNTAL4NBfo41zgclFZLBaYzWaa+LHaR5XP0Wikjd1NfxoqfVar1ZW2z2azqZU/5c0oW3guy01YosRlgUkAZRJnMploAug4DqrVKgAgCAJdqZcEkJWU8l4tcVaQBJB7DINnVmWkFD73VwaifJzBor52n7IKqMiLriwOid4h+VPKhrIdKMeB5diwHQXXUnDzCZxogThxkI1z7BxkGNoZXLWspCVZjmTJFw+VSg+nJi0HtluHcrehvAMEtRHaWxPs9iOkroVKp4baVhNu3QNyIFB4aH1xBBaUW4Vl+3CDDE6eo5IBrWxJOnOl4HoefHeZDEhyILRTuHkKlS1JSpxmSA6FdPSzFqjQFrURHvspqqVHYLVa1XGSWaXK8xxhGEIppa9f2RnG5FytVoPrurpdVBItWQHk7GGRyvyTQCZWpGXFaDTCeDzWnSWyKEAyy7EgeR8Tj2opNauEsuonyThVVxlztttttNtttFotHacCONIGetnIH1ASwEsDeXGb7Z9SAUq2GQDFBPBZXqDm7AQzPDRyJwGUQi/j8VhX/Wjz4Ps+arXairInZ/9M4seA0nXdE2fUSpQo8XjgvU0CyPuZGzdbj9I0XWmhqVaraLVaK+JMZQtoibNGUZZfEkBTCdSsVCwWi5V5+pW2Mlxx/nZqOGS6lgPb9eEENbiVAF5lDj+wUEsV6lCIVIY0AVQOZLmFJD/8dG0FRy3nK/M8BbJ4KbKZJcjiIaKFBWQOoqGF2SyH7dnoXK9j68UuWv02rIqDrKYAS+HQlaMAFmBZUJaDxzGocRSW1h4qh8pz0OSeqq4r715cg0+y9imlVqrP5lyaUgqLxQKj0UjHgDKREYYhPM/TlTZJAGXbKOPLIkIl2zFPGmuZcSy7w7ifsKNEJhVJBKl6ygrgOvsWkwg+aobQrCaSAFJkkGMNfF25ZrAN9Ek+i4uAkgBeEhT1TsvqX1EFkNkiSQBPgyAVLVq8uR6H/PEYDAYYDAaYTCa6L51Z2EqlgmaziW63q9s9TdJXpChYBpQlSjwbmASQ9zPbP00BGClYwBZQ3r+m6mKJEs8S62Z8GMwFQbASXBdVAGlF5LqurnJz3yuv45PAWvr8+VXYtRa8VhvBLEMj89H2FGZVD17iILNcuK6HwHfhey4cx4LrOHBtwFIZVBYByQTZYoQkmiEMU/RGFvaGE8wWD5AMMvR3bdy730T3/ib8rQ4iO0DccYEq4HsK3ilFwMtOVkH+DFX25c+otceJPr3D+M3zvCNzrQAwn8/R7/d1SzPPxYzLZrOZNoonwSIJlKKCReSPx5OOE8lChhkrjkYjrQchk4tsCZUtoDJhY5K8oq/rhGDk34Gig/V6HWEYanJHYsiWUFN9X64Fl2VNKAngJYCZ0TD7tVm2JwHk5iZbBJ506Jg47nfkuckN0xR6YbVAlvrZ981ztW0bQRCgVquh1WphY2MDW1tbaLVaes5PitqYvfSX4aYrUeIygkExW7qlAAxndwHo+5KVv2azeWwFsESJs8C6CmAQBFgsFgCw0pZcVAFk0rH0Q3sa2LBsH07QgNfcQGXjGhqpj7abYmvqIo8raKsKnFod9U4LrXYTjUYN1YqHqu+g4iq4KoaVTIHwAMl0B+FoH8PBCG/dHeNjb8zx+v0DjOIFZiML+7ttvHHnGqzuJkKrgjyto9J10GlZgHM660+eA1meI8uWR54//HqakCSFkBXALMswnU5Rr9e1D7KsTjGpwfiMKqBSxVnO2ymlVlTcza6zk2pKmGIsshLICqUcFyIJnEwmKx0mx7WA8nNaR7CLlELl3C+w7Jybz+d6zpJJonq9rklyEfm7bCgJ4CXBo9o/JQGUC0JRBfA0SZKUDpY3sSR/plogb2aW9JktoWw8Wz/b7bYWfWm321oN1GyhOCtV0xIlnlfI9YcVQN7X4/FYZ2ZldaVaraLZbOr5CVOsqawAljhLyHkfKZ5BAshgz6wAkvyFYah/viSAT4qlOb3lBnCqLQSdbdS2YjSsDjaqOeJZAC+pI/WaqG50sXHzGrZubaO72UKrUUGr4qLhKQR5CCseAvMHiAZvYHpwB7sP7uOP/ugu3OQuoskB8sEE4czGsLeNBw/2YXUHSOwaAsvClhfghZq37N08BaT5oaopJBEovj7WVapOAhIg4GHCn62Ik8kEjUYDjUYDs9lMkziSJbmG878lwZLzf5IYmQmRKIpWig1PClO502wNZRzJmJFdJuuS/rzH5bmZraLy9WT3GjvpWN1nxU9WIIvIn3wvl6X6B5QE8NKgqAXUJIGyNM4LuKhadhoXp3nTSIuH2WymA0R5kPyZ1QKllJY25sxfq9VaGb5tNpvwff/S3FglSlwlmBURaQMxmUz0/UwRAhJACjfRBoJZaemBVaLEs0bRzJRUTwyCQLd1yqBXJjV931+pjlzWrP/5Yum7ZzkVuNUWgtY2attA5IVI6goqDFDPGsj9FhrbW9h68Sauv3gdG9c66DQ9tCsKDQUEAIAhsmkX2bCC2Z6PB00H6TxE7/4Bdu4mmIzmOIgPMB8fYHQwgL8zhhNMsF33Me44iNLTs4vKcyzVYNX6xLRZLXra64dEB4BeS5MkQb1e1zFUGIZwHGfFMgKAtvJh/CZVnElwZOVQtv+HYajbRfn6j6u+Lq0STLsFitiYcSrvRbPQUWQJIcV1TLsGudeYgop8bzK2luNV/ExML8TLXnwoCeAlwjoSKOVxAayUxk3PmdOqALKnXJq5y0MSPxJCqeYEAJVKRfepVyoVtNttbGxs6KPdbq/4+13mG61EicsMuQmb7d3T6VS3AzF45hyvFHHifSw35cu+gZa4PFgXdLICaF7DRTOAUnG7JICPCyqAAoANwIXtVuE3NlDfTJFbNdiNCN7cQm3hYZ5VAb+B2kYH3Rtb2NjeQGfDQd1Zkr+H6p0tWLUQypujakfYiGNsP+jj+uZd3Gx6mA4XyJM5htEUi9EY094Io/oUw40aJnMfi8Q/NfEek4AUWW4VkY7TvI5ol1Wr1dButzGfz6GUwmQyWalc8RwYl4VhiF6vh9FopJPzRSIvVIDm2h8Ewcrjj0MCiyrwtVptZe5Q2q6Q8MmKO4kalU3ZPSZFnSqVirZsqFQqR0hgUUWTYw2TyQRpmq5oUrCSKP++ReNHl60jrSSAlwSmetKjCKC8McwF6TQuUGkILY3czRk/LjByTpHnVa1WUalU9M0q28WYwarX66W3X4kS5wi59sgKoEz4sG2GMyUmAazX61r8hZt1qdhb4qxQJABjtoBGUaR/xrQxKqoAcr+9TC1f54dl6+cSHmy3jqCeI0cFbm0TtUWK5gIIEwdx7kE5AbxGHbV2A426g6qj4CvgaM2uCuVuwG5FqMwitDb3sL3Zxu3NKqJJCDUDMiwQzmaY9yaY1SaYjRqYz6uYpxkWYDXxKd+dIDZMcJF0EHINNQngaYFx1cbGBpRSqFarK0qaspWRFb/JZIJ+v49+v4/pdKoJFt8XY0ZpATSZTHRSXlYzHzVmxM+J6qPAQ9FCqazJvUQqblL8j/Gk1LygbQMFWlqtFjqdDjqdDhqNxgoJBB7GrzKZORgMsLe3h16vpwVyqDpfqVS08KBMYpqjVZdtHSgJ4CWBKccrSaBZmuZNJhcl03fmacCbh+2ew+EQ+/v7+ubhrB8Hi6V0r5zz63Q66Ha7+iat1+u64kdySLPSEiVKnA9k+6es+lNJjsPyvu/rwMGc56XnlFyHSvJX4ixxnALoYrGAUkoLTJgzgJ7nlRXApwJjDgvLCmAdft2H4zdRbSZI0wxJCiSZQpZbgGXDcl24gQ/XV3AU1lgyeAAaUEECq7FAtb2FzW4HL2zUEQ9nyCyFWZbgQTjHYjRDOJoinMwQRk2EWYYwB9y1z32CdyeITVHr4brkvUwknAYsy0KlUgGwNHtvtVpagI+erbSKmM/n+nv9fh/D4XAlXjNJTZIkmjCORqO1ifnjSKCMTSXxI3mTQn9SfIVHpVJZ0Y/g61E1vtPpoN1uY3NzE9euXcP29ja63S5qtZp+XmAZw/Iz4Oezt7eHu3fv4t69e/pzkh0sJhE0/8aXrfoHlATwUkEKrsjqnyzZA6siMGYL6NOSwDzPVyoArP71ej1t7E4COJvNdKaGlhQ8t2q1im63ixs3bmBra0vbPMgMi6xallnWEiXOHjJoYTuc2RLHygk3V97rQRCsJHP4eEn8SpwHTMn8IhEYipKZLaCsALItzZwBLPenxwHd7i1YtgPL9uD6NeTIdYdobv68Wm3RXP2EMyypWxVABrs2Q1Bvo9WsY7MZYF73MIky7IQp9pMIi9kC0SRENI8QRQmiLEcEIMYqPX2idyYIoOkRJ6tkvKZky+NpJhKUUpqYVKtVLBYLHVexsr1YLGBZFuI4xmQy0VY+jNd4TvJ6ltW/0WiESqWiE/NF576OHPJ7spWSSqUkfzzPImJMYUPP8/S9SsuGTqeDzc1NbG1t4dq1a7h58yZu3ryJra0tNBoNLSIIQI8ySNuJRqOh/16VSkWfEy2MWJyQvtPmvOJlWwPOnACanhyyvajo3/Jn5e+f5LVMyD+WPEiMivp5JbM/jz+y2T9uWkEUqYByQTKN4B+XAJp/I9n+JY2gpV+LlBMmMQWgz4VBIcUhWAVsNpsr8vCnOa9YokSJk0MqspHsScNgGcBIgQ1zvor3dYkS5wVzny9qAWXcQQNsXvvcT9kCygpJ2QL6BGBIpg7/TwFKsLwT2qJjGcIqAAFsvwrXryDwl3YRNd9G1cnh5RlUkiCNYqRRgjROkaRLk/YUSxqZ4cnJH7BKAM14y1TSfJYVQBmn8nwArHRsSSJkElLTOF22QrNaNhgMjhC8InGXx0n0mUqmWZYhDENdDZQJxEqlom0ggIck0/M8PT7EeJL2Ydvb25oA+r6vXzfPc4RhqD8LpRTiONZtsZZlIU1TrU3BMQapYn1avtrniXMhgLKVkTeBvCHkIX/WVE4yFZbkV/PfJqQamGyTNBUzZbuS/GOf5YJvzv/Jyp9UKpJkSyqAPokZvKm8JL39pDQvsyccIGYGiVUAvp5pCi0VPlle931/pT2gRIkSZ491Cr9SxIlB8nFqbnJOokSJ88ajWkDN+AN4GEPYtq2TH6UK6BNCflRZtvyGOiTRSiGHjVxQQAuPIoR81AbgQFkOLCa+bQXXUnAswEYOZDnyNEOWMpZckr4cZtXxyXDcDKBUsywif8/yGpIVMybjzA4rmbwjgSya+Z5MJpr88f2Y94C8v0gyHxeMGYtiVhmfM5lIa4sgCNBsNrVuBA+2btbr9RXyZ74WRWPoPT2bzXQVkm20rALWajU9y34VihRnSgCLsgpmdtmUXjWJoUkAZXldvsY6QijVmnhhyYBFDnryYpMXIIBzI4FF1T+2YDEryfMzgzG5ID2OFYSU/TUFH6TKJ9tAqTTFm5KLjKz81Wo1fZN2u10t8iL7vi9bD3WJElcJ5jrDoHc+n+vDHMCX6yjve3MOpkSJ84Ss/pk2EEEQrMQd5swW56FkBdCUgy/xODikW1mGLEuQpTGyNEKWpcigkMBFavnIlAdlWXBtwLcUvEcuH8vnzXPRRZbnS4LH7tKVCuPpxxdF3Q9yFm5d/CY7t54VilQyJRE02xll4YUEcDabrRBGeW/wNfj++RqmiujjoGiWzuzCk3Gi67p6/k8SPlYNGccXwRybYitpt9uF53maAFKg0CSAl538AedQAZRtRUViAvQYoc+IWeGSLUdmBXCdx4q5UK/zAZKDqOz1TZIEvu8fIZ1n/YcvqgCS/EllMr4/uRjxxn8cM3iTpIdhqMv+w+FwhfhJGWEadLIkT5LNxYDVPw7VdjodNJvNlZL6Zb+ZSpS47CiSx5YJIFnl5xojZ/5kllkmzUqUOG+YyV+Z/Zc+tgzYGZwz6JUzgEUdSSWOQw6oHMhT5HmKLA4RhRPE4VJ1MkqBSAWIrRoSqwbL8VDxHNQrNhq+gucUxQas32UAYuRJjDSJEScJoiTDIskQZTkSWIBlwXLs5WFbsCwFSz2sMj5t5EFiIlUrJQkEsEKoGNvKa+lZwiRnprgKr22eE89XXudmJZPaDub9VK1WnzpBIkfBTBsISWgZt9PygXE7958iAmrOs/P9uq6LWq2GLMu0kI7neVqlnvyA8epV6FI7lxZQGWDQQ04SC5ILEsKimRNgtQIIYOUiOY4EmjdDpVLRFxGZfhRFqNVqha93HiSwqIdcVkplBVCacxaV0Y87b74OK7Mc+u31etorhvYOsiWGn70p30vlJn6+JIH0+KM8b0n+SpQ4f5jqh5wbketyFEXI81zf5xzEl/MaZfWvxEXDcRVAJjqkEbxMtgJYSUgXt+89rqucEl+ZjFVriIh6eOi4w1r52dMLQxWUxdfA8sDy30elWGQchJWjGJy0i4FsgXgxxnx4gEm/j9lkinmiMM3rCN02ErcNO6ihVQ+wmXpwbAeOY695nxmABYA58niGZBEiDCNMwwSTMMEszrHILWSuCyfw4FY8uJ4D17HgKAUHD6cInyYCkQRQKkXK60l6qEo7hmddTTYLApL8cbZuNpvpNZtV8CKfQknImPiTz1er1VaI7UnXf0kyZbwrR8L4nkgA+R74mcvWW5JuVvVNg3cpekM/asuyUKvVChObLFhchfZP4JxaQGV7ET1FWGGij5xJNIr8d+TFcpyAjPzKTYBVMelDxyFS07cOeHgTSZP1s8S6FgJexOsqgLIKaJpWFkHeNJT87fV62NnZwe7uLobDIabTqSbl0t5BEmr2VPMwq6vM2LBNtESJEucLc+5Dkr/JZKKVfamYyM2R1RF5r8vh+hIlzhuyBXTdDKAZsDMRwnhC+gCuxhmHX3P1mCyCdMMD4ML3XfieC8ex4NoWXKVgK0DBgoIFKBtKObBsF47rwfNtuFh64vk4TQIIWJ4H23Phew58x4LrWLAtC5YlaKtSULYDy/HgeIDrKXg+4AdLu4ZiHBI1FQLpBIvJLnp372Dvjbs42O1jOFcY2l1MgxtIG7cQtDZwbTtDZtmo1j3U136OABABmEJFY6TzEaaTKQ6GIXZHMfamwEjZSFwPbi2AWw/gVQN4ngPfsuAdegs+7SplEhKpFslKkYypODYj7QyeFVilkzN0JGv1en3Fq1kqOwMPiypSd4LFGEmQGPM1m82VOdmTqrjLOFdW6UjaeO/JCqAkgCx2MI7lCBOTNtJg3hwxU0pporeui47HVdnbzrUFVPpwDIdDHBwcoN/vo9frrbQc8uJc1zNtEkDzexJSrYkEkF5V3W5XtzjJ15FzLlQqOg+sawNdpwLKi1eeOxejdRkn88YZjUY4ODjA/fv3cf/+fe0VQxEIVgFqtZo2IaXCJwVeWOmTWRqZIStRosTFAAmgrP4xYKHKL4MDDuPLQfyimd4SJS4CigSL2A5ntuzJfZYVAjMR/TC5vHz+x63/PcShJ57nwnNseLa1FC1RCtbhsfwZG8pyYNsOHNeDrQAHCq46/QBO+R6U58BybXiuDcdWsC2jsqcsWJYD23HhuFiSQF/BPZaJplgStQnyrI9wdB+9tz6KN//fK7jz2g72Jhb2rWsYNidIN3M0rmV428KCX6tgcwvYwDqvvhTADMAQ+aKHaDbEcDjGTn+GO4MF7s8c9Ks28qACv1VFpV1D0AgQeC4Cy0KA05kIJAGUiW85KwZgRUlTWi8wyfAsYYrUSI9WViKl0Jc0TOe1LlWgWVWTHn4kk7I4cNIWaak9wT3IHAvjmJF8L2bHSZqmusDEcQXZ1VJUTJLVTNPjzxS3uQrVP+CcWkDXtYFy1uzg4AD7+/vo9XorfnKmVK1ZAeS/5Vf5uoSpjERxkjAMCw3VpYiK67pn0rNtQpbei7wA1xFA0wfwUQRQtn5KYr63t6crgKwA8Abk8wZBoP1YKMfbbre1gaaUz70KErolSlw1SALI6p8MWMbj8QoB5JrIxA9JYFkBLHHRsI4AsgIoM/syEGWwyDkpaQPBCuCTa0nmAEVL8oeiJXn+kFjyZ7TQiXi1k5PORyDLlq+VHZ4PX+fI22PC/fBcs+M+gRwPCWAIZCNE0z2MHryJnY/9Ed76g7dwdwDcwS0ctHNk1wO0Bw5i5aK7WcELN2vYatjwCt/oHMAI2fQA2XAPk34PB/0x7vdD3BvE2E09TOsVBLUaKp0Gaht11FsVVKseAtvCaZnTUESE3WQyEUZSEsexHqnp9/vodDqaAD7LokKR/Ym04yK5YrLPFK+R2hsAdNsqE/7NZlN367GiWdQ+ynM5Dub8OTVC5DgYCWCe5yudebJqL60cKAIjCayM4aX6P4Vg2J3G55WfIz/Lq7C3XZjyiySGUnmSWRJeWOtulCLVIP4beJjJIBaLBVzXXVnQSfZkYMOWRpaGz2poV8KscJpEsEiNiSV/bnbyguXnLEk0DUIp9zscDtHv99Hv93UlliIQzP7IeT9JpKUnCwmglM69CjdOiRJXEZz/lQHBaDTCcDjEcDhcmQFk8se891nxLwlgiYsCUwWUwV6apisEUPq2SY80VhSKKoArc3oaS1a03LfV4ZEjRwbLyWGrHMACGYYY9EcYjmcYzyNMohSzJEOU50iRIEcE5CGydIrFfIzpeIjxqIFaqworV4gB+FkKP6MwnoXcUktiqJUvH7LJPM+RZ4fxBJatnOowB5vGEZLBAMlggtlohuFkgfEsxizKkKT54VPkyNMY8WKGxXSI+SjGpOZhqDL0I4WgkqHqA1CHPnM5gDyDbTFuW84C5ukCSThBPOkjHPUwGUToxwr3J23kcQfz3EWtYeHODRv3rgGdehdZzUdwWPVUaQ4rHkHFu8jC+0iH97D7YAe7u33s9ELsjTMchMDEqUP5DVTbDTQ2G2ht1NBuV1CvuPDX96ueGCwqSK0DCoawy0kSQHa4saPiLCqA5uwrW1XZtl8kXAOgMN6dzWaoVCorxMy8N57kPUl7M1kBlCrU/KxJ5haLxco5yw7D6XSqCaBs++Rnwr8NY1PZFfg8FCfOnADKi5DEgTcNh2PZPy37eYGjVStJcEhGivz7JLGUqj+s8AHQWW9mvNkWwptEksDzagFdBzMzUVT5k9U/meXP81y3JkjSPRgM0O/3cXBwgPF4jDiOdbAHAI7j6M+m3W5jY2MD3W5Xkz5aPMjqXxkMlihxsSEJoNmVIav/cjierUS0eKG6L9WAS5S4CJAqoFmW6W6eNE0RhuFKsC6tqlhNMFVAD58VUBaUZR8SrhR5EiKPJkgWMyyiCLMwwTTMMFukWMQpciuD4+Ww7QTJYozxgzdx8Op97Nwf4kFvjvvjCAdhgmk+Q4I+kFcwn7no7di482qCeqWP4WYDNWXDX2TwIiCwXQTVCoJ6HX69Ci9w4TmApxK4eQSkCySLCPNpiMkkxGwaYhEnyJSD3PaQWQppPEUyvotk8DoWew8w2jnAm3fHeNCbYzRLEaU58jzBYjbC+OAeDu6+gooHZIMmklaOSSXGbiVBo+LBDRqA34Byq3BchWZNoVlx4CEArAo8v4p6o4pmy0er5aC5iOGPhsjDe1gcBBhigTv+AN3qARrWDsJ+B5utADXXhZPnsJIFrHgMa7GDbHoPs8F99HZ38NGPPsDH7s1wZ+yhl3UReduot7bQ2drAtRst3LrRwLVuBa2aB88+vQCf1lccn2k2mzrxzWsqz3NMp1MMBgM0Gg1sbGxgMpk88xlAoNgDk/NzpnKztGI4Duv8DGXLpIzBHwVJ/IrIH0XIOKbEeJZxe9GYkVS/N60kJOkzrTGeB/IHnDEBlAIsvu+vXDiyrCotDqTUrLQaMPt1pVIP/+jyD8mLZDKZ6KFQvjYvAmBZJp5OpyuCJuzp5gV21h5AReqjMpsphWnMwVXZ+snMJoM8bnzM8nPOh9kpDipPp1MopTShcxxnxTaDtg6S/DUaDR0EliqfJUpcDsj53+l0iuFwiF6vh729PQyHQ8RxDN/30Wg0dLtMkQFvvV5/rjbSEhcb3H+KRiCyLNNxg6keKK0hpA+gDniVgrKch8W/NEYe9hBPHiAc7WE0GmG3P8O9/QV2BjEG0xhJnsJ2AdfJkCVzhP09DO++hv4bu+g/GKHfj3B/kmKUDxHDAxBjOpjiwRt9/FH9Hqb9DbQaNfiZAzuy4aYuatU6Otvb2Lh5Exu3rqHVcdAIgKYTwcpGsKIR4tEQvfs93L1zgN0HAwzGMywyhcR2kdk24myBZL6PbHIX8fAOZoMd7O8P8PH7YxyMM0Q5AMRYTHro33sVdzwX4fA+DhoB7vspNvwY7QCoN5vwW9fhdl5A0L6GerOOax0X1/MAWxXAcxLUmpvYurmN6SduI4lGyGoDDO5H2BvsYGeSIFzs4n7chbPYwmJ/E29eb6Ld8FH3HQR2DieLoJIp8vkBotEOZsMDDPtj3L03xetvLfDmuI4RmqjWX0R78xZeuLmNt9/u4MUXmnhxs4pu3V5jLfFkkMWILMvQbrfRbDZ1JwQxm83Q6/VQqVTQ7XYxmUx0S/2zgkx8yPZnk/gUCQU+SjFevobsPDM1J9Y9j9TskORPtn9KIbLJZIIsy3TlcTKZrFg/FH2VB2N4fgZFVdDnSZTwzCuA8sOVgizSOJzVOmZGeGF5nqfbD5l5lgeNGmVWw3Ec5HmO2WyGwWCgrQzksKokoGmaYj6f61KwtKTgz5+nCWwRCeRX+VnJqp8prcuNLcsyjMdjHBwc4ODgAIPBQB+cvWTbLNsbpHKq/Nxpn8G/QSkEUaLE5YOsADIxxE6AwWCALMv0PU4C2Gq10G63ddDD+ZeSAJa4SJABLYkeyZ6cTwdWK4CcO2Kr2+oYiFpRyMzTCPligGR0F+HBxzHa28PdO0P80Z0JXr0f4kF/gUWSwrIBz1VQeYxoNkI42Md0/wDTQYjpJMcoyTDNZwD2Acwxmwywd3cHKmuid6+Jih9ApR6w8OCqKpqtTVx/2wwvxj5erLQRB1XAAXwrgp+OgcUeouEuBnfv4K0Pv4WPvXIfO/tjTOIUC8dF4tiIkSKNJ8jmfeRhH9F0hMl0iv1BjOF0aawOANlsgOHeG1BpiMneG9j1bVSdGDUrRj1wUOtsobr9dtReyNC87mFz28XC8uF6HuqeB98Bqq3r2H7hJrLpbdj2FFbDxtAfYPf1KfYfTJHM7yN8s4rXpy2MHrTw8XYNtaqLesVGzcvhqhQqmSOeDhGO+5iPxpjNUvQnLvbHdUyTLqzqDVQ7L2Hr+m28dGsL77zVwos36rjZttDxFBz79OISXleu6+okmEyCSwyHQwRBgH6/j/F4rGOxZ4njSKBpBG+Sv3Xxm4wzzeeV99I6yLEmqQciBV9MEshuNMdxdLeaNLSXpJaEjzFqq9VCp9PRPIMCNpI3+L7/XO1Z51IBNCWZeSGSrDH4YH80SQjJoeM4KzMn/OMyAJEVO7Z5TCYT7O3toVar6bbG6XSqFUZ5A8oZRB6P9v85O8jXXedzaGZu5E3GDY2tn4PBAPv7+9jZ2dEzf4PBQH/2tm3rz5OfLSuBPKQJpyzBy4xqiRIlLjbMIXo5A8jEELAMcqT3n6n6K1v4n6fNtMTlgEyWsj3N3K+kUB2TxEVCdEeQJcjiGbKwh3j0ALPePfR3DnDvzSFee3OGt/ZDzBcpLEvBcxVsK0MWxYjCKaLZAnGYI05zLHJgKfcSAshg5SHC0Rj7eQ+TfgDb8pFFPvI4gGM10N4IEdp1OFu3UJ/EqEZALc2QpAnyNATiMZJZD9P+AxzcfRN3X3sTdx/0MQhjzG0bsecitoA0XSCPQyCeI08WWEQJZmGGBDkUKPQSI531MMkjRJM9TKwcTh7BRYLA91DdGKI+89GyrmHDvY4k6KDWUNhuKUSpC/gtWLUNNK7dgIpegGVNEPsW9lLg3jTF7mSI+6MxgCGSgwF2J1X0Kj58z0atYqHm5/CdHEhjRNMp5pMJwlmKKLYQ5l0kqgmregPBxovoXH8RN25cx4vXu3jbtTpe2LTRDRTqz0BBlXBd94gxOf31gOU6K63OqDz/LFFkg2L6RBcVDY6zCzOfY53i/DqYlg+y+mcesh1U+nLO53P9ulK3Q3pQ1+t1ncSpVCorXX+sAMq/E+//5yFuPfMKoElOeCGxMhiG4UoViYOmzJKkabqSee50Omi1WivzZ7QeqFarcF0XSZJgNBrp9lKp4sWDi7q8IKXnSVGv81mhSATGNISXtgwkyvJxltfn8zls29akdjgc6uCOgi+j0Qjz+VwPyNMfhYEes/z8jPl3knLaclF5Hm6kEiWuAopsIGgCP51OYdu2bsMnATT9Ppl4K+/9EhcVcoQiy7Ijsu8AVkggE6aMAxgLZHluqF8eir9kKbI0QRbHS3GVOEK0iLBYRAgXKSwFZOnS9iHPMqRwAbcGW3mAn8PKAD9XyGEhVxYsx4LjKjh5gjxeIMlzpFGOLFLInGVrahQniJMMcZ4jzYAsB7I8Q56nQJ4izxJkyfJ84miBaLHAYhFjYVmIsxSxrZDmKZAqKHjL2UbXh2flUH6GIAMyWIDlwHJcWE4GK1/ASvOlqEueIFI57EUEN4oQRTHiOEWc5EhSIEmXIqOAC8uvI29uorb9AtpJiK3Mw625h7eFASZZAH9niuEsRZTayK0MeRYBsUJqWctWVNeCynNEuYvUrgM+4FWq8LxtqOptVJpvQ3v7Nl7+hNt4+fY2bm81ca0ZYCNQqCkgwDpbidOBqW9RrVYxHA714+baOplM0O12n8l6edz4kFnBkwUaEqF176/oMO+hdSjytebYlyR+0gNQ6ncAy5nBomSNHCFjrE9SzntZjkqxaigTQM/LvnVuKqAyC0eikOf5kcyJ7OXlRSPJCGfPNjc3sbGxgU6no1sRSQA5txJFke4jlhdZUZskL04p97zOW/AsIM9LmnJKo0wAemZSKaUrePKiZpur4zhYLBYYDAYr2Si2xkZRpH+eJs+ScEt/P3PY1mwlKFGixOVAUTuOVHrjjItU/5XD91wLSn/PEhcZssJhVi+KYgHTf1cng7MMeYaHbEJZgHIB5cGyfdhuBW5QQ6WaodF00Ip9eIsUSgGuY8G1D9VB+Vx5hiw77OoBK25q+bSWgmUtZw7zzEEaeUiTALZdQ7NZRa3moxI48Cxr6d23/E0A1tK7z/bgeBV41Roq9SZqzQyxH8OxLSSug8S2kB56Olh5JlRMSSaxrAMqtTSnp65AlkKlEZCncFwPwWHsVQ18VDwbga3gqhy29K+wK7AqW8jbC9QyDxvWJl7CNUTeDiqdA9zeHaE3nGM0jTFfpFgkGdIsh20r2I4F27GhLBs5loeyA7h+E35tG5XGTTS6t9DZvI6bt7bxCW/fwgtbNWxUbE3+nvXqJP2ROSJDywfgoeo62xipstxoNHQsfNqx03EaEnLuT+pFSG9t+TzUxzCFV3gfHUcA5fMWFSkkeZNFGKnib74nPi/3L3l/O46z4iIgR8/M6uXzFq+e6y4tZ9eozMVKkrRiYHaBRIx9vbQb6Ha76Ha72NzcRLfbXSGAjuNomd3RaKSleaXcrXmxmjfKRYG8YYqyJQB0G63ZHio3ssVioauAFHthGwJvEhJz2SdtEkCqXDFzQqJ5XBblJJ4wJUqUODuYreIyucRNmMGBJICm+BZlt0uUuAygMB2rF+b+ZSaEpf1SmqWHVcAl1YKyoWwPlluD5bfhViPUmzY6m1VsxyHyIEYYZVBYEkDnkABC79e0WzB89Q551/KrvSSAsYM08WDbddTbXWxtLoVSqoGFwAZctbSFUMoBrADKq8KvtVDvbqJ7I0Hs1BBEywpg6jpISQCRw8pzqMNz0b6E+lzU6gllKZBGyPMMtuPBa24i2NpAo11Hs+ajGVioORk8JatuAVSwBTt34dsdtP0BXqzsw+8c4NoL+zg4GKLXH+GgP8FwNMNkGiGMEiSZQnr4GSvXh+VX4VWa8GsNVGst1FsbaLU30e5soNPuoNtpYHujjs1OBU3vIfl71pEHOyRk4nw2m+Hg4ED/DG0hKLRVr9d1fMtkxFmgqEJIFBU8ZNuk2QH2qLGfok427jdyzzGJX5HuBvcf2WnGvYn7lLxfSapNoRoz8fM84dwJoPx3US+xOVwKYKW0LuXHOQcoq1PA8kKZz+dHvOhk5oAwTdSLVJHO40KR1T/eJHJAlgRQSlvLQ95cFGeI41iLvXAOkoamJN7m58tDGp2aN8/jkL8SJUpcLBR1Fsi5Z+CocJds+y4rfyUuK4rso8xWuKIRjDRJkaUpwOte2VBOAOU1YQdd+I0cjU4Fm/EcczuG34oRxTmUAmyLQiQPSR/EHnlkt1T5Icm0kGc2ssRGmjqwrBqqzQ662y1stKpoBg4CB/AswFEWoDzArsD2GwiaHbQ2I2zNHKjKFI0kRaIUUsdGZlvLucOc1cPD9tZCQnpYYYFCnqfI02RZObRdOLUOvM4WKt0GGk0fnZqNhq8Q2Bks7ZfoAmhBVWpw3U3Ugymc2hDNjT5uvdDHeDhA76CP/b0+9g+GGI7mmM5jzGNgkTrIbB+WX4NXb6Ha2kCt3UWj1Ua700K33USnVUe7UUOt4i6rkI4Fzz4b8kdwVIkFCsZpk8kEwJIATiYTrbJcqVT0tUa19dOEWRQo6morIoNyJo7ii4y9WQig5gb3gONi5HUEULZ6SvIn9x7CdV19HlJszIzR1wnVSNu4x5lXvKq4ULu1qT5kEgY+Jn1MmIEwrRpI/gCs/IHNi868yKQojTzkhXIeBFAKNJD8SXlcSlVTKdV1XURRpA0zZTWV4gy0gaAoDL39giDQnn+dTgcbGxsr9g7mrE+JEiUuH2SbETsDpOCVNPU122bWzX48TxLaJa4OiuahihQRuQ8zhkiT5X3iOA6UjeXcnO3D8upwql34sYV6XEM3XyD2UgTNBHGaAVCwLYWlFZ06/J9aYSeiDnP4JTskZAp5biFNLGSZA8sK4NcaaG230W1V0Kg4qDoKnpXDUhaU5ULZVdh+DL8eobGZYyP2YdfnCA8JYGbbyCyFDKI9Vlc1C0gTiQRyIMuQZQnyLIeyHTiVJpzmJoJ2E9VmgEbVRcMHAjuHrWRMZwHwoBwPnlOHF9RQr9URNxuYt1toNpqo15qo1wcYDGeYzmPMFkCYOUjUkgD6zTZq7U3Uuxtotlpot+votqroNAM0AgUPZ0v6CMZPrVYLm5ubWnmeoi9pmmKxWGA0GmF/fx/379/XFgS02TotHNcNVjTqBKzeD6boFyuajAkpDihtFNYRKlPPQrZVS/Jntn1K0RnLslCv17XytLRukO+T84LkCmZnYTmqdMEIoLwQivp/OXsi2xOlmaVs7TSfd7FYYDabYTwe635rzr2FYYgsyzTBY9ujnEU0+5vP8oLhzUSFUpo0TyYTLeIivYrkucoLXV7wskwvjZ1JruXc38bGBra2ttBqtY5kekqUKHG5IDdg6QtKy5uieQm24MuZDzn3W9RKX6LEZYEUxTC7jziTRcVQ2Sa9jE+iZSVOWbCVhdyuwK504KY5KnYdbW+BtBLD76TYWGRI0mWQalsKlmBY6rClUq2QQJK/fEm28hx5rpDnClmqkOc2lPLgBlXU2m3UN2poVm3UPYWqreBZLixVhXIy2BUL1Y6DjaQK+F00ZwtEaY5MAZltIVeHr6Y09ROzVAYhzVm1zJHnnF/MoSwblleFXW3DrXXg16uoVF20qjZqngXXWhc3KcCuwaoCnmPDtn0ouwLl1OFVO2hM5piHKeZxjih1kFoulFuBV2ug0mij2myiWq+hUa+iVXdRDxQCLCnmUSztO54lLMtCtVpFt9vF9evXdcKecSetxXq9Hu7du4dGo6FbkVk1PE08ap61yJOb6z7vjWq1imazqSua29vbeuyKsaFU0jzuXNZVAYsEF2XRhx1qGxsbuH79Ora2tlCr1TQB5O8lSaJ9wy3LWrEnMj0Pn1fyB1wgAsg/mHmYGWkAKyo+MgMt1bvYzkgPQJKlXq+nD9odxHGsL3KaQ7K8TVEaBj3noW7HEjzbP2nSTHn2Xq+H+Xyu/RHleZptLXw+UwaX75Pqnnzv/ByKZv6e5H2UKFHifCCzo7qCIWwfpCw5pe+54XKemokxKfZSkr8Slx0y6C2SyQcediitEsAISRQhcRzYyoNtWVBuFVYlg2cFUEEEVYvhtzN0ogyLJEeaLScGFcfoHrsC+LAlM4dCni2JoFL2cvauWoFfqyOoufB9wLUtuJYDK69AeRYcBKh16sjdLirtCIs4QZrlyA5PJFf6w9Bn8FgVQFaY8nxZAXU8WG4A26/B8WpwPQ+B76DqKbjHeu9ZgPKhHMCuuAhUBS27Ca+2QGMRI05SxCmQ5BYyOFCOA9sL4AVVuEEAz/cRBA4q3rLyt35FevZxiG3bqFar2NzcxGw2Q5IkmEwm2N/fx97enm4HPTg4wJ07d+B5HpRSqNVq2NraOnVfQFlxK5q7k90ewMO5WP4ex4G63S62trawubmJra0tbG9vawJYr9d1EeFRsV4RAZSH7MqTcTkA1Ot13Lp1Cy+99BJeeOEFNJtNfa78fRZJZrOZTlx2Oh19jqVK9RLnTgCl7QJn2nhIErhYLPQFatoxFPmJkAAmSYLxeKyVlqh4KX0AWQGjOWS9Xl/xGJQmkedx4Rznz8UK4DoCaCo88TOjl6JSSpM/Zna63a72VJQZEzmbWQZ8JUpcPpitN7R7YEKJglCSALIjgl0B0ujdtHp5XvyTSlw9kARK8sfkMkckSABXRJLiCG7iwrFt2JYNy/FhWw6U24CdZXCzHPVsWfnLcjHmV0SsToKc9UEFZVmw7MO92bFhWQq2ApRyoWBBWT5sK0PFTeHWUjSSpdooTSzyp71n+aYUliTQcpaHbcOy7OW8o7Wseh7zJABsQAWA48GpVlH1U3iNFI0s02qkeX54vspaVhwPX8OyrWVbLZbk79nX+dZDVgBZvBgMBrh79+7KeNJwOMSDBw/09baxsYEXX3zxVH0Bj1PdlEUWWqEBD0ehGDcGQYB2u43NzU1d+WP1j7obsgX0aURgSOLMDhT+u9vt4saNG3jppZfw9re/HZ1OB77vg1YtURStVFsXiwU8z0O73dbaII8zq/g84FwJoBmISMNHKQfLf5MAmgaRrIixVYN/cKWUJoAys52mqS4r+74PAPB9v1DwRBoby4z3WUK+T9OXi62gs9lMC7vEcbxSATRbPpnVD4JAB3j0VdzY2NA3drPZ1POApnwwUFb0SpS4bJCbLxNKUopcrpPS7qFarQKAJoByEzXnpEqUuIwwTbKlGBo9dmU3jp5ZiiLE7iEBtC3AcaAcF7azVL083yl5a3kowLIAyz3v8zkOCoANWDaUtfzsbADeOZ/Vk4DJ+GazqUd39vb2dBXKcRxd6RoMBjrJtru7i36/j8lkgo2NjVM7H1NBnp7QstjCGFuSLl73VIJnYURagckxqcfxfn4cC4giXQ4WaOj7fe3aNdy8eRObm5tHCOBkMtE6FWEYwrZt3d0m9y55Tz+P+9e5EUDTvLHIAFJ+XSwWmtx4nofRaIRerwff95FlmWb90uaBJq+smNH/Tsrtpmm6cmEVZTaKWp5O+2Ix1Zn4/FTqJImdTCa6tM0+chJmALrEb84ASplrtn7KSicJL/+bVUHPu4zLb4kSJYrA9UUm3mQ3AVWBzQogg2O5iZqzFCVKXFZICXnZ+iktqLj3SzVuxiae68J1HNiOc1iVUudWfboMEEXQKwkm2RuNBoBlEr/b7aLT6ejOqtFoBGBpCs/xpIODA+zv72N/f1/bnD1trCnXfHbIzedzve6PRiNMp1PdOcfiCPBQnZ9ii1IPQ+pLPO48XVH1Tyraz+dzHeubLaDAQwsKjiUxdg2CAEopzSVYibRtG/P5XLfXSsJa5AjwvOHMCaBZjuYFaVb/TPJHnzqydbYipmmK8Xi8MuQpL1JWAafTqZbX3draQqPR0ApDrARSWYgKRyRDJgE87RZQkj9TYpq9zMPhEP1+X5u2kwQya8OLXt5cMnPJG5N91DQnlf3cfM8yuCtFXkqUuDqQ6wzXXgYCg8FAry/T6fSILQwP6bEqM77P0zD985otvuogAZRCaEwmc0yEugKya4kdR47rwLIdKGXBUR7KnMh6XPW7R9qaWZa1QgBZWGD8BkC3LO7v7+PBgwe4d+8eKpUKkiRBvV7XSbgngUz4SRFBakhw3Q/DEGma6jZoJjxYMGBMLbU21tlJHHcuRefDLj6KkHH/kUkZ27Y1AZRiZBSCZHImjuOV2JXkkNoe593Rd5FwphH+o3qR5dyfJDaSHPLi4QYchiEGg4GuWPHikCSQs4BKKTQaDV0ulhcX25ykEIqpBMqMx7PY/IuyNLxR+/3+EQIo1fqSJNE3HjMnJLdsi6XFAyV8ae/AYV5mplhBLQdkS5S4ejDXmTAMtTLyYDDQLaBMKLGVidLknIsumgF8HtYL2anxPLzf5wnmDKAkgdxDSQDNrqWH94IDy17O3OfKQXmJPJ+QawPXzXa7rTUWOp0OFosF+v2+bhGdTqfo9Xp48OAB7ty5A9/3kaYptra20G63n9gaQirXMtZm9Y9x5Xg81gSQ5FUKLZIASiVc02uaI1qPIoJF1T92tJkq1ABWlP/N2J5ElQTRnNXN81yPedHDUAo6lgTwjHFc/2/R/J8cDqUQjFQDlf2+PKQXIBdwBiosH/PCkdlt2koUHc9aOlaSYxJAOZvDgVYzS8KZRgneiGxtZUlf+tJsbW1hY2MDGxsbut1V9keXBLBEiauFou4LqSg8HA51+6c5gB8EgW4ZNwng8zID+KjsdonLDTMhbBJA7v1SkVsSQDlm4dg2ctuCUs9vcFniIaSFAtUzGb+NRiOtVj8YDLCzs6OVQYGHM3CM5U6KdR7SMracz+e6kMDYj8SKcbEkWetsJKQ447pzMeN/dvjJ2JbnwvOgx7WM62UCkvE8AL13MQ7m58h9zCR/V33fOg7n1gJaVAE0CaCUhZW+gLICmCQJZrPZCuljmdg8WEqXVUKWgmVfszkDIPudn+X8nymKw5vCnP2TfdJSuldC3ozMngRBgEajgY2NDVy7dg2bm5u61bWoN7pEiRJXC7LNnBVAOQtCT1S5qUryRwJoisBcZGGoJyVuF/G9lHh2kCIwZmKY7dAMgE0C6Ps+oijS8cKjAuESzxc8z0O9XsfGxgZu3LiB0Wi0Qso4/9br9XD//n2t0M7fla2PTwJWAGVn2XQ61doS1JDgei7JnySATIDIMaWnIYBSkIYVQMa2jF1537HV07Rk40HItlVWBAGsxPMl+Vvi3CqA0ktHqlxKcmNmGJgVIPFJ01QvvrJ6R8LHds5ms6mHQFkFY7uj7AeW1T3pCWR66T2LbLfMzpt+fyYBJEmmVO66G8409KzVauh0Otje3sbNmzexsbGBZrO5Uikty+IlSlxdHDcPMhqNEEWRFn5hdlUSQKmMzDXzIreAmmvjo4Ly496DtNG5iO+1xNPBFIGRcYUUpCiaAWQVkCTwtH3cSlx+VKtVbG1t4eWXX9YJBXawzedzAMDBwYEmLJyDYwtps9l8Yg9mM66czWZaXHA8HiNJkpV5bln5k7EhgBXiyqKMtG54FAGUca60NpMtoIz1GXOzekcCaM7vmS350juQFUR+71HetfL8r/o6fy4qH7J/uEgERhq/y6yC/MNQ3ZMLsed5mM/nCIJgRUSGQ62VSkWLo9RqtRWBF15Q5nArLxppgfCsLghTHUmWxqVUr6yOrqv+AUfnGVj5bLfb2N7exvXr17G5uakNniXhLTMjJUpcPRQN4JtJpiRJVtTRWAHkmknDX9NL6SKtF3JNPIlAAVG03ptfS1w9mCIwsgWUFY51FUA5smL6FJcoASxn0La2trTyPABtDn9wcKBjv/v37+v4z7IsPbZDv7tqtXriBL0cLZIVN2mWzhlDUwhJVv8A6JlFec1L8/Z1a21Rp5uMc2V3m9SwoEijrP5JIszY2fxMSKSloinjXPOcniYxeJlxLiIwZgZAzgCappQy42pZ1sq8GzOyRRcUyYzneXqo1Lyo5AVu2h2YF8RZXQBFA7ayCirL7cdlo/l5mYO8jUYDnU5H213wfbNv+qpe6CVKPO8w5//kPAhbgriuUDnNdV1dAaQCaL1eX2nBuUgzgOYeI9dSGZwUZXnlmml2fZg/W+LqwdwvSf5839d7sKwAmkIwvu+vJK5LlCA4i9bpdPT6Escx9vf3cffuXezs7GhbiDzPsbe3hzRNNWm8fv06Op0OHMfRZO1xLbrMWNsct1osFlo0pWgOlm2TRbH2ujnA4z6HojZQKQIpFajlDLopymhWAM0YlhU/k+SZSUF5vmbyj4esMF6lPeBcRWDMOUAzmyCVOtlWQTVPqdJlDoLKhZuZbGYtmPE2MwjMfJsVv7OG2X4qvfzMdtRHtSuZAQ1JIG0g5AJStnyWKHG1UTR7bWZfOTPB9hsSQK4Z0gKC6+VF6hgw51PYYiTHCszkmfSAkx0TDH6eN6XT5xVmCyjjC8/z9LXDmIGB67pKyEkqziWeD3C9ZBV5PB7jxo0buHHjBvb29rQoF9Hr9bQgzNbWFqrVqrYGk50Yx61JFEo0q9VFcbacgTW1MHjOxyXXHkX+itZPcxSsyIye5I9JSKlXYdoQmc8vvydJZ9Hcohkv899yLOyqkcBz9QE0W0FlNoEBCC+CPM91DzLn2Wj9IFuWzNk9tjAppfSQbZZlmEwm6Pf72uhdqody0TcvrGf5R5fnLls2WRmlyf1JDJglCTQJJT/LEiVKPB84znuVB7ssZDDMDZibL+cqnuVM9JOCBNCcbxyPx9rsmHsMcLRVXgYbNGyWrVHmrEmJq4N1QTAJoKwGyCq6OQvFwLJECYLrKWO2OI61IMxLL72EyWQCx3Fw7949XQkEgL29PXz84x/XnoDD4RC3b9/GzZs3dYy8Th00z/O14opc/8zYUBYcpBegbdt6X1jX3vk47ZTydWT8KrkAlUilNZu0L5OWZYyHH3cukglBec/yfpX7gFl0kfvdRUt6Pg3OZQawqAwsyZ8cuOYgJwmL67payXJzcxOtVmvFJJNsXl5QwPIGnM1miKII/X5fD5TS848m8O12W2dXzCz3swp2zAw0L3z5XuI4xmw207M6Zl920WfM5zYv3Kty8ZYoUaIYJlExhbfWWe+wxYjzf7JrgEk3BhxcYy6SAijXSqqb9no97O3tYW9vD71eT6vMSZEB2uXwfbbbbWxubq7sHWcxB17i/FBUBZZtcPTFLFIxl4IYZQWwxKPgOI7WY7h58ybG4zHSNNVz1W+88QaGwyGA5YzgG2+8gTRNMRqNcHBwgOl0ijRNVzoT6HUnsVgstLAKZ+tIALn2scJGIsmOB0nQzArY06yBJuHk+ZvxOjv5mHgkAaSHImP0arX62OQvSRLdASg1NWh7xH2AwjfSASDLspXzvSqJwHNVAZWtOmb1jxec53n6gyYZ3NjYwM2bN3Hr1i1sbm6iUqnAsiy9+UtlUaoKsc2J84C84JntbbfbuteaFyEXcd4QRf3ApwUGUQy6+Bp8PapFMZstB2HXzQCuC1zKzalEiecLRarLkvgxEyo7KWQ7vZQhl+vNRdoIZWVmPp9jPB6j1+vh3r17uHPnjp6zoecVs77cV5hp3tra0u1+sgXUFBAocbVgduGYc1CMWQCsrQDKikKJEuvg+z4ajQauXbumZ/BI4ti9QGuGfr+PMAx17JfnuY5dGZfye1yLpY2YtA8jAWSCT1qcMKY01zwZO8qusichg2al0CwEcc6W67K0wJDFmpNW/gDojpDhcHjkM2Gcz6JQtVotFHMiWb0qI1Pn6gO4bgZQloGl1wfFCGhj8OKLL+LatWtaFUkqc1HmVsqbR1GEwWCgxQ5s20alUkGz2dRSuAwGzCHTZ5kBNkUIqFrE16bXIVteTR+UR80CmlU/c/C1RIkSVw9Sdc0UrOBhilYUiQDImeqiGYuLAlM9eTweYzAYYH9/H/fv38e9e/fQ7/cxn89XfKa45jcaDUwmkxXp9UajoQMjKShQ4urBrABK8ud5no5LGLcAy4TtcWqIJUoUwbIsVKtVdLtdfS0BwHw+1+bsDx480NfQfD7HnTt3AEAnqur1OoBlW2O73dbjUGz9lOrOLH5wxg6AbnkHoGNhaQVWZH1WRAaL/l0E2rZJy7cihXu2m8oYVVYhgeXexj1N7kvmPB+/x/1gOByi3+9rWzUWhCjSQwIq37tt20fUTa/KvX0uKqCmkpAMTKRaJzdnpZRui2QpeGNjA1tbW5oA2ra9YqDOnmpgSaBYZucNFkURlFKoVCrad8T3ff383Phl7y9nQIhnQQTlxcfsRhzHK4b2ck6RN2ocx0eea131T5baS5QocTUh2z6L5v0YtEqxLTP4NechLiqkND87PyaTCYbDIXq9Hvb397G7u6sJIIMuOSfOfcDzPLRaLYzH45WseRnUX21w/y2q/nmeV9iptM4GorxOSjwKrAKS6GRZpitU4/EYWZZhf39/peq8s7OjK1RKKYxGI/T7fWxvb6Pb7ervswtCVrpkfK2U0okvWWCRya7HtQSTMea6MSk5k83EXK/XQ6/Xw2AwwGg00q2Z3IPknkWiOJvNdEzOxOZxFm783GazGfr9Pg4ODjQBJPHk58HPIgiClfV+nWL0VcC5VACl8IsUJODBHmXTi0qaEbfbbXQ6HbTbbdTrdS1eEIahJm7MEsznc50ZWSwWK8ab3PSVUqjX6yvZksVisVKBZOn3Wf3x+bwMtPg1iiJN/niTyhuVRLfo+cybURLvEiVKXF3Iyp/cQGXGVVrjSPNrHqbh7kWC3Jhl94f0NhyNRjrry2AjDEO9lrPjgvsOsMywy4CEj5VdE1cb65Igvu9rgidtIFgtMCuAZbKgxOOAVTdZZSJBms1m+nrc3d3Va1MYhroSOJvNsLu7i9u3b+OFF17AjRs30Gq1dLuy7IYrsljwfV+3jvK/2VlmirQQJhmSxK9IY4IxNxNykvzt7+9jZ2cH+/v7GAwGOi7nfsPYWwrTANCcYTqdan0QtsKa58Z7lQSw1+uh3+8fqf6RL0jyx+cpmoG8Kji3GUAulHLTltlWYNWvT8rA0sSdsuS1Wk0vzCRFALRk7ng81t+jQADNL9n/67quLgvLgdk4jvUMIDPqz/IiMDMMvCl5sP3TDNBYNieKyvamQh69i0qUKHG1IMWjTK8/rnFScpuWMOYaI83eL1pAKztKpKiNaW4/Ho9XjiiKAGClzUcKAYzH4yOJwLKyc/UhFUAl+ZPVcFYemKRWSh2R1y9nAEs8LmSHBVsVSU5k19nOzo6+ptjBNhwOsbOzg16vp1WONzc39UiUNH8313wSPr6urHxL9csi3QiTBB4nMkjxQra1sgp3cHCAvb097O7uYm9vD4PBAOPxWBddSH5lnM11fjabYTQaFbasmq2ovFdnsxkGgwH6/T6Gw6EeA2A8z89CdsQ86r1dBZw5ATQNIItak6RKEQdVOaTPIVDOwjGDAkCXcZVSmvwxkGEQw4uIpV8O+wdBsLLhF/X0n1VWT15gFMKR6kQmAeTmVCTta0rtynYwVkGZcblKF3aJEs87pCCKJICyJYjBAAWlpCWOXDsvagWwSNyGyndF7zkMQ/37MpnHPcfzvCNV0jKwfz4g51+lD6Dv+zowlRVAJqqLWkDLCmCJkyAIAnQ6Hb1mUQAGgO6Y29vbOzITyIQW10LahbHgwfWR8R4rgJLgSbKzzlNPKuASx5EkvvZisdBiXCR++/v72Nvbw/7+vv5vCrNEUaTPnfeatC/iLJ8UrDErlrLgwfcvZwD5mXEtl8Uh6UAgY+iztIQ7S5zLDKBsQzQ3bWZbpQiMVKErmoEzUWTkKi0T5DkopY4YuprtHNI08jwUNKU/CzckSQKDINALhpSz5Y3BC1dmhGazmR4AllXEizznU6JEiceDrIxx9qKoAijVzwDoBJtcZ4+zmzlPmB0NReTP7OYoeg5+VpZlHRlHMIN7CoVdxM+jxNNBirAVCSBJQ2yOrwAoNNguEwUlTgpaQ1AZFHhYDGCSjlY2xHA41EUSpRSm0ymq1apeo/j7jGHl/J80eZeVPn5dd0isq5AxSUIrnvv372NnZ0cTv/39fd2OORgMMBwOMZvNkCQJHMfR8bY5012tVldiemlZUTSzSPLImJfVVSb/KIQj7Y+4BpgV0bICeAqQrUmyR1n6lcgMBUmPOftG4rdOklX+EYvEDMw+ZUkKpb+Pqeolj7O6EORsgqwGSmn2OI5X5hT5czJYkTfCZDLRdhNpmq6o3F3FXucSJZ43sMuCGx9bGyUxYtWLawzb6uv1+koF8FFqw+cBKfwiJc+l8p3Mej8KRcrURWSQ+woz1BftcynxZCjaZ6kyKJPI8rrjjFORCExZASxxEiilUKvVsLm5CaUUgiDQRQ9ald27dw/37t1Dr9fTv3dwcKBFEOlxLefn5EHCI4sqbP+X8a8kjNK6raj9s6hKxurfaDTC/fv38frrr+Ott97C7u6uFmJhNU7uR4z9WbE0kzDcj0yT+iICCjwUQiOZ5HuTRvMAdAJUxs4y8bPOFuOy41xaQOUGK2c2WPqWf0yTAEpSQ/JiEkBTPla2dcisAcmO/H3pTygrf2fZAloEiuHIyqYkgWxlldLmciEAHhJABoP8DOR7Y0XgIgZ8JUqUeDxwbZSWOJyHIzniLBzNgD3P00JbbAWV6+1FWw+4l8h9xEwmkvxx/TxullFu7OY+JY+iGZWL9tmUODnMWIFVQCrEsk1aEkAGumUFsMRpIAgCdLtdBEGAWq2mE3KtVgvdbhfNZhOO4yBJEoxGI/17e3t7SJIEvV5vJcaVHqfU0ODj1WoVzWZTd4LJkSy2xMtkxuMSQGC5/0RRhNFohJ2dHbzxxht47bXXsLu7i16vtyKyxUQKwQIRFT+labxU5TeFWUy9C1nNlJVUjnxRO0SSPzO+LmoxvUo48xZQ2c8rZ9G4acdxrP8I0o9KkkA+BixJDXt4gYcb9zoTR3nBMhNQpFwkSVFR9e+sIc/dnE+gcpEktVROlfOPDAgnkwmCIFjpky76nEqUKHE5YRJAKmKSAEr1Ywa59MKjx9RJ/EbPA6agmOzakFL95sbOyqeEFEEwA5l1SUEZgJS43GDgKCuAJHmsAhZVAHmPFRHAsgJY4qSwbVtX/Wq1mk7EkcD5vq9n2qjqCSzXKYrBcE1iayirh+z2yLJMt/1TRDHPl96BMkHG/UEWQGTHnTk/aBIwnudoNFoRfaEXN1sx18FsteZryq/m983f5/ov72vqhlAvhI+ZlUZTBfsqxsTnQgDNCqDM2nKwWm7cRTOAJIG82GSvswwGZHvGccTwuEzueW/w5pCuzO7ITCVvQpMkMmMtDTGZyZTtrLzIZUanRIkSlxNmxX80GunMK2dMuMkx2ywVlmu12pGE20WCmfWV69e6bgnOwJAc8ncZEPGQM19XcfajxFHIvZNxCttApTeaJICcGyX5K8WCSpwWSFTk2pZlmRanyvMce3t7mE6nWjfDnHOez+e6SFKv11dm30wCaFnWitelJDyPKnwUPSZjarOAQfV5ksxHqY6axRf5euZrmz8jE4BsqyW55sy7FJaUY2Zy/b+KOFMCSLLGCqDp20RrBlay2KdbpAAqAxOzckelS86+mHMvcpGW2QzZempu/GaW46xRdDOZmQ1esPy3nH+0rKVP4nw+1//m5wBghfRxFrBEiRKXF7LiPxwOteEuOy3kLEWtVkOr1dIH5wDZBmr6LF0EMHDgxs5En1SWZvtrvV5HGIa6xV3K+HPNq1QqaLVaaDabRwKColmQkhReLZgBr1QrZ6JEVgA5rsKAnLFF2QJa4iQ4bo7YNIsHluue7/vodrvaR6/f7+vkHquCALRIlrQ8YLVLWqsxDuT6Gcfxyjyd2QXH8zarg7LqxqRas9nE5uYmJpMJHMdBo9E44knIeNWM5eVrrjuHR5FCKewkCWCz2dR+4t1uF+12G41GY6Xr5aqv8edaATRbQKfTqb64SQA5yybL4NyYTRVQ0/iYbU8MfGg0yWqgafZIAiQDI0mMHlUpPEuYRJABGrPdRe8hTVM9+0PLCw7dsorIjHm5gZUocXnBKhcVQEkA6YGUZZkOApgdbrfbaLfbegaQ66zv+xeuBZRBE4MZs2WfB2dJuO4zYDethlgF5awNPwepiCpnQmSb6EX6XEo8OZgMkDL2SZKsJABYCScxZAu17DQq/SJLnASPWj9830ez2dQCJbVaDVtbW3jppZfw4MEDvPXWW3jrrbdw7949balAiy/gIRky2x1JAOv1uu6Om81mR9Y3PodZBSxqj5c2Cp7nodlsYmtrC7dv34Zt29jY2Dhiwi7b780K4DryZ5K+48azTEFIdoPIrhc5Y0lzeTPmv4o4UwJYpK5GA3gelmWhWq2uZCvkH840KCZY/i4ifwx8OPsi/T7kTWEKxazL+J71BfEo0QJJWtkmW3QBUwmJs48MiDgQyyCnzGCWKHG5IWcAzRZQ0wtPCgKw+letVo+Ibl20jZAbO7AaRMmggckuGv/SIsecD+Qa2G630e120el0VlphTeuhi9gSW+J0wBY5qmNLvzHZAhrHMZR6aCNVpBpeosTTgpU0fm2327hx4wb6/T52dnawsbGx0i7KYz6f60KKjBGZ5JdjVUxomK2PwPoWTJls4zUv56MpKra9vY04jlGtVjEej7XdG5NwMv5e95onIX9Fehayu02OBch5S5JBftZXnfwBZ0gAScy4GZv/ZhuFbduFUsqmzCvwUOJVPr8MdmTWezwe6yBAzryZgiqmuaRJAC9CIGTOvcisDjMbcmCdwaBsj+Imxpu01WrprD9vzBIlSlxOSKEt0xB9sVjoDRrAygygnP0zyd95r3smmPwys8YMRNimx/Z/CmWFYahbnrgHVCoVrYDa7XZXiDC7TaSvaomrDTP5LEcpOE/PGEWKEJkCRCVKnAZIYIIgQKPR0B0KlUoFSZLoUafFYnHEvkFqRpj+lpx5juP4SJu7XPOLqmsytixSyqegTbvd1s/PzjPeK/w5aesgn/tx5gCL2kGJ4/QzpNgLP4darbYi/HLV8UwJoGzDofgID87l8YKQHktyENVUX5NeTSQqHIxl1Y/Er9/va6NJVv8oAiBJk/QYZJuPKf963uXg4y7soh5nBndsYyGYEednW6lUtCw8/wZl9rJEicsNs81eHlEU6ZZwtuqQAJnt9Ret9ZMwW/FNSxvp/cREI03cGSQBWJn/41xIp9PR8yCSDDMouIifR4nThykoJO8HBr6SADIukQFxiRKnDcuydNt7o9FAp9PB1tYWhsOhFoFhd8NisVjpmjNHfXiw6r2O/K2DmXQzCaCcYQyCQMeYvE/4c0U2Eo9T4TuO/BFFAodFQorS+uG84/2zwjMngGzznEwmmpANh0M9k8fNmSVh4GHwIj2YTENelmhpgDmbzTAajdDr9dDr9XBwcID9/X0cHBxgMBhgPB5rAsigh0aQLAEXzXrIzMRFy4TLzAbw0M+LARzwcAiYm1GSJJpwZ1m2IpDDzAxvzBIlSlw+sB2+yMScmy/XMEkA5fp3UbodjoN8D8DyfXN+nIc570xVR5kI5LrJKmin0znSCsu94CJ/HiVOH2bloEh07jjv4BIlngWkJUO1WkW328WNGzc08QOW6+N0OtVxrmxjl0UOiv5JEmau/VxP17XaF4nBsMukVqtBKaWrlbJCyfM0BVeOq/JJrBN+kShSil5HCGUr6vOw1j9TAkgRgtFohH6/j16vh/39ffR6Pd2WSUlyWRIm+ZNKbixxe56nM3CUqo3jGOPxGP1+HwcHB+j1etjb29OvxQog1ZH4B5aDoFL1TmZM2PcvL9CLQgLlRQ1Al7VJYAEckQdmVpxzQLIFl9WBsn2lRInLC97fpjy96U9m2uxI3z/g8oibcA2U84A8d+4jlE0PgmBlDMAUGmM7PAVgpCXE8xIUlHgIs32sKFA156AkISxR4jQhx3mYsLdtG/V6HZubm/ra47rP+HWdmBVJT5En9nFr3XFiLXKP4Xw5X8N8XD7fo6qOj4pJjyOA5leTFEpyKL931fHMCeBsNkOv18Pu7q4mZZIEUhGImQF6kXB2ZTwe64vWcRxNYObzuc5UR1GE8XisK38kmvJ16IcibROo+tZut1c2fZJAtkEVLfzniaKMhjmzwEw41QBlTzPbQllZNQNGVgnMjE+JEiUuJrj50nxXGgXLmV6ZLDJnQvjvy3jPSxIoK4LcK+h7yCy0SQClKAITguY+cFHW/xJnB1NEYl2QXDR/ypimFAwqcVqQ5E8KGkohr8lkglarhel0qq/dogKHnGk2ixsssgDF40fy6zqRFsK2bVQqlTP4dEqcFM+UAMZxjOFwiPv37+ONN97AgwcPNCHjMRgMVoyJmbEdj8e6N5kX/WQy0RLlnHMjAZxMJnrubzgc6orjYDBYMZhnsMONvtPpYGNjA5ubm1oGVvoMmn4g51H9k69ZVMqmMplZzpZDwGYVk5C2HLLVloQwCAL9s7JkX6JEifMHM8IMOGXijJYvptplnucrLZ8yGLjM97YUhfE8D1mW6aAoSRLYtr0yaiBnweUMCO2GTPJXEsDnD0V7LfdTVpyLhOl4T7JCA5T7Z4mnBzvfSAJloo9kkDOCtVoNwLIKx5nmIh9t8/nXCb5ImPHocT9b4uLimRLAxWKBg4MDvP766/jwhz+Mu3fvakLG2UCKwrBFEQBms5kWKZhOpxgMBtjf30ej0dCtSgxalFJHRGaoBMoZQ6q/sZJIufN2u42NjQ19bG1todPpHGn9uSjGv8f1MgMP5xX4OEmh2evM7D9/VlYEuaiwwgpgJTA0v5YoUeLsIasNTN4wK0zjd7a9kxDRHobt71T+DYLgwoq9PAm49pHw1ut1AEs/LTnjLKs7phgA1/+y8leiSEmQ1wuAI9eIvCdJAJmkvSjjIyUuJ6So4mQyWRFW5EGVZ673nufpeFe2tpu2C0U+qiYZNKuERfFgeX1fHjxTAhhFEXq9Ht544w18+MMfxptvvonRaKRnzOhTJckfsBQqGY1GWCwWGI1GR/z/JIEBoJ+H5EW2NDLzK03ku90u/n/23mwrrmxZ0vbo+w6kzDz7VL3/W9VFnaraJ1OC6Pvuv9D/TWw5KxBIBBCB2xgxQBIiVnRzTnM3N7u5uUmdv9vb2/TnwWCQiKY/ALz3G/tU94/NxV8n3+dloPC8UMVUacFisbDZbGaVSiUZJ/A8qAvaez8fgcBnhXbuKabxuZ1Op2nuebvdpqxP/l+5XE6Zd51OJxHAawLrHlJ4CoAaL+QP9nl5sOoGF+vd54UngCqXRnGjXUAdsVDyR3Ei3kuBX4E6G+N4z43mB/l/zDVT7MPcKo8A+hy/PPJn9rgJkfc1cDk4KwHc7XY2m83s+/fv9n//7/+1//qv/8pEEjwF5gfJ9vND2Fqx1sMQFV514KJTWKvVUs7T169f7evXr4kA9vv9VCFpNpsfbvA/r/KiRFA3FT2s+Kol8lekAjw3EECeb0gfiwHkOzawQOD94c0AkH1OJpOUfaodwFqtlpFHQgDb7Xb6N37vNXy2WR9Z34h6eKqinVdY+yjrf+DtkbffaiEVAqgqIT6XOlLBOAafsVDRBH4VvgPIuNNwOExO9wSx0zhhrc/rAOoZOs/FVg1b9H2bZ5wShbLLw1kJIO1kdaEDDOz7aoKZPXrj8bt4c/o3mn/zZh7g/1/5xd2NmT+9edtvlX5+tDdzHhHMI37a/fPkD4mAmaXDnxLA6XSaXhu19OVQFAgE3hd60NSoHeaqidmBANLRKpfLSRbJvLOSw2uBP6RwCFdjAy9b+tnaGvi8yCOAeBT4eAjOPMzTIxXl9/C7+HMg8Fzw3lqtVskZfzKZZNZ7JP6Exne73WR0yBwgbs8ULXyMQx4RNHucqee7f/F+viyclQBSgYWAdTqdtCBqC1pn7HyoJG+8n4VR+hBKrQC3Wi378uVL6vpB/G5ubk5afl/DgQjSZpY9MB4OhyTv5LGS2Ui31eyBiLPJVavVGPANBD4A1PUT+ft8Pk8dQDWBMbNE/pgF5GAAAbx0A5g8+O7NU2vXqRmWa3tOAi+HvofUaZuoJR9i7TuAdFr8ezHeW4GXAhMYJYDM/s1mM9vtdkn6WavV0rm72+1at9u1TqdjrVYr0wH0pE+z+vRc/ZRa4rnxEYGPhbMSQOxfB4OB/fnnn6nL9BwCqCTwKZtZtV/me96IhPy2Wi27vb21v/76y/78889EAmmJ84H4aLLPX4E+P75Nz7/jEkW3tFgsJm35fD5Piwy5YXQN1E6e33Wpz1MgcMlQ90+VbjMXMplMkgOojzqg+8dh4Bo6gE85LL60i3fq50454QWuH6qo4bNUq9XM7EHN5AmgdgB1dIWiauyfgZeCTGfcnpUAcnbjfYgTKATQu4Di/6BNlzwSqKHzqgTzsShBAi8PZyWA5XI5BVT+53/+p1UqFdvtdsmdDbKlbxwfKKlyUD+Yql999483p867fP361f7880/78uVLRg9NtQRb3I9MAH/WCdXnR58HNXGBgPuZSULgOVRizoOUwFeDAoHA+0Dl9cwB4n6MIYBGwLDmciDQrLtLJ4DPKUqxtzyFS338gfPhqRlACCD7bJ4EdLVape679zEIBF4KzmcYHi4WC5vP5zafz22xWKR5b2a9m82mtdvtdKPZgZ+DWZYA+u4fN107fS5mzEtfLt6EAH79+tX+x//4H9ZsNlMoORWIlxJAJXr61Xe+qMpVq1VrNBrJ/IWZP80TxGH00hfnvC4pH1YzSxtXvV5P8hQWEdxYfchoqVSydrudCR0NGWgg8L7wHUBvBDObzaxQKKRZEAggBwINBqbwde2b97U/vsD5oBJQzYw0s+Qyqx1A3UfVuZwDtapyAoHngvcWZze9rVYrKxaLtt/vkwNys9m0VquViJ9mmwKvutNcWT2Da8SYJ4HR/btMnJUAkj/yr3/9y8zM/vjjj1SV1uBh/8bxZO85HUBfodBqHR8E1UFrniAfiEupYpwK6vTE2exBnqKGOzpITCwHBJCOYLFYTBbW/X7fVqtVWhDURj0QCLwPvN28SoJms1nmc68dQCWAVIM/AwH8XTynixi4PuTNAOKwyJ7L+cEsKwFdLpdpXpCbH2uJz13gOYCYaXcZ4kfsGc7tjPk0Go0M+ePc7fGzGUBVfumZ0pO/Szg/Bx5wVgJYqVRsMBjY4XCwbrdrq9UqaZSVbHnHtbyZP9/Z8rIfhZdslMvlVLFT0qdZT5dC/p6CtvK1A0jnjw8/VaLFYmHH49GWy6WZ/YjtWC6Xtl6v7Xg8JvnKdDq15XKZIYBmUVEPBN4TSgA1vxMDGCRASgCpCHs5kObdXRre8pov8fkJ/D70PKEdQDrx2tHTDiA/t9lsUlelUqlEISHwYkD+KPhxg/xh+GVmmQ6gkr88hZs2DzwJ5Ct4Sv556efnz4g36QDW63X7+vVrIibPtdjOI3mnFk6f7cRXbVlTsTg1uHopOHVQ8x1AnmtkK1QtcfOs1Wq22WxsPB4nIxicQHEXbDQaNpvNbLVapU0suoCBwPtCXUC9nJubmWXyPrUirLKg6AAGAvnwM4B+L+UzaGbpYM08PfJPCs86bx+jFIGXgPcUpG+z2aQbhQU9X7Pe65lPu9QeeSQwz4lfCyF5Z2l/tg98bJzdBbTZbFqz2Tzn3Xwq5Fnx6gdOP8DaqVML+EajYWY/NqzZbGb1et1KpVKqZrKw7Pd7m8/nSWaAMcxut0ubXeQCBgJvDw6eeRVhDghqU68H0UajkdYBDGBiHikQyEIlv3kzgI1GIx3McfY0e5CAQgC1eOqdzQOBU9D3CU7P2u3TgoJXvKlREeqvnxX5vO+G3nw0Tjh/XgdenQCGPPA8yMteUYdPqpC+iqOVRg6CjUYjHfjygu85XLLwIDNg8VEHqUvrngYClwbfaeeAqVbzHAgo0OgMsNrWUxHWg0GEUgcCT+NUB5B9l69mWaMO9k0lgN5VMRBQeFdO1Fiz2cxms5ktl0vbbrcZhRfnNwp8rPE65vTcs9rP1HZ5yr2XRu0EPgbO2gEMvC58rAMf/EqlYmaWchR14fDRDWxg5XLZ9vv9o8OgdgO0I6hDxxBA3RQDgcDrQzdjOhLa9aNbn0f8fCWYzzqfd3WDiwNpIJCPvBgIPk8cxM0eOjbsmezTzWbzUccmJKABDy/DVFd2HJ7xYyCiS5VdZvZI2q9O+8/t0nky5//fUz4c8Z6+LLz6yT0qAOeBn2VU8sdQuUpQIIAcDFUfzqKx2+0yHQElgnowxCWU2SIIoHd/4joDgcDrQWcw+CzSjfdyILN88qekz3/GzeJzGwg8hTwJaK1WS9FIqGbo8PF/yuVy+oz6gmwg4KHkj7nu+Xxus9nMxuOxTSYTWywWttvt0qxfo9FIRK/Valm3283E+2jn7ynfBm/I6ImfJ4FPGTMGLgPRurkQ5A3fQv6w/uXDqHbBeV1AdQZVd1Qlg2xshUIhQwDn83mSjekCcQ0uqoHAR4JusHowYBbEz+byeWXYXw+qpwo8gUDgNH5mAuNl1z48u1wuxwxg4FnQ8xsEkM7feDxOtzwCSK42ET+M9mg+5a+ezfz/y3vfxnv5MhGngAuBN37xUlCtPPqNyFcd86QsGENgDkEHsVQqJQI4n88z1Sau63g8poNlIBB4PajbJ8YSFGKUADKzS3HHzNIhNU/mHeZNL4PPnH1J9Tvv4HVKZhWzNB8TpySgKsFGlsf+S3j2qQ5gHJoDHnkdQAjgaDSyyWTySALKmbBWq1mn03myA/gc5OVsn+oEPvV3gY+PIIAXhLwuoFrxsrHkEcC8LqCG2mo+2HK5THMM5XLZjsdjIoDVajUjJ+CrXlsgEPg96GfrcDhkyN9sNrP5fG7z+TxJQTGhIPO0WCw+MgTQmZDAy6DVeSR/fp4r70CfR/T4qvL5S44lunYoOWfP9B11nZ3nAE8Bdb1eP1LjIOsOBBSq4NpsNqkDOBqNbDgcJhMYnNhRY2Hu1+l0rNPpWKvVSuv9c2f/8gpavvAF8mSisWZdHoIAXgD8hy2vA1gqlTKHkVMkUPP71BW03W7bYrFIB8rD4WCr1SpJxdbrtU2n04xBjC4KVEYDgcDrwEuClstlCnqfTqepC0hki5llZkJarZY1m82UA3UqCDjwNHgdUEXofLUaezz3kJS3hvuvYav+saCvGXO0SgK1sMLnlY58dAADz4GX+tMBnM1mNhqNbDQa2WKxyLy3KPiR79rr9azX6yUJqHYAn1pT8hQOeXnPp+YETxnGBD42ggBeEHzVOC+E08wyFWof6OmloEoAdZ6I+QU+/JvNxmazWSZsHmjOWITDBwK/B78Za67YbDazyWRik8kkEUDm//g887XdbicCiCU45CLwfED+cOXDmU8zubS4BpTs5RXw1KgHgl6r1TL/J/C+yJsBfKoDqB37/X5vxWLxkUtvmMAETsF3AL0EdLVamdmD0kM7f91uN92azeazsv/8fev5Tr/XoqEfR/JrXOByEATwQuA3Ij8L6J2eniKBSgArlYo1m03rdDoZmYrZj0WGww1dQa14c110Hfh/gUDgdcBnGTkQBHA6ndpsNktFG+aNNOsPKRCW4NEB/DUoAV8ul6kqz221WqXDfV613B+U1IRLDbgIFkedEa/Tx4GfAdQOoC+saE5noVB4sgMYBdMAyOsAqgnMaDSy7XabokVYRyjg0/1TE5iXSMo9AdQb//5U8yGKVpeHIIAXBF9RfmpuxH+Y82YB6RQ0m03r9XrpPnSjY94IO2JczTT/iOFjDi+BQOD3cMr9czqd2mQysfF4nOkA0rHnMIocqN1uP8qEikrty6AEnOf+/v7evn//bvf39zabzWy9Xmfs//mqhTrt/CHbarfbmco9r2OtVnvPhxywB4OzvM6tRqog3fUS0M1mk9QzPo4pOoABD95v+v5hzUcCutvt0npeKBTS+a3T6Viv17N+v2/dbjd3BvCpNf/UeZE/+zVNJevPlZkGPh6CAF4Y8kig/+B5Dbev5rAJmVmSinHw0FulUrFCoZCkTrPZzMwso0MvFArWarXs5uYmBtsDgVcGBwIlIKPRKAUC0/0zs9SZaDab1m63rd/vW6fTyRDAl0iCAj+AAmI2m9n9/b19+/bN/v3vf9v/+T//x/7973/b/f19Ms4ye6zW8IcllW3d3NzY7e2t3d7e2nq9tmKxaPV63Vqt1js/6oAHnVntABLFpAQQpcx6vTYzSyYwzzENCnxuqOuz7wAOh8P0nmm3248UXBBAVX28pPt3yjdiv99niiF5JoSeBAYuA0EALwR5Q7e+E3iKBLLx+C6g2Q8ZaLPZTFJOJYDMLwyHQ9tsNjadTm2329lyuUySs2q1ar1eL8mgAoHA60BnAP1hYDqdJvLHZ7dSqaQg4G63m0sAWSsCz4MexCaTid3f39vff/9t//Vf/2X/63/9L/vf//t/2z///GPz+Txlc2lETp7RS61Ws2azaYPBwL5+/Wrz+TxJ7Ov1esryii7g+yOv86Fzm5qr6SWgm83GzCxmAAPPgpK/zWaTCYJH9k/XT2e+VQKq839558KnwHuTTjVmV8yymj2saXpOzJODBgm8DAQBvCC8ZAbwZ+TPmxU0m81Md4Aq5nQ6tUqlkqIgsJxHe95qtZJ7KAfSOGAGAr8H/xlWS/DJZGKz2SwTBsxm3Gw2E/lDAooLqHYAY4POhyondrudrVar9JxjxT4cDu3+/t7u7u7s27dv9s8//9hisXj0u7zbJ+s0XVpIn7r5YeYAAQxn5Y8BPjO+A5g3W6uHeLMHAnhqFj8QMHvIAFTDqfV6nQynVqtVymU2syRFpqBElFe9XrdSqZTeXy+Z/+M9qm7H+/0+/T5vYKXKhlCXXB6CAF4IPPk71X43e9zO1w9yHgEEZAKqA1Wj0Uh2wmaWOZCqGx7mCMvlMiNf8vrxQCDwPOTNAGICM5/P7XA4ZDoP5XI5SQupBp+aAfzMOCWP9+ulzuDc39/b/f19Rn6rBFyr8lot1zVb4yToKs7n89TVhbzTtTWzTGGOdT9mbd4e6gJq9kDyfMQK/4YElMKpzwEMCWjAwxM/zljaPWYtUQdhzIi48R5V2ebPoHuNj7vh7/mdFEE8CYwM08tDEMALQl73zw/imuV/mD35y9t8VOKCK50GSVcqlTTYbvYgdVGpwnw+TwsUC5AegGJxCASeBy8J0hzAxWJhx+PR6vV66tCXy+UkIVQ7cN8B/Mwd+ry1UeMdOHxRecd5FRc+srh47vv9vpVKJdtut2ZmjyS2rIFq7oB8vlAopC4jMq/7+/uU47jb7VJFH4mvHrj4/YHzgufYy9z2+33aG7W4op9ZCGCeDDTweeG7c7oG8X5BbUURXYnfKRky6wJ4afdP8031/UoHsFAoZDwi8khgrEmXgyCAF4KnjAX8wQ6Sd6qdf6oDqB9wso6UCBL1oHMuh8MhVbPpTphZZlOkIhUkMBB4HvIkoBRZZrOZLRaLtNnW63Uze+gAQgA7nU4iD3ymP/uMhnfZo3i1XC5tsVikG8+1/h1/xqyl2+1apVKx29vbjEGCFuKUxKOUWK1Wdjwek8kWc9WTySRD6NfrderiNptNazQamYOjP+wFzgeduafgut/vH8lAIfwQQBxktQMYTqABff15j3i5J9EhZg9Zy3T5KDzw/vvd4p6uU0oAMftjTfJzsHm+EUECLwdBAC8IfqbED+Lq/B5Vo+eSP38fPqcKjTmbF4cX5C5IpZrNpplZyqHBrpjfHQtDIPA0VJqoHSoIBASFGRA+z8yRtVota7fbyQpcIwg+++dPXVU10286naZsRb3pfLMe4lkf+/3+o6gHr8SADFAgIzYCMkERbT6f22g0smKxmDkU0jU0s8x9BQF8W+hnh1lO331RK3+6J76j8px9OHC9UOKncmEtELHmUHCnIK+qLFVm5XX/XnpNXhXB+5V/gwBqF1IJYHQALw9BAC8Ep8iffgC1K4dm+yUE0MsMqDhh9tJut9OBhg/88XjMEMB6vZ45wPJ7dYg+EAichhIHNmOVJSIR8huzPyQgJQSxMVumO8OaNR6Pk8RzMpkkx73ZbPYoakMNWyiKcQjLI2Uc8FarlY3HY2s0GlapVGw+n6c1GgLI4UlJKgcw7lfX/VBTvC98ATbPCKZYLD4if0EAA6zxyD5VYaBFJwggbp+sOZBALUD8jrTfFxz1ZmaZGUBPAHXtiyLjZSEI4AXglAGMfhBZAPTwCDnzJPAp+Ym3u+agg6yM38lCwCwEhykOJipVUtlZVIgCgZ/DSxX9bbvdZiTVGlCNRKharb73w/iQ2O/3mbm74XBod3d3yeQFQjibzWy1Wj2yXCdug/y+brebJO9+bYMAzufzNN9XqVRsNBrZcrlM3T2N19GOABbsmjtH5ynwvsjbkz2J10KOmmoE+fvc0EIU4zPc5vN5xlW9VCpZrVazYrForVYr5fxpB/B3iJd3APUEEKWXFqL8/KE64YbS63IQBPBCoB00T/58BUjD3vM6gD8bQFcSCAHsdrs2m82sUCikQxE/pzMsZvZILsC1qTVxIBDIh5qU5BE/DpFm2aw5bwwQeAztyNH9I9z9+/fviQTitIqVf61Ws3a7neZt2u22/fnnn/af//mf9uXLl9Rt9cUv7m82m9m3b99SOHOpVEr3gdkD3V2kqcwKEhuBoU+j0QgS8UGQF/Whxj96sM7L4Y2D8udEXr4ryoP5fJ6UB4zbNJtNOxwOKSMUcygI4O8W1p+SgBaLxdQB9AoxHwXxmQ3GLhFBAC8IagGsUiCvAeeDrPITlaD8bAZQpaAcPrrdri2XSysWi7ZYLFJ1ioUDZzy1K9aqtcqWAoFAPnwQsDcEoOPn85iU+EFSAo/hMxVHo5Hd39/b9+/f7du3b3Z/f2/j8Tg5rTLvB5krlUpWr9et2+3aly9f7F//+pf99ddf1mq1UoFLD/fH49E2m01SR3hpp77eSL7MLK2x5XLZOp2O9fv9dCjUAkDg/ZGX9ZjnyM2+7LMAgwR+PigBZDZ4PB6nGWE+/7g7N5tNKxaLiQAS76MdwN+5lqckoBge/WwGMMjf5SFOCRcCX2n0GmzfASSjCovyl8hPPAFstVrW6/Vss9mkWSPc8NjQOJwQbowjIVXrWq0Wh5ZAIAfqFkl3SmNV+KzRdWfDpxuUZwgQsEeHa6Sf6ljM7B8B76PRKM3+sYay5tXrdWu1WilncTAY2M3Njd3c3Dx5ACPLb7Va2WQySWoKOn1auFuv1yl42cys1WplJGEEioeL5PvjqdEMvtcc3FM5a9Gt/3zQPFCk6J4AsuZrgY+1Bxnoa0hAuZ6896YWqszsEQGMaKHLRpwULgS+6u8r/3kzgIVC4cUOZJp5hAS01WpZv99PxM6TTQwq9vu9lctl2263Vi6XrdVqWbfbzVSt49ASCGShlVcICocCDgTIAfk8mlkm7kED32MzzpJqsx/P8Sny5+f+cOjkgMX69+XLF/vjjz/s69evdnNzkwLbn1N996HNEHZdu7lO1upyuZzJkIP8RY7cx8Gp0Qz2ZfZMOsh5WWv6+kdH8PqhBQGk6BSfUB5wnjKztG6gxOr1etbpdFJx/TVmAFlT/PuTGAo/AxjZf9eBIIAXgjwXUN8FZBPRrKFisZg7P/ScLiDZM7h/YvwC0aSCtdvtUkWb6Il6vW6DwSAZHYRsKRDIB25wmvPHTAjzaEpKkCK2220bDAbW7/cTGdF14LNCZ6841OBU7Ikf5E+JttnDzB8HrpubG7u9vc0QwHa7bZVK5VnX5N1aT83QcP153SI/Pxb4GPCjGWrEhIRY92aVeK/X67Sf6+c2DtTXDxQJKkVnDaKAT4ev3W5br9dLyoNut5sIoEb9/CryguBZd7hWs4dzoY9+CFwmggBeCJ6a+/EzgHQUmMV7yQwg98X9kTMG+cPogDmacrmcJKDj8ThVktrttk2n02RsEB3AQCAfEEDt+qkkaDKZ2Gq1skKhYM1mMxGITqdjNzc31u/304FAczc/I7Tz5w/b2vnjprEPyNiptt/e3iayh+Pn7e1tkn4i7fwZvAOzn+P2IcqAtdTfQv75caB7pRoxIc/e7/fpgK4yb53x5d80rzNw/cD4aTabJRk6xlOYv6j0s9/vW7/ft16vZ+12+1EEze+6gOqsqs6rUvA3s8z583ezBwPvjyCAFwC/yXgTGEignwEkQ0blJs/NINLMPpW4HI/HpFuv1+tp3ogK+2azsVKplBuiHNXrQOAxtAOonT8ICk6RhUIhM/fHoaDb7SYJaHQAsx20zWaTpJ88t0r+NO8P2VWxWLR6vW69Xs++fPmSbpA/nvN6vf7TA5Aeqiik5TlHQv44xKmLZN4t8DHgJaBKAOv1uu12u0cdQCWA6/U6Ex+CcdBnLuJ8BnBG4yw1nU6TA+hut8sQOvVh6PV6mfX+NQigJ36qNNCz4ql1K3C5CAJ4IXhJDIRWb5QAviSAVu+PijXyzvl8nll8qBBpfpXe1ut1pgMZCAQeQFcACagSFbp/SHGQ/DSbTet0Oo9mAHGs/IxQgqTST83880HvWK6zRplZIoDIrjB6GQwGNhgMMjbspwjgz5yWlfD9LDcrSN/HRp4EFBkokl/2SJXZMZqhc6DRUbl+MD7DeUkNv8gC5VxHCLyu90r+9L3zq+u+kr08hcEps6MIfb98BAG8EGiIerlcTgecvCB4nR2BAHoZ0nPv0x9ONptNMjA4ZWKgtuZUOX0XUCtHUfEMfGbwmYGoKAGczWa22WzSPAimJMynQQAhJGHH/dABZB1aLpeZuUqttiv5U3kmzzPPMdV3yDbmCz97rk917/JIna63uu5GsPLHRZ46p1KppM+qFk91b/b5npDHGJO4fmgRwBfM1+u1mT10ghnDaTab1m63UxA8Zy/Ofr/T/fMO8b7jpzft/MWadPkIAnhB0K6c7wBqO14/1NoB1A/5cz68/me0sqkE0Feh2Ojyssy4DqyvY7MLfHbQPYcAMquGMQmfFz5zSv6oCKsj3GcmgD7TSjP/MH9Rq/XVamXb7TZJ0+ngNBqNDNHudDqJ/DFr+Vzy99QcXx4J5PfqwSuPGAbeH3nmbPpZ9cZpdKVVBsoe+pLibOAycapArkVy3iu8d2q1WorUIv6BM9fvFvy8wRTvvzzSp1J1P68cuEwEAbxAkC+kw7i+C0eVySz7If9dE4FTdubcmAHkfvMqXJA/nTHUr4HAZwIS0PV6nSIgZrNZuuHAixwIYgIhUUOA36kGXwPUAZT1RwkgxJruHxE1Zpbp/tXr9XTg4tZoNNL85Uuvx1utPzVn40lFHLo+NjQ3Vx1eIYB5ElDfAYx8x+sHn3klf3kO7boGUFBg9pv1J8806rng/cW+k9ccUFlznutndACvA0EALxB5khOfA6gE8FcloHnwVU4WpmazaY1GI3UrisViMrfQbDNkMYfDIbmjhZY88JmhhgA6D8KMmpmloonKgZT8MRPy2SWgfv7PE8DxeJzkn3T/OPQg3VOjHV/gem7sA9eSR/7yYh2UAFIYU7MvlV3F4evj4GcdQDPLlYDqDOBL4pkCl4lTsk8KUHou8yovX2xH8fWr4H3mIx807B3yp/OIrEOx9lwPggBeKHweS54JzKkO4O84cXK/lUolHZRarZZ1Oh3r9XqZfzezJMGazWZWq9WSk+h+v0+HVpU9BQKfEVSGl8tlKpZwKxaL1mw2UwdQ5YmtVisRQGZCPvsGfcoARgngYrHIdP9YQ7WYlRfW/ivPrS/K+cO/uiOr8daprMCQgX4cnJoBhARqvEMeAaQL9BrF2cDHAq+lJ3/L5dKWy2WGAJplO8laSNCCAkXzX4UqECg66jqk5zciwE6tgeHdcPkIAnih8JuOzgDqRmNmudXm39loVCrVaDQS+VssFukakEnhbjidTtPCxbXo74rFJPBZkTczCxFcLpdWLpfTPG+lUsnMgzSbzYz887MXUtQAxhNAojUIW95sNklyRUGL5xS3Vd99+5Xr8V1JPfj77o/KrtToQUmgzgQG3h9PEUDeX34G0EsAowN4XdDPvWaRooZibWcNMrNU3NGunxI/1oDfuR4lf16CzHtV38dmlrn/6ABeF4IAXjB8F1BNWPKCPfMkR78CqtMEJmOXTqbRbrdLshc6gN4gxuzBcOElMzWBwLUhLxtMCYKZZRzhVKJIFx252WdGXgC8d1bFAIZoDTo02llVSa0/9Dx33cyTf+pBMM8dWcOWdZbMz3mHBPTjIC+fVzs27HWnJKCn3gOBy4f/zNP5Y7YbAsgaxJkJ6blXIbxEfq7Ik6GrCoECBEV41h+IKSZFuhbyO2MdumwEAbxQ+GyWnwUJ5znR/er9qgSUfJrFYpEcrNbrdaom0QHUw9nhcLBSqZQq7hEOH/gs8JsmBwRmMXQmQ8PD1RDAz4P86sHg2uBNNnSmkugHf/BiPYNY01FVAvirsy9Pdf8wxNIuoFdF+JzXsGD/eHiq+1ev1xMJ8B1AzNAoBLw0pzfwscHnns88qg419+LMBAHEHwGFR14h6neuxzcFdO/xM4BKSL3TfKgPrgdBAC8YeQQwjwya5VuS/yr8ganT6SQpQ6lUyjjsccjxlc5yuWydTidTeQoErhXqvMbndr/fJykQkkRP+tRYQm+6Kcdn5wc43Cj5U1dVNX8hi1Tllur6mUcAf4V4efMXDoMcCDUeR7tFem3ehj1e74+DvM8poxHL5dL2+30yPcN4A6dsyKLOAQb5uw4o2Uf2qfE+4/HY5vN5ynhltq9cLqczFWqE15L3nzKjynMA1fUmik/XiyCAFwqNTniKBPrAda2S7/f7F1eVtGLeaDQyslKzBzMFss3W63UaLiZ0ebfbWa1Ws5ubmyRxi0UlcK1Q8qe2/5vNJhm9+Dw6ZNYqCfLzILEZP8DPV+kcJRV3LUxpPpvK2T0B/FUDGJVJ5XUllfjTAYKUmmWr8OoEGoewj4VTBBAJH59nXl/f0Weml+JPdACvAzrXDQHMyyJlLULCX6vVkqlet9t9lXifvOK/jgR5AyLN/8vzmYi153oQBPDCkZcbpTdvG+6rP79KADk05VmYH49HW61WNpvNUgWM3EKkV+12O0kgQgIauHaoIYA6wtGVWi6XSQ6kpKRSqSQpkJcD6VztZ9uUdc0xe5i3ySOAeqMrw6GG51rjbPKkVy89/HjTBS//fMoJMM/h2V/DZ3u9PzK8ZJf3EsVPf/OznhQAwgjmukDRR2XoOBFPJpPM2AzZfvV6PZnq0QXEPf13cEoC6g0CzbJFjbw80lh/rgdBAK8AeVbUOreiB0VPADWk9jkfaq1eYnOt/2b2I/phMplYoVBIVsPb7TbNBBaLxcwsDovPZ3cwDFwf/MarMkCqwt6UhM8X5kiQEpwpI5PpAafc7TRrC7IF4ToejylXUdcynmfvAvorHUA9aDHXqcSUa0P+57t/Ok92agbws7/2HwFPdQDr9XqG+FOkgARSfNAiAPvpZyzqXBPyOoDI0Imi4T2BuRdrEN0/TwB/5/1wKo+UtSlv9MDsQYnyq+tg4GMjCOCFw5vB8EHlQ6u5UoVC4VGlPI8o/gy6QOiiAZFcrVbWaDSsVCqlQWgWO+b/VI7FAhQEMHCN8J0g70w5nU4fdQCr1Wr6TKksMS+a4LNuyCqt9QcazDXy5u2Qf5o9zDMzt6UZgF7++SsEMK/zx1ed/TJ7kF6pkYjOfIYM62PBF17pAPJeovC5Wq3S3gjJ0/gR3gchAb0eqCRdpejM/81ms6REoFigjuoQQCSgr2UAk7dW6hygWfZ8p53t2HOuD0EArwQqG+LAQJCnZgSqNfFms7FKpZJ+5jkfbP5dK1IQTza5+XyeJA1mDyHXbHCVSuXR/ItGRwQC1wQlA8yA6WGAYHLmYelIQUDa7ba12+0kS9SizWf9vOTF3XCQYW3TuAXNXEOm7h2NlQB6qe1LilOnZJ+ejDL3qcUvlddzMFQL9oiB+Fg4ZdbE+4k9Vl1ANQf3VAcwcPk4HA6ZKBo1gZnP52b2Q91RKpWs0WhYu922brebbq8tAdU4GiWAmkNp9nCWVAdQryoLXAeCAF4BTllR86HWD65aE7M55f2+pz7k/LuSQQ4oh8PBWq2W1ev1ZGKh1bDj8Zg5EOnhjEUmFpjAtcDHAKzX60eGAHQACXvXvLdarWadTidVg7UrFR3zrMumyi31cOPzroB2btS4A8OdvE7rz9Ymfa15vVWGyhyiqh+4Fl57DLb0WqID+DGhM5v+vQT5VwLI4dvsx9qgM4B+DitwufASUOYAkYEuFotU6EPu3263k/xTO4A4hP7u9ZySpXsCqHN/Po80COB1IQjghUMPJroB1Wq19KHWDy4VIA4mSrhU0sKff3bfuiCUSiXb7XYZCZVfNHQB0nDU1WqVkR3EIhO4FniHyuVyadPp1EajUSKAi8UiHQw5MOIQqASQanBIcR67q3pnO610q+GBzreoHb+6rUK4nttx01lE3/nzJjRe/plH/nAk9bOfQQA/Hvz4Ra1WS+8B3ktEQdChNssngLyPApcNyL7GQEAA8T+guEcHkPk/FB8q+3/NDEA1IcuLoVGFhErRY/25PgQBvBKwAekQOoch3wHULCq6dGZZMvncD7j+XN4QvNrXq3MfnUgqY/V6Pf29LjaBwCXDb7zaARyNRnZ/f59xw1UiQFWYirDvAMYm/EACOeR4u3Mlh8xXeSt+le7pYcfP/z31fGvcgxa3OPhx+GP2mYMXM5/qRooNvBJ/FBW/OpMYOA/y1DfEHHHzElCUMBRn9QAe5O864DNJtQu4WCxstVql847mkGrhh0L6a0T+qAt1njSdER2zh/EeFCic43T9CVwHggBeAfQwo/MHHEjYnDwBRIagJi4vkTvlgU1Qc7Xa7XYmEBfSud1u02G4XC6nBUqr8FFxClw69OC3Xq9tPp/beDy2u7s7u7+/t9VqZWb2KPoBOVCv17Ner2ftdvuRI1x8LrLkTw/Q/u+1AOUP7XQBT5G/50ANr9T5D9kXBFANsNRlr1qtWrPZtG63a/1+3waDQXrdvQFQvO4fA3nvJQqvaiSkoxBqvR8E8Drh13yNpJnP57Zer9PIDBJQzSGFAOr753eu5VT3T+Xo5DUj/+S6tJAfBajrQhDAKwGdAxzIIIDEL1BFoiqFBIEPtBoM/M58kV4Hlez1em3H49HK5XIye0EuulgsbDweZ+SpVOvpBvLzgcClwc8Abjab9J4fDod2d3dn2+3WKpVKRvIDEYAE9Pv9jCGAFkU++0Z8Srng/15Nq56ac/mVwpMe+LztO8YPkEAkoBrDQ/ePju9gMEivfafTyXUlDbw/vBMoRH6/36eCAq+ZdmAozPoZrCCA14E8suXdiOv1ejLg03Obn/393c/6KQKo8ThkVuoM+qlZ5ChAXQ+CAF4BnuoA+rm6w+GQZGh64FGnp9/ZiDTDrNVqWbfbTUYHpVIpEVII4Hw+t9FolFmktFqvlsSBwCXCV4NVAjocDu1wOCSZH3MXdAD7/X6yBVdDgNiA86EHcq9m8P/GgT3v60uDj5/K/BqNRhm3Vw5bHP7o/FIwg/D3+33rdrvJVCs6gB8T7GcUOfm8q5MvHUAlgfv9PjMLGh3A64DO/yG15KtGL2gWpJpQqQz9tT7nPodWu5JakDKzzCwr16QO1FGAuh4EAbwCKAHUDy2yS4hgoVB45Ezls6YqlcpvEUDtAHKIZeahUChkwk+3263N5/MkhdD5HDW1yXMqDQQuAU+FwCMPNLNUeCGXrtFoJPm0kgCdBwkZzkP30xO8vO/1z0ruvPIhTw3x1HON9BO7d+I9hsOhDYdDG41Gyfpd5/509ofX2rsAPhX/8dlf+48AfQ14TY/HY9pTtQNolu0MsQdCCFC9BAm8LKi0XF3OcTjn9VWXV98xZl5Uz2Gv9fn2BlVepo4EVNclzbP0HcAggNeDIIBXAgiTdgCp6GAvr+Yrq9Uqs/DgWPa7UhQ92NABpLJZKBQygde73S4FoipJpALPY4kNMXCp0NkfDShX99tCoZA+q5pLBylgJoTu32fPAPQ4Rfzybnkdwbwbh7Pn5F+puY9Ke79//27fv3+3u7s7Gw6HNp/P08GfwxQEnzlPJJ/qAhgxEB8bvGfo6JpZIoG8btoBhAQWCoU0/xcdwMuEN53a7/eZeT91eDV7UEhxRoJYabHgHB3+Ux1AbrgRM2Lgzfx0HjFMYK4HQQCvBCwsHB7r9XoiVcwf8JUZQK3yUBlSt7xfgZ8B7Ha7mapXuVzOZGCpRIJr1cfRbDZjUwxcLDwB9AHlBJN7B1A+lzjDNRqN6P445Mk6tYPnv3oiqNA1xs90lcunt0leV6I9hsNhIn7fvn2z79+/23A4tPF4bPP5PBl/sL71ej0bDAZ2c3OTZv663a612+1MBEReJmHgYwGnT14bHa3g0KwHcTPLxJWoCkZ/T+DjQSNo/GwdEv/5fG6r1Soj90TdYWapwJMX8/La1+qvEwUYRJWChVnWyC8vGzUKUNeDIIBXAK1aa+UGa3kzSwO+KgHlEOLnEH5XhqIdQIidXifXQQcE2QTzTxDYVquVCSgNBC4NOvejgeRa9VdzEi8J0rkQ/Z2xAT9ApZxK+vTmZ/uURPn4iOfMH/PzavoyHo/t/v7evn//bv/880/q/o1GoyT/NLNU8W+1Won8cev3+5noBw6G+tgCHxO8B0EeAfSz7roOvMbeG3g76Gup0n5mfz0B5FyE1J8u/7nne/OMyPwMoL53VQLqCSBrUeA6EATwSpBnAqPW0pBBOoD8fKPROKlT/1XobAuLH2AxWi6X6SuLUqlUSsSv2WymweTYEAOXCjUDyCN/vjuujpQ6F6II8veAUx1ADlNqcsV8sydSWh333Zg8qJ2/znNOJpMk/7y/v09fp9NpckKuVCqps9vtdu3m5sZub29TB5Dun5pBhOT3csD7qlAonHSU5f1j9jATqASQW5iffVxowYjinpK/yWRis9ksEUAzS+Z4rEv6WT+3w29eTqnGQNA8MHtMALmFC/H1IQjglcDPANbr9Uf20mw06sqJA5RmEb1GB5AKt9mD7brZg2HCdDpNXcD5fJ605xjHtNvtTDhpIPDR4TtzGgTMZ4zPGcRP5818HEE4Pp6GVxV48sfzqc+rJ4B5c1memD9l/IKUHuMXnf1T+SfSTw5UdP4Gg4Hd3t6mGx1A7QrQtQxcFpBz582Q+o6zkj/df6PT/3HhjVWQfk4mk+T6O5vNkuMv8k/+b61Ws36/nwjgOTOP8ySgagSIGkxzAFVJFi6g14sggFcAdQHVD67vNmiFkUUJtyrflfgdAsgwsRq6YECDYQKHMWZnVquVlctl63Q6maBkZqMCgY8ONlqzLEHwjnBqiqRk5VQWXSAfKp315I+bujFWq9UUvOwJoB6MtBB2CpB7PfTR9YP8ff/+3cbjsa1Wq8z63O127cuXL3Z7e5u+Qv56vV7Ke4z808uGkj+frXuKBOo+Ha/9x0Te/N9qtbLZbJZMoCCAq9Uq+S9oLEi9Xk8dfwjgObt/pzqAkEDtSvsZQO0Aag5gnMsuH0EALxxaCfcuoF5yBqFiFkUJIN3C1wikZbNjIVEL7M1mY/P5PEU7cIhCNjqbzTLWxCEBDVwC9ECnhwIftqtdbV+weQs3uGuEzv9pN5XnUivZzOJg7IIyQiviGta82WySaQPwkQ/kOd7f39v9/X0m+mE2m9l2u7VqtWqFQsEajYb1+337+vWrff361b58+ZLIH9EPzWYzHbQClwt1fDyVK+nXDZWEhuPrx4Wfq4MAUgiaTCZpDYEA1uv1TEYypk+eAJ6DXGmhIa8DSFyYxm+pmoxxhOgAXheCAF4BfAcQYxcNINUuHIuSmaVZu9dyAfXXhexBOyLNZtNqtVpyTWPD45p9xwTJaiDw0aEHAmbD5vO5LRaLdCCg+44JExIbdYSLjfZ5ONUFVOLXbDaT4QI/z/OLJH25XNpsNkvPP4YHZj+KVHyPgoHD3t3dXbpB+nitkfoyD9ZoNKzT6aS5P7p/OvvH2viaOWCB94MngUoGVeKpXWgKthQAohDw8eAJ4Hq9tvl8noygZrNZKrSzJmnmJ9Ev2gF8awmonrXK5XIqTOoMoBYnvaFR4PIRBPBK4Akg1ev1ep0OlOoCyuFEq92vJQH1QNKmkgIWF1/p9oHZVOTJQQMqDY2DUuAjABkN8yCz2cym02myBNfAXQyPyuVyyvvD+VE/F/Hefh48+WMd1MPWcrlMBx0OMbvdzhaLhY1GIzOzjDxqPp9nDmhmll5fPezh/Dkej229XieZaaPRSAemdrttf/zxh339+vXRzF8e+YtD1nVAg7VV4l2tVm2326X3B2uH7tsUDry7aOD94WWVWhSCAPp1oFKpWKvVsn6/n+Te3W43nW3e0gRGCSCZ0BpF5I3IUKdEDM11IQjghUNNEJQAapvfE0A++LvdzlqtViKAVB7pDr7WELo3ulCZKjlnOptDVZ6D1nQ6tUqlYs1mM0m31PghhuUD7w3N+1OCMJlMbDwe23Q6tcVikbrvHAaOx2MKAz/l/hh4DP+86BqoGaKdTsf6/b59+fLFdrudVatVWy6XaQ6Tjux6vbbpdJpm+P75558UyYD0CQXFdrvNOH9C9CeTiW23W6tUKtbpdFLHkbm/v/76y/7zP//T/vzzT7u5uUmh7z7wPTq/1wN9X2oBdLvdJhUABVD2vOVymSTDIBQBHw9KAlnzUQXM5/Mk+abYxxmm1+vZzc1NRvLtCeC5uoCM+fg8WlUrqARUb1qsCFwHggBeCXST0S7aYrHIEEC1Lucgw3zSa0tAgVrda/h8q9VKpi+73S5Vysx+VOaRZY1GIysWi7bdblPXhFtUowIfCXy+ptNpcoObTCaJAK7XazOzjMMjJEXz36ID+HJoEYz1hagFzBiq1WompBnlw3g8TtXver2eSDmHM14LnRlEnaBuy2aWClW+C/n161f766+/MgSw3W4/kv1Gt+d6cMpVke6fzqPq3LAngGaWayYTeD/4DqCqAubzuZXLZTsej2mGmKJfr9dLsm/t+qth0Gtf5ykJqDrAewLoSWAorq4PQQCvAJAgDh3qtqmHC50BXC6XiWS9tguohwYr6wGt3W5bp9NJhyiu0yx7kG40GmlIeb/fW71eT5VV/RoIvCc4EKhBCAQQCeh2u0024DjDIVH0MsAggC+Dyu2Yt+l0OjYYDFLnVeevVA2hhg3ItiDjvvtCrio38v20sIWst9vtptdXA999xzdcX68Tqn7h/QEB5PXWPU87gHnGMRQhYl14XzyVA8h6j3QScxWdA6b7Ty4ga9e5ZgBZ7zTuRudNfR6tj8+J99t1IgjglUA3EqrUfnhXJUzk06jb3bkIINenMzpaGWcQmQ6hmaVrm81mGSMZNj8dpucxxyIVeE9o4QV5IHbgdNzVAEa7VKcIQbynn488BzueX6SeKtVlHSwUCskIBuOG+Xye1k9dZ3g9OEgxzwlxr9Vq1m63rd/vp6w/P/Ojsk8vrwpcH1T5Qhdwu91mCreocyhIqOOiEsF4j7w/8sgfr9tisUiqKkZuzCzlACJNp0ik5OpcaqY88uejwfy5SiNMwoToehEE8AqQ1w0jeJgDhla+2Wh06FwXBY2WeK3r84czrYTRkaRCr1LV6XSarvt4PKbNtFqtpsN0dAAD7w2dsdAOINXg1WqVCQSGKKgbnJ8FCwL4Mvh1hi4g5I8qt1qhY9ijs8c6K0NhSjswmh9YKBSsVqulLqDO+Hz58iXFPGiHV+c8o/N3/VACqDOAgAM2HWk6gD5IHklh4H3hi0jeUVMVVZxZvLEKxSVVFZxrrfcZk5748Zg0vst3nwPXiSCAVwJ1CoNAqdOmdxvjoOOzAs/VAdSsLpWA9vv9ZM6AQyIEdrVamdlD4KqZpf9L9Tw2xcBHAISArhJyIObNOPAhBatWq2keBALIPFjkLf06VAaq2WpU7HWGj5u6DbMGmVnqGPqbkjW/pjHPeXt7m7L+kHwyT6jzPkH+rh86+qAdQIqaXgJKB5DiLTI8LWIE3he++5cXpWWW7wLLa6pr+znJn66D3PKIX15upZnF+eqKEQTwCpA3LO43D5UYsXhxYD0lCXjta1QnUA5Lg8EguSJiksG1MDPFNRaLxfT/zmVYEwj8CrQDiCHAbDZL8k+6f5AICCAdQDWA0c5QEMCXQV0XD4eD1ev1zBqhBJB1RQ9uxWIxyUA5vPF7+Tt9Hen6oWYYDAYp54+sv5ubG2u320lOqkqNMLG6bniHbggg86YEvptZUuTkEUAUL7HXvS3yOnNqsqedP4rqZo9HXjQChPPYW0Aln9y85JMiBNelHcBYm64bQQCvFDrEqx9qlS9xGPK6cP7tNWMg/EYIkdNcNCWoyFK1Ml8ul5NpjCeAMQMYeC/4UGA6SvP5PJm/IBGk8gsB7HQ61ul0whDkFcHzVqlU0toAVN6JqoC1ideEw7k/AGm1XKWmzWbTbm5uHmX8DQaDjLw3Zmk+J1QCCLFTt27eF55UQBT9wT3wttCzBTJdXiPNUUYxwEynSj21sMdZ7BzQfGQd8fEKL7OHwHfWvjxlQpyprhtBAK8UHFSoQp1q66s8QBcIrRK91vVA9CCA3W43aeSpRHGApgO4Xq/teDzacrm0UqlkvV7PVqtVIoCvPa8YCPwK1GabmVYMAZAy4/4JAaRzRPcP8qcEMN7XL4MaKnDAUeh6gS17t9u1wWBgk8kkmfVwkPLPv5dMkTnY6/WS5JOuH8SPzl/gc0JlgGqrv9vt0r+bPcymYs3PwZ29jv0uip1vCzVR0QzQ2WyWcXc2s1REOhwOyewJZce5cz7V7VPn0elQQlLVSwGFhM4laxxNvM+uG0EArxg6d5dX2WHByNOIQwJfowuh8ilm9prNZqqWsSiyuE6nU9vtdmmh3W63Np/PrVKp2JcvX9KCqyQ1FqrAe8F3ALU6jKyZDdVbguMG12g0EvE7ZyDwZ4Eawvh5F+YwO52OffnyJXOQQ4J+6pDtZwEpaDWbzeTmyjynyj4DnxP6PtE5MLotOtPHSIbOp557Nj/wNPAjYF1H2YHBF/mu2+02jah0u10rFAppvrvdblur1Ur5rudQdvioB95HWoSkkGD2MIveaDSsUChkXIlVLRa4bgQBvFLooSfP1hfXOzPLJYCvPXDuzROU/LERLhYLG41G6dCGnf5yuUyOftPpNBHAkMUE3hue/OW5wiFf1vkQtQSnQqzSwth8fx9K+LwEvdlsWr/ff9Rp0Uwsfkfe79Xfr66jVPpPmT0EPhe0EOGz1TAqYg/za4ifz4+97n3ASArFaY34ySOAzNRBAHW+W834XmtdUDWXzqFDViGAdADNfsg/a7WatVotKxaLuQQwOoDXjyCAVwoNX/fZLtzoRphlJWwacqwHmN9dtHxcBdXQUqlkm83GxuNxqpIVCo9D61nM0N2r81bk1QTeGhza9DPj5VsQCkgFhQ8IoDra8jtj030d8DxCqJWo8Zr420sO2J4I5mW2qdoiXtfPiVPh2jh7cijXzo1fQ6LY+X5gNAUCOB6PMwRwPp/bZrNJBJBzTa/Xs36/n6SgSEDPKf9UJ2odQ8BHAQkoBJDoracIYKxb14sggFcMn+2SN4OgxjC+AknnQh2rfrcq5K3U6YyQj5WXkQUZZL5Kbdur1Wp6jJDJQODcUAMlfU/6WQuzxw64/nOoc2qx2b4OlJxx4AF6iH7NA3XevGDe3wc+D05JQIk9Qm6sKoK8rnR0AN8PEMDlcpkIICQQl+f1em1mlpQczAUjB6cDyJnmXNep5yQIoN+XzB46gGY/zmDqQB0jCJ8HQQCvFDqrot0/HMiYTUGTrt0MlbCVSqVMQPtrH2owxNCOCLK4RqNh9Xo9La6FwkNA/Gw2s0ajkVmscFr01xoIvBZ01oKDGrl/OmuBiQjvT97jfPbUEjzep+fFKWIWCJwbngDq575SqaS1ghtqFtaWc8czBX4Oin1KAEejkU0mE5vP57Zer1OEDDJwzXhVCei5ZwApJPhCOfuShtOrAyhnrZCAfi4EAbxi6OajGxBEa7vdpg6a2YMERQ0sIIcQSO3evdbigJECQ8nNZtNarZa1223rdDpp88PWHQKoBgssfrqIxeIVeE3kmb1A/rwjHJ8ZpJ0q9/RZf4FA4HqhRmw+DLxcLic3UIgeWZS+A+gjTQJvB+0AjkYjGw6HyTUYJVW9Xrd6vW7dbjflgqoJDPLQ1ySA/v2Q1wH0M4Dqxm5myV/hFAGMc9T1IgjglUMloN54YrPZpA+8SkBVP66GFPyuc1yj5gOSj9btdm25XKbOZLVazRBAv5h6t7/IUQu8JrzEBvLnQ9+3221y+qzVamk2RA1farVa6g4GAoHrBAfoPPKnXUAzyxivhQvoxwGdWQgg83+TycRWq5UdDodUvMZduN/vp+4fEtBzxUBQGOCGCcxqtcp4JuQRQIjrUwQwcL0IAnjFyHMg0y4bOnC6EJiu0AFU1yrtJGJo8JrGBlwLBLDdbicCeDgcbL1ep4rVZrOx2Wz2yC2R61HJayDwmsgrksxms+QOh2ERBNDsx3u72Wymg4AO2wcBDASuG6dmAKvVqq3X68z+i3qAmS11AWV+K0jg24LXZbVa2Xw+t+l0mtZ7xlMgS/V6PZ1d6ATS/Tt30c9LQH0HULOT1ReC82AQwM+HOCFfMXwOoHbY2u12xhHU590sFotUIdLqJZvPa7vasUE2Gg1rt9tJXkc3ZbVaJXIHATR7HGGhnZdA4DWR1yWn+8ehAAko8yBU+33oO5+t2GADgeuFxo8o+avVarZarTIz66wtFGLVjVuzeQNvC+0A6no/m82S+2etVrNCoZA6gJoHmhcE/9rQGcA8Exg6gMiNOW8xr6gEkPdkEMDrRxDAK8bPCCAfcjplbEC4azKjwIalMpTXXhg0HLvT6WSsr0ulks3n81QdJRge+32VyJTL5fQYw3o98JpQ8xft/qkkaLFYpDkeQnZrtVqqCqsleMz/BQLXD28C43MiWQfYf9VgSruAIQF9H/jC+Hw+TzeisljzIVQQwDzyd64ziRJAlYDSAVQDGDV/gQBGDMTnQxDAK0ZeULHO2OHwqQQQCSjkr1wuJ424Wtuf41qpSLXb7cw8BPJQcgDVfVEJoJmlIWwWu1i8Aq8FJYAqB9JMKKQ2KkOmqx0EMBD4fNAZ91qtZuv1OrkBewK42WysUChkFDCQwnPuv4HTyIufWq1WtlqtkupIs/UosGu2nprtvTZ0/s+TVW6bzcYOh0MidcwAKgGMDuDnQxDAK4Xm7fkOYLvdTpJKiJLZwwaE+ydWwc1mM0lTzuVExiZZr9cfVTt5DMfjMV3fer22QqGQkTWUy2XrdDppYY7NMvCaONUBJBdqNpslQwc1XaLgQi4UhgBBAAOB6wZ7sHb/iDaCGHgCSJyRJ4HRAXx7aCf2lDOrmaXXmCI7bs/nlH16IBGmA4hkVY3J6O5BVnFchwQyp6jxWoHrRRDAK4afP+ADz4wds3VsLhpKy8JWqVSs3W4/Crc+x7XSAaRz50Pjt9utTadT2+12tlgs7HA4JGkD/7/f75/9WgOfF7q5Qv5Go5Hd39/bfD634/GYJF4UW5gJgQB2Oh2r1+tBAAOBKwfdFvZfzdpdrVZJcmf2EDXA2AOFzvV6/YhwBF4fevZhJjMvRw9lEucSNffRnNe3NPrSGUA1rMGder/fJ8dPdf+kOKmzimEE83kQBPCKkScBhQBSEUK+QJipuo4dj0erVqvJ2OKcFUidRdQYBxahw+GQYikIZUVqBwGs1Wpp09TOZiDwGtAOoHb/7u/vEwHUrEzmWXu9nvX7/UT+2u12ctiNzTUQuF6o3I7Puubt0nFB3aImUpAPnQWMLuDrg+dTDeUgUsz6QQCZodPXlK6umn6puc9bPg59bzGfTmES4keBgdl0zMlarVaGAAb5u34EAbxinJoBbLfbiSBpppnO0qEZr9fraRPSMNrXnq9jsVHSh1TB7EfnZTQaWblcTrEQq9UqE1TfbDZtuVymxxKOaYHXBBushr9rMPByuUyfMQwBmP3T7h+V1ogpCQSuFxAL9jM6Qey52o3B3Iy9tlwuZzqA6gQaeH1A/tRYDhIFAVQHTcgfET9e8gn5ewsCpd0/NfKjA7hYLFKhH3f0Ux1ANf8Ll+rrR5xArhinJKA6VM5h1uxhBgFHq+PxmEiVZsicUwYK6eN7rmO9Xluz2bRKpZKxzOb/YasNAUSrr5XXQOB3oBbbOKypLfhqtUokUTfYvCrruR3hAoHA+0NJAEQPmSAdI5QAyMvX6/WjGcCQgJ4PSp78+q75rpw3NESdwvMpF01+/zmdP7l+JYAUyOkic60UEMrlcsYUEGMyyKtef+xR14sggFeMUyYwbCbM0hFYDQFkoTsej6n6BTE8ZxdQofK4/X6f0afr4qSLHp1MFr7VapXIrz4fgcCvAALIBsssoLrCkZWJoREhu2oMoMYPgUDgeuH3R/YjvVHwRJFD8ZK9WGOOggC+Ln5G/iaTSSruMWrCWcrMrFqtPnLRfMv5Od43ujfpWQj5sJI/daX1+xKd6ihOfg4EAbxSqIEKH342EL7fbreZWSQdIObnyJB56xkEPzyf56ylh+i87gwzg3RkeC4i2ybwK1CJkN9g9fPB+4zZED8fErN/gcD1I+8z7ouy3PxB3t+0+xdrx+vCxydg8KXxPovFImM2B0mq1+sZCSUznW9NoJQAqlspyi2UVHompAvN/qQeDPEe+xwIAnjF0I5XpVLJEDdklcjRtAKph1m6G/zdW1YitdqmixULVq1WS0YwnsCS0VYoFDLSDDWYiUUu8Fwo+dOb/0xo4cK7wgX5CwQ+N/LimbxcUM1I1JQk5v/Og7zisea7TiYTWy6XGQLIeQKjr3a7nc4Z+nq+5fX7vcmf1fxIEMV19if2pegyfx4EAbxiKAFEtw7xgdzpPJJWwsgjWq1WqdPhD7xvschBAomIQFLHLCNdQDWL0Qoej/VwOFitVku/z8yCBAaeBIQOgwY+A/6z4PMqtWjhXeFCghwIfG4oAdR5KyWBqtTxtzigvy4g3EoANeIHIxU6aZA/Qt/V3AsC+Fbnijzppxbr8/YmzlNEVdAAAHEm+jwIAnjlUBKo3a/j8WiLxSJDAM0sddGwPPaD6O8xj+BnGHGuIgfwcDgk2cV+v7fVamXT6TQ5XuUF2DMXGAjkQSvuOMJx83JoigocDnRjDfIXCASA7wB6Eujld9oRVKOPcBB+HXAu0NluOoAQQNxYiU/QEPV2u229Xs86nU6mA/hW7p+c1fA+4Kym836e+OmNvw98TsQr/wnApqILwfF4tEaj8ci2WLPODodDZsYpr7L0VigWi1apVKzZbFqv17PZbGbFYjFp880eZK7L5dLG43EihF4GETLQwClwIFD51Xa7TTOl5EHxGeB9iSlA3rxfBOoGAgHg9yAlgX698A6PGtUUeB2oBJT4hMlkYsPhMMX7YOzFGArkTyN+Wq1WUlmdC5pZiGusFieVAKrngSpS8vamwOdEEMBPAm9HjZzSE0CzB0kE4bTc/NzTW5FAuixKAHH4rNfrKcSeDXO5XNpoNEqLpA4/+4pYIADy8pSQBREITMwIhzCk1c1m0wqFgrVarUd24EH8AoGAQouy3hBGFQN+T6ZTpQ7c53Tj/gzwZMoTQGI5Wq1Wmvuj88et2+2mmKpzE0B1LMWFWt2oNbC+Wq2mPGdvSIZqJfB5ESfgT4I8O+q8apBuKv4grETwLUNplQC2Wi3r9/u22+3SY9DwdzOz1WqVrlutm73+PRBQ5BFANRTCDY5IFDNLRQgOc7jBIa2O7l8gEABeiaJyUC/L811Ab/TBGEO4g/4efAdQTWBGo5HtdrsU5cN6zxgKBFAloG9BAClMcr3z+dwWi0XKK6RjyTkHB3UlgNH9CwQB/MTwenDdgLwrmWafrdfrZBtM9fLc0A5gt9u13W73yEkNCYQGwh8OB6tUKpkFEIlEDNMHPPSwxYEAQ6HJZGKz2SxlQpk9EEAKC4S9a2c9CGAgEAB55E8Lk6f2YO38bDabzO/h9wZeBr/eEwMxn89tNpvZbDZLHgPH4zGZ0SEB7XQ6ac2HIJ7zdVCnds45kD+N7NIsWpzQIbGaVxgE8HMjCOAnhlYe1bK+VqulGcBSqZQWHRbHRqORpA5UKOkenmPxo7uC1K7b7SaJA/dJZUyNOhaLRXL/bLfb1mq1UqcwLLUDCrp/ethar9dJDjQajVImFJbgZtkOYK1Ws263myzBfWc9DmiBQABo6LYadEAC/ViGz3lj/1Zjt1hjXg6fA6idteVyaWaWWe8xgGm1WtZut9PZgtftnAU/dSzlGnEthQjSAYSslkqlFFZPnnIQwIBZEMBPDwigj1jAAAOLYJwQqTj5QXU97L42qJTSyTscDhl3U+1QEl0xm83SvzUajaTTRyMfBDCQBwwXqLLO53Mbj8d2f3+fOoBKALVz3mg0rN/vZ+RAbLKx0QYCAe3WneoA6vyw7nHa/Vuv14n0aZC83kfg5/AdQDprqIl4ntVURY1gWq1Wpvt3brWHL8ZD/rgxomBm6exWqVQyRBXvh8ikDQQB/ORgUFgJYKvVSqSK7DwI4Hw+z7W1183sXNfJIVvJn85qLRYLM7N0cGdOq9PppIM7LlnhpBbwUAdQNtnFYmHj8diGw2EKBNYCgpI/5lPzCGB0AAOBgNljEqgEsFar2Xq9TnOAfgYQ8rfZbNJeq1JQfj7WmudB13uKyN71HBWUOj5zXuKGCoTfec4OINfppap5BBBlF+SPAn8QwIBZEMBPD+0AQv7I1ttsNmmomYB1TwC9k9k5AOFjwdIw++12m5GlFgqFJAVlk8S9UQkgTqbhBBpQ6GHLS0Cn02mar9BDG1IgTAFUAhozgIFAwMNHQWDYwQgGf5fXAaQzxdoCQeEWa83z4QPUkddq3nHea4SZCoYqbxWk7juAuFNDAClQmlkqQOJamtcBDGXK50acfj8xdLYujwCyydABXC6XmQF1iB+VpnPKKrlWldPtdrtMBa5Wq1mpVMpUyZCtqqxD8wwDAeDNFnwo8Gw2s/1+n4KAkWs1Gg3rdDrW7/czBFCd1uJQFggEQJ4DqBJA3e/M8gmgOoaGo+PP4U3fvLEdxWHvcq4yXXVOP+fYyyno+0Dn/5gBXK1WSRasypSQgAbyEATwE0MJIAuFd5Eys0wHUEkYix8EEmfNcy0qbHDMPlCJ885WdAF1gVdNv1b5qPAFAj4CQgkg839mliIeCNhttVrW7XYzBDAvBiI220AgAPwMIOSvXq+nufpTBHC1WiUSQiZvdACfBus7X+miUSCmAwj58/JcyN975ujRAVQ/htlsZtPp1GazWTIHgqziVqoEUCWgcfb53AgC+IlBPl6tVkvzf1TBzH44XmF2gdQSaHitRiuc81r9dee5l/pNU62zfbUPIoiEI4boPzd83hYEkBiIxWKRCF2z2XzkTIvRUKvVStEQ0QEMBAKKUxmAkD8twOYZna1Wq7TvsX9BbCLaKB/q8Mz6ri6aef4A+rro7T0dNH1EkZ8B3O/3VqvVzMwyBLDT6UQHMPAIQQA/MfI6gHTGzH502qiMIZn0iyOLzFs7a3pJhmryIYIs0v5QT9UPSavGWLCox8L4+aCGAD4TioMC7zUzy3x2dJNVA5iIgAgEAh6nJKCNRiOREDWQ0oM/BJBcWzpWkL/oAmbhyR/PoZ+dU4dwzPFwESdCQc8WrO1v+XznuYAyBzifz1Pn0swedQA1CiJiIAJmQQA/NbQDCImD5OlmwpA0+TO6QFarVWu32+8SrZBHAtXJdLfbpTksHgduobPZLDmK7vf7tCC+taY/8DHg5Z8qtUJus16v02HMF0/YaMmDYj42gpoDgUAevLkIhI6Cqxq8sPeyFlWr1UzHKjqAPwfPI+ZeSPun06nN5/OUEawh6uVyOc3QNZvNVGjWnMa3XNf1MSgB5DGY/SB+fNWoCgggjyE6gIEggJ8YngCykehmst1ubT6fJ8kBhjAQwFqtlqmcveWCohp9ZKztdtt6vZ4NBoO0wWLRjHZ+NpvZeDy2UqmUOj5Uxqi4hmzvc8HbgWvelsqF6Rj7gxv22rh/gpj/CwQCCi8B9esIXSrWGbNs3JFGz+jMmnYBAz+ghWw6gJwBRqORjcfjZPBFvmuhUEgySjNLZwpmu328z1sjTwI6nU5tsVhYoVCwRqORZkjVBAb5p3YAY1/63AgC+ImhBNAPktMNIVtvvV7bbDZLEoRSqZQ6bj4b7S2vn8egboyDwSBVSQ+HQ1rsiIeYTqepsoq0Va392XRDSvN5kNf984ZBvE+08OAzoTQP6q0LIoFA4DKQFwGBkgAjD0YxzCx1ADFiI37Gr01mj90uPzv0TMPs32QyseFwaKPRKHUBV6tVIoDa6Wu323Zzc3My3/WtH4u+F9QFlBl1zQGEAKr8k85mFCYDQQA/MZQA5pG/zWaTCYJfLBap2qjyAu0AvjV8BbXT6djNzY1tNhurVCrJ0IZu32q1Si6iHPjNLD0PLO5B/q4X3uxHZ0S9WRASK/0/Xnrs7dtBzFcEAoE8aAi8OmkzA8jPqGvlZrPJSM+Zzw8J6M+h+/1yubTpdGrD4dCGw2Hq/vFcohqCQHW7XRsMBo8IIBLQt4R3g1U/AzwNILFcP8RP3dIDAbMggJ8aVCGRteW5ZPlsPaqTDE3TJVGjmLecofMVVOQahMBrdxLtPJsBG2elUkkzXBr+GgTwOqEHK7rAfuZPD1fa9UN+xU1zoYhNCQQCgVPIk4DiNqmyTkYwdK8y+7Hn1Wq1mAF8JjjXeAnoZDKx8XicRlxQbFAMRjqJw7PG+7xXB5AzGMVKvufsxR5EkSDPGC8QAPFu+OTQRczPQS0Wi8ywsFafnpLJvRUBzJPitVot6/f76TrQxqPv104PxLBer1uv18t0eyJT6fqhjp++kkpXe7/fp2qqZnV9BEvwQCBwuUAC6mMgMCNR520leHnu3BCcQBa6l+sc5Xw+TwRwuVxm1nlei3a7bf1+37rdbibe560koP78wbnL5xhD+jVTUouTFCiJJAoEQBDATwyvAT8cDlar1dKhOM/xSruEnkyxKL2VxCBviL7dbmcC3iGuungi86Ab2G63bbFYPJLTBK4XfpZCrbTn83k6YOEIh7wzzxL8PaRAgUDgcnEqBoLCEgVW5rlQsEBUtPDqi5axd2XhHZ6VADL7Z2aJ1NFhbbVa1u12rd/vW6fTeUQAz7nu+yL0fr9PxUktXqshGaM5WpzUaw3yF/AIAhgws4dcP8gdltR+wVODFAiguiYyN/gWXUBPAH2EBRmA2D5rmO7hcEgLf6/Xy8wAhJzm+pEXCzKdTpOdNtJhsx8Hg0ajYaVSKdmB6zxFEMBAIPBcqATUq1g4vK/X60RItOjKvqRxEbFnnYb3NVACyHq/2WzS3F+tVksO5xDAXq9nnU7Hms1mpuh3rg6gdix1/pM8WsxqIIe8d0qlUpr1y8tD5nfHXhUAQQADCV4+4KVuXkagsgrmpxhErlarmUiFc0ArqGpmo53NzWZjs9ksGbuwAWy32/RYdAhcZyrYfGPBvD5woKI4gJMabmpKAKvVauoEngrUfetA4EAgcNl4qgPoD+7ssxA9OoCoXUK1chp+tMVn6BHvwxlBO4CdTufJ7t9rr/eesHLNuJejTtlut+laK5WK1et1Ox6PyZjvvc1qApeBIICBhLyhdE8EcSLzTprr9doWi4UtFoskR2DxOWe1TK+ZP3OfZj/iK0ajUfp3jGBWq1X6v3R8mL3wro+B64MWAzRLCRIIASQTigMaBwIfqBvymkAg8Fx4CajvAPrZYt1r6Qj5CIjoAOZDDWDUPZOOGs8fJKpUKqVsZNZ78l3PeZ7xRnxqTLZYLJJkVfMKKXyDdrtt7Xb7UVxFmNoF8hAEMJCBHyRmMB1pAZUnlaeolG46nVqxWLT9fp8Ozl4y8VoLEb+HTVItsplDnM/n1mg0EgFU0w8WeyWAOlwduF5oJhSOcGywKgEtFovWaDTSV+ZBkIIGAQwEAr8CnwXoXYW1c6Pu3BQxda/SDmCQwCxOdQC5ofbZ7/dm9uCgiTM47p96ztDba0JfZ66T4uR4PLbJZJJIa6FQSNeJBBTXUv4uiF/gKQQBDDxCnjU1YaLM2VUqlbQgYq08nU5TELZuSroAvfZsoJJAXLzo2hyPR5tMJsm6GcKK9I8upY+08NlvgeuDJ4DT6TSRwMVikd4fyIHq9bo1m03r9/vJElxnQoIABgKB5+A5M4BeAqpdoWKx+Ch6KTqA+fDRVj7ndb1em5k9mqnz5x4KyBSGzyX/1Axm1Cnj8djG47GNRiMbj8e2WCxst9ulTiVnqmq1mpxL2+12zKcHfooggIGEU2HXLISdTicdnFV2udvt0kGazps6WOks4DnmpPIW41KpZM1mM0n1VA/P9WkMgOa/rdfr1NkJ96zrRF4HEFMAJDYYAzQajdT1wxCAOYt6vZ5mAGOjDQQCz4FKQNXIzLs3+g4grqAxA/g85BE/H6PgMxn1tWB9B+c+C/gOIG6l9/f3NhqNUqwV+xPXWS6XrV6vW6fTsV6vZ61WKwhg4KcIAhjIIG9T4gDc7XbTAPrhcEiLy263s8ViYePxOHX/zCyzoKp2/q3ARqqOpjpjwTUiY2UuQA/1ZpacwWIhvR6c6gBiC348HpO8RjdWzYSKDmAgEPhV+H1WHbh1fksja3Cu1pGF6AA+hjp+Y/iCg6aGvnMmyTO9Q4r7VvB5hRDA8Xhs9/f3NhwOH4XWc41kIBNbgWnNOUZvAteDIICBBHUyZGPSPJzFYmHFYjE5ZrIIQQDNLOUDqj0xchatpL3V4/FdTDL/kK2ik+cxTCaTjNxDJa/hqHU9yOsAjsdjm81mqcrOpqkEUDuA3hY8EAgEfgbdP1RJY2bJ4EWLkDq2wMxatVpNbpC4Vgce9mw/QzebzdJs9263MzNLxeFyuZzUQhrv8x6z3XlxFaPRyL5//253d3epAKAmfZjVUJwcDAbW6XQy8+lxZgnkIQhgIAMlgToM3ev1bLPZWKlUSi6J6ppJZWq9Xtt+v7dSqZTmpur1epJbvGWFEptkXSQJfKfDg9RVu5iavQQBZGOIxfQ6AAFcrVaZDMDZbJYiQgh/9wQQ8qcuoPGeCAQCz4XvyNANNLOUpevn1jEvw2CNblYEwf+A75Si6FF1x2KxSCMs9XrdzH6QKST+GqHwHqoO3wGczWaJAH7//j1FVrTb7UQAW62W9Xo96/f7aUa90+lkvA+iCxjIQxDAwCOoDLRSqaQFBmLnswDR1autMpb53W43VTQ/AgEkRNXMklFMpVJJJBbJB3MVVFchxG8pCQmcB/6gQB4UVeLdbmeVSiXNWdRqteSupoHAekiLjTUQCLwUunagIvDxMn69QiaqEtCYAfwBHFJ1TUfdgcEXBiq4g9dqtbS2Y+5Fcfgt4SMg2JvG47ENh0O7v7+3/X6f5J16tqHzh0t1q9VKBjGxPwVOIQhgIBfaAWQGEJtk76x1OBxSNRJi2Gq1UmipDqu/9Sali2S73U5dS6Isdrtdyi1cLpcZkxj9HUgumH0MXC7yzH9wgl2tVsn902dC4QhHZdVbtQcCgcBLoQRQZ8+8CyidIRxA1QU0jGCyhb287t9sNssQQIg2Cg/tAKq75ltfv2YAQmRRqJhZOq/4uIput5sUKuxRWqyPfSrgEQQw8AjqilWpVKzRaCTyh8kL8jlmEhhYNvtBmHq9XrLTf89sPV0kO51OZmi+VColCQ0EUDdSHdLX5yBw2fCHKDrYHKgocDBDipRZHWXphMemGggEXgvEL6kDNWuMZtmxp0IAVQb6maEE0Mf7eAdNTFIocOtst3dhfSv4DqAqVPBgaDabZmaP4io0BP5c2cuB60IQwEAGeUYwaOVZRNQ8o1wuJxdN5J86J+g7gG/9WLSDo/MSHO4Xi0UyteEr11osFhOBbLfbiRwELg/qsKYZUFiCezMFlfxSJfYzf7GpBgKB1wbFJQ7wOotGJxDypwQwOoCnO4AYfKEA0m4rIy5e4v/WBT4//+ejqTabTTpvqSqp0WhkFCpc+2d+LwSehyCAgZOAAEKEkMVhnKGHYVzKNpuNVSqVRKx8XtFbL0raAVQSqnOOkALs/7fbbfq/WCzjuBaL6uWBjRWHPb+p+vfFqXBmb8wQCAQCrw322zwSSCFLDcqiC/gACOBisXjUAWS+m7lulB0YfOkMIGebt752lX9qkVL3KJ8bSVYtRnVIV7WYHwjkIQhg4BFYMDgIq9xtt9s9skpWWahWrnzo6nt0AZkBbDQauQT0eDzacrnMmNkQA4DEotlspuH7sNu+LGhVlegPMqF0HlQ73nSN8zKhYp4iEAicExA+TwS9JNQTQe0EfkY81QGcTCZpn4ck+fiEbrebIYDn7AByDlFV1amunxI/itK+MMk+5ecWY58KPIUggIGT4FCsi4g/FOuget6QOrf3yiuiA6j3q/K93W5n4/E4dTaRreIOyoA4s4yfdXO9NHA4ojChQ/XT6TQZFO33+yQHpuqruVB5w/SBQCBwLrDvQvpYk5gPJKaGwitzgSoJZYThM4Hngw4gxilIQFerVXo+dfYP8uc7gOcmgOo0TuTDfD5PeYVEahUKhXQWQe5JEV4L8W/dsQxcPuIdE8iFdgEBzod0Q7wTolYkdVhdh9bzNqdzyRTYSKvVakby6eWsEEQWYf6NziFkITqAlwF1qUWarMP0zINAAHGE4z1MhEm73c5kKQUCgcBbQGXovuNDzBJzXlp4VSJYrVbT7/sMUkAlgHgUQP7G47Gt1+u0p2sHkHxX1nxcQM9lAoNMlzMShefpdJr2JhQqh8MhFSSLxWIirXqd4UYd+FUEAQychF9Q6JSwKXkSSLfQ2xmr0QYbFJsTUohzbVBcV948xW63y2T/sXHwWCF/amYTTqCXAQjger225XKZZkKQA00mkxT5QHW1UqlYoVBIuVDdbteazWb6+888WxMIBN4OKklXAkiersr9IBK6zzLr9tkii56SgG632+TmndcBpPv3FkU/9qc8sxryCjebTSpIUoxsNpsp689fa+xPgZciCGDgRdBNiY3JZxf5jcnPBUL+dFj5nNUrfn+tVkvfH49H22w2GbkH18y/cb185UZ2YODjwttpz+fztMGORqM0E0KeEk63RH5gC46ldlRXA4HAWyGPACL5gwBqSDzET0kge9pnCQL3+a7L5TLdMHHDRRN3c+ITiH9oNBrpuT3nc0YHcLVa2XQ6tdFolMgfcRXr9TqNorRaLTMza7fbqVtJ3t97hNYHrgNxig28CHTSsCBWFyqcNllA1XUR+V2tVkv/pjOEbyWxwz1LzWyw94fA4qam82NqHpLnthUSwY8FTwCZCRkOhzYajR6FAlMtx/RHLcFjgw0EAm8JNWDTQmutVrPdbpdUN2b5HUDIDrg2EpinGMpzz9TREzpk+AJ498xTRiqvDc11VAI4Go1SYP18Pk8SUM4l5XI5QwB9Lm2cQQIvRRDAwIvg89EIIaVjgma9XC5nAuJZYHVuQRewt0Kek5ZuBI1Gw7bbbUZWobmH4/HYyuVy2oTpeOoCfE0b7SVCZ1G1Azgej204HNpwOEwSGzqASv40FwoCeG0HqEAg8DGBSoUOoHYBq9VqInenOoCbzSbj0H1txIAZOkhgoVBIezRqnadyXb2DJuqltyZRSgApTNL9Yz6dDiCEtdvt2mAwSB1AOpbvEVofuHwEAQy8GD6EtN1up4WJRahWq5mZJedFrVgSx8BM4VsSQO6XAXslsd1uN4XBs1mQE6iVumKxaNvtNslHeaw8N4H3BxIbLwEdDod2d3dnq9XKzCzN/zFfwXsZY4BWq5UIYCAQCLwFKFT6eXsIoBYoT7lv5xUnLx3qGYCLphq4abwP5I+9nDEQitHvSf68BJTCJOZku93OzB72p3a7nQxr+v1+Kk5qBzAIYOClCAIYeDEggHpo7vV6tlwuU1Yg8hMsmVXmeTgckrVxo9F40+Fl7kvDVJXEMqtoZhkp63q9Tgu1maXqolYh9RZ4X+RJQCGAw+HQNpuNVSoVa7fbj6Sf6gqnEtB4XQOBwFtAoyDyOoBKWNR125uuVSqVq3GuZu9Wp3E1ffEE8Hg8pn2e0RM/9kH37K3Xd4j7arVKyiJGEzB/ofuLCcxgMEgE0JvARAcw8CsIAhh4EfK6ZxDA9XpthUIhaddVmgGQblQqFWs2m2+ereflNZBQqmsQ1v1+nzZgQuJns5lVq9X0GMweKrVIBK9RcnOJ8BJQdQEdj8e22+1S1h/vZQwBNBcKE5iQgAYCgbeC36NUurjdbjN706kOYKVSSaMK1wLNzlODOZw0Nd/V7GHez8wy+a5K/tSH4K3WePwFIIA4lc7n8+TgirIIAqjdPx8D8ZY+CoHrQRDAwIuhQ9StVivp7rFXZoCZKiTdmP1+n3TttVrNOp3Ou0QrKFFTAjgYDGy/31utVkvzYWwIdADNLMkz+P9ISLgF3hcaRcIhARMYMqGoDmsOILlQdAHZZEMCGggE3grsTxoEr27brEdPdQA3m03KDNSC5SVDZ7tZ1+n8EaMwm80yAeoU99in6Zyxrit5eivyp3sTMRAQwMVikbp/dCU5Kw0GA+v3+2lfUvO6OHcEfgVBAAMvgg5T1+v1tPGw0bBZYWfMZgQhRJpRr9et3+8nAvgeQbVUWBuNRkbCWq/Xk0mIxkJQtdtut2ZmyUqaSmKlUrmKjfZa4CWgVIkh8rVa7ZEluOZCqfwzOoCBQOCtkGcCw9wa+w+Hft8BXK/X6efUCOXSAQE8Fe9DiDodwGKxmCneke9Kpp7PL34r+LiK+XyeSOxqtcrMKtIJ1A4g+5IWn2P0JPArCAIYeBG0c0aFUQkccgpCTpmfg0TRPWu3248Gtt+yisWCyeG/2+3aZrNJm0a1Wk1yEsgr84H8HPJXpBi1Wi0zFxh4P+TJhIjxYCZVB+3VDKjdbqfXlfdkEPtAIPBWQOJJsdVLQHW/VAJI/IFGIFzL2pUXzYR8khy96XSaRlDYy5mRazQaGfnkexBAT2DJKVwsFsmADuJvZkmdwmgCYwkaXRTqlMCvIghg4EXQymS1Ws01Qtnv9zafz1Po6m63S4sekjsGtglo3W63mSrWWwTD8zjq9bp1Op3M3J8a1rCRrlarlG1YrVat0+mkx9BoNDLOY4H3g5dD6aGIgxHvTY008XEgmqMVCAQCb4G8OXWNLqCzd2oGUDPwrrED6KX9SgAp2mq8jzf5ogP4luoOZhc5R2hkhY+tQJLq8wqJKIqRhMBrIU44gRdDs/QgfzqTsNlsbDweJ+tlSJQawFDxoqtWq9WSvJSv5wDzYX4GUOMhNP8PhzE6mjpf0ev1bD6f23K5tFarlQhgdADfDlS39flWsqezqMya6vvXhyzzd578xesZCATeCmq2pjOA9Xo9rWfst1rwgvzxVfekS4cngOqgeX9/b5PJJCmKzCxjVsd8Nw6a2gE8l3s3z7mf0WQeXQ1r9MyjpA/HUp33C/IXeC0EAQy8COpyqZVKJU7L5TINWWv2HwdwJHnIH5bLZSKAbHjndNNkoaeCitZe71srdaVSyQ6HQ5IRrtdrq9frmS6mVvGuYbO9BGggMOBgQHGBSjiGPlRVIXzeDhwJcyAQCLwXnuoAbjabVMhEYaME8Fo7gGaPpf3z+dxGo1EigDhoIv2sVqtptlsjFFB4nKv758kqrw2mLypXZQ4d1091pG61WhmfgTB7CbwmggAGXgzt1OlGBQGczWbJalkXLdW/sxgyk1WtVtPws7+vcyzQet2QAq4XsjebzdLfMcO4WCysVCpZs9m0+XyeSwDfep7xM0IDgSHdvLe0u8zrojMhzGySo6SBwEH+AoHAeyMvA5CCFSYwzPcRd4OqQUngNXcAIYDku04mk1TQ5TwCmYL8qbvzOR1A9XXRGXSMyEajUSKAZpbOPYVCIc0qdjqdR/OKgcBrIghg4JfBwkmHjK/YLFO5QlLHhqUZODhgIRf1HZ1zWjR7qSnXsNlsEonFLUylrAS4QjKUbLDpajBrnkwx8PvgveKNASDmy+UyYzLEgeBwOKTYB8ggFVbeayHjDQQC7wGNgTjVAaTQiLzQ7IeixXcAr2kuXV1ANQaCCIjpdJrOC9pVazabmXzXdrudCrta8HvN9V4JoJ5ziHvAsZRubq1WS683s4rdbtdarVaGrAYCr4kggIHfgsopOWB7M416vZ6yediM9vt9quBNp9NMl1ClfZCvtziMsxDzGHx3iK6nDxlXJy8smtURVZ+nwOvCz4TM5/N0gwAyf6qhwAQCewloRD4EAoH3BkQmrwNIkVFvSNy1A6guoNfQATSzXAJIZ22xWKR4Ks0AxK1bO2pKAM+11nNGQPZJDu1oNMrEZOm5A8lqr9fLNawJBF4TQQADr4ZCoZDZqHCtwunT7MeMFp1CCOB4PDazhwqfbljnnAXMgzqcsnloNxOJKBU+1fVDKDAQYZPRbmDg96HyT620aigw85l0ACGAdHQhgBwG6FJD8gOBQOC9oB1AnVlWJ1Dmx4hiKhQKyVANE6xrmwHMk1ZSgF2tVmlPUALIOYSZOvUngACeQwKqIwmY1QyHQxsOhzadTlPWcLFYTOcGyKqfV4wOYOAcCAIYeFWwYZGp1ul00kZUKBSS5h2p5XQ6TaSKm5I/NsHfrX5pBfRniz0kMK+b2Wg0MiRWK3yQCyQoSA3VITXwulAijrvaZDJ5RADNLFMd5kDArKqXgAYCgcB7QI3V8jqAdPjYE3XOz8tAr2kG0Mwycv880xvNz9N4Hwp+rPfnJH9mj/clJYD39/dJ/mn2cGaq1+vWarWs2+1ar9ezXq+XMayJfSnw2ggCGHhVEK2g4aUqUWEWsFgs2na7tdlslrIDqVT6rMHX3rx+Nt/FdbIoawURUlGpVMzsR0cTAqgkAqiVd+D1oPN/VFqZs5hOp6nCqh1AKqzlcjkT9q4dwCCAgUDgvfHUDGC9XrfVapUKjbvdLhlhKQG8thlAH6fgZx1xGdf9WyMVVMlz7jlvXhdfmByNRjYcDm0+n9vxeEyvK2cMZv+UAKqpTSDwmohTaeDVoQSw1+ulDQhSxzzgbrez+XyeFnXN4tNO4ltXLzU/iABWbKSRfLIgExcxm80y8kGdOavVamEqcgaoBPSpDiDdZyrC1Wo1zYNQEWbGMzbZQCDw3jhFAOkA6kwYksj9fm/FYvEqO4Dq/JkXdaHZvnmkmXVfQ9TPuR9r6DsdQAjgaDRKbuJ0enH+hPipCYyOlQQCr4l4VwVeHbqg7Xa7RxsZA9vcCoWCLRaLNCdIxwwS+dqb18+6fyoBRZPf7/dtuVza8Xi0+Xxu+/3eSqWS7fd7Wy6XZmaZeQwMbBqNRqpMBl4fbLR5BJDZUwggBwBc1jqdToYARgcwEAi8N9iDPJnBAEYJoOYAQgDJP1UCeGnQPV9n7XXej8enheNTxI/n8S0LfOxLagCDBHS5XKbOZLlcTt2/fr9v/X4/GcCor0DsS4HXRhDAwKsDs41ut5s6Lxy+OWjv9/sk1dtsNlav1xNZ5Gc7nU6a3/pdvGTxVAkJBHAwGKTrm06ntlwuM5EQVCiRo5hZeg4iHP480FwoJKC8p+bzuW02m4w7noYC5xHAcAANBAIfAXkdwN1ulyE12gGkeMqcvZeAXtL+w7quDs+MWWi8j67vECQlfurg/dYSyjxlCg6go9EonRkGg0EuAex0OtZqtTJ7UyDw2ggCGHh1EAdh9jDg7BdhNPDII7DnRw/fbDaTS9ZbVjCPx2Nm/rDRaGTmC+jqjcdjm0wmiWjgSIYspVgsWqfTsdVqlaqUgdeBxoR4qQ0dwOVymZF+cjjQIfsggIFA4CMijwDu9/tHElCIho5Q5ElALw3qoqkySqT9y+UynQ2KxWLyCqCrlhfh9NbdP7125tO5bbfbdOahMMm+RHES989A4FwIAhh4VUCg2KB04VULZ9wxqZJR3VR5qFb6ms3mm1y/hvCy6apBDY+Jzh9uXpCN7XZrh8PBarXaIxli6PhfD9r9YzZEDwlYpOvmrxutSmw0riMIYCAQeG/oKALr3H6/f0RqzB46gHTDkH+y71xaB9DssbSfdZ3zAfuqBr4XCoUU7ZOX7/pW6zrRD3qO0eIwr4ca5mECo/FEQf4C50acSAOvDggUh2mtUqKJ1ywes2zAqw9XXywWaUHn91HtPMeirhsvizX3hfPacrlM+YVsVMfjMUlx6GAixdFB9cDvg/eUvmc4KNCVpfDA++ypDqDPhQoEAoH3gGbfahcQAuhlgToDeIoAXhroAK5Wq4y0nw6gZguT61oqlVLWH7NzkOVzretaiGQ/WiwWNhwObTQapSKwOlGz3+BETTahupSG5DPwFggCGHhV6CKLNl/zeHyuHgseFTFf+WPxr1QqttvtkpxPs/Vee2HXDqASPzaR3W5nk8kkXQvklo24UCjYfD5PlT+1qY4u4OuATZf3ikpt5vO5bbfbJDs2s0QAiSahA6iHhOgABgKBjwD2IAqeFCORDmreLPuPZu1qPMKldf/MsgSQDL3xeJxIoBJACFOlUknrunYBzzH/x3Oq5xUdQ8DsZTqdpnm/crlszWYzvbY3NzfW7/eTEiWyaANvjTiNBs4Kummaqwf503BWFkgIFQHr2Ccju1RZB+TstTtruvmqJJSq3GazSR1MzWJiwy2VSrZarWy1Wj0ayI9Q+N+HN39h1kI7xlS9md3EmKjZbFq73U7dPw4PKhOKzTcQCHwEsH+ievEE0OwhHw/zMTUju0QJKHv6brfLnAEmk0nKd6Wrht9AsVhMpmvqnqnKjteGN6mZTqcp5280Gtnd3V0yuTP70amEnFarVbu9vbXBYJCy/rjWc2cUBgIgCGDg7FA7azqBPlydja1QKKRK52q1sul0muYFD4eDtVqttJmxqL/24s7Cq4QAAng8Hm21WmUkrLphmVkifZ4EQhiVTAZeDpULY8DD863ucHT/vKlPq9XK5Cv5jnIgEAh8FJRKpbSeVSqVpFZgD1E5PAoVbpdIACnwcQaYzWZJAooDt+a7Qp5+Fu/z2teo3dflcmmTycTu7u7s+/fvNhqNUhwRBFDnERuNht3c3GQIILJezhOBwLkRBDBwduTlGXEQb7fbaUGHHLH4U/2DGCrxg0Tp359rHtATwOVyaY1GIyMvUakODmDqDrpardLjYLg7SODLoXN/kD11vUP6ZGbJFIFhe4oPKg+igxvV1kAg8FHBnucJoO475AB6Anhpc4BKALUDSLwP3T9GTCgoE+/jO4DnkFUq6UatBAH89u2bTSaT5AHAtUJImUWHADKKEE7UgbdGEMDA2UEXTbuALNi9Xi8t9IfDIW1qyD+m02nq/nFQR1Kqi+U5F0xvAMMso8pRddFWEqiGNhA/re6da47xGpHX+dMOK7bnHITUSS8vIDie+0AgcAnQWAjWM3W21I6Uv0EOLwXqFk7+H90/1EJqqIL005t7KQE8xxrv/QrG47Hd39/b9+/fbTKZ2GazsePxmF43Pfd0u10bDAaJAKqxT+xHgbdCEMDAmwCJHQdxFsJ+v2/7/d6q1WpaMJkDXK1W6XvklVT8fHbbW4EOpg+cpSqrw+HqTjmfz5MkkZ9hE4uK39PIi3zQzioW25p55XO0uPn5mUAgEPjo0FEEip++W6TZqHqDBJKZ99GhBVQ6gBBADFV47OVy2RqNRjpL9Hq9TLzPudyddQYdp9LJZJII4Gw2s8PhkM4LGMD0+30bDAYp8L3f76fA97cqaAcCIAhg4E2gm1etVrNGo2HdbteWy2XKayP4nYM8Tl+YqJhZkk9ofttbyyZY1P2Na+Q6vI215iEq1NAmkEUe+fMxIbxPkHyqVEq7fur2GQgEApcEiqh5JNDvf7puqhz0oxNAL61k/+RGkZi1nXk6umrqAnrOGUCv8sH9czwe22g0ssVike4TAsiZ5+bmxm5ubjLziuFCHXgPxEko8CbQWSwd2IY0saFROdPQVLT0xWLRWq2W9Xq9DFF86xkubyjSbrdtvV4nCSudPUgsMRZmDxszzwnPS8wDngbdVCV/dFV9JpTmLGnUiA8FDgQCgUsB+xt7hc7BnyKCPit1u92eNT7pd6DKGU8AkYEul8uU78rsI4og4n3y5J+vTar0+nRPUqLKyAcGdnzfbret1+tZv9/POFFrVuFHel0C140ggIE3AZ2Z4/GYunh0bCCFyD0ZnOZwfzgcrNFoWKFQsE6nY1++fLHNZpMJV3/LRZNrhsQSO1AqlWyxWNhut0ty0OVyaaPRKLmEqiubzqgFToPun4a9azDwcrlMsqBGo5FIYKfTyQTtqswmEAgELg3elVrl7cQiqDmMJyv67x9p3gz3b53zXq/XmWifxWKR1nn2TDprRPtotqt6BbzWGUEjn7wahRsjCXgGKAFstVoZsxrdk/T1+CivS+C6ESfPwNmh1UudkyNsHYnEfr9Pblp8Px6PbbPZpIXy5uYmSUHeM+QWAtjv91NllUWebqCZ2WKxMDNLHU0lrWzgtVrtXR7DJYBDDIP2kD8NBuZgUC6XU2Gh0WhYr9fLuMIhGQoEAoFLhTe3QuLOnqOkBzUNc9PsOfz7R5Ic5hFWCBaz3szVafFYiVW73c7M/b1mwc+TPwiqJ34UeiF/moGs8VetVitT/NXc4UDgLRAEMPAm8Iubkr9qtWrH49EWi4WNRqMkl9xsNknqV6lUrNFoZOyVCbt9D4trhrp7vV6arWChZzOga4WUBSMbNSdhU4gogtNQRzgIoAYD0wGsVCrWarWsWCym1yaPAEbGUiAQuET4sQGdc8bpE4JnllVPrFarTHag7sfvvffonDdxPkpc2e+RfZpZpujabDbTjX/nefpdqLGOElPtTCJPpSjtXx/1CmA0QQu/54yyCgROIQhg4E2hZjBmlsLRN5tN5qCOMQqHfzqCKglZLpeZLL5qtfpmjwFC2ul00sbr8wmxiMYMhuF1zaOjKxjIh1qCawcQAjibzZIzHAS8UqlkZkLUFe4jyZ4CgUDgpfCxStVq1arVahov8B1A7VjpTJx+5fe+BzRQ3WfnakeNrp93eD5Fql77+tTwZTabpZtmE5pZ6jr63Fk/k66IPSnwHggCGHhz6GJXKpUeVcaazWZazCGDZj+qhEgBp9OpNRqNzIH+cDhkhqnPef3MHlCV1GoqUpH5fG7b7TY5ghEGiwxE3SsDp5GXCQUBnM/nKWhXDwOnXOFCAhoIBC4ZvgOIBFQJIKSOtRNSlSf/fC/ZIbEVKvmkwLtcLlPXTwusdP208wkBPlcBmM4f+w/B9OPxOBUh/Rw6fgXtdjvJPdW5PObQAx8BQQAD7w6VgzabzbRodjodm81mttlsUoYR5jCTySQZxyDR2O12j9y/zgEIYL1eT1VJM8tcx2q1Ste7XC7N7McG1mg0knslG1wQwNM4NQMIAVwsFslYyJM/QoHzOsuBQCBwaVAJKIoHJYC73S6pUMweOyhTINX5OO2svRU0oxCJap67s3bVIK+s9erufM54HwjgfD5PpI8ZdPYhFD509iqVivV6vTSG0Ol0rNFoxBx64EMhCGDg3cFmRHcM+d5sNksGH9vt1mq1WnLWHI/HyWVrv9+nzQ8ypXbXrw0IIIu9J6Hr9dpms5kVi8VEXqgOqnw1OoDPQ14HEBK4XC4z0lslgJ1OJySggUDg6pA3A4gLqDp8qnQRAqjumBof8ZZQWaV2/lRaibSfrh9fn1IJnQO6p49GIxuNRon8YUK2Xq/NzDKzfr1ez25ublIhkry/6P4FPgqCAAY+BCBUzWbTOp1OqgiysK5Wq7TIr1Yrm0wmGatrqolmD9XCc24KKqMxywbD6myiSlwqlUoifjw2dQeNjeEx9KCgEhwiIDjUMPxPNiPkD+lNvV7PmCMEAoHAJULn4FQCCgE0s8y+pB1ApJLIKClMvrUxVl6Qusb7MFfHvohRHBFSGL6ce12n+IwB2Xg8tuFwmByo5/N5mvPHfKxaraa84sFgkCGAeB6E6VvgIyAIYOBDgA4gCyd2y8w0qNX/er22yWSSNhBI1Ha7tUKhkOSk54pXUBkOg/ZaaWXQGwLKJsIg/mq1yrib8RhwPwWxSfwAhxgOCkoCN5tNkuLSAURCrBmASIM/ku15IBAIvBR5EtB6vZ5moXHKpAPI2glRpGumcQVvDS2M6rqOsmM2m9l6vc6EvReLxRSmTnGv0WictaumBHA6ndpwOLT7+3sbj8ePZv98zh8EsN/vW7fbDRVK4MMhCGDgQwAC2G63bb/fp02uWq1as9lMUgvsltfrtc3n88y8wGazsVKplALazwkW8HK5nMxnarVaxo2MOUQIohJWTwQ3m01GygL5CxL4MIPhCSAmO2b2aBNWAkgxANlTIBAIXDK8CYwSQLpmmgPoCSA/j3rmvTqAKv+E/NFdY66OuTkUHt7cq1KpnGWP1C4lvgPD4dDu7u5sPB6nPGIzS6MrvV7Pvn79av1+PxNDBFkNI7LAR0IQwMCHAGSv1WqlGbtqtZo6OuPx2O7v7+379+9pwzAzm8/nSU6JCUy/308L8zngNxs/i6HD6cxYMCOYZ3dNvAWPWWU8n10uohbhPntpsVjYbrdLUlsqxa1WK8mEdE4kJLaBQODSoTEQagKDIzVE0M8A8rMaPwT5e2sCyHVi7jWfzzPmKkhAlQByPlCDr0aj8eqjHupOyr6DAcxwOEwSULp/7Du1Ws36/b798ccfdnt7a91uN0P89DwQCHwEBAEMfAhg499sNlO1j82Kg7zZD8I3HA6T7FONVEqlknW73RQOvl6vzyYDVeQN5LMh1Gq1NI+oM4tIQtX5rFQqZXKceF4+K/kzs9Q5VdKsXVPc5HwMhOYtBfkLBALXhLwOIPugKkf8DKDOnWsH8K3hO4BI+iGAkCvy9DgL0GWjC6gdwNcolGIoB3FGbaLziZjTIVHltaA7eXt7a1+/fs10KMP8JfAREQQw8CHATAPST/6sZGixWCRJX6lUShueVuk0o4eKoWYDavbRa0GDaZUAMqjearWSRFHnApGxTqdTq9frZmapi1mr1TKzhtzPNYMqtMZq4F6nmVAcWHQWhudeK+LnjgMJBAKB94AGwbPWEQVhZmmMQglgtVpN66iXf76HBJTrwgBmMpkkh831ep1ikygMY+yl0kqcNX9nb0SdwzUxpqFzf3QlURqZPQS+a3wV83+MIETsQ+AjIwhg4EMgj5ypPfVut0tVP1xCS6VSIlZmZtvtNnUIm82mHQ6HTAg4lThIwWsSAyUjbMoY2vT7/STlhLwymzGbzWw4HKbICKIslAhfuwSUAwgbMdVcCDJznxgWqPypUCiczIQKuU0gELg2aGGQPa1Wq6XOHgUySI0qKDBLUwL4Hh1AJJbqAAoBHI1Gtt1u05peqVSSuQrZer1eL5Pv+jskS58jfz3IPu/u7myxWCSFDgXbarVq7XY7uX1y3gjX6cAlIAhg4MNAyZ9WJPf7fWbIejAY2H6/t2q1apvNJs1/HY9HWywWdn9/b8Vi0VarVWZgHCnp8XhMVcOniJVew3MImMpyyKMbDAa2WCysWq3adrtNJPFwOKRsIQghHS7kjJCYazaDUeLHRgwRXq1WGattfW7IhCwWi5moB+36XePzFQgEAuw1qnxgP/SdPTUfU/mnuoC+5wwgyp3xeJwIINfV7XaTERwEEFdNna/7nUIfey+jGEr6hsNhCntfLBap4Ehnkn3+69evNhgMrN1uJ6OXKD4GPjqCAAY+HNjcgNf/LxaLNByuM4CFQsHW63XaQFjQkW2oxJDu2nNJwnMImFZlcTS9ublJDp+r1SrJR8wsdQCV+DDz0Gg0Po2EEQLoXVLZjLEEPxwOmTBgDkBYglMt1s33PSzOA4FA4JzwYwea7afdPb6yN+bN/73HGqnGXuS74gI6mUzS/m5mSQLabrczKiC6f7+7RzKOoZLPf/75x/7++2+7u7tLbp/4DKiZDtd0c3Njg8EgjZxE5y9wCQgCGPiQoPNF92u326V4B83ewS1M5wFns1nGIIbfR0eNmbHXdA+D/PH7ySvq9XopnoLgcjp9+hUHN4gjDmfvNaPxVlB3VAigtwXXDiAEEIlNtVpNBFBlN9EBDAQC1wgfBK8dQJQm7HsoK1C95BHAtyaBeUZo3HB3LhQKqViKG7gGwKP4eA3yp7OIGNHgOH53d2er1SpdB90/OpIQ0sFgkExpwu0zcCkIAhj4sGABpaPGoks3SMkcrp9IOZbLpa1Wq2TTzOaoRi2vCZ3L4D5arZb1+/1EVrnN5/OM5JMMw0KhkP6PNz251ooi5FbjMchcYgYjrwMIuavVao9CgZUABgkMBALXhjzn6VqtZuv1OjM6wD5DXM4pE5i3RJ6zs5p9bTablJ9Lx03dnXXW+3dJ1ikTOaSo4/E4KXh4rjWKQm8aSxHkL3AJCAIY+NBQQoXkgsqgN/o4Ho9pQ2GG7HA4pP/LjBgbyc82vpeSByWAENZer2fH4/HRhqzkj6+FQsE6nU7qeLFRVyqVq+4AYrutQ/jT6TRtwHROIYBsxmq93W63Mx3AIH+BQOAaoR1APwOos+NmDx0u9iAI1nu6gCr58zclq2aWIYBK/F6jw6bzkRBAoh408gEiyn6jXgR0/nQMATfzQOCjIwhg4MNDZX/tdjvN43HQN7MkIyQcHBmJmaVFG9lIq9XKuKW9BrQDyKbVbDbTteLyqeHvGMGsVqv0/6bTqS0Wi9QVxBX0WuHn/1arVTIEYABfO4DaSeU5xn0tTwIaG3EgELg25HUAVeXC+qdKk1Kp9EgC+hZdQJ2f91EL6kyq1+Ilrj5T93fIn5rjsP9q3t9sNrP5fJ6y/rh2b0ajBLDZbKbri/GDwKUgCGDgIsCB33fu/PwYlUOIU7lcTmYws9nMGo1GyhNcr9eJTLwGlABiVKI5fhibTCaTFO9A14sZDWIP8iq11wq14WYWAxnOdDq15XKZTHy06q1D+DoDGOQvEAhcK56aAcQIRjuA7CPFYvFkB/BcoMBn9kD+GM9QUxolfox1PPXYfpUAQnrVgVS7fbPZLO2/ZCpqF5I4Cr1p8THIX+CSEAQwcBFgY9DZPeSDKimZTqdpIcbqmkHz+XyemSMgjkFlG7+zgOvGbPZQpSXmYbFYZIbEtQpJrAXD8HQAffj5tUFNYHQWAwI4mUxsu91msv+oxEL+tAMYERCBQODaoaMRtVrN6vW6rdfrtJf5kQM6WbqvnJsE6tquZit02JbLZUaJw/5OXi6KHd/5+9X1PS97kFGDu7s7G41GSW2iLqTVajXjPsqNuXOuMeb+ApeGIICBiwHzX5oV6AkgizJGK2aWFv35fJ6RyRQKBdtut6l7xO/+lc1Fs/rYCKhiElg/nU7T/fgK7Xa7TQTQV0fpZl5jFqAngBwQcGKbTqeJpDebTSuVSlar1dIgfr/fTwP4UYUNBALXDi000pmieOb3N/YXnCzZW/y+8ppAYunNvVTdQaeN+UTij1qtVnpMeVEPvyv9xCV8OBza/f19mjOfTCYpc3a73Vq5XLZWq5WC3W9vb+329tb6/X6G/EG4g/wFLhFBAAMXA537g3DldQBbrVbKCqQKirsk8hL9ezZCzQf81esDOgheKpVSjIUPKzezR5uk3ny1VqMrroEQ6gygSkAJBZ5Op0kuW6/XM7N/6sSW1wG89OcmEAgE8qAdQNZO7ZZpBxACeDwe36wD6Ge787L+FouFbTYbOx6PKTqJ/8dsN8YqrxHtAxmeTqf27ds3+/e//23D4TDN3WMeh3Ecc32tVstubm7sy5cviQDyb2q4EwhcGoIABi4OVAuVODBQ3u1209wYmwly0NVqlZkf4P9TgYQc/i4J9JtUqVRKm7M6mfluFdejRjFUbNnYtcN4DdAOIAcV5DlUipkFYQZQI0GQ5viDQiAQCFwj1G2a7NjdbpfZW7QDqHPmFBaVAJ7DBdQrO5bLZVJ20HWj2wYB1AiFZrNp/X4/46yp6/pLi5/sravVyqbTqd3d3dnff/9t9/f3KehdZxDJHWTMoN/v283NTXKcZpQjHD8Dl4wggIGLBfmAzAus1+tECpC8EIjL98QtmD2E5NJVUpLFwv5ai7vOr3HNSggZ0tdBecxrtGPIZnktRIeDAk5wkEAeP26phMAzJ6IbNHIc3ZB53WJzDgQC1wadNUfa6GMSUMmwrprZI/J3jvlyCKWf7Z5OpzYcDtNsN3FHFGl1P2y1WknZoV3Nl6g7uAbIH3sKYe+QUaKYGDGhyNhut9OIQa/Xy5A/32kNBC4RQQADFwviIegIQZxwjSQgfrPZpI2ADQfpKAQQUlatVhOxek2HUI2HgLBCYObzuZlZum82q9lsljYk7Vr667x0qIurl7+qs6u+3o1GIz2HyHF4nkICGggErhGsaaz9fPUxECoBZW01s0d5e+fMAfQdwMlkkmbvdAYQAogqptFoWKfTsX6/fzLe52fQfFl1/NSoh9lslmSoZpY8APw1nCJ/0f0LXDqCAAYuFkhhIFVsdHT9qtVq0vez2bDxafYQkg+IhBKI1zIUQWZKfIHKS8gBhCTu93tbLpc2nU4fkT+qtViAXzq8UQAkUB1QVZrDIaderydH10ajkTq3IDbmQCBwrfAqBy8B1Q4g66uZncwBfG14ExgI4N3dnd3d3aW8XrOHvYx5O1Q8zNuxvj/H4Rkiq2MFzJUzf4jZC8Xh3W6Xni9/HTpjjllc5P0FrgVBAAMXC0gVIfFUO31FEWmlZiIVCoXUGUTugZOkVhohZa95rRDAbrebKpBcY6VSSQRQ5YxsqBqHcUkmMHnXmmfikxd9gdwJV1WkQiqlvZTnIRAIBH4Hfq3TvY45dvYwXWPNLJE/bufoAOZJQLUDeHd3l0Y0KOYVi8Xk/Nnv99PtpR3AvJly1DSYz9B95Cyge7MqdHzkgxq4XcsIRuBzIwhg4GKhBK1arWY6ZPw91VFkhWQB0S08Ho/WaDRSEOwpJ8nfrfapbTcEsNPppM5ksVjMEEGdVdSvuKW1Wq2zBvieA54E+q6fhhSfIn86R0m1O8hfIBD4zGBcAXKSZ3ZmZmnvo/t3bhdQbwIzGo1sOBxmpP3I95UADgaDjLmXkq5T8n7vKI2hGLmydP9w/CToXR1V/XgGN50xfw1H0kDgIyAIYOCioVU4OkFISthgkIAsl8sMIWTDUAKoTmQ+1uF3c4iYNWw0GtZutxP5YQ5RZyIYTPcVWgbkqVxeEni+zX7M/a1Wq0dupyr7ZGOG+HkX1bDgDgQCgWwx1JMUH8iuJFCLpq+JvBgIQteHw6HtdrvU2cPduV6vW7vdtsFgYIPBIMk/veTyFPFS0xsf9u4JoOYPqgeAkr9Wq/XkjHkgcOkIAhi4WGj4OkRAjVbYXKg+zudzK5VKaZOg09RoNNJGgQQ0T65It+lXg+KpMjabzcwGzL9xDVQo8+bg6vW6dbvdtIFdEjhsIM8hGwpyzmNWCa+6w3mjg9iIA4FA4Ac0x9avj54E6u21JaCedCoBxHmTvaDZbGZiIOgA3tzcWLPZTNJP7Wo+teZzfxi+QPw07B2TOGb+2JO14wcBJLtXlSax5wSuBUEAAxcNXZT1BpHb7Xap8kg1EbKILEZDaplH8Iu8bq6/SgBVAqqyGzZsrpf5BDYzlaq0Wq3UKdzv9xdjBMMhQ3MO2aSVANLZ5LlCottoNB4FHccMRiAQCDyYn7DP5BEmjUVQ+edrS0C9AYzmu6K0MbM0725maa4dY7Rut2uNRiPNMere/hTU8RPyR+4g5i+MfkDqUOT4mb9ms5nODIHANSIIYODikVeZK5VK1m63bbVapUUdskFmIJsPpiuEjusQu5qvQNR+FUhT6/X6o9/L7N98PrdisZgkkvw9HTEG2CFLlwTy/tigOQzwuqxWq+RWx6wjpJdKrA7iBwEMBAKBB+h+oiRQ5ZNPdQNfQ1Kvc3g6443Mf71ep5B6M0uyVc13bbVaL17fVW5K9w/yR/A8ewymM5VKxZrNZiKdvV4vEUDm/gKBa0UQwMDVgkWeUNnVapUxGKECWSqVbLvd2mQyscPhkDYtlWCqRfSvbJJszHTstPvHprxer1PnkuopRJE5BXIOdV7uUubg6ADqBq2VWV6fQqGQqq7lcjllMEECw4Y7EAgEssgjf8xQ4yidNxeosUi6l/yKy7Q3WYP8/czZGWk/890vJX/s235vgQBOJpNH0k+ihIh7wHkU8xkyeAOBa0UQwMBVo1wuW7PZtH6/b/v9PhMbwabAPOB4PE6D4ypL1KzAVqv1S9ehHUR1FmWj2+/3tlgsMgSTqiyPQw1TqKZuNptMKPxHJkR0ALEEH41GGWtuX53F+EU35egABgKBwGNodm1ebI6ZZchVXqeOUQSVhD53T4H88fvo+lFIpZAJIVU3Z80vfC7pojjqjV+YNRwOhzYcDlORcbPZpPGQRqORAt7p/GngO/OHH3k/DQR+F0EAA1eNUqmUCKC6cLZarVQZhIhMp1M7HA5WrVaTJBGZJeYrELJfgWYL+pnC/X6fiaHQEN9CoZCkk5A/yKB2yj66QxlV2sVi8eh5n8/nSdZaLBat2Wwm0j0YDFIYLzMZYQITCAQCWXgjGEgWc+d5BFA7dRBH3aP4vXlQAxk/86eFSlXRqPRSZf0QwOeAvZEuJmMFs9ksdf64TSYTm8/nttvtkuFLs9m0m5sbu7m5yYS9+z0mELhmxDs8cNWgm2RmmawfjEWq1WoyioFUlcvlVLFk09LQ9kaj8cvXQ5WW6iIb7Ha7fWR0wiasldr1em3L5dIWi4UtFos0o0BX7CMTIyq1WqXV2QzIto/L0A6g5jFFBzAQCAR+QI1SIHIQwHq9noqbkCzN6aO4SPcvLwv3FDRsXouTXkWDozMECyL2Ulm/zxj00k9iH5gxZ3/B+KVSqaS4idvb27S/YPrC/vIR99BA4DURBDBw1UDyeWo4/nA42HQ6TY6TzC9o/ICalWAUQ+YgeGk8BNEPngAqCSTcngorEkocNKfTqZXL5bQB12q1F2/ebwV1hfObNcRaJUKEAiPPQZbD8xIEMBAIBH5AjdBUAkrBs1ar2eFwyGSnagcQcxaNOtK946l5QDX3wlGbmyppCoVC6sAxmw/poiv4FPFScza9bu5Tox4gn5vNJs390xXlvrvdrvX7fev1emm8gM7fR9k3A4FzIghg4KqRR4R09m6326WICDY/NhiNK6Cq2G63rVQqpcB477Rm9vyZCQ2tpzLaaDRSZXS5XJqZJaMXNVGhg8b1+tB4ru2jbGRs3HnV2uVymakQEwrMcD7ObJrJ9JxMqEAgEPgs0O5fXgeQ2KC8GUAlgBojoW7Vp6Cz3WTZavcN8xXUOHzVuAVkoE/tWZ78+bB3FCXM8GuEEuoYxj8oLqrj588IaCBwbQgCGLhq5FUzIWvH49E2m01mE1gsFrbdbtNcnobYjkajFOHQbrfTpkVHit/9UuhG3Ww2rdVqpQgLM0vRCHQs1+t1yiw0ewhY94P7H6lDph1AzQCczWa2Xq8TaYW4KgH0ttyxUQcCgUAWXuWCuyYEkBm4pzqAur4+Nx+QGTyk/Rq8jrkXRUzkn7hvouxgbf8ZAVTJqhZCde6PPYWRAgq75AwSC8XMH4YvUVAMfDYEAQx8CiC5pEIKAVyv18kJrNPppK4fmykkcD6f22g0StEREMdms/novn7FOlpzkAjDxRFztVrZ4XBI3b7VamXT6TTFRVDlzJO5fgQba53ZoHKrMiHc2ZCwQgCp1EIAIwg+EAgETuOUBLRer9t2uz1pAsO+BwFkJOI5UBMWyJ8SQDqAOHKT7YrrJsW9n8kvIYC6h0wmExsOh3Z/f5/ucz6fZ/JkmfvDDM4XFWu1WuwlgU+JIICBTwOdu4NMQTJ6vZ7d3NykOAYkiYVCwXa7nc3ncxsOh2ZmyTVtv9+/WteNii2htD62YrPZpAyl9Xptk8kkkxXIfIPaf5M5+N5Qk4A8I5vdbpeRHCkBVGc2rU5/tBnHQCAQeE+c6gBiesZeQvEzjwAy987c3HMloBRJ6cgR77NYLJIJjF5Tu91OREzX96cIoF6vzv3d3d3Z3d1duj/2Zr0/Oo6DwcAGg0Eq3v5qrm8gcA0IAhj4dFCL7Hq9br1ez75+/Wrb7daq1WqqWm632ySvpKrIpsOf2RyVeP0KIKfkE+HIhgmNDtNjrc18BUSRDRTZz3MruOeGd23jsEGmITmLVJ1LpVIyC2BGhOowJDfkOoFAIPCAvBlACF29Xs90B80exzbws41GIzNTDk4RQe0Aavg6+ygREBrBQJFTc/c03ucUVG46mUzs/v7e/v77b/vnn39sNpsl1YzGX6Co6fV6NhgM7OvXr9btdoP8BT49ggAGPiXYDCGAu90uxT2ofAXixeZWKBSs1WrZfD5Prmp024hk+FUgkRkMBnY8HtMmVqvVbDweW6lUyjicmZnNZrOU76TzFbvd7kMSQF9xRt5qZqmjCgGs1+tpPoTKtZK/IICBQCDwYDymGYC+Awi0A6gFOYiiOmc+pwu43+9ttVrZbDbL5O/NZjPbbDZmZmkN11iffr9v/X4/I/H/2Ww35mzsx9+/f7f//u//tn//+982n8+tVCql34Xk8/b21m5vbzOZf51Ox6rVakg/A58aQQADnxLIJtmUisWiNRoN63a7aabg7u4uE8I+mUxss9kkiUy1Ws3MEeC09isBshAfAnupYqos5ng8ps4k1zKfzzMzFa1Wy1qtVtrA3xtK/Kg2c9tut4mocq2QPJ1d0VDej2ZuEwgEAh8BvgOIuzTrKOss62deQW69XmcI4EtMYJjJowNI+DrruRJASGBeB/AUAVT5Jy7Sw+HQvn//bt++fbPlcpmZJSTr748//rC//vrLbm9vrdPpJDIa3b/AZ0cQwMCnBEQChzCtlPJ3bDiLxcLMfsze4WpWq9Ws3++naAhPVn5lcyEGQSWluJHinlkul22/36cZiM1mY81m06bTaZKErtdr2263yRzmveAPGBwuIH4cMLxxAQcXbtVqNbp9gUAg8ASemgEkCB5nTO0AIgGtVqu2Wq3S3qHdv1PQyKTFYpFxd2aWnnGESqWS8vfUAOY5MRDsw/x+oiaIm2Dfo6tXr9fTnOHNzY3d3t7aly9frNVqRQExEPj/EQQw8GmhjqBqLqJzBuQM6XwCG6faXmun7nA4ZGSLzyUvbH6aKQjxWywWGXLKNdIV5LZarRLJYhN/6w1P7brVsU3nGM0eZjF1ZkNJH9LaIH+BQCDwNOgA5rmAoizBkMUsW6Arl8uZDqA3OOP3e/i5bsYT2ItQtphZGlPA2Evnu1nvlQByfezF4/HY7u/vk+OnSkzZe9U5WuMeUOoE+QsEHhAEMPApwSajs2QaDYEDJSSw0+nYfD7PkKrtdmuz2cyGw2GSaLKhIsWkK/jc61GTEyIfGo1G+j1aJfVEy8t4IIG66f3M0e134OMe6PpBlKfTaSKAkD5IOM+XZkKFTCcQCASeDwgghlkqAdWxAPYx9it1m9biof7ePGy320yhz+9BFEQLhcIjAqidPwqwALJKtw9p6Wg0svv7exsOh2k/rlar1uv1rFgsppm/wWCQZv20GBsIBB4QBDDwaeE3NZ2baDQaqZpIZMF6vTYzS26hh8MhVSZ9RlGv10vuZ8/ZfJSI8n+0K6YEEBKocRY6Y6cEcLvdZnIPqeqegwR6W3EqwcxrTKdTWy6XdjgcUtQDXb68yIenQoEDgUAg8ICfBcFD7LjpjB9jEDo+8DPzF5WQ+tluZP4a7VOpVFI3kqJmHvnjd69WKxuNRvb9+3e7v7+30WiU4iWQfZpZKhxWq9U084fhS6vVCrfPQOAEggAGAgKVzbRarUxVE7nJarUysx+b5nq9tul0miE/bH50udjoXoJTJJDfxcYJVIqjDpvr9TodCCCZdA9fm1z5nCbks4QDTyaTZAteLpetXq+bmaVcKB/O+zNL8EAgEAhYZm1/KgiePYKCpRpwVSoVW6/XttvtciWgiuPxmDvbzd6n/98be6mi5dSYBCMWo9HIvn37Zt++fUvOoj5bsN1uW61WSw7aX79+tZubmzRjCAH8KK7YgcBHQRDAQECAFEYzhOjqbbdbM7MUNns8HlMWIPMKVFePx2PalJrN5i/NsukmrvNxSgRxM+VauFYIGPJTOmpKBF8bSGDp/hEMTNVWO4BkHurAvoYCh2QnEAgEXgbvAqodQPYGumHI9dmvvARUCRP7BV1B1nm9eemoupJqLAXXxJ7k4XMF7+7u7Pv37zYejzNB7+wdOvc3GAzs5uYmxUto2HvsJ4FAFkEAAwEHqpXk6bFJmv3oEOK4yWZE10slMGZm9Xo9kRo2vJfglKU3pLLZbGZiJ9g4lXyVy+VkSgMZ1CiF1ySCmiul3T8NBib3D9kP2YedTse63W7atE8dDgKBQCDwGF4C6juA6/U6U1hDsUEXsFwuJyL3lAOoqk3UeExnDHUWUXNy9eup9V2jHkajUSKAk8kk0/mjCNrr9ezLly9p7o/ZPz9OEAgEsggCGAg46MC6zkkoESuVSmnmb7PZpKF1JDSFQsGazWbajIh3+FnQrQKZpnYBG42GNZtNa7fbKROwVqsl91LssqfTabLEzotbOAcggLjBeQKonVM2Za3gQgDV7TQQCAQCP4eXgPoO4Gq1SgQwT7WiBNCbwAC6huqSvVwuEwFkn6Hj5jt+WvjLA/uHZgqSyzufz2273WbikhqNhg0GA/vzzz/t9vY2yT4peOLOHfPkgcBjBAEMBBwgXeQX+bkKsvi0AqrzD8fj0crlsnU6HZtMJtbpdFInjtm25xBB3UwZoIf8dTqdRDg1noLqKd0/fo9WY3Exfe1ZQCrKngCOx2Mbj8ep+8dzixkA5K/X6yV3OMhrIBAIBJ4H3wHUTFXIkO8AQqpKpdKjTh6gCEqREZWJzuSxr1CwLBQKmZk/COCpaKTtdpuIH3sGowMQTaSqkMtWq5WcP79+/ZoyeZVonmvkIRC4dAQBDAQctIJqlq2ssnlqMC2ylN1ul8ktmkwmdn9/b7VaLXUI/Waobp4e3K92AJvNpnW7Xev3+7bb7dKmCCndbDY2n88zWUpmliFdbOavbQSjElA/Azgej22z2aTIBzqszG7Q/YsZwEAgEHg5TpnAqIu0dgCVAJrZSQLIz6rCQ9d28vhw+0QhUyqV0hw9s3ialYsSRccGJpNJ6vgNh8P0u/l5SKWODSD7pPtH8TD2j0DgaQQBDAQc6Lr5v9OuGVVQDaJdrVZpeH69Xtt4PLZyuWzb7dYmk4l1u13rdruZEFw25jxZpg7QQ946nY71+31brVZWKBRsNpsl2SnW2T4SAsllu93ODPe/dlVUozAggJrftNvt0jxKpVJJ3UyeFy8BjQ08EAgEngc1XVECuNvtcjuAmiELeVMpJ9C82dVqZbPZLBPKPp1Obb1eW6FQyOxlrPH9fj9FMiDt9+HxxCkNh0MbDocp7282m5mZJbUIXb9ut2s3NzcZ2SeF1VPy0kAgkEV8UgIBB4iRj07wBJDOH86hi8UikcDdbpe6XpPJxNrttvX7fbu5ubHBYJA2xV4lUjiOAABT/ElEQVSvd3IgXgkgpjTtdtsGg0HKWKrVasmUhmH84/GYupPL5dIKhYK1Wi0bDAapI3gOnHIBRc7DfasLqJ//UwlPyHYCgUDg52BforvnnTeRgeZ1ALXDhsMmv9PsYe4PsjadTm04HNrd3Z3d398ncxZm8sweFCdINHu9XnLDRg1Dx48ZccxemPejsFkul63X61m1Wk2dv16vZ/1+375+/Wrdbtfq9XrEBgUCL0QQwEAgBzo3wMYCISRyga4bclHmDugMMiNxd3dnjUbD+v1+csIkPoLZPs3089cBAWTDVlkn/2+73ab7ZUNnqL9cLttgMEjkNG+4/zUAAcRuHBI6m81sOp2maAx93BoAr1Kh6AAGAoHA88F+pRJQiN5ms3lyBhBnTY2AUAJIxw5VhxLA5XKZcm/ZyxhXUIVHo9GwQqGQ7pOMv+/fv9vd3Z39888/9s8//9hoNLL1em2lUikRPr3x+yCBnU4nnD4DgV9AEMBA4AnQ9WOmgPkFNX0xywbxIpkhj2+32yUHMx/twJA88xEKNaChctpsNjN/b2ZpY2ZzpRPIn5vNZoZ4QgJfeziezicEUPMI6UTyfOljJ9KC+cinjAICgUAg8BislxrBYGbJfCyPACLtxAVUCSA3lX8Sz4BcczQapdlu7kPNyijw1ev15FS9XC5tuVwmmee3b98yBBC1iO4LdBH5yiiFNw2LPSMQeD6CAAYCP4FKQM0szeOR+aemKlRccQmlK0b23Ww2S10uHc4vFovWbDYfkUC9X3IElbjtdjubzWYZ10xkmFwXUtD1ep1mPJCuvtaGCfmDGPtcRCrEyJM015DnQMOBIdKBQCAQeB7YL/wMH3EMSgBVBorUku8hgahFvLmXOnUeDoeMyYw6PFPcLBaLttvtbLFY2PF4tPl8nmbDJ5NJMpPRuXp1+mT2naw/8mK1eBoEMBB4GYIABgIvgJIXgti1WgqQ3TDHYPYQ1D6fzzO5SKVSKRm4sIki4YEMUdH13cjNZpMG4Jmbg3SSR0jFdbVaZXKeXpJJ+DNwfxBA7ZDSceS68+zJkc9qXlNs5oFAIPAyaNGQNZQ1lr2FfYJipa7drNf8GyMPmLYg6yeiQUlnqVR6lP3H/kYRkqLl/f29jcfjRPwopqqDKORPnT7p/mEKE+QvEPg1BAEMBF4An8unrpoKraxCyAiPX6/XNpvN0saFqUyn00khtjiasYESF6HE0MxsuVwmN1Hd3HW+AyIKAVyv14lo/iryZkTo9nniZ2aPyB+P7RT5CwQCgcCvQZ2sC4VCbgfQzDJET7t//sYeQjFxNpulG/JPTGjYH3WfYjQAdQoy0ul0msYkuE46fz7iQckfe543agsEAs9HEMBA4IXQmbxTMkWtrtKpM7Nkgb1cLhP5gxQuFou0ySmxREKj84ilUsmOx2Nmdk47ijqLyOarwfVKGH9leJ7HB7mFXKrkU8lfHvHz5C9MXwKBQOD3oWSItZdgdL/Wsk9xgwiqQQwFRI1tmM/nNp/PrVqtpu4dxFP3K2KR2OOYCSdEnv9bLpet2WwmN1EcsyGAeQXSQCDw6wgCGAi8EFrl9ARQTV4ga9VqNSNxYUNEJooddrfbTT+n5JLNVDdtMpfyZujY6H3eE0P8y+Uy5TX57KafQY0B1EZcZaZYiVMR1kBivalzahDAQCAQOA8ggaomgSR6KWienB8CyDqv673OuQNVhzDeoLN+EEL2Ot2zmPu7ubmxL1++WL/fT1l/zPz9jnolEAj8QBDAQOAXoC5rGsCrs224oXU6HZvNZjafz22xWKRO2XK5TLNxtVrNer2ezWazlOWn95NX7SRrCRIIEaQ6iuuo2cP8IUP8GrOASYBWbfOg5E/lpVRzySJkUzezJA8qFArp+fDdypjfCAQCgfOBIhskSwuKEEA/D6gmXhA2TwRXq5WZWWbNN3vsMDqdTlPO33Q6TZJPZgYxjsE9VE1fBoNBMn2hwBn7RSDw+wgCGAj8Ati8VJLJXGCz2Uz2191u16bTqU0mE7u/v7f7+3sbjUa2Wq0yEphisZg6gGaWMYJRuaQH/66RCkhkmD/EfhsDGp2dUOdSNte8bqD+HJ0/CCU5fzwecgip5jYaDatUKmmoX6u4QQADgUDgvFBlipdo+sB3nRsnGgLShwyUIuZms7FyuZzkoyonhfxtt1ubTCZ2d3dnf//9t00mEzMzq9fraZ6v3W7bYDCwm5sbu7m5sV6vl2IkKBqq22cgEPh9BAEMBH4BOniuXbr9fp/sr3EwQ76CCQxOauQDzmYzOxwOtlgsUhxEq9XKnZOr1WqZ6+C+tYLK/2czRqoKAdTICHUwVTKbB5UKcSjADY5bHgEku5BuqIa9q/RTjWUCgUAg8HqA/OksoC/AaXFvtVpZsVhMYwqQP53z9jeNAWJ/3Gw2aZ8YjUY2nU4znch6vW6dTse+fPlif/31l339+tX6/X5y+dTrDrOXQOD1EAQwEPgN6IZEFxDSpXN5mL8wPL9YLFJFs1AoJKe15XJp0+nUxuNxZk7P7IeTGh00TGAgWtph63Q6Sf653W4zBHA2myXzGU/+mBM5BX6WjR4COB6PbTQa2Xg8tvl8/ogAQipbrVYiwxBAtfCOjT0QCATOA3WRVkMu1mGNEKJIyZw6e5ZGOSD51LB4JY6HwyERQBxAdS6coiVKGSSfdAAJjzeLSKBA4BwIAhgIvDJUGqpGLDiordfrTH5gqVSy1WqVqrHr9drG43FGurlYLFI3kQykUqmU3EXptOEgavZDRrper83MMr9X7b4xm2EWo16v5z4mH3KPk+l0OrX7+3sbDoc2nU5TpVhnG6nkkufUbrczLqQhAQ0EAoHzQmfudG68Xq8ng7JisZgKlZPJJHX7/Iw3ewYFPPa32WxmZj+KlRQw2TPK5bK12+00pz4YDOzLly8Zt091+gypZyBwXgQBDATOAJWG1mo12+121ul0bLVa2W63S127Wq1mrVbLFotFckPb7/c2mUxst9ulGbvxeJxykQaDgXW7XavX62kmr1KpWKvVSuQPuehyuUybOJu3d+o0eyCQ/P88KAFEFjQej9Ns43w+T+TWzFIHUM1wGOhnLjBCfAOBQOD8QOXhZ8abzWYqCBaLRdvtdmltJ6MP5Ypm9vG7NOh9Op2m/YEiH0Su1WpZpVKxQqFgzWbT+v2+3d7e2u3tbdrTms1m5v8EAoHzIQhgIHAmeBLYarUygbfIX3D/ZLieDRcZzmQySc5og8EgEbh2u23lcjmFzDcajVSZhVwyYziZTGw+n9t2u7VyuZycRqkKNxqNTPfQQzuARD9QJb6/v7fv378nV1PuH1kqnctut5sIYHQAA4FA4O3gO4BqGkaRkLGB2WyW5KEqCVUCyLgDcs/VapUcPpkDVPMW9qt6vW6tViuFvGvO30siiQKBwO8hCGAgcAaoSYyZJcLHXIRGODSbTZtOp8ktFCklshrc19h8+f2HwyFFLJj9cARtNBoZMxfkOcRLzOfz9HdKFLvdbprdOwVmPdQEZjqd2mg0stFoZOv1Osk+MRnA6a3X61m/38+VgMb8XyAQCJwfaljGjTl11v7tdmvz+TyZrxwOh0wQ/Ha7NbMHB2ozy8yx696nxUDcPnHI7nQ61ul0Mm6f7B2BQOD8iE9aIHBGsAlS+eTvNBwd11A2YcJ16dKp5bbZg9kMUhokM1o5VVe35XKZKrvL5TJ18+jQNZvNtLE/RwKq4e90F8fjsW2322T6QieyVqtlCCAyHyWJMegfCAQC54UWBjGCQYbPWgzZm8/naQ0/HA4Zd0+KkBA1ZgcxkCmVSpkZcxQvKFg04oG9j1nEkH8GAm+HIICBwJmh0hsvw2m1Wqn6SebSfD636XSaSKCZJdttpDf8rt1ulwnI1Y4aGzJkkZlCjF+q1arN53NrtVqPAtzzHoMngJja0L2kO0hUBaQXAsjGD9kNB9BAIBB4GygB1DgIXYchgNPpNElCdd3nq5ml/6dO0mYP4wJmlnGo7na7dnt7azc3N9ZqtZI8FCKqipBAIHB+BAEMBN4AbLBsiGqOQgXUzNLw/WQySaQM+2yzH86e0+k047CmGzAdNTqMVHjNLEl0IJLIStfrta3X69QBxMHTQw8CWH4vFotkEMD/2+/36VpqtVqS/uDwpmQ1CGAgEAicHyrNzLtRMETqv16vc0kdXyGR+m9KLtnnmH/v9Xp2c3Njt7e3qWjJHsD/i30gEHg7BAEMBN4AGhpvZmmAHrtszFzIAKQCSxdQ5zOQXpIFqNCQd71fM0sOnjqkr1/15gPncRvVwF+IIzOKx+PR6vV6JlcQiStzH8RX+JiMQCAQCJwPPvtVjb1U2WFmaZ7bk0TWbA2ShzxS9KOw6Wf9cLHu9XrWaDQys35B/AKBt0cQwEDgHQBBYiNl1m8wGKQwdQbniXJg1kLn+pBdQuzo+iH5pOMHgWQT96QQIsigP9dl9mD+ouRPZ0L4yrWZPVSH1XEOyQ8HhkAgEAi8DXSv0DVfi3lkuJplO4a+s6d/h3TTF/zIfdVwd6SflUrlnZ+NQCAQBDAQeGcwE9hqtezm5sYOh4NVq1UbDAYpvoEAeSShfE/3jXk8HN0glfwbdt10CJm9KJfLafYDY5f5fG6FQiEjM2WoHxLobzo7qEYDajbAwcEsKr6BQCDwltAunxI+JPyz2cyWy2UyAtOun0o6KUSyzyDzZ56drh/RP5DAvM5fIBB4P8QnMRD4ACCL7+bmxqrVqnW73eSwSTSERkUQul4sFhPJm8/nVq/XUxewWCzadrtNkRJs2kQ/ID2lc4f7GzJONZDxElF1edOBf18p1lts/IFAIPD20I6fEj8lf9PpNBFASJ5GOeBSjXqFme96vZ5IHkSPGzEPzLoTGxEIBN4fcSILBN4RSp4gZM1m0/r9vi2XyzQTOBqNbDgcpmBeZKJs7FR26QBSnUUuutvtEgHEARTyZ2bJIXQ2m6XNnflEbL0Jqkc2RKXYW4tz/0r8Itw3EAgE3h4oQZbLZSJ9Sv705gkg3T/MYfgzaz8dwG63a1++fLGvX7/azc1Nivxh7jsyXwOBj4cggIHAO4LNEDc0ZiP2+33q5mm8g8ZEEOlAThNzgkg1dbaQDdwH1PN/qQhPJpM0W7jdbq1er2fyoZCcYkyjZi/M+zHr568/EPhV5M2M5v3dRzxc6nWqY+Kpn/mIj8Hs8fP9sz9fEvxr9NT3H/X18es677XdbpfW9ul0arPZzGazWRotYE1HFqpyfnWaVvKnpi/VatUajUYm7xUC2Gq1Yt4vEPigCAIYCLwz8ubidDZPB/c1eoGunP95cpqYzfNGMKfy/JB7cj+r1SrNbByPxzRziCnN4XBIrm90C5H8EPLLrGG4fQZ+FXnOhR8RnhiobT43lU1/pMfyM1KT91hOvS7+60cH16mvi3+N9PF9BAKo16D7Bzdd61F3DIdDu7u7s+FwmJym6fqh6vA5sET6EO9DwZH7Qx6K+Uuz2UxyT9b+QCDwMREEMBD4oCD0HYKlxGyz2VihUEjzffw8oEpL9h+STX4W8gcx08oxZjDL5TLj2MbvwpDmcDgkp1KdBel2u9bpdKzZbCYJ6Uc4NAUuD3oY919P4T3fa3rf3mpfTZT8/OxH6AA+db8+MoCb/t3PCOF7w782+r2+Rkp0PGHP+11vDV8w5KvGNui1Hg4HW61WNh6P7Z9//rG7uzsbjUaJAGoGbB78a899PiX99/EQgUDg4yEIYCDwgYEstNFoZKSeSDx1FpADpo+GYEbQH9TMHh+w6SrSZYQAsplDAtfrtR2PRyuXyyncvdlsJgLI4D9zjYHAr0AP4XnkA/hD5nscOvM6gJ78bTab9PmlSJNHLj4KCeRz7wkSr4knTHndM7PHJPAjkAK/BnqC7tdS7QB+FAKo3zOz54nh8fgjS3Y6ndr3798zBHC5XKYRAd/98/ehf+cNv/TGOAP3/RFe60Ag8BhxMgsEPihUYsMhBRdO5JeNRiNJeJjh0OB4PbzogYe/00o3B1Q6fziC+oou13E4HKxcLqeMP7KfvOtbdAADL4V/X+YRjlOSvPckf77L5EO2+YxqUeYjEMCfPYf63Csx0u/zCLpfd/Kki+8B3yHjNfJOx75ja5aVWr4H8jqAngDq35lZcoMeDoc2HA6TkzR7BzPiefflf7/v/KnZlxLAyHsNBD42ggAGAh8UmsFklu3W4RqKe5s6uxHrsN1uH8m2lPxxH2oPvlwurVqtppgIzF3yKrv7/d4qlYq1Wi0rFovJBKDT6TyaAQwTmMBzoLNyebmTngDmdRjeiwB6UqCfN4yWdIY2TwpqZpkuzls/hrzvzR4y5FRRkPfa+I7tKQL43gUhP9PoYxKQzSsZ9PJHvj/XtXmcep/nkTMNamc/WK1WNplMbDQaJQLIOAFz4x4UGvMkn97lOc/l871f50AgcBpBAAOBDww2VNzWzCwZr3Q6neQISj4gZjB0HMzs0SHMz7bofWh4OzMdOtuhUh9mFCGJnU4nEUBvBBAy0MBz4KV4ed0YlTN7vNXhM69jpzclFjwOtd5frVZp7sqT2ffqMJ0yFvGPI++WRwTzpLp5v9/s7ecEPQHUDi25qsh1laxzze9F0hV5BBAipkSNtRc3UHUA5XGemv8DebN+uidQ4Pto5kaBQOA04lQWCHxwsMHTSUNuyaGy2WxmpJZ0/9brdaYKrIcWKvp5RJCuY7lczmz22hUk4kHd37Tz5wPpA4GnwCEcMvEzouFlze/dBVRSoFJpndvVwzddQC/R1s/gWxLYn31Ph4zHkvfVd2nzpOf83vcmT74gpvJ3H4uQRwDfWwaqj8ETQAgZZI19A4MvNRLLc/70YD9gvSfmR/cBrw65ZiIYc42Ba0EQwEDgg0MPGlRa6QbismmWL2fSLoP+DIceDqje6IDDBIcINvt6vW7NZjPZg3P//Iyf+dOOjnYB38IpMO93+r+7lgPKR3Nc9Mjr+OTJPdXkKI/86Xv1Zx3At4Sfwcozf6H7N5vNMp0XTwCVSL7XY9GvZpZ5HLq2+NfLz2x+NJMbs8efFR+JowSQDiByenBKyvpaHc2nnh/fvQQqA1Ulh85w62eNHFf2D13/gRI/jXlotVqZWW/Mvl5a7POPJe/Pr722/WzWMe/Gz+jvCBIYuHQEAQwELhj1ev0R2dMDMjLNarVqq9UqSXa0WsuBzecFcpBA5qnk73g8JoKIQ6ke4tfrdSabcLvdpj/rLCPXoF9/Ff7wlff1OTfw0TZ5fwDR2ykXxo+CpwigGoz4TpKXFvL+zDus5t3fW8GbbvjH9pwZwPeWgPrHw1dPZr10VSXkgLmzU+/D9/5c6TUx56ZdtGq1mik+5D3ec8qNn3oP+MLJKakta/vhcHhUVFCi6N+rSg4JeYfwdTod63a7KexdA98xDKMD+dR72I8ieFMh30lW0zJdz09Jif067r/XQqcS5lPGNjx/H0H6Gwi8FoIABgIXDkgYTm4qGW00GjabzWyxWNhyuUymMSrN5ICKRAgXUQ51EEhvX6/SID8LAulbrVaZg8FrEcCfbcJ5xM67FJ4yrdBu6UcxNPAHck+cPFnKO3z/7Pl9zcd3SmKY93P+8ZyKfDj1Gr32tf8KfKcg732nc415B/e8A+17whcc1ICKQ3G5XM59nX7WuXnvx+c/F0qofBHNv06/Kjd+7mfCd5P1ptfqJbm+W65Eiv+nc97aMeR6NKrkeDymeJ9ut2u9Xs/6/b7d3NzYly9f7OvXr/blyxcbDAbW6/UyJFAloXnQris3JLcqv1VDnp8VTPS1POVC6z9rkP16vW6NRiN1OdvtdhiZBa4eQQADgQtHsVhMG7WSNmYFIX3Iz9iki8ViOkyQ60f3Dlc4JXmeXGiHUInfbrez9XqdZkWopqo87tQB8alD0lMdubyf9aRPCZ+SJS8r9AYjT1WyX0vy9TNod8ns4XlWaaTK1fJI4EfqmL0EH/na8nDqPfEzcucJ13vgqc9foVB4ZOZ0qa/Nc3/mLTqx/vdrJ9ITQdY01lidWVwul6nQ52/b7Ta9fn5dhhCaWaZTrS7PvV7PBoNBhvz98ccf9uXLF+v1ekkOykygds3yoHPqWpyczWYZkxpvVpPXjdX78Wt+HhlU8lipVBLh63a7qbt5c3Njg8HgUfRHdAAD14QggIHABQMiVqlUzOzBrU1nNnT2SMmfGlRwAND5QTbJcrn8KAtL70s7e0hJMQnQGRRPALl+/fpSnDpU6+bvq/pK/E4ZWDxFAN/jAKCHD55nX0HXyjkdXd8pe+9ujO+iqCRNOx/+AOwlWB/NWCjv+dXuhHfYPWWb73/HW3U4f3Y/+tp4uWTe6+M7oqfu7y2Rdx15kkheK3XV9CQDPOf1eUnnXd8v/r79GgvhgzDNZrPkCM334/HYCoVCKvDVarU0x6cmLuwJm80mkS5k+54A3tzc2O3trX358sVub2+t0+mkzNe8yKBTzwmFx9VqZbPZzCaTiY3H4xRTwZ+n0+mjyArWaF0f+L2nFATaPWVvq9Vq1mq1rN/v22AwsNvbW5vNZmnm0xO+p6S5gcClIQhgIPAE8qRCeX9/6v/kVdHzDkbPrf7nbT4cXDiAectuzFm8GQAV5MVi8chBVIkDklA97EAMNSfQzDKkcr1eZ6SheiB4LRL4MwKYN2OiBiO+a/YzAvheG7+f4YGoI5Hy8ikMRvLkT3l4K4Lh71Mr63roVSt7fxj+2XzRe8B3tc2ypIlZK15H787Lz+f9nrd8DKegr4+SpLzXJ0+++JL7OjfyDvSqZvCSdiXr4FdfozwVw88IoD6H2v2D/DWbTZtOp8mIRddaJUpmP2bG2+22tdvt5NYMeSsUCrbZbNLYAIVBJYDc+v2+9Xq9NP+HGZi+D/xj88+Dd8ldrVbpMU0mExsOh3Z/f59I4GKxSMUtP+6g8kzf9fPf6/perVat3W6nLiN7HyoaLW7y/7XD+dRjDAQ+OoIABgInkDfH47/3N/4fUOLguxy+Yq73qb9Hf8epKrseFNTBU4fa1ZQFV0KV7KjEyAPCofer83/YjGsHUQ9S3iHxFPl76aEqj0Sfkn966afP+boUAgixVQLLAQoCiFTquRJQs/M9tlP3n0f+tENWLpdtv98nonE4HFKhwVf9T93nOeE7QnlFEv25PJKRJ/F7LxJ4qpClBEmz5XwuqHbN/OPi9zxVOHsr5L0urJcoF3wny3eCXnLtzy28+G4knwngDYW8ssK/fyCLx+PRKpWKFQoFazQa1ul0UlarunjSAZzNZtZoNJKRV7PZzBBAiJ/G/vyKUYqu0V7RgCR0Op3aaDSy8Xicyc9UszL/HJy6L31O6PBVKhVbrVaZ38fepqMNfi5U3x9BAAOXiiCAgUAOvGTklDPZKZkJ0EOuSozyqubcr5/dyuuU5B2w+B15rma+KrxarWw6nebObJw6UCM94pqUAEIsOaBo11EPUvr7PTn5lcPhzyrMWvV9rgT0OTOA59j087oDen9eAvqcLqaXgL4X8ooanhzoYVc/M96pL68jo7/7PaDvN7PTnSWk2WoskXeAzyvCvMVjyPszr02eQyJrR17H7KlD+Vu+Vr6Qpt/7YhZRN3S08optv3rteQUQ/2e/zmvHn/W3VCqlNUALWjoTrPtSsVi0er1uxWIxGbp0u91EAJGDQgAxQyFHlv+D62ev10sEUsnjrzw3ec+r7iN0OpG4qoMunxG/Tujr5smo/l6eTzrz+t7VAg2k0a+rtVrt0WMIBC4JQQADAQffQfIHbd1o8zYG3QRV8qWHJ19FVxMVNkCgh2E2f2b+PHTD0wMz/x9J53w+zx3afwr+gKsEkN/tDyU6A8iB5mcE8Fe6gXnVed8F9ETQm7944v7U/Z/rAPvUIdE/R3kdX/6ejux7EcBTr0ceQfKy5bzPh+82acf71PvlnI8573XRmy/6qJ0+nzvtjutj8QWgt0Tec+gJIJ/5vPVM5+fyOmdP3ddbPB7f/dPPDzNxSCLfuruj96XPG3sQr4V3wuXntYup7p+VSsW2262VSiVrtVqPCKCSuO12m/4eAthoNKzdbqfOX7fbTRJSzaH1j+E5j1ef/zzJ7Sm1gxJAM8soCHi/+mIEv+t4PGaKfXRUccfO6/75fd53x70ENQhh4BIQBDAQcNCukc4n4LbGMDpSuzyLaqCHQORFVJh1CN/P0Omguv4OiF/e4Sqvokx3TivJq9Uqs/E/x7VNnxukoMwQKgHMI12Hw8EqlYodDodHMs3ndAN/BXmHck/Q9XllEz91+H6vDf3U68tjgVzkZeblker3wlMdwLyOtSd8/s/aNdff679/K5zqAGpHQYO0vV3+qQ5gXvfqXNd/6s95ncxTeWl6iM+TgOrvfq3X6Vc6wU91ABuNxskC21tCC2o6I+edPtmPNJ4HV2i6f8fjMc3zkeXHHgDhhQDyd9vt1orFYjJK6XQ6mflBT/5eAv+5pzuucQxqUONVJH5d1N9Hl10LFfy/3W5ni8XCqtWqLRaLNO9n9iMCA0Ma3dO8OiRP4eO/DxIYuAQEAQwEHJB9IBHRwXQcyXQjxnRDYxL0d7EpNZvNFKhLzhAdAYbwGfDXiq9W32u1mh2PD3lOzwEGFJBLNtg8c5jnSs+omvrupe+AcJ16kM07bJ66/Qry/h/PI5t63v2e+r8fAU911H5Gpj8CfkYAvcTTf+8NSE7NAL7X483rAPrurO8w+UMt8IfMt3wMeX/2n2XWCyV+p2Ttnvyduq+3ekx6LXzlWnmNPgL5U4fM5XKZ4hFw+IT4aU6eFiLNLK3v2uH0GXcaCVEsFhMJYtauUHgIg6eAgenLc/efPCjpbjQaueoZ9kLILa+RzgGaZaOKeHxIVPXxFQoF2263NpvNbDwe22QySVJQVU0sl0sz+7HH8dwjPT2lGIFg6+c+EPjoCAIYCOSAyt96vbb5fG7D4dDu7u7s7u4uY1NNyHqe+QabCpsccxS4qHHrdrvWaDSsWCymrtp6vU7zGxy6yPWjwssMwnMACfMdSD2ImllGevqz54dhfe1c+G6BDurTudEuh+/QeWnTcw+KeR27p25eouZnffII13tCCZQ/uHrTCJVH5lWhP8phPO/1UPLw1Pd5j+09XydPuv1jUwl4Hvk7JfV9D5x6nfR1UKKXR/qemv97SzxFAPXPrFm/2tF6TRwOh2SAMh6PUzTCcDi04XBo0+k0dxaOx8H7TKOA8r6eKgCietntdhmixo3943dIDtfJdWuRBLKphIq8Pk/G6HhWKpW0xxJXQTi9n3Ecj8dpL8ddFFIJ8cYMZzQa2Wg0svl8/iQB5HXjPRQdwMAlIAhgIJADtdqeTCZ2d3dn//3f/23//POPff/+3e7v75M7mZJAb79P96/VatlgMEghul++fEkBvXQaIYDz+dyWy2UigJA/DFiQ/L3kkKhkFPLoSeBzJKAKdaTTw0e1Ws0lwi8hgHkyOB7Hqcf9VHfJH1a9S2qeeYX/vec6lOc95091Sc0s8xiUWGgWV14H5jn3dS7419F/1dfsKeL+EYiFR957RB+bJ+n+MT71Oz8CTr0OT71W/L+PgJ8dyPWxvOfh/XA4pD3n+/fv9v37d7u7u7Pv37/bt2/f7O7uzsbjsS2Xy0cdMMhTq9VKpA33TsLaMbnx0kpeM2SnkBzfodfu/O88Rzob76+dUHntMJbLZWs0Gpk4CPYX9rVWq2U3Nzf2xx9/2J9//plIIDmFEMD7+3v7559/7O+//04FXYq6qHvYmwuFgrXbbVutVo/eF/7zbJYtlgQCHx1BAAMBwfF4TAPhVGDp/n3//t3+/vvvtCkPh8NHBDCP+NRqNWu327bdbs0sG3rNporERQmgbm5sxvV6/ZHM9Llgs1UCiCSNg0G9XrfpdPrT38VjY0OEsHm3Te+Y6g/F/F++5n1/6nXy33sC6ImfnylTwqTRA/5A9BZySn0e8x6rEmOtmPvXkptW9Z9zGH8PspHXiXnOn/Mez0ciS/o+BHlEV/FRiNJz8dRrcWmPReELTG/xWPhsU3SczWZpz/nnn3/s27dv6fb9+/ckXdQCYa1Wy8SkQJi63a7d3t7azc2NdTqdVPDzZj36WL0Kg3/LKwD8KvQz4Lt/9XrdyuWy7Xa7lFNL8ZOfhQDyWGu1mnU6Hfv69av9x3/8h/3rX/+yr1+/JtfSZrNppVIpEUAkokhh6dptt9tEMGezme33e1ssFmZmGQdfXXe14MZe85HWo0DgFIIABj4l8rpQPmAX8gfh86RP84M4lJtZ+qoEkAM594N8koFzCCAdtfV6naQvp8xJfmWTUfKDHKjdbid56mQySbMPPBYej96/n9vSg4VZNrCYajGZbioX81LM53QRPCE7Jb87RQC1Y+bjKjwB1N+fJ407B051/zwBVEmWWth7AnjOaw0ErgXnOrTz2c1TOKh5E0YvSgB9kVEVJl46Wa/XM3PmmL10u93UAfRk5aN0qrwh1263SzN8rG+s09VqNT1/SFS1e9jr9dKoxWAwSGH1EED2IjISkX1CNhmXIC7icDik+UtuPM/e0VfHHgKBj44ggIFPB7/5stAr+ZtMJkkacn9/b9++fbP7+3ubTCa2XC5tv99bqVRK1cq88HAlHszvtdttq9VqVigUUoWTjQmix8akhNI7IP6qDM7Lhdgwb25ubDqd2mazsXK5nBzSeByeBPnHp8SSxwGZZV4QIuxt5PNcHvMMMjzx8xJSX7nPm4/z18o1+RyzPAL4lvBEX295HUAfYv0RZpkCgUvCOQs6mtuJgQmzdsycYfgyn88z+w/zZ2aWIT/MgkP8WMuZMYf8IKmEqPxu9+7c0P0gT8Wg6hEdO9D5ds1zVDOcQqFgzWbTOp1Oknnirjqfz20+n2eeJzN75MLKz81ms0yUEvcV3b/ApSAIYODTQSU3LOq4rGHuwvC9DuCPRiNbLBbJHpuq4ykjDv17n6FVrVbNzGy9XqeveaYXfr5Ls8N+Bdo9YiPkOeBaGo2GLRaLRETN7FEHMq/D5rt3dEchlRqEzUwGnSo/lwip8Y81b2bQf8/1+U5gHgn0Nvb6WPQ+9fu3koXlPWbg5//8gSkQCHwMaDGMGy6eGufA7BkO0+oyfTweE4lhz6GQpwRQO379fj9JHX91zvs9oNfoxwq8CYsWw/TmTYl0X8Awpt1uZ4q+OKzOZrNE6lDi8Bpqp1DdwDW+4r1cfAOBlyIIYOBTQTt/yDAnk0lyWENyw41NQYfPybXLqzLqPJknRXkHeWYM2NDVxEOjH7S6+bsD+GyYjUbDOp1OJly3WCxas9nMGNTwnOURQJURIW/VHDo2TR5fo9HIzDYejw8ubhxk1KVOA3m5D17Hn5nG+HmVPBKYl12Wd0h6jw09jwQC/xi8GUEgEHh/sAZq9wjCoZ0kvtdcPwpodPsomnnZp5d+cqP7lycJ/8hQpQeFWrqmmsdn9lDQ9F1DVY/4fUuN2Yh5mkwm1ul0kryT/QcFi5klszYl7hDAZrOZG1AfCHxkBAEMfCpovh+bMi6f//zzTybmgcw/NuXtdpuCY+v1epqxYBZAw2u1G6MbmQ+Q15kOBviRn3iTj9foAJpZhnC1Wq3MpkpYsNqMn7K+VhKoZE8jMaicQvqowOpGqeRX3eA0L82bM+SRvzyZal4n0EtC88jfRyCA/n71e5Xf5jlLBgKBt0WeOoA1Xo3FNFPWd55QmOhcuRI+LQSy39B5YqabG2uo5uBdCpDN6oyk5hxCir0cPi9iRQt6GhnB75zP5ynknmxefd4wm0HGq/mM3DSv8D1GBgKBX0EQwMCngSdiOnD/zz//2P/7f//Pvn37lgigd/akelipVJLl9O3tbUZqQ+aQJ4AYq1DppRqMDJXNjo1ajVr0pl2xX93Q1Tmu1WqlzQpi2+12MyROSaCSLCVMh8MhHXLUCEZ/B5tyrVY7SQC1mq2Bw57w5pG/PKOcPBLoJbunTGjeC3mHB/93/jHoXEwgEHh7sNbzVWNydLacEHK+TqfT9FXny1n/WRsxdmGmj6KjBrprsZDu4O8WDN8a3hhH5yQJvVfH0zw1xFMOwRpAv91uU8eU5xYiyCgEIx9cmyeByHrVATwQuAQEAQx8GvguHMP29/f39vfff9v//b//1/7+++80eI/Lp5klN08qr71ez758+WL/8R//YV++fEkuaxBAjDhwHMNWmsH+crmcSJOZpdBdOmU6K5cni/ydWQ6qpvV63cyyxjB0/5QAniKB6ny63+9tPp9btVpNhHC/3ycJDf8fe28v4/FzklrZ1oBmv7H/jADyf7yJgFaGX+I8ei54o5vn/PxHIayBwGfEKbde1qI88kd2rGbPcZtOp2k/gPBRAGs2m8msi4IjJAXy5/NMVRJ5KWCvUIMcvUEAtduqewcFPXVe5abPAwqY7Xabkc5qJ7DZbGbGM9jX9Azhr8ubwQUCHxlBAANXDzZldfzUTRmXz//+7/+2v//++1HQLi6ebLadTscGg4F9/frV/vrrL/vjjz9sMBikLqB3YoQIjcfjjBsZLqDM23mHTpXz6Eb/uxVdlc3o90hCdVNjY2NzY4NDgsNj2W63mTwlflbnC39moHKK/JyKi/D/L2/Gksd76s+nvr8EXPK1BwKXBu/G69cdJRuQBEYMvKkY3T+IH+MGm80mdfXNHohKu922fr9vX758sZubmzTfp7l0OvPmi1wfHZ44a+dPzXMoSmrx0ZvA6POgr4nuP4VCIVNoVNmsfm00Gmb2sAextylJ1T3uVBEyEPiICAIYuGr4DRkZJrIbHD7v7+/t/v7ehsOhzWYz22w2aS4PyUir1Uo228g/v3z5Yl++fElVWTpWHo1GI3UDIVPIUCF/SEtVAumzkHQG8HeNYHQuTiWYfmPLG8BnM1WrbOItVCIK6Hj64FyIOc8Fj4/fs9vtMqY4GmCsj+ESDjmBQODyoIRPTbG0IJY3r4ZjpBLAyWSSZv10rlwLcT7XDldPzbdj9px94dLhDV+0w6bkjzk79g4/PqAmbH5f8AXIvAgJLfSyVzEDqCoNn+GohdFA4FIQBDBw1fD2zUr8lPQRtov5yfF4zFRfb25u7I8//rA///zT/vzzT/vrr7/s69evj+Q4eeQP0GHbbDaZqmSlUrHVamWlUsm63a7d3t4mSamaobwW+VPpjM7FIaOBdKn8029yeQSQrqc+bxxgmKVQeSuBv4TOUzEfj8dpE/azLWzK3nU1su8CgcA54Gf6vEIib05NiYu6RaqhGF0oZr47nY6ZPcg/+/2+3dzcZG4QP+38XTr8bL4+fyhklACqYZrOSuqcvDeDMctXSaiDKPuJv2ku7ymH6Oj6BS4RQQADVw1y6BaLRSJ/dPzu7u6S6+dsNrP1ep2qi6VSKeXkDQYD+/PPP+1f//qX/cd//If98ccf9vXrV/vy5Yt1u92Us/QzWSbkB+MVgnyJYuA+u91ukpNq9w/y9xodL18J5e/yuoJIW5j/yyOA+/0+ETQeA852GqGh2YL8P5xWqYLr/WvOle+OapeU2yWZHQQCgcsABBCjK7353D4lLeqkrMUzM0ukw7tZUigk009vqEx8PM4lw8sqlTjnPZ88Vxrp4GWbvmB6al/w+53PE+R3QDo/omlYIPCrCAIYuGpgwILhC+Tv+/fv9v37d7u/v7fxeJw6VGaWJDjIPb98+WL/+te/7H/+z/9p//rXv+zr169JhtNut1/UfapUKtZsNjNkELMZCKEf7PdB5a+56Wg3UP+OTRFnUh+zoHMmZpbknQTs5mUl8T3/pkP0vtuIlEZDe/UghByq1+tZt9tNM4nNZvO3n5NAIBAAEBRGCKbTaTJwUSdP4hwghhS81D3aR/t42SFdLF/YUrdP3W9+Nlf90aHz4ir99AQQ8oeKhMet8/neLM3HMeXBu0OfyorFREZveUQwELgkBAEMXC2YIaNq66WfOvNHFANyHLp//X7fbm9v7Y8//rC//vrL/uM//sNub29TJdY7fp7akP2GpVbUVIj9QUFz3rwJymvAX69KQun0sfl5wwP9Hfw9Mh5krn4z1y7seDw2M0szMN5Se71eZwKQeS2Yn+FwRWVdu4e4mwYCgcCvQufHvXEYLp56Y74PQ5f1ep0ZJaBLBTFpNpvJeVIjCHymrBYC1enzkgkHewjPMR1A3Tc0Uxb5J2u9WXaGDwJ4SgL61HOVFxHkSR73l0f4wowrcKkIAhi4WmgOk2YwYfzCpo37Gjp/NhS6Tgzec+v3+9ZqtTI228/ZZNROWiWWbILaefMVRu9++ZokkK+e5EEE+Tv9mofD4ZC6hWT9aVWXmIhisfho08/LWWJOhiF8fQ7UBEYfx36/T7OYfmN+zi0QCFwv8pw88266PqlztLp5+ggHJO/IQpErmlma9dP9RWWemLyok7SqP/yecA3GV+rSqeY5ebl/Wuyj+6kGMNpN1edO9+a85ytvD3gqHug5jykQuBQEAQxcLdT50xNAbmQvMfunDmydTiezOSM37HQ6Vq/XXyz/0Jk5CIy3jdYN6BTpO9fG7wnTKdJ3qgOINIfOIXOByKeU/GmuIBu/HgCQn3qDgNVqlYbzleRh9rNcLtMMiB6YdLYw7+tTRgGBQODykZcN5108vbsj65Hm+ansk/llClaaA8e6UqlUMrPM2vnzcnaUJayVun7lEZJLXa88+aPwx/PNV14HfgZoEVAltWoMpqT5V56nvHihp26BwKUhCGDgKoH8E/fPPOkOkh3CyjXuQTdoSJ+6cqrb50vCu80e5u18l42fOUX43mqz9/ejf/YSVyWAgMfE8PzxeEyETd301BjB22cjh6Xiy/OtszgazqvzOWoCoFV0naX0f+a68x5/IBC4fOTZ90PytAClRMQ7ejLfR6eP+W2VoePMSSGMcQLf7aOgqHsMxUUv8bwW4qfIez08CdSZcL/HnHLw9F3Tl3bwfCc478/+7/m/gcAlIQhg4CpxKvTdD+4T+M7sn3b/9HaK/Jm9bDPWzehnG8Z7b/KnJDM/+9m8DiEVbZV9QvpUHqsbus5lQs7pINLtM7P0/Ww2e1ZshP/eHyyeepyBQODy4J0mPcHTuTM6fmpS5WfS+KoRAZVKJa1VdKuYJ1fyl0cCdX+p1WqPrt3sutYkzVX0r0ueIZiOJWhXVIt8qgzxERDPuRbfHc67RbcvcE0IAhi4GkAoIAhs5FRsMSDhRuB7oVBIZEC7f0r+dC7jtXBNG7riFHHUucDtdvsoyJdB/na7nQlKhgTq5n84HJJRDPOFSiB1JkSd9vzNG9y8Rs5iIBD4WMgzGfE5c3mxA0r+fB4qX4vFYtoblCDQDWRNUyWJdvzU+MWTP7Pr3SdUhptHAnmuveu0dv98dIO6ZT+H/Plr0O/1xuvsiWCQwcAlIwhg4CqgFTxkgsxtzOfzR+SP+Y3dbme1Wi0j1fHzfuTxVSqVyJn7DRBz0Ww2kzwKs51er/fo8KXhv/5QoGYxehjT+1F7cN/VbbfbiVwCdRINBALXAT9HjCOxSjk1sxSnYZ/lBwmAdKgEUaXlqmIgGkdjCjSuQLNevbLkmpFnuOPnwVnTNXM2L6JBXwNvnvYz5JFQLwumy6sE8GdE8FpJe+C68HlWnMBVQu2kdRHXCi8EEBKom7yZpbkBpDpemqNB71Hx+z0Qg0FcA0TMy7H4HkKYF7qMw6vPiuJ+6OjitoebKz9HdTmvshwbeCBwHfAmUhA+HQnwt9lslllTIH+EtCPZpHDoSZ3m9nmDEp1V01nlawl2fy580VbnMrX7p+oPZJ/a+dN5v5eavngHUp0/VBIIAdS59Zj9C1w6ggAGLhZPZQlBACELWu3FuW21WqVNV7P/VKoT3b/XBd055i3zKrAaCsxsn7q34p66Xq9tv9/barVKBH+5XCZH11qtlrp/s9ksybjy5jl8FbdWqwUJDAQuHH4UQIuBrCdEAun3SgB3u52Z/dgj2u22lUolazQaiRCiGmHf4CszfXlRDpiT+Gy5z4JTcRveAEYJoJK+PJOvvHD2p8CoiN6vj5/gpq7YfhzhpfcbCHwUBAEMXDT8ALfPEtIukp/r2G636fdoWK9WczVXKAjg7wOZ5SnooWC73dpisUjGO+qeqjJffW14D+j9qRU7lXgOYNyfFg30NT+1uec5oV6bS18g8BGQV6R5KqJGi0m+GKjz4GoGpvl9yM+RflJQYu1iLVHDMI1y4KamYbF3PIbu137PVtmtmaX12hu+qPz2Oa6fWjTW+9SRA70GxgTYs55yHv2dyIlA4D0QBDBw0ThVSdTNRBd0XdR1ZgzJoA+U9Yt74LzgkMVBSwPi8+IieO34+Xq9bpvNJkl2mMNhA8cxFDnParWy2WyWK9nyxgK+gq8zKXl/joNAIPD7OGXMkWfUkZfhpw6eFAIhgxrlgAkURixkmJr9OPjX63Xrdrs2GAzs9vbWBoOB9fv9dNMuYKvVsmaz+aqmYdcEdWX1JJ3XCJk+zqrECeW5PL/E/IX79Qoh/QoZVALozcoYL1D3VsYHYu0PXAKCAAYuHn6Q3M+UeQMR1e9DOPzgvkpM1BkyFva3AxVfpJw6i6GbMa6t/X7f5vN5kobys5BD8rnW67Udj0dbr9c2nU4zr72v7PrYCG877r/n56ISHAj8PrTb7yV6essLEdd/O/WV781+zILjVsz6YWaZ4hIOnv1+/1F+nzcM+2wzfS+BqjxQcigxXy6XaR2HAPLaqLNzXpH2qXWX9xPKIDUA0hERSCAk1Oxhfh1XVz8ugtw3CsWBS0EQwMDFwjuJ6UC3Pxholdhr+ZUA5nV9XuIqFnhdsPnX6/V0GMBevdFoWKfTSZu2HhzYuPNsxPf7fTpsaEcxL1wYJ1F/6PARE9w0EDoOAoHA7wGSoAQhL7rhlIQPKaEv/ukewBqDC2fevsBawHgAJjB0gtT4JUjAzwERw8lZJboQMByeeX3owmqMD0oNVWg8BaSfPh6KmzrA+pxHHKwhft4srtFoZMYLAoGPjiCAgYtHngw0z8rZu3edyhTyttKh7X8/aLfPd/84kHU6ndxDoBYB1F5c5WH8u74v8rIJ9YCnTn/8m5oW8Dt4bwUCgedBZ/uUIGAGpcUe7wqs0Q06w6WzZH7Nz+vsexWAyg1PFX7yulGxX5yGvr50AD3JV/dVXhfNdNXnnL36Z/eJQzjvJ42F0jlQNQxjP8jr/qnklyiPIP+BS0EQwMBFw3cAva3zKfJn9lD9zcsX8rNdQQDfB9rx0z+rNNTLwnSoX28cDnkfMA/oYyHMLNNl1Co/t9VqZa1WK3PI1P/P+0WlYHQh+T7vsT7151N/Fwh8BOQZsjz3Z/k7Ppsa3bBYLB7l9HnJnioAVAXA59LMHsnBVaqpeX1588A6b5YnE88zJInP6mn419jPaK5WK9tut6n7xmymL8jV6/VnE0A1DoP8Efuh2cDct0o/eb8QAeIzZVutVupGxqhI4FIQBDBw8TgVKKuyzzzyl2fmofbOYe38McDrw2ydbshs1D4+QjMgOUCyOXMQUDmQuv7RaSSqgo5CXofRh9Or1NTMkjFA3vsoLzxYXUS1U33q7wKB94a+j5/j0nnqq4/zofu3WCwyMj1IIN8j5aMLqB1A1n9dQ4h4wRwKaZ8e7DH28KZQvkCoYeShFnk+1ATGr9m8fmrMQwfOqy8g8T/rvGk3mf1Ao4XG4/EjAujJJ4VA5kB1/pNriQ5g4JIQBDBw0dA5QH+I8HN/fu7DzDIk0H+fZ/0fG/vbA7Ju9iDP1I4v8i6VFemMx2w2S7MZaipBlV4r0chBzX5Eg+h757lOhPoe1AOKHg714Mv7Ku/G4/e3IIKBjwAf0eBv+m9P/Zx+ZtScxX+OPfnj0J43A6xdHDp/rAF+lrjVamUiHDjUM9elXSb9HObtFUEAfw7tAJ6KY9jtdul18t0/dd782dydnzWE/A2Hw5T7CAFE/qnmMxDPvO6fOr5yHUEAA5eCIICBq0GeHFRvefJPv5nnhfMG8Xt/5B2q8l5PM0sEEHmQzwnUA8H/196ZNrWRJVE0wWAkdrG4PfP/f9fExHR3dJsdJJZmAM2HiVu+lWQJ4bYNks6JqJAAlSSkV1Xvvsy8qbRRXyjwVM5qopLfS+49JjF5e3vb6inoItDJE0kff9WY9LHpaaUAP5Ms4Kpzb9dj8mPdwTkLAkXyfVPEz6N92ejFjxVlDaiOTxP6HNHZ3d2NwWDwTAD6sZsXbxyOxenwjJ2uPoBPT09NPb7q7/SdSQi+5LjqrSY0jq6uruLi4iLOzs7i9PQ0zs7O4uLiIkajUVN7qMjj8vLys+iw0j43Nzdb70NOpRGMA5gNEIAwF1SryZX460q7qybXiL/3xbSTLQm+fDH2SITXA62trTWpP2ob4u5zudmvoob39/eNCPNJxmg0aswKvEZIk5kcZVaakd++tPn+AG9FFRn3lOjco6/rsW7UlFs8SAjmWx2nStdW6nZXGweJP4kIRfvUw0+tHTTBX19fbxZvHCb5fx8/J1fmbVX0L0fg/DuSg2tG2R4Sf4r8HR8fx5cvX+L4+DjOz8/j8vIyRqNR0xNyeXm5WbzzsZHHhzuR6lw8qfYV4D2BAIS5olpxrn52cqpdlwjkgj87eO8udwBUSs/m5mbs7Oy0mkG7AJRxUFeK5vLyciMCHx4e4ubmpmwIn9uLVC6D2VhiUo9B1TEi/uCt0fkwR8ir/ny+VY/Nrr1V+54cMYyIZmGl1+s9S/PPrRzcxdOjSYrmSFzk2jL4/uSUeC2keS21zuHr6+tN24XBYBCDwSD29vaaVF1FaSvU8+/m5iaurq7i/Pw8jo6O4o8//ojffvstjo+P4/Ly8lnqp64dW1tbMRgMYn9/v/Wacv2c1oAG4D3C2Q3mmq6akxwR7Kq7gtnFjVxUO9jv92N7e7uVOtbVYDpPWn112lesc0TDU9E0EfV+Yt5KQpPNSb0Gdd9NZpSKxhiFt0RiTMeQXBzdzCP35/MtP75q3eDHTzZdUfTHt2kWXLK7Z27xgJnH63lNXXJVY+/ZOzq3uUGPIraDwaC5LyFWoYWJu7u7GA6HcXFxEScnJ/Hly5f4/fff47fffouTk5MYjUZN2qfG1MePH2N7ezv29vbi4OAgDg8PGwGYo8NZ/HFOhlkBAQhzRZd5xiReMi6A2UMTCNVluNtfbg3ibnSVIYH3F/N+g3d3dy3TGZ/Q6mcXgd66wlOZvL1EdrmTWPSIpI/NrpVvgB+N0p7dvj8383aB58dO9XjVX7n4y+1YvN7KF1O8dYMvnGgy7xH1yrUzi0idNzBbmo7sBPvS51WlAvuWzXu8dlO3Ev9dr5X7/Z2fn8fZ2VmcnJzE8fFxHB8fx+npadze3jb1hv1+Pz58+BD9fj92dnYa8XdwcBCDwaBp+q7xhekLzDIIQJgLcnqep+Jld89s4FG5h+bJ9rcIwmn38/fTdR9ej9d1aiJRiajKkECTh2w6oZQfXfS1j+oC3YH09va21VZCduLeZ0qT6Bx5zLe+3d/fR6/Xi/v7+1Ztoqgmra81q/gWcwvG649n2nNQflzXftXvJ+2r46arf1tu0u5CzxdQJglARbrd8VeRmYi2KFQPNt+8R5y3cNBxklMPI2ojJlL/p8fFckRday/u7++f9XTUePE0/JWVlVY2RTYL0vhTpFDnQKV93t7etoTf2dlZq95Pr6eaPy0qKOVUqab7+/tN1HFzc7MZW1pMYHzArIIAhJmmEn6ebucXfk3c3YpfdQceAcppfNlBdBr8eV1Q+vv2948D6fel+nwrIyBPP9L35CLLGzy7k2c1idRz+DiKiCYKqDFXiU03EMh90DyyeH19/Syy4RGLPKF9aUxVIvG1dbBdzwffj642Cv63lx47KdOh2nyxJN/P49Mjey78PFrudba5h6abM0V8HYNK1/S0aTcD8dq9LgHodVoycfKojUesJh0fMBkXgT6O3ATo/v4+bm5u4vz8PL58+dIYsZycnLTEmRbO+v1+jEaj6Pf7LQOtp6enprbPG7BrccL7R15cXMTp6WmcnJzExcVF3NzcxP39fURE85yrq6uxsbERW1tbjejb39+Pg4OD2Nvbi93d3VZ/yLwQCDCLIABh5ukSf3nTRFmTW7f9z5GYPDn5FgHorQZ0QfPJRnaCdOOQnFrCROT1VOKma2Va9R9KBap6fuXvqKo50n5KW6oiGhqPen4Xjv6z11VpIpwNYfx95AhGNZ66elzqs8j7T7NPNqVhrP4YPFOha2EqZzRU+1TCThP0qjVD/lvVssFrad3KP5u7ZLGn4yQimmifjpWuJu1Z/GmTAHTx5wuAVVRvkiEYvB5fWPWFAol/tWE4PT2No6Oj+PPPP+Po6Kgl0IbDYTPWdK5cXl5ute8ZjUZN/Z+ngnoWhrd9UNP3q6uruLu7i6Wlpej1es25S8Zgqvs7PDyMw8PDlvmLon9e+8c4gVkGAQgzjU8+Ndn1Qn9fBc4i0Cc/3ng4mxF4vdi0QlDPqRVxWZZLAGbRqu3jx4+t1/BoJRebb2OaWh793qN7Ee1a0Ozs6WNMdSnaNjY2mpVmiX+9jvck8/RNTZgivqaW3t3dPTO+yDVMVeuILE7zc+R06Cxyu56/6mFYpVlP+qzhdWQhpwUr/Vw9dlLrhcpRM7dlyPVYVWuH6rGTtlwP6+Yu/X6/qfvyx3ij9iz0dN8dPV8Sf5lpfwfTkwWgTFjUgkH9946OjuLo6KiJ/ikCeHNz04xhnXfG43ETPRyNRq0or67rS0tLrbpUF4FKNda1eGVlpRk/ldPop0+fGuMXj/756xH9g1kHAQgzy6T0Txd/2RBAE2KJKl2ocjqTpypp4jQNiv5pxXM0GjUW03rfXRFL/7unDTIp+Xu89vNz+3ePWFRjTKlpt7e3zcTU+wp6GrA/j6cl67vWWFQE0P/W1Ry+KzJZtZrIDeknHUMuInP03D9X7aNaLReXTJL+Hi7SNDZyirovGGWRWIm5LAazUOtq3eD7VxHDrrRR/V1jRYsg+XERX899fl5U2wYJPQnCyjipS/zBz8WzGiQA5cAp8xXdnp+fx9XVVVxdXTXXSj2HzlWe8qmUUK/v1Ljy63jeNJbH43ErNVi1pC4Alf4p4xeZdfnrdS0qAMwKCECYaXzi6kYf//3vf1vOcO4Qp8mwJiV6fJeNuQTgtBNabz6rlc/b29tWKmCOVrrNf46mIADfBk9J0+TVJ6XVJMNXnnOtUxW1qVL2NA6qFD6vrcmpxH4M5L5n2QwjT45dyOU001xL62PRDXaygyIT77+Pzk/eLF1RZXdLlIDKgs777nWJuUkN2D2FPUcQcy1tTiGuFi+qBYwqZTlH2XObhrzp75PGKvw8NA695u/PP/+M//znP/HHH380wu/y8jKGw2HLBEap8DoPPj4+NiLSM3o0Pjwa57WpeaEk4qurqKJ5nl4sAajG7zs7O7G9vd2KLHs9aVdNNMCsgACEmcYnFR61eXh4aFmHuwDURPjh4eFZ3cDNzU1r29jYaNI3pz3hy4Xs+vo6Li8v4+zsLK6vr5v0Pl/h1nvShUqr47rIvLb2EL4vmjDoviakeXKdJ9nu3tnl6OkTb/+9185Uj6lqU3MEL0dOsiuiT5w8/VPC0TevP3TXOz/uHh8fm0WViHh2PMK34cYWlVus19R5OntVn5frm7VV9Xvu1OmT6WrM6bvOUecq/dgjyr5Q4fv4vvmx1d+rGlyiM2+Hp3+qXu/s7Cx+//33+Ne//hW//vprnJ6exnA4bDl/5nR5jdW7u7vmml2lw3vauS+U5IwLteBRL1ild0r0SQQq1VjnTheclfkXwKzCFRpmFo+A5N8pZcTrQ7SS1+/3m4icUK2C1xh4mtHW1lbr8V1otdKjf+fn542zWUS0IkkyCdF71+99pZ0o4Nuhya1qknJKXteWjTK6Jte5v6B6UkkI5nqWHJX2iKJPxiUAK3OMaiXbTTe6GtLn1Xav1fJojUdMc5NkeB2eRpcbqmui6wLQLfLdhCWbs/gCg4+xXDulMec1zBHP06GzW2dO95zUeD0vUnSlK1cGRdXfEH9vi5sKKRPm4uIijo6O4tdff41///vfcXZ2Fre3t88WMZzHx8emjvr6+vpZanmOLGsfnRe93lrnQp3TBoNB/OMf/2g1eJexkNJLvVzEhR+ZDTAvIABh5tFJ2Q1WxuNxM7mQvfPW1lZjUX5/f98qNPeoXY54KFKnVcher/fsPeQi9cvLy6au4erqKq6vr1sRPpm9uBj8u60n4PvjJidO9d3k3/kkyNs5aIyoPvT6+vpZTyntq9f1lKqcWlpNzDXp8WjQX3/99SwN2idVGpd3d3fR7/fj7u6uSXXVKnwlALPxktxPHx4emmMmT8qrlgR6zq7voetznzU8gpZdKfV3N9CQgYWicW5S5eltkwSgR1l87Hg/NV9k8CwI9UrzLAiPNHvT7mz00tWs3c2SNPF2V8euNM68EJbHC8LvfeAiUAsYasiua6MWRDPVuULCzhc7HD9v+u8+fvzY3C4vL8fa2lpsbm7G3t5e/PLLL/H58+fY399vXD4V8cvZEYwrmEcQgDAXuAiMiCa1SAXeOzs7cX193Ux+JL5UcB4RTZ2B8MmUJtDX19exvr7epAW64YImWuo/dHZ2FsPhsJlA6TVzvUtOlSLN5P3xLRNNiXsJsSqVqct0Jae/5booTeSrdFCPyklU5glZRDTRZZ/Uu3GIC4OcAiVy+p/XSLpFe5eA7qoj8zRTvz/tZ/+zqfqfdf2+Erz5f/IUOhdmXW1q9BqePuypx76f71vVSWkxQOdQmWvob/k7VzTPsy08hc5NWqYRgJqsw+ySjaU8JX1zc7PJcsjRPO/VGPHV1TbXRFfHmO7rZ41Pvebu7m6rx59aPMjoRWOUrAVYFBCAMDf4ap16CCnffzAYNBNfTZB7vV7j1vjw8NBEBrXirvq94+PjOD4+jv39/djd3Y319fWmPs/TAXNvLEUbVWvo6Sg+AcppelWh+Xuc9ML0rK6ulqvWXleoCZJP+HN6aDaXyamgVSSwqpFyUejRNa8j++uvv8o2ENkEpjLx8AiOT+iqCJ7XkvnrVClflSAUPzM6WAm2bOYzKUU4C8H83FnMZeHmEZEuF9CqZUMWejoX+ljs9/ut19Tr5DpTT/31VigSftl8q0ordkdPxN98kDMD1tfXY3d3Nz5//hzD4TBWV1djNBq1jNV8nywAs/DLZliVAPTx3Ov1YmNjI7a3t2N/fz/++c9/xqdPnxrh55FnxB8sEghAmBt8UqboiwSgIn1udNHr9VoNYlVvsLS0FOfn561V7d3d3RgMBrG1tRVra2uxvLzcTLSqib1HVfxCJOHnq+W+Up4bzVLPMj/4pMhrVBSpznVaXY6MlZFHl0NjjqRVAirXkKn2MC88TBqH+XHVokVX5MtFhYRF7muox1R1P/m5q9d87TH00n5VOmvVc2+SCPPvqfq+/Lmr+y+9965bPy/5wkRXtDJHczRJz8YsngLsBkLV5mZDvV6Plg1zhs51vV4vtre34/DwMO7u7uLDhw9xcHDQ1OD7uaJLAGbRVx03ft8XK3IrkZ2dndjf349Pnz7F7u5ubGxstBrJAywSCECYO/xiouJvj8JlN7nHx8fmgqRGsRFtsag+QZ7+6X24sgNjbl68trb2rIFxFn9e+0Iq6Hzhq9ISfdmwpXIWrSz985Z7vlW3HqXuWkXPEe0uwxv/nyLqRuVd++X6t8pMpEqJ7ooM+nPmz/t70yWG/XN7qRm6ImreEsSFXZ4QVyK4ywAjf66Tthx5qcxV/L6nK+d+kzl1eVIfyby50YYin5zrZhu//uraeXBwEBER6+vr8fnz51ZfXN+nyhjo2vT3TM6C8FRlGbrJ9KXf79MyBBYWBCDMJZ4Ct76+3jIn8InOeDxuav+U1qnaKj3PyspKkxaqGoHxeNxq3eBiUVHH5eXlWF9fb4SoahGyzbS7jmXXO8TffKCxl39eWVkpxVrXNim9LwtFjx5WPeCqdEVPK6wETVV/k9+Lpy3mhuUudPxYfKmFQCUCJ0UAv7cAnFQD6umaXT348u2kiG0Wxv6Z5M/DDXki2k6w2j9nI6gm0z/TSsh1tVjIt/4cOXKbhWTesq0/57rZJ9f+PT09xfb2dkRErK2tNe6fedznBY6Iuqa2S/xVmTh5gUki0Fs8EH2GRQUBCHOL1/rpZ98i/h+9uLm5aVJB5Vioie14PG4uVnIKVfqnN2J2x7vxeNy44y0vL5cRQQlAb2xL1G++cRGo+4+Pj7GysjKxtcRL9WRZfGUDF9UNuhCsagdVw+rpV4rKdNWdeeQrO44qZTU7+On/z6LE3Xernl++eaTsR4s/f8/Vff98phF/XSLcnzt/JqqP04RaqZsumqpbicEs5HIkz9M4cypntsPP0cgcmZ0m8ljtz/luftAYHo/HrdYw7hCcj9M8TiaJvmmOeY9ye8qzj29KLWCRQQDC3KLJhdLt8qYo3mg0iouLi7i4uGhMWyL+34jWJ+BKI11aWmomy4oAuhB0W3SJP9X8SfzJ8MVdIasLERel+aISgbm2pSs1c9LfcgqiO9LKjCjXEXoaopsY3d/ft1bDc6pinpBVYigLwkoAuhDINT4PDw/N5GyaCKC/fnX/735n1f38P2dXzZyym8WfRwH9ver/8/OIf35ZPFeCL7uy5uhqTsPMos8NXPJEeZI5T/652rr2gflCJRf6npUJU415Pd63iFrwvXRc+zmpSqmuouiMP1hEEIAw11Q1LR45kAC8vLyM4XDYmF98/PixiZg8PT21Lhyiqv/zFUY3kXHh5653bnjBhWhxkPDTbcTkyc5LK99ZBKoBsybwa2trrUbiuYVE7jNYRd+Urur1fNrPx2+uJdT/6e6T+gyqY1OPcUGYJ4X5d/nzqD6rb2UaAdjl8Jknn9XvfR///SSDFW/LkQVg3s8jq9pyVFDnKxd/3rbBeznmyXX+bPLtpL9Vj4XZpIrwa0wr+jaNA+40z/8a8njtWqQAWDQQgDC35IlRzvGX3f1oNIrhcBi3t7cxHv+/gbwaICt6kVNHvZZHglGGMzs7O822vb3d6nOlmj+ldKkeh/qDxeFHTXqzkPPIsgRBTgXNEUB3HK1cST11S6/nkT5FHtVEXi1WcgQr4mvD56omrCu9ME/gXvo8vhcvTUyVjqloZq7XrO5XkVW9jj6LLMZcAOqz8vfmqaNZPFb1lf6YLgGoCCCTZHgNCCuA9w0CEBYGrY57hELNlhXF2NraasSg7PZzvyJFDhUNWVpaahWYb25uxmAwiMPDw/j06VPs7e01/YaqtE8ukvA9cDGVo2kSBd5GwiN0OQXUH+firxKAnu5Yta3wqKG/V926oHsphTDv+x7ItUrfujlK5fQee1nE6fwhcgpobtPQZejSVf+n15XrMcC0vJdjEwC6QQDCQqEJUq/Xa026VldXY3t7O4bDYZMq50YNEe2LmhtbeIqLJk6KBO7u7sbOzs4z8UfKJ/xINB41PmWGlB09PZ2zMpOpeg3q8RHPG493uYDm6J8zba1jVxrsW5DT3XQ7zfaSg6meK6dzVsY4OcqSnVVzVLUycslmMB4dJDMBpsVTPgHg/bM0fg9XU4CfhCasbpZxe3vbMsqoHBIj2pPXXMuQC8y98bvSPSsnPdJk4Efg47xqJVHV4uTavS5H0rxProHL6Y657s33y9H43Nuw6/3k99F1DL0ktF7aJ+/XJdZy9LWrHULV5sVfszLKyecM3ze/VxeY07hx5sdV7x8RCAAwfyAAYWHwSWN296yaM2ufSc8n8ip/ZT6TJ27vLZUN5oOcojlNyqHvW0XcXjKhmZQGGRHPxnwl/jzdNEcQc0P7qnWC8z2Pqep/9/s6rruanefm6G78VJlQ5M+t65wx6X+sHtt1zpkmgpn3AQCA2QYBCAvDS5PeSY95DdXkKt+f9DuA70WXYMu8JlL2LX//VgE4beuE/D9UP38rrxGAldir7k8rALv+r2+NZk76nl8SlAAAMD8gAAEA4E3J/fJy43SPAlYRQPHSgsu38JIAVMR/UtSvamgPAADwVmACAwAAb4oiaEp5VPPz1dXVMvr3M1NAI7r7MOq1cg1w3l5qYA8AAPAzQQACAMCbIhEV8TWl8unpqRFVuX9eVcf4M+oA831/75X7ZtWWQ8+BEAQAgLeCFFAAAHg3SNxVDdSzqU3mR4uqrsslLpoAADBLEAEEAIB3Q+Vg+eHDh9LRNO/3s+hyAK5aLgAAALw3EIAAAPDu8BYI4/G4EVOT2lj4vt+TaV6vq30CAADAewMBCAAA745JTdKrn98yAli9DwQgAAC8V6gBBAAAAAAAWBAoUAAAAAAAAFgQEIAAAAAAAAALAgIQAAAAAABgQUAAAgAAAAAALAgIQAAAAAAAgAUBAQgAAAAAALAgIAABAAAAAAAWBAQgAAAAAADAgoAABAAAAAAAWBAQgAAAAAAAAAsCAhAAAAAAAGBBQAACAAAAAAAsCAhAAAAAAACABQEBCAAAAAAAsCAgAAEAAAAAABYEBCAAAAAAAMCCgAAEAAAAAABYEBCAAAAAAAAACwICEAAAAAAAYEFAAAIAAAAAACwICEAAAAAAAIAFAQEIAAAAAACwICAAAQAAAAAAFgQEIAAAAAAAwIKAAAQAAAAAAFgQEIAAAAAAAAALAgIQAAAAAABgQUAAAgAAAAAALAgIQAAAAAAAgAUBAQgAAAAAALAgIAABAAAAAAAWBAQgAAAAAADAgoAABAAAAAAAWBAQgAAAAAAAAAsCAhAAAAAAAGBBQAACAAAAAAAsCP8DhF3NSbT0xp4AAAAASUVORK5CYII=",
"path": "images_version_5/image_49.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, in the inscribed pentagon ABCDE of circle O, then the degree of angle B is ()
Choices:
A:50°
B:75°
C:80°
D:100°
|
Như hình vẽ, trong ngũ giác nội tiếp ABCDE của đường tròn O, số đo góc B là ()
Các lựa chọn:
A: 50°
B: 75°
C: 80°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, in the inscribed pentagon ABCDE of circle O, then the degree of angle B is ()
Choices:
A:50°
B:75°
C:80°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, in the inscribed pentagon ABCDE of circle O, then the degree of angle B is ()
Choices:
A:50°
B:75°
C:80°
D:100°
|
As shown in the figure, in the inscribed pentagon ABCDE of circle O, then the degree of angle B is ()
Choices:
A:50°
B:75°
C:80°
D:100°
|
245
|
49
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAJZCAYAAABSuAjUAADiXUlEQVR4nOzdd1RUx9sH8C9I70VQsAAWVBCxYu/GbqyxxBq70RhLYow/Y0kssURjrLEbe4m9d0VFpSnYKzZUjKgo0oR5/+Cd2btsubvLUtTncw7H69w2t+zd2bnzzJgwxhgIIYQQQgghGpnmdQYIIYQQQgjJ76jQTAghhBBCiAwqNBNCCCGEECKDCs2EEEIIIYTIoEIzIYQQQgghMqjQTAghhBBCiAwqNBNCCCGEECKDCs2EEEIIIYTIoEIzIYQQQgghMqjQTAghhBBCiAwqNBNCCCGEECKDCs2EEEIIIYTIoEIzIYQQQgghMqjQTAghhBBCiAwqNBNCCCGEECKDCs2EEEIIIYTIoEIzIYQQQgghMqjQTAghhBBCiAwqNBNCCCGEECKDCs1q9OnTByYmJvD29s7rrHwSGjRoABMTEzRo0CCvs6KzjzHP6enpmDdvHoKCguDg4AATExOYmJigXbt2AICTJ0+KtJMnT+ZpXj9l3t7eMDExQZ8+ffI6Kzr7mPIcExMj7uPVq1fndXby1KRJk8S5UOdjuq4cP55JkybldVYIUWGUQvOZM2fEjW5iYoLTp08bY7OEED1069YNI0aMQGhoKN6+fZvX2SGEEEI+KUYpNP/zzz9a/09IfiBXK/MxO3fuHLZu3QoAaNWqFY4cOYKoqChER0fjr7/+yuPckbxAb8wI+fjRm5X8xSy7G0hJSRFf1nZ2dnj37h22bt2K+fPnw9raOtsZJB8/agqQ844ePQoAKFCgADZs2AAHBweVZRo0aADGWG5n7bMTExOT11n4pHl7e9N9/P8mTZpEzRgIyUXZrmnetWsXXr9+DQCYN28eACAhIQG7du3K7qYJITp68uQJAKBQoUJqC8yEEEIIyZ5sF5rXrFkDAPDz80Pfvn3h5+cHgJpoEJKbUlJSAADm5uZ5nBNCCCHk05StQnNcXBwOHz4MAOjRowcAoHv37gCAw4cP4/nz57LbiI2NxdixY1G5cmU4OjrCwsIChQsXRkBAALp164bVq1cjISHBoPylp6dj9erVaNasGQoXLgwLCws4OTmhdOnSaNy4MaZNm4Zr167Jbuf169eYMGEC/P39YWtrCycnJ9SrVw/r16/XKR/R0dEYOHAgSpcuDRsbG9jb28Pf3x8jR47U+Cp369atoh3TzZs31S5TqlQpscy///6rdpl27drBxMQE1apVU0pfvXq1WDcmJgYZGRlYunQpatWqBWdnZ9ja2qJChQqYOnUq3r9/r9NxaqKtJwp17bWOHDmCNm3aoHDhwrC0tISPjw+GDBmCx48fG7R/fqyTJ08WadLAVel50OTJkycYNWoUSpUqBWtra7i6uqJZs2Y4cOCATnl49eoVpkyZgpo1a6JgwYKwtLSEp6cn2rZti+3btxt0XNLj4D9eHzx4oHJcnK69Zzx48ACDBw+Gt7c3rKys4OnpiXbt2uHEiRMAtLcN16f9nbbI/qz3Z0pKCv7880/UqFEDBQsW1Bhd/+HDB6xYsQItW7aEp6cnLC0tUbBgQdSrVw9//vknkpOTtebJGLQdl7prsGXLFjRu3Bhubm6wtrZGmTJlMGbMGMTHxxu0f359tN0Tcu36b9y4gQEDBsDb2xuWlpYoVKgQ2rdvj/Pnz+uUh8ePH+Pnn39G5cqV4ezsDCsrKxQvXhxdunQR95Gh5O6xrPdncnIyZs2ahcqVK8Pe3h729vYICgrCggUL8OHDB637On78OLp16wYfHx9YW1vDxsYG3t7eqFGjBn744QccP35c6/pXrlzBd999h4CAADg7O8PGxgalSpVC8+bNsXjxYrx48UL22LZv3y7uZzMzM6XnqL5xGqGhoejWrRuKFSsGKysrFCtWDH369MH169d1Wt8Y13X9+vVo0KABnJ2dYWdnh/Lly2PixInijXV2ZW3Lz5/dvr6+sLGxgZubG1q2bKnzs/v9+/f4888/0bBhQxQqVAgWFhZwd3dH06ZNsWrVKqSnp2tcN+uzQN/PlYmJCXx8fMT/v/nmG5XPcdbn4L179/DHH3+gTZs28Pb2hrW1NaytreHl5YUuXbrg4MGDOh13YmIifv31VwQEBMDW1haurq6oU6cOVq5cCcaYzt8nL168wPjx41GpUiU4OTnBysoK3t7e6NmzJ86cOaM1D9k9fzmCZcOcOXMYAGZiYsIePHjAGGMsJiaGmZiYMADsjz/+0Lr+6dOnmYODAwOg9W/Pnj165+3t27esbt26stvu2LGjyrq9e/dmAJiXlxe7fv068/b21rj+0KFDteZj2rRpzNTUVOP6lpaWbM2aNSrrxcXFiWUWL16sMv/x48ey+cjIyGAuLi4MABs9erTSvFWrVol1r1y5who1aqQxj0FBQezdu3dyp1yj+vXrMwCsfv36KvPu378v9rNq1Sr2008/acyHm5sbu3btmt77lx6rtr/79++rzXNwcDBzdXXVuN6sWbO07n/fvn3MyclJ675btWrF3r59q/ex6XJc3IkTJ0TaiRMn1G7v8OHDzNbWVu12TExM2NSpU9nEiRNVts1lvZ7aeHl5MQCsd+/eKvOk1yw0NJRVrFhRJT8TJ05UWufOnTvMz89P67koXbo0u3XrltxpzRZtxyW9BkePHmVff/21xryWKlWKPX36VO/9S6+PLvdF1jz/+++/zMbGRu06BQoUYJs2bdK6/+XLlzNra2ut++7Xrx9LS0vT+9gYk7/HpMf/7NkzFhgYqDEfbdq0Yenp6Wr3M3LkSNlz6OrqqnbdDx8+sJEjR2p99qu7R6THtnLlStazZ0+VdaTPUW2fRcaUr+uKFSuYmZmZ2nxYWlrm+HVNS0tjHTt21LhuyZIl2b179zR+vnUl/f4ODQ1l7u7uGvf5/fffa93WxYsXWZEiRbQec1BQEHv27Jna9bP7udLlcyw9T9Lzp+2vR48eWj9/Dx8+ZKVKldK4fuvWrdnhw4fF/zV9nxw6dEi2jDd06FCNn0FjPpeMJVuFZv4wqlevnlI6L6wGBgZqXDc5OZl5enoyAMze3p6NGTOGHThwgIWHh7Pz58+zzZs3sxEjRrBixYoZVGgePXq00gXeuHEjO3v2LAsPD2cHDx5kM2bMYHXr1mWdOnVSWZd/6Nzc3Fjp0qWZvb09Gz9+PDt58iQLCwtjy5YtY0WLFhXbP3jwoNo8LFy4UCzj5ubGZs+ezUJCQtiZM2fYpEmTROHExMSE7du3T2X9cuXKMQCsS5cuKvPWrl2rdNP4+/urLBMZGSnmZz2H0kJJrVq1mKmpKevduzfbt28fCw8PZzt27GA1a9YUy4wdO1bXU69C10JzrVq1xHIbNmxgYWFh7OjRo6xXr15imRo1aui9/1evXrHo6Gg2ZMgQsZ3o6GiVv9TUVJU8+/r6soIFCzJ3d3f2+++/szNnzrCLFy+yOXPmiIKwmZkZu3Llitp9Hz58mBUoUIABYN7e3mzGjBns5MmTLCIigu3Zs4f16NFD5KlDhw56HxvPe9u2bRkA5unpqXJcnFyh+fbt2+KhVKBAATZ06FB27NgxFhoaylatWiUKpEFBQRq/qHOi0FyhQgVmYmLCevXqpXR/7t+/XywfGxvLChUqJJ4no0ePZgcOHGARERHsxIkT7OeffxbHVqJECfb69Wudz7G+dC008/u9Xbt2bPv27Sw8PJzt37+ftWrVSizTtWtXvff//Plz2XtCel9I81ypUiVmZWXFfHx82IIFC9j58+dZSEgImzRpErOysmIAmIODA4uLi1O77xUrVoi8ly9fns2fP5+dOXOGRUREsH///Ze1bNlSzB81apTex8aYfoXmWrVqMQsLCzZ8+HB25MgRFh4ezjZs2CCerQDYkiVLVLaxZ88epftv8eLF7OTJkywyMpKdPHmSLVmyhHXs2JF5enqqzWPfvn3F+h4eHmzq1KnsxIkTLCIigh06dIj99ttvLDAwUGuhuUKFCgwAq1u3rtLzcPny5WqPVR1+XQMDA5m5uTnz9PRk8+fPZxcuXGCnTp1iP/30E7O0tBTPsQsXLqjdjjGu67Bhw8QyZcqUYStWrGChoaHs6NGjbNCgQczU1JRVq1ZNbWFQH9Lvb29vb2ZpacnGjh3LTp8+zS5cuMD++usv5uHhIfajqXIvKipKfEe7u7uziRMnsqNHj7LIyEh26NAhNnToUPEjpHr16krfH1nPv6Gfq+joaHbo0CGR1ylTpqh8jp8/fy6Wv337NrOwsGBt2rRhf/31Fzt69CiLiIhgR48eZYsWLWL+/v5iWxMmTFB73CkpKax8+fJiuRYtWrAdO3awsLAwtnPnTnGtq1evrvX7JDIykllYWDAAzNzcnI0YMYKdOHGCXbx4kf3999/Mx8dHrD9mzBi1eTHWc8mYDC40R0VFiQNeunSp0ry///5bzIuKilK7/rFjxzQW6KTS0tLYmzdv9M5fsWLFGAC1hWKply9fqqTxDx0A5uTkpLZAdPv2bXGxvvzyS5X5cXFx4kva09OTPXz4UGWZiIgI8aEsUqSIyoeOF/IKFy6ssm6/fv3EvnnBO+sNM3fuXAaAmZqaslevXinNy1r7unbtWpV9JCcniw+Pq6urwTVDuhaaAbABAwawjIwMleX69+8vlomIiDAoH3JfMOryDGTWWDx+/FhlmeDgYPFWZfjw4Srz3717JwpyTZs2ZYmJiWr3tXTpUrGvo0eP6n9gTLl2RRO5QjO/lwCwrVu3qsxPTExUKjDnVqEZAFuxYoXWbbVu3ZoBYMWKFWN3795Vu4z08zZ+/Hit28sOXQvN/Eswq4yMDNa0aVNRkDH0i0CXeyJrngGwKlWqqP1RsW7dOrHMnDlzVOY/fPhQPPN69+6t8Xkxbtw48Vy6efOm3selT6HZ3Nxc7b3+8uVL8dmsUKGCynxew+vl5aX1DZC674+dO3eK/desWVPl2Sv16NEjjccGgPXq1Uvt81Ddsaojva5eXl5q31wcP35cFP6qVq2qMt8Y1/Xy5cui1r1y5cpqz+maNWuUjj27hWZ+/U+dOqWyzJMnT0TFl42NjVLBk7HMzyD/0RIYGMhevHihdl8HDhwQxyX9McMZ43OlzzP13bt3LDY2VuP8jIwM1qdPHwaA2draqs0Pb0EAgA0bNkztdqQ/gDR9n/AfQAUKFGCHDh1SmR8fHy8qYkxNTdWWs4xx/ozN4EIzr8m1tLRUeSi8evVK/HrN2iyAW79+vThQQwrFcszNzRkANm/ePL3XlX7o/vrrL43Lde3alQFgzs7OKvNmzJghtrFx40aN25gyZYpYbsuWLUrzNm3aJOZdv35daR5/dbJ161ZWokQJtQWddu3aiYdUVtJCibYaziVLlojlLl++rHE5bXQtNHt4eLDk5GS127hx44ZYzpBrypjhhebdu3drXK5GjRoMyPwlnNX8+fMZAGZlZaXyUM6KF0a7d+8ufyBqZLfQ/PjxY/Hwb9++vcZtXLp0KdcLzY0aNdK6nejoaLHsrl27tC47ZswYBkBjDaEx6FporlKlisYC0cGDB3U+Jk0MLTRr+pxnZGSIt4Pq7hH+neDp6cmSkpI07istLU288v7f//6n8/Fw+hSatdVmjx07ViyX9cv4iy++kP0saMKfCTY2Nmp/bGsjPTYnJyeWkJCgdXl9Cs3btm3TuB3pW7iLFy8qzTPGdZVuPywsTOM2WrRoYdRCs6ZCH2OMbd68WSw3c+ZMpXnSNw1y33udO3dmAFjt2rVV5hnjc6XPM1UXL1++FG8/1d0TZcqUkb3eSUlJIs/qvk8uXLgg5g0aNEhjXs6cOSOW+/bbb1XmG+P8GZtBgYDp6enYsGEDgMyBFJycnJTmOzk5oWXLlgCADRs2qG0o7+HhIaZXrVplSDa04tvfvHmzwYFsJiYm+PrrrzXOr1KlCoDMIK+sQQy831wnJyd07NhR4zb69++vsg4nDfiQNrR/8uQJ7ty5AxMTE9SvX18sJ12GMSZGZqxfv77G/QOK4E11+DECmQEGOalTp06wtLRUO69MmTKws7PLlXxIOTk5oVWrVhrn8/OjLk+828X69evD3d1d637q1asHAAgJCTE0q9ly8uRJZGRkAAB69+6tcbnAwEAEBgbmVrYAaL8/AcV5trGx0XqtAMV5jo2NxaNHj4yTQQN9/fXXGgO4cvNzJxUQEIAKFSqonWdiYoJKlSppzBO/Dm3atIGVlZXGfZiZmaFmzZoAcv5+1/XZdv/+faV5/Pvj9OnTuHv3rs77e/nyJS5cuAAA6Ny5M4oUKaJPdpW0adMG9vb2Bq8v5ezsjLZt22qc37dvXzGd9XvIGNeVbzMgIEDpvGvLhzF88803Gue1b99elF00HXOZMmU0fh44/kwJDQ3VGBSYnc9VdqSlpeHx48e4fv06rly5gitXriA2Nhaurq4AgMuXLyst/+TJE9HxQOfOnTVebysrK3z11Vca9ys9n/369dO4XO3atVGuXDmVdbLKq/OnjkGF5sOHD+Pp06cAFL1mZMXTnz59qvZk1KlTByVKlAAAjBgxAkFBQZg+fTrOnTuH1NRUQ7KlhH/xnzt3Dj4+Phg2bBh27NihEq2sTcGCBcXNpY6Li4uYzjps8ZUrVwAAlSpV0toNWKFChUSUL19HOq9MmTIAlAvEfNrPzw9ubm5qC81RUVEi+l5drxVSZcuW1ThP2zEam7Z8AJkP/tzIh1Tp0qVhaqr5Y8LPj7o8hYWFAQAOHTqktvcC6d/s2bMBAM+ePcuBo5Anvfe0fakBQNWqVXM6O0rkvrT4eX7//j3MzMy0nufWrVuL9fLqXHP55XMnJfcZ1HS/v3nzBnfu3AEA/P3337L3+7Zt2wDk/DUw9Bz36tULQGYhuHz58ujatStWrVoljlGTS5cuiYFXeGHKUHL3vT4qVaoEMzPNY5lVrFgRFhYWAJSfBca4rsnJyWIbWXtxyiooKMiwA1TDwsJC6zk0NzcXha2s3738mXLz5k3ZYx42bBgAIDU1VWOPN4Z+rgyRlpaGhQsXokaNGrCzs0OxYsXg5+eHgIAA8RcXFwcA+O+//5TWNdb3AN+OhYWFOMeaVK9eHQBw+/ZtjWW/3Dx/cgwqNPM+mLXVwklroNX12Wxubo49e/aIXxmhoaEYN24cateuDScnJ7Ro0UJjLbUufvnlF/Tt2xcmJiaIi4vDwoUL0aFDBxQqVAgBAQGYOHGibJd4NjY2WudLC1NZ88k/PIUKFZLNa+HChZXWkeIF3lOnTok0Xjjm8xo2bAgAuHbtmvhRwJcxNTVF3bp1te5f23FqO0Zj0/V853Q+pHTNE6+l5dLS0gzqQim73fsZ6tWrV2Jarlbczc0tp7OjhP9Y0oR/Aegrr841l18+d1KGfgbz6zUw9Bw3btwYCxYsgLW1NZKTk7F582b07dsXpUuXRtGiRTF48GCVWjpAuRAifZtqCLn7Xh9yn2kzMzNR8JB+Dxnjur5+/Vr8kJDLhy7fl7pycXHR+kNBur+s373Gvp9z67stPj4eNWvWxLBhw3DhwgXZCsikpCSl/xvre4CfT12uAS//MMaU9i+Vn8oGeg+jLR3t7/Xr1xpfp0vt3LkTb9++VXnV5Ofnh+joaOzZswd79uzBqVOncPfuXSQlJeHgwYM4ePAg5syZg/3798tewKzMzc2xYsUKjB49Ghs3bsTx48cRFhaG1NRU8Zpizpw5WLdundbXVtmlS/+Z/IGiTv369fH333/j2bNnuHHjBsqWLSsK0LzQXLRoUZQoUQL37t3DqVOn0KlTJ7FMhQoVjPrwJbqRfng7d+6MX375JQ9z83ErUKCA1vn8XPv4+GD37t06b1fa/ynJHun9PmLECK2vZKV47WZ+NHToUHz11VfYsGEDjhw5grNnz+LNmzd48uQJ/v77byxduhTjxo3DlClT1K6va9/Jmsjd9/ow9HvIGNdVut3snhN9ZOe7lx937dq1sWTJEp336enpqfOyOeH7779HeHg4gMwxGvr27YsKFSrA3d0dVlZW4pwUL14cjx49yvHh6LNb/smP9C40b9myReXXiZz3799j27ZtatsXFShQAO3atUO7du0AZDbnOHDgABYtWoTw8HCEh4dj0KBB2LFjh75ZBZBZMP/tt9/w22+/ISkpCWfPnsWGDRvwzz//4N27d+jWrRvu3r2b7VqBrFxcXPD06VOdXj/yGm/p60Iua7tmBwcH3L59W7Rnli537949nDx5Eh07dtS5PTPJGVZWVrCxscH79+/x+vVrlC9fPq+zpJX0h1VcXByKFi2qcVltTZyktXdZa9+zSkxM1COHmvEmVM+fP0fZsmVlazaI8Umbsb1//z7f3++6cnd3x4gRIzBixAhkZGTg0qVL2L59OxYuXIjXr19j6tSpqFatmqh4KViwoFg3NjY2r7KtQu6t6ocPH0Qtn/R7yBjXVfpskcuHLgOi6erly5dIT0/X+uOD1yhn/e51dXXF8+fP8eLFi4/mXk5ISMDmzZsBZMZLaBt8TVONbtbvAW20fQ/w8/ny5Ut8+PBB6zOZX3MTE5OPooJP7+YZvKmFh4cHNm7cKPtXvHhxpfXkeHh4oG/fvggJCUHlypUBAHv37tW7oK6OtbU1mjRpgpUrV2LWrFkAMl9P7N27N9vbzop/0CIjI5GWlqZxubi4ODx48EBpHSkPDw+ULl0aQGahOWt7Zk7arjk6OhovX75USie5W8sBQLTlOnv2bJ43BZDj7+8vpnl7Pk20zZe+TdL0YAYyH6ZZ29MZip/n9+/f4+zZs0bZ5qcgN+93Nzc3EfR29OjRj672SBempqaoXLkypkyZgmPHjon0LVu2iOlKlSqJ884rLvKDS5cuaR398PLly+JVvvR7yBjX1crKSnyHhYaGal1Wbr4+UlNT1Tah4T58+IBLly4BUP3u5c+UW7duie/nvKLr5/j27duirNG1a1eNy928eRPv3r1TO89Y3wP8fKampiIyMlLrdi5evAggM34oP7954vQqNN+/f18Me9ixY0d07dpV9o9HWJ46dQoPHz7UeV/m5uailvTDhw9GG2KTa9y4sZg21pe3VJMmTQBkNmHRNMQ1AKxYsUI8iPg6WUnbNWdtz8xJ2zVv3boVQOaHTa498+dEGgmckpKS4/v78ssvAWTWqC5cuDDH95cdDRs2FLXE2n7gXr58WesXkbOzs4hl0PZQ3bhxo2EZVUPavGrmzJlG2+7Hjt/vuXGvA4r7/d69eyIg7FPFh5EGlL8/XFxcUKtWLQCZhen8UtscHx+PPXv2aJy/cuVKMZ31e8gY15VvMzo6WmshSpoPY+BDyauzY8cO8cNe0zEDef9M0fV7S/qjSFsljbbmJkWLFoWvry8AYOvWrUhOTla7XHJysihnqCM9nytWrNC4XEhICK5du6ayTn6mV6F57dq1ooDXqVMnndbhyzHGsHbtWpEeHBysNRI5NTVVtMu1s7PTK/goPj4eu3fv1vqr+PDhw2I6J9o2fvPNN6Lx+ujRo9V2b3X58mVMmzYNAFCkSBHRRCUr/uPh2bNnolYja6GZt2tmjGH+/PkAMrtp0db7x+dG2gRHn26kDDV48GDxuvaXX37BgQMHtC5/9uzZPKudKlKkiAjq3bFjh9ovx6SkJAwcOFB2W7zXgF27dqk9z9evX8eECROymWOFatWqoWnTpgCA/fv3Y+LEiVqXj4mJ0Vho5xHxvEebjxm/3+Pi4nIlqvzHH38UMS6DBw+Wranav38/oqKicjxfhti8ebPWt5thYWGiwJX1++Onn34CkFlw+eqrr/DmzRuN23n8+LERcqubUaNGqW3+cOrUKSxduhRAZo8JWXu4MMZ1HTRokKgxHThwoNqmWevXr8f+/ft1PyAdLF68WFT0ST179gw//PADgMwgs6zdbHbs2FF0UrB48WKtBT8gs7cIbT9KssPV1VXUwGr73ipVqpQ4x5oqPvbu3SvKB5oMGjQIQGbzoh9//FHtMj/++KPWH4RBQUHiPlq+fDmOHDmissybN2/EvkxNTTFkyBCt+cov9C40A5ntvHStwaxevbpoHyktNB87dgxlypRBgwYNMGvWLBw6dAgRERE4e/YsVq1ahbp16yIiIgJAZl/G+rRTTEhIQNu2bVGiRAmMHj0aW7ZswYULFxAeHo69e/di0KBB4sFWtGhRtGnTRudt68rNzU00AYmNjUXVqlUxd+5cXLhwAefOncOvv/6KOnXq4N27dzAxMcHSpUs1dk0nLSC/efNGpT1z1uX4Q5raMyvjNUAAMHLkSJw+fRq3b9/GnTt3cOfOHa2vLw3h4OCAjRs3wszMDCkpKWjdujU6d+6MzZs3IywsDGFhYdizZw8mTZqEwMBA1KlTJ08LEXPmzBE/9Lp27YrvvvsOJ06cQHh4ONasWYOqVavi4sWLst1GffvttwAyC9kNGjTAihUrEBERgdOnT2PChAmoUaMGXF1djdoLx6pVq0Qh8ddff0WNGjWwdOlShISEIDIyEkePHsWcOXPQtGlTlCpVSuvbn08Fv98zMjIwePBgnD9/Xul+NzYfHx9RixUfH4/atWujf//+2LlzJyIiInDx4kVs374dY8eORalSpdCqVSu93j7mpp9++gmenp7o06cPVq5ciTNnzoj7aNKkSWjWrBmAzJicAQMGKK3bpk0bETB37tw5+Pn5Yfr06Th9+jQuXbqEo0eP4vfff0flypUxfvz4XDmewMBAPHnyBFWqVMHChQsRGhqKM2fOYNy4cWjevLlod6rujZgxrmtgYCCGDh0KIPMHR9WqVbF69WqEh4fj+PHjGDJkCHr16mXU7izd3Nzg6emJL774AuPGjcOZM2cQGhqKhQsXokqVKiKPv/32m0pHAwUKFMDmzZthZ2cHxhj69++P5s2b459//sGFCxcQERGBgwcPYvr06ahduzYCAgKUergyJjMzM/HMXblyJTZu3Ijr16+LzzHvqcLV1VWMj7F//340b94cO3bsQHh4OA4cOID+/fujXbt2KFGihNZn77Bhw0TzigULFqBVq1bYvXs3IiIisHv3brRu3RoLFixQ6h5QXROSpUuXwsLCAunp6WjVqhVGjx6NkydPIiwsDMuWLUPlypURHR0NAPjhhx8+mrbjOo8IKB25RdsIL+oMHz5crHv+/HnGmPJIRtr+OnTooHUUInWyDkWq6a9IkSJqh2TWdSQt6ahl9+/fV7vM1KlTxUhr6v4sLS3ZmjVrZI+pZMmSYh1/f3+1y/zzzz9K2/7333+zlXfGjDMaka4jAmZnBDld8dGb1P1Jz4O2PEvpMsrgsWPHWOHChXW6J3W5F9QxxjDajDF2+PBhMdS0ur+JEyeyX375hQGZIx1qIv3MZ/0rVqwYu3r1qs4jAmq7P6ViYmLE0K1yf998843K+u/fvxfz1Y2iqStdRwTUdA046Tk3RHp6uhidTt2frnmW0uU+27RpE3NwcJC9Bqampuz48eN6H5c+IwJqo+1aSEci0/RnZWWl8fP64cMHNmzYMGZiYqJ1G1nPt77PW11HBOzduzdbtmyZGC4765+FhYXWkWsZy/51TU1NZR06dNC4no+PD7t3716273vpPRoaGsoKFiyocZ/Dhw/Xuq3Lly+z0qVL6/RMmTx5ssr6xvpc7d27V+O9JD1PDx8+ZMWLF9eYx+LFi8s+exlj7MGDB0pljqx/TZs2ZQcOHBD/5+W6rA4dOiR7zwwdOpSlp6erXd+YzyVj0bmmWVrdr22EO3Wky/PtjBkzBvv378fIkSNRo0YNFC9eHFZWVrCysoK3tze6dOmCffv24d9//9U6CpE6Xl5euHTpEmbNmoUWLVqgTJkycHJygpmZGQoWLIj69etj9uzZuH79umzH29k1btw4REZGYsCAAShZsiSsra1ha2uLcuXK4fvvv8eNGzdER/raSGubNQX38XbNQOYvv+x2rv8pWrduHWbOnImgoCA4OjpqHbjEWBo1aoS7d+9iwYIFaN68OTw8PGBhYQErKysUK1YMTZs2xdSpU3W+F3LSF198gStXrmDQoEHw8vKChYUFChUqhFatWuHgwYOYNGkSEhISAACOjo4atzNv3jxs2LAB9erVg4ODA6ytrVGmTBmMHTsWkZGR8PPzM3revby8cOHCBezYsQNdu3aFj48PbGxsYG5uDjc3N9SqVQujR4/GqVOn1L5ulY5iNnLkSKPnL7eZmpri8OHDGD9+PAIDA2FnZ5crwYFdunRBTEwMfv/9dzRo0ADu7u4wNzeHjY0NSpQogTZt2mDOnDmIiYlRemblJ6dPn8by5cvRpUsXBAQEwM3NDWZmZnBwcEDlypXx448/4tq1axo/rwUKFMD8+fMRFhaGgQMHwtfXF7a2trCxsUHp0qXRsmVLLFu2DHPnzs21Y+rfvz+Cg4PRuXNneHp6wsLCAkWKFEGvXr0QGRmpNXgMyP51NTc3x7///ou1a9eibt26cHR0hI2NDcqVK4dx48YhPDzc6E0lq1atioiICAwfPhwlS5aElZUVXF1d0bx5c+zfvx/z5s3Tun6FChVw7do1rFmzBu3atUOxYsVgZWUFCwsLeHh4oEGDBhg/fjzCw8ON2uQsq1atWuHYsWNo27YtPD09Nb6VLlasGCIiIvDjjz/C19cXlpaWcHR0RGBgICZOnIhLly7p9OwtXrw4Ll++jMmTJ6N8+fKwtraGk5MTatSogUWLFuHAgQNK7Z01fRc0bdoUd+7cwbhx41CxYkU4ODjA0tISxYsXR/fu3REcHIwFCxbkyvewsZgw9gmGORNCckyTJk1w7Ngx1KlTB8HBwXmdHaOZNGkSJk+ejNKlS+P69etG7SeXEJI7+vTpgzVr1sDLywsxMTF5nZ1P1pQpU/DLL7/AzMwMb9++1bty82P18RTvCSF5LjY2VgQr1qhRI49zY1y8TeK4ceOowEwIIRowxkSf0BUrVvxsCswAFZoJIRLaAsSSkpLQp08f0RdoXjclMabU1FRcuHABPj4+6NGjR15nhxBC8kxMTIzWwPgJEybgypUrAKDS88injobOIoQI/fv3R2JiIjp37owqVarAxcUFb9++RVhYGBYtWiQK1f369UNAQEAe59Z4LCws8v0ANIQQkhtWr16NVatW4euvv0bt2rXh6emJtLQ0XL9+HWvWrFEaZC1r7zGfOio0E0KU8O7wNGnfvr1sX5+EEEI+Xg8fPsTvv/+ucX7ZsmWxb98+0Yf354IKzYQQYc6cOdixYweOHz+Ox48f48WLF2CMwd3dHTVq1ECvXr3EICiEEEI+Pf369YOjoyMOHTqEO3fu4MWLF0hKSoKLiwsCAwPRvn179O3b96MY9trYqPcMQgghhBBCZFAgICGEEEIIITKo0EwIIYQQQogMKjQTQgghhBAigwrNRKukpCRMnjwZgYGBsLW1hYmJCUxMTDBixIhc2f/JkyfFPnk3N3mlQYMGMDEx0TiMOdEPnU/t+vTpAxMTE3h7e+d1VozK29sbJiYm6NOnT15nhWRTeno65s2bh6CgIDg4OIhndbt27fI6a3kmJiZGnIfVq1fndXZyzerVq8Vx5/VIjI0aNYKJiQlmzJihMu/bb7+FiYmJwf1LG6XQfObMGXGyTExMxIhhcqQFInV/dnZ28PX1Re/evfUuMDHGsGfPHgwePBgBAQFwd3eHubk5XFxcEBAQgL59+2Lnzp1ioIas+Bd61j8bGxt4eHjA398fXbp0waxZs3Dr1i2d8iS9qXT9+/PPP/U6bmNKS0tDkyZNMGnSJERFRVE/tvnUgQMHMHDgQPj5+cHFxQVWVlYoVqwYGjZsiJkzZyI2Njavs0gI+QR169YNI0aMQGhoKN6+fZvX2SESOVm+ys+2b9+OEydOwNXVFUOHDlWZ//PPP8PCwgJr165FaGio/jtgRjBgwAAGQPz169dPp/VOnDihtJ7cX9++fdmHDx9ktxscHMwCAwN12qanpydbtWqVyjbq16+vc75MTExYo0aN2KVLl7Tma9WqVXodLwA2d+5cnc5lTli/fr3IR58+fdiJEydYdHQ0i46OZk+fPs2VPEjvkRMnTuTKPjXh90T9+vXzNB/clStXWM2aNWXvIVtbWzZlyhSWkZGR43maOHGi2K+c/HY+c4P0GXD//n2ty/bu3ZsBYF5eXrmSt9zi5eXFALDevXvndVZINpw9e1bcy61atWJHjhxhUVFRLDo6mj148CCvs5dn7t+/L86LurJFbsmp8pUm+jzbckp6ejorV64cA8CmT5+ucTleZm3atKne+8h2P80pKSnYunUrAMDOzg7v3r3D1q1bMX/+fFhbW+u8nSFDhuDbb78V/2eMIT4+HiEhIZg7dy7i4uKwcuVKFC1aFJMnT9a4nbVr16Jfv36iBrl69ero2LEjKlasCFdXV7x58wZ3797F/v37sW/fPsTGxmLEiBFaXxVGR0eL6Q8fPuD169d4/Pgxzp8/j3///RfPnj3D8ePHERQUhPnz52PgwIGyxztlyhS0bdtWdjkPDw/ZZXLK0aNHAQCFCxfG8uXLUaBAgVzPQ4MGDcCoV0QVwcHB+PLLL/H69WsAQJUqVdC7d29UqFABdnZ2ePLkCQ4ePIg1a9YgMTER48ePx5UrV/DPP//A3Nw8bzNPCPno8e+HAgUKYMOGDXBwcMjjHBFNjFW+0qZPnz553uTq33//xfXr12Ftba10vFmNHj0ay5Ytw+HDhxEaGopq1arpvhODi/T/b/PmzeLXxYoVK8T0xo0bZdeV/hKaOHGixuWuXr3KrK2tGQDm4ODAUlNTNW6vQIECDACzsbFhmzdv1rr/+/fvs86dOzNHR0eVedKaZm2Sk5PZjBkzmJmZGQPATE1N2Z49e9QuK/0llpe/QHXVtGlTBoDVqlUrr7OSL+SXmtFHjx4xFxcX8Zbjjz/+0FiLfP/+faW3LmPGjMnRvFFNs3ZU00w1zZ+KgQMHire1RCE/1jQbo3z1MahVqxYDwDp37iy7bOXKlRkA1r17d732ke02zWvWrAGQOQZ537594efnBwD4559/srtpwc/PT4xClpCQgOvXr6ssk5SUhO7duyM9PR2mpqbYs2cPOnfurHW73t7e2Lx5M+bNm2dw3iwtLTFmzBisW7cOAJCRkYEBAwYgOTnZ4G3mFykpKQBANZP5zMCBAxEfHw8AmDZtGkaNGgUTExO1y3p7e+Po0aMoWrQoAGDWrFm4cOFCruWVEPJpou+HT4Mu5auPwY0bN3Du3DkAQI8ePWSX7969O4DM2uk3b97ovJ9sFZrj4uJw+PBhAIpM8owcPnwYz58/z87mlUgjyNUVSFeuXCkCnoYMGYJGjRrpvG1DoyilunTpgq+++goA8OzZM6xatSrb2zSGM2fOoGfPnvD29oaVlRWcnJxQqVIljB8/Hi9evFBZXhr5e+rUKQDAqVOnlAIIshPNv3//fvTo0QMlSpSAra0tHB0d4e/vj65du+Lff/9FUlKS0vJyvWdk7WHg6dOn+Omnn+Dv7w97e3uN67148QK//vorateuDXd3d1haWqJYsWKoXbs2fv31V9y8edPgY3z16hWmTJmCmjVromDBgrC0tISnpyfatm2L7du3G7xdALh8+TIOHDgAAKhQoQJ+/PFH2XUKFiyIuXPnAsh8LTdz5sxs5UEdHuQqfbWnLvhEW1T1kydPMGrUKJQqVQrW1tZwdXVFs2bNxPHKyc555/mbNGkSACA0NBTdunVD0aJFYWlpiSJFiqBnz54Gf6Hw+/ibb74RaT4+PirnR1tAzuvXrzFhwgT4+/vD1tYWTk5OqFevHtavX69THt6/f48///wTDRs2RKFChWBhYQF3d3c0bdoUq1atQnp6ukHHltX+/fvRokULuLm5wcbGBr6+vhg1apTeAak3b97E8OHD4e/vD0dHR1hbW6NEiRL45ptvEBERIbt+Wloa5s2bh2rVqsHe3h5OTk6oWrUq5s6di9TUVNleDgx9thjj859b1yo6OhoDBw5E6dKlYWNjA3t7e/j7+2PkyJEaP6v8nPEKswcPHqjcx/q6cuUKpkyZgmbNmonPnJ2dHUqXLo3evXvj/PnzWtefNGmS0r6Tk5Mxa9YsVK5cGfb29rC3t0dQUBAWLFiADx8+yOYnODgYHTp0QKFChWBlZYUSJUpg8ODBuHPnDgDj9fxz8eJFDBgwAL6+vrCzs4OtrS3Kli2LoUOH4vbt29natj7kyle60KX3jPDwcPTr1w++vr6wtbUVQetVqlTB0KFDsXv3boObY27ZsgUAYGtri+bNm8su37FjRwCZx7tr1y7dd2RYJXimOXPmiFfEvOF/TEwMMzExYQDYH3/8oXV9XV8fMMZYp06dxLLqgtCqVKki8nL79m2Dj4nTtXmG1Llz58Q6X3zxhcr83GyekZ6ezoYOHaq14b+joyM7fPiw0nrSV0ua/gx5Xfzff/+xxo0by24763mRCwSUvsIOCQlhBQsWVNlm1vXWrVvHbG1t9T5GXZoT7Nu3jzk5OWnddqtWrdjbt2/1PoeMMTZy5EixnaVLl+q8Xnp6OitatKhoQhQfH2/Q/jXRNchV2iRBej6Dg4OZq6urxvVmzZqldf/ZPe/S59D8+fNFc6usfzY2NuzUqVN6nx9dg3Kk96r03r5+/Trz9vbWuN7QoUO17v/ixYusSJEiWvcdFBTEnj17pvexSX3//fcat+/u7s7CwsJ0ap7x66+/arwG/Dk/YcIEjeu/evWKBQUFaT3WyMhIrc9jQ54txvj859a1mjZtGjM1NdW4D0tLS7ZmzRqV9XS5j/Wh62dj7NixGrchbRb27NkzrR0BtGnThqWnp2vc1pQpU0QZJuufvb09O3TokNbvAl2aZ6SlpbEhQ4ZoPV5zc3O9nvFZGbN8pQu5pmdz5szRer/xP0O/Gxs0aMAAsLp16+q8joeHBwPAvvnmG53XyVahmd+Y9erVU0qvW7cuA8ACAwO1rq/rRb1+/bpoc1OtWjWV+W/evBFtmcuWLWvIoagwpNCcnp7O7O3tGQBmZ2fH0tLSlObnZqH5xx9/FPvy8fFhS5YsYRcvXmQnTpxgI0eOZObm5gwAs7CwUOr1IzU1VfSQUbVqVQaAVa1aVaRFR0ezmzdv6pWXxMREFhAQIPJTpUoV9vfff7OzZ8+ysLAwtmPHDjZy5Ei1PZnoWmh2dXVlnp6ezM7Ojv3vf/9jJ0+eZBcvXmQrVqxgN27cEMuvWbNGbM/Kyop99913bP/+/SwiIoKdPn2aLViwgDVr1oyVKFFCZV9yhebDhw+L+9Db25vNmDGDnTx5kkVERLA9e/awHj16iH136NBBr3PI8R+HhjzcBg0aJNbdu3evQfvX5NWrVyw6Olrpi0B6z/A/aXs5fj59fX1ZwYIFmbu7O/v999/ZmTNn2MWLF9mcOXNEAcTMzIxduXJF7b6Ncd75/Bo1ajATExMWGBjIVq5cyUJDQ9np06fZyJEjxQO/ePHiLCUlRa/z8+7dOxYdHc2mTJki9nXo0CGV8/Pu3TuxDr+33dzcWOnSpZm9vT0bP348O3nyJAsLC2PLli0TP4QAsIMHD6rdd1RUlPiR6O7uziZOnMiOHj3KIiMj2aFDh9jQoUNFAbV69eoGt2mcPXu2yIunpyebP38+u3DhAjt16hQbM2YMs7CwYN7e3szNzY0BmgvNv/zyi9hOrVq12PLly1lISAgLCwtj69evV+ox5q+//lK7jWbNmollatasyTZu3MjCwsLYgQMHWPfu3cWxanse6/tsMcZ9mFvXauHChSIvbm5ubPbs2SwkJISdOXOGTZo0SeTBxMSE7du3T2ldfq+2bdtWXOus97E+jhw5wmxtbVnnzp3ZkiVLxDk7ePAg++OPP8SPLABs5cqVarchLTTXqlWLWVhYsOHDh7MjR46w8PBwtmHDBtGrAgC2ZMkStdvZsGGDWMbZ2Zn9/vvv7Ny5c+zcuXNsxowZzNnZmTk7OzNfX99sFZp79eollmnRogVbt24du3jxIgsNDWXLli1j/v7+Yv7u3bv1Op+cscpXutJWaL58+bJ4fvr4+LA//viDHTt2jEVGRrLg4GC2cuVK1rNnT2ZnZ2dQoTk1NVUcw6hRo3Re78svv2QAWKlSpXRex+BCc1RUlDhBWX8N/f3332JeVFSUxm1IL+qQIUOUPnRRUVHs9OnTbMaMGaxw4cIMyGykfvbsWZXtSLu++frrrw09JCWGFJoZY6xOnTpivYcPHyrNk95UU6ZMUVuoyM7Dh4uKihI3aPny5dmrV69Uljlw4IBYJigoSO12jBWoNWLECHHcQ4cO1Ri0lpKSolJ7omuhmf9Q0dbt35MnT5iNjY34QtJ2fh89eqSSpu18vHv3jhUqVIgBmd3YJCYmqt3u0qVLRX6PHj2qcf+a8B87Hh4eeq8r/VxOnTpV7/V1YUggIJBZm/f48WOVZYKDg0Wtz/Dhw1XmG+u883kAWMuWLdUWiqUF3u3bt8senzqGBAICYE5OTmp/NNy+fZtZWVkxAOzLL79UmZ+RkcEqVKjAgMxKjBcvXqjdl/R5sHz5cr2P69mzZ+Kz5eXlpfYH3bFjx5Rqj9UVmi9evCjyMX78eLX7Sk9PFwVQe3t7lefb9u3bxT7atm2rthstaQFfrtCsy7PFGPdhbl2ruLg4ca08PT1VvqcYYywiIkIUnIsUKaK2cG6sQNUXL16o/Y7iUlJS2BdffCH2pe56Sp875ubmar8rXr58Ka5RhQoVVOYnJyczd3d3BoC5uLiorRy6efOmCMI2tNC8bds2MX/ZsmVqjzkpKYk1atRI/ADLWgGnC2OVr3Sl7dnGfwjb2tpqfUPy+vVrrW8BNLlw4YLY99q1a3Veb/LkyWK958+f67SOwYXm0aNHMyDzFU7WG/7Vq1fM0tKSAWCjR4/WuA1dX8uYmpqyQYMGsevXr6vdzq5du8SyI0eONPSQlBhaaOa/vgGwy5cvK80zpJ9mQ0hr+0JCQjQu179/f7HcxYsXVeYbo9AcHx8vHtCVK1fWux9IfQrNv/76q9ZtjR07Viy7Y8cOvfLBmPbzMX/+fAZk1l7Lffj4a2N9o3Zfv34t8l+pUiW91mWMsZ07d4r19fk1rg9DC83aalNq1Kih8ZiNdd55PrRtJyEhgVlYWGTrOWNooVlTjSpjjHXt2pUBmTVjWe3Zs0fj8yirzp07MwCsdu3aOh2L1IwZM8R+tm3bpnE56bNJXaG5Y8eODMh8G6WtX3Hpd0zWggevZbaystL4BZ2RkSGi53UpNMs9W4xxH+bFtdLWy5X0R+KWLVtU5udm7y6XLl0SeQkLC1OZL33uaHu2Sb8DXr9+rTRv48aNYt68efM0bmPevHnZKjTzt4Xt27fXfMCMsWvXrontHDlyROuy6hirfKUrbc823i+yId9buvj333/Fvg8dOqTzeosXLxbrRURE6LSOQYGA6enp2LBhAwCgVatWcHJyUprv5OSEli1bAgA2bNiQ7aCFjIwMbNmyBcuXL0dqaqrKfOlIRLa2ttnaV3bZ2dmJ6bwaIYn3n+nn54caNWpoXG7AgAEq6xjbiRMnxEiCw4cPz9G+nnkQqib79u0DkBmApUsf2frggQT169eHu7u71mXr1asHAAgJCdFrH9m9z6XrJCQk6L1+TnFychLR2+pUqVIFAHDv3j2VecY+71988YXG7djb26N06dIa85JTTExM8PXXX2ucz8/Pq1evRL/dHD8/ZcqUQYUKFbTuh5+f0NBQvZ/Z/Pnh7Oys9bPVt29fjfPS0tJE0GenTp20BpQ5OTkhICAAgPL1/PDhgxiRtnnz5ihUqJDa9U1MTNCzZ0+N289K7tlijPswt6+Vk5OTCIZSp3///irr5IaUlBQ8fPgQ165dw5UrV3DlyhWl4LDLly9rXV/bteKfFQC4f/++0rxjx44BAExNTbXeGz169DAo2BHIDHYODw8HANnevcqVK4eCBQsC0P+7Qh9y5Stj4ONNXLt2DRcvXjT69qWdGjg7O+u8nouLi9ptaGNQofnw4cN4+vQpAM1de/D0p0+f6vSBmzhxIlhmzbf4e//+PaKiovDjjz/i7du3+OOPP9C0aVOVHhbs7e3FdGJioiGHZDTSgo22zt5XrVqlcrzq/vSVkpIiom6rV6+uddlKlSqJ7oKuXLmi9750ERkZKab5gz4n2NnZoUSJEhrnp6WliWOsW7euwQ89TcLCwgAAhw4dkh0affbs2QAye1nRh/Q+f/fund55lK6TnwYiKF26NExNNT+K+INN3Y9QY5/3smXLas2rtrzklIIFC8LV1VXjfOmDP2u++Pm5efOm7PkZNmwYACA1NVV0aagrPgBUpUqVYGamecysihUrwsLCQu28a9euiR/YP//8s2x++bFJr+fdu3fF94O0gKRO1apVdTo2uWcLYJz7MLeuFX8OSp//6hQqVEj0qpBT3w9cYmIipk+fjsDAQNja2sLLywv+/v4ICAhAQEAAKlWqJJb977//tG5L22dY22eFH6OPj4/WgpeLi4vs/aAJv8ZA5hDkcteZH6u+3xVZZad8ZQzdunWDubk5UlJSULt2bbRp0wZLlizB1atXjTJ4mfQzoE+hWbrsy5cvdVrHoEIz74NZWw2RtAba0D6bra2tERAQgJkzZ2LRokUAMrs/mz59utJy/NcYAKN2c2cI6Qda+gHNLa9evRLTmmpZOHNzc/FlrO+DV1fS85GToxtmfduRVXx8vPhwGjsfaWlpKjV8uuAFBF05OjqKAokhD1HpZ0NbISy32djYaJ3PC9QZGRlK6Tlx3nXNi7G6/NKFrnkCVPMVFxdn0D71vTf5c0eultXMzEzjc9EYeZU+/+Ty4ubmptP25Z4txroPc+ta8We93PcDkDkarHSdnBATE4OAgACMGzcOUVFRsp8tuUKdts+Lts+KrvcwoPu9k1VuXWNd6Fq+MoayZcti48aNcHZ2xocPH7B3714MGTIE5cuXh7u7O3r27Ing4GCDt29lZSWm9Sn0S5fVdQRrvYfRTkhIEK+RXr9+DUtLS9l1du7cibdv3yrVlOmrX79+GDt2LOLj47FixQr8+uuvYl758uVRoEABpKen69R/Z07JyMhAVFQUgMyaPP7AySu61KYa41defqBPsw9j1zJLH76dO3fGL7/8YtTtS1WoUAERERF49uwZnj17ptc9Jv1sBAYG5kT2clVunvePFT9HtWvXxpIlS3Rez9PT06D9ZeeZI72es2bN0qmvVSDnm+TJPVuMdR9+TNfKmHr27In79++Lfsy7du2KcuXKwc3NTZQvMjIyxHX4mL+zpPfK+vXrZZvhcPrUnhpCW/nKWDp27IgmTZpg8+bNOHToEIKDg/HixQv8999/WLduHdatW4fevXtj5cqVWt88qiP9EaPPDzzpsrr+ENK70Lxlyxa9q+/fv3+Pbdu2KXXsry9TU1OULl0aFy5cQGxsLOLj40WNhYODAypWrIjw8HDcvHkTd+7cQalSpQzel6FCQkLEK/CaNWvmaPtdTaQfLrnayA8fPoibJqdqxaVvAZ4+fQofH58c2Y8cFxcXmJqaIiMjQ+9BFuRYWVnBxsYG79+/x+vXr1G+fHmjbl+qXr16ovC7e/duDBw4UKf1MjIysH//fgCZn6VatWrlWB5zS26e94+Vq6srnj9/jhcvXuTo+XF2dsazZ89k3/R9+PBBqTZYSvr2Iy0tzaD8Sp9/crV6urZhlGOs+zC3rpWLiwuePn2q09sqfj1z6vvhxo0bOHPmDIDMJjlTp05Vu5yme8aY+L2jS22wofeO9B43MTHJN88sbeUrY3J0dMTAgQPF99a1a9ewe/duzJ8/H7GxsVizZg0qVaqE77//Xq/tSgu8+twr0mV1LTTr3TyDN7Xw8PDAxo0bZf+KFy+utF52SEfySUtLU5rHC+SMMfz111/Z3pch/vzzTzHdvn37PMmDpaWlCFaSGy45MjJSnMec+vBWrlxZTPMAnbxgbm4ujjE4ONjotRW8zd3Zs2dz5FUaJx29cuHChTo3E/j333/x+PFjAEDbtm1zrObC2LX4cnLrvBtLXp2fW7du4cGDBzm2Hx6Ud+nSJa0jrl2+fFljsJG/v79o78xHmtVXyZIlxataaftRdeTm68MY92FuXSv+HJQ+/9WJi4sT+cip74erV6+K6a5du2pczpjXShN/f38AmQGC2mor4+PjDQ4ElrbNNvQezynaylc5xc/PD2PHjsX58+fFGyM+sp8++PMHyPz86Iova2trq3M7db0Kzffv3xe/Cjt27IiuXbvK/vGhpU+dOoWHDx/qszsl79+/x7Vr1wBk/rKX1mACmYVm/qp64cKFYghoXRijQL9p0yZs27YNQOYPij59+mR7m4Zq0qQJgMxfcdqGH12+fLnKOsbWsGFD8WGYP39+rrYFzapNmzYAMu9jvYbN1MGXX34JIDOgZeHChUbdtlTFihXRtGlTAEBUVBRmzZolu85///2HUaNGAcgstI0ZMybH8idtW5aSkpJj++Fy67wbS16dHwA5Mnw6x58f8fHx2LNnj8blVq5cqXGejY0NGjduDCBz2HFDouzNzMxEwPGhQ4c01nwzxrB27Vq9t6+JMe7D3L5Wr1+/xr///qtxuRUrVojKhZz6fpAW1LT92NCnuYqh+L2XkZGBdevWaVxu3bp1Ble6lCpVCn5+fgAyywzZKRMZk1z5KqcVK1YMvr6+AOQDPdXx9PQUhd7Q0FCd1+PL1qhRQ2sAs5Rehea1a9eKm6VTp046rcOXy+5DauLEiaJZSLNmzVSaPtjY2GDdunXiFXyrVq20PhAA4OHDh+jatSuGDx9ucL5SUlIwa9Ys0UWNqakpVqxYoVNb75wyZMgQ0SZo4MCBePPmjcoyhw8fxooVKwAAQUFBqFatWo7kxcnJCYMGDQKQOe78iBEjND5w0tLSDA6U0MWwYcNEAX7QoEFaI8J5rayuBg8eLB40v/zyi+g6S5OzZ88aXPO+bNkyEZw0btw4/PnnnxrP6YMHD9CkSRNxPKNGjdLYDWGfPn1E1PbJkycNyps0yPLu3bsGbUMfuXnejSG3z0/Hjh1Rrlw5AMDixYvFZ16TK1euaC30atK7d28RSDNq1Ci1hdVTp05h6dKlWrfzv//9T9TGd+3aVes54l2fZv2s8udNcnIyBg0apPaH+pw5c4wa/2KM+zC3rtU333wjguVGjx6NR48eqSxz+fJlTJs2DQBQpEgRtGvXTu/96IK/FQWANWvWqF1m8eLF2LlzZ47sX6p9+/YiCHDy5MmiFyqp27dvY/Lkydnaz/jx4wFk3p8dOnTQ2tQjJSUFixYtQnJycrb2KUeufJVdO3fu1Bos++jRI9y4cQMADG7CWbduXQDQ+cd2SkqKiEHj6+pCrzbNvNDr7u6u806qV6+OokWL4vHjx1i7di3+97//qV0uLi5OpRCTnJyM27dv459//sHBgwcBZP4K+u2339Ruo3Hjxli+fDkGDRqExMREdOrUCTVq1ECnTp1QsWJFuLi44M2bN7h37x4OHjyI3bt3IyUlBY6OjlqPQZqv9PR0vH79Go8fP8b58+exbds20TbM0tISCxcuRIsWLWTPy5MnT3TqxsfBwUE0cdFVQEAARo8ejVmzZiE6OhqVK1fGTz/9hEqVKuH9+/fYs2cP/vrrL6Snp8PCwgJ///23XtvX12+//YYjR44gOjoaCxYsQEhICAYNGoSAgABYWFjg8ePHOHPmDDZs2IApU6bkWC194cKFsXjxYvTq1QtxcXEICgrCgAED0KJFCxQuXBjv3r3DlStXsHv3bty8eVOvQo2DgwM2btyIFi1aICUlBa1bt0bHjh3RsWNHlCxZEkBmm+7w8HDs2LEDUVFRmD9/vkHd8BUvXhw7d+7El19+iYSEBIwcORLr169H7969UaFCBdja2iI2NhYHDx7EmjVrRDeMnTp1El+EOUXaVnrkyJH43//+Bw8PD1EQ8vb21vkXvS5y87wbQ6VKlWBlZYXk5GT88ssvMDMzg7e3t/iRW6RIEZ2juHVRoEABbN68GbVq1cK7d+/Qv39/bN26FV9//TXKlCkDc3NzxMXFITIyEnv37sW5c+cwevRo8VZGV4UKFcJvv/2GH374ATExMahSpQp+/vlnBAUFITk5Gfv378fcuXNRpEgRvH//XmNBoXbt2pgwYQImT56M+/fvo2LFiujXrx+aNm0KDw8PpKSkICYmBiEhIdi2bRtiY2MRHR2NokWLim106NABTZs2xeHDh7Fr1y7UrVsXI0aMQKlSpfDixQsRdBQUFCS+YLPbbMYY92FuXSs3NzfMmjULQ4cORWxsLKpWrYqxY8eiVq1aSE9Px9GjRzFr1iy8e/cOJiYmWLp0qdau6bKjUqVKKF++PK5cuYLFixfj9evX6N69Ozw8PPDo0SOsW7cO27ZtQ+3atXH27NkcyQNnZWWFP//8E19//TXi4+NRvXp1jB07Vlyj06dPY8aMGcjIyEDp0qVx+/Ztg+6bbt264dChQ1izZg3Cw8Ph5+eHQYMGoX79+nBzc0NiYiLu3r2L4OBgbN++HfHx8ejVq1e2js0Y5avs+PPPP9G9e3e0atUKjRo1Qrly5eDo6IhXr14hLCwM8+fPF4X2IUOGGLSPVq1aYc2aNXj48KFOcW2nT58WzVC0jROgQteRU86cOSNGThk0aJCuqzHGGBs+fLhY9/z58yJd1xFr+J+bm5tOo72cPHmSlS9fXqdtFi9enG3YsEFlG9LRyuT+TExMWOPGjWVHcTJkRMC2bdvqda659PR09u2332rdtqOjo9bzaaxhtBnLHCq1Xr16ssebdQQlXUcE1GdUqtWrV4tx6jX9qdueLufj2LFjYlhSub81a9bonGd1oqKiWPXq1WX3Y2NjwyZNmiQ7PCkfZQwAi4qKMjhf0u1k/ZOOFKXr/aXLKIPZPe983sSJE7XmxRifiTFjxmjMm/Qe1/Xe1mWUwcuXL7PSpUvrdH4mT55s8LFJn/VZ/woWLMhCQ0OZl5cXA9SPCMjNnTtXjPin7c/CwoLdvn1bZf1Xr16JkffU/VWqVImFhYWJ/2/atEllG4Y8W4zx+c+tazV16lQxHLe6P0tLS63PKGONCBgZGcmcnZ015iMgIIDFxsZq/YzqOhKp3PcJY5kjIZqYmGh8lu7bt4/VrVuXAWDNmzdXWV9uREDGGPvw4QMbM2YMK1CggOw1trW1Ze/fv5c7jVqPVZc/XctXmmh7DulSnipQoACbNm2awftPSkpiTk5OOn8u+vTpwwCwMmXK6LUfnQvNAwcOFAd3+PBhvXZy6tQpse63334r0uUuqoWFBStcuDBr3Lgx++OPP1h8fLzO+0xPT2e7du1iAwYMYP7+/qxgwYLMzMyMOTk5sfLly7O+ffuyXbt2aRzTXdNFtrKyYoUKFWLlypVjnTt3ZrNmzWK3bt3SKU+5WWjmTp8+zbp3786KFy/OLC0tmYODA6tYsSIbN24ci4uL07quMQvN3Pbt21mnTp1Y0aJFmaWlJXN2dmbly5dn3bt3Z7t27WIpKSlKy+dEoZkxxmJjY9n//vc/VqVKFebk5MQsLCxY8eLFWZ06ddjUqVPZvXv3VNbR9XwkJiayBQsWsObNmzMPDw9mYWHBrKysWLFixVjTpk3Z1KlT2Y0bN/TKrzZ79+5l/fr1Y2XLlmWOjo7MwsKCeXp6snr16rHp06ezx48f67Sd4sWLMwCscePG2cpPamoqmzlzJgsKCmKOjo5KX8w5VWhmLHvnXdsXspQxPhMZGRls2bJlrG7duszFxUXpizOnCs2MMZaWlsbWrFnD2rVrx4oVK8asrKyYhYUF8/DwYA0aNGDjx49n4eHhBh8Xt2/fPtasWTPm4uLCrKysWKlSpdjw4cPZo0ePGGNMp0IzY4w9fvyY/fLLL6xGjRri+W1ra8t8fX1Zx44d2ZIlS9iLFy80rp+amsr+/PNPVqVKFWZnZ8fs7e1ZxYoV2fTp01lSUhKLjIwU5+3AgQMq6xv6bDHG5z+3rtXly5fZgAEDWMmSJZm1tTWztbVl5cqVY99//73Ow7wbYxjtBw8esMGDBzMvLy9mbm7OXFxcWFBQEJs9ezZLSkpijGn/jBqz0MxY5vdmu3btmLu7O7O0tGReXl6sb9++7Nq1a4wxxgIDAxkA1qVLF5V1dSk0czdv3mSjR49mlSpVYs7OzqxAgQLM3t6e+fv7s+7du7M1a9awhIQErdvQ5ViNXb5SR9tz6Pnz52z9+vWsT58+rGLFiqxw4cLMzMyM2dnZsfLly7Nvv/02WxU13KhRoxgA5uvrq3W5pKQk5ujoyADtQ6arY8LYR9zpISHEKGJiYkRbslOnTuVZ8wVCcsu6detELMqdO3dEMwpCtElLS4OjoyOSkpIwfvz4HGnOQAzz8OFDlC5dGqmpqQgODkadOnXULsc/+y4uLoiJidFrDBGDRgQkhHxaeG8z9evXpwIz+Sxs3LgRQGYbX0OHRSafn507d4r2t5qCqkneKF68OPr16wcAGn/MZGRkiNieH374Qe9B96jQTAgRkfwTJkzI45wQkn1PnjzROgjXihUrxGA/vXr1yvX+s0n+defOHY3zYmJiRPedhQoVQrNmzXIrW0RHEydOhIODAw4fPqy2y92tW7fi+vXrKFasGEaMGKH39ql5BiGEkE/K6tWrMWbMGHTt2hUNGjSAl5cXMjIycPfuXWzevFl0YVaoUCFcuXIl1/ulJfmXmZkZWrZsidatW8Pf3x+2traIi4vDiRMnsGTJEtF12tq1a9GjR4+8zSxRa+/evQgLC0PVqlXRunVrpXkbNmzArVu30KhRI4PeqlKhmRBCyCdl9erVYpRYTTw8PLBv3z6lUdoIkXvrYGpqiilTpuDnn3/OpRyR/IQKzYQQQj4p//33H7Zt24aDBw/i+vXrePHiBd6+fQsnJyeUK1cObdq0weDBg/Vuz0g+fXv37sWBAwdw7tw5PH/+HC9fvoSlpSWKFCmCBg0aYOjQoTk2rDjJ/6jQTAghhBBCiAwKBCSEEEIIIUQGFZoJIYQQQgiRQYVmQgghhBBCZFChmRBCCCGEEBl5WmiOiYmBiYkJTExMsHr16rzMCiZNmiTyQgghhBBCiFS2C81paWnYtGkTevfujXLlysHV1RXm5uYoWLAgqlSpgiFDhuDo0aPIyMgwRn5JPjNlyhTxY8Pe3h7v37836va9vb3F9rX9eXt767S9kJAQ9OzZE97e3rCysoKHhweaN2+OTZs26bR+SkoKJkyYAB8fH1hZWaF8+fJYtGgR8kMnNCdPntR6juzs7ODr64vevXvj5MmTOb4/dX8NGjRQuy1jXud169ahYsWKsLKyQrFixfDjjz/i7du32T7enHDy5EmMHDkSVapUgYeHBywsLODk5ISyZcuie/fuWLdunVE+U6mpqVixYgWaN28ODw8PWFpaws7ODmXKlEHfvn3VjpylycGDB9GhQwcULVoUlpaWKFq0KDp06ICDBw/qtP6bN2/w/fffw9PTE1ZWVqhatSq2bNli6KEZ1erVq9Xed/w7rWTJkmjSpAnGjh2LAwcOGPV7LSMjA9euXcPq1avx7bffolq1arC0tBR50Pcz+/79e8yaNQtBQUFwcXGBnZ0dypUrhx9++AEPHz7UeTsPHz7EDz/8gHLlysHW1hYuLi4ICgrC7Nmzdb43P6bPJCFasWzYuXMnK1GiBAMg++fr68v27t2rtP79+/fF/FWrVmUnK9k2ceJEkReiO19fX6XrvHbtWqNu38vLS6f7y8vLS3ZbkydPZqamphq30aZNG5aUlKRx/Q8fPrCmTZuqXXfAgAFGPGrDnDhxQqdzxf/69u3LPnz4kGv7A8AGDhyodlvGus6TJ09Wu16lSpXYu3fvDD5WY4uOjmb16tXT6ZidnZ3Z7NmzWXp6ukH7evjwIQsICJDdz8iRI1lGRobG7WRkZLCBAwfKXl9t23j79i2rUKGC2nWnTp1q0PEZ06pVq/S6n4sXL84WLVpklH2vXr1a675OnDih87bu3LnDypQpo3Fbjo6ObN++fbLb2bt3L3N0dNS4nTJlyrC7d+9q3cbH8pkkRBcGlxCnTZvGTExMxAegSZMmbP78+ezYsWMsPDycHTlyhC1YsIA1a9ZMFFQCAwOVtpGfCs1EfyEhIeL62dnZMQDsiy++MOo+eGGqbdu2LDo6WuPfzZs3tW5n2bJlIq8lS5ZkK1asYBcvXmQ7d+5kDRs2FPO6d++ucRuLFi1iAFiRIkXYqlWr2Pnz59mff/4pvlQOHDhg1GPXl7QQO2TIEKXzExUVxU6ePMmmT5/O3N3dxXITJkwweH/v3r3Tek34X/369cX+zp49q3ZbxrjOV69eZaampszKyor99ttvLCQkhG3evFkUHn766SeDj9WYDh06xBwcHMQ58ff3Z5MnT2YHDhxgYWFh7NSpU+yff/5hX3/9tfhcAWCvXr3Se19paWlKBeYKFSqw1atXs5CQEHb48GE2YcIEZmtrK+bPnDlT47bGjRunVODZuHEju3jxItu4cSOrVKmSmPe///1P4zbGjBnDALBy5cqxLVu2sJCQEPbrr78yS0tLZmpqyq5evar3MRqTtNA8ZcoUpXvv7NmzbPfu3Wzy5MmsVq1aSgXAli1bsvfv3xtt3+bm5qxSpUpK107XQvPbt29Z2bJlxXoDBgxgx44dY+fOnWNTp04V95SNjQ27fPmyxu1cunSJ2djYiOf71KlT2blz59ixY8fYgAEDxPbLli3L3r59q3YbH8tnkhBdGVRo/ueff8QHxs3NjR0/flzr8lFRUaxRo0ZUaP7EDBkyhAFgBQsWZDNmzGAAmKmpKXv8+LHR9sELU7179zZ4G69evWJOTk6iZujFixdK8z98+MDatGkj7sVTp06p3U6DBg0YAJUvmh07djAA7JtvvjE4j8YgLTRPnDhR43JXr15l1tbWDABzcHBgqampOZanV69eMUtLSwaAlSpVSuNyxrjOkyZNYgDYvHnzlNIfP37MbGxsmI+Pj8HbNpZr166JQmqBAgXYX3/9pbUGOS4ujn377bcGF5q3bdsm7omaNWuqfbMQFhbGzM3NGZBZq52WlqayzO3bt5mZmRkDwKpWrapSQExMTGRVq1ZlAJiZmRm7c+eO2vx4e3szW1tbFhsbq5Q+d+5cBoBNnjxZ72M0JmnBVe476ezZs8zHx0cs37lz52zt+8KFC2zevHksJCREvPGSvgHVtdAsXUfdj6Bz586Ja9mwYUON2+HPOzMzM3bu3DmV+TNnzhT70XTdPobPJCH60LvQ/OTJE/HQt7Gx0blmID09XeXVPRWaP14pKSnMxcWFAWDffvste/r0KStQoAADwGbMmGG0/RijMCV9uG/cuFHtMo8ePRL5b926tdplSpcuzVxdXVXSExISGADWtGlTg/NoDLoWmhljrFOnTmJZbbVN2bVkyRLZL1bGjHOdee1XdHS0yrzKlSszCwsLg7dtDBkZGUo1sqtXr9Z53W3bthn0KnvkyJFif7t379a4XPv27cVy6s4fL7gDYCEhIWq3IX3zNGzYMLXLmJubsypVqqikR0VFMUBz853cok+hmTHGXrx4wYoVKybW2bFjh1Hzo2+hOTU1VVQQlCtXTuMPskGDBonthoWFqcy/ePGimD9o0CC120hPT2flypUTP7bU/fjO759JQvSldyDg3LlzkZiYCACYPHky/Pz8dFrP1NQUPXr0kF3uyJEjaNOmDQoXLgxLS0v4+PhgyJAhePz4sey6qampWLRoERo2bAg3NzdYWFigcOHCaNmyJdatW6c1aEPX3jNSU1OxdOlStGrVCkWKFIGlpSXc3d1RpUoVDBs2DMHBwVqDwo4cOYIePXrAx8cH1tbWcHBwQGBgIMaMGYOnT59q3XdsbCzGjh2LypUrw9HRURxfQEAAunXrhtWrVyMhIUH7STKSPXv2ID4+HgDQo0cPFC5cGI0aNQIA/PPPP7mSB13t3LkTAODg4IAOHTqoXaZo0aJo0qQJgMxr9O7dO5Vl3N3d8fLlS1y9elUpnQfoFC5c2HiZzmHSgLrk5OQc2w+/F0xMTNCzZ88c2w+QeX0A4NSpU0rpz549w82bN/P8+uzfvx+RkZEAgFatWqF37946r9uxY0fY2trqvc/U1FQxXaJECY3LlSxZUkynpKQozWOMYdeuXQCAsmXLokaNGmq3UaNGDZQpUwZA5mdO3XPQ3d0dN2/exPPnz5XSP8bPEAAULFgQS5YsEf+fPn16HuYm8zy+fv0aANC7d2+Ymqr/iu/Tp4+Y3r59u8p8/swEgG+++UbtNkxNTdGrVy8AwKtXr9QGKub3zyQhetOnhJ2RkcHc3NwYAGZra8vevHmTrRJ71prmn376SamdmPTPzc2NXbt2TeO2YmJixK9eTX916tRhL1++VLu+LoGAkZGRSq/jNP3dv39fZd13794p1eao+7Ozs2N79uxRu+/Tp08rtYPU9KdufWkNZHZq8qS+/PJLBmS2D+bWrFkj9hMeHi67Db6stuCu7NZApqSkiFeRzZo107rstGnTRJ7UNTmaNWsWA8CKFSvGVq9ezS5cuMDmz5/PnJ2dNZ773GRoTfPTp0/VLtO7d2+9Xw1L3blzR6xfr149rcsao6Y5NDSUAWDW1tZs2rRpLCQkhG3dupX5+fkxAGz06NEGb9sYOnbsKM7H0aNHs7096fOzfv36apeZN2+eXjXNJiYmKs/1u3fvytY6ctJAwXv37qnMHzp0KAMy23Fv3bqVhYSEsKlTpzIrKytmYmKSo289dKFvTTNjmd+L0qC7J0+eqCwj/X7R562qvjXNv/zyi+wbAcYy27rzN8bqPpt169YV3/Pqmutw586dE/tTFx+R3z+ThOhLr0LzlStXxAekefPm2d659KHPAyvq16/PNmzYwMLCwtjRo0dZr169xDI1atRQu523b98q9eLRrl07tnv3bhYWFsa2bt2qFIikqV2fXKH56tWrSkE57du3Z5s3b2ahoaHs/PnzbM2aNaxHjx7M1tZWpdD84cMHEWxmYmLCunXrxrZu3crCwsJYSEgImzdvHitevDgDwCwsLFRelyUnJzNPT08GgNnb27MxY8awAwcOsPDwcHb+/Hm2efNmNmLECFasWLFcKTS/ePFCtIGUPijfvn0rAke+//572e3oU2j28fFhAQEBzMbGhllbWzNvb2/WuXNntmPHDq3R+tJ7Vi5P27dvF8suXLhQZX5SUhKrXr262h8rvXr1kj3enKZrofn69euiTXO1atU0LpfdQvOECRPE+itWrNC6bHavM/f999+rvT7ly5fP9o/87OIBmLa2ttnqtYTTpdAcFxcnfmzXrl1b7X4jIiKYhYUFA8C6deumMn/v3r1iP3PnztWapzlz5ohl1fXO8N9//7GSJUuqvUbZCUo1FkMKzYwpN1/ZtGmTyvzcKjRLfwzLtYHnvZi4ubmpzCtYsCADVIP3s4qPjxf7++qrr9Quk58/k4ToS69C8/r168UNP27cuGzvXPrQBzKjfNV9Mfbv318sExERoTL/hx9+EPPHjx+vMj8jI4N1795dLKOuiyC5QjNvi2hqaqqxXSxjmV8KWYNkZs+ezYDMiOj9+/erXS8+Pp75+/szILNGXOrYsWMib9pqM9PS0tQ+hIxdaJbWXt26dUtpXrdu3RgA5u7urrWGgjH9Cs3a/mrXrq0x+PDAgQNiuVmzZmnND68VAcDGjh2rdpm3b9+y0aNHsyJFijBzc3Pm6+vL5syZY3B3YMYk13vG6dOn2YwZM1jhwoUZkBkEqKk3C8ayX2jmP2Stra1lvxyze52lFi1axPz8/Ji5uTkrXLgw++677wwKojOmJ0+eiOOoVauWUbapS6GZscwfg/xHUqVKldiaNWtYSEgIO3LkCJs0aRKzt7dnAFjFihXVvnVYvHix2M/WrVu15mnr1q1i2SVLlqhd5vnz56x///7M3d2dWVhYsMDAQLZmzRq9jj2nGFpoXr58uVjv119/VZmfW4Vm/qPe1tZWdtlWrVqJbScnJ4v0pKQkkd6qVSvZ7fAaa02VWozlz88kIYYwgx7+++8/MV2oUCF9VpXl4eGB+fPnq21T/MMPP2D58uUAgODgYFSqVEnMS0lJEfP8/PwwadIklfVNTEywaNEiHDx4EC9fvsSCBQswZMgQnfN26NAh0Rbxu+++Q9euXTUu6+rqqvT/tLQ0/PHHHwCAYcOGoUWLFmrXc3Z2xqxZs9CyZUucOXMGd+7cQalSpQBktv/i6tWrp3HfZmZmcHBw0O2gsoG3Uw0KCkLp0qWV5vXo0QMbN25EXFwcDh48iNatW2drXxYWFvjyyy/RtGlTlC9fHo6Ojnj9+jVCQkKwePFiPHr0CGfPnsUXX3yBkJAQODo6Kq0v7UDfzs5O676kbUbVtWnm25g9ezZmz56djaPKeYsXL8bixYvVzjM1NcWgQYMwYsQIlC1bNkf2HxwcjHv37gEA2rdvL3tfZvc6Sw0ZMkSvz3duyMlnp5z27dsjLCwMc+bMwcqVK1XaUhcqVAiTJ0/GwIED1babNvZnyN3dHcuWLcOyZcv0OYx8Tfrcf/XqVZ7lg18ruesEqF4rS0tLpW3os53ExESN1xvIn59JQgyhVyCg9MNkSFCKNp06dRIf2qzKlCkjPrz8i5gLDw8XgQ99+vRBgQIF1G7DwcEBnTt3BgBcu3ZNNuhOat++fWJ65MiROq8HABcvXhT74vvXRFogDgkJEdMeHh5ietWqVXrtHwAaNGgAlvlWIdvDlV+7dg3h4eEAoDaws2nTpiL4Y+3atVq3xfMUExOjcZmLFy9i165dGDp0KOrXr4+KFSuiQYMG+Pnnn3H16lU0bdoUAHD9+nVMnjxZZX1pkJuFhYXW/Ejvv6SkJK3LfswyMjKwZcsWLF++XClQLKvVq1eLa6RpJD9NpNeeBwtpk93rnN/lxLPT29tbXB9to8WlpaVhw4YN2LNnj9rgvOfPn2Pjxo0at0GfIXnSwqW6ke4mTZokrpU0CM/Y+LWSu06A5mulz/WWbudzut7k86VXodne3l5M8x40jEWuxsvZ2RmA6gPpypUrYrp69epatyGdL11PDq9lLl68OLy8vHReDwDCwsLEdM2aNWWHOeaktct16tQRke8jRoxAUFAQpk+fjnPnzmkt9OSENWvWAMis1VZX425mZoYuXboAAHbv3o03b95ka39OTk4a59nb22PLli2ilmfp0qUq58PKykpMy50raa8B1tbWBuQ2/5g4caL4kuZ/79+/R1RUlBjC9o8//kDTpk2N/mWXkpKCrVu3AgA8PT1FryTaZPc653c5+ezUJjExEU2aNMHUqVPx8uVLjBkzBtevX0dKSgrevHmDw4cPo06dOggNDUWbNm0wb948lW18rp8hfUi/l3LjbZ8m/Frp8vnQdK30ud7S7XxO15t8vvQqNBcsWFBMZ+0yKLtsbGy0zudd56Snpyul827PAPnXntLubaTryeGvVqU1vrqKi4vTex0AeP/+vZg2NzfHnj17UK5cOQBAaGgoxo0bh9q1a8PJyQktWrTAhg0bVM6NsWVkZGD9+vUAMmuU3dzc1C7Ha6CTk5OxZcuWHM2To6OjKLwnJiYq/UgBlAsr2l4f8vU5XV5Lfmysra0REBCAmTNnYtGiRQAyu4IydjdZu3btEm9/unfvrvHtjz7krnN+l5PPTm0mTpyI06dPAwBWrFiBGTNmoGzZsrCwsICDgwO++OILnDhxAg0bNgRjDKNGjUJUVJTSNugzJE/a/MbFxSXP8sGvldx1AjRfK32ut3Q7n9P1Jp8vvQrNgYGBYjoiIsLomckuuT6W1b2aNOb21ZEWZE+ePIno6Gid/rK2//Lz80N0dDR27NiBvn37in5Vk5KScPDgQXTv3h3Vq1c3uJCui2PHjuHJkycAMvuc1VRjLq3Rz40+m6V9hfP8cUWLFhXTcn19P3r0SEwXK1bMSLnLn/r16ye+3FesWGHUbUuvuS5NM3Sl7Trnd56enuJH5uXLl3P8By6Q+bzjzbl8fX019gttZmaG3377DUDmD+OsTcDoMySPv40EIPqqzgv8WiUmJoofrprwa+Xm5qbUVMPKykr8yJO73q9evRKF5s/pepPPl16FZj8/P/FhCg4OzrWBNLSR/qqXNmlQR1rDo09tAD/m2NhYPXOnHCBiYWGB8uXL6/TH2wVLFShQAO3atcOKFStw584dxMbGYsWKFahSpQqAzPbdgwYN0juPuuJNM/Rx9uxZlXboxqbtx5Cvr6+o6bxx44bW7Ujn81r9T5WpqakI4oyNjdXrzYs2cXFxOHToEACgcuXKKF++vFG2C2T/R29e4zELiYmJKoM95ITnz5+L6yoNnlaHP0MA1c+J9McKfYZUMcZw9OhR8f86derkWV50vVYfPnzA3bt3Aai/Tjztzp07+PDhg8btfI7Xm3ze9Co0m5iYiCCGxMRE0WtFXpJ+KV+4cEHrshcvXlS7npzKlSsDAB4+fIgHDx7olT/pl9Xhw4f1WleOh4cH+vbti5CQEJHHvXv35khAxrt377Bjxw4AQOPGjbFx40atf/zeYIzJBgRm17Vr18S0p6en0jwLCwsEBQUByAyu1NZGjxdkLC0tUbVq1RzIaf4i/TJMS0szyjY3bNggtmvMWmZA+3X+GEhHVvvzzz9zfH9mZorOkbQVfADl6y9dDwB8fHzE+ZYr7POmIEWKFFEadfJTtn//fty+fRtA5qiIeTnKnbTAru1ahYWFiRri2rVra9xOYmKiCPxWR7oPddsh5JOjbx91jx8/FgNY2NrasuvXr+u0Xnp6Olu7dq1SWtYRAbXRNGJYcnIyc3JyYkDmKFOaBg1ISEgQHbb7+fmpzNfWT/ORI0fEPF0G7ZBKSkpiLi4uDAArXLhwjnXmPnLkSJHH2NhYo29f2n/ptm3bdFqnSpUqDFAeNdDYXr9+zVxdXRkAZmNjo9TfKDdjxgyRd019bD969IgVKFCAAWAtW7bMsfzmJH1GBExMTBR991pZWRllsA3GFP2Zm5mZsbi4OKNskzHdrnN+l5GRwSpWrCiuUdbnoTb//vsve/funV77S09PFwObeHp6au03fc+ePSJf3333ncr8IUOGiPmaRpoLCQkRy3z77bd65TW/0Lef5hcvXrCiRYuKdXbt2mXU/OjbT3NKSgpzdHRkAFi5cuU0Dgg0aNAgsd2LFy+qzL9w4YKYr2kUyPT0dDEKr5OTE0tNTdXr2Aj5GOldaGaMsZUrV4oPlLu7Ozt58qTW5a9evcqaNGmiMrqQMQrNjCkPbvLLL7+ozM/IyFAaWdCQwU14AVBucJOXL1+qDG4iHZ65RYsWWr/8EhIS2Pz585XSTp8+zW7fvq1xnZSUFFa5cmUGZA7FnfXL0RiDm/ARDW1sbFhiYqJO60yfPl3s98yZMyrz+TxNg5scOHBA5VxKJSQksKZNm2r9smcs85rwLxIvLy/233//Kc3/8OEDa9OmjdiOuiG0Pwb6FJqln5m2bduqXUbfwU2koy+2adNG53wb6zp/DK5cuSIqHczMzNjChQu1Dozz4sULNmzYMAaojvCmy+AmfLAhAGzSpElql4mPjxfDGgNghw4dUlnm5s2bYjj6qlWrqlyv9+/fs6pVq4rjyjro0cdCn0Lz2bNnmY+Pj1he3WiKXG4NbsKY8lDaM2fOVJl/7tw5cS21DYrDh9I2MzNj586dU5k/c+ZMnZ83hHwqDCo0M8bYr7/+Kj4wAFjTpk3ZwoUL2fHjx1lERAQ7evQoW7RoEWvVqpWowcupQnNCQoLSMNrt27dne/bsYeHh4Wzbtm2sQYMGYp6hw2hfu3ZNaRjtDh06sC1btrCwsDB24cIFtn79etanTx9mZ2endhjtxo0bi3WLFy/Opk2bxk6cOMEiIyPZ6dOn2bJly1j37t2Zra0tc3V1Vcmbqakpq1+/Pps5cyY7ePAgCw8PZ2fOnGErV65kQUFBYtsjRoxQyXt2C80PHjxgJiYmDADr2LGjzuvdunVL7HfgwIEq8+UKzfXr12cuLi6sf//+bPXq1Sw4OJhFRkayEydOsGnTprFixYqJbZQpU4a9fPlSY16WLFkili1ZsiRbuXIlCw0NZbt27RI/COS++PI7bSMCRkdHs9DQULZhwwbWvHlzsZyVlRWLiopSuz19C80//vijWF7XtxGMGfc6fwz279+v9CwpX748++2338Tn+vTp02zdunWsV69eoqbY0ELz9evXRSGd/5jZtm0bi4iIYOfOnWNz5sxhxYsXF/MbN26sMd9jx44Vy1WqVIlt2rSJhYaGsk2bNok3DADYzz//bMSzlbukheYpU6YofX7OnTvH9uzZw3799VdWq1Ytpe+/1q1bs6SkJI3b1bXQvGrVKqW/tm3bivV++uknpXnBwcFqt5GQkMB8fX2Vnr3Hjx9nISEhbNq0aeLes7a2ZpGRkRrzEhERId5G2dnZsWnTprGQkBB2/PhxNnDgQLF9X19flpCQoOspJuSjZnChmbHMV4be3t5KDw9Nf/7+/io1GMYqNPNtlS1bVmseateurfELV67QzBhjYWFhSl/gmv6yFpoZy6yJkdZ2a/vz8fHRmDdtfx06dFD74M5uoXnKlClifW217OpUqFCBAZmv77K+Utel0KzLcderV0+n4ZUnTJggCv/q/lq2bKn1iy+/k15nXf7c3NzU1ipy+hSa09PTWZEiRRgA5uzsrFfzCWNf54/B5cuXWe3atXU6bldXV/bXX3+p1EjrOoz2kSNHRNM0bX+NGjVi8fHxGreTnp7O+vbtq3Ub/fr1yxdDyhtKWmjW5c/Ly0vjcOFSuhaa9dm3tmf57du3WenSpTWu6+DgwPbs2SOb7927dyv9cMv65+vrq/UtKCGfmmwVmhnLbBqwfv161qNHD1amTBnm7OzMzMzMmIuLC6tcuTL79ttv2bFjx9S2rTJmoZnnZcGCBax+/frM1dWVmZubs0KFCrHmzZuztWvXan2Y61JoZiyz8PvXX3+xRo0aMXd3d2Zubs4KFy7MqlSpwr7//nuN7f24sLAwNmTIEObv788cHR2ZmZkZc3JyYhUrVmT9+vVj27ZtUylwJCYmsv3797ORI0eyGjVqsOLFizMrKytmZWXFvL29WZcuXdi+ffs07jO7heYyZcowAMzS0lLvGoXJkyeLfW/ZskVpnlyhOTQ0lP3++++sbdu2rGzZsqxgwYLMzMyMOTg4sLJly7LevXuzgwcPamy3p87Zs2fZ119/zYoVK8YsLCyYu7s7++KLL9iGDRv0Oq78SK7QbGFhwQoXLswaN27M/vjjD60FJMb0KzQfPnxYLDt48GC98p0T1/ljcezYMTZ8+HBWsWJF5u7uLo67TJkyrHv37mzDhg0af8jpWmhmjLH//vuPzZgxgzVo0IC5ubkxc3NzZm1tzXx8fFjnzp3Zzp07dT6/+/btY23btmWenp7MwsKCeXp6srZt27L9+/fre/j5jqZCs5mZGXN2dmbe3t6sUaNG7KeffmIHDhzQ+QdCbheaGWPs3bt3bMaMGaxq1arMycmJ2djYsDJlyrCRI0eymJgYnc9JTEwMGzlyJPP19WU2NjbMycmJVa1alc2YMUPnpnqEfCpMGPvI+3EihBBCCCEkh+nV5RwhhBBCCCGfIyo0E0IIIYQQIoMKzYQQQgghhMigQjMhhBBCCCEyqNBMCCGEEEKIDCo0E0IIIYQQIoMKzYQQQgghhMigQjMhhBBCCCEyqNBMCCGEEEKIDCo0E0IIIYQQIoMKzYQQQgghhMigQjMhhBBCCCEyqNBMCCGEEEKIDCo0E0IIIYQQIoMKzYQQQgghhMigQjMhhBBCCCEyqNBMCCGEEEKIDCo0E0IIIYQQIoMKzYQQQgghhMigQjMhhBBCCCEyqNBMCCGEEEKIDCo0E0IIIYQQIoMKzYQQQgghhMigQjMhhBBCCCEyqNBMCCGEEEKIDCo0E0IIIYQQIoMKzYQQQgghhMigQjMhhBBCCCEyqNBMCCGEEEKIDCo0E0IIIYQQIsMsrzNACCEk/8nIyAAAMMZEWoECBfIqO4QQkueoppkQQgghhBAZVGgmhBBCCCFEBjXPIIQQomL79u0AgISEBJHWoUMHAICTk1NeZIkQQvIU1TQTQgghhBAigwrNhBBCCCGEyKDmGYQQ8plLT08HAMTExIi048ePAwBSUlJEWosWLQBQ8wxCyOeJapoJIYQQQgiRQTXNhBDymbtz5w4AYO/evSLtwYMHAICiRYuKNBMTk9zNGCGE5CNU00wIIYQQQogMKjQTQgghhBAig5pnEELIZyg1NVVMnz17FgCwdu1akcYDAL28vESadEhtQgj53FBNMyGEEEIIITKoppkQQj4jvIaZB/8BQGRkJAAgKipKpPEAQGtra5Fmakr1LISQzxc9AQkhhBBCCJFBhWZCCCGEEEJkUPMMQgj5jLx//x4AcOzYMZGWlpYGAOjZs6dIe/v2LQDA0dFRpFlZWeVGFgkhJF+immZCCCGEEEJkUE0zIYR84l69eiWmY2JiAADOzs4izd/fH4CixhlQBApaWFiINDMz+soghHy+qKaZEEIIIYQQGVRoJoQQQgghRAa9ayOEkE8cH/EPUDTPaN++vUh7+vQpAGDfvn0iLSkpCYDyKIA0IiAh5HNGNc2EEEIIIYTIoJpmQgj5RL148QIAcODAAZG2e/duAMpdzqWkpABQ1DgDgLu7OwDAz88vx/NJCCEfA6ppJoQQQgghRAYVmgkhhBBCCJFBzTMIIeQTwkfyA4CrV68CAF6+fKkyPzg4WKQlJiaqbIf342xrayvSTE2pnoUQ8vmiJyAhhBBCCCEyqNBMCCGEEEKIDGqeQQghHxFpX8kmJiYq858/fy6mT506BQDo2LGjSJs6dSoA5SGxjx8/DgDYs2ePSCtatCgAoHDhwiLN0tIyW3knhJCPGdU0E0IIIYQQIoNqmgkh5CMirV3mo/bxvpcBIDw8XEzz/pfLlSsn0kqWLAkAiI+PF2kJCQkAFKMFAsCjR49U9s3XLVOmjEizsrLS/yAIIeQjRDXNhBBCCCGEyKBCMyGEEEIIITKoeQYhhHykeP/K06dPF2mxsbFietSoUQAABwcHkcabdOzYsUOk7d27FwAQGRmpsg/edAMAKlasCEDRhzMAFC9e3OD8E0LIx4RqmgkhhBBCCJFhwqT9FxFCCPloJCcnAwAOHTqkkgYAgYGBAAAvLy+RZm5uDgC4d++eSHv48CEA5e7qUlNTAQAuLi4izc/PDwDg4eEh0uzs7LJ5FIQQ8nGgmmZCCCGEEEJkUKGZEEIIIYQQGdQ8gxBCPiJyIwISQgjJGVTTTAghhBBCiAzqco4QQj4iVLtMCCF5g2qaCSGEEEIIkUGFZkIIIYQQQmRQ8wxCyEeHB8O9efNGpL169UrpX0DRZ3FGRoZI480bUlJSRNrbt29Vpnk/xdJ11JFu29raGgDg5OQk0mxsbAAo+kfOuo6FhYXScoBiBD/pdhwdHTXmQUoaKBgfHw8AsLe3V9kfIYQQ/VBNMyGEEEIIITKoppkQkqOkNZ+8hjU9PV1rmrp1EhMTRdrr168BKI9gFxsbCwB48uSJSOO1xh8+fBBppqamKtv777//VKbfv3+vso460nzzGuLChQuLNF5bbGVlpXJM0nRprbK7uzsAwNPTU6QVLVpUaR+Acu01x88DANy5c0clP97e3gCUR/orUKCA2mMjhBCiQDXNhBBCCCGEyKBCMyGEEEIIITJoREBCSI6SNo24ffs2AEWzAQC4d+8eAODBgwciLSYmRmVa+qjigW3SADfevEEaMGdpaQlAuXkF3w6fBwB2dnZi2tbWFoBywJy2x6R02zzwMCEhQaTxZh5paWkiTRpYyM9PUlKSSOPNSqSBjrxJirTZCG9W4eHhobI9QNF8RXostWvXBgBMmzZNpEmbjhBCCFGPapoJIYQQQgiRQYGAhBCdSWtLX758qTLNa0MB9V3A8eXUrStdThqkZ2aW+ZiSBr3x2mQ3NzeRxoPmpLWuvNaYbwNQBOHxeQDg6uqqMi3tAk4auJeVNIiO1xA/e/ZMpPHaYl4LDSjXTvOu76S1yjwY8enTpyp5kB7Lu3fvAABnzpxR2Z8mvPa5bNmyIi0gIEDlWJydnQEoBwxKzxMhhHxuqKaZEEIIIYQQGVRoJoQQQgghRAYFAhJCZPHgskePHom0kJAQMX3hwgUAwOXLl0UaD/aT9mPs5+cHAPD19RVppUqVAgD4+PiINOl0iRIlACgH7vGmCtKAOj6trk9lbSP6adqO3Drq8Mep9LEq94jVdR11AYz8HA8ePFiknThxQmVd6bHwJhjS61KsWDEAQKVKlUQanw4KChJpNWvWBKDcpzQhhHwuqKaZEEIIIYQQGVRoJoQQQgghRAY1zyCEKA29fOPGDQCKPpUBRV/K0l4vpM0EeD+/0v6AeZp02OdChQoBUAwTDSh6wJD2zFCwYEGV7ZBMvCkMABw6dAgAcP78eZF269YtMc2vl7TJCu8Ngzd7ARRDa0t7I+G9fUj7hebNdKQ9lEib2vDmN6VLlxZp0j6wCSHkY0Y1zYQQQgghhMigfpoJ+YRJ+xfmI85Jaw5538jR0dEi7dKlSwCAK1euiLSHDx8CUK6x5EFhAFC5cmUAQGBgoEjj/QBL+xUmuuEvAKU1+/wNwL59+0RacHAwAOXa+OLFi4tpaR/LHO/Pul69eiKNXytp39TXrl0DoFyzHRoaCkC5j2vp6I28f2lpn9u81ln6xoHnV/q2ghBC8juqaSaEEEIIIUQGFZoJIYQQQgiRQYGAhHzCEhISxPThw4cBAAcPHhRp4eHhAIDChQuLNB7YJQ3w4tPSV//SV/T8tb709T4F8BmOB14ePXpUpO3YsQMAUKNGDZFWoUIFAMD06dNFGh/KGwBat26tsu34+HgAiuG0AUXzmrZt24o06T3B8eYX0iYZvNkIoGjSw5vzAEBqaioAoHHjxiLtyy+/BKDcBzQhhOR3VNNMCCGEEEKIDIrQIeQjJg3q47WTAHD37l0AwIMHD0Qa71aOdxsGKIK0pF2EBQQEAAD8/f1FWpkyZQAodylHjOPNmzcAlAMvIyIiACjX6Kp7A+Ds7Kz0L6DcXV+VKlUAKNcGP3v2DABQvnx5lbwcP35cTHfo0AEAULJkSZFWpEgRAMojNkr3x7uXk44Y+PTpUwBAXFycSONvO6QjSPK3GOq6wgMAc3NzlfwSQkhuoppmQgghhBBCZFChmRBCCCGEEBnUPIOQj4Q0Zjc9PR0AcPPmTZEm7b/3wIEDABSBW4AiEKtjx44irUGDBgAAe3t742eY6IQHY27atEmk8aY0PEAPAEaPHg0AuH//vkjjzRx48xlAualNuXLlAACnTp0Sabx5xuTJk1XyMGfOHJHGm3w4OjqKNN7vs7TP5dq1a6tMp6WlqexPen/yab5fAChVqhQAoHPnziKtWbNmao+LEELyAtU0E0IIIYQQIoNqmgnJ5168eAEAOHPmjEg7duwYAOUR4woVKiSm27RpA0C5izgeYCUNtKIa5tzz5MkTMb1+/XoxzbtnkwbU1a9fHwBQvXp1kcZrfG/fvi3Szp49C0C5Oze+LgAUK1YMgGI0SEBR81ugQAGRxt848O7oAMXofzyQDwCGDx+ulBdNpEF7RYsWBQA0bdpUpPF7UBqoys/P9evXVY4PALy8vAAo10TzLvdo1ElCSG6gmmZCCCGEEEJkUKGZEEIIIYQQGfROi5A8lpGRIaYTExMBKAfwXbp0CQAQEhIi0qKjowEoB2TVqlVLTDdv3hwABU/lFWn/2Y8ePQIAhIWFiTTe9AFQBNdJR/pr1KgRAEW/x1K3bt0S048fPwag3J8x72cbAExMTAAoN8VITk4GoNwUgzd96NSpk0jjzUD4vQYA586dAwBUrVpVpLm5uankUYrnQdosSDrN8ftcGjAoDXTlnwnpSIV8xEvp9ngzJUtLS635IoQQfVFNMyGEEEIIITKoppmQPPb27VsxzbsGW7lypUhLTU0FoDxC34QJEwAouhQDAFtbW7XTJPekpKQAUB7db/ny5QCUA/i6d+8upvkbAmltsY2NjdL2AEWAnLSGmNeqSgM+ec2ulHTEQD5an3SEPh4oKB3Jb+DAgQAUQacAMHfuXABAly5dRFq/fv1U9mcIfn/zWm8A6Nmzp5jmNfUbNmwQaTt27ACg/EaFByvyIEFCCDEWqmkmhBBCCCFEBhWaCSGEEEIIkUHNMwjJRa9fvxbTPBgsKipKpPF+a93d3UUaf10tDb7i/feqCxQjuevOnTtimo9wx4PaAEVAWosWLURanTp1xLSvry8AwNRUtQ5D2hTj9OnTAJRH2wsKCgIgH4zn6ekpposUKQJAEUQonZY2c+D54sF2ABAZGQlAuS/lvXv3imkewMibl0hJR7RU14SE9+0sbUoinbawsACg/BnigYLSJk5r165Vyj+gOE/SkROtrKz0ziMh5PNGNc2EEEIIIYTIoJpmQnLR5cuXxTQPYpJ26cVHTxs8eLBIq1y5MgAavS+/4aMxHj9+XKTxURulNcQ8UK59+/YG7wNQ1DTzUf4AxUiA0gA+daSBgnyaj0QIKN5wqOuisGzZsmK6R48eAIDdu3eLNF6zCyju34oVK6psJ7s1t7yrub59+4o03g1dcHCwSJszZw4AxfkCFDXR0pEDpYG1xsojIeTTRjXNhBBCCCGEyKBCMyGEEEIIITKoeQYhOYS/Ol64cKFIk74S9/DwAAB89913Io2/Mpa+gqdmGfnHgQMHxPT27dsBKAfw8b6Ba9euLdKkfWnrS93IkNLR73hAqLqgNqmCBQuKaR40+PTpU7X7yUoabFqlShUAyn08837EAUVQoLR5Cg8OlOIBd9ltDuHq6gpAObCSf6540CKgaBYlDX7kzZ66desm0qQjJxJCSFZU00wIIYQQQogMKjQTQgghhBAig5pnEGIEHz58AADcv39fpF28eBGAoi9ZAHBxcRHT/NW69PU1DX+d93jTAWkThKtXrwJQ7qWBN0HgTRYAoF69egAU/QIbsl8AeP78OQAgJiZGpPFmOryfZUC+WQbHe56QTkdERIi0Z8+e6bQdfn9Wq1ZNpEn7jebDwJ87d06klSxZEoCiZw3AeM0gePMOaT/VfFraxIk3Iblx44ZI48cvbboSGBgopnkzD0II4aimmRBCCCGEEBlU00yIgTIyMsQ0D6paunSpSOM1Wd27dxdp0oAlHx8fAIqR0Ej+wPtGPnLkiEibO3cuAOX+h7///nsAyv398sA0Q0jvJ97HMK/hBoBmzZoBUAQb6kNaa8prqmNjY0WaNChQF3yUSgBwcHAQ07y/50ePHok0Hhz4xRdfiDTpaH05RVojP2TIEADKNeDHjh0DAPzxxx8ijfd7DQCjR48GQJ9PQogC1TQTQgghhBAigwrNhBBCCCGEyKDmGYTo6f379wAUgX6Aov9eaZ+1bdq0AaDcZy8PigKoT9i8lpSUJKalw5vzYDZpn9otWrQAANSsWVOk8aAxR0dHo+ft/PnzAIBbt26JtIEDBwIwrN9naR4LFSoEAHj9+rVI4/00S4MRde1D2dnZWUzze/7kyZMijR+LtL9nvo40gC8nWVhYAFAO9OPHJx1aW9pkZebMmQCA1q1bizTp+oSQzw/VNBNCCCGEECKDapoJ0cGbN2/ENA/O4jWSABAaGgpAeXSxrl27AqAR/fKb5ORkAEBUVJRIk17LkJAQAMpdpA0dOhRAznZDJh1Fj3c19+7dO5FWvnx5AMrdxxmC1zpLRzLkb0+ktc/SGmRd8aBI3gUjAISFhQEArly5opKHBg0aiDQnJye996cv6THVr18fgHLXdFu3bhXT+/fvB6BcQ25tbQ1A+d6wsbHJmcwSQvIdqmkmhBBCCCFEBhWaCSGEEEIIkUHNM8hnTS7w6fHjxwCAEydOiLQ9e/YAUO6T99dffwWgHKRFzTLyj7dv34rpxYsXA1BuLiB9xc771a5Ro4ZIc3d3z7G88dH/eDMGQDHynrQ5iCHNJdTh/Q4XL15cpFlaWgJQDn7kaYY0P/Dz8xPTY8eOBaA47wCwevVqAMpNTapWrQpAOTAvN0jPQ+fOncV06dKlAQA7d+4Uabzv9b59+4q0ypUrA1D/eTcksJIQkn9RTTMhhBBCCCEyqKaZfNaktT/p6ekAgGvXrok0HuB3/fp1kca77KpevbpIk470R/JWWlqamObBftLuAXmQnTTwTDrKXt26dQFkP+BOV/fv3wegGKEOUNxjvBYTMF7AGa9pLlGihEjjNaL37t0Tafz49dkv3450FL0yZcoAUK65T0xMBKA86iIP0KxXr55IkwYr5hRpzTYfpRNQBCvyt00AEB0dDUD5WvEAzipVqog0HlxItcuEfFqoppkQQgghhBAZVGgmhBBCCCFEBjXPIOT/PXr0CADwzz//iLQHDx4AUA4WGjFiBADl0f1I3uPNMjZu3CjShgwZAkA5iG7UqFEAgC+++EKkBQQE5EYW1bp79y4A5VH0+vTpA0DRlzBgvAA5PjqetHkGb4LA8wIo+oXmTUV0oa05wldffSWmeTOICRMmiDQ+KiEPwAOUm8jk9gia/J4ZPny4SDt37hwAYPbs2SKNN2mR9rPNR0bMyQBSQkjuo5pmQgghhBBCZFBNM/ms7dq1S0yfP39eZX7jxo0BANWqVRNp3t7eOZ4vohtpkNaZM2cAKAeX8eDOuLg4kRYYGAhAuUYzt6Wmpopp3uVcQkKCSOO1u0WKFDH6vnlNszTo7cWLFwCUa5ql3fQZg7SmmAcH9uzZU6RFRkYCAGbOnCnS+vXrJ6alwZq5QV2tOc/Dd999J9IuXLgAALh8+bJI4/edNPgxt/NPCDE+qmkmhBBCCCFEBhWaCSGEEEIIkUHNM8hn48OHDwAU/eICwPHjx8U0Hw2tbdu2Iq1Ro0YAlAMBORrtK3dJmzTExsYCULwaBxTNa169eiXSeEDWtm3bRNq6desAKJre5BbeDzGg6O8XAF6+fAlAOTDP09Mzx/KhrnkGb1rA+7UGjN88Q4r3kd2xY0eRlpKSAkA5kFN6fQsWLAhAeZTE3P7c2dnZAQAaNmwo0vhIgHykUEDR1IQ/cwDlpjbS0UQJIR8PqmkmhBBCCCFEBhWaCSGEEEIIkUHNM8hng7963rp1q0jjr6oB4MsvvwQAtGrVSqS5ublp3B41ychdfEhzANi9ezcA5WGffX19AQDTpk0TafxVvrRnlNWrVwMAhg4dKtKqVq1q/AxnIW3uIH2V//r1awBAhw4dRBofhjkn8CGupfvgnwPeLzmgGOo6J1lbW4tp3hRKmnb06FExza/1+PHjRZqtrW1OZ1EWv3ekfTL//fffAICrV6+KtEOHDolpPlR7Tl5nQojxUU0zIYQQQgghMqimmXySeJDe06dPRVp4eDgA5UBA6ahwPLhHW+0yyR18dDgAOHHiBADgypUrIo0H1VWpUkWkVa9eHYD6/nB/++03Mf3NN98AAH788UeVfeQkXqMMKAe4FS1aFABQr149kSYdCc/YeH/J0ppRXrsrzWNOBgKq4+XlBQAwNVXU5dy6dUtMP3nyBACwb98+kVarVi0AinMolduButJgYf5c4X2HA8r3GK8hlz5rrKyscjqLhJBsoppmQgghhBBCZFChmRBCCCGEEBnUPIN8kvhrZmk/zDdv3gSg3M9rUFCQmKbhsfMGH3KY99MLKJrSAMDKlSsBAM7OziKtWbNmABT9MAOAi4uLxn306dNHTM+bNw8AcPLkSZG2ZMkSMT148GB9si+LH9+zZ89EmnRYbz6cd9myZUWatIlCbuB9DUv3y4f1lvaPzYMIc6K5A983b6YBAM2bNxfTwcHBABRBoACQkZEBAOjatavK9vIyULdBgwYqeZAGskZERABQfhYFBAQAUA6EJITkL1TTTAghhBBCiAyqaSafjPfv34tp3tXTwYMHRRofZa1Xr14ijdfyEePjgVjqavx4DSEA3L59GwCwdu1akSYN1mzSpAkAoGLFiiLNz88PgPbaZU1WrVoFAKhWrZpIGzlypJiuU6cOAKB8+fJ6b1uda9euAVAeBVB635UrVw5A7tcuS/HzKB2VkNc0x8TEiDQ+38wsd746KlWqJKb5/fT48WORxruRlNbO8pEe+eh9eUl6z44YMUJM824vFyxYINJ++eUXAPRMIiQ/o5pmQgghhBBCZFChmRBCCCGEEBnUPIN89PhrW2mgDe8f1cbGRqTxV6Xq+vElxqeuWcbLly8BKIIyAUVQ1N27d0WaNOiP93nr7+8v0nhfw1LamoNI8ftA2nfzzz//LKa/+uorAIrAMwAoWLCg1m1qw49PGtwo7V+6cuXKBm/bWJycnAAoB8PyfpofPnwo0niQXm41z7C0tBTT/Prz0fQAICwsDABw6tQpkVakSBEAyk0jciu/WTk6Oopp3g88oLgnpPnmganS/qX5KJeEkPyBapoJIYQQQgiRQTXN5KMXHx8PANi+fbtI4wFCU6dOFWnS7uVI7klKShLThw8fBgAcOnRIpD169AgA0LdvX5Em7WrMwcEBgPraZSl9uxj74YcfxPTZs2fF9N69ewEA7du3F2kHDhwAoHtwmbS2kNcwR0ZGirSePXuKaWmtc17hNaLSkfXevXsHQDESH6AcwJnb+H3QqVMnkca7Kdy/f79IO336NADlayAN+swPeBd50vO9fPlyAMpdE/LgQEJI/kA1zYQQQgghhMigQjMhhBBCCCEyqHkG+ShJg8Y2btwIAEhLSxNpLVu2BKA8ylpeBQN9rniQ1rlz50TagwcPACiPhFa/fn0AygFerq6uOZ4/6f3A7yEAaNGiBQBFMKk0jfevCwCFCxdW2Sa/B6XBc7yZAx91D1D0GQ4AFhYWhh2AEfHAS2kgIG9WIj0WPrphbpE2sVDX/KZWrVoAlPPFm9okJyeLNH6/8SBBTdvLLTwf0qY5vPnOixcvRNo///wDQLm5kru7e25kkRCiBtU0E0IIIYQQIoOq3shHhdfkSbvv4qP+dezYUaT16NEDgKIrLZKzeK2eNIiJX5cLFy6IND7aGe9GDgAaNWqUG1nUShrgx4P+eO0yoKh1lgaUzZ8/HwDQunVrkcZrCaXHzLtNk45ux4Pa8gte0ywdEfDEiRMAlEcEzO2aZrnaYB8fHwDKbyYuX74MALh165ZIO3/+PACgevXqIq1YsWJGy6ehihcvLqY7d+4MANizZ49I4282pG9mpJ8dQkjuoppmQgghhBBCZFChmRBCCCGEEBnUPIPke9JXwosWLQKgPKLcl19+CQBo0KCBSHNzc8udzH3GpIFWvCnGqlWrRBp/pcxH2AOAqlWrAlC8Vs+PeFMN3kwDAAYMGAAA2LRpk0iT9uPM9e7dGwCQmpoq0ngzAOn9KQ0KzA9484ZSpUqJtFevXgEAnj59KtKkgXn5ifR8Dhs2DIDy9eN9ICcmJoo03leydNTB3CYNAg0MDAQAxMbGijQeOCtt7mNubg5AEUAL5G1QIyGfE6ppJoQQQgghRAbVNJN8i9dkXr9+XaTxIB8rKyuRxgNjpN3LEePi14LXfAHKI9zxaVtbW5FWuXJlAMo1Yl5eXjmaT2OSBgfyLun69esn0lasWAFAEWQGKEailNbIVqxYEYDyiJTW1tbGz3A28JpKdW9o3r59K6Z593n5LcBWWtPK32LUqFFDpPHnxtWrV0UaH/lRGliXlwGafMRLfr8AwJs3bwAo1zTzAE1p94A8oNDUlOrBCMlJ9AkjhBBCCCFEBhWaCSGEEEIIkUHNM0i+xV/5Hz16VKTxV+b81T8ABAQEAKAR/3LSnTt3AACHDh0SadL+ZEuWLAkAmDBhgkjjr8lNU+NE2uXThwEAz5MVzWsKlc9sthDoqUhTJ+2Rom/uE9df6pV/Wx/Fq/rapVVfwSfHXhbTF69kvhJ3LK9oTsHz1qRJE5HWsGFDAMojuG3btg2AIvAMUARE5sYoh9klDUzjfTdLm2f8999/AJT7DebNCvIb/lwAgHHjxgEAZs+eLdKWLVsGQLmZg3SEvrxStGhRMc2DaKV9Tt+4cQMAEBISorKu9FgIIcZHNc2EEEIIIYTIoEIzIYQQQgghMuh9NslX3r9/L6ZDQ0MBKPdO0KVLFwDKQy9TswzjSkhIAKDoXQAAoqOjASh6TwCAdu3aiWne/7J0GOZ3Z8cDAIJazBJpd1PU7fH/h5meelqknBynaBrBG1M8PPS9SGs24KwOR6JQe9kdMX3m/5tnJJweI9Iq91X00NKsU2ZPBA+/7SvSSi27CACY29BFpPH+w6VDuvM+jaVDZktft+d30t4XihQpAkC5b+NHjx4BAAoXLizSpNP5Ce/PGFD0ld2qVSuRxodGX716tUh7+PChmFbXDzfvFSW3+kXmzWXatGkj0mxsbAAAW7ZsEWn8XqTmGYTkLKppJoQQQgghRAZV0ZE8J629jIiIENN3794FoFxjxAN1Pqbau/yM11C9fv1apPGa05MnT4q0pKQkAIC/v79I4yOqAZLaxgTFKGxj/r+G+XGtxSItaldmP8cB5o9F2j9flwMA9P7fKJG2pcsZMd2/pLqcZwbhrbx/XKR8461uOc3CdyiC9bqtixfTv/GYwS6/izTvfzIDBef+f/AfoOi7+ty5cyLt+fPnmbmTLPex1v7x2lnpvRETEwNAub/t/FrTLMVr0KVvqPgogtOmTRNp0rdWPNhY+qzJq6BH/iYHUHwWedApoHgT9OzZM5Hm7u4upqn/ZkKMgz5JhBBCCCGEyKBCMyGEEEIIITKoeQbJc9JXikuXLhXTfKjevn0VAVmenp65lq/PQXx8ZrOEP/74Q6TxV721atUSaXxaGuDm6OioZouKvohrj/gJAFCxpSKgKsCeN7XxEWndhmQ22ei9Y5FIu6qIxwLUNs8IBABkp+WDbw3F8N4D5v4lpqv0+/9AwBWK5hslmn+lsj5vVnT2rCIokb/yb9y4sUjjAXUfA2mAG2+ewYMbAUWgnLRv6o+JtB/qsmXLAgB69eol0njwMaBotvHdd9+JtPLly6tsM7eDA/l1kQYHvnyZ2W/55s2bRRoPmgY+jiY0hHwMqKaZEEIIIYQQGVTTTPIM716Oj3AFALGxsWKa1wTVrl1bpPHaZ6K/V69eAQAuX5aMfncxsys1abBXhQoVAAB16tQRabyG2cFBdTQ9JQ6KruK++T1Iy4IKDx/w/Cius39xNctdlXYzVw0A8OHtbZFyIeQ+AOCNVSGRVj4os0Za3WCDRbpsFNNHCq0T0xsOXgUAFBpyRKTtb5BZMy49T/y+lQaP8Tch0hHzPibqaprv378v0nhNbFxcHD52Li6Z3QfWq1dPpEmDkvlIpNJATyurzBupVKlSIi23apg5XmssrWnetGkTAOXRU2vWrKmyDiEke6immRBCCCGEEBlUaCaEEEIIIUQGNc8guYr3CwwAFy5cAABcunRJpEn7f+VBN66uiuAyop+3b9+KaX6et2/fLtJCQkIAAAMGDBBpfCQ0Nzc3kZatV9AJiiYUZ89nvup/EDZfpE34NQwAUGnSCZHWQW3wn1Rm389t3P4UKSnqRhu0bwYAWBm2RyR948uDERVtNnwa9BfT/2ugea+R1xUjB/LX9uXKlRNpvG9fHhz2sZFeZ94/ccGCBUXaxx4IKMWPVdqURhr8yptqSJszvXnzBgAwaNAgkSbbZMnIeBMRaVDu6dOZo2keP67ot/zatWtimje1kTbTyO1mJYR8CqimmRBCCCGEEBlU00xyVVpampjev38/AODOnTsirXfv3mK6Ro0aIIbh3cYdO3ZMpPEaM2kN8vjx4wEoakil841WE/XilJj8qVlmjbY0pK9Ys58BAKNbKaqX7dVsxr32T4rtWGYuEdR9uEhrE5BZA5ccvUKkta02BADQ9ydF7XrLHZldcSnCBXUnrb3jtXodOnQQaTz46mMdgU16zXlQo/RNDw8K/O+//3I3Y7mkdOnSYpqPRCoN/rx37x4A4PDhwyKNP6fycpRSPtJhRkaGSJMGBfKuJUeNGgVCiOE+zic7IYQQQgghuYgKzYQQQgghhMig5hkkV/BmGTExMSKNv+r98OGDSAsKUvTtS32LyktMTBTT0nPLA4OuSwLX+OvmatWqibR27drlbAYBoKQiyO4My5xOe/tIpIUv7AYAqFlN0VfynQt3xfTEoMx8+3f6XaT93knz7swD+onpn/tlNs84sei8SLsG/Ztn8PuXB8IBimC4kiUVzUp8fX0BfFpBVtJANx7IK+3P+GMnDdqU9rnN+2KuXr26SOOBs9JRIPnnShowyYP1cgsPmpY2C9q3b5+Y5v1r85EDAQqwJsQQVNNMCCGEEEKIDKppJrmC14KeOqUICuM1Hbw7JACwt1cXAkY0kdZ4zZ+v6MaNn0dpF1pffvklAKB4cTXD7RmJtAb5WmTmmwSL8ooR18plDsIGc3vFNa/xVR8AQO2fFd3eHYlS1OhODCoCAHh1Q9H1V2hyZtBV04pFjJRzVdLaVB5EKe3CjweNFSmiyMPHGgCoja2trZjmXUJKa2cfPHggpnnwIK99/RjIvRVo3ry5mOa1yTNmzBBp/DMoDbCtWLEiAMDGxsZY2dSKHwM//4DyqIX8XuY1zoAi+Nfd3T03skjIJ+HTe8ITQgghhBBiZFRoJoQQQgghRAY1zyC54tatWwCAvXv3ijQe9NekSRORZm1tnbsZywekr7q1vSp+/PixmOZBPtJAvxIlSojpChUqAFAOYsrJZhlC2BwxWb3RnwCAqotvirQTgzMD5cyh6K87LiozaDFMspkW9naS/2X2jbu2s6Lf7u+ffQsAOHxjoUj74v+bfqTFKe6xtbzL5naKdf10OxIx+hsAnDlzBoD6oNVPPaBK2sTAx8cHgPI9y/suBgBnZ2cAH1fzDH2ULVsWAPDVV1+JND6y6caNG0UaP2e8mUZusbNTfG4aN24spi9evAgA2LVrl0jjTbioeQYhuqOaZkIIIYQQQmRQTTPJFXzUv6tXr4q0rl27AqCR/9TVLktrNJ88eQJAOYhn+/bMEe54zR4ADB+uGB0vMDAQgHIQV24wrzNETC9ullnN23dIGZHmOiVz2tMqXqTF3M3sug0lfxRpw7+QdgiXOd1j3giRMvv/a7Gbem4VaSW9M7tGS4hRdFf3wqIZAGDlDMWofbp2NcdHUQOA8+czu6zjNa0AUKdOHQDKXbJ9iqRvf3j3eikpKSLt7l3F+fbzy6zH/1TPCa/J7dy5s0jj98nmzZtFWlhY5nsTR0dHkSZ901OgQIEcyZ90u9KaZt7V3IIFC0Qaf1NSu3btHMkLIZ8iqmkmhBBCCCFEBhWaCSGEEEIIkUHNM4jRvX//HoBycwI+elqVKlVEGu/zlSikpqYCAI4fPy7S9u/fD0B5xL/27dsDUO6HWdp0ILebZQjmvmLymz2ZzUrqROwRaft3RAEAnkLRH3ephq0BAC3rB4o0TzUDqrk0nCumb93LbNqzffcOkRb1NPNfjwrtRVrLNpl90Za21z8w7dmzZ2KaB1zy5geAIsjyUw164ywtLcU071OdN7cClANUk5OTcy9j+QTv/1waULd1a2azIWmQ5I8/KpofSZtVGZO0n3AXFxcxzfsSl15Lfn8/ffpUpPG+pqUjIxJCFKimmRBCCCGEEBlUaCaEEEIIIUQGvYMhRseHGj5w4IBIS0hIAAC0aNFCpHl7e+dqvvKrhw8VQ0ZHRWU2X5A2beHNXXgfsYCib2vpULn5jnlmE4zS1b8WSd9LprPDyiezacTX3yv6oc7OltX1OyztFYIPnyztAeFTb5bBSXvP4J/Z27dvi7T79++L6aSkpFzLV37Bh65u2LChSAsPDwcAPH/+XKTt2aNoplSvXubQ8rn1DCxaNHPY+UqVKok03qNGSEiISPviiy8AKPpwJoQoo5pmQgghhBBCZFBNMzE63m+pNJjN398fANCyZUuRVqiQrj3mfpr4iHObNm0SabzWhwfkAIqgv1atWuVi7j4vGRkZYjo4OBiAcp/izZpl9vfMR1r8nEhHBOT9NB85ckSkSWvkP8eaZk7aN/V3330HQHkEvr///ltM8/utT58+uZI3XhsufYYcPHgQAHD48GGRVrNmTQBU00yIJlTTTAghhBBCiAwqNBNCCCGEECKDmmcQo+BNDQBFYJA0UIo3xShcuHDuZiwfkAaZnT59Wkzz/pelr7T50LbS/qwrV66c01kkEnzIbGlfxO3atQMAlCtXLi+ylKekffuWKFECgPLQ79JAwMTExNzLWD4jHcKaP+f45xlQ7s86OjoaALB06VKR1r17dwA508c670Na2q87f/5ImyHx/vQ9PDyMngdCPgVU00wIIYQQQogMqmkmRiHtgurmzZsAlEeoy9ddoxmRtFb51atXAJRHBTt58qSYDgsLAwA0bdpUpPFAyYCAgJzMJskiLi5OTD95kjmSYVpamkjjNcxOTk65mq/8xsLCAgBgZaUYslH6poR3N0kySd9MdOnSRUyvWrUKAHDs2DGRxoNMpd3CSWv5s4O/GZAGX/NRCVNSUkTao0ePACh3hScNcCTkc0c1zYQQQgghhMigQjMhhBBCCCEyqHkGMYobN26I6WvXrgFQ9M0MKI9m9ynjr/YBRT/V69evF2nFihUT0+PGjQOgfG54wA7JefxVNKA8KpqrqysAoEyZMiItJ4KzPmZ8hERAeZRE3kc7H20OAFxcXAAoBw9+LqTNWHx9fcU0HxlVet+tWbMGgPJ9+dVXX6lskzcBy+759PPzA6AI/gMUz27+GQCAGjVqZGs/hHxKqKaZEEIIIYQQGVTTTIxCWtN869YtAEDr1q1F2qdY0/zu3TsxHRUVBQCIjIwUaTwAkI+iBih3+cRH35KOuEZyT0xMjJiWBmTx7sKkNWzSGkOiPGKltKb5v//+A6DcvRoPOPsca5qleBAloOhSUjoS5YYNGwAAly9fFmn8uSmtpTZWcCAPNn79+rVICw0NBaAc8Eo1zYQoUE0zIYQQQgghMqjQTAghhBBCiAxqnkGyhffLKg1e4UFA0r6ZpYFDnwrpSFo82O/hw4cijTfL+Pnnn0WaNBCQ5C1p84wLFy6I6f79+wNQfi1tZkaPSilp8wwvLy8xzYPKpM+D8uXL517GPhK8yUq1atVEGu/rXjoS5fbt2wEoBwTyAL7s4n1IS4M2161bB+DzHLmVEF1QTTMhhBBCCCEyqPqE6O3NmzdimgfASWvieA3GpzSSlLQ25p9//gGgCHgEFIEznTt3Fml8ZK8iRYrkQg6JNtKAKz5S49OnT0WaNEiNXy+qbdNM2jWitKaZ15JKAwGJZtKAu/bt2wMA9u/fL9JOnDgBADhz5oxIMzc3BwCULl06W/vmAcjS51OBAgUAKD4jgGK0TOnbhc89qJN8vqimmRBCCCGEEBlUaCaEEEIIIUQGNc8geuN9sQKKfj2lI6bx14bW1ta5mzEjSU5OFtM8sO/SpUsiLSIiAoDiNSkAVK1aFQDQoEEDkSYdVYvkraSkJDHN71lpkxvepAgAihYtmnsZ+0hJA3ul5+v8+fP/1959xtlZXne//1GFUEMSqqh3oY56QQUkUSXAdJtiSj6G2H6Mn8BxivME7MTxwckHSOwkfgLYwRiwcyhGBAEqqEsgCQk1JKHeQEINNdTA58V4rXvdzGbuKXtGU/7fN768NLPLzL73bNa11rqA9MmYdoKdJHKd6teyZUsg3Ry4ceNGIGkShKQULpZ2xNKJkoq3E2dumw8++ABIz5mO3yNSkyjTLCIiIiKSQR+aRUREREQyqDxDSiyWZ9ix0XGLtm/fvkDVO3r45MmTQPpIcJuUYdvOALfeeisAY8aM8Vj79u2BdJmKVB42TxzgzTffBNJlOPHId007ydaoUSNfW1kBwN69e4H0ZBIprKjpE3369PG1lcE88cQTHrOJGvHnbsdyl6ZMIx7LbbezY8cOjy1atAhIXxcqz5CaSplmEREREZEMyjRLicUZnitWrADSM0N79OgBVI1MczwVzjIqixcv9phlnydOnOixUaNGAdCtWzeP6cS4yu3AgQO+tt2RDh06eGzw4MG+LktTVU1Rr149X8eM56FDh4DkZECA48ePA7pGSsOyu5dddpnH5s6dC8Af/vAHjx05cgSAa6+91mOnn168nFjMNNtpg/E93k4+tfc9kZpMmWYRERERkQz60CwiIiIikkH7ZVJi1uwDsHPnTiC9Xdu6desKf0wlEY8Bnz17tq9nzpwJpJuY7FjsO++8s4IeneTTiRMngPTv1Eo16tat67FYqqEjgksmNgXaMcxWLgDJ9WbHNkvJXXrppb6299of/vCHhWKxZCy+posqlYvlGVZmZ7PoIZkRvX///tI8dJFqRZlmEREREZEMyjRLkT7//HMg3dgTM83NmjUD0ieEVVbz5s0D4Le//a3HrEkJkszM3Xff7bF4UpxUPXaSY2zutEbV3r17e0zZ5dKz7DIkoxfjdbV+/XognWlu0KBBBT266seyyQ899JDH3njjDQB+8pOfeOwHP/iBr3v16vWVtxdP+rP3u7hzaJnmeIKmSE2lTLOIiIiISAZ9aBYRERERyaDyDCmSlWfYFiukZ3haSUNlK8+wUwttxijAnDlzgHR5SWycGTFiBADDhg2riIcoFcAammwGNyQzmS+66KJT8piqmzgPuE2bNgDs2rXLY5s3bwbSDcIqzyi9+vXrA+nmwO3btwOwdetWj9nJgQBffPEFkD5tsCgNGzb0tZVvxPdNm8cdT0BViZPUBMo0i4iIiIhkUKZZimSZZmsGgfTooa5duwLQuHHjCn1cucRMiDX9PfbYYx6zpsXbb7/dYwMGDCj071K1WVYNYPny5QB88MEHHrv//vuB4mfdpGgx02wn2MWRc9u2bQPSox6l7OLPfcKECUD6dMZ/+Zd/8fW6desAePTRRz1W1Bi6uHNoDbPxfX/16tVA+ho666yzSvT4RaoiZZpFRERERDLoQ7OIiIiISAaVZ0iRTp48CXx1ecbIkSMBaNKkSYU+LjvpDeD9998HYMaMGR6zxsXhw4d7zBq/VJJRPR09ehSADRs2eOyzzz4DoGnTph5r0aIFkJ4vLKUXf47WCPjxxx97bOPGjUC6gbhUThQ0F66cv9RD248W/F57jO/rsQuKf4MA7Fo53yNLtx/1ddMe4wHom3GDez+YBcCirUeL/sIc7D7S95O8tx38sKCRdf7G5HvaDy14H+tcLymHmD+/4Dl07NjRY6NHj/a1NWP+4he/8NjEiRMLbudPpwBGsTzDSvDi+779PbCZ56DyDKkZlGkWEREREcmgTLMUyRoBLVsE6dO+OnXqBECjRo0q5PFY5jA2ds2aVZDpWbhwocdsFNItt9zisZ49e1bEQ5RTZOfOnUAyWhCSZqeBAwd6TOPO8itmmtu1awckjWKQXJelyTQf3fiGr//P9dcC8LMlx8JXPADA9D/29UiRieGjyfvYG//negCu/dkSj6VuefofgexM8/v/dxQAlz1e9NflYvcR72f9ry7z2ND/W5C5v3tU8j0zb9sCwB3T/uCx/33jjUA6Qzxz5kxfv/766wC8+uqrHrPdl5idtubCeDs2VtSaagE2bdoEJH8fRGoKZZpFRERERDLoQ7OIiIiISAaVZ0iRbOZtPGnq3HPP9bWd8lWeW96x6e/JJ58E4N133/WYnVhljS0AF198MaBGv5rETkV77bXXPGYlOZdffrnH6tatW7EPrJo788zkz4ht5dupdZA0jcU56kXa9CtfXtnhe77+7K8eB+AHZ93vsf83eRvIulEAfnVlB49877O/AuDxHyQNbPcX/wYLq/WQL2ceLZiHPLJEN1DQvPz2U8n76+P/368B+HooEdk7uKDkbNQzkzxmTbB2qikkvwuAoUOHAukGTWugju+vNsO+efPmHrP30Pieayc+xpnoIjWBMs0iIiIiIhmUaZYiWdPfwYMHPVarVi1f57sBMDaWrFq1CkhnOCxr1bBhQ49ZNjGOl7PRV1Jz7NixA0hOP4NkJGLfvn09VtRJaFJyp512mq/r1asHpDPNdjpgsU8ErN3fl49u2OXrAe0LdhKeHFHoO4pzowD0fzQZR7hrQHsAtpfuBgsb0MWXxR97FxW8Z/UelzRR3vfEcwCcPzb5qqk/XgRAo4HdC91CfA+MunQpeGzjxycj7t54o6DJ8r333vNY9+4Ft2k7iACtWrUCkmw2JE23yjRLTaNMs4iIiIhIBn1oFhERERHJoPIMKdLhw4eB9BZsLM+wJryyiI0oH330ka+ff/55INlGBLjuuusAuPLKKz1mJ/3FxyjVm5Xx2DYxJOUZ8fVpDU1q/qtYsTzDfvZWpgHJ6XLx62xGMM16eyw5u7OsCprZeuftBtcnq4WF//XYjoImu1krktfn0QbtfT30ooJT+OqlDtEr+D+D/nqeR37zWsF74G+mJ1819DcF/374P37ssVl/+l8rpfgyK5uxciVI3mtnz57tsWnTpgEwZMgQj7VvX/C4Y3mG/S7LWp7xxz/+MfuLSkl/D6Q8KNMsIiIiIpJBH5pFRERERDKoPEMKsaOqIZnHGbdR4xGrvqWaQ9x6y7VVtmfPHgDmz5/vsUmTktmjVvpx3333eWzw4MEAdO7cucjblurt5MmTQPqo4C1bCo4XHjUqOXM4HhEsFceOsYekZODYseSQapupXbt2bY/FspoqadF3fHnRBQXP9dhXfGmtjgUznSe/+6jHxtggorOaeqzHdQVzqn96XeHbePXQoUKx8847r9gPd+zYgpEccca+lcTF93Urr7H3a0iX1BWXlU/NmjXLY/bev3Fjcry5ve/bNQ7p0hArzTrrrKS2xZ73uHHjPGaTQuKs/jhTXKQ0lGkWEREREcmg/+ySQuI81U8++QRIZyNiprmoRo6YAbasgWUbAJYuXQqk5zDHRsArrrgCgK9//eseU0OXQNKINGfOHI/ZLPGbbrrJY9bEJBUrXqf2O7CZ7wCbNm0CoG3bth6rWpnm5Pl1ueUHAPxgRLKrcfn/KjhZb3TL5Dt2vPFXvh5yxc8AuPlfb/DYrr8bVKJHEDOxpdG4cWMgPdt5wYIFQHou/6JFBXOh7W8BJKfCxhMGs2b22+PdvXu3xyzTvHBh4W7K+HqI2eIzzjgDSDeWHjhwIPWcIDkVVrOkJZ+UaRYRERERyaAPzSIiIiIiGVSeIYUcCg0mNk81NvbEZpPiNuGtWbMGgOeee85jK1euBOCCC5JDZx9++GFf29Gv8b5FAPbt2wckR61Dsj08aFCyzd20aVOk4sXG4Q4dOgDJ7wySxq+hQ4dW7APLm6RcYOR3flrwvxnf0fLy+33914MeB+D+Kcs8tv5P5RnFbV21GeSRvV+XhM1wBviLv/gLIN2Q/fTTTwOwd+9ej9l7spVzxBiky25MmzYFx4TffvvtHrPyvvgYrHzDyvMAvvWtb/naSjAWL17ssX/7t38D0g3iTZo0AdINgyJlpUyziIiIiEgGZZrLUTytbMWKFb5eu3YtkG6IsIxtbO6w0Tpx/E/r1q0B6Nevn8fiWK2SjBz6KjFbYc8hNgLG7F2uET7WlDF16lSPLV++HEhnsfv37w8kJ/oB9O6dnAam8UASxUYk27k455xzPGY7FrEZSE6NmDns1KkTkG7a3LBhA5BuDqxSTiSNcltXLQFgy7l9PTa8c/0vf0fexR06ExvzSsN+bzFTbH9TYsbWxjvaiDpInw5rjXvx+jTxb4k1FMbG0Xbt2gEwcOBAj8XHY+PnYqb9tttuK/R1lvnWSFLJJ2WaRUREREQy6EOziIiIiEgG7X+Xo7idPGPGDF8/++yzQDKrNIqlGLatZGUakMw8jc0UcS5tPsoz4oxOOwUqbrc2bNjQ13YyVNwCs/nLTz31lMdstuaECRM8dvXVVwPQokWLMj9mqf6sJAPgnXfeAaBr164es3IfOfVyNQJOmzbNYzaPvcqWZ3yWlJo8MvhKAJ4a8O8eW/N2wSmmXUIP2tElL/n63/40mr7Jw0k5WknPruzbt2+hWDwhM56kWlLWRAdJmYQ1bgOsXr0aSJfg9ejRw9fWxBdnLdvfiPg7tzKPOJ/fGsDjybSzZ8/2tZUPxr91EydOTN2HSHlRpllEREREJIMyzeXIGmAAbrzxRl9/+OGHQDqrbFmDUaNGeaxVq1YAvPTSS4W+105pgnTDRPyv/dKK/7VuGWJr2Pjy47ZseXyMdrrTiBEjPGbNfj179vRYPOVJJMuSJUt8bSOxvv3tb3vs0ksvBdKvTzk1cjV2xcyhNQLmOtVu0wvJCaCXP/xe+JeCr927KX51wW7W7d0mJ/dNwXvNw28k4y1v4QUAvn75wx6zWz6ZvsHklm/vBsDkcAjpRQ+/AcBzt4z12P/z8zEAPPtnyUi5ro3/vuB/44mAa7b7+njHhwpu+7slOwUwiu+v9vN+7bXXPBZ/tiVtqo47izYqLldTXxSzytbsF/+W2I7ptm3bPGavg3gioO0oxWx39+7dfX3HHXcA0KtXL48pwywVRX9dREREREQy6EOziIiIiEgGlWeUo7idFRuWbL5knCk5dmzBdt8NN9zgMdueiicf2XZW3I6yU5XyJZ78ZCd3xe26L774wtc2F3TdunUes625Sy65xGPWpJVrmzA+fm2zyZcdO3YMgK1bt3rMmoGsyQygZcuWSOUQr+Pzzz8fSF/7R44cAdJz203tlsN8fe21bUpx7wVlbS1rx1jBa2PYtdd6pFS37DeadPh1ufdNALYMne6xV195G4B1B8O86jFX+/rKUX0KHlXRFQ9Fij9P+/vxyiuveCyWalwbnndx5CrRi3Oa7d+7devmsXgaX673efud79ixw2PWaB5ZWWK8v3iapP0tshNARSqSMs0iIiIiIhmUaS5HMYMa/+va1jHLYiOa7LQjSJr+YpPEp59+CsD48eM9Zo02+Xq8cbSXjRSK/1VvJy3F9Z133umxa665Bkif/FRUI4qyy/JlceyhNQDaeENIGmctiymVl1378aRGyxbu2rXLY9Yo2Gzkdzz205H5ehQFN/Sd/N1gUJARbdrjMo/cG9YV4Xvf+x6QzjQ/8sgjvi5ppjlefzYOzjLOkJzcevPNN3ts0KCimxrt9xt/57ZrOXjwYI89/vjjQPrvQvwbaCchaodSTgVlmkVEREREMuhDs4iIiIhIBpVnlCMrpYCkgQ+S7a5ly5Z57Be/+AWQPjnQ5jxff/31HrMmwliSYXM0SyNuw9kWWJyHa6caxtMN4zaczZ+O86W1ZS5lZY1+kJwkF0/GtNdb3PKvDGzLWNvFhdl7V1zHsjVrKrZTT6X4Ro8enfpfSP8t+fnPfw7Ad77zHYojNt2+/XZBU2Oc1W9/f2LJRrw+c7EG83iyoM1Ujw2FHTsWnI0Y/47EU2itPEPXmJwKyjSLiIiIiGRQprkcxUzz+vXrfW0NgDZKC2D58uUA7Ny502OWbXvggQc8NmTIECD9X/hlEU/pssdoGZ+v0qJFC1/fc889QDoLIVJWcWfjnXfeAdKnXY4cWdDQFZtN8y1en3YtxmyajcQ677zzCsWksPi+YeMBbdctrpVpLr3HHnvM10OHDvX197//fSBpoIX0iYJftnnzZl9bZjie5mq7m3E8afx7l4tdQx988IHHrJH8wgsv9Jg1jsZMcpcuXXx9/PhxIN1Ib9ddvP50MqiUB72qREREREQy6EOziIiIiEgGlWeUo8OHD/s6nnxkM5knTJjgse9+97tAehatNeT9wz/8g8esOfDP//zPPRa3M2vVqlWixxi3li+++GIAFixY4LHZs2cX+p7atZOjtlSWIWVlzXNxRvmWLVt8bSVL9voE6NOn4ES18mwGWrp0qa9/8pOfAOlyAtuufuihhzzWvXv3cns8VZ2dcArQtGlTIF2GE9dSOrH84t///d99fddddwFwxRVXeOzll18GklInSEr04ixlK6WJjXl22m38e5V1Mq1dq7Gkw0quhg1LToGMTX+5zJ07F0i/R/Tq1QtIN8jrxEApD8o0i4iIiIhk0IdmEREREZEMKs8oR7EkY+PGjb62bSObhAEwbtw4AE6ePOkxK+/413/910K3c+WVV3qsWbNmvi5pecbZZ5/tayv9sDmZkJRvxCkbcXKHzVm1LTyR0orHt8frxaYuxHnk+S7LiFvLtjX93nvveWzKlClA+jqwUo04R93mzWqGbGG55jTbZBTIntojJfPNb37T11Z28fd///ces1KNv/u7v/OYlUbEv102l99KMr5K/Ntj19PUqVM99vvf/x5IJkVBMqEmTr2w8wvq1q3rsVi6tWjRIiCZvAFJmUf8eyZSHpRpFhERERHJoExzOYqnXcVTkCwbZZldSGZPxoxXvXr1gPR/4VsmOs7EjPNky8LmY9qJS5DMx4z3EbNo8+fPB9IzQZV1lpL44osvgCSDBLBu3TpfWwNgnNWab/G627RpU+p/IWl4jZlm+57du3d7zJqcYhOSss4Fcs1pju+RsclS8uvHP/4xAF27dvWYNQf+7d/+rcfsb851113nsVtvvRVIn2prJwbG13ZsCreTZn/0ox95bM6cOYUel/3+4+mFucT7sWa/iRMneqxVq1ZAOjstUh6UaRYRERERyaAPzSIiIiIiGVSeUQ5sCzfOkVy9erWvrbEiznS1Boa4BWbzKO34UUi2puLxwSVt/stiZRqQNAK2bds259dac0fcjlZ5hpRG3L6NjYBf//rXgWQWa3mI27+2hR3n19r1Gxuk7PqNRwDb9aKSjMJiI6C9R9gMblAjYEW47bbbfG2N6Pfee6/H5s2bB6T/vvTv3x9IlwTa9Rn/Vhw5csTXVibx4IMPeuzGG28EkhIQSEqzYgO8xeKR9bH53JoVO3ToUCgmUt6UaRYRERERyaBMczmYNGkSkB6nFE9BsiaK2BxoI3WmT5/uMRvXE09iuuiii4Ck8QHyfypfzJJZxiA2YcWGHcuGxwz5mDFj8vp4pHrbvn07kM40xsY8y+iW5+mT8TVv2eI4EtIyonH0le36xGsjZsTkq1lmMGYTDx06BKQzljpxtPxYlvjuu+/2mGV548l6dpJjbEi3r4vXTWwWP/30gnzcNddck+dHLXJqKdMsIiIiIpJBH5pFRERERDKoPKMc2PzLuM0YvfjiiwBMnjzZY3YiUmy2sNh9993nMWumiDOe890IGE9Vsu3ReB+xScRmr8atdTvRKc4EzfdjlKrNTigDmDlzJpAuOYrNpKfqlK/YXHTDDTcA6bIRuz6zTkqTwuz9IJ5maqUtcXZzPAVSp73l17vvvgukywgvueQSAAYPHlzo62NpkpVnxJP8YlOgSHWlTLOIiIiISAb9p2E5uPnmm4F0djWurWEiNk5YQ4z9FzxA06ZNgfTJR7179wYqLrtljR4xwxazP+PGjQPS2SFrhGzdurXHlGmWaPPmzb5+++23gfRYw+HDh/s6ZrMqgr3WrZkJoH79+iX6Xo2cK5pljXNlkuNJjHGUZVxL6cT3cdsRXLVqlce+//3vA9CnTx+P2d+mAwcOeMyyzvGUx9q1a5fDIxapXJRpFhERERHJoA/NIiIiIiIZVJ5RDp5++ulT/RDKJG4t29pOOYT0SYbWMPLYY495bNq0aQDccsstHtOJTRLZrHJItonjXOR+/fr5uqLLM8pSWqGyjOKxUoyOHTt6zGbZr1u3zmOx4VnlGaVnZRnxBMZt27YBcPjwYY/ZzHGbzw/JaX0HDx70mJVnxK9TQ6zUBMo0i4iIiIhkUKZZCqlXr56vLbsTR+EdP37c1+3btwfSI8IsU7R69epCt6OMc81jmSpIRhPGUyVtrGFsCrMmWKmeLNPcoUMHj1nGM44jjNlNKT273my8IySZ4bjDY6dh5pJrBzI2Fsa1SHWlTLOIiIiISAZ9aBYRERERyaDyDCkkztu0Uo04ozM2jtgW38CBAz22Z88eAObNm+cxa+YaP358OTxiqcxiE6mdPrZ7926P9ejRA0ifCFiVxG1pa65as2aNx6ycKTY0xmvM5pnHOdXVnZVnxOdsP7MPP/zQYyrPyA+boz9lyhSPnX/++QCMGDHCY7Gx78tOnDjhayu50omAUtMo0ywiIiIikkEfmkVEREREMmg/RQqxrVNIyi9shiqkyzPs2G87ThvgjDPOAOCRRx7xmG3tqTyj5omvlxkzZgDprV57TTRv3rxCH1e+7Nu3z9cvvvgiAD/84Q89Zs8/lmQ0a9bM1/fccw8ADz74oMeq+8xb29aPJTn2vrNlyxaPxdeOlN727dsBmDNnjsfuuusuAEaNGuUxm2STSyyVOXLkCAANGjQo1veKVBfKNIuIiIiIZFCmWQqJGQPLJMRTuvbv3+9ryzTH7LSd4hUzh/Y9ixYt8li3bt2AoptPpOqLM77t99+1a1ePDRs2DKgas5k3bNjg6wULFgCwZMkSj9mOzDe/+U2P2fUUs6aLFy/29XvvvQfAM8884zHbubE56NWNZZrbtWvnMfs5WVYU0q8dyfb555/7Otfpf3EOs2X5Y7a4KLF51xrDrZmwJLcjUpUp0ywiIiIikkEfmkVEREREMqg8QwqpX7++r237Lc5pjk2BuTRu3BiAMWPGeMy2tSdPnuwxK8uwMg2pXo4ePQrA1q1bPXbo0CEgvZVbFeYz27b33LlzPfZf//VfAGzcuNFjV1xxBQCPPvqox6zsIDZS/dM//ZOv3377bQB+85vfeMyOFK+u5Rkmzva1mfD2uoF0eYbNw47HOUtabLCdP3++r+0aHDRokMeK+9qyErxc5RmxpErlGVITKNMsIiIiIpJBmWYpJDaLWCYhZnx27drl63gamrGM0TXXXOOxX//61wC8/PLLHrOshzLN1ZNlumJ21k4fs+a/yszGagGsXLkSSLLCkDTH3nbbbR679tprgezxW7FJ1kbRWbMW1MyT8CxTGU8JtJ0JSH4+LVu29JiNt5QCsRHwrbfe8rU1YsfXaufOnUt0m3G0ol0btqsI2gGQmkGZZhERERGRDPrQLCIiIiKSQeUZUkiuRsBYnrFnzx5f59qSs+aeuM1qzV4nT5702KZNm4D0tl9sJjn9dP03XVVm84fjTGIrX7joootOxUMqkTiPfNasWQCsXr3aY3ZqXyw1Kep5xSateB3YNRRnndfEsgO79q0JEtLlGTa/OZ6mWBN/TkWJpXP2/grJe3rfvn09Fn+ORYnvz6ZOnTpA+pRLkZpAn0pERERERDIo0yyFxOxxw4YNgXRTVMw62ziiLF26dAFg1KhRHrNMyPTp0z121VVX+doyeVJ1xEak9evXA7BlyxaP2UmAdmpkZRZPVLMGwJh97t69O5DO2BW1OxJHqcVT7ywebyfu9tQUlmlu3bq1x3I1AsZsqRSw16o1rEJ658J+prEBtSjx9ModO3YASYM3aLyc1FzKNIuIiIiIZNCHZhERERGRDCrPkCLVqlUL+Oq5s1aq0aRJkyJvx7ayY/nFr371KyDdvDJ+/Hhfqzyj6rDt3NgoZ41vsSHUtocr20zXOG/8s88+A+DDDz/02LJly4B02UTv3r2BpFk2SyztWLt2ra/thM0LL7zQY3ErvKawn2OcH7xq1SpfW7lPbKKUAvZzsoZVSP8cBw8eDKRPYCyKXQOQNALG92P7e6Bmbalp9IoXEREREcmgTLMUyTITLVq0yPnv1tBUt25dj+UaQ2RZJDsFEODpp58GYMOGDYVuD3RSYFXy0UcfAekT83KNZIunTVZWBw4cAJLnFNexkcqaGuNrv6jbs0zpl9eW5Y6ZQWvArUkaNWoEpJtE7VRJSN4nYrOpFPjggw8AWLRokce+8Y1v+NoyzcUVT6S0137cbbTrQJlmqWn0ihcRERERyaAPzSIiIiIiGVSeIUWy8gybswzwySef+Noavxo3buyxOGf1y2KD08CBAwFYsWKFx2Iji21bWxOhVF5WVvPaa695bMSIEQBcfvnlHssqZahMcjUrxkbApk2bAnDWWWcVeTvW9Dd37lyP2exbgP79+wMwbtw4jxV3nm51kmtOcywTsKbj4s6Gr+7i7HybeW+zrCFd5tKuXbsS3fbu3bt9vWbNGiBdMmSlRMVtLBSpLpRpFhERERHJoP9MlCKdccYZQDprYaPEIMmiWVMUFJ1pjlm5kSNHAulxX2+99ZavLSutTHPlZ5nTjz/+2GPW/BlHqWVlZSsDG7NYp04dj9k6Nj5ZQ1qu8XAxk/zSSy8B8Oabb3qsZ8+evr7ssssA6NGjh8dq4sg5+7nHkxGPHz/uaxvZF99/aiLLvsemPxsRF6+1suxW5NpN7Nevn8cs02x/H0RqCmWaRUREREQy6EOziIiIiEgGlWdIkXKVZ8T5tXZqWmwcKS6bHWonogE8+eSTvo5bjVI5xNPYNm7c6GsrR4in47Vs2RKoGiUZkc2jjWUC7du3B9JNaOvWrQOgb9++HrPrJc6rfuONNwDYvHmzx+655x5fX3311UC6mbYmi7O8zz77bF9bWYY1BELSjFmTWOnE66+/7jFryLvmmms8VpaZ6Hv27PG1vc7HjBnjsY4dO6buV6SmUKZZRERERCSDPjSLiIiIiGTQ3ooUKdec5uXLl/t65cqVQLrbuqRatWrl6969e/v60KFDQHp2s3Vw18TpApVBLM+IJQhbtmwB4JJLLvFYLOmp7OJMZpviEKe23HTTTQBMnjzZY4888ggATz31lMesFOXw4cMe69OnDwD333+/xy699FJfFzVtpiaKE0qsLAaS1148gtxmB8eyoOrOytnia9FeT3Emell+JrFkzkqvYrlHTZwjLgLKNIuIiIiIZFKmWYpkjU0xGxYzDjt37gRg3759pb6P2HAVMyXLli0D0qfMtWnTBlCm+VSJp5AtWLDA10ePHgXSjUglPYWssrngggt8fcUVVwDpJjRrfrUdEUh2ZmKWz773+uuv91jt2rXL4RFXD3Fue9u2bX194MABIN2Aau9L1TXTbD+LOJvadnXitWjPv0WLFqW+D0hey/EkxnPOOQdITmwUqcmUaRYRERERyaAPzSIiIiIiGVSeISUWyzNsO9q2TiHZNoxb0LHR6svi1urEiRN9bU2GcR6pbXFX9a3/qio2CMWGLPsdWtMbQKNGjSrugZUDawiE5Ijrv/mbv/HYgw8++JXfG5vZ7DqwbW4pWnyviKVbW7duBdJz4uPrsTqy0ol58+Z57IMPPgBg1KhRHovHspeUlVYBrFq1qlDMmrPLMvdZpLpQpllEREREJIMyzVJiMeNgJ0PFphQ7JbBr164eKyrLFrNy8YQvy+6tXbvWY4sXLwagfv36HoujwaR82NipOG4wNgZ16NABqF7ZqJjxtFFy8XRDNaOWj6/KNNt4uW3btnmsLA3IVYG9N86cOdNjdg1OmDDBY3FUZ0kdO3bM15Zp/uyzzzxmWezqdG2LlJYyzSIiIiIiGfShWUREREQkg8ozpMQaN27s6/79+wPp7bylS5cC6RmrpWmCGjx4cKHbtvKM48ePe8xOnotb55Jf1nw0f/58j8WymEGDBgFFN3yKlFSclW3Npu+8847HbFZ2dWUnS65YscJj1gg5cOBAj1mZXGnEpj+7n/ieO3z4cKDqN/aK5IMyzSIiIiIiGZRplhJr0qSJr4cMGQLAW2+95TE7Ke6yyy4r0/1YI2A8seqll14C0pmQu+66C9CJVeXp/fffB2D69Okee+CBB3w9cuRIQJlmKbv4GrJdJIDVq1cDya4HwPbt2yvugVWQeOqkZX7tZFaA9u3bA+mm6bKwbDYkO3lxpKdltOP7vkhNpUyziIiIiEgGfWgWEREREcmg8gwpsdgI2K9fPyB9ap+dFBe3GZs3b17i+7EZpXGr0BqDYvPKkiVLAOjbt6/HNFO09KwcJv7+Pv74YyBdFhMbPbV1K/kSyzPOPvtsX9uc5jgTPp5EWl1s3rzZ1zafOb7nduvWDYC6deuW6X7sOt+5c6fHDh48CECdOnU8Ztd5/F2I1FTKNIuIiIiIZFCmWUosjnazk+Bq167tsb179wJJdhKSkUhnnlnyl1y8v6uuugpIsssAkyZNAqBWrVoeGzp0aInvRwpYtum9997z2IkTJ4DkdDDQCCqpWOeeey6QZJwBTp48CcCePXs8Zv8eTxqtStatW+fradOmAemm6jFjxgCley+NNm3aBCQ7g5DsCLZp08Zj8X1VpKarmu8qIiIiIiIVSB+aRUREREQyqDxD8iLOU926dSsAa9eu9VizZs2ApImlJOL2oG1N7tu3z2NPP/00AL179/aYyjNKz362b7zxhsc+//xzAMaOHesxO6FNpCLYqaLxlEBrZtu2bZvHrIwjloxVBXbKaXwuVuLWqlUrj1144YVA2ctPVq1aBaRPG7RTPu0+RCRNmWYRERERkQzKNEtexAYxy1QuW7bMY9acU5pMc8yoWKNKHENn4+e2bNniMcvQxFFo8VQt+Wq7du0CkpMdAQYNGgTA6NGjPaaxflKRLHNszceQjKfbsGGDx1q3bp36+srs2LFjvraTDu36g+TUv5hdz1eD48qVK4F0pvmmm24CktNYRSRNmWYRERERkQz60CwiIiIikkHlGZIXsQlv//79ADz22GMes/KMG264IS/3F0+jmzhxIpDMhwZ49dVXgWS7EVROkIs1UsWT/qyRM54IaDOZO3fuXIGPTiRhp9RZsxokr1UrbQAYMGAAUDXmiB86dMjX1ngbr7urr74aSDcC5os1aq9Zs8ZjVj4XS2BEJKFMs4iIiIhIBn1oFhERERHJoPIMyQvr8obkyGzrbIekIzx2httki/h1xWUd8gBXXnklAM8884zHpk6dCsD48eM9pvKMrxY76O0YX/s9ArRv377CH5NIZNMw4mvRyjPsSGhIlxpVdlbKBjBv3jwgmWkPyVx6mxpUWjalY+PGjR6zudCx9CPet4gUpkyziIiIiEgGZZol7yxbEWd9WsPZ/PnzPWan9sUsdXHVr1/f18OGDQPg+eef95g1uWzfvt1jbdq0AfI357Q6sJP+4kxm+9mNGjXKYzohTE41OxEw7jKZOKPd5rZXZl988QWQzJOH5DnE59enTx+g7DPm7ZTBeMqn7bzFxkprthSR3PTpQUREREQkgz40i4iIiIhkUHmG5J2VTliDHsCcOXMAePnllz1mDSilKc+IrNyif//+Hjt48CCQNNcAnHXWWUByJLTAiRMnAFi4cKHHrLnqvvvu81hpjj8Xyadzzz0XgC5dunjMyovinOaq0Ai4fPlyAJYsWeKxrl27AumytrKWZRgr/XjxxRc9Zk2GNuceoEGDBnm5P5HqSplmEREREZEMyjRL3tloqBEjRnjMMkGxEcWaU2KGuCwGDx7sa8ugTps2zWPWSFTTM80nT5709ebNmwHYt2+fx2rVqgWkR85ZTORUi03Adk3Hk/Vsl6kye++99wBYtGiRx+wkw7K8H1rDNSRj5iAZyffJJ594rGXLlkA6sy0iRVOmWUREREQkgz40i4iIiIhkUHmG5J01rzRu3Nhj1uxn80kBPvroIyBdGhAbUUo6TzluM9qs1l/+8pces7mkcSu3bt26JbqP6iCeCjZr1iwg2aqFpEHTGidFKqvzzz8fgAsuuMBju3fvBtKn7dn7SmlOHy0PS5cuBWDZsmUeu+OOOwDo27dvqW/XTvkDmDFjhq+tPMNm2gN07ty51PcjUlMp0ywiIiIikkGZZqkQltWIzYHr168HYPr06R675pprfF2Wk/ssc9qvXz+PWZZ76tSpHouPx7JW1Z393AFef/11IP1zuuSSSwA4++yzK/aBiZSQ7Wa1aNHCY3v37gXSp+1Z82BFZ5rj+Lt169b5+siRIwA0b97cY3YSYFmabmOTb2y6tux7HC+nMZIiJadMs4iIiIhIBn1oFhERERHJoPIMqRB22lUsv3jhhReA9CxlO6UKoFGjRqW+v3r16gHwta99zWN2KuGrr77qsbitW1PKM6wpCJKGpLhta/OuzzxTbw9SuVl5hjWvQlKesWPHDo/FUwQrUnwMuWbGDx8+3GMNGzYs8/3t2rXL1++//36h2x41apTHmjVrVub7E6lplGkWEREREcmgVJJUCBs5F0/jmzRpEpDOxtjJgQC9e/cGkqxxSdgoubFjx3rMMqxvvvmmxz788ENf9+nTB0g34lSWEVWlFUdQ2el/8VQwaz6KI7s0ak6qiiZNmgDQpk0bj9nr204chfRJeRUpNiPGxjxrvL300ks9Vpbxl/Y+ZrtpkB4jeeGFFwL5yWaL1GTKNIuIiIiIZNCHZhERERGRDCrPkAoVm+0GDhwIwLvvvuuxOEPZ5jQPHTq0WLcdt2CtrCKWWnTq1AlIlyLE8oyFCxcWur+q3gxnJyMCLFiwAEifwNi/f38g3RApUlVY2Vcsz1izZg0AW7du9dipKs/Yvn27r2MZ2mWXXQZAr169PFaW+czvvfceAFOmTPGYlZsBjBw5EtDsdZGyUqZZRERERCSDPjSLiIiIiGSo2nvPUuXEbVKbDWwzSwGeeOIJX1s3eXHLM7ImXdixsbfeeqvH3nrrLV/bNI94pHRZOtorg8OHD/t63rx5QHKcOCTbxJrZKlWRTc9o27atx+zI6Iouz4hHWFuJiE2sgfQ1ZuUkderUKfX9xSO6lyxZAiRlGgD33nuvr4v7HioiRVOmWUREREQkgzLNUqFiNtiaAu20QEg36dmM03feecdj1jhz7rnnlvi+bSbxsGHDPGbZZYBVq1YBsHPnTo9V9UxzfC4rV64EkpmtkGSgLGMnUpWcd955QLqRdf/+/UD6tR93V8rL559/7uu5c+cC6Wz3kCFDfN2+fftS38+ePXsAePnllz128OBBAK688kqPdejQodT3ISK5KdMsIiIiIpJBH5pFRERERDKoPENOuVatWvl63LhxvrZmmlhCYXNZS7O9aXOf27Vr57F41Kwd4b18+XKPWRlIVZtjvGvXLgDWr1/vMWtUiqUYVe15ieQSj4e2ErAjR4547NChQ0DZZiFnsfuAZPZ8bNazxmdINy6W1KZNmwD4wx/+4DFrcr7llls8Zu+VIpI/yjSLiIiIiGRQpllOuZgRufnmm339j//4j0A6o2Ij0srSSBPHT9ntQdL0FzPbZ5xxBgATJkwo9f2dCkuXLgXSI6jsBMY4Uk+kOogn3cXdI7NlyxYg3UBcu3btvNy3vZ9Y4zLAhg0bgPSYOTt9E9KZ8eKIt207YgcOHPCYPed4bdvOmojkj64qEREREZEM+tAsIiIiIpJB5RlyysXZzY0aNfK1bWfaVifA7NmzATjzzOSlW5bTrgYNGuTrTz/9FEifEmgzpK+66iqPVYVtz1wnhNlJiCrPkOomvh/YaXt79+712MaNG4F0KVicCV8Wdurf+++/77H69esD0LFjR4+VtCQD4NixYwBMmTLFY3ZNX3zxxR6z97Gq8N4kUpXpChMRERERyaBMs1RaNn7OTg4E+MUvfgGkT/vq0aMHkGR3ssTMtp0oBklWKP77jh07AFi3bp3HbFxUeY6vKo0TJ074eu3atUCSBYPk51SWJkqRysgadiEZKRlP6LPdqi5dungsX5lmO0nUTgEE6N27N5DeBYuPJz7eL4vXsV2/U6dO9djhw4cB+MlPfuKx+LxEpPwo0ywiIiIikkEfmkVEREREMqg8Qyqtxo0bA8lWJ8Do0aOBpLEH4D/+4z+A9IlbdkJWZPNUY/lF1Lx580K3s23bNgBefPFFj915551A7nmwFc2aFyF9kqE1BPXs2dNjscxFpDqJDXBWdhFLuLZv3w6kr5d8sesulmf89V//NQDDhw/P+RiLsnjxYl8/++yzQLqBccCAAUD6JFURqRjKNIuIiIiIZFCmWSq9mGWxE/ziWLhp06YB6cYea3aLzXpflWE2NhIqjpd75plnAJgxY4bHrEGxMmSaP/roI1/HZqE6deoA0KdPH48Vt1FSpKqJjXWWgbVm2Lgua6b5iy++AGD37t0es2vw+PHjHrNmxKxrLp5Oaqf+LVy40GPr168H4Pbbb/eYvQfG0w1FpGIo0ywiIiIikkEfmkVEREREMqg8Q6oUa/Dbt2+fx2xO6ooVKzxWt25dICmlgOztzNq1awPQq1cvj9kJhbGpaNOmTanHAkk5RFYJSL59VXnGmDFjUv8L2s6V6iuWZ1hpVoMGDTxmZQ7xlMDSsO+P5VomXmvFPf1v//79vv75z39eKPa1r30NgCFDhngszpYXkYqlTLOIiIiISAZlmqVK6t69u6+vvfZaAKZMmeIxW9vpfZCciHfWWWcV+35sZFtsKlq6dCmQbvIZP358sW+ztGLTkJ0uZqO0IJ2hatasGQBdu3b12Jln6nKX6ilmmlu0aAGkr0/bKYrXSGlYpvnll1/2mI1yvPrqqz3WpEmTYt3Ou+++6zEbo9mhQweP2YjN1q1bl+FRi0i+KNMsIiIiIpJBH5pFRERERDJov1aqpNgMc/nllwPpEorp06cDsGDBAo9ZWYaVaRRH3759ATh27JjHfve73wHpcolRo0YB6bnQ+Xby5Elfr1y5EkhOLIT0nGrbzlVJhtRU9erV87VdOwcPHvSYlTjF0o4sVuYxb948j91www0AXHLJJR7L9T4Q3y+sLGPOnDkes5IqO/EPoHPnzsV+bCJS/pRpFhERERHJoA/NIiIiIiIZtHcr1cb111/vazt6+9lnn/XYJ598AkDHjh09ds455xR5m1bmEEsjnn/+eSCZ1wywYcOGQrd99tlnl+jxZ4mPwcpPtmzZ4rGxY8f6ulOnTnm9b5GqxmanA7Rp0wZIH3VtpU0tW7b0WJysY+UUu3bt8phd8zahA5L3iFwlGfH+7D0C4O23307dHsC3v/1tIF2eISKVizLNIiIiIiIZlGmWaiM2wo0cORJIMjqQZJYmT57sseHDh/vastNZt92/f38gOWUM4M033wSSpkRInxiYD0eOHPH1woULgaSZCeD222/3tea6Sk0XGwFt9nHM/FqWN85UzjXDPTYT2+mjgwYN8tiFF174lY/BZi8DTJo0ydcHDhwAoE+fPh6z9xWd3ClSeSnTLCIiIiKSQR+aRUREREQyqDxDqiXbcv3Lv/xLj73wwgsAPP744x6LzXpXXXXVV95enOV66623AumjdJ977jkg3SCU7/IMO3oXklKTWFIS7y8eISxSE8VrwBpjjx496jErr+rdu7fHYmnEF198AcDMmTM9ZrPgv/Wtb3nMZrlHJ06cAGDRokUes/cfgG9+85sA3HvvvR6rXbt21lMSkVNMmWYRERERkQzKNEu1ZA097du399jAgQMB2Lp1q8dmz57ta2sSuvbaaz122mmnAelMs91mvG1ryIsj4Hbv3g1Aw4YNPVaS08eMjaqKDUk2Jis2IcXGJ5GaLl4PNgry/fff95g16cVRjpGNqIzvF5ap7tmzp8dstyc2GT711FNAcnInwIQJE3x98cUXA8oui1Q1yjSLiIiIiGTQh2YRERERkQwqz5Aao1+/foViv/vd73xts5a7dOnisc6dOwO5T/dr27atr60ZKJ4eZqUf8aS+0pRQLF++HIBZs2Z5rEePHgAMGzbMY6efrv8GFjHxWrNSqnfffddjNqc5zjqPJRYrVqwAkhItgFatWgHQqFGjQve3dOlSX9uJnfHr7rrrLl9rjrpI1aS/siIiIiIiGZRplhqjcePGQNIQCLB//35fz507F4CHH37YYzfccAMAN998c6Hbs+ai+O/PP/+8x37/+98DMHToUI+VJtO8Zs0aAN555x2PXXrppQAMGDDAYzEjJlLT1a1b19dt2rQB4NixYx6zBr+4Q7Nu3Tpfv/baa0B658nG0x06dMhjzz77LJA+8W/cuHEAjB492mNxHKV2hUSqJl25IiIiIiIZ9KFZRERERCSDyjOkxmnQoIGvBw8e7Os//vGPAEyZMsVjixcvBtLzla35zmYlAwwZMgRItnQBPvzwQyA9u7l58+ZFPjY7hWzPnj0es3nP8TFYQ9J5551X5O2J1FSxeTeWRhg7YTOWWtgpgZA0DV533XUes1MGX331VY9Z+VS7du08ZnOYY/OxSjJEqj5dxSIiIiIiGZRplhotjn5q0qQJAN26dfPYk08+CcCjjz7qse9973tA+oQvy0DZiDqAbdu2AelTyGIjYPfu3Qs9nk8//RSA+fPne+zEiRNAOmtlj1VEstl1V6dOHY/ZeLnNmzd7LGaaP/roIwCOHDniMfva//7v//bY+PHjAbj77rs9Zk3Hyi6LVC+6okVEREREMuhDs4iIiIhIBpVniPzJOeecA6RLLGz+ss15BZg6dSqQNPoBTJw4EUiXUFgjkp0OBkmjH+Quz7Cmv1deecVjNm82loM0bdq0WM9JRBIdOnTw9apVq4D09RlP9LQSKGsGBujatSsAd9xxh8esmVjXpEj1p0yziIiIiEgGZZpFvsQyzpCMl4uZZhshZ5kqSBoB4wl9NhZu06ZNHlu7dq2vjx49Wuj+PvnkEyCd3bLTxUaMGOGxODZPRIqndu3avrYRkzHTfNZZZ/naxkPG69Ni119/vcdKc8qniFRNyjSLiIiIiGTQh2YRERERkQwqzxAphnii2I9+9CMAZsyY4bHf/e53AGzfvt1jdlpfbBCKp/otXLgQSDcnWXmGbR1DMvNVs5lFSseuqziHedmyZQAcPnzYY/E6t3Koe++9t1AslnGISM2hTLOIiIiISAZ9aBYRERERyaDyDJFiiGUVNrliyJAhHtu/fz+QPpLXjuG1Y7AhvT386quvAtC2bVuP2dG+AwcO9Fjv3r3L/PilsEOHDvk6HpVsTjvttLzcjx2lfOzYMY/t2LHD1xbP15HLuR73wYMHC61tegvA559//pXfW1YnT54EYM+ePR6z4+LL4znbtWpz0iG5BufNm1foMUR2/UFyncfJOfE2RaTmUaZZRERERCSDMs0ipdSsWTNf33nnnUB65uvkyZOBdNNQnNlsc54bNWrksS5dugDpTLNlumJzoJ0sGE8YLK54O7aOsYqQ67mUB8tkxgyinbpozWGQ7BTEx5avrKv9/mO2d+XKlb62+Jln5uftONfjjs/VTr2LmVbLBucr8xt/v/az37hxo8c+/vjjQvdXmp+3fU+8P8uax5nMdo3Fpj+77/j6i42Adt1l/Uzs++1nGNclua7sa+PrwF47Zf05iUh+KNMsIiIiIpJBH5pFRERERDKoPEMkj2JZhW0JL1q0yGOTJk3y9RtvvAHAunXrPLZv3z4gfTSvbf8uX77cY7aVm1XaELdybR0bwGyLfufOnR6zcoHy2BK2Jq14f3YseSyhiNvaZblvu53YyHnuuecCUKdOHY/Fo5LzzX5HsYkszu62eHz+ZZHrZxdnfLdv3x6AWrVqecx+1/kq08nVmNewYUOP1a1bt1j3l+u5xNel/Q5jaYRdJ/Pnz/eYXYMXXXSRx6wUI5aNxKPq7ajsCy64oMjHaKU206ZN89isWbOApAwF0r9/a/7M9TsfN26cr++44w4gKduC/JXxiEjJKdMsIiIiIpJB/8kqNYY1AcWxcDHjaWPHYkbIskyx6c++LmbqLJMXM8R9+/YF0lnMpUuX+jpXlsmyzrE50EajxeyksaYnKH5DXczKffbZZ0C6KcyyYPnKLufKdh84cMBjlvmOjytfcmV5rbkq/q7s9MYoX1lXe16WXQXo1q2bry2er+efKzt7/vnne8xeq/Xr1/eYZS/L+pxzNVHazz6OVszXa8uuoTjK0XZKYtOfXU92TcbHEzPNPXr08HXM7hbFnotdS5CcNhgfV2wItvcV2/WIjyNex/beMWHCBI/16tWr0O2pOVCkYijTLCIiIiKSQR+aRUREREQyqDxDagxr2PnlL3/psbfeesvX27ZtA9INSzfddBMAV199daGva926tceuuOIKIPc2aTxRLKupyE4u+/DDDz1mpQMtW7b0mG2nx63cWKphcs1ktpPO4m3H+bRWtpCv+cm5Zug2b97cY+3atQPSJRTx55iPMolcJSIxlq/5xLnkKlmIjYkVsbWe67lW1S39OHP6+eefB+CVV17xmJUtDB8+3GMPPvggkL7+7PUWr5v4eymunj17AukSGCupWrJkicdiydU999wDwIUXXljoubzwwgse+9nPfgakSz/scccSn1iqISLlR5lmEREREZEMyjRLtWSjnv7nf/7HYzYGKjbnjBkzxteWOY4Nftb0N3PmTI9ZZrRx48bFeiyx2Sdmv7773e8CyQltkDSDxazr3r17gfQIrX79+qX+F6Br166+tkx0bDa0LHbMptnIrtgIZ81H+WqEy8p2x5PbRKJ4cuLixYuBpMkOkutz8ODBHuvQoQOQbvrr2LEjkDuTnK8sbXxNW/Y6joeLO1O2jg3GY8eOBdLP2TLVdnpo/PdOnTp5TJlmkYqhTLOIiIiISAZ9aBYRERERyaDyDKk2bD4rJFu5TzzxhMesgWj06NEee+CBB3wdTwszr732GpCc3gfJ9q9t+ULxm6r69+/va2tK+uijjwo9h1jSYPf97rvveszKOGLpR2wUtKajWGpSVRu/pPqxJtN4OqU1u8VypVgWNXfuXCBdXmWn533jG9/wWGyQq0hWRgXJKZfxPSmWYuQqfbK50LHkasaMGQDs37+/0G3navwVkfKlTLOIiIiISAZlmqXaiI1yNoIqZn9GjRoFwEMPPeSxOPIplxEjRgDpk8JsJF084a24WdyYGbZRdHH8Wq7skT3GmGGbN28eAM8995zHYlbdGqNsFB4kz18ZZznV7LqcMmWKx6ZPnw6km97at2/v6wEDBgBw//33F/r3OO6tolmGfNOmTR7bsGEDkN7pie81uR6vNf/G0XS2jqeK6voVOXWUaRYRERERyaAPzSIiIiIiGVSeIVWeNcnMnj3bY9Y0FE8As1KLXA1/X8XmF8c5xmURt1ZttmrWjNX69esD6Tmv1khls5ch3VxkzVTWSARJeUfbtm09ZiUirVq18lgsIREpjT179vh669atQLp8YfPmzQBs377dY8eOHQPSr/N4rV588cVAUqZRWRw4cABIZsNDciJgnN0cn5dd07nEkzit4df+98v/LiIVS5lmEREREZEM+tAsIiIiIpJB5RlSJVnHOiTbvnGOsZUi/Nmf/ZnH4rG6VVE8Atjm08aZ03FLfOrUqUB6vvRvf/tbIF2KMWHChEK3Y3NuVaYhxRHLgmwW+tKlSz1mr8VYKmTziy+77DKP3XLLLQAMGzbMY/Xq1fN1riOwKwN7LvbcIZmaEadkxBKvXM/FbifOqbYpI3bcPSRHc2uKhkjFU6ZZRERERCSDMs1SJcVM844dO4D0TGbLwsRT8ho3blxBj67ixCbCOO/ZZjK3aNHCY9ZIFU8gtCz9z372M4/ZvFg7oQyS7HOcNdu9e/cyP36p/OKpfcuXLwdg2bJlHlu9erWvrRnu9NOTfEyTJk0AuOGGGzxmux3xVE07aTNfTbcVxRodP/jgA4/ZfOX4/GJToIlz2d9///3U/wJ8+umnAFx++eUeGzhwIJDdQCwi+adMs4iIiIhIBn1oFhERERHJoPIMqZLifGKbkxpnmVojTmygiUfaVnc2EzbOhr300kuB9Pbvm2++CcCaNWs8tnPnTiBd7rJ79+5CMds6BmjWrBmQNCkB1K5dG0gfAWzr+HVSsY4fPw6kS5xsRnIsxbDGtDhLeeXKlUC6PCMe726306lTJ4/17NkTgLFjx3osNqNWdXa9xDnUNv+8R48eHsvVWLtlyxZfT548GUh+xpBcV4MGDfKYNTTrGhKpeMo0i4iIiIhk0H+qSpVnI6/iSVkWi2OZNKKpgDX1QZKJvuOOOzxmmbMVK1Z4zLJfr7/+usf++Z//2deWRbMmJUgyjLmaB2ODppS/uAtj2c2YLbYmtrVr13rMfv/xe3v16gVAnz59PHbTTTf5un379kDSCAe5d32qkjhSL9d7iGXsLTMPSdNtv379ct6m7di89dZbHvvP//xPIL0zc/vttwPpTHNRpwmKSPlSpllEREREJIM+NIuIiIiIZFB5hlRJ1mQGcMEFFwDp07c2btwIpJuYrGHwq1h5x5IlSzxmc1TjjGe7v7iNWpXEhshczZE27zluA9vPNs6CtiYlgEOHDgHp+bwbNmwA0r+DWbNmAemmKJvLG2dKN2zY0Nc2jzbGbB1PVrPT42zOdFVmW/6x2dJei7EMYP/+/UDy84d0s6adUhdf+0eOHAGSpj1IGgDjdWUNZ3FuspXaWOkNpOd5x99RdRFLMmzG+e9//3uPvfTSS0C6nMleszZDHpJ51TFuM54hKXkZMGCAx+zEznbt2pXtSYhIXijTLCIiIiKS4bQ/xi4HkSoiNv1Z49pPf/pTj7322mtAugntxhtvBODWW2/1WDxVa926dUA6i2T/bg1QAIMHDwaqZ1atJOLvwDJmMUtvjWZxhJat9+3b5zHL2MfsZcysWVa6bdu2HrORXjGrbFnweAqbjeWKJ69Z5rCiGkNzvcXGmGXL4xhFGwEYs/Q2Ki6e6Gg/d8soQ5Lhh6SxLz5Xa8K0TDIk10nXrl09dtFFFwHpHYWabsGCBQBMnDjRY/azj69F+/3G110u/fv39/UjjzwCJE2EAHXr1i3jIxaRfFKmWUREREQkgz40i4iIiIhkUHmGVHm2rb1o0SKPTZo0CYBf//rXHrPGpzin2La8IdmGHj16tMdsPqrNF4akLEMnciVslm9sQrMSjNjMZusYs6+LJQax2c1+RzFmjW1x+/vw4cNA0hwXH1ds2rQyjlhek+u0ttK8NeYq+bDnumfPHo/Fn5O9LmOpkM05jtvzVsYR5x1b82N8/A0aNCh0O7GZz9YxZt+T63s13zxhv8M5c+Z4LFcTpb0u4+sz17zn2GBsjYBxxrWIVC7KNIuIiIiIZFCqTKo8y9DF0+gskxOb0FatWgWkm9DiqK6mTZsC0KNHD4/17t0bSGflpDDLutvP8MvrolgG2X4/kB7FZRnkGLMGubhTkGtMm+1CxNF6lvGLY9jiv9trpyyZ5vi9NuItvtbi2jLNsZHMfnYx62iv89iYZ+MP4ziz2ETZqVOn1PdKycXfpWWGr7nmmlP1cETkFFKmWUREREQkgz40i4iIiIhkUCOgVBvxpWwNYLa1D7lnpsbvsRKD2NBj29rxpDvJL/sd2O8Mcv+uYsxmRMffn8Xi11nznDVrAXz88cdAuhkvvk5MaRrg7DHE77XSntj0FddWlhHnXttrMdfrLsbs+cX7i6ck5vp3EREpHX0SEBERERHJoEyziNQoltGOzXgxE21Kk53N9XZqI+JsPJyIiFRNyjSLiIiIiGTQh2YRERERkQwqzxARERERyaBMs4iIiIhIBn1oFhERERHJoA/NIiIiIiIZ9KFZRERERCSDPjSLiIiIiGTQh2YRERERkQz60CwiIiIikkEfmkVEREREMuhDs4iIiIhIBn1oFhERERHJoA/NIiIiIiIZ9KFZRERERCSDPjSLiIiIiGT4/wGcpY6Z85zYywAAAABJRU5ErkJggg==",
"path": "images_version_6/image_49.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, in the inscribed pentagon ABCDE of circle O, then the degree of angle B is ()
Choices:
A:50°
B:75°
C:80°
D:100°
|
||
246
|
50
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAABkCAAAAACOMmCqAAAP0ElEQVR4nL1aebhcRZU/p6ru0re735JN8gLkEfIeIPliICFgVhJAwj5G2XQmzPBFwTiA8jHoIKAiAqLDoBCUGEcRDMoiQREDDFsQMIRAIAEmBEIIWQjkrd13rapz5o+Xl+W9dF4TGn9/dd+lfvecOnWWOoUMtQGhJh9IAHTnhQXj4QAvaIWJqhE5ANtkGzlGevWkJQ5IDgAAtWLnbkdeuVi6Mh19R5OCKKjqrVqxYxH46+/++7j0uecFMrj8j5U99XH/UZPFMzPzChhUGIh/IDu6BpbWr3vZqZtaMBHXVUVeM3aQHG266874vlxO2zxS6ldDX9UnVgPLcvl1j01rgkwKwm6v0sAMDMAAgFxDdpFu3XJ0y5mDSpIUYn3FcTVnFjRplilwrdg59Z7+/AFwFt/WJUJjOaYKDzrgZOwm0qYAWCt2FFueLGx6742LMfjwksXbsPK0dzMz+YiuD1HNrG75NzcsU263c4ETrp47lJJKRo8gA4oKqUIEWzP28X9CzDrr5HCxYlSzwIorjuz7CbrZIK05V6wZew59gAM6G6B8/3GDEmXdCs6u82e/sTmiu49yIsCa+brI5zhuCAi3bPiMIiEqedqGs9efPJVvnvOrSTljaubrPBHmvFiJ+NlRoyTaSubMYridOhyuXLuoeX8pa7bemQVi3gX70GfzZKXs9wAxa2uNfWEYEPtjXwJgrp2nRYEA2uvcPJFRQD/FszYuCBDlZePqtfWGuBZEzdY7CFSAYO0Lgw50mPqTl1VOUaaZHxwHQtrNLQpq6GnBCARQ2UPHBQ5mrPtkbJgHm6GjxNaThudS79V7Jw0ByGo374BA6LavmubuUfMYZo4TZfB4wWBh2/zB0z2unacFQAQG/vvQJi8hn1VfeiqoVOf5jZ+PgTV/m7Vy0cHA4NTM6hCASGYPz6xnIAV9MyvWnhsr/OsPNlwk8+Hcc0YCi54oWxtoEKw+PP7WqZGvlcycXnpGAEYgkhZk1OGaKIf1+Uyx4LRmsjM5hPTMiFbIoYuwk1wLZdIcisSNAwzy2y87qEUNVxxokFI/NbkOEBB2sTpJpAIdUS7OEYDdruue+7VjdzRC5/IZfp/LRrgMKFU3+4pXteFu9lAzduMYzlY7zX1tXSBZQ+DWIZbmX7Qt2y3nqZ3Ns0J4aGp93+syMzkAYpW8OX/NNaPFbuLWTHaZOhAuOz7f7wZ7mGaOY5ZfPvx3R2H0ychOiPBC/tB+1w1LDou48cFFXzl5GGe753s72BmrK70qgBOfzCMT6vrdkLEr6tXa29ZePz4Pqbu7rnv/cUYZA5h9dT7oCSgtPy6g3gEMQWaAAfIaxGPfTuZPywP0rTF6ZUfXKNbOvns+gWJV4WDuXVGc5iKU1F1Ic7xx6W1f/PJQAOgXe3bOexoQ9g9NVQM1PTRuiO71cRhEphCZQAdY/tH6n4wauudP7v2RIUkHKlUgVYCSZ44tyJ2fH+dlUCx7/NZ5+ppjhmV71Gqv7KyDKEAy/SJjtUBnuTgcpO3lt42ZkDQ4XHz7SV8aCemex90x7x5lAaO77+tfPzK1Adn2ppOSEhfspl8vn3dqAViVC/3zzF00T3/4QCCofTe7zudODMDulLE7L+3rl751zeddCm2FrQwFPREYNizcf7Qi1tVtNsHu6QMjwKaOVsHk9PxjhDqdPPTbIy5oArKuKmRyT+Mqsko7CKXf17UIwo5GMCwFoRVgoXJFAqyVYAJBwoADmYvZk7OKDACMJvUxcXWu/NOnzz2nACAQQexZKNEujLKc/LG4Phao69AIiZpQZCAlAtsKU4EqtREIQBCKwEEoPXNEHlFZSqwfg5f6Wy5YduN5QRf1rPI9iyEaoRtEeas7bnQdZJ6MHEhAScOuDhMkW1F6oVJpk3JsJRIIDevfOdIFEJYyJXy06n/Pab59vNOZ26sZK2MaIEoXnt3VosEtLW0dmgsANAqUeYCE+8es7SBHCFAeACExWFh6WCNYFA77iAqi2x++cFYjhIVkDzXVLuzKAevdc8fdamodYNedaw44fsqn6opolDBaOqJi6EGLqZd6JJkdtE5pydy8BWAMA4S4fOO6q8c3EPhRsDdyUB1FT6woL3UfLTtaDZsf/u1vi5yJM8YOcnyXwAFbqRbNnDiIAyMRrQAUa7dMdFkQQC51zZpvtt4wGsGkft7sNXKqRuxYe9tVzaXuto5hrIa4Z55a2rTk+rR15rjmog9k97hSAMA6sn3ZiIb9lGRgkT0+sZ4EaNckxfi+W7587rAwxwpIhnV7FT5Nbzhw+EvJvKbh3y1zRhkz6/KWZQvOPmb6Vc9tiwxXAHHHv004+Gu3rCqFzNx2+uKQmEpkedPFxz6elDNriNlGutL7nBHHaKGr2xnstKUY1O8yy7qr9MoTL8L4SZMacw70lGlAjAKALQsJJF7515sbV/z51U+fMXl/7/n/uH8EicwR2Zor6r7bGjvUE+z2onetMEEC3ONTBiEsv/XsS2tGT5vU6vskwEqOMGcFAjAQ2t8s+eXgKO7865NrWo6Jt10bCEWi/e/Xn/TVIYmSWaV9m77sPehX9YEAMHG545WnVrkTTzkcGhQAkHZEZlyJmYrOOmGeAyKz0Xsrlzw87rcHIobhonvnfcFPHYz8vU53LzvQdvSd1ji1RMxMacebf77q+JbzfvdOV8RsMiZrNRG/3bqaKfswC5mj5YfemqRk3j7rjBc1J2Fm47TvgHuc90o5LbpgwAGb+a7b0HJsW8eyxdcddMLRB9V5QCwlkv3L2P2McRvZLRfc56ad4WL64C+nn9/URXVuzJ4ZSPQelgqa50wJsChYsAUFAGlpy+qnVhfGTG8d4TsA0H3q+bNzqfA58VT4L6fNkW23P/KNWWB8aSUA4IChcm9dIXSBjRI281ACWLZiyJBDT2p7/ZWfwIijprfk7KauCTkZAIoc85o1N8h3vh//dLRUbrmoSjnHVI6O1cgORiIjMBgUIBgYyUoJHHV+8NITrzeeOPXlZ28ZnAonc6wq37XyB2uuPub80WAFAUkAC86AzLvZfF/0X4PcUxtDFn648tnV5QPPneIFDgmA7vNmv3//ZccOAU0KWSBYqwbO0PbKXgloQAF1b1v/7gNrJ8w4/NBAyQ2zi7nvjZdsJAIAWhDAdsD0dN/Y2ZJQAJxt2/J/T672p8w48pYFn//2cAlgDYIVYMDrv29TI3aSwGytzQNAOSm99tzTW7edPbdpKLgAhMCAjEyVYtPHZbcIApk59YhdANr4rVdmhi+MmzGzzg0U6FQoKYENfFKaJ0a0pCSDlfadS+u/Pzze+MbiFc2TJ4+p9ySAJiWZqvK0H50dgBnQKiBS8aI7zpxTD1FgOsM1jzwfjjllSl1+e1L9ybAzEIMCLYzXcePKS6ZhnDT42gPoCre+8MTqlmOO/bSPVRRkWmHykXcLKXEcBhIUFd+8pPUrrY9eEfGJ1wY9JVjWHS57/OX80VPGDoY8gEHBVmzvfLFFAbAzV9oXdmprAIWWQ/Ce+M855w6+dsmNzcl5h8wv9Dp2HZZff2xF1jS7ZWSdq3v3awkkA2Tk7/SpWmECAwXCvpG3bDnNmHnrlYfeleh5p7/OGS9sWr9rQKXuzU8v+MLE6d9Z1h5mxGy1JsqSjMiast01wn5UdrbdljSXV5/1xdesfmD/+zNjoqWHrci201OSmdQyJx+8/edLj/nMV+/bXMqYrdGWSGuinXni3uJ7JXDshQUVL7vhM/NGiPieGcepLMq9Fnq9ZoYOokl99IYObZocbXjuD9c0T5/cmvMBACRglu1WzH5kq9PdDTJccO8Fs4sk3p35nTlonPTL4pf12+edw0DY1JXQsw9R6iyveupVMeGkI4WfA8tyZ+N3X059ULkoNl6x7ReH2bInlBmkWIpHX/5F0Gt0GFgjcgBaIRspisVs5HFta1/8yfrTJ4zb3wPq03b+SCbHTJl+cNaF69gmJuYPWhZYtpvHzN7KpR3WRESUWcs6JU4SssxMXetevOnMsTNvfrPUaXvGYWbmuGrNWxRULgiI/ucvp51TlEikILzqzVsb137lgJ/vJ3eXibEnHeCdC6w7aV/25Ppg5Kljh+RSsASJU9RVy27aTao1r7v4c0tC1m0Za7vVbjp39JiWu9rbTJpVMUTW9sYDPz6zZW6nLV920Mgxrb/rrlZ2TpUQQM/f1HR+a8DdeSGiHCWF9k5uO8IpBUYMlEoRsATgrqjr1aNGuO9e1nreyqv/q1qrQyfzoeNPvz5lzqc0oCuJmZXPjQU4GDgf56r4fkuIsqEh36wk7Nc5d1QSV90JZZ2Dd3719LUT8h1FQK+9wQQQScmKIw+tD8YZIK6IniTbcEHGorxysOleOPuQqmX3wy1XBAubvSyfYC50hYTQVbZcJD9jL02LAwU1IwVHlJcA7w8ShbdemiWuPC1ftdV13zP5prdTG+oubaOSCRM2pcgYIuqKSGfddoD3DRFZayNL2ibRl+5d98ND/p7ulX2X6q7z8tN/3cVGE1m2iSGypFPLHEdkdWJ05Tp9x2A6M8zWUprQa2dt4q2H/vidiponNCKBAMBKZvn6deLbR0kQiUQE4SIAglQA4DGikNV0FlACAAgL5OsV0+phc1exruKRoIwh9D2TaEwNP/r1EZd/FtsJe1KhHioE2J44VLezjj3eOHGiDx4ZEm35KnyuoaLmTZuJybTrZBOXf3zEok7mLCJKBiyMB4TRj08aPnLMIYc9TZsrehtOPQ2OMTmz6cr3fzhexuwjxMqtQsi9gsHGq/x6wvxwCivJTrFNyXZlbJ48+qJ32YQmNTq1VHEXqVqQzmJm5owtdVauoGMHUnQ23PnYBbOGg/CtkAwCKm+dVil66oFtL3Y2iDIUvMqa1ypL6tq+t+47E91YKYiVg6xRDFglDEQP5YAjkc9QiT3ktCQAADj0WZoltx986X4+ECNJTlxlrPNxm5ecqox8RomM0Q52KxitAoANB6BWzMxOdMd90+cN2f4SAiFWU6MMSI8EAhiN3CWfJ6usyjo94RshUEIctH1ryzeO7t9crBW0wmRHL9JIhtLdJ44/Z+PCkpIZem/Po/8+oc5+YuwAu/SkFJbW/fP4u7z3/+nUoFRw0j/ecvKFg+Bj23h17FQK9EXjrx3m1U+ZQL7o/NkLXzutwWh3oLBdG3ZR4AfeXjCC4uDIJh82XoaXT1KxJ5K+BxlqjB1OaPWRV5aJicqd/OYJl6/nkrUlaz++X6+E3Ssp/rDJYyCdT+2Iq8c0mJywOcFptf25fZAbd/ZhTWBcQDZolAimAEgEgVDlSfR94ZZhccd5G1Re3XshZqJ96XpOEuo9M/OJkUeQ3+5WAQCwce7vl8b2j5c1N7PvJ58Q6Q5gXghgjHo/RpQe/D64Z84ZgnkUVtTs/FUFcOpj+P8ycELtgowJ2QAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_50.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, the straight lines AB and CD intersect at point O, EO perpendicular AB, and the foot of perpendicular is point O, angle BOD = 50.0, then angle COE = ()
Choices:
A:30°
B:140°
C:50°
D:60°
|
Như hình vẽ, hai đường thẳng AB và CD cắt nhau tại điểm O, EO vuông góc với AB, chân của đường vuông góc là điểm O, góc BOD = 50°, thì góc COE = ()
Các lựa chọn:
A: 30°
B: 140°
C: 50°
D: 60°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the straight lines AB and CD intersect at point O, EO perpendicular AB, and the foot of perpendicular is point O, angle BOD = 50.0, then angle COE = ()
Choices:
A:30°
B:140°
C:50°
D:60°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the straight lines AB and CD intersect at point O, EO perpendicular AB, and the foot of perpendicular is point O, angle BOD = 50.0, then angle COE = ()
Choices:
A:30°
B:140°
C:50°
D:60°
|
As shown in the figure, the straight lines AB and CD intersect at point O, EO perpendicular AB, and the foot of perpendicular is point O, angle BOD = 50.0, then angle COE = ()
Choices:
A:30°
B:140°
C:50°
D:60°
|
247
|
50
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAABkCAAAAACOMmCqAAAP0ElEQVR4nL1aebhcRZU/p6ru0re735JN8gLkEfIeIPliICFgVhJAwj5G2XQmzPBFwTiA8jHoIKAiAqLDoBCUGEcRDMoiQREDDFsQMIRAIAEmBEIIWQjkrd13rapz5o+Xl+W9dF4TGn9/dd+lfvecOnWWOoUMtQGhJh9IAHTnhQXj4QAvaIWJqhE5ANtkGzlGevWkJQ5IDgAAtWLnbkdeuVi6Mh19R5OCKKjqrVqxYxH46+/++7j0uecFMrj8j5U99XH/UZPFMzPzChhUGIh/IDu6BpbWr3vZqZtaMBHXVUVeM3aQHG266874vlxO2zxS6ldDX9UnVgPLcvl1j01rgkwKwm6v0sAMDMAAgFxDdpFu3XJ0y5mDSpIUYn3FcTVnFjRplilwrdg59Z7+/AFwFt/WJUJjOaYKDzrgZOwm0qYAWCt2FFueLGx6742LMfjwksXbsPK0dzMz+YiuD1HNrG75NzcsU263c4ETrp47lJJKRo8gA4oKqUIEWzP28X9CzDrr5HCxYlSzwIorjuz7CbrZIK05V6wZew59gAM6G6B8/3GDEmXdCs6u82e/sTmiu49yIsCa+brI5zhuCAi3bPiMIiEqedqGs9efPJVvnvOrSTljaubrPBHmvFiJ+NlRoyTaSubMYridOhyuXLuoeX8pa7bemQVi3gX70GfzZKXs9wAxa2uNfWEYEPtjXwJgrp2nRYEA2uvcPJFRQD/FszYuCBDlZePqtfWGuBZEzdY7CFSAYO0Lgw50mPqTl1VOUaaZHxwHQtrNLQpq6GnBCARQ2UPHBQ5mrPtkbJgHm6GjxNaThudS79V7Jw0ByGo374BA6LavmubuUfMYZo4TZfB4wWBh2/zB0z2unacFQAQG/vvQJi8hn1VfeiqoVOf5jZ+PgTV/m7Vy0cHA4NTM6hCASGYPz6xnIAV9MyvWnhsr/OsPNlwk8+Hcc0YCi54oWxtoEKw+PP7WqZGvlcycXnpGAEYgkhZk1OGaKIf1+Uyx4LRmsjM5hPTMiFbIoYuwk1wLZdIcisSNAwzy2y87qEUNVxxokFI/NbkOEBB2sTpJpAIdUS7OEYDdruue+7VjdzRC5/IZfp/LRrgMKFU3+4pXteFu9lAzduMYzlY7zX1tXSBZQ+DWIZbmX7Qt2y3nqZ3Ns0J4aGp93+syMzkAYpW8OX/NNaPFbuLWTHaZOhAuOz7f7wZ7mGaOY5ZfPvx3R2H0ychOiPBC/tB+1w1LDou48cFFXzl5GGe753s72BmrK70qgBOfzCMT6vrdkLEr6tXa29ZePz4Pqbu7rnv/cUYZA5h9dT7oCSgtPy6g3gEMQWaAAfIaxGPfTuZPywP0rTF6ZUfXKNbOvns+gWJV4WDuXVGc5iKU1F1Ic7xx6W1f/PJQAOgXe3bOexoQ9g9NVQM1PTRuiO71cRhEphCZQAdY/tH6n4wauudP7v2RIUkHKlUgVYCSZ44tyJ2fH+dlUCx7/NZ5+ppjhmV71Gqv7KyDKEAy/SJjtUBnuTgcpO3lt42ZkDQ4XHz7SV8aCemex90x7x5lAaO77+tfPzK1Adn2ppOSEhfspl8vn3dqAViVC/3zzF00T3/4QCCofTe7zudODMDulLE7L+3rl751zeddCm2FrQwFPREYNizcf7Qi1tVtNsHu6QMjwKaOVsHk9PxjhDqdPPTbIy5oArKuKmRyT+Mqsko7CKXf17UIwo5GMCwFoRVgoXJFAqyVYAJBwoADmYvZk7OKDACMJvUxcXWu/NOnzz2nACAQQexZKNEujLKc/LG4Phao69AIiZpQZCAlAtsKU4EqtREIQBCKwEEoPXNEHlFZSqwfg5f6Wy5YduN5QRf1rPI9iyEaoRtEeas7bnQdZJ6MHEhAScOuDhMkW1F6oVJpk3JsJRIIDevfOdIFEJYyJXy06n/Pab59vNOZ26sZK2MaIEoXnt3VosEtLW0dmgsANAqUeYCE+8es7SBHCFAeACExWFh6WCNYFA77iAqi2x++cFYjhIVkDzXVLuzKAevdc8fdamodYNedaw44fsqn6opolDBaOqJi6EGLqZd6JJkdtE5pydy8BWAMA4S4fOO6q8c3EPhRsDdyUB1FT6woL3UfLTtaDZsf/u1vi5yJM8YOcnyXwAFbqRbNnDiIAyMRrQAUa7dMdFkQQC51zZpvtt4wGsGkft7sNXKqRuxYe9tVzaXuto5hrIa4Z55a2rTk+rR15rjmog9k97hSAMA6sn3ZiIb9lGRgkT0+sZ4EaNckxfi+W7587rAwxwpIhnV7FT5Nbzhw+EvJvKbh3y1zRhkz6/KWZQvOPmb6Vc9tiwxXAHHHv004+Gu3rCqFzNx2+uKQmEpkedPFxz6elDNriNlGutL7nBHHaKGr2xnstKUY1O8yy7qr9MoTL8L4SZMacw70lGlAjAKALQsJJF7515sbV/z51U+fMXl/7/n/uH8EicwR2Zor6r7bGjvUE+z2onetMEEC3ONTBiEsv/XsS2tGT5vU6vskwEqOMGcFAjAQ2t8s+eXgKO7865NrWo6Jt10bCEWi/e/Xn/TVIYmSWaV9m77sPehX9YEAMHG545WnVrkTTzkcGhQAkHZEZlyJmYrOOmGeAyKz0Xsrlzw87rcHIobhonvnfcFPHYz8vU53LzvQdvSd1ji1RMxMacebf77q+JbzfvdOV8RsMiZrNRG/3bqaKfswC5mj5YfemqRk3j7rjBc1J2Fm47TvgHuc90o5LbpgwAGb+a7b0HJsW8eyxdcddMLRB9V5QCwlkv3L2P2McRvZLRfc56ad4WL64C+nn9/URXVuzJ4ZSPQelgqa50wJsChYsAUFAGlpy+qnVhfGTG8d4TsA0H3q+bNzqfA58VT4L6fNkW23P/KNWWB8aSUA4IChcm9dIXSBjRI281ACWLZiyJBDT2p7/ZWfwIijprfk7KauCTkZAIoc85o1N8h3vh//dLRUbrmoSjnHVI6O1cgORiIjMBgUIBgYyUoJHHV+8NITrzeeOPXlZ28ZnAonc6wq37XyB2uuPub80WAFAUkAC86AzLvZfF/0X4PcUxtDFn648tnV5QPPneIFDgmA7vNmv3//ZccOAU0KWSBYqwbO0PbKXgloQAF1b1v/7gNrJ8w4/NBAyQ2zi7nvjZdsJAIAWhDAdsD0dN/Y2ZJQAJxt2/J/T672p8w48pYFn//2cAlgDYIVYMDrv29TI3aSwGytzQNAOSm99tzTW7edPbdpKLgAhMCAjEyVYtPHZbcIApk59YhdANr4rVdmhi+MmzGzzg0U6FQoKYENfFKaJ0a0pCSDlfadS+u/Pzze+MbiFc2TJ4+p9ySAJiWZqvK0H50dgBnQKiBS8aI7zpxTD1FgOsM1jzwfjjllSl1+e1L9ybAzEIMCLYzXcePKS6ZhnDT42gPoCre+8MTqlmOO/bSPVRRkWmHykXcLKXEcBhIUFd+8pPUrrY9eEfGJ1wY9JVjWHS57/OX80VPGDoY8gEHBVmzvfLFFAbAzV9oXdmprAIWWQ/Ce+M855w6+dsmNzcl5h8wv9Dp2HZZff2xF1jS7ZWSdq3v3awkkA2Tk7/SpWmECAwXCvpG3bDnNmHnrlYfeleh5p7/OGS9sWr9rQKXuzU8v+MLE6d9Z1h5mxGy1JsqSjMiast01wn5UdrbdljSXV5/1xdesfmD/+zNjoqWHrci201OSmdQyJx+8/edLj/nMV+/bXMqYrdGWSGuinXni3uJ7JXDshQUVL7vhM/NGiPieGcepLMq9Fnq9ZoYOokl99IYObZocbXjuD9c0T5/cmvMBACRglu1WzH5kq9PdDTJccO8Fs4sk3p35nTlonPTL4pf12+edw0DY1JXQsw9R6iyveupVMeGkI4WfA8tyZ+N3X059ULkoNl6x7ReH2bInlBmkWIpHX/5F0Gt0GFgjcgBaIRspisVs5HFta1/8yfrTJ4zb3wPq03b+SCbHTJl+cNaF69gmJuYPWhZYtpvHzN7KpR3WRESUWcs6JU4SssxMXetevOnMsTNvfrPUaXvGYWbmuGrNWxRULgiI/ucvp51TlEikILzqzVsb137lgJ/vJ3eXibEnHeCdC6w7aV/25Ppg5Kljh+RSsASJU9RVy27aTao1r7v4c0tC1m0Za7vVbjp39JiWu9rbTJpVMUTW9sYDPz6zZW6nLV920Mgxrb/rrlZ2TpUQQM/f1HR+a8DdeSGiHCWF9k5uO8IpBUYMlEoRsATgrqjr1aNGuO9e1nreyqv/q1qrQyfzoeNPvz5lzqc0oCuJmZXPjQU4GDgf56r4fkuIsqEh36wk7Nc5d1QSV90JZZ2Dd3719LUT8h1FQK+9wQQQScmKIw+tD8YZIK6IniTbcEHGorxysOleOPuQqmX3wy1XBAubvSyfYC50hYTQVbZcJD9jL02LAwU1IwVHlJcA7w8ShbdemiWuPC1ftdV13zP5prdTG+oubaOSCRM2pcgYIuqKSGfddoD3DRFZayNL2ibRl+5d98ND/p7ulX2X6q7z8tN/3cVGE1m2iSGypFPLHEdkdWJ05Tp9x2A6M8zWUprQa2dt4q2H/vidiponNCKBAMBKZvn6deLbR0kQiUQE4SIAglQA4DGikNV0FlACAAgL5OsV0+phc1exruKRoIwh9D2TaEwNP/r1EZd/FtsJe1KhHioE2J44VLezjj3eOHGiDx4ZEm35KnyuoaLmTZuJybTrZBOXf3zEok7mLCJKBiyMB4TRj08aPnLMIYc9TZsrehtOPQ2OMTmz6cr3fzhexuwjxMqtQsi9gsHGq/x6wvxwCivJTrFNyXZlbJ48+qJ32YQmNTq1VHEXqVqQzmJm5owtdVauoGMHUnQ23PnYBbOGg/CtkAwCKm+dVil66oFtL3Y2iDIUvMqa1ypL6tq+t+47E91YKYiVg6xRDFglDEQP5YAjkc9QiT3ktCQAADj0WZoltx986X4+ECNJTlxlrPNxm5ecqox8RomM0Q52KxitAoANB6BWzMxOdMd90+cN2f4SAiFWU6MMSI8EAhiN3CWfJ6usyjo94RshUEIctH1ryzeO7t9crBW0wmRHL9JIhtLdJ44/Z+PCkpIZem/Po/8+oc5+YuwAu/SkFJbW/fP4u7z3/+nUoFRw0j/ecvKFg+Bj23h17FQK9EXjrx3m1U+ZQL7o/NkLXzutwWh3oLBdG3ZR4AfeXjCC4uDIJh82XoaXT1KxJ5K+BxlqjB1OaPWRV5aJicqd/OYJl6/nkrUlaz++X6+E3Ssp/rDJYyCdT+2Iq8c0mJywOcFptf25fZAbd/ZhTWBcQDZolAimAEgEgVDlSfR94ZZhccd5G1Re3XshZqJ96XpOEuo9M/OJkUeQ3+5WAQCwce7vl8b2j5c1N7PvJ58Q6Q5gXghgjHo/RpQe/D64Z84ZgnkUVtTs/FUFcOpj+P8ycELtgowJ2QAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_50.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, angle BOD = 50.0, then angle COE = ()
Choices:
A:30°
B:140°
C:50°
D:60°
|
Như hình vẽ, góc BOD = 50°, thì góc COE = ()
Lựa chọn:
A: 30°
B: 140°
C: 50°
D: 60°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, angle BOD = 50.0, then angle COE = ()
Choices:
A:30°
B:140°
C:50°
D:60°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, angle BOD = 50.0, then angle COE = ()
Choices:
A:30°
B:140°
C:50°
D:60°
|
As shown in the figure, angle BOD = 50.0, then angle COE = ()
Choices:
A:30°
B:140°
C:50°
D:60°
|
248
|
50
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAABkCAAAAACOMmCqAAAP0ElEQVR4nL1aebhcRZU/p6ru0re735JN8gLkEfIeIPliICFgVhJAwj5G2XQmzPBFwTiA8jHoIKAiAqLDoBCUGEcRDMoiQREDDFsQMIRAIAEmBEIIWQjkrd13rapz5o+Xl+W9dF4TGn9/dd+lfvecOnWWOoUMtQGhJh9IAHTnhQXj4QAvaIWJqhE5ANtkGzlGevWkJQ5IDgAAtWLnbkdeuVi6Mh19R5OCKKjqrVqxYxH46+/++7j0uecFMrj8j5U99XH/UZPFMzPzChhUGIh/IDu6BpbWr3vZqZtaMBHXVUVeM3aQHG266874vlxO2zxS6ldDX9UnVgPLcvl1j01rgkwKwm6v0sAMDMAAgFxDdpFu3XJ0y5mDSpIUYn3FcTVnFjRplilwrdg59Z7+/AFwFt/WJUJjOaYKDzrgZOwm0qYAWCt2FFueLGx6742LMfjwksXbsPK0dzMz+YiuD1HNrG75NzcsU263c4ETrp47lJJKRo8gA4oKqUIEWzP28X9CzDrr5HCxYlSzwIorjuz7CbrZIK05V6wZew59gAM6G6B8/3GDEmXdCs6u82e/sTmiu49yIsCa+brI5zhuCAi3bPiMIiEqedqGs9efPJVvnvOrSTljaubrPBHmvFiJ+NlRoyTaSubMYridOhyuXLuoeX8pa7bemQVi3gX70GfzZKXs9wAxa2uNfWEYEPtjXwJgrp2nRYEA2uvcPJFRQD/FszYuCBDlZePqtfWGuBZEzdY7CFSAYO0Lgw50mPqTl1VOUaaZHxwHQtrNLQpq6GnBCARQ2UPHBQ5mrPtkbJgHm6GjxNaThudS79V7Jw0ByGo374BA6LavmubuUfMYZo4TZfB4wWBh2/zB0z2unacFQAQG/vvQJi8hn1VfeiqoVOf5jZ+PgTV/m7Vy0cHA4NTM6hCASGYPz6xnIAV9MyvWnhsr/OsPNlwk8+Hcc0YCi54oWxtoEKw+PP7WqZGvlcycXnpGAEYgkhZk1OGaKIf1+Uyx4LRmsjM5hPTMiFbIoYuwk1wLZdIcisSNAwzy2y87qEUNVxxokFI/NbkOEBB2sTpJpAIdUS7OEYDdruue+7VjdzRC5/IZfp/LRrgMKFU3+4pXteFu9lAzduMYzlY7zX1tXSBZQ+DWIZbmX7Qt2y3nqZ3Ns0J4aGp93+syMzkAYpW8OX/NNaPFbuLWTHaZOhAuOz7f7wZ7mGaOY5ZfPvx3R2H0ychOiPBC/tB+1w1LDou48cFFXzl5GGe753s72BmrK70qgBOfzCMT6vrdkLEr6tXa29ZePz4Pqbu7rnv/cUYZA5h9dT7oCSgtPy6g3gEMQWaAAfIaxGPfTuZPywP0rTF6ZUfXKNbOvns+gWJV4WDuXVGc5iKU1F1Ic7xx6W1f/PJQAOgXe3bOexoQ9g9NVQM1PTRuiO71cRhEphCZQAdY/tH6n4wauudP7v2RIUkHKlUgVYCSZ44tyJ2fH+dlUCx7/NZ5+ppjhmV71Gqv7KyDKEAy/SJjtUBnuTgcpO3lt42ZkDQ4XHz7SV8aCemex90x7x5lAaO77+tfPzK1Adn2ppOSEhfspl8vn3dqAViVC/3zzF00T3/4QCCofTe7zudODMDulLE7L+3rl751zeddCm2FrQwFPREYNizcf7Qi1tVtNsHu6QMjwKaOVsHk9PxjhDqdPPTbIy5oArKuKmRyT+Mqsko7CKXf17UIwo5GMCwFoRVgoXJFAqyVYAJBwoADmYvZk7OKDACMJvUxcXWu/NOnzz2nACAQQexZKNEujLKc/LG4Phao69AIiZpQZCAlAtsKU4EqtREIQBCKwEEoPXNEHlFZSqwfg5f6Wy5YduN5QRf1rPI9iyEaoRtEeas7bnQdZJ6MHEhAScOuDhMkW1F6oVJpk3JsJRIIDevfOdIFEJYyJXy06n/Pab59vNOZ26sZK2MaIEoXnt3VosEtLW0dmgsANAqUeYCE+8es7SBHCFAeACExWFh6WCNYFA77iAqi2x++cFYjhIVkDzXVLuzKAevdc8fdamodYNedaw44fsqn6opolDBaOqJi6EGLqZd6JJkdtE5pydy8BWAMA4S4fOO6q8c3EPhRsDdyUB1FT6woL3UfLTtaDZsf/u1vi5yJM8YOcnyXwAFbqRbNnDiIAyMRrQAUa7dMdFkQQC51zZpvtt4wGsGkft7sNXKqRuxYe9tVzaXuto5hrIa4Z55a2rTk+rR15rjmog9k97hSAMA6sn3ZiIb9lGRgkT0+sZ4EaNckxfi+W7587rAwxwpIhnV7FT5Nbzhw+EvJvKbh3y1zRhkz6/KWZQvOPmb6Vc9tiwxXAHHHv004+Gu3rCqFzNx2+uKQmEpkedPFxz6elDNriNlGutL7nBHHaKGr2xnstKUY1O8yy7qr9MoTL8L4SZMacw70lGlAjAKALQsJJF7515sbV/z51U+fMXl/7/n/uH8EicwR2Zor6r7bGjvUE+z2onetMEEC3ONTBiEsv/XsS2tGT5vU6vskwEqOMGcFAjAQ2t8s+eXgKO7865NrWo6Jt10bCEWi/e/Xn/TVIYmSWaV9m77sPehX9YEAMHG545WnVrkTTzkcGhQAkHZEZlyJmYrOOmGeAyKz0Xsrlzw87rcHIobhonvnfcFPHYz8vU53LzvQdvSd1ji1RMxMacebf77q+JbzfvdOV8RsMiZrNRG/3bqaKfswC5mj5YfemqRk3j7rjBc1J2Fm47TvgHuc90o5LbpgwAGb+a7b0HJsW8eyxdcddMLRB9V5QCwlkv3L2P2McRvZLRfc56ad4WL64C+nn9/URXVuzJ4ZSPQelgqa50wJsChYsAUFAGlpy+qnVhfGTG8d4TsA0H3q+bNzqfA58VT4L6fNkW23P/KNWWB8aSUA4IChcm9dIXSBjRI281ACWLZiyJBDT2p7/ZWfwIijprfk7KauCTkZAIoc85o1N8h3vh//dLRUbrmoSjnHVI6O1cgORiIjMBgUIBgYyUoJHHV+8NITrzeeOPXlZ28ZnAonc6wq37XyB2uuPub80WAFAUkAC86AzLvZfF/0X4PcUxtDFn648tnV5QPPneIFDgmA7vNmv3//ZccOAU0KWSBYqwbO0PbKXgloQAF1b1v/7gNrJ8w4/NBAyQ2zi7nvjZdsJAIAWhDAdsD0dN/Y2ZJQAJxt2/J/T672p8w48pYFn//2cAlgDYIVYMDrv29TI3aSwGytzQNAOSm99tzTW7edPbdpKLgAhMCAjEyVYtPHZbcIApk59YhdANr4rVdmhi+MmzGzzg0U6FQoKYENfFKaJ0a0pCSDlfadS+u/Pzze+MbiFc2TJ4+p9ySAJiWZqvK0H50dgBnQKiBS8aI7zpxTD1FgOsM1jzwfjjllSl1+e1L9ybAzEIMCLYzXcePKS6ZhnDT42gPoCre+8MTqlmOO/bSPVRRkWmHykXcLKXEcBhIUFd+8pPUrrY9eEfGJ1wY9JVjWHS57/OX80VPGDoY8gEHBVmzvfLFFAbAzV9oXdmprAIWWQ/Ce+M855w6+dsmNzcl5h8wv9Dp2HZZff2xF1jS7ZWSdq3v3awkkA2Tk7/SpWmECAwXCvpG3bDnNmHnrlYfeleh5p7/OGS9sWr9rQKXuzU8v+MLE6d9Z1h5mxGy1JsqSjMiast01wn5UdrbdljSXV5/1xdesfmD/+zNjoqWHrci201OSmdQyJx+8/edLj/nMV+/bXMqYrdGWSGuinXni3uJ7JXDshQUVL7vhM/NGiPieGcepLMq9Fnq9ZoYOokl99IYObZocbXjuD9c0T5/cmvMBACRglu1WzH5kq9PdDTJccO8Fs4sk3p35nTlonPTL4pf12+edw0DY1JXQsw9R6iyveupVMeGkI4WfA8tyZ+N3X059ULkoNl6x7ReH2bInlBmkWIpHX/5F0Gt0GFgjcgBaIRspisVs5HFta1/8yfrTJ4zb3wPq03b+SCbHTJl+cNaF69gmJuYPWhZYtpvHzN7KpR3WRESUWcs6JU4SssxMXetevOnMsTNvfrPUaXvGYWbmuGrNWxRULgiI/ucvp51TlEikILzqzVsb137lgJ/vJ3eXibEnHeCdC6w7aV/25Ppg5Kljh+RSsASJU9RVy27aTao1r7v4c0tC1m0Za7vVbjp39JiWu9rbTJpVMUTW9sYDPz6zZW6nLV920Mgxrb/rrlZ2TpUQQM/f1HR+a8DdeSGiHCWF9k5uO8IpBUYMlEoRsATgrqjr1aNGuO9e1nreyqv/q1qrQyfzoeNPvz5lzqc0oCuJmZXPjQU4GDgf56r4fkuIsqEh36wk7Nc5d1QSV90JZZ2Dd3719LUT8h1FQK+9wQQQScmKIw+tD8YZIK6IniTbcEHGorxysOleOPuQqmX3wy1XBAubvSyfYC50hYTQVbZcJD9jL02LAwU1IwVHlJcA7w8ShbdemiWuPC1ftdV13zP5prdTG+oubaOSCRM2pcgYIuqKSGfddoD3DRFZayNL2ibRl+5d98ND/p7ulX2X6q7z8tN/3cVGE1m2iSGypFPLHEdkdWJ05Tp9x2A6M8zWUprQa2dt4q2H/vidiponNCKBAMBKZvn6deLbR0kQiUQE4SIAglQA4DGikNV0FlACAAgL5OsV0+phc1exruKRoIwh9D2TaEwNP/r1EZd/FtsJe1KhHioE2J44VLezjj3eOHGiDx4ZEm35KnyuoaLmTZuJybTrZBOXf3zEok7mLCJKBiyMB4TRj08aPnLMIYc9TZsrehtOPQ2OMTmz6cr3fzhexuwjxMqtQsi9gsHGq/x6wvxwCivJTrFNyXZlbJ48+qJ32YQmNTq1VHEXqVqQzmJm5owtdVauoGMHUnQ23PnYBbOGg/CtkAwCKm+dVil66oFtL3Y2iDIUvMqa1ypL6tq+t+47E91YKYiVg6xRDFglDEQP5YAjkc9QiT3ktCQAADj0WZoltx986X4+ECNJTlxlrPNxm5ecqox8RomM0Q52KxitAoANB6BWzMxOdMd90+cN2f4SAiFWU6MMSI8EAhiN3CWfJ6usyjo94RshUEIctH1ryzeO7t9crBW0wmRHL9JIhtLdJ44/Z+PCkpIZem/Po/8+oc5+YuwAu/SkFJbW/fP4u7z3/+nUoFRw0j/ecvKFg+Bj23h17FQK9EXjrx3m1U+ZQL7o/NkLXzutwWh3oLBdG3ZR4AfeXjCC4uDIJh82XoaXT1KxJ5K+BxlqjB1OaPWRV5aJicqd/OYJl6/nkrUlaz++X6+E3Ssp/rDJYyCdT+2Iq8c0mJywOcFptf25fZAbd/ZhTWBcQDZolAimAEgEgVDlSfR94ZZhccd5G1Re3XshZqJ96XpOEuo9M/OJkUeQ3+5WAQCwce7vl8b2j5c1N7PvJ58Q6Q5gXghgjHo/RpQe/D64Z84ZgnkUVtTs/FUFcOpj+P8ycELtgowJ2QAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_50.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, angle BOD = 50.0, then angle COE = ()
Choices:
A:30°
B:140°
C:50°
D:60°
|
Như hình vẽ, góc BOD = 50°, thì góc COE = ()
Lựa chọn:
A: 30°
B: 140°
C: 50°
D: 60°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, angle BOD = 50.0, then angle COE = ()
Choices:
A:30°
B:140°
C:50°
D:60°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, angle BOD = 50.0, then angle COE = ()
Choices:
A:30°
B:140°
C:50°
D:60°
|
As shown in the figure, angle BOD = 50.0, then angle COE = ()
Choices:
A:30°
B:140°
C:50°
D:60°
|
249
|
50
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAASAAAAD4CAYAAABMmTt2AABqeElEQVR4nO29eXCbeXoe+OAgiPsiAF7gAd4USZGUqLOPmekZ90zsmUyyR3zMuspJxlWOs7tOsvFWEu+WvVtrpypx7WXHs7W7EyflrJ3EGTv2ZLrn7umWWq2TlCiKpHiDBAGCAIj7vvYPzfvTDx8/SOppSgSl31PFIgl8+PCdz/cez/u+imq1WoWAgIDAMUB53BsgICDw6kIQkICAwLFBEJCAgMCxQRCQgIDAsUEQkICAwLFBEJCAgMCxQRCQgIDAsUEQkICAwLFBEJCAgMCxQRCQgIDAsUEQkICAwLFBEJCAgMCxQRCQgIDAsUEQkICAwLFBEJCAgMCxQRCQgIDAsUEQkICAwLFBEJCAgMCxQRCQgIDAsUEQkICAwLFBEJCAgMCxQRCQgIDAsUEQkICAwLFBEJCAgMCxQRCQgIDAsUEQkICAwLFBfdwbICAgRbVaRbVahUKhAACUy2VUKhVUKhUolUo0NTWx956GSqWCTCaDSqUCrVbLPlutVlGpVECTyavVKsrlMhQKBZqamqBUvrrPZjoW1WoVKpWKHYtqtYpisYhyuQydTnck3yUISKDhISUkIiJ6jwctwxOUSqWCQqGAQqFApVKpWS8PpVL5zMQmcDQQBCTQkCAiIPLhSadYLLLXFAoFI45yuQzgMZGoVCoAQFNTE1sXWVL0HfRD6+b/Fnj+EAQk0FAg85/IhQghn89jf38f4XAYiUQC2WyWLUMWDrlUCoUCarUazc3NsNls6O7uhsViYa4XUEs+tB61Wi0soBcMQUACDYVqtYpCoYBisQiVSgWVSgWdTodcLoebN2/i2rVrWF9fRyQSqbGAePepXC5Do9HAYrHg9OnT+PKXv4yJiQloNBqo1eoaC6hcLrPYDxGZwIuDICCBhgNZJvQ3AEYyhUIBPp8Pfr8fdrsdVqsVzc3N0Gg0UKlUKBaLiMfjyGQyiMfjsNlsSKVSjKxoXfx3AY9dPYEXC0FAAg0FpVLJLBXgMUHodDqcPXsWarUa6XQadrsd586dw8TEBNra2mA0GqFUKpFIJLC5uYnt7W1sb2+jtbUVWq32ELmQq8bHioT18+IhCEigIcHHaKrVKjQaDdxuN3K5HLq6uqBUKnHmzBlcunQJra2tUKvViMfjiMViaGlpYaTU3NwMrVYr+x1EQiqVqib2JFyxFwdBQAINhUqlglKphEqlArVazSwhpVIJrVYLk8kEi8WCbDaLzs5OtLe3o7m5GYlEAisrK0ilUuju7sbQ0BAjFJ1O90QXS6lUolwuo1gs1gS+BQk9fwgCEmgoSG96slIqlQqy2SzS6TQ0Gg2sVmuN2xUIBBAMBpng0Gw2I5fLoVgswmQy1eiGiJiAR+TD64QEXiwEAQk0HChTRWShVqtRKBSwvb2NjY0NlEol6PV6FAoFBAIB+Hw+BINBxONxWCwWKJVK6PV6dHZ2olKpwGg0QqPRAABKpRIKhQJT+qrVami1WhZ7AoQg8UVCEJBAQ4EXAhIJUWo+FoshGAzC7/cjlUoBAEwmE3w+H8rlMrq7u+F2u9Hc3Mw0QCRg5Msv6HuE1XP8EAQk0HDgSYh0OqQNisViWFpawsOHD3HlyhWoVCokEgl0d3fjZ3/2Z+F0OqHX61lNFymfeZGiRqOpSfOTHqhUKgEAqwUT5PT8IQhIoOHAB4yJjMrlMiKRCA4ODqDT6dDR0cHcsFgshmw2C61WC4vFgubmZrYuaTaNXye9ViqVaso4BF4cBAEJNBykleqUJt/d3UUkEsHExAS6urrQ19eHZDKJP/uzP0Mmk0FLSwt0Ol2N9UQuGB+E5otby+UycrkcAECr1bJyjJNs/fCFuz/pcvzr0uWO8tgIAhJoWBARqVQqVgsWj8dx+vRpzMzMYGBgAPF4HOvr6wiFQnA4HGhubpa9QcjqkRIQ7+7xRHVSQcRNFh7vevL7Jl1OrkaOluPFmsDhLgKfBIKABBoORBSVSgXFYhGlUgmJRIK5WmazGa2trTCZTACAwcFBOJ1OOBwONDU1sQwXTzq0XgCs9gsAqzXj3z/J4Kv9yXUlEqfX6i1Hf9MPabL4zx11yYogIIGGAm+hqFQqFAoFRCIRhEIhaLVadHZ2oq2tDS0tLVAoFDAYDBgZGUEmk0FbWxvK5TLLirW1tcFsNh96qpNLB9RaRkRMJzkALd1XaR8k/n16nX+PzxTSe/T688gcCgISaChQULhSqTB3and3F7u7u2hra4PFYkFXVxcrr1CpVOjv72fK6UAggNu3byOXy+HSpUvQ6/XQaDTsic4/vfnmZJQF4zsinkQSou3m69wUCgVKpRKzZtRqNXu9WCyyY8dbntLMIQ9BQAIvLaSlEKVSCX6/Hz6fD1arFe3t7TAajWx5EhPm83k8fPgQq6ur2Nragk6nQ7lcZjdVNBqF1+tFLpeDxWKByWSCyWSqCTy/DC4Y35KEYjxAbWBfas1Is4K8dUgtWXnriIjsKCAISKChQBc9WSSxWIxVtut0OqjVamSzWcTj8ZpmYtvb2/j2t7+N9fV1GI1GuFwuGAwGNDU1oVgsYmdnB9/+9rdxcHCA4eFh9PX1obe3Fw6Hg/Ud4oPRJxkk3KS+SFRPJ10GwKF9lxKx1F0rFosoFotHtq2CgAQaCtVqFZlMBuFwGBsbG3jw4AGuXbsGv9+PTCaDWCyG5eVlGI1GFsshK+natWvM9WptbWWCxEqlgkQigYcPHyIajaKjo4N1QKSbk48BnfQ0PICaWI5SqYRarWZxNQAs6CztJkmQOw50jIQFJPDSolKpIB6P4+HDh/jmN7+JDz/8EHt7e8jn8/D7/ZidnWXE0dTUhGq1imw2i2w2i2Qyid7eXrS2tqKnpwcGg4HdNNlsFtFoFNlslrlyNpsNOp2OuRVUDd/c3HxiY0BAbWN+2g/eCuI7Dmi1WqaHomwZH0eSQmTBBF56NDU1wWQywe12Y3x8HIODg+wmomAyH8+gp7lCoUBvby/GxsbQ3t4OvV7P3Lh4PI5qtQqdTger1QqLxcIC2XItOE4q+RDkmqzxxwyo1T3xBcB8cF56bMiSOioIAhJoKCiVSlgsFoyOjqK9vR2ZTKYmaAqAxSKk876IYFpbW1lVfDabhd/vRzgchsFggMVigcPhYK08gMPB1pNOPkQQlUoFuVzuULkJEQqRCVmTFHujADb9UKcA+s2LEj8pBAEJNBSoWLSpqQlGo5HdIFIhXKlUQi6XY5kucssoxUxIpVJYXV1lWbTu7m7Y7XbWppV/2tP6TzIB0SBGki6EQiEkEgkUCoVDTfwpQ+hwODA1NYXu7m52rImIeGvzeSjFBQEJNByIAHhNCm+t8CRVKpWQzWZRKpVkn87xeByLi4vwer3o6+vDwMAArFYra2AvDcye5CA0kXMymcTy8jKuX7+O2dlZbG1toVQqMaLm9T65XA59fX34pV/6JWi1WjidTpY5I3f3eUIQkEBDgR9EKM1UAY8LTIFHsSIqveDLDfhlE4kE/H4/YrEY7HY7Ojs7WXZMipPugvHkbLFYYLPZoFKpUKlUYDabYbfbYbfbodfroVQqkUqlsLGxgUQigStXriCfz+PSpUvo7+9nRb3kpvGdJI+SlAQBCTQUSMPCq3PpddKgFAoFAIBer2exC77QlLI6NJonHo+jVCrBZrOxejHgcc2ZlHROKgEBj/bJZDJhZGQEarUayWQSVqsV/f39GB0dhcfjgdPpRFNTE/b393HlyhXcvn0bt2/fxtraGpRKJWt3otPpWE8lqUL6qCAISKChIKfOpZQxxSHoqUzBaP5zhFwuh2AwiFAoBAAwGo1oaWmBzWarab1KNxOv/j3paGpqQktLC9LpNIxGI/R6PTweDyYnJ9HV1QWz2QwAcDqdzGLa29vDwcEBHj58iNbWVjQ1NaGjo+O5u2KCgAQaCnyql6wfyuA0NTVBo9FAo9HUqHLlGstnMhns7Oxgb28POp0OdrsdDocDJpOpZuaYtFATOLmBaN6aa2pqQnNzMwsmW61WtLW1Qa/Xs+V1Oh2mpqag0+ng9Xpx7949+Hw+3L17Fy0tLbBarTAYDDUW5lEHoU+25lzglYCcdoVKCCjrJY3/ZDIZrK+vY2dnh2mKzGZzTTtWuR44jRQDktPb8K4QnyrnXaNKpYJUKoVYLMaKerVaLZqbm2uOE5G9y+WC2+2G1WpFOBzG1tYWksnkC5kUKwhIoCEhbRwmVyxJFpFc9Xo2m8Xa2lpN+p2KWKXxDD413Ujkw//Qa5VKpSYYLP0BHlmMe3t78Hq9KJVKMJvNUKvVrLeSHFpaWpjbFgqFUCwWZQc0HjUpCRdMoCEh19NGLlgsp+UBHhFQKBRCMplES0sLOjs70dzcLNteVPpdjQBp9bq0cyFQf1vz+TyCwSD29vbQ1NQEl8sFs9nMgu88CVGW0Ww2swZv/NgiKaTb8EkhCEig4cCTglyWiiAtxaDi1EKhgEwmg1QqhWq1CqfTyQKr5XK57iDCRiMfXpUsdTOl289nAfP5PPb29hAIBKDVauF2u1nwna/74stbmpqaoNVqodPpWJC+XoHqUUK4YAINB7mYjLROi78ZeDelVCrh4OAA4XAYxWIRGo0GNputJvvVyKDBiXwvZmnLDDlXjI9nlUolbG5uYmlpCQDQ0dHBrBtahgefadTr9TCZTKy0Rbqc3Oc/CQQBCTQcpC7R0+IzPAHl83ns7u4iEAhAqVTCZrPBYrGw3kBy0zHoe44bVGJCLpBKpWJxLrJUeLeTWmMQEdG+lMtl7OzsYH19HUqlkhXmShvU07EoFAqIRqNIJpMwGo1wOp0100WeJ4QLJtCwkBJEPRdAGnze2NiAz+eD2WxGR0cHi3/wQVW6gYFa94X/ruMAuZHSALC0Ul2OpGkfisUiTCYT2tvb4XK5WOU/qaKr1SqLB5XLZYRCISwvL2NjYwNOpxNdXV2wWq2sAJXAE99RQRCQQMOCf2I/iRD4mySdTrPsV2trKwYHB2EymdhNSuAbkPGWg9Tde5GgmAyRkNwPLSctDKX9SCaTSKfTaG9vh1KpZIpmiv/kcjnWQaBcLuPg4ACbm5uYn5/HxsYGPB4PPB4PWlpaWLsSwvNoSCZcMIGGhFz8QS7mw8dJgEcEtLOzg0gkAqfTid7eXhiNxroB53oNtl6EBkYOvDiSxlHzlhovCqS0Om8VRSIR+P1+lEolGI3GmrIThUIBrVbLiKVYLOLhw4eYm5uD3+8H8Che1NPTw9TSzxuCgAQaHk/KgPEWS6FQQCKRQDgcRiaTgcPhgNvtZupfaUZHGltqJBFiuVxmSm8+y0cWktz7pVIJu7u7WF1dRTKZZIpvaS8gIuu9vT3cuXMHc3NzqFQqcLvd8Hg8NccMkBdsHhWECybQcJDTuvAXvZx1UiqVEIlEsL+/j0KhAI1GA6vVCqvVCq1WWzN8j25AqXpa2vLjuEC6HyoEJfeK1+bwrTVou5PJJBYWFjA7O4vu7m54PB60trYyd4tazkYiEdy9exd37tzBjRs3EIvFcObMGZw5cwanTp2CxWJhlpP0WJMVdlQQBCTQ8KhnAfGvFwoF+Hw++P1+qNVqNnaHKrpJ/0I3FFkTjRJ8JtD2kEBQqnomy40yZOSqZTIZeL1ezM3NYW5uDi6XC3a7HRqNBplMBrlcjnWQ3NjYwDe+8Q1cv34dqVQKAwMD+NznPofPfvazh+QK0mPDT5o9CggCEmg48AJE6cUuDcgScrkcNjc34fP5YLFY0NHRwTI50ngPry7mXz/ucTx8zx2K9VA2jO+RRK9Xq1UcHBzA6/VieXkZc3NzuHbtGra3t2EymZBKpdgxIKKi5v3hcBgejwdtbW0YHx/H9PQ0WltbD23P07KOnxSCgAQaEk8iH7oReWQyGZZ+d7lc6O/vZ50PgdopqLQu+p4nvfaiISUailFJZ7cDj/bp4OAAKysr+MEPfoCbN29if38fAPDw4UPs7Oyw5WnKLGl9zp49i5mZGUxNTaGvrw92u/3QdgD1rc+jgiAggYaFHOHUeypns1lsb29jb28PQ0ND6O7uZnPhqaRBqiSWuhXHnYYHapuk8Tc6P+WCJweTyYSenh6cP38eLpeLtV4FHjdxq1araG5uhlqtRi6Xg8FgwOjoKIaHh+HxeGC32w99n1wcTlqacRQQBCTQ0KgXo5Gm5ZPJJPb395FIJGC1WtHR0QGDwQAALFXNx4KkVgb/XUcVC3qaRSV9nyc/Ikn6X04QqFAoWI+jgYEB5PN5JkngVdW07/xwQkrHk2VEx4h3+Wib6hHTUUAQkEBDgo/VSMmGR7FYRCQSQSAQQKlUgsFggMPhQEtLCwum0k0lrSiXWjpHmWbmg8b8D19ASzc8r3qm32S10fuUSpcuT8RCfa6lRMUTy5PmnvHHh99OqcUp5xp/EggCEmhISIPF0p7PdFMUCgXs7OzA5/OhqakJbW1tcDqdMJlMzG2hJz99Rm5oH6+P+aQExLuOAGpiOcDjMhA+rsNvB78c/U8KZOl28sdDjlQonf408BKEenVyz8M1FQQk0LAgK0HOUqEbJp/PY2dnB4FAACaTCS6XC1arlbkW/Gfk/uZxlDcXb0lIW76ShocnF14ewLtR1HqWUvM86RzlNh9XzEsQkEDDgm7AJylxc7kc6/1ss9ng8XhgNpuPPaUOPG56L3Vn+LayZAnx00hpmaamJuTzeZRKJTa9FHh8XOQq+5+HWvl5QhCQQMOCd7v4RmI8qPYrGAyiu7sbfX19L6yOSQ5Si4csGXpPzpIjMqlUKjUN+EnpTKJJfj5aLpdDoVCoeb9eo7VGhiAggYaFNG3Ou2JESslkEsFgEPF4HC0tLTW9n48DUh0Pv718dT8PPvhL9V1EXkQqFPepVh93PIzH4zCZTKzfEbloJwmCgAQaDvwMMAA1GSBCsVhEMpnEwcEB0uk0FAoFmwZ63J0P5dwgqZ5JjoRof6Vjhngi29vbw9raGmZnZxEOh3HmzBnMzMwwnc9RBdJfFAQBCTQceItHGucgUOP1YDAIADWWwFEWS35cSMmHz4jR9vPZLX6flEolNBpNjZXECyQTiQQWFxdx69Yt3LhxA8lkEi6XC1NTU4fElYKABASOAHychL+pisUitra2sLW1Bb1ezyrf+dqv49xeXusjdcnkCIoPtPOlFqVSCclkEhsbG1haWsLs7Cy2t7dhMBgwMTGB0dFRlvWTNik7CRAEJNCQkGphpAHoQqGAzc1NbG9vs9nnVqu1JlB7XCDLhs9u8UFiuRo3AEwwSNZMPp9HPB6Hz+fDjRs3cOfOHXi9XiiVSszMzOBzn/sc+vr6YLVaoVAcnvB6EnD8Z0tAQAKyeOjmlSMg0v/4/X5MT09jcHAQNput4W4+Pu3OExMPPt5D218qlRAKhXDr1i3Mzc0hFApBrVbj/Pnz6Onpwfj4OLq7u9m0i1KpxNL1ctnCRoUgIIGGA92I5L7ITT5NpVKs9svhcKCnp6dm9Mxxg1dx8yN1SNEsfY+3jHK5HILBIFZXVxkBtbS0YGJiAhcvXsTExAQMBgP7PIkVqeD2OGNgHxeCgAROBPgaqVgshr29PWSzWWg0GrS0tMDpdKK5ufmYt/JwGYY0i1UqlZDP51nAmX+vUCggHA7D6/VidnYWDx48QDabxfDwMIaGhjA2NoahoSE4HI4agqYgNemGThIEAQk0HPg551LLp1QqIRAIYHd3F9VqFVarFXa7nc0/bwTw6megNiZDgWWqzCfLJ5PJIBQKYW1tDQsLC7hx4wZ2dnYwMTGBy5cv49SpU8zl4lP5cpbWSXG/AEFAAg0GvoKbtx4oFpTL5eD1euH1etHc3Ayr1QqLxXLs2S8e1H+axtfwAkG1Wg2tVguNRsNKK9LpNFZWVjA/P4/FxUX4fD7o9Xq89dZbmJiYwPj4ONra2mA2m2sarPE9rqWW1klBQxOQ9AnSCB3rBJ4vyH2hcgReAaxQKJDNZuH1erGzswOj0Yienh5YLJaGiXvIpdkpuwWA7RMF2pPJJHZ3d3H//n3cuXMH29vbAICJiQm89dZb6O7urpnrTpC26zip90TDEhDv21Jqkv9fesDrNa4SOFngzy9v/fABWp/Ph729PUxOTmJgYKAm+yXXye/jQm76KICa7BWv15EDNY2n9fH7o1KpkM/nsb+/j/v37+Pu3bvY3t5GOp3G0NAQRkZGMDY2hoGBgbquJd+o7CRf6w1JQNJWnPS0IHWsXD2NVAkqcDLB31TSHjVU+xUOh5FMJmG322tS0UD9lq3PinoBZN7l4WuzAHllMwWZ+b4/tEypVILf78fi4iJu3ryJ+/fvAwDcbjfOnTuHN954Aw6H44kxLXoon/RrvSEJiE6UdGyKtKmTXIGiwMkH78bw5zaRSODg4AD5fB4ajQY2mw12u72m6Va9WqtnBQWJFYpHzbz4mBRfHsJntagqnaZPlEqlQ65RtVpFoVBAMplEIBDA9evXcf36dWSzWbS2tqKvrw+jo6MYGRlBS0vLMwXUTzr5AA1KQMDjSmj+ySNHQMDhAXMCJxtyauFyuYxgMIhAIAAAsFqtsNlsMBqNNXEi+vxPCt6SpocfNQSTtjvl+y7zTcTkQgXpdBqxWAx+v58Vk66traGrqwvj4+M4c+YMRkdHYbFYXgpieVY0LAER+CdSvcJEgnC/Xh5IU8z5fB5bW1vY2NiAWq1Ge3s7bDYbm3NO0yA+6fnnLRlyn2jdtP5isVhTXEpCSSIevpcPAGg0Gqyvr+PGjRtYWVnB/v4+tFotPv/5z6Onpwd9fX3o7e1lUzxeJTQ0AfHNqKRPn09qags0Loh8+LYcuVwOW1tb2NzchFarrckOHWX8j4iGLBtSLVNIgCxvvtk7tf+gbSWND/CoZCQSiWBpaYlluRQKBS5duoS3334bbW1t0Gq1TNn8qqFhCYhPx/KvSbMP0qpigZcD0irxQqGA7e1t7OzsYHp6mg3T48cXH+XDiIpBAaC5ubmmHITqrejhmMvloFar2XKEQqGA2dlZfPDBB9jY2EAqlUJPTw+GhobYQECTycSua7KgXiVLvqEJiK+ZkZrk/AmSXqwCJx98PVi1WkU6ncb+/j5isRisVmtN7ddRzysHamu5qB0qbRPfm7lQKKBQKLBlKWaUSqWwt7eH27dv48qVK6hUKujr68P09DTOnz/PBicS+OGJr1JMs2EJiLd+KCNAvjhv4gK11hJ/Mb4qT5GXEbzLk0gkEAqFkEqloFAoYLfb4XK5WPyHrOKj0ADxxKPT6dhrdG1JrRONRlNDUIlEAltbW5ifn2dV7FQsOzk5yaa28tIBUkxLM2yvAhqWgKRPIGlvFely9LfAy4VqtYpQKIRAIIBKpQKLxQK73Q6LxVJzHfDWEq8f+km/k+ap89XrfP0WvxwNDkyn09jc3MT8/Dxu3ryJhYUFuFwunD9/HpOTkzh16hScTmdNy1hqN/s0YePLioYlICIevpUBpd2Bw4pXuhBO4mQAgfooFArwer2s82FLSwvsdjurJCfwbvgnPf/SYk++STz/nXzPap/PhwcPHuD+/ft4+PAhyuUyzpw5g5GREUxPT6Orq0u2XzW/jmKxyMbvvCpk1NAERHOTCoUCmxZAJ1CqFSGTXZDPy4VcLseCz2azGT09PSz4LMVRuGD858it52u5eOuHrJ5wOMyyXJubm0gkEujr62NV7L29vcydk24n/10kN5FOcn2Z0bAERE+cg4MD7OzsoFqtwmazwWq11iwjrf96FU7aq4RMJoPt7W34/X7WD8dut9dYCPy4m6NwZUjrk8/nWUM0fuIELZNOp7GwsIBr165hY2ODlYecP38eQ0ND6O/vP6RqLpfLKBaLNa4bxYAonvQqXccNS0DAowtrf38fd+/ehUajwejoKAwGg+yyfC3OUZjhAscLsjBo7tfBwQEsFgurfueXq5cd/aTfzydBeGFhoVBANBrFzs4O7t27h9nZWaRSKbhcLgwPD+PNN99EV1cXU2kTyZBYkVf289XyJ62d6lGgoQmIxu5ev34dZrMZTqcTDoeD1doQeJOWz4a9aifzZUM+n0cqlUIsFkMmk4HBYIDT6WTZL4L0oXMU51ylUkGr1dY0RgPA2oEsLCzgzp07CAaD0Gq1GBwcxPT0dE2Wi7aDJxpaNx+vlHsfeDWyuMdCQM+SJs9kMtjb24PX68Xm5iba29tZtkDqQ/Mnr970SVruk9YJEV7mi+MorcgnHbMnfU+5XEY8HkckEkGlUoFer4fZbIbRaKwR+z1r8Lleuxbp6/SaQqGoKcnI5XIoFovY2dnB/Pw85ufnsby8DJ1Oh9HRUTYg0Ol0HnIB+W4OFOPhW3OQ8ppPsrwqeO4ExJMD35gbwBMtlHA4zAr2mpqa4HQ60draCqvVeqj4kGqF8vk8U6Tyy/B1O/TEkeqI+L/lLmZ+HbQefpmXhZDoeMlVfvPL1CMWnuT5cw/UTv8EwGQVct9TKBSws7MDn8/H2q4+rUXFk/aJ0uk8AQCPg7+AvN6MLJW9vT3cu3cPc3NzWFhYQLFYRE9PD4aHhzE9Pc2C43LxJ+k1Jz2ePBG9arHM50pApJ8AagPG0t/8wS6Xy0in0wgEAtje3kY4HEa1WoVOp4PRaIROp6spSqXfvOslbdEhvWHkLCh+G+VI6ElK65fxYpE+OKTHRgr+fen/T7I865VQ0Ngdyn61tbXBbrfXVQlLv1/6HXz3BGmanV6nByO/Dor3LC4u4saNG3j48CGi0Sg6Oztx+vRpTE1NYWRkBHq9Xv5ActvH/5aiXp+rlx3PlYCSySSzSHilKu/zSp98kUgEDx8+hM/nYwQQiUQQiUSQy+VQqVTYk4rEZ+SaabValkXgLyyppSJ9n7aJnlT8tAF6Mkk1J7QuHnLm/Em7oPgsEl8JTuNf+P/rPa35/6VPf/4mkz75eVDnQ5/PB7fbjY6ODiY+lFs/QdpKgz/HlN4md4f0Nk1NTTWlEHyMaWtrC9/73vcwPz+P3d1d2O12vP322xgeHkZ/fz/a2tqg0+lQrVaRzWZrpl3IHdunHftXDc+VgKRV7LzrRTc6XSQKhYL5/T6fD/F4HGazGSaTiWmB+EF1BLrQeL/6Sf6+9HO0DA/p07veE5//LafGPqkXFE/EfDc/aQbnSVYRT0714i1yNyldD8lkEnt7ewgGgxgYGEB7eztMJtMhC0gaxCWXjoiGrhdypXhtD+/+8Z8vFovIZrMIhUKYnZ3FrVu34Pf7YTAYMDAwgDfeeAODg4Ms0FypVFjlPBWpCjwbnisBUYsBKqXIZrNQKBTQ6/U1QkNq+ER/02ftdjsikQicTiesViv0en1NAJL33flpAaSz4K0hkrxTulPuqctX3hNJ0nbxFde8ShuoJR+ppXVSQfvJF1jS68Bjt0YuxiZVpEsJSOoC8alo4FGmKRaLIRgMIhaLwWQyobOzs+7gQbmYE51zADWV7HTugMNp8KamJtar+d69e3jvvfewu7sLhUKB6elpTE1NYXh4GH19fayQtFKpIJ1Oo1qtHuoDJPB0PFcCam5uZhcYWS9A7Q1LFwClW2OxGAwGA2u56XQ64XK5YLVa2WQA/sKl/4vFIrOSANSMPSHIBZHpNelNRD/8jSZn5UhvwJepoJDIhD930jajcvtfL5AvFxMiy6parbLvisVi2N/fZ8WnFosFLS0th9LvzwrehaZ9km4bVbUHg0GsrKzgzp07WFhYgFKpxOTkJM6ePYuLFy+ivb29hmDI8uEJTuDZ8dxdMJ58KDvFj5MFHl3U0WgUd+7cgUqlYuZtqVSC2WyGy+WC2WyusW4om0GvhcNhhEIhaLVaOBwO1s+XLrSmpqZDhATUEggtK41ZSGNAdBEDj2dy0+cbaT7VTwqpNUNELL3BiEzk3KJ6bi8fo5GL1RSLRQQCAfh8PiiVSjidTpjN5pq4ipyLzZ83Wi8fK+R/S7dXrVbj4OAACwsLuHv3Lu7evYtCoYCxsTH09/djbGwMvb29cDgcNdtAbThIL0TXgXTiqUB9PFcCkj7x6MTwF1CxWGTD5m7dugWNRgOtVguz2czmf5MoTE5fQRfC3t4eFhcXoVKp4HK5YDKZYDQaodfr2Y9Wq2UXn3RdTwqoPimWIY2BPC3rc1JQj5CBw7EtKWHLrUfus3KxI0q/e71e6PV6dHZ2HipnqBdzksZynqUwuVgsIhaLMatncXERwWAQHR0dmJ6exsTEBGuXyoOPh/HpexH/+Xh4rgRENzuv7OSzX1qtFplMBqurq7h16xauXr2KaDSKGzduQKvVMqvJarXC4/GgublZVgVLiulr164hEAigWq1Cr9fD6XSiq6sLfX196O7uRkdHB0wmE6u5qZfhknu60nbLTePgSe1lMMHrBY35wkxylyjwyk8wkbq3vHtG65K60XQM8/k8Njc3sb6+js7OTkxMTMDlcrHgbr2kAK2HLGKKycj18OF7+4TDYXz44Ye4e/cu05y98cYbGB4exujoKDo6OmRT7Hz2jCx5jUZzIscjHyeeuwsmZxrTySmXy0gkEtjZ2cHBwQH0ej3y+TzS6TQSiQSKxSKsViusViuam5treu9KTzAFEWl2VDweRyqVQiaTQTqdRiQSwe7uLkwmE/R6PQwGA4xGI0wmE4s58eY1b7ZLM3bSDIr0Iudv2pMIuXgXf/NLiUn6vjTITJCLCQFgLjk/KTQYDGJ8fBxDQ0NoaWk5pP160rHlrSDp9xNBpdNpRKNRPHz4ELOzs9jZ2YFarYbH48GlS5cwODgIm80GvV5fk+CQkiaFGOh/QT4fD8+VgFKpFFQqFZqbm2u6xgGPyOfg4ACBQACRSARutxtnzpxhGTKqgs9ms9DpdKwHDH2Wv/H1ej3Gx8dht9uRTCaRzWYRiURYFiUQCODhw4fIZDJQKBQwGAxobW1FT08Pent70dPTwwLdvJtG4C8u6Y3Jx0nkbsKTBp5kiXx5S4ef9kmWD/3Px4jkXC25Y8JbmZlMBpFIhHU/tFgs6OrqgslkqhHqyZEYgXQ4fOZSWsleLBaxsrKCd955B6urq6hUKujo6MDZs2cxMjKC3t5eprjniY/iPHT9UcaLfzCe9PP/ovHCYkD0P52Yg4MDrKyswO/3o6mpCV1dXZiZmYHL5UK1WoXP58O9e/cQCASQz+efWP+j0WjQ2dmJjo4OVKtV5PN5BINBeL1ebG9vw+v1olAoIBaLIZ/PI5vNolAoIJfLMYJyuVxoaWmB2WyGXq+HTqeDVqtlv4k8pS0ZpE2q+DTwSb0I6aku1cgQ0eZyOWQyGWg0GibCo5iLXGytXlyEPz6VSgWRSASBQAC5XA5arZbN/pK63fQ5aeaynvtM7mM2m8XBwQF8Ph/m5uZw//59JJNJDA4O4tSpUzh37hx6e3tls21S64+3gnl3VI4kBerjheiAyFIh85fiPleuXIFSqcSZM2fQ399fI7WnNga5XI7VeZFvL7U4+BQoZckcDgfMZjP6+voQj8eRTCaRTCaRyWSQSqUQCoWwt7eH5eVlXL9+ncWN7HY72tra0N3djZ6eHrS1tcHhcMBisTBzvF45wMvyBOSzVUAt0ZbLZUSjUQSDQeh0OthsNmZh8O5KvfXyLht/jIrFInw+H7a2tqDRaNDd3V0z9VRu7A4fbKb/KSZDDyay0CjRMTc3h/feew/hcBhOpxPnz5/H9PQ0BgcH0d7eDo1Gg3w+z7Ks0utM+hoRHk3RkNZ0CTwZz5WAyDRVKpXs6RMMBuH3+zE/P4+PPvoIbrcbb7zxBlwuF5qbm1EqlRAMBrG0tISlpSX4fD5WREgWDmmC6CKWi9mQkBF4nLEghWssFsPW1hZWVlZY7VkymUQul0M2m0U6nWYxAmoBarVaYbFYWHaN6tJ4t5K/6E7yxSfN+tETPhqNIhwOY3NzEz6fDyqVClarFWazGRaLBTabjVmQGo3mkG7rScckn8/D5/NhZ2cHRqMRLpdLtriTJzC+mFWaaSPSLJVKiMfj2N7exr179zA/Pw+fzweDwcAmko6MjLAqdiJf2m/6LqlFJbWGXsVK9qPACyvFiMViuH37Nm7duoXbt29jdXUVkUgE58+fx8HBAQqFAvR6Pba3t/Huu+/i+vXrWFhYwP7+PpRKJTY2NpDL5XD58mWcPXuWBY35k0+WkdTnJ6tFrVazNL/RaER3dzdmZmYQi8WQSCQQj8eRSCQQi8UQDodx9+5dZLNZVjdEMYm+vj4MDAywpzQ1SaPvPskgAify4GMgKysruHr1Kh4+fAi/349kMgmVSoXu7m5mQVBsrbOzE1artaaR+5NS+YVCAX6/H36/H93d3Th16hRaWlpkyZ22h849r/ehc0wIBoP46KOPMDs7i6WlJSiVSly+fBljY2M4deoU2traoNFoWD9mAIfcfSn58ATE69l4ndtJfgC9SLywu6VarTK1crFYhFarRVdXF9xuN3Q6HTup5KKVy2UYDAamATGZTDUpVoI0+yQXlyGQO9jU1ASj0YjW1taarAgRj9/vx/r6OoBHxbEU2E6n0yxLF4vFsLu7i5aWFuae6XS6mviRdHxQI0AuHiPdRrnK7Fwuh83NTdy4cQPRaJSl3XO5HBKJBILBIMtg7e7uor29HU6nk2WS+G4GUjeNrJRgMIhIJILTp0+jr68PNpvtifVitO1SYgAezWL3+/2sin1jYwPFYhEejwcXL17E6dOn4XQ6WfmFXDcFaTyJP15yMad6JT4C9fFcCYg/GRaLBWfOnIHb7cabb77Jpkk6HA709fUxEmptbcXbb7+Ns2fPIpPJsJgOuVROp/OQLoP3ueWetvXAk5VarYbBYIDD4UBXVxeGh4cRj8eRzWaRSqVYdiYUCiESiWBzcxO5XA4qlQomkwnt7e1wu93o7OyE2+1Gd3c3HA7Hx1ZGSwmi3mflUszPsrzc55520xQKBcTjcUYu/f39+PSnP80KhbPZLKLRKHw+HzY2NvDBBx+gVCqxeViDg4MYGBhAT08PWltbYTKZaixFaru6v7+PdDoNs9mMzs5OWCyWQ/V2wGPBH507aXfMXC6HtbU1vPvuu7h//z4SiQQcDgcuXbqEiYkJ9Pf3w2azoVp9JGLlkwsf55jyGdCPc90JPMZzJSD+SUEWT0dHx6GqeN5kNZlMGBkZqfGp+ZMrveDkLpKPexHQ00utVkOr1cJisaCtrQ3FYhHlcpnN9w4EAtjc3MTm5ia2t7cRCoVYRq1UKiGTybAArc/ng91uh9FoZJojUmSTLEFuO6VPXkK916SWgNzTWw7SgLD0u/n30+k0QqEQDg4OUCqV0NbWhgsXLrAuleFwGFtbW1Cr1Wym+sHBAetmWCwWkUwm4ff74XA42Fwvi8UChULBjm2xWITRaGTDB5qbm9m2yMWQ+MJPivEdHBzA6/Xi/v37WFxcxMHBAdra2nD69GlcunQJQ0NDbL2FQoG5cJQp48/Ds4AnL4GPj+dOQAQybaUjR6Q3Aa+reJb1yv1/FKALi2JHzc3NsNvt6O7uxvT0NFKpFJLJJGKxGAvOUop3aWkJyWQSANDS0oKOjg6WVevq6kJrayvsdju7EZ5lH6WEQmRBvW14F0COmKR/Sy0tOesIeJTdIesml8uxqaQUnK9Wq4w0BgYGkEgkkE6nayymUCiE27dvI5FIoFKpsGPi8XjgcDhYOYTZbIbZbIbD4WDiRDmLUFpOU6lUkMlkcHBwgMXFRbz77rvwer2wWCy4cOECZmZmMDIywrJcfMkEP+dd7rgIPF+80Ijpk0zaZ8mUvGjQBU6BTUrTU/Azn8+zscHUvc/v9yMQCDAFdjQaZdqkWCx2yArQ6XQwGAwwm83Q6XSsfEB6LHjrhH9NSirSYk96nSDVqUjfk6a7K5UKwuEw1tbWkMlk0NbWhra2NhiNxpqgrcFgqAnMptNpbG1tYXV1FRsbG0yLFY/HEY1GUalUkMvlYDQakc1m2Y/D4WDfy1s+9a6LYrGIaDQKv9+PtbU1LC0tYXt7G9VqFYODg5iZmcH09DTa2trYZ6S1YlI9kcCLwwsloHoEI3eDNBKk28SXYKjVauj1ejgcDgwNDSGVSrEfyqhFIhHs7+9jZWUFt27dQrFYRHNzM2w2Gzo7O9Hb24uhoSH09PSwqQ98LxtAvr+QnAKbL3/h9VekCqY6Njm9Ct92g89+BQIB3L9/H6VSCX19fSxzRO/T9vEWiU6nQ29vL5xOJ06fPo1EIoGDgwMcHBywYxIMBrG+vo7NzU1Eo1FotVoMDw8jEokwoaN0/DLtI2UmU6kUVlZWMDc3h2vXriEej2NgYADj4+M4e/YsPB4PKySlz8lp0+h4igzWi8ULzxk/i4nbCE8j3h2R05oAj27S5uZmNDc3s3YhpIgtlUqsmt/v97O4UbVaRSwWQzabZfqkXC6HVCoFn88Hi8XCatMo8E71a3LtRKQqbLmKbLkUNv+bX0YalC4WiwiFQtja2kJHRwf6+vrQ0dHBiIFfB68CV6vVTB9E72WzWcTjcYRCIfh8Pqyvr6NQKGBpaYlVoFOMTNr+RPo3TSTd3t7G/fv3sb6+jkwmg5aWFkxNTWFmZgYDAwMsYcEfG+nwP6nuRxDQi8PJFq08J/BPWeDxTf6kbBEfM2pqakKlUkFzczOMRiPa2towPDyMRCLBrKJoNMosgmg0iuvXryORSCCVSkGr1aK7uxsejweDg4PweDzo6uqqacomB7JspGI6aXCa/zxfw8VnBQmU4QqHw+jr68Pg4CA6OjpqLDP6PhpdQyJEsrioU6DRaGRk7XK50N/fj+7ubuzv7yOZTGJ4eBhnzpxBd3c3jEYjlEolq0Hjt0mpVCIajeJ73/se7ty5g3A4DKPRiEKhgC9+8Ys4f/48WltbGfnQQ4Ef60SWEK2Pdx9FNuvFQRBQHcgFgfnALv2uF88iMqIbDniUPuZ1RKFQCLu7u9jZ2YFKpWJ6pHw+j2g0iqamJtalb319HVartSarRj98Vo1vWyG1HOTiSE9K+yeTSQQCAcRiMaZ6bmtrq+mNIw1cy1m4fPsSIieDwQC1Ws26Xrrdbpw6dQrj4+Noa2ur6aZJBMHX7q2srGBpaQmRSARGoxEtLS34kz/5E3z00Uf4nd/5Hfzqr/5qTfsUoDZoLbVu+f8bMQzwskIQkAzktDFkFT3pfXLByMyX67xHbpvZbEZrays8Hg/LpiUSCWQyGSQSCaY72tnZwd27d5FIJKBSqeBwOOB2u5muprOzE06nEyaTiY0sqkeMvLRBatXxsST6bCgUYhm99vZ2tLW1MeLg25NQTIUXX/I/lCLnYzrlchk+nw9ra2usC+bExASGh4dhtVrZceaX393dxcLCAq5evQqv1wuDwYDJyUlMTU2ho6MDOp0Ov/d7v4e/+3f/LiqVCn7xF3+RHW8iaD7mQ4Foysw+/3KKHKLL93BrOw5t6yimT3XBdNirfqUgCOgp4LNF9VLj/N9Pi3HxwWvSHNHUj2KxyFTBu7u78Hq9LB5SLBbZqOK9vT1Uq1UcHBxga2sLNpsNNpsNJpOJ1aqZTCZGCLwbJt2vevqpSqWCQCCAhYUFpFIp9Pb2orOzk0kHyLKgRv/8vtH7dDzkUvxEKKQf8ng86O3tRVtbW43QtFKpIJFIYHd3F3fv3sXi4iJr19rf34/JyUmcPn0abrcbFy9exJe+9CW89dZb+Pt//+/D7Xbjs5/9LNs3qcsVmP8BlsK1wXNpZhFwYeztKXTKncxiEqH1RcxtxwFo0To0geFeG2Q7Vx98hN/5mc/jN64n2UvN/b+Af/3Ov8LPDr26LCQISAb0NOTjI9KSAD5eADy+wKkXNb+89OkqJQNqOUtuh8FggM1mQ29vL86cOYNEIoFoNMqa9odCIQSDQczPzyMWiwEA0+K0t7ezerXW1lZYLBaYzWbWmeBp4DNiu7u7uHfvHnQ6HWZmZtDV1cXq76THSdp3R6FQ1MRdqFsgoVgswu/3Y2tri6nPnU4ndDpdzfYkk0ncu3cPd+7cwY0bN5BIJDA+Po7JyUmMjY2hq6sLWq2WlfmcPXsWX/va1/DLv/zL+K3f+i38zM/8DADUuM9kVa3/fz+Dn/4/nnZE/h5+WJUSUBE73/tN/I3//J+C4xMAj0jl9//09/DVaTv36i7+3d/+DH5j7hR+/d0/xj+YsiK39e/xK2//Gn7uc0PwrP8mzr+iHCQI6Ck4/ESsHzeRE/LxeJLcgP8Oih1ZrVbmMuRyOZZBIsvB5/OxVDR1l6xWq0in0wgGg0xRTD98Jb/BYKgZYS1FLpdDJBKB3+9Hf38/a03CK7jliFlun3jZAoGsmkAggK6uLvT09NQUn+bzeezt7WFtbQ2zs7NYXV1FuVxGZ2cnxsfH2Thko9HIjhFJF77yla/g93//93Hv3j1cvXoVb775JrPWaLsVCi+88z/emGYn+nvtdW4GB6Ry0YP3/nu89vb/jp1HH4azvxd2HGBrPYT8+h/jly/dwP4HS/gnxCrBq/i3/zGP4X/+r/DPvjDy6LW2/xb//o9vw/Klf4F3534T58/LfvlLD0FAMpBmg6RCPyIPaRxImurlb24+0ClNAculsukzpAxvamqCVquFzWaD2+3G+Pg463FEuppoNIpoNIpAIIDFxUXkcjmWiaM+R263Gz09PawLpMVikU3lJ5NJpFIp5PN56PV6dHR0sP48vFCSVxHzx4ssDemgPiJIkidQELm3txc2m40tFwqF8N577+HWrVvY29uDTqfD66+/jsnJSXR1dbEiZb4xPLUNKRQK+Ef/6B/h53/+5/EHf/AH+MxnPsPEoNUqze8qoVL48Zed/V/wzvt/CwPP0sen+BH+15/9Mfk0fwZfm30Hv3LqkdN1MPe7+C8u/Trey6/jN/7Bv8bPXv0q+gEgm0EcgMNqqFmVrtkEIIF0rv7XvewQBPQEPOlClFMh85+Rc9GellnhLShpjEahUDDNEQ3oo7qrZDKJSCSCcDiMYDDIJnbGYjG2vmQyyeJLgUAAGxsbrJyC+vhQw/5cLoe9vT2k02no9Xq0tLTA6XSy0cjS/eVFi3Iky+831WsFg0EUCgUYDAY4nU5WfpFIJLC5uYnFxUXMz88jFArBaDSir68PZ86cwenTp1njMz5LJhWKfuELX4DRaMT3v//9utvDaHGmD31PPDOPkfj+1/G7oUd//5Wv/xEjHwCwT/8afvsf/jNc/u0Q8OHv4s/nv4p/eBpA7wX8tQng1/7nf4o//+zv4697tCjuX8H/9N/9AeD8e/grU8/45S8hBAHVAZ/hkWZ16pUH8Fqbp2lK5IiJd8ukFpL0hicLgywki8WCzs5OZLNZTE1NsZosKpDd399HIBDA7u4uHj58yPp1W61W9PT0YGhoCIODg+js7EQ6ncbm5iay2Sza29vR0dEBs9lcUxzKuzP0wyut+Zo03hKkdrmBQABGoxFDQ0Po7OyERqNBMpnE6uoqvvnNb2Jubg56vR69vb2YnJzEqVOn0N3dzQpY+cC29PhRqv+1117Dd77zHczOzmJqaoqptx8tv4OFD9nZPnQu6mH55l8iDwA4j796ThqabsKlt38Jzb/9z5HHQ7xzZwv/8HQvgFP4O//hX+Kdmb+F/6zv648Xb57Gb733P+IzZryyEAT0MSH3VOchLQatB7msmtwNIM2uScWEclk1l8vFrCMSEu7t7cHhcMBkMmF3dxf7+/vIZrMolUoIh8NQqVRIpVLY2tpCOp1GIBDA3t4eS6unUilWoc6TMR/b4QPU9fapVCqx4LPRaERnZyfUajW8Xi+8Xi+r5WpqakJvby9Onz6NqakpeDyeQ21Y5LJrAJh19Oabb+I73/kO7t27h+np6ZqWG9JQnaKUQnjt4Y8zWhZ0T59Cv9OE2tjwFh68/2PzB5cxPCRzYjuHMAPgQwDvzW8C6AUANA39TXx7/9O48Wd/iT+fD8A08Bn8tb/6FsZcr2j0+cdoaAJ6lrKN5wlpJotHvW3j4yFPKyl5lv3jA9NyT/t6203qY61WC5PJBJfLhcHBQVanRm4b9eEJhUKYn59nlhP1N7ZarTg4OMDa2hqUSiWrKKfvkab25WbC86hUKqwMo7+/H729vYjH49jc3GRz3cbGxvCpT30Kg4ODrOsknx3ja9t4IqZtoOPa3t4OAPB6vYeSCNVCERQCGvb+IV53vX0oo2W6+Nv4zrf+CS6xhFYZZfqQ04raiM6P0d+Pc3hEQNjaRxBAK72n9eDCL/waLvyC7Gl7JdHQBHSckFoaP+k6jmpb5CCt5ZJ+hiwUIiIS+FGzf5rBvru7i+3tbfj9flYWQS1KTSYT0uk0Zmdn4fV6WY8jo9HIevoYDAYmI3haS9pyucziUCaTCWazGfF4HOFwmFXbT0xMYGZm5lBTMuCx/gioJR25Y0AV8JFI5NAxU+xsg5JgD//iT8CyWeoU/A93kQSQvP4buDxVxA2WJt/GA3LbhjrR8sQ9BRBKIgWOgAQOQRDQE3BUBHJUeNL2yJFRPf0RVfBTj6Oenh5MTEzU9DiKx+NIp9NIpVLwer24efMmQqEQCoUCWlpa0NvbC4/HA4/HwyaHOJ1OWK3WJ5JQPp9HoVBAIpHA/fv34fP5kM1mYTAYcPHiRZw/fx4DAwOs4p4PcEszkPWOCb1GVlMymTzc4E6pAH2yefo38c5f/DrebH8U41IWlvF/f3EGf+e9PLDzW/itf/9VvPMVWSmiwCeEIKCXEFLLTU5/xPfHpj5HJOajybRUs2YwGFhwNxaLsUxZIBBAOp3GxsYGWwdNEKHmYiaTiQWODw4OsLm5Cb/fj1gsBq1WC4PBAJfLBY/Hg7Nnz2JycrJmEqp0v6RE+yQFOi+YJI0Q2/f+r+Jq9Zdr1svEirox/MoffR1/6f6v8C6Ad//DVQS/8rNoRTfGXsMj/yocQ/ppJ0KjguiV+GQIAnqJQTebVLFM7/G9bxQKRU3cyGq1skB2X18fzp07x6aGUEW/3+/Hzs4O9vf3kUgkoFQqYTab4Xa70dfXh76+PvT09GBgYAA6nQ7r6+u4efMm1tbWkEqlYLfb0d/fj9dffx1nzpxh/aLlyIf2hfZBmjGUFgsrFAr2P1//RRagXFq+ph1H5wTeGgbefQjOlVJBRc06H+7isWPHYX0dt+jvyd4fh6AF6kEQ0EsKaQCcbl6p6FFOBkD9sZubm2EwGGC1WtHa2opCoVCT1rdYLDAajTCbzTg4OEAmk0G1WkUqlcL29jaSySS2t7extraGpqYmzM/Ps8JaUjSfOXOGNYrnW/HWyxLWC+5LCYV/z+Fw1BWV1g+Y55A+kB7VXvTPNAPv5QHcw9YWcIhhIrtY+fGfnzntkT03Ao8hCOglBK+Pkf7Q+/Sbtyjot3S2Fq+t0ev1MBqNbJpJNptlLUYODg6wv7+Pvb09BINBrK6uIhwOszHYe3t7yOVy6OnpweTkJC5fvoypqSnY7XZks1lmhdE2SbsTPkkzRZXtPKLRKADAbDZL+igVkdjfRyoVxNpaGX1vzaBbIyGg3VXcoIx7XxucP/5z6s2/AfzzPwLwHv70w138zd7a2ND8B3+CRx8bxk+f7f2YZ+7VgyCglxT1YiNyOqNDCuEfx0ykIkzgkZtiMBhqZsJXq4/muVEbkWAwCK/Xi1wuh42NDfh8PiSTSSiVSqa6VqvV8Pv9KJfLrHMiNbunDpD16tTkCoOlmiCFQoF79+4BAAYGBmrU0tWqBsv/1zQu/U8hAM349L+4hW/9yhi0dAyK+/j+7/5jvAsAaMbf+PI5kFbQ/ObP4283/xG+ngfe/ce/i/f+yv+Gz/w4TV9c+X/x9/6Hh4/+mfhV/PTpZzxZrzAU1ecotjluHc+rCmk8hCDnbvA3Lf2mVrEUL5Eux49G4j9LxFUsFhEMBvHd734X3/3ud7GysoJkMslq0NRqNfL5PAtiu1wu9Pb2or+/H/39/TVz2nldET+GhwdtLz8hRKlU4ud+7ufwl3/5l7h+/TrOnTtX+9ndf4e/3v9z+I+PZM0wnfoyvvIzQzAlV/H9b7yLudCjN5o/8/9g/jtfBd8xY/0P38LY33rvkSLaNIa//otfxFD6Ov7lv30fjz7Whd+6sY7fPKEl7qR0J6uSz0TSqCpp14KfFIKAXkI8qSpfTjMjJSG+zw8165ISUL32tJVKBV6vFw8ePMDNmzextLSEarUKm82Gvr4+tLe3o1Qq4eDgABsbG9jf34dOp2MN1SjmRPElXm9E1pPBYDjUH5uKaPm4ztDQELxeL6LRKIxG4yECjt79Ov6b//K/xh+v52WOVDP6f+Hr+MuvfwWnDjX4OcDc//kL+NSvfQfJQx/rx69/8xp++6dcOJn0IwhI4AggTVHLpbClAVk+dsTXeEnPIy0rVUKXy2UEg0F861vfwve//31Eo1HYbDa8/vrreO211+B0OtHc3IxyuYxMJoNYLIaDgwPE43Hs7+9jdXWVpemz2SysViva29vR3d2N3t5e9Pb2wu12o7W1lfXHruem7e3tsWm1m5ubhzREbNuLSWw/mMWVH72D+QAAGDFw8U2cv3ABkx2yrcUYislVzH7zHfz5fACACQOf+SJ++lOTeMrHGh6CgAQ+MZ7mZvHL8AQlHdvDr0P6eXqf2mtQxmthYQE+nw8OhwMjIyO4dOkSJicnawYx5vN5FItFNimDgtbr6+vY3d1lLWi1Wi20Wi2bKkvqad4qamlpgc1mg8VigVb76O7/N//m3+AXf/EX8Uu/9Ev4wz/8w0MSBLmWunzg/lXGiyQgEYR+BUA3Fd1gcoFpStPzJRw8eJKStl7d3d3F3Nwcrl69iuXlZbS2tmJmZgZnzpzB2NjYoSmwhUIB5XIZGo0GOp2ONbvv7+9HKpViYkgips3NTXi9XiwvLyMajaJYLEKr1aK1tRU9PT0YHR3FwMAAm7SqVqvxve99DwDw+c9/HoB88zR+32gZgRcLQUCvEOoph3nSodf5Qk9eM8OnxiORCDY3NzE/P48HDx4gEonA5XJhfHwcFy5cwNjYGJxOJ6Sg5mHkPtEoI1JFV6tV1ueI9EY0PSMcDiOdTqNUKkGtVrPBhNSiliykd955ByqVCkNDQwiHwzCZTHVHYb/qFs9xQrhgLynqlWLw5QkEqXVAQWgiJao857s85vN53Lx5E++//z4ePHiAWCyG0dFRXL58GaOjo+ju7mZ9qCuVCmu6X6lUmKaIvpPWz5MSn96nvkb5fB7ZbJaJIam/kdfrhd/vRzAYRKVSgcvlQqFQQKFQwFe/+lX09fXB7XbD6XSyshL+GAgCqoWIAQl8IvA3GD9KqB4pyQkViRTI5aLyhVKphM3NTTx48ACLi4vwer0oFouw2+04f/48zp07B5vNhkKhgI2NDWxsbLApsNTio7W1FV1dXfB4PHA6nSyFLjfKiN9eSvPz1pHf74fX62U9jtLpNMvekYtnMplgtVpZrIiybFSrRtX8zwo+XiQ93vzvJxHbs5KeVNtU77NHGcN6aWJA4slyvKB5XMDjued810YC72LxzcVI06PValltVSgUwvvvv493330XxWIRnZ2dOHfuHKanpzEwMACLxYJwOIwHDx7gnXfewfvvv49UKgWlUolCoQCtVou+vj5MT0/jC1/4Qk27DemNzYNea2pqqumPTapqmsoaj8dZjRo17icFtk6nQ0tLC9Mj0aghyqpptVq231SoK8XTSJ0/lvWu/ycRifS7+PIZabmJ1LKlh8WzrLtRIGJALyGoMbvcE7HeBUwXOxEWADbUr1Kp4ODgAMvLy5idncWDBw9QqVTQ1dWF06dP4+zZsxgeHkahUGC9nO/fv49wOIze3l7WNpYsmFgshtnZWeh0OhSLRfT398PpdD61iRv/GtWrUeEsuZY0H55+2tvbEQwGEY/Hkc8/0vskEgmsrq5id3cXZrO5RndEsSb6X6fT1ZRxkCCSly1ISbMeUdSzXOrto/R/Wpd0cEG9c3wS8FxdMIEXj2q1ymqzlEplTQN3aRCZv5h594ZS8VqtFmq1GpFIBCsrK/hP/+k/4Qc/+AGcTicuXLiAqakpNptLpVLh1q1b+MEPfoDr169jf38fr732Gj772c/C5XKxhvqhUAh/+qd/iitXrsBqtWJqagpf+tKXcPnyZUZ2z2ohSPebrDRqK5LL5ZDP55HP55FMJtlIo42NDezs7LDG+wDYtFqPx4PTp0+ju7sbVquVpff1ev0hJTZNQOEzgx/35pfqs2pLRg7fmqT6pvNGgycJR0E+L40LJnA84LNaUjGh3Hx7+s03EiOrx+/348GDB5ifn8fm5iacTicmJydx8eJFnDp1Cq2trcyiuHbtGpaXl6HVajEzM4OLFy9iamoKVquVaXpcLheWlpaws7ODjY0NzM3NYXp6GsVisabf9Md9LtJ+kNXGTw+pVh/NlW9ra4PL5YLdbkdHRweCwSCi0ShSqRSz/JLJJBYWFrC+vs56JfFZOJfLBafTCaPRyPpl13MbechlH6XbTu9LLSupRVVvSOYnIcLjgiCglwx0gdLNLNXs0JONf4+/ean0giZjXL16FR9++CFWVlYwMjKCL37xi5iZmcHw8DDMZjOq1Sru3buHb3/722x44BtvvIHPfe5z6OnpqWkDCzya4Do5OYlEIoG9vT3s7OwgFAohl8tBr9c/lxiGQqFgLWMpbpTL5VhnxnA4jIODA0SjUTavPhgMIp1Oo1wuM+Ls6+vD8PAwTp06hc7OTtakn46dXK0dj3qKdGkGUqpKlz5MpOp0sl7L5TKb23ZSIAjoJQTpaujCrFarh5pwEaTmfrFYxM7ODhYXF3H//n2srKxArVbj/PnzmJ6exoULF9Df3w+z+VF9uN/vx9zcHK5fvw6NRoPx8XGMjo7WLAOAWVdKpRJOpxM9PT2wWCwIBAIstW40Ghlx/qSoZz3QD1lHtGw+n4fL5WKtaFtbW2G32xEKhZBMJln6HwAODg4wPz8Pr9cLg8HAeiGRGpvmrEn7WNNxpv2S9mWqFweql2XjXyPwyYOTBEFALyEog0OxEF7TQ/EgqdCwUCggn88jFovh5s2b+P73vw+/3w+NRoNz587hc5/7HDweD3vql8tlBAIBLCwsYH5+HltbW7hw4QIuXbqEoaEhFiOQzpHP5/NQq9Us+Gs0GlGtVpHJZFAoFFhM41ncGjnwpCstueCb2dON2tzcDIfDwdyy/v5+nDlzhvWupjo1n8+Hra0tbG9vY3Z2FslkEtVqFS0tLfB4POjr68Pg4CD6+vrQ1dUFo9FYI1/giYEsGOkPUGsR8fvPl5LQOqTuM7lgJ8X9AgQBvZTgXS26mIvFItPHSF0zmpi6traG+/fvY2lpCbFYDC6XC0NDQ5iZmcHQ0BDsdjafBtVqFX6/HwsLC4hEIrDZbOjv78fIyAja29tZCpuCpmSFkdWRSqWQzWYZQQL1b76PA17RzVs+cu4P34KVyEKn08FisbBjmMlk4HA4WNP9jo4O7O3tIRqNIpPJsHXt7e0hmUxieXkZBoMBBoMBZrMZdrudWUZEuBQ7ku7jswyy5P+noDsvDeD36yRAENBLCD6dTiljUiHzWiDgEUHEYjFsb2/j+vXr+NGPfoRSqQSPx4MzZ87gwoULaG9vh16vr7FKSqUSfD4fFhYWUC6XMTY2hvHxcXR3d8NkMjGLh767VCrBYHg0SSsajWJ3dxfRaBSlUgkqlQoajYaR4yeBHIkRARER8s3W6vWfJt2USqViVtLAwABTWKfTaTbwcWdnB7u7u9ja2sLe3h5isRiam5vhcrnQ1dXF5p91dXWhtbUVNpuNKcH5rOST3Kd6qXbar2KxiGq1ytZ7UqwgQUAvIegGIj0QAGb98Bd5Op2G1+vF4uIiFhYWmC6ms7OTjUOmiaRSlyiTybCUtsFgQH9/P9xuN4xGI4DDxatUflEul7G/v4/NzU0Ui0WmTpbr8fOTQJpCllo5PDHWS/nz+6pSqaDT6VgHSHqf+mO7XC44HA60tbWhs7MToVCIFcxSGcvW1hYCgQDu3bvH+htZrVbY7XaWVbPZbHVr1fjtk7Pk+OSBiAEJHDvogiQCoqe4NM3u8/lw48YNXL9+HQsLC+js7MQbb7yBqakpjIyMwGazsSc0f8GTaxIKhRAIBDAyMoKenh44HI5DNwoFfnl3z+fzYWNjA2q1Gt3d3ejo6IDRaGSxH8JP8hQni0suBsQTEG0jaZ54cuFjZvwNzZMVZdWMRiPa2tqQzWaZS5nP51mt2vb2NosdRSIRFAoFZh319PRgcHAQQ0ND6O7uhtPphEqlYtukVqtls1o8AdX0NsJhS6nRIQjoJQSZ5NTVUKPR1FgXpO1ZWFjA0tISstkspqenMTIygpmZGfT29sJmszESq4disYh8Po+mpiYm1qsZbYNafVGhUIDf78fa2hp2dnbQ09ODM2fOwO12fyxNzZNA1p9U9yR9H8AhV4VvWiZ3I0sVzQrF42b9RqORpcJLpRILbJN1tLe3h3A4jEQigXw+D4VCgXQ6jeXlZWxvb6O5uRl6vR4Oh4Nl4mw2G+sCSdYRv3/SYYv875MCQUAvGegJThd5c3Mzm3BRrVbZRNJvfetbWF1dRbFYxJkzZ/ClL30JAwMDsFqtaGpqqlFF8+4bn02jeBKl/fkYDu/y0HcT8a2trSEWi+G1117DzMwMOjo6jkz/QxlAvi5LmmGSizXxN7RUH0Xr4i0jKUGRm8m3sjWZTHC73ZiYmEAul0MqlUIsFkM4HMbe3h6rWVtaWsLe3h7y+Tz6+vowMTGBrq4utLe3o6Ojg9WqGQyGQ1NnpS6ZdJJIo0MQ0EsIusmoVqpUKiEcDsPr9WJpaQmLi4vw+/2w2WwYGBhgtVwul4utg242uqCl1gH/Ot8QnsBbGrS++fl5fO9734PP54PZbEZXVxd6enpgs9lYEahcoPwn2X+eUHhS5IlDWsclDQbzrppcVk3a5pU/Lny8jQ8UZzIZdHR0oKOjA52dnejs7EQgEEAoFEIqlUJzczOKxSK2trbg9XrZfDbKqLW1tTFFt81mq6ni/6TWI4E/d8+bzAQBnVBI3QEeFPOhiygajWJ5eRk3b97EtWvXkE6n0drairNnz+Izn/kMenp6WNkCrzchK4dIhmIT/HfQDROPx9lgQrmAbjAYxK1bt/DBBx9AqVRibGwMHo8HLS0t0Ol0UCgUKBaLKBaLNb2CflLUy3Dx28WXL0gtG6kFRTellFT4LgK8dSLNWFGrEarib2trw8DAADKZDBM7plIp+Hw+bG5ussxaMBhEIpFAU1MTWlpaMDQ0hLGxMYyOjqK3t7dGl0VZMH6mm9x+S7ev3vF7ERAE1KB40oVCFgeAQ0FKuoGUSiXLVC0uLmJubg4+nw86nQ49PT0YHx/HqVOn0N3dDYvFIvt5/jU+owQ8Su87nU50d3ejUChgaWkJXV1dGBwcrIk3RaNRppS+ceMGAODMmTN46623MDo6ysgHeGy5HVUm51luMqlVJCUOuWXoPWmAm//8k7Q8FMTWarUwmUzM8svn86wA1u12IxQKIRKJ1NSrpdNpLCwsYGdnh1Xs6/V6Fofq7OxEW1sbrFYr9Hq9rNZIGsD+OMfzqIPcgoAaEE8qRqSncqFQqDH55S60QCCAW7duYXZ2FsvLyzAajZiamsLk5CQmJibQ0tLC0vXSm5B3Y3i9Cm2TWq1GV1cXJiYmsLa2huXlZXg8HoyOjqKlpQWlUgm5XA5bW1t499138d3vfhfVahWDg4P47Gc/i7fffpsFuvn4Rb39OWrwJPsksqhXaS51Mfn3P86288ROpNTa2sp6MVHzNb/fj+3tbVbJv76+jmw2C5VKxabVtra2YmRkBIODg+jo6IDdbofBYGBJCDp/lFggq0laCsJnEimmxmcyj/LciHYcDQo+tgKAuSX860QEfFC1UqmwETf379/H/Pw80uk0rFYr+vr6MDk5if7+fnR2drKbn4SCdLERAUhdFLohKCPj9Xpx7949XL16Fffv32fjmmkGVyaTQTwex8HBAUqlErq7u3Hq1CnWvIwanQGHW8SepEDqUYMP3NPDJhqNIhQKwe/3IxAIIBKJIBaLsRIW0j2RPKBSqbB0f29vL8bHx+F2uwGADZ2Mx+NYWVmB1+tlvbZ515OuNafTienpafT29sJisTDR6FFAWEANCnpa8UJC4HFglIgCeBxnKZVKiEajWFpawvvvv4+lpSVEIhH09vbitddeYxeh2WyuCbSStULuD1+uQU9LXnxXrVZhMBjQ29sLvV6PdDqNvb09rK2t4c6dOywjlE6nodFo8Oabb+Ktt95i369QKFAoFGoalfEB4xdhATUypJYoJROcTicGBgaQy+WQyWRYJX84HEY0GkU4HMbu7i7W1tbg9XqRzWbR2dmJ6elpmM1mtLW1seZqCoUC+Xwey8vLuHLlCu7fv4+9vT0AYBYPSQXcbjei0SguX76M4eFhtLS0CAJ6mcGrefkqdt5tkKaJU6kUtra2cPfuXaysrGBnZwd6vR4ej6emhQRPPiRUrFQqrAiUv/H5mjJKLdOFSf17nE4npqamAICJ7YBHMSKa7XXhwgWm99Hr9ay5vNTSAk6ejuVFgVeTG41G1ofb6XQikUggHo8jGo2ip6cH+/v72N/fRzKZRKVSgdlsRrFYRDKZhNFoZAFxnU6Hvr4+hMNhBAIBJBIJaDQaVnZiNBoRDoeRzWYxPz+PVCqFcrmM3t5eDAwMHMl+CQJqQPAExNf21MvspFIpVqX9wx/+ENFolA0FPH/+PMuW6PX6mu8gl4r6B0lJjawjilOQ6U3ZKoXikRBveHgYnZ2dyGazrHVFtVpFMplEsVhEe3s72tvba+bMyymsBfkc7pDIB4z540O9sY1GI5xOJ3K5HHK5HNNvEeFsb28jm81Cp9Mhk8mwpIVKpYLJZML09DT0ej1CoRCamprgdDoxPDyMy5cvw+FwIBAI4Pbt2/jGN76B7e1tptkSBPQSgwKcfEpcLmORy+Wwv7+Phw8f4ubNm9je3ka5XIbH48H4+DgLSNpstpqANf899DpZWryWR9ougk9D82TIp+MpZkVFn5VKhbUzJdB30TJS3Ykgoto4EF9TBxw+Rkrlo9a7pAkiy9ZkMkGn0yGfz7PpH3zWlEiopaWFyQlGR0dx/vx5jIyMwGg0wmg0Ynd3lzVvS6fTLCxwFBAE1ICQZqEoaEiglK3f78fi4iJu376NGzduQKlUYmpqCtPT0zh79iza29tZoJcX+RH4tDd/wROk+QledMeTCP3m+w0pFIoaLRK/PiKyQqGAUql04rr4vQjwWiRpVpRfpp4UoFgsoqmpiVmevLqbP2+ETCaDSqWC3t5eNs2WXHONRgOtVsvc7ifpjD4uBAE1IKSxF97yqFQqCIfDbAb73NwckskkBgcH0d3djfHxcfT396O9vR06nY49reQKK4kcyuUycrlcjZiOLlAiB7KOpIpofn20HE9cUjUyrZvPrknV1q9yFkx6TAH5GjT6LZdFpNghuc0KhaJGNMkrs4vFIsLhMBQKBWsSx7fRXVhYwPLyMkwmE1pbW1lZyFFBEFCDgm5cXphXLBYRi8WwtraGGzduYH5+Hmtra+jq6sKbb76JyclJuFwumEwmqFQqJv1XKpVs5hUPfr3ZbJbVc9H3809NumjJxZJO15DGcsi94mujeKkATzS0PE9uR1VWcBIhda+eJUAvrXuTHltqDEfZ00qlgmw2y7o9lstlaDQapFIp7O3twW63w+fzYXZ2FltbW2yQZHd3NxwOx5HtqyCgBgTpe+hvQiAQwLVr1/DgwQPs7u4CAF5//XWMjIxgfHyctbUAHj8RqTCTfwKSVcVrgMiC4S9c+iHiIdLgl6NANRENXwjK74fczcG7mFJr71Uln3oCVCmR0LEkS4d324HHxJXNZmW7YVJCIZvNIhKJYG9vDz6fD9lsFh988AG0Wi00Gg1UKhUmJyfR3t6Ozs5OJuM4KggCakDwQWiaa5XJZLC8vIyrV69ic3MTer0ep06dwhe+8AUMDg7CYDDUNFsnwmhqaqq5yQlU/EkiNt764S9+PhtGMR7enaP3qIZLLtPFz7LiiY6IjVS3clbaqwY63rxLy5OxtPBXuhxPWJVKhc1GMxgMh9anUqmQSqUQDoeRSqWwv7+PUCjENEJutxtvv/02pqencerUKbhcriOvthcE1MAol8sIhUJYW1vD3bt3sb29jXw+j4GBAXg8HoyMjLDePbw7xbsxJCSUXqRktfAaH3qdJwm+3Ya0KJW+kz7LB7T5C5VICsChbBc/lplUv/xTXaAW/PHi/+d7gPPBaLJiKJZHlqhKpUKhUMDm5ib8fj/T9lgsFhSLRWxubiKZTOLBgweoVqustzWt76ggCKgBQbU4oVAIq6uruHPnDn74wx+iWCzi/PnzmJqawujoKDo6OmAwGA5ZKgBqmsJLM1K0nLTzHt9Lmm/aRX+TtcK/T+Ql7QVEv3lpf70YFLmDpF/hv/NVRL3gMiCfTOBdbOl50Gq1NSl8SiSoVCqk02lsbW0hEong7NmzmJychMfjQalUYgXEP/zhD7G/vw+PxwOn04nW1tYaPdknhSCgBkQmk8H9+/exuLiI1dVVhEIhOBwOdHZ24uLFixgZGUFrayuL9xD4mAtdcLzwTGpRSLNQVAvGxyCkwWV+WT5eI43nAI/T7ZSNoe/k9T/8Nkndu1cR0mMiVywqdbeAx0mBelYjbwlXq48mk8TjcSQSCZTLZdYepK2tDcCj2sNisYg7d+4gGo1ie3sbm5ubUKlUsNlsR5YJEwT0E0LuovikIMtke3sbN2/exPz8PMLhMMxmM6anp3H69GmMjY0xX5w+w8cDeMEfTxC8O0TL8sREP3y/G2mWiwhIGqym9fEKbv47yKXirSG5dDsfJH1V3S858uFJSGpl0t+8VIOHNLuoUqlQKpWQSCRwcHCASqUCg8HABitSHLG3txd7e3uw2WyIRCKs/7fT6URzc7MgoBcBPpYiVaNSDAWobTglhbTIktYr1dJUKhU2ZfTBgwdYXV1FoVDAqVOn0N/fj/HxcfT09LAWGgT6vLRdqPR9/n+pmrnezS6XDpaSDg9eiEj/y7lj9DdvPfHLvarkI0W9Yy13fOSuLaBW8sC70tRriKZzUGM4HmQp5fN5FhgnYeJRQRBQHUhNX6nOgk+H8gHbeuvhLQv+N2UcQqEQHjx4gB/96EdYX1+HWq2Gx+PBpUuXMDY2ho6ODnaByN2w9dSyUshlS+otJ/37aa6RtJZMjvx4t07ufYFa8Kl1HvVIiL++pFlPOn+kot/f34fZbIbD4ahJrReLRezv78Pr9SIej6NarcJoNLLxSVKi+iQQBCQDPqgnbcPJ62Gonw7dWHJKYbopiazIDKanUSKRwPr6Oq5cuYLl5WXEYjFWjTw6Osr0PVTnk81mUa1WD5U58Nv+LCK+j3uzP+vyTyM2ufcE8TwZH/f48K4wfw3S/8ViETs7O9ja2kJnZydaW1thNpvZ9RSPx/H9738f3/72t7G+vg6LxcIGLNrtdkFALwK8HoNAJEOqUV50R8vXi2/wxEQg8pmbm8PVq1cRCoWYu3X27FkMDAzA6XSyuE4+n0cul2OmsFwB57MSkMDLCenDkJIQNEKpVCrB6/VidXUVm5ubMBgMyGazrBxDo9Hg4cOH+MEPfoBr166hWCzC7XZjYGAA3d3dNU3kjgKCgOqATF8aaUw3PJ86ppPNz+HiY0E0wK9ardZUKxcKBayurmJhYQEffvghdnd3YTAYMDw8jPHxcQwODsLtdrOWpcDjWNLTlMIihvJqg84/XSfUPiUSibAOlnfv3sXdu3cRDoexs7ODubk5OBwOll7f39/H7du3oVKp8FM/9VP41Kc+hZGREWi1WuRyORSLRRGEfp6gEwg8sjpIm0J6Fwr48qCYEF+7xTf8IrO1VCrB7/djdnYWN2/exO3bt6FWq/H5z38ely9fxtDQEJuQSeCtMSou5N1CPqYiCEhAmsmkuq+9vT3Mzs7i9u3biMfj7FoMhUJMYEj6sEqlgtHRUXzxi1/E66+/DrfbDaVSyZrJCQJ6AeCrw+mJwp9Uep10LiQC5CeSms1mVmYQjUZx69YtlulKpVKYnJzE8PAwzp07xwYD8r2A+H5A0rQ6LygU5CNAkOq4lEolLBYLPB4PLly4wOa/kQBVOrKb9GAdHR04e/YsOjs7odFomNDxSTPsPy5EU/ongC89IKKh/wl8Zz9aHnjcRL5arSKXyyGZTGJtbQ3vvPMO7t27h2QyCbfbjS9/+cu4cOECWltb2YklRTKfZeNjPgRy/fhCTlHC8GpDejvzcclsNotgMIhkMsn6Put0OqjV6poML5VuaLVaVkMGPLLeKSVPc+Q+KQQByYDPgkl73EiFYvxydPPzRJHJZLC+vo73338f8/PziEaj0Ol0bMDc5OQk3G4301ZIJ4zyFexSt4sPOEs1N4KEXl1Irw8+ScKX4FAZDT0oiawoySGVXdDwgnK5XDNL7pNAuGB1wMddpEV80kpw6rPCu2nV6qM57Ds7O7h79y6uXLmCzc1NeDwenDp1Cm+99RbGxsZgMBjYd/ItTfnxOIB8hzwSQMpl217lWqpXGXLqaXpdoVBAr9c/Uc/Fi2sB1IQA+EzrUUFYQDLgnwbSPjb0xKCgcz6fR7VahU6nY2n5RCKBra0trKys4O7du/D5fACAlpYWNlZ3aGjoUGMn3r2TUxnzJMRbRvyFwfdYFlbQqwWpRc5fM3z3A+oHpFAokMvlUKlUalqp8DPB+BAA8CiDWy6Xax6cnwTCApIBfwPzPZn5pwI/HJDM2UqlglgsBq/Xi9nZWdy/fx8rKytQKBS4ePEiZmZmMDg4iLa2tkMVxbyiup6QjA8+11Nd02+hBXo1QeRRrySH+j/R9ZbNZmuSGLz8hKwhignx2dejgiCgJ4AnFyIHOsGUXqfOccAjlfK9e/dw8+ZNLCwsIJlMYmBgACMjIzh9+jT6+vpgs9nY5Ep+JDJfn8VbYHKaH94llJrMIhv2aoPvQACAEQkf7yEriW8yR+/x16W0mf3zgCCgOpAGeHmLiG5+IgrqOre9vY27d+9iYWEBkUgEdrsdMzMzuHjxYk27VOBxMStfwClVM/PbIiUjngz5ALm0Sl3g1QFZ7nQtkZXOX2dEKPw4Zz57ymfCeE9AWmd2ZNssYkCHQT4z/4SQQq1Ws1HIFGh++PAhgsEgVCoVBgcHWayno6MDJpOpxnyVxnvqFavyywO1PXN4n5+vM3uV21kI1MaC+IwqvUfgreZ6M+P4/3l5yFE1JXvpLSA+hvNxMkMUZJZzf+h9quWan5/HRx99hN3dXTidTgwODuKNN97AxMQEtFrtE5uBAYdHqvAXBH8x0efklM/iOSLAg+98SNYQ35ebsrbS60Ya55G+L7XOPykaloCkJQY8+DjJ0wJj2WwW6XQaWq22puUAbzXwNzV9r9T0lBKY1+vFgwcPcP36daysrKBYLKKvr4+1tuzr64PJZHpqzZY0WMzHgug3r8iWtv0gIqPXhPUjANRayrzbLn3AAfJWUb1s7FEHohuWgIAn+5pymR65zA+lyvnWGdJUdr0TwfvT9Hc+n8f+/j4r6nv48CGSySQ8Hg8mJydx8eJFDA8PP3PTpmchi2cpPhVZLwGC9NoFapvZy7lX/MOe1xHxD7znkeBoaAKSs3TqaWDqgYRXlEYEHk8QACBLRLQMXwUPPMoo3Lp1Czdu3MDy8jLi8Tja29tx+fJlNqmC6mY+yT5/nNef9X2BVw9yafhnvb6O2tWqh4YmIED+QPAsXiqVkM1mEY/HWfc2kpGr1WqYzWaYzWbWkkClUrFmXtLALwBZ/7dcLiObzWJ7exu3bt3CzZs3kUwmmbDw4sWLcLvdsFgsNYV9AgIvI16ZGBCvceHNQN7ySafTWF5exp07d3D79m3EYjFGMi6XC2+99RY+/elPIxgMYmlpCS6XCwMDA2x8MZ9a58sYeCsmFovh6tWruH79OjY2NlCtVtl4nJGREbjdbuj1+kNmroCAwJPRkAQktXr42itymbLZLGKxGLa3t7G8vMwauR8cHEChULD2F21tbXA4HAgEAlhdXUW1WoXH42Hfw7telDWgv9PpNGKxGLa2tnDr1i0sLCxAo9Ggv78fFy9exLlz52C322uspnodEQUEBA6jIQmIF9TR/6Q+pkDwRx99hHfeeQfhcBgGgwFtbW34yle+wvryKJWPRg/7fD587Wtfg1KpRFtbG5RKJWt7kc1mWT8UaTYpHA5jZWUFH330ERYWFlAsFtHV1YXx8XGcPn0avb29sFgshzIC0rYGAgIC9dGQBESQpuGp1mp7exsfffQRfvSjH0GlUrH+yW+++SZaWlqY+jMUCuEb3/gG5ubmYLfb4Xa7mS4HeNw4jK+xyufziMViWF5ext27dzE7Owufz4ehoSFMTEywwYC8i1bP5RKumIDAk9GQBERK5EKhAIVCwSp1NRoNNjc38Rd/8Rd48OABbDYbxsbG8PnPfx6jo6NwOp2sSpcskc7OTgwMDMBut6O7u5t1KAQetbzgs2MAsLa2hrm5OczPz8Pn80Gr1eJTn/oUTp8+jfHx8ZrePbxAUDrVU5RDCAg8HQ1JQEBt/RPwqHYqmUxidXUVV69eRbFYxNmzZ/HGG2/g4sWLcDqdNX1wVCoV9Ho9GzlrtVrR1tbG6rH4YjuK9wQCAczNzWF2dha7u7sAgIGBAZw7dw7Dw8Po6OhgbQn4ejDe0nlaulNAQOAxGpKAKNNFlo9KpUI0GsXKygoWFxexs7ODoaEhfPrTn8bMzAybHkH1WxRMVqvVMJlMcLlcMJlMMBqN0Gq1LO5D+p9cLocbN27ggw8+wNbWFvL5PLq6ujA6OoqxsTH09fXBarWiqamJSdrJ2uEriKVTMQQEBJ6MhiQgoHb8TLlcZpMktra2oNVq4fF4WDCYtDe0LC9UbGlpgcfjgVarhdVqZT1wgUcTL+LxOLxeL27fvo35+XkAgNvtxsTEBGZmZtDV1XWohIOXB1DgmsSNoiZLQODZ0bAEBDy6wYvFIqLRKBYXF3HlyhUcHBzg7NmzOHv2LOx2O+tCCNR2DSQC6uzsZHGh5uZmVpVeKBQQCoXwox/9CFeuXEE8HofdbsepU6cwNTWFvr4+tLa2Qq1Ws1IOvh6MWh2QUppKPY66YZOAwMuMhiYg4NGNTvGZlZUVpsPxeDyHWgLIVYZbLBaYTCaWGaNWlNRaIBKJYG9vDzabDadOncL58+dx+vRpNveIJgEAj/s003QMPv7D15PJlXYICAgcRsMTEF9ykclkoFarYTAYYDAYmCslV6rBtyOQa9yuUqlgs9kwNTUFo9EIh8OB/v5+tLe3s5EjfLZMWj3Md57jZQLkAopYkIDA09HwBAQ8FvSVSiVUq1VoNBo2d0sKnnz4LBpPFkQgRqMRQ0NDaG1thdVqhdPpZFkuKgXhs2XA4SkB9aqKBQROMvheVHx2md47KjQkAUm7AvJZKwCHrAtpSw6+HILX5VCchv5vamqC0+lkWTQiH0I9kqHfcr1SRCxI4KSD7zxRKBQAAFqt9rmEFRqSgAgUX6GZ7MTKfLodqG3bIe2tnM1mWWkGrYevWCdrSop6ep6n6XwE8QicVEj7AL0INCQBSZsoUdNstVqNcrmMVCqFdDrNhvgBj10m6v1DZRWhUAihUAgajQY2m40FpQGwzxPjS2M2P2lvHgGBkwiyePiWNvRw5uOcr0Q7DgIRis1mQ1dXF1KpFLa3t7G1tYX+/n4WjCZ3q1gsIplMIhqNIhKJIJPJsFnWfINuXrMjrbwXBCMgcLj1Dd0/rxQBUS1Yd3c3Ll68iNu3b2Nubg4qlQr9/f2wWCyw2+0AHsWGqJB0bm4OGxsbGBgYwOuvv4729nYYjUbG6Dy7k1tXLBYPuWgCAq8K+HtCzgV7Hg/m53qnSUeCfFzQDlMrjZmZGeRyOSSTSYRCIdy8eROxWAydnZ3Q6XQoFosIh8PY2dnB3t4eMpkMmpqaYDabYTQamY6Hb/EqbcMqbVAvIPAqgW9bTP9LZSb03pF83/OcC0YCvp8UvMgvm80iGo1idXUVd+/exYMHD7C5uYlyuczUzUqlEg6HA263G263G11dXejs7ITL5UJzczPLfPHtWGn90pnagnwEXlXwc+H5jDPFVcvlMvM6PimeqwX0SZmSH5uj1WrhcrmYIHFjYwPr6+vY399no441Gg2GhoZgMpkwNjaGwcHBGkUzgc+S8eUb9BpttyAhgVcRVCUA1GZ96w07/CQQk1EFBASODUK0IiAgcGwQBCQgIHBsEAQkICBwbBAEJCAgcGwQBCQgIHBsEAQkICBwbBAEJCAgcGwQBCQgIHBsEAQkICBwbBAEJCAgcGwQBCQgIHBsEAQkICBwbBAEJCAgcGwQBCQgIHBsEAQkICBwbBAEJCAgcGwQBCQgIHBsEAQkICBwbBAEJCAgcGwQBCQgIHBsEAQkICBwbBAEJCAgcGz4/wGzdf1kWbLJ0gAAAABJRU5ErkJggg==",
"path": "images_version_5/image_50.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, then angle COE = ()
Choices:
A:30°
B:140°
C:50°
D:60°
|
Như hình vẽ, góc COE = ()
Lựa chọn:
A: 30°
B: 140°
C: 50°
D: 60°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, then angle COE = ()
Choices:
A:30°
B:140°
C:50°
D:60°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, then angle COE = ()
Choices:
A:30°
B:140°
C:50°
D:60°
|
As shown in the figure, then angle COE = ()
Choices:
A:30°
B:140°
C:50°
D:60°
|
250
|
50
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAKJCAYAAAB6VquIAADWv0lEQVR4nOydd3wVVfr/P6El9FBCL6H33hFBRVGwl1UU21pWXfe36qp8ddeCa9tV197WBjYQsYIIUgSldynSe+81IYQ2vz+yz5nn3nsyMzcJSQY+79crL4YzM2fOzJw7d+7naQmO4zgghBBCCCGkkFOkoAdACCGEEEJIEPjiSgghhBBCQgFfXAkhhBBCSCjgiyshhBBCCAkFfHElhBBCCCGhgC+uhBBCCCEkFPDFlRBCCCGEhAK+uBJCCCGEkFDAF1dCCCGEEBIK+OJKCCGEEEJCAV9cCSGEEEJIKOCLKyGEEEIICQV8cSWEEEIIIaGAL66EEEIIISQU8MWVEEIIIYSEAr64EkIIIYSQUMAXV0IIIYQQEgr44koIIYQQQkIBX1wJIYQQQkgo4IurhVtvvRUJCQlITU0t6KGcFpxzzjlISEjAOeecU9BDCUwYx3zixAm89tpr6Ny5M8qVK4eEhAQkJCTgiiuuAABMnjzZtE2ePLlAx0qA9evXm/sxZMiQgh4OySGDBg0y95EQGx9//DESEhLQokULnDx5MmLd7NmzkZCQgIoVK2LPnj0FNMJwkScvrlOnTjUf3ISEBPz666950S0hJA6uv/563H///ZgzZw4OHTpU0MMhhBQgmzZtwosvvog+ffqgXr16KFOmDEqWLImaNWviwgsvxDPPPIN169YF6uvAgQN466230K9fP6SmpqJUqVIoX748GjdujAEDBmD48OE4ceKEbz/6JT/o33fffZfLK1GwpKen49FHHwUAPP744yhSJPK1q3Pnzrjwwguxb98+DBo0qABGGD7y5MX1k08+8fw/IYWB01kZmT59OkaMGAEAuPjiizF+/HgsWrQIixcvxuuvv17AozuzSE1NRUJCAm699daCHgo5A8nMzMSDDz6IRo0aYeDAgRg/fjzWr1+P9PR0HDlyBFu3bsW4cePw+OOPo0GDBrjuuuuwadOmbPv74IMP0KBBA/zlL3/BmDFjsGHDBmRkZODgwYNYtWoVhg4div79+6N169aYOnVqPp5pOHj99dexbds2NGvWDNdee611myeeeAIA8N5772HDhg35ObxQUiy3HWRmZpovzDJlyiAtLQ0jRozAG2+8gZIlS+Z6gCT80Cx96pkwYQIAoGjRohg6dCjKlSsXs80555wDx3Hye2iEkHxiz549uOyyyzB9+nQAQNmyZXH99dejd+/eqFWrFooXL47t27dj2rRp+Oabb7Bq1Sp8+eWX6NatG+6///6Y/h5++GG89NJLAIBixYqhf//+uOyyy1C3bl0cPXoUK1aswLBhwzBx4kQsXboU559/Pj777DNcc801vmP96KOP0KlTJ9/t6tatG99FKERkZGTgP//5DwDggQceiFFbhe7du6Nr166YOXMmXnjhBbz11lv5OczQkesX1++//x779+8HALz22mu4/fbbcfDgQXz//ffo379/brsnhARgy5YtAICqVataX1oJIac3J0+eRP/+/c1La79+/TB48GBUqVIlZttLL70Uzz33HD777DM8/PDD1v7eeust89Jau3ZtjBo1Cm3atInYpkePHrj99tsxfPhw3HzzzcjMzMSAAQPQsGFDtG3b1nO89erVQ8uWLXNwpuHhs88+w549e5CYmIg//OEPntvecMMNmDlzJj7++GM8++yzSE5Ozp9BhpBcuwp8/PHHAIDmzZvjtttuQ/PmzQHQXYCQ/CQzMxMAULx48QIeCSGkIHjjjTeM5eX888/H999/b31pFYoUKYKbb74Z8+bNQ+vWrSPWbdiwAQ899BCALEvqzz//HPPSqrnuuuvMu8DRo0dx00030boD4MMPPwSQ5b7l9yJ63XXXoVixYkhPT8fw4cPzYXThJVcvrjt37sS4ceMAADfeeCMAYMCAAQCAcePGYceOHb59bN26FY888gjat2+P8uXLo0SJEqhWrRpatWqF66+/HkOGDMHBgwdzNL4TJ05gyJAhuPDCC1GtWjWUKFECycnJaNSoEXr37o3nnnsOS5cu9e1n//79eOKJJ9CiRQuULl0aycnJ6NmzJz7//PNA41i8eDH+9Kc/oVGjRihVqhTKli2LFi1a4IEHHsD69eut+4wYMcL4Y65YscK6TcOGDc02X3/9tXWbK664AgkJCTEmmSFDhph9169fj5MnT+K9995D9+7dUaFCBZQuXRqtW7fGs88+i8OHDwc6z+zwitC3RVaPHz8el156KapVq4bExETUq1cP99xzDzZv3pyj48u5PvXUU6bNFgSQ3b0AshTNv/3tb2jYsCFKliyJSpUq4cILL8SYMWMCjWHfvn145pln0K1bN1SuXBmJiYmoUaMGLr/8cnzzzTc5Oi99HvKlsWHDhpjzEoJmFdiwYQPuvvtupKamIikpCTVq1MAVV1yBSZMmAfD2FY4nUt7LFzR6fmZmZuLVV19F165dUblyZSQkJFgDGY4fP44PP/wQ/fr1Q40aNZCYmIjKlSujZ8+eePXVV3HkyBHPMeUGmefioyaRxPrPL0tFbuf+7Nmzceedd6Jx48YoU6YMSpcujaZNm+Lee+/FqlWrst0vP58HR48exahRo/CXv/wFnTp1QoUKFVC8eHFUqlQJXbp0waBBg7B7927PPqLnzvLly3HnnXciNTUViYmJqFq1Kq688krMnDnTdzzHjh3Da6+9hk6dOqFs2bJITk5Gx44d8corr+Do0aN5lv3hVM7NY8eO4cUXXwQAJCUlYfDgwShWLJhBtVatWjjvvPMi2vR4nnzySTRs2NC3n/79++Piiy8GACxZsgQ//PBDPKdw2rFhwwbMmjULAHD11Vf7bl+lShX06NEDAPji6oeTC15++WUHgJOQkOBs2LDBcRzHWb9+vZOQkOAAcP7zn/947v/rr7865cqVcwB4/o0aNSrusR06dMg5++yzffu++uqrY/a95ZZbHABO3bp1nWXLljmpqanZ7n/vvfd6juO5555zihQpku3+iYmJzscffxyz386dO80277zzTsz6zZs3+47j5MmTTsWKFR0AzoMPPhixbvDgwWbfJUuWOOedd162Y+zcubOTlpbmd8mzpVevXg4Ap1evXjHr1q1bZ44zePBg5//+7/+yHUdKSoqzdOnSuI+vz9Xrb926ddYxT5kyxalUqVK2+7344ouexx89erSTnJzseeyLL77YOXToUNznFuS8hEmTJpm2SZMmWfsbN26cU7p0aWs/CQkJzrPPPus8+eSTMX0L0ffTi7p16zoAnFtuuSVmnb5nc+bMcdq2bRsznieffDJin9WrVzvNmzf3vBaNGjVyVq5c6XdZc4TMGa8//RnIy7l/7Ngx55577vE8dvHixZ333nvPun9+Pg/k+er1V6lSJWfq1KnZ9qHnztdff+2UKlXK2k/RokWdL774Itt+9u3b53Tu3NnzXBcsWOA5p70+D8KpnpujRo0y/dx444056kPQ3xslS5Z09u/fH3jfn376yYzjyiuvjFmvr1V2z6DThSFDhphzXbNmTaB9HnnkEQeAk5SU5GRmZp7iEYaXXL24tmnTxgHg9OzZM6JdXhjbtGmT7b5HjhxxatSo4QBwypYt6wwcONAZM2aMM2/ePGfmzJnO8OHDnfvvv9+pXbt2jl5cH3zwQTNpLrnkEmfYsGHOtGnTnHnz5jljx451/v3vfztnn322c80118TsKw/WlJQUp1GjRk7ZsmWdxx57zJk8ebIzd+5c5/3333dq1apl+h87dqx1DG+99VbEF89LL73kzJgxw5k6daozaNAg84KQkJDgjB49Omb/Zs2aOQCc6667Lmbdp59+GvHQa9GiRcw2+oEbfQ31F1X37t2dIkWKOLfccoszevRoZ968ec63337rdOvWzWzzyCOPBL30MQR9ce3evbvZbujQoc7cuXOdCRMmODfffLPZpmvXrnEff9++fc7ixYsjvtgXL14c83f06NGYMTdu3NipXLmyU6VKFedf//qXM3XqVGf27NnOyy+/bF5GixUr5ixZssR67HHjxjlFixZ1ADipqanOv//9b2fy5MnO/PnznVGjRjk33nijGdNVV10V97nJ2C+//HIHgFOjRo2Y8xL8XlxXrVplXgCKFi3q3Hvvvc7EiROdOXPmOIMHDzZfvPqLPppT8eLaunVrJyEhwbn55psj5uePP/5ott+6datTtWpV8zx58MEHnTFjxjjz5893Jk2a5Dz66KPm3OrXrx/Xl3FQ1q5d6yxevNg81y6//PKYe7F27VqzfV7Ofb1d3759nc8++8yZPXu2M2fOHOf99993WrRoYdaPHDkyZv/8fB4MGDDAqV+/vvPggw86w4cPd2bMmOHMmTPH+eqrr5y7777bKVGihHlm7tixw9qHzJ127do5SUlJTr169Zw333zTmTlzpjNjxgxn0KBBTlJSkgPAKVeunLNz505rPxdeeKE5p27dujnDhg1z5s6d64wZM8YZMGCAA8Dp0qVLrl5c82NuPvTQQ2YMXi/qQVi8eLHp68ILL4xr3+PHj5tzSUlJiVl/Jr243n777Q4Ap2LFioH3+eabb8z18frhdqaT4xfXRYsWmQsc/Sv+v//9r1m3aNEi6/4TJ07M9qVKc+zYMefAgQNxj6927doOAOuLqWbPnj0xbVoRSE5Otr6UrFq1yjwYL7vsspj1O3fuNB/gGjVqOBs3bozZZv78+ebltWbNmhEvTo7jmBetatWqxewrH4rLLrvMvPxGP5xfeeUVB4BTpEgRZ9++fRHrolXITz/9NOYYR44ccVq2bOkAWQrIsWPHYrYJQtAXVwDOnXfe6Zw8eTJmuzvuuMNsM3/+/ByNI4gyEj1mIEt537x5c8w2U6ZMMdaFv/71rzHr09LSzBdWnz59nPT0dOux3nvvPXOsCRMmxH9iTqSVIDv8XlxlLgFwRowYEbM+PT09Rp2K5lS8uAJwPvzwQ8++LrnkEgeAU7t27WzVDf15e+yxxzz7yw1e56XJq7n/1VdfmfXvv/++9VgZGRlGRU1NTY35LOfn82D16tXW8xQWLVrklClTxvM+yTUG4HTo0MH6svfZZ5+ZbV5++eWY9fol4fLLL3eOHz8es81LL70UcV1y8uKaH3PzggsuMGPIrUVBX7dHH3007v31D5wtW7ZErNPX6qOPPrIKCPpvxYoVOT6PIBYQvz+/z7AXIjz17t078D4bNmwwx37hhRdyfOzTnRy/uIqimZiYGPNStG/fPicxMdEBYk3Uwueff25uUE5eTP0oXry4A8B57bXX4t5Xv7i+/vrr2W7Xv39/B4BToUKFmHX//ve/TR/Dhg3Lto9nnnnGbPfll19GrPviiy/MumXLlkWsa9iwoXnBqF+/vvVl44orrnAAOO3bt485rv6i8lL63n33XbPdwoULs93Oi6AvrtWrV3eOHDli7WP58uVmu5zcU8fJ+YurTaESunbt6gBZyk80b7zxhgNkmX2yU44EeSEcMGCA/4lYyO2L6+bNm41Li83EJ/z222/5/uJ63nnnefajFaLvv//ec9uBAwc6QNaPyVNFTl5cczP3O3To4HvfHMdxli5davoZP358xLr8fB4E4f7773cAOC1btrSu1y+u2Y3j5MmTRv22XRtRW5OSkpzt27dn20f79u1z/OKaX3OzXbt2efZ9+uqrr+bqWSvfO0CscKWvVZA/r+eZHwX94lq2bFkHgHP99dcH3ufIkSPm2DYxhGSRo+CsEydOYOjQoQDs0XLJycno168fAGDo0KHWihrVq1c3y4MHD87JMDyR/ocPH57jYIKEhATccMMN2a7v0KEDgKzAG0kJJkh0Z3Jysqdj9h133BGzj6ADOXQwzZYtW7B69WokJCSgV69eZju9jeM4poJZr169sj0+4AbU2ZBzBIC1a9d69pNbrrnmGiQmJlrXNWnSBGXKlMmXcWiSk5NNwIENuT62MX3//fcAsq6/V3QvAPTs2RMAMGPGjJwONVdMnjzZlCK85ZZbst2uTZs2ntHFpwKv+Qm417lUqVKe9wpwr/PWrVs9k67nNzmd+1u2bMG8efMAINvk5kKzZs1QuXJlAN7zLL+fB/v27cOaNWvw+++/Y8mSJViyZIn5Tlm6dCmOHTuW7b6tWrWKiYgXEhIS0K5dO+tYjx8/bp6PF110EapWrZptHzfddFO8p2TIr7mpK+WVLl06zlHmbV96n5wGVucFgwcPxuLFi3P19+yzz+bo2JmZmeY6VqhQIfB+iYmJJv/9rl27cnTsM4Ec5XEdN24ctm3bBsDNJhDNjTfeiG+//Rbbtm3DhAkTcOGFF0as79GjB+rXr4+1a9fi/vvvx+eff44rr7wSvXr1QseOHVGiRImcDM1wyy234Omnn8b06dNRr149/OEPf0Dv3r3Ro0cPpKSkBOqjcuXKqFSpUrbrK1asaJYPHToU8QK/ZMkSAEC7du08UxRVrVoVqampWL9+vdlHr2vSpAlWrFiByZMn4+677wbgvqA2b94cKSkpOOecc/DRRx9FvLguWrQIe/fuBQDfSOamTZsGPsdTidc4gKwHQFpaWr6WM23UqFG2SaMB9/rYxjR37lwAwE8//RS4Wtf27dtzMMrco+eefjmx0bFjRyxcuPBUD8mQ3YuJINf58OHDgSOpgaxrXbt27VyNLa/I6dyXcweySv5ef/31gY7nNc/y43mwePFivPLKKxgzZoznWE6ePIl9+/Zl+8PP77pl9/lcs2YNMjIyAASb7zklv+Zm2bJlzXJ6enqucjnrvtLS0uLeX+/jNY5Jkyb5fjflhnr16p2yvv2Q714gvhdX2T4jIwN79uzJ62GdNuRIcZUcrV5qlFZibTldixcvjlGjRqFZs2YAgDlz5uDvf/87zjrrLCQnJ6Nv377ZqrVBePzxx3HbbbchISEBO3fuxFtvvYWrrroKVatWRatWrfDkk0/6pusqVaqU53r9QhM9Tpm42f2S11SrVi1iH418sH/55RfTJi+osu7cc88FkKVOyK802aZIkSI4++yzPY/vdZ5e55jXBL3ep3ocmqBjErVSOHbsWIwKH4TcphrKKfv27TPLfupw0B9+eYXfg3/nzp056regrrWNnM79U3Hup/p58OGHH6J9+/YYPHhwoB9q8oJpI6fXLb/me37NTVHSAQRKQ+mFFmty8kNaH99L+DmdSUpKMste89eGbM/Ko9kTt+IqVbGArPym2Zm3NN999x0OHToU8UsOyFIMFy9ejFGjRmHUqFH45ZdfzC/hsWPHYuzYsXj55Zfx448/+j5coilevDg+/PBDPPjggxg2bBh+/vlnzJ07F0ePHjXmqJdffhmfffYZLr/88rj6jocgSpvjkai5V69e+O9//4vt27dj+fLlaNq0qXmJlRfXWrVqGfX6l19+wTXXXGO2ad26ddy/+Eju0V+U1157LR5//PECHE24KVq0qOd6udb16tXDyJEjA/dbkIpMXqHn2eeff+6rTgsF9UxYvnw57r77bhw/fhxVqlTBww8/jPPOOw+pqakoW7assU599NFHuP322wF4Px8LO/k1N9u0aYPx48cDAObPn49GjRrFtX90X8KCBQvi2vfEiRNYtGgRgKwX/ho1auR4HLll3bp1SE9Pz1UfFSpUQM2aNePeLzk5GcWKFcPx48etglR2nDx5EgcOHACQ/wJBmIj7xfXLL7+M+xfE4cOH8dVXX+GPf/xjzLqiRYviiiuuwBVXXAEA2LZtG8aMGYO3334b8+bNw7x583DXXXfh22+/jXeoALJejp9++mk8/fTTyMjIwLRp0zB06FB88sknSEtLw/XXX481a9ZE+NzmBRUrVsS2bdsC/WKVX6jaDCdE+7mWK1cOq1atMv6teru1a9di8uTJuPrqqwP7t5JTQ1JSEkqVKoXDhw9j//79hb60oX6R2blzJ2rVqpXttl6+V1qRi1aho8ntl4ogqs6OHTvQtGnTuEyyYUcrWgkJCYV+ng0ZMgTHjx9H0aJFMXnyZGNxi0YroqeC6PnuRW58DfNrbvbq1cuUZx09ejSuu+66HPfVsmVLVKxYEXv37sWvv/6KAwcOoHz58oH2nTBhglGLJZl+QfHHP/4xwlKZE2655ZYcFZ1ISEhA5cqVsX379rjm8oEDB8xzky+u2RO3q4CY/atXr45hw4b5/tWpUydiPz+qV6+O2267DTNmzED79u0BAD/88EPcL8s2SpYsifPPPx8fffSRqTKSkZFxSip8yBfIggULPIMLdu7caSrt2L50qlevbn49T548Oca/VdABWosXLzb+MafShyhsBPUzzSskMGTatGmFyixto0WLFmZZ+03a8FqvrSpeD+w9e/b4VkcKilznw4cPY9q0aXnSZ27Iz3km5w7AVDEszPz+++8AslS97F5aAf85mFsaNGhgzLm5me9+5Nfc7NOnj1E3R4wYgS1btuS4Lx2QlpGRgffffz/wvm+88YZZtlXEO5No1aoVAGDlypWB99Hbyv4klrheXNetW4epU6cCyCph1r9/f9+/P/zhDwCyfDQ3btwY+FjFixc3auHx48dz5C/oRe/evc1yXn2Bas4//3wAWe4U2ZVjBbL8vcQUJvtEo/1co/1bBe3nOmLECABZDyA//9YzCe13lJmZecqPd9lllwHIUhbfeuutU3683HDuuecatdTrR+bChQs9A7MqVKhgfNu9vvCHDRuWs4Fa0K4+L7zwQp71m1NknuXHHGvYsCGaN28OAPjiiy/iesYWBMePHwfg7cO5fft24452qihWrJiJ4v/pp5+y9Qt1HAeffvppjo+TX3OzRIkSeOihhwAAR44cwe233x7YB3nz5s34+eefI9ruu+8+4wb41FNPYfXq1b79fPHFFxg9ejSALGHlkksuiecU8pzJkyfDyUr5meO/3JT4le/eFStWBA5knDNnTsz+JJa4Xlw//fRT85J1zTXXBNpHtot+AEyZMsXzw3D06FEj85cpUyYu2Xzv3r0YOXKkp2+UVidOha/bH//4RxM48OCDD1rTmyxcuBDPPfccAKBmzZrGXSIaeYHfvn07vvzySwCxL67i5+o4jvnV26pVqzPWOd6GdgdZs2bNKT/e3XffbYImHn/8cYwZM8Zz+2nTphkXj/ymZs2aJtDy22+/xVdffRWzTUZGBv70pz/59iUvBN9//731Oi9btgxPPPFELkfs0qlTJ/Tp0wcA8OOPP+LJJ5/03H79+vXZvjhLTfrU1NQcj0fmWX7MMQB47LHHAGS9sFx11VWepu3MzEy8/fbbpg59fiPWo5UrV2LmzJkx6w8fPowbbrghTyxsftx1110Asq7bXXfdZX3Re/nllzF//vwcHyMv56Yf9913nxEwfvrpJ1x55ZWec8FxHHz++efo0KGD8UsV6tWrZ16009LS0Lt3b88frF9++aVJo1eiRAl8+umnntlYzgTkxfPkyZOBVfvZs2cDAFJTUz3dtc504nK4kRfPKlWqBP410KVLF9SqVQubN2/Gp59+in/84x8AgIkTJ+Lpp5/G2WefjYsvvhitW7dGSkoKMjIysHLlSrz77rvmgXHHHXfE5Rt08OBBXH755UhNTcVVV12FLl26oG7duihWrBi2bduGUaNG4YMPPgCQ9cJ36aWXxnMZApGSkoIXX3wR9957L7Zu3YqOHTvikUceQffu3XHixAlMmDABL774ItLS0pCQkID33nsv27RZ+iX1wIEDMf6teru1a9ca5276t0bSvXt3s/zAAw/gH//4B6pXr25Mu6mpqXnqg1auXDkMGzYMffv2RWZmJi655BJcffXVuPrqq9GgQQMAWT7d8+bNw7fffotFixbhjTfeMC9++c3LL7+MiRMn4vDhw+jfvz/uueceXHXVVShXrhyWLFmCF154AUuXLkWnTp0ilIFo/vznP2PkyJHIyMjAOeecg0GDBqFdu3ZIS0vDhAkT8Nprr6FKlSooVqxYnuUqHDx4MDp27Iht27bhn//8J3766SfcdtttaNWqFZKSkrBnzx4sWrQIY8eOxc8//4wrrrgicOqoeOnevTsmTZqEOXPm4F//+hf69u1rcluWLFkyR8EeXlx//fX46aef8PHHH2PevHlo3rw57rrrLvTq1QspKSlIT0/HmjVrMGXKFHzzzTfYu3cvbr755jwdQ1BuuukmvPHGGzh58iT69euHgQMHonv37khKSsK8efPwyiuvYNWqVTjrrLNOudvHVVddhT59+mDcuHH4/vvvcfbZZ+P+++9Hw4YNsWvXLnz22Wf47LPP0LlzZ/NCkRM3kPyam0WKFMGXX36JSy65BLNmzcKoUaPQoEEDDBgwAOeddx5q1aqF4sWLY/v27Zg5cya+/vprLF++PNv+/vrXv2Lt2rV47bXXsHHjRnTs2BHXX389LrvsMtStWxfHjh3D8uXLMXToUEycOBFA1kvrJ598Ytz8vFi3bl1ENoTsqFy5ssm8Eya6d++OChUqYN++fZg4caL5UZEdjuNg0qRJAOCb8/eMJ2ilgqlTp5qKDnfddVdcVQ7++te/mn1nzpzpOE7wChpXXXWVk5GREdfxokspZvdXs2ZNawnFIFWIHCey2sy6deus2zz77LOmIpHtLzEx0fn44499z6lBgwZmnxYtWli3+eSTTyL6/vrrr3M1dseJrxJSdgStnJWbSktBufbaa7O9F/o6eI1ZE6Qa18SJE51q1aoFmpNB5oKNvCj56jiOM27cOFN60vb35JNPOo8//riD/1Ucyg79mY/+q127tvP7778HrpzlNT8169evdzp16hToOv/xj3+M2f/w4cNmva3aXFA2b97sVKxY0XpcPZ/ycu4fP37cGThwoFO0aFHfcy9durRz+PDhiP3z83nw1FNPeY7vwQcf9B1P0GeB3+di3759MWWM9V+7du2cuXPnmv9/8cUXMX0EeQbkdm7GQ0ZGhnPfffc5JUqU8D1WQkKCc+ONN8aUZtW888472c5n/de0aVNn8uTJnmOLt3IWAOe+++7L1fUoSO666y4HgFO/fn3fbSdPnmzOecaMGfkwuvASWMvXfm9elaBs6O2ln4EDB+LHH3/EAw88gK5du6JOnTpISkpCUlISUlNTcd1112H06NH4+uuvI3wTg1C3bl389ttvePHFF9G3b180adLEpKeoXLmyicBctmxZRHDDqeDvf/87FixYgDvvvBMNGjRAyZIlUbp0aTRr1gz33Xcfli9fHkj90KprdgFX+hddQkJCgSl3hZnPPvsML7zwAjp37ozy5cvniznrvPPOw5o1a/Dmm2/ioosuQvXq1VGiRAkkJSWhdu3a6NOnD5599tnAc+FUcsEFF2DJkiW46667ULduXZQoUQJVq1bFxRdfjLFjx2LQoEGmGo5XpPFrr72GoUOHomfPnihXrhxKliyJJk2a4JFHHsGCBQuMX2ZeUrduXcyaNQvffvst+vfvj3r16qFUqVIoXrw4UlJS0L17dzz44IP45Zdf8OGHH8bsr6tJPfDAAzkeR82aNTF79mzcfvvtaNiwYdzPr5xQtGhR/Pvf/8bSpUvx4IMPol27dqhQoQKKFi2KsmXLokWLFhgwYAA+/vhjbNu2rUBzRD7xxBMYPXo0+vTpgwoVKqBEiRKoVasWrrrqKowbN85Ex+cHycnJmDp1Kl599VV06NABZcqUQdmyZdG2bVs8//zzmD59ekQ6tqDR9dHkdm7GQ1JSEl599VWsWrUK//rXv3D++eejTp06KFmyJJKSklCjRg3zzFm3bh0+/fRTz7RVd999N9asWYM33ngDF110EWrXro2kpCSUKVMGDRo0QP/+/TFs2DAsXryYVr4o7r33XgBZldv8qiJKNdJ27dqha9eup3xsYSbBcUKcJI8Qku+cf/75mDhxInr06IEpU6YU9HDyjEGDBuGpp55Co0aNsGzZMt/8seTM4LPPPjNR9qtXrzZuPoQE4aKLLsJPP/2E22+/3bgoRnPo0CHUqVMH+/fvx+eff+5Zap7ksHIWIeTMZOvWrSaA7HRTBSQY9O9//ztfWolBgqVSUlJQv379Ah4NCRtPPfUUgCxrs6S+jObNN9/E/v370axZM/Tv3z8/hxdK+OJKCDF4ZfrIyMjArbfeavISF7RbQ15y9OhRzJo1C/Xq1cONN95Y0MMh+cSWLVs8Mxh8+OGH+PHHHwFkzff8zgVNwk+XLl1w7bXX4tixY3j++edj1qenp+Pll18GkJUy7UzPxhCEM6fEDCHElzvuuAPp6em49tpr0aFDB1SsWBGHDh3C3Llz8fbbb5sX29tvv/20SpBdokSJQl8kguQ948ePx8CBA9G/f3+cc845qFu3Lk6ePIk1a9Zg+PDh+O677wAAVatWxSOPPFKwgyWh5T//+Q+aNWuGxMREnDx5MuLldMOGDbj33ntRsWLFAs99Gxbo40oIMZxzzjm+ZRKvvPJKfP755wUa4ENIXjBkyBBrKXJN9erVMXr06FMeyEsICQZfXAkhhvnz5+Pbb7/Fzz//jM2bN2PXrl1wHAdVqlRB165dcfPNNzPHIDlt2L17N7766iuMHTsWy5Ytw65du3Do0CEkJyejWbNmuPTSS3H33XdHlDImhBQsfHElhBBCCCGhgF7AhBBCCCEkFPDFlRBCCCGEhAK+uBJCCCGEkFDAF1dCCCGEEBIKCvTFdf369UhISEBCQgKGDBlSkEPBoEGDzFgIIYQQQkjhI9cvrseOHcMXX3yBW265Bc2aNUOlSpVQvHhxVK5cGR06dMA999yDCRMm4OTJk3kxXlLIeOaZZ8wLf9myZfM0iXtmZia+/fZbPProozj//PPRuHFjVKxYEcWLF0elSpXQvXt3PPHEE9i8eXPgPn///XfcfffdaNiwIUqWLImUlBT07NkT//3vf3H8+HHf/R3HwauvvoqmTZsiMTERDRs2xDPPPGOqSRUk+oeg7a906dKoX78+rr32WowcOTJPjnny5EksXboUQ4YMwZ///Gd06tQJiYmJ5piTJ0/OVf9jxoyJOIdBgwYF2u90vs/ROI6DUaNG4e6770arVq1QpUoVFC9eHBUrVkSrVq1w22234bvvvsvV2P3mlv679dZbA/X5xRdf4MILL0T16tWRlJSE1NRU3HTTTZg5c2ag/bdu3Ypbb70VKSkpKFWqFHr16oWJEyfm+BzzEi2E6L/ExERUqVIFjRo1Qr9+/fDEE0+YEsqnigkTJuDWW29Fw4YNUbp0aZQvXx6NGzfGNddcg3feeQdpaWme+x8+fBgvvvgiOnfujIoVK6JMmTJo1qwZHnroIWzcuDHQGGbPno0+ffqgTJkyqFChAvr37+9ZpY8QT5xc8N133zn169d3APj+NW7c2Pnhhx8i9l+3bp1ZP3jw4NwMJdc8+eSTZiwkOI0bN464z59++mme9b1q1apAc6t06dLOxx9/7NvfBx984CQmJmbbT9euXZ3du3d79nHbbbdZ9+3bt69z/PjxvDr1HKE/T0H++vbt66Snp+fqmEOGDPE8xqRJk3Lcd1pamlO3bt2I/p588knf/U73+6yZMmWK06ZNm0D3u0aNGjl+zsYzt2655RbPvjIyMpxLLrkk2/2LFCni/POf//TsY8uWLU6tWrWs++blMyin6O+TIH/NmjVzvvzyyzwdw969e53LL7/c99gLFizIto/Vq1c7TZo0yXbf8uXLO6NHj/Ycx/jx450SJUrE7FuhQgVnyZIleXrO5Mwgx29pzz33nJOQkGAm4fnnn++88cYbzsSJE5158+Y548ePd958803nwgsvdIoUKeIAcNq0aRPRR2F6cSXxM2PGDHP/ypQp4wBwLrjggjzrf9WqVU6VKlWc6667znnppZecESNGOFOnTnVmzZrlfPPNN87tt9/uJCUlOQCchIQE58cff8y2r7Fjx5p5WLVqVef11193Zs2a5YwZM8a56qqrzHn07NnTOXHihLWPH3/80TxwX3/9dWfmzJnORx995NSoUcMB4Lzzzjt5du45QX+eLr/8cmfx4sURf1OnTnVee+01p169ema7m2++OVfHHDx4sOmrePHiTrt27ZxWrVrlyYvrAw884ABwqlSpEvjF9Uy4z8Inn3ziFC9e3JxTly5dnBdeeMEZN26cM2/ePOfnn3923n//fefKK680Lw7ly5fP0bH03HrmmWdi5pb+27x5s2dfN9xwg+nr3HPPdb777jtn9uzZzocffug0aNDArHv//fez7ePaa691ADjdunVzRo0a5UydOtV54IEHnISEBKd06dK+P0xONfrF9aOPPjLXZtGiRc6UKVOcb775xnn00UcjPisAnNtuuy3beRkP+/fvdzp06GD6vfjii51PP/3UmTFjhjN16lTn888/d+6//36nVq1a2b64Hjp0yGnatKnp484773QmTpzoTJ8+3Xn22WfNM79UqVLOwoULrX1kZmY6tWvXdgA4t956qzN58mRn3LhxTt++fc2cJSRecvTi+sknn5jJnJKS4vz888+e2y9atMg577zz+OJ6mnHPPfc4AJzKlSs7//73v43i4ffFFZQTJ044J0+e9Nxm1qxZ5su7ffv21m2OHTvmNGzY0AHglCtXzlm9enXMNn/+85/NXMxOvb311lsdAM73338f0b5gwQLzJVyQ6M+Tl+q1fft28zKYkJDgbN26NcfHnDVrlvPaa685M2bMcDIyMhzHifzSzumL67x585yiRYs6iYmJznvvvRfoxfVMuc+O4ziTJk1yihYtal4chg8f7rn9unXrnGuvvTZPXlxz86yePHmy6efSSy+NUa937drl1KlTx/xw2LdvX0wfR44ccRITE53atWs7aWlpEevuu+8+z3ubX8TzGRg5cqRTuXJls/3DDz+c6+PfdNNNDgCnWLFizhdffJHtdidPnnSOHTtmXafP4YUXXohZP336dKdYsWKenwm531deeWVE+/Hjx82L9YYNG+I4M0Jy8OK6ZcsWp3Tp0uaB+fvvvwfa78SJEzEmHL64hpfMzEynYsWKDgDnz3/+s7Nt2zbzRfrvf/87X8dy0UUXmXl06NChmPVffvmlWf/8889b+0hPT3cqVKjgAHBatmxp3eaCCy7I9hgVK1Z0GjdunLsTySVBX1wdx3Eeeughs230C1puye2L6/Hjx5327ds7AJynnnrKmTRpUqAX1zPlPh8+fNiov0WKFHEmTpwYeN8hQ4bk6Jh59azu16+fA8ApWrSos2nTJus2w4YNM8d66aWXYtZv2bLFAeBcffXVMetGjhzpAHCee+65HI8xL4j3M7By5UqnXLlyZp/58+fn+NhTpkwx/QwaNChHfRw9etRJTk52gCw3huxU4Lvuussca+7cuTHrP//8cweA88Ybb8Ss+9vf/uYAcKZPn56jMZIzl7iDs1555RWkp6cDAJ566ik0b9480H5FihTBjTfe6Lvd+PHjcemll6JatWpITExEvXr1cM899wQKwDl69CjefvttnHvuuUhJSUGJEiVQrVo19OvXD5999plngFjQrAJHjx7Fe++9h4svvhg1a9Y0zvYdOnTAX/7yF0yZMgWORxXd8ePH48Ybb0S9evVQsmRJlCtXDm3atMHAgQOxbds2z2Nv3boVjzzyCNq3b4/y5cub82vVqhWuv/56DBkyBAcPHvS+SHnEqFGjsHfvXgDAjTfeiGrVquG8884DAHzyySf5MgahdOnSZjkzMzNm/XfffWeWswscKVWqFK699loAwJIlS7Bq1aqYbapUqQIA+OWXXyLaFy9ejL1796JatWrxDr3ASE1NNctHjhwpuIFYeOWVVzB//nw0btwY//d//xd4vzPlPn/00UfYunUrAOCee+4xn7sg3HLLLadqWL6kpaWZ4KkLLrgAtWrVsm531VVXoVy5cgCAb775JmZ9hQoVUKxYMcydOzcmGFSCAQv6HsVLo0aN8Pzzz5v//+tf/8pxX2+++SYAoEyZMnjwwQdz1MfkyZOxf/9+AFlzpkgR+6uC/pzZ7lV2n6WTJ09i6tSpAMJ3r0ghIJ633JMnTzopKSkOkBUQc+DAgVy9NUf/iv+///u/CH8f/ZeSkuIsXbo0277Wr1/vNGvWLNv9ATg9evRw9uzZY90/SHDWggULIvwDs/tbt25dzL5paWnOlVde6blfmTJlnFGjRlmP/euvv0b8Is/uz7a/Vqz8lLigXHbZZQ4Ap0GDBqbt448/NseZN2+ebx+ybd26dXM8jh07dhgFrXLlytZtxMeqSZMmnn0NHTrUjOmjjz6KWT9ixAgHgFOxYkXnzTffdGbNmuUMGTLEBInYVIX8JKeK64wZM6zb6M9EPCpbbhTXdevWOaVKlXIAOBMmTHAcxwmsuJ4p91lMrAkJCc6qVaty3V+Q50NeKK4TJ070VcSFPn36GFP30aNHY9ZffPHFDgDnrLPOcn744Qdn2rRpzsMPP+wUKVLEKVWqlLN9+/YcjTGvyMlnID093aicpUqVsp73Lbfc4tlvZmam8fv/wx/+YNqPHTvmrF+/3tmwYYOTmZnpO5bHH3/c9/kg/YoFtmfPnjHrDx8+bNwgbr/9dueXX35xxo8fb4LzOnTo4DsWQqKJ68V1yZIlZjJfdNFFuT64fhh2797dAeD06tXLGTp0qDN37lxnwoQJzs0332y26dq1q7WfQ4cORWQ3uOKKK5yRI0c6c+fOdUaMGOH06tXLrOvWrZs1KtjvxfX33383zuhAls/O8OHDnTlz5jgzZ850Pv74Y+fGG290SpcuHfPievz4cefcc881XzbXX3+9M2LECGfu3LnOjBkznNdee834dZUoUSLG5HLkyBFjGixbtqwzcOBAZ8yYMc68efOcmTNnOsOHD3fuv/9+p3bt2vny4rpr1y7jV/rEE0+Y9kOHDpmXjvvuu8+3n5y+uB45csRZu3at895770UEczz99NMx2x46dMgEEV5++eWe/c6fP9/0ZfMzO3nypHPFFVdYfzD07t07W1+x/CLoi+uOHTucqlWrOgCcWrVqZftFVhAvruL2MWDAANMW5MX1TLnPBw4cMC45TZs2zZM+431xbd++vZOamuqUKFHCKVeunNO8eXPnrrvu8v2x+uabb5o+vv32W89t//rXv5ptbe5oq1atcipVqhRzfxISEpwPPvgg6KmfMnL6GRBXCgDOzJkzY9b7vbjOnj3brH/55Zedbdu2Obfeeqt5uQTgJCUlOX379nWmTZuW7TiuueYas73Nz1jTunVrB8gSl2x89dVXZs7qv3LlynlmNCAkO+J6cRV/FQDO3//+91wfPDrFyp133mkNxrnjjjvMNjbfH60ePfbYYzHrT5486QwYMMBs8/bbb8ds4/fi2q5dOwfI8ikbNmxYtue0e/du5/DhwxFtL730kgNkRV1nF/m+d+9ep0WLFg6QpQxrtFKRnSLrOFm/fm0qeF6/uL722mumv5UrV0asu/766x0gKxLc7ws+nhdXfQ62vwEDBjhHjhyJ2W/ZsmVmm3vvvdfzGLt27TLb9u/f37rNsWPHnGeeecapX7++U7x4cadu3brOY489Zj12fuOXVWDatGnOG2+8YQKYihcv7nz99dfZ9pffL67yfElOTo5QzIK8uJ4p93natGlm7DfccEOe9Bnvi6vX31133ZXtNdIWtTlz5niO6cUXXzTbjh071rrNmjVrnGuvvdZJTk52kpKSnG7duvmmZsovcvoZeOyxx8x+n3zyScx6vxdXnZ7uueeeiwj6iv4rUqSI88orr1jH0aVLFwfIsqz6Ieo3gGzv/c8//+z07NnTKVmypFOuXDnnyiuvdJYtW+bbNyE2iiEOdu/ebZarVq0az66+VK9eHW+88YbVx/Shhx7CBx98AACYMmUK2rVrZ9ZlZmaadc2bN7cmKE9ISMDbb7+NsWPHYs+ePXjzzTdxzz33BB7bTz/9hAULFgAA/t//+3/o379/tttWqlQp4v/Hjh3Df/7zHwDAX/7yF/Tt29e6X4UKFfDiiy+iX79+mDp1KlavXo2GDRsCALZv326269mzZ7bHLlasmPENO5WID2vnzp3RqFGjiHU33ngjhg0bhp07d2Ls2LG45JJLTulYUlNT8e677+LCCy+0rj906JBZLlOmjGdf2lc2u6TcxYoVwz/+8Q/84x//yMFo84/vv/8e33//fbbrr732Wjz00EPo1KlTPo4qe/bu3YsHHngAAPD888/H/Xw5U+7zqXwG+5GcnIwrr7wS55xzDho1aoSkpCRs27YN48aNw4cffoi0tDT897//xaFDh/D555/H7J/X96h+/foYPnx4Ds+mcKK/P/bt2xf3/hJ3AGTFoGRmZuKSSy7BoEGD0LJlSxw4cABff/01HnnkERw8eBB/+9vf0KRJk5jvJblXfvcJiL1XiYmJMduce+65OPfcc+M+H0JsxBWcpR88erLmBddcc411wgNAkyZNzAdo7dq1EevmzZtnnMhvvfVWFC1a1NpHuXLlTFDG0qVLfQOhNKNHjzbL8uUalNmzZ5tjyfGzQ7+UzpgxwyxXr17dLA8ePDiu4wPAOeecAydLXc91ad2lS5di3rx5AGANtuvTp49xyP/00089+5IxrV+/3ve4nTp1wuLFi7F48WLMnTsX33zzDW699VZs2rQJf/zjH/Hhhx9a99OBRyVKlPA8hp5/GRkZvmMKMz/88APeffddHDhwINttBg0aZO5R0GpIOeWhhx7Czp070aVLF/zpT3+Ke/8z5T6fimdwkOdDjRo1sGXLFnz00Ue4+eab0a1bN7Rr1w79+vXDq6++ivnz56NOnToAgKFDh1ors50p9yg36BdFfa+FIUOGmHt1zjnnxKyXwGkgS9S59NJL8f3336NDhw4mkPiee+7B6NGjUaRIETiOg4EDB8YEFMu98rtPwJl7r0jBEdeLa9myZc2y/oDkBU2bNvVcX6FCBQCxH+YlS5aY5S5dunj2odfr/fwQtbVOnTqoW7du4P0AYO7cuWa5W7dunqUS9UNLq6w9evRA/fr1AQD3338/OnfujOeffx7Tp0/H0aNH4xpPbvn4448BZClSNuW5WLFiuO666wAAI0eO9HwxiofSpUujZcuWaNmyJTp06IArr7wSgwcPxk8//YS9e/fijjvuwD//+c+Y/ZKSksyy37XSGQlKliyZJ+MuKG655RbzBSd/R44cwYoVK/Dcc88hISEBH330EXr06IGdO3cW6FgnT56MwYMHo2jRonj33XezjWD24ky5z6fyGexFiRIlUKpUqWzXN2rUKEJlfeONN2K2OVPuUW7Q3285sZ7pawwAL774ovXz1KNHD1x11VUAsr4Lo78PpZ8g3y9n6r0iBUdc3xCVK1c2yzt27MjTgXg9FAGYD9+JEyci2rVpxM90ptNu6P38EPOcVj6DktOXAp3mpXjx4hg1ahSaNWsGAJgzZw7+/ve/46yzzkJycjL69u2LoUOHxlybvObkyZPmy6lPnz5ISUmxbidK7JEjR/Dll1+e0jH17t0b9913H4As09jy5csj1usver+a3PpFIIiJLGwkJiaicePGePTRR/Htt98CyPrSeuihhwpsTJmZmbjrrrsAAH/961/Rtm3bHPVzptznU/kMzi09evRAixYtAABTp06NST94ptyj3KBdQSpWrBj3/voa16tXD02aNMl2W+1eNWfOHGs/fvcJOHPvFSk44vJxbdOmjVmeP39+ng8mt/jlYI02h+R1/zb0y+TkyZNjfGCzQ8ztQvPmzbF48WKMGjUKo0aNwi+//II1a9YgIyMDY8eOxdixY/Hyyy/jxx9/jNk3r5g4cSK2bNkCAPjxxx8DXY9PPvkEd9555ykZj3D55ZfjhRdewMmTJ/HNN9/g73//u1mnc0X65QLetGmTWa5du3beD7QQccEFF6BNmzZYuHAhvvjiC7zzzjt57v4ThG+++QYrV65EsWLF0Lx5c3zxxRcx2yxdutQsL1myxGzTpUsX1KtXD8CZc59btmyJokWL4sSJE4XyGdy8eXP8/vvvOHLkCPbs2RPx4zb6HnXs2DHbfsJ8j3KDWPcAeL50Zoe+VtnlybVtGy2w1KpVC7NmzUJ6ejr279+P5OTkbPuRe5WSkpKtux8heUlcL67NmzdH5cqVsXv3bkyZMgUHDx7Ml2AgL/Sv0u3bt6Nx48bZbqsVinh+zYrKIUm/40G/qJYoUQItW7aMuw+haNGiuOKKK3DFFVcAALZt24YxY8bg7bffxrx58zBv3jzcddddRk3La8RNIB6mTZuGtWvXGleHU4H+ctywYUPEujJlyqB27drYtGlTjBobjV4v6vbpTNOmTbFw4UIcO3YMK1asQPv27fN9DGJmPH78eKAfOF9//TW+/vprAFn+3vLieqbc53LlyqFt27aYN28eVqxYERHEWRjwEgd0sZqg96hYsWKF6vxOJYcPH8b06dMBZLlG5cT6IIo3EGudjEavL1Ys8lWgefPm5nO2fPlydO3a1drH8ePHsWbNGgDh+yyR8BKXq0BCQoIJ0khPTzfR/AWJfhGcNWuW57azZ8+27ueHfKFv3Lgx5sXID50BYdy4cXHt60f16tVx2223YcaMGWaMP/zwwylxkE9LSzMvxL1798awYcM8/2RuOI7jG6SVW0QFBuymqh49egAAVqxYEeE7HI2u7nLWWWfl4QgLJ8ePHzfLx44dK8CR5A1nyn3+4x//CCDrs/X6668X8GgiEXU8MTExxrrUqVMnE+wTXUlJc/ToUcycOTNmn9OdwYMHm5iASy+9NOZlMgh169Y1QXLyQpkden3NmjUj1slnCfC+V3PnzjWuAmH8LJGQEm/+rM2bN5sk86VLlw6ci+3EiRPOp59+GtEWTzWWunXrWvMMHjlyxFQbadGihbW4gOM4zsGDB01Ou+bNm8es98rjOn78eLMuSGJ9TUZGhlOxYkUHgFOtWrVcVxvLjgceeMCMcevWrXne/+DBg03/X331VaB9pMKPrq51Kvjzn//sOY+GDx9u1gepYW+bH2EgnspZJ0+edFJTU832mzdvzrNx5KYAgY2glbPOlPucnp7uVKtWzeTinDx5cuB9P/7441M2rilTppjr37t3b+s2ffv2dYCsilibNm2ybjNs2DDTzwsvvHDKxnsqifczsHLlSqds2bJmn99++y3Hx9bfBV5FBs455xyzXfS9yMzMdMqXL+8AcJo1a2bNr+44jnPXXXeZPmbPnp3jMRMSD3G/uDqO43z00UdmslapUsX3wfn77787559/vtOmTZuI9rx4cXWcyAIEjz/+eMz6kydPRlTgykkBAnkJ8ytAsGfPnpgCBM8995zpu2/fvk5aWlq2+x88eDCmpOSvv/7qWdoxMzPTad++vQNklY2NTvyfFwUIpPJXqVKlnPT09ED7PP/88+a4U6dOjVkv67IrQDB06FBn//79nscYPny4qcpSvnx5a0nfo0ePmgpb5cqVc1avXh2zjd/LbxiI58VVVzGK/lwKBVE5y0bQF9cz5T47juNMmDDBKVKkiBEQ/H5Mbtiwwbnuuuuc8uXLx6wL8nz49ttvs315cZysSlZS/Q9AtoUtdDGVyy67LEZo2LVrl+knOTnZ2bt3r+d5FVbi+QyMGjUqolDAo48+mu22fgUIHCfrXkvZ1w4dOli/bz799FPTz8UXX2ztR5d9tf2AmD59ulOsWDEHyKp4SUh+Eb8tAlmmqs2bN+OJJ57Azp07cc4556BPnz64/PLL0axZMyQnJ2Pv3r1YuXIlRo8ejbFjx+LEiRMRwV15yRNPPIFvvvkGa9euxdNPP40lS5bgtttuQ40aNbBu3Tq8+eabmDx5MoCslFQ5yRP56aefonPnzkhLS8P111+PESNGoH///qhfvz5OnDiB1atXY/z48fjqq6+wePFipKammn0HDhyIiRMnYuLEiRgzZgyaN2+Ou+++G926dUNycjIOHTqEFStWYPLkyfjuu++QlJSEv/zlL2b/iRMn4umnn8bZZ5+Niy++GK1bt0ZKSgoyMjKwcuVKvPvuuyZQ44477siRicmLjRs3muvXt29f3wwQwtVXX41HH30UQFaQVrympP/+97/405/+hCuuuAI9e/ZEkyZNUL58eaSnp2PFihX46quv8OOPPwLIcmN57bXXrL7LxYsXx+uvv45LL70UBw8exFlnnYXHHnsMnTt3xr59+/D+++8bf64ePXrgpptuimuchZH9+/fHpLg5evQo1q9fj6+++grDhg0DkJWt49///neujhWd+/O3334zy2PHjo3I09uwYcMIM2Recibd5969e+ODDz7AXXfdhfT0dFxzzTXo2rUrrrnmGrRt2xYVK1bEgQMHsHbtWowdOxYjR45EZmYmypcvn6PjXXnllWjYsCGuuuoqdO7cGbVq1UJiYiK2bt2KcePG4YMPPjAm42uvvdakWormvPPOQ//+/fHFF19g5MiRuOCCC3D//fejRo0aWLx4MZ599lls3LgRAPCvf/3LpEEMM+vWrTNxEo7j4ODBg9i1axfmzJmDUaNGYfHixWbbO++8E88++2yujlenTh3885//xMCBAzFv3jx07twZAwcONAUIvvnmG7z77rsAsnymX3nlFWs/Dz/8MIYPH46VK1di4MCBWL16Nfr374+SJUti0qRJeO6553D8+HGULFkSr776aq7GTEhc5Oat9+uvv44wN3r9tWjRwvnpp58i9s8rxVX6atq0qecYzjrrLKsi5zj+iqvjOM7cuXOd2rVr+57runXrYvY9fPhwhOrr9VevXr1sx+b1d9VVVzkZGRkxx86t4vrMM8+Y/b3UZhtSxzo5OTmmHKD0mZ3i2qtXr0DnXaFCBeezzz7zHct7773nlChRItt+Onfu7OzatSuu8ytMBC3LKX9lypSJcd/RBFVc4zlmTuZfUMVVON3vs2by5MlOy5YtA137OnXqOEOHDo3pI8jzIej9veeee3zL4h4+fNjp169ftn0UKVIk0H0uzAR9Zstf8+bNPcsvC0EUV+GRRx5xEhISsj1mlSpVnOnTp3v2sWrVKqdRo0bZ9lGuXDnPMuSEnApyJc1dddVVuOSSS/DVV19hzJgxmDNnDnbu3IlDhw6hXLlySE1NRdeuXXH11Vfj3HPPzVE6qaCkpqZi4cKFeP/99zFixAgsWbIEBw8eRMWKFdGuXTsMGDAAN9xwQ46SmwsdOnTAihUr8MEHH+C7777DkiVLsG/fPlSqVAk1a9ZEjx490L9//wi1VShZsiQ+/vhj/PWvf8WHH36IX3/9FZs3b0Z6ejrKlCmD1NRUdOjQAX379o0pkzpw4EB06dIF48ePx4wZM7B161aTvqRatWro0qULbr75ZvTr1y/H5+aFBFclJibi4osvjmvfq6++GosWLcL+/fsxcuRI/OEPfwi87+eff44JEyZg0qRJWLRoEXbs2IFdu3ahRIkSqFy5Mlq1aoWLLroIN9xwQyBl5s4770S3bt3w+uuvY+LEidi6dStKly6NZs2aYcCAAadErS5MFC9eHOXLl0ezZs1wwQUX4Pbbb0eNGjUKelh5zpl0n3v16oWFCxfihx9+wA8//IDp06djx44d2L9/P8qUKYNatWqhc+fOuPzyy9GvX78cn/fIkSMxY8YMzJo1Cxs2bMDu3buRnp6OcuXKoX79+jj77LNx2223BQp6LVmyJEaPHo2hQ4diyJAhWLhwIfbv34+qVavi7LPPxl/+8hd069YtR+Ms7BQvXhzlypVD+fLl0aRJE3Ts2BF9+vQ5JVaI559/HpdddhneeecdTJkyBdu2bUNSUhIaN26Myy67DP/v//0/XwW+YcOGWLBgAd566y2MGDECq1evxtGjR1G7dm3069cP9913X9xFeQjJLQmOk8vkpoQQQgghhOQDOZcfCSGEEEIIyUf44koIIYQQQkIBX1wJIYQQQkgo4IsrIYQQQggJBXxxJYQQQgghoYAvroQQQgghJBTwxZUQQgghhIQCvrgSQgghhJBQwBdXQgghhBASCvjiSgghhBBCQgFfXAkhhBBCSCjgiyshhBBCCAkFfHElhBBCCCGhgC+uhBBCCCEkFPDFlRBCCCGEhAK+uBJCCCGEkFDAF1dCCCGEEBIK+OJKCCGEEEJCAV9cCSGEEEJIKOCLKyGEEEIICQV8cSWEEEIIIaGAL66EEEIIISQU8MWVEEIIIYSEAr64EkIIIYSQUMAXV0IIIYQQEgr44koIIYQQQkIBX1wJIYQQQkgo4IsrIYQQQggJBXxxJYQQQgghoYAvroQQQgghJBTwxZUQQgghhIQCvrgSQgghhJBQwBdXQgghhBASCvjiSgghhBBCQgFfXAkhhBBCSCjgiyshhBBCCAkFfHElhBBCCCGhgC+uhBBCCCEkFPDFlRBCCCGEhAK+uBJCCCGEkFDAF1dCCCGEEBIK+OJKCCGEEEJCAV9cCSGEEEJIKOCLKyGEEEIICQV8cSWEEEIIIaGAL66EEEIIISQU8MWVEEIIIYSEAr64EkIIIYSQUMAXV0IIIYQQEgr44koIIYQQQkIBX1wJIYQQQkgo4IsrIYQQQggJBXxxJYQQQgghoYAvroQQQgghJBTwxZUQQgghhIQCvrgSQgghhJBQwBdXQgghhBASCvjiSgghhBBCQgFfXAkhhBBCSCjgiyshhBBCCAkFfHElhBBCCCGhgC+uhBBCCCEkFPDFlRBCCCGEhAK+uBJCCCGEkFDAF1dCCCGEEBIK+OJKCCGEEEJCAV9cCSGEEEJIKOCLKyGEEEIICQV8cSWEEEIIIaGAL66EEEIIISQU8MWVEEIIIYSEgmIFPQBCCCFnNo7jRPwLAAkJCTHbnThxAgBw8uRJ0ybLRYpk6TDFixf37COvkeMfPnw4pi0pKSnbMelzle11m6Db5Pz1eUnfcv6EnGpsc1K3FS1aFIB9Turtjh07FtEHAJQsWdL3+JzphBBCCCEkFFBxJYQQEgqCKLNajfVTfLywqbVeCq6oTHo7+VePyUbQMcn55IeSTEhhhYorIYQQQggJBXxxJYQQQgghoYCuAoQQQgoFNhO4NqPLspc7gAR8ZLe9HEPvJ206SMTWv2yn3QIEHYDldXyb20C0a0F244xel916Qk5nOOMJIYQQQkgooOJKCCEk37Gl1LEpozZ1MTMz07Tt3LkTALB7924AwMGDB826jIyMbPu1BVPp7WR8+vjFimV9ZSYmJpq2ChUqAADq1Klj2sqXLx+xry34yqau6jYZi+34DM4iZzJUXAkhhBBCSCig4koIISTf0Srk0aNHAUT6p4oiqpVRSU5+5MgR0zZ79mwAwPTp0wEAa9asMev27NkDwN/H1SvNlPZ7LVGiBABXUQWA1q1bAwAuv/xy09aqVauI7UUpjR5L9Jj0sWzFBuRaUHElZzJUXAkhhBBCSCjgiyshhBBCCAkFdBUghBBSoNiCk6LXaWxmfnE32Lx5s1m3detWAEDFihVNW3JyMoDIACsx6Wu3BHFbOHDggGk7fPhwTJsEZ6WlpZk2W2CVbezRBE0HRsiZDBVXQgghhBASCqi4EkIIyXe08mgLYhJsKqQEaQFAhw4dIvZNT08360Rp7dSpk2mTwKlq1aqZtjJlysSMSdJqrVu3zrRt3Lgx4l8AqFq1KgAgKSnJtAVRRvU2NsXZVuSAQVmEUHElhBBCCCEhgS+uhBBCCCEkFNBVgBBCSKHAr5qUmNfFtQAAatWqBcDN7Vq7dm2zTkz/7du3N23dunUD4Jr4AdfNQAdd7d+/HwBQqVIl0ybuBeJaALhBXtpVIF5sVbrEVcCvwhhzu5IzDSquhBBCCCEkFFBxJYQQku9o1fD48eMxbaKC2gK2dBCVKJ1ly5YFEFnVKiMjAwBQs2ZN01a9enUAkemwJBBr5cqVpk3SW9WpU8e0NW7cGEBkhSsZsw4YE5U0N+mr5Bz1sSRFl02Z1teE6is5naHiSgghhBBCQgFfXAkhhBBCSCigqwAhhJB8J6g525bvVLsUiDuA5G/VgVtSJUsHU4lJXdwDAGDbtm0AgB07dpg2OYYOuipXrhwANxAMcM334qqgj2E7B1uAlW0/W9AVXQAIoeJKCCGEEEJCAhVXQgghBYoEYGkVUlRKHZwk2x09etS0SRWrtWvXAnADvQCgVKlSMduLurp582bTJkqrToclQV5aBZX+dLCXjFmrulr1jR6TjEWfl5yrDkQTpddWYUwj66nGkjMFKq6EEEIIISQU8MWVEEIIIYSEAroKEEIIyXe0aTs6mAlwTfA6sEmWtelfKlyJuX/r1q1mneRi1UgQlXYVELO9ztkqFbl0vldZrlChQsw4bXlUZby2QCy/KmGEEDtUXAkhhBBCSCig4koIIaRAsVV/EnQQkyxrxVXSUYnyumzZMrNuxYoVAIApU6aYNkkzpdNhidJ63XXXmbaUlBQAbkCWHmfx4sVNm6ipWlWNVou1kioBVjZ11abC6vPXQV6CjIWVs8iZAhVXQgghhBASCvjiSgghhBBCQgFdBQghhBQoYlLXgViCLYhLm8/37NkDANi7dy8AoGTJkmZdjRo1AESa+8XNQFwLALf6lq6SJXlcdXCWDVtgVXRwlm17r2AuwHUL0Ocq2FwqCDlT4OwnhBBCCCGhgIorIYSQAsWWNsqmVkpglV63ZcsWAK7y2qpVK7Oudu3aAID69eubtkOHDgEAvvnmG9N2+PBhAEClSpVMmyi3fgFjtnRY0fvYUnrpNlsg1pEjR2KOK4qwrrDFVFqnJ7bAvsJ4DK99bXM83j5sUHElhBBCCCGhgC+uhBBCCCEkFNBVgBBCSKHD5j4grgKZmZmmbefOnQCAAwcOAABat25t1nXs2BEA0LBhQ9Mm261Zs8a07dq1CwBQuXJl0yZBWTkxo0YHYAV1FfCrJiZtDM46fYnOAWwL4rO51PjNnej+/Y7hFVhoC0S0HUOvk8+uDduxvODsJ4QQQgghoYCKKyGEkALFpkyKaiOVsQA3RZSueiVprSSlVbly5cy6qlWrAgDKli0bc8xGjRqZZamSpRVXqUilA6a81C2bauQV2GVTqrQqpdN6efVHTi9sldgEWzo42c6maNrmi63Cm98xotfZAhF1X7YKb7axeKXB84KfAkIIIYQQEgr44koIIYQQQkIBXQUIIYTkO34BS2L6lEpXgJurVYKpADe3ac2aNQEA1apVM+skL6s2y5cuXRoA0LRpU9MmeVz1vmIq3bx5c0yb3k5cE2wBK17uAEGrhOntbG4Gsh3zuJ4eRM8d2321zTWb2d9vTtr2je5Hb28LmLTtZwvOsrnZ5DQHMRVXQgghhBASCqi4EkIIyXe0kijBHFq1saWjkipZ8i/gqp/ly5cH4FbLAlw1ViOKZ4MGDUybHFdXpNq2bRsAYO7cuaZNqll169bNtJUqVQoAUKJECdMWHbDiF3xiU7AEHSQj10lfEwkis6U0IuEjWkG3KZQ6EEvadECULThK5rZtXx0AGf1Z0PPKprjagsnirchFxZUQQgghhJyW8MWVEEIIIYSEAroKEEIIyXdsJlCbuVubPbdu3QogMmAqOTkZAFC9enUAQJkyZTyPK2ZM7RYglbhWrFhh2latWgUAWL9+vWmT3KrafG8Lotq3bx8AYMOGDQBcFwPAdWnQuWVlWbs2yPiCVkQipwfRZnNbHmGvnKiA3UUlaHBU9GfRFmDlF1go7gh+FblknDbXBi/4KSCEEEIIIaGAiishhJB8x6bQ2AKRpDIWAGzcuDHiX8BVQUWhlApaAHDgwIGYY9lS9Uh/Y8eONW1r1qwBEKngVqlSBYCbUgtwg6N0gMumTZsi+tu7d69Z16RJEwBA/fr1TVtqaiqAyMpdck10MI1NaaMKe3oiyqROByefDx0IqC0H8fSr0XPMppYKNsuIjaCpt+Qzoz87QeCMJ4QQQgghoYCKKyGEkHxHKz9SAGD37t2mbe3atQCA33//3bRNnz4dgOvrqvcVZXb58uVmnailWlGS49p8Z6V/wJ76qmrVqgDcFFiAXUk6ePAgANdnVnxeAaBGjRoR+wGuamZTz/wKEOQ0iTsJBzafUI2on3ruyD563gvaqiHYUmQFTeXmpa7asM1n+rgSQgghhJDTEr64EkIIIYSQUEBXAUIIIfmONntKEJVORzVq1CgAwLRp00zb9u3bAbjpqwDXzD9//nwAkSZTWZYAKsA1VeogLlk+dOiQaZOAKXEPAIC6desCiAzOkv60CVb6ExcBfazo9F0AUKFCBQBuoBlgTxUkQSzaFCsVxlg56/TCdg+90sb5BWnZ5pO06TRs0p/MZ/059UpzlZM555VeywsqroQQQgghJBRQcSWEEFKgiCKqk/LXqlULANCyZUvT1qhRIwD2wCZRgWx11G2J2G1BKrpfUVxbtGhh2kQl1cFZtrRdoiDLsbSSKoqrFCIAIhWv6LHYChB4qXHk9MIWYOV3r73mvUbmky29lXyu9OdJ+rAFidnG5zd35RhUXAkhhBBCyGkJX1wJIYQQQkgooKsAIYSQfEebJ8Vs3qxZM9MmZnnJ0wp411sXbJV5dB+2gBRxVdAmSzHv6+AsGaceuwRe6dyyko9Wgri0W4BUx9IVubyqFNkqZwXNmUnCi818LnNXcgzr7XTQlZcbjJ5rNlN9dECjnn/Sr+7fFmAly/pYUu3L1mZzh/CCiishhBBCCAkFVFwJIYTkO1opFOVFp60SRdKmBtkUSpvyIyqUVqhELbIpT7ZUWn5qUFpaGgBg1apVpm3z5s0A3ECsOnXqmHUVK1YEEKn4Bg16id4eoOJ6uiFzQKwEW7ZsMetkedeuXaZNqrQdPXo0pg9bcJSe97Ks55NYBNq2bQsgcu7aPn82FVaObwvssh0/Xqi4EkIIIYSQUMAXV0IIIYQQEgroKkAIIaRAsZm7beZzWfYKZvJzQRD3AV3NStpkeyB4wIjkbF26dKlp27BhAwCgfv36AICGDRuadeI+oPuXIDJtsrUdX8yxtuAsugyEF1tgk1RxW758uVk3c+ZMAG6VOABYv349gMjgLPl8aNcXm1uALdhL5uytt94KINKlJSUlBUDk58TmPhDU5SWnUHElhBBCCCGhgIorIYSQfMemMmmlxlaD3aseu622uqAVV1m2BZMEVVn1vhIco9NhSRUtCcSqWbOmWSdVt3KikDId1umJ7X6KqqlTqVWoUAFA5DyVuVuuXDnTJvNO/gXceaeVUQksXLt2rWmT+TxlyhQAQGZmplnXrVs3AECDBg1Mm6SN80uzZatYZwviCgIVV0IIIYQQEgr44koIIYQQQkIBXQUIIYTkO9qMKDkotckwSM5WwA1skn91PktBzKSAvSKQLXDFVqVLzJy6EpcEZ8m/gBsoI6ZdyY2pj6+xHT9o0BVdBU4vZC6ULVsWANC0aVOzTj4TErgFuMF+2nwvFejq1atn2iSwSs+/nTt3AnDdAgBg7ty5Ef+uXr06ZmziHgAANWrUiGmTY9jyuNqCLekqQAghhBBCTkuouBJCCMl3/FI62QKRRMn0qsijA7hsKo8os7ax+KmXkjZox44dpk1XMRKk6lelSpUAuMorEJlKSJCx25QnW816qqynP6JayhwCgPT0dADu/AJca4JWV9u0aQMAqF27tmnTwVuCqLC2FHLbt28HAOzdu9esW7FiBQCgatWqMeMU5RU49SmyqLgSQgghhJBQwBdXQgghhBASCugqQAghJN/R5klb3kdbUJa4CuhckGKqFBOnNsWLeVK7B8iy7l8Ctfzyo0pQ1qZNm0ybmFR1cIrkz5SgLAm00eeqsbkq2EyrXhXG6D4QXryC8nQwVWJiIoDI+S/LEqQFANWqVQMQGZRoQ+Zs27ZtY9qk+tvChQvNus2bNwMAfvvtN9Mmrgz6+KVLlwbgHwBp+4wHgYorIYQQQggJBVRcCSGEhAJRa2wBSzb1RlQrrV7agr6CVswSxXXNmjWmTdRXrarWqlULgBsQo1VgL9XUNnZbGytnnRpsymfQfXISRGfbV+aizFmdek0qsun5LCpsUlJSTJvfvLZVp6tSpQoAdw6L8goAu3fvBgCsX7/etElqLtv5nyqouBJCCCGEkFDAF1dCCCGEEBIK6CpACCGkUGCrXKUR06Z2C5A2L1OlrVqVDT/TbkZGBoDIakISsKIrF9WpUwdAZL5NwWYeFtOvLXCFbgGnHi9zv8Y212zVn4LmBfZyFZBARAn+A1yzvawDXHcUbe6XAES9XdDPgCBBVzqP7JYtWwBE5i6WY2m3hHjdLOKFiishhBBCCAkFVFwJIYQUCvzURa/gJC+VR6+zVdMKiiiuWnGS4BStTNWsWROAGyQTNOgn6HlRec1bbHPCpobaVHAv1TA39ykzMxNAZJU2UV+1eirBVLoylk1d1eprNFqtlWXpTwcdCkePHjXLko4rJ+ppEGuJDSquhBBCCCEkFPDFlRBCCCGEhAK6ChBCCClQvFwAvKoKBcUW9KWrDwk6wES202ZRyamZlpYWs11KSoppq1q1KgDXZKuPFbRKlw26COQt0S4CtopUtsCpoPlR/e6XrZqULIurgA7O2rZtG4DInK2Sb7VChQqmTfIG6+PL+diCyLSrgIxJ5q4+llTV0nmJBZubhY28CDak4koIIYQQQkIBFVdCCCEFStAAJK90WF77aYKmPpJglr1795o2qRwkKYAAV33Sipcs25QpUrDoICVRIW0KqaiqNsVVzz9bKjNbm21eelV7k3GuW7fOrFu2bBkAoF27dqatRo0aAOxBVLZ+/Yg+vlZSS5UqFXMsUWaDBljlRbAhFVdCCCGEEBIKqLgSQggpUIKmiLL5BObUT85PIRIfQ0m6Drg+hlopE3W1fPnypq106dIAXN9Bm7IWtNgC/VrzBrnGWnEV5Vzuk1bIgyqDXqm0bPj1K8uiBm/atMmsW7NmDQCgQ4cOpq169eoAXDVUj8XWr5e1AnB9uvft2wfATfcGuAU1tD+3+L3a5vipgoorIYQQQggJBXxxJYQQQgghoYCuAoQQQgodXkFU8VbOsuG3vVTJWrt2rWnbvHkzgMgqRRIcY6tcZEt9JWjTsi01l1eqJNt50KUgGLaUZ173SeMViKUJWvXM6x6LG4MOhBK3AKmWBbguKjptlZyPzX3BVlVLzz+pCrd8+XIAkfNfXARq165t2pKTkwFEull4uQ3Yrp1t/ntBxZUQQgghhIQCKq6EEEIKHV4phfJCXfQLJklPTwcArF692rSJ4ioFBgCgUaNGACKVMVsgTDT6vKLTMkWv99pOjkHF1Rtbsv3olFc25dOvLbp/wL0nfnPMVmRDgqFk/onKqvsTlR+wFwWQfo8cOWLa5POklVmZTzrlm6TfWrRoEYBIxbVevXoR/wJApUqVYvr1wjbvdcBcEKi4EkIIIYSQUMAXV0IIIYQQEgroKkAIIaRQkJPqO9Em8qDBXH715sVUq/No7tmzBwDQsmVL05aamgrAzXFpG5MNr5ygejmoC0Be5LY9E7BdGy+TtZ8LgNd91BXWbO4jNjcPmWNbt26NGZPMMVuAlc0tQZvvbUFkMr4VK1aYtgULFkQcXyMuCnXr1jVtOigxv6DiSgghhBBCQgEVV0IIIaEgXiUxaPoo2U6qBgHAwYMHAQC7d+82bYcPHwYAVK5c2bTVqlULQGTlouh+g6ZFym6919hJ7hHFVSukglbm5T7Z2vRck6prWi21BYfJst5OKrWtWrUKQGTlKtsck311Silbei+bhWH79u0AgHnz5pk2UVxFoZX5DbhBWbrNNibBL7Ayp/OZiishhBBCCAkFfHElhBBCCCGhgK4ChBBCChSvoCw/M3s8fWWHmFslMAYAdu7cCSDSfUByZUq1IL2sA2HEfGyrCGQz2foFikX3q6H7QM6RuSLXVQc9ianc5lKi76ttvkl/2i3AK7erdgdYsmQJAGD+/PkAgDp16ph1YqrXeYRl3ukxicuDLejrt99+M23iIjBr1izTtn//fgBA+/btI/4FgObNmwNwq3UB9kCxoJ9Bm+tFoP3i2poQQgghhJACgoorIYSQUJDT4Cy//URVlcpYgJsOSKtmUh1LV8mSykVaeZLjiQpmU6C0yiTHsKXD0lBdzT22ayzXX99ruXc6jZQs6zZbmiu5tzYFVyv4Euy3YcMG0ybBUfJvlSpVzLqKFSsCiKySJX3oKlnSpscpFbC+/vpr0zZz5kwAQFpammlr2LAhAOD8888HAPTu3dusq1ChQszxbQSdu7bAtiBQcSWEEEIIIaGAL66EEEIIISQU0FWAEEJIgSLmQ1vex6BmRNnOz9xuQ8ys69atM23iNqADUaRykA7OErOpVwUl25h0my1gJ+h2JBi2wCoxpYtp32butwVnBXUV0Pdu7969ACLdApYvXw7AdQsAgOnTpwMANm7cCCDSLUVM+rb5p8ck7ggZGRmmTQLAdF5iCfaqVq2aaZOqcO3atQMQGQjmRW4qtzGPKyGEEEIIOS2h4koIIaRQYFO3/IhWJm1qmB8SzCIBLICruOrgmAYNGgCIVLxsqXxsdeGzG7fGb7w52YdEoq9hdMorrZrKsr6+tvRmXmmu9DwQxXXlypWmbeLEiQCA2bNnmzZJwyasWLHCLG/atCnbcSYmJpo2GbNOs1WmTBkAQIcOHUxbx44dAQBt27Y1bfXr1wfgBoL5kRdzksFZhBBCCCHktIQvroQQQgghJBTQVYAQQkihwxacZKtmFL19TkznEsQiATEAsH37dgBA48aNTZtUMSpXrpxpi87Zqpe9gq5sLg1+OS6lX9t2dBkIhr4n0XPGz2Rtcwvx2lffEwmyqlu3rmnr3LkzgEh3FKni5jV3pDKWbtOuApKPVud2LV26NACgWbNmpq1JkyYA3CAtwHURCHpN4q16p+d9TqrcAVRcCSGEEEJISKDiSgghpNCSm2pSXut0XxLEogNjDh48CCAyEEvSYYl6pRGlDHBVJamcZAvw8UupFDRFVtiqaeV1gFnQ/mzXOFpV1PfEpmR7pSPzswxUrlwZQGR6K6lSlZmZadpE1bWl1JI5pqtvRc81wF6JTfpLSkoybbJsC+ySY+lr4pUiTJMXaq0XVFwJIYQQQkgo4IsrIYQQQggJBXQVIIQQUijwqzAV1PTvhQS27Nmzx7Rt27YNQKS5X9wBxMQLAJUqVQLgVivS6MCdaLO0n2k1aICV7fzD4iIgJmebGd3rvGxzwqv6lV72chnQSH+632iTPeDOD7/tbMcQU76Y8QGgVKlSMdsHcUewuaXo43vNp6Dzxcu1wjafbfcp6HxmHldCCCGEEHJaQsWVEEJIocBPcbVVKYrezk+NlMAWqUIEuFWydICL1G9PSUkxbRJYY0uLpJU0L8XJK6WSDb0u3n0LGtv9tFUVs91Xr1RKttRjtv5seM0PvxRlciyteMp6v3vjNT/jVUH1PD1V2K6hlwoeNEjO7x4HGluO9iKEEEIIISSf4YsrIYQQQggJBXQVIIQQUuiw5TsNEsTkF+giOTO1q4AEZ+kcm1LNSOdxlXyXQYNO4l3nR2F2C/Aj2ixuy3tq214j91O7ZXiZ9G3ma1sQly1nqozJVqXKdnxbEKHf+RRmCvN4qbgSQgghhJBQQMWVEEJIocMWzBOkcpafUiT127Xiun37dgBAhQoVTJvUby9Xrpxp8wr6IcGQa2i7r34plWxBXKKW2gK2dJtXejXpTwc9iTKvA7FEabUFR9nUWq/qZ35jCltFtPyEn0JCCCGEEBIKqLgSQggpdIha5ZeA3ivZvI309HQAkYrrjh07AAB16tQxbfXr1wcQqbiSYHilvrKlj7Ip6fEmsdfqpk3xlDatoMo8shUHkH31OGW93s6GqPqSes2vP1vxAiqt2UPFlRBCCCGEhAK+uBJCCCGEkFBAVwFCCCGFDq/AlqApsmyuBYcOHQLgugcAwIEDBwAAlSpVMm3iNlCmTJmcncAZjO0+RZv0ve6X3tcvzZQN2zFkWae3kmWb+4LNBcVWHUvGJ8FcgBvsJ/MKcFOtlS9f3rSVLl0agD29FskeKq6EEEIIISQUUHElhBBSoNjUNZviKoE1tuAsG6KoicoKAHv37gXgBmkBrsql1TBJjVWiRImAZ0GisSmeXoqiTXHNTTJ/PYds8yk6YMo2Xr2f7biirq5evdq0zZ8/HwCwe/du09a+fXsAQMeOHU2bFLTQimv0fKYCGwsVV0IIIYQQEgr44koIIYQQQkIBXQUIIYQUKF5BV0GrD9mQgBkdiKWXBa/AGS9XBGLH5hYQbfK23UO/Kmk29wFZ9poHgDuPtOuHV65YW2CfbHfw4EHTtnTpUgDAnDlzTNusWbMARLqoVKlSBQDQtm3bmGPYgtiYzzV7qLgSQgghhJBQQMWVEEJIocVWq96mUNmQ4Kz169ebNlkuVaqUaUtOTo74F3CVOSpe8WMLbIpWMPU9tCmpXimt/FJpybJNhbUdI3ocgBsIqFXTtWvXAgCWLVtm2iQQa+PGjaZN1PpWrVqZtmbNmgGInGMSnOUXREYi4RUihBBCCCGhgC+uhBBCCCEkFNBVgBBCSKHAZgK2uQXogCkvU/7Ro0cBAOvWrTNtYtLVJtsGDRrEtOncmiRn6HsT7Sqgg55knS2fqa0PP7wCu/TciQ6O0tWvpOrV5s2bTZsEXc2bN8+0bdiwAUCkiV9ytZ5//vmmrX79+gAi55icm57j0etILFRcCSGEEEJIKOBPSkIIIQWKLehKFDlbrfqgiqsoaJs2bTJtW7duBQC0a9fOtDVq1AiAWy3Lr1+Se2xBUrYqVfr+a5XWC69KWLb7KoFYu3btMm2S3mrBggWmTdZrZbhz584AgLp165q2li1bAgDq1Klj2iTlmu248q/u23YOJAsqroQQQgghJBTwxZUQQgghhIQCugoQQggpUGxmXHEb0O4DxYsXB2A3KdtIS0sDAOzcudO0SdWjypUrmzYx89rMuSRviM6tqu+hmMVtOUy1e4CY1LX7gOyj3UdsOWBtAVtHjhwB4FZTW7VqlVlncxWoVKkSgMj8rF27do1pkzyutnPU81nyDOtztJ0PiYSKKyGEEEIICQVUXAkhhIQKm8oqqtX+/ftN2/bt2wEAGRkZpk0qYol6BgApKSkA3EpGJHfYKldFp3zyq5Il6MAlCbbTSqbcTz8VXlKj7d6927RJKiupfvX777+bdTJnmjRpYtoaN24MAGjRokVMm1bwbWmuZFmrq7KdDvZi5Sx/eIUIIYQQQkgo4IsrIYQQQggJBXQVIIQQUqDYArGEoIFYYlLetm2baduyZQuASJO1VC6qWLGiaStXrhwAVsvKa/T9tLkPCF73Vfch91iC9PS+tkCsw4cPmzbJwbp69WrTtmTJEgBuRSyd71eCrbp3727amjdvDsCen9V2DrYx5SSwjERCxZUQQgghhIQC/rwkhBCS72jlSZQ0ra6J4uRXTUnaJLWRBNzoZR10JYpr+fLlTZsE+FDlylv0vZOgJB1sJYjSbbv+WgVPSkoC4N4vIFJ9FdLT0wEAK1euNG2LFi0CACxdutS0bd68GQBQqlQpAMB5551n1oniKlWwAKBatWoAXIUesKetsgVi2bb3muMke6i4EkIIIYSQUMAXV0IIIYQQEgroKhAigjq1x+v8Tggh+Y0tx6c2rYoJ2GaKtbkKSN5N7SogwTZlypQxbVIlS7sKsEpR3mILmIr+DrLdf9t90K4Atgpbsu+hQ4dMmwTlLV682LTNmzcPALBx48aYY4hbgHYVkACsChUqmLagLiUyj/V8lrHbXAVIfFBxJYQQQgghoYCKawjwqrihf73JL1jZTv+ak+2C/sLTv4a9FFz+YiSE5AS/55NXvXmvuvMScAO4lbPatGlj2ho2bAggUkkLarny2r6gsKUQC/J8tgUO2frIq0pOco9twVRyDn73X/qQCloAsHPnTgCR6upvv/0GIFJdlYAtqXQFAE2bNgXgVsKSuQHkLkWabexMc5V3UHElhBBCCCGhgC+uhBBCCCEkFNBVoJBiM9X75TiMrj6j10kfOXEVsJlxaO4ghOQGPzOqzURty+MqJm8Jztm9e7dZJ226SpYE3UjFo+yI95mZn9iezxqv/KBeOUZtZnkbtu8im0uHRsYiAU76+F5j0f1KDtitW7eaNsnLOnv2bNOm3QaEWrVqAQA6depk2s4++2wAQOXKlQHkXeU0uXa2IEKSe6i4EkIIIYSQUEDFtZBiUzf1r0GvIAUvJ3D9S9mmzMYbpEAIIbnFK32S3zPp4MGDAIC9e/cCiAzcEXVPB2KJ+moLErKNya+tINDPcVEh9djk3Lyqk+k+5DvA77tA+jh69GjMvrqalfStq2RFp4Pyu69yDJ3matu2bQCAmTNnmjZZlnRoAFC1alUAQP369U1bs2bNALgBWQBQqVIlAHmntEZTWObL6QYVV0IIIYQQEgqouIYAm6+Xl59SvIqrhom4CSH5jc131Qv93NuxYwcAV43TJCcnA4hUXKUYgV9hg+ixFSb8YhBsFrljx45FtPmlubL1YVNcbYn1o1Mz6vF5Ka6SsgoA9u/fDyDSn3X16tUAgPnz58e01a5d27S1bNkSANC+fXvTJoqrLjxRGO8t8YeKKyGEEEIICQV8cSWEEEIIIaGArgIhxeb87lXpxCuYyw9WySKE5Ad+5m55tukArPXr1wMA1q5dCyAy0KZ69eoAIl0FkpKSYo4rz1G/4KTCgh6nBEVp1y8x0WtTffQ52s5V3Al0f7bvDB3YJv3Y3AL0dnJfbN9Pcg5r1qwxbbNmzQIArFy50rRJlSx9Dy+88EIAQN26dU2bBGWlpqaaNqmEVZjvKwkGFVdCCCGEEBIKqLiGCFtRAv0r18vZ3iuZNn+BEkIKEltwlk3xk2fckSNHTJsoruvWrQMQqcZJsQGtuIq6F+YiK/pZL8va+ibBU7ot+jtAK9O2FFnR6bMAN7BKp76K7l+PSSuu0ddTq+Z79uwBACxbtsy0zZs3DwCwcePGmD66detm2vr06QMAqFatmmmTOVC6dOmYMZHwwztJCCGEEEJCAV9cCSGEEEJIKKCrQAgQE4zN+d5re7+634JfBRNWziKE5Ae2547t+aPziIopedOmTQCAdu3amXUSpCPVsgDXRK6foTZXgbChvx+0GV5ITEwE4JrvbcFZ2n1A3AL09Zdrpl01ZB/pXx/Dhtw7nYv1119/BeAG2AFAWloagMigq8aNGwMA2rZta9rkHpctW9a02b4DZexBq7ORwgsVV0IIIYQQEgqouIYA+fVoc7S3/Wr2SiPj98vSti8VV0JIfmBTw7SSKM8iXWFJUiRJpSWplgW4ap1W4wT97DwdnnG2Z7Y+R1FG5V/btbYppbpfUUu14m07lrTp9FqioG7fvh0AMHfuXLNuypQpACLvtSipWkHv3LkzADfoDnDTXNnQqros63GyUmQ4oeJKCCGEEEJCAV9cCSGEEEJIKKCrQAgQ84ktIEs70wu2KjBiAgrqKmALBPMzrdHBnRCSG/QzRJ5t+ll08OBBAMCuXbtMm5igZV8diFWlShUA9mpZtuBVP5eBwvKM83MLKFmyZLb72J7nQYOUJH+r/t6xuR7IfZIcuwCwaNEiAMCCBQsARN7DypUrA4gMxGrTpg0ANyALcF0EbK4fGu1WJ3hVDCPhgoorIYQQQggJBVRcQ4BXsJX+5Rtdn1pvb1Nmo/uPXvZqI4SQ/EA/f0Sl27Ztm2kTRbZ8+fIAIhVXafN6/gHegWC2VIKFSamzjVNSU2krnaiQsr2tqpVfakQ5hg5qkn51wJxUMROVFQBmz54NAFiyZAkAVw0H3KArUVkBoHnz5gCAlJQU02ar2BU9DsCe+oqVs04feCcJIYQQQkgo4IsrIYQQQggJBXQVCAE2twAx1djMH9rcFU3Q4ANbrjttHmLFEUJIfqBzhm7YsAFAZNBPqVKlAACVKlUCEOkqIKZlPzOxV/5qW77TwoRtTNE5vQE3p6qs089zr+tjW6fN8ps3bwYA/P7776Zt8eLFAIAVK1aYNjHft2/fHgDQtGlTs05ytdauXdu0VahQAYC3e0A845Tz19+jtipipPDDu0UIIYQQQkIBFdcQYHOIl1+vWo2QX5Tyr+2Xqv517qW+2tLSFHblgRBy+nHkyBGzvHHjRgDApk2bTJtUTpJUSlpx9QvKiiYs6bD8xmFLoShttmpRXkFZWrWUAKzdu3ebtmXLlgEA5s2bZ9okOEvSYgFuJazu3bsDcIOvACA1NRWAPY2XbUxB0dZHOQ/bd5tNXSeFFyquhBBCCCEkFPDFlRBCCCGEhAK6CoQAmzP93r17AUSazMTcIU7tycnJgfr1q4LFQCxCSEFx+PBhsyyuAlu3bjVtLVq0AOBWWNKuAl5BN7acrbbnXmEP3JFxiosYAGRmZgKIPEcJRBLzuM1lwNavzs8qOVinT59u2tauXQsAOHTokGmTeyD5WQH3/jRo0ACAG0ynx2RDuzvIOdqCh7VLg61ylq3qF7/bwknh/kQSQgghhBDyP6i4hgj963nnzp0AgN9++820yS/KZs2aAQBKly6d42PZlIcwpoohhIQH/YwR1UwreTt27ADgWpwAtzqWBGfJ//2OYXuehbmOvT4frVIKojTKvzYlWQf77tu3D0CkVW/hwoUAgPnz55u2tLQ0AJGVsJo0aQIA6Nmzp2mTVFdlypQBYK++pZVSGZ8+F9t5yXb6/G2BaDalOWz3mGRBxZUQQgghhIQCvrgSQgghhJBQQFeBEKHzGYr5ZubMmaZN8hmmpKQAACpXrmzWiQnGzyHfK0+edlUQk43NSZ7mF0JIbpEAIzFFA8D+/fsBRAZsiUuUPPeSkpIC9R/U9SkszzP9bJdrYKuiaHMRyMjIAOBWJgPcQCydn1VcNfQ1btSoEQC3+hXgBmLVqVPHtJUtWxaA/Xp6mfs1tiqOtu+dePsTwnKvz3SouBJCCCGEkFBAxTWP8EsplRtEXdi+fbtpk1/GUqEEAKpXrw7AVUODVsnSyHa2X6d+6WPi6T8n++YHQauJERKNLegnLKpdXsz7vDh/HXxz4MABAMCePXtMmzyDSpUqZdrE0iRBP5L2KZ5x5nWwqe0Y0f16Vavy29e2j14ngbo2K5lY7nT6LLHgLVq0yLTJ8vLly02bVLaSAGAAaN++PQCgY8eOpk3U76CpxGQ7PV5ZtlW6sgXRafVU1utgL9t3GgknVFwJIYQQQkgo4IsrIYQQQggJBXQVyAY/p+5oE4gtv1xe5YvbvXs3gMjceatXrwYQaRYT80zVqlUBRFbOsgVl2UxRcl4SGKGXdcWRxMTEQP3KtfMyewXNnejn7pBTU6XNBcJG0MCNwm4WJnmHba7r+SRzOyf5Qb3MzUH78nLp8XvGCXrsXqZfeQbqfuM9f51HVMzXmzdvNm3yTNPVsSQI1av6Un5gy6Mqpmo/c7eg74Ot+pPtHGU73Z98L9iCmMTlTHKyAsCCBQsAuAFZgOtKIPlxATc/qw7EkvVBK5bZCPpdEPSz4+U+EOYAPJIFFVdCCCGEEBIKqLhGIb9e/Rzjo9fbts9JwJb8Utf1obdt2wbArdMNuCqsPoY4zkuQgvwfsP8C9hqzX+or269XW79BVKN4A8c0tnviFXSRk4CIoPBXOwGCW2uCzt2geFW4C7pdXgRP6nOOtw9t6RHFVVdukkCsatWqmTZR+vxS/XkR9Np5YQssst1/LyXRb+7YLHte47RVwlq6dCkAYNasWWbdihUrIrYBgJo1awIAWrdubdratm0LAGjatKlp04FyuSWvLVj6OyunAcWk8EHFlRBCCCGEhAK+uBJCCCGEkFBAV4EoDh06BMAeiGQzOwi2dbYgDT8zheQsFNMN4AYn2JzKdY5DWZY8ffr4Nqd+6cPmFqCPJVVSdB9BTVtBgphsJlO/nHu26+mVC1DOy+as7xdIkJscvUHyOeakX1I4sM0/TXSQjt5Oz0WZp37bRX9m4g1W8VvvFxzjZW4NGhDjha4OKM89HZxVq1YtAECNGjVMW/ny5QG4z6ecnKsNWx5R2+fZ61klY9Lbyz3W+0kwlS3ASrsH2Ny2vCqFrV+/3iyPHz8egJufdcuWLWaduFv06dPHtEkgVoMGDUybuGhoNzQ5N6m+pccn+WSjxxyEvH4W8tl6+kDFlRBCCCGEhAIqrlHYftF6bSfYVAZbmiVb4IKtWoxWGaRNAhMAt+6z3lcc8W1paYKmmZJlra4GDSaxHSv6uDlJaZVdX9nhNc68CH7xawsaqOfVBwkfNiUvWvG3ba/X27azqaC5mc82tTYvqjnFq6jZVEuxeAFu2qYdO3aYtoYNGwJwqwQC7rMwaHCWbby257O02bbTyrhNhZaxyL82q5bfsWTZL72gpK3SiueuXbsARKZQnDNnDgBg69atAIDSpUubdXJdzz77bNPWqFEjAO711eeoxy7fO/qayHnnJtiVkOyg4koIIYQQQkIBFdco5Feo/uUr6qNWQ+TXrfwC1SlBbL5psq+uDy2/RnW/en30mHSCZ/FnlaIDgJucW8biV7PbK8G1Tb3Qv7JlnLbrZFM85Vj6XOUYfuquFzaFSiPHsKkXNpXL5tcm++pxBi3oEMQnkIrr6YVt7thUO9tn3TYXbD7bXgqhrT9bIvrcKK5BUzrZxmn77MjzdP/+/aZNlFbdJuqfpGrSbfGSk6IMNsVV0M/b6OeY7Tmp8VJX9fWSY+i0YTt37gQQWVBg0qRJACL9WGUsUjxAUlsBrj9r/fr1TZu28EWPSadrlDHr8/cqskBIbuGsIoQQQgghoYAvroQQQgghJBTQVSAKSX1lM3dpk3K8lbNsJrO0tDQAkaYwWdaO85JSpEKFCqZNXASqVKli2sRVQLa3mQL9zH6yrM2Y0UFfGp3uxM81Ifr4NrxSZGlsQQrRfdj68zK7Ztdf0KpfXmMKWnWMnF7YTPW24EnBlvpKEx2U5ecqYDNBe33ubcRbYcsWdKa3l3PUzxN57onZG3Cfj7o/SX1VqVIl0+aVDio/sX3GBVvgVtDrr6tfybIOWFu5ciUAYN68eaZtyZIlMeNo06YNAKBDhw4AgK5du5p1EuzmZ9q3BWJ5pSYk5FTA2UUIIYQQQkIBFdcobAqBrU2U2ei0J4CrgtiCL/R2Uhda/1KW9ZKKBHCDD/SvXHGc14qrtNmOb/tVLA70tqCr3bt3mzZJraKVjcqVKwOIVFm9lBzZLogqG42XumQ7llcSdX0PgxYgsKlmgr4nsmxTo7QyTaX19CRocJRN/Q+aUipa8Yw3BVT0stfYbeu8kvIHDc4S9PNp27ZtACLTAMq10AGo8ozzSmwfNH1X0GeH7Vy9Crr4tQW9Z3KMvXv3mjZRUn/77TfTJstamW3RogWAyOIB0paamgrAfYYD9nkn56r7lTb9XWArniHb2e4Tn38kt1BxJYQQQgghoYAvroQQQgghJBTQVSAKr4o02sQhJhCv4AeNmMV0Le4NGzYAcCua6H61KUbMYxKsALhBDNrsJPsEdYy3jV3MQlK1BgCWLl0acyxxUdA5FMuUKQMgMqetLMu/+rxsJrOgY/cy9wXZL54+vKp5+QWueG1Hk9npic1VxBa44nf/g8wPL7eY6LF4EXROBgniCnpMbYLetGkTAPeZCLjPDJ2zVYKybKb66HHEM5Z4q2nZXD/y4vOs3SckYE2CrwDXrUyeyYAbqFWjRg3TJrlaW7VqZdrERcCWn9WGVzU32/W3uQoQciqg4koIIYQQQkIBFdcobCqgrS06EEH/Kpdf7VpdPHz4MABg1apVpk2U1qlTp5o2CdiaNWuWaZN+bMFhkgILAOrVqxexLmiaGN2vKMKigADA9OnTAbgBFHofra5KEEXt2rVNm1RiqVOnDoBIVUDUWu3Ab6vcFTSIykvx8VJXbcEntrRZfuqWl4LM9DCnP/Gq9ba0UbYKU7ZUWqJu6XXy2Qma+ipo6jfb3PXqz6Y42z4buvrTunXrAABr1qwxbaK0atVQLD26v+jj5kTts10nW5CrrUqUTUH3Ul/lHtqeJzoodtq0aQAiA7FWr14dc/yzzz4bgFv9CgCaNWsGIPJ5q5/VQZDx6WPZKkAK+jkeXbEQoIWJ5B38NiWEEEIIIaGAL66EEEIIISQU0FUgCjGF+AVTRJvHbGYQ7dR+8OBBAJEmeMnPp004Yj5LT0+P2VebZ8RFQLsKiIuANtkI8QYEaVOcmIr0+Rw6dAgAcODAAdMmwWPiFqHPY8+ePQCALVu2mHXiKqDPXyqGSaCX3s5WTcwr/yDgXdVH9rUFX/hV2LK5AAQ1GUabMmlCOz0IGpxna/MKCvVzMwjSh1+OUS/zek4qbAnyHLF9nuQZArjPBV0RqmXLlgCAxo0bmzYJzvL73AcZb1D8quMFuXa2XNn6GS8uYitWrDBt8+fPBxD5nSHuIOIWBgDdunUDEJn7W6os6mdrtLuG7bnn5+ZhqyJp2445W8mphIorIYQQQggJBVRcoxDVUP96FCVTpwCRZS+lVVc8kcAmUR4BoFatWgCA9u3bmzb5hawVBelH//LOyMgAAJQsWdK0VaxYEYBdcbUFBNh+FcvxRe3Q/WqFRI6vz0fUEknjArjnLUqCVmPluFpJrVq1KgCgbt26pk3SuOg2CdLQirMEo8VbTcimFARVzfxqkMergpFw4RfYZ0uzFB1gBbhzx1ZZzhawZUtHZKtq5RdY5XU+OZ2nfinn5Bmgnx1SnU+n/CtfvjyAyGBPsb7Y0lYFTUsVNHhLjqGfp7YUUXLd9T3xegaJ4qrTXP34448AIoN3pV8dYNWhQwcAQNOmTU2bPB/1s9AWHCXYrEoyF/V5yb76vGzXJLpfvexl/SIkp1BxJYQQQgghoYAvroQQQgghJBTQVSAKL9OubTub+UNM+9oUtHXrVgCRpkAxgXXs2NG0iQlcH3Pz5s0AgIULF5o2McHrXIg2M2OQ87JVBNPVasRUpfeV4+pgCql6s3Hjxpg2qZKj3QikD3E70NvpCmOyj84jK9dJgjUAtyKMDkgQVwpxI9CuFdKmTWFeeSc1Xm4GNrRZTqDLwOmFLXDFFsRnM9Xa3EzkM6Dda+TzKfPY9nkOOic1Xrldg+I1j/W5iouA/jzLuerc02L6lkCj6PXxjMMWiGTbx++575UP2paXV55t2m1MnucLFiwwbYsXLwYQ6Y4lwVbNmzc3bZ06dQLgugcAwfN1C0EDAb2CUr1yC+t94q1sSEgQqLgSQgghhJBQQMU1CgkU8gtiiq6qolURcbCfMmVKTB86EKtBgwYA3OAnwLtyl/5FKwqFVlxlWcakfykHDRyynau06XRc0la5cmXTJoqnVMsC3HRZoiRoRUGumQ7IkCCN7du3m7bly5cDAGbOnBkzdq2uynWsVq2aaZOKXRLYpdfJ2CUIRPen70PQYC8bDM46c7ApqV5pqGzKqFZrJUWStmqI0ioqpC0gyCsFUk7wC7AJMp/1s0MUx/Xr15s2UZLl8wq4n2e/gLUgQVk2xdV2bfR2tipRcgxbtT+NPJ/F4qTV1UmTJgGIrJIlVQc7d+5s2tq1awcgMs1V9erVY44vz319/rbg4ehnkf6OC7J99LIg10x/F3lVzuJzj+QWKq6EEEIIISQU8MWVEEIIIYSEAroKRGHLTyfmDh1EJM72YsaT4CsAWLRoEQBgxowZpk1ytp599tmmTQKMJE8s4LoDaPPgsmXLIv4FXHObdh8QE4wtmEoCHfT52Ux8QSvtyDXROVi1y4MQnfdQm93keuqALTEf6sA22VdXmhGXAx3EJf3p7WRZzK46mEvGq/MfituA5IsE3CpeupqXmGxtgV0aL/MYTWanF16BOxoxo9rcArT5eN26dQDcz7reV+asuOcA7tzVwUy2gEV5BuhngW3seenSos3Icj46L7V8tuSZCLifz3gDzDS2gDmbqdzrHG33U7sZyDNYVxGUAFUJqJXvBMA9f/3slLzZ2pVMcrWKG4Eesy2ISmNzg/DKd+t1/22uArZKaITkF1RcCSGEEEJIKKDiGoWtwpSglcG5c+cCAObMmRPxf8ANztKVYcTpXqdFkdRPWg2RX+pjxowxbRKUtGTJEtO2c+fOmHGuXbsWgKtCdu/e3ayTiitaZZF9/X492wK7RGn0C/6Q9baKPzIWnc5FlBcdpCHpwvT1P3jwIIBIlUPa9HaiYP32228AIlVzOVcd/GGr1iPBZg0bNjRtMj6tMmsFRZBrZgvgIOHHZoWwKZleFYwA18IwdepU0ybV5rQ1RywN8nnSnxMJ4pEAHsBeiU5S3WlLg3wG/FQ4G0EUWXnWAe756POS89Cpn8Q64metCFIJzPaMs30mbc84mxVOI9YxbWGbP38+ANdKpu+/PJdbtGhh2uS8dfCoHFdbqWxjDpIGEYi9nzlRXKODkjXachj93I/um5DcQMWVEEIIIYSEAr64EkIIIYSQUED7ZRxok4mYSsQEpk0nYvrW5mYJztKVm2zVWmx5YcV9QZuixYymTUcSUGQz53hVxPEzu9mCNGx5+oJgy4+rTV3iKiAmTsB+PhJ0ZXML0CbINWvWRBxfu2+I2VW7D0i/OpjEdqwtW7YAiAz2EjcDW+Uur2pe+vxpTjv1xFsdKug9sQXOeO2rAwslEGvWrFmmTQK29Gdc+pZ9xT0GcE3WOleyzFP5F3BdCXTQjwR02eapLSgxaH5YW+CSjFN/Flu3bg0gMge0jCneZ4xf4FK8pnKNPAv0M2bp0qUAIu+duG3JM6tevXpmXdeuXQG45wy490I/C+QZZMst65dnPGjVr+y20ctBq4npeWobEyF5BRVXQgghhBASCqi4RuH1S1FXWJK0JaKk9uzZ06wTNUT/ApUqTVpREPVCH0uUxj59+pg2CazSKqz8kte/vEWRlYAhrahoJcUL2/kHVSjyEj91V66tVqHlGmulu0mTJgBcxUerq1KxSys/UrlL/tXrRRUD3HuslSdRvHVwjMwPCYjRbRKQoquPSUBGfisVQVTI3IzJT7XxOkZeHNevLrvXWPJaPRIrjVYhbcqoVNY755xzTJvMMVHe9HwWhVanzxLl79dffzVtooLqeSfBW7pKkwQj6sAueT7pdHFegYei/ur0fhJYqtPWSdou/TmR561XaicbOkWgrUqW3E8/1Tha3QaA1atXA4gMnl28eDGASPVbrm23bt0AAK1atTLr5L7qtGVyLB3EZku9Fb19duTl58j2LA76/UDIqYCKKyGEEEIICQV8cSWEEEIIIaGArgJReDnp63yjYo6WKlW6MovgZ56ymVPEBCdVUwDvyiReJhttWvcyi+XErFQQpiBbjkVtppT7o106JC+iuFbo+yTBD9pVYNu2bQAi3QJkWXLsAq4rgTbViplPmyrFvUPMuIBrNhWTrs4FK4Ew2gVC2rS7hyzr3IlyLXJyb2yBGNHrbMS7vd4naOBMvMEnOcGrSpTXsWzr/IKzxESu3VEkv7OeOzJ3u3TpYtrEDUXmsa60JVXn9GdC+tMmaDmWnve2AEgx8+tAJDGB6zkrnzf5V5+zHEM+V/oYOuhLzOY6t6ye24LNzSPIfbcFDmlslf3kOm3YsMG0iVuABGTp7XQOVgm8EleBxo0bm3W285L7oz8Tts+z7XtGyI9nspf7AiH5BRVXQgghhBASCqi4RuH1q9WWgkR+FfspAEGVHFv1nbwg6K/x082pPloh0EqB3DutgIiSpCsStWvXDoAbzAW4apROkWWrNy9qjA6YkWo6Om2RIOm1RMnXY9FBMqL467RhMnabohMvQedBUOXTppZqdVGUJq/UOjlJc2Q7ftDPotc2QQO8BD1eWxCVBABpJbNKlSoAIlOuyXo5rk211BXeJGBIB0JJUJgOBJNlrQJLNUAddCTnocckc1VSPumgL1Ew9edEArHkX72P/nzKsYJeYy810Kay6nsilhFd2VBUVR2IJeqrtuqIIi4V/gDXYiYKuX6ey7y3nZee93Iefqo+IWcaVFwJIYQQQkgooOKaQ6JVm7zyKzzdFM/Cgk1xsdUiF99RrXyJMqMVGvGP1WqUqFWbNm0ybbKs/QTF309UHq2GiRqn54QcS6tW0p9Wt2TMWg2SlGvaZ1aULl0MQxKfx5tE38/v1GsfLxXUpq7ajpUT9dS2b7z92Px0vRRfvZ0o8pJaCXDngvaTlGWtqkanntIJ6+Ue25RhfXyZb+ITCwCrVq0C4KbPAlx1UfvHilqrfbalb1GN9XjFB1z7gsuynrvRfemx2+Zibp6TogLrc5DPk74nYhnRvu0yFp02TJRWscwAkfcxGpuSbEsz5aU483uCnMlQcSWEEEIIIaGAL66EEEIIISQU0FUgh3iZKoPsl9f9kvgJeq3FfO4VnAe4bgbaBCppcHRglyzLv9rdQNwBdKoiqTS0cuVK0zZnzhwAkel7JChLV+SRSkSpqakxY9LBXlJlTVKK6cApQZulhZxUy7GZRaPNwvpzIimAbCmy9D2R9bba7rpNlm3p4mz92c5L+vUKsNTo7cRVRFIrAe711pX1xNxsC9T0Mh/7BSKJi4ieE3L/JY0T4M5LHbAky9ptReaqpHlbs2aNWSep5LRZXuaYVLXTfejqgHLeXpW5gFiXK50ySs5bz1353OnP04IFCwAA06dPN23iFqGD3Vq2bAnArWYIuEFpOthMsM2/oHNXf7YFW5ApvyvImQYVV0IIIYQQEgqouOaSU5WWhA75eYNX2iJpsykffsg+OvWULGvlRRQUrQKJuib/ajVW1FUdzGUrgCBj18qXBL3oY8myrrcux9PpmCSgSwJ8tMonbTpgTQpl6KIINkXWC5syKGjlySt9kI2gKnC8aYb86rPbCiUIWj2TID4dHCUppbTiKm02xdFrnLZUYXp76U/PUx3QF92PDqwSFVKnzZJ5JEqrDuaSACdRYwH3vPTckc+O15wAggcKChKIplPUyedIK94ydq34Ssqvtm3bmjYJxNIqrD4PQa6dbe7aCgv4BfQJtlRf/F4gZxpUXAkhhBBCSCjgiyshhBBCCAkFdBUgpx22wB6b2c1mlvQy9wZF72sLphCTuoxJuxtIDkydB1KCWHQQlyzbKnfZgml0cMzMmTNj+hP3AQmc0ZXDJPhE566UNqngBbh15rWbQU6voy1wyq9yli3oy3Y/gwblReePtbmU6PvqZebW5nZbhTVxEdDXWEzqXkFxtmui3ULERUHfE1m2BazpY4lJW+dltbnDSIWvBg0aAIicO+L6oqvEyXxu3769aZN99LHkeupAQVsQXTR6nVzr8ePHm7Z58+YBiLz+clzt5nDJJZcAADp37mzapFKdzT3A5g5kCyy05db1ehb55eXNi9y2hIQJKq6EEEIIISQUUHElpzVBVAg/Jc/WR25Ujmi1Tqt2NkVL0MqTVNPSVbdEfdWBM1KDXlfzkuPpgCHpR/rVCq2ocFqNsqU+EsVVq2YS2KXbZNmm5NkCV2yKa1DV1HafggZ5BdnO7/iiNEoKLMC9T/q+y7XTSrttDkSPLWh6vaDYVEB9jqLW2oL35N7pdGySZqtWrVqmrXnz5gDc1FKAe97a+mA7R5sKKQqzXFd9rSXllQSJAW7qLT3/JBBr2LBhpm3GjBkAgOeee860/fnPfwZgV6uDWnW8KmL5nattO6ZQJGcaVFwJIYQQQkgo4IsrIYQQQggJBXQVIKcdQXNrCrZgLlt/QfO92lwPdL+yXkyrttyMNnQ+T1seWTEtSwAJ4AZR6eAYManq4CzJXyltunKXuB5od4Pffvstpg85D105TEzEOu+lVOySql6Aa1KW/LBS3Umfa06qdAk2M64mSKCeV6Wv7MYk106bquVeVK9e3bSJqVzM7oB7v/XYo4NzbNXcJMAOcN08/HLQyrKep7bALltOWdlH8rmuXr3arJM5oYPOWrVqBSCycpa4SmhkTF7HBFx3mCVLlgAApk6datZt2LABQOR1bdOmDYDI/KwSCKfn3RtvvAEAuPfee02bXPebbrrJtNk+i9EuL34VseS+6meB9OHnynT6kuUCsm/5QtMyZ2NWHuGkqs1MW7vmWQGiZeNLI01CDBVXQgghhBASCqi4kjMKmyrmp5rZ8Ap6ibciU06w1TsXhUYrblIRSStUEmSllR8J/JLKSKJiAa5qpRUlOa7uQwK7dCWw7du3A4g8f0nRpStHSUCP/CvKq17WwTTSZlMXbXXcc1KRKd4qTYJWxSRQSNRAwL0+qamppk3UZ32Nbf1FK/g2td6mwmbXn2BTkIMGgMlYZM7o+ypzUpR/wD1vHYhmSy9lG68o/Hp+ivq/dOlSAJEV4eT8JVUX4CqurVu3Nm1iGejatatpu/TSSwEA5513nml74IEHIrYHgN69e8eM2Wve2YKuti2aCABYtjvWWqSJTtGml+1zsopZatGnLQCgpmUrT4651ppda7Ku8YL/KZ9ZZH0GqzZuZVqapFZQa+Jg7wyz+NzFFwIA/jHzUHZbAwASG9wAAPj4xyGm7brGlF9PZ6i4EkIIIYSQUMAXV0IIIYQQEgroKkBOO2zBDDYTm83cHm+/fiZm6VtXJJJ+vI4bNCDDdiwb2qQs5nVbzkwJYtG5OMW0qysdiclW53uVoC9dzUuCkyTvKwAsWrQoZjtB3AH08SWISVfpkkpTOhBN3CJ0/lM5n6D3OF5s998WOLRwoRtgIgFAHTt2NG1ybnqcXiZ9W+5QWdbBTDZXAhmzzgtsq/AkQVl+wYPiLrJ161YAka4CEqin750E4ulAKC90YKFcR6l+BQCzZs0C4M5JnR9W3AJatGhh2mQs2s1EzkHnKu7QoQMA4J133jFtd955JwBg0KBBpu3iiy+OGXP0vdPX1RZstubzrD76vRazKpfcb5Z+dtoC8HMVcF1/No1/EgBw7dXPmzYfq71BzPdvjnjDtN3RrqLHHlmfk+G3n2ta/rEgK9/vw2OGmra/tU0GABxZ/6Vpu7vPfQCA/uc3Nm311mSNvTM9Bk5LqLgSQgghhJBQQMWVnFEED2pwCRpY5RX4lRfBWUGrJOWkmpQg6ppWYyVVkS2lj1QtAtzALlvlLq3CSfCMVqElYEmUP51mS85LVwkTBVcrszJOnVpJlnWwl61ylyiz+ryDpimLRl8TSSsmaiTgBgpJWjDADVTSapzt/sRrJQgaYGYLJgp6rOiAKV25StRNfa5Spco2NgnwA9zAPp1ea/78+QCAVatWmTaZMxLgphXXdu3axRxf7rttPmsVWhgwYIBZfvPNNwFEKuiSfqtnz56mzZYGT3DTrG0wbRsWxWwGJGYp0w1SXaUy/i9sNzVdbNhfLHsnDTTLZ/V5FQCwKWKLrF5SGqSalor4X7DlGvdzn7kmSyW9s9ss07bz16yUcH+3yaA7sq7hF9+597/Ji0MAAC9c1DR2+2p/NYtfDp0LACh/6VumbcyC/ymunWN3JeGHiishhBBCCAkFfHElhBBCCCGhgK4C5LRDmyDF3Gszd3qZ9m3ViuKtyKX70SbIeCtn2fI+2s7BNhY5vp+bgVcAmM1kLIE72twvwS7afC/5LrX5VoJtbNW8xLSug75kWZugJWenNsuLmV+7AFSsmGVm1TlDZUzafCzLVaq4eS8l2MvLVK6vm9xjfV7iAqFN4JKzVKo16XHq62m773KPZc7Y7qvfXLdVpPLqT2Nz29i5cycA1x1CV12Te6Fz1ur5EY12M5k0aRIAYM6cOaZN3Ad0YFePHj0AuIFYOhBM3BL0udrM97bPomynA7YeeeQRAMD1119v2t5++20AwLnnuoFFcp3kvuvrKve4WDH3mXDSPYRLh2cAAD/+cptpapgHVeSsHMvKn/ryda+aJuMikOie1zvzfwQA3N08NkPr3gUvmeVruj0MAJiUuca0/eNvHwMArpt6BwCggdoXGVmV+3R22MrJpRGEkoniBuS6F6UfsW9LTg+ouBJCCCGEkFBAxZWcEeSFKhE0sMtPGY3eTqt2Xum18kRZsRw/etlvHNm1ieKpA5x0UJQgyqRWskSlFLVu9+7dZp0EYum+5Lg6pZbtuku/WvGWIDKt4K5duxaAq9ABrgoqCqFOsyVjEeUZcNVfUQUBV5nUlaHkGJIWCnDVXVuqJK/5ZFNXve6r3jfeamGAG8Qk1c8A9/7I/ZRAN8A9R0mLBbiqpg7AW7duHQBXSQfctGlahRUFV9KhAW6aNqmEpa+1TUm2paPzOm+93UUXXRQxDgCYMGFCzD7xXmOrzt0x6xzr29blMQcnfAgAeGlX7Lq+H35qlm1Kq1Cx3X1m+dmHXgAAdH9WdTgtS5H9dlGW4vqQW7gMSO0CALjCLb6F+/6ZlYbr295vmrYr62Ud/9jOKabtqQezFG+k3O+OuW22wySnAVRcCSGEEEJIKOCLKyGEEEIICQV0FSCnNdHmeJt50M8FwBacFdRsbwviis7tanMVyIlbQLxuBragH6++bAFrfm4RtvMXc7gt2EtM5pKTEwAyMjIAAG3btjVtYmbWQUKHD2cFeOjALgkc0m4Bkm90xYoVpk2CqHRwjuSAlcCtxo3dyjyNGjWKGaeMRczeeuxS/Qtwg7K064F2rxDk2nrlArXlXbVV07JtZ6vO5hcoKMFGuhKaXFsxn+vrJNdHu1SI+4bOxTpq1CgAwIIFC0ybmPx1YJcEYDVv3ty01alTB4A7d7w+a3o56GdCj12WzzrrLNP2008/AXBzzALuXNX7RverM6QumRazGWwOBKfKbWj57JEAgMyI1qwkqJd18q615eIGFnbrcysAIPHZF01bJrI+bz/OWw8AeKh1qto3637e89VHpuXHjllBaVfV/9D7sIlZuXoHTXrcNJ1bLruNyekAFVdCCCGEEBIKqLgSYiEngSteaMXLprTmBUErZwnxKsg2ddVPcfUak00FFDVW15EXJU2nqrIFeIm6qRVXCZTSwUESWCXKK+Aqs9KHPoYEimk1UhRaXRFMFFet7srxdZoruRbSB+Cqu1p59bIIeFW10m1B51hQJU+uia4EJtdAFFetQsv93LBBVYn63/KyZctM28aNGwFEXidRWiXoCnCVzHr16pk2HYyVHTbFNWg1O33fZR9dJUsUV11NSyp22RRs9/iBDo+E4+482b06S7VcsFEnjsr6fNRp56rQDVKy5rilRpVivVn6/RdLVBa6AwCaNLas8qNm1k4dVZOIypMWiUUiNWa34o3/aJbH7jwHADDrm5Gm7dtFWZ+tsg3dFF1XXHYeAKBFFe+zJacPVFwJIYQQQkgo4IsrIYQQQggJBXQVCBFBTVskFq/qR0Gva26uv1eFo6B5X3NzrLzANiabGTXeQLCg6HvoVh9yH2HiXqDzvYp7gQRTAa6JXpvqo/PIAm4AkrgR6HyikmNU5yIVVwFdJUuuj7gCAG4O1NWrV8ecmw7isgX2eLkICLbKcUFzEPshrgebN282bWvWZFVHatAgqxaSDqaSnLk6YG369OkAIl0qWrRoAQDo1auXaZN7JsFXgJtbV1fOym6MgBvY5pcr2avamO3zpO+ToN0hvK6tcRU4esy02QpnNdkwGADQo0of0zbzkGVDC2W7PgsA+Gn0301bt4rRW7lBfydsA0hJBgAEq18Vxf/mQifVZOLP1md9nnaodVVtfSRluYN0ucHND9vlhpwMhpxuUHElhBBCCCGhgIorOa2JVk3yOo1MXlAYx+THqVKE4w0ss6XesqmwWvEUdDUtqXqlK3GJ0ipBXBJABLjBSbIN4Kq2Ul1Kj0WrwKLM6vRJotaJogi4wU66SpMEqsm/ukqVnKsO8LJV4soNomCKkgq4yqmco07zJdvpSmiStqxatWqmrVWrrJJJHTu64TwS5CXnCnin6xJV1RaQ5qWo+rXZ0GMXtFofjdWqssmdT4ss+6z4ftj/ltz7mdIgFQBQsZhrLdi6Imt+ajH20Mx/AAC6t3Xn4qw1TwIAOpsYJvf4v9vScTXOuv6VLKtyxa6skaapJqviSkg2UHElhBBCCCGhgIorOSMIo6oZNvLiGserxtqS6Pvta1NmJaWSVitF/ZQCBKIKAq5/rKisgKvWajVS1FXtTyvq6uzZs02b+M/q9F6VKmVpXdpnVNJAyb9a+ZOUXykpKaZNlOa8Ul7Ff1ePU/x8Fy9eDCDS/1XSi2lluGvXrgCAzp07m7aGDRsCiDwf8fG1qaW2+26zqgRVWr2wbW/zsdVzIchcTCii/I4t2yW2y1JIf/z+YdPWs3psoYoiR5cDAN67xFWr75n0Pz/rTYNM26Av78jqb0DQggKEFE6ouBJCCCGEkFDAF1dCCCGEEBIK6CpACAkFQVNq+aUD8zIp21JuiRuBDpySACxtMhe3AFuKLB30JWZzfXwxi+vtpE0CxwA3EEr6Xbt2rVlnG6cs6+A0CZ7SQVQSWKUDoWR8kr4LcNNa6cpZMmYJDtNuAZKOTFe66tChAwCgTZs2pk3cIrzSfGVHkEpYtmputj6CYnMF0H3owL/o45u51uAO0zbVuTPb/vzcYRJKZqUSu/vTD03byFo3AgDGqO3GfDUVALBjwHUAgKpw04y1OOt/CzpIa/d+AEB6zBFzSYmsALvsw+wI8YaKKyGEEEIICQVUXAkhocWmZNkUKq1UWVWr//Wj0y1Fq7r6/14FELS6KcqbVmbr168PAOjUyU3PLgFdWq2VZa3CitK5adMmAJHpuGR7rVqKqlqrVq2Y48u/gBuAJkFSgBuAJAUGADegTBdPkMAzUXelEAEA9OjRAwDQvn1701a1albyI50iLF6l1XbfbffaKw2eTYX1mht62badbtMp0fQYAXfO2PrN7riCLR2Y2a6mGzx4XpOsf8esUBtGpaGqqjTPorG1LoD/pdnKPsmXB/+bM3Ns69qkAgBSc9IvIaDiSgghhBBCQgJfXAkhhBBCSCigqwAhJHRYKxF51KC3mY9t2Grae+WP1evEBKzdByQvrA5YElcCMZkDriuBVJUCgH379gGIdAeQ4CmppqUDrCSISvch49R5ZKUCmM47Km3aBUDcIRYtcus6/fbbbwAiXRqkwlXLli0BRLoFSO5b7T4gQWc2ggbgaWQ7m6tI0L687rWfSV+QPLp6LF772VxabMcKnnfWDeJL3+uxmSHVLDXo+L/8sJL/FQCwEACwfr11F2/2ZLkZrLSsOrd1PUsrIcGh4koIIYQQQkIBFVdCSCjQCpVN8bQpVEFU0+zaooN9vKo1Aa7S6qUo6rHo7WRZUloBrqqqlTwJqJKKVFLJCnBTZOn0VaLWbt++3bTt2LEDALBq1SrTtnv3bgCRQWSShkvvK20SzAW4aa26d+8OAGjbtq1ZJwFbMl59/qLoAvbAKglEyo1aGm9wli34yYao4Rqtfsv9tI89K3DroFLS09Ky7snq1SdMW/3zsiph1SkRUHHd4t7PWbss6+tnVSVLsaxq2/ParIUXP1WtkwAAI6ZtMS1/TA1WdWvRr8MAAJHDyIoY69chNVAfhGQHFVdCCCGEEBIK+OJKCCGEEEJCAV0FCCGhIzfVj4IGuwQ1M0dvr6smSZBOUPcFbaqWgC7Jp6qPYauqJLlDdeDUnj1ZWTjFPQAANmzYACCyIpdU4Nq8ebNpk+AtHWhUoUIFAJFmcXGRkByzJ0645m7ZTlfkkmpaUi0LcHO6aleJoGb7aILmhLW5ntjaNHLPFi5cGLNO58C13Xe33yw3guXvtjNt3Z4So3qiaTvnrawsqKPvbmHakqLGAQA4luVyMOGlR02TWzHL7e/ay7PyBrt3zqVcz+sBALcnuq4CH/7PC2XMoy+Ztkl9XwEAnOsWZ3OHsfIDs3z/YytiN2j1ZwBAv9aWARASB1RcCSGEEEJIKEhw4i3SfJrDy0FI4cS3ZruHkpqTNEM2Fc42FkGURq04ivKmU2TZ+rD1J/valEevMel1ov7qSk6ivo4bN860yfLKlW4CI1FcdSCWLOvzkQCxbdu2AXCDxABXXU1NTTVtkhpLp8hq1KgRAKB69eqmTQKcbNXMbGnI4q2+pe+TLGu13JaiSo7Rv39/0zZy5EgAwMyZM02bVEXzHNOW4WbxygZZ/X2XGbtZ2eaXm+UBFzfOajvkBmJN+DpLX12wK3bnxHPfN8uLfroDANC4eMxmhjWDzzPLLW7LCs6K6LVslvp75U2XmKbG6Vnn/dEXv5g2dyi1TdugWVnVtJ7s7DEAEgr0M0Y+O7pNPrO2+W+zEunPorYwZQcVV0IIIYQQEgr44koIIYQQQkIBXQWi4OUgpHDiZ1oPStBgq+hjBc37qs1eYjLTpvWggUBiZtPmtuBVlCLHJAFZAPD7778DAGbPnm3ali1bFjMOCcSS3LGAa8rXJnXJGysBXrrSl5j9JPhKt9mqiekgLsljK//q9Xq76IAx3a/OFeuFXCc/VwFZbty4sWmTa6tzu8qYvXILa/b99iEA4P/94S+mbegai9+AJ24gVoMbsvob+eEA09Y8KWYHC24O4AWv3wAA6HXfT6btUMz22Q0lyw3k4VHTTdOzF2S5jdBRIPzQVYAQQgghhJAAUHGNgpeDkMKPqFZ+KqiXWmrrzyvNlQ4Is/Ur+2qVwaaaBn3G2Kpz2fqLRqsXEog1evRo0zZhwgQAkQqhqJY9evQwbWeddRYAICXFrbWUmJgYc4zDhw8DAPbv3w8gsnLXgQMHAESqsFKxa926daZNUmnpCluiwuqArTp16gCIDPaS5Vq1agEAqlatGtOHrlKW0zRbgFtFTI9JjqvPJ/re2QK8bPMEx1xNc+Pv8wEAUyb/aNoWbZMlV4Vu2LUnAKBzly6mrU2NQPJqII6pQLD5o7LG8q07EABZanrDc92ArX69sqqp5eEwSCGCiishhBBCCCEB4IsrIYQQQggJBXQViIKXg5DCT5Bgquhlrzavfr2CqbT7gC3vqpdJPyfVv6L70zlTxRy/ceNG07Z69WoAwJIlS0ybVMeqXLmyaWvatCkAoFu3bqatTZssc6+4B2SH5HEVs58294urgK7cJa4Ca9asMW1btmwBEFn1S65jUpJrb5ZlXWFLliUATFf18grm0pW7pE1vp48rfPbZZwCAm266ybTdeuutAIDBgwebNpkXXvmGgwbd2eadX7AXIacSugoQQgghhBASgNhyLoQQEmJsapQtiCqodcWmkHmlSgpawckviMwrEEuOL0olACxYsAAAMHXqVNO2fPlyAJEBSx07dgQAtG/f3rS1aJFVEaliRbcIvZfSevToUbMsaokEQGnFRIKjqlWrZtqkYlZaWlpMf1pBtqm1EgCl03vJOUqwma4SJqqpPn+p/tWsWTPT1rBhQwBAvXr1TJso0jqV2fjx4xHNhRdeGNMWJIjOD68UaYScyfBTQAghhBBCQgFfXAkhhBBCSCigqwAh5LRHm/RzGrBly8Vp208H5ATNCyvb6cAu27579uwB4JrMFy1aZNZJRSzZBgCqVMmqVtSyZUvT1uV/+T7FPQCIzNUaBG0+lzHb8qNKm65gJZWtZGyAe020C8KhQ1k5TXUOWAmekmAqPfbdu3cDiHQ3kEpYerziorBy5UrTJu4I+nragr1+/PHHmHOVKlpyfL2vX2CbFwy6IsQOFVdCCCGEEBIKmA4rCl4OQgo/QdMH2bClKPLaJ2igjfSrU7vYArZkvR6HKII21VLSTQHA7NmzAQC//PILAFdlBdzKVTroqHv37jFtUn1KlE89Pj0mUT91sJOs15WoZNl2fWzn6qXQ2gLW9PFFTZVqXYB7fSQNl14nAVvbtrmVniSgTQd4SeUuHQgmY9bKsFwTrQzfcccdAID69eubNqmmJWqwvtZeKryGiisprDAdFiGEEEIIIQHgiyshhBBCCAkFdBWIgpeDkMKJn4lVm5ui9/Ezu8YbnOU1Fj0OMTfb8rPqgCHpT4KJADcAS7sDLF26FIBr5tZmdMnB2rlzZ9PWqVMnAJHBTGLmXrt2rWmTZV31Ss5DuyqICVDnRa1duzYANweqDvSSPvR5eblFBMXmUiDH8AvwErcA7Sog7gN6O3FL0OOUsWtXCTFtSkAW4Oavlepc+vrLOl2lSwLAdB/iXmCr4HWq8KvSJQR1dzhVLhD54UZhy63sdfycjMl2jKDPrIKErgKEEEIIIYQEgOmwoijMv3IIIZHoX+pafRRsgUCiAvilyIpeZ0tfZVMUdJuogLZqTvr40veuXbtMmwRgjRkzxrRJPzVr1gTgKqoA0K5dOwBuFSjAVfV0qiZRcCW1kz6WrmYl56EVTBm7DkSS41500UURxwS8A7BsKlNQbNtLyi2dekvGqxVPqZzVpk0b03bkyBEAkfdJKneJQgsAmzZtAgCsX7/etG3evBkAsH379pj+RD0S5VUfX/4FgNTUVADufQVcVVsUWn0+tjmm2/Q1CILNWiD4WRqi+9DLts9Mbr5j80rpzA59DjZrie2YXmMKGihqs8h49X+mQ8WVEEIIIYSEAiquhJBQoNUgUQFz4huWU4XEpsbYVF6NqCc6Eb3su3fvXtO2fPlyAMD8+fNNmyijWrUSf9LWrVsDADp06GDWNWnSBECkQio+sTqx/uLFiwFEqrCi+Gm1R/w49XmLuiept/SYRV3U16RBgwYAIv1evYo35ERd8tpHfFK1P7GollrJtKVIk7RaWi2VZd1WvXp1AJGptESt1f7BwsGDBwEAq1atMm3iY6uLHdh8YcuUKQPAXoDBtp32F5T76TX/9XWyqYHxquVeyqSfxSPeuRA0PiVov0HPy6Yu27BZeoIeg0RCxZUQQgghhIQCvrgSQgghhJBQwHRYhJBCjTyitNlVUhVp03apUqUARAYE2VL6yHq/lD7Rpj+byVyb5WV7PSYxS2sT7J49ewAAK1euNG0//PADAGDixImmTUzAXbp0MW1t27YFALRo0QKA6zqgz2vOnDmmTfqbOXOmaZOUT2eddZZp6927N4DIKlHi3qDdHCR4bMSIEaZtypQpAFzTtowRAC699FIAbgUv3Z8tcEeTn6ZS2zyxuYPI/ZbgK8Cdl3p+ShouuV7iCgC4qcck0AtwA7tkXmv09RdXAkk9BrhuI1IRDXDvhXYpEFcC+ZzoOelVFU6nMrO5CtgqyxWEmdvm0mDDa5w5eR0SFyZbGjyNBMz5pYELg4sA02ERQgghhBASAAZnEUJCgS2oQf+ityk/NgXFpoYEUfz0/7Va5dW/BGDplEoSdKUDpqTYgA5iknRNXbt2NW3NmzcH4KZKkkAfwA32mT59ummToC+dxL5jx44x/YpKqgOWRDXR+4oiu2zZMtMmyqEoiQsWLDDrJFWWVi1FQbTdz4IyANruvy2wTpZ1oQBBj10U2WrVqgGIVLKlUESNGjVMmwR27du3z7RJajJbAKAougCwZMkSAMCaNWtMm6h7oq4CruIqKqyeazI+3SYBXjq1lu0+nap0VF5tfsSbtitoIQCv54SXap3d8b3SYdmCuUgWVFwJIYQQQkgo4IsrIYQQQggJBXQVIIQUamymOJu52eYqIGjzvS2YwMv1wMuMrF0GpD8dYCMuAFOnTjVt06ZNAxAZnNW0aVMAwCWXXGLaxKQv+VkBNzhHjrVw4UKzbuzYsQAi84PKuZ599tmm7fzzzwcQWblJuwgIOihHEPOxrjol7goSYKSDjiQ4SQczifnadp/CbBbVYxf3Cpmntspd+ppI0Jd2/ZA8uzrfr7gSSLUuAFi9ejWAyDyyMgd10IuMSdwCdPUzmWPiigK4Vbz03NBuE4JXftLc3E+b+d7LbcD2LLChnwXRpno/VwHbMyaoi5JtnXzG9H0S14ygrgdnIrwyhBBCCCEkFFBxJYSEAp1GRlQJm3qh20QRDVqtRhMkVY4OnBGlUapVAW6VKq2uypg6d+5s2iSISae+kqpTupqSIMFeOhBKUl5JhSQAaNmyJQCgWbNmgfrV2ALQRAXSQTyiIErwz7Zt28y6jIwMAG4VKsBVbbV6VxiVVi/Fz09djG6zBXjZjqVTaokyqgOxpGKZBOcBbrCXqNt6H33do6t4aSVXAgU3bNhg2kqXLg3AvV+AO2e0gmyrJiZj0tW8/NJAAf6fU1swk42cVtEKmpbNr/+g89mmqlJp9YdXiBBCCCGEhAK+uBJCCCGEkFBAVwFCSCjQJjRxFbBVNdKBDragKzFZ2vIpepkFdZUsMbuK6RYAZs+eDQCYMGGCaROTvjbfd+rUCYAbJAW4lZBsgTD6fMQML7k7dS7Y9evXA4h0N+jWrRsAoHHjxqbNVpnGlttWzluvk/PWbgRiPpaxa9Oy9KFN1nIddX5Q2z0paPcBGYutcpQtYMfLtK3xCiLUbgSVK1cG4JrdATf3q7h7AED79u0BRLoCyDU+cOCAaZOKaRLYJfMFADZu3AgAmD9/vmkTdwN9T8QdQFfukiCvRo0axbTpym4yL2yBjUFzocp6r1ys2bVFH8t2PL85J/fTdl9t4/RzPZBrYMvjWtDzvzBDxZUQQgghhIQCKq6EkFDgl9LKptaIIqsDQ2wBW14qmChuWr2SFEQSfAW41aS0CisBNlrxlDRXuk2ratHocxQFVxTXPXv2mHUSMKPVOEmzVb16ddOmlU7BVm9djmtL+aXVPanwJIFYWpnW/Qle6lphUpls4wwanOVVkcmGLXDJdny5F1o1lwAo2+dDK92i4Mq/OsBOlFxJaQa4qbd0HzZkHx1EJhXbJMBLL4tCr+e8KLm6zabgy9zNSbClzaoS73yLN7BTb28LLLN9PoQgwWxnKlRcCSGEEEJIKOCLKyGEEEIICQV0FSCEhAJtCtVBWYKYUW3b6TYxwWkTrM0EKGY8Mf1LAAvg5kydPHmyaROXAh24IoEzOmBKzPZSQQqwm6Cj+wXcwBpxFdCmxhYtWgBwc7cCQJ06dQAAZcuWjTmWrYKQvq5yXG3uFcSMDABbtmyJaNPjlWutg9NsrhqFkXhdGmyuAjaXFrk+tvmXkxyesq82LcuybpPAL3EVaNiwoVkn7h3azUOqb+l7bauOJvdfB3vJdtptRo4v7jM6cEvcW1JTU02brNc5a8UdRs8nuWb6XL2q3eWGoBXBvII89WdWPm96fsi5MUgre6i4EkIIIYSQUEDFlRASCrTyIOqKVi+0WhS9nQ4w8lJeRGUC3CpCUglLVE7AVZl09Smp7d6mTRvTJrXftQorSmvQ1E86OEaOu3btWgCRaqioVrVq1TJtOrBF8EofpK+NKD9a3ZLrLamVAGDdunUAXPVIV1AShUyP0xYcVhixKWTSZlM3NdEKqi31mk3xDlq5yTZO23Z6bBLQJf/aAsZ0m3ye9PwTtVRUWwCoVq0aAHf+A24VL63WyvyQa6Kvq6i1uurawoULAUTOYQlE02njJKBLxga4gWe6wpetYlm8eCmpts+TDVuwnV+QKYmEV4gQQgghhIQCvrgSQgghhJBQQFcBQkgosJnYbK4CtoAU7SpgQ0y1EvwEALNmzQLgBmJpVwExi5599tmmrW3btgDc3KmAa6q0BY745fa05eIUE6yYVPWx6tatCyDSjBvUtCnbaXOqV05bfZ3EbUGusQSEAW5+UG3utVXJslHQQSm2gLV4K2d5uQpobAFztn2jtwfceRI0L7Hg55aQlJQEIHJOyH0U9wDAzd8r/wLuZ1Hn+xW3AZm7OthRXAV0m+Qo1i5A0QFegDvvdeUuyZGs56K4D+jPolxvWzUvcWkJarr3cxWw3ROvwL+Cnv+FGSquhBBCCCEkFFBxJYSEAlsaGd1mS73kFQgkVagA4PfffwcQqapKJSxRktq1a2fWidIpVbAAN5WPDgixKcO5Qc5blCx9fhK4otNseQUO2dpsyrRWvOSaSeUwwE2NJMqXpAAD3EAxPU6b4lwY1SVbmimbkuZXt173Fd2fEDT1ka36kk2hC3I9befip8LaAvZEhdVp0GS+6zaxBEgwlS3AS1fu2r17NwDg4MGDpk3mvR6TBFRKtS7AVW61WiyfC31cSbUlY9KfXVnWAZi2AC+veeI3N3ISjEeouBJCCCGEkJDAF1dCCCGEEBIK6CpACCnU2PJp2kyGYsbTZszoPgDX9Lh48WLTNnr0aADAqlWrTJuY5cX0femll5p1UnVI55MUc7g2j4qZ3Va5y5Zb1hZgY8sZalsnx9f9epkidWCIVwCQzaVCuwpIdaSzzjoLQKT7hARnBa0+VZiQMWs3B1tgm818L9iudbyVw/wCu2xBP0GC8vTnyTbOoEFCso8t36+en3LeUsVN5xtu1aoVAODIkSOmLS0tDUBk9S1xH9AuBTI/dTUvcfPR28kzo379+jHHlSpdUtUOcOeurtwln3edl9gv8FMImu9Vrllh/3wUJFRcCSGEEEJIKKDiSggJBTbVSqsdkr5HK56i0EgVLMBVY6QiFuCqNjo4Q1TVDh06AACaNGli1ul0PNHYlCxbOiytntnSLAXZVx9LzjtoQIgtSMh2HosWLTJt48ePBxCZDkuCV0S1kiAtwL2e+t7ZxhmtJOtxFjQ2Zdp2jb3Ubb/AKa8UZX7HsKnZXim3/n97Z9asRXm14TsnUVREZJYhIsi0VUihaIxTTEVzkKr8gPyw/AoPcmJSqcRSISpbZBIMgsgkCiKTqKhJVb6T7356de/F0723G6U313WyX1Z3Pz3wvk9332uqfdeiLTvXoeXAMtXQv9XseDMV2B6PWA7OKqj/Sk1puti5yyW3XD5OahTcmGDlfbgcV5wnfLxxfX/XncwlNYllsUSY54c4n3h+yrjVExW79CUb3uxzQHEFAAAAgFHAgysAAAAAjAJCBQDgpjO0ZmSNrCNW5qZyhx6pqe04OTlZbG+99Zakpv6j1CRgOCxAkn7zm99IalzfTiqJRDdq5p718WXdeqJbtNvBJxtDas7bf2NXp6tXr0pqu1Yz125Gtt758+clSe+++26xvfnmm1OOc2JiQpK0du1aSdKiRYvKsnnz5k0Z18ccj92JPUO7FP1UZElMM6UvwauWsJe5+bOkn5qbP36vhrrvPV52TH1JSrXvYFZH2McXXex2vUe3vEN64vfen2PnLocKxDCXEydOSGoSu86ePVuW+fsf68g6US9+x92ly78DSdq8ebOkpraz1CR2xdADX9v4f5fVyp0pszHv9vFThDbc2rMEAAAAAMD/g+IKAFOYrTf1rIOOiWWGhvRUz1SeqLJYLYlJV/v27ZPUVlmsAsYkokceeUSStGXLlmJzn3N3pKodW/zcp8ZlilctUSqqUO637mOLXa2cdOYkKanp317rICY1KrWvlyS98847kqTdu3dPWT92x3rxxRclNSqTr69UTybKyoGNhZulWvUlTA3d/5Dxho7RlzA3tNTZdK9ZbYyowvpz9IhkCYBWX2MJOyu4Ls0Vk7kuXrwoqe3BsWobvQX23MSue1Zw49zhDmOxs51VVS+TmiQzq8rxeL3t0GuZKe6RrJTazWbod7zGuGYLAAAAALht4cEVAAAAAEYBoQIAUKh1dxnq4smSTqJLu1afdLouMNdrlJokor179xabk7OiK27btm2SpK1btxabO+jEpAsfn8Md+mpx1jpSRZdd1vUqS7DJElYcBuDjjR2sfK5OkpIa9308L7tRY5ci17H861//Wmx///vfpxyTQw9++9vfFttLL70kqXG7xuOtdQb6If//c4Es9OVGy6c7nqmFoAwNFeir91sb78f8/+wLvXFIQQwzcFKmfxMxBMBz1rVr14rN9Z5Pnz5dbB9//LGkdueu48ePS5KuX78+5ZhiqIDnpdida9OmTZKa31qsWev6sbFzl8MNYjhQNp/EJLuura+bV5c4n/maZYmF8ZiclDYb33UUVwAAAAAYBT/735DHawC4rYhv1LUEq1iyxW/SfdtmSmKtf7vH+/zzz4vt2LFjkqT333+/2NzhKZa5cmJD7E9upXXdunXF5oSITC20ohDPIVMUMtVwaJkj7yMq07FsjnFnnwMHDkiSdu3aVZb5WixevLjYfN5RcfZ+Y2KbS2ldunSp2Hy+TgSTmuS1X/7yl8XmckRWsvpU+IzsmgDcbLrfyz5vkRO1YhKXVdjo/XFi15UrV4rNv7c4nvcXFWL/jvz7j/OpbbFzn0tuOcFUapLNIp6Lo+Lp3/3Ro0eLzXOMuw7G+TTzyPn4snnfyaRSM2fEEmFOXov3kb6yahKKKwAAAACMBGJcAWAKWc/yqBSYLJYsK8SfKZORbhxtVDetcrjckyS98cYbU2xWOeIb/a9//WtJuRrhvuNSvd97FhOa9V3PVGMvz+LLomrha5s1D4jxbD43x8lFNeTcuXOS2nGv77333pTjtLoRt7XtueeeKzaXucquXTxHH7v3EdWTLMbXzEZZHIAfQvf71tdYwWpoVBLtcYjzg3/HsXmBFUz/lZq5Ldpc1s+/YyugUhMzaw+R1CiZcT5zKa34W8x+Yy4R5vh4Sdq5c6ekxoPjeSWSxa7GcT23ROXX5/r0008X28aNGyW1Y/BRXAEAAABgzsCDKwAAAACMAkIFAKCQ9Se3Lbpwap15Mrd7X/cd78OdaVyeSZL2798vqZ1A4NIzsbSMy0DZ/SQ1yUTRtWaXWnac8bztArebO7rHHCLR59r2ttn1jGEWvrYxIctjxxI9Xm5XpUt7RWKpHodPRLyv6Mb0sTz55JPF5u5Y0d3n6x17wNt9OTQ5rXt+AGMhC4fJul/5N+vyVVLzm42/OydHxe5c7ujnZNSYlOrSXDH0xvNZnCe8Xjwm/+7jvOMudzF51WELTjaLx+tzjQmgDpWI+/IYsRyYk2c9x0vNvBjDuzxeDRRXAAAAABgFKK4AUKgprlnpq6GKax9+C7daGJsIvPbaa5LaqoTf+F2sW5J27Nghqf327nJYUZnN6Ja+kqYmHUU1tFa+KSsVE5PNsgL8vrZR1faxxGPy/rx+VJetKkeVIyqj3eOLhdW9jxUrVhSbP2fJEvEcu+pzX+krlFb4KRlabD9bNrRsm70z0UtjRTImdjmhKyZ2ea7w/JMpqdGr4t+71VOpSQ6L+88an8yfP19Su7yd50qX/Ipj+NjjvONkq6jCWq3ds2dPsb3yyitTjt3NFeI9A8UVAAAAAOYMPLgCAAAAwCggVAAACll/8qwziokunqEhAnaLxaSDDz/8UJI0OTkpqe1OctiCk6+kprZoDBVwb++FCxdWz6fm5stCH7xtlpyWXZNI1mkms3kffX28u8tj+II/R9di1u3M+43LfB4xpKJWTzG7Ftm4tX732bUG+CnIwgJqv92+32nt+xy39e/N9WEjnvdi/Wy79mNYgMOBvExqaj9noQIR/y7jtq6p6jkhnsvmzZslNWFZUjMHx+Qsf3ZN2ngeMdnL9V6zGuE1UFwBAAAAYBSguAJAIUuwyrofZX2vM7xNTBJyb+8PPvig2BzEv3v37injuuRTTCDYvn27pHYykVWLqBBY/YvHnql/JuuEZVtNlbkRfcu76/V17umqm1mHs3gOPtd4HN4mqrW1a5KdQ1zf+7NqEhVXKz4zSdgD+LHIEguHekuGenBqiV01BTd6UPx7ivNe1sWvljw79Nid4BXnTie+TkxMFJtLfsX1fJwxodfzc1beL643BGYTAAAAABgFPLgCAAAAwCggVAAACkM7PdWSiaLLyB1UPvroo2I7dOiQJGnfvn3F5vqETrBas2ZNWeZErHXr1hWbXWUxSSEL8Pfx9bmqa0lEvhax1mLmxjeZKy5Lksg6TMVrl4UDDHFLZl3K+kIWsiSz2r5qCStxu6zDWNZNa2h9TIAfylDXvhna9a3PNnTs7rI4x/j3FF3rHjfO2VliVVajO6sV7Tnb27ozl9TUxfbfSAwR8hx/5MiRYnMC2LJly4rNn7PxaqC4AgAAAMAoQHEFgClkClx8888UTL+1X7lypdistDrpSmp6VkcVdvXq1ZKk5557TpK0devWsmzp0qWS2iVbrDxEpcDJBPHYnBAwNDmodl6xI5UV1ExxjdcuU3wzFdQqSFa+qlbKa2gXoEx5ifvy/uO+fG6ZUpQpw0MTQjLFdbqJIwCzwZCyVUMV15mQJb5295fNHX1Kqj9HT09Wws9zWixN+Mknn7TGiOquOxyeO3eu2Jyc5e2kpvPhyZMni81zfCxraM9a7Lo1BBRXAAAAABgFPLgCAAAAwCggVAAACnYnZS7wPvfYZ599Jkl66623iu3w4cOS2h1UzDPPPFM+u/uKE7EeeOCBsix2ZDGZ+85uscwFH91jWSJWVu/UIQJ2qWc1GfvceJktCwvIarDW9uHz6XP3Z9ckS/qqhTxk17oW+pDV+826hGW1YAkPgJtN7bfQl0xVC/PJEloj/o1loT9Z3WyTLYthS56n+sJ8PE50/Xu9ON7FixclNeEAMQTA67355pvF5nCsOK6PJYZ8OaF25cqVxbZq1SpJ7QSwIaC4AgAAAMAoQHEFgEKmRmbdr/zZCVFSU/pk165dxXbixAlJTU9uSdqyZYsk6fe//32xuQyWe2zHrk4mKhFWGqPN6mKf4pdhNSIqmC6v5W1jokNNkR6anBT35f1nKmSt5Fgcw8pLpqhEsvJmWUmdmlqdKcOZkuxjiuc/3YQ5gNkk+y3WSsn1eQGy732tvNxQL032b48bS/N5LvbcGffRpyB7DnDSldSUw7ItJm5duHBhyljev9VTSXrppZcktbsdet53sm3c/3Q9LcwcAAAAADAKeHAFAAAAgFFAqAAAVLErzG4iqanBun///mI7ffq0pHZIwfr16yW1a/c5EevBBx8stoULF0qq11Htq/sZ3dym5jKLNrv5ah3Dotvd20b3YM2NHm0eL4YeZB3LbMvGM9kxZfV2s+SovvqsfTVlu/utdR/L3LOx01ktcQXgVqbv+15bLwtlqoUI+TeRJUJl3fmy+rDxOPwbdEiXJH366aeSmvnZc7gkLViwQFK7fra3dfdDqUnKjefleq+LFi0qNp9Hdm1qoLgCAAAAwChAcQWAgt/Q4xu1ldZjx44V23vvvSdJeu2114rN2+zYsaPYtm3bJknavHlzsbnUVUwmqJVUypS/qC4YqxdRqXOSV/ZGn+0j63plNTBTSON1Mtm+MsU14v0PHS9TgWudrvpsvu6ZMvpDuo5lZcas8sRzzZLTAG42tQSsvoROU1NIs331lesb8jt2gmMcr5bEGT/H39jXX38tqd3hyuWwtm/fLqld0sqeszgn79u3T5L0zjvvFJvvCzGxy9suWbKk2JYtWyapnbw7BBRXAAAAABgFPLgCAAAAwCggVAAACq7L+v777xfbBx98IKkdKuDwgcWLFxebO6I89dRTxeZELLuEpLwTVpe+rk6ZW8yu/MwtPzTRJ6uxmI3h9WL4QNaRKnMPZmSJTVmyl5dnSWdDO1d1x4rjRVtMAOmul9XUHVr3snsO3c8AN5O+2qYmC5+Z7rhDfwtDj6lGLTlVas4jJs9evXpVkvTll19OGWf58uWS2slZtkU8T8TQH4eSXb58udicvBsTwXz+Ts6VpPvuuy85u8559a4BAAAAAHALgOIKMJCZvHnfymTJSX4rnpycLMsOHjwoqemoIjW9pWNnlMcee0ySNDExUWzuktKXHNXtNNOnuJq+fvd9JZ+669XU2mzcTCnMynZly7P1+jpn1ZScWvJH9t3NFOR4rbPEqkzV7SaH9H3/a33Ux/LbgfEyRGWNnzNb33i1fcRlmfdhCFkSZd984jk+qquXLl1qjSE1SbMuWxXLV2UdDV0269y5c8VmBdWJXlLjpfvss8+KzYlacVwUVwAAAACYM/DgCgAAAACjgFABuC3IEmdqrqDMdRNr12WB8FnnounWpay5sftqDdaSg7J9uEOK1NTic8eTmIjluptbtmwptnXr1kmSHnnkkWL7xS9+IantWqqdf3ZsWS3WoW7koW7mmpt/tt3XtW2zxIm+/7shx5KFO2QuziwEIdtX33esFiqQrZ/tkxABuBX4Ib+/mXyHh4QS9YU7ZfesWq3o2AHRrvzonu92uJo3b96AM2nPE04Ai4lgPuZ4Pk5uzRJBa6C4AgAAAMAoQHGFOc2QkiZ9ge4mqqxDe0zPNOg+G/dGx1yz+e02vvn6jdvqqiS9/vrrkqTjx49LaqvG7njyq1/9qticgOUuWFL+Zj5dxa2mgs+WKldLtrrR8c1k/Oksn81yUH1K6nSv59DyXjMZD+BWJSv9NpTpfsczL0X279qx9N13fA+InjZ3tnKyrdSUOIy2LrH0lcc4depUsbnMVjxel0GMpa+cCDZU1TUorgAAAAAwClBcYc5R6wWdlRvKto3xrFkMkRXJrARJfHv2frOYpGz9LE4wU3ezcidZXJNLn1hJlaSdO3dKko4cOVJsV65ckdS8bcei05s3b5bUjme10hp7Zpvr169POddY7mS6cb+18lGzxU+hAv4Y+5xNJXkmY6Cuwtj5qb7Dnu+ipy/zlgyNLbdKeubMmWI7efKkpKZ5jNQ0i7Hims3XVlQl6R//+Ick6W9/+1ux+X6zYMGCYlu9erWkJj9CauJpUVwBAAAAYE7CgysAAAAAjAJCBWBO0+30MzRxJuv3Hkt2uIxHX6eVWqjA0HJLtc4oGbEzil02LnclSbt27ZLULovSLW+1ffv2ssxhA+5yIuXdrBz8/+233045Tl8vKXc9DSn5dTNDBQAAbgW6c2HWYTDOp76PxIQpz8Ux5M3JU7HU4YkTJyQ1SVJSE+rlTolxrvU98MMPPyy2f/7zn5Kkt956q9h8LKtWrSo230fWrFlTbA41m+58juIKAAAAAKMAxRXmNN2SJvGtNHt7rfWOjkphphBamY37sK3WlCAG33/zzTet45Wku+66S1KeCOXmAFLzJn3o0KFi+9e//iVJOnv2bLH57Xrjxo3FZqX14YcfltR+U3b5kkxlzRomZAlws1HEH5UVAOY63fkum0/jXOz7jZsJSI26euDAgWLbv39/66/UqKoxYcveOSfq+v4TcQksSdqzZ8+U4/zd734nSXr++eeLbdOmTZLa9zF75+I9MzZDuBEorgAAAAAwCnhwBQAAAIBRQKgAzDmiS7nrlo8dpOyeyOqzRleMXflDXdVZh604XjcMIa5v1390wWc17hx0H7ug7N27V5I0OTlZbHbjxP2//PLLkqSnn3662DZs2CCpScDqq7XaTXqTmusTk9hs6+v+1e0Ik3VrIlQAAG4XanNmVis81s8+d+6cpOaeIDX3gliDNbuPOGnX83i8F3j9LGHM9b4l6Q9/+IMk6Zlnnik2h5/F8/L9OB47oQIAAAAAMGdAcYXbgiyo3WTB71nppb5EJH+OimMsR2KssGbru1tJ3L+D2S9fvlxs7777rqR2mavDhw9Lkr766qti27p1q6R2ItYTTzwhqd0dy2+5PqbsjTo7//j2nCW21bqJxWvTLVeWKa4AALcLmbrqz/H+4Pk2dqlau3atJOnJJ58stqVLl07Zh++HMUE5u0caz9Nxjve27qYoNeUUY0cu3+fifcT7ip0Vh4DiCgAAAACjgAdXAAAAABgFP/tfNysCYA5i90RMhLItc/dn62VktV2zzllxPGPXSXS7eNvYferatWuSpI8++qjYXn31VUntOn1eL9Zg/eMf/yip7TJatmyZpNw94+PNatFm7qm+jlgZWb1bj+0xsv8TQgYAYK4z5JEsC+WK2znZ6fz588Xm+0Ocs30PiAnAdt9n45o4P3u8WJ/VtcKzBLMYIubkrHg+8+fPn7JNFxRXAAAAABgFKK4w54hfaat7WVB5ppB2l/XtI1Nms4SlWomuiDtnHT9+vNjeeOMNSdLBgweLzYla8U3ZJa0mJiaKzclZUYWNyWAmK3PSJSt9lSW2RXydstJXWQJcrdMWCVsAcLswdO7MbLUE2Oz+lJVrzEoedpNopUZxzeb/jHhM9izG+2hMMrsRKK4AAAAAMAp4cAUAAACAUUAdV5jTdN0d0cVh10Z0hXSThOJ6kcwVY3dHlrCUJWD575dfflmWnTlzRpK0f//+Ytu5c6ck6cSJE8XmOn1btmwpthdffFFSO1TAQfIZMTmqW282nkOtc1W0TTcsILqnaq7/LElgaCIYAMCY6M6ZtQ6D2XZSM5/eddddxTbUlV8jSzLO5u5aze9s/elGrKK4AgAAAMAoIDkL5hxZkHrW/Sn76mcdtmyLb5v+7HIecbyYMGXlMu7LCuvJkyclSUePHi3LrLR+8sknU45t0aJF5bNV1dgf2slZixcvnrJtRq3k19Dkp75ktyzAP0vs6u4vjmE1OEtwI0kLAMbO0ITiTLX0tpn3LythGJNzPU4sv+j9er2sk1aWsBXvJ95v1mEr8v3330/ZtuYlLOfSuwYAAAAAwC0AD64AAAAAMApIzoI5R82lHF0cdk9k7u5I5grJ3NceJ7rAve2VK1eK7dSpU5KkvXv3SpLef//9ssxhA3Hcp556SpL0+OOPF9vDDz8sSVq+fHmxxUD8Gpkbp1u7L3P7ZOea1VaNtszdNZ1jvJEtOyYAgLHTDWvruz/VltkVL+XJXh7bnbbifrP5vHufkJok3yxxK+uwlY03XVBcAQAAAGAUoLjCbUG3M5OUl6rKSmT5c3x7tS32Z846UvlN9sCBA8U2OTkpSTp06JCkpoe0JK1fv16StGnTpmJ77LHHJEkPPfRQsS1cuFBS02s6HlN88629NUe6iVXZ+Q9984/USo4NLa2SnQNKKwDMRbr3paz0Xyxl6Hk0rueEqjhnd5O+pMZzWOumFZfV7jFZQvNM7hlDQHEFAAAAgFHAgysAAAAAjAJCBWBO0w1I70umypK4ss5NmUvdtfBibdfTp09LanfCcojAxYsXJUn3339/WeYELCdkSdIDDzwgSbrnnnuq52q3T3TjZOdYS2zKAvgzsvOvdUbJ3E21mrpDE8EAAMZOllCczdOe27OarUPD4LKErXh/8OesVnZ2X8jWy2xZne/auDVQXAEAAABgFNA5C+YcWdelWhD6UGLwuce7fPlysZ05c0ZSW1398MMPJUnnz5+fsl+XtMq6X1lllaT58+dPOfaMLPje9CVndaeBodNCXwmULEg/S87qqtrZ2/vNCvQHALjVqM2T2RxfG+NG1JJhh3YnzJJna+vFY89KaQ0p64jiCgAAAACjgAdXAAAAABgFJGfBrFPrTjVd9/wPxfv33+nWH83GkqQvv/xSknT8+PFiO3jwoCTp7bffLrazZ89KkpYsWVJsDhF49tlnJUmPPvpoWea6sFnC2NBjriVd3Yiuiz7bfxyjFpaQhQVEanVZiVwCAGjIEoWz+Tnen7L52eu5g1UcZ+i8m9VDzxg63tBk4C4orgAAAAAwClBcR0DtrWSoGpcpWt2exNLMewdHYt/jr7/+WlKjJN57773VbbPSU9lbXq2kRlzWDTDPSnsMTdg6depU+Xz48GFJ0jvvvFNsR48eldTuauJuV9u3by+2rVu3tpY5+ap7fNOldo5943b/32tB+3H9mLCWjVX7PmXJVtn6NSUZAGAu05fsWis/mN1H+7x5NfUzW78vGbjGUAW3C4orAAAAAIwCFNcRMRvxf1kR/b63o6HrmRhr42L8VuayN8C+wv61chtDy31ksTzZG6iXxyYCn3/+uSTpwIEDxeaSVy53JUnXrl2TJK1du7bYrK7GhgIbN26UJP385z+vHvtscLNUytlQQWsxrqirAHA7U7s/ZfNj5i3M7ndDy1bVPLzZPTvaMmW4O8Z0jqkLiisAAAAAjAIeXAEAAABgFBAqMCKypJvMpZ4FZmeJWEM7Y0yX2PnCx+ISHNm+YmhBLelqaPhANra3zUqBRJxY9e677xbb7t27JUlHjhwptqtXr0qSVqxYUWxPP/20JGn9+vXF5rCBlStXFtuPESIwXWb6HZjt7w4hAgAAObX5sS+hdjb3FZlpSasfAoorAAAAAIwCFNeRMt23nCyo25//+9//FptLWVlRjJ/jvqxcxuBrJ2DFklf+bCXz4sWLZZkVzzvuuGOKLQvq7jvXWkmNbFursbF81+nTpyW1FdfJyUlJTfKVJC1atEiSNDExUWxOwFq1alWxLViwQFJeNgoAAOB2hwYEAAAAADAn4cEVAAAAAEYB/ssRYBk9JjGZWteroYlY7m4lNQlI7733XrHt2bNHknTlypUp40U3/9KlSyVJL774YrG98MILkqTz589Lkv79739PWT8mM7mLVNbdI+vZHG2+TnHbWiKUz2fXrl3F5k5YH3/88ZRxd+zYUWzbtm2TJG3atKnYHCIQk9NqtfVIRAIAAJgeKK4AAAAAMApQXG9Rss4UGVlCklXIrBxWTESy4uiEJKlRXA8fPlxsx44dkyRdunSp2KwW3nnnncV2+fJlSdLy5cuLbfHixZKkzz77rDVWPL7Yaaq7LO6rr09ypm56uVXlqBqfPHlSUjsR69ChQ5LaSu26desktbtfPfHEE5Kk+++/v9hqyWGZMjwb3acAAABuJ1BcAQAAAGAU8OAKAAAAAKOAUIFblCzpqq8zht3R33//vaS2u/27776TJL399tvF9uqrr0qSvvjii2K7++67JbXd/X/6058ktd3nrv0a3eO2ffLJJ8X25z//ubVeHNe2mOBlYkiDa8bGWqjZNclc9T63o0ePSmqfv8MCXGNWklavXi1JeuSRR4rtsccekyQ9+OCDxeb6rLXwgEgWKmCyEAcAAACYCoorAAAAAIwCFNcRkSVp1RKWYiKSE7Ci4vj6669Lait+27dvl9QuUfXcc89JarpFSY26Gkt0XbhwQZL0yiuvFNu+ffskNUlMsauUE7syxTGOm5XyykpkWVWO5+1ks/3790uS9u7dW5ZZGd6wYUOxPfroo5LaiVgueVUrrSXNvMxVlogGAAAAU0FxBQAAAIBRwIMrAAAAAIwCQgVuUaL72G55J11JjUs5uq+dvGTbiRMnyrK//OUvktr1WRcuXChJmpiYKLaXX35ZkrR58+ZiW7JkiaQmcSuSJR2tXLmy2Bxy4FCBNWvWlGX33nvvlHM1TsiKn/vc6B999JGkJjxBkg4ePCipCQuIdWeff/55SU3yldQkZcWQhixEwKEM8fxNDH1w8laWxFWrTwsAAABTQXEFAAAAgFGA4joCrEhGdS9T8KzMXrt2TVK7S9WuXbsktUs/ORHr2WefLTYnJVlljfvPkqii7a677pLULnllxfW+++6bsuyee+6ZMp7Vx6z0VTx/d8JyRy6pUVpjAtbZs2db48ekM3e/2rhxY7E98MADktqKr8nU5azDWV/ZspoNAAAAbgyKKwAAAACMAh5cAQAAAGAUECpwixLdyHbHZ4lY0VV/+fJlSU2XqA8++KAsO3PmjKR2zdIXXnhBkvT4448XmxO2oqveIQj+KzVu87h/bzN//vxiW7p0acsWwwOcKBXd8h4juuV9Lb799tti2717tyTpzTffLLaTJ09Kauq5Sk0nLCebxUS0hx56SFITxhCPJdaR9ecYnpElXfmYs23j9aRTFgAAwMxAcQUAAACAUYDiOgKs0EV1zypkVPc+/fRTSU1ykhVIqVE3165dW2wuA/Xggw8WW1QGa/uyupgpw7HDlvfn/Ud1c968eTfcZ1RNr169Kkk6depUse3Zs0dSU+4qEktZuROWVWUrsFJTjisjKr7xvE1Wysr/P3H9LIkLAAAAZgaKKwAAAACMAh5cAQAAAGAUECowIqJb2vVYnZAlNclYO3fulCRdunSpLHPNVv+Vmm5WMTkqc2nbBR73n9UsdahA7JzV7bZ1xx13lM9O2IohEO4OduHChWJ7/fXXW+clNeEDPgdJ2rJliyRp27ZtxeYErGXLlklqhyU4HCGrGZslUMUQACeqxWvnbeJ4vk5Z3V0AAACYHtxNAQAAAGAUoLiOFKt/7iAlNV2kXA4rls9at26dpHZyljtd9ZElItWSjRYsWFA+W1W1QhlVSx9fHNdJUbHD18WLFyVJ586dKzaX7bLKKkk7duyQ1CSdSe1ksHgcUjsBzFhBzZTkvqSr7Dp115emJrbRQQsAAGAYKK4AAAAAMAp4cAUAAACAUUCowEjJ3Mx2g3/zzTeS2klCTpKKyVJZ/dSh9Ua9Xqx3WuumVXOHxzG8rUMBpCbZKnbdWrx4saQmBEKSVqxYIanduat7vBGHBcTjrbn543pZEle2bdZNy7as+xkAAADcGBRXAAAAABgFKK4jJ1PrrLxGldGJUDFha7olmrIEo0xxzcatKZRxXC+P6uqGDRskNSWtpCbpasmSJcUWS1N1j9mKZ1RFrXhmxxvPq3sOcZy+xKrsHAEAAOYC2T3O99vs3l4bYygorgAAAAAwClBcb1Eyha4Wpyk1CmKmFg6Np6y9+WSKa7RZkcwUTI+bFefP1ovnZVU1xr16nExlzciaKNTONVs2dNtsG5oSAADAXCDe/3wfi/dzNxKK3HnnnVO2nWkpSO6cAAAAADAKeHAFAAAAgFFAqMCIyLo0RRd0t/RUXN8JW7FzVBZSkG2bhQXUykZdv359yn7tTsiONyvLFckSy4bSPc7puvhnsm0GYQEAADA24n0/6xj5U9zbuJsCAAAAwChAcb1FydS9LLEq2vzZCmYsev/VV19Jkr7++utii+prl6y0RXyzclJUVG2/++47SdKFCxeKzZ+tlsYEqwULFkjKGwZkx5YFhA8t3v9D1NIfsi0AAMBYyZKuos3PAvH5IPOO1hr0TLdcJIorAAAAAIwCHlwBAAAAYBQQKjBSLMvHOqZ2w69evVpSEx4gSadPn5YknTx5stjWrVsnSbr77ruLLesm5c//+c9/iu3atWuSpMuXLxfbxYsXJUnffPNNsdkV4HCALCEskgV/d5fdiKxWKwAAANxc4n3XIXy18IAIoQIAAAAAMCdBcR0pfpOJQdBr1qyRJD311FOSpD179pRl+/btk9ROZrLi6iQpSbr//vun7Msq7JUrV4rtyJEjrXEl6eOPP5YkrV+/vtieeeYZSdKKFSskSffcc09ZlgVwWzXNlmXlvaIKPLS8FgAAAPTTl3Q13XJYs+ERRXEFAAAAgFHAgysAAAAAjAJ8qh36kod+SjKJPcr0y5cvlyQ9/vjjkqRvv/22LHMyVayxOjk5KakdArBy5UpJ0rx584rN7vgvvvii2M6cOSNJOnfuXLE5KSsmjN17772SmhCBuMznE6+5bfG8aq6FWKvW28wksQsAAABuTHYvjvfg7np9yVneNhujBoorAAAAAIyCn/0PKaqFuz/disT/quyN5vr165KaElXHjh0ry/bv3y9JOnz4cLGdOHFCUvttx2WrsnJYixcvLrZVq1a1/kpNGS6rtpK0dOlSSdIdd9wx5XitvsaEsSzQOztXH3N8e/O2cQy+3gAAALNHpprGe60TpLPOllm3zfgMkiWId0FxBQAAAIBRwIMrAAAAAIwCkrM6TDdI+MckCxWIbvE777xTUuOed61TqUmccq1VSTp+/Lgk6fPPPy82u/SjnO/abRs2bCg2hxRMTEwU28MPPyxJuu+++6YcezyWLlkAdzzXrCNWLQEr+z8kZAAAAOCHE58PYi11k93TbYv3Z48z3aR4FFcAAAAAGAUkZwEAAADAKEBxBQAAAIBRwIMrAAAAAIwCHlwBAAAAYBTw4AoAAAAAo4AHVwAAAAAYBTy4AgAAAMAo4MEVAAAAAEYBD64AAAAAMAp4cAUAAACAUcCDKwAAAACMAh5cAQAAAGAU8OAKAAAAAKOAB1cAAAAAGAX/B3v+1MG6RElzAAAAAElFTkSuQmCC",
"path": "images_version_6/image_50.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, then angle COE = ()
Choices:
A:30°
B:140°
C:50°
D:60°
|
||
251
|
51
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAMUAAABdCAAAAAAwZv0CAAAJfklEQVR4nL1cX2xUWR3+bimlNUhDFJYuyLA+AC5GprxwjWYHMLsOxqxTE9PyspSHbbsx4Y+LBhKDURNnExB0HyzKJqP7QJuYtPuylUQj4OIWu9HBGLfsWqZjow6bdKcWVqblTs/nw70zcztz/5x77m2/tJm5c3+/c853/nznd86cOxqxGshrMRW3pfNnAei/Xe9j16SSeGAY31fzW/Pt83nyxLMfwbuyV4fFG5s/oeYoRAfwja9dgeZptios/rh1XtFzZm0LsGZHftHbbDVYzD7cublFzfWdLwDANp+mWA0WS787hG1qLIwbTwPAv3b4uK8Ci9tH1m36n5rrf/etBzB75Ys+divPYvYjcuopNd/3NwNYeu2ze33sVpzFh68eBO6r+RqvdQKzzxXO+/ZHriyGsCdfTgMXA/gI63XKLOGEv4e2knP3pVMhnOewUdp2BXvUQtf5u+rec8/2yBuvEAsCcwdf+M7PlRPIf+VH792vpuWf3wphMp5lcUtJ0fuOPslz5ypDRPhYc6VY/F7PkezNqHmP6AWysMW88OWwYiwyySJJZuMyZWjAxVSJJFMjsg4rMy5euTm6EQDj+KtPBOSEUzOjrQDQ9wtZj5VgsXBsPtMKgBpO/CSwd6krdsl8dzgvrXEKDe6DYjIjKv2otKUY0Lug1/rRxZOSTtGzyCWu265OBpm0SU7uz9bGc7FDUuMiZ5HVs/bLyd2BvK/rOfulrMZFzWJELyz/IDkWwPuXyUoHNJsjG5fzi5iFpZE2jKRkfQXP9NZ7x7NSrhFqFGsaaUPXbdmwfPFYe6bqTfP/xE8l844OpZTTUD53Ts67mMw0ztOlmNlBfebOCFkU9BGH7EQh5iM0goJkTr/e8DnJkz+WyTo6FpN61rnGpAKJbHzSOVUpjYuGhahqpAOR6wn/BEZ0t9kxOSYRikXVFpmk+yS9e9KvYzdKWxUjKfqHtaFXrNQA4Hszg/XiVMOlmUveaQy0ORtQA9CR3eJbiNBKqwFYOIaMOwn0Di14pbBwOO7CUgOAvkGJUvi0lQyKyYy3Qf+gx82C7j27+2ocw4wLUemujRpZb2kPJK4B6KumYMVdnv0+5STgyxG+Ldw00g59vPLu9KaHfLyrr1qqsUTO2aUGCY0Lw0KQXhppM8v0WuYvHyDJa5seWvcyqaJfRQvG/+JXkrBt4aGRtnKUtpuBxDVkSfLaNotFY/jnmIfvYimkRg1Y4Z+nXmto/fpVAMDP+uIAcM/8UmWhZ0NmnaUxXv69w54aB4TTqFLKS3zsyMVI8vGuX5OCfL6PQrCYHJLyFd4aR4brUfYlsncxrMXStNWhkCWZ239ddtfMd0MoBIu6tak3RlK02oKLu/pJjscnKbVjRpL629731Vnc8NdIO54okOLlA+Q0+kgOJYJsjgx1e99XZuEV/jkhfYYUfB5AluTF7hIp3RTVxZIbgkeD1ABqZ+97hH9OKHz+bitAMzYaaLtEzQokpXL81qdOwcs+UIVW66Y3LV+RFrqvVjyKyZrmyCUi7sU8bZVY+IZ/TqgGEoWEzMKnAsuyy1MOA7MQEuGfM6xdmUDSVoX3hpBCW4zXwr9AncoMJMYOBJK2aj4xL7fgLEYDaaQNpfYSmXmu6h1sXKXPeNwMzEIm/HNB/yDP9Ko6ey6WmgCUy2VpwRxo3P2T9x3sac+oOm/R3/C4S5KGbIWUkrLhnxOKG34Qwntcd78XKDK/f/D4gGpdAtOHTv9d3Rv6wh33GZokDdIwDBqGQRoGaV7WXqx3Wf3PhkHSoGHIt18Fb+/N+QUS3hjsdxWEao+y/qt/theSBoUxlvgHycfCJByUxlCiSJ5JKzIgLY1zhp2FQdIwG4QNLJhJFQ1SLGMqj3T3IwprsaQK92/XquOi2dKp5uZmx5539ubVjQA0uRMN9RiYH26Dhqc6RxWcKzj6ulveTUC9zNquCZp+Cz3tV9qsD4N/gz13eG/afPfCrwI7V4uC+IYbbnlXxnO17zSOboPFxFWDgpXxb44L6S6VS9R2/2I5lcMIFqrBVH0atrnbvVQ5fTxwIF5DNpGtXXgGEn4o7ahoXF1haizqSNTsxLjE7p8bBN9ctrKV2XV1h5vGVVgYDh3EIhJsiVyfwmDdyrZbbvvGOblCh/MN12iw2hbWElkRJ/vrkhzfHyI1t2/XXCOQihoMzAwrh39Y6IldrkmzBgD64h2oqTXgfkzHk7ooJgeFrSIDopiodB+b92C/o60UBHe/61QcbxaFRJDzD/V4Nz7e+KHwCCQk4Lzz7MlCbYlMkhTkuO68yAx6TGcZnDXOhYUgpb4hcYMghxJF514oe0TFGY7HdDza4nKyqD7VMd39yO3WsgNUQeG48+y+Sjqb/c1GhZjJxOKx+eE2FyHigPoxWyCOOw6FcqFc6lZdCgiSxVTGwyL0YqkBjiwEi4lhxUwEl4d/TlBcLJk9yekoonNb5Jw0Uhq+0lY57xsI1dHgoHENLATJ8biyOJEc0//jZyJ/3tcBDsd0wHIaqD7kIEjBocSHITIZ/HKJflP9WJLC18gVyTHLtWytvSZAltN/ElN78qKSaFo9/BPLwz93eO66+qG281y+kCcfv/SwCRDTT2vtT0GzZPWlefXwT1vo2n5ZxvDEq6pZADicvW8tpkW5A38oP9PSBMzsXr905ZD1nOnc4XhaPf255FG5x1+OjPo8R+iF1qODgAZNwz93tczebetZC/ItaHvyVhNNhwr/JiWkzRoPqs80kLQFU7cAjJIEyxfyfMuikVWvIBtUJ3x5fNLUuPKFad6aINmMufkO7P9cNgaAsYL/uTB3jB6oPQ/l9U0iNADTio/wAQByDwAAc/NPYqsGoBnv72vB/AdbAUCTfyrLCV22964kqJm3wpDAp82X9/a1YAcANC2Nd9I4/ugzYRK1wXcpupxeqFOLS7c7l10fXwwx1ioQtUksxM6ZPKaAPXkzp+hOBZdfMStkQcr6FnD8wetR5R3dafk1py/kyakd6yRsZ780QX439fGo8m5CyM5Zg1jqMG5u3ydhaRz/6ilgU9/WaDI2WWiIhMnMzpaJj61N+BtyYvpFANi+OYr6IxDlkwu3gGoM4InFI6PR5UoyonFBAFi6PV1+UeqnJh58EFlXshAJCw0A5uafXNOp+CMNYRGdRt3d14Jn1gw/9hljBNqf+DdAzP4tsmfLI2OxdLsTWDrf2kLvaFAD1n6z6x1o9364U4tKHqMa3dbT/VLDW3AKwX5DwA//B0BHPAtCDMyjAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_51.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, the points B, E, C, and F are on the same straight line, triangle ABC congruent triangle DEF, angle B = 45.0, angle F = 65.0, then the degree of angle COE is ()
Choices:
A:40°
B:60°
C:70°
D:100°
|
Như hình vẽ, các điểm B, E, C, F nằm trên cùng một đường thẳng, tam giác ABC bằng tam giác DEF, góc B = 45,0, góc F = 65,0, thì số đo góc COE là ()
Lựa chọn:
A: 40°
B: 60°
C: 70°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the points B, E, C, and F are on the same straight line, triangle ABC congruent triangle DEF, angle B = 45.0, angle F = 65.0, then the degree of angle COE is ()
Choices:
A:40°
B:60°
C:70°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the points B, E, C, and F are on the same straight line, triangle ABC congruent triangle DEF, angle B = 45.0, angle F = 65.0, then the degree of angle COE is ()
Choices:
A:40°
B:60°
C:70°
D:100°
|
As shown in the figure, the points B, E, C, and F are on the same straight line, triangle ABC congruent triangle DEF, angle B = 45.0, angle F = 65.0, then the degree of angle COE is ()
Choices:
A:40°
B:60°
C:70°
D:100°
|
252
|
51
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAMUAAABdCAAAAAAwZv0CAAAJfklEQVR4nL1cX2xUWR3+bimlNUhDFJYuyLA+AC5GprxwjWYHMLsOxqxTE9PyspSHbbsx4Y+LBhKDURNnExB0HyzKJqP7QJuYtPuylUQj4OIWu9HBGLfsWqZjow6bdKcWVqblTs/nw70zcztz/5x77m2/tJm5c3+/c853/nznd86cOxqxGshrMRW3pfNnAei/Xe9j16SSeGAY31fzW/Pt83nyxLMfwbuyV4fFG5s/oeYoRAfwja9dgeZptios/rh1XtFzZm0LsGZHftHbbDVYzD7cublFzfWdLwDANp+mWA0WS787hG1qLIwbTwPAv3b4uK8Ci9tH1m36n5rrf/etBzB75Ys+divPYvYjcuopNd/3NwNYeu2ze33sVpzFh68eBO6r+RqvdQKzzxXO+/ZHriyGsCdfTgMXA/gI63XKLOGEv4e2knP3pVMhnOewUdp2BXvUQtf5u+rec8/2yBuvEAsCcwdf+M7PlRPIf+VH792vpuWf3wphMp5lcUtJ0fuOPslz5ypDRPhYc6VY/F7PkezNqHmP6AWysMW88OWwYiwyySJJZuMyZWjAxVSJJFMjsg4rMy5euTm6EQDj+KtPBOSEUzOjrQDQ9wtZj5VgsXBsPtMKgBpO/CSwd6krdsl8dzgvrXEKDe6DYjIjKv2otKUY0Lug1/rRxZOSTtGzyCWu265OBpm0SU7uz9bGc7FDUuMiZ5HVs/bLyd2BvK/rOfulrMZFzWJELyz/IDkWwPuXyUoHNJsjG5fzi5iFpZE2jKRkfQXP9NZ7x7NSrhFqFGsaaUPXbdmwfPFYe6bqTfP/xE8l844OpZTTUD53Ts67mMw0ztOlmNlBfebOCFkU9BGH7EQh5iM0goJkTr/e8DnJkz+WyTo6FpN61rnGpAKJbHzSOVUpjYuGhahqpAOR6wn/BEZ0t9kxOSYRikXVFpmk+yS9e9KvYzdKWxUjKfqHtaFXrNQA4Hszg/XiVMOlmUveaQy0ORtQA9CR3eJbiNBKqwFYOIaMOwn0Di14pbBwOO7CUgOAvkGJUvi0lQyKyYy3Qf+gx82C7j27+2ocw4wLUemujRpZb2kPJK4B6KumYMVdnv0+5STgyxG+Ldw00g59vPLu9KaHfLyrr1qqsUTO2aUGCY0Lw0KQXhppM8v0WuYvHyDJa5seWvcyqaJfRQvG/+JXkrBt4aGRtnKUtpuBxDVkSfLaNotFY/jnmIfvYimkRg1Y4Z+nXmto/fpVAMDP+uIAcM/8UmWhZ0NmnaUxXv69w54aB4TTqFLKS3zsyMVI8vGuX5OCfL6PQrCYHJLyFd4aR4brUfYlsncxrMXStNWhkCWZ239ddtfMd0MoBIu6tak3RlK02oKLu/pJjscnKbVjRpL629731Vnc8NdIO54okOLlA+Q0+kgOJYJsjgx1e99XZuEV/jkhfYYUfB5AluTF7hIp3RTVxZIbgkeD1ABqZ+97hH9OKHz+bitAMzYaaLtEzQokpXL81qdOwcs+UIVW66Y3LV+RFrqvVjyKyZrmyCUi7sU8bZVY+IZ/TqgGEoWEzMKnAsuyy1MOA7MQEuGfM6xdmUDSVoX3hpBCW4zXwr9AncoMJMYOBJK2aj4xL7fgLEYDaaQNpfYSmXmu6h1sXKXPeNwMzEIm/HNB/yDP9Ko6ey6WmgCUy2VpwRxo3P2T9x3sac+oOm/R3/C4S5KGbIWUkrLhnxOKG34Qwntcd78XKDK/f/D4gGpdAtOHTv9d3Rv6wh33GZokDdIwDBqGQRoGaV7WXqx3Wf3PhkHSoGHIt18Fb+/N+QUS3hjsdxWEao+y/qt/theSBoUxlvgHycfCJByUxlCiSJ5JKzIgLY1zhp2FQdIwG4QNLJhJFQ1SLGMqj3T3IwprsaQK92/XquOi2dKp5uZmx5539ubVjQA0uRMN9RiYH26Dhqc6RxWcKzj6ulveTUC9zNquCZp+Cz3tV9qsD4N/gz13eG/afPfCrwI7V4uC+IYbbnlXxnO17zSOboPFxFWDgpXxb44L6S6VS9R2/2I5lcMIFqrBVH0atrnbvVQ5fTxwIF5DNpGtXXgGEn4o7ahoXF1haizqSNTsxLjE7p8bBN9ctrKV2XV1h5vGVVgYDh3EIhJsiVyfwmDdyrZbbvvGOblCh/MN12iw2hbWElkRJ/vrkhzfHyI1t2/XXCOQihoMzAwrh39Y6IldrkmzBgD64h2oqTXgfkzHk7ooJgeFrSIDopiodB+b92C/o60UBHe/61QcbxaFRJDzD/V4Nz7e+KHwCCQk4Lzz7MlCbYlMkhTkuO68yAx6TGcZnDXOhYUgpb4hcYMghxJF514oe0TFGY7HdDza4nKyqD7VMd39yO3WsgNUQeG48+y+Sjqb/c1GhZjJxOKx+eE2FyHigPoxWyCOOw6FcqFc6lZdCgiSxVTGwyL0YqkBjiwEi4lhxUwEl4d/TlBcLJk9yekoonNb5Jw0Uhq+0lY57xsI1dHgoHENLATJ8biyOJEc0//jZyJ/3tcBDsd0wHIaqD7kIEjBocSHITIZ/HKJflP9WJLC18gVyTHLtWytvSZAltN/ElN78qKSaFo9/BPLwz93eO66+qG281y+kCcfv/SwCRDTT2vtT0GzZPWlefXwT1vo2n5ZxvDEq6pZADicvW8tpkW5A38oP9PSBMzsXr905ZD1nOnc4XhaPf255FG5x1+OjPo8R+iF1qODgAZNwz93tczebetZC/ItaHvyVhNNhwr/JiWkzRoPqs80kLQFU7cAjJIEyxfyfMuikVWvIBtUJ3x5fNLUuPKFad6aINmMufkO7P9cNgaAsYL/uTB3jB6oPQ/l9U0iNADTio/wAQByDwAAc/NPYqsGoBnv72vB/AdbAUCTfyrLCV22964kqJm3wpDAp82X9/a1YAcANC2Nd9I4/ugzYRK1wXcpupxeqFOLS7c7l10fXwwx1ioQtUksxM6ZPKaAPXkzp+hOBZdfMStkQcr6FnD8wetR5R3dafk1py/kyakd6yRsZ780QX439fGo8m5CyM5Zg1jqMG5u3ydhaRz/6ilgU9/WaDI2WWiIhMnMzpaJj61N+BtyYvpFANi+OYr6IxDlkwu3gGoM4InFI6PR5UoyonFBAFi6PV1+UeqnJh58EFlXshAJCw0A5uafXNOp+CMNYRGdRt3d14Jn1gw/9hljBNqf+DdAzP4tsmfLI2OxdLsTWDrf2kLvaFAD1n6z6x1o9364U4tKHqMa3dbT/VLDW3AKwX5DwA//B0BHPAtCDMyjAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_51.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, triangle ABC congruent triangle DEF, angle B = 45.0, angle F = 65.0, then the degree of angle COE is ()
Choices:
A:40°
B:60°
C:70°
D:100°
|
Như hình vẽ, tam giác ABC bằng tam giác DEF, góc B = 45,0, góc F = 65,0, thì số đo góc COE là ()
Các lựa chọn:
A: 40°
B: 60°
C: 70°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, triangle ABC congruent triangle DEF, angle B = 45.0, angle F = 65.0, then the degree of angle COE is ()
Choices:
A:40°
B:60°
C:70°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, triangle ABC congruent triangle DEF, angle B = 45.0, angle F = 65.0, then the degree of angle COE is ()
Choices:
A:40°
B:60°
C:70°
D:100°
|
As shown in the figure, triangle ABC congruent triangle DEF, angle B = 45.0, angle F = 65.0, then the degree of angle COE is ()
Choices:
A:40°
B:60°
C:70°
D:100°
|
253
|
51
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAMUAAABdCAAAAAAwZv0CAAAJfklEQVR4nL1cX2xUWR3+bimlNUhDFJYuyLA+AC5GprxwjWYHMLsOxqxTE9PyspSHbbsx4Y+LBhKDURNnExB0HyzKJqP7QJuYtPuylUQj4OIWu9HBGLfsWqZjow6bdKcWVqblTs/nw70zcztz/5x77m2/tJm5c3+/c853/nznd86cOxqxGshrMRW3pfNnAei/Xe9j16SSeGAY31fzW/Pt83nyxLMfwbuyV4fFG5s/oeYoRAfwja9dgeZptios/rh1XtFzZm0LsGZHftHbbDVYzD7cublFzfWdLwDANp+mWA0WS787hG1qLIwbTwPAv3b4uK8Ci9tH1m36n5rrf/etBzB75Ys+divPYvYjcuopNd/3NwNYeu2ze33sVpzFh68eBO6r+RqvdQKzzxXO+/ZHriyGsCdfTgMXA/gI63XKLOGEv4e2knP3pVMhnOewUdp2BXvUQtf5u+rec8/2yBuvEAsCcwdf+M7PlRPIf+VH792vpuWf3wphMp5lcUtJ0fuOPslz5ypDRPhYc6VY/F7PkezNqHmP6AWysMW88OWwYiwyySJJZuMyZWjAxVSJJFMjsg4rMy5euTm6EQDj+KtPBOSEUzOjrQDQ9wtZj5VgsXBsPtMKgBpO/CSwd6krdsl8dzgvrXEKDe6DYjIjKv2otKUY0Lug1/rRxZOSTtGzyCWu265OBpm0SU7uz9bGc7FDUuMiZ5HVs/bLyd2BvK/rOfulrMZFzWJELyz/IDkWwPuXyUoHNJsjG5fzi5iFpZE2jKRkfQXP9NZ7x7NSrhFqFGsaaUPXbdmwfPFYe6bqTfP/xE8l844OpZTTUD53Ts67mMw0ztOlmNlBfebOCFkU9BGH7EQh5iM0goJkTr/e8DnJkz+WyTo6FpN61rnGpAKJbHzSOVUpjYuGhahqpAOR6wn/BEZ0t9kxOSYRikXVFpmk+yS9e9KvYzdKWxUjKfqHtaFXrNQA4Hszg/XiVMOlmUveaQy0ORtQA9CR3eJbiNBKqwFYOIaMOwn0Di14pbBwOO7CUgOAvkGJUvi0lQyKyYy3Qf+gx82C7j27+2ocw4wLUemujRpZb2kPJK4B6KumYMVdnv0+5STgyxG+Ldw00g59vPLu9KaHfLyrr1qqsUTO2aUGCY0Lw0KQXhppM8v0WuYvHyDJa5seWvcyqaJfRQvG/+JXkrBt4aGRtnKUtpuBxDVkSfLaNotFY/jnmIfvYimkRg1Y4Z+nXmto/fpVAMDP+uIAcM/8UmWhZ0NmnaUxXv69w54aB4TTqFLKS3zsyMVI8vGuX5OCfL6PQrCYHJLyFd4aR4brUfYlsncxrMXStNWhkCWZ239ddtfMd0MoBIu6tak3RlK02oKLu/pJjscnKbVjRpL629731Vnc8NdIO54okOLlA+Q0+kgOJYJsjgx1e99XZuEV/jkhfYYUfB5AluTF7hIp3RTVxZIbgkeD1ABqZ+97hH9OKHz+bitAMzYaaLtEzQokpXL81qdOwcs+UIVW66Y3LV+RFrqvVjyKyZrmyCUi7sU8bZVY+IZ/TqgGEoWEzMKnAsuyy1MOA7MQEuGfM6xdmUDSVoX3hpBCW4zXwr9AncoMJMYOBJK2aj4xL7fgLEYDaaQNpfYSmXmu6h1sXKXPeNwMzEIm/HNB/yDP9Ko6ey6WmgCUy2VpwRxo3P2T9x3sac+oOm/R3/C4S5KGbIWUkrLhnxOKG34Qwntcd78XKDK/f/D4gGpdAtOHTv9d3Rv6wh33GZokDdIwDBqGQRoGaV7WXqx3Wf3PhkHSoGHIt18Fb+/N+QUS3hjsdxWEao+y/qt/theSBoUxlvgHycfCJByUxlCiSJ5JKzIgLY1zhp2FQdIwG4QNLJhJFQ1SLGMqj3T3IwprsaQK92/XquOi2dKp5uZmx5539ubVjQA0uRMN9RiYH26Dhqc6RxWcKzj6ulveTUC9zNquCZp+Cz3tV9qsD4N/gz13eG/afPfCrwI7V4uC+IYbbnlXxnO17zSOboPFxFWDgpXxb44L6S6VS9R2/2I5lcMIFqrBVH0atrnbvVQ5fTxwIF5DNpGtXXgGEn4o7ahoXF1haizqSNTsxLjE7p8bBN9ctrKV2XV1h5vGVVgYDh3EIhJsiVyfwmDdyrZbbvvGOblCh/MN12iw2hbWElkRJ/vrkhzfHyI1t2/XXCOQihoMzAwrh39Y6IldrkmzBgD64h2oqTXgfkzHk7ooJgeFrSIDopiodB+b92C/o60UBHe/61QcbxaFRJDzD/V4Nz7e+KHwCCQk4Lzz7MlCbYlMkhTkuO68yAx6TGcZnDXOhYUgpb4hcYMghxJF514oe0TFGY7HdDza4nKyqD7VMd39yO3WsgNUQeG48+y+Sjqb/c1GhZjJxOKx+eE2FyHigPoxWyCOOw6FcqFc6lZdCgiSxVTGwyL0YqkBjiwEi4lhxUwEl4d/TlBcLJk9yekoonNb5Jw0Uhq+0lY57xsI1dHgoHENLATJ8biyOJEc0//jZyJ/3tcBDsd0wHIaqD7kIEjBocSHITIZ/HKJflP9WJLC18gVyTHLtWytvSZAltN/ElN78qKSaFo9/BPLwz93eO66+qG281y+kCcfv/SwCRDTT2vtT0GzZPWlefXwT1vo2n5ZxvDEq6pZADicvW8tpkW5A38oP9PSBMzsXr905ZD1nOnc4XhaPf255FG5x1+OjPo8R+iF1qODgAZNwz93tczebetZC/ItaHvyVhNNhwr/JiWkzRoPqs80kLQFU7cAjJIEyxfyfMuikVWvIBtUJ3x5fNLUuPKFad6aINmMufkO7P9cNgaAsYL/uTB3jB6oPQ/l9U0iNADTio/wAQByDwAAc/NPYqsGoBnv72vB/AdbAUCTfyrLCV22964kqJm3wpDAp82X9/a1YAcANC2Nd9I4/ugzYRK1wXcpupxeqFOLS7c7l10fXwwx1ioQtUksxM6ZPKaAPXkzp+hOBZdfMStkQcr6FnD8wetR5R3dafk1py/kyakd6yRsZ780QX439fGo8m5CyM5Zg1jqMG5u3ydhaRz/6ilgU9/WaDI2WWiIhMnMzpaJj61N+BtyYvpFANi+OYr6IxDlkwu3gGoM4InFI6PR5UoyonFBAFi6PV1+UeqnJh58EFlXshAJCw0A5uafXNOp+CMNYRGdRt3d14Jn1gw/9hljBNqf+DdAzP4tsmfLI2OxdLsTWDrf2kLvaFAD1n6z6x1o9364U4tKHqMa3dbT/VLDW3AKwX5DwA//B0BHPAtCDMyjAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_51.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, angle B = 45.0, angle F = 65.0, then the degree of angle COE is ()
Choices:
A:40°
B:60°
C:70°
D:100°
|
Như hình vẽ, góc B bằng 45,0, góc F bằng 65,0, thì số đo của góc COE là ()
Lựa chọn:
A: 40°
B: 60°
C: 70°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, angle B = 45.0, angle F = 65.0, then the degree of angle COE is ()
Choices:
A:40°
B:60°
C:70°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, angle B = 45.0, angle F = 65.0, then the degree of angle COE is ()
Choices:
A:40°
B:60°
C:70°
D:100°
|
As shown in the figure, angle B = 45.0, angle F = 65.0, then the degree of angle COE is ()
Choices:
A:40°
B:60°
C:70°
D:100°
|
254
|
51
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAU4AAADmCAYAAAC6a2xeAABKF0lEQVR4nO3deVhU97348ffAsO/7jgiIgIKCgoqIiqhRY6JpjGljm71p0t40vW16++ty297btDdp+6RJe9MmNq1Jk0azGY1xARUUBBRFUEQWkX3fd4Zh5vz+yJ3psMogMCzf1/P45AlzzpnvzJz5zHf9fGWSJEkIgiAI42Zk6AIIgiDMNiJwCoIg6EkETkEQBD2JwCkIgqAnETgFQRD0JAKnIAiCnkTgFARB0JMInIIgCHoSgVMQBEFPInAKgiDoSQROQRAEPYnAKQiCoCcROAVBEPQkAqcgCIKeROAUBEHQkwicgiAIehKBUxAEQU8icAqCIOhJBE5BEAQ9icApCIKgJxE4BUEQ9CQCpyAIgp5E4BQEQdCTCJyCIAh6EoFTEARBTyJwCoIg6EkETkEQBD2JwCkIgqAnETgFQRD0JAKnIAiCnkTgFARB0JMInIIgCHoSgVMQBEFPInAKgiDoSQROQRAEPYnAKQiCoCcROAVBEPQkAqcgCIKeROAUBEHQkwicgiAIehKBUxAEQU8icAqCIOhJBE5BEAQ9icApCIKgJxE4BUEQ9CQCpyAIgp5E4BQEQdCTCJzCjNLT00NtbS1lZWU0NDQgSZKhizTnVFRU8Lvf/Y5ly5Yhk8lG/BcaGsrHH39s6KLOWHJDF0AQdFVUVJCTk8OiRYuwtbU1dHHmJDs7O6Kjo6msrMTS0hJfX18cHBwwMzMDoL+/n/7+fq5fv46JiQmbNm3C2trawKWeWUTgFGaUvLw8Tpw4gYODA8HBwYYuzpxkZ2dHXFwcSqWSRYsWkZCQQGBgIHL5l+Ggq6uL8+fP8+6773Lp0iX8/f0JCwvTni9JEjKZzFDFnxFE4BRmBKVSSU5ODpWVlTg5OeHo6IiFhcW8/4JOJbVajUwmw87OThs0AaytrVmzZg3V1dXk5OSQmZmJTCZj6dKlAOIzQfRxCjOAUqmkoaGBpqYm+vr6MDU1xczMDCMjcXtOFYVCQU9PDwMDAxgbGw973MHBgaVLl7JgwQJKSkooKyub/kLOYOLOFAyuqqqK0tJSnJycsLGxobOzE6VSaehizVn9/f00NDTQ29uLqanpiIETwMLCAhsbG3p6eujs7EStVk9zSWcuETgFg1IqlbS2ttLd3Y2Liwuurq5YWlpiYmJi6KLNWb29vZSXl2Nqaoq/v792UGgoOzs7nJ2dkSQJpVIpZjjoEIFTMBiFQkF9fT2SJOHs7Kz9pzvCK0y+zs5OCgoKMDY2JjAwEFNT0xGPk8vlmJmZYW5ujqmpqeg60SHeCcFgOjo6yM/Px9HRkRUrVmBjY4OlpSVOTk5YWFgYunhzVnt7O9evX6e/vx9vb+9RA2dnZyednZ3Y29vj4OAgBoV0iFF1wSB6e3u5dOkSf/7zn3FycmLBggV0d3djbm6On5/foFFeYXKpVCqsra2xs7Mbs2Z/48YNsrOzCQkJwdPTcxpLOPOJu1OYdiqVivr6evLz80lLS6O9vR1jY2NUKhVr165lwYIFolk4Rbq7u5EkiYCAAFxdXUc8RpIkmpqayMnJ4ebNmyQkJODt7T3NJZ3ZROAUpp1CoaC2tpaQkBA+++wzjIyMUCgUtLS00Nvbi7W1tQicU6StrY3Ozk4sLS1HrW12dnaSlJREY2MjCxYswN/fHwcHh2ku6cwmAqcwrZqamigpKUGSJMLCwliwYIH2sZ6eHoqKimhsbBy13024OyUlJVRVVeHn54eHh8ewx2/cuMGVK1e4du0aXl5ehIeHi2b6CMTPujBtFAoFV65c4eTJk9ja2g4KmgqFgqKiIqqrq1EoFAwMDBiwpHNTf38/6enp5OTk4OzsjJWV1aDH6+rq2L9/P3/961/p6upi/fr17N69GxsbGwOVeOYSNU5h0oy2hrmmpoaMjAwOHjxIfn4+9vb2REdHa5fw5efnc/bsWQ4fPkxpaSkODg7s2bOHbdu2ERYWJprtOjRzKfUZ4e7p6eGLL77grbfeIicnB4DMzEysrKy0721fXx8ymYzly5fz5JNPEhQUJHIFjEEETmHSyGQy+vv76ezsxMbGRtvc1vRf3r59m97eXkJDQzExMaG/vx8TExO6u7tpbGyktbWVrq4uLCwsaG1tpaOjw8CvaPaTJAm1Wk19fT2FhYVYW1tjYWFBdXU1arVaG4h7e3uxt7fniSee4IEHHsDc3NzAJZ/ZZJJYDiBMouLiYi5cuMDGjRu1TfGBgQEUCgVdXV2o1WpMTU2xsrLCzMxMG2x7e3vp6+tDpVJhZGSEhYUF5ubmYiL8BAxd6SOXy+nt7aWjo0Obb3Po116SJIyMjLC1tRXJVcZB1DiFSaFWqzlz5gzHjh2jqKgILy8vbeCUy+XI5fJhfWoapqammJqaYmdnN51FnrPq6uo4dOgQPT09BAQEsG3bNmxtbUVOzUkkAqdw1wYGBigsLOTIkSOcOXOGvr4+CgsLCQsLw9XVVfRRThO1Wk1vby9Xr17lyJEjlJeXEx4ezsqVK0VS6EkmmurCuI02MHHgwAGOHj1KVFQUMpmM2tpaLC0tiYyMZNeuXSJhxzRpb2/n1VdfpbCwkHXr1nH8+HHKy8v5+9//zsqVK8d1jYkMPs1HosYp6EX3C1VTU8OFCxfIzc3FxcWF1atX4+7uTmlpKe+99x7d3d3s3LlTBM4pJkkSBQUFpKamUldXR2BgIAkJCbS2ttLZ2UlxcTGenp5iPuYkEoFTGDdN0JQkifb2dtLS0njllVfYsmULzz//PD4+PsjlcpycnHj99depra3Vrj8XpsbAwAB1dXWcPHmSDz/8kCeffJI9e/ZgZ2dHTEwMHR0dXL58GQsLC3bt2qU9b7Sape7/i9rn6ETgFPSiVqspKSnh/fffp7y8nMcee4y1a9fi6+urTYhrb2/PokWLqKys5OrVq0RERODk5GTgks8NunNlu7q6yM7O5tChQ6jVap5//nliYmK0g2zLli2js7OTV155BVNTU23gHGvPIN1gKQLm6ETgFMZNsyTy0qVLlJSU4ObmxoMPPoi7u/ug4+RyOatXr0Yul5OSkoKNjY0InJNEE8xaWlq4evUqmZmZNDY2snr1ah588MFB3SKOjo6EhITQ09NDVVUVXV1dWFtbi4A4CUTgFMZFpVKRlZXFiRMnuHbtGo8//jj33HMPlpaWw46VyWSsW7eOzs5ODhw4wKJFi1i1ahUgdkicDB0dHZw4cYKzZ8/S29vL97//fVauXDni7AU7OzvCw8MxNjYmMzOTFStWjJmwQ3w24yMCp3BHjY2NZGVlkZqaikqlYs+ePcTExIy5htnX1xcfHx9aWlqora1FpVJhbGwsvph36ebNm6Snp3Pjxg18fX2JjIzUBsaRWFpaEhsbS15eHmfOnMHLy0tkOpoEYoKdMKbu7m4uXbpESkoKTU1NLFu2jMcffxwvL68Rj9ed3ebm5oaXlxdtbW3k5+ejUCimq9hzUnNzM8nJyaSnpyOXy9m8eTM7d+4cM1u+mZkZsbGxODs7k5mZSW1t7TSWeO4SNU5hVJpsOeXl5bi5ufHMM8+wZMmSUY8fOgrr6urKvffeS0VFBcePH8fT01MsoZygnJwc3nzzTWQyGStWrGDr1q2DskuNxsTEhODgYNzc3KiurqayslKbI0DU/idO1DiFEV29epXPPvuMuro6fHx8WLduHcuWLbvjXkC6X0YXFxcSEhJQKBScO3eO9vb2qS72nKNQKDhz5gxffPEFAwMDLF26lLi4OAICApDL5ePeedLHx4eAgACqqqq4du2a2Or3LokapzBMY2Mjhw4d4saNG2zfvp34+HgWL14MjD24M/TvFhYWLFu2DBMTE0pKSmhsbMTf33/Kyz9XqFQqSkpK+POf/4xKpeLxxx8nJiYGZ2dn7THjrTX6+fmxdetWioqKSE1NZenSpaP2iwp3JgKnMMj58+f54IMPsLW15eGHH2bNmjX4+Pjc1TWDg4MpLy/n+vXrODg4EBQUNEmlnbsUCgUff/wxJ06cYNmyZURFRbFixYpBQVOfGQp+fn5s3LiRM2fOUF9fzze/+c2pKvq8IAKnAHy5z0xOTg7nz5+nubmZ2NhYtm7dOuiLChObrrJs2TJaWlrIysrCxsZGBM4xSJJEbW0t2dnZXL58GUmS2LBhAzExMdoa4kRW9Jibm7No0SLMzc1pamqiqqqKoKAg0c85QaKPU6C3t5cbN27w+9//nsLCQr73ve9x7733DguaE6XJ0JOTk0Nubu6kXHOuqq+vJyUlhd/+9rdYWFjw0ksvER0dPahZPdFVPaampkRGRuLj40NGRga3b9+ezKLPK6LGOc9VVlaSmJhIVlYWy5Yt025pMZn7zNja2rJw4UIsLS1paWmhqqoKDw8P0cemQ6lUkp+fT1JSEmVlZezcuZN169bh5+c37mvcqelubGxMbGwsKpWKxMREXFxcCAgImITSzz+ixjlPqdVqysvLSUtLIz09ncbGRnbt2sWOHTumZHMuJycnlixZgiRJZGRk0NzcPOnPMVspFAry8/M5d+4c165dw8zMjEcffVS72moyRUZGEhgYSG5uLiUlJZN+/flC1DjnEd0aydWrV0lKSuLSpUvExsayZ88e3Nzcpuy5LSwsiI+PJz09naSkJEJCQnB1dZ2y55vpdD+LY8eOcf78eVpbW9mxYwfx8fETWtt/p+a7TCbDysoKDw8PjIyMaGpqorm5GQcHB5FsWk/i3ZoHdAcTenp6SEtL046url69mvj4eHx8fKZ0L3MLCwvWrl2LnZ0dly5dor6+fsqeazbQJHw+evQo2dnZmJqaageBXFxcpjSQubm5sXLlSrq6ukhLS6Onp2fKnmuuEoFzjhva75Wfn89HH31EQUEBCxcu5Pnnn2f58uVTXg5jY2Pc3NxwcXGhqamJmpoa+vv7xz2Be65RKpWkpqZy6NAh+vv72bhxI0888cRdTf0a7b2UJGnQY87OzuzcuROlUkliYqJYmDABoqk+x+kmH37rrbe4du0atra2JCQkEBUVNe1JhhcuXEhsbCy3b98mPT2ddevWzbtBorq6Ot544w0aGxsJDw9nw4YNhIaGah+faAap8S5McHJyIi4ujrNnz5KVlUVzc/OouQd0icxW/yJqnPNATU0Nx44dIzc3F5lMxqpVq4iNjdXm0ZzOWl9gYCBbtmzh9u3b2mxL84VaraagoICTJ09SXl6Oq6sr69evJzIyUjsgNx2fhUwmw9nZGVdXVyRJorS0lNbW1il/3rlE1DjnOM0KlEOHDrFjxw62bt3KsmXLkMu//Oinu6m8cOFCAA4ePEhrayt9fX1T2rc6HXT7kEebnC5JEg0NDezfv5/c3FyeeOIJYmNj8fX1HXTcZNbo7jRRPjQ0lOrqau2Krri4uDGvJ2qb/yIC5xx269Yt3nvvPVpaWti9ezcbNmwgJCREGzRh+r8MRkZGuLm54erqSnt7O8XFxYSEhIyYEHm20H0PdYOnhlqtJj09nQ8++AATExO++tWvEhMTg7e397SVayTLli2jra2NI0eOYG1tfcfAKfyLaKrPQQqFgsLCQlJTU8nKysLd3Z1vfOMbrFy5ckYEKHNzc5YvX46bmxsZGRlUVFQYukiTSjdgdXR0cOXKFVJTU7l58ybLli3jkUcewc/Pz+BTgAICAggPD6euro6SkhIGBgYMWp7ZRNQ4Z7mhzTGlUklhYSFvvvkmlZWVPPvss0RFReHi4jKu86eDkZERGzduRKVScfLkSXx9fQkODp62558uLS0tZGRk8Pbbb2NnZ8err75KYGDgjNn108jICA8PD3x8fOjr6yM7O5vQ0FCsra3FQNAdiMA5B2hu8MbGRrKzs7lw4QKmpqZs3bqVVatWjRo0h54/XWQyGWFhYRQXF3PgwIE5V+OEL7tJMjIyyMnJISAggOjoaJYtW2boYg1ja2vLqlWrqKys5Ny5c7i6uooN3cZBNNVnOd2tYi9dusTp06e5evUqGzZs4Nvf/vaMC5qa5zQ1NcXLywtzc3MaGhqoqKgY1FQcOvdwNqmtreXs2bMkJyfT2NjIN77xDfbs2WPoYo3IzMyMjRs3Ym9vz/nz56mrqxt2zGz+LKaKqHHOcONpSpeWlnLixAmuXr2Kq6srP/nJTwgJCZmuIk6Yq6srmzZtoquri+TkZHbv3o2trS0wu0ZwdZu1qampnDhxgqamJiIjI9myZYt2JoGhjdT8Njc3Jzo6mtTUVHJyckYMnLPps5guosY5C4x246pUKgoKCkhOTqagoABXV1diYmJYvXo1dnZ201xK/bm6urJ582a6uro4e/bsrF36p1nKmpGRQVpaGi0tLSxevJh169YRFBQ0aK/zmcrT0xMnJycqKyuprKwUNcw7EIFzhhvr1766upq//vWvJCcn4+bmxlNPPcWOHTumsXR3x8HBgbVr19Lf38+VK1dm9dK/a9eu8T//8z/cvn2b+Ph4nnrqqRnXpznWvRQQEMC2bdsoLS0lJSVFjLDfgWiqz1LHjx8nJSUFgA0bNrBmzZphk6lnA2traxYtWkR1dTXXrl3DxsYGT0/PKX3OyRwxVigUHDhwgNzcXMLDw4mOjiYqKmpW1Ph1LVq0iC1btvD666/T2dnJnj17ZkVN2VBE4JxlOjs7KS4uJjU1lYqKCnbs2MH69eu1QXM2TiOJiIigra2NS5cuTUrg7OzspKKigq6uLoyNjVGr1ZiZmeHg4ICzs/OkzGXVrATKy8sjLS0NIyMjHnnkESIiIrTXn02fhYODA+Hh4SiVSsrLy2lqapryCfqzmQicBjDSgM94vmRqtZq0tDR+//vfExERwXPPPUdYWBgODg7aY2bLF1XX8uXL6ezs5I033sDZ2Zl77rlHr/N13ztNqrSf/vSnZGdnY2VlRV9fH15eXmzfvp3HHntMmyB4rPf8ToNyzc3NfPjhh3z66afs2rVLOwikmaM5G/sINbX/qqoqcnNzMTExGZSjdTb9EEw1ETgNRN8bsLm5mcOHD3P9+nUiIyPZuHEjERERU5Ktfbp5enoSEBBAb28vNTU1dHR0aEfXx0Mmk6FWq8nOziYpKYnLly8TFhbGqlWrMDY2xtjYmKamJrKysjA3N0etVrNs2bI71jxH+oz6+/spKirixIkTVFVVsX79euLi4ggODh52/GwLMiYmJqxZs0Y7rc3BwWFKk1vPZiJwGsBIX6ixaj4NDQ3k5ORw9OhRbG1t+cUvfkFAQMCs+2KOxd3dXbuC5fr164SHh+v1o3D79m0OHz7MF198gSRJHDhwgIiICO3jhYWFPPPMM5w5cwaFQoG7u/uY04RGem8HBgYoLCwkLS2NlJQUVq1axXe+8x0cHR3Hdf5sEBMTQ2trq/b9i4mJ0T42W1/TVBCB08Du1CQsLCzk8OHDpKWlcd999xEfH4+vr++sv4mHvm4rKyvi4+MpLi4mMTERT0/PYYFztPcqMzOT48ePk5aWxvbt29m3bx+LFi0adIy7uzvf+ta3eOedd7R7LOkzv1KhUJCRkcGJEyeor6/n6aefZuXKlYO6SWZ7U1Ymk+Ht7Y2fnx9dXV1UVVXR1taGra2twdfVzzTi3ZgBRvqydXV1cfnyZY4fP051dTWhoaFs3LiRRYsWzfo0bCOxtLRkw4YNWFtbk5aWNuJEbBj+XrW0tHD06FFOnTrFggUL2Lp1K6GhoZiYmAzqZzQzMyM0NBR7e3taWlpQKBTjLltdXR3JycnaaTorVqwgLi4Ob2/vWR0odekGfXd3dwICAmhtbSU3N1ev92q+EDVOAxvti5eTk8OpU6fIzc1l8+bNPPfcc3MqU7puZnqZTIaZmRlLlizBwcGB27dvU11djVqtHlTTGfpetbe3k52dzcmTJ6mrq+O//uu/WLly5YjHq1Qqurq6kCQJKyurQan1xqJSqUhKSuLcuXP09fWxd+9edu7cOeZrmo10y+7o6EhCQgJFRUWcP3+eJUuWYGFhYcDSzTwicM4w7e3tfPLJJ9y4cQOZTMYTTzzBypUr7xg0Z2szcWiZNZmSKioqyMvLY+nSpaM2E6urqzl16hQWFhba7SesrKxGPHZgYIDW1lba2tro7e0dV+Z5TTdJXV2ddsuPsLAwvV7fbPxcXF1dSUhI4MqVK1y/fp1HH33U0EWacURTfQZpbm7mwoULZGVl0d/fT1hYGDt27JhX8+kWLVrE+vXrKSoqIj09fcxjGxoauHLlCu7u7mzYsAFnZ+dRj+3v76esrIy+vj4cHR3HTO2mUqkoLS3l/PnzXLt2DXt7e9atW8f69etxdHSclVON9GFmZkZwcDC2tra0tLRQVVWFWq02dLFmFFHjnCFUKhVvvfUWubm5REREEB8fT2Rk5Lib57OtVjOaxYsXMzAwwIsvvkhnZyff/OY3Rz22u7ubxsZGFi9ezKJFiwbVTIcOJHV3d5OTk4OJiQkxMTHaIDvSgFNtbS0vv/wyPT09bNmyhbi4OPz9/bWP6/Nez7bPRbeGHB4eTnNzM5cvX8bS0nJadkOdLUTgnAGuXbvG8ePHqa2tZdmyZcTHx7NkyRJt0JyNzb3xGvraLCws8PPzw9bWls7OTm7fvs3ChQtH/AGpra2lsrISS0tLfH19Bx0ztH8zPz+flJQUFi9ezKZNm0ZcNCBJEmfOnCElJQVLS0tWrFjBunXr8PPzG7W843lNs1VERATt7e1kZmZia2urDZxz5fXdDdFUNyCFQkFVVRVnzpzh+PHj+Pr6snv3bqKiogZNzp5vN6mtrS1Lly7F3t6eixcvUl1dPehxSZLo6+ujq6uLzs5OjI2NsbCwGPV9ysvLIzU1lcrKSjw9PYmJicHa2hoYnM/0+vXrnDhxgkuXLhEbG8sDDzxAQEAARkZG485JOdub8brvYXBwMOHh4dy6dYvCwsIRj5mvROA0kIGBAW7cuMGPf/xj8vPz+f73v8+ePXsIDAw0dNGm1UhfQiMjI9auXYuvry/JycmUlZUNO8fc3BwPDw88PDzo7++nqalp1H64o0eP8vnnn7Nq1SrWrVuHm5vboNqpJh/oD3/4QyRJ4qc//Snr16/HyclpzHKO9nrmSmDR1OQtLCxobW2lrKwMpVJp6GLNCCJwGkBnZyfJyckcO3YMMzMzoqKiWL9+PQsWLBj3NJm5zNjYmOjoaHx8fMjKyqK8vHzE49zc3Fi8eDE1NTVcuXJl2Ht369YtXnvtNZKTk3F0dGTfvn2sXbtW+7hKpaK8vJwjR46QlpaGn58f69evJyYmZlDQ1DVXguJ4OTo6snLlSmQyGefOnaOlpcXQRZoRROCcZp2dneTl5XHkyBEuXbrEN77xDR577DHs7e0NXbQZQyaT4ezsjLe3N42NjVRXV9PX1zesGezq6kp0dDQNDQ2kpKTQ2NgIfLlhXUdHB59++ikvvPACra2tfOUrX2Hfvn2DBnmqq6tJTU3lo48+oqGhgZ/97Gfcf//9o/54zbegCV/2OW/btg1bW1tOnTo16sKE+UZUb6aYbkd6WVkZqampnD17Fj8/Px588EHCw8Pn5EqgyeDp6cnmzZtpbW3lzJkzxMfHD5qIHRAQwOOPP45CoeDMmTPs2rVLm0auo6MDb29v/vu//5uVK1eydOnSQedeunSJc+fOkZ+fz+bNm4mNjcXDw2PEchhiJ9CZwtLSklWrVpGZmUlOTg719fWGLtKMIALnFJPJZCiVSioqKrhw4QLXrl3DxMSE1atXs2HDBkMXb0bz8PBgx44dnDlzhtOnT7N69Wpt8JMkCTMzM4KCgkhISKCtrY2cnBy6u7uRy+X09PQQGBjIM888M2jDuu7ubu2KmMrKSry8vNiyZcuwte3Cl2QyGTY2Ntp+4erqapqbm3F0dJyXPyQaInDepdFqI7o1zeLiYg4ePEhxcTGBgYG88MIL82pS+0S5uroSGxvL0aNHuX79Ol1dXdq+R933OyEhgbi4uGGrgUxMTIZNdL9w4QIff/wxSqWSuLg4vvrVr444GV73c52PAWLolKOFCxcSExNDWVkZly9fJiEhYdgUsfk0TUkEzrs02o2iyRGZlJTElStX6OrqYsOGDURFRYmgOU5GRka4u7vj6elJVVUVRUVFODg4aHN1ar6opqamd+zuaGpq4siRIxQVFeHo6MiKFSuIiooalHhY97McKwDMhwAx9PUtXryY+Ph4PvzwQxQKBVu3bh30+GyfhqUvMTg0RTR5JU+dOkVpaSnBwcHs2rWLyMhIQOxVPV5GRkYsWbKEgIAAsrOzKSgo0Ot8SZJoaWkhMzOTL774gu7ubtatW8fOnTsHTWwfbyCcr5+Zj48P0dHRtLa2kp+fP2xjvbn+QzKUqHFOkcOHD3PkyBECAgKIj49n7dq1s36LC0NZsWIFnZ2dJCUl4ezsTHR0NDC+97Cvr4833niDnJwc4uPjWb16NUuWLBlzrfpY5uLnNt7BLxcXFxYvXkxLSwtZWVlERERMaK7rXCBqnJOstraW9957j6tXr+Lh4UFMTAzR0dHaoDlfayx3IygoiNDQUGprayktLaW/v/+O56jVavLy8vjb3/5GQ0MDS5cuJS4ujvDw8EEDTMKXxhP0LCwsiIiIwNXVlfT0dKqqqqahZDOTCJwTNLSprVaraWtr4+LFi+zfvx+1Ws0TTzzB5s2bcXV11R43n36VJ4upqSm+vr5YW1vT0tJCcXExfX19ox7f399PeXk5iYmJvP/++wQHB2s3ttPtCxWfxZf0eR+ioqLw8fHh0qVLoy5MmA9EU/0u6N5wlZWVvPnmm5SUlPC1r32NVatW6Z2tfT7PF7wTGxsbYmJiaG9vJy0tDScnJ9zd3YHBgzU9PT3k5uby/vvvMzAwwHe/+12io6MH/XgJ+tG8v8bGxkRERFBcXMxbb701bCnsfCJqnBOk+aL29fWRm5vLiRMnqK6uxtvbm23btrF8+fIJ96MJw1lbW7N582ZMTU1JTEykublZ+5jms2htbSU9PZ2zZ8/S3d3NkiVL2LFjh157Cwkj021deXl54ezsTENDAzdv3pyX69dF4LwLKpWKGzdu8Omnn3Lw4EG2b9/Or3/96wlPN5qvcwbHw8rKivXr12NhYUFqauqwFSya/dQ/+ugjLl68yOOPP86zzz47akb40YjZDsMNvS/d3NzYuXMnXV1dnD59mp6eHgOWzjBE4NSD7heqqamJEydO8MEHH9DZ2cnTTz/NunXrMDMzEzsCTiE/Pz/8/f0pKSnRrk0vKirigw8+IDExES8vL5599lmWL1+OXC7X+4dI/Hjdmbu7OwkJCbS3t5OcnExvb6+hizTtxvyGa359xa/wlzRfKM0g0IULF2hoaCAkJIRHHnkET09PA5dw7lu8eDEbNmyguLiY06dPU1NTQ3p6OllZWUiSRFxcnDYphTA1rK2tCQ8PRy6XU1FRMS/Xr486OCRJ0rAlbEZGRvO+NtXW1sYbb7xBcXExzs7OfPe73yU8PNzQxZo3goOD6erq4sCBA2RlZZGamoqZmRlhYWHs3LkTX19fQxdxXrCwsGDRokXU19eTl5eHvb09CxYsMHSxps2Yo+pGRkba5LCiCQNXr14lPT2d+vp6AgICiIqKIjw8HBMTE0MXbd5wcXEhNDSU+vp6CgoKWLBgAREREaxevXrQSiBh6kVGRtLR0UF6ejo2NjbzKnCOWn2UyWQYGRlpg6WxsfG8DpwtLS188sknHD9+HH9/fx588EG2bt0qguY0kySJnp4elEollpaW2uTD+m7bK9y9yMhIVqxYwdWrV8nLyzN0caaVmMc5Dmlpabz55ps4OzvzyCOPEBMTIxJ1GIAkSRw6dIj3338fLy8v/Pz8qKmpoaOjw9BFm5ccHR3x9/dnYGCAuro6mpqacHR0nBfdeeMOnLqTjEcaKJLJZKMOIA09T3Ot0Wqwo13/bo+90/mSJA360Ds6Orh69SqpqakoFArCw8PZsGHDqINAuhPYh5ZL92/zueY+UTU1NWRkZJCVlYWNjQ1bt26loaGBL774gpqaGkMXb95ydnYmKCgIpVLJ5cuXWbVq1aCcDHPVhH4a1Go1KpVK+0/TD6oZUNL9p0vzuFqtHnOD+9GuP95j9ZkBoHu+brm6u7vJy8vj1Vdf5ebNm3z/+99n9+7duLu7MzAwMGKZdM/XfS805bnT6xZG1tjYSGpqKq+88goymYzf/va3PProoyxcuJCysjIqKioYGBgwdDHnJSsrK+655x4sLCxITEykqakJmPt5ACbUVNcMGmlqjppamua/muCg20eq+ZvuXuFqtXpQzXOkv2moVKpB1xvrWLVaPejYkYx0vuZ1VVdXk5iYSHp6OsuXLycqKorQ0FBsbGyAf+Xa1JRJ85yam0WlUmnfF02w1K2xD30twsgGBga4efMmx44do6SkhK9+9avExsbi5eUFfLm1Rnh4OI2NjVy+fJmIiAjMzMwMXOr5xcbGhk2bNnH9+nWOHTvG3r17gbnfqppQjVM3WA4NXJr/1526pAlSQ5voQ2uHQ4Ox5p+mmTu0WT3SsZo9sO9UsxvpfKVSSXl5OWlpaWRnZ9Pb28s999zD9u3btUFT8xqHln9o2YYOrum+djEv9s76+vrIy8sjJSWF/Px8rK2t2bdvHytXrtQeo5mI3dTURHJy8riyJgmTy9jYGA8PD5ydneno6KCqqmpetKomdXBIE0hGq01JkjSsSTU06N5tQNH3/KFbXCQnJ3P27FlWr17Niy++iLOz86jPoQmEMpkMuVyubZYPnYGgSZAwkfLNV5rPoaysjN27d7Njx45BP17w5ZrphIQEUlNTKSoq4plnnjFQaYWQkBA2btzIzZs3cXZ2Ji4ubk7XOu9q+Eu3RqkxVmAYqXZoSJry9Pb2cu7cOT7//HNKSkqIjY1l06ZN+Pr6YmlpOeJAz1jX1H1cBEr91NfX8+mnn3LhwgWMjIzYsWMH69atw87Obtj9ZmZmhr+/P05OTigUCm7duiVqnQYSFBREbGwsBQUFZGZmjjmQPBdMOHJpgs5IK4zudM7QZrgh6DaZb9y4wRdffMH169ext7fnscce025xoTu4M/R8XXP1BplOAwMDZGZmcvToUdra2oiKiuKxxx7Dx8dn0HG67725uTmhoaF4e3uTnZ3NrVu3prvYAl9urREZGanNmKRQKAxdpCk1YlNdd3Bjqmj6IYf2A07kOmPtMDkaTeB86623yMnJwc7Ojj179hAVFYW9vb1e19JcT5i4uro6Xn/9dRoaGli8eDEbN25k6dKl4zp32bJltLe3c/HiRdzc3AgNDZ3i0gpDvxcWFhb4+flhZ2dHV1cXhYWFBAUFzdnUiiMGTt3BC91+vJEMDXqjHTe0mTVSkNQdrdccowlwow1CDR0IGqmPVfN6dH8IKioqyMzM5MaNG5ibmxMVFUVMTMygPbh1y60ZgR/6mO7r1512pPtcugNRY/1tPlKr1dy4cYOMjAxqa2vx8fFh3bp1REZGjjsJdFhYGI2NjRw/fpyQkJApLrEwGltbW5YvX87t27dJS0vD0tKSwMBAQxdrSowYOHUD0p36InWb60ZGRsP2WtZcT3cKj+ZvQ4/V/G3o3E19jx2pC0B36tHAwAAnT57k/fffZ9OmTWzZsmXQF1X3R2C07oihswZ0Hx86HUvzuO5r0PxAzOelrAMDA9TX1/P++++TnZ3NI488QlxcnN6Jhx0dHQkKCqKjo4PKykoaGhpwcnIa8V4UJsdI96yRkREJCQmcPn2axMREAgMDxx04Z9vikBEDpyZYwPheyHib2kOnMY1G9/kncuzQ4zWj3gBlZWW89dZbdHR08OCDD7J27VoWL148KGiOdP7QH4871T5154YOfS+NjY3vuHpqrtP0Zx46dAhzc3O+/vWvExsbO+HsRg4ODsTGxgJw/vx54uPjcXR0nMwiC3dgbGzMsmXLyM/PJz8/n+rq6nGfO9J3ZyYbsSqpO4gznhcx3iAw3uuONI/zbo/t7+/n5s2bnD17lhs3buDu7s4DDzxAZGSkNkv4WIF/rEEt3Vru0Brv0DmtQ4+fj9rb28nMzOTChQvU1tYSFhbG/fffz8KFCydcS7SxseGee+5BLpeTlJRES0vLJJdauBOZTIa5uTnu7u6Ym5vT0NBAXV3duAePNWbDQOtdj/5oVsZM1fSiyZgsrlQquX37Nq+//jr/+Mc/ePLJJ3n66afx8PAYdNx8rgFOJd3Pr62tjUuXLvG///u/5Ofn88Mf/pD777//rhMP29raEhcXh1wu58KFCyJwGpCnpycbNmygpaVFm+dhvGbLd3DCa9V1/01l9XqkN1KfQNrU1MTp06f529/+hoWFBQ8//DDR0dG4ubkZfB7pXDe0i6KkpITPPvuMI0eO4O/vz65du1i6dCl2dnZ3/VxGRkbanS/NzMwoLy+nra3trq8r6M/b25vt27dTV1fH8ePH52QegQlFDs3AkW6S4+k2nuDZ0dHB5cuXSUlJ4fr168TGxvLMM89ot5UVps7QH9Pq6mrOnz9Peno6zc3N3H///ezevRtLS8tJfd5FixYRHh5OQUEBOTk5k3ptYXycnJxYu3Yt/f395Obm0traaugiTboJJ/mYLiMNUo0WqHW/rNXV1SQlJXHu3DmcnJx46aWXCAoKmvoCC8Okp6fzxRdfUF1dTWRkJPfff/9d7c80VgsnPDycjo4OPv30UwA2bNgw4ecRJs7GxoaAgABaW1u5du0aFhYWc2pv+wkn+Rj6bybQlCMvL4+TJ0+Sl5eHt7c3GzZsIDIyEmtrawOXcP6QyWT09vaSlpZGamoqHR0dhIWFsW7dOhYsWDBlmfN9fX1Zvnw5ra2t3Lp1i87Ozil5HuHOwsPDCQoK4uLFixQUFBi6OJNqxmeA1zco19fX88EHH3D79m0WLFjAo48+Omcn4c50eXl5/OUvf8HKyop169Zx3333DRsEmkj/+J2mp3l7e+Po6Ehvby/FxcUEBwcP6xKYbfMGZyPNnkQff/wx3t7exMXFGbpIk2bGB059HDt2jDNnzmBsbExCQgJr1qwZ9wZes2X+2GwgSRL79+/n8uXL+Pv7Ex0dTVRU1Igj56Nl0bqbz8LMzIyYmBhKSkpITk7G2tp6WDeN+KynliRJBAYGUldXR11dHaWlpXR3d2un/o3n/Jn8Gc2JYeWOjg4yMjK4cOECdXV1LFmyhPj4eEJDQ5HL5bNiXthcUVtbS2JiIpcvX0atVrNu3TpiY2Nxc3MDpmeOnlwuZ8OGDXh4eHD69GkqKyun/DmFf9H9jL28vPDw8KCzs5O8vDy6u7sNWLLJMydqnFeuXOHll18mJCSEp59+msjIyEGJOkSSjunR1tbGxx9/zLvvvsuePXvYuXMn/v7+g7KyT8dnIZfLWbFiBdnZ2WRmZlJVVXVX1xP0o/v5WVtbs23bNm7fvk1iYiKenp7jqnXO9O/jrK5xNjU18de//pW9e/diYWHB1q1bhwVNfZW89yDBwcG8lD7So2Uc/FowwcFj/BvhRGXDZd5/fivBwcGseuDHvH+5AeWES2h4I2XjLy4u5n//938pKChg9+7dJCQksGjRIoNsZaH50vn4+BASEkJNTQ1FRUVzcj7hMMoGbhx+jce2/t/9uOoBfvzXFEr7Rjo4nZfGupeDg/nawbIRnmL897ONjQ3r16/HyMiIlJSUOTO3dlbWONVqNbW1teTm5vLxxx/T2NjIZ599RmtrK6dPn574hUv+ztNPfUKhAppGXOygoquikMLAlzn1/PKRr+G6YPD/V3/Cvoj/wOkPn3Dyx270FXzIzx9YyeV3cnh14+xbSz10UKW/v5/S0lIyMzNJT09nxYoVPPfcc3f14zVZfHx82Lp1K/X19SQnJ+Pt7a3NWTAntSTzw+htvN6xmm/++n943deSnopjvPzvG/nNf73A2ZxXGXzLKWgqLITn3uX1+91GvKTVwiH3qJ73s7m5OUuWLMHW1paqqirq6uoICwubvNdsKNIMpFarJbVaPerjxcXF0m9/+1tp+/bt0p/+9Cfpo48+klasWCEB0sMPPzzBZ62SDu4yk3w2bpQWg/TC2ZGOOSe9aIa0dv+tcV/14i9cpG3vVQ36W3/2b6TFG/8mlU6wpIYy9HNRKBRSamqq9N3vfle6//77paNHj0r19fWSSqUyYCn/pbW1VUpOTpYefvhhad++fVJnZ6ehizSFbkl/22gmmW38s3Sjd8hDzYnScy5IZk8el9p1/176N2njqPf6yCZ6P7/77rvSzp07pT/96U9SXl7e+J9whpqxP78j9XF0dXVx8+ZNkpOTqa6uZuXKlcTFxREWFsaGDRtYs2YNBw8eZO3atXznO9/R6/lajv0/Hr3wJJ+fiuCXkcmjHKVCqWdi677uDhYOmfhrYuuMc78K/VIfzAyaz6W+vp6rV6+Snp6OJEmsX7+emJgYnJycDFzCf7G3tyc0NBQTExNqa2upqamZs4sgOpL/xH8kB/Gr3CcJHZo72HEzvy/p4A82NgyaPatSoe9GIxO9n0NDQ4mJieHatWuYmZmxZMkSYOaPno9mRvZxjvZG5uXlkZiYyLlz5/D09ORHP/qRttrv5OTEP//5TwBeeukl+vpG7NQZWUsSP3viQx7623+zeRy5JvzdXe580P9Zvu1ZPv/Na1zV5JxQNpD0p/+iYnM4E0ugZji6zfO0tDSOHz9OYWEh69ev53vf+96MCpoarq6u+Pr6Ym5uzvXr16mpqTF0kaaAkitH/0zj2ufZHT7ywgLzoUFTazFeenxsE72fg4ODWbduHbdu3SIrK2vW74Q5Y2ucurq7uzly5AhXrlxhYGCAZ599lsjISCwsLLTHyGQyoqKi2LVrF5999hl/+ctfeOGFF8Zx9RaSfvYIb699h5J7HaFkjENLSsgCoqzGn8nHduNvOFnzJPf5uYKnI301Ndg//k8u/Dh6lBt5ZisuLubjjz+mqqoKNzc3Hn74YW3tYaaKiopCqVRy4cIF7O3t72q558x0lfPvK1j8w2gC9Dmt4gYXcOax8U2tBPS7n/v6+jhw4ACnTp3SDgyZmprS3t5OTU0NXl5es7K2CTO0xqmrrq6OlJQUrly5glqtZtmyZWzZsmXUm/8nP/kJAEeOHBnX9TvO/w9Pvr2UP/9uL17jOsMMk4Eacg+/xrcfWDWOkUtzQh95n1vNJWSkpHC1upm81+7FZ5ZFTZVKRVFREefOnaO4uBhHR0dWr15NTEyMNruRNAP3i5ckicjISEJCQrh69SpFRUWGLtLk62igpBFCfNygr5SUv76kHVVf9cC3ee1kMZ2jTuMwBUXxoHOCtz7Ga4dv0DDiOXe+nwcGBvjDH/7AwoULefbZZ/nss88YGBhgwYIFSJKEi4sLV69epbGxcfLfi2kyowOnUqnkH//4B++88w4WFhbs2bOHJ554Ysy9aFauXIm7uzuZmZl3bq53nOdX+36L/a/+wL7x/FSrBlACr+/0YtWLp7Hb/v94/fXX+c+v2ZL87xvxD9rLoaJR7lATG1zc3XGxmbkRc6zAV1tbyx//+EfOnz9PTEwMTzzxBFu2bBl0zEzKW6Ahk8nw8fEhICCAmpoaKioq9OvGmQ0a67gNeLamsDcohKeOdBP77Ou8/vp/8jXbbH62LQivnX9n6K2pHOgH0vlOZBD3vV1MxKOv8/rr/8MPVjTzx68uxXfVL8kYLa3pKPdzU1MTmzdv5nvf+x5NTU089thjZGRk0NraSkFBAf/85z8JDw8nKSmJ8vLyqXg3pofhxqUGGzqKfv36demXv/yl9N3vfld6+eWXpfT0dKmjo2PU43U9/PDDEiAlJyeP8Yz90sVf+Ej4/EK62K/z51v7pbWjjTSefUECJJ+HDkqF/UMeaz4rveCDRNhr0o0xnnWmGm0mg1qtlk6ePCn9x3/8h/SDH/xAevvtt6Xi4mJpYGDAAKWcuJs3b0oPPPCA9MILL0jnz5+fWyPs/3fPgpm0cX+hNOzWzPipFAaSzy8uSoNv9bUSmEkRv0iXmoec01+4X9poNsJI/Bjy8/OlwMBACZCWL18uFRcXD3pcpVJJ9fX10h/+8AcpLCxM+uijj/R8oTPHjKlx6g48lJeXk5KSwoULF/D29ubee+9lzZo12NjYDDt+JGvXrgUYMyOL8tprPPULePG97xE93krgmv+ktraBG+/tJWjoOY4b+eWbT2J2/Vd8dGmc15shpFESXnR0dHDlyhVSUlK4efMmK1euZPv27QQGBs66jdAcHR3ZsmULarWaxMRE2tvbDV2kybftbf7xVNCwvkbH1f/Jmz9xofI3H5CmU+v03XuY2tpa0n++hqEzME2CnuJPr4ShePstTtTf+anr6uq47777uHXrFrt27SI1NXVYch0jIyNcXV3x8vKivb2d6upquru7Z1z3znjMmMCpUV5ezg9/+EPS09P5zne+w969e1m8eLFe19Ckj6urqxv5AGURbz/3InXPvc2P4vTYssHcAXd3F0ZrbdtGbmYbjSRdG2uEaeYZqYnd19dHRkYGP//5z1EoFLz44oskJCTM2iTQjo6O7NixA5VKxdGjR+dk4Iy+L2qUfnoTVq7fA4p0Ckt1/mrjgru7A6PtfB66+iu48BmZ+SM/Lv1f105XVxe7d+/m1q1bPPjggxw+fHjMFI5eXl6sX7+exsZG0tLS6O/Xd1KU4c2YwNnd3c2pU6d49913cXBw0M7L9PHx0bt2o8mINPIue0qK3n6CZy9/nb/99+Zhv7R3xc0Vv8m8noHU1NTw4YcfkpSURHBwMBs3bmTFihUzcrrReMnlcry9vXFxcUGpVFJeXo5SOZsXvupwcccfMJGP/j0xkZsClygc/8aT4OTFWLNeNT+2//Zv/0ZmZiaxsbH84x//uONlfXx8SEhIoLa2lrNnz+q9mdtMMOJ0pIGBAe0/XdL/TVY1MzNDLpfrPRAwVpOwoKCAw4cPk5+fz69+9StiY2PvOtP8yGuTM/jrCxfAtIwfxATzg2EntVAGXPt6MCesga//jYKfxIzvCTu6ab6bAs8ANTU1XLx4kSNHjmBmZsZLL72k9z7nM9miRYtYsmQJBQUFuLm5ERkZaegi3T1bX8IXwz9uVMCYE5KiWTy+qSNf6m6j6Q6HnDp1igMHDuDt7c3nn3+Ouflo9dd/cXd3JzY2lmPHjlFRUUFXV9eEtlDRjVPSKBPpNX83MTHBxMRk0navGBY4NZObNdtOdHd3Y2RkhEqlore3FxcXF37605+yefPmcWXx1g2WI+2dXFlZyblz5zh69ChBQUH8+te/Jjw8fAq35wjga0dPkTDaw/VHeP4bbxD4/Os8vxydtef1nP/Tf/BS+df46LdbGKmBr7yRyUlc+Ha4XrPpDEr3s8jOziYpKYmsrCzi4+PZtGkT3t7eY54z24SGhlJXV0dubi6WlpbawHmnL97MFsLaB13grTNkvLKRNSN8La9dOQFm21is/Q28wcff/hkHl/+Kj58OHfGq1dfPUsgufjnyw3R1dfHss88C8Mc//nHc+Qk0tX8PDw/a2trIz8/H3Nx8UL7WO73vAwMDpKenc/r0ac6ePUt7ezvGxsaDJtZruhLMzc159NFHuffeeyetEjBijdPU1FQ7SKNWq3FycsLa2hojIyP6+/tJSUnBxMSEmJiYcScm1SWTybTNpQsXLnD9+nUcHByIjY0lNjb2rl/U2LxYvmWMn92SCpyBRVFb2LJR9wE3nNXZJP7uFh9+awtPDYuN1Xz6yu9oDPsVuyMmvdBTRiaTaZeypqamUlVVhb+/P/Hx8QQHBxu6eJMuMDCQjo4Ojh07hq2tLQMDAxNqPc0sJqz52k8Je+mH/OSdb3Bq6ABRSxJvvlKIy7N/ZoX2AR+sFMf55CcLSN77KhuH1gSUl/jr/zuB2dc/Z/PI+T/4wx/+QFlZGQ8++CC7du3Sq8SmpqYsXbqUrq4usrKysLW11bv2b2pqilKppKKiArVajaurKxYWFtquPZlMRn19PcXFxaOPd0zUaMPt+fn50m9+8xvpnXfekXJzc6Xu7m6pt7dXunz5srRt2zbpoYcekkpKSiSlUjnovLGmCekqKiqSXn75Zemhhx6SfvCDH0i1tbV6TQcYS3JysgRIP//5z/U/eazpSJopRz5PSu/nVEgd/ZIkSf1SR0WGtP8hHwmzCOkPuUMng8w8Q6cenT59Wnruueekr33ta9Jf/vKXWTfVSF91dXXS2rVrpa985StSRUXFjElKcnf6pcL9GyUzfKSH9mdI1b2SJEm9UsvNE9KLEWYSPi9IZ4fMOdJOOdr4Syn5Zov0ZW4Q3XOekL6oGvZEXx7V2yu5u7tLcrl82LSj8bp69ar06quvSrt375bee++9CV3j1q1b0u9+9zvp008/laqqqqSenh5JpVJp41JWVpb0rW99S/r000+Hxaq7MWp7WCaT0d7ejqOjo3bPFnNzcxYsWKAdMdP0LQw9704SExM5dOgQ1dXVbNq0iX379k3qaK1mGtJ4+lv04riRVy5nsX9TJt9a7outqQyZzBRb3w38uH4fJ26m891R1grPJJpuk46ODvbv38/JkyextbXlgQce4J577pl1U430ZWVlxdq1a7G3t+fs2bNzZP26CUFPfUzG/k3c+Pc1eFnIkMkscAx5iOPL/kTW5VcYmvXNJOgpjt88wb+r/8Q9IY5YyIae8xe2j9I4O3DgAHV1dezbt2/Ce3qFhIQQGBhIUVERpaWlIx4jDcn7Kg1ZpGFubo5cLsfJyQkvLy8sLCyQyWS0tHw5c9/d3Z3g4GBcXV0nNaXgqFfq6Oigp6cHc3Nz7Uqdvr4+qqurcXV1xcbGBktLS736IjWbZ6WkpNDU1ERoaCg7duzAy0ufHus7KywsBJhYU9N3L4dr70VuP/LDJq4reerveTz1VieNzd2oADN7dxwmOUZPtZaWFi5dusS5c+dwcHBg06ZN3HPPPZP/YzMDyeVyNm/eTEpKComJiSxevHjEvtzZx5GIp/5O3lN/prWuDQV3vjfNF97Dr1Ma+HVfK3VtCsAYK6fRp9xpvPbaa8jlcu0S54kwMzPD29sbCwsLmpubqaiowNPTUxvghlbKNHQrZ93d3RgbGw+6b8vKyigoKGD58uXaTEzu7u6T2l89LHBKkkRbWxv9/f0EBAQMuqEKCws5fvw41tbWhIeH4+bmplft5NNPP+WTTz5h0aJF7Ny5k/Xr14+4gdfdysnJASYYOE1scHG3mbzjZiCVSsVf/vIXMjMzSUhIIDY2liVLlhgkW7shmJqaEh0dzbVr1zh48CAPPfSQoYs0ycxx0LcFZ+7AeE/JycmhoKCAhISEu95B1tHRkYSEBHp6ejh16hS7du3CxeXL7GNDg9zQ/29ubqa3txc/P79BuStaW1upqakhJCQEDw8PYmNjJ70VNWKNs7+/n7KyMo4ePUpmZiZBQUHY2Njg4uJCREQElpaWeHl5jXtv7KamJs6cOcOtW7dYvnw58fHxrFy5cspqNzk5OcjlcrEt8AiKioo4e/YsPT09JCQksHPnzjk13Wg8jIyMsLW1JSQkBC8vLxoaGmhtbcXBwcHQRZsV3nnnHQD27t1719fy9fXl4Ycf5oMPPiApKYkNGzZoA+edqFQqbt++zaFDh/jkk09wd3enp6cHOzs7goKCtC1lTZwZrQY7ESPWOLu6uqisrCQrK4uOjg6srKxwcnJi3759rF+/Hh8fn3E10VUqFc3NzaSkpPDaa68REhLCQw89REBAgPaxyVZcXExbWxtLly6dk6tDJsLY2JiBgQFaW1s5fPgw+/fvZ+/evWzcuBFbW1s6OjrmzmRw7jy1yMjISJuS0Nvbm4KCAhITE4mLi8Pa2npWrmSZTh9++CFyuZy4uLi7+g4bGRlpsyV1dXWRnZ1NXV0dixYtuuO5kiTR29tLWVkZiYmJtLa2IpfLGRgYYMuWLaxdu3bY3NDJnDkhk4aEYaVSycmTJ6msrMTJyQlHR0eMjIyorq7m8uXLNDY28m//9m+sWbNmzIIolUpKS0t55ZVXOHjwIN3d3ZiYmODm5oaVlZV2buhka21tpbGxEUdHR5ydnSf9+rORXC7HyMiIvr4+6uvr6ezsxMrKCnd3d22rYWhiWd3PVvcWGe3vM9FYr8HIyIj29nYaGxsxMTHBxsYGW1vbYXMBheH6+/tRKBSDckdMhO687srKSqysrPj5z3/Offfdh6/v2Gm+VSoVSUlJlJSU4ODggJOTE8bGxhQVFWFhYUFwcDChoaHalIeTbViNUzMAJJfL2blzpzZqd3Z2UllZSWpqKgUFBQQEBODq6jpq8FSpVKhUKqysrLR9DZIk0d/fP+Jo/GRpavpyrcOCBQtmxIZhhqQZPW9paaGjowNHR0f8/f2xtLSkv7+f/v7+UX+8dG/quUiSJHx8fDAzM6OrqwulUjnuridhcslkMvz8/HB1dcXMzIzOzs47ntPf369dUr1jxw5tgAwJCaGpqQljY+MpXEQzJHCq1Wq6urpQKBTD+h9tbGwIDg5m8eLFdHZ2UlNTg+uQvUd0GRkZ4e7uzo9+9CPkcjmOjo4YGxtP6RdxYGAAT09PrK2tuXjx4tze0XAcNMHvxo0bFBUVERYWhre3N2ZmZshksgl/FpM5OjnVRqsta/5fkiRqa2tRqVR4enpO+T0qDKb5TDQtxa6urjsuqlGr1XR2dqJQKJAkSRsgNUusraysMDU1ndLv/6Ard3V10dTUhL29PQ4ODsMSBiuVSrq7uzE1Nb3j2lK5XI61tTX29vaDbtip/MKZmJhQWlpKTk6OqD3oCAoKws3NTdvtojHRz2K2BE24c1llMtmw3QRm0+ubKxwcHLC2tqa3t/eOI+Dd3d00NDRgY2OjDZLwZV++k5MTKpUKmUw2ZsLzuzUocGpqku7u7vj4+GgjtlqtprS0lJs3b9Le3o6Dg8Md+w+NjIymtKo8Gmtr62lYtjm7mJiYzKv+3tlUIxb+RZOI4056enqorq7GxcUFDw8P7TkymWza5iEPimxtbW2Ulpbi7OyMv7+/9u/t7e38/e9/5+TJkyiVStzc3HBychI35xwwdCXGXDBV9+Vce59mq46ODkpLS7G3t2fhwoUGqaBpR9W/973vUV5eTnl5OQsXLsTV1RUTExNkMhm9vb00NDTg6elJdHQ0mzdvnoM7BQpjme+1OE3QnM/vgSGp1WrKy8s5dOgQqamp1NXVaXPF3nvvvbi6uk5rANU21d966y2MjY0xNjbm1q1b2tHWvr4+3Nzc2LlzJ3v37iUuLm7aCifcHbVaTW9vL319fSgUilHnNpqammJubj4os8zQY+YqpVJJR0cHfX192n4xc3NzLC0ttbNATE1N5/z6/ZlOrVZTV1fHwYMHyc3NxcHBgaamJszMzIiNjcXZ2XlaA6e2xnnp0iXt9BXd5ptarcbExAQnJyecnZ3HTIkvzCwtLS0kJSVx7Ngx0tPTtfMTdT9bSZKIiIjgnnvu4b777psja7bH79q1a7z00kucOnUKKysrIiIi2L59O1//+tfp6ekhKyuLyMhI0cIyMM3CnNLSUu2ccGNjY2xtbfH09MTc3HxaWwPaGmd0dPS0PakwPTTTwDT5VV1dXbWzJeRyuba2pVKpqK6unlOrh8aiUCjIzs6msbGR7u5uHBwciIyMxMTEBH9/f2QymbY/X6lUjrKTgDCdZDIZNjY2hIeHG7oowBjZkYTZz9bWls2bN2NhYcHSpUuJjY0lODhYu+JDpVJRX1/PxYsXqampmReZkeDLDQHfeOMN2traSEhI4Ec/+pF2nyqAmzdv8stf/hITExP27t07oW0dhLltzMA53wcE5gojIyNkMhlOTk7aoNnS0kJ3dzfu7u74+/tjZGQ0pfPeZoqMjAxOnTqFmZkZ69evZ/v27SxYsGDQMe7u7qxevZqBgQHs7e3n/UIKYThxR8xxmqamlZWVtn+6s7OT27dvMzAwgJubGx4eHsjlcm3ii7mqv7+frKwsLly4wLZt29i6das2oYRuJcHS0pKIiAj6+vqws7MTA0PCMGMGztFqm2JqxuygVCppbGzEyMgIX19f7O3tUalU3Lp1SxsUZDIZrq6uODk5GWQ+3HTp6+ujrKyM0tJS+vv7Wb16NUuWLNE+PvRetrKywszMDBsbGxE4Z6Gpbi1PqMYpAubsoVAoyMjI4Pjx47z77rtYWlpibGzMpk2btE10YM4Hh5aWFk6fPo1arSY+Pn5Y81yXXC5nwYIFSJKEhYXFvOjCEPQjmupzmEqlorW1lZKSEjIzMwGwsLDAy8uLNWvWYG9vP6drmbqam5tJT0/H19eXzZs3j5k5y9jYeNzJdIWZaaordyJwzlLj6S7p6uri2rVrREVF8cADD+Dq6kp5eTkXL17Ez88PU1PTedN66OrqoqOjQ5v9fa7XsIWpJQLnLDWetHDd3d3U1tYSEhLCli1bAPDx8aGvrw9nZ+d5M1qsVqu1czI1q4PmS01bmBri7pnF7pSBv7OzU5tiS0OtVuPl5YWdnR2SJGlXD81lMpkMY2Nj5HI5kiSNK5H2XEx+IkweETjnqObmZtrb2/Hw8MDNzU37dzs7O5YuXYq3tzcKhYL09HSKioqGbRcxmwPH0HLLZDIsLS21y/KUSuWgGufQ43t7eykvL6e+vn5ayivMPvOjrTYPNTc309LSQmBg4KARZFNTU0xNTenp6aG4uJjS0tJ50XR1dHQkLCyM2tpavvjiC2xtbbW7e2pq5AMDA5SVlVFfX4+Njc2cn9cqTNzc/rbMY1VVVdTU1ODh4TFiEuPz58+TlJSkTZSgoTvoNFsHjkYqt6urKzt37qSmpoaXXnqJCxcu0NPTM+iYpqYmzp49y+eff46VldWgmjrM7SxRgn6G7XIpzE6SJKFUKrl8+TIffvgheXl5KBQKFi5ciI2NzaCBILVaTUVFhXbL5+XLl+Po6GjA0k89SZLo7u7mzJkzJCUlaXe3dHR0ZGBgAEdHR8LDw7GyssLW1paIiAiRCUwYlWiqzyGawPnaa69p/5aWljbisXK5nG3btuHs7DzndwPVrCKxtrbm/vvvx9/fn127dnH79m3tMXZ2dnz7299m3759hISEGLC0wmwgapyCIAh6En2cgiAIehKBUxAEQU8icAqCIOhJBE5BEAQ9icApCIKgJxE4BUEQ9CQCpyAIgp5E4BQEQdCTCJyCIAh6EoFTEARBTyJwCoIg6EkETkEQBD2JwCkIgqAnETgFQRD0JAKnIAiCnkTgFARB0JMInIIgCHoSgVMQBEFPInAKgiDoSQROQRAEPYnAKQiCoCcROAVBEPQkAqcgCIKeROAUBEHQkwicgiAIehKBUxAEQU8icAqCIOhJBE5BEAQ9icApCIKgJxE4BUEQ9CQCpyAIgp5E4BQEQdCTCJyCIAh6+v9WgcK5Dy915QAAAABJRU5ErkJggg==",
"path": "images_version_5/image_51.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, triangle ABC congruent triangle DEF, then the degree of angle COE is ()
Choices:
A:40°
B:60°
C:70°
D:100°
|
Như hình vẽ, tam giác $ABC$ bằng tam giác $DEF$, thì số đo góc $COE$ là ()
Lựa chọn:
A: 40°
B: 60°
C: 70°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, triangle ABC congruent triangle DEF, then the degree of angle COE is ()
Choices:
A:40°
B:60°
C:70°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, triangle ABC congruent triangle DEF, then the degree of angle COE is ()
Choices:
A:40°
B:60°
C:70°
D:100°
|
As shown in the figure, triangle ABC congruent triangle DEF, then the degree of angle COE is ()
Choices:
A:40°
B:60°
C:70°
D:100°
|
255
|
51
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAxwAAAJICAYAAADrb+JdAADREElEQVR4nOzddVxW1+MH8A8dIoIItoLdLXZ3zZzT2TqnzpVz9XWhbrpyUzedc3a3s8VCMUFSwe4uVAxAAeH8/uB3D/eBp3keMD7v14uXj/fce+65fc89ZSOEECAiIiIiIrIC29xOABERERERvb6Y4SAiIiIiIqthhoOIiIiIiKyGGQ4iIiIiIrIaZjiIiIiIiMhqmOEgIiIiIiKrYYaDiIiIiIishhkOIiIiIiKyGmY4iIiIiIjIapjhICIiIiIiq2GGg4iIiIiIrIYZDiIiIiIishpmOIiIiIiIyGqY4SAiIiIiIqthhoOIiIiIiKyGGQ4iIiIiIrIaZjiIiIiIiMhqmOEgIiIiIiKrYYaDiIiIiIishhkOLQYPHgwbGxv4+vrmdlJeC82bN4eNjQ2aN2+e20kx2quY5tTUVPz555/w9/eHu7s7bGxsYGNjg27dugEAgoKC5LSgoKBcTSuZbsKECfL4vQnetO0lopx35coVeZ9ZtGhRbifH6nJzey2S4Th06JDcABsbGxw4cMAS0RKRCfr27YtPP/0UYWFhePr0aW4nh+i19d5778nnXenSpY1eTvmYpe3P3t4e+fPnR4MGDfD999/j1q1bJqXpwYMHmDlzJt566y2ULl0a7u7ucHJyQqFChdC8eXN88803OHHihKmbSkRkERbJcCxZskTv/4leBq/zF9MjR45g7dq1AIBOnTph9+7diI6ORkxMDP76669cTt2bxdfXFzY2Nhg8eHBuJ4Ws4Pnz51i3bp38/6VLl3Do0KFsx5uamoq4uDiEhITgxx9/RIUKFbB582aDy6WlpeHnn39GqVKl8NFHH2HLli24dOkSnj59iuTkZNy9exf79+/HTz/9hKpVq6Jt27Y4depUttNLb67c+Er+Oj+/3xT22Y0gKSlJvui4ubkhPj4ea9euxYwZM+Di4pLtBNKrj9V3rG/Pnj0AADs7O6xYsQLu7u5Z5mnevDmEEDmdNLKQCRMmYMKECbmdjDfexo0b8fjxYwBAnjx5kJCQgCVLlqBx48YmxbNz504UKVJE/j8lJQU3btzAunXrsHTpUjx9+hRvv/02jh8/jgoVKmiN4/nz5+jbty82btwIAHB0dETv3r3Rtm1b+Pr6wtXVFXfv3kV4eDg2bNiAY8eOYffu3ZgzZw6mT59u1vYTvU58fX35XMwh2S7h2LRpEx49egQA+PPPPwEAT548waZNm7IbNREZ6ebNmwCAggULas1sEJFlKCX41atXx7BhwwAAa9aswfPnz02Kp1y5cqhSpYr8q1mzJrp06YLFixfju+++AwAkJyfL56o2H3zwgcxs1K1bF2fOnMHSpUsxYMAANGnSBLVr10bHjh3x/fffIyoqCps3b0apUqXM2GoiouzJdoZj8eLFAIBKlSph6NChqFSpEgBWqyLKSUlJSQAABweHXE4J0evrzp072LVrFwCgX79+6NevHwDg8ePHRlV/MtYXX3whq44cPXpU6zybNm3CwoULAQBVqlTB3r174efnpzfeLl26IDw8HC1btrRYWomIjJGtDMe9e/fkzbd///4AIG/Au3btwt27dw3GcevWLXz99deoVasW8uXLB0dHRxQqVAhVq1ZF3759sWjRIjx58sSs9KWmpmLRokVo164dChUqBEdHR3h4eKBs2bJo1aoVfvrpJ6Pqsj569Ajff/89KleujDx58sDDwwNNmzbF8uXLjUpHTEwM3n//fZQtWxaurq7ImzcvKleujDFjxuDKlStal1m7dq2sr3j27Fmt85QpU0bOs379eq3zdOvWDTY2Nqhbt67G9EWLFsllr1y5grS0NMyZMwcNGzaEp6cn8uTJg2rVqmHy5MlITEw0ajt10dfjk7a6oLt370aXLl1QqFAhODk5wc/PD6NGjcKNGzfMWr+yrRMnTpTTtDXa1HUsgPQShM8++wxlypSBi4sLvLy80K5dOwQEBBiVhri4OEyaNAkNGjRAgQIF4OTkhCJFiqBr167477//zNou9XYoGf+rV69m2S6Fsb1UXb16FSNHjoSvry+cnZ1RpEgRdOvWDfv27QOgvy6tKXV79bV1yHx+JiUlYfr06ahfvz4KFCgAGxsbrdWLXrx4gfnz56Njx44oUqQInJycUKBAATRt2hTTp083+Su0KZTz/OrVqwDSP8ZkPhbqa0Dbvvrvv/9k2u3t7TXmN1SHOTk5GVu2bMGHH36IunXrwtPTEw4ODvDy8kK9evUwYcIE3L9/X+82ZD4mZ86cwfDhw+Hr6wsnJycULFgQ3bt3R0hIiMH9kZKSgj///BN169ZF3rx54eHhgTp16mDatGlITk62WD3wnDzmy5cvR2pqKmxtbfHuu+/C398f5cqVA2DZj2xubm7w8vICAJ3pnzx5svy9cOFCuLm5GRW3p6cn3nrrrWyl7/Dhw3jvvfdQvnx5uLu7w83NDRUqVEC3bt2wZMkSvc/sLVu2oFevXihWrBicnJzg5eWFBg0a4JdffkF8fLzO5Sz9zIqOjsaAAQNQtGhRODs7o0SJEujfvz8iIyMB6O+t0tRr19heD41tp5CYmIjp06ejRYsWKFiwIBwdHeHj44O2bdti4cKFSE1N1blsdq9xGxsbjYztkCFDstznLFn105znd+b9ff78eXz44YfyHUw9vzH3oRMnTmDSpElo166dPG/d3NxQtmxZDBo0yOD9MPNxff78OaZMmYJatWohb968yJs3L/z9/TFz5ky8ePHC4D45ePAgevTogYIFC8LZ2RmlSpXCyJEjceHCBa3bb67Q0FAMHz4c5cqVg5ubG/LkyYMKFSpg9OjROH/+vOkRimyYOnWqACBsbGzE1atXhRBCXLlyRdjY2AgA4o8//tC7/IEDB4S7u7sAoPdvy5YtJqft6dOnokmTJgbj7tmzZ5ZlBw0aJACIkiVLitOnTwtfX1+dy48ePVpvOn766Sdha2urc3knJyexePHiLMvdu3dPzvPPP/9kCb9x44bBdKSlpYn8+fMLAGLs2LEaYQsXLpTLnjhxQrRs2VJnGv39/UV8fLyhXa5Ts2bNBADRrFmzLGGXL1+W61m4cKH46quvdKbD29tbnDp1yuT1q7dV39/ly5e1pvngwYPCy8tL53JTpkzRu/5t27YJDw8Pvevu1KmTePr0qcnbZsx2Kfbt2yen7du3T2t8u3btEnny5NEaj42NjZg8ebIYP358lrgVmY+nPiVLlhQAxKBBg7KEqY9ZWFiYqFGjRpb0jB8/XmOZCxcuiEqVKundF2XLlhXnzp0ztFvNopwz+v7U14B6Xy1YsEAMGDBA7/z69rsQGfctfX9eXl7i0KFDOrdBfUzWr18vXF1dtcZjZ2cnVq1apTOeuLg44e/vr/eeEhUVpfdcMbS9QuT8Ma9WrZoAIFq2bCmnTZw4UQAQ9vb24u7du3qXVx8j9f0ms6dPn8rnaLt27bKEx8TEyHgaN25s9vaYKjExUfTt29fgeZb52hRCiGfPnonu3bvrXa5IkSIiKipK67ot+cxatGiRcHBw0Lqsg4ODWLRokcZ7QGamXrv6noFqxpzzoaGhomjRonr3o7+/v7hz547W5bN7jRs69rqOv7my+/zeuHGj1meaMr+hZ5b6uanv7+uvv9a5DerjeufOHVG9enWd8XTp0kWkpqbqjGvSpEny3pD5L2/evGLnzp0mvXNpk5KSIkaNGqV3ex0cHMScOXN0plObbGU4lJ3WtGlTjenKi3716tV1Lvv8+XNRpEgRuZO+/PJLERAQICIiIkRISIhYvXq1+PTTT0Xx4sXNynCMHTtW7pjOnTuLlStXisOHD4uIiAixY8cO8euvv4omTZqIXr16ZVlWudF4e3uLsmXLirx584pvv/1WBAUFifDwcDF37lxRrFgxGf+OHTu0puHvv/+W83h7e4vff/9dBAcHi0OHDokJEybIi8DGxkZs27Yty/IVK1YUAMQ777yTJWzp0qUaB79y5cpZ5lE/0DPvQ/VF3LBhQ2FraysGDRoktm3bJiIiIsSGDRtEgwYNjLqYDDH25G/YsKGcb8WKFSI8PFzs2bNHDBw4UM5Tv359k9cfFxcnYmJiNC6gmJiYLH/JyclZ0lyuXDlRoEAB4ePjI3755Rdx6NAhERoaKqZOnSozEfb29uLEiRNa171r1y5hZ2cnAAhfX1/x66+/iqCgIBEZGSm2bNki+vfvL9PUo0cPk7dNSXvXrl3lAzvzdikMZTjOnz8vHz52dnZi9OjRIjAwUISFhYmFCxfKFzv1i2Rm1shwVKtWTdjY2IiBAwdqnJ/bt2+X89+6dUsULFhQ3k/Gjh0rAgICRGRkpNi3b5/43//+J7etVKlS4tGjR0bvY2NdunRJxMTEyPta165dsxyLS5cuyfnV+0p5kW3SpInGuT9v3jw5v6GXkX79+olSpUqJsWPHitWrV4vg4GARFhYm1q1bJ0aOHCkcHR3lvUjXi7FyTGrWrCmcnZ2Fn5+fmDlzpggJCRHBwcFiwoQJwtnZWQAQ7u7u4t69e1rjadeunUxrgwYNxMqVK0V4eLgICAgQ/fr1EwBEvXr19J4rhrY3p4/5sWPHZHoWLFggp1+8eFFOnzZtmt44jM1wTJgwQc73999/ZwmfOXOmDP/ll1/M3SSTpKamijZt2sj1li1bVkybNk0cPHhQREREiK1bt4px48aJMmXKaH3h7N27t1y2evXqYsmSJSIsLEzs3LlTDBkyRL5E5c+fX9y4cSPL8pZ6Zh08eFB+BHRxcRHjxo0TBw4cEEePHhV///23KFasmHB0dBQ1a9YUgOEMhzHXrqUyHNHR0fK9wcfHR4wfP17s2bNHREVFiZ07d4rRo0cLe3t7eX2pn2mK7F7jMTExYufOnTKdkyZNynKfM5TxNkV2nt9+fn7Czc1NeHt7i19++UUcPnxYhISEiBkzZojY2FghhOFn1u7du0WePHlE7969xezZs+Xze8eOHeKPP/6Q+zPzfUFNfVwbNmwoHB0dxccffyx2794tIiIixIoVK+T7HgAxe/ZsrfGsWLFCzuPp6Sl++eUXceTIEXHkyBHx66+/Ck9PT+Hp6SnKlSuXrQyH+p2rQ4cOYtmyZSI0NFSEhYWJuXPnisqVK8vwzZs36z+AKmZnOKKjo+UKM+dy/v33XxkWHR2tdfnAwECdL8NqKSkp4vHjxyanr3jx4gKA1gyF2oMHD7JMUz8UPDw8tL5Mnj9/Xl6Ub731Vpbwe/fuyYddkSJFxLVr17LMExkZKW8eRYsWzXJzUC6wQoUKZVl22LBhct1KpiXzjWHatGkCgLC1tRVxcXEaYZm/GixdujTLOp4/fy6qVKkigPQvoykpKVnmMYaxGQ4AYvjw4SItLS3LfO+9956cJzIy0qx0GPP1KHOalQeOtgfgwYMH5UPy448/zhIeHx8vX4jatm0rEhIStK5rzpw5cl179uwxfcOE0Ps1TmEow6GcSwDE2rVrs4QnJCRk+WqdmTUyHADE/Pnz9cbVuXNnAUAUL15cXLx4Ues86uvt22+/1RtfdujbLrXM5/7AgQO1nvsKQ+fvhQsX9C4fHR0t3Nzc9G6/+uFZu3ZtrS/py5Ytk/NMnTo1S/h///0nw7t27SpevHiRZZ7ff/9dY9vNyXDk9DEfM2aMACCcnZ2zPJOUF92aNWvqjUP9bNm5c6fGC1NUVJTYsmWLGDp0qHwhbtSokXj+/HmWeIYPHy7j2bVrV7a2y1jTp0+X6+zevbvWdAmRnjG5efOmxrStW7fKZVu1aiWSkpKyLKe+D/bu3TtLuKWeWcqHUkdHR3H48OEs4Xfv3hWlSpXSuP9nZuq1a4kMR1pamszcVK9eXb4wZxYQECDPH3WmR2GJa9yU+7ylmPv8LlKkiKyBo42hbYmNjc3y/qSWlJQkM+IlS5bUer9Tp93BwUHr8/fBgwfyfaFatWpZwp8/fy58fHwEkJ4pP3v2bJZ5zp49K2u1mJvhWLdunQyfO3eu1m1+9uyZLGH09fU1+t3Q7AyHUoLg5OSU5WDExcUJJycnAWStyqNYvny53ChzMhSGKMWlf/75p8nLqh8Kf/31l875+vTpI4D0nGZmv/76q4xj5cqVOuOYNGmSnG/NmjUaYatWrZJhp0+f1ggrU6aMfDFUbo6ZXxK7desmAIhatWplWa/65q3vy/rs2bPlfMePH9c5nz7GZjgKFy6s8yF25swZOZ85x1QI829Y+nLw9evX1/miMWPGDPmCYuiLj/Ii369fP8MbokV2Mxw3btyQD6nu3bvrjEP9lTenMhzq6ivaqKuXbNq0Se+8X375pXwIWYs5GQ4PDw/x5MkTvfObcv7q8umnnwoAokqVKlrD1S8juq73tLQ0WYqj7VxRSjecnZ11VutIS0sTtWrVMjvDkdPH/MWLF6JQoUI6X4bVpdnqUsXMjKn2pqR12rRp4tmzZ1rjUVdNMve+bIrU1FRZjado0aImV//s0KGDfNnS9vFN0bp1awGklxrfunVLI8wSz6zg4GAZNmbMGJ1xbNq0yegMhzHXriUyHFu2bDH6mCulSY0aNcoSZolr/FXKcCxZskTvvJbYFvVzMTw8XG/aP/vsM53xfP3113K+zBnBlStXGvUO9Oeff2Yrw1G7dm2D7wFCCHHq1CkZz+7du/XOqzCr0XhqaipWrFgBIH2QMQ8PD41wDw8PdOzYEQCwYsUKrQ2YChcuLH8rPW1YkhL/6tWrzW70bGNjg3fffVdneO3atQGkNwhWugZWKOMieHh4oGfPnjrjeO+997Iso1A3+FE38r158yYuXLgAGxsbNGvWTM6nnkcIIUd8b9asmc71AxkN/bVRthFIH+DKmnr16gUnJyetYeXLl5eNIq2dDjUPDw906tRJZ7iyf7SlSekaulmzZvDx8dG7nqZNmwIAgoODzU1qtgQFBSEtLQ0AMGjQIJ3zVa9eHdWrV8+pZAHQf34CGfvZ1dVV77ECMvbzrVu3cP36dcsk0AK6dOmCvHnzWjTOuLg4XLx4ESdPnsSJEydw4sQJea8+deoUUlJSdC5btWpVVKtWTWuYjY0NatasCSDref/ixQt532nfvj0KFiyoM44BAwaYuklSTh/znTt34s6dOwAyOkhRe+edd2QPcUuXLjVrHWq3bt3CwoULsWPHDq3hT58+lb/z5MmT7fUZcuzYMdn19vDhw41uoA6knxP79+8HALRp0wbFixfXOe/w4cPlMvo6tjD3mRUYGCh/67vPderUSTbaN8Qa1642yjlfvnx5ndemQjnnw8LCdDYgN/caf5U4Ojri7bfftmicSUlJuHbtGk6dOiXvq0I1jsfx48f1Lm/suXv58mWNMOXctbW11Xvv7N+/v9mDI968eRMREREAgN69e+udt2LFiihQoAAA499bzMpw7Nq1C7dv3wag/earnn779u0sL9IA0LhxY9kf+Keffgp/f3/8/PPPOHLkCJKTk81JlgblZnLkyBH4+fnhww8/xIYNGxAbG2t0HAUKFNB708mfP7/8rX4AAOm9GgBAzZo19XZVWrBgQdkLhrKMOqx8+fIANDMTyu9KlSrB29tba4YjOjoaDx8+BACDPRXoGlQK0L+NlqYvHUB67yo5kQ61smXLwtZW92Wi7B9taQoPDweQ/rKirVcN9d/vv/8OAPKlJqepzz31TU+bOnXqWDs5Ggw9XJX9nJiYCHt7e737uXPnznK53NrX2hjaRmPFxMRg6NChKFy4MPLnz48yZcqgSpUqqFq1KqpWrSp7j0lLS0NcXJzOeAxdi7rO+4sXL+LZs2cArHse5fQxV3qB8/LyQvv27bOEq6cvX75cZt71uXz5MkR6LQMIIZCWloYHDx4gICAAzZo1Q3R0NHr06IGZM2dmWVb9gpuQkGDWNpkiKipK/lZeZo116dIl+dGvXr16eudVh2d+HqqZ+8xS4nRyckKVKlV0xmFnZ4caNWroTavCUteuIco5f/bsWYPPkw8//BBAes91yntAZuZe46+SsmXLwtnZOdvxJCQk4Oeff0b16tWRJ08elCxZEpUrV5b3VSVzBsBgT4DZPXf9/Pzku5CuOMwda0c5xwCgb9++Bs8zZVuNva+aleFQuv/T9/VXXfKhrbtABwcHbNmyBRUrVgSQnhMfN24cGjVqBA8PD3To0EFn6YgxvvvuOwwdOhQ2Nja4d+8e/v77b9mNWNWqVTF+/HiD3fa6urrqDVe/iGZOp3KR6/rCp1aoUCGNZdSUzILyhQjIyFgoYS1atACQ/tVSyVAp89ja2qJJkyZ6169vO/Vto6UZu7+tnQ41Y9OU+QUjJSUlS6mXMbLbBbG51C+fhkpjvL29rZ0cDfpurkB699zmyK19rY2hbTTG/PnzUatWLSxcuNCoB4CSMdDG3Gsxp86jnDzm6jE21CUZmSkf2W7evKnxJd1YNjY2yJ8/P9q3b4/AwEA0adIEQgiMGTMmS9foypdFAEZ1P59d6pcode0EY6ifa4aeh8qzMPNymZn7zFLOz/z588POzk5vWow9Py1x7RrD0uf8y/i8tTRLHJsrV66gatWqGDduHKKjow3uD333VSD7566h+ypg/r3V2vdVe1MjVo8i/ujRI51VYNQ2btyIp0+fZil2rFSpEmJiYrBlyxZs2bIF+/fvl1/IduzYgR07dmDq1KnYvn27UTtZzcHBAfPnz8fYsWOxcuVK7N27F+Hh4UhOTpbFYFOnTsWyZcvQtWtXk+I2hTFFW+riuMyaNWuGf//9F3fu3MGZM2dQoUIFmflQMhzFihVDqVKlcOnSJezfvx+9evWS81SrVi3HboiUQX2z6N27txw5mExn6MVA2dd+fn4mDb5maJC0nGRoGw05c+YMRo4ciRcvXsDHxwdffPEFWrZsCV9fX+TNm1e+JC9YsECOjq3vvvOyy8ljrh5FfNasWZg1a5bBZZYsWYI2bdqYvC6FnZ0dPvvsMxw8eBAvXrzAkiVLNMbdUFdrjIyMzNa6TGVudY3sLvuyyu61ayzlnG/UqBFmz55t9HJFihSxVpJeepY4NgMGDMDly5dhY2ODIUOGoE+fPqhYsSK8vb3l+29aWppc1+twXwXSS2qNLb0z9h3T5AzHmjVrDObgMktMTMS6deswZMiQLGF2dnbo1q0bunXrBiC9ClZAQABmzZqFiIgIREREYMSIEdiwYYOpSQWQnqn58ccf8eOPP+LZs2c4fPgwVqxYgSVLliA+Ph59+/bFxYsXTf5qY0j+/Plx+/Zto740Kl+o1MVpisztONzd3XH+/HnZfkM936VLlxAUFISePXsa3X6DrMPZ2Rmurq5ITEzEo0eP9BbfvwzUN4x79+6hWLFiOufVVy1R/YXGULUSS1UFUao93r17FxUqVIC9vcm3tVfeokWL8OLFC9jZ2SEoKEiWHGemrxqVJWQ+j/QxpXprZjl5zJXqVKbYsGED4uPjTWrrkJm66kVMTIxGmPq+vm3bNnz11Vdmr8cY6hKVW7duyaq+xlA/1ww9D9Xh2p6H2aWcnw8fPkRqaqreF9LsnJ+Z6SoJz0zfPdHLywt3795FbGzsS/88eV2cOXMGhw4dAgD873//08j0q1n7vgpknLvGlEKYe+6qmxDY2NhY/DwzuUqVUj2qcOHCWLlypcG/EiVKaCxnSOHChTF06FAEBwejVq1aAICtW7eanMnRxsXFBa1bt8aCBQswZcoUAOnFX1u3bs123JkpByoqKkpv48x79+7JkYm1HdzChQujbNmyANIzHJnbbyjU7ThiYmLw4MEDjemU81/XlHqdhw8ffqmq72hTuXJl+Vtdj1MbfeHqUkx9N+EHDx4YrOtqLGU/JyYm4vDhwxaJMzty4yvuyZMnAaR/+daV2QAMH9vsKl26tKwznZ3zyJCcOuaXLl2S8ffp08fg8+7nn38GkP7iuH79+mytWz3icOZnSJUqVWQbmIMHD8qGntaiPIsByI9ZxipVqpSsRnL06FG984aGhsrf1nipVu5zSUlJWTJxaqmpqTh27JjF1qvcFw29mGauOqemnPPnzp2T7wy5JTfucbl5XwXSr39drH1fBTLO3cuXL+utbvjw4UOzG/qr26Ls2rXLrDj0MSnDcfnyZZnb69mzJ/r06WPwT+khYP/+/bh27ZrR63JwcJBfcV68eGFWfXh9WrVqJX9b6sVHrXXr1gDSq53pe/DMnz9fFsEpy2SmbseRuf2GQt2OY+3atQDSL1BD7TfeJOrGY0lJSVZf31tvvQUg/eXj77//tvr6sqNFixbyK5y+jwPHjx/X2wuHp6enbLul7ya8cuVK8xKqhbpK5G+//WaxeM2lnGc5cY4plJdTfRnbO3fuyOqw1mJvby8bFe/cuVNn+wIhRLZ6c8qpY66+Fj7//HODz7svv/xStlMw9iObLmFhYfK3tp6dxo0bJ38PHTrU6BLDR48eYcuWLSalpXr16jIN8+bNQ3x8vNHL2tvby2f57t279fYUNm/ePADpNR+s8bFM/dzXd3y2bdsmP9pZglKV79y5czobYcfGxmrtYEehPE+A3L/P5fSzNLfWqc7067u3mlLFzVzKuZuWloZly5bpnG/ZsmVmV+sqU6YMKlWqBABYtWqVSe/sxjApw7F06VK5Ib169TJqGWW+zA+YgwcP4sKFCzqXS05Olu0Q3NzcTGoE8/DhQ2zevFnvTlfn3qxRl3vIkCHyq87YsWO13mSPHz+On376CQBQtGhRWa0sM+VmfefOHaxZswZA1gyH0o5DCIEZM2YASO/2ztiu/d4E6mpzFy9etPr6Ro4cKasifPfddwgICNA7/+HDh03+emgpRYsWlR1AbNiwAevWrcsyz7Nnz/D+++8bjEt54dy0aZPW/Xz69Gl8//332Uxxhrp166Jt27YAgO3bt2P8+PF6579y5YrODI/S+4bSc5w5lPMsJ84xhVIKeu7cOYSEhGQJT0xMxLvvvmuRkmJDRowYAQB4/vw5RowYobWR5dSpUxEZGWn2Oix5zPVRnlm+vr4Ge90C0qvOKPfxoKAgs7vhjYuLk6UlAGQ382rdu3eXvTFGR0ejVatWBr98b9++HXXq1DG5UbutrS2++OILAMCNGzcwcOBAnb1JpqWl4datWxrTRo8eDSC9pGbo0KFal12wYIF8Lvfs2dPi1ZwBoEGDBrJe+t9//40jR45kmSc2NhZjxoyx6HqVZ3hycrJ8PqulpKRg2LBheq/Pnj17ytLLf/75B/Pnz9e7zhMnTpicsTSWl5cXHB0dAeTcfS6nn99Axn0V0F218p9//sHGjRutnpbu3bvLtswTJ07E+fPns8xz/vx5TJw4MVvr+fbbbwGk37979Oiht3pWUlISZs2aJdu4GWJyhgNIbyVv7JfzevXqyfrg6gxHYGAgypcvj+bNm2PKlCnYuXMnIiMjcfjwYSxcuBBNmjSRD6T33nvPpDq6T548QdeuXVGqVCmMHTsWa9aswdGjRxEREYGtW7dixIgRss5rsWLF0KVLF6PjNpa3t7estnXr1i3UqVMH06ZNw9GjR3HkyBH88MMPaNy4MeLj42FjY4M5c+bo7P1Enbl4/PhxlvYbmed7/PgxALbfyKxhw4by95gxY3DgwAGcP38eFy5cwIULFzS+ZliCu7s7Vq5cCXt7eyQlJaFz587o3bs3Vq9ejfDwcISHh2PLli2YMGECqlevjsaNGyM6OtqiaTDF1KlTZSa5T58++Oijj7Bv3z5ERERg8eLFqFOnDkJDQ1G3bl298XzwwQcA0jMozZs3x/z58xEZGYkDBw7g+++/R/369eHl5WXR3q4WLlwoH0g//PAD6tevjzlz5iA4OBhRUVHYs2cPpk6dirZt26JMmTLZru6ij3KehYWF4ZdffsHx48flOaaMZWBpSr/saWlp6NixI3755RccOHAAoaGh+Oeff1CjRg3s27cPjRo1ssr61Xr06CEzA5s2bUKTJk2wZs0aREZGYufOnRgwYAA+//xz+Pv7y2XMqS5h7WN+8OBBWTVB31hKmSnzGvoSee7cOdmByYkTJxATE4ODBw/i999/R40aNeQLRePGjXV2bDJr1iz5/Dp69CjKly+PgQMHYvny5Th8+DAiIyMREBCAyZMno06dOujUqZPZL2ujR4+WjdM3bNiAqlWr4s8//8Thw4cRFRWFgIAAjB8/HhUqVMCcOXM0lu3UqZOs7bBnzx7Uq1cPy5YtQ0REBPbs2YP33ntPjkmVP39+TJ061aw0GuPvv/+Gra0tkpOT0bp1a3z77bc4dOgQwsLC8M8//6B27dq4fv267BbXElV5OnXqhJIlSwJI//j02Wef4dChQwgPD8eiRYtQr149bN26VW+3wXZ2dli9ejXc3NwghMB7772H9u3bY8mSJTh69CgiIyOxY8cO/Pzzz2jUqBGqVq2q0bulJdnb28vnwIIFC7By5UqcPn1a3uf0VfkxV04/v4H0KkZK1b5//vkH7777LrZt24bIyEhs2rQJb7/9Nj744IMcua86Oztj+vTpANI/qterVw+//fYbQkJCEBISgt9++w3169dHWlqazCiZc+727dtXfsiIiIhApUqV8O2332L37t04duwYDh8+jCVLlmD48OEoUqQIRo8ebfy+N2p4QCHEoUOH5KiCI0aMMHYxIYQQH3/8sVw2JCRECKE58qK+vx49eugcbVUX9UiK+v6KFi0qIiMjsyxvzKjNQmiOfHr58mWt80yePFmO4Kztz8nJSSxevNjgNpUuXVouU7lyZa3zLFmyRCPu9evXZyvtQlhmFE5jRxrPzsjUxlJGYNX2p94PlhgZVhEYGChHKTb0Z8y5oE12RxpX7Nq1S+TJk0dn+saPHy++++47AaSPJK2L+prP/Fe8eHFx8uRJo0ca13d+ql25ckXUrVvXqP08ZMiQLMsnJibK8Fq1ahm1Tm1u3Lgh8ufPr3W96vPJ1GvL0Lk2ceJEvds8duxYg/vV2GvM0PkWFxcn/P39daalZs2aIjw8XP5/1apVJm+vENk/5vq89957ctng4GCjl0tJSZHHv2LFihphxo40rvy1aNFCPHjwQO/6UlNTxQ8//CDy5s1rVJydOnUSZ8+eNWlfKBISEkSvXr0MrmP8+PFZln327JnGCOna/ooUKSKioqK0rtuSz6xFixYJBwcHrWmwt7cXc+fOFQMGDBAARIUKFcxaR2YHDx7UeW+1s7MT06ZNM+qcP378uChbtqxRx3rixIlZlrfUNb5161ZhY2Nj9PG3BEs/v4UwfCyjoqKEp6enzvVWrVpV3Lp1S++2GztKujHP6EmTJunc766urmLbtm2iSZMmAoBo3769ydsrhBAvXrwQX375pbCzszN4juXJk0ckJibq3S6F0SUc6vqOpnztyTy/Es+XX36J7du3Y8yYMahfvz5KlCgBZ2dnODs7w9fXF++88w62bduG9evXmzxwS8mSJXHs2DFMmTIFHTp0QPny5eHh4QF7e3sUKFAAzZo1w++//47Tp09rNJKxhnHjxiEqKgrDhw9H6dKl4eLigjx58qBixYr45JNPcObMGQwcONBgPOpSDl11W5V2HEB6ztbUAZreBMuWLcNvv/0Gf39/5MuXT++gfpbSsmVLXLx4ETNnzkT79u1RuHBhODo6wtnZGcWLF0fbtm0xefJko88Fa2rTpg1OnDiBESNGoGTJknB0dETBggXRqVMn7NixAxMmTMCTJ08AAPny5dMZz59//okVK1agadOmcHd3h4uLC8qXL4+vv/4aUVFRsp6oJZUsWRJHjx7Fhg0b0KdPH/j5+cHV1RUODg7w9vZGw4YNMXbsWOzfv19rdQT1aKnZqVJRtGhRhIaGYtiwYShTpoxFBp4yxvfff49t27ahbdu28PT0hKOjI4oVK4YePXpg165dcnDJnODh4YFDhw5h+vTpqF27Ntzc3JA3b17UqFFDDvCq7iFI37mkT3aPuS7Pnz+XbeGKFi1qcMA6NXt7e1kicfr0aY22GIa4ubmhbNmyePfdd7FlyxYEBgYa7K3J1tYW3333HS5duoS//voLnTt3hq+vL9zc3OT126xZM3zzzTc4deoUtm7dinLlyhmdJjVXV1esXbsWe/fuxYABA+Dn5wcXFxfkzZsXFSpUQI8ePbBixQpZ/UrN2dkZ//33HzZv3owePXqgSJEicHR0hKenJ+rVq4eff/4ZZ8+eNXrAvewYNGgQwsPD0a9fP5mOokWLonfv3jh06BDee+89o+5zpmjcuDEiIiIwYMAAFClSBA4ODihcuLDsVfLTTz81Kp5q1arh1KlTWLx4Mbp164bixYvD2dkZjo6OKFy4MJo3b45vv/0WERERFq26mlmnTp0QGBiIrl27yu2xttx4fteoUQPHjh3DyJEjUbJkSTg4OCB//vzw9/fH77//jtDQUKtU/9Plm2++wf79+9GtWzf4+PjAyckJJUuWxNChQxEeHo6OHTtm+9y1s7PDr7/+ilOnTmHs2LGoWbMmPD09YWdnh7x586Jy5cro168fFi9ejNu3b8PFxcWoeG2EeIU7DSaiHNe6dWsEBgaicePGOHjwYG4nx2ImTJiAiRMnomzZsjh9+nSO9a//plq2bJmsCnbhwgWULl06l1NElKFMmTK4ePEi+vfvn60ODohyUkpKCvLly4dnz57h22+/xY8//pjbSZKsnz0kotfGrVu3ZMP2+vXr53JqLEup7zxu3DhmNnKA0ojb29sbpUqVyuXUEGUICwuTbV1et/scvd42btwoOx942c5dZjiISNLXc9yzZ88wePBgOSZAblf/sqTk5GQcPXoUfn5+6N+/f24n55V38+ZNvT3uzJ8/H9u3bweQfh69jiNQ08tL333uwYMHGD58OADAyckJ77zzTk4li8ggfefulStX8NlnnwEAChYsiHbt2uVUsozy5g3JS0Q6vffee0hISEDv3r1Ru3Zt5M+fH0+fPkV4eDhmzZolb3bDhg1D1apVczm1luPo6PjSD874Ktm9eze+/PJL9OnTB82bN0fJkiWRlpaGixcvYvXq1bIbyYIFC+Lrr7/O3cTSG6dNmzbw8/ND9+7dUa1aNeTLlw9xcXE4fPgwZs2ahdu3bwNI7yJUPco6UW6rUKECOnbsiM6dO6Ny5crIkycP7t27h3379mH27NlyzLrff//dpN5dcwLbcBCR1Lx5c4NdKXbv3h3Lly83uqEYvXkWLVqEIUOG6J2ncOHC2LZtm9U77iDKzNfX1+CYJR988AFmzJiRIw2TiYxlqDTY1tYWkyZNwv/+978cSpHxmOEgIikyMhIbNmzA3r17cePGDcTGxkIIAR8fH9SvXx8DBw6UAwQS6XL//n2sW7cOO3bswOnTpxEbG4unT5/Cw8MDFStWRJcuXTBy5EjkzZs3t5NKb6D9+/djy5Yt2L9/P27fvo379+/D3t4ehQoVQuPGjfH+++9rjPtA9LLYunUrAgICcOTIEdy9excPHjyAk5MTihYtiubNm2P06NFy7JCXDTMcRERERERkNSwrJCIiIiIiq2GGg4iIiIiIrIYZDiIiIiIishpmOHKZr68vbGxsMHjw4NxOykupefPmsLGxQfPmzXM7KRZlY2MDGxsbTJgwIbeTQtn07NkzTJw4EdWrV0eePHnksf30009zO2m5JigoSO6HoKCg3E4O/b+X5Xmzf/9+2NjYwNvbG/Hx8RphN27cgJOTExwdHXHu3LlcSiERWZrJGQ71g0T9Z29vj/z588PPzw9NmzbFmDFjsH79eiQnJxsVr3IjNPbPw8PD6LTp+lu0aJGpm09EJKWkpKB169aYMGECoqOjOZbHSy4hIQELFizAO++8g3LlysHT0xOOjo7w8fFBgwYN8NlnnyEkJMSouFJTU7F27Vr0798f5cqVQ758+eDi4gJfX1906NABM2fOlH3i62Pqc+tVz8ympaXhk08+AQCMHTsWbm5uGuHFihXDkCFDkJKSgrFjx+ZGEonICixWwpGamoq4uDhcuXIFBw8exPTp09GrVy8UK1YMkyZNwosXLyy1qpfe4MGDYWNjA19f39xOyktpwoQJ8sFJ9Cpbu3Ytjhw5AiD9ut+3bx9iYmIQExPDAe1eMvPmzUPp0qUxbNgwrFmzBufPn8ejR4+QkpKC2NhYhISEYNq0aWjQoAH8/f3lcdXm0KFDqFatGnr37o3ly5fj/PnzePLkCZ4/f46rV69ix44d+Oijj1CmTBnMnTs3B7fy5bd69WocP34cXl5e+PDDD7XO87///Q8ODg7YunUrgoODcziFRGQN2RqGcNSoUfjggw/k/+Pj4xEXF4fo6GgEBgZiz549iI2NxXfffYctW7Zg69at8Pb21htnkSJFsHPnToPrtrOzMylt2hQrVszgeoiIdNmzZw8AoFChQpg3b57B+xLlvLS0NHz44Yf4559/AKQPjPXWW2+hU6dOKFOmDNzd3REbG4uYmBhs2rQJhw4dQlhYGH777Tc5IrraunXr0L9/fyQlJQEAWrRogXfffRcVKlSAk5MTrl69ii1btmDFihV48OAB3n//fZw9exa///67wbQa89wCYPbo11euXDFrOUuaPHkyAGDEiBFZSjcUJUuWRM+ePbFq1SpMmjQJ27Zty8kkEpEVZCvD4ePjo3WAkQ4dOuCrr77CyZMnMWDAAERFRSE0NBQ9evRAYGAgHB0ddcbp4OBgkUFLdKWNiMhSbt68CQAoVaoUMxsvqUmTJsnMRunSpbF+/XpUr149y3zt2rXD559/jkOHDuHjjz/WGldUVBT69euH5ORkODo6YvHixejTp4/GPHXr1kWvXr0wduxYdO7cGdevX8cff/yB0qVLY9SoUXrT+ro/t3bv3o2TJ08CAPr376933nfffRerVq1CQEAAzp07h3LlyuVEEonISqzaaLxy5co4fPgwatasCSC9GHrWrFnWXCURUY5RvnI7ODjkckpIm8jISPzwww8A0kuhDh06pDWzoda4cWMcOXIE7777rsb0tLQ0DBgwQLZL1JbZUKtWrRr27t0rv+KPHTsW165dy87mvPLmz58PAKhVqxYqVqyod9727dvDy8sLQggsXLgwJ5JHRFZk9V6qXFxcsHTpUllf//fff0dKSoq1V5srlLYJixcvBgBcvXpVa4M/fc6cOYPhw4fD19cXTk5OKFiwILp37250Q8YbN27gf//7H2rVqgVPT084OzujRIkSeOedd7Bv3z6dy125ciVLY/rdu3ejS5cuKFSoEJycnODn54dRo0bhxo0bxu2QTBYtWgQbGxtMnDhRTtO2f/QV+9+8eROfffYZypQpAxcXF3h5eaFdu3YICAgwKg1xcXGYNGkSGjRogAIFCsDJyQlFihRB165d8d9//5m1XdosX74czZs3h6enJ9zc3FClShWMHz/eqEakaqGhoRg+fDjKlSsHNzc35MmTBxUqVMDo0aNx/vx5g8snJCTghx9+QNWqVZEnTx54eXmhcePGWLBgAYQQBnsTytxL2Pnz5/Hhhx+ibNmycHV11Xm8zD0P1XLqWB06dAgDBgyAr68vnJ2d4eHhgZo1a+Lbb79FbGxslvnV18r+/fsBZPS6o/yZ034rJCQE3377LZo3b45ChQrB0dER7u7uqFSpEkaNGoVTp07pXT5z27FHjx7h+++/R+XKlZEnTx54eHigadOmWL58uVHp2bx5M9q1a4cCBQrA1dUV5cqVwxdffIE7d+4AsFyPR7t370b//v3h5+cHFxcXuLu7o3r16vjyyy9x+/btbMX9888/IzU1FQAwY8YMFCpUyKjlnJ2d0bt3b41pW7ZskV/nO3XqpDezoShTpgzGjx8PIL03sz///NOU5FucoWP2/Plz/PXXX2jevDkKFCgABwcH5M+fHxUqVEDHjh0xbdo0s6tlPX/+HJs3bwYA9OzZ0+D8Dg4O6NKlC4D0dh9E9IoTJtq3b58AIACI8ePHG71c27Zt5XKHDx/OEl6yZEkBQJQsWdLUJGU7bZYyfvx4uX59f2rKdg8aNEisX79euLq6al3Gzs5OrFq1Su/6582bJ1xcXPSue9iwYSIlJSXLspcvX5bzLFy4UHz11Vc64/D29hanTp0yef8sXLjQqP1z+fJluUyzZs0EANGsWTNx8OBB4eXlpXO5KVOm6F3/tm3bhIeHh951d+rUSTx9+tTkbVOkpKSInj176oy/dOnS4tKlSwbP05SUFDFq1Ci9aXVwcBBz5szRmZZr166JMmXK6Fy+c+fOYteuXfL/+/btyxKHev9v3LhR5MmTR+/xEiJ756EiJ45VamqqGD16tN515MuXT+zatUtjOfW1ouvP1PuYMdeGnZ2d+Pvvv3XGMWjQILnu06dPC19fX51xjR49Wmc8aWlpYsSIETqXLVSokIiMjNS4d2WmvhdrO6+EECI+Pl50795d7za7ubmJLVu2mLQvFY8ePRJ2dnYCgChRooRITU01Kx6FOq2ZzwlD6VCuBy8vL5GWlqYRnpPPLX3H7NatW6JSpUoGz8OxY8eate6goCAZR2BgoFHLzJ49Wy5z9epVs9ZLRC+HHMtw/Pbbb3K5X375JUv465DhuHv3roiJiRFdu3YVAESRIkVETExMlj81Zbtr1qwpnJ2dhZ+fn5g5c6YICQkRwcHBYsKECcLZ2VkAEO7u7uLevXta1z1//ny57VWqVBEzZswQhw4dEpGRkWL9+vWiY8eOMvyzzz7Lsrz6Japhw4byJXPFihUiPDxc7NmzRwwcOFDOU79+fZP3T1xcnIiJidF4kda2f5KTk+UyygtvuXLlRIECBYSPj4/45ZdfxKFDh0RoaKiYOnWqfDG1t7cXJ06c0LruXbt2yZcPX19f8euvv4qgoCARGRkptmzZIvr37y/T1KNHD5O3TfHhhx/KeMqXLy/mz58vwsLCxJ49e8SIESOEra2tqFu3rsHzVL2vO3ToIJYtWyZCQ0NFWFiYmDt3rqhcubIM37x5c5blk5KSRJUqVTTi2LBhgwgPDxcbN26U50O9evWMynD4+fkJNzc34e3tLX755Rdx+PBhERISImbMmCFiY2Pl/Nk9D4XIuWP1xRdfyHj8/PzE7NmzRWhoqNi3b58YM2aMcHBwEACEo6OjOHbsmFwuOTlZnqt16tQRAESdOnU0zuGzZ8+alJa5c+cKT09PMWjQILFgwQJx8OBBERkZKbZu3Sp++OEHUaBAAQFA2NjY6HxZUzIc3t7eomzZsiJv3rzi22+/FUFBQSI8PFzMnTtXFCtWTG7zjh07tMbz008/yXmKFSsmZs6cKY4ePSoOHDggvvnmG+Hi4iJKlSolvL29zc5wvHjxQrRo0UJuU9++fcXatWtFeHi4CA4OFn/++acoUaKE3P/h4eEm7U8hhNi6datMw8iRI01ePjPlGLi6uooXL16YtGy7du1kWjLfo16WDIf6Q0n//v3Ff//9J0JCQkRYWJjYunWrmDhxoqhZs6bZGY4ff/xRHu9Hjx4ZtUxkZKRM07Jly8xaLxG9HHIsw7Fnzx653NChQ7OEKzdCXS/pmf/u3r2rN22jRo0yeXlLUX9pNETZbgCidu3aWm/Ey5Ytk/NMnTo1S/i1a9dkycigQYN0fjkeN26cACBsbW2zvBBl/mo7fPjwLF/ihBDivffek/NERkYa3D5t1CVBhigvvMr+vHHjRpZ5Dh48KGxsbAQA8fHHH2cJj4+PFwULFhQARNu2bUVCQoLWdc2ZM0eua8+ePSZv1/Hjx4Wtra0AIGrVqqX16/vixYs19rO2a2jdunUyfO7cuVrX9ezZM9GyZUv5Up75mE+dOlXG8eGHH2qNQ505MpThUK5NfV8ZLXEe5tSxio6OlseqSpUqIi4uLss8AQEBch5/f3+t8ahLgLLjxo0bOrdViPSv5NWqVRMAROPGjbXOo9x3AAgPDw+tme/z58/LDxhvvfVWlvBbt27J8FKlSmm9Tx4+fFg4OjrKdZmT4fj9998FkF5Kt337dq3b8/DhQ5mx1rXN+kyePFmmQV9JoDFu3Lgh42rQoIHJy//vf/+Tyy9fvlwjzJTnlraPMqbQleF49uyZzGAbylA8ePDArHV36NBBAOmlvMZKSUmR6frggw/MWi8RvRxyLMMRFRUll+vevXuWcPWLtzF/2tatTps5y1uKuRmO48ePa50nLS1NFClSROe+Gzt2rHwhfPbsmc51paSkiKJFiwoA4ptvvtEIU2c4ChcuLJ4/f641jjNnzsj5/vzzT4Pbp425GQ5tX/IV9evXF0B6SVFmM2bMEACEs7OzwYymv7+/ACD69etneEMyUZfc6Psiqzx4dZ2HtWvX1nms1U6dOiXj2b17t0ZY+fLlDZ4Tz549k+eVMRmOJUuW6E2PJc7D3DhWwcHBOudTZ7BDQ0OzhFsqw2GMjRs3yrTcv38/S7g6w/HXX3/pjKdPnz4CgPD09MwS9vPPP8s4Nm3apDOOMWPGmJ3hSE5OFoULFxYAxJgxY3RvsBBi+/btMp7z58/rnVdfGvVtizGOHTum9/llyPTp03UeG1OeW8pf5mqMxtKV4bh586bF9pUuVatWNSvDpnyA0JZBJqJXh9UbjSvU/W0/ffo0p1b7yqhatSqqVaumNczGxkb29HXp0qUs4Zs2bQIAdOnSBc7OzjrXYW9vjwYNGgCA3sGUevXqBScnJ61h5cuXl8dSW1qsxcPDA506ddIZXrt2bQD690+zZs3g4+Ojdz1NmzYFoH//6KKMyVC1alWZHm2GDh2qM+zmzZuIiIgAgCyNVjOrWLGi7I9fnd6bN2/i7NmzMg5d54SzszPefvttvetQODo6GpzXEudhTh+rSpUqoX79+jrnGz58eJZlckJCQgKuXLmCkydP4sSJEzhx4oRGT1jHjx/XuayNjU2WHpbUlHMzLi4uSycGgYGBAAAvLy+919vAgQON2QytQkNDZWNwQ+e4cowB04+z+jmTJ08ek5a1dFzqZZ48eZKttFiDl5eX7K5+6dKlVhmoV+mAwdPT06Tl8ufPr7E8Eb2asjUOhynUN2x3d3ed85UsWdIigxONHz8eEyZMyHY8OaVChQp6w5WbbubM2uPHj3HhwgUAwL///ot///3XqPUpPc2YkxZPT0/Ex8fnaMaxbNmysLXVnT/WtX8AIDw8HACwc+dOo0c317d/tHn+/Lk8DnXr1tU7r7+/v84wJa0A0LdvX/Tt29eo9avTe+LECflbX8YHAOrUqWNU/GXLltWbibDUeZgTxyopKUn28FWvXj2989asWRMODg5ISUnR2K/WcP/+fUydOhXr16/H+fPnIYTQO68uBQoUgJeXl85w5VoB0q8XDw8P+X9lG2vUqKF3XJGqVavCyclJdgtsCvU5rmQ8jWHqcc6bN6/8nZCQYNKy+uKKj483eXn1Mvqef7n13HJycsI777yDpUuXYt26dQgLC0Pv3r3RvHlzNGrUCPny5cv2Oh4+fAjA9AyHMv+DBw+ynQYiyj05VsKhfkCqH3iUztXVVW+48rKtdPGouHfvnlnrS0xMtHharMnYNKWlpWlMT0lJMbkrWkD//tHm0aNH8gXR0Jf5ggUL6gyzxPGMi4uTvw2lxdvb26j4Db0kWCLdOXWs1PtH37EA0rvmVF7elRcma4iIiECFChXw888/49y5c3ozG0B6F6u6GHutAFmvYWXfGDpv7OzsTH5xVFjjnqWNejTuu3fvmrVOhToDZ2rGJ/P69WUGc9PMmTNlN7RXr17FlClT0KlTJ3h5ecHf3x+///57tkpnlA8W+s5dbZT5XVxczF43EeW+HCvhiIqKkr/Lly+fU6t97alfGD799FMMGzbMqOX0jfb+OlHvn969e+O7776zynrUL4jGfpnXRp3e5cuX66xml5m5L3/GMjSKtiXOw5w6VmrGHCtDL//ZlZycjN69e+PBgwdwcHDARx99hK5du6JcuXLw9PSU1RsvXbqE0qVL50iarEl9nIOCgox+ATeUCcpMPcBfZGSkSctmVrRoURQoUAD3799HdHQ0UlNTTRpZXr1+QwMP5hZ3d3ds3rwZoaGhWLNmDfbt24fjx48jNTUVYWFhCAsLw5QpU7Bx40aTSqYU3t7eePLkickZd2V+Yz+OENHLKccyHLt375a/GzdunFOrfe2pH9aJiYmoUqVKLqbm5ePs7AxXV1ckJibi0aNHVts/6hd+Q19T9YWrj6eNjY1Z6VWnxdDXZEvVi7bEeZgbx8rQ1+oXL17IFx5rlczu3btXtj36+++/NdqNqKlLZqzF09MTd+7cMXjepKammp0e9bni6OhotePcuHFj2NnZITU1FQEBAUhLS9NbLVMfGxsbNG7cGBs3bkRiYiICAwPRtm1bo5Z9/PgxDh48CCD9HKpUqZJZacgp/v7+strn06dPERQUhIULF2LDhg24d+8eevbsiYsXL5pc4uDt7Y2LFy+afN4o8zPDQfRqy5EqVSdOnJCNEYsXL250vfFXVXa+cJvK29sbRYsWBZDeqPVV+PKZk/sHgGxwf/jwYZOrZRjL2dkZZcuWBQCEhYXpnVdfuJJWANi1a5dZaalcubL8ra4vr42hcGNZ6jzMiWPl5OQkj9XRo0f1zhsVFYWUlBQAsNqLsTJ6NQC9o1db6ljpo5w7x44d01tlMiYmxqz2G4BlznFj5MuXD927dweQXkVo48aN2Ypv0KBB8vdff/1l9HJz5syR1YIGDRqU4/e/7MibNy+6dOmC//77Dx9//DEA4Pbt2zh06JDJcVWtWhUAcPHixSxVX3W5d++erMalLE9EryarZziePXuGgQMHyheQzz//HPb2OVawkiuUuqrmPpBN9dZbbwFIr3Kxbt26HFlndqgbH+fEPlL2T0JCAv7++2+rrad169YA0l/G1FUIM1uwYIHOsDJlysgvoKtWrcK1a9dMTkexYsVQrlw5AMDatWvx/PlzrfM9f/4ca9euNTl+XSxxHub0sTp16hRCQkJ0zjdv3rwsy1iaukcgXZmstLQ0zJkzxyrrV2vVqhWA9Aa627Zt0znfkiVLzF5H48aNZWnR7Nmzrdpr09dffy1LNT766COj248kJSVhzZo1GtPeeust2aHGtm3bsGrVKoPxXLhwAT/88AOA9PveJ598YkryXyrKuQHo77RAlyZNmgBIb0B/+vRpo5YJDQ3NsjwRvZqsmuE4deoUGjduLF++mjVrhlGjRllzldnWvHlz2NjYwMbGxuzesgoXLgwg/etMTvTk9MUXX8h63iNHjjT4JXT79u2Ijo62erp0UfYPkP61y9pGjhwpG5B+9913CAgI0Dv/4cOHceDAAZPXM2LECPn18v3339faM87y5cuxfft2vfF8++23ANIzBD169NBb7SkpKQmzZs3KkqkYMWIEAODWrVv44osvtC77xRdf4NatW3rTYgpLnIc5daxGjRolX0Tff/99PH78OMs8u3btwvz58wGkVzMx1PuYuZTSFgBYvHix1nn+97//ZbsdgjEGDRokj+GYMWO0nnvBwcHZygw6Ozvj888/B5Bepa1Pnz56e5F6+vQpZs6cada6ateuLa+nW7duoXHjxoiJidG7THBwMBo2bIgVK1ZoTLe1tcXSpUtl98SDBg3C6tWrdcYTHR2NVq1ayR6qpkyZgpIlS5q1HdZ26dIl7N+/X+886tIoPz8/k9ehzjCoMxL6KPM5OTlZ7fojopyRraKGe/fuaXQVmZCQgLi4OERHRyMwMBC7d++WJRv169fHunXrNPqS18aU7ifLlCmjt6vO3NKwYUMA6V8lR44ciY8++gheXl7yZbRMmTIWXZ+fnx9mz56NIUOG4OHDh2jUqBEGDBiAzp07o0SJEnjx4gVu3LiB0NBQrFu3DhcvXsSWLVuMbpBsacr+AdJfar755hsULlxY7h9fX1+LloK5u7tj5cqV6NChA5KSktC5c2f07NkTPXv2lI1wb9++jYiICGzYsAHR0dGYMWOGxhgAxqhevTpGjx6NmTNnIjw8HHXq1MFXX32FqlWr4vHjx1i7di3mzJmDOnXq6H0Z79u3L3bu3InFixcjIiIClSpVwogRI9CsWTN4e3sjISEBFy9exMGDB/Hff//h4cOHWcZF+PDDD7Fw4UKcOHECM2fOxKVLlzBixAgUK1YMN27cwJw5c7Bt2zb4+/vLh3p2q3pY4jzMqWNVtWpVjB07FlOmTEFMTAxq1aqFr776CjVr1kRiYiK2bNmCv/76C6mpqXB0dDS6m19ztGvXDj4+Prh37x6++eYbXL16FW+99RYKFCiACxcuYO7cuQgMDESjRo1w+PBhq6UDAIoUKYLx48dj3LhxuHTpEmrXro2vv/4adevWRVJSEnbu3Ik//vgDRYoUQUJCAmJjY806b7788ksEBgYiMDAQAQEBqFSpEkaOHIkGDRrAw8MDT58+xdmzZxEUFISNGzfC2dkZH374oVnbNH78eNy5cwdz5szB+fPnUaNGDXTr1g2dOnVCmTJlkDdvXsTGxuLEiRPYvHmzfPEuXrx4lrjq1KmDpUuXYuDAgUhOTkafPn0wZ84cvPvuu6hQoQIcHR1x7do1bN68GStWrJClV5988olR6c/8TNXFxcVFXg+WcO3aNbRo0QKVKlVC9+7dUadOHVlF8vr161i9erUs8alZs6bB7qS18fX1RaVKlXDq1CkEBgZiyJAhBpdRqmK3bt1a59hQRPSKMHWkQFNHRfX29haTJ08WKSkpeuM1daRxACIqKkpn2swdSVwZvdjBwUE8ePDArDhSU1PlyNfa/rRtt7bRetWMGb181apVwt3d3eB+s7W1FXv37tVYVj3S+MKFC/Wmxdg069O7d2+jRtE1diRnY0YvDwwMFIUKFTLq3Fq8eLFZ25WcnCx69OihM14/Pz9x6dIlg+fpixcvxJdffins7OwMpjVPnjwiMTExSxxXr14VpUuX1rlc27ZtRUBAgPx/SEhIljjMGUk7O+ehIieOVWpqqvjggw/0xp0vXz6xc+dOnXFYaqTxHTt2CGdnZ53paN68uThx4oTea9SYe4QQQixcuFDrtaZIS0sTI0aM0JmWAgUKiLCwMFG8eHEBQIwcOTJLHPpGGlckJiaKgQMHGnWM/fz8jNiL+v3zzz/C29vbqPU1bNhQ68jyiv3794uKFSsajMfT01PMmjVLb7rMGWm8evXqZu0DXfduY9NQsWJFs0c5FyJjJHs3NzeRkJCgd94rV64IGxsbAUCsXLnS7HUS0cvBYlWqbG1tkS9fPpQoUQJNmjTBp59+ivXr1+PGjRsYN27cK9Fu4/nz5zh27BiA9JF0ze2VxtbWFrt27cK3336L6tWrw83NLUcaCr7zzju4cuUKfvnlFzRv3hw+Pj5wcHCAq6srSpUqhS5dumDq1Km4cuUKWrRoYfX06LNs2TL89ttv8Pf3R758+czuPcYULVu2xMWLFzFz5ky0b98ehQsXhqOjI5ydnVG8eHG0bdsWkydPxpkzZ8weSdnBwQHr16/H0qVL0aRJE+TLlw+urq6oWLEixo0bh4iICKOqI9jZ2eHXX3/FqVOnMHbsWNSsWROenp6ws7ND3rx5UblyZfTr1w+LFy/G7du3tfYYU6JECRw/fhwTJ05ElSpV4OLiAg8PD9SvXx+zZs1CQECARlUsSwzuBVjmPMyJY2Vra4u///4bBw4cQL9+/VCiRAk4OTnB3d0dNWrUwLhx43D+/HmjeyPKjnbt2iE8PBz9+/dHkSJF4ODgAG9vbzRr1gxz5sxBYGBgtkfLNpaNjQ1mz56NTZs2oW3btsifPz+cnZ1RpkwZfPzxx4iKikKdOnVk2wtzzxsXFxcsXrwY4eHhGDVqFCpXrox8+fLB3t4eHh4eqFGjBoYNG4Z169YZXedfn5EjR+LSpUuYO3cuevXqhdKlS8Pd3V3u6/r16+Ozzz5DaGgoDh8+rLcKT9OmTRETE4NVq1ahb9++sqREOT/btWuHP//8ExcvXnzpqxED6dWdgoOD8cMPP6Bly5ZyexwcHFCwYEG0bdsW//77L44dOwZfX1+z1zNs2DA4OzsjPj4emzZt0jvvihUrIIRAwYIF0aNHD7PXSUQvBxshXoFujXJIUFAQWrRoAXt7e5w9exalSpXK7SQRWdWkSZPw3Xffwd7eHk+fPn0pqyjSy+fGjRuyytG8efOMHneFaOTIkfj333/RqlUr7NmzR+s8aWlpqFixIs6dO4fJkydj3LhxOZxKIrK0HBtp/FWg1N3t168fMxv02hNCyEavNWrUYGaDjLZy5Ur5u379+rmYEnrVfPPNN3B0dERgYCCCg4O1zrN69WqcO3cOXl5e+Oijj3I4hURkDcxwqBw4cAB2dnb45ptvcjspRNl25coVjS5XM/v+++9lA1X1GAP0ZktISMDt27d1hkdFReHHH38EkN4LlHrcFyJDihcvjk8//RQAMHHixCzhQghMnjwZADBhwgTkzZs3J5NHRFbCKlVEr6kJEyZg4cKFePfdd9GoUSMUKVIEKSkpOH36NBYvXoygoCAAQKVKlRAZGcleYAhAeka1YsWK6NatG9q3b4/y5cvDyckJt27dwo4dOzB//nw8e/YMNjY2CAoKMrmHMKKnT59i6tSpAICxY8fCzc1Nht26dQtz5syBo6MjvvrqK9jZ2eVWMonIgpjhIHpNTZgwQesXRLUKFSogICAgWw1B6fVy5coVgx0bODo6Yu7cuWY32CciojcLMxxEr6nr169j3bp12LlzJy5cuIDY2Fg8e/YM+fPnR/Xq1dG9e3cMHToUjo6OuZ1UeomkpKRgw4YNCAgIQHh4OO7du4e4uDi4urrC19cXrVu3xkcfffTSDmJHREQvH2Y4iIiIiIjIathonIiIiIiIrIYZDiIiIiIishpmOIiIiIiIyGpyNcNx5coV2NjYwMbGBosWLcrNpGDChAkyLUREREREZBnZznCkpKRg1apVGDRoECpWrAgvLy84ODigQIECqF27NkaNGoU9e/YgLS3NEumll8ykSZNkRi1v3rxITEzMkfXOmjVLrteUDGtwcDAGDBgAX19fODs7o3Dhwmjfvj1WrVpl1PJJSUn4/vvv4efnB2dnZ1SpUgWzZs3Cy9D3QlBQkMY+yfzn5uaGcuXKYdCgQXIMDkvbs2cPBg8ejDJlyiBPnjzIly8fypUrh169euGff/5BfHy83uUTExMxZcoU+Pv7I3/+/HBzc0PFihXx+eef49q1a0alITQ0FG3btoWbmxs8PT3Rp08fXLhwwRKbZ3FnzpzBDz/8gGbNmqFEiRJwcXGBm5sbSpYsiS5dumDq1Km4c+eO2fGrP6QY+zdhwgS9cZ48eRIjR45EmTJl4OLiAm9vbzRt2hT//vuv3oEmFUIITJ8+HRUqVICTkxPKlCmDSZMmISUlxezttBT1RzD1n52dHTw8PFCyZEnUr18fo0ePxtKlSw2ez6a6fv061q9fj6+//hotW7aEu7u70cdFm1WrVqFdu3YoXLgwnJ2d4evriwEDBiAkJMToON60a5KIrERkw8aNG0WpUqUEAIN/5cqVE1u3btVY/vLlyzJ84cKF2UlKto0fP16mhYxXrlw5jeO8dOlSq6/z5s2bwt3dXWO9xpw/EydOFLa2tjrP0S5duohnz57pXP7Fixeibdu2WpcdPny4BbfQPPv27TPqWlT+hg4dKl68eGGRdT98+FB07drV4DqjoqJ0xnHhwgVRvnx5ncvmy5dPbNu2TW86du/eLRwdHbMs6+npKU6cOGGRbbWEuLg4MXjwYGFnZ2dwn9nb24uRI0eKBw8emLwe9X3N2L8VK1bojG/evHnCyclJ57L169cX9+/f15umoUOHal22Q4cOFjsfzaV+JhnzlzdvXjFmzBgRHx+f7XVfuXJF77rGjx9vdFzPnj0TnTt31hmXra2t+OGHHwzG8yZdk0RkXWa/Xf/000/CxsZG3jxat24tZsyYIQIDA0VERITYvXu3mDlzpmjXrp18yatevbpGHC9ThoNMFxwcLI+fm5ubACDatGlj9fV2795dABA+Pj5Gnz9z586V85YuXVrMnz9fhIaGio0bN4oWLVrIsH79+umMY9asWQKAKFq0qFi4cKEICQkR06dPF/ny5RMAREBAgIW31DTqDMeoUaNETEyM/IuOjhZBQUHi559/1thv33//fbbX++jRI1G7dm0ZZ6dOncTSpUtFcHCwOHTokFi+fLn49NNPRbFixXRmOJ4+fSoqVKigkYELDAwUR44cEZMnT5bnl6urqzh+/LjWOJKSkkTx4sUFADF48GARFBQkdu3aJTp06CAAiHr16mV7Wy3h8uXLGtvq7e0tPvnkE/Hff/+J4OBgERISIv777z/x8ccfi6JFi8r5NmzYYPK67t69q3EeaPs7duyYzMC7u7uLxMRErXHt2LFD3ssLFiwo/vrrL3H06FEREBAgevToIdPZtGlTkZqaqjWO7du3y5fNv/76S4SEhIgFCxaIIkWKCADin3/+MXkbLUn9TOratavGfjp69KjYuXOnmDZtmujWrZuwt7eX85YrV06cO3fOYuu2sbERZcqUEU2bNjUrw/Huu+/K5Vq0aCE2btwoQkNDxfz580Xp0qVl2Ny5c3XG8SZdk0RkfWZlOJYsWaLxsNy7d6/e+aOjo0XLli2Z4XjNjBo1SgAQBQoUEL/++qv8cnbjxg2rrXPjxo3yvPvjjz+MOn/i4uKEh4eHACBKlCghYmNjNcJfvHghunTpIuPav3+/1niaN28uAGR5uG7YsEEAEEOGDMn29mWHOsOh7+Xk5MmTwsXFRb5gJicnZ2u9AwYMEED6l/hVq1bpnC8tLU2kpKRoDVN/if/tt9+yhB85ckS+4LVo0UJrHEFBQQKA6N69u8b0Fy9eyAzR1atXTdgyy0tMTBRVqlSR2zpkyBDx5MkTnfMnJSWJ6dOnizx58piV4TCGkgkAIIYNG6Z1npSUFFGmTBl5zly4cCHLPB988IGMZ/HixVrjGTx4sAAgNm3apDE9KipK77HNKepn0qBBg/TOe/XqVdGmTRuNTEdcXJzZ675//76YNGmS2Llzp3j48KEQwvhrWk25DoD0UtvMpUaxsbGiRIkSMuOnK81vyjVJRDnD5AzHzZs3RZ48eeSXjZMnTxq1XGpqapbqNsxwvLqSkpJE/vz5BQDxwQcfiNu3b8vqIb/++qtV1vnkyRNRrFgx+UKzcOFCo86f3377Tc63cuVKrfNcv35dpr9z585a5ylbtqzw8vLSmi4Aom3btmZtl6WY8nLSq1cvOa+ur5PGOHjwoIxnwoQJZsWRnJwsM4QVK1bU+XV8xIgRcl3h4eFZwpcvXy4AiBkzZmQJ++yzzwQAceTIEbPSaCmffvqp3IbBgwcbvdyJEye0brMl9OnTx2Bme82aNXKen3/+Wes8CQkJwtPTUwAQVapU0TqP8oL+9OnTLGH58+cX5cqVM39DLMCUDIcQ6S/OnTp1kst88sknFk2PORmOjh07CgDCzs5OXL9+Xes8K1eulPH+/vvvWcLfpGuSiHKGyY3Gp02bhoSEBADAxIkTUalSJaOWs7W1Rf/+/Q3Ot3v3bnTp0gWFChWCk5MT/Pz8MGrUKNy4ccPgssnJyZg1axZatGgBb29vODo6olChQujYsSOWLVumt+G6sb1UJScnY86cOejUqROKFi0KJycn+Pj4oHbt2vjwww9x8OBBvQ2Id+/ejf79+8PPzw8uLi5wd3dH9erV8eWXX+L27dt6133r1i18/fXXqFWrFvLlyye3r2rVqujbty8WLVqEJ0+e6N9JFrJlyxY8fPgQANC/f38UKlQILVu2BAAsWbLEKuv83//+hxs3bqB58+YYOHCg0ctt3LgRAODu7o4ePXponadYsWJo3bo1gPRjpK0xqI+PDx48eICTJ09qTFcaYBcqVMjoNOU2X19f+fv58+dmxzNz5kwAgJubG8aOHWtWHEFBQXj06BEAYNCgQbC11X5bGjx4sPz933//ZQn38fEBAOzfv19jelpaGg4dOgQgd4/R/fv3MWfOHJmOv/76y+hlK1eujNq1a1s8TU+ePMGmTZsAAH5+fmjSpInW+ZRrCNA8Dmqurq7o3bs3AODEiRM4f/58lnl0HaOYmBg8fPjwlbqGAMDOzg6LFi2Cq6srAGDu3Lm4f/9+rqUnPj4egYGBAIA2bdqgWLFiWufr0aMH3N3dAWi/lt6Ua5KIcpApuZO0tDTh7e0tAIg8efKIx48fZyu3k7mE46uvvpL/z/zn7e0tTp06pTOuK1euiIoVK+pcHoBo3LixzoaXxjQaj4qKEn5+fnrXAUBcvnw5y7Lx8fGy7YGuPzc3N7Flyxat6z5w4ECWhtLa/rQtr/5KZsxXO2O89dZbAkhvD6FYvHixXE9ERITBOJR5S5YsaXDekJAQYWtrKxwdHcXp06eFEMKoEo6kpCRZ7N+uXTu96/jpp59kfNqqCU6ZMkUAEMWLFxeLFi0SR48eFTNmzJBfdXUdu5xibgnH7du3tc4zaNAgOc++ffuyhCclJQlnZ2cBQLz99ttyekpKirhy5Yq4evWqSEpKMpju7777Tq4nODhY53wpKSmydLVp06ZZwhMTE0WBAgUEkF41aP/+/WL37t2y8Wzt2rUNpsWaZsyYIbfz22+/tUicJUuWNHjf0mfevHlyeX3teZR6+OXLl9cb34oVK2R8CxYsyBK+du1aAUDkz59fzJw5Uxw9elQsWrRIllxq+xKek0wt4VC8//77crnly5dnCTf3HmxqCUdgYKDBkiiF0gGGvb19lmqVb8o1SUQ5x6QSjlOnTiE2NhYA0KRJE/mFxBLmzp2LX3/9Fc2aNcOKFSsQHh6OPXv2yC/ZsbGxGDp0qNZl4+Pj0bJlS5w+fRoA0K1bN2zevBnh4eFYu3YtmjVrBgA4dOgQOnfujNTUVJPTd+rUKTRp0gSXL18GAHTv3h2rV69GWFgYQkJCsHjxYvTv3x958uTJsmxqaiq6dOmCDRs2wMbGBn379sXatWsRHh6O4OBg/PnnnyhRogTi4+PRs2dPREREaCyflJSEPn364MmTJ8ibNy++/PJLBAQEICIiAiEhIVi9ejU+/fRTFC9e3OTtMsf9+/cREBAAAOjXr5+c3qNHD/mlz5KlHCkpKRg+fDjS0tLwxRdfoEKFCkYve/78edlVp6Hl1OHKuaT24Ycfol69erh+/ToGDx6MevXq4aOPPkJcXBwGDhyIzp07G52u3HTmzBls27YNAFC3bl2zvzAeP35clo40aNAAd+7cwZAhQ+Dh4QFfX1+ULFkS+fLlQ8eOHXHkyBGd8aj3tb5jZG9vj9KlS2dZRuHi4oLZs2fDzs4O8+fPR7NmzdCmTRts3boV7u7umDdvnlnbaSnqr7wvy7mivk51lRrGx8fLEubsXkM9e/ZEt27d8PDhQ3k9DR48GDdu3ECrVq0wcuRIczYj1ymlowBw8ODBXEuHsdeSOvzFixdZSqPelGuSiHKQKbkTpT4mADFu3Lhs53Yyd0E4fPhwkZaWlmW+9957T84TGRmZJfzzzz/X++UwLS1N9OvXT84za9asLPMYKuGoWbOmANIbRetqByBEesO/zL28/P777wKAcHBwENu3b9e63MOHD0XlypVlSYya+quVvq/oKSkpWkudLF3C8eeff8r4MvfM0rdvXwGk9yClq4GwQonDUAnH5MmTBQBRqlQpjX1rTAlHQECAnGfKlCl61xMWFibn/frrr7XO8/TpUzF27FhRtGhR4eDgIMqVKyemTp2qs45zTjLUS9WBAwfEr7/+KgoVKiSA9Ma/hw8f1hmfoRKORYsWyfCffvpJfsnU9mdrayumTZumdT316tUTQHqpqSHq+vLPnz/XOs/evXtF06ZNhYuLi3B3dxfdu3eXpWK5qWzZsnJf6Eq7qbJTwnHlyhXZ02CjRo10znf69Gm5jtGjR+uNMzY2Vs7bp08frfOkpKSISZMmiVKlSgkHBwdRsmRJ8e2331psn2SHuSUcFy5ckMu1bNkyS3hOlXCoawmEhYXpnVcpsQUgduzYoRH2plyTRJRzTCrhUNdNLViwoCmLGlS4cGHMmDFDaxuKzz//XP7O/PUoKSlJfiWpVKmS1sGRbGxsMGvWLHh5eQHIqHdurJ07dyIqKgoA8NFHH6FPnz465/Xy8oKLi4v8f0pKCv744w8A6V/IO3TooHU5T09PTJkyBUB6SYx6UCT1wF9NmzbVuW57e3uLljrponwV9ff3R9myZTXClHY69+7dw44dO7K9rgsXLuDHH38EAPz9998a+9YYT58+lb/d3Nz0zqsundI1oJebmxt+//133LhxA8nJyTh79izGjBmjs45zbvnnn39QtWpV+VetWjU0bdoUX331Fe7du4cRI0bg6NGjaNiwodnrUNrwAOntue7fv4/OnTsjPDwcz58/x927dzFr1iy4u7sjLS0Nn332mSwZU1OOkaHjAxh3jFq0aIH9+/cjMTERjx8/xn///WdSqZi1KPfPfPnywcnJKZdTk34di/9vbzZo0CCd81n6GrK3t8c333yDixcvIjk5GVeuXMGPP/74UuwTcynPFgCIi4vLtXRY6li9KdckEeUck96S1DczbVWHsqNXr146Hzjly5eXN75Lly5phEVERMjGbYMHD4adnZ3WONzd3WWDxlOnThlsoK2mVD8BgDFjxhi9HJA+wqqyLmX9uqgzE8HBwfJ34cKF5e+FCxeatH4AaN68OUR6j2RGj8ity6lTp2SVL22dALRt21Y2FFy6dKneuJQ0XblyRec8I0eOxPPnz/H222+jffv2JqdX3SDa0dFR77zq8+/Zs2cmr+tVkZaWhjVr1mDevHlITk7WOd+iRYvkMWrevHmWcKXzCCA949+lSxds2rQJtWvXlp0pjBo1Ctu2bYOtrS2EEPjyyy+zdKqgHCNDxwd4tY+Rcv+05L3zypUr8hiZatmyZQAAZ2dnvfcmXkOGqV/M1c9JhSXvwfpY6li9KdckEeUckzIcefPmlb/VLxuWYOhrh6enJ4CsN/MTJ07I3/Xq1dMbhzpcvZwhSulGiRIlULJkSaOXA4Dw8HD5u0GDBrInLG1/6oeWulSjcePGKFWqFADg008/hb+/P37++WccOXJE7wujNSxevBhA+ldKbSU99vb2eOeddwAAmzdvxuPHj81e16JFixAYGAh3d3dMnz7drDicnZ3lb0P7KikpSf42tSTlZTN+/Hj5gqP8JSYmIjo6Gl988QWePn2KP/74A23btjX7JUG9bwFgypQpWkt6GjduLHsHO3HiRJZrT4nHmHP5VT5Gyv3T0vdOc4SEhODcuXMAgK5duyJfvnw6531TryFTqJ9LOVHKrIuljtWbck0SUc4xKcNRoEAB+fvu3bsWTYjS2FgX5UUmc4NvdbUOQ9W81I1j1csZolSFUJc0GOvevXsmLwMAiYmJ8reDgwO2bNmCihUrAgDCwsIwbtw4NGrUCB4eHujQoQNWrFhhVmN4U6SlpWH58uUA0ksyvL29tc6nlHw8f/4ca9asMWtdsbGxsirdjz/+iCJFipgVjzqTrKu4X6F+ETSmKsGrxsXFBVWrVsVvv/2GWbNmAUhvyPzzzz+bFZ963/r5+aF8+fI6523Xrp38HRYWpjUeQ8cHeLWPkXL/fPz4scZLWm4wprG4gteQYerqxvnz58+1dFjqWL0p1yQR5Rx7U2auXr26/B0ZGWnxxGSXoTE0zKl2YEr82qgzAUFBQRp1ffVRqiUpKlWqhJiYGGzZsgVbtmzB/v37cfHiRTx79gw7duzAjh07MHXqVGzfvj3LspYSGBiImzdvAgC2b99u1P5YsmQJhg8fbvK65s2bhwcPHsDDwwNeXl5YtWpVlnmOHj2q8Vv5KteyZUu5D9T90Bsay+X69evyd071+JVbhg0bhq+//hoPHz7E/Pnz8cMPP5gch3of6ervX9u8mTPhxYoVw9GjR5GQkIBHjx7Bw8NDZzzKMfL29n7l6vxXr14d58+fR1paGo4dO2awRNZakpOTsXr1agDpH2nUmUFteA0ZppSCA9Cb8ba2zMeqTp06OufVd6zelGuSiHKOSRmOSpUqoUCBArh//z4OHjyIJ0+e5GrxMaD5NenOnTsoV66cznnVpTKmfIVSvkzeunXL5PSpMxiOjo6oUqWKyXEo7Ozs0K1bN3Tr1g0AcPv2bQQEBGDWrFmIiIhAREQERowYgQ0bNpi9Dn2U6lSmOHz4MC5duiSrhBlL+QL86NEjowaMnD17NmbPng0A2Ldvn8xwlCtXDnZ2dkhNTcWZM2f0xqEOV0qTXle2trYoW7Ysjh49ilu3buHhw4cmf5mtXLmy/G2odE0dbm+vedupVKkS1q9fDyD9GNSvX19rHC9evMDFixcBvJrHp1mzZli3bh2A9HZhuZXh2Lp1qyzh7devn852bwo3NzcUL14c169f5zWkw+7du+Xvxo0b51o61APxGnus7O3tUaZMmSzxvAnXJBHlHJOqVNnY2MiRRRMSEl6KPrTVL/DqL97ahIaGal3OkFq1agEArl27hqtXr5qUvpo1a8rfu3btMmlZQwoXLoyhQ4ciODhYpnHr1q1WabgXHx8vMzKtWrXCypUr9f4p54YQwmDjcWtydHSEv78/gPSG+PrqJCvjJDg5Oen9Mvi6UMYnAdJ7UzNVyZIlUaJECQCQLx26qMOLFi2qEaZ+Qcs8IrFaeHi4rL7RqFEjk9Ob2/r06SPruM+bNy/X2nKYUp1KoRyjs2fParQvy0x9/F7FY2SO2NhYrFixAkB6hwBt27bNtbTUrVtXNvTWdy0lJycjJCQkyzKKN+WaJKIcZGo/ujdu3BCurq6yj25j+9JOTU0VS5cu1ZiWeaRxfZT+5jP3Yf78+XPh4eEhAIjKlSuLFy9eaF3+yZMncpyASpUqZQnXNw7H7t27Zdgnn3yiN52ZPXv2TOTPn18AEIUKFcr26Oy6jBkzRqbx1q1bFo9fPebFunXrjFqmdu3aAtAcjdxaadJ3/vz6669yPl1jqFy/fl3Y2dkJAKJjx45WSa+1mdJnf0JCgnBxcREAhLOzs87rxhD1eadvTI/mzZvL+a5fv64RlpSUJPLlyycAiIoVK2odi0cIIUaMGCHjCA0NNSu9ue3jjz+W2/Dee+8ZvdyJEydEeHh4ttd///594eDgIACI6tWrG73c6tWrZbp1jWCdkJAgPD09dd5jXwWmjsORmpoqOnbsKJcZM2aMRdNj6jgcQgjRoUMHAaSPIJ75WlOsXLlSxvvbb79lCX+TrkkiyhmmjxYlhFiwYIG8yfj4+IigoCC98588eVK0bt06ywPOEhkOITQH/vvuu++yhKelpYmBAwfKecwZ+E95eTY08N+DBw+yDPz3008/ybg7dOgg4uPjdS7/5MkTMWPGDI1pBw4cEOfPn9e5TFJSkqhVq5YAINzc3LIMuGeJgf9atGghAAhXV1eRkJBg1DI///yzXO+hQ4eyhCthhgb+08XYDMeDBw/kw7NkyZLi/v37GuEvXrwQXbp0kXHt3bvXrPTkNlNeTtTXTNeuXbXOY2jgPyGEuHr1qnB2dhYARO3atbWe20uXLpXxdOrUSWs83333nd4XoCNHjgh7e3sBQDRr1kzvtr3MEhISRKVKlTQyHU+fPtU5f3Jysvjrr7+Em5ub2LBhQ5ZwUwf+mzFjhpz/jz/+MDrdycnJonTp0gJIHzDywoULWeb54IMPjL6fv6xMyXBcvXpVtGnTRs5foUIF8ejRI63z5tTAf0JoDhT71ltvZfmYEBsbK0qUKCEACA8PD/Hw4UOt8bwp1yQR5QyzMhxCCPHDDz/ImxEA0bZtW/H333+LvXv3isjISLFnzx4xa9Ys0alTJ/nl2FoZjidPnohSpUrJuLp37y62bNkiIiIixLp16zS+rjZo0EDr11xDGY5Tp04JNzc3OU+PHj3EmjVrRHh4uDh69KhYvny5GDx4sHBzcxOXL1/WWPbFixeiVatWctkSJUqIn376Sezbt09ERUWJAwcOiLlz54p+/fqJPHnyCC8vryxps7W1Fc2aNRO//fab2LFjh4iIiBCHDh0SCxYsEP7+/jLuTz/9NEvas5vhuHr1qhyRuGfPnkYvd+7cObne999/P0t4TmU4hBBi9uzZct7SpUuLBQsWiLCwMLFp0yaZmQIg+vbta1ZaXgb6RhqPiYkRYWFhYsWKFaJ9+/ZyPmdnZxEdHa01PmMyHEII8dtvv8n5KlWqJBYtWiTCw8NFYGCgGD16tLz+3d3ds4xMr3jy5IkoV66cxvmyd+9eERwcLH766Sd57bm4uIioqCgL7K3cc/HiRY1t9fHxEWPGjBEbN24UR48eFSEhIWLDhg1izJgx8sUQgEUyHHXr1hUAhJ2dnbhz545J6d62bZuwtbUVAETBggXFjBkzxNGjR8WOHTtEz549ZToaN25sdolZblM/k7p27apx/YSGhopdu3aJ6dOni27dusmXbQCifPnyWjNhCmPvwQEBAWLhwoXyTz1yeNeuXTXC1q5dqzOePn36yOVatGghNm3aJMLCwsSCBQtkxhGAmD17ts443qRrkoisz+wMhxBCrF+/Xvj6+mpkPHT9Va5cWezcuVNjeUtlOJS4KlSooDcNjRo1Eg8ePNC6vKEMhxBChIeHi+LFixvc1swZDiGESExM1Chl0ffn5+enM236/nr06CGePXuWZd3ZzXBMmjRJLq+vdEebatWqyS9pz58/1wjLyQyHEEJ8//33MuOk7a9jx45a99+rQn2cjfnz9vbOck2qGZvhEEKIr7/+Wu++9fHxEUeOHNEbx/nz50XZsmV1xuHu7i62bNlizq556Tx48EAMGDBAvsDr+3NwcBAff/yx1q/npmQ4zpw5o3Gum2POnDnC0dFRZ1r9/f1FbGysWXG/DNTPJGP+3N3dxWeffWaw1NfYe3CzZs2MXre++2ZiYqJGVa/Mf7a2tkaVmLxJ1yQRWVe2MhxCpFfnWb58uejfv78oX7688PT0FPb29iJ//vyiVq1a4oMPPhCBgYFa64BaMsOhpGXmzJmiWbNmwsvLSzg4OIiCBQuK9u3bi6VLl4rU1FSdyxqT4RAi/Ub+119/iZYtWwofHx/h4OAgChUqJGrXri0++eQTERwcrHf58PBwMWrUKFG5cmWRL18+YW9vLzw8PESNGjXEsGHDxLp167K8mCckJIjt27eLMWPGiPr164sSJUoIZ2dn4ezsLHx9fcU777wjtm3bpnOd2c1wlC9fXgAQTk5O4smTJyYtO3HiRLnuNWvWaITldIZDCCEOHz4s3n33XVG8eHHh6OgofHx8RJs2bcSKFSvMSsPLxFCGw9HRURQqVEi0atVK/PHHHzqrUihMyXAIkV7FYsCAAcLX11c4OTmJfPnyibp164off/xRZ1WTzOLj48Wvv/4q6tSpIzw8PISrq6soX768GDNmjLhy5YpRcbxKTp06JcaPHy8aN24sihYtKpycnISrq6soUaKE6NKli5g2bZq4e/euzuVNyXCMGzdOzrtq1Sqz0xwTEyOGDx8uSpUqJZydnYWXl5do3Lix+Oeff7JU53zV6Mpw2NjYCHd3d1GsWDFRr149MWrUKLF06VK91WPVcjrDoVi+fLlo06aN8PHxEY6OjqJ48eLi3XffNZj5V3vTrkkisg4bIbI5OAUREREREZEOJnWLS0REREREZApmOIiIiIiIyGqY4SAiIiIiIqthhoOIiIiIiKyGGQ4iIiIiIrIaZjiIiIiIiMhqmOEgIiIiIiKrYYaDiIiIiIishhkOIiIiIiKyGmY4iIiIiIjIapjhICIiIiIiq2GGg4iIiIiIrIYZDiIiIiIishpmOIiIiIiIyGqY4SAiIiIiIqthhoOIiIiIiKyGGQ4iIiIiIrIaZjiIiIiIiMhqmOEgIiIiIiKrYYaDiIiIiIishhkOIiIiIiKyGmY4iIiIiIjIapjhICIiIiIiq2GGg4iIiIiIrIYZDiIiIiIishpmOIiIiIiIyGqY4SAiIiIiIqthhoOIiIiIiKyGGQ4iIiIiIrIaZjiIiIiIiMhqmOEgIiIiIiKrYYaDiIiIiIishhkOIiIiIiKyGmY4iIiIiIjIapjhICIiIiIiq2GGg4iIiIiIrIYZDiIiIiIishpmOIiIiIiIyGqY4SAiIiIiIqthhoOIiIiIiKyGGQ4iIiIiIrIaZjiIiIiIiMhqmOEgIiIiIiKrYYaDiIiIiIishhkOIiIiIiKyGmY4iIiIiIjIapjhICIiIiIiq2GGg4iIiIiIrIYZDiIiIiIishpmOIiIiIiIyGqY4SAiIiIiIqthhoOIiIiIiKyGGQ4iIiIiIrIaZjiIiIiIiMhqmOEgIiIiIiKrYYaDiIiIiIishhkOIiIiIiKyGmY4iIiIiIjIapjhICIiIiIiq2GGg4iIiIiIrIYZDiIiIiIishpmOIiIiIiIyGqY4SAiIiIiIqthhoOIiIiIiKyGGQ4iIiIiIrIaZjiIiIiIiMhqmOEgIiIiIiKrYYaDiIiIiIishhkOIiIiIiKyGmY4iIiIiIjIapjhICIiIiIiq2GGg4iIiIiIrIYZDiIiIiIishpmOIiIiIiIyGqY4SAiIiIiIqthhoOIiIiIiKyGGQ4iIiIiIrIaZjiIiIiIiMhqmOEgIiIiIiKrYYaDiIiIiIishhkOIiIiIiKyGmY4iIiIiIjIapjhICIiIiIiq2GGg4iIiIiIrIYZDiIiIiIishpmOIiIiIiIyGqY4SAiIiIiIqthhoOIiIiIiKyGGQ4iIiIiIrIaZjiIiIiIiMhqmOEgIiIiIiKrYYaDiIiIiIishhkOIiIiIiKyGmY4iIiIiIjIapjhICIiIiIiq2GGg4iIiIiIrIYZDiIiIiIishpmOIiIiIiIyGqY4SAiIiIiIqthhoOIiIiIiKyGGQ4iIiIiIrIaZjiIiIiIiMhqmOEgIiIiIiKrYYaDiIiIiIishhkOIiIiIiKyGmY4iIiIiIjIapjhICIiIiIiq2GGg4iIiIiIrIYZDiIiIiIishpmOIiIiIiIyGqY4SAiIiIiIqthhoOIiIiIiKyGGQ4iIiIiIrIaZjiIiIiIiMhqmOEgIiIiIiKrYYaDiIiIiIishhkOIiIiIiKyGvvcTgAREb3cEhMTAQCPHz+W05KSkgAArq6uAABvb28ZZmNjk4OpI3q5Xbt2Tf5es2YNAGDp0qUAgOjoaLPirFixovz9ww8/AAB69eplbhKJrI4lHEREREREZDXMcBARERERkdWwShUREemlVAk5duyYnFa2bFkAgLu7e24kieiVkS9fPvnb398fAHD9+nUAGVUSAaBEiRIAAE9PTwCAk5NTlriSk5M1/gWAmJgYAICDgwMAoFWrVjLMzc0t+xtAZAEs4SAiIiIiIqthCQcREel14sQJAEBAQICcpnyFrVChQq6kiehVoS7haNq0KQAgJSUFQEZJIQC0bt0aAFCmTBkAgL191le0+Ph4AMCBAwfktCVLlgAAQkNDAQClSpWSYVWrVtWZLiEEAHbyQDmDJRxERERERGQ1LOEgIiJJ+fIKZLTZUOqbe3l5ybD8+fMDAFxcXADwKymRKdLS0gBoXjdKSYi2kg2F0iajQYMGctrNmzcBZFyvISEhMkyJv0qVKlni4jVLOYklHEREREREZDXMcBARERERkdWwShUREcmqVPfu3ZPT7t+/DwB4/vw5AMDR0VGGKV122tryuxWRsZKSkgAAiYmJAIAXL17IMDs7O6PjUTptADKqS8XFxQEALl68KMMKFy6sMQ9RbuGTgoiIiIiIrIYlHEREhBs3bgDIaIAKZDQSz5s3r8Y8gGbjciLSTT1In1KC+OzZMwCapYamlHCoKR03aLtOnz59CiCjkTpLJCm38MwjIiIiIiKrYQkHEdEbTCmpUOp/JyQkyLCiRYsCAHx8fAAAV69elWEODg45lUSiV5pSmgFkXENKyYZ6kD6lXZSplO50CxQoACBjQD8g4/pWTyPKDSzhICIiIiIiq2GGg4iIiIiIrIZVqoiI3jBK15wAEBsbCyCjyoVSLUP9W/lX3RWnudU/iN40SsNtADhz5gwAwNvbGwBQpkwZGaZuQG4KZWRy5Zp0dnbOEicbi1Nu4xlIRERERERWwxIOIqI3zJMnT+TvU6dOAQDKli0LAPDz88syv6urK4CMbnKBjK44iUi/x48fy98xMTEAgMaNGwMAihUrJsPMLeFQSlCUfz08PGSYUippY2NjVtxElsISDiIiIiIishqWcBARvSGU7jlDQ0PltH/++QdARulFyZIlZZjSRa5SJ9zX11eGKfXGiUi/1NRU+dvNzQ1ARle2lmgLdfLkSQBAZGQkAKBixYoyrEiRItmOn8gSWMJBRERERERWwwwHERERERFZDcvEiYhec0qVjrt37wLIaCgOAIcOHQKQ0bDVzs4uy3KNGjUCoFndit1sEumnVElUj/JdunRpAICPj49ZcSpx3b9/X047duwYAOD06dMAgNatW8swdaN0otzEJwYREREREVkNSziIiF5zykB/t2/fBqDZqHTjxo0AMkos1IMCPnz4EEBGY3Olwat6fiLS7tGjRwA0B/5Tupg2t7G4Etfu3bvlNGXwTqUEslSpUjJMPVgnUW7iE4OIiIiIiKyGJRxERK8hdR3vixcvAsio/121alUZpm6XkVliYiIA4Ny5cwAyvqQC5g9SRvSmUK67GzduyGlK19KFCxc2KS6l69uIiAgAQHR0tAwrWrQoAKBatWoA2BUuvZxYwkFERERERFbDDAcREREREVkNq1QREb1GlEbfStULAAgJCQEA9OzZE4D+alTqRuNKVaqbN28C0Oze88WLFxZKMdHrJTk5GQBw5MgRABmdLwBAnTp1AAB58uQxGM+dO3fk77lz5wLIGE28UqVKMqxz584AgObNm2cj1UTWxRIOIiIiIiKyGpZwEBHlMnXJgY2NjdHL3bp1S/4ODg4GAKxatQqA5uB+Hh4eAAB/f38AQJUqVbLEpcy/d+9eOW3Dhg0AgMuXLwPQ7GLz7bffBgB06NABgGZDdHaZSzlNfQ0Bpl1H2aF0rLBt2zY5bc6cOQAyBuRTU0oblRIObdfK8+fPAWhuQ40aNQAAw4YNAwCUK1dOhlWoUMHc5BPlGD4ViIiIiIjIaljCQUSUy9RfMpX638oAX3nz5pVhmbui1TZI36VLlwBkDNYHZNT3dnBw0FiHelpCQgIAza5v4+LiAADx8fEAABcXlyxhT548MWobiV4nSolKWloaAODu3bsy7OzZswAyBspUXzdKeyhlucwlM0DGtauUTALA0KFDAQA9evQAADg7O2d/I4hyEEs4iIiIiIjIapjhICIiIiIiq7ER2srziIgoV5w/fx4AcPjwYQBAixYtZFjm7mzVXdMq1auU6k9KlQ0goyqW0lDVyclJhinVuZRqVuqqWErj1dTUVACaDVyVaiJK1Q51nESvA+X1KCUlReP/avb26TXT1deNUs1QubbUVSaNeeVS5lFfb+7u7gAyrrucahRPZCks4SAiIiIiIqtho3EiolyilEIEBgbKaVu3bgWQMehe0aJFZVjmEg7l66r6tzEDimmjlIKoG6bny5fPrLiIXgfKwHurV68GkNEFLgCULl0aQEa30EoJBJDRWJyIMrCEg4iIiIiIrIYlHEREOUjd7kLpPnPTpk1ymlLaobSfUOYBMgbX8/HxAcAB9ogsRSltVLfFiIqKApBxfV69elWGVatWDQBQp04dAJolHESUFZ9WRERERERkNcxwEBERERGR1bBbXCIiM2i7dRrTVeWiRYvk782bNwMA6tatmyWO27dvAwBcXV1lWK1atQAA3bp1A5AxSjgRZc/jx48BANOmTZPTlOqMTZo0AQBs375dhinVqxYuXAggo2qVtWS+37BbXHrVsISDiIiIiIisho3GiYiySd/Xxlu3bgHIGMjv+PHjMszb2xsAUL9+fTmtUKFCAIDLly8DAJYtWybDEhISAABdunQBwBIOInOoSwvOnDkDADh48CCAjK5wAaBMmTIAgNatWwMA4uLiZNjTp08BZAzUWaRIERmm/k1E6VjCQUREREREVsMSDiIiM2gr1VC+nCr1wQHg0KFDAIDffvsNANC2bVsZ9vHHHwMAihcvLqcpA/h5eXkBAP766y8ZprTrUEo6nJ2ds7kVRG8OpUtqdSnGjh07AABr1qwBAAwbNkyGvf322wAyBsBs2LChDHvy5AkAIDw8HADg4uIiw5Q2VtqY2xZD33xs30GvApZwEBERERGR1TDDQUREREREVsMqVURE2aSMUnzx4kUAwPLly2WY0n3m4MGDAQCNGjWSYSVKlAAA2NnZZYnTw8MDAFC2bFk57fr16wAyRkCuWbOmDFOqYBG9iZRqRdqqE8XHxwMAIiMjAQCrV6+WYcq1q1RvVFebUqpSKapXry5/K43GlaqSjo6OMixzlSp1lSdzqzvpqzbFKlT0KmAJBxERERERWQ1LOIiIzJCYmCh/nzt3DgAQGhoKIKOkAwAKFiwIAOjVqxeAjG5vDVEaj6u7zFWmBQUFAQDy5s0rw1jCQW+yzF/5Hz58KH8rJYIhISEAgNjYWBmmXF/K9amvq+n8+fPL3xUrVgSQcR+4ceOGDFNKVNzc3LSmjehNxBIOIiIiIiKyGpZwEBGZIDU1FQAQFhYmpwUEBAAAoqOjAQBDhgyRYe3btwcAuLq6mrQe5atokyZN5DSl3viiRYsAaLbvqFevnsbylqg3TvSqUbqrVa5JANi7dy8A4NmzZwCAsWPHyrA6deoAAGxtTfv+qrTvqFatGgDNdlhKSUrt2rUBAJ6enibFrQ2vYXrVsYSDiIiIiIishhkOIiIiIiKyGlapIiIygtLQVKlKdfDgQRmmVLNSRiZWd62pbthtDqXrXCBjRHKlQawy8rg6DUrVDlbBoDfJ6dOnAQBHjhwBAJw8eVKGKddQrVq1AGRUgwK0d0ltDKWKZOPGjQEAJ06ckGGBgYEAgKJFiwKwTJUqolcdSziIiIiIiMhqWMJBRKRDQkKC/K10ebt//34AQFxcnAxr1qwZAKB///7ZXmfmAb7UlC52lS+njx49kmGnTp0CAJQrVw4A4OTklO20EL3MHjx4IH/v27cPABAREQFAs5voNm3aANAsecwu5fpSSjju3Lkjw5QSDmW9She6RG8ylnAQEREREZHVsISDiCgT5Wvl3Llz5bSrV68CyChlGDFihAyrXLlyttanrVRDWxsMHx8fAEDnzp0BANeuXZNh27dvBwAUKVIEAEs46PV17NgxAMC///4rpynXi9IVbbt27WRYyZIlLZ4GZYDAChUqAMi4LwDAzZs3AQDXr18HACQnJ2dZjm2s6E3DEg4iIiIiIrIaZjiIiIiIiMhqWKWKiOj/RUVFAQCOHj0KQLMhqNIlrTKid/Xq1WWYUk3CEvRVtfD29gYAtG7dGgDwzz//yDClMbvSNa+60SzRqyopKUn+PnToEICMkbxfvHghw2rWrAkAaNq0KQCgdOnSWeJSqi5aozqTcn9Qr/vGjRsAgOjo6CzpNLc7XqJXFUs4iIiIiIjIaljCQURvNGVAPwBYvXo1gIxBwzp27CjDWrZsCQAoX758ljiy++XU2OVcXFwAZJSuqEtWLl68CCBje0qVKmVWWoheBspAlsp5DWSU6ClhQ4YMkWFKl7cFChTQGac1G2r7+vrK30qD9XPnzgHQHCS0SpUqAFjCQW8elnAQEREREZHVsISDiN5IBw4cAACsXLlSTnN3dwcA9OnTBwDQoEEDGaauo/2yULrkBDK67Y2JiQEAeHp6yjBlMECil5m6vca6desAAAEBAXKaUrJXt25dABld4AL6Szas2XZDoS7haNGiBYCMAQDv3r0rw95//32rpYHoZcYSDiIiIiIishpmOIiIiIiIyGpYpYqIXntPnz6Vv5VRipUqVQ8ePJBhjRs3BpDR6FNfNQ213Bo1WN0178OHDwEAYWFhAIC8efPKMFapopeRUtXp9u3bAIDIyEgZFh4erjEPADRv3hxARgNxbQ2v1fMrcuL6dHZ2lr/Lli2rMe3+/fsyTOkqV7kmOeI4vSlYwkFERERERFbDEg4iem09e/YMQEY3twDwxx9/AMgoARgzZowMq1SpEgAgX758OZXEbKlWrZr8rZTibN26FYDmwH/vvPNOziaMyAhKY+qgoCAAwL///ivDGjVqBACYPHmynFa4cGEA+ruUfRlKDBwdHQEAtWrVAgCcPn1ahgUHBwMA7O3TX7+0DVBI9DpiCQcREREREVkNSziI6LVz/fp1AMCuXbsAZLRrADLaPfj7+wPIGIgL0Gz38CpQuvEFAD8/PwCAq6srgIw2HUBGvXFjvhATWUNKSgoA4NSpU3La7t27AQBXrlwBAHTp0kWGNWnSBIBmd7PWZMmuc5XrS2kTpgxUCGTck7y9vQGwhIPeHCzhICIiIiIiq2GGg4iIiIiIrIZVqojolZaWlgYgoxoVABw5ckTj30ePHsmwESNGAABq1qyZQynMGUoj8cqVKwPIqMICZDRUbdasGQDAx8cnh1NHbypl9PAzZ84AAPbv3y/DoqOjAWRULxo0aJAMU6a9ypRG4zdv3pTTVq5cCQCoX79+rqSJKLewhIOIiIiIiKyGJRxE9NLT16AzKioKQEYDVAAIDQ0FkNFo8+2335ZhBQsWtFo6c5OLiwsAoGXLlgAySneAjH1TsWJFACzhIMvSd30q3TQrA23GxcXJsE6dOgHIOGfVXTnnNEt2p6vElSdPHgAZnTUAgK1t+ndeZTBA9cCjnp6eGvMQvU54VhMRERERkdWwhIOIXirK11Ig40uh8m9iYqIMi4yMBJDxJV8ZRAzIqB+tfDktXry4FVP8clBKOJQB09SDHe7ZswdAxj5SdwVMlF3K9Xn79m0Amt1QK9epMhhe8+bNZVjDhg0BvB7tNfRRl6rWqVMHABAfHw8AOHTokAxr1aoVAMDNzS0HU0eUM1jCQUREREREVsMMBxERERERWQ2rVBHRS8GYkX7VoxSvXbsWAPD06VMAQI0aNWTY+++/DwBwdna2dDJfWsroxkr1DXU1FaWB6q1btwAAycnJMszBwQGAZRvN0ptF6YL54MGDAIBNmzbJsCJFigAAWrRoAQDo2LFjDqfOOOaONK6uAqrIHEeBAgXkb2U09X379gHIGHkcyKhuxSpV9DpiCQcREREREVkNSziI6KWg7cui8vVwzpw5ADIGCgMAd3d3AEDr1q0BAHXr1pVhb1LJhi5+fn7yt9I98KVLlwBodpnbpEkTABklJETGuHPnjvw9a9YsAEBsbCwAoFq1ajJMaSReqVIlnXGZW7pgSeau25jl1N39Nm3aFACwd+9eAJoN7JUucosWLWpWWvR5GfYxvdlYwkFERERERFbDEg4ieqko7QwAICIiAgBw/PhxAJoDYtWrVw9Axtd7ZdAstTf5q16ZMmXk77Zt2wIA9u/fD0BzPypdk7KEg/RJS0sDAJw7dw4AEBISIsOuXr0KAPD19QUANGvWTIbVqlULQEZbITVt7R9eR+r7j9KeQxl8U70PLl++DCCjG29t9zSiVxVLOIiIiIiIyGqY4SAiIiIiIqthlSoieikkJSUBANatWyenrV69GgDQqVMnAEC7du1kWPXq1QEA9vZZb2NvSlUNfdSNxhWrVq0CAMTFxclpz58/B5AxEjS9mvR1z2pM162G4rx37x4AYO7cuQAyqjkCwNChQwFkVG8sUaKEUWl+1ao6mrsftVEa0d+8eVNOi4mJAZBRlUppYG4Jr9q+ptcPSziIiIiIiMhqWMJBRLnqwoULAIBly5YBAB4+fCjDunfvDiCja82KFSvKMG0lGwp+zdNsGK4MBqg0VH38+LEMO3/+PICMfevq6ppTSSQL0nfOq8OMKf1TGoiru09euXIlgIzG33379pVhSscDxYoVMyHFrx5L3leUEtpHjx7JacqAicrAf5Ys4SDKbSzhICIiIiIiq2GGg4iIiIiIrIZVqogoxygNw69cuSKnKdU2lBF3GzVqJMMGDhwIIKMqEJlHGXm9Ro0aAIAzZ87IsODgYABAnjx5AAAVKlTI2cRRjtJXLejJkycAgLNnzwIADh48KMNOnz4NABgwYAAAzSpVyvlFxitdujQAzQ4c/v33XwDAxYsXAQAvXryQYfqqkBK9CljCQUREREREVsMsMxGZzdhuIlNSUgBkfDlVvuQBwPXr1wEAo0aNAgDUrVtXhnl7e1skXW96I3KlAXmLFi0AAKmpqTJsx44dADK6MmUJx5tF3UmDUto1f/58AEC+fPlk2LRp0wBkjGDPUo3sUa7JwoULy2nKCONKV9WRkZEyTOlGV2lQrr7Hven3N3o1sISDiIiIiIishiUcRGQRmb+yxcbGyt/Kl7rDhw8D0BxkThnMr169egDML9UwJk1vKmU/VK1aFUBGV7gAsGjRIgDAtWvXcjxdlHuU7qiVUg0AOHbsGICM9gX+/v4yTOnGlSzL3d1d/lbugUqp7/79+2WY0o5NKeHgvY1eNSzhICIiIiIiq2GGg4iIiIiIrIZVqojIbNqK9ePj4wEAoaGhclpQUBCAjO5Y33vvPRnWtWvXHEnXm0zZH0pVtqJFi8owpfHvvXv3AGhWrSpSpAgA7V1ysmH+q+n27dsAgL179wIAQkJCZJjSDesXX3wBIKMKHlmPk5OT/K106rB582YAwIEDB2RYkyZNAAC+vr4G4zS2Mw+inMQSDiIiIiIishqWcBC9Yaz19evy5csAgICAAABAVFSUDFMaPH7zzTcAgIoVK2Z7fWQ+9UCKrVq1ApBRMrVv3z4Z1r17dwCaDVsV/GL6ctHXTap6AD/l+rx//z4AoFatWjKsbdu2AAA/Pz+rpfNNoBwLY64RdffCSiN95XgpjfgB4M6dO0avn9cmvYxYwkFERERERFbDEg6iN5i5X8KUgePU3aseOXIEQEY7DfVX9IYNGwIA6tevb9b6yLLUx6ZNmzYAgPXr1wPIqNsPZHRZrK2Eg14u6ms5MTERAHD8+HEAwKFDh2SYMtBf+fLlAWS0DQCAcuXKWT2dZJjSdsrLy0tOU7rKVf4tVqyYDGOJBr0KWMJBRERERERWwwwHERERERFZDatUEb1hLFH8fvPmTQDAvHnz5LS7d+8CACpUqAAAePfdd2UYG6G+XDw9PeXvRo0aAQBWrlwJAIiIiJBhjx8/BgAUKlQoB1NH2RUdHQ0A+OWXXwBor0KnVJfLly9fDqfu9Zfde6wy0nuHDh3kNKVTDqWL8T59+sgwBweHbK2PKCewhIOIiIiIiKyGJRxEZLTt27cDyPjKpta8eXMAQIMGDQAAJUqUyKlkUTa4ubkBAMqWLQsgo/QKyPhSnjdvXgAZjVlfZ6Z0afoySEpKAgAsWrRITlMai1erVg1ARnerAFC3bl0ALNl4mSnXotJNMQD89ddfAICnT58CAN5++20ZxhIOehWwhIOIiIiIiKyGJRxEpJXyJU3d9a0yINW1a9cAAJ06dZJhzZo1A6C9ZONV+2r8JqpZsyYA4NGjR3JaaGgogJe/hEM5V5XzUhnEEADs7OwAAGlpaQAAJycnGaa0ZSlQoICc5urqat3EZoN6cL979+4BAE6cOAFAs+tbW9v0b4n9+vUDkHFsgazbp2/AQModynmplFABQEpKCgDg6tWrADIGbgQ0u8glelmxhIOIiIiIiKyGGQ4iIiIiIrIaVqkieomoqzcA+qs4WKsqhFL1RKmi8ccff8gwpWrGBx98AACoWrWqDFN3tZoZq2q8/GrUqAEgo3oSAMyaNQtARpWj9u3b52ia9J3j6mpTyrn67bffAgAiIyNlWJ48eQAAz58/BwAULVpUhnXs2BEAMHjwYDmtXr16RqfBWKZc1/o8ePBA/l6zZg0A4L///gMAdOvWTYYpjY2V7qidnZ0NpolePkqHDkBGQ/IbN24AyOgYAMhoNF6wYEGdcbFaK+U2lnAQEREREZHVsISD6CWU01+h1F9ON2zYAACIiYkBANSqVUuGtWjRAkBGSYfSmJhefUqDcGXQMQB49uwZAODWrVsAgCdPnsgwd3d3q6dJfR0oJW9K6cXu3btlWHh4OICMEjd1KYXSaFz5V93YNiwsDIBmCYCynurVqwOwbCNyU6/r5ORkAMC5c+cAAAEBATJM+dKtdNbQtGlTGaYMvmnM+vjF++Wl7u5W6W5c6chhz549MkwpXdZXwkGU21jCQUREREREVsMSDqKXiClfGy1Rn1zpWvPYsWNy2ubNmwFkfMGeMGGCDFO+fvOr6OurUKFC8nfx4sUBZLR/UEq9gIwuO3OqlOvSpUsAMkrgtm3bJsOUc1oZ/E7dDWxmZ8+elb9HjBgBAAgMDJTTlIH0lP2gtIPIDlOulxcvXsjfSlqVNirqATeVUpwPP/wQAJA/f36rpYlyX8OGDQEAcXFxADQHelTOd2UebXi8KbexhIOIiIiIiKyGGQ4iIiIiIrIaVqkiekVYqmtNdZUSpXqKepTit956CwDQsmVLAJojh7NY/tWmrSvUzMdU6UYWyDgHlNHmd+3aJcOURubGVKkyZr3ahISEyN/bt28HkHGuKl3aAkD//v0BZHQdqo+6ytjIkSMBAIsXL5bTjhw5AgCIjY0FYJkqVcZQqnIFBwfLaUoj8bt37wIAhg8fLsPq1KkDQH931OwK9dWmPm7KaOK+vr4ANLuFVjoQePToEQDNDh2UUeeJchvPRCIiIiIishqWcBC9Ykz9Wql8CTtz5gwA4MCBAzLs5s2bAIBKlSrJaUrXt8Z8LabXj7ob2ObNmwMAbt++DUCzJEwZBNDUEgBjzt+HDx8CyOjAAMho2F2+fHkAQLt27WSY+vwF9A/W5+TklGU5Dw8POe3kyZMAMkocrO3OnTsAMjpuUJfqKA3Ia9euDUCz61tTG4nTq0NfyZRSQqfuvlppSK4MBujv7y/DXFxcrJZOIlOwhIOIiIiIiKyGJRxErwhz62ErX0537twJIOMrGAC0adMGAPDBBx/IacoAafT60XYOZf6aqi4BqFy5MoCMdgJK17RARumYMlCevrrixp67jx8/BpAxuN+OHTtkmFIS8MMPPwDIaMNg6vpSU1Plb6X0T10iorRhsbe33uNRnQZlAMP9+/cDyOiCGADeeecdAECXLl3MWg/bbrya9B03pWSrdevWcpoyMKRSeq1ctwBLOOjlwRIOIiIiIiKyGmY4iIiIiIjIaliliug1olRJWb9+vZymNIJViumHDh0qw5RqKZasRsWuOF8txhwnpWvkChUqyGnXrl0DAJw4cQIAUKVKFRlmblecSjUtpfqfujqI0oBdaeit7r7XFOqRvJXGtkp3ogDw7NkzAJrVnixF6ZJa6Y4ayKgqpjS+b9y4sQyrWrWqxdOgD6/dl5+Pjw8AzSpVERERAICYmBgAwKBBg3I+YUQGsISDiIiIiIishiUcRK+BBw8eAACOHj0KAAgLC5NhSuNXpTSjU6dOMszBwSGnkkivMKWL5GbNmslpSkNVpRtddQmHue7duwcg44utepA+pYSjQIEC2VpHcnKy/H3lyhUAmg21lUa5zs7O2VqPuoREKQ1SGvVGR0fLsHLlygEAmjRpAkCz61sFSx5IoXTqoC5tVAb6U7qTVgYCBDIGDOQAgJTbeAYSEREREZHVsISD6BWl/oI6Z84cABld3tasWVOGtWzZEgBQq1YtANbv9pZfYV8/ymB76vYPX3zxBQDg6dOnAID3338/2+tJSEgAAMTGxmqsF8goZdH3pVbdva0i8/morAPI6DJaXdLXsGFDANpLUjLHr+9cVwZLBIBff/0VAJCYmAgAaNu2rQxTSjRKlSqlM66cuqZ47b689JVyVatWDUBGSXd4eLgMU0oga9SoYeUUEunHEg4iIiIiIrIaZjiIiIiIiMhqWKWK6BWjNDjdvn27nKZU36hevTqAjGpUQMaos9qqUrExKhlzDijd0/r6+sppSkNVpUqVehRypYtXU6vvKefx9evXAWRUBwEyuubVF6cxI4yfOnVKTgsKCgKgWXWrVatWADJGVzd2Pcp+DAwM1IgbyNiO2rVrA8hoIA5o7lNdcVry+uQ1//pRqtAq3aKHhITIMOU61ValiucC5SSWcBARERERkdWwhIPoJZaUlCR/Kw1plS+o6hKOt956CwDQuXNnAJpdJurDL1tkCuVrKZDRDa5SGqF0yQwAjo6OADJKJbRRvq6qz/H4+HgAGaUm6tIMpZTF3HNWGaDw4MGDcpqS9hYtWshpSqNxNze3LHFkXreSXiCjhCcgIABAxiBsADBy5EgAGd0Ke3l5ZYlbW4N3S7Fm3JQz9J33yv1e6RZ31apVMqxkyZJmxUlkaSzhICIiIiIiq2EJB9FLSOl+9OTJk3La9OnTAWQM/DR27FgZptTPLVq0aM4kkF4bpnzlVHdJ26hRIwDAkSNHAAD79u2TYcWLFwegv4RDWa96gL3ChQtr/KsepO/+/fsAAG9vb/xfe/cdKFV17/3/faNIkyK9994ElCZKkSKIIvrTYMFoDDzGNE3PjfFRbzRek/u7JiYx1kRNjKhErwhGioJIb1EUkSaIdBCQJohynz8237XWDMMwc87sYc45n9c/Z9hrZs8+h5nZs9e3LMi+PmTixIkAvPLKK25br169gMSairp16550XxbZCH/nP/7xjwB06NABgF/84hduzOqoUkU2jP094ohGaCa7dLMaIXu/WTQQYPfu3YBf5DI8R2jhV8knRThERERERCQ2uuAQEREREZHYKKVKpIBYsay1NZw3b54bs1SqHj16AL4AFaB69ep5OkIpy8I0pp49ewK+8DpMVQpfm9mwdCZrU7t582Y3tmTJEgA6d+580v2sWbPG3Z48eTLg059q1KjhxsaMGQP49LBUrJ0uwMaNGwGYPXs24FtUg29va7+7FZ8DnH560U61SoWSbNhr+9xzz3XbbHX7N998E4Bhw4a5sUzSB0VyRREOERERERGJjSIcIqeYRTXAt+58+eWXAV/oB/DTn/4U8IWu1npUJF/CGfdatWoB0KhRI8C3bQbYtGkTAIcOHQJ8dC55H8nq1KkD+OhJGOGzhfRGjBiRcF+AI0eOAPDZZ58B8OKLL7oxe99YY4Ubb7zRjVmEIyyyTWa/C/iWuhMmTAASFwe85557gOI3blBUQ4rKXsfDhw9326ZNmwbAlClTgMQFABXhkHxShENERERERGKjCIdIjKzFZapZS4tehAuRvfHGG4DPB7/yyivdWJcuXQBFNqSwNGjQAIAhQ4a4bdaK0xapvPDCC91YumhCy5YtAfj6178OJC4KaPsaNWoUkFhPcvToUQD27t0L+KgLwC9/+UvA57XbgoUnO5aFCxcCPvcd4P333wf873r++ee7MWvlm63kNriKcEhRWXtci4KDrwd8++23Adi2bVvej0sEFOEQEREREZEY6YJDRERERERio5QqkRhZeoQVtQJs2LABgDlz5gCJrTVt5dfevXsDMGDAgHwcpkiRWSqRFXODT3+aPn064F/PcHwaU5hSZMXlbdq0AWDw4MFubM+ePYBPDTlw4IAbs7az1gK0VatWbuzmm28G/ArlqYT7WrVqFQCzZs0CfNtf8AXhQ4cOBaB169Yn3KdIvtn5pkqVKm6bFYZbCmLYBOGTTz4BfDtdpfNJnBThEBERERGR2CjCIZIkuYgTMpv5CR+XfP/Vq1e72+PHj0/YFs7G3nbbbUBi0atIIbP2tGEB9cSJEwF49913Adi/f78bq1mzZsLj0723wghHv379gMSF+E7EIoUAFSpUOOn9LdoIvuWtRSXteQGuueaajPcZSlcYrlllKYp055tQ8+bNAb8QZdhqffHixYB/n4WNGDJ5br12JRuKcIiIiIiISGwU4RBJUtRZm/Bx1qbTFl1asmSJG7PZXqvP6NGjhxtTZENKmq98JZq3qlevnttmrXI3btwI+LoI8IvlVa1a9bh9Jc+chi2gc9UOeufOne62LbAZHp/ls59zzjlA4vszObKR6SxzcWeCNaMsyTJ9LbRt2xbwramff/55N2Ztpy+66KKM9pUq+i+SKUU4REREREQkNrrgEBERERGR2CilSiRHDh065G6vXLkSgClTpgCwb98+N2YpGpdddhng2xaGilq4LnKqWGoVQMeOHQHfdnPp0qVurFq1agD07NkzL8dl7yVb/dxWXgaYPHky4FPAAIYPHw7AoEGDgPQF4nG/J5XCIsXVuHFjwL/fHnnkETf2/vvvA/Dpp58C/r15IvZ61+tSikIRDhERERERiY0iHCI58tJLL7nbVozasmVLwBfsAfTt2xfwxbOpKJohJZkVXFtkz5onANSqVQtIHeGI43VvkceHHnoI8AsHgn9fhgsTWnQm29a3cdDnQNmSrn1ycdnCl1ZEDrBr1y4AFi1aBEC3bt3cWHL76riOS8oORThERERERCQ2inCIFNGWLVsAeP311wFYtmyZG6tfvz7gF1sKW2smRzYyba0pUlK0adMGgO3btwPw9NNPu7F169YB8PnnnwO5a3cLvh215aYDvPnmmwnH0qlTJzdmi/q1a9fObUs+Hr0/Jd/ieJ1VrFgRSIxi2MKcc+fOBXwUBNJHOESKQhEOERERERGJjS44REREREQkNkqpkjIvk0I9S9XYu3ev27ZgwQIAHnvsMSAxbeqmm24CfIFeurQRpWlIaWOv9yZNmgBw5plnujErVF29ejXgGytA0Qu1LT1r06ZNAEydOtWNTZgwAYAxY8YAcOWVV7oxSyGJc5VwkUzl47UWnqf27NkDwKxZswDo2rWrGzv77LNjPxYpWxThEBERERGR2CjCIXJMutmljz/+GEhcNGnt2rUAXHvttQD06tXLjbVu3RrIbUFsOnG2UxQpqipVqgC+eQL4RcZmz54NJBan1qtXL+Hx6Qq2Dx486G6/8847ADzzzDMAfPHFF27s1ltvBXwb3jp16hTlVxEpMVK9b0477TQgsWjcooyPPvooAOvXr8/TEUpZpAiHiIiIiIjERhEOKfOSZ05toTCAlStXAjBv3jzA54gDNGrUCIDhw4cDPl9dRCJWuzFkyBC3beLEiYCvszj//PPdWHKEI1Wkbvfu3QAsWbLEbbN6qgMHDgDQvXt3NzZixIiEYxEpSyzakeq91LBhQ8AvxmmtowFWrFgBQKtWrdy2cuXKxXacUvopwiEiIiIiIrHRBYeIiIiIiMRGKVUix3z55ZcALF++3G2z9A9brfiWW25xY6NGjQIKI8ysInEpRJUrVwagf//+btu0adMAeOuttwDYtm2bG+vYseMJ97V//37AF5tPmjTJjW3ZsgWAH/3oR0BikboVy+ZLcgMH0PtT8ivT11vdunUBuPTSSwHYsWOHG5s+fToADRo0cNuqVauWq0OUMkgRDhERERERiY0iHFImpCuc27lzJwDz588HYObMmW7MFvwbN24cABdccIEbK1++fCzHKlKaNWvWDIAWLVoAvr00QOfOnQG/IN+qVavcmEUZly1bBviCV/DRRlu47PTTT92pTdEMKSmsScPgwYMBePjhh93YjBkzALjqqqvcNkU4pDgU4RARERERkdjkbRooVV5rKpodkjgkv6727NnjbltLzTlz5gCJrQEtonHdddfFfIQiZUPbtm0BGDBgAOAXHwOfN241H3PnznVjixYtAvximv369XNjti8RyZy1iu7SpQuQGBncsGEDkFhjldy2WiQbinCIiIiIiEhsdMEhIiIiIiKxiT2lylKprOXoyXzlK19J+CmSS5ZK9dBDD7ltltJhq63eeuutbsxCzSKSG+3atQN8m9snn3zSjVnalLXMDRszWEG5tfBs0qRJ7McqUhZUrFgRgNatW7ttlkr13nvvuW3Vq1cHoGnTpvk7OCk19K1eRERERERik7ei8TBiYa1GTVjQq6JxicO//vUvwBehhoVwLVu2BKBHjx5AYlSjEBb1EylNrOVthw4dgMT34gcffAD4GdRu3bq5sd69ewO+ra6I5Fb37t3d7b179wKJjRuqVKkCKMIhRaMIh4iIiIiIxCb2CIdFLMLIhdV12M/TTjst7sOQMmjXrl3u9j/+8Q/ARzqGDh3qxi666CLA55aLSHzsc//gwYMAHDlyxI1VqlQJ8FEMa48L0KZNmzwdoUjZFEY49u3bB8BvfvMbt80W2xw5cmR+D0xKBUU4REREREQkNrrgEBERERGR2OStaFwkX2bPng3AI4884rZZy1tbMfy8885zY40aNcrj0YmUPZZGBfDcc88B8MwzzwA+TQN8KtXmzZsBX7gqIvGrUaOGu92iRQsAvvjiC7dt69atAOzcufO4+2spAzkZvUJERERERCQ2BRHhCGe/ktvihmOZsMdn+7hU+0h3DLYtFy19sznWfDxHcZ4nW+mOy8bSzZyEM6BWEG6Lhh0+fNiNWavbAQMGANCgQYOcHW+2r7l091dbaClNLFIxb948t80W97MWm9a0AWD79u0ATJ48OeHxIpJflhUQNmuwBg+LFy8GoFevXm7srLPOyuPRSUmkCIeIiIiIiMSmICIc6YSLBKabQbaZYWuxG943eaHBVNK15k23r3BGuqjtfW2f2fx+RX2OTJ/Hogpxz7hn8ruH7LgOHDgAwHvvvefGHnjgAQAqV64MwA9/+EM31rZtWwCqVq0KJOal2j4zyUFN9VrK5DUX7tv+pun2JVKS7dixA/DRxv/+7/92YxdccAHg222GNRwTJkwAYP369QBs2LDBjdl79vTTC/60JVLi2Xl02LBhbtvSpUsBmDp1KuAXzQUf4UiV/SECinCIiIiIiEiMdMEhIiIiIiKxKfjYdJiKkpx+E4bsktNhUqXHpEphSZc6lEnKS6o0mlSrqyffP9x3uvsn+/LLLzM69uTnyba43R6XKhWoqLL93e25w/tv2rQJ8CHduXPnurGuXbsC0KNHDwA6dOjgxqxANfl5w/3b3zbdaydV6pc9LtXr0R6XKqUt1e+cfAwKS0uhs1SnFStWuG2TJk0CYO3atQBcc801buz8888HElOpjDVzsCYPlpoFvlC1W7duAJQvXz43v4CIHMfOmYMGDXLb3n33XcC/v0ePHn3c43TOkhNRhENERERERGJT8BGOVLPGqWaU011Vp5pFTy6ODqWLDiTfP1WEI5OoSfi4TGazU0UH0s2U21iq1rKZzEDYrGX4fMUtaE4+pvC4Uh2TteDbuHGj27Zw4ULAF6999tlnbsyK26xVXyaviVC6aFC27XuTHxc+Pl2733RRPJFCcujQIQA++OADwBeIA7z//vsA1KxZE4AxY8a4MWu3mUq9evUAGDx4MAArV650YzNmzACgY8eOgCIcInGy8339+vXdNnvvWjv68NxsmQVaAFBORK8MERERERGJTcFHOIoqVSSgqPUI4ex02E71RDKZWS/OwoRxyvdxpZvJX716NeBnNgHeeOMNAHr37g3Aj3/8YzeWbub0RM8bShcJs1acYQ2N7cNmgjKNqKSrAxIpKex9ae9Ja2ULcPnllwMwYsQI4PgaqhOxug6LcIRRk1WrVgFw8803F+OoRaSo2rdvD8DAgQOBxLotO//269cPUHRejqcIh4iIiIiIxEYXHCIiIiIiEpsSmVKVrtA7XQF1UWXbUlbSS1WEHxZ/W2H4/PnzAdi2bZsbs5aa/fv3B6BJkybH7T9V8Xe6YyiqTNoZq/hbSgN7D86ZM8dts8YN9h629Cnwq4lXq1bthPtM9d6wQvAWLVoAvug8PIY1a9YAvg02wBlnnJHNryMiRdCmTRvAn4dnzZrlxsqVKwf4c3NI50EBRThERERERCRGJSrCkTyjHBbw2qy2FffG8byglm/FYX/HVAX9y5cvd9smT54MwObNmwE/qwJw4403AnDWWWcdt//w9VCU48qk9a1IWWJNMizaOHHiRDd25plnAjBgwAAArrzyyqz2nW62s0KFCkDi4p3WitMiK/b8yfcTkXg0btwYgO7duwMwYcIEN2YF5IcPHwbUtlqOp2/PIiIiIiISm9giHMmL85XWyEC2C/+dqpny8HkzyaOMI+cyVSTh0UcfBeDtt9922yzv+6qrrgL8gkIA1atXP+H+48wTVe6plBVbt251tx988EEAtm/fDkDbtm3dmLXG7NSpU2zHcvbZZ7vbn376KQALFiwAoG7dum5MEQ6Rosv03FmxYkUAmjVrBiTWaO3fvx/wi3WGmQkWsZSyrXReBYiIiIiISEHQBYeIiIiIiMQmtpQqC9FlsqJzUdNVMk1ZKur+07XfTfd8mewzVeF0qn8npyFl2qI3+W+bKvUrleRV2TNp+Zrqcals2LAB8AWo4IvFw5CrpVCdd955ANSuXfuE+wwlP3f4e2byGsgkFS7V/3dyKl0qqf5Wmfxts02FE8mWvX7tvThv3jw3tmXLFsAXi1q7W/CFo3G2pO3cubO7vWPHDgBeffVVwK96LCL5VbVqVSCxNfWHH34IwOzZswGoVKmSG2vVqlX+Dk4KliIcIiIiIiISm9giHMkz6+Fss80EF7eQPHy8PY8Vq4djp512Wlb7TY4OhMee3Ho1nHXO5Hns/uF9bZ/pIg+pHpfN86RqIZzucZlEOELJi+2Fj7PWmq+99hoAzzzzjBsbNGgQAEOHDnXb0s2cJkcYUrUsTn4tnEy612Mm+0r190z++4XHbftK939p+wwfZ/dXpEOKy96T4BfUs/eltZ0FuO666wDo168fAM2bN8/XIQJQo0YNd9uKUK097scff+zGrKjdFgrM9jNfpCzL9pxi57fBgwe7bdOnTwdg6tSpQGJUI84IRy6zWiReinCIiIiIiEhsYotwJM82h/LRtjSX7WfTLfyXi98l3d8qV8+TKhqU7nkyeb7wPskLLq5fv97dtta3NjMZLhDWt29fILHdZnJkI9s6hmxbMeeqviPVWLbvA5uZzbZmRyQTyQv5ATz33HOAr6O6/vrr3dj5558PQJMmTfJ1iCdki33aMYVmzZoFwIUXXggkRkZEJLfsPBW2rX7//fcTfm7atCkvx5LtOVlOHUU4REREREQkNrrgEBERERGR2MReNJ6vkFZyCC2OFbJzvd/kfcb5t4r7d/j8888BWLt2LZDYWtPabVq72yuuuMKNNWzY8IT7LG5aXC5Wt8/k/yab9sS5eD6RbNkq3e+++y4Ac+bMcWPW+nbkyJEAXHbZZW7M2l8WgipVqgAwbNgwwKdRAUybNg3wbTqVUiUSHzs/he3s69Wrl7DNGjkAbN26FfAt7vPV1EGpVYVFEQ4REREREYlNbBGOfEi1eF627VwLXbo2sKfakSNH3G1b9OfBBx8E4IMPPnBj3//+9wHo1asXkPlCfoX0u4oUonQNFfbs2eNuL1q0CIA///nPQGJjhp/85CeAb9xQSFGNkB2XteidO3euG7OIzTe+8Y38H5iI0KBBAwAGDBgAwK5du9zYW2+9BcCIESOAxEUB46DvDoVJEQ4REREREYlNwUc40i1Sl2qstF3ZZvP7ZNs+tqh27twJ+FlTgBkzZgBQsWJFAK6++mo31rNnTwDq1q0b2zGJlAWZ1KpZHZXNKgIsXrwYgBYtWgBw7rnnurFOnToB8c86FpdFr21xP8sZByhfvjwAH330EeAXCQSoXr16no5QpOxq1KgRABdffDEAzz77rBt79dVXAbjooovyf2BSMBThEBERERGR2OiCQ0REREREYlPwKVVhmlCcK3GXNnG0g7OVwi09Y+bMmW7M2m2OGzcOSGx9KyJFl2mqpK3sa+1iw9bU+/btA+BrX/sa4NMcS7LWrVu72126dAF8s4qwMYUVsYpIfCzVsW/fvgA89dRTbmzlypUA7N69GyjcxhQSL0U4REREREQkNgUf4cjF4m0lWTZtcYsazUg3g2qzpuAX13rzzTcBP6MBcO+99wKJxZoiEq+wNezkyZMB/57t3r27G7PF/Kx1ZSEobhTWohrgo68vvvjicfdThEMkf2yBzpYtW7ptFtlYtmwZ4JvLANSpUyePRyenUtn+Ni8iIiIiIrHSBYeIiIiIiMSm4FOqVAwev1R/4/feew+ABQsWuG0rVqwAfL9tWzkcEtM3RCR3wvfnZ599BsCSJUsAv8I2+LSizp07A3DBBRe4saZNm8Z+nPnWpEkTd7tr164APPHEEwCsWbPGjVnBvKV6iEj8UqU82veJatWquTGlVJUdinCIiIiIiEhsCj7CUdblO8Kzbds2wK8S+uGHH7oxmyW94YYbAGjVqlVej02krLPI48MPPwxA5cqV3ZhFNEaOHAlk3noyjhbamSju84UNRSzqWqNGDcBHggBWr14NQLt27YDMV1RP1YZdEXeRzIRZDxbhmDBhAuDfrwD9+vXL74HJKaMIh4iIiIiIxEYRDmHSpEnu9uuvvw7AaaedBsDgwYPdWJ8+fQBo1qxZrMdzqmZcRQqJvQ8ee+wxt80W3WzRogWQuIBfjx49gOwX1crmfZbpIoT5Vr58eQDOO+88ANauXevGZsyYAcCZZ54JZN66u5B+P5GSwj4jwgyIrVu3Jvxct26dGztw4ACQGK2N65hA7+tTSREOERERERGJjS44REREREQkNkqpKoOsgGv58uVAYmtNC3kOHToUSFylt3nz5gn7UZhSJPe2bNkC+FV5LY0K4OjRo4AvELc0KoDq1asn7KcsvT9PPz06ldnn1cGDB93Y9OnTAd86N9OUKhHJXKomC6Zhw4YA1K9fH/CtqsE3wujUqRMQb2qVnFqKcIiIiIiISGwU4SiDbNGw+++/H4D27du7sXHjxgG+pV3yrGkorlnT0j4bK5Jsz5497ra1jnz66acBuOqqq9zYpZdeCviicSuWTiWO91GhvjctwnHOOecAsHTpUjc2f/58ADZu3Jj/AxMpI9J9NljDhuHDhwOJ7fanTp0KQIMGDYB4IhyF+rlV1ijCISIiIiIisVGEo5TbuXMnAP/zP//jtv385z8HoG/fvgBcdNFFbiyTyEa+rf3ble72iHuifM/r//wBALefl+le1gMw/tphANy1NM1dM3X9nwH4IIODOLLd5+E/f8/tAPxy6kcAVOtwhRv73s9vA+Cr59YBoFwODlPyJ5PF4sL7rFmzBoDnn3/ebdu8eTMAl19+OZDYmrp169aAn9GXSPLfuHHjxu62RXDt77pq1So3ZpEi/T3FObLd3Vw+KVoA9zcP/wmA+R8F96vWAYArxn0PgHFjBrih5hUyeaK5ANzb7ia35a/ZH22C7ne9BsDfr26W0f3tvJR8TgJ/XrJzEhT9vFSlShUA+vfvD8D69evd2MyZMwEYNWoUkPjeldJFEQ4REREREYmNLjhERERERCQ2iiOXItYyE3xrzXfeeQfwhagAO3bsAHya1e7du92YtZAsCGv/AsC4sf9wm1Yejn7uPJztzr4EYP+GldF+Wt3vRqZ8r2vRjq9O05PfZ1N07GO6/dRtqvnbaNtrP68LwKEPfDrNnVecC8Dip94G4IGBNYp2bJJXyalUqYoUP//8cyBxlV0raJ47d67bZoXP3/rWt4DCSm8sKcK0DEsZ3bZtG+BXHgdo1KgRoJQqAXZFr4uf9BzuNj24tzcA/+dX/xn9u0klN3ZwwyQA7v/BQADu+4/b3Ngbbz8AQPqP7+gktnPlSr/pW1GjiAcvq5v98QOVm2dwvtjkz6d2Xko+J4E/L9k5CYp+XqpQIcox69ixIwBVq1Z1Y9bMwVryd+7cOat9S8mhCIeIiIiIiMTm3/433WotkheZzI5mwgpQwUcvbDbv4osvdmN160azGP/5n9GsjbXJBbj66qsBePbZZ4t0DLmxCYDnLm8JwI8/9UXZlY79PsPfiP5mDwzMdJ+zAPhJhahobe4f/N9q9tiWxTnYtBbeHRXZ3dXqX27bq9c1POH9j/wr+j/p/MPo/+i1N77uxprFcHxSdJkUiIOPbCxcuBBIjDZa8eQ3vvENt61Xr14A1KpVC4CvfEXzQtkK2wy//fbbADzyyCNAYjTjT3+KioGtbaeURWsB+MuF0ez7LfzWjSx99ZsAdEhXBL5rGgDfbjfUbXpi5KsAbH88ipZUPf5RsD6K4F/Y3BeNn531eS17dk4Cf17K5JwEx5+XmhXxGP76V18e/8ILLwA+EhkuNmwRESkddCYTEREREZHYKHG1gGQb2di/fz8AK1asABJzkzdtiqIE554b5V/269fPjVmOpM0k9OnTx42NHz8e8C1zv/Od72R1TLmwa9K/A3DDnGjW95Up3dzY3d1npHzMyUU1HEeyrv0onkMH9gLQvE6dk9wzUq5qNKtd6/PoeL+M57Akx5Lfu1YvAPCvf0WziFanEUZGrE3keef5KF7NmjVjO86yIqx76dAhal9arlzUzNPq28C3ym3Tpk3+Dk4Kyt4ZfwDgpzOi18A97/hoY9rIhqkxBID/f+1et+m3x9rApm0f+2X06f555oeaE3ZOgszOS3ZOgtydl+w9Cf6zb9myZUDiYqbJEY7ws1OL+ZU8inCIiIiIiEhsdMEhIiIiIiKxUUpVAShqaPC996JVt19//XUgsbWmpVB973vRKqgVK1Y87vGWuvH3v//dbevZsycA9957LwBjx451Y9baLhbHCu8A7rgpasf31T9H6Q5Dqr7oxu7O0dO1qFc7R3tKr+vwWwAY88vfuW1jz/kRAN2ss2Cwsu20P/wHABuGRIXFTfJwjFI06QrEZ8+e7ba9+eabgE+zGj16tBu74oorkHjVOZY20qRJ9G4K24C/++67QGLReIMGDfJ4dHJqHHG3lkyMGgfs6BulVl3eJdt1tCMVjqVRZa+tu9UwD9mUdk4Cf1467pwE7rxk5yTI3XmpXbt27vahQ4ei55k27bj73XRTVFCvxhmlg/4XRUREREQkNopwlBAHDhwA4OWXX3bbrJ3tF198AcAtt/iZi+7duwOpIxvGZmh79Ojhto0aNQrwbXUffvhhN3bbbbcV8ejT2QXAtDuuc1ue6PsUAGsvOTbdsjYHT7M22smiY//sUTllo8KcqzrwPgBe2+wLEUc2O1ao1yD6/Q4dK1wFqP71KNo05+dRpKloc22Sb6tXrwZ8y1tbzAp8G2prOa1Wj6eGfc4dOeJnt+fMmQMkFpkrwlEW+Dbls56JOom0/Un0mRtfk/QkG5YDMAdflH1j5fif1s5J4M9Lyeck8OclOydBducli1wAPPnkkwBMmTIFgJkzZ7oxa2F9xhlnAPDpp5+6MWvq0LBh1LZXheIlmyIcIiIiIiISG0U4CtzWrVsBH80IF+k7evQoAGeffTYAQ4f6hYdstiBbt99+O+AjHGFEJY4Ix95Z0aJC33iik9v2p+VRjvuJlyIqjqjlXrkvfFThnZeihYce/Ws0k/P6+36GhWpR+74rxkW1MOPGDHBDzTMqaYnu1OG6Z9yWNV/dB8COT6KoFZV94m7tKoppFLovj7WzXLvWh95mzYoWlrRIh83IAfTu3RtIbH2bLNNFBCV79re1qG9Yw/HUU1E0tXXr1m7boEGD8nh0ckrs9XVza3dEP9s3jiKRHFrnxmb+LTonPPlCtFDd/I/8Lqp1iF4n1/6f2wC4aZB/DWX3MR6cqw9Hnx8zH38+4XkTnrtp9Hlyyzd/7MauuSSKmtbJ6Hn9icvOS8edk8CdlzI9J1mmxR/+ENXC3H///W7MvseYsGaqadOmgI9m1K7t6yutpbh9n6mTYXt5KUyKcIiIiIiISGx0wSEiIiIiIrFRSlUBCosa//rXKKS6aFFU7hyuiHvxxRcD6VM1smUrk9erVw+A+fPnuzErAit2e9y9s9zNe8b8BoDq97zjto2Jo2rvyyjca3/ZBy/1KS8PNroEgB/8LFrh/MFvVnJjO1dEIfXf/2AgAPf9x1fd2PjpfwNgdJss06DKRe0Ta9crahtFKY7k9KVsU5dsperf//73bpsVOlo76jAtp3nz5ifdp9Kn4mN/28aNGwPQsqX/gLE0jg0bNrhtOfuck8K1w6f4fHjs59m7ZwIwus0NbmzJ2T8A4Ge3PAjAtZV2urEVf4/e/3cMj87Jd1z0Zze2+JWvA5Du1HDkC1tj3Lez/073aF9ndIuO4ZfffdCNXVvrIAAbZj4BwH9e49OQf9rhLgBmTL8TgD5he9tMFPGctHOn/3tcddVVgC8IP/10//XyxhtvBODmm28G/PcM8KlYkyZNAvx3HfCtcu37iFKqSjZFOEREREREJDaKcOSJzaqmm8m0hfxefNEvdLdrV9Q21mYELrjgAjfWqVMnTiST50tnwIABAIwfP95ts2iHjWUvii8sfGCM2/Ib7gJgwa1d3LZYyqY3rYyem6gFYuPL/O81/W9RkXrK2ahjhfjXXh/NOH2/64Vu6Oor+wLQeVlUUN4ht0csOVTUouzwcVOnTgVgxowZQOIMeLdu3QAf4bBF5qTwhEWp9hkatvC0GVb7Pw0LXKX0euiW6DN+4GPL3LYVY6OIQ+pTw7UAXP/NOwAY0OcmNzb4V1ER99o7T9xGdsNH7xy3rcO/R9GO6Xf2ASBloGLoKABuuPFxt+miLuOiYz/W2nf748PdWBwN4FesWAHAyJEj3bY1a9YA0LVrVwBeeOEFN9aqVasT7ssW9bPPzk2bNrmxJ554ImEsbOEvJY8iHCIiIiIiEhtFOPIkeTb1888/d7ctJ9xyH20xKoAhQ4YAvl6jQ4fM5tGLmxPet280ex9GOD744AOg6BGOI8t+B8DYu/y2H7/5fQB6xt0Nts//BWDLlp8DULmmn+XMqOtfjaiG4+5H/AJ+f7r4HgBeWBhFOI5NZkkBKWpkY+/evQCsWrXKbbP3p83uXXvttW6sf//+gM81lsJVo4afN7ZW4u+//77bZpGsFi1aAIpwlBnDo9n0v471dZIZnRp6R+eWR25/xG07775nAZh9bKG8gSl21GT0SwBsucR/Date7ywgbFx7YuXajHW3//DrqNaj462PAvDPe32EY3TdDHaWIWtva5ENi2qAXzTY6k4zfd9YhMPqM8KW4lYbZ1EPWwAZoFKlqNZS9W8lhyIcIiIiIiISG11wiIiIiIhIbJRSdYp89JFfsvQXv/gFAKeddhoA3/nOd9yYFWA1aNAgfwdH6nBo8mqhGTsSpaU88a1oZdSt35rqhn7WL46SthQqRKHq4ma8VO0+xN0eThSCn7YsWnH6zp5x9POV4sg23G7Fw/PmzQPgwQd9W8q2bdsC8OMfR6/j9u3bu7GaNf1q8VLYwpSqESNGAPDuu++6bRMnTgTgmmuuARJTPKT06jkyKkjO/n87ypc6t/9VftO9UfH3ymOLlg9sk/wYKFclSuvNRXf0Dr3/PwBqH2vCMt9nCGaVUpUqBTVMY7r88ssBn0p15ZVXurGwSLw4wvebparu2BEtBz979mw3Zqnd5cuXz8nzSvwU4RARERERkdgowpEnNktgV+jhlfpZZ0Wz7927dwegT58+bqxWrVr5OsQEzZo1O25b2K7u5PzihaueiNoF3rL4egBemeijBNmuT3TK1fULDzU79nPHKTkQyRVb/A1g+vTpACxbFrXGbNeunRuzGbVzzjkHgIoVK+bpCCWXwgXJGjVqBCS2yrWFVy0K3bp1azdWrlzc3S0kL2r7UHeLYz8/PP20Yu2y3OlnBP9aCMBKO2WmiHDkVM2GOXmaMCJs0Y7vfve7bpu1xj///PMBXyCeS7ZAJ8DgwYMBePPNNwF444033Fi4RICUDIpwiIiIiIhIbGKLcNhy9ck/TyZ5wbowP89mpvLdBq24rTXBt5R96aWoFV7YhvGee6L2qjZrYG3iCk2m/4eRee7W47cda/N7xnoAfnSenzX+UUZPvMvdXH/s57Lro338Myw1uf7PAHxw+3lZHGeW9vp81k/iexbJA4tsLFiwwG17+eWXAf+5c++997qx5s2b5/HoJJ/CKEbHjtGibfaZXbeuT4K3KLSUcFX9wpxdotIs/rp8w7EtuajFi9rhts1X+c+BPQDszOEup0yZAsCTTz7ptllE8JVXXgESFz/NlbC1uH0nmjRpEgAbNmxwY/v37wd8e9x8C78PJX/PDb8zZvN9NdXjwqiq3S7U74gnUzKPWkRERERESgRdcIiIiIiISGxymlIVrp5tRdHTpk0DfNEP+AJqCwt9+eWXbuyzzz4DfBGftYwFv+p2HIV76dKmUoXEklO/Qh9//DGQ+Dtbq8U2baKyrl/96ldurEuXLkDJDZOl5sPS106MQrODi7qrbS+7m9/72kMAtPpe1K70e12D+9VpmvxAd2vWH34KwL0fRatDv/CboW4sm8a8R5bPd7dfI3qNfruL2uEWmnTvz6VLlwL+s2nRokVu7MILLwRg0KBBgE8hyMXzSuHq0KGDu23tv9955x0gMWUjOaUql6kTkk++pXXfK481DHj0dQDm/XqgG+uTxVeNZUv+6f9RPlrpu23KLMzlAEz49h0AjO96jxuZMK5Dqgec1KZ3o2LqlYwC4O6i7calKQHccsstx43//ve/B6B69epFe4IMpGrqUL9+fQD27Nnjxiwt3dK6qlY98Zk8l+83S5uaO3eu22bNRqyo3VZIB7/cwdGjR096fOFx2u91ww03uG2XXHIJUHLTe0vTN1wRERERESkwsRWNn3FG1CLOoh7hQnd2pWeLZYWLzNksvz1u5syZbswiG+edFxUFV65cOY5Dz4hdJVsLRfC/45w5UZF0uJiUtb61Iij7WXr5armuQ4tZObfWF4pZk+DWPaIIxdCBKe7v+GLPWkejWe2p/xUtWPT8N32EY2xGAYqov+GLv/4vt2VH52hm6vJumTxe8snenzZjt2LFCjf21ltvAbBx40YAWrRo4cYswhG2w5XSr1WrVu62NfuwQtVw5tRmN09VAxPJFR+66HNtlEXR+d6fAHD7U19zY1PGtkm6dwq7okjpI79e6TbVvuVPAJyT8oFR29fKh18F4B+3+8j8jNEPADAwk7D7kYXu5uP/HkVXyl8fFXMPyWKxv9Bvf/tbd3v9+vVA4uJ+o0aNKtqOi8i+R3bq1AlIjMBYZNren/lu6GDHBv57oBW1h9GMOnWiVvrWRt0iHiH7HNm2zWdlrF69GijGgssFSBEOERERERGJTU4jHOEVn83gWxQjXFipQYMGAHTt2hVInF2yCMfy5VGe4x133OHGLILQsmU0Jd2kiW9tF+b9Jcskr7qoM1U2CwC+5e2SJUuOO767774bSGz5VtI0bZpcI1FydBjzOwBu+69oBnvcwLFurNIrdwJwaYdo5qlKOR+12vdx9H/53I++Gj3unz459rcLbwWgi9YCOyWS665SvYet5e2LL77otlkecL9+/QAYO9a/FlLNPmVDM94lUxhlb9s26pNqUfZwYcgtW7YA0LBhFLUtat2dXicFpENUqzDhsf8BoMs4X204hucBeGBMbwAaVDjkxnZ/MBOA+64dBcBDFW5zY2/cEYXeUwcqoq2Df/IHAAb+bZwbGT4qyoR47aFosb3e7c5yYxU4lPJ5AX5DtLju5PuiHP9sF9Q9dCja9x//+Ee3zb5T3XfffVnuLfd69OgB+PpfgFmzZgH++2S6CEcu32/2d+ndu7fbZt9vbaHmMGres2fUIrlGjeh/JVzqwSIhts/Fixe7sSeeeAKAc889120LF0UsiRThEBERERGR2OiCQ0REREREYhNb0bixUFbYJswKgKwwM0zFMpa+E4a6TarVHDM5hlyaOnUqAAsX+sKtHTt2AL6lZq9evdxYSUulslV2Q3GsKpo3NaIQ968XR4VmHX96oxv6Ztco9e26lA+Mwp+1+/8AgH+u+L9uZFhz5VKdSsnvayv2BXjuuecAWLVqFZBY+GuF4RaqLm4alZQu1oykb9++AHzyySduzNpeFrVtshSi6HO8zdgJAMzjh27k+h/0AaDhuOMfBVUA6HhjlBq16H7fvvTcDHKayrWJUjlfXeFfQ//x9ahgfVj7KM33cMpHJj5v+Nzn1jn586Ziq4mHBco33ngjkJjyfqq0bx+1MbZGHwCPP/44AOvWrSvSPtOl2qf7bpnq/vbdyFKjrJQAfPplqn3v2rUL8IXl4fdE+35sY+H+SypFOEREREREJDaxXy7ZrOPBgwfdNrsaTBXZsOKlTZuiNqTh1V2VKtGVvS3ElK+F8mwxQvCtyqxd786dO92YLR41YsQI4Pgr25Jk5cqVx207Za1Cm4x2N1/aEhXFnV69aLsqVyea1R77l/fctrGP7gNgxydRQdqXwf3LV49mHM4qwcGd0s5micJooy26ae2obUYaYNiwYUAJj9hJbGwW0RaaDVuzW2TbCssV4ShNorBEt7F/cVveGxu1t929dQ+QGHHI1bmhQvNh7vavZm6Pfh7aDcDWPeEzRpHYyjWjAuUqOQyw/+53UVOVcAb99ttvz90TFJMVWofvN2szaxFIa0kLvpA8VUQg08yYZOkyZayY3aLl6c4tYaMhyySxBkphQXnHjh2BxKhHSV9YVhEOERERERGJTU4jHOGVo7WetNaC1soW0s8K2cz6q69Gi+KENRxdunQBoG7daFWbfOVehy01//GPfwDQunVrAC699FI31r9/fyAxX7ykevvtt4/bdsoiHOWquJu161VJc8fi7T+WfUtsvvwyikU9/PDDAMyfP9+NDR4ctba09tw2WwSJs0giySzybu0sly1b5sbGjx8PwFe/+tX8H5icAtFM9Vn5rsGsEEVm435aO8/bTLt9bkJh1G4ks9ay4I/VsmemTJnixmyBwnA5BpNJdCCT+4S1XZYF06xZM8BHWFLZvXu3u20tt61GpX79+m7Mzl2lqcZQEQ4REREREYmNLjhERERERCQ2sRWNWyqVFchMnDjRjVnqQ5s2bQBfDA4+BNatWzfAF4iDL8IuVy7edqRWCP76668DsGbNGjdmxT3JrTWhdBWhWqg1LLoqxBCrlC3W5hZ8i1ILqYfpAJbq2Lx58zwenZQG1ozEUmMt3QH8OWj79qi4N0yPsAYFIiXFU089lfDv0aNHn+CehaFJkybu9tVXXw3As88+C8C0adPc2IABA4DUKVW5Yim9AB9++CHg27Fb6j34om87T1WrVs2N2XfgVA2UUn2fLGrBe6FQhENERERERGITW9H4/v37Afj4448BWLRokRuzVrm2wFK4SMqYMWMAX4DduHFjNxZHG1y7Sg0LgKwNorWKC2e4rFjQiuDDq9xwHyWVtf21on9bpBESF28UiUtYJGeLfNpM8ksvveTGHnvsMcDPyg0cONCN2ey0fdYcOXIkxiOWU62o7SJTPc7OM9Z2M2QNT6zI1trkAvTr1w/wjU4syi9SqJ5//nnAZzLYaxgK6/uMvSfD75gWvbDvmkuXLnVjtoChNffJJTuGcLkEy+Sxz4Mw8ml/WzuXDR061I3Z4qJhJk86JbUdrlGEQ0REREREYvNv/5vDpLBwFvG1114DfIQjjGJYazO7arVF/gAWL14MwI4dOwD47ne/68b69OkTHXQOrvLsWNetWwfAr3/9azdmrQ9tMZewZsRa8lp0Joy6hNGOksquzO3vH7ahq1Wr1ik5Jilbwrohe3/ZgqDbtm1zY/v2RQs22nsxXCApuc7r6NGjGT13us+WdB+VRX2cxKM4/x/2WHvthZFd+1y011dYf2hRNYvQZfqaEzlVLAp3+HC0wGD4ei4kqd7P9j6275h2HgC48847ARg5ciSQWPtRXPY9L6wZWbt2LeDruMLvu/Z5YPWHYeTUlhqwRaPD+o7SSBEOERERERGJjS44REREREQkNjktGre0B/BpUpYeEa7InVwgY6kR4MNjb731FuCL88AXatepUwcoXmqVhcXsZxiOS171MQzBWwjSCoBKW7qEtQQ2TZs2dberV6+e56ORssDex/Zz165dbsyKvi21r0WLFm7MPkfsPRkW6RY1vTH5M6W0vb8lc/Z/HzYusVXqrVA1TCOOu127iHj2WW2re9v3QvDv0/C7Za7YeSYsBTAjRowAUqdG2ffK8DuWpVvF0RCpEJWN31JERERERE6JnEQ4rDjOZn3AFyFlshheWKhkRTRt27YFEq9QN2/eDCReyRaVXVFaoenPfvYzN2ZRGZtVDdt0lsYZT4vWADRo0ADwrR0XLFjgxsJiXpFcSY4qLF++3N22QrvOnTsDvi0p+Fkse3whvDeL2p5V4lPUYv9U97F9bdmyBUiMpNlnp50vCuH1KFKapHq/Jje6Af9dNMxcKS77nmvfSe07Lvj3eqpIRfj9KvmYbMG/svLdShEOERERERGJTU4uq+xqMsxNs3x/axOWaun2VCwn1lrSho/LdHGUTNgVpc3kh/UJ6Wa9SuPMZZh7bG2C33777ePGRPKhTZs27ra1oU5upZ1KIbw3C+EYJFEu/09sXxbNyNfzikhq9h3TvsuBX5QvzE4pLvtOun37diAxM8eiFqm+59oxWKvcMCpqnxGZfj8u6RThEBERERGR2OiCQ0REREREYpOTlCororGibvDF2NZSMFVRjBXhWBoPwIoVKwC/uquFyyC3K11bakZZaUeWKQtLnn/++af4SKSsCtP4tLq9ZELF+iJlW3jeiCMV/ODBg4Bvh1u7dm03ZksopHpe+0zKpIFSaadv2yIiIiIiEpucRDj27NkDJEYqevToASQu1JXMohh/+ctf3LZp06YBPvJgRaPgi25ERNJJbkmqme/SrTT9/4av3dL0e4mUZLYIrX3P7dq1qxtr3rw5oIyZk9FfR0REREREYvNv/1uM1Ym+//3vA/DRRx8l/AR/xWeL9IW5bTZrY63LrM0Y+HaDPXv2BGDIkCHHjYmInCqqF5A4pDoV6zUmkj9WV2zfZZ977jk39tZbbwGwdetWwC9SDTBw4EAALrnkEiBxcWpFPTz9JUREREREJDa64BARERERkdgUq2j80UcfBfxKiuGqjmvWrAESV1U0hw4dAnxB+KWXXurGRo8eDUC/fv2Kc2giUkJYGNtSLO3zAeDw4cNA9qkllp5iK7iGLQkrVqwIZL8KbTGyT6WUOHLkCOALSMPXavKqweFrrlKlSoB/DX3++eduzO6fy1WRRSR7di6ytKnx48e7sXfeeQfwSzXs3LnTjZUvXx7wywmE7dyVUuXpLyEiIiIiIrEpVtH4woULo50cm9kJZyFtt6l2b1eRVkgetru1K0NbgE5ESrddu3YBviX2pEmT3NjcuXMB/5kRSv5sCe9jY926dQNg2LBhbmzkyJEANGrUqNjHLmXLsmXLALj33nsBmDJlihurXLky4F9zF198sRu7/vrrAb942KJFi9xY9+7dATVFETnV7Lyxf/9+IHGphwMHDgD+e2sYkaxatSrg38NhdFONHzxFOEREREREJDbFquGw1rUiIkV1+unRx1CNGjUAn9MOPtfd2gxa/mx4P3u85deDz7G3GrJNmza5sfB+Ismsbmjp0qUA7Nixw43ZLKe9Di06AX7m0xa7DWc2X3vtNcC/9sLX4BdffJHbX0BEisTes1WqVAGgS5cup/JwSh1FOEREREREJDa64BARERERkdgUK6VKRKS4rOBuyJAhgG9bC9CpUyfAtxsMV3e1sLcJW3Bv27YNgAULFgCwefNmNxYW9Ikks1WGH3roIQD27NnjxgYPHgzAz372MwCaNWt2wv2sWLHC3b777rsBn3Zl7d/Bt8wVESnNFOEQEREREZHY5C3CEbawVJswETmRcKEk+6yw1tnJUQ3wbXWtoBegXr16gC/gDfcZFqWLAMybN8/dtla3tphX//793Zi1um3atOlJ92mvQYDevXsDvkC8evXqbsyaHoiIlGaKcIiIiIiISGw0tSIiBcFahYZtQm0xtVQLge7btw+ADz/88LjH1a1bF4D69esDibPIYY2IlG3WdjlciG/OnDkADB8+HICLLrrIjbVu3Trh8eki92Fthi0GeOjQIQCqVavmxsIFxERESitFOEREREREJDa64BARERERkdjkLaWqqIXiYci6uPsSkcJjqVS2onNY4N2kSRPAF9mGrW/XrFkDpE5Tsc8IW6Hcis6T9y9lj71eANavXw/AunXr3DZLs7JC744dO55wX5meiyw10ArRw+YHSqkSKZvs+21Z+U6rM6+IiIiIiMSm4IvGy8qVn0hZd/jwYSCxRemrr74KwNNPPw0kFuLazPCgQYMA3wIXjo9iaBZZjLVRBpg+fToAR48eddsuvPBCILPWt+mEjQpsXzajGTYuUJtmESkLFOEQEREREZHYFHyEQ0RKN6vL2L17NwBr1651Y/Pnz0+4bzgz3LBhQwD69OkDJC6mpjoNOZFPPvnE3Z47dy7ga4UAhgwZAiS+nooijKrVrl27WPsSkdKnrGXw6KwsIiIiIiKx0QWHiIiIiIjERilVIpKx5DbVuQgJ79+/H4Bly5YB0KNHDzd2xRVXAL697UcffeTGFixYAECzZs2AxOLbshaqlszZ6w1g7969QGIKXtWqVQE1GhARySVFOEREREREJDaKcIhIxixykGpBzqI6cOAAAFu2bAGgffv2bmzo0KEJ923cuLG7bQu41apVC0hsQyqSzFrf2kKT4e0wImaRMjUeEBHJHX2iioiIiIhIbDQlKCJZK26NRDjLvG/fPsC3x02373CBNmuLW61aNSAx6mK3bV+q6RB7DYS1GRYVC187X3zxxXHbiiuO2icRkZJEEQ4REREREYmNLjhERERERCQ2SqkSkbwLV3v+9NNPAahfvz4AdevWPeHjLH0KoFOnToBfEdqKyAEWL14M+BWeW7du7cbSFQMr9aVkSk6hS8XGKlWq5LZVqFDhuMdZul8mr5N0z/fZZ5+529u2bUt4vnr16p3wcSIipZEiHCIiIiIiEhtFOEQk78IIx65duwBo1aoVAE2bNj3h48LF/ez2wYMHAVi9erUbW7duXcJ91OJUTI0aNdztzp07A74lM8DkyZMBvwBg8+bNj9tHqsiGFZuvX78e8FENgCpVqgBQsWLF4hy6iEiJpbOwiIiIiIjERhEOEcm7jRs3utubN28GoG3btoBfyC9Ts2bNAuC9995z2xo0aAD4WepUUuXhq2ajZMrm/61OnTru9qWXXgrAXXfd5bb97W9/A6BJkyZAYk1RWP+RbOfOnQC88cYbAHz44YdubNy4ccft60TCOiK9HkWktFCEQ0REREREYqMLDhERERERic2//W8ul1MVkTLPPlLC1cStTe3zzz8PJKY/HT58GPDFuVZgC34l6FRs1fENGzYAULNmTTc2ZswYALp27QokFgpL2Rae8g4cOADA66+/7rZNmzYNgB07dgBQrlw5N2avIysQD19XXbp0AaBy5cpAYjpft27dADjzzDNz9FuIiJQsinCIiIiIiEhsVDQuIrFIFeH43e9+d8L7z549u0jPY1GQ4cOHu21WeG6LAoqkahJgEYfLLrvMbWvRogUAo0aNAhKLv5OFC1F++9vfBnx0rX379jk4ahGR0kERDhERERERiY1qOEREREREJDaKcIiIiIiISGx0wSEiIiIiIrHRBYeIiIiIiMRGFxwiIiIiIhIbXXCIiIiIiEhsdMEhIiIiIiKx0QWHiIiIiIjERhccIiIiIiISG11wiIiIiIhIbHTBISIiIiIisdEFh4iIiIiIxEYXHCIiIiIiEhtdcIiIiIiISGz+H+sfRj+agEwOAAAAAElFTkSuQmCC",
"path": "images_version_6/image_51.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, triangle ABC congruent triangle DEF, then the degree of angle COE is ()
Choices:
A:40°
B:60°
C:70°
D:100°
|
||
256
|
52
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAANAAAABuCAAAAABzD8KtAAAXHklEQVR4nM1ceWAV5bX/zcxdk9zc7GSBkEAIloAgWxBEUEEQXNiKiC1SN6yIVp+40mo3q6221T4tfdqCoPhQBJRFC2JZFCqCghQIsoUkZIWE3OTuM3P6x8y9d+7MNzeXpe95/kjmnm87v2853znfd2Y4GSYkgzdLSkBhq1r6QgpH6oCVKRBvJpQsWfHrIRMBQOZk7sJbNtJfVhcLHe5Wi3/29EtZrRlRTPhDgcEAAEvibOdL+Yc2Ydxlae+fyLo0gAh6WTRDL7V4e0WT+wGAx98NMulJFg2spCk0BDcT0btYG2HIFLrw6rQk+fUcT6c+i0zEmJKcAEA0rC1KpkeP70UegCt6RopzMPRxAqJg5CnUaUjUiirJAFypuhycLpeWLIaEpOTaDdyAv7WU/WNcwK/UwzFntQlx9siTLOnTeJvmB7t3Oc4ckJFI9iUYJFKG5BCseQvuqkOpq6oh6ZpZ5HAnTDb2dzQl6SZk3pZgkORgCoDQDoSvDecWAKhQar4IBZOAQlbTahOMkG48BC4ReCEFABpP4rLvC3mZAMybTG41Mii2rEmpoiNszJTMlIst1a7omyYseDtvuD3GuZQDFOsIOx/lhBri1VcCQFFZOJt5pniqlp03YEZZva59s4oTkWQsLugZLhtgzY2HkJRS4JKZJASgDjnFdOzXo39dDe0MuRDi9bAJzD7SLoQzYYCxsTLI33UuuZ3IX4r+tJQHkP/80eS2y6RJ9soUajewJa1kHpGIZSmEL7DNzukA1o7FjW+PBTLvvaSQxCaJwZUlSSIi8sYSWcbpBahaSQDQtsjtbv58r/1wj/Cy3csCBaP7LEy8m2jbZNks2nTZsIIiKVy8xElNuS56r4M80S6ag3lERFTzlAAM+DjpSi5YjpBMFJaJPIqtdzGAJNXs1JqNm1zYpT5W3Qdg1Gu+C28geUlkIr8izcUAEr1G3t0YcC764+MnewKDH6jWZwr+B0FeiimnoXOXY4n2d8sfJwBFK3TaSb6Ujeoqu8SAXsFoXYXykomA4/blF+FkkbrCZK9mbpvtJJcWkDwaG+MYoQARHXjqe8B1L59JXDbM0ssqiZ1EJAd8mjmu5jYMNhOQL8EcT9gBHwv9mene5UOA/o/tPZ/eY8/LLmcrE1ASc5y9+47ELfqiospYPwFIvf71ti5r7qJdpTplfFhiXuiUEz0M5gpkHdfzvJEjhbNPTwIw6BfHLqzBOJKCRHJ02sXRpVxD8gg8njDDwcW9gNy7DKAviHzsNZfgXO7Dsn7JGi4KfTWk5OuMxFlqVr7/BbLvmlORTH1N27KtPpc16A2PdxhTg55c9am2erSGbzpCBzA+cH59NguLjExJt/s2/e2+VLjv25FEfd+4oDhBWadVjtzpb6ttaw1SZ1izikWtDjMFJM1GaYvmt8wwC+LpA3AfGbmMU76TDwCO29Z0UZ0khh8C5n6+diEKo3V8NPzyXIG/fPqeOLHDml+mgDYD3Ru0ggW7EECei4nJLsi9M1xIn7u2KmF9Et0N5z4i6jM2VrAA6ROmluNh02KmgH4AOA8lKR8RER1NTd+cZNYdj87IsgPIfqw2Yb6bURGgIG35Z4x1LWYQrUPxISISzynCB7TqwQzQmaLvp0bt5mRI/h1GBfX7E7vyfVkAwI0tBAoeWm9eZUNfDNl//2+0LF8/PES0G1hFRMF6pf5O7aw2A/T9/JctYCwJU6rLx8MiJeXX3Iof/qQSeKX2l6MAzP7aLN/7QEE/zNGy9qbgNaLXkX7ErJAJoM1Y9xXwQtfCRWkjrm7UseoeWcfKuRe/IjqagvFE/i3TBbhuW8E+z18FAMLrWtZvkX5YWpKLR0zlMAE0E9NuAR5MhCCepBvxoZ73KHDNYuO5xv77JCK6F0NDRES7JwGYuLHFkI3CPwTm9kw5oWE1DAI3bBD4H7TGtd31GtrvLJvV34H5yUBRaCuK6nSsT9ORCgx8iW1lL4jMJc9DANDnV/rxpWAFyuh+l1a7+kpR+khfS9qSOBRi12toRs4pCs7EnclAISKiwM34sZ53E64/9qQLyFx0zlhAGsJ/pj6+AtxQAQz43b/is5zsgQdp40pa/VxUxoMp+CMFX4J9l2S2WJmAqqwvENH9uDZJOET7kKbfVLa78BnR4T8NAXo9YDAMXsZD6lN7bzwlt/15MOBeuKE5mkGmD2D9mIiae+dF/bqnIWwn2gv8QX/XRUREYtgE0HOOViKaj26fJXv7drdxvY3FAD8RkXdZBWD7WfyO02AfE6l6OXLqici7aQqAsW/GNvMpsL7r2fNkOZ6NYJTnoKyZaDPwPBEF1B1CYwOZAPINzPyEaG0B77i62ZjKol3pfZtiv+QQEdVlYIP6u3pRBZD/4LbYaqgZ0f/byPPvcbmyHNqXjRSAkreUNgPzAOQWA8g8qMood/TBPKLmSnDfUmyDkONMThYgafORDqKWLR991aCuPH8XIzUdv4g8hiTFV3oY98bSPUtHAPyoCMKTldlVRO2KyfkKhkfWd/h/R/cEMhZ8SUTySzMff2r+/IU//fnGiN8jLgWufuE3Y4HHIvIYXdHk/KGw0cLU6srDGfaolaQeNgfzsVeb3ff1MADjthIR0Uw8+tbqjWOUqbTXlhWbZkH/qyVA2szVrB70jQGQVjR4xvsJRDX3h444ujG8ECYtfHHGezpnZcHrU1fHszo+XL7LI1x1y92ux3+LzDYAc1/KAuCZtuWdWThdbed7ZqO5xbJq6+HTwIjyqwSHy285WHo6N9SS5W8TSpuExjc83WaUtA/rYS0XBCCsu4JTYgDO32OVO9ob2sJBIvGM1Hm6uV063ROLiaj5wHsr24hOHqw5Ju0DrvzlFzKdfWb+fduImp+d9/wJot8CwNAHBQCF5SlAv4c7adOQLNxBNBXAbKKRAF5rvKerHizYY3qhYHLNuGV3btmp4505nDXb2eG1cl5JCFY78zmOmv011eGOgsxwd7/3m/5njzqySk6ews8GVYZu2QUsvQN3bAf+vhrYteulqm6bfg5s3p2161lg+wblxmrPnvxGWFdUvjcHh2p/kurfCwQBEUA/gHjqXpFWrAjBpZMHtp6i32938IEWRzllOqTm9L7fbmvYPcQMKxvQtoli4i5qVv79A/C3HQfyikRYbnWfKL0eKJNzeklvo7JHuHcmhl2bmTslBQOf9GVMaPnXZwCQ/vvJH3zb+0rbTXf1zP5eASZv7UipAF6bXyaVAJ961uxcPqsBwrU97kmzpfhaqSBdFgM2Kyf+85tHJYeFvHZb6KovW0wlY6+hWSvTLnOG8zvLU+pqU/tVnm3pk1l/1tVmKT3Wq7S9vgSQZCvCwTRXONRa8Oc3Ry3t7gCAukw1FOK5p0v3uwCIlmgky741b50ASobdPJh1UtGwcr4VgGfjkdXfALnjHhlqzHO0u1N5aBt6Yv1kU0TMNfRfmJL8mhqGn+o4/svwnLLcFO3oOfrEcADOG5cYDDaVxGNEdHbTSACFA+88pl0hokfdZwJ1skgyEfmuhLmvy55yTmSZ9oCe3vyyZL6O9YeqfGVdcwKA44s3VPthG33HFX11YWOxeyqh95lVJ1fUAVfOmfH60VLt5Vezy6YoMHshyQIHwJmPjX3NxGED8sGfNKDNtie6xXPCr+NHOepj9d41G7zA5AVlPY1NyZGr4bbtH2xoBuxTZ493YKBb0gLKFTiAQg4AvMIP1OHzhwEw7xrZgAYjJ1k8Rz9y3a1jrT2JmQCAmqVra84ifczDecOY7QjKAl626tBxoGLIrcX9AWCSXkLiQHbEwgG4VAxSnhrT9fFLJoC6oy6pi1bi8E7rVPX2U5KVGeV/BVMqgLaN7+5uBK6cMqXctDyPxmNb//Ep0H3K5GvsptlAjdmaTZ73IkeJm8tn5GUqhW2YnNSGK1FLIT5Xf0TsqnWwHOh45vFSAKOe/VQiIjHOwSRZUv/ILY9mAUi98++GWLgo+TuJYkf+Co3F26ZReGxAVbimq2M4lf6MObozZt9I5N7XE3BPW7RO9Vp0sXtB9aD/fyqzAUzaVEtEkmSy94tayVVDcU6CwwE2oH0Yk5wnVJ+Lr3SsdTwAVD59gllAJZn2b5sN8BNf3RPhGOxf8zlyE+43TWOvIS9qz+UyU3S0uKVXqY7VLDuzZ0+rTFQqeKRu8XpCVp/fj4zyuPg4hFan03wR2zFRfaKAQ5eNDSgb9W3JAKpbhgcydLy58uUDI+ubGZW8e8uuDTJSbh84pcA82MJhVBExNZWKJvWJ4/QBGWxAPMcnFdX0aXXpPENZjRY3dnLH2nc3hYBBT48sTFhzipGlViZL1nR4I0yDh8MGJBvDi1nU+CIeZLSsEnGGSj5Ysf8IMGyabVpJNFeiluRArPpI8AzHwZcgiMxkhKyBZILDnj9Q9CPzVJ2gnX9p3PcJkDr9nkqtBRSwmQXxAOA13cWp9XEWBBIYMmxA4bBwpo95OxH6EHcnG5301cb39wEV5eNGD4hPsJ3HOwWR0eTQbprHxDh1dSRR/46GnB8mJciOXTs2yiiaPGOEy5BmCPSLJwprwikjWUOoMS3ABlTQf1fXiKRFgSd6d5kLLcvf+1JC7pjxE4sBQCYB4bAzGk2WGA9TTRLQysgqWwAzQNY0ZHYp6f7ttpu6ytO5893tR4EBc6dGtisekDqFLiKDoxqaZ7+NAoaKDLbnA6Zx2xxCmuolZq4VGDswoVjSkTXvfw0MH3PZHXELn3cHZAEgmTcZH2a0X7s9oqK5ylV+o+ug7lxsQEIBNKH6HFMPNS6zL0qgoHD0w9X7fBjS13r1nboUDlaSBHCmy0dtMBQXjeyMNSYgQJyiIcJCdO4qtZmMUB40pyTsEdrScsVVJgIBBxpWrO4AZkyp2vN1nR4QOKsMdB3uHD/bNOhaIXCI7krxZAIoCG3wOWvC1z+FB00k2r1l5ycB5N4yofDa3T89iVyfcfNNSlfrZPMFIucCvWKGhJpH5CN1mgA6h29viP7grIgqkSi9UTN0Lquk+N8n3moDsu9ZmAWg4ot5ayzGNsgvO82nK4EiHS9rRkBdJDLHpUV5XosdJFohWohLBIisOKRjcbpOfQeGmQRg5/4NG4CSKVP7KT58auqINda492RkAWjhMsTGPNaLdrJsAcIha/TNCc3SVwXgOJyKrnCbqKy4mEnHBhRsR70eUPz8eudIH/2mStWrV+yXkDrztgEa1/iMTh9xANJ5iyWPB4CQED9QHAeAT4l2HuMggANc0bcGrFbo5i8bkGPCqraEhwriizQiLY7j+ejVqhZkTLpmyBUaLnGt8bYAxwGwA7ACIKk+L7oaJI5X9Zt+MkTJ35EHAChCQ4fR5kgECN1RHBODQhHnJBouvnP/ZS9osgdOvfH3A+CBHz8XX09jQSrCoqYRkgXNi4FycUx2gfGke38j0KIAqofXFJBJZ4gIxH7Ebi3EyAs7f5XuLYhJ/czgQS8eSHvi+HLHij3x9eTAifpqDYPjCKhvJwCQOa1lylKl4SiTAgRkVkSy5heqBSTVAKBG9cFkhArj7NloP0XW8amt7tmRNj979fNGcNfdProMJc8fXB1/KG2FHXKcqDwg55HfJnCgZnfML5XCjNsoDV7tWMUmNUWnp5MHIPNmgDKYRmHUItlY80A3APDuWb/tS6D3yAeGAwCGHTRIZQNpbzKIePA2wOcE+LBWYJ0aD/ndWhScVie64YaiXrgIIM4NAGQ6Qi3olAwbRdQEanjJcReAYyvX7gGGzho1KAIj3fjSkA3nIoNNXExZ8gDEfI9qAod5oROKkpFPd7MBgNVknyLiIcPJThQSWAoMQyvMq43sPT59UPDjzSvPoPf4cTdqjjPqoT1akXgOEMHVjlBE0dblAGCBsrJl3gpEdCbfQ/nPNiCVHrGft8eK3jzjxcooxhVwPbauCqm/mV4Qp7tbPkmboPkpAFj7MkL35FwDMEw39RXXMx3p2UCt21mVVnq6I7cpw+kNWjsDvTsEW2Or3ObkcwrrzrT5+gSsPtlGHAg7o6c+SQNKTzlQU6xnCurL+JtWYinguG309bbOOqCztpddIsF2zv6XcyNQFfbVlx0PpJ5zhBrDjuZ3mpCVu3zzoQHj6t51dGsNpnW2UpqFk2RL/6o0akI75zoZSMt2SC1WHHT3rvVkN+bYfEGLJ1Dusdjq/QDA5RnkN/fWTG7BPT08V1c6hNa0fEfb8eZQmUx+0eIUztb1dtPZDzwAwGf6fXYk/QJlEmQPArBJkjsYtjidZwSi3LKU/e1WV5+g1G7xp2ec5bu15ZyahW+y55l6YiaAmobWmTfcr/4crK7WcrGeKxBygo2eAgucvbztHb0Ev/eMo7Mop9mX5i4M12Q4Wi05DgLgkPhelnapw3nMzVkKj6em8a2OwoOBnJ4l+YW1vN/a++SxvG4Z+6x8ar/605Wd/iyBFwFYBb6jPcuWJslhTrZYQ7CHbX4ThZAYUPD0ieZjFe6DV9QXu+p5V5rdGvR3chn7ioo4GflnDxc5rN4iuZ1zIy3c4XcLZEtFMOAGwp0ipaWIQUci3+88yKhru6BL/IEIAMyvXfisOttaklQbnGQhGI43C6uz0hNU60uByFj5Abt6xGUOyJOiK6fYdPKXX3cbkcP8yIZOANL0rmLqhmXdkTWJgmjTH54qTpDIVlh/eqtfbbNj+F1X6PgeV8SFMr2YiIZ3x4Vs7xjrzHa7Rm0yZJdE3S2INrBIvZwR9QGb4tlYJv2bVGzJ/gr0/NGcgpRnTKROJjRGDr73duR5cyrW1xwdjErNHZYsERH5fSST8gKttqzyTyL2uyREROFYvJtaqZTgcuqEHS8QHS/AVnZ6Ms49Z6sYpD5ume5dMrlH2f0o0Rhoij3lULQPl6Kfw5IISBKgOUiS2Cfn1EX8CgCcDqIc6HUvXjM52kvmLtUXvV2bjZEyER3uk8zLGCqFAspbROFYvzPC1RTSSMOectLtKG4iosXIYgfnmlgK8Ud9LZxiYEnr3sMkDkD5rsy6/GS+LSGTACuU6x5Nfm3ROM845ksi1J6nq4sHIB5EZR6Appj1GoqzxM2mXNy8KVYNRn552D4NAPhszp7oMFeKzC7DsRkAtDFOptXPDfAxqLZMABpLRPbIANo6Ffv3ELpHnPfGI9p6zI6CDYKIsCB0FNYMNQPzxnKB/w0gbIkV1tWjHFnG87i4f1oPKP5Ug88AgCMncR1aMxt2on/kMKk4buUl/U0SCwCbG30ie6DM6vyr2oiDhTN+yiEipAUAMlhJ2qmibkyR8xQtnZLKJyGDW1KLWFBXHAY2oJM9mHxORrECKGxlztVbI3Jo6UxrHwb2aIeQN95OiN1kxu3MKr2BaQ7w2Izc2YY0AGZrKIfJJqQjlwOAn73BLMZWuzzzGtYX/UAKp9QdoZhKZxxnSc1oAPDFHjzbnSnCecac/gk3yUR0WHjmfEoR6QJZZPNImBgFvmUxu1s2EDVdhxfNip0foKOCs4Zof1+sOp9SBoptMaL5K+KyGP99DiKi3ROA2+68tZy7l1mEyHQf0pOqcMreXDhpMO05UmQawwrtxyukdnYcYcwcD5vqD3CCUdfKluu8sBaO73e5aetJug+hyBFDzd/WFz6WbymJprRLeqFD4UgQm9ze9cWmGbWnMaF2WBL7dxfnD8kchw4pI/KLoZQunDpShHi3QhuEkYAuCpDE8fEe5Xn7lzpKZCyTLED0u/wBxqgHY7vIpfVYL+LTXlLIqfFjFYqtNZHnAR/nkAXm/ajGR74wQLGeFJOLckqiSoOgwZA1erAsc5z6rkNXk+BiR0gUOIDEJDzy86YQz1LB/2lA3zm6RBPmu0PfZUBSEh65gb7LgIwOipw4RAgwB5T8V//+c8Qb1r8ZHn/s/MXUBU8Q5/5/RiE9QzDRYL4YILOP+13Mx4v/X+nfhS7xAzce6s4AAAAASUVORK5CYII=",
"path": "images_version_1-4/image_52.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
As shown in the figure, put the two vertices of a right triangle plate with 45.0 angles on the opposite edges of the ruler. If angle 1 = 27.5, then angle 2 is equal to ()
Choices:
A:32.5°
B:22.5°
C:20.5°
D:17.5°
|
Như hình vẽ, đặt hai đỉnh của tấm tam giác vuông có góc 45 độ lên hai cạnh đối diện của thước đo. Nếu góc 1 = 27.5°, thì góc 2 bằng ()
Các lựa chọn:
A: 32.5°
B: 22.5°
C: 20.5°
D: 17.5°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, put the two vertices of a right triangle plate with 45.0 angles on the opposite edges of the ruler. If angle 1 = 27.5, then angle 2 is equal to ()
Choices:
A:32.5°
B:22.5°
C:20.5°
D:17.5°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, put the two vertices of a right triangle plate with 45.0 angles on the opposite edges of the ruler. If angle 1 = 27.5, then angle 2 is equal to ()
Choices:
A:32.5°
B:22.5°
C:20.5°
D:17.5°
|
As shown in the figure, put the two vertices of a right triangle plate with 45.0 angles on the opposite edges of the ruler. If angle 1 = 27.5, then angle 2 is equal to ()
Choices:
A:32.5°
B:22.5°
C:20.5°
D:17.5°
|
257
|
52
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAANAAAABuCAAAAABzD8KtAAAXHklEQVR4nM1ceWAV5bX/zcxdk9zc7GSBkEAIloAgWxBEUEEQXNiKiC1SN6yIVp+40mo3q6221T4tfdqCoPhQBJRFC2JZFCqCghQIsoUkZIWE3OTuM3P6x8y9d+7MNzeXpe95/kjmnm87v2853znfd2Y4GSYkgzdLSkBhq1r6QgpH6oCVKRBvJpQsWfHrIRMBQOZk7sJbNtJfVhcLHe5Wi3/29EtZrRlRTPhDgcEAAEvibOdL+Yc2Ydxlae+fyLo0gAh6WTRDL7V4e0WT+wGAx98NMulJFg2spCk0BDcT0btYG2HIFLrw6rQk+fUcT6c+i0zEmJKcAEA0rC1KpkeP70UegCt6RopzMPRxAqJg5CnUaUjUiirJAFypuhycLpeWLIaEpOTaDdyAv7WU/WNcwK/UwzFntQlx9siTLOnTeJvmB7t3Oc4ckJFI9iUYJFKG5BCseQvuqkOpq6oh6ZpZ5HAnTDb2dzQl6SZk3pZgkORgCoDQDoSvDecWAKhQar4IBZOAQlbTahOMkG48BC4ReCEFABpP4rLvC3mZAMybTG41Mii2rEmpoiNszJTMlIst1a7omyYseDtvuD3GuZQDFOsIOx/lhBri1VcCQFFZOJt5pniqlp03YEZZva59s4oTkWQsLugZLhtgzY2HkJRS4JKZJASgDjnFdOzXo39dDe0MuRDi9bAJzD7SLoQzYYCxsTLI33UuuZ3IX4r+tJQHkP/80eS2y6RJ9soUajewJa1kHpGIZSmEL7DNzukA1o7FjW+PBTLvvaSQxCaJwZUlSSIi8sYSWcbpBahaSQDQtsjtbv58r/1wj/Cy3csCBaP7LEy8m2jbZNks2nTZsIIiKVy8xElNuS56r4M80S6ag3lERFTzlAAM+DjpSi5YjpBMFJaJPIqtdzGAJNXs1JqNm1zYpT5W3Qdg1Gu+C28geUlkIr8izcUAEr1G3t0YcC764+MnewKDH6jWZwr+B0FeiimnoXOXY4n2d8sfJwBFK3TaSb6Ujeoqu8SAXsFoXYXykomA4/blF+FkkbrCZK9mbpvtJJcWkDwaG+MYoQARHXjqe8B1L59JXDbM0ssqiZ1EJAd8mjmu5jYMNhOQL8EcT9gBHwv9mene5UOA/o/tPZ/eY8/LLmcrE1ASc5y9+47ELfqiospYPwFIvf71ti5r7qJdpTplfFhiXuiUEz0M5gpkHdfzvJEjhbNPTwIw6BfHLqzBOJKCRHJ02sXRpVxD8gg8njDDwcW9gNy7DKAviHzsNZfgXO7Dsn7JGi4KfTWk5OuMxFlqVr7/BbLvmlORTH1N27KtPpc16A2PdxhTg55c9am2erSGbzpCBzA+cH59NguLjExJt/s2/e2+VLjv25FEfd+4oDhBWadVjtzpb6ttaw1SZ1izikWtDjMFJM1GaYvmt8wwC+LpA3AfGbmMU76TDwCO29Z0UZ0khh8C5n6+diEKo3V8NPzyXIG/fPqeOLHDml+mgDYD3Ru0ggW7EECei4nJLsi9M1xIn7u2KmF9Et0N5z4i6jM2VrAA6ROmluNh02KmgH4AOA8lKR8RER1NTd+cZNYdj87IsgPIfqw2Yb6bURGgIG35Z4x1LWYQrUPxISISzynCB7TqwQzQmaLvp0bt5mRI/h1GBfX7E7vyfVkAwI0tBAoeWm9eZUNfDNl//2+0LF8/PES0G1hFRMF6pf5O7aw2A/T9/JctYCwJU6rLx8MiJeXX3Iof/qQSeKX2l6MAzP7aLN/7QEE/zNGy9qbgNaLXkX7ErJAJoM1Y9xXwQtfCRWkjrm7UseoeWcfKuRe/IjqagvFE/i3TBbhuW8E+z18FAMLrWtZvkX5YWpKLR0zlMAE0E9NuAR5MhCCepBvxoZ73KHDNYuO5xv77JCK6F0NDRES7JwGYuLHFkI3CPwTm9kw5oWE1DAI3bBD4H7TGtd31GtrvLJvV34H5yUBRaCuK6nSsT9ORCgx8iW1lL4jMJc9DANDnV/rxpWAFyuh+l1a7+kpR+khfS9qSOBRi12toRs4pCs7EnclAISKiwM34sZ53E64/9qQLyFx0zlhAGsJ/pj6+AtxQAQz43b/is5zsgQdp40pa/VxUxoMp+CMFX4J9l2S2WJmAqqwvENH9uDZJOET7kKbfVLa78BnR4T8NAXo9YDAMXsZD6lN7bzwlt/15MOBeuKE5mkGmD2D9mIiae+dF/bqnIWwn2gv8QX/XRUREYtgE0HOOViKaj26fJXv7drdxvY3FAD8RkXdZBWD7WfyO02AfE6l6OXLqici7aQqAsW/GNvMpsL7r2fNkOZ6NYJTnoKyZaDPwPBEF1B1CYwOZAPINzPyEaG0B77i62ZjKol3pfZtiv+QQEdVlYIP6u3pRBZD/4LbYaqgZ0f/byPPvcbmyHNqXjRSAkreUNgPzAOQWA8g8qMood/TBPKLmSnDfUmyDkONMThYgafORDqKWLR991aCuPH8XIzUdv4g8hiTFV3oY98bSPUtHAPyoCMKTldlVRO2KyfkKhkfWd/h/R/cEMhZ8SUTySzMff2r+/IU//fnGiN8jLgWufuE3Y4HHIvIYXdHk/KGw0cLU6srDGfaolaQeNgfzsVeb3ff1MADjthIR0Uw8+tbqjWOUqbTXlhWbZkH/qyVA2szVrB70jQGQVjR4xvsJRDX3h444ujG8ECYtfHHGezpnZcHrU1fHszo+XL7LI1x1y92ux3+LzDYAc1/KAuCZtuWdWThdbed7ZqO5xbJq6+HTwIjyqwSHy285WHo6N9SS5W8TSpuExjc83WaUtA/rYS0XBCCsu4JTYgDO32OVO9ob2sJBIvGM1Hm6uV063ROLiaj5wHsr24hOHqw5Ju0DrvzlFzKdfWb+fduImp+d9/wJot8CwNAHBQCF5SlAv4c7adOQLNxBNBXAbKKRAF5rvKerHizYY3qhYHLNuGV3btmp4505nDXb2eG1cl5JCFY78zmOmv011eGOgsxwd7/3m/5njzqySk6ews8GVYZu2QUsvQN3bAf+vhrYteulqm6bfg5s3p2161lg+wblxmrPnvxGWFdUvjcHh2p/kurfCwQBEUA/gHjqXpFWrAjBpZMHtp6i32938IEWRzllOqTm9L7fbmvYPcQMKxvQtoli4i5qVv79A/C3HQfyikRYbnWfKL0eKJNzeklvo7JHuHcmhl2bmTslBQOf9GVMaPnXZwCQ/vvJH3zb+0rbTXf1zP5eASZv7UipAF6bXyaVAJ961uxcPqsBwrU97kmzpfhaqSBdFgM2Kyf+85tHJYeFvHZb6KovW0wlY6+hWSvTLnOG8zvLU+pqU/tVnm3pk1l/1tVmKT3Wq7S9vgSQZCvCwTRXONRa8Oc3Ry3t7gCAukw1FOK5p0v3uwCIlmgky741b50ASobdPJh1UtGwcr4VgGfjkdXfALnjHhlqzHO0u1N5aBt6Yv1kU0TMNfRfmJL8mhqGn+o4/svwnLLcFO3oOfrEcADOG5cYDDaVxGNEdHbTSACFA+88pl0hokfdZwJ1skgyEfmuhLmvy55yTmSZ9oCe3vyyZL6O9YeqfGVdcwKA44s3VPthG33HFX11YWOxeyqh95lVJ1fUAVfOmfH60VLt5Vezy6YoMHshyQIHwJmPjX3NxGED8sGfNKDNtie6xXPCr+NHOepj9d41G7zA5AVlPY1NyZGr4bbtH2xoBuxTZ493YKBb0gLKFTiAQg4AvMIP1OHzhwEw7xrZgAYjJ1k8Rz9y3a1jrT2JmQCAmqVra84ifczDecOY7QjKAl626tBxoGLIrcX9AWCSXkLiQHbEwgG4VAxSnhrT9fFLJoC6oy6pi1bi8E7rVPX2U5KVGeV/BVMqgLaN7+5uBK6cMqXctDyPxmNb//Ep0H3K5GvsptlAjdmaTZ73IkeJm8tn5GUqhW2YnNSGK1FLIT5Xf0TsqnWwHOh45vFSAKOe/VQiIjHOwSRZUv/ILY9mAUi98++GWLgo+TuJYkf+Co3F26ZReGxAVbimq2M4lf6MObozZt9I5N7XE3BPW7RO9Vp0sXtB9aD/fyqzAUzaVEtEkmSy94tayVVDcU6CwwE2oH0Yk5wnVJ+Lr3SsdTwAVD59gllAJZn2b5sN8BNf3RPhGOxf8zlyE+43TWOvIS9qz+UyU3S0uKVXqY7VLDuzZ0+rTFQqeKRu8XpCVp/fj4zyuPg4hFan03wR2zFRfaKAQ5eNDSgb9W3JAKpbhgcydLy58uUDI+ubGZW8e8uuDTJSbh84pcA82MJhVBExNZWKJvWJ4/QBGWxAPMcnFdX0aXXpPENZjRY3dnLH2nc3hYBBT48sTFhzipGlViZL1nR4I0yDh8MGJBvDi1nU+CIeZLSsEnGGSj5Ysf8IMGyabVpJNFeiluRArPpI8AzHwZcgiMxkhKyBZILDnj9Q9CPzVJ2gnX9p3PcJkDr9nkqtBRSwmQXxAOA13cWp9XEWBBIYMmxA4bBwpo95OxH6EHcnG5301cb39wEV5eNGD4hPsJ3HOwWR0eTQbprHxDh1dSRR/46GnB8mJciOXTs2yiiaPGOEy5BmCPSLJwprwikjWUOoMS3ABlTQf1fXiKRFgSd6d5kLLcvf+1JC7pjxE4sBQCYB4bAzGk2WGA9TTRLQysgqWwAzQNY0ZHYp6f7ttpu6ytO5893tR4EBc6dGtisekDqFLiKDoxqaZ7+NAoaKDLbnA6Zx2xxCmuolZq4VGDswoVjSkTXvfw0MH3PZHXELn3cHZAEgmTcZH2a0X7s9oqK5ylV+o+ug7lxsQEIBNKH6HFMPNS6zL0qgoHD0w9X7fBjS13r1nboUDlaSBHCmy0dtMBQXjeyMNSYgQJyiIcJCdO4qtZmMUB40pyTsEdrScsVVJgIBBxpWrO4AZkyp2vN1nR4QOKsMdB3uHD/bNOhaIXCI7krxZAIoCG3wOWvC1z+FB00k2r1l5ycB5N4yofDa3T89iVyfcfNNSlfrZPMFIucCvWKGhJpH5CN1mgA6h29viP7grIgqkSi9UTN0Lquk+N8n3moDsu9ZmAWg4ot5ayzGNsgvO82nK4EiHS9rRkBdJDLHpUV5XosdJFohWohLBIisOKRjcbpOfQeGmQRg5/4NG4CSKVP7KT58auqINda492RkAWjhMsTGPNaLdrJsAcIha/TNCc3SVwXgOJyKrnCbqKy4mEnHBhRsR70eUPz8eudIH/2mStWrV+yXkDrztgEa1/iMTh9xANJ5iyWPB4CQED9QHAeAT4l2HuMggANc0bcGrFbo5i8bkGPCqraEhwriizQiLY7j+ejVqhZkTLpmyBUaLnGt8bYAxwGwA7ACIKk+L7oaJI5X9Zt+MkTJ35EHAChCQ4fR5kgECN1RHBODQhHnJBouvnP/ZS9osgdOvfH3A+CBHz8XX09jQSrCoqYRkgXNi4FycUx2gfGke38j0KIAqofXFJBJZ4gIxH7Ebi3EyAs7f5XuLYhJ/czgQS8eSHvi+HLHij3x9eTAifpqDYPjCKhvJwCQOa1lylKl4SiTAgRkVkSy5heqBSTVAKBG9cFkhArj7NloP0XW8amt7tmRNj979fNGcNfdProMJc8fXB1/KG2FHXKcqDwg55HfJnCgZnfML5XCjNsoDV7tWMUmNUWnp5MHIPNmgDKYRmHUItlY80A3APDuWb/tS6D3yAeGAwCGHTRIZQNpbzKIePA2wOcE+LBWYJ0aD/ndWhScVie64YaiXrgIIM4NAGQ6Qi3olAwbRdQEanjJcReAYyvX7gGGzho1KAIj3fjSkA3nIoNNXExZ8gDEfI9qAod5oROKkpFPd7MBgNVknyLiIcPJThQSWAoMQyvMq43sPT59UPDjzSvPoPf4cTdqjjPqoT1akXgOEMHVjlBE0dblAGCBsrJl3gpEdCbfQ/nPNiCVHrGft8eK3jzjxcooxhVwPbauCqm/mV4Qp7tbPkmboPkpAFj7MkL35FwDMEw39RXXMx3p2UCt21mVVnq6I7cpw+kNWjsDvTsEW2Or3ObkcwrrzrT5+gSsPtlGHAg7o6c+SQNKTzlQU6xnCurL+JtWYinguG309bbOOqCztpddIsF2zv6XcyNQFfbVlx0PpJ5zhBrDjuZ3mpCVu3zzoQHj6t51dGsNpnW2UpqFk2RL/6o0akI75zoZSMt2SC1WHHT3rvVkN+bYfEGLJ1Dusdjq/QDA5RnkN/fWTG7BPT08V1c6hNa0fEfb8eZQmUx+0eIUztb1dtPZDzwAwGf6fXYk/QJlEmQPArBJkjsYtjidZwSi3LKU/e1WV5+g1G7xp2ec5bu15ZyahW+y55l6YiaAmobWmTfcr/4crK7WcrGeKxBygo2eAgucvbztHb0Ev/eMo7Mop9mX5i4M12Q4Wi05DgLgkPhelnapw3nMzVkKj6em8a2OwoOBnJ4l+YW1vN/a++SxvG4Z+6x8ar/605Wd/iyBFwFYBb6jPcuWJslhTrZYQ7CHbX4ThZAYUPD0ieZjFe6DV9QXu+p5V5rdGvR3chn7ioo4GflnDxc5rN4iuZ1zIy3c4XcLZEtFMOAGwp0ipaWIQUci3+88yKhru6BL/IEIAMyvXfisOttaklQbnGQhGI43C6uz0hNU60uByFj5Abt6xGUOyJOiK6fYdPKXX3cbkcP8yIZOANL0rmLqhmXdkTWJgmjTH54qTpDIVlh/eqtfbbNj+F1X6PgeV8SFMr2YiIZ3x4Vs7xjrzHa7Rm0yZJdE3S2INrBIvZwR9QGb4tlYJv2bVGzJ/gr0/NGcgpRnTKROJjRGDr73duR5cyrW1xwdjErNHZYsERH5fSST8gKttqzyTyL2uyREROFYvJtaqZTgcuqEHS8QHS/AVnZ6Ms49Z6sYpD5ume5dMrlH2f0o0Rhoij3lULQPl6Kfw5IISBKgOUiS2Cfn1EX8CgCcDqIc6HUvXjM52kvmLtUXvV2bjZEyER3uk8zLGCqFAspbROFYvzPC1RTSSMOectLtKG4iosXIYgfnmlgK8Ud9LZxiYEnr3sMkDkD5rsy6/GS+LSGTACuU6x5Nfm3ROM845ksi1J6nq4sHIB5EZR6Appj1GoqzxM2mXNy8KVYNRn552D4NAPhszp7oMFeKzC7DsRkAtDFOptXPDfAxqLZMABpLRPbIANo6Ffv3ELpHnPfGI9p6zI6CDYKIsCB0FNYMNQPzxnKB/w0gbIkV1tWjHFnG87i4f1oPKP5Ug88AgCMncR1aMxt2on/kMKk4buUl/U0SCwCbG30ie6DM6vyr2oiDhTN+yiEipAUAMlhJ2qmibkyR8xQtnZLKJyGDW1KLWFBXHAY2oJM9mHxORrECKGxlztVbI3Jo6UxrHwb2aIeQN95OiN1kxu3MKr2BaQ7w2Izc2YY0AGZrKIfJJqQjlwOAn73BLMZWuzzzGtYX/UAKp9QdoZhKZxxnSc1oAPDFHjzbnSnCecac/gk3yUR0WHjmfEoR6QJZZPNImBgFvmUxu1s2EDVdhxfNip0foKOCs4Zof1+sOp9SBoptMaL5K+KyGP99DiKi3ROA2+68tZy7l1mEyHQf0pOqcMreXDhpMO05UmQawwrtxyukdnYcYcwcD5vqD3CCUdfKluu8sBaO73e5aetJug+hyBFDzd/WFz6WbymJprRLeqFD4UgQm9ze9cWmGbWnMaF2WBL7dxfnD8kchw4pI/KLoZQunDpShHi3QhuEkYAuCpDE8fEe5Xn7lzpKZCyTLED0u/wBxqgHY7vIpfVYL+LTXlLIqfFjFYqtNZHnAR/nkAXm/ajGR74wQLGeFJOLckqiSoOgwZA1erAsc5z6rkNXk+BiR0gUOIDEJDzy86YQz1LB/2lA3zm6RBPmu0PfZUBSEh65gb7LgIwOipw4RAgwB5T8V//+c8Qb1r8ZHn/s/MXUBU8Q5/5/RiE9QzDRYL4YILOP+13Mx4v/X+nfhS7xAzce6s4AAAAASUVORK5CYII=",
"path": "images_version_1-4/image_52.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
put the two vertices of a right triangle plate with 45.0 angles on the opposite edges of the ruler. If angle 1 = 27.5, then angle 2 is equal to ()
Choices:
A:32.5°
B:22.5°
C:20.5°
D:17.5°
|
Đặt hai đỉnh của một tam giác vuông có góc 45,0 trên hai cạnh đối diện của thước đo. Nếu góc 1 = 27,5 thì góc 2 bằng ()
Các lựa chọn:
A: 32,5°
B: 22,5°
C: 20,5°
D: 17,5°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: put the two vertices of a right triangle plate with 45.0 angles on the opposite edges of the ruler. If angle 1 = 27.5, then angle 2 is equal to ()
Choices:
A:32.5°
B:22.5°
C:20.5°
D:17.5°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: put the two vertices of a right triangle plate with 45.0 angles on the opposite edges of the ruler. If angle 1 = 27.5, then angle 2 is equal to ()
Choices:
A:32.5°
B:22.5°
C:20.5°
D:17.5°
|
put the two vertices of a right triangle plate with 45.0 angles on the opposite edges of the ruler. If angle 1 = 27.5, then angle 2 is equal to ()
Choices:
A:32.5°
B:22.5°
C:20.5°
D:17.5°
|
258
|
52
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAANAAAABuCAAAAABzD8KtAAAXHklEQVR4nM1ceWAV5bX/zcxdk9zc7GSBkEAIloAgWxBEUEEQXNiKiC1SN6yIVp+40mo3q6221T4tfdqCoPhQBJRFC2JZFCqCghQIsoUkZIWE3OTuM3P6x8y9d+7MNzeXpe95/kjmnm87v2853znfd2Y4GSYkgzdLSkBhq1r6QgpH6oCVKRBvJpQsWfHrIRMBQOZk7sJbNtJfVhcLHe5Wi3/29EtZrRlRTPhDgcEAAEvibOdL+Yc2Ydxlae+fyLo0gAh6WTRDL7V4e0WT+wGAx98NMulJFg2spCk0BDcT0btYG2HIFLrw6rQk+fUcT6c+i0zEmJKcAEA0rC1KpkeP70UegCt6RopzMPRxAqJg5CnUaUjUiirJAFypuhycLpeWLIaEpOTaDdyAv7WU/WNcwK/UwzFntQlx9siTLOnTeJvmB7t3Oc4ckJFI9iUYJFKG5BCseQvuqkOpq6oh6ZpZ5HAnTDb2dzQl6SZk3pZgkORgCoDQDoSvDecWAKhQar4IBZOAQlbTahOMkG48BC4ReCEFABpP4rLvC3mZAMybTG41Mii2rEmpoiNszJTMlIst1a7omyYseDtvuD3GuZQDFOsIOx/lhBri1VcCQFFZOJt5pniqlp03YEZZva59s4oTkWQsLugZLhtgzY2HkJRS4JKZJASgDjnFdOzXo39dDe0MuRDi9bAJzD7SLoQzYYCxsTLI33UuuZ3IX4r+tJQHkP/80eS2y6RJ9soUajewJa1kHpGIZSmEL7DNzukA1o7FjW+PBTLvvaSQxCaJwZUlSSIi8sYSWcbpBahaSQDQtsjtbv58r/1wj/Cy3csCBaP7LEy8m2jbZNks2nTZsIIiKVy8xElNuS56r4M80S6ag3lERFTzlAAM+DjpSi5YjpBMFJaJPIqtdzGAJNXs1JqNm1zYpT5W3Qdg1Gu+C28geUlkIr8izcUAEr1G3t0YcC764+MnewKDH6jWZwr+B0FeiimnoXOXY4n2d8sfJwBFK3TaSb6Ujeoqu8SAXsFoXYXykomA4/blF+FkkbrCZK9mbpvtJJcWkDwaG+MYoQARHXjqe8B1L59JXDbM0ssqiZ1EJAd8mjmu5jYMNhOQL8EcT9gBHwv9mene5UOA/o/tPZ/eY8/LLmcrE1ASc5y9+47ELfqiospYPwFIvf71ti5r7qJdpTplfFhiXuiUEz0M5gpkHdfzvJEjhbNPTwIw6BfHLqzBOJKCRHJ02sXRpVxD8gg8njDDwcW9gNy7DKAviHzsNZfgXO7Dsn7JGi4KfTWk5OuMxFlqVr7/BbLvmlORTH1N27KtPpc16A2PdxhTg55c9am2erSGbzpCBzA+cH59NguLjExJt/s2/e2+VLjv25FEfd+4oDhBWadVjtzpb6ttaw1SZ1izikWtDjMFJM1GaYvmt8wwC+LpA3AfGbmMU76TDwCO29Z0UZ0khh8C5n6+diEKo3V8NPzyXIG/fPqeOLHDml+mgDYD3Ru0ggW7EECei4nJLsi9M1xIn7u2KmF9Et0N5z4i6jM2VrAA6ROmluNh02KmgH4AOA8lKR8RER1NTd+cZNYdj87IsgPIfqw2Yb6bURGgIG35Z4x1LWYQrUPxISISzynCB7TqwQzQmaLvp0bt5mRI/h1GBfX7E7vyfVkAwI0tBAoeWm9eZUNfDNl//2+0LF8/PES0G1hFRMF6pf5O7aw2A/T9/JctYCwJU6rLx8MiJeXX3Iof/qQSeKX2l6MAzP7aLN/7QEE/zNGy9qbgNaLXkX7ErJAJoM1Y9xXwQtfCRWkjrm7UseoeWcfKuRe/IjqagvFE/i3TBbhuW8E+z18FAMLrWtZvkX5YWpKLR0zlMAE0E9NuAR5MhCCepBvxoZ73KHDNYuO5xv77JCK6F0NDRES7JwGYuLHFkI3CPwTm9kw5oWE1DAI3bBD4H7TGtd31GtrvLJvV34H5yUBRaCuK6nSsT9ORCgx8iW1lL4jMJc9DANDnV/rxpWAFyuh+l1a7+kpR+khfS9qSOBRi12toRs4pCs7EnclAISKiwM34sZ53E64/9qQLyFx0zlhAGsJ/pj6+AtxQAQz43b/is5zsgQdp40pa/VxUxoMp+CMFX4J9l2S2WJmAqqwvENH9uDZJOET7kKbfVLa78BnR4T8NAXo9YDAMXsZD6lN7bzwlt/15MOBeuKE5mkGmD2D9mIiae+dF/bqnIWwn2gv8QX/XRUREYtgE0HOOViKaj26fJXv7drdxvY3FAD8RkXdZBWD7WfyO02AfE6l6OXLqici7aQqAsW/GNvMpsL7r2fNkOZ6NYJTnoKyZaDPwPBEF1B1CYwOZAPINzPyEaG0B77i62ZjKol3pfZtiv+QQEdVlYIP6u3pRBZD/4LbYaqgZ0f/byPPvcbmyHNqXjRSAkreUNgPzAOQWA8g8qMood/TBPKLmSnDfUmyDkONMThYgafORDqKWLR991aCuPH8XIzUdv4g8hiTFV3oY98bSPUtHAPyoCMKTldlVRO2KyfkKhkfWd/h/R/cEMhZ8SUTySzMff2r+/IU//fnGiN8jLgWufuE3Y4HHIvIYXdHk/KGw0cLU6srDGfaolaQeNgfzsVeb3ff1MADjthIR0Uw8+tbqjWOUqbTXlhWbZkH/qyVA2szVrB70jQGQVjR4xvsJRDX3h444ujG8ECYtfHHGezpnZcHrU1fHszo+XL7LI1x1y92ux3+LzDYAc1/KAuCZtuWdWThdbed7ZqO5xbJq6+HTwIjyqwSHy285WHo6N9SS5W8TSpuExjc83WaUtA/rYS0XBCCsu4JTYgDO32OVO9ob2sJBIvGM1Hm6uV063ROLiaj5wHsr24hOHqw5Ju0DrvzlFzKdfWb+fduImp+d9/wJot8CwNAHBQCF5SlAv4c7adOQLNxBNBXAbKKRAF5rvKerHizYY3qhYHLNuGV3btmp4505nDXb2eG1cl5JCFY78zmOmv011eGOgsxwd7/3m/5njzqySk6ews8GVYZu2QUsvQN3bAf+vhrYteulqm6bfg5s3p2161lg+wblxmrPnvxGWFdUvjcHh2p/kurfCwQBEUA/gHjqXpFWrAjBpZMHtp6i32938IEWRzllOqTm9L7fbmvYPcQMKxvQtoli4i5qVv79A/C3HQfyikRYbnWfKL0eKJNzeklvo7JHuHcmhl2bmTslBQOf9GVMaPnXZwCQ/vvJH3zb+0rbTXf1zP5eASZv7UipAF6bXyaVAJ961uxcPqsBwrU97kmzpfhaqSBdFgM2Kyf+85tHJYeFvHZb6KovW0wlY6+hWSvTLnOG8zvLU+pqU/tVnm3pk1l/1tVmKT3Wq7S9vgSQZCvCwTRXONRa8Oc3Ry3t7gCAukw1FOK5p0v3uwCIlmgky741b50ASobdPJh1UtGwcr4VgGfjkdXfALnjHhlqzHO0u1N5aBt6Yv1kU0TMNfRfmJL8mhqGn+o4/svwnLLcFO3oOfrEcADOG5cYDDaVxGNEdHbTSACFA+88pl0hokfdZwJ1skgyEfmuhLmvy55yTmSZ9oCe3vyyZL6O9YeqfGVdcwKA44s3VPthG33HFX11YWOxeyqh95lVJ1fUAVfOmfH60VLt5Vezy6YoMHshyQIHwJmPjX3NxGED8sGfNKDNtie6xXPCr+NHOepj9d41G7zA5AVlPY1NyZGr4bbtH2xoBuxTZ493YKBb0gLKFTiAQg4AvMIP1OHzhwEw7xrZgAYjJ1k8Rz9y3a1jrT2JmQCAmqVra84ifczDecOY7QjKAl626tBxoGLIrcX9AWCSXkLiQHbEwgG4VAxSnhrT9fFLJoC6oy6pi1bi8E7rVPX2U5KVGeV/BVMqgLaN7+5uBK6cMqXctDyPxmNb//Ep0H3K5GvsptlAjdmaTZ73IkeJm8tn5GUqhW2YnNSGK1FLIT5Xf0TsqnWwHOh45vFSAKOe/VQiIjHOwSRZUv/ILY9mAUi98++GWLgo+TuJYkf+Co3F26ZReGxAVbimq2M4lf6MObozZt9I5N7XE3BPW7RO9Vp0sXtB9aD/fyqzAUzaVEtEkmSy94tayVVDcU6CwwE2oH0Yk5wnVJ+Lr3SsdTwAVD59gllAJZn2b5sN8BNf3RPhGOxf8zlyE+43TWOvIS9qz+UyU3S0uKVXqY7VLDuzZ0+rTFQqeKRu8XpCVp/fj4zyuPg4hFan03wR2zFRfaKAQ5eNDSgb9W3JAKpbhgcydLy58uUDI+ubGZW8e8uuDTJSbh84pcA82MJhVBExNZWKJvWJ4/QBGWxAPMcnFdX0aXXpPENZjRY3dnLH2nc3hYBBT48sTFhzipGlViZL1nR4I0yDh8MGJBvDi1nU+CIeZLSsEnGGSj5Ysf8IMGyabVpJNFeiluRArPpI8AzHwZcgiMxkhKyBZILDnj9Q9CPzVJ2gnX9p3PcJkDr9nkqtBRSwmQXxAOA13cWp9XEWBBIYMmxA4bBwpo95OxH6EHcnG5301cb39wEV5eNGD4hPsJ3HOwWR0eTQbprHxDh1dSRR/46GnB8mJciOXTs2yiiaPGOEy5BmCPSLJwprwikjWUOoMS3ABlTQf1fXiKRFgSd6d5kLLcvf+1JC7pjxE4sBQCYB4bAzGk2WGA9TTRLQysgqWwAzQNY0ZHYp6f7ttpu6ytO5893tR4EBc6dGtisekDqFLiKDoxqaZ7+NAoaKDLbnA6Zx2xxCmuolZq4VGDswoVjSkTXvfw0MH3PZHXELn3cHZAEgmTcZH2a0X7s9oqK5ylV+o+ug7lxsQEIBNKH6HFMPNS6zL0qgoHD0w9X7fBjS13r1nboUDlaSBHCmy0dtMBQXjeyMNSYgQJyiIcJCdO4qtZmMUB40pyTsEdrScsVVJgIBBxpWrO4AZkyp2vN1nR4QOKsMdB3uHD/bNOhaIXCI7krxZAIoCG3wOWvC1z+FB00k2r1l5ycB5N4yofDa3T89iVyfcfNNSlfrZPMFIucCvWKGhJpH5CN1mgA6h29viP7grIgqkSi9UTN0Lquk+N8n3moDsu9ZmAWg4ot5ayzGNsgvO82nK4EiHS9rRkBdJDLHpUV5XosdJFohWohLBIisOKRjcbpOfQeGmQRg5/4NG4CSKVP7KT58auqINda492RkAWjhMsTGPNaLdrJsAcIha/TNCc3SVwXgOJyKrnCbqKy4mEnHBhRsR70eUPz8eudIH/2mStWrV+yXkDrztgEa1/iMTh9xANJ5iyWPB4CQED9QHAeAT4l2HuMggANc0bcGrFbo5i8bkGPCqraEhwriizQiLY7j+ejVqhZkTLpmyBUaLnGt8bYAxwGwA7ACIKk+L7oaJI5X9Zt+MkTJ35EHAChCQ4fR5kgECN1RHBODQhHnJBouvnP/ZS9osgdOvfH3A+CBHz8XX09jQSrCoqYRkgXNi4FycUx2gfGke38j0KIAqofXFJBJZ4gIxH7Ebi3EyAs7f5XuLYhJ/czgQS8eSHvi+HLHij3x9eTAifpqDYPjCKhvJwCQOa1lylKl4SiTAgRkVkSy5heqBSTVAKBG9cFkhArj7NloP0XW8amt7tmRNj979fNGcNfdProMJc8fXB1/KG2FHXKcqDwg55HfJnCgZnfML5XCjNsoDV7tWMUmNUWnp5MHIPNmgDKYRmHUItlY80A3APDuWb/tS6D3yAeGAwCGHTRIZQNpbzKIePA2wOcE+LBWYJ0aD/ndWhScVie64YaiXrgIIM4NAGQ6Qi3olAwbRdQEanjJcReAYyvX7gGGzho1KAIj3fjSkA3nIoNNXExZ8gDEfI9qAod5oROKkpFPd7MBgNVknyLiIcPJThQSWAoMQyvMq43sPT59UPDjzSvPoPf4cTdqjjPqoT1akXgOEMHVjlBE0dblAGCBsrJl3gpEdCbfQ/nPNiCVHrGft8eK3jzjxcooxhVwPbauCqm/mV4Qp7tbPkmboPkpAFj7MkL35FwDMEw39RXXMx3p2UCt21mVVnq6I7cpw+kNWjsDvTsEW2Or3ObkcwrrzrT5+gSsPtlGHAg7o6c+SQNKTzlQU6xnCurL+JtWYinguG309bbOOqCztpddIsF2zv6XcyNQFfbVlx0PpJ5zhBrDjuZ3mpCVu3zzoQHj6t51dGsNpnW2UpqFk2RL/6o0akI75zoZSMt2SC1WHHT3rvVkN+bYfEGLJ1Dusdjq/QDA5RnkN/fWTG7BPT08V1c6hNa0fEfb8eZQmUx+0eIUztb1dtPZDzwAwGf6fXYk/QJlEmQPArBJkjsYtjidZwSi3LKU/e1WV5+g1G7xp2ec5bu15ZyahW+y55l6YiaAmobWmTfcr/4crK7WcrGeKxBygo2eAgucvbztHb0Ev/eMo7Mop9mX5i4M12Q4Wi05DgLgkPhelnapw3nMzVkKj6em8a2OwoOBnJ4l+YW1vN/a++SxvG4Z+6x8ar/605Wd/iyBFwFYBb6jPcuWJslhTrZYQ7CHbX4ThZAYUPD0ieZjFe6DV9QXu+p5V5rdGvR3chn7ioo4GflnDxc5rN4iuZ1zIy3c4XcLZEtFMOAGwp0ipaWIQUci3+88yKhru6BL/IEIAMyvXfisOttaklQbnGQhGI43C6uz0hNU60uByFj5Abt6xGUOyJOiK6fYdPKXX3cbkcP8yIZOANL0rmLqhmXdkTWJgmjTH54qTpDIVlh/eqtfbbNj+F1X6PgeV8SFMr2YiIZ3x4Vs7xjrzHa7Rm0yZJdE3S2INrBIvZwR9QGb4tlYJv2bVGzJ/gr0/NGcgpRnTKROJjRGDr73duR5cyrW1xwdjErNHZYsERH5fSST8gKttqzyTyL2uyREROFYvJtaqZTgcuqEHS8QHS/AVnZ6Ms49Z6sYpD5ume5dMrlH2f0o0Rhoij3lULQPl6Kfw5IISBKgOUiS2Cfn1EX8CgCcDqIc6HUvXjM52kvmLtUXvV2bjZEyER3uk8zLGCqFAspbROFYvzPC1RTSSMOectLtKG4iosXIYgfnmlgK8Ud9LZxiYEnr3sMkDkD5rsy6/GS+LSGTACuU6x5Nfm3ROM845ksi1J6nq4sHIB5EZR6Appj1GoqzxM2mXNy8KVYNRn552D4NAPhszp7oMFeKzC7DsRkAtDFOptXPDfAxqLZMABpLRPbIANo6Ffv3ELpHnPfGI9p6zI6CDYKIsCB0FNYMNQPzxnKB/w0gbIkV1tWjHFnG87i4f1oPKP5Ug88AgCMncR1aMxt2on/kMKk4buUl/U0SCwCbG30ie6DM6vyr2oiDhTN+yiEipAUAMlhJ2qmibkyR8xQtnZLKJyGDW1KLWFBXHAY2oJM9mHxORrECKGxlztVbI3Jo6UxrHwb2aIeQN95OiN1kxu3MKr2BaQ7w2Izc2YY0AGZrKIfJJqQjlwOAn73BLMZWuzzzGtYX/UAKp9QdoZhKZxxnSc1oAPDFHjzbnSnCecac/gk3yUR0WHjmfEoR6QJZZPNImBgFvmUxu1s2EDVdhxfNip0foKOCs4Zof1+sOp9SBoptMaL5K+KyGP99DiKi3ROA2+68tZy7l1mEyHQf0pOqcMreXDhpMO05UmQawwrtxyukdnYcYcwcD5vqD3CCUdfKluu8sBaO73e5aetJug+hyBFDzd/WFz6WbymJprRLeqFD4UgQm9ze9cWmGbWnMaF2WBL7dxfnD8kchw4pI/KLoZQunDpShHi3QhuEkYAuCpDE8fEe5Xn7lzpKZCyTLED0u/wBxqgHY7vIpfVYL+LTXlLIqfFjFYqtNZHnAR/nkAXm/ajGR74wQLGeFJOLckqiSoOgwZA1erAsc5z6rkNXk+BiR0gUOIDEJDzy86YQz1LB/2lA3zm6RBPmu0PfZUBSEh65gb7LgIwOipw4RAgwB5T8V//+c8Qb1r8ZHn/s/MXUBU8Q5/5/RiE9QzDRYL4YILOP+13Mx4v/X+nfhS7xAzce6s4AAAAASUVORK5CYII=",
"path": "images_version_1-4/image_52.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
If angle 1 = 27.5, then angle 2 is equal to ()
Choices:
A:32.5°
B:22.5°
C:20.5°
D:17.5°
|
Nếu góc 1 = 27.5°, thì góc 2 bằng ()
Lựa chọn:
A: 32.5°
B: 22.5°
C: 20.5°
D: 17.5°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: If angle 1 = 27.5, then angle 2 is equal to ()
Choices:
A:32.5°
B:22.5°
C:20.5°
D:17.5°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: If angle 1 = 27.5, then angle 2 is equal to ()
Choices:
A:32.5°
B:22.5°
C:20.5°
D:17.5°
|
If angle 1 = 27.5, then angle 2 is equal to ()
Choices:
A:32.5°
B:22.5°
C:20.5°
D:17.5°
|
259
|
52
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAARwAAADLCAYAAAC8uCzDAABqgUlEQVR4nO29eVib150v/tEukNj3fd/NjlmMN2wnsWPHTpM0aZKmTW6TmW7zTObeLre/dGaS2860c9u5baczbdq0Tdpm2qTOHm+JF7DBYIPBYFaDWcUuJATa1/f3Bz0nL7IACSSBHX2eJ08wSO857/ue8z3f9fPlMAzDwAcffPDBC+Bu9gR88MGHTw98AscHH3zwGnwCxwcffPAafALHBx988Bp8AscHH3zwGnwCxwcffPAafALHBx988Bp8AscHH3zwGnwCxwcffPAafALHBx988Bp8AscHH3zwGvjeLKViGAZkPA6HAw6H47Wx7ySs97n4yuI2DpvNBovFAgDg8/ngcr17JpM9Yj+uzWYD4P19wzAMbDYbbDYbfR5zc3N4+eWXERERgaqqKhQUFNDP2n+XYRjweDz6O763Nz17PJ/AuR0mkwltbW3o6emBVqtFZGQkeDweDAYDjEYjhEIhDAYDbDYbRCIRTCYT4uPjkZOTg+TkZN8z3SC4XC74fD7d2JvxPO3HtRdA3p4Tl8sFl8ul44rFYpSUlIBhGAgEghXnxeFwbhNCfM9Pd/kEfFgdVqsVg4OD+OCDDzAwMIDw8HD6Nz8/P8TExECv10OlUkGtVmNhYQFFRUV4+OGHkZSU5HvGGwSHw1l2Im/G+Gv9jmGYDb1ni8UCs9kMm80GPz+/VbU4R0LXz88PpaWl0Gg0kEgkt83NarXCarWCx+OBz18uYtwqcNjmkg/rA4/HQ0JCAoRCIYaHh9HT0wMASEhIQGVlJVJTU8Hj8dDX14e+vj6Mjo7CZrOhqKhocyfuA4DlZoUn9gExU9Z7bZvNBrVajcXFRdhsNsTFxUEoFLp0DR6Ph6ioKERFRTm8vk6ng16vh5+fHwIDA5f93W0Cx94/48P6IBQKUVVVhQsXLqC2thZ6vR6pqan4m7/5G3zhC18Ah8OBUCjEyMgI0tLS8C//8i+Ij49HWVmZU8+d2OM8Ho+qvOQ08r23jWMjz5BhGOo/Ypsq9tffiLDR6/XgcrkIDQ2FUChccZz1gAhCf3//FTUnt2o4Kz0Ibzi8NqpmbiXw+Xyo1WoolUpwOBxER0cjJycHMTEx9DNBQUFQKpUICgqCv78/AgICnLo2+2Bw9O9PA9hOUFe+Y7VaAawsDDYKd72LlbQsDocDPp8PPp8PgUDgMYf4as/VbQJnpc1OvNy+qJRzsFqtGBkZQX9/P2w2G7hcLiIjI6mtrNFoIBKJwOVykZSUhB07dlAziwjd1YQvh8O5zQHp7UjMZoOsSVcOKavVCqPRCA6H4zGB4653QQ54+2txOByIRKINX38lkGe52nP1uNOYSFVvjHM3wGKxoL+/HwsLC/R3xcXFyM7OhsViwcmTJ5GdnY3s7Gykpqbixz/+MYRCIcLCwmA2m2kYcqVN4WgRbqaTdDPA4/FcvmeiFXlynblrr2ymtr/WuF6NUnkSRI20WCyw2WwQCoVbUgit5eeyWq2QyWRYXFwEsKS+Z2ZmYmZmBm+88QZeffVVfPWrX0VSUhKCg4ORlpYGLpcLvV6PkZER8Pl8hIaGIiQkxGv39GmAQCC4YwQzmedWXP93hcBhe+63sk/CPonK0YIwm80YGBjA/Pw8gCUB1NDQgMuXL6O2thbd3d1YXFyki4poLFwul4Yh75SNcSeB5KJsZayUNLiVcFcIHOATNZLP529pBzI7R8HRHLVaLXp7e6FQKAAsqfIvv/wydVgGBgYiISHhNiexUChESkrKsgQtR/BFEu9eEMf2WhnSm7kGNkXguFsgsP0QW3kjEYejQCBYcZ5KpRJTU1PQarXg8/mIiYlBWloaxsfHcevWLQQGBt6W20CuvRU1G5+Acx0b0VTId1fbY0ajkbodvJ0OsWkajqtCxz5/5E7FanPXaDQYGRmBXC4HAISGhuLgwYN46KGHcOLECYyOjiI1NRVhYWEeGd+HrYP1JPiRsoy1tFyiCZH9RGC1WqHT6cDlcm/LIHYXNk3grGfhkzDx3bpp1Go1xsbGqMM4MjIShw8fxsGDB6FSqXD+/Hnk5OQ4nXPjg/vhLXN9PWM4q+WSQ5utQRH/oslk8mhUeVMEznoeJpfLXdUUuRug0+kgl8tpHkVERASKi4vpz7t370ZMTAzUajV0Oh38/f1XvNZW8WNthTm4CyR3x9OHnqdz1hzl4hD/Z1BQkEfHvqOcxnfT4nUEo9EIlUpFHcRhYWE0u9hqtWJ0dBT19fU4d+4cSktLsX//flRVVS0r8AQ+Oa22ok/nTsZmVpB7AxvNA9Lr9TCZTJBIJCu6Pu4ogQMs5dlsVQeps2AYBiaT6bZqWoVCgY6ODqrWhoaGQiAQQKfT4fr167h+/TpmZ2cBAF1dXejp6cHVq1dRWVmJ/Px8xMbGUi3wTn4+WxWeFjRms5mmNwDLfS2ezBAG3KMRk/mulpZyxwkcku15J/tyGIaB2WwGABrGN5vNuH79Oq5evQqLxQKRSASbzQaj0Yja2lqcP38es7OzEAgE8Pf3h9lsxtmzZ3H27FlUV1fjyJEjqKysREZGBsLCwiASie7Y5/NpAynaNJvNyxIMybrwdCKrM4XXzkQbyWG32t50a7U48T148nR1tZR+K4JEAchLMRqN+MUvfoHXXnsNOp2O/q69vR0NDQ04deoUent7wePxUFZWhvvvvx8mkwnvvvsuurq6cPnyZbS1tVEGtgcffBAHDx5EcHDwJt6lD86AYRjodDrodDoEBwcvK0nh8Xjw8/MD4FmqC/a/HY1F6sjWCqOvlfIBABzGjWm5KxWN+bC6yrq4uIh/+7d/Q0NDAwQCASQSCTQaDfh8PiIiItDS0oL+/n5ERUXhxz/+Maqrq8HlctHZ2YkzZ86gr68Pt27dwujoKPh8PgoKClBeXo68vDyEhYUhIyMDZWVlXr7jzYGn+WjcDaLFWCwW+Pn5eX3O9tvf0fiEwsQd2dZuNal8guYT2FfJE7+MI+2PaC6JiYkIDw+np1pvby/eeecdjIyMAADy8/Nx8OBB6iROSkpCUlIShoaG0NfXh4sXL2JgYADd3d1oa2tDZmYmIiIiUFBQAKVSifz8/GUUF3crtkqEzhk4kwzq6fHZcKQ0EJ+gI82HRO2c3ftu1XB8WAIRNgaDgS4mQivhysK6efMmXnrpJbzzzjtISEjAc889h+eff35Fs1Iul+Ps2bP405/+hDNnztAwLo/HQ2ZmJv72b/8W999/P9LS0rwS3t0s+LKb1w9CAMYWMCtpOHq9HhaLBQKBwGmfoU/guACS7eyMRLdarVSrEQgELnMCqVQqvP322/jHf/xHTE1N4ciRI3jxxRdRVFS0oo+M+APGx8fR2tqKEydO4NSpU5TqIiQkBNnZ2SgvL8fOnTtRU1OzoaxlH+4+OBLWbG2dve5JiQShQ3Fmbd9xUarNAnGwWSwWp9qHcLncZZEFV83Nnp4e1NfXY2pqCgCQnp6OzMzMNQmvJRIJsrKyEBcXh5SUFGRmZqK5uRnT09Nob29HU1MTent70dzcjNbWVuTn5yMuLg4lJSUey2AmJyTRtnym99aFI6GxEjEYibC6oin7BI6HsNFcmJs3b6K9vR0AkJmZidzcXJcEglQqRVVVFTIzM9Hd3Y3e3l5cvHgRN27cgEwmQ1NTE27cuIH4+Hjk5+fjkUceQXl5+bpItdcCm5bDJ2zuTDgSKOtZ3z6TaguCYRj8n//zf/DTn/4UKpUK//N//k8888wz2LZt27quRTa8VqtFW1sbzp07h9bWVjQ3N2N+fp6Saj/yyCP4/Oc/j+Li4lXLJtZ7TwQ+38rWhaffk0/gbDGYTCZcvXoV//qv/4ozZ84gMzMTL7/8MmpqatxyfZ1Oh7m5OVoMeuHCBXR0dEAmk0EkEiEjIwOxsbEoKytDYWEhcnJykJ+f75axfXANJpOJmizr4VEmXUQ3o4PoSvCZVFsMFosFdXV16OjogEQiwaFDh5CXl+eWazMMA39/fyQmJiIxMRGRkZHIy8tDV1cXWlpa0NfXh5GREXR1daGtrQ0ZGRkoLCzEfffdh9TUVERHRyMyMtItc/E02PQOW1GjImUAjnxa7GZybKfs3QCPaDi+sOT6MTU1hS996Us4ffo0ioqK8F//9V8oKSmBWCze8LUJ3zNwe8a2QqFAc3Mz6urq0NTUhL6+PsrLk5ubi9LSUuzZswc1NTUIDw+HWCzeUienPdih3K0mdEjwwWQyQSwW3+YLsVqtsFgsy4Tmet+/M34zb5q7bhc4JBwMLKU6e6Njg7PY6oJQrVajtrYWX/7ylzE9PY0vfOELeOWVV9zerAxw3D7WZDJBr9djYWEBV69exYkTJ3D27FlMT08DAKKjo5Gfn4/S0lJUV1dj+/btDrsv3u1wxwZ1tnaJPc7d4AdzuzRgl7hvtdPPlZe0GYTUg4OD+Mtf/oLZ2VlIpVKEh4e7XZVmJ3Ox/016FolEIgQHByMoKAiZmZk4ePAgrly5gsuXL6Ovrw9nz55FZ2cn6uvrqX8nNzcXOTk5iIuLc+tctyrI5t/Ipl/ruxu59lbOtHa7wLkT2O3XAlF5GYbxarFoa2srPvroI1itVhQUFKCwsNAj45D7WyllHQCCg4NRVFSEoqIi7NixAyUlJThz5gxqa2sxPz+Py5cv4/Lly0hISEBJSQl27tyJqqoqxMbGIjw8/K5nJdyqG5pEJFfLjfnUkahvdZANabVavVbjcvXqVdTW1mJubg5CoRAPPfQQHnnkEY+MRQoGibBZK58iOTkZX/ziF1FSUoL09HQMDQ2hra0NN2/exPj4OGQyGc6dO4fs7GxUV1fjwIED2L59OyIjI+/4w2crYa11SIQNIXBj01w4831vwCdwHIDL5UIkEnlVNb1w4QLq6+sBAPv27UNpaSkt4nQ3uFwudUI6e38cDgfZ2dn42te+BpPJhPHxcfT29qK/vx8nT55ET08PWltbMTAwgI8//hhZWVmUKiMrK8sj9+HDcpCMYHshbzabaZEo+dxmYVMEzvT0NAQCAaRSqceZzNYLb57Mi4uLaGlpwdjYGKKjo/G5z33ObaHwlbCe+xMKhbTaPCkpCfn5+ZiYmEBmZiYaGhpw48YN3Lp1C319fejr60NXVxcGBgawc+dOFBUVIS0t7a4ytaxWK/R6Pebn58Hn82kBI2HuEwgE4HK5NB+G/BcQEOCw1Y87sBK9hMlkgtlsdpoCg2EYaDQaLCwsgM/nIzo62j3z83bi38LCAo4fPw4/Pz8UFhauK3v2boLBYEBTUxO+9rWvobe3FwcOHMAf/vAHr9BIuEvVZhgGAwMDqK+vR2NjI1paWjA8PAyTyQSTyYSUlBTcd9992L9/PwoLCxETE0Mr5+9kGI1GjI6O4uOPPwbDMAgMDKRtl7lcLvz8/MDj8Wjk1mQywWg0oqKiAmVlZS6VBthr26tp3/bv1WKxQKfTwWKxICQkxKn3bbPZIJfLMT4+DpFI5LZ96lUNx2KxoLOzE//0T/8EHo+HZ599FtnZ2VsqdO5tKBQK/PnPf4ZMJkNycjIOHDgAqVTq8XFJSxASndoIOBwO0tPTkZSUhMOHD6OjowPXrl2j5tXw8DBeeeUVHD9+HJWVlbjnnnuwZ88e5Ofn39HcywzDYHx8HD/72c8wPDxMi3XZvL7sKmviM3vhhRdQXFzs9L2Td0X8iUajEXq9ntJCEM5jNoMkMaHIuBKJhM7FGXC5XISFhSEgIMCtJphXd/rQ0BDeffddzM7Owmq1Ynh4GHq9fsNqNkmUIg/4ToFarcbly5dx6tQpaDQa5OXlYdu2bV6JjK0WoVoPiN8rOjoaUqkUOTk5WFxcxNGjR9HQ0ICzZ8+iq6sLJ0+eRG9vL06cOIHdu3ejrKwMeXl5SExMdMs8vAEiTMRiMZKTk1FVVUXLRYAlJ3tFRQUyMjIwPz+P8fFx3LhxA8PDwwCWqqxdecdmsxm9vb24dOkSRkZGwDAMFAoFNBoNjEYjACAuLg4xMTFISEjArl27kJiYSA8S8q5d3RsksXM9TflWvOaGr+AkGIZBS0sLPvzwQzp5nU5HkwQ3em0SUbqTMDw8jPr6ekxMTAAAsrOzkZ+f7zWNz1PjSKVSqqVt27aN1mSdPn0aXV1dkMlkGBoawsDAAK5du4bKykrs378f8fHxCAwMpFnMWxVkA/J4PERGRiI3NxfNzc1QqVTg8/k4ePAgHnvsMWzbtg3z8/OQy+U4fvw4fvazn0EqlbrMNc0wDNRqNc6fP4+LFy+Cw+FAo9Esi0YFBATAz88PSUlJ4PP5CA4Ovq0Ad73N9dwJr71VIqEHBgYALJ2IpF5koyAtTrdC2M8V3Lx5E62treBwOMjNzaUnkzfgzWeVlpaG1NRU1NTU4N1338X777+Pjo4OjI6OYnR0FA0NDbhy5Qp27tyJvLw8xMXFITU1FVKpdEu+U/acbDYbVCoV9Ho9AMDf3x/79u1DVVUVRCIRwsPDkZGRAYPBgDNnziAwMBChoaEujUectn5+ftBqtbBarfD390deXh4yMzPB4/EwMjKCzs5OXLt2DUlJScjNzV3R0euK787dZSFeEzhNTU1oa2uj/yYvSqPRICwsbEO2/J3WlZNhGBgMBly7dg1Xr16FUCjEkSNHsGPHjs2emkeg1+vR39+PhoYGTExMwM/Pj/ofTCYTlEolzpw5g0uXLkEikSA2NhYHDx7EAw88gO3bt2/29G+D/SZcWFiAwWAAAMTHxyM1NfU2v1hGRga+853vwM/PD0VFRS6Nx+fzkZmZiZycHERERGBmZgY5OTn4+te/joceegg6nQ5dXV349a9/jTfffBMNDQ3Yu3cvtm3bdluPcEJ9y+FwVk27cCY5dD3wmsBpa2vD/Pw8MjMzMT4+Dp1OB61WC41G45YukXeKsAGWXmZPTw96e3ths9kQExODyspKZGZm3vY5d1U8b1a6u81mw6VLl/Db3/4W/f390Gg09D+2aRISEgK5XA6VSoWJiQnMzMygu7sb5eXlKCwsRHJyMhITE93O07NRqNVqTE1NQaPRUNOGx+NhbGwMHR0d8PPzQ3FxMeLi4nDw4EHqwF0vLBYLuFwuoqKiqBYolUqRn5+PpKQkAMDExAT6+vpoygIbNpttWRRtNZDkUHdyX3tc4FgsFnR3d+PGjRsQi8WoqKjABx98QP03Op2OVjB/WqDT6XD+/Hn09fUBWDI5UlJSbhO67mzZu1kCub+/H++++y6OHz++jGyb5KsAgEQiwa5du8AwDPXvjI+PY2xsDOfPn8eOHTuQl5eHHTt2oKKiAqGhoW6pnt8ozGYzRkdHMTIyAp1OB6FQCJPJhGvXrmFmZgb19fXIzMxEdHQ0wsLCNkTtodfrMT09jfn5eXA4HISFhS3zc5lMpmXuidX8o86WH3mi0t7jAmd8fBw/+tGPMDg4iKKiImRlZVEb0mq1LnN+fVowNTWFd999FwMDAwgJCUFOTo7Dk3srUiu4ipMnT+LChQvg8Xg4fPgwEhMToVarcePGDfT09ECv10MoFKKsrAxHjhyBTqfDe++9h5aWFrS3t0Mul+P06dM4ffo0kpOTceTIETz++OMoLCzckKbgDiiVSnR1dWF0dJT+bmZmBj/72c8wPT0NrVYLqVRKBet6YbFYMDo6CplMBqvVCpFIhLi4uGXO5+HhYYyPj9N/E43QHnw+HyEhIWuOuRFKjNXgUYGj0+nQ1NSE06dP45FHHsGjjz4Kq9VKN5BOp8Pw8DBKSkq2nKrsKeh0OshkMro4Kioq8OSTTyI+Pt7h5zcibEwmEy5duoSZmRkUFxcjNzd33ddyFVarFaOjo3j33XehUqnwN3/zN3j22WcRExODxcVFdHd341vf+hYGBweh1+vR3NyM++67j1JePProo+jv78eVK1dw4cIFtLe3Y2RkBH/6059w9epVbN++HWVlZcjPz0dJScmmpEOQ/BpygJpMJkxOTmJmZgZWqxXBwcHIyspCUFDQhsYxmUzo6uqihPpBQUGorq5GdnY2gCX/6CuvvIKPPvoIALBnzx6UlpZ6LJt5I/CowOnv70ddXR2USiWAJefa+Pg4lfgGgwETExNuCY3fKZibm0N9fT0UCgVycnJw+PBhFBcXu73Ew2azoa2tDcePH0dnZyfy8/Oxa9cu2tEhNjbWrePZw2KxUL7kyspKPPfccyguLgYAxMTEIDY2FpWVlZicnIRer8fAwADm5+cBgDIS5ubm0rD6lStX0NzcjJ6eHtqJlDT727dvH0pKSpCUlOTVTaZSqTAyMkJdAiKRCJGRkVAqldBqtQgKCkJZWdmGW/HI5XJcvHiR8hKZTCa0tbXBbDZDqVTiwoULOHv2LNRqNYqKivDEE0+goKBgw/fnCf4djwqcjo4ONDY2gsvloqOjA3K5HHK5nIYQLRYLFhYWPlUm1cDAAE6cOAG9Xo/y8nLcc889HqknUyqVeO+993Dq1CmMj49TTbOiogJ79+7F/v37ER0dDYlE4pH8JQ6HA6lUigceeABpaWlU2BAEBASgoqICN27cQGdnJwDc5ssTCATIyclBTk4Ojh07hrNnz+LPf/4zLl68CIVCgStXruDKlStoaGjAPffcg3vuuQeZmZmIiYlBYGCgxxMoZTIZrly5QpPvEhIS8PDDD9PyDrFYjLy8vA1rOHK5HFevXoVCoQAAaLVaHD9+HO+88w5mZmaoIMrIyMCRI0fwmc98BhERERu7OXiGptUjAodhGMzPz6O5uRnd3d2IjIxEQEAA1Go1ZDLZbTUhnxaQhXPt2jXweDykpKSsaEptBBqNBs3NzXj//feX2fXElKutrcUbb7yBPXv24N5770V1dbXbSwwEAgHS0tLw1a9+1WESH9sZzuPxkJiYuOrGDAoKwtGjR7Ft2zb87ne/w1tvvUUzd4eGhvDb3/4Wx48fR3JyMvbs2YNDhw5h165dHnUuq1QqDA4OUo29qqoK3/3ud/GLX/wCo6OjMJvNTvlL1kJAQACMRiMtCo2JiUFpaSkmJyeX+Y8SExNRXl5OnyMRGMD68mk8sTc9InBsNhtOnDiBy5cvIyoqCv/8z/9ME5SGhobw5z//GQ0NDTCZTJTo6tOAxsZG1NXVAVjiCc7OzvaI43NkZATvv/8+RkdHIRKJsHPnThw6dIhyFs/OzqKhoQGDg4Oor69HXl4edu3ahT179rjN1CLMjytlDHO5XMhkMtot4p577llzbKFQiLS0NBQWFqKuro4KnKioKFitVszNzUGpVGJ0dBQdHR24dOkSKisrkZubi4SEBLdnL5M8MoZhkJKSgm3bttEQ9SOPPAJ/f38EBQVBoVDg1q1b0Ol0qKiocNlfqVKpoFKpwDAMYmNjcezYMTzyyCPg8/m4ceMG6urqaOuf119/nSb+kftd7/7yhF/MIwJnYWEB7777Lubm5rBv3z489dRTdGNVV1ejr68PnZ2dUKvVWFxc/FSExQ0GAy5evIimpiYIBAIcOHDAY5Xy3d3dOH/+PPR6PbZv347HH38cTzzxBMrLy5Gamor6+nrMzs5ifHwcly5dwqVLl9DR0YGxsTFUV1cjIiICERERCA4O9pgzdmRkBK2trdBqtSgtLcW+ffuc4kc2Go2YmJigdUspKSl48MEHERgYiFu3bqGtrQ1DQ0O4cOEC2tra0NraipKSEhQVFaGwsBChoaGQSCQb1nyUSiVmZmagVqsBADk5OZRSJDs7G5GRkdSsa2howIkTJ2C1WpGRkeGSwJHL5ejs7KT3GxkZif3792Pnzp3gcrkoLy9HVFQUOjs70dPTg5MnT+LgwYOIjIxEdHT0hsyh9XxvrSxmtwscs9mMW7du4cqVK0hNTcVnP/vZZQ9Yr9dDLBZDKBTCYDBgamqKZmnerbBYLBgeHkZbWxs0Gg1iYmJw+PBhjxBTDQ4OoqWlBYODgwCAvXv34tChQ/Dz88OuXbtQWlqKwcFBtLW14eOPP0ZTUxNGR0fR2NiI69evIy0tDZWVldizZw+qqqqQlpbm9jlOTEzgjTfeQGtrK5KTk/H4448jOzvbKbNuamoKb731FgYGBhAfH4//8T/+B7785S8jPDwcMzMzOH/+PE6ePInGxkaMjY3RkHpiYiKOHTuGoqIi5ObmIi0tDSEhIS5pPezkSZlMhsHBQeq/SUtLQ0ZGBoAlIZiSkgKbzQaFQoH33nsPr7/+Ok0JcAVDQ0Oor6+nfs/g4GAkJibCYrFAKBSCYRikpaXRA53D4WBwcBByudxtHDbOgnRXBbBidrLbBY5cLkdjYyPUajXKy8tx8ODBZQMLhULKhUIqxvv6+hAfH3/Xhsb1ej0++OADDAwMQCwW495770VWVpZHChTff/99nD59GsCS7Z+VlbXMVPH390d2djYSExNRU1OD3t5enD9/Hu+++y5u3bpF80pOnjyJ6upqPP7446ipqXGLL4Kgr68P//Ef/wEOh4PPfe5zeOaZZ5xyXBNTkJhSmZmZePjhh2kUKDIykpaIDA8PU45oInx+//vf4y9/+QuSk5NpwWhpaem6zMjm5mbaihlYLozUajW6urrQ1NSEy5cv48KFCwgLC8PRo0edjlixC5zn5+fpRo6Li0NCQsKy52U2m+nfGYaBVqu9bbOTukU2TcZa46/FjbweuH3FDw8P48SJE7TIzGAw0OxSvV6PtrY2NDY20grpkZER/PGPfwSfz8e99967pauE14vBwUGcOnUKCoUC5eXleOKJJzYURSC8Jo4WVXt7O3p6esDhcHD06FGHROwCgQBBQUEICgpCbGwsEhISkJKSgosXL6K1tRXDw8NQq9V47733IJfLceXKFRQXFyM7OxtJSUkuFx+y0djYiNdffx0KhQJPP/00PvOZzzhNT6JWqzE6OgqtVgtgafNlZGQs6zwRGBiIwMBAJCcnIyMjA9nZ2SgsLER9fT26u7sxMzODmZkZjI2NobOzEzk5Odi+fTt2796NxMTEVbUsDoeDhYUFXL58GcePH8eNGzeW3ReXy0VkZCQmJiYwNDSEwcFBDA4OgmEYlJaW4tChQy5TsSgUCgwPD8NqtSIlJQUFBQUIDw9f9vcTJ05gdnYWwNLayM7Ovm19kfXirPAgDAyA8z3ESV7SanD77iY1Ujk5OQgICMDMzAz1mi8uLmJkZAQqlQqRkZG0gGx2dhaTk5NO+XLutN48k5OTqK+vR1tbGyQSCXbu3In9+/c7/RLtbWJ2UZ39Kdff34+RkREAS5mmTz75JHJycla9Pp/PR25uLjIyMlBUVIS6ujq0tLSgp6cHMpkMFy9exMWLF5Gfn4+dO3eivLwcBQUFSEhIQHBwsNMhdaPRiP7+fvzqV79CXV0dDh06tCw3B/gkLL7SoiXMeSQLNigoaNUDKj4+HvHx8SgoKEBpaSk+/vhjtLa2YmxsDFNTU5iamsKFCxeQm5uL8fFxlJaWIiUlBREREZBKpQ7D6nK5HO+99x4N5RPhK5PJcPz4cXA4HCiVSlitVgiFQgQFBUEoFKK8vBzFxcVOh+oJ0T0RWsBSX7Dg4GB6mGu1WtTX11MCN2ApUlVZWXmbP8zVbirrpbJY63tuFzi5ubl44YUXEBUVhZiYGISFhdFJhISEYPfu3YiMjIRarYZIJEJYWBjCwsIQERHh1OI1m8204O9O0IY6Ozvx9ttvQ6PR4L777kNlZaVLwoYU6xHV1maz3UaKDSwlFP75z39GX18fIiMj8fDDD6OystLpKJhAIEBFRQVKS0uhVqtx9epVnD59Gh9//DH6+/vR2dmJ7u5uvPbaa8jMzMSRI0fw8MMP35Zf4wg2mw0DAwP4p3/6J5w/fx6lpaX44Q9/SH0ewJJTXaPRUC4XR2B3mFgtAmaPhIQEPProo3jwwQdx5coVfPjhhzh//jwUCgXkcjl6enrw0ksv0ULLgwcP4p577kFeXt5tzmWpVIrMzEzs3buXRo0IrShh2hOJRBAKhZTAKjk5Gdu3b0dERITTZFY2m42mUBD/jUKhQGNjIx2nr68PTU1N6O/vBwCkpqbiiSeecCnVYqUDnMPheCSPye07NiIiArt27YKfn99tHDVCoRBxcXEICwujp7RQKHSJqY+QUnsaG81hAJYWTXd3N1pbWwEAxcXFLlMT2NvQ7I4LbOh0Onz00UeQy+WoqqrCkSNHXFbfuVwuhEIhwsLCsHv3bqSnp+OBBx7A8PAw3nrrLZw7dw56vR4dHR2Ynp5GQ0MDduzYgYMHD6K8vHzFyM/Q0BB+97vfoa6uDqmpqdizZw8WFhbQ19cHPz8/mqQolUpRXV2NXbt2ObxOWFgYsrKyIBAIsLCwgOnpaeh0ujV9f0RQ+fn5oaKiAgkJCfjMZz4Dm82GlpYWfPzxx7h06RIWFxfR0NCA0dFRnDlzBmVlZdi+fTutAQSWtIzPf/7zOHr06LJ6Iza3k1AopOuZjEsyoF2h+CShbgKZTIbTp0+jqamJUovabDYUFRUhPz8f99xzD/bv3++Sv83bVoLbBY5QKFxRMpJWskKhEFKpdF0hV2812rOX9utBZ2cn2tvbodFoEBUVhaKiIpcItohNbD8Xew1pfn4eFy9eRF9fH3g8HioqKlBVVbUhDZCc5JmZmZRCIzk5mRJnEV9If38/hoaGcOPGDRQUFCAyMhLx8fGU8U+pVOLkyZN45513oFKpkJycDJlMht/85jd0My4uLuLjjz9GXl4ekpOTV5xTaGgoioqKkJ6ejtbWVshkMoyMjCAjI4Nqe4TvhZ1YyG457e/vj/T0dKSnpwMA0tPTqXbd1dWFiYkJjIyMYGRkhB4WRUVFqK6uRnR0NAIDAxEdHU1dAiTfiK25LCwsUMpVnU4HvV5Pq7eNRiN4PN4ycnUyV6lUSvuh6fV6LC4uLnuHer2eak+E0Y8I4YqKChQWFlJTaqXwNDmsN6so2Ks2CSmxJ+1kCXeIK/CksLFXdV1xsDly4NbW1uLatWvg8/morq52GAYnC5WcVmQBsx2h9tqW/dzOnDmDV155BRqNBgUFBcjLy4NQKHToXLZYLNQsJaapQCBY9h6I/8BisQBYMl+OHj2KqqoqGnW5cuUKBgYGMDU1hTfffBMffPABCgsLUV5ejvvvvx87duyAQCDAm2++iT/+8Y80I5a0kHGUChEeHg6ZTIaJiQkEBQUtoxolDd64XC5SU1PR2dmJqakptLW1ITY2FsHBwZQuYmxsDDqdjvYWi4iIQFxcHKWHUKvVmJiYgFKphEgkopm7AQEBmJiYwPT0NCYmJjA3N4e6ujrU1dXhgw8+QHx8PJKTk5GXl0e1cpFIBH9/f1gsFvq8BwcHIRaLERwcjOnpaQQEBEAsFsNgMGB+fh4ikYj+W61Ww2QyQSwWIy4uDjqdDjqdDjwej1oEIyMjMJvNEIvFSElJQXV1NaKiomA0GsHlcpGRkQEul4ubN29idHSUJpTav3u2I5hEq9wFZ32rXm8TQ0JtWw2ET0QoFK76IiwWy7JTh5ym5BQlD3thYQHPPfccjh8/jtDQULzwwgt4/PHHl7V/YZ9kMpkMKpUK/v7+KCgoQGBg4LJr6fV6cDgcurjJQp+fn8cLL7yAX/7ylwCWks5I1nBhYSFSUlKoH8dqteLatWu4fPkyPXkTExOxZ88epKen05NarVbjwoUL6OnpgdlsRlRUFMrLy5GVlUWro69cuYL//u//xh//+Eea2k/8Funp6SgpKUFmZiaOHz+O69evL3uGRLMRi8V0g5HfR0dHIz8/H4WFhTh27BiqqqoAfBLpe++99zA4OIjR0VGEh4fjsccew//+3/8b8fHxmJ2dxfe//32cO3cO09PTEAqFsFgsyMzMxCOPPILnn38eXC4X58+fx/e//33cunWLCmCbzYYnn3wSR48ehb+/P37zm9/g9OnTmJmZoXMjfiPSnQFwvLmIu4DD4dCfyXNjHwI2m21ZD3vy/NldH0hJg/2zIxS9wFLRKJlbZmYmvve976G4uNih/26zu3B6VMPR6/WYnJzE1NQURCIRQkNDERAQAJVKBaVSicXFRcrPyq6rEYvFEIvF4HK5VA0laieHs9SGg5zS5MGR6mSr1QqxWOzQZDMYDDAYDLBYLFCr1VAoFDRlnIRaQ0JCltnbISEh9MTX6XQYGRlBcHAwQkNDoVKpMD09DYPBAH9/f/j7+yMyMhJ8Ph8jIyNobm4GsFRs99FHHyE9PR0HDhygPofa2lp88MEHmJqawsLCAjQaDUJCQvClL30Ju3fvRnh4OGw2G9566y00NTVBpVJBJBJBrVajrKwMjz32GLq7u9Hb20vvcWxsDKdOnUJLSwtiY2Px1a9+FYcPHwbDMLh16xbee+89vPHGGwCWFnNISAhaWlrwwgsvICUlBSaTCb29vfj9739Ps6IJLSahGAGWEt2ioqKWPWPSe6mzsxMymQxSqZRSKrARERGBZ555BhkZGZidncWlS5dw6tQpWK1WTExMYGJiAs3NzYiMjMT27dvB5/Oh0WjQ3t6OCxcu0OssLCxgcnKSsg2QpFP28wCWEg3Zfr/5+XncuHGDshgASx0Y0tPTqaP92rVraGxspAKH+GiMRiNdK54EKegl64occnq9njrXw8PDIRQKMTMzQ+9Fr9eju7t7WTIgG5sd2fWYwLFYLLhy5QrOnTsHmUwGsViMqKgoBAYGYm5uDjMzM5ifn4fFYoFUKqUPlM/nQyqVUiFETmJ2Gxiz2UyFEPFxmEwmyOVyWCwW+Pv7Izg4mD5ccroQSlMinEhrD5vNRjNGQ0JCIJFI6KkTFhZGbW29Xo+xsTFIpVKEhoZicXGRppwDS8IyKioKAoEAc3NzdGEajUbU1dVh586dy7h/hoaGcOrUKRr2BJYySY8cOUJPNYZh0NTUhL/85S/LslQNBgO2b9+OEydOUGJ6sVgMDocDhUKBmZkZ3Lx5E0eOHKHfUavV1D9BHJtmsxkjIyN0rjabDYuLi5idncXc3BwkEglNZ2ALj8nJSSiVSod1OqR4VywWY9euXbBarRgZGaGn9c6dO/Hss88iNTWVZl53dHRAp9NBIpFQPx2Px6OCIjAwEElJSUhOTqbmYnR0NPLy8ihVplgsRmlpKRYXF6FQKCCRSGA0GrFr1y6UlJTQ9RAXF4fDhw9DJpNBoVDAYDDQMoSuri4sLCxgaGiIal7k2kKhEBKJBOHh4betVw6HQyNtROMNCAhAVFQUXZ9GoxEGg4GaS+QdMAwDnU6HyclJaDQahIeHo7CwEDabjfo7iY9Kp9NhcXERfn5+iI2NhUQigUwmw6lTp9DX1wej0YiRkRGo1WqvNFN0FR4ROFarFTdv3sSvfvUrvPnmm54Ywm2wV41JoRwByW9gf16r1dINyj4xbDYbJicnl33ez88PISEhCAkJQVBQ0LINWlhYiM997nO4fv06RkdHwTAMCgoKsHfvXur843A4SE1NRVVVFfR6PUJDQxEREYGCggKYTCZcvnwZExMT8Pf3R35+PqKjo6lqHhUVRRP/OBwO0tLSsGPHDshkMkRFRUEikSAjIwO7du2ioVShUIjs7Gw8+eSTKCsrA5fLhUQiQUFBAfLz8zE7O4uJiQk0NTVRTmZHyMvLw9///d/jwIEDWFxcxMWLFyGTySCRSFBWVkad51KpFFVVVTh27BjEYjF1zCYkJCzr0ZWSkoJnn30W1dXVMBgM9DBITk6muTDBwcH46le/ivvuuw8MwyA+Pp5WbLPTMyoqKlBUVASj0YjW1lY0NjZiYGAA7e3teOutt9DW1oaFhQX6rkQiEUpLSxEdHY3MzEw88MADCAgIoGaMWCym7JWEwTIgIAAhISH0cCHtfkkeEdsEJxnF3d3d6OjoQHh4OJ544glqfhHBRGhZjUYjBALBssZ7ZrMZ4+PjsFqt0Ol0G2YZ9BQ8InAsFgs+/PDDZbY78apzuVxYLBZ6ohiNRkRHRyMoKIjWnsjlchiNRkilUsTGxiI9PR1hYWFQqVSYn5+Hn58fYmJiIJFIoNFoMD8/D71eD39/f5jNZuj1etozyGazYXZ2FlFRUZT/RaPRQKFQQCgUIjw8fJkQsFqtVHPi8XjUpibRAz8/v2UtXG02G41AhIeHo7e3FxcvXkR7ezsiIyPxmc98Bg899BCCg4MRHx+/LEt027ZtSEhIgEajoWp/dHQ0UlJSqKnC4XDwxS9+EQ899BA9OaVSKeRyOc6ePUtV6YKCAvy///f/qGOUnI5kPKvVisDAQDz66KPYt28f9VWRkC0J7/J4PMTGxuKpp56ijuypqSkMDQ3hnXfeQUtLC41SKRQK6liOjo6mvDfp6enIysrC9u3bERoaCrPZjNjYWBqhkUgky/xgSUlJ+Na3vkUd2KRPt32YnSS+sZ3rZNOZzWbIZDI0NDTQrGjy/ux9ciqVCr29vZidncXly5dp5bzNZoNaraabNSkpCTt37sR9992HgoICBAQE0NwxtrAgjn3i2GbnidmbMCv5UEJCQhAaGor4+Hj67hz5OgUCwW35ahaLBYuLi9BoNAgICEBaWprLva+8BY/x4SwuLtJIRHZ2No4dO4b09HS6cYnJZDabaQUv+d7CwgL1yoeFhSEuLg6BgYH0BBEKhZRIm3j6jUYjRCIRtbO5XC5CQkJoOxqiZYjF4mUhR+KvYbdmJeYUu+sgiUIQVZgtcIxGI6xWK6Kjo/GHP/wBFy9eBLB0KhPOGUeQSCTUzrZn1yfgcDiIi4u77ffz8/NoaGiASqWiuU/EwerofQCgbP9rVWVzuVwolUpMTk5icnISXV1d6OnpwY0bNyjxOwDaPyonJwfp6em0nCA2NhahoaFUqAiFwlVLOYRCIe04sNa8Vsq5IVqDn5/fihnQCoUCbW1taGpqQnt7O+WzkclkVEiEhoYiOTkZpaWlyMnJQXFxMUpKStZMoCSOYUepCEQIrZbSQQICqamp0Gq1UKlUCAoKokJzNd8L4ckhQjg9Pd2ttW/uhEcEDpfLXcYml5eXh7/9279FSkqKJ4ZzGSEhIR6j2CRVxHw+HyUlJR6pCAeW2BQbGhpgsViwfft27N+/f8WFSTbDSsV4RA1fWFiASqXC3Nwczp8/j8bGRvT29lLfDZ/PR2hoKPz8/JCenk7zfcrKyjxCJOYK+Hw+YmJisHv3bmq6arVa2Gw2LCwsYGJiAjdv3sQbb7yBixcv0uxdoVCI2NhYxMfHg8vlIjg4GGVlZfjyl7+84TVCgg3EqU2SXFcTHmKxmPrRSBoACZispB0RrSsgIAAMw6wZad1MeMxpTFRC4gPYqjalu2AymWjdkVqtRnx8PB544AGHxZMbxcWLF3HixAnMzc2Bw+GgsrISe/fuXT3/wUHCIMHExAQ+/PBDXLp0CT09PZibm6OheIKYmBhUVVXhwIEDtJNmdHQ0DYW7E+vtocXn86n2NjAwgMbGRigUCjQ1NaG5uRlKpXJZW6K0tDTs3r0bBw8epLVWLS0t0Ov1G6YFBZYEuVKphFAohL+//23CxpEAIZoOCQCwTbSVnolAIKA+wrm5OTQ2NiI1NRWpqakbvgd3w2MmFYksAbf3zLkbYbFY0NraitHRUQQFBeHBBx9Ebm6uR06ay5cvU+bAqqoqFBUVucSLzD7x29vb0dbWhv7+foyOjtJonUQiwb59+1BeXk6dsykpKdS89RSViH2uirOCR61W05D4jRs30NXVheHhYeh0OkxMTNADLyIiAiUlJSgpKUF5eTnS0tIovWl6ejoUCgXd7BsFl8ulEVhHmg3xDxJTiIAcDkTQrJUqx243bLFY0NbWhgMHDnx6BA6Hs0SgTTYBKWK7m7GwsIDW1lZMT08jLy8Pjz32mEcIkObn59HR0YHJyUnw+Xzs27ePtgtZCTqdDlNTU5Rwe2JiAoODg+jo6FiWjxIfH0+1ltLSUuzduxfl5eU0VcBbIE5Y8rMj6PV6zMzMQC6XQ6lU4tatW7hx4wZu3LiBjo4Oqp35+fkhISEBkZGRkEqlKC8vR0VFBQoKCm4ro0hJSaFZ1+44KIh2v9I9rCbU2FreWsLPYrEsSxAk/sbVQHyd9gmrnobHfDgksgSAhhDvVphMJvT396O1tRUGgwEpKSnYuXOn28fRarWora2leTfsYkQ22NmqCwsL6OzsxOnTp1FfX4/h4WGoVCqqyYjFYsTExCA1NRWHDx/G7t274e/vj8zMzE1pNMfOwrU3P0jUjMvlorW1FWfOnKGMhaTdDPl+eHg4MjIykJaWhurqapSUlCAkJATJyckrshKwa6zceT/seyD/Ju+ItNJd7XtrgZRY8Pl88Hg8ZGVlrUn0ZTKZsLCwAIlEsiyx0NPwmIYTHh5O2eZnZmbuOhpR9uIZHx/HxYsXIZfLERoa6vSiZW8iZ04ZlUqFd955B4ODgxAIBKiqqkJWVtZt4eOZmRlawtDd3U0jMezEwfj4eJSUlKCqqgrbt29HcnIywsLCaNq8J1rHuAL7DOa5uTkMDQ3RiFlTUxP6+vqW+WRCQkJQVVWF0tJSlJaWIi8vD/7+/pTDeCtRmpjNZigUimVJrusFh8OhSYVcLndZi5yV/GEikQjh4eFeK4Ym8JjAIdIWWFJ/7yaidHubur+/HydOnKCcN3v27HHpes68cLPZjL6+Ply+fBmLi4soKirCc889h/T0dMzOztJ0/t7eXnR0dKCrqwu3bt2iPYtIN4H4+HikpKSgrKwMqampSEpKQnx8/G19qr1V87aa6SSTyXD16lW0tbVRc3BsbAyjo6NUeGZmZiIrKwtZWVnIzMxEamoqEhMTERcXt6mUteycHOJSsKcZcUThsh4QLYlod4GBgdSdQbQo+zG8LWgIPCbu2RXIJPfmboROp0NHRwdaW1vB5/OxZ88e7Nixw6nvknA1+Xk1DA0Noba2lmY+x8TEIDMzEz09PTh37hwaGhrA4XBw9epV+hmpVIqIiAjEx8ejrKwMBQUFyMnJQVZWlsMwNgnjkp7Y7liQ7AplR9oF+74NBgPN9Far1aitrcV7772HpqYm+hmBQECrv1NTU7F3715UVlaisLBwS7W2ZeduOdrcfD4fQUFBbvOdBAQEwN/fHxqNhuaFbUV4TMMJDg6mNS72Fa93OtiL5Nq1a2hubobNZsO9996LHTt2uLTwnV1w165dw9tvvw2GYSAQCKBQKPDrX/8ajY2NuHXrFj3xSeJXUVER4uPjkZGRQcsSSJ3SaiAnr7uia2zOl9UcqABw/fp1fPDBB6itrcXk5CQUCsWyeqbw8HDs3bsXn/3sZ5GTk4OoqCiEhYUt0x7YZOJrhZM9CWKWkoQ/R3BmXs52vwwNDUVISAjm5+fR3d2Nubk5JCUlbRkTksCjxZtsM2qzq1Q9AYPBgLfeegunT5+Gv78/Hn74YeTm5rp1DIZhMDo6iubmZprlyzAMurq6cPPmTSwsLABYirDk5ORg7969KCkpQVxcHEQiESQSCQICAqjwXw0kHOtOpn4ej0fVe/trarVa6HQ6yOVy1NXV4f3330drayvtUkBqmIqKipCcnEx7P0VHRy8r+LW/BwJPMq+sFUVj5z1t5Fk6G6kiFKekEHSrHvAey8MhNBDAUo7E3eY0Zhf+6fV6JCQkoLi42C09ne0xOjq6rKKcOJvDw8NRXFyMvLw8ypZXUlLiVEO5leBK7ouz1yMbj1RMK5VKDAwMoK2tDXK5nPYJJ34oqVSKoqIiVFRU0Nqs+Ph4xMTErKmh2ftJ3HUvhEeYhMydua67xnbmOqTej8/nIyUlxaXERVLO443sZI9qOASzs7PLuEfuBhD2/rGxMQBLjeSd7TnkKrhcLgICAijfsFQqRXZ2Nvbv348dO3YgPz/foz201wtSxWwymbC4uIihoSEolUr09PTgxIkTuHLlyrKK7NjYWERGRiIjIwNf+cpXUF1dvW4ib3cKTpLIyuFw3GpuuhMks5/P5yMvL29ZkfBaYPuaPG2JeMyHExgYSNV4wjtDCizvBgwPD1PSclKc6spLdhYcDgc7d+6ExWJBQUEBcnNzkZ6ejqioKPj5+dH6nNXgDkL49YBwHff09KC7uxuNjY20MJck5pGcpcTEROzYsQPZ2dkICgqiAnargL2hPYn1MvKRBpOkxzq7LGUtsP1fnhY6Hnt67LA4yTXxMpupxzA3N4fu7m4MDQ0BAIqKinDs2DGPhWE5HA4NYxPWRFe/761nPzQ0RMsLrl27BplMhunpaczOztJkw6SkJNTU1NBK87S0NEpFshnJhmuBw+HQZo6eDiU7u9mJWU32GKm/IkWrrvhwiN/ujtVwCNi0CJsVLfAEenp6UF9fD61Wi9jYWFRUVDhFr7ARBAQEuCxo2HDW+egq1Go15ubmMD8/j9nZWVooef36dUrP6e/vj4iICHC5XKSlpaGmpgZHjx5Fenr6lhQwjuCMGeWO9riuFK6yI1hsOhVCm+Is7vjEPwAONZo7XeCQCMDFixdp/+6DBw+uyEOzmVhvB4q1rskONxMmv/Pnz6OtrQ1jY2OQyWTLGtoTtsLi4mLYbDYadXK1GtvZrgCbBZJ3Q3ic1jNH9vN1RgiwzWOj0UjZBL2hqawXHhM4bHuX5GHc6bBYLHjvvfdw9uxZzM/PQyqVYv/+/SgpKdnsqd0GTyw4pVKJ2tpaLCwsQC6Xo6+vD/X19ZidnYVWq6VCITo6Grt27UJNTQ2KiooQFxdHCdYkEolTIXp7ENL8tfhkNgvs7Pr1agyu+NfszTuTyXRHsDN4TOCw1TqiGRgMhi3lCFwP6urq0N7eDi6Xi4qKCuTm5m563ZEnoVKpIJPJMDw8jNbWVsr3Mzc3h9nZWRgMBkgkEqSlpSEhIQEJCQkoLCxEWVkZcnNz3eZI34pCxh6ecMivZmI5+j2JqH3qBA6xZwlIYtKdjMXFRfT09ECtViMuLg4PPPDAlmTGXy9I/pTRaITFYsHExAQ6OjooLWdXVxd0Oh04HA4kEgmio6ORk5OD2NhYpKWl0dKJ5ORkt/sF3JFE5024o/8TuYYzfh02RS6h3N2K8Cjjn33U5k5ZLI5AaqZmZ2cBAAkJCThw4IDHcm82A3Nzc5S3uKenB83Nzejo6KCFiMASgVVpaSl27dqFyspK5OTkICgoiJo6nioK9JTT21MghZsb0X5duVeSS0OaBrBLQrYSPJaHExQUhISEBAQHB1M2sq0qdZ3B0NAQ/vCHP2B8fBzJyck4ePAgUlJStlytiquYm5tDS0sLOjo60N7ejsHBQahUKszOzmJxcREAkJycjKysLOTn56OoqGgZUbqjVAB7xyfRdkkmrDPE4Pa4UwTNZvoqCY/Q/Py8VzL71+PI99hu4XA4CAsLox0qvZlw5gn09fXh9OnTMBgMyM/Px969ezeV/mC9sFqtUCgUmJ6extTUFG7cuIFLly7h+vXrmJiYoJ8jLXezsrKQl5eHzMxMSmi1mpBlJxkSkH5M7Mppb2W2ehvkfrxN/UB8phwOx2sk6jabjfagJy2g1oJHj2fSKAwA7ed0J2J6ehpdXV3UnMrKykJubu66yb69DVJioNfrMTIyQp2/HR0dGB4ehkajoeRUgYGBtGyipqYGxcXFLvU4sj9YSLjYZDLRPJE7Bevxw2zE9NuI34dw7pD2SN4odSEtkgwGA23NveY8PTkh9mlnsViW1Ve5CmKfbkYCYXt7O1pbWwEsmRfbtm3zSJGmJ0DoT5uamnD58mVcv34dIyMjMBgMMJlMEIvFyMvLQ3Z2NuLi4pCbm4uDBw8iODgYIpHILaUohP6StEsBbk+ksy+/YP9/M2BP5u6N8TQaDbhcrlPlKvZIT09HYmIiBgcHb+PD8dTByOfzKUWpsxqVRwWOn58fpFIpALic/WgPb6SVO4LNZkNjYyOuXr0KgUCAo0ePbsm8Gzamp6fR39+P/v5+3Lp1CwMDAxgYGEB/fz9MJhNCQkKQmZkJgUCAmJgYbN++Hbt27UJMTAxCQ0PdSv5ONizxLwCgG5n9PtnlF94sxVgJzqw3d1dZk8N0PcKB5DcxDEOjjGysJnTYzR9d1eZc9WF6VOCQ/sqA48xjV7AZpx7pFX79+nXI5XJER0fj8OHDHmtutx4QWgJC+0C6MbS0tKClpYXSWggEAoSFhSE+Ph5xcXEICgqCwWBAYGAgYmNjsWvXLo/nSJGe5yuFe+0F0GbDmVA0aVa30fkS38t6D1aTyUTrp1Y63FcSOt7U5jyu4ZD6n41qOJthUun1elqACCyprdnZ2VsmedFms2F4eBhKpRLDw8P4+OOPUVdXh9HR0WUqdVhYGPbt24f9+/eDw+Ggv78fN2/eRE9PDwwGA2ZnZ3HkyBGPdSMFlvdackeOylaAu8sINhLx1Gq1tELcPtt5rfmxtVBPw6MCh52/QQTGRsAuVvMGJiYm8Otf/xodHR1ISEjA0aNH3dKRcSOYnp7GzZs3MTAwgFu3bqGlpQVyuRxarRbT09PQ6XQIDg5GYWEhCgoKEBoairS0NFRUVMBkMuHNN9/Em2++CZVKBa1WC7FYjLm5OWi1Wq/M/06PVrLhiSgb0VYtFgukUqnT5lp4eDh17hOfmbNwNneK7F/7e3blGXhU4BiNRip1FxYWlrUpcRWrnSauFLw5C9IylRB4FxcX49ixY5tS3SyTyWg19qVLl9Db24vh4WGMjY1BLpfTz5F+34WFhcjIyEBqaioCAwMRHh4OqVQKlUqFoqIi1NTU0Gp3UnfjLZ8J+xDyZgO29WKtA87+b+7Q3pwxq+zHIRxCAFyyAoivx17oOOJSJu+NHW10Veh6VOCYzWaa7Dc9PY25ubl1X4uo5PYg9qczRNOuoL+/H6dPn8bCwgKio6NRVVWFzMxMt1x7LZCIntVqxcLCAt555x309PRgbGwMtbW1y5rYhYaG0lqmI0eO4LOf/SwSExMdXpfwLldUVOD73/8+3n77bSgUCtp90VNgl7mQeyP+D3Z3j62AlXxMzqwr+xyk9axFHo9HQ9qrCZ3VBJuzhwfDMDRyyOfzb3MV2LeYYT+X9VoaHhU4PB6P3sTU1NSy09id8IQNOjw8jPr6ejAMgx07dmD79u1uu/ZaGBoawsjICHp7e3H16lXU1dVhenqavnCBQICsrCzs3LkT1dXVyMrKohGm1fIvyLuQSqXIzc3FuXPnMDc3B4FA4JYC1JX4YIxGI9RqNTgcDvz9/SESiWA2m6FSqSAUChEUFORVoUM2jKMWLqRVjtlsprlJ3vQbOruO7T/DpvF1NkDD4XAgEAgctgYmBzx7HLJGNvIsPCpwNBoNNBoNgKWe2KTDgDtBXpA7TYKpqSlcu3YNU1NTkEqlqKmp8ajAMZvNuHnzJu2N3d3dTftmT01NwWg0QiwWo6SkBCUlJUhLS0NqairS0tIQExOzrg3rTcoQ0rmBtE4hptRabWucbZHiKtZaLyRitB4WPG/5GO3HYDuKXaHIIAmDK43BHscd9+VRgSORSBAcHAwOh4PFxUWPOibd9ZIZhsG5c+fQ2NgIYKlIMzc31+1N1hYXFzE9PY2JiQmMj4/j+vXraG5uxo0bN6ivKyQkBElJSQgNDUVRURF2796NkpISxMfHb8iXZLVaoVQqaScCd24QR4uXx+PB399/mW+Cx+NBKpWuuvENBgMltFoPD85qZsdqPsGNtspxl9BhU/OupYGyfTiEjMsZrOSqIH9zNzwqcEhDtnPnzkGv1zv9EDYTBoMBZ86cQXt7O/z9/VFUVOSWinByWpvNZiiVSrS0tODEiRO4dOkSZmZmoFKp6GcDAwNRUlKCiooK5OfnIyMjAxkZGTSnab0gJoTNZoNWq4XFYnGrObrSNVaKgqw0LnlWGo0GBoOBlsi4qmmQ3BJHc1vrnjfq9HUHSBdUq9WK8PDwVa8bEBBAk2yVSuWy9bSV4FGBExgYiNDQUABLuSAb2TDsamNXolGuRA1MJhP6+vrQ3d0Nk8mEwsJCfO1rX3NLop9arUZ9fT0uX76Mzs5O9PT0YGpq6jZ2fT8/Pxw7dgxPP/00ysvLaUM4d5QYzM/PIzAwkDomSV7MRnOkCNxpAlmtVgQEBCAwMBACgcDlCOR6c2Q2EulcTVtYD8xmM+1yERYWtuq9zM/P0+p+vV4PtVoNk8m0ZXLGCDzOrUAe0kaoF9cLtkrqzAk5Pz+P8+fPQyaTISIiAjU1NSgsLFx3IVxPTw96enowNDSEqakpdHZ2ore3F5OTkwCWTqX9+/dj27ZtmJ+fR0tLCwYGBjA5OQmTyURPLHeBHRESi8U081elUmFubm7F6JYrcCTgjUYjdDodFZwrbUq2sCIO262gaTgDIrDXs8ZXSmoVCoUIDg6G1Wpd814IcRqw5MoIDAx0WtjYcymvNZbNZoNOp4NAIKDZ0c7CowKHrUqzH8h6r7UetdoRXcJKmJqawoULF6BUKrF//37cd999LlFQmEwmqNVqKJVKjI+P48yZM6itrUVnZyflJxGLxYiNjUVgYCB27dqFY8eOYc+ePZidncXLL7+Mn/zkJ2hsbMTZs2eRnJyM7Oxsp8dfC1KplC4oNoWBSqWCQqHY8InI9tGw/RgWi8VhFqyjd0lygjYaGfJEbpYz461HuyPau/1mFwqFTr8PiURCD0apVHpbhf9aYXQi9JyZv9VqhUajgb+//7J2UM7AowJHKpVSk0qn022YgMvVxUPasjoDi8WCoaEhdHV1AQDy8vKwY8cOpxePyWRCT08PTp06hQsXLqC/v39ZLybgk6ZvNTU1yM/Pp32mGIZBamoqysvLERERgampKbS2tmL79u1uFTjs52dvmrprYzpKhBOJRNQPZrPZYDAYqLZl/3mj0QitVks30Ho1BqvVCqvVSvtJeRob1cQ2aoolJSXR0hRXsvrZgshZE5TL5cLPz29FR/5qgstrtVTeTGlfz2kjk8nQ3t6OqakpbNu2DaWlpWuaUjKZDN3d3ejr68PNmzfR3t6OoaEhypsDAFFRUcjPz0dNTQ1KS0uRkpKC0NDQZSovmWNERAQyMzMxNTW1zOHpbpD8C7am4Y5GhY6eO9lMxF8EfMLPY7/RSLjaaDRCKpWu+/7JxnF3/gwhnDKbzbe1/N2I890dTejY3TD8/f1vi2qtdG37tBJnBQ5JaXB0wKwWpfOowCGnDPl5I3w4nkZzczMuXLgAi8VC25vYw2QyYXJyEuPj4xgcHKQ+mf7+foyNjcFkMlHO34iICKSkpCApKQmZmZmoqqpak/bBz88P0dHRdAGyF3RdXR2KiopcIsNaCfYCh5i77mD6XykEbf83R50hiSnl5+dH144zGdDsGh8Oh7OM/c4ZIWCxWGAwGGgN0no2vrd9TY4q7cm//fz8XM4cd2UOHM7KtBRrPW+PChy9Xk895yaTyWthcVdOGuI0vXjxIpqamhAaGoq9e/dSU8ZsNsNms0GlUmFgYAB1dXVoaGjA9evXqSbD4/EQGBiIiooK7Ny5ExUVFcjKykJaWppLGbz2QoaNjz76CA888ACeffZZfPvb394QZw05/YnA0Wq1WFxcdLo97EqnoSuL1pH2QQRMSEgI1Go1zGazSwKHbDqihRDVf615mUwmqFQqhISErKoVscmxNoObiWAtTdTVSK67sdrYHhU4hFqSTMIbD4HY786qqRaLBcPDwxgYGAAA7Ny5EyUlJRAKhbBarWhra8ONGzfQ1NSEhoYGTExMUEb8kJAQSixeXFyMnTt3IjIyEkKhcBm9qrMwGAxQKpWw2Wzw9/dfltwnkUig0Wjw05/+FC+//DKefvpp/K//9b+Qnp6+4vVIdMNeAJMFydY8FhcXnfKxuSOjm2xc+3fDFrbOcuQCn/DskOuJxWLaZ9sZIejv7++UYAK2RrW7o/H9/Pxo6sSnshEe8InTmKhg3soJcDWS1dTUhJGREUgkEsTGxuL69eu4cuUKWltb0dnZCZlMhrGxMWg0GpSVlaGoqAjp6emIjo5GYmIiYmJiEBUVteHEvOnpaXR2dgIAMjIykJOTQ/8WHx9PfzYYDHj55Zfxm9/8Bp///Ofx93//9w5NQEfaktVqRWtrK86cOYPp6WkASxrOa6+9BoFAgEcffXTVHubu2myrmV4A1tQMSSdOez8YAUlyJD9rtVqIRCL6eXIYEsc0adJInhmJHAFLAtJsNsNkMlFaTfsxzGYzbfYILDm/zWYzdawKBAJIJBIEBATAZDJhcXERer0eBoOBfoc0DSTXJdo1gNv8RcBys2pychIjIyMA4LWuDeuBx53G4eHhEAgE0Ov1XuFccVWTmp6exvnz5zE5OQmBQICxsTG8/vrrGBkZQXd3N4xGI4RCISIiIlBYWIgvfvGLqKmpQWpq6m3jEO2KqPT2vCTsBcLlcukpxOFwMDc3RzsnSKVSZGVlISEhgYaJ7X035eXlGB0dxWuvvYbXXnsNhw8fxje/+U0UFBTQubAXLNFouru78f7776Ourg4LCwv0xL569SrS0tKQnJyM9PR0GI1GMAxDQ6wMw9CQP9lAPB6PVrUTM4346tjjsp3T7IpjALRsgTTYI9QHRKCQxEQA1PEsl8uhVqvBMAxllSQaE8MwmJ2dpXlMfn5+mJiYwOzsLIKCgpCUlASbzYapqSlotVoEBgaCy+VCoVAgICCAOkN1Ot0y7Vyn01GhlZSUBL1eTwWKUCikqQUajYY6vk0mE42SCYVCBAYGIjIyElqtlnIY6XQ6qjHHxsbS++XxeMs0FWLqsZ3ybEf/xMQEmpubAcBt/jhPwOOJf35+fhCLxZifn8fAwAAUCgWCg4OXRS3cUWrvCMSBSHwD9jwecrkcdXV1uHjxIn3pp06dWnYNPp+PHTt2oKqqCrm5uSgvL0dgYCDkcjmsViv1NZBFYDKZMD8/D4VCQfNtyDzIYuHxeFQIWywWCAQCnDt3DufOnQOwVL8lEokwNTWFhYUFWK1W6i+KiIiAXC5Hf38/fvjDH6KhoQHnzp3DyZMncfLkSfzrv/4rUlJSYDAYoFAoYDAY6HharRatra1obGykvjXSqSEgIAByuRxvv/02AgMDMTQ0BB6PR+/ZZrPRljJ8Ph+hoaHw8/PDwsICHUMsFtMsV5J34+fnRwshyftk8+/ExcUhNDQUg4ODEAgEEIlEsFgsUCqVVJiRvuUkWXFiYgJarRZcLhf+/v4IDAykRN6E0sNkMlFfy+TkJObm5mivNJvNhpmZGWi1WhoNUyqVCAoKoqYVO2+MCBySvJiQkLDs3QkEAiwsLNB3tdp6DAsL8+jh6+fnh7CwMK90bVgPOIyHmZcaGhpw9OhRzM/PIzMzEwcPHkR2dvaysBopViTFnmKxmG7mmZkZzM/PQ6vVwmazISoqCv7+/nTREm2CJHmRBUAWiVKpxOLiIq2qFggE9PTv7OzExYsXcevWrRUFG5fLRVRUFBWSpNqZaCgGg4Gq3kRgklPe3rlon9HJFn5KpRJzc3NUOJL5kvs0mUwYGhqCWCyGUCjE4uIi/P39acq7VqulHMXkJGSXLJATkXzOEUiiGY/Hg16vB4ezRCcREBAAm80GjUaDhYUFmoRJNjjxmfH5/Ns0HHJ/bIHDPmDY47HD50Q728zGcq5CIpEgMjISfn5+UCqV1GQlEAgESEhIoAKNYZb6gBMTiph1JAdJo9HAbDbTjGOdTkeF7OTkJLKzs5GbmwuTyQSZTAadToekpCQ88sgj2Lt3r1vJ8N0Fj2s4JpOJbsj+/n7Mzc0hJiZmWW0QUd+FQiECAgLowtXr9VhYWKBFfDabDcHBwRAKhVSdJAuebGI2f4nZbIZGo4FOp0NQUBDNjCQqLzmVVpO5NpsNcrkcCwsLq7ZPZZsLq4H4AIigJJEhqVSKyMhIcLlcmEwmKBQKyqVs/zzZApVsVKIdEH+Z2WymmgfRMEh+S1hYGH0WwHJ+GHaLWg6HQwmzgoKCEBcXR9u9EKFCzAqSZU1KF4jGR+5Vo9HQw4CMazAYKAlXYGAgfdfA0kktkUgglUoREBAAPz8/ml9CtAOGYejakkgkEIlEWFxcxMLCAnW8k1wwhmEwPT1NSwjIWgkNDYVIJIJarYZKpUJwcDAiIyNpoiqJdBFhTExLdv4KwzDw8/NDcHAw7QmlUqkwOTkJrVYLoVBI+7JFRkZSU9Rms1GBQ9arQCCgnEFarZYKnMDAQOj1ejqfmZkZJCYmIiUlBRaLhSaZhoaGYtu2bdQftNXgcYEjFotRUFCA0dFRytVK1HWS80DIjng8Hg1nkr+RTUw2FdlkbPOLfIZt03K5XMosJ5FI6AnNTj6Li4tDRUUFZmdnoVAoYDQaqW+CqOjz8/OIjY1FcHAwDAYD5HI5TCYTVV3JZ6VSKQ2vqlQqGAwGurHpw/5ryDcyMhIGgwFarZaSX0dHRyMwMBA2mw0mkwlGoxEajQaLi4sQCoUwmUw4c+YM/P398cwzz2B8fBzvvPMO+Hw+Dh06hIiICKrxiEQi6PV6zMzMQCAQUG5ctVoNi8UCkUiEoKAgylHjSIsgPhHyt4iICOpHIpXmpGRBJBJBp9NhZmZmGQ8vn89HeHg4fW5k07E3rs1mg0QiQXh4ODV9iG8mLCwMkZGRdOywsDBIJBLMzMzQd20ymcDhcBAeHo7AwECaJ0UKHoODgxEUFASz2YzBwcFlKQEikQjx8fHw9/fH7OwsZmZmEBkZibi4OOrQ5fF4CAgIcLje2HDkDjAYDNDpdPD399+yJo634VGTymazQa1WQyaTYWJiAgqFAvPz8xgbG0NkZCTi4+MhFAoxMDCA4OBgxMbGYnp6GiEhIQgLC4NAIIBcLqdSnpxYJBeCz+fTaIPJZIJOp1t2Yg4NDUGn0yEmJgbh4eHLNCObzYaAgAAEBQVBpVJhZGQEOp0O0dHRyxqR6XQ6hIWFQSqVwmw2000rFAppcaVQKIRYLIbFYqG2vtlshlQqXebMJH4O0j+IEGYTByfZiMCSQCSc0MQ0qq6uhtVqxdDQELhcLr797W/j5z//Oaqrq3HmzJnbckjsfWPsV80OiTuzgdjhYPbniV/K3lSyv44jqgj25+2doOxwPnEmOxqf/JttstknArJNXfv7Itd11JvJlexbNtgO8/Ve426FRwUO22dBnHAmk4l2CyC5Fmq1mqqS5MQkpy8xpdjmEtlY5IWSDUk0GpLnsbi4SPsek/AnWwNiLwISdSCfYy9SdjjfmaZhniocTElJwcjICL0Hg8GA4uJi9PX14ec//zm+/vWvu3U8Z/NYNgvELHFnuoVOp4NaraZmnDuygF39LrC1BRQ5LNfDAOFxp/FWBckwJsKPZJluZbz++uuYn5/H3/3d39Hftbe3Y/v27RCLxWhpaaEZ0htduCaTiWplqyUw2msTzoDtMyImzlqfJ2MxDHObc5ocTu4AocUlIfWViPvta8bchbXem06nw9jYGMbHxyEWiyGRSKhpbrVa6VqOi4tDRESERwQX8T2tpyWx1wUOwywxufH5fLcuFDaIM9O+dJ4scoPBQBvBTU9PIzQ0FJmZmUhOTkZAQAB1qG7lU4aNF198ES+99BIqKytRX1+/rOHcRosCVzutyUlH8kbcQcRuD6K5su/J3r/nzU3PzgvyVvY8G8PDw/jzn/+M999/H2KxGBEREZienoZKpYLFYkFAQADS0tKwf/9+7Nq1C6mpqW5PuHWUSOksNkXgEMewK9W8JILi7KJ2tFG0Wi2uXr2K119/HY2NjZibm6Ont1gsRnh4OHJycvDoo4+iqqrKo55+ts9jo4vWYrGgqqoK165dw/e+9z1897vfdeivcfWazmgfJJpIwrXuBFkrhK6C+LhczSQH3CuU1qPVuQsymQxvvPEG/v3f/x0zMzMIDAyEVCpFZmYmQkNDodFo0NXVBZPJhPz8fDz55JN45JFH3N7Acb2tgT0epbIHyVIlP7vyPYZhMDAwAKVSCbFYjNzc3BUFkP21NRoN3n77bbz22mu4cuUKSktLsW/fPoSGhsJqteLcuXOUXkKj0YDH4+H+++9f932uteGJOUByUVa7Djty5wh8Ph9//OMfUVxcjJdeeglHjhxxWOrgClZaTPYbfqW6KHeACDxCh0p+Z5/js9Y1CIh24qwZt9KBsJmFkSEhIdi2bduyEo2Kigo8+OCDSE1NhUqlQnd3N/7whz+gtrYWWq0WaWlp2LVrl1tdBut9Bl4XOMD6ThuySKanpzE8PIygoCBkZWU5pfGoVCqcPXsWv/rVr9DU1ITo6Gh86UtfwtGjR2miXExMDNRqNW7evImmpibs3bt3HXe2HGuZI+y/r3YSO5P8lp2djR/84Af4h3/4BzzzzDNoampyGIp1NM5q0SVHc2b/fS2BudbYa4HQVbDBdtw7C2JOs1Mw1vo8EU6bKWDsIZFIkJCQQN9tSEgI9u3bhwcffJB2Fjl8+DD0ej3+/d//Hc3NzTh//jzi4+NXLfT1FrbOk3QCPB4PiYmJKCwsRHZ2tlPV2IuLi2hoaMA///M/o6mpCfHx8XjppZdw+PBhGnrn8/nYuXMnFTKJiYkbNqfsQ7n2IKH0tTYrh8Nx6nMA8Pzzz2Pv3r1ob2/HP/7jPzo1T3bCH1uwsVnz2HMhf1tPBjCbY3ozQO71TspetodOp8PExAQtHREKhYiKilp2TxwOB9XV1Thw4AAA4OzZs2hvb9+M6d6GO0bgENMiKioKGRkZSEpKckpFlMvl+OijjzA2NgYAKCsrw9GjRxEZGbnsc0lJScjKykJAQADuvfdelJWVeeQ+VoK7/AGvvvoqgoOD8dOf/hQNDQ1rjmOfYUxAokD2OTcbERrsNImNgETOXNE82OaZM8KbnYaxlSCTyXDy5ElaCxcbG4tt27bdVuFPEkyBpUhmb2+v1+fqCB4XOO5YYABoUR7pUyQWi9fcoCaTCa2trTh37hy0Wi2Sk5NRUlLisMYkKCgIVVVV+NrXvoajR48iJiaG5gDdSUhOTsZPfvITWCwWPPXUU7RUAHC84YkmZq+NreTUX0tzWw3uoNIkc1iPgGZnGTsSsiuNwwaJzLmDo3s9kMvluHbtGi08zcjIQEJCwm2Cka2dGo1GLC4uOl1B7q496wheETjuUKNJOHtxcXHVmiY2bty4gXPnzqGvrw8AkJWVhcLCQodChM/no7y8HC+99BLKy8sBAAqFYkvToq6Ep59+GkeOHMHIyAi+853v0N87MinIJrQvNCW0C/Y8LMT/4ax2wR7THQLHnRvBUU9tZ0DyUFYSOBuZo70Zaw+NRoPZ2VlYrVZERkYiNTXVYRfWhYUFKBQKAJ90PnVWWyORR51O5/b173GB4y5TQSAQICYmBnFxcU633b127RquXbtG/52dnY3y8vIV50MiLuRn4pD2hs/B0RirjUucmiud0q+++irCw8Pxn//5nzhx4gSAjRF9rxc6nQ4qlYrWTXkDzph9HA5nXblWJMpK8rUcwWw2r2ujkox8nU634rPSarWUp4dk6zu6T9KXHgBCQ0NdIoczGo2YmZnB0NAQNd3cBa8JHHeo0Y5OV7Zz0/7By2QyjI+P038TsiZn5iIWixEUFOS1BEAOh4P+/n78+te/xn/913+hr69v2bgrmQArqb/h4eH45S9/CQD4yle+ApVK5RGBs5Yj1pHzeSNw19zZpuR6vkuKfFc6KNZzSJGI30qtbebn5zE+Pk65kWJiYpCRkQFgyX3Aph0ZHh7G0NAQANCsY2dB2voQqg13witO483K2GUTt5OqaWcTBz2ZCb0SlEolrl27hqamJszMzNz2d/tFvJY/5ZFHHsHTTz+N8fFxPPfcc/Q7nsrMdQSBQACxWOy1/lCA8/e4kfmsNsZGusyu1s1yfn4eU1NT1JTLzs5GYWEhOBwO1agsFgtu3ryJ7u5uyOVycDgcxMbG0r5gzoCQst1RAseTjic2iHPTkYOT1MMAoBXjrvoevBnCjY6Oxt69eykZOxv2TtyVnL32+MlPfoL4+Hi89dZbeOuttxx+ZiPRI7Yj1hHEYjGl7vS2wNmor8iZZ+JoDE9FtxQKBebm5gAsabCFhYVISkoCh8OhzJpGoxFnz56lDR25XK5b0jzcBY8IHIZhMDU1BZVKtWk5F2QeJHkrPDzcJTt2I9GY9SI2Nhb3338/PvvZzyI1NdXhnFxFcHAwXn31VQDAc889t8zEBJb8DfPz8xgdHcXCwsL6Jr5OrEfIkb7W7nZmOtIe1xJaK6UUeAqNjY2or68Hl8vFrl27kJWVtWy+wNLzaW9vp2yDfn5+2L179zJC/s2ExzQcb2/W1ebA4XAQGhpK+WscYXh4GJcuXaIhR2+DYRhKJUlItNyFAwcO4Otf/zpUKhW+8pWv3DYu6UjgbeLt9Y5rn6TIxnrzg9aTEMjWNr2BiYkJTE5OrioIJycn0dXVhbm5OQiFQtx3330oKipyGMnaDHhE4HA4HErpuZkIDQ2lvbvZ1JaOcO7cObzyyiu4dOnSstwVb4HUCHlq0//gBz9AdnY2Tpw4gZdffnnZuIQBkF0K4QmT2P6aRHC4Oo4nGr2ROTgzF4ZZYhokNW7eivwRnyQxpe2fwczMDOrr63Hr1i0AQEVFBZ5++mkkJiZ6fG7OwmMaDmHm20wtJy8vD9u2bQPDMFAqlStqLnNzczhz5gxOnz69KdoNAfHTeAJSqRSvvvoq+Hw+vvnNb9IeRgKBAEFBQYiMjFx2Cq6mRawHNpsNRqNx2TUJ5agrDQMJp+9qrWZdBQmRO6OVE41wcnKS5rl4a42TXlcikQg1NTXIzMxc9vcrV67gt7/9LRQKBfbv349/+Id/wP33379ltBtgk4o3vYXc3FxKSNXW1kY3GRtDQ0P4j//4D5w/fx4SiYTSnt6NqKysxDe+8Q388Ic/xFNPPYXa2toVw/7uFnwklOxqwaW7KDzcBeIkJ3zWwNrMABuBRqPBzZs3cebMGdTW1gJYYqe8fv06zbrX6/UYHR3F5cuX0dnZiYKCAnzhC1/AoUOHtsxzI7irBU5UVBQqKipQWFiIjo4OnD17FvHx8ZS3eGZmBpcvX8Zrr72GhYUFpKamIjMz0+2hwM0GqYsSCoX43ve+hzNnzqChoQE//elP8Y1vfMPhd9ydq7MeMjBiYm5GwuJqIMTqBJ5i/wOWtJrh4WGcOXOG0rIIhUIMDg5CqVTSwIhGo4FEIsHBgwdx6NAh7N+/f0sSt9+RFKOu0BwolUqcPXsWP//5zyGTyRAeHo7k5GQIhUIolUqMjo5ienoaHA4HDzzwAP7t3/4N0dHRLi8eT55y5Prr2bgMs9QSR6vV0kTG9vZ2VFVVAQBaWlqwbds2t8/Xfg6ktMGVZ0M6QwBY1kxvs7DSunOVFMwVzM/Po7m5GX/605+wuLhIKTaioqIQEBAAkUgEsViMxMREJCcnIykpCYmJiVtS2AB3qMAhtJPEHFgrdKnT6TAyMoKGhgbU1taiq6sLYrEYO3bswL333kvrTCIiIpCdne3ywjabzbS7AmGmczfIQiNtXlzxexCBExgYSL/34x//GN/85jdRVFSElpYWl67nLXhaiLsK0vRwJa5jT4D4vkhbYEK3yq6NIuYqn8+n/21V3JECZ70n5uTkJG7duoWJiQnweDykpKQgOzubsvM7Q7bk6JQjnSisViukUqnTp4s9oZUzOR/sRm7OwlEnUIvFgpqaGjQ0NOC73/0uvve97zl9vU8rSGcP+yaCgHsEIqlEB+ARfuitgDtS4GwmHPHZkv5SNpsNYrHYJd5lezPJk+q5PUZGRpCfnw+DwYD6+npUVlZ6Zdw7FSRniF3y4m6BQ0px2HlYJHWAaDT21feeBlmj7vBTbS0X9h0A+1wS8uIlEgkCAgJcOpmIRkVKFogW4y0kJyfjBz/4ASwWC5555pkVe47fTdgI6x9p2cve5O52FpN2yARs/h1Cp2EwGKBWq6lw8jRIKoA7Sn22rrG3RUEWG1lk7j5hvO2r+PrXv47Lly+jurp6yzoaXQXZpKRJHvuZsmvk3CUs1qPlkHmwI3DkP6vVSoU/uy8Y0WhI/3Zv+ZFcyVNa81o+k+oTrHfhEGwFx6YPzgkcYGO5RvY1VK5mPzsSOOxrk4pw4gxmm9qbsebcZer7NBw7uPpgnW396xNG3gO7gt3+uZO/bRRWq5WaGUQguDrHlfKLSNQJuF2jJoLK21zL7lq/PoHDwnpV7JW+x1bft3KocuvBDLWsB9d7Z2AISsT2wmyEuGjtecOZSrQaVxo6srHSHIkJczfCZ1JtEGuZYewolPdhwPzITXT2z8AAQByViZzUOEQE3O7YXhy4jCvDztaRRSLv3iLErfGpifaP0T3r4rXM/Xjz6fvxxT8NgjIGB1TiXz46if+vKtTJ+Xkem9l9847WmBkf7koo2l5hnkgTMQDs/gtg8p5+hWlTLP/8rVeqHXx2pf+eZy44MYcLz7t6LRNz9cUEBkhgHn2liRmemmKmet9hvpImYiB6kHlj3L3PyAfv4+7U2z7lWLz0LRTt+RFkf/13QFwWYqUWKEcGITeq0f3ac6gaBW589Cwy/6rs8KSJyMqaW/W6msmbmFADEAmwtgdhBCMdf/1RFIG05NAV7PdwfJJxch2n/0sGPPUhXnm2EoEAEP0Z/OKd7+NC4TfxRsMMHnssas2RfdjC2GyJ54O70c38LJ9oDwnM8x/PMCbyJ30388saovWImEffmnb+srd+x9SIlq5b/cubn1xz5S8wr1T/dR7VrzC3nBrkIvNNERjR8xeWX//mL5lygKn53bDz8/UCbDYbY7FYGLPZzNhsts2ezh0Bn8C529DxIyaLmCtPfcgsrPb3550xjBiGYW4xvyOCKv9HTMfa0oZZJnCcHmeBOfUlEQNRDfOjlr8KSn038+qDEQxQzbzinNTyGtgCx2q1enScu0Wgec2kYtyYAu7DKgg7gP/46L/Re+EGePdvx20dvCTBCAdw04VLTrz5DXyl1gggAS/+5u9R4FQy9Ri6L7swCAAgEIf+72l8s+4Qvrk9Ct+kv0/Ao2/8Dl9Mc/V6noenqTMYVlnBZoKdM7QReEXgMH9NjWbnF/jgIcQV4d64Itx77xMO/6zsvQTSGjArzonWIcoT+M4X34MRgOipX+Dvytf5/sxqyAd7cH1sAUAQEotzkRYRgNuuFlqD/9s7hi9e+ADv1d6COqYAnzn6ECpStl4WtDciVFtB4JBERNKLa0Nz8ZYqZbVa7xq18I6F4gLzfALx7zhjopCokbOfZ3/1Y+arfzXdsh58gqkMuD1CFVD5L0yjYu1LbXWYTCaPm1SbCZPJxCgUCkan0234Pr0icDb7gfnAMIyikXmx+BOHcc0rTjh+b73CVP9VOES80OiEo9jxd8mYEWlZTFZWHBPA/n3Ci8xVly689eBpH85mw2w2M2q1mjEajXeGwPFpN5sL09iHzJcSPtnkCc9fYNZWLBaYC89HrE+7YZhlAkdU/CJTO6H/5G/LomVgDr3uS7D5tMAXpbrLoWh8kSkWfaJl1PyozQlhwzDM+OvModWiXRsF+/oPvsG4EKD34Q6Gjw/nroUZshPPomjHi7huBCBKw1c+HMBH3yiGMwUCE3X/jdMAABG+9Pju26NdG0VcPvaRxpFyNbzfCcyHzYAv0/iuhBmzZ7+F6gd+u5RtnPAoXj/zezyZ62ykZwJ1/336rz8/iger3S5uABigVXrgsj5safgEzl0Ic/9v8dC9P/2rsPkSPrz8SxxJcCGcPdOAt4i8efAwtrssb8xQyxXQamfQ329BSk0pbht+YgBX5X/9OTUaEa4O4cMdCZ/Audtgbsa/HvgKlnLuqvHLcy4KGwC42Qoib7Kqc7Bq9dJEOz4mJeGRebi3KA6AAL2/KEDFi3IAItT8sg2nvpwLql+ZZ3H2x9+hJtujxxwkKPpwV8IncO4yzLzzA7xIqjYzwtD/u3/E/17x02V46oePIM/utyOD1yg1RHl28uoD9v8e993306Wfn78ApmiJaKL82Z/jwR98Du8Zjaj9Sh4i//MzeOpIJgLU/fj4+Clcly+NIKr5T3zvqK8g89MCn8C5y6BRyz/5x8AH+Mm/fbDKp5/HfQ4Ejsn4CS9OmGSdukfcY/htkxr+n/06/jRohLr7Xfyim/0BEdKe+C0++O2TtGLdh7sfPoFzl0Ga+Tl8+9s7nfx0GSId/NYcXoNvf7tm6ROOPsBGZDW+/e2/EkzYfTi0+Fn8d+9j+GHPddTXncKNKQAIQHrlLmwvL0dh7NYrV/DBs/Ax/vnggw9egy8PxwcffPAafALHBx988Bp8AscHH3zwGnwCxwcffPAafALHBx988Bp8AscHH3zwGnwCxwcffPAafALHBx988Bp8AscHH3zwGnwCxwcffPAafALHBx988Bp8AscHH3zwGnwCxwcffPAafALHBx988Bp8AscHH3zwGnwCxwcffPAafALHBx988Bp8AscHH3zwGnwCxwcffPAafALHBx988Bp8AscHH3zwGnwCxwcffPAauL4uMT744IO3wOVwOPAJHR988MEboCaVT+j44IMPngYfADgczmbPwwcffPgUwOc09sEHH7wGn8DxwQcfvAafwPHBBx+8Bp/A8cEHH7yG/x830n09JHvxwAAAAABJRU5ErkJggg==",
"path": "images_version_5/image_52.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
put the two vertices of a right triangle plate with 45.0 angles on the opposite edges of the ruler. then angle 2 is equal to ()
Choices:
A:32.5°
B:22.5°
C:20.5°
D:17.5°
|
Đặt hai đỉnh của một tam giác vuông có góc 45,0 độ trên hai cạnh đối diện của thước đo. Khi đó góc 2 bằng ()
Chọn:
A: 32,5°
B: 22,5°
C: 20,5°
D: 17,5°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: put the two vertices of a right triangle plate with 45.0 angles on the opposite edges of the ruler. then angle 2 is equal to ()
Choices:
A:32.5°
B:22.5°
C:20.5°
D:17.5°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: put the two vertices of a right triangle plate with 45.0 angles on the opposite edges of the ruler. then angle 2 is equal to ()
Choices:
A:32.5°
B:22.5°
C:20.5°
D:17.5°
|
put the two vertices of a right triangle plate with 45.0 angles on the opposite edges of the ruler. then angle 2 is equal to ()
Choices:
A:32.5°
B:22.5°
C:20.5°
D:17.5°
|
260
|
52
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAugAAAKKCAYAAABvZq7BAAEAAElEQVR4nOydd3xP1//HX9mRvUOIJEYQm4i9FTVaozVKhWppqbY6tGhLB1X6RWtUqZHae29BBCETCWpFqE3MEJHx/v2R3z3uJ589knwS7+fj8Xnk5txzz77nvO/7jLcFEREYhmEYhmEYhjELLIs7AQzDMAzDMAzDvIQFdIZhGIZhGIYxI1hAZxiGYRiGYRgzggV0hmEYhmEYhjEjWEBnGIZhGIZhGDOCBXSGYRiGYRiGMSNYQGcYhmEYhmEYM4IFdIZhGIZhGIYxI1hAZxiGYRiGYRgzggV0hmEYhmEYhjEjWEBnGIZhGIZhGDOCBXSGYRiGYRiGMSNYQGcYhmEYhmEYM4IFdIZhGIZhGIYxI1hAZxiGYRiGYRgzggV0hmEYhmEYhjEjWEBnGIZhGIZhGDOCBXSGYRiGYRiGMSNYQGcYhmEYhmEYM4IFdAMZPHgwLCwsEBgYWNxJYV4xJk6cCAsLC1hYWBR3Uko0mZmZ+OGHH1C3bl04OjqKMv3ss8+KO2lGkZaWJvKyZMmSQosnMDAQFhYWGDx4cKHFYU5IZTpx4sTiTkqRUJryy+O1aTl48KBoHwcPHjQqrDZt2sDCwgJt2rQxSdpKE9bFnQCGYZiiJjs7Gx06dMDRo0eLOykMwzAMo0SJ1qCbWlO0ZMkSEV5aWprR4ZkTr5q2q6RRmtueObJ27VohnA8ePBgHDhxAcnIykpOT8c033xRz6l4duA9nSgs8xr6EZ3lNA2vQGaaEMXHixFIx7Vyc7Nu3DwBQtmxZ/P3337CysirmFJmOwMBAEFFxJ6PUwWXKMPm0adOG34cioERr0BmGYQzh+vXrAIBKlSqVKuGcYRiGKR2wgM4wzCtHVlYWAMDGxqaYU8IwDMMwKiA9mTBhAgEg6dEHDx7Q999/TyEhIeTo6Eju7u7UunVrWrZsmcZwpDAmTJig0V/r1q0JALVu3Vrl85p+2sKWOHDggE7hHThwQDwTHh5OACggIECUw3fffUchISHk4OBArq6u1LJlS63lIPH06VOaMWMGtWnThnx8fMjGxoa8vb3ptddeo0WLFlFOTo5O4RREKj9NP6ls16xZI9z+/fdfleFVrlxZ+Fm3bp1KP2+++SYBoNDQUJX3c3NzaenSpfT666+Tr68v2djYkJeXF7Vp04bmzJlDWVlZBuX18uXLZGFhQQBo/PjxWv2vXr1a5GXLli0q/dy/f59++uknatKkCXl6epKtrS2VK1eO3njjDVq/fr3G8Au2w8jISHrrrbeoQoUKZG1tTQEBAQa1vYLvoDqysrLor7/+oi5dupCfnx/Z2tqSt7c3NWjQgEaOHEmHDh2ivLw8tc/v2bOHBgwYQIGBgWRvb0/Ozs5Up04d+uqrr+jGjRsa475+/Tp9/fXXVL9+fXJxcSEbGxvy9fWlWrVqUb9+/Wjx4sX06NEjjWFoIzo6mgYOHEgBAQFkZ2dHrq6uVK9ePRo/fjzduXNHyf/ly5e1lrP0PutDTEwMjR8/nlq3bi3as7OzM9WoUYM+/PBDOn36tFH5JFLuB8+fP08jR46kKlWqUJkyZQgAXb58WSmfixcvVhvm3bt36csvv6SqVauSvb09+fj4UIcOHWjDhg1ERLR48WIRjhS2nICAAAJA4eHhRER09uxZev/99ykgIIBsbW3Jx8eHevToQTExMSrjN7c+/MaNGzRmzBgKCQkhJycnJf/a0nTp0iX67bffqFu3bhQQEED29vZkb29PFStWpD59+tDOnTs15qFgeefm5tJff/1FTZs2JTc3N3JwcKDatWvTzz//TE+fPtVaJidPnqSBAweSn58f2dnZkb+/Pw0YMIASEhJU5r8gutbBv//+S6NGjaKQkBBycXEhe3t7CgoKosGDB4u4DKVgmTx//pymTZsm+hVnZ2cKCwuj2bNnaxwjteU1IyODVq1aRUOHDqW6deuSi4sLWVtbk5eXF7Vq1YqmTZtGT548UfmsPmNsQYwZXzRR2GO5/H2TvyPy+tL0k/cnBfu2a9eu0ejRo6ly5cpkb29PHh4e1LFjR9qxY4fB5VFSMUpAT01NVajkgr+33nqLsrOzVUes48tfEgT0s2fPUmBgoNrnRo4cqTH+2NhYKl++vMa4w8LC6NatWzrlR44+ncedO3eE259//qkU1rVr17TmKy8vjzw8PAgAffHFF0r309PTqXnz5hrTU6NGDUpLS9M7r0RELVq0IAAUFBSk1a/U+Xh4eNCLFy+U7m/fvp3c3Nw0prVr165qO255Oxw3bpzSs4UpoCclJVFQUJBeHaVERkYG9ezZU+NzTk5OtHXrVpVxHzp0iFxcXLTGre55beTm5tLIkSM1hu3q6kp79uxReK4wBHRdBiQrKyuaM2eOQXmVkPeDmzZtIkdHR7V1qYuAfuLECfL29lab5mHDhukloK9fv54cHBzU5n/VqlVKz+vS7ouqD4+JiSEvLy+N/jWlKTU1Vaf4Bw4cqHZMlJd3SkoKtWvXTm04YWFhlJGRobY8lixZQjY2NiqftbGxoSVLlphEQP/xxx/J2tpabTotLCzo+++/V/u8NuRlkpiYSA0bNlQbV4sWLejx48cqw9GWV13GyaCgIDp79qxBz6oS0I0dXzRR2GN5YQno0dHR5Onpqfa5adOm6V0WJRmjBPRGjRqRpaUlffjhh7Rv3z6Ki4ujhQsXUnBwsPAzatQo1RHr2AGrE9CTk5Np9+7dIpyff/6ZkpOTFX63b9/WKU8ZGRmUnJxMP//8swhv9+7dSuHJO0Tphff29qaqVauSs7Mzffvtt3Tw4EGKj4+nBQsWUIUKFUR4u3btUhn3qVOnxGDr4+NDEyZMoH379lFSUhLt3r2bRo4cKTrAxo0bqxQkNZGamkrJycnk5+dHAOjNN99UyldqaqrwX6NGDQJAffv2VQpr6dKlCi9LzZo1lfwkJSWJ+wUFsJycHGratKlCp7V27VqKj4+nLVu2UI8ePcS9ypUrG9Qx/fnnnyKMI0eOqPV3//59srW1JQD04YcfKt3fs2cPWVlZEQAKDAykX3/9lQ4ePEiJiYm0detWGjhwoIinV69eKuOQ7tepU4cAUO3atWnRokUUGxtLUVFR9PvvvxvU9rQJ6KdPnxYaQADUs2dPWr16NcXFxdGxY8coIiKCBg4cSI6OjkqCV05ODrVt21YMrv379xd1FBMTQ7///jtVrFiRAJCtrS3Fx8crPP/8+XPR1pydnWnMmDG0c+dOSkhIoGPHjtHq1avps88+I39/f4MF9K+++kph0Jw3bx7FxsbSgQMHaPTo0UIwsbW1pRMnTojnXrx4IcozNDSUgHzNkLycz507p1daFixYQO7u7hQeHk6LFi2i6OhoSkxMpG3bttGPP/4ohD4LCwuKjIw0KL9EL/vBoKAgcnJyIm9vb5oyZQodOXKEjh07RrNmzaK7d+8SkXYB/f79+1S2bFnhZ8CAAbRz506Kj4+nVatWiXe0cePGKgdUCUlAr1+/vtCazp49m44dO0YxMTE0ceJEsre3JwDk4uKiNKthLn24p6cn+fn5kZOTE40fP54OHjxIsbGxtHDhQgXto6Yx68KFC2Rra0vdu3enP/74g/bt20eJiYm0b98+mjt3LtWsWVM8r05glQs3zZo1I0tLSwoPD6ft27dTQkICbdy4UaH//Oabb1SGEx0dTZaWlgSAypQpQ+PGjaNDhw7R8ePHac6cOVShQgWytbWl+vXraxRatY3R3333nUJ6//77b4qJiaH4+Hhavny5Qlr/+OMP1RWnBXmZNGrUSIxNO3bsoPj4eFqxYoVwB0Ddu3dXGY42Ab158+ZUu3ZtGj9+PG3cuJGOHz8u+qt+/fqJ8qxWrRplZmYqPKvvGEtkmvFFG4U5lqsT0B88eEDJycn00UcfifsFyyI5OVlBjpH6tuDgYPLy8iIfHx+aMmUKHT58mGJjY2n69OniQ8ba2ppSUlIMKo+SiFECOgBasWKFkp/Hjx9T3bp1CQBZWlrSqVOnlCM2UkAn0n0qV1e0aYzkSC88AHJzc1PZaC5cuCAGqDfeeEPpfl5enhDe6tatKwbYguzcuVN0EH///bdBeSs4Ha0O6cUqW7as0r2hQ4eKvEhCR8FBd8aMGaLeHzx4oHBv9uzZoswGDRqkcnmFXNM8ZswYvfOZnp4uBDRNMxfz588X8URHRyvcy8jIIF9fXwJAHTt2VDudLA9j3759Svfl70n79u3p+fPnatOjT9vTJqBLA6+lpSWtXLlSbTj37t2jZ8+eKbj99ttvBORr2dRNKd6/f18IHC1atFC4FxkZqbZTl5OdnW3QEpdTp06Jd6FWrVpKbYxI8X0JCwtTGY6mfkUfrl27pnG5wcOHD8U7XrCs9EGupfPz86MrV66o9autX/zkk0/E/d9++03pfk5Ojphd0kVAB0ANGzakhw8fKvlZtmyZ8DN9+nS906ovhvbhTk5OCh9zqtA0ZmVkZGhc9pWXl0eDBw8mAOTo6KiyrApqH5cuXark5/nz51SrVi3xYaFKGy+Nvba2tiqVFLdv36ZKlSqJeAwR0GNjY8U79u2336p8Pjc3Vwiazs7OKt9VbRQsk8mTJyv5yc7Opk6dOgk/27ZtU/KjTUA/f/68xnTs3btX6xis6xhrqvFFG4U5lqsT0CV0XYZJpNi3BQQE0LVr15T8REdHi+Wrn3zyidYwSwtGCejdunVT6+/48ePC34gRI5QjLkUCuibtQL9+/QgAubu7K93bunWrCOPkyZMa4+vTpw8BoObNm+uUl4Lo2nmsWrVKpKngdF6VKlUIAK1du1Z08GvXrlXwI2nBGzRooBS29EXv5eWldioyJyeHqlevLspMk1Crju7duxOQP7uhbjpZalcBAQFKHwqzZs0iAGRvb69VgxcWFkZAvhayIFI5Wlpaam1PphLQd+3aJe59+umnGsMpyIsXL6hcuXIEgEaPHq3R744dO0Q8Fy5cEO7Lly8X7sauMVeFXDOjbm0zEdH7778v/MXGxirdN5WArgubNm0Sabl3755BYcgHsX/++UejX039YmZmJrm6uop3VN0ehFu3bgnlgi4Curr+Ky8vT2gWe/bsqVdaDcHQPvzHH3/UGrauY5Y60tPThdZU1Zpfedo1aU3nzZunttxjYmLEPU3v8ObNm40S0Hv37i0+zDTtY3nw4AHZ2dkRAFqwYIFaf+qQl0mdOnUoNzdXpb///vtPKGa6dOmidF+bgK4L0timTu7RdYw11fiijcIcywtLQFe3F4yIqEmTJgTkz9i9Khh1isuQIUPU3gsLC0PNmjUBvDxzuDRiYWGBd955R+39hg0bAgAePHiAhw8fKtzbvHkzAKBatWqoU6eOxnhatWoFAIiLi0Nubq4RKdaM3Nyu3ITv9evXcfHiRVhYWKB169bCn9wPEeHQoUMAgNatWyuEe+PGDZw9exYA0KdPHzg7O6uM38rKSrSrBw8eIDExUe88DBw4EABw9+5d7N27V+n+tWvXEB0dDQB45513lIwpSPXSunVr+Pj4aIxLqpeYmBi1fpo3b15kJqa3b98urkePHq3Xs7Gxsbh58yaA/DrShJRvQDHv5cqVE9eLFy/WK35dkPqSkJAQNGnSRK2/Dz74QOmZouDp06dIS0vD6dOnkZKSgpSUFIWTYk6ePGlU+La2tnj77bcNfj4hIQGPHj0CAAwaNEitIRFfX1906tRJpzBr166ttv+ysLBA/fr1AQCpqakGpLhoGDBggEnDy87OxrVr13D27FnRDm7cuAFPT08A2tuBpvRIYwqgXKaRkZHiOjw8XG0YXbt2FWnRl+zsbOzcuRMA8NZbb2k0RuPm5obatWsD0NxH6kJ4eDgsLVWLLBUqVEDHjh0B5I9Jxo6Rd+/exYULF0TdpaSkwNvbG4Dx77Cpxxd1FNZYXli4ubmha9euau9L7d6c+xFTY5SA3qhRI433w8LCAAAXLlzAixcvjInKbPHy8tLY0Xl4eIjrJ0+eKNyLj48HAJw7d05Y3VL3+/jjjwEAL168wP379wshJ/n4+vqiWrVqABRfWOk6JCQE3t7eKl/qU6dOibTJOwcASElJEdeNGzfWmAb5fflzutK9e3fxAbB8+XKl+ytXrkReXh4AqPy4kupl9+7dWuvlt99+AwDcunVLbXq0fXyZkqSkJABAxYoVERAQoNezUr4BoGnTphrz7eTkJPzK896iRQtUqlQJAPDZZ58hLCwMv/zyC44ePWp0H5CVlYULFy4A0N6G6tevLwRjQ9qQPty7dw/jxo1DtWrV4OzsjKCgINSqVQu1a9dG7dq1FQade/fuGRVX1apVYW9vb/Dz8rKQC3qqCA0N1SnM6tWra7wv9YEF+z9zwcnJSbRZY8jOzsacOXPQpEkTODk5wd/fHyEhIaId1K5dG3fu3AGgvR1oKlNNY4pUv3Z2dqhVq5baMKysrFCvXj1tWVLJmTNn8OzZMwDA2LFjtfaRUr+iqY/UBV3ljWfPnhkkxB05cgR9+/aFp6cnfHx8EBwcrFB3CxYsAGD8O2zq8UUdhTWWFxZVq1ZV+wEGmH8/UhgYJaBr+/rz9fUFkP819uDBA2OiMlscHBw03pc3uIJf9VJnrS9S51hYSC9kVFSUcJNeXule27ZtAeR31nfv3lXwY2lpiZYtWyqEKf+okNqFOsqWLavyOV0pU6YMevXqBQDYtGmTUnlJQnvdunWVBrHs7GylmQ5d0FQn7u7ueodnKNLgIddk64op2qONjQ22bt2KGjVqAMif8Rk3bhyaN28ONzc3vP7661ixYoVBGi55H6KtDdnY2IgP58L8oE1ISED16tXxyy+/4Pz581qt62VmZhoVn7FtSV6G2vpvSWOoDV37wMKc+TMGNzc3o8O4f/8+mjZtio8//hjHjx/X+jGqrR1oKlNNY4pUvx4eHloNcOlavwUprnFLV3kD0P+dnzhxIlq0aIE1a9ZofdaYd7gwxhdNFMZYXljo2o9IyrVXAWtjHtY0tQWATcFqQepcmzdvjnnz5un8nJ+fX2ElCUD+lNZff/2FW7du4d9//0X16tXFCy691BUqVEClSpWQmpqKqKgovPXWW8JPnTp1NAoSRdFuBgwYgIiICDx9+hSbN29G//79AeR3QtIUpappZPmA16dPH3z33XdGp6U4LFVqK2NVyPN+8OBBnafACw6cISEhSE5OxtatW7F161ZERUXh0qVLyMzMxK5du7Br1y5Mnz4dO3bs0DroqkOX/BV2//PixQv06dMH6enpsLGxwahRo/Dmm28iODgY7u7usLOzA5A/JVu5cmWTpImtnpoeU5Tpp59+ioSEBABAjx498N5776FOnTrw8fGBvb29aK8VK1bEf//9V6LHRnk/MW3aNHTu3Fmn5xwdHY2Kt7DGjcjISPzwww8A8i0Lf/nll2jRogUqVqwIJycn0T6+//57/PTTTwbFIVEY44smCnssZwoXowT027dvw9/fX+196UvbwsJCqZItLCxARFq/hp4+fWpMEs0aT09P3L59G3fv3tU4HVnUFFy75uLiggsXLog1a3J/qampOHjwIHr37q1xzZp8WlbbdN3t27dVPqcP7du3R7ly5XDz5k0sX75cCOiS9tzCwkK4ybG3t4eDgwOePXuGhw8fmlW96IKXlxeA/DX/+iIXyG1tbY3Ku5WVFXr06IEePXoAAG7evImdO3di7ty5SEhIQEJCAoYPH46NGzfqHKa8D9HWhnJycoQmzNA2pI39+/eLqfQ5c+YorHuXY06zh/IyvHPnDoKDg9X6lbRpjGYeP36M1atXA8hfMqdqWZ1EYbcFqX7v37+P3NxcjR8fhtavvJ/Izs4usj7y9u3bGturXLOvzzsvLV1xc3NDTEyMWqWBKequqMeXwhjLmaLDqCUucXFxOt2vWrUqbG1tFe5Ja4Q1Nfq8vDyx5lQVhmgJNWHq8LQhbZ46f/48rly5Uqhx6ZO3cuXKoWrVqgDyX+qCa9Yk5GvXkpOTkZ6eruAuR94RHT9+XGP8sbGxKp/TB0tLS/Tr1w8AsGfPHrH0Y+XKlQDyO54KFSqofFaqlyNHjhT6ciIJU7W9Bg0aAACuXr2qd5uS8g3kl5kpKVeuHN577z3ExMSING7btk2v6WI7OzvRLrW1oaSkJGRnZwMwvA1p4/Tp0+JaamuqkK/tL26kjfuA9nQVRbpLeh8O5O+xktqapnZw7tw5ZGRkFGpapPrNyspCcnKyWn+5ubk4ceKEwXFI47mp+wlN6CpvODg46LWnQHqP27Vrp3FGT9v7oGvbK8rxpTDGcl0ojvewNGKUgB4REaH2Xnx8vNiw0qFDB6X7QUFBwp86duzYIU4cUIV8s1RWVpbW9GrD1OFp44033hDXU6dOLdS4pLzpmi/52rWCa9Yk5GvX1q5dCyD/xVS1Zs3Pz0+sS167dq3ajR65ublYsmQJgHxtkCTMGYK0hCU7Oxtr167F0aNHcfnyZYV7qpDq5enTp5gzZ47B8euDqdpe9+7dxfWMGTP0erZFixZC8zRv3jw8fvzY4HSow8bGRmhlcnJy9F6PKfUlZ86cwbFjx9T6+/vvv5WeMTU5OTniWt1Am5eXh/nz5xdK/IYQGhoKV1dXAMDSpUvVLgu4ffs2du/eXejpKel9OKBbOwCg1zJGQ2nfvr24/ueff9T62759uxDC9MXBwUHEc/DgQQWFSmGiqb1ev35dfCy0adNGr2VLUv1pqrsTJ05o7G8A3cfYoh5fTD2W60JxvIelEaME9C1btmDNmjVK7hkZGRg2bFh+BJaWGD58uJIfaZA+fvw4jhw5onT/5s2b+OSTTzTG7+npKb7kL126pHf6CyLfWGeK8LTRu3dvIbT++eefWLhwoUb/KSkp2Lp1q0FxSXnTNV9S/dy6dUvUccGXWlq7RkSYNWsWgPwj19StXR45ciSA/KnVUaNGqexsf/jhB5w5cwZA/lF50jpeQ2jYsKE4DWH58uVi6tnW1hZvvfWW2uc+/PBDsVTku+++E0eKqePIkSNiStBQTNX2OnToIE7nmDVrFlatWqXW7/379xU02Pb29vjyyy8B5Nd7v379NC4xe/LkCWbPnq3gFh0djYsXL6p95sWLF2J9o5OTk94b1T766COxWWjYsGEqP+D37Nkj3qWwsDCtpz8YiqSZAtQrK8aOHWvQUaGFhb29PQYNGgQASExMxPTp05X85OXlYfjw4Xj+/Hmhp6ek9+EAUKVKFaExVCcUb9u2TfSRhUnTpk3FqVFz5szB0aNHlfzcvXtX7yNYCzJ+/HiR5379+mks69zcXKxYsQLXrl0zKs4TJ05g2rRpSu45OTn44IMPxMbcjz76SK9wpff48OHDKk9/uXv3rji6VxO6jrFFPb4UxliujeJ4D0sl+h6cLj+APjQ0lKysrGjEiBG0f/9+io+Pp0WLFlG1atWEn1GjRqkMJyUlRZiwd3d3pxkzZlBcXBwdOXKEpk6dSr6+vuTp6UlVq1bVaFCkefPmBORbVVuxYgWdOXOGLly4QBcuXKD09HS98vb48WNhnKNBgwa0e/duOnfunAhPbnVRV8MH2gxnnDp1SsEse6dOnSgiIoKOHTtGCQkJtHPnTpo8eTI1a9aMANAXX3yhV54kxo8fL+L45Zdf6MSJEyJfqix3Xbt2TfgHVFsaIyJ67733FPypq2+ifCNEcvPPbdq0obVr11JCQgJt27aNevXqJe5VrlyZnjx5YlBe5fz0008i/S4uLmoNphRk7969on1aWlrS22+/TatWraK4uDiKi4ujLVu20IQJE4SVyFmzZimFIeVFF8Mm+rQ9bUYgzpw5o9CmevXqRWvWrKH4+Hg6fvw4LV++nAYPHkxOTk5KbTInJ4fat28vnq1YsSJNnjyZDhw4QElJSXTo0CFasGABDRgwgBwdHcnT01Ph+QkTJpClpSW1bt2apk6dSrt27aKEhAQ6fPgwLVq0SBjeAECfffaZ1nJRxVdffSXCqFSpEv31118UGxtLBw8epC+++EIYLLG1taWkpCSVYZjCUFFGRgb5+PgQkG+CesSIEbRr1y6Kj4+nVatWiXKU+igYYYxHn/RqM/6Tnp5OZcuWFX4GDBgg6mn16tWir5HXVVpamlI4uhpm0cXMujn34RKa3ueuXbsq9OEbNmyg+Ph42rFjBw0dOpSsrKyoatWq5O3trbbMdDWypK1+o6OjhdXLMmXK0Pjx4yk6OppiY2Np7ty55O/vTzY2NlSvXj0C8k3N65tfIsV+yMnJiT799FPavn07JSYmUkxMDK1cuZI++eQTYagqOTlZbZ7UIS+T0NBQAkD9+/ennTt3UkJCAq1atUqhnXbv3l1lOJrqeu3ateL5ChUq0KxZs+jo0aN05MgRmjZtGpUrV44sLCwUxi5V6DPGmmJ80ZXCGMu1GSq6cOGCuN+xY0eKioqi8+fPi/KQGxDUtW/Tx/hRacEoAT01NZWCgoIUKlX+6927t1pLjkRE06dPV/usu7s7RUVFaa28bdu2CROwBX+GWHwbM2aM2jTJG6KpBHQiopMnT4oPEW2/H374Qe88EeW/pB4eHirDVFe2lStXFn5q1qyp0s8///yjENb69es1piM9PV1BYFH1q1GjhkqBwBAuXbqkFL4qK36qiIyMVBBkNP0iIiKUnte3Hera9nTpqOLj48nf319rulW1yWfPntGgQYN0yndQUJDCs/K0afr16tWLMjMzdSqXguTm5tKIESM0hu/q6kq7d+9WG4apLInu2rVLweJmwV+bNm0oJSVF/G8OAjoR0YkTJ4SwqOo3ePBgWrhwofj/1q1bSmGYSkA39z5cQlOarl69ShUrVlQbb8WKFen06dMay8xUAjoR0ZIlS8SHasGftbU1LViwgN59910CQNWrV9c7vxIzZswQlkI1/WxtbRUsDuuKvEwSExOpfv36auNo3ry5WgvV2up6yJAhasO1srKimTNnau139R1jjR1f9MHUY7k2AZ3opfVzVT95+2YBXT1GLXEJCgpCQkICxo0bhxo1asDBwQGurq5o1aoVli1bhnXr1sHaWv1BMaNHj8auXbvQqVMncSxZUFAQRo4ciRMnTihYK1RH165dERkZiTfffBN+fn4KVvsMYcqUKViwYAFatmyp01mypqBOnTo4c+YMIiIi0KNHD/j7+8Pe3h62trYoV64c2rRpg2+//RYJCQn4/vvvDYqjfPnyiI2NxdChQ1GlShWdjJ3Ip8HUbRaR1q4B+WvWtNWZh4cHDh06hKVLl6Jz587w9fUVZ1a3adMGs2fPxokTJ/Q2sqOOSpUqoWnTpuJ/FxcXjdbK5LRr1w6XLl3C7Nmz0blzZ5QrVw62trawt7eHv78/OnbsiEmTJuHff/8VywaMwZRtr2HDhjh37hz++OMPsfnJxsYGZcuWRcOGDfHpp58iJiZGpYXTMmXKICIiAvHx8fjoo49Qs2ZNuLq6wtraGm5ubqhXrx6GDh2KdevWCeuwEmPGjMGOHTswevRoNGnSBBUrVoS9vT3s7e0RGBiIvn37Yvv27Vi/fr3BBncsLS0xZ84cHDp0CAMGDEDFihVhZ2cHFxcX1KtXD+PGjcOFCxeEZcHCpFOnToiPj8fAgQNF/+Pt7Y3WrVtj/vz5iIyMNPp4ucKgbt26OHPmDL744gtUrVoVdnZ28PLyQtu2bbFixQosXrxYYQ+CtG69MCgNfbi/vz8SExPx1VdfITg4GHZ2dnB1dUXdunUxYcIEnDhxAiEhIYWeDonw8HDEx8djwIAB8PPzg62tLcqXL48+ffrg8OHDeP/990X9GlO3n332GS5duoTvvvsOTZo0gZeXF6ytreHo6Ijg4GD07t0b8+bNw/Xr11GlShWj8uTu7o6jR4/il19+Qb169eDs7AwnJyc0atQIs2bNQlRUlFoL1dpYtGgRli5dipYtW8LZ2Rl2dnYICAjAu+++i6NHj+LTTz/VGoa+Y2xRji+FMZZrY9myZZg6dSrCwsLg6uqq0QgRoxoLIv0OD504caI4M1TPRxmGYZgSwvvvv4+FCxeiQoUK+O+//4o7OYyJqVKlCi5duoSBAwdi6dKlxZ0clSxZsgRDhgwBAFy+fFmlQoFhSiv8ScMwDMMokJmZic2bNwMAmjRpUsypYUxNXFyc2LzH9csw5gkL6AzDMK8Yly5dUjsDmpubi48++kjYDggPDy/KpDEmQNNJSunp6cKolp2dHfr27VtUyWIYRg+MsiTKMAzDlDx++uknxMbGol+/fmjcuDF8fHyQmZmJU6dOYcGCBeJoyPbt2+u8Z4MxH1577TUEBQWhZ8+eqFOnDlxdXfHgwQMcOXIEc+fOxc2bNwEA3377rTjyj2EY84IFdIZhmFeQs2fPYsKECWrvN2/eHKtXr2argCUQIsKBAwdw4MABtX5GjBiBcePGFWGqGIbRBxbQGYZhXjHGjh2L4OBg7N27F1euXMHdu3eRnZ0NT09PhIaGom/fvujXrx+fvFBCiYiIwNatWxEVFYWbN2/i3r17sLa2RtmyZdGiRQsMGzYMzZo1K+5kMgyjAb1PcWEYhmEYhmEYpvBg9QjDMAzDMAzDmBEsoDMMwzAMwzCMGcECOsMwDMMwDMOYESygMwzDMAzDMIwZwQI6o5YlS5bAwsICFhYWSEtLK+7kMDKkepk4cWJxJ4UpYtq0aQMLCwu0adOmuJNilvC7YVquXr2K4cOHo3LlyrC3txflu2nTpkKJj+tPM2lpaaKMlixZUtzJKRZ27dolyuDYsWPFnZxCw6QC+pgxY0ShWVhY4ODBg2r9yoU/bT9TNcL09HRMmDABdevWhaurK1xcXFC3bl1MmDAB6enpJomDYRiGYUoDV69eRcOGDTF//nykpqYiKyuruJPEMK8MJhPQT548iRkzZpgqOJMTFxeH2rVr48cff8SpU6fw+PFjPHnyBKdOncKPP/6IOnXqID4+vriTybzCsGaUMQWsgWRMxc8//yzOUP/1118RExOD5ORkJCcno3379jqHw30bo43nz5+LvmvKlCnFnRyzwCSGivLy8vDBBx8gJycHPj4+uHPnjl7P7969G35+fmrvV6hQwaj0Xb9+Hd27d8ft27dhbW2Nzz//HN26dQMAbNu2DdOnT8eNGzfQrVs3JCQkoHz58kbFxzAMU1homplkGFOyb98+AECPHj0wZsyYYk4Nw7xamERA/+OPPxAXF4fq1aujZ8+e+OWXX/R6Pjg4GIGBgaZIikrGjx+P27dvAwBWrFiBt99+W9xr2bIlQkND0adPH9y+fRvfffcdFi1aVGhpYRiGYZiSwPXr1wHkj9EMwxQtRi9x+e+///Ddd98BAP7880/Y2toanShTcvv2bSxbtgwA0KlTJwXhXOLtt99Gp06dAAD//POPEOYZhmEY5lXlxYsXAAAbG5tiTgnDvHoYLaCPGDECGRkZCA8PN8v1ZVu2bEFubi4AYMiQIWr9DR48GACQm5uLLVu2GBRXXl4e9u/fjy+//BLNmzeHl5cXbGxs4Obmhnr16uHLL7/E1atXNYZRcK3e9evX8fnnn6NKlSooU6YMPD090alTJ+zcuVNreogIERERaNWqFdzd3eHk5CTW4T9+/BiAadarEhHWrVuH3r17w9/fH/b29nB3d0dYWBh++uknPHz4UOPz58+fx6hRo1CrVi04OTnB1tYWfn5+qFevHt577z2sXr3a6M1JW7duxVtvvYUKFSrAzs4Onp6eaNq0KaZMmYKMjAy1zxU8ySYvLw/z589Hs2bN4O7uDkdHR9SpUweTJk3Cs2fPDErb4MGDYWFhgaioKABAVFSU0kZpbTNMcXFx6N+/v8hf+fLl8e677+Ls2bM6peHcuXP45JNPULNmTbi6uqJMmTKoVKkShgwZgsTERIPyVZC8vDwsW7YMXbp0QdmyZWFrawtvb2+0bdsWc+fOFcKAKiZOnCjKAgAePnyICRMmoGbNmnBycoKHhwfatGmD5cuXa0xDYGAgLCwsxPsulZvUbv39/TF48GCdy83QdiXlYdKkSWjatCnc3d1hY2MDb29vhISEoGfPnvjzzz9VLhdUt55XypvEDz/8oNSOpHwX5Nq1axg7diwaNGgAd3d32Nvbo2LFiujbty8OHDigU1noginiWb58Odq0aSP6tFq1amHChAla+xk59+7dw1dffYXg4GCUKVMGvr6+eO2117Bx40YAup9glZOTg4ULF6JLly7w8/ODnZ0dvLy80KpVK8ycORPPnz/XmI6EhAQMHToUwcHBcHR0FG2wYcOGGDlyJLZs2QIi0jlfBTHknZPnXaJgW1LXjgpS2vu2gu0kKysLM2fORJMmTeDl5aU0tuo63ppqzX5sbCw++OADBAcHw8nJCY6OjqhevTpGjhyJCxcumCxfxlK2bFmUKVNG/D927FildvLhhx9qDGPFihVo06YNvLy8UKZMGdSoUQPjxo3TuV/YuXMn3nnnHQQGBqJMmTJwdXVFvXr1MHbsWI1K22+++QYWFhawt7cHADx79gxTpkxBvXr14OzsDBcXFzRp0gTz5s0TsqjOkBGsXr2aAJCHhwfduXOHiIgmTJhAAAgAHThwQO2zixcvFv4uX75sTDI08u6774p4bt68qdbfjRs3hL9BgwYZFJc87+p+Dg4OtGHDBrVhtG7dmgBQ69atKTo6mjw9PdWGNW3aNLXhZGVlUbdu3dQ+W7VqVUpLSxP/T5gwQSkMXerozp071Lx5c4159vX1pWPHjql8fs2aNWRra6u13JKTkzWWvToyMzOpZ8+eGsP28/OjpKQklc/LyyAlJYXatWunNpywsDDKyMjQO43h4eFa8x8QEKDwjLzeZs2aRdbW1mrbW1RUlMb4f/zxR7XPAyALCwv6/vvv9c6XnPT0dK3tpEaNGpSWlqbyefm7lZqaSpUrV1YbzltvvUXZ2dkqwwkICCAAFB4eTgsXLlSbbzs7O1q1apXa/Bjbrs6cOUN+fn5a633WrFlKz8r7CFV50/QLDw9XCu/vv/+mMmXKaHxu6NChastUV4yNJzs7m3r37q322cqVK1NqaqrGPo2I6MSJE+Tt7a02nGHDhunU9128eJFCQkI05qdq1ap0/vx5lc9Pnz6dLC0ttdbZkydPDClug985ed71aUeqKO19m7ys4uLiqF69ekpxyNuhtrYpoe4dJyK6fPmyCGfx4sUqn8/OzqaPPvpIY7nb2NjQ/PnzTZIvY/H19dXaToYPHy7879y5U7hHR0fTW2+9pfa56tWr0927d9XG/fjxY+ratavGuF1cXGjXrl0qn//6668JyB8zrl27RjVr1lQbzltvvUV5eXk6l4vBAvqDBw+obNmyBIAWLFgg3A0R0Fu3bk0+Pj5kY2NDnp6e1LhxYxo/fjxdu3bN0OQJQkNDCQC5urpq9evi4kIAqFGjRgbFNX78eCpXrhyNGDGCli5dSkeOHKGEhATatGkTjRkzhpycnAgA2dvb05kzZ1SGIb2YwcHB5OXlRT4+PjRlyhQ6fPgwxcbG0vTp08nNzY0AkLW1NaWkpKgMZ9iwYaJ8Q0JCaNGiRRQXF0eRkZH08ccfk5WVFTVp0kTjy6ZtkMrIyKAaNWoQALK1taXhw4fT5s2bKTExkaKjo2nSpEniA8Pd3V1pILh16xY5OjoSAPLx8aEff/yR9uzZQ4mJiXT06FFatmwZDRs2jLy8vAwW0Pv06SPyULduXfrnn38oLi6Odu/eTUOGDCELCwsC8j8yVbU3eRk0a9aMLC0tKTw8nLZv304JCQm0ceNGatq0qfDzzTff6J3Ga9euUXJysmiroaGhlJycrPA7d+6cwjNSfE2aNCELCwuqW7euqONDhw7R6NGjxeBfsWJFysrKUhn3d999p5C/v//+m2JiYig+Pp6WL1+ukLc//vhD77wREeXk5CiE07p1a1q7di3Fx8fTli1bqEePHuJe5cqVVQok8n6lUaNGZGlpSR9++CHt27eP4uLiaOHChRQcHCz8jBo1SmVaJCG2bt26ZGNjQ35+fjRr1iw6fvw4RUVF0ddff012dnbi/Tp+/LjKcIxtVw0bNhSD5IgRI2jr1q0UFxdHx48fp40bN9LYsWMpODhYLwH93LlzlJycLNL10UcfKbWjgmlZuHCh8F+rVi2aNWsWHT58mBITE2n9+vXUpUsXcf/zzz9XV8VaMUU8H3/8sfBTrVo1WrhwIcXFxdG+ffto+PDhZGlpSY0aNdLYp92/f1+MWwBowIABtHPnToqPj6dVq1aJdtq4cWONfd+NGzeEUOHs7ExffPEF7dy5kxITE+nAgQM0duxYcnBwIABUqVIlevjwocLzJ0+eFO9nUFAQ/e9//6PIyEhKSkqi6OhoWrRoEb377rvk5ORkkIBuzDv34MED0V7UtSVdx+bS3rfJx4c6deqQhYUFDRo0SGF82LFjh1LeCltAHzRokPDz+uuv07Jlyyg2Npbi4uJowYIFCkLkli1bjM6Xsfz777+UkJAg4vzss8+U2sn169eFf7mA3qxZMyH8btq0iRISEmjbtm3UqVMn4Wfw4MEq483OzhbPW1pa0sCBA2n9+vUUHx9PR48epenTp1P58uUJAJUpU4ZOnjypFIYkoNvY2FBoaCjZ29vT559/Tvv27aOEhARaunSpwti0ZMkSncvFYAH9gw8+EIUj/yIwREBX97O3t6d58+YZmkQievllVrNmTa1+pUZbtmxZg+K6fPkyvXjxQu39//77T1T2wIEDVfqRXkwgX7OgqiOMjo4WAsAnn3yidD8hIUHcDwsLo6dPnyr5Wbt2rUJZGyKgSwOmq6srxcXFqcxPWloalStXTmWe5YO2JgE8MzOTnj17pva+OrZt2ybCb9++vcqOfP78+cJPnz59lO4XbKdLly5V8vP8+XOqVasWASBPT0+DNY2aOuWCyNPUpUsXlXn7+eefhR9VszaxsbFioPv2229VxpObm0sDBw4UgsiDBw/0zRbNnj1bpGPQoEEqNQjjxo0TfsaMGaN0v+Ds1IoVK5T8PH78mOrWrSs621OnTin5kWuZAwICVM6q7d+/X2jdQkNDle4b264uXbok7qkSwCXy8vLo/v37Su7a2omuQsDVq1eFEBkeHq623Up1Y2lpqSRM6YIp4pELtA0aNFAptEZERGjt0z755BNx/7ffflO6n5OTQ2+++aZCOKr6Pml20t/fny5duqQyP4mJiUIBUfD9koRHR0dHunXrlsrniYgePnxIubm5au+rwxTvHJHubUkbpbVvKzg+LFy4UKe8FaaAvm7dOnFfrjyVk5mZKWaDAwMDld5JffNlCjIzM0V8v/zyi0a/cgFd07sslaOdnZ3K+pXakZ2dHe3du1dlXHfv3hUCdocOHZTuSwK6FM7hw4eV/Ny+fZs8PDyETKYrBgnokoBobW2tNAjqI6BXqlSJvvzyS1q/fj3FxsZSbGwsrVq1it5++20hYAKgv/76y5BkEhGJgaFx48Za/YaFhREAcnJyMjg+bcycOZOA/CkTVZ2mXEBX9WUrIWm/69evr3Rv+PDhIgxVX3wS8il6fQX0u3fvkr29PQGg33//XX2GiWju3LkE5H9hyj8WJk2aREC+dr0weP3110W8V69eVeuvQ4cOBORrTG/cuKFwT14GvXr1UhvGvHnzdCpzTRgyiNnb29Pt27dV+nn8+LFYPjR69Gil+9JygYYNG2qcdnvw4IHQKqvr8DUhzbJ4eXnR48ePVfrJycmh6tWri/bw/PlzhfvyfqVbt25q4zp+/LjwN2LECKX7cgF93bp1asORTw/HxsYq3DO2XR05csSotmIqAf2LL74gIH8pTmZmplp/2dnZQrEwfvx4vdNrinjk9REfH682DKluVOU/MzOTXF1dhZCvrs3funVL9G2q+j65Znnz5s0a8z5mzBiRdzmSgktV/20KTPHOERWvgF4S+jb5+NCuXTut/otCQJdm53r27KkxjjNnzohwCgqn+ubLFBgqoDdr1kytv02bNgl/u3fvVorPy8uLANDYsWM1xrdhwwYRTsE+Xy6gjxs3Tm0Yn332GQEgKysrnRWOem8SffHiBYYNGwYiwujRo1G7dm19gwAA9OzZExcvXsS0adPQq1cvNGrUCI0aNULfvn2xZs0abNmyRewcHz16NG7dumVQPNImHV1Ol7GzswMAZGZmGhRXQR4/fozLly/j9OnTSElJQUpKChwcHBTuqcPNzQ1du3ZVe79hw4YAgNTUVKV7kZGRAIB69eqhTp06asMYNGiQTvlQxe7du0XZ9unTR6PfVq1aAQCys7ORkJAg3MuVKwcAePDgATZv3mxwWlSRk5MjNia99tpr8Pf3V+v3gw8+EM9oOmN6wIABau9J9QGorpPC4rXXXoOPj4/Ke87OzqhatarKNGVnZ4uNxm+99ZbChrCCuLm5ifc8JiZGr/TduHFDbObq06cPnJ2dVfqzsrISm7gfPHigcfOWps3eYWFhqFmzJoCXZzirwt3dHW+++aba+++99564lodjinYltXsAxWqqW3rnunfvLjY4qcLa2hpNmzYFoH/9myoeqQ5q166t8K4VRF5vBUlISMCjR48A5Pd96tq8r6+vONVLFVJ+HBwcNPbRwMu+78aNG/jvv/+Eu9QGzpw5g9jYWI1h6EthvHPFgbn3bQXRND4UFdevXxdjrLZxuUaNGvDy8gKgOe/mkC9NGDouHzlyBPfu3QOguwwDAMeOHTMqLbm5ubhy5YrG+CT0FtAnT56Ms2fPomLFipgwYYK+jwtcXV01vjjdunUT4T979gwLFy40KB5pQNB0QoSEdFKIfDexvly5cgWjRo1CYGAgXF1dUalSJdSqVQu1a9dG7dq1MWzYMOFXahyqqFq1Kiwt1VePh4cHAODJkycK7s+fP8fFixcBQONABgChoaFa86MOudXVcuXKKe24lv9q1aol/Mo/tN544w24ubkByP9ga9euHWbMmIGEhAT9dzsXIDU1VZyq0rhxY41+5fdTUlLU+qtevbrae1J9AMp1UphoShOgvp2cOXNGlI+qHfMFf1J96/uhLC9PU9VDo0aNNIYTFhYGALhw4YLa975+/fqwtlZvBqJevXrio16eFlO0q6CgILRs2RIAMGPGDNSsWRPff/899u/fb/BJQPry6NEj0U/89ddfWut/3bp1APSvf1PEI+/TdK17VcjrwJi+UXoXnj17Bmtra435kQziFcxT//79YWNjg6ysLDRv3hzdu3fHvHnzcPr0aaNObQEK550rDsy9byuIJmVYUSEfl/v3768175IMoinv5pAvTRg6LsvLqn79+hrLSfqQAdSXlYWFBapVq2ZQWtShl4D+77//CiNEs2bNgqOjoz6P680HH3wghHhJa6UvkvZA25FnAPD06VMAgJOTk0Fx7dy5EyEhIZg9e7ZOX0iaNPWSpl0dkvCel5en4C4/Ukid9kHC29tbSwrVo6+1WAm5AOLp6YktW7agfPnyICIcOHAAn3/+OUJDQ+Hh4YHevXtj27ZtBsVz//59ce3r66vRb9myZVU+VxBNdSL/mDL240IfdG0nBdNkivrThcKoB23tWoqHiPDgwQODwrC2thYdqjwtpsrPypUrhbb4zJkz+Omnn9C+fXu4ubmhdevWmDdvntYj+oyhqOrfFPE8fPhQCK261r0q5G3BmL7RFHmqXr06Vq5cCXd3d+Tk5GDbtm346KOPUKtWLfj4+ODdd99FdHS0QfEUxjtXHJh731YQd3d3o543BYWRd3PIlyYMHZdNXVa2trawsrIyKC3q0MuS6IwZM/DixQtUqlQJz549w6pVq5T8yL/C9+/fL742unfvrrdA7+PjAy8vL9y9e1dYNNOXChUq4Pbt27h27ZpWv9IUpKZpa3Wkp6fjnXfewbNnz+Dk5IQvv/wSnTp1QuXKleHq6iq0cfv370f79u0BwGhNibFomsHQhtTAbG1tFZataKNChQoK/7ds2RIXL17E+vXrsWPHDhw6dAjXrl3D48ePsWHDBmzYsAGdOnXChg0btHbY6jAmn6UVeQcxbdo0dO7cWafnjPko11YPur4PpghHlzahLRxj2lX58uVx9OhRREZGYsOGDYiKisKZM2eQnZ2NQ4cO4dChQ/jtt9+wY8eOQrHiKK//zz77DEOHDtXpOX0N0ZkiHnk9mMO7LOUpKChIL5sZQUFBCv/37t0bHTp0wOrVq7F7925ER0fj7t27uHfvHpYtW4Zly5YhPDwcixYt0jibqglTvXMlieLo2wBoFM6KCnnely9frrP2W5MQbg75KgzkZXX06FG1S8EKIv+oLWz0EtClJSCpqano37+/Vv8//fSTuL58+bJBL4CxHUhISIhYe3jr1i21hXvz5k1hvKdGjRp6x7N27Vqhvd6wYQNee+01lf7UafRMhbRkBND+hWjoFySQr/0G8pcOeXp6Kqyr1Rd7e3sMGDBArN9KTU3F9u3bMXv2bJw/fx67d+/G+PHjMWPGDJ3DlE8naZu6lN+XP1eakeoPyF+zKV+GZEr0qQe5MQhN9XD79m2NH9FSu7awsFA78GizFpyTkyPeVXlaTN2u2rdvLz7Y09PTsW/fPsyfPx/79+/HpUuX0LdvXyQlJWmMxxDk9f/s2bNCq39TxCOvQ231pum+PJw7d+5o/PC5e/eu2ntSnm7fvo3q1atrXCqlDVdXVwwbNkwsfTxz5gy2bNmCWbNm4caNG4iIiED9+vXx6aef6hxmYbxzJYmi6tsMwcLCAkSkNPNdEGk2X1/keS+4vJRRRF5W9vb2ZllWRlsSLUzu3LmD9PR0AICfn59BYbRo0UJca1omI7/XvHlzveM5ffo0gPxOTp1wDiiueyoM7O3tUblyZZ3iMiYt9evXF9d79uwxOBxVVKpUCaNGjUJcXJzQuK9Zs0bvMCSN+/HjxzX6lW/SKs6XtCi1gzVr1hRaSlPXnxx5eZqqHuLi4jSGI92vWrWqWo3viRMnkJOTozaMkydPivXr8rQUZrvy9PRE3759ERkZiTfeeEOkU5PFP0Px9vZG+fLlAeRvwCwsTaop4rG3txcbAnWte1VIm4cB4/pGqe979uwZjhw5ojEcfQkJCcE333yDY8eOCYWWvn1fYbxzxlIa+zZDkLS0mhR1eXl5Br/zhTkuFzZFPTtWEspKLwF9yZIloPyjGdX+5BtHDxw4INy1mfNVxfz580WH3rp1a72fB/I3IkrTg4sXL1brTzpNwdLSUgyO+iAN9llZWWq/jp89e4Z//vlH77D1RdLInTx5EqdOnVLrz5i0vP766+KUnRkzZmgUdgzFxcVFbArTtKFWFdbW1qLN7N27V+EEhYL8/fffAPKn8ow1rWwM0oZmaaaqMHFwcBDt5ODBgyY/SULCz89PzEitXbtW7eaY3Nxc8Q66u7ujQYMGasOMiIhQey8+Pl4ss+vQoYNaf/fv38fWrVvV3l+0aJG4lodTVO1KqhtA/7avazuS+rnU1FSxObMwMEU8Uh0kJydrnFGQ11tBQkND4erqCgBYunSp2o+F27dvY/fu3WrDkZ/+M3XqVI3pNhR/f3+h4de3/gvjnTOW0ti3GYK0zEnTB+COHTvEaUP6UqVKFYSEhAAAVq1ahatXrxoUTnFga2srhPSiaCdt2rSBi4sLAGDOnDkGz1oUJsWiQU9LS9M6bbtt2zaxRMbe3l7t0Wpt2rQRO23T0tKU7pctW1Ysndi9e7fKAWLt2rWiQ3733XcNWmMkaXiePn2qMo7c3Fy8//77uHHjht5h68uwYcNEQ//ggw9UbmpYv349Nm7caHAc5cuXF3Vy8uRJDB8+XKOQfufOHSGwSOzevRs3b95U+8yjR49E51pw/aYujBw5EkD+NOd7772n8kSPRYsWia/n3r17G7VUx1ikuFNTU4tkbej48eNFO+nXrx8uXbqk1m9ubi5WrFih016Ogkj1cPfuXYwaNUpl3n744QecOXMGQH6blY48VcWWLVtUahUzMjLEUgFLS0sMHz5cY7o+//xzlUsioqKiMH/+fAD5p30UPDnE2HZ14sQJnDhxQm26iEgcK2hhYaG3ckOKS1N9AsBXX30lyvnDDz/UqlXesWOHxg/+woxn+PDhoq0OGzZM5WC6fPly7NixQ2249vb24mjZxMRETJ8+XclPXl4ehg8frnGDbqNGjdCxY0eRVm2nmaWlpWHlypUKbps2bVLY0F+Q//77D//++y8A4/o+U71zxlJa+zZ9kT7ujx8/rnL25ebNm/jkk0+MiuPbb78FkH/6Ua9evTQu18rKysLcuXON3pA+b948IYdNmTLFoDAsLCyE7KWt7zIFTk5O+OyzzwDkv28DBgzQeHDHo0ePMHfu3EJPlwI6nZauB7oYKjpw4AABoKZNm9LkyZNpx44dFB8fT3FxcbR69WolQ0WzZ89WG5/csI8qi29E+ZbsvL29hdGQr7/+mqKjoyk6Opq+/vprYTXQ29ub/vvvP4Py/d9//wmDB2XKlKGxY8dSZGQkxcXF0ZIlS4TxgObNm2ssH10NOsjLWRXDhg0T90NCQmjx4sUUHx9P+/fvp1GjRpGVlZUwzASAJk6cqBSGNkuiT548ERY0pXhmzpxJ0dHRlJSURAcOHKDZs2dTjx49yNbWlho2bKjwfHh4ONnY2FCXLl1o5syZtG/fPkpMTKSoqCiaM2eOMLYBgGbOnKmxPNTx9ttvizDq1atHS5cupfj4eNq7dy8NHTpUq0l2bWUgoYv5ZW0sWLBAhPHZZ59RfHw8XbhwgS5cuEBpaWkKfiV/xhi8IFJsR05OTvTpp5/S9u3bKTExkWJiYmjlypX0ySefkJ+fHwGaLb6qo6DZ8TZt2tDatWuFSeZevXqJewXNjqtKZ2hoKFlZWdGIESNo//79FB8fT4sWLaJq1aoJP6NGjVKZFslQUd26dcnGxobKly9Ps2fPptjYWIqOjqaxY8cKIzXW1tZ07NgxleEY066kNtWoUSP68ccfadu2bRQfH08xMTG0YsUKeu2110TYPXr0UIpbW50OGDCAgHyrdvPmzaPk5GTRjgoafpG3b1tbWxo6dCht3LiREhIS6Pjx47R+/Xr6+uuvqXLlygSAtm7dqjJObZgiHslyMQCqXr266NMiIyPpww8/JEtLS2FSXt27kZ6eTmXLlhV+BgwYQLt27aKEhARavXq1MPst7xsLvntERNevXxcWkoF8Q3h//fUXHT16lBITE2nv3r30v//9j1577TWysrKi3r17KzzfunVrcnBwoLfffpv+/PNPOnjwICUlJdH+/ftp6tSp5O/vL8LetGmT3uVtineOyHSGikpr36br+CCRkpIi5A13d3eaMWMGxcXF0ZEjR2jq1Knk6+tLnp6eVLVqVbV502WsCQ8PF368vLxo/PjxtGfPHkpKSqLDhw9TREQEvf/++8K6ZcH61zdff/75p/CvzciQJiQDUw4ODvT3339TSkqKaCd37twR/uSGimJiYtSGp8340YsXL6hly5bCT2BgIE2ZMkW8j1FRUfTXX39Rv379yMHBgcqXL68UhmSoyM7OTmPedE2znGIV0LX9HBwctFoR1UVAJyI6duyYQsdc8Fe2bFm1g7GuLFq0SJgXVvXr27cv7du3T2P5mEpAz8rKEuaoVf2CgoLo4sWL4v8pU6YohaHLS5qenk6dO3fWqT7btm2r8Ky8E9H0GzlypEHmronyX1C5xVRVPz8/P0pKSlL5fFEK6E+ePKFKlSqpTGNAQICCX1MNYkREM2bMEB+Xmn62trZ04cIFg/KWnp6u8HGq6lejRg2VwhCRYntPTU2loKAgteH07t1brTl5SUAPDw+nBQsWiMFSVV5XrlypNj/GtKuCZrTV/Vq0aEHp6elKz2ur06SkJLX1GR4eruR/1apV5OLiojU9lpaWtH//frVlog1j43nx4oWCYKmqT0tNTdX6bpw4cUIobFT9Bg8eTAsXLhT/37p1S2U4aWlp1KhRI53qcsiQIQrPysctdT8rKyuaPHmyweVt7DtHZDoBvbT2bfoKskRE06dPV5sOd3d3ioqKMsqSKFH+B9qYMWPIyspKa94dHR2VLFsWl4B+/PhxsrGxUZnO4cOHC3+mEtCJiDIyMqh///46vcc1atRQer4wBfRiWeLSsGFDLFu2DCNHjkTjxo1RsWJFODg4wNbWFr6+vmjXrh0mTZqEy5cvKxj2MYbGjRsjOTkZ3377LWrVqgUnJyc4OTmhdu3a+Pbbb5GSkqLVqIM2hgwZgujoaPTo0QPe3t6wsbFBuXLl0LlzZ6xevRqrVq0qsiOLbG1tsWXLFixevBgtWrSAq6srHBwcUKNGDYwbNw4JCQkKu5iltZn64uHhgZ07dyIyMhJDhgxB1apV4eTkJM6RbtSoEUaOHIkdO3Zg7969Cs/OnDkT69evx4cffojQ0FCUL18etra2KFOmDIKDgzF48GAcPnwYs2fPNviYMXt7e2zYsAFbtmxBr1694OfnB1tbW7i7u6Nx48b45ZdfcO7cOdSrV8+g8E2Jk5MTjh49ik8//RQ1atQw+FhJffnss89w6dIlfPfdd2jSpAm8vLxgbW0NR0dHBAcHo3fv3pg3bx6uX7+OKlWqGBSHh4cHDh06hKVLl6Jz587w9fWFjY0NPD090aZNG8yePRsnTpxAQECA1rCCgoKQkJCAcePGiXJydXVFq1atsGzZMqxbt06nkzXef/99REdHo0+fPqJdlC9fHoMGDUJSUhL69eun9llj2tU777yDAwcOYNy4cWjZsiWCgoJE/1ehQgW88cYbWLFiBaKiogw6WaNevXqIiYlB//79UbFiRa1LF/r27Yu0tDRMmTIFbdq0gY+PD2xsbODg4IBKlSqhe/fumD59OtLS0tC2bVu902OqeGxsbLB+/XosXboULVu2VNmn6bIcpG7dujhz5gy++OILVK1aFXZ2dvDy8kLbtm2xYsUKLF68WJzoBajvGwMCAnD8+HFs3LgR/fr1E/VoY2MDb29vNGvWDF988QWioqKUDO2tWbMGy5cvx+DBg1GvXj2ULVsW1tbWcHJyQq1atTBixAgkJSVh7NixepbyS0z5zhlLae7b9GX06NHYtWsXOnXqBHd3d9jZ2SEoKAgjR47EiRMnFKxWGoqVlRV+/fVX0c7r168Pd3d3WFlZwdnZGTVr1sSAAQMQERGBmzdvGmWc0ZSEhYXhyJEj6NOnD/z9/fU+1tUQHB0dsWLFChw7dgzDhw9HjRo14OLiAisrK7i5uaF+/fr44IMPsGHDBo1LEwsDC6JSeBAqoxOHDx8WFg337dunsDGNYcyJiRMn4ocffgAAo9awBgYG4sqVKwgPDxcb5BimIO+//z4WLlyIChUqaNwIzDAMU1iY9TGLTOEibVyysbHRavqaYRjmVSAzMxObN28GADRp0qSYU8MwzKsKC+illHv37mk8JWD37t3466+/AOQfgyY3cMQwDFNauXTpktpZmNzcXHz00UfiaMPw8PCiTBrDMIzAcBNojFmTkpKCN998E2+//TY6dOiAypUrw9LSEleuXMGWLVuwbNky5ObmokyZMpg8eXJxJ5dhGKZI+OmnnxAbG4t+/fqhcePG8PHxQWZmJk6dOoUFCxYgMTERQP5Z9F27di3m1DIM86rCAnop5vHjx1i4cKHSBiUJFxcXrF27VqPJa4ZhmNLG2bNnNZ5f3rx5c6xevbrIrRsyDMNIsIBeSgkNDcWSJUuwc+dOnDp1Cnfv3sXDhw/h4uKCKlWqoHPnzvj444/h7e1d3EllGIYpMsaOHYvg4GDs3bsXV65cwd27d5GdnQ1PT0+Ehoaib9++6Nevn8EnRzEMw5gCPsWFYRiGYRiGYcwIVhEwDMMwDMMwjBnBAjrDMAzDMAzDmBEsoDMMwzAMwzCMGfHKC+hpaWmwsLCAhYXFK2NZMDAwEBYWFhg8eHBxJ4UBsGTJEtEG09LSijs5hcKQIUNgYWGBjz76SOne1KlTYWFhgTZt2hR9whiGYRjGDHnlBXRzIjExEZMnT8brr78Of39/2NnZwcnJCcHBwRg8eDCio6OLO4kMozfx8fGIiIiAra0txo4dq3R/5MiR8PLyQlRUFNavX18MKWQYhmEY84IFdDOhdevWaNiwIcaPH49du3bh2rVrePHiBZ4+fYoLFy4gIiICrVq1wqBBg/DixYviTi5jZrRp08ZstdDjx48HEWHIkCGoWLGi0n1HR0eMHj0aAPDdd98hLy+vqJPIMAzDMGYFC+hmwvXr1wEAfn5++PTTT7Fu3TrExsYiJiYG06dPR/ny5QEAS5cuNXppSlpaGojolVnSwxQfcXFx2LNnDwDgiy++UOtv5MiRsLe3x9mzZ1mLzjAMw7zysIBuJlSvXh2rV6/G1atXMXPmTPTu3RuNGjVCkyZNMHr0aJw4cUJY/Fy5ciUvd2FKBDNnzgQAhIWFoWrVqmr9ubq6okuXLgCA33//vSiSxjAMwzBmCwvoZsK2bdvQp08fWFlZqbzv5eWF//3vf+L/devWFVXSGMYgHj16JLThAwcO1Op/wIABAIAjR47g3LlzhZo2hmEYhjFnDBLQU1JS8PPPP6NTp06oUKGC2MxYtWpVhIeH49ixYxqfnzhxoji1AgCeP3+OadOmoUGDBnB2doazszPCwsIwe/Zs5OTkaE1PdHQ0evXqBV9fX9jb26NSpUr48MMPcfHiRQCmW58bGxuLDz74AMHBwXBycoKjoyOqV6+OkSNH4sKFC0aFrQvy9F+6dMngcLSd4vL8+XP88ccfaNOmDby8vGBjYwMPDw9Ur14dXbp0wYwZM4w+bSQnJwcLFy5Ely5d4OfnBzs7O3h5eaFVq1aYOXMmnj9/rjWMM2fOIDw8HP7+/rC3t4e/vz/eeecdxMXFAQAGDx4MCwsLBAYGKj178OBB0QYPHjyoMR7J38SJE1XeN/Z9MAYpj1FRUQCAqKgokV7ppyr/AJCcnIxhw4ahatWqcHBwgLOzM2rWrInRo0eb5DSZzZs3IysrCwDQu3dvrf67du0Ke3t7AMDq1auNjp9hGIZhSiykJwcOHCAAWn/ffPON2jAmTJgg/N26dYvq1q2rNpzu3btTbm6u2rB+/vlnsrCwUPmss7Mz7d69m1q3bk0AqHXr1krPX758WfhfvHixyjiys7Ppo48+0phfGxsbmj9/vr7FqRfp6ekK5WIoAQEBBIDCw8OV7t24cYNCQkK01u8XX3xhcPwXL17UGkfVqlXp/PnzasNYuXIl2draqnzW2tqaFi5cSOHh4QSAAgIClJ6Xt+MDBw5oTK/kb8KECRrDMfR9WLx4sfB3+fJljWkpiJRHTT9V+Z88eTJZWlqqfcbOzo4iIiL0SktBBg8eTADI399f52eaNGlCAKht27ZGxc0wDMMwJRlrPWR5APmaT0dHR3Tt2hXt2rVD9erV4eLigjt37uD06dP4448/cOXKFUyZMgXBwcEYMmSIxvB69eqFs2fP4pNPPkH37t3h4eGBc+fO4aeffsLZs2exdetWLFiwAMOHD1d6duXKlfj2228BAO7u7vj666/RqlUrAPla9SlTpqBfv37w9vbWN5sKDB06FP/88w8A4PXXX8eAAQMQHBwMCwsLnDhxAjNnzsTp06cxbNgwlC1bFt27dzcqPnVIWlIgf816YTBq1CicOXMGQP6yhF69esHPzw9WVla4ffs2EhISsGnTJoPDv3nzJpo3b47bt2/D2dkZw4YNQ4cOHeDr64tHjx5hz549+P3333HhwgV07twZiYmJcHV1VQjj+PHjePfdd5GTkwM7OzuMHj0aXbp0gZ2dHY4fP47Jkyfjww8/REhIiDFFoROmfh/0ZdKkSfjyyy8xZMgQxMfHIzQ0FIsXL1bwY2trq/D/3LlzMW7cOACAt7c3vv76azRv3hy5ubnYt28fpk2bhqdPn2Lw4MHw8vISa8P1Rdon0ahRI52fCQsLw7Fjx3Ds2DFkZ2fDxsbGoLgZhmEYpkSjr0R/9+5devDggdr7WVlZ9NprrwnNXU5OjpIfuQbdxsZGpQYzPT2dfH19CQDVqVNH6f7z58/Jx8eHAJCHhwedO3dOyc+5c+fIw8NDxGWIBn3dunXi/oIFC1TmOTMzk9q1a0cAKDAwkLKzs1X6M4bc3FwKCwsTaYmLizM4LHUa9MzMTLKxsdFJQ56enm5Q3N26dRNa1UuXLqn0k5iYSI6OjgSAvv32W6X7DRs2FG0nKipK6f61a9eoQoUKGjXIptKgm+J9MEaDLqFplkjOnTt3yMHBgQCQn58fXb16VcmPvPzLly9PL1680Ds9t2/fFnn66aefdH4uIiJCPBcbG6t3vAzDMAxTGtB7DbqXlxfc3NzU3re1tcW0adMAAFeuXMGJEyc0hjdq1CiVa8M9PDyEtvHUqVN49OiRwv2NGzfizp07AIAJEyaIE07kBAcHY8KECRrj18Yvv/wCAOjZsyfef/99lX7s7e0xe/ZsAPlHGGpb02wIM2bMQGxsrEhLaGioyeO4f/8+srOzAUDMRKjDw8ND7/BTUlKwbds2AMDs2bNRqVIllf7q16+PkSNHAgAWLVqkcC82NhYJCQkAgOHDh6tMZ/ny5RU21BYmpn4fCpvFixfj2bNnAID//e9/8Pf3V/JTv359YVDo+vXrBs2YXLt2TVz7+Pjo/JzcrzwMhmEYhnmVMPoUl6ysLFy9ehVnzpxBSkoKUlJSQETi/smTJzU+L53coIqGDRuK68uXLyvci4yMBABYWlri3XffVRvGwIEDxWZUfbl+/boQBvv06aPRb40aNeDl5QUAiImJMSg+dURFReGbb74BkC/A/PnnnyYNX8LT01Msh1i6dKlOG3T1YfPmzQAABwcHdO3aVaNfSfC+ceMG/vvvP+G+b98+ca1puUjPnj01Cs6FhbHvQ2EjlZ+bm5vGjZvyj1F5mevK3bt3xbW7u7vOz8k//ORhMAzDMMyrhN5r0AHg6dOn+OOPP7Bq1SqcPn0aubm5av3eu3dPY1ia1lLLB+snT54o3EtJSQEABAUFaRQAPDw8UKlSJYNOPYmPjxfX/fv3R//+/XV67tatW3rHpY7Tp0+jZ8+eYr31mjVr4Ovra7Lw5djZ2aFv375YunQp1q1bh7i4OPTp0wdt2rRB8+bNldaC64tUns+ePYO1te5N79atW0LTm5ycDCBfM12nTh21z9jY2KB+/fo4cOCAESnWDVO+D4WN9N7Ur19f4/puX19fBAYGIi0tTTyjD/fv3xfX+gjocr/p6el6x8swDMMwpQG9BfS0tDS0a9dOSaOtjszMTI33HRwc1N6ztHyp4C8o9Dx48ACAbtPn3t7eBgno0hIafZGWEBjL5cuX0bFjRzx48ABWVlZYuXIlWrdubZKw1TF79mw8fPgQW7duxZUrVzBt2jRMmzYNVlZWaNCgAfr06YNhw4bBxcVF77BNUZ5SvXt4eGgV8gvrQ0aOqd+HwkYSnHUpm7JlyyItLU1B2NYV6bhEQL88y/2WKVNG73gZhmEYpjSgt4D+7rvv4vLly7CwsMCQIUPQr18/1KhRA97e3rCzswMA5OXlCYM78un9kob8o2D58uUaNbZy9NEYquPGjRvo0KEDbty4AQsLCyxatAg9e/Y0OlxtuLi4YMuWLYiNjcWaNWtw4MABnDx5Erm5uYiLi0NcXBymTZuGTZs2oWnTpnqFLZVnUFAQtmzZovNzQUFB4lpqT7osWyqKtldS34fCLj/5yUn6CPhyv8aevsQwDMMwJRW9BPR///0Xhw8fBgCMHTsWkyZNUulP0nIWJpIQrItW1tC1rJ6enuLawsICtWrVMigcfbl37x5ee+01pKamAgBmzZqFQYMGFUncEmFhYQgLCwOQv7zo4MGDWLx4sdic27t3b1y6dEkvLadUnrdv30b16tX1WuYiIS17Sk9PR25urlrLq4DmtiGfncnLy1Pr7+nTp2rvmdP7oCseHh64efOmTsuwbt++LZ7RF7lwrU/+5X5ZQGcYhmFeVfTaJHr69Glx3a9fP7X+5Gu3C4uaNWsCyF8GoklDd//+fSHo6kv9+vXF9Z49ewwKQ18ePXqETp06ibPIp0yZIk40KS6cnZ3RvXt3bNiwAZ988gmA/PPMJeFUV6TyfPbsGY4cOWJQWmrXrg0AePHihcYNlzk5ORpPTHF2dhbXmgRITSbnzel90HUjtPSRmZSUJE7sUcWdO3dw5coVhWf0oXLlymL52vnz53V+Tu5XqmuGYRiGedXQS0CXn+qhaZ31vHnzDE+RjrRv3x5AvvZz2bJlav0tW7bM4Kn6KlWqCGM3q1atwtWrVw0KR1eePXuGrl27IjExEQAwfvx4fP3114Uap75I5Q7ov+HxzTffFNdTp041KP4OHTqI64iICLX+Nm7cqFHwli+b0SRAr1ixQu09c3ofpDXfWVlZGv1J5ffw4UOsX79erb+FCxeK90Ze5rpibW2NJk2aAADi4uJ0fk7yW7lyZZQrV07veBmGYRimNKCXgF61alVxrU44+vPPP42yNKkrPXv2FBtEf/jhB1y4cEHJz4ULF/DDDz8YFY9kqfT58+fo1auXxuUyWVlZmDt3Lp4/f653PC9evEDPnj2FZvnTTz/Fzz//bFiiDSQ1NVXBWqkq5DMJciFXFxo1aoSOHTsCAHbs2KH1jPq0tDSsXLlSwS0sLAwNGjQAkN/WVGnxb968iS+//FJj2G5ubmJPweLFi1XOwhw6dAh//PGH2jDM6X2QhNnU1FSNH6RDhgwRmu0vvvhC4QhLiZMnT2Ly5MkA8s+U79Gjh0FpatmyJYB8OwbaPhwkpLP+pWcZhmEY5lVELwG9fv36Yrr7zz//xDvvvIPt27cjMTERmzdvxttvv40RI0agefPmhZJYOfb29pg5cyaA/GUsjRs3xtSpU4WZ8KlTp6JJkybIy8sTgpQh56H3798f4eHhAICEhASEhITg22+/xd69e3HixAkcOXIE//zzDz744AP4+flh5MiRBp0f3r9/fyH8tmvXDkOHDhXnaKv66bNsQFeuXr2KNm3aoGbNmvj222+xadMmsTF0w4YN6Nu3L+bMmQMgvy00btxY7zgWL14shMkff/wRTZo0wfz58xETE4OkpCTs27cP06dPR8eOHVGlShWVWt65c+fC2toa2dnZeO211zBu3DgcPnwYcXFxmD17Nho2bIibN2+ibt26GtMyYsQIAPlrrVu2bIlVq1YhKSkJkZGRGD16NDp27KjRIJQ5vQ/NmjUDkL805fPPP0dCQgIuXryIixcviqUqQP66bslw0o0bNxAaGooZM2bg+PHjOHr0KH788Ue0aNECGRkZsLCwwPz58zUex6gJ6az7Fy9eIDo6Wqv/CxcuiA8GbefkMwzDMEypRl/To0lJSeTu7i7McRf81a5dm27cuKHRPPqECRPEfU3oYo79559/JgsLC5VpcXBwoO3bt1PLli0JAHXu3Fnp+cuXLwv/ixcvVhlHTk4OjRkzhqysrNTmW/o5OjrSs2fPtBWjEtrCLfhTZb5eVwICAggAhYeHK7jLy1vTr0aNGgabpCciSktLo0aNGukU15AhQ1SGsWLFCrK1tVX5jLW1NS1YsIDCw8M1llVubi716NFDbdy1atXS2pZN8T4sXrxY3De0XJ88eUKVKlXSua1MmjSJLC0t1abbzs6OIiIiDEqLnOrVq2usRzkTJ04kAOTq6kqZmZlGx80wDMMwJRW9LYnWq1cPJ06cwIcffoiAgADY2NjAw8MDYWFh+O233xAbG1uka0fHjx+PqKgo9OjRAz4+PrCzs0NAQADee+89xMfHo0uXLnj8+DEAGGxox8rKCr/++ivOnDmDL774AvXr14e7uzusrKzg7OyMmjVrYsCAAYiIiMDNmzdL7PnNLVu2RExMDH788Ue0a9cOVapUgbOzM2xsbODr64uOHTvir7/+wokTJxAYGGhwPAEBATh+/Dg2btyIfv36ISgoCA4ODrCxsYG3tzeaNWuGL774AlFRUVi4cKHKMPr374+kpCS8++678PPzg62tLcqXL48+ffrg8OHDCpYw1WFpaYl169Zhzpw5aNSoERwdHeHo6Ig6depg0qRJOH78uNa2bC7vg5OTE44ePYpPP/0UNWrU0GhfAADGjRuHpKQkfPDBB6hcuTLKlCkDR0dH1KhRA59++in+/fdfk5wcJM1SrF+/XuvSL2k503vvvadwjjrDMAzDvGpYEJnJwcyFRHZ2NlxdXZGZmYlvv/0WP/30U3EniSkiBg8ejIiICAQEBCAtLa24k/NKkpGRgcDAQKSnp2Pp0qUYOHCgSn+HDx9Gy5YtYWNjg/Pnzxv1AcgwDMMwJR29NegljU2bNgnrhNKpEgzDFA1OTk4YM2YMAGDSpElqz5yXPpyHDBnCwjnDMAzzylPiBfSLFy+qvZeWlobPP/8cQL5p806dOhVVshiG+X8++eQTBAQE4N9//8WaNWuU7sfGxmLPnj1wcnLCxIkTiz6BDMMwDGNm6G/K0cyoXr06unTpgm7duqFmzZpwdHTEnTt3cODAAcybNw8PHz4EAPz2228GWa5kGMY47O3tsWzZMuzbt0/lCUf37t3DhAkT0KBBAz77nGEYhmFQCtagazs60dLSEj///DPGjh1bRClizAVeg84wDMMwTEmkxKuUt27dip07d+Lo0aO4ffs20tPTYWdnh/Lly6NNmzYYOXKkQabKGYZhGIZhGKY4KPEadIZhGIZhGIYpTZT4TaIMwzAMwzAMU5pgAZ1hGIZhGIZhzAgW0BmGYRiGYRjGjGABnWEYhmEYhmHMiGIV0NPS0mBhYQELCwssWbKkOJOCiRMnirQwDMMwDMMwTHFhtICenZ2NVatWITw8HDVq1ICnpydsbGzg5eWFhg0b4qOPPsK+ffvUmvhmSjY///yz+LBxdnbGs2fPTBZ2VlYWNm7ciLFjx6JDhw4IDg6Gh4cHbGxs4OnpiWbNmuH777/HtWvXNIZDRDh8+DC+//57tG/fHuXKlYOtrS1cXFxQs2ZNjBgxAidPnjRJmgcPHizKQ9tP29nssbGx6NixI5ycnODu7o5+/fpptJxblLRp00ZtvmxsbODt7Y3WrVtj6tSpePDggUniTExMxOTJk/H666/D398fdnZ2cHJyQnBwMAYPHozo6GitYTx//hybN2/GqFGj0LhxY9GePDw80LRpU0ycOBE3b940SXoDAwN1ageBgYFaw1q2bBnq1asHe3t7+Pv746uvvsKTJ09Mkk5Tc/DgQYwePRoNGzYU75qbmxuqV6+OAQMGYNmyZUb3E6ZoC3J27dqFXr16oUKFCrCzs0OFChXQq1cv7Nq1y6h0Smh6Xwr+dElrs2bN4ODgAF9fXwwbNgy3bt0ySTqNRV2bd3JyQvny5VG3bl0MGjQIs2bNwvXr100a98OHD7F3715MmjQJPXr0gJ+fn4i/TZs2OoWhax3pU1/qeFXaBGMEZASbNm2iSpUqEQCtv+DgYNq2bZvC85cvXxb3Fy9ebExSjGbChAkiLYzuBAcHK9Tz0qVLTRb2hQsXdGpbjo6OFBERoTacihUrag3DwsKCxowZQ3l5eUalOTw8XKc0A6DLly+rDWfv3r1ka2ur9Iy7uzulpKQYlUZT0Lp1a53z6evrSzExMUbF16pVK53ievfddykrK0tlGCdPniRnZ2etYTg7O9Pq1auNSi8RUUBAgE5pDggI0BjODz/8oPK5+vXrU0ZGhtHpNBXJyck615O7uzv99ttvlJubq3c8pmgLEnl5eTRs2DCN4QwbNszofkGf90UTS5YsIQsLC6VnKlasSDdu3DAqjaZA1zYPgKysrKhnz54a+0F9CAwMVBtX69atdQpD17RLv+DgYIPT+6q0CcZwDDZU9Msvv2D8+PGg/z9GvUOHDnjzzTcREhICNzc33L9/H+fOncPWrVuxd+9enD9/HuPHj0fXrl0NjbJQmThxIiZOnFjcyShRHDt2DOfPnwcAODk5ISMjA//88w8GDhxosjh8fHzQtm1bNGrUCAEBAShXrhxsbGxw/fp1bN++HcuXL8fTp08xePBgeHt74/XXX1cKQ9LUVKlSBb1790bz5s3h5+eHzMxMHDhwADNmzMCDBw8wdepUWFlZYfLkyUan28/PD7t379bop3z58irdX7x4gffeew8vXrzA4MGDMXjwYLx48QIzZszAzp07MXToUBw7dszoNJqK5ORkhf9fvHiB1NRULF26FFu2bMHt27fRtWtXnDt3Dl5eXgbFIdWhn58f3n77bbRs2RIVK1ZEbm4uYmJi8L///Q/Xr1/H0qVLkZOTgxUrViiF8fjxY6F1bt68Obp164bQ0FB4enri7t272LBhA/7++288efIE77zzDpydnVW2J31588038fPPP6u9b2trq/bemTNn8MMPP8De3h7jx49Hhw4dcPXqVXz//fdISkrCTz/9hClTphidRmPZs2cP3n77bTx+/BgAULNmTfTp0wdhYWHw9vbG06dPceXKFezatQtbtmzBgwcP8OWXX2Lo0KFwc3PTKy5TtAWJb7/9FvPnzwcA1K9fH2PGjEHlypVx6dIlTJ06FUlJSZg/fz68vb011qGuhIaGYvHixQY9e+/ePYwcORIWFhb4/PPP0bNnT9y/fx+TJk3C8ePHMXr0aKxatcroNJqCgv1fdnY2Hjx4gLS0NBw9ehTr1q3Do0ePsHHjRkRGRmLp0qV44403jIqTZCZdfH190ahRI2zbtk2vMAr2ZaqIiIjAb7/9BgAIDw/XL5EqeFXaBGMAhkj1//zzj/hK8/b2pv3792v0f+rUKWrXrh3VrVtXwd2cNOiM/nz00UcEgLy8vOjXX38lAGRpaUnXrl0zSfi5ublaNVfHjx8nGxsbAkANGjRQ6adp06a0a9cutWFdvHiRvL29CQBZW1vTpUuXDE6zpEHXphXVxMGDBwkA9ezZU8E9JyeHGjZsSADoypUrBodvCuTaH00MGjRI+JsyZYrB8XXt2pVWr15NOTk5Ku/fvXtXYTbn0KFDSn6OHDlCffr0odOnT6uNZ9OmTUIbVblyZaM0p5I2MTw83OAwJk6cSADo999/V3C/du0aOTg4UFBQkMFhm4ozZ86Qo6Oj0Ir+8ccfGjXjd+7coREjRhAAevDggd7xmaItEOXP0FlbWxMACg0NpWfPnincf/r0KYWGhop+4eLFi3qnVUJ6X3TV5KpiyZIlBIBGjx6t4P7kyROqUKEC2dvba50xKGykNq+t/3v8+DF9/vnnoo7KlClD8fHxRsU9bdo0WrdunULfKIVvTLkXJCwsjID8WVdj+uFXpU0whqO3gH79+nXRGTs4OGgc7OTk5uYqLX9gAb3kkpWVRR4eHgSARowYQTdv3iQrKysCQL/++muRpqVz586iHT158sSgMGbNmiXCmD59usFpMYWAvnz5cgJAs2bNUronDWpHjx41OHxToKuAnpKSIvwV/OAwNVu3bhVxffLJJwaH07t3bxFOYmKiweGYQkD/4IMPCAAlJycr3WvQoAHZ2toaHLYpyMvLo/r164vyWrJkic7Prlu3rtCW6OjSFqSPBABql2DFxMQIPx9//LHB6TGFMDZp0iQCQFu3blW616tXLwJQ7EsadBXQJaZMmSLKt169eiZPj6kF9H///VeE2bZtW6PCelXaBGM4em8SnTFjBp4+fQoA+OGHHxASEqLTc5aWljotfdi7dy+6d++OsmXLws7ODkFBQfjoo4+0bgQE8qfW586di7Zt28Lb2xu2trYoW7YsunTpgmXLlmncqKrrKS4vXrzA/Pnz0bVrV5QvXx52dnbw8fFBw4YN8fHHHyM6Olphqk1V/gYOHIigoCCUKVMGLi4uqFu3LsaMGaN1c9qNGzfwzTffoEGDBnB1dRX5q127Nvr3748lS5aIKebCZuvWrbh//z4AYODAgShbtizatWsHAPjnn3+KJA0Sjo6O4jorK8ugMNq2bSuuL126ZHSajMHHxwcAEBUVpeCel5eHw4cPAwDKli1b5OkyBPkGyOfPnxdqXPKNYMbUYUloC7du3cK5c+eKvR3s2LEDSUlJAICuXbvqNeXfu3dvhXfXlGhrC0SEzZs3AwCqV6+OJk2aqAynSZMmqFatGgBg06ZNGvv2wkZdW3j69Cni4+Nha2sLDw+P4kiawYwZMwaNGzcGAJw4cQI7d+4s5hRpRj62mWJ5i7GUxjbByNBHms/LyxNLARwdHenRo0dGfR0U1KB//fXXajdJeHt705kzZ9SGlZaWRjVq1NC40aJFixaUnp6u8nldNokmJSVRUFCQ1g0dqja9ZGRkUM+ePTU+5+TkpPJLmIjo0KFD5OLiojVuVc8fOHBA3DdGmyfnjTfeEMsAJCIiIkQ8CQkJWsOQ/Bqjbb59+za5u7uLpTaGkpCQINIzatQog8MxhQb92bNn5OXlRQBo6NChFBUVRXv37qVu3boRAGrYsKHBYZsKQzTow4cPV+lH3g8Yo01KT08X4XTv3t3gcP73v/+JcNavX29wOKbQoMfFxYklAJMnT6aYmBhau3YthYSEEAD64osvDA7bFMhnG/bt22d0eEXVFi5duqS1XUrIN5GmpqYalB5TaEuvXbtGtra2ZGlpSWPGjKEjR47Qtm3bqFmzZgSAevfubXDYpkJfDToR0YoVK0T5fvDBByr9GDpWmKItSeTl5Yn8OTo6GjxbK/GqtAnGcPQS0OWDbefOnY2OXN4ZSw2qdevWtGLFCoqPj6d9+/YprGFt0qSJynCePHmicJpMjx49aMuWLRQfH09r165VECaaNm2qcu2iNgH99OnT5OTkJPz07NmTVq9eTXFxcXTs2DGKiIiggQMHkqOjo5KAnpOTQ23btiUgf91a//79ae3atRQfH08xMTH0+++/i5NGbG1tldbiPX/+nPz8/AjIP2FizJgxtHPnTkpISKBjx47R6tWr6bPPPiN/f/8iEdDv3r0r1n1///33wv3Jkyfk4OBAAOjTTz/VGo6hne7z588pNTWV5s+fT5UrVxbh/PTTT3rm5CXTp08X4cyZM8fgcCQB3cnJiVq0aEGurq5ka2tLZcuWpY4dO9KsWbPo6dOnWsNZt26dWDIk/7m4uFBSUpLB6TMVugrogwcPFv62b9+u0o+phLINGzaIcL766iuDw5E+PgHovIRPFdJgHhQURLVr1yYHBwcqU6YMBQYGUp8+fWjjxo06rXH/9NNPVX6M16pVy2glibH4+PgIgUXdmnB9KKq2sG3bNnF/xowZGsOS9w3q2rA2pPfF19eXQkNDycnJiezs7Kh8+fL0xhtvUEREBL148UJrODNmzFDZFvz8/Oi///4zKG2mxBAB/c6dOyIf1atXV+nHHAT0/fv3i/Deffddo8N7VdoEYzh6CejS2lgANG7cOKMjl3fG0tezqgHr/fffF35UrQn98ssvxf1vv/1W6X5eXh4NGDBA+Jk7d66SH20CurTO0tLSklauXKk2T/fu3VPabPTbb78RALKxsaEdO3aofO7+/ftUs2ZNAvI1/XIiIyNF2tRp2ImIsrOzVQ7YphbQf//9dxHe+fPnFe7179+fAJCPjw9lZ2drDEefTleeB1W/AQMG0PPnzw3Kz9OnTxU+kIzZ5KrLMYvly5enI0eOaA1r//791KpVKypTpgy5uLhQz5496ezZswanzZTIBfTk5GSFX0JCAq1fv15hxuitt95SG5YphLLc3FyxeQsAxcXFGRTOiRMnxIdRzZo1DQpDQpcj55o3b65Te5s7dy6FhISQjY0NlS1blkaNGmXQBktTcv36dZGPZs2amSTMomoLf/75p7i/du1ajeGtXbtW+J03b55BadLlSL2QkBCNs8Ty9DRs2JDs7OzI09OTBg0aZLKN+cZiiIBORFShQgUC8jcZq5IBzEFAlysb9u7da3R4r0qbYAxHLwFdLpgVPFXAEOSdcbly5dQKWPKNGQXjff78Obm5uYnGrE6L8+jRI/L09BT+CqJJQN+1a5e4p4tmWM6LFy+oXLlyBCjvtC7Ijh07RDwXLlwQ7vIPI0M0ZqYW0KWTRMLCwpTubd++XaePCSLTCOiBgYG0a9cuQ7NCREQff/yxCE9bHWlj8ODB1KRJE5o0aRLt3LmTEhMT6ejRo/TXX38pCA2Ojo5GbUAsbnQ9wzc4OJj+/vtvjad6mEIokz6CAcM3oz5//lyc2gGANm/ebFA4ElWrVqU33niDZs+eTQcPHqSkpCQ6cOAATZ48mfz9/UU8NWrUoIcPHxoVV3Fw8uRJo8u8IEXVFqZOnSr87Ny5U2N48n75t99+MyhNbdu2pfbt29P//vc/2rdvHyUlJdGhQ4do5syZCkszfX19i/2EJmMwVECvW7euxjGuuAX0p0+fChsKFSpUMOj8/oK8Km2CMRy9BPSff/5ZNJq///7b6MjlnbG2db/S8pKCAvKRI0dEGFOnTtUYhnQsIKC8s1mTgD5q1ChxLy0tTbfM/T+HDx8Wz2oz1pKRkSH8/vPPP8JdPrU2c+ZMveI3NadPnxZp+eOPP5TuZ2dni2nvPn36mCzejIwMoaGNj4+nDRs20ODBg8nKyorKlStncHtctmyZgqBUcPZDXzRpNfPy8mjcuHEivgYNGhhtAKW40MfIRrNmzSg6OrrQ0nLw4EFxXJ6Pjw/dunXLoHDkM3Wm+JDV1BYeP35MHTt2NNmHYXEg79sGDhxY3MkhIt3bwo8//ijSHhkZqTFM+QymocvoNLWFFy9eKMy8FfZpR4WJoQJ68+bNRf5Nqfk1lYAuV5J98803Jknbq9ImGMPR6xQXZ2dncS2d5GIqqlevrvG+u7s7ACiZt05JSRHX0m5wdcjvy5/ThnRKQcWKFREQEKDzcwAQHx8vrps2barRnK+Tk5PwKzfT26JFC1SqVAkA8NlnnyEsLAy//PILjh49ihcvXuiVHmOJiIgAAFhbW6Nfv35K962trdG3b18AwJYtW/Do0SOTxOvo6IhatWqhVq1aaNiwIXr27InFixdj9+7duH//Pt5//338+OOPeoV58OBBDB06FEB++1q3bh3KlCljVDo1GV2xsLDApEmT0KFDBwD55sqPHj1qVHzmAOV/6Itfbm4ubt++jfXr16Nu3bo4evQoOnTogI0bN5o87tOnT6Nnz57IycmBnZ0d1qxZA19fX73D+eWXX/D3338DABo2bIg5c+YYnTZNbcHZ2Rlr1qyBp6cnAGD+/PlF/i4bS2GOB4agT1uwt7cX19rKXX4ylKH9g6a2YGNjg7///luMgRs3bhTGmF4V5OO6i4tLMaZENfLTWwYNGmSSMLlNMNrQS0CXWwG8ffu2SRPi4OCg8b6lZX5Sc3NzFdylo/4AaB2Y5UeSyZ/Txr179wAA5cqV0/kZiTt37uj9DAA8e/ZMXNvY2GDr1q2oUaMGACAuLg7jxo1D8+bN4ebmhtdffx0rVqxQKhtTk5eXh+XLlwMAOnbsCG9vb5X+pOM0nz9/jjVr1hRqmtq3b49PP/0UQP6xn//++69Oz8XHx+ONN95AVlYWHB0dsWPHDp2PDDWW4cOHi+uCx2OVBiwtLeHj44NevXrh8OHDCA4ORlZWFgYPHowHDx6YLJ7Lly+jY8eOePDgAaysrLBy5Uq0bt1a73D++usvjBs3DgBQrVo17Ny5s9CO/5Pj6uoqPnKlY9FKEoU5HuiLvm1B/nGRkZGhMWz5x4dciWJKrK2thbIAKJ39giakMdba2lqhbsyBmzdvYt++fQCARo0aiXG4sHnV2wSjp4Bet25dcZ2YmGjyxBiLtjPMycgzbLWFrwq50Hzw4EEkJyfr9Pvoo48UwgkJCUFycjI2btyI9957D5UrVwYAZGZmYteuXRgwYAAaN25s8AeBLkRGRoqv+B07dqidCZDPVBTFmehvvvkmgPwPiA0bNmj1f/r0aXTu3BlPnjyBnZ0dNm3apPYc5MJA/iFQ2rUiTk5Ooi0/fvwY69atM0m4N27cQIcOHXDjxg1YWFhg0aJF6Nmzp97hrFy5EiNGjAAABAQEYN++fWo/PAuDktwW/Pz8RFmdPHmy0BUE6jCkLVSoUEFca7Ox8d9//4lrf39/4xKrgZLcFozhzp07uHHjBgCIM+fNieXLl4u2bSrtua68qm2CycdaH88hISHw8vLCvXv3EB0djcePHxf7dJT8EP5bt24hODhYrV+5lkefw/slTZHUieiDNIUNALa2tqhVq5beYUhYWVmhR48e6NGjB4D8L/udO3di7ty5SEhIQEJCAoYPH14oSwmAl8tb9OHIkSNITU0VS3QKA7lAdeXKFY1+L126hNdeew3p6emwtrbG6tWrxZKTosLYD8WShnz5WnJystHh3bt3D6+99hpSU1MBALNmzTJo4NyyZQsGDRqEvLw8lCtXDpGRkQqCW1FQ0ttCq1atsH79ejx9+hRRUVHCWFlRYWhbkAs+2mbd5PcLU3ta0tuCoezdu1dct2jRohhTopqlS5cCyJ/J7t+/f5HG/aq2CSYfvTToFhYWGDx4MID8aT9pzWZxIhd4jx8/rtFvbGysyue00aBBAwDA1atXtQqABalfv7643rNnj17PaqNcuXJ47733EBMTI9K4bds2ZGZmmjQeIH8aWBL827dvj5UrV2r8SW2DiEQHV1jINQuapqCvXbuG9u3b4+bNm7C0tERERITQvhclZ86cEdd+fn5FHn9Rk5OTI66zs7ONCuvRo0fo1KmTKMMpU6Zg5MiReocTGRmJPn36ICcnB56enti7d6+YlSpKSnpbGDJkiLieOXNmkcZtTFsICgoS5a1t6cChQ4cAAOXLl1ewjGtqSnpbMAQiwh9//CH+N2QWrDA5ceIETp06BSDfUq5c4VYUvIptgpGh767Sa9euCWM0jo6OOp/LnJubS0uXLlVwK2hJVBPqrPLJj1msWbOm2mMWHz9+LKwz6nvM4t69e8U9fY9ZzMzMJA8PDwJAZcuWLTTDIqNHj1Z7Qo0pWLx4sQh/3bp1Oj0jHccotzZaGIwYMUJrO7p9+zZVq1ZN+Js/f36hpkkT7du3F+kozNNNChNdDRUREX3//ffC76RJkwyO8+nTpwqnPYwfP96gcI4cOUKOjo4E5Bt+KmgYrKh4+PChOPrVwcHB4HP8i5O8vDyqV6+eqJOCfbwm1q9fTxkZGQbFa4q2ID/VS90JWzExMcLPiBEjDEqrLmRnZ1P16tVFXFevXi20uAoTfU9x+eWXXxROtTI1UtiGnuIiH1c3btxo0rRpo7S0CcZw9BbQiYgWLVokGo2Pjw8dPHhQo//Tp09Thw4dqG7dugruphDQiRQNFX333XdK9/Py8hQskhpiqEgSNrUZKkpPT1c6qm/y5Mki7Ndff13joPT48WOaNWuWgtuhQ4cUzkUvSFZWFjVo0ICAfAuWBQ0EmeIcdMkSqoODg06WMIkUO9/Dhw8r3ZfuqevMV6xYofV86NWrVwvDMq6urpSenq7k58GDBwpChDbLgeqQtxFV7TUmJkbjx1FeXh6NHz9ehFG3bt1SccyiJtLS0sSHMQCVVlB1Ofs6KytL4VhCfT+UJZKSksQHvaOjo8p2qQvy/Be0HExEtHPnTo1HdhY8ZlHbMbPmTEpKilDaWFtb05w5czSeE3337l1he6DgUXNF2RbOnTsnjmQMDQ1Vqq9nz56Jc/Gtra2VjLJJyI/DO3DggNL9/fv363WkXvfu3Q3Kjzmgq4D+5MkT+uKLL0SeHRwcNNqF0DZWaHvOEAE9JyeHypYtSwDI09NTJ6ueEtwmGFOg1xp0iSFDhuDatWv4/vvvcefOHbRp0wYdO3bEm2++iRo1asDNzQ3379/H+fPnsX37duzatQu5ubkKm0xNyffff48NGzYgNTUVP/30E1JSUvDee+/Bz88Ply9fxuzZs3Hw4EEA+UcdDhs2TO84li5dirCwMGRkZKB///5Yu3Yt+vXrh0qVKiE3NxcXL17E3r17sW7dOiQnJytMhY4ZMwaRkZGIjIzEzp07ERISgg8//BBNmzaFm5sbnjx5gnPnzuHgwYPYtGkT7O3t8fHHH4vnIyMj8dNPP6Fly5bo2rUr6tSpA29vb2RmZuL8+fOYN2+e2LT7/vvvw9raoGpVy9WrV0X5vf7661pP3JHo3bs3xo4dCyB/s2jz5s31ivevv/7CsGHD0KNHD7Rq1QrVqlWDq6srnj59inPnzmHdunXYsWMHgPzlV7///rvS3oKsrCx07doVJ06cAAAMGDAAHTp00HjMpqOjI4KCgvRKKwDs2rULU6ZMQefOnfHaa68hJCQEbm5uyMrKwqlTp7Bw4UKxzMrBwQELFiwwaOOxuVGwLPPy8pCeno7o6Gj88ccfSE9PB5Bf9vXq1TMojv79+4slYu3atcPQoUM11qGtra3SfpRLly6hU6dOePjwIQDg559/hqurq8ZwfHx84OPjo3d6p0yZggEDBqBXr15o0aIFKleuDCcnJzx8+BAxMTH4888/xebDatWqYeLEiXrHYS7UrFkT69atQ58+fZCRkYGRI0fizz//RN++fdGoUSN4e3vj6dOnuHr1Kvbs2YNNmzbh8ePHBsdnirYAAMHBwfjyyy8xZcoUxMfHo3nz5vj6669RuXJlXLp0Cb/++qs4Yverr75C1apVDUpvREQE3njjDbzxxhto06YNqlWrBhcXF2RkZCAhIQF//fUXzp49CyC/vf3+++8GxWNOZGdnK9RJdnY2Hj58iLS0NBw5cgTr1q0TR/C6urpi+fLlCstBDeHEiROiny/IrVu3sGTJEgW3t956S+OSyN27d4vjjvv37w8bGxuj0ifnVWwTjAEYI92vX7+eAgMDxVeepl/NmjVp9+7dCs+bSoMuhSWfDlL1a968uUoNK5F2DToRUXx8vIIFQHU/VRq1Z8+eKWjxNf2CgoLUpk3Tr1evXpSZmakUt7EadLmBKk2zB6qoU6cOASA3NzelKXwpTHVaEV2N4bi7u9OyZctUhiFvY7r+1GlbtGnQda2nihUrGqy5NRf0MVQEgPr27at2CYcuWlN961BVm5Iv09L1N2HCBK35V/W+61o+rVq1KjUmuU+ePKmw7ETTz9PTk/744w8lTXtRtQWJ3Nxceu+99zQ+P3ToUI0zAtq0pfL7mn61a9em06dP61LUZos0Tuvys7Kyol69eulk/E+XutS1/9X03srp27ev8BsbG6tXOXCbYEyBUarWXr16oVu3bli3bh127tyJuLg43LlzB0+ePIGLiwsCAwPRpEkT9O7dG23bti1UbWFgYCBOnjyJBQsWYO3atUhJScHjx4/h4eGB+vXrY8CAAXjnnXfEeeqG0LBhQ5w7dw5///03Nm3ahJSUFDx48ACenp4oX748WrRogX79+qncSFSmTBlERETgk08+wcKFC3Ho0CFcu3YNT58+hZOTEwIDA9GwYUO8/vrr6Natm8KzY8aMQePGjbF3717ExMTgxo0b4jjFsmXLonHjxhg0aBC6dOlicN40IW3ytLOzQ9euXfV6tnfv3jh16hQePnyILVu24O2339b52eXLl2Pfvn04cOAATp06hdu3b+Pu3buwtbWFl5cXateujc6dO+Odd94RhqyKkyFDhsDX1xcxMTE4deoU7ty5I06L8fLyQoMGDdC9e3e88847CoZSShuS0S1/f380bdoUgwYNQqtWrYo7WUXKb7/9hsjISMTExODcuXO4d+8eHj58CAcHB/j5+aFx48bo378/OnbsWCpmUQCgTp06OHz4MPbv34/Nmzfj0KFDuHHjBu7fvw8HBweUK1cOoaGh6Nq1K3r27GkW74ClpSUWLlyI3r17Y/78+YiLi8O9e/fg5eWFRo0aYfjw4Xj99deNiuPrr79GvXr1EBMTgzNnzuDu3bu4f/8+7Ozs4Ovri9DQULz11lvo2bMnrKysTJQz88LBwQGurq7w8vJC3bp1ERYWht69e5vtxsfHjx9jy5YtAPJPoWrUqJFJw+c2weiCBRGf48MwDMMwDMMw5oLh6mSGYRiGYRiGYUwOC+gMwzAMwzAMY0awgM4wDMMwDMMwZgQL6AzDMAzDMAxjRrCAzjAMwzAMwzBmBAvoDMMwDMMwDGNGsIDOMAzDMAzDMGYEC+gMwzAMwzAMY0awgM4wDMMwDMMwZgQL6AzDMAzDMAxjRrCAzjAMwzAMwzBmBAvoDMMwDMMwDGNGsIDOMAzDMAzDMGYEC+gMwzAMwzAMY0awgM4wDMMwDMMwZgQL6AzDMAzDMAxjRrCAzjAMwzAMwzBmBAvoDMMwDMMwDGNGsIDOMAzDMAzDMGYEC+gMwzAMwzAMY0awgM4wDMMwDMMwZgQL6AzDMAzDMAxjRrCAzjAMwzAMwzBmBAvoDMMwDMMwDGNGsIDOMAzDMAzDMGYEC+gMwzAMwzAMY0awgM4wDMMwDMMwZgQL6AzDMAzDMAxjRrCAzjAMwzAMwzBmBAvoDMMwDMMwDGNGsIDOMAzDMAzDMGYEC+gMwzAMwzAMY0awgM4wDMMwDMMwZgQL6AzDMAzDMAxjRljr6pGICjMdJQqpLFSViYWFhcprhikJmFOb5T6HYTSTl5cHAMjJyVG6Z239cni3tGRdXEHk/Yt0rWs5SeUuR+o7zakPLW7kZSyVmbzspDYqL/d79+4BAObNmyfcvL29AQBNmzYVbnXq1NEYny7pkvu3srLS6dmihN9ahmEYhmEYhjEjdNag81ehMtrKhMuMKSm8ePECAJCYmCjczpw5AwB4+vSpcPPx8QGgqG14/vw5ACArK0u42draKtwDXmpO7OzslOKtUKGCcKtRowYAIDAwULjxu8QwykiaR7m2XJUml98fzeiq/dZF085lrRqpzORlp6qs7O3tAQANGjQQblK529jYaIxD17KX/Jn7LC1r0BmGYRiGYRjGjGABnWEYhmEYhmHMCJ2XuDAv4SksprSRm5sLALh06ZJw27JlCwDgwoULws3Ly0ttGGXKlBHX5cqVAwBkZmYKt4cPHwIAnjx5ItwePXoEAKhXr55w6927NwAgICBAuPE7xzDKSO+FOW5wM3cM6VN0eUa+bMIc+y35huLs7GwAihs3pX7cFBuLDVlmJcXfsGFD4ZaRkQEAcHR01CkMeR1IY5v0F3j5vsiXhpkjrEFnGIZhGIZhGDPCvD8fTIS24xAZ5lVH0ij4+/sLN2mj5+XLl4WbtHFUjvRMkyZNhFulSpUUwgWAf//9V+EvAFy5cgWAogZHrk1nGKbkomkTXmkbg1Ud3WdOeZT6WPkM5uPHjxXuAUD58uUBvOz/ixppzPD19RVu8mtdkOfn2bNnABRncyUtvYuLi8HpLApYg84wDMMwDMMwZgQL6AzDMAzDMAxjRpTqJS66WvxkmFcdaTpTbqlt//79AIADBw4IN2maUFrCAgDDhg0DAAwaNEi4Se+XfJo0LS0NAFC5cmXhNmnSJACK56CHhoYqhGFq5NOf0rV8KY6qM3KlDUaq/DEMoxpzfEek91qV9VVt52xrwhwticr7Oqnvlm/+9PDwAKDYTxtTBsWNVLfyOnBwcACgeIhBSbGsWzJSyTAMwzAMwzCvCKVagy5hzBet/Au0YHjm9KVsalR9iTKlH/mxU9Jmovv37ws3qT2ULVtWuEmWP6WjFdXh6uqqFJ7kJmk5AMDZ2dmgtOuKXDOuaRObrv4YxhCksUX6W9RHvknxyo+fkyjJWlRtaJpZN0e0pVPTGC2/J7UveTuT6rmkaJQNwdyPUtRE6a0VhmEYhmEYhimBsIDOMAzDMAzDMGZEydX964ChyzPkU0rSNKAhFrEYpqQgTXNLGzkB4Pz58wAUl3lJU6E+Pj7CTZV1N8nym52dndKzcguhzZo1A6C46VTaiKnqPGFTnDEsf07T1K6u/hjGEKS2LL1fRX1+tvTOZ2VlKcVbmpe4SHksKe+0qmW2uqZd3o7kfXFpRdV7U5KX65aMFsowDMMwDMMwrwilWoNuKKo2VrxqlMSvTcZwpCPHJK05ADx69Eit//r164vr6tWrK4QBANu3b1e4J7+Wa8t/++03AIrHfHl6egIAsrOzhZukBZEfc2iols8Q7ZM8XoYxBVKbKq62VXCTKvBq9PtSHkvK2G6ulknNmdJSTqxBZxiGYRiGYRgzggV0hmEYhmEYhjEjSsYcD1PkqDp7VVrCIJ8SlZYmlJYppZKCqa3jShvG/vvvP+H2+PFjJX/SspLg4GDhdvv2bQDAqlWrhNvixYsBACNGjBBu0uZQNzc34SZZFZUvO5Es3sk3rErT0ZLlOwBwd3fXmi+GYVQjvcu8fMu8UVU/PN6+GrAGnWEYhmEYhmHMCNagMwJVlhPlX+olzQJbaaTg0Wzya0nLbIh2RdqQeeHCBeH24MEDJX+Spv3w4cPC7ciRIwCAAwcOCLfTp08DUNTCq9IEqdqwKbnJ/Ut5Y20fw5gG6T0rKccNvgqoGoO5fl5duOYZhmEYhmEYxoxgAZ1hGIZhGIZhzAhe4sKoRNUSF2mZAZ/LWvxIS03k19LyD0Pq5OnTpwCAs2fPCrf09HQlf9Jymnnz5qlMi4SLiwsAwN/fX7g5OzvrlBZp43FQUJBwk6Z5TdHeTL3BlmEYxhTIly5K/ar8vHZTLHfh/q/kwBp0hmEYhmEYhjEjWINuIlRpnEsa2iwnluS8lRakOpBb0ZSujamf+/fvAwBu3rwp3CStulyDU65cOQAvj0cEgGvXrgEALl68KNwkDbr0Vx+kfPCG0KKFNWvMq4qqAxCKe3OmqjSZQs7IysoS15LGXm7J2ZiZWMa0sAadYRiGYRiGYcwI1qCbmOJan63q2D25BpK/hksXpqjPjIwMcS0ZBbp7966SP7lxoM6dOwMAevXqJdy2bdsGALhy5Ypwq1SpEgDA09PT6HSaGn4XGIZRham11foi19pLM5dyN1OkRdU6d7mbpplL+X6jZ8+eKaTP0dHR6LQxirAGnWEYhmEYhmHMCBbQGYZhGIZhGMaM4CUuJsYcps+l6SpTT40xpYsnT56I66tXrwJQtPwp4ePjI667du0K4OVSFwB4+PAhACAyMlK41ahRA4DuRysyDFP8lIbDDoyhuPOt7aAGU6Bq6au2DbGqLFi/ePECgOIhAoxpYQ06wzAMwzAMw5gR/OljIor7y1v+BWyKY/eY0o+0yQd4uTlUriGR8Pb2Ftf169dXe79Vq1bCTTqOUa6ll+JzcHAwJtmCV13bZ2q4HF9N5O+89E69arOvUh5fhbza2dnp/YxULnJtuaurq8I9xvSwBp1hGIZhGIZhzAgW0BmGYRiGYRjGjOAlLqUQnnJidEFuUU7a6Ck/51ZCfpa5tHRFjvSM/Bz06OhoAMC+ffuEW8OGDQEA7du3F25NmzYFAHh5eemUZvk5xarO+2cYRj/k48WrtNSD0R95uzDHzaGZmZkAXm5gBV6ez14S7cKwBp1hGIZhGIZhzAjz+wRiTEZOTo64lr4YWdtY+pC0ypLWQF7HmrQc6enp4vrkyZMKYciflVsSlTYgyzeYJiUlKfwFgDt37ijFl5KSAgA4c+aMcDt+/DgAoEmTJsKtdu3aAAA/Pz+leIviGDKGeZUoKdpEU5GdnQ1AcSOsqr5EmqGTzypKboZstCzJlJQN+arqTD7rWtJgDTrDMAzDMAzDmBEsoDMMwzAMwzCMGcFLXEox8vNtVVkMM/fpKkY3pCk8aepWjrRMRT7NJ/mTL0mRlprIl0VJ07jydiRtLD1w4IBwkyyIype1SEtS5GeeS/Hu3btXuEnXzZs3F27dunUDoLjspWrVqgAUN6xK6eN2zDCMKqR+T96vSf2Q1EcBqpe4qOpXpb7Q1tZWuJXW/kc+ZqhaJmJovk0ZVkFULYWUZJ6SWE+sQWcYhmEYhmEYM6JUa9ClLzVV1hFfhQ1m8q98pvQiaQik46RUaQrkRyrOnTsXALBkyRLhJt/0WfCZEydOCLfDhw8DAHbs2CHczp49C0DxnQoNDQUAdOnSRbhJG1A3btwo3KSNo0eOHBFuiYmJABQtmErHMfbo0UO4de7cGQDg5uamlHaGYV5N5BpaqV+T929SfyHXoKtC6s/KlCmjdK8kamM1oU1brumermUhbdyUj0WSjGKqIxClOpXXbUmuK9agMwzDMAzDMIwZwQI6wzAMwzAMw5gRFlSSD4nUEVVLXOSbJRnGnJG/ooZO1z1+/Fhc//rrrwBeLlcBXk4JSstkACAjIwOA4lnq0rKTuLg44Xb+/HkAgK+vr3D77bffAChu/pTeueTkZOG2a9cuAMC///4r3C5evAhA0TKplIY6deoIt7CwMABAzZo1AShuIJU2lUpLbRjGELQNjyV5+ry0ompDvHyTqLRkhetONbqKhPqWnxSu/IxyaUxgeUw1XCoMwzAMwzAMY0aU6k2iEvx1xpgjck2FNMsj10pI16qse+q7yVnVBs6KFSsKNy8vLwCqN0RJm0ABYMOGDQCAtLQ0JX+SBVDg5QZOKVw5AQEBStepqanCTdKmR0VFCbcLFy4AAE6fPi3cpM2kwcHBABQ3lUqa9vv37yulr1y5ckppYhhtlBRriq868vopbZsGiwJdy6fgygRtcpYqa+b6bjCVj5mvgva99OaMYRiGYRiGYUogLKAzDMMwDMMwjBnxSmwSZRhzQtX5/M+fPwegOBUrXUubNYGX1jOLcsr23Llz4vqHH34A8HKpCwD4+/sDAD744APh9tlnnwEw7iz+u3fvimvJ4uiKFSuEm7TBVCpHeVcmTaNKy18AYPjw4QAUz2avXLmy0rMl2fIcU3gUpgVEhilpyDfeAtqXrhizSTQzM1MpTmkMlMZEdfGWZFiDzjAMwzAMwzBmBGvQGUaGpI2Va7cLazOKXJMgbQSVH2koaQjkaZE0BEWhKXj48CEAYP369cLtu+++AwDcvHlTuHXr1g0AMHHiROFWr149AMZZ7FVlEfDatWvCLSEhAQCwbds2AIrWTR89eqQUnru7OwCgevXqwk06qrFFixbCrW3btgAUj21kGIZhXlJQdNQ2JqmaOZae0Ta2StZH5c9KY0tp3gDMGnSGYRiGYRiGMSNYQGcYhmEYhmEYM+KVOAedYTQhn6qTruWbUaRlJ6Ze4iIPT9pMqWqKrrjOeT1z5gwAIDo6WrjJl7ZIVKlSBYDihkxTpFleFpKF02rVqgm38uXLAwCCgoKU4o+NjQUA3Lp1S7idOHECABATEyPcpDPeJf/Ay6Uz8nPdpbgaNGgg3JydnfXOU0lA/j6oOn9YmlouzecPMwyjGX2Xk+i6nEUV0hj8qm3m5x6WYRiGYRiGYcwI1qAzTDEh//I3ZjNlYSEdryhpnuXItdUhISEAil6j7OTkBABo2rSpUpoki6NyK6iSZdJTp04Jt//++w+AolZdul+hQgXhJmnT33rrLeEmbTCVtOuAccdKmguqLNyq2jTNMAyjL4ZovM1xfCwKuKdlGIZhGIZhGDOCBXSGYRiGYRiGMSP4HHSGYQTy7uDHH38EAMycOVO4SWejf/7558JtyJAhAIBatWoVfgI1oGqzr3xpxtOnTwEAiYmJwm3fvn0AXm4MBV5uGH3w4IFwk5Z1eHh4CDdpucvAgQOFW/369QEADg4OxmTFbNA0PJTmzVkMw2iG+4bChzXoDMMwDMMwDGNGsAadYRhhyfT48ePCbfLkyQCAXbt2CTdpI+a8efOEm2R5s6QgWSUFgHv37gF4OTMAAJGRkQCA/fv3C7eTJ08CeLmpFADs7OwAAFWrVhVufn5+AIDQ0FDhVrduXQBAjRo1hJv8CEeGYcwPqU9UdbSf3HplcSCfGZSOBJZboeaN3KUDrkWGYRiGYRiGMSNYQGcYhmEYhmEYM4LPQWcYRkyTHjx4ULhJyzokK54A8PrrrwMAatasWXSJMxHSVLV8A2fFihUV/gKAj48PAMU8pqSkAADi4uKE27///gsASEtLU/In34gqLYGRlroAQKdOnQAAlSpVEm5ly5ZViJ8xT1RtRpZviuMNckWHfKmHZPVWfma2rks9pHqUwpBfy+OQwi7uJS7MqwFr0BmGYRiGYRjGjHhlN4mqyjZrPphXlZs3bwIAhg4dKtx27twJAKhXr55wmzNnDgCgQYMGws3e3r4IUmg80iyBXCMmoasF0PT0dHEtHccon3WQLJJK2nUAuHv3rlI4kvXVhg0bCrfWrVsDUNx06+XlBeBlGfNGsOJHPnZIWlZ5XUjjCI8nhYdUB9I7Dbzc1Cnvj3S1QCnVozw8KQ55fUt1ak59ntSfmbo/0CYacvsufLiHZxiGYRiGYRgzggV0hmEYhmEYhjEjXrklLtJUljQdJkfa+CGfRmZMCy8tMh+ePHkirg8cOAAA+PDDD4XbrVu3AACDBg0SbgsWLABQsjdJGdMG5c9KfUhmZqZwe/ToEQDF8+S3bdsGANi7d69wk8pWjrRJVH5GurQEpnnz5gCARo0aiXu+vr46pZlh9KWkLG8w9Xiiqzgkj4MtajKFBWvQGYZhGIZhGMaMeOVUxdIXrSotOW+6KnyKWqNQcKMP1/FLLl26JK7XrFkDALhz545wc3JyAvByoyJQsjXnEqraoK6aOLmbZElU+gsAbm5uAABXV1fhJllf7dy5s3A7duwYAODIkSPCTdpYKte0JycnAwCio6MBqLZGKm04ld8vX768UtoZRldUaYjNURts6jSZYx5VbVJlXg1YWmEYhmEYhmEYM4IFdIZhGIZhGIYxI165JS7SEgde6lB6kU8JSufaSm66nnf9KpCQkCCud+/eDUDRkl6dOnUAKFrALG2oOk9ZmkaWn6Gs79SytNQFeHmOvPw8+WbNmgFQPE9+165dAF5u2AWABw8eAHi5FEa+JMbf318pjBYtWgAAmjZtKtz8/PwAKC5VcnZ21is/zKsLL6soHqS+SW63QZJbTL0RluvYPGEplWEYhmEYhmHMiFdOg86UflRp0CXNsHyT46uqNZCOAJRrau/duwdAcYahV69eAIC33nqrCFNXtEhtJTs7W7hJmnN5+9DVIqGuBAYGAgDCw8OFm6QJr1KlinBLTU0FACQmJgIAzp07J+5du3YNAPDff/8Jt3379gEAqlevLtykIxo7dOgg3KTjGn18fIQbzyoyjP6YchyRj12S5lw+qymhqj9izXjpg3tkhmEYhmEYhjEjWIPOlDrkmkDpCDxzPiqsqNm/fz+Al0f3yWnXrp24lozklClTpmgSVgxIbcXe3l7pXlG0FXkcktZ75MiRwk0yhiRpy8+ePSvunT9/HgCwfft24XbmzBkAivsLLly4AADYs2ePcKtWrRoAxbXqPXr0ULjHMEzRIu8P9N0vJ58FlMJRdSwuj4ElB9agMwzDMAzDMIwZwQI6wzAMwzAMw5gRvMTFRNy6dQuA4pSSZIlRbmmQKVp441s+jx8/FtdxcXEAgKtXrwq3smXLAgD69esn3GrWrFlEqSt+zKGdSBt0y5Urp3QvICAAwEvroQBw/fp1AC8tlQLA4cOHAQCnTp0SbhcvXgTw0lKp/DolJUW4SUthpKMagZdHQ1auXFm48RGNrybyzYqZmZkAXh4DCry0zi0f76TlFNLyC/l7Jo2VcjdpY6T82FPpWu4mtUEXFxeD82Pu6LsURb5JVFoaJ1/2Ii1VLKwlLvL4MzIyAACPHj0SblL7kMYaRjvFPyoxDMMwDMMwDCOwIFVn8zA6If86XLt2LQDFDXWSgZdatWoVbcIY5v95/vw5ACAmJka4SZsQ5RsOpSP4/vnnH+GmSpP7KlDSjiuTp1fSgss3AB89ehTAy5kTALh8+TKAl5o2+XVQUJBw69SpEwCgffv2wk3q1+TtQ9KaqtqUxpQOsrKyxPWVK1cAKG48ltqhXKstaccljbtcWy6NlfIjAyUtvap2KY+/cePGAIDQ0FDhZuqjUDUhf+c09Q2mOJxA1/5IPsPw7NkzJTd3d3ej06IJuUGlu3fvAni5uR142UewPKQ7rEFnGIZhGIZhGDOCBXSGYRiGYRiGMSN4k6gBSNNGycnJwu37778HoDjN9v777wNQtOonbZRgmKIgPT0dALBy5UrhJlmelKxZAi+XuEgbm1815NOz0pS6fCrYnDd6y9MpWSGVNpUCQNeuXQEAJ0+eFG7x8fEAXi6JAV4uV5CWvwDAggULALxcwgcATZo0AQC89tprwq1169YAFDexFuWSA6bwkS+1kJYu/P7778JNajdya8RS25SWrqhariF/9yT/8qUwqiz7jh8/HgBQv359JX+FiZRW+RIcaVmXlD75UhxpaY986ZfUl8jzLbmpWn4iD0/V+eZSWcnz7+joqBRHYS/Tk9eZp6cnAMUN5ea8TNBcYQ06wzAMwzAMw5gRrM41gNTUVADAxo0bhdudO3cAKB5FJWkUpK9owLyPKJOnXZolUPWlzpg3T548EddHjhwBAOzYsUO4SUdgyY9RlDbuyLVfrxJy7Y4qjV1JQXpH5Rp/6Vgz+exIjRo1ACgev/nGG28AeHlUIwDs3bsXgOJxjJLlUvkm423btgEAWrVqJdykDXzydlaxYkX9M8UUOao03XJru9Lsm9wS7b179wAADx8+VHpW8i9t7gSAqlWrAlA8qlHSzMuPCZXP6EhIM9FF3V9JxxbK2/6hQ4cAAGlpaQAUy06awZT6XEBRIy5Rvnx5AIobr/39/QEALVu2FG7S+6NqRk9VH1ZcY7ZUP/L4pXLRdYMtwxp0hmEYhmEYhjErWEBnGIZhGIZhGDOCl7joiHxaRjpPeOvWrUr35VM20lmk8g0l5ow8j9JyFz7XuOQhnxKWzsOWrE7KkW9eljb38Sbm0lsG8iUuqjYDS8ucpHPOgZdLYXbu3CncpOUu0mZj4OWyP/mmU2kjqrSpFHh5nnqFChWEm3RutrSEorSWf0lCPhZI1/JNiD4+PgCAkJAQ4RYbGwtAcYmLVJedO3cGAPTt21fck9qbfImLdH62fFOytBFV3mbd3Nz0zZJJkMpCvowwMjISABAVFQVAUQaQlrbIl49KyMtTWvoqt6MibfSWvw9Svh0cHHRKb3EvISnu+Es6rEFnGIZhGIZhGDOCVRU6ompTiFxbJCHfFCF9Nav6ejZH5GmXvtr5C7jkce7cOXGdkJAAQLEeJa2Xqs1Hryrczl9SuXJlcV2pUiUAQNu2bYWbtDl+8+bNwk06wlGyMCm/lm86PXbsGACgRYsWwk3aRCptlJPiBF5qTbl+ihZt5S0d3yfXlssPQ5CQNL3t2rUDoLipVNro6OXlJdykjaOSBWQA2LVrF4D/a+9N46aqrrTvK8/THYc4MjiADKICIjIpAuIAYsQBHOIUY+xoR7s1Mb/Ybyex8yTdSV7zJHanu2NH32gG0yYmRhM1DigqKogjCIIDCiigIAgOGHDW9M/3w+21z3Xu2tZw3zXsqrr+H+S4qu5T5+yzz65Ta61rrXyH0h49epQ+iRrA70UKr4HM6/3WW28ByH/f8/xVKD148GAAeQ86BaZaupkRKC2ZyrVbP79S6tkpWffre7hy7EE3xhhjjDEmIfyAbowxxhhjTEI4xaVMHn744bD92GOPfez7tHMXw39aA5UdtlLssqcpLp27o5l0YciSYWGGRgFg3rx5APL1gqdNmwYAOPDAA+t1iKaJ0FSF5cuXA8inqVBwrII2rhdan5ni+I0bNwYb0xWYJghkXQ/79OkDIBMUAsD06dMBAGPHju3y+ZjKKTc1YdOmTWFb01IIxcBMWyq3Iy9TXQDgm9/8JoD8fBs1alRZ+6k2THFhmgqQCal79+4NANiwYUPBa+eff36wfeYznwGQFZEAMuH1z3/+82C77rrrAOTvvUmTJgHIBLZAdv+Ugs8mep14bXVsu4qmzrCPSqv0l2gU9qAbY4wxxhiTEPagl4l6zVkWSn9FswOa/iqmaEQ96PwVm6IHXfGv3OaBnounn34aQF7QzPmmHepY9k7nbzn71+1mEf+4a135cK6od/vKK68EkHnSgWw903WN26XK8+24444AsnJ6QBZppGdePZBLliwBABxwwAHBxjKQ7E4JZCLncsvPme7BMoMvvfRSsHEOxMoH0rZ69erwGoXF6r0dPXo0gEwwDGQRFd1vuV7jekKvsUaid955ZwBx4bOWjWSZWxWEEi2Ru3Tp0gJbues472+NkPFYq+FBV9hxVa8ZP8vrcPnYg26MMcYYY0xC+AHdGGOMMcaYhHCKSwSGqoAsxPrEE08EGzvejRs3LthuueUWAPkUF4qk1KYiUmOqAecXO9oxDKpobevdd98dQPlpVpq20CwpWsTh1PJhGgvrnANZR0ftKEyhXyzNiaFtRdMRWHtf5xQ7krIbKdMFgSwlgnMbyMTNWluaNl2TWSub67XpHnptWeOe9buBbB1SQTq/Aylc1/QldjnWFA3W92YxBSDrWpoSmiayfv16AFnqq94XPI9S3XE5TqV6plSjO7mm4Oh2NYmls3gtrhx70I0xxhhjjEkIe9AjqAfnRz/6EQBgxYoVwcYST0OGDAm2WHcu/hpWMVWzdBU1zQOFWvR8aodbivJY7guoXEinXhZ6QewNaT1uu+02AMC9994bbIyUHHPMMcFGQSaFgkAWYaRQGci8jOpR3X///QFkpT6BzCt40003AQAeffTR8NrixYsB5EWlM2fOzP0LZIJR3e9pp50GIBOVAmmKC5sFLZfJsoDaOTYGPeb/9V//BSDzNgNZEQUVS8YiMCnB6LqeNyNA/G7XUpIUu+6www5F97tq1SoA+WePGJznXen8TC8+vxOqjX4nOGpVHexBN8YYY4wxJiH8gG6MMcYYY0xCOMVFYKhVu4YyjHrSSScF2ymnnAIgn64SC/lzfwxfAcCYMWMAuF6v6R4qPGaINRYepWju9NNPDzZ29+sKKaa2UDCl9bsZWmddZQAYNmxYfQ8sYbh2aaieKVKsSw4Af/d3fwcAOPvss4ONNfU3b94cbBTTf+Mb3wg2pgWqoG7+/PkAgKlTpwYbu4SyZjTXVyATrj7yyCPBxhQcpr8AmVjxmmuuCTZ20dUupEyxYd1pIFuTayWYaxX03udYxVI7VcC4bt06ANn9qN+ZTPvQVNHtt9++egdcA3huTPEB8rXggfw5TJw4EQAwdOjQgn3pc8YvfvELAMCdd95Z8L5DDz00bO+3334AgO22267iYzfNh1ckY4wxxhhjEsIedIHemjlz5gSbCmPIpk2bAOQ9ljFxy7vvvgsg3/WrO+WRjCGvvvpq2Ga5stdeew1AXhBKcZ96klXE1Myw5CO7/LIkIAA8+eSTAPKeUpb4U48dRVx9+vSp7cEmBsVuLA0HZF5RdpoFgHPOOQdAfv4Q7U7L8dO/pfdUPegUMOvnEgrfVADHqMfw4cODjaJP9arTM68iVYpNtQsq54qW9jvssMMAZJ50IOvoaE9lhkZWGLGIlQ3W9YUlEvk9SmEokHmaGdUA8uUVU4Ri5fvuuy/YVPgK5L/jOd/0+YBjoWLsWbNmAcgLr1mM4nOf+1ywjRgxolvHXy9ikRWSYhQ2VexBN8YYY4wxJiH8gG6MMcYYY0xCOMVFePzxxwEADz30ULAx7MvXgCzMpbV5NYxLGEZmSgzgOuimOmit8xkzZgDI5uABBxwQXvv0pz8NoHXSWhSGilk/+/bbbw+vMf0sJvjWbpOTJk0CAEyZMiXY2M1Qa2ZrJ81WgGFmrUE9ffp0APmus7HUlhjbbrstgPzYsjY6042Ucjsqc9w1bYvbxx13XLAxReD3v/99sDENgalfQJYWo+kxDzzwAIDsXtFtTYVhSo+mvWiN91aHYnQgG7/33nuv4H39+vUL2yeeeCKA7DtVa9yzVrZ2hE1dJMrvfAqQgfz8AvJpPEy7u/HGG4ONgtnOqTEAsNdee4Vt1vQ/4YQTgq13795dPvZ6whQXTXVxD43KsQfdGGOMMcaYhGhbD7r+sqNgiUIjlgwDMpELPURAJuRQj0KxX4XFBBPGVELMg7NgwQIAWdfH3XffPbzWnZKKKaJdeXm/3nzzzQBKd+GLlaOcPXs2AODaa68NNpY1O+KII4KN5dI4xs0OPdPqLf/Sl74EIOs4WAn0iMfGR20UgFbDU6r7OPbYYwHkxaS/+tWvAADXX399sGnJW7Jy5UoAwJVXXhls9HyycyOQzYujjjoq2Cg8bofOiSoSZQnNWHGECRMmhO1vf/vbAICf/vSnAPJlPfm3tepsWQv4HKCRA54Ho+0qnmZZRAqmgeLdV1UgzUho7F7RZ4rY80WjvdV+5qkO9qAbY4wxxhiTEH5AN8YYY4wxJiHaNsVFRUoU2T344IMAso52APCd73wHQF4sxJAtQ6NAJk6i4AjI6qFSLAo49GO6B8VWWqufsGa0dq1ToWMrwPrLQJbawpCxCmEPOuggAPl0BKbE6Ni9/PLLAPL3LcP3rC8PZEI2pjQAWcpDM9ZQZ+hb01m6ktpCGN7XtD9u63Wh+LLaY0axpqbssF66Xu9YigvXexXws8+A9sHgPNOCAexeq/XfeR+qWLI7Y5sKmuLCVDP9PmNqnaYZUYTMfgTakZvdtDWFg4LL5557LtjYNVkFyI3qxM0x0LHgGHBOq3iZ56vXn+JpnZd33303AGDhwoXB9tvf/hZAVpMfyOZWbD6l9GzhrrzVwaNojDHGGGNMQjT/z/ouoqUP//SnPwHIvCbsLAcAZ5xxBoC4J5LCMQBYunQpgHxJMYpJN2/eHGzllhczhrAjLZCVjtPygRT8HX744QDyHqxWQwXc99xzD4CsvOTYsWPDa6eddhqAfBc+iq4GDRoUbPSS05MOZCJSekd1W72nq1evBpBfB1gGTcuh7bDDDgBa26vEyIZ6AFlujkI5IFtbNUpZTVS8xw7O6u0kKqQ+/vjjAeTLJ9KDy06QQBYx1Q6QfF3Pmx1J2QkSyLz5PXr0CDZ+p6QuMGUUgeUBgXzHS8Lyl1o2kTCqx6ILQDbeWqqSkSxGtYEssqElCOvpQddyyvx+j80pnpuWbGUkT+99rkN6D3C/2gn3tttuAwAceeSRBZ/BUrBA4wWhMRp9LMWEs81E635jGGOMMcYY04T4Ad0YY4wxxpiEaLsUF9YsVREKu6Ix9H3yySeH14qF0rR7KMOUGq5jasJLL71UYDOmFBQXq7CNIXWtB866u8cccwwAYMiQIfU6xLpB4aZ2IqSNsCsokIlDt9pqq2CjwFNTLrgPTWW46667AOTTiCgQ1C7DixYtApAXJlIsSAEpkNWF1ve1AkwhAbI68prqwRriTDcCslSHWtWT17WW9c+16y77Avzt3/5tsJ177rkAgF69egUb0zmYRgVkKQc6B5jmxC61uq01rSkc1LQXCv44L7QeeD1FpbFujwrFvnq/xTqI8jw0FYUwpUhTi5juqZ042RWYAkkgG8dYWk090GIQTImLdQ5nKpted67h+lzA8db1IJZCy2uh4850G01xMRmcU7FUYl1zmiXdxR50Y4wxxhhjEqLtPOj8BapeEP4yp3hDRRnFfmnpr2KWEqNgD8jELeoBpZhUOzw2qmSUSRt6aW655ZZgozdQhWXseEnPeSuUdOsMSyqqp5Kwu59GDoqV8dP7jR5d9XpNnjwZAPDMM88EGz2pFJQDWRTuqaeeCjZ62ultBTIRqXqS+RnN1EWxM1zLAOAnP/kJgPx6+dnPfhYAcNZZZwWbro/VJFYuM1ZSkeVyTzzxxGDr2bNnwfsoxps2bVqwHXjggQX7ZcTgzjvvDDZ+t9C7DgC//vWvAQB/+MMfgo0RBkZdVFzIKE8KJTxZnnTx4sVF30fPcOw7k9+xeq8wQsXyxkAmwNVrwi6xsetUbWLRBJZ5BLKu4zEPbd++fQHky2sWm+/ahTW2Px4LxdZ6TKXgs4eWDqVQtVaeZB07no+KY5vFa50S9qAbY4wxxhiTEH5AN8YYY4wxJiFaLxZeAoYntc4qQ0gMB6mQk6krGp5h6oEKyxjWVOEU0e6HV199NYB8GgJTFFoxNcF0HYqDbr/99mCjoIrpWEBW61trb6eChm4rrder4VmG17VOMPfDEDhrTVcCQ9DazZDbml7AsLWK3FiTXoWRXF9U0Ebhm9ZTpjB99OjRwcZ0G+0cqHWzU4FrnQr5OC/PPPPMYDvhhBMAZClItYTjzRQjIJ8aQJiGoELG2HykTWujc5upKbof7d7LeaidaFm/X2uJc5upMNpDgzXFtbb/IYccAiCfjlUNsa2eP/uDaNrJH//4RwBZB8yPg/NC0xqYKsTvRRVccn1TESTTJFTITcF3PeZRDBWx8v7WtYlrwogRIwDkxcbF9qfPINqHgXDt1LlV7hofW2trnWKiKS46PqRWwnCF59gqPSda4yyMMcYYY4xpEdrOZUvBh3pX6K3gL3T1cqhnjbAzqHrG2VlMO6Xx15yWeuMv5XXr1gVbrbqLxrppKRZtpIfOC3rgNFLDclzsUAdk4rJ6eCjK7dDG97HMmL6vlFCQ4qnly5cHm95rhJ7M008/HUB2H1cLjWixJJ56Xlkyb86cOcHGMpDq6WeZOnrcdXvfffcNNl5TjY7QK0cPPku5AbUTXCosp6fX4mc/+xmA/HnTy3nOOecEm0YHOhNb87rj9aLH7v333w82zjcVVHM9r1a0kmJ/Ff3zmqkXmKU7NdpCzzlLQ2qJSIolOe+ArMOt7pfeW/WsbrPNNgDyRQzKhVEeRn2AvGefxCI7nOf0uAPZNWA3UvWs8vj0O5Y2vQc4j7pyPpWi6xvXIfXwdy7tCmQlD3lv6rMFz1dtXNd///vfBxvHTmGkhCJioPwOvLyX6ulJTuF5IsWuqt3BHnRjjDHGGGMSwg/oxhhjjDHGJETbpbgwZPitb30r2Bg2YkdGrbcaC5WwdjFFO0CW2qLiMApMdX/c1pBkrULVWmeVoTtNg7AoNT00nHzDDTcAyHcNnTp1KoB82LPWqS0a9mXKioZOua33ClMYdA6Wm+Ly6quvAsiHgFlzW1PIWMuaYxHrxldt9NjHjRsHIJ9ywPt/3rx5wcba7UxzALKUEb3eFBJeddVVwca63azHrfW7i6WQdAdNP2Hd/X/5l38JNtaE1/O++OKLAcS7SCoU4Ouc5jqk6TuVwrkVuxd0navHmsd0pFNOOSXYjj/+eACZOBgAbr31VgDZeKoYkakmmir1ve99D0A+ZZJzQHt3fPrTnwYA7LPPPsGmaT7FYHoM5x2QdejVdYACal0HWDxBu4zyuvC7UNNUeC10H0xbU3Esvyv184vVXO8OOvd5Dy9YsCDYYh1Eed0oko2dv/YMYP13TRsj7GYOZOJ/TZ+qB8VSY4uNt75Wj3SkdsAedGOMMcYYYxKi7Vyo/DV+8MEHBxs9EvxFX+pXOX8dsmQXkHnGY6I4/TVJD1w9xBv6GbUSoqYOvQHFxI0pCEp4fehFBfKCMkKPGQWK9SbmLS/2vnI9dwqF3NqdkR7FCRMmBBu9yo0qv8Zz1Pub64BG1/bcc08AwPTp04ON5dquv/76YLv77rsB5L10jz/+OABg/fr1APKdMtnZUr2nFNd1ZdyJlsL71a9+BSAvCKWX79BDDw02ludTTyHXVQoEgUx8SE8tkHVa1TW5Ujju2k2Way2PDcjGUbtDVruTc8ybz7Fg1AXIPO0sR6lrNMXGGnWZO3cugKxIAZDNBy0veccddwAA9t9//2CjR1rXDR0rQsHj5z//+WBjGVO952PzK9a9kvAeiX3vxcZJy1uSeqzTeny8H2PrsEKBJyNl9JADWeRAry239VpQLM7oB5CJ/+vdbTiF70PTgT3oxhhjjDHGJETbedD5S747OVIs5aWeLu5PPUONLpYfyxNuN8rNmWs0zEVmQx4gy9PV0lr0umizklqj41SuB71YTnCM119/PWyzBKF6Y7kf9UDSm56ilkLXAebzal4vvWjUvQBZ/i295kDmGWXpVy0ByxxW9XizmQxL/QFZ3r7msurxEXq6b7vttmC78cYbAWRlZPU4tTTcL3/5SwBxb6h6fOkR1vxobfzTVVj2T72SjFyoB5THrGU7mTcf00ao55P582qLzW/uJzYv1VvP4+O/Cm0xrdJTTz0VbGwApOfD7Vg0TseHkQt6zYHMc602zp9Y0xs9x1i0ku9jFEO/h+hd1mgGv1PVxu9bze3muOv4x0pt8lrp+zj3NdrNv9XvdM7bUusL/yaWZ09dhV73WLSH65o2W4uVVCy3zG2MWBQ9pSiyKaQ9n9qMMcYYY4xJFD+gG2OMMcYYkxDpxYabAIa0KDgCsvCWlgqjeK0eHR5jtENaSyycGqMeIbxKS3+pmGr27NkA8iW9GFplKBqIC7vKOSYdJ4Y6NeQZC1nHzoO2WMmz2PtK2QiFbQDwi1/8AkC+FB9TNjQ1gqFknkcsBB9DQ9ssAxk7H71vmV5Q6l7m32p5Sf08wnGmAA/IUnYefPDBYGNHSZbnY9lDIOs8ed111wXbLbfcAiAfKqdw9Oijjw42Ckw1rYP7ufrqq4NNxYeEqUeagsT0j3Lp1atX2GbaCdM1tLMkxYixNAOdv7yXdM2jmFVLWXLMtDsvSwbq2s3rp+fPzp+afsF1X+cP01K0iICWByUsycnzVjEt96spUCxrqaJo/q1+F9HGcqVAJvJVsS/niqY+Md1I77NYYQMen6ZucJ7H1hV24FRxKcdbj53npu/j3NI0OH5+7H1a6pjpLvo+Xhe9jtzW+ztWDILpQ3p/c9/s6qrrNdNUND2H46glSWlbtmxZsHHuDR06NNhYSrbctU7nZUy8y89t1DNKNWjljumt/wRnjDHGGGNME/GJD0v9/DAfi3oK2sFbnRL0jKhXgB6PangD1OtZTCSknkPOB/VKFivdqeXfzjnnHADAH//4x2Cj8E2bap122mkA8p61zuiYMNqjQj16LFX4R0+YigspGCt17PwMfR/3p+MY87rRK6bnePnllxd8Hr1IWoqPZf7oLaYHC4g3LeK4aJSC3uqYUE2FuPwsFfTx2uoSSu8dPd9A1mxGvW70rNG7DWTREV1LuG960H/3u9+F1+jp1v2SWEMYPfYxY8YAyAtXOfcWLVpUsL8YMUGoeio5pjq2sb+lIJGl5tT7f9xxxwHIl9ck9MoCwO233w4gK+Oor6sXnJ77U089Ndj+6Z/+CUDek/zyyy8DAL7//e8HG8vuqceX46zznGN60kknBdsFF1wAIH9t2aCIn/Hcc8+F17g/vbZcX04//fRgYwRG7ykKdln2D8iLiwmvQayRk86fSqNhMXg+Mc9vrDRx7B6IeeZjzdFi0TDdX+y+5doQexxS73fsXiMcT20kxc+Nea+5Huox6bXgPLrooouCjWV2u9KUrTsCU9MY/FRpjDHGGGNMQvgB3RhjjDHGmISwSFRgaHvdunXBRlGRhqOYeqBiHaYLqNCHaQUa3mIoMpaGoTaGijVkzHCZ1nll+C1Wm1fDVzwGDdEVEzUy7KjCHO5Dj4k1ZctN8dGUEG5riJMpAq+99lqwcWw1RPfWW28V7Jsd14p1odOubDFBH8PxWleYYiZedz0mDXfzfDTczG0ViTGMqZ8xf/78gmPmOWpHTaYpHH744QWfQSg4BTIhGOcxkKWnqAiT4/LFL34x2NgNUwV9nGfaAZOd8zRlhveLCrbY2VDTC1ir+ZlnnkExKNBjKgOQdVukyO9LX/pSeO2YY44BkJ8zTCHQNIhrr7224LN4T+lc4WdpKg5TavR+5Hn8+te/DjaOj6Y+MQyudamZEnHKKacUHNMee+wBIF8budg9p8fEbRVLMs1J66HrHCkHrdF91llnAcgL35gmwg6YQHb9dE2kqJH/6r3A+4adMIHs/tH5y/4BmloUg3Nf13gdK8I1QdNOSs1RwvMo1b2Zaytr1+t3Rwyuu5qqNH78eAD5lAemcD300EPBFktxiXX+5NyPra/tgH7Pk9h6Hkt75PODzku+T9dQpg/pNYlde+5P69lzHehKiovTWZoPe9CNMcYYY4xJCHvQkXlwKcSiGAjIPE3qNaYXSz21LGmlv4rpIVEPMT1WsV/gauP79Nc7PeMxQZt+RqwsFj1CKnihhyfWHZJepVdeeSXY+Bl6TPQux36dx4Q+6pmhp0GPnWOmJcLomVWPlJ4HocdTvQudRULs4gbEO89xPOmxBbJroR50RkfUaxyD10w9n7w+eo4xjxXPUUujHXTQQQAykR9Q6EHXzpL0WKqgLgav47Rp04ItJojieNIrDAB/+MMfAOS95TEYYVBv6IwZMwDkywcSvec4vzSywnuNpcn02GPw+GJdF1UUx7mi58/3xa6TzkvOC3qPgew667zk+/RYinmw6fFVT1ul+n59P+8zHWMKcNWjyuOLCeU4FwHg7LPPBpCVNgSy+1sFzeySqmsYx4XjrusG75+YN1rX3wEDBgDIdyXtXIYTyASpWkZQRX2E48LShkB2zXQO8th1fDiOeo/G1keW72O0Rzuz8jM04sjz1bnKrqIq2ub9HxPnxs5R98fzUY9vse8qjcDwHPWYOQdiAnpGoHVt5D5iUWLdL+eFHju3Y987Oha8l9TTzfNVgTKPWT+D5xvrOsvPUEE+5xajfEA2xnq9uU5r6VKet64RXMOKFQkwrYM96MYYY4wxxiSEH9CNMcYYY4xJiLZNcdEwLkPkP/vZzwDkO/OZxlNuHV6mmxRLO9GwYrmfybSGWHpDKeENw6QqSiuGhtuZsqNiRXZZLJbeoGHaz372swDyta1ZF1r3wfrnkyZNCjYNPROer6YysEY104OALB1IhYT8DA1fsw45hXVAlrLDuthAlpqg4XYeP49Tz7vz8QKZwIpdNIFsPui5MgStgkemLWitbKIhcNZr11rVFMdq6J2foXXneb6aHsNxYUqRChVLiRCLwRSPr371q8FG4bGG6O+77z4A+fuGx87zAvI14wnTAbSGOeuaa2oNry1TOPr16xdeGz58OID8GBOte88UG+3iyJQIHXemuGkqjKauEaZ8qfB46tSpAPL3DeeDpkPxftV0utg6MW7cOACZUFjTZBYuXAggL/RkGhgFsUAm1tbOqEx3ia0RKoJk+g7HH8hqb0+fPj3YmIoSq5eu15HfqZo6wm2+poUVOE6dU/SA/NxmCqSuGxzPUj0nuK0pLhRdMt0KyFJcPve5zxUcg+4vlkbD12NppDy+WF15fQbh37744ovBxtf12IvVYTethz3oxhhjjDHGJETbetBVmHjrrbcCKN5Bjx4VIPvFr7+iuT8VLvFXs/6ipreCnlAg+6Wu4iOKM/Vv6ZFSwQlLbqm3hh5kLZFIz6yKS+gJo5dD309vqHo3+OtdPaUU62gZQZ6PegLpoVRvTefPB7IxUI8DvRulRHH0OMQ6vPI4Y93jdC7Qpp5sbmsZzNhn0dOhnh4eu3o+6ZVUTxjH74QTTgi2z3zmMwDyc48eOxVxdYZeRyDzRuoYx8rA8bqoVzJWxo/eny984QsFx6n7o+dIRWSc07NmzQq2WHkxepX/8z//M9h0fpHOIq7YmKiXivemljE87LDDcvsA4h0B+bfqMez8fiC7N88444yC49TxoSBUBb033ngjgKykI5BFOyiI1TVC5y3hdWS0AMi6D2p5PnYtVcEuPcnqpeP56DrE81XRa7FuuxRwAsA3vvGN3D6AbK5wH+rljY13DJ633isxD2ixTpl63owYPPDAA8HGcWSURM9D15VyOxlznebaoOslI0v6+RR66zyiaDDmWdVxp6CXUQAgu8/Uq82x1++TYp5ptcU6fnbu0KljU6zLcozudMLUKCTnuUbDYoLQSruDcx7HBKQx9P5l1ErXaV4XvZd1fpvWxx50Y4wxxhhjEsIP6MYYY4wxxiRE26a4aLiM4SWts0oYzqS4CchCxbHUiFjdcg0/MrwWq9Wt4iwKffRvGe7V8CNr6WpqDcNkGi5j6E4FUdwfz1vrWDOkreFmnqOGuxkG1BAiw4Uq1owJHvn5mjLDMdCQeawzaCzcyc/V1zrXVtbXuK3XMRbq5HapFBeOi6ZVMPT+m9/8JtiY4qIwteTQQw8NtiOOOKLgfeWgcyvWcY5CsK7AkDLnXSUwhUrD9pwjKialIFPFhZUSmx+cAyoIjQlhuwM/Q1N3KBBWoTDrVz/99NPBxo6SWgu5MzruFOruvffewca1SUWQFLtqahzXgVhqis59vS5dRfenaRfVhOMeExyWi6ZLME1B05yYXlBuCoPC1CQVc1L4y1Q3XS+ZzqLi3FiaCK+jXm+KP3VeMD1Ha7N3pRtlMTh+mhpSLPUpRueUGN1fpSknsWMDsjmiQncWANBrwDRUHe9i3bcrRb/bY71IOHaamqbfn6b1sQfdGGOMMcaYhGhbD7r+GqeXkx4F9ZCwHNnf//3fB5sK6Uz3Ua+AevlaCfWE0Tum3iV6tijea0VY1kw96IxeqFhxypQpAPJetEo9VjFvXufOuZXsN1byjFEu9bqxa+g999wTbCyVp0LhWNdQzgeNctGDSy8aS/MBWYRByx3GykCa8tD7kWL6Qw45JNhiJU7pedVIGueFlg5lKd9rr7022BhJ0wgiYdRB10NeW52/9OrrHDj33HML/jZFOI7qSVaBPeFY6PdyNTzYKkDm9dMoNu/52BoS86pXemwanWZUXAW73G9MwG7aA3vQjTHGGGOMSQg/oBtjjDHGGJMQbZvionTuDhbr+OcOXqZcNEzLMLYKQynG1XQEdu6LdcNsZvS8Z8yYASBLAwGycPD48eODjd1MqxHG1n10JzzMdAX2TACAuXPnAsgLPXluTHMA4ikMRPsSMGWFHT2BrAYyBW3aR4DrVqVCvFSppgCvu3BMYyJidvQEsvQlrU9P8ef8+fODjaJhTZHq3AlW610ztebII48MNoo/77rrrmBjzXydY9pjI2WYQqKCas5pFfsytaXUvKi0TnpMOKppL7GOnzGhblfnq6bsMM1Trx3XEu0my3VABa6mdbEH3RhjjDHGmIRoDddLF9Bf2/Q+xDrz0Ruqv6KNKYbOo4ULFwLIOkICmZfk+OOPD7Zhw4YBaD0REDsiAsCcOXMKXqfXeNSoUcGm4qlaU0zQp51eWR5v+fLlwcZrqmVHiZawY7fSAw44INgoCtPyeBSfaylFlhjtTvnA1OncgbJUx8paoWVmn3vuOQB5YS/LYLJEJgCsWrUKQN4zzrkUi7pq2UoKw/mvzg960/v37x9sXDe07B499zHPb+owUq3dhhm56IoglPNIv6v5t6WiTHxfTPxZTBDaHTSCQqG5RkL4PaKlORldswe9PbAH3RhjjDHGmITwA7oxxhhjjDEJ0bYpLho2Y4gtFlpnaKw7XcxMe6ECQaa4rF+/PthYW//UU08NNhX/tQLsGsra50DWSVPDzUz/YMfeasGUA603vmHDBgD5a8F0BNam12NmSgOQF7IRinxjwk0K+oBM9KopDBSFVbubYzPDNblSsV8pNG2Ac+CVV14JNl5bprUA2bXXOcB5ERP9asfRfv36AQB22mmnYON3jM4B1rQfMWIEgHy6UzG0DwdTQTQNo1nS5PidqvdAd65zNVJ7SvVeqGb6kKZCMk0ulhYV63RdLWLdwTmndJ1ulrSpVsNPncYYY4wxxiRE23rQ1SNO0Q2FWwo7e7VKKTNTOygoViEhPejvvvtusNEDdtBBB9Xx6GoPuyoCwOzZswHkS9IR9TbSi0ivYynUw0XvD20auXjyyScBADNnzgy2+++/H0Am7AMycVZM6KnCO5ZDVHHWMcccAyDfbZJizsGDBwebveTF6SwEVS9hMc+dzgX+jf4t13jegwBwxx13AMhKIQKZ2JcRHiDzkscEq7169Qq2vfbaC0C+ROLEiRMBZOJPIIuYqJdchZCVoCJR3W5Wyi2fGHtfbD3QCEKlke96eor12Bi91+cMnod2l449o3QHfmfp2sn1SoXpfv5pDPagG2OMMcYYkxB+QDfGGGOMMSYh2jZuoaEshiyZzqLhboqKNEXBtCelBEQvvvgigHz3TIrRevToEWy1DkuXCv0zXFntcC7TRQDgxhtvBJAXXzKkz9rnQBa+1XSSYvB+BIAFCxYAyGqtL1myJLzGz12zZk2waZ3rzmhXV6Ym6HGOHTsWQD5FgeFmTdlh2Lqr6QumdFoCw/LakXblypUA8jXK2eFV01mWLl0KoHhHTyBLSdE5QOGvCoAp+NZ0AKYI6JxmuoJTBaqLiipZE17rqvO6pCic1fWXzxz6nMH7gL0QgEyErnSnAy9TazRtK9ZR3TQGXwFjjDHGGGMSom1/zuuvTXo1Yr+yKRaqdnkj0zyU2z2O4tAZM2YE25tvvgkAmDp1arAdeuihVTy68qilN4ReLHongcyrvXnz5mBjt9Bzzjkn2BhNePnll4NNuzd2tmnZRnpLWR5PyycS9abtu+++APLecgp2999//2CjEHTAgAHBxr8p5QGldzcmVmw3qlEukRGQefPmBRs7K2o0hdd+9erVwUbxZyxyoiJeRnFUjMfXVRTMrp7a6bWVO7zWAr0vOou8gXhZ42JzRt/HSFazlAeMiVljomT1oMdKQcfEseWet73laeOrYowxxhhjTEL4Ad0YY4wxxpiEaNsUFyXWjY2wixfDSMYoKjZj+oXWXWa4VdNaDjzwwJoek4Y3Y6HLaod9KdBj7XMgL84krCWu6QUU8t19993B9sADDxQcJ1McYvtlGkvv3r2DjSkpmrrCjo177713sDGtQdNeyoWheRWqsRa8ptY0S/iY5xNb67oibiw2z1QMR3Ex/9WUFM6pm266KdhU9NkZFedyPmhKClNW2N0VAMaPHw8AGDlyZLBpWoGpHprOwu/WWDpYufeMzsvtt98eQNppLR8HC1RoyhTTI7VohZ9D2ovm+OYwxhhjjDGmTWhbD7r+yt5hhx0A5MulEf56VS+ZaS+KeWRY6g8A5s+fDyDvETriiCMA5L3m9fTO1cObxDG44YYbgo2eMvVosgzaz3/+82B76KGHAGRCTyAu6qOnTEtUUnRK7ze7OgKZt5zCUCArf1dtj3ZMqJZiWbdS0DtHoSuQzWXthlqNObVo0aKwfcsttwDIvOXa0ZNzRiNVMVgmTj3jJ598MoB8xGTnnXcGkO/IGBPokVhxAPUCc7srAr12RO8Vrg06nt25N2s17rHrHRNzdgeW4WV5TwB4/fXXAeTLx7K0qArYXbqzdbEH3RhjjDHGmITwA7oxxhhjjDEJ4dgI4mKVzjhsaRSK3K6//vpgmzlzJoC80OfEE08EAAwbNqyOR1c7GOJljWkgS+3ROuid3w9kdcuXLVsWbJs2bSr4G9Ym19QEpi6wyyeQif9YG1jTMCi6iqWtVQuuCaXqGTcLPI9YreVyz4ciWSBLS2E3XQCYM2cOAODmm28ONoqqGdLXdZjHot07mdqkXV05V9jZEwB22WUXAHnBbqXpAKXOu9weCc1MNerZx/4ulgaW4n0TO6ZqHyf7ragglOOu6V1OtW0v7EE3xhhjjDEmIdrWg65eAXpD6UlXKFjTsmCmPVHvBr1+FDkCmRekX79+wTZ69GgA+RKArYB60FesWPGx79P7jJ5RCvqAbHzU88lt9ZDSc06RX0pUWzDWKGIRAaLCUd4HGzduDLZnn30WQNblE8g85xR6AsAjjzwCIN4tlp5uesgBYNy4cQCyeQJkQmEtjckSntUWAJe6ns0cMeF1jHm16yF6bcYxq9UxU6CtzyCM9jCiCGSlJOuBRrJiYmhTe+xBN8YYY4wxJiH8gG6MMcYYY0xCtG2KixJLbSEvv/wygHw417QnKnZjZ8PVq1cXvE/rcWu95VZCUwkoyPzkJz8ZbDxvFegNHToUADBlypRgY314rVe+5ZZb1uCITQztTEgBmqazbN68GUDWLRbI1kJ2gQWAGTNmAMhSWIC4uJCizz59+gTbTjvtBCC7b84777zw2sSJEwHk51ajaeaUJr0mTMnTc2jmOv7NDOe3rqtMcdH0P00PrDX6XMR0Fz2+Zpv7zYg96MYYY4wxxiRE23rQ9dcfOzvGSrKxc9ef//znYKO4JlaOzLQuq1atCtt33nkngLxXnR7i4447Ltjq6fGoB7xvDjrooGCjp4XdO4GsrKR2/qTAU+8zeo6042g1oKewVIm4dvcCqWf8iSeeAJD3jLOLoYqhWRpTS77RG6tQ3KZzpX///gDynXV531AAx4gMkJbnvNUo5rVtB6pZPrK78FroMwWjW3wGAeL3Wa0o1Vm3mQXSzYI96MYYY4wxxiSEH9CNMcYYY4xJiPaJZxWBYb2YMIYhnVhNUNMeMMTIcD+QTw0grN+sKS7aVbSV0LDm/vvvDwAYNGhQsPXo0QNAPl2hnvD4fK9mc1VrjzOdZcGCBcG2Zs0aAMD69euDjSJ57QFABgwYELYnT54MID8H2N1zjz32CDaKhlUkqh1gTW3R+5bpFGqrdh35lKlHagbXH31+iD1n8HtCBfL8W+3OW89OorEOyRaJ1pf2uRuNMcYYY4xpAuxBF2LeNv5irEdnNZMmFM3df//9wUavhnoC2fVQPYvtAL3kjfKWFyN2r7bK/csuxyoie/311wFknm8AePjhhwEA8+fPD7ZFixYBADZs2FCwX436sAOues7oEafXHACOPfZYAHlRsD3jaVOrUoqx7sEpCgr1OGt9XPpZ3I5FLvQ+4/u0FKp64mtNO0VTUsVXwBhjjDHGmISwBx3Zr9Jy81VT8gKY6sI58PbbbwfbfffdBwCYOXNmwfuPPPLIsD1hwoQaH51RYp6ozjTTvRorDcltejvZOAjI5uU999wTbI899hiAfAMt5pbHvG/qRWX+uM7j0aNHF/ztfvvtByDTXABZicR6Umq9bqZr3wrwemiDG+ZMM7c6hWtS7D6rlde4VGlXajy0SRjf57zv9sUedGOMMcYYYxLCD+jGGGOMMcYkhFNckIWQYl3UGHKqpzjDNA6GZ2+66aZgmzVrFoBMgAdk5eKmTJkSbGPGjKnDERrSauHejRs3AgBmz54dbOzayY61S5cuDa9RtKyCUIqXY+kfu+yyS9g++OCDAeSFnkxZ6du3b7BR6Kn7oy3WebmeaMk5Hp92pG21+ZE6HG/9HmUKVUqCQx5nPeZHLE0lBp8zND2o82tAXjBqWp907hpjjDHGGGOMPehA9qs05iWPiQbfffddAMAnP/nJOhydaQRz5swJ24sXLwaQ94KwpOKwYcOCTb13xnTmz3/+c9imcHPVqlXBtnDhQgCZ+BMoLKWo3nKuQ1rOkCUQ+/XrF2zcHjlyZLCxuZTO3169elV8To3EHvI0KSWIbDaqUY6xK3/Hz33nnXeCzR709sIedGOMMcYYYxLCD+jGGGOMMcYkhFNckIWSiglBNczEmqWm9WCdaXYPBbI0AxXPTZ8+HQCw66671vHoTEpw3WCqCZCtDSr2Wrt2LQDg8ccfDzbWK2eXTwB46qmnAOTT6RgaZxqLCj333ntvAPlutkxxGTFiRMH7Bg4cGGwpifa6SqwTZiukVLQyMfFyqtcsdqzl9F6o1mfxeYTfP4CfPdqN5l+ljTHGGGOMaSHsQUcm9tx6663Len+qv/hN11CPJb2cKsYjKrw7/PDDAQA9e/as8dGZVKFw84knngg2lkHUCMz8+fMB5D3o9I7FRF+9e/cO2+zaybKI48ePD6/RM65dPClU1jWK3vJW8JorsXXYa3Pa6HyPlcZMiXrOJUbcNIrPbf0u0u8q0/q01optjDHGGGNMk+MHdGOMMcYYYxKibVNcNHzFEDFTGHbYYYfwGmsXWyTauqxcuTJs/+Y3vwEAvPjii8FGcd2RRx4ZbLvvvjuAePdZ0xowhQUAHn30UQD5NBXWx1+xYkWwcb3QsDSFxwrn1JAhQ4Jt3333BZB19ASAvfbaC0AmBO3Ro0d4rdyUPKJCNG7H0l70fQyzq+iVc15FmrUSzxXD6Szp4w7claFzmmOnHaxVkN5OxES0pJXXAXvQjTHGGGOMSQi7/5D9AqPgT71U9Ii1Wnc0k0FhHwDMnDkTQN5TQc/mpEmTgq1S76VJBxWqvfbaawCA9evXB9tLL70EIC/+nDt3LgBg0aJFwcbyiTG0HCLnj3rL99lnHwDA4MGDg43ecpZKBKoToaH3qZgXSlFv+fvvvw8g7wmNiU75utq8TprOc6DVhMrVItbNnGOnHctjpUXbAY7LBx98EGxcp/S7uNXmV2udjTHGGGOMMU2OH9CNMcYYY4xJCKe4CAwnx8LKW221VXTbNC9Ma2AHRyBe/5ypCcOGDQu2RojiTPkwZKwhUQq9n3/++WBbuHAhAOC+++4LNgpBV61aFWxvvvkmgHyImevEdtttF2xDhw4FAEyZMiXYJk+eDAAYPXp0sKkQvdZwjpaaq5zTsRQXDR2XmypjGksKXTs7f14K62UK49IZriV6n3F7xx13DLYtt9yyvgeWCExx0QIdTEPVMXGKizHGGGOMMaZm2IMuFBNTqVdJt1Mh1oFMvX2N9hCkCMvk0YuqsAweAAwfPhxAvsOjSQ96ewFg+fLlAICHH3442B588EEAeaEnvekqCuZ+1DNDUSc95ADQt29fAPnICktxqod8iy22yP2bOnqc9Ozp2MYoV7xWbI11Z9DqwLGNCQ7bdTx1vjEapt5WCjEb1dV0zz33BAD0798/2Fi+Vb3Gsc7DRM+x1a4z16FPfepTwUZxaCsLZ+1BN8YYY4wxJiH8gG6MMcYYY0xCOMVFoPhzm222KXhNQ0spdkfTkFarCSWqiV67hx56CAAwb968YGOI89hjjw22MWPG1OnoTCm0XjnTWPjvc889F1579tlnc//q+zRdgwIsrUfOObDrrrsG29ixYwEABx98cLDxde2boPXPm41YGgS3Y2teLIWi1NrD9xVLcbEItXuUey0qRa83r1EzphfwmFPqbcLUDS1AwTHWFJdy02urUcQgdr0b1eeAn9Vunbv9JGeMMcYYY0xCtNfPkRJsu+22APJljUjs12RKWGBVHF6/devWBRvFgq+88kqw0QN6zDHHBJt2gDTVhZEp9QzRY7Rx48Zgo2CKJRAB4NFHH839y/coKvpip+Dddtst2Cj03H777YONglEtn9inTx8AeQ+6dvhrddRzVUzoWa5QrZh31+tWdaj2OOq15X3bLJ1j9dh436YUdWZUT8vCku5E77sjHNW/5eemFHVoB+xBN8YYY4wxJiH8gG6MMcYYY0xCOMVFoECDqS5K6iJR10EvDrtILliwINjWrFlT8D7Wo9V61+2UylAPdK6yW6ems9B21113BducOXMAAC+88EKwFasJzHSWww47LNjY3VPvBQpHly1bFmxPP/00gHxtdHaYnTZtWrAx7aWV4VjpWlJpLXPTGsRSQprxeqcoNHzrrbcAZN9Tit579UwNi6WzNOP1bmbsQTfGGGOMMSYh0vsp2UDo2Yt55mIe6lSJebja/Zfv2rVrAQA///nPg42Cw379+gUbyyuqaNBUDsshqmeaJQ+1HCIFnirUpTdJSyq+/fbbAPIdOkeOHAkAGDFiBIB8ucM99tgDADBu3LhgoxDruuuuCzZu//nPfy74fO0k+uqrr+Zea2fsTWtPmkUQWi4xYbraWG65HqUke/XqBSC/vpFYZ996oNe7ViLa2LNUuXOrFeZgKexBN8YYY4wxJiH8gG6MMcYYY0xCOMVFYJgrJtTYtGlT2H7jjTfqdkzlUg0Bj6bExDqHNSNMTWDX0IcffrjgPaNHjw7bxx13HICss5uJowLb119/HUAmpASAuXPnAgCeeeaZYKP4c/Xq1cGmqS2doWAXyFJVmNYCAHvttRcAYNCgQQDydcsZMtauwExjGTVqVLBNnjwZAHD//fcHG9NYtOMo095S7IFQb4qlAmoIvh1C0M1CNTpLKuXup/P9kuqcqFX31XKF1EypjBWoqHexh1i3Uo5LsfGJPT+UqpseW0P4GbGxa7U0q1I099OXMcYYY4wxLYY96AK7eNGTrqhgjV7ZlNBfk5WKWvhLNdYttdk7h7GM3syZMwHkIyHsGjphwoRgGzx4cB2PLj3Ue8Jt9XJw/G688cZgY1lC9YzPnj0bQPxeUvElhZ0asaDAU0sannzyyQCA/v37V3Q+ytZbbw0AOPHEE4ONnvnvf//7wXbDDTcAAF577bVgY0fSFEu0VZtYB0GF80LnCv9G5wrHrB4iu3alO11da7WexzypMRr9faLzUtckUg1vejVKkdYjaqefoZFDwnWv3JLDXAdKef+LzVsXubAH3RhjjDHGmKTwA7oxxhhjjDEJ0frx2gpgOCYWxnnppZfCdjFhWzPTip3DKEykCFDDZgceeCAAYOzYsfU/sERZuXJl2H7++ecB5IWe8+bNA5B19gSy9K9YuJJpDgAwZMgQAMBBBx0UbBMnTsy9BgC77rorgHxd81gIulJi9zVFpMOGDQu2u+++G0A+lY3noeeTMrE0lXIFVpqWREG8vp+pQlqfmemBWk+e4609BZzuktE5lK/pROWI8vRvOf66rWPNFAV3l86oR/pmufulwF47KpNY6mm10ePkGqcpbOX0foml2ZY6/9h62u7zUrEH3RhjjDHGmISwB1148803c/8qLCUH5IWGrUDMW97M5eQ02rFgwYKcTcvuscReO3jQ1cPG7p5PPPFEsHF7yZIlwbZhwwYA+YgRx1G9rPRujxkzJti4TcEnkJVDVBu95Y32sqowKvVOwbVGx59ecvXkxgSzXDtU7FtNkV1MMNbsnjYefzXWWh0LRi5inSDrPWbVLu/YbJR73rznYveM3o/1KHvM+7o7n1XuPdqu86Jc7EE3xhhjjDEmIfyAbowxxhhjTEI4xUVgeHaHHXYINoZgNm/eHGzsNNjKNGPoieFUivyArIMo6devX9imMFA7UDYznKNas3/t2rUAgBdffDHYFi1aBACYP39+sDHFJdYld8cddwzbAwYMAJAXcLIz5yGHHBJsTHHZbbfdgi3F7qys16viLKbvNHsPAFJpqFpD6hSExjoVx/5GU8iqkbrx7rvvAsinaDGlSgVmjbo+1ahzHetiWek+YmkQKc3ZZkx1YapbTKRZbbF4sU6imk4Yq1FebXiNupNq2EzXOWXsQTfGGGOMMSYh7EEX9txzTwCZRxDIvLHvvPNOsNXjV6ypHHrb7rjjjmBbvHgxgMwTqNe2Z8+edTu27hDrzKceRXp/H330UQDAjBkzwmtz584FkAk+gXwpvM5oNIFecHbbBIB9990XALDXXnsFG7fV054isXKDtGlUjOXFmrnsaHeOMyYu7MrndrVjos53CvZ5bwOZiC0mUq0HsRKW3enUWe25leIcTfGYSsE1VtcGRtx69eoVbNU4N3rONQJFNLpXbO02rYc96MYYY4wxxiSEH9CNMcYYY4xJCKe4CAzvqwCOaDpEiqF8FbIwRK8h4HrUTyXVEE6Vi6YbLV26FEC+ljdfHzlyJADgy1/+cnhNu1emjAo32RH1wQcfDLYnn3wSAPD0008DyNeB19SsYmy11VYAgOOOOy7YzjzzTADAAQccEGycZ9pFUrdThr0MNI2HQijtVEqbzmOGtpulRnosLapZRK8cayAL/es1o0CvnmuaEhPMNmo8GzUGxYh1lGxGmOKifU9o0+eBalx7rk1ajILoGs7vAv3ei3VINq1Bene3McYYY4wxbYw96BFiv4jr3c2r2VDPIrfVi0dvfrU9Tdrh9Z577gEArFmzJth69+4NIOsaSk86kPeaNhp6v/kvAKxcuRJA3iNOb/kzzzwTbOvWrcvtS0t1TZkyBQAwfPjwYOOYUVQKAM8++2zBvuiliQmXmhF6XmNePZ0LnKs6fynOevXVV4Otf//+tTjMqlNpREvLur399tsA4hGT7nhHi3UG1f3Wat2oFqkeVyOIRZca/V0ZK5XI+VXq2tEzrWWXGd2p9nWnCFrvPaLlaRlJqofXPBaFU1utoke8Vlx7gGzt1vNuh3vPT5rGGGOMMcYkhB/QjTHGGGOMSQinuAgM2cTCclqHNxaGajR6zI0IC5cKh9UKTf+49957AeTrxjLFY+rUqQCyeuj1gmkiKvTk8Wl3T9Zunz17drAxnUXnHtGUjD59+gDIwp8HH3xweI2iz0MPPTTYXn75ZQDAFVdcEWw//vGPAeQ7r86aNQsAMHDgwGAbOnRo9DybAabqxDo2aug0lrrBFJfXXnst2HhtUxRpler8WayzI0XmQFxkzPGJ7bcraw7TBnhMOv4phrFja12jUzlSILbuN7p/ANMldE6Xm5rB+7oe9zfTWGJpl5piqOk2xahGoYZYvX9NFarVteV6wB4IQPa9rYUvmlmAXC5eVYwxxhhjjEkIe9AF/lKNlVlUwUKKHnSlEd4c/TVbj1+29IhQSAkATz31VMH79tlnHwDAgQceCKA+nhwtgUXR5+233x5s9PQvX7482OjVLjW3dt99dwDAQQcdFGwUwLLL56BBg8JrnMvqDeHrWj6RYlqNSCxcuBAAMHbs2GBrZg96sfui3JKkzegpLXfOc46oIDTWbZdeNI3sxAS45X4u5zw7Nqoojh7FFMad561lILmtY5ai178epHjeMeFxigwYMABAFg1VYgUYakkx73ss+lht+Bks/Qtk60tXPjPW7TfFuRqj8aueMcYYY4wxJmAPusBfbFqmjjTjr69akUITFJZSXLx4cbDR+6slBffbbz8A1S+pyM/XpkhslLRs2bJg4/Gpp5/e8hg777xz2KZHnB5yIDsfetKBzEterARX7JrQaw4AgwcPBpD3oMc8D60Gz40eGqB4brV6sOqhsegqXblHY97GWNMmop5kNnApt0mNvo/7piddc25Tmnux3OVyS/aljM5pXkf+C2Tfi6W80LGc5EaPS0xX1uhjisGokXqNieqmdJ0qRnfOMXYd69l8kNdKI2mVlnQstf41C/agG2OMMcYYkxB+QDfGGGOMMSYhnOIiMGSrodvOrwH5kk2mMcyfPx9AJrgEsuuiKSGjRo2qaL8UeGpHTZZDXLFiRbDFOnpS9Ll69eqC/Wk6CdNU1MaUFYqFgCztZMKECcG2yy67VHQ+xdBwKveroWBulwptz5kzB0B+rMstB9Zoyk1xiXX6i60TKVJpaLdY+svHoSkR5aAhaM4vzseYCFNFvNUmJryLhfl5LKVKzVUzlK7fNZyDKkhNqdNqCsfQmUYfU7npFcVSOHSdruV9UIx6jiM/qzvnmlKaVXewB90YY4wxxpiEsAddYFOOzZs3F7ympfN0ux2p969TeiHYLAYA7rvvPgDAww8/HGwUS06aNCnYOpcFVE8fPWG632effRZA5hUGgAceeAAAsGjRomCLCT3pCaRYEwDGjRsHIF8WkbYhQ4YE2x577AGgfBFQNVBPcXfKkN15550AgOnTpwfb2WefDQC48MILg62a3v9qERNGxjzoLAGoa0OlXuOu0FmcVe79Vm+vUaViSfWS01O24447Asg39eIY19uDHvNoxgSUsZJw1Rx7/a7hOsVxAqojUtX5ToF5qYiS+XiqLR4vtwSsidPMY9a8R26MMcYYY0wL4gd0Y4wxxhhjEsIpLgIFObEUlph4rt2IddKrR51ZXpdVq1YFG1NRFKaRjBkzJtgYsuUxP/bYY+G1J554AkA+TYbpLGvXrg027SJLGGZmrXIgE0mOHj264Jh22mmngmPS0GUjxD/aCXLjxo0A8uF+1t/VerQx+Pqbb74ZbJdccgkA4Iorrgi2M888EwDwj//4j8G25557duHI8/DaxlKvSs1Fjnup+UubprjUqqNwyvXVlVhqRLn3frGUKq37XI+1lnNAxz12HuyloD0Val1jWceCaTS1TF8q974xH09Xxo7XVgXARJ9HmkWYbqpDez5pGmOMMcYYkyj2oAvsYEexIRAv+RPr1NhO1Nu7Qi+Verqff/55AHnvbp8+fQDkxZyPPPIIAGDhwoUAsvKIQNYNVMsi0gu8//77Bxs94+rtpeCxf//+wbbrrrsCyHcDVUFXaqxfvz5s67iQvfbaCwCw9957F93Pbrvt9rGvqZee3vRf/vKXwfb5z38eAPDVr3412CotjVmpwFW9UJwXd9xxR7DpuBCKRK+66qpgo5DulFNOCbZYF+JKaUbvZTVKOZJqC6VV1Mm1pNxuuzE0yhTz8PN1zhkg84zGPjcWuaWXXvfPe0n3EZv7/PxYOWDdH8dFP5ffc7GoWanz5v404qj3P5CPOvH9er1jZU95LHpv8Zg1osUiD/qZnT8fAHr16lVg47nFxicmIi63Sy4pFZ1hWV9+rymvv/562I6dj2ld7EE3xhhjjDEmIfyAbowxxhhjTEI4xUWgUENDYAy1MXwG5EOX7URMEFoPmHJwzz33BBtDghoKZarKb3/722BjyHDJkiUA8iFWhoq1o+fIkSMBAF/4wheCjZ1JBw0aFGzljkFMWBurp8wQeCmxaDFRGo8pJiTS97/66qsA8qlAFMUyzQvI6rT369cv2LhvDdmW2zX0gAMOAAC88MILwcaUEU0dOeaYYwAAX//614NtxIgRBfvj2BYLRcfEn5wLAHDzzTcDyNe937RpU+79uj1v3rxgY+36gQMHBhvToHSecax0bDlmOo6s/03Brn4u57mG1pnCoNc7Vtedr2vKQ7Gxis1tHYuYiDVmY5qG3qNMf9D98fO4j1hKiu4/Nr95vvq+V155BUC+rjpf13QJpqFp6giPT/fH3geaEsJrqnXQeS9pr4Ttt98eQL5TMK/BSy+9BCD/vcJeCnotXnvttYJjZ/qHvo9jXKrYAd8XS8XR4+R3n14XXlMdM9Zp53ECWcogx1HvCx6fCiM57rpfjoUK7XnMvMZq0xSbmMCfqZCxOaX3DY+v2HzTY46tzdzW+y12r3DOsEO20ozdi011sAfdGGOMMcaYhLAHPYJ6Q+gFUqEGS/ypp4AeMf1lXa6nqVKBVYpl2PQc+Cs/1i1QPTix8+Dr6hmhd5PdQ4G4Z+T2228veZzqoT7wwAMBABMmTAi2YcOGAci8vUDmwdFj4rnFuh7GPCjqzeJc0vlDr452IeXf6jjGvDScc7FoD72m6sW8++67c/8q6i2nZ4sePiDzLusxxbqqMiqhY7Z8+XIAwMUXXxxsLGupx3Lbbbfl/gWAH/zgBwCA3XffPdgomOI4qoCq85gAmYeNwlAAeOihhwDEuwfrXOF1Ue8lz+2GG24oeN/KlSsLjoVzC8jml3rWWPZz7ty5BcdA4bquTbwWsfPWUoCcDzpXdY4Q7lu9lzFvOudgbF4qffv2zR07AKxYsQJA/rpwnnGuagQhFiXgddTP5PnqNaNXUj3EPB8tX8hrpjaOo34ux1vvZZ6HjhOje4xUAZkHXe8vXvsNGzYUHCc983qfc1y4LyBeepHzIVYGNOZB17WU10KPk3NFIzA8b72OHB/+C1TH48tz69mzZ8ExtXI0m9dWz1vva9P62INujDHGGGNMQvgB3RhjjDHGmIT4xIcp5ks0GIbdAeDYY48FkE9xGTx4MADgyCOPDLahQ4cCyNePZThRw48aZib8GxXbMZSlIUL+LUOielwa6mPoVOtxM3wbC0vHRIt8TUOisbAmX9cwKUOxmjbAGuEanuV+NMzPY9C63Extee655wqOr1L0fDg+Ou6x1IhYeg7HUdMLYnWHY+lLMdFeLFQeIyaa63ytiqUOAdn10RA8j0lTBGLXLCYSZchf0zo4fzVdgvNBUwkYvtVx4lzWsWUaQkysyGOKCR/1/bH61N2pK8xzi9Wl1hQSHoOeN1Nl9JgpqNMUAV43XpeY+DPW2VevY7ki0c776LxNYnOQ6HhzXPSYOS5q6yzw1HWIx1nseE1a6HcghZ1M19D0pVi/gRhcGzXthvNM71/OH733YvXNY/XkecyaQsL7Uecj/0a/M/jdF0ufYroTnw+ALNVNU6XYk0O/RynUPemkk4Jt0qRJALI+HKa1sQfdGGOMMcaYhLBINIL+so15RSl2Uw8kvY1aMioGhTvqfeKvchWg0QOm3jF6BtTDxl/56kmg10B/5fMzYuWeYp64mAc95sWjJ0O9DDwm9QbQC6veBe5Px4Ljo+fI7WoEe/T8KfLTz4qJTyulVEm6aqAeUnp/YpEQ3SYUoGnZMl5nnfsUX9K7UwncT6loS8yjyr+JlV/T8+a5ce7rPjjfdf5ybmm5Q3rwY/NSiXmNYyU0+XqsO6KuJdzW6ARFlfr5HEe+PxZt0s/i+zVSx3GM3bc6VzvPIyC7l/UzuB0bJ12HOC76t4yExNYwokJYHpNeM66T+j5ev5goWOH1ia3r6vnlmGkUkMes14Cfq8fC49O5Qm+x/i2vRyzqQWGt3gO8pixnCGRrvN7LvL9UJMrP0OOMRYB4zDp/YnMldj9w3/q9wxKW9EzrsdO7rNeJx6LHyW09R45dLCoU86DrscfuG15HHW8eV8yDrmJ+fl5sjBnt1o7TFLrrsVNor9eMc2D48OHBFuuCaloXe9CNMcYYY4xJCD+gG2OMMcYYkxBOcYmgQhF2MNTuhwxDaYiKAjkNIzNkGQuvxURSGkqLhT1j3e067wPIQnexVIJiNddj+y3VAY3HqWPB92nImPvRcHZsfwyLM9wPAOPGjQOQr7fN9AsNCca6LTJ0SZuKfVl7XEOyDNFr/W6mDWjokqkRsc/ScDz/VkO73NZ0gFiqRQzOB4aOgSz0y/1pyJjbGvalwEjDtLw+muLCsdVrxpC/hsX5N3fccUew8TzOOuusYHvxxRcBADfeeGPB+Rx11FHBxhrqMTGphqB5Tgwja8ia10CvD8P2Ole5P001oU3TYyoVKca6Usb2oV1sYx1Zef14zHrsPH8dE97zKiSPjQXR9YXhc52XvA9iKQelUiN4vroO8DOY3gBkqYKxLp+87prewDHT8eL79LM4BrE1TOc5r4+mD/De0OPk/NV1mp+rx8K5pO9j/fdY/wLOM72Ou+22G4D8PcD1T68tx0XXS86LWH18HdtKvwtKUWk/Dx6ffk/xfF3v2xh70I0xxhhjjEkKl1kU6GlRLxAFcuxKB2TeW/XGrl69GkDe00MviHqa2IVUPS705GrZKXpItYsYPYTq3aWXRj8jJlzi67HygfTKqVeJ2+rdKCb60hJ7/BsKZ4HMO6XHyfGOCe/U00OPlHqhn3/++YLjo2dYP0OPtfP7Obbq8eZ46hzg+Oh+9W8IX1fvD/9WP5fb6mHj/mKeVx2fWKdIXueYAI5ecL22sc8qFs3QKAW9cyqM5DWbOHFiwd/qvKCn8MILLwy2Sy+9tOBv6YmPiRpjlNudt9hSF3t/d8S+5XoTY11nlWKfG+sqW24JxFLHQmIiu0qPN3aOxSJzsffHbBrhqHTsYu8rVlKy8zGXc3wK74dy50WsRG9svYy9L3bsxY6tHsTGrlhZ2EYdpzEpYQ+6McYYY4wxCeEHdGOMMcYYYxLCKS5CsS6NKriJpQ1QzKWpB0w10dApUydiNVhVyEfBkAqHuJ9YzfNS9cq5raHDziHGWNpCTPypn8U0Ca0XzL9RgRPHRf+2mOi0VIiTY6VpIrHP6LwfPUdN8ehMLARfKqReLrF5VqqDaDPA+r5AloIUu8Y6f0ePHg0AWLp0abAx7eX888+vxWHWnVgqimkMsXryxdaB1GG6nKbkxerEN3rupXgPOLUmTWKpmp0F1e1Ce52tMcYYY4wxiWMPukkKTkcVhMaiExTRxkrHmcbw29/+NmxTQP2Vr3yl6N8sXrwYADB27Nhg43V+9NFHg23o0KEFf1tMXNhoNLrG44yVYO0O5YoWa0Us0qjHxGOo9j1arBysvhbrxhzzoMfKajYLLIGqpVApAlcPeqXXIHZtSwlhm41qe9AZzWDBCCArzanfXSwFGiuHq3OVf6MldVlOU8uztsK1UGIdYWNFLtqB5luRjDHGGGOMaWH8gG6MMcYYY0xCOMWlG+jQMcSooetmDp0WQ8PDFGnqeRcLp8bqCqtocNmyZQCAp59+OthYH75Hjx7BNnjwYADAwIEDg43iKBWnxrq5mvT47ne/G7a/973vAQDGjx8fbPfffz+A/NzqLLatloi3Vujc7+rx6T6YrqFhcY5Pq4WCdc3heRebC0D83m9VYWC1zitWMIDo/dVq32nVYNWqVQCA3//+98F28803A8inuDA9RfueMKVThZH8Pttjjz2CbcqUKQCAgw8+ONgGDRoEoLnFzgrvdU0B4rNUq5xjufguM8YYY4wxJiHsQe8GOnT0JKtnIVbasFaohynW8bNWVFo+S38Vz5s3D0BeXPjQQw8BAF599dVgiwnq6JFgh1IA2HvvvQEAp5xySrBNmDCh4H2tSrEukql7vNRzxGu2YMGCYLvooosAAN/+9reDrdLOoPVEz6dWYkne5yqm4nXWKFIzw2us5VS5hlBsB2SetWpEKbpCq3nmiwmQO2+bDth1/Nprrw22//iP/wAAbNiwIdjYfVu7UTMirFFiRuWfeuqpYKP4fN999w22008/HQBw0kknBRu7bzczMcF5u827tL+1jTHGGGOMaTP8gG6MMcYYY0xCdL8Ybxuj4ZZYOkk9wzExIdSzzz4bbBs3bgSQF6sMGzYMQPdSYco9R4brbrjhhmC76qqrAACPPPJIsO23334AgMMOOyzYGPZT4dLdd98NIKujDQArV67MfRaQpRUcffTRZR1nPSmVXVbp/InVeOY+qiWuiaUcMK2iO7W99W+vvvpqAFmXUSATjk6bNi3YRo0a1eXPqzXdSQcoN02D467XttVCwLH0IK5hsZQhPf9YmgapdspXqXGPiS9rXSe+O6luqafEpQjrlQ8fPjzYYusu1+lx48YF2/HHHw8gE3wCmXB0yZIlwfab3/wGADB79uxgY8qXikkpIm3mPiGeg/agG2OMMcYYkxT2oFeJRnuu9PP5q1nLOLEElIpHhgwZAqB2YlLtBjpr1iwAwM9+9rNge/jhhwEAu+yyS7B98YtfBAAce+yxwUZRjZ7jrrvuCgB44403go0lGrlfAJg0aVK3zqFeVCq2LbaPUh7Yagjainknuwu7hv7whz8Mtn/4h38AAJx11lnBxuusUaFy6Mr5V/o33SlxV+5nVTs6UoxGiyDVE6gdMosR6y5aT69crKSsRp54TrXyoMe89fZK1g6Klvv16xdssbWJnnaNEtODzu865ZhjjgnbFIRTfAoA8+fPBwDcc889wbbbbrsBAPbcc8/KTsIkhe9WY4wxxhhjEsIP6MYYY4wxxiSEU1xaEIZM+/fvH2wMnWnIrTuivmJs3rwZAPDAAw8E23e+8x0AwDPPPBNsDMP98z//c7AxnNezZ8+in3HQQQcByHccZYqLnnfK9c+rXVe4HqkOPM5K00q6wgUXXBC22ZFvzpw5wcZ586Mf/agmnx9LUYilS8TSBjQFKJa6UkzgGPvcRqcoxFKaUu/cmhK8pjEBt2kN3n77bQDA2rVrg017FBCu0zvvvHOwFUsZ1HkyceJEAMDjjz8ebDfddBOALI0UAEaOHAnAKS7Njj3oxhhjjDHGJIQ96C2Cet1Yxkl/offu3RtAvNNptXnllVcAAHfeeWewrV69uuB9+++/P4C8IHSnnXYq6zMGDBgAIBO6AsC2224LADjiiCMKPsNkNKPn7r//+78B5EsvXnLJJQCA4447DkAWVSlFuecf82SX6wFVgR7/ppQYO+Zlpa3R4r6YSLRRXTvLpdEl5mLCfY081WrMOFdSvCatDDuJ3nbbbcHGaLLSp08fAPlyjPzuKgUFprHvSS05rJFq07zYg26MMcYYY0xC+AHdGGOMMcaYhHCKS4RG1/ztChpS37RpE4C8CHTrrbcGUDsh4fvvvx+2Fy5cCCDr9glk3c4GDhwYbGPGjAGQr4NeLqznPmHChGD78pe/DCCfMsN66e+++y6A/Pk3Om3AlA/nzY9//ONgY030M844AwDw5JNPhte22Wabgn0U69xarM44EJ8r5XT51PeVu4bExMONXn8qPf8USOn4inUNLSZA7s45dKcWv36fcG3XY99iiy26fFytClM7FyxYEGz83tP1aK+99gKQr5debjoWr4teH/Lee++FbabW6PtqlfLVjM9LzYKfUIwxxhhjjEkIe9Aj6C/CmEgrxV+HKiyjtzhWuqlWHvQnnngibNNzvnTp0oL3qaiTpaD0OMv1ajM6cMABBwQbPfJ6jvQkvPbaawAysWzn95nm4MwzzwzbN9xwAwBgxowZAIBvfvOb4bVLL7204G+LdeosVvZQXy/XC9WV7rzFvKz1oNj4NEu0KXXhajEo7gey9a1Rc0HXZJYK1DldqQe9Gp2Sq03MC92d8X7zzTcBAC+//HLBZ6ioc9CgQQCyzqOVwOg4v88UPXZGzOsxf3iOGkUn+h1bq7LOrUxzrLrGGGOMMca0CX5AN8YYY4wxJiEcc4iQUhiuXDT8SGGkUutzUmGMbndm6NChYZvpKd05Ng29x1JW+Hos5SDFsGs9qPS8q5U2EKvzTbqSQsba6HvvvTcA4LLLLguvTZ06FQAwbdq0ivfbrrAToorNGCLXOs3Nku5SbWLzthoiXv6tpgA0aq7yc3W95LXvznX/4IMPCvbRqJQHrkNMBQWya6tpJ5WeLwWhsVQPrX/P9JOurKsUor700ksFr/Xo0SNss156PeB6oak9HAvWfAfyx2fKoz1XWmOMMcYYYxLFHvQIpUqupUhM0FYusTJfpFzPJruoAcCLL774se9TTxx/5ddybOm5oEcoBS9Vo+F5L1++PNjmzJkDIPN0AcCUKVMA5KMeMbpTJi4mTCz3uvTq1QsAcPnllwMATj755PDaeeedByDfXXSHHXYoa7/NQrVFnbyOMfFcs9CM9zSPOaVCBPr51Yg+Fpur9YbHrBHX7kRTX3/9dQDZ9556kolGtVlmUaHXXaM06nUnq1atAgCsXLmy4LW+ffuGbS2GUGsoGO7Zs2ewMRKx1VZb1e04WhF70I0xxhhjjEkIe9BL0GhPRrOgeXexHDx6YbRhQ1dK0VUKPeYu8VTIxo0bwzZ1A8xDBoDhw4cDKO1BJ+V6x6rdiOekk04CkC/BeNVVVwEAzjnnnGD74x//2O3PSpFqaQRi92M1Gua0CrUeg1THOHZclXrCGdVN6Ryr9f1DDzrzwlXDQXQNZXlhHQuW2NQoCm0rVqwItiVLlgDIctF1P5rvrd7sWsPv1u222y7YdNt0HXvQjTHGGGOMSQg/oBtjjDHGGJMQjvujMFyXUhiuHlSjbJqmrlAYwq5nQCaSobCvWp9bis7ipFh6Rbuyyy67hO1JkyYByDqvAvnud8WIpUEUE1rXatx//OMfh212s73++uuDjdtMiamEYiH9RpfEq1a3QIrSYuI00zzrRT3maqX7aeUUQ3b1fPXVVwte4/cd01oAYMCAAQXv43emjitLFc6aNSvYnnrqqYK/5frbv3//gs81zY096MYYY4wxxiRE6/6sLYF6GSju4K9YLcfWLF6TRqPjyTJtOnb8RV/PBgp6DL6Ohaio6OijjwaQL7GnUZFyaPQY633LJkaf/vSng42C0fHjxwfbbrvt9rH705KTb7zxBoB8hIGf12rlG7tDzHtbz3mhZerYiEbL6TWzJ7fcUoC1Gm+9trGyie0qKH7ooYcAAPfffz+AfGT44IMPBgAMGTKk6D5iY8a5vHjx4mBbv359wfv43HLIIYcEG5u3mebGHnRjjDHGGGMSwg/oxhhjjDHGJETzxvuqSLuG5qpJrAuejmePHj0AVJ428XGwo5p2MN16660B5MN77GhmMhiW1tC/brcChx9+OADg/PPPD7bLLrsMQNZlFABuvfXWj92Hhu+Z7qI1/pu542at0LQgjp+mlVRL0FoOvD6a9lIp1aoxX43P53nocdRDaE/0c7vTebPVWLt2LQBg3bp1AKpXiID7U2Eohai6Xk+dOhUAMGrUqGDz915rYA+6McYYY4wxCdG2HnT9Zbv99tsDqK93p9Wgh1y3tdsZu7ZVS6TFMnpz584NttGjRwMA+vXrF2z2JBTCua+eRXrEWu0e+OEPfxi2OWdmzJgRbFdccQUA4Nxzzy34W10jtthiCwDZWgEUL0fYaLFktSn3fGJRhUq7TlYLrjX19DLXkpjXulae7Fj0SD+D63mjIwwpwKga/9X5xu1y5+CGDRvCNkWnzz33XMH7xo0bF7bZQVnLLJrWoDVWLmOMMcYYY1oEP6AbY4wxxhiTEG2b4qKwjqjpOvvss0/YHj58OABg6dKlwbZx40YAWXe0rqCd2u644w4AwH333RdsgwcP7vK+25FWCf0XQ0XJrI3O2sQA8PWvfx0AcOSRRwbbwIEDAWRhfCCf2kKKhfQ11aPaHT/rCdOgVBzLcYmdT6PXUp3T1TiWRqdt6OfXo4Y7U1ZU7EuxoqZ0sQtxo8cnBd577z0A2ZjpmjN58mQA5X83PfLII2H7yiuvBJB1KgWAKVOmAAC+/OUvBxt7WLTDet5u+IoaY4wxxhiTEPagm6owbNiwsD106NCC1x977DEAwPPPP1/xvleuXAkA+MlPfhJs99xzD4C8CJRdIVutZKCpDuwg+rWvfS3YLr74YgDAGWecEWyzZ88GkPdYVuopbEZveQyet0YT6umpi3WsbMRxtAuxaE/Pnj0LbKSUALgVPOxvvvlm2F62bBmALIILZOsFeeedd8L2okWLAGRdbYFsXdH3vfDCCwCABx98MNiefPJJAMCIESOC7W/+5m8AAEcddVSw+T5oXXxljTHGGGOMSQg/oBtjjDHGGJMQTnExVWHnnXcO26zROnLkyGB7/PHHAQCzZs0KNqakUHAEZOkpWg+WYb+rrroq2DZt2gQAGDRoULBRiNNooZppPBRp/uUvfwk2zq2LLroo2BiqfuCBB4LtkksuAZBPhamUZg7ta9oCt2OdgusBRaox0W21OjaaQjSdZdttt/3Y98XqoLfataAIFMg6WGuKCwsgUESrKZYrVqzIvQfIxkznNNNoNGWTwnVNZ6FItFgPBtM62INujDHGGGNMQnziw0a1eTN1pZ6dDektUG/5pZdeCgBYs2ZNsPXq1QtAVtYOyLwP6nGggGb9+vXBxmOfPn16sP3rv/4rgLxHvhHenHYQTikxIV8jPK/6+fR6aVlPlkpU8efixYsBABMmTCjY36OPPhq2WTq0HdBxpAe7UR50RkA0EkLUU2mhXNfpzndDO3QSff3118P2/PnzAQDXXHNNsG3evBlAdq9oiUpGljUKwa7E6gVnF1D9LhwwYEDutc5/Y1ofr2rGGGOMMcYkhB/QjTHGGGOMSQinuLQJDL9pqJih/mqLezil3n777WBj/XMV47F+7FNPPRVsDOEdeOCBwXbEEUcAALbeeutgo4ipd+/ewcb6640KdzO0qfVtKQRS8U+r1WmPhXY5zxjOBerTCZHEUly22267jz2Of//3fw/b7C46atSoYGO6Sz3PwRRPF2vVlIp6ozW6ed+q0L5Vavp3Fa5vQHxd4fccx07Hi99ZsTHU+cs+A7q+cNtrTvtiD7oxxhhjjDEJYQ96m8DLrN4Aeprr6Ylat25d2H7uuecAAGvXrg02ehp23333YKNnXL06Ma9/NT3nXRFOvf/++wDy3hV60LfZZptgq7XQJybWVGoVMdG5xW31HNUzshErs0gvVew49H2TJ08GkI/2fPvb3waQL9FoTCugET9GwTRaGfPg1rPoQLXhsceEx9ox15hGYw+6McYYY4wxCeEHdGOMMcYYYxLCKS7GRNB0DVKqcyFDptp5jvvRtJZah1FjKS5qi6U28fVmCVPXEgqa991332CjkO7+++8PtvHjx9f1uIypBUzNA7LUMBV3x1LCWiHFRc+b6HnH4Hqu599ZABpL9dMxbNea/bHvolbtPlst2nOmGGOMMcYYkyj2oBsTgZ4kJdZNMeZpbxYPSaxjZLuXVFMuu+yysP2Vr3wFQCZYBoBFixYBcHc/Uz7FBNzNsm40OzFPLikVLaCIVqOkLF7Av9WylXyfFjho1/UiVo6XAuRGdSpOHa8IxhhjjDHGJIQf0I0xxhhjjEkIt6gyJkIs1BkLvbVKWNphxULOP//8sP3ggw8CACZOnBhs7Rqqbldi9bMZttfuwMXupVhaWUyg3Sz3Y6PForHxjI1jKRtTGjU9hWjaX6wmPL8D+K8KTfm3Th3MxlvHsBG9WJqJ1ni6MMYYY4wxpkWwSNQ0NSl5cGLYM2BMa1ArDzpJ1cvK41ThfGzdiwn+ak1XPOgx+Lcq/iRaFpfnGCsVGDumGO3+nVBs7Ewee9CNMcYYY4xJCD+gG2OMMcYYkxAWiZqWoRHdMDVMzc+vVk1Xd/c0Jh14H2oqSqUiN31fqiktnWFqi9av5rqngr9GZMuWKwgtdz+xLs/lFgzg+et3QrNc43ri77PysQfdGGOMMcaYhLAH3TQ1KZUmK1eQFCPmfaEtVtrLmNajw0P7xpqng2XRMxsAAO9u3z/Yxo7s6Oa6Y4OqXLZKadVKiZXHUw9xo9ff7lyXWAlAYxpNe640xhhjjDHGJIof0I0xxhhjjEkI10E3phtUuw677i8mOjUxOrr/vf78smB5cvkGeaWDLXceDADYe1DfYOu9baEorBibn30wbD+y6q1KD7QL7AQA2OeIUQCAvkXe2RXWLr4rbC95uco773TswMcc/wfLAQDXnXk0AOAL16wILxVWpQaw7XgAwP+987Zg+j8TenTnQE0ROtdrB7qXztfquM63qRb+5jfGGGOMMSYhrIgwphtU20OSkug1dTYu+iUA4Csnnw8AuGZF1N8aYduwtc+Z/wkAuPo/zg620UWcsa/cd2HYnnrOgx//xqpxAQDg3g9HAai+B335r6eG7amXVHnnnY4d0OPPSvbN/8HhAIDPXtPx/6f84uHw2r9OGwgA2PLPme3/nXYaAOBbk78YbHus+BMA4NRqD5BxBK9CvG6bauE7zxhjjDHGmITwA7oxxhhjjDEJ4RQXY0zTsHnuN8L2qEN/BABYE3nftn2HAAD6bPOXYNv4fIf48JX33gi2JVedAwCY8EL2t0/c2ZHuMjiiH/3f22T1uIcMebWygy/Bm+s6RK5r3xDjFh0HUf1+hM93/PfxyEtb9A6bewzsyPfp2hdFr47dRV9bFLZm/n8fXcEzbgUA/OLs8eG17bixywnB9tMbvw8AuHfk14Pt2gc6RMGnnrpzl47UGGNSwx50Y4wxxhhjEsIedGNME9DRXfKq838ULJnnvB8A4IK7FgTLv326o8Rfzgn+bsc+rjh6TDCdN7tDWPre7POD7Z9vmQ4AuO7EQm/sQCoZASz9bEUnEGfFf4fNw/b5WwDAWnl54iUd3vwJVfioPP/T8d/3Iy/t/4OweecDHZ+/R9U/PyuA+dbmjn+36PkpAMBWpf50y20AANuLadPb71Tv0EwULR/I0otqY1dRiySNqQ72oBtjjDHGGJMQ9qAbY9LnidsBAD99MvLaGT8FAHzvI6850MlzTrYcBgA495LvB9MlH+UxL5OWOH94oMPTHvOgV4+OfPj/Pue8YJnNQ9g3ixL89IsdzZUqa6fUTcZm/vLqe87JqLA1+fMdWeo/uvwiAMB/nb5PeO2r+38UCfko+gEAV134LwCA+ZgYbL84ZGCtDtSUCb3prexBr3ZjOmOKYQ+6McYYY4wxCeEHdGOMMcYYYxLCKS5l4tCWMQ2kZ0e3yZ/c+btgeubeJwAA//vosQCkJF8pPrVD2Oz10b/Lunl4lbL2uq8ByESqHXSIXb/7y68Gy4ia5basBgAsqUcz1CjZ1Trq32YCAL4+56iOf8dmqUVfR4yOcTrl2l8FyxdqVbasKAAACYxJREFUl4tjIvC7rx06H+t3fzuk8dQaCoyB+DwyGfagG2OMMcYYkxD2oJeAv5g/+OCDYOOvvb/+67pKt4xpX/qOAgAc8dG/AHDEEZ/r0q42PjM3bC+IvD6kb88u7bf0B88Im9/8wk0AAPWfb/GR2PUrByS0rnzQ0TXplRWZSHPR6k0fbWWFDvuP7hDg7tF722Ar+yx6TAYA/NszHV79L9x7S3jpptnPAQDe2HVEsJ1w7GcAAON237LcTzBVoB285THsQa8O9Jy/91626vEZiiU6AY+tYg+6McYYY4wxCeEHdGOMMcYYYxLCKS4lYLjlr/7qrwpsxpgmYuNsAMBFX7o6mLJga1ZT+2snZOkU1aEjPW7+pV8KlqvDB2efe9l3pgEAelT50+OH9BcAQKyR6JDnfxm2J/Q8DADwyBvl7Xbb8f83bN952//p2Ee5J/TXHTXP95l6djDtM7XMvzUNQVM/mabwv/5Xa/n99Hyc4tJ1/ud/OroXv/NOYddfHWOPbUZr3UnGGGOMMcY0Ofagl4C/mFvNK2BMW7Dx4bD5vcM7yvhdskbf0NHFcvIvaliyb8WvAQD/z3fXFLzU+1tZ19C6lgpc/QIA4PHIS8tuukb+r2N8eu8xMFh6/NWbAIB1y9YGGx3sbzzyrWA7cFSHd3Xeiu8EW0r6V9N92s3b2W7nW004dp/85CeDTcWhphA/dRpjjDHGGJMQfkA3xhhjjDEmIZziUgJ3EDWm+fhgTUfN8fMmTg+2KwszTNDvgo4ultefPTjYqpOFsTlszb6sQyyZb9rZIQ79wVkTqvy53WeL0d8N23fMuBAAMKlPpOb4u1lt9CuOHgOgU2fUNR37+e4fMtHn7af3rd6BmoajxROMKQbnyjbbbNPgI2ke7EE3xhhjjDEmIT7xYcxFbIwxTcbGh78Xtg+f/F0AwCJt1UlB6I8y4ej1XxsNoAalDdf+LmwevdvnAQAz9fUzbgUAbPrNtGDartrHUE8+Ol+eKyDne/y1wbb+T6cCAHau13EZY0yTYg+6McYYY4wxCeEHdGOMMcYYYxLCCg9jTJPSUWd7zYzzAAATp18ZXgl60C2y4uLnXd/RSfS/pvULtloJM9fOyVJcstSWLcLWF087BECTp7UoffcFABw2JDPNXPbRxitZG9I3P/rXKS7GGFMce9CNMcYYY4xJCHvQjTFNxAdh6+VZ3wCQec5zVRT7nQIA+O0dvw6m04dFSgVWnY7umnN+NzPy2ilh6/iJLeM7/4h3AQBvbWzwYRhjTItgD7oxxhhjjDEJ4Qd0Y4wxxhhjEsIpLsaYpuGD5ZkQ9DNHXAJAUlv6fTG8duuDlwMApvWrc3/ODQ8AAK6PZbgcf0zYHNuQDJcsPeiNV14DALz11oZgW778LwCA3SfvF2xlD9/aZwEA816JvDZol7DZu8zdGWNMu2MPujHGGGOMMQlhD7oxJn0+mA8A+MHh5wXTg2FrIgDg8rsvD5a6e87JsoUAOnUN/YghE/cO21UpM7h2MQDgriUvF7620z5h84hRfT/aysbkmZ+OAACM+666vD/qtHr5Y8Fy+7nDAABRee0H2efO+vdvAuh83h37O+W4scHSatJYY4ypFfagG2OMMcYYkxB+QDfGGGOMMSYhnOJijEmeDTf+EADw3TWRF/fqCQBY/qt/DqZ/6tan7Q8AOOPik4Jln497ayeeX7EAAPBe5LUDhg7s1lEVsLyjxvvUqZcUvnbBvWHzw5DiIsdy9qUAgON/+Nlgu+m9jqOefV52tjtddgIA4Ixpg4Nt2zeWAwDu+uPtwbbolcIz3mLyZQCAi45131BjjKkUe9CNMcYYY4xJCHvQjTHJ8+Ybsfp9H/HsLQCAH//rLVX6tAsAAFO74EF//723Pva1np9KSCLZ91QAwJUPvxFMW598PgDgmhWZN/yNJX8CAPx0SakddghC9/hcVgbzlitPBwAMbpBe1xhjmhl70I0xxhhjjEkIP6AbY4wxxhiTEE5xMcYkzzaDO8SMF154UB0+rUMkulMX/vKDXpMBABdeOLlwr13ZYTF2mvjRZ21R+FqZH9Zj9Nlh+3fPdKS9XPz0omC7f06HEPSJl/SvtgUA7Dn+4GAZe8ABAICRfaIV040xxlSIPejGGGOMMcYkxCc+/PDDDxt9EMYYY4wxxpgO7EE3xhhjjDEmIfyAbowxxhhjTEL4Ad0YY4wxxpiE8AO6McYYY4wxCeEHdGOMMcYYYxLCD+jGGGOMMcYkhB/QjTHGGGOMSQg/oBtjjDHGGJMQfkA3xhhjjDEmIfyAbowxxhhjTEL4Ad0YY4wxxpiE8AO6McYYY4wxCeEHdGOMMcYYYxLCD+jGGGOMMcYkhB/QjTHGGGOMSQg/oBtjjDHGGJMQfkA3xhhjjDEmIfyAbowxxhhjTEL4Ad0YY4wxxpiE8AO6McYYY4wxCeEHdGOMMcYYYxLCD+jGGGOMMcYkhB/QjTHGGGOMSQg/oBtjjDHGGJMQfkA3xhhjjDEmIfyAbowxxhhjTEL4Ad0YY4wxxpiE8AO6McYYY4wxCeEHdGOMMcYYYxLCD+jGGGOMMcYkhB/QjTHGGGOMSQg/oBtjjDHGGJMQfkA3xhhjjDEmIfyAbowxxhhjTEL4Ad0YY4wxxpiE8AO6McYYY4wxCeEHdGOMMcYYYxLCD+jGGGOMMcYkhB/QjTHGGGOMSQg/oBtjjDHGGJMQfkA3xhhjjDEmIfyAbowxxhhjTEL4Ad0YY4wxxpiE8AO6McYYY4wxCeEHdGOMMcYYYxLCD+jGGGOMMcYkhB/QjTHGGGOMSQg/oBtjjDHGGJMQfkA3xhhjjDEmIfyAbowxxhhjTEL4Ad0YY4wxxpiE8AO6McYYY4wxCeEHdGOMMcYYYxLCD+jGGGOMMcYkhB/QjTHGGGOMSQg/oBtjjDHGGJMQZT+gf/jhh/jwww9reSzGGGOMMca0PfagG2OMMcYYkxB+QDfGGGOMMSYh/qrcN37iE58AgFyaC23GGGOMMcaY6mAPujHGGGOMMQnRrQd0C0eNMcYYY4ypLvagG2OMMcYYkxB+QDfGGGOMMSYhyhaJEgtDjTHGGGOMqR32oBtjjDHGGJMQfkA3xhhjjDEmIfyAbowxxhhjTEL4Ad0YY4wxxpiE8AO6McYYY4wxCeEHdGOMMcYYYxLCD+jGGGOMMcYkhB/QjTHGGGOMSQg/oBtjjDHGGJMQfkA3xhhjjDEmIfyAbowxxhhjTEL4Ad0YY4wxxpiE8AO6McYYY4wxCfH/A0uTHVdw5sdHAAAAAElFTkSuQmCC",
"path": "images_version_6/image_52.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
D
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
put the two vertices of a right triangle plate with 45.0 angles on the opposite edges of the ruler. then angle 2 is equal to ()
Choices:
A:32.5°
B:22.5°
C:20.5°
D:17.5°
|
||
261
|
53
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIEAAACBCAAAAADCy4aMAAAGHklEQVR4nMXbX1BUVRwH8O/ZPyChgroirUAtK27AEOvfXOWfGP4fe7GyrCn7Mz2VMz0000xNTTPN2EPTg03TQzXp9FI+NDWaAgICC4ZkyD9REFdAF4RdQJDdu+yf04PQS2N7zz0/vL8ZZni4v3s/e849555z7rmMgy5uO1ZV20WTGKFg6ugOv7NUNMtEcm3OAODUzOF708K5NAIAQLj3BZaaKpxmILk4A4B71qe15NIIAHAEQsv5DR0FDOaJmw3HxRMJ7wOL+XDGt1ASBH8UocB82LbMgW/KnboJ4HAA3rodgllk98FcnHtyrb6CUJMrSV9BZ2izaAqxoCHDpq/A31lk1FfQPbNNOIdWUFewDMDZHt0Evo79AFqPXtFN4E4tAHB2eLFIEmWfyGtKTQDea58SyaIsg+verQCQmhJ99IIHg8362gAAIMwevQAAMN2R+1NAPI1wlHbl/rH+Or0EAMCbskr2/aboKBjreRY7Ji8DMJr1EbTPupCVVw9ElYDINIhOcN6VALbJO4UTp7/s0kPgvbYbwIaQB/bP3l4mkEjWJ1ZZ7QDSTQOFpQJTR87IyiDWtMcIAKvHhNIYYPKTAAxdvtXjnDOs9PtU9Yh8aQIAtKcH2TESQWLdxH5wMK5Ek1UlBF/MBdB28JUmmjIwBm7kTYcAwMzGVTXFQAjAwOdf9SaYXiURXOj9IDn6YDVE3ZpIxAagyn7g1wlTAYUAZ0o2iSfdH3gNszk0beHupT3z/3L1/WHfymz02mkELYsKMTdKYOoHB4NpixquO0gEvKqcYe4ZLRCJvv4fbjNpAQdw01umJfWpnw85Jk9I98oMQKXtCcwvqAlE5idTrm1LKZ4LMy3PaSpKYwVgJXku/D27BRC/DeaC4D6INeRYJU4gLWAY69sucwKCWuhQivQVxOqfERqZzgef+5MXjHTu05Q334fJCy6k5UjlSwvCNTs1NkMqwdV7LrkTSAvOOzL0FUx0ia9d0QouKzoLos35KfMLGPoI7nbulTuBtKDV7ITmpyKFgNfulG5Mcie46SmXuwmkBdU5mXJVICtQmrbLXl9S0BYWfp9BK+A1+Wn6CkZ7iuUBUoLL2KKvIOLeuEhfwUi3tuEZncCdJvpyk1gQq95NAZAQXPNt1VlwpnCVvoLp9mKa9RfNZ2lh60kAmgUxd/4KfQUjVytoAJoFlxIL9RVE60up3gtoEHAAA/1UlaBFwADU2rN0FAAI11XID8+kBG0RDQvZpIJKp0Vfgb/HRVYJ2trCRfM6MoCmthBxr0vRVQBv7y46gCZBs8UhPVuUEkSr5SfMcoLrvmLJJQMpAQfOOgnmatoFDMqlbXQFoEEANCcRdgbCAg6gJp+uRxYXAPD2lZBWgqCAAU2PUQ3PNAmAiNtFMWGWENy6RTNb1C64YCMbnokKODiAaO0u2vtQuAzaZglWz+bjl7c8IgIGBuDMhuV0gkjlJET3I830HSWshD0DuQBM4yoOZVEl0cQBdo5b1ByvIviSBHiWdmRYYfpOxeHG+61rM8Mw8D+Sfg/RfP2jPJ+L0buH9h5nJjV7qAzRQUOyArNvsGwsRHF9IKAArR0f9fkt6nYDGYLJL4dhOrXhXSPR8CxqQyh84PWTMxaTuu9vSrpzAfgPOmmuDwAYtr40PrlEbWvc6LkF9AyVEQIwbE4aHU2NLwg2tsUAu/EKUFlANzzj4BMWuLMNcQW89c0jrQCKqnikuYwMAIZIMKH/XEX8PnHq2o+bvg4Bewc7W5I0fbP1sDBlfrrv/az4feLY+o3sC68N1tLv2foV4jt+Hh4s/8NAEQDw/w9fhI+/08Y5H3rD2cJ5LBbnePGIVwsrjJi1JAPIWJOWRzlR+TdUtMah9DQAkbGDi7EQhLhtAVGPPQXAjSGpPT/aBQyeaDkAND6erY8Asa7sRACzjbuoP0BTKxgxbp7pjqIrSPM+478Rrz+48/GdxqEjuTi9TmQnuEjEK4NghP3lW2OY7BT+ilhtxCuDNScBAHWpeQslUHd7xRoLFqoSVAr6RijeMMsI/lycR7h6pkGgXCxOXKDrqxRcHSZ7n6FREChKX5DHIgCVO+0jitDXemLxD4IfN6cCx2OyAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_53.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, the straight line a parallel b, the straight line c intersects a and b, angle 1 = 55.0, then angle 2 = ()
Choices:
A:55°
B:35°
C:125°
D:65°
|
Như hình vẽ, đường thẳng a song song với đường thẳng b, đường thẳng c cắt cả a và b, góc 1 = 55°, thì góc 2 = ()
Các lựa chọn:
A: 55°
B: 35°
C: 125°
D: 65°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the straight line a parallel b, the straight line c intersects a and b, angle 1 = 55.0, then angle 2 = ()
Choices:
A:55°
B:35°
C:125°
D:65°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the straight line a parallel b, the straight line c intersects a and b, angle 1 = 55.0, then angle 2 = ()
Choices:
A:55°
B:35°
C:125°
D:65°
|
As shown in the figure, the straight line a parallel b, the straight line c intersects a and b, angle 1 = 55.0, then angle 2 = ()
Choices:
A:55°
B:35°
C:125°
D:65°
|
262
|
53
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIEAAACBCAAAAADCy4aMAAAGHklEQVR4nMXbX1BUVRwH8O/ZPyChgroirUAtK27AEOvfXOWfGP4fe7GyrCn7Mz2VMz0000xNTTPN2EPTg03TQzXp9FI+NDWaAgICC4ZkyD9REFdAF4RdQJDdu+yf04PQS2N7zz0/vL8ZZni4v3s/e849555z7rmMgy5uO1ZV20WTGKFg6ugOv7NUNMtEcm3OAODUzOF708K5NAIAQLj3BZaaKpxmILk4A4B71qe15NIIAHAEQsv5DR0FDOaJmw3HxRMJ7wOL+XDGt1ASBH8UocB82LbMgW/KnboJ4HAA3rodgllk98FcnHtyrb6CUJMrSV9BZ2izaAqxoCHDpq/A31lk1FfQPbNNOIdWUFewDMDZHt0Evo79AFqPXtFN4E4tAHB2eLFIEmWfyGtKTQDea58SyaIsg+verQCQmhJ99IIHg8362gAAIMwevQAAMN2R+1NAPI1wlHbl/rH+Or0EAMCbskr2/aboKBjreRY7Ji8DMJr1EbTPupCVVw9ElYDINIhOcN6VALbJO4UTp7/s0kPgvbYbwIaQB/bP3l4mkEjWJ1ZZ7QDSTQOFpQJTR87IyiDWtMcIAKvHhNIYYPKTAAxdvtXjnDOs9PtU9Yh8aQIAtKcH2TESQWLdxH5wMK5Ek1UlBF/MBdB28JUmmjIwBm7kTYcAwMzGVTXFQAjAwOdf9SaYXiURXOj9IDn6YDVE3ZpIxAagyn7g1wlTAYUAZ0o2iSfdH3gNszk0beHupT3z/3L1/WHfymz02mkELYsKMTdKYOoHB4NpixquO0gEvKqcYe4ZLRCJvv4fbjNpAQdw01umJfWpnw85Jk9I98oMQKXtCcwvqAlE5idTrm1LKZ4LMy3PaSpKYwVgJXku/D27BRC/DeaC4D6INeRYJU4gLWAY69sucwKCWuhQivQVxOqfERqZzgef+5MXjHTu05Q334fJCy6k5UjlSwvCNTs1NkMqwdV7LrkTSAvOOzL0FUx0ia9d0QouKzoLos35KfMLGPoI7nbulTuBtKDV7ITmpyKFgNfulG5Mcie46SmXuwmkBdU5mXJVICtQmrbLXl9S0BYWfp9BK+A1+Wn6CkZ7iuUBUoLL2KKvIOLeuEhfwUi3tuEZncCdJvpyk1gQq95NAZAQXPNt1VlwpnCVvoLp9mKa9RfNZ2lh60kAmgUxd/4KfQUjVytoAJoFlxIL9RVE60up3gtoEHAAA/1UlaBFwADU2rN0FAAI11XID8+kBG0RDQvZpIJKp0Vfgb/HRVYJ2trCRfM6MoCmthBxr0vRVQBv7y46gCZBs8UhPVuUEkSr5SfMcoLrvmLJJQMpAQfOOgnmatoFDMqlbXQFoEEANCcRdgbCAg6gJp+uRxYXAPD2lZBWgqCAAU2PUQ3PNAmAiNtFMWGWENy6RTNb1C64YCMbnokKODiAaO0u2vtQuAzaZglWz+bjl7c8IgIGBuDMhuV0gkjlJET3I830HSWshD0DuQBM4yoOZVEl0cQBdo5b1ByvIviSBHiWdmRYYfpOxeHG+61rM8Mw8D+Sfg/RfP2jPJ+L0buH9h5nJjV7qAzRQUOyArNvsGwsRHF9IKAArR0f9fkt6nYDGYLJL4dhOrXhXSPR8CxqQyh84PWTMxaTuu9vSrpzAfgPOmmuDwAYtr40PrlEbWvc6LkF9AyVEQIwbE4aHU2NLwg2tsUAu/EKUFlANzzj4BMWuLMNcQW89c0jrQCKqnikuYwMAIZIMKH/XEX8PnHq2o+bvg4Bewc7W5I0fbP1sDBlfrrv/az4feLY+o3sC68N1tLv2foV4jt+Hh4s/8NAEQDw/w9fhI+/08Y5H3rD2cJ5LBbnePGIVwsrjJi1JAPIWJOWRzlR+TdUtMah9DQAkbGDi7EQhLhtAVGPPQXAjSGpPT/aBQyeaDkAND6erY8Asa7sRACzjbuoP0BTKxgxbp7pjqIrSPM+478Rrz+48/GdxqEjuTi9TmQnuEjEK4NghP3lW2OY7BT+ilhtxCuDNScBAHWpeQslUHd7xRoLFqoSVAr6RijeMMsI/lycR7h6pkGgXCxOXKDrqxRcHSZ7n6FREChKX5DHIgCVO+0jitDXemLxD4IfN6cCx2OyAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_53.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, the straight line a parallel b, angle 1 = 55.0, then angle 2 = ()
Choices:
A:55°
B:35°
C:125°
D:65°
|
Như hình vẽ, đường thẳng a song song với đường thẳng b, góc 1 = 55°, thì góc 2 = ()
Lựa chọn:
A: 55°
B: 35°
C: 125°
D: 65°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the straight line a parallel b, angle 1 = 55.0, then angle 2 = ()
Choices:
A:55°
B:35°
C:125°
D:65°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the straight line a parallel b, angle 1 = 55.0, then angle 2 = ()
Choices:
A:55°
B:35°
C:125°
D:65°
|
As shown in the figure, the straight line a parallel b, angle 1 = 55.0, then angle 2 = ()
Choices:
A:55°
B:35°
C:125°
D:65°
|
263
|
53
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIEAAACBCAAAAADCy4aMAAAGHklEQVR4nMXbX1BUVRwH8O/ZPyChgroirUAtK27AEOvfXOWfGP4fe7GyrCn7Mz2VMz0000xNTTPN2EPTg03TQzXp9FI+NDWaAgICC4ZkyD9REFdAF4RdQJDdu+yf04PQS2N7zz0/vL8ZZni4v3s/e849555z7rmMgy5uO1ZV20WTGKFg6ugOv7NUNMtEcm3OAODUzOF708K5NAIAQLj3BZaaKpxmILk4A4B71qe15NIIAHAEQsv5DR0FDOaJmw3HxRMJ7wOL+XDGt1ASBH8UocB82LbMgW/KnboJ4HAA3rodgllk98FcnHtyrb6CUJMrSV9BZ2izaAqxoCHDpq/A31lk1FfQPbNNOIdWUFewDMDZHt0Evo79AFqPXtFN4E4tAHB2eLFIEmWfyGtKTQDea58SyaIsg+verQCQmhJ99IIHg8362gAAIMwevQAAMN2R+1NAPI1wlHbl/rH+Or0EAMCbskr2/aboKBjreRY7Ji8DMJr1EbTPupCVVw9ElYDINIhOcN6VALbJO4UTp7/s0kPgvbYbwIaQB/bP3l4mkEjWJ1ZZ7QDSTQOFpQJTR87IyiDWtMcIAKvHhNIYYPKTAAxdvtXjnDOs9PtU9Yh8aQIAtKcH2TESQWLdxH5wMK5Ek1UlBF/MBdB28JUmmjIwBm7kTYcAwMzGVTXFQAjAwOdf9SaYXiURXOj9IDn6YDVE3ZpIxAagyn7g1wlTAYUAZ0o2iSfdH3gNszk0beHupT3z/3L1/WHfymz02mkELYsKMTdKYOoHB4NpixquO0gEvKqcYe4ZLRCJvv4fbjNpAQdw01umJfWpnw85Jk9I98oMQKXtCcwvqAlE5idTrm1LKZ4LMy3PaSpKYwVgJXku/D27BRC/DeaC4D6INeRYJU4gLWAY69sucwKCWuhQivQVxOqfERqZzgef+5MXjHTu05Q334fJCy6k5UjlSwvCNTs1NkMqwdV7LrkTSAvOOzL0FUx0ia9d0QouKzoLos35KfMLGPoI7nbulTuBtKDV7ITmpyKFgNfulG5Mcie46SmXuwmkBdU5mXJVICtQmrbLXl9S0BYWfp9BK+A1+Wn6CkZ7iuUBUoLL2KKvIOLeuEhfwUi3tuEZncCdJvpyk1gQq95NAZAQXPNt1VlwpnCVvoLp9mKa9RfNZ2lh60kAmgUxd/4KfQUjVytoAJoFlxIL9RVE60up3gtoEHAAA/1UlaBFwADU2rN0FAAI11XID8+kBG0RDQvZpIJKp0Vfgb/HRVYJ2trCRfM6MoCmthBxr0vRVQBv7y46gCZBs8UhPVuUEkSr5SfMcoLrvmLJJQMpAQfOOgnmatoFDMqlbXQFoEEANCcRdgbCAg6gJp+uRxYXAPD2lZBWgqCAAU2PUQ3PNAmAiNtFMWGWENy6RTNb1C64YCMbnokKODiAaO0u2vtQuAzaZglWz+bjl7c8IgIGBuDMhuV0gkjlJET3I830HSWshD0DuQBM4yoOZVEl0cQBdo5b1ByvIviSBHiWdmRYYfpOxeHG+61rM8Mw8D+Sfg/RfP2jPJ+L0buH9h5nJjV7qAzRQUOyArNvsGwsRHF9IKAArR0f9fkt6nYDGYLJL4dhOrXhXSPR8CxqQyh84PWTMxaTuu9vSrpzAfgPOmmuDwAYtr40PrlEbWvc6LkF9AyVEQIwbE4aHU2NLwg2tsUAu/EKUFlANzzj4BMWuLMNcQW89c0jrQCKqnikuYwMAIZIMKH/XEX8PnHq2o+bvg4Bewc7W5I0fbP1sDBlfrrv/az4feLY+o3sC68N1tLv2foV4jt+Hh4s/8NAEQDw/w9fhI+/08Y5H3rD2cJ5LBbnePGIVwsrjJi1JAPIWJOWRzlR+TdUtMah9DQAkbGDi7EQhLhtAVGPPQXAjSGpPT/aBQyeaDkAND6erY8Asa7sRACzjbuoP0BTKxgxbp7pjqIrSPM+478Rrz+48/GdxqEjuTi9TmQnuEjEK4NghP3lW2OY7BT+ilhtxCuDNScBAHWpeQslUHd7xRoLFqoSVAr6RijeMMsI/lycR7h6pkGgXCxOXKDrqxRcHSZ7n6FREChKX5DHIgCVO+0jitDXemLxD4IfN6cCx2OyAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_53.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, angle 1 = 55.0, then angle 2 = ()
Choices:
A:55°
B:35°
C:125°
D:65°
|
Như hình vẽ, góc 1 = 55°, thì góc 2 = ()
Lựa chọn:
A: 55°
B: 35°
C: 125°
D: 65°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, angle 1 = 55.0, then angle 2 = ()
Choices:
A:55°
B:35°
C:125°
D:65°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, angle 1 = 55.0, then angle 2 = ()
Choices:
A:55°
B:35°
C:125°
D:65°
|
As shown in the figure, angle 1 = 55.0, then angle 2 = ()
Choices:
A:55°
B:35°
C:125°
D:65°
|
264
|
53
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAQkAAAD1CAYAAABDTwCyAAAoo0lEQVR4nO3deXCkd33n8XerT6lbrbPV3VJLrWsOzXgOD8Nge4yPheCFyiYOYXed3WIDJCzFLgTYwuGukLgohoUqICFFtky8zuLduLIUTgjxYnuAYIbYjGfwjGd031ffarXUd/fT/ewfHjXS6BhprJk+9H1VuaolPd3za6v1eX7P7/g+mmw2qwJotVo0Gg1CCLFaVbEbIIQobbqqKskJIcTmNKqqqsVuhBCidEk3QgixJQkJIcSWJCSEEFuqkiEJIcRWqmRthBBiK3K5IYTYkoSEEGJLEhJCiC1JSAghtqQrdgOEqCxZAv0/4Qd//1PGok6O/s5v8e63dGEqdrPeAFmWLSpb//f49Hcv3PCwk+89w3sO//pr/4vf4uvPzt3gWS7e9YmPcJ995eswP/3jU7zzq+OkVx1V+9ATXPjH97Nfv8O2lwpViEr2k4+rwA3/+/hP1j5t7PHT23jeafXxsV8/Z+nZP1CNGNUHv/qK6s+oqqom1f6n/p3aDuqRb/bfzne9q+RyQ1S08fFXrj2y8eB//gCnGjY+7mTL2q9n+n9x7dERfvdT76J3w2e52G/59VeXfvoUaeOH+cLHTtKiBzBx6D8+xmf//O/48N//kqk/OkTnzb+VopGQEHvEHbz3M2d4f+cOn2b81/zRmTPct41DTWYrpBeIJ4GVS4tsnMgS0FpD9Q7/6VIhsxtiR86dO4fL5UKj0XDgwAGeeeYZkslksZu1qZySvfboGJ2d231WFiVz7eHJ/bRt81l3vvO/0s53+S8f/A4vT/nw+YZ45mP/li8OG3nvH/wG9hu/REmSnoTYtv7+fq5cucKpU6fw+/04HA7y+TxLS0uYTKaSLH84P3z+Jp41w/TlnT9Lf+qznH16hHf9/ge5++9WvlvLQ998iW/8ZuNNtKM0SEiIbVleXuaFF17g0qVLPPzww+h0OqLRKHq9nkgkgt1e4udJox5tysPl8//MPz/7Gl7AefRdPPDAKY61bjFBadBCdJRf/vhnnH15jCi19N71du5/2wn21V4/XaFn/7//3wy+6wwDrw7iT9XR8eZjHGwo5wlQCYk9T702A75VLyAcDnPhwgWGhoaoqqriLW95CzabjUAggKIomM3m29XcHVomvnDtofX7fKDlq4xHV//8K0AtDz3+Mn//h4dWrWWIEwldezj2JR6yjTO+ek6Tz4Oxh0f/8V/40m+0sC4qats5dl/7Lr+X4pGQEDcUiUTo7+9HVVW6urpoa2vDYrFgsViIx+MlXGk9iG9i5eE449Ry+Hfey2/ur8X36lN8//l5okR57oMn+M8OD/+rcEmwwPzwtYez44wbbdz/+x/gLkeUkef/L8++GiSdHuer73g7LZcv8smj5boAYntk4FLcUCwWIxgM0tXVxVve8hZWiicbDAbq6+upra0tcgs3o8XScYADBw5w4NQf8Y8zC1z9/l9y5swZnnxujqmffJzXz/dpvvvZpxgoPM9I84Frz/vdb/IrT4B/fvIMZ878Jd//1TyvPf4gRgCu8Pk/P8tyUd7b7SMrLsWW8vk8ly5d4kc/+hFut5s3velNdHd3YzAYit20XbDMD/9THf/muwAP8sTkT7Y5RfoaXzt4jEeHAeOj/Cz137c1RVqupCchNqWqKqlUilwuh8ViwWaz0dTUhE73+lWqoiiU9znGyv57Tl17nCGX2+7z+jj2tmsP01m2/bQyJSEh1ln9h5/JZEilUmQyGQwGAxaLhaqqKhKJBKFQiEwms8UrlT7fxE3MdTLP3OCuN6VkycCl2JJGoyGXy5FIJMhkMqTTadLpNAMDA0xPT/Pggw/icDiK3cwNJSZe5tyYj5lXXkb7G5/l/aes1x0xwKUfXZu2ML6Zno7XH/qv/ITLXh+DP5lk3wc/x7t6rnva8iC/+Jdrj08fpuMWvodSICEh1lk9U6HX66mqqiKVSjE/P8/AwADpdJpLly7h9Xp585vfXMSWbq0mdZ5PPvQxrgD8jxD1P/sWv9N1baIzG+DCNz/CH195/Uvbh3+LN12bpKie+z/81rv+mjRgPG/k3NMf42TLtR+mJnnmv32Iv76WLaff9yDXZ0ilkYFLcUOXL1/m6aefZmhoiGg0isVi4c477+S+++7jxIkT1NXVFbuJm1jmxT++g/u/OnvtayO2nk4adQrhqXGCK2sf2j/OTy59nQcLiyLH+Z//6jAf+OnKAbW0HWjFQgzP8DwrSy2MDz7Oa8/9YfluAd8mGZMQN9TY2FiY0YhEIqRSKZxOJydPnqSuro5EIsHo6Cjz8/PE4/ESGsy0ct+XLvDK4/+BHiNAmuD4MMPDKwFRy+H3Pc6v1gQEQA/vf3aQ//eZu3h9cjfK/PAwwysBYbRx/2eeZ3QPBARIT0JsQyKRYGZmhoGBAfx+P7W1tRw7dowjR44AMD4+zrPPPkt7eztHjhzB7XYXZkBKRjZKcHyAV2eWADDZ99PX3YZt3dLq66QWmRq+wog/BUBdx1H2dzoo85XWO1Jiv0lRikwmEx0dHdTV1ZFKpdDpdDQ0/Lowg8fj4eLFi+h0Ou64444S6kmsoq/FdvAtvOPgDp9naqDz2H1lWQdit0hIiBuqqqqipqaGmpqaNd/P5/MsLi4yNzfHwsICGo0Gs9lcWJEpKoP8NsVNy+fzDAwMMDMzg91ux+12Y7fb0Wq1xW7apubm5vjiF79Y7GaUFQkJcdMURWFkZIRAIEBnZydOp7NkexGKonDmzBn6+vr40z/9U773ve8Vu0llozR/o6IsxONxpqenSSQS9Pb20tTUVOwmbejs2bMcOXKEz3zmMwB8+ctf5uGHHy5uo8qIjEmIm5JMJpmfn2dpaYnq6mp6enqor68vdrPWmJub49FHH+Xpp58G4JFHHuGrX/0qLperyC0rLxIS4qYsLCwwMTFBNpvFZrPhcrlKpviMoih87Wtf40tf+hKxWIze3l6+/e1v8/a3v73YTStLEhLipgSDQUZGRjAYDDidTpqamkpiPOLs2bN89KMfZWhoCJPJxGOPPcYnP/lJTKY9tLBhl0lIiJvi8/mYnZ3F4XDgdrvR64u79NDn8/Hoo4/y1FNPAfDwww/z9a9/nc7tl8gWmyh+9IuyslId2+fzsbi4iMvlKuofoqIofOMb36Cvr4+nnnqKzs5OnnnmGZ555hkJiF0iPQmxI9lsFo/Hg9/vR1EU3G43HR0dRalxee7cOT784Q9z9epVTCYTn//85/nc5z4nlxa7TEJC7Egmk2FsbIylpSWam5ux2WwblrJLJBJEIhEMBsOGqzW3oijKlns/rr+0ePvb3863v/1tens3vhmfeGPkckPsSCKRYHBwkHQ6zb59+zad9pyYmODcuXMMDQ0RDoe3vZ/ji1/8IrW1tQwNDa372fWXFi6Xi7/927/lhRdekIC4hSQkxI5EIhHGx8cxGAycOHECq3VttadcLoff7+f555/niSee4Pz58ywsLGzyamvNzc3xla98BWBd+Jw7d44777yTT3ziE8RiMT796U8zODjII488sivvS2xOQkJsWzQaxePxEI1GaWho4MCBA+suI5LJJFevXuWll17iwoULhEIh8vn8tl7/C1/4AqlUio9//OOFknihUIgPfvCDvPWtb+Xq1avce++9vPrqq3z5y1/GYrHc4BXFbpCQENs2OzvLxMQEJpMJp9NJS0vLus1c6XSa4eFh5ubmyOfz1NTUUF194/tpX7p0iSeffJL6+no+9alPoSgKf/VXf8W+ffv4zne+g8Ph4Lvf/S4///nPueOOO27VWxQbkIFLsW3T09NMTEzgcrlob9/4NnZms5l77rmHqakpVFWlqqpqW3cdf/TRRwH4kz/5E4aGhvjoRz/KhQsX0Ol0fOQjH+Gxxx4ruWXfe4WEhNgWRVGYnZ0lGAxy77330tbWtuFxJpOJ48ePMzo6yszMzLZC4uzZs5w9e5b6+nouX77MJz7xCQDuuusu/uIv/oKTJ0/u+vsR2yeXG+KGstksXq8Xv99PPp+nu7v7hmX0jUYjRuPrN8PbamZDUZRCLyISifDkk0/S3NzM448/zksvvSQBUQJ08PoqOo1GU6I3fRXFlkgkGBsb4+rVq4RCIXQ63bbGGbYz7fnUU09x6dKlwtcmk4lHHnlkTXGYXC7H/fffLxu0ikSnqiqqqkpA7FErf8hb/f6j0SjDw8OMjo4Si8Xw+/3E4/EtxwhyuRyKomz52qlUii984Qvrvvetb31r3bEXLlyQkCgSnfQgxI1EIhGmp6fR6/VUV1fz8ssv09LSwt133/2GXjcUCvHYY4/d8DidTicBUUQ6oCS2+IrSo6oqiUQCn89HKBTi4MGD6PV6pqenuXLlCj09PTQ1NW1Y03I7Jx+Xy8X73ve+W9R6sVskHfa4rf6Y8/k88/PzzMzMkMlkeOtb38pv//Zvo9FoGBkZ4erVq8RisdvcYnG7SUiITamqyvT0NPPz81gsFvbt28eJEyc4fvw42WyW8+fPE4lENn3u6v9E+ZKQEJtKp9NMTU0RiURob2+ntbWVtrY2Tp48icViYWRkBJ/Pt2EIrPRQqqqqZMyrzElIiE0tLy8zNzeHoijccccdhdmMgwcP4nA4iMViTE1N4fF41gWFRqNBq9Wi0+lK+j4c4sYkJMSG4vE4Xq+XUCiEwWCgr6+vEBJ2ux2Xy4XVamVmZobp6el1z9dqtYWexMpjUZ4kJMSGwuEwk5OTpNNpGhoacLlchTqWVVVVtLa24nK5CAaDTE9Pr9vpGYlEWFxcJBAIEA6HyWQyxXgbYhfI3g2xIb/fT39/Pw0NDXR2dq6rFNXY2EhnZyeXL18mHA6TSqUwm80kEgleeeUVXnjhBX72s5/R399PMpnE7XbT1dW1YRUrUdqkJyE25PV6mZqaoq2tjX379q1bS9PY2EhXVxdarZalpaXCLEculyMSiaDT6WhtbcVsNpPP50mn0+RyuSK8E/FGSU9CrKGqKrFYDK/Xy+LiIp2dnRuWhqurq6OjowOTyUQ8HicQCNDU1ITBYKC1tZUHH3yQgwcPoigK3d3dNDQ0yABmmZKQEGukUikGBwfx+XxYLBacTicNDQ3rjtPpdDQ2NmIwGIhEIoRCIWKxGM3NzfT29uJ0Okmn04XCMw0NDVsWt90LtrNPphTt7d+aWCedTtPf308sFqO7uxubzbbpsSaTCbPZzNLSEouLi4W6EQ0NDRsGy15XbuGwQsYkxBrpdJrR0VGqqqo4ceIEdXV1mx6r0Wior6+npqaGWCwmMxgVatd6EjIoVb5WznC5XA6Px0MgEMDpdNLR0VEoHJPL5dZ0l7VaLblcDqvVSnV1NdFotNCTyOfze2op9srq0hv1FJLJJLlcbk0xnnKY7dm1kPB6vbv1UuI2W1k6HQwGuXLlCpFIBIfDgaqqhMNhotHoupDQ6XSkUing9fGJRCJBMBgs3NlrL4SEqqrk83mqq6uxWq0YDIZNd1Rns1kGBwdJJBK0traSzWZJpVIcO3bsNrd653YtJJ5//vndeilxm+l0OnQ6HRMTEwwNDREMBqmvr+dXv/oVer1+Xc9g5ay5Mt2ZSqXI5/NcuXJlw4VVlWjl/SeTSTo6Ojh+/DgOh6PQS1gtn88zPT3Nt771LTweD+985zsJBoPMzs7yN3/zN0Vo/c7sWkgMDw/v1kuJ20yv16PRaBgcHGRqagqDwUAymWRmZmZNhakVGo2mEBqrz5wej4f5+fnb2vZiWQmJaDSKqqr09PRsOMirqiojIyO8+OKLxONxDAYDfr+f8fFxxsfHi9Dyndu1kNgL3ctKtDK2kEqlWFxcJJVK4XQ6CwOW+Xy+UAN1xfW9ipWgyOVye6IXseJG2+FX7sD+8ssv89xzz/G2t72NtrY2JicnCQQCNDY2FqHVO7drIfFGS5mJ4jAYDMRiMWZmZpicnARevwGv2+1Gp9MV/vBXQuL6P4bVW8H3Uv0IjUZDPp8vhGpTU9O6dSCZTIaBgQHm5uawWq3ceeeddHR0kEqlCIfDRWr5zu1aSEjp8/JkMpnwer1Eo1Gampqw2+2cPn0at9tNJpMp/NGvvsS43uoBza2OqzSqqpLL5aiurqaurm5dSKRSKUZHR1EUhWPHjtHT00N9fT21tbXYbLbChrlSt2sh0draulsvJW4jrVZLLBYjkUjQ3NxMa2srnZ2dNDc3y7T2Nm02Bbp6ufp9991HQ0MD0WiUdDqN2WzGZDIVqcU7s2shIevyy9fS0hKTk5PYbDaOHDlCbW0tIL/TNyKRSBQuKZqbm3G73ej1ejKZTKFGx1arWUuJrLjcw1aqYc/OzjI7O0tDQwN9fX03tcdiL41HbMfi4iKhUAiz2Uxzc3MheBcXF5mfn0ej0ZRN71tCYg9TVZXZ2dnCh9bhcOB0OjfsQdzoj3+7qw73iuXlZRYXFzGbzYUdsAsLCwwNDTE/P49er6ejo6PYzdwWCYk9TFVVxsbG8Hq9tLW1Ybfbi92kiqEoSmEvi0ajIZvN8uqrr/LLX/4Sv99PVVVV2WyCk12ge1g2m2V4eJiFhQWOHz++5TWy9BB2xmg0YjAYCAQCeL1eamtreeWVV7h06RKxWIxkMkk6nS6L7fOl30LxhmxVwyAcDuPxeMjlcvT19ZXNQFo5aG5upq6ujh/84Ae88MILtLS0YLVaaWhoYGpqiosXL2K1Wnn3u99d7KbekITEHhWJRJiamiIWi1FXV0dnZ+eW28LFztTX12O32zEajSwsLJBMJnnHO96By+UiHo+j0+nw+/3Fbua2SEhUuM0uE3w+H6+99hp6vR6Xy0VjY+OGx5ZrNaViq6qqor29nfe85z3cfffdaDQajh49islkoq+vD5PJhMViKXYzt0VCYo/y+/2MjIxQV1eH2+0ui7oG5cZisXD8+HH27dsHUFi6bbPZUFW1bG7ULSGxB2WzWfx+Pz6fj3vuuYfOzk7pKdwCWq0Wm822bqynurq6SC26ORISe0w2m2V2dhav10s+n6ejo4P29vZNQ0LCQ0hI7DGZTIaxsTEWFhaoq6vbtBq2ECvK46JI3LTrl0onk0lGRkaIxWK0t7fT1NRUxNaJciA9iQp3/eXC0tISc3Nz6HQ6+vr6sFqtRWqZKBfSk9hDEokEgUCAUCiExWLh0KFDZTMNJ4pHehJ7yMLCAnNzcyQSCRobG9m3b19ZLAsWxSU9iT1kfn6eqakpGhoacDgcEhC3UTlvoZeQ2ENmZmaYm5ujq6uL9vb2Yjen4lRqPQ0JiT0iGo0yMzNDKBTi0KFDdHd3F7tJFWerehrlvN5EQmIPSCaTTE9PEwqF0Ol0dHZ2yo5PsW0SEnvA8vIy/f39pNNpWltbaW5uLnaTRBmRkNgDIpEIly9fxmAwcPjw4bLbOyCKS0JiDwgGg8zMzFBXV0dfX1/Z3O9BlAaZA6tgqqoSCoXweDykUilaWlro7OyUbeFiRyQkKpiqqkxMTDA3N1fYzCV7NcROyeVGBVMUhfHxcfx+P+3t7TgcjmI3SZQhCYkKtnLjnXg8Tm9vb9ncxVqUFgmJCpVKpfB6vQQCAaqqqjhw4IBMfYqbIiFRoSKRCOPj40SjUaxWK93d3YVbzQmxExISFWphYYGxsTGMRiNOp3PDLeGVuM9A7D4JiQrl9/uZmprCZrPR09Ozbm2EBITYLgmJCqOqKvF4HI/Hg9frxe12c/DgwWI3S5QxWSdRYRRFwePx4PP5UBSFtrY2Ojo61t3joZx3JYrbS3oSFWalGvbi4iJNTU3Y7fayuQmMKE3y6akwmUyGgYEBMpkMx48fp76+vthNEmVOQqLCLC4uMjExQVVVFUeOHJGbAIs3TEKigsRiMebn5wmHw5jNZvbv31+Y+pTZDHGzJCQqyOzsLKOjo9TU1BSKy6yMR8hApbhZEhIVZGZmhvHxcRwOB+3t7Wi12mI3SVQACYkKoaoqs7OzzM/P093dTUdHR7GbJCqErJOoAIqiEAgECAQCKIpCZ2cnTqez2M0SFUJ6EhUgHo8zOjrK8vIyVquVtrY2mfoUu0ZCogJEo1GuXr1KNpvF7XZL3QixqyQkKkA4HGZ8fByj0Uhvby81NTXFbpKoIBISZUxVVVKpFMFgkEAgQH19Pfv27ZNq2GJXSUiUOZ/Px9zcHJlMBofDQW9vr1TDFrtKZjfKWD6fZ2ZmBq/Xi9VqxW63y6WG2HXSkyhjiqIwMTFBKBSip6dH7u8pbgkJiTIWi8WYmpoiFotx5MgRWRshbgkJiTKVSqXw+XyFath9fX3SkxC3hIREmVpYWGBkZIRcLkdLSwsOhwOdToaYxO6TkChTwWCQ/v5+6urq6O3txWQyFbtJokJJSJQpn8/H6OgoTqdTCt2KW0r6p2VmpRq21+slEonQ2tpKV1eX1LEUt4yERJnJZrOMjY0RCASwWCw4HA65U7i4peT0U2ZSqRSXL19mcXGR3t5eWlpait0kUeEkJMpMMplkfHycTCbD/v37ZUu4uOUkJMpIPp9nYWEBv9+PwWBYU+hWiFtFQqKM+P1+xsfHSafTNDY24na7MZvNxW6WqHASEmXE6/UyOTlJTU0NDoeDxsZGmdUQt5x8wsqIx+NhdnYWu91OW1ubrLAUt4WERJlIJBLMzc0RDAbp7e2ls7Oz2E0Se4SERBnIZDJ4vV78fj+KotDV1UVra2uxmyX2CAmJMhCPxxkbG1tTDbu6urrYzRJ7hIREGYjFYgwODqLRaOjt7ZVpT3FbSUiUgcXFRUZHRzGbzdxxxx0YjcZiN0nsIRISJWKzu36vFJfxer00NDRw+PBh2RYubiuZQythqqoyNzfH3Nwcer0eu92O0+mUtRHitpJPW4nQaDTrvpfP5xkbG2Nubg6Xy0Vra6sEhLjt5BNXwlRVZXh4GK/XS19fnxS6FUUhIVHCwuEwXq+XbDbL/v37pdCtKAoJiRK1tLTExMQEsVgMq9WK2+2mrq6u2M0Se5CERIkKhUJcvXoVnU5He3u7bOYSRSOfuhIVCAQYHh7GarXS1dUl056iaCQkSlA+nycYDOLz+Whubqazs1N6EaJo5JNXIlYWU+VyOTweD16vl0wmg9PppL29XUJCFI0spioxmUymUA27traW1tZWqYYtikpOTyViZTFVJpNhdHSU5eVlOjo6JCBE0UlIlJhoNMrk5CS5XI5Dhw7R0NBQ7CaJPU5CooRkMhmCwSBerxeTycSRI0dkbYQoOgmJEhIMBpmeniaXy9HU1ER7e3th6nOzXaJC3GoSEiVkfn6esbEx6uvrcblc1NTUrPm5BIUoBgmJEjI9Pc3o6Cjd3d10d3cXuzlCABISJSMejzM/P08kEqG7uxu3273umI22kwtxq0lIlIBUKsXMzAzhcBi9Xk9HR8e6GwFLQIhikZAoAlVV14wvRKNRLl26RDqdpru7m+bm5iK2Toi1JCRKQDQapb+/H4B9+/ZJNWxRUiQkikCj0ay5fFhaWmJ6ehqTyURvby8Gg6GIrRNiLdm7UUSqqhIOh5mdnUVRFFpaWnC73RISoqRIT6LIJicnmZ6epra2FqfTSUtLi9wIWJQUCYnbZLOFUOPj48zOzuJ0OnE4HBIQouRISNxG1wdFPB5nZmaGpaUlenp6sNvtRWqZEJuTkLiNVg9WZrNZAoEAgUAAVVXp7e2VqU9RkiQkbpPrF0MtLi4yMjJCLBajrq6Ozs5O2fEpSpKERJGEw2GGh4fR6XS0tbVRX19f7CYJsSEJiSIJBoOMj4/T2NhIb2+vDFiKkiUhcZupqko6nS7cKdzlcnHo0CEJCVGyJCRus5Vq2D6fj1wuh8vloqOjQzZwiZIlp6/bLJvNMjw8zMLCAk6nE7vdLr0IUdKkJ7FLtls1SlEU+vv7WV5e5tChQ1INW5Q8OYXtIlVV0Wg0hcDY6BIiGo0yMTGBTqeTQrcVTFEUstksiqKg0+kwGo1le4MlCYnbKB6PMzs7y/LyMp2dnfT09FBbW1vsZolbYHp6mtdee42RkRG6urp44IEHaGxsLMtLy/KMthK1uuewUS/C4/EwPDyM0WjE6XRis9nQarW3s4niNolGo4yOjvJP//RPvPTSS0QiEXK5XLGbdVMkJHbJjQICXj+7DA4O4nA46OzslC3hFcxoNKLVavF6vfj9frLZbLGbdNPKr+9TxkKhEKFQiHvuuUeqYVe4trY27rrrLkZHRzl48CAulwuj0VjsZt2UXQuJvXRPiOvf61ZrHDQaDblcjkgkQiAQIJPJ4HK5sNvt6wY6Rfm6/jNQU1NDa2srd955J21tbRiNRvL5/LqqZOVg10IiHo/v1kuVNI1GQz6fJ5fLkcvl0Gq1aLXaTX/xer2excVFLl++zPz8PAaDAYvFglarJR6PS0iUOVVV0el06PX6NZ+DcDiMz+dDo9GQSCSYmpqivr4ei8WC2Wwuq6DYtZB46aWXduulStbKL1ZRFCKRCOFwmNraWurr6wt328rlcoXjNBoNBoOBQCDA+fPnmZiYwGAwMDU1RSaTIZPJFO29iDcun8+TzWax2Wx0dXXR0NCAXq8HXr9NQjQaRVEULl68yE9/+lN6eno4deoUp0+fLqsBawmJHaiqqkKj0ZDNZpmZmWFychKbzYbL5aK5ubnwM3g9IKqqqtBqtfh8Pi5evEgul8PhcDA8PMz8/DyJRKIQKNKbKC8rl5HxeJz9+/djtVqpra0thEQikWBhYYHFxUUGBwcZGBhgfHwco9HIqVOn9mZIhMPh3XqpkrUSEgDLy8sEg0FyuRx6vR6dTodGoyGdTgOg1Wqpqqoil8vh9Xrx+Xw0NTVhNpuJxWKkUilSqRSAXHKUoZWQiEaj2O12MpkM+Xy+8PNgMMjg4CDDw8M0NTXxe7/3eywuLqKqKtFotHAj6HKwayHR09OzWy9VslYGnfR6PRqNhmAwSE1NTaFojF6vL/zhr4SGz+fD5/NhNpvp6enh5MmTGI1GVFVFUZQivyNxs1ZCIplM4nK5MJvNa3oHsViM5eVlqqurOX78OPfccw8XL15Ep9ORTCbJZDJlMwW+ayHxwAMP7NZLlTSNRoPJZMJms5FMJlEUhZ6eHk6fPk1NTU0hJAwGA7lcjvPnzxMOh+nt7eWee+7hbW97G/l8nnw+L72HMqeqKrlcjtraWmw2W+FSI5fLkclkqKmpobu7m3vvvZfjx48TDoeJRCKF5dp7LiT2yrz/ymBkMplkbm4Oj8eDxWLB7XZjtVpJJpOoqkp1dTXZbJZf/vKXVFVVceLECY4fP05PTw+KoqzpmorypaoqWq22MLuRy+VYWlpCVVWcTienT5+mt7eXZDJJPB4nl8thNBrLann2rrXUbDbv1kuVBYfDQW9vL6FQiGQyWRiDWP3/IZfLsbi4SC6X4+jRo/T09KDX6wtnHFF5stls4Xfe0NBAT08PVquVubk5FhYW0Gq11NTUlE0vAmRZ9k2zWCx0dnaiKAqzs7N4PJ41S28zmQzT09PMzs6SzWbZv3+/VMPeA7LZLJFIhHQ6XThxKIrC8vIyi4uLpFKpwnR5uZCQ2EQymSQQCBAKhTZcKFZdXU1raytGo5Hl5WXm5+dZXl4u/HxhYYGBgYHCtKfNZiurLqbYnuvHlRRFIRaLodFosFgshc/H1NQUqqpSW1tbVtOfICGxzkoNyunpac6dO8fPf/5zrl69SiwWW3dsXV0djY2NaDQaJicnCYVChZ+FQiGuXr1KTU0NPT09ZXf2ENu3OigURSGRSKDT6Qp3h/d4PAwMDGA2m3G5XGVXV6K8Wnsb5PN5AoEAP/7xjzlz5gx/9md/xhNPPMHQ0BCJRGLd8Z2dnbS0tDAwMIDH4yl8f2FhgeHhYRobG9m/f3/ZnT3E9ly/FyObzZJKpdDpdFRXV5NKpRgeHub8+fM0NzfT19dXdiEh/d/rJJNJpqamiMfjdHR0MDk5ycTEBOfOnaO6uprDhw8XjlVVlX379uHz+XjhhRcKdwfP5/OFyxS73U5HR0fZfTDEzdHr9ZjNZoaHh3nttdcKtSS6u7vZt28fLS0tZbVvAyQk1sjn88RiMebn53G73dx///28+OKLvPrqq/ziF7+gtbV1TUhoNBq6u7vxer08++yzeDweRkZGSKfTBAIBamtraW1tLSzZFpXPbDbjcDg4e/YsP/zhD4nFYjz00EN86EMf4uDBg2V5spCQWCUejxONRmlqaqKxsZEDBw4UlmK/+OKLBINBlpeXqa2tLfzR6/V62tra2L9/P+FwmOeeew54fdm22+3GbrevmfJc2R4uKpPRaKS1tZVTp06hqiqxWIzTp0/T19dXtssEJCRWURQFjUZDe3s7TU1NWCwWDhw4QDAY5MKFC6RSKZaWlqipqVkzU9Hc3Myb3/xmLl26xKVLl0gmkzidTk6ePLmmGrassKx8Wq2W+vp6Tp48SVtbG+l0mo6OjrINCJCQWMNgMFBXV4fZbC5swLFYLNjtdpqbmwvr7nO53JqQqK2t5e6772ZpaYnh4WFGRkawWq309vZitVrX/TtbVdMW5U+n09He3k5bWxtAWV5irCYhscrKctnVZcZWlmFbLBZMJtOGBWZ0Oh1Op5O2trbClKjZbF53BpHdnnvHSjGiSiAhsYpOp1u34CmZTJJOpzGbzVitVqqrqzc8M6wsnmlsbMTlcuFyubDZbOuOlaAQ5UZC4gaWlpaIRqOFAKitrd20+xiNRkmlUhw9epTDhw9vuj5fLjNEOSnvi6XbYHFxkaWlpcLqSrPZvGFIpFIp/H4/y8vL7N+/n97e3iK0VojdJyGxiqqq65bYLi4ukkgkaGlpoampacOAyGQyeL1evF4vyWQSt9tNa2vr7Wy6ELeMXG6scv3y2nA4zPLyMkajkcOHD+NwODZ8XjKZZHR0lEgkQn19PQ6Ho7BuX4hyJyGxiXg8jsfjIZPJUF9fX9jxudmxg4ODKIpSqJosRKWQy41NRKNRZmdnMRqN2O32LaezlpeXGRoawmg0cuzYMdnxKSqKhMQmVm4Z393dzcGDBwsLqYLB4Jr7ZWQyGfx+P+FwmIaGBg4ePFhWlZCFuBG53LhOJpPB4/EwOTlJJBIhn8+TTqfx+XyFr00mU2F6c35+npmZGbRaLXa7nba2trJfYSfEahISqyiKwvz8PP/wD//A5cuXSSaTDA0NYbVa8Xg8uN1uTp48uWYGZGhoiPHxcdra2mhtbZWAEBVHQmIVRVFYWlpifHyckZGRwgxHVVUVkUgEs9mMxWIp7OpUFIXJyUn8fj/Hjh3D6XQW+R0IsfskJFZZuetzXV0ddrudbDZLJpMhm81SU1OD3W7H6XQWZjmWlpbw+XykUil6e3tpaWkp8jsQYvdJSKxiNBrp6urive99L9FotHDzlZXwcDqdNDQ0UFVVxdLSEkNDQ8RiMerr63G5XNTV1RX7LQix6yQkVtFqtVit1g23d19vYWGB/v5+8vl8ofqU3E9DVCIZZbtJ4XCY0dFRTCYTbre7rIuKCLEVCYkdUlW1sDYiGAxis9no7u6WXoSoWBISO5TP5/H5fHi9XjKZDE6nE7fbLVOfomLJmMQOKYrC1NQUPp8Po9GI0+lcM6shhW5FpZHT3w5ls1nGx8eJRCK4XK419/eUilOiEklI7FAsFmNiYoJMJsPhw4dpbGwsdpOEuKUkJHYgkUgwMzPD7OwsBoOBo0ePrimZL0QlkpDYgVgsVlimbbPZ6OjoWLPjU8YiRCWSkNiBbDaLRqMp1LDcqPqUBIWoNDK7sQNWq5UDBw7Q2NgoYxFiz9CoMiS/I6qqFm4HeP09OoSoRBISQogtyZiEEGJLEhJCiC1JSAghtiQhIYTYkoSEEGJLEhJCiC1JSAghtiQhIYTYkoSEEGJLEhJCiC1JSAghtiQhIYTYkoSEEGJLEhJCiC1JSAghtiQhIYTYkoSEEGJLEhJCiC1JSAghtiQhIYTY0v8H84rtUvXJzI0AAAAASUVORK5CYII=",
"path": "images_version_5/image_53.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, the straight line a parallel b, then angle 2 = ()
Choices:
A:55°
B:35°
C:125°
D:65°
|
Như hình vẽ, đường thẳng a song song với đường thẳng b, thì góc 2 = ()
Lựa chọn:
A: 55°
B: 35°
C: 125°
D: 65°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the straight line a parallel b, then angle 2 = ()
Choices:
A:55°
B:35°
C:125°
D:65°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the straight line a parallel b, then angle 2 = ()
Choices:
A:55°
B:35°
C:125°
D:65°
|
As shown in the figure, the straight line a parallel b, then angle 2 = ()
Choices:
A:55°
B:35°
C:125°
D:65°
|
265
|
53
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAK3CAYAAABkypKoAACVxUlEQVR4nOzdd3gU1foH8G9Ceu+VQELvvXeEi1JUihdBuSCIBRGviGKn/MCK167XBoiggKCgKCAdAamhF+kBQoCEhJBG+vn9kTsns9mSbdmU+X6eJw/Du1PO7s7Onn3nFCchhAARERERkYY4V3YBiIiIiIgcjZVgIiIiItIcVoKJiIiISHNYCSYiIiIizWElmIiIiIg0h5VgIiIiItIcVoKJiIiISHNYCSYiIiIizWElmIiIiIg0h5VgIiIiItIcVoKJiIiISHNYCSYiIiIizWElmIiIiIg0h5VgIiIiItIcVoKJiIiISHNYCSYiIiIizWElmIiIiIg0h5VgIiIiItIcVoKJiIiISHNYCTbgkUcegZOTE2JjYyu7KDVCnz594OTkhD59+lR2UcxWHctcVFSEjz76CJ06dYKfnx+cnJzg5OSEoUOHAgC2bdsmY9u2bavUshKQkJAg349vv/22soujWbNmzZLvQ0Wpqp+98q5zSplnzZrl0HJR9VRe3Sk2NhZOTk545JFHKqwMlp6zdqkE79y5Ux7YyckJf/75pz12S0QWGD16NJ599lns378fmZmZlV0cIiKiKs0uleDvvvvO5P+JqgJHZHwqy19//YUVK1YAAAYPHoyNGzfi6NGjOHbsGD7++ONKLp22OCLbUd3wNbGPmnwNI6oMLrbuIC8vT375+vj4ICsrCytWrMAnn3wCT09PmwtI1V9Vuv1XU23atAkAUKtWLfzwww/w8/PTW6dPnz4QQji6aERV2qxZs3i73wheL6imszkT/MsvvyA9PR0A8NFHHwEAMjIy8Msvv9i6ayIy09WrVwEA4eHhBivAREREpMvmSvCiRYsAAM2aNcOECRPQrFkzAGwSQeRIeXl5AABXV9dKLgkREVH1YFMlODk5GRs2bAAAjBkzBgDw8MMPAwA2bNiAGzdulLuPpKQkvPTSS2jXrh38/f3h5uaGiIgItGzZEqNHj8a3336LjIwMq8pXVFSEb7/9FnfffTciIiLg5uaGgIAANGzYEP369cObb76JkydPlruf9PR0zJgxA82bN4e3tzcCAgLQq1cvfP/992aV49ixY3j88cfRsGFDeHl5wdfXF82bN8fUqVORkJBgcJsVK1bItl+nT582uE6DBg3kOj/99JPBdYYOHQonJyd07NhRJ/7tt9/KbRMSElBcXIyvvvoK3bp1Q2BgILy9vdGqVSu88cYbyMnJMet5GmOqB7KhHvIbN27Evffei4iICLi7uyMuLg6TJk1CYmKiVcdXnuvs2bNlTN2RU/06GHP16lU899xzaNCgATw9PREcHIy7774b69atM6sMt27dwty5c9G1a1eEhITA3d0dUVFRuP/++/Hzzz9b9bzUz0P5MXrp0iW956Uwt4f6pUuX8OSTTyI2NhYeHh6IiorC0KFDsXXrVgCm2yVaMuKBqXaiZc/PvLw8fPjhh+jSpQtCQkKM9v4tLCzE/PnzMWjQIERFRcHd3R0hISHo1asXPvzwQ+Tm5posky2U8/zSpUsAShIEZd+L8kYbsfXc37dvHx577DE0atQIPj4+8Pb2RpMmTTB58mScPXvW1qdo8fXa0tfE0Pnz888/y/fTxcVF7zXcs2cPXnvtNfTp00de5/38/NCsWTNMmjSp3Gu8ue1sd+zYgeHDhyM8PBweHh6oV68ennzySZw7d07nuZo7osyPP/6Ifv36ITQ0FJ6enmjcuDGmT5+OtLQ0vXXtcQ2zhqme9vb+DhFCYOXKlRgxYgRiYmLg4eGBwMBAdOrUCXPmzJF3nK1VXFyMLVu24Pnnn0f37t0REhICV1dXBAQEoE2bNnj++edx+fJlm44B6F/X9u/fj9GjR8vnFBMTg0ceeQSnTp0yuZ9r167h888/xwMPPICGDRvC29sb7u7uiI6Oxv3334/ly5ejuLjY6PZlr/fFxcVYsGAB+vbti/DwcDg7O+tcex31+pgjMTERL7/8Mtq1a4fAwEB4eHigTp06ePDBB+X3kN0IG7z//vsCgHBychKXLl0SQgiRkJAgnJycBADxn//8x+T2f/75p/Dz8xMATP6tWbPG4rJlZmaKnj17lrvvESNG6G07btw4AUDUrVtXnDp1SsTGxhrdfvLkySbL8eabbwpnZ2ej27u7u4tFixbpbZecnCzX+e9//6v3eGJiYrnlKC4uFkFBQQKAmDZtms5jCxculNseP35c3HXXXUbL2KlTJ5GVlVXeS25U7969BQDRu3dvvccuXrwoj7Nw4ULx4osvGi1HaGioOHnypMXHVz9XU38XL140WOYdO3aI4OBgo9vNmzfP5PF///13ERAQYPLYgwcPFpmZmRY/N3Oel2Lr1q0ytnXrVoP727Bhg/D29ja4HycnJ/HGG2+ImTNn6u1bUfb9NKVu3boCgBg3bpzeY+r3bP/+/aJNmzZ65Zk5c6bONufOnRPNmjUz+Vo0bNhQnDlzpryX1SrKOWPqT/0ZsOe5X1BQICZNmmTy2K6uruKrr76y+vlZc7225TVZsGCB+Ne//mVyfXM+27Vq1RKfffaZ0edl6nxWzJ07V36vlf3z9fUVf/zxh8nrnPqzt2nTJvHQQw8ZLW+DBg3EtWvXdLa35hpmDlNlFqL0+lL2s1a2TLZ+hyQnJ4vu3bubfG7h4eFiz549Fj0/NfX7bOzPy8tL/Pzzz1YfQwjd69r8+fOFi4uLwWO5u7uLZcuWGdxHYWGhyXqD8vePf/zD6PeG+pxbt26d6N+/v9726muvPV4fdd2pvNfGmG+++UZ4enqaLMejjz4qCgoKDG5v6pw1uL5ZaxnRunVrAUD06tVLJ65UPlu3bm1029zcXBEVFSUvItOnTxfr1q0T8fHxYs+ePWL58uXi2WefFTExMVZVgqdNmyZfjCFDhoilS5eKXbt2ifj4eLF+/XrxzjvviJ49e4oHHnhAb1vljQwNDRUNGzYUvr6+4rXXXhPbtm0TBw4cEF9//bWoXbu23P/69esNluGzzz6T64SGhor33ntP7N69W+zcuVPMmjVLVjacnJzE77//rrd906ZNBQDx4IMP6j22ePFinZOiefPmeuscOnRIPl72NVRfwLp16yacnZ3FuHHjxO+//y7i4+PFqlWrRNeuXeU6L730krkvvR5zK8HdunWT6/3www/iwIEDYtOmTWLs2LFynS5dulh8/Fu3boljx47pVBKOHTum95efn69X5kaNGomQkBARFhYm3n77bbFz506xb98+8f7778uKrYuLizh+/LjBY2/YsEHUqlVLABCxsbHinXfeEdu2bRMHDx4Ua9asEWPGjJFlGj58uMXPTSn7/fffLwCIqKgoveelKK8SfPbsWeHl5SUrDpMnTxabN28W+/fvFwsXLpQVzE6dOsn9lFURleBWrVoJJycnMXbsWJ3zc+3atXL9pKQkER4eLq8n06ZNE+vWrRMHDx4UW7duFS+//LJ8bvXq1RPp6elmv8bmunDhgjh27Ji8rt1///1678WFCxfk+vY899XrDRw4UCxZskTs27dP7N+/X3z99deiefPm8vFff/3V4udm7fXaltekVatWAoDo2bOnzmvyzTffyPW//vprERgYKMaNGycWLFggduzYIQ4ePCh+++038X//938iJCREXmM3b95s8LmVVwn+4Ycf5OOBgYHi7bffFn/99Zf466+/xDvvvCMCAwNFYGCgaNSokdHrnPqzp7zXQ4cOFT///LOIj48Xa9euFYMHD5brjBo1Smd7a65h5rBXJdiW75CsrCz5Xefm5iaeeOIJ8csvv4iDBw+KHTt2iDfeeEMmIQIDA0VCQoJFz1Hx6quvisjISPHUU0+JxYsXy/rA6tWrxfTp04WPj48AIDw8PKxKtiiU61rr1q2Fq6uriIqKEp988onYu3ev2L59u3jxxReFu7u7/O7Yu3ev3j4KCgqEs7OzuOuuu8S8efPE+vXrRXx8vNi2bZtYsGCBzus6duxYg+VQn3PKZ+m+++7TOefUlXB7vD62VoLnz58vy9yiRQvxySefiJ07d4qDBw+Kn376SQwaNEg+/txzzxnch8MqwUePHpUHK5td+PLLL+VjR48eNbj95s2bjVbQ1AoKCsTt27ctLl9MTIwAYLCSq5aamqoXU95IACIgIMBgBefs2bPCw8NDnlhlJScnyy/dqKgocfnyZb11Dh48KCvC0dHRehcw5YIXERGht+2jjz4qj61c5JOTk3XW+eCDDwQA4ezsLG7duqXzWNnMwuLFi/WOkZubK1q0aCEAiODgYKO/vMpjbiUYgHjsscdEcXGx3noTJ06U6xw8eNCqcpiT8SlbZuUDnZiYqLfOjh07ZHbomWee0Xs8KytLVswGDBggsrOzDR7rq6++ksfatGmT5U9MlH/xEaL8SrByLgEQK1as0Hs8OztbpwLsqEowADF//nyT+xoyZIgAIGJiYsT58+cNrqP+vL322msm92cLc7IdQtjv3F+5cqV8/OuvvzZ4rDt37shMXWxsrMWfZVuv19a+JmPHjjX4migSExONfq6EECI9PV1WAHr06GFwHVPXhdzcXBEWFiYAiKCgIHH69Gm9dU6fPi3vuJlTCQYg5s6dq7dOcXGxGDBggKwclb2el1dWa9irEmzLd8jTTz8tAAh/f3+xf/9+g+VISEgQkZGRAoAYM2aMRc9RcfHiRZM/Eq5cuSKio6NtOoYQpee6cj0um9UXQogtW7bIDHGHDh30Hi8uLhZnz541eZwZM2bI735Dd7fKnnOvv/66yf3Z4/WxpRJ8+fJlWWcaN26c0WvUK6+8Ius1hj6PDqsEK5lWd3d3vQrWrVu35C+dsrfhFd9//70srDWV3PK4uroKAOKjjz6yeFt1Jfjjjz82ut6oUaPkr9Oy3nnnHbmPpUuXGt3H3Llz5Xo//vijzmPLli2Tj506dUrnsQYNGsjKSr169QxWXIYOHSoAiHbt2ukdV30BM5WB/OKLL+R6R44cMbqeKeZWgiMjI0Vubq7Bffz9999yPWveUyGsrwSbypx16dJFABBt27bVe+yTTz4RQMkv5xs3bpg8nlK5fPjhh8t/IgbYWglOTEyUt9+GDRtmdB+HDx92eCX4rrvuMrmfY8eOyXV/+eUXk+tOnz5dACU/TCuKNRU+W8799u3bl/u+CSHEyZMn5X42btxo9vMRwvbrtTWvSUBAgMjIyLD4WGWtXr1a7vPmzZt6j5u6LixdutSs685HH31kdiW4ffv2Riv269evN3kuV9VKsLXfISkpKTKZVN51/fPPPxdASbMeUz98bPHhhx8KAMLPz8/kjy9T1JXglStXGl1PndXft2+fxccpLCyUdzree+89vcfV51yjRo1EYWGhxccoq7zXx5ZKsFKnjIqKEnfu3DFahoKCAlkZf/XVV/Uet7QSbFXHuKKiIvzwww8ASgbmDwgI0Hk8ICAAgwYNAgD88MMPKCoq0ttHZGSkXF64cKE1xTBJ2f/y5cut7tjl5OSEhx56yOjj7du3B1DS6also31l3NaAgACMGDHC6D4mTpyot41C3cFC3ZHp6tWrOHfuHJycnNC7d2+5nnodIYScua93795Gjw+UdmY0RHmOAHDhwgWT+7HVAw88AHd3d4OPNW7cGD4+Pg4ph1pAQAAGDx5s9HHl9TFUJmWYwN69eyMsLMzkcXr16gUA2L17t7VFtYnScQIAxo0bZ3S91q1bo3Xr1o4qFgDT5ydQ+jp7eXmZfK+A0tc5KSkJV65csU8B7cDac//q1auIj48HAIwcOdLkMZo2bYqQkBAAlp9nFX29NuTee++Fr6+vRdtkZ2cjISEBJ06cwPHjx3H8+HGdEVOOHDli0f42b94MAHB2dsa//vUvo+uNGTPG7AksHnroIaPrOvJ6a0/Wfof88ccfsrNqeeev8tktKCiQ57wtMjIycPHiRZ1zxcvLS+cxWwQGBuL+++83+viECRPkctnv/rKKi4uRlJSE06dPy7KeOnUKtWvXBlD+ef3ggw+iVq1aFpS+4l+fspTr+L333gsPDw+j67m4uKBr164A7PN9aVUleMOGDbh27RqA0lEhylLi165dM/gG9+jRA/Xq1QMAPPvss+jUqRPeeust/PXXX8jPz7emWDqUL/K//voLcXFxePrpp7Fq1SqkpKSYvY+QkBAEBwcbfTwoKEgul52m9vjx4wCAtm3bmhy2Kjw8XM6zrWyjfqxx48YAdCu4ynKzZs0QGhpqsBJ89OhR2cu4vN7KTZo0MfqYqedob6bKAZRcVBxRDrWGDRvC2dn4x0R5fQyV6cCBAwBKLvSGenKr/9577z0AwPXr1yvgWZRPfe6pv7QM6dChQ0UXR0erVq1MPq68zjk5OXBxcTH5Og8ZMkRuV1mvtSHWnvvKcwdKps0u7zy7efMmAMufe0Vfrw0p731X3Lx5E6+88goaN24MX19fxMXFoUWLFmjZsiVatmyp88NIef7mUj4XcXFx8j0wJCgoSL4+5akq11t7svY5qc/fyMhIk+duixYt5LrWfnYvXbqEKVOmIDY2Fv7+/qhXr57OufL444/LdS09V8pq27YtXFyMz0fWpk0buLm5AdD/7gdKEllLlixB37594ePjg+joaDRp0kSWtWXLljh8+LBZZTX3s+TI10ft9u3bcpSVL7/8stzr2MqVKwHY5xpuVSVYGQPYVJZMnSE2NGawq6sr1qxZg6ZNmwIoGUbklVdeQffu3REQEICBAwcazSKb4/XXX8eECRPg5OSE5ORkfPbZZ3J4m5YtW2LmzJnlDuGm/OoxRl05KltOpQIaHh5eblkjIiJ0tlFTKrDbt2+XMaWyqzzWt29fAMDJkydlJV9Zx9nZGT179jR5fFPP09RztDdzX++KLoeauWUqO1RNQUGBVUP62DocnbVu3boll8vLWoeGhlZ0cXSYqnwAJUM1WqOyXmtDrD33HfXcK/p6bUh57zsAxMfHo0mTJnjrrbdw5syZcmc4u3PnjkVlUD4X5X0mAPM/F1XlemtP1j4nR352161bh2bNmuHTTz+VQ/aZYum5UlZ554yLi4v8gVD2uz83NxeDBw/Gv/71L2zbtq3cspT3uDmfJUe/PmqVeQ23eNpk9Wxw6enpRm/hqa1evRqZmZl6t7aaNWuGY8eOYc2aNVizZg22b9+O8+fP486dO1i/fj3Wr1+P999/H2vXrjXrIqTm6uqK+fPnY9q0aVi6dCm2bNmCAwcOID8/X6b233//fSxZssTkLQtbmXOLzNSFu3fv3vjyyy9x/fp1/P3332jSpImsECuV4Nq1a6NevXq4cOECtm/fjgceeECu06pVK7M+AGRf6ov9yJEj8frrr1diaaq38m7jKa91XFwcfv31V7P3GxcXZ1O5qgL1efb999+bnfGx5ppQkddrQ8p73/Pz8zFy5EikpqbC1dUVU6ZMwf33349GjRohMDBQfjdduHAB9evXB2D6WkuOp5y/bm5uFjVxUJoBmCs1NRUPPfQQcnJy4OPjg+effx5333036tevL8e7BoAtW7agX79+AGw/V2z57n/jjTfkGPS9e/fG5MmT0a5dO0RERMDT01P+sOjVqxd27NhRblnL+yxVxuujpr6OPfvss3j00UfN2k4ply0srgT/+OOPFv8CyMnJwcqVKzF+/Hi9x2rVqoWhQ4di6NChAEqaT6xbtw6ff/454uPjER8fjyeeeAKrVq2ytKgASi7cc+bMwZw5c3Dnzh3s2rULP/zwA7777jtkZWVh9OjROH/+vE6bN3sICgrCtWvXzErXKxlp9W0jRdl2wX5+fjh79qxsD6xe78KFC9i2bRtGjBhhdntgqhgeHh7w8vJCTk4O0tPTdW7lVUXqSlFycrLJLxlTTYrUWR9TA7kDJe037UFpsnTjxg00adLE5C3ImkbdXKvsLeOKUNHXa0ts2bJFtjH97LPP8NhjjxlcT32Xw1LK58KcTJUlTe2ohHL+5ufnIzg42O7fw4oVK1bIO3M///wz/vGPfxhcz5Zzpazy7jQXFhbK46m/+4UQ+OabbwCUNEPasmWL0SZ59ipvZbw+aurrWE5OjkO/Ly1uDqE0bYiMjMTSpUvL/atTp47OduWJjIzEhAkTsHv3brRr1w4A8Ntvv9kl9e7p6Yn+/ftjwYIFmDdvHoCSlP5vv/1m877LUt7EQ4cOoaCgwOh6ycnJ8taDoTc+MjISDRs2BFBSCS7bHlihbhd87NgxpKam6sTJvF/m9tS2bVsAwK5du6rUrXdDmjdvLpfV7fQMMfW4+m6PqQtmamqq3dqUKa9zTk4Odu3aZZd92sKR55ny3AHI2TsdydzrdUW8JidOnJDLo0aNMrpeeeezKcrn4uLFiwabqynS0tIc0pHN0dewiuao81c5V4KCgoxW8ADbzpWyDh8+jMLCQqOPHzlyRLanV3/3p6WlyeTZyJEjjVaAs7KyjM4ma6nKeH3UQkNDER0dDaCkk6Aj79hYVAm+ePEidu7cCQAYMWIERo0aVe7fP//5TwAlbVotmXLP1dVVZjELCwttnjKxLCWlD9i3gbeif//+AEqajBib0hgA5s+fL99wZZuy1O2Cy7YHVqjbBa9YsQJAyQWzvPbAWqLucZqXl1fhx7vvvvsAlGQ8P/vsswo/ni369u0rL7amfrAeOXLEZE/kwMBA2RfA1AVz6dKl1hXUAHVzpnfffddu+7WWcp454hxr0KABmjVrBgBYtmyZw6Y1Lau863VFvCbqCoaxH5nKVL7WUr4niouLsWTJEqPrLVmyxCFf3I6+hlW0gQMHyo7jH3zwgclKoy2U/ebl5Rm9Q5WTk2N2ss4caWlpWLNmjdHHFyxYIJfV3/3mnNdASd3BVILNEpXx+pSlfF9euHBBdnxzBIsqwYsXL5Yf9AceeMCsbZT1hBBYvHixjO/YsUP2BjQkPz9ftmv18fGxqDNOWloafv31V5MXJfWvzopoGzh+/HjZWWDatGkGh2M6cuQI3nzzTQBAdHS0vMVYlvLlcv36dfz4448A9CvBSrtgIQQ++eQTAEDLli1Njm6hNepbbefPn6/w4z355JNySKrXX39dtvEyZteuXbIZi6NFR0fLTq6rVq0yeBG6c+eOTu9gY5ShjH755ReDr/OpU6cwY8YMG0tcqmPHjhgwYAAAYO3atZg5c6bJ9RMSEoxWwpXex8qILdZQzjNHnGMA8NprrwEo6UwzfPhwk7fl8/Ly8Pnnn8thqcxl6/W6Il4T5Q4ZACxatMjgOi+//DIOHjxo9TGGDRsm2zfPnj0bZ8+e1Vvn7NmzmD17ttXHsISjr2EVLTo6WjaTPHLkCJ544gmTFeHk5GTZVMASyrmSnZ1t8NpWVFSEiRMnIikpyeJ9m/Lcc88ZbBaxfft2+eOsffv26Nixo3wsNDRUJhKWLVtmcPSV/fv3y8+9PVTW66P2wgsvyHb8Tz75ZLlZ57Vr1+Lo0aM2H9fiSjBQ0uvR3Axj586dZftCdSV48+bNaNy4Mfr06YN58+bhjz/+wMGDB7Fr1y4sXLgQPXv2lBeviRMnWtTOLyMjA/fffz/q1auHadOm4ccff8TevXsRHx+P3377DU888QRefPFFACWVx3vvvdfsfZsrNDRUNrlISkpChw4d8MEHH2Dv3r3466+/8H//93/o0aMHsrKy4OTkhK+++sroUGrqCu/t27f12gOXXe/27dsA2B64rG7dusnlqVOn4s8//8TZs2dx7tw5nDt3zu5ZCD8/PyxduhQuLi7Iy8vDkCFDMHLkSCxfvhwHDhzAgQMHsGbNGsyaNQutW7dGjx497PKhttb7778vf7iNGjUKU6ZMwdatWxEfH49FixahQ4cO2Ldvn84F25CnnnoKQEmluU+fPpg/fz4OHjyIP//8EzNmzECXLl0QHBxs11EmFi5cKCsI//d//4cuXbrgq6++wu7du3Ho0CFs2rQJ77//PgYMGIAGDRqYvDtjK+U8279/P95++20cOXJEnmNXr161+/FGjx4th4SMj49Hs2bN8Nprr2Hjxo04fPgwdu3ahe+++w6PPfYYoqKiMHnyZIvPdVuv1xXxmtx9992ygvrqq69i8uTJ+OOPPxAfH4/ly5ejf//+ePfdd9G9e3er9g+UZF4//PBDACXJlc6dO+Pdd9/Fnj17sGfPHrz77rvo0qULiouLZUWiIpssOPoa5gj/+c9/ZHOABQsWoHXr1vjoo4+wc+dOHD58GNu2bcNnn32GYcOGISYmBl988YXFxxg5cqSsYD3yyCN45ZVXZGf5RYsWoXPnzli6dKlN50pZrVu3xtWrV9G+fXt89tln2L9/P3bu3IlXXnkF99xzDwoLC+Hi4qJ3l9DZ2VmOu3z48GH07NkTy5Ytw4EDB7B582ZMmzYNvXr1goeHBxo1amSXslbG61NWXFycfG/T0tLQvXt3TJw4EatXr8bBgwexb98+/Pzzz3jppZfQoEEDDB482D53vsyaUkMIsXPnTjkTxxNPPGHuZkIIIZ555hm57Z49e4QQujPfmPobPny4ydlDDCk79aaxv+joaIPTkJoz+5YQujPmXLx40eA6b7zxhpyJy9Cfu7u7WLRoUbnPqX79+nKb5s2bG1znu+++09n3Tz/9ZFPZhbBsBjBjzJ0xzpYZxsw1cuRIo++F+nUobyYlhTkzOG3evFlERESYdU6acy4YYo9pk4UQYsOGDXJqYUN/M2fOFK+//roASmbCM0b9mS/7FxMTI06cOGH2jHGmzk+1hIQE0bFjR7Ne5/Hjx+ttn5OTIx83NMuiuRITE3Wm0VX/qc8ne577hYWFYvr06aJWrVrlPndvb2+Rk5Nj0XOy9XpdEa+JECUzrCkzjhn669Onjzh+/LjJfZrzGZ47d66cIr3sn5eXl/j9999Fz549BQBxzz336G1vzmdPof6sGWLuNcwc9poxztbvkNTUVHHPPfeYdY717dvXoueoWLBggcnv4gcffFBs2rTJ7PfJGPVn9euvv5bTI5f9c3NzMzqbbHp6umjTpo3RsgYFBYnt27ebfP8sOefs9frYMmOcYtmyZcLPz6/c88DZ2Vls2bJFb/vyPj9lmZ0JVrcFMTUDmiHq9ZX9TJ8+HWvXrsXUqVPRpUsX1KlTBx4eHvDw8EBsbCwefPBB/P777/jpp59Mzh5iSN26dXH48GHMmzcPAwcOROPGjREQEAAXFxeEhISgd+/eeO+993Dq1CmdhvkV4ZVXXsGhQ4fw2GOPoX79+vD09IS3tzeaNm2Kf//73/j7778xduzYcvejzgYb6+ymtAsGSrIRym1pKrVkyRK8++676NSpE/z9/U1OhGEvd911F86fP49PP/0U99xzDyIjI+Hm5gYPDw/ExMRgwIABeOONN8w+FyrSP/7xDxw/fhxPPPEE6tatCzc3N4SHh2Pw4MFYv349Zs2ahYyMDACAv7+/0f189NFH+OGHH9CrVy/4+fnB09MTjRs3xksvvYRDhw7Jdqz2VLduXezduxerVq3CqFGjEBcXBy8vL7i6uiI0NBTdunXDtGnTsH37dsyfP19ve/XsQ1OnTrW6HNHR0di3bx8effRRNGjQwOLrlzVq1aqFd955BydPnsS0adPQtm1bBAYGolatWvD19UXz5s3x8MMPY9GiRbh27Ro8PT0t2r+t1+uKek3uvvtuHDhwAGPGjEFUVJR8r3v37o2vvvoKmzdvhre3t83HefXVV7F9+3YMHToUYWFhcHd3R926dTFhwgQcOHAAgwYNMutzYQ+VcQ2raEFBQVi3bh02b96M8ePHo2HDhvDx8ZFj6Xbs2BGTJ0/G2rVrsXHjRquOMX78eOzYsQNDhw5FaGgoXF1dERkZiXvuuQfLly/HsmXLLJ5VrTwTJ07Ejh07MHLkSERFRcHNzQ3R0dEYO3YsDh06ZLRDp7+/P3bt2oU5c+agZcuW8PDwgI+PD5o2bYrnn38eR44csfv3e2W8PoY8+OCDSEhIwNtvv40+ffogLCwMrq6u8PLyQr169XDvvffi/fffR0JCgk6dx1pO/6s5ExGZpX///ti8eTN69OiBHTt2VHZx7GbWrFmYPXs2GjZsiFOnTjnkgk81Q0FBAfz9/XHnzh289tprmDNnTmUXiSpJbGwsLl26hHHjxuHbb7+t7OJQOar/T0gicpikpCTZea9Lly6VXBr7Ujp2vfLKK6wAk0VWr14th4WraZ8LopqMlWAikkyNAHDnzh088sgjclieym66YU/5+fnYu3cv4uLiMGbMmMouDlUxpj4XCQkJeO655wAA4eHhuPvuux1VLCKykXamViKick2cOBHZ2dkYOXIk2rdvj6CgIGRmZuLAgQP4/PPPZWXg0UcfRcuWLSu5tPbj5uZW5Sc0ocrTpEkTDBo0CEOGDEHz5s3h7e2N5ORkbN26FV988YUcF/m9997T1IyFRNUdP61EpEMZvs2YYcOGybGoibSgqKgIa9asMTr5gbOzM+bOncu7CETVDCvBRCS9//77WLVqFbZs2YLExESkpKRACIGwsDB06dIFY8eOlZNqEGnFmjVrsG7dOvz111+4ceMGUlNT4e7ujujoaPTp0weTJ082OO09EVVtHB2CiIiIiDSHHeOIiIiISHNYCSYiIiIizWElmIiIiIg0x+JK8KxZs+Dk5AQnJ6eKKE+F2bZtmyz3tm3bKrs4ZKVHHnkETk5OiI2NreyiaNL48ePh5OSESZMm6T327rvvwsnJyei03kRERFUJM8FEVsjIyMCyZcvw2GOPoV27dggICICbmxtCQ0PRp08fvPfee3Ls0JriwIEDWLRoEdzc3PDyyy/rPT558mSEhIRg+/bt+OmnnyqhhEREROar9pVgJbs7a9asyi4KacS6desQFhaG0aNH45tvvsGhQ4dw+/ZtFBQU4ObNm9i+fTteeOEFNGnSBFu3bq3s4trNq6++CiEExo8fjzp16ug97u3tjalTpwIAXn/9dRQXFzu6iERERGar9pVgIkdLTU1FXl4enJ2dcffdd+ODDz7Ali1bcPDgQfz666948MEHAQA3btzAkCFDcPjw4cotsB3s378fGzZsAABMmzbN6HqTJ0+Gh4cHTp06xWwwERFVaawEE1nI1dUVTzzxBC5evIj169fj2WefRd++fdG2bVvce++9WLZsGT7++GMAQE5OjslKY3Xx4YcfAgA6deqEhg0bGl3P398fgwYNAgB89NFHjigaERGRVVgJJrLQgw8+iC+++MJgkwDFlClT0KFDBwAlnTJTU1MdVTy7u337tszqmjMt7MMPPwwA2LVrF06fPl2hZSMiIrKWzZXg9PR0zJw5E82bN4ePjw+CgoLQp08ffP/99/Yon1GxsbE6I1TMnj1btg9W/h555BGT+/jxxx/Rr18/hIaGwtPTE40bN8b06dORlpZmVhk2btyIMWPGIC4uDp6envDz80Pr1q0xffp0XLt2zeh2ZUfYyM3Nxbx589CuXTv4+vrC19cXnTp1wqefforCwkKzymJMdnY2li9fjokTJ6JNmzbw9/eHq6srQkND0bt3b7z33nvIysoyuY+y7a7379+P0aNHo3bt2nLq0H/96184deqUWeX5v//7P7Rs2RLe3t4IDg5Gjx49sGDBAggh7DaKR05ODj788EP07dsX4eHhcHNzQ1hYGAYMGICFCxeiqKjI6n2bSxklobi4GBcvXqzw41WUX375BXl5eQCAESNGlLv+4MGD4eHhAQBYvnx5hZaNiIjIasJCM2fOFAAEAHHhwgVRv359+f+yfw888IAoKCiw9BBmqVu3rtHjKn/jxo2T62/dulXGN23aJB566CGj2zVo0EBcu3bN6LGzsrLEsGHDTB7bx8dHrFmzxuD26tfw+vXronXr1kb3c++994qioiKrX6fevXuX+zrFxcWJU6dOGd2Hst7MmTPFJ598IlxcXAzux8vLS2zfvt3ofi5fviwaNGhgtBxDhgwRGzZskP/funWr3j7GjRsnAIi6desaPc6+fftEdHS0yefcqVMncf36dUteSotNmTJFHi8+Pr5Cj1WRHnnkEQFAxMTEmL1Nly5dBADRt2/fCiwZERGR9WyqBHfs2FE4OzuLJ598UmzatEns379fzJ8/XzRq1EiuM2XKlIootzh9+rQ4duyYPM6kSZPEsWPHdP4SExPl+upKcLdu3QQAMXToUPHzzz+L+Ph4sXbtWjF48GC5zqhRowwet7CwUPTt21cAEE5OTmL06NFixYoV4sCBA2L37t3io48+EnXq1BEAhJubmzhw4IDJ17Bbt27Czc1NPPPMM2Ljxo0iPj5e/PDDD6Jp06ZynS+++MLq16l79+6iZcuW4tVXXxWrVq0Se/fuFXv27BHLly8Xo0aNEs7OzgKAaNy4sbhz547BfSjl6NKli3BychKtW7cWCxYsEPv37xd//vmnmDp1qtxPnTp1RF5ent4+8vLyRIsWLeS+Bg4cKFatWiUOHDggVq9eLQYNGiQAiM6dO9tUCT569Kjw9vYWAERYWJiYOXOm2LRpkzh06JD4448/xOTJk2UlvnPnziI/P9/q17Y8rVq1EgCEi4uLuH37doUdp6IpP3SHDx9u9jbPPPOMACA8PT0r9DUmIiKylk2VYADihx9+0FsnIyNDZjednZ3F0aNH7VJYQ9RZSlPUlWAAYu7cuXrrFBcXiwEDBsiKS3Jyst467733ngAgXF1dxdq1aw0eKy0tTTRv3lwAED169NB7XP0aurq6GqzspaamivDwcAFAtGrVyuRzM+XMmTMmH9+4caOswH7zzTcG11G/boMGDTJYyZ07d65c5+eff9Z7/P3335ePP/300waP8/TTT+scy9JKcHFxsax4tm7dWqSkpBg8zrp168p9zrb67bff5PMYPHiwTfsqL5Nvzt/ChQutOvaNGzfkPubMmWP2dosWLZLb7du3z6pjExERVSSb2gQPGTIEo0eP1ov7+vriq6++AlDSHvKLL76w5TB21759e7zyyit6cScnJzz33HMAgMLCQuzevVvn8YKCAvznP/8BADz99NMYOHCgwf0HBgZi3rx5AICdO3fi3LlzRssyZcoUgzNsBQUFYfz48QCAo0eP4vbt2+U/MQNM9eQHgP79++O+++4DAKxevdrkuh4eHli4cCHc3Nz0HnvmmWdkfMeOHXqPf/nllwCAqKgo+dqUNW/ePERFRZksgym///47jh49CgD47rvvEBISYnC9e+65Bw888AAAYOHChVYfz5i0tDRMnjwZAFCrVi3MmTPH7sdwlMTERLkcFhZm9nbqddX7ICIiqipcbNlYqaQZ0qlTJzRv3hwnTpzApk2bbDmM3T300ENGp31u3769XL5w4YLOY/v27ZMd3kaOHGnyGL169ZLLu3fvRoMGDQyup/SkL68sFy9eRJs2bUwe0xwpKSlIT0+XHZ0AIDQ0FABw5MgRk9v+4x//MFoR8vX1RcOGDXHixAm91+3q1atylICRI0fKTlNleXh44J///KfVQ2v98ssvAIDGjRujVatWJtft1asXfvzxR+zfvx9FRUWoVauWVccsq6ioCA8//DAuXboEAHjttdfQtm1bm/Z57Ngxm8tVu3Ztq7ZLSUmRy4GBgWZvFxQUZHAfREREVYVNleCOHTuafLxTp044ceIEzp49i/z8fIMZxMrQpEkTo4+pv7wzMzN1Hjtw4IBc7tq1q9nHu379ut3LYoldu3bh448/xqZNm0yOfHHz5k2T+zFVVqC0vGXLevz4cbmsrtgbogwrZg3l/Tl9+rTRHzll5efnIy0tTf4QsNVTTz2F9evXAygZJeH111+3eZ8tWrSweR/WUp8vllSC1etW5+HhiIio5rKpElze7dHw8HAAgBACt27dkv+vbF5eXkYfc3YubSFSdhit5ORkq46Xk5Nj97KYa9asWZg9e7ZZ6965c8fk46bKCpSWt2xZb926JZfLO2dsqYxWxPtjiZdfflk2A+rRowdWrFhhtwxzZVFn7cs7P9TU63p6etq1TERERPZgUyW4vGybEMKW3Vc56srdtm3bEBwcbNZ2lrSltKfNmzfLCnC9evXw/PPPo0ePHqhTpw58fHxkBW3GjBnVut2qQnl/unfvblE7dFvaISveeecdvP322wCAdu3a4bfffrNb5U+dSbdW7dq1ERAQYPF26h8l5o6fXXZde2XZiYiI7MmmSvCNGzcQExNj9HElM+fk5GTRrdSqSl3pdXNzq9Tb1Ob4+uuvAQABAQHYvXu30cq4OlNbEdTvfXnZWlvajwYHB+PGjRtISUlx6Hvz+eef46WXXgIANG3aFH/88Qf8/f3ttv+WLVvavI+FCxeWO3mMIeoKrCXniXpdVoKJiKgqsml0iP3795v1eMOGDatMe2BbqDs4bdiwoRJLYp4TJ04AAO666y6T2Wh1W+eK0Lx5c7OPZUtZlPfnzJkzsmNaRVu8eDGefvppACXZ9k2bNhkdlaI6ql+/vmwGc+bMGbO3U69rj0o8ERGRvdlUCV60aJHRxw4cOCBv4/bv39+Ww5iktFlUj3ZQUXr06CE7f33xxRfIyMio8GPaQply2VSb18OHD2PPnj0VWo7atWujUaNGAIAVK1YgNzfX4Hq5ublYsWKF1cdRhnoDgHfffdfq/Zjr559/xvjx4yGEQO3atbF582a7NK0oS5SM523TnzVZYABwcXFBly5dAJT/o1dNWbd+/fqIjIy06thEREQVyaZK8K+//ooff/xRL56VlYXHH3+85ADOznjiiSf01klISICTkxOcnJwMjpNrLuUL9vz581bvw1weHh54/vnnAZSM+DBq1ChkZ2cbXT8zMxOffvpphZfLGGWM4J07d+oNWwaUND0YM2aMQ8qinANJSUl44YUXDK7zwgsvICkpyepjjBgxAk2bNgUA/Pe//8X8+fNNrn/8+HGsWbPGqmNt2LABo0ePRlFREcLCwrBp0ybExsZata+qrmfPngBKxqs298fmvn37dLYlIiKqamxqE9yhQwc89NBD2L59Ox544AH4+fnh6NGjeOedd+S4sJMnTy53zFZbdOvWDRcvXsSvv/6KL7/8Et27d5fZYT8/P7t3Sps+fTo2b96MzZs3Y926dWjWrBmefPJJdO3aFQEBAcjMzMTp06exbds2rF69Gh4eHvJ2uaONHTsWa9asQVZWFnr37o0XX3wR7du3hxACf/31F95//31cv34dXbt21ZsYxN6efvppLFy4EMePH8enn36KCxcu4IknnkDt2rWRmJiIr776Cr///js6deokK1DmDnOmqFWrFpYvX45u3bohKysLEydOxIoVK/DQQw+hcePGcHV1RXJyMg4dOoTffvsNf/31F6ZNm4Z7773XouPs2bMHw4YNQ35+PlxdXfHBBx+goKDAZAc2azumVQWDBw/G7NmzkZ+fjx07dpR7Z+fs2bO4cuWK3JaIiKhKsnSKOfWUvxcuXBBxcXFGp2odMWKEKCgoMLifkydPyvWGDx9uaTGkQ4cOCXd3d4PHHzdunFxPPW2yoel41ZT1jE3FnJOTI8aOHWvWdLVxcXF626tfQ1MsKbMx48ePN1q2WrVqiQ8//LDc8pT3eih69+4tAIjevXsbfPzSpUuifv36RsszYMAAsW7dOvn/PXv26O3D1LTJiiNHjoiGDRua9f7Mnj3b5HMypOzU4eb8WTttcVXRpEkTAUCMHz++3HVnzZolAAh/f39x584dB5SOiIjIcjY1h4iLi0N8fDxeeeUVNG3aFF5eXvD390evXr2wZMkSrFy5Ei4uhpPN6szj1KlTrS5DmzZtsHv3bowePRp16tSBu7u71fsyl6enJxYtWoQDBw5g0qRJaN68Ofz9/eHi4oKAgAC0adMGjz76KFauXIlTp05VeHlMWbBgARYvXoyePXvC19cX7u7uqFu3Lv71r3/hr7/+wr///W+HlaVOnTo4cuQIZs+ejRYtWsDT0xMBAQHo0qULPv/8c6xbt06nvbC1Iyy0atUKJ0+exKJFizB06FDExMTAw8MDbm5uiIyMRJ8+ffDaa68hPj4eM2bMsNfTq9GeeuopAMBPP/1ktE23YunSpQCACRMmGJ0dkIiIqLI5CVE5g/k+8sgjWLRoEfr27YstW7ZURhGoCpo7dy5ef/11uLi4IDMzk5WoKiIrKwuxsbFITU3F4sWLjbYl37lzJ3r27AlXV1ecOXOmxraTJiKi6s+mTLAttm/fDgDMxJEkhMDy5csBlGT4WQGuOnx8fDB9+nQAwBtvvIHi4mKD6ymTrowfP54VYCIiqtIqpRKcmJiIhIQE9OzZ06aRIah6SUhIkMO2GTJjxgzZuWzcuHGOKhaZ6ZlnnkHdunXx999/GxwVZt++fdiwYQN8fHwwa9YsxxeQiIjIAjaNDmGt2rVr17gplal83377LRYuXIiHHnoI3bt3R1RUFAoKCnDq1CksWrQI27ZtAwA0a9YMjz32WOUWlvR4eHhgyZIl2LRpk8EfMzdv3sTMmTPRrl07jg1MRERVXqW1CSbtmTVrFmbPnm1ynSZNmmDdunW8lU5EREQVqlIywaRNjz76KPz9/fHHH3/g3LlzSElJwZ07dxAUFITWrVtj2LBhmDBhQo2YYpuIiIiqNmaCiYiIiEhzKm10CCIiIiKiysJKMBERERFpDivBRERERKQ5lVoJTkhIgJOTE5ycnPDtt99WZlEwa9YsWRYiIiIiqtlsrgQXFBRg2bJlGDduHJo2bYrg4GC4uroiJCQE7du3x6RJk7Bp0yajM0xR9TZ37lz548HX1xc5OTl23X9sbKzcv6k/U0Oqbdu2zax9ODk5lTvJw+3bt/Hvf/8bUVFR8PDwQIcOHQxOHFEZvv32W6PPy9nZGX5+fmjRogWefPJJHDx40C7H3L59O9566y0MGzYMzZs3R3h4ONzc3ODv74+WLVti0qRJiI+PL3c/9nifFUuWLJEzDsbExOCFF15AZmamHZ6t/W3btg1Tp05F+/btERkZCTc3NwQEBKBJkyZ4+OGHsWTJEps/U8nJyfjtt98wY8YMDBw4ECEhIfL1fOSRR8zaR25uLn755RdMmTIFnTt3RlBQEFxdXREUFISuXbti1qxZuHbtWrn76dOnj9mfxfKsX78e3bp1g5eXF8LDw/H444/j+vXrZj2fimbsfPbx8UF0dDRat26NsWPH4pNPPsHVq1crrBzZ2dn47LPP0K9fP0RHR8Pd3R3h4eFo164dpkyZgg0bNhjcTp2gKu+vvHMoLy8PM2bMQFxcHDw8PNCiRQt8/vnnnCuAqgZhg9WrV4t69eoJAOX+NWrUSPz2228621+8eFE+vnDhQluKYrOZM2fKspD5GjVqpPM+L1682K77r1u3rlnnV926dY3uY+vWrWbtA4CYOXOm0f1kZmaKVq1aGdzujTfesOvztsbChQvNfp7Ozs7i9ddft/mY0dHR5R7LyclJTJkyRRQVFRndjz3eZyGEmD17tsHt2rZtK7Kysmx+vvZy7Ngx0atXL7Oec2BgoHjvvfdMvn6mmNr3uHHjyt3+yJEjwtfXt9xy+vr6iuXLl5vcV+/evc0+R0359ttvhZOTk942derUEUlJSZa8PBXC3PMZgKhVq5YYNmyYuHjxol3LsGXLlnLL0bp1a4Pbqr+by/szdQ4VFhaKAQMGGNzuscces+vzJbKG1eMEv/XWW3j11Vflr7n+/fvj/vvvR7NmzRAQEIC0tDScPn0aa9aswcaNG3HmzBm8+uqrGDx4sLWHrFCzZs3iVK8W2rNnD86cOQMA8PHxQVZWFr777juMGTPG7se6//77MXfuXKOPmzu28IIFC9CxY0ejj4eFhRl9bM6cOTh69CiaNm2K2bNnIyYmBhs3bsQbb7yB119/HUOHDkWzZs3MKkdFmzt3Lu6//375/+LiYqSkpGDbtm348MMPkZWVhTlz5iAuLg7jx4+3+jje3t64++670bVrVzRs2BCRkZHw8/PD9evXsW/fPnz55Ze4ceMGPvnkE3h5eeHtt982uT9b3ueTJ09i9uzZ8PDwwKuvvor+/fvj8uXLmDFjBg4dOoQ5c+aUe3xH2LBhA/75z38iIyMDANC8eXOMHDkSnTp1QmhoKLKzs3Hp0iWsX78ev/76K27duoXnn38ejz76KAICAmw6dkxMDJo2bWo0A2hIRkaGzKR3794dQ4YMQYcOHRAcHIyUlBT8/PPP+Oabb5CZmYmHHnoIvr6+GDhwoMl9dujQAQsXLrTqOdy8eROTJ0+Gk5MTnnvuOQwbNgxpaWl44403sHfvXkydOhXLli2zat/2FhUVhT/++EP+v6CgALdu3UJCQgL++usvrFy5Erdv38aqVauwefNmLF68GPfdd5/Nx920aRPuvfde5ObmwtfXF48//jj69euH8PBwpKSkICEhAevWrcONGzfK3VfZa0lZgYGBRh/76quvsGHDBkRHR2Pu3Llo2rQp9uzZg5kzZ+Lrr7/G8OHDcc8991j1HInswpqa83fffSd/zYWGhootW7aYXP/o0aPirrvu0vvVWZUywWS5SZMmCQAiJCREvPPOOzLDmJiYaLdjKJkMczJWxqgzwVu3brV6P7GxscLb21sv0/TBBx8IAGL27NlW79se1JlgU5+nTZs2ySxakyZNbDpmQUGBycdv3rwp7xa5urqK1NRUg+vZ432eNWuWACA++ugjnXhiYqLw8vIScXFxVu/bXk6ePCm8vb1lBvDjjz82meFNTk4WTz31lAAgbt26ZdUxZ8yYIdasWSOuX78uhNC97przeu/atUuMHDlSnDhxwug6q1evludU/fr1RXFxscH1lExw7969rXkqQoiSLDAAMXXqVJ14ZmamqF27tvDw8BB5eXlW798elPO5vDsXGRkZ4rnnnpPvh6enpzhw4IBNx05OThbBwcECgGjatKm4cuWK0XWNvU72+m7u06ePACCOHDmiE1+1apUAIMaPH2/1vonsweI2wUlJSZg0aRIAwMvLC9u2bUPfvn1NbtOyZUts3LgRzz//vKWHoyoqPz8fy5cvBwCMHDkSY8eORa1atVBcXIzvv/++kktXMa5evYomTZogMjJSJ96vXz/5eHXQr18/tG/fHgDw999/y4ykNVxcTN9MCg4OxuOPPw6gJAu2e/duq49VHuX1v+uuu3Ti0dHRaNKkSaW/P0IIPPzww8jOzgYAzJ8/H1OmTIGzs/HLcGhoKD777DOsXLkSrq6uVh139uzZGDJkCMLDw63avlu3bli+fLnJuxz3338/hg8fDgA4f/48Dh8+bNWxzGHsffbx8UGnTp2Qm5uL1NTUCju+Pfn6+uI///mPvENx584dTJw40aZ9vvzyy0hNTYW7uztWrVqF2rVrG123omfnvHr1KoKDg9GqVSudeHW7ZlLNZXEl+IMPPpAX8dmzZ5t9+9fZ2dms2+QbN27Evffei4iICLi7uyMuLg6TJk1CYmJiudvm5+fj888/R9++fREaGgo3NzdERERg0KBBWLJkicnOeeaODpGfn4+vvvoKgwcPlh0NwsLC0L59ezz99NPYsWOHyQb/GzduxJgxYxAXFwdPT0/4+fmhdevWmD59erkdS5KSkvDSSy+hXbt28Pf3l8+vZcuWGD16NL799lubKjSWWLNmDdLS0gAAY8aMQUREhPxS+u677xxSBkcLCwvD6dOn9W4hbtu2DQAQERFRCaWyjrqDWW5uboUey9vb2yHHUpqybN++XSd+/fp1nD59utLfn7Vr1+LQoUMAgMGDB2PcuHFmbztixAid17EqUidDzp8/X2HHMfY+Z2dn48CBA3Bzc0NQUFCFHb8iTJ8+HZ07dwYAHD58GOvWrbNqP+np6fjhhx8AAKNHj0bjxo3tVkZrhIWFITU1FSdOnNCJV8drJtVQlqSNi4uLRWhoqAAgvL29xe3bt21KQ5e95fLiiy8abXwfGhoqTp48aXRfCQkJomnTpiYb8Pfo0cPo7VhzOsYdOnRIxMXFldtRwFAHh6ysLDFs2DCT2/n4+Ig1a9YYPPaff/4p/Pz8yj22oe3VzQFsud2sdt9998lbn4pFixbJ48THx5e7D2VdU7cMq1JziMmTJwsAonnz5mLFihVi9+7d4o033hAeHh7CyclJ75afo5nbHEIIITp06CAACA8Pj3JvXRs7p81RVFQkevbsKfdz/Phxg+vZ433ev3+/vKX85ptvit27d4sVK1aIZs2aCQBi2rRpVu/bHkaMGCFfh02bNtm8P/X105LmBZY2hzDXf/7zH7nfn376yeA69mgOkZiYKNzc3ISzs7OYPn262LVrl/jtt99Et27dBAAxYsQIq/dtL+Y2h1D74Ycfyu00Vt41U91U8ffff5fxjIwMcebMGXHjxg2zymKv5hDz5s0TAERMTIz49ttvxd69e8Unn3wiAgMDjX5fETmSRZXg48ePyw/GPffcY/PB1R805QLWu3dv8cMPP4gDBw6ITZs2ibFjx8p1unTpYnA/mZmZOqNUDB06VPz666/iwIEDYsWKFTpf5l27dhWFhYV6+yivEnzixAnh4+Mj1xk2bJhYvny52L9/v9izZ49YtGiRGDNmjPD29tarMBQWFoq+ffsKoKSn/OjRo8WKFSvEgQMHxO7du8VHH30k6tSpIwAINzc3vTZhubm5IioqSgAlPbCnT58u1q1bJ+Lj48WePXvE8uXLxbPPPitiYmIcUglOSUkRrq6uAoCYMWOGjGdmZgovLy8BQPz73/8udz+WVILj4uJEy5YthZeXl/D09BSxsbFi5MiRYtWqVUYrcQr18+/atauIjo4Wrq6uIiAgQLRp00Y8++yz4vTp0+WW9+bNm6J+/foGf3yoX4fKYm4leMuWLcLZ2VkAEP/85z+NrmdtJbiwsFAkJiaKNWvW6OyjX79+Rrexx/sshBD//ve/Db4/LVq0sPlHu63CwsJkAsHQNchSVa0SrPwwBmC0/bByPoSHh4sOHToIHx8f4e7uLqKjo8V9990nFi1aJPLz88s9ltIOv+xfVFSUyTawjmJNJTg5OVk+D2Nt9cu7ZirtxwGItLQ0sW7dOvndqvxFRkaKqVOnipSUFKNlUZ8j7dq1E7GxscLNzU34+fmJZs2aiSeeeMKsRMedO3dE586dDb5XY8eONet1IapIFlWCv//+e3kCv/LKKzYfvOwwLI899pjBL7qJEyfKdQ4ePKj3+PPPPy8ff+211/QeLy4uFg8//LBc5/PPP9dbp7xKcNu2bQVQ0vFr6dKlRp/TzZs3RU5Ojk7svffeE0BJx6C1a9ca3C4tLU00b95cACUZa7XNmzfLspn65VxQUGDwi97eleCPPvpI7u/MmTM6j40ePVoAEGFhYeV2mrKkEmzqr3v37iY745kzRJqzs7OYOXNmuRWtGzduiIkTJ4qwsDDh5uYmWrduLRYtWmRyG0dRV4Lnzp0rjh07Jv+OHDkiNm/eLGbMmCHvKERGRpqs/FtaCTb1+rZp08Zk5cQe77Pi888/F82aNROurq4iIiJCTJkyxepOZfZy9epV+Ty6detml31WpUrw4cOHRa1atQRQcqfEGHOGSGvWrJnJu36KFStWiPbt2wt3d3cRHBwsxo4da9dOubawphIshBC1a9cWQEmnSUPXovKumUpHNH9/f/Huu++afJ1r165t9MeKuUOkPfHEEyI3N9fkc8rMzBTTpk2TyYdGjRqJ999/3+oh/4jsyaJKsLryU7YHtjXUH7TIyEijH6a///7b6HFzc3NFQECAvHgay7Dcvn1b9pht1qyZ3uOmKsHr16+Xj5mT4VTLz88XkZGRAtDvzVzW2rVr5XHOnj0r4+ofH9Zks+xdCW7fvr0AIDp16qT32O+//25WhV0I8yrBDRs2FPfdd5/49NNPxbZt28ShQ4fE1q1bxZtvviliYmLkPpo2bSrS09MN7mPr1q0iMjJSTJ48WSxdulTs3btXxMfHi1WrVokJEybIrDYA8fLLL1v0WlQl5o4T7O7uLqZPn15uxswelWAvLy/x+eefizt37pjc1h7vc1V25MgR+RyGDRtml31WlUpwbm6ubF4DQPzyyy9G1+3bt6/o16+f+M9//iM2bdokDh06JP7880/x4Ycf6jRnCw8PF5cuXbK5bJXF2kpw69atTV7ry7tmKuOYu7m5CScnJ+Hu7i7efvttkZiYKPLy8sTx48d17q42aNBAZGZm6u3n4sWLIiAgQIwfP14sWrRI/PXXX+LgwYPi999/F//+97917oo+9NBDFj1HoqrEokrw3Llz5Yn/zTff2Hxw9cV4ypQpJtdVPnRlK6G7du2S+3j33XdN7kMZ0guA3jBXpirBU6ZMkY8lJCSY9+T+Z+fOnXLb3bt3m1w3KytLrvvdd9/J+JYtW2T8ww8/tOj49nbixAlZlo8//ljv8YKCAnnbd+TIkTYfz1QGLyMjQ2cgdmM/MrKyskzeYt27d6/w9/cXQElzlUOHDtlY6sphyWQZkZGR4s033zSriYG5lKzz4cOHxR9//CFeeuklERAQILy9vcWzzz5r8j2wx/tclamvA2PGjKnUsti7Eqy+U1fe/ky9z/n5+WLcuHF2/7FQGaytBHfv3l0+f2uy2mWba/34448G13v88cflOvPmzdN7PC8vT2RnZxs9zpkzZ2QTvvJ++BBVZVUmE/zZZ5+ZXFfJBk2YMEEn/uWXX8p9bN++3eQ+lPElAYgNGzboPGaqEtyjRw8BlMxGZKkPP/zQ7IqJ+k9doc/Pz9dp89yxY0fx5ptvil27djl8PMzp06cLAMLFxUUkJycbXEf50eDh4VHhWbv09HSZ4ff29rb69ViyZIl8fSdOnGjnUjpGeW2CMzMzxb59+3QqLQ8++KBdK8JlXb58WXYm/cc//mF1W1h7vc+VpSIywdayZyX4zTfflPtq3769zbPyFRQUiCZNmthUEawKrK0Eq2ekzMjIsPi4SpM6wHgfGiFKmu25u7sLoKTNrzV27Nghj9W/f3+r9kFU2SwaIi0kJEQumzPTjCW8vLxMPq6MpVlUVKQTV4bpAlDuOJjq4VjU25Xn5s2bAKA3Pqw5kpOTLd4GAHJycuSyq6sr1qxZg6ZNmwIA9u/fj1deeQXdu3dHQEAABg4ciB9++EHvtbE39RjAAwYMQGhoqMH1lKHwcnNz8eOPP1Zomfz9/TFq1CgApUMkWePBBx+Ev78/AP2hl2oKHx8fdOzYEV9//TVeeeUVAMDy5cutnrnLHDExMfjss88AlAwPOH/+fKv2Y6/3ubJU5LWzsnz55ZfyPGrcuDHWrVtn8zBuLi4uePTRR+X/a+pn0Rjlu8bFxQW+vr4Wb6/extSsfcHBwejQoQMA4MiRIygoKLD4WD169EDz5s0BADt37jQ5BClRVWVRJbh169Zy+eDBg3YvjK3KG+NXmBi/1x77N0RdMd22bRuOHTtm1p8yIYmiWbNmOHbsGFatWoUJEyagfv36AEoGV1+/fj0efvhhdO7c2epKtzk2b94sBzdfu3atHFe57J8y3iXgmDGD1WNVWzv4uouLCxo1amTTPqqTadOmyR+W1lZMzTVgwAB4enoCAFauXGn1fuzxPleWqKgo+aPxyJEjFf6DtaItXboUTz31FACgbt262LRpk9EfxZaqzu+zLZKTk5GUlAQAVo/vGxMTI5dNTZKhXreoqMjqyUWU96o6TVBCpGZRJbhZs2Yyo7Fjxw6HTcxginpQ9OvXr5tcV52BsWQwdeU5KxcoSwQHB8tlNzc3tGjRwqw/ZUB4tVq1amHo0KGYP38+zp07h6SkJMyfP1/O/hUfH48nnnjC4jKaa9GiRRZvs2vXLly4cKECSlPK1h839t5PdRAUFCQrLceOHavQY9WqVQuBgYEAgEuXLlm9n+r+/vTq1QtASSa7Omc4f/31V4wdOxbFxcWIjIzE5s2by61wWaK6v8/W2rhxo1zu0aOHVftQMrOA/l3TstSPlzfzozFafa+o5rCoEuzk5IRHHnkEQMmF/JtvvqmIMlmkRYsWcnnv3r0m1923b5/B7crTrl07AMDly5ct/hJv27atXN6wYYNF25YnMjISEyZMwO7du2UZf/vtN9y5c8euxwGArKwsrFq1CkDJlJdLly41+aecG0IILF682O7lUTt58qRcjoqKsmofhYWFOHPmjE37qG4KCwsBwKpboZbIz8+Xt3l9fHys3o893ufKNH78eLn84YcfVl5BbLB582aMHDkShYWFCA4OxsaNG+VdKXup7u+zNYQQ+Pjjj+X/hw0bZtV+lB9aQPmz9imPe3p6Wj3DnvJeubu76yR8iKoNSxsRJyYmygkRvL29xalTp8zarqioSCxevFgnZsmsNMZmlFIPkda8eXOjHW8yMjJESEiIACwfIm3jxo3yMUuHSLtz544ICgoSAERERESFDdg/depUoyNf2IO609XKlSvN2kYZSk09q5y9qTtMeXl5lTtmpTGLFy+Wz+/RRx+1cykdw5IZ4y5cuCDXbdiwYYWW68cff7S5I5a93ufKVFxcLNq0aSNfi7LXQ1N++uknmzudKaztGLdr1y7h7e0tAAg/Pz+9SX3soWzHuMuXL9v9GI5gace4t956Sz5nazuqCVEyUY0yq2vjxo2Ndnq9cOGCnDDH1CQ2pqg7xlm7D6LKZnElWAghFixYIE/+sLAwsW3bNpPrnzhxQvTv31+0bt1aJ26PSrAQupNlvP7663qPFxcX64yNaM1kGUqFrrzJMlJTU/Umy1D3oB44cKDJL7OMjAzxySef6MT+/PNPnXGDy8rLyxPt2rUTQMnUy2UnqbDHOMHKjHdeXl4mh85RU1/Yd+7cqfe48pixL4p169bpvZZqZYfOMjTMXlpaWrlTJe/du1f+kHJychL79+83uX5VZW4luKioSIwcObLcH3bljRO8ceNGk+elECWf/YiICLkfQ9MF2+N9ri6OHz8ukwguLi7is88+MzlpQEpKinj66acFAL3hxRw5TvChQ4fkZ8Tb29vg57k8W7ZssWiItHvvvdfiY1QV5laClYkklOfs5eVlcEIoRXnXTCGEeOedd+R6b731lt7j+fn54p577pHrrFixQm+d8mZoPHv2rM4QacamySaq6qxqCDR+/HgkJiZixowZSE5ORp8+fTBgwADcf//9aNq0KQICApCWloYzZ87g999/x/r161FUVKTTsc6eZsyYgZ9//hkXLlzAnDlzcPz4cUyYMAFRUVG4ePEiPv30U2zbtg0A0LVrVzz++OMWH2Px4sXo1KkTsrKyMHr0aKxYsQKjRo1CvXr1UFRUhHPnzmHjxo1YuXIljh07htjYWLnt9OnTsXnzZmzevBnr1q1Ds2bN8OSTT6Jr164ICAhAZmYmTp8+jW3btmH16tXw8PDA008/LbffvHkz5syZg549e2Lw4MFo1aoVQkNDcefOHZw5cwZffPGF7Kg4ceJEq9t3GXP58mX5+g0cOLDckTwUI0aMwMsvvwygpINc9+7dLTru22+/jYcffhjDhw9Hjx49UL9+ffj4+CA9PR27d+/Gf//7X1y5cgVASUeSWbNm6e3j9u3b6Nu3L1q1aoWhQ4eiffv2iIyMRK1atXD58mWsWbMGixcvlk0Cnn/+edlrujq7evUqjh8/rhPLzs7GyZMn8fXXX2P37t0AStqsv/TSS1YdY+fOnbjnnnvQr18/3H333WjVqhWCg4NRWFiIS5cuYcOGDVi8eDFyc3MBlFw3+vXrp7cfe7zP1UXz5s2xcuVKjBw5EllZWZg8eTL++9//4sEHH0THjh0RGhqK7OxsXL58GRs2bMDq1att7nuxc+dOnDt3Tv5faZoCAOfOncO3336rs77S5E1x/vx53H333UhPTwcAzJ07F/7+/nrnl1pYWJhev4ZFixbhvvvuw3333Yc+ffqgcePG8PPzQ1ZWFuLj4/Hll1/i1KlTcvuPPvrIimdbtRQUFOi8TgUFBUhPT0dCQgJ27dqFlStX4vbt2wBKRkD5/vvvdZrQWeOZZ57B8uXLcfDgQbz88ss4ceIExowZg9DQUJw7dw7vv/++bDo4aNAgjBgxQm8fw4YNQ4MGDTB8+HB06tQJtWvXhru7O5KSkrBhwwZ88803yM7OBgCMHDkSw4cPt6nMRJXGlhr0Tz/9JGJjY+WvQVN/zZs3F3/88YfO9vbKBCv7Ut9GM/TXvXt3kZqaanD78jLBQghx4MABndmrjP0Zyprl5OToZKNN/cXFxRktm6m/4cOHG5yZy9ZMsHqSFFNZcEOUcS8DAgL0bmEr+zSW1TBnilUAolevXkbHEzV3+s9atWqJWbNmVeiYuRXNkskylPMsPj7e6P7KywSbe17WqlVLvPDCC0abKtnjfa5ujhw5ojMxgqm/4OBg8fHHH+tljM3NBKuzq+b8lWXpeQVAzJw50+pytGzZ0uh0vtWFOdOAqz8fw4cPN2sipvKumYqkpCR599LY36BBg4yORWxu2SdNmlQtmyYRKWxKGQ4fPhxDhgzBypUrsW7dOuzfvx/JycnIzMyEn58fYmNj0aVLF4wYMQJ9+/a1aogxc8XGxuLIkSP4+uuvsWLFChw/fhwZGRkICgpC27Zt8fDDD+Ohhx6Sw0JZo3379jh9+jS++eYbrF69GsePH8etW7cQHByM6Oho9OjRA6NGjdLJAis8PT2xaNEiPPPMM5g/fz7+/PNPJCYmIjs7Gz4+PoiNjUX79u0xcOBADBkyRGfb6dOno3Pnzti4cSN2796NpKQkORRaREQEOnfujLFjx2LQoEFWPzdTlI5t7u7uGDx4sEXbjhgxAkePHkV6ejp+/fVX/POf/zR72/feew+bN2/G7t27cfr0ady8eRPp6enw8vJCVFQUOnfujNGjR2PAgAFGz62oqCisWLECu3fvxr59+3D16lXcvHkTubm58Pf3R+PGjdGnTx9MnDjR4PtWk3h4eCAkJAStW7fGfffdhzFjxpid1TfkueeeQ7t27bBlyxbs27cP165dw40bN1BcXIyAgAA0adIEvXv3xtixY012nrLH+1zdtGrVCjt37sSWLVvwyy+/4M8//0RSUhLS0tLg5eWFyMhIdOjQAYMHD8awYcPg4eFR2UW22Ysvvog2bdpg9+7dOHnyJFJSUpCWlgZ3d3eEh4ejQ4cOeOCBBzBs2DDUqlWrsotbIby8vODv7y8/h506dcKIESPs3gEwMjISe/bswfz587F06VKcPHkS6enpCA4ORqdOnfDII4+Y7Hz366+/Yvfu3di7dy8uXbqEmzdvIjs7G35+fqhXrx569uyJCRMmWNTBnKgqchKCY5wQERERkbZYnxYlIiIiIqqmWAkmIiIiIs1hJZiIiIiINIeVYCIiIiLSHFaCiYiIiEhzLBoirbCwUC+mHsqmpgxfREREREQ1GzPBRERERKQ5rAQTERERkeawEkxEREREmsNKMBERERFpjkUd45ydWWcmIiIiouqPtVoiIiIi0hxWgomIiIhIc5yEEKKyC0FERERE5EjMBBMRERGR5rASTERERESaw0owEREREWkOK8FEREREpDmsBBMRERGR5rASTERERESaw0owEREREWkOK8FEREREpDmsBBMRERGR5rhYsrJ6cjknJye7F4aIiIiIyBGYCSYiIiIizbEoE8zsLxERERHVBMwEExEREZHmsBJMRERERJrDSjARERERaQ4rwURERESkOawEExEREZHmsBJMRERERJrDSjARERERaQ4rwURERESkOawEExEREZHmsBJMRERERJrDSjARERERaQ4rwURERESkOS6VXQAiIiKiEgVyKfnEFgDAr6u3yti5zEi53GrYfQCA4Z3jZMyjootHNQozwURERESkOawEExEREZHmOAkhRGUXgoiISDNOrJSLLy0+UGGH6fCvtwEADzQ3vd6NPz8FAHywNrECSlEbADBo6tMy0ivc0HppAICt0zvJyMB55wEAeeUcwffuBXL5wJrxAIBGrpaXlLSHmWAiIiIi0hxmgomIiBxp61S56HTXhxV2mGe3lHy9f9DX9Hrnv+kBAGjw2K4KKEV3AMDX53bKyMT6+mtlrJsIAAgbtETGus0r2WbZvzvIWJhrrlw++f04AMA9Y36UsYCPTgAAjj7TzNaCkwYwE0xEREREmsNKMBERERFpDscJJiIicqDz5/cbiIbKpb6PTwAAdAq07Tgdwsxb7/IJQ80gWgIARrw4SEYaWFWKko5xjXxMr3V4a0kziDz3STL2+v+aQYTpdHIrHQm42cNzAACvfFzaHGLS6r0AgARVc4hYS4tMmsFMMBERERFpDjPBREREla6FXPrXyyVDm42PraSiAID7PQCAZ95+W4Z6VeDhPLz9ShbyUmUs+87/FowNd1aQDQBIv62KRXkBADztWzyqoZgJJiIiIiLNYSWYiIiIiDSHzSGIiKqhnTtLxlAdNWqUjF29ehUA0KhRIxl7+3+3s++55x4Z8/TkzeLKVFRYYCDaWi7FxjqiFKVlKMw38HCHknMo2hFFAdB24GQAQMysWTL21GMlDTBC3hkiY7Ee6XJ59//9EwAw67S7jP3rvX8AAAxOSkdUBjPBRERERKQ5zAQTEVUTJ06ckMvHjh0DAHTq1EnGbty4AQCIiIiQseLiYgDA7dulvYc8PEqGmXJycqq4wpJRV0/vq+wiALgsly4dqcRi/I9rp1cAAJuWnZGxQeMeAwB0/dHgJgB8AQB3f7RbRj4cElQh5aOaiZlgIiIiItIcVoKJiIiISHPYHIKIqArLyMiQyxs3bpTLhw8fBgAMHTpUxlxcSi7pmZmZMubqWjLIanp6uoyFh7PbUJXjXjoYbq3cJADAkX3bZGzb2qNy+dr//o1sVTqbW58+Jc1iWkeVzqhmE7daJf9mnpWhvZu3y+VNe86VPPy/JgkA0KBLfwBA737tZKyhr7FBfssqWa/Rg9/LyKlBJZ06Tx46JWM3cv3lcp2OJZ0JmwTa6TmT5jATTERERESaw0wwEZGVhBB6MXt1NktLSwMAHDhwQMb+/vtvuezsXJLD6Ny5s4yFhoYCAJKTk2WssLAQAODt7W2XcpEtSrL62akGHvL7WS5OCJsHADifaWA9He+olv/XSezrPTKyemIzAIDhPGm2XEq/aeDhc2+U7C/0vAydzyuvPK+V/ONeX0ZeWPMXAOCNf4TJmNm5Yd8YAEDrXjFmbkFkGWaCiYiIiEhzWAkmIiIiIs1hcwgioipI6cimHhtY3fwiLi4OABAdXTqnl4+Pj86/AJCdXXLbu1atWjLG8YErSwoA4PoFQw+pmh38r2lD82H/krEhjUo7oF0/tAQA8POGqzKWiZK2E388Vtop7fGIkg523xkcO7e0TcbV0wYevlJSnvPuoTLUe9wEudwlouR4ZzaskLG1h0qeX15e6XOZN6Cks1zYkXgZe76VuQ0iiCoWM8FEREREpDnMBBMRVUFZWVkAgJSUFBlTsr8A0K5dScZP6SCn5ubmJpeVIdKoKijJxvvUaSwjjZVOaf53y9h7K98DAAyJMfbelQwd9v7WqTLS5q4PAQBXUNp7bfErJRnjl4Y8I2PN5JK7XAppXFKe0lIBaPEUAGDpV6XbtjWUUH77Q7l45puS59Dqsa0yloeSmQ1f+3iTjD3+zUAAgJ+B3RE5EjPBRERERKQ5rAQTERERkeY4CUMDXRIRkcMVFxfLZWVGuPXr18tY3bp15XL79u0BAPXq1ZMxdTMI0oLS2QR/G1syk9q9i9WP9wUALLi4RUbGx1ZkeUpmtXuvSWsZeUHpdOf+goxtz30XANCrIotCZAZmgomIiIhIc9gxjoiokik35HJzc2WsqKgIgO5wZ8qMcAAQHBwMAHBx0b+MK7PEAaVDo3FYtJqotGtZo26dShYW71M9ng8A+N+p5ABNAQCt+6lCSiY4r0CGHFYconIwE0xEREREmsNKMBERERFpDptDEBE5kNL0wVDzhPz8fLmsNI1Qx9Qd35RmEupxgnNycgAAGRmlHaYCAwMBAO7upePCUs1z/cKRyi4CgJIZ7BJPVXIxiMzETDARERERaQ4rwURERESkOWwOQURURaibSCijQyhNHADdphF5eXk6/wLAyZMnAQCXLl2Ssb59S8aKjYiIqIASkyVyLuwBAOw8d13GLu8vidX6xysyNr6TuRMKn5RLh9fn6T/s3hEAUL+O/kM3jpWOHXzkWkl5Tm25KGMNH3sVADCovplFAYCMknYQu/4y8Fj35nLRQHGIKgUzwURERESkOcwEExE5kKnxel1dXeWy0uFNPXbw1atX5bKS9VVngpVZ5q5duyZjHTt2tK3AZDdeuSVj+D5/979l7Jiy8OVNGQvY/ikAYFich+EdFSQDAA589LQMTT+mv1ropPsAAO1d9R/zTPxBLt83aD4AQJ1Ldt9X0pFy57LSsnYIM7Cj3NLs8arnngAAzDeQlO7+SF+5bElymagiMRNMRERERJrDSjARERERaY6TUAatJCKiKuPIkZJxX5ctWyZjf//9t1zOzMwEoDutctu2bQEAvXr1krF27doBAPz9/SuusGSmkvGb/5zeQkZ6z7tiYL2Spgih9WNlJMildCrstITzAIAUA80OEPOsXNxy+AMAQN8gQ2U5L5cW3lXSaW3CVkM79JVL0Y2j5LIPsgAASadLm+hkGtjave/XAICjf0yUsUYGWlUQVQZmgomIiIhIc9gxjoioCgoKKknf1atXT8YuXLggl9PT0wEALi6ll/HIyEgAQIcOHWTM17ckk6ceak3pYOfl5SVjAQEBejFTnfjIGiVDn/V644CM7G80FQAw6unSjmrn/9fZMeX8aRlLMbi/0ixt80feBwAs/k9pxrWtwQyworR72vi1JUObRf7fQzI28q2SodsyVfndq6dLy2OQeygAoPdz38vQ4tn/AADEMPtLVRAzwURERESkOawEExEREZHmsGMcEVEVpDRfuHz5sowpYwMDwI0bNwCUNncAgNatWwMAWrZsqbe/8+dLO0KtXbsWABATEyNjyjZ169aVMXVTC6pgBaXNDlLOl7zPhy7fNriqR3gjAEDTetEyFupr5/YGubcAAAmnSwcgPnMjV281/zqt5HKj2JJZCQONDG9MVNUwE0xEREREmsOf+UREVZCHR0k6rU6dOjKmHuZMmUlOna0NDAw0ur+kpCS5HB8fr7dtixYlw3bx5mAlcS3N6Ic26QwAGNCksgoDwKPkXIptXTrcXmwlFYWoojATTERERESaw0owEREREWkOm0MQEVVBzs4lOQr1uL3qZVOKi4vl8q1bJR2cEhMTZSw1NRWA7jjA3t7eOsclIqrpeLUjIiIiIs1hJpiIqIZRZ4KVYdXUQ62Fh4cD0B0OTYkxE1x1qLP333zzjVyeNWtWJZSGqObh1Y6IiIiINIeVYCIiIiLSHDaHICKqYQoLC+XymTNnAADJyckyFhsbCwCIjIyUMTaDqFzq9+y9994DALzxxhsylpWVJZeVMZ0feOABB5WOqGbiVY+IiIiINIeZYCKiGiY7O1suX7p0CQCQk5MjYx07dgQABAcHO7ZgpGfTpk0AgClTpsjY33//DQDw8fGRsbfeeksuDx061DGFI6rhmAkmIiIiIs1hJZiIiIiINIfNIYiIaog7d+4AAK5evSpjt2/fBgB4enrKWP369QEAAQEBjiscyXF/X3jhBRlbtmyZ3nqjRo0CAMybN0/GateuXcGlI9IeZoKJiIiISHOYCSYiqiFSU1MBABcuXJCxgoICAEBoaKiMKVlFb29vB5ZOW5Qhz5ThzoDSIc/Uw501aNAAAPDf//5Xxvr37++IIhJpHjPBRERERKQ5rAQTERERkeawOQQRUQ2RkpICoHSWOABwc3MDoDs7nDI+MGeJsy9lzF+gdNxfZcxfAPDw8AAAzJkzR8aef/55nceIyHF4BSQiIiIizWElmIiIiIg0h80hiIhqiOvXrwMArly5ImMREREAgLp168qYq6urYwtWAymvNVA67u+SJUv01lNPcfzBBx8AAGJjYyu0bERkHmaCiYiIiEhzmAkmIqqGiouLAQCZmZkypmQnb926JWMdOnQAwOyjLZQxfwHg008/BQDMnj1bxtLT0wHovsZK1ledCSaiqoWZYCIiIiLSHFaCiYiIiEhz2ByCiKgaUqZDTkpKkrEbN24A0L19r3SIq1Onjow5OTk5oojV2s6dO+XypEmT5PLx48cB6I7r+9prrwEAXn31VRnjuL9EVR8zwURERESkOcwEExFVQ/n5+QCAc+fOydjt27cBACEhITIWGhoKoHTmOEvk5OQAKO34VXY/Xl5eOv86ijrT7eJi+9eYucOdAUD//v0BAP/9739lrEGDBjaXgYgcj5lgIiIiItIcVoKJiIiISHPYHIKIqBpSmiqcOnVKxvLy8gAADRs2lLGAgACrj3HhwgUAwMmTJ2UsKipKLivj4np6espYRXW6mzVrllx+55135PKhQ4cAAE2aNDFrP+aO+Vu7dm0ZmzdvnlweNWqU+YUmoiqNmWAiIiIi0hxmgomIqiElY3n+/HkZCwwMBAC0a9dOxvz8/MzaX1FREQDg5s2bMrZhwwadfwFgwIABctnX1xcAEB0dbUnRLZKYmAhAN/urZm6mWxnyzNBwZ+rOdS+99BIA3eHOfHx8zC8wEVUbzAQTERERkeawEkxEREREmsPmEERE1URmZqZcVmaKU8fq1asHAGjcuLGMmTuG7507dwCUNhEAgN27dwMADhw4IGPqphbFxcVml91ar7/+OgAgNzdXxpQmCwAQERGht43SpOPll1+WsW+++UZvvR49egDQHfO3RYsWNpaYiKoLZoKJiIiISHOYCSYiqiauXLkil5Xhyzw8PGQsMjISABAWFmbxvpXh1U6fPi1jSqc0dcZXnVlWD41mT4cPH5bL3377LQDdDnAvvviiXFaGPFNnepUMsHqmOyVjrB7ubMyYMfYqMhFVQ8wEExEREZHmsBJMRERERJrD5hBERNXEpUuX5LLSHEI9s1lMTIzV+/b29gYAdOvWTcYSEhIAAEIIGXN2Ls2dKJ3p7O2FF17Qi82cOVMu//3333J5ypQpAHQ77ynj/j799NMyNmfOHAC2zaBHRDULM8FEREREpDnMBBMRVWFKxy9At2NcSkoKgNJhvgDbZm5TOti1adNGxs6ePQsAuHz5soxVZCZ406ZNOv8CpZnbI0eOyNjUqVP1tu3SpYtc/uSTTwAAHTp0sGv5iKhmYSaYiIiIiDSHlWAiIiIi0hw2hyAiqoIKCgoAANevX5exGzduyGVl7F5lljjA8OxptnB3d9f5tyx1hzlrqZt7GOoQp4z1q4wXDAAhISFy+a233gIATJw40eayEJG2MBNMRERERJpjdSZYyUI4OTnJmHqZiIisl5OTAwA4d+6cjB0/flwu37x5E0DpcGBAxc3gZo+MrzFLliyRy+qZ4spSz4w3atQouazMajdr1iy9bYqKiuRy7969AQD9+/e3tqhEVMMwE0xEREREmsNKMBERERFpjkXNIdS3xJRlNoEgIq0y1EzAXtfEzMxMAMDp06dlTBm3FwCysrIA6HaWy87OBmC/WdGU5gTqzmtqtjzX3NxcAMDrr79u0foA8Omnn1p8PGVGOTaHICIFM8FEREREpDmsBBMRERGR5ljUHIIjQRAROYYyPu6lS5dkzNXVVS4rI0Hs2bNHxsLCwgAAXbt2dUAJbaOMbjFnzpwKO4Z65Aw2gyCispgJJiIiIiLNsXqcYGdn1p+JiOxB6WCnjA0MlM4Up2RMAaBJkyZyWckKqzPFx44dAwDUr19fxoKDgwEAtWrVsrhcyh2/irjzV7t2bQDAI488Yvd9ExGZgzVZIiIiItIcVoKJiIiISHOsbg5BRKR19momoExDf/XqVRm7fPkyACA/P1/GevbsKZfDw8MBAMuWLZOxM2fOANCdXrl9+/YAAH9/f7uUlYiopmAmmIiIiIg0h5lgIqJKpnSMU3dyU7LCPj4+MtawYUO53KBBAwDA33//LWOJiYkAgH379smY0knOmkywUi5Ds4WWXSYiqm6YCSYiIiIizWElmIiIiIg0h80hiIgqWV5eHgAgISFBxpQZ42JiYmQsKipKLkdHRwMAOnTooLeN0kEOKB1vuE6dOjJmboc+Q+MEq8eI58yhRFSdMRNMRERERJrDTDARUSXLyMgAUNqxDQAKCwsBAC1atJCxgIAAvW3Vs8gpQ6OdPXtWxpTssjJDG1CaUS4vk6s8rp5tzsWl9GvDmlnoiIiqCmaCiYiIiEhzWAkmIiIiIs1hcwgiokqQnZ0tl69duwYAuHnzpox5eXkBAJo2bSpjhppDKDPHAaVNHvz8/GRMmXlOPQaxuoOdKUpzB2Md4ww9TkRUXTATTERERESaw0wwEVElSEtLk8sXL14EUDpUGlA6BJq6Q5urq6veftSZWSXDq94mJSUFgG4muHPnzgDK79imDLl269YtGUtOTtZ7Dvn5+TLm5uZmcp9ERFUFM8FEREREpDmsBBMRERGR5rA5BBFRJbhx44ZcPnHiBAAgMDBQxmJjYwHojstbnqCgIJ1tAeDIkSMAdJtf5ObmAgC8vb1lLCcnBwCwf/9+Gdu4cSMAYPv27XplBYA7d+4AAOrWrStjcXFxANgsgoiqPmaCiYiIiEhzmAkmIqoEyrBoQOmsbq1atZKxhg0bAtDt+FYeJROsZGOB0lnkbt++LWNKhzd1JrioqEjnMaA0C60eUk3dOa+4uBiAboc+ZT9ERFUdM8FEREREpDmsBBMRERGR5rA5BBFRBRNCyOWsrCwAus0hlHF41R3aGjRoYPFx/P39AQB16tSRMQ8PDwC6M9QpY/0GBwfLmNKRTd30oW/fvgCAJk2ayFhhYaFcrlevHgDdDn3ljT1MRFRVMBNMRERERJrDTDARUQVThiQDgFOnTgEArl+/LmM+Pj4AgMjISBlTZ1fNpXRkUzrIAaUZXnWHt5s3bwIozUoDQEhICADdDLRSHnXHN6UzHAB4eXnpldWSId2IKor67ovCycmpEkpCVRkzwURERESkOawEExEREZHm8L4VEVEFUzcnUGZcUzdFUDqYhYaG2uV4Smc4oHQsYPU4wUpHPGXGNzV10wZrmmQQVQVs+kDmYCaYiIiIiDSHlWAiIiIi0hw2hyAiqmDq5hBnz54FoDsdcrt27QCUjvNrK/Wt4ICAAAC6o0MoTTHy8/PtcjwiouqImWAiIiIi0hxNZIKLiooquwhEVMMZ6oijXHuSkpJkTJmtTT0msDLDm7u7u9F9AOWPfarM1qbexs/PDwDg6ekpY5mZmQAMd4xTjwNs6HhEtlLOWfW5a++ObOpzW/k8GPp8qc9xZUxt0g5mgomIiIhIc1gJJiIiIiLN0URziGvXrlV2EYiohlM6uqlv66akpAAAjh07JmNKB7WIiAgZU27JpqWlyZjSZMGS5hDKlMXqaZrLPgYAOTk5OuUDgBs3bgAACgsLTR6PyBLKOaRuZqM0zVGa6gClTRHUHUatUVBQAKB0enKg9HyPiorSW0/9WWndurVNx6bqh5lgIiIiItIcTWSCN2zYUNlFIKIaTsm0qjOuFy5cAAD8/fffMqZkX5WhywDg4MGDAABXV1cZUzJn5WVjDXUuUmePlcyzOuOl7Fudob506ZLOY0TWUp+Tyrmo7qimdARt06aNjCl3Rgx1XiuP+pxVzuNPP/1UxpSOqQMHDpQx5XN45coVGVu0aJHFx6bqjZlgIiIiItIcVoKJiIiISHM00Rzi9OnTlV0EIqrhlKYM6lvBSuechIQEGVM6AKlvD1++fBmAbjMGdQc1U9THM9R0wlRHI/X4xVevXjXreETlMdQcQunoCZSep/Xr15ex0NBQi4+j7OfMmTMy9ueffwIAsrOzZUz5zCmdPwHg/PnzOv+SNjETTERERESao4lMMIf5IaKKoMzQBpRmvNQd0G7duqUXU2aK8/f319ufuoOPslzeTFrmdpwzlBFWZ57ZIY4qgnJ+qs9TQzFzqc/T27dvAwD27NkjY3/88QcAoF+/fjIWHR0NALh48aKMKTM3BgUFWVwGqjmYCSYiIiIizWElmIiIiIg0RxPNIbp27VrZRSCiGkjpcAMAWVlZAEo7uQG6t18V/fv3BwDUrVtXxpSxhQ01TzDWHMLcW8mGZrIztA9bblETqanPNeU8NtQkKDg4WMbU42ubkp+fL5dPnjwJAEhMTJQxZRa6tm3bypgyLrG6DOrZGUm7mAkmIiIiIs3RRCa4Q4cOlV0EIqqBPDw85PK1a9cA6A4FpWS6wsPDZax79+4AdDPBSnbLUGa2vCHQzGVoW0OzzTETTPaknE/quxyenp4AdDuHmpsJVmdzz549C0B3OMHWrVsD0B1+TZmd0dfXV8aUIdnUszSS9jATTERERESaw0owEREREWmOJppDREVFVXYRiKgGUo8TrHSMy8nJkbGQkBAAuteg2NhYnccA3VvFRDWd0vTGUHOc8qhnglPG+lV3sOvVqxcAIDAwUMaUJkp5eXky5u3tDUC3SRNpDzPBRERERKQ5msgEq7M1REQVQZm9Sj0smtL5pmXLljKm7pyj4DWKyDj13RVDQ5up76ooHU7VHd6Ujqc3b96UMWV4Q+UzStrETDARERERaQ4rwURERESkOZpoDkFEZE/K2Kd37tyRsStXruj8CwCNGjUCADRt2lTGzB0PtSKZGgvY3A5KRI5y69Ytuaxu0qB0blM3hzDU3EjZ/urVqzJWr149AOw4r3XMBBMRERGR5lR+SoKIqJpRMqnqrK+SZVJnUiMiIgAAkZGRNh+r7L5twWwvVScZGRlyWZ0VVjLB6uHQlE6mqampMvb3338D0M0EN27cGABQp06dCigxVRfMBBMRERGR5rASTERERESaw+YQREQWUpoonDt3TsauXbsGAIiOjpax8PBwxxaMqAYqLCyUy8qYv2rq5j0FBQUAgEOHDsnY3r17AQA3btyQMWfnkhyguikFaQ8zwURERESkOawEExEREZHmsDkEEZGFlFuup0+fljGlN3qbNm1kzB5TsnIkB9I6d3d3uaxMdwwAycnJAEqbIgGl4wTv379fxg4fPgwAyMrKkjFljO+8vDwZqwpjeJNjMRNMRERERJrDnz1EpBmGZkqzJtOalpYGAEhKSpKxoqIiALqzw9kjE0ykdeoZ4fz9/eXyr7/+CgDYuHGjjIWFhQEA/Pz8ZEzp/JaQkCBj8fHxeusNHz7cjqWm6oCZYCIiIiLSHFaCiYiIiEhz2ByCiMgM6enpclm5raruaKPcpo2NjdWLEZH1AgIC5LJ67G2lw5x6imSlw9uAAQNkrHbt2gCA7OxsGVM6wanHDibtYSaYiIiIiDSHmWAi0gxbhhu7fv26XD569CgAwNXVVcaUbFNQUJDVx7NXxz2imkSZ3Q0AYmJi5PIDDzwAAOjatauMKZ+XVq1ayZiHhwcA3U6rSszHx6cCSkzVBTPBRERERKQ5rAQTERERkeawOQQRkRnUHWjOnDkDQLfjW926dQHozmhFRPalbr6gzM7YsGFDvfWCg4PlstIJTj1ut9L0SN3UgrSH7z4RERERaQ4zwURERhQUFMhldSZY6STXrVs3GVOGRmNHNqKKU6tWLbmsZHbNnZnR09OzQspE1RczwURERESkOawEExEREZHmsDkEEVEZSjOIK1euyNi1a9fkcnFxMQCgTp06MqaMX2pLcwg2pSAichxmgomIiIhIc5gJJiIqIz8/HwBw7tw5GUtNTZXLytBokZGRMhYYGOig0hERkT0wE0xEREREmsNKMBERERFpDptDEJFmKLNEqRnqjHbnzh0ApTPDAUBWVpZcVjrBqWelIiKi6oWZYCIiIiLSHGaCiUgzzB2C7Pbt2wCAxMREGXNxKb1cNm3aFADg5+dnx9IREZEjMRNMRERERJrDSjARERERaQ6bQxARAcjJyZHLycnJAICbN2/KmHp2uGbNmgEAfHx8HFQ6IiKyN2aCiYiIiEhzmAkmIoLujHBKhzh1djgoKEguN2zYEIBuZzkiIqpemAkmIiIiIs1hJZiIiIiINIf38oiIAFy9elUuJyQkAAACAwNlLCIiQi6zGQRR1aTMCmnumOCkbcwEExEREZHmsBJMRERERJrDe3pERAAuX74sl5XRIeLi4mQsJibG4WUi0gqlGYMamzRQRWMmmIiIiIg0h5lgItK0zMxMALqZYGWmuLvvvlvG6tWr59iCEWmIvbK+zB6TJZgJJiIiIiLNYSWYiIiIiDSHzSGISHPu3Lkjly9dugSgtAkEUDoOcGxsrIyFhoY6pnBEROQQzAQTERERkeYwE0xEmpORkSGXT5w4AQDIy8uTsaioKABASEiIYwtGREQOw0wwEREREWkOK8FEREREpDlsDkFEmpOeni6Xjxw5AgBwc3OTsebNmwMAPD09HVouIiJyHGaCiYiIiEhzmAkmIs1JSUmRy8pMcc2aNZOxpk2bAgBcXV0dWzAiInIYZoKJiIiISHNYCSYiIiIizWFzCCKq0YQQclmZFS4pKUnGcnNzAQBhYWEypswUp+4sR0RENQszwURERESkOcwEE1GNps4EX7hwAQCQmJgoY/7+/gCAyMhIGQsODnZQ6YiIqLIwE0xEREREmsNKMBERERFpDptDEFGNVlhYKJfPnz8PALhx44aMxcTEAAAiIiIcWzAiIqpUzAQTERERkeYwE0xENVpOTo5cvnLlCgAgOztbxlq2bAkACAoKcmzBiIioUjETTERERESaw0owEREREWkOm0MQUY2kzAR37do1GUtOTgYAODuX/v5v3LgxACAkJMSBpSMiosrGTDARERERaQ4zwURUI6WnpwMoHRYNADIzMwEAYWFhMlavXj0AgK+vr+MKR0RElY6ZYCIiIiLSHFaCiYiIiEhz2ByCiGqk1NRUAMC5c+dkzN3dHQAQGRkpYz4+PhbvWwgBAHBycrKliEREVImYCSYiIiIizWElmIiIiIg0h80hiKhGunHjBgAgISFBxkJDQwEA9evXlzFXV1ez9qc0gSAiopqBmWAiIiIi0hxmgomo2lOytDk5OTKWlJQEQHfGuLZt2wIAmjRp4sDSERFRVcRMMBERERFpDivBRERERKQ5bA5BRNVeYWEhgNImEABw/fp1nccAIDo6GgBQp04dGXN2Ni8XwDGBiYhqFmaCiYiIiEhzmAkmomovPz8fgO7scLdu3QIABAcHy1h4eDgA87O/RERUc/GbgIiIiIg0h5VgIiIiItIcNocgompPaQ5x8uRJvVibNm1kLCAgwJHFIiKiKoyZYCIiIiLSHGaCiajaUzrBXbhwQcZ8fHwAAC1btpQxf39/xxaMiIiqLGaCiYiIiEhzWAkmIiIiIs1hcwgiqpaysrLk8tWrVwEAaWlpMqaMCdyoUSMZU5pIqAkhAHBGOCIirWEmmIiIiIg0h5lgIqqWrly5IpfPnj0LAPDy8pKxqKgoAEBISIiMGZopjhlgIiJtYiaYiIiIiDSHlWAiIiIi0hw2hyCiauny5cty+fz58wCAiIgIGYuJiQEA1KpVy7EFIyKiaoGZYCIiIiLSHGaCiahaUYY0U3eMU4ZI69mzp4zVqVPHsQUjIqJqhZlgIiIiItIcVoKJiIiISHPYHIKIqrzCwkK5nJycrPOv+vHY2FgZi4yMdEzhiIioWmImmIiIiIg0h5lgIqrysrOz5bIyO1xGRoaM+fn5AQCio6NlLCAgwDGFIyKiaomZYCIiIiLSHFaCiYiIiEhz2ByCiKq8zMxMuXz8+HEAQEFBgYzVrVsXABAUFOTYghERUbXFTDARERERaQ4rwURERESkOWwOQURVXlpamlw+f/48AMDDw0PGGjRoAADw8vJybMGIiKjaYiaYiIiIiDSHmWAiqlKEEACAvLw8GUtJSZHLykxxrVq1krGGDRsCAFxdXR1RRCIiqgGYCSYiIiIizWElmIiIiIg0h80hiKhKun79ulxOTEyUy/n5+QCAiIgIGVM6xrm5uTmodEREVN0xE0xEREREmsNMMBFVKcXFxQCAy5cvy9i1a9fksp+fHwAgPDxcxjg0GhERWYqZYCIiIiLSHFaCiYiIiEhz2ByCiKqUwsJCAMCFCxdk7ObNm3K5fv36AIDQ0FDHFoyIiGoUZoKJiIiISHOYCSaiKiUrKwsAkJCQoBcDgD59+gAAIiMjHVksIiKqYZgJJiIiIiLNYSWYiIiIiDSHzSGIqNLl5ubKZWWmuOTkZBlzdi79vd60aVMA7BhHRES2YSaYiIiIiDSHmWAiqnSpqaly+cyZMwCAoqIiGVN3gouIiAAAuLjw8kVERNZjJpiIiIiINIeVYCIiIiLSHN5PJKJKl5KSIpdPnDgBAPD395exBg0ayGUPDw/HFYyIiGosZoKJiIiISHOYCSaiSqcMiwYAZ8+eBQC0adNGxpo0aeLoIhERUQ3HTDARERERaQ4rwURERESkOWwOQUQOJYSQy9nZ2QCAa9euyVh6ejoAICoqSsbi4uLksnr2OCIiImvx24SIiIiINIeZYCJyqIKCArl87tw5AEBycrKM+fj4ACidGQ4AgoODHVQ6IiLSCmaCiYiIiEhzWAkmIiIiIs1hcwgicqjc3Fy5fOTIEQDArVu3ZEyZHS4sLMyxBSMiIk1hJpiIiIiINIeVYCIiIiLSHDaHICKHunPnjlw+f/48ACA/P1/GWrZsCQAICAhwaLmIiEhbmAkmIiIiIs1hJpiIHKK4uBgAkJqaKmM3btwAAAQGBspYo0aNAJSOF0xERFQRmAkmIiIiIs1hJZiIiIiINIfNIYjIIZSmD0pnOADIy8sDAAQFBclY3bp1AQDe3t4OLB0REWkNM8FEREREpDnMBBORQ1y7dg0AcPHiRRnz8vICAERERMiYkhV2duZvdCIiqjj8liEiIiIizWElmIiIiIg0h80hiMghkpKSAABXrlyRsfDwcABAdHS0jLm48LJEREQVj5lgIiIiItIcplyIqMLk5OTI5cTERABASkqKjLVp0wYAEBsb68hiERERMRNMRERERNrDSjARERERaQ6bQxCR3eXn5wMoHRsYKJ0xrrCwUMbi4uIAAFFRUQ4sHRERETPBRERERKRBzAQTkd1lZ2cDAM6dOydjGRkZAAA/Pz8ZU4ZG8/T0dGDpiIiImAkmIiIiIg1iJZiIiIiINIfNIYjI7rKysgAAp06dkjEnJycAQIMGDWTMx8fHsQUjIiL6H2aCiYiIiEhzmAkmIru7desWAODs2bMyFhISAgBo0aKFjLm7uzu2YERERP/DTDARERERaQ4rwURERESkOWwOQUSSEAJAaSc2S+Tm5srl69evA9CdMa5hw4YAgObNm8uYh4eHVeUkIiKyFTPBRERERKQ5rAQTERERkeawOQQR2URpQpGYmChjyrKrq6uMhYeHAwAiIyNlzNmZv8OJiKhy8BuIiIiIiDSHmWAikqzpEFdcXAwAOHfunIwpmeDatWvLWFRUFABmf4mIqGrgtxERERERaQ4rwURERESkOWwOQUQ2UTrGnT59WsaU8YHbt28vY+oOcURERJWNmWAiIiIi0hxmgonIJmlpaQB0Z4crKCgAADRq1EjGQkNDHVswIiIiE5gJJiIiIiLNYSWYiIiIiDSHzSGIyGK3b9+WyxcuXAAAZGVlyZifnx8AoG7dujLm7+/voNIRERGVj5lgIiIiItIcZoKJyGI3b96Uy8ePHwcAuLiUXk5iYmIAAEFBQTLGmeKIiKgq4bcSEREREWkOK8FEREREpDlsDkFEFktOTpbLykxxSmc4AIiLiwMAeHh4OLZgREREZmImmIiIiIg0h5lgIjJLcXGxXE5JSZHL169fBwB07NhRxmJjYwGwMxwREVVd/IYiIiIiIs1hJZiIiIiINIfNIYhIEkIAAJycnGSsqKgIAHDt2jUZUy/n5+cDACIjI2VMGSeYzSGIiKiq4jcUEREREWkOM8FEZJKS6T137pyMqYdI8/X1BQBERUXJWHBwsINKR0REZB1mgomIiIhIc1gJJiIiIiLNYXMIIpLUHeIUSnOIs2fPylhGRoZcrlOnDgA2gSAiouqFmWAiIiIi0hxmgonIpMzMTADAxYsXZUwZNg0AmjVrBgAIDAx0bMGIiIhswEwwEREREWkOK8FEREREpDlsDkFEepTOcACQkpICQHeWOPXscC1btgQA+Pv7O6h0REREtmMmmIiIiIg0h5VgIiIiItIcNocgIj1KEwgAuHTpEgDdESHUYwLHxMQAADw8PPT2I4SQy4bGICYiIqoszAQTERERkeYwE0xEeq5evSqXz507BwAICAiQsdq1a8tlLy8vs/apZIWZESYioqqAmWAiIiIi0hxWgomIiIhIc9gcgoj0KJ3hAODs2bMAgKZNm8pYvXr1HF4mIiIie2ImmIiIiIg0h5lgIpKys7MB6HaMS09PB6Cb/a1bt67F+2aHOCIiqkqYCSYiIiIizWElmIiIiIg0h80hiDQuNzdXLl++fBkAkJaWJmOurq4AgDp16shYWFiYWftmEwgiIqqqmAkmIiIiIs1hJpiohlJmaFMzlJnNzMyUy4cPHwYA5OXlyZjSIS4kJMTOJSQiIqo8zAQTERERkeawEkxEREREmsPmEEQap24OceLECb3HGzZsCADw8fFxWJmIiIgqGjPBRERERKQ5zAQT1VDmDk92+/ZtuXzp0iUAurPDNWjQAADg5uZmx9IRERFVLmaCiYiIiEhzWAkmIiIiIs1hcwgiDVGPHazMCnflyhUZKywsBKA7I1zdunUBsDkEERHVLMwEExEREZHmMBNMpFEXL14EUNoZDgB8fX0BAJGRkTKmZIVdXHi5ICKimoOZYCIiIiLSHFaCiYiIiEhzeH+TqBpTOrqZOyaw2vnz5wHodoxTmkFERETIGJtBEBFRTcRMMBERERFpDlM8RDWAeugzU1nh7OxsuXz58mUAujPGtWjRAgAQHh5u7yISERFVKcwEExEREZHmsBJMRERERJrD5hBENUB5HeMKCgoAAMnJyTKmLKubUjRo0AAAEBISYu8iEhERVSnMBBMRERGR5rASTERERESaw+YQRNWYueMD37p1CwBw5swZGcvKygIA+Pv7y1hsbKxejIiIqCZiJpiIiIiINIeZYCINSEtLAwCcPn1axpSZ4KKjo2UsICDAoeUiIiKqLMwEExEREZHmsBJMRERERJrD5hBEGpCSkgIAOH/+vIwFBQUBKB0bGChtIkFERFTTMRNMRERERJrDtA9RDaPMAJefny9j169fBwBcu3ZNxlq2bAkAaNasmYwxE0xERFrBTDARERERaQ4rwURERESkObz3SVTDFBUVAQCSkpJkTGkOoTwGALVr1wYA1KlTR8bMnYGOiIioumMmmIiIiIg0h5lgohqmoKAAgO7scKmpqQCAyMhIGQsPDwfAznBERKRNzAQTERERkeawEkxEREREmsP7oEQOoozfC1RsB7TCwkIAwIkTJ2QsIyMDgO6YwMHBwRVWBiIioqqOmWAiIiIi0hxmgokqgZIVVmeE1ZlihTUZ48zMTADAhQsXZEzp/KbMEgcA/v7+Fu+biMjRlLtbQGnHX3Vc3bnX3d0dAODszBwflY9nCRERERFpDivBRERERKQ5bA5BVANkZ2fL5StXrgAo7QwHALGxsQCA+vXry5ivr69jCkdEZINLly7J5aNHj8rlM2fOAADi4uJkrE+fPgCAoKAgGeNY6GQMM8FEREREpDn8eURUCUx1eLOmM1xSUpJcVmaKUzqIAKUzxYWGhspYrVq1LD4OEZGjKZ19AeDs2bNy+ffffwcAtG/fXsbatGkDQLfjLzPBZAwzwURERESkOawEExEREZHm8B4BkYOU18zBllnk1B1HTp06BQCIiIiQMaVjnJubm9XHICKqDOqmXepmXNeuXQMA3LhxQ8bU4wgTlYeZYCIiIiLSHGaCiWqAmzdv6i1369ZNxurVq+fwMhER2UN0dLRc7tKli1xWOsk1adJExmrXrg1AN3tMZAwzwURERESkOawEExEREZHmaKI5hBCisotANZC555UtHd4M7aOoqEgup6enAwCSk5NlLD8/H0DpbUEACA8PB6BbZmWf/HwQUWUw99ro5eUll6OiouRy27ZtAeg2l1CaQRQXF+sdxx7XYqpZmAkmIiIiIs1hJZiIiIiINEcTzSGys7MruwhUQ6hvpym329TNE5Rl9ViWyrItt+JcXV3l8q1bt+TykSNHAABXr16VMWUsYB8fH70yqD8LbA5BRI6ivs4o0xirr2umrpNpaWly+fr163JZWTcnJ0fGEhISAAABAQEyplwLvb299bYlbWMmmIiIiIg0RxOZ4N27d1d2EagaM5YxKCwsBFDaOQ0ozVj4+vrKmJKRUHfuUKizyIaOo8TUM72pO8Ht27cPAHDhwgUZU9ZVMiJAaWc55V8iIkdQ7pipZ3ILDQ0FAMTFxclYYGAgAN3ssCI3N1cuZ2ZmymXlGhwfHy9jW7duBQDUr19fxjp16gQA6N69u4yp79aRdjETTERERESaw0owEREREWkOm0MQlcPZufS3orrJgnJ77/LlyzJ28eJFAKW3+4DS8XpDQkL09qO+RWjoGMqx1bfu1B1DlNuA6mYVERERAIDTp0/LmNJxTt2BxFDzC3aSIyJbGRrXXN0pt1GjRgAAPz8/GVOakBlqDqG+bqWmpsplpZPwqVOnZOzkyZMAgPPnz8uYMnaw0iwCYHMIKsFMMBERERFpjiYywerhVYgsZSwTrMjIyJDLKSkpAHQzs0pmQxkWSL2fvLw8vf2pMxTKsdX7u3btmlxWssLBwcEypgwDlJWVJWNKxxJ1BxNDz4mZYCKylaFMsLpDmzKDpbqjrnqGt7KU6yqgm/VV7napr3+jR48GoDuUpHJdU5fBw8PDnKdCNRwzwURERESkOawEExEREZHmaKI5hHq8QCJLqW/tqZeVZg7qmHLbTj0msL+/PwAgNjZWb1tDzRMMNZtQd4ZTLytNH9TneIcOHQCUdgYBSm8HKuNqEhFVFEPNIe7cuSNjSmdh9QxupjqqqZt2qZufeXp6AgDatGkjY926dQOgO3awck1Vl0FpiqEeg520h5lgIiIiItIcTWSC+/TpU9lFoBpCneFQOlaoh0NTMg3qjKuSpVXPVqRkig1lgtWZCSWLoswMB+h29GzQoAGA0uwHAPTr1w+AbkcTZZkd34jIkZRrjrpzrzIcmvraaWhoNGUbdQc69V22evXqAQB69OghY0pWWH2dVGb1VA9JqVyjmQnWNmaCiYiIiEhzWAkmIiIiIs3RRHMI5ZYJka3UzSGU22jqzhaJiYkAgKSkJBnz8fEBANStW1fGlJmS1Nsqtw2Vzh5A6e27vXv3yph63OJ27doB0O0YojS/UDfJMDUGJxFRRVM3xVI6wambQCgxdbOJ27dv620bGRkpl5UmZkqzMKD0mqqeoU7Zp7qzsLoDMmkXM8FEREREpDma+CmkHoaFyN4iIiLkspKRuHnzpowpmQlDM8GVd24qGQz17EfqTEmrVq0A6A6RpmRXDHU0ISKqytSd15TrnvqaFxgYKJeV655yZw0ovRuXmpoqY8q1V92pjh3iCGAmmIiIiIg0iJVgIiIiItIcTTSHIKpISsc3oHRWuJ07d8rYlStXAOh2llM6axpqsqAeE/PSpUs6+wB0bxc2atQIABASEmJ1+YmIqgr19U0Z3zcvL0/GDDUrU3cCVmaUUzchU67R6uYQRAAzwURERESkQcwEk+YoHdUyMzNlTMkoqIcnM7dDpXqbqKgoALpD8SQnJwMArl69KmNK5jY4OFhvf+oOHSdPngSg2zFE3RFPmXGJw/0QUVWmHuZMPdRkWeqsblZWlt766jtvynVWyf4CQEJCgt7xlBnq1FlkIoCZYCIiIiLSIFaCiYiIiEhzeA+VajTllpihzmZKUwOg9Hab0pwBAJo3bw5A9/Zbefz9/QEAQUFBMqaMW3nx4kUZi46OBmC4OYR6jOHjx48D0O3QoR4TmB09iKi6Ua7LhppFqJtD5OTkANBt7mXoeqzudKxc19XN2WrXrg1Ad7ZNIoCZYCIiIiLSIGaCqUYrLi4GUNo5DQA2b94MAFi0aJGMKcPydOrUScYee+wxAECzZs1kzNzMqzJUGgBcv34dgG7mWRkirXHjxnrbqjvGnT59GgDQokULGVOGRQPY0YOIqgdTneHU1EOk5ebmAtDNBKs7IiuPK9dJANi3bx8AYPjw4TLWtGlTAMwEkz6eEURERESkOawEExEREZHmsDkE1WjKmMDK2JEAkJ2dDQCoU6eOjCmd1i5cuCBjyqxv6ttvSmc5Y5QOHw0bNpQxpTnExo0bZUyZAU7dCURpuqHuGKeUNTw8XMbU5ebtPSKqSdSzaCqd29TNHY4ePSqXd+/eDaB0ZjmgtKmZ+hocFhYGwPwmGaQd/AYlIiIiIs1hJZiIiIiINIfNIajGUZoVAKXTbqqnLK5bty4AoHfv3jL2559/AgAOHTokY7t27QJgeOxgY5TbbcotOQC4du0aAGDt2rUypoxreebMGRnLy8sDoDuShTLdp7oMypTL6uMREdUE6vF9lSniN23aJGO//fabXFau73fffbeMPfHEEwCAJk2ayBibjZExPDOIiIiISHOYCaYaR+lMBgCZmZkAdGdmU2ZzU4/Rq2QK1JlVJTuckpIiYxkZGXJZydIaysaqO3cos8Opx/dNS0sDAPzxxx9626qPoWSt1R3j1Ps2xNRsTEREVZm7u7tcVu6AqcdvV65vQGkmuHv37jKmjAmszigTGcNMMBERERFpDivBRERERKQ5bA5BNY567F2lSUBMTIyMKU0jfHx8ZExpGqFu+nDgwAEApVNzAsDt27flsjKFsnpKT0OUjmwdO3aUscOHD+v8C5SOaRwZGSljHTp00CmzMepbhERE1ZV6KviAgAAApddBoLR5GVDamVg9djqbQZAlmAkmIiIiIs1hJphqHDc3N7ns7+8PQDc74OHhobeNkhVWd0BTMrjqTK+SrQWAoqIivccNUTrQde3aVcaUjLJ6JiRluDQ/Pz8Za9CggV7MXIayw+wsR0TVhXJtVd/JU2eCFRwCjazFM4eIiIiINIeVYCIiIiLSHDaHoBpHPc6kcjtNHTNEaSagbkqhNJFQN59Qd9owt2mBUgZ1hzfllp4yZrF6f+qmG0qHj/I6e6jLwk5yRFSTqK+76mUiWzETTERERESaw0ww1TjqjmrldVpTKB3elCF3gNLsq7pTmqenp1y2tDOGOlurZJnVmeDatWvr/AsAoaGhFh9LOQ4zwkRERMYxE0xEREREmsNKMBERERFpDptDEKF03N7MzEwZM9RkQRnzF7BtbErlOOrZ6Fq1agUAaN68uYypO+pZimMCExERGcdMMBERERFpDjPBRABu3boFoDQjDJTONqfOBKuHKrM0E6zO+t64cQMAkJGRIWOtW7cGUDpLHBEREVUcZoKJiIiISHNYCSYiIiIizWFzCKpxDI2Pa6iTWGFhoVxWmkPk5OTIWFhYGAAgODhYxqzpDJefnw8AuHbtmowpy8r4xABQt25dAEBUVJTFxyAiIiLLMBNMRERERJrDTDDVOOUNDVZQUAAASEtLkzGlg5q7u7uMKUOVRURE2FQeJdt79uxZGUtPTwcABAQEyJhyHGVoNiIiIqo4zAQTERERkeawEkxEREREmsPmEKQ52dnZAICkpCQZUzqvqZsnKB3U1E0kbDneqVOnZEzplBcXFydjgYGBNh2HiIiIzMdMMBERERFpDjPBpDmZmZn/397dtUS9RXEA/o1aDib2ZkYkSSbVTV35dfqQfZQugiisUCIliqIherHs4rD3/P+U2XQ8enI/z42blcwLJLNcrr1WkmRra6vGSrX38uXLNTY9PX0oz1cu3T169KjGyha6siUuSebm5g7l+QCAg6kEAwDQHEkwAADN0Q5Bc8qltJmZ8X//1dXV3tfuv3e3uo1Go3o+e/ZskuT06dM/PEe5aJckOzs7SfpziW/cuJEkuX37do0Nh8NJ3woA8IdUggEAaI4kGACA5miH4EQrbQndmcDPnj1LMl5dnCTfvn1Lknz69KnGtre39/2+ZNy+8LN2iBcvXtTz5uZmkv60iTKF4urVqzU2NeV3UgA4Kj51AQBojkowJ065+JaMK7L379+vsQcPHiTpX3grM3wXFhZqrFSPV1ZWamx9fb2e9/b29n0N3ZnAGxsbSfpV37KNTvUXAI6HT2AAAJojCQYAoDnaIThxuu0Q7969SzJuSUiSx48fJ0m+fPlSY2WGb7c9oVyIO3PmTI3Nz8/X86lTp/Z97nL5LhnPCe6uSL5y5crvvh0A4D+gEgwAQHNUgjlxumPMBoNBkvF2t2Q8nqxbCS6j1Lqxubm53vcn/Qru7OzsD89dKs9lvFqSfPz4MUmytrZWY0tLS7/9fgCAw6cSDABAcyTBAAA0RzsEJ063TeH69etJknv37tXY+/fvk/Tn/H79+jXJz1spui0Q58+fr+dyia60QCTj+cCj0ajGzp07lyRZXl6usW57BgBw9FSCAQBojkowJ8709HQ9lw1w3U1wh+3169f1/PDhwyT9inLZDre4uFhjPxuvBgAcHZVgAACaIwkGAKA52iHgXyrb5pLkyZMnSZLhcFhjKysrSfqb5wCA46USDABAc1SCYQLdsWplu9zOzk6NvXr1Kkly586dGltdXU3iMhwA/J+oBAMA0BxJMAAAzdEOARPozv/d3t5Okrx8+bLGPn/+nKS/Za5cjCsb5gCA4+dTGQCA5qgEwwR2d3fr+fnz50nGFeEkmZ2dTdKvBC8tLe37eN2LdoPB4LBeJgBwAJVgAACaIwkGAKA52iFgAmU2cJJsbGwkSd6+fVtjy8vLSZLFxcVfPk63DQIAOHoqwQAANEclGCYwGo3q+enTp0nGY9GSZH19PUly4cKFo31hAMBEVIIBAGiOJBgAgOZoh4ADfPjwoZ43NzfreWtrK0n/Etzdu3eTJBcvXjyiVwcA/AmVYAAAmiMJBgCgOdoh4ADdiRBv3ryp56mpf36HvHTpUo1du3YtSTIcDn/5mGVFsnnBAHA8VIIBAGiOSjAcoLslrlRwk+TmzZtJkrW1tRqbn5+f6LG7jwcAHB2VYAAAmiMJBgCgOdoh4AALCwv1fOvWrXouq5GtSAaAv49KMAAAzRnsmdEEv63747K7u5ukf7ltZsYfVwDgb6ASDABAcyTBAAA0RzsEAADNUQkGAKA5kmAAAJojCQYAoDmSYAAAmiMJBgCgOZJgAACaIwkGAKA5kmAAAJojCQYAoDmSYAAAmiMJBgCgOZJgAACaIwkGAKA53wEjMWjAZELSJAAAAABJRU5ErkJggg==",
"path": "images_version_6/image_53.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, the straight line a parallel b, then angle 2 = ()
Choices:
A:55°
B:35°
C:125°
D:65°
|
||
266
|
54
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKEAAABLCAAAAAA95biOAAAMVklEQVR4nM2aeVRTdxbHvy+EsIVV2SFsgiK7LOICstQNxFbr0uLWzSl1pq3tTO302MV6js60tZ2letrpZm1Hq1K3tmItIohBMCDIatjDDgaQsIYQ8uaPJPCSvJBFq3PPUd67v/v7/T7v/rb77gshg3FCEkZW1N7aeK/UxUyjiJA90J7uQ3o7y3itu5PV1eT/B6Gkvb22Shi7Oqt3vzoOyTSyzQmebfD9cikGV9bY2CjoDNsWSWB+Treruo2xhDeOeKUk3jceAfBrBd19vpuiAQC+1+oeDCFJDOSu98yqfsIDRi4ZkgAIoLaseXjYJW2xUu1pWrPsgRASyB9dPsvz1OGVxrqRAFBX2CSB07IYphIZYLl0jKuvZuNGub8sfBY4b1zMrUyfrcuF6j6W3wty+AxLl5BoM4DEtEVIm2DuAyHMH10DAKkOf2rcHqnoV/toq5YQQEtuGeEc7B9uqVRACRl6jv9ACNsLV9gAJIH8Vx0zec+zABDQBqhe0nGZx/BZwgmypjNmW7Srq4wi5EmTABC43pVh63fhrR2h+lYk27nXx+elenrbyW81nyqs5q6TqtoYwq6fQketAAxnrrdFQAb3q9AtFnrQSYT5V8eC1nq72ShVNG4Pu9HipKo24kyRZpa5NG6IZuNY9y5rABAcH9vuP3MzsqH+kjxh+GIf+yk8+nkr2x2/QUVhzJnS+dte97KTV9PJmy/J55L365c/WZlso7UC2dd/m9sRsiHQ1oLCRv9IDJ8utf3GcB/KjvbtAcYuZnfvWDdVt+FLmyfn0eN1C2tLmgOTQ9im0Gd7z73yIkelvuGEDQcOugLA3fKI2dPaiVO8pAQ7DeOOlqY7zV5JC7U7WF0mXn06ToXQ8FE+legCAHBaTtWabo38pmFtgIplW11bc4t74l5LA1pvq28ZUtUY7MOG/R+60JdITvAXp0w9cUdFo7DHPi6OdtvTIi3lLb1Cz62eVJ3Bo0y+G/6EibbC/IvOaf4A0FnKF42yF8Xa6dMi5MdRa3HDyJDtwsW2qpPVYMLC4/sdgKaKVFPNrgj0nm5bmiri8sRMq7BoJwOabSsslzGsF8TYKRq6D8JXVq1i4MbLvt+bq7Ip5exJKzcrtn+ElplAK+3XSmEzKzDCQQMPhq+Uq+ZRDMBxiZSkapWNDuVzJSE9Rdt3UDrQ5YCOKzx4hHnPn63NwDDCkfNpjgD8N18gNfoeKMlt8wnymmtddfbf2+3U4emlNadYOifRI8BhWqVRwTDCn2dHEQAwKAOo4ZZMVHq5nRO+3s0VQLRz1tvpi7U1MSXS9msFkuBUjqfdzHZ6EsppREWp9gBUQzqIRTW5fM6SQHvlkc95pvhUzVPsmejEnYUFIxGbvR1toGsm6Ekob+Ocu4ZrhkX8vFqX+Gfs7SlK87iAH/btCNTS9oSoi1c4FrHdz1a+lZP0ZgYSAgAaS5+wkl+ZmTEA4F6voLjKIelFewuGmqnzrpwjcSscNdsY7+2q4A1GvzDXiqVU6VhLhhBeqgyxDzUB0H+L3xwoammrqGIn7HCmbYK1OuybjzdGqJJLOlrqarojnwsxN2CL03s/JIm6z7wnmpLXmgL1B0s56V180/gEZw0ryqQ6l7NkxaypO2l9U0uzcH5ipLq/dfWr944t+Vy8Bx2fJKdgsKazQyCOXu5O3+L0desxrIkAAMgqazu7+uYkLqSrMeM4G0BYcnyXP9B1Yl5P5wAi4zyUDZAEtC5H6YmKBessZKWV3aJRTtICPXsyknD8q5E9GOdV8s1Yc+N81FvRWq3ph3FH8cCkW1yEMXjQ69RTdF/ZnsEtuGthlhDiTykcZrFoEZWKojJhs8Djb6HqegNEXx8Ov1caZWbrG6Iao8r2DW6N0lqHy+22tuWEjN0Y3eZqNKB+oywt4+YLt3r7+akvw9JPH6viPM+iqSK7ea3WqwZ7wwD0Xi6O3GYwmpJQ9yhLKvNuuTsyd25TwZNn/k5sTKk/p/lGLy7llrv5bZ1jcvECEczAbPbN2rbnDInHqDKzDyfH6/MLbSIjnKuzP1SLrEkCaHjvkCuGuJdCtk6/0UtH7hTcdA0NdnNmAaKcX8WO6PNZY8+9sT5Za2w+k8w0ypLhZu5N1qIYFwcz8b7k5TQWB923MAEITtzbMZ8BAGOihsIym5hoJ3vFyJNdAhHL0dsGE1UnXbfQnIL6E5IqfwBxb9etm5KEJa5WLADZFz5haW6tdYf2esmNcy8lL7cc7hcUldgtXeRopfKGIGsiPMwA9H/buinSDIYuF3ofjne0V5eIFyb5yQMEDLy5k27F7vPZopzGXe+z41tLTJYlOLHUVhPJ392x7i1LAJNFJ4LX0p5DBhKON7U3VQ5HrAqY9urxpjdp1iv/092KrbFP0FVR1hvwMl3uvY+3eODNJzcQADDwZX/aIgM3HHXCyTtNgubBgJQQqnLo5dfCaOru42xnAuipb29uZiQ81vet48ogaAxir5UFebngXcXA5/w6f5VGLl1/QrLqTlvPiH+iOs5/RjMs1KsBnQefj8DdCkGX0DQqyRnAxPGqmFQrmk5kRaUvKddx67dkUhyNjT6E1byOEYl7vOaE63j7rQANJXDYIqW6qn/UJCZ2am6VZtqsDte0FJ9fEDDt2/PX567X+mKnnbC6sFnGdItaQLdlHXDabjZlPqW9s8c6QGoeHK0y9YczqyM2aeS4ygfjqKq6M2MpsRSEmYNskpARqM1pZFo7hUXSny8N/9gVpMRT9tJ/veaKQwIn1IvaM0mQBHhZss1B05sXCEDQGK+aoJD+wg3eYqp8Yp2ErblFFi6e/oFaE1Tv+j+l2kF/wbUh33uNO1fQmvf/VhjzNHXHEZVGWfdIVLJFqPh5eIueH91IYu3SOT4BlvJrOgve6Yw5lFvhjbxBT39O4M/de0y01Cm7OPac39Rd2yv1jvD9QG3m3cvNi9msmfqhJdygxRdK2RuwVTk5pSLubwP+oT6uLrh7OGYN1KNrkpD/68vLXpWmrDRSOS6Fg1r8ShKoOTeU4a0X4dF7r81kcCX3D14AIBsT3czpmb/Qb/YsADh5ez9dzKXErD5tvcVNR9cD+b+uTdT84K3RHjPq0DBb+3QdzQ3yAmSigeKC1rDH59rZyCHaqxJYWuJqAgAR7HF2/+ZYC9USNWO7NN/vbqdzNErUhRD+fVOM9uJfit+wFPZWltQviAuxnkrIkee5h3QcXpPl33M2eGopVBIPneGti9WRpCUJ8Wnh69B8TPm9+MDspTU1jfMSY1SyCp1H4lfO3C6Aof/eeTzWCiq7lIaUf+e+UdtzKEFkpf86RksHQHAmK7bDIylWkV8hlH3lZP7THLqlKNMzhe40osrID3Ur42da1CQTHqwG5dubAk3+f0NNd1VR0vLFlPwKIS8b5CbrA4jY4KNfJC7XsqIUYvVCdhZ/te8MFoRM+hkrQ0PNv906OObSyzww9SgUPxf++LE+gABwO2vWal2LofdYT7L2SUMSMiI78wtVZW1hi5h0jFoq+mBjlJKOstgH/zqUMglCV1YNAAHzzu8ddyfpekG5lO+Sru0NgWQCfuaVlHCwmtvIMHcOjTTHZJZplKIjlRQaY969Bt10CmGu7xwgtUf+8k1+dcjZQykaP3BQCCEjJF8P7VHc1VyrsrJ3nRtmCQAtB/5CmeeUPibFegOCZJiYMHWH1bKLN9yepc3akkyAFXB2mA2Af7XYlpPg768IQiU5vtSFSOnFhC5MvT9hpAVefGczJSabnlZMAN7sikX8PK71/E0cr+nnaM776IGDzCBzdl7/8dbO6YU/5RFCRkD8xXUrRIW5usp9Ix/PiSPmmkv89xXBGeGzAZpnqYwAygoWus6ygMpkqzv4kTEv4Pclo9mXlqWxVTnkhKTMZFohnwHS98OffNiAACk4KkufxwAl3UwyAICY3rAIgCAAlAmTHj4gCJ93wg+fGwL1NzAq78uUbfnPiWseLtyUNH9tn0r5QQI5HbKQCu8BAK7KYvEohCTh8y77q/Oj0yq6vA1JjL6Wvkx+9dDYqFKS6bg6SAlD93GDwE/uYYqrRyJR77CPnVPe0H5+Gbi+xO6h4dAJO+Pxko8UvwCjzc59eS/D5lGNsFJ6fhQsWwMto9xSs8TmkY2wUpz/mFrwgRD0PjwsflWvl+3fW9qzy9fH030LaKiKbh2TXz6qkSZIADBbIPm8Np2pGSp3DV4r1D8A/D3FhDGUG/I/V/mmGgM3UlkAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_54.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
Place a ruler and a triangular plate as shown in the figure, angle 1 = 40.0, then the degree of angle 2 is ()
Choices:
A:130°
B:140°
C:120°
D:125°
|
Đặt thước đo và tấm góc như hình vẽ, góc 1 = 40,0 thì số độ của góc 2 là ()
Lựa chọn:
A: 130°
B: 140°
C: 120°
D: 125°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: Place a ruler and a triangular plate as shown in the figure, angle 1 = 40.0, then the degree of angle 2 is ()
Choices:
A:130°
B:140°
C:120°
D:125°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: Place a ruler and a triangular plate as shown in the figure, angle 1 = 40.0, then the degree of angle 2 is ()
Choices:
A:130°
B:140°
C:120°
D:125°
|
Place a ruler and a triangular plate as shown in the figure, angle 1 = 40.0, then the degree of angle 2 is ()
Choices:
A:130°
B:140°
C:120°
D:125°
|
267
|
54
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKEAAABLCAAAAAA95biOAAAMVklEQVR4nM2aeVRTdxbHvy+EsIVV2SFsgiK7LOICstQNxFbr0uLWzSl1pq3tTO302MV6js60tZ2letrpZm1Hq1K3tmItIohBMCDIatjDDgaQsIYQ8uaPJPCSvJBFq3PPUd67v/v7/T7v/rb77gshg3FCEkZW1N7aeK/UxUyjiJA90J7uQ3o7y3itu5PV1eT/B6Gkvb22Shi7Oqt3vzoOyTSyzQmebfD9cikGV9bY2CjoDNsWSWB+Treruo2xhDeOeKUk3jceAfBrBd19vpuiAQC+1+oeDCFJDOSu98yqfsIDRi4ZkgAIoLaseXjYJW2xUu1pWrPsgRASyB9dPsvz1OGVxrqRAFBX2CSB07IYphIZYLl0jKuvZuNGub8sfBY4b1zMrUyfrcuF6j6W3wty+AxLl5BoM4DEtEVIm2DuAyHMH10DAKkOf2rcHqnoV/toq5YQQEtuGeEc7B9uqVRACRl6jv9ACNsLV9gAJIH8Vx0zec+zABDQBqhe0nGZx/BZwgmypjNmW7Srq4wi5EmTABC43pVh63fhrR2h+lYk27nXx+elenrbyW81nyqs5q6TqtoYwq6fQketAAxnrrdFQAb3q9AtFnrQSYT5V8eC1nq72ShVNG4Pu9HipKo24kyRZpa5NG6IZuNY9y5rABAcH9vuP3MzsqH+kjxh+GIf+yk8+nkr2x2/QUVhzJnS+dte97KTV9PJmy/J55L365c/WZlso7UC2dd/m9sRsiHQ1oLCRv9IDJ8utf3GcB/KjvbtAcYuZnfvWDdVt+FLmyfn0eN1C2tLmgOTQ9im0Gd7z73yIkelvuGEDQcOugLA3fKI2dPaiVO8pAQ7DeOOlqY7zV5JC7U7WF0mXn06ToXQ8FE+legCAHBaTtWabo38pmFtgIplW11bc4t74l5LA1pvq28ZUtUY7MOG/R+60JdITvAXp0w9cUdFo7DHPi6OdtvTIi3lLb1Cz62eVJ3Bo0y+G/6EibbC/IvOaf4A0FnKF42yF8Xa6dMi5MdRa3HDyJDtwsW2qpPVYMLC4/sdgKaKVFPNrgj0nm5bmiri8sRMq7BoJwOabSsslzGsF8TYKRq6D8JXVq1i4MbLvt+bq7Ip5exJKzcrtn+ElplAK+3XSmEzKzDCQQMPhq+Uq+ZRDMBxiZSkapWNDuVzJSE9Rdt3UDrQ5YCOKzx4hHnPn63NwDDCkfNpjgD8N18gNfoeKMlt8wnymmtddfbf2+3U4emlNadYOifRI8BhWqVRwTDCn2dHEQAwKAOo4ZZMVHq5nRO+3s0VQLRz1tvpi7U1MSXS9msFkuBUjqfdzHZ6EsppREWp9gBUQzqIRTW5fM6SQHvlkc95pvhUzVPsmejEnYUFIxGbvR1toGsm6Ekob+Ocu4ZrhkX8vFqX+Gfs7SlK87iAH/btCNTS9oSoi1c4FrHdz1a+lZP0ZgYSAgAaS5+wkl+ZmTEA4F6voLjKIelFewuGmqnzrpwjcSscNdsY7+2q4A1GvzDXiqVU6VhLhhBeqgyxDzUB0H+L3xwoammrqGIn7HCmbYK1OuybjzdGqJJLOlrqarojnwsxN2CL03s/JIm6z7wnmpLXmgL1B0s56V180/gEZw0ryqQ6l7NkxaypO2l9U0uzcH5ipLq/dfWr944t+Vy8Bx2fJKdgsKazQyCOXu5O3+L0desxrIkAAMgqazu7+uYkLqSrMeM4G0BYcnyXP9B1Yl5P5wAi4zyUDZAEtC5H6YmKBessZKWV3aJRTtICPXsyknD8q5E9GOdV8s1Yc+N81FvRWq3ph3FH8cCkW1yEMXjQ69RTdF/ZnsEtuGthlhDiTykcZrFoEZWKojJhs8Djb6HqegNEXx8Ov1caZWbrG6Iao8r2DW6N0lqHy+22tuWEjN0Y3eZqNKB+oywt4+YLt3r7+akvw9JPH6viPM+iqSK7ea3WqwZ7wwD0Xi6O3GYwmpJQ9yhLKvNuuTsyd25TwZNn/k5sTKk/p/lGLy7llrv5bZ1jcvECEczAbPbN2rbnDInHqDKzDyfH6/MLbSIjnKuzP1SLrEkCaHjvkCuGuJdCtk6/0UtH7hTcdA0NdnNmAaKcX8WO6PNZY8+9sT5Za2w+k8w0ypLhZu5N1qIYFwcz8b7k5TQWB923MAEITtzbMZ8BAGOihsIym5hoJ3vFyJNdAhHL0dsGE1UnXbfQnIL6E5IqfwBxb9etm5KEJa5WLADZFz5haW6tdYf2esmNcy8lL7cc7hcUldgtXeRopfKGIGsiPMwA9H/buinSDIYuF3ofjne0V5eIFyb5yQMEDLy5k27F7vPZopzGXe+z41tLTJYlOLHUVhPJ392x7i1LAJNFJ4LX0p5DBhKON7U3VQ5HrAqY9urxpjdp1iv/092KrbFP0FVR1hvwMl3uvY+3eODNJzcQADDwZX/aIgM3HHXCyTtNgubBgJQQqnLo5dfCaOru42xnAuipb29uZiQ81vet48ogaAxir5UFebngXcXA5/w6f5VGLl1/QrLqTlvPiH+iOs5/RjMs1KsBnQefj8DdCkGX0DQqyRnAxPGqmFQrmk5kRaUvKddx67dkUhyNjT6E1byOEYl7vOaE63j7rQANJXDYIqW6qn/UJCZ2am6VZtqsDte0FJ9fEDDt2/PX567X+mKnnbC6sFnGdItaQLdlHXDabjZlPqW9s8c6QGoeHK0y9YczqyM2aeS4ygfjqKq6M2MpsRSEmYNskpARqM1pZFo7hUXSny8N/9gVpMRT9tJ/veaKQwIn1IvaM0mQBHhZss1B05sXCEDQGK+aoJD+wg3eYqp8Yp2ErblFFi6e/oFaE1Tv+j+l2kF/wbUh33uNO1fQmvf/VhjzNHXHEZVGWfdIVLJFqPh5eIueH91IYu3SOT4BlvJrOgve6Yw5lFvhjbxBT39O4M/de0y01Cm7OPac39Rd2yv1jvD9QG3m3cvNi9msmfqhJdygxRdK2RuwVTk5pSLubwP+oT6uLrh7OGYN1KNrkpD/68vLXpWmrDRSOS6Fg1r8ShKoOTeU4a0X4dF7r81kcCX3D14AIBsT3czpmb/Qb/YsADh5ez9dzKXErD5tvcVNR9cD+b+uTdT84K3RHjPq0DBb+3QdzQ3yAmSigeKC1rDH59rZyCHaqxJYWuJqAgAR7HF2/+ZYC9USNWO7NN/vbqdzNErUhRD+fVOM9uJfit+wFPZWltQviAuxnkrIkee5h3QcXpPl33M2eGopVBIPneGti9WRpCUJ8Wnh69B8TPm9+MDspTU1jfMSY1SyCp1H4lfO3C6Aof/eeTzWCiq7lIaUf+e+UdtzKEFkpf86RksHQHAmK7bDIylWkV8hlH3lZP7THLqlKNMzhe40osrID3Ur42da1CQTHqwG5dubAk3+f0NNd1VR0vLFlPwKIS8b5CbrA4jY4KNfJC7XsqIUYvVCdhZ/te8MFoRM+hkrQ0PNv906OObSyzww9SgUPxf++LE+gABwO2vWal2LofdYT7L2SUMSMiI78wtVZW1hi5h0jFoq+mBjlJKOstgH/zqUMglCV1YNAAHzzu8ddyfpekG5lO+Sru0NgWQCfuaVlHCwmtvIMHcOjTTHZJZplKIjlRQaY969Bt10CmGu7xwgtUf+8k1+dcjZQykaP3BQCCEjJF8P7VHc1VyrsrJ3nRtmCQAtB/5CmeeUPibFegOCZJiYMHWH1bKLN9yepc3akkyAFXB2mA2Af7XYlpPg768IQiU5vtSFSOnFhC5MvT9hpAVefGczJSabnlZMAN7sikX8PK71/E0cr+nnaM776IGDzCBzdl7/8dbO6YU/5RFCRkD8xXUrRIW5usp9Ix/PiSPmmkv89xXBGeGzAZpnqYwAygoWus6ygMpkqzv4kTEv4Pclo9mXlqWxVTnkhKTMZFohnwHS98OffNiAACk4KkufxwAl3UwyAICY3rAIgCAAlAmTHj4gCJ93wg+fGwL1NzAq78uUbfnPiWseLtyUNH9tn0r5QQI5HbKQCu8BAK7KYvEohCTh8y77q/Oj0yq6vA1JjL6Wvkx+9dDYqFKS6bg6SAlD93GDwE/uYYqrRyJR77CPnVPe0H5+Gbi+xO6h4dAJO+Pxko8UvwCjzc59eS/D5lGNsFJ6fhQsWwMto9xSs8TmkY2wUpz/mFrwgRD0PjwsflWvl+3fW9qzy9fH030LaKiKbh2TXz6qkSZIADBbIPm8Np2pGSp3DV4r1D8A/D3FhDGUG/I/V/mmGgM3UlkAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_54.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
Place a ruler and a triangular plate as shown in the figure, angle 1 = 40.0, then the degree of angle 2 is ()
Choices:
A:130°
B:140°
C:120°
D:125°
|
Đặt thước đo và tấm góc như hình vẽ, góc 1 = 40,0 thì số độ của góc 2 là ()
Lựa chọn:
A: 130°
B: 140°
C: 120°
D: 125°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: Place a ruler and a triangular plate as shown in the figure, angle 1 = 40.0, then the degree of angle 2 is ()
Choices:
A:130°
B:140°
C:120°
D:125°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: Place a ruler and a triangular plate as shown in the figure, angle 1 = 40.0, then the degree of angle 2 is ()
Choices:
A:130°
B:140°
C:120°
D:125°
|
Place a ruler and a triangular plate as shown in the figure, angle 1 = 40.0, then the degree of angle 2 is ()
Choices:
A:130°
B:140°
C:120°
D:125°
|
268
|
54
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAKEAAABLCAAAAAA95biOAAAMVklEQVR4nM2aeVRTdxbHvy+EsIVV2SFsgiK7LOICstQNxFbr0uLWzSl1pq3tTO302MV6js60tZ2letrpZm1Hq1K3tmItIohBMCDIatjDDgaQsIYQ8uaPJPCSvJBFq3PPUd67v/v7/T7v/rb77gshg3FCEkZW1N7aeK/UxUyjiJA90J7uQ3o7y3itu5PV1eT/B6Gkvb22Shi7Oqt3vzoOyTSyzQmebfD9cikGV9bY2CjoDNsWSWB+Treruo2xhDeOeKUk3jceAfBrBd19vpuiAQC+1+oeDCFJDOSu98yqfsIDRi4ZkgAIoLaseXjYJW2xUu1pWrPsgRASyB9dPsvz1OGVxrqRAFBX2CSB07IYphIZYLl0jKuvZuNGub8sfBY4b1zMrUyfrcuF6j6W3wty+AxLl5BoM4DEtEVIm2DuAyHMH10DAKkOf2rcHqnoV/toq5YQQEtuGeEc7B9uqVRACRl6jv9ACNsLV9gAJIH8Vx0zec+zABDQBqhe0nGZx/BZwgmypjNmW7Srq4wi5EmTABC43pVh63fhrR2h+lYk27nXx+elenrbyW81nyqs5q6TqtoYwq6fQketAAxnrrdFQAb3q9AtFnrQSYT5V8eC1nq72ShVNG4Pu9HipKo24kyRZpa5NG6IZuNY9y5rABAcH9vuP3MzsqH+kjxh+GIf+yk8+nkr2x2/QUVhzJnS+dte97KTV9PJmy/J55L365c/WZlso7UC2dd/m9sRsiHQ1oLCRv9IDJ8utf3GcB/KjvbtAcYuZnfvWDdVt+FLmyfn0eN1C2tLmgOTQ9im0Gd7z73yIkelvuGEDQcOugLA3fKI2dPaiVO8pAQ7DeOOlqY7zV5JC7U7WF0mXn06ToXQ8FE+legCAHBaTtWabo38pmFtgIplW11bc4t74l5LA1pvq28ZUtUY7MOG/R+60JdITvAXp0w9cUdFo7DHPi6OdtvTIi3lLb1Cz62eVJ3Bo0y+G/6EibbC/IvOaf4A0FnKF42yF8Xa6dMi5MdRa3HDyJDtwsW2qpPVYMLC4/sdgKaKVFPNrgj0nm5bmiri8sRMq7BoJwOabSsslzGsF8TYKRq6D8JXVq1i4MbLvt+bq7Ip5exJKzcrtn+ElplAK+3XSmEzKzDCQQMPhq+Uq+ZRDMBxiZSkapWNDuVzJSE9Rdt3UDrQ5YCOKzx4hHnPn63NwDDCkfNpjgD8N18gNfoeKMlt8wnymmtddfbf2+3U4emlNadYOifRI8BhWqVRwTDCn2dHEQAwKAOo4ZZMVHq5nRO+3s0VQLRz1tvpi7U1MSXS9msFkuBUjqfdzHZ6EsppREWp9gBUQzqIRTW5fM6SQHvlkc95pvhUzVPsmejEnYUFIxGbvR1toGsm6Ekob+Ocu4ZrhkX8vFqX+Gfs7SlK87iAH/btCNTS9oSoi1c4FrHdz1a+lZP0ZgYSAgAaS5+wkl+ZmTEA4F6voLjKIelFewuGmqnzrpwjcSscNdsY7+2q4A1GvzDXiqVU6VhLhhBeqgyxDzUB0H+L3xwoammrqGIn7HCmbYK1OuybjzdGqJJLOlrqarojnwsxN2CL03s/JIm6z7wnmpLXmgL1B0s56V180/gEZw0ryqQ6l7NkxaypO2l9U0uzcH5ipLq/dfWr944t+Vy8Bx2fJKdgsKazQyCOXu5O3+L0desxrIkAAMgqazu7+uYkLqSrMeM4G0BYcnyXP9B1Yl5P5wAi4zyUDZAEtC5H6YmKBessZKWV3aJRTtICPXsyknD8q5E9GOdV8s1Yc+N81FvRWq3ph3FH8cCkW1yEMXjQ69RTdF/ZnsEtuGthlhDiTykcZrFoEZWKojJhs8Djb6HqegNEXx8Ov1caZWbrG6Iao8r2DW6N0lqHy+22tuWEjN0Y3eZqNKB+oywt4+YLt3r7+akvw9JPH6viPM+iqSK7ea3WqwZ7wwD0Xi6O3GYwmpJQ9yhLKvNuuTsyd25TwZNn/k5sTKk/p/lGLy7llrv5bZ1jcvECEczAbPbN2rbnDInHqDKzDyfH6/MLbSIjnKuzP1SLrEkCaHjvkCuGuJdCtk6/0UtH7hTcdA0NdnNmAaKcX8WO6PNZY8+9sT5Za2w+k8w0ypLhZu5N1qIYFwcz8b7k5TQWB923MAEITtzbMZ8BAGOihsIym5hoJ3vFyJNdAhHL0dsGE1UnXbfQnIL6E5IqfwBxb9etm5KEJa5WLADZFz5haW6tdYf2esmNcy8lL7cc7hcUldgtXeRopfKGIGsiPMwA9H/buinSDIYuF3ofjne0V5eIFyb5yQMEDLy5k27F7vPZopzGXe+z41tLTJYlOLHUVhPJ392x7i1LAJNFJ4LX0p5DBhKON7U3VQ5HrAqY9urxpjdp1iv/092KrbFP0FVR1hvwMl3uvY+3eODNJzcQADDwZX/aIgM3HHXCyTtNgubBgJQQqnLo5dfCaOru42xnAuipb29uZiQ81vet48ogaAxir5UFebngXcXA5/w6f5VGLl1/QrLqTlvPiH+iOs5/RjMs1KsBnQefj8DdCkGX0DQqyRnAxPGqmFQrmk5kRaUvKddx67dkUhyNjT6E1byOEYl7vOaE63j7rQANJXDYIqW6qn/UJCZ2am6VZtqsDte0FJ9fEDDt2/PX567X+mKnnbC6sFnGdItaQLdlHXDabjZlPqW9s8c6QGoeHK0y9YczqyM2aeS4ygfjqKq6M2MpsRSEmYNskpARqM1pZFo7hUXSny8N/9gVpMRT9tJ/veaKQwIn1IvaM0mQBHhZss1B05sXCEDQGK+aoJD+wg3eYqp8Yp2ErblFFi6e/oFaE1Tv+j+l2kF/wbUh33uNO1fQmvf/VhjzNHXHEZVGWfdIVLJFqPh5eIueH91IYu3SOT4BlvJrOgve6Yw5lFvhjbxBT39O4M/de0y01Cm7OPac39Rd2yv1jvD9QG3m3cvNi9msmfqhJdygxRdK2RuwVTk5pSLubwP+oT6uLrh7OGYN1KNrkpD/68vLXpWmrDRSOS6Fg1r8ShKoOTeU4a0X4dF7r81kcCX3D14AIBsT3czpmb/Qb/YsADh5ez9dzKXErD5tvcVNR9cD+b+uTdT84K3RHjPq0DBb+3QdzQ3yAmSigeKC1rDH59rZyCHaqxJYWuJqAgAR7HF2/+ZYC9USNWO7NN/vbqdzNErUhRD+fVOM9uJfit+wFPZWltQviAuxnkrIkee5h3QcXpPl33M2eGopVBIPneGti9WRpCUJ8Wnh69B8TPm9+MDspTU1jfMSY1SyCp1H4lfO3C6Aof/eeTzWCiq7lIaUf+e+UdtzKEFkpf86RksHQHAmK7bDIylWkV8hlH3lZP7THLqlKNMzhe40osrID3Ur42da1CQTHqwG5dubAk3+f0NNd1VR0vLFlPwKIS8b5CbrA4jY4KNfJC7XsqIUYvVCdhZ/te8MFoRM+hkrQ0PNv906OObSyzww9SgUPxf++LE+gABwO2vWal2LofdYT7L2SUMSMiI78wtVZW1hi5h0jFoq+mBjlJKOstgH/zqUMglCV1YNAAHzzu8ddyfpekG5lO+Sru0NgWQCfuaVlHCwmtvIMHcOjTTHZJZplKIjlRQaY969Bt10CmGu7xwgtUf+8k1+dcjZQykaP3BQCCEjJF8P7VHc1VyrsrJ3nRtmCQAtB/5CmeeUPibFegOCZJiYMHWH1bKLN9yepc3akkyAFXB2mA2Af7XYlpPg768IQiU5vtSFSOnFhC5MvT9hpAVefGczJSabnlZMAN7sikX8PK71/E0cr+nnaM776IGDzCBzdl7/8dbO6YU/5RFCRkD8xXUrRIW5usp9Ix/PiSPmmkv89xXBGeGzAZpnqYwAygoWus6ygMpkqzv4kTEv4Pclo9mXlqWxVTnkhKTMZFohnwHS98OffNiAACk4KkufxwAl3UwyAICY3rAIgCAAlAmTHj4gCJ93wg+fGwL1NzAq78uUbfnPiWseLtyUNH9tn0r5QQI5HbKQCu8BAK7KYvEohCTh8y77q/Oj0yq6vA1JjL6Wvkx+9dDYqFKS6bg6SAlD93GDwE/uYYqrRyJR77CPnVPe0H5+Gbi+xO6h4dAJO+Pxko8UvwCjzc59eS/D5lGNsFJ6fhQsWwMto9xSs8TmkY2wUpz/mFrwgRD0PjwsflWvl+3fW9qzy9fH030LaKiKbh2TXz6qkSZIADBbIPm8Np2pGSp3DV4r1D8A/D3FhDGUG/I/V/mmGgM3UlkAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_54.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
angle 1 = 40.0, then the degree of angle 2 is ()
Choices:
A:130°
B:140°
C:120°
D:125°
|
Góc 1 bằng 40°, thì số đo của góc 2 là ()
Lựa chọn:
A: 130°
B: 140°
C: 120°
D: 125°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: angle 1 = 40.0, then the degree of angle 2 is ()
Choices:
A:130°
B:140°
C:120°
D:125°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: angle 1 = 40.0, then the degree of angle 2 is ()
Choices:
A:130°
B:140°
C:120°
D:125°
|
angle 1 = 40.0, then the degree of angle 2 is ()
Choices:
A:130°
B:140°
C:120°
D:125°
|
269
|
54
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAVQAAACqCAYAAADyfbdoAABKRElEQVR4nO29eXSj93nf+wVA7Pu+ExsBcEgOhzOaXSPLY0m25WMnVnLUxo197DZ2GvXk3OvcG/e2adQ6tRv7pD2ndtIsreJj39q3dpbrpVKu5DqW5JGl2RfuBBcQBIiN2PcduH/I7y/kiJwhZzAkMPP7nMOjEfESePEuz/v8nu3L6nQ6HVAoFArlvmEf9A5QKBTKwwI1qBQKhdIlqEGlUCiULkENKoVCoXQJalApFAqlS1CDSqFQKF2CGlQKhULpEtSgUigUSpegBpVCoVC6BDWoFAqF0iWoQaVQKJQuQQ0qhUKhdAlqUCkUCqVLUINKoVAoXYIaVAqFQukS1KBSKBRKl6AGlUKhULoENaibyV/AF08NY/iffA+BHTdqYGP2B/j6Zz6E4eFhDA9/CJ/5+g8wu9HYYfsqVl/7Q/zKKWbb17BafSB7T6FQDhhqUAl5XPjyJ/EHV3zwBYtobbtNGm/8y0MYHPs0voeP4N/+8R/jj7/6PGTf+zTGBg/hX76Rvm37Bq784RhOfY2F/+3/fhNvvvZH+OXw7+HIR/4SizvZXwqF0r90KJ1Op9OpX/5ix8o/3zn/ODp4/KXO8jbbrH/v4x0+rJ3Pv5667ZVU5/XPWzvgf6rz8uaXYt/rfFz7bzrv1Ldu+/1/zO984Wdd/woUCuWAoR4qADSm8PXPfhGDX/sL/OsTO200h//3P/wQ+I3/ij84r7rtNRXO/8F/xW/g2/i978z9w68rZeQcFqi5W7dVGGtobO8CUyiUPoYaVDSw+I1/gS/gP+LPfsODgZ02m/r/8GfTfLzw609Dtt3rsqfxj38DmP7rd7DC/M7+PvwT7h/ij14JgVnhV+f+Al/6xsdx2tPlr0GhUA6cR96gNha/gX/2QhBf/Mv/HePcnbfLB6fgw1mMO3baiAvn0ceBty9gPs/8zoVPf///gfM/jEJtGcbwkA6697+Kj//sG/jH5i5/EQqFcuDs6JA9GqzgO7/1eQS/8L/wOyfvYE0BJGJ+ACdgt++8jct1AsBVxBIA48ZydU/g9y7m8X9kYsjW+FAYlBB0ae8pFEpv0bMGtdPpPPDPWPnm5/DCO/8If/M3T0Da6aAD4N1P7aDzi/9nWJt9G8CJ9/x+Cx0AuIbF9Q46zq0v8RV66AHgTn9/ADDHmcViHfCeUPaL7c755n+3220Ui0VUq1W0220IhUJIJBKw2fu/oO2367JnDeoDJ/xX+MK/eAfPfmsZH709x3Rf9FfCqd8uWMq9w5zr7c55q9VCvV5HoVBAIpFAOBxGIpFApVKBzWbD2NgY1Go1eDzevjg7/UrPG9QHc8On8crvfQavnv1zzP6aBZs/4ReXHFgs1ja/x3t+v4V/2AjUTlF6lU6ns8UolstlZLNZ5HI5xGIxBINBBAIBBINBRKNRTExMgMfj4ejRo+DxePvyEO5Xo93zBvVBkP7Ji/hn3z6Or/k+Cdcu/0Zt9u5yy8cxOrj1N6+88go+/OEPY2DgkTzclB6i1WqhUCigWCwim81iY2MD6+vrWF9fx8bGBjgcDvR6PcbGxjA+Po5bt26hVqthenoabrcbMtm2NS6UX/Do3eHpn+DFX/8zGP7jJH7Dc+dE1GZkahOAADbiwLvB0PcSCEwC0EIq+Yfffetb38I//af/FJ/5zGfwzW9+8372vOs0m01Uq+/2wXK5XPD5/APeI0q3aTQaqNfrqNVqKJfLyGQy2NjYwMbGBrLZLMrlMsrlMur1OkQiEZRKJZxOJ44ePQo+n49Op4PZ2VnE43Hk83mYTKaD/ko9zSNnUAM/+gr+LMGH9i/+EQ7/5XtfL0YA1H8PHxr+TxjAMXzxtf+BX7MD9tEnocWfYmENOxrU4Pw7gPfLOLTp9Q9/+MOw2+341re+Ba/Xi3/1r/7VA/hW90Y2m8Xq6io4HA7UajWsVuuBJB4oe2c3ycRGo4F4PI5EIkGMKPMTj8fR6XRgt9vh8XgwPDwMh8MBuVyOTqeDgYEBFItFGAwGrK+vI5lMIp/Po1qtQiCgdSo78cgZVNW5L+HHPy7t+PqtP/4Q/q/l5/Hv/viXoYcYDiZhdfR9+HX+F/HdC1P4dyfH3/uHjYv4X9+qQfubj+PQpl8bDAa8/PLLOHPmDF588UWMjY3hox/9aFe/017pdDpIp9O4efMmLly4gIGBATidThw7dgxOpxNCofBA94/yXjqdzo5ZeYbNsdB8Po9MJoNYLIZYLIZcLgc2mw2ZTAaPx4MTJ05AJpNBLpdDo9FAq9W+ZznP5/Oh1Wohl8uRSCSQSqWQyWRgMBhoMnMHHjmDKnM/jg+6d36d+yqA7FGc/eAHt8ZXuefwiX9txdf+6L/iJ//sT/HMbZUB4e//Ef5T4jD+6J+cwe2BhLGxMXz729/Gc889h0984hO4ePEixsbGuvOF7oFGo4HV1VXMzc3B7/dDJBKBw+FgYGAAzWYTLpcLAoGAxnx7iNsNWKfTQaPRQKPRQKfTQbVaRSQSQTQaRSwWQzqdRqlUIst9FosFpVIJh8OBkZERDA0Ngcu9c8iLzWZDrVZDoVCAxWIhkUggmUzCYDA8yK/a19A7ZtdwcfJ3voMvfONJfOxpMX74P/413j+shKCawcKr/wYf/fSrOPvSFF4Y2f6vP/7xj+NLX/oSXnzxRTz33HO4ePEiNBrNvuz57cvDUqmEmZkZFAoFPP744zAYDGi325idnUUgEIDL5cKxY8dgs9l2vOlo/Wr32csxLZVKiEQiCIVCiMfjyGQyKBQKyOfzKJVK4HK50Ol0xHiaTCaw2WwMDAxAIBDc1ZgCAIfDgUqlIp7rxsYGEonE/X3JhxxqUPeC7H34o1s34Pk/P4V/dOg/osD8XjqKz3zjBv781z3v8U438/u///vw+Xz4zne+g+effx4/+clP9s0LZG7SQqGAQCCA9fV1cDgcHDt2DGazGZVKBa1WC8FgEIuLi6hUKojH43A6ndDpdOBwOPuyn486OxnTfD6PdDqNQqGAcrmMVCpFYqOFQgGdTgcymQyDg4OQSqUQi8VQqVSwWCwwm83bJhxvDyNsB5vNhlgshkAgIGGEdrtNr4cdoAb1Ns782yiiTTHUO22gOorPfnMGn/3zDGLZGsARQ62V3tGQbuall17C8vIy3nzzTbzwwgt46aWXurTnO7P5ponH41hYWECpVCIJCZXq3fiFRqPBzZs3cf36dczOziIajaJQKGB8fJxmd/cB5jx1Oh20223y+3Q6jfX1dSwtLWF9fR3pdBrNZhMsFgtsNhsikQhqtRoulwtutxv2O/VH/4K91HlKJBIolUqsr6+jUCigWq1CLBbv+fs9ClCDehsCpQG7ihAJlLiXUJJAIMAPfvADHD16FH/5l3+J0dFRfP7zn9/7G90D7XabFG7LZDJYLBZIpVLyukKhwIkTJzA4OIjJyUkEg0HcunUL0WgUHo8H4+PjZHsWi9W3xdfbsRtvrRufAdx9SZ/P57GysoK1tTUkk0mUSiXUajVUKhW0220IBAJoNBqYzWZyDvl8PsRiMSQSyR3f+15grpVkMolKpYJUKgUulwsej9f1z+p3qEE9AJjM//nz5/GFL3wBY2NjePrppx/oZ7ZaLWxsbCAUCiGTyWB8fBwul2tLLI3JAstkMvB4PEgkEvh8PkxOTsLn86FYLMLr9UKv10MoFD408dP9ejDs1PJZLBZRKBRQqVRQKBSQTqextraGSCSCfD4PDocDmUwGvV4PhUIBmUwGnU4Hk8kEs3n7sWWbv9P9nieFQgGr1YqFhQUUCgXEYjFyjVC2Qg3qAXH8+HG89NJL+MQnPoHnn38eFy9exPDw8AP7vEqlgoWFBYRCIXA4HIyMjMDt3rncwWazQalUQqlUYmZmBhcuXEAymcTZs2dx5swZuFyuXd1Qmz2/fklk7Ye3ynxOOp3G0tIS5ufn4ff7USgUMDAwAJFIBJlMhqGhIWg0GphMJtjtdiiVSgwMDNy1Xvhu+7+X78d4qFwuF+l0GtFoFGazGQqFYtfv8ahADeoB8mu/9mtYWFjAH/zBH5DM/4O6SBOJBObn59FsNuH1emEwGN6TWLjd4DWbTYRCIWi1Wpw5cwZWqxW5XA6vv/46lpeXMTw8fEejvPm9bv93L3H7fj3I/YzFYggEAohEIshkMqhWq6hWq6jX6xAIBJDJZFAoFDCbzdDr9STBJBaLoVAoDqzxQiwWg8fjoVarIZlMkg47ylaoQT1gvvjFL2J2dhZ/+7d/i+effx6vvvpq1zP/uVwO4XAYwWAQJpMJExMTkMvl22672ZiEQiHMzc3BZrPB6XRCKpVidXUV8/PzSKVSKJVKEAgEUKvV4PP5NPN7G81mE7VaDY1GA5VKBblcDsFgED6fD2tra8jn8xAIBNBqtTAajdDpdFCpVFAqlTCZTFAqlQf9FQhcLpcs8/P5PMrl8kHvUk9CDWoP8M1vfhPLy8v4+7//e/zO7/wO/uRP/qSr7x+Px7G2toZarQaj0YjR0dFtjR9jTNvtNiKRCHw+H5LJJCYmJnDq1Cnw+XzYbDZYLBZMTk5ienoaCwsLOHXqFI4fPw6tVtvV/e5nms0motEofD4fFhYWEAwGUalUwOfzoVKp4HK5SEhFp9NBq9WS5BKLxbpjneh+hSQ2w2KxYDKZSMNANptFrVYj06cOYp96EWpQewCJRIKXX34ZJ06cwH/5L/8FR44cwWc/+9muvHe9XsfCwgLm5+fB4/GgVqvv6kk2Gg3cvHkTgUAAg4ODGBwcJMXdRqMRPB4PAwMDWFxcRDAYxNzcHPL5PCnZYcqwHiWq1SqSySTplWfaP4vFIorFIng8HqRSKbRaLaxWKwwGA1QqFUQiESQSCUQiUU8bJDabDZPJhFgshkQigXQ6jWw2C41GQ1cmm6AGtUewWCz4wQ9+gPPnz+OFF17A0NAQ3v/+99/XezabTSQSCfh8PgQCAXi9744gLBaLEAqFYLPZ297EmUwGU1NTqFQqeOaZZ2C1Wre8rlarcfLkSdjtdszPz+PKlSu4ePEi1tfXceLECRw/fhwCgeChHbTC1Im2Wi00Gg2Uy2Ukk0ksLi5ibm4Oy8vLKJfLEIvFsNvtcDqdsFqt0Gg0UCqVkMvl91UlcRCGl8ViwWg0QqPRoFqtkr5+pVIJDofT0w+D/YQa1B7i9OnTeOmll/CpT32KZP6Hhobu+f1yuRx8Ph9KpRJEIhEA4NKlS5icnMRjjz0Gr9cLnU635WaIRCK4ceMG6vU6jEYjXC7XtvFWDocDnU4HoVAIrVZLMtVvvvkmlpeX91QJ0E80m02Uy2WEw2Gsrq5icXER8Xgc1WoVUqkUcrkcZ8+ehVwuh1KphEqlglqthlwuB4/HA5fL3VOMvFeW0mw2m4QoGo0G0uk00un0rpoIHiWoQe0xPvnJT2J2dhZf/epX8bGPfQxXr16952LtaDSKyclJiEQiHDt2DGq1GtFoFJFIBLdu3SI3hMVigVKpBJvNht/vx9TUFBQKBbxeLzQazY4GgMPhQKFQEOMBAMvLywgGg+BwOMhms3A6nVAqlX1pWBkvtFKpIJ/PI5lMIpPJIJfLIZPJkPZPZqSdwWCA0+mEw+GAWq0mmfGHaUkskUggFApRrVaRzWbRavWR3s8+QA1qD/KlL30JMzMzeOWVV/D888/j5Zdf3rNXUyqVEAgEMD09jQ984AM4f/485HI50uk05ufn8fOf/xzz8/PQ6XR4/PHHMTIygna7jZWVFUQiETz99NM4dOjQroZOMwmLj3zkI/D7/bh16xauXbuGubk5nDlzBuPj4xgcHOyr6VWVSgWlUgnlchmRSAQrKyskuVQqlaDX6+FyufDEE0+Q5bxIJIJQKNwiE7KTd7nbmtxe8E43w+fzodfryajAWq1G21A30T9X+CPEwMAAvvvd7+LMmTN47bXX8OKLL+IrX/nKrv+eMYzhcBgSiYQMyADebX3l8XiQyWSkHvLWrVu4ceMGaW10u92kVnW3NzSbzYZAIIDD4QCfz4dMJsPq6iomJycRjUbhdrsxOjoKvV7fk7HVSqVCROqSySSCwSARqmu1WuDxeFCpVLBarRCLxdBoNNDpdKR7aa8x0V4zlLtFLBbDarVieXkZqVQK+Xwecrn8ofLC7wdqUHsUJvN/5swZfPWrX4XX68VnPvOZXf1tqVTC7OwsUqkURkZGYLFYyGsDAwMwGAwwGAzweDy4desWbt68ieXlZSSTSYyNjeHYsWOwWq33dJMIhUK4XC6YTCZMT0/jjTfeQDAYRLFYRKvVgtvthtFoBJ/PPzDD2mq1yHK+2Wwim80ilUohl8shnU4jmUwiFoshmUyiUChApVLBYDBgdHQUTqcTBoPhrt52v3SF7RWJRAKXy4X19XUS9lCr1VtmQjzKsDo9OuHiYb0g98rPf/5znD9/HgDwxhtv4Ny5c3fcvtFoIBAI4Bvf+Ab4fD4+8YlPwGazbTuFv91uo1KpIJ1OIxKJwO/3kxmaGo1mVzMzd6LT6aBeryOXy+HWrVuYnp5GLBaD2WzG8ePH4fV6D6Rutd1uI5vNIpvNIp1OI5FIEJG6SCSCTqcDjUYDh8MBh8MBi8VCPFA+n09Kxh5l6vU6vv3tb2Nubg7PPPMMjhw5AqPR2NXP6Nf7/9G+MvqAc+fO4c///M/xuc99jmT+75RZjUajmJ6eBgCYzWYMDg7uKGnCzLoUi8VQq9UwGAwQCASkX/x+YLFY4PP50Ol0GB8fB4/Hw8LCAjKZDC5fvoxUKoWhoSEyv/NBUa/XiRBdtVpFOp1GLBZDJBJBNpslY/CkUilGR0chkUig0WhgtVphsVig1+8gIPYIwnj0xWKRJOSy2SxtQ90ENah9wGc/+1nMzs7ia1/7Gp577jm89dZbO2b+maSQ1WrF2NjYrvWhRCIRbDZbN3ebYDAYoNPp4PF4cPHiRVy+fJl4iM1mEzabrSszDBi9eabUqFKpkOU7M9WeKfdJJBJot9vQarXweDwYGRmBx+PZsSX3UYSpt2WxWGg2m0in00ilUkQpgBlKTvkH6JK/T2g2m/jYxz6G1157DR//+Mfxgx/8YMvrnU4HlUoFf/3Xf40LFy7gV3/1V3Hq1Kl9k1nZDc1mE5lMBuvr65iamkI0GgWHw4HT6cTo6Cg8Hs99xVXr9ToxoIzhZDxSRqROqVTCYrHAZDJBo9FALBZDKpWSH8q7tFqtLcdyc3w5mUwil8tBq9Xi2WefxcjISNfnDvTr/U8Nah9RLBZx4sQJLCws4Pd///fxpS99ibz2d3/3d/jt3/5t/Oqv/ioA4NOf/jQOHz58ULt6V6anpzE9PQ2/3w8OhwOLxYIjR47AbDZDKpXuqm61Wq2iXC4TzfnNy/l0Oo16vY6BgQEiiyyRSGAymeB0OjE0NPRAhjH3K/V6HaVSCdVqFbVaDdlsFvF4HKFQCOl0GpVKhXTWDQwMQKVSwWaz4fDhw9BoNF2vM+7X+58u+fuIzT3/X/7yl+H1evHJT34SAHD9+nUEAgHMzMzgt37rt3pemfLw4cMwmUyYmZnB9evXMTk5iXA4jNHRUUxMTMBgMNwxKVYqlRCNRok+VjKZJLHSer0ODocDjUYDj8cDt9sNs9kMkUhEYsO9WLrVLbYbLn2njqtarYZ4PA6/349QKIREIoFKpUJqcVksFmQyGWw2G9xuN1wuF2QyGbhcLjmOvdLRddBQg9pnDA0N4W/+5m/w7LPP4nOf+xyGh4cxOjpKYn/pdBrj4+Pv0VgH3q0ASCQSKBQKMJvNB+6hqdVqjI6OQiqVwu/3w+/3Y3Z2FslkEsPDw/B4PFCr31X3qtfrRCY5kUigWCwin88jl8uhWCyi0+lAqVRicHAQGo0GUqkUCoUCKpUKKpXqkSo+32760+Z/V6tVEldmSsOKxSIRAWw2m1AoFHA6neRYMrpSarV62+V9jy509x1qUPuQp59+Gn/yJ3+CF154AR/72MfwV3/1V8RTSKfTsFqtW7w7plRoeXkZfr8f9XodH/jABw7MoG5ezmk0GpJVFwqFWFhYwPLyMvL5PPL5PMbHx8HlcpFKpbC0tEQ6udrtNng8HkQiERk4YrFYYLfbYbVayeyCR5XNnmm9Xke9Xkez2USpVEIqlcLa2hpp7Gg2mxAIBBAIBJDL5ZBIJDCbzbDb7XA4HAf+4O0naAy1j3nhhRfwF3/xF3A6nfilX/ol/Lf/9t8AvLsc3kw8HsfFixfx7W9/G+l0GocOHcJv//ZvY2RkpKv7041ztrS0hMuXL+Pq1ask8aFUKiESidBoNNBoNMBms6FWq0lZGOOBDgwMgMvlgsvl0uvmF5RKJTLEZXV1FblcDsC754rD4YDL5UKlUsFsNsNms5EWWuY4bm6jZeglQcNeg3qofcabb76JsbExaDQafP3rX8fc3BwuXLiAV199FXa7HXNzc1hfX9/SHdVut0nSoVgsolqtPrByl3u5AQqFAlKpFAqFAkKhEFKpFJnq5Pf70Ww2IZVKSRjAZrNBIpFALpdDo9FAIBA8gG/Sn2SzWWxsbJDMfKlUItUO2WyWxEM1Gg2ZgsWERrRa7a49exoz3R5qUPuIW7du4fz58xgYGMDTTz+NX/qlX8I//+f/HDMzM/D5fORmmJmZ2WJQmf7rkydPIhgMQqVSPZDe693cYExtY6fTQavVIkZzYWEBPp+PiNQZjUaYTCZkMhmsrKygUChAIBBgaGgIx44du+997VcPaDPMsQTejY/n83mSmFxaWkIymcTAwADkcjm0Wi3cbjfUajUR/dPpdPccGunn4/YgoUv+PqLZbOLFF1/Ed77zHayvrwMAeDwedDod+X8A+M//+T/j85//PPn/TqeDRCKByclJXLt2Dfl8Hp/61Ke2LPn3y+PIZDJYW1vD0tIS1tfXkc1myffgcrmQSCRkOS+Xy9HpdBAOhxEIBBCNRiGXyzEyMoITJ070VI3tQRCLxbC4uIhAIIBYLIZKpYJOp0OW60KhEHK5HAaDAUajkbTQMq/18kjFfr3/qYfaRwwMDOArX/kK/v2///f4u7/7O3z961/H22+/vcWYAoDP59vy/ywWCwqFAnq9HnK5HMVicV/2l0mCMNn4fD6PdDqNjY0NovrZbDaJx2Q2m6FSqchSXi6Xg81mw+12Y3V1FZcuXSKttY1GA263GyaTCTKZrO9uvL1Sr9eJpEqhUEAul0MikUA4HEY8HkehUACHw4FarSYSK8zQEpVKBYVCQSdC7QPUoPYhTInQr/zKr+D06dPgcDi4ePEiLly4gGaziZmZmff8DTOopFQqbVviwpTaMP++XxqNBpLJJFZWVjA1NYXFxUWk02niUVssFoyNjUGr1RKlT2YQNeMtM/shFArhdruhUCjg8/kwPT2N119/Hbdu3cJTTz2F0dHRh1ojvlKpIBaLYX5+HvPz81hZWUGpVIJQKCSVDXq9nqgDqFSqLc0Rm48l5cFCDWoPsdtld61Ww8LCApLJJLxeL86dO4cvf/nLWF9fx/e+9z38+Mc/3vH9N//3du7npqvVakilUkSuOhqNkvpQ4F3NLLfbTRIiZrOZTLVnpjgxHtR2+8HlcqHX6zEwMACpVAqlUoloNIqf/exnCAaDGB0dxfDwcE8vY3dDp9NBsVhELBYjU7BSqRTK5TJYLBbYbDYcDgfEYjGUSiWRn1YqlRAKhRAIBEQ5lbL/UIPaY9zNqNbrdUSjUcTjcXA4HHg8HhJLtFgs+N3f/V387u/+7rZ/242bjBk+0mq1UK1WUSgUiKzwxsYGgsEg1tbWsLGxAQ6HA6PRCI/Hg6GhIRgMBiKVfC+1jYyOlUajgcFgwNTUFC5evIj5+XlUKhWwWCxYrVZIJJK+GLHXbrdJBQbTlVQoFMi8g2AwiFAohFKpRIZ3O51OUt7EiP3dqcqhX2OR/UrvX3WPELu56IPBIK5duwYWiwW73Q6Px7NtV9SDoN1uE5XPjY0N+P1+zM3NYW1tDfl8HmKxGAaDASMjI3j66aeJB6pSqSCRSMDhcMBms++77ZPNZsNoNEIqlcLlcuHWrVtYXFyE3+/HyMgInnjiCRiNxp42qs1mk2hVhUIhLC8vw+fzYWNjY0tc+cknnyRhEZlMBqlUSlpod1KtBWjn0kHRu1cc5T00m02sra3B7/dDpVKR1sDdwGazSaE2l8vdVYKi2Wyi2WyiWq0il8shFothY2MDyWQSxWIRlUoFjUYDWq0WZrOZTHKy2WwwGAyQyWTEiHYbDodDunqY2auMXHa1WsXw8DDsdjt0Ot2BG9ZOp4NGo0EkVlKpFDmWuVwO1WoV9XodXC6XSKwYjUYiXcM8mPaSVOp2TJyyO6hB7RMajQai0Sj8fj9isRgcDge0Wi3a7fauDNbmm2vzzXb768C7o9uKxSLpl2emOAUCAaytrSGdTkMoFJJpQx6PB0ajkehV7Wc2mQl7mM1mmM1mXLp0CVevXiXDj5nE127nwnYD5li2Wi00Gg0Ui0XkcjnkcjlsbGwgFArB7/cjHo8TuW6PxwOPx4PBwUHodDrw+XwMDAzclzGkhnT/oQa1T6hWq5iZmcHU1BRWVlZgt9sRi8UgEomg1+vvOJmp0+kgm81ibW0Na2trKBaLyGazW4xxrVZDPp9HoVBAOp1GKBTC2toa1tfXUavVIBKJYDAYcPr0aeh0OiIfrVAoIJVKIRAIDvQGFovFOHToEFQqFYaHhzE7O4vLly/D5/NhfHwc4+Pj+yK50mq1UCgUyIMoHo8jHA4jHA6TuLJWq4XT6cSpU6eg1WrJsWSW8/2eWHuUoQa1T8hkMlhaWkI+n4dQKESxWMTi4iLi8Ti8Xi/sdjukUum2Rq1eryOdTmN1dRWrq6solUq4dOkSicPWarUttaGFQgHlchmlUokU2zOdNi6XC1ardVfy0vuNRCKBRCKBXq8Hh8PBzMwMNjY2MD09TcIABoMBIpGoa8a/VquhXq+jVquhWq0ik8kgHo9jY2MD2WwW5XKZKKoyE7DsdjtcLhdJLlEeHminVI+yOdufy+UwMzODV155hch2ACAyIl6vF8ePH8fRo0e3bSUsFAqYnJzE3/7t3+LGjRvIZDLQaDQ4evQozpw5g2q1inA4TGQtxGIxPB4PDh06RNoVmUwykwh5EOdl8zm/n/PPHLtYLIbLly/jxo0byOVyGBsbw/j4OIaHh3d8+OyFarVKxgkmEgmkUilsbGyQODMzONvj8cDr9cLhcBBVAKYE6lG9vu9Gv97/1KD2Abdu3cKNGzewuLiI0dFRnDp1Co1GA5lMBpFIBCsrK+ByuXjyySfh9Xrfk/WPx+OkwD4QCCCRSCCXy0EgEMBgMEAul0Mul5NMMlMrqtVqodFoDqTDphvnv9PpkOOzurqKSCQCgUAAm82GQ4cOwWaz7amXPZ/PI5PJkBms6XQa0WgUsVgMhUIBPB4PMpmMzAxlwiFqtRparXbfJVb6+R7q132nS/4ep1gsYnl5GaFQCHq9HmNjY/B4POT1fD6Pl19+GUtLS/D5fBAIBPB4PEQiulgsEkkQtVoNkUiESqVCuqZarRaZbD82NvZQqXyyWCyYzWYYjUbYbDa8+eabCAQCJARQrVbhdDohlUrfk9hjEkqNRgOdTgflchmhUGhLqyeTna9Wq0Svyul0Ynh4GG63+0CrC3rUT3rooR5qD1MulxEIBPDqq68im83imWeewejoKJliz5BOp7G0tISbN29CoVDAYrGQpEg6nUYmkyHGU61Ww2azwel0Qq/XQyKRkFIqgUBwR290L0vyXjt/TN3n3Nwcrl69img0CqFQiNHRURw7duw9iq+MnhITV2bmEeRyORIWMZlM8Hq9sNls0Gq1pDSN6fyi3Du9dv3sFuqh9jD5fB4rKyvI5XKQSCQknsnQarXIzZ7P5xGLxRCLxRCNRlEul9FoNMj4NovFApFIBLVaDYPBAIvFApVKtaf96beLezNMy+rIyAg4HA5WV1eRSCQQCoXQbrexsbFBaj0rlQpCoRCZzVqtVslxNBgMkEgkEIvF0Gg0GBwchNFofKg1qii7h3qoPczMzAzeeOMNZLNZOBwOPPfccxCLxWg0GsQILC8vY319HZFIBPF4HO12m3iajCH1eDxwOBzv8Wy7TT+ds0wmg/n5eVy4cAGZTIYcLzabvUUyBADpABseHsbQ0BB0Ot0B7/3DTz9dS5uhHuo+stvhJ51OhwwayWazOHLkCIaHh4kHGggESGlTrVYjEr82mw06nQ56vZ4kQZi++f0UqdvPae57/axms4lgMIhgMIiVlRWkUikSYy4UCmCz2TAYDHjmmWdw9OhRyGSyLbNadzuDoF8NAuX+oAa1B2m1WlheXsbMzAyCwSAcDgcymQzC4TDW19cRi8XQaDQgEAigUqmg0WigVCphMBiIMe3mOLtIJIKNjQ0AgFKphE6n29fOo/uBGd5SqVTQbreRTCYRDAYRj8dJpYPZbIZCoUAikUC5XAaHwwGHw4FCocDQ0NBBfwVKH0EN6j6yW28ln8/jxo0buHbtGmKxGFqtFhYWFsg0doVCQYZnWK1WmEwmMt3+QdSI3rx5ExcuXEC1WsXo6CjOnTsHl8v1nuL+g/DG7vSZlUoFi4uL8Pl8CAaDyOVyaLfbJGkkkUhgtVphtVqhVqvRaDRIW2gkEsE777wDoVC45xgp1Vt6dKEx1B6gXC4jGo2SmsZAIIBLly6hWq0Sg8m0ezKyy2KxGBKJBFKp9IEt59vtNlKpFL773e/i6tWrGBwchFQqhVQqxeDgICkP6hWYMEkkEkEqlUKpVEKj0YDf70coFEKtViPzYzePEpTL5RCLxeh0OshkMggGg1hcXEQ+n4dMJoNer4fdbofX6z3or/jI0K/3P/VQ9xlmBB7TsshMYw+FQlhdXcXc3BwCgQDq9TpGRkbw1FNPEXVKjUYDnU63byqfuVwOc3NzRM75+PHjKBQK8Pv9xGAJBAKo1Wrw+fx9bQBoNptbkkeFQgHBYBB+v59oLHG5XFgsFuKNAiCJOq/Xu+2DiNFharfbuHLlCt544w1IpVIcPnwYAwMDGBwcvO+hJZSHF2pQ95lSqYRAIICFhQUsLi4iHA6Dz+dDJpMRATW5XA6Px4PHH38c73vf+yAQCIiOereKxXfjAcTjcVy4cAFCoRDHjx/HqVOn0Gw2sbi4iFu3bmF6ehoLCws4deoUjh8/vi/DRzbv28rKCpaWluD3+5HJZIjXzvTL6/V6GI1G8Pl8ZDIZ3Lx5E6lUCm+++SYqlQrGxsYgl8vf895isRgKhQLtdhtLS0uo1WoIh8OIxWI4e/YsTp8+va9JPkr/QA3qA6TT6aBQKCCZTJJ+b6ZulFmObk4qsdlsZLNZNJtNnD17FqdOndr2ht8v4vE4/H4/Tp8+TSY5ASBJG5/Ph1AohLm5OeTzebjdbtjt9j3Xt94NZh7r5uPICNaVSiWwWCzivRsMBiJQt3kSVrVahVAoJPt8/fp1rKysQKlUQiQSkWldjBJBKpVCu93GyZMnMTAwAJFIhHa7jZmZGWQyGXi9XgwODh7o+aH0HtSgdonNMzCZwczZbBaRSATLy8tYXFzEysoKOp0O1Go1XC4XRkZGYLVaodFoSKwvFouBz+djYmLigdY7Mp7pdgkUJhsei8XQbDahUqmg0+nItmq1GidPnoTdbsf8/DyuXLmCd955B6FQCCdOnMDx48chFAr3XOy+WfOq2Wyi0WigUqkgkUggGAyS4xiNRiGTyWAymWC322G1WmE0GiGXy8lU+9s/WyKREI9UIBDg+vXruH79OtrtNsRiMfE4melQKpUKXq8Xn/zkJ6HT6VCv1zE/P4+pqSn89Kc/RTwex4kTJzAyMnJPci6UhxOalOoStVoN6XSa1Dcyy1Dg3bgdMyyD+bdWq4VSqSQzMEOhEH70ox+hUqnA6XTiqaeeOjAlz1arhZ/85CeYmZlBo9HA008/jRMnTmy7XaFQQCgUwtLSEubn59FoNGAwGHDmzBm43e49DR9hYqEbGxsIBAJYXV1FKBRCtVoFj8eDQqGAQqEgx5JR+ZTJZEQW5G7xzVqthmw2i1AohGg0ikwmg1qtBgBEz14gEECn08FkMsFgMEAgEKDVaiGXyxG5kpWVFbRaLbhcLhw9ehRer7dvrtV+oN/ufwbqoe4RRqCu2WyiXC4jm80ik8kglUqR3nnmp91uQy6Xw2q1kvmXCoWCKFMyMF1Pfr8fLpcLhw8fPtA6z0KhgPn5eeRyOZw6dQpms3nb7ZhaTeYhwWKxsLi4iPX1dVy/fh3FYhFDQ0NQq9Xvif222200m03UajXkcjmk02mkUilks1lyTDOZDMrlMvh8PjQaDRwOBxwOB8xmM1FL3WtMmc/nQ6/XQ6PRYGhoiHwGMwSFiWdrNJotyT9mMDRTacFms7G0tISlpSU0Gg2USiUMDg5CqVQeuOQK5eB4KM78Xp5m9/PkY4woIw3CjIbz+XykXtRqtWJkZATnz5+HXq+HVCqFUCgEn88Hl8vd9nP9fj98Ph8qlQp0Oh3cbve2221eTDyoJ3elUiETlQQCAbxe711bVlksFkwmEz7ykY9gZGQE09PTuHbtGvx+P06ePImJiQkMDg6S71CpVIhAHfMgYYxTvV6HUqmEy+XC8ePH4XA4SJyTkVhhDNb9HAOm1VQmk4HFYqFeryORSKBWqxFjv104hKkc0Gq1WF5exhtvvIHJyUksLCzgiSeewNjY2F0FAmmd6sMLXfLfgXa7jXK5jHK5jFwuh3g8jrW1NUQiERQKBQCASCSCSCSCRCKBTCYjiRGtVguJRHJHaRLgXa2oH/7wh5idnYXBYMDZs2cxPj6+4/YP+mZcXFzE22+/jbW1NTidTvzyL//ynhIvjUZji5EMhULQaDRwOp2w2+1otVqIxWLw+/3Y2NhArVYjZU1isZhMtdfpdNDpdGS49YMcPtLpdBAIBPDDH/4Qi4uL4HA4GB0dxfHjxzExMbHjOSyVSvD7/VheXkYwGEQ+n4dGo8Ho6CjcbjcMBgM1nPdIL9z/98JD4aF2A2Ypv3kpymjNZzIZpNNpkqjJZDJkcr7JZMLo6Cjsdvueh4+0Wi0y4KRQKOCjH/0onE7nHf/mQV9ga2trmJubg8PhwPDw8J4TLlwuF0ajEWq1Gu12G9evXyezWr1eLzgcDtLpNDY2NlCtVokm1qFDh3Do0CFotdq7PoS6SbvdRjqdRiAQwPLyMokDx2Ix1Go1GAwGmM3mbQ26WCzG4cOHYbVaMTc3hzfffBOrq6uoVCqo1Wqo1WrQ6XR7iiNT+htqUH9Bo9FAMpkk8TtmtNva2hqy2SxZ6h05cgROpxM6nQ5isZjMv7ybSB7wXmOYSCRw48YN1Ot1mM1mDA4OHljGuNVqIZvNIhaLoVwuw2KxYHBwcE+eYb1eRy6XI6VhqVQKOp0OxWKRJK0kEglsNhueeOIJjIyMkKaAgYGBe4qJ3g/tdhulUgnBYBC1Wg2/+Zu/CS6Xi0Qige9///uYnp6GzWYDi8WCxWLZ8X3kcjkmJiZgt9sxPT1NGgJ8Ph9OnTq1rYoC5eHkkTWolUoFpVKJxERTqRTW19eJ5jyjCGo0GuFwOCCXy6HX62Gz2WC1WveUNNpOthl4t87z+vXrEIvFGB0dPdCaxkqlglu3bmFjYwM6nY70t99pgHS1WkWpVEKtVkOxWEQymUQ0GkU8HkepVAIAKBQKnDhxglRBpFIpoiTQ6XSgUqkOLInTarVQq9UgFArJmEMej4dqtYq1tTXMzMxgeXkZVqv1jgaVxWKR0A+HwwGLxSKrjqtXryKdTsPj8ZCHMOXh5ZEwqJ1Oh/wA7xoPZmpTMplEKpUiWfpisQgWiwWDwYBDhw7hyJEjsNvt963yebtharVaCIfDCAQCeOqpp0hr40FRKBRw7do1VCoVDA8Pw2g0bvG6Nx+/VquFfD6PRCKBWCxGVAFSqRSSySQZQqLX63H48GEcPXoUJpMJxWIRV69exeXLlxEIBEiM+k6zWh90zJiRSREKheT483g8PPbYY2Cz2Zifn0c2m931++n1enzwgx+E0+kkWmCMcN/Ro0dhtVq3rZOlPBw8EgaVqW1klvSMXnoymUS5XIZIJIJWq4XH44HBYIBSqSRzRBUKRdclk5vNJq5du4ZAIACz2Qy73b4vYnh3Mk75fB7JZBJKpZJ45Le/zsSPs9ks6VpiPE4ulwudTofHHnsMRqMRUqmUDG9hSsWEQiHOnTsHh8OBW7duEYkRh8OBsbExeL3efZ1gxeFwIJPJwGaztxx7FosFoVBIBs/ci5zJ4OAgRCIRTCYTpqen4fP5sLGxQRo6HA7HvsaKKfvDQ2dQGXE6ZinKSP0yS9FCoYBmswk2mw2JRAKNRgOVSgWLxUI05x+0YSsWi7hx4wYSiQRGR0dhtVoPVIOI0U9iZoMajUZUq1WyNGfaZzeHRBhvVSwWk0J75hja7fZtvW0OhwOlUgmlUolOpwM2m43V1VX4/X6Uy2UyXUuhUOxLHS6bzd7WU2y1WqSl1Waz3VMrLY/Hg8lkInWpbDYbGxsbWFpaQrlcRqlUgt1uh1QqpXWrDxEP3ZnM5/MIBAJYWVkhQ4QrlQqq1SoajQZEIhEMBgO8Xi/cbjcsFgvYbDa5wR/0UozJ7K+srEAikeDo0aP7pjS6k7c3Pz+P2dlZmEwmOJ1OCAQCBAIBBINBhMNh5HI5YvAajQb4fD4cDgeGhobgdDrJOEHmM3bjVTLZ8ZWVFVy6dAkLCwuIRCLwer04cuQIHA5H11cGu6XZbCKRSKBer+Pw4cPbNjbstqxHIBDg5MmTGBkZwdWrVzE5OYnr169jbW2NSIIzAn+U/qfvDSqTCEmlUkSZklnW1+t10hnDaMwzfdsajQZqtXrfl10rKyu4cuUKBAIBHA4HjEbjPXlj3YotFotF+Hw+XL9+HUqlErVajcwTTafTJCRiNBqh1Wohl8vJMl6lUkGpVN6zd61QKOB2uyEQCGC1WklLZzKZhNvtxvDwMGkI2Ilux1ir1Sri8TharRZUKhWsVut9JQuZfZNIJDh8+DAkEgmpW52enkY2m4Xb7cbQ0FDXpnX1aw3nw0BPG9TtEjnMHNFOp4N0Oo319XWsrq4iEokgl8uBxWKReJ1Wq4Varcbg4CDsdjuMRuMBfZN/YGVlBdPT0xgcHITX672vMql7MSaNRoMcv2w2i5WVFSwsLCAcDqNWq6HT6SCXy4HD4YDL5cJkMkGv15Nj2G1vSiaTkbCHSCTC7Ows1tfXiWYWh8OBSqUCj8fbMRTTTaPKNHAwD12FQtG192bCSyaTCdevXycjHAuFAqrVKoaHh6HVars6opEa1f2lZzultiMWi8Hn82F5eRmJRAKVSoVkn5kRawaDATabDXa7nSQcmKEXBxmrarfbyGaz+NGPfoTr16/jgx/8IB577LEd++Q3s53HcS9eSLvdxtraGpaWlpBIJLC8vExG70kkEgwPD8NgMECj0cBisUCv128xZncyanthuxu90+mQuaMLCwuYnZ1FNpuFQqHAsWPHMDExAY1Gs+17AXtrO95ue+b8hEIhJBIJuFwuWCyWB7KCYYZjh8Nh3Lx5E8vLyyiVSnC5XHjsscdw5MiRXX+Xg2pRftD0q5fdsx4qU5oTj8eRTqeRzWZJ7zczIUggEGyZ3CSRSKBSqcjyvpcolUq4fv06UqkUjEYjbDbbrvdxpzrWu11slUqFZOMzmQxKpRLy+Tzp/PL7/YhGo7DZbJiYmMDRo0dJqyfjnd3JK9zNPtyNzTpYAoGAlKgJBAISB5+amkImkyFy2LcXyXfjptvsmTscDthsNhJbZwT+RCJRV7xzZiqW0+kEi8UCn88n5+LSpUvIZrNwOp3Q6/U7hlN2uiZu34ayv/SsQQ2FQgiHw5ibm4PP5yNelEKhgFqtJjM69Xo9LBZLV5dmD4J0Oo1Lly6BxWKRRMdeki63f7ftPLx2uw3gXQ+oUqkgGo3C5/Nhbm4O4XAY9XqdxI4BkNjoiRMn8P73vx+jo6O79kDv51hv/tvb34fD4RDv2OVyYXJyEpOTk7h48SJisRiq1SqOHTtGPMe97MdO2zIPHr/fD4lEApPJhEajgUajQQZ+83g88Pn8roY7OBwOiZ1aLBZcvXoVgUAAfr8fJ06cwLFjx+54nez0fXr5PnjY6VmD+qd/+qekFtBkMpELz2QyQavVQiwWkzF4AoFgx6VPL1xc+Xwea2tryOVyJDve7RbTQqFA+tGDwSAKhQJarRbxhtxuNyQSCZmo7/P5wGazIZVKMTY2huHh4Qfuje4FLpcLs9kMiUQCg8GApaUlBINB/P3f/z3m5uZw+vRpuN3u+wrjtNtt5HI5/OQnP8FPf/pTrK+vg8/nw2g0gsVikdK6c+fO4cyZMw+snE4mk8Hj8UAmk5FhK7Ozs/D7/Th8+DAmJiZ6Iv5PuTs9a1AvX74Mj8eD06dPw+FwQK/XQyaTQa1W76p9r5dCw4z2EVPnyQjH3SvtdpuMEMzlcigUCqRZgal4aLfbkEqlUKvVMJvN0Ol0pH2WzWZjbW0NQqEQCoUCZrP5QOtgd4LL5ZLKDLlcDi6XS+pW2Ww2eUBtN291NzADcZhQSLvd3pLlZ44Jh8OBWCx+YKVNLBaLqMkqlUrI5XLcvHkT0WgUs7OzRLDRaDRSdYAep2cNKjMKz+l0YmJiAiqVCu12e9deUi94pgwLCwukJ9xms91XGQ4zxGRxcRHT09OYnZ1FJpMBh8OBwWCAyWSC1+slGWVmwj3zEGLG54XDYVSrVbhcri0PqO280ftNhm3H3ZIqm38vFAoxNDQEg8GAQCCA2dlZ3LhxA7Ozszhz5gyOHz8Oq9W6531gs9kQiUQ4c+YMbDYbms0mWq3WlkSnVCqFw+F44A8c5jsz+mJWqxU+nw/Xrl3DW2+9hampKTz77LMYGRmh06t6mJ41qEeOHIFcLkcqlSI3X78VP9dqNYRCIcRiMQwMDMDr9cJkMu3pPZj5oqFQCIFAAMlkEqVSidz0TDG+XC6HTqcj9aIikQh8Ph88Hm9LpjqXy2FxcREbGxtQKpUYHx/fUv94N0PZrQfVnd5nc8KF2W5gYAAKhYKES8RiMdbW1jA/P09E80ZHR/csG8Pn82G1Wol+V7vdJrFoNptNqkceNJuPB4fDIbMUhEIhlpeXEYvF8MYbb8Dv92NiYgI2m+3AGh8oO9OzBvWxxx5DNBqF3+8n2ed+I5FIYGpqCqVSCTqdDi6X645DQDqdDhqNBqrVKlH0LBQKiEajJFmRTqfBZrNJm+fQ0BD0ej3kcjmEQiHEYvEdjVU4HIbP50Or1YJer4fdbn/grbbdRCKRkHj6/Pw83nnnHQQCAWSzWbTbbXKMeTzerh4OzHK+16ZAsdls6HQ6Urc6NzeHt99+G5OTk2i326jVahgcHIRYLKatqz1Ez54Jt9uNRCKxRexuO3q55m5jYwMzMzPgcrmw2Ww7Fm0zNwhTh7m8vAyfz4dgMIhsNktuqmPHjpHaUJlMRn6YXnE2m71t9p/FYpHZn+vr64jH40TnivH69zOBt5vPutvrMpkM4+PjZPjI7Owsvv/978PpdOKJJ56Ay+WCVCrt5m7vG5uPz8DAAKliMRqNmJqaws2bN+Hz+TA8PIxz587BaDT23ertYaVnDapOp4NEIkGr1SJCakKhsC9KRRgZ5lAohFKphImJCRw+fJh4QY1GgyRDMpkMYrEY4vE4UqkUEYxrNBpEeVOv18NqtWJwcBBarRZSqXRHfaqdaDabiEQiCIVCKBaLcLvdO2pX9QPMDNLBwUGwWCzweDzweDzk83n8/Oc/RzQahcvlwuDg4Baxvd3SS4XljP7V8PAwaVAJh8NYXV1FtVqFx+OB2+2GQqGg3uoB07NHnynSV6lUSKfTiEQipBB6M71wwd9OvV7HwsICgsEghEIh3G437HY7ms0mSqUSstksisUiUQUIBoMIhUKIx+PQaDRkQIjT6YTJZIJQKASXy70nL4Q5PuVyGX6/H4lEAgKBAC6Xa8sUpf08jt3+LKvVCoPBALfbjUuXLuHKlSuIxWJIJBJot9uwWCx7zo7vp7d+++ft9NkCgQCjo6NwOp24ceMGrl+/jitXriAajaJSqcDtdkOr1YLP5/fkffEo0LMGlc/nQ6vVwmw2I5FIYHV1FXa7fVujsl/exG6XxZ1OB8FgEJlMBjKZDK1WixjO9fV1rK+vIxwOo9lsEkG6D3zgAyTDK5PJIJfLSa3t/X6vVquFRCKBpaUlDAwMYGxsrG+XwzvBzB148skn4XA4MDU1hdXVVQSDQYyOjmJiYuKu5WE7tfg+6AHXe0UoFOLIkSMkLu/z+fD6669jcXERo6OjOHLkCJVcOSB61qAODAxArVbDYrFgamoKa2trPVFbeqcbrNVqoVwuY2VlBXNzc8hms7Db7VhYWMDS0hIZaF2v18Hj8Uh5jMvlgtPpvKPMxv1QLBYRi8UQCoUwODiI8fHxnkvCdAMejwej0Qi9Xk+Wxn6/H4uLi6jVavB4PDCbzfc1IatXkEgkcLvdZNbC5OQkEokEZmZm0Gq1YLfbodfr92WuLOUf6FmDCrw73s1gMOCtt94Ch8Mh5Sy3000P4k7e7p0+p91uI5VKYWZmBpcvX8b09DR4PB4UCgVWV1dRq9WgVqvhcrlw6NAhDA0NET2l7ZJJd9qn24363Tz0VCqFcDiMQqEApVIJj8fzUMfa2Gw2jh07BqfTiYWFBVy6dInIroyMjJBk1u1Gda/nvBdQqVQ4f/48Dh8+jLfffhvz8/N47bXXcOjQIRw9ehQej+eeYsiUe6On7yqhUAiNRoOBgQFUKhVkMhkYDIY9v89eQgK7vYGq1SqRAymXy8hms2R60NLSEiltGhoagkKhgEgkgkQigVqtJmMF77VJYS9x5GaziUAggHA4DJPJBIvF8lAb080oFAoMDw9DJBJhZWUFy8vLmJ6eRiQSwcjICNxud9+3dLJYLAwMDECv1+P06dNQKpWYm5tDKBQiuQdmchb1Vh88PX1n8fl8yOVyqFQqFItFkuTZb3XQdruNZrOJRqNB1D5jsRgikQhisRhJNEUiESwtLaFSqeDs2bOYmJiA2+2G1+s9kCU206seDAaRy+Xw2GOPweFw7Pt+HCQKhQIKhQJOpxM8Ho8Ym1arhUajATabDaVSueeqiV6DERtkpq5du3aNPOAZ1Qqm/IqWWD04enYeKrOsLRaL+J//839idXUVZrMZZ8+ehcfj2dd9yefzCIfDRFOJGSWYz+dRqVQgk8nA4XBQKBSQzWahVCrxqU99Ch6PB+12e89Z124lQpjM/muvvYZGo4HPfvazXZsK3480m03EYjES4y6XyzCbzRgZGcHQ0NBD0dLJzJXN5XLw+/24ePEiEokExGIxjhw5gvHxcdhstoPezbvSS2Vre6GnPVTgXS/VZDIhHo9jaWkJw8PDD/TzOp0O8vk8kZQul8tIJpNECpjRm5dIJBgcHCQeUDabxeTkJMxmM0ZHR+Fyue4p8cFcSN0wqsx8zbW1NUilUiQSCTSbTRSLRbLNdrHYhxFmQHatVgOfzwefz0cwGMT8/Dzm5uYwNjaG8fFxMuGq325kBmauLPPT6XSIXtfCwgIKhQIymQzsdvue23Qpd6fnDSqHw4Fer4dUKiVT3LtJu93eYsRSqRRCoRCWlpaIrEqj0QDwbrJDKBRCrVbD4XBgeHgYdrsdnU4Hk5OTmJqagslkwvj4+F2XVTs9gTf3sd+PUe10OojFYrhx4waSySRarRbeeecdiEQi1Ov1LZ93+z49bGxO5vF4PAwMDIDD4YDFYmFubg43b97E/Pw8CdW4XK6+NaibkcvlOHv2LGw2G27evImpqSlMT08jGo3i1KlTGBsbg0QieWRi6vtBzx9JFosFpVJJRrQxiSBG3uR+icViCAQCiEQipCOrWq2iXC6j3W5DKBTCarXCZDIR74XP50MkEpFY7srKCubn51GtVsmErLtdpHcbDnK/MMZDrVYTGZhQKHTHaolHgc0tuiwWC+Pj40in0+Dz+cjn8ygUCts+WHpltu7t7Ga/9Ho9Tp06BYvFgqWlJSwvL+NnP/sZFhcXSZz/YatLPih63qACIHM81Wo10uk0FhcXcfjw4T1nLWu1GorFIorFIqrVKhFkY/rbi8UieDweZDIZjEYj5HI5+WyTybRtRrhcLmNqagorKyuwWCwYHBzsmSe+TqfDyZMnUSgU0Gg0tnjjjzpsNntLu2qj0ej75f5mNq+ABgYGoNVqoVKpIJfLwePxsLCwQGq7S6USGTjTK9duv9LzR4/FYkEoFMJgMGBwcBAbGxuYmpqC2+3ek0Fletl9Ph8WFxcRCoVQq9UgFAohEAggFothNBpJ/zwTY+JwODt6ws1mE8lkEgsLC8jn8/jQhz4El8vVle99v0F5NptNWjLr9TqZ80l5l81aVsx0fkbptZ/qUfcy24LRy7JYLLBarZicnMTKygrW1tawvLyMp5566q6y3ZQ709MGdfNyRiqVwmg0IhwOIxKJoFqt3vFvq9UqGQYSjUaRzWbRaDRQqVRQr9chFothMBiILpVKpYJEIiE/uwkppNNp+Hw+lMtlKJVKorTaDbpxA7PZbJKAoVAYuFwuPB4PqfNeW1tDJBLBK6+8AqfTibGxMZhMpq6WV/Vr1n6v9LRB3YxAICAqkIz0B7ME73Q6qNfrqNVqaDQaKJfL2NjYwNraGlZWVhAIBFCtVokiqtVqJQX2Wq2WTLbaC51OB+FwGDMzM5BKpfB6vTRrSukbJBIJDh06REJp09PTWFlZIQnMWq0Gs9nc9S6rXo1Fd4u+MahMgkWpVKJUKiEWi8FkMkEmk5F6y4WFBczPzyMajRL5CpVKRSRU1Go1dDod1Go1hEIh0Znf64DldruNfD6P5eVlzMzM4Nlnn8Xjjz9O40+UvkOhUGBiYgIWiwULCwvw+Xx46623MDc3h8OHD+P8+fNdWeE8zEZ0M31jAbhcLpGOjkQiuHLlCoLBIDQaDbLZLNGdbzQaUCgUkMvlMBgMsFgs0Ol0UCgUEIvFJEt/PzQaDSwvLyMajUIsFsNqtT7SBfOU/oXR1bJareDz+WTCGTMcvd1uw+PxkNcpd6ZvDCqbzSbZ96WlJUxNTeHKlSuQSCRot9tQKBTweDwYGRkhnqtcLodMJtv1hbDbOE+pVMLU1BSKxSImJibuab4AhdJLsFgssvx3OBy4evUqZmZm8NOf/hTRaBTnzp0jVRCUnekbgwq8O9LPaDRieHgY1WoVPB4PTqcTUqmUzBVlFD4ZPfq9LOd3syxptVpIJpOYn5+HTCbD6dOnicAbhdLvMCVWZ86cgclkwuzsLEKhEL773e+SbrK7KT087HHSO9FXBhUANBoNkdIVi8Ww2+2QSqUQiUR3bfXsxolmWvja7TaMRiOcTicdj0Z5qOByudDpdJDJZBCJROBwOFhcXMTi4iKq1SpKpRIsFguUSiXNG9xGTw9HAd7rNXY6HbRaLbRaLVI7yGyz1wEkt//NbgT/fvzjH+Ptt9+G2WzGsWPHcOLEiV1/JoXSb7TbbRQKBQSDQbz++usIBoMQi8U4efIkHnvsMeh0ujuuAjffZ3spnerXMqu+e7wwnR/3+2TcqXh7Jy+WEQsMBAJIpVJ48sknu1bET6H0Kmw2G3K5nOi5LS0twe/3Y3JyEuvr65iYmIDL5doxKbsbrayHib4zqA+anU56uVzG/Pw80uk05HI5BgcHt4jcUSgPM2KxGGNjY7BYLJDJZLh27RpWVlbQarVQqVQwPDwMhULRFQ20fqbvlvz38173837r6+v47//9vwMARkdH8b73vQ9KpfK+941C6Sc6nQ4qlQo2NjawuLiIixcvot1uw2634+jRo3C5XF0ZtEKX/D3M5vjNvVCv1xEMBhGJRDA8PIxDhw49lCJ3FMqdYMJhIpEIdrsdQqEQ7XYbKysriEQiqNfriMfj8Hg8MBqNj2Sy9qEzqHeaM3qv78dkOPl8PhksweVy73tfKZR+YbsZvXq9Hh/+8IcxOzuLt956C6urq2QM5pEjR+BwOMDj8R4pyZWHzqB2K0TAvE+r1cK1a9fg8/kwPj4Or9d71ylXj3IdHuXh5E7Xs8vlgkQiwfLyMpaWlsgQa7fbjZGREVgslr6X7d4tD51BvV82G8NGo4FwOIxQKIRms4lDhw7BbDYf8B5SKL2FQCCAzWaDXC6HWCxGp9NBMpnE3NwcmTtss9keiSTuI5GUuldCoRAuXbqE+fl5qNVqPPfcczAYDI/UEoZC2QutVgvFYhGXL1/GzZs3kUqloNVqMT4+jtOnT+9asbgX7v97gXqodyAWi2FqagoymQxut5tK8FIod4HD4UAul+Po0aOQy+VYXFxENBrFjRs3kMlkMDw8DLfb/dAmdalB3QZG+XR9fR3pdBput5u2mFIoe4CZNazRaDA5OYm5uTnMzMwgm82i3W7DYrFAoVA8dLFVuuTfhlqthgsXLmBmZgaFQgFPP/00jh49uqVouV+XJBTKftJsNpHP5xEOh3Ht2jWsra2h3W7D5XJhYmIC4+Pj295D/Xp/UQ91G7LZLHw+H/L5PFwuF0wm07aZ/X472RTKfjMwMACVSgWRSETaWFdWVhAOh0nCamhoCEaj8aG4n6hBvY1isYhwOIx4PA6xWAyv1wu1Wv2e7R6Gk0+h7BcCgQCjo6Ow2WyYmZnBjRs34Pf7EQ6HkUqlcPbsWSiVShICuN9mnIOCGtTbCAaDmJ6eBofDgd1uh9frpZrlFEqXkEgkGB8fh1qtRiAQwMrKCnw+H4LBII4dO4aRkZFtHZh+gRrUTTSbTSKpK5FIoNVqIRKJ0Gq10Gg0dv0+tLCfQnkvnU4HHA4HfD4fVquVhAFmZmYQCoVIydXhw4eh0Wj6UnKFGtRf0Gg0EI/HEQqFkEwmoVQq0el0EIlE0Gw2Ua/XH+o5jhRKt9jNcn1gYAAsFgsmk4kY2unpaSwtLSEcDuPs2bPweDx9N8C65/d2P+IoLBYLjUYDmUwGuVwOuVwOoVAI1WoVPp8P7XYbrVbrge8HhfIwsBuDyqgNs1gsVKtVpFIpZLNZVKtVcDgcqNVqiMVi2Gy2fdrr7tDzBnW/aLVaKJfLaDQaqNVqiEaj2NjYAJvN7svgOIXSyzBhMQ6HQ7zVRqOBer2OaDSKWCyGRCLRdwa1Z+tQKRQKpd+gfZQUCoXSJahBpVAolC5BDSqFQqF0CWpQKRQKpUtQg0qhUChdghpUCoVC6RLUoFIoFEqXoAaVQqFQugQ1qBQKhdIlqEGlUCiULkENKoVCoXQJalApFAqlS1CDSqFQKF2CGlQKhULpEtSgUigUSpegBpVCoVC6BDWoFAqF0iWoQaVQKJQuQQ0qhUKhdAlqUCkUCqVLUINKoVAoXYIaVAqFQukS1KBSKBRKl6AGlUKhULrE/w9+B/Z3plYHpQAAAABJRU5ErkJggg==",
"path": "images_version_5/image_54.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
Place a ruler and a triangular plate as shown in the figure,then the degree of angle 2 is ()
Choices:
A:130°
B:140°
C:120°
D:125°
|
Đặt thước đo và tấm hình tam giác như trong hình vẽ, thì số độ của góc 2 là ()
Lựa chọn:
A: 130°
B: 140°
C: 120°
D: 125°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: Place a ruler and a triangular plate as shown in the figure,then the degree of angle 2 is ()
Choices:
A:130°
B:140°
C:120°
D:125°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: Place a ruler and a triangular plate as shown in the figure,then the degree of angle 2 is ()
Choices:
A:130°
B:140°
C:120°
D:125°
|
Place a ruler and a triangular plate as shown in the figure,then the degree of angle 2 is ()
Choices:
A:130°
B:140°
C:120°
D:125°
|
270
|
54
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHPCAYAAACC3xa4AADAqElEQVR4nOyddXhUR9vG70CIESBCAgRCBHd3d3dKocULBQoV6l9LkReo8rZQKNBSnEIpUCgWIEjQABEkAYpbcAgWNDLfH3mfObOb3c3uZjdCnt91ceWwM2fOnHPmnJ295xEHIYQAwzAMwzAMwzA2J09Wd4BhGIZhGIZhXlV4ss0wDMMwDMMwdoIn2wzDMAzDMAxjJ3iyzTAMwzAMwzB2gifbDMMwDMMwDGMneLLNMAzDMAzDMHaCJ9sMwzAMwzAMYyd4ss0wDMMwDMMwdoIn2wzDMAzDMAxjJ3iyzTAMwzAMwzB2gifbDMMwDMMwDGMneLLNMAzDMAzDMHaCJ9sMwzAMwzAMYyd4ss0wDMMwDMMwdoIn2wzDMAzDMAxjJ3iyzTAMwzAMwzB2gifbDMMwDMMwDGMneLLNMAzDMAzDMHaCJ9sMwzAMwzAMYyeyZLI9ceJEODg4wMHBISsOz2QCfI8zh8GDB8PBwQGBgYFZ3ZUsIzAwEA4ODhg8eHBWdyXHEBYWJp/PsLCwrO5OpsLvpleLS5cuyfu5aNGirO5OjicnvhtyQp8tnmyrJ6X/z9XVFf7+/ujcuTN+//13PH/+3B59ZhiGYRiGYZgcgU2V7efPnyMuLg6bNm3C8OHDUb16dZw5c8aWh2AYJgeSE5QHhrEVzZs3h4ODA5o3b57VXWGYHAt9Z0ycODGru5JhHDOy86hRo/DOO+/I/z99+hRHjx7F9OnTcerUKZw+fRrt27fHiRMn4OrqmuHOMgzD6HPp0qWs7gLDMMwrQfPmzSGEyOpuvHJkSNn29fVF5cqV5b+6devi7bffRlRUFOrWrQsAuHjxIubPn2+TzjIMwzAMwzBMTsIuDpKurq6YOnWq/H9ISIg9DsMwDMMwDMMw2Rq7RSOpX7++3L58+bJF+758+RIbNmzAmDFjUKdOHXh6eiJfvnzw9vZGvXr1MHHiRNy9e9fstn777Td06tQJxYsXh7OzM3x9fVGrVi2MGTMGe/fuNblkEhoaiv79+yMoKAiurq4oWLAgqlWrhk8//RQ3btyw6LwMcfDgQYwbNw7NmzdH0aJF4eTkhIIFC6JixYoYNWoUTp48meFj6NsPnj17FmPGjEGZMmXg5uYGBwcHuRS/aNEiaSdlanneVh7gSUlJmD9/Pjp27Ag/Pz84OzujcOHCaNq0KaZPn27SydaS8zKXCxcu4L///S+6dOmCwMBAuLq6wtXVFQEBAXj99dexZcsWk/vrX7+UlBT89ttvaNiwITw9PZE/f35UrVoVU6dOxdOnT9Ptz8mTJzFo0CD4+/vDxcUF/v7+eOONNxAREWHReZnixo0bmD17Nnr37o0yZcogf/78cHZ2RvHixdGtWzesXLkSKSkpVrVN46RFixbysxYtWqRxrlbHkH60iIcPH2Ly5MmoUaMGPDw80tRPLxpJRs/PkL35X3/9hVatWsHHxweurq4oV64cPv30U8THx6d7TS5fvoyRI0ciMDAQLi4u8PPzQ/fu3bFr1y6D52/oeprz3GU0SktG3036kXJu3LiBzz77DJUqVUKBAgUstt/Xvw8pKSmYN28eGjZsCC8vL+TPnx/VqlXD119/jWfPnll1zkDGvn/onHfv3g0A2L17d5qxbixy0NOnTzF9+nS0aNECRYoUgZOTE3x9fdG2bVssXLgQycnJVp8TADx58gQrV67EsGHDUL16dRQqVAj58uWDj48PmjVrhmnTpiEhISHddtauXYvu3bujRIkScHZ2RoECBRAcHIwmTZrgq6++wuHDh63u45kzZ/Duu++icuXKcHd3h5OTE/z8/FC9enUMHToUK1euxIsXL9JtJzQ0FF26dEHRokXh7OyMoKAgjBo1CnFxcenu+/LlS8yePRstWrSAj48PnJycULRoUXTs2BHLli0z+q6oVKkSHBwc0K9fP4Ply5Ytk2OgSpUqBuscPXpU1tm0aZNOmf7z/O+//2L48OEIDAyEs7MzihQpgh49euDgwYPpnqMp0vOv0X+uHzx4gPHjx6NSpUrInz8/PDw80LRpU/zxxx9W94HOlZg0aVKa5yi991pG3tGAHeZ+wkJ27dolAAgAYsKECUbrPXv2TNYrX768TtmECRNkmSEGDRoky4398/b2Fvv27TPZ1yNHjoigoKB027p48WKafRMSEkSPHj1M7ufu7i42bNiQ7jUzxsKFC9PtW968ecUvv/xi9TGEEKJZs2YCgGjWrJlYt26dyJ8/v9FroPbJ0HUhLl68KOstXLgwTXl691gIIc6dOycqVqxo8vzLlCkjzpw5k+HzMocLFy6kez8AiP79+4vExESDbajXLzY2VrRs2dJoO3Xr1hUJCQlG+7NixQrh5ORkcF9HR0cxf/58+awEBASYfZ4qSUlJIk+ePOmec5s2bcTjx48tbl8dJ6b+qWNIHTtnzpwRgYGBJusHBAQIAGLQoEF2OT/1nbd9+3bxxhtvGG2ndOnS4saNG0avx7Zt2wyOUwDCwcFBTJ061eSzk95zp2LquqjntGvXrjTltng3qWMzPDxcFC5cOE0bho5tDLXPW7duFe3btzfatwoVKojr168bbMee3z/m7GvoWT18+LAoXry4yf3q1q0rbt68afb10ofel6b+BQUFiVOnThncPykpSbz22mvptlGrVi2r+vfXX38Zfd+p/2JiYnT2038mPvvsM6P7+vj4iJMnTxrtw6VLl0SFChVMHr9x48bi3r17afZ95513BABRtGhRg22/9dZbOs/67du309T56aefBACRJ08e8eDBA50y9Xles2aNcHNzM/pc/vnnn+ZccoOk925Qn+tTp04ZfD/Tv9GjR1vVBzpXU//U95ot39H2mvtlyEHSFMePH5fbfn5+Fu2blJSE4OBg9OjRA3Xr1kXJkiXh6OiIy5cvY/v27ViwYAHu3buHHj16IDY2Fr6+vmnaOHnyJJo0aSJ/qffo0QN9+/ZFcHAwkpOTcfr0aYSGhmLt2rVp9k1OTkaXLl2wa9cuODg4oG/fvujZsyeCgoKQmJiIw4cP47///S+uXLmCXr164cCBA6hVq5aFVyj1PD09PdG1a1c0a9ZMqm7Xr19HdHQ0fv75Z9y9exdjxoxB+fLl0bJlS4uPoXLlyhX0798fbm5u+Oqrr9CkSRPkzZsXERERcHd3z1DblnLjxg00atQIt27dQoECBfD222+jdevWKFKkCB4+fIht27ZhxowZOHv2LNq3b4/o6GgUKlTIrueVnJwMJycntGvXDm3atEHFihXh5eWF+Ph4nDlzBr/88gtOnDiBZcuWITg4GJMmTTLZ3ttvv42DBw9i0KBB6NOnD4oWLYorV67g+++/R3h4OA4fPowpU6bgm2++SbPvoUOHMGDAACQlJcHZ2Rljx45Fx44d4ezsjEOHDuHrr7/GyJEjUbFiRbPPzxDif6s6LVu2RIcOHVClShX4+Pjg8ePHuHDhAubNm4fw8HCEhoZi9OjRWLx4sUXtFy9eHDExMYiIiMDQoUMBAAsWLECdOnV06pUoUcLg/r1798a1a9fw7rvvomvXrvD09MTZs2cREBCQJec3fvx4HDhwAN27d8fAgQMREBCAW7du4ZdffsGmTZtw7tw5jB07FitWrEiz77lz59C9e3c8ffoUefPmxciRI9GzZ08ULFgQsbGx+OGHH/Dll19Kf5esxJbvpoSEBPTq1QvPnz/Hl19+iTZt2sDNzQ0xMTEoVqyYVf0bN24cIiIi0LZtW4waNQr+/v64evUqZs+ejdDQUJw6dQqdOnXC4cOH4eho2ddcRr5/pk6dio8//hhDhgxBZGQkateujYULF+q07+TkpPP/mJgYtGjRAk+ePIGvry9GjRqFJk2awNvbG7dv38b69evx66+/4vDhw+jWrRv27t2LfPnyWXzNkpKSUKVKFXTt2hW1a9eGn58fhBC4fPky1q5di7/++gsXL15E9+7dcfToUbi4uOjsP2fOHKxatQoA0LhxYwwbNgylSpWCu7s74uPjERsbi5CQELOVQ5Vbt25hyJAhePnyJXx9fTFmzBjUr18fhQsXxvPnz3HhwgXs2bMHf//9t8l25s2bhwMHDqBZs2YYMWIEypYtiwcPHmDJkiVYsmQJ7ty5g6FDhyI8PDzNvgkJCWjZsiUuXLgAAOjevTuGDh0KPz8/XLx4EbNmzcLu3buxb98+dO7cGXv37kXevHnl/s2aNcPs2bNx8+ZN/PvvvyhfvrxO+6pKLITA7t270bt3b4N1atSoYfT77vjx41i5ciWKFSuGjz76CLVr14YQAlu3bsW3336L58+f4+2330bLli3h4+Nj8nplhKdPn6Jr1664d+8exo0bh9atW8Pd3R1HjhzBpEmTEBcXh19++QVdunRBu3btLGp727ZtePnypVwB0A/GAQCenp4G983IO9qucz9Lf3GYq2x369ZN1vvPf/6jU5aesnDu3DmRkpJitO3jx48Ld3d3AUCMGzfOYJ0aNWrIX4grVqww2tbdu3fF06dPdT6bNm2aACDy5csnNm/ebHC/+Ph4UalSJflL1xri4uLEkydPjJY/ePBAVK1aNUPHEEJX0fDz8xOXL182WjezlO3OnTsLAMLf31+cP3/eYJ3o6GipAhq6z5aclzkkJCQYVcOEECIlJUUMHjxYABD58+dPozwIkVYRXLp0aZo6z58/F5UrVxb4n0JmSCWvVauWHIO7d+9OUx4XFydKlChhUi0zh5SUFHH27FmTdcaPHy/VGGOrDOmRnlqioo6dPHnyiG3btpmsb0rBtcX5qX0HIKZMmWLwOG3bthVA6qqDIdWqa9euso1Vq1alKX/y5ImoW7euzrH0ySxl2xbvJlXldXd3F0ePHjXZ3/TQvw9vv/22wXqqgjhr1qw05Znx/aOuupkiJSVFXsdq1aqJO3fuGKwXEhIiV2h+//13k20aI71nNzQ01OQxmjRpIgCIevXqGV3ZE0IYVH3TY/78+fKe6CvXKs+ePUvzfa2/ejZ8+HCD92/YsGGyTnR0dJryjz/+WJYbuq8pKSnizTfflHVmz56tU37r1i1ZNmfOHJ2yuLg4+Y7p0qWLQdU3JSVFeHl5CQDiww8/THN8Ve2tVauWwe+fZcuWyTo//vhjmnJzMFfZBiA8PDxEbGxsmjpnz54VLi4uAoDo2rWrVf0QQpg119Tvc0be0fac+9l0sv306VNx4MABOZgAiIIFC6Y5KXNMDNLjgw8+EABE5cqV05Rt2bJFtv/+++9b1O7Lly9FsWLFBAAxduxYk3U3b94sj5PeF7q1rFu3Th7j7t27VrWhTkqXLFlism5mTLZjYmJk2T///GOyP59++qmcTGfkvGzFvXv3RN68eQUAsXr16jTl6vXr2bOn0Xbmzp0r6x07dkyn7NChQ7JszJgxRttYuXJlhifb5pCUlCRNAKZNm2ZVG9ZOtocOHZpu26YmleaQ3vmpfa9Vq5bRiZj63tEf13FxcXIi06NHD6N9OXr0aLaYbJtDeu8m9UtZX3CxBrXPRYoUMfpj4PHjx8LHx0cAEBUrVkxTbu/vHyHMn2xv2LDB6HtAnz59+ggAolGjRtZ2O126d+8uAIjOnTunKStTpoxZ34vWMHXqVAFAeHp6Wryv+kwUK1ZMPH/+3GC9f//9V9abMWOGTtnz58+Fh4eHHDNJSUkG23j48KHw9vY2OrbKly8vAIjXX39d53OaBFeqVEksWbJEbquoz/769evTtK1Oto2NlZSUFOHn55fue8YUlky2f/75Z6Pt9O3b1+p7Slgz2bb2HW3vuV+GHCT1jdbd3NzQsGFDbNiwAQBQsGBBrFmzJsNLGffv38f58+dx4sQJxMbGIjY2Fh4eHgBSzUUSExN16quOBWPHjrXoWIcPH5bG73369DFZt2nTpnLb0LKUpTx58gSXLl3SOU91ufDYsWMZat/JyQmvvfZaRruZYf755x8AgJubGzp16mSyLl3j69ev4+rVqwbr2Ou8EhMTERcXh1OnTsn7cf36dXh7ewNI/368+eabRsvUpSdatiS2b98ut4cMGWK0jR49esjnwFakpKTg+vXrOH36tDznU6dOSTOPjI5BSzF1Da0ho+f3xhtvGE3zbeqekkMfAAwaNMho+9WqVUO1atXMOpfMJKPvJlvfxz59+sDNzc1gmbu7u3x3nzx5MsOO7JZ+/1gCvQvLlSuHqlWrmqxL78KIiIgMO0sCwJ07d3D27Fl5TrGxsfK72tD9JJOfDRs2mB2gwFyo7fv378trYg29e/eGs7OzwbJy5cpJs0L95zMqKgoPHjwAkOoAqJqHqBQsWNDk2CJnfXKQJcg8pHnz5rLOyZMncefOnTR18uTJgyZNmhg9xypVqhgdKw4ODqhRo4bBc7Q1Dg4OeOONN4yW0/vw/v378tpmBta+o+0997OLzba/vz+6d++Ojz/+GCVLlrSqjZiYGPz0008ICQnBzZs3jdZLSUnB/fv3dezmjhw5AgAoWbKk2badRGRkpNxu0KCB2fuZ6qMp7t69ix9//BFr1qzB2bNnTUZGyegLrkyZMmns8LICusZPnz61yJ7y5s2b8Pf3T/O5Lc8rMTERv/32G5YuXYojR47g5cuXRuumdz/0bfZUvLy85Pbjx491ymJiYgCk/ogw9QWcL18+1KhRQ0axsBYhBP744w/Mnz8fhw4dMhnJwdZfsumR3gTEHGx5ftbe09jYWLmdno1f7dq1M/1HjSFs9W5yd3dHcHCwTfumb/OvT926dfHLL78ASL32ltqGZ+T7xxLoXXj69GmjEwR9Xr58ifj4eKtErP379+Pnn3/G9u3bTdpWG7qfgwYNwp49e3Du3DmULl0aPXv2RJs2bdCkSROjPhfm0rVrV3h4eODBgwfo0aMHmjdvji5duqBp06aoXr260cmvPqaeTyDVzjchIcHk81mvXj2TbdSrVw9z5syR+6ljq1mzZpg7d24au211su3v74/g4GBcuHBBx26b6lSrVs2kiJLeOdJ7SP8cbU3hwoWl8GSqH9QXWwtDxrD2HW3vuZ9NM0i6uLjA29vbqOG6ucyfPx8jR45EUlKSWfX1vzzpRWGN883t27ct3geAWWHc9ImKikK7du1w7949s+pnJJwVYNyhILOx9TW21XnFx8ejbdu2iIqKMqt+evfDmPIGpKoXhL5Kdf/+fQCpL4b0fowUKVIkvW6a5Pnz5+jZs6fZsfAzOgYtJaP31tbnl9F7CiDdiZk9nZrMxZbvJnt8yaZ3DdXnwlKHvYx+/1hCZn7fTJw4MV2nbsLQOQ0dOhTnz5/H999/j4cPH2LhwoXS+bNUqVLo3r073nnnHat+WHl7e2P9+vXo168frl27hl27dkkRoWDBgmjdujWGDBmCzp07m2zH1PMJaM+o/vOpjpH03qlFixY1uB+gKdtA6uS5fPnyuH79Os6dOwcHBwc0a9ZM1rtw4QLCwsLQu3dvCCGwd+9eAJB1jGHtOdoac/uRGX1RsfYdbe9nMUOTbcogaUv+/fdf+aLz9fXFJ598gpYtWyIwMBAFChSQS5cLFizAW2+9BQBGFRdzlQIV9QaEhYWZ/OWmYqmy8fLlS/Tp0wf37t1Dvnz58O6776Jbt24oW7YsPD095VLYhQsXUKpUKQDGz9NczFUH7A1d46CgIKxfv97s/YKCggx+bqvzev/99+VEmzzRq1atCl9fX7i4uMjxVLJkSVy9etVuKW2pXXPGb0b7MHXqVDkRbdasGUaPHo2aNWuiaNGicHV1lS+npk2bphuT3h5k9N5m9/PLjtj63WSP9056z4a199GW3z/mQO/CRo0aYe7cuWbvZ2mErx07dsiJdnBwMD7++GM0btwYJUuWhLu7u7xH48ePx+TJk422M3XqVLz99tv4448/sGPHDhw8eBBPnz7F+fPn8d///hc///wzfv75Z4wcOdKi/gFAkyZNcO7cOaxZswabN2/Gnj17EBcXh0ePHuHvv//G33//jXbt2uHvv/9Od6KXETIytooWLYqyZcvizJkzCAsLw8iRI6ViXbFiRflDunnz5liwYIEsi4mJkT9s1Qk7k3nYe+5nt9B/1rJo0SIkJSUhb968CAsLQ4UKFQzWU5UifQoXLgwg1c7XUtQL7OTkZPMfE8TOnTulzdAvv/yC4cOHG6xn6jztgfrLz1SijydPnlh9DLrGt27dQvny5S0OzWUPHj16hJUrVwJItfkyFZDf3veElrru3buH5ORkk5MVa3+NA6lfGr///juA1FBeO3fu1Ln/Kpk9Dm1Bdjo/VaG/ffu2yWV31Y5TH3OfT8D6ZzS7vptUbt26ZbJcfS7UpeP0sMX3jyV4e3vj1q1buHPnjt2+a4DUkHhA6ipDeHi40QmCOecVEBCAL774Al988YUMh7Zq1Sr8+uuveP78Od555x3Uq1dP2g5bgouLC958801p43/hwgVs2rQJs2bNwpkzZ7B161Z8+eWX+Omnnyxu2xTqGLl58ybKli1rtK469gyNrebNm+PMmTPSbls1ISEoyRfZbVMdBwcHk/bajP2w99zPbhkkreXEiRMAUu2WjL3oAF37Gn1q1qwJIDX+sqXZK9UXxLZt2yza1xLoPAGgb9++RuuZOk97UKBAAblt6sV7+vRpq49B1/jp06fYv3+/1e3YkrNnz0pHJ1P34/Tp02ZlWcsIFFv05cuXJm13k5KScPToUauPEx8fL+3N+vTpY3QimpCQkKH7DVi3ypRRMvP80qNSpUpyO71n2lS5uc/nvXv3rLavz67vJpX0Mqiq5ZZ8adri+wcwf7zTu/DMmTMWf1dZAp1Xy5YtTSpxlt7TfPnyoVGjRpg+fTqWL18OIPVH7urVq63vrEJwcDDeffddREREyB+of/31l03aVlHHyKFDh0zWVTNkGhpbZAZCdtuGJtslSpRAcHCwjLdNdapWrWrRj0PGdth77pftJttkJ2fKDubmzZsmPZa7dOkity39Bdy4cWM52OfOnYtHjx5ZtL+5qPaAxs6VUn1nJqqphqkXL71YraFbt25y+/vvv7e6HVtizv0AYNFSr7W0bt1abptKsrJ27doMKWzmnvP8+fMzFHEBgI4Dqznplm1BZp5ferRo0UJO9pcsWWK03rFjx0z+wPL09JQ20KaeT0MJG8wlu76bVFatWmXUVvrJkydyQlaxYkWLfHds8f0DaOM9vbHetWtXuW3Pd6E553X06NEMpfpu1aqV3La1I3XBggWlU6w9nLRr1aoln6vFixcbtTF+/PhxumNLnVSvWLECZ8+e1bHX1q+3a9cu7NmzB0D69tq5DXOfI1tg77lftptslylTBkDqL31DD/7Tp0/xxhtvmHRKad26tfT4nzlzJv7880+jdePj43XacnFxwccffwwg9aXat29fk8uxjx8/xqxZs0yflAHoPAHjE6r/+7//Q3R0tMVtZ4TKlSvLATdr1iyDg3zFihVYs2aN1ceoU6cO2rZtCwDYvHkzJkyYYLL+pUuXMjR5MIfSpUtLNcrYZGjjxo2YOXOmXfsBpEZSoNWZOXPmYN++fWnq3LhxQ45Ta/Hx8ZFfMH/++afByCsREREYN25cho4D6Dornz9/PsPtmUNmnl96FC9eXIa5XLt2rUHl79mzZ3j77bfTbYvCTv3zzz8Gr+WpU6cwfvx4q/uaXd9NKjdv3sRHH31ksOzDDz+UZiSjRo2yqF1bfP8A2ni/cOGCSRvfXr16SQV9zpw5mD9/vsl2Y2NjZWhdS6Dz2rdvn8GQcHfu3EH//v1NtrFs2TKTTqOqGmjMv8YYW7duNRmi8eHDh1JRtrRtc3B2dsawYcMApK4CGHIkFUJgzJgxcrI/ZswYg235+fmhdOnSAIAZM2YA0LXXJmiy/ccff7C9thHoOcqM7wx7z/2y3WR7wIABAFKVk44dO+Lbb7/Fnj17cPjwYcyZMwfVq1fHrl270KhRI5PtLF26FO7u7khJSUG/fv3Qq1cvrFq1ClFRUTh8+DCWL1+OIUOGyFSeKp9++qn8lR4SEoKKFSvim2++QVhYGI4ePYq9e/fi999/R//+/VGsWDFMnDjR4vNs166dXM778ssvMXr0aGzduhVRUVFYuXIlWrduje+//z7d87Q1jo6O8gs/NjYWLVu2xD///IMjR44gJCQEQ4cORf/+/S0KjWOIhQsXygfpP//5D+rXr4/ffvsN4eHhOHLkCLZv344ff/wRbdu2RenSpTM0uTcHb29vdOzYEUDqD4D27dtj7dq1iIqKQkhICIYNG4bu3bsjODg4U6JFzJ49G46OjkhMTESbNm3wxRdfYN++fYiIiMCsWbNQq1Yt3LhxI0MxmfPkySNtI48ePYomTZrgzz//RGRkJHbs2IGPPvoITZs2hYuLi0kbRnMoWbKkXAaeNm0a/vnnH/z77784d+4czp07Z5cwVZl5fubw448/Sseuvn374t1338WuXbsQFRWFxYsXo3bt2jh8+HC6Ye0oAtSzZ8/QvHlzzJ8/H9HR0dizZw/Gjx+P+vXrw9vb2+pxml3fTSq1a9fGnDlz0KFDB/zzzz+Ijo7GP//8g/bt20vFvUaNGhY76tnq+6dhw4YAUm3HP/zwQ0RFRcmxrpqL5M2bFytXroS7uzuEEBg2bBjat2+PJUuW4NChQ4iOjsaWLVvwzTffoFGjRqhSpUqaGM7mMHDgQACpJlPNmjXDrFmzEB4ejgMHDmDatGmoVq0aTp48afK9PmDAAJQoUQLvvPMOli1bJt/VW7ZswUcffSSP4e7unu7EXZ8VK1YgICAAnTp1wowZM7Bjxw4cOXIEe/bswezZs9GgQQNcu3YNgOU/oMxl/PjxMpLK5MmT0bNnT2zcuBHR0dFYs2YNWrZsKYWYBg0amPxhTJPmhw8f6vxfhey2qY6Dg4NO/GZGe47Wr1+PX3/9FbGxsfI5yoi/kjHsOvczK/WNgrnp2k2RXgavSZMm6WRR0//30UcfmZXpMDIyUvj7+5tsy9j+T58+FQMHDkx3XwAiKCjIquuwZcsWmdLU0L/mzZuL2NhY+f/0MsYZw9xsZsSTJ09E/fr1jfarWbNmOlkgrUnXLoQQly5dEnXq1DHrGg8ZMiTD55UeV65cESVLljTah5IlS4oTJ06YzMxnqwycQgixfPly4eTkZLAvjo6OYt68eTKbl7UZJB88eCCqV69u9Jy9vLzE7t27bXKtZ8+ebfQ46jWwNMOfqfthi/OzJNtieu/Gbdu2ifz58xvtz4QJE8RXX30lAAgXFxejx3nvvfeMtuHv75/uOE3vnGzxbsro2DTV561bt8rUy4b+lS9fXly7ds1gO5nx/fP48WMRHBxscH9D1+PYsWMyQ2N6/yZNmmTV9RsyZIjRNvPmzSumT59u8tqY0zcPDw+xdetWi/umZiU09W/06NEiOTlZZ19bZVWltigLpLF/jRo1Sjcl/dKlS3X2WbVqlcF66hipUqVKhvpOZPS5MzeDZHrtm/tdaIojR44IZ2dng/dBvQ62fEfba+6X7ZRtIPUX5qZNm9C2bVt4enrCyckJJUqUQM+ePbFt2zZMmzbNrHZq1aqF06dP4+eff5aOIfny5UPRokVRq1YtvP/++wgPD0dgYGCafV1dXbF48WJERkZi1KhRqFSpEgoVKgRHR0d4eHigevXqeOutt7B69WqcOnXKqvNs164dIiMj0b9/f/j5+SFfvnzw8fFBs2bN8Ntvv2HHjh3Inz+/VW1nBDc3N+zcuRNTp05FlSpV4OrqKm3mZs2ahR07dshMXBkhICAAhw4dwtq1a9G3b18EBQXBzc1NXoeGDRvio48+wu7du9NdXrUF/v7+iI6OxieffIKyZcvC2dkZhQoVQrVq1TBhwgQcPXoUFStWtHs/iH79+uHIkSMYMGAA/Pz84OTkhOLFi6NPnz7Yt2+fXPbMCIUKFcL+/fsxefJkVKlSBS4uLnB3d0eFChXw8ccf49ixYzZTW0aNGoU1a9agbdu28PX1zZQoNJl5fubQpk0bxMbGYsSIEQgICICTkxOKFCmCTp06YcuWLZg4caK0FSxUqJDRdmbMmIHly5ejadOmKFiwIFxdXVGuXDl8/vnnOHLkSIbHaXZ9NxFOTk4ICQnB7NmzUb9+fXh4eMDNzQ1VqlTBlClTEB0dbXF4PMIW3z/u7u44cOAA3n//fVSoUCHdUHVVq1bFyZMnsXjxYnTv3h3+/v5wcXGBk5MTihUrhubNm2PcuHGIioqy2kRowYIFWLp0KZo0aYICBQrA2dkZAQEBGDBggOyrKf7991/MnDkT3bt3R8WKFeHt7Q1HR0d4enqifv36mDhxIk6fPi1NBC1h+vTpWLNmDUaOHInatWujePHicHJygqurK8qWLYvBgwdj3759mDVrllFHZ1sQGBiIY8eOYdasWWjWrBm8vb2RL18+FClSBO3bt8fSpUuxZ8+edJ0YVSXbkL02Qeo2wPbahqhevTrCw8PRr18/lCxZ0mh2UFtir7mfw/9m+gzDMEw2oHXr1tixYwcaN24sE10wqSHUaHKya9cutm9lGCbHkC2VbYZhmNzI9evXZWSC+vXrZ3FvGIZhGFvAk22GYZhM4ty5c0bLnj17hsGDB8swhORwxjAMw+Rssj51H8MwTC5h2LBhePLkCfr06YNatWrBy8sLjx8/RmRkJGbPni0n42+99ZZMbsQwDMPkbHiyzTAMk4lERkaaTEjTo0ePTInnzjAMw2QOPNlmGIbJJH788UesXbsWO3fuRFxcHO7cuQMhBHx9fVG/fn0MHDhQJr9hGIZhXg04GgnDMAzDMAzD2Al2kGQYhmEYhmEYO8GTbYZhGIZhGIaxEzzZZhiGYRiGYRg7YfVk+8qVKxgxYgRKlSoFFxcXODg4wMHBAevWrQMADB48GA4ODgZToTO2ZdGiRfL6X7p0Kau7k+0ICwuT1ycsLCyru2MzJk6cKM+Lyfns378fPXr0QNGiReHo6Cjv7YMHD7K6a1lG8+bN4eDgkGuyRWaXZzoxMRHlypWDg4MDVq5cmaa8Y8eOcHBwwIQJE7KgdwyT87AqGsmVK1dQq1Yt3L1719b9YRiGyXVs2LABPXr0QHJyclZ3hTHAnTt3sHHjRuzatQvR0dG4fPkyXrx4AS8vL1SvXh09evTAwIED4erqmtVdtQkzZ87EmTNnUKFCBbz22mtpysePH4+QkBD88MMPGDZsGPz9/bOglwyTc7BK2Z4yZQru3r0LR0dHfPfddwgPD0dMTAxiYmLQqlUrW/cxV3Lp0iWpcCxatCiru5MtoeszceLErO4Kw2SIjz76CMnJyfDz88OSJUsQFRUl36kFCxbM6u7laubNm4dixYph6NChWLp0KU6cOIGEhAQkJibi1q1b2Lp1K0aOHIlq1arh+PHjWd3dDJOQkIBvvvkGQOqkOk+etNOE+vXro02bNnj27BmmTJmS2V1kmByHVZPt7du3AwC6d++OTz/9FPXr10flypVRuXJlFChQAECqaYMQgs0aGIZhTHDlyhWcPXsWAPDFF19gwIABqFmzpnynGprsMJnHrVu3kJycDCcnJ/Ts2RNz587F7t27ER0djVWrVqFt27YAgLNnz6J169aIi4uz+lgTJ06EEAJZGZF3zpw5uHv3Lvz9/dGnTx+j9T766CMAwMKFC3Ht2rXM6h7D5EiseovTg1W2bFmbdoZhGCa3oU5U+J2a/cifPz8+++wzxMXFYc2aNRgxYgSaNm2KGjVqoHfv3ti6dSs+/PBDAKnmJjnZjjk5ORmzZs0CAPTr18/kD73WrVvD19cXiYmJmDNnTmZ1kWFyJFZNtl++fAkAyJcvn007wzAMk9t48eKF3OZ3avZj7Nix+Pbbb+Hj42O0zjfffINixYoBAP7+++8sVaYzQmhoKK5cuQIA6N+/v8m6efPmxeuvvw4gdSU7JSXF7v1jmJyK2ZNtNeIFMWnSJPmZg4MDBg8eLMvMjUayfv16tGvXDoULF4abmxvKli2LTz75BDdv3gQABAYGpmmbMNdzO71oFPoe72fPnsWYMWNQpkwZuLm5GY3yERcXh//7v/9DzZo14enpCRcXF5QsWRKvv/46du3aZbJPpnBwcEBQUJD8/5AhQ3Suc3p2yikpKfjtt9/QsGFDeHp6In/+/KhatSqmTp2Kp0+fpnt8IQRWr16NXr16wd/fHy4uLvD09ETdunUxefJkk9ER9O/7gwcPMH78eFSqVAn58+eHh4cHmjZtij/++MPcy5EGGhOE/jg0Nl5U/vrrL7Rq1Qo+Pj5wdXVFuXLl8OmnnyI+Pt6sPoSGhqJ///4ICgqCq6srChYsiGrVquHTTz/FjRs3rD43lbi4OIwePRrBwcFwcXGBn58funbtKs24zOXp06eYPn06WrRogSJFisDJyQm+vr5o27YtFi5caJZT3t69e9GzZ08UKVIELi4uCA4OxsiRI3Hu3DkApqNG6D9/KSkpWLBggexPnjx5DN6vjIxDlcy4VwkJCfj222/RoEEDeHl5wdnZGSVKlEDv3r2xceNGg/vQs9KiRQv5WYsWLXTGsaX+Gvfv38fChQvRv39/VKxYEe7u7nByckLRokXRrl07/Pbbb1IsMYQhX5HQ0FB06dIFRYsWhbOzM4KCgjBq1CizzCXu3r2LTz75BGXLloWrqyuKFCmCNm3aYO3atQBsF0np/v37mDJlCho0aIDChQvD2dkZfn5+6NatG/7++2+r2zUXJycnNGrUCEDqO+/evXtWtWPOd9rOnTvRr18/OZ7d3NwQGBiI+vXr4+OPP8bOnTutOjaQ+l4EgDJlyqBKlSrp1u/VqxeA1NWZffv2WX1chnnlEWaycOFCAcDkv0GDBsn6gwYNEgBEQECAwfZSUlLEiBEjjLZVtGhRER0dLQICAtK0TUyYMEHWN8WuXbtkvV27dqUpb9asmQAgmjVrJtatWyfy58+fpj8XL17U2ef3338Xrq6uJq/HW2+9JRITE9O5smlJ7zoDEBMmTJD11XsTGxsrWrZsaXS/unXrioSEBKPHvn37tmjUqJHJYxcpUkQcPHjQ4P7qfT916pQIDAw02s7o0aMtvjZCCDkmzB2L6v3fvn27eOONN4zuV7p0aXHjxg2jx05ISBA9evQweWx3d3exYcMGq86NCAsLEwULFjR6jEmTJpk1/g8fPiyKFy9usr9169YVN2/eNNrGlClThIODg8F9CxQoILZu3arzDOmjXv+QkBDRunVrk/dLiIyPQyEy715FR0cLPz8/k8fp2bOnePbsmc5+9KyY+rdw4UKL+mLOs1GjRg2jY/zixYs6x/7ss8+MtuPj4yNOnjxptC9Hjx4VPj4+Rvd/++23dd5d+u9YIYTJcUVs2rRJeHh4mDznTp06icePH1t0LS2lS5cu8nj37t2zqo30numxY8eme3+9vb2tPgd6Xw8YMMCs+k+ePBF58+aV7ySGYQxj9mT7/v37IiYmRsTExMiHetSoUfKzmJgYERcXJ+unN9n++uuvZTslSpQQs2bNEocOHRJ79uwRX375pXB1dRXBwcHyZZ0Zk+2goCDh7u4ufHx8xLfffiv2798vDh48KGbOnCnu3Lkj68+fP1+2V7lyZTFz5kyxb98+ER0dLdasWSM6duwoyz/88EOzrq9KTEyM2Lp1q2xjypQpOtc5JiZG3Lp1S9ZXv7AaNmwo8uTJIwYNGiQ2bdokoqKixNq1a0WDBg1knc8//9zgcRMSEkSFChUEAOHk5CRGjBgh/vnnHxEdHS327t0rpk6dKry9vQUA4enpKS5dupSmDbrvPj4+okyZMqJAgQJi3LhxIiwsTERGRop58+aJEiVKyL5s2bLF4utz+vRpk+NQfyyq979hw4YCgOjevbv4+++/RVRUlNi8ebPo1KmTrNO3b1+Dx01KShItWrQQAISDg4Po16+fWLVqlYiMjBTh4eFixowZomTJkvL6RUZGWnxuQqROeAoUKCAAiDx58oiRI0eK7du3i4iICDF//nxRpkwZAUDUrl3b5Pg/fvy4/OHo6+srJkyYILZv3y6OHDkitm7dKkaPHi0cHR0FAFGvXj3x8uXLNG0sX75cHsPT01N8++234sCBA+LAgQPiu+++E56ensLT01OULVvWrMl21apVBQDRtWtXnev/559/yvq2GIeZda/i4uKEp6enPM6QIUPE1q1bRWRkpFiyZImoVq2aPPc+ffqk2TcmJkYsWLBA1lmwYIHOOL5//75F/SlRooSoV6+emDx5sti4caOIiIgQ+/fvF8uWLRPt27eXxzE2eVUn2/SsNGvWTCxfvlxERkaK7du3i4EDB8o69evXN9hOfHy8KFq0qKz35ptvipCQEBEZGSn+/PNP+T6qV69ehibb27Ztk5O9wMBA8d1334mwsDARHR0tNmzYIPr376/zg8devHz5UhQuXFg+a9Zi6jttw4YNOs/RnDlzRFhYmDhy5IgICwsTc+fOFb169RJ+fn5WHfvq1auy/Z9//tns/eiZbt26tVXHZZjcgNmTbZ2d/vdAquqqPqYm29evXxcuLi4CgAgODtaZOBL79+8XTk5O8liZMdkGIPz8/MTly5eNtnXlyhXh5uYm+2RMuf7iiy/kZOn06dMm+2cIfYXJFPqrDkuXLk1T5/nz56Jy5cpS+TDU7zFjxggAolChQiIiIsLgsS5duiSKFSsmAIj+/funKVfVOg8PDxEbG5umztmzZ+X979q1q8lzM4U541AI3ftPP170SUlJEW3bthUAhKOjo7h9+3aaOtOmTRMARL58+cTmzZsNHis+Pl5UqlRJABCNGze26rx69uwp+7p8+fI05Y8ePdKZxBka/ykpKfJLsFq1ajo/FlVCQkJEnjx5BADx+++/65Q9f/5c+Pr6CgDCy8vL4Dg+ffq08PLyMjmJ07/+X331lcnzt8U4zKx71bt3b3le+tdPiNRrSJN+AAb7kt77yRLOnDljslyd2G/fvj1NufreASCGDx8uUlJS0tQbNmyYrBMdHZ2m/L333pPl06ZNS1OelJQkunXrpnMsSyfbCQkJokiRIgKAaNu2rXjy5InBc/7tt99MnrMtmDVrljyGtSt2Qpj+ThswYID8TjWl0lurqq9cuVIee+/evWbvN2TIEAFA5M+f3+BYYRgmiybb33zzjWzjn3/+MdqGumSWWZPtJUuWmGzro48+kpNy/WVhlcTERLl8/+WXX5ps0xDWTrZNqTdz586V9Y4dO6ZTdufOHTkBnjFjhsnjzZ49W05k9L/g1Mm2KXWkb9++AkhVJq3Fmsl2rVq1jH4hbNmyxei4fPnypZzcjR071uTxNm/eLNs5e/asRed0/fp1qdR17tzZaL1Dhw6ZnGyrKpj+vdanT58+AoBo1KiRzucrVqyQbZgaEzNmzDB7sl22bFmRlJRktC1bjMOsuFft2rUzWu/ixYtyBaFjx45pym052TaHGjVqCABizJgxBvtKfSlWrJh4/vy5wTb+/fdfo2Pj2bNnolChQgKAqFmzptHn7ebNm/JeWzPZnjlzpgAgXFxcDAo2KnXr1hVAqsJua86fPy/P193dXVy7ds3qtkx9p7Vp00YAED169MhId43y3//+Vx7bEoFINTWKj4+3S98YJqeTJQFcd+zYAQDw9vZGp06djNYbOHBgZnUJQKqTi6FsWSr//PMPAKBLly5wcXExWs/R0RENGjQAAISHh9uuk+nw5ptvGi2rVauW3L5w4YJO2datW/H8+XMAMBlbFQCaNm0KIDWlb1RUlME6Dg4OeOONN9Lty/379zM1HfUbb7xh1PnI1PU5fPiwdKYz9/oAlt/7Xbt2SYfFIUOGGK1Xt25dVKpUyWg5jdNy5cqhatWqJo9J/Y2IiNBxlqTnNE+ePBgwYIDR/fv37292eunXX38defPmNVpui3GYFffqrbfeMlovMDAQbdq0AZDqLJpZWSKFELh58ybOnDmD2NhY+c/Pzw8AcOzYMZP79+7dG87OzgbLypUrB3d3dwBpn5WoqCg8fPgQQOo73NjYKFKkCNq1a2fROanQGG/WrBl8fX1N1qX7bOt38dOnT9GzZ095vjNnzpTX19ZQtJM9e/bg/PnzNm//zp07ctvT09Ps/by8vAy2wTCMhlXp2jNKbGwsAKB69eomv3irVKkCZ2dnndBY9qRMmTImJ9APHz6U0Rd+/fVX/Prrr2a1S5FVMoPy5csbLVNfio8fP9Ypi4yMlNv0UjcHY+dWuHBheHt7m90XDw8Ps4+ZEWxxfehHlDlYeu9jYmLkdp06dUzWrVu3Lk6cOGGwjPp7+vRpsyfCL1++RHx8vAxxRs9pUFCQyS9fLy8vBAcHmzUBSG/ib4txmFn3iq4PANSrV89k3Xr16iEkJARPnz7FhQsXUKZMGYuOZQmbNm3CnDlzsGfPnjTjWOXu3bsm2zH1rACpE7KEhIQ0x1Cvi/oD1hC1a9eWk2ZLofu8detWs8e4Ld/FSUlJeO211+SPlhEjRqQbBSkjDBw4EEuWLMG9e/dQuXJldOvWDe3atUOTJk1QunTpDLevRmKyZLKt1rU2CgvDvOpkibJ9//59AEhXjcibN69FD31GSe9Yt2/ftqpdc8Lt2Qo3NzejZWqCAn11zdbnZqof6fXFnmSX62MMejaA9J+PIkWKGC2zRX/NfU4BmIxBrJIZz1hm3St1cmLqXgBA0aJFDe5nS4QQGDZsGDp37oxNmzaZnGgDwLNnz0yWm/sM6z8rloxhc8eNPomJiVatiNnqXSyEwODBg7F582YAwGuvvYbZs2fbpG1jtGrVCrNmzYKrqyueP3+OlStXYujQoShTpgxKlCiBkSNHprtaYQpVaEpvbKiodV1dXa0+PsO8ymSJsp1dMaWyA7pfKh988IHJpWMVJyenDPUrM6Bzc3JyMmoaYogSJUrYq0vZCvXeh4WFmVTtVcyZqKoIJRlGemqdWlcf6m+jRo0wd+5cs49vryVwwtxnLCPjMLPulSWYule2YsGCBZg/fz6A1FXDDz74APXq1UPx4sXh5uYmr/3AgQOxdOnSHJt4BdC9x3369MFXX32VqccfPXq0zBXQoUMH/PHHHyazLdryuK+99hqWL1+O0NBQ7N+/Hw8fPsS1a9fw66+/4rfffsMXX3yBKVOmWNy2+sMnPj4eBQoUMGs/9cejtT+eGOZVJ0sm256enrh582a6ClRycrKOSqKP+nJLSUkx+rJ78uSJdR3VQ/3Sfvr0KSpXrmyTdrMDdG4vX76Et7e3RUv4uQH13js5Odnt3qumLLdu3YK/v7/RuqaeH29vb9y6dQt37tyxuq+kQpujFNvKVtMW4zCr7lXJkiWN1r1165bB/WzJvHnzAAClSpXCgQMHjKqMpt6ptkBdvbh9+7bJFPTWjhsXFxe4ubnh6dOnePDgQaa+iz/77DOZnrxp06ZYs2ZNpmb+9PX1xQcffIAPPvgAKSkpOHr0KP7++2/88ssvePDgAaZOnYo6deqgW7duFrWrTpTv37+PgIAAs/ZTx1PhwoUtOibD5BayxIyEHLuOHj1q0oQgJibGpL22+svb1BfI6dOnrehlWnx8fFC8eHEAwPbt2+2qDJlrg2gratSoIbe3bduWqcfOCWTW9VGztkVERJisa6qc+nvmzBlcvnzZqr7Qc3rx4kWTpg/x8fFpnOSsxRbXObPulTrBO3TokMm6hw8fBpBqmqFmh7UlZL/frVs3oxNtIQSio6PtcnxCddxV7ecNkV65Keg+79+/P9NM9aZMmYLvv/8eQKpPxcaNG7PUdCJPnjyoWbMmpkyZIh2aAS0TpCWo754zZ86YvR/VLVu2rFGHWobJ7WTJZLtVq1YAUp0pNm3aZLTekiVLTLajfmmZemmvWLHCwh4ap2vXrgBSPfBXr15ts3b1Ue3nMsNBtEOHDlKd+emnn5CUlGT3Y2YUukaZcX0aN24sFcm5c+fi0aNHdjlOixYt5HL/4sWLjdaLjIzUcUTTh8YpADk5sBR6TlNSUrBs2TKj9ZYtW2azH562GIeZda+aN28u7xWZbxjiypUrCA0Nlfs4OtpnQZGulamJ5/r163H9+nW7HJ+oXbs2ChUqBAAmzVVu3bqFrVu3Wn0cGuNPnjzBL7/8YnU75jJjxgxprlKlShVs2bLFbFOLzKBmzZpyVSE951dD1K5dW/5wSO+Hvgp99zZp0sTiYzJMbiFLJtuDBg2Sv4DHjh1rcCkxPDw83Rdoo0aN5BfXTz/9ZPCl/u2332ZIPdHnk08+kX0fOXJkum1v3rwZx48fT/P5okWL4ODgAAcHB0ycODFNube3t7T1tkeYJ32KFy8uQ80dO3YMI0aMMDnRuX37Nn7//Xe798sUZGKQGdfHxcUFH3/8MYDUiAZ9+/Y1aZ70+PFjzJo1y+LjFCtWTC7/rl+/3qBClZCQgLfffttkO7169UKFChUAAHPmzDE5GQRSI0hs2LBB57MePXpIO+ZJkybh7NmzafY7e/YsJk2aZLJtS7DFOMyse+Xn54cePXoASI2IsWDBgjR1Xr58iaFDhyIxMREAMGbMGIuPYy4U4WTDhg0GV/rOnz+Pd955x27HJ1xcXGTY1ujoaPz4449p6qSkpGDEiBEyzKM1jBw5UpotfPXVVwgJCTFZf//+/dizZ49Vx1q4cCHGjh0LIFXBDQ0NtZs5kDFWrlxp0nExMjJS3ndrVk+cnJxQt25dANpKTHpcuHBBTux5ss0wJrAmODcymNRGCN107f7+/uKXX34Rhw8fFnv37hXjxo0Trq6uIjAwUKZrHzx4sMF2KDkK/pcEJCQkRERHR4t169aJHj16CAA6qcpNJbUxlhJYHzWJjJOTk3jrrbfE2rVrRVRUlDh06JBYs2aN+Oyzz0SpUqUEALFhwwaTbRi7jo0aNRJAasbH5cuXi5MnT4qzZ8+Ks2fP6mQJU9sylBiCSC9RzuPHj2WWSQCiYsWKYvr06WLv3r3iyJEjYteuXWLWrFmie/fuwsnJSdSqVStNG+ndd0v7bIo333xTABDOzs5i7ty5IiYmRl4fNcmFJUlDTN2TpKQk0apVK1mnZMmS4uuvvxa7du0SR44cEXv27BHz5s0Tb775psifP7/w9va26rzUdO158+YV77zzjti5c6eIjIwUCxYskKnRzUnX7u7uLuu0a9dOLF68WBw8eFBERUWJkJAQ8fXXX8u03B999FGaNvTTtX/33XciPDxchIeHi++++054eXkJDw8PmUK+efPmadqwNGmLLcZhZt2rq1ev6qRrHzp0qNi2bZuIjIwUy5YtE9WrV5d90E/Xbu31McYPP/wg2ylfvrxYsGCBOHTokNi9e7eYMGGCKFSokHBxcRE1a9Y0+oxakkwrICBAAIYTjt27dy9NuvYtW7aIqKgosXLlSjnmKNkMAHHp0qU07aT3bg4NDZUJg/LkySNee+018eeff4qIiAgREREh1q9fLyZMmCCzqc6cOdOMK6nL2rVrZfKiggULipCQEBETE2PyX0JCgsXHEcJ0UpuAgADh4eEhBg0aJObPny/27t0roqOjRWhoqJgwYYLM5Jo3b14RGRlp1fG///57mSjo0aNH6dan7Jx58+YVN27csOqYDJMbyLLJdkpKihgxYoRsS/9f4cKFRUREhPD39xcAxMiRIw22c/PmTflFb+hfnz59xPbt22062RZCiD///FMULFjQ6HHpX548ecTOnTvT7E/Z7wDjmRY3btwoHBwcDLarXntbTbaFSP2SbN++fbrnBUC0aNEizf6ZOdk+cuSIcHZ2Ntg3dQJgq8m2EEI8ffpUDBw40KzrExQUZNV5UZ9pwm3s/puTQfXYsWMmnw/136RJkwy2MWXKFKPj0M3NTWzatEk0adJEABDt27c3eC6WTiYzOg6FyLx7FR0dLfz8/Ey237NnT6MZZ2012X758qVo27at0T64urqKv/76y+QzaqvJthBCHD16VIolhv4NHjxYzJ8/X/7/5s2badow5928Y8cOnYm9qX+LFy82eU6GULPimvvP2vuY3mQ7veO6uLhYdY5EXFyc/GFhTjvNmzcXgOkMqgzDZFEGSSDVAXDu3Ln4559/0LZtW3h5ecHFxQWlS5fGe++9hyNHjqB27drS3pJsAPUpUqQIDh06hM8++wxlypSBs7MzvLy80LRpUyxduhQrV65MN9yYNbz++uu4dOkSvv32WzRv3hy+vr7Ily8f3NzcEBwcjC5duuDHH3/EpUuX0KJFizT7UyYzT09Po4kQOnXqhB07dqBbt27w8/PLFI93Ly8vhISEYMeOHRgyZAjKlCkDd3d3ODo6wsvLC3Xq1MHo0aOxefNmaYeaVVSvXh3h4eHo168fSpYsmSnOOa6urli8eDEiIyMxatQoVKpUCYUKFYKjoyM8PDxQvXp1vPXWW1i9ejVOnTpl9XGaN2+OEydOYNSoUQgICICTkxOKFCmCTp06YcuWLQZNjwxRtWpVnDx5EosXL0b37t3h7+8PFxcXODk5oVixYmjevDnGjRuHqKgojB8/3mAbX375JXbv3o3u3bvD19cXzs7OCAgIwNChQxEZGYmOHTum+5xaii3GYWbdqxo1auD06dP45ptvUK9ePXh4eMDJyQl+fn7o2bMn1q9fjzVr1phMmGUL8uXLh02bNuHnn39G7dq14ebmBldXV5QuXRojR45EdHR0uhlybUm1atVw8uRJfPTRR/LdXLhwYbRo0QLLly/HwoULdezprR07LVu2xPnz5zFr1iy0b98exYoVg5OTE1xcXODv74+2bdti6tSp+PfffzM9K7Et2bNnD37//Xe8/vrrqFKlCnx8fODo6IiCBQuiZs2a+OSTT3Dy5MkMnWPx4sWlGRuFNjTGtWvXpFlOZpgnMUxOxkGI7BtsNS4uToY++/33382Oa50TCAwMxOXLlzFp0iSjkxyGyQkkJiaiUKFCePbsGcaNG4fJkydndZeYHMKwYcMwf/58lChRAlevXs3q7jAADh48iAYNGiBv3rw4d+4cAgMDDdabMmUKvvrqK5QrVw4nT57MlDjjDJNTydZPhxpFpH79+lnYE9ty5coVXL58GYUKFcL777+f1d1hmAyxbt066bj1Kj2njH159uyZTNXO4yb7UL9+fXTo0AHJycn45ptvDNZJSEjA9OnTAQATJkzgiTbDpEOWPSFPnjzBjRs3jJYfOXJEKmS1atXSid2a09m9ezcA4L333rPZsjvD2Itz584ZLbt06RI+/PBDAKkmXe3atcusbjHZnPPnzxsN+5ecnIxRo0bJSBaDBg3KzK4x6fDdd98hb968WLhwIa5cuZKm/JdffsG9e/dQp04d9O3bNwt6yDA5iywzI7l06RIqVKiA7t27o3379ihXrhycnZ1x/fp1bNmyBfPnz8ezZ8/g4OCAsLAwNG3aNCu6yTC5HkdHR3Ts2BGdO3dGpUqVkD9/fty+fRu7du3C3Llz8eDBAwCpMZX79++ftZ1lsg2DBw/G4cOH0bdvX9SrVw++vr549uwZjh8/jnnz5snkOq1atUJoaGimJ/JiTLNs2TKcO3cOrVu3RuPGjXXKZs+ejdu3b6Nnz56oWrVqFvWQYXIOWTrZTi8WqJOTE+bNm5ejnVoYJqeT3iQoT548mDJlCv7v//4vk3rE5AQGDx5sMjETkJor4Z9//oG3t3cm9YphGCbzybLJdmJiItauXYuQkBBERkbi9u3buH//Ptzc3BAYGIjWrVvj3XffRUBAQFZ0j2GY/7Fx40aEhITgwIEDuHXrFu7duwdnZ2cUL14czZs3x+jRo3VSlzMMAJw+fRpr1qxBaGgoLl++jDt37iAxMRHe3t6oXbs2Xn/9dfTt25ftfRmGeeXJ1tFIGIZhGIZhGCYnw5ICwzAMwzAMw9gJnmwzDMMwDMMwjJ3gyTbDMAzDMAzD2IksnWxfunQJDg4OcHBwwKJFi7KyK5g4caLsC8MwDMMwDMPYggxPthMTE/Hnn39i0KBBqFChAry9vZEvXz4ULlwYtWrVwqhRo7B9+3akpKTYor9MNmPKlCnyR0qBAgXw9OlTm7b/4MEDhIaGYurUqejevTv8/Pzk8Zo3b25WG5cvX8a8efMwfPhw1K1bFwEBAXBzc4Orqyv8/f3RtWtXLF26FImJiWb3688//0S7du1QrFgxuLi4IDAwEAMGDMDBgwfN2v/69esYPHgwfHx84ObmhmbNmmHHjh1mH9+eqD889f/lzZsXHh4eqFWrFj766COcPXvWJsdMSEjAnj17MG3aNPTp0wdBQUHymMbSRVtCnz59dM7j0qVLZu33Kt9nfe7du4dZs2aha9euKFWqFAoWLAhnZ2cULVoUzZs3x5dffonY2NgMHSMpKQlHjhzBr7/+imHDhqFq1apwdHS0+L6cPn0aP/30E7p3746goCC4urrCzc0NQUFBeP3117Fp0yajCXUMER4ejgEDBiAwMBAuLi4oVqwY2rdvjz///NOs/V+8eIHx48cjKCgILi4uqFy5MmbPnm1RH+xFWFiYwWfZ0dERXl5eCAoKQtOmTTF27FisWbMGL1++tOnxz507hxUrVmDs2LFo1KgR3NzcLBbZ7ty5g4ULF2LgwIGoXLkyChQoACcnJxQtWhTt27fHr7/+KrPYmsLYe03/X3rfLUIITJ8+HeXLl4ezszNKly6NKVOmWPQdwuQyRAZYt26dCA4OFgDS/Ve2bFmxceNGnf0vXrwoyxcuXJiRrmSYCRMmyL4w5lO2bFmd+7x06VKbth8YGGh0TDVr1sysNr788kuzxmiVKlXEhQsXTLb17Nkz0blzZ6Nt5MmTR/znP/8x2ca1a9dEiRIlDO5r6+tnDeqzkN4/JycnMXfu3Awfs3nz5kaPERAQkKG2N27cmKbNixcvmtwnN9xnIjk5WXz99deiYMGCZt3zNm3aiBMnTlh1rIkTJ5psO737IoQQAwcONKuf7dq1E/fv30+3vUmTJok8efIYbadLly7i2bNnRvdPSkoSbdu2Nbjv8OHDLbg69mHXrl1mP88AhI+Pj5g8ebJITEzM8LHDwsJMHsuc7/3ffvtN5M2bN91+lylTRhw7dsxkW+Zeg/S+W4YOHWpwvw4dOoikpCQLrhCTW7B6Zvn1118LBwcHOchat24tZs6cKXbs2CGioqJEaGiomDVrlmjXrp18kVWrVk2njew02WYsJzw8XN4/d3d3+UVsSwICAuQxihQpojMBMney/dVXX4lq1aqJ0aNHi3nz5omNGzeKiIgIsXPnTjFv3jzRsGFD2WapUqXEkydPjLb1xhtvyLotWrQQ69atE4cPHxbz588XpUqVkmXz5s0z2kafPn0EANGgQQOxYcMGsW/fPjF27Fjh4OAg8ufPL+7evWvpZbIp6mR7wYIFIiYmRv47evSoCAkJEe+9957Ily+fACAcHBzEjh07MnTMZs2ayWN6enqKNm3ayDGVkcn248ePRcmSJQUA4evra/akLjfcZyFSf1R0795dno+Tk5Po37+/WLJkidizZ4+IjIwUmzZtEpMmTRLVq1eX9d5//32rjqeOLRcXF1G/fn2d62nOZLtVq1YCgPDy8hJvv/22WL58uThw4IA4fPiw+PXXX0W5cuVke40bNxbJyclG25o3b57Osz9//nxx+PBhsW7dOtGiRQtZ9uabbxptY/bs2QKAKF68uFi4cKE4ePCgmD59uihUqJAAIEJCQqy5VDZDnWyPGjVK53kODw8XmzdvFt9++61o06aNznd63bp1xe3bt2127Dx58ohKlSqJunXrWvS9P3nyZDk2e/bsKebOnSt2794toqOjxapVq3R+6Pj4+IirV68abcvYddD/Z0p02bx5s3xP/fzzz+LgwYNiwYIFws/PTwAQc+bMseZSMa84Vk22lyxZojO4d+7cabL+8ePHRcuWLXmy/YoxatQoAUAULlxYfPfdd/KFGhcXZ7Nj/PDDD2L16tXi8uXL8jNLJ9vmKDTvv/++bPfnn382WEdVabp06ZJGwbhz546c2Hl6ehpU1Z4/fy6cnZ2Fv7+/SEhIMNiHxYsXm3Ve9kKdEO3atctovQULFsh67du3z9Axf/31V/HHH3+Is2fPys/oh1ZGJtt0TVu1aiUGDRpk1qQut9xnIYQYMmSIPNc6deqku7Kzfv16ERwcbPVke8uWLWLu3LkiKipKPpfm3hdi0KBB4tdffxXPnz83WP7kyRPRuHFj2eaSJUsM1rt//77w8PAQAETJkiXFnTt3dMqTkpJEly5dZDu7d+822A6tyuirqmvXrhUAxJAhQ9I9J3uiTngnTJhgsm5sbKyoUaOGzo+VFy9eWH3sM2fOiB9++EGEhYWJx48fCyGEWLhwoUXf+z/++KP47LPPTE78P/zwQ9nm0KFDjdYz9zqYYvDgwQKA+Oeff3Q+P3LkiPxxzjD6WDzZvnbtmsifP78AINzc3MxeTkxOTk6zdMqT7ZzLixcvhJeXlwAg3nnnHXHjxg251Pfdd9/Z9diWTrbN4ebNm7Ld3r17G6zTsWNHAUDkzZvXqHqyYsUK2c60adPSlF+7dk0AEL169UpTtn79egFAfP311xk7mQxi7mRbCCEKFy4sJ522JqOT7YiICJE3b17h7OwsTp8+bfakLrfc53Xr1slzqFy5spwMpUd8fHyaiUZGsHSybQ4xMTGyza5duxqs8/3338s6K1asMFjn6tWr8r3WuXNng3XKlCkjvL2903z+6NEjAUC0bdvW+hOxAZZMtoUQ4unTpzoT7p9++smm/bF0sm0OL168EMWKFRMAhIeHh0hJSTFYzxaT7TZt2ggABp8XLy8vUbZsWavbZl5dLHaQ/Omnn/DkyRMAwKRJk1CxYkWz9suTJw/69++fbr3Q0FB06dIFRYsWhbOzM4KCgjBq1CjExcWlu+/Lly8xe/ZstGjRAj4+PtKBomPHjli2bJlJJ01zo5G8fPkSv/32Gzp16oTixYvD2dkZvr6+qFWrFsaMGYO9e/eadIoJDQ1F//79pVNPwYIFUa1aNXz66ae4ceOGyWNfv34dn3/+OWrWrIlChQrJ86tSpQr69euHRYsW4dGjR6Yvko3YsGED4uPjAQD9+/dH0aJF0bJlSwDAkiVLMqUPtiR//vxy+/nz52nKExISpGNbmzZtUKJECYPt9OzZEwULFgQA/P3332nKPT094ejoiMjIyDTOpGFhYQCAokWLWnUOWQE5Lxq6ZllJUlIShg8fjuTkZHz++ecoW7asWfvlpvs8depUub1w4UK4u7ubtZ+npye6du1qr27ZhMqVK6Nw4cIAgPPnzxuss27dOgBAwYIF0bNnT4N1SpQogdatWwNIfXcnJCSkqePr64t79+7hxIkTOp9nl/tsKa6urli6dKn8Lpw2bVq2d/xzcnJCo0aNAKQ61d+7d89ux/L19QUA7N69W+fzmJgYxMfH57j7zWQSlszMU1JShI+PjwAg8ufPLx4+fJihmb6+sv3ZZ5/J/+v/8/HxESdPnjTa1qVLl0SFChWM7o//LYndu3fP4P7mOEgeOXJEBAUFmTwGjKgzCQkJokePHib3c3d3Fxs2bDB47D179pjlwGRof1XZGDRokNHzs4SuXbsKINXOkVi8eLE8TlRUVLptUF1LlUvaz5bK9m+//Sbb/fjjj9OU79ixQ5Z/8803JtsiG0JHR0fx8uXLNOWdOnUSAESjRo3Exo0bxf79+8Unn3wi8uTJI9zc3MTNmzdtdl7WYI2yXa5cOaN1VLt7S8iIsk1mTWXKlJHmBuYoqLnlPqvKb+PGjW3Spnp90xs3xvazlbIthJDvyypVqqQpe/HihXB0dBRAqiOlKb7++mvZP0Mmkz/88IMAIPz9/cWiRYvEoUOHxMyZM4Wnp6fRd3JmYqmyTai20Pv3709TrirUlrRrD2VbCKFj8mPse96a/uqzatUqAaT6DMyaNUscOnRILFq0SDpDz5w50+q2mVcXi5TtkydP4s6dOwCAJk2aSGXHFsybNw/fffcdmjVrhuXLlyMyMhLbt2/HwIEDAaSG/hk6dKjBfRMSEtCyZUucOnUKANC9e3esX78ekZGRWLVqFZo1awYA2LdvHzp37ozk5GSL+3fy5Ek0adIEFy9eBAD06NEDK1euREREBA4ePIjFixejf//+OgopkZycjC5dumDt2rVwcHBAv379sGrVKkRGRiI8PBwzZsxAyZIlkZCQgF69eiEqKkpn/xcvXqBv37549OgRChQogE8//RQhISGIiorCwYMHsXLlSnzwwQfw9/e3+Lys4e7duwgJCQEAvPnmm/Lznj17ws3NDUDOULfv37+PI0eO4MMPP8To0aMBpCokI0eOTFOXxhYAlC9f3mS7VJ6UlGQwNN706dPh7e2N/fv3o3PnzmjUqBF++OEHCCHw888/o0iRIhk5rUxj8eLFuHv3LgBkK6Xz4sWLmDRpEgBg9uzZcHZ2Nnvf3HKfVVWuc+fOWdYPe3HkyBG5ymfoPp49exZJSUlGy1XUcnV8EGPGjEG9evVw9epVDB48GPXq1cO7776L+/fvY+DAgTn2+pKiDwB79+7Nwp6kT2JiIsLDwwGkKs9eXl4m669atQrlypWDq6srChQogDJlymDQoEHYtWtXusfq1asXunfvjvj4eHnvBw8ejLi4OLRq1crg9wfDWCQ1/fHHH/KX4RdffJHhmb6qbAOpYZIM2VoNGzZM1omOjk5T/vHHH8vycePGpSlPSUkRb775pqwze/bsNHXSU7bJhi1PnjxG7fuEEOLu3bvi6dOnOp9NmzZNABD58uUTmzdvNrhffHy8qFSpkkGlSVXbTKkkiYmJBlcbbK1sz5gxQ7Z35swZnbJ+/foJIDXyQ3qOidRGZirbqoqm/8/V1VX89ddfBvdTV10iIiJMHoOULgBiy5YtBuucP39e9OnTR3h4eAgXFxfRoEEDsWnTJovPxx6kF41k69at4oMPPhBOTk4CgChfvrxJ56XMVrZJkevXr5/O5+YoqLnlPg8fPlz2fdu2bTZpMzsp271795Ztrlq1Kk15SEiILP/hhx9MthURESHrfv755wbrPH78WHz00UeiePHiIl++fKJs2bLixx9/NBkJJbOwVtnevn273M+Q02F2UrZnzZol2xw9erTResbe/eq/7t27iwcPHpg8XmJiopgyZYoIDg4W+fLlEwEBAWLcuHFGnXYZxtGSiTmpWABsrsoUK1YMM2fONGgz/fHHH+P3338HkPoLu0aNGrLsxYsXsqxixYqYOHFimv0dHBwwe/ZsbNmyRSZuGDVqlNl927p1K44cOQIAePfdd9G3b1+jdb29vXX+n5iYiP/+978AUhWQDh06GNzP09MTP/zwAzp27Ih9+/bh3LlzKF26NADg5s2bsl7Tpk2NHtvR0dGmqw3GINW6bt26KFOmjE5Z//79sWLFCty+fRtbtmzJMarO66+/ju+++w4BAQEGyx8/fiy307NtVVc3DNl4AkBwcDBWrlxpRU8zF2OrSQBQqFAhfPXVVxg9ejQ8PT0zsVfGWbZsGbZt24ZChQrhxx9/tHj/3HKf7fkuz2rWrFmD1atXAwBq1aqFXr16palj6/vs7u6OadOmYdq0adZ0OVuifpfdv38/C3timgsXLuDLL78EkHofvvjiC6N13dzc0LVrV7Rq1Qrly5eHu7s77ty5g927d2Pu3Lm4d+8e1q1bh27duiE0NBT58uUz2I6joyO+/PJLeVyGSQ+LzEjUF5Qhc4mM0Lt3b6PLveXKlZMvxAsXLuiURUVF4cGDBwCAwYMHI2/evAbbKFiwIPr06QMg1SQkPWdElU2bNsntsWPHmr0fABw+fFgei45vDHUiTUtiQOoPEWLhwoUWHR8AmjdvDpEaecbsjF3GOHnypDRzMeTw2rZtW+lAsnTpUpNtUZ/MzRpnC6ZOnYqYmBjExMRg//79mDNnDmrWrImVK1eif//+RjMiqg6ATk5OJo+hjmNzsprlVB4+fIiFCxfKiY0xLl26JO+1PYmPj8eHH34IAPj666+tclTKLffZHu/yRYsWyftsbnZXW/Pvv/9iyJAhAFId/ZYsWWJQwMkt9zkjqD9C1PFCDB48WN5vQyJXZvD06VP07NkTDx8+BADMnDkTfn5+Rutfu3YNK1aswLBhw9C4cWNUr14dbdq0wZQpU3DixAkp5O3evRtz5szJlHNgcgcWTbYLFCggtykiia1Iz26OlDP9h15NH1yvXj2TbajllqQdJlW7ZMmSRpVPY0RGRsrtBg0amEwRq77cVDW7cePGCA4OBgB88MEHqFu3Lr755hscOHDA5ql102Px4sUAUn/ZG1L4HR0d8frrrwMA1q9fL1+C2YXixYujcuXKqFy5Mho2bIiRI0fi8OHDGDFiBPbt24d69erh2LFjafZzcXGR2+ld8xcvXshtV1dX23U+C9i1a5f8QhVCICUlBQ8ePMDu3bvRo0cPXLhwAW+//TY+/fTTrO4qPvzwQ9y5cwd16tSx2m4yt9xne77Ls4rr16+jQ4cOePz4MRwcHDB//nyj0bJyy33OCOp3bWasmFpKUlISXnvtNfm+HjFiBAYPHmxyHw8PD6NlRYoUwerVq+WPr5kzZ9qqqwxj2WSbQikBwK1bt2zaEXKsM0aePKld1XdupPBzQPrLoarSpe6XHrTkqirM5nL79m2L9wGgEy4sX7582LBhAypUqAAAiIiIwBdffIFGjRrBw8MDHTp0wPLly61y/LSElJQU/PHHHwBSFWwfHx+D9Ujxfv78Of766y+79skW5M2bFz///DP8/f1x//59gyZG6uTE2FIyoU5ezA2nllNwcHBAoUKF0LRpU/z999944403AAA//PADdu7cmWX92rlzJxYvXoy8efPi119/le8LS8kt99me7/KsID4+Hm3btpWrZDNmzEC/fv2M1s8t9zkjqKZG6TkcZjZCCAwePBibN28GALz22muYPXt2htsNDg5GmzZtAADnzp3D9evXM9wmwwCARTbb1apVk9vR0dE270xGSS9GdkaXsdNr3xDqBDgsLCyNTbcxyBSDqFixImJiYrBhwwZs2LABu3fvxvnz5/Hs2TNs2bIFW7ZswY8//ojNmzen2ddW7NixA9euXQMAbN682azrsWTJEgwfPtwu/bElTk5OaN++PebNm4fw8HBcv35dZzlSjbccFxeH2rVrG23r6tWrcjuzIsRkFZ988gmWL18OAJg/f76MtZ7ZfPfddwCA2rVr4/Tp0zh9+nSaOhRJCEiNE08/FtUVmtxyn/Xf5TTByIk8fvwY7du3l3GuJ0+ejHfffdfkPvr32RQ5+T5nBFrRBVJNObMTo0ePlsJPhw4d8Mcff1j9A1ufihUrStPRa9eumTRLYRhzsWiyXbFiRRQuXBh3797F3r178ejRoyxfXlJ/cd+8edNk8gpVwbHklzqpQNb8ylUn105OTqhcubLFbRB58+ZF9+7d0b17dwDAjRs3EBISgtmzZyMqKgpRUVEYMWIE1q5da/UxTEEmJJawf/9+XLhwQZrBZGdUpf7y5cs6L1l1Ofrff/812Q6VOzo6SifXVxXV/CsmJibL+kFL/YcOHTKpaBLvvfee3FYn27nlPlM4VCDVJ+Wzzz7Lwt5Yz7Nnz9ClSxdEREQASP3xN27cuHT3K1u2LPLmzYvk5GSz7zMAubqYGwgNDZXbjRs3zsKe6PLZZ59Je+qmTZtizZo1Rh0ZrcHeviVM7sSin4IODg7SJurJkycyCkhWok5eDx06ZLLu4cOHDe6XHjVr1gQAXLlyBZcvX7aof2rklG3btlm0b3oUK1YMQ4cORXh4uOzjxo0b7eLEk5CQICfxrVq1wooVK0z+o7EhhEjXUTK7QKo9kHa5uE6dOtKWTz9zmMrLly9x8ODBNPu8qlCsYgDZPsucOeSW+1y5cmWp2u/duzdNbP+cQGJiInr16iXv08iRI/H999+bta+TkxPq1q0LINUZ3ZTdNrXv7OxscqXjVSI2NlZmUvX398825z1lyhR5j+vUqYONGzfa3I7+5MmTcptVbcZmWBorMC4uTri5uQkgNYvkqVOnzNovOTlZLF26VOcz/QySpqCYu/pxop8/fy48PDwEAFGpUiWRlJRkcP9Hjx7JbHcVK1ZMU24qznZoaKgse//99032U59nz54JLy8vAUAULVo0w1k3jTF27FjZx+vXr9u8fTU26urVq83ap1atWgLQzTJpC6gftswgmZCQIHx9fWW87SdPnqSp06FDBwGkZgy8evWqwXZWrFgh+/f999/brH+ZiSUZJHfu3CnrtmnTxqb9yEgGSUOYG885t9znv//+W55D1apVRUJCgln73b9/X6xfv95m/bAmznZSUpJOLO0BAwYYzNFgCsoyCsBo7oSrV6+KvHnzCgCiY8eOFrWfXbA0zvbTp09lXgkAYsaMGTbtj7VxtqdPny73q1KlitEskRnh/PnzIl++fAKACA4Otnn7TO7FYiOn4sWLY9asWQBS1e1mzZqZVICA1F+K7dq1s0sMUmdnZwwbNgwAcOLECZk5TkUIgTFjxkiHjzFjxlh0jNatW6NWrVoAUj2U//zzT6N14+PjdZRlFxcXfPzxxwBSzVz69u1r0vv/8ePH8voSe/fuxblz54zu8/LlS3kP3N3d0zguhoWFyYgn6XlrG4Nia7u5uRmNFa5P7969AQDnz5/H/v3705RTnwIDA63qkzncvXsXa9asMVnn+fPnGDp0qHRm7dWrl0GHXbqPSUlJGD16dBqH1Lt378rleA8PDzkuX1VevHiB8ePHy/937NjRYL3AwEB5r3MCueU+9+jRA4MGDQIAHD9+HK1atUp35W7z5s2oXbu2VD1VBg8eLO9zWFiYPboMIPV9Pnz4cBlyslevXli4cKHF42vYsGEoVKgQAODzzz/HvXv3dMqTk5PxzjvvyPtP4+JV5uTJk2jcuLG0127WrJnRnBSLFi2S99veof8WLlwow+6WLVsWoaGhFjttbtiwQWclTp9bt26hd+/ecoWOsgozjC2wyGabGDJkCOLi4jB+/Hjcvn0bzZs3R9u2bdGtWzdUqFABHh4eiI+Px5kzZ7Bp0yZs2bIFycnJOk45tmT8+PH4+++/ceHCBUyePBmxsbEYOnQo/Pz8cPHiRcyaNUu+/Bs0aIC3337b4mMsXboUdevWRUJCgky33rdvXwQHByM5ORnnzp1DaGgoVq9ejZiYGJ0J5KeffoodO3Zgx44dCAkJQcWKFTFy5Eg0aNAAHh4eePz4MU6fPo2wsDCsW7cOLi4uOj8IduzYgcmTJ6NJkybo1KkTqlatCh8fHzx79gxnzpzB3LlzpcPqsGHD4Oho1W01ypUrV+T169ChQ7qRY4hevXrh//7v/wCkTtYbNWpk8bGPHj2Ko0ePGiy7efNmmrjhvXv31jEBSUhIQO/evVG6dGn06tULdevWRfHixeHs7Iy7d+/i8OHDmD9/vozfXrx4celsp0/Lli3Rt29f/Pnnn1i/fj3atGmDDz74AH5+foiJicHUqVNx5coVAMC3336bbRK9ZISLFy/qRK4AgEePHuHo0aOYPXu2dEorXbo0RowYYfVxzp07h3379ul8RlEiEhIS0tzn9u3bWxVH2xxy032ePXs24uPjsWHDBhw6dAjlypVDnz590K5dOwQGBsLV1RW3bt1CdHQ01q5dm2Fzk4SEhDRx2VUhYfXq1TrjrXr16qhevbpO/Y8//ljmG6hcuTK++OILg2nUVQyZDXp5eeG7777DyJEjcfnyZdSrVw9ffvklqlSpguvXr2P69OkyfXe/fv3QokULi841O3L79m2dsLdPnjzB/fv3cfz4cezYsQOhoaHSZrl+/fpYvXp1hu2hV69erRPxRX3O9Z/5okWLon379jqfrVu3DsOHD4cQAgULFsSMGTNw584d3Llzx+gxg4KC0sSPf/fdd6XpUYMGDeT4vnv3LsLCwmRSGyDVRp0n24xNyYgsvmbNGhEYGGhWCtRKlSqJrVu36uxvCzMSta3y5cub7EOjRo2MLj2ll65dCCEiIyOFv79/uudqaCn06dOnYuDAgWZdq6CgIKN9M/WvZ8+e4tmzZ2mOndF07VOmTEl3udUYVatWFQCEh4dHmlS21KYpMwFzz93YtVfHWHr/GjRoIM6fP2/yfJ4+fSo6duxotI08efJYlLo4O2LpNa9WrZrJ5X9z0rWrS8vm/LMkHThhiblCbrjPRHJysvjPf/4jChQoYNa179Spkzh9+nSadsxJ127J8wgYNntQx5O5/0wxfvx44eDgYHTfjh07Gnyv5hTU9785/3x8fMTUqVNFYmKiyXbNTdduyf0yZBqojquMvB/M7UevXr3E/fv3LbvIDJMOGZJAe/bsic6dO2P16tUICQlBREQEbt++jcePH6NgwYIIDAxE/fr10atXL7Ro0cKuy8iBgYE4duwY5s2bh1WrViE2NhaPHj2Cl5cXatSogTfffBNvvPFGhsID1apVC6dPn8bvv/+OdevWITY2Fvfv34e3tzeKFy+Oxo0bo2/fvgbNIlxdXbF48WK89957mD9/Pvbs2YO4uDg8efIE7u7uCAwMRK1atdChQ4c0Kc4//fRT1KtXD6GhoTIsHZk8FC1aFPXq1cPAgQONLuNnFHJwdHZ2RqdOnSzat1evXjh+/DgePHiA9evX47XXXrNHF41SsmRJHDp0CLt27cLu3btx8eJF3Lp1C48fP4a7uztKliyJ2rVr47XXXkO7du3SHaOurq7YtGkTli9fjkWLFuHYsWN48OABihQpgiZNmmDMmDFo0KBBJp1d1uDm5gZfX1/UrFkTvXv3xmuvvWbz1ZSsJjfd5zx58uCrr77CqFGjsGLFCmzbtg2xsbG4e/cuXr58CU9PT5QvXx6NGzfGm2+++cpF5Jg0aRLatWuHX375BXv37sWtW7fg4eGBatWqYciQIWZFt8mJ5MmTBwUKFEChQoUQEBCAWrVqoUmTJujcuXOOc/g1h8WLF2P37t0IDw/HhQsXcPfuXTx69Aju7u7w9/dHw4YNMWjQoFfmuWayFw5CcJwbhmEYhmEYhrEHtokCzzAMwzAMwzBMGniyzTAMwzAMwzB2gifbDMMwDMMwDGMneLLNMAzDMAzDMHaCJ9sMwzAMwzAMYyd4ss0wDMMwDMMwdoIn2wzDMAzDMAxjJ3iyzTAMwzAMwzB2gifbDMMwDMMwDGMneLLNMAzDMAzDMHaCJ9sMwzAMwzAMYyd4ss0wDMMwDMMwdoIn2wzDMAzDMAxjJ3iyzTAMwzAMwzB2gifbDMMwDMMwDGMneLLNMAzDMAzDMHaCJ9sMwzAMwzAMYyd4ss0wDMMwDMMwdoIn2wzDMAzDMAxjJ3iyzTAMwzAMwzB2gifbDMMwDMMwDGMneLLNMAzDMAzDMHaCJ9sMwzAMwzAMYyd4ss0wDMMwDMMwdoIn2wzDMAzDMAxjJ3iyzTAMwzAMwzB2gifbDMMwDMMwDGMneLLNMAzDMAzDMHaCJ9sMwzAMwzAMYyd4ss0wDMMwDMMwdoIn2wzDMAzDMAxjJ3iyzTAMwzAMwzB2gifbDMMwDMMwDGMneLLNMAzDMAzDMHaCJ9sMwzAMwzAMYyd4ss0wDMMwDMMwdoIn2wzDMAzDMAxjJ3iyzTAMwzAMwzB2gifbDMMwDMMwDGMneLLNMAzDMAzDMHaCJ9sMwzAMwzAMYyd4ss0wDMMwDMMwdoIn2wzDMAzDMAxjJ3iyzTAMwzAMwzB2gifbDMMwDMMwDGMneLLNMAzDMAzDMHaCJ9sMwzAMwzAMYyccs7oDDJOGR3vk5sQ2bwMA/iw1EQCwZXlfWRZoUaOJcuv2iY0AgBU/zAUAzDl4WakXAACoP2okAOCTfp1lSSXffBYc77ncurjlRwDARxOWAABOPqRjjJV1JoxoDwAIcrHgEAzDMAzDZHtY2WYYhmEYhmEYO8HKNpONeAQA2DOlv/xk0uGrqRv5EgAAyRa3GQ8A2PVpXflJhx9uAwBqDJoMABj/cwVZVvjpFQDAxu8GAQAqf+Yryz4JOQwA+L6Fl4njpSroh7+uLD/pvOctAMBfi8MAAOVdbgEAwmcPkXWqdYwDAERuHQYAKGuJiM4wDMMwTLaFlW2GYRiGYRiGsRMOQgiR1Z1gGABIPDwJAFCq6W75WenauwAAuzAPAHBu3zBZVsqMNq+t7JFat2+U/GzUzqMAgJ9MKtT/U8THVpeftJzTHACw4Xqq7XVnQ7vfWgkA6FElRn706bUpAIAGadTqeLm1tq8fACD8nVRb7++bmugawzAMwzA5Bla2GYZhGIZhGMZO8GSbYRiGYRiGYewEO0gyWU/icQDAjGETAQAlp5+WRf93uhwAYFeEpY2eBACsmbou9b9vbZYlk0yajxCpdVpM+lV+8tacjgCAL5Z9DgDo/F7FtLs9ewoAeBhUQn7kbdTZUeuHR7EXAIBEyz1AGYZhGIbJxrCyzTAMwzAMwzB2gpVtJgtJDZN3Zv47AIBP8AMA4NhbZWWNe59a2fTxVCV7dowzAGDUjNayqKAl7RTU9ns9NYIf5v91AABwXlG2pbNmYKpn4xv5Wsiy7zd2AgDM6ewPACCh+/nJubLO5PndAQAjPrakcwzDMAzDZHdY2WYYhmEYhmEYO8HKNpNlJJ6ZDwAYOio1kczEQ+8DAKoqNs67rGz70ZVUO/DTaAgA+CzI2iwx2n7BNRqlbsxOTSd/6pEShlDK5aka96C//5Blt7tVAgB4j0wN7+fnkhry7/qjBrLOlN0LAQCvF7eymwzDMAzDZEtY2WYYhmEYhmEYO8GTbYZhGIZhGIaxE2xGwmQy5+XWspEfAACufLINADC2rrWmHmm5c/PC/7bqAAACAzPeZqlSdf63lRqH8OYdpVDP6zKfbxO5/UX4IwDAh/dvAgAevEh12vQo6inruGS8ewzDMAzDZENY2WYYhmEYhmEYO8HKdjZBCJHVXcgUzi8cLrdHHegDAFi1KlUFLvC/a6BeCaG3pV4nU1fs8on9/9uqY9F+JpE7RgIAzsQpbQanv7uzRxEAQBG5kw36xEgMPUMODg5Z0BOGYXIrlr6HTJWlpKQAABISEgAAz58/T1Pm6uoKAHB3d5dlefKwjkpkl+8AviMMwzAMwzAMYydY2WYyh2srAQCfvHNAftRh0TkAQGdzsqdnKzi1enYkuygYDMPkDgy9cyx9DyUnp36RvHz5EgDw+PFjWXbnTqpj0LVr13T+DwDPnj0DAAQEBAAAKleuLMu8vb0BAE5OTgByz8p5doaVbYZhGIZhGIaxEzzZZhiGYRiGYRg7wWYk2ZhXY1k8NVvixi8GAwBCGs6RJSf6lgAAmDpLB70t9ZqYtx8s2s8kaRs1tMkwDMPkUshkw5TpxtOnT+X2gwcPAAAPHz4EANy8eVOWXbmSml350qVLOv8HgBs3bgAAqlevDkAzGQGAGjVq6Hz2aswl0ic7m8uwss0wDMMwDMMwdoKVbcauxId+BQAYurQ2AGD66f6yrJQdj+tdvJwdW28EAKhU0rzaGzduBAC0b98eAODoyI8dwzDMqwQ5OpKDI4XrAzT1+vbt2wCAuLg4WUbbVJY3b15ZVqRIaqBYcn6sWrWqLDt69CgA4MWLVIf9mJgYWVamTBkAQMGCetnWmCyDlW2GYRiGYRiGsRMssTG2Jz5Ubn715mwAQNEfjgEA3ipru5Tspijo7fe/rUsAgNu3lMIi+rXN49KlY//b8gEAFHA3XnfRokVye8iQIQCAwYMHAwAWLlxoXQcYgyQlJQHQTfhA5MuXOt6cnZ0ztU8Mw7w6JCYmAtDC85GarNpe379/H4CmUNNfQFO2qb66H7Xp5uYGAPD09JRlwcGp2dLIBlt9j5F98okTJwAAt25pX3KPHj0CAPj5+YHJHrCyzTAMwzAMwzB2gifbDMMwDMMwDGMn2IyEsTmX/vlGbs++k7rs5TO3DwCgyu+WtZVw/X8bL78AALQrP02WOaImAGDiluUAgL6B2n6BlZqlHhe/AAD+vaw0aqUZyZVT/8t+WW4KAKCCiXbIGRIAAgNTO0amJeXKpTpvfv7559Z1hNGBlmgvXrwIQNfBiDKp+fv7AwDy5GF9gWFeNQyFfMtouDsyHQE0Ew3K4GjIVET/M9Wsg/pH3wVly5aVZeXLlwcABAUFAQAKFSqUZj9yqledLosWLQpAc7C8e/euLCMzEjKtc3FxMeOMGXvC3zwMwzAMwzAMYydY2WZsjlfjyXJ769YnGWrr6M/tAACfnXsNADDh526yrAjyAwCCvAzsWKMpAOBN54kAgBV7jsuiCXWrGtjBCInhcnPbolSnGJ+3U0P/VTCxG6kOALBhwwYAQIMGDQAAX32VGg6RwjkBQOfOnc3vUy6GlJ74+Hj52ZEjRwAAe/bsAaAbWpEcjGrWrKnzfwBwdXW1b2cZhskw9MybUqotVbHJQZFWxQAtqQypwuTwCGiJZugv1VVXyijMHqnWderUSVNGqnXhwoVlmY+Pj04dU6gOkrQftUmqOwDcu3dP5xzU76PckuAmu8HKNsMwDMMwDMPYCVa2GZtTsEwjud22TMbayhfyv40HqaGPGrZtK8tMJsXJ1xgA0O//Um11p3//qywKHZpqx93GkCKux7W/v5fb0+5UAQB8/0aqQm1uEENSsJcuXQoA6NGjR2rf+vWTdcLDw3XqMoYhO0qyzwaAkydPAgAuXLgAQAuhBWj226R2U5hAAChVKnUEkT0jJxtimOyHOUqsarNN7wj6q5aRDfP166nOQJTyHNBUa1o1e/JEW5XVD/lHfVLD9JHNdcWKFQEApUuXlmUUgjSjqEo6+aN4eHjo9AnQVG6y41aVbSZrYGWbYRiGYRiGYewET7YZhmEYhmEYxk7wuinzipK6bFd37DIAwCfzm8mSLq1THSvXLf8/AEDz8tpSoMvzVIeSf0O+BAB0HhQiyxrOS3WyHFXRuh51794dADB5cqoDKTlKApppCZmTqA40uQX98F2Glo9paTc2NlZ+9vjxYwBAo0ap5kvqkmlKSgoALcvapUuXZBmZkZDzZEBAgCyzdtnXnHNgmNxEZjwTqskHmYhcvXoVgG4IPnIYpHcGOUOqbdCz7+vrK8v0TUMoM6Nq1kFmaGSWZivTERU1rKmXV6odpCHHSgo/qDpNMlkLK9sMwzAMwzAMYydY2WZebQqmhgD8/mi0/KjsRwMAAH0q/AAAeGxovwKVAACD52v7zXkzNaRTRvWKcePGAQBOnz4tP1u2LFWBf+211BCHoaGhsiy3Oe4ZUr5IiSJlmhI5AJraQwp18eLFZdmzZ88AAMnJyQCAK1euyLIzZ87o1FEVMAoRSOqWqigxDGM51irapD6r4T7pfUAh/CjUHZA28QzVBTSVndTgkiVLyrICBQoAAPLnT135JOUYAEqUKAFAe7eoIfjMwZzwhZZCqjr1V01cox++kFb4AH6XZRWsbDMMwzAMwzCMnchdkhmT42gwPjU0042k1F/v3tY25FVDbg5bmGrvO2xO6q/+mw9eaPXy/u84Pqkqh+2t7jTmzZsnt8+dOwcACAsLAwCMGjXKYL1XGVOqD6nO//77LwBdG039FMiqIkWQDTwlwAGAqKgoAJo9txoGjNSwqlVTEyCRjSbDMJah/1yrNtyq4qoPKdm0inX27FlZRp9RHTWkJx2PlF81FCiFyyN/jTJltNi09B6xFYZSyNsDd3d3ALphCOn60HuMQh4CmhLOZC6sbDMMwzAMwzCMneDJNsMwDMMwDMPYCTYjYbI1Lp6pYdzskv/KJXXZLauSa6kOLWvXrgUA1KiRau7y+++/y7JKlVKdNT/44IPM61w2QF1ipuxu5OCohrsi5yVycDIEZVmrU6eO/Iyco44dO6bTNgAcPXoUgGZaQiYqgGZaYuh4tISdWUvITOai3tdXOayjofFrq/NVw+2dP38eAHD58mUAWsZDQDMVo6yN5MgMaO8GeoeqoVLJidHQe4EcG8mUgkwwcjL0LqTzBbTrSNdMdSClkIROTk6Z1UUGrGwzDMMwDMMwjN1gZZthsgGUiGXDhg0AgBYtWsiyTz75BABQuXJlAEDr1q0zuXeZC4Xpo9BdgJaggkJZkboMaM5OppJIkLOUqojTNik8qspFYRlJ9VbDNCYkJAAAypUrBwAoUqSILHN1dQXwaqueuZHctlJh6filZ5aeDTXcHqmr9Jkawo8UbUpEo6reFKKOnlP1OaOVKipTE9CQM7MaAtQSTN3r7Phc07Xw9/eXn5EjOV1zWhkE0r73mMyBlW2GYRiGYRiGsROsbDNMNqJ27doAdMP99evXD4CW8IZSugNA+fLlM7F3mQMpYaTOAJqyTWoXpU8GdMN3WQOlaVdDZ9E2pYXfs2ePLCN7yIYNGwIAGjRoIMtIZbeHamQqMQanic967JG4JDujjjlSqyk836lTp2TZhQsXAGgqq5qki8LykdpK6dABzQ6blGo1NB89n9SWmjY9o9jq/mXWODBks02rfHRf1LCmpPiTIs5kDqxsMwzDMAzDMIyd4Mk2wzAMwzAMw9gJNiNhmGxI37595TaZU0yaNAkA0KNHD1lGJiWv0pLgnTt3AOguRVOGOHJKLKrEayTTElOYE8pMzUJHZis+Pj4AdE1FyBHp4cOHAICdO3fKMsoESuY9GTVxMdVfc8uYjGPO9X1V7wE51126dAmA5sxIzsqAlqGQ/r58+VKWUXg+MndQ31Vk0kDOj2qYPgrPR3/V/WxpNvKqoGaGJDM2CpuohlRUs0kymQePWIZhGIZhGIaxE6xsM0w2Z+LEiQCAEydOAABWr14ty8hpMiQkBICu81FOg5Tia9euAdBNMkNOUtWrVwcAFCpUyKpjmFIfSc0GgJMnTwLQnCeDg4NlGalvFy9eBKCrwFPyCErIQaqet7e3rEOJNcxR5BnG1tAKDqmeAJCYmAhAc06mZxHQnkMKf0nh+tQwfTTOaSWoWLFisozC8nl5eQHQdUSm51r9jLEONfSpfng/9V49ffo0czvGAGBlm2EYhmEYhmHsRs6VwRgml7Fw4UIAml0wAGzfvh0AMHbsWADAzJkzM79jNuLWrVsANOVMVd5IKaPU9ZaqwoYUbUr5TDaoauIasnEkJb1evXqyjJRpUr3VkFuUBCcmJgaAZm+v7k/hHUkFZJjMgBRtCgOnjncap6Riq6nRabyTMk3hLQ2FyiQVWx3btBJE7ajPoqlEVOaQ28ItmkK9BrRiQKH/aKUNAB48eABAe7+qYUqpDb6utoeVbYZhGIZhGIaxEzzZZhiGYRiGYRg7wWYkDJNDcHd3BwBs2LBBflanTh0AwKxZswAA1apVk2XDhg3LxN5ZhxoijJayyeFQXd4kB0NbOhWSU9iRI0cAaKHNAKBkyZI6f8nhSIVMW9R+koPqmTNnAGjL8uRwCWjOShQWUM2MR0v1DGMuaig3Mn+6ffu2zl9Ac3qk8ZeQkCDLaJvGshqCj0xCKOQlhd1UxyplgqR3FP0fYFOEzEINh0hmJBS2kcKpApppCZmTUKZOgJ227Qkr2wzDMAzDMAxjJ1jZZpgchuqQt3btWgBAixYtAACjRo2SZaVLlwYANG/ePPM6ZybkrKUqLuSwRQozJbBRIQXO1dVVfkaKjqUKGiXlOH78OABdp7A2bdoA0NQ8U6hh/erWrQtAU6tJpT98+LCsQ4mI4uLiAGirE4DmPEmh1Dh5R+6EHNTIiTc5OVmW0YoMhXBTE5bQigqtpKjO1FSfkp+oKyoU2pLGu6p2kvMjhdukZy87KNbZoQ/ZBfVa0Kob3Ud19YPCk9L7T3V0JWWbr6vt4Tc5wzAMwzAMw9gJVrYZJgdTv359AMC8efMAAAMGDJBllPCGlFRSurMDZD+qhh+j8FSqvSdx8OBBAFpovVq1askyUsAp7JgpVYbC/AFAdHQ0AM1uXE3EQeHNLE2eQ8oQ9YVUQDUU2tmzZwFoqndYWJgsIyWS0sNTPwBd23Dm1YNWewBNhaYET5RACdDUawqVqaqWZGtN47Zhw4ayjD4jJVO1uabVGaqjjjUKz5cZCbNI0QdYXbUUdRWM7jH9pdUQQLPZpr/qCgdjP1jZZhiGYRiGYRg7wZNthmEYhmEYhrETbEbCMK8A/fv3BwCcOHFCfvbtt98CALp06QIAiIiIkGUUoiuroCx2ZBYCaOYjNWvWBKDreEj1yQzk6NGjskx/OVR1IKVlVFpivXDhgiwjx0gPDw8Aug6Z5Fhk7dI5mZNQ26o5iuqQBOg6sVGoQNqfwnMBmhMb7c9mJdkffQdH1QmXQvCRgyM5rAGamRV9Rk5tgOZUTOYj5EwLaGH5aKwEBQXJMnqeyEFSHT8c8u3VhN7zqkM5jRt6t6jOt4z9YGWbYRiGYRiGYewEK9sM8woxefJkuR0bGwsA2LhxIwDNYRLQEuNkhtMToDk+kRMkhfeLiYmRdVq2bAlAC2OoqsGkXpNT4b59+2QZfUZOiY0aNZJlFStWBKApjOfPn5dlpJK3bt0aAFChQgVZ5uzsbOkpmkR19qKEEx07dgSgq7aTYh8ZGQlANxkOOU1WrVoVgJZwB8i8+8ikj6pe03gnh0fVQZfGIiVzolUNdb8iRYoA0HWUbdKkCQDDYfpodYiUTFW91nc4tNYBUXVizGhb9mqHSYXeYzSOAG0skrL94sULWUarHoztYWWbYRiGYRiGYewEyyEM8wqhKpwrVqwAoCmiW7ZskWVfffUVAOCbb77JlH7pK8sU0ky1HSdb6+LFi6fZn+xSSalT06eTSm7InpvC+5HaSP0AtHTpZKtN9q6AfRU2sh+nc1LtakmJovNTQ76RfTvZr1P/AaBSpUoANAWLk+HYB1W1ppCRjx8/BqDZXqsKNY1zsrNW7WNpLFMIPjWBEimMpFrTqg2g3WPyB1DtcTNDGWb1OedA40gdW+QjQn4A5DsAaKuJbMNve/iNzDAMwzAMwzB2gifbDMMwDMMwDGMn2IyEYV5RyESDnCHJnATQwgKSCcXgwYPt2hdy+KLQhLSESQ6MgG7IPn3IPIZMPVSTj7JlywLQzEeOHDkiy2jJlJb4K1euLMsoxCAtsWbV0qlqBkCOcOREqTqQ7tq1C4BmppCQkCDLyDyBTEvUbJhkmsKmJYaha6cfpg/QsjqSM5kago/C85HzLo2xmzdvyjr0GZmaqFkbaQyTCRCF61PLbOn4qu/YyOYgrz70HaA62MbFxQEwHFaSwkNSJlLGdvDbl2EYhmEYhmHshIMwFMeHyXTsGU6JYQDdcHkUXo8g1RQAGjdubJPjJSYmym1yYpw/fz4ATW3t16+frBMQEABAV+k1B1IkyXmNlEZAc5qk8Hqqoxmp6uSEli9fPouOa0/ofUBOeICmpJKCr6repKaSc2nt2rVlGa1e+Pj42K/DOQzVUZZUa/qrjh9ybCQ1kP4C2tiie0XjSHV4pW1atSGnRkAb5/QsqGH6OJQjY0vU98jSpUsBaGFF27RpI8uqVasGQHdlLCeRnedRrGwzDMMwDMMwjJ3gn88Mk0tQFes5c+YAAIYPHw5AN+FNeHg4AC39ubVQiDpAV4UFNAVWTcxiqaJNkC0yhblSEzOQDSLZwKqprSnteXZUEUmNUZPrkCpPSW1UJZQSo5Ad5qFDh2QZ2WSWLl0agO41fxVtM0nFo+Qd6jalqlbVa1oVIKWaFG5As9mm+6FeL7K1JrtYUrbVMGukaKtJRRjG3pDfAY1f1b+D3ge0aqOOd3o+GNvDyjbDMAzDMAzD2InsJ+kwDGN3hg0bBkCLDjJ9+nRZ1qNHDwDA3r17AegmnrEEQ2nISfWjqCDWqtnmQumryR78VYBUetX+nCKy0KqEqmzr2yKT2gVo10W1Jc5uqHaYtE1/VXtMstk3FBXk1q1bADTlX1W2aZuUPtWem+zc6fqq0XPoM0oEwjD2Rn0WaJzSM6A+1zSmScWmVRsAuHr1KgDteVGj7zD2g5VthmEYhmEYhrETPNlmGIZhGIZhGDvBof+yCdk5ZA3z6kJLj126dJGfbdmyBQDQvXt3AMDatWvNaovGMC1P/vXXX7Jsz549AIBevXoBAOrVqwdAcypjMgbdRzKTUEPUHT9+HIDmsKom76FEKuTsR6YRQPZJgqOGLdM3ETFkDkJ/VTMSCptI50TOsYDmxEiJhNQxSc625BipOki+is6lTPaETD1o/ANpnwEa4+pnVF/dj+qRiVSHDh1kGZlJqc9HTiI7z6Oyx9uUYRiGYRiGYV5BWNnOJmTnX2TMq48aGqpOnToAtHBy48aNk2WTJ0822samTZsAAGPGjAGgqdgqgwYNAgBUqVIlgz1mzIXCLtJf1XGVVG5SdympBaCFZyQFVw01aCso1Jgapu/Fixc6n5kK06eWkQJOoRzVdyp9Rs6+pGIDmrpPoRGtdQhmGGugcfvkyRMAuuH36FkgJ2dy9AU0R0d6BmhFEdBWcGgOoYY39fLyAqA5R6vvYlrVsceznhlk53kUK9sMwzAMwzAMYyc49B/DMDpq3oYNGwBoCveUKVNkGaX+7t+/f5o2oqKiAGip2WNjY2XZyJEjAWhh65jMg5QrUnPV+0L37NixYwCAa9euyTKy465evToA3XuX0dT2pOKRHTmNGUCzNyc7U0PJaUgNVO3PSZUju/MyZcrIMlLpKRSkoURG2cVGnckaTC3y66ujhkJPWgIp1oCmVtOKEynWgBaOklRrVb2mZ4j6ULBgQVlGqjU9A6VKlZJlVI+eYUPjPqPnx6SF3y4MwzAMwzAMYyd4ss0wDMMwDMMwdoLNSBiG0YEcxVatWgVANzTU8OHDAQDly5cHoJkaAGkz6anOa1WrVgWgu9SZHomJiXKbllMfP34MQDMLANihzVy8vb0B6N4zcn6kJWzVeZKyi5I5B91zQDPVoDYJNUwfOTGSqQjdQ0BzyH306BEA3bBlVEZL2WoYspIlSwLQTEbU8HuUBZMcwOgvoIXwYxhjkMmEOSYUpsrIwdFQBlN6lug9Bmjjnd6XahmF9KSxTc68QNpnQH0P0jNDz6elofw4bobtYWWbYRiGYRiGYewEK9sMwxikdevWAICZM2fKz0aNGgVAS4KzcuVKWabvaKMq2/7+/gBMO9alpKQA0MJcnTt3TpaR4krKacuWLWUZK9tpMRUCS03aQtt0f1xdXWUZhX6k+0AqtLpNKxZ0X+/duyfrnD17FgBw/vx5AJrSDWj3mkKMkeMioKlwtFJCYQkBIDAwUKe/6n4MYwsMqdb0PNH7h/6S8gxoDov0DFy+fFmWkQMwPQPqfi4uLjp/1RVCerfRSh6NfwAICgrSqcNkb1jZZhiGYRiGYRg7wUltsgnZORg7wxCkbM+dOxeArg1h165dAQC//fZbmv1I9TEF2TWGh4cDAJYuXSrLSCWvUKECAC1xDqClGM5pZPdnnpTpQ4cOAQAiIiJkmX7KZ1KjVaWZbO7pr7ryQbakpNiRLTag2VqTnbUapo8UdPqbna4X8+pC76+LFy8CAM6cOaPzf0DX7wDQfb4pRCWNW9WfgJ4BCtenrjzR86Q/7gFtVcicZ0Dty6v8zGTndyor2wzDMAzDMAxjJ3iyzTAMwzAMwzB2gh0kGYbRISwsDABQuXJlALrLmjNmzAAAnDx5EgCwZ88eWRYSEgJAc+KhOoCWFVB1dtOHnObI+Ug1PaHwWBRWKzk52ZJTytZk5TInhRkjpy417BhlsqMy1amLMjmS4yqVqaH4KFQghQmkZXJAc+oiZzB1jJGjGMPYG3LGBoDbt28D0EzWVLMQehdRGf1V99fP5KiOaTKbovFOofwAzaSETLLs7fTL2SGzBla2GYZhGIZhGMZOsLLNMAyOHj0qt1u0aAFAc0yjEICA5gQ5YsQIAEBsbKwsO336NADDygzVM6Vsk0MchXWrW7euLLty5QoATQUih6OcjD2UJVKtaJVA/YxWA0iVBjRlmsL80T0ENJWbxkGxYsVkmZ+fHwDg/v37ALTwfqoyTgo1JUmqWbNmBs7M/mRn5yrGfAw9AwQ561LoSgrJB2jvKHIMpgQ0gPYMkDJNKnSZMmVkHVKvSdGmZwQAfH19AWSPUJU8prMGVrYZhmEYhmEYxk5w6L9sAqsqTFai2uN+9dVXAIBly5YB0OytVSjsFCk2xuoRP/30EwDggw8+MFqHngFK633s2DFZFhkZCUBTpAYMGCDLTIX+y232iaQ0qwk1SKmj+6PamRJ0P9XQYmRXrR+mD9AUPrq+165dA6CrFFKadqqr3qc6deoA0LVrZRhbQGnSKTyfOiap7NmzZwB0v3f1w+upCZ5oDBctWhSAtsqj2l5TfUP70/PF2JfsPI9iZZthGIZhGIZh7ARPthmGYRiGYRjGTrCDJMMwOln6vvnmGwDAf/7zHwDApk2bZBmF/tu/fz8A06YjKqrjnTFouY+WZosUKSLLaBmXQgDmFlTzHgo/RqY0amgy+oxCklEYMwC4fv06AM3ERG1T35lLNRUhZ1RD4fnoM8oKSY5iaka9gwcPAtDMSWJiYmQZOarRfqozGYVOyy7Lv0zWQqFAaYwD2nuAHHLVZ4HM0Mi0iTLTqvXJwZpMpADNMZtMRdQyCmlJzwS9o14FR20mc2Blm2EYhmEYhmHsBCvbDMMYhJxNPD095Wc9e/YEANSvXx+ArrITHh4OQEt0oyqoaojA9CAly1BSCUv9uUkdzc6OM4Yg5VcNP0bh9Y4fPw5AcwADNEXbkOMqhVukJEUUtgzQlDq6x+q9prYMOZnqXztyBlNDoZH6R6saqrK9c+dOAFrIyVatWsmySpUq6ezP5E7IiZGcGk+dOiXLaJueCTUBFo1FGveUZAvQVsto3KvqNX1GKrYhp0Ya99n53cFkT1jZZhiGYRiGYRg7wco2w+Rg7Bna7sWLFwC0hCeAprSWK1cOANC4cWNZNmXKFACaHfeff/4py7Zu3Wrx8Q2p0dZGKs1OShRdV0qDTralgJa8h+ycVRt1/XNXEwSRomwoVTTZYZOKR8mDAMDZ2RmApuIZskG15NqpoQNJRSR/ADWVOynodJ67d++WZXQNSOGmtO9qP5mcB41fdUyTak3vDNUHhJ4PSsKkjkPyFQgKCgKgO6ZpbFF4PnWVh8pI/abES4D2LGSndwXz6sDKNsMwDMMwDMPYCZ5sMwzDMAzDMIydYDMShnkFsKU5CTko0hK/GjqLzAzKli0LwHAGQDJv+Pjjj+Vn6ra5ZPflXLrmqnlHcnIyAOD58+cAtFBjqgMXZXCk8HxkNgFomR+pTDXroGVxuvalS5eWZRSujEw1aEkc0DJBZjbUd1rGV8cK9ZecPcm5FtCc38hBTh0HFJ6NzkkNWclkLikpKWm26d1B9w7Qxj49CxSCEtDMRugZuHr1apr9yNSDTEYAIDg4GAAQEBAAwHBYSkOmItaib8KV3d9NTPaDlW2GYRiGYRiGsRMsCzBMDsYeCgupTJGRkWmOQWG0SF0lh7zcBKl4FJ6PHLgATZG+cOECAODkyZMANMUa0JJzkFMXqbwAULFiRQBA69atAeiGJqP6FKJMVaxJRSbHMfqbnVD7RCo9KfGlSpWSZRQOkEIb0rUEtOvTpEkTnXYAVrkzCwrpqarXNKZJmT537pwso9CP9GyYSqrUrFkzWUYhKmm8q+8aGjdubm4AdO89jTNr343WOmEzjCmy3xuZYRiGYRiGYV4RWApgGEZHbSIVlhRFUpYAzVbSkK22rSBlSg0jRyHf6DN7pElWrwFtk+21mmCHwpWRUqcmnqGwZqT6kfqtJpKhUHwUhkwN4Uc2qKR2q2qevnqdk6FzIftaVaUnRZLszkkZBYBLly4B0O6LGhaQVl3IRpyVbvMhNZfGK9leA5qtNYXi0x//gPZ80H1R96dnluzt1TB9tDJBzwA9G0DaUJWZlRo9pybCYrI3Of+tzTAMwzAMwzDZFJ5sMwzDMAzDMIyd4HU2hsnF0LIxhfkDNPMRWi5WQ26ROQQ5CdrDpMHU8q2pJV5z2yIoTB+ZfqiZ7cjhKz4+HoB2LQDNlIHMbagOoIUbI3OQKlWqANAcSgFt6ZxCkqlZETNrqTy7oZ43XSsyKVBNCw4ePAgAiIiIAADcuXNHllFIxcqVKwPQNd2h+5LbMDT+adzTsw9oY5/MQVSzKTIXIedHej+oIUHJbEQ/PKW6XbJkSQC6GR3JVIhMfrKTmUZ26guT82Flm2EYhmEYhmHsBCvbDJOLIYem2NhY+RklGjl//jwAzfEM0BReCrlVpEgRWaY6NFoDqXCkUKrh8mibFDiqA5hW2V+8eAFAU6rJ2QvQFGlS7NTjUbIN2p/OF9CcF+vXrw9AV6nz8PAAoDn+0f8pVBmgKdqsnJmGHOMqVKggPyNnXXKMPHHihCw7dOgQAM2hsmrVqrKMtlW1+1WG1Gt1vOuv1qjK9LVr13T+qs6PtOpA146cpOvVqyfrUJn++AfShulTV3IYJrfAyjbDMAzDMAzD2AlWthkmF0Opk8+ePSs/IwWM7FxVW2ZKNEKqWLly5WQZKeCkZFmq3JLdJylvFy9elGW0TSmcyXZXPQ4dn9RoQFPorl+/DkA3VTSpfpSURk2pTio9haRTFdEyZcoA0BKxUEgzQDdNOmMb1LCAtE0rKqqtN63O0D2PiYmRZfqhAtVEQqS45pSVBhrf9Lyo453Ok8a5ql7TdaFVITUZE4WqpDbVlRhSq+n5onFPfgmAfUOBMsyrACvbDMMwDMMwDGMneLLNMAzDMAzDMHbCQZgbQ4uxK5ytirE1NKYMjSMK7UVL7xs3bpRl5HBoyJmMlqDJ1EM1I6lduzYAoEaNGgB0nQrNgcw6jh07BgBYvXq1LIuOjgagLY+ry9Z0vAYNGgDQltIBzeGLnCBpuRzQHPAoNJnqiEemIpTFjpwaVcghU72+Of2ZNfUeyk7vKENjm5x3yVGSxgygjXcKC6g6T5JpibXmT5mBOqYpTCeFPVTDH1KWRzIZUR0dKdMpmd6omUvpGaDnWQ33qZqUANr1UR2Ss+M1Y3If2ekdpQ8r2wzDMAzDMAxjJ1jZziZk519kzKvH0aNHAWjqHzk+AkClSpUAaKG91OQXpCyTwyGFBwQ0p8JmzZoB0FW9CxYsmG6fyJmL2qQQhICWSIZUPDXpBqnO5PSmhh2jbQoZp/aDtkklV5V8+iy3JpkxRHZ/R1H/DI1NcrClMnWlghz9aGVDdfyzdHXGGsghWXXepfFNzslq4iRStknJV8P7UVg9Gtu0MgMAnp6eAAyHo6R69Azoq9m5kew+3pm0ZOd7xso2wzAMwzAMw9gJDv3HMLkENYTfuXPnAGi2zGpyGrJrVVMu60Nq3IYNG+RnFD6Qkoqo6iG1RfbgZDut9olUR1LxVFWOFEbaT1W2KWQfJfJQ7bnpuHRO6nkyrxakYFF6d0odDmhqdVhYGABtpQTQQgSSXbRqH00JXEjpNZQ4SR8ah4C2KkR/VeWNQu/RM0j+BYC2ykOqtdonCs9Hn6l9IvWa+k326IDmh0Cp0RnD8GI/Yw9Y2WYYhmEYhmEYO8GTbYZhGIZhGIaxE+wgmU3Izob9TM6GlqvVpfOQkBAAWii/Nm3ayDJykFTNOIyhOm6RGcmRI0cAaI5YgBZmjMxPaD91f3IQ0zcLUftC5gC0TA5opiGUXZCcxADNaZNMWmzh8Kj/rKrPqamyjBwjI20xQFJSEgDNDOnkyZOyLCIiAoDmeEiZUwHtWahZsyYAXedJY6hZG8lExFAGU3oWyCRKNY2iflJ4Sj8/P1lGjsfUF9Wxl0xKaNyrGU3V54JhXkWy83uTlW2GYRiGYRiGsRPsKcEwrzikoKmh0EhFIzWYnKcA04o2qc2k0FHb6jaFJKO/gKYakspODmOqsxaF6SMVXA27Rn2i8H5qQg4K65dZZBelhDEfGmfk6FixYkVZRqsdFB5QTRJDyjQ59qpJYkh1pv1JjaZ91G1KNqM6OlKfaNzT2Aa055KOoTr9lixZEoDmAGqO0ybDMFkLP6UMwzAMwzAMYyfYZjubkJ1tjZicDaVk37Vrl/yMbLUpLXOPHj1kGalppD6Tqgdoyh6FDoyLi5NlZJdKNqvqfvo20/oqNqCF6aM+mWMznpPhZz57Qas1p06dkp/t2bNHp0y1+acxTMoyheSjv4BmK07QswVoSjaF5ytdurQs8/X1zcipMEyuJDu/U1nZZhiGYRiGYRg7wZNthmEYhmEYhrET7CDJMJkMLXXZY3lLXUYjpyzKTEemIwBQrVo1ANoSturMSNsUKpCy2AGag+OLFy8AaE5hgLacTiHJ1KVwCs9HYcrIUU0NTabvFJYbsefYyM6o4zYzzl0177hy5YrOX9WRmJ4h/eymgPZc0LgnsxA1jGaNGjUAAAULFgRgOCwljXv6ay9sFZaSYRjLYWWbYRiGYRiGYewEK9sM8wqhJoIhJ0ZykCTlDtCcEMnxi9RvQHN6JIWbHCUBzdGRwu2pIck8PT0BaAofqdmApmiriW5yAqRoqiHfCDpfVcFXE6IwWQMpzpQcCdBWYMhp9+7du7KMngty7FWTy9B4L168OADd8UshAmm1h5wnVSdKqq86PzIMk/tgZZthGIZhGIZh7AQr2wyTydjTVlJNMhMdHQ0AiIyMBKBrl00K+L///gtA156TbElJlVPVa0ob7e/vr/N/QAuFZsjuOKfah1LqeQoBB2iJSSiVd+PGjWVZqVKlAOjaohsjp14Te2CLa0Hq9ZkzZwAAp0+flmWkXpNqrYalpHtF9tSq7TSNc/qrhqOkFR9KXHPhwgUA2moIABw4cACAtuJBiWiAzElGk9m28AzDGIaVbYZhGIZhGIaxEzzZZhiGYRiGYRg7wRkkswnZOfMRkz0gR6wbN27Iz2hbP1wfABw8eBCAZvZAS+GAZv5Bzn2q4xeZjdBfNRQfLbFT6L5XKUyfalpAId9WrFgBAIiIiJBlJUuWBKBdA/qrllFIxTJlytixx7kDuheA5shLphpqGTlEknkHmXUAmqkHhawsV66cLCMzIHLsVe8nmZiQiZQ63umdTU7GZKpCZiyAZtZFof9Up+HAwMA0fWEYxnqy8zyKlW2GYRiGYRiGsRPsIMkwWYSqpJIaR8rby5cvZRk5fpF6TSodAFy8eBEAcPLkSQC6yja1UbFiRQBAq1atZBk5epFipzpBktpNYc9yC2rIN7qe9BmFLgSA2rVrA9BCzKkKKimtpLLSNVQd60gtVUPE5TYoqQyNUXW8UxldXzVkJV1rGueq0y859pYoUQKAbgIZ/YQxNO7V+qQwW7paQ86P1Kb6XB8+fBgAsGvXLgC6qnmVKlUAAI6OqV/DtCqifpZdVDmGYTIGK9sMwzAMwzAMYydY2WaYLEJNukFKHYXiU+0+yU6VFFGy/wQ0VY1UPVWxK1u2LACgUaNGAICmTZvKMlJcycZNVVlJVcvO2MM2j5KaAFqoP7q+pGYDQL169QBoCqx6r44ePQoAiImJAaDdT9pHbUtVy3MbdK0pNfrZs2dlGanXZAttyGeAfAzI7hnQ7KEpvJ4afpHaolCOqq13WFgYAG0FqXLlyrJMfZ7Sg/qp+j+Qyk3nRytXgPZckzrfsGFDWVa/fn2dNhmGydmwss0wDMMwDMMwdoIn2wzDMAzDMAxjJ7L/ejHD5CDIvIGcuwDg7t27AIA7d+7o/KWlbUALEaYfvgwAvLy8AGhOjJ6enrKMstA9ePAAgGbaAGjL0mTCYMmSeG5ENSMhUwZazq9QoYIso/tBqCY4tE3ZC8mZlRwuAe1eU1hA1RRCv+2cAoWXVJ1MjY17QLsGCQkJAHRNqsgciMY7OewCWng++qs6npL5Bjkhqg6+1D8yC1KzS9I9ioqKAqCZtgDas+bm5gZAM9dSoWysdAzVRIXMSOrWrQtA10SL2qQ6sbGxsozeDeS0qTpP8nPMMDkPVrYZhmEYhmEYxk6wss0wJjDkiEdKlqoi0zYpzJR0AwDOnTsHQHOkI+VMbZsUulKlSgHQwvUBWjIaUvpU1ZsUWHKyUp3CqlevDkBXGXxVMOQMSdfTXEdJUhRJgVXDyNH9JKVZvYb6x1HVVVIwSa0+deoUAC0EHAAcOHAAgKao1qlTR5aR8yQpsLRykVkYGu/0mTreaQySUyGp1mqYPv1xryZjIidfSq6kqvs03snRUVVyaT9Sr829PuRYSc6PapukgJOyTX8BbYyQo6Ihh0VKNkXXQl2dIGW6f//+AHTHEYU7pDFy/PhxWbZjxw4A2mqLOkbo3aAfzpBhmOwLK9sMwzAMwzAMYyc4XXs2ITunGc3NqKG64uPjAWjqnWrbqR+uTIVUNLL/JNtSVV2jMgoHp9plk4pHNp5qUpt//vkHgKaqBQcHyzJKYqOGImM0aIUiNDQUgK7NLCm3rVu3BqCrLFrSNtnuq/eMwsCRoqmuVJAtcoMGDQDopnun+29PVPWa+n779m0AugmTKJkSnRfZK6uJZGjc0V91TNNnpAKrqwOkXtP5qnbOtkr2oj7XtBpF56Iq8PQ8q/UJst+mv6SQq+o1Kfd0X1U7chojZOeujhFaFaB3DNUFtNWvGjVqANBN987fGUxuJjvPo1jZZhiGYRiGYRg7wTbbTK5A/cWrb3NNNpeApnKRoqVGFiBlW/+vuk02nqpqTTaopEgFBAQA0FWcSfFSba71obZJaQQ0RZ3aphTQgGb3yxiGlFtSmNVIGhTBpXjx4la1TVFJTK1ikOKiJsWJi4sDoNkNU7QOAChdujQATQU2N/kQjRsa76pKS+dM41cd7/Qs6D8T6jY9OzRuya8AAIKCgnT+qteSbJ9pv8xOpKQ+Z5QMh/pO1xlIe57qKgS9U/STTanXQFWy9aExQqtZ6vuA2iCbdDXpD21TX9RILhS1hMZYTkhQxTC5AVa2GYZhGIZhGMZO8GSbYRiGYRiGYewErzHlMvQdCOzhPJCdnBQMmYrQ0jwl1lDD9JFDEiW9UMPBkfkJmYWo4flatGgBQFuSJqdGQDPnoOVmcqiy9JqQyYiakIMcI8kpS3Wos6R9U37S2cXBxBbQ9QKAa9euAdDCq6lL/uR0pjruZQT1GpLTXMeOHQHojqOYmBgAQGRkJADtngNaWEEK6agmOiHoPqrnSds03g2ZIZFpgmquQKHpyCSBTJUALUQhmYjoJ38BtOtJTpOGTBqy09gisw5DoQapn3RNAC3cIZnl6JvrAJaFo1QT5pQoUQKAZmJCDpMAsGvXLgDAsWPHAAD//vuvLGvSpAkALcQhhU8EMm5SYmloTYZhNFjZZhiGYRiGYRg7waH/sgnZSQ3OKZCSRKq1ql6T4xeplpcvX5ZlpGSrKdUJUubor5o4glQuUpEpnBegKVBU31BaZ2shR6h169YBAE6cOCHLqA+Umr1q1aoZPt6rrGCpzoj79+8HoI0NNWxit27dAGROamzV6Y5UZ33FGdBCw5HznNpfSgpDqy/qigy1RW2rDpKkOtO4VZO20OoMOe6pIe1om5R/UrEzOwlPZkHPhBr+kJ5HGlOkjFeqVEnWoRUAWo2w9r2gOkHS/SS1W00kRKsXNEbUvtCqF70zXsXnm8ndZOd51Kv5ZmQYhmEYhmGYbADbbDPZBvpVqiZwMBW2jEKSkWKnhiajUGaGUnFTPWqbVGlAs6clRUhNI20r+11zUK8BnR8pWaoi37lzZwC6KmdGyS5KgD1QVzhOnjwJQLM7Ll++vCzLzFTYqtpJNrY01miMAlo4QFK7Vdt9sjEndVUNS0njhxLPqHbV5GNQoUIFnb+A9lzYcpUmp0HXn66nqmzT86ifnEh919D7itRkNfyhJasA6ooDhfck3xEaxwAQFhYGQEs6pNruU1/or7pSkRkJkxgmN8PKNsMwDMMwDMPYCZ5sMwzDMAzDMIydYDMSJttAy7Bk+gGkzV5H4bYAzWGMTAOoLqAtfVMIrWrVqskyMrmgZVR1iZb20w/TlxGsCbeonmd0dDQALeyYuhRN4d8y0+whJ0HmODQ21CV+cqilMaKG0ssMRz+6n2rmShrn5OimZnSk8UqhK1XnSTJloHFAWUoBLRwchRhUzaH0MziqmRVza/ZB1XSHHBPJCVE1Y3v77bcBaO8Iemb//vtvWYdCOdL9UJ99GnfWQs675HwJaGZvdNzDhw/LMgoZSOZHlCUV0MyQyAmcYRjbwso2wzAMwzAMw9iJ3CldMJkOOeqoIaxIWSSljlS8uLg4WYdUbqqjqk6kPpJTGTm6AZrqQw5gqtJHjkWUbMbekJplSZRNClkIaI5xpMCr4bwyIzRdTobG3dGjRwHoJnQhpZjGg6r4WuskSveYnBFpvKuKKI1lGts3btyQZXTf1eeEoBB8derUSdMmOfDRM6Q6xtHxqG9eXl6yLLeq16ZQnZPpGtO7QlWjy5YtC0ALn0j3XHXCjY2NBaA5U9JY02/LGmiMqs6NtE2Osuo41newjoiIkGU0fuicVOdJdeWPYRjrYGWbYRiGYRiGYewEyxqMVagqLW0bUm5JYSO1WrWZJWWP1Dj6q4YtI1WOFBo1kQyFKSN7bDVMn2p7ml0wRy0lVY1SiQNauLFWrVoB0EJ/AaxMpgepeJT+XFV8KdQfrYyYss83NN4JVQklW2uy36Xxro5pssum8a76KJD9Nq3g0MoMoN33GjVqANDCVALac0Jq5aFDh2QZjR/9JFCAthpkbVjLVzkBEqCdF/lJqKth+s8eKdy1atWSn9HqG9nUq34l9oTGTdu2beVn5KtCqzzkCwJoKz70l8YYoKnxlOToVU1cxDD2hJ8ahmEYhmEYhrETPNlmGIZhGIZhGDvBa9CMVahZDGnpkZbD1aVSWj4nxy91yZyWs8mphzLWkZMOoJmNeHp6AtA1D6EwZ+Q4lh1NR8yFMmSSuYOaqY6WsMlMpnDhwrKMHKFeRVRzDWvNFMisg8YdjSNAM6Ewx8mU2gE00xAyB1HHOx2HzEgMOSySuQo5oalmB2TSQkv2akhH+ozGu4uLiywj84bGjRvrnBugmQ1QqMzr16/LMqpXuXJlAFoIOMC85+lVNB9RnykKhUemE6aeN7oWqqkJ3TNyMiRTk6yAQlvS+1Y1Q6JQgRQWUHUkLlWqFAAtdCSNmdycWZRhLIWVbYZhGIZhGIaxE6xsMxJyoDIUpo9CYFF4KzVcGW2Teq2q3qTYkjKkKnWk0FIoMgqFRUoKoDnnvMoKLqA5uJHTkprUhkL90bXISnUsJ6CGTSQ1l1RgNSEQqcg0pg2Fy6OxrK7IkLOvflhKIK3zJCmaqqJOyrSh8U6rF5Y6vtLzQcdRj0d9omfw4sWLsuzChQsAtFUmuhaANt6ov5kVKjOrUR0ALXEGJEdZ9b1JajeFHlXDLmY29N4gRVsdIzTe6HxVZZuSJ9EYofNTHdJJwWeHbYYxDCvbDMMwDMMwDGMn+GcoIyG7VLIXPn/+vCwjtZBCk6kqIKlhlG5dTbJANtdkC1qmTBlZRsoeqSn6Cpz+9quGGjKOlCS65uoKAIXhUsPA5QastQemMGsAcOLECQCamkfhz/D/7d1bk1xl2Yfxy3KDpNhICAhSIQEhCdlBgmBAFFFL5dAP4JlfyS/giWdWaXmgpWBpZB9DJSGBbAlJSCBsQkgqQFB8D976r+fuoRlnt2ZWz1y/k+n0MzPp6V69uvt+7g0t2p3jPSO5obVezPFe2+VNPd5rbnPyWe+5556R/6/m2U8dElL/zj5yoNMyMJHq+rx+/vnnAXjttdeA0XzuPGfTWrPmgU9yfURfsotXd6WuXr0KtMeg7qzMxLh2qgt1jNSc/4cffhhoedl14M2+ffuANlwrQ3vqcK2Mfk/dzXI+b0tz4TNCkiRJ6olvtiVJkqSemEayAtTirhQzpiVZbWmWLfO0MqtT77Idmu3jmtKQrcNslddt8lzOWp1Ut9JbR9Xt/BdffBFoW7t1yz6FfEtVoLYQLfgWQwoV074M2tZ3isFS6AstZWLc5NKpbSnzGEA73tMyMMVh0IoJUwiX/3cIRa25bTWVK8dbUkyOHTvWreX4zPmj/lymb6ad3HxNyjE2TtKKkmpX08NyHOT+nUmbycUy7n5O+lqdUpvrcmwk3SrtAqG9ZuQYSRoVtOfL0E1N2Zm041DDZmRbkiRJ6omR7QGaySfqRE8SqUvkGdon9ETq0qoMWtuvRPUSza7/b6JdNZKa6EQi0zWilRZQNfqn/61GthMlyv1ah4vUYsmllmNrsaM+KUbMcV6jUImq5f5MsR+0Qsc8T+rP5dhP27y605KCyuzgjDveJ7UYLINa4PNtJWtxc4pLc/6oLT0T+c99lwhujeDPtV3nUh1jc5XjKJHturOXHb3sKkzK31QLevPY5jmR3aL6PDty5AjQjpHaQjK7IHm+TEp7wEnebdHwTNarhCRJkjRBvvTfcb2FNHgZGZ381JprmdZTac9XH+JcTnRhXJu+DGCoQwumji2uUcBcnpSIxVLJ0KBEYn//+993a4kW/fSnPwVGR3jPtl3YTMwmP7HP9mPTyf0Frd1YBmzU9mo59g8dOgSM1iFkVyDRtRzj0KJ3aUFZ6xCmRmprlHbcdUMz26hcvr/mtGdXIBHMRLqhHcOJ2O7cuROABx54oPueGh2dze2dze2erele7mby/9VjMvdBBiflmKxDinJsLYf6lLQ2zO5Sjg+Al19+GWjPxTrYJ/dHzmlpJbmQFuL4me+xoaW3VK9VM2FkW5IkSeqJb7YlSZKknrjvPxC1XVS2wVNwk0LHbFvW78nkwQsXLnRr2QpOoWPaj0ErUsl1tfguW+dTW/lpYWRrNSkjaTkHrbg0KTx93/fZWpttFtlCbcklxam2pcw2fI7luhWd4z1rtU3fiRMngNbWMvchtLSGTOGsrSfz/JhaxAbzL+6LoWxhVuNSTKYWR0NLI0u7z7qWYtSco/bv3w+Mnoc2bNgAtDaWtTBzOkO8z2K6Atv8nfX4mzodt07eTUpKUvmGXmibNMF8rdNY85jlWMlzEtrzMtNK6+tYfkdSuObaIrMeMwuVGTvk41CTZ9jPbkmSJGmCGdkeiBTZQCs8ScFXiiDHFX4lGlcjdolQ33rrrcBo4VcKdiatFdVykGhsIjz1vs8QiRRDJkLUt5k8/jM9RhJRqkVkkeKqRPYS7aoDaHK85/iv7SzHDUWKqYNnHnrooW7thz/8IdBa3PVd1DiU59N0t2OmtzH31bgC0hS97du3b+Trc889131PirjTBi5FlPD5gsHFut/m+v+M24lJ9Dbn4rTGS5vKejnR3DwPoEVx81wfemR7qvpcyhCb7IrmmAF46aWXADh58iQwGvXOczXHRi0Gn+s5cK6P8VCeu1qeJuvZLUmSJE0QI9sD8etf/7q7nGEyGQOdiMm4EbhZqyNxM1QhOZY1QpDr5toWyU//s5cdibSvS65nHcmex3ZIA2xmKwMtEsGq7Sgz4jnfkxqF2i4ylzPyud4XyR/Ork2NiCcimOfL1q1bu7W0/FuoHGxYuc+BGo1OBDKPUVoqpjUjtMf8r3/9K9B2LgB27doFtMd6SG1D685Mnqt/+ctfAHjqqae6tQz7yfk1Oyv1+Mixmfvpscce69YeeeQRYNgtJGcrefnJ16/XJaJdzwtpJ5m1OiY+9RYOS9NyYGRbkiRJ6olvtiVJkqSeDGfvboV74YUXusvZgstWa9INaoFStuZSMJbUkYXkcNGFkTZp2WJPKk8tBkpB0VxbX/Uh2+mXL1/urktKTLbXkxYCrQA07eBSBAmtzWF+Z1I+asFj7o8U9t54443dWo79bMsnJQda2lWKfuv9OqT7czlJSkkKV3P+qY9Zvuf1118HRgvj8jiOS6nKMbFUqSX1vJd0p7ShrEXqOZZTAJrjvrZxnXr81ZSR3GeTVhg5naTQ5PldL6fdbD1GMnky54o6pTQF0ps3bwZG00kmOd1OK9PyeZZLkiRJA2NkeyDqwIdE9tLwP4UiKQ6DFlXps1hrpRaCLbTXXnsNaIVBa9euBUaHX9Roz1JLZC7tyo4cOdKtHThwAGgRqDrEJFG7FMuleBdg48aNQIuE5liug2QS+Rq3S5PblHZyaQ8ILbKYdnTT7fLMtuBxurVJKZ6c76CdmRRHZ3ehFnHnOEjBbI1a7t27d+S6FAsCfOc73wHa82Sx1Uhz2krm9tXnbNr45djM/VTv70TnE92tEfzlvOsybnBSnvt1yFoe4xQ879mzp1vbvXs30AYmPfnkk91aot15fKShM7ItSZIk9cTI9kDcf//93eVEOZPnOi6Ctpzy/JaTTz75BBgdUpRobKJcifLWyO9iqMM2zp8/D7TbmegjtMEdyVOtx18u57bXkc05brMzU3Ms05oykai0S6vRvamDTqrk9ibKntsPLVK2ffv2kf9rnIWMPA8xij3OfG9nfn4mkfyaZ51di3FtLbP7kNz7V199tVvLbkmeJxlIVH/nYslxmghsju0qu4zjhjnlPJ37ZaVEYqc75mrees4Ree5nhwTaTmDOn3/729+6teT/Z9e37jgs1kAwaTZ8xyZJkiT1xDfbkiRJUk9MIxmIBx98sLucNkjZKtuxYwcw2iZNw/TOO+8AragHWjpGtqBTyDfXx3NcWkdSRFIsCK1lX/7/2qYvx1jSR2pbtrTwyxZ42hLW257UgNqOMmkk2QquhYrzTWVIQWQKqWp7tdyGTJlcThP5loOkj4ybgJv0kWeffbZbyzGZAt2anjH1uVPTkBYqraf+nhxLOZb7aLG6kuUck3NjbQKQVLVMHn3mmWe6tX379gHt2Ej6HsCdd94JtMdqSNNJtXIZ2ZYkSZJ64ke+gbj33nu7y4mOJtpY26vNxXTDaSalyGtSpHDvlVde6a5L8U+KeBLVm23EZVwUJ5cT+U1REbQo8KlTp4AWKYQWQUr0aOfOnd1aIsX5ntqWMpfztf4NiVLl60yOrXEtwvJ3JiIPcObMGaANDqlt4RLtHFc0PJO2dcvRuPt1vhbyPszxk6LWWiw8tb3k7373u24tBbnf//73gfbYw+ggFQ3XdMdmPZ9kRy1FsbXgOjuHGYqTcx3Apk2bAHjsscc+93M2FtBS8ciTJEmSemJkeyBqS6nkOCYvNZHtK1eudN+TvNi5RptWWqSvDzWXNO3y0kqvRmXTnmrbtm3A+LzP5FxPHQ8N7fFPC6xEd6G1h8yxUdv75XKOrRo9TPQ6EeLkOUKLvCdSWFvyLcZxk2EhZ8+e7a7L/Zo89LoTlMse05Mjj1Va4dXjL2vJx6552RmX/s9//hNotQfQotz5XV//+td7ue3/y6QMOxq65MunFiQRa2jnpETC65Cr119/HWj1Kxs2bOjWcq5ItNx8bi0WI9uSJElST3yzLUmSJPXEPZSBqNPVUpiWr2nFVrfVUyg0k+1JtzD7cfXq1e7ya6+9BrRixDoJLVuXaU2XNImaKpLixaRJpEgWWgpFfnedTpmUkjVr1gBt6h60qaQ5VmoaSW5ftmOXqnBo3LGZlJjajjD3R1IDamFcbRc2k9+/Ekzy353Upttuuw0YTRl6/vnnAXjxxReBlloF7RhJeldtWVnPr32b5Pt+rqamzkx3H8z1/qlpQZkqmnPb3r17u7V//etfQDtGaqrRRx99BLRjqk6bzeTJlfj4qX9GtiVJkqSeGNkeiHyqhvZp+4477gBaxCaFH9CipLONSM4mArEc9Nn6rd6XiTqnmLG2y0vR49QIddrZ1csp9En0G1oxTwodf/SjH3VriWjfdNNNn/t/U1iUgswaGRri4577Kcf70aNHu7UUMm3duhWwzdtKkF2XuiPz+OOPA3DXXXcBo8Ojcn7M8yvRT2hFyjmn1qLLuZrNuXS5t6Bcqr8rO3TZxYPPDw+rbQGffvppAI4cOQKMHiP5HfUcKi0UI9uSJElST4xsD0RtQZRRxMk5TPTmjTfe6L5nukE1+ryFGPKRyGtyio8fP96tZaRwcq+z8wAtnzuR2rQJrK0ck/+diFsi1dByWBOpSZ4ijOalTrrkqycPt+amp51bhqA4NnvlqFHoDChJ68raljLn0OT6J3oJbfhT2sAlwg3tubYQ0W4tjZqTn3zs1HLUxzVj3rN7VoeP5fyec3eOMRitwZHmwsi2JEmS1BPfbEuSJEk9MY1kgFIQl9ZXu3fvBtpELRidXjgbk1agM9+Czvn+vfV+zrTGbD2+8MIL3dqBAweAtmWZxxBa4Va2spMmVNvX3XfffQDcc889wGg7u2yPpxh2IR7DmdyvMynqWshpebl/UyR66dKlbi1b/UkDcPLbypbnws6dO7vrkl6VtK20CYT2XD158iQAmzdv7taSmpRCzJmmk8zmOJ+08+5ykHPoE0880V2XKb7PPPMMAK+++mq39qc//Qlo5+IdO3Z0aznvLNVUUk0+I9uSJElSTwwPDVCKMdLWLVG8NOSH1mIu0e/FtpARzen0GRH6+OOPgXZfQitwTPFi/g0t4vryyy8Do63pEmlLwWIi1NCi3KtWrQJaMU8i3NDaPea6viNhCzUMab63s7Y4TNQx93Nt+Zb71Yi2vkieZ5s2bQLa8w1aMfOxY8eAthMFbVhYot11iE4KMjV5cm6q54wUPe7atQsYLURPkXsKszNMDtoxkt3InI8snNRMGdmWJEmSemKYaIAy4CZDSZJ7ltZo8Pmx4PnelazmVydi+umnnwKjkfhEtNNiLlGLel1GqdfIdr4vEe260/Doo48CbXhGjY5lhLrt6po8VhcvXuyuyzGd6x588MFuLUNMpP8lEe5aN5F87uRjJ4oJLZKZ1m85Z0DbsUoEtLYaNA978uQxS+vHGtnOjuOePXuAtsMGbTcz56ac+2vr1Rxvsx00p5XBo0KSJEnqiW+2JUmSpJ586b+OIhyEcRMOkzbyhz/8AWgt5KBtgyV9Ia2JVrIPP/ywu5wtwDNnzgBtaiO01JB8f/25bA/ecMMNwGi7xbSiy8/XLchf/vKXQHscakpL0oIWY9t5ISZlLoYUoGbaH7TWW9nG/9WvftWtpYBUmo+klyVdDFrxZFJL6mTXnGdTPFkLn2sBpiZTPV+mNWtSReq56bnnngPa5MmkBN5///3d96SF5Lp163q8xZrOYjVumAsj25IkSVJPLJAcsERE0wLt7bff7tZSpJc2V8tVPqkm+lzbMSXyn0hUjV6fP39+5GsKHqsUxNx5553ddVOLq2qB5L59+4AW7dqyZUu3lpZQMx2IsdDGfaKfyVCapXLu3DlgdPDIG2+8AcD1118PtCgStIhkLRKearbDd7RyZIcqz89EMaGdZ/M1hbrQhp4k6r1169ZuLZHMnA9yPhni803j1ccqA2umfoV2/sjApBTL59/Qdj7TSnb9+vXdWi3W1cpkZFuSJEnqiZHtAUs0Jo34E/EDOHjwIDAaeZ00yWueGnWs/84I77TnqoNkEl1Ijl1t2RVpw1SHD2RwTNrJ1d2BRCNyGxLNBti/fz/QdhoS2ar/z3zNNecs3zP0CHduS3Jm9+7d261lZyIt2J599tluLfmxV69e/cLfbWRb1bjjIcdB3YHK0JOcb+vPJaKd1m91vHfqO1I3k92tITzPNH+1nW4e4+Rj53jIawK0QUnZtfvud7/brWVHJLsfDudaeYxsS5IkST3xzbYkSZLUE/cyBizbkWkxl/QHaNtQKcao6SRpWzf0SVZJJTh58iTQ0kLyN0ErfszUx9qWK2koSRFZu3Ztt5ZUj6nFS9AKoZKaMG76ZtqB1W3j3IZbb70VaFPpYOG2Bee7BT30Leyp2/j1mM7xmil9SR2CtsVfWypKc1XPjbmc5059DiVVLIXZOXdAK9pOYdxsU5WGlN61HPVx/yalMykidYJkUhyPHTsGwN///vdu7ciRI8D4CcM1PVTL17DfjUmSJEkTzMj2BEjkNZ+qoUUEE3HJJ2eAbdu2AaNFgYsh7bRqe7ZcTlQ4xYzQWhlm8Ez+XX8+EdBE62+//fZuLffLuPsnke36/TORyHkKXxLhhhbFSKtAi1zmLrsDDz/8cHddIoQpdK1RbAsc1bdEuGvxZC4nil2LsG35tzxNV6Sec36GbK1evbr7nrwO5ZipbQHT1jS/u7aizaCk/E5fV5YnI9uSJElST/wINWD5NJ0I9W233datJbqaoS21BVHywRYrsp2BI8m5Pnz4cLeWiHvyb+swidy+DA/ICNwajU4ENJHqcYMCks871xz13H5o7ecSlaij3H/2s58BrcXX0E2N0Awh8pbHKPn19ZhOW7+0/jOarcU0Lsd3ah53PcfkvJMag9k+v4bwfFzO5nr/zubncgxAayWbHdBaQ5QWstkpTaQbWo73j3/8Y2B0yJqWDyPbkiRJUk+MbA/QF1VR16rlRH/ffPNNoEWVoeVHz1f9Pfn9iVCncT+0TijJZ8ywB2jRykStayQzUevkWif/rXYOyeV8Te42LFy3lToCPlH55G6nEwy0qHq9DUM25MhZHrva3aFelqRJlJ2ODRs2dNdlF3fNmjXAaGQ7r61//OMfgdEuVxmGk53doXcYm2quQ9qWo8l65CRJkqQJ4pttSZIkqSemkUyQFBJCS72Y2poKWnu9cW3vsq2T9I5asJg0kKRQpPgS2rZXCjwyiAZauknSQNLCCFqRSFoV1rVcTjpJTR9ZDLkvkooD8MorrwAtZWfjxo3dWgoyJUmaTn09u++++4D2ul2HeR04cABor60p0odWLJ7X6bSbhNH3A5NkpQ5zMrItSZIk9cTI9gSpwxbyyTgFfLVJfsagp6iiFvQlan3ixAlgtPF+RpOn+LE210+kN9HrjJ2t1+U2JVJdr0uBSP0b0japtk9aDBmWkt2AtF6CFtl+8sknAfje977XrTlsQJI0V9kdra+faRWY1+LaOnf37t0AHDp0CGgD6wCeeOIJYNiF5Sstej0dI9uSJElSTwzVTZC0FIIWTU4Uubb+e/HFFwE4deoU0NoNQWvTd+HCBWA0Ip6c7Xz6zvhZaC378im8Rq/z/WnvV3PVhvipO39nItq1jWH+huSa1xxzSZLmKq37Vq1a1V2X15q8VuY1CFpeduqnsvMKbYc2LQbrEJ0hvu6udEa2JUmSpJ74ZluSJEnqiWkkE6ROj0rRY9r7HT16tFvbv38/0NJJalpHtp6S+lGnXG3evBkYX1iZlJJc1+c2Vd9Tp5I6k/vp8uXL3VoKV+qkS0mS+pDXtnFtAe+66y4AXnrpJWA0jeSpp54CWhrkY4891q2lReBit9PVFzOyLUmSJPXEyPaEShu6RLY3bdrUrWXITNrs3X333d1aWvglsl0LHdNGMAUatdVdLi9Gm74+2gVlOAC0oQFpdVgj+Lt27QJG7xdJkhZDfd1Ngf4jjzwCtF1ngIMHDwJw+vRpAH772992a1u3bgVg+/btANx7773d2nxfX1fqUJr5MrItSZIk9cTI9oRLW7/kW0NrK5QI9fr167u1RLbzPXXIzHwN+RNvbY2Y4QHJX69j7bMLMKmjcCVJy0Pa/Wante7C5jU8u81Hjhzp1nI5u9y1xW/a92Yn22Fti8PItiRJktQT32xLkiRJPfnSf8f1WdOim2u7u/xcLQDM5bQKrEWNU3/nYqV8zObvm+6QnOvt/fOf/9xdfuaZZ4DWHmnnzp3d2kMPPTSn3y9J0mJJGuSlS5eANjEa4Omnnx65rk6lfPjhhwF48MEHgdFmAPNtgDD1tbu+Xk+3tlD6bhs8H0a2JUmSpJ6YGT/h8qltXJu+IZnNp8txn4Zn++k00f0LFy4AcPLkyW7tvffeA+Dxxx8H4Nvf/vasfrckSUspO9cZOFdb/Ob1MsPuTpw40a3t27cPgDNnzgBtkBu018K0HJyt6V6nhxJhXipGtiVJkqSeDC8EKhVz/TR85coVoA2uef/997u1RALuvPNOAFavXj2fmyhJ0pKqedkZapM2f7Vl4J49ewA4fvw4MFrv9dFHHwFtSF6G39VWuCs9Qj1XRrYlSZKknvhmW5IkSeqJrf8GYsgta8bpoz3fQkrxx29+85vPrW3ZsgWAH/zgB0CbpCVJ0nKR1+mkhwCcP38eaFMmn3vuuW4t7QQzdXrHjh3AaBOBTKEeoiG/jzKyLUmSJPXEAknNyXTN6pfK1atXu8tp5n/27FmgFXwA3HfffcBoQYkkScvB1Ja5q1at6tYStb722muBFs2GVjSZ1828pr799tvd92zYsAGA22+/HRgtntQXM7ItSZIk9cTItjpzHae61DlRud3JQauXr7nmGqC1QAJYu3YtAF/96lcX6yZKktSbcTvM0w2F++Y3vwnAz3/+8+66gwcPArB7924AXn/9daBFuqENirv//vsBuOuuu7q1r33ta0AbuKPGe0SSJEnqiW+2JUmSpJ6YRqLOUqeDTGe67bBMwMpkLIDDhw8DsH37dgA2btzYraUwZKFu0xfdLkmSFsNCvAalxd91110HwLFjxwA4evRo9z0HDhwA4Ny5cwDce++93drmzZuBlraZtBIZ2ZYkSZJ6Y2RbgzZdRPvTTz8F4M033wTg9OnT3dq///1voLX5u+OOO3q9nZIkTbK08Vu3bh0AN954IzDaJjevye+++y4Ahw4d6tY+/vhjAC5evDjyewBWr17d182eCEa2JUmSpJ44rn0ghjxmdKgSyX7++ecBePXVV7u1m2++GYBf/OIXANx2223dmm2JJEmamdRFAVy+fBmAF154AYCXX365W3vvvfcAuOWWW4BWMwWwa9cuoEXL+zDk91G+65AkSZJ64pttSZIkqScWSGpivfXWWwDs378fgBtuuKFbSzuib3zjG4CpI5IkzcWXv/zl7nLSQHbs2DHyb2iTm9MWcO/evd1aJk9u2rQJGG0ZWAswlyvfgUiSJEk9MbKtiZDChw8//LC77syZMwC8//77wOgn5bvvvhtorYwkSdLCSBFkvgKsWbMGgH379gGjbQFfeeUVAD744AMAPvvss24tQ3CyE70ch+EY2ZYkSZJ6Yuu/gRhyy5oh+OSTTwD4xz/+0V2XT8qXLl0C4Cc/+Um3lnyyRLbH3Zfe55IkLYwMk8sOdAbOAezZsweAN954AxiNbGdM/AMPPACMtgyczWvykF/TjWxLkiRJPfHNtiRJktQTCyQ1EVJUcfjw4e66bFVlC+pb3/pWt3bttdfO+HcPZZtJkqRJ9ZWv/P9bytWrVwOwatWqbi3td9Mq8Pjx491a0k0+/vhjAC5evNit3XPPPQDcfvvtwOS+XhvZliRJknpiZFuDdvnyZaB98n377be7tTTC37hxIwA333zzrH73pH5CliRp6Grr3S1btgCwbt06oDU4gDb85sSJE8BoYeV7770HwKOPPgrATTfd1K1NbRFYX9OH1vvDyLYkSZLUEyPbGrRTp04BcODAAWB0bOz69euBFtm+/vrrF/fGSZKkGbvuuuuA0fZ+2ZU+efIkMJrPnTqtvBfYuXNnt7Z58+aRnx8yI9uSJElST3yzLUmSJPXENBINTqZQQZs2dezYMaBtQQHccsstQGsv9J///Kdb+/TTT3u/nbUAw2JLSZLGy+tlUkGvueaabm3t2rVAey1Pm0BohZSnT58GRl/n00Bh27ZtAKxZs6Zbq79/CIxsS5IkST0xsq3BSDS6tvfLp9l3330XGG37k0/KZ8+eBUYj4levXgX6iTiPaylkZFuStNzltW4hW+tlGE5+dx1QNzUinmYJAEePHgVaq8C0BwTYsGHDyO9eaka2JUmSpJ4M4y2/xhpaU/a+5NNsItsXLlzo1jK2NV8T6YY22jWtgT777LNureZ1SZKk+esjsp2odb7WneK8zme4zQcffPC5tfxcbQGYoXcZorPUjGxLkiRJPfHNtiRJktQT00g0GEn9uHLlSnddUks++eQTAM6dO9etnT9/HmhtglZK2o0kSctFXruTPlInRU8tnqxtfdMIIe8L3nrrrW7tnXfeAUwjkSRJkpa9L/3XcKAkSZLUCyPbkiRJUk98sy1JkiT1xDfbkiRJUk98sy1JkiT1xDfbkiRJUk98sy1JkiT1xDfbkiRJUk98sy1JkiT1xDfbkiRJUk98sy1JkiT1xDfbkiRJUk98sy1JkiT1xDfbkiRJUk/+D6AqrxsN64+qAAAAAElFTkSuQmCC",
"path": "images_version_6/image_54.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
Place a ruler and a triangular plate as shown in the figure,then the degree of angle 2 is ()
Choices:
A:130°
B:140°
C:120°
D:125°
|
||
271
|
55
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAABcCAAAAAB8JwXkAAAGR0lEQVR4nM1aUWxTZRT+XG6JE21A2HDQubgHWJeIYB2hLKNxDMiQkgguGHRuCjYxMWIIZMYXGh9YfJg8iEVMZkosBhElKUYk7UxLskF0ZBBYJ9Gx4CVbKITsNrFN2sXjQ2+3trv3v/9/WxLPS5tzzn+/e/773++cnlOQGQlIUtPUB6aWUgXEJVYbymT8TXUmlgIwgZjybPIDja8vMocoiS/58cH3APBitTnEx0jAOWEFkNq884A5rKwI7eoXvQAm7iwqBVAMcbevJCwTiPW1UeC5umkAiJ3hXha2rEsAsVrLugQACL1LPg8RBaR+olCTwr8s2TJIRKN7iYhIDDFuU4goJElSl8iyZHMfEYUGTSBSR1DMPyuhc22TRMeyuyLIAK98I+aflVutay4gBSsAYc559fJ9ccAUrFsvYbASZhCt286KuB/vBYCJKrimBgbaTSFij8i23v18HwBcb4HlrStLa8whuuTb/M4HeqoAZCZrgLVfLs5pRc+d9wi3a7CDiCggSX1E6XcnVa0w4lg9r6dik7XUwvmxYVmU0/PQxzYttXhGdl/g84veeE/bILqrJNv49tQ5rG0Qj9G29jyP29GtDh2LcIzk7+BwGnPo5RYTiMqTHInKGdGzVABhy+YEACBs+Yxnv6x7Thv6HH/epWsjotCqSSKiZHM/X5BBt5GHbI/r2ioA3F8KAJkdla/xhAi4R+4aeBz4tErXVgFkLi6MATj7bHs2gSUSRpD7DOj8PNz6xgpg5pnVd4DYw6cXZVUjrUassv0Hpvl+D/M8EIXCgT5Kbp9qy3HtmNNrcBodOm93Vjw+lrUCuNUE4JOvbq5QExgahhasZ4e56yeGUZfecjEmj1GoK9BPB/NP6piTmZRYTKc4xllLqQKDDVg+cO+d1LX2vPtoGEpv+EP/Nm0r9ffgqLueGSLapKrw6F4KSNKqyYJ7iTgYYZ7w6FmGnQZngMFyitepuz/6TKdPb8aIRBHHCT1Th19b79MNnguR4h63ZuWgy3SyzZDljXJH0K4dpk4R4zb+lWCUkd3Rq91aZbj1DS2mO/k4g95yYnhP5Ldr3XjEOV8Xt+s8g3zhyciy26ORfOxj81Qe3YOWJzx1ji3ocM1/43d/V6yJ3vBwXI2z6pDnk/t4MdMpjvlRm4wRgG1oQXEOq68tUhzd1cB1Lb4YSSOHFb3shvSmikgtd8RZsG3xwm1l50xziMXkXtAUONLDeRGxelXx5ocZ7Jh7/cbtvN0W0Qo54pgrKZTqam/uOwe9qSL8G/nXaztytaN1iQsvZfM2F72JntVZmSX3iMOpJjTZwUFvqphApLinVSaiuF22jZPicct89FYCIlHQGSTqOkFeLxEF7V7DnwUlI1Lc7fF3EI3ZiYji1Vz0VhoikW+xn9SqRqD9UQricMTtUcjnIRp2CC00jUhEPsfvsk3hpjdVhDrzxXL7za2XPryZPiy0qCREoNdXO33Fag5xw8hMSdhMaRrSQDQr3Q8P67VRtMXM3KpA3n4gBliAGB4wgeiSmU2BzGaLxWL5Ol81d2yTLWGhY66OBHrY73+6rZ9CVXlXzovx8L+NIsEdev/vTOKvbnSz2xAzaMfyp/IUc4inllUKAUZ/q0Gl98pUwxNXWX6DK2oy+1s2aSDGpttTC/kBwyd7c68hsymAe6csKz7y52ty292jqFMeLkm3dRERUWDVJLv9md4SpkD+Y5x9jmf6lrwgQAEzqY0AkPGvr2G3P//8pwk7V17P06iIselM5sJqfsSJqToAiF7vBLuhNLLTWjyxJCKi0WaFKNDHv6vZrmGyuYuI2f5MbwlTsrmgpwEiooNSVTjdJjRwO9ik0KhNXaDXFKCQJEmSVDg4NJsf022SNHsgjNufeVIykwMAai9rDho0pWQmBwBsE5hmlQdxD9d4oJyIrmlGE++RIKLTz+1anpOD2y6Z17VMMc42BbIZuGHqkSOi89vsp+Xn1l8yGffLDEiTDFAs8VwLMLldmUstWlKuGKuc57JfBpdYAcuamO4Io1yI6FQTyMWNALBG37FsiK7soEdtt19r1C3Uy4Zo3XYeACbqagDETm/UdSwbovpPgZFGAJn9NYwRWJnOKhHZZLXmHbWx/kpTRsR4LgNLzKlimVhOQMr3HP+/iP8B03vBB+7jJPgAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_55.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, the straight lines AB and CD intersect at point O, and the radial OM bisects angle AOC, ON perpendicular OM. If angle AOC = 70.0, then the degree of angle CON is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
Như hình vẽ, hai đường thẳng AB và CD cắt nhau tại điểm O, tia OM chia góc AOC thành hai phần bằng nhau, ON vuông góc với OM. Nếu góc AOC = 70°, thì số đo của góc CON là ()
Lựa chọn:
A: 65°
B: 55°
C: 45°
D: 35°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the straight lines AB and CD intersect at point O, and the radial OM bisects angle AOC, ON perpendicular OM. If angle AOC = 70.0, then the degree of angle CON is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the straight lines AB and CD intersect at point O, and the radial OM bisects angle AOC, ON perpendicular OM. If angle AOC = 70.0, then the degree of angle CON is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
As shown in the figure, the straight lines AB and CD intersect at point O, and the radial OM bisects angle AOC, ON perpendicular OM. If angle AOC = 70.0, then the degree of angle CON is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
272
|
55
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAABcCAAAAAB8JwXkAAAGR0lEQVR4nM1aUWxTZRT+XG6JE21A2HDQubgHWJeIYB2hLKNxDMiQkgguGHRuCjYxMWIIZMYXGh9YfJg8iEVMZkosBhElKUYk7UxLskF0ZBBYJ9Gx4CVbKITsNrFN2sXjQ2+3trv3v/9/WxLPS5tzzn+/e/773++cnlOQGQlIUtPUB6aWUgXEJVYbymT8TXUmlgIwgZjybPIDja8vMocoiS/58cH3APBitTnEx0jAOWEFkNq884A5rKwI7eoXvQAm7iwqBVAMcbevJCwTiPW1UeC5umkAiJ3hXha2rEsAsVrLugQACL1LPg8RBaR+olCTwr8s2TJIRKN7iYhIDDFuU4goJElSl8iyZHMfEYUGTSBSR1DMPyuhc22TRMeyuyLIAK98I+aflVutay4gBSsAYc559fJ9ccAUrFsvYbASZhCt286KuB/vBYCJKrimBgbaTSFij8i23v18HwBcb4HlrStLa8whuuTb/M4HeqoAZCZrgLVfLs5pRc+d9wi3a7CDiCggSX1E6XcnVa0w4lg9r6dik7XUwvmxYVmU0/PQxzYttXhGdl/g84veeE/bILqrJNv49tQ5rG0Qj9G29jyP29GtDh2LcIzk7+BwGnPo5RYTiMqTHInKGdGzVABhy+YEACBs+Yxnv6x7Thv6HH/epWsjotCqSSKiZHM/X5BBt5GHbI/r2ioA3F8KAJkdla/xhAi4R+4aeBz4tErXVgFkLi6MATj7bHs2gSUSRpD7DOj8PNz6xgpg5pnVd4DYw6cXZVUjrUassv0Hpvl+D/M8EIXCgT5Kbp9qy3HtmNNrcBodOm93Vjw+lrUCuNUE4JOvbq5QExgahhasZ4e56yeGUZfecjEmj1GoK9BPB/NP6piTmZRYTKc4xllLqQKDDVg+cO+d1LX2vPtoGEpv+EP/Nm0r9ffgqLueGSLapKrw6F4KSNKqyYJ7iTgYYZ7w6FmGnQZngMFyitepuz/6TKdPb8aIRBHHCT1Th19b79MNnguR4h63ZuWgy3SyzZDljXJH0K4dpk4R4zb+lWCUkd3Rq91aZbj1DS2mO/k4g95yYnhP5Ldr3XjEOV8Xt+s8g3zhyciy26ORfOxj81Qe3YOWJzx1ji3ocM1/43d/V6yJ3vBwXI2z6pDnk/t4MdMpjvlRm4wRgG1oQXEOq68tUhzd1cB1Lb4YSSOHFb3shvSmikgtd8RZsG3xwm1l50xziMXkXtAUONLDeRGxelXx5ocZ7Jh7/cbtvN0W0Qo54pgrKZTqam/uOwe9qSL8G/nXaztytaN1iQsvZfM2F72JntVZmSX3iMOpJjTZwUFvqphApLinVSaiuF22jZPicct89FYCIlHQGSTqOkFeLxEF7V7DnwUlI1Lc7fF3EI3ZiYji1Vz0VhoikW+xn9SqRqD9UQricMTtUcjnIRp2CC00jUhEPsfvsk3hpjdVhDrzxXL7za2XPryZPiy0qCREoNdXO33Fag5xw8hMSdhMaRrSQDQr3Q8P67VRtMXM3KpA3n4gBliAGB4wgeiSmU2BzGaLxWL5Ol81d2yTLWGhY66OBHrY73+6rZ9CVXlXzovx8L+NIsEdev/vTOKvbnSz2xAzaMfyp/IUc4inllUKAUZ/q0Gl98pUwxNXWX6DK2oy+1s2aSDGpttTC/kBwyd7c68hsymAe6csKz7y52ty292jqFMeLkm3dRERUWDVJLv9md4SpkD+Y5x9jmf6lrwgQAEzqY0AkPGvr2G3P//8pwk7V17P06iIselM5sJqfsSJqToAiF7vBLuhNLLTWjyxJCKi0WaFKNDHv6vZrmGyuYuI2f5MbwlTsrmgpwEiooNSVTjdJjRwO9ik0KhNXaDXFKCQJEmSVDg4NJsf022SNHsgjNufeVIykwMAai9rDho0pWQmBwBsE5hmlQdxD9d4oJyIrmlGE++RIKLTz+1anpOD2y6Z17VMMc42BbIZuGHqkSOi89vsp+Xn1l8yGffLDEiTDFAs8VwLMLldmUstWlKuGKuc57JfBpdYAcuamO4Io1yI6FQTyMWNALBG37FsiK7soEdtt19r1C3Uy4Zo3XYeACbqagDETm/UdSwbovpPgZFGAJn9NYwRWJnOKhHZZLXmHbWx/kpTRsR4LgNLzKlimVhOQMr3HP+/iP8B03vBB+7jJPgAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_55.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, and the radial OM bisects angle AOC, If angle AOC = 70.0, then the degree of angle CON is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
Như hình vẽ, đường kính OM chia góc AOC thành hai phần bằng nhau, nếu góc AOC = 70°, thì số đo của góc CON là ()
Lựa chọn:
A: 65°
B: 55°
C: 45°
D: 35°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, and the radial OM bisects angle AOC, If angle AOC = 70.0, then the degree of angle CON is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, and the radial OM bisects angle AOC, If angle AOC = 70.0, then the degree of angle CON is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
As shown in the figure, and the radial OM bisects angle AOC, If angle AOC = 70.0, then the degree of angle CON is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
273
|
55
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAABcCAAAAAB8JwXkAAAGR0lEQVR4nM1aUWxTZRT+XG6JE21A2HDQubgHWJeIYB2hLKNxDMiQkgguGHRuCjYxMWIIZMYXGh9YfJg8iEVMZkosBhElKUYk7UxLskF0ZBBYJ9Gx4CVbKITsNrFN2sXjQ2+3trv3v/9/WxLPS5tzzn+/e/773++cnlOQGQlIUtPUB6aWUgXEJVYbymT8TXUmlgIwgZjybPIDja8vMocoiS/58cH3APBitTnEx0jAOWEFkNq884A5rKwI7eoXvQAm7iwqBVAMcbevJCwTiPW1UeC5umkAiJ3hXha2rEsAsVrLugQACL1LPg8RBaR+olCTwr8s2TJIRKN7iYhIDDFuU4goJElSl8iyZHMfEYUGTSBSR1DMPyuhc22TRMeyuyLIAK98I+aflVutay4gBSsAYc559fJ9ccAUrFsvYbASZhCt286KuB/vBYCJKrimBgbaTSFij8i23v18HwBcb4HlrStLa8whuuTb/M4HeqoAZCZrgLVfLs5pRc+d9wi3a7CDiCggSX1E6XcnVa0w4lg9r6dik7XUwvmxYVmU0/PQxzYttXhGdl/g84veeE/bILqrJNv49tQ5rG0Qj9G29jyP29GtDh2LcIzk7+BwGnPo5RYTiMqTHInKGdGzVABhy+YEACBs+Yxnv6x7Thv6HH/epWsjotCqSSKiZHM/X5BBt5GHbI/r2ioA3F8KAJkdla/xhAi4R+4aeBz4tErXVgFkLi6MATj7bHs2gSUSRpD7DOj8PNz6xgpg5pnVd4DYw6cXZVUjrUassv0Hpvl+D/M8EIXCgT5Kbp9qy3HtmNNrcBodOm93Vjw+lrUCuNUE4JOvbq5QExgahhasZ4e56yeGUZfecjEmj1GoK9BPB/NP6piTmZRYTKc4xllLqQKDDVg+cO+d1LX2vPtoGEpv+EP/Nm0r9ffgqLueGSLapKrw6F4KSNKqyYJ7iTgYYZ7w6FmGnQZngMFyitepuz/6TKdPb8aIRBHHCT1Th19b79MNnguR4h63ZuWgy3SyzZDljXJH0K4dpk4R4zb+lWCUkd3Rq91aZbj1DS2mO/k4g95yYnhP5Ldr3XjEOV8Xt+s8g3zhyciy26ORfOxj81Qe3YOWJzx1ji3ocM1/43d/V6yJ3vBwXI2z6pDnk/t4MdMpjvlRm4wRgG1oQXEOq68tUhzd1cB1Lb4YSSOHFb3shvSmikgtd8RZsG3xwm1l50xziMXkXtAUONLDeRGxelXx5ocZ7Jh7/cbtvN0W0Qo54pgrKZTqam/uOwe9qSL8G/nXaztytaN1iQsvZfM2F72JntVZmSX3iMOpJjTZwUFvqphApLinVSaiuF22jZPicct89FYCIlHQGSTqOkFeLxEF7V7DnwUlI1Lc7fF3EI3ZiYji1Vz0VhoikW+xn9SqRqD9UQricMTtUcjnIRp2CC00jUhEPsfvsk3hpjdVhDrzxXL7za2XPryZPiy0qCREoNdXO33Fag5xw8hMSdhMaRrSQDQr3Q8P67VRtMXM3KpA3n4gBliAGB4wgeiSmU2BzGaLxWL5Ol81d2yTLWGhY66OBHrY73+6rZ9CVXlXzovx8L+NIsEdev/vTOKvbnSz2xAzaMfyp/IUc4inllUKAUZ/q0Gl98pUwxNXWX6DK2oy+1s2aSDGpttTC/kBwyd7c68hsymAe6csKz7y52ty292jqFMeLkm3dRERUWDVJLv9md4SpkD+Y5x9jmf6lrwgQAEzqY0AkPGvr2G3P//8pwk7V17P06iIselM5sJqfsSJqToAiF7vBLuhNLLTWjyxJCKi0WaFKNDHv6vZrmGyuYuI2f5MbwlTsrmgpwEiooNSVTjdJjRwO9ik0KhNXaDXFKCQJEmSVDg4NJsf022SNHsgjNufeVIykwMAai9rDho0pWQmBwBsE5hmlQdxD9d4oJyIrmlGE++RIKLTz+1anpOD2y6Z17VMMc42BbIZuGHqkSOi89vsp+Xn1l8yGffLDEiTDFAs8VwLMLldmUstWlKuGKuc57JfBpdYAcuamO4Io1yI6FQTyMWNALBG37FsiK7soEdtt19r1C3Uy4Zo3XYeACbqagDETm/UdSwbovpPgZFGAJn9NYwRWJnOKhHZZLXmHbWx/kpTRsR4LgNLzKlimVhOQMr3HP+/iP8B03vBB+7jJPgAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_55.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, If angle AOC = 70.0, then the degree of angle CON is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
Như hình vẽ, nếu góc AOC = 70° thì số đo của góc CON là ()
Lựa chọn:
A: 65°
B: 55°
C: 45°
D: 35°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, If angle AOC = 70.0, then the degree of angle CON is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, If angle AOC = 70.0, then the degree of angle CON is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
As shown in the figure, If angle AOC = 70.0, then the degree of angle CON is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
274
|
55
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAOcAAACnCAYAAADqrEtMAAAttElEQVR4nO2deXhU5dn/PzOTyWQly2RfSCCQFSaBEEiAsBkQFLwAkf5s5a1CtdXWKi0ULfIW21qr9q2v4g6oLCqKIooUAlECMZAAIUBCSDJkD9n3dWYyM+f3BzCvkVVIciZwPteVi3PxPOec+5zke57tfu5bJgiCgISEhNUhF9sACQmJKyOJU0LCSpHEKSFhpUjilJCwUiRxSkhYKZI4JSSsFEmcEhJWiiROCQkrRRKnhISVIolzkFBRUcFf//pXZDKZ5Wf06NEcPXqUY8eO8fTTT1NRUSG2mRJ9iExy37Nuqqur+fjjj6msrESlUuHp6YlCocBsNmMymWhsbESn0+Hl5cWyZcvw9vYW22SJPsJGbAMkrk5tbS0pKSm89dZbeHp6snTpUh577DFLeU1NDUuXLqWuro7f/OY32NraimitRF8jidOKOXDgAO+88w5hYWE8+uijLFiwoFe5l5cXd999NyUlJahUKpGslOgvJHFaIYIgUFZWxtGjR6mvr+fRRx8lMTHxsnpyuZzAwEAEQcDV1RWFQiGCtRL9hSROK6Snp4eDBw9SXl5OZGQk06dPx8PD44p1Q0JCUKvVqNVqqVt7myGJUwR0Oh1GoxFHR0dkMtll5Z2dnSQnJ6PX61mwYAFqtfqq14qOju5PUyVERBKnCOTk5HDixAnc3d2Jj48nMDDQUmYymaiurqaiogJ7e3upu3oHI4lTBJRKJU1NTaSkpODh4dFLnD09PbS3t9PZ2YmtrS0KhQJptevORHJCEIHRo0cTGxtLRkYGJSUlvcrkcjlKpRJbW1vkcjlms/mq1xEEAZPJhMlk6m+TrYZLz9zd3U1nZyc6ne6K78hkMtHV1UVnZyednZ10d3cPuvckiVMEFAoF/v7+eHh4UFtbS11dnaXM1tYWX19fPDw8UKlUGI1Gy0TPD1tQQRCoq6vjwIEDZGdnD/gziEV3dzeZmZksWrSI6OhonnjiCbRa7WV1UlNTue+++4iNjWXSpEksXryYzMxMkay+OSRxioSbmxsTJkygsbGRrKysXmWurq5MmjQJg8HAtm3bLOWXJo9MJhMZGRm88847NDU14e7uPuD2i4VCocDNzY34+Hj8/PzIzs6mtLSUnp4eSx0bGxvc3d0JCwvDbDbT09PDuHHjrjrjba1IY06RcHJyIikpiX379nHkyBHuvvtu5PIL30qVSsXdd99Nfn4+u3btIigoiO7ubqKioujp6aGiooLU1FQOHjzIjBkzGD58uMhPM3CoVCoiIiJYs2YNCQkJrF27loqKCmprawkICAAujOmjo6N55plnGD58OEqlkt///vciW/7TkcQpEk5OTkyZMoUvvviC8vJyuru7cXR0BC6MO2NiYvjzn/+MRqPh5ZdfZt26dQwZMgSz2UxkZCT33XcfH330EV5eXiI/iXjo9Xp0Oh1FRUW9xAkXlqsqKysJDw8ftO9IEqdIyOVyvLy88PX1pa2tjZKSEkJDQy3jS7lcTlhYmGViqK6uztKyBgQEMH78eHx9fcV8BFFpaGhAJpMxZcoUSkpKyMnJITY21lJuMBgoKytj6NChhISEiGjpzSOJU2QiIyNpb2/n2LFjqNXqywQ3bNgwli9fLpJ11otWq0UmkzFv3jzefvttioqKOH/+PD4+PigUCnp6emhoaGDEiBGDdkwuTQiJTEREBL6+vnz77be9Zm0lrk11dTU9PT2MHj2aMWPGYDQaOXbsGHq9HriwXiyXywf1hgBJnCKj0WgYMWIEx48fp7q6WmxzrI4rOWCYzWYMBgMA7u7ujBkzBltbW06fPg1cGIuWlpYiCMKg9q6SxCkyzs7OBAUFIZPJqKyspK2tTWyTRKW5uZmysjLKysro6em5zPfYbDbT1taGTCZDqVQil8vRaDS4uLhQWFhIfX09+fn5aLVafHx8cHZ2FulJbh1JnFaAt7c3U6ZMoaysjBMnTohtjmiYTCZSU1PZsmULO3fupLOz87I6er2e6upqlEqlRXh+fn54e3vT1NTEqVOnyMjIoKqqirFjxw7qSTNJnFaAh4cH06ZNo6ioiKNHj4ptjmh0dHTw2WefUVlZSVJSkmVp6Yd0dXVRUlKCj49Pr/XdkSNHEh8fT1VVFU1NTbi6uuLl5YWNzeCd85TEaQVc8hZqamoiLy/vjnR0b2xsJCUlhc7OToYPH05UVBRKpfKKdevr6/Hy8sLPz8/yf4GBgURFRXH06FEqKytxc3Mb1JNBIInTKlAoFAwfPhwHBweampooLy8fdE7at8qZM2fYsmULiYmJzJkz57LySw7+58+fp6qqqpe7HlyYGPLy8iIzM5Pq6mrc3d0H/Udu8Lb5tyGTJ0/m3LlzpKWlcc899wza9bmfSlVVFWfOnMFgMJCYmMjo0aN7lXd1dZGens6GDRvYu3evRaRLlixhwoQJwAW3vqCgIKKiooiNjUWj0QzqmVqQxGlVTJ48mba2Nnbv3s3kyZPvGHFu376dnJwc5s2bR3h4+GXlCoUCtVptEdyQIUOIiYm5bCbW09OT//qv/yIgIABPT0+LR9VgRYpba0V0d3ezfv16XnvtNT799FPGjRsntkn9Tk1NDcuWLcPe3p4PPvhgUC999DWD+9Nym2Fvb09gYCAuLi5otVqamprENqlfqays5I033mDkyJEsXrxYEuaPkMRpZfj4+BAZGUlJScllURJuJ8xmM3l5eRw6dAiNRsPMmTPFNsnqkMRpZfj6+pKQkIBWq6WgoEBsc/qNU6dOcfz4cVxcXIiOjsbNzU1sk6wOSZxWRkBAAFOnTiUnJ8fiK3o78uWXX5KRkcEf/vAHQkNDxTbHKpHEaWXY2NgQGBiIj48P7e3tVFZW3lZrnjqdjv3799PU1ERYWBhjx46VxppXQRKnFeLg4MDYsWMBOHToEDqdTmSL+o76+nq+/PJLnJ2dmT17Ni4uLmKbZLVI4rRCZDIZCQkJ2NjYcODAAbq7u8U2qU/o7u6moKCArKwsQkJCuOuuu8Q2yaq5rcR5uyzZKhQKJk6ciEqlIjU1lY6ODrFN6hP279/P5s2bWbBgARMnThTbHKtHdA+hSwlgs7OzaWxstDgwX8s7RhAE2trayMzMpL29nYiICIYNG4a9vf0AWt5/yGQyXFxc8Pf3x8bGhuLiYnx8fLCzsxPbtJumtbWVrKwsampqWLFiBWFhYWKbZPWI3nIaDAbOnTvHP/7xD37xi1+wZs0a8vLyrnlOV1cXx48f55lnnuHJJ58kJSWF1tbWAbJ44IiKimLKlCkcO3aMwsJCsc25abq7u/nqq69obm5m0qRJjBw5ctD7vQ4EoovTzs4OjUbD6tWreeyxx6itraWpqemaXdTGxkY2btxIaGgoq1ev5oEHHsDT03MArR4YAgMDGTVqFDk5OZSXl4ttzk3T2NjI1q1bUSqVPPzww4O6BzCQiC5OmUyGk5MTo0aNIiIi4qp7+C6Rn5/Pxx9/TEFBARMmTOD+++/H19f3tkz4ExQURExMDIWFhRQXF4ttzk1RXl7Onj17cHd3JzY21hKSReL6iC7OS1RUVFBTU4Orqytyufyy/XpwweXrm2++4dNPP0WtVhMdHY2Pj4+l/Eq/9MEsWDs7O8LDwzEajZYd/oPteY4fP86uXbtYuHAhM2bMENucQYXViPPMmTPk5eWhVCovS+4DF8amBw8epLm5mcjISBISEq4bH0YQBHQ63RWFPlhQqVTce++9mM1mDhw4gNFoFNukG+bcuXMUFBSgVCqJjY3t9SGVuD5WI85L2bT8/Pzo6OigoaGhV3ljYyMlJSWYTCZ8fX1Rq9XXHbsYjUYqKyvZtGkTr7/+OpWVlf35CP2Cra0tiYmJdHd3k5aWJrY5N4zBYGDLli2Ul5ezePHiXiFFJG4M0cV5aVnExcWF0NBQQkJCMBgMvWZfy8vLycrKws7OzhIX5lKKvOtdW6fTkZubS3JyMvv37+fs2bODalHf1tYWjUaDIAjk5eXR3t4utknXxWAwcPbsWTIyMrC3t+f++++/bZa5BhLRxdnV1UVOTg6urq5MmDDBElGtq6vLUufgwYN89NFHjB8/HgcHB6qqqoiLi7tughpbW1uioqJ49tlneeihh9i4cSMvv/wy+/btGzT+qnK5HB8fH7y9vdHr9Wi1Wqv/uGi1Wt5//33Gjh3LPffcM6gj4ImJ6OLU6/WUlJTg5ubGiBEjLOtfl7qs+/btQ6/Xs2DBAoxGIzqdDmdnZ3x9fW/oly6Xy/H29mbGjBmsWLGCESNGkJyczFNPPcX333/fazxqzZMtISEhBAcHk5OTQ319vdjmXBWDwcCpU6c4evQoEyZMYNKkSWKbNGgRXZw9PT00Nzfj6OiIt7c3NjY26PV6mpqaqKmpITMzE7Vazbx58ygqKkKv19+UN5C3tzfz589nzpw5uLu7k5+fz549e/juu++ora0Frjzbay1ERUWh0Wj4/vvvrXrs/P3333P69GlCQ0OJiYmRurO3gOj9DYPBgEKhwNbWFicnJ9zd3WlsbCQjI4Oenh68vLwICQnBbDZz4sQJFAoFUVFRN32/sWPHEhERgVar5e9//ztZWVnMmzePJUuWMGTIkD58sr5l1KhRVFdXs27dOmbNmmWVvqk6nY5PPvmEjo4O/vGPf/TKlynx0xG15ezo6KCxsZHQ0FA8PDyws7NDrVaj1Wo5cuQIdXV1TJ8+HY1Gg1wup6ioCH9/f6ZOnXpL7l/29vaEh4ezZs0afvazn6HValm+fDnbt2/vtVRhTd1chUKBn58f7u7u1NXVWZ27YltbG7t27QIgOjqa4OBgaax5i4j29lJTUzl9+jRarRYXFxfs7e2JiopCpVIhCAKurq6EhYXh4OBAdna2JT07QFhYGHFxcTg5Od30/W1tbRk9erRlrTQlJYVDhw5hMBgYPXo0YWFhVhcx3M3NjbFjx9LQ0MDJkyeZOnWq2CZZKCkpYdeuXYSFhZGUlGTVQ4TBgmjifOmllygsLKS0tBQXFxdsbW1xcXFBoVAwZswYhg8fzt13301aWhqvv/46n3/+Oba2ttTU1NDa2sqrr756S+K8hIeHBw8//DAJCQls3LiR1157jRkzZrB48WLGjh2LIAhW84fm7OzM9OnTSUtL48iRI1YjztraWk6ePElxcTGLFy++I0J6DgSixa3Nzc2lu7vbMub08/NDrVYjl8tpbGzEzs4ODw8P2traOH/+PPX19SiVSmQyGUOGDGH48OF96kDd09NjiTx+5MgRCgsLCQkJYcWKFVYT3NlsNlNfX89jjz1Gd3c3u3fvvq4v8kDw3nvvkZKSQlJSEvfcc4801uwjRGs5R40addWyH/5yhwwZwpAhQ4iIiOhXe5RKJUFBQfj5+WFvb48gCFRVVbF+/Xri4uKIiYkRXaSXloU8PDws0flCQ0OxtbUVxR6z2UxNTQ1nzpzBbDYza9Ys/P39RbHldkQasf8IpVLJ9OnTiY6OZs+ePbz99tuUlpbS1dXF1KlTcXR0FD3M/7hx4zCZTKSlpeHu7i6aa1xLSwuff/45JpOJqVOnEhwcLIodtyuir3NaK+7u7sybN48333wTPz8/Nm3axPLly8nNzRXbNGJjYxkxYgTff/89jY2NotlRUVHBu+++i4+PD4888ohodtyuSOK8BkOGDCE6Opq5c+cyY8YMnJyc2LBhA++++66oAZ8jIiIICAggOzubmpoaUWzIycnhm2++QaPRMGHChD6ZnJPojdStvQHGjBlDVFQUR44c4bXXXqOkpMSyHhocHDzgSy7Ozs74+flhMpkoLy+ntbV1wENMHjp0iPT0dJ566inGjx8/oPe+U5BazhvE1taWhIQE3nnnHX7+85+TkZHBCy+8wJ49e0SxZ+jQodx9990UFxdz7NixAbuv0WgkNTWVwsJCvLy8iI2NlWLP9hOSOH8Ctra2eHl5cdddd/GLX/yCESNGsHv3blatWkV2djZms3nAbFGr1YwfP56SkpIBTdvQ0dHBpk2bMBgMPPTQQ1KOk35EEudN4OXlxezZs5k7dy5ubm6cPn2a5ORkDh06dFkEh/7CxcWFMWPG0NLSQlFR0YDcs6Ojg+zsbMrKyhg2bBhJSUlSFL1+RBpz3gJjx44lMjKS7OxsXn31VdLT00lMTGTZsmWo1ep+vbetrS2RkZE4OjrS0NBAeXk5/v7+/SqWkydP8sknn5CUlCTFAxoApJbzFrGzsyMmJoZVq1Yxd+5cysrK+M1vfsPXX3/d75uiZTIZY8aMwdXVlcOHD/drlIT29nZOnDhBXl4e06ZNs+Rykeg/JHH2Afb29sTGxjJ37lxiY2ORyWQcOHCAHTt2oNVq+zUo1+TJk1Gr1ezdu7ffxCkIAnv37uXcuXPExcUREREhuiPGnYD0hvsQf39/li5dyhtvvIFOp2PDhg18+umn/SrQuLg41Go1qampNDc398s9mpqa2LZtG93d3axYscKq973eTkji7Ac8PT1ZvXo1y5cvp62tjWeeeYaXX365XyIY2Nvb4+fnh5OTE8XFxX2e9KimpoadO3fi6elJQkJCv49rJf4PaUKoH5DJZAQEBODu7o5cLkcQBEpLS/nggw+YPHky0dHRfepEHxgYSHR0NHl5eQwdOrRPx4OXwrnMmDGDKVOm9Nl1Ja6P1HL2Iw4ODsydO5e1a9cSGxtLSkoKX3zxBenp6TQ1NfVZBMDAwECmTp1KXl4eZ86c6ZNrAhQXF3PixAmampoYO3YsI0aM6LNrS1wfSZwDgKOjI0uWLOGdd94hODiYDz/8kBUrVlBWVtYn1w8ICGDixIkUFBSg1Wpv6Vo/3N77wQcfcPjwYVasWNHvW/YkLkfq1g4QDg4ORERE0NPTg62tLWfPnuWtt95Co9EwceLEW2qVFAoFAQEBqNVq2traaGxsvOl1VplMhsFgIDc3l8rKSnx8fJg8ebI0CSQCkjgHGI1GQ0hICAcPHuTNN9+kqqqK7u5ubGxsbilBrr29PePHj6ejo4O0tDRmzZqFg4PDTV2rqqqKjz76CA8PDxITEyVhioTUrRUBR0dH7rrrLjZs2MC9995LRkYGS5cuJTk5GYPBcFPXVCgUaDQabGxsSElJscTi/akIgoBWq2Xv3r1ERUUxd+7cm7qOxK0jWgwhiQtUV1eTlZVFRkYG1dXVBAcHM3v2bOLi4m74GjU1Nbz00ku8/fbb3HvvveTk5BAbG8v48eNJTEz8SQG3Dhw4wJ49e9DpdCxbtozo6OibeSyJPkDq1oqMr68vc+fOJTQ0lHfffZfTp0+jUCjQ6/VERERcd+y4d+9eHnzwQVpaWixd4oqKCurq6mhoaMBoNGI2mxk5cuR1d5DodDoOHTqEVqtl1apVjBw5ss+eU+KnI3VrrYSRI0fy0ksv8fjjj1NYWMjf/vY3tm7dek2XvLVr1zJnzhxaWlp4+umnKSkpYc6cOfj6+jJ58mQ0Gg3nz5/niSeeYMeOHde8VldXF/v27aOyspKgoCDGjBlz02NWib5BajmtBJlMho2NDePHj8fR0ZGsrCxOnjzJE088wfz587nrrrtwdXW11P/nP//J888/j6urK5988gmzZ8+mvb2d+vp6DAYDTU1NaDQa4uLiCAwM5ODBg5w+fZr58+czZcqUy7x8amtr2bJlCyNGjGDRokVWF1D7TkQSp5Xh5OTEhAkTCAwMRBAEvvvuOw4fPkxHRwcxMTFERkby1Vdf8eyzz+Lk5ERaWhqjRo1Cr9ezY8cOWlpamDFjBhkZGchkMiIjIxkyZAhGo5Hc3FwOHDhAa2srMTExlmh5dXV1ZGZm0t7ezqhRo4iNjRX3JUgAUrfWavHz8+O3v/0t//M//4NKpWLTpk28/PLLZGdn8/jjj2NjY8P27dst8X8rKyt5//33sbOzY/Xq1SiVSvLz82lpaSEgIIBVq1axfPly6urqePPNN9m0aZMlONjRo0dJTk7mnnvukaK1WxHSbK2VYzKZqK6uJjs7m8zMTD777DO0Wi2PPPII77//PgBnz55l69attLS0sGDBAuLj41mzZg1yuZxp06Zx7733IpfLMRgMlJWVkZWVRVpaGsXFxSxcuNCSFuOFF14gNDRU5CeWuITUclo5l7x/kpKSiI+Pp6ioCJVKZXFkqKqq4vTp0+Tm5jJjxgzi4uKws7Nj1qxZ6HQ6Dhw4YIltZGtry8iRI5k5cyZJSUkEBQWxY8cOKioqmDZtmiWruPS9tg6kMecgwd7entLSUsxmMwkJCWRkZFBSUkJoaCgtLS2o1WoSEhJwcXHBbDYTFxfHV199xalTp+jq6url5aNWq1mwYAHR0dEsXLiQoKAgHnroIcskkbUkbrrTkcQpEi0tLZSWllr+bWhooLW1lcrKShoaGmhoaKCmpoYRI0awf/9+AD799FMAXnjhBVQqFd9++y2bN2/G1dWVxx9/HA8PD+BCThUPDw+8vb3Jz88nLy+P6OjoXlmmS0pK+Oabb0hISCApKUkKb2mFSOIUgZaWFgIDA29oY/Srr75qOT5+/LhlB0p3dzeVlZVMnz6dxsZGTp06hdFoZNKkSRYn+sjISMrKysjIyMDLy8vSbb10rX379rF06VKrSSUo0RtJnCLg6urKokWLaGhowMPDw7KjJD09nZ07d1pCmoSHhzN//nzgwmysTqezLH+YzWZCQ0OJiooiOzubr7/+mvLycjo6OrCxsSEgIMCSqj49Pd2S8xQuRNE7efIkgiAwYcKEfo8UKHFzSOIUiQ8++MBy3NHRwbPPPsvnn3/eq84f//hHy3FpaSmARZwODg6MHDkSmUxGcHAw06ZNIzk5mW+++YZvvvmGNWvWoNFoiIyMZN26dZSXl1uu9dZbb9HZ2cnq1aslYVoxkjhFJiMjg0ceeYT8/HxcXV354x//yPPPP4+HhwcPPfSQpd6PA4Rd8ii6hKenJ9OnT8fFxYXs7Gw++OADoqOjsbGxwcXFha6uLkpKSigtLcVgMBAZGcm4ceNEy+0pcX2kpRSRMBqNrF27lsTERPLz85k2bRo5OTnU1tZiNBp56qmneu3tvNRiXitImL+/P/PmzWPZsmXY29tTUFBAYWEhTk5OlJSU8OWXX/LFF1+g0Wi45557JGFaO4LEgKPVaoX4+HgBEOzs7IRXXnlFEARBqK6uFuzs7ARXV1ehubm51zn19fUCIISHh9/wfb7//nvht7/9rTBs2DAhOjpaGDdunKDRaITU1NS+fByJfmJQeAhdWjKor69Hr9cP6nW48+fPo9VqMZlMODs7ExkZacltWVxcTElJCYGBgVf01MnIyKCzs5PExMRrtnoKhQKVSkV1dTVFRUU0Nzcjl8uxtbVFEARiYmJQq9Xo9fp+e87+xmQy4eDgQFhYGMuXLycwMFBsk/qcQTHmNJvNGAwG9Hr9oBWnwWDg3LlzNDU1IZPJ8Pf3Jzg4GJlMhl6vx2w2U1FRgUwmw9fX94rCcXFxwWAw0NbWhrOz8zXv19nZaXGit7W15dy5c9TW1qJUKmlubsZoNOLg4DBovYFMJhMKhYKenp5B+wzXY1C0nIOdnTt38uijj9LQ0EBwcDBbtmxh8uTJverodDpmzpzJtGnT+Nvf/nbF67S0tODk5NRrIuhGWb9+PV9//TVyuZwlS5Ywffp0aabWyhkULedgpaOjg+XLl7NhwwYAHn74YdatW3fFFO12dnakpaVd83o/3M/5U4mLi6OiooLDhw8zdOjQ206YgiAMyh7VtRiU4jSZTLS0tKDT6bCzs7PKP7SMjAwefPBBSktL8fDw4O2332bRokWi2RMeHs7IkSPZvn07Op1ONDt+Knl5eZw8eZKuri6MRiMmk8nyExQUxPjx4/Hz87stEysNSnG2t7dz5MgRenp6CA4OtipxGo1G1qxZw7/+9S+MRiNz585l/fr1+Pj49Ot9e3p66Orq6hVF3sbGBltbW+zs7LCzs8PPzw+dTkdFRYXlw2btZGVl8eqrr1o8mpRKJUqlkq6uLqKjo3n88ceZP38+3t7eYpva5wxKcTY0NPDhhx8SFxdnVfsP8/PzefDBBzl58iROTk68+OKL/O53v+v3+5pMJo4dO8YzzzxDbm4uDg4OGI1GYmJiWLx4MUuXLgX+z1Hh3LlzZGVlMWnSpH637VZZtGgRfn5+PP/883h5eTFz5kwmTpxIeXk5u3btYt26ddjb2zNnzhw8PT3FNrdPGXTirKioYO/evZSVlTF16lSr+YW88cYbrFy5Ep1OR3x8vCUeT3/ww/GVVqslNTWVw4cPExwcTHh4OHZ2dphMJoqKivjqq69wc3Oz7N+cNWsWX3/9NS4uLoNCnPb29kRFReHq6kpcXBzz5s3Dz8+PyMhI8vPz2bZtGzU1NXR1dYltap8zqMRpNBo5evQo6enpKJVKfH19Re/SVlZW8uijj7J3715sbGz4y1/+wnPPPXdTM6o3yiVhNjc3s3PnTv7zn/8A8PrrrzN69GhLvY0bN/L+++/z3nvvWaK3JyQksGHDBs6ePdtv9vU1tbW1CIJAcHAwfn5+wIX33t3djb+/P56enr22w90uDJpRtF6vJyUlhbq6Ovz8/Czjpb7K1HUzfP7554wZM4a9e/cSHh5OWloaa9eu7VdhXuL8+fO8/fbb7Nixg4iICD766CMiIyN71Zk2bRoLFy6koqKC4uJi4IKLn7u7O52dnRQXF/dr1u2+oKqqCq1Wi4eHRy9Hgw8//JDdu3dbcs14eXmJaGX/MChaTrPZTG1tLaWlpajVauzs7Dh69KhlgmCgaWlp4cknn2Tr1q0A/O53v+PFF1+84hJJf6DX68nMzOTzzz8nNDSUOXPmWFqUH+Ls7Iybm5vFgQMuTBKNHj2aqqoqsrOz8fDwsOpcKD09PdTU1JCenk5xcTFhYWGoVCo8PDz49a9/TXh4OEFBQWKb2S8MipazurqawsJCPDw8iIiIYNiwYahUKlQq1YCvbaWmpjJmzBi2bt1KQECAZVJioIQJcPr0aQ4ePEh9fT1JSUlX3Syt1+vp6upCJpNZkvgKgsDEiRNxd3cnNTWVzs7OAbP7ZmhoaKCiogKFQkF5eTkpKSns2rWLzs5OIiMjiY+PHxSzzjfDoBBnXl4emZmZJCYmMnz4cMxmM0FBQZawHAOB0Whk5cqVzJw5k9LSUhYtWkR2drYoiX6+/fZbsrKymDp1KhMmTLhqy9fZ2Ulra6tlAslsNiOTyZg4cSIuLi7s3buX1tbWAbb+p3H8+HHy8/P561//SmZmJhkZGaxdu5b9+/fz3HPPceTIEbq7u8U2s1+w+m5tQUEBO3fu5OOPP2bfvn2WFsDPz2/AtjydPHmSRx55xLJEsm7dOh5++OEBufeVaG9vt2QVu9aEWF5eHidOnCAgIICAgABLAC97e3uGDh2Kq6srBQUF+Pn5WV3XVhAEOjs7LRM/0dHRlnHlrFmz+M9//kNNTQ0FBQWEhYVJE0IDTUdHB7m5ucCFvJZms5nGxkY6OjpwdnYekPHmv/71LxISEjh58qRlz6XYwmxtbcXGxoaQkJCrdun0ej0nTpygsLCQ2NjYy8Zll8KYnDlz5pazYfcHJpOJiooKBEFg6NChvZbMPD09cXNzQyaT0d7eLuqkYH9itS1nW1sbRUVF1NfX8+CDD1ocxUtKSjhx4gSlpaX9ns8jJSWFlStXYmNjwyuvvMLTTz89IDOxV8NoNFJfX09dXR0GgwFXV9crfqAMBgOnTp0iNzcXk8nEtGnT8PX17VXH19eX2NhYMjIyGDZsmNWlYDAajRQWFuLq6sqIESMsSZUu7e4pKSlBp9OhVqtFmRQcCKym5fzx5phDhw7x1ltvMWrUqF65KlUqFYIg4ODgcN1tU7dKUlISzz33HMeOHWPFihWiChMuzLR6e3vj6emJUqmktbX1ikshPT09bNq0ifPnzzNhwgTi4uIuC30ZFBTE5MmTyc7O5uTJkwP0BDeOSqXi4MGD6HQ64uLiLB/i2tpa/v3vf3Pq1Cm8vb0ZN24cjo6OIlvbP1hNyymTyWhra+P06dMcP36c3bt3U1BQwOLFi1GpVHR3d5Oenk5qaio5OTkYjUYMBgOzZs0iIiKi3+y62vYtsXB0dGTo0KEUFhaSnp7O2LFje+XdzMnJYc+ePZw6dYqxY8fywAMPXHEN0MbGhuDgYJydnWlsbKSqqgofHx9RHcgFQaClpYW8vDy+/fZbvv76a3x9fenq6sLX1xeVSsXZs2c5ePAgEydO5IEHHiA4OPi2bTmtRpxwYdp8165dbN++nYqKCsLCwqiqqqKlpQWDwcDmzZtJTU2lrq7O0nIolcp+FedNoSth77vP8+rbGZS5RLLw93/m6cXj8Oqjv6GoqChycnI4cOAAiYmJeHl5odfrLT7Hn376KYmJifzyl79k4sSJV72OSqViypQptLe3k5aWxn333SfqxIogCNTW1rJt2zbeeustnJycaGho4OTJk5jNZoxGI05OTowePZpVq1YRHx8vmq0DgVVttjYYDDQ2NtLS0oLRaMTOzs6ySC4IAlVVVXR0dGAymZDJZNjZ2eHq6nrNJZXSbT9n9toTN2jBEt7PX82P/5x1Jals/fhDtm/JoAxwibyLny95ggfnRl0uuKYDLI+Zwf9WOOMf5oeTsYnSonqYvp7Tyb8itA8EajQaSU5O5i9/+Qs1NTWYzWZsbGwwm81MmjSJhQsXWvJyXqtV6enpYd++fezfvx+z2czf//530WdtL31kGhoaLMMIs9lsWaNVKBQ4ODj08hK7bRmgWEXXxWw298t1z62fJAA3+PO08F2vsw1Cwft3C85Xqa8KWSnsqzX0OiNzracAk4TXz3RbrlG+Y4ngCcL8bTV99lwNDQ3Cxo0bhZUrVwqPPfaY8MQTTwhPPvmksG3bNqGlpcVS71rv1Ww2C01NTcLq1auFSZMmCRUVFX1mn8StYzXd2v7y9PGc+hLJydfygmlm/zP/j39lA6OH8cNdgW2HVpO0NJl2AOd4nvz3KuYOhfIv/8rv3slGX/QKsxaGcu77XxECQBGn99fDnFdZGHnpq64kcMEj/IIt/G9GHvzs1vcdCoKAWq22bAW7Ftd6rzKZDDc3N9RqNc3NzZSWluLp6SlltbYWxP46iE3jriWCCgQIFNZm/rAVrBS2zrnYSqqmC+sLflhmEE69MvpiC6oSlv2n9eL/twq7liDguVo4/MPq59YLk0AIe+VU/z/QTbBjxw5h8eLFwosvvijk5uaKbY7ERe5scTbuEpaoLggwcOVBofWHZSXvC9MvdV+f/k4w/Pjcyq3CnCuUtx5cKQSC4Bz/rPBRcrKQ/OVrwuJABFTzhW2VA/JUP5mcnBzhn//8p3D//fcLu3fvFtsciYvcweJsFPY94XmxZVwi7GrsXWrY94RlbHnlseIp4ZWwiy1r2CvC/7WJBqF837NCvPMPx6Y/F7ZaxqDWR0dHh5CcnCzExsYK7777rtjmSFzEasacA03P0XUse6segElv/IW57r3Ly8tOWY6Dva40TvQmMAIoAArO02j5fyWBM//Bkbb/prmmBb3CEbWnM9a8Eufo6EhoaChms5nq6mpaWlpwcXG57aLZDTasxkNoYCli0x/WUgEQuJZ//zLkshqdLQ0Xj8YT5n+la3jjFXzp+BhFRT8ut8PNxwcfKxfmJYYMGcLEiRNpb2/n8OHDllT1EuJxR4qzbc+L/C79wvGcF3/F+Cuop/F8wcUjJTaKATNNNOzs7Jg5cybt7e189913YpsjwR0pzjw+XLURPYDnatYsvmKziKOrdQQOGyjs7OyYNGkS3d3dZGZm0tPTc8PnCoKA2Wy+5o/ET+fOG3Me3c7fcy4cev72PhKu0udU+4cC9cBxCs8Dl/V82+i0DDSH4zPItSyXy/Hw8MDHx4eSkhIKCgqIiIi4oT2z27Zt44svvqCxsRGdTtcr+LOjoyOjR4/mv//7v/H3v/KHUOLK3HEt59E9b3JhGiiMPy0Yf9V6nj7DLx7p6dRfqRWpp6b4UuUQvKxrr/JNEx4eTmBgIJmZmdTW1t7QOW5ubtjY2HD8+HFqamoszvkhISHI5XJOnDjB5s2bLXtzJW6MO6zlPMqeNy9IE88HmaK5es0hQzWEcWEy9ttTZ2Hmjyq3neXQxXErs2MJ7wdrxSA6Opra2lrS0tLQaDQ3lFpv9uzZDB06lPb2dmbPns2CBQsICAgALkRjeO+991i/fj3t7e386U9/kmaCb5A7q+UsPMF/LmqTByYy5lp1NVN48GJXteDlzzjyo8az6dBnfHbxeP69cdwmDSejRo0iIiKCI0eOUFFRccPnmc1m5HI5gYGBvbqvkZGRPPbYY0RFRXH8+HE2b948qPOCDiR3lDh7ynI4evF40pjh11niGM9D/7gYEb3+BX72+Jdo23sAHVUZ/2LRoi0XJpUCV7J8zu2Tp0OlUhEQEICjoyOVlZXU1dVd95zu7m6qqqpQKpW4urpe1iqGhIQQFhZGe3s7x44do6Ojo7/Mv624o8T5Q8eCuJDL1zZ/TMgv32f99AtO4BUbFxI6xBaZzB7/hJUc0AOqEFZueoYpt0uzeREPDw/i4+OpqqoiKyvruvVLS0spKirCw8PjitEpzGYzw4YNw9HRkcbGxtsydUJ/cEeJs/F84U87QRnKr5K17HthAVG9/uZUeE59kq1HjvLydPernT1ocXV1JSkpicbGxhsSp1arpbS0lKioKNzdL38fCoWC4cOH4+npKS2r/ATuqAkhze9PU/3rC8cq1xs8SRnIzD/vIPfPugvueIDCUY2n82Dw+7k5nJ2diYuLY9u2beTm5l43XWBpaSm1tbXMmzfvihvfZTIZLS0tKBQKvL29LcG6JK7NHSVOOzcfbj5L5gV3vDsBhULB0KFDcXR0pK6ujtLSUkJCQq4YVaGnp4empiYEQSA8PPyK3dqOjg6ys7PR6XTExMRI4rxB7qhurcSNI5fLiY2Nxd/fnyNHjtDc3HxZHaPRSHV1NUqlkoCAgMsi/MEF8RYVFZGSkkJ3dzejRo2yBLeWuDaSOCWuyrhx4/D39yclJYWmpqbLyo1GIxUVFSiVSvz9/a8oOq1Wy4YNG6itrSU0NJT4+PjbNlpeXyOJU+KqaDQa/P39OXr0KNXV1ZeVG41Gjh07BkBoaGivsJoGg4HTp0+zdetW0tPTmTx5MrNmzRI9/OZg4o4ac0r8NJydnQkMDESn09HY2IjJZOrVOlZXV7Nnzx5iY2Px9fW1JEwyGAzk5+fzhz/8gePHjxMXF8fatWutL4SplWNVoTElrI+amhqOHTvGmDFjCAgIwGQyUVxczNatW9m8eTOlpaW4urri6+uLg4MDcrkcnU5HT08PGo2GKVOmMGXKFCIiIkSPmD/YkMQp8ZMwmUyUl5fzxRdfkJKSgru7OyaTCb1eb0koZDQacXBw4Gc/+xkzZ87sFZFe4saRxCkhYaVII3MJCStFEqeEhJUiiVNCwkqRxCkhYaVI4pSQsFIkcUpIWCmSOCUkrBRJnBISVookTgkJK0USp4SElSKJU0LCSpHEKSFhpUjilJCwUiRxSkhYKZI4JSSsFEmcEhJWiiROCQkrRRKnhISVIolTQsJKkcQpIWGlSOKUkLBSJHFKSFgpkjglJKwUSZwSElaKJE4JCStFEqeEhJUiiVNCwkr5//5PHKh2JwdpAAAAAElFTkSuQmCC",
"path": "images_version_5/image_55.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, and the radial OM bisects angle AOC, then the degree of angle CON is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
Như hình vẽ, và tia OM phân chia góc AOC, thì số đo của góc CON là ()
Lựa chọn:
A: 65°
B: 55°
C: 45°
D: 35°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, and the radial OM bisects angle AOC, then the degree of angle CON is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, and the radial OM bisects angle AOC, then the degree of angle CON is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
As shown in the figure, and the radial OM bisects angle AOC, then the degree of angle CON is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
275
|
55
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAIVCAYAAADf3ElzAACw20lEQVR4nOzdd1gUx8MH8C9SBUQQEMUGRkSxYO+KLcYaa4y9l2iq0ZhoEks0pugvxpgYE2NvscUottg7FrCh2BUVUVGxoSgI8/7Bu+Me148D1Pt+nofHcXZ3dvZuy9zsFDshhAARERERkY3Ik9sZICIiIiLKSSwAExEREZFNYQGYiIiIiGwKC8BEREREZFNYACYiIiIim8ICMBERERHZFBaAiYiIiMimsABMRERERDaFBWAiIiIisiksABMRERGRTWEBmIiIiIhsCgvARERERGRTWAAmIiIiIpvCAjARERER2RQWgImIiIjIprAATEREREQ2hQVgIiIiIrIpLAATERERkU1hAZiIiIiIbAoLwDr06dMHdnZ2CAgIyO2svBYaNmwIOzs7NGzYMLezYrJXMc9paWmYNm0aatSoAQ8PD9jZ2cHOzg7t2rUDAOzcuVPG7dy5M1fzSi+PnD4vlH2NGzcu2/f1OjN0j4qNjZWf87x587Jl//PmzZP7iI2NzZZ9EGUnqxSA9+7dKy8EOzs77N692xrJEpEZunbtik8++QSHDx/Go0ePcjs7RERmOX78OEaNGoXq1aujUKFCcHJygp+fH6pWrYrPP/8cx44dMymdgIAAjTLJwoULTdpu4MCBGtv16dPH8oOhl55VCsALFiww+H+il8G4cePkje11s3//fqxYsQIA0KpVK2zZsgUnTpxAdHQ0fvnll1zOHb3uXsU3JvTyuH//Pnr16oXKlSvj+++/R2RkJG7duoXU1FQkJCTgyJEj+PHHH1GlShX07NkT9+/fNyt9UwrAz549k/dQsg0OWU1AfdK4u7sjKSkJK1aswPTp05E3b94sZ5BefXzdnv22bt0KALC3t8eSJUvg4eGhtU7Dhg0hhMjprBFRDgsICHhlrvX4+Hg0b94c0dHRAICiRYuib9++qFevHnx8fHD37l3s27cPc+bMwbVr17Bo0SIcP34c//33HwoXLmwwbRcXFzx9+hTbtm1DfHw8/P399a67du1aPHjwQG5Dr78s1wCvWbNG/hqbNm0aAODhw4dYs2ZNVpMmIhNdv34dAODn56ez8EtE9LJ5/vw5OnXqJAu/3bp1w+nTp/HNN9+gWbNmqFKlCt58802MGzcOp0+fRrdu3QAA0dHR6NSpE9LS0gymX61aNfj7+yM9PR1LliwxuK5SS9y2bVsrHBm9CrJcAJ4/fz4AICQkBP369UNISAgANoMgyknPnj0DADg6OuZyToiITPPTTz8hIiICANCyZUssXLgQ7u7uOtd1c3PDwoUL0bJlSwAZzb5++ukng+nb29vLQrOhZhB37tzBpk2bAAA9e/Y0+zjo1ZSlAnBCQgI2b94MAOjRowcAoHv37gCAzZs349atW0bTiI+PxxdffIEqVaogf/78cHJyQqFChVChQgV07doV8+bNw8OHDy3KX1paGubNm4e33npLNqj39PREUFAQmjRpgkmTJiEmJsZoOvfv38eYMWNQrlw5uLm5wdPTEw0aNMDixYtNykd0dDQGDRqEoKAguLq6Il++fChXrhyGDRumt/fsihUrZHvVs2fP6lynVKlScp1Vq1bpXKddu3aws7ND9erVNeIz9+BNT0/Hn3/+iTp16sDLywtubm6oWLEivv32Wzx58sSk49TH3N7KW7ZsQZs2bVCoUCE4OzsjMDAQQ4YMQVxcnEX7V451/PjxMk7d0cGUnszXr1/Hp59+ilKlSiFv3rzw9vbGW2+9hY0bN5qUh3v37mHixImoXbs2fHx84OzsDH9/f7Rt2xb//POPRcelPg7lh+iVK1e0jktham//K1eu4L333kNAQABcXFzg7++Pdu3aYceOHQAMt6U2p/e50lFFV0eTzOfns2fP8PPPP6NWrVrw8fHRO4rA8+fPMXv2bLRs2RL+/v5wdnaGj48PGjRogJ9//jlHXm0+fvwYy5Ytw4ABA1CpUiXkz58fjo6O8PX1RVhYGKZMmYKkpCSDaWQeKeHw4cPo2rUrihYtCmdnZxQpUgQ9e/bE6dOnjeYnOTkZ3377LUJDQ+Hm5gZvb2/UrVsXs2bNQnp6epaOVRkxZ9euXQCAXbt2aZ1/xkbTycqxAcDZs2fx0UcfoVy5csifPz/y5s2LkiVLom/fvjhy5EiWjs/c8zAlJQXh4eH44IMPUL16dXh5ecHR0RHe3t6oWbMmxo0bhzt37pi074iICHTq1AmFChWCi4sLAgMDMWjQIL3PAzVTrsOTJ09i4sSJeOutt+Rn7+7ujqCgIPTu3RsHDhwwKZ+WSklJwdSpUwFkNFX4448/kCeP4SJJnjx5MHPmTLi4uAAApk6dipSUFIPbKAXaEydO4MSJEzrXWbp0KVJTU+Hr64u33nrL3EOhV5XIgp9++kkAEHZ2duLKlStCCCFiY2OFnZ2dACD+97//Gdx+9+7dwsPDQwAw+BceHm523h49eiTq169vNO2OHTtqbdu7d28BQJQoUUKcPn1aBAQE6N3+/fffN5iPSZMmiTx58ujd3tnZWcyfP19ru4SEBLnO77//rrU8Li7OaD7S09NFgQIFBAAxfPhwjWVz586V2548eVI0btxYbx5r1KghkpKSjH3keoWFhQkAIiwsTGvZ5cuX5X7mzp0rPv/8c7358PX1FTExMWbvX32shv4uX76sM8979uwR3t7eerebPHmywf2vX79eeHp6Gtx3q1atxKNHj8w+NlOOS7Fjxw4Zt2PHDp3pbd68Wbi5uelMx87OTnz77bdi7NixWmkrMn+fhpQoUUIAEL1799Zapv7ODh8+LCpVqqSVn7Fjx2psc+HCBRESEmLwswgKChLnzp0z9rFmiXLuGPoLDAwUp0+f1puG+hinT58uHBwcdKbj6uoqdu3apTed69evizJlyujNR/PmzcV///1n9LzQR7lXGvorUaJEthybEEJ88803erdXztkxY8aYdUxq5p6Hpnwe3t7eYu/evQb3O2XKFL3PDTc3N7Fhwwaz7quZqe8Fhv6++OILkz4b9b3TVGvWrJHbd+vWzaxtu3btKrdds2aN1nLl3qJ8NhUrVhQAxIgRI3SmV716dQFAfPTRR0KIF+eornsTvT6yVAAODQ0VAESDBg004pWCZ2hoqN5tnz59Kvz9/QUAkS9fPjFy5EixceNGERUVJQ4cOCCWLVsmPvnkE1GsWDGLCsDDhw+XJ3Hr1q3F0qVLxb59+0RUVJTYtGmT+OGHH0T9+vVFp06dtLZVbmK+vr4iKChI5MuXT3z11Vdi586dIjIyUsyaNUsULVpUpr9p0yadefjtt9/kOr6+vmLKlCkiIiJC7N27V4wbN04WNOzs7MT69eu1ti9btqwAIN59912tZQsXLtS4UZUrV05rnaNHj8rlmT9D9c2rTp06Ik+ePKJ3795i/fr1IioqSqxevVrUrl3bpBuhMabeqOvUqSPXW7JkiYiMjBRbt24VvXr1kuvUqlXL7P3fu3dPREdHiyFDhsh0oqOjtf5SUlK08ly6dGnh4+MjChYsKL7//nuxd+9ecejQIfHTTz/JQq2Dg4M4efKkzn1v3rxZ2NvbCwAiICBA/PDDD2Lnzp3iyJEjIjw8XPTo0UPmqUOHDmYfm5L3tm3bCgDC399f67gUxgrA58+fF66urgKAsLe3F++//77Ytm2bOHz4sJg7d64sXNaoUUOmk1l2FIArVqwo7OzsRK9evTTOzw0bNsj14+PjhZ+fn7yfDB8+XGzcuFEcOXJE7NixQ4waNUoeW8mSJcX9+/dN/ozNVbduXVGhQgXx5ZdfitWrV4uDBw/Ke1qXLl1kwSY4OFgkJyfrTEN9vtvZ2YnQ0FAxZ84ccfjwYbF7924xbNgwmU7x4sXFs2fPtNJITU0VlStXlmk1a9ZMrF69WkRGRop//vlHNG3aVACQD39LCsBxcXEiOjpaVKtWTQAQ1apV0zr/zp49a/VjE0KIr7/+WuPe8ddff4mIiAgRGRkpFi9erHH/+uWXX8w6LoW552H37t1FyZIlxfDhw8WyZctERESEOHz4sFi5cqV47733hJOTk3we3Lp1S+c+V65cKfeZP39+MWnSJLF//36xf/9+MXHiROHh4SE8PT1FUFCQxQXgLVu2CDc3N9G5c2cxc+ZMeU/atGmT+N///ievTQBizpw5Rj8bSwrA6mf00qVLzdp26dKlcltdhdrMBeDJkyfL+2NaWprGumfOnNH4kSMEC8C2wuIC8IkTJ+RJ8ueff2os++OPP+SyEydO6Nx+27ZtegtnaqmpqeLBgwdm569YsWICgM4Crtrdu3e14tS/4j09PXUWbs6fPy9cXFwEAPH2229rLU9ISJAPXH9/f3H16lWtdY4cOSILwUWKFNEogAkhZIGtUKFCWtv2799f7lspRCckJGisM3XqVAFA5MmTR9y7d09jWeZa0YULF2rt4+nTp6J8+fICyKi1SE1N1VrHFKYWgAGIgQMHivT0dK31BgwYINc5cuSIRfkwVHOpL89ARg1WXFyc1jp79uyRbzuUmgO1pKQkWShr1qyZePz4sc59/fnnn3JfW7duNf/AhOZbC32MFYCVcwmAWLFihdbyx48faxR+c6oADEDMnj3bYFqtW7cWAESxYsXExYsXda6jvt6++uorg+llhbEa5i1btsgC3l9//aVzHfWxt2zZUmchcOLEiXKdf/75R2v5L7/8IpcPGjRI53769eunsS9zC8AKQ9d4ZtY4tkOHDsnPUN93mZaWJn9g5suXT+seaApzz8MLFy7ovH8pTpw4Idzd3fXm+9mzZ6Jw4cKy8KvrjVd0dLTGm1NLCsC3b982+Hk8e/ZMvPnmm/Ke8vz5c611sloAVn6AAdD6kWTM2bNn5bZvvvmm1vLMBeD4+HhZEbF582aNdb/88ksBQJQpU0bGsQBsGywuACu/3pydnbUupHv37glnZ2cBaL96VyxevFieZJYUcI1xdHQUAMS0adPM3lZdADZUc9ClSxcBQHh5eWkt++GHH0z6dau+0S9fvlxj2d9//y2XZX5dWqpUKVlQKVmypM5CS7t27QQAUaVKFa39qm9ehmoeZ86cKdc7fvy43vUMMbUAXLhwYfH06VOdaah/pVvynQpheQF47dq1eterVauWACAqV66stWz69OkCgHBxcdFb26NQCpbdu3c3fiA6ZLUAHBcXJwsU7du315vGsWPHcrwA3LhxY4PpREdHy3V1vQ5VGzlypPxRmpuUa7N169Y6lyvHY+jcefjwoaxRHDZsmNZy5Q2Sn5+f3h9fjx49Er6+vrlSAM7KsXXs2FEAEFWrVjVY4FQ/i2bNmmXy8SjMOQ9N9cknnwgAonz58lrLli1bJvc3ZcoUvWmony+WFIBNob7WIyMjtZZntQCsbk5ibhng/v37cltdz7fMBWAhhGjWrJkAIHr16iXj0tPTZRPHb7/9VsazAGwbLOoEl5aWJocUadWqFTw9PTWWe3p6yp6aS5Ys0TlUiXr8vrlz51qSDYOU9JctW2ZxJy47OzvZg1SXqlWrAsjo4JR5YG5lXFZPT0907NhRbxoDBgzQ2kah7jSm7rR0/fp1XLhwAXZ2dggLC5PrqdcRQsgZ+cLCwvTuH3jRcVEX5RgB4NKlSwbTyapOnTrB2dlZ57Lg4GDZOzi786Hm6emJVq1a6V2ufD668qQMBRgWFoaCBQsa3E+DBg0AQPaIzmk7d+6UHaJ69+6td73Q0FCEhobmVLYAGD4/gRefs6urq8HvCnjxOcfHx+PatWvWyaARt2/fxvnz53Hy5En55+vrCyBj5itD3nzzTb3nTr58+RAUFARA+/yLj4+Xncg6d+4MV1dXnWm4u7ujc+fOZh2PtVh6bKmpqbLzaadOnQxObOPp6YkKFSoAyPq1Zew81OXevXu4ePEiTp06Jb975XkZExOD1NRUjfWVZ4CdnZ3B67Bv375WndDn2bNnuHr1KmJiYmQ+hWocYWPnqSXUs1W6ubmZta16fVM7ySud4f755x88fvwYALBnzx7ZYdCS75debRYVgDdv3owbN24AeDH6Q2ZK/I0bN7QKdgBQr149lCxZEgDwySefoEaNGvjuu++wf/9+o706TaHcPPbv34/AwEB88MEHWL16NW7fvm1yGj4+PvD29ta7vECBAjKceerZkydPAgAqV65scGgqPz8/2Uta2Ua9LDg4GIBm4VYJh4SEwNfXV2cB+MSJE0hMTASgWZDWpUyZMnqXGTpGazOUDwDw8vLKkXyoBQUFGeyZrHw+uvIUGRkJAPjvv/90jjqh/psyZQoA4ObNm9lwFMapzz31jx5dqlWrlt3Z0VCxYkWDy5XP+cmTJ3BwcDD4Obdu3Vpul52f9b59+/Duu+/C29sbBQsWROnSpVGhQgX5N2vWLAAwOiKAsWtC3/mnjKsKQGsEmMxq1KhhcHl2sfTYYmJiZKXGqFGjjF5byvmR1e/b2HmoiI6ORr9+/VC4cGEUKFAApUqVQvny5eV3r4wakZ6ejnv37mltCwCBgYHw8fHRuw9fX1+jo2sY8/jxY3z33XdydJASJUqgXLlyMp+VK1eW65o6coU58uXLJ8PGRkXJTL2+qeOed+jQQU7W9e+//wJ4MVxrgwYNUKJECbPyQK8+iwrAykljqHZMXTOsa0xgR0dHhIeHo2zZsgAyhsIZPXo06tatC09PT7Ro0UJv7bEpvv76a/Tr1w92dnZISEjAb7/9hg4dOsDPzw8VKlTA2LFjjQ7Tpq/WRKEuGGXOp1L49PPzM5rXQoUKaWyjphRelWGGgBcFXWVZo0aNAGQ8GJQCvrJOnjx5UL9+fYP7N3Scho7R2kz9vLM7H2qm5inzcFKpqalmT9cJIMtDzllK/SA2Vlut1F7mFOWHjz4JCQkWpZtdn/W4ceNQr149LF++XOc1rZacnGxwuaXXhDnfpyn3qOxg6bHl1vdt7DwEgNmzZ6NKlSqYO3euSQXuzN+/8r0Z+86ArH1vsbGxqFChAkaPHo0TJ04YvacaO08toa5cMvfHifrZbaiSSs3V1RUdOnQAkDEm8NOnT7Fy5UoAHPvXVpk9FbJ6lrf79+/rfWWt9u+//+LRo0cav/iAjBrM6OhohIeHIzw8HLt27cLFixeRnJyMTZs2YdOmTfjpp5+wYcMGk24Iao6Ojpg9ezaGDx+OpUuXYvv27YiMjERKSop8xfPTTz9h0aJF2TrziymvqdSvmjILCwvDH3/8gZs3b+LMmTMoU6aMLAwrBeCiRYuiZMmSuHTpEnbt2oVOnTrJdSpWrGjSjZusS/1A6dy5M77++utczM2rzd7e3uBy5bMODAzE2rVrTU43MDAwS/nSZdu2bXK86ZIlS2LEiBGoV68eihcvDnd3d3ksY8aMwYQJE6y+f4X6nmLsHmTo/vMyUl9bkydPRvPmzU3aztzX7JkZOw/PnDmD9957D8+fP0fBggXx2WefoXHjxggICEC+fPnkm8A5c+agf//+ALQ/e+X/WX1uGNOzZ09cvnwZdnZ26Nu3L7p06YKyZcvC19dXPtPT09PlMWfHORIaGopt27YBAI4ePSrfdppCPb6zOU2yevbsiQULFmDr1q34448/5NTHnTp1Mj3j9NowuwC8fPlys38NPnnyBCtXrkTfvn21ltnb26Ndu3Zo164dgIwmExs3bsSMGTMQFRWFqKgoDB48GKtXrzY3qwAyCtkTJkzAhAkTkJycjH379mHJkiVYsGABkpKS0LVrV1y8eNHonOLmKlCgAG7cuGHSL1vl16y6uYEicztgDw8PnD9/Xrb/Va936dIl7Ny5Ex07djS5/S9lDxcXF7i6uuLJkye4f/8+ypcvn9tZMkj9IykhIQFFixbVu66hZkTqNwbGJllQ2uFllVIDdOvWLZQpUwYODmbf1qxGadrg6emJiIgIvT/cM7/6tjb1vcTYmy5La1Rzi7rGLzU19aW5tubNm4fnz5/D3t4eO3fulG83MzP03SvfmymTSFn6vZ05cwZ79+4FkNGE5Ntvv9W5Xnafow0aNJAzua1duxZdunQxeVv1D11jbzjVGjdujCJFiuD69ev44osvAABvv/028ufPb3Ia9PowuwmE0pyhcOHCWLp0qdG/4sWLa2xnTOHChdGvXz9ERESgSpUqAIB169ZZ5RVM3rx50bRpU8yZMweTJ08GkPFqZ926dVlOOzPlpnz06FGtjg5qCQkJuHLlisY2aoULF5adQXbu3KnV/lehbgccHR2Nu3fvasSTabUq1qS0odu3b1+uNW0wVbly5WRYaTOpj6Hl6rc8hh6gd+/etVq7QuVzfvLkCfbt22eVNC116tQpABkPWkNvrYx9xlmldPwCMpqXGWJsuSly8toqV64cnJycAEDORPoyUL770NBQvYVfwPB3r3xvly9flvdwXW7fvm1w5kpT8gnAYKEzu8/R5s2by2Ycq1evNnmmz2vXrsk2vIUKFTL5DQCQ8QNd6eymzArJ5g+2y6wC8OXLl+Uvx44dO6JLly5G/9555x0AGW1Yr169avK+HB0dZe3l8+fPLWpPaUiTJk1kODsa+Ddt2hRARjMRfdMUAxltxpTXS8o2manbAWdu/6tQtwNesWIFgIyHkjm/jl93yvSZQEav5+z29ttvA8io6fztt9+yfX9Z0ahRI1l7a+jH6vHjxw32CPfy8pJt/w09QJcuXWpZRnVQN2H68ccfrZauJZ4/fw7AcHvTY8eOZfs0s/7+/rIQtmLFCr0VCI8fP8by5cuzvD/l2sqJ68rV1VXev3fu3IlDhw5l+z5NYcp3f/PmTdmEUBflGSCEMHgdzps3z+JmCUo+AcN5nTlzpkXpm8rZ2Rkff/wxgIzC6ODBg42+NUpPT8d7770nC6+ffPKJ/DFkqp49e8LZ2VlOu21OAZpeL2YVgBcuXCgvOlPbzCjrCSGwcOFCGb9nzx5cuHBB73YpKSmyHau7u7tZHW8SExOxdu1agzcIdc1BdrQF7Nu3r+zkMXz4cJ1DLh0/fhyTJk0CABQpUkQ2A8lM+SFw8+ZN+bDKXABW2gELITB9+nQAGbUJpnYQsAXqZi4XL17M9v299957sif3119/LYdu0mffvn2y6UpOK1KkiOzQunr1atk5RC05ORmDBg0ympYy1NiaNWt0fs6nT5/GmDFjspjjF6pXr45mzZoBADZs2ICxY8caXD82NlZvAVwZOcDSHvbK25q9e/fqHBrv9u3bekfOsbYhQ4YAyLhvDB8+XOc6w4YNs0oTCOXaunTpUo60Kf7yyy9lrXOXLl0MXs/KsJ2m1jBaSvnuz507p/MHzpMnT9CtWzeDbzPbtWsnP8sJEybg7NmzWuvExMTobbZgTj4BYP78+TrX+f3332Uta3b67LPPULNmTQAZ126vXr30jgjx+PFj9OrVCxs2bAAA1KxZU+95bUj58uXx9OlTPH36FHFxcbnaZIpyl9kFYCCjh6qpNYs1a9aU7QnVBeBt27YhODgYDRs2xOTJk/Hff//hyJEj2LdvH+bOnYv69evLhu4DBgww6yR9+PAh2rZti5IlS2L48OFYvnw5Dh48iKioKKxbtw6DBw/G559/DiCj4NimTRuT0zaVr6+vbGYRHx+PatWqYerUqTh48CD279+Pb775BvXq1UNSUhLs7Ozw559/6h0uTV3YffDggVb738zrPXjwAADb/2ZWp04dGR42bBh2796N8+fP48KFC7hw4YJGzYg1eHh4YOnSpXBwcMCzZ8/QunVrdO7cGcuWLUNkZCQiIyMRHh6OcePGITQ0FPXq1cOJEyesmgdz/PTTT/JHW5cuXfDhhx9ix44diIqKwvz581GtWjUcOnTI6LBaQ4cOBZBRYG7YsCFmz56NI0eOYPfu3RgzZgxq1aoFb29vq44mMXfuXFlw+Oabb1CrVi38+eefiIiIwNGjR7F161b89NNPaNasGUqVKmXwrUxW9OrVC0DGME1hYWH49ddfERERgf3792PKlCkIDQ1FTEwMateunS37VxsyZIhsHvL777+jRYsWWLNmDY4cOYI1a9bgrbfewqxZs4x+n6ZQrq2EhAR8+umniIqKkteV0sTLmurWrSt/RF2+fBmVKlXCJ598gg0bNuDo0aM4cOAA/v77b3z88ccoXrw4unfvbvW3iJkpr9LT09PRsmVLfP/999i9ezcOHTqE33//HZUqVcKOHTtQt25dvWk4OTnJCox79+6hVq1a+P7773HgwAFERETgu+++k5+1uiBrjsqVK8vmdr///ju6deuG9evXy/PinXfewdChQw3m01ocHBywatUqhISEAAAWL16MsmXLYty4cdi6dau8dsePH4+yZcti8eLFADKaAK5atYqFV8oaU2fM2Lt3r5wdZfDgwWbNtvHRRx/JbQ8cOCCE0JyVy9Bfhw4dRHJysln7yzy9rr6/IkWK6JxW15RZtYQwbSacb7/9Vs6wpevP2dlZzJ8/3+gxvfHGG3KbcuXK6VxnwYIFGmmvWrUqS3kXwjozCpk6E1xWZg4zVefOnfV+F+rPwdSZrUyZXW7btm2iUKFCJp2TppwLulhjKmQhhNi8ebOcLljX39ixY8XXX38t8P8zeemjvuYz/xUrVkycOnXK5JngTJ1lKjY2VlSvXt2kz7lv375a2z958kQu1zW7lKn69u2rd7/29vbi559/NnreqD9vQ4ydp9evXxfBwcF689OsWTPx33//GT0vjHn06JGckTLzX+Zz0lrHJkTGdO/KTG+G/pycnMT58+fNPi5zz8Px48cbzMfw4cNNSnPy5Ml6nxuurq5i/fr1WbqvHj16VHh5eenNZ4UKFUR8fLzB7yqrM8GpJSYmim7dusmp5fX92dnZia5du4rExESD6emaCc4cyv44E9zrzeQaYHV7JEMzm+miXl9JZ+TIkdiwYQOGDRuGWrVqoXjx4nBxcYGLiwsCAgLw7rvvYv369Vi1apVG201TlChRAseOHcPkyZPRokULBAcHw9PTEw4ODvDx8UFYWBimTJmC06dPawz2nR1Gjx6No0ePYuDAgXjjjTeQN29euLm5oWzZsvj4449x5swZWWtkiLoWWF/HNqUdMJDxKld5FU0vLFq0CD/++CNq1KiB/PnzG5zkwloaN26Mixcv4tdff0Xz5s1RuHBhODk5wcXFBcWKFUOzZs3w7bffmnwuZKc333wTJ0+exODBg1GiRAk4OTnBz88PrVq1wqZNmzBu3Dg585KhntPTpk3DkiVL0KBBA3h4eCBv3rwIDg7GF198gaNHj8oaH2sqUaIEDh48iNWrV6NLly4IDAyEq6srHB0d4evrizp16mD48OHYtWsXZs+erbW9eqawYcOGWZyPOXPmYOHChahfvz7y5csHZ2dnlChRAj179sT+/ftlu8ec4O/vj6NHj2LixIkoX7488ubNC09PT9SqVQszZszAxo0bzW5DqYu7u7s8trJlyxod49daPvnkE1y8eBFff/01atWqBR8fHzg4OMDNzQ2lS5dGx44dMXPmTFy/fh2lSpXK9vyMGTMG69evR7NmzeDl5QUnJycULVoUHTp0wObNm+WEN8aMGDECe/bsQYcOHVCwYEF5DvXr1w+RkZFyplVLVapUCceOHcN7772HEiVKwNHREQUKFECNGjUwZcoUHDp0yOojIxni5eWFxYsX48iRIxg5ciSqVKkCX19fee1WrlwZI0aMQFRUFJYsWcKhPckq7IR4xQaBJKJc1bRpU2zbtg316tXDnj17cjs7VjNu3DiMHz8eQUFBOH36tNFxX4mI6NWV/dVfRPTaiI+Plx31atWqlcu5sS6l0+3o0aNZ+CUies2xBpiIpAsXLuh9VZycnIy2bdtiy5YtAIATJ05ojDf7KktJSYGnpycKFSqEc+fOsXMNEdFrjnd5IpIGDBiAx48fo3PnzqhatSoKFCiAR48eITIyEjNmzJBDF/bv3/+1KfwCGb3vX/bJSoiIyHpYACYiDcoQbfq0b99eDtVERET0KmITCCKSjhw5gtWrV2P79u2Ii4vD7du3IYRAwYIFUatWLfTq1UtOmEFERPSqYgGYiIiIiGwKR4EgIiIiIpvCAjARERER2RQWgImIiIjIpphdAB43bhzs7OxgZ2eXpR03bNgQdnZ2eqf1JcqsT58+sLOzQ0BAQG5nhbLRzp075T1m586duZ2dl05sbKz8fObNm5fb2bGaefPmyeOKjY3N7exQFp08eRI9evRAsWLF4OTkJL/bY8eO5XbWcg2fYS8X1gATWUHTpk3lDb5x48YWp7N37158/PHHCA0Nha+vL5ydneHv7486depg/PjxOH/+vEXp7ty5E8OGDUPVqlVRuHBhODk5wdPTE2XKlEH37t2xaNEijoNLRFYRFRWFGjVqYPHixYiLi0NqampuZ4kMOHPmDL755huEhYWhePHiyJs3L9zd3VGiRAm0adMGP/30E27evGlSWjdu3MCUKVPQuHFjFCtWDC4uLihQoADKli2LAQMGYMOGDSalo/xYUP42bdpkdBtl3T59+pi0DwgzjR07VgAQFmyqISwsTAAQYWFhWUrnZXP58mX5+cydOze3s/Na6d27twAgSpQokdtZ0XDt2jWRJ08e+b3b2dmJK1eumJ1Gq1atZBr6/hwdHcXHH38snj59alK60dHRokGDBkbTBSC8vLzElClTRFpamiUfg1HKfsaOHWtwvR07dsh1d+zYkS15eRmVKFFCABC9e/c2uN7reo+ZO3euPK7Lly/ndnYoC958800BQHh4eIgZM2aIQ4cOiejoaBEdHS2Sk5NzO3u55mV7ht27d0/06dNH2NvbG30+ODg4iPfee0/cvXtXZ1rp6eni22+/FW5ubkbTqlWrljh58qTBvCmflfJXvXp1o8ejrGvsHqrItYkw+GqTXheLFi1Ceno6nJycIIRAamoqFi1ahNGjR5u0/enTp9GsWTPExcUBAIKDg9G3b19Uq1YNXl5euHXrFrZv3465c+fi7t27mDZtGo4fP461a9ciX758etPdvHkz3nnnHTx8+BAAUK5cOXTu3Bk1atSAr68vHj9+jCtXrmDTpk1Yu3Yt7t27hxEjRqB///7w9PTM8udCRLYnNTUVu3btAgAMGjQIQ4YMyeUckS6xsbFo0aIFzpw5AwDw9fVFt27dEBYWhsKFC8POzg7x8fHYuXMnVq1ahevXr2PmzJl466230K5dO420UlNT0atXL/z9998AAFdXV/Tq1QvNmzdHkSJF8PjxY0RHR2PBggU4fPgwDhw4gHr16mHt2rWoX7++Sfk9fPgw1q5di7ffftt6H4JJxWQVa9UAv65e19qZl8HL9utZERISIgCItm3birffflsAEGXKlDFp24cPH4qSJUvKc2b48OEiJSVF57oJCQmiSZMmct3OnTvrTTcmJkb+Ere3txe//PKLwZrdhIQEMXToUAFA3Lt3z6S8m0vJN2uAdWMNMGuAXwfx8fHye/zzzz9zOzsvlZflGfbkyRNRvnx5+T317dtXPHz4UO/6z549Ez///LNwc3MTq1ev1lo+YsQImVZoaKi4dOmSznTS09PF1KlThZ2dnQAgChQoIK5du6ZzXXUNsI+Pj0w7PT1dbz6V9U2tAWYbYKIsOHz4MGJiYgAA3bt3R/fu3QFktKk6dOiQ0e0///xzXLp0CQAwePBgTJkyBY6OjjrX9fX1RXh4OCpXrgwAWL58OVasWKG1nhAC3bt3x+PHjwEAs2fPxocffog8efRf7r6+vvjtt9+wcuVKvfsnIjLm2bNnMsx7yctp9OjROHnyJICMtrZz5swx+DbRyckJH3/8MQ4ePIhixYppLDtw4AD+97//AQCKFi2KrVu3IjAwUGc6dnZ2+OSTTzBp0iQAQGJiIgYPHmw0vyNHjgQAHD9+HP/884/xAzSVScVklcw1wPfu3RNjxowRISEhws3NTXh5eYmwsDCxaNEig+kYawP8/PlzMXfuXNGsWTPh5+cnHB0dRf78+UWpUqVE48aNxbfffitOnTplcB+bN28W3bt3FwEBAcLFxUXky5dPVKxYUXz22WciPj7epOPdu3ev6N+/vyhdurTIly+fcHNzE8HBwaJt27Zi/vz54sGDB3Jd5XMx9Je59uvevXti4sSJolatWsLT01M4ODgIHx8fUbZsWdGuXTsxY8YMcevWLZPymllSUpL4+++/Rf/+/UVoaKjw8PCQ6Tdo0EBMnjxZPHr0yGAamfN96NAh0aVLF1GkSBHh5OQk/P39RY8ePURMTIxJ+Rk/frwoX768cHV1FQUKFBB169YVs2fPFunp6UZr/kz99fz48WMxdepU0bBhQ1GwYEHh6OgofH19xZtvvinmzJkjnj9/bjSvpvrggw8EAJE/f36RnJwskpOThYeHhwAg3n//fYPb3rp1Szg7OwsAolChQka/C8WhQ4fk51SlShWt5evWrZPLW7VqZdFxWZNSs2noT/2LXdd5sGzZMtG4cWPh4+MjXFxcROnSpcVnn32mtz1aZpbeCzLf75KTk8WPP/4oKleuLNzd3YW7u7uoXr26mD59ukhNTbXo81HuhYb+1PdJXTXAmzdvFq1btxZ+fn7CyclJBAQEiPfee09v7UpmBw8eFAMGDBBBQUHCzc1NuLq6iuDgYDF06FBx7tw5i44rs8TERPH555+L4OBg4eLiInx9fUWTJk3E8uXLhRCm1wCnpqaKv/76S7Ro0UIULlxYODk5CW9vb1G/fn0xdepUk9qYHj9+XPTo0UP4+/sLZ2dnUaxYMdG9e3cRFRUlhDB8r9H1+a9atUrmx97eXu9zzRrPpJz4rp49eyZ+++030bBhQ+Hj4yMcHR2Fn5+faNGihVi4cKHOt0nqa8XU558xfIZZ/xl2+/Zt4erqKp87hmp+TdGuXTt5zCtWrDBpm+fPn4uKFSvK7Y4fP661jroG+PHjx8LPz08AEOXKldP7NlPX88SQLBWAL126JN544w29J3unTp30PhQMFYAfPXok6tevb/Ri6tixo860k5KSRPv27Q1u6+7uLsLDw/Ue55MnT0TXrl3NuqDNLQDHxMQIf39/o9tMnz7dpO9G32ds6C8wMFCcPn1abxrqfE+fPl04ODjoTMfV1VXs2rVLbzpXr14VpUqV0puP1q1bi82bN2f55nHo0CFRpEgRg8dco0YNcfPmTXM+Sp1SUlLkq5l+/frJ+L59+woAwtvbW29zBiGEmDZtmszT6NGjzdp37dq19d48OnbsKJdt3brVvIPKBlkpAG/dulV069ZN73alSpUSN27c0LvvrN4L1Pe7mzdvitDQUL3ptGnTxqIOhFktAH/++ed6t/P19TX4YE9NTRVDhgwxuG9HR8csv8o+deqUKFy4sN599OvXz6QC8IULF2STI31/QUFBBguC8+bNE46OjnqPdd68eSYXgOfMmSN69uxp8PsSwjrPpJz6rmJjY0XZsmUN7qdevXpaPz6zowDMZ5j1n2HTp0+X6Xz11VcWpaFITEyUHcCLFi1q1v3vjz/+kPkYNmyY1nJ1AVgIIaZOnSr/v2TJEp1pKstzpABcvXp1kSdPHvHee++JrVu3isOHD4vZs2eL0qVLy3U+/PBDnekYKgAPHz5c46RaunSp2Ldvn4iKihKbNm0SP/zwg6hfv77o1KmT1rbPnz8XjRo1EkBGb/yuXbuKFStWiMjISBERESGmTZsmihcvLgAIJycnERkZqZVGWlqa7MWq3FCnTp0q9uzZI6KiosS6devE6NGjRalSpTQu6OjoaPHff//J7SZOnCh7vip/6trcqlWrypvW0KFDRXh4uDh8+LA4ePCgWL16tRg1apQoXbq0xQXgunXrigoVKogvv/xSrF69Whw8eFAcOHBALFu2THTp0kWeuMHBwXprTZRjqVWrlrCzsxOhoaFizpw54vDhw2L37t1i2LBhMp3ixYuLZ8+eaaXx7NkzjfZGLVq0EKtXrxaRkZHi33//FS1bthQARM2aNbN08zhx4oRs91qwYEExduxYsXXrVnH06FHx33//iffff1/e/GrWrGmwcGqK1atXy/xu375dxm/btk3G62ovpVAXVCMiIsza93fffSe3/fXXXzWWFSxYUAAQbm5uVq3tttTZs2dFdHS0zO+QIUO0rou4uDi5vroAXKdOHQFAtGvXTvzzzz8iKipKbNiwQWPEjC5duujcrzXuBer7XZ06dYSTk5P46KOPxJYtW0RUVJRYsmSJRmFh5syZZn8+ly5dEtHR0fLHcNu2bbU+H3WbOnUBTPl8wsLCxJIlS0RkZKTYunWr6NWrl8a1q496vRYtWohFixaJQ4cOicOHD4tZs2aJcuXKyeVr1641+9iEEOL+/fuiaNGiMp13331XbNiwQURGRoolS5aIatWqyeeJso6uAnB8fLysBcqXL58YPny42Lhxozhy5IjYsWOHGDVqlKzZKlmypLh//75WGnv27JH3q7x584rRo0eL3bt3i4MHD4rffvtNFC1aVDg5OYnKlSvrvdeoP3+lFqt+/foan/9ff/0l17fGeZhT39WjR480+iS0a9dOrF27VkRGRooVK1ZoFEhr166tcX+5deuW0WeguW8z+Qyz/jOsU6dOMo8HDhwwe3u18PBwmdbgwYPN2vbGjRty22rVqmktz1wATk5Olj8MgoODdT7bcrQArK8k/vDhQ1lTkidPHnHixAmtdQwVgIsVKyYA6Czgqul6/TllyhRZqNywYYPO7RITE+XNol69elrLf/75Z3l87du31zvkVFpamrh+/bpGnKkdVC5evCjXM1TATU9PF4mJiXqXG2LsddiWLVvkha++Yaupv+uWLVvqvDlMnDhRrvPPP/9oLf/pp5/k8g8++EDnfpSmBJbePNLT0+XDKDQ0VNy+fVvnfjZu3Gj0mE2l1Ohk/uWblpYmH/jt27fXu71Sm5AnTx6zhwZSP2QGDhwo469fv65ROHqZKPkypxOc8hDNLD09XTRr1kwAGcPzJCQkaK1jjXuB+n7n6Oio87y8e/euLJhVrFjR4LEZYkknOOX719UxZMCAAXKdI0eOaC1fuXKlXD5r1iyd+0pOThaNGzcWAERAQIBFzTw+/fRTuZ9JkyZpLU9JSZHfpaECcOvWrQUAUaxYMXHx4kWd+zpy5IgsQOiq3VKeS05OTmLfvn1ay2/duqVRADRWAAYgevXqZbBjjjXOw5z6rtSdmXR9funp6aJ79+5ynRkzZmitY81OmnyGacvqMywoKEg+d0wdTlMf9ef2xx9/mL298lbI0dFRa1nmArAQQvz2228ybv78+Vrb5GgBuHXr1nrXO3jwoFxv6NChWssNFYCV11PTpk0zK28pKSnyA9VVpa62YcMGmb/z58/L+LS0NPkro0iRIia3y1SYevHv27dPrqer/UtOUdrv6PsulTy6uLjo/fX+8OFD4eTkpPdzDw4OFgCEv7+/3oJecnKyRnMQc28e6l+ixj7Pzp07CwCibt26Btcz5O7du/KYR44cqbX8s88+kw9afe1UPT09BZAx/q65jh07Jo+3Q4cOMv748eMaP95eJpYUgKtWraq3cLFp0ya53po1azSWWeNeIITm/e7TTz/Vm8YXX3wh19NV82gKSwrAhQsX1vsQO3PmjFxP171UeQNl7DyJiYmR6WzZssXk4xFCiKdPnwovLy/540DfK9Jr165pNEvIXABWv0HI/F1nNnLkSHm/UYuIiJBpGDon1qxZY3IB2NPT02AbSmudhzn1XSn3pJCQEL1vjx48eCC8vb3lepnl9CglfIaZR7keLXnuZPbJJ5+YfF3qUqlSJbl95utIVwH42bNn8m3JG2+8ofUjz9wCcJZGgejbt6/eZTVq1EC5cuUAAFu3bjUr3cKFCwMAli1bZtbsVIcOHcKNGzcAAJ07dza4boMGDWQ4IiJCho8dO4br168DAAYOHAh3d3eT928O5RgB5Nh0prdv38b58+dx8uRJ+efr6wsgo3elIW+++SYKFiyoc1m+fPkQFBQEAHJEA8X169dx9uxZABnfiYuLi840XFxc8M4775h1PGpr1qwBkDGGbsWKFQ2uq3z3hw8fRlpamkX7+/vvv5GSkgIA6NGjh9ZyJS4lJQXLli3TmcajR48AAG5ubmbvX72NMs6vOk1L033ZdOvWTe+061WrVpXhzOedNe4FmSkjfBjLy+XLlw3uz5o6deoEZ2dnncuCg4Pl/UvXdRkVFQXA+OdTtmxZ+Pj4ADD8+egSFRWFe/fuAQB69+6tdySSokWLolmzZnrTUa5vV1dXtGrVyuA+le8zPj4e165dk/Hbtm2T4d69e+vdvlWrVvD29ja4D0WbNm0M9p63xnmYk9/V/fv3AWSMDGBvb69zPQ8PD5mPmJgYeXw5gc+wDFl5hmXluaMvLUvT0/cc08fJyQlfffUVAODixYtZLjtlqQBcvXp1g8tr1KgBADh//rwsLJhCuTnt378fgYGB+OCDD7B69Wrcvn3b4HaRkZEyXLt2bY1p9DL/qQu26in+jh49KsPqG5K1BQYGygGgp06dinLlymHMmDHYvn27Vaek3bdvH9599114e3ujYMGCKF26NCpUqCD/Zs2aBQC4c+eOwXTKlCljcHmBAgUAaF4QAORQK4BmIUGXatWqGVxuiPLdnz171uD3bmdnhw8++ABARuE0MTHRov3Nnz8fAFCxYkVUqFBBa7k6fsGCBTrTUB6cSUlJZu9fvY2Hh4dWmgDkMGivMkPnnXLOAdrnnTXuBdbKS3Yydl16eXkBMPz5dO3a1eg1o9wfTJ0OVREdHS3Dpj4vdFHy++TJEzg4OBjMa+vWreV26vwq9yJnZ2eUL19e777s7e1RqVIlg3lVGCuoWOM8zKnvSn2vrlmzpsF11cvV22UHPsOs+wxTnhHWeD6onzfWfI4Z0rdvX5QsWRIAMHHiRLPKlpllqQCs79eUws/PDwAghJC1AKb4+uuv0a9fP9jZ2SEhIQG//fYbOnToAD8/P1SoUAFjx47FrVu3tLZLSEgw7wD+n7rAqb6I1LW02WHp0qWoXbs2gIxf0hMmTECTJk3g6emJsLAwzJw5E0+fPrU4/XHjxqFevXpYvny50YskOTnZ4HJXV1eDy5Wancy/RtXfu7HzRfklbwlrfPemOnfunBzjV1ftr0JZduDAAZw/f15ruVLL9PDhQ6Off2bq819dW6XU/mRe51Vl6LxT1yZmPu+y43ywNC/ZydLrMqeuF3Ouf+V5oYs18qvkpUCBAnprNxWm3ouUHxj6WCPfOfVdqZ8Rhr4LAChUqJDO7ayNzzDjzP2elWfEgwcPNMZstoT62WPuDy7gxTPK0dHR4JsUNQcHB4wZMwYAcOXKFcyePdvs/cq0LN4S0PtqUpHRJMN8jo6OmD17NoYPH46lS5di+/btiIyMREpKinzt8dNPP2HRokVo27at3E594u7cudPk11j6Tmpjx5dVRYoUwf79+7Ft2zb8888/2LVrF2JiYpCamordu3dj9+7dmDJlCjZs2IDSpUublfa2bdswfvx4AEDJkiUxYsQI1KtXD8WLF4e7u7t8AIwZMwYTJkyw+rHlNOW7r1u3LmbOnGnydv7+/mbvS6n9BTIG6FYG6TZkwYIFWp9zaGgoLl68iPT0dBw/fhy1atUyOQ9HjhzRSEfh7+8PX19f3L59G8ePH0daWprRh/3ryNr3gteN+vNZvHix0ZpMhbECX2bqZ0BWnhdKfgMDA7F27VqT969vQH5rMXZtWeM8zKnvSi27nu3m4DPMNOY+w0JDQ3H+/Hmkp6fj2LFjRmv7jaWlUL89N8WNGzdkoVmdjil69OiBSZMm4dy5c/j222/Rt29fvU1TDMlSAfjWrVtas4KoKb9o7OzsLLoYQ0JCMGHCBEyYMAHJycnYt28flixZggULFiApKQldu3bFxYsXZU2t+ubi5ORk8DWXPuoatPj4eAQHB5udhrmaNGmCJk2aAADu3r2LrVu34s8//8T27dtx8eJFvPvuu2afXMprIU9PT0REROh9sJtTM28J9fdu7BeusSYuhnh7e+PWrVu4ffu2Rd+7qYQQWLRokdnbLVq0CN98843Gg6VBgwZyVpu1a9eaVQBWFwIyz6XeoEEDrFq1Co8fP8auXbvQuHFjs/P7qrPGveB1pv587Ozssu3zUTcNuXXrlsEf8obuD0p+b926hTJlysDBwfxHl3IvSkxMNPrDMCv3IjVrnIe58V3dvHnT4Helfruk3s6a+AzLHmFhYVi5ciUAYP369VkqANetWxd58uRBeno61q9fj/T0dIMzjqoZeoYZY29vj7Fjx6J79+64fv06/vjjD3z88cdmpQFksQnE4cOHTVoeFBQEJyenrOwKefPmRdOmTTFnzhxMnjwZQMYrj3Xr1sl1lCliAWDz5s0W7adKlSoyvHv3brO3z2qtsbe3N959911s27YNb7/9NoCMjnm6XqEbcurUKQBA48aNDdZqqduXZQelI6Qp+8pKXpTv/ty5c7hy5YrF6RizY8cOXL16FQDw4YcfYunSpQb/Pv30UwBAbGys1vnUpUsX2YFp7ty5JrehOnz4MA4cOAAg47gz1wipO6f+/PPPFh3nq84a94Kclt1vnNRy6vNRt4839Xmhi5LfJ0+eYN++fRblRbkXPXv2TKNtcmZpaWk4duyYRfvIzBqfc059V+pC18GDBw2uq57mPbsKa3yGZY8uXbogb968AIC//vorS22BCxQogDZt2gAA4uLiTJ6mOC0tDTNmzJD/N9QpVZ8uXbrI7+b777+3qDljlgrA6lfBmUVGRsrG402bNs3KbrQotaWAZpvdevXqyV+jM2fONKlXYWahoaGyVvuvv/4yu2G3uho+q+1r9B2nKZ4/fw7AcPugY8eOyYJUdilatKisSVixYoXeNs1Pnz7FihUrLN6P8mMBAH788UeL0zFG6dBmb2+Pr776Cl26dDH499VXX8HR0VFjW4Wfn5+88G/evInPPvvM6P6Tk5M15k7//PPPtdZp2bKl7MQTHh5uVo31P//8k22d55RrI6vXhSmscS/IaTn5+ZQqVQohISEAMkY0UX7UWVvVqlVlDdrChQv1vjq/fv26wcKduqmbpde3+n6qr2MqkFErdvfuXYv2kZk1zsOc/K48PT0BZDzb9bVlf/ToEZYvXw4g4y1tdvWV4TMse/j4+GDgwIEAMpohfPLJJyZve+rUKTkiiWLkyJHyx/uwYcNMKqtMnjwZJ06cAAA0b97c7CYQQEab7XHjxgHIeH6qC9Qmp2H2Fipr166VF4JaUlISBg0aJDOpfmAbk5iYiLVr1xpsY6S+UarbeLm4uGDEiBEAMj6QLl26GHyYP3r0CL/++qtGXJ48eWRBJC4uDr169dLbyzA9PR3x8fEacd7e3rK2++LFi3r3fezYMYO1DEIIOXycnZ0dAgIC9K6rizKky969e7WGdQEyXtUY6sBlTcr3Hx8fr7eQ99lnn2l9lubo2LEjypYtCwD4/fffjTaMP3nyJMLDw83ax5MnT7Bq1SoAGa9sTGkv6uXlJZsgrFy5Uqujxo8//ijP4ZkzZ+Kzzz5DamqqzrTu3LmDt99+WzaH6dixI959912t9ezs7LBo0SLZ6aNv376YMWMG0tPT9ebzzp07+PDDD9GxY0et/cfGxsrexw0bNjR6zPooD0pD14W1WONekNNy8vMBIIcTevr0KTp06GDw9e2zZ88wY8YMszvlOjs7yzcSx44dk2/v1J4/f46BAwca7M1dvXp1OUzahg0bMHbsWIP7jY2NxdKlSzXiateuLd+W/Pbbb9i/f7/Wdrdv38awYcMMH5QZrHUe5tR3NWDAAAAZBR2l/a2aEAIffPCBLOQooxFkBz7DrP8MU3z33XfyR9Vff/2FgQMHGqzsS01NxfTp01GrVi2NoQUBoE6dOrIQHRcXh6ZNmyI2NlZnOkIITJs2DaNHjwaQ8Xz8888/LToGIOMzUwrPP/zwg/kJmDtwsXpg+GrVqgl7e3sxdOhQsX37dhEZGSnmzJkjB40GzJ8KWRlEOyAgQHz66adi2bJl4sCBAyIyMlKEh4eLQYMGacw9nZSUpLH98+fPRZMmTeT+ixcvLiZNmiR27Nghjh49Knbv3i1mzZolunfvLtzc3IS3t7dW3jJPhVy6dGnx888/i71794ojR46IDRs2iDFjxoigoCCdg/rXrVtXABDe3t5iyZIlIiYmRpw/f16cP39eToqgzHtfvXp18c0334h169bJqTGXLFmisf927dqZ+zWJFStWyO2LFi0qpk+fLvbv3y/27dsnJk+eLAoXLizs7OxE7dq1tQabVlOWGZu8wNDEJpmnkWzZsqVYs2aNiIqKEmvWrJHT2taoUUOus3PnTq10TJlG0t3dXabx1ltvifnz54sDBw6IqKgosXHjRjFp0iQ5fezw4cONfYwaFixYINM2Z3rqP//8U26na+ZE9TS4QMY0jz/88IPYvn27zPdnn30mB58HIBo0aGB0woUNGzZofB7ly5cXEyZMEJs2bRJRUVFi9+7dYtGiRaJXr17Cw8NDrnfv3j2NdNQD2+v6fk2lzCDl7OwsZs6cKaKjo+V1oR6gXj0Rhq7B5NUMnZ/WuBeo73eGmJNnfb788kuZxnfffSeOHTsmPx/1VNHmTDRgbHIN9WDzPj4+4ssvvxSbN28WR48eFXv37hXz588XAwYMEAUKFBAAzJ4YSAjtqZC7du0qNm7cKKKiosTSpUvlFMjGpkK+fv26nFQCyJgK9o8//hD79+8XR44cEVu2bBH/+9//xJtvvins7e1Fx44dtdLIPBXyl19+Kfbs2SMOHTokZsyYIYoVKyYcHR3lAP0BAQFaaZg70YM1zkMhcua7evjwocZMeO3btxfh4eEiKipKrFy5UjRs2FAuyzwVsqWfjz58hln/GaZ28eJFUbp0abmvggULimHDhol///1XTjm9evVqMWzYMDn5BACxevVqnZ/PO++8I9dxdXUVQ4YMEWvWrBGRkZFi9+7d4tdff9W4xj08PAzeK3VNhKHLv//+K9dT/nJkJrhLly6JwMBArZ0rfx07dtQ7HaOxArCxvyJFiuic3lMIIZ48eaIxb7qhv8DAQJ1pPH78WGPObH1/ui6qdevWCTs7O4PrKwVgY3/16tXTO5OYMX379tWbrr29vfj555+NPuCtcfMQQogrV66IN954Q29+mjVrJjZu3Cj/r2uOcmM3DyEyZkJTpno09jd+/HiDx5RZ06ZNBQBhZ2enNQW2Ibdv3xb29vYCgGjevLnOda5cuSKaN29uNM8ODg7igw8+MHnq5OPHj8sfZMb+vL29xS+//KI1W5d6din1rHPmOnr0qHB2dta5b/UNy1oFYCGyfi/IyQJwXFycLLxk/lNfV9YsAD9//lyMHDlSnp+G/tzc3MSTJ08sOraTJ0+KQoUK6U27b9++GvdEXQVgIYSIjY3VeIga+uvbt6/ONObNm6cx61zm62vWrFmiZ8+eAoAoU6aM1vaWFPCs8UzKqe/q8uXLokyZMgbTr1u3rt7nkjVnguMzzLrPsMzu3r0revbsKX8UGvpzdHQUH330kd6Kl7S0NDF+/Hjh6upqNK0aNWqIEydOGMybqQVgIYSoVq2aRvo5UgAWImMO89GjR4uyZcsKV1dXkT9/ftGgQQOxaNEig+noO9nS09PFsWPHxOTJk0WLFi1EcHCw8PT0FA4ODsLHx0eEhYWJKVOmGJx+UhEZGSmGDBkiypUrJ/Lnzy8cHByEp6enqFSpkujfv79YuXKl0bmwt2/fLnr27CkCAwNF3rx5Rb58+USZMmVEhw4dxJIlS7RqoNXbtW3bVvj7+2vcbJWL8NmzZ2LHjh1i9OjRon79+iIwMFC4uroKJycnUbRoUfH222+LJUuW6J061FQLFy4U9evXF/ny5RPOzs6iRIkSomfPnuLgwYNCCOMPeGvdPIQQIikpSYwfP16UL19e5M2bV3h6eopatWqJGTNmiLS0NLF69Wq5v9OnT2ttb8rNQwghUlNTxfz580W7du1EsWLFhIuLi3BychKFCxcWDRs2FF999ZWIiooymEZmcXFx8iZRp04ds7YVQohGjRrJm/aNGzf0rrd7927xwQcfiPLly4sCBQoIR0dH4efnJ2rWrCnGjBkjzp49a/a+hRBi27Zt4qOPPhKVKlUSBQsWFA4ODsLDw0MEBweL7t27iyVLlugtVM+ePVt+L3v27LFo/4ojR46Irl27iuLFi2sUhrOrAKyw9F6QkwVgIYS4cOGC6N+/vyhVqpRwcXGRaWZXAVhx9uxZMXz4cFG5cmXh5eUl7O3tRb58+US5cuVE9+7dxfz580265xpy9+5dMXLkSBEUFCScnZ2Fj4+PaNSokXwrYkoBWIiMZ8Tq1atFly5d5H3T0dFR+Pr6ijp16ojhw4eLXbt26Z1CW4iMQkb37t2Fv7+/cHJyEkWKFBGdO3eWhZa2bdsKIKOWObOsFPCs8UzKie/q2bNn4tdffxVhYWHC29tb3oeaN28uFi5caPC5ZO2pkPkMs84zzJCYmBgxduxYUa9ePVGkSBHh7OwsXF1dRfHixUWbNm3E1KlT9U4jndn169fFDz/8IBo2bCiKFCkinJycRP78+UVwcLDo27evCA8PN3htKswpAKunETenAGwnRA4M6EdkgokTJ+Lrr7+Gg4MDHj16ZNG4fmR9ffr0wfz589GoUSNs3749t7NDlO1KlSqFixcvokePHli4cGFuZ4deEXyGvVqy1AmOyFqEEFi2bBkAoFKlSrxxvER27doFAHL2HaLX2eHDh2VHRHPG5ibbxmfYq4cFYMoRsbGxclgbXcaMGSOHzbNkTEDKHnFxcYiNjUX9+vWzNAIE0cviwoULepfdvXtXDhHl7Oysc5QVsk18hr1+sjQTHJGp5s2bh7lz56Jbt26oW7cu/P39kZqaitOnT2P+/PnYuXMngIxxJZUHEOW+okWL5si0p0Q55c0330RgYCDat2+PihUrIn/+/Lh37x727duHGTNm4MaNGwAyhh5TzwxKto3PsNcPC8CUY65evYrvv/9e7/IyZcpg/fr1cnY0IiJrE0Jgx44d2LFjh951hg4dKscqJVLwGfZ6YSc4yhHXrl3DypUr8d9//+HChQu4ffs2kpOTUaBAAYSGhqJ9+/bo169flqfMJiIyZNeuXQgPD8euXbtw48YN3LlzBw4ODihUqBDq1auHQYMGoU6dOrmdTXrJ8Bn2+mEBmIiIiIhsCjvBEREREZFNYQGYiIiIiGwKC8BEREREZFNYACYiIiIim2J2AXjevHmws7ODnZ0dYmNjsyFLpmvcuDHs7Ozwww8/aC0bOnQo7OzsOCA1EREREWl4ZWuA//nnH+zYsQPe3t54//33tZaPGjUKTk5OWLhwIQ4fPpwLOSQiIiKil9ErWQBOT0/HV199BQAYMWIE3N3dtdYpVqwYevfuDSGEXJeIiIiI6JUcB3jFihXo3Lkz8ubNi5s3b8LDw0PnemfPnkWZMmUAAIcOHUL16tVzMptERERE9BJ6JWuAf/75ZwBAmzZt9BZ+ASA4OBhVqlQBAEybNi0nskZEREREL7lXrgB85swZ7N+/HwDQo0cPo+t3794dALBq1So8ePAgW/NGRERERC+/bBkFIioqCv3790fp0qXh5uYGFxcXFCtWDFWrVsX777+PtWvXwtKWF8uXLwcAuLm5oXnz5kbX79ixIwDg6dOnWLNmjUX7JCIiIqLXh4O1E5w6dSpGjBiB9PR0jfi4uDjExcXhyJEjmDFjBh49eqSz85oxO3bsAABUqVIFjo6ORtcvUaIEChcujBs3bmDnzp3o1auX2fskIiIioteHVQvAJ06ckIXfwMBAfPDBB6hUqRIKFCiApKQknD9/Hjt27MDq1astSj81NRUHDx4EALM6tFWvXh1r167Fnj17LNovEREREb0+rFoAXrlyJdLT0+Hm5oaIiAj4+flpLK9Xrx769u2LBw8ewNXV1ez0jx49iuTkZABA5cqVTd6uatWqWLt2LS5cuICEhAQULFjQ7H0TERER0evBqp3gbt68CQAoXbq0VuFXLX/+/MiTx/xdx8XFybA5hVj1utevXzd7v0RERET0+rBqAbhw4cIAgJiYGBw6dMiaSQMAbt++LcNeXl4mb1egQAGdaRARERGR7bFqAbhr165wdHTEs2fPULduXbRp0wYzZ87EqVOnLB71QS0xMVGGzSkAq9e9e/dulvNBRERERK8uqxaAy5Qpg6VLl8LLywvPnz/HunXrMGTIEJQvXx4FCxZEz549s9QRzcXFRYaVtsCmUK+bN29ei/dPRERERK8+q0+E0bFjR1y+fBl//PEHOnToAF9fXwDAnTt3sGjRIjRo0AB9+vTRGibNFEpagGZtsDHqddVpEBEREZHtyZaZ4PLnz49BgwZh1apVSEhIwKlTp/Ddd9/B398fADB//nxMnz7d7HTVhdd79+6ZvJ16XRaAiYiIiGxbjkyFHBISgi+++AIHDhyAm5sbgBczupmjQoUKMnzu3DmTt1PWdXNzQ8mSJc3eLxERERG9PnKkAKwoVqwYSpcuDSCjSYS5/P39ZQH28OHDJm+nrFurVi04OFh98jsiIiIieoVYtQD877//4v79+3qXX7t2DWfOnAEABAYGWrSP+vXrA4DJw6w9e/YMJ06c0NiWiIiIiGyXVQvAP//8M4oUKYLOnTtj5syZ2LVrF44dO4YdO3Zg8uTJqFu3rhyRYciQIRbto1WrVgCAq1ev4sKFC0bX3717N1JTUzW2JSIiIiLbZfX2AE+ePMGKFSuwYsUKncvt7e0xYcIEtG3b1qL027RpA09PT9y/fx9LlizBmDFjDK6/ZMkSAEBwcDCqVatm0T6JiIiI6PVh1Rrg5cuXY/HixejTpw8qVaqEQoUKwcHBAe7u7ihfvjyGDh2Ko0ePYtSoURbvw8XFBf369QMALF682OC6T58+xerVqwEAQ4cOtXifRERERPT6sBPWmKIth129ehVBQUFISUnBnj17UK9ePZ3rLVq0CD179kSBAgUQGxuLfPny5XBOiYiIiOhlk6OjQFhL8eLF0b9/fwDAhAkTdK6Tnp6OSZMmAQBGjBjBwi8RERERAXhFa4AB4NatWyhdujQePnyIiIgI1KpVS2P5smXL0KVLFxQrVgxnz57lFMhEREREBCAbOsHlFD8/PyxevBiRkZE6xxROS0vD2LFj0bhxYxZ+iYiIiEh6ZWuAiYiIiIgs8Uq2ASYiIiIishQLwERERERkU1gAJiIiIiKbwgIwEREREdkUFoCJiIiIyKbkagE4NjYWdnZ2sLOzw7x583IzKxg3bpzMCxERERG9vrJcAE5NTcXff/+N3r17o2zZsvD29oajoyN8fHxQtWpVDBkyBFu3bkV6ero18ksvmYkTJ8ofDvny5cOTJ0+ybV+PHz/Gb7/9hiZNmqBIkSJwdnaGn58fqlSpgg8//BCbN2/WuZ36h5axvz59+hjMw7NnzzBmzBgEBgbCxcUF5cuXx4wZM/AyjCa4c+dOg8fm7u6O0qVLo3fv3ti5c6dV9qn+4Wjsz9A+AwICTEojICDAaJ4WLVqESpUqwcXFBcWKFcNnn32GR48eWeV4rW3nzp0YNmwYqlatisKFC8PJyQmenp4oU6YMunfvjkWLFmXbNTVy5EiTv5958+aZ/D0bq8yIj49Hnz594OvrC1dXV4SFhWHbtm3WPTgL6TufnZ2dUbBgQQQFBaFly5YYM2YMdu/ebdV9R0ZG4n//+x+6dOmCihUronDhwnB2dka+fPkQHByM3r17Y8eOHUbTadiwocnflTGbNm1CnTp14OrqCj8/PwwaNAg3b960xuES5T6RBf/++68oWbKkAGD0r3Tp0mLdunUa21++fFkunzt3blaykmVjx46VeSHTlS5dWuN7XrhwYbbsZ/v27aJEiRIGz7HQ0FCd26rPM2N/vXv31puH58+fi2bNmuncbuDAgdly3ObYsWOHyccJQPTr1088f/48S/tUXzfG/nbs2KE3HWPfrfJXokQJg/kZP368zu0qV64skpKSsnSs1hQdHS0aNGhg0jF7eXmJKVOmiLS0NKvt/9ixY8LBwcHk72fu3Lkmf8+G7uXXr18XRYsW1domT5482XbvMIc55zMAUbZsWbF8+XKr7Ltu3bom7fOdd94RycnJetMJCwszOf+GzJs3T9jZ2WltU7x4cREfH2+VYybKTRbPBPfdd9/hyy+/lDVfTZs2Rdu2bRESEgJPT08kJibi7NmzCA8Px5YtW3Du3Dl8+eWXaNWqlaW7zFbjxo3DuHHjcjsbr5QDBw7g3LlzAAB3d3ckJSVhwYIF6NGjh1X3s3XrVrRp0wZPnz5Fvnz5MGjQIDRp0gR+fn64ffs2YmNjsXHjRty6dctoWhMnTkTbtm31Lvfy8tK77M8//8TmzZtRpEgRTJw4EWXLlsWBAwcwduxYzJo1Cx06dEDz5s0tOkZrGzJkCIYOHSr/L4RAYmIiIiIiMHXqVCQkJGDOnDkoWrQoxo8fb5V9RkdHG1weGBhoNI22bdti4sSJepc7OTnpXRYTE4Px48fDxcUFX375JZo2bYqrV69izJgxOHr0KCZMmIDvv//eaB6y2+bNm/HOO+/g4cOHAIBy5cqhc+fOqFGjBnx9ffH48WNcuXIFmzZtwtq1a3Hv3j2MGDEC/fv3h6enZ5b3n56ejoEDB+L58+coWLAgEhISzNr+v//+g7+/v97lRYsW1bts2LBhiIuLQ+3atTF69Gh4eXlh1apV+Pnnn/Hee++hRYsW8Pb2Nis/2WXOnDmoXr06gIzr58GDB7h9+zYOHz6MdevWITo6GqdPn0bnzp3Rr18/zJo1C3nyWP5S1dnZGWFhYahTpw7Kli2LQoUKwdvbG7dv38bx48cxc+ZMXL58GStWrECePHnw999/G0yvWrVqmDt3rkV5uXPnDt5//33Y2dnh008/Rfv27ZGYmIhvv/0WBw8exLBhw4zun+ilZ0mpecGCBfLXoK+vr9i+fbvB9U+cOCEaN26sVUP3MtUAk/mGDBkiAAgfHx/xww8/yJqcuLg4q+0jISFBeHt7y9qWa9eu6V332bNnOuOtdZ41bNhQABDHjx/XiF+9erUAIPr27Wtx2tagrgEeO3as3vVOnTol8ubNKwAIDw8PkZKSYvE+rfXmRKkBNlQDb8y4ceMEADFt2jSN+Li4OOHq6ioCAwOzlEdriImJEW5ubgKAsLe3F7/88ovBmt2EhAQxdOhQAUDcu3fPKnmYOnWqACDKlCkjRo0aZXYN8OXLly3a79OnT4Wzs7MoVqyYVm38xx9/LACI+fPnW5S2tajPZ0OfhxBCrF27Vvj4+Mj1P/vssyztOzU11eDyJ0+eiNq1a8v9nThxQud6Sg1wWFiYxXmZN2+eACCGDRumEf/o0SNRtGhR4eLiovd+S/SqMPvnanx8PIYMGQIAcHV1xc6dO9GoUSOD21SoUAFbtmzBiBEjzN0dvaRSUlKwbNkyAEDnzp3Rq1cv2NvbIz09HYsXL7bafkaNGoW7d+/C2dkZq1evNli7ZKh20BquX78Ob29vVKxYUSO+SZMmcvmrICQkRL6JefjwIU6fPp3LObIO5fNv3LixRnyRIkVQpkyZXP9+hBDo3r07Hj9+DACYPXs2PvzwQ4O1hr6+vvjtt9+wcuVKODo6ZjkP165dw9dffw0A+P3337P9mlG7e/cunj17hho1asDNzU1j2at2DQFAmzZtsH//fnh4eAAAJk+ejKNHj1qcnoOD4ReyefPmxccffyz/b+02yGr6riV3d3fUqFEDT58+xd27d7Nt/0Q5wewC8NSpU+UNfPz48QgJCTFtR3nymPRqfMuWLWjTpg0KFSoEZ2dnBAYGYsiQIYiLizO6bUpKCmbMmIFGjRrB19cXTk5OKFSoEFq2bIlFixYZ7Ihn6igQKSkp+PPPP9GqVSvZEatgwYKoWrUqPvjgA+zZs8dgh6gtW7agR48eCAwMRN68eeHh4YHQ0FCMHDkSN27cMLjv+Ph4fPHFF6hSpQry588vj69ChQro2rUr5s2bJ1+rZrfw8HAkJiYCAHr06IFChQrJm+WCBQusso/79+9jyZIlAICuXbsiODjYKulaqmDBgrh79y5OnTqlEa90HipUqFAu5Moy6s5kT58+zb2MWFHBggUBALt27dKIv3nzJs6ePZvr38+GDRtkAalVq1bo3bu3ydt27NhRq9BoiaFDhyIpKQm9e/dGw4YNs5yeOby8vODg4IDIyEitjn2v4jUEAEFBQfjuu+/k/7O7iY36HMjO61bftfT48WNERkbCyckJBQoUyLb9E+UIc6qL09PTha+vrwAg3NzcxIMHD7JU/Zz51fTnn3+ut7G+r6+viImJ0ZtWbGysKFu2rMEG//Xq1RN3797Vub0pr3KPHj0qAgMDjXYs0PWKMCkpSbRv397gdu7u7iI8PFznvnfv3i08PDyM7lvX9upX41l5xaz29ttvCwDijTfekHHz58+X+4mKijKahrKuvo5N6qY269evl/EPHz4U586dE7du3TIpr9ZqAjF58mQBQBQrVkzMmzdPHDx4UEyfPl14eXnp/exzkqlNIIQQolOnTnLdGzdu6Fynd+/eRl8Hv0xNIA4fPiwAiLx584pJkyaJiIgIsWLFChESEiIAiOHDh2cpj1nVsWNH+Vlt3bo1y+mpz2tTXncvW7ZMABAFChQQCQkJQgjTX/lbowmEEEK0atVKABB169YV69atE/v27ROfffaZyJMnj3B1dRU3b960OG1rMKcJhOLx48fC09NTABCurq46mxSZci2Zolu3bjKdzJ3KFdZoAhEXFyecnJxEnjx5xMiRI8W+ffvEunXrRJ06dQQA0bFjR4vTJnpZmPXUOnnypLz4mjdvnuWdq2/gyoUVFhYmlixZIiIjI8XWrVtFr1695Dq1atXSmc6jR480RqNo166dWLt2rYiMjBQrVqzQ6BVbu3ZtnT3fjT3IT506Jdzd3eU67du3F8uWLROHDx8WBw4cEPPnzxc9evQQbm5uWg+I58+fi0aNGgkAws7OTnTt2lWsWLFCREZGioiICDFt2jRRvHhxAUA4OTmJyMhIje2fPn0q/P39BQCRL18+MXLkSLFx40YRFRUlDhw4IJYtWyY++eQTUaxYsRwpAN++fVs4OjoKAGLMmDEy/tGjR8LV1VUAEB9//LHRdIwVgJW2jwBEYmKi2LhxozxPlL/ChQuLYcOGidu3b+vdj/o8q1KliggICBBOTk7Cw8NDhISEiMGDB5tUYE9OThY1a9bU+cOjV69eRrfPbqYWgE+fPi3bAFevXl3veuYWgJs2bSoKFCggHB0dha+vrwgLCxPfffedSExMNJp3pQAcGBgoKlSoIFxdXUXevHlFQECA6Ny5s1i9erVIT083mo7SljTzX/ny5bP8gz2rChYsKICMyoOsjr4hhHkF4Hv37olChQoJAGLWrFky3pICcFhYmChYsKBwdHQU3t7eombNmuLLL780qe3/+fPnZZt+9Z+dnZ3466+/TD30bGNJAVgIIVq2bCm3O3DggNZySwvAaWlp4ubNm2Lbtm2iXbt2Mo3g4GC9bYaV552fn5+oVq2acHd3F87OzqJIkSLi7bffFvPnzzep3b/SVjzzn7+/v8G+GESvCrMKwIsXL5YXwejRo7O888zDUw0cOFDnQ27AgAFynSNHjmgtHzFihFz+1VdfaS1PT08X3bt3l+vMmDFDax1jBeDKlSsLIKOT19KlS/Ue0507d8STJ0804qZMmSIACEdHR7Fhwwad2yUmJopy5coJIKOmWm3btm0yb4ZqGVNTU3U+5K1dAJ42bZpM79y5cxrLunbtKgCIggULGu3UYawArHQ6y58/v/jxxx913oyVv6JFi4pTp07pTMfUYdAGDx4snj59ajDPjx49EsOHDxdFihQRjo6OonTp0uKnn36y6hBVllJ/z0OGDBHR0dHy78SJE2L37t3ihx9+kAUhDw8PsW/fPr3pmVsA1vfn6ekp/v33X4N5N2UYtLp165pUyJoxY4YICQkRjo6OolChQuLDDz+0WgcyS12/fl0eR506daySpjkF4IEDB8p9q++xlhSA9f25uLiImTNnGs33xYsXRefOnYWnp6dwcXERtWvX1njDk5ssLQB/9dVXcrsFCxZoLTe3AGzoeihRooQ4efKk3m1NGQYtJCTE4BtVxYoVK0TVqlWFs7Oz8Pb2Fr169bJqJ2ei3GRWAVhd8Mnc09oS6ht44cKF9RY+zpw5o3e/T58+la+fQkJC9NasPHjwQNY8hISEaC03VADetGmTXGZKzaZaSkqKKFy4sAC0e9RmtmHDBrmf8+fPy3j1Dw9LarGsXQCuWrWqACBq1KihtWz9+vUmFdaFMF4ArlixogAyasXt7OyEs7Oz+P7770VcXJx49uyZOHnypMYbglKlSolHjx5ppXP58mXh6ekp+vbtK+bPny/2798vjhw5ItavXy8+/vhjjZr9bt26WfSZvAxMHQc4T548YvDgweL06dMG0zO1AFyhQgXx9ddfi/DwcPlWYv78+RpjJtvb2+v98SeEEEFBQeLtt98Wv/76q9i5c6c4evSo2LFjh5g0aZIoVqyYTKds2bLi/v37WfmYcsXx48flMbRv394qaZpaAN6zZ4+ws7MTDg4OWiMHmFMALlmypBgxYoRYtWqVOHTokDh06JD4+++/xTvvvKMxXuwff/xhlePLDZYWgNW1pbqejdYoADs4OIhvvvnG6DOgUaNGokmTJuJ///uf2Lp1qzh69KjYvXu3+PnnnzWaCfr5+YkrV66YfIxErxuzCsATJ06UF481Xlepb+AffvihwXWVQkrmAui+fftkGj/++KPBNJRhuwBoDeRtqAD84YcfymWxsbGmHdz/27t3r9w2IiLC4LpJSUk6axG2b98u43/++Wez9m9tp06dknn55ZdftJanpqbKV72dO3fO0r7eeOMNjQeAvgHnBw0aJNeZPHmy1vJnz56Jx48f693PuXPnZBMUAGLNmjVZynduMWciDC8vLzF8+PAsD2VkrGZ15syZcp/+/v5ab0dMSefhw4cahWljPyRfRur7QI8ePXJsv8+ePZOFHl3DdJla4Lt//77BJijh4eGyWZSrq6veduUvO0sLwLNmzZLbTZw4Mcv5OHv2rIiOjhbHjx8X27dvFxMmTBD+/v7CyclJ9OzZU+cPfYWhayklJUWjMG6tH2NEryKzRoHIly+fDCsjQVhLmTJlDC5XJijIPKXpyZMnZbhmzZoG01AvV29njNJzu3jx4ihRooTJ2wEZ01sqateubXSqWoV6usl69eqhZMmSAIBPPvkENWrUwHfffYf9+/cjJSXFrPxk1fz58wFkDNnTpUsXreUODg549913AQBr167FgwcPLN6Xi4uLDNeqVQvvvPOOzvUmTZoEZ2dnAMDSpUu1ljs5OcHV1VXvfoKCgjSGbps+fbqlWX5pjB07FiLjB678e/LkCU6cOCGnBv7f//6HZs2aITk52eL9GJuYYfDgwRgwYACAjFFM/vnnH7PTyZcvH5YvXy4nSPjzzz9z/LzPquy8dxoyadIknD59GsWLF8fYsWMtTid//vwGR8hp3bq1TP/JkyeYPXu2xft6FamfS8qwaFlRunRplC9fHhUrVkSjRo3w1Vdf4eTJkwgNDcXChQtRt25dvdN7G7qWHB0d8ddff8nn7erVq1+poeeIrMmsArCPj48MmzLrljkMFVAAyLEy09LSNOKVobgAwM/Pz2Aa6iF21NsZc+fOHQBA4cKFTd5GYe4sSwr1MEGOjo4IDw9H2bJlAQCHDx/G6NGjUbduXXh6eqJFixZYsmSJ1mdjbeoxfps1awZfX1+d6ynD3T19+hTLly+3eH/qQkOLFi30ruft7Y1q1aoBAI4fP47U1FSz91WvXj2UK1cOALB3716DQ+a9qvLmzYsKFSrgxx9/xIwZMwBkDHOkHsYpOwwePFiGMw+rZKr8+fPLH1zKUEyvkuy8d+pz5swZ+d1Onz7dKsOoGTJw4EBZSLb0e35VKc8IANk2PJiXl5esgDhx4oTF162DgwP69+8v/29r3xWRwqypkENDQ2X4yJEjVs9MVhkbw1cYGJ/XGunroi6U7ty50+RpPpVxGBUhISGIjo5GeHg4wsPDsWvXLly8eBHJycnYtGkTNm3ahJ9++gkbNmzQ2tZatm3bJmsLNmzYYNLnsWDBAgwcONCi/RUrVgwHDhwAYHh6VWVdIOPzvnv3rkXjiYaEhODUqVNykHd9BfzXQf/+/fHFF18gMTERs2fPxjfffJNt+1KPFZ6V2iZrpZMb/P394evrK6e1TUtLg729fbbuc+rUqUhJSUHJkiXx5MkTnVPXqt+Ebd++Xb55atOmjdkF5oIFC8LHxwe3b99+5b6frFJPgJGd45WXLVsWQUFBOH/+PFauXIlJkyZZlM6rfC0RWYtZBeCQkBD4+Pjgzp072LNnDx4+fGiV1z1Zof61ffPmTZQuXVrvuuqaF3N+pSu1N/Hx8WbnT13gdXJyQvny5c1OQ2Fvb4927dqhXbt2AIAbN25g48aNmDFjBqKiohAVFYXBgwdj9erVFu/DEKX2wRz79u3DpUuXZBMOc5QrVw4rVqwAoF3zn5l6ubEZlfTJ6g+kV0mePHkQFBSEgwcPIj4+HomJidlWc2Wtz/VV/34aNGiAVatW4fHjx9i1a5fWLFvW9uzZMwDApUuX0LVrV6PrT5gwQYYvX75sUY3xq/4dWeLJkyfYv38/gIyJKipVqpSt+/P19cX58+dx5coVi9Owxe+JKDOzmkDY2dmhT58+ADJeQ/7111/ZkSezqAuUBw8eNLjuoUOHdG5nTJUqVQAAV69eNfumU7lyZRnevHmzWdsaU7hwYfTr1w8REREyj+vWrctSm059kpKSZMG6SZMmWLp0qcE/5dwQQmDhwoUW7bNBgwYyfPHiRYPrKsvz5s1rcUEuJiYGAODs7GxyTf2r7Pnz5zJsSbMRUymfK5BRE5rb6eSWvn37yvDPP/+cexnJJgkJCXJ63Ffx+7HU3LlzZV+HNm3aWPwD3FRKja26z4i5XvVricgqzO01FxcXJyc7cHNzMzqUkiItLU0sXLhQI86cGbr0zRSlHgatXLlyeodBe/jwofDx8RGwYBi0LVu2yGXmDoOWnJwsChQoIACIQoUKZdtg/MOGDdM7woU1qMcBXblypUnbKMOlqWeLM8fz58/lzIPBwcF6e6FfunRJ5MmTRwAQTZo0sWhfe/bskcdnaRq5zZyZ4B4/fiwnw3BxcbHKxAz69O/fX+Yr8z3AVPfv35fDGLq6uhodr/lllJ6eLipVqmTRZ7Fq1SqRlJRk9TxZOuqBLhMmTJBpTZgwwToZzGHmfh7nzp0T+fLlk9scO3YsW/N36NAhk4a+MyQ1NVWUKVNGpnP16lXrZpLoFWFWDTAAFClSBL/++iuAjFrgsLAwo43oY2Ji8NZbb2HKlCnm7s4oZ2dn2cv81KlTGD9+vNY6Qgh88MEHsqPCBx98YNY+mjZtiqpVqwLI6Eyiqy2dIjExUaMG1sXFBSNGjACQ0USjS5cuBnuBP3r0SH6+ij179uDChQt6t0lJSZHfgbu7u1bb1Z07d8qRJpQafHMtWLAAQEZnRUMd0tQ6deoEIKN2dt++fVrLlTwFBATo3N7e3l5+dmfPnsUPP/ygtU5qaiqGDh0qO6299957Wuv8+++/Bl/5XbhwAd27d5f/Hzp0qP6Dek2MHTtWnqdvvfWWzvaoffr0kd/Rzp07tZZHR0cbPC8B4I8//pAjAhQqVAjt27fXWmfTpk0G31o8evQInTt3lrWL/fv3l6N+vErs7OywaNEi2eG3b9++mDFjhsEOl3fu3MGHH36Ijh07atXSx8bGyu+nYcOG2Zbv2NhYjTauuqxbt042oXBxcdGo7X5drVu3DnXq1JGjMYwaNUqjn4yasWvp0KFDRvvVXL9+Hb1795b/79mzp9Y6O3bswP379/WmkZqaigEDBuDMmTMAMmqslf4TRLbGonc1ffv2RVxcHMaMGYOEhAQ0bNgQzZo1Q9u2bVG2bFl4enoiMTER586dw/r167Fp0yakpaXpvTlk1ZgxY/DPP//g0qVLmDBhAk6ePIl+/frB398fly9fxq+//ipvOrVr18agQYPM3sfChQtRo0YNJCUloWvXrlixYgW6dOmCkiVLIi0tDRcuXMCWLVuwcuVKREdHaxTqRo4ciW3btmHbtm3YuHEjQkJC8N5776F27drw9PTEo0ePcPbsWezcuRP//vsvXFxcNArp27Ztw4QJE1C/fn20atUKFStWhK+vL5KTk3Hu3DnMnDlT3jwHDBhg9VdwV69elZ9fixYtjI7YoejYsSNGjRoFIKMAXbduXbP3/dFHH2HZsmU4cuQIRo0ahVOnTqFHjx7w9fXFhQsX8NNPP8mmLy1btkTHjh210mjfvj1KlSqFDh06oEaNGihatCicnZ0RHx+PzZs346+//pI/Sjp37owOHTqYnc+XTUJCgtZQf0+fPsX58+exYMECbNq0CUBGYUXd9tMcUVFRGDBgABo1aoQWLVqgQoUK8Pb2xvPnz3HmzBksWrQIW7ZsAZDxY+aPP/7Q2a70+++/R/fu3dGhQwfUq1cPb7zxBtzd3XH//n1ERETg999/x7Vr1wBkdDAaN26cRfl9GZQrVw4rV65E586dkZSUhPfffx+///473n33XVSvXh2+vr54/Pgxrl69is2bN+Pff//Fw4cPczXPsbGxaNSoEWrXro02bdqgUqVKKFiwIIQQuHTpElauXImVK1fKH5lTpkxBkSJFcjXP1nD58mXZ/0MIgYcPH+L27ds4fPgwwsPDER0dLdcdOHAgvv32W4v3FRMTg759+6JOnTryM1YqMq5fv44dO3ZoNLVo2rSpzh8Z8+fPx9tvv423334bDRs2RHBwMDw8PJCUlISoqCj88ccfOH36NICMTovTpk2zOM9Er7ysVB+vWrVKBAQEmDTwfrly5cR///2nsb01mkCo01K/1tH1V7duXXH37l2d2xubClkIISIjIzVmpdL3d/nyZa1tnzx5ojFrmaG/wMBAvXkz9NehQweRnJyste+szgSnngDF0DTQuiizuXl6emq9tlbS1DcTnCI+Pl42p9D317JlS/Hw4UOd25vy2QEZ0we/iq/WFeZMhAFA+Pr6al2TasZmrzJlelwAwtvb2+BUyKZM3QpANGjQ4LWZhvX48eOibt26Jn9+v/zyi9Z02+ZMhayPKa/8TT2vXF1dX+lZ4IQw/V6r/IWEhIhVq1YZTdda1xIA0adPH70T+6j3Y+ivQoUKeqeOJ7IVWaoq7NChA1q3bo2VK1di48aNOHz4MBISEvDo0SN4eHggICAAtWrVQseOHdGoUSOLhhEzVUBAAI4fP45Zs2ZhxYoVOHnyJB4+fIgCBQqgcuXK6N69O7p16ybHE7ZE1apVcfbsWfz111/4999/cfLkSdy7dw/e3t4oUqQI6tWrhy5duuh8pZ83b17Mnz8fH330EWbPno3du3cjLi4Ojx8/hru7OwICAlC1alW0aNECrVu31th25MiRqFmzJrZs2YKIiAjEx8fL8YULFSqEmjVrolevXmjZsqXFx2aI0onN2dkZrVq1Mmvbjh074sSJE7h//z7Wrl2rdzILQwoXLowDBw5g9uzZWLp0KWJiYnD//n14e3ujRo0a6NOnj85X64q1a9ciIiICBw8exJUrV3Dnzh08fvwYHh4eKFmyJOrXr49+/fplaYSOV4GTkxMKFCiAcuXKoWXLlujbt6+cYMYSLVu2xOzZsxEREYGjR4/i1q1buHv3LoQQKFCgAEJDQ9G8eXP06dPH4GgxU6ZMwbZt2xAREYGzZ8/izp07uH//PlxdXeHv74+aNWuia9euaNasWbbeQ3JSxYoVsXfvXmzfvh1r1qzB7t275Wgcrq6uKFy4MKpVq4ZWrVqhffv2GpPC5LSqVati0aJFiIiIQGRkJG7cuIE7d+7g+fPn8PLyQrly5dCkSRMMGDAg24ZgzG2Ojo7w8PBA/vz5ERwcjGrVqqFZs2aoV6+eVdJ/99134e/vj+3bt2P//v24fv06EhISkJKSAg8PDwQFBaFu3bro2bMnKlasqDedzz//HJUqVUJERARiYmJw+/ZtJCYmwtnZGX5+fqhWrRo6deqE9u3bZ/swfEQvOzshOB4KEREREdkOy6tDiYiIiIheQSwAExEREZFNYQGYiIiIiGwKC8BEREREZFNYACYiIiIim8ICMBERERHZFBaAiYiIiMimsABMRERERDaFBWAiIiIisiksABMRERGRTWEBmIiIiIhsCgvARERERGRTWAAmIiIiIpvCAjARERER2RQWgImIiIjIprAATEREREQ2hQVgIiIiIrIpLAATERERkU1hAZiIiIiIbAoLwERERERkU1gAJiIiIiKbwgIwEREREdkUFoCJiIiIyKawAExERERENoUFYCIiIiKyKSwAExEREZFNYQGYiIiIiGwKC8BEREREZFNYACYiIiIim8ICMBERERHZFBaAiYiIiMimOOR2BoiIdLl27ZoMz507V4bHjh1rcLvy5cvL8OzZswEAdnZ2Mm7x4sUyPHz4cABAsWLFspZZIiJ6pbAGmIiIiIhsCgvARERERGRT7IQQIrczQUS27caNGzK8ZMkSAEBcXJyMc3Z2lmFfX18AgL29vYxLT0+X4bS0NBm+e/cuAODp06cyrmDBgjLcv39/AICfn1/WDoCIiF4prAEmIiIiIpvCTnBElCtu3bolw1u3bpXhGTNmAHhR0wsA/fr1k+FBgwYZTPfmzZta2yUkJMi49957T4adnJzMzTYREb0GWANMRERERDaFBWAiIiIisilsAkFEuWLHjh0yPHPmTBkODg4GAAwcOFDGtW/f3uR01Z3c3nrrLQDA5cuXZZy6Qx0REdkm1gATERERkU1hAZiIiIiIbAqbQBBRtlMPN37lyhUAwKFDh2Tc7du3ZVhp+lC/fn2L9pUnz4vf9coUx+r9e3p6yrB6LGEiIrIdrAEmIiIiIpvCGmAiynapqakyvGvXLgDA1atXZVxISIgMN2rUCADg4+OT5f2+8cYbAABvb28Zpw5zHGAiItvEGmAiIiIisiksABMRERGRTWETCCKSnj59KsPPnz+XYTc3NwCAnZ2dRek+fvxYhv/77z8AwLNnz2ScepxfdROFrAoNDbVaWkRE9PpgDTARERER2RQWgImIiIjIprAJBBFJ0dHRMnzkyBEZLlCgAACgVq1aMk4ZY1eftLQ0Gb5x44YMX7t2DQCQN29eGcexeYmIKCexBpiIiIiIbAprgIlIcnR0lOHExEQZ3rp1KwDNsXmN1QCrx/599OiRDCsd4tRj8KprfdWzthEREWUH1gATERERkU1hAZiIiIiIbAqbQBCRVKFCBRlOSEiQ4RkzZgAAWrRoIeOUKYv1yZPnxe9rddMKpemDenl6erqFOdambkKhK112sqOcpO98TElJ0YpTn5u6rhNj1B1PlXG29TUpUqer7IvXBtkS1gATERERkU1hAZiIiIiIbAqbQBCRpH4FWqRIERlWRn+4deuWjFM3kShYsKBWWupRHgoXLqyVlpp62mX1dgr1a1xd0zGrl6vzpYxrrB5nuFq1alrbE2WX5ORkGT527JgMf/vttwCAs2fPyrgGDRrI8Oeffw4ACA4ONjn9/fv3y/B3330HAIiLi5NxLi4uMqwexWXUqFEAgDp16hjcF9HrhDXARERERGRTWAAmIiIiIpvCJhBEpJOXl5cM16xZEwBw9+5dGRcVFSXD6tEhdFE3Qahbty4AYMeOHTLu77//luHixYtr7BPQ3exB3eP90KFDMrx582YZLlu2LACgZMmSBvNHlF3UzYrU15Qyrbh6kpijR4/KcGxsLADNc1c9morCweHFY1yZshx40XTi6tWrMk49OY26KZCuZklErzvWABMRERGRTWENMBHp5O7uLsNNmzYFoFm7GhERIcNvvfWWDOsat9TZ2Vlr3TNnzsi48PBwGS5RogQAzc495cqVk2GlFuvatWsybufOnTK8a9cuGW7cuDEA1gBT7lGf+8obCQD4+uuvAQC1a9eWcePGjZNh5fxWdzwtWrSoVvrqWuHQ0FAZ/uKLLwDor0H+6KOPTD8IotcQa4CJiIiIyKawAExERERENoVNIIhIJ3UTCGV80lWrVsk4decadXMFNzc3rbTUzSIqVaoEABg9erSMq1ixogz/+OOPAIDp06fLOA8PDxlWpo4NCQmRcW+//bYML168WIZ1jU9M9DJRpiwGgKdPn8rwxYsXARhvAqGm3l4Z/7dMmTIyjtcD0QusASYiIiIim8ICMBERERHZFDaBICKd1M0WlFen6imNHz58KMOXL1+W4dKlSwPQPaWxOl31FK/qdZXl6imNdY0soX4dXKNGDRlW55HoZXXnzh0AmmNcq6dCVq4pZTpvAKhatarBNFNSUmT4ypUrAF6Mqw0Ab7zxRhZyTPR6YQ0wEREREdkU1gATkcnUHc/UM1gdPnxYhr29vQGYVxMbGBgow8OGDctKFoleCefPnwegWQPcpk0bGf79998BvOgMBwDXr1+X4UKFCgHQnGlOPdObUsNcqlQpGaeeKY7I1rEGmIiIiIhsCgvARERERGRT2ASCiEymnspVPQ7wtm3bZLhKlSoA2BmNyJAbN24AABwcXjyGq1evLsOVK1cGoNnZVN3UqFmzZgAAV1dXGaduAqF0HFVPxUxEL7AGmIiIiIhsCgvARERERGRT2ASCiEymnrJY3Tt9+fLlMqy82g0NDc25jBHlICGEDKtHcTBGmcYbeDFmr7oJhHqUBqUJREREhIw7ceKEDCtNINRTKcfGxmrlUT1KBBG9wBpgIiIiIrIprAEmIpPly5dPhkuUKCHD6lqwuLg4AJqddzw8PHIgd0RZc+/ePQCa566av78/AMDR0dHkNNW1vup0lWtGnZZ6xkPlbUtMTIyMO3LkiAzfvn0bAHD//n0Zp4wtDLwYJ1h9zRLRC6wBJiIiIiKbwgIwEREREdkUNoEgIov4+fnJcIMGDWT4ypUrADRf1zZs2DDH8kVkjrS0NBneuXMnAODUqVMyTt2EoHfv3gAAT09Pk9NXd1JTOogCL5o+6GuioDS3UF9niYmJMnz8+HGtNNXLu3TpAoDjcRPpwxpgIiIiIrIpLAATERERkU1hEwgisoiPj48Mq5s4hIeHA9B8tcsmEPSySkpKkmFlPOv8+fPLuA8//FCG3dzczE7/yZMnMnz58mUZVkZpCAgIMLh9UFCQDNeqVUuG4+PjAbwYuQLQbJpRsGBBAJrjDBPRC6wBJiIiIiKbwgIwEREREdkUvhshIot4eXnJcM2aNWV4/vz5ADQH8Ld06lii7HD37l0ZVkZ+AIDHjx8DeDENMQCUK1fOavtVJq8AgNKlSwN4MdqDPsWKFdOZl/Xr1wMA8ubNK+MCAwNl2NnZOWuZJXrNsQaYiIiIiGwKa4CJyCL29vYyXLJkSRl2dXUFoDkm6dWrV2W4aNGiWtsT5ST1OL8LFy6U4fr16wMAmjdvblG66jGFFdevX5dhpeMaAKSmppqUZoECBWRY6dgGAAcPHgQABAcH61xX/daFiLSxBpiIiIiIbAoLwERERERkU9gEgoisql69egCACxcuyLg9e/bIcMuWLQFovq4lyglKEwR1E4iUlBQZVppAVKhQweQ01eP87tu3DwDw119/ybhNmzbJsLqJhNI0omfPnjJO3ZlUoe7MVqJECRlWOsRVrVpVxlWsWFGG2cSIyDDWABMRERGRTWEBmIiIiIhsCptAEJFVKU0gHj58KOOUMUvVy9kEgnLaihUrAADR0dEyrk2bNjJcpkwZs9NUNzXw9vYGoL8pgoeHhwxXqlQJgOaU4cb4+vrKcK9evQC8GFUl8/I8eVi/RWQIrxAiIiIisil2goMFEpEVJScnAwBmzZol46ZNmybDy5YtAwBUq1YtZzNGNunmzZsy3L9/fwCas6fNnTtXhs2pjSWiVxtrgImIiIjIprAATEREREQ2hZ3giMiqlNfLxYoVk3H58+eX4fPnzwPQnD6ZHeLImuLi4mR45syZMhwUFAQAqFOnjoxjswci28QaYCIiIiKyKSwAExEREZFNYRMIIsoWhQoVkuGQkBAZvnz5ssa/AJtAUNalp6fLcExMjAzv3r1bhvv06QMAePPNN3MsX0T0cmINMBERERHZFNYAE1G2KFy4sAzXrl1bhiMjIwEAAQEBMq5q1ao5li96PR0/flyGlXMM0OyAGRoaCgDw8vLKuYwR0UuJNcBEREREZFNYACYiIiIim8ImEESULYoWLSrDYWFhMqxMPevn5yfjunXrlnMZo9fS6tWrZfjYsWMy/Omnn8pw6dKlczJLRPQSYw0wEREREdkUFoCJiIiIyKawCQQRZQsHhxe3F/W0yMr4wI8ePZJx6qlrldEj7O3tszuL9Ip6+vSpDO/ZswcAkJiYKOOCg4NluEqVKjLMaY+JSMEaYCIiIiKyKawBJqJs5+rqKsNKjdzdu3dlnHq2rrZt2wIA3Nzccih39Kq5ffu2DCud39Tj/TZt2lSG1fFERArWABMRERGRTWEBmIiIiIhsCptAEFG2s7Ozk2FlWuRNmzbJuB07dshws2bNALAJBGlKTk6W4bNnz8pwVFQUAGDgwIEyrkmTJjmXMSJ6JbEGmIiIiIhsCgvARERERGRT2ASCrEYIIcPqV95E6jF969SpA0Cz2cOGDRtkOCkpCQDg4+OTQ7mjV8GWLVtkeOXKlTLcvn17AC/OKyIiU7AGmIiIiIhsCgvARERERGRT2AQil6WlpcmwemKAo0ePasWpp5MtV64cAKBAgQJWy4u6CcPDhw9l+ODBgwA0p64tW7asDAcGBgIA8ubNa7W80OtF3SRGmZigSJEiMk49bfKlS5cAvJgyGQBcXFyyO4v0knrw4AGAF6M9AMDNmzdleMSIEQA0pz8mIjKGNcBEREREZFNYA5zLUlJSZPjChQsyPGnSJACaU8SGhYXJ8MSJEwEA9erVs1penjx5IsORkZEy/MUXXwDQrHVR4gCgc+fOAFgDTOZR3mIAQIMGDWT48OHDADQ7wVWsWDHnMka5Tj3m75o1awAA9+7dk3F169aV4aCgIACaHS2JiIxhDTARERER2RQWgImIiIjIprAJRC5Td+5Rv+b98ssvAQBlypSRcermEImJiQCsO/auusPd7NmzZbh06dIAgP79+8u4Dh06yLCvr2+W9ku2Sd2ps3z58jKsdLpUN5FgEwjbor4XLVq0CABQoUIFGdenTx8ZZgdJIrIEa4CJiIiIyKawAExERERENoVNIHKZutmCu7u7DCuvhGNiYmRcRESE1fd/5swZGf73339l+OzZszLco0cPAEDHjh1lnHqMVgWnQiZzlChRQoYrVaokwwsXLgTwYjxgsg1Xr16V4f/++0+GlbHOq1atKuPU5w4RkSVYA0xERERENoU1wC+pa9euAdAce9fT01OG8+TJ+O2Smpoq45ycnExOPz09HQCwbt06Gbds2TIZVndsCw0NBaC71lfN0lpfpeaYtca2Rd15Sd3Z8/nz5wCA+Ph4Gad0+gQALy8vADxfXjfqscfDw8NlWHkDpR4rmogoq1gDTEREREQ2hQVgIiIiIrIpbALxkjp16hQAzU5wjo6OMnzr1i0AQEJCgowrWrSowTTV0y7v27cPgOb0oiEhITJcqlQpGS5cuLBZeTeFusPc06dPAQAODi9OR/Wx0uvP2dlZhlu1agUAePbsmYzbsWOHDL/99tsAeI68LpQp4NUdb9XfrdL5zVgTLCIic7AGmIiIiIhsCgvARERERGRT2ATiJaX0hFeP7JA/f34ZTkpKAgDcuXNHxhlrAqGeXvTy5csAgLS0NBmnburg7e0tw9kx1ahyfAAQFxcHANi1a5eMe/LkiQyrp102doz0alKf5/Xr1wegORLAnj17ZFhpAkGvLnVzLGXcZ3Vzrs6dO8uwv79/zmWMiGwGa4CJiIiIyKawBjiXqTuDPXr0SIaV2t7SpUvLOHUtmVKD8uDBA4Ppq2dXOnHihAwrtbrqzkfqWlkfHx8ZVq9jLbo6wZ08eVLGnT9/Xobz5csnw7Vq1QIABAQEyLi8efNaPX+Us9TndsWKFQEAa9eulXHqzqDKdaLMEEavBnWt7+nTp2X4wIEDAIBy5crJOPWsk+rOsURE1sIaYCIiIiKyKSwAExEREZFN4bulXKbu7BUdHS3DyrTHNWvWlHHq5g7KOMDq7XVRdyzbsGGDDE+YMAHAiymXAc1mB4MHD5bhggULGj4IC6hfeSuvPkeNGiXjtm/fLsO//fabDO/evRsA0K5dOxnXunVrGba3t7d6Xin7KVN7Ay/Ge/Xz85Nx6mtDOU+VphIAm8G8CtT3lzlz5shwlSpVAABNmjSRcWz2QETZjTXARERERGRTWAAmIiIiIpvC90y5TD3dqzI2L/Bi9Ac3NzcZd+zYMa3t9Y3Ru3nzZq3027dvL8PKiA/KCAyA5mgL6jGBs/t1pPL6W/3Ku3HjxjKsfr2tTBH933//ybgtW7bIcJcuXQBoNh3RNWWuehQKOzs7i/NO2eeNN96QYWW6XOBFcwj1OVq8ePGcyxiZRRn94fjx4zLu0KFDMvz5558DAOrWrZuzGSMim8YaYCIiIiKyKSwAExEREZFNYROIXJaamirD9+7dk2Gl6YO6WYC6KYLStCExMVHG3bx5U4YPHjwIAChfvryMa968uQwroyyom0gEBgbKcG73qlcft3rEB+VV9z///CPjlIH0AWDjxo0AgMePH8u4SpUqaaXLZg8vP/XECDdu3JDhvXv3AgBCQkJkHJtAvLyU70s9EY96gh/l+sztew4R2RbWABMRERGRTWENcC5TTw+qHsNWGSfX3d1dxqmnfr179y4AzdpPdW2yMnavuiNRenq6DB85ckRrn+oat5eVMmZo2bJlZZx6fNGJEycCAKKiomRcmzZtZLhnz54AAA8Pj2zNJ2Wd+u2FugZ4+vTpAIBmzZrJuDp16uRcxsgodefapUuXAgCSkpJk3KRJk2S4aNGiOZcxIqL/xxpgIiIiIrIpLAATERERkU1hE4hcoH4VqDRlADQ7hvj4+ADQHOfX29tbhpXX/vfv35dxxYoVk2Glw5s6zeTkZBm+ePEiAKBWrVoyLiwsTIZf9imF1R1mypQpI8Nff/01ACAyMlLGqccfHTZsGADNDoHq8ZF1jXnMMYNzh/oc9Pf3l2GlKVBCQoKMU08Tnj9//hzIHWX28OFDGVaP060IDQ2V4YCAABnmNUVEuYE1wERERERkU1gAJiIiIiKbwiYQOWjnzp0ANMfDVI9goH51q7ziV4/M4OzsLMPKa3lPT08ZFxwcLMOurq4AgKNHj8o4ZXpkAIiIiNDKn3r76tWry7B6JIqXkTJiBgBUqFABgOY0uWpbt24FAOzevVvGqUfiULZXfxbqz51yh5eXlwwrI4HcuXNHxqmnCVc35aGco57KPTw8XIaVa6lp06Yyjs0eiCi3sQaYiIiIiGwKa4Bz0A8//AAAOHfunIyLjY2VYXUNsFKrqY5TdwqqXLkyAKBkyZIy7q233pLhPXv2AAB++eUXGbdy5Uqt9NWzx6k7Ek2dOlWGX/YaYF2UToQA0KdPHxmuXbs2AGD27Nkybtq0aTLcuHFjAEDnzp1lnFLjCLBDXG7Jly+fDDdq1AjAi3Mc0HyjwRrgnHPr1i0ZVtfCX7p0SYaVa6latWo5li8iImNYA0xERERENoUFYCIiIiKyKXZC/U6XstXJkycBaI7Hq28qZGXcU/XYv3nyvPi9oowfrB4nWP3aXxmT8/r16zLu9u3bMuzo6AhA8zW+enpgddMK9T5edcp00fHx8TLu1KlTMqy8Slc3U1FPJz1ixAgZVk9NTdlLPY23ch4PGjRIxqmvqfXr18uwcp5T9vjzzz9lWOlgCmh2eGvZsiUATnlMRC8X1gATERERkU1hAZiIiIiIbApHgchB5cuXt1paxl4nKs0Z1M0aypYta7X9v6qUV+IlSpSQceppdpXxl9Utg9TNJWbNmiXDyljJlSpVknFsFpE91M1//Pz8AGg2+VGPp3327FkZVqYCV48VTZZRN0NRRo9RNx9SL2/WrJkMFylSJAdyR0RkHtYAExEREZFNYQ0w2Tx1RylljNnQ0FAZt3HjRhn+/fffZVgZw/nJkycyTj0GrZubGwDN2kuyHvW4smlpaTKsHh9YqZFX1/KTZe7fvy/Dypji6s9dfe4HBATkVLaIiCzCJzMRERER2RQWgImIiIjIpnAcYCIjlDGVAeDy5csyvHbtWgDAiRMnZJx66uqPPvoIAFCxYsXszqJNOnTokAxv3rxZhk+fPi3DX3zxBQCgQoUKOZex19Tx48dluFu3bgCArl27yrhPPvlEhl/F6dOJyLawBpiIiIiIbAoLwERERERkUzgKBJER6rGU1aNDKOOeqsejVY9B+9dffwEAypUrJ+MaNmwow8HBwVbPqy1Rj2sdExMjw0uWLJFhZbxaNoGwTHR0tAyvW7dOhpVmPTVr1pRxbPZARK8S1gATERERkU1hDTCRhSpXrgxAs4Y3IiJChqdNmwZAs+Pc8+fPtdJRj5nq7Oxs7Wy+tvLlyyfD6nF+1WPTXr16FQDw4MEDGafuqEiG7d69W4b37dsnwx9//DEAoEaNGjmeJyIia2ANMBERERHZFBaAiYiIiMimsAkEURY5OTnJcO3atWVY6aS1bds2GbdhwwYZPnjwIACgQ4cOMq5du3bZlc3XWvHixWX4rbfekuFLly4BAA4fPizjmjZtmnMZe4Wom+fs3bsXAHDu3DkZV7BgQRmuWrUqADYnIaJXF2uAiYiIiMimsABMRERERDaFTSCIrEjdHEJ5ZdykSRMZ5+XlJcPKVL7r16+XcepRJLp06QJAc+zhPHn4m1UXb29vGVaPTKA0OVEvZxMI3ZKSkmR4/vz5AAAXFxcZ16NHDxlWn8dERK8iPk2JiIiIyKawAExERERENoVNIIiymbr3fPPmzbXi//77bxl34sQJGVZeM6sncQgJCdGZrq1Tj0agTFACvJgW+eLFizmep1eButnD0aNHZfjKlSsANM9XNh0hotcJa4CJiIiIyKawBpgol1SpUgWAZq2uuhZu6tSpADSnoK1fv74M9+/fX4bVnbxskbrzofrzdHNzAwDcuXNHxinTIwNAkSJFAAD29vbZncWX0rFjx2R46dKlMqzU9jZu3Dins0RElCNYA0xERERENoUFYCIiIiKyKXZCCJHbmSCiDMnJyTIcExMDAIiMjJRx6k5yCQkJMtyzZ08AwJtvvinj8ubNm235fFVMmjQJwItOXQDQqFEjGVY6eXl6euZovnLbo0ePAABz586VccuXL5fhH3/8EQBQq1YtGccxqInodcI7GhERERHZFBaAiYiIiMimcBQIopeIutlC1apVAQCFChWScY6OjjK8adMmGd6xYweAF6+2Ac0pgQMDAwEADg62dcnXq1cPgOZ4t+rPrW7dugBsowmEurWb8hlcuHBBxlWvXl2Gy5YtC4DNHojo9cW7GxERERHZFHaCI3pFqTvBjR07FgBw5swZGdekSRMZ7tixIwAgKChIxtlCbbDSqXDGjBkybvr06TK8du1aAEDFihVzNmO54O7duzI8aNAgAECBAgVk3Lhx42RYeetgq+MjE9HrjzXARERERGRTWAAmIiIiIpvy+r8DJXpN+fr6yvCXX34JADhy5IiM27t3rwx/8cUXAICaNWvKuF69eslw0aJFsy2fuUnpVOjv7y/j3N3dZfjSpUsAgJIlS+pc/qq7efOmDK9fv16GlXNH3VFSmRaaiMgWsAaYiIiIiGwKC8BEREREZFPYBILoFWVnZyfDShMGda9+9RiuymAvsbGxMk49Da4yXm5oaKiMU6f1qitWrJgMq49RmW66ePHiMq5KlSo5l7Fsph4VZOPGjTLcuHFjAECDBg1yPE9ERC8D1gATERERkU1hDTDRa8TV1VWGW7duLcONGjUCACxatEjGLVmyRIZv3boFQHPGNGWWNADInz8/gFd3XFh1DXBYWJgM7969W2v561ADrHTuU3eKTExMlGHlGEuVKpWzGSMiekmwBpiIiIiIbAoLwERERERkUzgVMpENefLkiQxfuXJFhpUxYiMiImSc0uwBAL766isAmuPlvkrS0tJk+PTp0zLct29fAECLFi1k3DfffJNzGbOA+pat7gip9vXXXwPQPNZ+/frJsNK8Rf0dExHZEtYAExEREZFNYQGYiIiIiGwKR4EgsiHqUSLKli0rw6mpqQAAJycnGad+fT5jxgwAQMWKFWVcnTp1ZPhlH01APXqFetpnb29vAMDDhw9l3N27d7WWv0zUzR5SUlJk+OTJkzIcFxcHAChUqJCMU8Z6BgAPD4/szCIR0UuPNcBEREREZFNYA0xEsmb3jTfekHG7du2S4d9++w0AEB8fL+OSk5Nl2MHhxa1EqXV0cXHJnsxmUd68eWW4Ro0aADTHP96zZ48MN2vWDIBmzfnLRP19LF68WIZ9fHwAAPXr15dxrPUlInqBNcBEREREZFNYACYiIiIim8JxgIlIp2fPnsmwMo3u9u3bZdzWrVtlWD2m8McffwxAc2xddee63Pb8+XMZ/vfffwEAhw4dknHqsZKHDx8OAAgMDMyZzJlAfctWfweffPKJDH/22WcAgF69esm4PHlY30FEpOAdkYiIiIhsCgvARERERGRT2ASCiEx248YNGY6KipLhAwcOaK0TEBAg45o3by7D1atXz8Yc6nbz5k0Z/uGHH2T4999/BwC0atVKxkVHR8tw1apVAbwYLQLQHFmhWrVq1s+sETt27JDhjRs3yvDTp09luH///gCA0NDQnMsYEdErhDXARERERGRTWAAmIiIiIpvCiTCIyGSFCxeW4datW8tw6dKlZfiPP/4AAJw4cULGqaciVkaXUE/FnF1TDm/atAkA0LVrVxl3//59GdY1Wce1a9dkOCEhAQBw584dGaceRSI9PR0AEBQUJOO8vLyymGvdlCYOu3fvlnHnz5+X4c8//1yG1fkhIiJtrAEmIiIiIpvCTnBElGXq20haWhoAzZrKBQsWyLDSSa5ly5Yyrl+/fjKcL1++LOVl3LhxMjx+/Hit5erxcpVa03Xr1sm4SZMmyXBISAgAIDg4WMYpxwcAe/fuBQAMGTJExnXu3FmGs3os6jGJlTF/w8PDZZybm5sMqzv3OTs7Z2m/RESvO9YAExEREZFNYQGYiIiIiGwKO8ERUZbZ2dnJsINDxm1FPXau+lW9Mn7wsWPHZNzQoUNluF27dgCAJk2ayDhPT0+D+//+++9lWN3sQdlu6dKlMk49JvGjR48AALdv35ZxKSkpMqxMAV2xYkUZpx7HuFixYgCAXbt2yTh15z/lWACgQYMGADQ7BBpz69YtGV64cCEAoFSpUjKuU6dOMsxmD0REpmMNMBERERHZFBaAiYiIiMimsAkEEWULd3d3Ga5Zs6YMK80G1CNHbN++XYb3798PAEhKSpJxlSpVkmFlZIY1a9bIuFGjRunc7549ewAA5cuXl3HKOMQA8M8//wDQHBu4cePGMqxM8axu4qHsHwA8PDwAaI4NfPLkSRlWT1v84MEDrWNRTxetUMYeBoCDBw/KsNJcQ30sylTNRERkHtYAExEREZFN4TjARJTrYmNjZfjPP/8E8KL2FdCcge7jjz8GALRq1UrGqWtw1ePkqju8KS5evCjDyvjDDRs2lHHdunWT4Q4dOgAA2rZtK+NGjhwpw7o65x05ckTrWNT7rVevnowbPHiwDBcqVAiA5pjEq1atkuHKlSsDAN566y0Zpx6fmIiITMcaYCIiIiKyKSwAExEREZFNYRMIIsp16umFlamSjx49KuPUncGWL18OADh//ryM69u3rwzPmTNHK/3Tp0/L8KJFi2RYaTrRvn17GVerVi0Z/vrrrwEAefK8qCtQN5dQmmGol6vHEb5y5YoMK+MfKx3zAODSpUsyrDS3OHfunIxTNw359ttvAQClS5fWOj4iIjIPa4CJiIiIyKawAExERERENoXjABNRrlNPD1y0aFEAgLe3t4xTj8P73XffAdCc+veNN96QYfW0xEFBQQA0pydWj9Pbq1cvAJrTG7u4uMhws2bNAGiOzKAe27dFixYANJtAODk5ae0fAAoUKKCV7//++0+GlTGJ8+fPL+PUzS1KliyJzNQt2NSfERERGcYaYCIiIiKyKawBJqKXUt68eWVY3RksPT0dAFC7dm0Zpx4z+PLlyzKsdBhTjxOsrllW0lDXuirpAy9qhtWzzh0/flyGnzx5AuDFjHCGKPtVd7gLDQ2VYaUTXIkSJWRcjx49ZFhdS65grS8RkWVYA0xERERENoUFYCIiIiKyKWwCQUQ6qZsNKE0QdMUBwJ07d2T4wYMHAIC4uDidy5XwzZs3ZVypUqVkeMuWLVp5WbZsmVacMi4uoNmxbNu2bTK8YMECAJpTFg8ZMkSGfXx8tNJVd2hTlvv5+cm4M2fOyHBMTAwAzaYM6qYbuqibaKg71ynNMZo2bSrj1E0ziIjIelgDTEREREQ2hQVgIiIiIrIpbAJBRJK6iUOxYsVkOCkpKVv3O3XqVIPLIyMjZVgZJ7hOnToyLjk5WYbVTS8aNWoEALh7966MU4/i8Pz5cwBA3bp1ZZy6OYYiJCREhtXTGyujTxQsWFDG6RqvV9+xbN68WYb79esHAAgLCzO4PRERZR1rgImIiIjIprAATEREREQ2hU0giEhSj5bQqVMnGVZGblCPmqA0RQA0J5fYt28fAODff/+VcUpTA7UyZcrIcLt27bSWq5syPH36VIYDAgK01lVPXqFMfgEA5cqVAwAcPXpUxq1du1aGr169CkCziYeDw4vbonKM5cuXl3E3btyQYeVYK1euLOP0NYE4duyYxr+A5lTGNWvWBKD5WRIRUfZgDTARERER2RTWABORTnPnzjW4XF1rOmrUKBleuXKlSekPHz7c4HL1OMNqumqAXV1dZTgoKEiGlamC1ds0bNhQhv/77z8AmuPxqsNff/01AKBixYoyTt0hbvr06QBe1CQbMmPGDADA48ePZdyXX34pw6z5JSLKOawBJiIiIiKbwgIwEREREdkUNoEgIpMp494CQN++fWVYPT2w0pFO3cRh/PjxMqx0pOvRo4fBfenqOKeP0tQB0OzEpouvr68MK+MEq6ccVneYU5qBqKc6VqevbPfkyRMZp57qWN2MIyUlBYBmE4pq1arJsJOTk8F8ExGR9bAGmIiIiIhsCgvARERERGRT2ASCiHRSN0GYOHEiAODbb7/VuVw9ssLChQsBAD/88IPOdT/++GMAgIuLi8H96xrtAdAcHzirihQpovEvAFSpUkWGlWM4e/asjHN0dJRhd3d3AJrNHlavXi3Dly5dkmFlJAml2QXAZg9ERLmFNcBEREREZFPshHoqIiKyaRcuXJDhnj17yrDS+U1da/t/7d15dFXlucfxn8YaxUIACYMhCKKEeRBBZLS9gLAKLrWKF9terZW6bLVVV1HbSgW1tfdqxarVXsEJWUqlXhFboihOFAcGQUQGMRqZB0NSQKYI3D/i++znmANJyElIsr+ff/z57jNs5JzjXu9+3ve54447LP/qV7+yvGnTJklSmzZtbMw/L8yW+q5zyYTuc1LiwrXQQW7FihWHfX4qhY5vkvTMM89YnjVrliSpQYMGNuZniMPCN0m6//77JUmDBg2qsvMEAJQPM8AAAACIFS6AAQAAECuUQNRxc+bMsTxlyhTLW7dulSTt3bvXxvxeqoiX9evXS5JWr15tY/v377dcv359SYl72IYFYN8UFn75hWHZ2dmW27VrV+Hz8/sPh1bCAwYMsLFULiZLS0uznJ6eLknauHGjjeXl5VkuLCyUJB17bDSX4M/F/7x2795dUmLLY//9Q7yE75dv452Tk2P5hhtukJT43QGQOswAAwAAIFa4AAYAAECssA9wHXfgwAHLfkV6uPVKCUS8+M+A3/Fh27ZtkhI/A35v3LAnrz/uPzv+c7Z27dpSj23RokXS55WXb1Uc/gzbt2+3sVCikWqh3MKXe5x99tmWQ7mD/2+5efNmy35HiFAu4fdE9re/qUaLl1AC4UtuiouLLfN5AKoWM8AAAACIFRbBATEwY8YMSdKYMWNszO+zG2Z4Qxc3Serfv3+5X3/Pnj2WhwwZIimxO5zfM/hIFBUVWQ6zsccdV3NuYE2aNMnyzJkzLfvFcWFfZd8Jzi+IAwBUH2aAAQAAECtcAAMAACBWas49RACVtnPnTsthH1FJmjx5cqnHXnHFFZYfeOABSYfe27csvtXx3Llzj+g1DqestslHW69evSyHRYCS9Pbbb1tu1aqVJMoeUDG+SpGFykDqMAMMAACAWOECGAAAALFCCQSMb33rV92HFf7+Nje3cWuW0Cp49OjRNpafn2+5SZMmkqSHH37Yxi6++OLqObkYaN++veUzzjjD8vTp0y37nTJQuy1fvtzykiVLLO/atUtS4l7P/nc1WT711FNtrHfv3pZPOeUUSYk7iQBIHb5ZAAAAiBVmgGF27Nhh+Z133rEcuhOFvWIlZoCPFj+zNG7cOMv33HNPqeMjRoywHPapbd68eVWfYo3nu22FGTs/M5eM33M4dH+Torsi/u5ImLmTEmd9w+I4P+afh9pj0aJFlidOnGg5zAb7hWu+G6DP4bPXrVs3G7vmmmssX3DBBZKkZs2apeakASRgBhgAAACxwgUwAAAAYoUSCBjfGveJJ56wHPY4bdeuXXWfEiStXLnSsl/k5hffhP1777rrLhu79tprq/7kaglf4rBgwQLLt9xyiyRp2bJlNlavXj3LoaSke/fuNjZq1CjLV155Zan3yszMtOzbHn/yySeSEm+f9+vXr/x/CNQYfgGpL3mZMGGCJKlp06Y2FlqDS1Lfvn0tr1mzRpL04osv2ljYj1uSTjzxREnS8OHDbcx/tgBUDjPAAAAAiBUugAEAABArlEDEnG/b+tJLL1n+/PPPLQ8aNEgSt9+q24MPPihJGjt2rI35HQT69Olj+amnnpIknX766dV0dkdfeVrErl69WpL0xhtv2JhvTxx2NvH7+PqdGULpRF5eno298MILlhs1aiRJGjx4sI35fV2HDh1qeebMmZKkjIwMG6MEonYK5QmS1KlTJ8uhZbdvjT1y5EjLvlyiY8eOkhJLnKZNm2Z506ZNkqLdIgCkFjPAAAAAiBUugAEAABArlEDEVFjdPn/+fBubN2+eZb9he4sWLSTR/KKqrFu3zvKYMWMsh5IU34Thtttus3zrrbda9o+Ji0OVPRQWFlqeMWOGJGnWrFlJH3v//fdLkrp06XLY93r00UctP/bYY5YfeeQRSVGraUkaMGCA5XPOOcfy5MmTJUkrVqw47Huhdtm8ebPlUJbjmwb5sgcvfO93795tY1lZWZZDyZkvtwCQOswAAwAAIFbiN20UY3v37rX8+uuvS5K2bNliY36mws9qBH4v1bS0tKo4xVj5+9//Limx/anfizkszHr88cdtzC98Q2T9+vWWn3zyScthj9UePXrYmJ85L2+b2XPPPddyUVGR5fB38+mnn9qYnwH2M3qNGzeWJH355Zc25p/XqlUrSfGcza9tNmzYYDkstJSiOwHZ2dllvkbYa90vPu7atavlsGew31MYQOowAwwAAIBY4QIYAAAAscK9tjruwIEDln1ZQ35+vqTEhW1+/1O/OC4s7PAL41B+/pb5ddddZ3nq1KmlHuvbF4e2xqHNMRL5kp733nvPcigtkaL23b6d7KEWJR1O/fr1LYe9fyVp3759pc7F8+UMYaGdv32+ePFiy+H2eYMGDSp8fqhexcXFlsN+vVK0kNiXtuTk5FhOT0+3HP6+r776ahvz+1H7/aQBpB4zwAAAAIgVLoABAAAQK5RA1HEbN260/PHHH1sOt9/87bmCggLL/lZdyIfadxXJhfa7P/7xj20slJ5IUsuWLSVJDz/8sI2NGDGiWs6tLli6dKnlN9980/LWrVst/+xnP5MUtfM+Ur7EwbemDd+JY4+N5hJ8i2YvrOp/7bXXbMy3aA7HKYGo+fxuLb6dfNgdZ82aNUmP+5K0UaNGSYpaIktS7969U3+yAJJiBhgAAACxwgxwHbd8+XLLfmHbVVddJSlxgZWfOfMLMHyXK5QWuupJ0q9//WvL9913X6njF198seUw88t/3yMzZ84cy4sWLbLsZ3vPPvtsSZWfVfV79/773/+2HGZ7/d0RP8vn98sOM7z+XJ999lnLP//5zyVFnRdRcy1cuNDyypUrLd9+++2SDn3HwXck/POf/yxJWrJkiY1NmDDBcvfu3SXRCQ6oKswAAwAAIFa4AAYAAECsUAJRR61atUqSNGPGDBt7+umnLc+ePVvSoRfv+L1Sjz/++Ko6zVot3Lr0i9z87cxQXvLAAw/Y2BVXXFEdpxYLO3bssOxLDXw7Wb/PdWX4UqL333/fcljIGP75zXPxwq3s0PJYkho2bGg5fGf9d48FcUef/10MpTDr1q2zsd27d1vu1q2bpEO3Lx46dKjlUA7h9xEOnwEpWqBMCQRQNZgBBgAAQKxwAQwAAIBYoQSiDtm5c6flZcuWlTrubw2HleqFhYU25ksdfOtXWiBH7rnnHsvjxo2TJO3Zs8fGzj33XMuPP/64JKl169bVcm5xEUof/G4MvuVw27ZtLfv23kci7P/ryx78ftrDhg2TVLG2tb5conPnzpY/+uijUsd79uxZwTNGqu3fv99y2NPXl0X4kpbMzMzDvpY/Hlpq+xb1vqzHvy+A1GMGGAAAALHCDHAtt337dst5eXmWw56+o0ePtrH+/fuXev5nn31m2c9y+Y5lvitcHL366quWx44daznMOt599902dv3115c6jsrzeymHz/aWLVtsbN++fZb9wrIjuXvhX+uDDz6QlHhHxc/MhRn/iuzd6x/rZ3jfffddSVKbNm2SHsfR4T97Yfbff8ZOP/10y/Xq1Sv1fP95+uSTTyyH315/B8kv2uTOG1C1mAEGAABArHABDAAAgFjhHm0NlazFajJvvfWW5RdeeMHy5ZdfLknq1avXYZ/vyxv8wg5/K88viIujwYMHW7711lstf//735cUtSxF1fHlJM2aNZOUuKDoiy++sOwXx/nb1+VVXFxs+cknn5QkrV+/3sZCe2Up+n5lZGSU+/X9gjlflhRaY2dlZdmYL2HC0eF/I998801JUuPGjW3M/8YmKxfzi9zuvfdey6G8xn+ezjrrLMsnnXRSZU4bQBmYAQYAAECscAEMAACAWKEEooYKpQ9+l4elS5daXrhwoSTpn//8p435NpqjRo2SlHhLzrfsnDdvniTpjTfesLEPP/zQsr91HFYx+zaeHTp0qMgfp8644447jvYpxF64Nez3X/V784bPtiSdeeaZkqI9Vw/Ff/Zzc3Mth9vU4XUk6ZJLLrF8qJa3h+PLOfwe0aHUqKCgwMY2bNhguXnz5pIS25ej8nzpV1FRkaTE1tdz5syxPHPmTEmJO3ns2rXLchj3v7srVqywHEooJKlv376SEj9P/vPALhBA1eKXFAAAALHCDHAN5xf3vPjii5anT58uKepMJEk5OTmWw8xRmNGQEvejnDJliqTEGWC/r6qffQiLivxYXGeAa5Q90R7OL/3vBEnSxIfftbHPMzpavugXv5EkXT8qWmTTtJZPMHXq1Mmyn8F9/fXXLQ8YMEBS4kxt6O4mRd+vJ554wsb+9re/lXp+WFQqRTN3qeBnCgcOHCgpsRvY3LlzLZ9//vmSpBNPPDFl74/EGeCwYG3atGk29tBDD1n+9re/LSnxd3nJkiWWQ4dNfwctPEeSunTpYvnmm2+WJPXp06dS5w/gyDADDAAAgFjhAhgAAACxcsxBf/8HNY4vW/CLY0Jpg7/VdsIJJ1hu0qSJJKlBgwY25v+qQ4nEzp07bcy3ePX7D4fX9e0/w+unQv60yyRJw8a/X8YjU+lHlh5b+VvLFbm5veezNyRJU59+wsamP+VKEL7+Z0bH/7Cxy370M8ujR5Tcwq9QKcK26Pb+Dd2/a/m+tSULqLJyTrGxb3+1zXJ+Xkn7YH1nko0tffkqy+1qYTmE/+y//PLLlm+77TbLmzZtkhTdmpYSF6GF8X79+tnYRRddZDns8ZqdnW1jqVyc5Pccnj17tiTplVdeKXV+knTnnXdKSvxOI7VCeYwvcfA5WXtz/3cUfmP9b21aWpplv7/6KaeUfFf97zaA6sMMMAAAAGKFC2AAAADECiUQNVR5WyHXBXmTS9rBnj5mXhmPTKXrLb12cKLl7yR9bHSb+uPHR1o+68qS2+47Sj2+fNLbjpUkvfj2721sSBn1EPMnRLsZnD2+neX7P3pVknRdR387NTrvtc//RJLU86KnbKzftE2Wn7+0WQXOvObx5UG+JfjKlSslJbZH9rexw+1pXwIxbNgwy8laHPufzMp+P5PtQfunP/3JxvwuLWFngpYtW1bqPQEAzAADAAAgZrgABgAAQKzQCKOGikPpQ5A56L8lSS+//GUKX7XQ0iu3/KflexZ/Hbq0sbGybv5vfyvaJWLwldFuA1b6UD/ayP66e2+2POLrTr1rnr/dxq7962LLe/PuliQNvSgqZfjkX9HODG0t5Vla+srW6MSGR6UbF3VMtpI8KqfIvvDHkqQfKCqBuO/dqN2ramEJhC8fOPnkky1feeWVVfq+qfxu+tcK7Zr9n6WwMPoc5+fnS5IyMzNtzDfSAACUHzPAAAAAiBVmgHHUNTijZAHS0DNS95rb/vFfls9f7I+U7Oc6fvI1NtJRyay39OIf77a81j8kvWTJ3KSF0azwVck21B36PYu92/a03G3s1+17511rY3fljrI8eXjY7zWa8Wt+mnvdl1ZYXPP1eresQ62hyyuZRV7ghnKyTk7+2Fqirt4lad26teXOnTtb/te//iUpmimWEttBAwDKjxlgAAAAxAoXwAAAAIgVSiBQt2z7hyTp+oujxV573eHssVMlSTf0LqOdbf5si4/mJn9I+jXjJEmXl9lHODredXS0SG742B9KknLdGU6dvcjyw8O/8/Wzo9a3A68aazn7qWj/4PMGlrRj/euEc22sya6V0Z/hF7+UJM1Lv8DGpo3uWsZ542g444yoFujMM8+0vGBBSQFL167R3xslEABwZJgBBgAAQKxwAQwAAIBYoQQCdcA2S6+MK9kD9ilf95D+I4sP3TJQklxRQXLFqxdafv0Qjxnep2T/iLIKIBJkdbH43ZySf+auig7vzY1KIFZMLCmB8IUKDQZGZQ/zZkdf31Hfv0uS9IPz7kr6tultL5MkTX3/URu7NKsiJ47q0qZNtEd1jx49LE+fPl2StG7dumo/JwCoa5gBBgAAQKwwA4xar3j+A5Z/8tDWUsf7PXib5RGNy/eaaz7/oMzHtG56JN3Toudkd/g6uBlgrYr2Hy5I+nzX3W3IHyy/s/13kqTCTUU2tjftJMsnZ9b/xrNRU510UvT31q5d1CXwwIGShY4bN260saKiIssZGRmW6+oeyQCQKswAAwAAIFa4AAYAAECsUAKBWirP0pM3jrdsrYqzo7F7L29b4Vf/suiLQxzpbSnniBaRRSUQTVsnOx41K/66e7G+U67TP0GS1Kh58yM5KdRQDRpEyzX79u0rSdqxY4eNvf3225bPO+88y2lpadVwdgBQezEDDAAAgFjhAhgAAACxQgkEaqXtudF+t9fOK318+F1XWS6r63EyBetXHeJI9GLHcZcZVeyEE06wPGTIEEnSrFmzbOy1116z7EsgAACHxwwwAAAAYoUZYNQyyyVJT9wcdTTzTd+U+VtJ0rhRlWtzdlLDTPdvpfcWBqqDnwHu16+fJOm5556zseXLl1suLi62XF2L4A4ePJg0p9KxxzJPAyD1+GUBAABArHABDAAAgFihBAK1y/zpkqQ7P0x+OPPn50uSzqlkz9+Ts9q5f/MlEAstfRy6Fldom+Htlr5M2uv4NEvNM5MdR5z42/9NmjSRJDV3ez1/9tlnlletihZuduhQ0mf7+OOPr9LzmzZtmmVfmlFQEH249+zZI0n66quvbGz//v2lsm8B3aVLF8u/+11Jm++srMqVNQGAxwwwAAAAYoULYAAAAMQKJRCoVebn/kXSN/dlyLF004W9lQqZzU9z/+Y3Go72nPhyb1h1X5F6i+jMN32a7I2jeoqmDZIcR+y1b9/e8rp16yy/9957lhs3bixJys7OrtJzadSokeXjjov+d7JwYVQqFEo3Tj31VBtr2LCh5VDmsWXLFht7//33LU+ZMkWSNHLkSBvr3LlzZU8dQMwxAwwAAIBY4QIYAAAAsUIJBGqB+ZZy/5KkKUXmaIsDu6bmHRu0il4ox437BslzPlhREoZU4E23r7D4VpIWzhrW02L7JIeBbt26Wd68ebPluXPnWu7ateQzWdUlEMOGDbPcqlUryzt27Cj1mAsvvNDGWrZsWeq1fFOPRx55xPKkSZNKveZNN91kOSMjQ5J0zDHHVPwPACC2mAEGAABArDADjJrv42hBzKxkXYkv6WuxR6res+tAi6Pdfrzj3fuv+p9nJUnv/DKaAS5r/+Ftbz1r+dkkxy/4Xi/LrIFDMn4B2Nq1ay0/+mjUHvz880v2w+7Tp0+1ndeBAwcs+/2Lwyx0Wfv4duzY0fJPf/pTy3l5eZISF9aFhXH+sb5tNACUhRlgAAAAxAoXwAAAAIgVSiBQ4xV/HvU9np/keL8e0Z69leyA7ET7Cf/wD/0sjx/jVq5t/b0k6dJrooVrcyaOsHxG/ZIWrxvefTB6rYufsmw7CmePtbEbhjer1Fmj7ktPT7fsF5P5VsJhf2C/t27Tpk1Tfi67d++2vGHDBsvf+lb0TQx7/lZkkVrbttF+2Dk5JctQ582LvnsLFiywfNlll0miBAJAxTADDAAAgFjhAhgAAACxQgkEarw1n39w2OO93O3SqtD28scsT3o62vFhzOslRQxrH73IxtpFC/HLll5y3mOfvMWGBrL1AyogtBmWEnd8COUIixYtsrHhw4en/P3z8/Mth90avnle9evXr/Dr+h0l2rRpI0lasmSJjRUUFFjetWtXhV8fAJgBBgAAQKwwA4war2D9x0f3BL7VzuJVL6+2fOrdv5Qk3fDH523so6hZlRMtWsocFO1vOnHieEnSD3o0Ts15InbCAjNJGjx4sOXc3FxJVT8DvHp19H3ws8GdOnWy3LhxxT/faWlplk87rWSRa2ZmtCF3YWFhhV8TADxmgAEAABArXAADAAAgViiBQI3X9RdLLW+8uvTx9IbVdy76VrbFIb/5P0nSst/ssbHCTUWWwz6/aSedbGOZ9VO3UzHgF5j16hW10Z42bZokadmyZTa2Z0/0OU3Vnrm+7GHz5s2WR44cadkviCsvv2dwUVGRpMSyiGbNov2y69WrV+HXBwBmgAEAABArXAADAAAgViiBQI13QqPmlpsf5nFHT3Q7uVHzmnmGqJt8WUCrVq0sh7bIvhWyL1cIrYZ9y+KKKC4uliRt27bNxg4ePGi5ffv2lo9kH+CdO3daXrx4saTEEo7u3btbpgQCwJFgBhgAAACxwgwwANQBxx4bzWf07NlTkrR0abSA9J133rEc9uZt2rRpuV//q6++srxx40ZJiTPILVu2tJyRkVHu1w3CrLKU2FXu1VdflSS1aNHCxjp37mzZz4IDQHkxAwwAAIBY4QIYAAAAsUIJBADUMWeddZYkqaCgwMZCKYEknXPOOZKOvARi7dq1khJLILKysiwfSVmCb6s8efJky2F/4UGDBtlYnz59LB/pQj4A8cYMMAAAAGKFC2AAAADECiUQAFDHdO3aVVJiK+RnnnnGctjFwe/XWxZfArFgwYJSx9u1a2fZ70iRzL59+yyvXLlSUtS+WZLmzZtnuX///pKkoUOH2lhz9tsGUEnMAAMAACBWmAEGgDomdF/Lzs62Md9JLSyO279/v42VtXAtzBpLUm5urqRov2EpcZ9e3xXumGOOkZR81leSbrzxRknSwoULbaxXr16Wx48fL0nq0KHDYc8PACqCGWAAAADEChfAAAAAiJVjDvp7VQCAOmPTpk2W/cK1Hj16SEpsX+zLIT799FNJ0tSpU21sypQplvPz8yVJDRs2tDFfAlGvXj3LYUGcL8HwbY/Dgr2BAwfamM+h9OG446jYA5A6zAADAAAgVrgABgAAQKxQAgEASCiBWLNmjSTpueeeszHfSrlx48alnrN3796krxX4fYR9icSll14qSRoyZIiNNWrUqOJ/AACoAGaAAQAAECtcAAMAACBWKIEAAABArDADDAAAgFjhAhgAAACxwgUwAAAAYoULYAAAAMQKF8AAAACIFS6AAQAAECtcAAMAACBWuAAGAABArHABDAAAgFjhAhgAAACxwgUwAAAAYoULYAAAAMQKF8AAAACIlf8HAUQ0ZX1reXkAAAAASUVORK5CYII=",
"path": "images_version_6/image_55.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, and the radial OM bisects angle AOC, then the degree of angle CON is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
||
276
|
56
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGUAAAB/CAAAAADTWlPuAAAK/0lEQVR4nO1aaVRVRxL+uI9FEDAoYIIaeYK7ElBAIhoiahQlRsE1weMSjSdOVHCccY6Mjp7o0cgEEiJRM0QUEiYcFQ0RTYjGBeOC0UTRBBeCoigoAwoCwnuPmh9v4S23+94LZ+bMj6k/r7uqur9bXd39qqsbpIwKAR9tssJGJEAJNfnsJLo6qEFRIwDKUHwCsgCPKUOVokCJ4Ydxg4jo5iOlI2ZHCr7Ic84niq0AoHDE/tW3fSAK/dLjv4HifAIAcP0/i5KblQM8jnZWjKJojlGBG/BHpRNM6RxrNynz/v82ir181cdnSgsadeVlABxGa3uo+780WG5reX5p/OHot9dHe3rGuHTq6v9RQsYb151uVt49e9lpfNQMWTNOeoJUbx7cMzblgqme5RdnLFZmzvfyX31ZsgtJlCMRneJuWHAyl6qKzaoVKQPVH+o6gvJsi9uEbGvmtg2b37XkXI71jb1hrSYXRRPvs7DUlp2RdC/Qml2zQz2+nt0TZybvVNef+7yPLd+xosfCT614HktuzhkYWavY+6fDokTsICJKm0HUs1xEsHbQTkZnLJTY4CwW/q53iN4W3c2uBQSWKEBp6L1UywKhA4mNpBl8U1T2pe8/xNiifsnuvzJNxRzjuifOsA87Iyp78+An8TL9ssbnK6YhRLRnBRE1jCsTl9YPnWK7eERsmXjk3CymIQCc7AG4eB4Vl7pe0Yy8bc20QXnoj3O9eCBQqQBgUU4LQ344YsxBa56VbWe81vFGi4joK/38GlPA1NirTrFkWKE09v5YCoQyE4iIKG+ahqlyuEsmDyV4mSQI7Vql/w06ytbJ620htPTL9CGpXJcAAOwMv8uy2Dqvz9ptHk9ZoKT+niINApVO/7ug6DRb6YO69QyUb5JznpOBQlpDYfY3HK2vb64yb2Oiq+pCaacQ0R6T7/yKOWqPwreJ+KVlzsJRMiwxpwmfcYSeG3eesLVlfrwsS8xtoYBLPMVdrxgPOiZbjpyX43kreuU4T7rA3TRjjcDDD8g0xdyW6rAHPM07wb9Y2pIycKpyU9Cty9c88YtT/25hS51XlVxTzG2hSyM5MQURBWab25IU490OU4Cgzjlc+Xt7tYBxVbZ8sbZdIMCqPK747fKjbShbRrb3xPjafc42A2BadosJJX1rO0GARZ9zxYnFh40oOcE+7UZZcvwSV/7qFSPKpnfbDQLMS+aKEwtL9CjNDyM6gLLhws88sWfzIT3KphmOHUDBpANc8fRbAIjI+57sFWm9KomIdEHicaaRRhwjAahXtXca60kI/YordyyDAPwwrEMgwLrcMp64bykEYN+EDqL4qL/jiSdcgwB8P1lGT08H2AkrWcKkg9WcpjMf3BSAOpHzljVlum+pqkxdypD20f2T17hTiYCf/WWAfHhuqrf3xe2PGfKVR5s4rXs+EFAcII0y/4NQAGo7FkrUA97W7F8n4KeXJUHmTpkIAL+QCwBomm011hdwmofVCah8URLli6kAgC8DugGAys1WY9Klb9nN+9ULqOwpiWI3FgCqP0tVAcAzOxGVhZyV6f9YwH1pW4T9ABARpt9UHcTyO8uun2S3bxTwsJskyrx8AEG6E/pajeh8GssJmrUgQcYGOQ6dha2Gck2vTsfEdIyxlwi9AemsEhHRnTsVxuK7wHAxlXdWMVtHy0Qxo14ARFMO4RfEuEREEwW4tUr6xZwKKoEk0ZSD/1lWG0dQt2YllnwcWLhljLjoHjNojhGgYp3bxehPB7ePcn1JXNaDvme0shPgXiMfZO4vn4WhvjtD+tGBx+ICZwG+5bJBxjfk+wND6hjisNtHRPm1bgKGXJGJURvcL9cRQEUpS2NdpshGChR7CBguE+VS6II0AMBzzC1patVeMfZlTwF+8kZs9/wNf9CXWtnR29JTYtzf3QQMLZQDkpKe8qahqGH/Ly76VQzmR3cBrp0bpUGWZ6aMNZZ5Sfvpe0SYDj0EIIJ/AgGA6dW5IdKfAiD+J9ug+Zo6SABe42Rt9BTknK2WBQJE2fo/09NFAMbw0ikAfu07S/I7TLTx4C1r1skuEIA+dk957U7NXP4X2SCwH5FtzdIOAIhoMS+/tzUoz4qTyU2lNASWWTKOzawhAUBcOvvbluV/+rp8SwC4+FlNs7T+HhAAvHK3itVm1q39YdY8FTuhDQBJpy09UzvWcK5ctlq8gW58Ta5I7MH/21O7WUQzqc9HGFASDor+x9yNHPa9SFTUakQ55evuUWIb7S3MM59NX4QChjzMnFQRP+5/IUXUv5mGE1/E0G8uXFg8xVYhPL+tfHxyBRkzvUUDbXUzBmWIz6I9K4iIaGZEGRGVW89AIkqf3Zbpn5hMJhSKsTFmc/A1cRDKWEFEdMyNfRM2/DtjqSio1AzlRq8GS8WY0WWsPjLiiYjUbzFB6OMlxtLk94nIlLnqG7LD3IHal13yfZmziACgbASA8vBe3iLx0fLCIn1hP+INTfRUM9AsAL0XtoL9obQjnojIYTsRUU6nD8VUti3W/wbu0v+aIsvEaJNOkTf3SiEtnogIO4iIireL64ScJyLaPN9QNeVgNz7aZyhlxKYtZ44WACcAQMG6IwD2Mk6+Iw4BKMsxHXdN8AWDqomIaPVgZryrp5364TjQr6uXlysj3Vk14irR+PXGatvd+fi5ARUAlp/NkziZd3IAAEwNudXiqGakO737/jA42v1vprrZB6yNJIqe84xvCVHeeikNIqqK8Y5uOxlYhAqRraV2c6PuOtrXNvdu1ogdHwGn5t03VvhqdA+9GuHT1NJqraWFU6uDfVPr4sdFIalpzU3waEyebkdA4pcaAialo8UJ73VWVZOLxukZa7zstacrJ7mDWh112lats53OKqKxr39O1+jqcfL40Ct4Ghy0xEEYmZwAIrrRdev+k+tmElFBt02GLYhz3NgSZzpBWN1Maox13THHtToievsiEW39Tb9eJhA9oWNERPt9+Rk1IqLsBEkVCk4kIqJtROlPyLBe4nD9AiIBIGbBuN2ssTKSRiulURn0/EYAaPrc3TvfHQCI6ISrV5sJab03SXyndUbRhgp7G6x9f83xdQeI9DvMvKSsrm0694KjOoaS4me85o8rJtIQ6Vflld0wC5V7FIwK/1FqTDiUcHinIaR+2NfP8OBGAK7OBN5BrknN49qQV7kpYh7pIssPGeP2PZGmqIFonoaI1lgs6M2+Ni9H5I3Y74ELTeW3gCJDEaUh6O7n740yC+194VNqWT3p/5FFaVXwxrZKcaHplte+T6Lns6rOKndfC8NjQ3cFxjAS+CpWPLbvfd+00LbqEDMR87suzvVPEhVkicfJ5yeE72H1xcvC7JsWJLZ2Mv8swiwKG55cy+yJ9zYrdlp2vs+sv9rEsDobzbRspzff4GXzOLYQEeUnBAy1fBFAme9Z1s9G9Zudxb8ilHpnNmnStR8LkhzHRZvdMZvF/CWHCu73nxwYLtGLrFdqp+5cL/7VecCwYYNfEIDcyxuAlprbly4WN/YcOKBPsIdkB3LfKNb+XPtb06Pqh04NlXfQvZ99q6uHj5enzxB5F2qKXkK2lGgd7zd21mg0PZ3tuz0vv+H/31sqJQXvLYEd6U+dGl0uK0dR5JeK0BnBmu11JcphJNa+Jc3WElFXsX2MT8r84gEAi3JlpLosSRHKyXEqAAuceNdTHUdZFAgAP6mlbzk6ghLSBwBWj1EKogjl7qsAsOP+FMUoSubYyCIimg3u00JxUrAql5yJe7FLeVCZr3JT/g1VbNiK46X43gAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_56.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, the diameter CD of circle O crosses the midpoint G of chord EF, angle DCF = 20.0, then angle EOD is equal to ()
Choices:
A:10°
B:20°
C:40°
D:80°
|
Như hình vẽ, đường kính CD của đường tròn O cắt điểm giữa G của dây EF, góc DCF = 20°, thì góc EOD bằng bao nhiêu?
Các lựa chọn:
A: 10°
B: 20°
C: 40°
D: 80°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the diameter CD of circle O crosses the midpoint G of chord EF, angle DCF = 20.0, then angle EOD is equal to ()
Choices:
A:10°
B:20°
C:40°
D:80°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the diameter CD of circle O crosses the midpoint G of chord EF, angle DCF = 20.0, then angle EOD is equal to ()
Choices:
A:10°
B:20°
C:40°
D:80°
|
As shown in the figure, the diameter CD of circle O crosses the midpoint G of chord EF, angle DCF = 20.0, then angle EOD is equal to ()
Choices:
A:10°
B:20°
C:40°
D:80°
|
277
|
56
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGUAAAB/CAAAAADTWlPuAAAK/0lEQVR4nO1aaVRVRxL+uI9FEDAoYIIaeYK7ElBAIhoiahQlRsE1weMSjSdOVHCccY6Mjp7o0cgEEiJRM0QUEiYcFQ0RTYjGBeOC0UTRBBeCoigoAwoCwnuPmh9v4S23+94LZ+bMj6k/r7uqur9bXd39qqsbpIwKAR9tssJGJEAJNfnsJLo6qEFRIwDKUHwCsgCPKUOVokCJ4Ydxg4jo5iOlI2ZHCr7Ic84niq0AoHDE/tW3fSAK/dLjv4HifAIAcP0/i5KblQM8jnZWjKJojlGBG/BHpRNM6RxrNynz/v82ir181cdnSgsadeVlABxGa3uo+780WG5reX5p/OHot9dHe3rGuHTq6v9RQsYb151uVt49e9lpfNQMWTNOeoJUbx7cMzblgqme5RdnLFZmzvfyX31ZsgtJlCMRneJuWHAyl6qKzaoVKQPVH+o6gvJsi9uEbGvmtg2b37XkXI71jb1hrSYXRRPvs7DUlp2RdC/Qml2zQz2+nt0TZybvVNef+7yPLd+xosfCT614HktuzhkYWavY+6fDokTsICJKm0HUs1xEsHbQTkZnLJTY4CwW/q53iN4W3c2uBQSWKEBp6L1UywKhA4mNpBl8U1T2pe8/xNiifsnuvzJNxRzjuifOsA87Iyp78+An8TL9ssbnK6YhRLRnBRE1jCsTl9YPnWK7eERsmXjk3CymIQCc7AG4eB4Vl7pe0Yy8bc20QXnoj3O9eCBQqQBgUU4LQ344YsxBa56VbWe81vFGi4joK/38GlPA1NirTrFkWKE09v5YCoQyE4iIKG+ahqlyuEsmDyV4mSQI7Vql/w06ytbJ620htPTL9CGpXJcAAOwMv8uy2Dqvz9ptHk9ZoKT+niINApVO/7ug6DRb6YO69QyUb5JznpOBQlpDYfY3HK2vb64yb2Oiq+pCaacQ0R6T7/yKOWqPwreJ+KVlzsJRMiwxpwmfcYSeG3eesLVlfrwsS8xtoYBLPMVdrxgPOiZbjpyX43kreuU4T7rA3TRjjcDDD8g0xdyW6rAHPM07wb9Y2pIycKpyU9Cty9c88YtT/25hS51XlVxTzG2hSyM5MQURBWab25IU490OU4Cgzjlc+Xt7tYBxVbZ8sbZdIMCqPK747fKjbShbRrb3xPjafc42A2BadosJJX1rO0GARZ9zxYnFh40oOcE+7UZZcvwSV/7qFSPKpnfbDQLMS+aKEwtL9CjNDyM6gLLhws88sWfzIT3KphmOHUDBpANc8fRbAIjI+57sFWm9KomIdEHicaaRRhwjAahXtXca60kI/YordyyDAPwwrEMgwLrcMp64bykEYN+EDqL4qL/jiSdcgwB8P1lGT08H2AkrWcKkg9WcpjMf3BSAOpHzljVlum+pqkxdypD20f2T17hTiYCf/WWAfHhuqrf3xe2PGfKVR5s4rXs+EFAcII0y/4NQAGo7FkrUA97W7F8n4KeXJUHmTpkIAL+QCwBomm011hdwmofVCah8URLli6kAgC8DugGAys1WY9Klb9nN+9ULqOwpiWI3FgCqP0tVAcAzOxGVhZyV6f9YwH1pW4T9ABARpt9UHcTyO8uun2S3bxTwsJskyrx8AEG6E/pajeh8GssJmrUgQcYGOQ6dha2Gck2vTsfEdIyxlwi9AemsEhHRnTsVxuK7wHAxlXdWMVtHy0Qxo14ARFMO4RfEuEREEwW4tUr6xZwKKoEk0ZSD/1lWG0dQt2YllnwcWLhljLjoHjNojhGgYp3bxehPB7ePcn1JXNaDvme0shPgXiMfZO4vn4WhvjtD+tGBx+ICZwG+5bJBxjfk+wND6hjisNtHRPm1bgKGXJGJURvcL9cRQEUpS2NdpshGChR7CBguE+VS6II0AMBzzC1patVeMfZlTwF+8kZs9/wNf9CXWtnR29JTYtzf3QQMLZQDkpKe8qahqGH/Ly76VQzmR3cBrp0bpUGWZ6aMNZZ5Sfvpe0SYDj0EIIJ/AgGA6dW5IdKfAiD+J9ug+Zo6SABe42Rt9BTknK2WBQJE2fo/09NFAMbw0ikAfu07S/I7TLTx4C1r1skuEIA+dk957U7NXP4X2SCwH5FtzdIOAIhoMS+/tzUoz4qTyU2lNASWWTKOzawhAUBcOvvbluV/+rp8SwC4+FlNs7T+HhAAvHK3itVm1q39YdY8FTuhDQBJpy09UzvWcK5ctlq8gW58Ta5I7MH/21O7WUQzqc9HGFASDor+x9yNHPa9SFTUakQ55evuUWIb7S3MM59NX4QChjzMnFQRP+5/IUXUv5mGE1/E0G8uXFg8xVYhPL+tfHxyBRkzvUUDbXUzBmWIz6I9K4iIaGZEGRGVW89AIkqf3Zbpn5hMJhSKsTFmc/A1cRDKWEFEdMyNfRM2/DtjqSio1AzlRq8GS8WY0WWsPjLiiYjUbzFB6OMlxtLk94nIlLnqG7LD3IHal13yfZmziACgbASA8vBe3iLx0fLCIn1hP+INTfRUM9AsAL0XtoL9obQjnojIYTsRUU6nD8VUti3W/wbu0v+aIsvEaJNOkTf3SiEtnogIO4iIireL64ScJyLaPN9QNeVgNz7aZyhlxKYtZ44WACcAQMG6IwD2Mk6+Iw4BKMsxHXdN8AWDqomIaPVgZryrp5364TjQr6uXlysj3Vk14irR+PXGatvd+fi5ARUAlp/NkziZd3IAAEwNudXiqGakO737/jA42v1vprrZB6yNJIqe84xvCVHeeikNIqqK8Y5uOxlYhAqRraV2c6PuOtrXNvdu1ogdHwGn5t03VvhqdA+9GuHT1NJqraWFU6uDfVPr4sdFIalpzU3waEyebkdA4pcaAialo8UJ73VWVZOLxukZa7zstacrJ7mDWh112lats53OKqKxr39O1+jqcfL40Ct4Ghy0xEEYmZwAIrrRdev+k+tmElFBt02GLYhz3NgSZzpBWN1Maox13THHtToievsiEW39Tb9eJhA9oWNERPt9+Rk1IqLsBEkVCk4kIqJtROlPyLBe4nD9AiIBIGbBuN2ssTKSRiulURn0/EYAaPrc3TvfHQCI6ISrV5sJab03SXyndUbRhgp7G6x9f83xdQeI9DvMvKSsrm0694KjOoaS4me85o8rJtIQ6Vflld0wC5V7FIwK/1FqTDiUcHinIaR+2NfP8OBGAK7OBN5BrknN49qQV7kpYh7pIssPGeP2PZGmqIFonoaI1lgs6M2+Ni9H5I3Y74ELTeW3gCJDEaUh6O7n740yC+194VNqWT3p/5FFaVXwxrZKcaHplte+T6Lns6rOKndfC8NjQ3cFxjAS+CpWPLbvfd+00LbqEDMR87suzvVPEhVkicfJ5yeE72H1xcvC7JsWJLZ2Mv8swiwKG55cy+yJ9zYrdlp2vs+sv9rEsDobzbRspzff4GXzOLYQEeUnBAy1fBFAme9Z1s9G9Zudxb8ilHpnNmnStR8LkhzHRZvdMZvF/CWHCu73nxwYLtGLrFdqp+5cL/7VecCwYYNfEIDcyxuAlprbly4WN/YcOKBPsIdkB3LfKNb+XPtb06Pqh04NlXfQvZ99q6uHj5enzxB5F2qKXkK2lGgd7zd21mg0PZ3tuz0vv+H/31sqJQXvLYEd6U+dGl0uK0dR5JeK0BnBmu11JcphJNa+Jc3WElFXsX2MT8r84gEAi3JlpLosSRHKyXEqAAuceNdTHUdZFAgAP6mlbzk6ghLSBwBWj1EKogjl7qsAsOP+FMUoSubYyCIimg3u00JxUrAql5yJe7FLeVCZr3JT/g1VbNiK46X43gAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_56.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, the diameter CD of circle O crosses the midpoint G of chord EF, angle DCF = 20.0, then angle EOD is equal to ()
Choices:
A:10°
B:20°
C:40°
D:80°
|
Như hình vẽ, đường kính CD của đường tròn O cắt điểm giữa G của dây EF, góc DCF = 20°, thì góc EOD bằng bao nhiêu?
Các lựa chọn:
A: 10°
B: 20°
C: 40°
D: 80°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the diameter CD of circle O crosses the midpoint G of chord EF, angle DCF = 20.0, then angle EOD is equal to ()
Choices:
A:10°
B:20°
C:40°
D:80°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the diameter CD of circle O crosses the midpoint G of chord EF, angle DCF = 20.0, then angle EOD is equal to ()
Choices:
A:10°
B:20°
C:40°
D:80°
|
As shown in the figure, the diameter CD of circle O crosses the midpoint G of chord EF, angle DCF = 20.0, then angle EOD is equal to ()
Choices:
A:10°
B:20°
C:40°
D:80°
|
278
|
56
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGUAAAB/CAAAAADTWlPuAAAK/0lEQVR4nO1aaVRVRxL+uI9FEDAoYIIaeYK7ElBAIhoiahQlRsE1weMSjSdOVHCccY6Mjp7o0cgEEiJRM0QUEiYcFQ0RTYjGBeOC0UTRBBeCoigoAwoCwnuPmh9v4S23+94LZ+bMj6k/r7uqur9bXd39qqsbpIwKAR9tssJGJEAJNfnsJLo6qEFRIwDKUHwCsgCPKUOVokCJ4Ydxg4jo5iOlI2ZHCr7Ic84niq0AoHDE/tW3fSAK/dLjv4HifAIAcP0/i5KblQM8jnZWjKJojlGBG/BHpRNM6RxrNynz/v82ir181cdnSgsadeVlABxGa3uo+780WG5reX5p/OHot9dHe3rGuHTq6v9RQsYb151uVt49e9lpfNQMWTNOeoJUbx7cMzblgqme5RdnLFZmzvfyX31ZsgtJlCMRneJuWHAyl6qKzaoVKQPVH+o6gvJsi9uEbGvmtg2b37XkXI71jb1hrSYXRRPvs7DUlp2RdC/Qml2zQz2+nt0TZybvVNef+7yPLd+xosfCT614HktuzhkYWavY+6fDokTsICJKm0HUs1xEsHbQTkZnLJTY4CwW/q53iN4W3c2uBQSWKEBp6L1UywKhA4mNpBl8U1T2pe8/xNiifsnuvzJNxRzjuifOsA87Iyp78+An8TL9ssbnK6YhRLRnBRE1jCsTl9YPnWK7eERsmXjk3CymIQCc7AG4eB4Vl7pe0Yy8bc20QXnoj3O9eCBQqQBgUU4LQ344YsxBa56VbWe81vFGi4joK/38GlPA1NirTrFkWKE09v5YCoQyE4iIKG+ahqlyuEsmDyV4mSQI7Vql/w06ytbJ620htPTL9CGpXJcAAOwMv8uy2Dqvz9ptHk9ZoKT+niINApVO/7ug6DRb6YO69QyUb5JznpOBQlpDYfY3HK2vb64yb2Oiq+pCaacQ0R6T7/yKOWqPwreJ+KVlzsJRMiwxpwmfcYSeG3eesLVlfrwsS8xtoYBLPMVdrxgPOiZbjpyX43kreuU4T7rA3TRjjcDDD8g0xdyW6rAHPM07wb9Y2pIycKpyU9Cty9c88YtT/25hS51XlVxTzG2hSyM5MQURBWab25IU490OU4Cgzjlc+Xt7tYBxVbZ8sbZdIMCqPK747fKjbShbRrb3xPjafc42A2BadosJJX1rO0GARZ9zxYnFh40oOcE+7UZZcvwSV/7qFSPKpnfbDQLMS+aKEwtL9CjNDyM6gLLhws88sWfzIT3KphmOHUDBpANc8fRbAIjI+57sFWm9KomIdEHicaaRRhwjAahXtXca60kI/YordyyDAPwwrEMgwLrcMp64bykEYN+EDqL4qL/jiSdcgwB8P1lGT08H2AkrWcKkg9WcpjMf3BSAOpHzljVlum+pqkxdypD20f2T17hTiYCf/WWAfHhuqrf3xe2PGfKVR5s4rXs+EFAcII0y/4NQAGo7FkrUA97W7F8n4KeXJUHmTpkIAL+QCwBomm011hdwmofVCah8URLli6kAgC8DugGAys1WY9Klb9nN+9ULqOwpiWI3FgCqP0tVAcAzOxGVhZyV6f9YwH1pW4T9ABARpt9UHcTyO8uun2S3bxTwsJskyrx8AEG6E/pajeh8GssJmrUgQcYGOQ6dha2Gck2vTsfEdIyxlwi9AemsEhHRnTsVxuK7wHAxlXdWMVtHy0Qxo14ARFMO4RfEuEREEwW4tUr6xZwKKoEk0ZSD/1lWG0dQt2YllnwcWLhljLjoHjNojhGgYp3bxehPB7ePcn1JXNaDvme0shPgXiMfZO4vn4WhvjtD+tGBx+ICZwG+5bJBxjfk+wND6hjisNtHRPm1bgKGXJGJURvcL9cRQEUpS2NdpshGChR7CBguE+VS6II0AMBzzC1patVeMfZlTwF+8kZs9/wNf9CXWtnR29JTYtzf3QQMLZQDkpKe8qahqGH/Ly76VQzmR3cBrp0bpUGWZ6aMNZZ5Sfvpe0SYDj0EIIJ/AgGA6dW5IdKfAiD+J9ug+Zo6SABe42Rt9BTknK2WBQJE2fo/09NFAMbw0ikAfu07S/I7TLTx4C1r1skuEIA+dk957U7NXP4X2SCwH5FtzdIOAIhoMS+/tzUoz4qTyU2lNASWWTKOzawhAUBcOvvbluV/+rp8SwC4+FlNs7T+HhAAvHK3itVm1q39YdY8FTuhDQBJpy09UzvWcK5ctlq8gW58Ta5I7MH/21O7WUQzqc9HGFASDor+x9yNHPa9SFTUakQ55evuUWIb7S3MM59NX4QChjzMnFQRP+5/IUXUv5mGE1/E0G8uXFg8xVYhPL+tfHxyBRkzvUUDbXUzBmWIz6I9K4iIaGZEGRGVW89AIkqf3Zbpn5hMJhSKsTFmc/A1cRDKWEFEdMyNfRM2/DtjqSio1AzlRq8GS8WY0WWsPjLiiYjUbzFB6OMlxtLk94nIlLnqG7LD3IHal13yfZmziACgbASA8vBe3iLx0fLCIn1hP+INTfRUM9AsAL0XtoL9obQjnojIYTsRUU6nD8VUti3W/wbu0v+aIsvEaJNOkTf3SiEtnogIO4iIireL64ScJyLaPN9QNeVgNz7aZyhlxKYtZ44WACcAQMG6IwD2Mk6+Iw4BKMsxHXdN8AWDqomIaPVgZryrp5364TjQr6uXlysj3Vk14irR+PXGatvd+fi5ARUAlp/NkziZd3IAAEwNudXiqGakO737/jA42v1vprrZB6yNJIqe84xvCVHeeikNIqqK8Y5uOxlYhAqRraV2c6PuOtrXNvdu1ogdHwGn5t03VvhqdA+9GuHT1NJqraWFU6uDfVPr4sdFIalpzU3waEyebkdA4pcaAialo8UJ73VWVZOLxukZa7zstacrJ7mDWh112lats53OKqKxr39O1+jqcfL40Ct4Ghy0xEEYmZwAIrrRdev+k+tmElFBt02GLYhz3NgSZzpBWN1Maox13THHtToievsiEW39Tb9eJhA9oWNERPt9+Rk1IqLsBEkVCk4kIqJtROlPyLBe4nD9AiIBIGbBuN2ssTKSRiulURn0/EYAaPrc3TvfHQCI6ISrV5sJab03SXyndUbRhgp7G6x9f83xdQeI9DvMvKSsrm0694KjOoaS4me85o8rJtIQ6Vflld0wC5V7FIwK/1FqTDiUcHinIaR+2NfP8OBGAK7OBN5BrknN49qQV7kpYh7pIssPGeP2PZGmqIFonoaI1lgs6M2+Ni9H5I3Y74ELTeW3gCJDEaUh6O7n740yC+194VNqWT3p/5FFaVXwxrZKcaHplte+T6Lns6rOKndfC8NjQ3cFxjAS+CpWPLbvfd+00LbqEDMR87suzvVPEhVkicfJ5yeE72H1xcvC7JsWJLZ2Mv8swiwKG55cy+yJ9zYrdlp2vs+sv9rEsDobzbRspzff4GXzOLYQEeUnBAy1fBFAme9Z1s9G9Zudxb8ilHpnNmnStR8LkhzHRZvdMZvF/CWHCu73nxwYLtGLrFdqp+5cL/7VecCwYYNfEIDcyxuAlprbly4WN/YcOKBPsIdkB3LfKNb+XPtb06Pqh04NlXfQvZ99q6uHj5enzxB5F2qKXkK2lGgd7zd21mg0PZ3tuz0vv+H/31sqJQXvLYEd6U+dGl0uK0dR5JeK0BnBmu11JcphJNa+Jc3WElFXsX2MT8r84gEAi3JlpLosSRHKyXEqAAuceNdTHUdZFAgAP6mlbzk6ghLSBwBWj1EKogjl7qsAsOP+FMUoSubYyCIimg3u00JxUrAql5yJe7FLeVCZr3JT/g1VbNiK46X43gAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_56.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, angle DCF = 20.0, then angle EOD is equal to ()
Choices:
A:10°
B:20°
C:40°
D:80°
|
Như hình vẽ, góc DCF = 20°, thì góc EOD bằng bao nhiêu?
Các lựa chọn:
A: 10°
B: 20°
C: 40°
D: 80°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, angle DCF = 20.0, then angle EOD is equal to ()
Choices:
A:10°
B:20°
C:40°
D:80°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, angle DCF = 20.0, then angle EOD is equal to ()
Choices:
A:10°
B:20°
C:40°
D:80°
|
As shown in the figure, angle DCF = 20.0, then angle EOD is equal to ()
Choices:
A:10°
B:20°
C:40°
D:80°
|
279
|
56
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAO0AAADrCAYAAACFFBGSAABLhklEQVR4nO29eVib55m3fWpBCwKB2EGsZgeDjW3wio3B+xI7sZM0cdIkbTptp0en7fR9O9N2Ou/MdNrO9OtMm0yXpFmaZuKkjZPUu+N9iQ14YTH7vhkw+yJAEkLL94dHGuzEOyCJPOdxcDQ1QrokPb/nuu/rvhaRzWazISAg4DaInW2AgIDA/SGIVkDAzRBEKyDgZgiiFRBwMwTRCgi4GYJoBQTcDEG0AgJuhiBaAQE3QxCtgICbIYhWQMDNEEQrIOBmCKIVEHAzBNEKCLgZgmgFBNwMQbSzgOrqanbu3IlIJHL8qNVqTpw4AcArr7zCyZMnnWylwFQhEupp3QubzYZIJALgzJkzVFZWYrVa6e7upq+vD5FIhFgsRiaTERMTg0qloquri2XLlrF69WonWy8wFUidbYDA/WEXbG9vLy+//DJnz54lJyeHr33ta6xdu9bxuNHRUf72b/+WM2fOsHXrVmQymbNMFphiBNG6IWfPnuVXv/oVV69eJSsri29+85tkZWXd9BgvLy/mzJlDd3c3EREReHt7O8lagalGEK0bkp+fz969e8nMzGTnzp3k5OQANy+dAdLT01GpVCQkJODr6+scYwWmHEG0boTJZKKxsZGGhgYAtm/fzrZt2xxinSxYgLS0NKKiovD19RVEO4sQROtGDA0N8cc//pHKykqWLVtGZmYmAQEBt318UFAQfn5+SKVSpFLhq54tCN+kGzEyMsJf/vIX9Ho9zz33HDExMXd8vFwuRy6Xz5B1AjOFcE7rRlitVgwGA1KplMDAQEGQn1ME0boRNpsNi8WCUqkkKChIEO3nFEG0boQ92CSTyVCpVEgkEmebJOAEBNG6ETabDbPZTF9fH83NzZhMpjs+XqfT0dXVhcVimSELBWYCQbRuhEKhYP78+SgUCvLz86mvr//Mx+l0Ompra2ltbcVgMCBkqs4uBNG6Ef7+/nz3u98lMzOTY8eO8fHHH1NbW/upx50/f54f/vCHXL16FV9fX8Ri4WueTQhHPm6EUqlkyZIlDA0NYTabuXLlCnV1dURFRSEWi5HL5SQkJCAWi8nLyyM1NRWVSvWppAsB90ao8nFDRkdHKSoq4uc//7mj/M5kMuHr68v69evZtWsXW7dudbKVAtOFIFo3xGazMTo6SnNzM319fdhsNqxWKx4eHvj7+xMWFoa/v7+zzRSYJgTRCgi4GUKEQkDAzRBEKyDgZgjRYzdhYmICk8mExWLBaDQyPj6O1Wp1/N5isWA2mzGbzdhsNsRiseOox2q1YrVaHRFmiUSCzWZDIpEgkUgcVUAeHh54eHggk8mEYyIXRhCtG2Cz2bh27Rqtra0MDAxQW1tLdXU1RqMRm82GzWZjeHiYvr4+uru7MZlMjgofkUiE0WhkYmIChUJBcnIyvr6+mEwm1Go1/v7+BAQEEBQURGhoKBEREURERODn5+fsty1wG4RAlIswOjpKd3c3PT09dHV10dPTw9DQEGKxGLVajU6nY3Bw0CFAi8XiyHQSi8WYTCZHWuPAwABNTU1UVVUBMHfuXMLDw/H19UWtViOTyRxit3tfuVzu8LBisRipVIpYLEapVBISEuL4iYqKwsPDw2mfk4DgaZ2CfblqtVqxWCwYDAYaGhqoqqqiurqaiooKampquHbtGiqVirS0NHx9ffH09MTT05PU1FQWLFiAQqFwLG+VSiUajYaQkBC6urr44IMPeOmllxgaGuK5555j06ZNxMTE0NbWxtjYGHK5nN7eXrq7u9HpdAwNDdHb20tDQwONjY20tbVhMpnQaDSkpqaSmprK3LlzWbx4MTExMQ5x238+q3OGwPQgiNYJNDU1kZ+fz8WLF7l27RoTExOoVCo0Gg0ajYZly5axadMm/Pz88PX1RaVSIZfLkUqlSCQSfHx80Gg0SCQSh1ikUqmj46JUKsXHx4egoCAMBgONjY0MDg6SkpJCXFwcRqMRsViMVqtlfHzcsV82Go2Mjo4yNjaGXq/HYDAwMjJCT08P/f395Ofn89FHH2EwGPDy8iI+Pp6MjAwWLVpEXFycUHU0QwiinQGGhoYcS9++vj4aGxtpbGyko6OD0dFRpFIparWa6OhoYmJiiI2NJSYmhqCgoAd6vfHxcSQSCVFRUeh0Oi5evEhaWhrLly9HIpGgUqmAG2mRd8NgMFBTU0NdXR319fUMDw8zNDSEzWajvb0dsVhMf38/ZWVlBAUFOX6E5I7pQxDtNKPT6SgqKmLfvn2cOXOGpqYmwsPDWbVqFV//+tdJT0/Hx8fH4TUnLzkfFIvFgtVqJT4+nuHhYY4cOcKlS5fYtm0bISEh9+URFQoF6enppKamYrVasdlsjI+PMzw8THV1NYWFhXz44Yc0Nzcjl8vJzs5m69atbNq0SSjSnyaEQNQ00NXVxeXLlyksLKSvrw+pVMrExAQymQw/Pz/CwsKIi4tj3rx5BAYGTvnrNzU1cfLkSXp7e+ns7KSyspKYmBjWrFnD+vXrp8wL9vT00NTURH19PdeuXaO/v5+BgQGsViv+/v74+/sTGRnJihUr7trPSuDeETztFGHfA46NjXH58mVOnDjB0aNHEYvFLFq0iBUrVpCdnc28efOm3RaLxYLJZMJqtRIREUF6ejr19fWcOnWKefPmTZlo7UvhJUuWAHDt2jUOHDjAiRMnKC0tRSKREB8fj81mQ6/X4+/vj0ajETzwQyJ42ini4MGDHDx4kJKSEjw9PUlKSmLZsmXEx8cTFBSEWq3Gy8sLhUIx7bY0NTVx+vRp+vr6CAgIYNmyZezZs4dDhw7xL//yL6xbt25aIr1ms5nh4WEGBwcZGhqiubmZsrIy8vPzGR4eJj4+nq985Svk5uZO+Wt/nhA87UNw/fp1Ghsbqa6u5urVq3R3dxMWFkZsbCxZWVnk5OQ8cDDpYZBIJMjlcoe3DQ8PJy4ujoCAABoaGoiMjCQ5OXnKX1cqlTqWxQAxMTH4+/sjEomoq6vDZDJx7Ngx2traUKvVJCUlkZKSMuV2zHYE0T4gg4ODnD9/nj179pCfn09ycjLr169nx44dREREOLU5uD2QpdPpUCgUSKVSFi5cSFdXFzU1NchkMuLj46fdRn9/f3Jzc8nNzaWnp4fTp0/z3nvv8dZbbxEYGMiTTz5JWFiYMP3gPhFEexdunY/T0dHBsWPHKCgooK+vj+DgYH7wgx8QFxdHbGys0wULN5apY2Nj9Pf3O4JgiYmJmEwm/v7v/57h4WEef/zxGRVLUFAQK1euJDIykqqqKgoKCrhy5Qrf+c53yM7OZuXKlcTFxc2YPe6MINq7YBdsd3c3LS0tVFdXc+rUKVpaWoiKimLVqlVs3759Rvaq94rNZnMkTNiLDAASEhIQiUS0t7dTXV1NWloaXl5eM2ZXaGgooaGhLF26lLCwMD7++GNKS0sxmUwMDQ2xYsUKYmNj8fPzE7Kr7oAg2nvAZrPxxz/+kaNHjzIyMsLChQv55je/yYoVKwgODna5ihh7PrG3t/dNPaIsFgvz58+nsrKSw4cPo1QqmT9/vlNsXLNmDQsWLKC2tpZXX32V//qv/2L37t188Ytf5LnnnhOWzHdAEO1dKC4uZv/+/Vy9epWgoCA2btzI/PnzSUlJISwszNnmfSZSqRQvLy98fHxQqVQOTyuTyXj00Ufx9PTk9OnTJCcnM2/evBn1avbthoeHB8HBwahUKp566imio6Npbm7m0qVLdHd3k5eXR0ZGhqPa6NZtyucZQbSfgdVqxWw2o9fr+fDDD3nrrbdYunQpO3bsYOfOnc42767YPa2npydyudwhWntAanBwkD/96U80NTXR3d1NYGDgjOUN3yo8Ly8vtmzZwrp167hw4QJvvfUWH374IaOjo0xMTJCdnS10lLwFQbT/w+Q7+fXr1zl16hR/+tOfMJvNPP3002zbts1pS8n7xX7DGRkZQSaTfaqUzsvLi6ioKAwGA83NzY7iA2cik8nIzMxErVaTmZnJ3r17qa+vp76+nsceewytVgsIHhcE0ToQiUSYzWbq6+s5duwY58+fp6uri5UrV7Jz504yMzNdbu96O+yBKHvd7a2CDA0NZcuWLbS1tXHx4kWio6MJDQ11krX/i5eXFwsXLsTf35/BwUEuXrzIwYMHsdlsbNq0ibi4uM+9YEHoEXUTdXV17N69m9///vfU1tbypS99ia9//essXrzYbQRrRyQSOdrJ3Jr0FhUVxRe/+EVkMhnnzp2jtbWV8fFxJ1n6aaKiovjRj37ECy+8wPXr13n99df57W9/S39/v7NNcwkET/s/fPDBBxw+fJiamhpHnvDSpUuJjIx0tmn3jb3zhEQicRSo34pSqUSpVGI0GmloaCAkJITo6OiZN/YzsNubk5MD3PhuCgoK+PGPf8yWLVvIy8v7XHvcz71oDQYDJSUlvPfee9TV1TFnzhyeeOIJ8vLynG3aA2Mvire3jLkdYWFhhIaGUlNTQ1hYmMuI1o6/vz87duzAYrHw7rvvcvr0aUwmEwqFgoSEBPz9/Z2+F3cGn3vRvvrqq7z55ptYrVY2b97MX//1X7vsUc69Mrku904eKSMjg5GREY4ePUpQUJDLJvI/9thjJCUl8c4775Cfn8+VK1d4/vnn2bx5M1FRUc42b8b5XIrWYrFQW1vLkSNHOHPmDN7e3uTl5bF169ZZcRHYm7bdrYArLi6OgYEBPvzwQ1pbWx3HP66yf7dHiqVSKenp6Tz66KMolUouXbrEiRMnGBwcZMuWLSQmJrpURtp087kTrdVqpaWlhYMHD/LLX/6SpKQkXnjhBZ544gnUarWzzZsy7E3jJvdGvhW5XO5oazM8PMzVq1dZtGiRy7RPvXWVsHTpUmJiYkhNTeU3v/kNH3zwARMTE2zbto2MjAwnWTnzfO5EKxaLefPNNzlz5gy5ubls2rSJdevWzTrBms1mR3uYO6FWq1m3bh1Xr17l6NGjLt/zOCQkhJUrV2I2mzl06BBvv/02BoMBpVLpGPM525n973ASw8PDHDt2jMLCQkQiETt27GDjxo2Oli+zpR+AzWZzTBq4G0qlklWrVhEYGEhRURFNTU0u/zmEhISwYcMG1q1bh0ajobS0lP3799Pa2ups02aEz5WnPXnyJD//+c/x9fV1pM5NrnKZLccI9tGXwF2jqx4eHsTExBAaGsrg4CA1NTUkJSURHR3t0pFZPz8/Nm7ciFqt5s0332T37t1otVoUCoVLJIpMJ58LT2symTh8+DBHjx5FIpGwZcsWtm/fPqNlac7gfm5CMTExLFq0iPb2doqLi93iBhYUFER2djaLFi1CrVZz+fJliouLGRsbc7Zp08rnQrRNTU28/fbbNDU1kZOTw9atW2d9d0C76O51qRsXF8fGjRsZGBjg8uXL6HS66TRvyggICCAvL49Vq1Zx7do18vPzqaqqYnR01NmmTRuzXrS1tbV8/PHHVFdXExcXx5e//GXCw8Odbda0Yk9hnLxMvhv2XsxGo5HS0lJqamrcxmOtWLGCJ598ErlcTkFBAX/+85/p6upy/N7V9+j3y6wWbX9/P4cOHeLUqVNkZGSwdu1a5syZ49J7tanEPi/oXi/awMBAwsPDkUgkVFZW0t3dPc0WTh3Jycls376d8PBw8vPzOXHiBB0dHcDsiVXYmbWi7e/vp6CggGPHjtHZ2ckLL7zA5s2bnW3WjGH3svfqaeFGSV9WVhYpKSlUVFS4VTRWKpXyxBNPsH37dsbHxzl06BD79u1zm9XC/TArRWuz2bh8+TK/+c1vCAgI4Ktf/SqpqalCk+y7IJFI2LBhA1lZWRQWFlJcXIxer3e2WffFihUr+N73vodcLufEiROcOnWKvr4+Z5s1pcw60VosFi5duuRovpaRkcGOHTsICAhwtmkuj0gkwsfHh7i4OAwGA/X19VRVVWE0Gp1t2j0TFBTEo48+SkZGBuPj43z88cdcuXLF0b1jNjDrzmn1ej2vvPIKVVVVbNy4kezsbJfO8HFFPD09ycrKQqfTcfLkSSIjI90qt1cqlbJt2zZkMhnvvfcenp6eREdHM2fOHMc4UHdmVnnaa9eusW/fPnp6ekhISGDHjh1CB/sHQKvV8swzz6DRaMjPz6elpcWtIrBisZjExESWLVtGRkYGHR0d7N27160Ca3diVon2woULfPDBB4SHh7Nt2zaWL18+6xMophqbzYZarWblypVERETQ0dFBfX29213wHh4epKWlsXPnTmQyGcePH6e2ttalOnQ8KLNCtCaTicbGRi5evEhTUxObN29m27ZtzjbLLZl8PHL27Fnq6uo4d+4cbW1tTrTqwVCr1eTk5JCamorRaOTMmTNcuXLF2WY9NLNCtCMjIxw+fJjOzk5SU1NJS0tzdCB0p2WdK2E0Grlw4QIGgwGj0UhFRQVms9nZZt0z9u9dqVSyePFiFi9eTE1NDYWFhW5/DDQrRNvd3c1f/vIXZDIZzz33HBqNxvG72XawPlP86le/YmRkhHXr1jEwMEBxcTEDAwPONuuemfy9L1myhGeeeQaDwUBpaSmNjY0YDAYnWvdwuL1o7W1ArVYrSUlJLF26FB8fH2eb5dbU1NTwz//8z0ilUv7v//2/SCQSuru7qaioYGhoyNnm3TcymYyoqCjmzp2L2WzmyJEjjmwpd8StRWuz2Thz5gz5+fnMmzePxYsX4+PjI3jXh2B0dJRnn30Wo9HIj3/8Y8cIFJlMRkFBAdevX3e2iQ+Et7c3ubm5aLVazp07R2VlpbNNemDcWrQTExMcO3aM4uJiHn/8cVasWOFsk9ya0dFRNm7cyJUrV8jJyeH//J//g6enJ08++SRJSUmcOXOGlpYWZ5v5QMhkMtavX+8oP8zPz6eoqAiTyeRs0+4btxXt8PAwhYWF6HQ6QkJCiI+Pd6sEAFejtLSU7Oxszp8/z4oVKzhw4ABSqRSZTEZaWhoREREMDAxQW1tLR0eHW2UYTQ5GxsbGkpKSwvXr17l8+TITExNOtOzBcFvRNjY2cuDAAQICAsjNzUWlUjnbJLekvb2d73//+2RmZlJaWsqWLVs4cuTITefbYrEYrVZLSEgITU1NXLlyxa081OTtUlhYGFu3bsVqtVJSUsLw8LATLXsw3DaNsb29nZMnT7Jjxw4eeeQRwcvehhMnThAeHk5WVpbjM2pvb+fKlSucPXuWgwcPYjab8fX15Ze//CXPP//8Zz7PnDlz2Lx5M8XFxZSUlLB27doZfBdTh1arZc2aNZw7d466ujqqqqpQqVRuFbx0O9FarVaGh4dpaGhgbGyMmJgY4uPjnW2WS9LZ2cnp06c5ffr0bR8THh7ON77xDZ5//nlCQkJu+zitVsuqVasoKiqipqaG3t5et+sRbe+jHBQURHh4OI2NjZSUlBAQEOA2ExHBDUWr1+s5ePAgNTU1zJs3j4iICGeb5LKo1Woef/xxAgICqK+vdyRHhIeHs3DhQlasWMH8+fORSu9+GSgUChITE1EqlTQ3N1NdXY2Xlxf+/v7T/TamjMnL5NTUVLq7u7l69SoRERGCaKcTi8XC0aNHMRqNPPXUUyQkJDjbJJfFy8uLmJgYvvGNb0zJ8k8qlTJ37lxGR0e5dOkSGo3GrUQ7mezsbGw2G7/+9a8pKipi4cKFREZGukXNtdsFovr6+qirq8PDw4O1a9cSHBzsbJM+N9hsNhYvXsz8+fMpKSlx67POgIAAMjIykEgktLa2UllZ6TbpjW4l2o6ODsceJDY2Fm9vb2eb9LlCJBKRkZHBggULqKuro7S0lK6uLrc6/pmMVColKSkJLy8v2tvb3aYCyK1EW1JSwpkzZ4iLiyMjI0PIfLovjAx2ddHV1cvInY4mjYN0dXXRNXi7bhVGVB4eBIVo6e3t5fz5827TbvVW1Go1a9asISQkhNra2ps6OLoybiXa0tJSPvnkE+bOncvChQudbY6bYKHho79mrlqJX2gooaFBqL2DyPnpJ/RMFu/ENQ5+ay5qpR+hoaGE+ilRz32BP9f974Mm6v7MrjhfFi1bxplT5zhRPcjeI0fcrtbWjo+PDxs2bECr1VJbW0t9fT39/f0uXxnmVqLV6XQMDAwwZ84clxuA7KoYGg6x4UvvUskSvr/7KEf/8hJPh+s4+8OVrPld1f88aoJLP13O1pcrYcn32X30KLt/sg7fyrf4wpofck4H0M1Hf/cFWr9VzKjZTGvZm0TWf8KpC6U0NDS4ZWYR3JgcKJfLGRoaory8nPr6ekG0U4HFYqGrqwu9Xk9QUNAdzxMFJjNM5amL9BHAD4+e46dPr2Pd9r9h90f/SiJQ/tvDlAHoTvD7n12DwG+z7+hPeXrdOp7+wUH+/MNAuPb/8W8HOoBRRnoT2bYyGZVEQmTaFhan6dEbx2lsbHSrdqu34uPjg7+/P11dXW5R7O8Wor1+/Tp79uzBaDSSnZ09q8ZSTi9mFP7xxMe/yLpFHv/7z9FJZAHUdtAPUHqad8aBxzexwvHRerB03fPIgSNHS9ARSfpaPT964e9499gx9r78FfYUL2H+4kxaW1upqKiY2bc2hURFRbFkyRJsNht9fX0uHytxC9H29PRw6NAh5HI5W7duFbor3jP+zN3xPJcv/z0rJ2l24Nz7vA+wPJVIoLEun3EgKy0Kj8l/rk1gEUBtO114kPWDK5z/rpE//s3f8LMz83jpk/f4212P0tXVxaVLl9yy1hYgMTGRtWvXYrFYqK6udvnlvluIdmhoiJKSEry9vVm5cqXQrO0hmKh7nZ07/5tx5Dz7948RO+l3HtLbjEu5VEsHgEcQi3a9zNGaGi5+9AOeXhxNXl4eFouFuro6Wlpa3LIjhI+PDwsXLsRms9HY2EhNTY1Ld+lwC9GazWZEIhEqlcrR+0ng/jFWvc7WRV/h9DhEfPsIv9pyY8Uyrn/wIxuRSERkZCRSqZTCwkK3LZK3Wq1IJBLMZjN9fX0uffNxadHabDb0ej2Dg4P4+fm5VSWGqzFQ8M8sW/AVjo7IyfinfEp/uRr7JkPueZcYgdyD240sk0gkZGdnExUVRUFBAQ0NDVNp9oxhtVrx9vZGJpPR39/v0uNQXF60dXV1tLe3Ex0dLYz2eEAGP/lHslb/EyXjETzxTjH5/28pk6MCXt6BANR19N/8hxYzEwCLEtDe5rllMhnr1q0jLS2N8vJyqqurGRoauq/BX66AWCwmJCQEb29vent7XXq+rcuL1j69LTExkbCwMGeb5BLczzmipe8KX9z5Mo3jEXz5wAXe2ZXCrZXHwcnLSQR6j5fROOnfu0uOcgkIXJt+0953MiKRCIVCQWBgIAqFgs7OTurq6tyq3SrcWDHExcURHBxMR0cHIyMjzjbptri0aK1WK1VVVVy7do2UlBS02tvd72cXg4ODVFRUUFxczJUrVygqKqKhocERHLn3I4lRqo4e4JNxWP67E/xuSwSfGRFI38RfpwEX/oVfn/6fAIyxhD/8ZC+Qxj88nnXXVwoNDSUzM5OxsTFKS0vdJvnejkQiITU1lejoaHp7e+nv77/7HzkJlxatfXnc3d1NWlrarJ/gbufo0aM8/fTTrF27luzsbHJycvj2t7/N/v377y9AMtxCQZUZkFP3i0dIS0oi6aafp/lTC0AKz//6+8TKr/Gr3GjCk5IID1rA98sh4tsv8cw9jEOKjY3lhRdeQC6XU1hY6NIX/WchkUhITk4mKSkJnU7H9evXXXZEpkvX04rFYgYHBzEYDISHh6NUKp1t0rSh0+morKzk5MmTNDY2Eh8fT3JysiNaXlNTw2uvvYZMJiMnJ+fetgoiD3wCAojXaBDf5fasXvlTKqpX8uo//5LfFbbC0uf41Xf+H1/dEPOp5fRnoVKpHK1W29raKCsrw9vb2+1KJ+3HiUNDQ3R0dLhkHMWlRTsxMYHFYsHDw2NWZ0GZzWYqKyv54IMP+M1vfsPq1av5wQ9+QFJSEoGBgYyPj/M3f/M3/OEPf+APf/gDAE8//fTdn1idyJPfWXHPRfCKmA18660NfOsB34dMJiMgIACJREJRURGBgYFuJ1qbzYZSqcRgMNDZ2cm8efOcbdKncFnRms1mWltbkcvleHp6Ir6bq3BTdDodFRUVvP3229TV1fG9732PnJwcFixY4OgwKZfL+au/+iuCgoJ44403OHv2rGManKuRlZWFXq+npqaGpqYmsrOznW3SfSGXy/Hz88NqtbpsgoXLKmF4eJhr166hUqkIDQ11tjnTRmtrK7t376ahoYHY2Fi+8IUvfGZL2IULF7Jx40ZGR0dpbW29p0CPSCSa8TzatLQ0Fi1aRF9fn6NG1Z2K5OVyuWO14KoRZJcWbUdHB2q1mrCwsFnraSsqKnjttdeIiIjgr/7qr5gzZ85tHyuXy1EqlYhEIvR6/T0d/cx0mZmvry9xcXHYbDYaGhq4cuWKW+UkKxQKgoODkclkLptg4bJKGBwcpKWlBY1GQ3R0NBLJ7XJy3JPx8XE++eQTzp8/j1arZfHixWRkZNy2f7PZbKa/vx+TyYRIJEIqld7Wi9psNiwWCxMTE045L/X392ft2rUEBQVx9epVl05UuBWVSsWcOXNQqVQua7fLilan09HZ2YmPjw/h4eEuXy51vxgMBt577z1KSkrIzs4mIyPjjq1M29vbqaurw2q14uXldddIutVqdVpWkkqlYvPmzURGRlJZWUlnZ6dT7HgQVCoV0dHReHp6uuxZs8uK1mg0MjIyglKpxMfHZ9Ytj00mE5cuXaKrq4uMjAwCAwPv+Pja2lqKi4tRq9Votdq7NrWTSCQoFAoUCsWM3/DkcjkpKSmo1WpqamooKiqira3NLVIbJy+PXbVowGWVMD4+jk6nc4h2tnlae3RSLpezaNEigoKC7vj44uJiLl++zJIlS1i6dOkdPw/78lgkEjl1W6HVatFqtTQ2NlJeXu40O+4HhUJBaGgoHh4ewvL4fjEajeh0OhQKBb6+vrNOtHCjhadGoyEyMvKONcIDAwNcvnyZ5uZmtmzZwurVq+/4vFarlYmJCaf3OoqNjWXt2rX09/dTUlLiFi1KRSIRPj4+SKVSQbT3i8FgYGhoCE9PTzQazawUrdVqpbu7m+LiYnp7ex3/Plls165d4x//8R8pKioiNjaWefPm3XUpLRKJ8PDwQCaTIZPJnPbZJSQksHHjRmw2G5WVldTV1WE03q41q2thNptd9ibjsqI1Go0MDw87bV823UgkErRaLRaLhYKCgpvyXO3vtauri48++ogPP/yQgIAAnnjiiXseemWz2ZBIJEilUqfFA6RSKfHx8QQEBDA6Okp5ebnbtFu1WCwuW6nkshlR4+PjjIyM3NNwKHdEJpOxfPlybDYbZWVl9Pb2kpyc7Pi9zWbj3/7t39izZw8ikYgXXniBr3/96/e0RzWbzYyOjmIwGJx+4ZlMJpKSkhgbG6OsrIzY2Fi3mLbnzOj73XBZRZjNZgwGg9P3ZdOFp6cnTz31FN7e3nz00Uf853/+Jx999JHDy46Pj9Pe3s7q1atZunQpmzZtcgjWPrLxdvT09HDu3DmamppISUlh9erVJCcnOyUoJZVKWbduHWKxmL1795KYmMiCBQtcftCVPZjnirisaO3BFFf94B4Gm82Gh4cHaWlpWK1WysrKOH/+vGMCu16vx9PTk2eeeYYnn3ySZcuW3fT3d0qqMBgMVFRU8Mknn9DX18fQ0BDnz59HpVIRExMzE2/vJsRiMTExMcyfP58//OEP1NbW0tDQQFxcnEsL12azuazDcFnRwsyn4M0Uk0WXmJjIv/7rv9La2srg4CBSqRSr1YpcLichIeG+Cv/1ej0HDhzg6NGjDA4OAtDb28t7772HRqNximjtyOVyIiMj6erqIj8/H61W6/KiFZbH94kr3+mmCpvNhkKhIDY2ltjYWMf+80HPV81mM4WFhRQXFztWKHq9ngsXLrBmzZoptf1+CQ4OZtu2bZw7d47Lly+zdOlSfH19nWrTnXDl5bHLRo/hftqquCe3vj+pVIpUKn3gvef4+Dj19fW0t7ff9O8Wi8XpKXnBwcE89dRTREdHU19fT21tLT09PU616U64ciDKZUUrlUpRKBSzLn1xKrl1JVJXV0dDQ8NNF5tCoWDlypXMnz9/hq37XybbaW9T2t7e7tLHP2Kx2GWLVFxWEVKpFLlcPuu97cNg/2yGh4fJz8/n/PnzBAYGEhYWRlhYGFKplKioKL7whS+QlXX35mzTbSdAdHQ0c+fOpa2tjfr6epf1ZvYzblfENa3if/d1s31f+7DodDqOHz/OX/7yF9ra2njmmWfw9fWlvLycCxcuEBIS4qi4cQWys7NRqVT8x3/8B1KplNzcXJfc2zo7b/tOuLRoxWKxy96JncXkM9rm5mbOnz/PqVOnmJiYIDs7m9zcXEQiEUNDQ0RHRxMSEuJSzcm8vb2JiopidHSU5uZmGhsbSU5OxtPT09mmuQ0uuzy27ylcNYLnLOyCHRkZ4ejRo+zfv59r166RmZnJiy++SEJCAjKZDLPZjEajITAw0OlZUbeiVCoJDQ3FZDJx9epVl2y3ancarojLelr7ntZkMmGxWBCLxZ/r/e1kD1tfX8/u3bvJz89HrVbz4osvkpmZ6UgPNBgMjI6OIpfLXbIW2dvbm127dlFQUMDFixdJSkoiIiLC2WbdhFQqdcnGeeDCnlYul6NWqzGZTOh0us/93tYu2JqaGvbt20d+fj6BgYGsWbOG3NxcYmNjHXswiUTiiNK64o1OqVSSnZ1NZGQk1dXV1NbWutz8H7FY7LLJHy7raVUqFYGBgRgMBgYGBmZ13+N7paenh1/84hdcvXqVyMhIvva1r5Gdnf2pG5p939jf38/o6KhLiQFu3IC8vb3x8fFheHiYyspKEhMTWbRokUt4t9HRUWw2m8vus11WtGq1mtDQUEZGRujq6iIyMtJlo3kzwfHjxzlw4ADXrl1jyZIlbN++nYyMDODTSRoTExMMDw/T1dWFyWRyOdHaiYuLY+3atfT29lJQUMD8+fOdLlqj0UhnZycmk8llh5e77PLY3tBtZGSEjo4Ol73wppuRkRHKy8vZv38/+fn5JCQksGPHDvLy8m57UZnNZsbGxhgbG2N8fNxltxZz5szhkUceYWJigqKiIrq6upxtEmNjY7S1tTE+Pu6yqzuX9bT21qlVVVV0dna67IU3nYyNjXHkyBFefvllAgICePbZZ9m0adMdeyPDjSCKt7c3QUFB+Pv7u1wgyo6vr69jkkJlZSX5+flIpVKnninr9Xra2towmUwueX4MLuxpvby8CA4Oxmg0MjAw8LnytOPj41RXV7N7926OHz+Op6cny5cvZ8OGDcTHx991m2BPDHCHrh9eXl4kJSUREhJCTU0N169fd6o9RqORnp4eJiYmPjXlwVVwWU9rD0QZjUb6+/s/V562sbGR48eP88EHH+Dp6cnzzz/PqlWr7rlMb3KFiisLFm7YumTJEsxmM9XV1bS3t7N48WKn2TM+Pk53dzcajUYIRN0vvr6+RERE0NXVRVdX1+fC09psNgoKCjh8+DDFxcUsWLCApUuXsmrVKkJCQu75eaxWK2azGZPJxMTExDRa/PCIRCKysrIwGo2cOHGCiooKlixZQnBwsFNyf3U6HdXV1aSmprqsaF12eQzg5+fnWB7P9syo0dFR8vPz2bdvH1VVVY7RGuvXryc0NPS+Pabd21osFpdfpXh4eBAVFYWvry/Xr1+nuLjYaaWEJpOJ/v5+rFarywaiXFq0MpkMlUqFQqFweY/xsJw8eZJXXnmFw4cPExISwje/+U1WrlyJRqN5oOdz9WXxrahUKseZ87lz55w2tMueVKFWq/Hz83OKDXfDpUUrFosJDw/H39+fjo4Ol+1De79M9nwDAwO88847HDx4kLGxMR555BG2b99Oamqqy97ppwN/f382bdqERqOhpKSElpaWGV8h2Gw29Ho9Go2G8PBwoqOjZ/T17xWXFq1IJCI+Pp7g4GAqKyvp6OhwtklTwuSOi+fOneO9996ju7ubBQsW8KUvfYm1a9e6bORyupDJZMTFxaHVahkaGvrMDhzTicViobm5me7ubvz8/AgLC7vrqBZn4bKBKLhxcScmJjI0NERhYSHBwcF3PaN0F2w2G//4j//I+fPn0Wg07Nq1iw0bNqBSqdxuaTuVaLVakpKSaGhoQKvVzlghgdls5sqVK5SXl+Pp6emy2VDgBp42ISGBgIAAioqKaG1tdbZJD43FYqG6upo333yT8vJy/P392bJlCytXrnTMkPk8k56eztq1a2ltbeXKlSszFpCyWCxUVVXR0NDgON92VVz6ChGJRMTExBAQEOASB+8Py8TEBB0dHbz22mvs37+fNWvW8Oijj7J+/Xpnm+YyxMXFoVar+fOf/0xpaSnt7e3MmTMHDw+PaX1dq9Xq6FuVkpLi9BzoO+HyolUoFPj5+TE+Po7JZHK2SffF5BpYo9FIYWEh77zzDtevXycvL48nnniCzMxMJ1vpeiiVSkJCQujv7+fSpUuoVCrCw8On9TWlUinj4+OIRCICAwNd9owWXHx5bEej0aDVapmYmGBwcNBtEi1EIhFWq5Wuri5HW5jq6mqio6N58sknWbFixV2HQ38ekUgkZGdnExERQX5+Pi0tLdP+msPDw4hEIgICAoiLi3PZvGNwcU9rx9fXl+XLl6PX6zl16hR5eXku/aFOpr29nYMHD3Lw4EHMZjO7du0iOzub5OTkz/3+9XYolUp27dqFTCbjpZdeIiMjg0WLFk1bd86BgQGqq6vx8PAgISGB+fPn33WcqDNxC0/r5+fH8uXLMRgMnDp1Cp1O52yT7omSkhLef/99Tp06hY+PD3l5eY5hWHbBunq2kjMQiUTIZDLHkUtdXR1lZWXT1uuqoaGBM2fOYLVaiYiIIDAw0GUro8BNRKvRaFi8eDETExNcunTJLUTb1tbGhx9+yIkTJ9Dr9WzcuJEvfvGLn/Kw0+E5ZsuRkY+PD6mpqfT09FBQUDBtk9lbWlq4ePEicrmc8PDwaQ96PSxusT5TKBSkpqYil8tpb2+fti/vYZgcdDp37hx79uyhvLycuXPn8tRTT5GQkIC/v/+M2WPvZunODfHi4+N57rnn2LNnD1evXqWzs3PKGtVN/r7sY1Wjo6OZM2eOy39ebuFp4cZFGBUVRVBQEBUVFbS1tTnbpJsQiUSMj49z6dIlPvroI0pKSkhMTGTDhg0sX758RpdcIpHI5S+8e0Gj0ZCZmYmPjw/d3d00NzdPWbtVe5Cwv7+f7u5ulEolCQkJxMTEuPxn5xae1s7ChQvp6uri1KlT2Gw2vvKVrzjbpJuorKzkpz/9qWOY87e+9S1SUlKcZo998qA775tVKhV+fn54eHhQX1/v2HNOBUNDQxw5coS6ujqCg4NJSEhwiwCnW4l2wYIFGAwG/umf/gm1Wu0yojUYDOzdu5dz585hs9nYsWMHa9euJT4+3in2TBbrvQh28lLRZDJx6dIl9u7dS29vL1arFZPJRE5ODk899RR6vR6z2YxWq52xRntz586lv7+f6upqwsPDmTdv3pQ8r16v5/Tp0/T19TF//ny3KdBwK9EGBASQnp6OzWajq6uLvr4+p468MJlM9PT0UFFRwb59+xgYGCA3N5cdO3Y4TbB27EOR70W09qV9Z2cnzc3NfPLJJxw7doze3l7gRmGDh4eHIygkk8kIDAxEqVRO99sAIC0tjeHhYf74xz9SX1+PTqebEoH19/fT1NSEn5+fSxe934pbiRZu9PRdtGgRY2NjHD9+nJUrV97XtPSpwp5D/M4773Do0CHmz5/Prl272Lhxo0tUh9i97J0SUSZ72IsXL/LSSy/R3NxMaGgoX/nKVwgODsbDwwOJREJHRwfvv/8+bW1tJCcns2rVqhkTrVarJSUlBbPZTGtrK7W1taSkpDxUJVRvby9NTU0olUpSU1NZsmQJPj4+U2j19OF2ovX09GT16tXk5+dz+PBhYmNjZ1y0Y2NjlJWVsXfvXq5evYpWqyU3N5fVq1c7BDtZEDPNZO96JxtEIhETExNUVFRw8OBBqqqqiIuLIzc3l7Vr1xIUFIREIsHDw4OamhpHGqmfn9+Mn2MGBgaSnJyMTqejsLAQrVb7UKItKiri4sWLBAcHk5SUNKPL/YfF7UQrl8tZtWoVbW1tvP3227S2ts7o7FWLxcLVq1f5+OOPOX78OPHx8XzhC18gJyfnpi4Tzo5A2m8ad7Oju7ubV199lZKSEubMmcPXv/518vLyPjUSY+7cuYSGhlJfX49YLJ7xhHpPT0/y8vI4deoUBQUFLF++nLCwsAd6LpvNxqVLl7hy5Qo5OTkkJCS4jWDBDUUrkUgIDw8nLi4OjUZDZWUlCQkJpKSkTMuh+GSPOTo6ysmTJ9m7dy/d3d08++yzZGVlkZyc/MBtYaaLewlCGY1GqqqqOHPmDOHh4Xzta18jMzPzM2fY2Pex9n3fTCcgeHt7k5eXR11dHfn5+ZSXlxMREUFAQMB93SCtViudnZ20trYyPj7OvHnzXLZDxe1wm3PaW0lKSmLlypU0NTVx5MgRjEbjtLyO/YLo7Ozk448/5vDhw/T395OYmMjmzZtZvny5o5eQqxyt3GvUuLi4mOPHjzM2NkZSUhJ5eXl3PE6RSqX4+PjM+CQ++41TpVIRFRWFWq2moaGBmpqa+36u7u5uPvnkE3Q6HREREY56bXfCbUUbHx/Prl27GBwc5OOPP2Z4eHjaXstkMvHGG2/w0ksvUV5ezsaNG/m7v/u7T3XRcPaS+Fbutjw+cuQIe/bsISEhgUWLFrls9HTye4iJiSEnJ4fu7m7Kysruu+KrsbGRPXv2IJPJyM7OJjQ0dKrNnXbcbnlsR6FQEBsbS0hICH19fVy5cgWFQjHld82ysjL27dtHQUEBYWFhrFmzhpycnPvqQ+yqdHZ2cv36dXJzcz9zFIfZbKazs5MTJ07Q3t6OWCxmcHCQ4OBgNmzYwJw5c2a8LUtycjJWq5Wf//znXLp0ia1bt97TGBGr1crg4CA1NTX09/ezefNm8vLy3LIXl9uKFm4EJ7KyshwN0jw9PVm3bt2UPLfVamV4eJhDhw45vNGWLVt4+umn3SJocS/JFfaB3UFBQbc97hgcHOT06dOcPXuWgYEBDAYDWVlZpKenO2Xmjkqlcsz/6erqory8HKVSedcsKZPJRH5+PtXV1QQGBrJgwQISEhJmyOqpxa1FC7Bz5078/Pz4xS9+gVKpJCMjY0qGTlVVVfGf//mftLW1kZWVxfPPP8+iRYvcQrBWq5WJiQmsVusdl8f245zbFRVIpVKioqLYvn07w8PDHDhwgMWLF/Pkk0+SkZHhtJQ/m83GqlWrKCoq4syZMwQEBNxVtFarlX379nHt2jXy8vJcbvL8/eC2e1o7Go2GlJQUfHx8aGho4OTJkw+1vx0ZGeHgwYO8/fbbdHZ2kpKSwmOPPUZWVpZLN/uajH26wN2OfcbHxx3ZTrebeu7t7U1aWhrLli1j+fLlPPbYY05PIBGLxaxatYq0tDQqKyupqam5YzN7vV5PSUkJnZ2d+Pv739dcJFfE7UULNzpbrF27FrPZzEcfffTA/ZHts2BffvllPvjgA5YvX86LL77Ipk2bXLrR163ca/RYJpMhk8kwmUy3jb7bbDY8PDxIT0/ni1/8Io899hiJiYlODbpJJBJiY2NJTU1lcHCQuro6mpqabttDrKioiMOHD+Pn50d2djaLFy926Rapd8Ptl8dwI1vmySefZGBggKNHj1JaWkpISMh9BaUaGho4dOgQhw8fxsvLixdffJFHHnnELfc9YrHYsey9E48//jgeHh4cP34ck8mEn58fMTExNz1GKpVSW1tLV1cXISEhLpVU7+XlhVarZWBggPLycsLDwz91c7VYLBQXF1NQUMC6deucOpFvqnB70dpsNqRSKeHh4SxcuJCrV69y6dIl1Go1W7duvatHMJlMNDU1cezYMc6ePcvg4CAbN25k+/btbnfobkckEiEWi29aJn8Wq1atwsPDg9raWsrLyzl48CDJycn4+flhsViQy+X09fWxd+9efH19SU5Ovu0y2hloNBpWrFhBdXU1RUVFZGVl3RQNNhqNlJSUUFNTg81mY968eSQlJTnR4qnB7UU7WZQLFixAp9Px+uuvYzAYyM3N/cxl0OQsp6KiIj744ANOnjxJUlISP/vZz0hPT3fpxl53wy5W+571dqL19vYmKyuL733vexw6dIj/+q//wmAwOIZSi0QiTCYTHR0dfOELXyA6OtqlkurDw8N5/PHH+dWvfkVRURENDQ34+/s7hNvZ2clvf/tbRkZGWL16tVtV8twJtxftZCIiIli6dCkXL16kpaWFn/70pzz77LMkJycDN+fjmkwmCgoK+OijjygrK2Px4sXk5eWRmZnpUkvAB2Gy6O6GRqNh6dKlSCQSfHx86OzsRK/XO5bWUqkUuVxObm6uy02Rk0qlaLVa/Pz8MJlMNDQ0kJycjEqlchR0NDY2kp2dzfbt22fF2TrMMtHaAxTbtm3j3Xff5Y033iAsLMwh2skXcUVFBR9++CGlpaUEBATw5S9/mczMTJfLanoQJBIJcrkchUKBTCa76942ICCADRs2sHTpUrq7u9HpdI7jIvsZqEajcaml8WRiYmKIi4ujvb2d6upqZDIZf/rTnzh9+jRRUVHk5uaSnp7ubDOnjFklWrhx983JyXH0ALK3XP3ud7/ruOh2797tyLl98skn2bBhA9HR0bNCsHAj6cTf35+goCA0Gs09HVWJxWI0Gg0ajQaz2exID5RIJC5/Nr1+/XpCQkI4dOgQv/nNbzAajfT19ZGcnMw3vvENMjIynG3ilDLrRAs3UhyXLl2KyWTiD3/4A4cPHyYlJYWYmBhaW1vZs2cPDQ0NzJs3j/j4eGJjYxkYGHCMhRCJRNhsNsxmM2az2TGeRCKROAI7zqyX/SzswSeJREJLSwuNjY20tbWh0+mora0lLCzM0cnC/mNPwPDw8HC8Z5FIhIeHhyMKa7FYHCK2C3km3vfk15r8ndz6/y0WC56envj4+NDW1saJEyfQ6XSsXr2a1atXk5mZycTEBOXl5fT19WEwGBzv3WKxADduTFKpFJvNhp+fH1FRUQQEBLjsufysFC3giB7X1NTw/vvv8/LLL6PT6ejt7cVgMBAREUFISAjDw8Pk5+fT3d2NyWRCJpMhlUqxWCyMjo5iMBgQi8UEBQUhl8sZHx/HbDa7lGjtZ6n2fWx1dTVnz56lrq7O4T1jY2NRqVSYzWYsFosjTXNiYsKR2WQ0GrFarXh6euLn54fVanW8X/sFDtMvWnvHDfsSXSqVIpFIsFqtjhuT/TsymUwolUpaW1upqKhAp9MhkUhYs2aNI6W1qqqK/fv3c/ToUUcOtf19wY2JBgqFguHhYdLS0vjSl75Edna2yyZguIVoe3t7+eSTT6irq6Onp4fx8XGHx7PfkcViMSEhIaSkpJCbm+uI/j7xxBMoFAp+8pOf0N3djUgkIiMjg4SEBMxmMzU1NTQ1NdHX18f4+Lgj8AI3LmKbzYZYLKa+vh6RSOSSntZ+7GVfxra1tdHc3ExPTw8Gg4GrV6/S09ODXC53eFu7IO0iBRzex74ntlgsWCyWm9IcZ6q7o0gkwmw2MzEx4dibW61Wh9eXy+UolUrkcjkGg4G6ujqam5uBGzfs+Ph4RwVPZGQkCxYs4PDhwwwPDxMVFUVKSgparRar1YqXlxdjY2O8+uqrlJaW0tbWNmMjNh8EtxDt+Pg4zc3NHDhwgOLiYtRqtWO5ar/jjo2N4e/vz9KlS8nIyHCINioqikcffZQ//elPDtHGxMSQnp6OXC5HLBYzMTGBp6enY5kok8mQSCSO15BIJA4v5KqZUXZhicViVCoV3t7eqNVqx/96eno6PLFdeJ6eno5IM+DwbnZPbL9hyeVyJBLJPfWdul/sN4Bbb4BSqRSz2YzRaEShUDhuIiaTCbPZ7Mjmkkgk1NTUcOXKFeRyOSEhIWRlZd3UWE+j0bBo0SLCw8MxmUysWLGCNWvWkJqais1mQ6VScf36dQoKCujv70epVLr0WBC3EG1gYCAbN26ktLSUiooK1q5dS2pqKmq1Gn9/f/R6PWVlZTQ3N2M0Gm9aysGNL+2HP/whr7/+OkeOHMHDw4PExESys7NRqVSOs8zPuoDsF7k9t1UqlbqMh70V+w2nrKyMQ4cOUV1dTVBQEM8++yyxsbGObhP32lbV/jNdUwomL4En/9xqw2QB2W2XSCTo9Xqam5s5ffo0ra2tbNiwgUcffZRNmzZ9KhtOLpcTFRVFaGgojzzyCHPnziU4ONjxey8vL3bu3MnIyAhZWVkuXRjvFqKVy+XEx8ej1WrRarWsX7+eJUuWIJVKUSgUjI+Pk5SUxNWrVxkcHPzUAbqnpycrVqxgaGgIm83maHu6ZcsWZDLZrDhwn0xUVBQxMTEMDw8TFBREfHy8S1+ED4rNZiM/Px+9Xk9WVhZPPPEE69at+8zmeh4eHkRHR6NWq1mxYoVjC9TS0oJKpcLX15c1a9ZgNpuJjIx06TpbtxAt3PjQIyIiSEtLY8WKFY4cWfveIzo6moiICK5du/aprB2RSIRarWbNmjUolUr+4z/+g7Nnz7J27Vrmzp2Ll5eXy3rPB8FisaBSqfD09EQul7vskv5BsYvxypUr7Nmzh5CQELZu3cojjzxyU2LMrd+pt7c3np6ejpVYW1sbx48fJyoqiuzsbNLS0mb0fTwobiNagPT0dEefILhRlWMfOJyWloZWq8XHx+e2njMoKIjly5dTXV3NuXPn+NGPfkRubi5btmyZVYfv9uMq+950tqHX63n11Vc5cuQIZrOZNWvW8Pjjj98xk81sNlNUVMTly5f53e9+h4eHh+Pn8ccfn7EezlOB24jWYDA4Gkzv27cPuVzOwMAA3t7eREZGOo5r7paCGBQUxMaNG7FYLOzdu5eTJ09iMpkwmUzMnTvXZc/m7gd7sGhyQGk2MDExQXNzM4WFhRw9epSRkRHWr19Pbm6u49jqs6L6Y2NjVFdX09/fj06nQ6fTMTw8jKenJ+np6W63PXIL0dpD+vv37+e9995DrVYjlUrRaDR8+9vfZsWKFfc1Vd3e3SIgIIAPP/yQd955h6GhIXbs2EF2dvY0vhOBB8VisdDS0sKbb77J+++/T2JiIs899xzPPvvsTUUhn7XNKSkp4dSpUwQHB/OlL32J5ORkqqqq6O/vJyEhgbi4uJl8Kw+NW4h2YGCAc+fOYbFYWLFiBRqNhtraWmpraxGLxQ809zU8PNwRtLhy5QqlpaW88sor1NfXs23bNsdzutJ57OeJyZ97d3c3hYWFHDlyxNH+Z/Pmzaxatcoh2Dt9T11dXbS2tpKZmcnChQuJjY0lPj6ekZER1Gq12wXp3EK0g4ODFBQUOAIOQUFBHD16lLGxsQeuPBGLxcTGxhIbG8uCBQv42c9+RkFBAS0tLXh7e/PII48gl8sFwToJ++c+NDTE2bNnOXr0KJcuXWL+/Pk8/fTTrFq16qZl7Z2+J3vqYkJCAsnJyXh5eblcxdL94Bai1ev1NDY2kpGRwaOPPurI/rGH8R+W8PBwfvSjH/Hf//3fvPLKK/zkJz+hurqaf/iHf3DpQ/bZyGSP2dnZybvvvsvBgwfR6/U8++yz5OTk3FddrMlkQi6XExYWRkhIiFu3mbHjFqI1mUwEBQWh1WodCQKpqakoFArHfqSjowOlUvlAd1D7cdLWrVsZGRnhwoULFBYW8u6775KVlUV0dPSsOzZxVSY3Jzhz5gyFhYX4+PiwbNkyNmzYQEpKiiN+cbety8TEBFVVVXh4eLBgwYKbkincGZcWrc1mo6Ojg7GxMbKzs2/yqn5+fg6B9vX1cenSJaKjox9q2ZOWlsbPfvYz3nrrLfbv389vf/tb6uvrefLJJ4mJiXGrYwF3pqenh1deeYXi4mJiYmJ4+umnWbNmDRqN5qaVz922Lh0dHZw8eRK1Ws28efNcth74fnFp0YpEIvLz8+nv7+fpp58mPDz8U4+prKykoKCAzs7OKes4sWXLFoKCgjh06BCFhYVUVlbyxBNPkJOT4xKzZ2cLt3pKq9XKgQMH2Lt3Ly0tLSxZsoRdu3aRlJR0Xzdjq9XK4cOH2bdvH8ePH0ev15Oens53vvMdsrOz3b4ziUuK1mQyMTY2RkNDA/v378dkMpGens7w8DAGgwG4kQNsNBr58MMPaWpqYuHChQ/9ZdgvooCAANasWQPABx98QGlpKadPn8ZkMrFgwQKio6Nd/mzvXkddOhO7bcPDw3R1dXHt2jU+/vhjrl69ypIlS9i2bRvLli277+e1p6p2d3fj4eGB0Wjk+vXr6PX6WZFs4pKiHRwc5MiRI/z+97+npKSE8fFxLl68iEqlclTiTExMoNfraWlpITExkW9961sPndU0+QKXyWSsX78erVbL2bNnOX78OL/+9a+Jioriq1/9Krm5uQ/7NqeN2xU/uCpnz551DLXWaDTs3LmTxx9//KZKnftBLBaTnZ3NnDlzGB0dZXR0FE9PT5YuXeq0qQhTiUuK1tvbm8DAQBISEoiMjHTsY+ydFmQymSNVLzk5mbS0NOLj46dsz2L3UhKJxNE21MvLi7KyMjo7O3nvvfcoLCwkMTGRrKwslxsxMdnDumo2VE9PD5WVlRQXF1NaWopOp2P+/PnMnz+frKysh0p4EIlEaLVaAgMDHdeJvZ3ObMAlRevp6cm8efNQKBSo1WqUSiVGo9GxPFYoFEilUsdEcns/pKniVo+blJRETEwMCxcu5PTp0xw4cICzZ8+SkZGByWRi06ZNjtpcV4gy2+tqwbVEa0+r7Ovr4/Llyxw9epRz587h5+fHsmXLeOyxx6aszamnp6fLb2EeFJcULUBwcLAjXdHem+nWTgr2i3Ny14bpQi6Xk5SURHBwMPPnz6e0tJQrV67wxhtvsHv3bpYvX86aNWvIzMy86e+clVFl/2xc6Zy5u7ubjz/+mNOnT9PV1YVarXakjtrnMc1WoU0lLitaewWGK2HvjBAUFER4eDh+fn588skn1NbWUlxczPj4ONevXyckJITg4GCioqKcuqe091Nypg3Dw8PU19fT3NxMR0cHlZWVDA0NERkZSXp6OsuXL2f+/Pn3lTv+eUf4pB4AsVhMXFwccXFxZGdnk5+fz/nz5zl9+jT79u0jMTGRNWvWsHPnTqcEPiZ3fHBm+1OdTkdFRQWvv/46ly5dQiaTkZ6ezqOPPsrq1auJiIhw+k3FHRFE+5BERESQk5NDUlISVVVVXL58mb6+Po4fP87Zs2cJDw9n3rx5rFy5krCwsBm3b6b3tO3t7RQVFVFRUUF3dzcGgwGz2Uxubi6JiYkkJyc7upC4ej9lV0UQ7UNiH02h1WpJSUkhMjKS8vJySktLKSwspKqqioGBAUQiEcnJyXh4eKBWq/Hx8Zn2PFh7DGA60ev1DA4OMj4+jslkori4mIsXL1JZWcnExARarZasrCwyMzNJSUmZNRFcZyKIdgpRKBQsXryYzMxM+vv7uXz5MjU1NbS2tvLmm28yMDCAh4cHy5YtY/PmzWRnZ0/LXs6+3LQ3Gp8ubzs+Pu4Yr1JUVIROp8Pb25uIiAhyc3NJTU0lMTGRoKAgvLy8hH3rFCF8ilOIfRIB3DhyUCqVzJkzh9bWVsrKyqivr2dgYICuri6OHTtGWVmZo11nYGAgYWFhjmqUh1k6Tu6kOBWCtVgs9PT00NHRwfXr1xkYGMBoNGIwGNDpdPT19aHRaAgJCSExMZGUlBSio6OJjIx06+mDroog2mkkICCAgIAA5s+fT3Z2Nq2trdTX11NTU0Ntba1jzpBSqSQuLo60tDTS09NJTk52JGzYj4zsxzf2/75TiuLko7C7tXyd3Mt4cmd/eyDLZDLR3d1NXV0dpaWllJeX09raik6nw9fXlzlz5pCenk5cXBwREREkJibi7e09LZ+nwA1ENlc6fZ/F2Gw2DAYDer0evV5PX18fZWVljiomo9Ho8F56vR6TyYRUKkWtVhMaGkpoaChhYWFotVpCQ0MJDAy8bT+r0dFRzp8/75gI+OKLL97WrrGxMQYHB+nq6qKjo4P29nY6Ozvp7u5mbGzMMXJEJpMhl8sdnf3tvbliY2MJDg7Gx8cHhUIhnLPOAIJonUhPTw89PT2OGUPXr1+nra2NxsZGOjo6gBtnw2q1msDAQIKDgwkMDMTf3x+NRoNSqcTDw8Mx9d3uIa9du0Z5eTktLS34+PiwYcMGRy2pfZqg2WzGZDJhMBgYHR1lYGCA3t5eenp66OvrY2BgAJPJhEKhICwsjPDwcMf8o4CAAMdy+EFa/Qg8HIJoncit+06z2czY2Bjt7e20tbVhNBoZGBigs7MTk8nExMQEo6OjjI2NMTY25higJZfLMZvNjj1mb28vfX19jhk/fn5+hISEEBgYiFgsdiyBZTKZwzvax4d4eXmhUqnw8vLC29ubgIAAIiIiHBlq9gyrz5oIIDAzCKJ1QYxGIyMjI5jNZvR6PTqdjomJCUdlU19fn2P5ah9GZRfx6OgoExMTnwpCyeVyx4wfhULh2PMqlUrUarWjqYB9qJX9xy5oV8ipFriBIFo3ZGxsjJ6eHseEO6lUyujoqEPc9uFh9t7H9qWwff6qSqVyBKikUikqleomLyrg2giidUPs5WaTC93tAr21+N3+9U6e7D55oJYrFhYI3BlBtAICboZwexUQcDME0boJD7IgEhZRsxNheexGWCwWBgYGHFHiyfta+xmtSCQiNDTU5VrgCEwdQhqjG6HX67lw4QJnz56lpKSE0dFRR8aS/RzXarWya9cufvCDHwDCLKLZiCBaN8I+CcFms1FRUYFGoyEiIoKgoCAkEgmDg4NcvXqVgwcPolKp2LlzJ1qtFhDEO5sQROtGKBQK0tPTiY2NxdPTk4ULF7JixQrCw8Px9PSkt7eXoKAgCgsL+fd//3f8/f155plnAPdopSpwbwiidTM8PDwICwsjLS2NJ554gry8POBGCxyz2cy6det44403+PGPf8y+ffvQaDTk5uYKI01mEYJo3RBvb2+CgoKIiYnBx8fnU79fvHgx8fHx1NbWcvr0aRYvXiyIdhYhHPm4IWKxGKVSidls/szfBwQEsG7dOqxWK+Xl5YyOjs6whQLTiSBaN8JisTiqd1JSUm7b6TEiIoINGzYQHh7uqNMVmD0Iy2M3YmxsjNOnTzM6OkpycvJtm6QplUrCwsIICAhgYGBA6Ho4yxA8rRsxODjIa6+9xoULF4iKirrtlMChoSHq6uqw2WyEhITMiqFTAv+LIFo3QiQSYbFY8PT0JDQ09LY1rteuXWPv3r2Mj49P6WAyAddAEK0b4eHhQUpKCklJSahUqts+rrq6mv379yMSiUhNTRVal84yBNG6EVarlbi4OEeW02dRV1fHhQsX6O/vd0w3ELpOzC6EW7CbUFlZSXV1NVqt9jNntw4PD1NaWsqBAwcoKytj7ty5LFq0iPDwcCEQNcsQPK2bcPDgQV577TVkMhkhISGf+v3Zs2f593//d375y18yOjrK9773PVavXi0IdhYilOa5OH19fZw9e5bf/e53lJSUsGHDBhITE9FoNI4+UCMjI7S0tNDf309AQACZmZnk5eU99KQCAddEWB67OPZBzNXV1QwMDHDs2DFKSkrw9fVFrVYzPj5OV1cXwcHBLFmyhGeeeYa5c+c622yBaUTwtAICboawpxUQcDME0QoIuBmCaAUE3AxBtAICboYgWgEBN0MQrYCAmyGIVkDAzRBEKyDgZgiiFRBwMwTRCgi4GYJoBQTcDEG0AgJuhiBaAQE3QxCtgICb8f8DAqq1XHbsldIAAAAASUVORK5CYII=",
"path": "images_version_5/image_56.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
As shown in the figure, the diameter CD of circle O crosses the midpoint G of chord EF, then angle EOD is equal to ()
Choices:
A:10°
B:20°
C:40°
D:80°
|
Như hình vẽ, đường kính CD của đường tròn O cắt điểm chính giữa G của dây EF, thì góc EOD bằng ()
Các lựa chọn:
A: 10°
B: 20°
C: 40°
D: 80°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, the diameter CD of circle O crosses the midpoint G of chord EF, then angle EOD is equal to ()
Choices:
A:10°
B:20°
C:40°
D:80°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, the diameter CD of circle O crosses the midpoint G of chord EF, then angle EOD is equal to ()
Choices:
A:10°
B:20°
C:40°
D:80°
|
As shown in the figure, the diameter CD of circle O crosses the midpoint G of chord EF, then angle EOD is equal to ()
Choices:
A:10°
B:20°
C:40°
D:80°
|
280
|
56
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAnMAAALpCAYAAADYTaArAADlJElEQVR4nOzdd1RUx9sH8O/Sm/SOChYsECVYULH3HgvWaMQaY0zy02iMMbbEGGPvRo29xt4LIooVpYgK9q6IWFAUBKTN+wfvHe+yfVnKxudzDsfxlrlz++zMnRkJY4yBEEIIIYToJYOSTgAhhBBCCNEeZeYIIYQQQvQYZeYIIYQQQvQYZeYIIYQQQvQYZeYIIYQQQvQYZeYIIYQQQvQYZeYIIYQQQvQYZeYIIYQQQvQYZeYIIYQQQvQYZeYIIYQQQvQYZeYIIYQQQvQYZeYIIYQQQvQYZeYIIYQQQvQYZeYIIYQQQvQYZeYIIYQQQvQYZeYIIYQQQvQYZeYIIYQQQvQYZeYIIYQQQvQYZeYIIYQQQvQYZebkGDhwICQSCby8vEo6Kf8JzZo1g0QiQbNmzUo6KWrTxzTn5uZi4cKFCAgIgLW1NSQSCSQSCbp27QoACA8P59PCw8NLNK0EePjwIT8f69atK+nk6My6dev4fj18+FBmvj7eW4RoauPGjWjSpAns7OxgYGAAiUSCzz//vMi2Z6SLSM6ePYvGjRvz/586dQpNmjTRRdSEEDX17dsXO3bsKOlkEEI+cdnZ2di1axeOHDmCyMhIvHjxAu/evYONjQ08PT0REBCAoKAgtGjRAgYGsmVKXl5eePTokcx0S0tL2NjYwNHREX5+fqhbty66d+8ODw+P4tgttY0bNw6zZ88u1m3qpGRuw4YNSv9PSGkwdepUXmLwX3P+/HmekevYsSNCQ0Nx9epVxMXFYdGiRSWcuk+Ll5cXJBIJBg4cWNJJIXriv1RauW/fPlSrVg19+/bFhg0bcPPmTbx+/Ro5OTlITk7GpUuXsHz5crRu3RrVq1fHoUOH1I77/fv3SExMxNWrV7Fx40b88MMP8PT0RPfu3eWWApeEJ0+eYN68eQCA+vXr4+DBg7hy5Qri4uKwa9euIttuoUvmPnz4wF8iVlZWSEtLw44dO7B48WKYm5sXOoFE/1GVXtE7fvw4AMDQ0BBbtmyBtbW1zDLNmjUDY6y4k0aIFHoe/HfNmDEDv/76K3/OtGrVCl26dIGPjw9sbW3x+vVr3Lp1CwcOHEBoaChu376NX3/9FR07dpQbn7u7O0JCQvj/s7Oz8ebNGzx8+BDnz5/Hzp078fbtW+zZswdhYWHYuHEjvvjii2LZV0VOnjyJ3NxcAMCqVavg6+tbLNstdGZu3759SElJAQAsXLgQQ4YMwbt377Bv3z706dOnsNETQtTw9OlTAICLi4vcjBwhhBSljRs3YsKECQAAJycnbNu2Dc2bN5dZrlWrVhg5ciTi4uIwatQoJCcnK4zT2NgYn332mdx5gwcPxvz58zF16lTMmzcP7969Q58+fXDmzBnUrl1bNzulBeFZDABVqlQptu0Wupp1/fr1AAAfHx8MHjwYPj4+AKiqlZDi9OHDBwD5Dz9CCClOiYmJGDFiBADAwsIC4eHhcjNyYjVq1EBoaCjGjh2r9XbLlCmDuXPn4q+//gIAZGRkYOjQoVrHpwvCsxgo5ucxK4Tnz58zIyMjBoD9+eefjDHGpk+fzgAwQ0NDlpSUpDKOp0+fsp9//pn5+/sza2trZmxszFxcXNhnn33G+vTpw9auXcvevn2rVfpycnLY2rVrWZs2bZiLiwszNjZmNjY2rHLlyqxFixZs+vTp7Nq1azLrBQcHMwDM09OTMcbYmzdv2KRJk5iPjw+zsLBgNjY2rHHjxmzTpk1qpePq1ats2LBhrHLlyszc3JxZWVkxHx8fNmrUKPbgwQO562zfvp0BYADYzZs35S5TqVIlvszOnTvlLtOlSxcGgNWpU0dq+tq1a/m6Dx48YLm5uWzFihWsQYMGzNbWlllYWLAaNWqwP/74g71//16t/VSkadOmDABr2rSpzLwHDx7wdKxdu5YxxtixY8dYp06dmIuLCzMxMWFeXl7sm2++YU+ePNFq++J9VfYnPhcF05yQkMBGjx7NKlWqxMzMzJi9vT1r06YNO3z4sFppeP36NZs2bRqrX78+c3BwYCYmJszNzY198cUXbNeuXVrtF2NMrf0SnDx5kk87efKkwjgfPnzIhg8fzjw9PZmpqSlzc3NjXbp0YSdOnGCMMTZlyhSZuAXyzqcinp6eDAALDg6WmVfw+szMzGTz589n9erVYw4ODgwAmzJlisx62dnZbNWqVax9+/bMzc2NmZiYMAcHB9a4cWM2f/58lpGRoTRNhSFcM8r+xPdAUVz7Fy9eZEOHDmXe3t7M0tKSWVhYsKpVq7Jvv/2W3b59Wyf7+fr1a/bzzz+zqlWrMjMzM+bk5MRatmzJtm/fzhiTPXcFKXseCPGvWbOG9evXj1WvXp1ZWlry90KbNm3YihUr2IcPHxSmT95x3bVrF2vdujVzcnJiFhYWrGbNmmzRokUsKyuLr5eXl8c2b97MmjZtypycnJi5uTnz9/dnf//9N8vLy1N5XN6/f8/mz5/PmjVrxpydnZmxsTFzcnJirVu3ZmvWrGE5OTky6wjvGmV/wntIF9sTFLz3oqOjWXBwMPPy8mImJiZy721lxo4dy9M7e/ZsjdZVlj5F+15QXl4eq1evHk+Dus9lRR48eMBGjRrFfHx8mJWVFTM3N2eVK1dmX3/9Nbt69arSNKv7jtG1QmXm5s2bxwAwiUTCHj16xBjLfxFIJBIGgM2dO1fp+qdPn2bW1tYqD8CBAwc0Tltqaipr3LixyriDgoJk1hVn5m7cuMG8vLwUrj9y5Eil6fjzzz+ZgYGBwvVNTU3Z+vXrZdZ78eIFX+bvv/+WmZ+QkKAyHXl5ecze3p4BYGPGjJGaJ37gxsfHsxYtWihMY0BAAEtLS1N1yBXSJDP3888/K0yHk5MTu379usbbL2xm7syZMzwDIe9P1cPr0KFDzNbWVum2O3bsyFJTUzXeN3X2S6BOZu7YsWPM0tJSbjwSiYRNnz692DNzUVFR7PPPP5dJT8HM3N27d5mPj4/SY+Ht7a2zTE1Bhc3MFebaz87OZiNGjFC6bWNjY7Zy5cpC7eO1a9eYm5ubwm0MHjy40Jk5dV6K/v7+7NmzZ3LXL3hclR2X7t27s5ycHJaZmcl69OihcLlhw4YpPS6RkZHMw8NDaZoDAgJkCji0zcxpu72Cxzg4OJj9/fffvFBG3nNDlby8PObk5MQAMEtLS60LX+SlT93MHGOMbdmyRe3zpcz69euZqampwuNqaGjIC6/kpVnZX6nNzPn5+TEArEmTJlLThUyUn5+fwnUzMzOZu7s7A8DKlCnDxo0bx44cOcJiYmLYhQsX2LZt29ioUaNYuXLltMrMjRkzhh/ATp06sa1bt7Jz586xmJgYdvToUTZz5kzWuHFj1qNHD5l1hRvMycmJeXt7szJlyrCJEyey8PBwFh0dzf755x9WtmxZHv/Ro0flpmHp0qVSD+M5c+awiIgIdvbsWTZ16lT+0pRIJOzQoUMy61evXp0BYL1795aZt3HjRqmLxNfXV2aZ2NhYPr/gMRQ/cAMDA5mBgQELDg5mhw4dYjExMWzPnj2sQYMGfJnx48ere+hlqJuZCwwM5Mtt2bKFRUdHs+PHj7MBAwbwZerXr6/x9t+8ecPi4uKkHupxcXEyf+Jf6UKaq1SpwhwdHZmzszP766+/2NmzZ1lkZCSbN28ez6AZGRmx+Ph4uds+duwYMzQ0ZACYl5cXmzlzJgsPD2eXLl1iBw4cYP3795d6sWhKSLtQAuvu7i6zXwJVmbk7d+4wCwsL/sAaOXIkCwsLY1FRUWzt2rU8oxQQEKDwgV8UmbmaNWsyiUTCBgwYIHV9in99JyYmMhcXF/48GTNmDDty5Ai7dOkSO3nyJPvll1/4vlWsWJGlpKSofYzVdf/+fRYXF8efa126dJE5F/fv3+fL6/LaFy/Xvn17tmnTJhYZGcmioqLYP//8w3x9ffn8/fv3a7V/KSkpUs+93r17s8OHD7Po6Gi2ZcsWVqdOHQaA1a1bV+nLS1VmrmzZsqxevXps2rRp7ODBgywqKoqdO3eObdq0ibVr147HrWh98XEVSms6dOjAdu/ezWJiYtjevXulSnH++ecf9v333zMA7Msvv2QHDx5kMTEx7N9//2XVqlXjyx05ckTu9q5evcqf5c7OzmzKlCns+PHjLDY2loWEhLCRI0fyzFK9evWknjMJCQksLi6OH7s6derIXDO3bt3S2fYEwr3n4+PDDA0NmZeXF1uyZAl/P82YMUP+RSBHfHw8P0bt2rVTez1ltMnMiQtAqlWrptV2Dx48yAujrKys2JQpU9iZM2dYREQEmzt3LnN0dOTbWLZsmdS6t27dUvmekXcudEXrzNzVq1d5ggv+2luxYgWfp6hIMiwsTGFGQyw7O1urnH65cuUYALmZNbHk5GSZaeJfS7a2tnJf1Hfu3GFmZmYMAPviiy9k5r948YK/PNzd3dnjx49llrl06RK/KT08PGROtHBRuLq6yqw7ZMgQvm0hQ/jixQupZebPn88AMAMDA/bmzRupeQVLqzZu3CizjczMTPbZZ58xAMzBwYFlZ2fLLKMOdTNzwi8qeVUaQ4cO5ctcunRJq3QoK1FSlGbhgZKQkCCzzJkzZ/iN/8MPP8jMT0tL4xmMNm3aKKyuXrlyJd/W8ePHNd8xJvtpgDyqMnPCtQSA7dixQ2b++/fvpTJyxZWZA8BWr16tNK5OnToxAKxcuXLs3r17cpcR328TJ05UGl9hKNsvMV1d+zt37pTKmMiTkZHBS9+9vLy0upd//PFHvh15JRNZWVmsTZs2UvukTWZOVcnpmjVrlN4vBY/rqFGjZJZ5//49r3FxdHRkEomELViwQGa5Z8+esTJlyih8zufl5bGaNWsyIL/w4uXLl3LTfOTIEV5Ds2rVKpn5qo6JrrcnLkWqUaOGzPtBE5s3b+ZxTZgwQet45KVPk8wcY4z/2DA0NFSralwsKyuLl3ZaWVmx2NhYmWUePnzIS6YtLCzkHn9N3jO6pPXWhJIvU1NTmQvhzZs3vJiyYPWeQHwB6KJYtiBjY2MGgC1cuFDjdcWZuUWLFilcrk+fPgwAs7Ozk5k3c+ZMHsfWrVsVxvHHH3/w5YRvTgT//vsvn3fjxg2peZUrV+Yv3YoVK8p9AXft2pUBYLVq1ZLZrvhlqaxEaPny5Xy5K1euKFxOGXUzc25ubiwzM1NuHDdv3uTLaXNOGdM+M6esJKN+/foMyK/2KWjx4sUMADMzM2PPnz9Xuj0hk9SvXz/VOyJHYTNzCQkJ/OHfrVs3hXFcvny52DNzLVq0UBpPXFwcX3bfvn1Klx03bhz/gVVUtMnMFebar127tsrzxhhj169f5/GEhoaqvT+M5f+ws7OzY0B+SWlubq7c5Z48ecKfvdpm5tTh7+/PALDvvvtOZp74uJYrV05haYj4eaBOqae85/yBAwfUfj726tWLAWANGzaUmafuMdHV9sSZudOnTyuNR5WFCxcW+tmsKH2aZuaE2kJt8hXbtm3j6yormdy0aRNfbtasWTLzSyozp1Vr1tzcXGzZsgVAfgeltra2UvNtbW3RoUMHAMCWLVt4nytibm5uPLx27VptkqGUEP+2bduQnp6uVRwSiQRffvmlwvlC8+c3b97w7lkEQr9ftra2CAoKUhiHuOWNsI5A3IGkuG+mp0+f4u7du5BIJGjatClfTrwMYwynT58GADRt2lTh9gGgX79+CueJm3jfv39faTyF1aNHD5iamsqdV7VqVVhZWRVLOsRsbW0V9oEEfDw+8tK0b98+APnH39nZWel2hBFTIiIitE1qoYSHhyMvLw8AEBwcrHA5Pz8/+Pn5FVeyACi/PoGPx9nCwkLpuQI+HufExEQ8efJENwnUAW2v/adPnyImJgYA0KtXL6XbqF69OhwdHQFofp3FxMTgzZs3APKvD3m99gNA2bJl0aZNG43iVoYxhqSkJNy+fRvx8fH8z93dHQBw5coVpet3795dYYvCmjVr8nDv3r0VxiFc7/Ke88K1V7VqVan45BGuvaioKLnvRHXoenvlypWTGr1JG6mpqTxsaWlZqLgKS7hPAOl0qUN4/0okEgwePFjhcj179oSNjY3UOqWBVpm5Y8eO4dmzZwCA/v37y11GmP7s2TO5O9yoUSNUrFgRADBq1CgEBARgxowZOH/+PLKysrRJlhThhXT+/HlUqFAB3333Hfbs2YOXL1+qHYejoyMcHBwUzre3t+fhghdOfHw8AMDf319p82QXFxc+Bqywjnhe1apVAUhn1ISwj48PnJyc5Gbmrl69itevXwOAyl7Fq1WrpnCesn3UNWXpAAA7O7tiSYeYt7e3whcX8PH4yEtTdHQ0ACAkJISPPKHob86cOQCApKSkItgL1cTXnqo+murUqVPUyZGi6qUlHOf09HQYGRkpPc6dOnXi65XUsZZH22tf2Hcgfzg3VdfZq1evAGi+73FxcTxct25dpcsGBARoFLc8hw4dQqdOnWBjYwM3NzdUrVoVNWrU4H/CqAHC/iiirJ8vcSGEusspOv63bt1Seey/++47AEBWVhZ/NmtK19tTdW+po0yZMjz8/v37QsdXGOLzo2l/m8Iz0MvLS+mPbxMTE/j7+0utUxpolZkT+pBTVmohLrGT1+ecsbExDhw4gOrVqwPI//UwYcIENGzYELa2tmjfvr3CUj11TJo0CYMHD4ZEIsGLFy+wdOlSdO/eHS4uLqhRowamTJmC58+fK43DwsJC6XzxS75gOoWbx8XFRWVaXV1dpdYREzJip06d4tOETJswT+jP5/r16zyzKixjYGCg8peXsv1Uto+6pu7xLup0iKmbJqFUS5CdnS3zK14d2pYiF5ZQ6gJAZSmik5NTUSdHipCRUeTFixdaxVtSx1oeba/94tp3Ta4PdZ55ijDGMHToUHTq1AmHDh1S+cMtIyND6Xx1n23aPgOL+9rT9fZU3VvqEEp7Aah8pxY1IXNvZGQklclUh67e2SVF4xEghNEdACAlJUVh1YDY3r17kZqaKnNwfXx8EBcXhwMHDuDAgQM4deoU7t27h4yMDBw9ehRHjx7FvHnzcPjwYZUPkIKMjY2xevVqjBkzBlu3bsWJEycQHR2NrKwsXlQ/b948bNq0CV26dNEobk2oMw4oUzLEUtOmTbFixQokJSXh5s2bqFatGs/YCZm5smXLomLFirh//z5OnTqFHj168GVq1qypkxuWaEb80O/VqxcmTZpUgqnRb4aGhkrnC8e6QoUK2L9/v9rxVqhQoVDpKg3E19nmzZvVLmnR9JkgfkapeqYpe56psmbNGqxevRoA8Pnnn2PUqFGoV68ePDw8YGFhwa+FAQMGYOPGjSU+PJ1w/Bs2bIjly5ervZ5QTVzS21N1b6lD/NnFpUuXCh2ftl68eIHExEQA4DVa2ijsO7ukaJyZ2759u8pfQwWlp6dj586dGDRokMw8Q0NDdO3aFV27dgWQXy175MgRLFu2DDExMYiJicHw4cOxZ88eTZMKID/DOG3aNEybNg0ZGRk4d+4ctmzZgg0bNiAtLQ19+/bFvXv3pL7h0wV7e3s8e/ZMreoM4deMuEpTUPC7OWtra9y5c4d/Lyde7v79+wgPD0dQUJDa38uRomFmZgYLCwukp6cjJSVF4ZA0pYX45f7ixQuULVtW4bLKPlUQl2IULK0sSFdVMsKnEM+fP0e1atVgZFToUQr1hvgzEIlEUmTXmfjZ9Pz5c6XVktqWHgHAP//8AwCoVKkSzp8/r3B8b3FJYUlycHDA8+fP8fLly2K5x4t7e+rw8fGBo6MjXr16hTNnzuDdu3clMqRgaGgoDzdq1Ejj9YVrvLDv7JKicTWrUGXq5uaGrVu3qvwrX7681HqquLm5YfDgwYiIiECtWrUAAAcPHtQ4AymPubk5WrVqhTVr1mD27NkA8ovpDx48WOi4CxJutNjYWGRnZytc7sWLF3j06JHUOmJubm7w9vYGkJ+ZK/i9nED83VxcXBwf707V93KfEnV+cemS8F3FuXPnSlWVnjziwaDF32HJo2y+uPRd2Qs3OTlZ5fdO6hKOc3p6Os6dO6eTOAujOK8zYd+B/G+Zi0qNGjV4OCoqSumyquYrc+3aNQBAly5dFGbkGGMlWgIkJhz/27dv8+e4NtS9ZnS1PV2SSCQYOHAggPwfaKtWrSr2NDDGsGjRIv7/bt26aRyH8P59+PCh0h8k2dnZiI2NlVqnNNAoM/fgwQOcPXsWABAUFIQ+ffqo/OvZsyeA/G++Hj9+rPa2jI2NealSTk6OVt8fKdOyZUse1tVLRaxVq1YA8quid+3apXC51atX8yJbYZ2CxN/NFfxeTiD+bm7Hjh0A8m+ywrZU+i8xMzPjYfH4eUXliy++AJD/gFu6dGmRb68wmjdvzkvVlP3wunLlitIWhHZ2dvxbWWWZvq1bt2qXUDnEn0nMmjVLZ/FqS7jOiuMaq1y5Mh8P+99//9XoGauJ2rVr89JbZdWbT58+LVSmMicnB4Dyb8r279/Pq9NKmnCPA4W79tS9ZnS1PV0bNWoU/+5w8uTJuHnzplrr5eXlYdOmTYXe/syZMxEZGQkAqFWrFtq2batxHML7lzGGNWvWKFxu586dePv2rdQ6pYFGmTnxTdyjRw+11hGWY4xh48aNfPqZM2dw9+5dhetlZWXx776srKw0+uj69evX2L9/v9J6bfEDpyi+nRk0aBC/uMeMGSO3G4QrV67gzz//BAB4eHjwquaChExtUlIStm/fDkA2Myd8N8cYw+LFiwHk/5pW1hr3UyOuSr93716Rb++bb77hHwdPmjQJR44cUbr8uXPnePV4cfPw8OCNmfbs2YOdO3fKLJORkYGvv/5aZVxClwj79u2Te5xv3LiByZMnFzLFH9WtW5d3h3H48GFMmTJF6fIPHz5UmJkUWgIKLcy1IVxnxXGNAcDEiRMBAJmZmejevbvSavAPHz5g2bJlyMzM1Ggbpqam/DOZy5cv85oNsZycHAwbNqxQvREItRAHDhyQW7J77949fPvtt1rHr2tBQUG8Ed/ff//Nv/dTJD4+HgcOHJCZLlwz9+/fV/re0tX2dM3DwwNLliwBkP/jtWnTplKN9uS5fv062rZty1vyayMtLQ1jx47FL7/8AiC/IYu2JYPdunXj3xb++eefcn+0PnnyBGPHjuXbkvfpWEnR6OMSITPm7OysdolPvXr1ULZsWSQkJGDjxo349ddfAQBhYWGYNm0aGjdujI4dO6JmzZpwcnJCRkYGbt++jeXLl/Oi9KFDh2r0Hcy7d+/QpUsXeHl5oXv37qhXrx48PT1hZGSEZ8+e4cCBA/yEly1bFp07d9bkMKjFyckJs2fPxsiRI5GYmIg6depg/PjxCAwMRG5uLo4fP47Zs2cjLS0NEokEK1euVNiFiTjj9vbtW5nv5cTL3b9/n/9qoO/lpAUGBvLw6NGj8euvv8LNzY1XcXh5een0eytra2ts3boV7du3x4cPH9CpUycEBQUhKCgIlSpVApD/jWhMTAz27NmDq1evYvHixTwzVNzmzZuHsLAwpKeno0+fPhgxYgS6d+8Oa2trxMfHY9asWbh+/Trq1q2rtCrt22+/xf79+5GRkYFmzZph6tSp8Pf3R1paGo4fP46FCxfC2dkZRkZGGnUVpMzatWtRp04dPHv2DL///jtCQkIwePBg1KhRA2ZmZkhOTsbVq1dx9OhRnDhxAl27dkXfvn11su2CAgMDcfLkSURFReGvv/5C+/btef9b5ubm8PDw0On2+vbti5CQEKxfvx4xMTHw8fHB8OHD0bRpUzg5OeH9+/e4d+8ezpw5g927d+P169cYMGCAxtuZPHkytm/fjoSEBPz888+4fPkyBgwYAGdnZ9y+fRvz5s1DVFSUyutDmQEDBuCnn37C06dPERgYiHHjxsHX1xeZmZk4ceIEFixYgA8fPqBWrVqloqrV0NAQ27ZtQ2BgINLS0jB06FDs2LEDX375JapWrQpjY2O8ePECsbGxOHjwIM6fP48xY8bIvHMCAwOxdu1avHjxAj/++CP69+/P+zIzNjaGp6enTrdXFAYNGoSEhARMnjwZL168QLNmzdCmTRt06dIF1atXh62tLV6/fo3bt2/j0KFDOHr0KHJzc5X2W5mdnS3V/YfQS8DDhw9x7tw5qVIyGxsbbN68WerTA00YGxtj5cqV6Ny5M1JTU9GoUSP89NNPaNmyJYyMjHD+/Hn89ddfvAp2zpw5Ui15S5y6vQufPXuW92o8fPhwjXom/uGHH/i6Fy5cYIxJ95Ks7K979+4sIyNDo+0VHM5F0Z+Hh4fc4XHU6U2fMaZyQGnGGJs+fTrvWV/en6mpKVu/fr3KfapUqRJfR944rIwxtmHDBqm4d+3aVai0M6ZZj/6KqDsCRGFGDFCX0Cu6vD/xcVC3R3Z1evsOCwtjrq6ual2T6lwL8uhiOC/G8seSFYa8kvc3ZcoUNmnSJAbkj2yhiPieL/hXrlw5du3aNbVHgFB3cOqHDx9KjQuq7G/QoEEy66enp/P58kZNUVdCQgKzt7eXu13x9aTLaz8nJ4eNGzeOjwOs7M/S0pKlp6drtW/x8fFKr+VBgwapPHfK7i15Q4KJ/8zNzdn27duVXu/qHld17gfG1LsWr1y5wry9vdW69n777TeZ9VNTU/lIPgX/5O1jYbeni2epIrt27eJDpan68/X1ZSEhIQrTp86foaEh6969O3v48KFO0r9u3To+gpWi7ckbzk5Q6keAEH9Ho2xEA3nEywvxjBs3DocPH8bo0aNRv359lC9fHmZmZjAzM4OXlxd69+6NQ4cOYdeuXVLfOqnD09OTVwW0b98eVatWha2tLYyMjODo6IimTZtizpw5uHHjhta5eHVNmDABsbGxGDZsGCpVqgRzc3NYWlqievXq+N///oebN2+q9StZXDqnqFGD8N0ckF9dVFIlPKXZpk2bMGvWLAQEBMDGxkZph8C60qJFC9y7dw9LlixBu3bt4ObmBhMTE5iZmaFcuXJo06YNpk+frva1UJRat26N+Ph4DB8+HJ6enjAxMYGLiws6duyIo0ePYurUqXj37h0A8JIDeRYuXIgtW7agSZMmsLa2hrm5OapWrYrx48cjNjaWf+elS56enrh48SL27NmDPn36oEKFCrCwsICxsTGcnJwQGBiIMWPG4NSpU3Krp8SjIowePVrrdHh4eCAyMhJDhgxB5cqVNX5+acPQ0BAzZ87E9evXMWbMGPj7+8POzg6GhoYoU6YMfH190a9fP6xfvx7Pnj1T2LhAFV9fX1y7dg3jxo2Dt7c3TE1N4ejoiObNm2PLli1KvzVSh7GxMQ4dOoRFixahTp06sLCwgLm5OSpXroxvvvkGly5d4t9hlyY1a9bE9evXsX79enTt2hXlypWDmZkZTExM4ObmhmbNmmHixImIiYmR+4mBlZUVzp8/j//973+oXr26yn4HC7u9otS9e3fcunULmzdvRv/+/VG1alXY2dnByMgI9vb2qFWrFr799luEhYUhLi5OoxFDLCws4Obmhho1aqB///5YtGgRHj9+jF27dvHSy8IKDg7GzZs3+bmwtLSEubk5KlWqhGHDhiE2NpZX65YmEsZKYYcphJBSq1WrVggLC0OjRo1w5syZkk6OzkydOhW//fYbvL29cePGDZ30wUUIIcWh6IslCCH/GYmJibyRRv369Us4NbolfLA9YcIEysgRQvQKlcwRQri7d++icuXKcudlZGSgS5cuvHPOq1evSvU/ps+ysrJga2sLV1dX3L59+5PqeJgQov/oiUUI4YYOHYr379+jV69eqF27Nuzt7ZGamoro6GgsW7aMdyc0ZMiQ/0xGDsgfPLu0d+xMCCGKUGaOECIlOjpaaYe/3bp1430ZEkIIKXlUzUoI4S5duoQ9e/bgxIkTSEhIwMuXL8EYg7OzM+rXr48BAwbwzoUJIYSUDpSZI4QQQgjRY9SalRBCCCFEj1FmjhBCCCFEj1FmjhBCCCFEj1FmjhBCCCFEjxVrZu7hw4eQSCSQSCRYt25dcW5axsCBAyGRSODl5VWi6SCkOKxbt47few8fPizp5JQqU6dO5cemMJo1awaJRKJw7OTSgp59JSM5ORljx45F9erVYW5uzq+5BQsWFMv2dXWdl1af+jOOSuZKmbNnz+J///sf/Pz84OTkBFNTU7i7uyMwMBC//fYb7ty5U9JJJISQEvXhwwds2bIFgwYNgq+vL5ycnGBsbAxbW1tUqVIFPXv2xMKFC5GQkFDSSQUAvH37Fg0aNMDcuXNx8+ZNZGZmlnSSiBzCDzJN/lJSUqTiEBdaqfM3depUnaSdMnOlREJCAjp16oTGjRtj0aJFuHr1Kl69eoWsrCw8e/YMERERmDp1Knx9fTFq1Ch8+PChpJNMSlhpKukmRCw8PJxfm+Hh4TqNe8OGDahcuTL69euHdevW4fr163j16hVycnLw9u1b3LlzBzt37sSoUaNQvnx5dO3aFdeuXdNpGjS1dOlS/kN83LhxOHPmDOLi4hAXF4evvvqqRNNG/huKdQQILy8vULd2sm7cuIE2bdrwX5FVq1bFoEGDUKdOHdjZ2eH58+c4ceIE1q5di+TkZCxcuBBXrlzB/v37UaZMmRJOPSH6berUqTr7dawP1q1bp5eZf8YYfvjhByxZsoRPa9euHdq3bw8fHx/Y29vj/fv3SExMxKlTp3Dw4EE8efIE+/btg6urK5YvX15iaT9+/DgAoE6dOpg5c2aJpYOoLy4uTq3lrK2tFc7r0qUL/vjjD6XrOzs7a5QuRWg4rxKWmpqKTp068YzcmDFjMGPGDBgbG0st1759e4wbNw59+/ZFWFgYwsPDMXToUGzbtq0kkk0IIcXq999/5xm5ihUrYvv27ahdu7bcZXv37o1FixZhy5YtmDhxYnEmU66nT58CAKpUqVLCKSHq+uyzzwodh62trU7iUQdVs5awn3/+Gffv3wcADB8+HHPmzJHJyAmcnJxw4MAB+Pv7AwC2b9+OHTt2FFtaCSGkJMTExOD3338HALi7u+P8+fMKM3ICIyMjDBgwAFevXi3xIeiEz2IUPdsJKaxCZebOnTuHoUOHomrVqrC2toaVlRWqVauGrl27YsOGDXj37p3U8qq+8SnY2ubt27eYNm0a/P39YWtrq3C91NRUzJ07Fy1atICrqytvNFCvXj38/PPPuHTpktb7mJ6ejgULFqB58+ZwcXGBiYkJnJ2d0aZNG6xduxa5ublax/3ixQusWbMGAODq6oo5c+aoXMfc3BwrVqzg///rr7+03r4gPj4e33//PWrUqAE7OztYWFigcuXKaNeuHf7++2+8fPlSanl553H37t3o0KED3N3dYWRkJLdFX1paGv766y80aNAA9vb2MDU1RdmyZdGjRw8cPHhQZTpjYmIwZMgQVKlSBZaWljAzM0O5cuVQu3ZtjBw5Evv375dbjZ+ZmYlFixahWbNmcHR0hLGxMezt7VGtWjV06NAB8+fPV9r6iTGGnTt3IigoCOXKlYOZmRns7OwQEBCAadOmyXwAW9Dt27fx/fff47PPPoOVlRVMTEzg7u6Ozz//HIMHD8a2bds0/gZSIpGgQoUK/P+DBg3S6MPavLw8rFy5EoGBgbCzs4OlpSVq1qyJ6dOnIz09XeX2C3tMVCnYMvTu3bv45ptvULFiRZibm8PLywtDhgzBo0ePpNaLj4/HoEGDULFiRX59jBgxAi9evFC4LXVb+UVERKBHjx5wdXWFmZkZKlSogK+//hq3bt1SuT8FvyHLy8vDP//8g8DAQNjb28PS0hJ+fn74888/kZGRoTK+wtxLqlqzFrx+oqKi0LdvX5QtWxampqbw8PDAV199hRs3bsisKzwbmjdvzqc1b95c5trUtJr3zz//RF5eHoD8789cXFzUXtfW1hadO3fWaHvyHDhwAD169ODHwcHBAQ0aNMBff/2FtLQ0meXF51y4TtevXy91HLRt+ZyXl4etW7ciKCgI5cuXh7m5ORwcHODn54fBgwfj6NGjyMnJURpHZmYmZs+ejVq1aqFMmTIoU6YMAgICsGTJEpXrAvnnevTo0fD19UWZMmVgYWEBb29vDB8+XGUVZcFr7MSJE+jZsyfKlSsHY2NjudfmmzdvMH78eFSrVg3m5uZwdnZGq1atqEBDwLSQnp7O+vbtywAo/ZsyZYrUeg8ePODz1q5dKxPvlClT+Pzbt28zLy8vmTgLrhcaGsocHR1VpqWg4OBgBoB5enoq3M/IyEjm4eGhNN6AgACWlJSkxVFkbOHChTyeCRMmaLRugwYN+LpXrlzRavs5OTls9OjRzMDAQOk+BgcHS60nPo9r1qxhX331lcw6TZs2lVrn0qVLzN3dXel2unfvzjIyMuSmdd68eSrTCYClpqZKrZeYmMh8fHxUrjdmzBi5233x4gVr2LCh0nVdXFzYhQsX5K6/fft2ZmJionL7cXFx6p20/6cqvoL339q1a/n0+Ph41qJFC6XXdFpamsJtF/aYqKNp06b8OgoNDWVlypSRux1nZ2d248YNxhhjW7ZsYaampnKX8/T0ZE+fPpW7LfFzR5E5c+YovP4sLS3Z4cOHpdJc0MmTJ/nyISEhrF27dgqPXfXq1VliYqLCtBT2XlL17BNfP4sXL2ZGRkZyt2FhYcFOnTolta742aDsT97zX5GUlBR+7CtUqMDy8vLUXlcXMjIyWLdu3ZTuj7u7O4uNjZVaT3zOFf3Ju1ZUefDgAfv8889Vxn3y5Emp9cTXeVJSEvPz81O4bufOnVlubq7CNKxfv17hvQaAGRoasj///FPh+uJrbMKECXLvV7Fr164xNzc3hdsbPHiw1DPuwYMHGh9Xxj4+d5Q9C1QR3wMF351FSeMU5+bmstatW/PEent7s/nz57MzZ86wmJgYdvDgQTZhwgRWuXLlQmXmatasyYyNjdn333/PQkNDWXR0NNu6dSs7f/48X/7EiRP8QWNoaMgGDhzI9uzZw2JiYti5c+fYP//8w7p3786MjY1ltqXqgXb16lVmaWnJXxhTpkxhx48fZ7GxsSwkJISNHDmSb7tevXosKytL00PJgoKC+P5GRERotO6MGTP4ukuWLNF424wxNnjwYB6Hm5sbmz59Ojt58iS7dOkSCwkJYdOmTWN+fn5KM3M1a9ZkAFjjxo3Zli1bWHR0NDt+/DhbtWoVXz4hIYHZ2dkxAEwikbBBgwaxkJAQFh0dzTZs2CD1UOnVq5dMOq9cuSL1MJ87dy4LCwtjsbGx7MyZMzxDaWVlJZOZEx/j/v37s927d7MLFy6wqKgodvDgQfbbb78xf39/uZm5tLQ0Vr16dQaAmZiYsOHDh7N9+/axS5cusTNnzrDp06czBwcHBoDZ2dmxhw8fSq2flJQkdQ39/vvv7NixY+zSpUvs/PnzbNOmTezrr79mjo6OGmfm4uLiWEhICN+3P/74g8XFxUn9PX/+nC8vftAFBgYyAwMDFhwczA4dOsRiYmLYnj17pH4gjB8/Xu52C3tM1CU8VL29vZmdnR0rV64cW7x4Mbt48SI7c+YMGzVqFJNIJAwAa9iwIYuMjGRGRkasevXqbNWqVSwyMpKdPHlS6odG79695W5LVWZu586dfL6NjQ37888/2fnz59n58+fZH3/8waytrZmtrS3z9vZW+IIWv9jr1q3LALA2bdqwPXv2sOjoaLZnzx6p56q/vz/Lzs6Wiaew9xJj6mfm6tevzyQSCfPz82Nr1qxhUVFR7PTp01I/AMuXL88+fPjA183KymJxcXFszZo1PJ41a9bIXJtv3ryRu215Dhw4wOMaMWKE2uvpSq9evfj2/fz82IYNG1hUVBQLCQlhgwYN4tehvb09S0hI4OulpaXx/RUy3126dJE6Dvfv39coLUlJSVIZ+RYtWrD169ezixcvssjISLZt2zY2fPhwZm9vrzQzFxgYyExMTNgPP/zAQkNDWUxMDNuyZQu/twGw5cuXy03DwYMH+T5bWVmxKVOmsDNnzrCIiAg2d+5cqcKVZcuWyY2j4PujRo0abM2aNSwyMpKdOnWKLVy4kC+bkpLCypYtK3UfHz58mEVHR7MtW7awOnXqSN1XlJlT04IFC3hCu3XrxjIzM+Uul5ubK/NLWJPMnIGBATt27JjCdKSnp/OcuoWFhcyFK/b48WOZacoeaHl5efwi8/PzYy9fvpQb75EjR/hDTZx5UVflypX5vir6Fa2I+EU+bNgwjbe9d+9evn6DBg2UPlyfPHki9f+Cv74HDBig9Ndyjx49+LLyjlNmZiZr3rw5X+bw4cNS8ydNmsSA/BIQZaWgKSkpUr8mMzIymLGxMQMUl7wJkpOTZaZ99913/AUeFRUld72HDx/y67B///5S81avXs33SVlmLSMjg6WnpytNnzyq7icxcWYOANu4caPMMpmZmeyzzz5jAJiDg4PczERhj4m6xA9Vb29v9uLFC5llfvrpJ76Mk5MTa9iwIXv//r3Mcj179mQAmJGRkdx4lGXmPnz4wPfFxsaGXb9+XWaZuLg4Zm1tzeNQlZkDwL7++mu5+z1kyBClP9IKey8xpn5mDgDr0KGDVGZN8Mcff/Bldu/erXR/lT2b1TF9+nQe1z///FOouDR18OBBvu2WLVvKPRYrV65UmYH29PTUycu9a9eufFszZ85UuFxaWhp7/fq11DTxdW5sbCz3vCQnJzMXFxee0SooKyuL11ZZWVnJlEYyJn3/W1hYyH1/iq+xli1bKsxHMMbYjz/+yJeVV9qXlZXF2rRpIxWnLjJzBX+AyPsTZ94F4udywcy7OutrS6PMXG5uLj+RHh4eMqUgqmiSmRs8eLDSuJYvX86XnT9/vkbpYEz5A038S1BVFabwq61hw4Yap8HW1pYB+SUYmrp8+TJPY/fu3TVev379+vxm0/SCEp9HW1tb9u7dO4XLJiYmMkNDQwaAtW3bVmmcQklnhw4dpOYNGzaMAfmlFZp4+vQpT+e+ffs0Wvfly5fMzMyMAZD6lSjPsmXL+ANSnJkQXkLanF91aJuZU3a9iO+rgte+Lo6JusQP1SNHjshdRrz/EolEbkaLsfwSfGXXgbLM3LZt2/i8OXPmKEzvzJkz1c7Mubi4KDwmqampzMnJiQFgPj4+UvN0cS8xpn5mzszMTKp0V+zdu3f884HRo0cr3d/CZuZGjx7N49q7d6/C5bKzs5W+OLWpPWnfvj2/juUVCghatWrFfzDIqyLXRWbuxo0bvESsS5cuGq8vvs5//PFHhcuNHz+eL5eSkiI1T3w/zJgxQ2EcmzZt4svNmjVLZr4wz8DAQGnGKzMzk5dE16xZU2HV75MnT/gPd11l5tT5k3c+1f3UQBeZezGNGkBcvnyZN7EeNmwYrKysNFldI/369VM6/9ChQwAACwsLfP311zrd9r59+wDk9/dWs2ZNpcs2adIEQP5Hwpo2hkhNTQUAWFpaapxG8ToFG5qokpycjIsXLwIAevXqBQ8PD423L+jcubPSvu5OnjzJj8uQIUMULufl5YXWrVsDyP9wWHws3dzcAADXr19HZGSk2mlzcHCAiYkJAGDjxo1qfdQrCAkJ4b209+rVS+mywjWQnZ2NmJgYmXS/efOGX1OlgbJ7S9xCUGhlLdDFMdGUra0t2rZtK3eel5cX7+OpZs2aqF69utzl/Pz8eLjgPqki9A8mkUgQHByscDmhAYo6evXqBQsLC7nzrKys+LG9fv06nj17xufp4l7SROvWrRX2gVWmTBl4e3sD0PyYakp4TgJQ+s5JSkpCjRo1FP4J7y515eTk4NSpUwDyj0W5cuUULjts2DC+jq47SRYcPnyYN/AaPXp0oeJS9xnw4MEDqXni+2Hw4MEK4+jZsydsbGyk1pGnYcOGSoeVi4mJwZs3bwAAwcHBMDCQn2UpW7Ys2rRpozCeT4FGmbnY2FgeFh7WRUVVJkpIS506dRQ+GLUVHR0NALh165bKoTi+++47AEBWVhZev36t0XaETJC8llCqiNdR1mmhPJcvX+YPhcKeR1XnKT4+nofr1aundFlhfnp6utQLom/fvjA2NsaHDx/QsGFDdO7cGcuXL8e1a9eUdkJtamqK3r17AwB27tyJypUrY9y4cTh8+DDevn2rNC3CNQDkZ8qUXQPifoSSkpJ4+IsvvoCtrS0AoFu3bmjRogXmz5+PmJiYQrWCLqxq1aopnGdvb8/D4pcooJtjoilvb2+lmSThhaGs/y7hHACy+6SK0CqvQoUKcHR0VLick5OT2mOd1q1bV+n8gIAAHhbfP7q4lzSh7DoBPl4rmh5TTYl/LL5//75ItyV2//593rJb3eMNSJ8nXRLeecbGxqhfv36h4tL2GSDsm5eXl9LObk1MTHgXWsqOh6r3h7hVrCb3jS6w/JpLpX+qWmUHBwcXan1NaJSZe/XqFQ8LpQ5Fxc7OTq20FEU6lHVjoIw6XTqIOTg4AMgvWVOnOwKx58+fy8SjLl2eR1XnSZzBVdWdgKurq9z1qlWrhq1bt8LOzg45OTk4ePAgRowYgc8++wzOzs746quvcObMGblxLlmyhHdL8OjRI8yePRsdO3aEg4MDAgICMGfOHLklm7q4BhwcHLB//354eHiAMYaTJ0/ixx9/RJ06dWBvb4+goCC1umTRNWU/fsS/fAtmOIvrvhBT9UNNSK+2+6SKUCqgTi/t6naXoSoucTzi+0AX95Im1D32Rf3DRPx8K9hNkljZsmVlXpbKSlNVKe7jrYrw3Ba6oikMbe8XYd/UudaFY6LseKh6fwj3H6DZffMp0noECHWrFLRlaGhYYukQLuCGDRtqNASMu7u7Rtvx8/PDvXv3kJeXhytXrmj0a0vcd564GklThT1+6p4ndSgrZQsKCkKrVq2wbds2hISE4MyZM3j58iVevXqFTZs2YdOmTQgODsaaNWukHkbW1tbYv38/IiMjsX37dpw8eRJXrlxBbm4uoqKiEBUVhdmzZ2Pv3r1o0KABX0+4BkxMTDSqJixbtqzU/xs3boy7d+9i165dOHz4ME6fPo2EhAS8e/cOu3fvxu7du9G2bVvs3r1b5yXMuqarY6JPhGtSnftE2fUrpioudeMp6jhKC/Hz7dKlS0qrmItKUb/vNFEa0qKr+0HV+0McR3HcN/pMo8ycuJohMTERVatW1XmCNElLQkICEhMTdR63g4MDnj9/jpcvXxbpUBxNmjTB7t27AQD79+/XKDO3f/9+Hm7cuLFG2y14HouSuMj++fPnKF++vMJlxaWN4vUENjY2+Prrr/k3ktevX8f+/fuxePFiJCYmYv369fD398f//vc/mXUDAgJ4MXxqairCw8Oxdu1a7NmzBy9evEBQUBDu3bsHc3NzAB9LA7KysuDg4FCoEkwzMzP069ePf6dy//59HDp0CEuWLMHt27cREhKCX3/9FfPnz9d6G8VBl8dEXwjXofjaVETdkktVcYnjEd8HuryX9EmjRo1gYGCAvLw8hISEgDFWLBka8XFT9amAeH5RHW/huZ2cnIysrCz+PXBxEvZNnU8nhGuwMMej4DWv7HMKbWsO/is0qmatVasWD58+fVrnidGEkJbo6OhCVePII9T13759W6aHeV3q06cPLy5fu3at2t/ORUVF4cKFCwDy06rqu4OC/P39+cOwqM+jODMsNLpQRGjcYGFhITW6gSI+Pj4YP348Lly4wBuEbN++XeV6ZcqUQefOnbF792788MMPAIBnz57h7NmzfBnhGgCAY8eOqYxTExUrVsT333+PqKgoXmqlTroLKu5f6EV5TEqrGjVqAMj/EDw5OVnhci9fvlQ6iohYVFSU2vPF909R3ku6pstr09bWFl26dAEA3Lt3D4cPH9ZZ3MpUrFiRl5are7wB3YzpKY/wzsvOzkZERESRbEMVYd8ePnyoNPOUnZ3Nv/ErzPEQ7j9As/vmU6RRZs7Pz4+36Fm1apVWH+7rivAdVHp6OlauXKnTuL/44gsenjVrlk7jFnNxceHfdCQlJeGnn35SuU5GRgaGDx/O///zzz9rvF17e3sEBgYCyM9EFGXpXLNmzXhR+urVqxUu9/jxY4SGhvJ1jIzULzQuV64c/8Um/h5QHS1btuRh8brt27fn4yjOnz9fo5aw6rK2tuYf9WqabiC/xE+g6XBg2iiOY1LatGrVCkB+Fc6GDRsULrdu3Tq1q3l27Nih8BvZ9+/f84y9j4+PVOlncdxLuqLra3PChAk8gzhixAilGWtdMTIyQtOmTQEAoaGhePLkicJlV61aBSC/2lDbIbpU6dixIz8GJVWKL74fhKEo5dm5cydvZCaso43atWvz7+o2btyo8B57+vTpJ/MDUxGNMnMGBgY8w5GQkIABAwYgKytL7rJ5eXlFmkno378/71Lj119/5U3I5UlISNAo7qCgIN7Nwd9//630wQnkt9Y5cOCARtsQzJo1i/9yXr58OX766SdkZ2fLXfbVq1f44osv+C+eoKAg3lpTU0ImMD09HT179lTaulPT4yfm7u6Obt26Acjv2kLeAyArKwuDBw/m+y20EBbs3btX6VifT548wc2bNwFAqhTi/v37Sq8LQLqESbyuh4cHBg0aBAC4cuUKhg8frjTz8uLFC/5AF4SEhEh1LVHQ27dv+S96bUpPxF2v3Lt3T+P1NaWLY6JvunbtyjNU06ZNkzsO6/Xr1zF9+nS140xKSsKYMWPkzvvxxx95iceIESOk5uniXiou4kyoLq7NOnXqYNKkSQDy7/fAwEBcuXJF6TqMsUKPETxy5EgA+SVNgwcPlvu+W7NmDX+OBAUFFdnnB1WqVOHnf9++fZg9e7bCZd+/fy/VeEBXunXrxr8N//PPP+WegydPnmDs2LEA8kuGhWeGNkxNTfn6ly9flrvPOTk5GDZsmMK8iD4Sxk8WxnJWi6Yd0xUczqtKlSpswYIF7OzZs+zSpUvs8OHDbPLkyczb27tQw3mpQ95wXvv27WMxMTHs/PnzbO3ataxnz57MxMREZl11hvOysrLi6Wnbti1bv349u3DhAouJiWFHjhxhf/75JwsMDGSA6hEGlBEP9wKAVa1alc2cOZOdOHGCb+unn37iwyQBYE2aNJHp0FFT4t7m3d3d2Z9//slOnTrFYmNjWWhoKJsxYwbz9/dXOpyXOmMsPnnyRGoIosGDB7Njx46x6OhotmnTJqlxBuX1oN60aVNmYWHBevbsyf7++28WHh7OYmNj2YkTJ9isWbNYuXLl5HYqKnRc6uPjw3799Ve2Z88eFhkZySIjI9muXbukhunx9/eXGcUiNTWVj4ggxLNgwQJ25swZFhsby06ePMmWLFnCunbtykxMTFjt2rWl1g8ODmbGxsasQ4cObMGCBez48ePs0qVL7NSpU2zp0qVSQ+csWLBA/RMnIoyR6uDgwLZs2cKuX7/O7ty5w+7cuSM1qoW64xaqOreFPSbqUjbOqZi6nbEK6S34TGJMs+G8bG1t2YwZM1hERAQ7f/48+/PPP5mNjQ2zsbFRezgvYfihdu3asb1797KYmBi2d+9e1rZtW6nrUd4IHIW9lxjTbGxWZVSdI2EIpgoVKrC9e/eyGzdu8GtTWUfjiuTm5rLhw4fz9EkkEtaxY0e2ZMkSFhYWxi5dusQiIyPZ/v372ZQpU6TGZDY0NFQ4Nq8qwggiANjnn3/ONm7cyKKjo1loaCgbMmSIwuG8xHQ1AoS84bw2bNjAIiMjWVRUFNuxYwcbOXIkc3BwUDqclzKqOnwuOJzXb7/9xs6ePcsuXLjA5s2bx5ydnfn6qobzUnWNMSY7nFffvn3ZkSNHWExMDNu6dSsfxkvXw3mpMwJEXFyczLWsi+G8hHtU0TmQR6sByN6/fy81rIyiv6LOzDHG2NGjR/nDTdlfQaoeaIzljwkqPKBV/f32229qp1meR48eKR18W/gzMjJi3333ncbDf8mTk5PDvvvuO35jKvorbGaOscINDq5Or9zyBnZWZ6BrIH9gc0U3f3JyslrnBQBr3ry51LriG1LZ38iRI5UOaq2M+MGq7P7TVWausMdEXaUpM8cYY7Nnz+ZD9xX8s7CwYIcOHVKaZvG1GBISIjP8kPivWrVqSjMehbmXGCu+zJwwCoi8P3WfG/KsWbNG5f4LfxKJhHXo0IHFx8drvb2MjAzWrVs3pdtxd3eXO7SVQFeZOcYYu3fvntQPKkV/RZWZY4yxdevWMVNTU42ex2LqXmOC+Ph45urqqnB7gwYNUvsZp4ymI0AAYHv27JGKQxeZOXFBw9WrV9VaR6uPKSwsLLBjxw6cPHkSa9euxdmzZ5GUlAQjIyN4eHjAx8cHPXr0kPr2rKi0bdsW9+/fx99//42DBw/i1q1bePfuHZydnVG2bFm0bNkSffv21SrumjVr4vr169iyZQv27NmDmJgYvHz5Enl5eXBwcEDVqlXRqFEjdOvWTapxiDbKly+PI0eO4MyZM9i+fTvCw8ORmJiI1NRU2Nvbw8vLC23btkW/fv2UtujRhKGhIRYvXoxBgwZhxYoVCA8Px9OnT8EYg4eHB7y9vdGtWzcEBQUVelv+/v64desWlixZgr179+LWrVtIT0+Ho6Mj6tevj4EDB/LvIAvavn07jh8/jtDQUFy+fBlJSUl49eoVzMzM4OXlhSZNmuCbb76R+lgWyG/lGxERgdDQUISHh+Px48d4/vw5MjMzYW9vDz8/PwQFBWHgwIEKW4bZ29vjyJEjOHHiBDZt2oSzZ8/i2bNnyMzMhLW1NSpVqoSAgAB07NhRpgfyBQsW4IsvvkBoaCiio6Px7NkzvHz5EoaGhihXrhwCAwMxdOhQNGzYUOvj2rFjR4SFhWHhwoWIiorCy5cvFVbT60phjom+Gjt2LAIDAzF37lycPXsWb9++haurK1q2bImxY8eievXqan9fa2JigiNHjmDFihXYsGEDbt68iaysLFSqVAm9e/fGjz/+yFtVy1OYe6k4jRgxAi4uLlixYgUuX76M169f6+Q7y0GDBuHLL7/Ejh07EBoaisjISLx8+RJv376FpaUlHB0dUaNGDTRo0AC9e/eGp6dnobZnZmaG3bt348CBA1i3bh0uXLiAV69ewdLSElWqVEHXrl3x3XffFemISGIVK1bE5cuXsWnTJuzYsQOXLl1CcnIyrK2t4eHhgYCAAPTu3btIO/YPDg5G06ZNsWDBAhw7dgyPHz9GXl4e3N3d0aJFC3z//fcyz+PC8PX1xbVr1zBz5kzs2bMHjx8/RpkyZVCjRg0MGzYMffv21WkHvCVNaODYsmVLtY+jhLFPvHMWQggpYuHh4WjevDmA/GG5iuojeUKIfnv48CH/hvrUqVNqZ8o1agBBCCGEEEKKhtBor2nTphqVrlJmjhBCCCGkFBD6fp08ebJG61FmjhBCCCGkFFi9ejUYY2jRooVG61FmjhBCCCFEj1FmjhBCCCFEj1FrVkIIIYQQPUYlc4QQQggheowyc4QQQggheowyc4QQQggheqxIM3MDBw6ERCKBl5dXUW6GFDGJRAKJRIKpU6eWdFJIAXSPlS4PHz7k98t/aXghsfXr10MikcDX1xd5eXlS8yIjIyGRSGBvb4/k5OQSSiEhnx4qmSN6QfySVPeva9euKuO9d+8efv/9dzRs2BAeHh4wNTWFo6MjatasiR9++AFnzpxRK33NmjWTmwYLCwu4ubnB19cXvXv3xuzZs3H79u1CHg1CSsb79+/xyy+/AAAmTZoEAwPpV0hAQADatm2LN2/e0I8/QoqRxpm5devW8RfVw4cPiyBJhBS9Dx8+YPTo0ahevTqmTJmC8+fPIzExEVlZWUhOTkZcXBwWL16MJk2aoGPHjkhISNBqOxkZGUhKSsL169exfft2jBs3DtWqVUPLli1x5coVHe8V+S+YOnUqf8aWNosWLcKzZ89QvXp19OrVS+4yQs/1K1euxKNHj4ozeYR8soxKOgGEaKpLly74448/VC5nbW0td3pqaiq6dOmCkydPAgDs7e0xcOBAtGzZEi4uLnj79i2io6Oxdu1a3Lx5E4cPH0aDBg1w7NgxVK9eXeV24+LieDgnJwcpKSlISEjAhQsXsGvXLiQlJeHEiRMICAjA4sWL8fXXX6u557LWrVv3n63OI6VLRkYG5s6dCwAYPXq0TKmcIDAwEPXr18eFCxcwa9YsLF26tDiTScgniTJzRO/Y2tris88+03r9IUOG8Ixcy5YtsXXrVjg5OUkt06JFC4wePRoTJkzAnDlzkJCQgM6dOyM2NhZlypRRGr+itPXv3x9z587FwoUL8euvvyIrKwsjRoyAu7s7OnXqpPX+EFIcNm3ahOTkZJiamqJnz55Kl/3yyy9x4cIFrF+/HtOnT4etrW3xJJKQTxR9M0c+Kdu3b8eOHTsAAP7+/jhw4IBMRk5gbGyM2bNnY/jw4QDyv68bP358obZvamqKcePGYdOmTQCAvLw8DBs2DJmZmYWKl5Citnr1agBAx44dVWbOevfuDSMjI7x//x7btm0rhtQR8mlTOzMXHh4OiUSCQYMG8WkVKlSQ+eA7PDxcYRwpKSmYPHkyfH19YWlpCVtbWzRp0gSbN29WKw3p6elYsGABmjdvDhcXF5iYmMDZ2Rlt2rTB2rVrkZubq3BdLy8vSCQSDBw4EABw8+ZNDBs2DF5eXjA1NYWLiwu6deuGCxcuqJUWZe7fv4+5c+eic+fO8PLygrm5OczNzeHp6YnevXvj6NGjStcv+F1iXl4eVq5cicDAQNjZ2cHS0hI1a9bE9OnTkZ6erjI9V69exVdffQUPDw+YmZmhfPny6N+/Py5dugRAdy0ib926hR9++AG+vr6wsbGBubk5KlasiEGDBvFtlbS//vqLh1euXAlzc3OV68yePRuurq4AgDVr1uDFixeFTkfv3r156UZSUhLWrl2rVTzqnLs9e/aga9euKFu2LExNTVGmTBlUrFgRjRs3xqRJkxAZGanVtsVCQ0PRv39/VKhQAebm5rC2toafnx/GjRuHZ8+eqVz/zZs3GD9+PKpVqwZzc3M4OzujVatWPOOt6ltddVtcCw1VmjVrJnf+s2fPsGzZMvTo0QPe3t6wtLSEqakpPDw80KVLF2zbtk2mBaeuCPv422+/8WnyGtXI2/+XL19i4sSJ8Pf3h62tLczMzODl5YWvvvoKZ8+eLXTaHj16hIsXLwIAgoKCVC7v7OyMRo0aAQBl5ggpDkxNJ0+eZABU/p08eZKvExwczAAwT09PduPGDebl5aVwvZEjRyrdfmRkJPPw8FC67YCAAJaUlCR3fU9PTwaABQcHs127djELCwu5cRgaGrJ///1X3cMi4/79+2odp/79+7Ps7Gy5caxdu5YvFx8fz1q0aKF0n9PS0hSmZ926dczY2FjuusbGxmzdunVS50keYfkpU6Yo3M7vv//OjIyMFKZTIpGwyZMna3IopTx48IDHFRwcrFUcV65c4XEEBgZqtO4vv/zC1124cKHM/KZNm/L56jp//jxfp3Xr1hqlR6Ds3OXk5LCePXuqvBZr166t1bYZYywtLY1169ZNafxWVlbswIEDCuO4du0ac3NzU7j+4MGDpe6JBw8eyMShzjXK2Mfz1LRpU5l5OTk5zMDAQOXxat26NUtNTZUbv/g6Xbt2rdK0FCTeR2V/Bfc/JCSEWVtbK11n5MiRLDc3V6P0iK1bt47Hde/ePbXWGT9+PAPAzMzM2IcPH7TeNiFENbXfPGlpaSwuLo798ccf/KYOCQlhcXFxUn/ijIXwonFycmLe3t6sTJkybOLEiSw8PJxFR0ezf/75h5UtW5bHd/ToUbnbvnr1KrO0tGQAmLOzM5syZQo7fvw4i42NZSEhIWzkyJE8I1GvXj2WlZUlE4eQmfP392dmZmasQoUKbMmSJezChQssIiKCTZ06lZmZmTEAzNramr148UKLw8nYnTt3mImJCevcuTNbtGgRO378OLt06RI7fvw4W7ZsGfP19eX7qyhzI36oBwYGMgMDAxYcHMwOHTrEYmJi2J49e1iDBg34MuPHj5cbz5kzZ/jLydzcnE2YMIGdPn2aXbx4kS1dupSVLVuWmZiYMH9//0Jl5iZNmiSV3lWrVrGIiAgWHR3NNm/eLJXWRYsWaXNYdZKZW7x4MY9jxowZGq0bERHB1+3Ro4fMfG0yc7m5uaxMmTI8w6Moc6+MssyceH8bNWrE1q1bx86cOcNiY2NZWFgYW7hwIWvXrh0LCAjQeLuM5Wd+mjdvzjPrffv2ZTt27GDR0dEsIiKCLVy4kJUvX54BYCYmJiw6OlomjpSUFKlnQO/evdnhw4dZdHQ027JlC6tTpw4DwOrWrVvkmbns7GxmYGDAWrRowWbPns2OHj3KYmJiWHh4OFuzZo3UdTxgwAC58RcmM/fmzRsWFxfHRowYweMo+HyNi4uTer7FxsYyExMT/uNs1KhR7OTJkywyMpKtWLGCVahQgcc1btw4jdIjNmTIEAaA2dvbq73O7t27+bbPnj2r9bYJIaqp/+b5f6p+IYsJLxoAzNbWlsXHx8ssc+fOHZ6J+uKLL2Tm5+XlsZo1azIAzM/Pj718+VLuto4cOcIzLqtWrZKZL2TmhJKIlJQUmWU2bdrEl5k3b57SfVMkLS2NJSYmKpyfl5fHBg4cyAAwS0tLueko+At948aNMstkZmayzz77jAFgDg4OcjMCfn5+/EV67tw5mfnPnz9nFStW5NvRJjMXGRnJj/vEiRPlrp+bm8v69+/PALAyZcqwN2/eyF1OGfFLskuXLnJfcsp+WDDG2NChQ6V+iGgiPT2d76e3t7fMfG0yc4wx1qhRI77e48ePNVqXMeWZucaNG/MfOMoyisnJyRpvlzHG5syZwzMRhw8flrvM69ev+Q+YRo0aycz/8ccf+f7/+eefMvOzsrJYmzZtlJZMMaabzFxeXh67c+eO0vUnT57MM6+3b9+WmV+YzJxgypQpal9LQibX0NBQ7jX9+vVr5uPjwwAwAwMDuc9gdVSvXp0BYC1btlR7nUePHvH9mDVrllbbJYSop9gyc8pKZPr06cMAMDs7O5l5Bw4c4HFcuXJF6fZ69erFALCGDRvKzBNn5hTFk5eXx9zd3RkA1q1bN6XbKozk5GRmaGjIALCdO3fKzBcf4+7duyuMZ/ny5Qr3SVySNHr0aIVx7Nu3r1CZuaCgIJ5BzsvLU7idN2/eMFNTUwaA/fPPPwqXU0T8klT3T1zlzxhjXbt2VftaksfW1lZh6YS2mbkuXboUKk3KMnPe3t4qz7+2srKyeNWoqvgPHz7M91GcWcrMzGR2dnYMAKtZs6bCasAnT55IfSpQVJk5deTk5DBHR0cGgM2ZM0dmfnFm5i5evMiXGz58uMLlzp49y5f79ttvtUqTUILct29ftdfJzMzk2/3hhx+02i4hRD3F0ppVIpHgyy+/VDi/du3aAPI/gk5JSZGat2/fPgBA1apVUbNmTaXbadKkCQAgKipKYWOIGjVqKIxHIpHA398fQH4jBl3Izs5GQkICbty4gfj4eMTHxyMxMREODg4AoLLj2H79+imcJxw3eekNCwvj4eDgYIVxdOzYkadFU9nZ2Thy5AgAoEePHko7ObW1tUWNGjUAABEREVptr7BSU1N52NLSUuP1hXXevXunszRZWVnxsDh9uuDm5gYAOHDgAF69eqXTuCMjI3nDBkWdxwqE+xKQPvcxMTF48+YNgPxrVFG/ZWXLlkWbNm0Km2SN5eXlITExEbdu3eL37o0bN1C2bFkAqu/donb8+HEeHjJkiMLlGjZsyPtHFK+jrg8fPvBr087OTu31TE1NeQOjly9farxdQoj6iqWfOUdHR6UZBnt7ex5OTU2VavYeHR0NIL+lpLo9omdlZeH169dyu5yoVq2a0nWFtBTmxZqdnY2VK1di48aNiI2NRVZWlsJlVb1klaW34HETi4+PB5D/QFXWJ5uhoSE+//xzqcyfuq5fv85b0/7yyy98mB9VkpKSNN6WWHBwsFYd5Yr7h0tLS9N4fWEdRZ0Ra0N83nQZL5B/nE6fPo27d++icuXK6N69O1q3bo3GjRvzDIm2hPsSABo0aKD2euJzL+5cuW7dukrXCwgIwKFDhzRIoXYYY9i8eTNWr16NixcvIiMjQ+Gyus4ga0q4x01MTPiPUEXq1auHGzdu4M6dO8jKyoKJiYna23n9+jUPa5KZE5bPyMigcVoJKWLFkpmzsLBQOl/8i7xgiZq23UAo6rJD3bQo6+ZEmdevX6NNmzaIiYlRa3llLwtAeXqVHTehxMPe3h6GhoZKt6GonzVVdH1uipr4B0VSUhL8/PzUXjcjI4NnvLQtyZRHnCEQZ851YfDgwbh37x5mzZqFt2/fYu3atbwLlEqVKqFr16749ttvUbFiRY3j1sW5F65RIL8rC2VcXFy02p4mMjMz0b17d17arIqqe7eoCZkse3t7GBkpf5QLXeswxvDmzRuNjqeZmRkPa7rPwvLqdAFECNFeqR8BQsikNGzYEMuXL1d7PXd396JKklL/+9//eEaua9euGDx4MGrWrAlnZ2eYmZnx0sXy5cvjyZMnYIyVSDp1QZyBnD17Ntq1a6fWetpUceqCOPMWGxuLtm3bqr3u5cuXef9immQClcnLy8PVq1cB5JfKCS9cXZo+fTq+/vprbN68GWFhYbhw4QLS09Nx7949zJ07F4sWLcKiRYvwzTffaBSv+NyHh4erncEVZ9rE176qUvfiuE+mT5/OM3JNmzbFyJEjUatWLbi6usLc3Jz/eGrSpAnOnDlTau5ddWosCpNWW1tbGBkZIScnR6qUTpW8vDy8ffsWgPY/GAkh6in1mTkHBwc8f/4cL1++LNQQTsXh3bt3vIPML7/8UmlnyOJSiaIgVIe8fv0aubm5SkvntP2eRfwCz87OLvXnR/zt1v79+zUazWH//v083LhxY52kJyIiglfdNmjQQGUJqrY8PT0xYcIETJgwAdnZ2YiMjMSOHTuwYsUKZGZm4ttvv0W9evVUVtWJic+9iYmJVudeXBL5/PlzVKlSReGyqkoCJRIJGGMqO/R9//693OmMMaxatQoA0KhRI5w4cULhN3xFfe+qSzh+ycnJyMnJUVo69/z5cwD5x0nTqlKJRAJHR0ckJSVptO9v377l54Myc4QULY0bQKj73ZquCC+Y27dv49GjR8W6bU3duXMH2dnZAIA+ffooXO7WrVtafbOlCV9fXwD5Hy+Lv00qKDc3F5cvX9Z6G8K3N8eOHdMqjuLk5+fHS9UiIiKkvvtSJjU1lX+jZ2pqqvTcamLBggU83K1bN53EqYqxsTEaNmyIBQsWYMuWLQDyMzI7d+7UKB5xxk/bcy80iAHyGy0po2q+8D2kssxGXl4e7ty5I3fe69ev+fd8vXr1UpiRS0tLw61bt5SmpbDUfcYKGeisrCzExsYqXVYY5cPb21uj7+UEwrm6ffu22uuIlxWfa0KI7mmcmRN/P/HhwwedJkaeL774godnzZpV5NsrjJycHB5W9l2YJtXF2mrZsiUPb9iwQeFyhw4d0vrjZAsLC76d8PBwnQwLVdR+/vlnHv7666/V+gbop59+4i/6QYMGqfy+Sx3//vsvz0C5ubnxYeaKk/ga0fRj/kaNGvGSoeXLl2vVwrd27dq8lGjjxo0KqwKfPn2qMsNYoUIFAFCaQT98+DCv9itI3Xt39erV/AdbUVH3GduqVSupdCkSERGB69evy6yjCaE0+tatW2o3DhNnwHVVmk0IkU/jzJzQ3QGQP/B4UQsKCuLN6v/++2+lDy0gv4XXgQMHijxd8lSuXJn/qlaUgTp48CAWL15c5Glp0KAB74Jl6dKlOH/+vMwyL1++xOjRowu1nV9//ZXvc58+fZReE7m5udiyZQsSEhIKtc3C6Nu3L7p37w4g/7u5L774QmE1c3Z2NsaNG4cVK1YAyM8wzJw5s1Db//DhA2bPno2vvvoKQH4jltWrV8PU1LRQ8cqzadMmqUxKQeIMkpAZUpeZmRnGjh0LIL8xSZ8+fRRWYQL5pZtLliyRmmZqasrHer58+TJmz54ts15OTg6GDRumtEU4kP+NGwBcvHgR586dk5n/7Nkz/PDDDwrXd3Jy4q3o//33X7nbi4qKwsSJE5WmQxfUfcYGBATwVsCrVq1CaGiozDJv377F8OHDAeRfayNGjNAqTUJmLC8vT+0SbeHHnZeXV6FbTxNClNP4mzl/f3+YmZkhMzMTkyZNgpGREby8vHi1hIeHh05bLhkaGmLbtm0IDAxEWloahg4dih07duDLL79E1apVYWxsjBcvXiA2NhYHDx7E+fPnMWbMGHTu3FlnaVCXg4MDOnTogEOHDuHw4cNo164dhg8fjvLly+PFixfYtWsX1q1bh4oVKyIlJaXI+15aunQpmjZtiqysLLRq1Qo//vgj2rVrB1NTU0RHR2PGjBlISkrC559/jsuXL2tVhd6wYUNMnjwZv/32Gx48eIDPP/8cQ4YMQZs2beDm5oYPHz7g4cOHiIiIwM6dO5GYmIi4uLhCPdxTUlJ4twzKGBoa8h8CYmvWrMGrV69w+vRpHD9+HNWqVcPgwYPRokULuLi44N27d4iOjsbq1atx8+ZNAPkNavbv369W9yHitOXm5iIlJQUJCQm4cOECdu7cyUv5TE1NsXTpUrRv317dXdfIV199hbFjx6J79+4IDAxEpUqVYGZmhufPnyM0NBR///03gPy+7vr3769x/OPGjUNYWBjCwsJw5MgR+Pj44JtvvkGDBg1ga2uL1NRU3Lp1C+Hh4di7dy/MzMzw3XffScUxefJkbN++HQkJCfj5559x+fJlDBgwAM7Ozrh9+zbmzZuHqKgo1K1bV2lV69dff41ly5YhJycHnTt3xuTJk9GoUSNkZWXh3LlzmDt3LnJycuDt7S23qtXAwAD9+vXD0qVLcfnyZTRu3BijR49G5cqV8fbtWxw+fBjLli2DlZUV3N3dNapu1FRgYCAPjx49Gr/++ivc3Nz4/enl5cW/j1u5ciXq1auHrKwsdOzYEd9//z06d+4MKysrxMbG4q+//uJ9UI4dO1br71oDAwNhZ2eHN2/eICwsDM2bN1e6PGMMJ0+eBJDflyUhpIhp09PwuHHj1Op1X9UA7gJ1RpW4cuUK79Fe1d9vv/0ms74wAoSqcT3VTbMijx8/5uNRyvsrX748u3btmtL0qDvKhjq9za9bt06q93zxn5GREfvnn3/YV199xQCwatWqyY1DWF5Z7/rz58/nIzwo+zMxMVE5ZJKqfVX3z8bGRmF8GRkZ7Pvvv+dj+ir7a9OmDXv06JHS9IlHgFD1J5FIWMuWLbUa8aEgZderOmmxtbXVeGgzsfT0dDZgwAC1tlWhQgW5ccTHxzNXV1eF6w0aNEite2LevHkK47Czs2OnTp1SOgJESkoK+/zzzxXGYW9vrzIOXYwAwdjH0Wzk/RXc/5CQEGZtba302I8cOVLhCBvqGj58OAPAKlasqHLZ8PBwvu2IiIhCbZcQoppWI0D89ddf+Oeff9C4cWO1+jHThZo1a+L69etYv349unbtinLlysHMzAwmJiZwc3NDs2bNMHHiRMTExGDy5MlFnh5FypUrh0uXLuGnn35ClSpVYGpqChsbG/j5+WHKlCm4fPkyfHx8ii09wcHBiI6ORr9+/eDu7g4TExN4eHigV69eOHv2LIYOHcq/d7KxsdF6O6NGjcK9e/cwadIk1K9fH46OjjAyMoKlpSWqVKmCoKAgLF++HE+fPkXlypV1tXtaMzMzw6JFi3Djxg1MmTIF9evXh6urK4yNjWFvb4/PPvsMI0eORHh4OEJCQlC+fHmtt+Pi4oLq1aujV69emD17Nm7duoXjx4+rHNGksG7evInFixeja9eu8PHxgYODA4yMjGBnZ4f69etj6tSpuHXrVqFGVzA3N8f69esRHR2NESNGwNfXFzY2NjAyMoKtrS0vqd25cydu3LghNw5fX19cu3YN48aNg7e3N0xNTeHo6IjmzZtjy5YtWLNmjVppGT16NI4ePYq2bdvCzs4OpqamqFChAkaOHInLly9LtWaWx8bGBufOncO0adNQo0YNmJmZwcrKCtWrV8fYsWNx5coVlXHoyqZNmzBr1iwEBATAxsZGYYMMAGjTpg3u3r2LCRMm4PPPP4e1tTVMTU1Rvnx59OvXD2fOnMGSJUuUxqGOkSNHAsgfbUbVKC5C4xp/f3/Ur1+/UNslhKgmYayUdJZESkzlypVx79499O/fHxs3bizp5BAiY926dfz7ugcPHsDLy6tkE/SJateuHUJCQjBkyBDelUtBqampKF++PFJSUrB582alQzkSQnSjWMZmJaVXVFQU/8iafkETQpT57bffAOQ38FLUVdSSJUuQkpKC6tWr66wbH0KIcpSZ+4+7e/euwnnJyckYNmwYgPyP8Xv37l1cySKE6KF69eqhV69eyM7OxowZM2Tmv3//HvPmzQOQ35VUYat2CSHqKfUjQJDCad26NSpUqIBu3bqhZs2asLGxwZs3b3Du3DksW7YMz549AwBMnDgRjo6OJZxaQkhpN3fuXFSvXh2mpqbIy8uTyrA9evQII0eOhL29PTp16lSCqSTk00LfzP3HeXl5qRw549tvv8XixYvpVzQpteibOUIIUYxK5v7j1q9fjwMHDuDUqVN49uwZXr16BSMjI7i6uqJRo0b4+uuvpfq1IoQQQoh+oZI5QgghhBA9RvVqhBBCCCF6jDJzhBBCCCF6jDJzhBBCCCF6jDJzhBBCCCF6rEQzcw8fPoREIoFEIsG6detKMimYOnUqTwshhBBCiL4odGYuOzsb//77L4KDg1G9enU4ODjA2NgYjo6OqF27NkaMGIHjx48jLy9PF+klpcwff/zBM8FlypRBenq6TuNPSUlBaGgopk+fjq5du8Ld3Z1vr1mzZhrHFxERga+++gpeXl4wMzODm5sb2rVrh3///Vet9T98+IDJkyejQoUKMDMzw2effYZly5ahNDQKDw8P58dG3p+VlRWqVKmC4OBghIeH62Sb7969w7///othw4ahVq1asLW1hYmJCZycnNCsWTPMmTMHKSkpaseXnJyMKVOmwM/PDzY2NrC2toafnx+mTJmC5ORkteI4evQoAgMDYWFhARcXF3z99ddISkrScg+LVkxMDCZMmID69evDw8MDpqamsLa2RqVKldCjRw+sWLFCo+OniWXLlkldH+r+oP4U7yEjIyPY29ujQoUKaNKkCUaPHo1du3YhKytL52l4+fIl/vjjDwQGBsLe3h7GxsawtbVF7dq18fPPP6vsN1SQk5ODFStWoEmTJnBycoK5uTkqV66Mb775BtevX1crjlu3biEoKAi2trYoU6YMOnbsiEuXLhVm90hRYYWwd+9eVrFiRQZA5V+VKlXYwYMHpdZ/8OABn7927drCJKXQpkyZwtNC1FelShWp87xx40adxu/l5aXwmmratKlGcf3222/MwMBAYXydO3dmGRkZCtfPyclhbdq0kbvusGHDCrmnhXfy5Em17kXhb/DgwSwnJ0fr7R0+fJiZmpqq3I6Liws7ceKEyvgiIyOZm5ubwnjc3d1ZVFSU0jjWrVvHJBKJzLrly5dniYmJWu+rrj1+/Jh16dJFrfNkbm7OJkyYwNLT03W2/adPnzJra2up7ajzDKZ7SPrPycmJTZs2jWVnZ+tk+8ePH2cODg5Kt2lhYcG2bNmiNJ5Xr16xevXqKYzD1NSUrV69WmkcV69eZTY2NjLrmpmZsbCwMJ3sL9EdrXMuf/75p9RDs1WrVmzx4sUsLCyMxcTEsNDQULZkyRLWtm1bfvP7+flJxVGaMnNEcxEREfz8WVlZMQCsdevWOt2Gp6enVKagU6dOWmXm/vnnH75epUqV2OrVq1lkZCTbu3cva968OZ/Xr18/hXEsW7aMAWAeHh5s7dq17MKFC2zBggX8gXfkyBEd7LH2xC+iESNGsLi4OP539epVFh4ezmbMmMGcnZ35cpMnT9Z6exs3bmQAmIGBAWvbti2bP38+O3HiBLt06RLbv38/6927t9QLKDY2VmFcCQkJzMXFhQFgRkZGbNy4cez06dPs9OnTbNy4cczIyIhfAwkJCXLjePnyJbO0tGQGBgZszJgx7OzZs2z//v38pda7d2+t91WXLl26JJVp9fT0ZOPHj2cHDhxgkZGR7OzZs+zff/9lQ4cOlXqxKzt+murWrRsDIHUtqHoGf+r3UEREBDt8+DD766+/WOvWraXefwEBAezFixeF2vb9+/eZhYUFj7NLly5s586d/BgPHDiQb9PQ0JCdP39ebjw5OTmsSZMmPJ7u3buzI0eOsIsXL7JFixbxc25oaMiOHj2qMD0BAQEMAOvYsSM7duwYCw8PZwMGDGAAWLly5VhWVlah9pfollaZuQ0bNkj9MlH1q/vq1ausRYsWlJn7jxkxYgQDwBwdHdnMmTP5i13Ry1Ybs2fPZjt37mSPHj3i0zTNzL1584bZ2tryEpqXL19Kzc/JyWGdO3fm8Z46dUpuPM2aNWMA2JUrV6Sm79mzhwFggwYN0mzndEz8IpoyZYrC5a5du8bMzc0ZAGZtba31Q/nff/9lw4cPlzo3BS1atIinqUWLFgqXCw4O5stt375dZv727dv5fEXHed26dQwAGz16tNT01NRUVrZsWWZmZsY+fPig5t4VjefPn0tl5CZMmMAyMzMVLv/u3Ts2efJkZmRkpLPM3N69e/mze+7cuWo9g+kekhUfH8/8/f358o0aNSrU9fXdd9/xuH766Se5y4jvp86dO8tdZu3atXyZb7/9Vmb+nTt3eKmst7e33FLFhw8fMgCsTp06MqX3QomyonNMSobGmbmnT58yS0tL/mv72rVraq2Xm5srUwVHmTn99eHDB2Zvb88fGM+ePWOGhoYMAJs5c2aRblvTzNysWbP4Olu3bpW7zJMnT3j6O3XqJHcZb29v5uDgIDP93bt3DABr06aN2vtQFDR5EfXo0YMvW/DFqmt16tThGf1Xr17JzE9KSuLHvm3btgrjadu2LS9RSEpKkpk/ffp0BoAdOHBAZl737t0ZgBKvau3atSs/7lOnTlV7vVOnTrH79+8Xevvv3r1jZcuWZQDY+vXrpV78yp7BdA/Jl56eLpWhmz9/vtbbFuKRSCTs7du3cpfJy8vjz115x5Exxnx8fBgAZmdnx96/fy93mRkzZvA079y5U2b+uXPnGAA2ZswYmXlChlJVVS8pXho3gJg/fz7ev38PAPjtt9/g4+Oj1noGBgbo37+/yuVCQ0PRuXNnuLq6wtTUFBUqVMCIESOQkJCgct2srCwsW7YMzZs3h5OTE0xMTODq6ooOHTpg06ZNShthqNuaNSsrCytXrkTHjh35B8vOzs6oXbs2vvvuO5w5c0bph7yhoaHo378/KlSoAHNzc/6B97hx4/Ds2TOl205MTMT48eNRq1Yt2NjY8P2rUaMG+vbti3Xr1uHdu3fKD5KOHDhwAK9fvwYA9O/fH66urmjRogUAYMOGDcWSBnXt3bsXAGBtbY3u3bvLXaZs2bJo1aoVgPxzlJaWJrOMs7MzkpOTce3aNanpQmMCV1dX3SW6iIkHqs/MzCzSbQkNVfLy8vDgwQOZ+fv370dubi4AYNCgQQrjGThwIAAgNzcX+/fvl5nv7OwMADh16pTU9Pfv3yM6OhomJiawt7fXZhd04tq1a9i3bx8AwM/PDxMnTlR73SZNmqBChQqFTsMvv/yChIQENGvWDAMGDFB7PbqH5DM3N8fGjRv5e2POnDnIzs7WKi6hMYWDgwOsra3lLiORSFCxYkUA+Q1JCrpz5w5v3NC7d29YWFjIjUe4lwBg9+7dMvOFe+ns2bMy703h/tK3c/Wfp0nOLy8vjzk5OTEAzNLSUuGvB3UVLJn7+eef+f8L/jk5ObHr168rjOvhw4esevXqCtfH/xeDJycny11fnQYQsbGxrEKFCkq3AYA9ePBAZt20tDT+nYqiPysrK7mlCowxdvr0aZkPluX9yVtf/GszODhY4f5p4osvvmBA/rczgvXr1/PtxMTEqIxDWNbT01OjbQvrqVMy9+HDB/69lbJSH8byvwMV4pb36cDs2bMZkP+9yLp169jFixfZ4sWLmZ2dncJjX5y0LZl79uyZ3GXEVZ8nT57UOl3ff/+90uviq6++UpkWxhhLTEzkyw0YMEBmfkJCAjMxMWEGBgZs3Lhx7Ny5c+zgwYMsMDCQAWBBQUFa74MujBkzhqd/1apVOolTk3vowoULzMDAgJmYmLAbN24wxphaJXN0D6kmbtRx7tw5mfni46woXuH9oKxkjjHGS+Zq1aolM2/16tUqS1AFQuO18uXLy53v6+vLALAvvviChYaGslOnTrFBgwYxIL8xkrLPA0jx0ygzFx8fzy+Udu3aFXrj4syc8MBt2rQp27JlC4uOjmbHjx/nH1wCYPXr15cbT2pqqlSr2q5du7L9+/ez6OhotmPHDta0aVM+r0GDBnJb8KnKzF27do1/5A+AdevWjW3bto1FRUWxCxcusPXr17P+/fszS0tLmcxcTk4O/0BYIpGwvn37sh07drDo6GgWERHBFi5cyMqXL88AMBMTExYdHS21fmZmJnN3d2cAWJkyZdi4cePYkSNHWExMDLtw4QLbtm0bGzVqFCtXrlyxZOZevnzJjI2NGSD9AX1qair/gPd///ufyniKIzMnvmZVpWn37t182aVLl8rMz8jIUNhCTF7morip+yK6ceMG/2aubt26CpfTVWauZs2aDMhv2CDvJSVUw9rY2KiMS/hBoyjd8+fPl3t+3N3d2ZMnT7TeB10Q9hOA3Gpibah7D2VlZbEaNWowAOzXX3/l09XJzNE9pJq4Gvqvv/6Sma9OZu7o0aN8mZ9//lnuMkuWLOHLrFixQmb+2LFj+XxV31gKP8glEglLS0uTmX/u3Dn+nBD/mZiYlHhDFSJLo8zc5s2b+QmdMGFCoTcuzswB+U3T8/LyZJYbOnQoX+bSpUsy88UX8MSJE2Xm5+XlsX79+vFlli1bJrOMqsyc8D2DgYGB0l88r169kulCYM6cOQwAMzY2ZocPH5a73uvXr/kvoUaNGknNCwsL42lT9ss1Oztb7stS15m5hQsX8vhu374tNa9v374MyG8lp6q5fnFk5o4cOcKXnz17ttJlo6Ki+LLjx4+Xu0xqaiobM2YM8/DwYMbGxqxKlSps3rx5LDc3V6N9KAqqWrOePn2azZw5k7m6ujIgv/GDvFIEgS4ycwcPHuRxdOzYUe4yQitWX19flfEJ94irq6vCZXbs2MFq167NTE1NmYODAxswYIBOG+VoS/gB5O7urrM41b2HhO8JK1asKPV8Uicz96neQ5pk5o4fP87XGzx4sMx8dTJzjDGp2qnu3buzXbt2saioKLZ//342ePBg3jNEv3795BZKiFuQF2ykUtDIkSP5sjdv3pS7zKVLl1iHDh2YlZUVs7CwYK1atWIRERHKDwYpERpl5sQv8YULFxZ64+LMnJubm8Ji25s3byrcbmZmJm9l5ePjo7DfrLdv3/Jm/j4+PjLzlWXmxL+Y1ClxEsvKyuKt1wq2sivo8OHDfDt37tzh08WZaG2qtnWdmatduzYD8pvjF3To0CG1Mp6MFU9mTtwK8u+//1a67PXr1/my3333nUZpKg3U7SPLwMCADR8+nFe1KVLYzFxycjLvWsbQ0FDuDzHGGC/NrVevnso4he4SrKysNE5PSXr79i0/lv7+/jqLV5176M6dO8zMzIwBsl1/qJOZ+1TvIU0yc7GxsXy9bt26ycxXNzPHGGMhISG81W/BP39/f7Zt2zaF63bo0IEvq6y/P8YYGzduHF+2YG0Q0T8aNYBITU3lYUtLS01WValHjx4wNTWVO69q1aqwsrICANy/f19qXkxMDO8hfeDAgTA0NJQbh7W1NXr16gUAuH79usrGBmKHDh3i4dGjR6u9HgBERkbybQnbV6RJkyY8HBERwcNubm48vHbtWo22D+R/gM7yM+6FHjbt+vXriImJAQC5DVratGnDP57duHGj0riEND18+LBQaVJG/HG/iYmJ0mXF119GRkaRpamk5eXlYfv27Vi1apXSHuzXrVvHz5Gmo23k5uaiX79+vLf6iRMnwt/fX+6ywjlSdX6Aj+dI385PUT071bmHvvnmG2RmZqJnz55o166dxtuge0g14f0ESJ9rwcCBA/m5mjp1qsJ4nj17hg0bNuDChQty58fFxWHz5s24efOm3Pl0rj5dGmXmypQpw8NCi1ZdqVatmtL5dnZ2AGRvlPj4eB6uV6+e0jjE88XrqRIbGwsAKF++PDw9PdVeDwCio6N5uEGDBiqHWxKIhx9q1KgRb8E0atQoBAQEYMaMGTh//nyRDCejzPr16wEARkZG6NOnj8x8IyMj9O7dG0B+K8W3b98Wa/oKMjMz42FVx0rcOszc3LzI0lQcpkyZwl8ewl96ejquXr2Kn376CampqZg7dy7atGlTJA/yb7/9FkePHgUAdOzYEZMmTVK4rHCO1LmWhXOkb+enKJ+dyqxbtw5hYWGwtrbGggULtIrjU72HNCF+LylqiarKjRs3EBAQgM2bN8PS0hLLli3DkydPkJWVhaSkJGzYsAHu7u7Yv38/GjRogDNnzsjEQefq06VRZs7R0ZGHnz9/rtOEKGpCLTAwyE+q0IWBQOgeAwBcXFyUxiFuSi1eT5VXr14BkC4hU9eLFy80XgeA1BinxsbGOHDgAKpXrw4AiIqKwoQJE9CwYUPY2tqiffv22LJli8yx0bW8vDxs3rwZQH4JnJOTk9zlhBK7zMxMbN++vUjTpIr4JSqvqwQx8UtWnLH+rzA3N0eNGjUwa9YsLFu2DEB+NwMzZszQ6XZ++eUXrFy5EkD+D5EdO3YoLDEHPp4jVecH+HiO9O38WFtbw9jYGIDun52KvHz5EmPHjgUATJs2De7u7lrFQ/eQasI7AoDW3d989dVXSEhIgIWFBc6cOYMRI0agbNmyMDY2houLC7766itERETAxcUFKSkp6Nu3r0z3JHSuPl1Gmizs5+fHw6VxsF1VfcSxQg7krCp+ecQZrPDwcDg4OKi1nlBVKfDx8UFcXBwOHDiAAwcO4NSpU7h37x4yMjJw9OhRHD16FPPmzcPhw4dl1tWVsLAwPH36FABw+PBhtY7Hhg0bMGzYsCJJjzrKli3Lw6r6Knzy5AkPlytXrsjSVBoMGTIE48ePx+vXr7F69Wr8/vvvOol35syZ+OuvvwAAtWrVwsGDB1X+6i9btiyeP3+uVl+SwjnSx/Pj5+eH6OhoJCYm4vnz5yp/fBbWqlWrkJycDFtbWzg4OODff/+VWebixYtSYaFkp0WLFvw5QveQakLtDZD/WZCmrly5wj9f6devH//hXpC7uzu+//57TJw4EU+fPsXRo0fRpUsXPr/guRIXwBQknCuJRCK1HtFPGmXmfHx84OjoiFevXuHMmTN49+6d1kXKuiL+FZSUlIQqVaooXFb8i1iTX0/CDZGYmKhx+sSZNxMTE3z22WcaxyEwNDRE165d0bVrVwD531ccOXIEy5YtQ0xMDGJiYjB8+HDs2bNH620oI1SxauLcuXO4f/8+ryYublWqVIGhoSFyc3MVfmciEM9X9DD9rzAwMIC3tzcuXryIxMREvH79utAd6i5btgzjx48HkH/8QkJCYGNjo3I9Hx8fxMTE4O3bt0hKSlLYGemzZ894p9j6eH6aNm3KP7s4dOgQBg8eXKTbE0ptUlJS1Oqwffny5Vi+fDkA4OTJkzwzR/eQaqGhoTzcqFEjjde/ceMGD9eqVUvpsrVr1+bhmzdvSmXmxJ3437x5E59//rnCeIRzVa5cOZ1/A0+Kn0bVrBKJhPcc/f79e6xataoo0qQRceZI/CtTnsjISLnrqSLcXI8fP+YfdKtL/NH3sWPHNFpXFTc3NwwePBgRERE8jQcPHiySb6DS0tJ4JrFly5bYunWr0j/h2mCMqWwIUZRMTEwQEBAAIL9RibLvSISezU1NTVGnTp1iSV9JysnJ4WFte60XbNy4Ed999x0AoGLFijh+/LjSUgEx8cuv4OgNYuJ5DRs21DKlJUfc6/7ixYuL/LMIXaF7SLn4+HiEhYUByM8YabPfRkYfy1XE96U84ntVvB6g/r2UlJSE27dvA9DPe4nIoWnz14SEBN6VgKWlpcruDQSFHZtV6OKgYNca4q5JfH19FXZN8u7dO+bo6KhV1yShoaFad02SkZHBe+x2dXUt9KgZiowePZqnsSjGnxQ3rZc3lp88Qhcm4lEidEFIh7pjs86cOZOvo864kh06dNBhaouPJt0qvH//nncIamZmpvC+UceuXbv4sStbtqzcEVCUefbsGe8/S52xWQ0MDJSOFFGaCR21AmDTpk1Te73Tp0/rZGzWgtQdm5XuIfkKjs2qbZdd0dHRPI5evXopXVY8ksiuXbtk5gsjIdnb26s1Nuv27du1SjMpXTTOzDHG2Jo1a/iF4OzszMLDw5Uuf+3aNdaqVSvm5+cnNV0XmTnGpDsNnjRpksz8vLw8qZEktOk0WMiYqOo0ODk5WabTYPEQN+3bt5fb27bg3bt3bPHixVLTTp8+LdXvXEEfPnxgtWrV4v1vFeysVxf9zAkjWFhYWCh8QBQkfmCcPXtWZr4wryj7mWMs/5zY2NjwbRUc7D0nJ4d17tyZxytvGCJ9oMmLSHzPdOnSRe4y6vQzFxISwkxMTPizQFHno6qIh/TasWOHzHxxX2e6GpKuJDx79ox3kiw8rz58+KBw+bS0NDZ16lRmbGwst0d/be8hgbqZObqHZF27do0/d4XnUVZWltxlVfUzl5ubyzw8PBiQ3yfj8ePH5cYTExPDLC0t+bP4zZs3MsuIh/QaOXKkzPy7d+/ykVQqVaqksnN3oh80+mZOMGjQICQkJGDy5Ml48eIFmjVrhjZt2qBLly6oXr06bG1t8fr1a9y+fRuHDh3C0aNHkZubK9WAQpcmT56M3bt34/79+5g2bRri4+MxePBguLu748GDB1iyZAkfyLlBgwb4+uuvNd7Gxo0bERAQgLS0NPTt2xc7duxAnz59ULFiReTm5uLu3bsIDQ3Fzp07ERcXJzWQ+bhx4xAWFoawsDAcOXIEPj4++Oabb9CgQQPY2toiNTUVt27dQnh4OPbu3QszMzNeZQXkNzyYNm0aGjdujI4dO6JmzZpwcnJCRkYGbt++jeXLl/MGKUOHDpUpei+sx48f8+PXvn17lS2PBUFBQfjll18A5DeE0KY4//Lly7h8+bLceUlJSTL95vXo0UOmZZa9vT1mzpyJb775Bo8ePUK9evXw66+/okaNGkhMTMSCBQtw8uRJAEDfvn3RvHlzjdNZ2rx48UKm+53MzEzcuXMHGzZs4N2GmJmZYdq0aVpt48KFC+jWrRuysrJgbGyM+fPnIzs7W2m3P2XLloWtra3M9OnTp+Po0aN4+fIl+vbti+joaHTq1AlA/qcDc+fOBQA4OTnhjz/+0Cq9pYGrqysOHjyITp064fnz55g2bRo2btyIL7/8Eg0bNoSzszOysrLw9OlTnDhxArt27cLLly9LOtl0DyH/06I3b97g6tWrCAsLQ2hoKG9UV79+fezcuZO3WNaUgYEBZsyYgQEDBiA3Nxft27fH8OHD0blzZzg7O+P169c4duwYFi9ezHs6+OWXX+TeS8HBwVizZg3OnTuHpUuXIikpCcOGDYOdnR0iIyMxbdo0vHv3DgYGBli8eLHO3xekhBQmJ7hr1y7m5eUlt6fqgn++vr4sJCREan1dlcwJcVWrVk1pGho2bMiSk5Plrq+qZI6x/KLwcuXKqdxXedVM6enpUqWDyv4qVKigMG3K/rp37y631+/Clsz98ccfKqtYFBHG5bS1tZUZ4UOIU1mpgrr7ruzYCyZPnswkEonCdTt06KCy1/TSTN0RIIQ/JycnmXtSTFXJnKbnRtV9fuHCBT7UmLw/V1dXduHCBR0cqZL38OFD1rFjR7WOmaWlJZs6darcEXLUuYeUUbdkTkD3kOw9NH36dJWlW+qOADF79mw+7JuiP4lEwkaNGiV36EvBy5cvWd26dRXGYWJiwlauXKntYSKlUKGy5N27d0enTp2wc+dOHDlyBFFRUXjx4gVSU1NhbW0NLy8v1K9fH0FBQWjevLlWXXuoy8vLC1euXME///yDHTt2ID4+Hu/evYO9vT38/f3Rr18/fPnll7y/Om3Url0bt27dwqpVq7B3717Ex8fjzZs3cHBwgIeHBxo1aoQ+ffpIlcoJzM3NsX79evzwww9YvXo1Tp8+jYSEBLx//x5WVlbw8vJC7dq10b59e14iIRg3bhzq1auH0NBQREREIDExkfdf5+rqinr16mHAgAHo0KGD1vumjNCAwdTUFB07dtRo3aCgIFy9ehUpKSnYv38/evbsWRRJVMtvv/2Gtm3bYunSpThz5gyeP38OW1tb+Pn5YdCgQejbt2+Jpa04mJiYwN7eHr6+vujQoQMGDRrEO+MuDerVq4e4uDgsXLgQe/fu5aMaVKhQAV26dMGoUaPU7tqntPP09MTBgwcRFRWFXbt24eTJk3jy5AmSk5NhYmICZ2dn1KpVC23atEHv3r1LvNcAwad6DxkYGKBMmTKwsbGBp6cnateujcaNG6NTp05qjVyirrFjx6Jz585YuXIlTp06hbt37yItLQ0WFhbw9PREo0aNMHToUKkWrfI4Ojri/Pnz+Oeff7BlyxbcuHED79+/h7u7O1q2bIn//e9/8PX11Vm6ScmTMFbIztcIIYQQQkiJ0b6YihBCCCGElDjKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DHKzBFCCCGE6DGjkk4AIYQUhRs3bvDwpEmTAAC7du1Suk6ZMmV4ePfu3QCAVq1a8WnLly/nYW9vbwBAy5YtC59YQggpBCqZI4QQQgjRY5SZI4QQQgjRYxLGGCvpRBBCiDLCY0oikcidHx4eDgC4du0an5aXl8fDz58/BwC8evWKTxPHZWCQ/7vWxMSET6tQoQIAwNLSkk9LSkri4cDAQABA8+bNNdgTQgjRPSqZI4QQQgjRY9QAghBS6skrkXv58iUPL1q0CABw6tQpPq1Zs2Y8/M033wAAWrdurXQ7aWlpPPzjjz8C+FjqBwCdO3fmYXEpHiGElCQqmSOEEEII0WOUmSOEEEII0WNUzUoI0RviatQFCxbw8JUrVwAAAQEBfNr333/Pw+LpylhZWfFwxYoVAXxsPAEA5cqV42Fxn3SEEFKSqGSOEEIIIUSPUWaOEEIIIUSPUTUrIURvnD9/nof37t3Lw3Xr1gUA9OjRg08Tt2YViLvVVNRnnaBmzZoApPuZq1KlCg/b2tqqlWZCCClqVDJHCCGEEKLHqGSOEFIqZWVl8fC9e/cAAHfv3pW7bNeuXQEAXbp04dPklcKpKo0Tq1GjBgDA09OTTxOXxlHJHCGktKCSOUIIIYQQPUaZOUIIIYQQPUbVrISQUiklJYWH169fDwC4du0anyYMdA98bADh6Oios+07OzsDAOzt7fk0IyMjuWFCCClJVDJHCCGEEKLHKDNHCCGEEKLHqJ6AEFIqpaam8vCePXsAAOnp6XxacHAwD1eoUEHn2zc1NZX6lxBCSisqmSOEEEII0WNUMkcIKZXy8vJ4OCMjA4B0owMnJyceptIzQsinjErmCCGEEEL0GGXmCCGEEEL0GFWzEkJKJfFwXLm5uQAAKysrPk3oBw6galZCyKeNSuYIIYQQQvQYZeYIIYQQQvQYVbMSQkoliUQiEzYxMeHTLC0tedjQ0LD4EkYIIaUMlcwRQgghhOgxKpkjhJRK4gYQOTk5AIBXr17xaQ8ePODhunXr6nz77969AyA96oS4bzsqDSSElBZUMkcIIYQQoscoM0cIIYQQoseompUQUiqZmZnx8Oeffw4AuHv3Lp92/vx5Hvb39wcAuLm5abUtoUr12bNnfFpWVhYA6b7txFW/hBBSWlDJHCGEEEKIHqPMHCGEEEKIHqNqVkJIqeTg4MDDY8aMAQCsWbOGTzt69CgPV6pUCQDg4uLCp1WtWlXtbZ09e1Ym/q5duwIAOnbsyKcZGNDvX0JI6UNPJkIIIYQQPUYlc4SQUsnc3JyH69evDwBISUnh04S+5wAgOjoaAHD79m0+zdPTk4eFEjVTU1M+rUqVKjLzW7Zsyaf5+voCkB5pQjwqBSGElBZUMkcIIYQQoscoM0cIIYQQosckjDpOIoToibS0NB6OiYnh4VmzZgEAjh8/Lnc9oc84W1tbPq1t27Y83K9fPwBA586ddZZWQggpLlQyRwghhBCixygzRwghhBCix6ialRCiN8SPK3GV64MHDwAAr169krtsXl4eAMDY2JhPE/dj5+7uLjONEEL0BZXMEUIIIYToMSqZI4QQQgjRY1QyRwghhBCixygzRwghhBCixygzRwghhBCixygzRwghhBCixygzRwghhBCixygzRwghhBCixygzRwghhBCix4xKOgGEECLIzs7m4aysLB7Ozc0FAGRmZvJpHz584GFhhAdFhPVzcnL4NHFY6G7TwODj71txWN52hLB4OVNTUx42NDSUils8TRw2Mvr4GBaHhdEqxKNWmJiYKE0fIeTTRE8DQgghhBA9Rpk5QgghhBA9RtWshJASJ1RFPnnyhE979OgRD79+/RoAcOvWLT7txo0bPCxUv4qrNMXht2/fAgBevXrFpz1//pyHhSpdcTWpEJZIJDLbAT5WCZuZmfFp1atX52FbW1upuAHA2tqahx0cHAAAjo6OfJqzszMPu7m5AQDKlSvHp4nD9vb2IIQQgErmCCGEEEL0GmXmCCGEEEL0mISJ6yIIIURNaWlpPCxUWb548YJPS0pK4mFhekpKCp8mbo0pVD++e/eOT3vz5g0PC9Wb4tauQgtVQLpKVV78QlWnuMpTTKjGvX//Pp92/fp1meU+++wzHi5btiyAj9Wp4v0APrY8VVT1K6RPXtWueH1FLWyFlq/iaebm5jzs6uoq9W/BsKenJwDp1rKEEP1EJXOEEEIIIXqMGkAQQnifafL6UQM+loJlZGTwaXfv3uVhoRRL3CghPj6eh2/evAlAuoGDpaUlD9eoUQOAdCmXhYWFTNjX15dPq1WrFg8LjRDE/biJ+2wTSqzs7Oz4NHEplVCKuHPnTj5t4cKFAKRLE4ODg3m4Q4cOAIAKFSrwaY8fP+bh9+/fA5AubXv58iUPC6WZ4tJI8baEZcXH+d69ezLbEpc2ivdPOFbiYyYuWaxXr55M+uWVAioqGRQahogbiBBCSgaVzBFCCCGE6DHKzBFCCCGE6DGqZiWE8A//z58/z6ddvHiRh4XqUXEDBHE1qVC9J67mCwwM5GGhSlLcN5q4SlWIS1wlKa4mFapPbWxsZLYpni+u8hOHhbjEw2GJCfPF8Qt9vomrlsXVnEIDDR8fHz6tcuXKPCw02hBXTXp4ePCwMByZoiHMhPXFDU2EqlsASE9Pl0lfamoqDwuNTpKTk/k08fndvXu3zPpWVlY87O3tDQDw9/fn0+rUqSOzr+KqbUJIyaCSOUIIIYQQPUaZOUIIIYQQPUbVrIT8R4lbRsrrB048tJVQfSiuRnz69CkPC1V94qpPcZ9qXl5eAKRbRlaqVImHheni4apKE6HKU1xlKPTDJm5tKq56FlrgNmzYkE8Try+uhhaI+4ErCuIqU6EF8e3bt/m0O3fu8LAwxJn4OhH3g5eQkABAuppYXGV79epVANLnVF5YGLaMEFJ0qGSOEEIIIUSPUckcIf8h4lKkmJgYHt63bx8AIDw8nE8Tj3YgjGbQtGlTPm3EiBE8XLNmTQDSDQTEpVBCYwNFfZKJw6WR0I+euG89oQGAUIIFAEeOHOHhyMhIAECXLl34NHHfdSXRMEDobw/4eM7E/cyJ908ohRNKJQHpfRX6DLxw4QKftmvXLh5+8OABAOlGK40bN+bhzp07A/jY+KXgsoQQ3SndT1hCCCGEEKIUZeYIIYQQQvSYhMkboZoQUiqJB6+PioriYaEqTNyoQdxYQejLTNzPmrjPN3d3dwDS/aT5+fnxsJOTU6HTXpoJVc5hYWF8mjCcVmJiIp927do1HhYadbRq1YpPa9u2LQ/r+4f/QmMZcXW8uAGF0PeguFHE69eveVio0hUfB3G4fPnyAIBGjRrxaeIGNIQQ9VHJHCGEEEKIHqPMHCGEEEKIHqPWrISUIsIQTYB0n2HCME7iqtXjx4/zcEhICADpVqPioZeEqixxa0NxNeqnTmjNKh5OS6gmLFeuHJ8mtBAFPlY5njhxgk8TH1N9r2YV+okT9x1Xv359meWE6lYAOHDgAA8L1+fly5f5NHELX6G1sPhLH/H1Lxw/8bBt1BqWEPmoZI4QQgghRI9RAwhCSpGDBw/KDcfGxgIALCws+LRq1arxsDCovVDaAUiXqAijNYgHUhf3SfapEz7yP3nyJJ8mNCZxdHTk04TjDAA7duwAABw6dIhP+/3333m4TZs2AD72wfdflZOTw8PifurevHkDQHqECaFvOuDjCBLnz5+Xu75wLQ8bNoxPa9GihY5STch/C5XMEUIIIYToMcrMEUIIIYToMWoAQUgxevbsGQ+LB7UXhk66cuUKn/b8+XMeFvqBEw9eHxAQwMPNmjUDUHoHsi/thA/zxR/YC40hxENgCcOeAR/75BNXw969e5eHhX7UqlevXgQpLj3E/Rkq6lNOIO5HTpgvroa+ffs2DwvH/9ixY3za48ePeVj4dED8uYGPj4/mO0DIfwCVzBFCCCGE6DHKzBFCCCGE6DGqZiWkGAgt+86ePcunCa0hgY8t+sRVcuKhoYKCggBI93kmrt4ihSP0zyfup+/du3cApFv9io957dq1AUgPsXbz5k0eFoZOE7cw/tTPmbjqVWiZKm6hKgwhBnxsWbx161Y+bd26dTwsDDHXu3dvPk34HAEAbG1tdZNoQvQAlcwRQgghhOixT/tnIiFqErpjVNVn2NOnT3lY/OF2REQEgI99lwGAi4sLD0+YMAGA9ED34sYOQoncp16yU1SEvtKEkTaAjwPIi495dnY2D1etWhWA9KgR48eP52Ghz7SePXvyaVRapJy4AU+TJk0AfGxIAgDXr1/nYeGeio6O5tNGjx7Nw8JoJ0I8gPT9Rch/CZXMEUIIIYToMcrMEUIIIYToMaqzIUQN8qpXxf3APXz4EMDH/uIA6QHYhfmenp58WtOmTXm4a9euAGiIrZIiVKOLq1GF6lNxNWpubq7MulWqVOFh8XWSkJAAQPqaqFGjBg+Lh1Yjstzc3KT+BYAGDRrwsNDY4ejRo3za5cuXeVg4b+LhxBo1asTDwmcM9vb2fNp/feg18t9FJXOEEEIIIXqMMnOEEEIIIXqMqlkJ0YBQHQcA69ev5+GQkBAAQGpqKp8m9EMGAN9//z0A6WoecWtWcf9mpPgJx188nFeZMmUAAJaWlnyavGo4cdXr559/zsPXrl0DABw+fJhPMzc3l7ss0VyrVq0AALVq1eLTbt26xcMrVqwAACxevJhP27x5Mw8PGDAAABAcHMynUWtjoq/oDUIIIYQQoseoZI4QNVy6dAkAsH//fj7typUrPCz0j9W+fXs+TVzyIgwALu6hnpQeQl9y4kYJNjY2AKRL5uQ1gBBGegCAbt268bCFhQWAjyMZANIjfPj5+QGgj+5VEZeGi4+VsbExAOkSbvG56tu3LwDAy8uLT3vw4AEPR0ZGApBuyNSyZUse9vf3ByDdQEJeuuj8kdKASuYIIYQQQvQYZeYIIYQQQvQYVbMSAiAvLw/Ax2GdACA9PZ2Hd+3aBUB6oG9xn1dBQUEAgB49ehRlMkkRkdcAQqgmFU+TV80qHu5L3OjlzZs3AIB///2XT7t//z4PC9V7woDxAGBoaKjdDvyHaVKNKa4m79SpEwCgTZs2fNq5c+d4WLiXhXsbANLS0nhY6HNQGBYMUN0YhpCSQiVzhBBCCCF6jDJzhBBCCCF6jKpZySdBVcuzZ8+eAZAegktcPSZUv3755Zd8WpcuXXiY+gzTb8L5FVetC30GilurCi0o1SFU+YmHcMvIyOBhoWWlnZ0dn0bVrLonPn9169blYWtra5lpe/fu5eE7d+5I/QsA3bt352EPDw+ZbSlqeUtIUaOSOUIIIYQQPUYlc+STIPxKFjdwEP/iPnbsGADg7NmzfFpSUhIPN2nSBIB0AwfxL3oawUG/CSUqwkfv4rC40YMmJWfCAPHCh/gA8PjxYx6+ePEiAOl+0MSDyhPdEzeQEBqrODg48GlCoxXg4/k5ePAgnyYueevQoQMAoHLlynwalcaRkkJvIEIIIYQQPUaZOUIIIYQQPUbVrOSTcvv2bR7esmULD+/ZsweAdDXa8OHDebh169YAgCpVqhR1EkkJEleTCdeC+JoQV7OpIjR8EAZ0B4BZs2bx8OnTpwEA9evX59PEQ0eJ+7cjRUfcQGXSpEk8LPQ/99tvv/Fpq1at4uGHDx8CAH799Vc+TVxlS0hxopI5QgghhBA9Rpk5QgghhBA9RtWs5JOwc+dOAMDhw4f5tJs3b/Jwo0aNAEgP3SMerqt8+fJFnURSgoTWyOKhuYTqVXFLZW1aK5qbm8sNZ2ZmAgDu3r3Lp7m6uvKwuJUrKTqKzmmzZs1kpgnPEQCIiIgAAEybNo1PE7dcbtmypdL4CdElKpkjhBBCCNFjVDJH/lPEPezHxsby8NatWwFIN4CoWLEiD/fq1QvAx1/T5NMilJ6IS+aEsC77EHR3d+dhoU85cQmxeD6VzJUsoTFDUFAQnybuc1BoQHXy5Ek+LSsri4fNzMwASDeaEjeQoNE+iC5RyRwhhBBCiB6jzBwhhBBCiB6jalbyn7JixQoeXrNmDQ/n5eUBADp27Minffvttzwsrt4inx6hmlVcpSqEdfkBu7+/Pw+npqYCAEJCQvg0Z2dnHm7RooXOtkt0o3v37jxcrVo1AMCmTZv4tPPnz/NwdHQ0AGDgwIF8mvj5I+7fjpDCopI5QgghhBA9RiVzRK+IP0C+desWDx85cgQAEB4ezqeVKVOGh4WGDZ07d+bT6JcxEQgjO4hHeNBktAd1iQdlf/36NYCPIw0AwKNHj3j4+fPnAAAnJyc+TZeNMYhywvkXl8yKG8jUrFkTANCtWzc+Tdz1TGRkJADg+PHjfNqbN294WOjGpGrVqnya0GiCEE3Rk4EQQgghRI9RZo4QQgghRI9RNSvRC0IDBmFwawA4ePAgD8+fPx/Ax4+SAWDQoEE8LPQjZ21tXZTJJHpOuM6Aj1X64mmFZWpqysMVKlQAIN3o4e3btzx85coVAECdOnX4NHt7e52lhSinbsMX8UgxwjkFAF9fXwDA0qVL+TTxCBLZ2dkAgC5duvBp4gYyhGiCSuYIIYQQQvQYZeYIIYQQQvQYVbMSvSC04hP3HSduuSr0ydWhQwc+rU2bNjxM1atEGaEqNScnR2ZaUbRqBT5ek+LrVKhaBT72P1euXDk+japZSzdXV1cebtKkCQDpa+rQoUM8vGHDBgDSQxCKW8MKw4BRC2aiDrpKCCGEEEL0GJXMkVJL/DH4xYsXAQAXLlzg08QfKAuDYTdr1oxPk1eKIS5l0WXP/kS/CdeFuBSlqErkBEIpTNOmTfm0xMREHj527BgA6ZEgxA186Pot3YRSunbt2vFpQqMHALh58yYA4PLly3za/v37ebhnz54ApBtVEKIIlcwRQgghhOgxyswRQgghhOgxqmYlpVZYWBgPz5o1CwBga2vLpwnD4QAfPyK3srJSGidVTRF5hCpVeX3KGRoaFsk2jY2NAUhXo7m5ufGwMPSTUB0HSFezenl5FWn6iG6IP/do3749DwsNYMSNujZv3szDHh4eAKSH+BJfH4SIUckcIYQQQogeo8wcIYQQQogeo2pWUipkZWUBAI4fP86nCf1sAR+rksRVqx07duRhVdWrhGiqJKrkxVWuwjBeCQkJfNqlS5fkLkv0g3jotsaNGwMArl69yqelpKTwcFRUFADpT0vErfUtLS2LJpFEL1HJHCGEEEKIHqOSOVIq3L9/H8DHXtEBIDk5mYeFX6SdO3fm0zw9PYsnceSTIa80rqj7mxOrXLkyDwsfyx84cIBPE0prAKB169YApEtuiP5wdHQEALRs2ZJPE/dDd+PGDQDA+fPn+TRxyV716tUBUK0EyUclc4QQQggheowyc4QQQggheoyqWUmJuXXrFg8fPXoUwMeqBQAIDAzk4SFDhgAAypYtW0ypI58SoXpV3Gebsr7nior4+haG+dqxYwefJh76Seh/rkaNGnwafRSvfxo1asTDNjY2PDxjxgwAQEREBJ/24cMHHv7mm28ASFfNiwnXL/Wt+WmgkjlCCCGEED1GmTlCCCGEED1G1aykWIlbqB46dIiHw8PDAQD+/v58mtBaDwAqVqxY9IkjRESoXhVXsxZny1YnJycA0lWv79694+Fr164BkG7hSPeJfhNaqAJA165dAQAHDx7k08QtW4XqVXNzcz5NGAIMoOrVTw2VzBFCCCGE6DEqmSPFQiiRE3/Me+zYMR5+9eoVAGDMmDF8Wv369YspdYTkE5e8ySuZK045OTkAgICAALnz4+PjAUiXxlHJnH4zMvr4Su7Vq5fMtOnTp/OwULMhvj6Dg4N5mBrDfFqoZI4QQgghRI9RZo4QQgghRI9RNSspMuIqK2EYoqVLl/JpwnA2ABAUFAQA8PX15dNMTU2LOomElFpCn3ft2rWTO3/BggUApBtI1KtXj4ctLCyKLnGk2Ij7oRs3bhwPC/0PHj9+nE8rV64cDzdo0ACA9HOW/HdRyRwhhBBCiB6jzBwhhBBCiB6jalaiU7m5uTwcHR3NwydOnAAAPHz4kE9r1aoVDwvVrPb29kWcQkL0g9BPmHiIJ/HQTRkZGQCAO3fu8GnXr1/n4c8++wwAYGZmVqTpJEVL3I9gt27dePju3bsApPueE4ZFBABjY2MA0v11ioerI/8tVDJHCCGEEKLHqGSO6FR6ejoPL1++nIeFEoP27dvzaY0bN+ZhKpEjRDVxowah/znxqBBhYWE8XL58eQBUMvdfIu5zrkuXLgAAExMTPm3r1q08LFwrXl5efJq4H0LxekT/UckcIYQQQogeo8wcIYQQQogeo2pWohNPnjwBAJw6dYpPe/HiBQ9XqVIFwMeGDgDg4+NTTKkj5L9BPJB6//79AQDbtm3j08Qfwzdv3hwA4OTkxKfR4Ov6zcDgY/lL1apVAQBv377l027evMnDT58+BQDs3buXT+vXrx8Pi/ukI/qPSuYIIYQQQvQYZeYIIYQQQvQYVbMSnTh37hwAYOfOnXyaeJghoa+jhg0bFm/CCNFz4mHxrK2tebhJkyYApKtWL168yMNC/3NCq1YAcHV1LbJ0kuIl9CNXo0YNPq1Hjx48LFS/h4aG8ml16tThYaH/Oho28b+BSuYIIYQQQvQYlcwRjWRlZfGw0OgB+FgicP/+fT5t8ODBPCzuX44Qoj5VjRbEjY5u377Nw6dPnwYAeHt782lUMvffIy6tbdasGQ/Hx8cDkB4hJDw8nIfNzc0BUG3JfwWVzBFCCCGE6DHKzBFCCCGE6DGqZiUaSU1N5eHDhw/zcGJiIgDA19eXTxN/mCt8rCsm/rCb+r8iRDOZmZkAPjY+AoCMjAyZ+UJ1GwDUqlWLh8VDQxH9Izw/xc9OoeoUAOrVqwcAePbsGZ8m7ofOzs4OwP+1d+dhUtdXvsc/Edl32fd9FwFZRBEFBEXcYnANeqOZzEwyPk/MPJPk3kkmM8mdiU7mJpnoZDcmk8WYuEUBRURAQAWRfd9llX3faTD3D+acOr9QbdN0V1O/6vfrH89zsLt/dFcV1ef8zvlKffv29Vzt2rVzcq3IPSpzAAAAKcabOQAAgBSjzo5S2blzp8d/+tOfPLZjhuJxMVbGLw6tVeDC/eAHP5CUvPVhzJgxHu/bt0+StGDBAs/deuutHtueMaRTSa+fgwcPliTVqVPHc9/4xjc8XrRokSRp/fr1nouTz7Fli/xHZQ4AACDFqMzhvGzevFlScsP8Rx995HH37t0lSVdffbXn4v4jAGUXb2D/1re+JSk5yPCVr3zFY6vcxWp6tmGIBg0a5OJScZFVq1ZNktSuXTvPXX755R7ba/qkSZM8V6tWLY87d+6c60tEOaIyBwAAkGK8mQMAAEgx2qwoVtwDZ8fAxEO9+/Tp47HtNKpfv37FXBxQSRw5csTjBx980GPbI/f44497Lu4M69mzpyRp06ZNnps9e7bHLVq0kESbtdDVrVvX4xEjRng8ZcoUSZlj36TM7TISbda0oTIHAACQYryZAwAASDHarChWUVGRx2+88YYkaeXKlZ574oknPB4wYEDFXRhQCVh79eabb/bcvHnzPB42bJgk6ctf/rLn4oT5vffeK0kaP3685+x2CSkzzdqjR4/yu2jkHZtqlaSbbrrJ4/3790vKtFul5G00rVu3lpQ8ljF+LuQXKnMAAAApRmUOCQcPHvR48eLFHh86dEiS1Lx5c8/FbeE1atSogKsDCptt5Zekhx9++Jzctdde6/GECRMkJffMRVZRWbhwoefsVAhJWr16tSTpiiuu8Fx8flepUqW0l488YgNsxZ0U0alTJ0mZQRlJ2r59u8fvv/++pORQBJW5/EVlDgAAIMV4MwcAAJBitFmREA9dtjaOJDVu3FiS1KtXL8/Vrl274i4MKDBbt26VJP3oRz/y3He/+12PT58+LUm69dZbPffss896HA9Qz+aSS87+rt6qVSvPxTbqhg0bJCWHKm688UaPOWg93Yprr5qWLVtKkm677TbPvfbaax5be/7222/3HK/5+YvKHAAAQIrxZg4AACDFaLMiwVo/kjR16lSPx44dKylZcmeCFZXBm2++6bHt3pKkQYMGSSr+eWDPpdjGnDFjhscTJ06UlGmnSsmjtf7zP/9TkvTQQw9d4JWf1bFjR49vueUWjxcsWCApOe06atSoMn0tpIe130eOHOm5eLTXmjVrJEkrVqzwXGyzcnRjfqEyBwAAkGJU5iqxuC3e9sutW7fOc0ePHvW4Q4cOkpK75YBC9uGHH0qSpk+f7rkYl5VV+R555BHPxSpcHFYoizgAcf3113s8f/58SdKqVas8t3v3bo/btWtXLl8f+cN2z0mZAYmmTZt6LlaebRguVm5tEE6S+vbtm6vLxAWgMgcAAJBivJkDAABIMdqsldixY8c8tpuxY8ulT58+Hrdp06biLgzIA/Xq1ZMk3X333Z6Lbaa1a9dKSg4wRNay6t+/v+ficVzWpiruOK7yEgc0unXr5rHtkfvggw88t3LlSo9tj12jRo1yen2oOCXtnot7RHfu3Ckpeaxj/HeANmt+oTIHAACQYryZAwAASDHarJXYmTNnPJ48ebIk6cSJE567//77Pe7atWvFXRiQB6zNaJPcUnLyNI17tmJL9/LLL5ckHTlyxHNz5871uGHDhpJos1YmQ4cO9dgmX3/4wx96ziagpcztA23btvVc9erVc32JKAaVOQAAgBSjMleJ7dmzx2Pb9t2pUyfPxW3wdjM4gPSKe8auuuoqSclqfDyhwgY47P9D4YsDPv369ZMkValSxXObNm3yePny5ZKSlVsqcxcPlTkAAIAU480cAABAitFmrWS2bdvmcbZjWmKbtW7duhV3YQByLu4Zszba4cOHPffUU095vGjRIknSjh07PNekSROPY/sNhceGZbp37+65eMTj1q1bJUknT56s2AtDVlTmAAAAUow3cwAAAClGm7WSia3Vt956y+POnTtLyrRepJKPfgEqt7NToPt3HPDMSWVaj7UbnW1J1q1a1i+z38MdB0JLq3oDSVLzhjV0Yc5ef+2qmQts2ryVx7t375Ykvf3225674YYbPLY9dChMtsFg5MiRnnvvvfc8Xr16taRkG75FixYVdHX4S1TmAAAAUozKXCVjNzVL0qxZszy2zfbxUHAAkpQ5KWXdS3/n8Wce/b0kafnhcz7grOpnK3PX//OLnnruK5kN+02zVeyKtng48cs3S5I+/eRyz2X7UnV7PeTxUy/93ON7u577BYrW/NHjh8Z8RpL0+/XxBvbMnrDGfYZJkqpMmuQ5OzVCojJX6OyEk9GjR3vOhh4k6ZVXXpEkrV271nPxNIjLLrtMEh2eikJlDgAAIMV4MwcAAJBitFkrmUOHDnm8b98+jzt27ChJat++fUVfEpDXjq971ePRX8/cAL6n7mBJ0j8+8y3PDau1yuNff/mrkqTff/06z42sk2mZLvliz/+Jijw397EhHt/25NmWa93B/+i5Z741LHNh874nSfo/X/9vT903MrMHrsWy/5AkXVdvp+de+t/3ebzp0bPXcuTvunlu74pMG/bOwX8tSZp2IrNn7L4713lsOymrVi3rhAfyWTyiK8YHDhyQJC1dutRzsc06aNAgSbRZKwqVOQAAgBTjzRwAAECK0WYtYGfOZKbwbGfUsWPHPNe0aVOPmzdvXnEXBqTCQUnS8mmhtarGHn998kxJ0r9dHduMN2aijqckSfP7fMVzS3/8msfWZr3i0Jue+/njmWlWNfmSJOmVyY95ani9+KWGS5I6HMvshrvm2//P43+f8Kgk6bpxJzx3eHempXrHdT0kSbWrZNpgtXvf6vFVvc++Vvx+R2badf369R5v2rRJUmZHJQqfTbhKUqNGjSQl98xt3rzZY2uzomJQmQMAAEgxKnMFbPv27R7/6U9/kiSdOJH5LX3o0MzOK9v2DcCcliTVaNTFM12qjfX4xgEl3Pjf/uzgQKxPrF69zeO9Fiya7rnfxZVvd4+RJF1b7FPz7Ne/+saHPFM9VOYmTT572suhcTd57opRmcr8dQ//b0lSq3/PbPivteppj59fcHbAo++dmQEIq8ZJ0rJlyyRRmatM2rVr5/HgwWcfH1u2ZKrJe/bs8ZjBh4pFZQ4AACDFeDMHAACQYrRZC9iuXbs8fvXVs7uybDeUJN12220e29ErAMzZG7wvH/uQZ37yP8feSVL9Erqs+2Y+J0l6LiaH9PLQNnKtX/Ou52KXdVDvsy2tEre4terq4YCQfmf12aOXdoTPMOhr8zx+u/O/SZK+/sUveu5Az//l8ROzviNJqrNzief+8Ic/eDx37lxJ0rBhwzzXoEGDkq4WKdatW2aA5vTps7chPPXUU55buXKlx+vWnd1JGHeXspMwd6jMAQAApBhv5gAAAFKMNmsBs+NWJGnhwrOTbX379vXcdddljhmi/A2UXdGaX3h8112/lSSdVOYIpAf/z6c8thseMpvbkqpeWqVsFzN3tSRpW0h1rZrZLTlg3JOSpMnjPv7THD2aOSLsmWee8XjNmjWSpI0bN3outuFq1qxZ2itGnot75vr37y9J+vnPf+65uIdw1aqzR9vFTQnNmjXL9SVWWlTmAAAAUozKXAGzG1SlzM6f2rVre45qHFB2J1ZkqnGf/J/D6SVp+v9MM7T50iTP/eDWcweNTh47lLuLKwdxX1g8SN32i82ZM8dzsQrTsWPHCrg6XCwfffSRJKlKlUwFOf6bYzvnjh8/XrEXVklRmQMAAEgx3swBAACkGG3WAvHnP/9ZUrKkvX//fo9tj1y8gRXAhds3+1uSpJHDv+m5hSczww79vnn2mK43/+Vqz2Xb5li9Vo6O0qt+9jaKMo5RJNpo8QjAd955R5I0e/Zsz8XWKm3WwmZt1rp163quWrVqHu/de/bAumPHjgm5R2UOAAAgxXgzBwAAkGK0WQuEtVlt95Mkbd261WM7UqVx48YVel1AIdk/6589HnnX2T1t60+28dw9v3vd41+P6ylJqlHC56xTt0nW/Jpte/8n6pT1z92ZzARhUcwPOHvMV6sSvn5JYuvsxhtv9PjQobNTuFOmTPFcPM5p0KBBkpITrpdcQv2gUNjPsnnz5p7buXOnx7t375YkHTlypGIvrJLimQUAAJBiVOYKhFXmli1b5rlNmzZ5bJvZW7ZsWbEXBpQje5xLyf1nuXRmT+Zw+v911588torcX014x3M/uTVTpTvfLY7NegzxuJte9nj1lLMH3K//l0Gey1aj27lwssdzQ77JqCuK/ZjSiN/nGjUydcYmTZqck/vwww89ti5BPHUmVvmQbjYY07lzZ8/t2LHD423bzp49cvjw4Yq9sEqKyhwAAECK8WYOAAAgxWizFgjb+bNixQrP2XE7kjRmzBhJUqtWZb0dGjg/cc+htVxOnTrlOXvMSplWXtyDaLsRY1xRrdWzzt64vWLyBM/MOpn50yE/eVPShbVWE64Y4+Hf9f6Kx4++838lST+c/inP/efwsKnuxEJJ0q++/XL4ZL09+qe7BymXWrRoIUkaOHCg544ePerxokWLJEldunTxHG3WwmFt1l69enkuDt3ZMIztm0NuUZkDAABIMd7MAQAApBht1gKRbc9c3PnTu/fZ9kvr1q0r9sJQaU2enJmyfOyxxyRl2q1S8pifSy89+1J0/fXXe+6uu+7y+N5775Uk1axZMzcXm83BjZKk2StOh2TmuK41371dktT7B6X5pFd69M3Xfy9Juq99T8899MN/9PjJGx+XJP1gRHvPPd8tTKN/uFqStC0MC7b50hMeP5D5tDnRqdPZOdmHH37Yc7/97W89njNnjiRpxIgRnmvYsGFuLwoVxtqsPXr08FzcoPDHP/5RkrR9+3bP7dmzRxL7TnOByhwAAECKUZkrELaNO950fvz4cY+tIlehlQ0UNDsBQJKWL18uSZo6darn1q9f77HdBB9/i69a9dxxgVWrVnn81FNPeWw3zg8bNsxzOd+Z+Imz11c/VBG6hMpSLg4zqHfdYx4vW3mdJOln3/pPz/1kTqbyoas/I0n6wd//i6f+dnQHj0s6eaKsateuLUnq2TNTAowDDps3b5YkLVmyxHPxUPZmzZrl+ApR0erUqXNO7sCBAx5bZZ7KXPmjMgcAAJBivJkDAABIMdqsBaKo6OwR22fOnPFcbGPFw66BC3X6dGYYwFqrkvTCCy9Ikn70ox95bvjw4R5/7WtfkyR1797dc3YclCSdPHl2gdsXv/hFz/3qV7/KGptPf/rTpf8LlEa9s0fg3fv313rqkUce8TjuxMuFGh1GS5Ie/e/Rnns0p1/xwsTWamyf2Q3y8+fP91z8mdNmLTzxuD27pSfe7mPHvfXp06diL6wSoDIHAACQYryZAwAASDHarCkWW16236d69cwerFq1anl8SS5G71Bp2OTqsmXLPPeb3/zGY9tv+NWvftVzcfL0yivP7lezCci/ZI/bv/mbv/Fc06ZNPX766aclSTNmzPBc3EPHMVH5YdCgzBFitkcwTihv2LDB46FDh1bchaFCxH9/7Ai+eGzfvn37KvyaKgv+hQcAAEgxKnMpdvDgQY+3bNkiKVn5YNs6yotVfp955hnPrVu3zmM7DeC+++7zXNw/dr769+/vsQ1FSNITTzyRuA4peah7Lipzn/jEJxL/RcnspBlJOnLkiCTp7bff9tzq1as93rFjh6TkUIQNTSCdYmXOhmHiz/Tw4cPnfAzKB5U5AACAFOPNHAAAQIrRZk2x2Ga1Y1LiPrl43BEDECgLG3yIR2yNGzfOYxtc6NixY7l9zdiysZ1VseVpN9hLUoMGDc758/ISd2fh49nPQZI6d+4sKfn9i635efPmSZKuvvpqzzVq1CjHV4hcqlEjc4hctj2C8TmL8sW/8AAAACnGmzkAAIAUo82aYvv37/d448aNkpITrO3bt/eYKTGcjzhBOnfuXI9tIrFVq1aeu+qqqzzu16+fJOnSS8v2khJ3J+7du9fjU6dOSUq2UePXKmt71VqB8Tg8OyIvXhPOn7VMR40a5bk4jbx48WJJyQlY2qzpFrcp2C0XO3fu9JxNOKP8UZkDAABIMSpzKWZb+aXMAcZx6KF169YesysL5yMeiv3ss896vGjRIknJrf1WjZPKXpEzW7du9dhOlZAyW+Tr1KnjORuKKE9xW32MUXpWpbnllls8N3HiRI/tMWWvXZLUrl27irk45ESszFlnKO6Wi9V2lC8qcwAAACnGmzkAAIAUo82aYidOnPDYStmx9VS/fn2P2TOH82GDBlJyAMIOyL777rs9F49hKi/xuKcFCxZ4bPsT4wBG3bp1y/3rx0Eh25kVd2dxu8L5sz2B8Vi3mTNnerxq1SpJ0vz58z0Xf752mwivXemRbc9cfE7H2zhQvniWAAAApBhv5gAAAFKMNmuKxZ1gNtlaXJuV9hDOR5zgtNaqlGmZDRgwwHNNmzYt968fW6vvv/++x4MHD5aUPPqpPB/T2fbM2ednR2P5iW1Ui9evX++5pUuXehyn8ZEOsc3aokULSVLVqlU9x5653KEyBwAAkGJU5lIsDkBYZS7+ZhQPvaYyh9KKu+PsZJG2bdt6Lu58KyurAsZq3AcffODxl7/8ZUnS8OHDy+1rRlaRtFMfpOQB8SgfnTp18thOhpg3b57nFi5c6PGIESMk5WafIHIj/jtjnaH4OkJlLneozAEAAKQYb+YAAABSjDZrisWdPQcOHJAk1apVy3PWGpNos6L04jCEHZYdBxTiYy3bzrnYpsz2+NuyZYvH3/nOdyQld47FllyfPn2K/Trlwa4v3qxdrVq1xH/j/4cL07VrV4/tex1b68uXL/fYjnPr1q2b5+JtJEiH06dPexyH9lC+qMwBAACkGG/mAAAAUow2a4rFadaDBw9KSrYhaEmgtOJOtbgTbNOmTZKk2bNne6579+4eZ2t/ZmtJ7tixw+OXXnrJ4xdffFGS1LJlS8996lOf8rhdu3bn9xcoo9gatu9FnMbjaKmyid/LLl26SJIaN27suXXr1nlsO+fiVH5FPQ5QfuLuxthyRfnilQkAACDFqMylWLyZ9PDhw5KSv/kCpRVv9h8yZIjHVrFasmSJ53bv3u1xjx49Pvbz2sf/+7//u+eef/55j62K9/DDD3vuC1/4gse5PoXBKgZxD5YNGFFNyI1Tp05JSlZ4jx496rE91uIgDJW59ImDVDFG+aIyBwAAkGK8mQMAAEgxenIpFts/1hLiCCKURdwdd//993tct25dScmhhe9///seW764PWx2S8DWrVs9F4/muvrqqyVJY8aM8Vy21mpJu+su1K5duyRJM2fO9NyGDRskST179vRcvGZrLee6BVyo7JaQG2+80XNxwOTll1+WlNwzd+WVV3pcvXr1HF8hykN8zsZhCJQvKnMAAAApxps5AACAFKPNmmJxMqioqEgSZWxcGGuFxOOsevfu7bE91uI069tvv+3xpEmTJEl16tTx3LFjxzy29u0DDzzguXvvvdfja6655ryus6yt1djyicfhLVu2TJI0a9Ysz+3Zs0dS5qg8Kfl3rl27tiSpQ4cOZbqmyspaqvH717dvX49/9atfSZJWr17tubiHrnPnzpJot+a7+JzjNqDcoTIHAACQYlTmCgS/8aAsSqp42U3o//Zv/+Y5OxVCkvbv3y8puecwVo6tehIPWo8nTFSUWC2cMGGCx5MnT5aU+XtEcZ/es88+63HDhg0lUZkrT7HK1rZtW0nJU0Peffddj+3xQ2Uuv8V/m9gzlztU5gAAAFKMN3MAAAApRps1xbixFLkUH1M1atSQlDxaKcbZjryKrdt82cUWr3POnDkeL1iwQFL2AaLYmn3nnXc8HjlyZC4usVJr1qyZx3fccYek5O6/999/32PbTdigQYOKuThcEPbMVQwqcwAAACnGmzkAAIAUo81aIMrzaCNAKt1jKk6x5jM7VkyS1q5d63E8ZuzjxDbR0aNHy+/CICnZZrXj5DZv3uy5119/3WPbP9e0aVPPxRj5IU6wMs2aO1TmAAAAUiwdv04jq1gNsRvU40HVQGVhN1mXVE1cs2aNx/E0gY+rGNhzS5IGDRrkcTytABcu3iCf7edXt25dj6tVq+axVVN37tzpOSpz+Sf+m5Qvg1CFiH/5AQAAUow3cwAAAClGmzXFYpvVjrRhEAKVUbbH/cGDBz1evny5JOntt9/2XJMmTTw+cuTIOR+/a9cuSVK7du08d99993kcW664cCW9ZrVv397jyy+/3GMbjIiDLL169fKYW07yQ2ytpmVQKo14tAMAAKQYb+YAAABSjJpnimU7LoljvVCZHTp0yOMpU6Z4/Kc//UlScmfZAw884LEdCbV06VLP2dFdzZs399wtt9zicdu2bcvpqvFxhg4d6nHt2rU9/t73vicp2bobMWKExxzzlR/y8Vi/QkRlDgAAIMWozKVY/I3HbvZlwzYKUUl75D744ANJyQGHadOmeVxUVCQpWeWJVRz7vAcOHPCc3XgfK3ONGze+kMtHGcQ9c3EYxYZW7GcvSevXr/e4R48ekqRatWrl+hKBi47KHAAAQIrxZg4AACDFaLOmWLZjUuJB4EChyNZePXz4sMeTJ0+WJE2dOtVz+/fv9/imm26SJI0dO9ZzHTt29HjTpk2SpNOnT3uuYcOGkpL76OKfo+LVrFnT4xYtWkiSjh496rnFixd7bEd70Wa9uLLdDoTyx3cWAAAgxXgzBwAAkGK0WVMs23Fep06d8lxsuVp5m+O+kM/insRsj9V4dNMzzzzj8bvvvitJqlevnuc+97nPeTxw4EBJyWnI6Pjx45KSx3rZc6p+/fqeo010ccXJ1nHjxkmSZs+e7bn33nvP4+7du0uS2rRpU0FXh2ziv1PVqlW7iFdS2HhlAgAASDEqcylmlQMpU5GIlbm4Dd+qC1TmkM+Ke3yuWrVKkjRx4kTPWTVOygwpFLdHzm6GL44NEMXKz7Fjxz72mlDx4gCE/ay3bdvmuRkzZni8evVqSVLPnj09Fyu3VFkrRvw+x3+zUL54NAMAAKQYb+YAAABSjDZrisVDp63NZDdyS9K+ffs8ju0FIA127drl8Xe/+11JyT1i8aD7z3/+85KSbdY4TFESa6/GAYm9e/dKSg5FcFzexRVb3vYziwMqBw8e9Hj58uWSpG7dunluwIABHnMzfm7Z8yY+D9n5lztU5gAAAFKMN3MAAAApRps1xWLr1I62iUcc7dixw2NrSdnUHpCPpkyZ4vGECRM83rJliyRp8ODBnvvkJz/pcb9+/c75XKWZQi0qKpKUbNPZ8ydOiNNmzT+dO3f2eNSoUR7v3r1bUnIPXd++fT2mzVr+Tpw44fGHH34oKfn8qVOnToVfU2VBZQ4AACDFqMylWLzxt3Xr1pKSlbm4f4mKAvJNfKxu3LhRkjR+/HjPxYrK1VdfLUkaO3as54YNG1Zu13L69GlJyUPbLY6DRqUZqkDF6Nixo8e33367xz/96U8lSfPnz/dc7FbEj0P5iM+fzZs3S5JOnjzpOQbxcofKHAAAQIrxZg4AACDFaLOmWMOGDT1u3769JGnFihWesxtQJdpDyA+xDTNp0iSPn3zySUlS48aNPffggw96PGbMGEm5a43ZYeDxOC87AqxRo0ae4wio/NOgQQOPr7zySo+tPW775qTkEXD2M4/7ClE2dgSelGmzxgGI+LNC+eKVCQAAIMV4MwcAAJBitFlTLO7sadasmSRpwYIFnovHeTHNiooWp9g2bNggSZo1a5bn3n//fY/tmJ8hQ4Z4bvTo0R536dIlZ9cpZXbSxT2MNWrUSPw3/n/IT/E1sXv37pIyx7JJ0qpVqzy2xxRt1vIT98zF4/gM06y5Q2UOAAAgxajMpVjcf9WkSRNJyd+M4m+kDECgoq1fv95jO9nhhRde8Fw8dPuhhx6SJF1//fWea9WqVY6vMMOeH2fOnDnnz6jGpUd8nbPTQmyHoCStXLnS461bt0qSrrrqqgq6usIXq/E7d+6UlBzUi895lC8qcwAAACnGmzkAAIAUo82aYnFnT5s2bSQlj6uJMQMQyCVrb8UjuF577TWPbTAn7gGzI7qkTHu1efPmOb3O4tjzI7bkbD9WUVHRRbkmlF5siQ8aNEhS8taTN9980+Nly5ZJyrRjpcwgmZTZQ4fzd+jQIY+tpd2rVy/P0WbNHSpzAAAAKcabOQAAgBSjjlwgLrvsMknJlkI8WiXblB5QFkeOHPF48eLFkqTx48d7bu3atR7bkVijRo3yXNwpFyfeLqY4DWnPmfjcYSo8PapWrSpJateunefirSnbt2+XlNzNed1113lcv379HF9h4YlHd9k2hXiLD3vmcofKHAAAQIpRmSsQ1apVk5TcPRd/I+ImbpS3qVOnemz74xYtWuS5oUOHemx75Gwrv5Sfv6WzU67wxNfE+Jhcvny5JGnmzJmeu+KKKzymMld6l1ySqQ9Vr15dUvJ5bh0klD8qcwAAACnGmzkAAIAUo81aIKy83bp1a8/Fg463bdsmKVnytjI4YDf2F9dm3Ldvn6Tk7rgZM2Z4fPToUUnS7bff7rl4NJftmootL6Ai2PCNJI0ZM8bjDz/8UJI0b948z23cuNHjtm3bSqL1XpI4FBSH7myoKf6b1L59+wq7rsqGyhwAAECK8WYOAAAgxWizFghrBXTp0uWcnJSZ3Ipt1o4dO1bQ1SHfZWslnTx50mOb+Hv22Wc9V6VKFY/t6KT777/fc/HxRasKF4tN+ktS586dPW7VqpWk5BFfcTeiPX7tqEQk2f7FTZs2eW7nzp0e2+Rqy5YtPde0adMKurrKh8ocAABAilGZKxBW+ejWrZvnDhw44PGcOXMkJQ+SpjKHvxRvZv7nf/5nj99++21JyZMaxo0b5/Ho0aMlJQccqMYhn1llLu4+XLdu3Tl/TmUuu9OnT0tKDpAsXbrU41q1akmS6tSpU7EXVklRmQMAAEgx3swBAACkGG3WAmEtra5du3pu/fr1Hr/11luSpL59+1bkZSGPxQPk16xZI0l69913PRdbJrarK+7p4lBypJkd3XX48GHPvf766x5b+zA+ztmTmGGvHytWrPBcbFN36NBBklSjRo2KvbBKisocAABAivFmDgAAIMVosxYIa7NaaVuSGjdu7PGqVaskSdu3b6/YC0NeKSoq8tiOeJOkp556SpI0fvx4z40cOdLjO++8U5J000035foSgQphO+fi7s0//vGPHi9atEiStHXrVs/FDQBVq1bN8RXmt48++khS8vsT98z17NlTUnLPH3KHyhwAAECKUZkrEFaZizeb2gZuKbPN/9SpUxV7YagQth+uuN1uJ06ckJTZNyhJv/vd7zy2iu0NN9zguXvuucfjgQMHlt/FAnmkZs2aHjdv3tzjvXv3SpLmzp3ruTgAEQ+Qr4wuvfTs24d4Ukx8/WnSpImkzL455BaVOQAAgBTjzRwAAECK0WYtYPHoJTuaJt4Av3//fo9tT9gll/D+Po2svWE3JUvSrl27PF62bJkkaebMmZ5buXKlx7Z/cOzYsZ679tprPeYmZhSqKlWqeDx06FCP58+fLym5ezEOmFX2NuvBgwclJVurcejOBkwaNGhQoddVWfEvNwAAQIrxZg4AACDFaLMWsFjeHjJkiCTp2LFjnps2bZrHNsVISTzd4s6niRMnnhOfPn3ac+PGjfPY2ks9evTwnE2rAYUsTrPG54TdWvDEE094rl+/fh4PGDBAklS9enXPFTdNXij27dvnsd2mEfftxeMk7dYNm2pFblGZAwAASDF+9S5gcc+cVebizqRYmbM9YlTm0mnhwoWSpKlTp3ou7pSzARf7bVmShg8f7nGXLl0kFV+NK2mPHZBW8TEdB32aNm16zv+7Zs0aj5csWSIpWa0r9FMh1q1b5/Fbb70lKTl01aZNG4+tIsdQXcXguwwAAJBivJkDAABIMdqsBSzumbvqqqskSe+8847nrDUnSYcOHaq4C0O52Lx5s8cvvviiJGnevHmei+2N++67T5I0atQoz7Vo0eK8v1aht1cL/e+H0rNbE3r16uW5uLtx9uzZkjK3KEjJ19xCtHHjRo/fe+89SVK7du08F3fvFXrLOd9QmQMAAEgx3swBAACkGG3WAlajRg2PrVUQdyLFnWRHjhypuAtDsWxqVMre+ovHcT3//PMeL126VJJ0+eWXe+7+++/32PY/NWrUqPwutgDF1rQd8xRztGMrD2uffuYzn/FcfM4tXrxYkvThhx96zlqzUjqnOEt6/Yl7Ko8fPy5Jat++vec6duz4sR+P3Enfow0AAACOylwlYb8lxptV4x4lO4i9ZcuWnmvbtm0FXR1M/G325MmTHlsV4KWXXvJcHGCxyuvo0aM9Z7sFUTL7vlNNgLFhBtvBKUlvvPGGxzYM8MEHH3guvqam8eSD+Pi3/XH79+/33M6dOz22kzPiqQ8dOnTI+rmQe1TmAAAAUow3cwAAAClGm7WS6d+/v8c7duzw2I72ijfA/vVf/3XFXRjOsXz5co8fe+wxSdKGDRs817NnT48fffTRc3IoG3suxOdEjFE51K5d2+N4RKLtUVu7dq3nsh1nlVYHDhyQJE2aNMlz8TizZs2aSUq2WTkO8uKhMgcAAJBivJkDAABIMdqslcyVV17pse0JkqRvfvObkqR69ep5jjZrxbGfxcsvv+y5uFPO2ntjx471XDyaKx4phNL7uJZqrlurJe32OnXqlMdz58712B4ru3fv9pxNIMaPGzZsmOfi7sFjx45JSu4Oa9Wqlce2Zw8ZcY/j3r17JUkrV670XDzOqk+fPhV3YTlgj4/p06d7bs+ePR737dtXUvLfDFw8VOYAAABSjMpcJdO4cWOPr7jiCo+tOhCHIuJvYfHjcOFilSUe2m17/l555RXP7du3z+MRI0ZISlbmqMaVv1glsypXritzxe0WtJMF4h6zWbNmeWw7z2JlLrLPFQ88z3ZofLVq1TwXb9q3PWLI6N27t8cHDx6UJP3617/2XByGOHTokKT0Vq6s8hiHruIAiD2WatWqVbEXhqyozAEAAKQYb+YAAABSjDZrJVa3bl2PBwwYIEk6evSo56ZMmeLxddddJyl5gzTO35kzZyQlb5b+3e9+5/Grr74qKXNTsSSNGzfO45tvvllS8rgglL9sAxBxqKA8P3+2YYf33nvP4yeeeEJSss3aokULj21AyfZ9ScmWqg0wbNu2zXPPPfecx5s3b5Yk9ejRw3PXX3+9x7RZzxVf/2ynYxwg2bRpk8erV69O/H9ScmddPoote2uvxsdBbNMPHjxYklS/fv0Kujp8HCpzAAAAKcabOQAAgBSjzVqJxSmk4cOHS5Leffddz7322msed+rUSRJt1tKILeslS5ZISu6RW7x4scf2fbWpVSnzM5Gyt1dLatnh/H3cxGp5fm/j5yoqKpKUmWSWpIkTJ3q8YsUKSVLnzp09Fx8ftmcwPjbibjhrua5atcpzcZraxAnFSy7h9/vzZZO/sU1tE6ySNGfOHEnJ18x8b7POnz/fY2v5xzZ+9+7dPba/F/sI8wPPXAAAgBSjMleJVa9e3WO78dluipak3/zmNx7bjb2DBg2qoKtLJxt0kJKVt9dff11Scqgk7om77777JCW39Tds2PBjvxbVuPKXrdqZq+/zzp07JUk/+9nPPLdw4UKPO3bsKEn6whe+4LkbbrjB4/j8/Tjx1II4QGE70WI1Lu6cw8ezzkb8mUybNs3j2bNnS5KGDBniuZYtW1bQ1Z2/+JiPJ4zMmzdPUvI1qWvXrh5TkcsvVOYAAABSjDdzAAAAKUabtRKLZXI7IDrebB3bfMuXL5eULLPH/Ulxv1UhslZEcS23I0eOSJKmTp3quTjsYC21Bx980HOxZW03UZfUWkVuZdszV55OnDjhsQ04vPXWW56LB7V//vOflyQNHDjQc+fbWo2KO64r2zFMhf48Lk+2pzO2WdesWeOxDZMtXbrUc23atPHYjki8WLdL2P5EOzZOSu7Js+Pg+vTp47n27dtXzMWh1KjMAQAApBhv5gAAAFKMNisS4h4hO8JLyhztMmnSJM/ZtJ1U+O2ZbK2Q2J6wlkqcVt27d6/H3bp1kyTdcsstnost62zYI1dx7Hudi9ZqtGDBAo/tsRL3Ecbnn7XvsrVDL9Sll2Ze8jmGqfSyPSfj7rh27dp5XK9ePUnSunXrPBd3/l177bU5u87zYbd+zJo1y3NxT561hOPrlLWGkX+ozAEAAKQYlTkkxN1n8aD3r33ta5Iy+9Ik6YEHHvDYbgYudHGD/tNPP+3xG2+8ISm5Zy4OO9x5552SSvebLdW4iysXe+ZiZfv555+XlKx8DBgwwOPyrMihfJT0WOjQoYPHtp8t7u60k2Ak6ZprrpF08fa1rV+/XlLmcShJNWvW9Ngqh3E3IfIXlTkAAIAU480cAABAitFmRUKNGjU87tSpk8fNmzeXJO3Zs8dzdtxL/LhCvUHW2iOvvPKK5+y4HilzTM/IkSM9F4/Bse8fKrc4NLN9+3ZJ0ogRIzzXtm3bUn/O06dPZ/38b775piRp69atnotHd+3fv19S8iD10aNHe2wDTnXq1Cn1NVVWti9Syuxx+4//+A/PxeOybrvtNkkX9jMvDbsOKfMzlzLDGHFQKw5o2QBOHPBA/qIyBwAAkGK8mQMAAEgx2qwoVpyms6On7IgXSZo5c+Y5/++NN95YQVeXG7ElcfDgQY9fffVVScnJrziFeOutt0qSPv3pT3vuYk2p4cJlO86rPHfPxWlom3xu2rSp58q6+y220aZPny5JmjFjhuf27dvn8fHjxyUlj5W74oorPM51+68QxZbklVdeeU5ux44dHtsxX3GCNB63Vl7iY872YUrSypUrz/mads1SyXswkV+ozAEAAKQYlTmcl7vuukuSdNlll3nuu9/9rsf222W/fv0816hRI4/jjdf5zA4/l6Tvf//7HtuuqFjFeOihhzy2/WBU49LJKrJFRUXn5Mpzz1x8fNipKfG5cSFfK57qEE8g+OQnPykpWWGeMGGCx1dddZUk6d577/VcfP42aNCg1NeCDKvoXn/99Z6bP3++x2+99Zak5NBYLipzsdsQB7i2bNkiKTPoIGVOfUD6pONfWAAAAGTFmzkAAIAUo82K89KwYUNJUs+ePT0Xb9a2w6SnTp3quZtuuumcj88nhw8f9thuEo9DHXFnl/294x6u2HKtVq1azq4TuWctsXgcm+Vi67OsLdc4QGSxtVslqXr16mX6/PFYvd69e0vKHBslJQcgbr/9dknSzTff7Lk4jIGysfZ5bLPGYYTx48dLki6//HLPxQGE+Li4EMeOHZMkLVy40HPxNc1ug4nX16pVqzJ9TVw8VOYAAABSjDdzAAAAKUabFaUSJ9xGjRrlse0veumllzwX2wf50maNrVXb8yRJTz75pKRMu1iSHn74YY/vuOMOSck9XCgcudgpl01sx1scW28nTpwo0+eP129tuviYjdPodoxY586dy/Q1kZ1NLsdjEWOb89e//rUkac2aNZ7bsGGDxx06dJB04bdw2OTs66+/7rn48x8yZIikzFQz0o3KHAAAQIpRmUOpxD1IcT+V3Vg9efJkzy1atMhjO2g+7lSqSFZxs5McJOm1117z2A4T/9znPuc5u0FcYht6obOb1eNN57nYjXj33Xd7bF9rypQpnotVOquiWIXmfMSdc6tXr5aUPHXAnoeSVK9evfP+vCgf9jojZYYN4lBK7Ba0bt1aUukqc3GAZ8GCBZKk2bNney6e0ENFrrBQmQMAAEgx3swBAACkGG1WnBe7sTq2cawNIEn9+/eXJC1evNhzc+fO9dhaOrfddpvnyvOYJBPbVPFm4jfeeENS8tDxeCi57dqyI5AkqX379uV+fchP9liMrdWP2z13oeJOL2uzWjtUSrbZJk6cKEnq0aOH5+IN7HZdcTfdnj17PH755ZclJYeW4ucq6047lF4cBLv22mslZQ68l5LHfdkey9q1a3/s54xDM3Gn3KpVqyQlH7N9+vTxuHv37qW6duQ3KnMAAAApxps5AACAFKPNivNSUkvUjqE5dOiQ537xi194fPz4cUmZ3VZScrLrfMWWQbZrim2KF154wWM7Ziy2Fh5//HGPbRdXnNZF5ZGtpWrHbcUjuMraZo3HbVkb7atf/arn4rT1f/3Xf0nKPHek5GPe9pjFXLzNYNu2bZKk++67z3Px1oF4HB8qRrw1xSabf/CDH3guvn7ZBL4duyVlb7nG3XU//vGPPbadmsOHD/dcr169PK5Vq1aprx/5i8ocAABAilGZQ7lo06aNJOnqq6/23Hvvvefxxo0bJUmPPfaY5x588EGP443ZJlsVrrgqhO1SiidQLFmyxGPbqXTDDTd4buDAgR6zc6tys8eVVbtiLlfsZvj4nIlf3ypnsfJih6dL2ffgxQElG3CI1fA4QIGKF38+tmcu/kzia5pV5uJrY6zM2eubDbpI0vr16z0eOnSopORQV9wziMJCZQ4AACDFeDMHAACQYrRZUS6yHSpth9NL0u9//3tJ0tNPP+25li1bepytzVpSm2vZsmUev/jii5KSR4jFo8P+6q/+SlKytZrrNhrSwx6/cfdajRo1JCWPU8rFEV/xcTp69GiPrf26c+dOz8UBo48++khS8nFcs2ZNj22YJ+42Y7dc/onHtXXu3NnjrVu3SkruoYuPxT/84Q+SpOnTp3uuXbt2Hlt73Ya7UNiozAEAAKQYb+YAAABSjDYrylWc1ho2bJjH1gqy1pAkTZs2zWNrH/3DP/yD57K1hJ555hmPp0yZ4vHRo0clSffee6/nYsvK9mvRWkU2tnMr7vRq2rSppGSb0lqvuRLbuPZ149c/ffq0x/G5ZOI0bIyRv2666SaP47Sp7Rz80Y9+5Ll4dJcd3RZvUXnkkUc87tevX/lfLPIWlTkAAIAUozKHnIlVDLuZO+5R+tWvfuXxa6+9Jknq2bOn5+KNwZs2bZIkPf/8856zPUxS5gDpLl26eC4OY+zbt09Scpt/rNJZHHfbxSqIxfFj4t/PqiDFHcpuMZXBi8O+77HyFStXtgcx7unavHmzpOTQwerVqz22AZ5YIcv2M4+5oqIij+3jqlates51xo+Lufj/xpvhTXz82WM2Xl+2ah6PyYySvj8lvWZk+/NsP1Mp87OKJzHEUzns8ffmm296Lj4W7WSHeMJDHPCyx9rSpUs9Z9U8KXOySHGPz/hYMvE5Y12Y+PFxZ54NY8QBn1xXtiszKnMAAAApxps5AACAFKPNigphx2Xddtttnlu1apXHzz33nCTpySef9FxsKezevVtS8tBxO0JMytw4fPDgQc+9++67HtuurtjmjW0qaxnE1sKRI0c8tq8b23R2g7yUGdaIbdzYpqXNWvFi+8fak8Ud12W7vGbMmOG5NWvWSEoOIMTY2vjxiKX4M7fHUmzdxcentbQaNGiQ9frtZvf48bElZy2t+OfZHn/Z2mVRZX9MxsdJtpZ0/P7EAS97LMWPydbGjx8Tfxb2WhR3A9rtJFJmj2Z8HYyP35EjR0qSbrzxxqx/rxUrVkiSxo8f77nJkyd7bHvs4jUX9/pl4rVayzQ+pnv37u3xZz/7WUmZY8WkzBFmKH9U5gAAAFKMN3MAAAApRpu1gFlrUpJmzZolKdM6kqRdu3Z5bOX14qYxs015xfK8tTnjNKodJyNljhaK7rnnHo+tZP/tb3/bc/EYI2t1xN1JXbt29dhaArF1u2HDBo9tiiu2EWL7I9tOu7jTyb4X8e+8du3ac66Padb8Eb//9rMubveaTQ5+8MEHnrPnR2ztL168+Jw/j4+dbJOtxbVBLR9bp5G1YeNjKl6/fd345zG2x2pxj7ls07aVXfxe2WtKnPCM05h2m0b8+WbbAxgfH7FNafn4+Iqvz/GxaOx2FSkzud+iRYusf5e2bdtKkq688krP2dYAKdMejUeAxddva4nGv1+dOnU8tt2eP/vZzzwXj1O055T9f8gtKnMAAAApRmWugMUqgP2WN2HCBM8tWLDAY/uNL9vuNCn7gED8jcs259s+OSlZRctWmYu/Ed55552SModHS9krc3H3XDxA2n7LjZWz+Bu1VT+K2+llv2XHv3O270X881i5s99es+3+wsWXrUoVHys2xFC3bl3P2XMiW07KPKaKG6rIVvmKVTj7f4urFtpjKlZG4vPP8vHzx7+TPSfi589WLc5WdU+rbFXG0lTDY7XeqmzxeR5fE7JVRuOAlX18fE2Isf1cYjdh3rx553z+eCrEoEGDPI47NbOxYZ0BAwZ4rnXr1udc67XXXus5G6qQpF69eklKfk/jsM/27dslSbNnz/bc3r17PbYqZHxMInf4LgMAAKQYb+YAAABSjDZrAYutzZtvvllS8gZV22MkSaNGjZKUKa1LyZaStVGPHTvmuSVLlnhsbdzYkihpv1VkLYGvf/3rnvvFL37h8aRJkyQl26TdunXz2HYZxTZAbDOXdLN3Sa2YbEf3xDauiW0ahh3yT7bWupR5LNvh5lJm91zcJ/jggw96bHvm4mMyyvVgQbbHdLaWa6E/Dos7rizbcVrFxdlk+/6W1DLM9jOPbe74+mmvmdOnT/dc3DM3evRoSZlbUCRpzJgxHsdjsj5OHMCIt7bY4MTtt9/uucsvv9zjZs2afezntWGIu+66y3OHDx/22FrC53udKBsqcwAAACnGmzkAAIAUo81awGJ53Saf4nEqMb7pppskSYMHD/ZcbBnaFFdsXXbv3t1j27+1f/9+zxW3Pysb+3/jZNWBAwc8tvZF3I0X28S33nqrpGTrrDRfH5WbtZ/itLTt4Ypt1jhBSPsIpRXbsHbcYGy9xmlV28MZj+uKj8VsnzNb6zjeBtC+fXuP7Taa+Jqbbd/mxo0bPY63sdgxdHECNu7Zsz138WOQO1TmAAAAUozKXCVhv53Fw+njocj221msTETZtnjH3/Ls827ZssVz9evXP+/rs98o49BF/I3PdhZ973vf81w8FN0GOOINvHFbeaHfBI6ysWGdWEWwym6sVrBHEOcr26kvcY/c888/Lym5R+62227z2AYT4mtiNqV5bYs7E+3xXdygmp3gMGXKFM/FAQobOov/juDioTIHAACQYryZAwAASDHarJVMPAIrtpRi+dzEnUHxJlgTy+s2TBFbq2UdQIg3+w4ZMkRSZveXJM2cOdPjb3zjG5KkESNGeM6GIqTk3xv4S9YSizdwW/upkI67QsWxwYZ4EL3ty5Qyj7V4O8ndd9/tcUnt1fMVH9Pz58/3+P3335ck/eQnP/FcHJawOObi9dmtL8gPVOYAAABSjDdzAAAAKUabtZI4fvy4JGn37t2e27Bhg8evvPKKpOTk3r59+zy2KSjbHSRJp06d8tim/MqrNfCXrOVqx5JJySmsl19+WZI0derUrNdncZx2td15gLVZY0s1W5s110d0IX3isX52RJckzZkzR5I0efJkz8VbV2y3Z7w1xHa3RSXtkSuObSCIt6bs3bvX40OHDiX+K2V2K0qZ22TiLSrs7sxfVOYAAABSjMpcAbNqnCStWbNGkjR+/HjPPfvssx5bRS2e+tCwYUOPv/SlL0lKbguP/29F6devn8eNGjXy2Lbxv/jii5773e9+57GdJjF27FjP2Z4kACgtq9zG4bBf/vKXHj/33HOSpG7dunnuM5/5jMcPPvigpOQ+zGwudEfmwoULJUnTpk3zXLNmzTz+7Gc/K0nq0aOH51asWOGxVfG6du3quc6dO1/QtSD3qMwBAACkGG/mAAAAUow2awGLAwy2ky0ODcSWqbVUV69e7bkYX3LJ2ff9sbV5sbVu3dpjO4w67qaLR+csWrRIkvTTn/7Uc2vXrvX4jjvukFT83y/b0TwACktJwwY7d+702AYc4u44OwJLkgYNGiRJuuWWWzx3/fXXe5ytvXqhww7Z7NixQ5K0adMmzw0cONDj/v37S5I6derkuS5dunhswxpxqM1uZ0H+oTIHAACQYlTmCtj+/fs9nj17tqTiD3W2ilYco7fRdkm67LLLcnadF8qqhVLmt8v4W+aVV17p8eOPPy4p832Qkjcu2+oVO9xaSq5poSIHFL5sz3MbnpKkGTNmeGyvlXPnzvVc3759Pf70pz8tKVmNK2m1R3m+ztgAXKz2xWEGG3yIFcJ8fJ3H+aEyBwAAkGK8mQMAAEgx2qwFzA56lqT169dLSu5pu/POOz22nXFVqlTxXDxguX379rm6zJyJAxLf+MY3JEm//e1vPReHIb797W9LSm5L/6d/+iePY0sXQPqVNNT04YcfSpJ+//vfe27ixIke2+ur7YuTpGHDhnncq1cvSRV7akI89cZuE2nZsqXn4m02Je23Q7rwLxQAAECK8WYOAAAgxWizFrBYcrdp1VatWnkutlGNtQak5EH02Y5x2bZtm8c1a9aUlF/TUPHv16ZNG0nJCd546PU777wjKbM7Skq2V2xnVGw3V6tWrXwvGECFydZenT9/vsdvvfWWpORrQv369T2+5pprJEmjR4/2XM+ePT3Odtxhee6RM0VFRR7H47js9S9O9cfjvFBYqMwBAACkGJW5AmG/8cVqWdwTZ4fKlzTIECtr2apse/bs8TjuV7LPm0+VuWx69+7tse2ek6T//u//liSNHz/ecz/+8Y89ttMi7r33Xs916NDBY6tMAkiXXbt2eRyHohYsWCAp+Ty33XGSNHLkSEmZ03OkkgelcrGvMr7mT5061WM7uaFPnz6ei7szUViozAEAAKQYb+YAAABSjDZrgbDy/bvvvuu5vXv3emztgbh7rTSWL18uKXkclu1hkpKHMafRrbfeKikzKCJJr776qsd2E7R9HyTpnnvu8dj2S8WPB5B7pRkq+OijjzyeMGGCJOnll1/2XDzib/DgwZKkcePGea579+4eX4xbSuL1v/baa5KkV155xXNTpkzx2PbgXXHFFZ77+7//e4/t1pu0v3bjLCpzAAAAKcabOQAAgBSjzZpCtj8uTquuW7dOUnIaM+6Zs1L7wYMHPXf8+PFzPnfcjXTixAmPX3zxRUnShg0bPNe/f3+P01KqL64l07hxY0mZCbW/9MILL0iSFi1a5Lnp06d7bN/ruNMpTg5X5JE+uHDZHh+5mEBE+Snu52OvdTt27PDcli1bPH799dclSYsXL/actVYl6Y477pCU2SeXD+Lj06Zwd+7c6bm4W9Nev7dv3+65eMRjbNki/ajMAQAApBiVuRTav3+/JGnSpEme+/nPfy5JWrhwoedOnjzp8XvvvSdJql27tufib3H2223cJh5/i7Mbg7t16+a5Rx991ON4k20+K6nKEk91uOmmmzy2kzNmzJjhuXiz8Q9/+ENJUrt27Tz3t3/7tx6PGDHiAq8YFcEqHrHyYajMpZM9VydOnOi5eEKC7Ye76667PHf33Xd73KVLl1xfYqnFPXY2wNCxY0fPHTly5Jw4dgWuvvpqjxs0aJCry8RFQGUOAAAgxXgzBwAAkGK0WVOobt26kqQmTZp4rmvXrpKktm3bei7b0TKxjRpvgLX2YmwznT592uMePXpISh6HFdsQaT8mxv7esaVWpUoVj+3vH/+ederU8XjJkiWSkrv3nn32WY9tT11sUw8aNMjjNm3alO0vgDL5uGGHbK1XXHw2ABB3P9oRXFJmWOnQoUOe69u37zlxfB527tw5B1dafuLj0279iP8OZHv9jv8OxKPHUFiozAEAAKQYb+YAAABSjDZrCtl0Up8+fTxXo0YNScl9bzVr1vTYdg4Vt2fOPj7umYvleWvDNmrUyHOFdHTV+U65xuN8OnTo4LHt3Iu75+y4ICkzWdevXz/PxT2AY8aMkZRs42b7/iM37Oef7dYE2qwXx5kzZyQlbwfZs2ePx++//74kafLkyZ6bOXOmx3bcVtwT96lPfcrjXr16SUrvDki77rReP8oXlTkAAIAUozKXYs2aNfPYKnKxshZv4Lffcu2/fxlbRSJWqGJsf17c56+MYhXNKnbxZxJvtrabsefNm+e5p59+2uNnnnlGkjRkyBDPxdMoBg4ceF7XVJpDx3GubI/5bNU65J6dbGAnNUjJyred7BC7EWPHjvXY9rD17NnTc/Xr1/eYihYKCa9SAAAAKcabOQAAgBSjzZpi8TiuGKPiWcu1efPmnosDIq1bt5aUuSlbkmbNmuXx6tWrJSX3ZMXj2Oyw7Pj5Y0vXjhGjtVp+rL0abyfg+1t+bBhr7dq1nvvggw883rZtm6TkHrkDBw54bDs141GC8TYFu80h3hoCFCoqcwAAACnGmzkAAIAUo/4M5EicgrRjguJxQTZtJ0nvvvuuJOntt9/2XJzce+WVVyQljwOL06533XWXJKlBgwblcemVjk0Bx2ngbG1WlE08WmvZsmWSpF/84heemzt3rse2WzG2Ue+8806Phw8fLil5FB4tcVRWVOYAAABSjMoccJHEisKwYcMkJU+YWLFihce27T5uwJ8yZYrHdsKEDVpIyRNCrrvuOklSy5Yty+PSKxVOgDh/W7du9Xj+/PmSMhU4KbM7TsqcQGMHwkvSiBEjPLYqdI8ePTzXpUsXj+2geSqnAJU5AACAVOPNHAAAQIrRZgUukrj/ylpG9l8peQyR7dRaunSp5+yIMEmaM2eOpGRrdt++fR7bzeCxZRV3E9qRSPG4ozp16pTmr1Nwsh2BVxkdO3bM4/3793tsexBPnTrlubgn8b333pOU3BNXVFTksT3WBw0a5Ll4bJ09/hs2bFi2vwBQCVCZAwAASDHezAEAAKQYbVYgT9WoUcPjq666SlKyDbV3716Pbdp11apVntu0aZPHv/zlLyUlW6+xzXrNNddIkm655RbPxT14hX4kUradZNZejdOWlWmy1dqocRr1xRdf9NimVePuuLp163ps09pxQrVXr14e27RqPPYutvYL/TEHlCcqcwAAACnGrz5AnorVolilM7Vq1fK4Zs2akqSOHTt6LlbmlixZIil5qHms0u3YsUOS9MYbb5zzMfHzx1MtmjRp4rHtr4t77Jo3b+5xvu8Cy3YCRLZcmlhlcdeuXZ6zw+slafv27ZKSj4MTJ054bHvgYuUt7jm0wYT4c44nlNgAQ/v27T1ngzxS8vEDoGyozAEAAKQYb+YAAABSjDYrUAAaN26c+K8k9e3b12MbZoit19hytcGJ1atXe27atGkeW6vN2q2S1LlzZ4979+4tKXkoetxpF48uM7F9aS3l2MaNcbY/j23osh6qnu3z2w348Ub88jy8PVsb96OPPjrnz2Mu25/Ha4473+zorDVr1ngu7ia0nYXxMRFbqg0aNJCUbN3Hn6/9/OPPNrZZ4zAEgNyiMgcAAJBivJkDAABIsU/8Oa2jWgDOmz3NbUJRSh7TZHGcVozTrDYFefToUc/FyUeLi/v81v6LLUs7QkySWrRokfivlJyMtaOf4p/Hachs076lceTIEUnS22+/7TlrScbW9ec+97kyfZ3IvpfxiCybKpYy3/OtW7d67sMPP/TY2qjxZxJfzm2PYLVq1TxXvXr1c+LYOo+tUZs87dSpk+eaNWvmsR39Fr/3ccIaQMWhMgcAAJBiVOYAZBX3k1kcb5DfvXu3x7azbPPmzZ5bv369x3G/mYlVIqvSxWpbrAJZvlGjRp6LB7BbdSmeahEHA7INE8SXvi1btkjKDAVI0saNGyVlKlCSNHr06KzXZ+KAhH2teIJEHFCwKqZVBaXkzjf7/safQ6yc2v8bP2eskllls3Xr1p6Lwwq2Hy5WHuP31P48fs8B5CcqcwAAACnGmzkAAIAUo80KIKvSHG1lrcR4M368cd/ar3FoIrYU7cb+2DIsKiry2FqR8fPH+ODBg+d8TGzj2vXFAY1sLePYxrS/axzauOyyyzy2NmRsDcfWrrVZY2s3DiNYSzQODcQBBGs9x8Pna9eu7bHl48fElqm1VGM7OA6dxGs12Xb3leduPQC5QWUOAAAgxXgzBwAAkGK0WQHkRGypHj58WFJysjPuobOWZ2yTxjjbHjzbsyZlWq6xpRnbrPbn1o6VklOk9rWytZaLY58/tj5jy9PaqNmOCJMyE7ix9RnbuBbHPXDZ9sTFXLaWbWztAihMVOYAAABSjMocgNSIQw9x/9qZM2ckSVWqVPFcrIJZFS4OPcTKn31c3NNmVT773FL2nXHxJTRW1qxiF68jDhNYPlb2ShpQAIBseLUAAABIMd7MAQAApBhtVgCpEV+uYsvT8tn2pEnZW6bxc33cTrXiXiLjsIWJbV5rkxa3p83ysZ1KaxXAheCVAwAAIMV4MwcAAJBitFkBAABSjMocAABAivFmDgAAIMV4MwcAAJBivJkDAABIsUtL/l8AoGJk2/12sWTbXQcA+YjKHAAAQIrxZg4AACDF2DMHIC/Fo7f27dsnSTp48KDnjhw54rEd7VVcm9aO3iruz1u0aCFJatOmTblcOwBUJCpzAAAAKcYABIC8dOzYMY/feecdSdKMGTM8t3DhQo+tShcrb1WrVvX41KlTkqSioiLPWbVOksaNGydJ+trXvnbOdeTTUAYAZENlDgAAIMV4MwcAAJBitFkB5KXYJrXBhNjyXLZsmccNGzZM/H+S1LRpU4+rVKkiSdq/f7/nFi9e7PHEiRMlSbVr1/bcXXfdJUlq1apV1utjDx2AfEFlDgAAIMV4MwcAAJBitFkB5KUaNWp4fMUVV0iSOnXq5LlatWp53L9/f0nStdde67nWrVuf8//u3r3bc7ENO2fOHEnSd77zHc81atRIkvTAAw9kvT7aqwDyBZU5AACAFKMyByDv2TBEy5YtPde7d2+P77nnHknSDTfckPXjL7nk7O+tdlKEJN14440eP/3005Kkf/3Xf/XcK6+8IikzXCFJI0aM8LhmzZql/FsAQG5QmQMAAEgx3swBAACkGG1WAKlRt25dj+MAQ4cOHSRJ9evXv6DPe9VVV0mSunTp4rnVq1dLkqZPn37O/yfRZgWQP6jMAQAApBhv5gAAAFKMNiuA1LCpVCnZ5oxTqheicePGkpITrq+99pokaenSpZ47cuTIOR8DABcblTkAAIAUozIHIC+dOXPG4/3790vKHG4vST179vS4QYMGZfpabdq0kSSNHj3ac0uWLJEkHT9+3HMnTpwo09cBgFygMgcAAJBivJkDAABIMdqsAPLS0aNHPbZdb3EAoUePHh7HI7cuhA1TxOPCbMBh3759nqtSpUqZvg4A5AKVOQAAgBTjzRwAAECK0WYFkJdsglWSnnrqKUlS27ZtPTd06FCP69WrV6avdeDAAUnSmjVrPGeTs82bN/dcWadmASAXqMwBAACkGJU5AHnpE5/4hMe2c65WrVqea9GihcfVqlUr09fasmWLJOnll1/23MmTJyVJl19+ueeqV69epq8DALlAZQ4AACDFeDMHAACQYrRZAeSlqlWremxHd3Xv3t1ztWvXLrevtXLlSknS+PHjPTd8+HBJUq9evTx36aW8ZALIP1TmAAAAUow3cwAAAClGzwBAXvroo4887ty5sySpVatW5fb54065d955R5K0d+9ez7Vu3VqS1KdPH8+VdWoWAHKByhwAAECKUZkDkDeWL1/usQ0lSJmKnFXoSuvgwYOSpEWLFnluwoQJHi9ZskRScqfcgAEDJGUqdJJUpUqVC/r6AJBLVOYAAABSjDdzAAAAKUabFUDemDhxosfTpk3z+JFHHpGUPPS+NGbMmCFJ+ulPf+q5yZMne2y75L761a96zvbM0VoFkO+ozAEAAKQYb+YAAABS7BN//vOf/3yxLwJA5bNnzx6PrQ36k5/8xHMLFy70ePTo0ZKkbt26ea5hw4Ye16hRQ1JyN93hw4c93rhxo6TkHrnGjRt7PHDgQEnSDTfc4Dlr6dJmBZDvqMwBAACkGAMQAC6KnTt3evz6669LSu6W27dvn8dvvPGGpGS1rkGDBh7Xq1dPknTy5EnP7dixw+NmzZpJkgYPHuy5Bx54wOO4Xw4A0obKHAAAQIrxZg4AACDFGIAAAABIMSpzAAAAKcabOQAAgBTjzRwAAECK8WYOAAAgxXgzBwAAkGK8mQMAAEgx3swBAACkGG/mAAAAUow3cwAAACnGmzkAAIAU480cAABAivFmDgAAIMV4MwcAAJBi/x8ccsgwvJsIyQAAAABJRU5ErkJggg==",
"path": "images_version_6/image_56.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
C
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, the diameter CD of circle O crosses the midpoint G of chord EF, then angle EOD is equal to ()
Choices:
A:10°
B:20°
C:40°
D:80°
|
||
281
|
57
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAL4AAABrCAAAAADs7GfdAAAIkklEQVR4nNWbf2wb5RnHv2dabaq09Z9suSFnDmmqHRioUWCN1mwOapDctdKCxpSWdZqRQEHKNGWlME+tSMeiNRNtl0r5I5A/mqrdyB+VgrSuuFIrkpFuLgEZSiAppNTIRstwtSZLtSba9Z79cT777uyz7733zjEfxbkffv283/e55973fe4HiJvJWX4bjCi0BwDOEZxbyPG/B6svn4j2nKNJzPrgEEFb+X2gwakNhxAA+WoYmwDH8jVTJ7d8LlQu5ioCgL//YAOe3yet4zT1+a3t39zghiZGrg8OCh9JXN4nAMd7cJ9bklg4P0sn7pvjki8Ap4741Mgnd1TZJXNTwk8fuMgZ+5n/kDLZRNCdydXh4k5g4UoTuGI/88wbwHUIwCFAIMGTQ1Bk99EwcP5FyDv9YS7v9zXE5/Bk9BfPAbgJAnlyCBRjYH74St/q34TX7hXW353eAMfDlg6FKC0eccFQZU5LkQn9thvyiYgW2joXXTJliXwi0JnIbylERM6DxxiQ9RPSw+84tmWnptVXGuOvj2/NV6xGKpc/FP3KWXGYy1hZlgfFvfq5Va5mF4In34ZUy95b/OZKsTggRlOl6uQddaHr8gOXNm79kMOeFUuHpOtvnwjod+XrdNdNY+Jpk3+4ycbE3gUray7Lp9lg94orhnKCF3rFWNa6FO+E2YyUWN12zY0ZkAAAmWfv3zh3uK5MMVdcZWBEHNf7zzmpaN3AcvkiHsinZPN+md/KbJd4/DYRlfWD28EDAFveSbVnOG28/5PHHs388qsAys9m+d1UikHxAsevlcSuwEnDDquSLstXtIoS/j7HRiY6pDGbRT3yPlE28liZDq8M8bbQGdtnvWfyifr9U+w/Gm9pPctQ3EP5NCEe1VZtunMsFL7A9AMv5bMmAaNShPV4eSqf5FjztN2irwY67ZYt4K1820nAylBDV9KBea/lU6rlZxUGfqLll8WolosoxDLd8GLUNRC49PVHyicBS3/YfDVxQsptCerH7qTPoVNZOCOOWn+Z7RN70o5NV0M+fRJ82iIJWIiJ+xc4LHsePADQ/K7ceq1EQGR+FcIHL9fzpAccTWdhVDxj3pXqFvt4rw1VSz7NNPcakoBUVDzMf12iKsEDAMFkpq2QBMztbgulYoX7Go7Dh9sBlVDyi6FvxdX19zobh+WiEk6oWvAQEU37DxJRIhIY1TXKsGTFm2vyViztvv3ckS/6dgMkuHM53QWnMhBvuOuwfpv3agTvnUUmXu9fP/K1HwsvFDzPfQQ4m1+Rgn/Hgu0TRJRt27VIRAopLlxIrFrwjDZHtFsLsQD7xN6CqshX5OHAj94ubMfFIZcsVyF4lJVBf9eMYWe6patiEmALz0dd4daxxvcmxoLaqQYA8F/+RoUkwC6uOMGaxX6xO1Xqi7JJgG28lZ89KPZa5SLzlkkAA14Gz7+ef2Dl/T/6LY76pnfl1nnuOrgdUBqF0j31B8teJlS0JKAGp2ypbrFfl4tYKDQnAcx4EzzzT7Vu/uTAxsKO0pMDCib/uZXvTgBX40ugEM10+Ydsn5VD4nmO2twPnunOwLCcCxc7UT397ZjzykBEssx7K6ogcyrSzNqfL+5qyzo9f0FExKPeUO2b4aDd+yJ6BsS3HNbOLV9HfGvLuLrG6sopccCZ+zX5siyrQaQGkmxY5Ndy/0mWi5qsjIfa4k4UEBFRNhxRu1nGRuS9n/vk/3QLMu5WW2rSPyaFDY85MaAqPuh3kgTo5ef8ayGfSjRR42QgkiAOFHKYBBRiXzaptS1fHg50JovlMGknIkq3PsGcBPiAO6aBzLxdfvfq8cY34+Mh4/UWpgxcK+yfaniIOQnQTta8h4tPXdm4W4t9mYiWzY858WFKAiofRN2oy959LvaJ3WmbFdljPhRlSgIKU7Y7d7EdNdz4jbQ0Pew3BAAvmxLrWq4xyVBhmTgoREQL+8UYz30RSwp3AmzcpXM4ZUv3iH1ZIlcuNZmZkXpyrqxs29F8/7NnHmmYO1QHwKULrblAUBfB6Ru5JMCGbXbvzEbFwWW9e1w7AHlzQ6LN+Qez/KSai5glu9QEzcx0wF4SwCh/ujMw4tL81BqFiBZ3tX1hoyiT/KmI5Ma1JXsMiDbmgAzyL4RDTnIRB6ghNOXvrxiTtm8O/bUfLzyeO9ur9KLKjT3rTtXlqrOqs7IXiBTljJaLuN/Nl65W/fT5L5ukmLAVPGNSh9NchJML4iCV81kl+YpCo4GdlyuU8o502xPlHhyoMOqS8mrD2fGz33U9rm1C/onGh5PlChhRDOur2isX1Qh5K8bFEcvvdPKLBtLlgTo3cxHHzLdEly38Vwgec9e09Nt7rifzr1xU+Z1EA5sufaX1qsV3Fi3OxsReT6bzzjgtlh4xS8sveuViLWOfiIhmgj0rJVSU6nkyz4aMr1xQtV8ILSaYWNr2WQkVRQ1KRcVKr1ysDcNi8cPZefm5A/PR3nwuUnNMN8dkU/wYO85kl3/YnfeWXEchosXObabuBLrvE48HRj3PRZyjENGReuPkqyB/IiKdqrIgNhQiUqb8/fp9yO2Oh0NFD1rWJNmOHbouXU1Xlu7H9+7V9UZr31GWYSL5cb22rj4MtrEjAAikzRsEoLqP6DHRviWvvpZlloYg6OZnJUbdmm4QCbkH/FX08s2vD9ciAoAnBUEQGv5LUOWfFIQd8oEa163jz3tmiZ76zm0APsoIVxQaWX/3Wouyj7wqAS99/wAA352d+44K8L/YtNai7POPRgDYPAfA96d//w4Amu5ZS0FsXNwOAE0+AL5j6lP0P5fK/qKWkP/SDgCfSgB8V7Soqen+Us9C+wYA6Zc6oPY8qnABX5ImXGwCgF9HdgDwPfgpBCDzBoAvR9cpH9sOZISbquJRnCOa/KE2hTO/zlBzy0m1EedyM07lrTCw7+gaupOH/wN/O9pzdAFZngAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_57.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, AB is parallel to CD, if angle B = 20.0, then angle C is ()
Choices:
A:40°
B:20°
C:60°
D:70°
|
Như hình vẽ, AB song song với CD, nếu góc B = 20°, thì góc C bằng ()
Các lựa chọn:
A: 40°
B: 20°
C: 60°
D: 70°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB is parallel to CD, if angle B = 20.0, then angle C is ()
Choices:
A:40°
B:20°
C:60°
D:70°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB is parallel to CD, if angle B = 20.0, then angle C is ()
Choices:
A:40°
B:20°
C:60°
D:70°
|
As shown in the figure, AB is parallel to CD, if angle B = 20.0, then angle C is ()
Choices:
A:40°
B:20°
C:60°
D:70°
|
282
|
57
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAL4AAABrCAAAAADs7GfdAAAIkklEQVR4nNWbf2wb5RnHv2dabaq09Z9suSFnDmmqHRioUWCN1mwOapDctdKCxpSWdZqRQEHKNGWlME+tSMeiNRNtl0r5I5A/mqrdyB+VgrSuuFIrkpFuLgEZSiAppNTIRstwtSZLtSba9Z79cT777uyz7733zjEfxbkffv283/e55973fe4HiJvJWX4bjCi0BwDOEZxbyPG/B6svn4j2nKNJzPrgEEFb+X2gwakNhxAA+WoYmwDH8jVTJ7d8LlQu5ioCgL//YAOe3yet4zT1+a3t39zghiZGrg8OCh9JXN4nAMd7cJ9bklg4P0sn7pvjki8Ap4741Mgnd1TZJXNTwk8fuMgZ+5n/kDLZRNCdydXh4k5g4UoTuGI/88wbwHUIwCFAIMGTQ1Bk99EwcP5FyDv9YS7v9zXE5/Bk9BfPAbgJAnlyCBRjYH74St/q34TX7hXW353eAMfDlg6FKC0eccFQZU5LkQn9thvyiYgW2joXXTJliXwi0JnIbylERM6DxxiQ9RPSw+84tmWnptVXGuOvj2/NV6xGKpc/FP3KWXGYy1hZlgfFvfq5Va5mF4In34ZUy95b/OZKsTggRlOl6uQddaHr8gOXNm79kMOeFUuHpOtvnwjod+XrdNdNY+Jpk3+4ycbE3gUray7Lp9lg94orhnKCF3rFWNa6FO+E2YyUWN12zY0ZkAAAmWfv3zh3uK5MMVdcZWBEHNf7zzmpaN3AcvkiHsinZPN+md/KbJd4/DYRlfWD28EDAFveSbVnOG28/5PHHs388qsAys9m+d1UikHxAsevlcSuwEnDDquSLstXtIoS/j7HRiY6pDGbRT3yPlE28liZDq8M8bbQGdtnvWfyifr9U+w/Gm9pPctQ3EP5NCEe1VZtunMsFL7A9AMv5bMmAaNShPV4eSqf5FjztN2irwY67ZYt4K1820nAylBDV9KBea/lU6rlZxUGfqLll8WolosoxDLd8GLUNRC49PVHyicBS3/YfDVxQsptCerH7qTPoVNZOCOOWn+Z7RN70o5NV0M+fRJ82iIJWIiJ+xc4LHsePADQ/K7ceq1EQGR+FcIHL9fzpAccTWdhVDxj3pXqFvt4rw1VSz7NNPcakoBUVDzMf12iKsEDAMFkpq2QBMztbgulYoX7Go7Dh9sBlVDyi6FvxdX19zobh+WiEk6oWvAQEU37DxJRIhIY1TXKsGTFm2vyViztvv3ckS/6dgMkuHM53QWnMhBvuOuwfpv3agTvnUUmXu9fP/K1HwsvFDzPfQQ4m1+Rgn/Hgu0TRJRt27VIRAopLlxIrFrwjDZHtFsLsQD7xN6CqshX5OHAj94ubMfFIZcsVyF4lJVBf9eMYWe6patiEmALz0dd4daxxvcmxoLaqQYA8F/+RoUkwC6uOMGaxX6xO1Xqi7JJgG28lZ89KPZa5SLzlkkAA14Gz7+ef2Dl/T/6LY76pnfl1nnuOrgdUBqF0j31B8teJlS0JKAGp2ypbrFfl4tYKDQnAcx4EzzzT7Vu/uTAxsKO0pMDCib/uZXvTgBX40ugEM10+Ydsn5VD4nmO2twPnunOwLCcCxc7UT397ZjzykBEssx7K6ogcyrSzNqfL+5qyzo9f0FExKPeUO2b4aDd+yJ6BsS3HNbOLV9HfGvLuLrG6sopccCZ+zX5siyrQaQGkmxY5Ndy/0mWi5qsjIfa4k4UEBFRNhxRu1nGRuS9n/vk/3QLMu5WW2rSPyaFDY85MaAqPuh3kgTo5ef8ayGfSjRR42QgkiAOFHKYBBRiXzaptS1fHg50JovlMGknIkq3PsGcBPiAO6aBzLxdfvfq8cY34+Mh4/UWpgxcK+yfaniIOQnQTta8h4tPXdm4W4t9mYiWzY858WFKAiofRN2oy959LvaJ3WmbFdljPhRlSgIKU7Y7d7EdNdz4jbQ0Pew3BAAvmxLrWq4xyVBhmTgoREQL+8UYz30RSwp3AmzcpXM4ZUv3iH1ZIlcuNZmZkXpyrqxs29F8/7NnHmmYO1QHwKULrblAUBfB6Ru5JMCGbXbvzEbFwWW9e1w7AHlzQ6LN+Qez/KSai5glu9QEzcx0wF4SwCh/ujMw4tL81BqFiBZ3tX1hoyiT/KmI5Ma1JXsMiDbmgAzyL4RDTnIRB6ghNOXvrxiTtm8O/bUfLzyeO9ur9KLKjT3rTtXlqrOqs7IXiBTljJaLuN/Nl65W/fT5L5ukmLAVPGNSh9NchJML4iCV81kl+YpCo4GdlyuU8o502xPlHhyoMOqS8mrD2fGz33U9rm1C/onGh5PlChhRDOur2isX1Qh5K8bFEcvvdPKLBtLlgTo3cxHHzLdEly38Vwgec9e09Nt7rifzr1xU+Z1EA5sufaX1qsV3Fi3OxsReT6bzzjgtlh4xS8sveuViLWOfiIhmgj0rJVSU6nkyz4aMr1xQtV8ILSaYWNr2WQkVRQ1KRcVKr1ysDcNi8cPZefm5A/PR3nwuUnNMN8dkU/wYO85kl3/YnfeWXEchosXObabuBLrvE48HRj3PRZyjENGReuPkqyB/IiKdqrIgNhQiUqb8/fp9yO2Oh0NFD1rWJNmOHbouXU1Xlu7H9+7V9UZr31GWYSL5cb22rj4MtrEjAAikzRsEoLqP6DHRviWvvpZlloYg6OZnJUbdmm4QCbkH/FX08s2vD9ciAoAnBUEQGv5LUOWfFIQd8oEa163jz3tmiZ76zm0APsoIVxQaWX/3Wouyj7wqAS99/wAA352d+44K8L/YtNai7POPRgDYPAfA96d//w4Amu5ZS0FsXNwOAE0+AL5j6lP0P5fK/qKWkP/SDgCfSgB8V7Soqen+Us9C+wYA6Zc6oPY8qnABX5ImXGwCgF9HdgDwPfgpBCDzBoAvR9cpH9sOZISbquJRnCOa/KE2hTO/zlBzy0m1EedyM07lrTCw7+gaupOH/wN/O9pzdAFZngAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_57.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, AB is parallel to CD, if angle B = 20.0, then angle C is ()
Choices:
A:40°
B:20°
C:60°
D:70°
|
Như hình vẽ, AB song song với CD, nếu góc B = 20°, thì góc C bằng ()
Các lựa chọn:
A: 40°
B: 20°
C: 60°
D: 70°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB is parallel to CD, if angle B = 20.0, then angle C is ()
Choices:
A:40°
B:20°
C:60°
D:70°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB is parallel to CD, if angle B = 20.0, then angle C is ()
Choices:
A:40°
B:20°
C:60°
D:70°
|
As shown in the figure, AB is parallel to CD, if angle B = 20.0, then angle C is ()
Choices:
A:40°
B:20°
C:60°
D:70°
|
283
|
57
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAL4AAABrCAAAAADs7GfdAAAIkklEQVR4nNWbf2wb5RnHv2dabaq09Z9suSFnDmmqHRioUWCN1mwOapDctdKCxpSWdZqRQEHKNGWlME+tSMeiNRNtl0r5I5A/mqrdyB+VgrSuuFIrkpFuLgEZSiAppNTIRstwtSZLtSba9Z79cT777uyz7733zjEfxbkffv283/e55973fe4HiJvJWX4bjCi0BwDOEZxbyPG/B6svn4j2nKNJzPrgEEFb+X2gwakNhxAA+WoYmwDH8jVTJ7d8LlQu5ioCgL//YAOe3yet4zT1+a3t39zghiZGrg8OCh9JXN4nAMd7cJ9bklg4P0sn7pvjki8Ap4741Mgnd1TZJXNTwk8fuMgZ+5n/kDLZRNCdydXh4k5g4UoTuGI/88wbwHUIwCFAIMGTQ1Bk99EwcP5FyDv9YS7v9zXE5/Bk9BfPAbgJAnlyCBRjYH74St/q34TX7hXW353eAMfDlg6FKC0eccFQZU5LkQn9thvyiYgW2joXXTJliXwi0JnIbylERM6DxxiQ9RPSw+84tmWnptVXGuOvj2/NV6xGKpc/FP3KWXGYy1hZlgfFvfq5Va5mF4In34ZUy95b/OZKsTggRlOl6uQddaHr8gOXNm79kMOeFUuHpOtvnwjod+XrdNdNY+Jpk3+4ycbE3gUray7Lp9lg94orhnKCF3rFWNa6FO+E2YyUWN12zY0ZkAAAmWfv3zh3uK5MMVdcZWBEHNf7zzmpaN3AcvkiHsinZPN+md/KbJd4/DYRlfWD28EDAFveSbVnOG28/5PHHs388qsAys9m+d1UikHxAsevlcSuwEnDDquSLstXtIoS/j7HRiY6pDGbRT3yPlE28liZDq8M8bbQGdtnvWfyifr9U+w/Gm9pPctQ3EP5NCEe1VZtunMsFL7A9AMv5bMmAaNShPV4eSqf5FjztN2irwY67ZYt4K1820nAylBDV9KBea/lU6rlZxUGfqLll8WolosoxDLd8GLUNRC49PVHyicBS3/YfDVxQsptCerH7qTPoVNZOCOOWn+Z7RN70o5NV0M+fRJ82iIJWIiJ+xc4LHsePADQ/K7ceq1EQGR+FcIHL9fzpAccTWdhVDxj3pXqFvt4rw1VSz7NNPcakoBUVDzMf12iKsEDAMFkpq2QBMztbgulYoX7Go7Dh9sBlVDyi6FvxdX19zobh+WiEk6oWvAQEU37DxJRIhIY1TXKsGTFm2vyViztvv3ckS/6dgMkuHM53QWnMhBvuOuwfpv3agTvnUUmXu9fP/K1HwsvFDzPfQQ4m1+Rgn/Hgu0TRJRt27VIRAopLlxIrFrwjDZHtFsLsQD7xN6CqshX5OHAj94ubMfFIZcsVyF4lJVBf9eMYWe6patiEmALz0dd4daxxvcmxoLaqQYA8F/+RoUkwC6uOMGaxX6xO1Xqi7JJgG28lZ89KPZa5SLzlkkAA14Gz7+ef2Dl/T/6LY76pnfl1nnuOrgdUBqF0j31B8teJlS0JKAGp2ypbrFfl4tYKDQnAcx4EzzzT7Vu/uTAxsKO0pMDCib/uZXvTgBX40ugEM10+Ydsn5VD4nmO2twPnunOwLCcCxc7UT397ZjzykBEssx7K6ogcyrSzNqfL+5qyzo9f0FExKPeUO2b4aDd+yJ6BsS3HNbOLV9HfGvLuLrG6sopccCZ+zX5siyrQaQGkmxY5Ndy/0mWi5qsjIfa4k4UEBFRNhxRu1nGRuS9n/vk/3QLMu5WW2rSPyaFDY85MaAqPuh3kgTo5ef8ayGfSjRR42QgkiAOFHKYBBRiXzaptS1fHg50JovlMGknIkq3PsGcBPiAO6aBzLxdfvfq8cY34+Mh4/UWpgxcK+yfaniIOQnQTta8h4tPXdm4W4t9mYiWzY858WFKAiofRN2oy959LvaJ3WmbFdljPhRlSgIKU7Y7d7EdNdz4jbQ0Pew3BAAvmxLrWq4xyVBhmTgoREQL+8UYz30RSwp3AmzcpXM4ZUv3iH1ZIlcuNZmZkXpyrqxs29F8/7NnHmmYO1QHwKULrblAUBfB6Ru5JMCGbXbvzEbFwWW9e1w7AHlzQ6LN+Qez/KSai5glu9QEzcx0wF4SwCh/ujMw4tL81BqFiBZ3tX1hoyiT/KmI5Ma1JXsMiDbmgAzyL4RDTnIRB6ghNOXvrxiTtm8O/bUfLzyeO9ur9KLKjT3rTtXlqrOqs7IXiBTljJaLuN/Nl65W/fT5L5ukmLAVPGNSh9NchJML4iCV81kl+YpCo4GdlyuU8o502xPlHhyoMOqS8mrD2fGz33U9rm1C/onGh5PlChhRDOur2isX1Qh5K8bFEcvvdPKLBtLlgTo3cxHHzLdEly38Vwgec9e09Nt7rifzr1xU+Z1EA5sufaX1qsV3Fi3OxsReT6bzzjgtlh4xS8sveuViLWOfiIhmgj0rJVSU6nkyz4aMr1xQtV8ILSaYWNr2WQkVRQ1KRcVKr1ysDcNi8cPZefm5A/PR3nwuUnNMN8dkU/wYO85kl3/YnfeWXEchosXObabuBLrvE48HRj3PRZyjENGReuPkqyB/IiKdqrIgNhQiUqb8/fp9yO2Oh0NFD1rWJNmOHbouXU1Xlu7H9+7V9UZr31GWYSL5cb22rj4MtrEjAAikzRsEoLqP6DHRviWvvpZlloYg6OZnJUbdmm4QCbkH/FX08s2vD9ciAoAnBUEQGv5LUOWfFIQd8oEa163jz3tmiZ76zm0APsoIVxQaWX/3Wouyj7wqAS99/wAA352d+44K8L/YtNai7POPRgDYPAfA96d//w4Amu5ZS0FsXNwOAE0+AL5j6lP0P5fK/qKWkP/SDgCfSgB8V7Soqen+Us9C+wYA6Zc6oPY8qnABX5ImXGwCgF9HdgDwPfgpBCDzBoAvR9cpH9sOZISbquJRnCOa/KE2hTO/zlBzy0m1EedyM07lrTCw7+gaupOH/wN/O9pzdAFZngAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_57.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, if angle B = 20.0, then angle C is ()
Choices:
A:40°
B:20°
C:60°
D:70°
|
Như hình vẽ, nếu góc B = 20°, thì góc C bằng ()
Các lựa chọn:
A: 40°
B: 20°
C: 60°
D: 70°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, if angle B = 20.0, then angle C is ()
Choices:
A:40°
B:20°
C:60°
D:70°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, if angle B = 20.0, then angle C is ()
Choices:
A:40°
B:20°
C:60°
D:70°
|
As shown in the figure, if angle B = 20.0, then angle C is ()
Choices:
A:40°
B:20°
C:60°
D:70°
|
284
|
57
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAQ4AAADCCAYAAAC47CzeAAAnJElEQVR4nO3deVQUV97/8TcQQAEFlU1EXFAQUEAFd0VxwQ2DqElMXGNMNDHzmEyMWZ6cTDL5TeJEM2HGSXyUuEVHxwWjuOCCoiAqaMQFcAElKiIgiIAC3XTX748MDCoCrex8X+fknNh9u+oW3fWpW7du3dJTFEVBCCF0oF/XFRBCNDwSHEIInUlwCCF0JsEhhNCZBIcQQmcSHEIInUlwCCF0JsEhhNCZBIcQQmcSHEIInUlwCCF0JsEhhNCZBIcQQmcSHEIInUlwCCF0JsEhhNCZBIcQQmcSHEIInUlwCCF0JsEhhNCZBIcQQmcSHEIInUlwCCF0JsEhhNCZBIcQQmcSHEIInUlwCCF0JsEhhNCZBEctysrKIjo6msTERIqKiuq6OqIB+/Of/0z79u3R09N75L9XXnmF69ev1/j6JTieg6IoOpW/fPkyf//731Gr1ejry59ePLu33nqLt956izFjxrBkyRIOHjzIunXrKCws5OOPPyYjI6NG1/9CjS5dlEpNTeXw4cNkZmZiYWHBCy/In148O2tra+zs7LC1tWX27NlYWVkBsG/fPo4cOUJubi7W1tY1tn457D0HPT29KpXLz8/n9OnTJCcnY21tTatWrar8WSHKa9kqikJGRgbNmzcvDY3r16+jr6+Pq6srLVu2rNE6SXDUMEVR2L9/P1qtFkdHR9LT03U+xRFNW3kHmfj4eBRFoUOHDhQUFFBQUMDatWvR19fn9ddfr9HWBkhw1CitVktWVhb37t3D2tqabt26YWFhQfPmzeu6aqKBy8/PJzIyksWLF2NhYUHLli3p0qULP/74I1OnTq3x9cuJdjVSFOWRo4NarWbHjh34+fnh4ODA0aNH6dixo3SMiucWHR2Nu7s7r776Kqamphw+fJh//vOfZGdn8+6779b4+iU4aohKpeLYsWMsW7aMs2fPYmZmRk5ODg4ODuWWfzx0hHgajUbDpUuX6NWrF9OmTQPA29ubCRMmcPjwYXx9fenRo0eN1kGCoxqV3fFv3brFqVOnsLCwICoqivv379O2bVtcXV0r/awQT6PRaLh27Rr6+vq0atWq9HV7e3scHR15+PAhaWlpEhwNUXZ2NtevX6djx46cPHkSgLS0NE6cOEFubu4jZbVaLWq1ui6qKeo5PT09DAwM0NfXLz2wFBcXEx0djYuLC87OzsDvrdXU1FTOnz+Pk5MTnTp1qvG6SXBUM0VRCA4OpqioiM8++6z09ezsbLKysjAzM8PAwKD09aSkJP79739jbGz8xLL09PTkCkwDUvJ9Pe/3VvL55s2b4+Xlhbu7O6ampgAYGhpy4sQJXnzxxdJWhUqlYu7cuSQnJ/Pyyy/TtWvXatmeikhwVJP8/Hw2b97Mxo0biYiIYNSoUTx8+BATExOCg4NZu3YtcXFx2NracuvWLV5//XXatGlDUVERGRkZNGvWDENDQ4qLiykuLi5dbsmRRgKkcdPT08PQ0BBTU1NycnJISEggKSkJZ2dnli5dSocOHdi6dSvffPMNV69eJSwsjDZt2qCvr49Go6GgoIDly5cTGBhYK/WV4KgmBgYG2NnZ4e3tTdeuXenbty8ajQYAW1tbfH19cXd3p0WLFjg4OJSOHLWxscHDw4PVq1fTv39/fHx8sLGxIT8/vy43RzyDZ+ngNjAwKG1tXrx4kWPHjnHr1i2MjIzw8fHBxcUFc3Nz9PT0sLGxYdCgQYwdOxa1Wk1xcTEajQYjIyO6d+/OtGnTMDExqZWOdj1FDmV17tq1a8yfP5+2bdsSEBDAyJEjS5umovHLyMjg+vXrxMbGcvjwYfT09Bg6dCiBgYG0a9dOp2XV2tU5RdQL+fn5yptvvql4eXkpn376qXLv3j2luLi4rqvV4BVcO6Ks+nii0sfZWXF2HqXM/D5EuZiueqyUSrkRuUr5eGIfxdnZWekz8WNl1ZFrSsGjC1L2/b/flzPq3Q1K7BPL0I1KpVIKCwuVEydOKO+8847i4OCgBAQEKLt27VLy8/N1WpZWq32uujwLCY7npNVqq+2LKywsVDZv3qyMHTtWGThwoHLu3LlqWW5TpTr3vdLTGAWMFStHZ8W5XQsFUGjhp/ycVFpKubxqmGIMCsZWiqOzo2L1n88MW3VZ+T0ebimbA4yV9i8FKTv271c2LuqpGLf/k3LqKdlR2e9BrVYrW7ZsUQYOHKj07NlTWbRokRIdHa1kZ2crKtWjC62LUKgKCY4aoGuYlC2bn5+vhIeHK++9957Sv39/ZeXKlUpOTk5NVLORi1eCeqCAlfL2vvT/BECB8uvXPRRAsfrTqd+L3d+rzDFGwXi6ElLSisg6oLxthQJjlA23FEVRDisLma6E3i9Z9jnlW2crpWQRVXX9+nXl22+/VUaOHKm89tprytdff63s2bNHSU5OVtRqtU7LqutAkc7RGvA855impqb4+vpibW1NcXEx+/bt486dOwQEBNT4oJ5GJeUUv1wArN5h5mhrDAFoRs+xM3D+eBGXD54n+fM+WB3bxE9FYPWnBUy0/r0UrUfy1ofO/LBoHz8dSOG12aZYWIWxLzoDv9HWaBKO8svlgbzboWpV+fXXXzl27BgpKSk8ePCArl270qdPH0aOHImdnV3NbH8Nk+CoZUo5nVflBU337t1ZtmwZf/rTnzh69ChZWVnMmDEDNze3csd8iMd0nM3+3PFkFTajTZmXc2+c5zKAVQvMgEtnwgAY2O3RFHDxGA5c5sj568Aw3t25kHF+NhjlAcaOvLp5L4E2T199fn4+N27c4MqVK5w8eZKoqCjatm3LlClTmDJlynMdXMr7DdW6Om3vNDI11Xzcu3evMn78eMXb21uJjIzUufNM/EfWYWVh+9/7LwI231IURVEOL0QBlIWHHyt7eOHv/SHDVivXS15T5SoZaWlKdoFSLq1Wq6hUKuX+/ftKSEiIEhAQoNjb2ytvvfWWEhcXV0MbVTekxVGNauooMHr0aLp06cL27duZNm0a8+fPZ9asWdjYVHDI47+Dxur86FQfZJ9l6eQxfH8TjIctZ0lgO+AhhXmVfE6lQVPy/4YtsLJt8dSid+/eZfXq1WzYsIFWrVoRGBjI0qVLadOmDS1aPP1zDZEERwOgp6dH165dee2117C0tGTbtm0kJCQwc+ZMfH19K/ycAHXGQT4d4M+3yUUYD/uWE9vewMkQwIRmle7PlQ9ziomJYevWrcTFxeHo6Mjbb7+Nq6srTk5OtG3bthq2oP6R4GhA2rdvz8yZM9HT0+Pw4cOsW7eO1NRUJk+eXDo5kFIfzn/rEfXN3cwf6M9PN6H9S5s5tOHl/4TGo1TFaqCcNzw6Ut5ECAUFBURGRhIbG8vt27dRqVR4enri4+ODr68vJiYm1b0p9YoERwNjaGjInDlzcHZ2Jjg4mODgYACGDh2Kvb29hEZZ2Uf4cKA/P900xnHRPmL+OozWjxXp5D4MOEL4uUQY6V76enJyLADOnWweiZOsrCxSUlJISEggIiKCCxcu0KtXL2bPns2AAQNqfJPqjbruZBHP7u7du0pQUJDSrl075X//93+Vq1evPrVsXV/3r31ZSuh0YwVQ2i88rGQ9rVh8kNIDFHp8q5wrHXuVpKwaiAI9lKB4RdFoNEpRUZGSmpqq/OMf/1D69u2rdOzYUVmyZImSlpZWO5tTz8i9Kg1cXl4eZ8+e5fPPP8fIyIj58+cTEBBQ19Wqe7/+BYfen3KTPny87c8MfaIvwxq3UZ60I5vdM+zw/7mI9i8F8fc5DtxY9wEf/isZAjaTvONlsi9cYPny5Rw6dAgPDw9effVVBg0ahJmZGaampk+08pQmcLoowdEIqNVqYmJiCAkJKZ1SbvHixZiZmdV11erOkffQ8/2+ggILOaz8jWEAhQlsnDOBOf9K5vfn6xnT+ZXveWecLfFHQrl58yaenp706NEDV1dXunTpgrm5eS1sRP0lwdGIxMfHs3XrVs6ePUu3bt2YOnUqnp6edV2tulF4jzs5FT1m0xgL21Y0K/OKOi+T+ORUfr1wmeRL57l79y4AdnZ2jB49mr59+9ZolRsSCY5GpqCggH//+98EBQXh4+PDxIkT8fLyktv0K6BWq8nIyCA5Obl0eHhGRgajR49mxowZT51guioa62mLBEcDougwoOvSpUu8/fbbqFQq5s2bVzobtvgvrVZLcXExFy5cYMOGDRw8eBBzc3Pee+89/P39ZWh/BSQ4GimtVktGRgarV68mNDQUFxcXli1b9sjM2E1ZYWEh+/fvZ+XKldy6dYshQ4YwceJEPD09MTExoVmzZpUvpAmT4Gjk0tPTCQ8PZ8+ePdy/f5+FCxcyYsSIuq5Wnblx4wYhISFER0ej1Wpxd3ene/fuuLq60qlTJ2llVJEERxNQXFxMWFgYGzduBGD48OH4+/tXeq9LY6EoChcvXiQmJobLly+XPqy5R48ejB49ms6dO9d1FRscCY5Grmzn3I0bN1i8eDEZGRn4+/sTGBhYpY6/htrBl5+fz927d7l06RKRkZFERUXRunVrJk+ejL+/f4VPdG+o21xbJDiaoH/+85/89NNPODs78/XXX9OhQ4dGs5Mov89qh1qtJiwsjFWrVpGUlES/fv14++238fLykmf3VgMJjiZIrVZz+vRpVq1axZkzZ/j000+ZOHEihobl3OTVwGRkZLBx40bWrFmDpaUl48aNY8SIEXTs2BETE5NGsY31gQRHE6XVajl37hy7du0iMjISb29v5s6d22DP90+fPs3WrVu5fPkylpaWODs74+HhgZubm86PGBCVk+Bo4tLS0li1ahVnz56lQ4cOTJw4ER8fn7quVpXk5+dz5swZYmNjSUtLIyMjgzZt2jB48GBGjBjR5IeF1yQJDgHAhg0bWLt2LVZWVsydO5fevXvX2x3v3r173L59m/Pnz3PkyBFiYmIYMGAA06ZNq9Kt7eUNpNNlcJ2Q4BBlJCUl8de//pUjR47w0UcfMXny5HoTHoqioNFoyM7OZseOHQQHB/Pw4UNefvll5s6dW+0zbclVlYpJcIhHZGRkEBYWxj/+8Q+cnZ358MMPcXd3r/yDNezChQusW7eOnTt30rNnTwICAujXrx9WVlaYmZnJTl7LJDjEE3Jycjh8+DA7d+4kKyuLKVOmMHPmzFqvh1arZd++fezcuZOMjAwcHR3p1q0brq6uuLm5YWFhUet1Er+T4BBPFR4ezqZNm8jOzsbX15eAgADs7e1rfL3p6enExsZy9uxZ7ty5Q25uLh07dmTkyJEMGTKkxtcvKifBISqUkZHBt99+S0REBJMmTSIgIIAuXbrwwgvVO11tyU15N27c4PTp00RERHDt2jXGjx/P9OnTcXR0fKS8dGbWLQkOUSmtVsvu3bv54osvsLe356OPPqJ///7VtvyioiJSUlJYs2YNISEhWFlZ8cYbb/DKK6+Uzt4u6hcJDlElRUVFJCUl8eOPPxIVFcX06dN5//33n/uIf+jQIYKDgzl9+jR+fn4EBATQvXt3WrZsKZMP1WMSHEIniYmJhIaGEhERQceOHVmwYAGurq46LePevXts27aNiIgI1Go1zs7OuLi44OrqiouLi863tsul09onwSF0lpOTw/r16wkPD6ddu3b4+/vj6+tb6Q5/5coVYmNjSUxM5M6dO2g0Gnr06MGYMWNwcXEpLadrEEhw1D4JDgFUrbPx8TLh4eEsWbKEZs2aMWvWLHx8fGjTps0jnyksLCQzM5OkpCSOHj1KVFQUxcXFzJgxg5deeumZZmKXoKh7EhziuWRmZrJkyRJ27NjBzJkzWbhwYek8F/n5+Zw+fZoffviBU6dO4eXlxbvvvsvQoUOrtOyqBoQESe2T4BDPLScnh4iICJYvX465uTnTp0/n7t27bNy4kdzcXCZNmsTIkSNxdHTE1NT0iVMa2fEbHgkOUS2Ki4tZvnw533//PVqtFjc3N/r160f//v1xcnKiY8eOOi9TAqX+kodOi+fy4MEDLly4wMWLF8nJyWHgwIFkZmZSVFREXl4e7u7u2NraAhIEjYkEh3gm9+/fJysri7Nnz7J//34uXLhAhw4dWLBgAU5OTmzcuJENGzagr6/P9OnT6datm86zb0nI1F9yqiKqPHy7pMVw9+5dQkND+eGHHygqKmLChAnMmDEDJyenR8qfOHGCP/7xjxgbG/PJJ58wcuTIp663ZNkylLxhkOAQVZaQkMBPP/3E4cOHcXBwYNKkSXh5edGuXTvMzMwwMDB4pLxGo+HGjRusWLGCgwcP4ufnxyeffEKLFk88Ol40MBIcokKKonDo0CF27NhBdnY2rVu3xsnJCQ8PDzw8PGjdunWly0hKSmLv3r0cPXqU5s2b884771TrvS6i9klwiHLduXOHc+fOcfHiRVJSUkhLS8PR0ZFRo0YxePBgjIyMdFpeQUEBW7duZfv27bRq1YoXX3yR4cOHV/hsE1F/SXCIUlqtlqysLDIzM4mKimL37t3cvn2bESNG8Oabb1bLDOjnz5/n448/RqVSMWPGDEaPHo2VlVU11F7UJgkOUSopKYmNGzcSHBxMly5dmDlzJgEBATrNtFWVS64qlYqvv/6arVu34uPjw2effVZ6yVY0DBIcgoMHD/LTTz+RkJDAwIEDmTBhAt26dcPa2rrGbm3Py8sjMjKStWvXcvPmTb744gtGjRpVI+sS1U+Co4nKzs5m7969hIWFoa+vj52dHV27dsXDwwN3d3ed+zCeRVFRESdPniQ0NJS4uDjGjBnDjBkz5NSlAZDgaGKSkpI4e/YsiYmJpKamkpOTg5eXF+PGjdN5Xo3qcu3aNYKCgrh+/TpeXl5MmDABT0/POqmLqBoJjiZApVKRmZnJrVu3OHToEAcPHqS4uJipU6cyc+bMZ7q1vTo83h/y3XffsX37drp168b8+fNxdXXFxMSkTuomKibB0UiV7JRFRUXExsYSHBxMWFgYw4YNY/bs2QwdOrRWTkeqqqS+sbGxfPfdd8TFxfHNN9/g5+dHs2bNyi0r6o4ERyNVWFjIv/71LzZt2kROTg7jx49n1KhRdOjQgdatWz+xM1akNnfUktGmu3fv5scff2TMmDH8z//8Dw4ODrWyflE1EhyNzLVr19i5cyfR0dGYm5vj4OCAk5MTPXv2xNnZua6rV2Xp6emEhoayf/9+mjVrxpQpU5gwYUJdV0v8hwRHA/R4C0CtVnPx4kXi4uK4cuUKd+7cQaVSMWLECMaMGdOgxkg8vm2bN28mJCQEfX19xo0bx/jx42nVqlUd1lCABEeD9vDhQzIyMrh8+TK7d+/m5MmT2NraMm/ePMaNG1fX1as2CQkJBAUFcerUKf7whz8wYsQI2rdvL/0cdUiCo4HKysriwIEDrFmzhkuXLvHSSy8xe/Zs3NzcSss87Rb1hnjren5+PqGhoSxevJiRI0fy/vvvP7KtonbpHByKoqDVakv/ra+v36B+gPXJs+zA165dY/Xq1YSHh2NqakpgYCBDhw7F2toaCwuLan80Y33y4MED4uPjWbp0Kenp6bz22mu8+eabpe83xEBsqJ6pxVESHnp6eqX/iad73qsSGo2GEydOsGfPHpKSkrC0tMTR0RE3Nzc8PDyws7OrxtrWf6dOnSIkJISEhAScnZ1ZtGgRNjY2gFyqrS3PfKqi0WiktVFFz/pjzs7OLp3P8/Lly9y5cwdLS0vGjx+Pr6+vTpdUG5uUlBR+/vlnjh07hpeXFwEBAfTu3btRt7jqkzoLjop2pqrsaNV9ZKkvz/DQarXk5eWRnp5ObGwsW7duJTU1lT59+vDGG2/Qs2fPCusGTaeprtVqCQsLY9GiRfTp04fp06czYMCAJh2otaVaguNp/R4ajea/K9LTQ19fv/Szj79Woip9KFqtlrLVfnzKusc9vszH11vZ8jQaDQYGBo+UMzAwqJFWV3JycunALXNzc2bNmoW/v3+TOx2pKkVRyMzMZMGCBSQlJfHqq6/ywQcfVFi+qQRrTaq2FkfJzlnRa+X9W1GU0p24ZOfW19cv/YLLvlZSpqRfpaTqJWXL+0GUrKPkfY1G80hwVLS8snV6vA5l61n2vWcVGRnJDz/8QHJyMi4uLvj7++Ph4YGNjQ0tWrSQH/t/PG3Hz8zMLJ1hzMTEhOXLl9OhQ4cKPyOeXbWeqjz+WtmdEh7tVC35N/z3CP94SJT3WlXWW1bJOkvW8XhzvrLllbQySsLm8fArr85Vdf/+fcLCwjh48CBFRUVYWlqW3tru6elZY3NhNCZlQ+Hu3bscOHCA/fv3c+/ePWbPns3YsWMrfRi20F21BsfjR++yOyw8GRzAI8FSG8FRle14/LWSU5XylvcswZGSkkJ8fDyJiYkkJiZy9+5dPD09mTRpEu7u7lVejvhvcJQNkKioKP72t79hZGSEr68vfn5+cq9LNav2ztGSU4GSo3F5wfG0nbgxB4dKpSI3N5fbt2+zf/9+tm3bhrGxMRMnTmTGjBlPPOX9WTSFztGqnnbk5+fz/vvvk5CQgK+vL2+++SZt27attD9MVI1OwVF2J3nazlpSpirBUXIaUJunKs+yvPI6gnUNjujoaIKDgzlw4AB9+/Zl3rx59OvXjxYtWjSJHb6ubN68mZUrV6JSqVi1ahVOTk4SHtVA5+Ao2xn4tB96RTtTSWdl2X6Dp63jaeupqExFp0i6Lq+8Kzxlt6/slZbytqWoqIgtW7awevVqNBoNQ4YMwc/Pj/bt22NrayuXDWtBUVERZ8+eZfv27ezdu5f33nuPl19++ZkfCiUh/zudgqNs0Yr+cI+3JMpbztOuhDxenae1IioqU15ztqIv/GnLq+z1pz2yMCkpiX379hEbG4uRkRE2NjZ069aN3r17lzs9n/T617z4+Hi2b99OTEwMrq6uvPLKK/Tq1auuq9VgVftNbiWhAM9/ibIh0Wg0xMfHl3Z6Jicno1KpGD58OJMmTapwAl4JjtpRWFjIsmXLOHXqFA4ODkycOBEfHx8ZbfoMqj04Hh8n0dgVFBSQnZ3N1atX2bVrFwcOHKBr167MmDGDCRMmyPl0PbR7925WrFjB/fv3+eKLL+jVq5dOz44R1RQclY3MbOie1iIoLCwkNDSUNWvWEB8fz5QpU5gxYwbOzs4ydqCeS0lJYf369axYsYIPP/yQqVOnlt4o9zRPOwVuiq3FamtxVLX/ozFIS0tjzZo17Ny5ExsbG4YPH07//v1p3749VlZWTzR9m+qPq767c+cOx48fJygoqHQCJF9f3wo/I52jv5OJfHRw6tQpwsLCuHz5Mm3atMHa2poePXrQu3dv2rdv/0T5phSm9VFVAruoqIjdu3ezZ88ecnNzGTp0KPPnz5dTzEpIcFQiLy+P+Ph4Ll68yKVLl7h58ybNmjVj0qRJ+Pn5VXpKIq2NuqNL6yAqKoqff/6ZlJQU/P39GTduHJ06darpKjZYEhzl0Gq1PHz4kPT0dM6ePcvOnTuJiYlh2LBhzJ07l969e1f4+cp+sBImtUeX7yIrK4t169axfPlyZs2axaRJk3B2dparLuWQ4CjHzZs32bRpE1u3biU/P5958+YxZcoU2rZtC/x3/EZdzAcinl1VT13i4uJYsGABFhYWvPvuu/JYhnJIcJRx5swZ1qxZQ3R0NG5ubowePZrevXtjZWVVLfeSiPrp8VaJWq0mKSmJ1atXc/LkSby9vVmyZAmGhoZ1Wc16pckHR15eHkeOHOHYsWOkpaVhaWlJhw4d6NmzJ7169cLc3LyuqyjqyJUrV9i1axfHjx+nVatWvPPOO5WepjYVTTY40tLSSkd6xsfHk52djYODA5MnT2bAgAF1XT1RTzx48ICtW7eybt06XFxcGDt2LIMHD27yB5QmFRxqtZqCggJ+++03IiIiCAkJ4eHDh7z44ou89tprpTNGiaansk7US5cusWDBAvT09Jg2bRqTJk3C1NS0yfZLNangiI2NZeXKlURHR+Pg4MCcOXMYOXIk5ubmzz15smjcFEWhoKCA7777jh07duDu7s7SpUuf6Pt62m+lsf2GGlxw6PoFFBQUsGfPHtavX09ubi5eXl4MHToUNzc3LC0tn7i9urF9waJyugwlz83N5ejRo2zatIlr167xl7/8pdLRpiXLg8YzELDBBUdV3bhxg3379hEXF0dhYSFt2rTBycmJPn364ObmJj3k4pmpVCqOHTtGSEgIt27dYvjw4UyZMqVJzUTfqIJDo9GQnJxMQkICiYmJxMXFodFo6N+/P5MnT5Y+DPHcyrZEfvvtN7766ivS0tIYMGAAEyZMoHv37uWWbWwaRXAUFBSgUqlITEzkl19+Yfv27XTt2pXZs2czbtw4TExM6rqKohELCgpiy5YtdO7cmY8++ghHR8dGP7tbowiOnTt3EhQUxM2bNxk1ahSzZs3Czc1NAkPUqLItil9//ZWgoCBOnDjBN998w9ixYxt1eNR6cFRX8y09PZ2NGzeyZcsW2rZty6BBg/D29qZz587Y2Ng80ofRmJuMon7QarVcvXqV3bt3s3nzZgYPHsw777yDo6NjXVetRtRYcNTUznrmzBnCwsJITk7G0NAQKysr3N3dS+fDEKIupaWlsWXLFo4fP07Lli0JDAxk7NixdV2talcjwVHdl57y8vK4fPkyiYmJxMfHc/78eVq1aoW/vz+TJ0+WuxdFvbNp0ya2b9+OoaEhgYGBDBs2DEtLy7quVrWpkcmK4flDQ1EUHj58SG5uLjExMWzbto1jx44xcuRI3nrrLby9vXVenpyuiNp05coVli1bxvHjx1m4cCHjxo3D1ta2UfwO623naHZ2NuvWrWPt2rXo6+szdepUXn31VaysrDAyMmoUf3zR+OXl5bFr1y6++uor+vbtywcffPDIJduGqt4FR1xcHD///DPHjh2je/fuDBkyBA8PD+zt7bG2tn6mZUprQ9Slklbz+vXruX37NlOnTmXOnDml7zfE32e9CA61Ws3Bgwc5duwY6enpmJmZ0bZtW3r37k2/fv2e6U7EhvhliMYtMjKSXbt2kZSUhIeHB3PmzGmwHfp12quYmZlZOsrz3Llz/Pbbb3Tp0oXJkyczZMiQuqyaENVu8ODBdOrUiVWrVhEREQHA+PHj8fT0bHAd/LXe4tBoNDx8+JCMjAzCw8PZtm0bKSkpzJw5k5kzZ2Jvb1+b1RGiTuzYsYMvv/wSFxcX3n77bby9vRvUs3iqNTiqcnpw6dIlVqxYQWhoKB07dmTu3LmMGjUKMzMzDA0N5fRCNAlarZbk5GS++eYbTp8+zezZs/nDH/7QYB5kVmPjOMoGgEql4uDBg2zZsoWEhASGDRtGv379cHFxwc7OrsnPpiSahseHKiiKwo0bN9i7dy8hISFYW1vz+eef4+TkVJfVrJIaPVW5c+cO4eHhnDhxggcPHmBpaYmdnR2DBg2iV69e8tAb0WSVPbhmZ2cTGhrKvn370NfXZ9KkSUyYMKFeT/1Q7cGhVqtJTU3l0qVLnD9/nosXL5KdnU3fvn155ZVX6Nq1a3WuTogGqbzT+oMHD/L3v/8dY2NjXnzxRYYPH15v5/iotuBQqVQUFRWRmJhIaGgohw4dQk9Pr/SZJM2bN6+O1QjRqGVmZvLVV19x5MiR0vEeVlZW9a7vT6fgeNpw8qKiIo4cOcL//d//kZSURP/+/Zk5cyb9+vWT0xEhdKTRaAgLC2PJkiW0bNmSL774ot49luG5Wxzr169nxYoVaDQaLCwssLW1xd7eHjs7O1q2bIlGo0Gr1VLZauQBzUL8/ts3MDAgNze3dHxTTk4OCxYsYN68efVm33juUSc5OTmkpqbSpUsX2rVrVzos/Pr16xQXF+s0grNs2ZLHLArRFBkaGmJubk6nTp2IjY1FrVbXm9CAamhxxMbGEh0dTbt27SguLkaj0ZS+V1EroqrTyMvQcdHUlO0SeOGFF8jNzaVfv3706NGjjmv2X88VHLJTC9E0PdcwNQkNIZqmGrmzpqQlIi0SIZ7fypUr2bVrFzdv3iy92KDVajE2NiYwMJDPP/+81uv0TMFx6tQpNm/eTG5uLlZWVgwbNgw/Pz/Cw8Pp3r07NjY21V1PIZqs7t27Ex4eTlFREYMGDaJ169YYGRmRmJhIZGQkS5cuZeHChbV6h61Oa0pOTiYmJoarV69y6tQp8vPzsbOzw9DQkMLCQo4fP46dnV1pcEhrQ4jnN2DAAH777TccHR358ssvSwMiNTWVoKAgfvzxR/r374+3tzdGRka1Uqcq93Hk5OTw5z//mddffx1jY2Oio6M5f/48YWFheHp6EhAQQKtWrWjVqlVN1leIJunevXsoivJIq6Jdu3bMmTMHb29vgoODSUlJqbX6VDk4PvnkE65evcpf/vIXFi1a9Mh7Hh4e/PGPf6RLly71+sYcIRqipKQkHj58iK2t7RPvGRoaYmdnR2pqKgUFBbVWpyoFR3R0NCdPnqRHjx7MmTPniTkDmjdvTqdOnbC3t29Qk5EI0RDExcVhYGBQ7jgOExMTOnToUNphWluqFByrV6/G3t6eESNG0LJlyyfet7CwwMfHh65duzbqx94JURciIyPRaDT07Nmz3PcVRcHS0rLW+jegisHxyy+/4O7ujqenZ7nvm5qa0r17dywtLRvc3IlC1GdarZa7d+9iZmZWbv9hWloaUVFRODk5lXtQrylVCo6srCyMjY0xMzOrtKyiKHKPiRDVQKvVcvv2bVxdXencufMT76tUKqKjo/nll1/o3bs3bdq0qbW6PdPI0YqCQU9Pr9z7UiRMhNCNWq0mJiYGY2NjLCwsnnj/0KFD7Ny5k1GjRjF06FBMTExqrW5VCg5LS0tUKhWFhYXlvp+WlkZ0dDRqtbrc98sLEyFExYyMjNiwYQOdO3d+4pGnc+bMYcGCBTg4OLB8+fJan7e3Sh0SgYGBhIeHY25uzvvvv196VaWwsJADBw5w8+ZN/Pz8qjRDc1WHoUs5KdcUywHk5+cTExPD2rVr+eWXX8jLyyMiIgIDAwM0Gg15eXncvn2bCRMm8PLLL5d7GlPTqhQcs2fP5ssvv+TQoUOYmpri4uKCVqvlwYMHxMXF0aJFC7p06VLTdRWiSVCr1Vy7do0zZ84wZMgQcnNziYqKKj3l12g0fP755wQGBqKvr18n94RV+bb6O3fusHjxYtavX1/62vDhw/nss8/w8fGpsQoKIeqfevHsWCFEw9IwHhslhKhXJDiEEDqT4BBC6EyCQwihMwkOIYTOJDiEEDqT4BBC6EyCQwihMwkOIYTOJDiEEDqT4BBC6EyCQwihMwkOIYTOJDiEEDqT4BBC6EyCQwihMwkOIYTOJDiEEDqT4BBC6EyCQwihMwkOIYTOJDiEEDqT4BBC6EyCQwihMwkOIYTOJDiEEDqT4BBC6EyCQwihMwkOIYTOJDiEEDr7/5NrLkd3jtyXAAAAAElFTkSuQmCC",
"path": "images_version_5/image_57.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, AB is parallel to CD, then angle C is ()
Choices:
A:40°
B:20°
C:60°
D:70°
|
Như hình vẽ, AB song song với CD, thì góc C bằng ()
Các lựa chọn:
A: 40°
B: 20°
C: 60°
D: 70°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB is parallel to CD, then angle C is ()
Choices:
A:40°
B:20°
C:60°
D:70°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB is parallel to CD, then angle C is ()
Choices:
A:40°
B:20°
C:60°
D:70°
|
As shown in the figure, AB is parallel to CD, then angle C is ()
Choices:
A:40°
B:20°
C:60°
D:70°
|
285
|
57
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAArYAAAIbCAYAAAAegd3cAACSeklEQVR4nOzddVxV9/8H8BdIKYiIohjYCSqzYyq2s3PGdOZCl7pwzrnpvnNTpws355zd3RjYnYjdHYgJKioNn98f/M6Hc+E2lzq+no8HD4/vU59b537u+3zCTgghQERERESUw9lndQGIiIiIiGyBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ix1WPAgAGws7NDqVKlsroomtCkSRPY2dmhSZMmWV0Us+XEMicmJmLKlCmoU6cO3N3dYWdnBzs7O3Tu3BkAsGfPHhnbs2dPlpaVsqdSpUrBzs4OAwYMyOqivFZMfedkxuuiXBvGjh2bYeegrDd27Fj5WmuVTSq2Bw4ckE+UnZ0d9u3bZ4vDEpEFevfujWHDhiE4OBgvXrzI6uKQSosWLeT1sVmzZmbvp/zA0vfn6OgILy8vBAQE4Ndff8XTp08z8BEQ5Xx3797FpEmT0KpVK5QuXRpubm7InTs3ihUrhtatW2PcuHG4efOm3n3ViQH1n4ODAzw9PVG6dGk0btwYw4cPx+rVqxEXF5fJj44UNqnYLliwwOj/ibIDLf9SPXToEFauXAkAaNeuHbZv344zZ87g7Nmz+Ouvv7K4dK+30NBQ7N69W/5/z549uHPnTrqPm5CQgCdPnmDfvn345ptvULlyZRw5ciTdxyWyxrx58+T19datW1ldHB2xsbH48ssvUb58eYwYMQLbt2/HrVu38OrVK8TExCAsLAzbtm3D999/j7Jly6Jnz564e/euWcdOTEzE06dPcevWLezfvx9//vknunfvjuLFi2PcuHFISEjI4EfHu3GpOaT3ALGxsfIL1c3NDS9fvsTKlSvx999/I3fu3OkuIOV8/KBlvB07dgAAcuXKhSVLlsDd3T3NNk2aNIEQIrOL9tpbtGgRkpKS4OTkBCEE4uPjsWjRIowaNcqi45w9e1bn/3Fxcbhx4wYWLlyIDRs24OHDh2jXrh0uX76MggULWlXW7FYhIUqv8PBwdOzYEYcOHQIA5M2bF71790bz5s1RvHhxODo64sGDBzh48CDWrFmDq1evYsWKFahfvz6GDRum95hDhw7FRx99JP//8uVLPH36FGfOnMHOnTuxY8cOPH78GN9//z0CAwOxceNGeHl5ZcbDJdggY7t+/Xo8e/YMADBlyhQAQGRkJNavX5/eQxORme7duwcAKFy4sN5KLWWdhQsXAgDatGmDNm3a6MQsUaVKFZ2/GjVqoHv37li/fj369esHAIiIiMDs2bNtV3iiHCwpKQm9evWSldq2bdvi2rVr+O+//9CjRw80aNAAtWvXRocOHTBhwgRcunQJ8+fPR6FChYwet1ChQjqfxXr16qFNmzb45ptvsG3bNpw9exbVq1cHABw7dgxdu3Zl04RMlO6K7fz58wEAvr6+GDRoEHx9fQGwOQJRZoqNjQUAODo6ZnFJSC04OBgXLlwAAPTp0wd9+vQBAFy6dAnHjh2z2XlGjBghl48ePWqz4xLlZH///be8m9WiRQusX7/eaKXV3t4e/fr1Q0hICKpVq2b1ef38/HDw4EFZuT1w4ACmTZtm9fHIMumq2D569Ajbtm0DAPTt2xcA5IV727ZtePjwocljhIWFYeTIkahRowby5csHJycneHt7o2rVqujduzfmzZuHyMhIq8qXmJiIefPmoXXr1vD29oaTkxM8PDxQvnx5NG/eHL/88ov80jHm2bNn+OGHH+Dn5wdXV1d4eHigcePGWLx4sVnlOHv2LD744AOUL18eefLkQd68eeHn54fhw4cbvPW3cuVK2Wbm8uXLercpV66c3Gb16tV6t+ncuTPs7OxQu3ZtnXjq9lBJSUmYMWMGGjRogPz588PV1RXVqlXDzz//jKioKLMepyHGRhi4deuWLMe8efMAANu3b0eHDh3g7e0NZ2dnlC5dGkOHDkVoaKhV51ce648//ihj+joBGLsNe+/ePXzxxRcoV64ccufOjQIFCqB169bYsmWLWWV4+vQpxo0bh/r166NgwYJwdnZG0aJF0alTJ6xZs8aqx6V+HMoPzNu3b6d5XApz22Hdvn0bQ4YMQalSpeDi4oKiRYuic+fOsp2osbbK+l5PQ4z19E79/oyNjcWff/6JevXqoWDBggZ7byckJGD27Nlo27YtihYtCmdnZxQsWBCNGzfGn3/+iZiYGKNlsjXlB36+fPnQoUMHdOzYUWbUbfnjX92bPj2P0VTv+5iYGPz1119o0qQJChYsCEdHR3h6eqJSpUpo27Yt/vjjD6ubM6Q+d3BwMHr37g0fHx+4uLjAx8cHAwYMwMWLF40e5/79+5g2bRq6d++O8uXLw9XVFc7OzihWrBg6deqE5cuXIykpyeD+qT8nSUlJmDNnDpo2bYrChQvD3t5e5/lJSkrCrl278NVXX+HNN9+Uz4uHhwfeeOMNfPXVVzZpU22O0NBQfPvtt6hRowby588PFxcXlChRAj179tRp521LyvM1cOBAGStdunSa65C+a87Lly8xYcIE1K9fH56ennB2dkbx4sXRvXt3bNy4MV3lio+Px6RJkwAALi4umDt3LhwczGt9Wbx4cYs6eeqTO3duLFy4UF4nJ0+ejPj4+HQdMzXletu0aVMZa9q0aZrn3ti1OCYmBpMmTUKNGjWQN29e5M2bF3Xq1MHUqVPNah+cnmtu6rpBer9nJZEOv//+uwAg7OzsxO3bt4UQQty6dUvY2dkJAOK3334zuv++ffuEu7u7AGD0LzAw0OKyvXjxQjRq1Mjksbt165Zm3/79+wsAomTJkuLixYuiVKlSBvf/+OOPjZbjl19+Efb29gb3d3Z2FvPnz0+z36NHj+Q2//77b5r1oaGhJsuRlJQkPD09BQDx5Zdf6qybO3eu3PfcuXOiWbNmBstYp04d8fLlS1NPuUEBAQECgAgICEiz7ubNm/I8c+fOFd98843Bcnh5eYkLFy5YfH71YzX2d/PmTb1l3r9/vyhQoIDB/SZNmmT0/Js2bRIeHh5Gz92uXTvx4sULix+bOY9LsXv3bhnbvXu33uNt27ZNuLq66j2OnZ2d+Pnnn8WYMWPSHFuR+vU0pmTJkgKA6N+/f5p16tcsODhYvPHGG2nKM2bMGJ19rl27Jnx9fY0+F+XLlxdXrlwx9bTaRFxcnChYsKAAIAYNGiTjAwcOFABEgQIFRFxcnNFjKO9DU5fqc+fOye0+/PBDq8ts7DUJCwsz+fzqu9ZYc+7Zs2cLBwcHg9fMZcuW6T1GQkKC0eut8teyZUuDnzf152TLli2iRYsWafZXPz/qz4Ohvzx58og1a9YYfOzq7xxTz40hs2bNErlz5zZajsGDB4v4+Hi9+xv6XJmifr6M/aW+5pw4cUIULVrU6D5du3YV0dHRFpVHERgYKI/Tt29fq45h6HFa8hy1atVK7nfw4MF0l0NNfb019qe+Fqvfrw8ePBD+/v4G9+vQoYNITEw0eP70XnNt+T2rlq6KrfKENG7cWCeuVCj9/f0N7hsTEyPf1Hnz5hUjRowQW7ZsESEhIeLIkSNi+fLlYtiwYcLHx8eqiu2XX34pn5D27duLpUuXioMHD4qQkBARFBQkJk6cKBo1aiS6d++eZl/lIuPl5SXKly8v8ubNK0aPHi327Nkjjh8/LmbOnCmKFy8ujx8UFKS3DP/884/cxsvLS0yePFkcPnxYHDhwQIwdO1ZWIOzs7MSmTZvS7F+5cmUBQPTs2TPNuoULF+q86H5+fmm2OXnypFyf+jlUVxwaNGgg7O3tRf/+/cWmTZtESEiIWLt2rahfv77cZuTIkeY+9WmYW7Ft0KCB3G7JkiXi+PHjYseOHaJfv35ym3r16ll8/qdPn4qzZ8+KoUOHyuOcPXs2zZ+6kqGUuUKFCqJgwYKiUKFCYsKECeLAgQPi2LFj4vfff5eVVQcHB3Hu3Dm95962bZvIlSuXACBKlSolJk6cKPbs2SNOnDghAgMDRd++fXUu4pZSyt6pUycBQBQtWjTN41KYqthevXpV5MmTRwAQuXLlEh9//LHYuXOnCA4OFnPnzpUXsDp16sjjpJYRFdtq1aoJOzs70a9fP5335+bNm+X2YWFhonDhwvJ68uWXX4otW7aIEydOiN27d4tvv/1WPrYyZcqIZ8+emf0cW2vt2rXyMezatUvGd+7cKeNr1641egxzK7YDBgyQ2+m7lpjL2GvSrVs3nYrCmjVrxJEjR0RwcLDYuHGj+PHHH0X16tXTXbH19/cXjo6OomjRouLvv/8WR48eFXv37hXffPONcHZ2lp+5o0ePpjlGfHy8sLe3F82aNROTJk0SQUFBIiQkROzZs0fMmTNH55rWr18/veVQf06qVasmAIiOHTuKNWvWiJCQELF582adivV3330nihQpIj766COxcOFC+T2zbt06MWLECOHm5iYACBcXF4M/zNNbsZ09e7Ysc5UqVcTff/8tDhw4IE6cOCFWr14t2rZtK9d/8cUXeo9hbcX25cuX4uzZs2LcuHHyGFu3bk1zHVInR0JDQ0X+/Pnl99/AgQPF1q1bxfHjx8WCBQt0Kls9evSwqDyKr776Sh7D0A8hS1hbsf3111/lfhMmTEh3OdTi4uLE2bNnxZw5c+Q55syZk+a5f/r0qdxHXbFt0KCBcHJyEp999pnYvn27CAkJEUuWLJF1DwBi+vTpes9ti2uurb5nU7O6YnvmzBn5wGfMmKGz7r///pPrzpw5o3d/9cXdWMU1Pj5ePH/+3OLy+fj4CAB6K65q4eHhaWLKRQaA8PDw0PtkXr16Vbi4uMiLXmqPHj2SL2rRokXFnTt30mxz4sQJWbktVqxYmuyNUhHz9vZOs+/gwYPluZWLw6NHj3S2+eOPPwQAYW9vr/PGFiJtFnPhwoVpzhETEyOqVKkigOTskqFf+qaYW7EFIN5//32RlJSUZrv33ntPbnPixAmrymEs02iozMqXTWhoaJpt9u/fL+9OfPbZZ2nWv3z5Un7wW7VqJV69eqX3XDNmzJDn2rFjh+UPTJj+YhTCdMVWeS8BECtXrkyz/tWrVzqV2syq2AIQs2fPNnqs9u3bCwDCx8dHXL9+Xe826s/b6NGjjR7PFrp06SIAiOLFi+tkPRITE+UP4y5duhg9hvp9mPrLKiQkRKxevVqex5zrnSmGXpPo6Gjh6OgoANMZWX3XVEvOrbyP79+/n2abXbt2yUxurVq10qxPSkoSV69eNXqeH374QV4z9WWSUmcgv//+e6PHu3nzptHM+927d0WxYsXkDwJ90lOxvXPnjvyu6d+/v8Hr9KhRo+T3weXLl9Ost7Ziq1B/ZtV3v/Tp3r273HbWrFlp1sfExIimTZvKbdQ/Ys3VsmVLub8t7tJYW7HdsWOH3E9958aWzLkbp1B/Dzo6OurdPjw8XH53VatWTe9xbHHNtcX3rD5WV2yVjKizs3OaStPTp0/lL2tDF8HFixfLB2RNxdUU5SI8ZcoUi/dVV2z/+usvg9v16tVLABD58+dPs27ixInyGEuXLjV4DPWv3BUrVuisW7ZsmVx38eJFnXXlypWTFZAyZcrorYx07txZABA1atRIc171RchYpnD69Olyu9OnTxvczhhzK7ZFihQRMTExeo9x6dIluZ01r6kQ1ldsN2zYYHC7evXqCQCievXqadb9/fffAkjO1Dx8+NDo+ZQKY58+fUw/ED3SW7ENDQ2Vt3CNVbZOnTqV6RXbZs2aGT3O2bNn5bbr1683uu2IESMEkPxjMyOFh4cLJycnAUCMGDEizfqvv/5aABBOTk5GK4Lq96GxvwoVKohZs2YZvW1oDkOvyb1798x+jtN7bgBi1apVBrdT33k5duyYxedJSEiQTUQmT56cZr36c1KhQgWRkJBg8TlS+/PPPwUA4e7urveHe3oqtsp3cdGiRY3eto+Pj5cV7O+++y7N+syq2IaFhcm7WK1btza43c2bN+WPmLZt21pcnurVq9u0jmFtxVZ959TUD1lblM2Siq2h7L0QQowcOVJulzrbaqtrri2+Z/WxqvNYYmIilixZAiB5MHgPDw+d9R4eHmjbti0AYMmSJUhMTExzjCJFisjluXPnWlMMo5TjL1++3OrOT3Z2dnjnnXcMrq9ZsyaA5I5BypBnCqUnpoeHB7p162bwGO+9916afRTqzlbqhvf37t3DtWvXYGdnh4CAALmdehshhJwBLiAgwOD5gZQOf/oojxEAbty4YfQ46dW9e3c4OzvrXVexYkW4ubllSjnUPDw80K5dO4PrledHX5mUIe8CAgJMDh/TuHFjAMDhw4etLWq6KJ1kAKB///4Gt/P394e/v39mFQuA8fcnkPI858mTx+hrBaQ8z2FhYWYPwG6NZcuWyeF9lI61akosLi4Oy5cvT/f5rly5gjlz5shhjWytQIECcHJyApA8VFlGDjqfP39+dOrUyeD6QYMGyeXU18zUkpKSEBYWhsuXL+PcuXM4d+4cLl68iOLFiwMATp8+bXT/nj17IleuXBaUPnm4y5s3b+L8+fPynHny5NFZZ0vK+79Dhw5wcXExuJ2DgwPq168PIOuuMwCwe/duWScYPHiwwe1KlSqFli1bAki+PumrRxijnn3R1dXVipLahvK9BSDbzQhp7nd/6vesra+56fme1ceqiu22bdtw//59APov2ur4/fv39V58GjZsiDJlygAAhg0bhjp16mD8+PE4dOiQTcZ7U76cDx06hNKlS+OTTz7B2rVr8fjxY7OPUbBgQRQoUMDgek9PT7mc+g177tw5AED16tWNDsFUuHBh2aNZ2Ue9rmLFigB0K63Ksq+vL7y8vPRWbM+cOYOIiAgAuhVkfSpVqmRwnbHHaGvGygEkf+FlRjnUypcvD3t7wx8T5fnRV6bjx48DALZu3WpwWlTlb/LkyQCABw8eZMCjME393lNf0PSpVatWRhdHh6lhd5TnOSoqCg4ODkaf5/bt28v9MvK5VkapqFatGqpWrZpmvTpu7ugIIvkOm/xLTEzEw4cPsXr1avj7++PQoUNo0aIF1q5da7sH8v+cnZ3Rs2dPAMCqVatQrlw5jBgxAps3b8bz589teq7q1asb7b3+xhtvyEp26msmkPw8LVq0CE2bNoWbmxuKFSuGSpUqoWrVqvLv1KlTAIAnT54YLYu5Qz7dvn0bn376KUqVKoV8+fKhTJkyqFKlijzfBx98ILc1dU5LPH/+HNeuXQMA/PfffyavM6tWrQKQddcZQPc1q1u3rtFtlfVRUVEWJzTy5s0rl1+9emXRvrak/m7IbmOMW/vdb+trbnq+Z/WxqmKrXIiN1bLVmVx9F25HR0cEBgaicuXKAJKHdhk1ahTefPNNeHh4oE2bNgazveb4/vvvMWjQINjZ2eHRo0f4559/0LVrVxQuXBhVq1bFmDFjTA5HpvzKNkT9QqQup1KpLFy4sMmyent76+yjplRK9+7dK2NKBVZZpwz1ceHCBVlxV7axt7dHo0aNjJ7f2OM09hhtzdznO6PLoWZumVIPHxQfH58mi2+O9A6tZq2nT5/KZVPZ5cyeQUf5QWPIo0ePrDpuRj3XV65ckWPUGvrhr1535MgRXL161eLz2Nvbo1ChQujatSsOHDiAChUqIDY2FgMGDNB5PW1l6tSp6NChA4DkitykSZPQrl07FChQAHXq1MHkyZOtHppRzdT7z8HBQX7Rpb5mxsTEoF27dnj33XexZ88eREdHGz2WqfWm3nsAsGXLFvj6+mLq1Km4ffu2ye1NndMS2e29bw71a2bq+1H5bky9nznUs++ZM/RoRlH/kFFXFrMDa7/7bf2+s/Z71hCLp9RVzyr27Nkzg7eO1datW4cXL17o/IICkjOOZ8+eRWBgIAIDA7F3715cv34d0dHRCAoKQlBQEH7//Xds3rzZ5MUuNUdHR8yePRtffvklli5dil27duH48eOIi4uTt4d+//13LFq0yOhtr/TSN9ZnasLINKcBAQH477//8ODBA1y6dAmVKlWSlVylYlu8eHGUKVMGN27cwN69e9G9e3e5TbVq1cy6OJNtqS8EPXr0wPfff5+FpcnZTN0KVp7r0qVLY8OGDWYft3Tp0ukqlyFKthZInjhBPXmCIQsWLMBPP/1k9Tnd3NwwdOhQDB8+HJGRkVi1ahXef/99q4+nj7u7OzZs2IBjx45hxYoV2L17N06fPo3ExEQEBwcjODgYkyZNwrp16+Qtb2uk55r5888/yzEvAwIC8PHHH6NGjRrw9vZG7ty55Rdk48aNsX//fpNTTJt674WHh+Odd95BVFQU3Nzc8NVXX6F169YoW7asHJcdAHbt2oXmzZsbLbs11NeZYcOGGb21r6aUK7tLz3Pl7++P7du3AwBOnDiB8uXL26pYFjl58qRcVu7A5nTZ7ZqbmsUV2xUrVlj8izMqKgqrVq3SGcBZkStXLnTu3BmdO3cGkNx0YcuWLZg2bRpCQkIQEhKCDz/80Orba76+vvjpp5/w008/ITo6GgcPHsSSJUuwYMECvHz5Er1798b169d12vzagqenJ+7fv2/WLR/l16S+X3Op29m6u7vj6tWrsn2tersbN25gz5496Natm9ntayljuLi4IE+ePIiKisKzZ89QpUqVrC6SUeofP48ePZJtEPUx1pxH/Svf1K9rW90eVJoLPXz4EJUqVTJ7EPaMoNwGt9SiRYvwv//9z6xKnSHq24pnz561+jim1KlTB3Xq1AGQfGtwz549mDt3LtauXYtHjx6hW7duuH79OnLnzm3V8U1l1xISEmRGWn3NFEJg1qxZAJKbuu3atcvg7U1bZbRXrlwp78ysWbNGtgnNqPOlpm4qFxUVle2vM4Dua/bw4UOUKFHC4Lbq94Kl2c6AgADZxGvTpk2yKU1mUyrXQPL7Uguy0zVXH4ubIijNCooUKYKlS5ea/FPetOa2IytSpAgGDRqEw4cPo0aNGgCAjRs32uT2Te7cudGiRQvMmTNHzkgSHR2d7hlO9FEuMCdPnjQ628ijR4/k7St9F6UiRYrIX5p79uxJ075WoW5ne/bsWYSHh+vEybxMkC0p0ykePHgwS2/9mcPPz08uK+2nDDG2Xn1XxtiXeXh4uM3aGirPc1RUFA4ePGiTY1pr9+7dcpapTz/91OT18YsvvgCQPIOQ8mPUWuoOXbae4ciQvHnzokOHDlizZg0+++wzAMnJiQMHDlh9zFOnThntnHb69GnZD0N9zYyIiJCJhB49ehis1L58+dLgbI6WOn/+PIDkSpehSi1g+jNlLS8vLxQrVgxAckc6W2aDLWXu9VX9mpma/llp0pMnTx6Ls32tWrVC0aJFAST/ALl3755F+9vCuXPnsHPnTgCAj49PhvVPyKrvtuxwzdXHoortzZs35QWrW7du6NWrl8m/t99+G0ByG1FLphV0dHSU2caEhASr2isao9wWAmzbmF/RokULAMnNNQxNdwsAs2fPlhcjZZ/U1O1sU7evVajb2a5cuRJA8pvdVPva14m6x3BsbGyGn69jx44AkjOT//zzT4afLz2aNm0qKwLGfoSePn3aaE/y/Pnzy7b1xr7Mly5dal1B9VA3Jfr1119tdlxrKM9drly5MHr0aJPXx9GjR8vOpemdYjc4OFgu+/j4pOtY1rDVNTUiIgKBgYEG18+ZM0cuq6+Z6sqwsR+Ss2fPtlnFXzlnbGyswTsUUVFRNp0+OTXlOnPjxg3ZOSwrmHt9bdKkiWziMXv2bIPb3blzR2Y7mzRpYnFW0MnJCV999RWA5LbXgwcPNrt/RmhoKHbt2mXR+VKLjo5Gv3795Pf7V199lWGZzcz+bstO11x9LKrYLly4UL5I3bt3N2sfZTshBBYuXCjj+/fvl7059YmLi5PtRN3c3CzqsBIREYENGzYY/fW6bds2uZwR7T4GDhwoG0R/+eWXeoe5OH36NH755RcAQLFixWRzjNSUCv6DBw+wYsUKAGkrtko7WyEE/v77bwBA1apVjY7q8LpRNze5fv16hp9vyJAhsgPD999/b3K+64MHD6Y7a2etYsWKyY6ga9eu1fsFGR0drdO72xBleJf169frfZ4vXryIH374IZ0lTlG7dm20atUKALB582aMGTPG6Pa3bt0yWLFWevIqI5VYIioqSv6IbdSokVn9AvLnzy/npF+1apXVd6Zu376NadOmyf8rwy3aitJ+3xhbXlO/+OILvU0S9u7dixkzZgBIHr2jdu3acp2Xl5f8UaUebk0tODgYo0ePTlfZ1JS7aa9evdL7mUlMTMR7772HsLAwm50zta+//lr2dRkyZIjJ7PDmzZtx5swZm5fD3Otr0aJF0aVLFwDJI8aof6go4uLiMGjQIPkD5JNPPrGqTJ9//rlM+mzduhVdunQx2pRKCIHFixejZs2a6XqOLly4gIYNG8r2tQEBARg6dKjebefNmyevO2PHjrXqfJn93WbLa25GsOjng1IxLVSokNmZwLp166J48eIIDQ3FwoUL8d133wEAdu7ciZ9++gmNGjVCu3btUK1aNXh5eSE6OhpXrlzB9OnTceLECQDJY71a8ksnMjISnTp1QqlSpdC1a1fUrVsXJUuWhIODA+7fv4/AwEDZFqt48eKyp68teXl5YdKkSfj4448RFhaGWrVqYeTIkWjQoAESExOxY8cOTJo0CS9fvoSdnR1mzJhhcFgwdSX2+fPnadrXqre7ceOGHH6H7Wt1NWjQQC4PHz4c3333HYoUKSJv45QqVcqmv6jd3d2xdOlStGnTBrGxsWjfvj26deuGbt26oWzZsgCSb9uGhIRg7dq1OHPmDP7++29ZMcxsv//+O3bu3ImoqCj06tULQ4cORdeuXeHu7o5z587h119/xYULF1C7dm2d7GBqH330ETZs2IDo6Gg0adIEY8eORfXq1fHy5Uvs2LEDU6ZMQaFCheDg4GDR8HvGzJ07F7Vq1cL9+/fxv//9D1u3bsWgQYNQtWpVuLi4IDw8HGfOnEFQUBB27dqFzp07o3fv3jY5t2L16tV4+fIlABgduzq1bt26YevWrYiMjMS6desMliv10FZJSUkIDw/H/v378ddff8nmR3369MEbb7xh3YMw4M6dO2jatCl8fX3RpUsX1KpVS94Cv3v3LpYvXy5/dFevXt3kME7G+Pv748KFC6hZsya+/fZb1KlTB7Gxsdi8eTP++OMPJCQkwMHBIc1dEHt7e/Tp0wf//PMPTp06hUaNGmH48OEoV64cnj9/js2bN2PatGlwc3ND0aJFceXKFeufkP/Xo0cPjBo1So5GcerUKbRo0QLu7u44f/48/v77b4SEhODNN9/MsFu2pUuXxvTp0zFw4EBERETgzTffxLvvvov27dujRIkSSEhIQGhoKI4dO4ZVq1bh+vXrCAwMNHsoM3NVr14dLi4uiImJwffffw8HBweUKlVK3gkqVqyYbHf9xx9/YOfOnXj69Cnee+89HDx4EL169YKnpycuXbqEyZMnyyHZevTogTZt2lhVJnt7e6xYsQLt27fH0aNHERgYiLJly6JPnz5o1qwZihcvDkdHRzx48ABHjhzB6tWrcenSJZPHffTokc7n8dWrV3j69CnOnDmDnTt3Yvv27TKxVq9ePaxatcrosJ/pVaJECVnPmjx5MooVK4aKFSvK77PChQun6byfXtnhmmuQWdM4CCEOHDggZ4j48MMPzd1NCCHEZ599Jvc9cuSIEEJ39gtjf127djU6m4o+qadpNfRXrFgxvdOzmjOLkxDmzbTy888/yxmd9P05OzuL+fPnm3xMZcuWlfv4+fnp3WbBggU6x169enW6yi6EZTNJGWLuzGPpmanKXD169DD4WqifB2NlVjNnNrOdO3cKb29vs96T5rwX9LHFlLpCCLFt2zY5BaK+vzFjxojvv/9eAMkzqhmi/syn/vPx8RHnz583e+YxU9NzKm7duiVq165t1vM8cODANPtHRUXJ9fpm6zOlRYsWAkieqvXevXtm7/f48WM5E9Nbb72ls87cmceUv549exqcvc8chl6T1NPMGvqrXLmy2a+XsXPPnDlTzjqV+s/JycngbI7Pnj0Tb7zxhsHyeXp6ir179xr9fFsyi5MQQsyZM8foNb5nz54606rqO2Z6Zh5TLFu2TLi7u5t8jezt7cWuXbvS7K/+jFtLmWVK31/qx33ixAlRtGhRo2W15vtfn+joaPH555/L2QCN/dnZ2Ym+ffum+Qyb+xlQ/ry8vMTPP/9scir6adOmyX2MzXRqivo4qf/U363mzsBpzucgvddcW37PqpmdnlK3EbIkG6Fs/9dff8nj1K1bFyNGjEDdunWxfft2HD58GGFhYXJsNG9vb9StWxf9+vWz6pZayZIlcerUKWzfvh27du3CjRs38PDhQ7x8+RIeHh7w8/NDhw4d8MEHH9j8V0xqo0aNQvv27TF16lTs2rULYWFhsLe3R4kSJdCqVSsMGzbMrNueTZo0kbcYDHUIU265AMm3VLMq85edLVq0CLVq1cKqVatw+fJlvHjxwuyx8azVrFkzXL9+HXPnzsXGjRtx+vRphIeHw97eHl5eXqhcuTICAgLQrVu3LB8OpmXLljh37hwmTJiAoKAg3L9/H/nz50etWrXw6aefonXr1hg2bBgAIF++fAaPM2XKFNSrVw/Tp0/HqVOnEB8fjxIlSqBLly746quvMqSJTMmSJXH06FGsX78ey5cvx9GjR/Hw4UPEx8fDw8MD5cuXR/369dGxY0e9d5zUszENHz7conPfu3dPtsmrX7++7LRijoIFC6Jx48bYvXs3tm/fjgcPHuiM32mInZ0d3Nzc4OPjg/r166Nfv34Z9plv1KgRDh8+jO3bt2PPnj24c+cOHj58iJiYGHh6esLf3x/dunXDgAEDbDKU1HvvvYcqVargjz/+wIEDB/DkyRN4eXmhefPm+Oabb+Dr66t3v3z58uHgwYP4/fffsWLFCly9ehUODg7w8fFBu3bt8Pnnnxsd8cMaAwcORMWKFTFp0iQcPHgQz549Q8GCBeHv74+BAweiR48eOpPnZJSePXuiVatWmDFjBoKCgnDhwgU8ffoUjo6O8Pb2hp+fH5o2bYru3btnWBvsCRMmoHz58liwYAHOnz+P58+fG2zXWr16dVy+fBlTp07FunXrcPnyZURFRaFgwYKoV68eBgwYYLO7qS4uLvjzzz/xxRdfYOnSpdixYweuXLmCx48fQwgBT09PVKlSBQEBAejTpw9Klixp9rHt7e2RN29e5MuXDyVLlkTNmjXRqFEjtG/f3qzPgnLdyZ8/PwYMGGDtQ8TQoUNRuHBh/Pfffzh16hQiIiIydIZAIP3X3IxiJ0QWdqMkohynRYsW2LlzJxo2bIj9+/dndXFsZuzYsfjxxx9Rvnx5XLx40eKpVCl9SpUqhdu3b6N///6YN29eVheHKFMo7/sff/zRpn0PXmdWzTxGRK+nsLAw2cGtXr16WVwa21I6R40aNYqVWiLKcHfu3MHt27eRL18+fP7551ldHM1gxZaIJGMjlURHR2PAgAGyp3K/fv0yq1gZLi4uDkePHkXp0qWNToNLRGQryo/pzz77zGjTLrJM9pougoiy1HvvvYdXr16hR48eqFmzJjw9PfHixQscP34c06ZNkxXfwYMHo2rVqllcWttxcnLK9pNoEJG2vPvuu3j33Xezuhiaw4otEek4fvy40bEwu3TpIsdKJiIiyk5YsSUi6ffff8fatWuxa9cuhIaGyl7DhQoVQr169dCvXz85kQMREVF2w1ERiIiIiEgT2HmMiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNeO0rtrdu3YKdnR3s7Oxeq2kcs9Pj/vHHH2FnZ4c2bdqkWbdixQrY2dmhQoUKiIuLy4LSERERUU7x2ldss6v4+HgsW7YM/fv3R+XKlVGgQAE4OjqiYMGCqFmzJoYOHYodO3YgKSkpq4uaLqGhoZg4cSIAYMyYMWnWd+/eHb6+vrh69SrHTiUiIiKjWLHNhtavX49KlSqhd+/eWLBgAS5duoSIiAgkJCQgPDwcJ06cwPTp09GyZUtUrlwZmzZtyuoiW+2nn35CdHQ0WrdujXr16qVZb29vj++++w4AMH78eLx48SKzi0hEREQ5xGs/ju2tW7dQunRpAMDcuXMxYMCALC3P+PHj8d1330F5WVq0aIFOnTrB19cXHh4eiIiIwOXLlxEYGIjt27cjKSkJ/v7+OHXqVJaW2xr37t1D6dKlER8fj23btqFly5Z6t0tMTETJkiVx7949/Prrr/j6668zuaRERESUEzBjm40sXLgQo0aNghACXl5e2LVrF7Zv345PPvkEzZo1Q40aNdCiRQt8/PHHCAoKwqlTp9CsWbOsLrbVpk2bhvj4eBQpUgTNmzc3uF2uXLnQs2dPAMA///yDxMTEzCoiERER5SCs2GYTYWFhGDp0KAAgT5482LNnD5o2bWp0n6pVq2L79u346quvMqOINpWUlCQ7rfXu3Rv29sbfin369AEA3L59Gzt27Mjo4hEREVEOZFXF9ty5cxg3bhxat26N4sWLw9nZGW5ubihfvjz69++PI0eOGN1/7Nixskc+AMTExGDSpEmoUaMG8ubNi7x586JOnTqYOnUqEhISTJZn//796Nq1KwoXLgwXFxeUKVMGQ4YMwbVr1wAATZo0gZ2dHZo0aWLNw5WOHTuG999/HxUqVICbmxtcXV1RqVIlfPzxx7h69Wq6jv3HH3/g1atXAJJHCfD19TVrP3t7e/Tt29fi85kzKkJYWBhGjhyJGjVqIF++fHBycoK3tzeqVq2K3r17Y968eYiMjLT43ABw4MABhIWFAQC6detmcvsaNWrIJiPLly+36pxERESkccJCu3fvFgBM/o0cOdLgMcaMGSO3e/DggfD39zd4nA4dOojExESDxxo3bpyws7PTu2/evHnF1q1bRUBAgAAgAgIC0ux/8+ZNuf3cuXP1niM+Pl4MHTrU6ON1dHQUM2bMsPTpFEIIkZSUJLy8vAQA4erqKp4/f27VcSxh6nHv27dPuLu7m3ydAwMDrTr/2LFj5fMWHR1t1j69evUSAETp0qWtOicRERFpm8UZ24SEBLi6uqJHjx6YPn069uzZgxMnTiAoKAi//fYbSpYsCQCYMGEC5s6da/J4Xbt2xcWLF/HZZ59h+/btCAkJwZIlS1C5cmUAQGBgIGbOnKl336VLl2L06NEQQiB//vyYMGECDh06hEOHDmHixIlwcHBAr169cP/+fUsfpo7Bgwfj33//BQC0adMGixYtwrFjxxAcHIyZM2fCz88P8fHx+OCDDxAYGGjx8S9cuIDHjx8DABo1agR3d/d0lTe9YmNj0atXL0RGRiJv3rwYMWIEtmzZgpCQEBw5cgTLly/HsGHD4OPjY/U59u/fDyC5OYWLi4tZ+9SpUwcAcPPmTdy7d8/qcxMREZFGWVoTfvz4sXj69KnB9bGxsaJly5YCgChZsqRISEhIs406Y+vo6Ch2796dZpvw8HBRuHBhAUBUq1YtzfqYmBhRqFAhAUB4enqKy5cvp9nm8uXLwtPTU57LmoztqlWr5PqZM2fqfczR0dGiWbNmAoAoVaqUiI+P17udIYsXL5bnGDVqlEX7WsvY4965c6dZGdn4+HirsstJSUnC1dVVABCDBw82e7+9e/fKcq1YscLi8xIREZG2WZyxLViwIDw8PAyud3JywqRJkwAkd/QxNQzVp59+qrftq6enJwYOHAgAOHPmDJ4/f66zfu3atXj06BGA5IH9K1SokOYYFSpU0DvovyXGjx8PAOjSpQvee+89vdu4uLhg6tSpAJLbru7Zs8eiczx58kQuFy5c2LqC2tCDBw/kcuPGjQ1u5+DgYFV2+enTp7I9caFChczeT71taGioxeclIiIibUv3qAixsbG4c+cOLly4gHPnzuHcuXNyDFYAOH36tNH9ld7u+tSsWVMu37x5U2fdzp07ASR3nnr33XcNHqNv376yk5ql7t27h5CQEABAjx49jG5buXJlFCxYEABw+PBhi86jnnTA1dXVwlLaXpEiReSyOc1JLKU0uwCA/Pnzm72fp6en3mMQERERAVZWbF+9eoXx48fD398frq6uKFmyJPz8/FC1alVUrVoV1atXl9uqs5H6VKpUyeA6dUUm9YxT586dAwCULl3aaOXI09MTZcqUMVoGQ44fPy6Xe/fuLUcRMPSnPFZ1xtMcefPmlctKJjMrNWzYUD5nw4YNQ506dTB+/HgcOnQIcXFx6T5+RESEXLakYqveNjw8PN3lICIiIm1xsHSHW7duoVmzZmkyqIZER0cbXZ8nTx6D69Rjm6YelP/p06cAzLuV7eXlhevXr5vcLjWlqYOloqKiLNpeyfQCwMOHD606py05OjoiMDAQ3bt3x8WLFxEcHIzg4GAAQO7cuREQEIB3330XPXv2RK5cuSw+vrqzmKn3h5p629y5c1t8XiIiItI2iyu27777Lm7evAk7OzsMHDgQvXr1QuXKleHl5QVnZ2cAyYPvKxUekYNn7FVXphcvXoxq1aqZtZ8lWUgA8Pf3l8snTpywaN+M4uvri7NnzyIwMBCBgYHYu3cvrl+/jujoaAQFBSEoKAi///47Nm/ebFE7WSD5h4ZCnb01Rb2t+hhEREREgIUV20uXLuHAgQMAgG+//RY///yz3u2UbGpGUiqP5mRVrW2PWaBAAblsZ2eHKlWqWHUcU3x9fVGwYEE8efIE+/fvR2RkZJYP+QUkT2XbuXNndO7cGQBw//59bNmyBdOmTUNISAhCQkLw4YcfYu3atRYdV10pteS9ot6WFVsiIiJKzaI2tufPn5fLvXr1Mridum1qRvHz8wOQ3KnMWNYvIiICN27csOoc6rbC27Zts+oY5rCzs8OAAQMAJLexnTVrVoadKz2KFCmCQYMG4fDhw6hRowYAYOPGjRY1JwAAZ2dnlC9fHgBw5coVs/dTb1u1alWLzklERETaZ1HFVj29rbF2pNOnT7e+RGZq3rw5gORmD4sWLTK43aJFi6xuDlGuXDk5te2yZctw584dq45jjmHDhsn2xj/88AMuXbpk1n6mHn9GcHR0REBAAIDk98SzZ88sPkajRo0AQLbdNYe6na96xAwiIiIiwMKKrZJlA4D58+fr3ebff//FunXr0lUoc3Tp0kW27fzxxx9x9erVNNtcvXoVP/74Y7rOM3r0aABATEwMunbtarRZQ2xsLKZNm4aYmBiLz1OsWDE5Fu6rV68QEBCAvXv3Gt3nwoULaN26NSZPnmzx+YzZv38/rl27ZnB9XFycLJubm5tVzQKUiu2TJ0/M7oh47NgxAEDdunXh5ORk8TmJiIhI2yxqY1u9enVUqVIF586dw7///otnz56hT58+KFKkCO7evYtFixZh1apVePPNN3Hw4MGMKjOA5J71f/75J9555x1ERESgbt26GDlypJxQYN++fZg4cSKSkpJQvnx5XL161arxbHv37o2tW7di/vz5CAkJga+vLz788EMEBATAy8sLr169wvXr17F//36sWbMGERER6Nevn1WPaeDAgQgNDcUPP/yAR48eoUmTJmjVqhU6deqEypUrw8PDAxEREbhy5Qo2bdqEoKAgJCYm6nQ+s4WdO3fip59+QqNGjdCuXTtUq1YNXl5eiI6OxpUrVzB9+nTZye29996Dg4PFfRDx1ltvIVeuXEhMTMTOnTsNTn6hePHihczYtmvXzvIHRURERNpn6VRlJ0+eFPnz55dTm6b+q1q1qggLC5P/HzNmTJpjqKfUNWb37t1yO33T7gohxLhx44SdnZ3esuTJk0ds2rRJNGrUSAAQb731Vpr9TU2pK4QQCQkJYsSIESJXrlwGH7fy5+rqKqKiokw9jUatXr1alCpVyuS5AAg/Pz+xdetWi89h7HGrXx9jf127dhXR0dFWP87WrVsLAKJp06Ymt503b54AIHLlyiVCQ0OtPicRERFpl8UTNLzxxhs4deoUhgwZgpIlS8LR0RGenp6oU6cOJk+ejGPHjunMXJXRvvvuO+zduxedO3dGoUKF4OzsjJIlS2LQoEE4fvw42rZti8jISABAvnz5rDpHrly5MHHiRFy4cAFffvklqlevjvz58yNXrlzImzcv/Pz80KdPH8yfPx/3799P9xirXbt2xeXLl7F48WL07dsXFStWRP78+eHg4ABPT0/UqFEDH330EXbu3ImzZ8+iVatW6TpfaiNGjMDmzZsxfPhw1KtXDyVKlICLiwtcXFxQqlQp9OzZE5s2bcLq1at1xqS11McffwwA2Lt3L+7du2d02yVLlgAAOnbsiGLFill9TiIiItIuOyFy8ECzZoiPj0e+fPkQHR2N0aNH46effsrqItH/S0pKQpUqVXDx4kX89NNPsj1zardv30bZsmWRmJiIAwcO4M0338zkkhIREVFOYNWUujnJunXr5HBU9erVy+LSkJq9vT3Gjh0LAPjzzz/x8uVLvdv98ssvSExMRKtWrVipJSIiIoNyfMb22rVrKFeunN51t27dQqNGjRAaGorChQsjNDTUqo5OlHGEEGjQoAGOHDmC8ePHY+TIkTrrQ0NDUbZsWSQkJODEiRM27yhHRERE2pHja3mVKlVC27Zt0b59e/j5+cHV1RWPHj3C7t27MX36dDnG6uTJk1mpzYbs7Owwc+ZMrFq1Cm5ubmnW37lzB99++y3KlCnDSi0REREZleMztqaG8LK3t8e4cePw7bffZlKJiIiIiCgr5PgUZmBgILZs2YJDhw7h4cOHCA8Ph7OzM4oVK4YmTZrg448/RpUqVbK6mERERESUwXJ8xpaIiIiICHgNRkUgIiIiotcDK7ZEREREpAms2BIRERGRJmRpxfbWrVuws7ODnZ0d5s2bl5VFwdixY2VZiIiIiCjnSXfFNj4+HsuWLUP//v1RuXJlFChQAI6OjihYsCBq1qyJoUOHYseOHUhKSrJFeSmbGTdunPxBkDdvXkRFRWXKeadNmybPa8kPo8OHD+Pdd99FqVKl4OLigiJFiuCtt97CsmXLzNo/NjYWP/zwA0qXLg0XFxdUqVIF06ZNQ3bog7lnzx6d5yT1n5ubGypUqID+/ftjz549NjlnZGQkli1bhvfffx81atSAh4cHnJyc4OXlhSZNmmDy5MlyLGlzhIeHY8yYMfD390e+fPng7u4Of39/jBkzBuHh4WYdIygoCA0aNECePHlQuHBhfPDBB3jw4IGVjzBjhYSEYNSoUahXrx6KFSsGZ2dnuLu7o2zZsujevTv+++8/i54/U169eoV//vkHzZs3l+crXLgwatSogU8//RTbtm0zeYzz589jyJAhKFeuHHLnzg0vLy80btwY//33HxISEkzuL4TAn3/+iUqVKsHZ2RnlypXDuHHjEB8fb4uHmC7qZIv6L1euXPDw8EDJkiVRr149fPzxx1i4cKHB2RKtUapUKaOfX31/t27dMnrMZcuWoXXr1ihSpAhcXFxQqlQpvPvuuzhy5IhZZQoLC8OAAQPg5eWFPHnyICAgADt37rTBoyXKQCId1q1bJ8qUKSMAmPyrUKGC2Lhxo87+N2/elOvnzp2bnqKk25gxY2RZyHwVKlTQeZ0XLlyY4ee8d++ecHd31zmvOe+fH3/8Udjb2xt8j3bo0EFER0cb3D8hIUG0atVK777vv/++DR+hdXbv3m3WZ1H5GzRokEhISLD6fJs3bxbOzs4mz1O4cGGxa9cuk8c7duyYKFKkiMHjFC1aVAQHBxs9xrx584SdnV2afUuUKCHCwsKsfqy2dufOHdGpUyezXqfcuXOLUaNGiaioqHSdc9euXaJkyZJGz+Xv72/0GLNmzTL6mterV088efLE6DEGDRqkd982bdqk6/1oC+rvJHP+8ubNK4YPHy5evnyZ7nObem1S/+XLl8/g9So6Olq0b9/e4L729vbif//7n9Hy3Lt3TxQvXlzvvplxnSeyltW1uF9++UXnC6RFixbi77//Fjt37hQhISFi+/btYurUqaJ169ayMpH6opmdKrZkucOHD8vXz83NTQAQLVu2zPDzdunSRQAQhQoVMvv9M3PmTLlt2bJlxezZs8WxY8fEunXrRNOmTeW6Pn36GDzGtGnTBABRrFgxMXfuXHHkyBHx559/inz58gkAYsuWLTZ+pJZRV2yHDh0qzp49K//OnDkj9uzZI8aPH6/zvP3www9Wn2/hwoXyi65169bijz/+ELt27RInTpwQGzZsED179pTnyZMnjzh58qTBY4WGhorChQsLAMLBwUGMGDFC7Nu3T+zbt0+MGDFCODg4yEpyaGio3mM8fvxYuLq6Cnt7e/Hll1+KAwcOiA0bNoi6desKAKJnz55WP1ZbOnHihE4FvmTJkmLkyJEiMDBQHDt2TBw4cEAsW7ZMvPfee6JAgQJyO2PPnynbt28XLi4usjL25Zdfis2bN4uQkBARFBQkpk+fLjp16iTq1atn8BhBQUHyWl64cGHx119/iaNHj4otW7aIrl27ynI2btxYJCYm6j3G5s2bBQCRP39+8ddff4kjR46IOXPmiKJFiwoA4t9//7X6MdqC+jupU6dOOp+ho0ePiq1bt4o//vhDdO7cWb4ngeTEzZUrV9J17suXL+ucT9/fH3/8Ic9p7Mf0O++8I7dr2rSpWLdunTh27JiYPXu2KFu2rFw3c+ZMg8fo0aOHACDq168vAgMDxYEDB8Tw4cOFnZ2dcHV1NfkDhiirWFWxXbBggfxgeHl5mczGnDlzRjRr1owVW40ZOnSoACAKFiwoJk6cKCs5hioetrBu3Tr5vvvtt9/Mev88ffpUeHh4yMzd48ePddYnJCSIDh06yGPt3btX73GaNGkiAIjTp0/rxNeuXSsAiIEDB6b78aWHumI7ZswYg9udP39e5M6dWwAQ7u7uIi4uzqrzLVu2THz44Yfi9u3bBrf566+/ZJmaNWtmcLv+/fvL7VasWJFm/YoVK+R6Q8/zvHnzBAAxfPhwnfiLFy9E8eLFhYuLi4iNjTXz0WWMhw8f6lRqR40aJWJiYgxuHxkZKX744Qfh4OBgdcX20aNHsoJcuXJlcffuXYPbGnp+4uPjRbly5eR75tq1a2m2+eijj+Tjmj9/vt7jDBgwQAAQ69ev14mfPHlSVsKykvo7qX///ka3vX37tmjZsqVO5fbp06cZWj6lsglA7N+/X+82e/bskdt06NAhTRb88ePHokSJEvIHhr4yx8TECGdnZ+Hj45MmG/35558bfY2JsprFFdt79+4JV1dXmYU5f/68WfslJiamuX3Bim3OFRsbKzw9PQUA8dFHH4n79++LXLlyCQBi4sSJGXLOyMhIeWts/vz5Yu7cuWa9f3799Ve53dKlS/Vuc/fuXVn+9u3b692mfPnyokCBAnrLBUC0atXKqsdlK+ZWbIUQonv37nLb1BV1W6tVq5b80aMvy/PgwQP53Ldu3drgcVq3bi0AiFy5cokHDx6kWf/zzz8LACIwMDDNOiWjmNXNETp37iyf97Fjx5q93969e8WNGzesOufgwYMFAOHs7CwuXbpk1THUPyzGjx+vd5tXr16J/PnzCwCiSpUqerdRKoIvXrxIs87T01NUqFDBqvLZiiUVWyGSfxS3a9dO7vP5559nWNmePXsms+5lypQxuF3btm3l58TQj5ilS5fKMk+ePDnN+nv37gkAolu3bmnWbdiwQQAQv/zyi/UPhigDWdx57I8//sCrV68AAD/++CN8fX3N2s/e3h59+/Y1ud327dvRoUMHeHt7w9nZGaVLl8bQoUMRGhpqct+4uDhMmzYNTZs2hZeXF5ycnODt7Y22bdti0aJFRjuwmTsqQlxcHGbMmIF27drJzheFChVCzZo18cknn2D//v1GOxJt374dffv2RenSpZE7d27ZOWbEiBG4f/++0XOHhYVh5MiRqFGjBvLlyycfX9WqVdG7d2/MmzcPkZGRxp8kGwkMDERERAQAoG/fvvD29kazZs0AAAsWLMiQc3777bcIDQ1FkyZN0K9fP7P3W7duHQDA3d0dXbt21btN8eLF0aJFCwDJr5G+TiGFChVCeHg4zp8/rxNXOmJ5e3ubXaasVqpUKbkcExOToedq0qQJACApKQk3b95Ms37Dhg1ITEwEAAwcONDgcQYMGAAASExMxIYNG9KsL1SoEABg7969OvFXr17h+PHjcHJygqenpzUPwSbOnz+P9evXAwD8/f0xevRos/dt3LgxSpcubfE5nz17hiVLlgAAevfujYoVK1p8DCDlMwSkvA6p5cmTBz169AAAnDt3DlevXk2zjaHX6OzZs4iIiMhRnyEAyJUrF+bNm4c8efIAAGbOnIknT55kyLlWrFghP6uGrn8vX76UnbtatmyJ4sWL692ua9eucHd3BwCsWbMmzfr8+fPDwcEBx48fT9MhOCde7+g1Y0ktOCkpSXh5eQkAwtXVVTx//jxdterUGdtvvvlG/j/1n5eXl7hw4YLBY926dUtUrlzZ4P4ARMOGDUV4eLje/c3pPHby5ElRunRpo+cAIG7evJlm35cvX8q2oYb+3Nzc9GabhBBi3759aTpM6fvTt786k2dOFsIcHTt2FEBye1XF/Pnz5XlCQkJMHkPZtmTJkia3PXLkiLC3txdOTk7i4sWLQghhVsY2NjZWtoUzlg0UIrnduHI8fc1rJk2aJAAIHx8fMW/ePHH06FHx999/yyyVodcus1ibsb1//77ebdTNA3bv3m11uT799FOj74t3333XZFmEECIsLExu169fvzTrQ0NDhZOTk7C3txcjRowQBw8eFBs3bhQNGjQwmH3KTF9++aUs/6xZs2xyTFOfIXWzsU2bNsl4ZGSkuHLlinj48KFZ5/Hx8REARMWKFY1ut2TJEnm+OXPmpFm/cuVKAUB4enqKqVOniqNHj4p58+bJOzF///23WeXJKJZmbBUffPCB3G/x4sVp1tviGtywYUMBQNjZ2Ynr16/r3Wbnzp0mM+sKpSOsg4OD3uZISib6zTffFBs3bhQHDx4UX3/9tbC3txd58uTRe9eEKDuwqGJ77tw5+aF566230n1y9UVE+fIJCAgQS5YsEcePHxc7duwQ/fr1k9sY6tjw4sULndEZOnfuLDZs2CCOHz8uVq5cKQICAuS6+vXr6+15a6pie/78edlBCoDo0qWLWL58uQgODhZHjhwR8+fPF3379hWurq5pKrYJCQmyg5KdnZ3o3bu3WLlypTh+/Lg4fPiwmDJlimzz5OTkJI4fP66zf0xMjOxckTdvXjFixAixZcsWERISIo4cOSKWL18uhg0bJnx8fDKlYvv48WPh6OgoAN3ORy9evBB58uQx+5acuRXbuLg4UbVqVQFAfPfddzJuTsVW/Z41VaY1a9bIbf/5558066Ojo2VHpNR/+ipamc3ciu3FixdlG9vatWsb3M5WFdtq1arJL1B9P4aVpgr58uUzeSzlx52hcqs716j/ihYtarRtaWZQHicAm1UKTH2G1O1eIyIixJYtW+S1VvkrUqSIGD58eJq254oXL17IjsKdOnUyWp4TJ07I43799ddp1iclJek0x1D/NW/eXMTHx1v6FNiUtRVbdVONIUOGpFmf3mvwjRs35GvQqFEjg9tNnTpVnmft2rVGj/nZZ5/JbfU1Kbx69apO50Xlz87OzmY/zIgygkUV28WLF8s396hRo9J98tRDq7z//vsiKSkpzXbvvfee3ObEiRNp1n/11Vdy/ejRo9OsT0pKEn369JHbTJs2Lc02piq21atXF0ByO0FD7TSFEOLJkydphuWZPHmyACAcHR3F5s2b9e4XEREh/Pz8BJCcWVZT/wo3lhWMj4/XW3GwdcV2ypQp8nipewL37t1bAMkjFpj6kjK3Yqu0nSxTpozOc2tOxXbLli1ym0mTJhk9T3BwsNx25MiRerd58eKF+PLLL0WxYsWEo6OjqFChgvj9998N9gLPTKZGRdi3b5+YOHGi8Pb2FkByJ6CDBw8aPJ4tKrYbN26Ux2jXrp3ebZTREPz8/EweT/mMeHt7G9xm5cqVombNmsLZ2VkUKFBA9OvXL0M7NJpL+TFYtGhRmx3T1GdI6fCYL18+nbbm+v6KFy+ut4Jz8eJFuc3HH39stDyPHz+W2/bq1UvvNvHx8WLcuHGiTJkywtHRUZQsWVKMHj3aaCe6zGJtxfbatWtyP32dJNN7DR47dqzc39hIBuq7nqaGxlPuQAEQQUFBere5fv266NGjh/Dw8BAuLi6ifv36Opl/ouzIooqtukIzZcqUdJ9cfREpUqSIwQvbpUuXDJ43JiZG9nj39fU1OA7i8+fP5a9PX1/fNOuNVWyDgoLkOks7B8TFxcle0Kl7a6emDIUDQFy9elXG1T8orGn+YeuKbc2aNQUAUadOnTTrNm3aZFYlXAjzKrZXr16VHSZSD6dlTsVWnUkxNZTQhQsX5LaffPKJ0W2zI3PHsbW3txcffvihbNJhSHortuHh4XJszly5cun9USqEkFn+unXrmjxmnTp1BJDcbCcnef78uXwuq1evbrPjmvoMKdlyJycnYWdnJ5ydncWECRNEaGioiI2NFefOndO5K1auXLk0HbuOHTsm13/zzTdGyxMVFSW3NdQJMzuztmL79OlTo69veq/ByogUuXPnFs+ePTO4nTpDb+rzrQxfCECsWrXK4jIRZVcWdR578eKFXHZ1dbVkV5O6d+8OZ2dnvesqVqwINzc3AMCNGzd01oWEhMiZeQYMGIBcuXLpPYa7u7vs2HDhwgWTHbXUNm3aJJeHDx9u9n4AcOzYMXku5fyGNG7cWC4fPnxYLhcpUkQuz50716LzA8mdd0Tyj5h0T1184cIFhISEAIDezoCtWrWSHUQWLlxo9FhKmYzNnjNkyBDExMTg7bffxltvvWVxedUdo5ycnIxuq37/RUdHW3yunCIpKQkrVqzArFmzEBcXZ3C7efPmyddI6QBmrsTERPTp0we3b98GAIwePRrVq1fXu63yGpl6fYCU1yinvT4Zde009RlSOvrGxcVBCIGFCxfim2++QbFixeDk5AQ/Pz/Mnz8fH3zwAQDg2rVrmD59us4x+BkyTfl+AnRfa0V6rsGHDh3CtWvXAACdOnVCvnz5DG7L14rIwil18+bNK5eVC6atVKpUyej6/PnzA0h70Th37pxcrlu3rtFjqNer9zPl5MmTAIASJUqgZMmSZu8HAMePH5fL9evXNznlqUI9BWjDhg1RpkwZAMCwYcNQp04djB8/HocOHTJaMckI8+fPBwA4ODigV69eadY7ODigZ8+eAJJ7uz9//tzqc82bNw87d+6Eu7s7/vzzT6uO4eLiIpdNPVexsbFyOXfu3FadL7sYM2aM/CJV/qKionDmzBl8/fXXePHiBX777Te0atUqQ77UPvroIwQFBQEA2rVrh++//97gtsprZM57WXmNctrrk5HXTmPU7/969erh7bff1rvdL7/8Iis6S5cuNXiM1+kzZAn195Iy2oCtqEeZ6d+/v9Ft+VoRWVixLViwoFx++PChTQuiDJdiiL19clGVYYEUypBTAFC4cGGjx1APT6LezxRl+BZ15tRcjx49sngfADpDrDg6OiIwMBCVK1cGAAQHB2PUqFF488034eHhgTZt2mDJkiVpnhtbS0pKwuLFiwEkZ2a9vLz0bqdkcmNiYrBixQqrzvX48WN89dVXAICffvoJRYsWteo46gqFqXnd1RUO9Y8MrcidOzeqVq2KX3/9FdOmTQOQPOzS+PHjbXqeb7/9FjNmzACQ/KNs5cqVBu+kACmvkanXB0h5jXLa6+Pu7g5HR0cAtr92GqN+/7dp08bgdgUKFECtWrUAAKdPn0Z8fLzeY7zunyFD1EN82XJIudjYWHkN9fb2RsuWLY1uz9eKCHCwZGN/f3+5fOLECZsXJr1MjUErjIwva4vj66OubO7ZswcFChQwaz/ldr7C19cXZ8+eRWBgIAIDA7F3715cv34d0dHRCAoKQlBQEH7//Xds3rw5zb62snPnTty7dw8AsHnzZrOejwULFuD999+3+FyzZs1CeHg4PDw8UKBAASxbtizNNkePHtVZVrIVzZo1k8+BehxHU2Mh3717Vy77+PhYXOacZPDgwRg5ciQiIiIwe/Zs/O9//7PJcSdOnIgJEyYAAGrUqIGNGzeazAYVL14cDx8+NGusauU1yomvj7+/P44fP46wsDA8fPjQ5A9xW/Dx8cGRI0cAwOCYpuptgeRrVnh4uEwE8DNkmnJXD4DVYwXrExgYiKdPnwIA+vTpY/QHIpD2tVJ+rOjzur5WpH0WVWx9fX1RsGBBPHnyBPv370dkZKTNb7tYSv3r+MGDB6hQoYLBbdWZEkt+VSuZ6rCwMIvLp67IOjk5oUqVKhYfQ5ErVy507twZnTt3BgDcv38fW7ZswbRp0xASEoKQkBB8+OGHWLt2rdXnMEZphmCJgwcP4saNG7IphbmU22TPnj0za2KP6dOny7aBu3fvlhXbChUqIFeuXEhMTMSlS5eMHkO9XsmOa5W9vT3Kly+Po0ePIiwsDBEREenONE2bNg0jR44EkPz8bd261Wh7QIWvry9CQkLw/PlzPHjwwODA7/fv35cTkOTE1ycgIEA2Tdq0aRMGDRqU4ef08/PDypUrAaS925Waer2DQ8pXg5ubG3x8fHD37l1+hgzYvn27XG7YsKHNjmtJMwQAOhMmmftaOTg4oFy5claWkCj7sagpgp2dnZx15tWrV5g1a1ZGlMki6oqiOoOnz7Fjx/TuZ0qNGjUAAHfu3JGdYcyl7jCzbds2i/Y1pUiRIhg0aBAOHz4sy7hx48YMaTP58uVLWWFu3rw5li5davRPeW8oHVayipOTE+rUqQMguUOesXZnymxIzs7ORjMdWpGQkCCX1beerbFw4UJ88sknAIAyZcpgx44dOk2XjFFXBFLPSKWmXvfmm29aWdKso56x6++//87wpkOAbofU69evG91WWZ87d+40P3KU1+jy5cs67f9Ty+mvkTUeP34sZ3dzdXVFq1atbHLcJ0+eyHbqb7zxBqpWrWpyn9q1a8tOY8Y+S3FxcTKTr96HSBMsHUYhNDRUDs/j6upqckgRRWJioli4cKFOLPXMY8YowwalHipFPdyXn5+fweG+IiMjRcGCBa0a7mv79u1WD/cVHR0tPD095dib6Z2tzZDhw4fLMoaFhdn8+OqhtcwdGkYZFkw9O1lGlcnY+2fixIlyO0NjEN+9e1fkypVLABBt27bNkPJmNEtmHnv16pWcpMHFxcXg58Ycq1evls9d8eLF9c68Z8z9+/eFvb29AIzPDte6dWs5XJmxGcqyM2XGPgDip59+Mnu/ffv2iRs3blh8voSEBDlbZMWKFfWOEy5E8gQAymvQvHnzNOuXL18uy21oRqtXr17JWfj0XWNzAkuH+0pMTBRt27aV+5ga0tES6uE1//jjD7P3a9OmjQCSJ0QxNCnJ0qVL5bF//fVXG5WYKHuwuGIrhBBz5syRH4pChQqJPXv2GN3+/PnzokWLFsLf318nbouKrRC6EzR8//33adYnJSXpjNVozQQNSiXN1AQN4eHhaSZoUE/V2qZNG/Hy5UuD+0dGRqaZVnLfvn0649qmFhsbK2rUqCHH90w9MYItxrFVZk7LkyePePXqlVn7jB8/Xp73wIEDadYr68yZUlcfcyu24eHhIl++fPJcT5480VmfkJAgOnToII+lbzrdnMCSiq36M2NoNilzxrHdunWrcHJykteCS5cuWVV29bS6K1euTLNePR6xraaFzgr379+XE1Io16vY2FiD2798+VKMHTtWODo6ipMnT6ZZb85nSP3DTl+lNC4uTrz11ltGn/+4uDhRtmxZASRP7HHt2rU026jHUDV1Pc+uLKnY3r59W7Rs2VJuX6lSJYNjzFpzDVa+cxwcHMye+lgI3Ql9OnbsmOZH6+PHj+VMlx4eHiIiIsLsYxPlBFZVbIUQ4n//+5/88AAQrVq1Ev/884/YtWuXOHHihNixY4eYNm2aaNeunczmZFTFNjIyUmdK3S5duojAwEAREhIiVq1aJWffAayfUvfChQs6U+p27dpVrFixQhw/flwcPXpULF68WAwYMEC4ubnpnVK3efPmct8SJUqIX375RezevVucPHlS7Nu3T8ycOVP06dNHuLq6igIFCqQpm729vQgICBC//vqrCAoKEiEhIeLAgQNizpw5ctB6AGLYsGFpyp7eiu3t27fldI7dunUze78rV67I837wwQdp1mdWxVYIIaZPny63LVu2rJgzZ44IDg4W69evl5V2AKJ3795WlSU7MDbz2NmzZ0VwcLBYsmSJTiXGxcVFnDlzRu/xTFVsDx8+LO/eODo6isWLF6c5Z+q/p0+f6j3XnTt3ZGbRwcFBfPPNN2L//v1i//794ptvvhEODg4CgPDy8sryqXHTKzg4WKdyW6pUKTFq1CixadMmERwcLA4ePChWrFghhgwZIp8TAFZXbKOjo+UPXwCib9++8hqyfPlynWmi27ZtazCru2nTJpnVLVy4sPj777/F0aNHRVBQkOjWrZs8RsOGDdN1ByArqb+TOnXqpPPePXbsmNi2bZv4888/RefOneV7EkjOhuur7CssvQarJ4uxZqKLXr16yf2bNm0q1q9fL4KDg8WcOXPkDxQAYvr06RYfmyi7s7piK0TyLchSpUrpVHAN/fn5+YmtW7fq7G+riq1yrEqVKhktw5tvvinCw8P17m+qYiuEEMePHxc+Pj4mH6u+W7FRUVE6WWNjf6VLlzZYNmN/Xbt2FdHR0WnOnd6K7bhx4+T+xrLV+igzH3l4eKSZWS4zK7ZCCPHDDz/ICrq+v7Zt2+p9/nIKc2ceU/68vLzSfCbVTFVszX1fqv+MvU5HjhyR0/3q+/P29hZHjhyxwTOV9W7duiXatWtn1nPm6uoqxo4dq3dmRnM/Q2FhYTIDaOz9HxkZafQ4M2bMkBl6fX916tQRjx8/Ts9Tk6VST/Nu6s/d3V188cUXJu9iWXoNVk+Nu2LFCosfR1RUlE4TidR/9vb2Ju/qEOVU6arYCpF8G3zx4sWib9++omLFiiJ//vzCwcFBeHp6iho1aoiPPvpI7Ny5U28WwJYVW6UsU6dOFQEBAaJAgQLC0dFRFC5cWLz11lti4cKFIjEx0eC+5lRshUi+YPz111+iWbNmolChQsLR0VF4e3uLmjVris8//1wcPnzY6P7Hjx8XQ4cOFX5+fiJfvnzCwcFBeHh4iDfeeEMMHjxYrFq1Ks0X2KtXr8TmzZvF8OHDRb169USJEiWEi4uLcHFxEaVKlRI9e/Y0On93eiu2FStWFACEs7OzyS++1H788UeDF+jMrtgKIcTBgwfFO++8I3x8fISTk5MoVKiQaNmypViyZIlVZchOTFVsnZychLe3t2jevLn47bffTN6CzOyKrRDJt0lHjx4tqlSpItzc3ISbm5uoWrWqGD16dJomJFpw7Ngx8c0334g6deqIIkWKCCcnJ+Hm5ibKlCkjunfvLmbMmGG0Xb4ln6H4+Hgxffp0ERAQILy8vOS1q2PHjmLNmjVml/ns2bPi/fffF2XKlBEuLi6iQIEComHDhuLff/9N0wwqpzFUsbWzsxPu7u6iePHiom7dumLo0KFi4cKFRpuVqVlyDU5MTBTFixcXgP6EgCUWL14sWrZsKQoVKiScnJyEj4+PeOedd8ShQ4esPiZRdmcnRDoHdyUiIiIiygYsGu6LiIiIiCi7YsWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNYMWWiIiIiDSBFVsiIiIi0gRWbImIiIhIE1ixJSIiIiJNcMjqAhCR9cLDwwEAly9flrH8+fMDAMqUKSNjzs7OmVswIiIy208//SSXZ8yYAQAIDQ01a9+ePXvK5fHjxwMASpcubcPS5SzM2BIRERGRJrBiS0RERESaYCeEEFldCKKcTvkY2dnZZep5Dx06BAD466+/ZGzUqFEAgMqVK8uYo6NjppaLiIjM9+jRI7msNEVQru8A0KRJEwBAjRo1ZCwsLAwAsGbNGhlzcXEBoPudUKhQIdsXOBtjxpaIiIiINIGdx4hymHv37snlXbt2AQAeP34sYx4eHgAABwd+vImIcgJ1VrVo0aIAAG9vbxkbOHAgAMDLyyvNvlu2bJHLu3fvBgBERkbqPfbrgBlbIiIiItIEVmyJiIiISBN4r5LIBjKj09jLly8BAMePH5ex69evA9C91aSMY5vZHdmIiCiZpR2K1f34lY5kuXPnljF9TRBu3rwJALC3T8lR+vr6AgDc3d0tLLF2MGNLRERERJrAii0RERERaQKbIhBlY+rbU1u3bgWge9upbNmyAFJGR0i9DxERZT5Lm4KdP39eLivX8JIlS8pYdHR0mn3mzZsHQPc7YdCgQQBev5EQ1JixJSIiIiJNYMaWKBtKSkoCAERERMjY06dPAejOKJaYmAgAOHHihIypOxwQEVH2p3QOBoD9+/cD0B2f9vvvvweQ8t0AAHPmzAEAfP311zLG6z8ztkRERESkEazYEhEREZEmsCkCUSYyd2zD+Ph4AMDatWtlrHXr1gCAEiVKyNjevXsBAKVKlZIxdUcCIiLK/g4dOiSXq1WrBgB45513ZMzV1RWAbkfhf/75B4Buk7VPP/00Q8uZE/AbkIiIiIg0gRlbomwiLi5OLu/btw8A8Ntvv8nYyZMnAQBubm4y9uzZMwC6WVxrWDpLDhERpZ/SAfjSpUsyVqNGDQBA375902xfu3ZtudyxY0cAulncZs2aAQCqVq1q+8LmEMzYEhEREZEmsGJLRERERJrApghEmcjYrf7Q0FC5fPToUQCAh4eHjB04cAAA8Pz5cxkrUqQIAMDX1zfDykVERLajND8AgBs3bgDQ7fSbP39+g/sWL15cLiszT0ZFRcnY/fv3AbApAhERERFRjseMLVEWU4ZquXnzpowpw3cdOXIkzfbKL3IAOHz4MAAgMjLSrHOpZ61RhhQjIiLrqO925cqVSy4rGVh9d8MSEhLksjLMl3pGyYoVK6bZR+nge+/ePRk7c+YMAKBChQoyVrp0acsegAYxY0tEREREmsCKLRERERFpApsiEGUB5bYSAMyaNQsAEBsbK2Pff/+9wX3Vs8yEh4cD0B3bVn07LLVr167J5eXLl8tlZ2dnc4otqW+vqR8LEZE5lGuI+vqR3a8r+sqXO3duGatVq5ZcVmYPU2YMU3N0dJTLSnOyTp06yZi+jl/KOOfvv/++jF2/fh0A0LNnTxkrX768OQ9F05ixJSIiIiJNYMaWKIO9fPlSLi9btgwAsHjxYhnbs2cPAKBVq1YypgzfkidPHhlTMrvz5s2TsVOnTgEAvL29ZUwZNmzQoEEyVqBAAQC6WeFHjx7JZRcXFwC6mQSlg4O6o4M++jpHZMdsCxGRKcr1TH0tVLKuykyPAHDhwgUAunfB1J2+Jk+eDAAoWbKkjK1cuRIAMGHCBBm7evUqACAoKEjGlOu1eggwZYiw6OhoGZs6dSoAoGvXrmY+utcDM7ZEREREpAms2BIRERGRJrApAlEGU3fmKlq0KACgdu3aMqY09q9bt66MqWemUSjNDZo1ayZjSgeFvHnzyliJEiUAAA4OaT/ehQsXlsv+/v5yec6cOQCA+vXry1hAQECafdTNKoiIrKU0V8rKWQ+Va7O+zrPnzp2Ty/v27QOgOzukk5MTgJTrJKA7Fm2+fPkA6D4+5VrasGFDGWvbti0A3XHFleZf6u8B5XxVqlSRsb59+wLQbbKWHZ7XrMaMLRERERFpgp1gLw+i15IyRzkADB06FABQpEgRGevcuTMAoGXLljKmb+gaIqKcTN2RVpkBMjg4WMZ27doFQDcL2qRJEwC6HbeKFSuWkcU0yNCQaa8rZmyJiIiISBNYsSUiIiIiTWBTBCLCq1evAABffPGFjJ04cQIA0Lp1axn76quvAOh2VjM20xkRJYu5uQcAsGjmXzI2c03yWKjPkTLWab2hQwAAX/duL2N+hVLGVE0rpdPR3QPz5fK/v88EAKy58FzG8vkm3zZ//7OU2av6NikNAHDRX2i5GPT7lwCAMQsuyJhHq+QZEn8e3UPGahkta9ZROmclJSXJ2MmTJwEAixYtkrHAwEAAQI0aNWRMGRNc3XE3s5tlsVOY+ZixJSIiIiJNYMaWyIb0fZxy0i9s9cxk69atAwAsWLBAxp4/T87+TJs2TcaUIceISFf8mSlyuW6dYQCAk7EpQ0t5lS0FAPCMCZOxy/deJC/kTblTsvBk8qxUfcvqHB0AcGVWynbV3t8tl2OdvQAAZUu5y1jkresAgMeqMjSdeQYAsPW9CjLmiHsAgOVdUk74tdOvAIC/BleSsagdIwEAg5Z1krF918cAAOpYkbi1dSco9ayJa9euBQBMmZLymigzPLZo0ULGunTpAgCoVCnlcbq5uQHQnY1MH3biyh6YsSUiIiIiTWDFloiIiIg0gU0RiLJYVjVfMHXbTOlQdvToURnbuHEjAODIkSMyNnDgQABAjx4pHUiUWXeIXk/JHaz+quYnI5+fTW4a8NGWlBmt/nyrEADAETEydnJCHQBAjW/PypjX2OTP4KMxdVJOEbkFAPBeobYyNBvvyuU1d2YDALqoO3NFbAcAfFyplQxNe9wGALAodLOM9SmW3KRhuN1cGWv+PLlJUvuUlg0AkpsxTK6Uciv/1YLkMWHVRc0Mt27dksurVq0CAGzbtk3GChVKfq7VM3cpzajUzQ6MzdyYkdiMwXaYsSUiIiIiTcjcnyRElEZ2/XWuDGejHuJGyXqoO2Vs2ZKcOXrw4IGMKbOWVa1aNaOLSZT93ErOsK47q4p5fQwA6P//WVoASMmlpgy2Vb1tPwBAxW+/lrHL25Mzo9dVaVCvfUsBALNT+nvCa+wncrmLvmG3PJNnEfxwREUZmvZ18ud39rZbMtZnYPJn38MrSMa2HErOxLZWlT/xwl4AwLrLb8rYpykjl2UYZShCANi3bx8A3YytcrepfPnyMlanTvJzp55JsWjRohlZTMoizNgSERERkSawYktEREREmsCmCEQaYE3HA2uaQCgdL3777TcZGzt2LABg7969MhYeHg4A6Nevn4z5+SV3pHF2ThlDk0iTSiV3qNwamTJ7WHhMcnODAiZ2jbyT3OzgsjrolTzTn5sqdCkkCKm9Wcm8dgCV/Zur/pd8pt1nbqpiTQEAn64fJiPtWhcGADi9UG3mnDzO7TvLUjqedS1sVhFMevnyJQDgzp07MnblyhUAup1XDxw4AAAoUqSIjL399ts6/wLZt8kXZxSzPWZsiYiIiEgTmLElykQZ9es8s3/tq2fg+fnnnwGkdCIDUmYmGzJkiIz9/vvvAIDq1avLWGbPt06UmRzzesll77xGNoxImTFszEcL/38p5c5G514NAQDqZOiFZ4/THKZUIfPSpY4OTmmDp2/JRWWpVP1RMnY4/FMAwOPwVzLm4OENAMif0vfNbMq1UN0RNTo6Wi7v3LkTgO7Mh8ePHwcAtGvXTsb++ecfAIC/v7/lhcgGmKm1PWZsiYiIiEgTWLElIiIiIk1gUwSiTKTl205vvfWWXC5XrhwAYPXq1TLWt29fAMDQoUNlbMCAAQCAwoVt1ONEJatmdCMyW8RJAMDk7m1k6M+7yf86N50qYxO7Fvv/pSgZi1F34rKFuES5mKhvvWNyWwovo20qzPfkyRMAwJw5c2Rs0aJFcjl//vwAgK5du8rY5MmTAQAFCqR0wcub1zblIe1gxpaIiIiINIEVWyIiIiLSBDZFICKbUN/mV6ay7NOnj4wVLFgQALBq1SoZu3DhAgCgf//+MqaewtdW5SHKLuIfbZfL3zXoAACYdD1lXlznppMAAIdXvSdjFeQgJHlkzMXmd+DTNt2xlWPHjgEAVq5cKWOnTp0CAJQtW1bGPvroI7ns6+sLAKhQoYKMqceqJTKEGVsiIiIi0gRmbIkow/j4+MhlJSurzqTu2rULADB//nwZu3fvHgCge/fuMpY7d+40x7ZmtjWirBJ/dyMAYOibHWRs9v93FPPpsUzGdizqCUCdpTVfXEK86n8WHsC/lFwsYeF51ePP7t+/HwAQHBwsY2FhYcnli4uTsTfeeAMAEBAQIGPquzV58qRkp4kswYwtEREREWkCK7ZEREREpAlsikBEmUKZhnfw4MEyVrFiRQDArFmzZEy9rGjSpAkAoHjx4jLG5geU7ammyh3x/00QZt9NmSq37NfJ01Af+7WpjHmaeejS1ZR9Us6x8/TFlA1aVjO47/XrwWliFUunjCVtrBFDeHi4XL516xaAlE6gALBnzx4AwNmzZ2WsRo0aAICBAwfKWIMGDYychch6zNgSERERkSbYCX3T8xARZSJ1Fmjx4sUAgF9//VXGlEyPelgwZXYza7DjGWWsCADAxn5FZaTDwuQhvXyG7ZKxU38kZ13NzdLquPAXAKCa3+cydLbqJLl8OuSr5PU66dfrAIBZDVM+O+8frAoAmHL+jIx9UikJAJCQkCBjykxha9askTFlprCHDx/KmDKzYL9+/WTM29vb3EdFlG7M2BIRERGRJrBiS0RERESawKYIRJStvHjxAgBw8uRJGRszZgwAwMnJScaUW54A0Llz58wpHJE5TvwCAChR8zsZuos6AIBvV/0kY03Mnj2sEADAr9UbMlLMSHMHAPDpMQUA8NfglFFp78xPbp4wYsn1lEN3Th5D9/ranjIU8f8dv6ZOnSpjO3bsAAD4+/vL2DvvvAMAaNiwoYy5ubkBAFxdXWXM3OY+bCJEtsCMLRERERFpAjO2RJQtxcenzKKkzDWv7rhy6dIluawMJ/TNN9/ImJI5Isp0u4cDAOya/WmjAw4DAOwSf8iIHCAsJmWorcWDO8rlwf+flU3J4QJA8lBjZXqllOvjdskdu87vDpSxu3eTp0RTZgcDgKpVkzuZ+fr6ypjSgTNfvnzmPhCiDMeMLRERERFpAiu2RERERKQJbIpARDnG+fPn5fLKlSvlstLRrFKlSjLWu3dvALq3U4kyRcxTAMCDZ7EmNjRXchMCD+/8MuJiYo/4F48BAOev35OxE2cvAwCuX0oZs1YZn1ataNHkDmlvvfWWjNWtW9eyIhNlEWZsiYiIiEgTmLElohwpOjpaLi9fvhwAMGXKFBkLCAgAAHTp0kXGatWqBUB3KCKinEzdyfLRo0dy+fr15M5jJ06ckLF9+/al2U7JyqpnCitRImWIsOxEqa5wKDAyhhlbIiIiItIEVmyJiIiISBPYFIGIMoy+y0tG3kZUj2370UcfAQDi4uJkbMiQIQCAvn37ZlgZiDJKUlKSXE5ISAAAnP3/WcIAYNGiRXJ5+/btAHTHmB0+PHl83Q4dOsiYs7NzxhSWKIswY0tEREREmsCMLRFphjqjpXSQmTNnjowFBibPrlS5cmUZ++233wAA+fOnDKVElJ3ExMQAALZu3SpjM2bMAACEhobKWOPGjeWy0mlSPdxdnjx5AAAuLqYGCyPKuZixJSIiIiJNYMWWiIiIiDSBTRGISNMePnwol3fu3AkA2LRpk4w9f/4cADBs2DAZa9GiReYUjiiVO3fuAADWrFkjY4cOHQKg29SmWrVqAIAqVarImK+vr1wuXbo0AHYOo9cPM7ZEREREpAnM2BLRa0MZIikoKEjGFi9enGa75s2bA9AdFqlw4cIZXDp6Hai/cs+dOwcAOHbsmIxdvnwZgO7sYLlz5wYAVK1aVcaUGcPKlCmTcYUlyoGYsSUiIiIiTWDFloiIiIg0gU0RiEjT1Jc4fbOeKZ11vvnmGxlTbgOrmyJ07doVAFCiRIkMKSdguqyUs7x8+VIuP3nyBIDu7Hj79+8HABw4cEDGPD09AQDdu3eXMeV96O7ubpNy8X1GWsaMLRERERFpAjO2RESp/PPPPwCA2bNny1jFihUBAOPHj5exkiVLAmDW63WmfIWqv0rj4+MB6HZSnDlzJgDg2rVrMlavXj0AwEcffSRjtWrVAgDY2zPvRGQNfnKIiIiISBNYsSUiIiIiTWBTBCKiVJRbycePH5cx5VZySEiIjH333XcAgC5dusiYo6NjZhSRsgmlo6F6POS5c+cCAAoWLChj7dq1A6A7q12pUqUAAHny5JExvn+I0ocZWyIiIiLSBFZsiYiIiEgT2BSBiMiApKQkuXz69GkAwIYNG2RMGYe0du3aMvb+++8D4FSnWqQ0TVm5cqWMKVPgqpsdKCNo+Pv7y5ifnx8AoFixYhleTqLXGTO2RERERKQJzNgSEVng/v37clnpUHby5EkZU8a2VXcoCwgIyKTSUXqoZwpTOgkGBwfLmPLaKx3GAKBAgQIAgEaNGsmY0kEsX758GVdYItKLGVsiIiIi0gRWbImIiIhIE9gUgYgonRYtWiSX582bBwDw8vKSMaVDWc2aNWWMt6mz1tOnT+VyWFgYAODMmTMytnv3bgDAsWPHZKxBgwYAgL59+6aJ2Zq+r2ZTUzdbsw+R1jBjS0RERESawIwtEZENXbt2DQDw66+/ypiS/Rs5cqSMde/eXS4ze2t76q+2xMREAEBERISMrV27Vi7PmjULABAVFSVjPXv2BJCSbQeAIkWKZExhM5n6uWFGl7SGGVsiIiIi0gRWbImIiIhIE9gUgYgoA6jHOg0KCgIA/P333zKmzE4FACNGjAAAVKtWLZNKp31nz56Vy/PnzwcArF+/XsaqV68ulzt37gwAqFevnowpnf/c3NxkjLftibI/ZmyJiIiISBOYsSUiymDPnj0DAOzatUvG1NnD8PBwAMDbb78tY/3798+cwuVgSUlJAIAtW7bImPK8qjPmZcuWBQBUqlRJxnx9feWyn58fAMDDwyPDykpEmYMZWyIiIiLSBFZsiYiIiEgT2BSBiCgL7Ny5Uy4vXboUgO44q82aNQOQ0rEJAIoXL545hcuGHj58CAAIDg6WsZMnTwIAHjx4IGORkZEAgFKlSslYy5YtAQCNGzfO6GISURZjxpaIiIiINIEZWyKiLKZ0dJo0aZKM7dmzBwDQrVs3GVOyt+XKlZMxBweHjC9gJlA6ggEpz8edO3dk7Pjx4wBSnhcAuHHjBgCgffv2Mvbuu+8CSOkwZg59X4Mc2osoZ2LGloiIiIg0gRVbIiIiItIENkUgIsom1LfjN27cCAD48ccfZUzpPDZy5EgZq1+/fiaVLmPExsYCAG7duiVjc+fOBQCsWbNGxpSZwN577z0Z69WrFwAgd+7cGV1MIsohmLElIiIiIk1gxpaIKBtSMpnXrl2TsX///RcAcODAARlTOkt98cUXMpbdOz7t2LFDLs+aNQtASucwAGjdujUA3aHOqlSpAgBwd3eXMVdX14wsJhHlQMzYEhEREZEmsGJLRERERJrApghERDnExYsXAQCBgYEypozrqp5p65NPPgEA+Pr6ZlrZUnv69CkAYNWqVTKmlDU+Pl7GKlasCACoXLmyjCnlVsecnZ0zrKzGqL8is3sTDyJixpaIiIiINIIZWyKiHObZs2dyecGCBQCAnTt3ylixYsUAAB06dJCxZs2aAciYzOeVK1cAAMHBwTKmZJcfPHggY4mJiQCAqlWrylibNm0A6GZn9VG+qjI7a8qMLVHOwowtEREREWkCK7ZEREREpAlsikBElE76LqO2um1t7rHVTREmTpwIAHBxcZGxAQMGAAACAgJkrECBAmaVISYmBgDw+PFjGVOPr7t3714AuuPrJiQkAAD69esnYz169AAAuLm5mXXejMQmBkTaxIwtEREREWkCM7ZERBqjZFaVzC0ArF27FgDQv39/GRs2bBgA3dm8FC9fvpTLyqxg06ZNk7GjR4/K5Vq1agEAPv30Uxlr0qSJtcU3W2Z0KGNmlyhnYcaWiIiIiDSBFVsiIiIi0gQ2RSAi0ij1eLfKrF9Tp06VsXz58gEA3n33XRl78uQJAGDx4sUyFhkZCQDo1q2bjLVs2VIuly1bFgDg6uoqY+aOl5tV49MSkTYxY0tEREREmsCMLRHRa0AZfkudsf3zzz8BAElJSTLm5+cHAKhXr56M1a9fHwBQoUIFGStVqlRGFdVszPYSUWrM2BIRERGRJrBiS0RERESa4JDVBSAiItt69eoVAODs2bMydu7cOQC6HcrefPNNALozisXGxgIAXrx4IWPVqlUDAHh7e+s9H5sEEFF2wYwtEREREWkCK7ZEREREpAlsikBElIM9f/4cABAeHi5jJ0+eBABs3bpVxpRmCSVLlpSxTz75BIDuaAfK+LWLFi2SMXv75ByIerzbSpUqyWVHR8d0PgrrsOkDEaXGjC0RERERaQLHsSUispK+y6ets4jqcyjHVmYHA4DAwEAAwLRp02RM6QDWsWNHGevXrx8A3eysMYcPH5bLX375JQDd2cRGjRoll9WzkBlj7PnS9zgz4/klIm1hxpaIiIiINIEVWyIiIiLSBDZFICLKxi5cuCCXZ8+eDQDYtWuXjJUoUQIA0K1bNxmrVasWAKBYsWIy5ubmBgDIlSuXWedNTEyUy3fu3AEATJ8+Xca2b98ul1u3bg1At3lC3rx5zToPEZEtMWNLRERERJrAjC0RURZTLsM7duyQsbVr1wIAIiIiZMzT0xOAbgcwf39/nX/V29natWvX5PLmzZvl8t69ewEAuXPnlrGPP/4YAFC/fv0MKQsRkT7M2BIRERGRJrBiS0RERESawKYIRESZ5MGDB3L59OnTcvncuXMAgFu3bsnY/fv3AQBly5aVsVatWgEAGjVqJGNOTk4ZUlZToqOj5fLKlSsBAKtXr5ax/PnzAwA6deokY82bNwcAuLu7Z0YRieg1xIwtEREREWkCM7ZERDaUlJQEAAgPD5exx48fAwAOHDggYxs3bpTLYWFhAIAWLVrI2AcffAAAKFOmTMYV1sbOnDkjl7/99lsAQFxcnIwps5+99dZbMubl5ZVJpSOi1wEztkRERESkCazYEhEREZEmsCkCEZENKWO9Ll68WMZmzZoFAChXrpyM9e/fXy537twZAODh4ZHxBVRRLv92dnY2P7bSBGH8+PEypnQyCwgIkLHvv/8eAODt7W3zMhDR64cZWyIiIiLSBGZsiYistH37dgDA7NmzZezChQsAgDfffFPGOnbsCACoVKmSjBUqVEguu7q6Zmg5s9KLFy/k8v79+wEA8+bNk7G7d+8CAH788UcZU4Y1IyKyFDO2RERERKQJrNgSERERkSawKQIRkQERERFyefPmzQCAoKAgGbO3T84NFC1aVMbKly8PAPD395exatWqAci6WcKyi9jYWADAkSNHZCwwMBAAcOrUKRlr06YNgJRxbwGOd0tE5mHGloiIiIg0gRlbIiKkDNMFACdPngQAXLx4Ucbu3bsHAHj27JmM1apVCwDQrl07GfP19c3IYmrOjRs3AABTpkyRsZs3bwJIeX6BlA54b7zxRuYVjohyHGZsiYiIiEgTWLElIiIiIk1gUwQiem0os2E9fvxYxkJDQwEAO3bskDFlfNqEhAQZ6927NwDdGcPc3NwyrrAaZO5MZ7///jsAYPXq1TKmjAE8dOhQGVOafeTJk8em5SSinIsZWyIiIiLSBGZsiUgz1JczJSuoDDEFAMHBwQCAWbNmyZgyfFfTpk1lbODAgQCAJk2ayNjrPlRXRtP32imvF5CSxVUPCzZhwgQAQOvWrWXMxcXF6vMRUc7HjC0RERERaQIrtkRERESkCWyKQESaERMTI5eXLFkCAFi6dKmMKWPQtm/fXsZatWoFAChZsqSMeXp6AjD/trat8Pa4rsTERLl8584dAMDGjRtl7N9//wWQMlMZAHz++ecAgBIlSmRGEYkom2HGloiIiIg0gRlbIsqRlBmrAGD9+vUAgEOHDslYvnz5AOhm7ipUqAAAqF69uoxVrFgxQ8tJtvXw4UO5HBgYCADYunWrjClZ9rffflvGlFnLiEj7mLElIiIiIk1gxZaIiIiINIFNEYgoU5nbQSo+Pl4unzt3DoDuGKZXrlyRyw8ePACQMrMYALRo0QKAbscib29vK0tNWcHc98qyZcvk8po1awAA9vYpeZt27doB0O00mD9/fpuVk4iyD2ZsiYiIiEgTmLEloiwXFRUllx89egQAuHz5sowpQzwdOXJExtTZ1yFDhgBIyczR6+vChQsAgClTpsjY0aNHAQCfffaZjCkZfQDw8fEBwCHWiLSAGVsiIiIi0gRWbImIiIhIE9gUgYiyTHh4OABg27ZtMjZ37lwAwKVLl2SsR48eAICBAwfKmJ+fn9Fj67u0mXurOT37Uvbw8uVLuayMd/vNN9/IWMuWLeXyF198AcD0e4qIsj9mbImIiIhIE1ixJSIiIiJNyPZNEdTFS0pKMridesxC3jIk0pUdbq0rU+DOmTNHxnbu3AkAcHV1lbGuXbsCAJo0aSJjhQoVAgB4eHjImIODQ0YVlTTm1atXAIDz58/L2OTJk+WyMk1vnz59ZOyDDz4weLzs8HkiIv2YsSUiIiIiTcj2GVs1pajqzK3yK1n9a5m/nEmLlPd/dn1/JyYmyuXDhw8DADZt2iRj165dAwAULFhQxsqWLQtAt9OOv78/AKBo0aIZV1h67Slj2wIps5UpY+ACQMWKFQEAX3/9tYwVLlw4zXGy++eS6HXDjC0RERERaQIrtkRERESkCTmqKYJCfctT6TTG20CkddnplmdERIRcPnv2LADg3LlzMqZMh/vgwQMZU5ogtG/fXsaaNWsGAHBxccm4whKZcOvWLQDAwoULZWzfvn0AgFq1aslY586dAQA1a9aUMXZiJMpemLElIiIiIk1gxjaD2CK7pn5pbP34MvLYmS0zMpnZKVuaWZROmi9evJAxZVik4OBgGVu5ciUA4N69ezJWp04dAMB7770nY9WrV093mQxdrl6n14UyjrpjclBQEADdzmPK+/rdd9+VsQYNGgDgXQei7IIZWyIiIiLSBFZsiYiIiEgTNNkUQd94t/rom61MfWx9lO3U++orV+rtDe2jT3rKb4pyTFMve65cucw6nrnMfUzmPl/q4xh7LOY+DvVrp+xj6hzqYyv7a2kGvOvXrwMAlixZImNLly4FAOTLl0/GBgwYAADo0KGDjHEMWsrplM/848ePZeyTTz4BkDImMwC88847AICvvvrKpufN6dcPoqzCjC0RERERaYImM7YK9UNTZ98s3UdfFs6a7ZRlfZlIfZlM9Xb6OnuZ2kffsfXN1KbvLaAva2BpBkHfYzd0POU1NZWxVR6LvuMYexyGym8sg2zu66TeVl8ZzM3UZ6X9+/cDAKZNmyZjSsa2cuXKMqZkZZXZwYCU2Zjy5s0rY8w2UXaU3k6zSvZW6TAJAKtXrwYA5MmTR8amTp0KAChZsqTNy0BExmX/b1wiIiIiIjOwYktEREREmqDppgjW7GPqtr1CX1MEU9sp9HVoMrdZgTX7pOf5Sk9nKH3PkaHOXPqeJ33ns7Rcph67vs50+joI6uv8pq8M1ryOmeH58+cAUsbmBIDt27fL5djYWAAps4MBQPny5QHoNjt44403AACurq4ZVlai7MBYJ64nT57I5W3btgEAtm7dKmNPnz4FAAwcOFDG2rZtCwBwdna2fWGJSMr6b1wiIiIiIht4bTK25nagUm9nbKgoczO2asYywK97xtZcts7Y6ttOXxnNfX9kh4ytMu/9+fPnZezixYs6/wK6WSclE9utWzcZq1atWgaWkih705exNZbFPXDggFz+448/AABOTk4y1qxZMwBA69atZaxEiRI2LDERAczYEhEREZFGsGJLRERERJrw2jRF0Le/vrFQ09MUIT232dkUwTxsigDExcXJ5cjISABAWFiYjCmdWFatWiVjSoeVLl26yFi/fv3kcoECBWxaxoxi6HLF8UDJHJk1huzLly8BAF988YWMXbhwAUBKkwQA+OCDDwAARYoUkTFbz/pI9LphxpaIiIiINCHbZmyNZb7Sm7HVd+yMytiqj6fsw+G+0rL0sWRkxlbfdtkpY3vo0CG5PGvWLAApQw4BQN26dQEAQ4YMkbF69eoB0J0dzNwh1ogo/ZYtWwYAmDFjhowpd19mzpwpYxUqVADAzC2RtZixJSIiIiJNYMWWiIiIiDQh2zdF0Fe89Nwe13cOQ8c2l1JGdVn1jXdo7rGNPXY1a54HS49t7qxrpm6b6buVb+759NHXxMPYcdXH1ld+U/ua2l55/PrKZc17QJkJbMWKFTI2Z84cALrNJho3bgxAd2xMHx8fAIC3t7eMubi4mHVeIsoYymf65MmTMrZ69WoAwObNm2Vs+PDhAICePXvKmLoJUVZjEybK7pixJSIiIiJNyLYZW2PFstWvQ3M7dpnLVMbW3HKb+5JY8zzY+tjGZuKx5Pzp6ZhmjKmMs6321ZcNNnYctWvXrgEAtmzZImPBwcEAdGcuKly4MACgUqVKMlazZk0AgK+vr9Fz6JNZQx8RkX7K7IBK5hYAjh07BkD3M92rVy8AQI0aNTKxdEQ5EzO2RERERKQJrNgSERERkSZk26YIGUlfZy+FrcccJVJ39lJuPSr/AsDFixcBANevX5cxZXzL5s2by1i3bt0AAF5eXjYpF5siEGUPMTExcvm3334DABw9elTGSpQoAUB35sCAgAAAgIODQ2YUkSjHYC2OiIiIiDThtczYKhk0a4ZhIjImOjpaLkdERAAArl69KmMbNmwAoDtTWPny5QEA/fr1k7GOHTsC4OxDRK+rjRs3yuXp06cDAJ4/fy5jP/74IwDdDmUeHh6ZUziibIy1OSIiIiLSBFZsiYiIiEgTNNkUwdQsVwo2RSBFejtSKZ0/AgMDZWzu3LkAdDuKvf322wB0mx1UrFgRAODs7GzxeYlI+27dugUAWLBggYwpzRNGjBghY71795bLyrjXtpKeMcvZOZUyE2tzRERERKQJrNgSERERkSZosimCwtRD4+0RstT9+/flstLUAADWr18PQPf2nzIGbf369WXMx8cHgO5YtOaOQ2nprUAi0pYHDx7I5YMHDwIApkyZImPe3t5yeciQIQCAZs2a2bQM1kwbTpSZmLElIiIiIk3QdMaWKD3UM/8EBQUBAC5fvixjBQoUkMuFChUCAFStWlXGatasCSAlS2sJYx9LZkeIcoaM7EAVGxsLQHe8202bNsnlyMhIAECTJk1kbOjQoQA4PjZpGzO2RERERKQJrNgSERERkSawKQK91l68eAFAd6zZc+fOAQAuXbokY3fv3gUAuLi4yFi3bt3kcuvWrQHYfixajgVJlHNldkerAwcOyOWFCxcCSBkDFwA6dOgAAGjXrp2MlS5dOsPKQ5QVmLElIiIiIk1gxpY0TT37XFRUFADg4cOHMnby5EkAKcN1AcCxY8cAAE2bNpWx999/H0BKhzBbsnVWh8OCEWU/mf05Dw8PBwDMnz9fxqZOnQoAGDBggIwpd56UGRAB84cgJMqOmLElIiIiIk1gxZaIiIiINIFNEUjTlE5fALB06VIAwMqVK2Xs5cuXAFJm6QGAt99+GwBQpEiRNMdT3/bTUscuNl8gyjqZMd4tAJw6dQoA8Mknn8iYh4cHAODTTz+VsY4dO9q0DESZiRlbIiIiItIEZmxJM0JCQuTy3LlzAQCHDh2SMT8/PwDAW2+9JWNKZzAvLy8ZU88oRkSUnRn6CteX+Y2PjwcAXLt2TcbmzJkDADhy5IiM1a5dGwAwceJEGXN0dEx/YYkyATO2RERERKQJrNgSERERkSawKQLlKMpMYbt375axffv2AQDu378vYwULFgQAlCxZUsaqV68OAKhRo4aM5cuXL+MKS0SUzV25cgUAsGHDBhk7ePAgACB//vwy9vHHHwPImLG8iWyJGVsiIiIi0gRmbCnbUjKw58+flzFlWR2LiIgAAJQoUULGunfvDgBo0KBBhpeTiCine/XqlVxWhkRUz1pWuXJlAEDbtm1lrFGjRgB454uyF2ZsiYiIiEgTWLElIiIiIk1gUwTKMsqYigAQHR0NALh9+7aM7dmzBwCwZs0aGYuKigIAdOrUScb69OkDQLejGBHR60bf13l6ZjK7dOmSXFZmK1Mfr2/fvgCAbt26yZirq2u6z0uUHszYEhEREZEmMGNLWSY4OFguz5gxA4DuTGFKZ7DBgwfLWMuWLQHodlZQ3sLpyRBk5FztREQ5kfq6qNxV+/3332Vs7dq1AIBq1arJ2OTJkwGYP4Njeq+9trj+k7YwY0tEREREmsCKLRERERFpApsivAay6ja7cusKADZt2gQAWLBggYxFRkbK5Vq1agEAmjRpImN+fn4AUmYRA4C8efOadW7eniKi14E11/f0fCeor9t79+4FACxdulTGbty4AQD45ZdfZKxZs2YWncMStu4wRzkfM7ZEREREpAnM2JJN3LlzRy5v2bIFAHDq1CkZi4mJAaDboaBChQpyuU6dOgBSsrQA4OjomCFlJSKi9IuLiwMA7Nu3T8aU4RlDQ0NlrHnz5gCAt99+W8aKFi2aGUWk1xAztkRERESkCazYEhEREZEmsCkCmS0xMREAcP36dRm7cOECAODixYsypjRBULYHgPr16wMAunfvLmOcKYyIKGcx1fFMmT1y3LhxMnb//n0AQIMGDWSsY8eOAIAqVaqk63xEqTFjS0RERESawIwt6aUM1aV0DgBSsrLr1q2TsdWrVwMAypcvL2MDBw4EALRr107G8uTJk2FlJSKi7GvKlCkAgBUrVshYmTJlAAAjR46UsbJly8plFxeXTCodaQ0ztkRERESkCazYEhEREZEmsCkC6bV+/XoAKbeQAODu3bsAgFatWsnYgAEDAOiOP8tmB0RErydjsz6eOHFCLivfLYcPH5axCRMmyOW2bdsCYJMEshwztkRERESkCczY2oCxX6jZ1cOHD+Xy4sWLAeg27C9SpAgAoGHDhjJWu3ZtACmN/gGgcOHCAEzPEpYTnyMiIrKdpKQkuXz16lUAwMaNG2Vs2bJlcrlRo0YAgI8//ljG1J3LiAxhxpaIiIiINIEVWyIiIiLSBDZF+H9avlUeEhIil4OCggDozh6mNCPw8vKSsWrVqgFImTEMAHx8fDK0nERE9HpRZiUDdJvDHTx4EADg7u4uY127dgWQ0rGMSB9mbImIiIhIE1ixJSIiIiJNeK2bIuh76Dm1KcKLFy8AAJcvX5YxZQrc8+fPy9iZM2cAAPnz55exDh06AAC6d+8uYw4ODhlXWCIiIiOWLl0KIGXadiCl2ZzSJAEAmjZtCgAoWLBgJpaOsjNmbImIiIhIE17LjG1OzNSqyxwVFQUAiIyMlLFjx44BAFatWiVj+/btAwC0bNlSxj788EMAKWPSZjb148juzzkREWWtK1euyOXffvsNQErHMgAYNmwYAKBdu3Yy5u3tDYDfMa8rZmyJiIiISBNYsSUiIiIiTXgtmyLkRBEREXJ5/vz5AIB58+bJmL198m+U3r17y9g777wDQHd8WicnJwC8RUNERDmL0kl6w4YNMjZu3DgAQN26dWXsq6++AgBUqVIlE0tH2QUztkRERESkCczYZkOnTp0CACxcuFDGlI5gQMqv0MaNG8uYv78/AKB48eIyVqhQoYwspkW0PLMbERFlHn0dpxcsWCBjYWFhAHTvYA4ePNjg8dipWVuYsSUiIiIiTWDFloiIiIg0gU0RskB8fLxc3r59OwDdpgYPHz4EALi5uclYkSJF5HLNmjUBAPXq1ZOxfPnyZUxhzcRbOURElFX2798vl5XOZdeuXZMxpbmeukmCj49PJpWOMhMztkRERESkCQ5ZXQCte/z4sVy+cOECAODixYsydvr0aQDA7du3ZaxcuXIAgO7du8uYuqMYERERpWjUqJFcLl26NABg5syZMrZnz540+7Rv3x4A8MYbb8iYgwOrRTkdM7ZEREREpAms2BIRERGRJrDzmA0kJiYCAKKiomTs0aNHAICdO3fK2KpVqwAAt27dkrH+/fvr/AvojkVLRERE6bN27VoAwP/+9z8Zq1y5MgDgo48+krHatWsDAJydnTOxdGRLzNgSERERkSa8NhnbjByO6tKlSwCA6dOny1hgYCAAoFSpUjL2/vvvAwBatWolY8qQXo6OjhlWPiIiotdZUlISAOD69esyNmHCBADA8ePHZWzgwIEAgM8++0zG7O2ZA8xJ+GoRERERkSawYktEREREmvDaNEXQx9zmCXFxcXJZmSlsxYoVMqaMT9u0aVMZU2YFUxqnA0DRokUBZP0sYURERFqiryqj73tdvd2dO3cAAJs3b5axNWvWAAAKFSokY2PGjAEAVKhQwTaFpQzFjC0RERERacJrnbHV58GDB3JZGarr8OHDMvbq1SsAQMGCBWVMycQ2bNhQxmrUqAEAyJUrV8YVloiIiExSqjr6srgRERFyWen4vWXLFhlTOo9169ZNxjp27AhAt+M3ZQ/M2BIRERGRJrBiS0RERESa8Fo2RYiPjwcA3Lt3T8aUsWjPnDkjY+fOnQOge5uibt26AIBevXrJWPny5TOusERERJQuxpoi6KN0FAeAv/76C4DubGSdOnUCADRv3lzGlGaJlLWYsSUiIiIiTdB0xlY9TFdsbKxcvnjxIoCURuIAsGPHDgC6v+aGDBkCAHj77bdlLHfu3BlTWCIiIsp2Hj9+DAAYN26cjO3evRsA0Lt3bxkbPHiwXPby8gLAmUSzAjO2RERERKQJrNgSERERkSZk26YI5s4ioo/S7EC5VQAA//33n1y+du0aAKB+/foy1r9/fwApM4YBHIOWiIiIkiUmJsrloKAgAMDEiRNlzN3dXS7/+OOPAICaNWtmUulIwYwtEREREWlCts3YWmrBggVyefr06QB0f115eHjIZW9vbwBA8eLFZUwZpkP9i0vZPykpScZs/XQZOx4bnRMREWUt5btYfRc3MjISQEpndAA4ffq0XH727BkA4JNPPpExpUM6v9szFjO2RERERKQJrNgSERERkSY4ZHUBbEVJ+wMpM4qVK1dOxooVKyaXCxUqlGb/mzdvAgASEhJkzNKZStJD3SRB3/nUMY20HiEiIsqRHB0dAQD58uWTsdKlS8vl4OBgACkznQJsgpBZmLElIiIiIk1gxZaIiIiINEEzoyIoaX8AOHToEADd5gfqJgbq0RJSM/V0mHsrIT3NGMzd11TzBSIiIrINU+PrOziktO5URk1Qj41ftWrVDCwdKZixJSIiIiJNyPEZ28zs4EVERERE2RcztkRERESkCazYEhEREZEm5PhxbNkEgYiIiIgAZmyJiIiISCNyfMY2PfQNl8UhtIiIiCg9ZsyYAQDYsGGDjN29exeA7pCjSUlJOv8CgLOzMwCga9euMjZmzJiMK6zGMGNLRERERJrAii0RERERaUKOaopw9OhRAMCyZctkTJndw8vLS8aaNm0KAGjdurWM7dy5Uy5XqVIFAFC4cOGMKywRERG9lpR6hrruERsbCwBo2LChjHl6egIAnJycZOzixYsAgP3798vY5MmTAQDDhg2TMfVMZ5SCGVsiIiIi0oRsW92/fv06AODYsWMydvXqVQApmVsAePnyJQCgaNGiMubo6AgAiImJkbGDBw/KZWVbfRlbdhgjIiKi9GjQoAEA4Pbt2zJWtmxZAMD//vc/GdOXdb137x4AYMqUKTL277//AgDq168vY7Vr1wagm+0lZmyJiIiISCNYsSUiIiIiTchWTRGePXsml3/66ScAwPLly2Vs7NixAIBDhw4ZPc7q1asBAJ07d5axX375RS7nz58/nSUlIiIiMu7p06dyWRkn31Snr2LFigEABg8eLGN37twBAMyaNUvGlE7zFSpUsE1hNYIZWyIiIiLShGyVsR01apRcVjqKqTOtn3/+uVnH8ff3BwB8+eWXMlauXDm5rHQuIyIiIrK1a9euAQCioqJkzNvb26JjqOsqSqf3c+fOyVh0dHR6iqhZzNgSERERkSawYktEREREmpAtmiIoncGOHDkiY3Xq1AGg23ja3t68enju3LkBAKVLl5ax4sWLy2VnZ2frC0tERERkxKlTpwAAuXLlkrGqVatadIw8efLI5ZIlSwIAzpw5I2NJSUnpKKF2MWNLRERERJqQLTK2c+bMAaCbVW3RogUAwN3d3eLjeXh4AAACAgJkTN1o28XFxZpiEhEREZm0f/9+AICPj4+MVa9e3erjKUOFFSxYUMY445h+zNgSERERkSawYktEREREmpAtmiKsW7cOADBkyBAZe+ONN6w+nqurKwCgSpUq6SkWERERkVnUnbmePHkCAKhcubKMWTrr6f379+XygQMHAAC+vr4yZk1TzdcBM7ZEREREpAnZImMbHh4OQHcYLjc3tww7n9IIW83Ozi7DzkdERETao87ShoWFyWUls1qmTBmLjxn3f+3dP0okURAH4N+uGIkYeAWvYKqioJmBiYkG4g1MBEEETyLiBUxF0cBIEDyBBibG/gFRZDfq56wu4sw6u7Nvvi96FNNdDZ0U1TXvPT0led0KNXn9sr28vFxio6Ojbd+7H+jYAgBQBYUtAABV6IlRhM9qRgj+dGyg3euNLgAAbz0/P5f12dlZWTejlc2++u04PDxMkuzv75fY7OxskmRqaqrEWk8m45WOLQAAVeiJjm1zkkYzMJ0kj4+PHd+v2SLj6uqqxMbHx8t6cHCwrfvpzgIAb7We/rW3t1fWS0tLSX6tPT6yurpa1sfHx0mS6enpEtvY2EiSjIyMdP6wfULHFgCAKihsAQCoQk+MIiwsLCRJjo6OSqxpt6+trZXY9+/v6/BmZOHg4KDErq+vkyRzc3MfXvtVvupPbZ/J0c08teRozeOdtJenlhzdzOOddJajm3m8k85ydDNPTe+kcX9/X9bNH8V2dnZKrNlrNknu7u6SJCcnJyU2MDCQJHl5eXn3u9Y9cOfn55Mki4uLJdbJfrj9SscWAIAq9ETHdmVlJUmyvb1dYs12F0NDQyXWnLncetLHw8NDkuTi4qLEhoeHkyRjY2PdeWAAoK+0bu11eXmZJDk/Py+xiYmJsr69vU2SnJ6elljTXW7tZjfd262trRJrvmK3fmn+m53p/52OLQAAVVDYAgBQhW8/fnes1j9yc3NT1uvr60mS3d3dD6+ZmZlJkmxubpbY5ORkF54OAIBepmMLAEAVFLYAAFShp0YRAACgUzq2AABUQWELAEAVFLYAAFRBYQsAQBUUtgAAVEFhCwBAFRS2AABUQWELAEAVFLYAAFRBYQsAQBUUtgAAVEFhCwBAFRS2AABU4Sej9N9RldaeuAAAAABJRU5ErkJggg==",
"path": "images_version_6/image_57.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, AB is parallel to CD, then angle C is ()
Choices:
A:40°
B:20°
C:60°
D:70°
|
||
286
|
58
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAN4AAABrCAAAAAA9C2OtAAAE0klEQVR4nO2cK1QbQRSGZ3oqcmqIxBHTc1LF4hIHjqji2qoWRxTgiAIUVAVUQCUocIAKDqoSR1BEVIDoIY6tYlWnIkvuAvuYx51HOHwCEnZel3vnn93Zu0sZGQ/kxvkOeRSOQcfFe9nEWfLKvfdm3jjzZt448972AGKgw18Ymu6ieYwyMjJSDVeDE8U4d83DiU0ngxPNd256jzKG4zs3zUPEUfMYUnw6aB7esuCitNChaTiTL808O9eCop3StFop5qGps17Cc5x4+5Ln3qu4jndQWmRI9AVLgDBGGGNs1uQohZlljBEytOJfDIlmU2YlPP2fwdSKUI3R1BPZSqKE2pCWbnl6a3eA116ShyizIS61i+NJcnJwLFJHxntWZLNfnuhMErJATgQqpS0LJEFaCBlO2STd0UKz1Bl+uCs8cFeKGCEkLabxq7l6Pvy8c1uXaCHWEh1+kKBTPIx88y4lmnDYe7WL48nI1+5qR7wNZ+8xhJoClLw9pKaRgkuFkaYA98U74WbcDM6opgBHp4eiDTkZnN3y52b+5Z+/+mcYrVv2XrD5VFOAm8plTqwt97zXrzzTFKDwZRujBxRxkKTpvdAU4MG7FmstTlosbiX5i/lOSvzl6tVz5T7sBedF+XszdXbNFlrKndiSlmCze5gw60YMKu2sIlEckpZ+ZeI8c+iTyzXljtTEQZJUTYnw8nQmBVfOWvzFfINvTetVz/kXP0eCM1NTAG92R60v497j0ZRI6Zl2gbesC97j0hQgV68qdWfYvNa3rTWhCvP5I5X+jAYnv6YAg/I1ZxXbwSmgKYDa4mfOe2KaEmGm6XGVs+o9QU2J0FyU79WU91q7jZJs3VW+mypxlpgxT0ZTgOBT0jXvE6wFp5SmAAqLnwHzgtrm+YJSCwuB7L6SfvPkNQVorAZyFbXPPRVNAbb/bmWWibNE815Lxn4KNytzPU+qotz1KCft4jFSS51SZhHTl7PBZq+pOutGVKeXMkoYXhj6cxNCW0HprO/LZBTo897ePue5IietX830Aia951euOh5qiz9uLiRqIU39Z7SLbfQ2r730jAJj0oKqKcAG2Ug7bCo4cTUFWDvtC9dBjyHWkMpr4KE9n3Y0LjjRvYevKYDEvhL2P1iDpgB3xfvkg/qlRZOmAHtXjcRj2qVFl6YAS72uWAXE0NGnKcBlKXHx0ystOjUF8Epi+UpY/1a9mgI8FJLylTRKi3ZNARKTdfVJi35NAYSSdVG8h33tk07STRVN3jOjKYDQTRXluW5KUyLEL0A6pMWgpgDxyboagtOkpgD8ybpq3jOrKYBfjtn4xvbewLCmAPn1Vb6CCuadVZYV7mqpwZusKx2cQa1vXlOAmGRdzODsl6csaArAmawr6b2dg8OiVEU0gvLzEaB5b1C57Vi2jvOWrYx5Z5Xlui1NAbiSdcWD07KmAM+TdaWDk1JKHx9jt60pQHhqTSmlyQ/CcpzBEsbCJxYZq4um3+tkmKxLwh+Sey1h/DLihqZEiGQUsHj/CUmLG5oCZCfrZksLlPj4W3U86Hz4kw8HSFmcJSLm+Xm8cSHhP1qHYJ6bhM4jsebxzj3n324i+kKTUT1KXHbh8LH8tJcnZLaA9WofDUTeJ2gvn9MItlPFLfBm3jjzZt448x+hLJwJzK4amwAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_58.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, AB parallel CD, angle CED = 90.0, angle AEC = 35.0, then the size of angle D is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
Như hình vẽ, AB song song với CD, góc CED = 90°, góc AEC = 35°, thì số đo của góc D là ()
Lựa chọn:
A: 65°
B: 55°
C: 45°
D: 35°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB parallel CD, angle CED = 90.0, angle AEC = 35.0, then the size of angle D is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB parallel CD, angle CED = 90.0, angle AEC = 35.0, then the size of angle D is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
As shown in the figure, AB parallel CD, angle CED = 90.0, angle AEC = 35.0, then the size of angle D is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
287
|
58
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAN4AAABrCAAAAAA9C2OtAAAE0klEQVR4nO2cK1QbQRSGZ3oqcmqIxBHTc1LF4hIHjqji2qoWRxTgiAIUVAVUQCUocIAKDqoSR1BEVIDoIY6tYlWnIkvuAvuYx51HOHwCEnZel3vnn93Zu0sZGQ/kxvkOeRSOQcfFe9nEWfLKvfdm3jjzZt448972AGKgw18Ymu6ieYwyMjJSDVeDE8U4d83DiU0ngxPNd256jzKG4zs3zUPEUfMYUnw6aB7esuCitNChaTiTL808O9eCop3StFop5qGps17Cc5x4+5Ln3qu4jndQWmRI9AVLgDBGGGNs1uQohZlljBEytOJfDIlmU2YlPP2fwdSKUI3R1BPZSqKE2pCWbnl6a3eA116ShyizIS61i+NJcnJwLFJHxntWZLNfnuhMErJATgQqpS0LJEFaCBlO2STd0UKz1Bl+uCs8cFeKGCEkLabxq7l6Pvy8c1uXaCHWEh1+kKBTPIx88y4lmnDYe7WL48nI1+5qR7wNZ+8xhJoClLw9pKaRgkuFkaYA98U74WbcDM6opgBHp4eiDTkZnN3y52b+5Z+/+mcYrVv2XrD5VFOAm8plTqwt97zXrzzTFKDwZRujBxRxkKTpvdAU4MG7FmstTlosbiX5i/lOSvzl6tVz5T7sBedF+XszdXbNFlrKndiSlmCze5gw60YMKu2sIlEckpZ+ZeI8c+iTyzXljtTEQZJUTYnw8nQmBVfOWvzFfINvTetVz/kXP0eCM1NTAG92R60v497j0ZRI6Zl2gbesC97j0hQgV68qdWfYvNa3rTWhCvP5I5X+jAYnv6YAg/I1ZxXbwSmgKYDa4mfOe2KaEmGm6XGVs+o9QU2J0FyU79WU91q7jZJs3VW+mypxlpgxT0ZTgOBT0jXvE6wFp5SmAAqLnwHzgtrm+YJSCwuB7L6SfvPkNQVorAZyFbXPPRVNAbb/bmWWibNE815Lxn4KNytzPU+qotz1KCft4jFSS51SZhHTl7PBZq+pOutGVKeXMkoYXhj6cxNCW0HprO/LZBTo897ePue5IietX830Aia951euOh5qiz9uLiRqIU39Z7SLbfQ2r730jAJj0oKqKcAG2Ug7bCo4cTUFWDvtC9dBjyHWkMpr4KE9n3Y0LjjRvYevKYDEvhL2P1iDpgB3xfvkg/qlRZOmAHtXjcRj2qVFl6YAS72uWAXE0NGnKcBlKXHx0ystOjUF8Epi+UpY/1a9mgI8FJLylTRKi3ZNARKTdfVJi35NAYSSdVG8h33tk07STRVN3jOjKYDQTRXluW5KUyLEL0A6pMWgpgDxyboagtOkpgD8ybpq3jOrKYBfjtn4xvbewLCmAPn1Vb6CCuadVZYV7mqpwZusKx2cQa1vXlOAmGRdzODsl6csaArAmawr6b2dg8OiVEU0gvLzEaB5b1C57Vi2jvOWrYx5Z5Xlui1NAbiSdcWD07KmAM+TdaWDk1JKHx9jt60pQHhqTSmlyQ/CcpzBEsbCJxYZq4um3+tkmKxLwh+Sey1h/DLihqZEiGQUsHj/CUmLG5oCZCfrZksLlPj4W3U86Hz4kw8HSFmcJSLm+Xm8cSHhP1qHYJ6bhM4jsebxzj3n324i+kKTUT1KXHbh8LH8tJcnZLaA9WofDUTeJ2gvn9MItlPFLfBm3jjzZt448x+hLJwJzK4amwAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_58.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, AB parallel CD, angle CED = 90.0, angle AEC = 35.0, then the size of angle D is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
Như hình vẽ, AB song song với CD, góc CED = 90°, góc AEC = 35°, thì số đo của góc D là ()
Lựa chọn:
A: 65°
B: 55°
C: 45°
D: 35°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB parallel CD, angle CED = 90.0, angle AEC = 35.0, then the size of angle D is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB parallel CD, angle CED = 90.0, angle AEC = 35.0, then the size of angle D is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
As shown in the figure, AB parallel CD, angle CED = 90.0, angle AEC = 35.0, then the size of angle D is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
288
|
58
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAN4AAABrCAAAAAA9C2OtAAAE0klEQVR4nO2cK1QbQRSGZ3oqcmqIxBHTc1LF4hIHjqji2qoWRxTgiAIUVAVUQCUocIAKDqoSR1BEVIDoIY6tYlWnIkvuAvuYx51HOHwCEnZel3vnn93Zu0sZGQ/kxvkOeRSOQcfFe9nEWfLKvfdm3jjzZt448972AGKgw18Ymu6ieYwyMjJSDVeDE8U4d83DiU0ngxPNd256jzKG4zs3zUPEUfMYUnw6aB7esuCitNChaTiTL808O9eCop3StFop5qGps17Cc5x4+5Ln3qu4jndQWmRI9AVLgDBGGGNs1uQohZlljBEytOJfDIlmU2YlPP2fwdSKUI3R1BPZSqKE2pCWbnl6a3eA116ShyizIS61i+NJcnJwLFJHxntWZLNfnuhMErJATgQqpS0LJEFaCBlO2STd0UKz1Bl+uCs8cFeKGCEkLabxq7l6Pvy8c1uXaCHWEh1+kKBTPIx88y4lmnDYe7WL48nI1+5qR7wNZ+8xhJoClLw9pKaRgkuFkaYA98U74WbcDM6opgBHp4eiDTkZnN3y52b+5Z+/+mcYrVv2XrD5VFOAm8plTqwt97zXrzzTFKDwZRujBxRxkKTpvdAU4MG7FmstTlosbiX5i/lOSvzl6tVz5T7sBedF+XszdXbNFlrKndiSlmCze5gw60YMKu2sIlEckpZ+ZeI8c+iTyzXljtTEQZJUTYnw8nQmBVfOWvzFfINvTetVz/kXP0eCM1NTAG92R60v497j0ZRI6Zl2gbesC97j0hQgV68qdWfYvNa3rTWhCvP5I5X+jAYnv6YAg/I1ZxXbwSmgKYDa4mfOe2KaEmGm6XGVs+o9QU2J0FyU79WU91q7jZJs3VW+mypxlpgxT0ZTgOBT0jXvE6wFp5SmAAqLnwHzgtrm+YJSCwuB7L6SfvPkNQVorAZyFbXPPRVNAbb/bmWWibNE815Lxn4KNytzPU+qotz1KCft4jFSS51SZhHTl7PBZq+pOutGVKeXMkoYXhj6cxNCW0HprO/LZBTo897ePue5IietX830Aia951euOh5qiz9uLiRqIU39Z7SLbfQ2r730jAJj0oKqKcAG2Ug7bCo4cTUFWDvtC9dBjyHWkMpr4KE9n3Y0LjjRvYevKYDEvhL2P1iDpgB3xfvkg/qlRZOmAHtXjcRj2qVFl6YAS72uWAXE0NGnKcBlKXHx0ystOjUF8Epi+UpY/1a9mgI8FJLylTRKi3ZNARKTdfVJi35NAYSSdVG8h33tk07STRVN3jOjKYDQTRXluW5KUyLEL0A6pMWgpgDxyboagtOkpgD8ybpq3jOrKYBfjtn4xvbewLCmAPn1Vb6CCuadVZYV7mqpwZusKx2cQa1vXlOAmGRdzODsl6csaArAmawr6b2dg8OiVEU0gvLzEaB5b1C57Vi2jvOWrYx5Z5Xlui1NAbiSdcWD07KmAM+TdaWDk1JKHx9jt60pQHhqTSmlyQ/CcpzBEsbCJxYZq4um3+tkmKxLwh+Sey1h/DLihqZEiGQUsHj/CUmLG5oCZCfrZksLlPj4W3U86Hz4kw8HSFmcJSLm+Xm8cSHhP1qHYJ6bhM4jsebxzj3n324i+kKTUT1KXHbh8LH8tJcnZLaA9WofDUTeJ2gvn9MItlPFLfBm3jjzZt448x+hLJwJzK4amwAAAABJRU5ErkJggg==",
"path": "images_version_1-4/image_58.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, CED = 90.0, angle AEC = 35.0, then the size of angle D is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
Như hình vẽ, $\angle CED = 90^\circ$, $\angle AEC = 35^\circ$, thì số đo của góc $D$ là ()
Lựa chọn:
A: $65^\circ$
B: $55^\circ$
C: $45^\circ$
D: $35^\circ$
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, CED = 90.0, angle AEC = 35.0, then the size of angle D is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, CED = 90.0, angle AEC = 35.0, then the size of angle D is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
As shown in the figure, CED = 90.0, angle AEC = 35.0, then the size of angle D is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
289
|
58
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAARsAAACyCAYAAABySWuzAAAggElEQVR4nO3de1yM6f8/8NdUmmyNClE5tkVRrC1WtKF2U2nXYa2WD76Ou9YS2Q+7WOvR+lmt1QfJyuHj9FHL2s06rIxQhJRQaUNJ2pR0PlIz08z1+yMNOewmdd9z1/v5eMzjoea+Z94zZl5d93Vd93WLGGMMhBDSzLT4LoAQ0jpQ2BBCOEFhQwjhBIUNIYQTFDaEEE5Q2BBCOEFhQwjhBIUNIYQTFDaEEE5Q2BBCOEFhQwjhBIUNIYQTFDaEEE5Q2BBCOEFhQwjhBIUNIYQTFDaEEE5Q2BBCOEFhQwjhBIUNIYQTFDaEEE5Q2BBCOEFhQwjhBIUNIYQTOnwXQIimau3XbxSJRE36eNSyIYRwglo2hLxEU/9lb2pCa3lRy4YQwgkKG0IIJyhsCCGcoLAhhHCCwoYQwgkKGyI4DR2FEdpoTUtHQ99EcEQiEX755Rf8+uuvMDExQWlpqfo+xhhEIhEcHR2xcOFC/ookz6GWDRGkNm3a4Nq1a9i6dSuUSiUUCgV0dXXRtm1bnD17Ftu3b+e7RPIMEaO2JhGYutbL4cOH8cUXX+D+/fsAgKysLHTv3h0bN27Eli1bkJaWxnOlzau5v7p0ugJp9eq+BBUVFfW+cI6Ojti9ezeMjY3RuXNnvsojL0FhQ1oMfX19VFZWYtq0aYiKiuK7HPIM6iAmglN3GGVoaIgHDx6gU6dOMDQ0RHp6OrS1tQEAOjr00dY09D9CBEckEmHXrl24cOECIiIikJeXh6lTp2LVqlXw9vbmuzzyEtRBTARp5syZuHXrFmJiYgDUBtCVK1fg4OAA4EnrpyWjDmJCmlHdF+yNN96ASqUCAMjlckycOBFdunRBcnIyLl++3OKDRojoMIoIikgkQllZGXR0dPDWW28BAHR1dbF//348fPgQI0eOhJWVFQ4dOsRzpeRZ1LIhguPi4gKRSIRt27bh0aNHqKqqAlA79J2cnIw333yT5wrJi1CfDRGUPn364NatWwAAsVisPpQSiUSQy+XYsGEDfH19eayQO0Lrs+EtbOo68EpKSuDm5oZTp07B2NiYj1KIgCQmJkKhUEAkEqGmpkb9haj7PNnY2MDQ0JDnKhvv2rVr8PLygrm5OcrKytSv8dGjR+jfvz9OnTql3pbCpgHqPhhpaWnw9vZGUlIS8vPzYWJiwnUppAUS8khUUVERgoOD8e2332LFihXo0aMH5HI5tLS0UFFRgZs3byIoKAj6+voUNg0VHx+PI0eOIDExESdPnkRubi46duzIRymEaIS6kKypqYFYLEZ2djbMzMzU9xcVFaFjx47qP8xCCxvOR6Pq3tAdO3bg+vXriI6Ohp6eHq09Qlq9ui93SUkJGGOorq5W31deXo5Dhw5h5MiR0NPT46vE18J52IhEIigUCujr66N3794oKCh44XYKhQKFhYWQy+UcV0g0lZbWk8FTxliL+QOlo6OD9u3bo23btgAAbW1tMMaQkZEBfX196OjoYP/+/fjpp59w48YNnqt9DYwHw4YNYwsWLGCMMXbjxg0mEolYfn5+vW1SUlKYvb09E4lEDADd6PbcraV8NqysrNjx48fVn/2CggImFovrbTNu3LjnvkcqlapZb02Nl0l9Wlpa0NXVBQAYGBi8cJtevXohPDwcCoWixfwFI69OS0sL2traKC4uxubNm1FSUgJTU1N4eHjA3t6+3qGGUOno6KhHYmNjYzFx4kSkpqZCV1cXNTU1kEgk+O233+Dg4ICrV6/yXG3jcR42s2bNwtmzZxEbG4tz586hpKQEOjo6z3VGtWnThtYkEbgffvgB586dg7+/PwYMGNDox4mOjkZgYCDef/99vP/++/Dz80N6ejrc3d2brlgN8ejRI2RlZaFHjx71fm9gYID09HSeqmoanM8g3rt3Lz788EMEBARg3LhxcHd3p5ZLC5WTkwOpVIoHDx40av87d+4gICAAoaGhcHZ2xnvvvYdevXphyJAhuHHjRr05J0JX9x2QSCRgjEEmk9X7vY6OjnqmtFA1e8uGPTXnISQkBJMmTcI333wDGxsbALW97Fu2bIG+vv5z2xNhKywsBACYmpq+0n5KpRIxMTE4d+4csrOzYW9vjzlz5qjvnzJlCgICAvD777/D2dlZsKMzdeo+89nZ2YiMjMRXX30FsVgMoHZAJTk5GbGxsYJfwL3Zw0YkEkEmkyEiIgJTp05FVlYWunXrBqC2yXj48GEwxnD69Gm4ubkJ/oNDnqisrASAV+pXKSwsxLVr1/Df//4X5ubm8PHxga2tbb1tjIyM4OTkhCNHjmD//v2YMWNGk9bNNZFIhKKiIixbtgxHjx5FcnIyLl26BMYYDAwMEBQUBJVKhZ07d/Jd6utp8i7nF4iLi2MAmL6+PktPT1f//ujRowwAMzIyYgDYpUuXuCiHcGTHjh0MAFuxYkWDts/NzWVBQUHM2dmZHTx4kFVVVf3t9v/73/+Yg4MDq6ysbIpyeTVv3jwGgBkaGjJdXV31DQBbu3YtY4w9N0IktNEoTmYQq1QqyGQyiEQiiMVi9WGSUqmEXC6HSCQCYwxisbjeXArSnBSouHcDCTfzUA1DdB/0FmyMn25V5iAxIgX5L9y3E2xHDkCXxz9V30/C5T/zILYYAvteErR5/PsHDx7AzMwMdnZ2SEhI+NulOi9evIiAgAAYGxurp+nXLfH5Mmlpadi3bx+USiVWrlwp6FaxQqGod65XHcYY2rRp88L3rrm/uk3endHk8UU0X9E1FugueWa+h5i97RfDitQbRTLfl84N8WWRjDHG5Cx1lzuTiE2YpbU16yIRM8slkU89BmMeHh4MAFu6dOkLS6msrGTffvstc3NzYyEhIezBgwev9Ff16tWr7K233mLXr19nSqWyUW+HUAmtZUNh0+oUsWNTayeMdZt1iN3MzWV3L+1g3t1qA2dWeNnj7R6HzTsB7EpuLsutdytmtQc459gScT+2Lkn++KGPsaliJ7bjyZEyy83NZaampgwA2717d71KTpw4wTw8PJi+vj6bOnUqKykpeeVXU15eztatW8emTZvGsrOzGWPPH260VEILGzpmaW3yTmHnPhlg8g1+CR4HG1NT9HScjfX+ngBk2BnxeNJYZiaSAMC8K7qamsK03s0YtQcsSihkXWHW4fGBk6QDurcrROnDJ09namqKY8eOQU9PDzNmzICLiwsiIyOxdetWREREwNraGlpaWti/fz+ys7Nf+eVIJBJMnjwZ2dnZiI2NRVVVFY1maihaFrTV6YtZO1bDWtsNtm2e/LaLuTWAE09+oVRCDgA9O8Gw5Bbi4rNQBkNYDLFHL0ndjg4Yt+RPjBz+IWI+tsXDc1twwC4QKf3rP+PAgQNx6tQpzJ8/H2fPnkVKSgqGDRsGNzc3TJkyBVZWVvDx8cGECRMQFRX1ykPlZmZmmDx5MqRSKTp16gRnZ+dGvC+k2TV5W4kIkJzFfGPCADDPkNpDEZa+gzkBDBIJk9Trr5Ew912pTK7et4plRO1gq7/+mm089CfLk7/4GaqqqtjFixeZl5cXs7W1ZcnJyfXu//jjjxkAZmNjw+7evduoVzF27Fjm7+/PSktLG7W/0AjtMIrCphXLTjjJTp78ne3wcWQSgHXzPsBS68Ii0rc2XCSObNmJmyw3N5fdPDSXWYrBgH4sMKXhzyOTyVhQUBDz9PRkq1atYnL584mkUCjUgWNgYMCCgoJe+fWcP3+effrppyw4OPiV9xUiChsiGJG+T1os3cYFsDNp5ewlDZPH5OyavzUDwEz84hr0HBkZGczLy4tNmzaNxcTEsJqampduq1Ao2Lp165ienh4DwOzs7FhQUNA/dhzfvHmTLV68mDk6OrIVK1awuXPnsrS0tAbVJ2RCCxta8LwVqy55gFIZUHrrIP7f7K/w8x1deP92E7+M7/LynaIWQeS6EfCNBNvg8tLNZDIZtm3bhvDwcIwdOxZubm7o3r072rRp89J96ty6dQs+Pj44ffo0gNrzguzs7DBw4EB06VJbm1KpxJ9//okrV66oO5Z1dHQQEhKChIQEFBcXY/v27Q1/MwSoub+6NM+GvBZ5eT67m3iOXUgrq39H0jpmDTBYr2NJf/cAdYdXvpEv3SQhIYEtXryYffnll2zv3r2ssLCwUbUmJyezzz//XD10/rKbnZ0d8/f3Z7m5uYwxxg4ePMgmTpzIzp4926jnFQqhtWxoNKqVKQ7/DBYTD0PsG4mKDS7q2b7QM4AhAGTmoxRAdUkmUpPTUGPhAoduT1oj16/WjlhZd+nw3GOXlZUhKioK58+fBwB4eXnB1dW10bXa2dkhODgYwcHBKCwsRGJiYr3hcSsrKwwYMOC5NZGGDRuGvLw8bN26FYMGDcIbb7zR6BpIE2ry+CKaLfsAGysGA7ox3xM5tZPzqjLYoVndGAAmnhXOyhhj2SGetT+7rGPxeXLGmJyVXw9mLmIwoP7EPcZq+2Z2797Npk+fzr7++utGt2aayvXr15mXlxcLCwtjMpmM11qai9BaNhQ2rVB2eN2o0jO3bt7sQN1wlDyV7XrulIbakPI+8GTou7q6mmVkZLDZs2ezcePG1Vvekk9VVVUsIiKCDR06lGVkZPBdTrMQWthQB3ErpchPwaXTpxF+PReAGfqPGoER77wF83rnMlbjbpwUZ07HIr0CkFi54INRw/HW442qq6sRGRmJJUuW4LPPPsPEiRM1anXF0tJSLFq0CG+//Ta8vb1febKgpmvur26LuW4UEbbU1FRs2bIFt2/fxsqVK2FrawuJRMJ3WfWoVCrcvn0bn332GZYuXQpPT0++S2pSQgsbOjeKvBLGGPbu3Qt/f3907twZq1evxjvvvNMkQVN99yz+u/wjDLaxgY2NO6YHSnH3BetuFd/8HYHT3WFjYwMb9+kI/D0F+YqnNlDk40roAnj27Yv/W/YbLN55D5GRkYiPj3/tGknjUcuGNNjt27fxyy+/IDc3F3Z2dnBzc4OVlVWTPHZx1Fd4x3Md7sjEMLHsiXblmbhTIAO6+SIycQNc2tdttwgDXDfiHiToYm0O3E9FTgXQzTcSiRtc0B4KXP7OEsOOTMSuH97HG7d2Yt6SCvTwaIfxwwbh3//+d5PUqwmE1rKhDmLyjxQKBTt9+jT77rvv2KxZs9hvv/3GFApFEz5DCgvsBwaYsC9O5D3ufC5ikb61I2Td/OIe/65uu37M/9rjVfzkqSzYqXbfb2LkjLF0tsPJmq1TTxYqY8emgvWfsYbNmzePSaXSJqybX0LrIKbDKPK3CgsLERERga1bt6KwsBDfffcdxo8f/7er7r2yOzE4mAzA+ivM8ej0eO5Pe7gs9ocngHs/nUACAFwPx5ZkAGO/wYy3H/dkt+mNfy2dCqAAAb9fAmAAiUkqDp+7gWoAivwYnJCaYPTMRTAyMkJYWBgePnz4giJIc6OwIS9179497NixA99++y1mzZqFwMBA9ekCzaKjEfSf/rmLOawBoOAcUjKBvJsXkQrAZIAFnh7zatd7KN4BIItJwx10xkdrD6BHoD3aikTQ7eyNa75HsOhdPbi6usLAwAB79uxpvtdAXopmEJMXOnz4MPbu3QsTExNIpVK0b9+++RelSstBEQDLup8VNbVr6kAOpRKorKi9LnzvZ2cva+vUtoaupCEHgGXvTxCaPgabH5SiRr8DTB6vv+Pq6or79+8jODgYEydO5OY1ETVq2ZB6SktLsXDhQhw5cgSffPIJ/P39YWJi8o+Lj78Wy/5wMwFQ8BP2SvNRO7BUjRs7/fH0xUtkj8r//nFkCijVP+jB2NRUHTR13n33XYwaNQrLly+HSqVqohdAGoLChqidOXMG8+fPh6GhIaZMmQIvLy906PD8OVBN7x34/OKLbijAFs/u6GJlA5uunWDrm45OJk+2Er/R7rWfqWfPnvDw8EB6ejri4uIgl8tf+zFJw1DYEPWhxR9//AErKytMmjQJ7733nvpSsFxo7/IjrsSHYNm4t9BexxB9/y8Y8VlSLLcAAF083bBS1Chf/CDvWKMhPUrW1tYYP348goKCkJ//4ovVkKZHYdOK1dTUICkpCSEhIYiJiYGFhQX8/PzQp08f9Tbc9Wm0QaeBk7HmUBxu3YrDoTWTMVAvAzGXAZgMh21PwLL3UIgBXI5Jw9MHVIqsFFwBAOuuaMgJCQYGBpg8eTLu3r2LuLi4V7piJ2k8CptWqrKyErGxsQgICEBSUhKWL1+OBQsW8FRNCn5bOg8fua/D5admAucc24J9AEw+G4m3AWCAC6aIARw8iOjiuq3KceFoKGQQY9akYWjogZZEIsGSJUtw9OhRXLp0qQlfC3mpJp+5QzSaSqViDx8+ZD/88AMbPnw427p1a7NM4Ho1ZezckscT+EZ+z0JPnmSh349k3QAG8Vh2ILtuOzlLWtevdumLt5fUbresdv1kdPNjcX+/pukLjR49mq1Zs4YVFRX988YaRmiT+ihsWpnExETm6enJFi1axBITEzXnKpLyVHbgX5ZM/NRyFhLb6Swk5ZnrfcvzWPT3jvWu+CBxXMYishqRNIyxP//8k02aNIkFBAQ0wYvgltDChs6NaiVKS0sRGhqK48ePY8KECXB2doalpaXGzTNRVBSg6KESEBvB1Phvrt1dXYIHpbJ/3q4B1q5di5ycHEyfPh329vav9Vhcau6vLi0xQV5ZVFQUwsPDoVQqMXjwYLi7u8PIyIjvsjRGTk4ONm/ejOLiYmzbto3vchpMaGFDHcQtWHl5OQ4cOIAjR45AJBJh1KhR+OSTTyhontGlSxcMGjQIpaWlkEqlfJfTYtHpCi0QYwwZGRk4f/48fv31V7i5uWH69OkUMn/jvffeQ2lpKYKCguDk5KRxC4G1BNSyaWEUCgVSUlIQGBiI/fv34/vvv4evry8FzT8wNDTEoEGDoKenh+PHj9Pcm2ZAfTYtSFVVFX799Vfs3r0bXl5e+OKLL+gyJq9AqVQiLi4Os2fPhlQqRffu3fku6W8Jrc+GwqaFSE5OxqZNm1BeXo758+djwIABdCjQCCUlJVi9ejWMjIwwc+bM5l1S4zUJLWyoz6YF2LhxIxITE9G3b1+4u7ujb9++DbrMLXmekZER5syZg7lz58Le3l6jw0ZoKGwE7ObNmwgNDUVFRQUcHR0xatQojW/6azqRSITevXvDw8MDUqkUHTp0gKOjI99ltQjUQSxAlZWVOHPmDH7++WfcuXMHY8aMweeff05B04TmzJmDwsJCREdHQyaT8V1Oi0BhIzD5+fn4448/EBISgrKyMuzateu1rqdNXqxdu3b44IMPkJOTg2PHjvFdTotAHcQCoVKpkJOTg7Vr1yIzMxOzZ8/G2LFj+S6rxVu2bBny8/OxceNGjetwF1oHMbVsBCIsLAyTJk1C586dsX37dowZM4bvklqFsWPHomPHjtiwYQPfpQgedRBruLy8PHz99dcAav/KDhkyBO3bt+e5qtZj8ODBSE9PR2hoKDIyMmBhYaFxJ68KBR1GaSi5XI7jx4/j0KFDsLGxwbvvvouhQ4fSkDYPsrKyEBoaitu3b2P79u1Ne82s10CHUeS13blzBzt37sTp06dhZWWFadOmYfjw4RQ0POnevTs8PT1x7949REdH0yLpjaQZEU0A1K4JnJiYiJMnTyIjIwNOTk6YOXMm32URAJaWlvjXv/6FnTt3okePHrC0tPznnUg91LLREKWlpbh06RL8/PyQl5eHxYsXU9BoEIlEAm9vb+Tk5CA2Nhbl5f9wDSvyHGrZaID8/Hzs2bNHfZa2q6sr9PReb/U50vT09PTg5+eH9evXo1OnTnBzc+O7JEGhlg3PpFIppk2bhpycHPz+++9wc3OjoNFQ2traGDFiBDp37oz4+HhkZmbyXZKg0GgUT/Ly8hAYGIi//voLXl5eGDp0KHr27Ml3WaQBbt68idWrV2PgwIFYtGgRb3UIbTSKDqN4cPr0aUilUqhUKnh7e8PNzY3WnRGQPn36wN7eHhkZGbh48SKcnJz4LkkQqGXDoaKiIpw4cQLXrl2Drq4uPvnkE7z99tt8l0Uaoe6SxcXFxdi0aRO0n74+MEeE1rKhPhsO1NTUIC0tDWFhYfj5559hZWUFPz8/ChoBMzc3h729PUpKSnDixAm+yxEEOoxqZiqVCvHx8di7dy8yMzPx008/0RyNFsLT0xMVFRXYsGEDhg8frnEnamoaatk0s++++w4rV66Era0tjh8/jjfffJPvkkgT0dPTg729PXr16oV9+/ahqqqK75I0GvXZNJOEhAQsW7YMdnZ2mDBhAvr160edwC3U5cuXMXXqVEilUlhYWHD2vELrs6GwaWIPHz5ESEgIoqOjMXjwYLi5ucHGxobOFG7BysvL4e/vD6VSiYULF3K2brHQwob6bJpQQkICDh8+jIqKCowYMQLe3t4wNDTkuyzSzCQSCebMmYNPP/0UV69eRefOnTXmzHBNQu9IEygtLUVcXBzOnDmDkpISfPzxx3B3d+e7LMIRkUiEnj17wtPTExERETAxMcGQIUP4LkvjUAfxa8rPz8fRo0exbds2aGtrY8OGDRQ0rdSXX36JzMxMREVFoaamhu9yNA712TSSUqlEQUEBfHx8wBiDj48Phg8fzndZhGfHjh3DqVOnYG9vj+nTpzfrcwmtz4ZaNo1QXV2NsLAwjBw5Eu7u7ggKCqKgIQCADz/8EPr6+oiKikJRURHf5WgUatm8opSUFOzevRs5OTmYNWsWHBwcYGxszHdZRINcv34dISEhUCqV+M9//tNsz0MtmxaKMYY9e/YgKCgIhoaG+OKLL/D+++9T0JDn9O/fHw4ODsjMzERiYiLf5WgMatk0QFpaGsLDw5GamgpLS0uMHj0avXv35rssosGys7Nx4MABpKSkIDg4uFnWKKKWTQtSXV2N2NhYHDx4EOfPn4eHhwcWL16M3r17N/t/NBG2rl27wt3dXb0MhUKh4Lsk3tE8m5coKyvDhQsXsGnTJvTp0wfbtm1Dx44d1ffTjGDyTywsLLBgwQJs3LgRPXv2bPUn4FLYvEBWVha2b9+OCxcuwM/PD87OzrysV0KEzcDAACNHjsTu3bsRHR0NIyMjdOjQge+yeEOHUc/4+eefsXDhQsjlcuzduxdOTk4UNKTR9PX14e/vj127duHy5ct8l8Mratk8VlJSgqVLlwIAJkyYgGHDhqFr1648V0WETktLC/369YODgwPi4uJgYWEBGxsbvsviRatv2SiVSoSHh2PFihUwNjbG2LFjMWbMGAoa0qTmzp2Lu3fvQiqV8l0Kb1p1y+bevXuIjIxEQkICtLW1MW/ePHTr1g1A7bAidQKTpmJtbY0BAwYgLS0NZ8+exYgRI/guiXOtsmWjUCiQmpqKffv24dixY7C1tcWmTZvUQQPQaBNpejNmzECHDh3Us4tbm1YXNgqFAnFxcVi+fDn++usvrF27Fp9++infZZFWwMjICEOGDIGOjg4OHjzIdzmca1WHUdXV1VizZg0uXryImTNnYvz48XT1ScIpd3d3FBcXY9u2bfDw8GhVp7sIomVTN1t306ZNEIvFMDMzg5mZGQwNDVFcXIyVK1fiq6++eul+QO06sV5eXqipqcG6desoaAgvtLW1MXjwYDg5OSEgIAAymaze/VeuXIGRkRH69u2Lrl27wtTUVP1ZHzZsGE9VNw3BnBv1zTffoLCwEK6urur/IG1tbcTGxmLz5s2YMGHCC5um9+/fx/79+3H16lW4uLjg3XffRZ8+fbgunxA1xhguX74MHx8f7Nq1C7a2tuo+wpKSEuzZswdffvkl1qxZAwsLC8jlcmhra6OgoADh4eGIiIgAUHuZoObsW2yVC54HBwfjypUrmDJlClxcXOrd9+abb6Jdu3ZYv349XF1d690XFRWFc+fOobS0FH379sX06dOhq6vLZemEvFBlZSX8/f0hk8ng6+uLrl27qkdAFQoF9PT0cO/ePZibm6v3qa6uxqJFi9CxY0fMnTsX5ubmzXqOXqsMG5FIhLCwMHz00UfPDUmbm5tj1apVmD17tvp35eXliI+PR3h4OMRiMSZMmEBXnyQap7S0FFOnTsXs2bPh4eEBsVgMACgoKEDnzp1x48YN9QTApz/3IpEIZ86cgaurq6DCRqM7iFUqFbKystC/f3+0bdsWwPNvgI2Njbq1IpfLkZGRgbNnz+LHH3/EuHHjMH78eJiYmCA1NZXz+gl5GS2t2u7SXr16ISwsDMbGxuo+GW1t7edCpO5zL5PJIBaL0aZNG24LbgIaHTaFhYWwsLBAenr6S8+YjYyMVP87KSkJH3zwAQoLC6GlpYXAwEBs2LCBq3IJeWUikQgqlQqDBg1Sh41MJoOurm6Lm+ul0WFTR6VSNWg7Ozs7XLp0CRKJRP0fJYCjRNKKiUQilJeXo3379gCAmJgYfPzxx8jMzISZmdlz29cdaglRiwibuuPZtm3b0rW0ieA8vU6STCZDXl7eC4MmOzsbo0ePhkwmE2SrR6Pn2dSFTLt27QDUhsrTLZVJkybh1q1bgnzjCXla3efawMAAKpVKPb3j6c+7SqVCQkIC/P39YWtry0udr0OjWzYGBgaYP38+goKC4OPjo057mUyGH3/8ETU1NXSZUyJ4dS3zzMxMSKVSrFq1Sn24JBKJcP36dUilUjx69AgLFixQL4UitC4CjR36fnqoz9XVFSNHjoSzszOUSiXu3r2L9evXIykp6bltCRGi3NxcLFy4EOHh4YiPj8f9+/fBGIORkRH8/Pxw/PhxjBs3DocOHVLvI7QFzzU2bJ41adIkHDhwAABgb2+Pq1ev8lwRIU1nwYIFCAoKQseOHfHw4cN6AxzV1dWYPXs2tm/fXm8fCptmolKp6r25tFQnaUme/Xw/SyQSqefm1KGwIYRwQmhho9GjUYSQloPChhDCCQobQggnKGwIIZygsCGEcIKm3xIiUEKbyEotG0IIJyhsCCGcoLAhhHCCwoYQwgkKG0IIJyhsCCGcoLAhhHCCwoYQwgkKG0IIJyhsCCGcoLAhhHCCwoYQwgkKG0IIJyhsCCGcoLAhhHCCwoYQwgkKG0IIJyhsCCGcoLAhhHCCwoYQwgkKG0IIJyhsCCGcoLAhhHCCwoYQwgkKG0IIJyhsCCGc+P9r5ui0RheX7AAAAABJRU5ErkJggg==",
"path": "images_version_5/image_58.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, AB parallel CD, then the size of angle D is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
Như hình vẽ, AB song song với CD, thì số đo góc D là ()
Lựa chọn:
A: 65°
B: 55°
C: 45°
D: 35°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB parallel CD, then the size of angle D is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB parallel CD, then the size of angle D is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
As shown in the figure, AB parallel CD, then the size of angle D is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
290
|
58
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAukAAAH2CAYAAADNrBLYAACOUUlEQVR4nOzdd1QUVxsG8AfpCIgiKtiwK9h7xxZ71xiNvcUSjTEmRpNYkmiMMbFHo7Fh7xp7Fyv2BvZuEBUViaDS5H5/7DeXRXaX3WWBUZ7fORzHd9rdOu/eucVKCCFARERERESqkSWjC0BEREREREkxSSciIiIiUhkm6UREREREKsMknYiIiIhIZZikExERERGpDJN0IiIiIiKVYZJORERERKQyTNKJiIiIiFSGSToRERERkcowSSciIiIiUhkm6UREREREKsMknYiIiIhIZZikExERERGpDJN0IiIiIiKVYZJORERERKQyTNKJiIiIiFSGSToRERERkcowSSciIiIiUhkm6UREREREKsMkXYdevXrBysoK3t7eGV2UD0K9evVgZWWFevXqZXRRjPY+lvnt27eYMWMGqlatCldXV1hZWcHKygpt27YFAAQEBMhYQEBAhpaVSG1S+swrn53x48enyfnv3bsnz7FkyZI0OUdmxO89wzLT+87b2xtWVlbo1atXRhfFaBZJ0o8ePSpfZCsrKxw+fNgShyUiE3Tp0gVffvklTp8+jcjIyIwuDmlp1KiR/H5s0KCB0fspiaOuP1tbW3h4eMDPzw+//fYbXrx4kYaPgN5Hr169wqJFi/DJJ5+gePHiyJ49O+zs7JArVy7UqFEDX331FU6cOKF3f13vuyxZssDV1RX58+dHpUqV0K9fP8yfPx/Pnz9Px0dGlDlYJElfunSpwf8TqcH48ePlheZDc/z4caxbtw4A0KJFC+zduxeXLl1CUFAQZs6cmcGly9xCQkJw8OBB+f+AgAA8ePAg1ceNj4/Hs2fPcPjwYXz77bcoVaqUwYSLMpcFCxagSJEi6Nu3L9auXYubN28iIiICcXFxePr0KU6cOIFp06ahRo0aqFq1Ko4fP27UcYUQiIyMREhICM6dO4eFCxdiwIAByJcvH3r37o1nz56l8SPTSOs7G++797HWmJKzSe0BYmJiZHLg7OyMqKgorFu3DrNmzYKjo2OqC0jvP95iTHv79u0DAFhbW2PlypVwdXVNtk29evUghEjvomV6y5cvR0JCAuzs7CCEQFxcHJYvX47vvvvOpOMEBQUl+X9sbCzu3LmDZcuWYcuWLXjy5AlatGiB69evI2fOnJZ8CPQeSUhIwJAhQzB37lwAQJYsWdC6dWu0aNECRYsWhaurK54+fYqgoCD8888/OHr0KE6fPo3ffvsNmzdv1nnMypUrY/HixfL/MTExePHiBW7evImjR49i06ZNePPmDZYsWYJdu3Zh06ZNqF69eno8XCKj3bt3L6OLYLJU16T/888/iIiIAADMmDEDAPDy5Uv8888/qT00ERnp4cOHAIDcuXPrTNAp4yxbtgwA0KxZMzRr1ixJzBSlS5dO8lexYkV07NgR//zzD3r06AEACA8Px8KFCy1XeHrvTJgwQSboRYoUwblz57Bp0yb069cP9erVQ8WKFdGkSRN8/fXXOHLkCI4cOYIKFSoYPGbWrFmTvPcqVaqERo0aYdCgQVixYgUePHiArl27AgAeP36M1q1b4/79+2n+WIk+dKlO0v39/QEAPj4+6NOnD3x8fACwyQtReoqJiQEA2NraZnBJSNvp06dx5coVAEDXrl1lInPt2jWcOnXKYucZOXKkXD558qTFjkvvl3PnzuGnn34CAOTJkwdHjx5FuXLlDO5Tu3ZtHD9+HJ9++qnZ582ZMyeWL1+OgQMHAgCePn2KYcOGmX08ItJIVZIeFhaGPXv2AAC6desGAPIitGfPHjx58iTFY4SGhmLUqFGoWLEismXLBjs7O+TJkwdlypRBly5dsGTJErx8+dKs8r19+xZLlixBkyZNkCdPHtjZ2cHNzQ3FihVDw4YN8csvv8gLqCEREREYO3YsfH19kTVrVri5uaFu3bpYsWKFUeUICgrCZ599hmLFisHJyQkuLi7w9fXF8OHD9d5+WbdunWxzd/36dZ3bFC1aVG6zYcMGndu0bdsWVlZWqFKlSpL4kiVL5L737t1DQkIC5s+fj5o1ayJ79uzImjUrypYti4kTJ+L169dGPU59DI2aoKtn+d69e9GqVSvkyZMH9vb2KFSoEAYNGoSQkBCzzq881h9//FHGdHWIMnQr7OHDh/jqq69QtGhRODo6wt3dHU2aNMHOnTuNKsOLFy8wYcIE1KhRAzlz5oS9vT28vLzQpk0bbNy40azHpf04lB/L9+/fT/a4FMaOcnD//n0MHDgQ3t7ecHBwgJeXF9q2bSvbVRtq22/KSAGG2ky++/6MiYnB9OnTUb16deTMmVNvW9T4+HgsXLgQzZs3h5eXF+zt7ZEzZ07UrVsX06dPR3R0tMEyWZpSWZEtWza0atUKrVu3lnc6LFmRoT0SVWoe47vtfPft24fWrVvD09MTDg4OKFy4MIYMGZLiZ/HOnTv4448/0KpVK3h7e8PR0RGOjo4oWLAgPvnkE+zatcvg/qa+/rGxsdi6dSuGDBmCKlWqIHv27LC1tYW7uzuqVauG8ePHp1tb6evXr+OLL76Ar68vsmXLBkdHRxQuXBi9e/fGuXPn0vTckyZNwtu3bwEAs2bNQp48eYzaz8HBAZ06dUr1+adPn478+fMDALZs2YLLly+n+pjvUr43FD/++GOy77yU2mGvXbsWDRs2hIeHBxwdHVGiRAmMHDkS4eHhRpVh79696NatGwoVKgRHR0e4urqiXLlyGDlyJB49eqR3v3e/O6OjozFlyhRUrFgRLi4ucHFxQdWqVTF79mzEx8cbVZZ3Kddb5U6Gv79/sucnpVHLUnsNPnXqFPr374/ixYvD2dkZWbNmRcmSJfH555/j5s2bZj0ubebmjfquOdrXLWP+DD1/Fn/sIhWmTp0qAAgrKytx//59IYQQ9+7dE1ZWVgKA+OOPPwzuf/jwYeHq6ioAGPzbunWryWWLjIwUderUSfHYHTp0SLZvz549BQBRsGBBcfXqVeHt7a13/88//9xgOX755ReRJUsWvfvb29sLf3//ZPuFhYXJbebOnZtsfUhISIrlSEhIEDly5BAAxIgRI5KsW7x4sdw3ODhYNGjQQG8Zq1atKqKiolJ6yvXy8/MTAISfn1+ydXfv3pXnWbx4sfj222/1lsPDw0NcuXLF5PNrP1ZDf3fv3tVZ5iNHjgh3d3e9+02ZMsXg+bdv3y7c3NwMnrtFixYiMjLS5MdmzONSHDx4UMYOHjyo83h79uwRWbNm1XkcKysrMXHiRDFu3Lhkx1a8+3oaUrBgQQFA9OzZM9k67dfs9OnTonz58snKM27cuCT73Lp1S/j4+Bh8LooVKyZu3LiR0tNqEbGxsSJnzpwCgOjTp4+M9+7dWwAQ7u7uIjY21uAxlPdhSl/VwcHBcrsBAwaYXWbt53b8+PF6n0dXV1dx6NAhnce4c+eOUe/Lbt26ibi4OJ3HMPX1V76zDf25u7uLo0eP6n3shr6n3n1u9Pnpp5+EjY2N3jJYWVmJsWPH6tzXlM+OLhEREcLa2loAEAUKFBBv3741+RjvUsqj7znR5ZdffpH7TZw4MdVleJfyvWHoT/s7Rft7b9++feLTTz/Vu1/RokXFo0eP9J47KipKtGvXzuC5nZ2d9eYs2t+djx8/FuXKldN7nFatWpn1Gmp/Z+j70349LXkNjouLE4MGDTJ4bltbWzF//nyTH5ciNXmjvmuO9nNgzJ+uz0NaPfZUJenKG6xu3bpJ4kpyXK5cOb37RkdHCy8vLwFAuLi4iJEjR4qdO3eKs2fPihMnTog1a9aIL7/8UuTPn9+sJH3EiBHyiWnZsqVYtWqVOHbsmDh79qzYtWuXmDx5sqhTp47o2LFjsn2VL3wPDw9RrFgx4eLiIn744QcREBAgzpw5I/7++2+RL18+efxdu3bpLMOff/6Z5M39+++/i8DAQHH06FExfvx4mQxZWVmJ7du3J9u/VKlSAoD45JNPkq1btmxZkhff19c32Tbnz5/X+4bVvgjWrFlTZMmSRfTs2VNs375dnD17VmzatEnUqFFDbjNq1Chjn/pkjE3Sa9asKbdbuXKlOHPmjNi3b5/o0aOH3KZ69eomn//FixciKCgoyQcoKCgo2Z92wqSUuXjx4iJnzpwiV65c4tdffxVHjx4Vp06dElOnTpWJt42NjQgODtZ57j179sgLp7e3t5g8ebIICAgQ586dE1u3bhXdunWTZWrfvr3Jj00pe5s2bQQA4eXllexxKVJK0m/evCmcnJwEAGFtbS0+//xzsX//fnH69GmxePFimQBXrVpVHuddaZGkly1bVlhZWYkePXokeX/u2LFDbh8aGipy584tv09GjBghdu7cKc6dOycOHjwoRo8eLR9b4cKFRUREhNHPsbk2bdokH8OBAwdkfP/+/TK+adMmg8cwNknv1auX3E7Xd4mxlGNUrlxZABAlSpQQCxcuFKdPnxb79u0TAwYMkJUOLi4u4t69e8mOcfPmTWFnZydatWolZs6cKfbt2yfOnTsn9u3bJ+bMmSN8fX3lefQlrKa+/l27dhWFCxcWI0aMEGvWrBGBgYHi9OnTYv369WLgwIHCzs5Ofg8/efJE5zlTm6SPGTMmyXfZggULRGBgoDhz5oxYsWJFku/TmTNnJts/tUn6tm3b5P4DBw40eX9dDCUl+pw6dUru17RpU4uUQ9v169dFUFCQPMegQYOSfeeFhITI7bW/95RrTNu2bcXGjRvF2bNnxY4dO0SLFi3kNp07d9Z53vj4eFG/fn15ze7SpYtYt26dOHPmjAgMDBQzZswQBQoUEACEnZ2dOHPmTLJjaCfpNWvWFHZ2duKLL74Qe/fuFWfPnhUrV66U130A4q+//jL5+blz544ICgqS+VWbNm2SPT937tyR21vyGqy9XbNmzcTy5cvFqVOnxOnTp8Xff/+d5LO/ZcsWkx9bavNGfdec2NhYnTmB9p/257tHjx7p9tjNTtIvXbokT/juL4N58+bJdZcuXdK5v/aFylASHhcXJ/777z+Ty5c/f34BQGcSru358+fJYtq1Mm5ubjoTsJs3bwoHBwcBQLRu3TrZ+rCwMJkUeHl5iQcPHiTb5ty5czJRz5s3b7JaNSWpzJMnT7J9+/btK8+tfGmEhYUl2WbatGkCgMiSJYt48eJFknXv1i4vW7Ys2Tmio6NF6dKlBaCphdJX65USY5N0AKJ///4iISEh2Xb9+vWT25w7d86schiqAdZXZkBzR0X7S19x5MgRedfoiy++SLY+KipKJo6NGzcWr1690nmu+fPny3Pt27fP9Acmkt790SelJF15LwEQ69atS7b+1atXSRL09ErSAYiFCxcaPFbLli0FAJE/f35x+/Ztndtof95++OEHg8ezBKXGLV++fElqxN6+fSt/5Ldr187gMbTfh+9eNM6ePSs2bNiQpGYvpe+7lGg/5xUrVtR5d2fp0qUGzxcVFSVCQ0P1niMhIUH+qMiaNavOH0ymvv63bt3S+b2huHTpknB2djb42qcmST916pT88aLv+G/fvpU/yl1cXJJ9J6c2SZ84caLea7K5zEnSY2Ji5HNRuHBhi5TDUNkM3dkQIun3HgAxYcKEZNskJCSIxo0bC0BT6fLutVQIIX7//XcBaGpDtX8gagsPD5fJWO3atZOt174G2dra6vwefv78ubxulC1b1uBjM8TQ96s2S12D169fL9f//fffOs/15s0bedfe29vb5JwitXmjsc/Ju06fPi0cHR0FAFGqVKlkx07Lx252kq7UVNvb2yf7snnx4oWwt7cXQPJmFooVK1bIB2VOEp4SW1tbAUDMmDHD5H21k3RdNR6Kzp07CwAie/bsydZNnjxZHmPVqlV6jzFhwgS53dq1a5OsW716tVx39erVJOuKFi0qk6nChQvrTKzatm0rL7bv0r4IGqrB/euvv+R2Fy9e1LudIcYm6Z6eniI6OlrnMa5duya3M+c1FcL8JN3Qr97q1asLAKJChQrJ1s2aNUsAEA4ODnpr7xRK8tu1a9eUH4gOqU3SQ0JC5IXVUOJ44cKFdE/SGzRoYPA42rVq//zzj8FtR44cKQDND+e09Pz5c1l7O3LkyGTrv/nmGwFoatx0VRQojLl1DWju+CxYsCDVTRy0j6mrJlDRrFkzmdAYSsj1ef78ubzDtH79+mTrTXn9jfXll18KAKJ06dI616cmSe/QoYMAICpVqmTwx4L2tfHdi3lqk/Thw4cb/TkwljlJuhBCZMuWTe+10VLMSdINvT67du3S+/zFxsYKT09PAUAMHz7c4Pl27Nghj3Pz5s0k67SvQV999ZXeY4waNUpuZ+5dP3OS9NRcgytVqpTi9UMIIa5cuSKPs3fvXqMfjxCpzxvNSdIfPnwo8ubNKwCIHDlyJHtNhUjbx25Wx9G3b99i5cqVADQTp7i5uSVZ7+bmhubNmwMAVq5cKTuyaPP09JTL2uOvWopy/DVr1pjd8dHKyspgj/dKlSoB0HQKVIahVCjjVru5uaFDhw56j9GvX79k+yi0Oydod/R7+PAhbt26BSsrK/j5+cnttLcRQsiZX/38/PSeH0js7KuL8hgBTWewtNSxY0fY29vrXFeiRAk4OzunSzm0ubm5oUWLFnrXK8+PrjIpw5D6+fkhV65cBs9Tt25dAEBgYKC5RU2VgIAAJCQkAAB69uypd7ty5cqlOFqEpRl6fwKJz7OTk5PB1wpIfJ5DQ0Px77//WqaAOqxevRqxsbEAEjvVa1NisbGxWLNmTarPd+PGDSxatMjoCWlSUqZMmSSf/Xf16dMHgKajbkrzIMTFxSEkJARXr15FcHAwgoODERoaCnd3dwDAxYsXDe6f0uuvy4sXL3D79m1cvnxZnlO5Tl25cgVxcXEmH1OfuLg42YG8Y8eOBidLc3NzQ5kyZQBY/rOuPctw1qxZLXpsUynf1Wqb+fjTTz/V+/oYutadOnVKdghNqYOt8h0DGH6Njb3u3r171+D5LMnca/DDhw9x9uxZACk/P6VKlZLzOJj6GUjrvPFdb968Qdu2bfHw4UPY2Nhg3bp1KFq0aJJt0vqxm5Wk79mzR75hdV2AtOOPHj1KlnwCmmGfChcuDAD48ssvUbVqVUyaNAnHjx+XF7fUUBKN48ePo1ChQhgyZAg2bdqEp0+fGn2MnDlzyguJLjly5JDL734ZBQcHAwAqVKhgcFi83Llzy5EZlH2015UoUQJA0gRcWfbx8YGHh4fOJP3SpUuyp3pKPblLliypd52hx2hphsoBANmzZ0+XcmgrVqwYsmTR/zFRnh9dZTpz5gwAYPfu3Sn2Fv/9998BaMYYzgja7z1DyRmgmdgkPZUtW9bgeuV5fv36NWxsbAw+zy1btpT7peVzrYy2U7ZsWZmUadOOGzvKi9Dc+ZR/b9++xZMnT7BhwwaUK1cOx48fR6NGjbBp06ZUl//d0aDeVbVqVbn87vcWoElc//zzT1SvXh3Ozs7Inz8/fHx8UKZMGfkXFhYGACmOupLS668ICgpCnz594OnpiRw5cqBo0aIoXbq0PJ8yGkxCQgJevHhh1DGNceXKFVkRNHr06BQ/68r71dLvPxcXF7n86tUrix7bVMr3odrmbDD3Wqe8ZgBQo0YNg6+vksgChl9jtVx3tZl7DdZ+frp06ZLiZ0D5zJv6GUjrvPFdffr0wenTpwEAM2fORIMGDZJtk9aP3awkXbmoGKpl1K5h13URsrW1xdatW1GqVCkAmvGEv/vuO9SqVQtubm5o1qyZ3lp4Y4wZMwZ9+vSBlZUVwsLC8Oeff6J9+/bInTs3ypQpg3HjxqU4RKSTk5PB9drJ27vlVBLk3Llzp1hWZZgsXcM/KQn2oUOHZExJxpV19evXB6C5WCg/QpRtsmTJgjp16hg8v6HHaegxWpqxz3dal0ObsWVSaqEVcXFxye6uGCO1w12aSztpSanW38PDI62Lk4RyYdBHSfZMlVbP9Y0bN+QY6PoqMbTXnThxwqyhubJkyYJcuXKhffv2OHr0KIoXL46YmBj06tUr1UloSu8B7e+1d7+3wsPDUaNGDQwZMgQnT55M8eL55s0bg+tTev0BYOHChahYsSIWL15s1MUvpXOaQi3vP+1ZZo0Z/jitxMTEyCROO9lUA3OvdWnxGqvluqvN3Gtwen0G0jpv1Pbzzz9j9erVAIDBgwdj0KBBOrdL68duY+qBtWcTjYiI0HtrRNvmzZsRGRmZ5Jc+oKkJDgoKwtatW7F161YcOnQIt2/fxps3b7Br1y7s2rULU6dOxY4dO1K8aLzL1tYWCxcuxIgRI7Bq1SocOHAAZ86cQWxsrLz9OXXqVCxfvhxt2rQx6dimMHTrUyEMTNXu5+eHefPm4fHjx7h27RpKliwpE3YlSc+XLx8KFy6MO3fu4NChQ+jYsaPcpmzZskZd5MiytL8kOnXqhDFjxmRgad5v1tbWBtcrz3WhQoWwZcsWo49bqFChVJVLH6UWHdBMMqQ90ZA+S5cuxc8//2z2OZ2dnTFo0CAMHz4cL1++xPr169G/f3+zj2fM95Y+w4YNk7d/27Ztiz59+qBs2bLIlSsXHBwc5LELFCiAf//91+D3H5Dy63/t2jUMHDgQ8fHxyJUrF7755hs0aNAA3t7ecHFxkXcyFy1ahL59+wIw/J1rKu3P+pQpU9C0aVOj9rN0kxTtZmhpPR67IRcvXpTPr3In+H2n/RoHBAQYvMOuzdS85X2l/fysWLHC6Ltf5uQmaZk3KjZs2IBx48YBABo2bIgZM2bo3TatH7vJSfratWtNroV4/fo11q9fj969eydbZ21tjbZt26Jt27YANM1jdu7ciTlz5uDs2bM4e/YsBgwYYPYtXB8fH/z888/4+eef8ebNGxw7dgwrV67E0qVLERUVhS5duuD27dtJ2jpZQo4cOfDo0SOjanWUWg9dtQ7vtkt3dXXFzZs3ZXt07e3u3LmDgIAAdOjQwej26JQ2HBwc4OTkhNevXyMiIgKlS5fO6CIZpP2FERYWhnz58und1lCTMe0aoHfvLrzLUrfklQvmkydPULJkSdjYmPy1ZjFCCCxfvtzk/ZYvX46ffvopVcmx9q3qoKAgs48DpFwTq71e+3vr5cuXso39p59+anDCN0s1OVmyZAni4+NhbW2NgIAAWcuWVud7l3bCFhcXl2Gf9dq1a8Pa2hpv377Fzp07kZCQYLCpXlrZu3dvkjJ9CLRfYzs7O9V/n6c37efHysoqzZ+ftMwbz58/jx49ekAIgaJFi2Lt2rUGrylp/dhN/gQrTVc8PT2xatWqFP8KFCiQZL+UeHp6ok+fPggMDETFihUBANu2bbPI7UlHR0c0atQIixYtwpQpUwBobntu27Yt1cd+l/JCnT9/3mAnpbCwMDkzmK4X19PTE8WKFQOgSdLfbY+u0G6XHhQUhOfPnyeJU+pqB81RoUIFAMCxY8cyrBmLsXx9feWydhs7XQyt175bZigpev78ucVmgFSe59evX+PYsWMWOaa5Dh48iAcPHgAAhg4dmuL341dffQVAM+Od8sPaXNozFKa2Y6TSDtOY9drfWzdv3pTn7ty5s979r1+/jqioqFSVUaHMalmuXDm9CTqQ8vvaXL6+vrCzswMAOQN3RsiWLRvatWsHQDNr8ObNm9O9DNHR0fjrr78AaL5v0/IudXpSvmOAjH2NTZGe17uMfn4slTc+fvwYbdq0wevXr5EtWzZs3bo1xSZbaf3YTUrS7969i6NHjwIAOnTogM6dO6f49/HHHwPQtKlWLl7GsLW1lbXA8fHxZrXvNaRhw4ZyOS2mi27UqBEATZOgDRs26N1u4cKF8tagss+7tNulv9seXaHdLn3dunUANB/SlNqjZyYODg5yOSYmJs3P17p1awCaGuM///wzzc+XGvXr15e1boZ+UF+8eNHgaBzZs2eXfVEMJUWrVq0yr6A6aCcCv/32m8WOaw7lubO2tsYPP/yQ4vfjDz/8IJtjGFuRoY924qxMzW6uoKAgnD9/Xu/6RYsWAdA8Tu3vIu0fCoZ+mCqJnCUo5zR0vsePH8tmmpbm5OQkrycBAQGyP0JGGDVqlPwcDx061Oj2sjExMVi7dm2qzz98+HA5dXzbtm0N/mhKLeX7PD2+y2vXri2Ttb/++kvnlPNqk57PT9GiReHj4wNAM7KVKbmeJaUmb4yOjkbbtm3x77//wtraGqtXr06xIy2Q9o/dpCR92bJlMqHs2LGjUfso2wkhsGzZMhk/cuQIbt26pXe/2NhY2a7a2dnZpM5q4eHh2LJli8F2h9q/eNKibWrv3r1lJ4wRI0boHO7t4sWL+OWXXwAAefPmlbdu3qW86R4/fiy/SN9N0pV26UIIzJo1C4BmGDVj285lBtpNmm7fvp3m5xs4cKDszDVmzBg5TJs+x44dS3Vtqrny5s0rO4Fv2rQJ69evT7bNmzdv8Nlnn6V4LGUIsn/++Ufn83z16lWMHTs2lSVOVKVKFTRu3BgAsGPHDtmWUJ979+7p/ZGg9MBXRlwyxevXr+UP8jp16hjVHjJ79uxyxID169ebfcfw/v37mDNnjvy/MgRuanz22Wc6myStXLkSO3bsAKBJxLQ/V0WLFpU1ePp+dGzbtk1+R1mCcqfxxo0bOHHiRLL1r1+/xqeffmrRzqLv+v777+Xj7ty5s8HvF2UIYyWZtaRKlSrhhx9+AKAZZrR27dopNn0KDAxEzZo15bDK5nj27Bm6desmf3zlzp1bbzvee/fuyc9Zau70Ku+79Pgud3BwwNdffw1Acx3u3LmzweZ6kZGRmD17dpqXy5D0fH4AyPdddHQ02rdvb7BZZExMDObMmYPo6GiTzpGWeWO/fv1w8uRJAKb1LQHS9rGb1HhTSbJz5cpldA1ttWrVkC9fPoSEhGDZsmX4/vvvAQD79+/Hzz//jDp16qBFixYoW7YsPDw88ObNG9y4cQN//fWX7PzSr18/k9qZvnz5Em3atIG3tzfat2+PatWqoWDBgrCxscGjR4+wdetWLFiwAIAmuW3VqpUpT4NRPDw8MGXKFHz++ecIDQ1F5cqVMWrUKNSsWRNv377Fvn37MGXKFERFRcHKygrz58/XO1Sj9hfZf//9l6w9uvZ2d+7cwX///QeA7dHfVbNmTbk8fPhwfP/99/D09JQXV29vb4u2Z3Z1dcWqVavQrFkzxMTEoGXLlujQoQM6dOiAIkWKANC0pTt79iw2bdqES5cuYdasWUnG2U1PU6dOxf79+/H69Wt07twZgwYNQvv27eHq6org4GD89ttvuHLlCqpUqWKwOcTgwYOxZcsWvHnzBvXq1cP48eNRoUIFREVFYd++fZgxYwZy5coFGxsbk4ZENWTx4sWoXLkyHj16hJ9++gm7d+9Gnz59UKZMGTg4OOD58+e4dOkSdu3ahQMHDqBt27bo0qWLRc6t2LBhg2zCYWhuhHd16NABu3fvxsuXL7F582a95Xp3qMOEhAQ8f/4cR44cwcyZM2UTt65du6J8+fLmPYj/q1y5Ms6cOYPKlSvj22+/RZkyZfDff/9h/fr1mDdvHgBN0yZl6FCFu7s7mjdvju3bt2PHjh1o2rQpBgwYgAIFCiAsLAwbNmzAkiVLULhwYURERFjk9e/evTtmzZqFhIQENG/eHCNHjkTNmjXh4OCAs2fPYtq0abh58yZq1aqVZs2hatWqhbFjx+LHH3/E3bt3Ub58efTt2xeNGzeGp6cnYmJicO/ePQQGBmL9+vUIDQ1FUFCQwb4f5ho3bhweP36M+fPn4+bNmyhfvjzatm2LFi1aoGjRonBxccHTp08RHByMLVu2yKTG0N2XV69eJXn/xcTEICIiAjdv3sTRo0exceNG+SPIy8sLmzdvTvXdnJTUrFkTd+/exZYtWzBv3jzUqlVL1h67urpavNPmyJEjsX//fuzfvx87d+6Ej48PBg4ciBo1asDNzQ2RkZG4fv06AgICsHnzZjg4OGDIkCEWLYMpatasiYMHD+L06dP49ddf0axZM9lZ2dHREXnz5rXo+bp06YLdu3fD398fZ8+ehY+PDwYMGAA/Pz94eHjg1atXuH37No4cOYKNGzciPDwcPXr0MOkcaZU3Llq0SPafadCgAT766COdQ8sqsmbNmqRyN00fu1FTHgkhjh49KmdKGjBggLG7CSGE+OKLL+S+J06cEEIknXnL0F/79u3FmzdvTDrfu9Pc6vvLmzevzultjZm9UYiks+LdvXtX5zYTJ06UMznq+rO3txf+/v4pPqYiRYrIfXx9fXVuoz1dNwCxYcOGVJVdiNTPgieE8TOOpmaGSmN16tRJ72uh/TykNPugwphZTPfv3y/y5Mlj1HvSmPeCLqmdcVSxZ88ekTVrVr3lGzdunBgzZowANDOp6qP9mX/3L3/+/OLy5ctGzzhq6P2p7d69e6JKlSpGPc+9e/dOtv/r16/lel2z9KakUaNGAoCwsrISDx8+NHq/p0+fytk3mzZtmmSdsTOOKn+ffPKJ3hkDjaH9Ohv6jnZ1dRUBAQE6j/HgwQNRoEABvfsWKFDA4q//jz/+aPB5GTFiRIrHTM2Mo4pp06bJGUUN/dnZ2SWbudAS37Xa5s6dKzw8PIx639SsWVOcOnVK72M25s/BwUH06dNHPHv2zGC5tGddNDTbdUrOnz+v97nWfk8Z87337uPV9xq/fv1a9OjRw6jno1ChQsn2N3bWa1PKrE9ISIjIkSOHzrJpv8cteQ2Oj48XI0eOlN9nhv6yZs0qXr9+bdJjSm3eqK/8xh5X1/OX1o/d6OYu2rcuTaklend75TgjR47Ejh07MHz4cFSvXh0FChSAg4MDHBwc4O3tjU8++QTbt2/Hhg0bkrQlNkbBggVx4cIFTJkyBc2aNUOJEiXg5uYGGxsb5MyZE35+fvj9999x9erVJI3+08J3332H8+fPo3///ihSpAgcHR2RNWtWlCpVCsOGDcO1a9eM+kWlXZuu7xah0i4d0Ny2z6gaWTVbvnw5fvvtN1StWhXZsmVLl9EPGjRogNu3b2P27Nlo2rQpPD09YWdnBwcHB+TPnx+NGzfGxIkTjX4vpCWlBmHAgAEoWLAg7OzskDt3brRo0QK7du3C+PHjZXvMbNmy6T3OjBkzsHLlStStWxeurq5wdHREiRIlMGrUKJw/f1624bOkggUL4uTJk9i0aRM6d+6MQoUKwcnJCba2tvDw8EDNmjUxYsQIHDp0CAsXLky2v/YMcMOHDzfp3A8fPsSBAwcAaCY78fLyMnrfnDlzys/q3r17jZ7kwsrKCi4uLvDx8UHfvn1x6NAhrF692qhhcY0xfvx47Nq1Cy1atEDu3LlhZ2cHb29vDB48GJcvX9Z7py5//vw4d+4cvvnmGxQvXhz29vbIli0bypUrh3HjxuHChQsWf/3Hjh2L7du3o3HjxsiePTvs7OyQL18+tG/fHnv27ElW459WvvzyS9y+fRtjxoxB9erVkTNnTtjY2CBr1qwoXrw4OnTogL/++gsPHz5MNnOhpQ0cOBB37tzB33//jY4dO6JIkSJwdXWVn4fq1avjq6++wqlTp3Ds2LEUJ7DS5uzsDC8vL1SoUAF9+/bF/Pnz8fDhQyxcuDDFJpap+ZxpK1++PAIDA9GlSxcUKFDAYu97QxwdHeHv748zZ85g0KBB8PX1RbZs2WBjYwM3Nzd5B2X9+vW4evVqmpfHkLx58+LUqVPo27cvihYtanIeZQ5ra2tMnjwZV65cwYgRI1ChQgVkz54d1tbWcHFxga+vL7p27Qp/f388evQIjo6OJh0/LfPG1Eqrx24lhAUHjCWiD16jRo2wf/9+1K5dG0eOHMno4ljM+PHj8eOPP6JYsWK4evVqiuNzf4iUpl/jxo2TM3QSWVKvXr3g7++P+vXryx+2RKRb+g+iSkTvrdDQUNm5tXr16hlcGstS2uZ+9913mTJBJ0oPyufMkp3HiT5UTNKJSDLUc/7Nmzfo1auXHAc7o5vmWFJsbCxOnjyJQoUKoVu3bhldHKIPUkhICO7du4c6depwDg8iI2Tc1HxEpDr9+vXDq1ev0KlTJ1SqVAk5cuRAZGQkzpw5gzlz5sgkvm/fvihTpkwGl9Zy7OzsVD/hFNH7Ll++fAaHRiaipJikE1ESZ86cMTgRUbt27Sw6zjURERElxySdiKSpU6di06ZNOHDgAEJCQvD06VMIIZArVy5Ur14dPXr0kJMeERERUdrh6C5ERERERCrDjqNERERERCrDJJ2IiIiISGWYpBMRERERqQyTdCIiIiIilcnQJD04OBjdunVD/vz5YWdnBysrK1hZWeHChQsZWawM1atXL1hZWcHb2zuji5Ih1PL4w8PDkTNnTlhZWeHEiRNJ1gkhUKZMGVhZWWHx4sUZVEIiIiL6kGVYkn727FlUrVoVK1asQEhIiJzFkNShXr168keT9p+TkxM8PT3h6+uLTz75BFOmTMGNGzcyurgWN378eDx//hxNmjRB9erVk6yzsrLC999/D0AzhXxUVFRGFJGIiIg+YBmWpI8ePRpv3ryBq6sr5syZg1OnTiEoKAhBQUEoWbJkRhWLUvDmzRs8fvwYV65cwdq1azFy5EiULFkSDRs2xMWLFzO6eBbx4MEDzJs3D4AmWdelU6dOKFmyJB4/fsyJfYiIiMjiMmSc9Li4ODg7OyM2NhZff/01pkyZkt5FUK1evXrB398fBQsWxL179zKsHPXq1cOhQ4cAAEFBQTIeHx+PiIgIhISE4MSJE9iwYQMeP34MQDO1+qxZs/DZZ59lSJkt5fPPP8ecOXNQs2ZNHDt2TO928+bNw8CBA+Hu7o5///0Xjo6O6VhKIiIi+pBlSE36s2fPEBsbCwAoXrx4RhSBTFC6dGn5V758edSrVw/dunXD7Nmzce/ePUyePBk2NjaIjY3FoEGDsG3btowustkiIiLg7+8PAOjWrZvBbT/++GPY2tri+fPnWLFiRXoUj4iIiDKJDEnSY2Ji5LKtrW1GFIEsxN7eHiNHjsTy5csBAAkJCejfvz+io6MzuGTmWb16NV69egVbW1t06tTJ4LY5cuRA06ZNAQALFy5Mj+IRERFRJmF2kh4bG4s5c+agfv368PDwgJ2dHfLkyYPmzZtj+fLlSEhISLbP+PHjYWVlhUKFCslY7969k3RM1NcGWJ9Xr15hzZo16NevH8qXL49s2bLB1tYWHh4e8PPzw++//55ix753z3369Gl06dIF+fLlg729PfLmzYvu3bvj6tWrRpXnp59+QpkyZZA1a1a4u7ujdu3aWLRoEYQQCAgIkOcLCAgw6bFqe/36NaZPn4769esjd+7csLOzQ65cudC4cWMsXrwYb9++NfvY5vjkk0/w8ccfAwAeP35s9qgnxozusmnTJrRt21a+Pi4uLihcuDDq1KmDMWPG4NSpU2adGwDWrl0LQNPcx93dPcXtO3ToAAA4ceIE7t+/b/Z5iYiIiJIQZrh3754oVaqUAKD3r3bt2uL58+dJ9hs3bpzBfQCIcePGmVQWPz+/FI9ZqFAhcfXqVb3H0D73rFmzhI2Njc7jODk5iUOHDuk9zoMHD0TRokX1lqNly5Ziz5498v8HDx5MdoyePXsKAKJgwYJ6z3Pq1CmRN29eg4+5atWq4vHjx6Y8lUloP6/GOn78uNzno48+Muu8hh5/fHy8+Pjjj1N8vStVqmTWuaOjo4WDg4MAIMaMGWPUPteuXZPn9ff3N+u8RERERO+yMTWpj4qKQoMGDXDnzh0AQNu2bdGnTx94eXnh7t27mD17Ng4dOoSjR4+iZcuWOHLkCKytrQEAgwcPRseOHREaGoomTZoAACZMmIA2bdrI4+fKlcuk8sTHx6NMmTJo3bo1KleuDC8vLwghcP/+fWzatAlr167F3bt30bZtW1y4cAEODg56j7V7926cPHkSZcuWxbBhw1CmTBm8efMGmzZtwowZM/D69Wt0794dN2/ehJ2dXZJ9Y2Nj0bx5c9y6dQsA0KxZM3z22WfInz8/QkJCMH/+fGzbtg1Pnz416fG9KygoCPXr18erV6+QK1cuDBo0CHXq1IG7uzvCwsKwZcsWzJs3D6dOnUKbNm1w5MiRdGtSVK1aNbi4uCAyMhKBgYGIj4+HjY3JbzG95s6di3Xr1gEAateujX79+qFIkSJwdnZGeHg4goODsXPnToSHh5t1/NOnT8tmOlWqVDFqn+LFi8PNzQ0RERE4cuQIevToYda5iYiIiJIwNav/+uuvZc3hDz/8kGx9QkKC6Nq1q9xmzpw5yba5e/euXL948WJzflxIN27cMLh+7969IkuWLAKAWLBggc5toFUL27x5cxETE5NsmwkTJshtNm7cmGz91KlT5fohQ4boPM+QIUOSnMvUmvSEhARRtmxZAUCUK1dOPH36VOd5du7cmeJjTok5NelCCFG7dm2534MHD0w+r6HHX6dOHQFAVKtWTcTFxek9xrt3cIw1efJkWfZ///3X6P3q168vAAgfHx+zzktERET0LpPapMfExGDBggUAAB8fH53tx62srDBnzhzZnnf27NmmnMJkxYoVM7i+UaNGaN26NQBg8+bNBrd1cHDA4sWLk9WSA8AXX3wh40eOHEm2XhlX28vLS++QklOmTIGXl5fBMhiyfft2XLp0CQCwdOlS5MyZU+d2TZs2RceOHQEg3WfE1G7H/eLFC4seWxnqsWbNmgZr6HPkyGHW8UNCQuSyKXd0lG219yciIiJKDZOS9LNnzyIiIgKApoOf0ozlXa6urnJkjCtXruDRo0epK6UJnj59ips3byI4OFj+eXh4AECKk+189NFHepMzFxcX+YNAaeqjePjwIa5fvw5AM8mNviY1Dg4OsnOlOf755x8AQIkSJVC2bFmD29atWxeApglHenYidXZ2lsuRkZEWPbanpycAYOvWrXj27JlFjw1ANkVycnLS+UNNH+VHwcuXL+XQokRERESpYVKD4eDgYLlcrVo1g9tWq1YNc+fOlfspCVZaOHbsGGbOnIl9+/YZbI+cUmKX0kynSjL2bvKp/bxUqlTJ4DEqV65scL0hZ86cAQBcv34dVlZWRu0TGxuL8PBw+UMlrWk/N66urhY9ds+ePXH48GHcunULRYsWRfv27fHRRx+hTp06yJcvX6qPr7x3smfPbtJ+2ts/f/48Td/rRERElDmYVJOunQDnzp3b4LZ58uTRuZ+ljR8/HrVr18batWtTPM+bN28MrndycjK4PksWzdP1bs20drOOlJpJpCZZDgsLM2u/169fm31OU2n/EDK32Yk+ffr0wXfffQcbGxv8999/WLx4MT799FPkz58fRYsWxddff53sLocplDsgKb1P3qW9PWcdJSIiIkswe5z0lGpyhRDmHtpo+/fvx48//ggAKFy4MObMmYNLly4hIiIC8fHxEEJACIExY8akeVnSg/LjoFatWggKCjL6LzXt4E2RkJAg28y7urom+aFmKRMnTsStW7cwceJENGjQQP6wun37Nv744w+ULFkSf/31l1nHVn5ARUREmPT+VX4c2traws3NzaxzExEREWkzqbmLds3o48ePUbx4cb3bPnnyROd+lvT3338DANzc3BAYGKi3FtvSHRjfpd3cIaXa7tQMweju7o4nT57g6dOnKF26tNnHSSuBgYFy4qgaNWro7bOQWgULFsR3332H7777DnFxcTh16hTWrVuHefPmITo6GoMHD0a1atVQoUIFk46rJOkJCQn477//jE64lfeXvo68RERERKYyqSZdOzE8efKkwW21Z31Mq4Ty8uXLAIAGDRoYbGaitOVOK76+vkafKzVlUZLOGzduqHJ2y+nTp8vldu3apcs5bW1tUatWLUyfPh0rV64EoLmLs379epOPVaZMGbl848YNo/dTttXen4iIiCg1TErSK1WqJGsX/f399Y4aEhkZKadX9/HxSbOOdPHx8QAMt7m+cOECTpw4kSbnV+TLl0/eVVi3bp2cEOdd0dHRcjIecyhDSQLAb7/9ZvZx0sLq1atlYuzp6YlevXqlexkaNmwol80Z/aVOnTpy+fTp00bt8/LlSzmyj/b+RERERKlhUpJub2+Pfv36AdDUYivtwbUJITBkyBCZJA0ZMsQCxdRNGRLx6NGjOjsMPn36FN26dUuz82sbMGAAACA0NBTffPONzm2++eYbhIaGmn2ODh06oFSpUgA0s28uXLjQ4PbBwcHYunWr2eczRkxMDKZMmYLu3bsD0HSuXbhwIezt7S1+ruXLl8sfZrrs2bNHLhcqVMjk4+fPnx8FCxYEkPROkCFnzpyR7deZpBMREZGlmDxn+9ixY7Fx40bcuXMHP//8M4KDg9GnTx94eXnh7t27mD17NgICAgBo2iV/9tlnli6z1KNHD2zduhVRUVHw8/PDt99+i0qVKkEIgePHj2Pq1Kl4/PgxatSogcDAwDQrB6D5MbJ48WIEBwdj9uzZuHPnDgYMGIB8+fIhJCQE8+fPx/bt21G1alWZABo7jKLC2toaa9asQc2aNREVFYV+/fph3bp1+PTTT1GiRAnY2toiLCwM58+fx7Zt23D8+HGMGDECrVq1StVj0x5i8u3bt4iIiEBISAhOnDiB9evXy0mG7O3t8eeff6JZs2apOp8+3bt3x9dff4327dujZs2aKFKkCBwcHPDkyRPs3btXDvnp7Oxs9o+zFi1aYM6cOThw4ACEECm+Rvv37weg6ZdQo0YNs85JRERElIw505TevXtXlCxZMskU9+/+1apVS+/07Hfv3pXbLV682JwiSL1799ZbBmtrazF9+nQxbtw4g1PcK+vGjRtn8Fx+fn4CgPDz89O5/v79+6JIkSJ6y9O4cWOxc+dO+f8TJ04kO0bPnj0FAFGwYEG95bh48aIoVqyYwedf+fvxxx8NPqaUHqsxf1ZWVqJhw4bi4sWLZp1Lm6HHb0xZ3NzcxO7du80+f2BgoDzWoUOHUty+UKFCAoAYMGCA2eckIiIiepdZQzB6e3vj4sWLmD17Nvz8/ODu7g5bW1vkzp0bTZs2xbJly3D48OE0G9VF26JFi7Bs2TLUqVMHLi4usLe3R8GCBdG9e3ccP34cw4YNS/MyKAoUKICLFy/ixx9/ROnSpeHo6Ag3NzdUr14dc+bMwc6dO5O0V8+WLZtZ5ylbtiyuXLkCf39/tG3bFvnz54eDgwPs7Ozg6emJevXq4YcffsDZs2cxduxYSz08AJqxxHPnzo1SpUqhU6dOmDJlCq5fv459+/alOAtqal27dg2zZs1C27Zt4ePjA3d3d9jY2CB79uyoXr06xo8fj+vXr6Nx48Zmn6N69eqoWLEiAGDFihUGtw0MDMTdu3cBAIMHDzb7nERERETvshIiHQY0J2nChAkYM2YMbGxsEBkZKSfQIfVYvXo1unTpAjc3Nzx48AAuLi46t+vXrx8WLlyIjz76KEl7eCIiIqLUMnsyIzKdEAJr1qwBAJQvX54Jukp16tQJvr6+iIiIwOzZs3Vu8+DBAyxduhQAdHagJiIiIkoNJukWdO/ePYOjj4wdO1Z2wuzZs2d6FYtMlCVLFkyZMgUA8Mcff8gJmrRNmjQJcXFx6NChAzuMEhERkcWxuYsFjR8/HosXL8ann36KWrVqwcvLC3Fxcbh69Sr8/f3lqDc+Pj44d+5cmgxTSJYze/ZsPHv2DB07dkwyIZcQApMnT0Z0dDT69OmDAgUKZGApiYiI6EPEJN2Cxo8fn2LTh5IlS2Lnzp3w9vZOn0IRERER0XvH5HHSSb++ffsiW7Zs2L17N27duoWnT5/izZs3yJEjB8qVK4d27dqhT58+sLOzy+iiEhEREZGKsSadiIiIiEhl2HGUiIiIiEhlmKQTEREREakMk3QiIiIiIpXJ0CT93r17sLKygpWVFZYsWZKRRcH48eNlWYiIiIiIMlKqk/S4uDisXr0aPXv2RKlSpeDu7g5bW1vkzJkTlSpVwqBBg7Bv3z4kJCRYorykMhMmTJA/blxcXPD69es0O9erV6/w559/omHDhsibNy/s7e2RO3duVKxYEUOHDsWePXt07qf9YzClv169ehksQ0xMDMaOHYtChQrBwcEBpUuXxpw5c6CG/tcBAQEGH5uzszOKFy+Onj17yjH7U0v7x21Kf4bO6e3tbdQxjBm6dPny5XJG3/z58+Obb75BZGSkRR6vpQUEBGD48OGoVKkSPD09YWdnBzc3N5QsWRJdu3bF8uXL0+wzNXLkSKNfnyVLlhj9OqdU4RIaGopevXrBw8MDTk5O8PPzw/79+y374Myk7/1sb2+PXLlyoVixYmjevDnGjh2Lw4cPW/TcZ86cwR9//IHOnTujbNmy8PT0hL29PVxcXFCiRAn07NkTBw8eTPE49erVM/q1SsmuXbtQs2ZNODk5IXfu3Pjss8/w+PFjSzxcIjKGSIXNmzeLwoULCwAp/hUvXlxs27Ytyf53796V6xcvXpyaoqTauHHjZFnIeMWLF0/yOi9btixNznPgwAFRsGBBg++xcuXK6dxX+32W0l/Pnj31liE+Pl40btxY5379+/dPk8dtioMHDxr9OAGIPn36iPj4+FSdU/tzk9LfwYMH9R4npddW+StYsKDB8vz4448696tQoYKIiopK1WO1pKCgIFG3bl2jHnP27NnF77//Lt6+fWux81+4cEHY2NgY/fosXrzY6NfZ0Hf5w4cPRb58+ZLtkyVLljT77jCFKe9nAKJUqVJi7dq1Fjl3rVq1jDrnxx9/LN68eaP3OH5+fkaX35AlS5YIKyurZPsUKFBAhIaGWuQxE5FhZo+TPmnSJHz//feyBrFRo0Zo06YNfHx84ObmhvDwcFy/fh1bt27F3r17cePGDXz//fdo0aKFuadMU+PHj8f48eMzuhjvlRMnTuDGjRsAAGdnZ0RFRWHp0qXo1q2bRc+zb98+tGrVCtHR0XBxccFnn32Ghg0bInfu3Hj69Cnu3buHnTt34smTJykea8KECWjTpo3e9dmzZ9e7bv78+dizZw/y5s2LCRMmoFSpUjhx4gTGjRuHv//+G+3bt0fTpk3NeoyWNmjQIAwePFj+XwiB8PBwBAYGYtq0aQgLC8OiRYuQL1++FCfgMlZQUJDB9YUKFUrxGG3atMGECRP0rjc0x8CVK1fw448/wsHBAd9//z0aNWqEBw8eYOzYsTh//jx+/vln/PrrrymWIa3t2bMHH3/8MV6+fAkA8PX1RadOnVC1alV4eHjg1atXuH//Pnbt2oUtW7bgxYsX+Prrr9G3b1+4ubml+vwJCQno378/4uPjkStXLoSFhZm0/+7du+Hl5aV3fb58+fSuGz58OEJCQlCjRg189913yJ49OzZs2IDp06dj4MCBaNasGdzd3U0qT1pZtGgRqlSpAkDz+fnvv//w9OlTnD59Gtu2bUNQUBCuXr2KTp06oU+fPvj777+RJYv5N6ft7e3h5+eHmjVrolSpUsiTJw/c3d3x9OlTXLx4EX/99Rfu3r2LdevWIUuWLFi9erXB41WuXBmLFy82qyzPnj3D559/DisrK3z11Vdo164dwsPDMXHiRJw8eRLDhw9P8fxEZAHmZPZLly6Vv6o9PDzEgQMHDG5/6dIl0aBBg2Q1nWqqSSfTDRo0SAAQOXPmFJMnT5Y1YiEhIRY7R1hYmHB3d5e1Vv/++6/ebWNiYnTGLfU+q1evngAgLl68mCS+adMmAUD07t3b7GNbgnZN+rhx4/Rud/nyZeHo6CgACFdXVxEbG2v2OS11B0qpSTd0JyMl48ePFwDEjBkzksRDQkKEk5OTKFSoUKrKaAlXrlwRWbNmFQCEtbW1mDlzpsEa8rCwMDF48GABQLx48cIiZZg2bZoAIEqWLClGjx5tck363bt3zTpvdHS0sLe3F/nz5092V2PYsGECgPD39zfr2Jai/X429HwIIcSWLVtEzpw55fbffPNNqs4dFxdncP3r169FjRo15PkuXbqkczulJt3Pz8/ssixZskQAEMOHD08Sj4yMFPny5RMODg56v2+JyHJM/tkfGhqKQYMGAQCcnJwQEBCA+vXrG9ynTJky2Lt3L77++mtTT0cqFRsbizVr1gAAOnXqhB49esDa2hoJCQlYsWKFxc4zevRoPH/+HPb29ti0aZPBWrq0nsn14cOHcHd3R9myZZPEGzZsKNe/D3x8fOQdrZcvX+Lq1asZXCLLUJ7/Bg0aJInnzZsXJUuWzPDXRwiBrl274tWrVwCAhQsXYujQoQZrXz08PPDnn39i/fr1sLW1TXUZ/v33X4wZMwYAMHfu3HSd/fj58+eIiYlB1apVkTVr1iTr3rfPEAC0atUKx48fh6urKwBgypQpOH/+vNnHs7ExfGPb0dERw4YNk/+3dJt4bfo+S87OzqhatSqio6Px/PnzNDs/EWmYnKRPmzZNXmR+/PFH+Pj4GHeiLFmMagaxd+9etGrVCnny5IG9vT0KFSqEQYMGISQkJMV9Y2NjMWfOHNSvXx8eHh6ws7NDnjx50Lx5cyxfvtxg51VjR3eJjY3F/Pnz0aJFC9l5MVeuXKhUqRKGDBmCI0eOGOxEuHfvXnTr1g2FChWCo6MjXF1dUa5cOYwcORKPHj0yeO7Q0FCMGjUKFStWRLZs2eTjK1OmDLp06YIlS5bIW+hpbevWrQgPDwcAdOvWDXny5JFf6EuXLrXIOSIiIrBy5UoAQJcuXVCiRAmLHNdcuXLlwvPnz3H58uUkcaXDXZ48eTKgVObR7oAZHR2dcQWxoFy5cgEADh06lCT++PFjXL9+PcNfnx07dsgkrkWLFujZs6fR+3bo0CFZYmuOwYMHIyoqCj179kS9evVSfTxTZM+eHTY2Njhz5kyyzrDv42cIAIoVK4ZJkybJ/6d1cyrt90Bafm71fZZevXqFM2fOwM7ODjly5Eiz8xPR/5lS7Z6QkCA8PDwEAJE1a1bx33//paoa/91mCN9++63eDi4eHh7iypUreo917949UapUKYOdZGrXri2eP3+uc39jbtufP39eFCpUKMXOOLpuB0dFRYl27doZ3M/Z2Vls3bpV57kPHz4sXF1dUzy3rv21m0GkpjmBttatWwsAokiRIjLm7+8vz3P27NkUj6Fsq68zoHazqu3bt8v4y5cvxY0bN8STJ0+MKqulmrtMmTJFABD58+cXS5YsESdPnhSzZs0S2bNn1/vcpydjm7sIIUTHjh3lto8ePdK5Tc+ePVO89a+m5i6nT58WAISjo6P45ZdfRGBgoFi3bp3w8fERAMSIESNSVcbU6tChg3yu9u3bl+rjab+vjWnasGbNGgFA5MiRQ4SFhQkhjG/eYYnmLkII0aJFCwFA1KpVS2zbtk0cO3ZMfPPNNyJLlizCyclJPH782OxjW4IpzV0Ur169Em5ubgKAcHJy0tl8zJjPkjE+/fRTeZx3B2JQWKK5S0hIiLCzsxNZsmQRI0eOFMeOHRPbtm0TNWvWFABEhw4dzD42ERnPpCtrcHCw/IJo2rRpqk+ufZFRPvx+fn5i5cqV4syZM2Lfvn2iR48ecpvq1avrPE5kZGSSUWbatm0rtmzZIs6cOSPWrVuXpLd7jRo1dI5okVKycfnyZeHs7Cy3adeunVizZo04ffq0OHHihPD39xfdunUTWbNmTXYRi4+PF/Xr1xcAhJWVlejSpYtYt26dOHPmjAgMDBQzZswQBQoUEACEnZ2dOHPmTJL9o6OjhZeXlwAgXFxcxMiRI8XOnTvF2bNnxYkTJ8SaNWvEl19+KfLnz58uSfrTp0+Fra2tACDGjh0r45GRkcLJyUkAEMOGDUvxOCkl6UpbXAAiPDxc7Ny5U75PlD9PT08xfPhw8fTpU73n0X6fVaxYUXh7ews7Ozvh6uoqfHx8xIABA4z6UfHmzRtRrVo1nT+OevTokeL+ac3YJP3q1auyTXqVKlX0bmdqkt6oUSORI0cOYWtrKzw8PISfn5+YNGmSCA8PT7HsSpJeqFAhUaZMGeHk5CQcHR2Ft7e36NSpk9i0aZNISEhI8ThK2+Z3/0qXLp3qSoXUypUrlwA0FRypHVVHCNOS9BcvXog8efIIAOLvv/+WcXOSdD8/P5ErVy5ha2sr3N3dRbVq1cT3339vVF+Umzdvyj4m2n9WVlZiwYIFxj70NGNOki6EEM2bN5f7nThxItl6c5P0t2/fisePH4v9+/eLtm3bymOUKFFCbxt25XqXO3duUblyZeHs7Czs7e1F3rx5RevWrYW/v79R/VCUvgvv/nl5eRnsG0RElmNSkr5ixQr5Qf3uu+9SffJ3h8br37+/zgtxv3795Dbnzp1Ltv7rr7+W63/44Ydk6xMSEkTXrl3lNnPmzEm2TUpJeoUKFQSg6Ri5atUqvY/p2bNn4vXr10liv//+uwAgbG1txY4dO3TuFx4eLnx9fQWgqfHXtn//flk2Q7W1cXFxOhMRSyfpM2bMkMe7ceNGknVdunQRAESuXLlS7AiVUpKudNTMli2b+O2333ReMJS/fPnyicuXL+s8jrFDMA4YMEBER0cbLHNkZKQYMWKEyJs3r7C1tRXFixcXU6dOtejweObSfp0HDRokgoKC5N+lS5fE4cOHxeTJk2Wy5urqKo4dO6b3eKYm6fr+3NzcxObNmw2W3ZghGGvVqmVUIjhnzhzh4+MjbG1tRZ48ecTQoUMt1unSXA8fPpSPo2bNmhY5pilJev/+/eW5tb9jzUnS9f05ODiIv/76K8Vy3759W3Tq1Em4ubkJBwcHUaNGjSR3yjKSuUn6Dz/8IPdbunRpsvWmJumGPg8FCxYUwcHBevc1ZghGHx8fg3emFevWrROVKlUS9vb2wt3dXfTo0cOiAwMQkWEmJenaydm7IyiYQ/si4+npqTdBunbtmt7zRkdHy1uNPj4+emuo/vvvP1mD4+Pjk2y9oSR9165dcp0xNcTaYmNjhaenpwCS95R/144dO+R5bt68KePaP47MqQ20dJJeqVIlAUBUrVo12brt27cb9YNCiJST9LJlywpAc3fByspK2Nvbi19//VWEhISImJgYERwcnOROS9GiRUVkZGSy49y9e1e4ubmJ3r17C39/f3H8+HFx7tw5sX37djFs2LAkd0g+/fRTs54TNTB2nPQsWbKIAQMGiKtXrxo8nrFJepkyZcSYMWPE1q1b5d0df3//JGPKW1tb6/2BKoQQxYoVE61btxazZ88WAQEB4vz58+LgwYPil19+Efnz55fHKVWqlIiIiEjN05QhLl68KB9Du3btLHJMY5P0I0eOCCsrK2FjY5NsRBBTkvTChQuLr7/+WmzYsEGcOnVKnDp1SqxevVp8/PHHScbTnjdvnkUeX0YwN0nXrnXWdW20RJJuY2MjfvrppxSvAfXr1xcNGzYUf/zxh9i3b584f/68OHz4sJg+fXqSJqG5c+cW9+/fN/oxElH6MylJnzBhgvyAW+LWpPZFZujQoQa3VRKpd5PkY8eOyWP89ttvBo+hDBkIINlkDIaS9KFDh8p19+7dM+7B/d/Ro0flvoGBgQa3jYqK0lkbc+DAARmfPn26See3tMuXL8uyzJw5M9n6uLg4eVu/U6dOqTpXkSJFklyk9E0a8tlnn8ltpkyZkmx9TEyMePXqld7z3LhxQzY3AiD++eefVJU7o5gymVH27NnFiBEjUj2MWko11H/99Zc8p5eXV7K7TMYc5+XLl0kS/pR+7KqR9vdAt27d0u28MTExMjHTNUSgsUlpRESEweZGW7dulU3gnJyc9PZzUDtzk/S///5b7jdhwoRUl+P69esiKChIXLx4URw4cED8/PPPwsvLS9jZ2Ynu3bvrrIxQGPosxcbGJvnBYKkfjESUNkwa3cXFxUUuKyO8WErJkiUNrlcmmXl3eu/g4GC5XK1aNYPH0F6vvV9KlBEZChQogIIFCxq9H6CZ6llRo0aNFKdtV2hPvVy7dm0ULlwYAPDll1+iatWqmDRpEo4fP47Y2FiTypNa/v7+ADTDhXXu3DnZehsbG3zyyScAgC1btuC///4z+1wODg5yuXr16vj44491bvfLL7/A3t4eALBq1apk6+3s7ODk5KT3PMWKFUsybOSsWbPMLbJqjBs3DkLzI1z+vX79GpcuXcI333yDyMhI/PHHH2jcuDHevHlj9nlSmlxnwIAB6NevHwDN6EQbN240+TguLi5Yu3atnORm/vz56f6+T620/O405JdffsHVq1dRoEABjBs3zuzjZMuWzeDIVy1btpTHf/36NRYuXGj2ud5H2tclZUjG1ChevDhKly6NsmXLon79+vjhhx8QHByMcuXKYdmyZahVq1aya6HC0GfJ1tYWCxYskNfbTZs2vVfDXhJlNiYl6Tlz5pTLxszuaApDSRQAOZbw27dvk8SVYQABIHfu3AaPoT28l/Z+KXn27BkAwNPT0+h9FKbO5qfQHqLM1tYWW7duRalSpQAAp0+fxnfffYdatWrBzc0NzZo1w8qVK5M9N5amPQZ648aN4eHhoXM7ZajN6OhorF271uzzaSc2zZo107udu7s7KleuDAC4ePEi4uLiTD5X7dq14evrCwA4evSoweE631eOjo4oU6YMfvvtN8yZMweAZog17SHk0sKAAQPk8rtDuhkrW7Zs8kehMgzc+yQtvzv1uXbtmnxtZ82aZZEhHA3p37+/TOTNfZ3fV8o1AkCaDU2YPXt2WUly6dIlsz+3NjY26Nu3r/x/ZnutiN4nhmdPeEe5cuXk8rlz5yxemNRKaYxzYWD8ckscXxftxDkgIMDoKa+VcWoVPj4+CAoKwtatW7F161YcOnQIt2/fxps3b7Br1y7s2rULU6dOxY4dO5Ltayn79++XtS47duww6vlYunQp+vfvb9b58ufPjxMnTgAwPNW4si2geb6fP39u1njLPj4+uHz5spyoQ9+PkA9B3759MWrUKISHh2PhwoX46aef0uxc2nMppKbWzlLHyQheXl7w8PCQU7y/ffsW1tbWaXrOadOmITY2FoULF8br1691TuOufUfxwIED8g5eq1atTE7qc+XKhZw5c+Lp06fv3euTWtqTGKXlfA6lSpVCsWLFcPPmTaxfvx6//PKLWcd5nz9LRJmJSUm6j48PcubMiWfPnuHIkSN4+fKlRW7tpYZ2rcXjx49RvHhxvdtq12CZUtuh1IKFhoaaXD7tpNzOzg6lS5c2+RgKa2trtG3bFm3btgUAPHr0CDt37sScOXNw9uxZnD17FgMGDMCmTZvMPochSi2OKY4dO4Y7d+7I5jqm8PX1xbp16wAkv4PyLu31Kc3cp09qf8S9T7JkyYJixYrh5MmTCA0NRXh4eJrVAFrqeX3fX5+6detiw4YNePXqFQ4dOpRsNkdLi4mJAQDcuXMHXbp0SXH7n3/+WS7fvXvXrJr39/01Msfr169x/PhxAJrJhsqXL5+m5/Pw8MDNmzdx//59s4+RGV8noveRSc1drKys0KtXLwCaW84LFixIizKZRDvpPXnypMFtT506pXO/lFSsWBEA8ODBA5O/GCtUqCCX9+zZY9K+KfH09ESfPn0QGBgoy7ht27ZUtTHWJyoqSib/DRs2xKpVqwz+Ke8NIQSWLVtm1jnr1q0rl2/fvm1wW2W9o6Oj2cnmlStXAAD29vZG3/F4n8XHx8tlc5oIGUt5XgFNjXJGHyej9O7dWy5Pnz494wqSRsLCwuRU8e/j62OuxYsXy743rVq1MruSwFhKzbd2HyZTve+fJaJMw9SepiEhIXLCmqxZs6Y4jJvi7du3YtmyZUlipswEqW9GQu0hGH19ffUOwfjy5UuRM2dOATOGYNy7d69cZ+oQjG/evBE5cuQQAESePHnSbEKV4cOH6x25xhK0x0lev369UfsoQzVqz0pqivj4eDnDbYkSJfSOLnHnzh2RJUsWAUA0bNjQrHMdOXJEPj5zj5HRTJlx9NWrV3JCIwcHB4tMrqNP3759Zbne/Q4wVkREhBxC1cnJKcXx7NUoISFBlC9f3qznYsOGDSIqKsriZTJ3NBNdfv75Z3msn3/+2TIFTGemPh83btwQLi4ucp8LFy6kaflOnTpl1LCbhsTFxYmSJUvK4zx48MCyhSQiizGpJh0A8ubNi9mzZwPQ1Kb7+fml2PHkypUraNKkCX7//XdTT5cie3t7OXrE5cuX8eOPPybbRgiBIUOGyM49Q4YMMekcjRo1QqVKlQBoOmDpatupCA8PT1KT7eDggK+//hqApjlO586dDY7uEBkZKZ9fxZEjR3Dr1i29+8TGxsrXwNnZOVlb6oCAADmCjHInxFRLly4FoOnga6gTp7aOHTsC0NRyHzt2LNl6pUze3t4697e2tpbP3fXr1zF58uRk28TFxWHw4MGyo+fAgQOTbbN582aDt3dv3bqFrl27yv8PHjxY/4P6QIwbN06+T5s0aaKzfXSvXr3kaxQQEJBsfVBQkMH3JQDMmzdPjvSRJ08etGvXLtk2u3btMnj3JzIyEp06dZK1tH379pWj+bxPrKyssHz5ctlJvnfv3pgzZ47BTsrPnj3D0KFD0aFDh2R3O+7duydfn3r16qVZue/du5ekzbUu27Ztk81lHBwcktw1+FBt27YNNWvWlKOsjB49Okm/LW0pfZZOnTqVYj+vhw8fomfPnvL/3bt3T7bNwYMHERERofcYcXFx6NevH65duwZAU/Ov9OchIvUx675c7969ERISgrFjxyIsLAz16tVD48aN0aZNG5QqVQpubm4IDw/HjRs3sH37duzatQtv377V+wWWWmPHjsXGjRtx584d/PzzzwgODkafPn3g5eWFu3fvYvbs2fKLsUaNGvjss89MPseyZctQtWpVREVFoUuXLli3bh06d+6MwoUL4+3bt7h16xb27t2L9evXIygoKEniOXLkSOzfvx/79+/Hzp074ePjg4EDB6JGjRpwc3NDZGQkrl+/joCAAGzevBkODg5Jfkjs378fP//8M+rUqYMWLVqgbNmy8PDwwJs3b3Djxg389ddf8gu+X79+Fr/d+uDBA/n8NWvWLMWReBQdOnTA6NGjAWiS/Fq1apl87i+++AJr1qzBuXPnMHr0aFy+fBndunWDh4cHbt26halTp8pmTs2bN0eHDh2SHaNdu3YoWrQo2rdvj6pVqyJfvnywt7dHaGgo9uzZgwULFsgfTp06dUL79u1NLqfahIWFJRtmNDo6Gjdv3sTSpUuxa9cuAJqESrstsinOnj2Lfv36oX79+mjWrBnKlCkDd3d3xMfH49q1a1i+fDn27t0LQPODa968eTrbOf/666/o2rUr2rdvj9q1a6NIkSJwdnZGREQEAgMDMXfuXPz7778ANJ3yxo8fb1Z51cDX1xfr169Hp06dEBUVhc8//xxz587FJ598gipVqsDDwwOvXr3CgwcPsGfPHmzevBkvX77M0DLfu3cP9evXR40aNdCqVSuUL18euXLlghACd+7cwfr167F+/Xr5Q/j3339H3rx5M7TMlnD37l3ZH0kIgZcvX+Lp06c4ffo0tm7diqCgILlt//79MXHiRLPPdeXKFfTu3Rs1a9aUz7FS2fLw4UMcPHgwSbOaRo0a6fwh5O/vj9atW6N169aoV68eSpQoAVdXV0RFReHs2bOYN28erl69CkDT0XfGjBlml5mI0kFqquE3bNggvL29jZo8xdfXV+zevTvJ/pZo7qJ9LO1beLr+atWqJZ4/f65zf0PNXRRnzpxJMvuhvr+7d+8m2/f169dJZsc09FeoUCG9ZTP01759e/HmzZtk507tjKPak1itWrXKpH2VWUPd3NySNVFQjqlvxlFFaGiobDqj76958+bi5cuXOvc35rkDIAYNGvReNqNQmDKZEQDh4eGR7DOpLaVZEo2ZKh6AcHd3F5s3b9Z7HmOmMQcg6tat+8FMSX7x4kVRq1Yto5+/mTNnirdv3yY5hrEzjhpiTPMOY99XTk5O7/Vso0IY/12r/Pn4+IgNGzakeFxLfZYAiF69eumdnE37PIb+ypQpIy5fvpzap4uI0liqqlzbt2+Pli1bYv369di5cydOnz6NsLAwREZGwtXVFd7e3qhevTo6dOiA+vXrmzWEobG8vb1x8eJF/P3331i3bh2Cg4Px8uVL5MiRAxUqVEDXrl3x6aefyvHWzVGpUiVcv34dCxYswObNmxEcHIwXL17A3d0defPmRe3atdG5c2edzTccHR3h7++PL774AgsXLsThw4cREhKCV69ewdnZGd7e3qhUqRKaNWuGli1bJtl35MiRqFatGvbu3YvAwECEhobK8dfz5MmDatWqoUePHmjevLnZj80QpeOnvb09WrRoYdK+HTp0wKVLlxAREYEtW7bonZDIEE9PT5w4cQILFy7EqlWrcOXKFURERMDd3R1Vq1ZFr169dDajUGzZsgWBgYE4efIk7t+/j2fPnuHVq1dwdXVF4cKFUadOHfTp0ydVI++8D+zs7JAjRw74+vqiefPm6N27t5wkzBzNmzfHwoULERgYiPPnz+PJkyd4/vw5hBDIkSMHypUrh6ZNm6JXr14GR4H6/fffsX//fgQGBuL69et49uwZIiIi4OTkBC8vL1SrVg1dunRB48aN0/Q7JD2VLVsWR48exYEDB/DPP//g8OHDcpQdJycneHp6onLlymjRogXatWuXZGKv9FapUiUsX74cgYGBOHPmDB49eoRnz54hPj4e2bNnh6+vLxo2bIh+/fql2fCvGc3W1haurq7Ili0bSpQogcqVK6Nx48aoXbu2RY7/ySefwMvLCwcOHMDx48fx8OFDhIWFITY2Fq6urihWrBhq1aqF7t27o2zZsnqP8+2336J8+fIIDAzElStX8PTpU4SHh8Pe3h65c+dG5cqV0bFjR7Rr1y7NhwAlotSzEoJjMRERERERqYn51cpERERERJQmmKQTEREREakMk3QiIiIiIpVhkk5EREREpDJM0omIiIiIVIZJOhERERGRyjBJJyIiIiJSGSbpREREREQqwySdiIiIiEhlmKQTEREREakMk3QiIiIiIpVhkk5EREREpDJM0omIiIiIVIZJOhERERGRyjBJJyIiIiJSGSbpREREREQqwySdiIiIiEhlmKQTEREREakMk3QiIiIiIpVhkk5EREREpDJM0omIiIiIVIZJOhERERGRyjBJJyIiIiJSGSbpREREREQqwySdiIiIiEhlmKQTEREREakMk3QiIiIiIpVhkk5EREREpDJM0omIiIiIVIZJOhERERGRyjBJJyIiIiJSGSbpREREREQqwySdiIiIiEhlmKQTEREREakMk3QiIiIiIpVhkk5EREREpDJM0omIiIiIVIZJOhERERGRyjBJJyIiIiJSGSbpREREREQqwySdiIiIiEhlmKQTEREREakMk3QiIiIiIpVhkk5EREREpDJM0omIiIiIVIZJOhERERGRyjBJJyIiIiJSGSbpREREREQqwySdiIiIiEhlmKQTEREREakMk3QiIiIiIpVhkk5EREREpDJM0omIiIiIVIZJOhERERGRyjBJJyIiIiJSGSbpREREREQqwySdiIiIiEhlmKQTEREREakMk3QiIiIiIpVhkk5EREREpDJM0omIiIiIVIZJOhERERGRyjBJJyIiIiJSGSbpREREREQqwySdiIiIiEhlmKQTEREREakMk3QiIiIiIpWxyegCEBERkeUJITK6CJRJWVlZZXQRPgisSSciIiIiUhkm6UREREREKsMknYiIiIhIZZikExERERGpDDuOEhERfYDYeU9d2JGXTMWadCIiIiIilWGSTkRERESkMkzSiYiIiIhUhkk6EREREZHKMEknIiIiIlIZJulERERERCrDJJ2IiIiISGWYpBMRERERqQyTdCIiIiIilWGSTkRERESkMkzSiYiIiIhUhkk6EREREZHKMEknIiIiIlIZJulERERERCrDJJ2IiD5IQggIId77cxBR5sQknYiIiIhIZWwyugBERERpwcrKCgCwZs0aGVu3bh0AwMPDQ8YiIiL0HkO7llw5XvXq1WVs2LBhFikrEdG7WJNORERERKQyTNKJiIiIiFSGzV2IiOiDZmtrK5fPnTsHALh7966MffzxxwCAhIQEGcuaNSsAIEuWxLqsXbt2AQAuXbokY2zuQkRphTXpREREREQqYyU4dhQREX2AlMub0uETADZv3gwAGDx4sIyFhoYm2/fBgwcAgAIFCsjY9OnTAQBz5syRsRs3blisvPRhy0zplvZnjszHmnQiIiIiIpVhkk5EREREpDLsOEpERB8kXbfcIyMjAaTc9EAZC33ixIkylj17dgBA7ty5LVVEIiK9WJNORERERKQyrEknIiJ6hzIEY1RUlIwNHToUANC1a9cMKRMRZS6sSSciIiIiUhkm6UREREREKsPmLkRE9EHSNU56tmzZAACPHz+WsVy5ciVZBwC3bt0CAFhbWyc7ro0NL51ElPZYk05EREREpDKsDiAiog+SUoO+aNEiGTt69CgAYM+ePTL25MkTAED37t1l7KeffgIAdOrUKc3LSUSkC2vSiYiIiIhUhkk6EREREZHKWImUpl0jIiJ6j/Xp00cuX7t2DQBw/PjxZNtpdzA9c+YMAKBSpUrJttO+bOqa1ZRIl8yUbvFzYRmsSSciIiIiUhl2HCUiog+GrlpuJycnGUtISEi2T2xsLACgc+fOMpY3b14AQFBQkIy9efMGAFC1alULlpiISDfWpBMRERERqQyTdCIiIiIilWFzFyIi+mBod1j777//ACSdIbRcuXLJ9rGzswMArFq1SsZevXoFAGjcuLGMFS1aFACwceNGC5aYiEg31qQTEREREakMa9KJiOiDVL9+fQCAn5+fjM2bNw8A8Pr1axlTat8dHR1lrHr16gCA4OBgGdOuVSciSmusSSciIiIiUhkm6UREREREKsMZR4mI6INRqlQpuazMLqrN3t4egO7x0rU7nSpjp0+bNk3GvvzyS0sVkzKhzJRuccZRy2BNOhERERGRyrAmPQ0oT6nyS/LFixdy3UcffQQA2Lt3r4xlz549HUtHRPThunDhglyOi4sDkLRWLz4+PllMoWu20pIlS8pYtmzZLFpWyljnzp2Tyy1atAAAeHl5yZgyhKfyngES3xfaHY/Lli0LIOl1XZfMlG6xJt0yWJNORERERKQyTNKJiIiIiFSGzV0sRNdt0hs3bgAAOnXqJNddvHgRABAWFiZjHh4e6VFEIiJKhXebMtL77fnz53J57ty5AIAxY8bI2A8//AAAKFiwoIwpHYqzZEms44yMjAQAXL16VcZmzZoFAMiaNauMZaZ0i58Ry2BNOhERERGRyrAmPQ2cPn0aAPDPP/8ASNqRaffu3QCAR48eyVjOnDnTr3BERESZmK47IkrnUGWITgAICQkBAHh6eho8nlIjr30tV+6Wa98pz0zpFmvSLYM16UREREREKsMknYiIiIhIZWwyugDvO123zf7++28AwKVLlwAAhw8fluscHByS7EdERETpR1dTDGU+E+1rc3R0tN5jvHz5Ui5v3LgRANC4cWMZU671RKnBmnQiIiIiIpVhTXoqKb/IlZntgMQhl4oXLw4AePr0qdnH1z7us2fPACQOAUVERBraQ+K9S7t2lHcxMxcbG02akyNHDhlzdHRMtp21tTWApO+PO3fuAEg6jKJyvFWrVsnYn3/+CQC4cuWKpYpNBIA16UREREREqsMknYiIiIhIZdjcxUIaNWokl8uXLw8AWLp0KYCks5CZ6ubNm3K5e/fuAIDz58/LGG/dEhEZT2miyO/OzKFo0aIAgBkzZshY8+bNk22XkJAAIOk46drX9Xe1a9dOLrOZC6UV1qQTEREREakMa9ItRLvTkp2dXZJ1zs7OZh+3WLFicnnHjh0AknYmZW0QEWUG2t+xSie/8PBwGZs9ezaAxKH0ACBPnjwAgKZNm8pYxYoVARgeXo8+HEpHz+zZsydbd+LECbncuXNnAMD169dlTLmWK7ORAoCLiwsAYP369TJWqVIlAMDZs2ctVWwiAKxJJyIiIiJSHSbpREREREQqw+YuqdS3b18AQEBAgIwpt9AOHToEIOntV+XWm64Zz3SxtbWVy7lz505VWYmI3vXrr7/KZeU7a9KkSTKmdIRXE2UWZ+3OgEonP+3OfuPHjwcA3Lp1S8aaNGmSDiWk98Hr16/l8oMHDwAABQsWNGpf7Was2u8vIktiTToRERERkcqwJj2V/P39AQCtWrWSMaWm5uXLlwCAhw8fynXz5s1Lx9IRERmm/f20a9cuAMCwYcMyqjjJ3L59GwCwadMmGVOGpq1Tp46MNWzYEEDSzvY1atQAkHSIvL179wIAPvroozQqMamR9iALyp1spROo9vqYmBgZU4Zj1LWvclccAN68eZMGJSZiTToRERERkeowSSciIiIiUhk2d9FDub2lq4Pn8uXL5XKXLl0AAN9//72MlSxZMsn2SrMXAJgzZw4AIGvWrHrPqe+8RESW9uzZs2QxZXzx9Pb27VsAwPHjx2VM6cwaEhIiY8pY5wMGDDB4vG7dugEAfv/9dxlTms1oN5VxcHBITbFJxXRdy5X30oEDB2Rs5MiRAJLOOKrQ3jcoKAhA0jHW1dQ8jD4srEknIiIiIlIZ1qTrofxy1u5EsmfPHgBA9+7dZUwZtil//vzJjqEM77R582YZU37V79u3T8aUDkyszSGi9BYVFZUslp6zcWrX5J87dw4AsGDBAhnz8vICAAwdOlTGfH19jTq2m5sbAKBWrVoy9s8//wAAVq1aJWO9e/c2sdT0vlCu5c+fP5ex0aNHAwC2bNkiY0oNeWBgoIwp12vt4RZnzZoFAEhISJCxhQsXWrrYRABYk05EREREpDpM0omIiIiIVIbNXVJw8eJFudy6dWsASTt9xsbG6t13//79AICePXvKmHL7VTkWkHh7rXr16qkvMBGRCdq0aSOXt23bBgDYvn27jKXV99Ljx48BAOvXr5extWvXAkjatEWZgyI1zQGbNWsml5XmNdqzlXbq1AmA7g799GEYN26cXFYGf8iWLZuMaY+v/y7t6/zkyZMBJHY0BQwPNEGUGqxJJyIiIiJSGSuhPe4fJaPdOUTpRKr9a1kZrknXL2hlODHtX+HKdtpPu3KMLFn4m4ko48QBACL/TZyd8vzVJwCAaCTWuBWoUg4AUDJ7SjW7mpk8L+y5LCNhJpcpl1zybVweAJBXx1bRoYl3/E4Fa8psX6iGjFUspplZ0VbHvkqNNgB4enoCAEqXLi1j58+fB5B0hkVzHTt2TC4rwyJmz55dxn744QcAQMGCBWXM2to61efVduPGDQDAsmXLZEz5rh47dqyMsSP/hyUuLk4ux8fHAzC+5lv7em1rq/kUmfN5yEzpFu8qWAazQiIiIiIilWGSTkRERESkMmzuQkSZW7imOcfMT/0AAMN2R6awg6Z5WoXxB2Vk3zhN05IcSbbTrB9u1UBGpptcuC/l0gExDQBQH4m37W8s1nSqrDzonIzl8taUIjr0now5DNwJADj1W30ZS1pWDaWD5a5du2Rs1KhRAIBJkyaZVPJXr17JZaWznfYsjUqH+kaNGiWWPZemeU963CpXxmQHgD59+gBI2gRGGYudzRDJUjJTusXmLpbBbx8iIiIiIpVhTToRZULhcmlbD82Mlq2WaTqG5++7Ua7bM0FTQ+5wb5uMfdupPwBg7b/2MtZ3h6ZL6IJmrlrn0FGTXlXTWfLMP11lTFdH0ESJ53DLo+lg6YDDMjbSYQgAINepszL2ddn/dw8NTyxzD69fAQB1Lx+VsX5Fkp9N6URaoUKFZLHFixfLWK9evfSWWKmF1x7i8MiRIwCA9u3by9jMmTM1j+v/w9Kmt8jIxDsm8+bNAwAEBwfL2MSJEwEAefMmvkIcao9SIzOlW/yMWAZr0omIiIiIVIaTGRFR5vNkr1xc+P8adHh8DwBYM7edXFdSGbMwTz8ZmzpJU9O+ttvOxGPs0dRkL2iW2OYb9+4BABIHRwTglQ8AkC9PHhnKbXLh38qluBjN8TzddQyu6OIuFwu4aibwiXiVfDNtef5frq1bt8pYnTp1AAC9e/eWMX9/fwDAmDFjACQOa6i9XKJECRlThl5ctWqVjCmTwWRUTbqLi4tc7tpVc2eje/fuMqa0n2/evLmMOTo6plPpiIhYk05EREREpDpM0omIiIiIVIbNXYgoE/KRS33/ngAAKGH9EQDAV9e0nFryeinNOHYa3A7KjMPaMW/NEIPZXlyToZOnHwAA/tOa1bRQjYoAgGIuugpTSS61+0bT0bGxXysZO95RM3Tgq0NzZGx1aU0nzstlDRdZUblyZbm8d6+madCQIUNkLCAgQHO8y5rZVOvWrSvXffSR5nns1q2bjBUtWhQAMHToUBn7+OOPAQAHDyYOZZlHqxlQelJmWlWavQCJHWCVYSGBxKY/RETpgTXpREREREQqwyEYiYhSlDiBUOAPmiH5ak58KmPNlocAAHZ01RpQ8fYCAEDtov1l6Nj/Oyu6aA3/p3vqJM12TRadkZGtvYsDAJLWrUcDAO4GLJeRlbtuAQCcqyV2guzSUlO7niuFuwS6REdrzqE9+c8vv/wCALj3/86xq1evlutKly6t91hK7TkArF+/HgBQsmRJGdu5U3N3wtvb2/SCWli7dpoOxNWqVZOxQYMGAQCyZcumcx8iQzJTusUhGC2DNelERERERCrDJJ2IiIiISGXY3IWISMvDC3vk8uWw1wCAB9smy9hXszTjZ7t1SmzisW/5JwCA4trNSQ4OBwBYNZieGHOpDgAYvTZx9s4vyrsBACICf5Kxll3mAgBux5SRsRmXL2m2T+zzmmZiYxO7u86fPx8AsGPHDhmrUUMzE+uoUaMAALa2xrWjiY+Pl8tdunQBkNjsBQCcnZ0BAJMmTZIx7Q6r6enoUc3srEuXLpWxihU1HXoHDhyYIWWi91tmSrfY3MUyWJNORERERKQyrEknItJycHhiDZB2Jbgif7vfAQBLJn8mY3WKaTp6mtEvU0ti59Tzv2pq0CuOvi5jHuNPAgDCxlVN1VkMuXv3LoCkQyXmzJkTADBgwAAZq1pVUwZra2uzz6XUqk+fPl3GlBlMlc6qQGJHVO3zK8M7Wmq20mvXNENiLly4UMaUmvRGjRrJ2PPnzwEAw4cPl7FixYpZpAz04ctM6RZr0i2DNelERERERCrDJJ2IiIiISGXY3IWISEv0i8dyOSLm//9eWytjP/cbCQBYedtOxjqtvwoAWNNBa5z01NDV6fTLAwAAMa2+RU4RE6N5cPPmzZMxpXNo27ZtZUyZQbRAgQIyZmxHUVMpzU60m9vs27cv2XY2NprJsrXHZFdmSc2bN/lr8Pb/s78CQHCwZpbWM2cSx6APCQnRe47lyxPHoD9//jwAIDw8XMaUjrVEKclM6Rabu1gGa9KJiIiIiFSGNelElOnERSbOFvrwjqYW/KFTeQBArWKuhne+pOk4WrLcNzJ0vcQUAMDFa1/LWNnUFDCNatIvXLggl1esWAEASEhIkLFy5coBAFq0aCFj7u7uZp/PEpSa7z///FPGNm/eDAB4/Pixrl1MptTId+3aVcZ69eoFAMiTJ4+MrVu3DgCwceNGGVOGY/Tz87NIWejDlZnSLdakWwZr0omIiIiIVIZJOhERERGRythkdAGIiNJb+I7EMc4Ldd4MALD/f3OSSK3mJDq7RzpoZsXMph27FwYAiNAKRb+4BwC4HnRDxuILaY5dKb/hjpeXzu5MFiuR17RmJ//9959cPnjwIADgyJEjybbTbtrSoEEDk86RHpSmKHPnzpUxZfnZs2cypjTl0dUJVFvRokUBAOXLl5cxZabTlNStWxcA8OTJExn766+/AABVqlSRMScnJ6OOR0RkCGvSiYiIiIhUhh1HiSjzebhGLrYr0hkAsDkmPwDgy50n5LpJTb0AAA7Rd2Vs0xBNB8H2C/+VMfu+mqELwxY0k7HIFc0BAPm6JdaK29fXdDA9unqYjFXO9f/tgxJnu2xTZRAA4GBMLRn7+5ZmBsx+RQw/NGXW0EOHDsmYspw7d24Z++YbTcfXjO4Y+j4KCgqSy6NHjwYA9OnTR8ZatmwJALCzswORIjOlW+w4ahmsSSciIiIiUhkm6UREREREKsPmLkSUqT3cORgA4NdO0xnxdoyRO+bvJBdX79PMSvlJca0OoXGaDqOLW1WWoT67I409OACg0+rE2TaXf1IcQNLOrMqsoaGhoTL2yy+/AACeP38uY/369QMANG/e3MjzkyHR0dFyWemMO378eBlTZiktVKhQupaL1C0zpVts7mIZrEknIiIiIlIZ1qQTEQGIC7sMAAjcl1h7vePSo/8vecpY2eb1AAD1qpaTMS8HQ0dOrHW9e3IXAGD/vsTOqbf+X7nuUjRx6MeWzTWdU8vpOLB2Le6BA5phI5VOoADw2Wea4SU7d+4sY9odRsmyIiIiAADDhw+XsQoVKgAAOnVKvNuiPXMpZU6ZKd1iTbplsCadiIiIiEhlmKQTEREREakMm7sQEb0Hrl+/DgCYM2eOjN28eRMAMHbsWBnz9fUFALi4uKRj6TKvhIQEAImvBZDY5GjUqFEy1qxZM1DmlpnSLTZ3sQzWpBMRERERqQxr0omIVEb5Wl66dKmMHTx4EABQvHhxGWvatCkAoHz58jKWJcv7UfcSfTcAALD875ky9vfGKwCA/1BQxqoP0nTIHDegqYwVMthRN1H41U0AgGWT/5KxuSfuaxYKVpexQQM1HW+7tPSVsVzaY10q4sIAAGfWTpCh73/eAwCI8OkuY6WKvAUAeCBxyE2lE2mVKlWMKzx9cDJTusWadMt4P77NiYiIiIgyESbpREREREQqw+YuREQqoN3xcM2aNQCAR48eyVjp0qUBAB999JGMFS1aNJ1KZxnhB0fK5arNpgAAbsfYy5hHEW8AgOvLezJ2++n/p4DN/6WMHbgwDQBQP4eucySOV16+wXQAwL9I7ESbt4SXZiH0uow9jFROcUDGLkzTjFufA3EydurHIgCAuv8kjkG/6NdGAACnawtl7PNvNAcs2NRVxjrU1TRzGTFiRPJCU6aQmdItNnexDNakExERERGpDGvSiYjSWXx8vFw+dOgQAODYsWMy9uDBAwBJh+1r06YNAMDGxiY9imhhmg6hM8smdswcFuQBABi8M1jGpjfNBQCwRbiMHRxeHgDQYPq/MpZ//EkAwO1xVWXMVuc5ygAAJp07JWOjKvy/12ncDRn7q34JAMCgYx4y9v3xhwCACTUeyNiC2i0AABFzrsnY12WVpZcytq1HNs0xbH6RsTpOmuO1atUKANCkSRNQ5pKZ0i3WpFsGa9KJiIiIiFSGSToRERERkcqwuQsRUTp59uwZAODUqcTmF4sXLwYAeHp6yti3334LAMibN286li4N3V4AAKhdtL8MHSuh6Th68drXMlYWOjxcAQBonq+bDO30GA8AOBk2TsaqXvodAFCy3Dcydr3tagDA402fyFhuHad4ua0HACBbq2UyZv+NphlS9G8lZGxNuzwAgFkNLsvYvqE+AADrsF0y9mVpzfFybExsKiN2acZWDwvTjLU+bdo0uS5r1qw6SkUfmsyUbrG5i2WwJp2IiIiISGXexx5IRETvjX//TezwuHz5cgDA+vXrZWzixIkAknYkzBS1UDndAAAp1iHn1QyZWEIrtPOpppb78r3EWMGrmo6317W28yhfCIDu2nNtrsVrAgCqIrEm/dRxTcfS26grY+0na2rmtzSvKGOOX/x/iEitYR6rT9wNANheO3Fq1AuxDQAA27ZtAwAsWbJErvv8889TKCERZUasSSciIiIiUhkm6UREREREKsPmLkREaWDz5s0AAH9/fxnz8NCMw71rV2Inwxw5NNNmZoomLtpuaMYNf64VKqJruzjNmPKxSYKa/719mxiJinyabNfied2NK4u15lJoqx07o2nu8lC7fMU1HVBX3GojY7MfRwAA4rMmnsvDJcmRAAANGmiau4SGhgIA5s6dK9d17qyZwVR5LwCZ8P1ARMmwJp2IiIiISGVYk05ElEoREREAgHHjEocEfPlSMwPlJ58kDv/30UcfAQDc3Y2s4f1QFNEMrvhR4oSeOPb0TwCA/65BMlZBzjgaLWNXFk4CACxM4RQxr1+msIWJYuIAAG91rkzsEJo9Tx6TDlu7dm0AwP3792Xsu+++AwDMmTNHxqytrU06LhF9eFiTTkRERESkMkzSiYiIiIhUhs1diIjMsH//frmszBpauHBhGWvdujUAoGrVqjLm4pI4lnbmonkOhq75UkYWNpgOAJjTrICMrSviDQDIER0qY9efuQEA8ms1lfk3eR9R2Du5WqSkac3b2xsA0LRpUxkbOXIkAODkyZMyVrlyZQCAnZ1d+hWOiFSFNelERERERCrDmnQiohQow+YBwD///AMAuHHjhowVLVoUQNJOoqVKlUp2HCEEgMw7vF6O+r/J5TOnNTXF03+ZKWMbr2j+9ekxRsaWf1lBs30rXxkb9FRTu5xS38q4eN3dPo1SVTPHaV7zj2BQiRKJc6h26NABADBr1iwZmzJlCgAgX758aVQCIlI71qQTEREREakMk3QiIiIiIpVhcxciIi3x8fFy+fLlywCA3bt3y1hQUBAAoEqVKjL2xRdfGHXszNrMJVHiTJy5KncFAPyysauM/aJrl5fbAAAzT2nFPPwAAL7eiaEixWsCAOxxTMZOHdc0SXo5sLiM6epeGvdA8zqf0Q6W0DQzMW0UdOM5OzvL5a5dNc/B0qVLZUzpRJozZ04Zc3BIHJ+diD58rEknIiIiIlIZ1qQTEQGIiooCAFy4cEHG5s2bBwBISEiQsR9++AGA7o6hpI+mpnr9qMQZNVee9wYAjNr2jYxVtUUyD7dq9lmmFfP4rDEAoIL2huXrAwC62U+RoYVr1wIADk9vKWMtcyhLiTOUHt2yAgAQA3sZ69ulLgDdNe+WpgzN+c03ic/Fli1bAAA5csgCo379+ulQGiJSC9akExERERGpDJN0IiIiIiKVYXMXIsp0lPHKAeDNmzcAgD///BMAsHPnTrmuS5cuAIDPPvtMxtj50xz5AQC5ErbKyKY9/wIAzrSMk7FfR2jGTseZP2Rs1Pd7NAv2bWVs1qAaALS7oQJwbQQA+GJCGRla+I2mkUzHRondPxf9qtkOAeNkbOD0/09hmn+8jH3WKP1mMM2SRVNfpoyXDiR2Ij1x4oSMlStXDkDSJjBE9OFiTToRERERkcpYCe0qJSKiTODixYtyefTo0QCAkiVLAgB69uwp15Upo6mVVWo6KZXiEmdpXdOrOQCg58rbMhajYxcX314AgLlr58pYVx8DQxHGhcnFI1PaAABafJ9YGx2p6xzVNe+BDWt/lLGP8uvoxZqOlOE/J06cKGOVKlUCAIwYMSJDykSpk5nSLd5xtAxeeYiIiIiIVIZJOhERERGRyrC5CxF90CIiIuTyihWa8bC3b98uYx9//DEAoE6dOgCAIkWKyHW8ZZv24iKfyuXnr95qFuzdZCxPdgvMshn9Qi4+johJm3OkkcmTJ8vlhw8fAgB69eolYxUrVkzvIpGZMlO6xe9Oy2BNOhERERGRyrAmnYg+SAcPHgQA7NixQ8bevtXU1FarVk3GmjRpAgBwc3NLv8IRGUmpPQeA2bNnAwDCw8NlTJkVl9QvM6VbrEm3DNakExERERGpDJN0IiIiIiKV4YyjRPTee/nyJYCkTVuUmRrt7OxkrHlzzdjcjRo1SsfSEZkvb968crlKlSoAgDVr1sjYrl27AABNmzZN34IRUZpjTToRERERkcqwJp2I3itK56s7d+7I2JEjRwAA69atk7GPPvoIQNLh6tg5lN5nDRs2BJB0WNFZs2YBAGrVqiVjLi4u6VouIkobrEknIiIiIlIZ1qQTkerFxcXJ5evXrwMA5s+fnyymPfFL+fLl06dwROkkW7ZsABLbpgOJE3NpT9DVtm1bAICDg3onaSKilLEmnYiIiIhIZZikExERERGpDGccJSLVevPmDYCkHUIXL14MAGjRooWMDR48GADg5OSUjqUjyhjKzLkAcPLkSQBAv379ZEwZlrFAgQLpWzAyKDOlW5xx1DJYk05EREREpDKsSSciVQkKCpLLM2fOBJA4WREADBkyBEDSjqEcco4yqxcvXgAAJkyYIGPKUKN9+vSRMe1JkShjZKZ0izXplsGadCIiIiIilWGSTkRERESkMhwnnYhUYfr06QCACxcuyJiPjw8AoEmTJslitra26VY2IrVSmrYMGDBAxgYNGgQAqFixooyxuQvR+4c16UREREREKsOadCJKd1evXgUArFixQsYiIyMBANWrV5ex5s2bA+BQckT6KB30ihcvLmNNmzYFkDgUIwC4u7sDSPr5IiJ1Y006EREREZHKMEknIiIiIlIZjpNORGkqKioKQOLMiAAQEBAAALh165aM9e/fHwDQoEGD9Csc0QdImVdAuzNphQoVAADDhg2TMXt7+/QtWCaXmdItjpNuGaxJJyIiIiJSGXYcJSKLCwsLk8sHDhwAAOzevVvGlBlCFy1aJGOOjo7pVDqiD5urqysAoGXLljJ26tQpAMDWrVtlrGPHjulbMCIyCWvSiYiIiIhUhkk6EREREZHKsOMoEaVKQkKCXH748CEAYPLkyTJ27949AEC/fv1krG3btulSNiLSGD16NICkTdGUWX6V5meUtjJTusWOo5bBmnQiIiIiIpVhTToRpcq6devk8owZMwAATZo0kbG+ffsCADw9PWWMtSxE6UsZAnXjxo0yljVrVgDA2LFjM6RMmU1mSrf4HW8ZrEknIiIiIlIZJulERERERCrDcdKJyGhPnjyRy99++22y9UrntBo1ashYjhw50r5gRGRQtWrVACSd5XfFihUAgDt37shYoUKFALC5ApEasCadiIiIiEhl2HGUiHSKjY2Vy9u3bweQtNNZyZIlAQC1a9eWsZo1awIAbG1t06OIRGSiBw8eyGWlJv3mzZsyNn/+fACAjQ1vtFtaZkq3eCfGMliTTkRERESkMkzSiYiIiIhUhveziCiJ27dvAwD27NkjY8HBwQCAokWLyljPnj0BAPny5UvH0hFRahQoUEAuN2vWDABw4MABGTt8+DCApM3Y7Ozs0ql0RKSNNelERERERCrDmnSiTCw+Ph4AcOHCBRnbvXs3gKTDstWqVQsA0KdPn/QrHBGlqSJFigAAPv30UxlbuHAhAKBgwYLJtiOi9MWadCIiIiIilWGSTkRERESkMhwnnSiTiYiIkMtBQUEAgMmTJ8tY4cKFAQCDBg2SsVKlSqVP4Ygo3b169Uout2jRAgDQv39/GWvVqhUAwNXVNX0L9oHJTOkWx0m3DNakExERERGpDDuOEmUSYWFhAIAlS5bI2KpVqwAAEydOlLEGDRoAABwcHNKvcESUYbQ/6+PHjwcATJ06VcZy5coFAPjoo4/StVxEmR1r0omIiIiIVIZJOhERERGRyrC5C9EHbNeuXXJ5xowZAIDixYvL2KZNmwAAefPmlTFbW9t0Kh0RqYG1tbVcrlevHgBgxYoVMnb69GkAQLFixWTM29s7XcpGlJmxJp2IiIiISGU4BCPRB+TJkycAEmvN79+/L9cpQ6vVrFlTxlgbRkS6XL16VS5PmDABAFC5cmUZGz58eLqX6X2XmdItDsFoGaxJJyIiIiJSGSbpREREREQqw46jRO+5ffv2yWWlo2hCQgIAoFOnTnKdMsaxk5NTOpaOiN5H2rMMV6xYEQBw584dGTt27BgAoFatWulbMKJMhDXpREREREQqw46jRO+R58+fy+WdO3cCAM6dOydjdnZ2AIBPPvkEAFChQoV0LB0RfYhCQ0MBAHPnzpWx8PBwAMDMmTNlTHsoR0ouM6Vb7DhqGaxJJyIiIiJSGSbpREREREQqw46jRCoVHx8vl5UOWwEBATK2efNmAEDLli1lrE+fPgAABweHtC8gEWUKXl5eABI7kALAunXrACQ2uwOSfhcRUeqxJp2IiIiISGVYk06kMsrwiadPn5Yxf39/AMC9e/dk7M8//wQAFClSJP0KR0SZVrNmzeRyZGQkAGDatGky5ufnBwBwcXFJ34IRfaBYk05EREREpDJM0omIiIiIVIbjpBOpzLhx4wAAx48fl7HWrVsDAAYPHixjWbJofmNzPFoiSm/BwcEAgNmzZ8tY2bJlAQC9e/eWMUdHx/QtmIplpnSL1yXLYE06EREREZHKsCadKAOdP38eADB69GgZK126NADg448/lrEyZcoAAJycnNKxdEREhp06dUoud+/eHQCwa9cuGStUqFC6l0mtMlO6xZp0y2BNOhERERGRyjBJJyIiIiJSGTZ3IUonr169AgAsX75cxg4fPgwAqFatmox99NFHAICSJUvKGG8dEpEavXz5Ui5PmjQJAPD27VsZGzZsGAAgb9686VswFcpM6RavWZbBmnQiIiIiIpXhjKNEaUjpGAoAmzdvBpA4Ux8A1KtXDwDQqVMnGcuWLVu6lI2IKLW0ZxcdMGAAAKB///4ydvbsWQBA7ty5ZczGhqkHkTFYk05EREREpDJM0omIiIiIVIb3nIgsJCIiQi6fPHkSALB//34Ze/HiBQCgY8eOMtakSZP0KRwRURrQ7iDo7e0NAGjWrJmM7dmzBwDg4eEhYzVq1EifwhG951iTTkRERESkMhyCkSiVwsLCACSdZU/pJFqiRAkZ+/777wEAzs7O6Vc4IqIM1LJlSwBAzZo1ZWzkyJEAMl8H0syUbnEIRstgTToRERERkcowSSciIiIiUhk2dyEygTKT3tOnT2Vs6NChAJLeylRifn5+6Vg6IiJ12bp1KwBg7969MlaxYkUAQK9evTKiSBkmM6VbbO5iGaxJJyIiIiJSGdakE6UgOjpaLm/ZsgUAMGHCBBn74osvAAAtWrSQMU9Pz3QqHRGR+o0ePVouh4aGAgCmTp0qY+7u7ulepvSWmdIt1qRbBmvSiYiIiIhUhjXpRHpcvnwZALB48WIZe/jwIQCgb9++MlapUiUAQPbs2dOxdERE749Lly7J5eXLlwNI7OMDAH/88Ue6lym9ZaZ0izXplsGadCIiIiIilWGSTkRERESkMplrui8iPZTbkP7+/jJ24sQJAEDevHllrE2bNgCAOnXqpGPpiIjeb2XLlpXLShPBtWvXytiFCxcAAOXLl0/PYhGpGmvSiYiIiIhUhh1HKdO6ceOGXN6xYwcA4Pr16zJWpEgRAEDr1q1lrHjx4ulUOiKiD1NISAgAYPXq1TKmdNSfO3eujDk4OKRvwdJYZkq32HHUMliTTkRERESkMkzSiYiIiIhUhh1HKVPQnjVU6aC0b98+GTt//jwAoEePHjKmdBLVptyu5K08IiLz5MuXDwDQpEkTGdu6dSsA4NixYzJWt25dAICtrW06lo5IPViTTkRERESkMqxJpw/af//9BwA4evSojM2cORMAUKpUKRmbN28eACBnzpwGj8cadCIiyyhUqJBc/uKLLwAA06dPlzFvb28AiZ34iTIb1qQTEREREakMk3QiIiIiIpVhcxf64Dx48EAuz58/H0DS5i7jx48HkHTWUGtr6/QpHBERAQCcnZ3lcuPGjQEAixcvlrHDhw8DANzc3AAA7u7u6Vc4IhVgTToRERERkcqwJp0+GCtXrgQArFu3TsaKFSsGAPD395cxLy8vAKw9JyJSi6xZswIAJk2aJGODBw8GAOTJkwcA0KxZs/QvGFEGYk06EREREZHKMEknIiIiIlIZNneh99KLFy8AAKNGjUq27uOPP5bLyox1ygx3RESkPlmyaOoMy5QpI2OVKlUCAJw8eRJA0nHVS5YsmY6lI8oYrEknIiIiIlIZKyGEyOhCEBny9u1bAMDu3btlbPv27QAAFxcXGfPz8wOQWHsOJHZGIiKi98v169cBAL/88gsAoEKFCnLdl19+mRFFSpXMlG5xdm7LYE06EREREZHKMEknIiIiIlIZdhwlVfr333/l8oEDBwAA58+flzFljPPPP/9cxvLnz5/sOMrtRd56IyJ6v5QoUQIAUL58eQDAjRs35LqAgAAAQL169dK5VETphzXpREREREQqw46jpApxcXEAgDt37gAANmzYINedO3cOANCkSRMZ69+/fzqWjoiIMkpERAQA4I8//pCxR48eAQDmzZsnY2qfRTozpVu8e20ZrEknIiIiIlIZJulERERERCrD5i6UYZQmLkDijHLTpk0DAOTMmVOuGzlyJACgSJEi6Vg6IiJSkx07dsjlLVu2AEicHwMAunTpku5lMkVmSrfY3MUyWJNORERERKQyHIKR0l10dDSAxFnkAODYsWMAgD59+gAAOnToINc5ODikY+mIiEiNtAcPCA8PB5C042jTpk0BANmzZ0/fghGlEdakExERERGpDJN0IiIiIiKVYcfR95yuGTVnzpwJAPjmm29kLEeOHMn2ff36NQDg7t27MjZ9+nQAiU1SAOC3334zuyyKU6dOyeXRo0cDAKpVqyZjHTt2BAD4+PgAYBMXIiLS7+bNmwCAJUuWJFs3duxYuWxvb6/3GGfOnJHLjRo1AgB4eXnJ2MuXLwEA8fHxMqZc35TrJwCUK1cOAHD48GGDZc5M6RY7jloGa9KJiIiIiFSGNekfiO+//14uP3v2DADQoEEDGYuJiUm2jzI724kTJ2Rs9uzZAICPP/5YxtauXWtSWUJDQ+XyqlWrAABnz56Vsfr16wMAateuLWOlSpUy6RxERJR5KamL9l3aoUOHAgAWLVokY76+vgB01+y+ePFCLis18l999ZWMKYMbFCpUSMZiY2MBJJ3d9OnTpwCSDhG5Z8+eZOdLSEjQW5YPTWZ4jOmBNelERERERCrDJJ2IiIiISGXY3OU9N3fuXABJO8B069YNQGKzkpQULlxYLru6ugIApk6dKmPazWYMOXjwIADg0KFDMhYREQEgsUMoAPTq1QsAYGdnZ9RxiYiIdImKipLLkyZNApC0eeeXX34JAMiXL5+M6RrkQJkBW3vQgn///RdA0s6kuigDLQwfPlzGlFmzBw0aJGPKcTJD2sXmLpbBmnQiIiIiIpVhTfp7Tvm1umHDBhlr3749gKS/1g39qtWuJfjpp58AAP369TN4XmVoqtOnT8uY0mlGe8grpQNqhQoVDB6PiIgoNZQ7t927d5cx5VqmzEYK6B6WUen8mTt3bhm7cuUKAKBkyZLJtk/p+qrE9u/fL2PKXenMkHaxJt0yWJNORERERKQyTNKJiIiIiFTGJqMLQMZTxlh98OCBjJUtWxYA4OjomGx7Y283ad/K09WZUxkX9s6dOzIWEBAAIOlspO3atQMAdOjQQcY8PDwAANevXzeqLERERMbKkiV5XWOxYsXkstIUNHv27DJWt27dZPso454b2xRF1/VVu8Oq0qTG1tbWqOMR6cKadCIiIiIilWFN+ntEmUlUe/azW7duAQCKFCli9nEPHDhgcP3FixcBAC1btkxWFu1ajBkzZgAApk2bZnZZiIiIUkO7llu5A12lShUZ01WTrtSCa99NZudHymisSSciIiIiUhkm6UREREREKsPmLu855VZeWipdujQAIDAwUMZcXFwA6L4dmBnGgCUiInXSvi4pc3rkyJEj2XbHjx+Xyx07dgQA3Lt3T8Y8PT1NOq+u8deJUoM16UREREREKsOa9PecpWvSlVpw7ZoIZXjHwoULW/RcREREaSlnzpx612kPmfjkyRMApteeA0BISAgAoHXr1smOzc6nlBqsSSciIiIiUhkm6UREREREKsPmLu8RXU1bXF1dk8V0ddzUdcutS5cuAIBx48bJmPbso0RERB8C7euicj10dnaWMeX6qmvWUF37alP2PX/+vIxNmjQJAODr65vqslPmxZp0IiIiIiKVYU36e0T51T9kyBAZmzVrFgBg6NChMqar44tSO/Dbb7/JWHx8PADAxoZvAyIi+vDoGgxBGWZx165dMvbTTz8B0D2Mova+ly5dSrbv69evAQBffPGFjI0aNUpvWYiMxZp0IiIiIiKVYZJORERERKQyVoL3X1QtpQ4rDRo0AAA0btxYxurUqQMAePv2rYzdvXsXADB16lQZu3jxot7zcWxXIiL6UDx69EguDxs2DACwY8cOGTt9+jQAIDQ0VMaU66Gbm5uMjR8/HgCwfft2GWvXrh0AYOPGjQbLkJnSLeYQlsGadCIiIiIilWFN+gdCGU4RAFavXp1sfcWKFQEAZ8+eTbcyERERqYF2p05lwAXt2UhfvXoFQHcNsHaaFB0dDQDo16+fjM2fP9+oMmSmdIs16ZbBmnQiIiIiIpVhkk5EREREpDJs7vKB0J6N1NBLam1tnR7FISIiUg1jr5HG0m7OkSWLcfWdmSndYnMXy2BNOhERERGRyrAmnYiIiCiNZaZ0izXplsGadCIiIiIilWGSTkRERESkMkzSiYiIiIhUhkk6EREREZHKMEknIiIiIlIZJulERERERCrDJJ2IiIiISGWYpBMRERERqQyTdCIiIiIilWGSTkRERESkMkzSiYiIiIhUhkk6EREREZHKMEknIiIiIlIZJulERERERCpjk9EFICIiIvrQWVlZZXQR6D3DmnQiIiIiIpVhkk5EREREpDJM0omIiIiIVIZJOhERERGRyjBJJyIiIiJSGSbpREREREQqwySdiIiIiEhlmKQTEREREakMk3QiIiIiIpVhkk5EREREpDJM0omIiIiIVIZJOhERERH9r906FgAAAAAY5G89jR1FETOSDgAAMwFMnS87iTh1gwAAAABJRU5ErkJggg==",
"path": "images_version_6/image_58.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, AB parallel CD, then the size of angle D is ()
Choices:
A:65°
B:55°
C:45°
D:35°
|
||
291
|
59
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGMAAABnCAAAAAAxwaNfAAAGCElEQVR4nLVaXWgcVRT+7iZ1IGzxwWLXspI2NrCxkmxNQvJQTR9qGw3ShqplXbE+WEopUok/WGhLRERFqbYUrNiHbSlUH2SFmlS0gaQUKt3U/BDdSItWuoEtlpraVGbaOMeHmZ25O3tndv72I9mZvXO53z3nu+fcOTMLqiFSADBEEFxSwyMZpjHkI6gEA3BuVnDBKxZ/60ETIOIAsPhaCBS4sL4Bbw8kBL5SiejdZ++E4KoMgDyRwA4GHG+bC2wEAT/kKdMyK/ZVYaH9wYagHAyFmwmkW0fEHId341FjMv4x0gcUp5tQqYdKGQADQbVQiVJ5utcavyPQgxUWiMaaghgAAOwcO9XClqy41oD6iotzO4aBP4JSAE+afrbaeADIUwp4PaizTLBAqjqCmH5iE+dhoERRyVEDu0S+OvQ3I8PQoBiEYF0Bj23o3sTA1LBohJqvuG/q/pDGB0SaExZubtv8X005GKZaPoq9WlMOYDKJ47ODteUY74B0+uTX4ZEIYj95noiuxEbDyiUCDln6h4hoNH6ldhy5hHY8ufqvcDgEelxq047pdL9iujSAHAKOiU79ZLB5u9EYJOYFHFNJQJv458X9oSTJCu8tSvPG+XwiE4IelRwzjdyXK7GzwTkqfTXeyX155NuXgt/4VnJMJsGJ0HWk93pQSQR2dIBfRlt39SsBNxJu/9C3vqWXl5ePueNGNhiHaYdOMRuNWbocXXgrLA6mqTDVad3K67JnvjBn4oOD38+JAZhsq/B+dGjdyk3mTDyD15wBwHh7ZafG7Cu/+BjbgDVgHrgqqjmz8Wv+Y9DKcXWZuN9n7bfJb8XL+4oATCTF5u7pTql+s69Vj0sdNh0P4Q2/4W6Nczs7EDk1etgnh1WPWJ5IFfv9WnzIlxxWzYtRB11nYjki8q68xVcTSQdd1xzrLwDelbdw2EoOAOjb17vgQ3gLx2TSMSPt3Niveifh8i4A5NqdPXEwutszhWVdzUuLVfST2z/0qLh1XZ3trtZfLTZmvXKYuZ0YMNlW1e7l3z/xUJc3V5XtUcitrdafIfHV5j+9cfC+UimRc2P78cR89U4cGAEKIAEAFpbdktzMa++FkToPZkQASDoFplocKYzI+MBbuVgWg5NJx75m5HgrF0vrSgEkJbcWUCDBcJ/hRf1M/5TwTU9zGtxjF2cQEcn6/+PnSSb9jzsYX7TvsiyTnI/96FpznuOWdJtkWbbhIL5Z9lIuGnpICmZWRQFJcrW00PN+7w2Xt3QRwCj69ChXxD3Lmwnb0lsUd1tJBIAiAYCkTHcCkqJIgKTwB6W8WYEC3AX2Nm93medNt8ldHmsmuWefq34mh8wXgu7gslwscciyXFYIuoNZLjrdR5TWlSRJZYWgO5jlopP4XC6pkkmE6DrSe71qJ45j3PGexAZbd21RQM7ri6sHl162VmlVoGWr6uWiaYdWCLq/syFdg+rloskx1QF4uQcs9azLnjnq3NO8Z/AjOQAgOrRulV4uinO9aYeoEHQHs1y08YIRKcuueg5BA87losFhVwi6g1Yu2sDwlW0BVRUEYE93yv7JtsHxs58IBKCLcAhv2i77EOwAANQ5lYslp8XyQfQgokL8tM0VqESkEhWjASmIZmIXVZWoMs9H9CWtR2CQJ25rjj0/xwCAWYap1xpLSTfQE7e+Qu9PUcEwJc19ZxIeO596QbSCNQ5CzvfS5fGptBsCh2uyVC8Eq0ETWm7/pHJr1zlGugXrwQ+KK7MVbfVaQp64PRiCq4gBfelfGy3N+l47lCv1CUYChjsfW1tr+E7YQA3fCZdxEEoftXgjrHGcYOzpxX0AAsY5D36yEcyxaaIvl6wI430N0owx9vC/lsneax0gUumAz+d4VryYJ9ofL/+RDTJaQ0bfPgLG4d3niIhSAyo/Tv3BdxoA4GXdON+CaLF1IQ4AzRfLholMNwUbuwRtgJGNALC6PCLCjY/F73oA4HKCayNEWn8nAIUzoXAU1zcAKLy3gaNgwAkME431BpO6hMwRIqLUM+WtoDGE8AsiDfda80QFWCcsen/uF2Oad4at7f8Dxbd0DxuMNUkAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_59.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, AB parallel CD, AD bisects angle BAC, and angle C = 80.0, then the degree of angle D is ()
Choices:
A:50°
B:60°
C:70°
D:100°
|
Như hình vẽ, AB song song với CD, AD chia góc BAC thành hai phần bằng nhau, và góc C bằng 80°. Tìm số đo của góc D ()
Các lựa chọn:
A: 50°
B: 60°
C: 70°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB parallel CD, AD bisects angle BAC, and angle C = 80.0, then the degree of angle D is ()
Choices:
A:50°
B:60°
C:70°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB parallel CD, AD bisects angle BAC, and angle C = 80.0, then the degree of angle D is ()
Choices:
A:50°
B:60°
C:70°
D:100°
|
As shown in the figure, AB parallel CD, AD bisects angle BAC, and angle C = 80.0, then the degree of angle D is ()
Choices:
A:50°
B:60°
C:70°
D:100°
|
292
|
59
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGMAAABnCAAAAAAxwaNfAAAGCElEQVR4nLVaXWgcVRT+7iZ1IGzxwWLXspI2NrCxkmxNQvJQTR9qGw3ShqplXbE+WEopUok/WGhLRERFqbYUrNiHbSlUH2SFmlS0gaQUKt3U/BDdSItWuoEtlpraVGbaOMeHmZ25O3tndv72I9mZvXO53z3nu+fcOTMLqiFSADBEEFxSwyMZpjHkI6gEA3BuVnDBKxZ/60ETIOIAsPhaCBS4sL4Bbw8kBL5SiejdZ++E4KoMgDyRwA4GHG+bC2wEAT/kKdMyK/ZVYaH9wYagHAyFmwmkW0fEHId341FjMv4x0gcUp5tQqYdKGQADQbVQiVJ5utcavyPQgxUWiMaaghgAAOwcO9XClqy41oD6iotzO4aBP4JSAE+afrbaeADIUwp4PaizTLBAqjqCmH5iE+dhoERRyVEDu0S+OvQ3I8PQoBiEYF0Bj23o3sTA1LBohJqvuG/q/pDGB0SaExZubtv8X005GKZaPoq9WlMOYDKJ47ODteUY74B0+uTX4ZEIYj95noiuxEbDyiUCDln6h4hoNH6ldhy5hHY8ufqvcDgEelxq047pdL9iujSAHAKOiU79ZLB5u9EYJOYFHFNJQJv458X9oSTJCu8tSvPG+XwiE4IelRwzjdyXK7GzwTkqfTXeyX155NuXgt/4VnJMJsGJ0HWk93pQSQR2dIBfRlt39SsBNxJu/9C3vqWXl5ePueNGNhiHaYdOMRuNWbocXXgrLA6mqTDVad3K67JnvjBn4oOD38+JAZhsq/B+dGjdyk3mTDyD15wBwHh7ZafG7Cu/+BjbgDVgHrgqqjmz8Wv+Y9DKcXWZuN9n7bfJb8XL+4oATCTF5u7pTql+s69Vj0sdNh0P4Q2/4W6Nczs7EDk1etgnh1WPWJ5IFfv9WnzIlxxWzYtRB11nYjki8q68xVcTSQdd1xzrLwDelbdw2EoOAOjb17vgQ3gLx2TSMSPt3Niveifh8i4A5NqdPXEwutszhWVdzUuLVfST2z/0qLh1XZ3trtZfLTZmvXKYuZ0YMNlW1e7l3z/xUJc3V5XtUcitrdafIfHV5j+9cfC+UimRc2P78cR89U4cGAEKIAEAFpbdktzMa++FkToPZkQASDoFplocKYzI+MBbuVgWg5NJx75m5HgrF0vrSgEkJbcWUCDBcJ/hRf1M/5TwTU9zGtxjF2cQEcn6/+PnSSb9jzsYX7TvsiyTnI/96FpznuOWdJtkWbbhIL5Z9lIuGnpICmZWRQFJcrW00PN+7w2Xt3QRwCj69ChXxD3Lmwnb0lsUd1tJBIAiAYCkTHcCkqJIgKTwB6W8WYEC3AX2Nm93medNt8ldHmsmuWefq34mh8wXgu7gslwscciyXFYIuoNZLjrdR5TWlSRJZYWgO5jlopP4XC6pkkmE6DrSe71qJ45j3PGexAZbd21RQM7ri6sHl162VmlVoGWr6uWiaYdWCLq/syFdg+rloskx1QF4uQcs9azLnjnq3NO8Z/AjOQAgOrRulV4uinO9aYeoEHQHs1y08YIRKcuueg5BA87losFhVwi6g1Yu2sDwlW0BVRUEYE93yv7JtsHxs58IBKCLcAhv2i77EOwAANQ5lYslp8XyQfQgokL8tM0VqESkEhWjASmIZmIXVZWoMs9H9CWtR2CQJ25rjj0/xwCAWYap1xpLSTfQE7e+Qu9PUcEwJc19ZxIeO596QbSCNQ5CzvfS5fGptBsCh2uyVC8Eq0ETWm7/pHJr1zlGugXrwQ+KK7MVbfVaQp64PRiCq4gBfelfGy3N+l47lCv1CUYChjsfW1tr+E7YQA3fCZdxEEoftXgjrHGcYOzpxX0AAsY5D36yEcyxaaIvl6wI430N0owx9vC/lsneax0gUumAz+d4VryYJ9ofL/+RDTJaQ0bfPgLG4d3niIhSAyo/Tv3BdxoA4GXdON+CaLF1IQ4AzRfLholMNwUbuwRtgJGNALC6PCLCjY/F73oA4HKCayNEWn8nAIUzoXAU1zcAKLy3gaNgwAkME431BpO6hMwRIqLUM+WtoDGE8AsiDfda80QFWCcsen/uF2Oad4at7f8Dxbd0DxuMNUkAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_59.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, AB parallel CD, AD bisects angle BAC, and angle C = 80.0, then the degree of angle D is ()
Choices:
A:50°
B:60°
C:70°
D:100°
|
Như hình vẽ, AB song song với CD, AD chia góc BAC thành hai phần bằng nhau, và góc C bằng 80°. Tìm số đo của góc D ()
Các lựa chọn:
A: 50°
B: 60°
C: 70°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB parallel CD, AD bisects angle BAC, and angle C = 80.0, then the degree of angle D is ()
Choices:
A:50°
B:60°
C:70°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB parallel CD, AD bisects angle BAC, and angle C = 80.0, then the degree of angle D is ()
Choices:
A:50°
B:60°
C:70°
D:100°
|
As shown in the figure, AB parallel CD, AD bisects angle BAC, and angle C = 80.0, then the degree of angle D is ()
Choices:
A:50°
B:60°
C:70°
D:100°
|
293
|
59
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAGMAAABnCAAAAAAxwaNfAAAGCElEQVR4nLVaXWgcVRT+7iZ1IGzxwWLXspI2NrCxkmxNQvJQTR9qGw3ShqplXbE+WEopUok/WGhLRERFqbYUrNiHbSlUH2SFmlS0gaQUKt3U/BDdSItWuoEtlpraVGbaOMeHmZ25O3tndv72I9mZvXO53z3nu+fcOTMLqiFSADBEEFxSwyMZpjHkI6gEA3BuVnDBKxZ/60ETIOIAsPhaCBS4sL4Bbw8kBL5SiejdZ++E4KoMgDyRwA4GHG+bC2wEAT/kKdMyK/ZVYaH9wYagHAyFmwmkW0fEHId341FjMv4x0gcUp5tQqYdKGQADQbVQiVJ5utcavyPQgxUWiMaaghgAAOwcO9XClqy41oD6iotzO4aBP4JSAE+afrbaeADIUwp4PaizTLBAqjqCmH5iE+dhoERRyVEDu0S+OvQ3I8PQoBiEYF0Bj23o3sTA1LBohJqvuG/q/pDGB0SaExZubtv8X005GKZaPoq9WlMOYDKJ47ODteUY74B0+uTX4ZEIYj95noiuxEbDyiUCDln6h4hoNH6ldhy5hHY8ufqvcDgEelxq047pdL9iujSAHAKOiU79ZLB5u9EYJOYFHFNJQJv458X9oSTJCu8tSvPG+XwiE4IelRwzjdyXK7GzwTkqfTXeyX155NuXgt/4VnJMJsGJ0HWk93pQSQR2dIBfRlt39SsBNxJu/9C3vqWXl5ePueNGNhiHaYdOMRuNWbocXXgrLA6mqTDVad3K67JnvjBn4oOD38+JAZhsq/B+dGjdyk3mTDyD15wBwHh7ZafG7Cu/+BjbgDVgHrgqqjmz8Wv+Y9DKcXWZuN9n7bfJb8XL+4oATCTF5u7pTql+s69Vj0sdNh0P4Q2/4W6Nczs7EDk1etgnh1WPWJ5IFfv9WnzIlxxWzYtRB11nYjki8q68xVcTSQdd1xzrLwDelbdw2EoOAOjb17vgQ3gLx2TSMSPt3Niveifh8i4A5NqdPXEwutszhWVdzUuLVfST2z/0qLh1XZ3trtZfLTZmvXKYuZ0YMNlW1e7l3z/xUJc3V5XtUcitrdafIfHV5j+9cfC+UimRc2P78cR89U4cGAEKIAEAFpbdktzMa++FkToPZkQASDoFplocKYzI+MBbuVgWg5NJx75m5HgrF0vrSgEkJbcWUCDBcJ/hRf1M/5TwTU9zGtxjF2cQEcn6/+PnSSb9jzsYX7TvsiyTnI/96FpznuOWdJtkWbbhIL5Z9lIuGnpICmZWRQFJcrW00PN+7w2Xt3QRwCj69ChXxD3Lmwnb0lsUd1tJBIAiAYCkTHcCkqJIgKTwB6W8WYEC3AX2Nm93medNt8ldHmsmuWefq34mh8wXgu7gslwscciyXFYIuoNZLjrdR5TWlSRJZYWgO5jlopP4XC6pkkmE6DrSe71qJ45j3PGexAZbd21RQM7ri6sHl162VmlVoGWr6uWiaYdWCLq/syFdg+rloskx1QF4uQcs9azLnjnq3NO8Z/AjOQAgOrRulV4uinO9aYeoEHQHs1y08YIRKcuueg5BA87losFhVwi6g1Yu2sDwlW0BVRUEYE93yv7JtsHxs58IBKCLcAhv2i77EOwAANQ5lYslp8XyQfQgokL8tM0VqESkEhWjASmIZmIXVZWoMs9H9CWtR2CQJ25rjj0/xwCAWYap1xpLSTfQE7e+Qu9PUcEwJc19ZxIeO596QbSCNQ5CzvfS5fGptBsCh2uyVC8Eq0ETWm7/pHJr1zlGugXrwQ+KK7MVbfVaQp64PRiCq4gBfelfGy3N+l47lCv1CUYChjsfW1tr+E7YQA3fCZdxEEoftXgjrHGcYOzpxX0AAsY5D36yEcyxaaIvl6wI430N0owx9vC/lsneax0gUumAz+d4VryYJ9ofL/+RDTJaQ0bfPgLG4d3niIhSAyo/Tv3BdxoA4GXdON+CaLF1IQ4AzRfLholMNwUbuwRtgJGNALC6PCLCjY/F73oA4HKCayNEWn8nAIUzoXAU1zcAKLy3gaNgwAkME431BpO6hMwRIqLUM+WtoDGE8AsiDfda80QFWCcsen/uF2Oad4at7f8Dxbd0DxuMNUkAAAAASUVORK5CYII=",
"path": "images_version_1-4/image_59.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, and angle C = 80.0, then the degree of angle D is ()
Choices:
A:50°
B:60°
C:70°
D:100°
|
Như hình vẽ, góc C bằng 80°, thì số đo của góc D là ()
Các lựa chọn:
A: 50°
B: 60°
C: 70°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, and angle C = 80.0, then the degree of angle D is ()
Choices:
A:50°
B:60°
C:70°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, and angle C = 80.0, then the degree of angle D is ()
Choices:
A:50°
B:60°
C:70°
D:100°
|
As shown in the figure, and angle C = 80.0, then the degree of angle D is ()
Choices:
A:50°
B:60°
C:70°
D:100°
|
294
|
59
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAQ4AAAD5CAYAAADWUduwAAA0eElEQVR4nO3deVTb94Hv/bcWkEBIICSQEJsxiw0YY1M74BDj2LVjx22cpFnadJJJ0zSdpue2nenTznN689w703vn6eR25vTJyb1NzjTTZpy0rpsmTTJu7NiJd7AB25DEu2O8sW9il9Dyk54/bKkCxCIbW0J8X+f4hMBP+n0F0uf33X8yr9frRRAEIQTycBdAEIS5RwSHIAghE8EhCELIRHAIghAyERyCIIRMBIcgCCETwSEIQshEcAiCEDIRHIIghEwEhyAIIRPBIQhCyERwCIIQMhEcgiCETASHIAghE8EhCELIRHAIghAyERyCIIRMBIcgCCETwSEIQshEcAiCEDIRHIIghEwEhyAIIRPBIQhCyERwCIIQMhEcgiCETASHIAghE8EhCELIRHAIghAyERyCcJM+++wzvv3tb5OXl4dMJgv6Ty6X85Of/IQzZ87gcDjCXeRZowx3AQRhrkpKSqKsrIy+vj6cTiculwuj0YhOp0OtVjMwMIBcLqezs5Pq6mpiY2PJyclBoVCEu+i3TATHFLxeLwAymSzMJREiUVZWFk8//TRpaWkoFAoSEhKoqKigpKSEtLQ0enp6aGho4Fe/+hXV1dVoNBp0Oh2pqanhLvotE8ExjWCh4fV6sdvtOJ1OZDIZSqWSuLg45HLR8psvvF4vMpmMuLg4UlJS8Hq9mEwmKisrKSwsBK4HC4Ddbufzzz+np6cnapor4p0+hclqGpIk0drayoULF7h27RpWqxW3232HSyeEU+B7o7Ozk6tXr+JyuUhLSxtznFqtJiEhAZVKRUxMTNRcXKLjVdxhHo+Ho0ePsmvXLlpbW8NdHCFMPB4PAwMDjI6Okp6eTk5ODklJSf6fnz9/nkOHDqFSqVi+fDlZWVno9frwFXgWiabKTRgcHOTw4cOcPn2agoIC1Gp11FxJhJkbHh7m0qVL2Gw2FixYQEpKypif19TU8PHHH2MymSguLmbRokXEx8eHqbSzSwRHEL72azDXrl2jvr6enp4etFoter0enU4XFT3lQmgkSWJoaIjLly9z6NAhGhsbOXz4sL9JkpKSwpYtW0hOTiYtLQ2z2RzuIs8aERyTCBYeTqeTkydPUl9fj8vlIj09HaPRiEqlClMphXByu9309/fT2trK2bNnGRkZ4cCBA3i9XpRKJX//93/PV7/6VSwWC0pldH3UouvVzJJgtY329nYuX76M3W7HYDAgSRL9/f2iU3SeCDY0PzAwwKlTp9BoNDz//PNotVrUajVXrlzhypUrnDhxgp/97Gd8/etfZ/Xq1VE1rC+CYwa8Xi9Xr17l1KlTmEwmcnNzOXLkCMPDwyI45rH+/n4+//xz0tLS+MY3vkFBQQFwfZRl//79vPjii+zZsweTycTChQsxmUzExMSEudSzQ/TozYDdbmdgYIChoSF0Oh3Z2dkYDAbUarVopswTvinkgfr7+7FarXi93jGTukwmE6tWraKsrIy0tDS6uro4c+YMg4ODd7rYt42ocUxjYGCA1tZW3G43aWlppKWloVKpMBgMuN1uERzzkNvtxmq10t/fT2xsLAkJCajV6jHHpKenk5aWhk6nY3R0FKvVisvlClOJZ5+ocUzjypUrVFdXk5SUxKOPPsrixYvRaDSkpKRgMpmIjY2d8XN5vV5/W1mYu2w2G01NTfT395Ofn09OTs6E2sjo6Cjt7e00Nzcjl8sxGo0hvVcinahxTGF4eJjGxkZ2797N8PAwOp0Ou91Oc3Mzw8PDJCYmRk2bVZg5l8vFxYsX6e/vZ/HixSxatGhMzbO3t5fjx49z/vx5RkdHMRqNZGRkEBcXF8ZSzy4RHAECh2B7e3tpbGxk7969vPfee3zwwQe8/PLLOBwO4uLiKCoqoqqqKqRhtmjqVZ8vgo2myGQympqacLvdrFmzhqKiojGPOXToEP/2b/9GY2MjSUlJ5OXlkZubG1UXGREcAQLfHL29vVy+fJm4uDjuvvtuRkZG8Hq9DA4OolKpiI+PJz4+XswYjXIymQyPx8Po6Ch9fX20tLRQX1/PoUOHiImJITk5matXr6JSqYiLi8Nms/HBBx9w/vx5Fi1aREVFBaWlpVEVGiCCIyi73U5vby82m41NmzbxwgsvoFarGRkZoaWlhZaWFjo7O9FoNCI45gGPx4PVaqW6upqXX36ZI0eO+H92+PBhlEolcrkcSZKQy+VoNBry8vL45je/yYMPPkhiYmIYS397iOAYp6Ojg8bGRoaGhigoKKC4uNi/PBqub94il8txuVzExcVN6E0Xoo9MJiM2Nhaj0UhxcTFKpZLExEQUCgUOhwNJkvB6vbjdbpRKJenp6ZSUlFBVVRU1i9rGE8ERQJIkPvvsM377299SXFzM9773PbRa7Zhjrl69ypUrVxgaGkKtVotRknlAoVBgMBhYvXo1d911F5IkjWnWjn8PyOVylEplVA/Vz/vgGB0dpampiQsXLnD27Fmqq6upqalBLpdjs9n8wdHU1ERDQwM1NTWcPXsWm82GxWJhcHCQ8vJy8vPzo6rXXBhLLpcTGxsb8pBqtO4iN++Dw2az8cknn7Bz504+/PBDrFYrgH/xkslkAuDkyZNs376d2tpa2traANBqtYyMjOByuTCbzSI4hAmiLTB85n1wqNVqFi9ejNfrZeHChQwMDBAXF8fSpUv9oQGQm5vLAw88QFlZGQMDA0iShFarJSsrK6r2WRCEmZB5RSNdEGYsWpseoZrXY4mznZkig6NfsMVu85GocQiCELJ5XePwEYvPBCE0875zdDJOp5PR0VE8Ho+/auoLFxEywlS8Xi9yuZy4uLioncshgoPgHV1tbW2cOHECm81GbGwsHo8Hj8eDJElIkjTh8eM7zUS4zF9Op5O4uDjKy8tZtGhRuItzW4jgmITD4aCrq4sLFy7Q29uLQqEgPj6e2NhYlEqlv3kjOsqE8ex2OwkJCeTn54e7KLeNCI5JJCUlsWDBAurr69m5cydarZZFixaRmZmJwWDA6/Xi8Xj8x/tqHWK4TpgPIy8iOCbh20dBq9XS29tLb28vOp2O0tJSysrK8Hg8uFyuCbWOwCZKYBNGmD9cLhdqtRqDwRDuotw2IjgmoVKpyM/PJz8/H5PJRGdnJzabjYKCArZs2YJMJouaGwgLs8t3MYnmldMiOKahUCiQJAmdTofJZKKtrY1PPvmEsrIydDpduIsnCGEh5nEEGN+s8Hg89PX1MTQ0RG5uLmVlZRw/fpxf/OIXNDQ0hKmUghB+Ijgm4fF46O7uxmazodPpKC8vZ/PmzZjNZlpaWti/fz8NDQ1jmiuiP0OYL0RTJUBgJ+fw8DAtLS2Mjo5isVgoLy/nvvvuo7Ozk/b2do4cOeK/QVNeXt6ExwtCNBPBMYnh4WHa2tr8N2JKTExELpezdu1aJEnivffeo66ujgULFuD1esnNzRX7jwrzhninT8IXHB6PB4vF4t+lOisriwcffJCCggJGRkY4fPgw+/fvp7u7O8wlFoQ7RwTHJIaGhmhubkaSJDIyMkhKSvL/TK/X89hjj/GVr3yF5uZmduzYwYkTJ+jr6wtfgQXhDhJNlUkMDQ3R0tKCSqUiPT19THDI5XLKy8tJTEzk2LFjXLp0iaNHjxIbG8tdd90lhmmFqCeCYxIjIyO0tbWRlZWFxWIJem+MjIwM/uZv/oYDBw6wb98+rly5QlJSEiUlJVG7KlIQQDRVJjU0NERbWxuSJPk7R8dLSEhg/fr1rF+/HoVCwYULF6ipqeH06dNiVqkQ1URwTGJoaIjW1lYkScJisUzZ/Fi8eDHf/e53KSsrY9u2bWzbts2/W7ogRCMRHEF4PB5GRkZwu92o1epp78aVmprK+vXrWbVqFV6vl7Nnz3Lw4EGamprEpDAhKongGMflctHW1obNZsNgMKDX66e9CY9cLsdoNLJq1SqefvppkpKSePnll3n77bdxOp13qOSCcOeI4BjHZrPR2tqK3W4nNTUVvV4/44ld2dnZrFu3jiVLlmCz2fj000/Zu3cvHR0dt7nUgnBnieAYJzA4zGYzycnJM25uxMbGUlhYyNq1a9m4cSODg4O88sorHDhwYNbKJzZWFiKBCI5xfMHhcDiwWCw3tRnL4sWL2bhxI/n5+XR1dVFXV0d1dTUDAwO3ocSCcOeJ4BjHbrfT1taGw+EgIyMDg8EQ8uK1pKQk1q1bx/r16ykoKODcuXNs3bqVTz/99JbLNx+2pRMin5gANo7NZvPfVNrXVLlZy5YtY3h4mJ07d3L69GkOHz6MwWAgNzd3zO5QYtNjYa4RNY5x7HY77e3tOBwOzGbztEOxU/U5pKen8/DDD7Ny5UoUCgUnTpzggw8+4MqVK0GfRxDmClHjGMdms3H16lXi4uLIyMggJSVlyuOnqynExsaydu1a5HI5e/fuZc+ePRgMBnQ6HWazGblcLjY1FuYcUeMYZ3h4mJ6eHiRJwmw2z8qGs8XFxfzVX/0Vubm5tLe3U1dXx9GjR+nq6vIfI5oqwlwiahwBnE4nw8PDxMbGkpCQQHx8/Kw9d2JiIg8++CA6nY7q6mpef/11f20kISFh1s4jCHeCCI4bnE4nHR0dDA0NodfrSU5O9m/eM1sqKysxGo2cOnWKEydOUFdXR3JyMkuWLAm6iE4QIpVoqtwwOjpKS0sLQ0NDmM1mUlNTb0vzIT09nSeffJKvfOUr1NTU8Morr9DU1DTr5xGE20nUOG5wOBy0tbUxPDxMWlrabQuOhIQE1q1bh1arpaGhgTNnzlBbW0t8fDw5OTliHw9hThA1jhscDgft7e2MjIyQkpIy6cSv2ZjyHR8fT2FhIX/9139NeXk5f/jDH/jlL385Yd9SMb1ciFQiOG4IrHGYTCZSUlJu667lKSkprF27lsrKShwOBydPnqSmpobm5mYRFkLEE8Fxw0z7OGZryrdMJiMjI4OKigoeeughTCYTb7zxBm+99ZZ/Kb6YXi5EKhEcNzidTlpbWxkaGvLXOO7EhzYrK4svfvGLLFu2DKvVyokTJzh8+DC9vb23/dyCcLOiNjhC7R/wNVWGhob8fRx3gkqlYuXKlaxfv94fHr/5zW/Ys2fPHTm/INyMqAwOX2CEUmMYHBxkdHQUhUJBUlISSqXyttc4AoOtoKCA+++/n4KCAi5dusSRI0c4ceIEw8PDt7UMgnAzoi44Qg0Nj8fDwMAAVquVmJgYdDqdfybn7V5DEljGxMREtmzZwqZNm9Dr9Zw7d4533nmHxsbG23Z+QbhZURccEDw0JgsAl8tFV1cXAwMDJCcnk5KSMmbG6J3o5wgsW2lpKY8++ijp6ekcOXKEgwcPcvHiRbF3qRBRoi44pgqNYOHhcrno6OhgcHAQs9mMxWK54yMZgedLT0/nG9/4BpWVlVitVurr6zlw4ABXr1695fOIeSHCbIn6maOBH5RggeB2u+ns7KS/v99f41Aqw/trUSgUrFq1CqvVyrFjx/jjH/+I1+slOTn5ljptxfJ9YbZEfXD4TFaLcLlctLe309/fj8FgIDU1FYVCcYdLN9GSJUswmUwMDg7y29/+ltraWhYsWEBpaSmpqak3/bxiXogwG6KuqTLedJOofMHR19eH0WjEZDJFRHAAGI1GNm7cyFNPPUVXVxevvPIKdXV1eDyecBdNmOfmTY1jMr4bMPmCw2w2R0xwyGQyysvLMRqNtLS0cODAAerq6sjOzmbhwoViHw8hbOZ9cLjdblpbWxkYGJhQ44iETYRVKhXZ2dn+TYCOHTvG5cuX+d73vkdFRUVYyybMX/M+OOx2O319fTidTn/nY2BYREJ4aDQa7rnnHuLj47l06RINDQ3U1taSkpJCRkaGWIov3HFR38cxnYGBAVwuFzExMej1+jEhEUmLzFJSUli2bBlbtmxh5cqVfPTRR7zyyiu0t7dP+TgxiiLcDvM2OCRJor+/H6vVSmxsLElJSbO6x+jtYDKZWLNmDWvWrMHpdPprHu3t7aLDVLijor6pMtkUdEmS6OzspKenB71eHzHDsNNZtGgRsbGxXLt2jRMnTvDOO+/Q3t7Os88+i06nm3B8pNSYhOgyL2ocwT48kiTR0dHhDw6LxTLrmxPPpsAmR3Z2Nvfeey8rVqygu7uburo6jh8/Lu5NK9wxUV/jmOyKO77GEenBEfg65HI5a9euRa/Xc/XqVa5evcr777/P4OAgX/rSlyL6dQjRIeqDYzKBwZGSkoLZbJ4TH7jAUZ78/Hw2btxITU0NZ86cAa5vDLR48eKI768R5rZ5HRxdXV309vaSn58/Z4IjsOah0Wh4/PHHMRgMnDp1ioaGBtLT03G73axcuVL0bwi3zbwNDq/XS0dHB52dneh0Okwm04TFbePncETCnA4fX1nkcjnFxcU8/PDD1NfX8/HHH+NwODCZTGRlZUVMeYXoMm+Dw+1209XVhdVqJTExEZPJFLTG4fuARtp8iMBASEtL45lnnkGj0fDiiy8ik8lYsmQJcrmczMzMMJZSiFbzYlQlmJGREQYGBnA4HCQnJ5OcnBx0ONb3AY3kK7dMJkOr1VJeXs5TTz1FUlISW7duZefOnfT398/4eSItHIXINe+Cw/fh8M0Y9U3+Gv9zmBgWkRweAIWFhXz729+mtLSUEydOcPDgQU6fPo3Vap3xc4jwEGZiXgZHT08PXV1dxMfHYzKZxqz1iPRwmIpCocBsNrN69Woee+wxhoeHeemllzh48OCMHh9JU+yFyDYvg6Orq4uOjg50Oh0ZGRnExsaGu1izqrS0lK997WukpaVRX1/PkSNHuHDhAqOjo+EumhAl5mVwdHd309nZiVarJSMjA7VaHe5izSqdTkdhYSEbN27kvvvu4/z58/z85z8fs2O6aJIIt2LeBYfH46G7u5uuri4SEhKwWCxRuSxdq9VSUVHB5s2bUalU1NbWUltbS1tbG263WzRJhFsy74ZjvV4vvb29dHV1YbFYSEtLGxMckTRX41ZZLBZWr15NW1sbTqeTgwcP0tPTwzPPPENeXh4QXa9XuHPmXY3D11Tp6OhAo9FEbY3Dx2g0UllZyZo1axgdHeXo0aMcO3YMq9WKx+MRoSHclKircczkTm6dnZ20t7eTkJBAenp61IyqTGbZsmUYDAZ6enqorq7mww8/ZHh4mIcffhij0Rju4glz0LyrcbhcLnp7e7FarWi1Wsxmc9TWOAI7QDMzM7n33nspLy+ns7OT/fv309jYyNDQUBhLKMxVURcc081FsNvtDA0NYbfb0Wq1aDSaqKxlwMTa03333cczzzxDSkoKZ8+eZc+ePdTU1GCz2cJUQmGuirqmylRcLhfd3d3IZDL0ev28vL1AXl4eGzZsICYmhlOnTuFwODCbzSxZsiTsd7AT5o6oq3FMpbu7m+bmZuLi4sjOzkaj0YS7SHecUqnk8ccf56mnnmJ4eJhDhw5RW1tLU1MTbrc73MUT5oh5FRx9fX10dHSgUqlIS0sjLi4u3EW64+RyOWq1mqKiIh588EEWL17M7t27efvtt2lrawt38YQ5IurqplONqlitVtrb21GpVCQlJc274Aj83RiNRp599lksFgs//elP6ejoYOnSpajVaoxGI3L5vLqmCCGKunfHZJ2jvolfra2tqFQqLBbLvNteL/B3o1Ao0Ov1LF++nEceeQSTycTWrVt5++23RWepMK2oC46p9Pb20tbW5g+O+VbjCCYnJ4enn36au+66i/r6ej766CM+//xz7HZ7uIsmRLCoD47A6rmvqaJWq8nIyJh3NY5g1Go1CxcuZPXq1WzZsgWv18vLL7/Mrl27wl00IYLNiT6OYCs5Q5174fF46Ovro7u7m7i4ONLT00Vw3BATE8PSpUuRJIl3332XXbt2odVqWb58OVlZWXPiRlXCnRXxNQ6Px4Pb7cblco3570xveegLGLfbjdVqpbu7m/j4+KhfoxKqxMREVqxYwZo1a1i2bBmXL1/m5Zdfpra2NtxFEyJQxAeH1+v1//N4PP6vQzU4OIjdbsfr9aLRaKJu857ZkJCQQFlZGevXryc+Pp7q6mqOHj1Kd3d3uIsmRJiIb6ooFApkMhmSJOHxeFAoFP7vzdTIyAhtbW3I5XIsFgtarfY2lji8ZrLIbyrZ2dk8/PDDuN1uenp6/DWOLVu2UFBQ4D9HtE7TF2Ym4msccH3SUuBu46G+aQcGBuZNcNwqmUxGSkoKq1atorKyEpfLxYEDB6ivr/fvmC5CQ5gTwXGrfMGhUCiwWCxRvUZltjYcLi0t5Vvf+hZLliyhtbWVjz/+mJ07d9LR0TELpRTmuohvqkxnsk7SwJmPVquV1tZWf3CMX6Pi6zsB/HdHm8z4PpbAO6pN95jAmztN95ipnivYBjzBniuU8wa+LrlcjlwuJysri1WrVtHV1UVrayu7d+8mOTmZqqoqMSI1z83p4PB6vf6+j0AKhcL/4ZAkid7eXpqbm1EqlaSnp4+pcYx/Dt+HZjKSJCFJ0pjv+ZpSk13pfSNDgWQyGTExMSHXDkI5/2TnVSqVE16j1+vF7XaPef1Op5OqqiosFgu/+MUvOHr0KOnp6SQlJVFSUjLlIsFb7WsRItucDg7f1TPwajn+A6RQKBgaGqK9vZ2cnBzS09PH9HH4rt6+D4uvI3b8ldl3pYeJV3eZTDbheQIf4/V6g4ZRsMdMZrLzS5I0YZRpJucNfB6Px+N/Ht/Xvp/rdDoKCgq49957kSSJM2fO4HQ6USgULF++fMql+CI0otec7+NQKBQolUp/YMTExEyYsDQ8PExnZycxMTFkZmb6g8N39ZbL5cTExBATE4NcLg96VZckyb87uO/YYI8J/BAHXvHHP0apVPqfcybDy8HOH1izCjTdeX21C1/gBs6LCfyZ71iFQsFDDz3Ec889x8jICO+//z5Hjhzh8uXLOJ3OoOUVoRHd5nxwwNg36WSrYltaWlAqlWRkZPiDI3B+iO+DH6zpM5PzB5tfMpNAmOm8lGDHyOVy//D0zZTV1+cRGEDj/98XHEajkSVLlrBhwwaKi4s5fPgwb731Fu3t7TM+txA95nRTJZjxcwxGR0exWq1YrVZiYmIwmUz+D5rvwzi+dhHqyMRk8xpm8hwzPddkx4Q6HTxYWX3zYnxNp8DmR2DHscFg4Gtf+xrp6em89NJLNDc3U1ZWhsFgID4+XizFn0ei5i/t6/ALbC643W66u7txOp1otVq0Wq3/QxF4BZfL5SiVSn+zJ1jnoXA9YDIzMykrK+OLX/wiJpOJ7du3s23bNoaHh4M+RtwxLjpFRY0j8Krtcrn81e3h4WHa2tqQJAmTyTTmrvRA0Kq6EJwkSf6aSU5ODg8//DAJCQn8/ve/x2q1UlZWxrJly8bM6hWhEb0i9tPi6+AL7G+YaX+A740bGBxpaWnodLoJx46vuvs6B8c3X6Y6r6/fINhzT1feW+njgOu1qpl2sAaW9VY+1Gq1msLCQu6++27Ky8uRJInXX3+dHTt2BD2fEH0iNjh88yt8TQ/fsOV0b8TA2sfQ0BBtbW14vV4sFsuE4PAdO34kxPdvsuf1lc/3OF/5xpctcKg18Njxzzn+cZNtIxBsnkawsvqOD3bewLKOfz1TnX982Oh0OoqLi9m4cSPZ2dnU1dWxb98+Ll++PKEMQvSJ+KaKLzh8/RBTvRnHH9Pf3097ezsymYzMzMwxTRVfJ6BvRMU3fDlZ08X3PY/HM2EIMvAxgeXz/b/H48Hlck14jG+yVeBjfOUZ30kZ7Py+844PgVDOGxjQvvO7XK4x/Ty+Y3xDtL7HJSYmsmbNGuRyOe3t7Vy+fJmtW7eyYcMG7rnnnkn/TsLcF7E1jvE1jJnWOAI/8IODg/6duzMyMkhMTAx6DvjLFTXwwzjdsb6vfeed7DHBrv6+MJxsf9TJfh/jzx9sput0552sthFYAws2BT9wGNftdhMbG4vZbGblypWsXr2ahIQEqqurqa6uprOzc8JrEKJHxNY4Aq+IcHPVXl8fR1ZW1qR9HL4r+0zPE6w2Mt2Q6mShMtkQ7lQ1q/FzLkI9r+/74883Pqx8jwtWiwLGlDEjI4MnnniC+Ph43nzzTerq6jAajaxZs4b8/PxJyyfMXREbHHBzKz0DOzuHh4dpaWkhIyODjIyMCaMqN3OemynTbD7/7SjrVMdNFXA+SqUSi8VCeXk558+f5/Lly+zbtw+1Wk1qauqEmp4w90VsU+Vm+KrQPiMjI7S0tOD1esnMzAxa4xBmz5IlS/jBD35AWVkZDQ0N7Nu3j2PHjtHb2xvuogmzLKJrHDMROKLgG2HwtcNtNhtut9t/Aybh9oqNjSUnJ4eKigrOnz9PT08P77//Ph6PhzVr1og9XqPInA6O8UvifR15o6Oj9PX1YbfbSUpKIjExUewxegfdfffdpKSk8Mtf/pJ3332XuLg4MjIyyMnJCfleNmJ5fmSa800V36iCb8GXUqlkdHSUtrY2RkdHMZvNJCcnh7uY84pWq6W4uJjVq1dTVlbGxYsX2bZtG2fOnAn5uURgRKY5HRy+odPAZeYymQy73U5zczNOp5OMjAwMBkO4izrvqFQqNm/ezPe//33cbje/+93vOHr0KFar9aZWHwuRZU43VSZjt9tpa2vD6XSSlpaGXq8Pd5HmpdTUVJYuXUpVVRWSJHHkyBHsdjuPPPIICxcuDHfxhFsQlcHhux2Cw+EQwRFmRqORLVu2YDQa+fWvf83p06fJzc0lIyND9DvNYVEbHC0tLSgUCtLT00VTJYzkcjk5OTn+bQcbGhrYtWsXg4ODPPTQQ/7RrskmoAmRKSqDw2az0dLSgtlsxmKxiM7RMIuJiSE/P59NmzahVqvZu3cvPT09FBcXs3LlSmDiCmNx06fIFrXBce3aNRITE0Vw3CHTDZsqlUpWrlxJbGwsLS0tXL16lT/84Q90dnayadOmMYvnRGBEvqgMjpGREfr6+vB6vRiNxpDnDgi3h1ar9Q/PHjhwgOPHj+N0Olm8eDF5eXmAaKLMFXN6ODYYu91Of38/crkcjUYz5TTzW93QZj4b/7ub6bqY+Ph4vvzlL/PQQw+h0Wg4ffo07733HsePH7+dxRVmWVTVOBwOB52dnQwPD5OYmEhSUhJqtTrcxRJu8DVDjEYjq1at4pNPPqGxsZEjR44gk8mwWCxYLJZwF1OYgaiqcTgcDtrb27Hb7VgsFlJTU6c8/mZWugrX3ewqYR+j0ci3vvUtHnjgAVpaWti7dy+HDx/mypUrs1xS4XaIqhrH6Ogo7e3t2Gw2zGYzRqMx3EUSJqFQKMjIyGDVqlXU1tb6w0OSJPR6vViKH+GiqsbhW6Nis9kwmUwYDAZRo4hwCxcu5Ic//CGVlZXs37+fHTt2cPbsWQYHB2/q+US/1Z0RlcExMjKCyWTCaDSK4IhwcXFxFBUVUVFRQUlJCYODg7z33nvU19dP2C91psTf/PaLuuBoaWlheHgYs9lMSkqKeBPNEStWrOBHP/oROTk5bNu2jQ8++IDOzk6xIC5CRVVwOBwOERxzlF6vp7S0lPLycgoLC7ly5QpvvPEGjY2N4S6aEETUdY52dHRgNptFH8ccpNFouPfee9FoNGzbto3XXnsNpVJJfn6+2PYxwkRVjWNoaAibzYZCocBgMBAbGyuCY46xWCzcddddVFRUsGDBAj799FPefPNNmpqawl00IUBU1Dg8Hg92u52BgQH/jFGtVhvuYgk3wTdMu2HDBpRKJbt372bbtm2kpKSwcOFCcSGIEFERHC6Xi87OTgYGBkhOTsZoNI65C5oQmaZaGFdQUOC/Q1xtbS379u1DkiQ2bNjgn58jFsSFT1R8ulwuF21tbQwMDJCamorJZArjG2qUvnOfcuzaAGpTIcuLMtHGhKkoc1hcXBwlJSWsWbMGm83G2bNn6evrIzMz0397SREa4RMVweF0Omlvbx8THOPvtuYa6qb10lkudI4CkJi1lIIFZvTTLWUZ7ePK+ZM3HpdI1vIiclO0BM0C61F+9qWNvFA75P+WKvfrbN35H3y1QKTHeDP54K9atQqNRsPWrVu5cOECu3fvxuVyUVFR4V/1LGoed15UBIfL5fIHR0pKCiaTCYVCcf2Ho2f43fOP8/x/nGZo/ANVKaz57+/w1o9Xkzrhc22l8d+/x2P/ZRtNjrE/0Vb8hHfe+ikbMgMf1Mofnl3LC41F/HjXNn64LInRK2/xnft+wNfWF5DT9A/cJbIjZHq9nsrKSs6dO8fg4CAnT55EkiRMJhNFRUWAqHmEQ1SMqjidTjo6OhgcHMRoNJKSknK9xuG6wL9vLuNJX2ioUshdtIhFuSmoABzdHHyhihV/vx/rmGd0ceHfH2XVc77Q0JK+aBGL0q93uA7V/jP3FT/JO60BD+msZvt7Dhb903/w802LMZvNLKj4Pm9tewqaf8kuMR3hpimVSh544AGefPJJJEni0KFD7Nu3j9OnTyNJUriLNy9FRXD4+jj6+vowGAykpqaiUCgY/Pjn/Jf916sLqrWvcrq/i4vnznHuYhdDnXv428zrj29+6b/xp8DRvta3+Nvn9uMAyPxb9nT20nLuHOdaerm241kyAYbe4vl/3Y9/RYXdxgBgTNKMKVucSgsMMjJ6G38B84DFYmH16tUsWbIElUpFXV0dBw4coL29PdxFm5eiJjhaW1uxWq0YDAZ/jaO79Ry+VsazP3mWooD+jJjUDTz/X++68X81nL72l5+deed/sQuAFF74w8/Z4G/HxJD55Z/yz/df/7/ul17nkC85FpTzUAnU/I9/5t3L11PC1XWYn/5fr0DK89y/7Da88HkmMTGRb37zmzzxxBOcP3+et99+m4aGBnp6esJdtHknKoLDbrfT29vL6OgoRqMRo9E4oXM0Vjmxg0ER5HvQycn9J298/RhrVow/Jp3Kx9be+PotDn3i+34Rz7/9Gzb2/5qvLIxDJpMRa6ri/72wnH98/7+xVkx8vGW+WaT33HMPRUVFeDwe9u/fz8GDB+nr6wt38eaViOocnW7D28l6z30zRjUaDUaj0d8xmnv345RQw0lg74nPcK1dGjAaYuXsoRvb1ame5b4v+L5/nhO7bnxZuZyFQbJlwYJSYD/g4MiFJqjKBSCm4Bk+7LqXuj/9J+9+1o42by0PbVlH8cSeV+EWZGVl8Xd/93fs3r2brVu3cuXKFbKysigpKfHv+DaTe86K+9LevIgKjqn4/siB4eHxeBgZGaG/v99/R/oxGxMXPc/br73H0uf2c/LHd1F48L/zP763AqPtGn/+Xz/kf9c6gEy++aefcr+/RiDh8rVvUrQkBCtMVjGVQA1wobUXyP3Lz9Q5lH/9B5R/fRZfvDBGfHw8paWlDAwMUFNTw+DgIH/+858ZGhrinnvuEUsN7oCICo5Q/9hut5uOjg56e3sxGo1YLJa/DMMCEEPBt3Zzbclv+NG3/2/e/PML/NWf//LTxJLv8r/f/Ae+VhqwxWBTE8d8Xy9IxTRNGbr7R0IqszB7ioqK+O53v8vOnTvZvn07PT09FBYWkpaWNqPHj3+/iRrIzM2ZPg7fHzPwjypJEh0dHfT09JCcnExaWtq4qeYumv/8I9bd9x3ePDmAf1j1xnDswMlX+OvVD/Ivh7u4uS1jhHAyGAysWLGC8vJycnJyaG1tZfv27be0FF+ExszMmeCAiX9Ut9tNe3v7mOCIiflLf8LgoReofOBlTg9B5rN/4pJ98Pqw6sUuhjqP8S9rVTBUywtVX2Grbzg2N5eVvifoHWG6DexUMYppjhBuF5lMhsFgoLKykieeeAKNRsPrr7/Orl27cDgc0z9BkOcTZmZOBcd4kiTR1dWF1WolKSkJs9kcUOPoZNf/9y80A/AUr/ziYXLGDMeu4Ecv/ROLAKjhv/62/sZPFMSobnx5qYPuYCe+dpqaG1+uKEif3RclhMw3x+MLX/gCOp2OkydPsn37drFj+m0054Ojs7MTq9WKXq/HZDIFBEfg6EgVhcGGQ5d+gRtTMgL6KrIovPvGl8cv0BrkYZ1dV258peLugtwgRwh3UkxMDAsXLqSqqorVq1czODjI9u3bqa2tDXfRotacD462tja6urrQ6/VYLJaApoqZhaU3vjx+mmvBOjEunOfIhG8u4Aubr9dDcPwHe46Of+Agxz5478bXj1O17FZfhTBbFi9ezCOPPMLSpUvp7+/n0KFD7NixY9IJYmJH9Js354Ij8A/tcrn8TZXk5ORxTZUcFt19o83heJX/+eszjJ31bWX/qz/D10CpLM7y/2Tp5u9SAkA3//rCVi4EZId1/z/w3Tevf6169gmqxMSuiJGQkMCKFSu45557yMnJ4fLly+zYsYPTp0+Hu2hRJ6KGY2cisAPL4XBgtVoZGRlBr9eTlJQUcGQM9zz/f1j76nPsdzjY/3wxqf90H195cjlmOmj87Z/Y03pjvWzmj/nZ4wFNjqJv8H9+/K+s+ZdmHPufY2n6b/naNyvQXPgzb77rWzD3EFt/ej8iN+6MUIZKKyoqUKvV/P73v6ehoQGz2Ux8fDzFxcXEx8eH/HxCEN45rLGx0bty5Upvfn6+t66uLugxvQ2veb+eq/ICQf9pi7/v3XHNOfGBzmveHc/nelXBHqfd6H3ttP02vzrhVr366qvetWvXeh999FHviy++6D116lS4ixQ15lyNA67PGLVarXR2dpKUlERSUtKktwxMXv4tfnf2q7x4ppETxw5Te/F6LSNt6ToqylZSulhP0L18YjL58isX6f9/PuXgzj+z/+IQkMbShzfzQFm+2NVrDnjkkUfIysrijTfeYMeOHSQnJ6PT6YLM9xFCNSd/ex6Ph66uLlpbW1EqlSiVSrq6usjKymJkZARJkpDJZGP6Q1Rpi7l7y2JWjekMczLQ2cnAVCdTmFn2wLdYFvAtm7UT2+y+JGEaviaFdwadmb5j4+LiyMvLIyEhga6uLqqrq1Gr1axdu5aMjIzbWt5oF9HB4Z2kHerxeOju7ubatWsMDAzgdDrZu3cvly5dwul0hnz3L2HuC/ZeUSqVOBwO9Ho9hYWFHD58mKamJv9mT2JNy82L6OCYiq9WkZSUxPDwMG1tbdjtdiRJEkNs81BgcHhvLIT0/YuJiSEtLY3PPvuMwcFBJEmasO2CEJqIDo7JrgYymYzExESysrJwOBwMDAz4l1OPXeR2XWCQiCtM9Ap2wfAFiUajoaKiAovFQl5e3pilCULoIjo4JiOXy0lNTaW4uJi0tDR/v8ZkTRsRHPPDZMHhCw+n04nBYMBkmm7NszAdmXeO1uslSUKSJDwej2iaCDPi9XqRy+XExsaKpsotmrPBIQi3wjvJbnLCzIjYFeYlERq3JiqDYyaVKFHREoSbF/Gdo94bKxi9QVYyyuVyf+eX78Y8CoVi2quJCA1BuDURHxySJHHq1CkOHjxIXV0do6OjJCQkYDAYWLJkCV/96ldJSEigpqYGl8tFeXk5CQlBtxj2E9XU6HQr/RbBHiv6QSYXscHh8XgYHR3l0qVLNDY28tFHH/Hhhx8iSRJqtZqsrCz6+/spLS0lNTWVo0ePEhsbS2lp6bTBIUQn34fc7XbjdDr9o24+wYblY2NjUavVUw7hCxNF7KjKwYMH+dWvfoXNZmPhwoWYTCYMBgNyuRyv10t8fDxDQ0McPXqU3t5esrOzKS8vZ/Pmzej1+nAXX7jDAmsHx44d4+OPP6apqYmenh7/MgRfc9fj8aBUKtFqtaxbt45nn32W2NjYML+CuSXiahxOp5P29nb279/P22+/TWpqKkVFRaxfv56ysrIxx548eZLXXnuNkydP8txzz43byEeYrwYHB2lqamLfvn1cvnwZAI1G4+//8oWH1+tFkiSWL19OaWlp0JqHEFzEfcquXLnCa6+9RmNjI+Xl5VRVVfHEE0+Qn58/4ViTycSGDRvIzs5m4cKFxMXFiYk981TgB37lypXo9Xr0ej01NTUsW7aM5cuXYzAYiI+PR6lU0tzczOHDh2lubuYf//Ef+dKXvsR3vvMdMRV9hiIqONxuNxcuXOCjjz4C4NFHH2XTpk0UFxf7jwmskmo0GkpKSkhKSiIjI8N/VRHmJ997Q6fTUVZWxpkzZ+ju7mbDhg3cf//9/vVMcH3bSZPJxLvvvssHH3yATqdj3bp1FBQUiPCYgYgKjvr6ek6fPk1vby8lJSVs3ryZpUuXjjlmfFVSpVKh1Wr9m7SEUuOYbG2LMDeN/zuOjIwwOjqKWq0eExpwfWf0devW4fV6sVqtOJ1OduzYQVVVFatWrRqzylaYKKLq9fv27ePSpUukpaVRUlJCQUHBlH0WCoWCjIwM8vPzSU9PJzExUdQ4BACsVit2ux2lUolKpRrzM98FQ61WU1BQQF5eHgCfffaZuBfLDEVUjWPnzp0YDAaqqqqorKyctqNTpVJRXFyMx+MhJiYGpVIZUo1DXE3mjlBqh1arlUuXLvk38Rk/YjL+OXzH9PX1MTw8POlxwl9EVI3j5MmT9Pb2kpWVRXZ29rS1B5lMRnx8PAkJCahUqhnNGhWiX09PD5cuXUImk5GdnY1ON/le9CqVitTUVLRaLQ6HA6fTeQdLOndFVI1jeHiYkZER4uLiiI+PFyEg+IXyXuju7ubixYtoNBpyc3NJTk6e9NjY2FiSk5NJTEwkJiZGvOdmKKJqHHB9ZCUmJkb0bAs3rbW1lU8//RSARYsWTRkcvg1+5HI5Op3Of98VYWoRFxxyudy/SY8g3IzOzk4uXryITCZjwYIFU4bByMgILS0t2O12zGbzbZl1HGyB5lwXUU2VmJgY4uPjcTqdOJ3Oafs47HY77e3teDwe0tPTiYuLu0MlFSKVw+FApVKRlpaGwWCYtuZ67do1du/eDcD69euxWCyz2lyJtsDwiagaR35+PklJSXR2dtLW1sbo6GjQ4yRJoq+vj+bmZi5dukRLSwsOh+MOl1aINE6nk97eXjQaDYWFhaSmpk56rNfrZWRkhHPnzlFTU0NXVxd5eXmkp6fPWnkCR4Kire8komocmzZtoq2tjXfeeYfW1lZSU1MpKSkZc4wkSTQ1NfHxxx/T1dXF6tWrKSoqQqPRhKnUQqQYHBzk6tWr2Gw29Hr9lO8Jt9vNnj17qKurQ6vVUlhYyJIlS7BYLLNWnmgLi0ARVeO47777yMvLo6WlhdraWo4cOcInn3zin8zT19fH559/ztmzZ2loaODzzz9Hr9eTmpoqOlMFenp6OHXqFAMDA6SmpgYdhvUtcPv000/56KOPaGlpYeXKlVRVVZGTkxPVH/bZFFHL6nt7e7l06RJ79+7l2LFjnD9/HrlcTkpKCl6vF4VCQVZWFrm5uf7/FhcXTzlOL8wfhw4d4tVXX2XRokU88sgjFBUVTegnu3btGi+99BLV1dW43W5KS0t57LHHWL58OWlpaWEq+dwTUU0Vg8FAcnKyv6OzsbGR5uZmrl27hsPhIC4uDplMxuLFi6msrCQnJwcQOzXNV16vF7fbjdvtZnBwkPr6eo4fP45KpaK/v58rV674b4XgdruRJIn6+np2795NU1MTd999N3fddRcbNmzw11jFe2lmIqrG4eNyuWhra+PixYvYbDYUCgUejweFQkFSUhKpqamkp6dPWLgkzC8Oh4OOjg4OHz7MH//4Rz755BO6u7tJTk4mOzsblUo1Zk9au91OQkICixYtoqioiJKSEvLy8ma1X2O+iKgah09MTAzZ2dlkZ2dPeZy4OsxvkiQxNDTEqVOn+M///E//91tbW2ltbQ36mMTERL785S+zZcsWMjMz/d8X76XQRGSNQxCEyBZRoyqCIMwNIjgEQQiZCA5BEEImgkMQhJCJ4BAEIWQiOARBCJkIDkEQQiaCQxCEkIngEAQhZCI4BEEImQgOQRBCJoJDEISQieAQBCFkIjgEQQiZCA5BEEImgkMQhJCJ4BAEIWQiOARBCJkIDkEQQiaCQxCEkIngEAQhZCI4BEEImQgOQRBCJoJDEISQieAQBCFkIjgEQQjZ/w/6WXVcfEOruQAAAABJRU5ErkJggg==",
"path": "images_version_5/image_59.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
As shown in the figure, AB parallel CD, AD bisects angle BAC, then the degree of angle D is ()
Choices:
A:50°
B:60°
C:70°
D:100°
|
Như hình vẽ, AB song song với CD, AD phân chia góc BAC, thì số đo của góc D là ()
Các lựa chọn:
A: 50°
B: 60°
C: 70°
D: 100°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB parallel CD, AD bisects angle BAC, then the degree of angle D is ()
Choices:
A:50°
B:60°
C:70°
D:100°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB parallel CD, AD bisects angle BAC, then the degree of angle D is ()
Choices:
A:50°
B:60°
C:70°
D:100°
|
As shown in the figure, AB parallel CD, AD bisects angle BAC, then the degree of angle D is ()
Choices:
A:50°
B:60°
C:70°
D:100°
|
295
|
59
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAscAAAKwCAYAAAB00dJXAAC9vklEQVR4nOzddXxV9f8H8Nc6WW8sYBsdY6R0I4KItEG3AoKB/OxADBRUVFDki9Jd0l2jY4EweiIjHDF6xfLz+2P3fDiX3d7dRryej8ceHD6nPufeE+/7OZ+wEUIIEBERERERbEs6A0REREREjwoGx0REREREGgyOiYiIiIg0GBwTEREREWkwOCYiIiIi0mBwTERERESkweCYiIiIiEiDwTERERERkQaDYyIiIiIiDQbHREREREQaDI6JiIiIiDQYHBMRERERaTA4JiIiIiLSYHBMRERERKTB4JiIiIiISIPBMRERERGRBoNjIiIiIiINBsdERERERBoMjomIiIiINBgc6zBw4EDY2NggPDy8pLPyRGjVqhVsbGzQqlWrks6KyR7HPOfm5uKXX35BgwYN4OHhARsbG9jY2KBr164AgKioKJkWFRVVonkletQYu+aVa+eLL74okv0nJibKfcyePbtI9kGPlvDwcNjY2GDgwIEWb4PnTdGwSnC8d+9e+eXY2Nhg9+7d1tgsEZmhV69eeOeddxAdHY2UlJSSzg6ptG3bVt4f27RpY/J6SsCm68/BwQH+/v5o2bIlJk6ciNu3bxfhEdDjKC0tDTNnzsSrr76KypUrw9vbG46OjggICEDjxo3x7rvv4uDBg3rX13Xe2drawsPDA2XLlkW9evUwdOhQTJ8+HTdv3izGI9OtcuXKMp+DBw82eT0lSH34z93dHSEhIahVqxb69++PKVOm4L///ivCI6BHhVWC47lz5xr8P9Gj4IsvvpA3vSfN/v37sWzZMgBAx44dsXXrVhw7dgzx8fGYPHlyCefu6Xb58mXs3LlT/j8qKgoXL14s9HZzcnJw48YN7N69Gx988AGqVatmMNChp8uff/6JChUqYMiQIVi6dCkSEhJw584dZGdnIzk5GQcPHsRPP/2Exo0bo0GDBti/f79J2xVCICUlBZcvX0ZcXBxmzJiBYcOGoUyZMhg0aBBu3LhRxEem2/79+5GQkCD/v3z5cmRkZBRqm2lpaUhKSsKxY8cwb948vPXWWwgLC0P37t2RmJhYyByTMSX5zLYv7AYyMzPlQ9nd3R2pqalYtmwZpkyZAhcXl0JnkB5/fIVf9LZt2wYAsLOzw8KFC+Hh4VFgmVatWkEIUdxZe+rNnz8feXl5cHR0hBAC2dnZmD9/Pj7++GOzthMfH6/1/6ysLPz777+YN28e1qxZg2vXrqFjx444c+YM/Pz8rHkI9BjJy8vDqFGj8PvvvwMAbG1t0blzZ3Ts2BEVK1aEh4cHkpOTER8fj9WrV2Pv3r2Ijo7GxIkTsWrVKp3bfOaZZzBr1iz5/8zMTNy+fRsJCQnYu3cvVq5ciYyMDMyePRubNm3CypUr0ahRo+I4XEkplHNzc0NaWhpSUlKwcuVK9O7d2+RtBAcHY/PmzfL/2dnZuH37NhITE7F//34sX74cd+/excqVK7F9+3bMmzcPnTt3tvqxmCM8PJz39aIgCmnJkiUCgAAgZsyYIacXLVpU2E2XmAEDBggAIiwsrKSzQlY0duxYeX4a07JlSwFAtGzZsugzZgWvv/66ACCCg4NLOiv0kOrVqwsAokuXLqJz584CgKhatapJ6yrnobFztn///nK57777zhrZfuoYu+aVz3fs2LFFsv/z58/LfcyaNcvi7YwbN05up0KFCuLvv/82uPyePXtEnTp1RJcuXQrMU7Zj7D6YnJws+vTpI5f39/cXiYmJFh+Due7fvy+8vb0FAPH222+LmjVrCgCiffv2Jq0fFhZm0jP/3r174t1335XH6eLiImJiYizOt7LfAQMGWLyNJ5k5z2xrK3S1ijlz5gAAqlevjsGDB6N69eoAWLWCqDhlZmYCABwcHEo4J6QWHR2NkydPAgD69OmDPn36AABOnz6Nw4cPW20/77//vpw+dOiQ1bZLj5e4uDh8+eWXAIDAwEDs3bsXtWrVMrhOs2bNsH//frNKWB/m5+eH+fPnY/jw4QCA5ORkvP322xZvz1xr1qyRde7V19m2bdtw5coVq+2nVKlS+PHHH/Hdd98BADIyMjB06FCrbZ8eHYUKjq9fv44tW7YAAPr27QsA8qTcsmULrl27ZnQbSUlJ+PDDD1G3bl14enrC0dERgYGBiIyMRK9evTB79mzcu3fPovzl5uZi9uzZaN++PQIDA+Ho6AgvLy9UqlQJzz77LMaPHy8fXIbcuXMHn3/+OSIiIuDm5gYvLy+0aNECCxYsMCkf8fHxeP3111GpUiW4urqiVKlSiIiIwOjRo/XWW1q2bJmsa3PmzBmdy1SsWFEus2LFCp3LdO3aFTY2Nqhfv75W+uzZs+W6iYmJyMvLw/Tp09GkSRN4e3vDzc0NNWvWxDfffIP09HSTjlMfQ63AdbW03bp1Kzp16oTAwEA4OTmhXLlyGDFiBC5fvmzR/pVjHTdunEzT1fjCUB2y//77D++++y4qVqwIFxcX+Pr6on379ti4caNJebh9+za+/vprNG7cGH5+fnByckJwcDC6dOmCv/76y6LjUh+H8iP1woULBY5LYWpvFRcuXMDw4cMRHh4OZ2dnBAcHo2vXrrLerKF6YOa0nDbUUvvh8zMzMxM///wzGjVqBD8/P729BuTk5GDGjBl44YUXEBwcDCcnJ/j5+aFFixb4+eefcf/+fYN5sjalkMDT0xOdOnVC586dZZUXaxYgqHvWKcwxPtwjw7Zt29C5c2cEBQXB2dkZ5cuXx6hRo4xei//++y9+/PFHdOrUCeHh4XBxcYGLiwvCwsLw6quvYtOmTQbXN/f7z8rKwtq1azFq1CjUr18f3t7ecHBwgK+vLxo2bIgvvvii2OrCnjlzBm+99RYiIiLg6ekJFxcXlC9fHoMGDUJcXFyR7vvbb79Fbm4uAGDKlCkIDAw0aT1nZ2e88sorhd7/zz//jLJlywLID1hPnDhR6G2aQrmWqlSpgvr166NPnz6wtbVFbm6uyc9pc7z//vto2LAhAODvv/82+TlgTHR0NHr16oWyZcvC2dkZZcuWxcCBA3Hq1Cm965hyzy1snJWeno6ff/4ZrVu3RunSpWWjznbt2mHWrFnynDMkKysL06dPR8eOHRESEgInJycEBASgXr16GDVqFPbs2SOrh1j6zI6NjcWQIUNQuXJluLm5yc+wXr16GDlyJNasWWN6FZTCFDtPmjRJABA2NjbiwoULQgghEhMThY2NjQAgfvzxR4Pr7969W3h4eMhic31/a9euNTtvKSkponnz5ka33aNHjwLrqqtVnDp1SoSHh+tdf+TIkQbzMX78eGFra6t3fScnJzFnzpwC612/fl0u8/vvvxeYf/nyZaP5yMvLEz4+PgKAGDNmjNa8WbNmyXWPHz8u2rRpozePDRo0EKmpqcY+cr0Mva58+FXiBx98oDcf/v7+4uTJk2bvX32shv7Onz+vM8979uwRvr6+etf7/vvvDe5//fr1wsvLy+C+O3bsKFJSUsw+NlOOS7Fz506ZtnPnTp3b27Jli3Bzc9O5HRsbG/HNN98YfNVlzqthQ68U1d9ZdHS0qF27doH8PPx6+59//pFVGPT9VapUSZw9e9bYx2oVWVlZws/PTwAQgwcPlumDBg0SAISvr6/IysoyuA1Tq1UcP35cLjds2DCL86z+bL/44gu9n6OHh4fYtWuXzm38+++/Jp2Xffv2FdnZ2Tq3Ye73r9yzDf35+vqKvXv36j12a1Sr+PLLL4W9vb3ePNjY2IjPP/9c57qFrVZx584dYWdnJwCI0NBQkZuba/Y2Hqbkx5zqZePHj5frffPNN4XOgzHXr1+Xn/mXX34p01u3bi0AiMjISKPbMLVahdrChQvlcb722muWZF3rHjhjxgy9546Tk5NYvHixzm0YO28KG2cdPnxYhISEGFy3QYMG4urVq3qP88iRI6JcuXJG86A8gy15Zk+aNMlgrKX8mfqcLVRwXKtWLQFAtGjRQitdCUpr1aqld9379++L4OBgAUCUKlVKvP/++2Ljxo0iNjZWHDx4UCxZskS88847omzZshYFx2PGjJEfxosvvigWLVok9u3bJ2JjY8WmTZvEhAkTRPPmzcVLL71UYF3lRuvv7y8qVaokSpUqJT799FMRFRUlYmJixB9//CHKlCkjt79p0yadefjtt9/kMv7+/uKHH34QBw4cEHv37hVffPGFDEJsbGzE+vXrC6xfrVo1AUC8+uqrBebNmzdP6wuPiIgosMyRI0f0nvjqk69JkybC1tZWDBgwQKxfv17ExsaKlStXisaNG8tlPvzwQ1M/+gJMDY6bNGkil1u4cKGIiYkR27Zt06pP2ahRI7P3f/v2bREfHy9GjBghtxMfH1/gTx2oKHmuXLmy8PPzEwEBAeK7774Te/fuFYcPHxaTJk2SAa+9vb04fvy4zn1v2bJFPrDCw8PFhAkTRFRUlIiLixNr164Vffv2lXnq3r272cem5L1Lly4CyK9z/PBxKYwFxwkJCcLV1VUAEHZ2dmLkyJFi+/btIjo6WsyaNUsGng0aNJDbeVhRBMc1a9YUNjY2on///lrn54YNG+TySUlJonTp0vJ+MmbMGLFx40YRFxcndu7cKT766CN5bOXLlxd37twx+TO21MqVK+Ux7NixQ6Zv375dpq9cudLgNkwNjgcOHCiX03UvMZWyjWeeeUYAEFWqVBEzZswQ0dHRYtu2bWLYsGHyAVSqVCmd9UoTEhKEo6Oj6NSpk5g8ebLYtm2biIuLE9u2bRNTp04VERERcj/6AkVzv/8+ffqI8uXLizFjxoglS5aIAwcOiOjoaLF8+XIxfPhw4ejoKO/D165d07nPwgbHn332mda97M8//xQHDhwQMTExYsGCBVr308mTJxdYv7DB8bp16+T6w4cPN3t9XZTtmRMcHz58WK73/PPPWyUfhvz0009yf+fOnZPp6jZQR44cMbgNS4JjdQGWqW0I9O23Vq1awsHBQQQHB4spU6aIQ4cOiV27dokPPvhAODk5yefMoUOHCmzD0HlT2Djr2LFjMk4JCAgQY8eOFdu2bRNHjhwRmzdvFiNHjpQBfcOGDXX+2D9x4oRwd3eXeezWrZtYsmSJiI6OFgcPHhRz5swRffv2FW5ubjLYNfeZffToUXlfKleunPjxxx/F9u3bxZEjR8SePXvEzJkzRb9+/YS7u3vRB8fHjh2TmZ4+fbrWvP/9739y3rFjx3Sur35AGAp+s7Ozxd27d83OX9myZQUAncGv2s2bNwukqUshvLy8dAY+CQkJwtnZWQAQnTt3LjD/+vXr8mEcHBwsLl68WGCZuLg4eeKFhIQUOLGUEyMwMLDAukOGDJH7VgLs69evay2j3DRsbW3F7du3teY9/Mts3rx5BfZx//59UaNGDQHkl7roK+UxxtTgGMj/BZ6Xl1dguaFDh8pl4uLiLMqHJQ3ylBvm5cuXCyyzZ88e+ZbkrbfeKjA/NTVVBmzt2rUTaWlpOvc1ffp0ua9t27aZf2DCtEakxoJj5VwCIJYtW1ZgflpamlZgXFzBMZDf2NeQF198UQAQZcuW1XpAqqmvt08//dTg9qyhW7duAoAoU6aMVilebm6u/HHdrVs3g9tQn4cPPxhiY2PFihUr5H5Mud8Zo/7M69atq/NBMnfuXIP7S01NFUlJSXr3kZeXJ4N5Nzc3nT9UzP3+//nnH533DcWxY8fkA1rfd1+Y4Pjw4cPy4axv+7m5ufLHcKlSpQrckwsbHH/zzTd6n8mWsiQ4zszMlJ9F+fLlrZIPQ+rUqSN/kKjdvXtXPqNHjx5tcBuWBMdCCHkd29nZGTz/jO1X2feVK1cKLLNjxw4ZgD7zzDMF5hs6bwoTZ+Xl5cmGjbVq1RLJyck61924caP8vv/8888C85Xvx9bW1mBHDTdu3BDp6elaaaY+s5Ufpm5ubgZLsO/cuWPyGxWLg2OlZNbJyanARX779m35a+fh1/mKBQsWyIO2JPg1xsHBQQAQv/zyi9nrqoNjXb/wFT179hQAhLe3d4F5EyZMkNswdEJ8/fXXcrmlS5dqzVu8eLGcd+rUKa15FStWlEFM+fLldQY0Xbt2lQ+5h6kfPoZKLKdNmyaXO3r0qN7lDDE1OA4KChL379/XuY3Tp0/L5Sz5ToWwPDhes2aN3uUaNWokAIg6deoUmDdlyhQBQDg7O+strVIoQWefPn2MH4gOhQ2OL1++LG9whgK2v//+u9iD4zZt2hjcTnx8vFx29erVBpd9//33BVD0vXrcvHlTlla+//77Bea/9957AoBwdHTU+QNdoT4PDf1VrlxZ/Pnnn4V+la7epqFW+B06dBBAfmmWoUBYn5s3b8o3KsuXLy8w35zv31TvvPOOACBq1Kihc35hguMePXoIAKJevXoGgyT1s/GPP/7QmlfY4Hj06NEmXwemsiQ4FkIIT09Pvc9Ga1JXJ5o6dWqB+S+//LIAIEqXLi1ycnL0bsfS4Fh5e25pHKMOjnVdBwp1Cerhw4e15hk6bwoTZ61du9bkZ/8rr7wiAIimTZtqpW/atElu4+233zZr/0KY/sx+7bXX9D6HLWVRg7zc3FwsXLgQQP6AA15eXlrzvby88MILLwAAFi5cqLOydlBQkJxW959oLcr2lyxZYnGDMhsbG4MteOvVqwcgv7HVnTt3tOYp/c56eXmhR48eerehbumqrKNQN2BTN6D677//8M8//8DGxgYtW7aUy6mXEULIkQpbtmypd//Ag0aUuijHCOQ3silKL730EpycnHTOq1KlCtzd3YslH2peXl7o2LGj3vnK56MrT6tXrwaQ//kHBAQY3E+LFi0AAAcOHLA0q4USFRWFvLw8AMCAAQP0LlerVi2jrd+tzdD5CTz4nF1dXQ1+V8CDzzkpKQmXLl2yTgZ1WLx4MbKysgA8aKyspqRlZWVhyZIlhd7f2bNnMXPmTJMHcjAmMjJS69p/mDL6WE5OjtF+zLOzs3H58mWcOnUKx48fx/Hjx5GUlARfX18AwNGjRw2ub+z71+X27ds4d+4cTpw4IfepPKdOnjyJ7Oxss7epT3Z2tmyQ9dJLLxkcsMDLywuRkZEArH+tq0fFdHNzs+q2zaXcq4t6pE6lIbKDg4POBoXKdXbt2jXZeYA1KccJFO5Yvb290aVLF73z1aP9PRwnGFKYOEu5r1apUgU1a9Y0uKxyX42OjtaK99avXy+nR48ebdb+zaEc58mTJ63WC5BFwfGWLVtk9yi6bvzq9CtXruj8Mps1a4by5csDAN555x00aNAA3377Lfbv3y8fKoWhPOD379+PcuXKYdSoUVi5ciWSk5NN3oafn5+8gevi4+Mjpx++MI4fPw4AqFOnjsHutUqXLi1bmivrqOdVqVIFgHbgq0xXr14d/v7+OoPjY8eO4datWwC0g2xdqlatqneeoWO0NkP5APJvIMWRD7VKlSrB1lb/ZaJ8PrryFBMTAwDYvHmz3iGAlb8ffvgBAHD16tUiOArj1OeeoaAIyB8QoDgZuzErn3N6ejrs7e0Nfs4vvviiXK8oP2vloV2zZk0ZDKmp003ttULkv+mTf7m5ubh27RpWrFiBWrVqYf/+/Wjbti1WrlxZ6Pw/3LvNwxo0aCCnH75vAfkB42+//YZGjRrB3d0dZcuWRfXq1REZGSn/rl+/DgBGe5Ew9v0r4uPjMXjwYAQFBcHHxwcVK1ZEjRo15P6U3i3y8vKsOtT2yZMnZQHMRx99ZPRaV85Xa59/pUqVktNpaWlW3ba5lPuhrsGIrCUvL0/2RNGhQwedz2p1elF0L6u+7xfmWOvUqQN7e/1jstWuXRuOjo4AdF9v+hQmzlLO0zNnzhg9p0eNGgUg/8e+EncAwJEjRwAAoaGhCAsLMznf5urVqxccHByQmZmJpk2bolOnTpg2bRpOnDhh8QApFgXHyklmqFRNXaKs66R0cHDA2rVrUa1aNQD5vzg+/vhjNG3aFF5eXujQoYPeUmdTfPbZZxg8eDBsbGxw/fp1/Pbbb+jevTtKly6NyMhIjB071mhXc66urgbnq4Omh/OpnCClS5c2mlelux31SaVQAttdu3bJNCUIVua1bt0aQP5NWgn+lWVsbW3RvHlzg/s3dJyGjtHaTP28izofaqbmSSl1VWRnZxd4m2CKwnabZyl1sGCslNvf37+os6NF+VGkjxJkmauoPuuzZ8/K0gt9hQfqeQcPHtQa9tZUtra2CAgIQPfu3bF3715UrlwZmZmZGDhwYKGDP2PngPq+9vB969atW2jcuDFGjRqFQ4cOGX0IGxvi19j3DwAzZsxA3bp1MWvWLJOCzsIOK6z2qJx/6lERTelGtahkZmbKoFFduGJtW7duRVJSEgD915m6RHn16tUWdwurj/LDzt7eXuvHibmMXW/29vbys9QVJ+hTmDjLGue18vmoS7CLQtWqVbFo0SJ4e3sjJycH69atw4gRI1CjRg0EBASgX79+2LNnj1nbNHv46Hv37sni9jt37uh9Da62atUqpKSkFDh5qlevjvj4eKxduxZr167Frl27cO7cOWRkZGDTpk3YtGkTJk2ahA0bNhg9eR7m4OCAGTNmYMyYMVi0aBF27NiBmJgYZGVlyddskyZNwvz58w2+zigsU8YEN/TLpmXLlvjf//6Hq1ev4vTp06hataoMlJXguEyZMihfvjz+/fdf7Nq1Cy+99JJcpmbNmiY9XMi61DebV155BZ999lkJ5ubxZmdnZ3C+8lmXK1cOa9asMXm75cqVK1S+9FFKjYH8/lDVA3ToM3fuXHz11VcW79Pd3R0jRozA6NGjce/ePSxfvhyvvfaaxdsz5b6lz9tvv43Y2FgA+f2sDx48GDVr1kRAQACcnZ3ltkNDQ3Hp0iWjJTvGvv/Tp09j+PDhyMnJQUBAAN577z20adMG4eHhKFWqlHxzN3PmTAwZMgSA4XuuudTX+vfff4/nn3/epPWsXfVBXd2pqPtTNuTo0aPy81XefBYFdaGbKX00Z2RkYNmyZfIcKKzr16/L4Lywx1nYOMEQS+Ms5bxu2rQppk2bZvL+goODC6QV5n5iqh49eqBt27ZYsmQJNm/ejD179iA5ORk3btzA/PnzMX/+fAwYMAAzZ840+DZYYXZwvHTpUrN/daenp2P58uUYNGhQgXl2dnbo2rUrunbtCiC/GsbGjRsxdepUxMbGIjY2FsOGDbP4VWH16tXx1Vdf4auvvkJGRgb27duHhQsXYu7cuUhNTUWvXr1w7tw5q/+y8fHxwZUrV0wqxVB+5ev6lf1wvWMPDw8kJCTI+sbq5f79919ERUWhR48eJtc3pqLh7OwMV1dXpKen486dO6hRo0ZJZ8kg9Q+o69evo0yZMnqXNVQ1SX3Tebg0/WHWevWrvDa9du0aqlatavD1ZFETQmD+/Plmrzd//nx8+eWXhXqIqKslxcfHW7wdwHjJo3q++r517949WYe6d+/eBgdgsFbVhtmzZyMnJwd2dnaIioqSpWRFtb+HqV/nZ2dnl9i13qxZM9jZ2SE3NxcbN25EXl6eSUGAtW3dulUrT0UhJSUFq1atMnu9uXPnWi04tuZxGrvecnJy5PlrSWm8JXGWr68vrl27huTkZIvPaeVthvIjoqh5enri9ddfx+uvvw4g/236mjVrMGXKFCQlJWHOnDmoU6eOSaM3mv0UUX6tBQUFYdKkSUaX/+CDD3Dx4kXMnTtXZ3D8sKCgIAwePBj9+vVDo0aNEBcXh3Xr1iEjIwMuLi7mZleLi4sL2rZti7Zt2yIyMhLvvvsuMjIysG7dukKVsuhSo0YNXLlyBUeOHEF2drbeesfXr1/HhQsX5DoPCwoKQqVKlZCQkCCDY+BBfWNFq1atMHPmTERFRSE+Ph43b96U6ZSvOH69qtWpUwf79u3Dvn37kJ6ebrSKRkmKiIiQ0zExMQaDY6Uumi7qt0OGgpGbN29abcSyOnXqYMOGDUhPT8e+fftK9Afhzp07cfHiRQDAm2++iSZNmhhcPjo6GpMmTUJiYiJ2795dqLzn5OTI6cI2OIuOjjZ5vvq+lZCQIPfds2dPveufOXMGqamphcqjQhmFrVatWnoDY8DweVsYERERcHR0RFZWFrZs2YKPPvqoSPZjjKenJ7p164bly5fjwoULWLVqFbp3716sebh//74sZbSxsSmyt7LLli2Tr++//PJLVKpUyeDyGzZswLx587Bnzx4kJiZqjShpCSEEJk+eLP/frVu3Qm3v77//Rk5Ojt4f9kePHpXVk6zx48uUOKtOnTo4efIkzp49iwsXLlhUZ7hu3brYu3cvLl68aNE2CvvMrl69OqpXr44+ffqgWrVqSEtLw9KlS60fHJ8/fx579+4FkF+Ebejmp4iJicGPP/6IXbt24eLFiwgNDTVpXw4ODmjZsiXi4uKQk5ODO3fuFDo4Vnv22WfldFEMK9q2bVts3boVd+7cwYoVK/R+VjNmzJCvS9q2batzmVatWiEhIQG7du2SwfHDQa+63vGyZcsA5J9YxuobP02cnZ3ldGZmpklVggqjc+fO2LdvH9LS0vDbb7/hvffeK9L9FUbr1q1ha2uLvLw8zJ07V5YwPOzo0aMGexfw9vaGl5cX7ty5YzAYWbRoUWGzLHXp0gXffPMNAGDixIklGhwrhQd2dnb49NNPjVYHa9++PaZMmYLs7GzMnTu3UHlXB6zKEL6Wio+Px5EjR1CnTh2d82fOnAkg/zjV9yJ1gG6oTq05r2mNUfZpaH9Xr16V1QGtzdXVFc8++yw2btyIqKgoHD58WKvBYnH68MMP8ddffyEvLw9vvvkmmjVrZlKVxMzMTKxevbrQQ0iPHj1aDi3etWtXgz9WCkO5zry9vfHhhx8abPQO5AeU8+bNgxAC8+bNK3Q1twkTJsh2BXXr1kX79u0Ltb1bt25h7dq1eoNs5XoD9McJljAUZ3Xu3Fm++Zk4cSJ+++03s7ffqVMn+SPip59+ws8//2zW+tZ6ZpctWxaVK1fGkSNHTI73zHrnopxcQH6XNaZQllNOSsWePXvwzz//6F0vKytL1pt1d3c3qxHQrVu3jI6hre7WpSjqHg4aNEiWFI4ZM0Znt1FHjx7F+PHjAQAhISF6AxLlgXn16lUsXboUQMHgWKl3LITAlClTAOR3x2Sot42njbrqzLlz54p8f8OHD5evlT777DPZ3ZM++/btk9VhiltISIhsXLty5UosX768wDIZGRnydZUhSrc+q1ev1vk5nzp1Cp9//nkhc/xA/fr10a5dOwD5JURjx441uHxiYqLe4FxpfW1JyVJ6ejpWrFgBAGjevLlJQYm3tzfatGkDAFi+fLnFDcUuXLiAqVOnyv8rXWkWxuuvv66z6svChQuxYcMGAPkBkPq6qlixoizt0dc7wLp16+Q9yhqUUsOzZ8/i4MGDBeanp6ejd+/eVm2E97BPPvlEHnfPnj0N3l+UrlCVINKa6tWrh08//RRA/qvsZs2aGa1ic+DAATRp0kR2z2qJGzduoG/fvvJHT+nSpfHLL7/oXDYxMVFeZ5a82bxw4YK8T3bp0sVoYAzkB8dKvWB1HGKu1NRU/N///Z98O+Dq6oo///zT4u2pvfvuuzqrV+zatQvTp08HkP/9GutJRq0wcVaPHj3kj5vff/8dM2bMMLiv48ePY+3atVppbdu2lb0fTZkyBYsXL9a7/q1btwpco6Y+s1etWmWwAfylS5dw+vRpAKbHe2aVHCsnVUBAgMklkg0bNkSZMmVw+fJlzJs3D5988gkAYPv27fjqq6/QvHlzdOzYETVr1oS/vz8yMjJw9uxZTJs2TTYqGDp0qFn1CO/du4cuXbogPDwc3bt3R8OGDREWFgZ7e3tcuXIFa9eulSd0mTJl0KlTJ3M+BpP4+/vj+++/x8iRI5GUlIRnnnkGH374IZo0aYLc3Fxs27YN33//PVJTU2FjY4Pp06frvcjVN5C7d+8WqG+sXu7ff//F3bt3AbC+8cPUr7hHjx6NTz75BEFBQfKhFh4ebtX6qh4eHli0aBE6dOiAzMxMvPjii+jRowd69OiBChUqAMiv+xUbG4uVK1fi2LFjmDJligwui9ukSZOwfft2pKeno2fPnhgxYgS6d+8ODw8PHD9+HBMnTsTJkydRv359g6/d33jjDaxZswYZGRlo1aoVvvjiC9SpUwepqanYtm0bfvnlFwQEBMDe3t6srhUNmTVrFp555hlcuXIFX375JTZv3ozBgwcjMjISzs7OuHnzJo4dO4ZNmzZhx44d6Nq1K3r16mWVfStWrFghqwoY6tv8YT169MDmzZtx7949rFq1Sm++Hu7CKS8vDzdv3sSePXswefJkWZWqT58+qF27tmUHofHMM88gJiYGzzzzDD744ANERkbi7t27WL58Of73v/8ByK9Co3RBqPD19cULL7yA9evXY8OGDXj++ecxbNgwhIaG4vr161ixYgVmz56N8uXL486dO1b5/vv164cpU6YgLy8PL7zwAt5//300adIEzs7OiI2NxU8//YSEhAQ0bdoU+/btK/T+dGnatCk+//xzjBs3DufPn0ft2rUxZMgQtGvXDkFBQcjMzERiYiIOHDiA5cuXIykpCfHx8QarL1lq7NixuHr1KqZPn46EhATUrl0bXbt2RceOHVGxYkWUKlUKycnJOH78ONasWSODI0NvG9LS0rTOv8zMTNy5cwcJCQnYu3cv/vrrLxnYBAcHY9WqVYV+e6HP3LlzZcGXudfZ+PHjkZCQgAMHDqBx48YFlsnOztY6TqXXocTEROzbtw/Lly+Xz1dPT08sWLBA79sVc9SqVQsnT55EvXr18NFHH6FBgwbIzMzEhg0b8NNPP8kqF+aW3hYmzrKzs8OSJUvQpEkTpKamYujQoVi2bBl69+6NKlWqwMHBAdevX8eRI0ewbt067N+/H2PGjCkQT82bNw8NGjSQbbyWLVuGnj17onz58sjNzcU///yDrVu3Yvny5YiPj9cqmDD1mf3zzz+jT58+6NixI9q0aYNq1arB09MTt2/fRkxMDKZMmSLPzxEjRpj24Zk6WsjevXvlSCXDhg0za6SRt956S6578OBBIYT2yCeG/rp37y4yMjLM2t/DQxLr+wsJCdE5FLEpo40JoT2KkzIm+MO++eYbOfKYrj8nJycxZ84co8dUoUIFuU5ERITOZdTDugIQK1asKFTehSj8qE1CmD5CXmFGVDOVMpKPrj/152BstCyFKSP4bN++XQQGBpp0TppyLuhijeGjhRBiy5YtcohlXX9jx46VQ3U6Ozvr3Zf6mn/4r2zZsuLEiRMmj5Bn6PxUS0xMFPXr1zfpcx40aFCB9dPT0+V8XaNKGtO2bVsB5A/l/t9//5m8XnJyshwt7vnnn9eaZ+oIecrfq6++qneUSVOov2dD92gPDw8RFRWlcxsXL14UoaGhetcNDQ21+vc/btw4g5/LmDFjjG6zMCPkKX766Sc5Ap6hP0dHR5GQkKC1rjXutWq///678Pf3N+m8adKkSYGR19THbMqfs7OzGDx4sLhx44bBfJ08eVKuY2h0Vn0qVaokz0FzzvW4uDi53+HDh2vNU49UZ+zPzs5OdO/eXSQmJpqd94epr4E//vhDDhOt63zRN9KuofPGGnHW0aNH5Wdu7G/cuHE6txETEyPKli1rdH1d16Upz2xT7pN2dnZi/PjxJn83JgfHr7/+utzJli1bTN6BEELs2rVLrvvGG28IIYRIS0sTGzZsEKNHjxaNGjUSoaGhwtnZWTg7O4vw8HDx6quvivXr15u1H0VeXp74+++/xffffy86dOggqlSpIry8vIS9vb3w8/MTLVu2FD/88IO4d++ezvWtGRwLkX9yvfbaa6JChQrCxcVFuLm5iWrVqom3337b5Af/kCFD5L5Gjhypc5lLly7JZWxsbPSOhW5O3p+04DgrK0tMnDhRNGjQQHh6emr9cCmq4FiI/PP9119/Fc8//7wICgoSjo6OwtnZWZQtW1a0a9dOfPPNN+L06dMWH5e1gmMh8r+TYcOGibCwMOHo6ChKly4tOnbsKDZt2iSEEOLtt98WQP6QrIYsXLhQtGjRQnh4eAgXFxdRpUoV8eGHH8qHp7WDYyHyr/2VK1eKnj17inLlyglXV1fh4OAg/P39RZMmTcSYMWPErl27dA7xu337drnPefPmmbxPIbSH327SpIlZ6wohROvWreUN/MqVKzLd0E3fxsZGlCpVSlSvXl0MGTJE7Nq1y+z9PkzZthIAbtq0SXTs2FGULl1aODo6ivDwcPHGG2+IS5cuGdzOjRs3xHvvvScqV64snJychKenp6hVq5YYO3asuHXrlhDC+t//+vXrRbt27YS3t7dwdHQUZcqUEd27d5fPq+IIjoXIPxc+++wz0ahRI+Hn5yfs7e2Fm5ubqFy5sujRo4eYNm2aznuztYNjIYRISUkRf/zxh3jppZdEhQoVhIeHh7weGjVqJN59912dQbFC37nn7u4ugoODRZ06dcSQIUPE9OnTDQ6DrjZjxgy5nT179ph1PPv375fr9u7d26x1hRCifPnyAsgf1jozM1Om6wuOXV1dRVBQkIiMjBR9+/YVkydPNuuHrzEPXwMHDhwQr7zyiggODhaOjo4iJCRE9O/fX5w4cULvNgydN9aKs7Kzs8WcOXNE165dRdmyZYWzs7NwdHQUQUFBolWrVuLTTz8VsbGxBreRnp4uJk+eLNq0aSMCAgKEg4ODCAwMFPXq1RNvv/22OHDggM71THlmX7t2TSxYsEAMHDhQ1K5dWwQGBgp7e3vh7u4uatSoId544w1x7Ngxo8epZiOEFTt8JKInXtu2bbF9+3Y0a9bM7I7VH2VffPEFxo0bh0qVKuHUqVNG+9d9EimvK8eOHStHlCOypoEDB2LOnDlo3bo1duzYUdLZIdKp+DtBJKLHVlJSkmwM06hRoxLOjXUpdS8//vjjpzIwJioOynVmzUa5RNbG4JiIJEMtmzMyMjBw4EDZj23//v2LK1tFLisrC4cOHUK5cuUMDvlMRJa7fPkyEhMT0bx5c/bBT4+0khtKiogeOUOHDkVaWhpeeeUV1KtXDz4+PkhJSUFMTAymTp0qg+chQ4YgMjKyhHNrPY6Ojgb7ySWiwitTpoxVh+4mKioMjolIS0xMjMEBPLp162bVfmqJiIgeJQyOiUiaNGkSVq5ciR07duDy5ctITk6GEAIBAQFo1KgR+vfvLwcLISIiehKxtwoiIiIiIg02yCMiIiIi0mBwTERERESkweCYiIiIiEiDwTERERERkcZTHxwnJibCxsYGNjY2mD17dklnh6xs9uzZ8vtNTEws6ew8cqKiouTnExUVVdLZsZovvvhCHhc9/vbt24du3bohMDAQ9vb28ru9c+dOSWetxLRq1Qo2NjZP7WAaj8rxJyQkwMnJCU5OTrh48aLWvPT0dAQEBMDGxgY7d+4soRySJZ764PhRoQ5SdP25u7ujcuXKGDBggEVBzKVLl2BnZye3N3fuXIvyKYTA2rVrMXz4cERGRiIgIAAODg7w8fFBZGQkBg8ejFWrVslR1IiICmPt2rVo2bIlVq1ahWvXriE3N7eks0Qq4eHhep9ZISEhqFWrFvr3748pU6bgv//+K+nsWt2YMWOQlZWFQYMGITQ0VGueq6sr3n33XQDAO++8g7y8vJLIIlmAwfFjIi0tDQkJCZg7dy5at26NIUOGmPWQmDdvntaFaUlwvHfvXtSpUwedO3fG//73Pxw/fhzJycnIycnB7du3cfz4ccyaNQvdunVDeHh4kZXEs7TfOOXz+eKLL0o6K0SFMmbMGOTm5iI4OBhz585FbGws4uPjER8fDw8Pj5LOHumRlpaGpKQkHDt2DPPmzcNbb72FsLAwdO/e/Yl5i3fw4EGsXbsWDg4O+Pjjj3UuM2rUKPj4+ODYsWNYsmRJMeeQLMVBQB5BI0aMwBtvvCH/L4TArVu3cODAAfz000+4fv06Zs6ciTJlymDcuHEmbXPevHkAAHd3d6SmpmLnzp24fPkyypQpY/L6Q4YMkSXCDRs2RI8ePVC7dm34+vri7t27OHfuHDZs2ID169cjKSkJ77zzDgYOHGjewRMRaVy8eBEJCQkAgI8//hj9+vUr4RyRPsHBwdi8ebP8f3Z2Nm7fvo3ExETs378fy5cvx927d7Fy5Ups374d8+bNQ+fOnS3e36NQDeyrr74CALz88ssFSo0V7u7ueP311/Hdd9/h66+/Rq9evYozi2Qhlhw/ggICAlCjRg35FxkZiZYtW+LDDz/Ezp074eLiAgD4+eefTaq+cPjwYZw+fRoA8OOPP8Le3h55eXmYP3++SfmJiorCoEGDkJ2dDVdXVyxZsgQHDx7Ee++9h+eeew5169ZF69atMXToUPz11184c+YMXnnlFcs/ACIiQOs1fOXKlUswJ2SMg4OD1nOrTp06aNOmDQYPHow///wTly5dklUM7t27h549eyI2NraEc225s2fPYuPGjQCAvn37Gly2T58+AICTJ09i27ZtRZ43KjwGx4+Z6tWry+F77927h1OnThldZ86cOQAAb29vDBw4EM899xwA06pWZGRkoE+fPsjNzYWtrS3Wrl1rNPANDw/HkiVL8MsvvxjdPhGRPpmZmXLawcGhBHNChVWqVCn8+OOP+O677wDkP1uGDh1awrmy3MyZMyGEQEBAgHym6qMUcgHAjBkziiN7VEgWBcfHjx/H119/jfbt26NMmTJwcnKCu7s7KlWqhAEDBuDgwYMG13+4Jfn9+/fx/fffo27duihVqhRKlSqFBg0a4Ndff0VOTo7R/OzZswfdu3dH6dKl4ezsjPLly2P48OH4559/AFivVevhw4fx2muvoXLlynB3d4ebmxuqVq2KkSNHyld/xSE8PFxO379/3+CyWVlZsp7Tyy+/DEdHR/kr99SpU4iJiTG4/syZM5GUlAQgv7pHmzZtTM7ngAEDTF7WVDY2NihXrpz8/6BBgwo0BDFUzzYvLw/Tp09HkyZN4O3tDTc3N9SsWRPffPMN0tPTje5fCIHly5ejR48eKFu2LJydneHt7Y0GDRrgq6++Mth6fuDAgbCxsZHf3507d/D5558jIiICbm5u8PLyQosWLbBgwQJTP44ClMYxinHjxhX4fIxVdVm6dCmeffZZ+Pv7w8XFBVWqVMH777+PW7dumZSHrVu3om/fvihXrhxcXFzg4eGBWrVq4f3338eVK1csPja1y5cvY+TIkShfvjycnZ0RHByMzp07m10qk56ejp9//hmtW7dG6dKl4ejoiICAALRr1w6zZs0yqV5/Ye4/D/cWkpeXh5kzZ8r82Nra6vy+CnMeqhXHd5WamorvvvsOjRs3ho+PD5ycnFCmTBm89NJLWLdunc51lGuldevWMq1169Za57G57Q1u376NWbNmoW/fvqhevTrc3d3h6OiIwMBAtG/fHtOnT0dWVpbe9XW1ddi6dSs6deqEwMBAODk5oVy5chgxYgQuX75sND83btzAe++9h8qVK8PFxQWlS5fGc889h5UrVwKwXk87t2/fxtdff43GjRvDz88PTk5OCA4ORpcuXfDXX39ZvF1Lvf/++2jYsCEA4O+//5alr+Yy9lzPzc3F7Nmz0b59ewQGBsLR0RFeXl6oVKkSnn32WYwfPx4nT5609DCwdOlSAECXLl1gb2+8hmqPHj0AAGvWrDH63KZHgDDTzp07BQCjfx9++KHebYwdO1Yud/XqVVGrVi292+nUqZPIzc3Vu62vv/5a2NjY6Fy3VKlSYvPmzaJly5YCgGjZsmWB9c+fPy+XnzVrls59ZGdnixEjRhg8XgcHBzF9+nRzP05J/bmOHTvW4LIvvfSSXPbKlSsGl/3rr7/ksrt37xZCCJGWlibc3d0FAPHmm28aXL9evXoCgLCxsREJCQlmHVNRMOXcU39+s2bNkunHjx8Xbdq00btegwYNRGpqqt59X79+XTRt2tTgvkuXLi0OHjyoc/0BAwYIACIsLEycOnVKhIeH693OyJEjLfp8wsLCjH4+AwYMkMurz7tt27aJ3r17612vYsWKBs+31NRU0a1bN4P7dnd3F2vXrrXo2BRRUVHCw8ND7z7GjRundY/R5/DhwyIkJMRgfhs0aCCuXr2qdxuFvf+oP/+NGzeKtm3bGvy+hCj8eShE8X1XcXFxIjg42OB+unfvLjIyMrTWU64VQ3/67tf6mHJt1KlTR+85/vCz4oMPPtC7HX9/f3Hy5Em9efn777+Fv7+/3vVff/11rXvX+fPnC2zD0HmlWL9+vfDy8jJ4zB07dhQpKSlmfZZqyucaFhZm8joLFy6U+3/ttdcs2q+h409JSRHNmzc3+n336NHDon0nJibKbcyYMcOkdTZt2iTX2bVrl0X7peJjdnC8detW4ebmJl555RUxbdo0ERUVJeLi4sSmTZvEjz/+qHUDmjlzps5tqB9cTZo0EY6OjuKtt94SW7duFbGxsWLhwoWiWrVqcplp06bp3I76AvP29hbfffed2L9/v9i/f7+YMGGC8Pb2Ft7e3qJy5cp6LyJTguP+/fvLZTp06CDmz58vDh8+LKKjo8Uff/whIiIi5Pw1a9aY+5EKIUwPjk+dOiVcXFwEAFG/fn2j2+3SpYsAIMLDw0VeXp5M79evn7yJZ2Vl6Vz37t27ws7OTgAQVatWNfuYikJ8fLzYvHmz/Ky+/vprER8fr/V37do1ubz6AdOkSRNha2srBgwYINavXy9iY2PFypUrRePGjeUy+n7UpaamynPS0dFRDBs2TKxevVrExcWJPXv2iG+++Ub4+vrKczExMbHANpQHvr+/v6hUqZIoVaqU+PTTT0VUVJSIiYkRf/zxhyhTpozMy6ZNm8z+fM6cOSPi4+PlNkaMGFHg87l8+bJcXn3eNWnSRAAQXbt2FX/99ZeIjY0VGzZsEB07dpTL9OzZU+d+c3JyROvWrQWQ/0OqV69eYtmyZSImJkYcOHBA/PLLLyI0NFR+fjExMWYfmxD512upUqUEAGFrayuGDx8utm3bJqKjo8WMGTNEpUqVBADxzDPPyDzrcuzYMeHm5iYAiICAADF27Fixbds2ceTIEbF582YxcuRIYW9vLwCIhg0b6rxGrHH/UX/+NWvWFABE586dtT7/xYsXy+WtcR4W13d1+fJl4e3tLfczaNAgsXnzZhETEyPmzp2rVSjyyiuvFFg3Pj5ezJw5U+t5oj6Pb9++bVZ+ypQpIxo2bCi++uorsW7dOhEdHS327dsn5s+fL55//nm5H33BpvpZoVwrLVu2FAsXLhQxMTFi27ZtWs+KRo0a6dzOrVu3RGBgoFyuT58+YuPGjSImJkYsXrxY3o8aNmxYqOB4y5Yt8v4dHh4uJkyYIJ/Xa9euFX379pXb7969u1mfpZolwfH169flvi19thg6/jFjxsjtv/jii2LRokVi3759IjY2VmzatElMmDBBNG/eXLz00ksW7XvevHly+8eOHTNpnVu3bmk9t+jRZnZwnJycbPCmlJmZKZ577jl5seTk5BRYRh0cOzg4iJ07dxZY5ubNm6J06dLyofGw+/fvi4CAAAFA+Pj4iDNnzhRY5syZM8LHx8fgTc9YcLx8+XI5/48//tB5zBkZGbJEMjw8XGRnZ+tczhD1Q/LhgObYsWNi9+7dYsKECfKm6uHhIfbt22dwmzdu3BAODg4CgPj444+15qkDzNWrV+tcf9++fXKZ3r17m31MRcWUHzQKdXAMQMybN6/AMvfv3xc1atQQAISvr6/O72/UqFECgPD09BTR0dE695WYmCiCgoIEANG3b98C89WlYV5eXuL48eMFlklISBDOzs4ySLKUKT+0hCj4JkjXTTsvL0+0a9dOABD29vbi+vXrBZb54Ycf5PW8YcMGnfu6deuW/CHZrFkzi46re/fuMq8LFy4sMP/evXsF3kTpOh4lEK1Vq5ZITk7Wua+NGzcKW1tbAUD8+eefWvOsdf95+PP/7LPPDB6/Nc7D4vqu1G+4Hv78hMj/DJUgHYDOvKg/H13PCXOcPXvW4Hx1IL5t27YC89X3HSC/xFNd4KAYOnSoXCYuLq7A/LfeekvO/+GHHwrMz8nJkYUalgbHqamp8vnZrl07kZaWpvOYp0+fbvCYTWFJcCyEkAUBdnZ2Oj9HYwwdf9myZQUAo8HvzZs3zd6vEEK+SXZ0dNQZ4+hTrlw5AUC88MILFu2Xio/ZwbEp/v77b3nB6Sp1UAfH7777rt7tfPjhh3K5O3fuaM1btGiRnPfLL7/o3cYvv/xSqOBYqVbQrVs3/QcshDh58qTcztatWw0uq4up1VVsbW3FsGHDxKlTp4xuc8qUKXK9h1/x5eTkyAeovldLq1evluuPHj3a7GMqKpYGx4ZKR6ZNmyaXO3r0qNa85ORkGbAaOteEEGLq1Kky8Hj4gaQOjidPnqx3Gz179hRAfsmfpSwJjuvVq6f3IaV+Jfjwj6msrCx5Lhk7TzZs2CC3Y241naSkJFkS9uKLL+pd7tChQwaD47Vr1+r9rh/2yiuvCACiadOmWunWuv+oP//KlSsbfNBa4zwsie+qffv2epc7f/68LKHXFTBYMzg2RZ06dQQAMWrUKJ15VfISFBQk7t+/r3Mbp0+f1ntuZGRkCE9PTwFA1K1bV+/1dvXqVfldWxIcK/d+Z2dnrTdpujRo0EAA+SXYlrA0OFb/iL17967Z+zV0/EqhkLHrxFKdOnWS54E5lLcBugr86NFS6N4qMjMzcfHiRZw8eRLHjx/H8ePHIYSQ848ePWpwfaWLE13q1asnp8+fP681b/v27QAAW1tbg31f9u3b1+IhZP/77z/Z1YyxHhqqVasGPz8/AMCBAwcs2p8p8vLysHTpUvz5558GG48AD3qjqFu3LqpVq6Y1z87ODj179gQArFu3TmcDnpSUFDnt5uZWyJyXPFPPtX///Vdr3ubNm2UDCmPnQYsWLQDk9/Gpr5siGxsb9O7d22hebt++XazD4/bu3VvvtWLo8zl8+LBsvGXq5wOYf53s3LlTNpAbNGiQ3uUaNGiAiIgIvfNXr14NAKhSpQpq1qxpcJ9KfqOjo7Ua5xXF/efVV1+FnZ2d3vnWOA9L4rsaMmSI3uXCw8NlS/+oqKhiG/1OCIGrV6/i7Nmz8rl1/PhxBAcHAzD+3HrppZfg5OSkc16VKlXg7u4OoOC1Ehsbi7t37wIA+vfvr/fcKF26NNq3b2/WMakp53jLli0REBBgcFnley7K55YuymcEaD9rrCEoKAgAsGTJEpMaWpsrOTkZQH4PUObw8fHRWp8eXRYFx2lpafj2229Rq1YtuLm5ISwsDBEREYiMjERkZCTq1Kkjl71x44bBbVWtWlXvPOVEAgpePMePHwcAlCtXzuAJ6uPjg/LlyxvMgz7qnhx69eplcHhnGxsbeaxXr161aH+KsWPHQuSX6su/9PR0HDt2DO+99x5SUlLw448/ol27dsjIyNC5jdOnTyM6OhqA/j4YlfTMzEydI/eUKlVKTqelpRXqmB4Flp5r6vMgKCjI4DlQo0YNuay+88DPzw++vr4W5aUoWePzady4sdFh0BXmXifx8fFyun79+gaXbdCggd55Sn7PnDlj9JoeNWoUgPxeX9S9dRTF/cdYoG6N87C4vivl8wEgeybQR5mfnp5eIJi0tvXr1+PFF1+Ep6cngoKCUKVKFfncioyMxPr16wEU7rkFPAia9D23AO0fnLo888wzBucbonzPmzdvNnqO//DDDwAK/9wyl/qzsfZIh0pPSfv370e5cuUwatQorFy50mpBqXIvMDc4Vpa/efOmVfJBRcfs4DgxMRGRkZH4+OOPcezYMaO/9PUFbwpXV1f9mbN9kL2H93P79m0AMPqrGAD8/f2NLqPL9evXLVqvKH6puri4IDIyEhMnTsTUqVMBALt27cK3336rc3mlb2M7Ozu9I/LUrVsX1atXB6C7z2OlJBwArl27Vqj8PwosPdesfR4YyoexvBSlR+Xz0Ue55gHj133p0qX1zrNGfovi/mPsQWuNfBfXd6X+IWHouwCAwMBAnetZkxACQ4cOxYsvvoj169cb/dFZmOcW8OB60ffcAoyfO5Y+t7Kzsy1641QUzy1DlB8g9vb2WgUx1vDZZ59h8ODBsLGxwfXr1/Hbb7/J7hYjIyMxduzYQj3TnJ2dARg/Tx6mLK8M5EWPLrOHj+7Xrx/Onz8PGxsbDBo0CD179kS1atXg7+8vXzPl5eXJ14PqKhaPG/WNbcGCBUZLdhTm/po015AhQ/Dhhx/i1q1bmDFjBr788kut+Xl5ebKv3NzcXPmKyZD9+/fjn3/+QcWKFWVajRo1YGdnh9zcXMTFxVn3IB4jynng6Oho1ohOpg7N/bhTXydRUVEGS8XVTAks1dT3EmNVFQzdd5T8Nm3aFNOmTTN5/8or96JiqEoFYJ3zsLi+K3MUxzNi5syZcvCF2rVr45133kHDhg0REhICV1dX+dn3798f8+bNe2KeW6+88go+++yzEsyNbtevX5f951epUsXq23dwcMCMGTMwZswYLFq0CDt27EBMTAyysrJkFZpJkyZh/vz56NKli9nbV364mPtjTlne0h8+VHzMCo5Pnz6NvXv3AgA++ugjfPPNNzqXU/86LipKAGpKSYilr1LUD46HX1WWJFtbW1SqVAmHDh1CUlISbt26pfXae8eOHbh06ZLZ2503bx7GjRsn/+/h4YHatWsjNjYWZ86cKRA8Py2U8yArKwu+vr4m/dh4mqivE0dHxyK7TtTn+LVr11C2bFm9yxq6L/j6+uLatWtITk62OK/Fcf95mDXOw5L6rkJDQ/Uuqy7BU69nTX/88QcAoEKFCti/f7/ekruifnapC06uX79ucEhsS88bZ2dnuLq6Ij09HXfu3HlknltqW7duldPNmjUrsv1Ur14dX331Fb766itkZGRg3759WLhwIebOnYvU1FT06tUL586dM/taUoJbc88XZXkGx48+s6pVnDhxQk4rjbl0MTbqmjUoDW7Onz9v8NfbrVu3LK7Hpq47vWXLFou2UVTUIwdmZ2drzVOqSDg5OWHBggVYtGiRwT+l7puuEhOl4ZMQApMnTy7KQzKZpQ0sLfUonwePguL6fJThVwHI+vT6GJqv5Pfs2bO4cOGCRXkpjvvPw6zxORfXd6UOyA4dOmRw2cOHDwPIr6qgHv3SmpRnV5cuXfQGxkKIIn9Dpm4oauw5WZjnqPI979u3r9irSxjz8LOkW7duxbJfFxcXtG3bFjNnzsT3338PIL+ag75RGg1R7kV37941uapSXl6evBeo72X0aDIrOFYHZIYuOHNeVVrq2WefBZB/ws2fP1/vcvPnz7f4FVnFihVlndzFixfj4sWLFm3H2tLT0+Wwl87Ozlp1g9PS0uSQoM899xx69+6Nnj17GvxThqc9f/68fDOgGDRokKwT+Ntvv2HXrl0m51NXPWZrUOp7AfmNCYtahw4d4ODgAAD46aefTBrSvKQpn1FxfD7NmjWTJX7Tpk3DvXv3imQ/rVu3lq+/lTr1usTExGg1fHpY586d5fTEiRMtyktx3H8eZo3zsLi+q1atWsnvSqnOoMvFixdlKWKrVq1MGobXEspnZei5tWbNGvmqv6g888wz8PT0BKC7MEJx7do1bN682eL9KOd4WloafvvtN4u3UxQmTJggfxDVrVu3UL1yWEq5fgHjjS91ad68uZw29kNdcfLkSaSmphZYnx5NZgXHlSpVktP6Hk6///47Vq1aVahMmaJbt26yHty4ceOQkJBQYJmEhAStagKW+PTTTwEA9+/fR/fu3Q2+6srMzMTUqVOLfNz0sWPHyor97du316qruGLFCtmzxEsvvWTS9rp37y5LYx8OaF1dXTF//nzY2toiLy8PHTt2xIoVKwxu7+LFi+jZsyfeeuutAvOioqJkK2klKDeXr68vHB0dAQDnzp2zaBvmCAkJkSXoR48exbBhwwwGJtevX8eff/5Z5PkyRHlNWByfj7OzM/7v//4PQH6L9549exrs3SQlJQW//vqr2fsJCgqS9QPXrFmDpUuXFlgmNTUVr7/+usHt9OjRQ3Zt+PvvvxsM3oD8HgbWrl2rlVZc9x81a5yHxfVdBQcHyxLBzZs3Y+bMmQWWycrKwuDBg+WbL6VnkKKgPLvWrl2r81X4uXPn8MYbbxTZ/hXOzs7o378/ACAuLg6TJk0qsExeXh6GDRtWqOfI8OHDZaHJZ599ho0bNxpcft++fdi9e7fF+zNFamoq/u///g8fffQRgPxnS1HcJ2/duoU1a9YY/FGqfmtiyduKBg0ayDZWSqBvjHo5BsePAXM6Rc7Ly5MjiQEQvXr1EuvWrROxsbFi1apVckSkpk2bGhyEQD0IiCHGOoB/ePjWCRMmiAMHDogDBw6ICRMmCB8fH+Hl5SWHlG3VqlWBbZgyoIR68AY/Pz/xySefiC1btogjR46IvXv3ijlz5oihQ4fK0bAsGafe0Ah58fHxIjo6WixcuFBrmFNnZ+cCQ1cqI/U5ODiIW7dumbx/ZThUT09PkZGRUWD+zJkzZcfqQP7QqD/88IPYtm2biIuLEzt37hQzZswQL7/8snBycpLbMnScAwYMMPdjkpRzzNfXVyxcuFCcPHlSJCQkiISEBK1Rj9SDgOjqSF9h7DxISUnROverV68ufv75Z7Fnzx5x5MgRsXPnTvHrr7+Krl27CkdHR1GvXr0C21DOI2Od5ZuaZ0P69OkjAAgnJycxbdo0ER8fLz8f9aAA5gyyYOiazsnJEc8++6xcJjQ0VIwfP17s3LlTHDlyROzevVv88ccfok+fPsLNzU34+vpadFzq4aPt7OzEG2+8IXbs2CFiYmLEzJkz5VDNpgwf7e7uLpdp3769mDNnjjh48KCIjY0VGzduFOPHj5fXxZgxYwpswxr3H3MHubDGeVhc39WlS5e0ho8ePHiw2LJli4iJiRHz588XtWvXlnl4ePhoSz8ffb7//nu5napVq4qZM2eKQ4cOiV27domxY8cKT09P4ezsLOrWrav3GjVn8CFlYAxd97ibN28WGD5606ZNIjY2VixZskSec8rgHAB0DgNubPjorVu3ygFWbG1txcsvvywWL14soqOjRXR0tFizZo0YO3asHC1yypQpJnyS+o81ODhY65kVFxcnduzYIWbOnCmGDBkiBz9Rng3r1q2zaH8KfcevfE/h4eHi3XffFUuWLBEHDx4UMTExYu3ateL111+XI1+WKVNGpKamWrT/F154QcY7pujdu7e8ZunRZ/YIeUeOHJE3PF1/kZGRIikpqViCYyGE+Prrr4WNjY3OvLi6uor169eL5s2bCwDi+eefL7C+KTe8nJwc8f7778sRnwz9ubm5ifT0dGMfo8FjNeXP399fbN68WWsbly5dkhe9oVGpdJk0aZLc9uLFi3UuExUVpfVgNvQXGhqqc3hf9ahbhkZHNGbdunV6v3f1OWet4FiI/Iea+seJob/WrVsXWL84g+MjR47IHykP/6kf2NYKjoUQIj09XfTv39+kz6dcuXIWHZeSZyVA1vf9m3KPOXr0qAxcjf2NGzdO5zYKe/+xJPgr7HkoRPF9V3FxcSI4ONjg9rt3767zB7kQ1guOs7Ky5BDouv5cXFzE0qVLDV6j1gqOhcgfRdbf319vfgYOHChmzJgh/3/16tUC2zAWHAshxPbt27UCcUN/c+bMMXhMxo7VlD87OzvRvXt3ncG+uYwFx8b+QkJCdA7vbSpllEwbGxuj9+m0tDTh5uYmAIhvv/3W4n1S8TG7n+PatWvj77//xvDhwxEWFgYHBwf4+PigQYMG+OGHH3D48OFibc3/ySefYNeuXejatSsCAgLg5OSEsLAwDB48GDExMXjhhRdkvTqlrpe57OzsMGHCBJw8eRJjxoxBnTp14O3tDTs7O5QqVQoRERHo06cP5syZgytXrhRJH4aOjo4IDAzEs88+ix9//BFnzpxBu3bttJaZN28e8vLyAOS/OjaHenl9dYVbtmyJo0ePYvXq1XjttdcQEREBPz8/2Nvbw8vLCzVq1MDgwYOxevVqnDt3Tmf/ysooTPb29oV6jdqxY0ds374dXbp0QXBwsKyLWZR8fHywceNGbN++HYMGDUKlSpXg7u4Oe3t7+Pj4oH79+hg5ciQ2bNig1Rq7JNSuXRsHDhxAr169EBoaqnc0L2tycXHBnDlzEBMTgxEjRiAiIgKenp7y/KhduzaGDBmC5cuX49SpUxbvp1WrVjhx4gRGjBiBsLAwODo6onTp0ujYsSM2bdqEL774wqTt1KxZEydPnsScOXPQtWtXlC1bFs7OznB0dERQUBBatWqFTz/9FLGxsfj88891bqM47j8Ps8Z5WFzfVZ06dXDmzBl8++23aNiwIby8vODo6Ijg4GB0794da9aswYoVK7TaERQFBwcHrF+/HpMnT8YzzzwDV1dXuLi4oGLFihg+fDji4uLw8ssvF2ke1GrVqiWfJ5UqVYKTkxP8/PzQunVrLFy4ELNmzdKqD27pudOmTRucO3cOv/76K55//nkEBQXB0dERzs7OKFu2LNq1a4dvvvkGp0+fltU9rMXV1RVBQUGIjIxE3759MXnyZFy8eBErVqxAWFiYVfelFhYWhr///hvff/89OnTogCpVqsDLywv29vbw8/NDy5Yt8cMPP+DUqVNaDVTN1b17dwQGBkIIgUWLFhlcdvXq1UhLS4OTk5PBESPp0WEjxGPcoaMJsrOz4enpiYyMDHz66af46quvSjpLT7VWrVph165dGDRokM56iERPEt5/yFJDhw7FjBkzUKZMGYu65qSi99133+Gjjz5CpUqVcPr0aa3BktTatm2L7du347XXXsP06dOLOZdkCYuGj36crFq1SjZea9SoUQnn5umWmZmJQ4cOwc7ODh9//HFJZ4eoyPH+Q5bIyMjA6tWrAfC8eZSNGjUK/v7+SEhIwJIlS3Quc/DgQWzfvh2Ojo745JNPijmHZKnHPjj+559/9M5LTEzEu+++CyB/CNOS6DKGHjh8+DDu37+P3r17P5WDidCTh/cfssS5c+f09qaQm5uLESNGyC7GBgwYUJxZIzO4u7vLHmm++uorWa1RTZn/5ptvFml1ErKuoulUshhVrVoVL7zwAl588UVERETAzc0N169fx86dOzFt2jQ5xvwPP/xQZH1okmmaN2/+WA/LSvQw3n/IEl999RUOHz6Mnj17omHDhggICEBGRgaOHTuGP/74Qw5G8uyzz6Jjx44lnFsy5PXXX8edO3eQmZmJpKQkreHa09PT0ahRIzRq1AijR48uwVySuR77OsfGRkuztbXF119/LftWJCKyFt5/yBIDBw40OJANADRt2hSrV6/WGvKbiIrHYx8cr1u3Dhs3bsT+/ftx7do13Lx5E05OTggJCUGrVq0wcuTIR3JseSJ6/PH+Q5Y4c+YMVqxYga1bt+LChQtITk5GdnY2fH198cwzz+DVV19Fz5499TbwIqKi9dgHx0RERERE1sKfpUREREREGgyOiYiIiIg0GBwTEREREWmUaHCcmJgIGxsb2NjYYPbs2SWZFXzxxRcyL0RERET0dCp0cJydnY3FixdjwIABqFatGnx9feHg4AA/Pz/Uq1cPI0aMwLZt23R2jk2Pv6+//lr+qChVqhTS09Otuv3w8HC5fUN/4eHhJm3vwIED6NevH8LDw+Hs7IygoCA8//zzWLx4sUnrZ2Zm4vPPP0e5cuXg7OyMGjVqYOrUqY9E/81RUVEGPyN3d3dUrlwZAwYMQFRUVJHkYdu2bRg4cCAqVqwINzc3eHp6onLlynjppZfw+++/IzU11eD66enp+P7779GgQQP4+PjA3d0d1apVw//93//h4sWLJuXh8OHDaNeuHdzd3eHt7Y2ePXsaHKyjJJ0+fRpffvklWrZsidDQULi4uMDd3R1hYWHo1KkTJk2ahKtXr1q8ffWPflP/vvjiC4PbPHHiBIYPH46KFSvCxcUF/v7+aNGiBf73v/8hJyfHaJ6EEPj5559RtWpVODk5oWLFivj666+RnZ1t8XFai7rARv1nZ2cHLy8vhIWFoVGjRhg5ciTmzZtn9Hw216VLl7BixQp8+OGHaNOmDTw8PEz+XnRZvHgx2rdvj6CgIDg7OyM8PBz9+vXDwYMHTd7G03ZNEgEARCGsWrVKlC9fXgAw+le5cmWxbt06rfXPnz8v58+aNaswWSm0sWPHyryQ6SpXrqz1Pc+bN8+q2w8LCzPp/AoLCzO6rXHjxglbW1u92+jUqZPIyMjQu35OTo5o166dznVfe+01Kx61ZXbu3GnSZ6X8DR48WOTk5Fhl37du3RJdunQxus8jR47o3cY///wjqlSponddT09PsX79eoP52Lp1q3B0dCywrre3tzh+/LhVjtUabt++LQYOHCjs7OyMfmb29vZi+PDh4ubNm2bvR31fM/Vv4cKFerf3559/CicnJ73rNmrUSNy4ccNgngYPHqxz3Q4dOljtfLSU+plkyl+pUqXE6NGjRWpqaqH3nZiYaHBfY8eONXlbGRkZ4sUXX9S7LVtbW/Hll18a3c7TdE0SqVkcCY4fP17Y2NjIE71t27ZiypQpYvv27SI2NlZs3bpV/Prrr6J9+/YyIKlVq5bWNh6l4JjMd+DAAfn9ubu7CwDiueees+o+lOC4S5cuIj4+Xu/fmTNnDG7njz/+kHmtUKGCmDFjhjh8+LBYtWqVaN26tZzXp08fvduYOnWqACBCQkLErFmzxMGDB8XPP/8sPD09BQCxceNGqx67udTB8YgRI7Q+n2PHjomoqCjx7bffioCAALnc559/Xuj93rlzR9SrV09us2PHjmLevHniwIEDYu/evWLBggXinXfeEWXKlNEbHKekpIiqVatq/djYvn272L9/v/jmm2/k+eXq6iqOHj2qcxuZmZmibNmyAoAYOHCgiIqKElu2bBEdOnQQAETDhg0LfazWcP78ea1j9ff3F2+//bb466+/xIEDB8TBgwfFX3/9Jd566y0REhIil1u5cqXZ+7p27ZrB6yY+Pl78/fffwsPDQwAQHh4eIj09Xee2Nm3aJO/lpUuXFpMnTxaHDh0SGzduFN27d5f5bNGihcjNzdW5jQ0bNsjAaPLkyeLgwYNi5syZIjg4WAAQv//+u9nHaE3qZ9LD95xDhw6JzZs3i59++kl07dpV2Nvby2UrV64szp49a7V929jYiIoVK4oWLVpYFBz37t1brte6dWuxatUqcfjwYTFjxgxRoUIFOe+PP/7Qu42n6ZokephFwfHcuXO1buw7duwwuPyxY8dEmzZtGBw/YUaMGCEACD8/PzFhwgRZInH58mWr7UMJjgcMGGDxNm7fvi28vLwEABEaGiqSk5O15ufk5IhOnTrJc3HXrl06t9OqVSsBoMCDYOXKlQKAGDRokMV5tAZ1cGzoQXrixAnh4uIig6GsrKxC7bdfv36yhHPx4sV6l8vLyxPZ2dk656lLOCdOnFhg/v79+2Uw0rp1a53biIqKEgBEt27dtNJzcnJk8H7hwgUzjsz60tPTRY0aNeSxDho0SNy7d0/v8pmZmeLnn38Wbm5uFgXHplACVgBiyJAhOpfJzs4WFStWlOfMP//8U2CZN954Q25nzpw5OrczcOBAAUCsXr1aK/3IkSMGv9vion4mGbvnXLhwQTz33HNaAfLt27ct3veNGzfE119/LTZv3ixu3bolhDD9mlZTrgMg/23Yw6XxycnJIjQ0VP5I0Zfnp+WaJNLF7OD4v//+E25ubvIX44kTJ0xaLzc3t8ArdwbHj6/MzEzh4+MjAIg33nhDXLlyRb4injBhgtX2Y43geOLEifI8W7Rokc5lLl26JPP/4osv6lymUqVKwtfXt0D6vXv3BADRrl07i/NoDeY8SF966SW5rL5SH1Ps2bNHbueLL76waBtZWVnyx0u1atX0ljoOGzZM7ismJqbA/AULFggAYsqUKQXmvfvuuwKA2L9/v0V5tJZ33nlHHsPAgQNNXu/48eM6j9kaevbsafSH4dKlS+Uy3377rc5l0tLShLe3twAgatSooXMZJZhMSUkpMM/Hx0dUrlzZ8gOxAnOCYyHyg7yOHTvKdd5++22r5seS4PiFF14QAISdnZ24dOmSzmUWLVokt/vDDz8UmP80XZNEupjdIO+nn35CWloaAGDcuHGoXr26SevZ2tqib9++RpfbunUrOnXqhMDAQDg5OaFcuXIYMWIELl++bHTdrKwsTJ06Fa1bt4a/vz8cHR0RGBiIF154AfPnzzfYKNDU3iqysrIwffp0dOzYESEhIXByckJAQADq1auHUaNGYc+ePQYbZ23duhV9+/ZFuXLl4OLiAg8PD9SqVQvvv/8+rly5YnDfSUlJ+PDDD1G3bl14enrK44uMjESvXr0we/Zs3Lt3z/CHZCVr167FrVu3AAB9+/ZFYGAg2rRpAwCYO3duseTBVKtWrQIAeHh4oHv37jqXKVOmDNq2bQsg/zvS1dAmICAAN2/exIkTJ7TSlcZtgYGB1st0EVM3YLx//77F2/n1118BAO7u7hgzZoxF24iKisKdO3cAAAMGDNA7ZO7AgQPl9F9//VVgfkBAAABg165dWul5eXnYu3cvgJL9jm7cuIHp06fLfEyePNnkdSMiIlCvXj2r5+nevXtYvXo1AKBcuXJo3ry5zuWUawjQ/h7UXF1d8corrwAAjh8/joSEhALL6PuO4uPjcevWrcfqGgIAOzs7zJ49G66urgCAP/74Azdu3Cix/KSmpmL79u0AgOeeew5lypTRuVz37t3h4eEBQPe19LRck0R6mRNJ5+XlCX9/fwFAuLm5ibt37xYqMn+45PiDDz6Q/3/4z9/fX5w8eVLvthITE0W1atX0rg9ANGvWTG+jFlMa5B05ckSUK1fO4D4AiPPnzxdYNzU1VXTr1s3geu7u7mLt2rU69717925ZL9DQn6711aUPhSmBVevcubMA8uvvKubMmSP3Exsba3QbyrKGGtMVtuQ4MzNTvvpr3769wWXHjx8v86SrqtD3338vAIiyZcuK2bNni0OHDokpU6bI0jJ9311xsbTk+MqVKzqXGTBggFxm586dBeZnZmYKZ2dnAUC8/PLLMj07O1skJiaKCxcuiMzMTKP5/uyzz+R+Dhw4oHe57Oxs+daqRYsWBeanp6cLPz8/WT1g165dYuvWrbJhUr169YzmpShNmTJFHuenn35qlW2qG6xa4s8//5TrG6p/rtQbrVKlisHtLVy4UG5v5syZBeYvW7ZMABA+Pj7i119/FYcOHRKzZ88WZcqU0VvCWJzMLTlWvP7663K9BQsWFJhv6T3Y3JLj7du3Gy3hVyiNi+3t7QtUrXparkkifcy6ox4/flxeMM8//3yhd66+ETVp0kQAEC1bthQLFy4UMTExYtu2baJ///5ymUaNGuncTkpKilavGV27dhVr1qwRMTExYtmyZaJly5ZyXuPGjXW2iDYWHJ84cUI2QADy61AtWbJEREdHi4MHD4o5c+aIvn37Cjc3twLBcU5Ojmz0ZWNjI3r16iWWLVsmYmJixIEDB8Qvv/wi64A5OjoWeD11//592WClVKlS4v333xcbN24UsbGx4uDBg2LJkiXinXfeEWXLli2W4Dg5OVk4ODgUeKCmpKQIV1dXk18vmhMclytXTkRGRgpXV1fh4uIiwsPDxSuvvCJWrlwp8vLy9K6vPmeN5emvv/6Sy/72228F5mdkZIiGDRvq/FHSv39/o8db1Ex9kJ46dUrWOa5fv77e5YwFx4cPH5bzJ02aJK5cuSIGDhwoH5YAhLOzs+jQoYPYt2+f3v2oA3VjdTZr1qwpgPwfy7osX75cZw8QHh4eBnvKKA7q4zx48KBVtlnY4Fjd4EtXPWIh8q9rpfF1ly5dDG4vLi5Obu+9994rMD8vL0907dpV5zX07LPP6q2TXlwsDY7V1U6GDx9eYH5xBce//vqrXN5YHfW33npLLvtw9cin5Zok0sesO6pSfwiA+Pjjjwu984e7zXnttdd0BjpDhw6Vy8TFxRWY/3//938GS2Ty8vJEnz595DJTp04tsIyx4LhOnToCyG9wpq/eqhD5jSoebu39ww8/CADCwcFBbNiwQed6t27dEhEREQLIL+FWU5cGGCqdzM7O1lmab+3g+JdffpHbe7iFdq9evQQAERAQYPRBZ05wbOivadOmehsBbty4US73/fffG8xPdHS0XPbDDz/UuUxKSooYM2aMCAkJEQ4ODqJy5cpi0qRJeuvkFSdjvVXs3r1bTJgwQQQGBsqHk6Gg1VhwPHv2bDl//PjxsoRI15+tra346aefdO5H+cHh5uZm9BjV9Tvv37+vc5kdO3aIFi1aCBcXF+Hh4SG6desmTp06ZXTbRa1SpUrys9CXd3MVJjhOTEyUQW/Tpk31Lnfq1Cm5j5EjRxrcZnJysly2Z8+eOpfJzs4WX3/9tShfvrxwcHAQYWFh4tNPP7XaZ1IYlgbH//zzj1yvTZs2BeYXV3CsfvsaHR1tcFnlTRgAsWnTJq15T8s1SaSPWXWO1XWpSpcubc6qRgUFBWHKlCk66/z+3//9n5zes2eP1rzMzEz8+eefAIDq1avr7CjdxsYGU6dOha+vL4AH9SRNtXnzZhw5cgQA8Oabb6Jnz556l/X19YWLi4v8f3Z2Nn788UcAwKhRo9ChQwed63l7e+P7778HAOzdu1erg3T1IAAtWrTQu297e3tZj6woKXWKGzRogEqVKmnNU+qVX79+HZs2bSr0vhwdHdG5c2f8+uuviIqKwpEjR7Bz506MHz8eZcuWBQDs27cPzz33HO7evVtg/ZSUFDnt7u5ucF9ubm5yWl/n/u7u7vjhhx9w+fJlZGVl4cyZMxg9erTeOnkl5ffff0dkZKT8q1mzJlq0aIEPPvgA169fx7Bhw3Do0CE0adLE4n0odc6B/PYHN27cwIsvvoiYmBjcv38f165dw9SpU+Hh4YG8vDy8++672LhxY4HtKN+Rse8HMO07at26NXbt2oX09HTcvXsXf/31F6pWrWru4Vmdcv/09PSEk5NTCecm/zoWmvYRAwYM0Lucta8he3t7fPLJJzh37hyysrKQmJiIr7766pH4TCylPFsA4Pbt2yWWD2t9V0/LNUmkj1lPdPWFp74grOGll17Se3OsUqWKvEj//fdfrXmxsbGy4cDAgQNhZ2encxseHh6yscjJkyeNNn5TW79+vZwePXq0yesB+SMDKftS9q+POvA9cOCAnA4KCpLTs2bNMmv/ANCqVSuI/LcEhR6m++TJk4iNjQUAnQ0s27VrJxthzJs3z+C2lDwlJibqXebw4cNYvXo1Ro4ciZYtW6J27dpo1aoVPvroI5w4cQLt2rUDAJw6dQrjxo0rsL66sZmjo6PB/KjPv4yMDIPLPs7y8vKwdOlS/Pnnn8jKytK73OzZs+V31KpVqwLzlYa5QP6P1E6dOmH16tWoV6+ebKg6YsQIrF+/Hra2thBC4P333y/QYFX5jox9P8Dj/R0p909r3jsTExPld2Su+fPnAwCcnZ0N3pt4DRmnDiLVz0mFNe/Bhljru3parkkifcwKjkuVKiWn1Q9GazD2K9Lb2xtAwRvP8ePH5XTDhg0NbkM9X72eMUqpcWhoKMLCwkxeDwBiYmLkdOPGjY0O76tQlxY3a9YM5cuXBwC88847aNCgAb799lvs37/fYHBTFObMmQMgv/RHVwm6vb09Xn31VQDAmjVrdJbmmsPLy0vvvFKlSmHp0qWy1Gb69OkFPg9nZ2c5beyzyszMlNPq0v/H0dixY+XDWPlLT0/HsWPH8N577yElJQU//vgj2rVrZ/EDTf3ZAsD333+vswS9WbNmspeQ48ePF7j2lO2Yci4/zt+Rcv+09r3TEgcPHsTZs2cBAF26dIGnp6feZZ/Wa8gc6udScby908da39XTck0S6WNWcOzn5yenr127ZtWMKF3h6KM8dHNzc7XS1a92jVX1UHcZo17PGOV1qLoE11TXr183ex0gfzx7hYODA9auXYtq1aoBAKKjo/Hxxx+jadOm8PLyQocOHbBw4cICn4215eXlYcGCBQDyS4j9/f11LqeUKN+/fx9Lly4t0jx5enrKID0tLU3rxwig/YNO3ys/hTpoMeV14uPGxcUFkZGRmDhxIqZOnQogv4ulb7/91qLtqT/bcuXKoUqVKnqXbd++vZyOjo7WuR1j3w/weH9Hyv3z7t27WgFFSVB3t9i/f3+Dy/IaMk5d5dDHx6fE8mGt7+ppuSaJ9DErOK5Vq5acjouLs3pmCstYH8WWvHo0Z/u6qAPWqKgoxMfHm/Q3YsQIre1Ur14d8fHxWLlyJQYPHowKFSoAyH+NtWnTJvTp0wcNGza0OBg3xfbt2/Hff/8BADZs2KC3BFxdQl8cfR6r+9pW8qdQ9/NprK/sS5cuyWmlPvOTasiQIfIhPmPGDIu2of6M9PWnqmvZh89RZd20tDRZRUof5Tvy9/d/7OqoKvfPvLw8/P333yWWj6ysLCxZsgRAfoGC+oeLLryGjFPeLgIw+COxqFnru3parkkifcwKjqtXry5LP/bs2VNsA04Yov6Vrq6KoIu6tNucX/fKMSclJZmZO+2GGo6OjqhRo4ZJf0q9XTU7Ozt07doVM2bMwD///IOkpCTMmDFDDg4QGxuLYcOGmZ1HUylVKsyxb9++AvXErc3Qj57KlSvLeuinT582uB31fKWU/klla2srG1MmJSWZ9SZFERERIaeNvbVQz7e3t9eap/5xY+g7ysnJwblz5wA8nt9Py5Yt5bS6HUNxW7dunfy++/Tpo7edhsLd3V0GT7yGdNu6daucbtasWYnlw9RrST3f3t4eFStWtGg7j/s1SaSPWcGxjY2NHBEnLS1N9hJRkmrUqCGnDx06ZHDZw4cP61zPmLp16wIALl68iAsXLpiVvzp16sjpLVu2mLWuMUFBQRg8eDAOHDgg87hu3boiaRSRmpqKlStXAgCeffZZLFq0yOCfcm4IIYw2zCuskydPyung4GCteY6OjmjQoAGA/EaOhurQKaM4OTk54ZlnnimCnD5acnJy5HR2drbZ64eFhSE0NBQA5ANSH/X8kJAQrXnqYOLhkbTUYmJi5Cvcpk2bmp3fktazZ09ZJ/PPP/8ssbrH5lSpUCjf0ZkzZwwWQqi/v8fxO7JEcnIyFi5cCCC/saXSSLgk1K9fXzaiM3QtZWVl4eDBgwXWUTwt1ySRXub2/Xb58mU50IObm5vJfRXm5uaKefPmaaU9PEKeIfpGSrt//74cAz4iIkLnAB9CCHHv3j3ZD2v16tULzDfUz/HWrVvlPFMGt1DLyMgQPj4+AoAIDAws9KiC+owePVrmMSkpyerbnzVrltz+8uXLTVqnXr16AtAeRc/a7ty5I3x9fQUA4erqqrOfzQkTJsi86+uj+tKlS7Kj+hdeeKHI8luUzOkTNS0tTQ4E4uzsrPe6MUZ93hnqM7lVq1ZyuUuXLmnNy8zMFJ6engKAqFatmt5BXYYNGya3cfjwYYvyW9LUAy8MHTrU5PWOHz9eYHAgS9y4cUMO4FOrVi2T11uyZInMt76R19LS0uRokbrusY8Dc/s5zs3NFS+88IJcZ/To0VbNj7n9HAshRIcOHQSQP/Ldw9eaYtGiRXK7EydOLDD/abomiXSxaFilmTNnygsiICBAREVFGVz+xIkTom3btgVuxtYIjoXQHgTks88+KzA/Ly9Pa6Q9SwYBUQI9Y4OA3Lx5s8AgIOphiTt06CBSU1P1rn/v3r0CQ6ju3r1bJCQk6F0nMzNT1K1bVwD5Q1A/PPiGNQYBUUb4c3V1FWlpaSat8+2338r97t27t8B8ZZ6+QUA2btxY4LNUu3fvnhwCFYB48803dS538+ZNeaMPCwsTN27c0Jqfk5MjOnXqJLeja+jox4E5D1L1NaNv1DNjg4AIIcSFCxfkENL16tXTeW7PmzdPbqdjx446t6MerlbXw3r//v1yGPCWLVsaPLZHWVpamqhevbpWgJySkqJ3+aysLDF58mTh7u6uc8QzcwcBUQ9h/eOPP5qc76ysLFGhQgUB5A8eo2s0vTfeeMPk+/mjypzg+MKFC+K5556Ty1etWlXcuXNH57LFNQiIENqDRnXu3LnAD9/k5GQ5IquXl5e4deuWzu08LdckkS6WjTkqhPjyyy/lhQNAtGvXTvz2229ix44dIi4uTmzbtk1MnTpVdOzYUZbIFVVwfO/ePa3ho7t16ybWrl0rYmNjxfLly7VKrSwdPvrkyZNaw0d3795dLF26VMTExIhDhw6JBQsWiIEDBwp3d3edw0c/++yzct3Q0FAxfvx4sXPnTnHkyBGxe/du8ccff4g+ffoINzc34evrWyBvtra2omXLlmLixIli06ZNIjY2Vuzdu1fMnDlTNGjQQG77nXfeKZD3wgbHFy5ckCNp9ejRw+T1zp49K/f7+uuvF5hvLDhu2bKl8PHxEUOHDhWzZ88We/bsEUeOHBE7d+4U48ePF2XLlpXbqFKlirh586bevEybNk0uW6FCBTFz5kwRHR0tVq9eLQN/AKJXr14mH9+jxtAIefHx8SI6OlosXLhQPP/883I5Z2dncezYMZ3bMyU4FkKIiRMnyuWqV68uZs+eLWJiYsT27dvFyJEj5fXv4eFRYERFxb1790TlypW1zpcdO3aIAwcOiPHjx8trz8XF5bEfcvbcuXNaxxoQECBGjx4tVq1aJQ4dOiQOHjwoVq5cKUaPHi2DGED3cMDmBsf169cXAISdnZ24evWqWflev369sLW1FQBE6dKlxZQpU8ShQ4fEpk2bRI8ePWQ+mjVrZvGbiJKmfiZ16dJF6/o5fPiw2LJli/j5559F165dZWCo3H/0Db8thOn34I0bN4pZs2bJP/WId126dNGat2zZMr3b6dmzp1yvdevWYvXq1SI6OlrMnDlT/sgBIKZNm6Z3G0/TNUn0MIuDYyGEWLFihQgPD9cKkvX9RUREiM2bN2utb63gWNlW1apVDeahadOmegMoY8GxEELExMRoBWT6/h4OjoUQIj09Xav02tBfuXLl9ObN0F/37t1FRkZGgX0XNjj++uuv5fqGSs11qVmzpiyheLjKgynBsSnH3aJFC73DR6t9/vnnMsjX9ffCCy/o/PweF+rv2ZQ/f3//AtekmqnBsRBCfPjhhwY/24CAALF//36D20hISJBDLOv68/DwMDh8+uPk5s2bol+/fjLYNPTn4OAg3nrrLZ2lkuYEx6dPn9Y61y0xffp04ejoqDevDRo0EMnJyRZt+1GgfiaZ8ufh4SHeffddo2/TTL0Hm3rPM3TfFCL/eaOu7vHwn62trUkl0U/TNUmkVqjgWIj8V/oLFiwQffv2FVWqVBHe3t7C3t5e+Pj4iLp164o33nhDbN++XWedJWsGx0pefv31V9GyZUvh6+srHBwcROnSpcXzzz8v5s2bJ3Jzc/Wua0pwLET+TWfy5MmiTZs2IiAgQDg4OIjAwEBRr1498fbbb4sDBw4YXD8mJkaMGDFCRERECE9PT2Fvby+8vLxE7dq1xZAhQ8Ty5csLBJFpaWliw4YNYvTo0aJRo0YiNDRUODs7C2dnZxEeHi5effVVsX79er37LGxwXKVKFQFAODk5iXv37pm17rhx4+S+ly5dqjXP2E0+OjpafPfdd6JLly6iatWqws/PT9jb2wsPDw9RtWpVMWDAALFp0ya99eF02bdvn+jdu7coW7ascHR0FAEBAeK5554TCxcuNOu4HkXGgmNHR0cRGBgonn32WfHjjz/qfZ2qMCc4FiL/NWu/fv1EeHi4cHJyEp6enqJ+/friq6++0vu6+WGpqaliwoQJ4plnnhFeXl7C1dVVVKlSRYwePVokJiaatI3HycmTJ8XYsWNFs2bNREhIiHBychKurq4iNDRUdOrUSfz000/i2rVretc3Jzj++OOP5bKLFy+2OM/x8fHitddeE+XLlxfOzs7C19dXNGvWTPz+++8FqnQ9bvQFxzY2NsLDw0OUKVNGNGzYUIwYMULMmzfPYBU5teIOjhULFiwQzz33nAgICBCOjo6ibNmyonfv3kZ/qKo9bdckkRBC2AhRyM5/iYiIiIieEGZ15UZERERE9CRjcExEREREpMHgmIiIiIhIg8ExEREREZEGg2MiIiIiIg0Gx0REREREGgyOiYiIiIg0GBwTEREREWkwOCYiIiIi0mBwTERERESkweCYiIiIiEiDwTERERERkQaDYyIiIiIiDQbHREREREQaDI6JiIiIiDQYHBMRERERaTA4JiIiIiLSYHBMRERERKTB4JiIiIiISIPBMRERERGRBoNjIiIiIiINBsdERERERBoMjomIiIiINBgcExERERFpMDgmIiIiItJgcExEREREpMHgmIiIiIhIg8ExEREREZEGg2MiIiIiIg0Gx0REREREGgyOiYiIiIg0GBwTEREREWkwOCYiIiIi0mBwTERERESkweCYiIiIiEiDwTERERERkQaDYyIiIiIiDQbHREREREQaDI6JiIiIiDQYHBMRERERaTA4JiIiIiLSYHBMRERERKTB4JiIiIiISIPBMRERERGRBoNjIiIiIiINBsdERERERBoMjomIiIiINBgcExERERFpMDgmIiIiItJgcExEREREpMHgmIiIiIhIg8ExEREREZEGg2MiIiIiIg0Gx0REREREGgyOiYiIiIg0GBwTEREREWkwOCYiIiIi0mBwTERERESkweCYiIiIiEiDwTERERERkQaDYyIiIiIiDQbHREREREQaDI6JiIiIiDQYHBMRERERaTA4JiIiIiLSYHBMRERERKTB4JiIiIiISIPBMRERERGRBoNjIiIiIiINBsdERERERBoMjomIiIiINBgcExERERFpMDgmIiIiItJgcExEREREpMHgmIiIiIhIg8ExEREREZEGg2MiIiIiIg0Gx0REREREGvYlnQEiIiJ6Mhw7dgwA8Ouvv8q0HTt2AADOnTtXqG3b2NgAAD744AOZ1q9fPwBAhQoVZJqTk1Oh9kPEkmMiIiIiIg0Gx0REREREGqxWQURERFbh5eUFAKhbt65Mu337NgAgKytLpmVnZwMA/Pz8ZJqHh4ecdnZ2BgDcvXtXptna5pfnXbt2Tabt3bsXAODo6CjTypUrBwCws7MrxJHQ04wlx0REREREGiw5pqeOEKJAmtLQg4iILBcaGgoAGDBggEwLCgoCoF2S6+7uDgBo1KiRTIuMjCywzo0bN2RaXFwcAGD69OkyTSk5dnNzk2lKCXRAQEBhDoWeYiw5JiIiIiLSYHBMRERERKTBahX0VDO3OoW6SkZGRoacVhqaqLdnb59/ebm4uMg0pUEJEdGTQn1fVO6B6vuev79/geVKly4NAGjatKlMq1atWoFtK9U01NT33oSEBADa1S8yMzPNOwCih/BJTURERESkwZJjeuoUpvFdbm6unP7vv//ktNJVkbq0ROnSSCkhAbS7GyIiehIYu6cqXa9duHBBpoWFhQF40PDOFEr3bkpjPuDBaHgODg4yjW/oqLB4BhERERERaTA4JiIiIiLSYLUKIjPk5eXJ6QMHDsjp8+fPAwAaNmwo05RqFURETwvlHpmSkiLT7t+/DwAICQmRacoodsbuk2fOnJHTu3fvBvCgKgUA1KlTB4B2wz1vb29Lsk4kseSYiIiIiEiDJcdEZrh3756c3rNnj5w+ceIEAKBy5coyTWk8wsYhRPS0SE1NBQD8+++/Mi09PR0AEB4eLtOU7t2M2bdvn5zetm0bAO1GzhEREQCAKlWqyDRXV1czc02kjU9tIiIiIiINBsdERERERBqsVkFPNF0jN1ni4sWLAIDDhw/LNPWITKVKlQKg3RDEw8MDAGBnZ2fxfomIHidKX/DqBnlKg2WlQR0AHDlyBIB29TRdfRWrq1907twZAODj4yPTlH6SAwMDrXMARGDJMRERERGRxJJjemoopcimliBnZWXJ6fj4eADaJcfZ2dlyWumiyM/PT6apuxsiInoa5OTkAADu3Lkj05TRRE+dOiXT0tLSAABRUVEyTf2mz94+Pzx5//33Zdqrr74KAAgODi6wHJE1seSYiIiIiEiDwTERERERkQbfR9ATzZJGeFeuXAHwoBEJAGRkZAAAfH19ZZrS8AR48ApReaVIRPS4U1dzUBi7p969excAcPz4cZnm5uYGABgxYoRMUxoxK/3BA0BiYmKB6djYWJk2fvx4AEDv3r1lWvPmzU3KF5E5WHJMRERERKTB4JiIiIiISIPVKoig/frwwoULALRfCyrDlVaoUEGm7d+/X04rQ6ayWgURPc2UKmYJCQkyTemLeODAgTKtcuXKBda9du2anN65cycA4LvvvpNpW7ZsAaA9fHT58uULpKn7SyayBEuOiYiIiIg0WHJMhAcN7oAHDUrUIzxVqlQJAODu7i7T1I3zlNHy2LcxET0pLGnkppQc37p1S6Ypo9cFBAQYXFdd+tu4cWMAQN26dWVacnIyAOD69esy7eTJkwAAFxcXmaa+NxNZgiXHREREREQaDI6JiIiIiDRYrYKeakoVCmV4U+BBozqlEYl6Wl1tQv3qTlmH1SqI6Gmh3PfUVSiUahWOjo4yTamOpu7T2JiQkBAA2vdhDw8PAMD9+/dlmrLv7Oxsc7JOZBBLjomIiIiINFhyTE81ZRSmQ4cOybSIiAgAwHPPPSfTlFIQdUMQf3//AttTl5YUB0tGsCIisob09HQAwLlz52SaUnKsNGIGgHLlygEw796klA4rI5YCwKVLlwAATZo0kWl+fn4Aiv/eS082lhwTEREREWkwOCYiIiIi0mC1CnrqKKPZAcCRI0cAAJs3by4wX2n8ATzoB1l5rffwdjw9PQFwZCYienoojeD++ecfmaZUq6hatapMq1KlCgDjDZZv3rwpp2NiYgAAZ86ckWlKVQulKgUAlClTBoB2P8dEhcWSYyIiIiIiDZYc0xND3ThNV8MPpVRCKS0GgO3btwMAVq1aJdPWr18PAJg8ebJMy8zMBKBdOlG9enU53aJFCwCAvX3xXlJsfEdE1mBJ415lvrpBntK9W8uWLWWa+l5pyO7du+X0//73PwDa92svLy8AQMWKFWVahQoVAPCtHVkXS46JiIiIiDQYHBMRERERabBaBT0xjL0CVKpVnD9/XqYp1STU/WampaUB0H7NeO/ePQDaDUpcXV0LTNva8vcmET1+1PfPvLw8ANoj0d2+fRsAcPnyZZl2+PBhANrVIZTqDT4+PjLtwoULALTvn8q9V+krGXhQpQ140BBPacwHAI0aNQIA1KpVq8D+iKyJT3IiIiIiIg2WHNMTTemCDXhQcqwuqXj++ecBAJ988olMc3Z2BvCgBBl4UFqiLjW5du2anHZzcwPAkmMievwpJce3bt2SaXv37gWg3VB5//79erexZ88eOa00VFbfH3NzcwukKfdR4EGju8GDB8u0Ll26AHjQdSZRUeGTnIiIiIhIg8ExEREREZEGq1XQE+nq1asAtPvITElJAQBUrlxZpkVERAAAQkNDDW5P6V9T/QpQGR0KeNC4RKmSQUT0uFIa5zk6Oso0ZVQ65Z4JPKguoa7mYGdnB+BB3/DAgyoU6kbOSn/I6r7hQ0JC5HRkZCSAB33IA4C3t7dFx0NkLpYcExERERFpsOSYnhhK6QQAHDt2DAAwf/58maaUeLz55psyrVSpUiZtW+mKKDExUaYpJdHAgxJjXaNMERE9TpTSX19fX5nWvHlzAECDBg1kmnLPNdaNpqn3RfWbOaVEWd39G1FxYckxEREREZEGg2MiIiIiIg1Wq6DHijJi07lz52Ta2bNnAQCnTp2SaUqfnPv27ZNpyis7dT/HuqpVKNuOi4uTacp21PtQbyc4OBjAg5H0AKBhw4YAgEqVKsk0peEeEdGjTl3NQWmcp26kV9x0Vc8wVqWDyBIsOSYiIiIi0mDJMT1WlNLav//+W6Zt2LABALBp0yaZph7ZSXHnzh0AwH///SfTSpcuXWC5+Ph4AMDixYtl2sGDBwEASUlJOvOllECrR9VTunoLDAyUaSw5JiKyDEuJqbiw5JiIiIiISIPBMRERERGRBqtV0GNF6U+4atWqMk1ppFG+fHmZdvfuXQDa1Rhq1qwJQHdVCrUKFSoAADp16iTT6tatq7VdQLtfZaVahXqkvSpVqgAAXF1dDR8UERERPTJYckxEREREpGEjOKQXERERmYDdqdHTgCXHREREREQaDI6JiIiIiDTYII8eeerXeI/76zvlWB734yCipxPvXfQ0YMkxEREREZEGG+QREREREWmw5JiIiIiISIPBMRERERGRBhvk0WOJfW0SERFRUWDJMRERERGRBkuO6amRlZUFALh//75My8vLA6C71FlX6TTbrxIRFQ31/dXWNr/szsXFRaY5OTkVe57o6cSSYyIiIiIiDQbHREREREQarFZBjyVLGt8lJSUBAGJjY2Vaeno6AMDR0VGmKVUtlH8BIDc3V+tfc/JoauNBVtkgoqeZUvUNeFCdomHDhjKtSpUqxZ4nejqx5JiIiIiISIPBMRERERGRBqtV0FMjMzMTAHD9+nWZdvbsWQDAzZs3ZZqdnR0AwNXVVaYp1S7s7R9cMupqEMo0+1omIrJMRkaGnHZ3dwcAVKpUqaSyQ08xlhwTEREREWmw5JieGl5eXgCA8PBwmXb48GEAwIYNG2RaqVKlAGg3/ihbtiwAwNfXV6apS47Vjfcepi5NVtbhCH9ERNrU90DeD6kkseSYiIiIiEiDwTERERERkQarVdBTQ6lWUbFiRZmmVKFQN8hTpj08PGRarVq1AAB169aVaeqqFNnZ2QC0q0sYei1orE9jQ30kExE9iZT7KAA4OzsD0K7KRlRcWHJMRERERKTBkmN6ajg5OQHQ7hpImS5durRMu3btGoAHo+cBQOXKlQEAnTt3lmnqkmGlmzgiIrKMrjdvSgkyUXFiyTERERERkQaDYyIiIiIiDVaroKeaMhpebm6uTFMa4qmrWiQlJQEA/v77b5mmbpynbrxHREREjy+WHBMRERERabDkmJ4Ypnajpu6C7fbt2wCAlJQUmVa9enUA2iXDMTExAID4+HiZ9u6778rpRo0aWZptIiIieoSw5JiIiIiISIPBMRERERGRBqtV0FNDqU6RnJws05S+jNUN6ho2bAgAeOGFF2TaypUrAWhXq9i5c6ecdnR0BABERETINKVfZTWl6oehah9ERERUclhyTERERESkwZJjemIYK41NTU0FAFy+fFmm3b9/HwAQHBws05SS43bt2sk0ZdS8K1euyLT9+/fLaaVBn7oEumLFimbnkYiIiEoWS46JiIiIiDQYHBMRERERabBaBT01lGoVymh3AJCTkwMACAoKkmmenp4AAFvbB78dW7duDUB7JL1Vq1bJ6UOHDgEAwsPDZZrS+K5ChQoyTb1NIiIievTwSU1EREREpMGSY3pq6Co5Vrp3UzfIc3BwKLBuaGgoAKBLly4y7eTJk3J67969AIA9e/YUWFfdSK906dIW5Z2IiIiKB0uOiYiIiIg0GBwTEREREWmwWgU9NZS+iC9duiTTlAZ2ZcqUkWleXl56t+Ht7S2nX375ZTkdEBAAANiwYYNMW7t2bYFtN27cuMB2iIiI6NHBkmMiIiIiIg2WHNNTQyk5Vo+Q5+TkBAAICQmRaYZKjtVdsSkj6QEPun+Ljo6Waf/++y8A4MCBAzLN0dERANCgQQOZpm6wR0RERCWLJcdERERERBoMjomIiIiINFitgp4aaWlpALT7OVb6L1b3c6xUkTCH0uhu2LBhMi0qKgoAsGPHDpmWmJgIQLvqRmRkJIAHVTyIiIio5LDkmIiIiIhIgyXH9NRQGuSpS46VhnhBQUEyzZKSY3d3dwBA27ZtZZq9ff7ltXv3bpl29uxZAMC+fftkmtLILyIiQqaxFJmIiKhksOSYiIiIiEiDwTERERERkQarVdBTQ6lW8d9//8m0unXrAtBukGetfoerVq0KAHjjjTdk2q5duwAACxculGnKiH1jxoyRaepqHkRERFR8WHJMRERERKTBkmN6ouXl5clppSu3nJwcmebs7AwA8Pb2tvq+AwICAGg30svKygIAxMbGyrRTp04BeFCqDAD169cHAJQvX16m2djYWD2PREREpI0lx0REREREGgyOiYiIiIg0WK2CnkjZ2dkAgGvXrsm09PR0AICvr69MU6pTODo6Wj0PSv/Ffn5+Mq1x48YAHjQOBID9+/cDACZPnizTunTpAgB45513ZBr7PiYiIip6LDkmIiIiItJgyTE9kZRSYnW3bRkZGQAeNJQDHpQcK6W8RS0sLAwA0KZNG5l27949AMCJEydk2tGjRwEA27dvl2lKt3OBgYFFnk8iIqKnFUuOiYiIiIg0GBwTEREREWmwWgU9kQxVq1BXS/Dx8QEACCFkWlH2J6w0/KtWrZpMu3v3LgDgzp07Mk2pYjF16lSZ1rdvXwBAz549iyx/RUn9GSvYdzMRET1qWHJMRERERKTB4JiIiIiISIPVKuiJpKtaRWZmJgAgODhYpqn7PC4pVatWBQC0b99epinDTO/bt0+mHTp0CABQpkwZmRYZGQkA8PT0LPJ8EhERPQ1YckxEREREpMGSY3oiKY3vkpKSZJpSchwaGirTlJLjkmwY5uXlBUC772Ml/8nJyTLt9OnTAIA5c+bItH79+gEAWrRoUdTZLDQ2viMioscBS46JiIiIiDQYHBMRERERabBaBT2RlAZ56moVCl39HD9qateuDQBITU2VaRs2bACgPcz0nj17AGg3LKxQoQIAwNnZ2eA+iqtvZyIioscJS46JiIiIiDRYckxPJKVB25UrV2SaUkqsLjn29va26n6tNQpcSEgIAKBbt24yTWmc9++//8q02NhYAICDg4NM69y5M4AHXcSZQsk3S5CJiOhpx5JjIiIiIiINBsdERERERBqsVkFPJKVB3oULF2Sai4sLAO0R5vz9/a26X2tXS3B0dJTTrVu3BgDY2j74Tbt9+3YAwJYtW2Sa0jjPw8NDpilVSdTrqvOqqzoIERHR04glx0REREREGiw5pieS0gXajRs3ZFpubi4A7QZ5xro7e5REREQA0C75TkxMBACsX79eph06dAjAg5H3AKBp06YAtI9djQ3xiIiI8rHkmIiIiIhIg8ExEREREZEGq1XQEyMrK0tOK9Uq1A3a3N3dAQCurq7FmzEr8/T0lNNdunQBoN34bu/evQCAWbNmyTTlc1Aa9QEPPg8iIiJ6gCXHREREREQaLDmmx55SYnz16lWZlpKSAkB7BDxlhDz1aHKPO6WhnZ+fn0w7fvw4gAej5wEPGukpnwEA1KhRQ06rS6OJiIieZiw5JiIiIiLSYHBMRERERKTBahX02Lt//z4A4PLlyzJNqVah7tc3ICAAwJPZp29ISIic7tu3LwAgLCxMpu3btw8AcP78eZk2ZswYOV23bt2iziIREdFjgSXHREREREQaLDmmx15mZiYAICkpSaYpXbkFBQXJtCe55FjdLVubNm0AAKVKlZJpcXFxAICTJ0/KtIMHD8pppXu7cuXKyTQnJ6eiySwREdEjjCXHREREREQaDI6JiIiIiDRYrYIee0q1iitXrsi0tLQ0AIC/v79M8/X1BWBZtQohRIG0R7V6hlJFolq1ajKtf//+AB40zAOAJUuWyOlTp04BAD744AOZVqZMGb37eJw+DyIiInOw5JiIiIiISIMlx/TYM9Qgr1KlSjJNKUW2tX06fhOqS81bt25dYP7ff/8tp+Pj4wFolyw3adIEgHYJMkuHiYjoSfd0RAlERERERCZgcExEREREpMFqFfTY0zVCnpJmrRHyHsfqBOo8K1UjGjVqJNP+++8/OX3kyBEAwNy5c2Wa8nmOGjVKpil9Hz+OnwcREZEpWHJMRERERKTBkmN67GVlZQHQLgl1dHQEAJQuXVqmKQ3UnuZSz9DQUDn97LPPymmla7Y1a9bItNjYWADAnj17ZFqdOnUAPOgWj4iI6EnDkmMiIiIiIg0Gx0REREREGqxWQVZRkiOm6ernWHntr2uEvKeZ0qAOAOrXr19g/sWLF+X0+fPnAQAzZ86UaZ06dQIA9OrVq6iySEREVKJYckxEREREpMGSYyqUkiwxVty7dw/Ag+7bAMDOzg4A4OXlJdPs7fNPd115ftIpx6zvu6lcuTIAoEOHDjJt27ZtAIDDhw/LtP3792stDwBVqlQBALi7u1sxx0RERCWDJcdERERERBoMjomIiIiINFitgsxWklUp8vLyAAApKSky7datWwAABwcHmebh4QFA96t+dV6NVTd4Uhg7Pk9PTwBA586dZZpSDSUhIUGmnT59GgCwYsUKmaZUxWjevLl1MktERFSCWHJMRERERKTBkmMqFHNLXNWlzpaU1mZnZwMArl+/LtPu3r0LAPDx8ZFpShdu6tJkXZ70EmNDjH0XtWrVAgC89NJLMk0ZLU9pmAcArq6uAICgoCCZpozEp4xUSERE9LhgyTERERERkQaDYyIiIiIiDVarILNZUhVBVyM+S6pYKNUqrl69KtOUfo4DAwNlWnBwsMV5fVoY+2xCQkIAAAMHDpRpSoPIuLg4mab0g6z+/Fu2bAkAqFSpklXyWpQehb66iYjo0cGSYyIiIiIiDQbHREREREQarFZBRcbYMM2WvLrOyckBAFy7dk2m3blzB4Du3iqUvnrJcspQ3ADQuHFjAA/6lgaA6OhoAMCyZctkmvLdq78TX1/fIs2npZTz8GkcVpyIiApiyTERERERkQaL1ahYFbahk9Ig78qVKzJNKTlWl0wGBAQA0C71pMKrUaMGAKB06dIyTWkQOX/+fJl28OBBAEB4eLhMU/pNVr6bRw0b4REREcCSYyIiIiIiicExEREREZEGq1VQkSmK19S6qlXcvn0bAFC2bFmZprz2Z7WKouHn5yen27dvD0D7+z569CgAYOrUqTJt8ODBAICOHTvKNFtb/j4nIqJHC59MREREREQaLDmmx4pScpyUlCTTlJJjdWmmMlobS46LhrqUuGHDhgC0P//Lly8DAKKiomTaoUOHAABhYWEyrXz58gAAd3f3IssrERGROVhyTERERESkweCYiIiIiEiD1SrosaKMkPfff//JtLt37wLQfq1vqEGeeiQ09m1beE5OTgC0q0t06dIFAODh4SHTlJH0zp8/L9PefPNNAECjRo2KPJ9ERESmYMkxEREREZEGS47psZKRkQHgQSM8AMjKygIA+Pj4yDRltDxjJcNKKTJLkAvPzc1NTjdr1gwA4OrqKtP+/fdfAEBcXJxMU0bS8/f3l2llypQB8KBEmoiIqDix5JiIiIiISIPBMRERERGRBqtV0GNFaXyn9HcMAA4ODgAAb29vmWaomgSrUBQ9pZpE7dq1ZVrnzp0BAHv37pVpW7duBQBcunRJpimN9MLDw62SFzbAJCIic7DkmIiIiIhIgyXH9MjKzc0FAKSkpMi0W7duAQAcHR1lmtJdmLrxFz0alC71AKBly5YAtLvXW7x4MQDdjfTUDfKU7dja8vc8EREVLT5piIiIiIg0GBwTEREREWmwWgUVGXVDKIU5DaKUahXXrl2TaTdu3ACg3fguICAAgO7R8OjRUaVKFQDaVWIuXrwIAIiNjZVpK1asAABcuXJFpg0ZMgSA9oh7pmIjPCIiMgdLjomIiIiINFhyTMXCktI7peT46tWrMk1XyXFwcDCAB126UckzNPJgWFiYnG7VqlWB5aKiogAAhw4dkmm1atUCANSrV0+meXp6Wi2/RERECpYcExERERFpMDgmIiIiItJgtQoqMoVtCGVqgzxWq3j0GPru1X0Vt27dGoD293nhwgWtfwFg9erVAIB79+7JtI4dO8ppfvdERGQtLDkmIiIiItJgyTE9sgyVHPv7+8u0wMBAACw9fNQZaqRXqVIlOd2+fXsAwL59+2TayZMnC6wTGhoqp6tWrQqAoyQSEVHhseSYiIiIiEiDwTERERERkQarVdAjS6lWcf36dZl28+ZNANqv4Vmt4vFgqJGem5ubnH7llVcAAL6+vjLt+PHjAIC4uDiZFhISIqdzcnIAAPXr1zdpf0RERPqw5JiIiIiISIMlx/TIUhpwqUfIUxrneXh4yLTSpUsDAOztTTudle0ChksXTV2OLKerkZ7S1VtERIRM69atGwDg8OHDMm3btm1yOjMzE8CDcwF40GCP3x0REZmDJcdERERERBoMjomIiIiINFitgh5ZSiMrdYO8W7duAQA8PT1lmvIq3ZIGebpe66urU1DRMlTlISgoSE4PGjQIgHbDve+++67AdmrUqCHTlOoZZcuWtU5miYjoqcCSYyIiIiIiDZYc0yMrLS0NAHD37l2ZpjS88vHxkWnqaXPpKrlU0liCXLLU302pUqUAAA0bNpRp/fr1k9MnTpwAAMyZM0emKW8cXn31VZnm5eVVJHlVMzQSIBERPfpYckxEREREpMHgmIiIiIhIg9Uq6JGg61W0Up0iOztbpjk6OgIw/nrc0KttU19387X4o6datWpy+vXXX5fTM2fOBAD8/vvvMs3V1RWAdiM9Zf3CVMUxFfvJJiJ6PLHkmIiIiIhIgyXH9EhQStlu3rwp05QGVUoJIPCg2zYnJyeD22NJ3ZPJzs5OTgcGBsrp5s2bAwBu3Lgh0/755x8AwM8//yzTevfuDeDBiHtFgeceEdHjjSXHREREREQaDI6JiIiIiDRYrYIeCUq1CvVoeFevXgUAeHh4yDQ/Pz8ADxrmEQFArVq1AGhXt5kxYwYAYNOmTTItPDwcABARESHTQkNDAQDOzs5FnU0iInoMsOSYiIiIiEiDJcf0SFBKjpOTk2XatWvXADwYHQ0A/P39AbCUj7QpbxfUXb21b98eAJCXlyfTzpw5AwCYOHGiTBsyZAgAoHHjxgW2y+7YiIiePiw5JiIiIiLSYHBMRERERKTBahX0SFBefaurVSiN89zd3WVacHAwAOP9HNPTSV0Fp1GjRgC0q0MsXLgQAHDw4EGZpjTOCwsLk2kBAQEAAHt73iKJiJ42LDkmIiIiItJgcExEREREpMF3hvRIMDR8tFKVAgCCgoIAGK9WoWyPPQw8vZTzRhlaGgCSkpIAAFlZWTJt165dALSHnh40aBAAoGLFigW2yx4siIiebCw5JiIiIiLSYMkxPRJ09XOsjJBXqVIlmcYGeWQuZVRFAGjatCkAIDMzU6Zt2bIFAHDgwAGZVqNGDQCAj4+PTPPy8gIA2NqyTIGI6EnGuzwRERERkQaDYyIiIiIiDVarILOpGyQprNUwSRkyGgCuXLkCQLuf45CQEADGq1WwoRTpUrt2bQCAr6+vTFMa4u3du1embdq0CQCQmpoq07p16wZAu5oGERE9eVhyTERERESkwZJjeiRkZ2cD0O7K7datWwC0Rz0LDAwEwAZ5ZJyh7vzKli0rp1u1agXgwTkIAPHx8QCAnTt3yrTw8HAAD0beA7TPTSIiejKw5JiIiIiISIPBMRERERGRBqtVkNmKorFbRkYGACAlJaVAmvrVtZubm9X3TU8mU8/Tdu3aAQDKlCkj07799lsAwPHjx2Wa0h9ybm6uTGvRogUAwNXVtXCZJSKiRwZLjomIiIiINFhyTCVG3QBKGRlPXdrn7e0NQLsrN6KiUrFiRTn93HPPAQAcHBxkmlKKrB5dT2kgqoyoBwD29rytEhE9zlhyTERERESkweCYiIiIiEiD7/+oxChVKQDg0qVLAAAXFxeZFhYWBoCN8Kh4qKtDvPLKKwC0+0P+/PPPAQC7d++WadWrVwegfd5WqFChwPaIiOjxwZJjIiIiIiINFm1Qibl9+7acvnr1KgDtke+CgoIAaJfKERUVW9sHZQXOzs4AHpQMA0CXLl0AADExMTJt8+bNALRHduzXrx8AIDQ0tOgyS0RERYYlx0REREREGgyOiYiIiIg0WK2CzCaEKJBmyah5t27dktNXrlwBoF2twsvLCwCrVVDRMnQ++/n5ybQhQ4YAAIKDg2XauHHjADyoFgQANWvWBPCgaoZ6O+qqG0RE9GjinZqIiIiISIMlx2Q2S0qJFepSOnUjpv/++w+AdsmxUkLn6upq8f6IjDF0PtvZ2clpZcTGOnXqyLQePXoAAE6ePCnT5syZA+BB94QA0L9/fwAc7ZGI6HHAkmMiIiIiIg0Gx0REREREGqxWQSVGXa0iKSkJAFCuXDmZplSrYIM8epSoz9EBAwYAAFasWCHTpk2bBgDIzc2VaY0bNwYAVK1aVabxvCYiejSx5JiIiIiISIMlx1Rk1I3vlEZP6sZPurpyq1atmkwrU6YMADbIo0eLuou28uXLAwCaN28u05S3IJcvX5ZpkydPBgB06tRJpnXv3r1I80lERJZhyTERERERkQaDYyIiIiIiDVareELoGuXLkML0VVwYeXl5cvr27dtyOjk5GYB2I6WQkBAArFZBjy4HBwcAD0bFAx40xFu5cqVM27hxIwCgVKlSMk3dX3JoaCgA7X6ViYioZPx/e3ceJVd1H3j8G0Rr31tq7UI7WhBCIEBCIAFGbAYOBLxlPDkzBs8xPk6ceMzMSTwT25kkznYcxrHNCdhjAzHYjjHYxoAwQiwCxGI2GbCwNrQLSSC10A5i/qh377vlfqquXulWfz//6PKrqveuqrtKj9/7/e41cyxJkiRlzBx3YmkWNmSriprgimJphuq449rm/5GKstPvvvtuHKcNeSFznGaJw1Ju3bt3b5P5Sa1lwIABcTxnzhyguOF07dq1MRaa9ACuueYaAObPn9+m85QkNc7MsSRJkpTx4liSJEnKWFbRiaXlEmFcFOtI6uvr43j//v1xHObap0+fGLOcQp1R3759ATj11FNjbMeOHQAsWbIkxpYtWxbHofl0ypQpMTZ06NA2nackqZiZY0mSJClj5rgTS5vqQvNbaMyDvGEvfV4Yt/dSbnv37gXy3cOgvBEwNN+lS11JlRTdGfmgligscsIJJ8TxVVddBZQ3pIZsMsDy5csbvP6KK64AyrPJQVGTrSSpdZg5liRJkjJeHEuSJEkZyyqOEaFEIV37OEhvu35Qt2B3794NWFahriP9rIXmunnz5sXY1q1b4/ill14C4JFHHomx4cOHA1BXVxdjAwcObHBsSVLrMnMsSZIkZcwcq10UZY7TRsGQOQ7LYEmN6YzZ01mzZsVxbW1tHP/bv/0bAPfdd1+MPfTQQ0D5HZbzzz8fyLPKkqTWZ+ZYkiRJynhxLEmSJGUsq1BU1MxXrfTWb5G33noLgE2bNsVYUVlFukNeJelcK61329i8qlW0A2Gl57XXHMI4LTEoirXWHFoizCv92VVbGtGc+bfn+9XYzpTheOlxx44dG8ehUe/NN9+MsfBZWbx4cYwNHjwYgAULFsRY7969mzRXSVJlH/y/mJIkSVIH4cWxJEmSlLGsQvE2cNHW040JpRFFt6HT4+3cuROADRs2xNjxx+e/fqNGjQIaX62i2rkW3cZuiXC+9LyNCedurXWmw98z3YK4kvRcNTU1LT5/SzX1PUx/dmHeTZl/S96v8LtZ7e9PWkoRzpe+tug4hw4diuNQJhHKiwC+/vWvA/DUU0/FWPichPWOAWbOnAlUX5LUmI6+LbcktTUzx5IkSVLGzLEKG8cqNaBVmwlNG+727NkDwJYtW2Js/PjxcRwyYo3tkBeygY01T4XH0yxltQ1yRY1jlc51NOF8RQ1ozZlDiDUnG17t+9ZaWvIehp9ZY82PjZ2vNd6vVNFxwvPS37OiuRRly9Pj9e/fH4ApU6bE2Lnnntvgta+++ipQnnUOn7PZs2fHWHpXprnMFkvqqswcS5IkSRkvjiVJkqSMZRWK0jKIcEu1qJkpNHelz2vMO++8A8C2bdtiLL2FPGbMGKC4rCK9rRzG6W3jSre70/lXW9JQ1DgWzteU29WV5tBYaUrRa8PPJ33/K0nLEg4fPtzg8eb8HKvV1PewsXWrG9Pa71c4Tnq8ouOEx4vmXHS89DOWvg/huenjV155JQATJkyIsa997WsA/OxnP4ux8NlJm/ROOOEEALp3795gXo2xnEJSV2fmWJIkScqYOVahStmj5mSWwg55GzdujLE0czZ69GigOHNctPtYY5nG8Hj6vDQr1x7C+9ScTGhzXtPU4xbt5tcW56lGms1v759TULRrXtH7VTTX9PesUvPj0e5aFGWOhwwZAsBJJ50UY4sWLQLgySefjLHHH38cyO/OAHzyk58E8gyyJKl6Zo4lSZKkjBfHkiRJUsayCjVZtbfjDxw4EMehrCL8CeUNTsOGDQOKb6kX3aKvdpe11tqdrjnCvJtz3raaa3u9Hy059gdVVtGcMpMw1/T5RWUVjTVyhtcU/a7X1tbG8cc//nEgXxcc4MYbbwTKd5889dRTG7y2d+/eQNuuby1JxwK/JSVJkqSMmWNVlGa8inYDK8qchWWrtm/fHmNhR6+04S4dF2XWKjV1pdmvMG4s8+cSVeqM0kx6WLYtZIYBPvShDwH57nkAP/zhD4HybHLIOofd+JqiJXdBJKmzMXMsSZIkZbw4liRJkjKWVahQ0U5uQbrbWng8vfUb1lvdvHlzjIVSjNB4B+U7elVSVC6Rns8GIx2LwmemaOfK8ePHx9hVV10FQN++fWPszjvvBMobYEMpximnnBJjRWVRQVuttS1JHZ1XFZIkSVLGzHEnUbQDV1FTWqpol6/WVpRxqpQ5HjFiRIy1ZWNQeF7aPFiUda702pYq2iGv2oamtvrZddQd8lKhoTNVKcPZWhrbIa8j6dmzZxxPmzYNgL1798bYmjVrANi6dWuMfe973wPgggsuiLErr7yyqvPZiCepKzFzLEmSJGW8OJYkSZIyllV0Eunt3VAqUHRbPL39GUotWvuWaGO7rO3ZswcoL6sIcx05cmSMVVtW0VizUNHjofQkLUeptqyiUjPi0eZQNJeiEpBqfxbheZXKZdLnNWeN56aWeDTlNdW+h0FR2VCq2l3zqv1daa33sOgclR5vymexqLSj6PXhczRjxowYu+iiiwB45JFHYuzpp58Gyn+nZs2aBcCECRMaHNdSCkldlZljSZIkKWPmuBNLm81CdinNCoVd51orAxSOne5mV3TsXbt2AbBly5YGzws7fEHjS7mF1zS2S19RA1dLlnwLr0mfH84bdvqrRqU5NPYzKXpemEO6lF4150+Pl/6dGptD0Xtd9DMp0tT3MJ1LUfNdR3q/iu7ipO/R758/nUP6vjV2V6DoDlHRZzo8PmDAgBhbuHBhg3OEz+PatWtj7NZbbwVg0aJFMXb22Wc3mJckdSVmjiVJkqSMF8eSJElSxrKKTqLolm9R41LR81pbY8etr68HyhvyevToAcDo0aNjLL0NXEljf/eiZqjwvGobuYrOV3SL/miNV5WauppSylBpDkXnLmr0qvR+NKfEprUa8iq9hy1tJG3t96u1mjJ//3mN/f6kvytFryl6fSgr6t69e4wNHz4cgNNPPz3G1q9fD8Czzz4bY8uWLQOgV69eMTZ58mSgfDdLSepKzBxLkiRJGTPHnURjjUG//9gHqWiHvLFjxwIt3yGvqCGsPd6HogazxjR1ObPGNDWj2pwl5Ipe31gDZrUqvYctnWuRlmTLK/2c0+OF96banfSONpemNmqmKjXepndqPvGJTwDQu3fvGLv99tuBfJk3gCFDhgB5Ux/k2WRJ6grMHEuSJEkZL44lSZKkjGUVnVBr365vqsYatEJZxcaNG2Ms3N5Nb/M2ts5xJW1xG76a832QZSvtPYfWPl9nn39bnqMlx6n0mrQkJuxOeeaZZ8bYypUrgfK1jx9++GEAevbsGWN1dXVA9U20ktSZmTmWJEmSMmaOVbWQMU53pKupqWnwvL179wLlmePw2nSHvOY05ElqmZNOOimOP//5zwNw2223xdidd94JlGeOw9Jws2fPjrHa2to2nackfVDMHEuSJEkZL44lSZKkjGUViop23Ct6vGh3urRJb9++fUB5+UXYIa8lTXiSWi7dSW/8+PEAzJ07N8ZCk96OHTti7Gc/+xlQ/tlP10EOn29JOhaYOZYkSZIyZo4Vs77vvfdejBVlkcOSUekuXQcOHADg7bffjrH9+/cD5VnisARUmrWS1DGcddZZcTx06FAAvvWtb8XY3XffDUCvXr1iLF2WMWSg08fbU0fdLVRS52TmWJIkScp4cSxJkiRlLKtQlJZLVHo8fV7YDW/z5s0xFkotwtqoAIMHD261eUpqXf369YvjGTNmAHDOOefE2Pbt2wFYtWpVjN1xxx1xfNVVVwFw2mmntek8jyYtoSgqsZCkpjBzLEmSJGXMHCtmXbp16xZj6biS0Hy3YcOGGDt06BBQ3rDjblpS5xCWZbv00ktjLHyWv/GNb8TYD37wgzgOd4lCYx7kDbmN3ZFqbTbiSWopM8eSJElSxotjSZIkKWNZhVoklFWkDXmhrGLEiBExNmjQoPadmKQWqauri+OTTz4ZgAULFsRYui76k08+CeTfBwBXX301ABMmTGjTeUpSazNzLEmSJGW8OJYkSZIyllWoRfbu3QuUl1UcPHgQsKxCOlYMGTIEgCuuuKJBDOC73/0uAK+88kqMTZw4EShftcbt4yV1BmaOJUmSpIyZY7VIyBxv3LgxxsIayaNGjYox1zmWOq+wVnG6jnHakPfqq68C8Pzzz8fY/fffD0B9fX2MXXnllUC+BnKq2p3tXMdYUlszcyxJkiRlvDiWJEmSMpZVqEX27dsHlJdVhK1kR44cGWODBw9u34lJanU1NTVxPHny5Di++OKLAejZs2eMLVmyBIAdO3bE2IwZMwA4/fTTGxw7LZeoVGKRPmaJhaS2YOZYkiRJypg5VouEzPH69etjbMCAAYCZY6kjKcrGtiTzevzx+T8fIROcLtUW7ia98cYbMfajH/0IgG3btsVYyDqnxwvzMkss6YNg5liSJEnKeHEsSZIkZSyrUIuEdY7ffvvtGAu3QtMdtHr16tW+E5PUbvr16wfAqaeeGmOrVq0C4JFHHomx5557DoBDhw7F2NSpUwGYNGlSg+NaSiHpg2DmWJIkScqYOVaT7d+/P4537doF5DtoAfTp0weA/v37t8r5WruRSDqWVPv5aI/PTO/eveP4sssuA8p3w7vlllsAeOWVV2LsnnvuAeDcc8+NsTlz5rTdJCWpEWaOJUmSpIwXx5IkSVLGsgpV7eDBg0D5GqXvvPMOkK9tDPlt1HS3LEnHrlDakZZuhIbcefPmxdiLL74IwAsvvBBjTz75ZIPXhjXS07XSJam9mDmWJEmSMmaOVbWQOd6yZUuMhea8NMNTV1fXque1+U46uo7w+ag0h3RJx+uuuw6ABx54IMZuvvlmAJYsWRJjo0ePBuDMM8+MsXHjxrXKXCWpMWaOJUmSpIwXx5IkSVLGsgpV7cCBA0B5WcW+ffsAGD58eIylt1EldW3dunWL41AukTbpLV++HICNGzfGWCixeO+992Js0KBBQHnzryS1BTPHkiRJUsbMsaoWMsebN2+OsZA5HjZsWIzV1tYCHaNRSFLHM2HChDj+whe+AMBdd90VY7fddhsAe/bsafCa6dOnx1hr7cLZEu7gKR17zBxLkiRJGS+OJUmSpIxlFapaUVnF3r17ARg/fnyMhYY8by1KKtKrV684DmUSmzZtirGwg159fX2M3XPPPUC+KyfAwoULAaipqWmzuVbL7zvp2GHmWJIkScqYOVbVQuY4XXLp0KFDQPlSbkOHDgXMpEiq3pw5c+L4i1/8IgB33HFHjIVx2KkTYOrUqUD5Dp3HHde+OR+/56Rjj5ljSZIkKePFsSRJkpSxrEJVC7cz07KK3r17A5ZVSGqZsAMewKxZswBYvXp1jP3ud78DYN26dTEW1kO+6KKLYuy0005ry2lK6gLMHEuSJEkZM8eqWmjI27p1a4yFjLE75ElqLX369AHg3HPPbRBLm/RuueUWAI4/Pv+nbPLkyUDH2D1PUudk5liSJEnKeHEsSZIkZSyrUNX27NkDwL59+2KsW7duQF5KAdC9e/f2nZikY1K6fvEZZ5wBwJo1a2Js586dALz00ksxdvvttwNw8cUXx9jEiRPbdJ6Sji1mjiVJkqSMmWMVOnLkCAD79++Psd27dwPlO1CFJpl+/fq14+wkdQXhzhTA6NGjAVi0aFGMhUa8xYsXx1ho2AtLSgJMmDABsElYUnXMHEuSJEkZL44lSZKkjGUVKnT48GEAtm3bFmOhrGLw4MExNmTIEKB8nVFJKvL+++83iDW11GHKlClxHEq8tmzZEmPLly8H4OGHH46x9957DygvyQjfXUebnyUYUtdl5liSJEnKmO5ToZA53rx5c4yFzHFdXV2MhZ3xzLI01YE4evu3pWWonl2/O8Z6DpsGwOzpY2KsX007TU3qwHr16hXHM2fOBGDhwoUxFpaafO2112Ls7bffBmDMmPzzdPbZZzc4tt9jksDMsSRJkhR5cSxJkiRlLKtQoUOHDgHljS6VyirStY8rObxnexxvWpPf9nx924EGzx0w9mQApowbHmODelZ1muodKN1uXbdyRcFcBsTY2NnTAZg4NF/PuVlVDm89BcDfffiiGPrS8j1HfXqPiX8Ux7fe930APjbF+gp1Tm1VtjBv3rw4Dmuv33rrrTH2+uuvA+XrIYfSMYC5c+cC5SUbgU16Utdj5liSJEnKeHEsSZIkZSyrUKFwy7GorCLdljWUVaTbvEYHXo3DH1z/UQCu//4rMXb0YoLf0yM/38K/uguAH99wTozVVV1l8BYAL3znT2LkI58rbTW7+mB1R+g39y/i+K4ffzWOF42pNIlNcfSja88D4EsvTI+xG+4vzeELpwyMsQPrfgzAZy78fIx9/ILS+q7jV385xs6wwkJi0KBBcTx//nwAfvvb38ZYfX09ACtW5OVTYe1jyL/Hpk/PP5eBpRRS12PmWJIkScqYOVah0JC3devWGAvZl7Fjx8ZYyCKXNeQdLjW/fOfSU2Po00sLUrNJRnjiuNKue8e/+1aMrVtdat47eDBv4nv0SwsAmLM93/3qxX8pZWPzfftSedPN69+5BoB5n14aY/ms8ka7USeOBKDvO/kazys3lfLce5Z/LcYunLE6jn/y2o8AuHpUwRS2LYvDH95TOuOJ//T9GPvHi6c2fM3wPwXgx3c8F0MDLv8WAPe/kGSOzyg4n9SFhd06L7/88hgLmeHvfve7MfbYY4/F8ciRpc982nw3dWrpc1l4V0zSMc3MsSRJkpTx4liSJEnKWFahQkXbR4ctWGtra2MsrHmc3nqsf+gfAfhcQSlFj/NuiuPn7/tMHE8vWL/48Ju/AuB/zLkwxm7cUPpzw43/O8Z++rlS2cJ1Ewv+Ipt+HId/lpVTlM1qzJ8B8OBz/xhDi2KHX16SseHe6wGYf3l+W3bDnvzY1/9z6e+yKCvxAOgfBvv3xVjYIHrIwD4Fk22oV49+yX+Vylr2NlwSWtLvCaUSAOecU2rgffrpp2PsmWeeieMQT5vvBgworXM+evToNp2npI7HzLEkSZKUMXOsQiFzvGlTvgzZ3r17gfLMcVFD3vZNpSWUilZHu/Yvro3jomxxqqZuEQDX/2XedXbj9SHb80SMvbI+GxRkjl+96x/i+P581nH0pR+VMsaLCteDy2NjList2/a1S/LM8SfzA7L9xu8B8NhX88zxZSF1PO7MGLtyZunPz/913th394e+CcBV4/M35PCbjwPw1f/+7fwkQ/8MgEtOKZiqpKMKWeBPfepTMTZxYv6FcfPNNwOwcePGGBszZgwAPXvmn8shQ4a06TwldQxmjiVJkqSMF8eSJElSxrIKFdq/fz8AO3fubPBYemsxjMvWOa6g+/FN39KtWzNeA9sAWLF0RcFjH4mjhXOqPXZpAeP5H8nLJrh/afJ4qTnvsRdvi5HLFoRRvuvW9T/5fwDcNye/vfuHE/JSjQZ6zI7DrywtNSGe1/9oT5ZUJKx9PHny5BhLd8hbtqzU1Lt27doYW7q09PkOJWYA559/PlC+I5+kY4+ZY0mSJClj5riDSHdmCtJlhVpyzOYcZ8+e0o5w+/bly5D16VNafizNHBftHjXxrI8CMDNpmgv52yW/fjnGDp93chwX529Lu+W99thzDR/qkTf2XXha0WtXAvDr+wsemp9nYyc0MSk9btys5L/SzHGp/fDJ1/Nd81jQsEOwZsp/BeCBN8+Nsad/+nMA7n55S4z1m1TKUF95xfkxNqOwaVBSc6Q7ff75n/85AIsXL46xW2+9FYB169Y1eM3MmTNjLG3YC9ri+7wtjyupnJljSZIkKePFsSRJkpSxrOIYU3TbLY0V3YI7cuQIkK9jDLBr1y4AevToEWMDBw4EoFevXpUnMb20m9xPbrknhk7OdqdbcUO+ZvG0R/8qjv/6T+YAMGTf+hi79x++AMC/Lk9XTC6tPfqpn341Ri4pbFArNdscLlpseWi+61zfo/4ljmLsjDicn4RDAcnrm9IGxqIt+zI9x8fhmX/0+ezPpk5GUnP17t07jmfNKpVL7d69O8aeeKL0qa6vr4+xe++9F8jLzgDOPvtsALp37x5jljpInZuZY0mSJClj5riD+CAzDe+++y4AW7dujbGwhFvafDdy5EiguAmvXKlxbMp1eXPL+pNKS5h98b/9zxi7/d4vxfF/uvfoRxsw87Nx/K+3fxmAj8+qqzyF1aXGuGeLHhuXv3ZY5aM02fZdext/kqQOafr0fNnFz3629L1z3333xdgPf/hDAHbs2BFj06ZNA2DEiBFtPr+m/Dth857UfGaOJUmSpIwXx5IkSVLGsopjTHrbrNp1jsNOUWlZRbhtOHjw4BgLtw3DblNHV9pRasO9X4yRS/7oGwC8sid9Xt4YN+rEUslG33ffirF1q7cDsHvFt2Psj895vnTsX/4sxm44p1Qm4SrAklqitrY2jufMKTUJp7uErlxZWj9906ZNMRZKLc4999wYmz07X0v9g2YphdR0Zo4lSZKkjJnjY1i1GYPQkLdlS75DW6XMcU1N5Rxt/WOlRrv5l38jxjZkf4659qcx9ug3r4rj8Q03meLwm6Wd8f7vx8+OsRuWLgfgSwv+MMbqVi0D4Lp05bSJpf84PQnF/fp25k1zYZGmwtXgmqFHTWPNipI6qvQ7M2SR58/PF208fLh0V+zBBx+Mse9973sA7N+/P8ZCY1+6FGZ7M2MsNZ+ZY0mSJCnjxbEkSZKUsaxCsSHvzTffjLG33io1xg0aNCjGhg8fDhytIW9bHN3/L/8E5KUUJf8ZgG9/vXIpRaqmrtQQ88Ub/ybGvjPrBgBW5kUS/OW/PwPAdV8+I3l1qbyhJr2rGXbLW5M3Hm7P/qy6rGL9K3H4RMHDc6aMqvZIkjqBsL47wDnnnAOUN+m98cYbAKxYsSLGQpPewoULY2zcuHFtOU1JrcjMsSRJkpQxc6yYOd62Lc/+hszxhAkTYmzYsNJ+csWZ45Vx9Ov7Cx6evwCAac3pfDv5tDi8pMHZjrYr3djS+c5KQkuzP597PYbCgkxpL18l295cd5RHSinqs6ZUeyRJnUHagBy+DxcsWBBj27eX7j+9/PLLMRYyx2lDnpljqfMwcyxJkiRlvDiWJEmSMpZVKJZVbN68OcZCc17akBcaU4rXOR4eRxNmZYNnkoefKzWyrT+chyZWu6Xd63kRxZNVvgTGAXDapSfmoaXZcQ5+P4YefOpvAVgwr7HJlFZEfvaX9xzl8Y+WjnNK1ROU1ElNnTo1jq+++uoGjz/yyCMAPPbYYzHWp08fAObNmxdjQ4YMadJ5w66nKdczllqfmWNJkiQpY+a4C0izDUVZhrDrU9FSbukOeZWXchsfRyeelTWhPHMwf/jgTQD8n+9+OobmfWZ6HBev6laaw9Kb/i5Gnil41vwZYwtfDXDypZ+N45k3fB6AFXEBN/jnL90KwB8vvi7GphQkkd9a+mUAPnt78Xl6XPsJABa01lZ7kjqsvn37xvGcOaUlJ9OG5rC829q1a2PsF7/4BQD9++dfEulSb5I6DjPHkiRJUsaLY0mSJCljWUUX0FjDxsGDpfKHUEoBsHdvae3gtCFv4MCBFY6S1yKcff03ATjvpryEYml2jqXXz4ixur+5MI7/8JOzARhOvnvdC//+UwAe3LSn4enG3BCHf/fRCmsLT/8vcfjNG/4ZgIX/lO/dd3BpaY4nj/r3GPv4p+YC0Of1e2Ps9rtLDYVlM+lxZRze+tXSCsxWVUgdQ3s3r82dOzeOe/YsFYrdeeedMfb8888DeXkaQO/evQGYMWNGg1jKRjypfZk5liRJkjJmjkV9fWmZstCYB/lybWnzSLVqppSa237yVB77k498DoA7VudNens2PRjHt/5DPq6k34w/LR3n/r+NscpNcPmDC/72CQB+8c55MXbNTasBOLj90WQu+bjhBC6Kw1uW51mhj42qOG1J7ay9M6u1tbVx/KEPfQiA3/3udzG2Zs0aAF577bUYC8u7pdniNIscmCWW2peZY0mSJCnjxbEkSZKUsayiizly5AhQ3nwX1udMG+7CeMCAAc0+1+DZ+drBP3jtYwD8/asvxNivn308jpevath0N+Lk8wGYe+rpMTZraqlBsHhd5EbUjAHgsm+viqFd/+slAB69L2++WxrnMiLGTr7qUgAuP3VyjPWrdoc/SV1Sunve2LGl9dhvu+22GAtrH6fryYdSthEj8u+f4rXlJbUVM8eSJElSxv8d7WJC5jjdDW/Tpk1AeXYijNPnhcxHWOYN4L333gPKG0aKlh0KeoyYGsdnXZGP51V4DRyKo91Zlnt3hWc3SbfSskqnXJ5nuU+p8PR9b+W7YO1rrTlIanVFTWyVvpva4ny9evWK40mTJgHlu+uF79dly5bFWFgG7rzz8sbh0aNHt+5kJVVk5liSJEnKeHEsSZIkZSyr6IRasltSKKvYvn17jK1fvx6A3bvzYoVDh0qlDEuWLImxsE5neCw9niQd65r63ZuWqoWdSNNdR6dNmwbA44/nzcmrV5fWXh8yZEiMDR06FIDu3btXdV5JLWPmWJIkScp4cSxJkiRlLKvoosIqE5DfnkvXOX7nnXcA2Lx5c4zt37+/wWvbsvtbkjqSSmUV6WMhlpY+hHFNTb5AeljL+OWXX46x+vp6oPx79rjjzGNJ7clPnCRJkpQxc9wJtaQRI7w23fkurF8cGkYgb84La26munXr1uTzNpZhtrlEUmfRnDtmRRnmPn36ADB37twYGzlyJJCviwzl2WZJbc/MsSRJkpTx4liSJEnKWFbRxYTGjrq6uhibMWMGkDeHQL5FdGPNd9WWQ1hWIelY0ZKyivS7LhwnXTu+trYWgGHDhrVkipJawMyxJEmSlPmD912Lq0tKM8JhnO5256+FJLWP9Ps23N1Ld8NzKTepffmJkyRJkjJeHEuSJEkZyyokSerAwj/TNi5L7cPMsSRJkpRxKTdJkjowM8ZS+zJzLEmSJGW8OJYkSZIyXhyrRd5///02WxO5LY8tSZJUxItjSZIkKWNDXieWZlXDuCjWmLD7Utr0EcbpTnpBt27dGjyvtZgpliRJHyQzx5IkSVLGi2NJkiQpY1lFJ5aWPPzmN78B4NFHH42xp59+GoADBw7EWN++fQGora2NsZNOOgmAj33sYw2e98QTT8TY4cOHATjzzDMbPK+1uJ6npI4uLf/qSN9ZzZmXu+9JDZk5liRJkjJmjjuJI0eOxHHIBK9ZsybGXnjhBQB+9atfxdgDDzwAlGeYe/bsCcDYsWNjbNeuXQDMmjUrxurq6gB46qmnYqx79+4NntfamWNJ6uiKsqzvvvtuHB86dAgo/+5Nv8N/X2ONyEXnC9/H4Tv9aM9rzvmkrs7MsSRJkpTx4liSJEnK/MH73l/pFNJGu5tvvhmAffv2xdiECRMAGDZsWIyFpruwjjHkt9N69+4dY3v27AHKSyh27twJwAknnBBjoRHv0ksvjbFBgwY16+8jSZ1Npea1Z599No4feughAFavXh1jO3bsAPKSC8hLLYrWp0/LMI4/vlQB2a9fvxg7//zzAbj22mtjLJRaSGoZM8eSJElSxoa8DihkFrZs2RJjS5cujeOf/OQnQN40BzB9+nQALrjgghg79dRTqzrfihUrALjlllsaxD796U/H2PDhw4E8iyFJKqmvr4/jkDF++OGHY2zt2rUNXtOnTx+geNfRNJtclGEOzX6zZ8+OsbRZOjTquUSb1HRmjiVJkqSMF8eSJElSxvvjHdC6deuA8jKHsI4x5I1xCxYsiLFPfOITAEyePLnJ5wtNfIsWLYqx0IgXGv0AevXqBZQ3+ElSV1GpROH000+P49ConDYsh91GTznllBgLJRHpjqWhWTotX9uwYQMAjz/+eIPYV77ylRj78Ic/HMef+cxnAKipqan0V5JUwKscSZIkKWPmuINId1d6/fXXgfLd7lLXXHMNABdffHGMzZgx46jHTps4ijIfoSlk5syZMTZw4EAARo8e3eB5afOIJHU1Rd+p/fv3j7HQDP3qq6/G2Pbt24HyO3SXXHIJUL7LXZHDhw8D5Ut13n333QD88pe/jLF0DmGptylTpsSYWWSpOmaOJUmSpIwXx5IkSVLGsooO4plnnonjV155Bch3qYPykoewQ93JJ59c1bGrXeeyR48ecRx2Yho8eHCMhVt27d2QV7SJo2t3SvqgVPv9s3fv3jg+cOAAUF5C0Vg5RRDKIUKpBOTfi2+99VaMpbvv/eIXvwDKG7fnzZvXYP6Vdv2Tuiozx5IkSVLGzHEHke6kFJboGTFiRIylmePQYNFaO9WFBru0+S5kiUeNGhVjAwYMKHu+JKmhkM3dv39/jIXv6/QOXSVFTX9ppjn8OzBp0qQYW7lyZRy//PLLAIwdOzbGQuZYUmVmjiVJkqSMF8eSJElSxrKKDuK+++6L47BbUtpIMX/+/DhurXKKINzmS9dKPnLkCFC+LmY4b3s35NkoIqmp2ruRN22MW7NmDQAHDx6MsbBbXvfu3as6XrVzTXfhS4/99ttvA/DOO++0ynmkrsTMsSRJkpQxc9xBrFixIo5D813aSHHCCSfEcWs3xIXMQe/evVv1uJLUVezYsSOOQ+Y4zcqG7/B0F7uWCHf86urqYiwswZnOJ13eTVJ1zBxLkiRJGS+OJUmSpIxlFR1E2jQRdlXq1atXjKUlDzZQSFJl7f09uX379jhetWoVAH369ImxiRMnAuW7jrZEaL5LjxfWooe8mdp/L6SmM3MsSZIkZbw4liRJkjKWVXRA7777LlC+xnA6liR1LJs2bYrjl156CYCzzjorxk488USg9coqwjrO6WoU6Rr0YVUMVyGSms7MsSRJkpQxc9wBhf/7f++992IsHUuSOpZt27bFcWjIS3c2HTduHNB6dwFD4/bGjRtjbP/+/XE8fPhwoHwHvWNFe+9+qK7HzLEkSZKU8eJYkiRJylhW0UGkt9pCA0XaaJGOW3v76HArbsuWLTF25MgRAEaNGhVj6brLkiQ4ePAgkG/nDDBixAgAamtrY6y1m6rXr18PwOLFiwsfv+CCCwAYOXJkjHX20oOicgqpLZg5liRJkjJmjjuIyZMnx/HAgQOB8gaPzZs3x3Fo7GhOJjc09tXX18dY2NkpZCIAjj++9KsxZMiQGDNzLEnld/J27twJlO+GN23aNADq6upa5XwhY7pv374Y++1vfwvAE088EWPpvyOTJk0Cyu/+dUY23+mDYOZYkiRJynhxLEmSJGUsq+ggLr744jgOJRR33XVXjKW7L4VbdTNnzqzq2OkayatXrwbgoYceirE333wTgHPOOSfGpk+fDpTfKpQklZelvfHGG0B5yUNYW7i1vj/DrqkPPvhgjD399NMA9OvXL8ZCOQfASSedBJQ35HVGllDog2DmWJIkScqYOe4gLrzwwjhetmwZAA888ECMLV++PI7nzJkDlGeEx44dC5Q3zR04cAAob+xbuXIlAM8//3yMhaXcrrjiihhrrUYSSTrW7NixI45/85vfALB79+4YC9+f/fv3b/KxQwNa2oj20ksvAfCrX/0qxsLOeKeffnqMLViwII7Hjx8PmHmVmsPMsSRJkpTx4liSJEnK/MH7bjnTIYS1MgHWrFkDwJIlS2Ls2WefjeNQGnHccfn/2wwdOhQovxUXdtILJRcAEydOPGpsxowZMdac24GS1BU89thjcXzTTTcBcOKJJ8bY1VdfDeSNzVD9zqZhvfkbb7wxxkKpXWjMA5g1axYAH/nIR2Js9uzZcRx26ZPUdGaOJUmSpIwNeR1EbW1tHA8ePBgo39kobbR74YUXANiwYUOMhWzDwYMHG7wmbciYOnUqAPPnz4+x0LiRChlomzkkdRXpnbeQpU2ztWEJt2eeeSbGnnvuOQB69OgRY7t27QJg3bp1Mda9e3eg/I5fOHbaXB2OvXjx4hgLS3CeddZZMXbGGWcAsGjRohirqamp+Hfy+1yqjpljSZIkKePFsSRJkpSxIa8DO3z4cByHXfMAVq1aBZTvyBSaPY4cOdIgNnDgwBgL62+mJRs9e/ZsxVlLUueUlqVt3boVgMcffzzG/uM//gOAF198Mca2b98O5OVwACeccAJQXmoRShrS0oZQThHWmgfo27cvUN7gFxr70l1RJ02aBHT+HfCkjsjMsSRJkpSxIa8DS5srQibi98etweY7SSpvjNuzZw+Q74AH8POf//yor920aVPhuKkGDBgAwGWXXRZjYffSMWPGVHytzXdS6zBzLEmSJGW8OJYkSZIyNuRJkiRJGTPHkiRJUsaLY0mSJCnjxbEkSZKU8eJYkiRJynhxLEmSJGW8OJYkSZIyXhxLkiRJGS+OJUmSpIwXx5IkSVLGi2NJkiQp48WxJEmSlPHiWJIkScp4cSxJkiRl/j+M8qT5rd7MrwAAAABJRU5ErkJggg==",
"path": "images_version_6/image_59.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
A
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, AB parallel CD, AD bisects angle BAC, then the degree of angle D is ()
Choices:
A:50°
B:60°
C:70°
D:100°
|
||
296
|
60
|
Text Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIgAAABiCAAAAACuDsRqAAAHYklEQVR4nM2bbXBU1RnH/8859+7NsiQxGKwgLWLLB63Viq0VOukAjsigU2VGbMcWUEHqmGBGbEuZaqdOAKltQe0ojp2BGnTSikxx6IAgHTK2SNHAMCDiBDGIYgKygWjC7t6X8/RDNsm+Zffu3nsXnk97754997fP+T8v5+wsMS4OE+V5TOGvWwYQdz4vAwjhpX10EYAwXn6t1s24wO1/U95np+Co4EE6Jm9mpQoO04JemZ4H7r4ThSUCCjqPPMxrXY0L1CMMWn1qA9iFQ4IFAW3+1ysj3CwMAo6ad6budzs0QI0wnZnfOMPt6AATGp1fOss1R3BRw2Q/HFnjfnxQYmXgma7X3AVMoCCg7f9sqXAZMACCi5pDda1FjQ9KI2d/ct+9XIxDAgJJLJrUiKJAAtLIcq0RxWAEBfLnQ+uhiktRASQ0xqaNa2ogcOrlcxcUhA6vfW4CAzCbT19QkK75P7/JAYDasUV8ym8QxlePjGvtlgCg7AsIQlg2YdPlK/ojRiti9vShzGAviUUxVp9bIZ9s/zcAkOnkHZ32pCxmTxmOaP2WVRqMOS0KDLsi/2hWsejQ6mWk/P1nCnf+w5libp1+jJm5o66TlTI/7lXMg3uJ7ImPzNvSdCB5P8Mjnz3eV7pLCO1Ny68CgK9RHET6hAgBIBp4O9UbDOA43dGzIXkjPbOqLmtEqRgATvxi7mSwAlpDlSaYFQOKoRwBBiuGYAdgUhC1EsB7U471zMkGYVDHiMt00IkjDimplAMQCWbEFTPHtQSHFfeGYwnDtAWFVMLWK8yEoyylSYaGL7ed3tuHkwzR9uVTEfRACQGLNRNksTwvDQVHhgzSKD66oQrofa/+VXFrDo/QwYNh0wDOfBSnMFNYsQ7N0MgSUBQJC4aUNEoqGTIFh8LKlGSQoyMmDB1SqIXTfxnTNUcSGVqCoUASEExCsBJgKeAIQZIgFSSAjytn1NV1jqFMEOo+++Odug6eNKmkhXl+4h8KhEmqMWHXGNp3aSR5nSLWeMu4Ko4UWb2H7O8tTRVF6dzqrNi299mqQbJBi31gq88+sl3s3HPZ/h8ezBGgeWJd2bGvokPX6cHKhOL6qkHrnvvgXaV8crDNTw9fQokr07d4+l3utw4ZT+x/4U/P+ihWU0kgg+ZHq8j03OfNVKrIfQShrW80G55nKSlEUtXP/J/r3y4qYHKaDyAnp270Ogn7sdPj+69b4nldPLeKDKzUG33g8CpWQvPuZukHiCePMLCr5UU359tuJvOgU8Un6nZ7DxhmzmoVizM6vXjhFJ+OEzxFDT804TclFsks8yTW5c5jJbcvfoK8snOTrujCg7y17oVaH7esJcv80x/tcvF7kL9R078fTpU1I774p1P90gfgMmoYbc1cf3XqLaf+klX+UcBtZrW6ZlX9OpF656nECl85XGpEMffOPDtw5Ti8+fZonuGBaQQEHL+7enAVxYGXnh7ls0NceUQpju21h4pK+207ffaHa4/0tl1L8YGr+Mp7b/HbH+4SGpkrj05UDeOSl7+9cp7vHC6LnvVBTFVfLfo3Zk+cfKGIzbavIGkFdu3W5poij7fdmNtawyCojg+7Pj9+dEONtz2dBxACCEfebLerL2nf+Nb4IDhcN0bR59++ZeY1xrl598/2rfKnWbpH+qmynsPU9rtrX/wW4Dz4g9kIhCMroalc56G8d9o/mJl55QLb90yWtHSQjqg6tiMb5NBtO5iZuXmO3xVmyNKWZs/7P6NIVGVumD59fOk0AHhzfUtqhVGAA4ZwFDNDsx3BcFgoMLMpJFu2NB2SsAVznAEHzGQniKWMh75dRVCHVeXoymR2TxVr59Km8Y6wtU+2W5a0tHBPXDMJLHZ+8UDMZhFtuewO0zKNeNXMd09KJ2TbIh5mMs5bygmHQr0m22SHhcMjw9E+ORK9IWGN1BK2gZBM6A6kgqPxeV1Kw4osuArom7vkmzu+Ma0/CFM9sn3UeCbo0MIRCFWhR5QEaWxPrFShuNH9q2U395AUmohcMcYiZWhgjSAAQZBgIighJBN0aQkIKF0JnRylgQRo4CAnReknjBvDk5u+PxKZIJ+M6Y+IcTlLybJlDYOvLx9e/EXYu9eE8fXjHd8BkN6hjU0uU87U8mRPQ67bXmzfd4GYlvxSqSCzjT2nz/SqHImTsWWPz60hozt6A/DG5NGcBVK7CKfsXIdhTP/946oaf0EI7yQu/WJ3dMlAFk1Zh35XZDqEQehcUH+7vxwAXj98c/eV39OTpb1wrWFQov6mRX5XOgYhFhpKWa6K3mP4k8fj3Fwk6RO6aQP+cnSD1+PcHJYxoQuQrdvWVwfQkmVagVqk+Mj0Np9Op/JaQY3E5s+6L3BvoLBYE49OvSeQ1jDT8q49A6twj/86zWV5xUpYd/iv5aDID8KE1zevrb4YQA6sW31FmTjyijW6sMH/zfZwNqxYGecaZ5SPY1iPMGHR2N+XjyNP+K7hJ8rIMbxYN7b+zZffYdzacB5JfPh0TVn/8TKsRuB/B1ISSNnt/zKGKsDCsXndAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_60.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, AB parallel CD, if angle 2 = 135.0, then the degree of angle 1 is ()
Choices:
A:30°
B:45°
C:60°
D:75°
|
Như hình vẽ, AB song song với CD, nếu góc 2 bằng 135°, thì số đo của góc 1 là ()
Lựa chọn:
A: 30°
B: 45°
C: 60°
D: 75°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB parallel CD, if angle 2 = 135.0, then the degree of angle 1 is ()
Choices:
A:30°
B:45°
C:60°
D:75°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB parallel CD, if angle 2 = 135.0, then the degree of angle 1 is ()
Choices:
A:30°
B:45°
C:60°
D:75°
|
As shown in the figure, AB parallel CD, if angle 2 = 135.0, then the degree of angle 1 is ()
Choices:
A:30°
B:45°
C:60°
D:75°
|
297
|
60
|
Text Lite
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIgAAABiCAAAAACuDsRqAAAHYklEQVR4nM2bbXBU1RnH/8859+7NsiQxGKwgLWLLB63Viq0VOukAjsigU2VGbMcWUEHqmGBGbEuZaqdOAKltQe0ojp2BGnTSikxx6IAgHTK2SNHAMCDiBDGIYgKygWjC7t6X8/RDNsm+Zffu3nsXnk97754997fP+T8v5+wsMS4OE+V5TOGvWwYQdz4vAwjhpX10EYAwXn6t1s24wO1/U95np+Co4EE6Jm9mpQoO04JemZ4H7r4ThSUCCjqPPMxrXY0L1CMMWn1qA9iFQ4IFAW3+1ysj3CwMAo6ad6budzs0QI0wnZnfOMPt6AATGp1fOss1R3BRw2Q/HFnjfnxQYmXgma7X3AVMoCCg7f9sqXAZMACCi5pDda1FjQ9KI2d/ct+9XIxDAgJJLJrUiKJAAtLIcq0RxWAEBfLnQ+uhiktRASQ0xqaNa2ogcOrlcxcUhA6vfW4CAzCbT19QkK75P7/JAYDasUV8ym8QxlePjGvtlgCg7AsIQlg2YdPlK/ojRiti9vShzGAviUUxVp9bIZ9s/zcAkOnkHZ32pCxmTxmOaP2WVRqMOS0KDLsi/2hWsejQ6mWk/P1nCnf+w5libp1+jJm5o66TlTI/7lXMg3uJ7ImPzNvSdCB5P8Mjnz3eV7pLCO1Ny68CgK9RHET6hAgBIBp4O9UbDOA43dGzIXkjPbOqLmtEqRgATvxi7mSwAlpDlSaYFQOKoRwBBiuGYAdgUhC1EsB7U471zMkGYVDHiMt00IkjDimplAMQCWbEFTPHtQSHFfeGYwnDtAWFVMLWK8yEoyylSYaGL7ed3tuHkwzR9uVTEfRACQGLNRNksTwvDQVHhgzSKD66oQrofa/+VXFrDo/QwYNh0wDOfBSnMFNYsQ7N0MgSUBQJC4aUNEoqGTIFh8LKlGSQoyMmDB1SqIXTfxnTNUcSGVqCoUASEExCsBJgKeAIQZIgFSSAjytn1NV1jqFMEOo+++Odug6eNKmkhXl+4h8KhEmqMWHXGNp3aSR5nSLWeMu4Ko4UWb2H7O8tTRVF6dzqrNi299mqQbJBi31gq88+sl3s3HPZ/h8ezBGgeWJd2bGvokPX6cHKhOL6qkHrnvvgXaV8crDNTw9fQokr07d4+l3utw4ZT+x/4U/P+ihWU0kgg+ZHq8j03OfNVKrIfQShrW80G55nKSlEUtXP/J/r3y4qYHKaDyAnp270Ogn7sdPj+69b4nldPLeKDKzUG33g8CpWQvPuZukHiCePMLCr5UU359tuJvOgU8Un6nZ7DxhmzmoVizM6vXjhFJ+OEzxFDT804TclFsks8yTW5c5jJbcvfoK8snOTrujCg7y17oVaH7esJcv80x/tcvF7kL9R078fTpU1I774p1P90gfgMmoYbc1cf3XqLaf+klX+UcBtZrW6ZlX9OpF656nECl85XGpEMffOPDtw5Ti8+fZonuGBaQQEHL+7enAVxYGXnh7ls0NceUQpju21h4pK+207ffaHa4/0tl1L8YGr+Mp7b/HbH+4SGpkrj05UDeOSl7+9cp7vHC6LnvVBTFVfLfo3Zk+cfKGIzbavIGkFdu3W5poij7fdmNtawyCojg+7Pj9+dEONtz2dBxACCEfebLerL2nf+Nb4IDhcN0bR59++ZeY1xrl598/2rfKnWbpH+qmynsPU9rtrX/wW4Dz4g9kIhCMroalc56G8d9o/mJl55QLb90yWtHSQjqg6tiMb5NBtO5iZuXmO3xVmyNKWZs/7P6NIVGVumD59fOk0AHhzfUtqhVGAA4ZwFDNDsx3BcFgoMLMpJFu2NB2SsAVznAEHzGQniKWMh75dRVCHVeXoymR2TxVr59Km8Y6wtU+2W5a0tHBPXDMJLHZ+8UDMZhFtuewO0zKNeNXMd09KJ2TbIh5mMs5bygmHQr0m22SHhcMjw9E+ORK9IWGN1BK2gZBM6A6kgqPxeV1Kw4osuArom7vkmzu+Ma0/CFM9sn3UeCbo0MIRCFWhR5QEaWxPrFShuNH9q2U395AUmohcMcYiZWhgjSAAQZBgIighJBN0aQkIKF0JnRylgQRo4CAnReknjBvDk5u+PxKZIJ+M6Y+IcTlLybJlDYOvLx9e/EXYu9eE8fXjHd8BkN6hjU0uU87U8mRPQ67bXmzfd4GYlvxSqSCzjT2nz/SqHImTsWWPz60hozt6A/DG5NGcBVK7CKfsXIdhTP/946oaf0EI7yQu/WJ3dMlAFk1Zh35XZDqEQehcUH+7vxwAXj98c/eV39OTpb1wrWFQov6mRX5XOgYhFhpKWa6K3mP4k8fj3Fwk6RO6aQP+cnSD1+PcHJYxoQuQrdvWVwfQkmVagVqk+Mj0Np9Op/JaQY3E5s+6L3BvoLBYE49OvSeQ1jDT8q49A6twj/86zWV5xUpYd/iv5aDID8KE1zevrb4YQA6sW31FmTjyijW6sMH/zfZwNqxYGecaZ5SPY1iPMGHR2N+XjyNP+K7hJ8rIMbxYN7b+zZffYdzacB5JfPh0TVn/8TKsRuB/B1ISSNnt/zKGKsDCsXndAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_60.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, AB parallel CD, if angle 2 = 135.0, then the degree of angle 1 is ()
Choices:
A:30°
B:45°
C:60°
D:75°
|
Như hình vẽ, AB song song với CD, nếu góc 2 bằng 135°, thì số đo của góc 1 là ()
Lựa chọn:
A: 30°
B: 45°
C: 60°
D: 75°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB parallel CD, if angle 2 = 135.0, then the degree of angle 1 is ()
Choices:
A:30°
B:45°
C:60°
D:75°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB parallel CD, if angle 2 = 135.0, then the degree of angle 1 is ()
Choices:
A:30°
B:45°
C:60°
D:75°
|
As shown in the figure, AB parallel CD, if angle 2 = 135.0, then the degree of angle 1 is ()
Choices:
A:30°
B:45°
C:60°
D:75°
|
298
|
60
|
Vision Intensive
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAIgAAABiCAAAAACuDsRqAAAHYklEQVR4nM2bbXBU1RnH/8859+7NsiQxGKwgLWLLB63Viq0VOukAjsigU2VGbMcWUEHqmGBGbEuZaqdOAKltQe0ojp2BGnTSikxx6IAgHTK2SNHAMCDiBDGIYgKygWjC7t6X8/RDNsm+Zffu3nsXnk97754997fP+T8v5+wsMS4OE+V5TOGvWwYQdz4vAwjhpX10EYAwXn6t1s24wO1/U95np+Co4EE6Jm9mpQoO04JemZ4H7r4ThSUCCjqPPMxrXY0L1CMMWn1qA9iFQ4IFAW3+1ysj3CwMAo6ad6budzs0QI0wnZnfOMPt6AATGp1fOss1R3BRw2Q/HFnjfnxQYmXgma7X3AVMoCCg7f9sqXAZMACCi5pDda1FjQ9KI2d/ct+9XIxDAgJJLJrUiKJAAtLIcq0RxWAEBfLnQ+uhiktRASQ0xqaNa2ogcOrlcxcUhA6vfW4CAzCbT19QkK75P7/JAYDasUV8ym8QxlePjGvtlgCg7AsIQlg2YdPlK/ojRiti9vShzGAviUUxVp9bIZ9s/zcAkOnkHZ32pCxmTxmOaP2WVRqMOS0KDLsi/2hWsejQ6mWk/P1nCnf+w5libp1+jJm5o66TlTI/7lXMg3uJ7ImPzNvSdCB5P8Mjnz3eV7pLCO1Ny68CgK9RHET6hAgBIBp4O9UbDOA43dGzIXkjPbOqLmtEqRgATvxi7mSwAlpDlSaYFQOKoRwBBiuGYAdgUhC1EsB7U471zMkGYVDHiMt00IkjDimplAMQCWbEFTPHtQSHFfeGYwnDtAWFVMLWK8yEoyylSYaGL7ed3tuHkwzR9uVTEfRACQGLNRNksTwvDQVHhgzSKD66oQrofa/+VXFrDo/QwYNh0wDOfBSnMFNYsQ7N0MgSUBQJC4aUNEoqGTIFh8LKlGSQoyMmDB1SqIXTfxnTNUcSGVqCoUASEExCsBJgKeAIQZIgFSSAjytn1NV1jqFMEOo+++Odug6eNKmkhXl+4h8KhEmqMWHXGNp3aSR5nSLWeMu4Ko4UWb2H7O8tTRVF6dzqrNi299mqQbJBi31gq88+sl3s3HPZ/h8ezBGgeWJd2bGvokPX6cHKhOL6qkHrnvvgXaV8crDNTw9fQokr07d4+l3utw4ZT+x/4U/P+ihWU0kgg+ZHq8j03OfNVKrIfQShrW80G55nKSlEUtXP/J/r3y4qYHKaDyAnp270Ogn7sdPj+69b4nldPLeKDKzUG33g8CpWQvPuZukHiCePMLCr5UU359tuJvOgU8Un6nZ7DxhmzmoVizM6vXjhFJ+OEzxFDT804TclFsks8yTW5c5jJbcvfoK8snOTrujCg7y17oVaH7esJcv80x/tcvF7kL9R078fTpU1I774p1P90gfgMmoYbc1cf3XqLaf+klX+UcBtZrW6ZlX9OpF656nECl85XGpEMffOPDtw5Ti8+fZonuGBaQQEHL+7enAVxYGXnh7ls0NceUQpju21h4pK+207ffaHa4/0tl1L8YGr+Mp7b/HbH+4SGpkrj05UDeOSl7+9cp7vHC6LnvVBTFVfLfo3Zk+cfKGIzbavIGkFdu3W5poij7fdmNtawyCojg+7Pj9+dEONtz2dBxACCEfebLerL2nf+Nb4IDhcN0bR59++ZeY1xrl598/2rfKnWbpH+qmynsPU9rtrX/wW4Dz4g9kIhCMroalc56G8d9o/mJl55QLb90yWtHSQjqg6tiMb5NBtO5iZuXmO3xVmyNKWZs/7P6NIVGVumD59fOk0AHhzfUtqhVGAA4ZwFDNDsx3BcFgoMLMpJFu2NB2SsAVznAEHzGQniKWMh75dRVCHVeXoymR2TxVr59Km8Y6wtU+2W5a0tHBPXDMJLHZ+8UDMZhFtuewO0zKNeNXMd09KJ2TbIh5mMs5bygmHQr0m22SHhcMjw9E+ORK9IWGN1BK2gZBM6A6kgqPxeV1Kw4osuArom7vkmzu+Ma0/CFM9sn3UeCbo0MIRCFWhR5QEaWxPrFShuNH9q2U395AUmohcMcYiZWhgjSAAQZBgIighJBN0aQkIKF0JnRylgQRo4CAnReknjBvDk5u+PxKZIJ+M6Y+IcTlLybJlDYOvLx9e/EXYu9eE8fXjHd8BkN6hjU0uU87U8mRPQ67bXmzfd4GYlvxSqSCzjT2nz/SqHImTsWWPz60hozt6A/DG5NGcBVK7CKfsXIdhTP/946oaf0EI7yQu/WJ3dMlAFk1Zh35XZDqEQehcUH+7vxwAXj98c/eV39OTpb1wrWFQov6mRX5XOgYhFhpKWa6K3mP4k8fj3Fwk6RO6aQP+cnSD1+PcHJYxoQuQrdvWVwfQkmVagVqk+Mj0Np9Op/JaQY3E5s+6L3BvoLBYE49OvSeQ1jDT8q49A6twj/86zWV5xUpYd/iv5aDID8KE1zevrb4YQA6sW31FmTjyijW6sMH/zfZwNqxYGecaZ5SPY1iPMGHR2N+XjyNP+K7hJ8rIMbxYN7b+zZffYdzacB5JfPh0TVn/8TKsRuB/B1ISSNnt/zKGKsDCsXndAAAAAElFTkSuQmCC",
"path": "images_version_1-4/image_60.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, if angle 2 = 135.0, then the degree of angle 1 is ()
Choices:
A:30°
B:45°
C:60°
D:75°
|
Như hình vẽ, nếu góc 2 = 135° thì số đo của góc 1 là ()
Lựa chọn:
A: 30°
B: 45°
C: 60°
D: 75°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, if angle 2 = 135.0, then the degree of angle 1 is ()
Choices:
A:30°
B:45°
C:60°
D:75°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, if angle 2 = 135.0, then the degree of angle 1 is ()
Choices:
A:30°
B:45°
C:60°
D:75°
|
As shown in the figure, if angle 2 = 135.0, then the degree of angle 1 is ()
Choices:
A:30°
B:45°
C:60°
D:75°
|
299
|
60
|
Vision Dominant
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAUYAAADiCAYAAAAyLW68AAA7BElEQVR4nO29eXAcx53n++37ALpxg437PhsnQRIQKY0JSqJoyrqeJduh3Vnbs9aGFWPveiOs2bDfzLPmabz2zryI2dmZXTlCaz/t7rwJ2U/PI2soi5Q4FE3SBAiABHE1cTTus9EA+r6ru94fZJWqC42DB45u/D4RHQS7M6uysrK+9cvMX/5SwrIsC4IgCIJHutcFIAiC2G+QMBIEQYggYSSIfQLLsqCRrf0BCSNB7BMkEsleF4G4BwkjQewSnEW4lVVIVuPeI9/rAhDEQYOzDN1uNwKBAORyORQKBZRKJeRyeiT3A3QXCGIXEXaXzWYzZmdnkZaWhkOHDsFgMECn0+1h6QgO6koTxC7BiWIkEsH8/Dx6e3vR09OD+fl5BINB6kLvI8hiJIgdhmXZKEtxamoKfX19uHbtGlZWVlBcXIyUlBSoVKo9LCUhhCxGgthhhKJot9vR39+P7u5ueL1eZGVlISsrCzqdDgqFYg9LSQghi5Egdgmv14vp6WlcvXoVAwMDOH78OJ544gnU1NRAp9NBKpWusy6JvYGEkSB2AZ/PB5PJhN7eXlgsFiQnJ6O2thZHjhxBSkoKn44bZyRx3FtIGAliF1hbW8OFCxfQ2dmJgoICnDx5Eg0NDetEkQRxf0DCSBA7CMMwmJ2dRV9fH0ZHR+HxeFBWVoa2tjYUFBTw6YQz0iSOew8JI0HsIF6vFxcuXMDly5chlUpx/PhxtLa2orKyEkqlkk9HYri/oFlpgtghHA4HTCYT+vv7MTc3h7y8PJw4cWKdKBL7D7IYCeIRIR4j7OrqwpUrV2C1WlFcXIwTJ07g8ccfp9UtcQAJI0E8IoQrW2ZmZtDb24vh4WGkpaWhoaEBdXV1vCjSRMv+hoSRIB6CWO41JpMJPT09GBoaQigUQmtrK06fPg2DwbBXxSTuExJGgnhAYoni8vIyent7cfPmTUgkEtTU1KCxsXHDGWhif0LCSBCPiKWlJQwNDaGjowMTExN48skn8dRTT6G0tDQqHXWh9z8kjATxgAgFzuFwYHBwEDdv3oTL5YLBYEBdXR0aGhogk8n2sJTEg0DCSBAPidvtxtTUFC5duoSBgQE0Njbi+PHjqK+vJ1GMU0gYCeIhCIVCMJvN/BpotVqNmpoaHD16FOnp6XtdPOIBIWEkiG0Sa7LF4/Hg97//Pa5fv47c3Fx84QtfQEtLCzIyMiCV0vqJeIWEkSAeAJZlsbKygtHRUUxOTsLn86G4uBitra0oLCwkUYxzSBgJYpsILUWGYXD9+nV0dHQgEAigubkZzc3NKCkpoeV+CQC91gjiPnE6nRgaGkJfXx+mp6eRlZWFo0ePoqysjEQxQSCLkSA2IFYoMJZl0dnZiWvXrmF6ehopKSlobm7GiRMnaA10AkEWI0FsASeKDMNgcnISt27dwsDAANRqNRoaGvitCQBa1ZIokMVIEDGIJXAjIyPo7u7G0NAQ/H4/WlpacPbsWVoDnYCQMBKEiFhuOWtra7h9+za6u7sRiURQU1OD+vp65Ofnr8tHxD/UlSaILbDZbBgZGcGNGzdgMplQVVWFr371q6iuro5KJ5FIaB10gkAWI0GIEIqb1+vlw4itra0hMzMTRqMRTU1NUKlUe1hKYichYSSIDWAYBhaLBZcvX0ZnZyfKysrQ2tqKxsZGEsUEh4SRIGIQDocxPj6O/v5+TE1NgWVZVFZWorW1Fbm5uXtdPGKHIWEkiBgEAgFcuXIFly5dgk6nw5NPPoljx46hoKAACoWCT0dbFCQmNPlCECLW1tYwMDCA0dFROBwOFBYWoq2tDWVlZbwosixLs9AJDFmMBCEgEong+vXruHr1KtxuNw4fPozjx4+joaEBSUlJe108Ypcgi5Eg7hEIBDA2Noa+vj6MjY0hLS0NbW1tqKmpiRJFshQTH7IYiQOLeHxwYGAAHR0dMJvNUKlUaGxsxBNPPIGUlJSofDSmmPiQMBIHFuE+0IuLi+jt7UV/fz/kcjnq6+tRU1PDi2Ks1TBE4kLCSBx4RkdH0dPTg66uLiwvL+PJJ5/E6dOnUVhYyKeh2eeDBQkjcaBZXV3FrVu30NnZCa/Xi+LiYtTX10ct9xNbi5FIBOFwGH6/HwzDQK1WQ6VSUdTuBIKEkTgwiAXOYrHAZDLh6tWrGBwcxMmTJ3HmzBlUVVVF5ROugWZZFqFQCE6nE5OTk3A6nSgqKkJBQQFUKhVZlQkCCSNxYBCKls/n48OI2e12ZGdn82ugt3LLiUQicLvdGBkZwcLCAqRSKbKysqBQKGi71ASBhJE4cEQiEaysrODGjRu4fv06ysvL0dbWhubm5m35KkokEgSDQZjNZphMJmRnZ6O6uhparZaEMUEgYSQOFAzD8Gugp6enIZPJUF1djcceewzZ2dl8us1moeVyOWQyGXw+H2w2GzweD0KhECKRyK5dB7GzkDASBwqv14tPP/0Un376KbKzs3Hq1CkcOXIEBoMBMpkMkUiEF8NYoiiRSCCXy6HX65GRkYGMjAyo1erdvgxihyFhJA4E3D7Qd+7cwe3btzE2NoakpCQkJSVBp9PxXeDt+isqFAqoVCqo1WrI5fQYJRrkX0AkHLECPDAMg87OTvzqV7/C7Ows0tLS4HA4MDg4iPn5eT6dVCrd1swy57LDMAx1oRMQetURCY/b7cbExAQGBgYwPT0Ng8GA7OxsrKysYHV1FWazGQaDAfn5+dBqtQC2Xg8tFF/a0iDxIGEkEhKhUPX29uJ3v/sdpqamkJOTg2eeeQZ1dXW4du0aurq60N/fD6/Xi1OnTqG2tnZd/o2QSqWQyWTbtjKJ+IGEkUgYuGV7QmfsxcVFDAwMwGQyIT09HfX19Th69CgKCwvh8/ngdDphMpnQ19eHoqIilJWV3de2BRSXMTFJGGEUN07hwxHreyJxEIsTd4/HxsbQ09ODwcFBBINBNDU14ezZs8jJyQEAGI1GaDQa2Gw29Pb2YmxsDOXl5SgoKEBycvKm55RIJPwYYzgcPlDjjAchoEZCTr4Ib1gi3zwiGq5Ly7IsrFYrbt26ha6uLgSDQVRWVqKurg65ubl8m1AoFKioqEBhYSGSkpKwvLwMk8kEq9W65blYlkUkEuE/ZDmCr4tEICGFUQz3sBz0hpvICF+Ac3Nz6OrqwpUrVzA4OIjCwkK89NJL69ZAc5SVlaGxsRF+vx+9vb1YWlqK+j1W2wmHw/z3B61tbXS9gUAAgUBgD0r06EmYrjQQHf2EYRiwLAuZTMaPO5H1mJgI76vL5cLQ0BC6urrgcDiQm5sLo9GIuro6aDSamPnz8/NRVVWFxcVFTExMYHl5OSrMGPdiFSKTyZCTk4Py8nJ+nfRBaV9cfYRCIXi9XqyursLv90OhUEAul0MqlUKlUiEpKYn384y3ukkYYRRWfCgUwurqKiKRCLRaLYWFSjBijScCd91yJicn0dHRge7ubhw+fBinTp1CdXX1hqtTJBIJsrKyUFRUBJlMxrvwuN1u6HS6Dc+r0WjQ0tKC0tJSHDp0KMpJfDvlFpd9O+yXsT2JRIJIJAKv14uJiQlcuXIFdrsdNTU10Ov1sFgsUCgUqK6uRkFBAVJTU6M2Edvr8m+HhBFGISsrKxgYGIBUKkVFRUXUdpdE4iB8wILBIMbGxtDb2wuLxQK9Xo/a2locO3Zs04kUiUSC1NRUZGdnQ6lUwufzwev1wu/3IykpacOXqUqlQlFREfLy8qBQKKBUKrcURqHl+SDisJ8EhYswtLS0hDt37sDr9aKyshJSqRSLi4vwer385FR1dXXcPYMJJYwsy8Lv92NiYgLnz59HcnIyMjMzkZWVFdWo4uWtRcQm1r2z2Wy4du0arly5gqKiIpw6dWrb0XIAQK/XQ61WQyqVRq1o4YRRfE65XI6kpKQoF6HttKl4aXcbWeUc4XAYbrcbLpcL4XAYKSkpMBqNyMrKwvj4OObn59Hb2wuPx4OcnBzo9frdLP5Dk1DCGA6H4fF4YLFYYDabkZGRgWAwGPUmP0iD5AeBcDiM2dlZmEwmTExMIBQKoaSkBG1tbVEz0FvBWTgymSxqrGwzHnZoZivx4dLEGuPc7nHvN91mATSEMAyD1dVV2O12aDQaZGZmIiMjg38RBQIBhMNhBIPBuHzmEk4Y3W43vF4vAPBdHPHAeLy8tYmt8Xg8uHLlCi5dugSNRoOTJ0/isccei9qvZSvW1tYwMTEBp9MJpVIJnU4HvV7/SMakOVEQioN4NjuWtRlLTDaaAefybzRLLi6DcJJSjFQq5YcFNntOQqEQFhcXsbq6iqysLOTl5SEQCMDr9cJms0Emk6GsrAzV1dVxuR93wgijcA8OiUQCpVIJlUrFR1UWvgm5AADhcBihUOiB3rAb5dlKdIWNczuuHrEadSyH5lgO7ZyvnfB3zudOXN7NyhHr+BuVIdZ1bVRv27GYYv0uk8kQDofhcrkwOTmJy5cv48aNG2hoaIBWq0UkEsHa2hokEgkCgQDvhC0us0KhQCAQwOTkJEwmExYXFxEMBrG6uorJyUloNBpePIR+i+I62GjcUOzfKLwHwt+E9Saul82OE2ulz2ZtI1ZdctcF3BXFpKQkGAwGpKSkbDo8EAgEsLCwAKvViqKiIqSkpGBxcREOhwMOhwNqtRplZWUoLy8nYdwNYj1M4XAYdrsdfr8fcrkcycnJ0Ov1SEpKihkSinuoHA4HbDYbAoHAOtcMTlA4q4H7bivfNbFlupnwcG5FwodPfI0sy/JjXlx5hO5IwF2h4FwihMcKhUIIhUL875FIBKFQKGr8TCaT8efgxENcdqlUGlUPXFquPiQSCX8OqVQKlmV5MRKm444tdIzmzsU5Z8cSePFvcrkcgUAAExMTuHPnDkwmE9bW1pCWloahoSH4fD6Mjo5CJpMhGAzC5XLB4/GsazsKhQLBYBDT09OYnp7GwsICIpEIbt26Bb/fD7VazZ83EokgEAggGAxG3RtxfQnvv/DahdfB1Yu4zYiFl6vzYDCIcDjM1xO3PlsorFx+oVjKZDL+IxwrFdYn1yYAQKlUIi8vD21tbVvOsns8HszPz8NisaCiogIymQyDg4NYWlqCw+GAwWBAWVkZSktLo+orXog7YeTgBIxhGDgcDiwuLiIUCkGlUq0bKxK/9RiGgcfjgdVqxcLCAjweT8yxlc0ssVhvZmEe7hOrO8blEw7yx7LEuGNwli3X2IWCA9wVCqE7BEcwGOTHWBUKBSKRCP+QhcNhyOVyXjC5cggtTO7DRawG1ofbEgojV99CYRQKOHdt4vJzD67QshfWASfMcrkc4XAYKysrmJ+fx8zMDKxWK3Q6HQoLC1FUVITk5GREIhF4PB7IZDIwDAOfzwefzweWZaPuB1dGuVyOtLQ0JCcnQ6FQIDMzEwzDIBgMRgkIV5/C9scdUyyM4hepOI+43YjvvRBxexILI5dXmIZLJ3xhieuTKw9Xhu2OrXIz0i6XCwzDICMjA7m5uQgEAlhZWYHH44HH44m7mWghcSmM3I0MhUJYWVnBwsIC5ubmwDAMdDod73DKsmzMtx43SWO322G1WuF0OqPevkILTAj3PYB1b3ZhhBVhA+Y+4oeGs864tLEeCk7wOKHhziUWZqGoCM/DCRNXPmG3SXidXDrue+FxOfHkGjknopzFwz1EwrTcNQqFVhgIlmEY3koRCq/QshHWI/dvUlISAoEALly4gKmpKbAsi7q6Ohw5cgQNDQ1Qq9VgWTZqCIVrJ0KLmzu22FITiob4fnL3TDwut9kLUFyf4pevuAsttvg4uO9jlU14T8XlEQul+KXPlVl4XrVajZSUFL69iJ8BrrfldDoBACkpKSgsLMThw4dhNBrR3d2Nvr4+jI2NYWFhAeXl5Xyb2Gq4ZD8Rd8IorFy/3w+bzQa32813CTk/NK7rEUsYOc98nU7Hh6bfSBiFjVr8vfg3YRmFVo64YQq7TLHGh7jjKhQKXpA4IdqocYmtFs7KEVqAsawwLpy/UOjEgiu0GIUCIRYE4UtAeE1C4eaEUSj0QlGMJYxCa9VisSAUCiEYDKK4uBgnTpzAiRMnUFdXx0++iUVEfN3i9sTVM/cAc8ffqOsnvG+xutDCY8eygMUfsUW91fHExxXnexQCtNGa51AohOXlZSwvLwO4K4yZmZn8SzElJYXfXtbn84FhmC0ncvYjcSeMHOFwGD6fDy6XCyqVCoWFhQgGg5iZmYl6GGMJo0qlgsFgQHp6OsrLy6PGe4CNA4/G+l78kGyUPla+WIi7WcKxvc0QWwNb5RFfy2bjpZuljXXNW5VP/FKJdQ5hPpVKBZZlMTo6irGxMTgcDmRlZeH48eN4/vnnYTAYoFQqASCq+7bR8cSIrSnhi0DMZte+nXNt9pu4TrbDoxLCWMflyiQ8PjcmOzMzA6lUitTUVD5Mm91u53tuGo0GGo0GSqUy7kQRiFNh9Hq9WF5eht1uB8MwSElJQU5ODrxeLz+ALuxOCOG619yNI+IDl8uF0dFR9Pf3QyKRoKmpCYcPH0ZxcXFUukcxrrVTYrOd8+4XhJaskGAwiOXlZVgsFv5ZcrlcsNlsGBsbg9VqRUFBAd8bi9dluHEpjCsrK7h58yaCwSBKS0v57rDf74/qFm7XYiD2N1w4sM8++wy3b9/G8ePH8eyzz6KysnKvi3bgCIVCsNvtsNvtkEgk8Pv9MJvNWFpagtlshtfrxRNPPIGioiIUFBTsdXEfmLgTRm6Myu/3QyKR8M643DhfUlISsrOzUVpaitzc3LieGSPujiPfuXMHHR0dWF5eRkZGBiorK2E0GqOWmcWaKCAePTKZDNnZ2SgpKeHHFGUyGUKhENRqNVJTU2E0GvkYl/GKhI0j5yJu4H91dRVTU1OQy+UoKSlBamoqpFIpfD4flpaWsLa2BrfbjZSUFJSXl/NBBO5nfIjYe0KhEBYWFvDee+/h0qVLqKmpQXt7O+rr61FcXLzhzCnxaIglDX6/H2tra/B4PAAQNYknk8n4cGMqlWrLoBr7mbizGAFAq9UiPz8fcrkcOp2OH8eQy+VIT0+HTqcDy7L86pc40n7iHizLYnp6Gv39/ZiZmYFcLkdFRQXa2tqQnZ29bjKHxHHn4Vyh8vLy+O/C4TACgQCkUumGod3ikbgSRq67rNVqoVKpeB844PNJFS7iCRDtX0jiGF8wDIPu7m6cP38eWq0WzzzzDI4dO4aMjAwSwV1iO2P0MpksoQSRI66EEfhcHDfyT4zXWTDic2w2GyYmJjAyMoLV1VWUlZWhra0tylmYhkV2n818aIU8iNvRfiPuhHEjHsanjNhfdHd34+LFi7DZbKipqUFLSwtqa2ujAs7S/dy/JMK9IfOK2Df4fD6MjIygv78fZrMZycnJOHr0aJQobrSemCAeJQljMRLxj8lkwuXLlzE6Ogq9Xo/Dhw+jvb0dmZmZe1004oBBFiOxL7BarRgYGOBXtjQ2NqK+vj5qW4pEGLsi4gOyGIldRyxwU1NTuHnzJnp7e2G329He3o4XXngBubm5UflIEIndgoSR2HWEAud2u/l9oN1uN8rKylBXV4eSkpI9LCFx0KGuNLFnOJ1OjI6OoqurC319fTAYDHj55ZfR1NS010UjDjhkMRJ7gs/ng8lkQnd3N+bn56HX61FVVYXGxsa4XmNLJAZkMRI7Siz3Gp/Ph9nZWVy8eBG//vWvwbIsnnvuORw9epQPBUcuOcReQhYjsWPEmkWORCKYmppCT08PxsfHEQ6HUVxcjGPHjqGwsDBqFQWtgSb2ChJGYlfx+Xzo6urCuXPnoNFo8KUvfYnfB1oYOJgEkdhLqCtN7Bo2mw2Dg4MYGxuD3W5HXl4eHn/8cRiNRoqmTuwryGIkdhSh5Tc4OIjz58/DarWioaEBbW1tqKuriwo4SxD7AbIYiR1DuCvi0tIShoaGMDo6Cq1Wi9bWVtTX15MoEvsSshiJR0qsCRez2YwbN27AZDJBKpWipqYGf/AHf4Ds7Oy9KiZBbAoJI/HIiCWKdrsdAwMD6OrqQiAQQE1NDYxGIwwGw14VkyC2hLrSxCNDvO2oxWLBzZs3cePGDYyNjSE3NxcvvPAC6uvr97CUBLE1ZDESOwIXW7Grqws2mw15eXkwGo2ora3lN2gniP0KCSPxUMTqPns8HszMzKCrqws3btxAbW0tnn76aVRVVUGpVO5VUQli25AwEg9MLFFkWRaTk5Po7u7GzMwMtFotKisr0dLSQjPQRNxAY4zEA7HRWmav14vu7m785je/QSgUwrPPPotjx45RYAgiriCLkbhvYokiy7JYXl7G2NgYzGYzfD4f8vLycOTIERQWFvK7OlIUbiIeIGEkHhihuAWDQdy4cQMXLlxAKBTC448/jra2NhQUFNByPyLuODDCGHLNwtR7BxZ/CgqPNqI6LfE2Cd8rnE4nJiYmYDKZMDc3h6qqKrS1taG2thZarRYAhREj4otHK4yhZQx13Ma8H0BSCdpOVGCr4Xa/bQojA6Ow+AEgBYXNtSjL0kERK/H8bXwytLxlMbKNp9GUxxcKo7/8Bs5+/R8wHuC+06Htxxfw0Q8fQ/q2LowQI7QWh4eHceHCBSwsLKCkpARHjx5FS0sL0tOpdok4hX0kBFlL9zvsq2UqFsDdz4l3WPNmWVZvse+8WsaquPSCj6rsVfadW6vr81z63rq0sT7fuyQo2Y032QKALfjKO2zH5CK7uHiH/fXrZawKKvbF9+YezeUfUMLhMGuxWNhf/OIX7Kuvvsp+5zvfYd999132zp07UekikUjUhyD2Ow9vMfoncf7/fBVf+UknXNvNs/YZ/n3TKfzn2Xv/1+WhKjcZzNoUxq0BBMb/Aa8dvor5G+P40bHPbcepqb57f6mQVVaM9A1KnynwH+79+L9iFn+If3rnW2jTA4ABL/23X+MvLjXijfeuwfLVr+LQfV0wwTExMYGOjg709fWBYRhUVVXh1KlTyMnJiUpHEy1EvPGQwngdP8w+gZ+4AKjK8OrffQvh136AX26aJ4Suv/36PVFUof2vruG9f3cE2QoA8MP0s7M4/PpnCGAWb/7dBfz7//klvjseDgfv/XUE//HCNXyrbOsS+j1OQJWBpKjxfzWSUwA4vPDd1/USHE6nEwMDA+js7ITf70dlZSWMRiMKCgr4NCxF4CbilIf0YwzA51Kh7NV30D1zB//Pt1qRs2WeXnz8X++Zilnfx495UQQANWq//Sb+LWfxTSzBGvMYR1G2DVEEgKb2fwlV4G289Tc9WA4BgB+md/8D/o8u4MSrf4Di7R2GELCysoLe3l50dHRgcHAQmZmZePHFF9Hc3MyniUQiMfd7IYh44CEtxkL8q+4Z/OWR7NiTJTHJwwt/fwGNM93oTH4OR9ZlTEV2MYCR9Tlnhn5/3yXUf/Ev8fEbl/HFN47i0Buff1/wlffwi69vU10JHp/Ph+HhYXR2dmJ5eRmHDh3iI+ao1TTTTyQGDymMZWg+cr958tB0Og9NOI0XY/y69tn/jf9yTxTrv3IcG0tXCC7rOEy9M3AASClsRm1ZFnTrhDYd7X95BzNfv4QPP/gMZlcOGl56Hv9bawnoMb4/3G43pqencf36dVy5cgWlpaV44YUX0NDQsG4NtHBTK4KIN/bcj9E59nt0TnoA7wy6P/g5/tP/uDuJo3vmF3j/9VpByhAYboixagr//bEMnOoUTffo2vDjCx/hh4+J3UQUyDY+g28Zn9m5CzkATE9P48aNG5ienoZKpUJFRQVaW1thMBhICImEYs+F0fq7/4BnXhN0kRu/jb9/+4f48mMFIotuBtPcpPTIB/gHAKqsMhSny+FeGMG8C4CrE//78SaERLPZxMPj8/lw+/ZtnDt3DhkZGXj22Wdx+PBhZGRkQCqV0kQLkVDs+WtellyIqqoqVFXlQQcAfT/DvzxuxJF/dw6zoQ0yqZrx5mfzsC+bMTw8jDmnD0Nvt+PunM0s3nzzV5jfrQs4AKyuruL27dsYGRmB2+2GwWDAsWPHUFlZycdWpIkWIpHYc2Es/to/YHh4GMPDc3D65tHxN89ABxeG/stzOPEnn2GNT1mGb127+/Cx/lv40clcgUWpRu23/xd+/sV7//34fVyz7PKFPCCcoGxXVHZagGIdv7+/H++99x5mZ2dx+PBhtLa2oqSkJCpiDlmLRCKx58IYhToXbf/2V/jlv75n+/3nt/Cbqe1mzkP9qap7f1vhcu9A+XaYcDgMn8+H1dVVzMzMYGJiAlNTU7BarQgEAohEIgB2ToRYUeSbQCCAiYkJDAwMYGJiAklJSWhtbYXRaERycvKG+Qgi3tn1McaQy4pVjweW0VEwJe1oKRCPBepR2XYE+PnvAXyG/klgu86Gfs/a1okE/PSnP8WLL76I6urq+8r3qOEExe/3w2KxYHh4GENDQ3A4HNBoNKiqqsKxY8dw6NChHY2ALRY2k8mETz75BOPj48jKysLhw4dx4sQJZGVlbZqPIOKd3bcYO99ETk4Jmr7wDP7FL+/ESBDCzFDPvb+rkJdx71uXFUtLU+i78gluxhx8nMfYDc4dvBSGrBhJBFy+fBk/+MEPUF9fjzfffBMMwzzY9TxCvF4vrFYrLBYLrFYr5ufnMTo6iv7+fty6dQtTU1O7Us5wOAyLxYKBgQH09/cjEomgqakJTU1NyM7OJiEkEp5dF0ZF65dwr6eMkT/9Hn5m8kf97jf9HG+9fS8MjuqLaKm5l+/Of0PDPUE98fWfIzpbCMuf/l/4wcf3sn3lBRzdIqzP448/jr/6q7+CXC7Hn//5n6O+vh6dnZ0PfX0PSiQSgcfjwdraGjQaDerq6lBbW4uUlBRMT0/jww8/REdHB3y+nV/EOD09jYsXL+LWrVsIBAKora3Fc889R7v7EQcGCfsQI/mWK3+Hv/7tnOAbM377n/4/DABAVjv+zR8dQxr305E/xE9fNgIIYfS/P4OG1z7DXfnTwfjSH+JLlTq4Rs/hf/3j0L1gFCq0v9OPC9+qvLeqZh6/fKkMX/vgnmjqjHjpD7+ESp0Lo5/8v/htr/Xu8VTteKf/Ar5VuT13HbPZjNdeew2XL1+GXC7Hd77zHbz11ltRY2g7CefmEolEsLi4iKmpKUQiEWg0GtjtdkxNTaGnpwcmkwnt7e344z/+40e2UX0sFxuv14vLly/jk08+gcvlwqFDh3Dq1Ck89dRTj+ScBBEXPExoHvM7J7YVBgwAC2EsMHaVvfXOq2yZaqP0OvaZv7nFrgs8tkmoMtwLV/b3Q74HupZ33nmHTU1NZQGwxcXF7Mcff/yg1fJARCIR1ufzsXa7nbXb7azT6WSdTic7Pz/P/uxnP2NPnTrF/smf/Ak7N/fwodIikQgbDof5D4fdbmd7enrYH//4x+zZs2fZH/7wh2x3dzdrs9ke+pwEEU88YotxE3iL8XPuRtW+isu/7cciACAHDWdP4onmWhSsX9vH5YJr1oTeq5fx2/67uXTlbXji6DEca8x9qGV+c3Nz+O53v4sPPvgAAPCNb3wDf/3Xf43U1NSHOOr2YDdwkGZZFufOncN7770Ho9GIP/qjP4LBYHjocwnPJ5FIwDAMBgcH0dnZiTt37sDpdOLUqVN45ZVXaA00ceB4KGFMVN5//31897vfxdLSEjIzM/H222/j5Zdf3vVyBINBWK1W3L59G319faisrMSZM2eQnJz8UCtNOGHklvGFw2FYrVb89re/xYULF5CXl4cvfOELqKurQ0lJCS33Iw4c1OJj8PLLL+POnTv4xje+gZWVFbzyyit46aWXMDe3Tev4EeHxeGCz2aDVatHY2IiKiooo6+1B32kSiYQX1UgkgpmZGXR3d2NiYgISiQRFRUVoaWlBcXExiSJxICGLcQsuXryI1157DVNTU0hNTcVPfvITfPvb335kxxdWv9gCXFpawszMDFQqFQ4dOgS9Xr9uc6mHcZ1hWRZ2ux0XLlzAxx9/jKSkJDQ3N6OpqQn19fXUhSYOLGQObMFTTz2FgYEBfP/734fb7cbrr7+O9vZ2mM3mHTtnKBSC0+lEMBhEUlISsrKyYDAYeFHkVsA8LCsrKxgaGsLo6CjsdjsyMzPR0tKCyspKEkXiQEMW433Q2dmJ1157DYODg1Cr1Xjrrbfwve99D3L5gy8gimX5ra2tYXl5GUqlEpmZmdDrP3fKZBgGLMtCLpc/tKP19evX8dFHH8HlciErKwtHjhzBiRMnos5HEAcRshjvg7a2NvT29uJHP/oRGIbBG2+8gaNHj+L27dsx05vNZrz++utbWpecwLlcLoyPj2NgYAC3b9/G6Ogo352emprC4uIiPB7PQ1uMwWAQMzMzGB4exuzsLLRaLY4cOQKj0UiiSBAgi/GBGR4exje/+U10dnZCLpfj+9//Pn70ox9FdUHff/99vPLKK3jxxRfxj//4j1sec3BwEFeuXMH4+Djsdjt0Oh3y8/N5d5ry8nK0tLQgOzsbGo3mgS3G4eFhXLx4ERMTEwiFQjh27BjOnDmzbg00QRxUyGJ8QKqrq3H16lX87d/+LdRqNX7605+iubkZly9f5tO8+OKLKC8vxwcffLChVcnBsixCoRC8Xi+CwSAkEglCoRAcDgfsdjtcLhf/vUwme6AyRyIRWK1W9Pf3o7+/H8FgkN+vhUSRID6HLMZHwNTUFF5//XWcP38eAPhlhampqXj33XfxzW9+c0urMRKJYH5+HmazGXa7nR9LVCgUkMlkUKlUyM3N5eMgbmQtbjZbPTExgatXr6K3txeLi4s4evQonn/+eRQWFtJkC0EIIGF8hLz77rt44403sLKygvz8fLz99ts4c+YMampqYDab0dvbi6ampph5w+EwPB4PHA4HgsEgWJZFOBxGJBKBTCaDWq2GXq9HSkrKA3WhnU4nLl++jAsXLsDj8cBgMODkyZM4ffo0+SoShAgSxkfMysoKXn/9dbz//vsAgK997WtoaWnBG2+8gTNnzuDjjz+OSi+s/nA4jHA4HBVFm1vhIpVKIZPJHmgGfGVlBTdv3sTly5dx+/ZtNDY24stf/jLKy8uRlnY3zEckEoly/CaIgwwJ4w5x7tw5vP7665ibm0NqairsdjsA4LPPPsPJkyf5dJs5eG8HhmHAMAxCoRAvrJylKZVKwTAM+vv70dHRwa/caW9vx5e//GVoNBq+DJwAkzASBAnjI6Wnpwdu9909FdRqNdRqNf7sz/4M586d49OcPHkSn332Gf//hxVGm82GtbU1rK2tweVywefzwePxwOfzwefzwe12Y2RkBBMTE6irq8PZs2dRW1uLvLw8fnc/ISSMBEHC+MhYWlpCTk7OttIKrcaNhFEcJIJhGPj9fvh8PgSDQQSDQbhcLthsNtjtdtjtdvh8Pvj9fn6scmFhAYuLiwgEAkhNTcWZM2fw1a9+NWoG+mGFmSASERLGR8hf/MVfYHx8HADgdruxsrKy7m+73Y6mpqYoq3E7rK2tYWZmBmazGUtLS1hbW4PX60UoFALLspDJZFAqlVAoFAgEAlhbW8OtW7cwNDSEI0eO4NVXX8Xx48dRXV29o/vGEEQisOubYSUyf/qnf/pIjxcIBOB0OmGxWDA3N4f5+XlYLBY4nU6EQnf3vVEqlVCr1dBqtUhOToZSqcTCwgJmZmYQDoeRmZmJmpoatLW1oaKighfFRxGEgiASFRLGfQwXDmxgYACTk5NQKBTIz89HXl4e8vPzkZ2djbS0NKjVasjlcmi1WoTDYXz66ae4desWSkpK8Nxzz+Gxxx5DaWkpNBrNQ8VxJIiDAgnjPiMUCsFms2F+fh7Dw8MYHBzEwsICIpEI0tLSUFRUhLKyMhQXF8NgMECn0/F5I5EIpqen4fF4oFQqUVpaiqeffhpVVVX8GmiagSaIrUkYYbzfodL9IAri7mw4HMbq6io6Ojrwz//8z1hbW4Ner0dVVRWMRiMKCgqQnZ0NnU4HpVK5bqywr68Pv/71r7GwsIDs7Gx+p8H09HQ+jXA7A4IgYpMwwiie0Y31vfi3vUY86zw7O4vBwUH09fVhcXERWq0WJSUlaGxsRFNTEw4dOrThvjBra2v8Gmi9Xo9jx46hrq4uShRpXJEgtkfCCKMQiUSy4Vga99t+gmEYWK1WdHZ24qOPPgLLsmhubkZdXR3q6+uRnZ0NtVq9oaDNzc2ho6MDAwMDkMlkMBqNePrpp1FYWBiVjgSRILZHwggjF3SBGzuTSqWIRCL8ypBwOAypVAq1Wv3A0Wl2Ai54RH9/P0wmE9xuN4qLi9HS0oKGhgbk5eVtmt/j8WB4eBg3b96E2+1GTU0NmpqaUFpauktXQBCJR0IIYyQSgcvlAsMwkMvlUKlU0Gg0YBgGdrsdNpsNDocDOp0OJSUl+0YYWZaFw+HAzZs38eGHH0IqlaK9vR319fWoq6tDZmbmpvltNhuGhobQ09MDs9mM6upqPP/886ioqNilKyCIxCSuhZFlWV78FhcXIZFIkJWVBZVKxf8eCoXgcrn4FSD5+fn7JsTW8vIyhoeHYTabEQgEUFZWhra2NlRXVyMlJWXTvMFgEGazGT09PbBarcjPz0dDQwMaGxv3zfXtVzYaStlseaQwqMdG+bZaXrnVEI4weMh2yrdVOnF68fASN6wkTCeVSiGXyyGTyTb1XOCiP3Hr8rnjcfnjPWJTXAtjKBTC8vIyZmdnMTk5CZ1Oh4yMDKhUKj6gq0qlglQqhdfrhUqlQjgc3utiA7jb9b9z5w6/jvr06dMwGo2or6/ngztsRCgUwtTUFHp6etDR0YHy8nK88MILqKqqSmhRjOVqxP2f+038oMcaUxanFXoFCKMMic8TiUT4j7AcXD7ue+68nFAI84vFSShi3JCP8LpilVmcVwxXFuH1CNNz5eLqhmEYPp1arUZ6ejqSk5N5gYwFwzBwOBx8YGUAkMvl0Gg0SE5OhlarjVn+eHETi2thtNlsMJlMWFpaAsMwyMjI4AO7AuBvtF6vR0ZGBnQ6Hf8bwzAIBALw+/1gGGbDSRlxQ+fScY1c+Lv4/8L8APjG6PF4YLFY0NHRgZ6eHhQVFSEtLQ3JyclwOBzweDwIBALrjiWXy3lfxd7eXly/fh2jo6M4dOgQ1Go1AoEAZmdn15VPWG7umFyMR+5l4ff7eQtAeD3ia4ll1XAPIneN4nrgrlv4sIpDqwmFgCuvTCaDVCpFOBzmH16hcInLEkuYxKIp/o3LFw6H+QhFwjBvQmHjhEt4rdy2E2KxFF4Ld16hZRXLmuTOvxFcfrE4iq9LfD1CERTXLXD3RcvVa0pKSlSA5I3wer0YHR3F2toadDoddDodkpKSEIlEeD/a5ORkqNVqKJXKqHZBwriDMAyDubk5XLt2DQDwxBNPrHNkBu5GucnJyYFer4dCoYBWq+W3J11cXMT09DRcLhffoMQPONdQuS6CXC5HOBxGIBCIasjC9BtZBVxjXFpawtjYGMxmM++WMzExAbvdzjdSYVxGrmHLZDKEQiEMDQ2ho6MDy8vLkMlkGB8fx0cffYTk5GR4vV4+P/eRyWSQyWS8wHAvjOLiYhQWFsLlcmF2dpYPRMGtvRaeX3h9YhHg6kEYL1L4sHJdq3A4jGAwuE4cub+5+hXGnpRKpQiFQggEAlH5gGgh5P4fiUT44wiFgjuPRCKBQqGAQqGAUqmERCLhg3MEAgG+foRrz7ljcL9z9cEJizDaukKh4O+XsKvJ1SmXRyhOXN1y9577Tnx9W70QuO4vAL6NcscTdo2543N1JLQYDQYDkpKSkJqaumnvw26348qVK1hcXERrayuqq6uhVqsRDAYxPj4On8+H7Oxs5OTkICcnBxqNJmY0p/1KXApjMBjEysoKv344PT0dBoMBubm5UQ8m1/jkcjmSkpL4/KFQCMFgEE6nEwsLC7Db7VEPPtd4hMLIPWxKpRIMw/BdiFjpY3UZhA13eXkZVqsVEokEeXl5yMzMRCgUgt1uh8fjWWeBcG/utbU1zM3NYXZ2ln9T5+bmIiMjg98XhnsYhNYZVwfcgyqVSqHVauF2uxEIBODz+eByueB0OuH1eqOEUZgf+Fx8hJYbd1yujoT1z5VfJpPxcSOFLyChMAofcOH1h0KhddaasGsbSwDF1uhGIiO8T0IBEYoW9ztXJ8IxOC4fAN7pXtgrEd5Lrn6EL0qhWArvl1gYxZa3ELEFy33H1TV3PGHXXiiMwjabkpLCe25sZtk5HA5MT09jeXkZra2t0Ov10Ol08Hg8/O92ux1OpxPJyclbDg/tN+JSGN1uN8xmM2ZnZ6FUKpGRkYHU1NR11gr3t/gGC7tKCoUCKpUKCoUiKg0ndNwbV6FQ8A2bYRheILnjC7tcwnOI3/KRSAR6vR4FBQWQSCT8DLpGo+EfGqFlJzzn0tIS+vr6kJSUhCeffBKlpaXIzc2FSqUCwzDrrlf8wHNw3eisrCxkZmbC6/UiNTWV705zebnyCi05Ydcw1niasK5jjdOJu+fC+yR8gIVpYnXfhd1jcddVaM3FghM2rr1wAiYWTnFXmhMQTtCE5RJPWgDRLxHhfRB3uYVtRFhvYsTpxPURq07FdS2uW/HxFAoFL2SxosVzXWUu7qher0dubi4KCgr4gCYVFRUIh8O4fv065ubmUFxcjOzs7HVl2c/EpTD6/X7Mz89jdXUVKpUKqamp0Gq169JtdBO4SZnU1FTk5+fD6/XyXSYun1DMhI1e2CUUjxmJzyd+QIUWDudWpFQqwbIsvwMgN47IMAzfNXO73Xz0bbVajdLSUrS3t6OyshJpaWm8uxIn4mJRFv+feyFotVpoNBqEQiH+OLHGTIWWjfB6hKIQS4i2esDvR0TFD7QwTSyRER5no/sitjRjlUmI8Ho3O34iwzAMVldXsba2xrchbsITALRaLXJycmCxWGC1WhEKhWC1WlFWVhZX4e7iUhi5bUW9Xi8fbivWQ7YRMpmMD9GVnZ3Nd4c3yyN+s8fa9H4jEeAQWyTC8aVYkwparRYKhQK3b9/G/Pw8FAoF2tvb0dzcjPb2dmRlZfF5xWObGz3gQitSeH69Xr/h+E8sK0N4PRvV21aC8SCCsll9bpRmq/vC1cHDlucgEAqFsLS0BKvVyo9FirvJWq0WSUlJCAQCsNvtsFqtsNlsSE9PX9cz26/EpTACn4+rcFbV/TRQYRc1lqW5n3C5XFhaWoLFYoFOp0NjYyPq6+uRn5+/10WLC7bbLg6awD0ooVAIi4uLvDAaDIaYkzTc8A83YSUe493vxKUXJmfxcRMqXBcy0Zibm8PHH3+Mq1evwmq1Ijs7G21tbaiqqtrrohEHFIZh+G5ycnIy7yomRjhpybnzPMgOl3tF/JRUgEajQV5eHvx+P5aXl/lI1zqdbsOJAXFXeatu4F4TDAYxOjqKjo4OOJ1O5Ofno7KyEgUFBXyagza+Rew93LYZHo8HqampMBgM/Pgi8Pny3NXVVSgUCqSlpSElJQVJSUlx1VbjUhiTk5NRU1MDuVwOt9sNl8uF6elphMNh6HQ6KBSKKP8t4awqx366SWKR9nq9mJiYQF9fH0ZGRlBZWYlnn30W1dXVUfn20zUQiUcs44HbhTIcDiMjI2NdVzoYDGJkZARmsxlJSUlIS0tDRkZG3LXVuBRGlUqFQ4cOIRgM8m8vr9eLlZUVRCIRqNVqfiZZ6Fe2XxE2GoZhMDExgc7OTszMzCAtLQ2VlZUwGo288zpB7BZC1yOPx4OVlRXeAyIlJQVpaWlRrktWqxVTU1Ow2+0oKipCYWEh0tLS+OPFSy8nLoURuDvOeOjQIbS2tvJbiPr9fjidTjAMA41GE+V7COzPmyIsUyAQgMViwY0bN/DRRx8hPT0dZ8+eRVNTU9w5yBLxj/BZCQaDWFhYwNTUFJxOJ++qwy0p5Ry6Z2ZmsLi4CJlMhsbGRlRUVCA1NZU/zn58BmMRt8IIgHeM5gZ2/X4/v4yL+1fYhd7vN8RiseDmzZsYHR1FMBhEbm4uWlpaUFpaGjduDkRiEg6HeQNEIpFAqVTyY/tOpxMOhwMul4tfLKDT6VBRUcEvZAD2V/T8rYhrYeTQarUoKCiIWmfKfcTd6L0SR3GjEPsEhsNhDA8P46OPPkI4HEZ7ezsOHz6MvLy8uHKMJRITbhECy7LIyMiAXC7H0tISWJbl1/hzY4plZWVIS0uDXq/fts/rfiNuhVFY0TKZbEt/xP38tnK73ZiamsLo6ChsNhuKiopw9OhR1NTURO0CSBB7hVQqhV6vR35+Ph9SLCkpKSoyvk6nQ1ZWFvLz86NmquMRCbufFSOB2MhiBICBgQGcO3cOS0tLSEpKQlNTE7+yhSD2CqHxEQ6HoyIQCeM8cqu4uCAam+1PFC/ErcUYz3CNhtsEa2hoCCMjI9Dr9WhsbERjY2OUKMbLgDWRmHARepKTk5GcnBz1GxduLtEgYdwlYkVFmZubw8WLF2EymSCRSPitDcRO3ASxF2xnzXkiiiJAwrirCBuW2+2GyWRCd3c3AoEAysvLUVdXh4KCgnUhzAiC2F0Sb4FxHLCysoLr16+jo6MD09PTSE9Px+nTp3HkyJF1q3O2ivpDEDvNQWyDZDHuMqFQCOPj4+jq6sLS0hLy8/NRV1eH6upqWtlCEPsEEsZdxOv1YmZmBrdu3cLNmzeRl5eH559/HkajkY8UFG/+XgSRiJAw7iLz8/Po6urCxMQEtFotysvLcfjwYWRmZvJpaAaaIPYeEsYdQihwLMvC7XZjcHAQ58+fh0ajwenTp9HU1LTOgTsR40oSRLxBT+EuYLPZ0N/fj+HhYbhcLmRkZKC5uRmVlZX8CoFYGz4RBLE3kMW4Qwi7w1NTU/jNb36DlZUVNDQ0oKWlBQUFBVERc6j7TBD7BxLGHSQYDMJisWB0dBQrKyvQ6/VoaWlBfX09UlJS9rp4BEFsAK2V3kFGRkZw/vx5WK1W6PV6VFZW4tixY8jOzo6r/S8I4qBBY4w7QDgc5tdA9/f3w+v1ora2Fs3NzcjNzY0KnEsQxP6DhPEhiTVpsry8jEuXLqG7uxt+vx8GgwENDQ0oKiqKSkfjigSxP6H+3CNAvFnQyMgIbt26BZvNhpKSEtTU1CAnJ2cPS0gQxP1AwvgIcTgcGBgYQFdXF8bHx1FcXIyzZ8+iurqaxhQJIo6gp/UhEW5kZTab0d3djfn5eWRlZaG2thZGo5FmoAkiziBhvE9irWV2u90wm83o7OxEZ2cnDh06hOeffx61tbX8GmiCIOIHEsZHwNzcHHp6ejAxMQG1Wo3S0lI0NjYiNzd3r4tGEMQDQMJ4H3Az0Nx65kgkApvNBpPJhN/97nfQarU4e/Ys6uvrkZ6evselJQjiQSFhvA/E7jUrKysYHBzE2NgYGIZBbm4umpubUVZWlrAh3wniIEDCeJ8IxXFychL/9E//BL/fj+PHj6OhoQEGg4FEkSDiHHLwfgA8Hg9GRkYwNDSEpaUlaDQaNDU1wWg00j7QBJEAkMW4BbFmocfHx/Hhhx9iYWEBBQUFaGxsRGVlZVTAWYIg4hcSxk0Qi2IgEMDCwgIGBgYwOjoKtVqNuro6NDQ0kCgSRAJBwrgBsQI8LC4u4sMPP8TY2Bg0Gg3q6urw+OOPo6ioiMYVCSKBoDHGTRBuG8mNKw4MDMDlcqGyshJNTU1RokjRcggiMSCLMQZigVtbW0N3dzd6enrgdrtRUVGB06dPo6KiIspSpGg5BJEYkDDGQLiJVSAQwNjYGLq6umCxWFBUVISGhoao/VoIgkgsSBg3weFwYHx8HF1dXejr60Nubi6++MUvwmg0QqlU7nXxCILYIUgYN8HhcGBsbAzLy8vQ6/UoLS2F0WhEVlbWXheNIIgdhIRxExwOB2ZnZ6HRaPDss8+isrISer2e/124dzRBEIkDCeMGsCwLlUqFrKwsaLVaHD58GDk5OXwXmmagCSJxoV0CN4BlWXi9XjgcDsjlcuj1eiiVyigXHoIgEhMSxg3YqJsca4kgQRCJBQkjQRCECFr5QhAEIYKEkSAIQgQJI0EQhAgSRoIgCBEkjARBECJIGAmCIESQMBIEQYggYSQIghBBwkgQBCGChJEgCEIECSNBEIQIEkaCIAgRJIwEQRAiSBgJgiBEkDASBEGIIGEkCIIQQcJIEAQhgoSRIAhCBAkjQRCECBJGgiAIESSMBEEQIkgYCYIgRJAwEgRBiCBhJAiCEEHCSBAEIYKEkSAIQgQJI0EQhAgSRoIgCBEkjARBECJIGAmCIET8/1MPsrkN5v+6AAAAAElFTkSuQmCC",
"path": "images_version_5/image_60.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
As shown in the figure, AB parallel CD, then the degree of angle 1 is ()
Choices:
A:30°
B:45°
C:60°
D:75°
|
Như hình vẽ, AB song song với CD, thì số đo góc 1 là ()
Lựa chọn:
A: 30°
B: 45°
C: 60°
D: 75°
|
Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
Question: As shown in the figure, AB parallel CD, then the degree of angle 1 is ()
Choices:
A:30°
B:45°
C:60°
D:75°
|
Please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: As shown in the figure, AB parallel CD, then the degree of angle 1 is ()
Choices:
A:30°
B:45°
C:60°
D:75°
|
As shown in the figure, AB parallel CD, then the degree of angle 1 is ()
Choices:
A:30°
B:45°
C:60°
D:75°
|
300
|
60
|
Vision Only
|
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAzsAAAJLCAYAAADAeohaAACtQklEQVR4nOzdd3hUxfoH8G8IaaQACUlogdAhoYMQEKWKAiLNKyCISFH42eXasICKem3XjgVpFpCiIL13pKRQQoIQSoDQIUASSELK/P7YO7NnN7tnSzYhLN/P8+RhOXPKbDlnd847846HEEKAiIiIiIjIzZS71RUgIiIiIiIqCWzsEBERERGRW2Jjh4iIiIiI3BIbO0RERERE5JbY2CEiIiIiIrfExg4REREREbklNnaIiIiIiMgtsbFDRERERERuiY0dIiIiIiJyS2zsEBERERGRW2Jjh4iIiIiI3BIbO0RERERE5JbY2CEiIiIiIrfExg4REREREbklNnaIiIiIiMgtsbFDRERERERuiY0dIiIiIiJyS2zsEBERERGRW2Jjh4iIiIiI3BIbOxaMHDkSHh4eiIyMvNVVcQtdunSBh4cHunTpcqurYrfbsc4FBQX48ssv0a5dOwQFBcHDwwMeHh7o378/AGDTpk1q2aZNm25pXYnKGlvnvDx3Jk+eXCLHT01NVceYNWtWiRzjTsTrnj53/dzNmjVLPa/U1NRbXR0qpgMHDmD48OGIiIiAt7e3em/37t1r1/Yuaexs27ZNHdjDwwNbtmxxxW6JyAFDhw7FCy+8gNjYWGRmZt7q6pBGjx491PWxW7dudm8nf4Bb+vPy8kJoaCg6d+6Mjz/+GFeuXCnBZ0C3o+vXr2PGjBkYPHgwGjZsiMqVK8Pb2xthYWHo0KEDXnrpJezcudPq9pY+d+XKlUNQUBAiIiLQpk0bjBkzBj/++CMuX75cis+MiO4U8fHxaNeuHX777TekpaUhLy/P4X24pLHz888/6/6fqCyYPHmy+sJ2N3///TcWLFgAAOjTpw/Wrl2L/fv3IzExEV999dUtrt2dLS0tDRs3blT/37RpE06ePFns/ebn5+PSpUvYsmULXn31VTRp0kT3hyvdWX766SfUq1cPo0ePxvz585GSkoKrV68iLy8PFy9exM6dO/H555+jQ4cOaNeuHf7++2+79iuEQGZmJtLS0pCQkIDp06fjqaeeQs2aNfHEE0/g0qVLJfzMDEo60na7i4yMhIeHB0aOHHmrq0JULK+//jqys7MRFBSEqVOnYvfu3UhMTERiYiIaN25s1z7KF7cSubm56kdWQEAAsrKysGDBAnz99dfw8/Mr7u7JDbDrQMlbt24dAMDT0xNz5sxBUFBQkXW6dOkCIURpV+2O9+uvv6KwsBDe3t4QQiAvLw+//vorJk6c6NB+EhMTTf5/8+ZNHDt2DL/88guWLFmC8+fPo0+fPjh06BCqVKniyqdAt5HCwkI888wz+O677wAA5cqVw0MPPYQ+ffqgfv36CAoKwsWLF5GYmIi//voL27ZtQ2xsLD7++GMsXrzY4j7btm2LmTNnqv/n5ubiypUrSElJwbZt27Bo0SJkZ2dj1qxZWLVqFRYtWoSYmJjSeLpE5Mby8vKwefNmAMCTTz6J8ePHO7WfYkd2/vrrL1y9ehUA8OWXXwIAMjIy8NdffxV310Rkp9OnTwMAwsPDLTZ06Nb55ZdfAAC9evVCr169TJY5omnTpiZ/rVu3xsMPP4y//voLI0aMAACkp6dj+vTprqs83XamTJmiGjr16tVDQkICFi1ahDFjxqBLly5o3bo17r//fvz73//G1q1bsXXrVrRq1Up3n/7+/iafvTZt2qBHjx4YP348fvvtN5w8eRLDhg0DAJw7dw4PPfQQTpw4UeLPlYjc26VLl3Dz5k0AQMOGDZ3eT7EbO7NnzwYAREVFYdSoUYiKigLArmxEpSk3NxcA4OXldYtrQlqxsbFITk4GAAwbNkz9IPznn3+we/dulx3nlVdeUY937drlsv3S7SUhIQHvvvsuAKBq1arYtm0bWrRoobtNp06d8Pfff+PRRx91+rhVqlTBr7/+inHjxgEALl68iOeff97p/RERAcbfNkDxft8Uq7Fz4cIFrFmzBgAwfPhwAFBf5mvWrMH58+dt7uPMmTN47bXX0Lp1a1SsWBHe3t6oWrUqmjVrhqFDh2LWrFnIyMhwqn4FBQWYNWsW7r//flStWhXe3t6oVKkSGjRogO7du+ODDz5QP0T0XL16FW+//Taio6Ph7++PSpUq4d5778Vvv/1mVz0SExPx5JNPokGDBqhQoQICAwMRHR2NF1980WqWkAULFqg+yYcOHbK4Tv369dU6f/zxh8V1+vfvDw8PD9x1110my80zlRQWFuLHH39Ex44dUblyZfj7+6N58+Z4//33cePGDbuepzV6WY4sZYJZu3Yt+vbti6pVq8LHxwd16tTB+PHjkZaW5tTx5XN955131DJLA2/1MracPn0aL730EurXrw8/Pz+EhITg/vvvx8qVK+2qw5UrVzBlyhR06NABVapUgY+PD6pXr45+/frhzz//dOp5aZ+HvOlw4sSJIs9Lsjcr0YkTJzBu3DhERkbC19cX1atXR//+/dW4E72xT45k9tHrU27++czNzcUXX3yBmJgYVKlSxWpf/fz8fEyfPh29e/dG9erV4ePjgypVquDee+/FF198gZycHN06uZq86VOxYkX07dsXDz30kIq8ufKGkDZzZHGeo/k4iHXr1uGhhx5CtWrV4Ovri7p16+KZZ56xeS4eO3YMn332Gfr27YvIyEj4+fnBz88PtWvXxuDBg7Fq1Srd7R19/2/evImlS5fimWeewV133YXKlSvDy8sLISEhaN++PSZPnlxqY0kOHTqE5557DtHR0ahYsSL8/PxQt25dPPHEE0hISCjRY3/44YcoKCgAAHz99deoWrWqXdv5+vrikUceKfbxv/jiC0RERAAAlixZgqSkpGLv05y8bkjvvPNOkWuerXEq8+fPR/fu3REaGgo/Pz80atQIr7zyCtLT0+2qw9q1azF8+HDUqVMHfn5+CAoKQosWLfDKK6/g7NmzVrczv3bm5OTgk08+QevWrREYGIjAwEC0a9cO33zzDfLz8+2qizn5fSsja7Nnzy7y+tjKMlrc7+Ddu3dj7NixaNiwIQICAuDv74/GjRvj6aefRkpKilPPy9yVK1fw2muvoXHjxvDz80NYWBh69OihhlXYyxXfGfv378djjz2GGjVqwNfXF7Vq1cLw4cPV+a6X4dfSd+aff/6p6lO+fHmr75ezn0Ot0nivbt68ialTp6Jr164IDQ1Vv/N79+6tunmbk+dKnTp11LInnnjC5HPs0Hg9UQz//e9/BQDh4eEhTpw4IYQQIjU1VXh4eAgA4rPPPtPdfsuWLSIoKEgA0P1bunSpw3XLzMwU99xzj819Dxo0qMi2jz/+uAAgateuLQ4ePCgiIyOtbv/000/r1uODDz4Q5cqVs7q9j4+PmD17dpHtLly4oNb57rvvipSnpaXZrEdhYaEIDg4WAMSECRNMymbOnKm2PXDggOjWrZvVOrZr105kZWXZesmt6ty5swAgOnfuXKTs+PHj6jgzZ84Ur776qtV6hIaGiuTkZIePr32uen/Hjx+3WOetW7eKkJAQq9t98sknusdfvny5qFSpku6x+/TpIzIzMx1+bvY8L2njxo1q2caNGy3ub82aNcLf39/ifjw8PMT7778vJk2aVGTfkvn7qad27doCgHj88ceLlGnfs9jYWNGyZcsi9Zk0aZLJNkeOHBFRUVG6r0WDBg3E4cOHbb2sLnHz5k1RpUoVAUCMGjVKLX/iiScEABESEiJu3rypuw/5ObR1qT5w4IBa76mnnnK6ztrXdvLkyVZfx6CgILF582aL+zh27Jhdn8vhw4eLvLw8i/tw9P2X12y9v5CQELFt2zarz13vOmX+2ljz7rvvivLly1utg4eHh3j77bctbuvIuWPJ1atXhaenpwAgatWqJQoKChzehzlZH2uviSUffPCB2u79998vdh3MyeuG3p/2mqK97q1bt048+uijVrerX7++OHv2rNVjZ2VliQEDBugeOyAgwOpvFu2189y5c6JFixZW99O3b1+n3kPtNcPan/b9dOV3cF5enhg/frzusb28vMSPP/7o8PPSSkpKEtWqVbN6jFGjRplcQ7Tf7Vqu+M6YNWuW8PLysvpcZ82aZfKb0pz29Z8xY4Z47LHHdN8vIYr/ORSi9N6r1NRU0aRJE93jdOrUSVy+fNlkO+25Yu1P71psrliNHXmi3nvvvSbLZSOjRYsWVrfNyckR1atXFwBEYGCgeOWVV8TKlStFfHy82Llzp5g3b5544YUXREREhFONnQkTJqgX5MEHHxRz584V27dvF/Hx8WLVqlXio48+Evfcc494+OGHi2wrP5ihoaGiQYMGIjAwULz55pti06ZNIi4uTkybNk3UrFlT7X/VqlUW6/Dtt9+aXCQ+/fRTsWPHDrFt2zYxefJk9aPSw8NDLF++vMj28gMyePDgImW//PKLyZseHR1dZJ09e/aocvPXUHsh6NixoyhXrpx4/PHHxfLly0V8fLxYtGiR6NChg1rntddes/elL8Lexk7Hjh3VenPmzBFxcXFi3bp1YsSIEWqdmJgYh49/5coVkZiYaHJiJyYmFvnT/vCUdW7YsKGoUqWKCAsLE//5z3/Etm3bxO7du8V///tf1YApX768OHDggMVjr1mzRv0AiYyMFB999JHYtGmTSEhIEEuXLhXDhw9XdRo4cKDDz03WvV+/fgKAqF69epHnJdlq7KSkpIgKFSoIAMLT01M8/fTTYv369SI2NlbMnDlTfSm0a9dO7cdcSTR2mjdvLjw8PMSIESNMPp8rVqxQ6585c0aEh4er68mECRPEypUrRUJCgti4caN4/fXX1XOrW7euuHr1qt2vsbMWLVqknsOGDRvU8vXr16vlixYt0t2HvY2dkSNHqvUsXUvsJffRtm1bAUA0atRITJ8+XcTGxop169aJp556St28CQwMFKmpqUX2kZKSIry9vUXfvn3FV199JdatWycSEhLEunXrxNSpU0V0dLQ6jrUf/o6+/8OGDRN169YVEyZMEPPmzRM7duwQsbGxYuHChWLcuHHC29tbXYfPnz9v8ZjFbey89dZbJteyn376SezYsUPExcWJ3377zeR6+tVXXxXZvriNnWXLlqntx40b5/D2llj7saVn9+7darsHHnjAJfXQOnTokEhMTFTHGD9+fJFrXlpamlpfe92T3zH9+/cXf/75p4iPjxcrVqwQffr0UesMGTLE4nHz8/NF165d1Xf20KFDxYIFC0RcXJzYsWOH+PLLL0WtWrUEAOHt7S3i4uKK7EP7A65jx47C29tbPPfcc2Lt2rUiPj5ezJkzx+SH4ffff+/w63Ps2DGRmJiofl/169evyOtz7Ngxtb4rv4O16/Xq1Uv8+uuvYvfu3SI2NlZMmzbN5NxfsmSJw89NCEOjXvv7a/DgwWLFihUiLi5OzJkzR1277rrrLrWOpcaOK74ztm7dqq6Hfn5+YuLEiWLLli1i165d4ttvvxU1a9YU3t7eolWrVgKw3dhp3ry5ACDuuecek9f/p59+Uuu74nNYWu9VZmamqFu3rtpP//79xZIlS0RcXJxYsGCByfdbhw4dRH5+vtr2/PnzIjExUaxevVqtM2XKFJPPsbVruSVON3b279+vKmDe8vvhhx9U2f79+y1ur/3Ct9X6vHbtmsP1i4iIEAAsNma0zFuTQpjeJaxUqZLFH7IpKSnC19dXABAPPfRQkfILFy6oE6V69eri5MmTRdZJSEhQDZ4aNWoUucsrf5xXrVq1yLajR49Wx5Yf+gsXLpis8/nnnwsAoly5cuLKlSsmZebRjl9++aXIMXJyckTTpk0FYLgrau0urC32NnYAiLFjx4rCwsIi640ZM0atk5CQ4FQ99CIS1uosL1DaL09p69atKor53HPPFSnPyspSF9OePXuK69evWzzWjz/+qI61bt06x5+YELp3jiRbjR35WQIgFixYUKT8+vXrJg2d0mrsABDTp0/X3deDDz4oAIiIiAhx9OhRi+toz7c333xTd3+uIO+81axZ0+QObUFBgfqyHjBggO4+tJ9D8x8s8fHx4o8//jC5w2fremeL9jVv3bq1xWjjzz//rHu8rKwscebMGavHKCwsVI0zf39/iz8iHH3/jxw5YvG6Ie3fv18EBATovvfFaezs3r1b/eixtv+CggJ1cyMwMLDINbm4jZ3333/f6neys5xp7OTm5qrXom7dui6ph17dbN3d1V735A8mc4WFhaJnz54CMNy8Mv8uFUKITz/9VACGu93ahrZWenq6+pHYqVOnIuXa7yAvLy+L1+HLly+r743mzZvrPjc9etdXLVd9By9cuFCVT5s2zeKxsrOzVS+SyMhIp35TvPTSS+o4H3zwQZHymzdvqvdSr7Hjiu8MecPf29tbbN++vUj5+fPnTX7s22rsABAjRozQvZa54nNYWu/Vv//9b3UcS69fYWGhGDZsmFpn6tSpRdYp7nVRcrqxIyMnPj4+RS7aV65cET4+PgIo2n1K+u2339QTcKYxY4sMK3755ZcOb6tt7Fi6AycNGTJEABCVK1cuUvbRRx+pfcydO9fqPqZMmaLWmz9/vknZ77//rsoOHjxoUla/fn31o1SeTOY/UPv3769+tJjT/pjQiyh8//33ar19+/ZZXU+PvY2datWqiZycHIv7+Oeff9R6zrynQjjf2NG7qxETEyMAiFatWhUp+/rrrwUA4evra/MOhGxEDBs2zPYTsaC4jZ20tDT1A0XvB/jevXtLvbHTrVs33f1o7/L+9ddfuuu+8sorAjDcgChJly9fVtGEV155pUj5yy+/rL4kLd1wkezpkgIYIpA//fRTsbsuafdp7Y6gEEL06tVL/TDUa9hYc/nyZRXxXLhwYZFyR95/e73wwgsCgGjatKnF8uI0dgYNGiQAiDZt2uj+UNF+N5r/yCjul/qLL75o93lgL2caO0IIUbFiRavfja7iTGNH7/1ZtWqV1dfv5s2bqtvUiy++qHu8FStWqP2kpKSYlGm/g1566SWr+3jttdfUes5GoZ1p7BTnO7hNmzY2vz+EECI5OVntZ+3atXY/HyEMN2ArV64sAEND0Nr17tSpUyZdy8wbO674ztixY4fah95n4q+//rK7sVOpUiWRkZFhdV+u+hyW1nsle79ERUWZRG20rl27poYJREVFFSl3VWPHqQQFBQUFmDNnDgDDBIaVKlUyKa9UqRJ69+4NAJgzZ44aMKlVrVo19Vibv99V5P7nzZvn9AB7Dw8P3Qw1bdq0AWAYKCfTb0ty3pNKlSph0KBBVvcxZsyYIttI2kFp2gHlp0+fxpEjR+Dh4YHOnTur9bTrCCGwZcsWAEDnzp2tHh8wJpWwRD5HwDDouCQ9/PDD8PHxsVjWqFEjBAQElEo9tCpVqoQ+ffpYLZevj6U6yfTrnTt3RlhYmO5x7r33XgDAjh07nK1qsWzatEkNEnz88cetrteiRQub2Z1cTe/zCRhf5woVKui+V4DxdT5z5gxOnTrlmgpa8Pvvv6t0mTJ5i5ZcdvPmTcybN6/Yxzt8+DBmzJhh98SQtjRr1szk3Dc3atQoAIbBvbbm0crLy0NaWhoOHjyIAwcO4MCBAzhz5gxCQkIAAPv27dPd3tb7b8mVK1dw9OhRJCUlqWPK76nk5GSnZuC2Ji8vTyUqefjhh3UnLa5UqRKaNWsGwPXnemZmpnrs7+/v0n07Sl6rtXUqCx599FGr74/ed93u3bvVgG9biRzkNQbQf4/t/d49fvy47vFcydnv4NOnTyM+Ph6A7denSZMmah4wR8+B+Ph4XLlyBYDhe6pcOcs/YWvWrImePXta3Y8rvjPWr1+vHut9Z/bp00dd62zp27cvAgMDrZa74nNYmu+V/F08cuRIeHp6WlwvKChI1SM5OdnuxAqOcqqxs2bNGlUhS1/k2uVnz54t8iMeMKS7rFu3LgDghRdeQLt27fDhhx/i77//Vj8SikN++P7++2/UqVMHzzzzDBYtWoSLFy/avY8qVarofkiDg4PVY/OL+oEDBwAArVq10k2XFx4erjJ0yG20ZY0aNQJg2pCRj6OiohAaGmqxsbN//36VWcZW5hW9GWj1nqOr2ZoJt3LlyqVSD60GDRpYvaACxtfHUp3i4uIAAKtXr7aY/U379+mnnwIwzFFxK2g/e3o/cgHDBIOlqXnz5rrl8nW+ceMGypcvr/s6P/jgg2q7knytZXa85s2bqx+3Wtrl9mZlE4ZIvPorKCjA+fPn8ccff6BFixb4+++/0aNHDyxatKjY9TfP3miuXbt26rH5dQswNAC+/fZbxMTEICAgABEREYiKikKzZs3U34ULFwDAZpY0W++/lJiYiFGjRqFatWoIDg5G/fr10bRpU3U8mbmnsLBQ/WByheTkZHVD7fXXX7d5rsvPq6s/f9ofSdevX3fpvh0lr4dlbc4vZ7/r5HsGAB06dNB9f2WDANB/j8vK966Ws9/B2tdn6NChNs8Bec47eg5oJ1Z25BplzhXfGfK65+Pjg6ZNm1o9lqenJ1q2bKlbV8ne7zrA+c9hab1X2u+F9u3b666rLbf0feIKTjV25Jez3l1vbcTH0pe5l5cXli5diiZNmgAwzEcxceJE3H333ahUqRJ69eplNSpkj7feegujRo2Ch4cHLly4gG+//RYDBw5EeHg4mjVrhkmTJtlMjV2hQgXdcu2PYPN6yoZGeHi4zbrK9KCW0l7KhoqcQRYwNmpkWdeuXQEYvnRlY06uU65cOdxzzz26x9d7nnrP0dXsfb1Luh5a9tbJPHViXl5ekWifPYqb5ttZ2h9/tqJQoaGhJV0dE/IL1hr5o9lRJfVaHz58WM2hY+1mkLZs586dTqX4LFeuHMLCwjBw4EBs27YNDRs2RG5uLkaOHFnsH/O2PgPa65r5dSs9PR0dOnTAM888g127dtm8eZWdna1bbuv9B4Dp06ejdevWmDlzpl1fyraO6Yiy8vmTd2AB2DXtQ0nJzc1VP4a1P9rLAme/60riPS4r37tazn4Hl9Y54Mj3lN5vL1fUV9YlODjYatRCsvc7szS+60rrvdJ+L9j6HaxNkW9v+ndHlXd0g4yMDBUCvHr1qtWQp9bixYuRmZlZJDwXFRWFxMRELF26FEuXLsXmzZtx9OhRZGdnY9WqVVi1ahX++9//YsWKFTY/2Oa8vLwwffp0TJgwAXPnzsWGDRsQFxeHmzdvqm4N//3vf/Hrr7+iX79+Du3bEXpdGiQhhNWyzp0744cffsC5c+fwzz//oHHjxqrhIxs7NWvWRN26dXHs2DFs3rwZDz/8sFqnefPmdv1YINfSfhk88sgjeOutt25hbW5vtr5I5Gtdp04dLFmyxO79avP3u5KM6gCGyT61E35a8/PPP+O9995z+pgBAQEYP348XnzxRWRkZGDhwoUYO3as0/uz57plzfPPP6+6SfTv3x+jRo1C8+bNERYWBl9fX7XvWrVq4dSpU7rXP8D2+//PP/9g3LhxyM/PR1hYGF5++WV069YNkZGRCAwMVJH1GTNmYPTo0QD0r7mO0p7rn3zyCR544AG7tnN1VzNt99KSns9Hz759+9TrK3sm3O607/GmTZvs7pbk6O+W25X29fntt9/sjsY6+ttEe97aukbpneNl7TtDsve7DnD+c1ha75VWcd4rV3G4sTN//nyH74rduHEDCxcuxBNPPFGkzNPTE/3790f//v0BGLq9rVy5ElOnTkV8fDzi4+Px1FNPOd01IyoqCu+99x7ee+89ZGdnY/v27ZgzZw5+/vlnZGVlYejQoTh69KjJGCJXCA4OxtmzZ+26yyjvwlm6C2Y+bicoKAgpKSlqvI52vWPHjmHTpk0YNGiQ3eN1qGT4+vqiQoUKuHHjBq5evaob5i4LtBeyCxcuoGbNmlbX1esKqr0jaWmiMC1XdbWRF/zz58+jcePGKF/e4cuaywgh8Ouvvzq83a+//op33323WI0MbRcUbXcPZ9iKDGjLtdetjIwMNQbp0Ucf1Z142VVdyWbNmoX8/Hx4enpi06ZNqrdASR3PnPYHR15e3i071zt16gRPT08UFBRg5cqVKCws1O2CW1LWrl1rUid3oH2Pvb29y/z1vLRpXx8PD48Se32015rz58+jYcOGVtfVi2C44jtDfmemp6ejoKBAt6HiyPAJPa74HN6K9+rcuXO675W17xNXcvhKKLukVatWDXPnzrX5V6tWLZPtbKlWrRpGjRqFHTt2oHXr1gCAZcuWuaTbgZ+fH3r06IEZM2bgk08+AWDozrBs2bJi79uc/ADt2bNHdzDshQsX1EzHlj501apVQ4MGDQAYGjvm43Uk7bidxMREXL582WQ5Fe9utTNatWoFANi+ffst655mr+joaPVY26fXEr1ybfRW78fl5cuXXTajvXydb9y4ge3bt7tkn87auHEjTp48CQB49tlnbV4fX3rpJQCGWbTlDQpnaWdcL+4A/NjYWLvLtdetlJQUdewhQ4ZY3f7QoUPIysoqVh2lpKQkAIbIhrWGDmD7c+2s6OhoeHt7AzCMZ71VKlasiAEDBgAATpw4gcWLF5d6HXJycvD9998DMFxvS7LXRGmS1xjg1r7HjijN77vSen204x8duUaZc8V3hvzOzM3N1b25VFBQgL179zp1DHOueJ1L673Sfi/s2rVLd13Z7dt8O1dyqLFz/PhxbNu2DQAwaNAgDBkyxObfv/71LwCGMSfyR4A9vLy8VFQiPz/fqfEPerp3764eu+pHl1aPHj0AGLr6/fHHH1bXmz59ugrhyW3MacftmI/XkbTjdhYsWADAcLGzNV7nTuLr66se5+bmlvjxHnroIQCGCMa3335b4scrjq5du6q7wHo3Jvbt26ebPaty5cpqrJ7ej8u5c+c6V1ELtD+oPv74Y5ft1xnytfP09MSbb75p8/r45ptvqm5W9t4Qskb75R4REVGsfSUmJmLPnj1Wy2fMmAHA8Dy11yJtg0uvgS9/ELuCPKbe8c6dO6e6X7tahQoV1PfJpk2bTL64S9trr72mzuNnn33W7v75ubm5mD9/frGP/+KLLyItLQ2AoQujXuOzuOT1vDSu5Z06dVJ3nL///ntkZGSU+DGLqzRfn/r16yMqKgqAIROlI7/1HNGmTRsVUfnll1+sdn86ffq07g95V3xnaH9D6l27ly9frm4+F5crPoel+V7J3wKzZ8+2OvYsMzNTXXuioqJc3stKcqixo/1wPfzww3ZtI9cTQuCXX35Ry7du3YojR45Y3e7mzZtq3ElAQIBDg6LT09OxZMkS3X6A2hOhJPphPvHEE2qw34QJEyymud23bx8++OADAECNGjVUVz5zstF37tw59aEwb+zIcTtCCHz99dcADHdB7O3TeSfQnkRHjx4t8eONGzdODRp+6623VHpaa7Zv317su/vOqlGjhko2smjRIixcuLDIOtnZ2XjyySdt7kumvPzrr78svs4HDx7E22+/XcwaG911110qzeiKFSswadIk3fVTU1OtNrZkBhqZIdERN27cUDc27rnnHrv661euXBndunUDACxcuNDpCPaJEycwdepU9X+Z+r84nnzySYtdDefMmYMVK1YAMPyg1Z5X9evXV3eUrf0AWLZsmbpGuYKMfB8+fBg7d+4sUn7jxg08+uijLk1KYO6NN95Qz3vIkCG61xc5dYNsFLhSmzZt8OabbwIwpMrt1KmTzS6NO3bsQMeOHdV0Es64dOkShg8frhqx4eHh+PLLLy2um5qaqs6z4vQ8kJ+70riW+/r64t///jcAw/fwkCFDdLvhZmZm4ptvvinxeukpzdcHgPrc5eTkYODAgbpdt3JzczF16lTk5OQ4dAwfHx81HGLv3r2qh45Wfn4+xo4dq5sYxRXfGR06dFDjXb799luLaf8vXryIF198Uf9JOcBVn8PSeq/k1CpJSUl45513iqwjhMAzzzyjAg7PPPOMQ8dwiCOT8siJLMPCwuyevK6wsFDNFt6oUSO1fNKkSaJcuXKic+fO4uOPPxarVq0S8fHxYtu2bWLGjBkmM7W/8MILjlRTTUIUGRkpXnrpJTFv3jyxc+dOERcXJ5YuXSqefPJJNYFizZo1RVZWlsn29kzQKITpxHeWZuj99ttvVXlYWJj473//K3bu3Cm2b98u3nnnHTWjt4eHh1i+fLnV46SlpZlM9ufh4WFxhudRo0aZrPfss886XXfJFRM62TupaHEmobRHSkqKOlbPnj3F5s2bxeHDh0VKSopISUkxmSHY1gSDkq2JSteuXSvKly8vAIhy5cqJf/3rX+L3338XsbGxIjY2VixZskRMmjRJNG/eXAAQX3/9tVPPrbiTigpheH0qVKggAAhPT0/xzDPPiA0bNoi4uDgxa9YsERUVJQCIu+66S/c5ayfnq1mzpvjpp59EfHy82Lx5s3jrrbdEUFCQqF+/vggNDbX6ftr7+ZROnz6tJlsDINq3by9++OEH8ffff4uEhASxdu1a8dlnn4n77rtPeHp6ikGDBlncj9ze1rlvyc8//6y2d+R9/PHHH9V2c+bMMSnTTiqamJho8rdv3z6xYcMG8c4776hJ2QDnJ6YVwvj827ZtKwCIxo0bi5kzZ4q4uDixfv16MX78eHXtDAwMtPje9OnTR+3n/vvvF3/++aeIi4sTK1asEKNHjxaenp6iQYMGLnv/d+/erdatXLmy+PDDD8XmzZvFrl27xNSpU0WDBg0EAHH33Xfr7rM4k4oKYXotCAgIEM8//7xYvny5SEhIEDt27BBz584Vzz33nKhevbp6P7VcNXleQUGBePLJJ9W+ypUrJwYOHCimT58uNm/eLBISEsTq1avFZ599ZvL56tevn9Xn3LZtW5PPXlxcnFi3bp347rvvxLBhw4Sfn59at3r16mL37t1W66d9no5OVqolZ1738fER33//vUhMTFTXcu0kzraue5aer6X3OD8/X3Tv3l2tU6tWLfHBBx+IjRs3ij179ogtW7aIadOmiWHDhgl/f38REhJSZB/2TmztSJ2teeONN9Q+PvzwQ7F37171+qSlpan1XPkdrJ2QvUqVKuKNN94Qa9asEXv27BHbtm0Ts2fPFmPGjBHBwcECgMjMzHT4eV29elX9pgQghg4dKlauXCni4+PF3Llz1feT9nvK0vnuiu+MrVu3quuhn5+feOONN8TWrVvF7t27xdSpU0VERITw8vISLVu2VL9JzTl63rvicyhE6bxXGRkZatJ7wDCJ6dKlS0V8fLxYuHCh6NKliyrr0KGDxYlHXXVdtLuxs23bNnXAp556yqGDPPfcc2rbnTt3CiFMT3q9v4EDB4rs7GyHjqd9cfT+atSoIRISEops76rGjhBCvP/+++pksPTn4+MjZs+ebfM51atXT20THR1tcR3tjy0A4o8//ihW3YVwr8aOEEI88sgjVt8L7evgqsaOEEKsX79eVK1a1a7PpD2fBUtc0dgRQog1a9YIf39/q/WbNGmSeOuttwQA4evra/VY2nPe/C8iIkIkJSXpvp+ONnaEECI1NdXkC07v74knniiy/Y0bN1R569at7TqmVo8ePQRguBlx+vRpu7e7ePGi8PT0FADEAw88YFKm/TFqz9/gwYOtzoBuD+37rHeNDgoKEps2bbK4j5MnT4patWpZ3bZWrVouf//feecd3ddlwoQJNvdZ3MaOEEJ8/vnnwsfHx+b75O3tXWRWc1d9qUvfffedalDa+uvYsaPFBoojnz1fX18xatQocenSJd16aWdlHzhwoNPPb8+ePVZfa+1nylWNHSEM14gRI0bY9XrUqVOnyPal2dhJS0tTP1TN/7SfcVd+B+fn54tXXnlFXc/0/vz9/cWNGzecem4HDhzQ/U594okn7LqGFPc7QwghZs2aJby8vCxuU758eTFt2jTx2GOPCcBw88icM+d9cT+HQpTee3X8+HHRuHFj3f3ffffd4vLly1a3d8V10e5ubNouCYMGDbJ3syLry/288sorWLFiBV588UXExMSgVq1a8PX1ha+vLyIjIzF48GAsX74cf/zxh8lYC3vUrl1bhTh79eqFRo0aoVKlSihfvjyqVKmCzp0749NPP8XBgwdNBmuVhIkTJ2LPnj0YO3Ys6tWrBz8/P/j7+6NJkyZ4/vnn8c8//2DEiBE296MN91sL/ctxO4ChO452Bl0y+PXXX/Hxxx+jXbt2qFixYqlkK+rWrRuOHj2Kb775Bg888ACqVasGb29v+Pr6IiIiAj179sT7779v92ehJN133304cOAAnnrqKdSuXRve3t4IDw9Hnz59sGrVKkyePFn1E65YsaLV/Xz55ZeYM2cO7r33XgQFBcHPzw+NGjXCa6+9hj179qg+w65Uu3Zt7Nq1C4sWLcKQIUNQp04dVKhQAV5eXggNDUXHjh0xYcIEbN68GdOnTy+yvXaGaEe7Hpw+fRobNmwAYOjeUL16dbu3rVKlijpX165da/fkbR4eHggMDERUVBRGjx6NzZs34/fff7drOgB7TJ48GatWrUKfPn0QHh4Ob29vREZG4v/+7/+QlJRkNdNjREQEEhIS8PLLL6Nhw4bw8fFBxYoV0aJFC0yaNAl79+51+fv/9ttvY/ny5ejZsycqV64Mb29v1KxZEwMHDsSaNWvUpL0l7YUXXsDRo0fx1ltvISYmBlWqVEH58uXh7++Phg0bYtCgQfj+++9x+vRp1K9fv0TrMm7cOBw7dgzTpk3Dww8/jHr16iEoKEidDzExMXjppZewe/dubN++3eYkjVoBAQGoXr06WrVqhdGjR+PHH3/E6dOnMX36dJtdp4tznmm1bNkSO3bswNChQ1GrVi2Xfe71+Pn5Yfbs2YiLi8P48eMRHR2NihUronz58qhUqRJatmyJ0aNHY+HChTh48GCJ10dPjRo1sHv3bowePRr169d3+HeUMzw9PfHRRx8hOTkZEyZMQKtWrVC5cmV4enoiMDAQ0dHRGDZsGGbPno2zZ8/Cz8/PqeNER0cjKSkJr7zyCho0aAAfHx9UqVIFXbt2xZw5c9SYQluK+50BGCawj4uLw7Bhw1C9enV4e3ujRo0aeOSRR7Bt2zaMGTPGru9MR7jic1ha71VkZCT27duHb775Bp07d0ZISAi8vLwQHh6OBx54AL/88gu2bNlS4nNyeQhRCgmuicht9OjRA+vXr0enTp2wdevWW10dl5k8eTLeeecdNGjQAAcPHrQ554E7kuNOJk2ahMmTJ9/aypBbGjlyJGbPno2uXbuqGwRE7qx+/fo4evQohg8fbjJ2nUpP6SfhJ6Lb1pkzZ1QShZiYmFtcG9eSCVEmTpx4RzZ0iEqDPM9cmaSEqKyKjY1VSSLc7TvzdsLGDhEpehkSs7OzMXLkSDWPyq3ucudKN2/exK5du1CnTh0MHz78VleHyC2lpaUhNTUV99xzD+eAI7eg9515+fJljB07FoAhO9ngwYNLq1pk5tZNNU5EZc6YMWNw/fp1PPLII2jTpg2Cg4ORmZmJuLg4TJ06VV3YR48ebTLB2+3O29u7zE/8SnS7q1mzpu6UEES3m/vuuw916tTBgAED0Lx5c1SsWBFXrlzB9u3bMXXqVJw9exaAId2znIqCSh8bO0RkIi4uTndC0AEDBrh0nhQiIqLbkRACGzduxMaNG62u83//93+YOHFiKdaKzLGxQ0TKf//7XyxatAgbNmxAWloaLl68CCEEwsLCEBMTgxEjRqjJR4mIiO5ks2fPxtKlS7F582acPXsWly5dQvny5VG1alV06tQJTz75JDp27Hirq3nHYzY2IiIiIiJyS0xQQEREREREbomNHSIiIiIickts7BARERERkVu64xs7qamp8PDwgIeHB2bNmnWrq1MqIiMj4eHhgZEjR97SemzevBkeHh4IDQ1FVlaWSVlaWhp8fHzg7e2Nw4cP36IaEhEREdHt7I5v7JQlFy5cwLJly/D222+jV69eqFKlimqI3eqGiasVFhbi+eefBwBMmDABAQEBJuU1a9bEE088gby8PEyYMOFWVJGIiIiIbnNMPV2GhIeH3+oqlJp58+Zh3759CAkJwTPPPGNxnddffx0zZszAsmXLsGPHDnTo0KGUa0lEREREtzNGdsqoiIgI9OzZs0T2nZqaCiHELe229/777wMAnnrqqSJRHal27doYNGgQAGDKlCmlVjciIiIicg9s7JQhb7/9NpYuXYpz587h5MmT+OGHH251lUrE2rVrkZSUBAAYPny47rqPPvooAGDlypUcu0NEREREDmFjpwx555138OCDD7p9d7bp06cDAFq3bo0mTZrorvvAAw8gJCQEQgjMnDmzNKpHRERERG7CqcbOgQMHMGXKFNx///2oWbMmfHx8EBAQgAYNGuDxxx/Hzp07dbefPHmyGngPADk5Ofjkk0/QunVrBAYGIjAwEO3atcM333yD/Px8m/XZunUrBg4ciPDwcPj6+qJu3boYN24cjhw5AgDo0qULPDw80KVLF2eerrJ7926MHTsWDRs2REBAAPz9/dG4cWM8/fTTSElJKda+S5OtbGw5OTn46quv0KVLF1SpUgVeXl4IDg5G48aN0bt3b3z++edITU116tg5OTlYsmQJAKguanq8vLzQt29fAIZxPkREREREdhMO2rhxowBg8++1116zuo9Jkyap9c6dOydatGhhdT99+/YVBQUFVvc1ZcoU4eHhYXHbwMBAsXr1atG5c2cBQHTu3LnI9sePH1frz5w50+Ix8vLyxPjx43Wfr5eXl/jxxx8dfTl1aev2+OOPu2y/tWvXtrrPM2fOiKioKJvv74QJE5w69qZNm9Q+1q9fb9c233//vdrmxIkTTh2XiIiIiO48Dmdjy8/Ph7+/P/r06YNu3bqhcePGCAoKwoULF5CUlISvvvoKJ06cwH/+8x80bNgQTzzxhO7+Bg4ciIMHD+K5555D3759ERwcjEOHDuG9997DwYMHsXTpUkybNg1PPfVUkW3nzp2LN998EwBQuXJlvPrqq7j33nsBGKI9//nPfzBkyBCEhoY6+jRNjB49Gj///DMAoFevXhg2bBgaNmwIDw8P7N27F1988QWSkpLw5JNPomrVqioScTt69tlnkZycDMAwnmbgwIGoXr06PD09cf78ecTHx2Px4sVO73/r1q0AAA8PD7Rp08aubdq1a2ey/bBhw5w+PhERERHdQRxtHV28eFFcuXLFanlubq647777BABRu3ZtkZ+fX2QdbWTHy8tLbNy4scg6ly9fFuHh4QKAaN68eZHynJwcERYWJgCI4OBgcejQoSLrHDp0SAQHB6tjORPZWbhwoSqfNm2axeecnZ0tunXrJgCIyMhIkZeXZ3E9R5V2ZCc7O1t4eXnZFbm5fPmyU8fu1auXACDq1atn9zZ5eXmqXv/3f//n1HGJiIiI6M7j8JidKlWqoFKlSlbLvb298cknnwAATpw4gb179+ru79lnn7U4liY4OFhFhfbv349r166ZlC9atAgXLlwAAEyaNAkNGzYsso+GDRti0qRJuse35cMPPwQADBgwAGPGjLG4jq+vL7755hsAhrTOmzZtKtYxb5X09HTk5eUBgIqQWRMcHOzUMdLS0gAAYWFhdm9Tvnx5dTy5PRERERGRLcXOxpabm4uTJ08iOTkZBw4cwIEDByCEUOX79u3T3V6vS5K2m9Px48dNytavXw8AKFeuHB577DGr+xg+fLhKhOCo06dPIz4+HgDwyCOP6K7bpEkTVKlSBQCwY8cOp453q4WEhMDb2xsA8Msvv9iVHMJRFy9eBGDodugI2diR2xMRERER2eJUY+f69ev48MMP0aJFC/j7+6N27dqIjo5Gs2bN0KxZM7Rq1Uqte+nSJd19NW7c2GqZNnqQmZlpUnbgwAEAQJ06dXR/OAcHB6Nu3bq6dbAmLi5OPR46dKjKIGftTz7Xc+fOOXW8W83HxweDBw8GACxcuBD169fHK6+8ghUrVhSJrDkrPT0dgOONHbn+5cuXXVIPIiIiInJ/Djd2UlNT0axZM0ycOBH79+9HQUGB7vrZ2dm65RUqVLBeuXLG6pkf58qVKwDs6w7lbIIC2U3OUTdu3HBqu7Lgm2++UQkWTpw4gU8++QR9+vRBSEgI2rVrh08//RQZGRlO79/X1xeA7c+FObm+n5+f08cmIiIiojuLw9nYHnvsMRw/fhweHh544oknMGTIEDRp0gShoaHw8fEBABQWFsLT0xMATLq03W60DazffvsNzZs3t2s7R6MWZUlQUBCWLFmC3bt3Y/78+di4cSP27duHgoICxMbGIjY2Fp988gkWL16MDh06OLz/0NBQZGRkqAiPveT6xc2sR0RERER3DocaO//88w+2bdsGAHj99dfx/vvvW1xPRl1KkmxQ2BN9cXacR0hIiHrs4eGBpk2bOrWf21G7du1UyufMzExs2rQJM2fOVIkhBg0ahKNHjzocaQkNDcXRo0cd/ozI9dnYISIiIiJ7OdSNLSkpST0eMmSI1fW0Y11KSnR0NABD4gK9KEF6ejqOHTvm1DG0Y4/WrFnj1D7cQWBgIPr27Ys///wTzz33HADg7NmzquHriGbNmgEAjh49isLCQru2uXDhguo6J7cnIiIiIrLFocaONjuX3riU77//3vka2al79+4ADF3mfv31V6vr/frrr053patfvz6ioqIAAL///jtOnjzp1H7ciXzdAdvJJyy55557AABZWVk4ePCgXdvs3r27yPZERERERLY41Nhp0KCBejx79myL63z33XdYvHhxsSpljwEDBqjkBO+88w5SUlKKrJOSkoJ33nmnWMd58803AQA5OTkYOHCgbpe43NxcTJ06FTk5OcU65q1y7NgxbN68WXcdbYSrTp06Dh9D21jRNmL0yPV8fHxw1113OXxMIiIiIrozOTRmp1WrVmjatCkOHDiA7777DlevXsWwYcNQrVo1nDp1Cr/++isWLlyIu+++G9u3by+pOgMwZPX64osv8OijjyI9PR3t27fHa6+9pibD3LJlCz766CMUFhaiQYMGSElJcWq+naFDh2L16tWYPXs24uPjERUVhaeeegqdO3dGaGgorl+/jqNHj2Lr1q34888/kZ6ejhEjRjj1nLZt24YjR46o/2sjJ0eOHMGsWbNM1h85cqRTx7Hm5MmT6Nq1K6KiojBgwAC0bdsWNWrUAACcOnUK8+bNw/z58wEYPgvt27d3+BiRkZGIiopCcnIy1q9fryaO1SPnVOrRo4dKgkFEREREZItDjR0PDw/88ssv6NatG65cuYK5c+di7ty5Jus0a9YMCxYsQPXq1V1aUUuGDh2KY8eO4a233sKVK1fw6quvmpRXqFABCxYswH/+8x+kpKSotMeOmj59OsLDw/HZZ5/h0qVLeP/9960mZ/D391eZ6Bz1008/WY2Ybd++vUgD0tWNHSk5ORnJyclWy5s0aYI///zT6claH3vsMbz++uv466+/cOPGDd304ydOnFCTtA4fPtyp4xERERHRncnheXZatmyJvXv3Yty4cahduza8vLwQHBys5mDZvXs3qlWrVhJ1teiNN97A5s2b0b9/f4SFhcHHxwe1a9fGqFGjEBcXh969e6vB7RUrVnTqGJ6envjoo4+QnJyMCRMmoFWrVqhcuTI8PT0RGBiI6OhoDBs2DLNnz8bZs2dv27lg7rnnHuzYsQPvvvsuunXrhvr16yMwMBBeXl4IDw9Hz5498cMPP2Dv3r2IjIx0+jijR4+Gr68vsrKy8Ndff+muO2fOHAghEB4ejoEDBzp9TCIiIiK683iI23kiHDvk5eWhYsWKyM7Oxptvvon33nvvVleJAIwbNw4//PADunfvjnXr1llcp7CwEE2aNMHhw4fx/vvvY+LEiaVcSyIiIiK6nTkc2bndLF68GNnZ2QCAmJiYW1wbkt544w14e3tj/fr1qpuauXnz5uHw4cMICQnBs88+W8o1JCIiIqLb3W3f2NEO6DeXmpqKl156CQAQHh6O+++/v7SqRTZERETghRdeAACLGfOEEGpc1OTJkxEYGFia1SMiIiIiN+BQgoKyqHHjxujduzcefPBBREdHw9/fHxcuXMDGjRvx/fff4+rVqwCATz/9FOXL3/ZP1628+eabKjlBVlYWAgICVNnZs2fx8MMP49FHH8X48eNvVRWJiIiI6DZ224/ZsZURrFy5cpgyZQpef/31UqoRERERERGVBbd9qGPp0qVYuXIl/v77b5w/fx6XL1+Gj48PatSogS5duuDpp59G06ZNb3U1iYiIiIiolN32kR0iIiIiIiJLbvsEBURERERERJawsUNERERERG6JjR0iIiIiInJLbOwQEREREZFbuqWNndTUVHh4eMDDwwOzZs26lVXB5MmTVV2IiIiIiOj2V+zGTl5eHn7//Xc8/vjjaNKkCUJCQuDl5YUqVaqgTZs2GD9+PNatW4fCwkJX1JfKmClTpqhGYmBgIG7cuOGyfefm5mLRokV4/fXX0aNHDzRs2BDBwcHw8vJCSEgIOnbsiLfffhtpaWl27zMpKQnjxo1D/fr14efnh9DQUNx777344YcfkJ+fb3N7IQS++OILNG7cGD4+Pqhfvz6mTJmCvLy84jxVl9DePLD05+/vj7p16+KRRx7BkiVLSrQuN27cQN26ddWxIyMjddfv0qWLbt21f7asWrUKHTt2RIUKFRAeHo4nn3wS586dc9Ezc634+HhMnDgRMTExqFGjBnx8fBAUFIR69erh4Ycfxg8//KAmRnaF69ev49tvv0X37t3V8cLDw9G6dWs8++yzWLNmjc193InnkKenJypVqoTatWsjJiYGTz/9NH755RdkZWW57NiRkZF2nwPyLzU1tch+tDfubP1t2rRJt06HDh3CoEGDUKlSJQQGBqJPnz5ISEhw2XMmIioVohgWL14s6tatKwDY/GvYsKFYtmyZyfbHjx9X5TNnzixOVYpt0qRJqi5kv4YNG5q8z7/88ovL9p2SkmLXZ8vf31/Mnj3b5v5++ukn4ePjY3U/MTEx4tKlS7r7GDVqlMVte/XqJfLz81311J2iPZ/s+evVq5e4fv16idRlwoQJJseqXbu27vqdO3e2u956Zs2aJTw8PIpsU6tWLXHmzBkXPsPiOXnypOjXr59dz9fPz09MnDhR3Lhxo1jH3LBhg6hdu7busVq0aKG7D55Dpn+BgYHixRdfFFlZWcU+tq33xvyvYsWKIjs7u8h+tN9ltv42btxotT779+8XFStWLLKNr6+vWL9+fbGfLxFRaXH6l/0HH3xg8qOiR48e4uuvvxbr168X8fHxYu3ateKbb74R999/vyhXrpzFL9Ky1Nghx+3YsUO9fwEBAQKAuO+++1y2/5SUFBEWFiYGDx4sPv30U7FgwQKxbds2sWvXLvHnn3+K0aNHC19fXwFAeHh4iBUrVljd16pVq9TnMDw8XHz11Vdi165dYuXKlWLgwIHqedx7772ioKDA4j5WrFghAIjKlSuLr776SuzcuVPMmDFDVK9eXQAQ3333ncueuzO051O/fv1EYmKiyd+2bdvEl19+KerUqaPWGzFihMvrkZCQIDw9PYWvr68IDAx0qLHTtm3bIvU2/7Pm4sWLwt/fX5QrV05MmDBBbNu2TSxZskS0b99eABCDBw928TN1TkJCgqhWrZpJQ/C1114TS5cuFbt37xbbtm0Tv//+uxgzZowICQlR6+3Zs8fpY65du1adK4GBgWLChAlixYoVIj4+XqxatUp8//33ol+/fiImJsbqPu70c2jXrl1i9erV4vPPPxf9+/cX5cuXV+s2bNhQHD58uFjHPnTokM3P/ueff66OOXbsWIv70TZ2bO1Pr5HWrl07AUD06dNHrFmzRmzatEmMGDFCABARERHi5s2bxXq+RESlxanGzs8//6wupqGhoWLDhg266+/fv19069aNjR03M378eAFAVKlSRXz00UcCgChXrpxIS0tzyf4LCgpEYWGh7jq7du0SXl5eAoBo3bq1xXXy8vJE/fr1BQARFBQkjhw5UmSd//u//1OfRWtRopEjRwoA4q+//jJZvmfPHgFAdO3a1c5nVjK059Pjjz9udb1z586JsLAw1Uh0ZcQjPz9ftGnTRgAQ7777rrpbbW9jp3Pnzk4fe9asWQKAePHFF02WZ2Zmipo1awpfX1+Rm5vr9P5d4fz58yYNnYkTJ4qcnByr62dkZIi3335blC9f3unGzoULF1SjqUmTJuLUqVNW17X2+vAcKurEiRPivvvuM2nwXLlypUTr98gjj6jjbd261eI6ruilkJqaqm4+mEfbZERy8+bNTu+fiKg0OTxm58yZMxg/fjwAoEKFCti0aRO6du2qu02zZs2wdu1a/Pvf/3b0cFRG3bx5E/PmzQMAPPLIIxgxYgQ8PT1RWFiI3377zSXHKFeunM0xGu3atUP37t0BAAkJCRb70C9atAhHjhwBALz++uuoV69ekXU++eQTVK5cWT225PTp0wCAbt26mSxv2bIlgoODVXlZFx4ejhEjRgAAhBCIjY112b6//PJLxMfHo1GjRnj11Vddtl97WHt/AgIC0K5dO+Tk5ODy5culWidzTz31FM6ePQvAMLbi/fffh4+Pj9X1AwMD8c4772D9+vWoWLGiU8d8/fXXcfnyZfj4+GDRokWoWbOm1XW9vb0tLuc5VFStWrWwcuVK9OnTBwBw+PBhTJ48ucSOd+3aNTXWrm7duujUqVOJHUu+D507d4anp6dJmbze3k7vFRHd2Rxu7Hz++ee4fv06AOCdd95BVFSUfQcqVw7Dhw+3ud7atWvRt29fVK1aFT4+PqhTpw7Gjx9v1yD0mzdvYurUqejatStCQ0Ph7e2NqlWronfv3vj11191kyTYm43t5s2b+PHHH9GnTx81wDcsLAxt2rTBM888g61bt0IIofv8hg8fjjp16sDPzw9BQUFo0aIFXnnlFfUjyJozZ87gtddeQ+vWrVGxYkX1/Jo1a4ahQ4di1qxZyMjI0H+RXGTp0qVIT08HAAwfPhxVq1ZVP2B+/vnnUqmD5O/vrx7n5uYWKV+8eLF6PHLkSIv7qFChAh555BEAwIEDB5CSklJknbCwMADA5s2bTZYnJiYiPT0dVatWdbTqt4w2YUBOTo5L9nnixAm8/fbbAIDvvvvO6g/nkmLt/bl+/Tri4uLg7e2N4ODgUq2TVlJSEv766y8AQIsWLfDmm2/ave29996LOnXqOHzMq1evYs6cOQCAoUOHolGjRg7vA+A5ZI2npydmzZqFChUqAACmTZuGS5culcix5s+fr85VebOipMj3adu2bUW+N+V7d7u9V0R0B3MkDFRYWChCQ0MFYBgUfu3atWKFlcy7sb366qtWB1KGhoaK5ORkq/tKTU0VTZo00R2M2alTJ3H58mWL29sT+t+zZ4/JeAdrf8ePHy+ybVZWlhgwYIDudgEBAWLp0qUWj71lyxYRFBRk89iWtt+4caPdXTPs9dBDDwkAol69emrZ7Nmz1XHi4+Nt7kOua6uLk57z58+LypUrq+50lkRERAgAolGjRrr7mjNnjqrTjBkzipQvWLBAABDBwcHim2++Ebt27RKzZs0SNWvWFADE119/7fTzcAVHuuD8+9//Vuvu2LHD4jrac8Kebqa9e/cWAMRjjz2mlpVmN7a0tDTh7e0typUrJ1555RWxfft2sWzZMtGxY0cBQAwaNMjpfbuCNmnDTz/95JJ92jqHtF2Oly9frpZnZGSIw4cPi/Pnz9t1HJ5D+p588km13W+//Vak3BXX4E6dOqmup0ePHrW6nquS7URHRwsA4qGHHhJr164VmzdvFk888YQAIKpXr67b/ZKIqCxx6Gp44MABdRF94IEHin1w7ReL/EHSuXNnMWfOHBEXFyfWrVunBkQCsDp4NjMz0yQrXP/+/cWSJUtEXFycWLBggUmmpw4dOljM+GPrCyIpKUkNwgcgBgwYIObNmydiY2PFzp07xezZs8Xw4cOFv79/kcZOfn6+6Nq1q/qiGjp0qFiwYIGIi4sTO3bsEF9++aWoVauWACC8vb1FXFycyfY5OTlqAG9gYKB45ZVXxMqVK0V8fLzYuXOnmDdvnnjhhRdEREREqTR2Ll68qMbJvP3222p5ZmamqFChggAgnn/+eZv7cbaxk5OTI44dOyZ+/PFHUa9ePbWf9957r8i6mZmZKpFGv379dPebkJCg9vXyyy8XKS8sLBT9+/e32Mjs3r27yMvLc+h5uJq9P9TOnz8vwsPDBQBRs2ZNq+M0HGnszJ07VwCGgefaH9CONnbCw8NF27ZtRUBAgPDx8RE1atQQDz30kJg9e7ZdA6K1A7i1f9WrV9cdq1Ia2rZtq+pz7tw5l+zT1jmkHUeTnp4uVq5cqa618q9atWrixRdfFBcvXrS4D55Dts2fP19tN27cuCLlxb0GHzt2TL0H99xzj+662vO2R48eIjg4WHh5eYnQ0FDRuXNn8eGHH4r09HSbx9y+fbvw8/Mr8j55e3uLlStXOvwciIhuFYcaO7/99pu64E2cOLHYBzdP8zl27FiLA9LHjBmj1klISChSrr1L/eabbxYpLywsFMOGDVPrTJ06tcg6tho7rVq1EoBhAP7cuXOtPqdLly4VSRH76aefCgDCy8vLasaw9PR0dSetU6dOJmXr169XdbMW+RHCMIjYUrTN1Y2dL7/8Uu3PPAPR0KFDBQARFhZm84eLI40d7XOw9Dds2DCLdxoPHjyo1nn66ad1j3Hx4kW17pAhQyyuk5eXJ6ZMmSLq1q0rvLy8RO3atcWbb75ZJu5y2srGtn37dvH111+rgeZeXl7ijz/+sLo/exs76enpqvH0ww8/mJQ52tjR+4uKitKN7koLFiwQbdq0ET4+PiIkJESMGDHCZUkzikPeIKhevbrL9mnrHOrSpYsADGmKP/74Y93Xt2bNmiIpKanIPu7Uc8iRa+WRI0fUdt26dStSXtxr8OTJk9X206ZN013XntTTlSpVEosXL7Z53ISEBNG7d28REBAgKlSoIHr06GE1EkxEVFY51NjR/sj98ssvi31w7RdLtWrVrH7Z/fPPP1aPm5OTIypVqqR+DFmbp+HatWsqI1FUVFSRcr3GzqpVq1SZPRELrZs3b6rsS+ZZoszJtKwAREpKilqubWQ603XQ1Y0dmW2rXbt2RcqWL19uV8NMCNc0diIjI8WqVausbrd792617quvvqp7jBs3bqh1H3zwQZt1KmscmSPkkUceEbt379bdn72NndGjRwvAEDU1v1lhb2Ona9euonv37uKzzz4T69atE3v27BFbtmwRX3zxhUn31PDwcHHixAl7X5Iy49q1a+o5tGrVymX7tXUONW/eXACGu/EeHh7Cx8dH/Oc//xFpaWkiNzdXHDhwwCR6Xr9+fZGZmWmyjzv1HHLkWnnlyhXd97e412B5g8LPz09cvXpVd91JkyaJZs2aibfeekssXbpU9QCYPXu26Nmzp6qHp6enbrp+IiJ34VBjZ8qUKepC6Yo+59ovlmeffVZ3XdmFzLyxsX37drWPjz/+WHcfMlUygCLpdvUaO88++6wqS01Nte/J/c+2bdvUtrbuiGVlZal1f/75Z7V8w4YNavkXX3zh0PFdLSkpSdXlq6++KlKel5en0ho/8sgjLjtuVlaWilDExcWJP//8U4wcOVJ4enqKatWqWf08btmyRdX3rbfe0j1GQUGBWrd79+4uq3tpcaSxU6FCBTFq1CibP5xs2bx5s/Dw8BDly5cX+/btK1Jub2NHL2XvzZs3xeOPP67qPmDAgGLV+VZIS0tT9TeP3JYkbTdPAGL+/PkW19OOOfnkk09Myu7Uc8iRRkleXp5Jg9GVtN9x1qJlWrbSX3///fdqf9WrVy/2ZLVERGWdQ9nYAgMD1WOZkc1VGjdurFsuU5pmZmaaLD9w4IB63L59e919aMu129myZ88eAIZUo7Vr17Z7OwCIi4tTjzt06KAyvln6CwgIUOueO3dOPe7UqRPq1q0LAHjhhRfQrl07fPjhh/j7779x8+ZNh+pTXLNnzwYAlC9fHkOGDClSXr58eQwePBgAsGTJEly7ds0lx/X390fTpk3RtGlTtGnTBgMGDMDMmTOxevVqpKenY8yYMXj33XeLbOfr66se23qttJnc/Pz8XFLvW+Xxxx+HMNzMUH85OTk4dOgQPvjgA3h4eGDGjBno1KkTLly44NQxcnNz8eSTT0IIgeeffx7Nmzd3ur6VKlWyWubl5YWffvpJXSMWLVp026W9Lclrpx7t5z8mJgb/+te/LK73wQcfqBTYc+fOtbqPO+kccoT2eykoKMil+9Zmt3z88cdtrq93LgGG9OdjxowBYMjw+eeffxarfkREZZ1DjZ0qVaqox+fPn3dpRWTqTmvKlTNUtaCgwGS5TH8MGOYP0aNNlandzhaZSrRatWp2byM5+0Pyxo0b6rGXlxeWLl2KJk2aAABiY2MxceJE3H333ahUqRJ69eqFOXPmFHltXE07h07Pnj0RGhpqcT2ZYjwnJwfz588v0Tp1794dzz//PABDKvR//vnHpFz7I9PSHDxa2h+h2oanu/Dx8UHDhg3x+uuvY9GiRQAMjX5n5796//33cejQIURERJTo/CKAoRE9evRo9X/z1MVlXVBQELy8vAC4/tqpR/v579Wrl9X1QkJC0LZtWwDAvn37kJeXZ3Efd/o5ZI023bQr05vn5uaqa2jVqlVx3333uWS/Tz31lHp8u51LRESOKu/Iyi1atFCPExISXF6Z4rI1R47Qmf/GFfu3RNsA2bRpE0JCQuzaTs5zIEVFRSExMRFLly7F0qVLsXnzZhw9ehTZ2dlYtWoVVq1ahf/+979YsWJFkW1dZf369eqO+ooVK+x6PX7++WeMHTu2ROoj9evXDx9//DEKCwvx559/YuLEiapMO4GirbmaTp06pR5HRES4vqJlyH333YcWLVpg3759+P333/Hdd9+ZzFdkj48++ggA0KNHDyxbtsziOvLH7/Xr1/H7778DMHy2zSeVtId2Tq/bLbIDGK6fcXFxOHPmDM6fP2/z5owrREREYOfOnQCgO5moXBcwXLMuX76sbg7xHLJNRv8BOD2XkSVLly7FlStXAADDhg0rMsGns273c4mIyBEONXaioqJQpUoVXLp0CVu3bkVGRobLQ/aO0t5FO3fuHBo2bGh1Xe0dVUfuvsmI1pkzZxyun7Zx4+3tjaZNmzq8D8nT0xP9+/dH//79AQBnz57FypUrMXXqVMTHxyM+Ph5PPfWUumvvarILmyO2b9+OY8eOqW54JUEbYTpx4oRJWUBAACIiInDq1KkiUR9z2nIZRXNnjRs3VnfxDx06hNatWzu0vezSNHPmTMycOVN33UuXLmHo0KEADLOyO9PYKe7Nilutc+fOqlvr8uXLMWrUqBI/ZnR0NBYsWACgaFTcnLa8fHnjVwPPIdvWrl2rHnfq1Mll+3W0C5u9bvdziYjIEQ51Y/Pw8FCzZ1+/fh0//fRTSdTJIdrGw65du3TX3b17t8XtbJE/Ak+ePFnkx7QtrVq1Uo/XrFnj0La2VKtWDaNGjcKOHTtUHZctW4bs7GyXHgcwdF+Rjaju3btj7ty5un/ysyGEwC+//OLy+mhp70xa6jojf3wcOnTIZCyUOW13jrvvvtuFNSyb8vPz1WNtt6WyKjk5WT2uXr36LayJc+S1EwC+/vrrEu92CgD33nuvenz06FHddWW5n59fkZtBPIesu3jxIubMmQPAMLawZ8+eLtnvpUuXsGrVKgBAy5Yt0axZM5fsF7j9zyUiIoc4mtEgLS1NTRzp7+8vDh48aNd2BQUF4pdffjFZps18Y2vSQpnVyTxDjjb1dHR0tNXU0xkZGaJKlSoCcDz19Nq1a1WZo6mns7OzRXBwsAAgqlat6lTqaHu8+OKLVjPNucLMmTPV/hcuXGjXNjJFdb169VxeHy3txImWPkfz5s1T5R9++KHFfVy/fl1UrlzZ6ufjduBIJqnCwkIRGRmp1i+peWjszcZmS15enmjcuLGq78mTJ11TwVL20EMPqedgaRJca7Zs2SKOHTvm8PHy8/NFaGioACAaNWpkcR4zIQyTVpYrV85qFjWeQ5YVFBSI3r17q21sTS/gCO1UD59//rnL9iuEMV08gCLfy0RE7sbhxo4QQsyYMUNdKMPCwsSmTZt0109KShI9evQQLVq0MFnuisaOEKaTilpKjVpYWGgyl4Qzk4rKH+62JhW9fPlykVSeH3zwgdp3r169RFZWltXtMzIyxNdff22ybMuWLSbz7pjLzc0VrVu3FgBEQEBAkck8XTHPTteuXVXK4uvXr9u1zYcffqiOu23btiLlsszaD+E5c+bYTI08b9484enpKQDDxImXL18uss7NmzdVCt6goCBx5MiRIuvYajDdDhz5ofbNN9+odc3PS8neeXb02NPY2bBhg0Opp/v27etUXcqCs2fPqglY5fUqNzfX6vpZWVli8uTJwsvLS+zZs6dIua1zSAghPvroI92Gys2bN8UDDzyg1lmwYIHFdXgOmTpx4oS477771PqNGze2er1y5hosv3PKly8vzp8/b9c2+/fv1/2uEMI09XTVqlV1v4+IiNyBU40dIYR499131QUTgOjZs6f49ttvxYYNG0RCQoJYt26dmDp1qujTp4/6MVpSjZ2MjAxRt25dta8BAwaoydQWLlyoZhEHDBMfWor+2GrsJCcnq7l+AIiBAweK+fPni7i4OLFr1y7x22+/iZEjR4qAgABx/Phxk23z8/NF9+7d1ba1atUSH3zwgdi4caOaPHHatGli2LBhwt/fX4SEhBSpW7ly5UTnzp3Fxx9/LFatWiXi4+PFtm3bxIwZM0S7du3Uvl944YUidS9uY+fEiRPCw8NDABCDBg2ye7vDhw+r4z755JNFym39UOvcubMICAgQw4cPFz/++KPYvHmz2Lt3r9i+fbuYMWOGyR1VDw8PMWvWLKt1Wb58ubpzHR4eLr7++muxa9cusWrVKjFo0CC1n06dOlmNDpZ12vOpX79+al4i+RcfHy/++OMPMXToULVeuXLlrE7KWlqNnccff1wEBASIRx99VL3Pe/bsEVu3bi0yqWhYWJhTEY6yJDY21qTBExkZKSZOnCiWL18uYmNjxfbt28X8+fPFuHHjVFQGgNONnezsbHUzBIAYPny4uobMmzdPtG/fXpX17t3bavTnTj+Hdu/eLdasWSO++OIL0b9/f1G+fHm1bqNGjSw2ACVHr8HJyclqfUcmZ505c6bw9PQUPXr0EJ999plYs2aNiI+PF7t27RKzZ882aZx5enqKv/76y+59ExHdrpxu7AghxB9//GHSFUbvLzo6Wqxevdpke1c1duS+tN1cLP3dfffdFu/8C2G7sSOEEHFxcSIiIsLmczVv7AhhmFlcG13S+6tTp47Vuun9DRw4UGRnZxc5dnEbO9rJZPWiWpbIGdwrVaokcnJyTMrsaezY87wrV64sfv31V5t1+fHHH4W3t7fV/bRr105cvHjRoedXljgyqShgiALqdWEpzcaOPfVt1qyZSEpKcqoeZU1qaqro06ePXc/b399fTJ48ucj5I4R9jR0hhDhz5oyKFFj76927t8jIyNDdD88h07+goCDx0ksv2Yx2O3oNfvXVV9X61iaCtUTb3VjvLyQkRCxevNju/RIR3c4cysZmbuDAgXjwwQexcOFCrFy5ErGxsbhw4QIyMzMRFBSEyMhIxMTEYNCgQejatatTqZvtFRkZiX379mHatGlYsGABDhw4gIyMDAQHB6NVq1YYNmwYHn30UTVfjzPatGmDQ4cO4aeffsLixYtx4MABXLlyBSEhIahRowY6deqEIUOGIDIyssi2fn5+mD17Np577jlMnz4dW7ZsQVpaGq5fv46AgABERkaiTZs26NWrFx588EGTbV955RW0b98ea9euxY4dO3DmzBk1f0/VqlXRvn17jBgxAr1793b6uemRCQZ8fHzQp08fh7YdNGgQ9u/fj6tXr2LJkiVWJzW05LfffsO6deuwceNG7N+/H+fPn8fFixfh7e2NKlWqoFmzZnjggQfw6KOPqkln9YwdOxYdOnTAV199hfXr1+PMmTPw9/dHkyZNMGzYMIwZM8YkC5W78fLyQsWKFdGkSRPcd999GD16dJkYnPzqq6+iZcuW2LFjB5KTk3Hx4kWkp6fDx8cH4eHhaNu2LR5++GEMGDDAZal3b7XatWtj2bJliI2NxR9//IGNGzfi1KlTuHz5Mry9vREWFobWrVujZ8+eGDx4cLGzXlarVg07d+7E9OnTMXfuXCQnJ+Pq1asICQlBu3btMHLkSAwYMMDmfu7Uc8jDwwOBgYEICgpCjRo10Lp1a3Ts2BEDBgxwOGW7Ldr5zCpVqoSHHnrI7m179+6N6dOnY8eOHdizZw/Onz+Py5cvQwiB4OBgtGjRAg888ABGjhx5yzOpEhGVFg8hmIOSiIiIiIjcj/NhDiIiIiIiojKMjR0iIiIiInJLbOwQEREREZFbYmOHiIiIiIjcEhs7RERERETkltjYISIiIiIit8TGDhERERERuSU2doiIiIiIyC2xsUNERERERG6JjR0iIiIiInJLbOwQEREREZFbYmOHiIiIiIjcUvlbXQEiIiK6Mwkhiizz8PC4BTUhInfFyA4REREREbklRnaIiIjoltBGcSxFeYiIiouRHSIiIiIickts7BARERERkVtiNzYiIiJyiF6Xs+ImGNDum8kKiKi4GNkhIiIiIiK3xMgOERERFYulCExWVhYAIDc3Vy0rX97ws8PLywsA4O3tXaSMiMiVGNkhIiIiIiK3xMYOERERERG5JcaMiYiIyCl6CQSOHDkCADh16pRaVrlyZQBAeHg4AKBq1aqqLDAwsCSqSER3OEZ2iIiIiIjILTGyQ0RERA4xj+gUFhaqx2fPngUA7NmzBwCQmpqqyqKiogAYIzx6KayJiFyBkR0iIiIiInJLjOwQERGRVTL6ojc+Rxu92bdvHwBg27ZtAIBLly6pssjISABAxYoVAQA+Pj6urCoRURGM7BARERERkVtiY4eIiIiIiNwSu7ERERGRVXrd165evQoA2L9/v1oWGxsLALhx4wYAIDQ0VJXJxzLNtJeXl0vrSkRkjpEdIiIiIiJyS4zsEBERkUNk1ObEiRMAgK1bt6qyxMREAEDHjh0BAPfcc48qa9KkCQBjZKdcOeM9V3sSIRAROYqRHSIiIiIickuM7BAREZFN2dnZ6nFycjIA48Sh58+fV2UBAQEAjBOItm3bVpXJlNOWWJpglFEeIiouRnaIiIiIiMgtsbFDRERERERuid3YiIiIyKb09HT1ePXq1QCAnTt3AgAiIiJUWZcuXQAAzZs3B2B/1zV2WSOiksDIDhERERERuSVGdoiIiKiI/Px8AMCpU6cAAPv27VNlhw8fBgBcv34dAFCvXj1VFhMTA8A02mPOUjICiREeInIlRnaIiIiIiMgtMbJDRERERciJQ+X4nE2bNqkyORmonDi0ffv2qqxhw4YAAG9vb6v7ZvSGiEoLIztEREREROSW2NghIiIiIiK3xG5sREREBAC4du2aenzw4EEAwP79+wEAaWlpqqxDhw4AgLvvvhuAsesaoN99jYiotDGyQ0REREREbomRHSIiojuATPeslxxg9+7d6vGWLVsAABcvXgQAREZGqjIZ0enUqRMAIDAw0KV1JSJyFUZ2iIiIiIjILTGyQ0REdAcwj+gUFhaqxydPngQA7NmzRy37559/AACVK1cGADRv3lyVNW3aFIDliI49ESQiotLCyA4REREREbklNnaIiIiIiMgtsRsbERGRm5BdyCS9rmTJycnqcVxcHAAgKSlJLcvLywMAtG/fHgDQs2dPVVa1atXiV5aIqBQwskNERERERG6JkR0iIqLbmHk0B9CP6Fy4cAGAaTKC+Pj4Its1adIEANCiRQsAQEREhEN1ICIqCxjZISIiIiIit8TGDhERERERuSV2YyMiIroDnDt3DoAxCcGOHTtU2bFjxwAA3bt3V8t69OgBAKhbt67NfXNOHSIqqxjZISIiIiIit8TIDhER0W1ML6py7do19fjAgQMAjMkIMjMzVZlMJd20aVO1rHnz5gAAT09P11WWiKiUMbJDRERERERuiZEdIiIiN5OVlQUASE1NVcs2bNgAAEhMTARgTCkNAB07dgQANGvWTC1jRIeI3AEjO0RERERE5JbY2CEiIiIiIrfEbmxERERuIi8vDwBw5MgRAMCePXtU2fnz5wEAvr6+AIAmTZqosrvuugsAEBwcXCr1JCIqLYzsEBERERGRW2Jkh4iIqIwSQhRZppdq+vr16wCA7du3AwD+/vtvVVa9enUAQOfOnQEAbdq0UWUhISEAgHLleA+UiNwLr2pEREREROSWGNkhIiK6Dcmoz6VLl9Syw4cPAwCOHz8OAMjOzlZlkZGRAID27dsDAGrVqqXKGNEhInfFqxsREREREbklNnaIiIiIiMgtsRsbERFRGaWXjCA/Px+AaRKCHTt2AAByc3MBAK1atVJl8nGdOnUAAN7e3q6tLBFRGcTIDhERERERuSVGdoiIiG4jGRkZAIBjx44BAPbt26fKTpw4AcA4YaicLBQA6tWrB4ARHSK6szCyQ0REREREbomRHSIiolJmabJQydI4He36O3fuBABs27YNgDGaAwAVK1YEYByfc/fdd6uywMDAYtSYiOj2xMgOERERERG5JTZ2iIiIiIjILbEbGxERURlgqfuaTC998uRJtSwhIQEAkJiYCAAICwtTZc2bNwdgTFBgqeua7BKnl9aaiMhdMLJDRERERERuiZEdIiKiUqKXmMCSQ4cOAQBiY2PVsqSkJABATk4OAKBNmzaqrHfv3gCAqlWrFqueRETugpEdIiIiIiJyS4zsEBERlTDziI7eeJn09HT1eO/evQBMIzuFhYUAjONymjVrpspq1qxpdx2IiO4EjOwQEREREZFbYmOHiIiIiIjcEruxERERlQFXrlwBYExKAAC7du0CACQnJ6tlXbt2BQDcf//9AICGDRvatX+mmiaiOxEjO0RERERE5JYY2SEiIiphelGVGzduADBGb+Li4lSZTFZQpUoVtSw6OhoA0LJlSwCAj4+PS+tKROROGNkhIiIiIiK3xMYOERERERG5JXZjIyIiKmX5+fnq8fnz5wEAmzZtAgDs3LlTldWrVw8A0L59e7WsRYsWANh9jYjIHozsEBERERGRW2Jkh4iIqJQUFBQAAI4ePaqW7d+/HwCQmpoKABBCqDKZVlob2alevXpJV5OIyG0wskNERERERG6JkR0iIqJSkpubCwDYsmWLWrZhwwYAQGBgIACge/fuqqxdu3YAgIiICLXMy8vL6v5lVIgTiBIRGTCyQ0REREREbomNHSIiIiIickvsxkZERFTC0tPTAQApKSkAgMOHD6uya9euAQCio6MBADExMapMpp621HVNm8iAiIgsY2SHiIiIiIjcEiM7REREJaCwsFA9/vvvvwEAW7duBQBkZWWpstatWwMAOnbsCABo3ry5KvP39y/xehIRuTNGdoiIiIiIyC0xskNERORCMr20nCQUAPbt2wfAOGancePGqkyO0WnSpAkA29EcjtUhIrIfIztEREREROSW2NghIiIiIiK3xG5sREREdpJdyDw8PKyuk5iYCADYsWOHWnbkyBEAgI+PDwCgRYsWquyee+4BAFSsWNGuOugdm4iITDGyQ0REREREbomRHSIiIjuZR1W06aXPnj0LANizZw8AYP/+/aqsfHnD122zZs0AGJMRAEUjOpYSEDCaQ0TkHEZ2iIiIiIjILTGyQ0RE5KTDhw+rx3FxcQCA3bt3AwAuXLigyrp37w4A6NmzJwCgVq1aVvepjewwokNEVDyM7BARERERkVtiY4eIiIiIiNwSu7ERERE56PLlywCAhIQEtWznzp0AgBs3bgAAIiMjVZlMTNC4cWOr+7Q3MYFMilBQUAAAyMnJUWX5+fkAAF9fXwDGVNcAUK4c728S0Z2HVz4iIiIiInJLjOwQEdEdz96oyvnz5wEAycnJAICtW7eqsgMHDgAAunTpAgB44IEHVFmjRo1s1kEez9JxtfXLy8sDAGRkZAAAjh8/rsrkstq1awMAIiIiVJmM8jDpARHdSRjZISIiIiIit8TIDhER3fH0oh3Z2dnq8aFDhwAAsbGxAICrV6+qsrCwMABAdHQ0AKBly5aqzN/f31VVVWN2srKyTOoEAGfOnAFgHJ8TGhqqyry8vAAAnp6eLqsLEVFZx8gOERERERG5JTZ2iIiIiIjILbEbGxERkQWyu9ilS5fUsl27dgEA/v77bwBA/fr1VVlMTAwAoFWrVgBc23VNS3a5u3nzJgDgyJEjqkwmTpBd6rSpritUqACA3diI6M7CyA4REREREbklRnaIiIj+R07KCQBHjx4FAOzfv18tO3HiBABjdEQbOenQoQMAY1TFEntTXOspX768SR20CRSuXLkCALh+/ToAY5pqwBipIiK6kzCyQ0REREREbomNHSIiIiIickvsxkZERPQ/N27cUI/Xrl1r8i9g7KLWrVs3AEDbtm1VWdWqVQEYu5dpu42Zd1VztOuadn3ZjS0oKAgAEBISosrkY19fX4f2T0TkrhjZISIiIiIit8TIDhER3bFkwgCZXvrgwYOqbO/evQCAlJQUtUymk5b/BgYGqjLzlM6uSEagx8vLCwDg4+OjlsmIjoz+EBHd6RjZISIiIiIit8RbP0RE5DYcjabIVNM7d+4EAKxevVqVnTp1CgBQuXJltezatWsAgAMHDgAA6tatq8rq1atnsu9y5Ur2fqIcE1RQUKCWyefDNNNERAaM7BARERERkVtiY4eIiIiIiNwSu7EREdEdJSsrSz0+duwYACAxMREAcOLECVUmU0nLdNOAMZHB5cuXAQBHjhwpsn7NmjUBABUqVChybEvd7Jwl96XXdc+VCRGIiG5HjOwQEREREZFbYmSHiIjcjl5EY8+ePerx5s2bAQCpqakAgGrVqqmy+++/HwDQtGlTtWzbtm0AgN27dwMA9u/fr8rkhKRywtGoqCiH6uUsbSIEmf5aLmNkh4judIzsEBERERGRW2Jkh4iIbkvasSp6Y1TkemfPngVgHJ8DAMnJyQCA4OBgAECzZs1U2V133QUAqFWrllqWnZ0NAMjIyDDZHgD27dsHAKhduzYA01TU2ok/S5LeOB4iojsRIztEREREROSW2NghIiIiIiK3xG5sdzh7ujrodQtxZlsiImfY00XL0jUnJSUFABAXFwcAOHDggCq7efMmAKBly5YAgN69e6sybbICKTo6GgDg5+cHALhy5Yoqk4kP5PHq16+vyiIiIgAAAQEBVuvuKPlcCwoK1LL8/HyTZYWFhS47Hrk/83OL3+HkDhjZISIiIiIit8TIDlmld0dHlnEQLBHdKtqUy5K8JsnJPwEgISEBgDFdtIzmAEDDhg0BGNNLV69eXfeYXl5eAIAGDRoAME1ecPjwYQDAhQsXAJgmL/D19QXg2siOfK7a6I18LP/VXqN5vaaSYh5BtHRuEt0q/DQSEREREZFbYmSHikUb/bHUN5z9fYnI1fSuK2lpaQBMJ/vcsmULAGPk5d5771VlvXr1AmA6vsYR2vTSFy9eBACcP38egOnkpTJiVKdOHav7shR50XuuclyOpegNU1CTM5wds5Obm2vyfzmmjagsYGSHiIiIiIjcEhs7RERERETkltiNjQBYDlXLbmkylSlgDHF7enoW2U5vBnMiouLSu7ZkZmYCAJKSkgAYkxEAwLVr1wAYu5LJ9NGAMTGBs91uatasqR43atQIAHD27FkAwLFjx1SZTFogr6GWnoujiV/kdVibIlt2xwsNDQVgTKhg7ZhEWuafwby8PFV248YNAMDly5cBADk5OapMfs7Klzf8rNQmKPDx8QEA+Pv7AzAm69Cuz88mlSRGdoiIiIiIyC0xsnOH07ubIu/oyLs4gDHaU6FCBQCmd2jk3RumnCQiRzg6SaiUlZWlHh8/fhwAsGPHDgBAbGysKmvdujUAoFu3bgCAxo0bqzLtNcwRsl4yggIAtWvXBmCMuGjTX8vrqKxzYGCgXcfRe21kNKpNmzZqWd26dQEA4eHhRY4j6+UKzk5IXZIcTfBARcnXS37Xy2gOYIxUyoQfV69eVWVNmjQBAAQFBQEwJukAjFEfed7JCXYBoFKlSibraOlFQYkcwV+lRERERETklhjZIavkXcnExES1TEZt5IR6lu7GEBEVl97dXDkpaEpKilom0zzLO8ryDjMAREVFAQDatWsHwDUTe8r6yTvTABAWFgYA8Pb2BgBkZ2erMnmHXI5zkOMXAOej4TKaLiNKAFCjRg0AxmuzrAvg2siO3viiW3UnnhEA15GRHW309Ny5cwCAgwcPAjCN+sjJeeVnWY5b064nU6VrxwHLaA9/S1BJYmSHiIiIiIjcEhs7RERERETkltiNjQCYdkWQ3SzkYMRVq1apMtn9o0qVKgBMB+fqdSHgQEMissbR68KVK1cAANu2bVPL5KBp2aVLJiMAgFatWgEw7TpWEmTXOZn0QNs9zbwLj+wmZL4eYP/rIdP2ap+X+bXW0vQArsRretnhbKIPS+TnVduNTaZ3l2UVK1ZUZTKdu/xNcPToUVV2+vRpAMauptevX1dlMm26ttspkasxskNERERERG6JkR0CYLxTAxjvusiBvkeOHFFlISEhAIwDhG0NeLV3cjwiIku016ZTp04BAJKTkwGYTtopU+XXqVMHABATE6PK5GSiJR2FMB+Irb0+6k26WFxlNd2/KyMNlvbp6CSsxVXSx3Fk/3qT0rqCjEBqp56QqaZlynPZwwMw/jawFD3Nzc0FYDwv5O8HgL8RqHSUzSskERERERFRMbGxQ0REREREbond2AiAaVcROSBRm0NfMp+7QZsbXy+EzkGsROQM7WBmmYRgw4YNAIzdaQCgS5cuAIAOHToAAGrVqlUq9UtPT1ePZbe6jIwMAKZz3AQGBgIwDsQuq13PtMy7GOl1OdKWycfm/wKWEyc4Ugd717V0bGssJXGw9/nYU1975yLSJq2wRfv5kZ8z2W3SFd+3sluodr4c2aVNJiGQczoBxq5q8neDTCKirVe9evUAGOfWAUo+aQgRwMgOERERERG5KUZ27nAyoiPTTQPGgYny7pD27qScsVtGdLQDcPUGTMo7VtoIknws7yDdysGfzh7blRErvbt/lu4oFvf1cvQOpL13SvXu3NrzHsjPiq2UuXI9RwdBO3LH19Y+zfev95raW0/z18/eu9XOfr5LYhC5o/uS1xHt9UGmuT1+/LhatmnTJgDArl27AADNmzdXZRUqVABg/FxoIy7y2PLus3YGd3lMez8X8ton96Wtn0ycIO+Gawdiy7vicn1tVMr8jr62DrJMu45exEXvedjzflo6jj370m5nfm7qRXYc/SxbOqajz1kvPbelOjhyDtt7ztgzVYOlSI+M6GgjIlWrVgVgTAXtinTj8vN95swZtezixYsAjOndtamn5Wf+2rVrJv8CxlTsMrJTv359VcbIDpUGRnaIiIiIiMgtMbLjJhy9OyvvZspUktrIjkyNKicQ1U72Je/CyHXsJY8n79YCxjs/sm+vvJNkqc7a/+tFACz1gzdf39m+2JbYO05JLwJgzzFl3bV3pC3d9XO2j735hIeWXlNLdbC0f3mXXn5GtPvSu4MtI3zyX23UUO5Lu71cT2+SRrkPS8/V/I6+lt5dWu1nzPzzpnccS3fM5f4tPVe5b+0+5XO1FCHV+3xLlu6+W/ocyXrJOti6U6z3OTPfh6Xt5XPWXgPk+JeDBw+qZTJyIqM2lStXVmVJSUkAgOzsbADA4cOHVZl8fWWkRXsdkmOC7L2GysiO3NeJEydUmXws74ZrX9uEhAQAxmutvNut3b95JBwwvibaKJE5vfdcL2poifazpRc9NX9fLX0mLXEkImTpeFryNZHHs3Tdku+9dnvz672t8TN6kSC5f/N/LdXZUv0svT/y2PIapyV7WmjHy8g063JcmK0pIewhzws5IShgnI6iQYMGRY5z4MABAMC5c+cAmEZ2ZORJRnbq1q2re2ymoyZXY2SHiIiIiIjcEhs7RERERETkltiNzY2ZDwDVdj+SIWY5qFAbLpdJCOyZBdzewY/y2No0snKwo+zyoS3T68ZmrjhdbBzpxmZrxmrzLg62utfZqpOWeTczQL/Lhz0DdrX1M08WYambhnm3LG0dtORnQ5uW3LxelsguKfJfS5877fHMu7Bo6yXrYKn7m3m3N22Z3nsoH2u7cJp3F9Huy/w9s7cbm/k5Zqsbm1xmz+dAr/ublnnXH1uJSPS6Tsl9yH+1r5+sw6VLlwCYdpk5efIkAON1AjB205FppeVAacDY7VY+H+31RNZfvlayq5v2sXwOts5V8/dA+3xktzpZF+05IGebl9tru6XpdWMzPy+09JJY6HWT0nsPHU1Q4Oy10/wYtvaht1+9a6493dgs1cfS62b+Wdbu37z7rvl61uqnXcf8NbX0uplfHywdpzjk+y+noNB2+ZSf3ZCQEABA9erVVZnsbinPZe35Jx9b+k4gKg2M7BARERERkVtiZMfNWLoTJO/WyzsugDGakpaWBsA0YiDvnspUqdrkBfKOk6MDIOVdUO3dHpkcQd65lRPxaY9j6Q6X3gB4PZbuvEn2DIy1dAdOy/zun/Y1Mr/7Z2/yAvNB9JbuDDp6Z9RS5MVS9M/acWwdz/z523tn2TwSYikRgKWUvOb71h5bPldLkRBL25k/H20dzKNFQNE7lZYiSJYGa5vfibV1HPP6WRrUbSlKZL6d9rmbD37Wvg7y2PYMura0D0vniqWUufJu8OrVqwEAqampRerctGlTtaxt27YAjCmntYP85frm6fHN6w+YPnfzpByWnp/e+ar3Xlj6DFuKuJjv29I1wN4JJ83PseLc9ddLD21P9N3S+a6XNEMvqmKJ+XXb0ddbL8Wz3vOw9PnWe8/t7Zlg/l7pvTbaz75MAW3pOmnP96OllO/a72Pz48jIauvWrVVZdHQ0ACA2NhYAsG/fPlWWkpICwPi7Q5t62tJ1zpUp74kARnaIiIiIiMhNMbLjJvTuhMjIjEzxDBj741pKzSv7sN+4cQOA6V0fvbvHeuQdJ3nXFTBGkGT/X0t3aR2N7OjdgbQU2bGn37m9z1mvX7d5OmG9KJFeKlZHJ7+z9HzkHW9L/actRSGcvctmz5gBS2mp9SYV1Xt/LN1Rle+ZpbE05uta2r+lvvl6Y3b07sjbO4ZLLwpo6Tjmd7Utja+xFNkxj3DpjUPQS7etZem90BvXJFPZykiLdlxKZGQkAODuu+9Wy+RjGe3RvpfymmbPXX57P0d65Pra88jSeArJ/DkWJ72u3vVA7xyzh71RZ2vHs1UHeyZEtTeyY0/d7RmnZG8dynrEwd7onzltpPPChQsm/2rJyI4cf6b9nMvHch3tPmWUSP620F579K5zRK7CyA4REREREbklNnaIiIiIiMgtsRubG5NdPGToWJtCUnYnkwMNtd1HZMpXS91BLA1Ytoc8npxJGQCCg4MBGAcr6s26rVXc7hn2bmdPVxF7jmdpfUfr4Ch70sBa6q7jypmr7R2U66pj29v1xZHj2HrvnT2Oo58fRzib5tfeAeaO1kGe+/J4hw8fVmVy4LJMhR8aGqrKOnbsCAB46KGH1DJ5/ZCzyGvppbV1tiuUPWwlLpHMkz44qrifJ3u5Yl+O7MOe5Acl5XbpnmYvveuq3nPUfv+fOHECgPF3gPbzXalSJQCm3dElmXDIUtIjPz8/k3+156+7vPZUtjGyQ0REREREbomRHTcjkwoAxgGG8o6L9k6LHERYrVq1ItvJ9JB6A6sdjUzIu5nyzo75YyJybzKyrI3s7N+/H4DxetKyZUtVJtPaykQFtpT1CQvdLYrgKnw9XEcvkYsebWRH/m6QyUO0+5Lf4/Jc1iY9klFaOZVERESEKjNPRuTKSVCJ7MFPHBERERERuSVGdtyMduLQ+Ph4AMa7NnXr1lVl5umetROHyoiOK9IQ864d0Z1N3ilOTk4GAGzcuFGV7d27F4BxfE6fPn1UWcOGDUuphkR3Nm2aaNkTRP6r/Q6XvxOOHDkCADh37pwqk8tkL5F77rlHldWuXRuAabSHqDQxskNERERERG6JjR0iIiIiInJL7MbmJizNkC5DzjIMLQcJAkBQUJBJmTYdqr+/PwAgLCwMgGn3t+rVqwMo+4OBiejW0XaLPXjwIABgx44dAExnZpfdaWWXtejoaFUmr1GW2JNOl4jso/3+l9/7derUAWBMmQ4YExvJ9bXd32SXeJmeWnsuyyku5G8LotLGyA4REREREbklD+HKWQSpVGnfOplM4PLly2pZamoqAOOdGXmnBjDefZEpIOXEo4Bx0GF6ejoAICsrS5XJOztyItCAgADdepnjnVgi9yXv9Mr09QDw+++/AwA2bNgAAGjSpIkq69q1KwCgWbNmAEzTTMtrk/Z6wusHkW2O/qzTRmLl9/7169eLrCfPSfmvNiIkH8sJR7VRHLnM2Ql1iYqLkR0iIiIiInJLbOwQEREREZFbYoICN1OhQgX1uGbNmgCM3di0CQrMZzDWDkIMDg42WV8bEvf29gZgDEuzFyQRyevAiRMnAAD79+9XZSdPngRgvMY0aNBAlcXExAAwDoq21U2NiQmIXEeeT/L7HABq1KhhdX3ZXT43NxeA6e8ImaCAqCxiZIeIiIiIiNwSIzu3Me3dTTnwTxvZkXdr5Hra6I0k7+xYSj1tKWpjPkBRWwdGeYjuTDLlfWxsLABg1apVqkxek+6//34AQLt27VSZTD3NSA2R6zh6Ptm7vvydwCgO3W4Y2SEiIiIiIrfEyI6bsDQ5qCNpHrV9b83H8xARmbty5Yp6fOzYMQDAoUOHAJimwK9Xrx4A4/gcmbYeKBptthUdZgSIyHWcPZ/s+Y1g6Vzm+Uu3Cn/VEhERERGRW2Jjh4iIiIiI3BK7sd3hXBlWZoia6M4hkxEAwLp16wAYu7Y1adJElbVp0wYAEBUVBQAICAiwuk9eQ4jcA89lKksY2SEiIiIiIrfEyA4REenKzs5Wj+UkodqJQ48cOQIAqF27NgDgrrvuUmV6ER3zQcy8G0xERK7GyA4REREREbklRnaIiEhXcnKyerxp0yYAwOHDh9WyoKAgAEDr1q0BAF27dlVlVapUKYUaEhERWcbIDhERERERuSU2doiIiIiIyC2xGxsREVl08eJFAEBiYqJaJhMT+Pr6qmUtWrQAADRr1gwAEBoaanWfnFmdiIhKEyM7RERERETklhjZISK6Q9gbVUlNTQUAxMfHAwD27Nmjyq5evQrANAlBv379AADVq1e3WQdGcYiIqDQxskNERERERG6JkR0iojuEXlQlKytLPU5KSgIA7N69u0hZvXr1AABNmzZVy+rUqePSehIREbkKIztEREREROSW2NghIiIiIiK3xG5sRER3sIyMDADAkSNH1DLZfW3fvn0AgDZt2qiyPn36AAAaNmxYWlUkIiJyGiM7RERERETklhjZISK6A2VnZwMAkpOTAQCxsbGq7PTp0wCAoKAgAECjRo1UmZxA1N/fv1TqSUREVByM7BARERERkVtiZIeI6DZmPlGoXnppGc0BgFOnTgEA1q1bBwBYv369Kqtbty4AoG/fvgCAtm3bqjI/Pz+rdeCEoUREVNYwskNERERERG6JjR0iIiIiInJL7MZGRHSbMe+6Buh3ISssLAQApKamqmVxcXEAgKNHjwIACgoKVFlkZCQAoF27dgCAWrVqqbJy5azfI2N3NiIiKmsY2SEiIiIiIrfEyA4RkZuTiQnkZKEAsGzZMgDGhAMPPvigKuvQoQMAY0THUlICLUZyiIiorGJkh4iIiIiI3BIbO0RERERE5JbYjY2IyE1duXIFAHD48GEAQEpKiiq7evUqAKB+/foAgE6dOqmyxo0bA7DdfY2IiKisY2SHiIiIiIjcEiM7RES3Mb3kAAcOHAAArFq1CgBw8eJFVda8eXMAQExMDACgadOmqiwoKMjl9SQiIroVGNkhIiIiIiK3xMgOEdFtxlI0R04ceuHCBbUsKSkJgHHMTo0aNVRZ+/btAQDNmjUDwGgOERG5J0Z2iIiIiIjILbGxQ0REREREbond2IiIyiAhRJFleskIjhw5AgDYtWuXWpacnAwAKFfOcF+rSZMmquzee+8FAISFhRW/skRERGUUIztEREREROSWGNkhIipDzCM6etEcwDg5aGJiIgBg9+7dqiw3NxeAMaITHR2tyqpWrVrsuhIREZV1jOwQEREREZFbYmSHiKgMsRXJAYDz58+rx3LiUDlWJyUlRZXJCUP79esHAKhbt67L6klERHQ7YGSHiIiIiIjcEhs7RERERETkltiNjYjoNpGdnQ0AOHTokFomExJcuXIFAFCjRg1VJhMSREVFAQB8fHxKpZ5ERERlBSM7RERERETklhjZISIqZY6kl75+/bp6fPLkSQCm6aVlYgIZvbnvvvtUWaNGjQAA3t7exawxERHR7YmRHSIiIiIickuM7BARlQLzaA6gH9GR6x8/flwti42NBWCM8ABAhQoVAAANGzYEALRp00aVBQUFFaPGREREtz9GdoiIiIiIyC2xsUNERERERG6J3diIiEqQpe5r9rhx4wYAY9c1APjrr78AANWqVVPL+vTpAwBo1aoVAMDf39+p4xEREbkjRnaIiIiIiMgtMbJDRFQCHInoaNe9cOECACAlJQUAcOTIEVUmJxXVThzatm1bAECtWrUAAJ6ennbVRS85AhERkbtgZIeIiIiIiNwSIztERKVAL5Jy8+ZN9VhOErp69WoAQF5enirr1KkTACAmJkYti4iIAAD4+fm5rrJERERugpEdIiIiIiJyS2zsEBERERGRW2I3NnKZvMxTAIDkPQfVsvM5FQEAte5qAQBoXNm39CtGVEZlZGQAAI4dO6aWJScnAwDS0tIAAI0aNVJlsvtaVFSUWlahQgWTfTqb6pqIiMgdMbJDRERERERuyb0jO3mGFK5JO/aqRadz/vfAvw4AIObuBqosyEWHzbmSqh4fSjwMADifo13jf9GOVoa7s/VCA1WJlyMHOr1XPVyTdMGxStohLLonAKBlDUulhkHTh+eNVEt6Pz4HAHA019L6hucY8/5qtWT5xA4AgODiVpSoDNNLTPDPP/8AMCYjAIAzZ84AAOrUMVyj7rrrLlXWpk0bAEBwMM8aIiIiezCyQ0REREREbomNHSIiIiIicktu1I3N0K3qQtxsteTFIc8AAOZY6ld19zQAwJFtLujGlr4HAPDTs/8CADwz56gqstijy4xPvUfV428WfA0AGNPKjm4qh43P9f77v7DjSI55YYNhoLOlbmx5uz8AAPQYMse48BHDa7rjowfVokjfq4Zl7xqWDX2jqyobXc/wOi0abLGfHNFtzbz7WmFhoXp86dIlAEBSUhIAY3c2wNhFrVWrVgCAZs2aFSmzxJ7EBHpd6oiIiNwRIztEREREROSWbv/ITs5xAMCqdw3RkUc+3KmKMkvyuOkb1cMXW3YDAHxxysJ6gYaoRaPqAWpRfnoqAODoRUPcJ/eoMToytvVWAMDpXYaox6R21lMWpKbus7DURz0KrRcJAAh28l2u4mO9bM/KbwEAp/CYWrZ02hgAQIxJiKwqAGDA1D8BAFM2tFAlL/++DQBwfvBgAEC4c9Ukui1o00vv2LEDALBvn+Eczs/PV2Uy1XS3bobrSrVq1ezaP6M2RERERTGyQ0REREREbuk2jez8rR5NDLsbAPChDOP41FNlj35jiDQUjH1dLZtX7GMbxgbt/vpxtcQY0TGEQrp+sk2V/f58WwBAmEmAxpCHOvn73gCA1uONUaJcGHY2+RtDKtoXfzaOfzEfU1RQcNNC/dqqRx+sNtRjTD0LqxVTznXDZIjwCVHL/P30tjBMJhpQUbPo2g0AQLZrq0ZUpsiJQxMTE9WynTsNEeicHMO1oGHDhqosOjoaABAREWF1n9rxOYzoEBERWcfIDhERERERuSU2doiIiIiIyC3dpt3YjAmdszMNXcfqPfoNAOD3z43dy9qGGbpxvTjWlcc2pJle+a2FbASh/wYAvP+8sStZmMX8AoYuXVHjJgMAnnvB2I3tE/nUjp0DAFzUbGVfamzjbOv1SqD7mtSy63AAgM8n36ll7305DAAQbfL8/9dlb9arAIC3dxv3cfe0ewEAkSVXTaJbxjy9tExKAAAHDhwAAMTExAAA+vfvr8rq6Zy42vTV5tidjYiIqChGdoiIiIiIyC3dppGdWurRiNiTAICP24YBAKwnanYVQyrpfr+uVktanIwFAOwM6AsAaGt3JSoBAMIiNYsO2V+Tk0nb7V/ZxYJ6fQwAWPnyJrWs18uGqFL4y9a3i3jkd/V4xuMlGHoiugWys43pNuREoTIZwYULF1RZeLgh0XqTJk0AGJMSAICvr2+J15OIiOhOwcgOERERERG5pds0smOMCLRqq7NaiTBEdlr2rKGWtERPAEB/B/eUvnEmAOArC9GcZo90BKB9ps4wpMnOvGiYoDR5z0lVcu1//1as1QoAEFUvVJUF2hWZCgYAdP34oFpy8vENAIAli41jkI5kGiZEbD7gIQDAwPZ1VBnvX5O7yMrKAgCcOHFCLfv7b0OK/C1btgAA6tatq8r69esHAGjevDkAwNvb267jlCvH+1NERESO4DcnERERERG5JTZ2iIiIiIjILd2m3djKtowUY+KAncevGx7cMHYhi108HQDw0WzDwOVMzbaB988AACwcH6VzBEP3tPybFooapaqHP3UIAQB025lpYUUzgTHq4furlwMAJnYItr2dJiVEWPT9AIAx//uX6E4hu6/t2rWryDIfH0N6/AYNGqiy9u3bAwCqVq0KgN3TiIiISgq/YYmIiIiIyC0xslMCLm5+VT2+f6xOeugW4wAAv343US0a1CECgK3B+4Yo0Yl9FooOLVYP5/zvX59QQ5qDyGDj2511xpAV4bQM+mTuVGVvdGwJAMjbZUhsMKldySf0JrodyVTTe/fuBQAsW7ZMlYWEGCKrffr0AQC0bt26SJmM6AghVBknByUiInIdRnaIiIiIiMgtMbJTAjwDjJOeNmp06X+PstSyM4dOAwAy930PABje8TdV9uFzhnjMyk8fBABEOBpU8WmlHk5eZbjL/GqX6gDMo0U5AIDk73sDAFqPN6aLzsUpw/aT5wMAxqwYpsqMCbeJ7kyXL19Wjw8fPgwAOHTIECmVKagB40Sh7dq1A2CaelqO45G0kR2JER4iIqLiY2SHiIiIiIjcEhs7RERERETkljyEpf4TbsPQNetFj25qyRfywd3TAABHto1RZfVKqVbIOQMA2PnjKABAz+dXqyKZLyDihQ0AgL2fd1Vl9iSCdpyhS91vvWuqJcNXykf9AQC/n1ukygaHl0glyE62TteS6Ppkfkx3617laBeyjRuNXT4XL14MAMjIyAAAhIcbT5BOnToBALp06QIACAgIcFkdiIiIyD6M7BARERERkVtigoJbwdeQMCDmOUMCgHn7w1RR7+m5AIBTX7wHAPjreWNk54nIkqiMIeVAs26NjItWHvrfg4sAgMwszeqM7JRpBQUFAICbNw0zzt64cUOVXb9umOA2Pz8fgOlElv7+/gCAoKAgAICXlzEzhowwuFukwZ5oSm5urnp8+rQhCpqYmKiWHTt2DABQu3ZtAMbJQgFjggJGdIiIiG4dRnaIiIiIiMgtMbLjoLxMQ7Tj8v/ukgPA+f+ln82vY4jCtLE7X7ThLnrDmLbGRdPlJKSGcQH7j2tWj3S0tvbLuZ5ecju34j//+Q8AoH///gCAxo0bl3odbmeWIgA5OYaU4ufPnwcA/PPPP6osKSkJAHDt2jUAgJ+fnypr1MgQ2ZNpkrVjT7y9vV1Z7TLDnghKcnKyerxmzRoAwNGjR9Wy0NBQAMYJQ+++++4iZcWtAxERETmPkR0iIiIiInJLbOwQEREREZFbYjc2R+2cDACo1nNqkaJGn+wDAPzz7+Z27iwPAHAyKc5CmaFbUY0QC1vZ0ZUOsLc7nWHQdcquixbKDDO+V7XdG8dumzZtUo9ff/11AMBbb70FAHjjjTdU2ZtvvgkAKF+eH1FHyIQEFy8a3k/ZnU27TP5bWFioyuRAfPl6N2nSRJXVrWv4HGiTFrgrmeDh0qVLAEyTEezfvx+Aafe/li1bmvwbFmZMNkJERES3HiM7RERERETklnjb3EFe7R8EAIz2MUZ2/pctGofefAEA8H3vFapsXJSv1X3lJE8HALz3XW7RQp9eAIA2TYoWeR00HLt5+8lqmYzL+HT9Ti1LWDEOAGC5Coao0oW1nwIAXl9ZdA2fR/oBAO4KsvIEnCAnWgSATz75BIAxsvPOO++osnnz5gEAZs6cCQCIiYlxXSXcjDZCI9NLp6cbEk5ooxBNmzYFYIz2nDp1SpWdOHECAJCWlgYAuHr1qiqrVq0agDsjsiNfhx07dgAAEhISVJmMfrVp00Yt69u3LwCgZk3jpLxERERUdjCyQ0REREREbomNHSIiIiIicksewtIU3mXc+S3fqMefr0jTWfMIAGDFR3+oJWq4cahhIP+To9qpssrmm7d9TD38z8PR/3tk6P51+Kf7VVnzsYY5cYyd0QLVo+gBhn082NC4LPPwMgDAL4sM855kmhzUBwDQdZphMPTqMQ1VibETkSGpwLwB9dSSIYstdIULNNR5wGOGrncNA41HOrxmAQBgxZ6LZnUH4GN4babtXw0AGNOwZLsvHTlieJ/Gjh2rlslEBnLA/DPPPKPK3nvvPQD6M9O7K+3pKudo0XZjO3v2LAAgNTW1SJns0ia7qMl1ACAuzpAkQ84r07WrMdHF008/DeD2GnwvXyd75rGRSR0A4+dOzqmTmWk8Z+TcQ926dVPLevToUey6EhERUclhZIeIiIiIiNzSbRnZOfqTcZB7/bHbS+5AL2xQD8XnXc0K09WjPT89CwD41zNzDPWzEGTRZ4z63P/lZgDAnOdaAQCC9TZL36Me/vTsvwAAz8wxzu7uSDV86j2qHk9fYkicMEwnuUJJ++mnnwAAL7/8MgDTAfORkZEAgO++MyRjeOCBB0q1bmWN9hSWg+jlv1rlypne29BGLZYuXQoAmD9/PgCgbdu2quy5554DANSoUcNFNXYt+fz1LmXmzx0Arl27BsAYWQSA1asN0czt2w3XFZlSGgAGDBgAAKhfv75aVqlSJecqTURERKWCkR0iIiIiInJLt2Vkx/4xO8VkccyOdXmZhlS+yXu2qmWbVhjG3pw1WdOQyrd57y4AgHtaRamSiEBnx8cYxhJlnkpWS/Zs3QQAWLH/bJG1A+sbUjnfc5dhzFK7FtVV2a2L5xQlUyE/++yzatnixYtN1hk5cqR6/PnnnwO4s+64WxrH4+h2y5YZxpH9/vvvAIDoaOPnfdSoUQCAqlWrFqueJcVSZMf8ddD+Pz8/HwBw4MABAMDOnTtV2cGDBwEAGRkZAEzH5/zrX4boqa9vWTpDiIiISA8jO0RERERE5JbY2CEiIiIiIrd0W3ZjozvbwoULARi7tp07d06VValSBYAxeQEAPPzww6VYu7Lv5s2bAICLFy+qZXv37gUA7Nu3DwDQsKEx5blMACFTfTvbba6kWOrGZp6QoKCgQD2Wz3vFihUAjEkJAGMShs6dOwMAmjZtqsrq1Kljcd9ERERUdvFbm4iIiIiI3BIjO3TbkumoX3zxRbVs1qxZRdbr378/AODrr78GANSsWbOkq1amXblyBQBw+vRptUxGO+QEm9rXSCYrkBO8WrpklKUID1B0wtUTJ06oMpmYYNeuXQBMU0936NABADBo0CAAQLVq1VSZp6dnSVSbiIiIShAjO0RERERE5JYY2SG3sm7dOgDA2LFj1bLU1FQAxnTUH374oSobN25cqdXNFWydrvZEWOQYp5MnT6plPj4+AIDw8HAAQFBQkCqrUKGCzTqUhciOlqyjjP5px+WsXLkSAODv7w8AaNWqlSqTk4g2a9YMANNMExER3e4Y2SEiIiIiIrfExg4REREREbkldmMjt5SVlaUev/POOwCAL774AgCQn5+vyrp06QIAmDZtGgCgfv36pVNBJznajS0vL089zs7OBmDs2pWZmanKKleuDACoXr261X3Lwf6WuqyVtW5sMuHCoUOHAAAbNmxQZfHx8QCAFi1aADAmsACAevXqAQAqVqxYGtUkIiKiEsbIDhERERERuSVGduiOsXPnTgCmyQtkGmI5EP29995TZS+88AIAY8rlssDR5ADp6enq8YULFwAA3t7eAIwTsAKmCQnMyUiYPLb29ShrER3p77//BgAsX74cgGkUKzQ0FADQtm1bAMDdd9+tyvReByIiIrr9MLJDRERERERuiZEduuNox+xMmTIFAPD+++8XKZNpiGfOnGnyf3tpJ6v87LPPAAATJkwA4PzYIEsTZ2rJCIaM4qSlpamys2fPAjCm4K5bt64qk5EtOS5HpqIGjKmn5ToyMmStDqXt5s2bAIwptQFjCvJNmzYBMB2L1LlzZwDGyVJr1apVGtUkIiKiW4CRHSIiIiIickts7BARERERkVtiNzYiAP/88w8A4IknnlDLZEIDOSD/3//+tyqbNGkSAGPXLksWLlyoHv/rX/8CYExzvGjRIhfUuiiZcGHLli0AgKNHj6oymXI6MDAQAFCzZk1VJrujyW582m52bdq0AQCEhYUBAPz8/IpsdyvJ9052XQOAY8eOATCm3m7Xrp0qe+CBBwAYExUQERGR+2Jkh4iIiIiI3BIjO0Qa2gQF33//PQDg9ddfB2A6UWnjxo0BAN99951aJicotbSvJk2aADAmLdizZ48qczTxgTntKbx3714AwPr16wEAJ06cUGVyUlGZfCA4ONjqvuTgfQDo2LEjAKBq1aoAbm2CAplAAQAuX74MANi4cSMA08iOrGNUVBQAICYmRpW1bt26xOtJREREZQMjO0RERERE5JbY2CEiIiIiIrfEbmxENqSmpgIAxo8fr5atWrWqyHrPPPMMAOC9994DYJzPBgBmzZoFwJgAQSYqAIqfrEDbtev06dMAjN3lZFICwNitTp7yXl5eqszT0xOAsYubdl6aOnXqAAD8/f0BFK/rmvnlxtF9ycQDALB161YAxi6Bch4hALjrrrsAAA899BAA07l09JJKEBERkXthZIeIiIiIiNwSIztETpCRmpdfflktu3TpEgBjSmdt8gKZ7tg8UQFgjEw4m6igoKBAPb5+/ToA4Nq1awCAmzdvqjJ5qsv1tREhGdmRUY+goCBVVrFiRQC3Ns10RkYGAGDTpk1q2erVqwEYn7NMoAAYk0X07NkTAFCuHO/rEBER3Yn4C4CIiIiIiNwSIztExSCjOYBxTI92MlFpyJAhAIwTdGojQjLqs3LlSpvHs3W6yqiN/Fe7vvm22v/LqI2MgMhID2CcVLW0aV/b+Ph4AKaRHZlmu0WLFgCAQYMGqTI5KWrlypWL7FdGtORzLgsToxIREVHJYGSHiIiIiIjcEhs7RERERETkltiNjcjFli1bBsA0VXVaWhoAYzpqbUpoaePGjQCMg+stsXW63qouWTKttfZxXl4eANMECubd7LRJEmQXOrn9/v37VdmOHTsAGF9Hra5duwIw7cbm5+dnso6l7nzsxkZEROT+GNkhIiIiIiK3xMgOkRPi4uIAAFlZWUXKZPpm7eSVb731FgBj1McSGdGRER5Lympk58qVK+pxenq6yb+ZmZmqLDs7G4AxXbT8v/axfE0PHTqkyuRkok2bNlXLevfuDQCIiooCANSoUUOVySiRPZc3RnaIiIjcFyM7RERERETklhjZIbLTuXPn1ONq1aqV2HG0kR3z8TvFieyYj1WxRI6XycnJUctkxEVOUKqdqFRGbbSRHTkeSf6rjd7I/ZpPfgoAZ86cAQCcPXsWAJCbm6vK5FgnmaYbAAYPHgwACA0Ntfp89F4vRnSIiIjcHyM7RERERETkltjYISIiIiIit8RubEROmDJlCgDg6NGjRcrkAPtLly45VCa7fbVs2VIt00tWUBJkUoGTJ0+qZUeOHAFg7MYn1wGAGzduADCmmQaMXcc8PT0BAN7e3qrMy8sLgLGLmnZfCQkJAICkpCQAQNu2bVXZo48+CgDo2LGjWta4ceMi+yciIiLSYmSHiIiIiIjcUvlbXQGi29Gbb755q6vgNBlVycjIUMvOnz8PwDhp5+nTp4uUyfW1URxJG12RKbcrVKgAAAgICCiynkxGoI0gyYlGq1SpAgBo0qSJKouJiQEANGjQwOIxAcvJCJiEgIiI6M7GyA4REREREbklRnaI7jAymhIbG6uWJSYmAgCOHz8OwDi2BgBq1qwJwDhpp/w/AISFhQEAKleurJbJyE758obLi4zwAMbozdq1awEYx+kAQJ06dQAAffv2BQB06NBBldWtWxcA4Ofnp5bZk0qb6P/bu7MfKa6zAeNPbMJqhgSDWQcImH0ZFsVGUXKBoiDFlsh/GimOkXKRXMSKAmFxjFnMbjD7YsbYw2Yc+7v49J46XZypqR6GZWqe3w1NnZ7qM9XVXVPnfc97JElTm5EdSZIkSZ3kzY4kSZKkTjKNTeqgKCIwPDyctkXRgdOnTwNw4sSJ1BYFA3788UegNy1t5cqVAKxZswaAVatWpbbFixcDMHfu3FH7EvsEuHz5MgAPHjwAeosMRKraH/7wBwDWr1+f2gYGBp7Zb6SxldLZTG2TJElgZEeSJElSRxnZmeJe9pqyjriPT9uyylEA4OuvvwbgwIEDqe0f//gHUC3kmUdLIoqyefNmAAYHB1NbFCGI6E0ejWmzoOexY8fS4z//+c9AFUmKfQNs2bIFgE2bNgEwf/78xv3Wf3/PLUmSVGdkR5IkSVInGdmZ4ppGw5uiPm1H0V925Kirmo73Dz/8kB5fuXIFqObj5FGVGzduAFUp6Cj1DDA0NATA9u3bAVi0aFGr1y6J9zwiSJ9//nlqi8cRVXrvvfdSW0R2miI6LhwqSZL6YWRHkiRJUid5syNJkiSpk0xj06giPShPHeo3Zai0D02MSF+7c+dO2nbw4EEA9u/fD/Qe9x07dgBVutjWrVtTWxQKmDlzJvB8qWFXr14FquIIx48fT21vvvkmUBVCiDLTACtWrBhz36asSZKkfhjZkSRJktRJRnamuIgOlKI38e8bb1T3xLFAZPxcPjk+yh7nz49IQYzo6/nkC3TGIqF5AYBTp04BMDIyAvQuALpr1y4Atm3bBsCyZcsmrF+xSChUi5YePXq0py8AGzduBKpCCLGQqCRJ0otgZEeSJElSJ3mzI0mSJKmTTGOboiId6rvvvgN609GmTfv/02LGjBkAzJo1K7XF87755hsAhoeHU9v9+/cBmDt3btoWa7mYxvZ8Is0wjjFUaWIfffRR2hYphHv27AF6ixBEYYIFCxZMWL/i/T958mTaduTIEQDOnz8PwIYNG1Lbvn37AFi7du2E9UGSJGk0RnYkSZIkdZKRnSkgogJ59CYiMzdu3AB6S/ouXLgQqCI7pX09ffoUqCJD+b6ePHmSti1fvhyoChVofG7fvg1Uk/+hipzkx3vNmjUA7N69G+iNqsybN29C+vL9998/04eI5kBVCjve+yiIADA0NAR4PmhyGG/J/DY/11RGvfTz/fZlvPtoW959opYTyPfzvPt80UscjPeYxnPGOrb1pRqa9p0XAopsjMigyF9nvOX647Wj8FD+OC+UU3+d6Ff0qd5X6VXwDJQkSZLUSUZ2poCIwkR0AODKlSsAfPnll0DvPJu3334bqCI7+chQjBxFWz5i8/Dhw5426B0VUv8iGvfFF18A8PHHHz/znL1796bHsVhnzNXJ51s9rziPLl26lLZFRCcWEAV49913AfjTn/4EwPr161ObER2VRvLr5e5He37TyHeb0fB+Fzlu8zqlPpdGwOu/Y9Poe/56sY98X/G41Id4XOpD/edypX7VR+RL/WoTtWiKiJSWLyg9r83+20aJxhsBKr0X9eM81jkcSks71M/P/NjU959/l86fPx+At956C+iNqox3vmy8dj5PNK7xeXQ/xGvGNSf6AjB79uyevpf0+70g9cPIjiRJkqRO8mZHkiRJUieZxjYFRHngU6dOpW03b94EqlB1pK4B/PznPwfK4e96CH1gYCC1xT7ylLj6PvKwfEysf/z48TNt/aabhDbpGXlIPJ5fSu+o76v0c02vN1a/QqQxxM89ePAgtd26dQuo0sTyQgArV64E4Je//GXaFqkDkXqQ7yuOd5s+52kQcWwuX74MwH//+9/U9u9//xuAs2fPpm2LFi0CqnMkL6AQ6ZP1455va0rNaXp/8nMtXjtSKvP0mDjfYlspdabp/Gt6f/udbF1KiwlxXoy1z3o6TN6/2G8ppanpHG6TqlV6f+I9yFNz4rXj811Kq2r6bDYdx9Lv09S/pvOobWpX/ViUUpoi5TM/t+rvU36+NqWLxXHL91U/X0qpUKXj3ZQe1PQel45NvQ/9ToqvF7uB5097Ln2O2qSzjfU5j8f1zxM8+143paU1fWbqP5vvO3/t+Lm84Ezsv+na3a9IWcu/2+/duwdU1/j8Wj9nzpyefubXnunTpwPV9SlPwYu2/Hdv8/0j9cPIjiRJkqROMrLTYTGyd/XqVQD+9a9/PfOc3/3ud0DvJPI8WgPlUa8YmVmyZMkzPxejS1BNTIwRqm+//Ta1RanqiBjkZazrI2ltR75LI4P1Uph51CKeH9GHplHG0shT/pzxTtStj4ZH1A3g3LlzQFXiOY4ZVMf24sWLaVuUFI/fozTqXBrNrEcF8pHB2FcsHJoXI4iiF/nzL1y4AMD+/fuB3omqMVpYGiGtR1ryfcbj/Plxfpcm7K5atQqAFStWAL3nVkSX4lg9evQotcUxidcrRQDy86B+DpZG35tGdUsRgHjt/Dyt9yEX+4rnl6IqMaG4qX9Nk8/zvpRep97nvC1+x/iMNfUh19RWf07+uPQ5r0cyStGO0gTz+C7Lv9NiJDqeF5FCqM6l+F1L0eo4VrGffP+l/pX2Fce3/m8unp8fv/rvU4pCNJUazvdViuKN9rs2fWZK0YvS89ucD03R4H4jhPn3T/07PT9G8f6U+l4vBV0q/lAqIV2PzuX7j7bFixentoiq/OIXvwAmphBMfD9+8sknaVtcf95//32gd2mDeM34ronrAFSfi3feeQfo/bshHufFdErXdul5GNmRJEmS1ElGdjomLwl59+5doIrsXLt2LbVFqcoYHVq6dGlqq48ol0q/lkafY3SpJEbv8v5FlOf69etANZIEzSPm9dz3sSI79ZHefEQ1Rs5KJTVjX6USoW0iO20jPPXRv7xEeCzQGW3Lli1LbQsWLAB6R0bjGEa+dGlksBRpqOd4R242VOdPRETytsjZzs+fmLsVfcmjKvVR0KYSrnmf4r0rjTrH+xKRLoCRkZGe18ujN9GfOP/ivYfmyE5Tv+rPKf2OTeWB89+rFJmo968p9z/vX7z/pUhfPVraFNkZa+S76dyK124z92Ssksv9RGjazEUa6/n11y31ofQ5L83LaRPtKO2rdC42LSJZ32cuvvvi39Lcjvw7oz7vp9SH+Lcpat00L6V0PpSe36ZsdilSVcoKqGvKHMj3VXp+/bNV6nupf6XXqUd2mq4v+ZydiKo0nQ/9inmfkXkB1bUpIjt5FkhcC/K5OvV9xTUhz/CIyP9ELpMg1RnZkSRJktRJ3uxIkiRJ6iTT2Dom0negmtQe6Ud5+lakGsWExraToettbcPlpTB+hNxjsmyUCc63NSmlsZUmica+SulBkaYRxyZP4aj/jqUUhH5TKppK30bf89SAwcHBnp/Lj1GE/fPwfz2lpGlCf2nSeTwnL5Jw7NgxoEpT/P3vf5/aVq9eDfSmsUUf82NZ/13HKmUM5XOlJNrySbkLFy4EqlS/PFUtzvl6CepSX0rnVtNk/VLp5NH+nz+/NHG56bPVlFZVes22JbRH+/mm1Jyx9tlmgnj9uaP9XNPvWv/clT6v/aqni+XbQintq01KXNvS0/XCIvnPNhXSKO27TfpbUypmab+lPjSl+jV9F9afM1ofRzNWufo2+r22NZU8b+pfm21Nfc+vkfVUsNL1vEn+/kYaWv63RIhrU3zfx/UJqmtofA+vXbs2tcU5HEsVRGo0VMVkonhBzpLTmihGdiRJkiR1kpGdjsnLoEZBgq+//hrojQrE6HY+qbuN8Y60xOhfqQ/Lly8Hekff66VYS31oipI0jWY2leYtjWC2XYCvrjQBuaRpInv0PY5bHp2L3zUvqlCP2uS/T4w6l8rpxihePuIWYqQuojh79uxJbevWrQN6FzaN14xCAHkfmibsNo0Gl6IJ9RHyUsnzGOnMizhEX9tMeC6dW6WS2G2iCaXXGW8UYiJHvtuMRI/1ev0uzNm0r6Z99hMxaOpn22NWen/aFEno59iOpem8mYjfUcqjk/H3QhSiKX2vRmZIfj2vPycvLx2LY0fBnfz7OLatWbMmbcuvc9JEMLIjSZIkqZOM7HRMPmIS5R4jYpJHcSLHt99R3fGKEfB8gckYvYlc3VJ56Yl47aYR31Jp3X72ORHPb5PfXxphLvW9TdQrzoN8xO6zzz4Dqmhg3haRnB07dvT8H6q5MaW5LaW5BvXj8Dwj301zfOrHK+9D5J2Pd8G6fvPuw3jnzbTtw3i9ygjA834uxrvPifz8lj6Tr+sxlUryvxtivmZEXPIlJSIbo02Z6PzvjdhHLAWQLzMRrzM8PJy2xdIYbebuSm0Y2ZEkSZLUSd7sSJIkSeok09g6rJ6alYeEmwoAvAhN5Y77LZKgiREFBKBKXYiJpLEaNsDQ0BAAW7duBaqCEtJk86K/70wh02SUp7HduHEDKKexLV68GOgt899GfWmDSGfLt5UKfUgTxciOJEmSpE4ystMxeVncKAYQIzN5AYDS4puaGqK8dCzwBtXCoTGat3PnztS2e/duwIiOJHVRXnq6XiZ62bJlqW3RokVA/5Gd+sLNeYZHZBHk2QT9LooqjcW/dCVJkiR1krfPHZOXhIwRmVho9Pbt26ktcma//fZboHdUpZ4v23ahwDbloiey/K76E4uPnj17FoADBw6ktjgPInoTi4UCDA4OjrrP16HUriRp/PI5NLGY6IMHD4Cq3DRUc3ZKi4mG+qLSUC1UGnOF80Wo582bB/TODfJ6oolmZEeSJElSJ3mzI0mSJKmTTGPrmChKALBx40agmuw3MjKS2iLEfPnyZaB3AmGktEXIOS8JGQUNohBCqZR0U9EDw9MTp01K4MOHD9PjixcvAlUxgjNnzqS2SFv78MMPAdiwYUOrPvh+StLrpd908UePHqXHkb4WfxO8/fbbqa1N6elIl86vL+fPnweqVLU8jS3277VEL5KRHUmSJEmdZGSnY/KJg1EmMkZaYuIhVKM3MfJ/9+7d1BaRnBi9ySM1Eb2ZPn060FvqWi9X00hYlBKNaA7AwYMHAfjqq6+A3tG1iOxs3rwZgIGBgYntrCTppatfJ/JMjfg7IL/+R9ZHPC8KCEB1zYjrfh5BisdRsvrSpUup7ZtvvgFg5cqVAKxYseKZfZZYAEcTxciOJEmSpE7yZkeSJElSJ5nG1mERao50tvfffz+1DQ8PA1V4OdbigWrNlUiFytfuiaIFkc5WWuk4D20bfp5YYx3bWC8hVsH+z3/+k9r2798PwPz58wH44IMPUtv27duB3vdakjT5NF13I60d4Pr160Bvyllc/+NaP3v27NQWafJRvOD+/fupLf6WiDTpGzdupLb4W2RoaAiAtWvXprZ8HZ8609g0UYzsSJIkSeokIztTQIzW56P2UV46IjN5ZCeKD8TITvw/39ZUZtpRmFcnIjpHjx4F4OzZs6ktRvSWLl0KwK5du1Lb6tWrger9lSR1T77MRD3DA6rrd1z3I1sAqqhP/JtHdqKwQRQ9yiM28fdGRHQGBwefeb1cqXS29DyM7EiSJEnqJCM7U1Tk4cYIS2nh0Pq/+eO2JaeN8pS1HbmqH7/S8cxH6k6fPg1U83Pytj179gCwc+dOAJYtW5ba8uidJKmb8mtPRPvzbbHIZ2Rv3Lx585mfjUjQ06dPU1t9wdA1a9akttgWSxq0jeb494MmipEdSZIkSZ3kzY4kSZKkTjKNrcPqYeE8JBxpaHlZyYl+Pb1YIyMjQG/Z0ChIEBNPY8VqgF//+tcAbNy4EagmjUqSpoY8LT3SypYvX562xd8E8fdCpKdBlRYd+5g5c2Zqi+vJwoULn9lnlKyWXhUjO5IkSZI66Wc/ORwvvXTjLVCQO378OAAff/xx2haTSWM0LhYLhapAQYy8SZK6p2myf1605tGjR0BveelYTDyKFpWuQbEtjxJFkZv4N4/6WGhAr5qRHUmSJEmd5Jwd6TVTGgWL0bY7d+6kbSdPngTgzJkzaVvkYA8NDfX8C80RnRgJdAROkronIjX5shFvvfVWz79jiahQ26UnpNeFkR1JkiRJneTNjiRJkqROMo1NegXydLE2xQquXr0KwN///ve07dSpU8/sK1at3r17NwCDg4Oj7tPaJJLUPU3pyPn3fr9py6avabIysiNJkiSpk4zsSK9Y0+haLBwaUZzDhw+ntigX+u6776ZtW7ZsAaqITl4aNBjRkSRJU4WRHUmSJEmdZGRHes3cvXs3Pf70008BOHDgAACXL19ObZs2bQJg7969adv69euBckQnWF5akqYWv/c1lRnZkSRJktRJ3uxIkiRJ6iTT2KTXxNOnTwG4cOFC2nbo0CEAbt68CcDy5ctTWxQj2LBhQ9o2MDDwwvspSZI0WRjZkSRJktRJRnakV+zhw4cAfPXVV0BVlADg6NGjACxbtgyAffv2pbbNmzcDMGfOnGf2WSov7QRVSZI01RjZkSRJktRJRnakV+zatWtANT/n4sWLqW327NlAtXDozp07U9uCBQtG3WdEdozmSJKkqczIjiRJkqRO8mZHkiRJUieZxiZNsKYUsmgbGRlJ206cOAHA3/72NwBmzZqV2vbu3QvA9u3bAZg7d26rPrzxhuMYkiRJ/kUkSZIkqZOM7Egv0fDwMABffPFF2nb69GkAvvvuO6B34dAdO3YAsHbtWgBmzJjxzD4tMy1JklRmZEeSJElSJ3mzI0mSJKmTTGOTJlhTCtmlS5cA+Mtf/pK23b17F4Bt27YBsGvXrtQ2ODgI9BYt6Of1JEmSpjIjO5IkSZI6yciO9IJ8//336fGtW7cAOHv2LFBFcwAGBgaAKqKzdevW1DZv3rwX3k9JkqSuMrIjSZIkqZN+9lOpbq2k53bmzJn0OBYMvXPnDlBFcwDWrVsHwHvvvQfAO++8k9qmTTP4KkmSNF5GdiRJkiR1kjc7kiRJkjrJHBlpgvzvf/8D4N69ewCcPHkytX3++edAVXBg9+7dqS0KEixdunTUfUe2qWWmJUmS2jOyI0mSJKmTjOxIo6jX7hgrqnL79m0APvnkEwA+++yz1Pb48WMA1q9fD1QLiAKsWLFizL4Y0ZEkSeqfkR1JkiRJnWRkRxpDU1Tl0aNH6XGUmv70008BGB4eTm2/+tWvANi4cSMAS5YsmfB+SpIkqZeRHUmSJEmd5M2OJEmSpE4yjU0ah/v37wNw/PjxtO3QoUMAXLhwAYBVq1altg8++ACADRs2ADBtmh89SZKkF83IjiRJkqROcnhZGkW9MMGTJ0/S4/PnzwNw+PDhtO3atWsALFy4EIBNmzalts2bNwPVoqKSJEl68YzsSJIkSeokIzuacuqLhUJzeemRkRGgiuYAHDx4sOdfgEWLFgGwb98+oDeyM2fOnOfosSRJksbDyI4kSZKkTvJmR5IkSVInmcYmjeHq1asAHDlyJG27ePEiADNnzkzbVq9eDcDQ0BAAS5cufVldlCRJUoGRHUmSJEmdZGRHU0YUJsgLFLzxRu/9/o8//pgeDw8PA3Dq1CkA/vnPf6a22bNnA9VioQBbt24FYP78+RPZbUmSJI2TkR1JkiRJneTNjiRJkqROMo1NU0bTWjrh7t276fGJEycAOHfuHAA//PBDaoviAzt27Ejb1qxZA8Cbb775/J2VJEnSczOyI0mSJKmTjOxoymmK8Hz55Zfp8V//+lcAHj9+DMBvfvOb1LZt2zYAFi9enLYZ0ZEkSXq9GNmRJEmS1ElGdjSlPXjwAKgWDj158mRqu3nzJgBLliwBYPv27alt48aNAMydO/dldFOSJEnjYGRHkiRJUid5syNJkiSpk0xjU6f89NNPz2xrKkhw4cIFAD766CMArl+/ntoGBwcBGBoaAmDdunWpbcGCBc/fWUmSJL1QRnYkSZIkdZKRHU16baM5T548AXqjN8ePHwfg7NmzAMycOTO1bdmyBajKTBvNkSRJmlyM7EiSJEnqJCM7mrRKEZ0mN27cAKr5OQDnzp0DYNasWUAVzQH47W9/C8DKlSsBFw2VJEmabIzsSJIkSeokb3YkSZIkdZJpbJr0mkpLAzx48ACAM2fOAFVRAoCnT58CVRGC7du3p7am9LVIoRvrtSVJkvTqGNmRJEmS1ElGdjTptClMcO/evfT48OHDABw5cgSAkZGR1LZ27VoA9u7d2/N/aC5IYERHkiTp9WdkR5IkSVInGdnRpFOPquSRnlg4NEpKAxw6dAiAW7duAdVcHKjm6qxbtw6AGTNmvIAeS5Ik6VUwsiNJkiSpk7zZkSRJktRJprFp0rt//356fOHCBaBKXQM4duwYAEuXLgXgj3/8Y2rbvHkzANOnT3/h/ZQkSdLLZWRHkiRJUicZ2dGkl0d2ojDB7du307aBgQEAVq9eDVTRHICFCxe+jC5KkiTpFTCyI0mSJKmTjOxo0ssjO1euXAFg1qxZaduHH34IVOWlI9JTkpexduFQSZKkyc3IjiRJkqRO8mZHkiRJUieZxqZJK1LOZsyYkbZFwYHZs2enbTt37gRgyZIlQLnMdJ6+JkmSpG4wsiNJkiSpk372k0PamqTi1H348GHaFsUKpk2rgpZRkCAiOnnhAYsQSJIkdZeRHUmSJEmd5M2OJEmSpE4yjU2TVpy6/aailU5509kkSZK6x8iOJEmSpE4ysiNJkiSpk4zsSJIkSeokb3YkSZIkdZI3O5IkSZI6yZsdSZIkSZ3kzY4kSZKkTvJmR5IkSVInebMjSZIkqZO82ZEkSZLUSd7sSJIkSeokb3YkSZIkdZI3O5IkSZI6yZsdSZIkSZ3kzY4kSZKkTvo/Bm9WNId19V0AAAAASUVORK5CYII=",
"path": "images_version_6/image_60.png"
}
|
multi-choice
|
{
"source": "GeoQA",
"split": "testmini",
"subfield": "Angle",
"subject": "Plane Geometry"
}
|
B
|
According to the question shown in the image, please directly answer the question and provide the correct option letter, e.g., A, B, C, D.
|
According to the question shown in the image, please first conduct reasoning, and then answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
As shown in the figure, AB parallel CD, then the degree of angle 1 is ()
Choices:
A:30°
B:45°
C:60°
D:75°
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.